1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/sched/signal.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/sort.h> 24 #include <linux/rcupdate.h> 25 #include <linux/kthread.h> 26 #include <linux/slab.h> 27 #include <linux/ratelimit.h> 28 #include <linux/percpu_counter.h> 29 #include <linux/lockdep.h> 30 #include "hash.h" 31 #include "tree-log.h" 32 #include "disk-io.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "free-space-tree.h" 39 #include "math.h" 40 #include "sysfs.h" 41 #include "qgroup.h" 42 #include "ref-verify.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 /* 47 * control flags for do_chunk_alloc's force field 48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 49 * if we really need one. 50 * 51 * CHUNK_ALLOC_LIMITED means to only try and allocate one 52 * if we have very few chunks already allocated. This is 53 * used as part of the clustering code to help make sure 54 * we have a good pool of storage to cluster in, without 55 * filling the FS with empty chunks 56 * 57 * CHUNK_ALLOC_FORCE means it must try to allocate one 58 * 59 */ 60 enum { 61 CHUNK_ALLOC_NO_FORCE = 0, 62 CHUNK_ALLOC_LIMITED = 1, 63 CHUNK_ALLOC_FORCE = 2, 64 }; 65 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_fs_info *fs_info, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_fs_info *fs_info, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_fs_info *fs_info, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_fs_info *fs_info, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_fs_info *fs_info, 91 struct btrfs_space_info *info, u64 bytes, 92 int dump_block_groups); 93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 94 u64 num_bytes); 95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 96 struct btrfs_space_info *space_info, 97 u64 num_bytes); 98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 99 struct btrfs_space_info *space_info, 100 u64 num_bytes); 101 102 static noinline int 103 block_group_cache_done(struct btrfs_block_group_cache *cache) 104 { 105 smp_mb(); 106 return cache->cached == BTRFS_CACHE_FINISHED || 107 cache->cached == BTRFS_CACHE_ERROR; 108 } 109 110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 111 { 112 return (cache->flags & bits) == bits; 113 } 114 115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 116 { 117 atomic_inc(&cache->count); 118 } 119 120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 121 { 122 if (atomic_dec_and_test(&cache->count)) { 123 WARN_ON(cache->pinned > 0); 124 WARN_ON(cache->reserved > 0); 125 126 /* 127 * If not empty, someone is still holding mutex of 128 * full_stripe_lock, which can only be released by caller. 129 * And it will definitely cause use-after-free when caller 130 * tries to release full stripe lock. 131 * 132 * No better way to resolve, but only to warn. 133 */ 134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE); 232 set_extent_bits(&fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE); 247 clear_extent_bits(&fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE); 249 } 250 251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(fs_info, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 271 bytenr, 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(fs_info, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 refcount_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (refcount_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 333 { 334 struct btrfs_fs_info *fs_info = block_group->fs_info; 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 fs_info->nodesize : fs_info->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 398 struct btrfs_fs_info *fs_info = block_group->fs_info; 399 struct btrfs_root *extent_root = fs_info->extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 path = btrfs_alloc_path(); 410 if (!path) 411 return -ENOMEM; 412 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 414 415 #ifdef CONFIG_BTRFS_DEBUG 416 /* 417 * If we're fragmenting we don't want to make anybody think we can 418 * allocate from this block group until we've had a chance to fragment 419 * the free space. 420 */ 421 if (btrfs_should_fragment_free_space(block_group)) 422 wakeup = false; 423 #endif 424 /* 425 * We don't want to deadlock with somebody trying to allocate a new 426 * extent for the extent root while also trying to search the extent 427 * root to add free space. So we skip locking and search the commit 428 * root, since its read-only 429 */ 430 path->skip_locking = 1; 431 path->search_commit_root = 1; 432 path->reada = READA_FORWARD; 433 434 key.objectid = last; 435 key.offset = 0; 436 key.type = BTRFS_EXTENT_ITEM_KEY; 437 438 next: 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 440 if (ret < 0) 441 goto out; 442 443 leaf = path->nodes[0]; 444 nritems = btrfs_header_nritems(leaf); 445 446 while (1) { 447 if (btrfs_fs_closing(fs_info) > 1) { 448 last = (u64)-1; 449 break; 450 } 451 452 if (path->slots[0] < nritems) { 453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 454 } else { 455 ret = find_next_key(path, 0, &key); 456 if (ret) 457 break; 458 459 if (need_resched() || 460 rwsem_is_contended(&fs_info->commit_root_sem)) { 461 if (wakeup) 462 caching_ctl->progress = last; 463 btrfs_release_path(path); 464 up_read(&fs_info->commit_root_sem); 465 mutex_unlock(&caching_ctl->mutex); 466 cond_resched(); 467 mutex_lock(&caching_ctl->mutex); 468 down_read(&fs_info->commit_root_sem); 469 goto next; 470 } 471 472 ret = btrfs_next_leaf(extent_root, path); 473 if (ret < 0) 474 goto out; 475 if (ret) 476 break; 477 leaf = path->nodes[0]; 478 nritems = btrfs_header_nritems(leaf); 479 continue; 480 } 481 482 if (key.objectid < last) { 483 key.objectid = last; 484 key.offset = 0; 485 key.type = BTRFS_EXTENT_ITEM_KEY; 486 487 if (wakeup) 488 caching_ctl->progress = last; 489 btrfs_release_path(path); 490 goto next; 491 } 492 493 if (key.objectid < block_group->key.objectid) { 494 path->slots[0]++; 495 continue; 496 } 497 498 if (key.objectid >= block_group->key.objectid + 499 block_group->key.offset) 500 break; 501 502 if (key.type == BTRFS_EXTENT_ITEM_KEY || 503 key.type == BTRFS_METADATA_ITEM_KEY) { 504 total_found += add_new_free_space(block_group, 505 fs_info, last, 506 key.objectid); 507 if (key.type == BTRFS_METADATA_ITEM_KEY) 508 last = key.objectid + 509 fs_info->nodesize; 510 else 511 last = key.objectid + key.offset; 512 513 if (total_found > CACHING_CTL_WAKE_UP) { 514 total_found = 0; 515 if (wakeup) 516 wake_up(&caching_ctl->wait); 517 } 518 } 519 path->slots[0]++; 520 } 521 ret = 0; 522 523 total_found += add_new_free_space(block_group, fs_info, last, 524 block_group->key.objectid + 525 block_group->key.offset); 526 caching_ctl->progress = (u64)-1; 527 528 out: 529 btrfs_free_path(path); 530 return ret; 531 } 532 533 static noinline void caching_thread(struct btrfs_work *work) 534 { 535 struct btrfs_block_group_cache *block_group; 536 struct btrfs_fs_info *fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 struct btrfs_root *extent_root; 539 int ret; 540 541 caching_ctl = container_of(work, struct btrfs_caching_control, work); 542 block_group = caching_ctl->block_group; 543 fs_info = block_group->fs_info; 544 extent_root = fs_info->extent_root; 545 546 mutex_lock(&caching_ctl->mutex); 547 down_read(&fs_info->commit_root_sem); 548 549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 550 ret = load_free_space_tree(caching_ctl); 551 else 552 ret = load_extent_tree_free(caching_ctl); 553 554 spin_lock(&block_group->lock); 555 block_group->caching_ctl = NULL; 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 557 spin_unlock(&block_group->lock); 558 559 #ifdef CONFIG_BTRFS_DEBUG 560 if (btrfs_should_fragment_free_space(block_group)) { 561 u64 bytes_used; 562 563 spin_lock(&block_group->space_info->lock); 564 spin_lock(&block_group->lock); 565 bytes_used = block_group->key.offset - 566 btrfs_block_group_used(&block_group->item); 567 block_group->space_info->bytes_used += bytes_used >> 1; 568 spin_unlock(&block_group->lock); 569 spin_unlock(&block_group->space_info->lock); 570 fragment_free_space(block_group); 571 } 572 #endif 573 574 caching_ctl->progress = (u64)-1; 575 576 up_read(&fs_info->commit_root_sem); 577 free_excluded_extents(fs_info, block_group); 578 mutex_unlock(&caching_ctl->mutex); 579 580 wake_up(&caching_ctl->wait); 581 582 put_caching_control(caching_ctl); 583 btrfs_put_block_group(block_group); 584 } 585 586 static int cache_block_group(struct btrfs_block_group_cache *cache, 587 int load_cache_only) 588 { 589 DEFINE_WAIT(wait); 590 struct btrfs_fs_info *fs_info = cache->fs_info; 591 struct btrfs_caching_control *caching_ctl; 592 int ret = 0; 593 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 595 if (!caching_ctl) 596 return -ENOMEM; 597 598 INIT_LIST_HEAD(&caching_ctl->list); 599 mutex_init(&caching_ctl->mutex); 600 init_waitqueue_head(&caching_ctl->wait); 601 caching_ctl->block_group = cache; 602 caching_ctl->progress = cache->key.objectid; 603 refcount_set(&caching_ctl->count, 1); 604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 605 caching_thread, NULL, NULL); 606 607 spin_lock(&cache->lock); 608 /* 609 * This should be a rare occasion, but this could happen I think in the 610 * case where one thread starts to load the space cache info, and then 611 * some other thread starts a transaction commit which tries to do an 612 * allocation while the other thread is still loading the space cache 613 * info. The previous loop should have kept us from choosing this block 614 * group, but if we've moved to the state where we will wait on caching 615 * block groups we need to first check if we're doing a fast load here, 616 * so we can wait for it to finish, otherwise we could end up allocating 617 * from a block group who's cache gets evicted for one reason or 618 * another. 619 */ 620 while (cache->cached == BTRFS_CACHE_FAST) { 621 struct btrfs_caching_control *ctl; 622 623 ctl = cache->caching_ctl; 624 refcount_inc(&ctl->count); 625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 626 spin_unlock(&cache->lock); 627 628 schedule(); 629 630 finish_wait(&ctl->wait, &wait); 631 put_caching_control(ctl); 632 spin_lock(&cache->lock); 633 } 634 635 if (cache->cached != BTRFS_CACHE_NO) { 636 spin_unlock(&cache->lock); 637 kfree(caching_ctl); 638 return 0; 639 } 640 WARN_ON(cache->caching_ctl); 641 cache->caching_ctl = caching_ctl; 642 cache->cached = BTRFS_CACHE_FAST; 643 spin_unlock(&cache->lock); 644 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 646 mutex_lock(&caching_ctl->mutex); 647 ret = load_free_space_cache(fs_info, cache); 648 649 spin_lock(&cache->lock); 650 if (ret == 1) { 651 cache->caching_ctl = NULL; 652 cache->cached = BTRFS_CACHE_FINISHED; 653 cache->last_byte_to_unpin = (u64)-1; 654 caching_ctl->progress = (u64)-1; 655 } else { 656 if (load_cache_only) { 657 cache->caching_ctl = NULL; 658 cache->cached = BTRFS_CACHE_NO; 659 } else { 660 cache->cached = BTRFS_CACHE_STARTED; 661 cache->has_caching_ctl = 1; 662 } 663 } 664 spin_unlock(&cache->lock); 665 #ifdef CONFIG_BTRFS_DEBUG 666 if (ret == 1 && 667 btrfs_should_fragment_free_space(cache)) { 668 u64 bytes_used; 669 670 spin_lock(&cache->space_info->lock); 671 spin_lock(&cache->lock); 672 bytes_used = cache->key.offset - 673 btrfs_block_group_used(&cache->item); 674 cache->space_info->bytes_used += bytes_used >> 1; 675 spin_unlock(&cache->lock); 676 spin_unlock(&cache->space_info->lock); 677 fragment_free_space(cache); 678 } 679 #endif 680 mutex_unlock(&caching_ctl->mutex); 681 682 wake_up(&caching_ctl->wait); 683 if (ret == 1) { 684 put_caching_control(caching_ctl); 685 free_excluded_extents(fs_info, cache); 686 return 0; 687 } 688 } else { 689 /* 690 * We're either using the free space tree or no caching at all. 691 * Set cached to the appropriate value and wakeup any waiters. 692 */ 693 spin_lock(&cache->lock); 694 if (load_cache_only) { 695 cache->caching_ctl = NULL; 696 cache->cached = BTRFS_CACHE_NO; 697 } else { 698 cache->cached = BTRFS_CACHE_STARTED; 699 cache->has_caching_ctl = 1; 700 } 701 spin_unlock(&cache->lock); 702 wake_up(&caching_ctl->wait); 703 } 704 705 if (load_cache_only) { 706 put_caching_control(caching_ctl); 707 return 0; 708 } 709 710 down_write(&fs_info->commit_root_sem); 711 refcount_inc(&caching_ctl->count); 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 713 up_write(&fs_info->commit_root_sem); 714 715 btrfs_get_block_group(cache); 716 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 718 719 return ret; 720 } 721 722 /* 723 * return the block group that starts at or after bytenr 724 */ 725 static struct btrfs_block_group_cache * 726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 727 { 728 return block_group_cache_tree_search(info, bytenr, 0); 729 } 730 731 /* 732 * return the block group that contains the given bytenr 733 */ 734 struct btrfs_block_group_cache *btrfs_lookup_block_group( 735 struct btrfs_fs_info *info, 736 u64 bytenr) 737 { 738 return block_group_cache_tree_search(info, bytenr, 1); 739 } 740 741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 742 u64 flags) 743 { 744 struct list_head *head = &info->space_info; 745 struct btrfs_space_info *found; 746 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 748 749 rcu_read_lock(); 750 list_for_each_entry_rcu(found, head, list) { 751 if (found->flags & flags) { 752 rcu_read_unlock(); 753 return found; 754 } 755 } 756 rcu_read_unlock(); 757 return NULL; 758 } 759 760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 761 u64 owner, u64 root_objectid) 762 { 763 struct btrfs_space_info *space_info; 764 u64 flags; 765 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 768 flags = BTRFS_BLOCK_GROUP_SYSTEM; 769 else 770 flags = BTRFS_BLOCK_GROUP_METADATA; 771 } else { 772 flags = BTRFS_BLOCK_GROUP_DATA; 773 } 774 775 space_info = __find_space_info(fs_info, flags); 776 ASSERT(space_info); 777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 778 } 779 780 /* 781 * after adding space to the filesystem, we need to clear the full flags 782 * on all the space infos. 783 */ 784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 785 { 786 struct list_head *head = &info->space_info; 787 struct btrfs_space_info *found; 788 789 rcu_read_lock(); 790 list_for_each_entry_rcu(found, head, list) 791 found->full = 0; 792 rcu_read_unlock(); 793 } 794 795 /* simple helper to search for an existing data extent at a given offset */ 796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 797 { 798 int ret; 799 struct btrfs_key key; 800 struct btrfs_path *path; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 806 key.objectid = start; 807 key.offset = len; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 810 btrfs_free_path(path); 811 return ret; 812 } 813 814 /* 815 * helper function to lookup reference count and flags of a tree block. 816 * 817 * the head node for delayed ref is used to store the sum of all the 818 * reference count modifications queued up in the rbtree. the head 819 * node may also store the extent flags to set. This way you can check 820 * to see what the reference count and extent flags would be if all of 821 * the delayed refs are not processed. 822 */ 823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 824 struct btrfs_fs_info *fs_info, u64 bytenr, 825 u64 offset, int metadata, u64 *refs, u64 *flags) 826 { 827 struct btrfs_delayed_ref_head *head; 828 struct btrfs_delayed_ref_root *delayed_refs; 829 struct btrfs_path *path; 830 struct btrfs_extent_item *ei; 831 struct extent_buffer *leaf; 832 struct btrfs_key key; 833 u32 item_size; 834 u64 num_refs; 835 u64 extent_flags; 836 int ret; 837 838 /* 839 * If we don't have skinny metadata, don't bother doing anything 840 * different 841 */ 842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 843 offset = fs_info->nodesize; 844 metadata = 0; 845 } 846 847 path = btrfs_alloc_path(); 848 if (!path) 849 return -ENOMEM; 850 851 if (!trans) { 852 path->skip_locking = 1; 853 path->search_commit_root = 1; 854 } 855 856 search_again: 857 key.objectid = bytenr; 858 key.offset = offset; 859 if (metadata) 860 key.type = BTRFS_METADATA_ITEM_KEY; 861 else 862 key.type = BTRFS_EXTENT_ITEM_KEY; 863 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 865 if (ret < 0) 866 goto out_free; 867 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 869 if (path->slots[0]) { 870 path->slots[0]--; 871 btrfs_item_key_to_cpu(path->nodes[0], &key, 872 path->slots[0]); 873 if (key.objectid == bytenr && 874 key.type == BTRFS_EXTENT_ITEM_KEY && 875 key.offset == fs_info->nodesize) 876 ret = 0; 877 } 878 } 879 880 if (ret == 0) { 881 leaf = path->nodes[0]; 882 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 883 if (item_size >= sizeof(*ei)) { 884 ei = btrfs_item_ptr(leaf, path->slots[0], 885 struct btrfs_extent_item); 886 num_refs = btrfs_extent_refs(leaf, ei); 887 extent_flags = btrfs_extent_flags(leaf, ei); 888 } else { 889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 890 struct btrfs_extent_item_v0 *ei0; 891 BUG_ON(item_size != sizeof(*ei0)); 892 ei0 = btrfs_item_ptr(leaf, path->slots[0], 893 struct btrfs_extent_item_v0); 894 num_refs = btrfs_extent_refs_v0(leaf, ei0); 895 /* FIXME: this isn't correct for data */ 896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 897 #else 898 BUG(); 899 #endif 900 } 901 BUG_ON(num_refs == 0); 902 } else { 903 num_refs = 0; 904 extent_flags = 0; 905 ret = 0; 906 } 907 908 if (!trans) 909 goto out; 910 911 delayed_refs = &trans->transaction->delayed_refs; 912 spin_lock(&delayed_refs->lock); 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 914 if (head) { 915 if (!mutex_trylock(&head->mutex)) { 916 refcount_inc(&head->refs); 917 spin_unlock(&delayed_refs->lock); 918 919 btrfs_release_path(path); 920 921 /* 922 * Mutex was contended, block until it's released and try 923 * again 924 */ 925 mutex_lock(&head->mutex); 926 mutex_unlock(&head->mutex); 927 btrfs_put_delayed_ref_head(head); 928 goto search_again; 929 } 930 spin_lock(&head->lock); 931 if (head->extent_op && head->extent_op->update_flags) 932 extent_flags |= head->extent_op->flags_to_set; 933 else 934 BUG_ON(num_refs == 0); 935 936 num_refs += head->ref_mod; 937 spin_unlock(&head->lock); 938 mutex_unlock(&head->mutex); 939 } 940 spin_unlock(&delayed_refs->lock); 941 out: 942 WARN_ON(num_refs == 0); 943 if (refs) 944 *refs = num_refs; 945 if (flags) 946 *flags = extent_flags; 947 out_free: 948 btrfs_free_path(path); 949 return ret; 950 } 951 952 /* 953 * Back reference rules. Back refs have three main goals: 954 * 955 * 1) differentiate between all holders of references to an extent so that 956 * when a reference is dropped we can make sure it was a valid reference 957 * before freeing the extent. 958 * 959 * 2) Provide enough information to quickly find the holders of an extent 960 * if we notice a given block is corrupted or bad. 961 * 962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 963 * maintenance. This is actually the same as #2, but with a slightly 964 * different use case. 965 * 966 * There are two kinds of back refs. The implicit back refs is optimized 967 * for pointers in non-shared tree blocks. For a given pointer in a block, 968 * back refs of this kind provide information about the block's owner tree 969 * and the pointer's key. These information allow us to find the block by 970 * b-tree searching. The full back refs is for pointers in tree blocks not 971 * referenced by their owner trees. The location of tree block is recorded 972 * in the back refs. Actually the full back refs is generic, and can be 973 * used in all cases the implicit back refs is used. The major shortcoming 974 * of the full back refs is its overhead. Every time a tree block gets 975 * COWed, we have to update back refs entry for all pointers in it. 976 * 977 * For a newly allocated tree block, we use implicit back refs for 978 * pointers in it. This means most tree related operations only involve 979 * implicit back refs. For a tree block created in old transaction, the 980 * only way to drop a reference to it is COW it. So we can detect the 981 * event that tree block loses its owner tree's reference and do the 982 * back refs conversion. 983 * 984 * When a tree block is COWed through a tree, there are four cases: 985 * 986 * The reference count of the block is one and the tree is the block's 987 * owner tree. Nothing to do in this case. 988 * 989 * The reference count of the block is one and the tree is not the 990 * block's owner tree. In this case, full back refs is used for pointers 991 * in the block. Remove these full back refs, add implicit back refs for 992 * every pointers in the new block. 993 * 994 * The reference count of the block is greater than one and the tree is 995 * the block's owner tree. In this case, implicit back refs is used for 996 * pointers in the block. Add full back refs for every pointers in the 997 * block, increase lower level extents' reference counts. The original 998 * implicit back refs are entailed to the new block. 999 * 1000 * The reference count of the block is greater than one and the tree is 1001 * not the block's owner tree. Add implicit back refs for every pointer in 1002 * the new block, increase lower level extents' reference count. 1003 * 1004 * Back Reference Key composing: 1005 * 1006 * The key objectid corresponds to the first byte in the extent, 1007 * The key type is used to differentiate between types of back refs. 1008 * There are different meanings of the key offset for different types 1009 * of back refs. 1010 * 1011 * File extents can be referenced by: 1012 * 1013 * - multiple snapshots, subvolumes, or different generations in one subvol 1014 * - different files inside a single subvolume 1015 * - different offsets inside a file (bookend extents in file.c) 1016 * 1017 * The extent ref structure for the implicit back refs has fields for: 1018 * 1019 * - Objectid of the subvolume root 1020 * - objectid of the file holding the reference 1021 * - original offset in the file 1022 * - how many bookend extents 1023 * 1024 * The key offset for the implicit back refs is hash of the first 1025 * three fields. 1026 * 1027 * The extent ref structure for the full back refs has field for: 1028 * 1029 * - number of pointers in the tree leaf 1030 * 1031 * The key offset for the implicit back refs is the first byte of 1032 * the tree leaf 1033 * 1034 * When a file extent is allocated, The implicit back refs is used. 1035 * the fields are filled in: 1036 * 1037 * (root_key.objectid, inode objectid, offset in file, 1) 1038 * 1039 * When a file extent is removed file truncation, we find the 1040 * corresponding implicit back refs and check the following fields: 1041 * 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1043 * 1044 * Btree extents can be referenced by: 1045 * 1046 * - Different subvolumes 1047 * 1048 * Both the implicit back refs and the full back refs for tree blocks 1049 * only consist of key. The key offset for the implicit back refs is 1050 * objectid of block's owner tree. The key offset for the full back refs 1051 * is the first byte of parent block. 1052 * 1053 * When implicit back refs is used, information about the lowest key and 1054 * level of the tree block are required. These information are stored in 1055 * tree block info structure. 1056 */ 1057 1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1060 struct btrfs_fs_info *fs_info, 1061 struct btrfs_path *path, 1062 u64 owner, u32 extra_size) 1063 { 1064 struct btrfs_root *root = fs_info->extent_root; 1065 struct btrfs_extent_item *item; 1066 struct btrfs_extent_item_v0 *ei0; 1067 struct btrfs_extent_ref_v0 *ref0; 1068 struct btrfs_tree_block_info *bi; 1069 struct extent_buffer *leaf; 1070 struct btrfs_key key; 1071 struct btrfs_key found_key; 1072 u32 new_size = sizeof(*item); 1073 u64 refs; 1074 int ret; 1075 1076 leaf = path->nodes[0]; 1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1078 1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1080 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1081 struct btrfs_extent_item_v0); 1082 refs = btrfs_extent_refs_v0(leaf, ei0); 1083 1084 if (owner == (u64)-1) { 1085 while (1) { 1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1087 ret = btrfs_next_leaf(root, path); 1088 if (ret < 0) 1089 return ret; 1090 BUG_ON(ret > 0); /* Corruption */ 1091 leaf = path->nodes[0]; 1092 } 1093 btrfs_item_key_to_cpu(leaf, &found_key, 1094 path->slots[0]); 1095 BUG_ON(key.objectid != found_key.objectid); 1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1097 path->slots[0]++; 1098 continue; 1099 } 1100 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1101 struct btrfs_extent_ref_v0); 1102 owner = btrfs_ref_objectid_v0(leaf, ref0); 1103 break; 1104 } 1105 } 1106 btrfs_release_path(path); 1107 1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1109 new_size += sizeof(*bi); 1110 1111 new_size -= sizeof(*ei0); 1112 ret = btrfs_search_slot(trans, root, &key, path, 1113 new_size + extra_size, 1); 1114 if (ret < 0) 1115 return ret; 1116 BUG_ON(ret); /* Corruption */ 1117 1118 btrfs_extend_item(fs_info, path, new_size); 1119 1120 leaf = path->nodes[0]; 1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1122 btrfs_set_extent_refs(leaf, item, refs); 1123 /* FIXME: get real generation */ 1124 btrfs_set_extent_generation(leaf, item, 0); 1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1126 btrfs_set_extent_flags(leaf, item, 1127 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1128 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1129 bi = (struct btrfs_tree_block_info *)(item + 1); 1130 /* FIXME: get first key of the block */ 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1132 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1133 } else { 1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1135 } 1136 btrfs_mark_buffer_dirty(leaf); 1137 return 0; 1138 } 1139 #endif 1140 1141 /* 1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1145 */ 1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1147 struct btrfs_extent_inline_ref *iref, 1148 enum btrfs_inline_ref_type is_data) 1149 { 1150 int type = btrfs_extent_inline_ref_type(eb, iref); 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1152 1153 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1154 type == BTRFS_SHARED_BLOCK_REF_KEY || 1155 type == BTRFS_SHARED_DATA_REF_KEY || 1156 type == BTRFS_EXTENT_DATA_REF_KEY) { 1157 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1159 return type; 1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1161 ASSERT(eb->fs_info); 1162 /* 1163 * Every shared one has parent tree 1164 * block, which must be aligned to 1165 * nodesize. 1166 */ 1167 if (offset && 1168 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1169 return type; 1170 } 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1173 return type; 1174 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1175 ASSERT(eb->fs_info); 1176 /* 1177 * Every shared one has parent tree 1178 * block, which must be aligned to 1179 * nodesize. 1180 */ 1181 if (offset && 1182 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1183 return type; 1184 } 1185 } else { 1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1187 return type; 1188 } 1189 } 1190 1191 btrfs_print_leaf((struct extent_buffer *)eb); 1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1193 eb->start, type); 1194 WARN_ON(1); 1195 1196 return BTRFS_REF_TYPE_INVALID; 1197 } 1198 1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1200 { 1201 u32 high_crc = ~(u32)0; 1202 u32 low_crc = ~(u32)0; 1203 __le64 lenum; 1204 1205 lenum = cpu_to_le64(root_objectid); 1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1207 lenum = cpu_to_le64(owner); 1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1209 lenum = cpu_to_le64(offset); 1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1211 1212 return ((u64)high_crc << 31) ^ (u64)low_crc; 1213 } 1214 1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1216 struct btrfs_extent_data_ref *ref) 1217 { 1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1219 btrfs_extent_data_ref_objectid(leaf, ref), 1220 btrfs_extent_data_ref_offset(leaf, ref)); 1221 } 1222 1223 static int match_extent_data_ref(struct extent_buffer *leaf, 1224 struct btrfs_extent_data_ref *ref, 1225 u64 root_objectid, u64 owner, u64 offset) 1226 { 1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1229 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1230 return 0; 1231 return 1; 1232 } 1233 1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1235 struct btrfs_fs_info *fs_info, 1236 struct btrfs_path *path, 1237 u64 bytenr, u64 parent, 1238 u64 root_objectid, 1239 u64 owner, u64 offset) 1240 { 1241 struct btrfs_root *root = fs_info->extent_root; 1242 struct btrfs_key key; 1243 struct btrfs_extent_data_ref *ref; 1244 struct extent_buffer *leaf; 1245 u32 nritems; 1246 int ret; 1247 int recow; 1248 int err = -ENOENT; 1249 1250 key.objectid = bytenr; 1251 if (parent) { 1252 key.type = BTRFS_SHARED_DATA_REF_KEY; 1253 key.offset = parent; 1254 } else { 1255 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1256 key.offset = hash_extent_data_ref(root_objectid, 1257 owner, offset); 1258 } 1259 again: 1260 recow = 0; 1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1262 if (ret < 0) { 1263 err = ret; 1264 goto fail; 1265 } 1266 1267 if (parent) { 1268 if (!ret) 1269 return 0; 1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1271 key.type = BTRFS_EXTENT_REF_V0_KEY; 1272 btrfs_release_path(path); 1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1274 if (ret < 0) { 1275 err = ret; 1276 goto fail; 1277 } 1278 if (!ret) 1279 return 0; 1280 #endif 1281 goto fail; 1282 } 1283 1284 leaf = path->nodes[0]; 1285 nritems = btrfs_header_nritems(leaf); 1286 while (1) { 1287 if (path->slots[0] >= nritems) { 1288 ret = btrfs_next_leaf(root, path); 1289 if (ret < 0) 1290 err = ret; 1291 if (ret) 1292 goto fail; 1293 1294 leaf = path->nodes[0]; 1295 nritems = btrfs_header_nritems(leaf); 1296 recow = 1; 1297 } 1298 1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1300 if (key.objectid != bytenr || 1301 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1302 goto fail; 1303 1304 ref = btrfs_item_ptr(leaf, path->slots[0], 1305 struct btrfs_extent_data_ref); 1306 1307 if (match_extent_data_ref(leaf, ref, root_objectid, 1308 owner, offset)) { 1309 if (recow) { 1310 btrfs_release_path(path); 1311 goto again; 1312 } 1313 err = 0; 1314 break; 1315 } 1316 path->slots[0]++; 1317 } 1318 fail: 1319 return err; 1320 } 1321 1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1323 struct btrfs_fs_info *fs_info, 1324 struct btrfs_path *path, 1325 u64 bytenr, u64 parent, 1326 u64 root_objectid, u64 owner, 1327 u64 offset, int refs_to_add) 1328 { 1329 struct btrfs_root *root = fs_info->extent_root; 1330 struct btrfs_key key; 1331 struct extent_buffer *leaf; 1332 u32 size; 1333 u32 num_refs; 1334 int ret; 1335 1336 key.objectid = bytenr; 1337 if (parent) { 1338 key.type = BTRFS_SHARED_DATA_REF_KEY; 1339 key.offset = parent; 1340 size = sizeof(struct btrfs_shared_data_ref); 1341 } else { 1342 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1343 key.offset = hash_extent_data_ref(root_objectid, 1344 owner, offset); 1345 size = sizeof(struct btrfs_extent_data_ref); 1346 } 1347 1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1349 if (ret && ret != -EEXIST) 1350 goto fail; 1351 1352 leaf = path->nodes[0]; 1353 if (parent) { 1354 struct btrfs_shared_data_ref *ref; 1355 ref = btrfs_item_ptr(leaf, path->slots[0], 1356 struct btrfs_shared_data_ref); 1357 if (ret == 0) { 1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1359 } else { 1360 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1361 num_refs += refs_to_add; 1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1363 } 1364 } else { 1365 struct btrfs_extent_data_ref *ref; 1366 while (ret == -EEXIST) { 1367 ref = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_data_ref); 1369 if (match_extent_data_ref(leaf, ref, root_objectid, 1370 owner, offset)) 1371 break; 1372 btrfs_release_path(path); 1373 key.offset++; 1374 ret = btrfs_insert_empty_item(trans, root, path, &key, 1375 size); 1376 if (ret && ret != -EEXIST) 1377 goto fail; 1378 1379 leaf = path->nodes[0]; 1380 } 1381 ref = btrfs_item_ptr(leaf, path->slots[0], 1382 struct btrfs_extent_data_ref); 1383 if (ret == 0) { 1384 btrfs_set_extent_data_ref_root(leaf, ref, 1385 root_objectid); 1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1389 } else { 1390 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1391 num_refs += refs_to_add; 1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1393 } 1394 } 1395 btrfs_mark_buffer_dirty(leaf); 1396 ret = 0; 1397 fail: 1398 btrfs_release_path(path); 1399 return ret; 1400 } 1401 1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1403 struct btrfs_fs_info *fs_info, 1404 struct btrfs_path *path, 1405 int refs_to_drop, int *last_ref) 1406 { 1407 struct btrfs_key key; 1408 struct btrfs_extent_data_ref *ref1 = NULL; 1409 struct btrfs_shared_data_ref *ref2 = NULL; 1410 struct extent_buffer *leaf; 1411 u32 num_refs = 0; 1412 int ret = 0; 1413 1414 leaf = path->nodes[0]; 1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1416 1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1418 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1419 struct btrfs_extent_data_ref); 1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1422 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1423 struct btrfs_shared_data_ref); 1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1427 struct btrfs_extent_ref_v0 *ref0; 1428 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1429 struct btrfs_extent_ref_v0); 1430 num_refs = btrfs_ref_count_v0(leaf, ref0); 1431 #endif 1432 } else { 1433 BUG(); 1434 } 1435 1436 BUG_ON(num_refs < refs_to_drop); 1437 num_refs -= refs_to_drop; 1438 1439 if (num_refs == 0) { 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1441 *last_ref = 1; 1442 } else { 1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1448 else { 1449 struct btrfs_extent_ref_v0 *ref0; 1450 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1451 struct btrfs_extent_ref_v0); 1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1453 } 1454 #endif 1455 btrfs_mark_buffer_dirty(leaf); 1456 } 1457 return ret; 1458 } 1459 1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1461 struct btrfs_extent_inline_ref *iref) 1462 { 1463 struct btrfs_key key; 1464 struct extent_buffer *leaf; 1465 struct btrfs_extent_data_ref *ref1; 1466 struct btrfs_shared_data_ref *ref2; 1467 u32 num_refs = 0; 1468 int type; 1469 1470 leaf = path->nodes[0]; 1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1472 if (iref) { 1473 /* 1474 * If type is invalid, we should have bailed out earlier than 1475 * this call. 1476 */ 1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1478 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1482 } else { 1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1485 } 1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1487 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1488 struct btrfs_extent_data_ref); 1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1491 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1492 struct btrfs_shared_data_ref); 1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1496 struct btrfs_extent_ref_v0 *ref0; 1497 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1498 struct btrfs_extent_ref_v0); 1499 num_refs = btrfs_ref_count_v0(leaf, ref0); 1500 #endif 1501 } else { 1502 WARN_ON(1); 1503 } 1504 return num_refs; 1505 } 1506 1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1508 struct btrfs_fs_info *fs_info, 1509 struct btrfs_path *path, 1510 u64 bytenr, u64 parent, 1511 u64 root_objectid) 1512 { 1513 struct btrfs_root *root = fs_info->extent_root; 1514 struct btrfs_key key; 1515 int ret; 1516 1517 key.objectid = bytenr; 1518 if (parent) { 1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1520 key.offset = parent; 1521 } else { 1522 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1523 key.offset = root_objectid; 1524 } 1525 1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1527 if (ret > 0) 1528 ret = -ENOENT; 1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1530 if (ret == -ENOENT && parent) { 1531 btrfs_release_path(path); 1532 key.type = BTRFS_EXTENT_REF_V0_KEY; 1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1534 if (ret > 0) 1535 ret = -ENOENT; 1536 } 1537 #endif 1538 return ret; 1539 } 1540 1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1542 struct btrfs_fs_info *fs_info, 1543 struct btrfs_path *path, 1544 u64 bytenr, u64 parent, 1545 u64 root_objectid) 1546 { 1547 struct btrfs_key key; 1548 int ret; 1549 1550 key.objectid = bytenr; 1551 if (parent) { 1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1553 key.offset = parent; 1554 } else { 1555 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1556 key.offset = root_objectid; 1557 } 1558 1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1560 path, &key, 0); 1561 btrfs_release_path(path); 1562 return ret; 1563 } 1564 1565 static inline int extent_ref_type(u64 parent, u64 owner) 1566 { 1567 int type; 1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1569 if (parent > 0) 1570 type = BTRFS_SHARED_BLOCK_REF_KEY; 1571 else 1572 type = BTRFS_TREE_BLOCK_REF_KEY; 1573 } else { 1574 if (parent > 0) 1575 type = BTRFS_SHARED_DATA_REF_KEY; 1576 else 1577 type = BTRFS_EXTENT_DATA_REF_KEY; 1578 } 1579 return type; 1580 } 1581 1582 static int find_next_key(struct btrfs_path *path, int level, 1583 struct btrfs_key *key) 1584 1585 { 1586 for (; level < BTRFS_MAX_LEVEL; level++) { 1587 if (!path->nodes[level]) 1588 break; 1589 if (path->slots[level] + 1 >= 1590 btrfs_header_nritems(path->nodes[level])) 1591 continue; 1592 if (level == 0) 1593 btrfs_item_key_to_cpu(path->nodes[level], key, 1594 path->slots[level] + 1); 1595 else 1596 btrfs_node_key_to_cpu(path->nodes[level], key, 1597 path->slots[level] + 1); 1598 return 0; 1599 } 1600 return 1; 1601 } 1602 1603 /* 1604 * look for inline back ref. if back ref is found, *ref_ret is set 1605 * to the address of inline back ref, and 0 is returned. 1606 * 1607 * if back ref isn't found, *ref_ret is set to the address where it 1608 * should be inserted, and -ENOENT is returned. 1609 * 1610 * if insert is true and there are too many inline back refs, the path 1611 * points to the extent item, and -EAGAIN is returned. 1612 * 1613 * NOTE: inline back refs are ordered in the same way that back ref 1614 * items in the tree are ordered. 1615 */ 1616 static noinline_for_stack 1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1618 struct btrfs_fs_info *fs_info, 1619 struct btrfs_path *path, 1620 struct btrfs_extent_inline_ref **ref_ret, 1621 u64 bytenr, u64 num_bytes, 1622 u64 parent, u64 root_objectid, 1623 u64 owner, u64 offset, int insert) 1624 { 1625 struct btrfs_root *root = fs_info->extent_root; 1626 struct btrfs_key key; 1627 struct extent_buffer *leaf; 1628 struct btrfs_extent_item *ei; 1629 struct btrfs_extent_inline_ref *iref; 1630 u64 flags; 1631 u64 item_size; 1632 unsigned long ptr; 1633 unsigned long end; 1634 int extra_size; 1635 int type; 1636 int want; 1637 int ret; 1638 int err = 0; 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1640 int needed; 1641 1642 key.objectid = bytenr; 1643 key.type = BTRFS_EXTENT_ITEM_KEY; 1644 key.offset = num_bytes; 1645 1646 want = extent_ref_type(parent, owner); 1647 if (insert) { 1648 extra_size = btrfs_extent_inline_ref_size(want); 1649 path->keep_locks = 1; 1650 } else 1651 extra_size = -1; 1652 1653 /* 1654 * Owner is our parent level, so we can just add one to get the level 1655 * for the block we are interested in. 1656 */ 1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1658 key.type = BTRFS_METADATA_ITEM_KEY; 1659 key.offset = owner; 1660 } 1661 1662 again: 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1664 if (ret < 0) { 1665 err = ret; 1666 goto out; 1667 } 1668 1669 /* 1670 * We may be a newly converted file system which still has the old fat 1671 * extent entries for metadata, so try and see if we have one of those. 1672 */ 1673 if (ret > 0 && skinny_metadata) { 1674 skinny_metadata = false; 1675 if (path->slots[0]) { 1676 path->slots[0]--; 1677 btrfs_item_key_to_cpu(path->nodes[0], &key, 1678 path->slots[0]); 1679 if (key.objectid == bytenr && 1680 key.type == BTRFS_EXTENT_ITEM_KEY && 1681 key.offset == num_bytes) 1682 ret = 0; 1683 } 1684 if (ret) { 1685 key.objectid = bytenr; 1686 key.type = BTRFS_EXTENT_ITEM_KEY; 1687 key.offset = num_bytes; 1688 btrfs_release_path(path); 1689 goto again; 1690 } 1691 } 1692 1693 if (ret && !insert) { 1694 err = -ENOENT; 1695 goto out; 1696 } else if (WARN_ON(ret)) { 1697 err = -EIO; 1698 goto out; 1699 } 1700 1701 leaf = path->nodes[0]; 1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1704 if (item_size < sizeof(*ei)) { 1705 if (!insert) { 1706 err = -ENOENT; 1707 goto out; 1708 } 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1710 extra_size); 1711 if (ret < 0) { 1712 err = ret; 1713 goto out; 1714 } 1715 leaf = path->nodes[0]; 1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1717 } 1718 #endif 1719 BUG_ON(item_size < sizeof(*ei)); 1720 1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1722 flags = btrfs_extent_flags(leaf, ei); 1723 1724 ptr = (unsigned long)(ei + 1); 1725 end = (unsigned long)ei + item_size; 1726 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1728 ptr += sizeof(struct btrfs_tree_block_info); 1729 BUG_ON(ptr > end); 1730 } 1731 1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1733 needed = BTRFS_REF_TYPE_DATA; 1734 else 1735 needed = BTRFS_REF_TYPE_BLOCK; 1736 1737 err = -ENOENT; 1738 while (1) { 1739 if (ptr >= end) { 1740 WARN_ON(ptr > end); 1741 break; 1742 } 1743 iref = (struct btrfs_extent_inline_ref *)ptr; 1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1745 if (type == BTRFS_REF_TYPE_INVALID) { 1746 err = -EINVAL; 1747 goto out; 1748 } 1749 1750 if (want < type) 1751 break; 1752 if (want > type) { 1753 ptr += btrfs_extent_inline_ref_size(type); 1754 continue; 1755 } 1756 1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1758 struct btrfs_extent_data_ref *dref; 1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1760 if (match_extent_data_ref(leaf, dref, root_objectid, 1761 owner, offset)) { 1762 err = 0; 1763 break; 1764 } 1765 if (hash_extent_data_ref_item(leaf, dref) < 1766 hash_extent_data_ref(root_objectid, owner, offset)) 1767 break; 1768 } else { 1769 u64 ref_offset; 1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1771 if (parent > 0) { 1772 if (parent == ref_offset) { 1773 err = 0; 1774 break; 1775 } 1776 if (ref_offset < parent) 1777 break; 1778 } else { 1779 if (root_objectid == ref_offset) { 1780 err = 0; 1781 break; 1782 } 1783 if (ref_offset < root_objectid) 1784 break; 1785 } 1786 } 1787 ptr += btrfs_extent_inline_ref_size(type); 1788 } 1789 if (err == -ENOENT && insert) { 1790 if (item_size + extra_size >= 1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1792 err = -EAGAIN; 1793 goto out; 1794 } 1795 /* 1796 * To add new inline back ref, we have to make sure 1797 * there is no corresponding back ref item. 1798 * For simplicity, we just do not add new inline back 1799 * ref if there is any kind of item for this block 1800 */ 1801 if (find_next_key(path, 0, &key) == 0 && 1802 key.objectid == bytenr && 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1804 err = -EAGAIN; 1805 goto out; 1806 } 1807 } 1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1809 out: 1810 if (insert) { 1811 path->keep_locks = 0; 1812 btrfs_unlock_up_safe(path, 1); 1813 } 1814 return err; 1815 } 1816 1817 /* 1818 * helper to add new inline back ref 1819 */ 1820 static noinline_for_stack 1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1822 struct btrfs_path *path, 1823 struct btrfs_extent_inline_ref *iref, 1824 u64 parent, u64 root_objectid, 1825 u64 owner, u64 offset, int refs_to_add, 1826 struct btrfs_delayed_extent_op *extent_op) 1827 { 1828 struct extent_buffer *leaf; 1829 struct btrfs_extent_item *ei; 1830 unsigned long ptr; 1831 unsigned long end; 1832 unsigned long item_offset; 1833 u64 refs; 1834 int size; 1835 int type; 1836 1837 leaf = path->nodes[0]; 1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1839 item_offset = (unsigned long)iref - (unsigned long)ei; 1840 1841 type = extent_ref_type(parent, owner); 1842 size = btrfs_extent_inline_ref_size(type); 1843 1844 btrfs_extend_item(fs_info, path, size); 1845 1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1847 refs = btrfs_extent_refs(leaf, ei); 1848 refs += refs_to_add; 1849 btrfs_set_extent_refs(leaf, ei, refs); 1850 if (extent_op) 1851 __run_delayed_extent_op(extent_op, leaf, ei); 1852 1853 ptr = (unsigned long)ei + item_offset; 1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1855 if (ptr < end - size) 1856 memmove_extent_buffer(leaf, ptr + size, ptr, 1857 end - size - ptr); 1858 1859 iref = (struct btrfs_extent_inline_ref *)ptr; 1860 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1862 struct btrfs_extent_data_ref *dref; 1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1869 struct btrfs_shared_data_ref *sref; 1870 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1875 } else { 1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1877 } 1878 btrfs_mark_buffer_dirty(leaf); 1879 } 1880 1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1882 struct btrfs_fs_info *fs_info, 1883 struct btrfs_path *path, 1884 struct btrfs_extent_inline_ref **ref_ret, 1885 u64 bytenr, u64 num_bytes, u64 parent, 1886 u64 root_objectid, u64 owner, u64 offset) 1887 { 1888 int ret; 1889 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1891 bytenr, num_bytes, parent, 1892 root_objectid, owner, offset, 0); 1893 if (ret != -ENOENT) 1894 return ret; 1895 1896 btrfs_release_path(path); 1897 *ref_ret = NULL; 1898 1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1901 parent, root_objectid); 1902 } else { 1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1904 parent, root_objectid, owner, 1905 offset); 1906 } 1907 return ret; 1908 } 1909 1910 /* 1911 * helper to update/remove inline back ref 1912 */ 1913 static noinline_for_stack 1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1915 struct btrfs_path *path, 1916 struct btrfs_extent_inline_ref *iref, 1917 int refs_to_mod, 1918 struct btrfs_delayed_extent_op *extent_op, 1919 int *last_ref) 1920 { 1921 struct extent_buffer *leaf; 1922 struct btrfs_extent_item *ei; 1923 struct btrfs_extent_data_ref *dref = NULL; 1924 struct btrfs_shared_data_ref *sref = NULL; 1925 unsigned long ptr; 1926 unsigned long end; 1927 u32 item_size; 1928 int size; 1929 int type; 1930 u64 refs; 1931 1932 leaf = path->nodes[0]; 1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1934 refs = btrfs_extent_refs(leaf, ei); 1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1936 refs += refs_to_mod; 1937 btrfs_set_extent_refs(leaf, ei, refs); 1938 if (extent_op) 1939 __run_delayed_extent_op(extent_op, leaf, ei); 1940 1941 /* 1942 * If type is invalid, we should have bailed out after 1943 * lookup_inline_extent_backref(). 1944 */ 1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1946 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1947 1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1950 refs = btrfs_extent_data_ref_count(leaf, dref); 1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1952 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1953 refs = btrfs_shared_data_ref_count(leaf, sref); 1954 } else { 1955 refs = 1; 1956 BUG_ON(refs_to_mod != -1); 1957 } 1958 1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1960 refs += refs_to_mod; 1961 1962 if (refs > 0) { 1963 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1964 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1965 else 1966 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1967 } else { 1968 *last_ref = 1; 1969 size = btrfs_extent_inline_ref_size(type); 1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1971 ptr = (unsigned long)iref; 1972 end = (unsigned long)ei + item_size; 1973 if (ptr + size < end) 1974 memmove_extent_buffer(leaf, ptr, ptr + size, 1975 end - ptr - size); 1976 item_size -= size; 1977 btrfs_truncate_item(fs_info, path, item_size, 1); 1978 } 1979 btrfs_mark_buffer_dirty(leaf); 1980 } 1981 1982 static noinline_for_stack 1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1984 struct btrfs_fs_info *fs_info, 1985 struct btrfs_path *path, 1986 u64 bytenr, u64 num_bytes, u64 parent, 1987 u64 root_objectid, u64 owner, 1988 u64 offset, int refs_to_add, 1989 struct btrfs_delayed_extent_op *extent_op) 1990 { 1991 struct btrfs_extent_inline_ref *iref; 1992 int ret; 1993 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1995 bytenr, num_bytes, parent, 1996 root_objectid, owner, offset, 1); 1997 if (ret == 0) { 1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1999 update_inline_extent_backref(fs_info, path, iref, 2000 refs_to_add, extent_op, NULL); 2001 } else if (ret == -ENOENT) { 2002 setup_inline_extent_backref(fs_info, path, iref, parent, 2003 root_objectid, owner, offset, 2004 refs_to_add, extent_op); 2005 ret = 0; 2006 } 2007 return ret; 2008 } 2009 2010 static int insert_extent_backref(struct btrfs_trans_handle *trans, 2011 struct btrfs_fs_info *fs_info, 2012 struct btrfs_path *path, 2013 u64 bytenr, u64 parent, u64 root_objectid, 2014 u64 owner, u64 offset, int refs_to_add) 2015 { 2016 int ret; 2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2018 BUG_ON(refs_to_add != 1); 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2020 parent, root_objectid); 2021 } else { 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2023 parent, root_objectid, 2024 owner, offset, refs_to_add); 2025 } 2026 return ret; 2027 } 2028 2029 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2030 struct btrfs_fs_info *fs_info, 2031 struct btrfs_path *path, 2032 struct btrfs_extent_inline_ref *iref, 2033 int refs_to_drop, int is_data, int *last_ref) 2034 { 2035 int ret = 0; 2036 2037 BUG_ON(!is_data && refs_to_drop != 1); 2038 if (iref) { 2039 update_inline_extent_backref(fs_info, path, iref, 2040 -refs_to_drop, NULL, last_ref); 2041 } else if (is_data) { 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2043 last_ref); 2044 } else { 2045 *last_ref = 1; 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2047 } 2048 return ret; 2049 } 2050 2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2053 u64 *discarded_bytes) 2054 { 2055 int j, ret = 0; 2056 u64 bytes_left, end; 2057 u64 aligned_start = ALIGN(start, 1 << 9); 2058 2059 if (WARN_ON(start != aligned_start)) { 2060 len -= aligned_start - start; 2061 len = round_down(len, 1 << 9); 2062 start = aligned_start; 2063 } 2064 2065 *discarded_bytes = 0; 2066 2067 if (!len) 2068 return 0; 2069 2070 end = start + len; 2071 bytes_left = len; 2072 2073 /* Skip any superblocks on this device. */ 2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2075 u64 sb_start = btrfs_sb_offset(j); 2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2077 u64 size = sb_start - start; 2078 2079 if (!in_range(sb_start, start, bytes_left) && 2080 !in_range(sb_end, start, bytes_left) && 2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2082 continue; 2083 2084 /* 2085 * Superblock spans beginning of range. Adjust start and 2086 * try again. 2087 */ 2088 if (sb_start <= start) { 2089 start += sb_end - start; 2090 if (start > end) { 2091 bytes_left = 0; 2092 break; 2093 } 2094 bytes_left = end - start; 2095 continue; 2096 } 2097 2098 if (size) { 2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2100 GFP_NOFS, 0); 2101 if (!ret) 2102 *discarded_bytes += size; 2103 else if (ret != -EOPNOTSUPP) 2104 return ret; 2105 } 2106 2107 start = sb_end; 2108 if (start > end) { 2109 bytes_left = 0; 2110 break; 2111 } 2112 bytes_left = end - start; 2113 } 2114 2115 if (bytes_left) { 2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2117 GFP_NOFS, 0); 2118 if (!ret) 2119 *discarded_bytes += bytes_left; 2120 } 2121 return ret; 2122 } 2123 2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2125 u64 num_bytes, u64 *actual_bytes) 2126 { 2127 int ret; 2128 u64 discarded_bytes = 0; 2129 struct btrfs_bio *bbio = NULL; 2130 2131 2132 /* 2133 * Avoid races with device replace and make sure our bbio has devices 2134 * associated to its stripes that don't go away while we are discarding. 2135 */ 2136 btrfs_bio_counter_inc_blocked(fs_info); 2137 /* Tell the block device(s) that the sectors can be discarded */ 2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2139 &bbio, 0); 2140 /* Error condition is -ENOMEM */ 2141 if (!ret) { 2142 struct btrfs_bio_stripe *stripe = bbio->stripes; 2143 int i; 2144 2145 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2147 u64 bytes; 2148 if (!stripe->dev->can_discard) 2149 continue; 2150 2151 ret = btrfs_issue_discard(stripe->dev->bdev, 2152 stripe->physical, 2153 stripe->length, 2154 &bytes); 2155 if (!ret) 2156 discarded_bytes += bytes; 2157 else if (ret != -EOPNOTSUPP) 2158 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2159 2160 /* 2161 * Just in case we get back EOPNOTSUPP for some reason, 2162 * just ignore the return value so we don't screw up 2163 * people calling discard_extent. 2164 */ 2165 ret = 0; 2166 } 2167 btrfs_put_bbio(bbio); 2168 } 2169 btrfs_bio_counter_dec(fs_info); 2170 2171 if (actual_bytes) 2172 *actual_bytes = discarded_bytes; 2173 2174 2175 if (ret == -EOPNOTSUPP) 2176 ret = 0; 2177 return ret; 2178 } 2179 2180 /* Can return -ENOMEM */ 2181 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2182 struct btrfs_root *root, 2183 u64 bytenr, u64 num_bytes, u64 parent, 2184 u64 root_objectid, u64 owner, u64 offset) 2185 { 2186 struct btrfs_fs_info *fs_info = root->fs_info; 2187 int old_ref_mod, new_ref_mod; 2188 int ret; 2189 2190 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2191 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2192 2193 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2194 owner, offset, BTRFS_ADD_DELAYED_REF); 2195 2196 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2197 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2198 num_bytes, parent, 2199 root_objectid, (int)owner, 2200 BTRFS_ADD_DELAYED_REF, NULL, 2201 &old_ref_mod, &new_ref_mod); 2202 } else { 2203 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2204 num_bytes, parent, 2205 root_objectid, owner, offset, 2206 0, BTRFS_ADD_DELAYED_REF, 2207 &old_ref_mod, &new_ref_mod); 2208 } 2209 2210 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2211 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2212 2213 return ret; 2214 } 2215 2216 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2217 struct btrfs_fs_info *fs_info, 2218 struct btrfs_delayed_ref_node *node, 2219 u64 parent, u64 root_objectid, 2220 u64 owner, u64 offset, int refs_to_add, 2221 struct btrfs_delayed_extent_op *extent_op) 2222 { 2223 struct btrfs_path *path; 2224 struct extent_buffer *leaf; 2225 struct btrfs_extent_item *item; 2226 struct btrfs_key key; 2227 u64 bytenr = node->bytenr; 2228 u64 num_bytes = node->num_bytes; 2229 u64 refs; 2230 int ret; 2231 2232 path = btrfs_alloc_path(); 2233 if (!path) 2234 return -ENOMEM; 2235 2236 path->reada = READA_FORWARD; 2237 path->leave_spinning = 1; 2238 /* this will setup the path even if it fails to insert the back ref */ 2239 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2240 num_bytes, parent, root_objectid, 2241 owner, offset, 2242 refs_to_add, extent_op); 2243 if ((ret < 0 && ret != -EAGAIN) || !ret) 2244 goto out; 2245 2246 /* 2247 * Ok we had -EAGAIN which means we didn't have space to insert and 2248 * inline extent ref, so just update the reference count and add a 2249 * normal backref. 2250 */ 2251 leaf = path->nodes[0]; 2252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2253 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2254 refs = btrfs_extent_refs(leaf, item); 2255 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2256 if (extent_op) 2257 __run_delayed_extent_op(extent_op, leaf, item); 2258 2259 btrfs_mark_buffer_dirty(leaf); 2260 btrfs_release_path(path); 2261 2262 path->reada = READA_FORWARD; 2263 path->leave_spinning = 1; 2264 /* now insert the actual backref */ 2265 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2266 root_objectid, owner, offset, refs_to_add); 2267 if (ret) 2268 btrfs_abort_transaction(trans, ret); 2269 out: 2270 btrfs_free_path(path); 2271 return ret; 2272 } 2273 2274 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2275 struct btrfs_fs_info *fs_info, 2276 struct btrfs_delayed_ref_node *node, 2277 struct btrfs_delayed_extent_op *extent_op, 2278 int insert_reserved) 2279 { 2280 int ret = 0; 2281 struct btrfs_delayed_data_ref *ref; 2282 struct btrfs_key ins; 2283 u64 parent = 0; 2284 u64 ref_root = 0; 2285 u64 flags = 0; 2286 2287 ins.objectid = node->bytenr; 2288 ins.offset = node->num_bytes; 2289 ins.type = BTRFS_EXTENT_ITEM_KEY; 2290 2291 ref = btrfs_delayed_node_to_data_ref(node); 2292 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2293 2294 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2295 parent = ref->parent; 2296 ref_root = ref->root; 2297 2298 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2299 if (extent_op) 2300 flags |= extent_op->flags_to_set; 2301 ret = alloc_reserved_file_extent(trans, fs_info, 2302 parent, ref_root, flags, 2303 ref->objectid, ref->offset, 2304 &ins, node->ref_mod); 2305 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2306 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2307 ref_root, ref->objectid, 2308 ref->offset, node->ref_mod, 2309 extent_op); 2310 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2311 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2312 ref_root, ref->objectid, 2313 ref->offset, node->ref_mod, 2314 extent_op); 2315 } else { 2316 BUG(); 2317 } 2318 return ret; 2319 } 2320 2321 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2322 struct extent_buffer *leaf, 2323 struct btrfs_extent_item *ei) 2324 { 2325 u64 flags = btrfs_extent_flags(leaf, ei); 2326 if (extent_op->update_flags) { 2327 flags |= extent_op->flags_to_set; 2328 btrfs_set_extent_flags(leaf, ei, flags); 2329 } 2330 2331 if (extent_op->update_key) { 2332 struct btrfs_tree_block_info *bi; 2333 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2334 bi = (struct btrfs_tree_block_info *)(ei + 1); 2335 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2336 } 2337 } 2338 2339 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2340 struct btrfs_fs_info *fs_info, 2341 struct btrfs_delayed_ref_head *head, 2342 struct btrfs_delayed_extent_op *extent_op) 2343 { 2344 struct btrfs_key key; 2345 struct btrfs_path *path; 2346 struct btrfs_extent_item *ei; 2347 struct extent_buffer *leaf; 2348 u32 item_size; 2349 int ret; 2350 int err = 0; 2351 int metadata = !extent_op->is_data; 2352 2353 if (trans->aborted) 2354 return 0; 2355 2356 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2357 metadata = 0; 2358 2359 path = btrfs_alloc_path(); 2360 if (!path) 2361 return -ENOMEM; 2362 2363 key.objectid = head->bytenr; 2364 2365 if (metadata) { 2366 key.type = BTRFS_METADATA_ITEM_KEY; 2367 key.offset = extent_op->level; 2368 } else { 2369 key.type = BTRFS_EXTENT_ITEM_KEY; 2370 key.offset = head->num_bytes; 2371 } 2372 2373 again: 2374 path->reada = READA_FORWARD; 2375 path->leave_spinning = 1; 2376 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2377 if (ret < 0) { 2378 err = ret; 2379 goto out; 2380 } 2381 if (ret > 0) { 2382 if (metadata) { 2383 if (path->slots[0] > 0) { 2384 path->slots[0]--; 2385 btrfs_item_key_to_cpu(path->nodes[0], &key, 2386 path->slots[0]); 2387 if (key.objectid == head->bytenr && 2388 key.type == BTRFS_EXTENT_ITEM_KEY && 2389 key.offset == head->num_bytes) 2390 ret = 0; 2391 } 2392 if (ret > 0) { 2393 btrfs_release_path(path); 2394 metadata = 0; 2395 2396 key.objectid = head->bytenr; 2397 key.offset = head->num_bytes; 2398 key.type = BTRFS_EXTENT_ITEM_KEY; 2399 goto again; 2400 } 2401 } else { 2402 err = -EIO; 2403 goto out; 2404 } 2405 } 2406 2407 leaf = path->nodes[0]; 2408 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2410 if (item_size < sizeof(*ei)) { 2411 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2412 if (ret < 0) { 2413 err = ret; 2414 goto out; 2415 } 2416 leaf = path->nodes[0]; 2417 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2418 } 2419 #endif 2420 BUG_ON(item_size < sizeof(*ei)); 2421 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2422 __run_delayed_extent_op(extent_op, leaf, ei); 2423 2424 btrfs_mark_buffer_dirty(leaf); 2425 out: 2426 btrfs_free_path(path); 2427 return err; 2428 } 2429 2430 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2431 struct btrfs_fs_info *fs_info, 2432 struct btrfs_delayed_ref_node *node, 2433 struct btrfs_delayed_extent_op *extent_op, 2434 int insert_reserved) 2435 { 2436 int ret = 0; 2437 struct btrfs_delayed_tree_ref *ref; 2438 struct btrfs_key ins; 2439 u64 parent = 0; 2440 u64 ref_root = 0; 2441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2442 2443 ref = btrfs_delayed_node_to_tree_ref(node); 2444 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2445 2446 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2447 parent = ref->parent; 2448 ref_root = ref->root; 2449 2450 ins.objectid = node->bytenr; 2451 if (skinny_metadata) { 2452 ins.offset = ref->level; 2453 ins.type = BTRFS_METADATA_ITEM_KEY; 2454 } else { 2455 ins.offset = node->num_bytes; 2456 ins.type = BTRFS_EXTENT_ITEM_KEY; 2457 } 2458 2459 if (node->ref_mod != 1) { 2460 btrfs_err(fs_info, 2461 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2462 node->bytenr, node->ref_mod, node->action, ref_root, 2463 parent); 2464 return -EIO; 2465 } 2466 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2467 BUG_ON(!extent_op || !extent_op->update_flags); 2468 ret = alloc_reserved_tree_block(trans, fs_info, 2469 parent, ref_root, 2470 extent_op->flags_to_set, 2471 &extent_op->key, 2472 ref->level, &ins); 2473 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2474 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2475 parent, ref_root, 2476 ref->level, 0, 1, 2477 extent_op); 2478 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2479 ret = __btrfs_free_extent(trans, fs_info, node, 2480 parent, ref_root, 2481 ref->level, 0, 1, extent_op); 2482 } else { 2483 BUG(); 2484 } 2485 return ret; 2486 } 2487 2488 /* helper function to actually process a single delayed ref entry */ 2489 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2490 struct btrfs_fs_info *fs_info, 2491 struct btrfs_delayed_ref_node *node, 2492 struct btrfs_delayed_extent_op *extent_op, 2493 int insert_reserved) 2494 { 2495 int ret = 0; 2496 2497 if (trans->aborted) { 2498 if (insert_reserved) 2499 btrfs_pin_extent(fs_info, node->bytenr, 2500 node->num_bytes, 1); 2501 return 0; 2502 } 2503 2504 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2505 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2506 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2507 insert_reserved); 2508 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2509 node->type == BTRFS_SHARED_DATA_REF_KEY) 2510 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2511 insert_reserved); 2512 else 2513 BUG(); 2514 return ret; 2515 } 2516 2517 static inline struct btrfs_delayed_ref_node * 2518 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2519 { 2520 struct btrfs_delayed_ref_node *ref; 2521 2522 if (RB_EMPTY_ROOT(&head->ref_tree)) 2523 return NULL; 2524 2525 /* 2526 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2527 * This is to prevent a ref count from going down to zero, which deletes 2528 * the extent item from the extent tree, when there still are references 2529 * to add, which would fail because they would not find the extent item. 2530 */ 2531 if (!list_empty(&head->ref_add_list)) 2532 return list_first_entry(&head->ref_add_list, 2533 struct btrfs_delayed_ref_node, add_list); 2534 2535 ref = rb_entry(rb_first(&head->ref_tree), 2536 struct btrfs_delayed_ref_node, ref_node); 2537 ASSERT(list_empty(&ref->add_list)); 2538 return ref; 2539 } 2540 2541 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2542 struct btrfs_delayed_ref_head *head) 2543 { 2544 spin_lock(&delayed_refs->lock); 2545 head->processing = 0; 2546 delayed_refs->num_heads_ready++; 2547 spin_unlock(&delayed_refs->lock); 2548 btrfs_delayed_ref_unlock(head); 2549 } 2550 2551 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2552 struct btrfs_fs_info *fs_info, 2553 struct btrfs_delayed_ref_head *head) 2554 { 2555 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2556 int ret; 2557 2558 if (!extent_op) 2559 return 0; 2560 head->extent_op = NULL; 2561 if (head->must_insert_reserved) { 2562 btrfs_free_delayed_extent_op(extent_op); 2563 return 0; 2564 } 2565 spin_unlock(&head->lock); 2566 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2567 btrfs_free_delayed_extent_op(extent_op); 2568 return ret ? ret : 1; 2569 } 2570 2571 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2572 struct btrfs_fs_info *fs_info, 2573 struct btrfs_delayed_ref_head *head) 2574 { 2575 struct btrfs_delayed_ref_root *delayed_refs; 2576 int ret; 2577 2578 delayed_refs = &trans->transaction->delayed_refs; 2579 2580 ret = cleanup_extent_op(trans, fs_info, head); 2581 if (ret < 0) { 2582 unselect_delayed_ref_head(delayed_refs, head); 2583 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2584 return ret; 2585 } else if (ret) { 2586 return ret; 2587 } 2588 2589 /* 2590 * Need to drop our head ref lock and re-acquire the delayed ref lock 2591 * and then re-check to make sure nobody got added. 2592 */ 2593 spin_unlock(&head->lock); 2594 spin_lock(&delayed_refs->lock); 2595 spin_lock(&head->lock); 2596 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2597 spin_unlock(&head->lock); 2598 spin_unlock(&delayed_refs->lock); 2599 return 1; 2600 } 2601 delayed_refs->num_heads--; 2602 rb_erase(&head->href_node, &delayed_refs->href_root); 2603 RB_CLEAR_NODE(&head->href_node); 2604 spin_unlock(&delayed_refs->lock); 2605 spin_unlock(&head->lock); 2606 atomic_dec(&delayed_refs->num_entries); 2607 2608 trace_run_delayed_ref_head(fs_info, head, 0); 2609 2610 if (head->total_ref_mod < 0) { 2611 struct btrfs_block_group_cache *cache; 2612 2613 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 2614 ASSERT(cache); 2615 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2616 -head->num_bytes); 2617 btrfs_put_block_group(cache); 2618 2619 if (head->is_data) { 2620 spin_lock(&delayed_refs->lock); 2621 delayed_refs->pending_csums -= head->num_bytes; 2622 spin_unlock(&delayed_refs->lock); 2623 } 2624 } 2625 2626 if (head->must_insert_reserved) { 2627 btrfs_pin_extent(fs_info, head->bytenr, 2628 head->num_bytes, 1); 2629 if (head->is_data) { 2630 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2631 head->num_bytes); 2632 } 2633 } 2634 2635 /* Also free its reserved qgroup space */ 2636 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2637 head->qgroup_reserved); 2638 btrfs_delayed_ref_unlock(head); 2639 btrfs_put_delayed_ref_head(head); 2640 return 0; 2641 } 2642 2643 /* 2644 * Returns 0 on success or if called with an already aborted transaction. 2645 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2646 */ 2647 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2648 struct btrfs_fs_info *fs_info, 2649 unsigned long nr) 2650 { 2651 struct btrfs_delayed_ref_root *delayed_refs; 2652 struct btrfs_delayed_ref_node *ref; 2653 struct btrfs_delayed_ref_head *locked_ref = NULL; 2654 struct btrfs_delayed_extent_op *extent_op; 2655 ktime_t start = ktime_get(); 2656 int ret; 2657 unsigned long count = 0; 2658 unsigned long actual_count = 0; 2659 int must_insert_reserved = 0; 2660 2661 delayed_refs = &trans->transaction->delayed_refs; 2662 while (1) { 2663 if (!locked_ref) { 2664 if (count >= nr) 2665 break; 2666 2667 spin_lock(&delayed_refs->lock); 2668 locked_ref = btrfs_select_ref_head(trans); 2669 if (!locked_ref) { 2670 spin_unlock(&delayed_refs->lock); 2671 break; 2672 } 2673 2674 /* grab the lock that says we are going to process 2675 * all the refs for this head */ 2676 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2677 spin_unlock(&delayed_refs->lock); 2678 /* 2679 * we may have dropped the spin lock to get the head 2680 * mutex lock, and that might have given someone else 2681 * time to free the head. If that's true, it has been 2682 * removed from our list and we can move on. 2683 */ 2684 if (ret == -EAGAIN) { 2685 locked_ref = NULL; 2686 count++; 2687 continue; 2688 } 2689 } 2690 2691 /* 2692 * We need to try and merge add/drops of the same ref since we 2693 * can run into issues with relocate dropping the implicit ref 2694 * and then it being added back again before the drop can 2695 * finish. If we merged anything we need to re-loop so we can 2696 * get a good ref. 2697 * Or we can get node references of the same type that weren't 2698 * merged when created due to bumps in the tree mod seq, and 2699 * we need to merge them to prevent adding an inline extent 2700 * backref before dropping it (triggering a BUG_ON at 2701 * insert_inline_extent_backref()). 2702 */ 2703 spin_lock(&locked_ref->lock); 2704 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2705 locked_ref); 2706 2707 /* 2708 * locked_ref is the head node, so we have to go one 2709 * node back for any delayed ref updates 2710 */ 2711 ref = select_delayed_ref(locked_ref); 2712 2713 if (ref && ref->seq && 2714 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2715 spin_unlock(&locked_ref->lock); 2716 unselect_delayed_ref_head(delayed_refs, locked_ref); 2717 locked_ref = NULL; 2718 cond_resched(); 2719 count++; 2720 continue; 2721 } 2722 2723 /* 2724 * We're done processing refs in this ref_head, clean everything 2725 * up and move on to the next ref_head. 2726 */ 2727 if (!ref) { 2728 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2729 if (ret > 0 ) { 2730 /* We dropped our lock, we need to loop. */ 2731 ret = 0; 2732 continue; 2733 } else if (ret) { 2734 return ret; 2735 } 2736 locked_ref = NULL; 2737 count++; 2738 continue; 2739 } 2740 2741 actual_count++; 2742 ref->in_tree = 0; 2743 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2744 RB_CLEAR_NODE(&ref->ref_node); 2745 if (!list_empty(&ref->add_list)) 2746 list_del(&ref->add_list); 2747 /* 2748 * When we play the delayed ref, also correct the ref_mod on 2749 * head 2750 */ 2751 switch (ref->action) { 2752 case BTRFS_ADD_DELAYED_REF: 2753 case BTRFS_ADD_DELAYED_EXTENT: 2754 locked_ref->ref_mod -= ref->ref_mod; 2755 break; 2756 case BTRFS_DROP_DELAYED_REF: 2757 locked_ref->ref_mod += ref->ref_mod; 2758 break; 2759 default: 2760 WARN_ON(1); 2761 } 2762 atomic_dec(&delayed_refs->num_entries); 2763 2764 /* 2765 * Record the must-insert_reserved flag before we drop the spin 2766 * lock. 2767 */ 2768 must_insert_reserved = locked_ref->must_insert_reserved; 2769 locked_ref->must_insert_reserved = 0; 2770 2771 extent_op = locked_ref->extent_op; 2772 locked_ref->extent_op = NULL; 2773 spin_unlock(&locked_ref->lock); 2774 2775 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2776 must_insert_reserved); 2777 2778 btrfs_free_delayed_extent_op(extent_op); 2779 if (ret) { 2780 unselect_delayed_ref_head(delayed_refs, locked_ref); 2781 btrfs_put_delayed_ref(ref); 2782 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2783 ret); 2784 return ret; 2785 } 2786 2787 btrfs_put_delayed_ref(ref); 2788 count++; 2789 cond_resched(); 2790 } 2791 2792 /* 2793 * We don't want to include ref heads since we can have empty ref heads 2794 * and those will drastically skew our runtime down since we just do 2795 * accounting, no actual extent tree updates. 2796 */ 2797 if (actual_count > 0) { 2798 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2799 u64 avg; 2800 2801 /* 2802 * We weigh the current average higher than our current runtime 2803 * to avoid large swings in the average. 2804 */ 2805 spin_lock(&delayed_refs->lock); 2806 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2807 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2808 spin_unlock(&delayed_refs->lock); 2809 } 2810 return 0; 2811 } 2812 2813 #ifdef SCRAMBLE_DELAYED_REFS 2814 /* 2815 * Normally delayed refs get processed in ascending bytenr order. This 2816 * correlates in most cases to the order added. To expose dependencies on this 2817 * order, we start to process the tree in the middle instead of the beginning 2818 */ 2819 static u64 find_middle(struct rb_root *root) 2820 { 2821 struct rb_node *n = root->rb_node; 2822 struct btrfs_delayed_ref_node *entry; 2823 int alt = 1; 2824 u64 middle; 2825 u64 first = 0, last = 0; 2826 2827 n = rb_first(root); 2828 if (n) { 2829 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2830 first = entry->bytenr; 2831 } 2832 n = rb_last(root); 2833 if (n) { 2834 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2835 last = entry->bytenr; 2836 } 2837 n = root->rb_node; 2838 2839 while (n) { 2840 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2841 WARN_ON(!entry->in_tree); 2842 2843 middle = entry->bytenr; 2844 2845 if (alt) 2846 n = n->rb_left; 2847 else 2848 n = n->rb_right; 2849 2850 alt = 1 - alt; 2851 } 2852 return middle; 2853 } 2854 #endif 2855 2856 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2857 { 2858 u64 num_bytes; 2859 2860 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2861 sizeof(struct btrfs_extent_inline_ref)); 2862 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2863 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2864 2865 /* 2866 * We don't ever fill up leaves all the way so multiply by 2 just to be 2867 * closer to what we're really going to want to use. 2868 */ 2869 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2870 } 2871 2872 /* 2873 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2874 * would require to store the csums for that many bytes. 2875 */ 2876 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2877 { 2878 u64 csum_size; 2879 u64 num_csums_per_leaf; 2880 u64 num_csums; 2881 2882 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2883 num_csums_per_leaf = div64_u64(csum_size, 2884 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2885 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2886 num_csums += num_csums_per_leaf - 1; 2887 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2888 return num_csums; 2889 } 2890 2891 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2892 struct btrfs_fs_info *fs_info) 2893 { 2894 struct btrfs_block_rsv *global_rsv; 2895 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2896 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2897 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2898 u64 num_bytes, num_dirty_bgs_bytes; 2899 int ret = 0; 2900 2901 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2902 num_heads = heads_to_leaves(fs_info, num_heads); 2903 if (num_heads > 1) 2904 num_bytes += (num_heads - 1) * fs_info->nodesize; 2905 num_bytes <<= 1; 2906 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2907 fs_info->nodesize; 2908 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2909 num_dirty_bgs); 2910 global_rsv = &fs_info->global_block_rsv; 2911 2912 /* 2913 * If we can't allocate any more chunks lets make sure we have _lots_ of 2914 * wiggle room since running delayed refs can create more delayed refs. 2915 */ 2916 if (global_rsv->space_info->full) { 2917 num_dirty_bgs_bytes <<= 1; 2918 num_bytes <<= 1; 2919 } 2920 2921 spin_lock(&global_rsv->lock); 2922 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2923 ret = 1; 2924 spin_unlock(&global_rsv->lock); 2925 return ret; 2926 } 2927 2928 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2929 struct btrfs_fs_info *fs_info) 2930 { 2931 u64 num_entries = 2932 atomic_read(&trans->transaction->delayed_refs.num_entries); 2933 u64 avg_runtime; 2934 u64 val; 2935 2936 smp_mb(); 2937 avg_runtime = fs_info->avg_delayed_ref_runtime; 2938 val = num_entries * avg_runtime; 2939 if (val >= NSEC_PER_SEC) 2940 return 1; 2941 if (val >= NSEC_PER_SEC / 2) 2942 return 2; 2943 2944 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2945 } 2946 2947 struct async_delayed_refs { 2948 struct btrfs_root *root; 2949 u64 transid; 2950 int count; 2951 int error; 2952 int sync; 2953 struct completion wait; 2954 struct btrfs_work work; 2955 }; 2956 2957 static inline struct async_delayed_refs * 2958 to_async_delayed_refs(struct btrfs_work *work) 2959 { 2960 return container_of(work, struct async_delayed_refs, work); 2961 } 2962 2963 static void delayed_ref_async_start(struct btrfs_work *work) 2964 { 2965 struct async_delayed_refs *async = to_async_delayed_refs(work); 2966 struct btrfs_trans_handle *trans; 2967 struct btrfs_fs_info *fs_info = async->root->fs_info; 2968 int ret; 2969 2970 /* if the commit is already started, we don't need to wait here */ 2971 if (btrfs_transaction_blocked(fs_info)) 2972 goto done; 2973 2974 trans = btrfs_join_transaction(async->root); 2975 if (IS_ERR(trans)) { 2976 async->error = PTR_ERR(trans); 2977 goto done; 2978 } 2979 2980 /* 2981 * trans->sync means that when we call end_transaction, we won't 2982 * wait on delayed refs 2983 */ 2984 trans->sync = true; 2985 2986 /* Don't bother flushing if we got into a different transaction */ 2987 if (trans->transid > async->transid) 2988 goto end; 2989 2990 ret = btrfs_run_delayed_refs(trans, fs_info, async->count); 2991 if (ret) 2992 async->error = ret; 2993 end: 2994 ret = btrfs_end_transaction(trans); 2995 if (ret && !async->error) 2996 async->error = ret; 2997 done: 2998 if (async->sync) 2999 complete(&async->wait); 3000 else 3001 kfree(async); 3002 } 3003 3004 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3005 unsigned long count, u64 transid, int wait) 3006 { 3007 struct async_delayed_refs *async; 3008 int ret; 3009 3010 async = kmalloc(sizeof(*async), GFP_NOFS); 3011 if (!async) 3012 return -ENOMEM; 3013 3014 async->root = fs_info->tree_root; 3015 async->count = count; 3016 async->error = 0; 3017 async->transid = transid; 3018 if (wait) 3019 async->sync = 1; 3020 else 3021 async->sync = 0; 3022 init_completion(&async->wait); 3023 3024 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3025 delayed_ref_async_start, NULL, NULL); 3026 3027 btrfs_queue_work(fs_info->extent_workers, &async->work); 3028 3029 if (wait) { 3030 wait_for_completion(&async->wait); 3031 ret = async->error; 3032 kfree(async); 3033 return ret; 3034 } 3035 return 0; 3036 } 3037 3038 /* 3039 * this starts processing the delayed reference count updates and 3040 * extent insertions we have queued up so far. count can be 3041 * 0, which means to process everything in the tree at the start 3042 * of the run (but not newly added entries), or it can be some target 3043 * number you'd like to process. 3044 * 3045 * Returns 0 on success or if called with an aborted transaction 3046 * Returns <0 on error and aborts the transaction 3047 */ 3048 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3049 struct btrfs_fs_info *fs_info, unsigned long count) 3050 { 3051 struct rb_node *node; 3052 struct btrfs_delayed_ref_root *delayed_refs; 3053 struct btrfs_delayed_ref_head *head; 3054 int ret; 3055 int run_all = count == (unsigned long)-1; 3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3057 3058 /* We'll clean this up in btrfs_cleanup_transaction */ 3059 if (trans->aborted) 3060 return 0; 3061 3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3063 return 0; 3064 3065 delayed_refs = &trans->transaction->delayed_refs; 3066 if (count == 0) 3067 count = atomic_read(&delayed_refs->num_entries) * 2; 3068 3069 again: 3070 #ifdef SCRAMBLE_DELAYED_REFS 3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3072 #endif 3073 trans->can_flush_pending_bgs = false; 3074 ret = __btrfs_run_delayed_refs(trans, fs_info, count); 3075 if (ret < 0) { 3076 btrfs_abort_transaction(trans, ret); 3077 return ret; 3078 } 3079 3080 if (run_all) { 3081 if (!list_empty(&trans->new_bgs)) 3082 btrfs_create_pending_block_groups(trans, fs_info); 3083 3084 spin_lock(&delayed_refs->lock); 3085 node = rb_first(&delayed_refs->href_root); 3086 if (!node) { 3087 spin_unlock(&delayed_refs->lock); 3088 goto out; 3089 } 3090 head = rb_entry(node, struct btrfs_delayed_ref_head, 3091 href_node); 3092 refcount_inc(&head->refs); 3093 spin_unlock(&delayed_refs->lock); 3094 3095 /* Mutex was contended, block until it's released and retry. */ 3096 mutex_lock(&head->mutex); 3097 mutex_unlock(&head->mutex); 3098 3099 btrfs_put_delayed_ref_head(head); 3100 cond_resched(); 3101 goto again; 3102 } 3103 out: 3104 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3105 return 0; 3106 } 3107 3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3109 struct btrfs_fs_info *fs_info, 3110 u64 bytenr, u64 num_bytes, u64 flags, 3111 int level, int is_data) 3112 { 3113 struct btrfs_delayed_extent_op *extent_op; 3114 int ret; 3115 3116 extent_op = btrfs_alloc_delayed_extent_op(); 3117 if (!extent_op) 3118 return -ENOMEM; 3119 3120 extent_op->flags_to_set = flags; 3121 extent_op->update_flags = true; 3122 extent_op->update_key = false; 3123 extent_op->is_data = is_data ? true : false; 3124 extent_op->level = level; 3125 3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3127 num_bytes, extent_op); 3128 if (ret) 3129 btrfs_free_delayed_extent_op(extent_op); 3130 return ret; 3131 } 3132 3133 static noinline int check_delayed_ref(struct btrfs_root *root, 3134 struct btrfs_path *path, 3135 u64 objectid, u64 offset, u64 bytenr) 3136 { 3137 struct btrfs_delayed_ref_head *head; 3138 struct btrfs_delayed_ref_node *ref; 3139 struct btrfs_delayed_data_ref *data_ref; 3140 struct btrfs_delayed_ref_root *delayed_refs; 3141 struct btrfs_transaction *cur_trans; 3142 struct rb_node *node; 3143 int ret = 0; 3144 3145 cur_trans = root->fs_info->running_transaction; 3146 if (!cur_trans) 3147 return 0; 3148 3149 delayed_refs = &cur_trans->delayed_refs; 3150 spin_lock(&delayed_refs->lock); 3151 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3152 if (!head) { 3153 spin_unlock(&delayed_refs->lock); 3154 return 0; 3155 } 3156 3157 if (!mutex_trylock(&head->mutex)) { 3158 refcount_inc(&head->refs); 3159 spin_unlock(&delayed_refs->lock); 3160 3161 btrfs_release_path(path); 3162 3163 /* 3164 * Mutex was contended, block until it's released and let 3165 * caller try again 3166 */ 3167 mutex_lock(&head->mutex); 3168 mutex_unlock(&head->mutex); 3169 btrfs_put_delayed_ref_head(head); 3170 return -EAGAIN; 3171 } 3172 spin_unlock(&delayed_refs->lock); 3173 3174 spin_lock(&head->lock); 3175 /* 3176 * XXX: We should replace this with a proper search function in the 3177 * future. 3178 */ 3179 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3180 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3181 /* If it's a shared ref we know a cross reference exists */ 3182 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3183 ret = 1; 3184 break; 3185 } 3186 3187 data_ref = btrfs_delayed_node_to_data_ref(ref); 3188 3189 /* 3190 * If our ref doesn't match the one we're currently looking at 3191 * then we have a cross reference. 3192 */ 3193 if (data_ref->root != root->root_key.objectid || 3194 data_ref->objectid != objectid || 3195 data_ref->offset != offset) { 3196 ret = 1; 3197 break; 3198 } 3199 } 3200 spin_unlock(&head->lock); 3201 mutex_unlock(&head->mutex); 3202 return ret; 3203 } 3204 3205 static noinline int check_committed_ref(struct btrfs_root *root, 3206 struct btrfs_path *path, 3207 u64 objectid, u64 offset, u64 bytenr) 3208 { 3209 struct btrfs_fs_info *fs_info = root->fs_info; 3210 struct btrfs_root *extent_root = fs_info->extent_root; 3211 struct extent_buffer *leaf; 3212 struct btrfs_extent_data_ref *ref; 3213 struct btrfs_extent_inline_ref *iref; 3214 struct btrfs_extent_item *ei; 3215 struct btrfs_key key; 3216 u32 item_size; 3217 int type; 3218 int ret; 3219 3220 key.objectid = bytenr; 3221 key.offset = (u64)-1; 3222 key.type = BTRFS_EXTENT_ITEM_KEY; 3223 3224 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3225 if (ret < 0) 3226 goto out; 3227 BUG_ON(ret == 0); /* Corruption */ 3228 3229 ret = -ENOENT; 3230 if (path->slots[0] == 0) 3231 goto out; 3232 3233 path->slots[0]--; 3234 leaf = path->nodes[0]; 3235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3236 3237 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3238 goto out; 3239 3240 ret = 1; 3241 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3243 if (item_size < sizeof(*ei)) { 3244 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3245 goto out; 3246 } 3247 #endif 3248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3249 3250 if (item_size != sizeof(*ei) + 3251 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3252 goto out; 3253 3254 if (btrfs_extent_generation(leaf, ei) <= 3255 btrfs_root_last_snapshot(&root->root_item)) 3256 goto out; 3257 3258 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3259 3260 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3261 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3262 goto out; 3263 3264 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3265 if (btrfs_extent_refs(leaf, ei) != 3266 btrfs_extent_data_ref_count(leaf, ref) || 3267 btrfs_extent_data_ref_root(leaf, ref) != 3268 root->root_key.objectid || 3269 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3270 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3271 goto out; 3272 3273 ret = 0; 3274 out: 3275 return ret; 3276 } 3277 3278 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3279 u64 bytenr) 3280 { 3281 struct btrfs_path *path; 3282 int ret; 3283 int ret2; 3284 3285 path = btrfs_alloc_path(); 3286 if (!path) 3287 return -ENOENT; 3288 3289 do { 3290 ret = check_committed_ref(root, path, objectid, 3291 offset, bytenr); 3292 if (ret && ret != -ENOENT) 3293 goto out; 3294 3295 ret2 = check_delayed_ref(root, path, objectid, 3296 offset, bytenr); 3297 } while (ret2 == -EAGAIN); 3298 3299 if (ret2 && ret2 != -ENOENT) { 3300 ret = ret2; 3301 goto out; 3302 } 3303 3304 if (ret != -ENOENT || ret2 != -ENOENT) 3305 ret = 0; 3306 out: 3307 btrfs_free_path(path); 3308 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3309 WARN_ON(ret > 0); 3310 return ret; 3311 } 3312 3313 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3314 struct btrfs_root *root, 3315 struct extent_buffer *buf, 3316 int full_backref, int inc) 3317 { 3318 struct btrfs_fs_info *fs_info = root->fs_info; 3319 u64 bytenr; 3320 u64 num_bytes; 3321 u64 parent; 3322 u64 ref_root; 3323 u32 nritems; 3324 struct btrfs_key key; 3325 struct btrfs_file_extent_item *fi; 3326 int i; 3327 int level; 3328 int ret = 0; 3329 int (*process_func)(struct btrfs_trans_handle *, 3330 struct btrfs_root *, 3331 u64, u64, u64, u64, u64, u64); 3332 3333 3334 if (btrfs_is_testing(fs_info)) 3335 return 0; 3336 3337 ref_root = btrfs_header_owner(buf); 3338 nritems = btrfs_header_nritems(buf); 3339 level = btrfs_header_level(buf); 3340 3341 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3342 return 0; 3343 3344 if (inc) 3345 process_func = btrfs_inc_extent_ref; 3346 else 3347 process_func = btrfs_free_extent; 3348 3349 if (full_backref) 3350 parent = buf->start; 3351 else 3352 parent = 0; 3353 3354 for (i = 0; i < nritems; i++) { 3355 if (level == 0) { 3356 btrfs_item_key_to_cpu(buf, &key, i); 3357 if (key.type != BTRFS_EXTENT_DATA_KEY) 3358 continue; 3359 fi = btrfs_item_ptr(buf, i, 3360 struct btrfs_file_extent_item); 3361 if (btrfs_file_extent_type(buf, fi) == 3362 BTRFS_FILE_EXTENT_INLINE) 3363 continue; 3364 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3365 if (bytenr == 0) 3366 continue; 3367 3368 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3369 key.offset -= btrfs_file_extent_offset(buf, fi); 3370 ret = process_func(trans, root, bytenr, num_bytes, 3371 parent, ref_root, key.objectid, 3372 key.offset); 3373 if (ret) 3374 goto fail; 3375 } else { 3376 bytenr = btrfs_node_blockptr(buf, i); 3377 num_bytes = fs_info->nodesize; 3378 ret = process_func(trans, root, bytenr, num_bytes, 3379 parent, ref_root, level - 1, 0); 3380 if (ret) 3381 goto fail; 3382 } 3383 } 3384 return 0; 3385 fail: 3386 return ret; 3387 } 3388 3389 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3390 struct extent_buffer *buf, int full_backref) 3391 { 3392 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3393 } 3394 3395 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3396 struct extent_buffer *buf, int full_backref) 3397 { 3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3399 } 3400 3401 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3402 struct btrfs_fs_info *fs_info, 3403 struct btrfs_path *path, 3404 struct btrfs_block_group_cache *cache) 3405 { 3406 int ret; 3407 struct btrfs_root *extent_root = fs_info->extent_root; 3408 unsigned long bi; 3409 struct extent_buffer *leaf; 3410 3411 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3412 if (ret) { 3413 if (ret > 0) 3414 ret = -ENOENT; 3415 goto fail; 3416 } 3417 3418 leaf = path->nodes[0]; 3419 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3420 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3421 btrfs_mark_buffer_dirty(leaf); 3422 fail: 3423 btrfs_release_path(path); 3424 return ret; 3425 3426 } 3427 3428 static struct btrfs_block_group_cache * 3429 next_block_group(struct btrfs_fs_info *fs_info, 3430 struct btrfs_block_group_cache *cache) 3431 { 3432 struct rb_node *node; 3433 3434 spin_lock(&fs_info->block_group_cache_lock); 3435 3436 /* If our block group was removed, we need a full search. */ 3437 if (RB_EMPTY_NODE(&cache->cache_node)) { 3438 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3439 3440 spin_unlock(&fs_info->block_group_cache_lock); 3441 btrfs_put_block_group(cache); 3442 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3443 } 3444 node = rb_next(&cache->cache_node); 3445 btrfs_put_block_group(cache); 3446 if (node) { 3447 cache = rb_entry(node, struct btrfs_block_group_cache, 3448 cache_node); 3449 btrfs_get_block_group(cache); 3450 } else 3451 cache = NULL; 3452 spin_unlock(&fs_info->block_group_cache_lock); 3453 return cache; 3454 } 3455 3456 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3457 struct btrfs_trans_handle *trans, 3458 struct btrfs_path *path) 3459 { 3460 struct btrfs_fs_info *fs_info = block_group->fs_info; 3461 struct btrfs_root *root = fs_info->tree_root; 3462 struct inode *inode = NULL; 3463 struct extent_changeset *data_reserved = NULL; 3464 u64 alloc_hint = 0; 3465 int dcs = BTRFS_DC_ERROR; 3466 u64 num_pages = 0; 3467 int retries = 0; 3468 int ret = 0; 3469 3470 /* 3471 * If this block group is smaller than 100 megs don't bother caching the 3472 * block group. 3473 */ 3474 if (block_group->key.offset < (100 * SZ_1M)) { 3475 spin_lock(&block_group->lock); 3476 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3477 spin_unlock(&block_group->lock); 3478 return 0; 3479 } 3480 3481 if (trans->aborted) 3482 return 0; 3483 again: 3484 inode = lookup_free_space_inode(fs_info, block_group, path); 3485 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3486 ret = PTR_ERR(inode); 3487 btrfs_release_path(path); 3488 goto out; 3489 } 3490 3491 if (IS_ERR(inode)) { 3492 BUG_ON(retries); 3493 retries++; 3494 3495 if (block_group->ro) 3496 goto out_free; 3497 3498 ret = create_free_space_inode(fs_info, trans, block_group, 3499 path); 3500 if (ret) 3501 goto out_free; 3502 goto again; 3503 } 3504 3505 /* We've already setup this transaction, go ahead and exit */ 3506 if (block_group->cache_generation == trans->transid && 3507 i_size_read(inode)) { 3508 dcs = BTRFS_DC_SETUP; 3509 goto out_put; 3510 } 3511 3512 /* 3513 * We want to set the generation to 0, that way if anything goes wrong 3514 * from here on out we know not to trust this cache when we load up next 3515 * time. 3516 */ 3517 BTRFS_I(inode)->generation = 0; 3518 ret = btrfs_update_inode(trans, root, inode); 3519 if (ret) { 3520 /* 3521 * So theoretically we could recover from this, simply set the 3522 * super cache generation to 0 so we know to invalidate the 3523 * cache, but then we'd have to keep track of the block groups 3524 * that fail this way so we know we _have_ to reset this cache 3525 * before the next commit or risk reading stale cache. So to 3526 * limit our exposure to horrible edge cases lets just abort the 3527 * transaction, this only happens in really bad situations 3528 * anyway. 3529 */ 3530 btrfs_abort_transaction(trans, ret); 3531 goto out_put; 3532 } 3533 WARN_ON(ret); 3534 3535 if (i_size_read(inode) > 0) { 3536 ret = btrfs_check_trunc_cache_free_space(fs_info, 3537 &fs_info->global_block_rsv); 3538 if (ret) 3539 goto out_put; 3540 3541 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3542 if (ret) 3543 goto out_put; 3544 } 3545 3546 spin_lock(&block_group->lock); 3547 if (block_group->cached != BTRFS_CACHE_FINISHED || 3548 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3549 /* 3550 * don't bother trying to write stuff out _if_ 3551 * a) we're not cached, 3552 * b) we're with nospace_cache mount option, 3553 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3554 */ 3555 dcs = BTRFS_DC_WRITTEN; 3556 spin_unlock(&block_group->lock); 3557 goto out_put; 3558 } 3559 spin_unlock(&block_group->lock); 3560 3561 /* 3562 * We hit an ENOSPC when setting up the cache in this transaction, just 3563 * skip doing the setup, we've already cleared the cache so we're safe. 3564 */ 3565 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3566 ret = -ENOSPC; 3567 goto out_put; 3568 } 3569 3570 /* 3571 * Try to preallocate enough space based on how big the block group is. 3572 * Keep in mind this has to include any pinned space which could end up 3573 * taking up quite a bit since it's not folded into the other space 3574 * cache. 3575 */ 3576 num_pages = div_u64(block_group->key.offset, SZ_256M); 3577 if (!num_pages) 3578 num_pages = 1; 3579 3580 num_pages *= 16; 3581 num_pages *= PAGE_SIZE; 3582 3583 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3584 if (ret) 3585 goto out_put; 3586 3587 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3588 num_pages, num_pages, 3589 &alloc_hint); 3590 /* 3591 * Our cache requires contiguous chunks so that we don't modify a bunch 3592 * of metadata or split extents when writing the cache out, which means 3593 * we can enospc if we are heavily fragmented in addition to just normal 3594 * out of space conditions. So if we hit this just skip setting up any 3595 * other block groups for this transaction, maybe we'll unpin enough 3596 * space the next time around. 3597 */ 3598 if (!ret) 3599 dcs = BTRFS_DC_SETUP; 3600 else if (ret == -ENOSPC) 3601 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3602 3603 out_put: 3604 iput(inode); 3605 out_free: 3606 btrfs_release_path(path); 3607 out: 3608 spin_lock(&block_group->lock); 3609 if (!ret && dcs == BTRFS_DC_SETUP) 3610 block_group->cache_generation = trans->transid; 3611 block_group->disk_cache_state = dcs; 3612 spin_unlock(&block_group->lock); 3613 3614 extent_changeset_free(data_reserved); 3615 return ret; 3616 } 3617 3618 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3619 struct btrfs_fs_info *fs_info) 3620 { 3621 struct btrfs_block_group_cache *cache, *tmp; 3622 struct btrfs_transaction *cur_trans = trans->transaction; 3623 struct btrfs_path *path; 3624 3625 if (list_empty(&cur_trans->dirty_bgs) || 3626 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3627 return 0; 3628 3629 path = btrfs_alloc_path(); 3630 if (!path) 3631 return -ENOMEM; 3632 3633 /* Could add new block groups, use _safe just in case */ 3634 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3635 dirty_list) { 3636 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3637 cache_save_setup(cache, trans, path); 3638 } 3639 3640 btrfs_free_path(path); 3641 return 0; 3642 } 3643 3644 /* 3645 * transaction commit does final block group cache writeback during a 3646 * critical section where nothing is allowed to change the FS. This is 3647 * required in order for the cache to actually match the block group, 3648 * but can introduce a lot of latency into the commit. 3649 * 3650 * So, btrfs_start_dirty_block_groups is here to kick off block group 3651 * cache IO. There's a chance we'll have to redo some of it if the 3652 * block group changes again during the commit, but it greatly reduces 3653 * the commit latency by getting rid of the easy block groups while 3654 * we're still allowing others to join the commit. 3655 */ 3656 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3657 struct btrfs_fs_info *fs_info) 3658 { 3659 struct btrfs_block_group_cache *cache; 3660 struct btrfs_transaction *cur_trans = trans->transaction; 3661 int ret = 0; 3662 int should_put; 3663 struct btrfs_path *path = NULL; 3664 LIST_HEAD(dirty); 3665 struct list_head *io = &cur_trans->io_bgs; 3666 int num_started = 0; 3667 int loops = 0; 3668 3669 spin_lock(&cur_trans->dirty_bgs_lock); 3670 if (list_empty(&cur_trans->dirty_bgs)) { 3671 spin_unlock(&cur_trans->dirty_bgs_lock); 3672 return 0; 3673 } 3674 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3675 spin_unlock(&cur_trans->dirty_bgs_lock); 3676 3677 again: 3678 /* 3679 * make sure all the block groups on our dirty list actually 3680 * exist 3681 */ 3682 btrfs_create_pending_block_groups(trans, fs_info); 3683 3684 if (!path) { 3685 path = btrfs_alloc_path(); 3686 if (!path) 3687 return -ENOMEM; 3688 } 3689 3690 /* 3691 * cache_write_mutex is here only to save us from balance or automatic 3692 * removal of empty block groups deleting this block group while we are 3693 * writing out the cache 3694 */ 3695 mutex_lock(&trans->transaction->cache_write_mutex); 3696 while (!list_empty(&dirty)) { 3697 cache = list_first_entry(&dirty, 3698 struct btrfs_block_group_cache, 3699 dirty_list); 3700 /* 3701 * this can happen if something re-dirties a block 3702 * group that is already under IO. Just wait for it to 3703 * finish and then do it all again 3704 */ 3705 if (!list_empty(&cache->io_list)) { 3706 list_del_init(&cache->io_list); 3707 btrfs_wait_cache_io(trans, cache, path); 3708 btrfs_put_block_group(cache); 3709 } 3710 3711 3712 /* 3713 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3714 * if it should update the cache_state. Don't delete 3715 * until after we wait. 3716 * 3717 * Since we're not running in the commit critical section 3718 * we need the dirty_bgs_lock to protect from update_block_group 3719 */ 3720 spin_lock(&cur_trans->dirty_bgs_lock); 3721 list_del_init(&cache->dirty_list); 3722 spin_unlock(&cur_trans->dirty_bgs_lock); 3723 3724 should_put = 1; 3725 3726 cache_save_setup(cache, trans, path); 3727 3728 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3729 cache->io_ctl.inode = NULL; 3730 ret = btrfs_write_out_cache(fs_info, trans, 3731 cache, path); 3732 if (ret == 0 && cache->io_ctl.inode) { 3733 num_started++; 3734 should_put = 0; 3735 3736 /* 3737 * the cache_write_mutex is protecting 3738 * the io_list 3739 */ 3740 list_add_tail(&cache->io_list, io); 3741 } else { 3742 /* 3743 * if we failed to write the cache, the 3744 * generation will be bad and life goes on 3745 */ 3746 ret = 0; 3747 } 3748 } 3749 if (!ret) { 3750 ret = write_one_cache_group(trans, fs_info, 3751 path, cache); 3752 /* 3753 * Our block group might still be attached to the list 3754 * of new block groups in the transaction handle of some 3755 * other task (struct btrfs_trans_handle->new_bgs). This 3756 * means its block group item isn't yet in the extent 3757 * tree. If this happens ignore the error, as we will 3758 * try again later in the critical section of the 3759 * transaction commit. 3760 */ 3761 if (ret == -ENOENT) { 3762 ret = 0; 3763 spin_lock(&cur_trans->dirty_bgs_lock); 3764 if (list_empty(&cache->dirty_list)) { 3765 list_add_tail(&cache->dirty_list, 3766 &cur_trans->dirty_bgs); 3767 btrfs_get_block_group(cache); 3768 } 3769 spin_unlock(&cur_trans->dirty_bgs_lock); 3770 } else if (ret) { 3771 btrfs_abort_transaction(trans, ret); 3772 } 3773 } 3774 3775 /* if its not on the io list, we need to put the block group */ 3776 if (should_put) 3777 btrfs_put_block_group(cache); 3778 3779 if (ret) 3780 break; 3781 3782 /* 3783 * Avoid blocking other tasks for too long. It might even save 3784 * us from writing caches for block groups that are going to be 3785 * removed. 3786 */ 3787 mutex_unlock(&trans->transaction->cache_write_mutex); 3788 mutex_lock(&trans->transaction->cache_write_mutex); 3789 } 3790 mutex_unlock(&trans->transaction->cache_write_mutex); 3791 3792 /* 3793 * go through delayed refs for all the stuff we've just kicked off 3794 * and then loop back (just once) 3795 */ 3796 ret = btrfs_run_delayed_refs(trans, fs_info, 0); 3797 if (!ret && loops == 0) { 3798 loops++; 3799 spin_lock(&cur_trans->dirty_bgs_lock); 3800 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3801 /* 3802 * dirty_bgs_lock protects us from concurrent block group 3803 * deletes too (not just cache_write_mutex). 3804 */ 3805 if (!list_empty(&dirty)) { 3806 spin_unlock(&cur_trans->dirty_bgs_lock); 3807 goto again; 3808 } 3809 spin_unlock(&cur_trans->dirty_bgs_lock); 3810 } else if (ret < 0) { 3811 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3812 } 3813 3814 btrfs_free_path(path); 3815 return ret; 3816 } 3817 3818 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3819 struct btrfs_fs_info *fs_info) 3820 { 3821 struct btrfs_block_group_cache *cache; 3822 struct btrfs_transaction *cur_trans = trans->transaction; 3823 int ret = 0; 3824 int should_put; 3825 struct btrfs_path *path; 3826 struct list_head *io = &cur_trans->io_bgs; 3827 int num_started = 0; 3828 3829 path = btrfs_alloc_path(); 3830 if (!path) 3831 return -ENOMEM; 3832 3833 /* 3834 * Even though we are in the critical section of the transaction commit, 3835 * we can still have concurrent tasks adding elements to this 3836 * transaction's list of dirty block groups. These tasks correspond to 3837 * endio free space workers started when writeback finishes for a 3838 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3839 * allocate new block groups as a result of COWing nodes of the root 3840 * tree when updating the free space inode. The writeback for the space 3841 * caches is triggered by an earlier call to 3842 * btrfs_start_dirty_block_groups() and iterations of the following 3843 * loop. 3844 * Also we want to do the cache_save_setup first and then run the 3845 * delayed refs to make sure we have the best chance at doing this all 3846 * in one shot. 3847 */ 3848 spin_lock(&cur_trans->dirty_bgs_lock); 3849 while (!list_empty(&cur_trans->dirty_bgs)) { 3850 cache = list_first_entry(&cur_trans->dirty_bgs, 3851 struct btrfs_block_group_cache, 3852 dirty_list); 3853 3854 /* 3855 * this can happen if cache_save_setup re-dirties a block 3856 * group that is already under IO. Just wait for it to 3857 * finish and then do it all again 3858 */ 3859 if (!list_empty(&cache->io_list)) { 3860 spin_unlock(&cur_trans->dirty_bgs_lock); 3861 list_del_init(&cache->io_list); 3862 btrfs_wait_cache_io(trans, cache, path); 3863 btrfs_put_block_group(cache); 3864 spin_lock(&cur_trans->dirty_bgs_lock); 3865 } 3866 3867 /* 3868 * don't remove from the dirty list until after we've waited 3869 * on any pending IO 3870 */ 3871 list_del_init(&cache->dirty_list); 3872 spin_unlock(&cur_trans->dirty_bgs_lock); 3873 should_put = 1; 3874 3875 cache_save_setup(cache, trans, path); 3876 3877 if (!ret) 3878 ret = btrfs_run_delayed_refs(trans, fs_info, 3879 (unsigned long) -1); 3880 3881 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3882 cache->io_ctl.inode = NULL; 3883 ret = btrfs_write_out_cache(fs_info, trans, 3884 cache, path); 3885 if (ret == 0 && cache->io_ctl.inode) { 3886 num_started++; 3887 should_put = 0; 3888 list_add_tail(&cache->io_list, io); 3889 } else { 3890 /* 3891 * if we failed to write the cache, the 3892 * generation will be bad and life goes on 3893 */ 3894 ret = 0; 3895 } 3896 } 3897 if (!ret) { 3898 ret = write_one_cache_group(trans, fs_info, 3899 path, cache); 3900 /* 3901 * One of the free space endio workers might have 3902 * created a new block group while updating a free space 3903 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3904 * and hasn't released its transaction handle yet, in 3905 * which case the new block group is still attached to 3906 * its transaction handle and its creation has not 3907 * finished yet (no block group item in the extent tree 3908 * yet, etc). If this is the case, wait for all free 3909 * space endio workers to finish and retry. This is a 3910 * a very rare case so no need for a more efficient and 3911 * complex approach. 3912 */ 3913 if (ret == -ENOENT) { 3914 wait_event(cur_trans->writer_wait, 3915 atomic_read(&cur_trans->num_writers) == 1); 3916 ret = write_one_cache_group(trans, fs_info, 3917 path, cache); 3918 } 3919 if (ret) 3920 btrfs_abort_transaction(trans, ret); 3921 } 3922 3923 /* if its not on the io list, we need to put the block group */ 3924 if (should_put) 3925 btrfs_put_block_group(cache); 3926 spin_lock(&cur_trans->dirty_bgs_lock); 3927 } 3928 spin_unlock(&cur_trans->dirty_bgs_lock); 3929 3930 while (!list_empty(io)) { 3931 cache = list_first_entry(io, struct btrfs_block_group_cache, 3932 io_list); 3933 list_del_init(&cache->io_list); 3934 btrfs_wait_cache_io(trans, cache, path); 3935 btrfs_put_block_group(cache); 3936 } 3937 3938 btrfs_free_path(path); 3939 return ret; 3940 } 3941 3942 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3943 { 3944 struct btrfs_block_group_cache *block_group; 3945 int readonly = 0; 3946 3947 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3948 if (!block_group || block_group->ro) 3949 readonly = 1; 3950 if (block_group) 3951 btrfs_put_block_group(block_group); 3952 return readonly; 3953 } 3954 3955 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3956 { 3957 struct btrfs_block_group_cache *bg; 3958 bool ret = true; 3959 3960 bg = btrfs_lookup_block_group(fs_info, bytenr); 3961 if (!bg) 3962 return false; 3963 3964 spin_lock(&bg->lock); 3965 if (bg->ro) 3966 ret = false; 3967 else 3968 atomic_inc(&bg->nocow_writers); 3969 spin_unlock(&bg->lock); 3970 3971 /* no put on block group, done by btrfs_dec_nocow_writers */ 3972 if (!ret) 3973 btrfs_put_block_group(bg); 3974 3975 return ret; 3976 3977 } 3978 3979 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3980 { 3981 struct btrfs_block_group_cache *bg; 3982 3983 bg = btrfs_lookup_block_group(fs_info, bytenr); 3984 ASSERT(bg); 3985 if (atomic_dec_and_test(&bg->nocow_writers)) 3986 wake_up_atomic_t(&bg->nocow_writers); 3987 /* 3988 * Once for our lookup and once for the lookup done by a previous call 3989 * to btrfs_inc_nocow_writers() 3990 */ 3991 btrfs_put_block_group(bg); 3992 btrfs_put_block_group(bg); 3993 } 3994 3995 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3996 { 3997 schedule(); 3998 return 0; 3999 } 4000 4001 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 4002 { 4003 wait_on_atomic_t(&bg->nocow_writers, 4004 btrfs_wait_nocow_writers_atomic_t, 4005 TASK_UNINTERRUPTIBLE); 4006 } 4007 4008 static const char *alloc_name(u64 flags) 4009 { 4010 switch (flags) { 4011 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4012 return "mixed"; 4013 case BTRFS_BLOCK_GROUP_METADATA: 4014 return "metadata"; 4015 case BTRFS_BLOCK_GROUP_DATA: 4016 return "data"; 4017 case BTRFS_BLOCK_GROUP_SYSTEM: 4018 return "system"; 4019 default: 4020 WARN_ON(1); 4021 return "invalid-combination"; 4022 }; 4023 } 4024 4025 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4026 struct btrfs_space_info **new) 4027 { 4028 4029 struct btrfs_space_info *space_info; 4030 int i; 4031 int ret; 4032 4033 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4034 if (!space_info) 4035 return -ENOMEM; 4036 4037 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4038 GFP_KERNEL); 4039 if (ret) { 4040 kfree(space_info); 4041 return ret; 4042 } 4043 4044 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4045 INIT_LIST_HEAD(&space_info->block_groups[i]); 4046 init_rwsem(&space_info->groups_sem); 4047 spin_lock_init(&space_info->lock); 4048 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4049 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4050 init_waitqueue_head(&space_info->wait); 4051 INIT_LIST_HEAD(&space_info->ro_bgs); 4052 INIT_LIST_HEAD(&space_info->tickets); 4053 INIT_LIST_HEAD(&space_info->priority_tickets); 4054 4055 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4056 info->space_info_kobj, "%s", 4057 alloc_name(space_info->flags)); 4058 if (ret) { 4059 percpu_counter_destroy(&space_info->total_bytes_pinned); 4060 kfree(space_info); 4061 return ret; 4062 } 4063 4064 *new = space_info; 4065 list_add_rcu(&space_info->list, &info->space_info); 4066 if (flags & BTRFS_BLOCK_GROUP_DATA) 4067 info->data_sinfo = space_info; 4068 4069 return ret; 4070 } 4071 4072 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4073 u64 total_bytes, u64 bytes_used, 4074 u64 bytes_readonly, 4075 struct btrfs_space_info **space_info) 4076 { 4077 struct btrfs_space_info *found; 4078 int factor; 4079 4080 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4081 BTRFS_BLOCK_GROUP_RAID10)) 4082 factor = 2; 4083 else 4084 factor = 1; 4085 4086 found = __find_space_info(info, flags); 4087 ASSERT(found); 4088 spin_lock(&found->lock); 4089 found->total_bytes += total_bytes; 4090 found->disk_total += total_bytes * factor; 4091 found->bytes_used += bytes_used; 4092 found->disk_used += bytes_used * factor; 4093 found->bytes_readonly += bytes_readonly; 4094 if (total_bytes > 0) 4095 found->full = 0; 4096 space_info_add_new_bytes(info, found, total_bytes - 4097 bytes_used - bytes_readonly); 4098 spin_unlock(&found->lock); 4099 *space_info = found; 4100 } 4101 4102 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4103 { 4104 u64 extra_flags = chunk_to_extended(flags) & 4105 BTRFS_EXTENDED_PROFILE_MASK; 4106 4107 write_seqlock(&fs_info->profiles_lock); 4108 if (flags & BTRFS_BLOCK_GROUP_DATA) 4109 fs_info->avail_data_alloc_bits |= extra_flags; 4110 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4111 fs_info->avail_metadata_alloc_bits |= extra_flags; 4112 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4113 fs_info->avail_system_alloc_bits |= extra_flags; 4114 write_sequnlock(&fs_info->profiles_lock); 4115 } 4116 4117 /* 4118 * returns target flags in extended format or 0 if restripe for this 4119 * chunk_type is not in progress 4120 * 4121 * should be called with either volume_mutex or balance_lock held 4122 */ 4123 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4124 { 4125 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4126 u64 target = 0; 4127 4128 if (!bctl) 4129 return 0; 4130 4131 if (flags & BTRFS_BLOCK_GROUP_DATA && 4132 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4133 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4134 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4135 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4136 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4137 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4138 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4139 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4140 } 4141 4142 return target; 4143 } 4144 4145 /* 4146 * @flags: available profiles in extended format (see ctree.h) 4147 * 4148 * Returns reduced profile in chunk format. If profile changing is in 4149 * progress (either running or paused) picks the target profile (if it's 4150 * already available), otherwise falls back to plain reducing. 4151 */ 4152 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4153 { 4154 u64 num_devices = fs_info->fs_devices->rw_devices; 4155 u64 target; 4156 u64 raid_type; 4157 u64 allowed = 0; 4158 4159 /* 4160 * see if restripe for this chunk_type is in progress, if so 4161 * try to reduce to the target profile 4162 */ 4163 spin_lock(&fs_info->balance_lock); 4164 target = get_restripe_target(fs_info, flags); 4165 if (target) { 4166 /* pick target profile only if it's already available */ 4167 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4168 spin_unlock(&fs_info->balance_lock); 4169 return extended_to_chunk(target); 4170 } 4171 } 4172 spin_unlock(&fs_info->balance_lock); 4173 4174 /* First, mask out the RAID levels which aren't possible */ 4175 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4176 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4177 allowed |= btrfs_raid_group[raid_type]; 4178 } 4179 allowed &= flags; 4180 4181 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4182 allowed = BTRFS_BLOCK_GROUP_RAID6; 4183 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4184 allowed = BTRFS_BLOCK_GROUP_RAID5; 4185 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4186 allowed = BTRFS_BLOCK_GROUP_RAID10; 4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4188 allowed = BTRFS_BLOCK_GROUP_RAID1; 4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4190 allowed = BTRFS_BLOCK_GROUP_RAID0; 4191 4192 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4193 4194 return extended_to_chunk(flags | allowed); 4195 } 4196 4197 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4198 { 4199 unsigned seq; 4200 u64 flags; 4201 4202 do { 4203 flags = orig_flags; 4204 seq = read_seqbegin(&fs_info->profiles_lock); 4205 4206 if (flags & BTRFS_BLOCK_GROUP_DATA) 4207 flags |= fs_info->avail_data_alloc_bits; 4208 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4209 flags |= fs_info->avail_system_alloc_bits; 4210 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4211 flags |= fs_info->avail_metadata_alloc_bits; 4212 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4213 4214 return btrfs_reduce_alloc_profile(fs_info, flags); 4215 } 4216 4217 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4218 { 4219 struct btrfs_fs_info *fs_info = root->fs_info; 4220 u64 flags; 4221 u64 ret; 4222 4223 if (data) 4224 flags = BTRFS_BLOCK_GROUP_DATA; 4225 else if (root == fs_info->chunk_root) 4226 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4227 else 4228 flags = BTRFS_BLOCK_GROUP_METADATA; 4229 4230 ret = get_alloc_profile(fs_info, flags); 4231 return ret; 4232 } 4233 4234 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4235 { 4236 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4237 } 4238 4239 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4240 { 4241 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4242 } 4243 4244 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4245 { 4246 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4247 } 4248 4249 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4250 bool may_use_included) 4251 { 4252 ASSERT(s_info); 4253 return s_info->bytes_used + s_info->bytes_reserved + 4254 s_info->bytes_pinned + s_info->bytes_readonly + 4255 (may_use_included ? s_info->bytes_may_use : 0); 4256 } 4257 4258 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4259 { 4260 struct btrfs_root *root = inode->root; 4261 struct btrfs_fs_info *fs_info = root->fs_info; 4262 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4263 u64 used; 4264 int ret = 0; 4265 int need_commit = 2; 4266 int have_pinned_space; 4267 4268 /* make sure bytes are sectorsize aligned */ 4269 bytes = ALIGN(bytes, fs_info->sectorsize); 4270 4271 if (btrfs_is_free_space_inode(inode)) { 4272 need_commit = 0; 4273 ASSERT(current->journal_info); 4274 } 4275 4276 again: 4277 /* make sure we have enough space to handle the data first */ 4278 spin_lock(&data_sinfo->lock); 4279 used = btrfs_space_info_used(data_sinfo, true); 4280 4281 if (used + bytes > data_sinfo->total_bytes) { 4282 struct btrfs_trans_handle *trans; 4283 4284 /* 4285 * if we don't have enough free bytes in this space then we need 4286 * to alloc a new chunk. 4287 */ 4288 if (!data_sinfo->full) { 4289 u64 alloc_target; 4290 4291 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4292 spin_unlock(&data_sinfo->lock); 4293 4294 alloc_target = btrfs_data_alloc_profile(fs_info); 4295 /* 4296 * It is ugly that we don't call nolock join 4297 * transaction for the free space inode case here. 4298 * But it is safe because we only do the data space 4299 * reservation for the free space cache in the 4300 * transaction context, the common join transaction 4301 * just increase the counter of the current transaction 4302 * handler, doesn't try to acquire the trans_lock of 4303 * the fs. 4304 */ 4305 trans = btrfs_join_transaction(root); 4306 if (IS_ERR(trans)) 4307 return PTR_ERR(trans); 4308 4309 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4310 CHUNK_ALLOC_NO_FORCE); 4311 btrfs_end_transaction(trans); 4312 if (ret < 0) { 4313 if (ret != -ENOSPC) 4314 return ret; 4315 else { 4316 have_pinned_space = 1; 4317 goto commit_trans; 4318 } 4319 } 4320 4321 goto again; 4322 } 4323 4324 /* 4325 * If we don't have enough pinned space to deal with this 4326 * allocation, and no removed chunk in current transaction, 4327 * don't bother committing the transaction. 4328 */ 4329 have_pinned_space = percpu_counter_compare( 4330 &data_sinfo->total_bytes_pinned, 4331 used + bytes - data_sinfo->total_bytes); 4332 spin_unlock(&data_sinfo->lock); 4333 4334 /* commit the current transaction and try again */ 4335 commit_trans: 4336 if (need_commit && 4337 !atomic_read(&fs_info->open_ioctl_trans)) { 4338 need_commit--; 4339 4340 if (need_commit > 0) { 4341 btrfs_start_delalloc_roots(fs_info, 0, -1); 4342 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4343 (u64)-1); 4344 } 4345 4346 trans = btrfs_join_transaction(root); 4347 if (IS_ERR(trans)) 4348 return PTR_ERR(trans); 4349 if (have_pinned_space >= 0 || 4350 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4351 &trans->transaction->flags) || 4352 need_commit > 0) { 4353 ret = btrfs_commit_transaction(trans); 4354 if (ret) 4355 return ret; 4356 /* 4357 * The cleaner kthread might still be doing iput 4358 * operations. Wait for it to finish so that 4359 * more space is released. 4360 */ 4361 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4362 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4363 goto again; 4364 } else { 4365 btrfs_end_transaction(trans); 4366 } 4367 } 4368 4369 trace_btrfs_space_reservation(fs_info, 4370 "space_info:enospc", 4371 data_sinfo->flags, bytes, 1); 4372 return -ENOSPC; 4373 } 4374 data_sinfo->bytes_may_use += bytes; 4375 trace_btrfs_space_reservation(fs_info, "space_info", 4376 data_sinfo->flags, bytes, 1); 4377 spin_unlock(&data_sinfo->lock); 4378 4379 return ret; 4380 } 4381 4382 int btrfs_check_data_free_space(struct inode *inode, 4383 struct extent_changeset **reserved, u64 start, u64 len) 4384 { 4385 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4386 int ret; 4387 4388 /* align the range */ 4389 len = round_up(start + len, fs_info->sectorsize) - 4390 round_down(start, fs_info->sectorsize); 4391 start = round_down(start, fs_info->sectorsize); 4392 4393 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4394 if (ret < 0) 4395 return ret; 4396 4397 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4398 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4399 if (ret < 0) 4400 btrfs_free_reserved_data_space_noquota(inode, start, len); 4401 else 4402 ret = 0; 4403 return ret; 4404 } 4405 4406 /* 4407 * Called if we need to clear a data reservation for this inode 4408 * Normally in a error case. 4409 * 4410 * This one will *NOT* use accurate qgroup reserved space API, just for case 4411 * which we can't sleep and is sure it won't affect qgroup reserved space. 4412 * Like clear_bit_hook(). 4413 */ 4414 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4415 u64 len) 4416 { 4417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4418 struct btrfs_space_info *data_sinfo; 4419 4420 /* Make sure the range is aligned to sectorsize */ 4421 len = round_up(start + len, fs_info->sectorsize) - 4422 round_down(start, fs_info->sectorsize); 4423 start = round_down(start, fs_info->sectorsize); 4424 4425 data_sinfo = fs_info->data_sinfo; 4426 spin_lock(&data_sinfo->lock); 4427 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4428 data_sinfo->bytes_may_use = 0; 4429 else 4430 data_sinfo->bytes_may_use -= len; 4431 trace_btrfs_space_reservation(fs_info, "space_info", 4432 data_sinfo->flags, len, 0); 4433 spin_unlock(&data_sinfo->lock); 4434 } 4435 4436 /* 4437 * Called if we need to clear a data reservation for this inode 4438 * Normally in a error case. 4439 * 4440 * This one will handle the per-inode data rsv map for accurate reserved 4441 * space framework. 4442 */ 4443 void btrfs_free_reserved_data_space(struct inode *inode, 4444 struct extent_changeset *reserved, u64 start, u64 len) 4445 { 4446 struct btrfs_root *root = BTRFS_I(inode)->root; 4447 4448 /* Make sure the range is aligned to sectorsize */ 4449 len = round_up(start + len, root->fs_info->sectorsize) - 4450 round_down(start, root->fs_info->sectorsize); 4451 start = round_down(start, root->fs_info->sectorsize); 4452 4453 btrfs_free_reserved_data_space_noquota(inode, start, len); 4454 btrfs_qgroup_free_data(inode, reserved, start, len); 4455 } 4456 4457 static void force_metadata_allocation(struct btrfs_fs_info *info) 4458 { 4459 struct list_head *head = &info->space_info; 4460 struct btrfs_space_info *found; 4461 4462 rcu_read_lock(); 4463 list_for_each_entry_rcu(found, head, list) { 4464 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4465 found->force_alloc = CHUNK_ALLOC_FORCE; 4466 } 4467 rcu_read_unlock(); 4468 } 4469 4470 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4471 { 4472 return (global->size << 1); 4473 } 4474 4475 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4476 struct btrfs_space_info *sinfo, int force) 4477 { 4478 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4479 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4480 u64 thresh; 4481 4482 if (force == CHUNK_ALLOC_FORCE) 4483 return 1; 4484 4485 /* 4486 * We need to take into account the global rsv because for all intents 4487 * and purposes it's used space. Don't worry about locking the 4488 * global_rsv, it doesn't change except when the transaction commits. 4489 */ 4490 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4491 bytes_used += calc_global_rsv_need_space(global_rsv); 4492 4493 /* 4494 * in limited mode, we want to have some free space up to 4495 * about 1% of the FS size. 4496 */ 4497 if (force == CHUNK_ALLOC_LIMITED) { 4498 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4499 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4500 4501 if (sinfo->total_bytes - bytes_used < thresh) 4502 return 1; 4503 } 4504 4505 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4506 return 0; 4507 return 1; 4508 } 4509 4510 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4511 { 4512 u64 num_dev; 4513 4514 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4515 BTRFS_BLOCK_GROUP_RAID0 | 4516 BTRFS_BLOCK_GROUP_RAID5 | 4517 BTRFS_BLOCK_GROUP_RAID6)) 4518 num_dev = fs_info->fs_devices->rw_devices; 4519 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4520 num_dev = 2; 4521 else 4522 num_dev = 1; /* DUP or single */ 4523 4524 return num_dev; 4525 } 4526 4527 /* 4528 * If @is_allocation is true, reserve space in the system space info necessary 4529 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4530 * removing a chunk. 4531 */ 4532 void check_system_chunk(struct btrfs_trans_handle *trans, 4533 struct btrfs_fs_info *fs_info, u64 type) 4534 { 4535 struct btrfs_space_info *info; 4536 u64 left; 4537 u64 thresh; 4538 int ret = 0; 4539 u64 num_devs; 4540 4541 /* 4542 * Needed because we can end up allocating a system chunk and for an 4543 * atomic and race free space reservation in the chunk block reserve. 4544 */ 4545 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4546 4547 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4548 spin_lock(&info->lock); 4549 left = info->total_bytes - btrfs_space_info_used(info, true); 4550 spin_unlock(&info->lock); 4551 4552 num_devs = get_profile_num_devs(fs_info, type); 4553 4554 /* num_devs device items to update and 1 chunk item to add or remove */ 4555 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4556 btrfs_calc_trans_metadata_size(fs_info, 1); 4557 4558 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4559 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4560 left, thresh, type); 4561 dump_space_info(fs_info, info, 0, 0); 4562 } 4563 4564 if (left < thresh) { 4565 u64 flags = btrfs_system_alloc_profile(fs_info); 4566 4567 /* 4568 * Ignore failure to create system chunk. We might end up not 4569 * needing it, as we might not need to COW all nodes/leafs from 4570 * the paths we visit in the chunk tree (they were already COWed 4571 * or created in the current transaction for example). 4572 */ 4573 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4574 } 4575 4576 if (!ret) { 4577 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4578 &fs_info->chunk_block_rsv, 4579 thresh, BTRFS_RESERVE_NO_FLUSH); 4580 if (!ret) 4581 trans->chunk_bytes_reserved += thresh; 4582 } 4583 } 4584 4585 /* 4586 * If force is CHUNK_ALLOC_FORCE: 4587 * - return 1 if it successfully allocates a chunk, 4588 * - return errors including -ENOSPC otherwise. 4589 * If force is NOT CHUNK_ALLOC_FORCE: 4590 * - return 0 if it doesn't need to allocate a new chunk, 4591 * - return 1 if it successfully allocates a chunk, 4592 * - return errors including -ENOSPC otherwise. 4593 */ 4594 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4595 struct btrfs_fs_info *fs_info, u64 flags, int force) 4596 { 4597 struct btrfs_space_info *space_info; 4598 int wait_for_alloc = 0; 4599 int ret = 0; 4600 4601 /* Don't re-enter if we're already allocating a chunk */ 4602 if (trans->allocating_chunk) 4603 return -ENOSPC; 4604 4605 space_info = __find_space_info(fs_info, flags); 4606 if (!space_info) { 4607 ret = create_space_info(fs_info, flags, &space_info); 4608 if (ret) 4609 return ret; 4610 } 4611 4612 again: 4613 spin_lock(&space_info->lock); 4614 if (force < space_info->force_alloc) 4615 force = space_info->force_alloc; 4616 if (space_info->full) { 4617 if (should_alloc_chunk(fs_info, space_info, force)) 4618 ret = -ENOSPC; 4619 else 4620 ret = 0; 4621 spin_unlock(&space_info->lock); 4622 return ret; 4623 } 4624 4625 if (!should_alloc_chunk(fs_info, space_info, force)) { 4626 spin_unlock(&space_info->lock); 4627 return 0; 4628 } else if (space_info->chunk_alloc) { 4629 wait_for_alloc = 1; 4630 } else { 4631 space_info->chunk_alloc = 1; 4632 } 4633 4634 spin_unlock(&space_info->lock); 4635 4636 mutex_lock(&fs_info->chunk_mutex); 4637 4638 /* 4639 * The chunk_mutex is held throughout the entirety of a chunk 4640 * allocation, so once we've acquired the chunk_mutex we know that the 4641 * other guy is done and we need to recheck and see if we should 4642 * allocate. 4643 */ 4644 if (wait_for_alloc) { 4645 mutex_unlock(&fs_info->chunk_mutex); 4646 wait_for_alloc = 0; 4647 goto again; 4648 } 4649 4650 trans->allocating_chunk = true; 4651 4652 /* 4653 * If we have mixed data/metadata chunks we want to make sure we keep 4654 * allocating mixed chunks instead of individual chunks. 4655 */ 4656 if (btrfs_mixed_space_info(space_info)) 4657 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4658 4659 /* 4660 * if we're doing a data chunk, go ahead and make sure that 4661 * we keep a reasonable number of metadata chunks allocated in the 4662 * FS as well. 4663 */ 4664 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4665 fs_info->data_chunk_allocations++; 4666 if (!(fs_info->data_chunk_allocations % 4667 fs_info->metadata_ratio)) 4668 force_metadata_allocation(fs_info); 4669 } 4670 4671 /* 4672 * Check if we have enough space in SYSTEM chunk because we may need 4673 * to update devices. 4674 */ 4675 check_system_chunk(trans, fs_info, flags); 4676 4677 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4678 trans->allocating_chunk = false; 4679 4680 spin_lock(&space_info->lock); 4681 if (ret < 0 && ret != -ENOSPC) 4682 goto out; 4683 if (ret) 4684 space_info->full = 1; 4685 else 4686 ret = 1; 4687 4688 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4689 out: 4690 space_info->chunk_alloc = 0; 4691 spin_unlock(&space_info->lock); 4692 mutex_unlock(&fs_info->chunk_mutex); 4693 /* 4694 * When we allocate a new chunk we reserve space in the chunk block 4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4696 * add new nodes/leafs to it if we end up needing to do it when 4697 * inserting the chunk item and updating device items as part of the 4698 * second phase of chunk allocation, performed by 4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4700 * large number of new block groups to create in our transaction 4701 * handle's new_bgs list to avoid exhausting the chunk block reserve 4702 * in extreme cases - like having a single transaction create many new 4703 * block groups when starting to write out the free space caches of all 4704 * the block groups that were made dirty during the lifetime of the 4705 * transaction. 4706 */ 4707 if (trans->can_flush_pending_bgs && 4708 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4709 btrfs_create_pending_block_groups(trans, fs_info); 4710 btrfs_trans_release_chunk_metadata(trans); 4711 } 4712 return ret; 4713 } 4714 4715 static int can_overcommit(struct btrfs_fs_info *fs_info, 4716 struct btrfs_space_info *space_info, u64 bytes, 4717 enum btrfs_reserve_flush_enum flush, 4718 bool system_chunk) 4719 { 4720 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4721 u64 profile; 4722 u64 space_size; 4723 u64 avail; 4724 u64 used; 4725 4726 /* Don't overcommit when in mixed mode. */ 4727 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4728 return 0; 4729 4730 if (system_chunk) 4731 profile = btrfs_system_alloc_profile(fs_info); 4732 else 4733 profile = btrfs_metadata_alloc_profile(fs_info); 4734 4735 used = btrfs_space_info_used(space_info, false); 4736 4737 /* 4738 * We only want to allow over committing if we have lots of actual space 4739 * free, but if we don't have enough space to handle the global reserve 4740 * space then we could end up having a real enospc problem when trying 4741 * to allocate a chunk or some other such important allocation. 4742 */ 4743 spin_lock(&global_rsv->lock); 4744 space_size = calc_global_rsv_need_space(global_rsv); 4745 spin_unlock(&global_rsv->lock); 4746 if (used + space_size >= space_info->total_bytes) 4747 return 0; 4748 4749 used += space_info->bytes_may_use; 4750 4751 avail = atomic64_read(&fs_info->free_chunk_space); 4752 4753 /* 4754 * If we have dup, raid1 or raid10 then only half of the free 4755 * space is actually useable. For raid56, the space info used 4756 * doesn't include the parity drive, so we don't have to 4757 * change the math 4758 */ 4759 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4760 BTRFS_BLOCK_GROUP_RAID1 | 4761 BTRFS_BLOCK_GROUP_RAID10)) 4762 avail >>= 1; 4763 4764 /* 4765 * If we aren't flushing all things, let us overcommit up to 4766 * 1/2th of the space. If we can flush, don't let us overcommit 4767 * too much, let it overcommit up to 1/8 of the space. 4768 */ 4769 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4770 avail >>= 3; 4771 else 4772 avail >>= 1; 4773 4774 if (used + bytes < space_info->total_bytes + avail) 4775 return 1; 4776 return 0; 4777 } 4778 4779 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4780 unsigned long nr_pages, int nr_items) 4781 { 4782 struct super_block *sb = fs_info->sb; 4783 4784 if (down_read_trylock(&sb->s_umount)) { 4785 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4786 up_read(&sb->s_umount); 4787 } else { 4788 /* 4789 * We needn't worry the filesystem going from r/w to r/o though 4790 * we don't acquire ->s_umount mutex, because the filesystem 4791 * should guarantee the delalloc inodes list be empty after 4792 * the filesystem is readonly(all dirty pages are written to 4793 * the disk). 4794 */ 4795 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4796 if (!current->journal_info) 4797 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4798 } 4799 } 4800 4801 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4802 u64 to_reclaim) 4803 { 4804 u64 bytes; 4805 u64 nr; 4806 4807 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4808 nr = div64_u64(to_reclaim, bytes); 4809 if (!nr) 4810 nr = 1; 4811 return nr; 4812 } 4813 4814 #define EXTENT_SIZE_PER_ITEM SZ_256K 4815 4816 /* 4817 * shrink metadata reservation for delalloc 4818 */ 4819 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4820 u64 orig, bool wait_ordered) 4821 { 4822 struct btrfs_space_info *space_info; 4823 struct btrfs_trans_handle *trans; 4824 u64 delalloc_bytes; 4825 u64 max_reclaim; 4826 u64 items; 4827 long time_left; 4828 unsigned long nr_pages; 4829 int loops; 4830 enum btrfs_reserve_flush_enum flush; 4831 4832 /* Calc the number of the pages we need flush for space reservation */ 4833 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4834 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4835 4836 trans = (struct btrfs_trans_handle *)current->journal_info; 4837 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4838 4839 delalloc_bytes = percpu_counter_sum_positive( 4840 &fs_info->delalloc_bytes); 4841 if (delalloc_bytes == 0) { 4842 if (trans) 4843 return; 4844 if (wait_ordered) 4845 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4846 return; 4847 } 4848 4849 loops = 0; 4850 while (delalloc_bytes && loops < 3) { 4851 max_reclaim = min(delalloc_bytes, to_reclaim); 4852 nr_pages = max_reclaim >> PAGE_SHIFT; 4853 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4854 /* 4855 * We need to wait for the async pages to actually start before 4856 * we do anything. 4857 */ 4858 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4859 if (!max_reclaim) 4860 goto skip_async; 4861 4862 if (max_reclaim <= nr_pages) 4863 max_reclaim = 0; 4864 else 4865 max_reclaim -= nr_pages; 4866 4867 wait_event(fs_info->async_submit_wait, 4868 atomic_read(&fs_info->async_delalloc_pages) <= 4869 (int)max_reclaim); 4870 skip_async: 4871 if (!trans) 4872 flush = BTRFS_RESERVE_FLUSH_ALL; 4873 else 4874 flush = BTRFS_RESERVE_NO_FLUSH; 4875 spin_lock(&space_info->lock); 4876 if (list_empty(&space_info->tickets) && 4877 list_empty(&space_info->priority_tickets)) { 4878 spin_unlock(&space_info->lock); 4879 break; 4880 } 4881 spin_unlock(&space_info->lock); 4882 4883 loops++; 4884 if (wait_ordered && !trans) { 4885 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4886 } else { 4887 time_left = schedule_timeout_killable(1); 4888 if (time_left) 4889 break; 4890 } 4891 delalloc_bytes = percpu_counter_sum_positive( 4892 &fs_info->delalloc_bytes); 4893 } 4894 } 4895 4896 struct reserve_ticket { 4897 u64 bytes; 4898 int error; 4899 struct list_head list; 4900 wait_queue_head_t wait; 4901 }; 4902 4903 /** 4904 * maybe_commit_transaction - possibly commit the transaction if its ok to 4905 * @root - the root we're allocating for 4906 * @bytes - the number of bytes we want to reserve 4907 * @force - force the commit 4908 * 4909 * This will check to make sure that committing the transaction will actually 4910 * get us somewhere and then commit the transaction if it does. Otherwise it 4911 * will return -ENOSPC. 4912 */ 4913 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4914 struct btrfs_space_info *space_info) 4915 { 4916 struct reserve_ticket *ticket = NULL; 4917 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4918 struct btrfs_trans_handle *trans; 4919 u64 bytes; 4920 4921 trans = (struct btrfs_trans_handle *)current->journal_info; 4922 if (trans) 4923 return -EAGAIN; 4924 4925 spin_lock(&space_info->lock); 4926 if (!list_empty(&space_info->priority_tickets)) 4927 ticket = list_first_entry(&space_info->priority_tickets, 4928 struct reserve_ticket, list); 4929 else if (!list_empty(&space_info->tickets)) 4930 ticket = list_first_entry(&space_info->tickets, 4931 struct reserve_ticket, list); 4932 bytes = (ticket) ? ticket->bytes : 0; 4933 spin_unlock(&space_info->lock); 4934 4935 if (!bytes) 4936 return 0; 4937 4938 /* See if there is enough pinned space to make this reservation */ 4939 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4940 bytes) >= 0) 4941 goto commit; 4942 4943 /* 4944 * See if there is some space in the delayed insertion reservation for 4945 * this reservation. 4946 */ 4947 if (space_info != delayed_rsv->space_info) 4948 return -ENOSPC; 4949 4950 spin_lock(&delayed_rsv->lock); 4951 if (delayed_rsv->size > bytes) 4952 bytes = 0; 4953 else 4954 bytes -= delayed_rsv->size; 4955 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4956 bytes) < 0) { 4957 spin_unlock(&delayed_rsv->lock); 4958 return -ENOSPC; 4959 } 4960 spin_unlock(&delayed_rsv->lock); 4961 4962 commit: 4963 trans = btrfs_join_transaction(fs_info->extent_root); 4964 if (IS_ERR(trans)) 4965 return -ENOSPC; 4966 4967 return btrfs_commit_transaction(trans); 4968 } 4969 4970 /* 4971 * Try to flush some data based on policy set by @state. This is only advisory 4972 * and may fail for various reasons. The caller is supposed to examine the 4973 * state of @space_info to detect the outcome. 4974 */ 4975 static void flush_space(struct btrfs_fs_info *fs_info, 4976 struct btrfs_space_info *space_info, u64 num_bytes, 4977 int state) 4978 { 4979 struct btrfs_root *root = fs_info->extent_root; 4980 struct btrfs_trans_handle *trans; 4981 int nr; 4982 int ret = 0; 4983 4984 switch (state) { 4985 case FLUSH_DELAYED_ITEMS_NR: 4986 case FLUSH_DELAYED_ITEMS: 4987 if (state == FLUSH_DELAYED_ITEMS_NR) 4988 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4989 else 4990 nr = -1; 4991 4992 trans = btrfs_join_transaction(root); 4993 if (IS_ERR(trans)) { 4994 ret = PTR_ERR(trans); 4995 break; 4996 } 4997 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr); 4998 btrfs_end_transaction(trans); 4999 break; 5000 case FLUSH_DELALLOC: 5001 case FLUSH_DELALLOC_WAIT: 5002 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 5003 state == FLUSH_DELALLOC_WAIT); 5004 break; 5005 case ALLOC_CHUNK: 5006 trans = btrfs_join_transaction(root); 5007 if (IS_ERR(trans)) { 5008 ret = PTR_ERR(trans); 5009 break; 5010 } 5011 ret = do_chunk_alloc(trans, fs_info, 5012 btrfs_metadata_alloc_profile(fs_info), 5013 CHUNK_ALLOC_NO_FORCE); 5014 btrfs_end_transaction(trans); 5015 if (ret > 0 || ret == -ENOSPC) 5016 ret = 0; 5017 break; 5018 case COMMIT_TRANS: 5019 ret = may_commit_transaction(fs_info, space_info); 5020 break; 5021 default: 5022 ret = -ENOSPC; 5023 break; 5024 } 5025 5026 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5027 ret); 5028 return; 5029 } 5030 5031 static inline u64 5032 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5033 struct btrfs_space_info *space_info, 5034 bool system_chunk) 5035 { 5036 struct reserve_ticket *ticket; 5037 u64 used; 5038 u64 expected; 5039 u64 to_reclaim = 0; 5040 5041 list_for_each_entry(ticket, &space_info->tickets, list) 5042 to_reclaim += ticket->bytes; 5043 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5044 to_reclaim += ticket->bytes; 5045 if (to_reclaim) 5046 return to_reclaim; 5047 5048 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5049 if (can_overcommit(fs_info, space_info, to_reclaim, 5050 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5051 return 0; 5052 5053 used = btrfs_space_info_used(space_info, true); 5054 5055 if (can_overcommit(fs_info, space_info, SZ_1M, 5056 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5057 expected = div_factor_fine(space_info->total_bytes, 95); 5058 else 5059 expected = div_factor_fine(space_info->total_bytes, 90); 5060 5061 if (used > expected) 5062 to_reclaim = used - expected; 5063 else 5064 to_reclaim = 0; 5065 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5066 space_info->bytes_reserved); 5067 return to_reclaim; 5068 } 5069 5070 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5071 struct btrfs_space_info *space_info, 5072 u64 used, bool system_chunk) 5073 { 5074 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5075 5076 /* If we're just plain full then async reclaim just slows us down. */ 5077 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5078 return 0; 5079 5080 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5081 system_chunk)) 5082 return 0; 5083 5084 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5085 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5086 } 5087 5088 static void wake_all_tickets(struct list_head *head) 5089 { 5090 struct reserve_ticket *ticket; 5091 5092 while (!list_empty(head)) { 5093 ticket = list_first_entry(head, struct reserve_ticket, list); 5094 list_del_init(&ticket->list); 5095 ticket->error = -ENOSPC; 5096 wake_up(&ticket->wait); 5097 } 5098 } 5099 5100 /* 5101 * This is for normal flushers, we can wait all goddamned day if we want to. We 5102 * will loop and continuously try to flush as long as we are making progress. 5103 * We count progress as clearing off tickets each time we have to loop. 5104 */ 5105 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5106 { 5107 struct btrfs_fs_info *fs_info; 5108 struct btrfs_space_info *space_info; 5109 u64 to_reclaim; 5110 int flush_state; 5111 int commit_cycles = 0; 5112 u64 last_tickets_id; 5113 5114 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5115 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5116 5117 spin_lock(&space_info->lock); 5118 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5119 false); 5120 if (!to_reclaim) { 5121 space_info->flush = 0; 5122 spin_unlock(&space_info->lock); 5123 return; 5124 } 5125 last_tickets_id = space_info->tickets_id; 5126 spin_unlock(&space_info->lock); 5127 5128 flush_state = FLUSH_DELAYED_ITEMS_NR; 5129 do { 5130 flush_space(fs_info, space_info, to_reclaim, flush_state); 5131 spin_lock(&space_info->lock); 5132 if (list_empty(&space_info->tickets)) { 5133 space_info->flush = 0; 5134 spin_unlock(&space_info->lock); 5135 return; 5136 } 5137 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5138 space_info, 5139 false); 5140 if (last_tickets_id == space_info->tickets_id) { 5141 flush_state++; 5142 } else { 5143 last_tickets_id = space_info->tickets_id; 5144 flush_state = FLUSH_DELAYED_ITEMS_NR; 5145 if (commit_cycles) 5146 commit_cycles--; 5147 } 5148 5149 if (flush_state > COMMIT_TRANS) { 5150 commit_cycles++; 5151 if (commit_cycles > 2) { 5152 wake_all_tickets(&space_info->tickets); 5153 space_info->flush = 0; 5154 } else { 5155 flush_state = FLUSH_DELAYED_ITEMS_NR; 5156 } 5157 } 5158 spin_unlock(&space_info->lock); 5159 } while (flush_state <= COMMIT_TRANS); 5160 } 5161 5162 void btrfs_init_async_reclaim_work(struct work_struct *work) 5163 { 5164 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5165 } 5166 5167 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5168 struct btrfs_space_info *space_info, 5169 struct reserve_ticket *ticket) 5170 { 5171 u64 to_reclaim; 5172 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5173 5174 spin_lock(&space_info->lock); 5175 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5176 false); 5177 if (!to_reclaim) { 5178 spin_unlock(&space_info->lock); 5179 return; 5180 } 5181 spin_unlock(&space_info->lock); 5182 5183 do { 5184 flush_space(fs_info, space_info, to_reclaim, flush_state); 5185 flush_state++; 5186 spin_lock(&space_info->lock); 5187 if (ticket->bytes == 0) { 5188 spin_unlock(&space_info->lock); 5189 return; 5190 } 5191 spin_unlock(&space_info->lock); 5192 5193 /* 5194 * Priority flushers can't wait on delalloc without 5195 * deadlocking. 5196 */ 5197 if (flush_state == FLUSH_DELALLOC || 5198 flush_state == FLUSH_DELALLOC_WAIT) 5199 flush_state = ALLOC_CHUNK; 5200 } while (flush_state < COMMIT_TRANS); 5201 } 5202 5203 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5204 struct btrfs_space_info *space_info, 5205 struct reserve_ticket *ticket, u64 orig_bytes) 5206 5207 { 5208 DEFINE_WAIT(wait); 5209 int ret = 0; 5210 5211 spin_lock(&space_info->lock); 5212 while (ticket->bytes > 0 && ticket->error == 0) { 5213 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5214 if (ret) { 5215 ret = -EINTR; 5216 break; 5217 } 5218 spin_unlock(&space_info->lock); 5219 5220 schedule(); 5221 5222 finish_wait(&ticket->wait, &wait); 5223 spin_lock(&space_info->lock); 5224 } 5225 if (!ret) 5226 ret = ticket->error; 5227 if (!list_empty(&ticket->list)) 5228 list_del_init(&ticket->list); 5229 if (ticket->bytes && ticket->bytes < orig_bytes) { 5230 u64 num_bytes = orig_bytes - ticket->bytes; 5231 space_info->bytes_may_use -= num_bytes; 5232 trace_btrfs_space_reservation(fs_info, "space_info", 5233 space_info->flags, num_bytes, 0); 5234 } 5235 spin_unlock(&space_info->lock); 5236 5237 return ret; 5238 } 5239 5240 /** 5241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5242 * @root - the root we're allocating for 5243 * @space_info - the space info we want to allocate from 5244 * @orig_bytes - the number of bytes we want 5245 * @flush - whether or not we can flush to make our reservation 5246 * 5247 * This will reserve orig_bytes number of bytes from the space info associated 5248 * with the block_rsv. If there is not enough space it will make an attempt to 5249 * flush out space to make room. It will do this by flushing delalloc if 5250 * possible or committing the transaction. If flush is 0 then no attempts to 5251 * regain reservations will be made and this will fail if there is not enough 5252 * space already. 5253 */ 5254 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5255 struct btrfs_space_info *space_info, 5256 u64 orig_bytes, 5257 enum btrfs_reserve_flush_enum flush, 5258 bool system_chunk) 5259 { 5260 struct reserve_ticket ticket; 5261 u64 used; 5262 int ret = 0; 5263 5264 ASSERT(orig_bytes); 5265 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5266 5267 spin_lock(&space_info->lock); 5268 ret = -ENOSPC; 5269 used = btrfs_space_info_used(space_info, true); 5270 5271 /* 5272 * If we have enough space then hooray, make our reservation and carry 5273 * on. If not see if we can overcommit, and if we can, hooray carry on. 5274 * If not things get more complicated. 5275 */ 5276 if (used + orig_bytes <= space_info->total_bytes) { 5277 space_info->bytes_may_use += orig_bytes; 5278 trace_btrfs_space_reservation(fs_info, "space_info", 5279 space_info->flags, orig_bytes, 1); 5280 ret = 0; 5281 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5282 system_chunk)) { 5283 space_info->bytes_may_use += orig_bytes; 5284 trace_btrfs_space_reservation(fs_info, "space_info", 5285 space_info->flags, orig_bytes, 1); 5286 ret = 0; 5287 } 5288 5289 /* 5290 * If we couldn't make a reservation then setup our reservation ticket 5291 * and kick the async worker if it's not already running. 5292 * 5293 * If we are a priority flusher then we just need to add our ticket to 5294 * the list and we will do our own flushing further down. 5295 */ 5296 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5297 ticket.bytes = orig_bytes; 5298 ticket.error = 0; 5299 init_waitqueue_head(&ticket.wait); 5300 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5301 list_add_tail(&ticket.list, &space_info->tickets); 5302 if (!space_info->flush) { 5303 space_info->flush = 1; 5304 trace_btrfs_trigger_flush(fs_info, 5305 space_info->flags, 5306 orig_bytes, flush, 5307 "enospc"); 5308 queue_work(system_unbound_wq, 5309 &fs_info->async_reclaim_work); 5310 } 5311 } else { 5312 list_add_tail(&ticket.list, 5313 &space_info->priority_tickets); 5314 } 5315 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5316 used += orig_bytes; 5317 /* 5318 * We will do the space reservation dance during log replay, 5319 * which means we won't have fs_info->fs_root set, so don't do 5320 * the async reclaim as we will panic. 5321 */ 5322 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5323 need_do_async_reclaim(fs_info, space_info, 5324 used, system_chunk) && 5325 !work_busy(&fs_info->async_reclaim_work)) { 5326 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5327 orig_bytes, flush, "preempt"); 5328 queue_work(system_unbound_wq, 5329 &fs_info->async_reclaim_work); 5330 } 5331 } 5332 spin_unlock(&space_info->lock); 5333 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5334 return ret; 5335 5336 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5337 return wait_reserve_ticket(fs_info, space_info, &ticket, 5338 orig_bytes); 5339 5340 ret = 0; 5341 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5342 spin_lock(&space_info->lock); 5343 if (ticket.bytes) { 5344 if (ticket.bytes < orig_bytes) { 5345 u64 num_bytes = orig_bytes - ticket.bytes; 5346 space_info->bytes_may_use -= num_bytes; 5347 trace_btrfs_space_reservation(fs_info, "space_info", 5348 space_info->flags, 5349 num_bytes, 0); 5350 5351 } 5352 list_del_init(&ticket.list); 5353 ret = -ENOSPC; 5354 } 5355 spin_unlock(&space_info->lock); 5356 ASSERT(list_empty(&ticket.list)); 5357 return ret; 5358 } 5359 5360 /** 5361 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5362 * @root - the root we're allocating for 5363 * @block_rsv - the block_rsv we're allocating for 5364 * @orig_bytes - the number of bytes we want 5365 * @flush - whether or not we can flush to make our reservation 5366 * 5367 * This will reserve orgi_bytes number of bytes from the space info associated 5368 * with the block_rsv. If there is not enough space it will make an attempt to 5369 * flush out space to make room. It will do this by flushing delalloc if 5370 * possible or committing the transaction. If flush is 0 then no attempts to 5371 * regain reservations will be made and this will fail if there is not enough 5372 * space already. 5373 */ 5374 static int reserve_metadata_bytes(struct btrfs_root *root, 5375 struct btrfs_block_rsv *block_rsv, 5376 u64 orig_bytes, 5377 enum btrfs_reserve_flush_enum flush) 5378 { 5379 struct btrfs_fs_info *fs_info = root->fs_info; 5380 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5381 int ret; 5382 bool system_chunk = (root == fs_info->chunk_root); 5383 5384 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5385 orig_bytes, flush, system_chunk); 5386 if (ret == -ENOSPC && 5387 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5388 if (block_rsv != global_rsv && 5389 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5390 ret = 0; 5391 } 5392 if (ret == -ENOSPC) 5393 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5394 block_rsv->space_info->flags, 5395 orig_bytes, 1); 5396 return ret; 5397 } 5398 5399 static struct btrfs_block_rsv *get_block_rsv( 5400 const struct btrfs_trans_handle *trans, 5401 const struct btrfs_root *root) 5402 { 5403 struct btrfs_fs_info *fs_info = root->fs_info; 5404 struct btrfs_block_rsv *block_rsv = NULL; 5405 5406 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5407 (root == fs_info->csum_root && trans->adding_csums) || 5408 (root == fs_info->uuid_root)) 5409 block_rsv = trans->block_rsv; 5410 5411 if (!block_rsv) 5412 block_rsv = root->block_rsv; 5413 5414 if (!block_rsv) 5415 block_rsv = &fs_info->empty_block_rsv; 5416 5417 return block_rsv; 5418 } 5419 5420 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5421 u64 num_bytes) 5422 { 5423 int ret = -ENOSPC; 5424 spin_lock(&block_rsv->lock); 5425 if (block_rsv->reserved >= num_bytes) { 5426 block_rsv->reserved -= num_bytes; 5427 if (block_rsv->reserved < block_rsv->size) 5428 block_rsv->full = 0; 5429 ret = 0; 5430 } 5431 spin_unlock(&block_rsv->lock); 5432 return ret; 5433 } 5434 5435 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5436 u64 num_bytes, int update_size) 5437 { 5438 spin_lock(&block_rsv->lock); 5439 block_rsv->reserved += num_bytes; 5440 if (update_size) 5441 block_rsv->size += num_bytes; 5442 else if (block_rsv->reserved >= block_rsv->size) 5443 block_rsv->full = 1; 5444 spin_unlock(&block_rsv->lock); 5445 } 5446 5447 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5448 struct btrfs_block_rsv *dest, u64 num_bytes, 5449 int min_factor) 5450 { 5451 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5452 u64 min_bytes; 5453 5454 if (global_rsv->space_info != dest->space_info) 5455 return -ENOSPC; 5456 5457 spin_lock(&global_rsv->lock); 5458 min_bytes = div_factor(global_rsv->size, min_factor); 5459 if (global_rsv->reserved < min_bytes + num_bytes) { 5460 spin_unlock(&global_rsv->lock); 5461 return -ENOSPC; 5462 } 5463 global_rsv->reserved -= num_bytes; 5464 if (global_rsv->reserved < global_rsv->size) 5465 global_rsv->full = 0; 5466 spin_unlock(&global_rsv->lock); 5467 5468 block_rsv_add_bytes(dest, num_bytes, 1); 5469 return 0; 5470 } 5471 5472 /* 5473 * This is for space we already have accounted in space_info->bytes_may_use, so 5474 * basically when we're returning space from block_rsv's. 5475 */ 5476 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5477 struct btrfs_space_info *space_info, 5478 u64 num_bytes) 5479 { 5480 struct reserve_ticket *ticket; 5481 struct list_head *head; 5482 u64 used; 5483 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5484 bool check_overcommit = false; 5485 5486 spin_lock(&space_info->lock); 5487 head = &space_info->priority_tickets; 5488 5489 /* 5490 * If we are over our limit then we need to check and see if we can 5491 * overcommit, and if we can't then we just need to free up our space 5492 * and not satisfy any requests. 5493 */ 5494 used = btrfs_space_info_used(space_info, true); 5495 if (used - num_bytes >= space_info->total_bytes) 5496 check_overcommit = true; 5497 again: 5498 while (!list_empty(head) && num_bytes) { 5499 ticket = list_first_entry(head, struct reserve_ticket, 5500 list); 5501 /* 5502 * We use 0 bytes because this space is already reserved, so 5503 * adding the ticket space would be a double count. 5504 */ 5505 if (check_overcommit && 5506 !can_overcommit(fs_info, space_info, 0, flush, false)) 5507 break; 5508 if (num_bytes >= ticket->bytes) { 5509 list_del_init(&ticket->list); 5510 num_bytes -= ticket->bytes; 5511 ticket->bytes = 0; 5512 space_info->tickets_id++; 5513 wake_up(&ticket->wait); 5514 } else { 5515 ticket->bytes -= num_bytes; 5516 num_bytes = 0; 5517 } 5518 } 5519 5520 if (num_bytes && head == &space_info->priority_tickets) { 5521 head = &space_info->tickets; 5522 flush = BTRFS_RESERVE_FLUSH_ALL; 5523 goto again; 5524 } 5525 space_info->bytes_may_use -= num_bytes; 5526 trace_btrfs_space_reservation(fs_info, "space_info", 5527 space_info->flags, num_bytes, 0); 5528 spin_unlock(&space_info->lock); 5529 } 5530 5531 /* 5532 * This is for newly allocated space that isn't accounted in 5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5534 * we use this helper. 5535 */ 5536 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5537 struct btrfs_space_info *space_info, 5538 u64 num_bytes) 5539 { 5540 struct reserve_ticket *ticket; 5541 struct list_head *head = &space_info->priority_tickets; 5542 5543 again: 5544 while (!list_empty(head) && num_bytes) { 5545 ticket = list_first_entry(head, struct reserve_ticket, 5546 list); 5547 if (num_bytes >= ticket->bytes) { 5548 trace_btrfs_space_reservation(fs_info, "space_info", 5549 space_info->flags, 5550 ticket->bytes, 1); 5551 list_del_init(&ticket->list); 5552 num_bytes -= ticket->bytes; 5553 space_info->bytes_may_use += ticket->bytes; 5554 ticket->bytes = 0; 5555 space_info->tickets_id++; 5556 wake_up(&ticket->wait); 5557 } else { 5558 trace_btrfs_space_reservation(fs_info, "space_info", 5559 space_info->flags, 5560 num_bytes, 1); 5561 space_info->bytes_may_use += num_bytes; 5562 ticket->bytes -= num_bytes; 5563 num_bytes = 0; 5564 } 5565 } 5566 5567 if (num_bytes && head == &space_info->priority_tickets) { 5568 head = &space_info->tickets; 5569 goto again; 5570 } 5571 } 5572 5573 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5574 struct btrfs_block_rsv *block_rsv, 5575 struct btrfs_block_rsv *dest, u64 num_bytes) 5576 { 5577 struct btrfs_space_info *space_info = block_rsv->space_info; 5578 u64 ret; 5579 5580 spin_lock(&block_rsv->lock); 5581 if (num_bytes == (u64)-1) 5582 num_bytes = block_rsv->size; 5583 block_rsv->size -= num_bytes; 5584 if (block_rsv->reserved >= block_rsv->size) { 5585 num_bytes = block_rsv->reserved - block_rsv->size; 5586 block_rsv->reserved = block_rsv->size; 5587 block_rsv->full = 1; 5588 } else { 5589 num_bytes = 0; 5590 } 5591 spin_unlock(&block_rsv->lock); 5592 5593 ret = num_bytes; 5594 if (num_bytes > 0) { 5595 if (dest) { 5596 spin_lock(&dest->lock); 5597 if (!dest->full) { 5598 u64 bytes_to_add; 5599 5600 bytes_to_add = dest->size - dest->reserved; 5601 bytes_to_add = min(num_bytes, bytes_to_add); 5602 dest->reserved += bytes_to_add; 5603 if (dest->reserved >= dest->size) 5604 dest->full = 1; 5605 num_bytes -= bytes_to_add; 5606 } 5607 spin_unlock(&dest->lock); 5608 } 5609 if (num_bytes) 5610 space_info_add_old_bytes(fs_info, space_info, 5611 num_bytes); 5612 } 5613 return ret; 5614 } 5615 5616 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5617 struct btrfs_block_rsv *dst, u64 num_bytes, 5618 int update_size) 5619 { 5620 int ret; 5621 5622 ret = block_rsv_use_bytes(src, num_bytes); 5623 if (ret) 5624 return ret; 5625 5626 block_rsv_add_bytes(dst, num_bytes, update_size); 5627 return 0; 5628 } 5629 5630 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5631 { 5632 memset(rsv, 0, sizeof(*rsv)); 5633 spin_lock_init(&rsv->lock); 5634 rsv->type = type; 5635 } 5636 5637 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5638 struct btrfs_block_rsv *rsv, 5639 unsigned short type) 5640 { 5641 btrfs_init_block_rsv(rsv, type); 5642 rsv->space_info = __find_space_info(fs_info, 5643 BTRFS_BLOCK_GROUP_METADATA); 5644 } 5645 5646 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5647 unsigned short type) 5648 { 5649 struct btrfs_block_rsv *block_rsv; 5650 5651 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5652 if (!block_rsv) 5653 return NULL; 5654 5655 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5656 return block_rsv; 5657 } 5658 5659 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5660 struct btrfs_block_rsv *rsv) 5661 { 5662 if (!rsv) 5663 return; 5664 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5665 kfree(rsv); 5666 } 5667 5668 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5669 { 5670 kfree(rsv); 5671 } 5672 5673 int btrfs_block_rsv_add(struct btrfs_root *root, 5674 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5675 enum btrfs_reserve_flush_enum flush) 5676 { 5677 int ret; 5678 5679 if (num_bytes == 0) 5680 return 0; 5681 5682 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5683 if (!ret) { 5684 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5685 return 0; 5686 } 5687 5688 return ret; 5689 } 5690 5691 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5692 { 5693 u64 num_bytes = 0; 5694 int ret = -ENOSPC; 5695 5696 if (!block_rsv) 5697 return 0; 5698 5699 spin_lock(&block_rsv->lock); 5700 num_bytes = div_factor(block_rsv->size, min_factor); 5701 if (block_rsv->reserved >= num_bytes) 5702 ret = 0; 5703 spin_unlock(&block_rsv->lock); 5704 5705 return ret; 5706 } 5707 5708 int btrfs_block_rsv_refill(struct btrfs_root *root, 5709 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5710 enum btrfs_reserve_flush_enum flush) 5711 { 5712 u64 num_bytes = 0; 5713 int ret = -ENOSPC; 5714 5715 if (!block_rsv) 5716 return 0; 5717 5718 spin_lock(&block_rsv->lock); 5719 num_bytes = min_reserved; 5720 if (block_rsv->reserved >= num_bytes) 5721 ret = 0; 5722 else 5723 num_bytes -= block_rsv->reserved; 5724 spin_unlock(&block_rsv->lock); 5725 5726 if (!ret) 5727 return 0; 5728 5729 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5730 if (!ret) { 5731 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5732 return 0; 5733 } 5734 5735 return ret; 5736 } 5737 5738 /** 5739 * btrfs_inode_rsv_refill - refill the inode block rsv. 5740 * @inode - the inode we are refilling. 5741 * @flush - the flusing restriction. 5742 * 5743 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5744 * block_rsv->size as the minimum size. We'll either refill the missing amount 5745 * or return if we already have enough space. This will also handle the resreve 5746 * tracepoint for the reserved amount. 5747 */ 5748 int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5749 enum btrfs_reserve_flush_enum flush) 5750 { 5751 struct btrfs_root *root = inode->root; 5752 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5753 u64 num_bytes = 0; 5754 int ret = -ENOSPC; 5755 5756 spin_lock(&block_rsv->lock); 5757 if (block_rsv->reserved < block_rsv->size) 5758 num_bytes = block_rsv->size - block_rsv->reserved; 5759 spin_unlock(&block_rsv->lock); 5760 5761 if (num_bytes == 0) 5762 return 0; 5763 5764 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5765 if (!ret) { 5766 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5767 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5768 btrfs_ino(inode), num_bytes, 1); 5769 } 5770 return ret; 5771 } 5772 5773 /** 5774 * btrfs_inode_rsv_release - release any excessive reservation. 5775 * @inode - the inode we need to release from. 5776 * 5777 * This is the same as btrfs_block_rsv_release, except that it handles the 5778 * tracepoint for the reservation. 5779 */ 5780 void btrfs_inode_rsv_release(struct btrfs_inode *inode) 5781 { 5782 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5783 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5784 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5785 u64 released = 0; 5786 5787 /* 5788 * Since we statically set the block_rsv->size we just want to say we 5789 * are releasing 0 bytes, and then we'll just get the reservation over 5790 * the size free'd. 5791 */ 5792 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0); 5793 if (released > 0) 5794 trace_btrfs_space_reservation(fs_info, "delalloc", 5795 btrfs_ino(inode), released, 0); 5796 } 5797 5798 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5799 struct btrfs_block_rsv *block_rsv, 5800 u64 num_bytes) 5801 { 5802 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5803 5804 if (global_rsv == block_rsv || 5805 block_rsv->space_info != global_rsv->space_info) 5806 global_rsv = NULL; 5807 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5808 } 5809 5810 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5811 { 5812 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5813 struct btrfs_space_info *sinfo = block_rsv->space_info; 5814 u64 num_bytes; 5815 5816 /* 5817 * The global block rsv is based on the size of the extent tree, the 5818 * checksum tree and the root tree. If the fs is empty we want to set 5819 * it to a minimal amount for safety. 5820 */ 5821 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5822 btrfs_root_used(&fs_info->csum_root->root_item) + 5823 btrfs_root_used(&fs_info->tree_root->root_item); 5824 num_bytes = max_t(u64, num_bytes, SZ_16M); 5825 5826 spin_lock(&sinfo->lock); 5827 spin_lock(&block_rsv->lock); 5828 5829 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5830 5831 if (block_rsv->reserved < block_rsv->size) { 5832 num_bytes = btrfs_space_info_used(sinfo, true); 5833 if (sinfo->total_bytes > num_bytes) { 5834 num_bytes = sinfo->total_bytes - num_bytes; 5835 num_bytes = min(num_bytes, 5836 block_rsv->size - block_rsv->reserved); 5837 block_rsv->reserved += num_bytes; 5838 sinfo->bytes_may_use += num_bytes; 5839 trace_btrfs_space_reservation(fs_info, "space_info", 5840 sinfo->flags, num_bytes, 5841 1); 5842 } 5843 } else if (block_rsv->reserved > block_rsv->size) { 5844 num_bytes = block_rsv->reserved - block_rsv->size; 5845 sinfo->bytes_may_use -= num_bytes; 5846 trace_btrfs_space_reservation(fs_info, "space_info", 5847 sinfo->flags, num_bytes, 0); 5848 block_rsv->reserved = block_rsv->size; 5849 } 5850 5851 if (block_rsv->reserved == block_rsv->size) 5852 block_rsv->full = 1; 5853 else 5854 block_rsv->full = 0; 5855 5856 spin_unlock(&block_rsv->lock); 5857 spin_unlock(&sinfo->lock); 5858 } 5859 5860 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5861 { 5862 struct btrfs_space_info *space_info; 5863 5864 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5865 fs_info->chunk_block_rsv.space_info = space_info; 5866 5867 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5868 fs_info->global_block_rsv.space_info = space_info; 5869 fs_info->trans_block_rsv.space_info = space_info; 5870 fs_info->empty_block_rsv.space_info = space_info; 5871 fs_info->delayed_block_rsv.space_info = space_info; 5872 5873 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5874 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5875 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5876 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5877 if (fs_info->quota_root) 5878 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5879 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5880 5881 update_global_block_rsv(fs_info); 5882 } 5883 5884 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5885 { 5886 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5887 (u64)-1); 5888 WARN_ON(fs_info->trans_block_rsv.size > 0); 5889 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5890 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5891 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5892 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5893 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5894 } 5895 5896 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5897 struct btrfs_fs_info *fs_info) 5898 { 5899 if (!trans->block_rsv) { 5900 ASSERT(!trans->bytes_reserved); 5901 return; 5902 } 5903 5904 if (!trans->bytes_reserved) 5905 return; 5906 5907 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 5908 trace_btrfs_space_reservation(fs_info, "transaction", 5909 trans->transid, trans->bytes_reserved, 0); 5910 btrfs_block_rsv_release(fs_info, trans->block_rsv, 5911 trans->bytes_reserved); 5912 trans->bytes_reserved = 0; 5913 } 5914 5915 /* 5916 * To be called after all the new block groups attached to the transaction 5917 * handle have been created (btrfs_create_pending_block_groups()). 5918 */ 5919 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5920 { 5921 struct btrfs_fs_info *fs_info = trans->fs_info; 5922 5923 if (!trans->chunk_bytes_reserved) 5924 return; 5925 5926 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5927 5928 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5929 trans->chunk_bytes_reserved); 5930 trans->chunk_bytes_reserved = 0; 5931 } 5932 5933 /* Can only return 0 or -ENOSPC */ 5934 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5935 struct btrfs_inode *inode) 5936 { 5937 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5938 struct btrfs_root *root = inode->root; 5939 /* 5940 * We always use trans->block_rsv here as we will have reserved space 5941 * for our orphan when starting the transaction, using get_block_rsv() 5942 * here will sometimes make us choose the wrong block rsv as we could be 5943 * doing a reloc inode for a non refcounted root. 5944 */ 5945 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5946 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5947 5948 /* 5949 * We need to hold space in order to delete our orphan item once we've 5950 * added it, so this takes the reservation so we can release it later 5951 * when we are truly done with the orphan item. 5952 */ 5953 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5954 5955 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5956 num_bytes, 1); 5957 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5958 } 5959 5960 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5961 { 5962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5963 struct btrfs_root *root = inode->root; 5964 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5965 5966 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5967 num_bytes, 0); 5968 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5969 } 5970 5971 /* 5972 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5973 * root: the root of the parent directory 5974 * rsv: block reservation 5975 * items: the number of items that we need do reservation 5976 * qgroup_reserved: used to return the reserved size in qgroup 5977 * 5978 * This function is used to reserve the space for snapshot/subvolume 5979 * creation and deletion. Those operations are different with the 5980 * common file/directory operations, they change two fs/file trees 5981 * and root tree, the number of items that the qgroup reserves is 5982 * different with the free space reservation. So we can not use 5983 * the space reservation mechanism in start_transaction(). 5984 */ 5985 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5986 struct btrfs_block_rsv *rsv, 5987 int items, 5988 u64 *qgroup_reserved, 5989 bool use_global_rsv) 5990 { 5991 u64 num_bytes; 5992 int ret; 5993 struct btrfs_fs_info *fs_info = root->fs_info; 5994 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5995 5996 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5997 /* One for parent inode, two for dir entries */ 5998 num_bytes = 3 * fs_info->nodesize; 5999 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true); 6000 if (ret) 6001 return ret; 6002 } else { 6003 num_bytes = 0; 6004 } 6005 6006 *qgroup_reserved = num_bytes; 6007 6008 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 6009 rsv->space_info = __find_space_info(fs_info, 6010 BTRFS_BLOCK_GROUP_METADATA); 6011 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 6012 BTRFS_RESERVE_FLUSH_ALL); 6013 6014 if (ret == -ENOSPC && use_global_rsv) 6015 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 6016 6017 if (ret && *qgroup_reserved) 6018 btrfs_qgroup_free_meta(root, *qgroup_reserved); 6019 6020 return ret; 6021 } 6022 6023 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6024 struct btrfs_block_rsv *rsv) 6025 { 6026 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6027 } 6028 6029 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6030 struct btrfs_inode *inode) 6031 { 6032 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6033 u64 reserve_size = 0; 6034 u64 csum_leaves; 6035 unsigned outstanding_extents; 6036 6037 lockdep_assert_held(&inode->lock); 6038 outstanding_extents = inode->outstanding_extents; 6039 if (outstanding_extents) 6040 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6041 outstanding_extents + 1); 6042 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6043 inode->csum_bytes); 6044 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6045 csum_leaves); 6046 6047 spin_lock(&block_rsv->lock); 6048 block_rsv->size = reserve_size; 6049 spin_unlock(&block_rsv->lock); 6050 } 6051 6052 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6053 { 6054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6055 struct btrfs_root *root = inode->root; 6056 unsigned nr_extents; 6057 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6058 int ret = 0; 6059 bool delalloc_lock = true; 6060 6061 /* If we are a free space inode we need to not flush since we will be in 6062 * the middle of a transaction commit. We also don't need the delalloc 6063 * mutex since we won't race with anybody. We need this mostly to make 6064 * lockdep shut its filthy mouth. 6065 * 6066 * If we have a transaction open (can happen if we call truncate_block 6067 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6068 */ 6069 if (btrfs_is_free_space_inode(inode)) { 6070 flush = BTRFS_RESERVE_NO_FLUSH; 6071 delalloc_lock = false; 6072 } else if (current->journal_info) { 6073 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6074 } 6075 6076 if (flush != BTRFS_RESERVE_NO_FLUSH && 6077 btrfs_transaction_in_commit(fs_info)) 6078 schedule_timeout(1); 6079 6080 if (delalloc_lock) 6081 mutex_lock(&inode->delalloc_mutex); 6082 6083 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6084 6085 /* Add our new extents and calculate the new rsv size. */ 6086 spin_lock(&inode->lock); 6087 nr_extents = count_max_extents(num_bytes); 6088 btrfs_mod_outstanding_extents(inode, nr_extents); 6089 inode->csum_bytes += num_bytes; 6090 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6091 spin_unlock(&inode->lock); 6092 6093 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6094 ret = btrfs_qgroup_reserve_meta(root, 6095 nr_extents * fs_info->nodesize, true); 6096 if (ret) 6097 goto out_fail; 6098 } 6099 6100 ret = btrfs_inode_rsv_refill(inode, flush); 6101 if (unlikely(ret)) { 6102 btrfs_qgroup_free_meta(root, 6103 nr_extents * fs_info->nodesize); 6104 goto out_fail; 6105 } 6106 6107 if (delalloc_lock) 6108 mutex_unlock(&inode->delalloc_mutex); 6109 return 0; 6110 6111 out_fail: 6112 spin_lock(&inode->lock); 6113 nr_extents = count_max_extents(num_bytes); 6114 btrfs_mod_outstanding_extents(inode, -nr_extents); 6115 inode->csum_bytes -= num_bytes; 6116 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6117 spin_unlock(&inode->lock); 6118 6119 btrfs_inode_rsv_release(inode); 6120 if (delalloc_lock) 6121 mutex_unlock(&inode->delalloc_mutex); 6122 return ret; 6123 } 6124 6125 /** 6126 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6127 * @inode: the inode to release the reservation for. 6128 * @num_bytes: the number of bytes we are releasing. 6129 * 6130 * This will release the metadata reservation for an inode. This can be called 6131 * once we complete IO for a given set of bytes to release their metadata 6132 * reservations, or on error for the same reason. 6133 */ 6134 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes) 6135 { 6136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6137 6138 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6139 spin_lock(&inode->lock); 6140 inode->csum_bytes -= num_bytes; 6141 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6142 spin_unlock(&inode->lock); 6143 6144 if (btrfs_is_testing(fs_info)) 6145 return; 6146 6147 btrfs_inode_rsv_release(inode); 6148 } 6149 6150 /** 6151 * btrfs_delalloc_release_extents - release our outstanding_extents 6152 * @inode: the inode to balance the reservation for. 6153 * @num_bytes: the number of bytes we originally reserved with 6154 * 6155 * When we reserve space we increase outstanding_extents for the extents we may 6156 * add. Once we've set the range as delalloc or created our ordered extents we 6157 * have outstanding_extents to track the real usage, so we use this to free our 6158 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6159 * with btrfs_delalloc_reserve_metadata. 6160 */ 6161 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 6162 { 6163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6164 unsigned num_extents; 6165 6166 spin_lock(&inode->lock); 6167 num_extents = count_max_extents(num_bytes); 6168 btrfs_mod_outstanding_extents(inode, -num_extents); 6169 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6170 spin_unlock(&inode->lock); 6171 6172 if (btrfs_is_testing(fs_info)) 6173 return; 6174 6175 btrfs_inode_rsv_release(inode); 6176 } 6177 6178 /** 6179 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6180 * delalloc 6181 * @inode: inode we're writing to 6182 * @start: start range we are writing to 6183 * @len: how long the range we are writing to 6184 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6185 * current reservation. 6186 * 6187 * This will do the following things 6188 * 6189 * o reserve space in data space info for num bytes 6190 * and reserve precious corresponding qgroup space 6191 * (Done in check_data_free_space) 6192 * 6193 * o reserve space for metadata space, based on the number of outstanding 6194 * extents and how much csums will be needed 6195 * also reserve metadata space in a per root over-reserve method. 6196 * o add to the inodes->delalloc_bytes 6197 * o add it to the fs_info's delalloc inodes list. 6198 * (Above 3 all done in delalloc_reserve_metadata) 6199 * 6200 * Return 0 for success 6201 * Return <0 for error(-ENOSPC or -EQUOT) 6202 */ 6203 int btrfs_delalloc_reserve_space(struct inode *inode, 6204 struct extent_changeset **reserved, u64 start, u64 len) 6205 { 6206 int ret; 6207 6208 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6209 if (ret < 0) 6210 return ret; 6211 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6212 if (ret < 0) 6213 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6214 return ret; 6215 } 6216 6217 /** 6218 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6219 * @inode: inode we're releasing space for 6220 * @start: start position of the space already reserved 6221 * @len: the len of the space already reserved 6222 * @release_bytes: the len of the space we consumed or didn't use 6223 * 6224 * This function will release the metadata space that was not used and will 6225 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6226 * list if there are no delalloc bytes left. 6227 * Also it will handle the qgroup reserved space. 6228 */ 6229 void btrfs_delalloc_release_space(struct inode *inode, 6230 struct extent_changeset *reserved, 6231 u64 start, u64 len) 6232 { 6233 btrfs_delalloc_release_metadata(BTRFS_I(inode), len); 6234 btrfs_free_reserved_data_space(inode, reserved, start, len); 6235 } 6236 6237 static int update_block_group(struct btrfs_trans_handle *trans, 6238 struct btrfs_fs_info *info, u64 bytenr, 6239 u64 num_bytes, int alloc) 6240 { 6241 struct btrfs_block_group_cache *cache = NULL; 6242 u64 total = num_bytes; 6243 u64 old_val; 6244 u64 byte_in_group; 6245 int factor; 6246 6247 /* block accounting for super block */ 6248 spin_lock(&info->delalloc_root_lock); 6249 old_val = btrfs_super_bytes_used(info->super_copy); 6250 if (alloc) 6251 old_val += num_bytes; 6252 else 6253 old_val -= num_bytes; 6254 btrfs_set_super_bytes_used(info->super_copy, old_val); 6255 spin_unlock(&info->delalloc_root_lock); 6256 6257 while (total) { 6258 cache = btrfs_lookup_block_group(info, bytenr); 6259 if (!cache) 6260 return -ENOENT; 6261 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6262 BTRFS_BLOCK_GROUP_RAID1 | 6263 BTRFS_BLOCK_GROUP_RAID10)) 6264 factor = 2; 6265 else 6266 factor = 1; 6267 /* 6268 * If this block group has free space cache written out, we 6269 * need to make sure to load it if we are removing space. This 6270 * is because we need the unpinning stage to actually add the 6271 * space back to the block group, otherwise we will leak space. 6272 */ 6273 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6274 cache_block_group(cache, 1); 6275 6276 byte_in_group = bytenr - cache->key.objectid; 6277 WARN_ON(byte_in_group > cache->key.offset); 6278 6279 spin_lock(&cache->space_info->lock); 6280 spin_lock(&cache->lock); 6281 6282 if (btrfs_test_opt(info, SPACE_CACHE) && 6283 cache->disk_cache_state < BTRFS_DC_CLEAR) 6284 cache->disk_cache_state = BTRFS_DC_CLEAR; 6285 6286 old_val = btrfs_block_group_used(&cache->item); 6287 num_bytes = min(total, cache->key.offset - byte_in_group); 6288 if (alloc) { 6289 old_val += num_bytes; 6290 btrfs_set_block_group_used(&cache->item, old_val); 6291 cache->reserved -= num_bytes; 6292 cache->space_info->bytes_reserved -= num_bytes; 6293 cache->space_info->bytes_used += num_bytes; 6294 cache->space_info->disk_used += num_bytes * factor; 6295 spin_unlock(&cache->lock); 6296 spin_unlock(&cache->space_info->lock); 6297 } else { 6298 old_val -= num_bytes; 6299 btrfs_set_block_group_used(&cache->item, old_val); 6300 cache->pinned += num_bytes; 6301 cache->space_info->bytes_pinned += num_bytes; 6302 cache->space_info->bytes_used -= num_bytes; 6303 cache->space_info->disk_used -= num_bytes * factor; 6304 spin_unlock(&cache->lock); 6305 spin_unlock(&cache->space_info->lock); 6306 6307 trace_btrfs_space_reservation(info, "pinned", 6308 cache->space_info->flags, 6309 num_bytes, 1); 6310 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6311 num_bytes); 6312 set_extent_dirty(info->pinned_extents, 6313 bytenr, bytenr + num_bytes - 1, 6314 GFP_NOFS | __GFP_NOFAIL); 6315 } 6316 6317 spin_lock(&trans->transaction->dirty_bgs_lock); 6318 if (list_empty(&cache->dirty_list)) { 6319 list_add_tail(&cache->dirty_list, 6320 &trans->transaction->dirty_bgs); 6321 trans->transaction->num_dirty_bgs++; 6322 btrfs_get_block_group(cache); 6323 } 6324 spin_unlock(&trans->transaction->dirty_bgs_lock); 6325 6326 /* 6327 * No longer have used bytes in this block group, queue it for 6328 * deletion. We do this after adding the block group to the 6329 * dirty list to avoid races between cleaner kthread and space 6330 * cache writeout. 6331 */ 6332 if (!alloc && old_val == 0) { 6333 spin_lock(&info->unused_bgs_lock); 6334 if (list_empty(&cache->bg_list)) { 6335 btrfs_get_block_group(cache); 6336 list_add_tail(&cache->bg_list, 6337 &info->unused_bgs); 6338 } 6339 spin_unlock(&info->unused_bgs_lock); 6340 } 6341 6342 btrfs_put_block_group(cache); 6343 total -= num_bytes; 6344 bytenr += num_bytes; 6345 } 6346 return 0; 6347 } 6348 6349 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6350 { 6351 struct btrfs_block_group_cache *cache; 6352 u64 bytenr; 6353 6354 spin_lock(&fs_info->block_group_cache_lock); 6355 bytenr = fs_info->first_logical_byte; 6356 spin_unlock(&fs_info->block_group_cache_lock); 6357 6358 if (bytenr < (u64)-1) 6359 return bytenr; 6360 6361 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6362 if (!cache) 6363 return 0; 6364 6365 bytenr = cache->key.objectid; 6366 btrfs_put_block_group(cache); 6367 6368 return bytenr; 6369 } 6370 6371 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6372 struct btrfs_block_group_cache *cache, 6373 u64 bytenr, u64 num_bytes, int reserved) 6374 { 6375 spin_lock(&cache->space_info->lock); 6376 spin_lock(&cache->lock); 6377 cache->pinned += num_bytes; 6378 cache->space_info->bytes_pinned += num_bytes; 6379 if (reserved) { 6380 cache->reserved -= num_bytes; 6381 cache->space_info->bytes_reserved -= num_bytes; 6382 } 6383 spin_unlock(&cache->lock); 6384 spin_unlock(&cache->space_info->lock); 6385 6386 trace_btrfs_space_reservation(fs_info, "pinned", 6387 cache->space_info->flags, num_bytes, 1); 6388 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6389 set_extent_dirty(fs_info->pinned_extents, bytenr, 6390 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6391 return 0; 6392 } 6393 6394 /* 6395 * this function must be called within transaction 6396 */ 6397 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6398 u64 bytenr, u64 num_bytes, int reserved) 6399 { 6400 struct btrfs_block_group_cache *cache; 6401 6402 cache = btrfs_lookup_block_group(fs_info, bytenr); 6403 BUG_ON(!cache); /* Logic error */ 6404 6405 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6406 6407 btrfs_put_block_group(cache); 6408 return 0; 6409 } 6410 6411 /* 6412 * this function must be called within transaction 6413 */ 6414 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6415 u64 bytenr, u64 num_bytes) 6416 { 6417 struct btrfs_block_group_cache *cache; 6418 int ret; 6419 6420 cache = btrfs_lookup_block_group(fs_info, bytenr); 6421 if (!cache) 6422 return -EINVAL; 6423 6424 /* 6425 * pull in the free space cache (if any) so that our pin 6426 * removes the free space from the cache. We have load_only set 6427 * to one because the slow code to read in the free extents does check 6428 * the pinned extents. 6429 */ 6430 cache_block_group(cache, 1); 6431 6432 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6433 6434 /* remove us from the free space cache (if we're there at all) */ 6435 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6436 btrfs_put_block_group(cache); 6437 return ret; 6438 } 6439 6440 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6441 u64 start, u64 num_bytes) 6442 { 6443 int ret; 6444 struct btrfs_block_group_cache *block_group; 6445 struct btrfs_caching_control *caching_ctl; 6446 6447 block_group = btrfs_lookup_block_group(fs_info, start); 6448 if (!block_group) 6449 return -EINVAL; 6450 6451 cache_block_group(block_group, 0); 6452 caching_ctl = get_caching_control(block_group); 6453 6454 if (!caching_ctl) { 6455 /* Logic error */ 6456 BUG_ON(!block_group_cache_done(block_group)); 6457 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6458 } else { 6459 mutex_lock(&caching_ctl->mutex); 6460 6461 if (start >= caching_ctl->progress) { 6462 ret = add_excluded_extent(fs_info, start, num_bytes); 6463 } else if (start + num_bytes <= caching_ctl->progress) { 6464 ret = btrfs_remove_free_space(block_group, 6465 start, num_bytes); 6466 } else { 6467 num_bytes = caching_ctl->progress - start; 6468 ret = btrfs_remove_free_space(block_group, 6469 start, num_bytes); 6470 if (ret) 6471 goto out_lock; 6472 6473 num_bytes = (start + num_bytes) - 6474 caching_ctl->progress; 6475 start = caching_ctl->progress; 6476 ret = add_excluded_extent(fs_info, start, num_bytes); 6477 } 6478 out_lock: 6479 mutex_unlock(&caching_ctl->mutex); 6480 put_caching_control(caching_ctl); 6481 } 6482 btrfs_put_block_group(block_group); 6483 return ret; 6484 } 6485 6486 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6487 struct extent_buffer *eb) 6488 { 6489 struct btrfs_file_extent_item *item; 6490 struct btrfs_key key; 6491 int found_type; 6492 int i; 6493 6494 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6495 return 0; 6496 6497 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6498 btrfs_item_key_to_cpu(eb, &key, i); 6499 if (key.type != BTRFS_EXTENT_DATA_KEY) 6500 continue; 6501 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6502 found_type = btrfs_file_extent_type(eb, item); 6503 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6504 continue; 6505 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6506 continue; 6507 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6508 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6509 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6510 } 6511 6512 return 0; 6513 } 6514 6515 static void 6516 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6517 { 6518 atomic_inc(&bg->reservations); 6519 } 6520 6521 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6522 const u64 start) 6523 { 6524 struct btrfs_block_group_cache *bg; 6525 6526 bg = btrfs_lookup_block_group(fs_info, start); 6527 ASSERT(bg); 6528 if (atomic_dec_and_test(&bg->reservations)) 6529 wake_up_atomic_t(&bg->reservations); 6530 btrfs_put_block_group(bg); 6531 } 6532 6533 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6534 { 6535 schedule(); 6536 return 0; 6537 } 6538 6539 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6540 { 6541 struct btrfs_space_info *space_info = bg->space_info; 6542 6543 ASSERT(bg->ro); 6544 6545 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6546 return; 6547 6548 /* 6549 * Our block group is read only but before we set it to read only, 6550 * some task might have had allocated an extent from it already, but it 6551 * has not yet created a respective ordered extent (and added it to a 6552 * root's list of ordered extents). 6553 * Therefore wait for any task currently allocating extents, since the 6554 * block group's reservations counter is incremented while a read lock 6555 * on the groups' semaphore is held and decremented after releasing 6556 * the read access on that semaphore and creating the ordered extent. 6557 */ 6558 down_write(&space_info->groups_sem); 6559 up_write(&space_info->groups_sem); 6560 6561 wait_on_atomic_t(&bg->reservations, 6562 btrfs_wait_bg_reservations_atomic_t, 6563 TASK_UNINTERRUPTIBLE); 6564 } 6565 6566 /** 6567 * btrfs_add_reserved_bytes - update the block_group and space info counters 6568 * @cache: The cache we are manipulating 6569 * @ram_bytes: The number of bytes of file content, and will be same to 6570 * @num_bytes except for the compress path. 6571 * @num_bytes: The number of bytes in question 6572 * @delalloc: The blocks are allocated for the delalloc write 6573 * 6574 * This is called by the allocator when it reserves space. If this is a 6575 * reservation and the block group has become read only we cannot make the 6576 * reservation and return -EAGAIN, otherwise this function always succeeds. 6577 */ 6578 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6579 u64 ram_bytes, u64 num_bytes, int delalloc) 6580 { 6581 struct btrfs_space_info *space_info = cache->space_info; 6582 int ret = 0; 6583 6584 spin_lock(&space_info->lock); 6585 spin_lock(&cache->lock); 6586 if (cache->ro) { 6587 ret = -EAGAIN; 6588 } else { 6589 cache->reserved += num_bytes; 6590 space_info->bytes_reserved += num_bytes; 6591 6592 trace_btrfs_space_reservation(cache->fs_info, 6593 "space_info", space_info->flags, 6594 ram_bytes, 0); 6595 space_info->bytes_may_use -= ram_bytes; 6596 if (delalloc) 6597 cache->delalloc_bytes += num_bytes; 6598 } 6599 spin_unlock(&cache->lock); 6600 spin_unlock(&space_info->lock); 6601 return ret; 6602 } 6603 6604 /** 6605 * btrfs_free_reserved_bytes - update the block_group and space info counters 6606 * @cache: The cache we are manipulating 6607 * @num_bytes: The number of bytes in question 6608 * @delalloc: The blocks are allocated for the delalloc write 6609 * 6610 * This is called by somebody who is freeing space that was never actually used 6611 * on disk. For example if you reserve some space for a new leaf in transaction 6612 * A and before transaction A commits you free that leaf, you call this with 6613 * reserve set to 0 in order to clear the reservation. 6614 */ 6615 6616 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6617 u64 num_bytes, int delalloc) 6618 { 6619 struct btrfs_space_info *space_info = cache->space_info; 6620 int ret = 0; 6621 6622 spin_lock(&space_info->lock); 6623 spin_lock(&cache->lock); 6624 if (cache->ro) 6625 space_info->bytes_readonly += num_bytes; 6626 cache->reserved -= num_bytes; 6627 space_info->bytes_reserved -= num_bytes; 6628 6629 if (delalloc) 6630 cache->delalloc_bytes -= num_bytes; 6631 spin_unlock(&cache->lock); 6632 spin_unlock(&space_info->lock); 6633 return ret; 6634 } 6635 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6636 { 6637 struct btrfs_caching_control *next; 6638 struct btrfs_caching_control *caching_ctl; 6639 struct btrfs_block_group_cache *cache; 6640 6641 down_write(&fs_info->commit_root_sem); 6642 6643 list_for_each_entry_safe(caching_ctl, next, 6644 &fs_info->caching_block_groups, list) { 6645 cache = caching_ctl->block_group; 6646 if (block_group_cache_done(cache)) { 6647 cache->last_byte_to_unpin = (u64)-1; 6648 list_del_init(&caching_ctl->list); 6649 put_caching_control(caching_ctl); 6650 } else { 6651 cache->last_byte_to_unpin = caching_ctl->progress; 6652 } 6653 } 6654 6655 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6656 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6657 else 6658 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6659 6660 up_write(&fs_info->commit_root_sem); 6661 6662 update_global_block_rsv(fs_info); 6663 } 6664 6665 /* 6666 * Returns the free cluster for the given space info and sets empty_cluster to 6667 * what it should be based on the mount options. 6668 */ 6669 static struct btrfs_free_cluster * 6670 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6671 struct btrfs_space_info *space_info, u64 *empty_cluster) 6672 { 6673 struct btrfs_free_cluster *ret = NULL; 6674 6675 *empty_cluster = 0; 6676 if (btrfs_mixed_space_info(space_info)) 6677 return ret; 6678 6679 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6680 ret = &fs_info->meta_alloc_cluster; 6681 if (btrfs_test_opt(fs_info, SSD)) 6682 *empty_cluster = SZ_2M; 6683 else 6684 *empty_cluster = SZ_64K; 6685 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6686 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6687 *empty_cluster = SZ_2M; 6688 ret = &fs_info->data_alloc_cluster; 6689 } 6690 6691 return ret; 6692 } 6693 6694 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6695 u64 start, u64 end, 6696 const bool return_free_space) 6697 { 6698 struct btrfs_block_group_cache *cache = NULL; 6699 struct btrfs_space_info *space_info; 6700 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6701 struct btrfs_free_cluster *cluster = NULL; 6702 u64 len; 6703 u64 total_unpinned = 0; 6704 u64 empty_cluster = 0; 6705 bool readonly; 6706 6707 while (start <= end) { 6708 readonly = false; 6709 if (!cache || 6710 start >= cache->key.objectid + cache->key.offset) { 6711 if (cache) 6712 btrfs_put_block_group(cache); 6713 total_unpinned = 0; 6714 cache = btrfs_lookup_block_group(fs_info, start); 6715 BUG_ON(!cache); /* Logic error */ 6716 6717 cluster = fetch_cluster_info(fs_info, 6718 cache->space_info, 6719 &empty_cluster); 6720 empty_cluster <<= 1; 6721 } 6722 6723 len = cache->key.objectid + cache->key.offset - start; 6724 len = min(len, end + 1 - start); 6725 6726 if (start < cache->last_byte_to_unpin) { 6727 len = min(len, cache->last_byte_to_unpin - start); 6728 if (return_free_space) 6729 btrfs_add_free_space(cache, start, len); 6730 } 6731 6732 start += len; 6733 total_unpinned += len; 6734 space_info = cache->space_info; 6735 6736 /* 6737 * If this space cluster has been marked as fragmented and we've 6738 * unpinned enough in this block group to potentially allow a 6739 * cluster to be created inside of it go ahead and clear the 6740 * fragmented check. 6741 */ 6742 if (cluster && cluster->fragmented && 6743 total_unpinned > empty_cluster) { 6744 spin_lock(&cluster->lock); 6745 cluster->fragmented = 0; 6746 spin_unlock(&cluster->lock); 6747 } 6748 6749 spin_lock(&space_info->lock); 6750 spin_lock(&cache->lock); 6751 cache->pinned -= len; 6752 space_info->bytes_pinned -= len; 6753 6754 trace_btrfs_space_reservation(fs_info, "pinned", 6755 space_info->flags, len, 0); 6756 space_info->max_extent_size = 0; 6757 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6758 if (cache->ro) { 6759 space_info->bytes_readonly += len; 6760 readonly = true; 6761 } 6762 spin_unlock(&cache->lock); 6763 if (!readonly && return_free_space && 6764 global_rsv->space_info == space_info) { 6765 u64 to_add = len; 6766 6767 spin_lock(&global_rsv->lock); 6768 if (!global_rsv->full) { 6769 to_add = min(len, global_rsv->size - 6770 global_rsv->reserved); 6771 global_rsv->reserved += to_add; 6772 space_info->bytes_may_use += to_add; 6773 if (global_rsv->reserved >= global_rsv->size) 6774 global_rsv->full = 1; 6775 trace_btrfs_space_reservation(fs_info, 6776 "space_info", 6777 space_info->flags, 6778 to_add, 1); 6779 len -= to_add; 6780 } 6781 spin_unlock(&global_rsv->lock); 6782 /* Add to any tickets we may have */ 6783 if (len) 6784 space_info_add_new_bytes(fs_info, space_info, 6785 len); 6786 } 6787 spin_unlock(&space_info->lock); 6788 } 6789 6790 if (cache) 6791 btrfs_put_block_group(cache); 6792 return 0; 6793 } 6794 6795 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6796 struct btrfs_fs_info *fs_info) 6797 { 6798 struct btrfs_block_group_cache *block_group, *tmp; 6799 struct list_head *deleted_bgs; 6800 struct extent_io_tree *unpin; 6801 u64 start; 6802 u64 end; 6803 int ret; 6804 6805 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6806 unpin = &fs_info->freed_extents[1]; 6807 else 6808 unpin = &fs_info->freed_extents[0]; 6809 6810 while (!trans->aborted) { 6811 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6812 ret = find_first_extent_bit(unpin, 0, &start, &end, 6813 EXTENT_DIRTY, NULL); 6814 if (ret) { 6815 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6816 break; 6817 } 6818 6819 if (btrfs_test_opt(fs_info, DISCARD)) 6820 ret = btrfs_discard_extent(fs_info, start, 6821 end + 1 - start, NULL); 6822 6823 clear_extent_dirty(unpin, start, end); 6824 unpin_extent_range(fs_info, start, end, true); 6825 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6826 cond_resched(); 6827 } 6828 6829 /* 6830 * Transaction is finished. We don't need the lock anymore. We 6831 * do need to clean up the block groups in case of a transaction 6832 * abort. 6833 */ 6834 deleted_bgs = &trans->transaction->deleted_bgs; 6835 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6836 u64 trimmed = 0; 6837 6838 ret = -EROFS; 6839 if (!trans->aborted) 6840 ret = btrfs_discard_extent(fs_info, 6841 block_group->key.objectid, 6842 block_group->key.offset, 6843 &trimmed); 6844 6845 list_del_init(&block_group->bg_list); 6846 btrfs_put_block_group_trimming(block_group); 6847 btrfs_put_block_group(block_group); 6848 6849 if (ret) { 6850 const char *errstr = btrfs_decode_error(ret); 6851 btrfs_warn(fs_info, 6852 "discard failed while removing blockgroup: errno=%d %s", 6853 ret, errstr); 6854 } 6855 } 6856 6857 return 0; 6858 } 6859 6860 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6861 struct btrfs_fs_info *info, 6862 struct btrfs_delayed_ref_node *node, u64 parent, 6863 u64 root_objectid, u64 owner_objectid, 6864 u64 owner_offset, int refs_to_drop, 6865 struct btrfs_delayed_extent_op *extent_op) 6866 { 6867 struct btrfs_key key; 6868 struct btrfs_path *path; 6869 struct btrfs_root *extent_root = info->extent_root; 6870 struct extent_buffer *leaf; 6871 struct btrfs_extent_item *ei; 6872 struct btrfs_extent_inline_ref *iref; 6873 int ret; 6874 int is_data; 6875 int extent_slot = 0; 6876 int found_extent = 0; 6877 int num_to_del = 1; 6878 u32 item_size; 6879 u64 refs; 6880 u64 bytenr = node->bytenr; 6881 u64 num_bytes = node->num_bytes; 6882 int last_ref = 0; 6883 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6884 6885 path = btrfs_alloc_path(); 6886 if (!path) 6887 return -ENOMEM; 6888 6889 path->reada = READA_FORWARD; 6890 path->leave_spinning = 1; 6891 6892 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6893 BUG_ON(!is_data && refs_to_drop != 1); 6894 6895 if (is_data) 6896 skinny_metadata = false; 6897 6898 ret = lookup_extent_backref(trans, info, path, &iref, 6899 bytenr, num_bytes, parent, 6900 root_objectid, owner_objectid, 6901 owner_offset); 6902 if (ret == 0) { 6903 extent_slot = path->slots[0]; 6904 while (extent_slot >= 0) { 6905 btrfs_item_key_to_cpu(path->nodes[0], &key, 6906 extent_slot); 6907 if (key.objectid != bytenr) 6908 break; 6909 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6910 key.offset == num_bytes) { 6911 found_extent = 1; 6912 break; 6913 } 6914 if (key.type == BTRFS_METADATA_ITEM_KEY && 6915 key.offset == owner_objectid) { 6916 found_extent = 1; 6917 break; 6918 } 6919 if (path->slots[0] - extent_slot > 5) 6920 break; 6921 extent_slot--; 6922 } 6923 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6924 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6925 if (found_extent && item_size < sizeof(*ei)) 6926 found_extent = 0; 6927 #endif 6928 if (!found_extent) { 6929 BUG_ON(iref); 6930 ret = remove_extent_backref(trans, info, path, NULL, 6931 refs_to_drop, 6932 is_data, &last_ref); 6933 if (ret) { 6934 btrfs_abort_transaction(trans, ret); 6935 goto out; 6936 } 6937 btrfs_release_path(path); 6938 path->leave_spinning = 1; 6939 6940 key.objectid = bytenr; 6941 key.type = BTRFS_EXTENT_ITEM_KEY; 6942 key.offset = num_bytes; 6943 6944 if (!is_data && skinny_metadata) { 6945 key.type = BTRFS_METADATA_ITEM_KEY; 6946 key.offset = owner_objectid; 6947 } 6948 6949 ret = btrfs_search_slot(trans, extent_root, 6950 &key, path, -1, 1); 6951 if (ret > 0 && skinny_metadata && path->slots[0]) { 6952 /* 6953 * Couldn't find our skinny metadata item, 6954 * see if we have ye olde extent item. 6955 */ 6956 path->slots[0]--; 6957 btrfs_item_key_to_cpu(path->nodes[0], &key, 6958 path->slots[0]); 6959 if (key.objectid == bytenr && 6960 key.type == BTRFS_EXTENT_ITEM_KEY && 6961 key.offset == num_bytes) 6962 ret = 0; 6963 } 6964 6965 if (ret > 0 && skinny_metadata) { 6966 skinny_metadata = false; 6967 key.objectid = bytenr; 6968 key.type = BTRFS_EXTENT_ITEM_KEY; 6969 key.offset = num_bytes; 6970 btrfs_release_path(path); 6971 ret = btrfs_search_slot(trans, extent_root, 6972 &key, path, -1, 1); 6973 } 6974 6975 if (ret) { 6976 btrfs_err(info, 6977 "umm, got %d back from search, was looking for %llu", 6978 ret, bytenr); 6979 if (ret > 0) 6980 btrfs_print_leaf(path->nodes[0]); 6981 } 6982 if (ret < 0) { 6983 btrfs_abort_transaction(trans, ret); 6984 goto out; 6985 } 6986 extent_slot = path->slots[0]; 6987 } 6988 } else if (WARN_ON(ret == -ENOENT)) { 6989 btrfs_print_leaf(path->nodes[0]); 6990 btrfs_err(info, 6991 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6992 bytenr, parent, root_objectid, owner_objectid, 6993 owner_offset); 6994 btrfs_abort_transaction(trans, ret); 6995 goto out; 6996 } else { 6997 btrfs_abort_transaction(trans, ret); 6998 goto out; 6999 } 7000 7001 leaf = path->nodes[0]; 7002 item_size = btrfs_item_size_nr(leaf, extent_slot); 7003 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 7004 if (item_size < sizeof(*ei)) { 7005 BUG_ON(found_extent || extent_slot != path->slots[0]); 7006 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 7007 0); 7008 if (ret < 0) { 7009 btrfs_abort_transaction(trans, ret); 7010 goto out; 7011 } 7012 7013 btrfs_release_path(path); 7014 path->leave_spinning = 1; 7015 7016 key.objectid = bytenr; 7017 key.type = BTRFS_EXTENT_ITEM_KEY; 7018 key.offset = num_bytes; 7019 7020 ret = btrfs_search_slot(trans, extent_root, &key, path, 7021 -1, 1); 7022 if (ret) { 7023 btrfs_err(info, 7024 "umm, got %d back from search, was looking for %llu", 7025 ret, bytenr); 7026 btrfs_print_leaf(path->nodes[0]); 7027 } 7028 if (ret < 0) { 7029 btrfs_abort_transaction(trans, ret); 7030 goto out; 7031 } 7032 7033 extent_slot = path->slots[0]; 7034 leaf = path->nodes[0]; 7035 item_size = btrfs_item_size_nr(leaf, extent_slot); 7036 } 7037 #endif 7038 BUG_ON(item_size < sizeof(*ei)); 7039 ei = btrfs_item_ptr(leaf, extent_slot, 7040 struct btrfs_extent_item); 7041 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7042 key.type == BTRFS_EXTENT_ITEM_KEY) { 7043 struct btrfs_tree_block_info *bi; 7044 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7045 bi = (struct btrfs_tree_block_info *)(ei + 1); 7046 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7047 } 7048 7049 refs = btrfs_extent_refs(leaf, ei); 7050 if (refs < refs_to_drop) { 7051 btrfs_err(info, 7052 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7053 refs_to_drop, refs, bytenr); 7054 ret = -EINVAL; 7055 btrfs_abort_transaction(trans, ret); 7056 goto out; 7057 } 7058 refs -= refs_to_drop; 7059 7060 if (refs > 0) { 7061 if (extent_op) 7062 __run_delayed_extent_op(extent_op, leaf, ei); 7063 /* 7064 * In the case of inline back ref, reference count will 7065 * be updated by remove_extent_backref 7066 */ 7067 if (iref) { 7068 BUG_ON(!found_extent); 7069 } else { 7070 btrfs_set_extent_refs(leaf, ei, refs); 7071 btrfs_mark_buffer_dirty(leaf); 7072 } 7073 if (found_extent) { 7074 ret = remove_extent_backref(trans, info, path, 7075 iref, refs_to_drop, 7076 is_data, &last_ref); 7077 if (ret) { 7078 btrfs_abort_transaction(trans, ret); 7079 goto out; 7080 } 7081 } 7082 } else { 7083 if (found_extent) { 7084 BUG_ON(is_data && refs_to_drop != 7085 extent_data_ref_count(path, iref)); 7086 if (iref) { 7087 BUG_ON(path->slots[0] != extent_slot); 7088 } else { 7089 BUG_ON(path->slots[0] != extent_slot + 1); 7090 path->slots[0] = extent_slot; 7091 num_to_del = 2; 7092 } 7093 } 7094 7095 last_ref = 1; 7096 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7097 num_to_del); 7098 if (ret) { 7099 btrfs_abort_transaction(trans, ret); 7100 goto out; 7101 } 7102 btrfs_release_path(path); 7103 7104 if (is_data) { 7105 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7106 if (ret) { 7107 btrfs_abort_transaction(trans, ret); 7108 goto out; 7109 } 7110 } 7111 7112 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7113 if (ret) { 7114 btrfs_abort_transaction(trans, ret); 7115 goto out; 7116 } 7117 7118 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7119 if (ret) { 7120 btrfs_abort_transaction(trans, ret); 7121 goto out; 7122 } 7123 } 7124 btrfs_release_path(path); 7125 7126 out: 7127 btrfs_free_path(path); 7128 return ret; 7129 } 7130 7131 /* 7132 * when we free an block, it is possible (and likely) that we free the last 7133 * delayed ref for that extent as well. This searches the delayed ref tree for 7134 * a given extent, and if there are no other delayed refs to be processed, it 7135 * removes it from the tree. 7136 */ 7137 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7138 u64 bytenr) 7139 { 7140 struct btrfs_delayed_ref_head *head; 7141 struct btrfs_delayed_ref_root *delayed_refs; 7142 int ret = 0; 7143 7144 delayed_refs = &trans->transaction->delayed_refs; 7145 spin_lock(&delayed_refs->lock); 7146 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7147 if (!head) 7148 goto out_delayed_unlock; 7149 7150 spin_lock(&head->lock); 7151 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7152 goto out; 7153 7154 if (head->extent_op) { 7155 if (!head->must_insert_reserved) 7156 goto out; 7157 btrfs_free_delayed_extent_op(head->extent_op); 7158 head->extent_op = NULL; 7159 } 7160 7161 /* 7162 * waiting for the lock here would deadlock. If someone else has it 7163 * locked they are already in the process of dropping it anyway 7164 */ 7165 if (!mutex_trylock(&head->mutex)) 7166 goto out; 7167 7168 /* 7169 * at this point we have a head with no other entries. Go 7170 * ahead and process it. 7171 */ 7172 rb_erase(&head->href_node, &delayed_refs->href_root); 7173 RB_CLEAR_NODE(&head->href_node); 7174 atomic_dec(&delayed_refs->num_entries); 7175 7176 /* 7177 * we don't take a ref on the node because we're removing it from the 7178 * tree, so we just steal the ref the tree was holding. 7179 */ 7180 delayed_refs->num_heads--; 7181 if (head->processing == 0) 7182 delayed_refs->num_heads_ready--; 7183 head->processing = 0; 7184 spin_unlock(&head->lock); 7185 spin_unlock(&delayed_refs->lock); 7186 7187 BUG_ON(head->extent_op); 7188 if (head->must_insert_reserved) 7189 ret = 1; 7190 7191 mutex_unlock(&head->mutex); 7192 btrfs_put_delayed_ref_head(head); 7193 return ret; 7194 out: 7195 spin_unlock(&head->lock); 7196 7197 out_delayed_unlock: 7198 spin_unlock(&delayed_refs->lock); 7199 return 0; 7200 } 7201 7202 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7203 struct btrfs_root *root, 7204 struct extent_buffer *buf, 7205 u64 parent, int last_ref) 7206 { 7207 struct btrfs_fs_info *fs_info = root->fs_info; 7208 int pin = 1; 7209 int ret; 7210 7211 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7212 int old_ref_mod, new_ref_mod; 7213 7214 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7215 root->root_key.objectid, 7216 btrfs_header_level(buf), 0, 7217 BTRFS_DROP_DELAYED_REF); 7218 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7219 buf->len, parent, 7220 root->root_key.objectid, 7221 btrfs_header_level(buf), 7222 BTRFS_DROP_DELAYED_REF, NULL, 7223 &old_ref_mod, &new_ref_mod); 7224 BUG_ON(ret); /* -ENOMEM */ 7225 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7226 } 7227 7228 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7229 struct btrfs_block_group_cache *cache; 7230 7231 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7232 ret = check_ref_cleanup(trans, buf->start); 7233 if (!ret) 7234 goto out; 7235 } 7236 7237 pin = 0; 7238 cache = btrfs_lookup_block_group(fs_info, buf->start); 7239 7240 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7241 pin_down_extent(fs_info, cache, buf->start, 7242 buf->len, 1); 7243 btrfs_put_block_group(cache); 7244 goto out; 7245 } 7246 7247 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7248 7249 btrfs_add_free_space(cache, buf->start, buf->len); 7250 btrfs_free_reserved_bytes(cache, buf->len, 0); 7251 btrfs_put_block_group(cache); 7252 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7253 } 7254 out: 7255 if (pin) 7256 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7257 root->root_key.objectid); 7258 7259 if (last_ref) { 7260 /* 7261 * Deleting the buffer, clear the corrupt flag since it doesn't 7262 * matter anymore. 7263 */ 7264 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7265 } 7266 } 7267 7268 /* Can return -ENOMEM */ 7269 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7270 struct btrfs_root *root, 7271 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7272 u64 owner, u64 offset) 7273 { 7274 struct btrfs_fs_info *fs_info = root->fs_info; 7275 int old_ref_mod, new_ref_mod; 7276 int ret; 7277 7278 if (btrfs_is_testing(fs_info)) 7279 return 0; 7280 7281 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7282 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7283 root_objectid, owner, offset, 7284 BTRFS_DROP_DELAYED_REF); 7285 7286 /* 7287 * tree log blocks never actually go into the extent allocation 7288 * tree, just update pinning info and exit early. 7289 */ 7290 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7291 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7292 /* unlocks the pinned mutex */ 7293 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7294 old_ref_mod = new_ref_mod = 0; 7295 ret = 0; 7296 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7297 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7298 num_bytes, parent, 7299 root_objectid, (int)owner, 7300 BTRFS_DROP_DELAYED_REF, NULL, 7301 &old_ref_mod, &new_ref_mod); 7302 } else { 7303 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7304 num_bytes, parent, 7305 root_objectid, owner, offset, 7306 0, BTRFS_DROP_DELAYED_REF, 7307 &old_ref_mod, &new_ref_mod); 7308 } 7309 7310 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7311 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7312 7313 return ret; 7314 } 7315 7316 /* 7317 * when we wait for progress in the block group caching, its because 7318 * our allocation attempt failed at least once. So, we must sleep 7319 * and let some progress happen before we try again. 7320 * 7321 * This function will sleep at least once waiting for new free space to 7322 * show up, and then it will check the block group free space numbers 7323 * for our min num_bytes. Another option is to have it go ahead 7324 * and look in the rbtree for a free extent of a given size, but this 7325 * is a good start. 7326 * 7327 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7328 * any of the information in this block group. 7329 */ 7330 static noinline void 7331 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7332 u64 num_bytes) 7333 { 7334 struct btrfs_caching_control *caching_ctl; 7335 7336 caching_ctl = get_caching_control(cache); 7337 if (!caching_ctl) 7338 return; 7339 7340 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7341 (cache->free_space_ctl->free_space >= num_bytes)); 7342 7343 put_caching_control(caching_ctl); 7344 } 7345 7346 static noinline int 7347 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7348 { 7349 struct btrfs_caching_control *caching_ctl; 7350 int ret = 0; 7351 7352 caching_ctl = get_caching_control(cache); 7353 if (!caching_ctl) 7354 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7355 7356 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7357 if (cache->cached == BTRFS_CACHE_ERROR) 7358 ret = -EIO; 7359 put_caching_control(caching_ctl); 7360 return ret; 7361 } 7362 7363 int __get_raid_index(u64 flags) 7364 { 7365 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7366 return BTRFS_RAID_RAID10; 7367 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7368 return BTRFS_RAID_RAID1; 7369 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7370 return BTRFS_RAID_DUP; 7371 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7372 return BTRFS_RAID_RAID0; 7373 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7374 return BTRFS_RAID_RAID5; 7375 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7376 return BTRFS_RAID_RAID6; 7377 7378 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7379 } 7380 7381 int get_block_group_index(struct btrfs_block_group_cache *cache) 7382 { 7383 return __get_raid_index(cache->flags); 7384 } 7385 7386 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7387 [BTRFS_RAID_RAID10] = "raid10", 7388 [BTRFS_RAID_RAID1] = "raid1", 7389 [BTRFS_RAID_DUP] = "dup", 7390 [BTRFS_RAID_RAID0] = "raid0", 7391 [BTRFS_RAID_SINGLE] = "single", 7392 [BTRFS_RAID_RAID5] = "raid5", 7393 [BTRFS_RAID_RAID6] = "raid6", 7394 }; 7395 7396 static const char *get_raid_name(enum btrfs_raid_types type) 7397 { 7398 if (type >= BTRFS_NR_RAID_TYPES) 7399 return NULL; 7400 7401 return btrfs_raid_type_names[type]; 7402 } 7403 7404 enum btrfs_loop_type { 7405 LOOP_CACHING_NOWAIT = 0, 7406 LOOP_CACHING_WAIT = 1, 7407 LOOP_ALLOC_CHUNK = 2, 7408 LOOP_NO_EMPTY_SIZE = 3, 7409 }; 7410 7411 static inline void 7412 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7413 int delalloc) 7414 { 7415 if (delalloc) 7416 down_read(&cache->data_rwsem); 7417 } 7418 7419 static inline void 7420 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7421 int delalloc) 7422 { 7423 btrfs_get_block_group(cache); 7424 if (delalloc) 7425 down_read(&cache->data_rwsem); 7426 } 7427 7428 static struct btrfs_block_group_cache * 7429 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7430 struct btrfs_free_cluster *cluster, 7431 int delalloc) 7432 { 7433 struct btrfs_block_group_cache *used_bg = NULL; 7434 7435 spin_lock(&cluster->refill_lock); 7436 while (1) { 7437 used_bg = cluster->block_group; 7438 if (!used_bg) 7439 return NULL; 7440 7441 if (used_bg == block_group) 7442 return used_bg; 7443 7444 btrfs_get_block_group(used_bg); 7445 7446 if (!delalloc) 7447 return used_bg; 7448 7449 if (down_read_trylock(&used_bg->data_rwsem)) 7450 return used_bg; 7451 7452 spin_unlock(&cluster->refill_lock); 7453 7454 /* We should only have one-level nested. */ 7455 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7456 7457 spin_lock(&cluster->refill_lock); 7458 if (used_bg == cluster->block_group) 7459 return used_bg; 7460 7461 up_read(&used_bg->data_rwsem); 7462 btrfs_put_block_group(used_bg); 7463 } 7464 } 7465 7466 static inline void 7467 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7468 int delalloc) 7469 { 7470 if (delalloc) 7471 up_read(&cache->data_rwsem); 7472 btrfs_put_block_group(cache); 7473 } 7474 7475 /* 7476 * walks the btree of allocated extents and find a hole of a given size. 7477 * The key ins is changed to record the hole: 7478 * ins->objectid == start position 7479 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7480 * ins->offset == the size of the hole. 7481 * Any available blocks before search_start are skipped. 7482 * 7483 * If there is no suitable free space, we will record the max size of 7484 * the free space extent currently. 7485 */ 7486 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7487 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7488 u64 hint_byte, struct btrfs_key *ins, 7489 u64 flags, int delalloc) 7490 { 7491 int ret = 0; 7492 struct btrfs_root *root = fs_info->extent_root; 7493 struct btrfs_free_cluster *last_ptr = NULL; 7494 struct btrfs_block_group_cache *block_group = NULL; 7495 u64 search_start = 0; 7496 u64 max_extent_size = 0; 7497 u64 empty_cluster = 0; 7498 struct btrfs_space_info *space_info; 7499 int loop = 0; 7500 int index = __get_raid_index(flags); 7501 bool failed_cluster_refill = false; 7502 bool failed_alloc = false; 7503 bool use_cluster = true; 7504 bool have_caching_bg = false; 7505 bool orig_have_caching_bg = false; 7506 bool full_search = false; 7507 7508 WARN_ON(num_bytes < fs_info->sectorsize); 7509 ins->type = BTRFS_EXTENT_ITEM_KEY; 7510 ins->objectid = 0; 7511 ins->offset = 0; 7512 7513 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7514 7515 space_info = __find_space_info(fs_info, flags); 7516 if (!space_info) { 7517 btrfs_err(fs_info, "No space info for %llu", flags); 7518 return -ENOSPC; 7519 } 7520 7521 /* 7522 * If our free space is heavily fragmented we may not be able to make 7523 * big contiguous allocations, so instead of doing the expensive search 7524 * for free space, simply return ENOSPC with our max_extent_size so we 7525 * can go ahead and search for a more manageable chunk. 7526 * 7527 * If our max_extent_size is large enough for our allocation simply 7528 * disable clustering since we will likely not be able to find enough 7529 * space to create a cluster and induce latency trying. 7530 */ 7531 if (unlikely(space_info->max_extent_size)) { 7532 spin_lock(&space_info->lock); 7533 if (space_info->max_extent_size && 7534 num_bytes > space_info->max_extent_size) { 7535 ins->offset = space_info->max_extent_size; 7536 spin_unlock(&space_info->lock); 7537 return -ENOSPC; 7538 } else if (space_info->max_extent_size) { 7539 use_cluster = false; 7540 } 7541 spin_unlock(&space_info->lock); 7542 } 7543 7544 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7545 if (last_ptr) { 7546 spin_lock(&last_ptr->lock); 7547 if (last_ptr->block_group) 7548 hint_byte = last_ptr->window_start; 7549 if (last_ptr->fragmented) { 7550 /* 7551 * We still set window_start so we can keep track of the 7552 * last place we found an allocation to try and save 7553 * some time. 7554 */ 7555 hint_byte = last_ptr->window_start; 7556 use_cluster = false; 7557 } 7558 spin_unlock(&last_ptr->lock); 7559 } 7560 7561 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7562 search_start = max(search_start, hint_byte); 7563 if (search_start == hint_byte) { 7564 block_group = btrfs_lookup_block_group(fs_info, search_start); 7565 /* 7566 * we don't want to use the block group if it doesn't match our 7567 * allocation bits, or if its not cached. 7568 * 7569 * However if we are re-searching with an ideal block group 7570 * picked out then we don't care that the block group is cached. 7571 */ 7572 if (block_group && block_group_bits(block_group, flags) && 7573 block_group->cached != BTRFS_CACHE_NO) { 7574 down_read(&space_info->groups_sem); 7575 if (list_empty(&block_group->list) || 7576 block_group->ro) { 7577 /* 7578 * someone is removing this block group, 7579 * we can't jump into the have_block_group 7580 * target because our list pointers are not 7581 * valid 7582 */ 7583 btrfs_put_block_group(block_group); 7584 up_read(&space_info->groups_sem); 7585 } else { 7586 index = get_block_group_index(block_group); 7587 btrfs_lock_block_group(block_group, delalloc); 7588 goto have_block_group; 7589 } 7590 } else if (block_group) { 7591 btrfs_put_block_group(block_group); 7592 } 7593 } 7594 search: 7595 have_caching_bg = false; 7596 if (index == 0 || index == __get_raid_index(flags)) 7597 full_search = true; 7598 down_read(&space_info->groups_sem); 7599 list_for_each_entry(block_group, &space_info->block_groups[index], 7600 list) { 7601 u64 offset; 7602 int cached; 7603 7604 /* If the block group is read-only, we can skip it entirely. */ 7605 if (unlikely(block_group->ro)) 7606 continue; 7607 7608 btrfs_grab_block_group(block_group, delalloc); 7609 search_start = block_group->key.objectid; 7610 7611 /* 7612 * this can happen if we end up cycling through all the 7613 * raid types, but we want to make sure we only allocate 7614 * for the proper type. 7615 */ 7616 if (!block_group_bits(block_group, flags)) { 7617 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7618 BTRFS_BLOCK_GROUP_RAID1 | 7619 BTRFS_BLOCK_GROUP_RAID5 | 7620 BTRFS_BLOCK_GROUP_RAID6 | 7621 BTRFS_BLOCK_GROUP_RAID10; 7622 7623 /* 7624 * if they asked for extra copies and this block group 7625 * doesn't provide them, bail. This does allow us to 7626 * fill raid0 from raid1. 7627 */ 7628 if ((flags & extra) && !(block_group->flags & extra)) 7629 goto loop; 7630 } 7631 7632 have_block_group: 7633 cached = block_group_cache_done(block_group); 7634 if (unlikely(!cached)) { 7635 have_caching_bg = true; 7636 ret = cache_block_group(block_group, 0); 7637 BUG_ON(ret < 0); 7638 ret = 0; 7639 } 7640 7641 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7642 goto loop; 7643 7644 /* 7645 * Ok we want to try and use the cluster allocator, so 7646 * lets look there 7647 */ 7648 if (last_ptr && use_cluster) { 7649 struct btrfs_block_group_cache *used_block_group; 7650 unsigned long aligned_cluster; 7651 /* 7652 * the refill lock keeps out other 7653 * people trying to start a new cluster 7654 */ 7655 used_block_group = btrfs_lock_cluster(block_group, 7656 last_ptr, 7657 delalloc); 7658 if (!used_block_group) 7659 goto refill_cluster; 7660 7661 if (used_block_group != block_group && 7662 (used_block_group->ro || 7663 !block_group_bits(used_block_group, flags))) 7664 goto release_cluster; 7665 7666 offset = btrfs_alloc_from_cluster(used_block_group, 7667 last_ptr, 7668 num_bytes, 7669 used_block_group->key.objectid, 7670 &max_extent_size); 7671 if (offset) { 7672 /* we have a block, we're done */ 7673 spin_unlock(&last_ptr->refill_lock); 7674 trace_btrfs_reserve_extent_cluster(fs_info, 7675 used_block_group, 7676 search_start, num_bytes); 7677 if (used_block_group != block_group) { 7678 btrfs_release_block_group(block_group, 7679 delalloc); 7680 block_group = used_block_group; 7681 } 7682 goto checks; 7683 } 7684 7685 WARN_ON(last_ptr->block_group != used_block_group); 7686 release_cluster: 7687 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7688 * set up a new clusters, so lets just skip it 7689 * and let the allocator find whatever block 7690 * it can find. If we reach this point, we 7691 * will have tried the cluster allocator 7692 * plenty of times and not have found 7693 * anything, so we are likely way too 7694 * fragmented for the clustering stuff to find 7695 * anything. 7696 * 7697 * However, if the cluster is taken from the 7698 * current block group, release the cluster 7699 * first, so that we stand a better chance of 7700 * succeeding in the unclustered 7701 * allocation. */ 7702 if (loop >= LOOP_NO_EMPTY_SIZE && 7703 used_block_group != block_group) { 7704 spin_unlock(&last_ptr->refill_lock); 7705 btrfs_release_block_group(used_block_group, 7706 delalloc); 7707 goto unclustered_alloc; 7708 } 7709 7710 /* 7711 * this cluster didn't work out, free it and 7712 * start over 7713 */ 7714 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7715 7716 if (used_block_group != block_group) 7717 btrfs_release_block_group(used_block_group, 7718 delalloc); 7719 refill_cluster: 7720 if (loop >= LOOP_NO_EMPTY_SIZE) { 7721 spin_unlock(&last_ptr->refill_lock); 7722 goto unclustered_alloc; 7723 } 7724 7725 aligned_cluster = max_t(unsigned long, 7726 empty_cluster + empty_size, 7727 block_group->full_stripe_len); 7728 7729 /* allocate a cluster in this block group */ 7730 ret = btrfs_find_space_cluster(fs_info, block_group, 7731 last_ptr, search_start, 7732 num_bytes, 7733 aligned_cluster); 7734 if (ret == 0) { 7735 /* 7736 * now pull our allocation out of this 7737 * cluster 7738 */ 7739 offset = btrfs_alloc_from_cluster(block_group, 7740 last_ptr, 7741 num_bytes, 7742 search_start, 7743 &max_extent_size); 7744 if (offset) { 7745 /* we found one, proceed */ 7746 spin_unlock(&last_ptr->refill_lock); 7747 trace_btrfs_reserve_extent_cluster(fs_info, 7748 block_group, search_start, 7749 num_bytes); 7750 goto checks; 7751 } 7752 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7753 && !failed_cluster_refill) { 7754 spin_unlock(&last_ptr->refill_lock); 7755 7756 failed_cluster_refill = true; 7757 wait_block_group_cache_progress(block_group, 7758 num_bytes + empty_cluster + empty_size); 7759 goto have_block_group; 7760 } 7761 7762 /* 7763 * at this point we either didn't find a cluster 7764 * or we weren't able to allocate a block from our 7765 * cluster. Free the cluster we've been trying 7766 * to use, and go to the next block group 7767 */ 7768 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7769 spin_unlock(&last_ptr->refill_lock); 7770 goto loop; 7771 } 7772 7773 unclustered_alloc: 7774 /* 7775 * We are doing an unclustered alloc, set the fragmented flag so 7776 * we don't bother trying to setup a cluster again until we get 7777 * more space. 7778 */ 7779 if (unlikely(last_ptr)) { 7780 spin_lock(&last_ptr->lock); 7781 last_ptr->fragmented = 1; 7782 spin_unlock(&last_ptr->lock); 7783 } 7784 if (cached) { 7785 struct btrfs_free_space_ctl *ctl = 7786 block_group->free_space_ctl; 7787 7788 spin_lock(&ctl->tree_lock); 7789 if (ctl->free_space < 7790 num_bytes + empty_cluster + empty_size) { 7791 if (ctl->free_space > max_extent_size) 7792 max_extent_size = ctl->free_space; 7793 spin_unlock(&ctl->tree_lock); 7794 goto loop; 7795 } 7796 spin_unlock(&ctl->tree_lock); 7797 } 7798 7799 offset = btrfs_find_space_for_alloc(block_group, search_start, 7800 num_bytes, empty_size, 7801 &max_extent_size); 7802 /* 7803 * If we didn't find a chunk, and we haven't failed on this 7804 * block group before, and this block group is in the middle of 7805 * caching and we are ok with waiting, then go ahead and wait 7806 * for progress to be made, and set failed_alloc to true. 7807 * 7808 * If failed_alloc is true then we've already waited on this 7809 * block group once and should move on to the next block group. 7810 */ 7811 if (!offset && !failed_alloc && !cached && 7812 loop > LOOP_CACHING_NOWAIT) { 7813 wait_block_group_cache_progress(block_group, 7814 num_bytes + empty_size); 7815 failed_alloc = true; 7816 goto have_block_group; 7817 } else if (!offset) { 7818 goto loop; 7819 } 7820 checks: 7821 search_start = ALIGN(offset, fs_info->stripesize); 7822 7823 /* move on to the next group */ 7824 if (search_start + num_bytes > 7825 block_group->key.objectid + block_group->key.offset) { 7826 btrfs_add_free_space(block_group, offset, num_bytes); 7827 goto loop; 7828 } 7829 7830 if (offset < search_start) 7831 btrfs_add_free_space(block_group, offset, 7832 search_start - offset); 7833 BUG_ON(offset > search_start); 7834 7835 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7836 num_bytes, delalloc); 7837 if (ret == -EAGAIN) { 7838 btrfs_add_free_space(block_group, offset, num_bytes); 7839 goto loop; 7840 } 7841 btrfs_inc_block_group_reservations(block_group); 7842 7843 /* we are all good, lets return */ 7844 ins->objectid = search_start; 7845 ins->offset = num_bytes; 7846 7847 trace_btrfs_reserve_extent(fs_info, block_group, 7848 search_start, num_bytes); 7849 btrfs_release_block_group(block_group, delalloc); 7850 break; 7851 loop: 7852 failed_cluster_refill = false; 7853 failed_alloc = false; 7854 BUG_ON(index != get_block_group_index(block_group)); 7855 btrfs_release_block_group(block_group, delalloc); 7856 cond_resched(); 7857 } 7858 up_read(&space_info->groups_sem); 7859 7860 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7861 && !orig_have_caching_bg) 7862 orig_have_caching_bg = true; 7863 7864 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7865 goto search; 7866 7867 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7868 goto search; 7869 7870 /* 7871 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7872 * caching kthreads as we move along 7873 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7874 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7875 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7876 * again 7877 */ 7878 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7879 index = 0; 7880 if (loop == LOOP_CACHING_NOWAIT) { 7881 /* 7882 * We want to skip the LOOP_CACHING_WAIT step if we 7883 * don't have any uncached bgs and we've already done a 7884 * full search through. 7885 */ 7886 if (orig_have_caching_bg || !full_search) 7887 loop = LOOP_CACHING_WAIT; 7888 else 7889 loop = LOOP_ALLOC_CHUNK; 7890 } else { 7891 loop++; 7892 } 7893 7894 if (loop == LOOP_ALLOC_CHUNK) { 7895 struct btrfs_trans_handle *trans; 7896 int exist = 0; 7897 7898 trans = current->journal_info; 7899 if (trans) 7900 exist = 1; 7901 else 7902 trans = btrfs_join_transaction(root); 7903 7904 if (IS_ERR(trans)) { 7905 ret = PTR_ERR(trans); 7906 goto out; 7907 } 7908 7909 ret = do_chunk_alloc(trans, fs_info, flags, 7910 CHUNK_ALLOC_FORCE); 7911 7912 /* 7913 * If we can't allocate a new chunk we've already looped 7914 * through at least once, move on to the NO_EMPTY_SIZE 7915 * case. 7916 */ 7917 if (ret == -ENOSPC) 7918 loop = LOOP_NO_EMPTY_SIZE; 7919 7920 /* 7921 * Do not bail out on ENOSPC since we 7922 * can do more things. 7923 */ 7924 if (ret < 0 && ret != -ENOSPC) 7925 btrfs_abort_transaction(trans, ret); 7926 else 7927 ret = 0; 7928 if (!exist) 7929 btrfs_end_transaction(trans); 7930 if (ret) 7931 goto out; 7932 } 7933 7934 if (loop == LOOP_NO_EMPTY_SIZE) { 7935 /* 7936 * Don't loop again if we already have no empty_size and 7937 * no empty_cluster. 7938 */ 7939 if (empty_size == 0 && 7940 empty_cluster == 0) { 7941 ret = -ENOSPC; 7942 goto out; 7943 } 7944 empty_size = 0; 7945 empty_cluster = 0; 7946 } 7947 7948 goto search; 7949 } else if (!ins->objectid) { 7950 ret = -ENOSPC; 7951 } else if (ins->objectid) { 7952 if (!use_cluster && last_ptr) { 7953 spin_lock(&last_ptr->lock); 7954 last_ptr->window_start = ins->objectid; 7955 spin_unlock(&last_ptr->lock); 7956 } 7957 ret = 0; 7958 } 7959 out: 7960 if (ret == -ENOSPC) { 7961 spin_lock(&space_info->lock); 7962 space_info->max_extent_size = max_extent_size; 7963 spin_unlock(&space_info->lock); 7964 ins->offset = max_extent_size; 7965 } 7966 return ret; 7967 } 7968 7969 static void dump_space_info(struct btrfs_fs_info *fs_info, 7970 struct btrfs_space_info *info, u64 bytes, 7971 int dump_block_groups) 7972 { 7973 struct btrfs_block_group_cache *cache; 7974 int index = 0; 7975 7976 spin_lock(&info->lock); 7977 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7978 info->flags, 7979 info->total_bytes - btrfs_space_info_used(info, true), 7980 info->full ? "" : "not "); 7981 btrfs_info(fs_info, 7982 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7983 info->total_bytes, info->bytes_used, info->bytes_pinned, 7984 info->bytes_reserved, info->bytes_may_use, 7985 info->bytes_readonly); 7986 spin_unlock(&info->lock); 7987 7988 if (!dump_block_groups) 7989 return; 7990 7991 down_read(&info->groups_sem); 7992 again: 7993 list_for_each_entry(cache, &info->block_groups[index], list) { 7994 spin_lock(&cache->lock); 7995 btrfs_info(fs_info, 7996 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7997 cache->key.objectid, cache->key.offset, 7998 btrfs_block_group_used(&cache->item), cache->pinned, 7999 cache->reserved, cache->ro ? "[readonly]" : ""); 8000 btrfs_dump_free_space(cache, bytes); 8001 spin_unlock(&cache->lock); 8002 } 8003 if (++index < BTRFS_NR_RAID_TYPES) 8004 goto again; 8005 up_read(&info->groups_sem); 8006 } 8007 8008 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 8009 u64 num_bytes, u64 min_alloc_size, 8010 u64 empty_size, u64 hint_byte, 8011 struct btrfs_key *ins, int is_data, int delalloc) 8012 { 8013 struct btrfs_fs_info *fs_info = root->fs_info; 8014 bool final_tried = num_bytes == min_alloc_size; 8015 u64 flags; 8016 int ret; 8017 8018 flags = get_alloc_profile_by_root(root, is_data); 8019 again: 8020 WARN_ON(num_bytes < fs_info->sectorsize); 8021 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8022 hint_byte, ins, flags, delalloc); 8023 if (!ret && !is_data) { 8024 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8025 } else if (ret == -ENOSPC) { 8026 if (!final_tried && ins->offset) { 8027 num_bytes = min(num_bytes >> 1, ins->offset); 8028 num_bytes = round_down(num_bytes, 8029 fs_info->sectorsize); 8030 num_bytes = max(num_bytes, min_alloc_size); 8031 ram_bytes = num_bytes; 8032 if (num_bytes == min_alloc_size) 8033 final_tried = true; 8034 goto again; 8035 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8036 struct btrfs_space_info *sinfo; 8037 8038 sinfo = __find_space_info(fs_info, flags); 8039 btrfs_err(fs_info, 8040 "allocation failed flags %llu, wanted %llu", 8041 flags, num_bytes); 8042 if (sinfo) 8043 dump_space_info(fs_info, sinfo, num_bytes, 1); 8044 } 8045 } 8046 8047 return ret; 8048 } 8049 8050 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8051 u64 start, u64 len, 8052 int pin, int delalloc) 8053 { 8054 struct btrfs_block_group_cache *cache; 8055 int ret = 0; 8056 8057 cache = btrfs_lookup_block_group(fs_info, start); 8058 if (!cache) { 8059 btrfs_err(fs_info, "Unable to find block group for %llu", 8060 start); 8061 return -ENOSPC; 8062 } 8063 8064 if (pin) 8065 pin_down_extent(fs_info, cache, start, len, 1); 8066 else { 8067 if (btrfs_test_opt(fs_info, DISCARD)) 8068 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8069 btrfs_add_free_space(cache, start, len); 8070 btrfs_free_reserved_bytes(cache, len, delalloc); 8071 trace_btrfs_reserved_extent_free(fs_info, start, len); 8072 } 8073 8074 btrfs_put_block_group(cache); 8075 return ret; 8076 } 8077 8078 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8079 u64 start, u64 len, int delalloc) 8080 { 8081 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8082 } 8083 8084 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8085 u64 start, u64 len) 8086 { 8087 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8088 } 8089 8090 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8091 struct btrfs_fs_info *fs_info, 8092 u64 parent, u64 root_objectid, 8093 u64 flags, u64 owner, u64 offset, 8094 struct btrfs_key *ins, int ref_mod) 8095 { 8096 int ret; 8097 struct btrfs_extent_item *extent_item; 8098 struct btrfs_extent_inline_ref *iref; 8099 struct btrfs_path *path; 8100 struct extent_buffer *leaf; 8101 int type; 8102 u32 size; 8103 8104 if (parent > 0) 8105 type = BTRFS_SHARED_DATA_REF_KEY; 8106 else 8107 type = BTRFS_EXTENT_DATA_REF_KEY; 8108 8109 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8110 8111 path = btrfs_alloc_path(); 8112 if (!path) 8113 return -ENOMEM; 8114 8115 path->leave_spinning = 1; 8116 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8117 ins, size); 8118 if (ret) { 8119 btrfs_free_path(path); 8120 return ret; 8121 } 8122 8123 leaf = path->nodes[0]; 8124 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8125 struct btrfs_extent_item); 8126 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8127 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8128 btrfs_set_extent_flags(leaf, extent_item, 8129 flags | BTRFS_EXTENT_FLAG_DATA); 8130 8131 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8132 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8133 if (parent > 0) { 8134 struct btrfs_shared_data_ref *ref; 8135 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8136 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8137 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8138 } else { 8139 struct btrfs_extent_data_ref *ref; 8140 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8141 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8142 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8143 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8144 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8145 } 8146 8147 btrfs_mark_buffer_dirty(path->nodes[0]); 8148 btrfs_free_path(path); 8149 8150 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8151 ins->offset); 8152 if (ret) 8153 return ret; 8154 8155 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8156 if (ret) { /* -ENOENT, logic error */ 8157 btrfs_err(fs_info, "update block group failed for %llu %llu", 8158 ins->objectid, ins->offset); 8159 BUG(); 8160 } 8161 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8162 return ret; 8163 } 8164 8165 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8166 struct btrfs_fs_info *fs_info, 8167 u64 parent, u64 root_objectid, 8168 u64 flags, struct btrfs_disk_key *key, 8169 int level, struct btrfs_key *ins) 8170 { 8171 int ret; 8172 struct btrfs_extent_item *extent_item; 8173 struct btrfs_tree_block_info *block_info; 8174 struct btrfs_extent_inline_ref *iref; 8175 struct btrfs_path *path; 8176 struct extent_buffer *leaf; 8177 u32 size = sizeof(*extent_item) + sizeof(*iref); 8178 u64 num_bytes = ins->offset; 8179 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8180 8181 if (!skinny_metadata) 8182 size += sizeof(*block_info); 8183 8184 path = btrfs_alloc_path(); 8185 if (!path) { 8186 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8187 fs_info->nodesize); 8188 return -ENOMEM; 8189 } 8190 8191 path->leave_spinning = 1; 8192 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8193 ins, size); 8194 if (ret) { 8195 btrfs_free_path(path); 8196 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8197 fs_info->nodesize); 8198 return ret; 8199 } 8200 8201 leaf = path->nodes[0]; 8202 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8203 struct btrfs_extent_item); 8204 btrfs_set_extent_refs(leaf, extent_item, 1); 8205 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8206 btrfs_set_extent_flags(leaf, extent_item, 8207 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8208 8209 if (skinny_metadata) { 8210 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8211 num_bytes = fs_info->nodesize; 8212 } else { 8213 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8214 btrfs_set_tree_block_key(leaf, block_info, key); 8215 btrfs_set_tree_block_level(leaf, block_info, level); 8216 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8217 } 8218 8219 if (parent > 0) { 8220 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8221 btrfs_set_extent_inline_ref_type(leaf, iref, 8222 BTRFS_SHARED_BLOCK_REF_KEY); 8223 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8224 } else { 8225 btrfs_set_extent_inline_ref_type(leaf, iref, 8226 BTRFS_TREE_BLOCK_REF_KEY); 8227 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8228 } 8229 8230 btrfs_mark_buffer_dirty(leaf); 8231 btrfs_free_path(path); 8232 8233 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8234 num_bytes); 8235 if (ret) 8236 return ret; 8237 8238 ret = update_block_group(trans, fs_info, ins->objectid, 8239 fs_info->nodesize, 1); 8240 if (ret) { /* -ENOENT, logic error */ 8241 btrfs_err(fs_info, "update block group failed for %llu %llu", 8242 ins->objectid, ins->offset); 8243 BUG(); 8244 } 8245 8246 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8247 fs_info->nodesize); 8248 return ret; 8249 } 8250 8251 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8252 struct btrfs_root *root, u64 owner, 8253 u64 offset, u64 ram_bytes, 8254 struct btrfs_key *ins) 8255 { 8256 struct btrfs_fs_info *fs_info = root->fs_info; 8257 int ret; 8258 8259 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8260 8261 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8262 root->root_key.objectid, owner, offset, 8263 BTRFS_ADD_DELAYED_EXTENT); 8264 8265 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8266 ins->offset, 0, 8267 root->root_key.objectid, owner, 8268 offset, ram_bytes, 8269 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8270 return ret; 8271 } 8272 8273 /* 8274 * this is used by the tree logging recovery code. It records that 8275 * an extent has been allocated and makes sure to clear the free 8276 * space cache bits as well 8277 */ 8278 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8279 struct btrfs_fs_info *fs_info, 8280 u64 root_objectid, u64 owner, u64 offset, 8281 struct btrfs_key *ins) 8282 { 8283 int ret; 8284 struct btrfs_block_group_cache *block_group; 8285 struct btrfs_space_info *space_info; 8286 8287 /* 8288 * Mixed block groups will exclude before processing the log so we only 8289 * need to do the exclude dance if this fs isn't mixed. 8290 */ 8291 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8292 ret = __exclude_logged_extent(fs_info, ins->objectid, 8293 ins->offset); 8294 if (ret) 8295 return ret; 8296 } 8297 8298 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8299 if (!block_group) 8300 return -EINVAL; 8301 8302 space_info = block_group->space_info; 8303 spin_lock(&space_info->lock); 8304 spin_lock(&block_group->lock); 8305 space_info->bytes_reserved += ins->offset; 8306 block_group->reserved += ins->offset; 8307 spin_unlock(&block_group->lock); 8308 spin_unlock(&space_info->lock); 8309 8310 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8311 0, owner, offset, ins, 1); 8312 btrfs_put_block_group(block_group); 8313 return ret; 8314 } 8315 8316 static struct extent_buffer * 8317 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8318 u64 bytenr, int level) 8319 { 8320 struct btrfs_fs_info *fs_info = root->fs_info; 8321 struct extent_buffer *buf; 8322 8323 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8324 if (IS_ERR(buf)) 8325 return buf; 8326 8327 btrfs_set_header_generation(buf, trans->transid); 8328 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8329 btrfs_tree_lock(buf); 8330 clean_tree_block(fs_info, buf); 8331 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8332 8333 btrfs_set_lock_blocking(buf); 8334 set_extent_buffer_uptodate(buf); 8335 8336 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8337 buf->log_index = root->log_transid % 2; 8338 /* 8339 * we allow two log transactions at a time, use different 8340 * EXENT bit to differentiate dirty pages. 8341 */ 8342 if (buf->log_index == 0) 8343 set_extent_dirty(&root->dirty_log_pages, buf->start, 8344 buf->start + buf->len - 1, GFP_NOFS); 8345 else 8346 set_extent_new(&root->dirty_log_pages, buf->start, 8347 buf->start + buf->len - 1); 8348 } else { 8349 buf->log_index = -1; 8350 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8351 buf->start + buf->len - 1, GFP_NOFS); 8352 } 8353 trans->dirty = true; 8354 /* this returns a buffer locked for blocking */ 8355 return buf; 8356 } 8357 8358 static struct btrfs_block_rsv * 8359 use_block_rsv(struct btrfs_trans_handle *trans, 8360 struct btrfs_root *root, u32 blocksize) 8361 { 8362 struct btrfs_fs_info *fs_info = root->fs_info; 8363 struct btrfs_block_rsv *block_rsv; 8364 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8365 int ret; 8366 bool global_updated = false; 8367 8368 block_rsv = get_block_rsv(trans, root); 8369 8370 if (unlikely(block_rsv->size == 0)) 8371 goto try_reserve; 8372 again: 8373 ret = block_rsv_use_bytes(block_rsv, blocksize); 8374 if (!ret) 8375 return block_rsv; 8376 8377 if (block_rsv->failfast) 8378 return ERR_PTR(ret); 8379 8380 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8381 global_updated = true; 8382 update_global_block_rsv(fs_info); 8383 goto again; 8384 } 8385 8386 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8387 static DEFINE_RATELIMIT_STATE(_rs, 8388 DEFAULT_RATELIMIT_INTERVAL * 10, 8389 /*DEFAULT_RATELIMIT_BURST*/ 1); 8390 if (__ratelimit(&_rs)) 8391 WARN(1, KERN_DEBUG 8392 "BTRFS: block rsv returned %d\n", ret); 8393 } 8394 try_reserve: 8395 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8396 BTRFS_RESERVE_NO_FLUSH); 8397 if (!ret) 8398 return block_rsv; 8399 /* 8400 * If we couldn't reserve metadata bytes try and use some from 8401 * the global reserve if its space type is the same as the global 8402 * reservation. 8403 */ 8404 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8405 block_rsv->space_info == global_rsv->space_info) { 8406 ret = block_rsv_use_bytes(global_rsv, blocksize); 8407 if (!ret) 8408 return global_rsv; 8409 } 8410 return ERR_PTR(ret); 8411 } 8412 8413 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8414 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8415 { 8416 block_rsv_add_bytes(block_rsv, blocksize, 0); 8417 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8418 } 8419 8420 /* 8421 * finds a free extent and does all the dirty work required for allocation 8422 * returns the tree buffer or an ERR_PTR on error. 8423 */ 8424 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8425 struct btrfs_root *root, 8426 u64 parent, u64 root_objectid, 8427 const struct btrfs_disk_key *key, 8428 int level, u64 hint, 8429 u64 empty_size) 8430 { 8431 struct btrfs_fs_info *fs_info = root->fs_info; 8432 struct btrfs_key ins; 8433 struct btrfs_block_rsv *block_rsv; 8434 struct extent_buffer *buf; 8435 struct btrfs_delayed_extent_op *extent_op; 8436 u64 flags = 0; 8437 int ret; 8438 u32 blocksize = fs_info->nodesize; 8439 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8440 8441 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8442 if (btrfs_is_testing(fs_info)) { 8443 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8444 level); 8445 if (!IS_ERR(buf)) 8446 root->alloc_bytenr += blocksize; 8447 return buf; 8448 } 8449 #endif 8450 8451 block_rsv = use_block_rsv(trans, root, blocksize); 8452 if (IS_ERR(block_rsv)) 8453 return ERR_CAST(block_rsv); 8454 8455 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8456 empty_size, hint, &ins, 0, 0); 8457 if (ret) 8458 goto out_unuse; 8459 8460 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8461 if (IS_ERR(buf)) { 8462 ret = PTR_ERR(buf); 8463 goto out_free_reserved; 8464 } 8465 8466 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8467 if (parent == 0) 8468 parent = ins.objectid; 8469 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8470 } else 8471 BUG_ON(parent > 0); 8472 8473 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8474 extent_op = btrfs_alloc_delayed_extent_op(); 8475 if (!extent_op) { 8476 ret = -ENOMEM; 8477 goto out_free_buf; 8478 } 8479 if (key) 8480 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8481 else 8482 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8483 extent_op->flags_to_set = flags; 8484 extent_op->update_key = skinny_metadata ? false : true; 8485 extent_op->update_flags = true; 8486 extent_op->is_data = false; 8487 extent_op->level = level; 8488 8489 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8490 root_objectid, level, 0, 8491 BTRFS_ADD_DELAYED_EXTENT); 8492 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8493 ins.offset, parent, 8494 root_objectid, level, 8495 BTRFS_ADD_DELAYED_EXTENT, 8496 extent_op, NULL, NULL); 8497 if (ret) 8498 goto out_free_delayed; 8499 } 8500 return buf; 8501 8502 out_free_delayed: 8503 btrfs_free_delayed_extent_op(extent_op); 8504 out_free_buf: 8505 free_extent_buffer(buf); 8506 out_free_reserved: 8507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8508 out_unuse: 8509 unuse_block_rsv(fs_info, block_rsv, blocksize); 8510 return ERR_PTR(ret); 8511 } 8512 8513 struct walk_control { 8514 u64 refs[BTRFS_MAX_LEVEL]; 8515 u64 flags[BTRFS_MAX_LEVEL]; 8516 struct btrfs_key update_progress; 8517 int stage; 8518 int level; 8519 int shared_level; 8520 int update_ref; 8521 int keep_locks; 8522 int reada_slot; 8523 int reada_count; 8524 int for_reloc; 8525 }; 8526 8527 #define DROP_REFERENCE 1 8528 #define UPDATE_BACKREF 2 8529 8530 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8531 struct btrfs_root *root, 8532 struct walk_control *wc, 8533 struct btrfs_path *path) 8534 { 8535 struct btrfs_fs_info *fs_info = root->fs_info; 8536 u64 bytenr; 8537 u64 generation; 8538 u64 refs; 8539 u64 flags; 8540 u32 nritems; 8541 struct btrfs_key key; 8542 struct extent_buffer *eb; 8543 int ret; 8544 int slot; 8545 int nread = 0; 8546 8547 if (path->slots[wc->level] < wc->reada_slot) { 8548 wc->reada_count = wc->reada_count * 2 / 3; 8549 wc->reada_count = max(wc->reada_count, 2); 8550 } else { 8551 wc->reada_count = wc->reada_count * 3 / 2; 8552 wc->reada_count = min_t(int, wc->reada_count, 8553 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8554 } 8555 8556 eb = path->nodes[wc->level]; 8557 nritems = btrfs_header_nritems(eb); 8558 8559 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8560 if (nread >= wc->reada_count) 8561 break; 8562 8563 cond_resched(); 8564 bytenr = btrfs_node_blockptr(eb, slot); 8565 generation = btrfs_node_ptr_generation(eb, slot); 8566 8567 if (slot == path->slots[wc->level]) 8568 goto reada; 8569 8570 if (wc->stage == UPDATE_BACKREF && 8571 generation <= root->root_key.offset) 8572 continue; 8573 8574 /* We don't lock the tree block, it's OK to be racy here */ 8575 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8576 wc->level - 1, 1, &refs, 8577 &flags); 8578 /* We don't care about errors in readahead. */ 8579 if (ret < 0) 8580 continue; 8581 BUG_ON(refs == 0); 8582 8583 if (wc->stage == DROP_REFERENCE) { 8584 if (refs == 1) 8585 goto reada; 8586 8587 if (wc->level == 1 && 8588 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8589 continue; 8590 if (!wc->update_ref || 8591 generation <= root->root_key.offset) 8592 continue; 8593 btrfs_node_key_to_cpu(eb, &key, slot); 8594 ret = btrfs_comp_cpu_keys(&key, 8595 &wc->update_progress); 8596 if (ret < 0) 8597 continue; 8598 } else { 8599 if (wc->level == 1 && 8600 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8601 continue; 8602 } 8603 reada: 8604 readahead_tree_block(fs_info, bytenr); 8605 nread++; 8606 } 8607 wc->reada_slot = slot; 8608 } 8609 8610 /* 8611 * helper to process tree block while walking down the tree. 8612 * 8613 * when wc->stage == UPDATE_BACKREF, this function updates 8614 * back refs for pointers in the block. 8615 * 8616 * NOTE: return value 1 means we should stop walking down. 8617 */ 8618 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8619 struct btrfs_root *root, 8620 struct btrfs_path *path, 8621 struct walk_control *wc, int lookup_info) 8622 { 8623 struct btrfs_fs_info *fs_info = root->fs_info; 8624 int level = wc->level; 8625 struct extent_buffer *eb = path->nodes[level]; 8626 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8627 int ret; 8628 8629 if (wc->stage == UPDATE_BACKREF && 8630 btrfs_header_owner(eb) != root->root_key.objectid) 8631 return 1; 8632 8633 /* 8634 * when reference count of tree block is 1, it won't increase 8635 * again. once full backref flag is set, we never clear it. 8636 */ 8637 if (lookup_info && 8638 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8639 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8640 BUG_ON(!path->locks[level]); 8641 ret = btrfs_lookup_extent_info(trans, fs_info, 8642 eb->start, level, 1, 8643 &wc->refs[level], 8644 &wc->flags[level]); 8645 BUG_ON(ret == -ENOMEM); 8646 if (ret) 8647 return ret; 8648 BUG_ON(wc->refs[level] == 0); 8649 } 8650 8651 if (wc->stage == DROP_REFERENCE) { 8652 if (wc->refs[level] > 1) 8653 return 1; 8654 8655 if (path->locks[level] && !wc->keep_locks) { 8656 btrfs_tree_unlock_rw(eb, path->locks[level]); 8657 path->locks[level] = 0; 8658 } 8659 return 0; 8660 } 8661 8662 /* wc->stage == UPDATE_BACKREF */ 8663 if (!(wc->flags[level] & flag)) { 8664 BUG_ON(!path->locks[level]); 8665 ret = btrfs_inc_ref(trans, root, eb, 1); 8666 BUG_ON(ret); /* -ENOMEM */ 8667 ret = btrfs_dec_ref(trans, root, eb, 0); 8668 BUG_ON(ret); /* -ENOMEM */ 8669 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8670 eb->len, flag, 8671 btrfs_header_level(eb), 0); 8672 BUG_ON(ret); /* -ENOMEM */ 8673 wc->flags[level] |= flag; 8674 } 8675 8676 /* 8677 * the block is shared by multiple trees, so it's not good to 8678 * keep the tree lock 8679 */ 8680 if (path->locks[level] && level > 0) { 8681 btrfs_tree_unlock_rw(eb, path->locks[level]); 8682 path->locks[level] = 0; 8683 } 8684 return 0; 8685 } 8686 8687 /* 8688 * helper to process tree block pointer. 8689 * 8690 * when wc->stage == DROP_REFERENCE, this function checks 8691 * reference count of the block pointed to. if the block 8692 * is shared and we need update back refs for the subtree 8693 * rooted at the block, this function changes wc->stage to 8694 * UPDATE_BACKREF. if the block is shared and there is no 8695 * need to update back, this function drops the reference 8696 * to the block. 8697 * 8698 * NOTE: return value 1 means we should stop walking down. 8699 */ 8700 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8701 struct btrfs_root *root, 8702 struct btrfs_path *path, 8703 struct walk_control *wc, int *lookup_info) 8704 { 8705 struct btrfs_fs_info *fs_info = root->fs_info; 8706 u64 bytenr; 8707 u64 generation; 8708 u64 parent; 8709 u32 blocksize; 8710 struct btrfs_key key; 8711 struct extent_buffer *next; 8712 int level = wc->level; 8713 int reada = 0; 8714 int ret = 0; 8715 bool need_account = false; 8716 8717 generation = btrfs_node_ptr_generation(path->nodes[level], 8718 path->slots[level]); 8719 /* 8720 * if the lower level block was created before the snapshot 8721 * was created, we know there is no need to update back refs 8722 * for the subtree 8723 */ 8724 if (wc->stage == UPDATE_BACKREF && 8725 generation <= root->root_key.offset) { 8726 *lookup_info = 1; 8727 return 1; 8728 } 8729 8730 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8731 blocksize = fs_info->nodesize; 8732 8733 next = find_extent_buffer(fs_info, bytenr); 8734 if (!next) { 8735 next = btrfs_find_create_tree_block(fs_info, bytenr); 8736 if (IS_ERR(next)) 8737 return PTR_ERR(next); 8738 8739 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8740 level - 1); 8741 reada = 1; 8742 } 8743 btrfs_tree_lock(next); 8744 btrfs_set_lock_blocking(next); 8745 8746 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8747 &wc->refs[level - 1], 8748 &wc->flags[level - 1]); 8749 if (ret < 0) 8750 goto out_unlock; 8751 8752 if (unlikely(wc->refs[level - 1] == 0)) { 8753 btrfs_err(fs_info, "Missing references."); 8754 ret = -EIO; 8755 goto out_unlock; 8756 } 8757 *lookup_info = 0; 8758 8759 if (wc->stage == DROP_REFERENCE) { 8760 if (wc->refs[level - 1] > 1) { 8761 need_account = true; 8762 if (level == 1 && 8763 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8764 goto skip; 8765 8766 if (!wc->update_ref || 8767 generation <= root->root_key.offset) 8768 goto skip; 8769 8770 btrfs_node_key_to_cpu(path->nodes[level], &key, 8771 path->slots[level]); 8772 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8773 if (ret < 0) 8774 goto skip; 8775 8776 wc->stage = UPDATE_BACKREF; 8777 wc->shared_level = level - 1; 8778 } 8779 } else { 8780 if (level == 1 && 8781 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8782 goto skip; 8783 } 8784 8785 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8786 btrfs_tree_unlock(next); 8787 free_extent_buffer(next); 8788 next = NULL; 8789 *lookup_info = 1; 8790 } 8791 8792 if (!next) { 8793 if (reada && level == 1) 8794 reada_walk_down(trans, root, wc, path); 8795 next = read_tree_block(fs_info, bytenr, generation); 8796 if (IS_ERR(next)) { 8797 return PTR_ERR(next); 8798 } else if (!extent_buffer_uptodate(next)) { 8799 free_extent_buffer(next); 8800 return -EIO; 8801 } 8802 btrfs_tree_lock(next); 8803 btrfs_set_lock_blocking(next); 8804 } 8805 8806 level--; 8807 ASSERT(level == btrfs_header_level(next)); 8808 if (level != btrfs_header_level(next)) { 8809 btrfs_err(root->fs_info, "mismatched level"); 8810 ret = -EIO; 8811 goto out_unlock; 8812 } 8813 path->nodes[level] = next; 8814 path->slots[level] = 0; 8815 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8816 wc->level = level; 8817 if (wc->level == 1) 8818 wc->reada_slot = 0; 8819 return 0; 8820 skip: 8821 wc->refs[level - 1] = 0; 8822 wc->flags[level - 1] = 0; 8823 if (wc->stage == DROP_REFERENCE) { 8824 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8825 parent = path->nodes[level]->start; 8826 } else { 8827 ASSERT(root->root_key.objectid == 8828 btrfs_header_owner(path->nodes[level])); 8829 if (root->root_key.objectid != 8830 btrfs_header_owner(path->nodes[level])) { 8831 btrfs_err(root->fs_info, 8832 "mismatched block owner"); 8833 ret = -EIO; 8834 goto out_unlock; 8835 } 8836 parent = 0; 8837 } 8838 8839 if (need_account) { 8840 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8841 generation, level - 1); 8842 if (ret) { 8843 btrfs_err_rl(fs_info, 8844 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8845 ret); 8846 } 8847 } 8848 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8849 parent, root->root_key.objectid, 8850 level - 1, 0); 8851 if (ret) 8852 goto out_unlock; 8853 } 8854 8855 *lookup_info = 1; 8856 ret = 1; 8857 8858 out_unlock: 8859 btrfs_tree_unlock(next); 8860 free_extent_buffer(next); 8861 8862 return ret; 8863 } 8864 8865 /* 8866 * helper to process tree block while walking up the tree. 8867 * 8868 * when wc->stage == DROP_REFERENCE, this function drops 8869 * reference count on the block. 8870 * 8871 * when wc->stage == UPDATE_BACKREF, this function changes 8872 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8873 * to UPDATE_BACKREF previously while processing the block. 8874 * 8875 * NOTE: return value 1 means we should stop walking up. 8876 */ 8877 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8878 struct btrfs_root *root, 8879 struct btrfs_path *path, 8880 struct walk_control *wc) 8881 { 8882 struct btrfs_fs_info *fs_info = root->fs_info; 8883 int ret; 8884 int level = wc->level; 8885 struct extent_buffer *eb = path->nodes[level]; 8886 u64 parent = 0; 8887 8888 if (wc->stage == UPDATE_BACKREF) { 8889 BUG_ON(wc->shared_level < level); 8890 if (level < wc->shared_level) 8891 goto out; 8892 8893 ret = find_next_key(path, level + 1, &wc->update_progress); 8894 if (ret > 0) 8895 wc->update_ref = 0; 8896 8897 wc->stage = DROP_REFERENCE; 8898 wc->shared_level = -1; 8899 path->slots[level] = 0; 8900 8901 /* 8902 * check reference count again if the block isn't locked. 8903 * we should start walking down the tree again if reference 8904 * count is one. 8905 */ 8906 if (!path->locks[level]) { 8907 BUG_ON(level == 0); 8908 btrfs_tree_lock(eb); 8909 btrfs_set_lock_blocking(eb); 8910 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8911 8912 ret = btrfs_lookup_extent_info(trans, fs_info, 8913 eb->start, level, 1, 8914 &wc->refs[level], 8915 &wc->flags[level]); 8916 if (ret < 0) { 8917 btrfs_tree_unlock_rw(eb, path->locks[level]); 8918 path->locks[level] = 0; 8919 return ret; 8920 } 8921 BUG_ON(wc->refs[level] == 0); 8922 if (wc->refs[level] == 1) { 8923 btrfs_tree_unlock_rw(eb, path->locks[level]); 8924 path->locks[level] = 0; 8925 return 1; 8926 } 8927 } 8928 } 8929 8930 /* wc->stage == DROP_REFERENCE */ 8931 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8932 8933 if (wc->refs[level] == 1) { 8934 if (level == 0) { 8935 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8936 ret = btrfs_dec_ref(trans, root, eb, 1); 8937 else 8938 ret = btrfs_dec_ref(trans, root, eb, 0); 8939 BUG_ON(ret); /* -ENOMEM */ 8940 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8941 if (ret) { 8942 btrfs_err_rl(fs_info, 8943 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8944 ret); 8945 } 8946 } 8947 /* make block locked assertion in clean_tree_block happy */ 8948 if (!path->locks[level] && 8949 btrfs_header_generation(eb) == trans->transid) { 8950 btrfs_tree_lock(eb); 8951 btrfs_set_lock_blocking(eb); 8952 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8953 } 8954 clean_tree_block(fs_info, eb); 8955 } 8956 8957 if (eb == root->node) { 8958 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8959 parent = eb->start; 8960 else 8961 BUG_ON(root->root_key.objectid != 8962 btrfs_header_owner(eb)); 8963 } else { 8964 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8965 parent = path->nodes[level + 1]->start; 8966 else 8967 BUG_ON(root->root_key.objectid != 8968 btrfs_header_owner(path->nodes[level + 1])); 8969 } 8970 8971 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8972 out: 8973 wc->refs[level] = 0; 8974 wc->flags[level] = 0; 8975 return 0; 8976 } 8977 8978 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8979 struct btrfs_root *root, 8980 struct btrfs_path *path, 8981 struct walk_control *wc) 8982 { 8983 int level = wc->level; 8984 int lookup_info = 1; 8985 int ret; 8986 8987 while (level >= 0) { 8988 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8989 if (ret > 0) 8990 break; 8991 8992 if (level == 0) 8993 break; 8994 8995 if (path->slots[level] >= 8996 btrfs_header_nritems(path->nodes[level])) 8997 break; 8998 8999 ret = do_walk_down(trans, root, path, wc, &lookup_info); 9000 if (ret > 0) { 9001 path->slots[level]++; 9002 continue; 9003 } else if (ret < 0) 9004 return ret; 9005 level = wc->level; 9006 } 9007 return 0; 9008 } 9009 9010 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9011 struct btrfs_root *root, 9012 struct btrfs_path *path, 9013 struct walk_control *wc, int max_level) 9014 { 9015 int level = wc->level; 9016 int ret; 9017 9018 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9019 while (level < max_level && path->nodes[level]) { 9020 wc->level = level; 9021 if (path->slots[level] + 1 < 9022 btrfs_header_nritems(path->nodes[level])) { 9023 path->slots[level]++; 9024 return 0; 9025 } else { 9026 ret = walk_up_proc(trans, root, path, wc); 9027 if (ret > 0) 9028 return 0; 9029 9030 if (path->locks[level]) { 9031 btrfs_tree_unlock_rw(path->nodes[level], 9032 path->locks[level]); 9033 path->locks[level] = 0; 9034 } 9035 free_extent_buffer(path->nodes[level]); 9036 path->nodes[level] = NULL; 9037 level++; 9038 } 9039 } 9040 return 1; 9041 } 9042 9043 /* 9044 * drop a subvolume tree. 9045 * 9046 * this function traverses the tree freeing any blocks that only 9047 * referenced by the tree. 9048 * 9049 * when a shared tree block is found. this function decreases its 9050 * reference count by one. if update_ref is true, this function 9051 * also make sure backrefs for the shared block and all lower level 9052 * blocks are properly updated. 9053 * 9054 * If called with for_reloc == 0, may exit early with -EAGAIN 9055 */ 9056 int btrfs_drop_snapshot(struct btrfs_root *root, 9057 struct btrfs_block_rsv *block_rsv, int update_ref, 9058 int for_reloc) 9059 { 9060 struct btrfs_fs_info *fs_info = root->fs_info; 9061 struct btrfs_path *path; 9062 struct btrfs_trans_handle *trans; 9063 struct btrfs_root *tree_root = fs_info->tree_root; 9064 struct btrfs_root_item *root_item = &root->root_item; 9065 struct walk_control *wc; 9066 struct btrfs_key key; 9067 int err = 0; 9068 int ret; 9069 int level; 9070 bool root_dropped = false; 9071 9072 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9073 9074 path = btrfs_alloc_path(); 9075 if (!path) { 9076 err = -ENOMEM; 9077 goto out; 9078 } 9079 9080 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9081 if (!wc) { 9082 btrfs_free_path(path); 9083 err = -ENOMEM; 9084 goto out; 9085 } 9086 9087 trans = btrfs_start_transaction(tree_root, 0); 9088 if (IS_ERR(trans)) { 9089 err = PTR_ERR(trans); 9090 goto out_free; 9091 } 9092 9093 if (block_rsv) 9094 trans->block_rsv = block_rsv; 9095 9096 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9097 level = btrfs_header_level(root->node); 9098 path->nodes[level] = btrfs_lock_root_node(root); 9099 btrfs_set_lock_blocking(path->nodes[level]); 9100 path->slots[level] = 0; 9101 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9102 memset(&wc->update_progress, 0, 9103 sizeof(wc->update_progress)); 9104 } else { 9105 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9106 memcpy(&wc->update_progress, &key, 9107 sizeof(wc->update_progress)); 9108 9109 level = root_item->drop_level; 9110 BUG_ON(level == 0); 9111 path->lowest_level = level; 9112 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9113 path->lowest_level = 0; 9114 if (ret < 0) { 9115 err = ret; 9116 goto out_end_trans; 9117 } 9118 WARN_ON(ret > 0); 9119 9120 /* 9121 * unlock our path, this is safe because only this 9122 * function is allowed to delete this snapshot 9123 */ 9124 btrfs_unlock_up_safe(path, 0); 9125 9126 level = btrfs_header_level(root->node); 9127 while (1) { 9128 btrfs_tree_lock(path->nodes[level]); 9129 btrfs_set_lock_blocking(path->nodes[level]); 9130 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9131 9132 ret = btrfs_lookup_extent_info(trans, fs_info, 9133 path->nodes[level]->start, 9134 level, 1, &wc->refs[level], 9135 &wc->flags[level]); 9136 if (ret < 0) { 9137 err = ret; 9138 goto out_end_trans; 9139 } 9140 BUG_ON(wc->refs[level] == 0); 9141 9142 if (level == root_item->drop_level) 9143 break; 9144 9145 btrfs_tree_unlock(path->nodes[level]); 9146 path->locks[level] = 0; 9147 WARN_ON(wc->refs[level] != 1); 9148 level--; 9149 } 9150 } 9151 9152 wc->level = level; 9153 wc->shared_level = -1; 9154 wc->stage = DROP_REFERENCE; 9155 wc->update_ref = update_ref; 9156 wc->keep_locks = 0; 9157 wc->for_reloc = for_reloc; 9158 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9159 9160 while (1) { 9161 9162 ret = walk_down_tree(trans, root, path, wc); 9163 if (ret < 0) { 9164 err = ret; 9165 break; 9166 } 9167 9168 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9169 if (ret < 0) { 9170 err = ret; 9171 break; 9172 } 9173 9174 if (ret > 0) { 9175 BUG_ON(wc->stage != DROP_REFERENCE); 9176 break; 9177 } 9178 9179 if (wc->stage == DROP_REFERENCE) { 9180 level = wc->level; 9181 btrfs_node_key(path->nodes[level], 9182 &root_item->drop_progress, 9183 path->slots[level]); 9184 root_item->drop_level = level; 9185 } 9186 9187 BUG_ON(wc->level == 0); 9188 if (btrfs_should_end_transaction(trans) || 9189 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9190 ret = btrfs_update_root(trans, tree_root, 9191 &root->root_key, 9192 root_item); 9193 if (ret) { 9194 btrfs_abort_transaction(trans, ret); 9195 err = ret; 9196 goto out_end_trans; 9197 } 9198 9199 btrfs_end_transaction_throttle(trans); 9200 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9201 btrfs_debug(fs_info, 9202 "drop snapshot early exit"); 9203 err = -EAGAIN; 9204 goto out_free; 9205 } 9206 9207 trans = btrfs_start_transaction(tree_root, 0); 9208 if (IS_ERR(trans)) { 9209 err = PTR_ERR(trans); 9210 goto out_free; 9211 } 9212 if (block_rsv) 9213 trans->block_rsv = block_rsv; 9214 } 9215 } 9216 btrfs_release_path(path); 9217 if (err) 9218 goto out_end_trans; 9219 9220 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9221 if (ret) { 9222 btrfs_abort_transaction(trans, ret); 9223 goto out_end_trans; 9224 } 9225 9226 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9227 ret = btrfs_find_root(tree_root, &root->root_key, path, 9228 NULL, NULL); 9229 if (ret < 0) { 9230 btrfs_abort_transaction(trans, ret); 9231 err = ret; 9232 goto out_end_trans; 9233 } else if (ret > 0) { 9234 /* if we fail to delete the orphan item this time 9235 * around, it'll get picked up the next time. 9236 * 9237 * The most common failure here is just -ENOENT. 9238 */ 9239 btrfs_del_orphan_item(trans, tree_root, 9240 root->root_key.objectid); 9241 } 9242 } 9243 9244 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9245 btrfs_add_dropped_root(trans, root); 9246 } else { 9247 free_extent_buffer(root->node); 9248 free_extent_buffer(root->commit_root); 9249 btrfs_put_fs_root(root); 9250 } 9251 root_dropped = true; 9252 out_end_trans: 9253 btrfs_end_transaction_throttle(trans); 9254 out_free: 9255 kfree(wc); 9256 btrfs_free_path(path); 9257 out: 9258 /* 9259 * So if we need to stop dropping the snapshot for whatever reason we 9260 * need to make sure to add it back to the dead root list so that we 9261 * keep trying to do the work later. This also cleans up roots if we 9262 * don't have it in the radix (like when we recover after a power fail 9263 * or unmount) so we don't leak memory. 9264 */ 9265 if (!for_reloc && !root_dropped) 9266 btrfs_add_dead_root(root); 9267 if (err && err != -EAGAIN) 9268 btrfs_handle_fs_error(fs_info, err, NULL); 9269 return err; 9270 } 9271 9272 /* 9273 * drop subtree rooted at tree block 'node'. 9274 * 9275 * NOTE: this function will unlock and release tree block 'node' 9276 * only used by relocation code 9277 */ 9278 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9279 struct btrfs_root *root, 9280 struct extent_buffer *node, 9281 struct extent_buffer *parent) 9282 { 9283 struct btrfs_fs_info *fs_info = root->fs_info; 9284 struct btrfs_path *path; 9285 struct walk_control *wc; 9286 int level; 9287 int parent_level; 9288 int ret = 0; 9289 int wret; 9290 9291 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9292 9293 path = btrfs_alloc_path(); 9294 if (!path) 9295 return -ENOMEM; 9296 9297 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9298 if (!wc) { 9299 btrfs_free_path(path); 9300 return -ENOMEM; 9301 } 9302 9303 btrfs_assert_tree_locked(parent); 9304 parent_level = btrfs_header_level(parent); 9305 extent_buffer_get(parent); 9306 path->nodes[parent_level] = parent; 9307 path->slots[parent_level] = btrfs_header_nritems(parent); 9308 9309 btrfs_assert_tree_locked(node); 9310 level = btrfs_header_level(node); 9311 path->nodes[level] = node; 9312 path->slots[level] = 0; 9313 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9314 9315 wc->refs[parent_level] = 1; 9316 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9317 wc->level = level; 9318 wc->shared_level = -1; 9319 wc->stage = DROP_REFERENCE; 9320 wc->update_ref = 0; 9321 wc->keep_locks = 1; 9322 wc->for_reloc = 1; 9323 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9324 9325 while (1) { 9326 wret = walk_down_tree(trans, root, path, wc); 9327 if (wret < 0) { 9328 ret = wret; 9329 break; 9330 } 9331 9332 wret = walk_up_tree(trans, root, path, wc, parent_level); 9333 if (wret < 0) 9334 ret = wret; 9335 if (wret != 0) 9336 break; 9337 } 9338 9339 kfree(wc); 9340 btrfs_free_path(path); 9341 return ret; 9342 } 9343 9344 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9345 { 9346 u64 num_devices; 9347 u64 stripped; 9348 9349 /* 9350 * if restripe for this chunk_type is on pick target profile and 9351 * return, otherwise do the usual balance 9352 */ 9353 stripped = get_restripe_target(fs_info, flags); 9354 if (stripped) 9355 return extended_to_chunk(stripped); 9356 9357 num_devices = fs_info->fs_devices->rw_devices; 9358 9359 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9360 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9361 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9362 9363 if (num_devices == 1) { 9364 stripped |= BTRFS_BLOCK_GROUP_DUP; 9365 stripped = flags & ~stripped; 9366 9367 /* turn raid0 into single device chunks */ 9368 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9369 return stripped; 9370 9371 /* turn mirroring into duplication */ 9372 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9373 BTRFS_BLOCK_GROUP_RAID10)) 9374 return stripped | BTRFS_BLOCK_GROUP_DUP; 9375 } else { 9376 /* they already had raid on here, just return */ 9377 if (flags & stripped) 9378 return flags; 9379 9380 stripped |= BTRFS_BLOCK_GROUP_DUP; 9381 stripped = flags & ~stripped; 9382 9383 /* switch duplicated blocks with raid1 */ 9384 if (flags & BTRFS_BLOCK_GROUP_DUP) 9385 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9386 9387 /* this is drive concat, leave it alone */ 9388 } 9389 9390 return flags; 9391 } 9392 9393 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9394 { 9395 struct btrfs_space_info *sinfo = cache->space_info; 9396 u64 num_bytes; 9397 u64 min_allocable_bytes; 9398 int ret = -ENOSPC; 9399 9400 /* 9401 * We need some metadata space and system metadata space for 9402 * allocating chunks in some corner cases until we force to set 9403 * it to be readonly. 9404 */ 9405 if ((sinfo->flags & 9406 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9407 !force) 9408 min_allocable_bytes = SZ_1M; 9409 else 9410 min_allocable_bytes = 0; 9411 9412 spin_lock(&sinfo->lock); 9413 spin_lock(&cache->lock); 9414 9415 if (cache->ro) { 9416 cache->ro++; 9417 ret = 0; 9418 goto out; 9419 } 9420 9421 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9422 cache->bytes_super - btrfs_block_group_used(&cache->item); 9423 9424 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9425 min_allocable_bytes <= sinfo->total_bytes) { 9426 sinfo->bytes_readonly += num_bytes; 9427 cache->ro++; 9428 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9429 ret = 0; 9430 } 9431 out: 9432 spin_unlock(&cache->lock); 9433 spin_unlock(&sinfo->lock); 9434 return ret; 9435 } 9436 9437 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9438 struct btrfs_block_group_cache *cache) 9439 9440 { 9441 struct btrfs_trans_handle *trans; 9442 u64 alloc_flags; 9443 int ret; 9444 9445 again: 9446 trans = btrfs_join_transaction(fs_info->extent_root); 9447 if (IS_ERR(trans)) 9448 return PTR_ERR(trans); 9449 9450 /* 9451 * we're not allowed to set block groups readonly after the dirty 9452 * block groups cache has started writing. If it already started, 9453 * back off and let this transaction commit 9454 */ 9455 mutex_lock(&fs_info->ro_block_group_mutex); 9456 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9457 u64 transid = trans->transid; 9458 9459 mutex_unlock(&fs_info->ro_block_group_mutex); 9460 btrfs_end_transaction(trans); 9461 9462 ret = btrfs_wait_for_commit(fs_info, transid); 9463 if (ret) 9464 return ret; 9465 goto again; 9466 } 9467 9468 /* 9469 * if we are changing raid levels, try to allocate a corresponding 9470 * block group with the new raid level. 9471 */ 9472 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9473 if (alloc_flags != cache->flags) { 9474 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9475 CHUNK_ALLOC_FORCE); 9476 /* 9477 * ENOSPC is allowed here, we may have enough space 9478 * already allocated at the new raid level to 9479 * carry on 9480 */ 9481 if (ret == -ENOSPC) 9482 ret = 0; 9483 if (ret < 0) 9484 goto out; 9485 } 9486 9487 ret = inc_block_group_ro(cache, 0); 9488 if (!ret) 9489 goto out; 9490 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9491 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9492 CHUNK_ALLOC_FORCE); 9493 if (ret < 0) 9494 goto out; 9495 ret = inc_block_group_ro(cache, 0); 9496 out: 9497 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9498 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9499 mutex_lock(&fs_info->chunk_mutex); 9500 check_system_chunk(trans, fs_info, alloc_flags); 9501 mutex_unlock(&fs_info->chunk_mutex); 9502 } 9503 mutex_unlock(&fs_info->ro_block_group_mutex); 9504 9505 btrfs_end_transaction(trans); 9506 return ret; 9507 } 9508 9509 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9510 struct btrfs_fs_info *fs_info, u64 type) 9511 { 9512 u64 alloc_flags = get_alloc_profile(fs_info, type); 9513 9514 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9515 } 9516 9517 /* 9518 * helper to account the unused space of all the readonly block group in the 9519 * space_info. takes mirrors into account. 9520 */ 9521 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9522 { 9523 struct btrfs_block_group_cache *block_group; 9524 u64 free_bytes = 0; 9525 int factor; 9526 9527 /* It's df, we don't care if it's racy */ 9528 if (list_empty(&sinfo->ro_bgs)) 9529 return 0; 9530 9531 spin_lock(&sinfo->lock); 9532 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9533 spin_lock(&block_group->lock); 9534 9535 if (!block_group->ro) { 9536 spin_unlock(&block_group->lock); 9537 continue; 9538 } 9539 9540 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9541 BTRFS_BLOCK_GROUP_RAID10 | 9542 BTRFS_BLOCK_GROUP_DUP)) 9543 factor = 2; 9544 else 9545 factor = 1; 9546 9547 free_bytes += (block_group->key.offset - 9548 btrfs_block_group_used(&block_group->item)) * 9549 factor; 9550 9551 spin_unlock(&block_group->lock); 9552 } 9553 spin_unlock(&sinfo->lock); 9554 9555 return free_bytes; 9556 } 9557 9558 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9559 { 9560 struct btrfs_space_info *sinfo = cache->space_info; 9561 u64 num_bytes; 9562 9563 BUG_ON(!cache->ro); 9564 9565 spin_lock(&sinfo->lock); 9566 spin_lock(&cache->lock); 9567 if (!--cache->ro) { 9568 num_bytes = cache->key.offset - cache->reserved - 9569 cache->pinned - cache->bytes_super - 9570 btrfs_block_group_used(&cache->item); 9571 sinfo->bytes_readonly -= num_bytes; 9572 list_del_init(&cache->ro_list); 9573 } 9574 spin_unlock(&cache->lock); 9575 spin_unlock(&sinfo->lock); 9576 } 9577 9578 /* 9579 * checks to see if its even possible to relocate this block group. 9580 * 9581 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9582 * ok to go ahead and try. 9583 */ 9584 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9585 { 9586 struct btrfs_root *root = fs_info->extent_root; 9587 struct btrfs_block_group_cache *block_group; 9588 struct btrfs_space_info *space_info; 9589 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9590 struct btrfs_device *device; 9591 struct btrfs_trans_handle *trans; 9592 u64 min_free; 9593 u64 dev_min = 1; 9594 u64 dev_nr = 0; 9595 u64 target; 9596 int debug; 9597 int index; 9598 int full = 0; 9599 int ret = 0; 9600 9601 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9602 9603 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9604 9605 /* odd, couldn't find the block group, leave it alone */ 9606 if (!block_group) { 9607 if (debug) 9608 btrfs_warn(fs_info, 9609 "can't find block group for bytenr %llu", 9610 bytenr); 9611 return -1; 9612 } 9613 9614 min_free = btrfs_block_group_used(&block_group->item); 9615 9616 /* no bytes used, we're good */ 9617 if (!min_free) 9618 goto out; 9619 9620 space_info = block_group->space_info; 9621 spin_lock(&space_info->lock); 9622 9623 full = space_info->full; 9624 9625 /* 9626 * if this is the last block group we have in this space, we can't 9627 * relocate it unless we're able to allocate a new chunk below. 9628 * 9629 * Otherwise, we need to make sure we have room in the space to handle 9630 * all of the extents from this block group. If we can, we're good 9631 */ 9632 if ((space_info->total_bytes != block_group->key.offset) && 9633 (btrfs_space_info_used(space_info, false) + min_free < 9634 space_info->total_bytes)) { 9635 spin_unlock(&space_info->lock); 9636 goto out; 9637 } 9638 spin_unlock(&space_info->lock); 9639 9640 /* 9641 * ok we don't have enough space, but maybe we have free space on our 9642 * devices to allocate new chunks for relocation, so loop through our 9643 * alloc devices and guess if we have enough space. if this block 9644 * group is going to be restriped, run checks against the target 9645 * profile instead of the current one. 9646 */ 9647 ret = -1; 9648 9649 /* 9650 * index: 9651 * 0: raid10 9652 * 1: raid1 9653 * 2: dup 9654 * 3: raid0 9655 * 4: single 9656 */ 9657 target = get_restripe_target(fs_info, block_group->flags); 9658 if (target) { 9659 index = __get_raid_index(extended_to_chunk(target)); 9660 } else { 9661 /* 9662 * this is just a balance, so if we were marked as full 9663 * we know there is no space for a new chunk 9664 */ 9665 if (full) { 9666 if (debug) 9667 btrfs_warn(fs_info, 9668 "no space to alloc new chunk for block group %llu", 9669 block_group->key.objectid); 9670 goto out; 9671 } 9672 9673 index = get_block_group_index(block_group); 9674 } 9675 9676 if (index == BTRFS_RAID_RAID10) { 9677 dev_min = 4; 9678 /* Divide by 2 */ 9679 min_free >>= 1; 9680 } else if (index == BTRFS_RAID_RAID1) { 9681 dev_min = 2; 9682 } else if (index == BTRFS_RAID_DUP) { 9683 /* Multiply by 2 */ 9684 min_free <<= 1; 9685 } else if (index == BTRFS_RAID_RAID0) { 9686 dev_min = fs_devices->rw_devices; 9687 min_free = div64_u64(min_free, dev_min); 9688 } 9689 9690 /* We need to do this so that we can look at pending chunks */ 9691 trans = btrfs_join_transaction(root); 9692 if (IS_ERR(trans)) { 9693 ret = PTR_ERR(trans); 9694 goto out; 9695 } 9696 9697 mutex_lock(&fs_info->chunk_mutex); 9698 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9699 u64 dev_offset; 9700 9701 /* 9702 * check to make sure we can actually find a chunk with enough 9703 * space to fit our block group in. 9704 */ 9705 if (device->total_bytes > device->bytes_used + min_free && 9706 !device->is_tgtdev_for_dev_replace) { 9707 ret = find_free_dev_extent(trans, device, min_free, 9708 &dev_offset, NULL); 9709 if (!ret) 9710 dev_nr++; 9711 9712 if (dev_nr >= dev_min) 9713 break; 9714 9715 ret = -1; 9716 } 9717 } 9718 if (debug && ret == -1) 9719 btrfs_warn(fs_info, 9720 "no space to allocate a new chunk for block group %llu", 9721 block_group->key.objectid); 9722 mutex_unlock(&fs_info->chunk_mutex); 9723 btrfs_end_transaction(trans); 9724 out: 9725 btrfs_put_block_group(block_group); 9726 return ret; 9727 } 9728 9729 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9730 struct btrfs_path *path, 9731 struct btrfs_key *key) 9732 { 9733 struct btrfs_root *root = fs_info->extent_root; 9734 int ret = 0; 9735 struct btrfs_key found_key; 9736 struct extent_buffer *leaf; 9737 int slot; 9738 9739 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9740 if (ret < 0) 9741 goto out; 9742 9743 while (1) { 9744 slot = path->slots[0]; 9745 leaf = path->nodes[0]; 9746 if (slot >= btrfs_header_nritems(leaf)) { 9747 ret = btrfs_next_leaf(root, path); 9748 if (ret == 0) 9749 continue; 9750 if (ret < 0) 9751 goto out; 9752 break; 9753 } 9754 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9755 9756 if (found_key.objectid >= key->objectid && 9757 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9758 struct extent_map_tree *em_tree; 9759 struct extent_map *em; 9760 9761 em_tree = &root->fs_info->mapping_tree.map_tree; 9762 read_lock(&em_tree->lock); 9763 em = lookup_extent_mapping(em_tree, found_key.objectid, 9764 found_key.offset); 9765 read_unlock(&em_tree->lock); 9766 if (!em) { 9767 btrfs_err(fs_info, 9768 "logical %llu len %llu found bg but no related chunk", 9769 found_key.objectid, found_key.offset); 9770 ret = -ENOENT; 9771 } else { 9772 ret = 0; 9773 } 9774 free_extent_map(em); 9775 goto out; 9776 } 9777 path->slots[0]++; 9778 } 9779 out: 9780 return ret; 9781 } 9782 9783 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9784 { 9785 struct btrfs_block_group_cache *block_group; 9786 u64 last = 0; 9787 9788 while (1) { 9789 struct inode *inode; 9790 9791 block_group = btrfs_lookup_first_block_group(info, last); 9792 while (block_group) { 9793 spin_lock(&block_group->lock); 9794 if (block_group->iref) 9795 break; 9796 spin_unlock(&block_group->lock); 9797 block_group = next_block_group(info, block_group); 9798 } 9799 if (!block_group) { 9800 if (last == 0) 9801 break; 9802 last = 0; 9803 continue; 9804 } 9805 9806 inode = block_group->inode; 9807 block_group->iref = 0; 9808 block_group->inode = NULL; 9809 spin_unlock(&block_group->lock); 9810 ASSERT(block_group->io_ctl.inode == NULL); 9811 iput(inode); 9812 last = block_group->key.objectid + block_group->key.offset; 9813 btrfs_put_block_group(block_group); 9814 } 9815 } 9816 9817 /* 9818 * Must be called only after stopping all workers, since we could have block 9819 * group caching kthreads running, and therefore they could race with us if we 9820 * freed the block groups before stopping them. 9821 */ 9822 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9823 { 9824 struct btrfs_block_group_cache *block_group; 9825 struct btrfs_space_info *space_info; 9826 struct btrfs_caching_control *caching_ctl; 9827 struct rb_node *n; 9828 9829 down_write(&info->commit_root_sem); 9830 while (!list_empty(&info->caching_block_groups)) { 9831 caching_ctl = list_entry(info->caching_block_groups.next, 9832 struct btrfs_caching_control, list); 9833 list_del(&caching_ctl->list); 9834 put_caching_control(caching_ctl); 9835 } 9836 up_write(&info->commit_root_sem); 9837 9838 spin_lock(&info->unused_bgs_lock); 9839 while (!list_empty(&info->unused_bgs)) { 9840 block_group = list_first_entry(&info->unused_bgs, 9841 struct btrfs_block_group_cache, 9842 bg_list); 9843 list_del_init(&block_group->bg_list); 9844 btrfs_put_block_group(block_group); 9845 } 9846 spin_unlock(&info->unused_bgs_lock); 9847 9848 spin_lock(&info->block_group_cache_lock); 9849 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9850 block_group = rb_entry(n, struct btrfs_block_group_cache, 9851 cache_node); 9852 rb_erase(&block_group->cache_node, 9853 &info->block_group_cache_tree); 9854 RB_CLEAR_NODE(&block_group->cache_node); 9855 spin_unlock(&info->block_group_cache_lock); 9856 9857 down_write(&block_group->space_info->groups_sem); 9858 list_del(&block_group->list); 9859 up_write(&block_group->space_info->groups_sem); 9860 9861 /* 9862 * We haven't cached this block group, which means we could 9863 * possibly have excluded extents on this block group. 9864 */ 9865 if (block_group->cached == BTRFS_CACHE_NO || 9866 block_group->cached == BTRFS_CACHE_ERROR) 9867 free_excluded_extents(info, block_group); 9868 9869 btrfs_remove_free_space_cache(block_group); 9870 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9871 ASSERT(list_empty(&block_group->dirty_list)); 9872 ASSERT(list_empty(&block_group->io_list)); 9873 ASSERT(list_empty(&block_group->bg_list)); 9874 ASSERT(atomic_read(&block_group->count) == 1); 9875 btrfs_put_block_group(block_group); 9876 9877 spin_lock(&info->block_group_cache_lock); 9878 } 9879 spin_unlock(&info->block_group_cache_lock); 9880 9881 /* now that all the block groups are freed, go through and 9882 * free all the space_info structs. This is only called during 9883 * the final stages of unmount, and so we know nobody is 9884 * using them. We call synchronize_rcu() once before we start, 9885 * just to be on the safe side. 9886 */ 9887 synchronize_rcu(); 9888 9889 release_global_block_rsv(info); 9890 9891 while (!list_empty(&info->space_info)) { 9892 int i; 9893 9894 space_info = list_entry(info->space_info.next, 9895 struct btrfs_space_info, 9896 list); 9897 9898 /* 9899 * Do not hide this behind enospc_debug, this is actually 9900 * important and indicates a real bug if this happens. 9901 */ 9902 if (WARN_ON(space_info->bytes_pinned > 0 || 9903 space_info->bytes_reserved > 0 || 9904 space_info->bytes_may_use > 0)) 9905 dump_space_info(info, space_info, 0, 0); 9906 list_del(&space_info->list); 9907 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9908 struct kobject *kobj; 9909 kobj = space_info->block_group_kobjs[i]; 9910 space_info->block_group_kobjs[i] = NULL; 9911 if (kobj) { 9912 kobject_del(kobj); 9913 kobject_put(kobj); 9914 } 9915 } 9916 kobject_del(&space_info->kobj); 9917 kobject_put(&space_info->kobj); 9918 } 9919 return 0; 9920 } 9921 9922 static void link_block_group(struct btrfs_block_group_cache *cache) 9923 { 9924 struct btrfs_space_info *space_info = cache->space_info; 9925 int index = get_block_group_index(cache); 9926 bool first = false; 9927 9928 down_write(&space_info->groups_sem); 9929 if (list_empty(&space_info->block_groups[index])) 9930 first = true; 9931 list_add_tail(&cache->list, &space_info->block_groups[index]); 9932 up_write(&space_info->groups_sem); 9933 9934 if (first) { 9935 struct raid_kobject *rkobj; 9936 int ret; 9937 9938 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9939 if (!rkobj) 9940 goto out_err; 9941 rkobj->raid_type = index; 9942 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9943 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9944 "%s", get_raid_name(index)); 9945 if (ret) { 9946 kobject_put(&rkobj->kobj); 9947 goto out_err; 9948 } 9949 space_info->block_group_kobjs[index] = &rkobj->kobj; 9950 } 9951 9952 return; 9953 out_err: 9954 btrfs_warn(cache->fs_info, 9955 "failed to add kobject for block cache, ignoring"); 9956 } 9957 9958 static struct btrfs_block_group_cache * 9959 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9960 u64 start, u64 size) 9961 { 9962 struct btrfs_block_group_cache *cache; 9963 9964 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9965 if (!cache) 9966 return NULL; 9967 9968 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9969 GFP_NOFS); 9970 if (!cache->free_space_ctl) { 9971 kfree(cache); 9972 return NULL; 9973 } 9974 9975 cache->key.objectid = start; 9976 cache->key.offset = size; 9977 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9978 9979 cache->fs_info = fs_info; 9980 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 9981 set_free_space_tree_thresholds(cache); 9982 9983 atomic_set(&cache->count, 1); 9984 spin_lock_init(&cache->lock); 9985 init_rwsem(&cache->data_rwsem); 9986 INIT_LIST_HEAD(&cache->list); 9987 INIT_LIST_HEAD(&cache->cluster_list); 9988 INIT_LIST_HEAD(&cache->bg_list); 9989 INIT_LIST_HEAD(&cache->ro_list); 9990 INIT_LIST_HEAD(&cache->dirty_list); 9991 INIT_LIST_HEAD(&cache->io_list); 9992 btrfs_init_free_space_ctl(cache); 9993 atomic_set(&cache->trimming, 0); 9994 mutex_init(&cache->free_space_lock); 9995 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 9996 9997 return cache; 9998 } 9999 10000 int btrfs_read_block_groups(struct btrfs_fs_info *info) 10001 { 10002 struct btrfs_path *path; 10003 int ret; 10004 struct btrfs_block_group_cache *cache; 10005 struct btrfs_space_info *space_info; 10006 struct btrfs_key key; 10007 struct btrfs_key found_key; 10008 struct extent_buffer *leaf; 10009 int need_clear = 0; 10010 u64 cache_gen; 10011 u64 feature; 10012 int mixed; 10013 10014 feature = btrfs_super_incompat_flags(info->super_copy); 10015 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10016 10017 key.objectid = 0; 10018 key.offset = 0; 10019 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10020 path = btrfs_alloc_path(); 10021 if (!path) 10022 return -ENOMEM; 10023 path->reada = READA_FORWARD; 10024 10025 cache_gen = btrfs_super_cache_generation(info->super_copy); 10026 if (btrfs_test_opt(info, SPACE_CACHE) && 10027 btrfs_super_generation(info->super_copy) != cache_gen) 10028 need_clear = 1; 10029 if (btrfs_test_opt(info, CLEAR_CACHE)) 10030 need_clear = 1; 10031 10032 while (1) { 10033 ret = find_first_block_group(info, path, &key); 10034 if (ret > 0) 10035 break; 10036 if (ret != 0) 10037 goto error; 10038 10039 leaf = path->nodes[0]; 10040 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10041 10042 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10043 found_key.offset); 10044 if (!cache) { 10045 ret = -ENOMEM; 10046 goto error; 10047 } 10048 10049 if (need_clear) { 10050 /* 10051 * When we mount with old space cache, we need to 10052 * set BTRFS_DC_CLEAR and set dirty flag. 10053 * 10054 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10055 * truncate the old free space cache inode and 10056 * setup a new one. 10057 * b) Setting 'dirty flag' makes sure that we flush 10058 * the new space cache info onto disk. 10059 */ 10060 if (btrfs_test_opt(info, SPACE_CACHE)) 10061 cache->disk_cache_state = BTRFS_DC_CLEAR; 10062 } 10063 10064 read_extent_buffer(leaf, &cache->item, 10065 btrfs_item_ptr_offset(leaf, path->slots[0]), 10066 sizeof(cache->item)); 10067 cache->flags = btrfs_block_group_flags(&cache->item); 10068 if (!mixed && 10069 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10070 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10071 btrfs_err(info, 10072 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10073 cache->key.objectid); 10074 ret = -EINVAL; 10075 goto error; 10076 } 10077 10078 key.objectid = found_key.objectid + found_key.offset; 10079 btrfs_release_path(path); 10080 10081 /* 10082 * We need to exclude the super stripes now so that the space 10083 * info has super bytes accounted for, otherwise we'll think 10084 * we have more space than we actually do. 10085 */ 10086 ret = exclude_super_stripes(info, cache); 10087 if (ret) { 10088 /* 10089 * We may have excluded something, so call this just in 10090 * case. 10091 */ 10092 free_excluded_extents(info, cache); 10093 btrfs_put_block_group(cache); 10094 goto error; 10095 } 10096 10097 /* 10098 * check for two cases, either we are full, and therefore 10099 * don't need to bother with the caching work since we won't 10100 * find any space, or we are empty, and we can just add all 10101 * the space in and be done with it. This saves us _alot_ of 10102 * time, particularly in the full case. 10103 */ 10104 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10105 cache->last_byte_to_unpin = (u64)-1; 10106 cache->cached = BTRFS_CACHE_FINISHED; 10107 free_excluded_extents(info, cache); 10108 } else if (btrfs_block_group_used(&cache->item) == 0) { 10109 cache->last_byte_to_unpin = (u64)-1; 10110 cache->cached = BTRFS_CACHE_FINISHED; 10111 add_new_free_space(cache, info, 10112 found_key.objectid, 10113 found_key.objectid + 10114 found_key.offset); 10115 free_excluded_extents(info, cache); 10116 } 10117 10118 ret = btrfs_add_block_group_cache(info, cache); 10119 if (ret) { 10120 btrfs_remove_free_space_cache(cache); 10121 btrfs_put_block_group(cache); 10122 goto error; 10123 } 10124 10125 trace_btrfs_add_block_group(info, cache, 0); 10126 update_space_info(info, cache->flags, found_key.offset, 10127 btrfs_block_group_used(&cache->item), 10128 cache->bytes_super, &space_info); 10129 10130 cache->space_info = space_info; 10131 10132 link_block_group(cache); 10133 10134 set_avail_alloc_bits(info, cache->flags); 10135 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10136 inc_block_group_ro(cache, 1); 10137 } else if (btrfs_block_group_used(&cache->item) == 0) { 10138 spin_lock(&info->unused_bgs_lock); 10139 /* Should always be true but just in case. */ 10140 if (list_empty(&cache->bg_list)) { 10141 btrfs_get_block_group(cache); 10142 list_add_tail(&cache->bg_list, 10143 &info->unused_bgs); 10144 } 10145 spin_unlock(&info->unused_bgs_lock); 10146 } 10147 } 10148 10149 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10150 if (!(get_alloc_profile(info, space_info->flags) & 10151 (BTRFS_BLOCK_GROUP_RAID10 | 10152 BTRFS_BLOCK_GROUP_RAID1 | 10153 BTRFS_BLOCK_GROUP_RAID5 | 10154 BTRFS_BLOCK_GROUP_RAID6 | 10155 BTRFS_BLOCK_GROUP_DUP))) 10156 continue; 10157 /* 10158 * avoid allocating from un-mirrored block group if there are 10159 * mirrored block groups. 10160 */ 10161 list_for_each_entry(cache, 10162 &space_info->block_groups[BTRFS_RAID_RAID0], 10163 list) 10164 inc_block_group_ro(cache, 1); 10165 list_for_each_entry(cache, 10166 &space_info->block_groups[BTRFS_RAID_SINGLE], 10167 list) 10168 inc_block_group_ro(cache, 1); 10169 } 10170 10171 init_global_block_rsv(info); 10172 ret = 0; 10173 error: 10174 btrfs_free_path(path); 10175 return ret; 10176 } 10177 10178 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10179 struct btrfs_fs_info *fs_info) 10180 { 10181 struct btrfs_block_group_cache *block_group, *tmp; 10182 struct btrfs_root *extent_root = fs_info->extent_root; 10183 struct btrfs_block_group_item item; 10184 struct btrfs_key key; 10185 int ret = 0; 10186 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10187 10188 trans->can_flush_pending_bgs = false; 10189 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10190 if (ret) 10191 goto next; 10192 10193 spin_lock(&block_group->lock); 10194 memcpy(&item, &block_group->item, sizeof(item)); 10195 memcpy(&key, &block_group->key, sizeof(key)); 10196 spin_unlock(&block_group->lock); 10197 10198 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10199 sizeof(item)); 10200 if (ret) 10201 btrfs_abort_transaction(trans, ret); 10202 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10203 key.offset); 10204 if (ret) 10205 btrfs_abort_transaction(trans, ret); 10206 add_block_group_free_space(trans, fs_info, block_group); 10207 /* already aborted the transaction if it failed. */ 10208 next: 10209 list_del_init(&block_group->bg_list); 10210 } 10211 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10212 } 10213 10214 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10215 struct btrfs_fs_info *fs_info, u64 bytes_used, 10216 u64 type, u64 chunk_offset, u64 size) 10217 { 10218 struct btrfs_block_group_cache *cache; 10219 int ret; 10220 10221 btrfs_set_log_full_commit(fs_info, trans); 10222 10223 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10224 if (!cache) 10225 return -ENOMEM; 10226 10227 btrfs_set_block_group_used(&cache->item, bytes_used); 10228 btrfs_set_block_group_chunk_objectid(&cache->item, 10229 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10230 btrfs_set_block_group_flags(&cache->item, type); 10231 10232 cache->flags = type; 10233 cache->last_byte_to_unpin = (u64)-1; 10234 cache->cached = BTRFS_CACHE_FINISHED; 10235 cache->needs_free_space = 1; 10236 ret = exclude_super_stripes(fs_info, cache); 10237 if (ret) { 10238 /* 10239 * We may have excluded something, so call this just in 10240 * case. 10241 */ 10242 free_excluded_extents(fs_info, cache); 10243 btrfs_put_block_group(cache); 10244 return ret; 10245 } 10246 10247 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10248 10249 free_excluded_extents(fs_info, cache); 10250 10251 #ifdef CONFIG_BTRFS_DEBUG 10252 if (btrfs_should_fragment_free_space(cache)) { 10253 u64 new_bytes_used = size - bytes_used; 10254 10255 bytes_used += new_bytes_used >> 1; 10256 fragment_free_space(cache); 10257 } 10258 #endif 10259 /* 10260 * Ensure the corresponding space_info object is created and 10261 * assigned to our block group. We want our bg to be added to the rbtree 10262 * with its ->space_info set. 10263 */ 10264 cache->space_info = __find_space_info(fs_info, cache->flags); 10265 if (!cache->space_info) { 10266 ret = create_space_info(fs_info, cache->flags, 10267 &cache->space_info); 10268 if (ret) { 10269 btrfs_remove_free_space_cache(cache); 10270 btrfs_put_block_group(cache); 10271 return ret; 10272 } 10273 } 10274 10275 ret = btrfs_add_block_group_cache(fs_info, cache); 10276 if (ret) { 10277 btrfs_remove_free_space_cache(cache); 10278 btrfs_put_block_group(cache); 10279 return ret; 10280 } 10281 10282 /* 10283 * Now that our block group has its ->space_info set and is inserted in 10284 * the rbtree, update the space info's counters. 10285 */ 10286 trace_btrfs_add_block_group(fs_info, cache, 1); 10287 update_space_info(fs_info, cache->flags, size, bytes_used, 10288 cache->bytes_super, &cache->space_info); 10289 update_global_block_rsv(fs_info); 10290 10291 link_block_group(cache); 10292 10293 list_add_tail(&cache->bg_list, &trans->new_bgs); 10294 10295 set_avail_alloc_bits(fs_info, type); 10296 return 0; 10297 } 10298 10299 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10300 { 10301 u64 extra_flags = chunk_to_extended(flags) & 10302 BTRFS_EXTENDED_PROFILE_MASK; 10303 10304 write_seqlock(&fs_info->profiles_lock); 10305 if (flags & BTRFS_BLOCK_GROUP_DATA) 10306 fs_info->avail_data_alloc_bits &= ~extra_flags; 10307 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10308 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10309 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10310 fs_info->avail_system_alloc_bits &= ~extra_flags; 10311 write_sequnlock(&fs_info->profiles_lock); 10312 } 10313 10314 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10315 struct btrfs_fs_info *fs_info, u64 group_start, 10316 struct extent_map *em) 10317 { 10318 struct btrfs_root *root = fs_info->extent_root; 10319 struct btrfs_path *path; 10320 struct btrfs_block_group_cache *block_group; 10321 struct btrfs_free_cluster *cluster; 10322 struct btrfs_root *tree_root = fs_info->tree_root; 10323 struct btrfs_key key; 10324 struct inode *inode; 10325 struct kobject *kobj = NULL; 10326 int ret; 10327 int index; 10328 int factor; 10329 struct btrfs_caching_control *caching_ctl = NULL; 10330 bool remove_em; 10331 10332 block_group = btrfs_lookup_block_group(fs_info, group_start); 10333 BUG_ON(!block_group); 10334 BUG_ON(!block_group->ro); 10335 10336 /* 10337 * Free the reserved super bytes from this block group before 10338 * remove it. 10339 */ 10340 free_excluded_extents(fs_info, block_group); 10341 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10342 block_group->key.offset); 10343 10344 memcpy(&key, &block_group->key, sizeof(key)); 10345 index = get_block_group_index(block_group); 10346 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10347 BTRFS_BLOCK_GROUP_RAID1 | 10348 BTRFS_BLOCK_GROUP_RAID10)) 10349 factor = 2; 10350 else 10351 factor = 1; 10352 10353 /* make sure this block group isn't part of an allocation cluster */ 10354 cluster = &fs_info->data_alloc_cluster; 10355 spin_lock(&cluster->refill_lock); 10356 btrfs_return_cluster_to_free_space(block_group, cluster); 10357 spin_unlock(&cluster->refill_lock); 10358 10359 /* 10360 * make sure this block group isn't part of a metadata 10361 * allocation cluster 10362 */ 10363 cluster = &fs_info->meta_alloc_cluster; 10364 spin_lock(&cluster->refill_lock); 10365 btrfs_return_cluster_to_free_space(block_group, cluster); 10366 spin_unlock(&cluster->refill_lock); 10367 10368 path = btrfs_alloc_path(); 10369 if (!path) { 10370 ret = -ENOMEM; 10371 goto out; 10372 } 10373 10374 /* 10375 * get the inode first so any iput calls done for the io_list 10376 * aren't the final iput (no unlinks allowed now) 10377 */ 10378 inode = lookup_free_space_inode(fs_info, block_group, path); 10379 10380 mutex_lock(&trans->transaction->cache_write_mutex); 10381 /* 10382 * make sure our free spache cache IO is done before remove the 10383 * free space inode 10384 */ 10385 spin_lock(&trans->transaction->dirty_bgs_lock); 10386 if (!list_empty(&block_group->io_list)) { 10387 list_del_init(&block_group->io_list); 10388 10389 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10390 10391 spin_unlock(&trans->transaction->dirty_bgs_lock); 10392 btrfs_wait_cache_io(trans, block_group, path); 10393 btrfs_put_block_group(block_group); 10394 spin_lock(&trans->transaction->dirty_bgs_lock); 10395 } 10396 10397 if (!list_empty(&block_group->dirty_list)) { 10398 list_del_init(&block_group->dirty_list); 10399 btrfs_put_block_group(block_group); 10400 } 10401 spin_unlock(&trans->transaction->dirty_bgs_lock); 10402 mutex_unlock(&trans->transaction->cache_write_mutex); 10403 10404 if (!IS_ERR(inode)) { 10405 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10406 if (ret) { 10407 btrfs_add_delayed_iput(inode); 10408 goto out; 10409 } 10410 clear_nlink(inode); 10411 /* One for the block groups ref */ 10412 spin_lock(&block_group->lock); 10413 if (block_group->iref) { 10414 block_group->iref = 0; 10415 block_group->inode = NULL; 10416 spin_unlock(&block_group->lock); 10417 iput(inode); 10418 } else { 10419 spin_unlock(&block_group->lock); 10420 } 10421 /* One for our lookup ref */ 10422 btrfs_add_delayed_iput(inode); 10423 } 10424 10425 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10426 key.offset = block_group->key.objectid; 10427 key.type = 0; 10428 10429 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10430 if (ret < 0) 10431 goto out; 10432 if (ret > 0) 10433 btrfs_release_path(path); 10434 if (ret == 0) { 10435 ret = btrfs_del_item(trans, tree_root, path); 10436 if (ret) 10437 goto out; 10438 btrfs_release_path(path); 10439 } 10440 10441 spin_lock(&fs_info->block_group_cache_lock); 10442 rb_erase(&block_group->cache_node, 10443 &fs_info->block_group_cache_tree); 10444 RB_CLEAR_NODE(&block_group->cache_node); 10445 10446 if (fs_info->first_logical_byte == block_group->key.objectid) 10447 fs_info->first_logical_byte = (u64)-1; 10448 spin_unlock(&fs_info->block_group_cache_lock); 10449 10450 down_write(&block_group->space_info->groups_sem); 10451 /* 10452 * we must use list_del_init so people can check to see if they 10453 * are still on the list after taking the semaphore 10454 */ 10455 list_del_init(&block_group->list); 10456 if (list_empty(&block_group->space_info->block_groups[index])) { 10457 kobj = block_group->space_info->block_group_kobjs[index]; 10458 block_group->space_info->block_group_kobjs[index] = NULL; 10459 clear_avail_alloc_bits(fs_info, block_group->flags); 10460 } 10461 up_write(&block_group->space_info->groups_sem); 10462 if (kobj) { 10463 kobject_del(kobj); 10464 kobject_put(kobj); 10465 } 10466 10467 if (block_group->has_caching_ctl) 10468 caching_ctl = get_caching_control(block_group); 10469 if (block_group->cached == BTRFS_CACHE_STARTED) 10470 wait_block_group_cache_done(block_group); 10471 if (block_group->has_caching_ctl) { 10472 down_write(&fs_info->commit_root_sem); 10473 if (!caching_ctl) { 10474 struct btrfs_caching_control *ctl; 10475 10476 list_for_each_entry(ctl, 10477 &fs_info->caching_block_groups, list) 10478 if (ctl->block_group == block_group) { 10479 caching_ctl = ctl; 10480 refcount_inc(&caching_ctl->count); 10481 break; 10482 } 10483 } 10484 if (caching_ctl) 10485 list_del_init(&caching_ctl->list); 10486 up_write(&fs_info->commit_root_sem); 10487 if (caching_ctl) { 10488 /* Once for the caching bgs list and once for us. */ 10489 put_caching_control(caching_ctl); 10490 put_caching_control(caching_ctl); 10491 } 10492 } 10493 10494 spin_lock(&trans->transaction->dirty_bgs_lock); 10495 if (!list_empty(&block_group->dirty_list)) { 10496 WARN_ON(1); 10497 } 10498 if (!list_empty(&block_group->io_list)) { 10499 WARN_ON(1); 10500 } 10501 spin_unlock(&trans->transaction->dirty_bgs_lock); 10502 btrfs_remove_free_space_cache(block_group); 10503 10504 spin_lock(&block_group->space_info->lock); 10505 list_del_init(&block_group->ro_list); 10506 10507 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10508 WARN_ON(block_group->space_info->total_bytes 10509 < block_group->key.offset); 10510 WARN_ON(block_group->space_info->bytes_readonly 10511 < block_group->key.offset); 10512 WARN_ON(block_group->space_info->disk_total 10513 < block_group->key.offset * factor); 10514 } 10515 block_group->space_info->total_bytes -= block_group->key.offset; 10516 block_group->space_info->bytes_readonly -= block_group->key.offset; 10517 block_group->space_info->disk_total -= block_group->key.offset * factor; 10518 10519 spin_unlock(&block_group->space_info->lock); 10520 10521 memcpy(&key, &block_group->key, sizeof(key)); 10522 10523 mutex_lock(&fs_info->chunk_mutex); 10524 if (!list_empty(&em->list)) { 10525 /* We're in the transaction->pending_chunks list. */ 10526 free_extent_map(em); 10527 } 10528 spin_lock(&block_group->lock); 10529 block_group->removed = 1; 10530 /* 10531 * At this point trimming can't start on this block group, because we 10532 * removed the block group from the tree fs_info->block_group_cache_tree 10533 * so no one can't find it anymore and even if someone already got this 10534 * block group before we removed it from the rbtree, they have already 10535 * incremented block_group->trimming - if they didn't, they won't find 10536 * any free space entries because we already removed them all when we 10537 * called btrfs_remove_free_space_cache(). 10538 * 10539 * And we must not remove the extent map from the fs_info->mapping_tree 10540 * to prevent the same logical address range and physical device space 10541 * ranges from being reused for a new block group. This is because our 10542 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10543 * completely transactionless, so while it is trimming a range the 10544 * currently running transaction might finish and a new one start, 10545 * allowing for new block groups to be created that can reuse the same 10546 * physical device locations unless we take this special care. 10547 * 10548 * There may also be an implicit trim operation if the file system 10549 * is mounted with -odiscard. The same protections must remain 10550 * in place until the extents have been discarded completely when 10551 * the transaction commit has completed. 10552 */ 10553 remove_em = (atomic_read(&block_group->trimming) == 0); 10554 /* 10555 * Make sure a trimmer task always sees the em in the pinned_chunks list 10556 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10557 * before checking block_group->removed). 10558 */ 10559 if (!remove_em) { 10560 /* 10561 * Our em might be in trans->transaction->pending_chunks which 10562 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10563 * and so is the fs_info->pinned_chunks list. 10564 * 10565 * So at this point we must be holding the chunk_mutex to avoid 10566 * any races with chunk allocation (more specifically at 10567 * volumes.c:contains_pending_extent()), to ensure it always 10568 * sees the em, either in the pending_chunks list or in the 10569 * pinned_chunks list. 10570 */ 10571 list_move_tail(&em->list, &fs_info->pinned_chunks); 10572 } 10573 spin_unlock(&block_group->lock); 10574 10575 if (remove_em) { 10576 struct extent_map_tree *em_tree; 10577 10578 em_tree = &fs_info->mapping_tree.map_tree; 10579 write_lock(&em_tree->lock); 10580 /* 10581 * The em might be in the pending_chunks list, so make sure the 10582 * chunk mutex is locked, since remove_extent_mapping() will 10583 * delete us from that list. 10584 */ 10585 remove_extent_mapping(em_tree, em); 10586 write_unlock(&em_tree->lock); 10587 /* once for the tree */ 10588 free_extent_map(em); 10589 } 10590 10591 mutex_unlock(&fs_info->chunk_mutex); 10592 10593 ret = remove_block_group_free_space(trans, fs_info, block_group); 10594 if (ret) 10595 goto out; 10596 10597 btrfs_put_block_group(block_group); 10598 btrfs_put_block_group(block_group); 10599 10600 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10601 if (ret > 0) 10602 ret = -EIO; 10603 if (ret < 0) 10604 goto out; 10605 10606 ret = btrfs_del_item(trans, root, path); 10607 out: 10608 btrfs_free_path(path); 10609 return ret; 10610 } 10611 10612 struct btrfs_trans_handle * 10613 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10614 const u64 chunk_offset) 10615 { 10616 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10617 struct extent_map *em; 10618 struct map_lookup *map; 10619 unsigned int num_items; 10620 10621 read_lock(&em_tree->lock); 10622 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10623 read_unlock(&em_tree->lock); 10624 ASSERT(em && em->start == chunk_offset); 10625 10626 /* 10627 * We need to reserve 3 + N units from the metadata space info in order 10628 * to remove a block group (done at btrfs_remove_chunk() and at 10629 * btrfs_remove_block_group()), which are used for: 10630 * 10631 * 1 unit for adding the free space inode's orphan (located in the tree 10632 * of tree roots). 10633 * 1 unit for deleting the block group item (located in the extent 10634 * tree). 10635 * 1 unit for deleting the free space item (located in tree of tree 10636 * roots). 10637 * N units for deleting N device extent items corresponding to each 10638 * stripe (located in the device tree). 10639 * 10640 * In order to remove a block group we also need to reserve units in the 10641 * system space info in order to update the chunk tree (update one or 10642 * more device items and remove one chunk item), but this is done at 10643 * btrfs_remove_chunk() through a call to check_system_chunk(). 10644 */ 10645 map = em->map_lookup; 10646 num_items = 3 + map->num_stripes; 10647 free_extent_map(em); 10648 10649 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10650 num_items, 1); 10651 } 10652 10653 /* 10654 * Process the unused_bgs list and remove any that don't have any allocated 10655 * space inside of them. 10656 */ 10657 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10658 { 10659 struct btrfs_block_group_cache *block_group; 10660 struct btrfs_space_info *space_info; 10661 struct btrfs_trans_handle *trans; 10662 int ret = 0; 10663 10664 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10665 return; 10666 10667 spin_lock(&fs_info->unused_bgs_lock); 10668 while (!list_empty(&fs_info->unused_bgs)) { 10669 u64 start, end; 10670 int trimming; 10671 10672 block_group = list_first_entry(&fs_info->unused_bgs, 10673 struct btrfs_block_group_cache, 10674 bg_list); 10675 list_del_init(&block_group->bg_list); 10676 10677 space_info = block_group->space_info; 10678 10679 if (ret || btrfs_mixed_space_info(space_info)) { 10680 btrfs_put_block_group(block_group); 10681 continue; 10682 } 10683 spin_unlock(&fs_info->unused_bgs_lock); 10684 10685 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10686 10687 /* Don't want to race with allocators so take the groups_sem */ 10688 down_write(&space_info->groups_sem); 10689 spin_lock(&block_group->lock); 10690 if (block_group->reserved || 10691 btrfs_block_group_used(&block_group->item) || 10692 block_group->ro || 10693 list_is_singular(&block_group->list)) { 10694 /* 10695 * We want to bail if we made new allocations or have 10696 * outstanding allocations in this block group. We do 10697 * the ro check in case balance is currently acting on 10698 * this block group. 10699 */ 10700 spin_unlock(&block_group->lock); 10701 up_write(&space_info->groups_sem); 10702 goto next; 10703 } 10704 spin_unlock(&block_group->lock); 10705 10706 /* We don't want to force the issue, only flip if it's ok. */ 10707 ret = inc_block_group_ro(block_group, 0); 10708 up_write(&space_info->groups_sem); 10709 if (ret < 0) { 10710 ret = 0; 10711 goto next; 10712 } 10713 10714 /* 10715 * Want to do this before we do anything else so we can recover 10716 * properly if we fail to join the transaction. 10717 */ 10718 trans = btrfs_start_trans_remove_block_group(fs_info, 10719 block_group->key.objectid); 10720 if (IS_ERR(trans)) { 10721 btrfs_dec_block_group_ro(block_group); 10722 ret = PTR_ERR(trans); 10723 goto next; 10724 } 10725 10726 /* 10727 * We could have pending pinned extents for this block group, 10728 * just delete them, we don't care about them anymore. 10729 */ 10730 start = block_group->key.objectid; 10731 end = start + block_group->key.offset - 1; 10732 /* 10733 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10734 * btrfs_finish_extent_commit(). If we are at transaction N, 10735 * another task might be running finish_extent_commit() for the 10736 * previous transaction N - 1, and have seen a range belonging 10737 * to the block group in freed_extents[] before we were able to 10738 * clear the whole block group range from freed_extents[]. This 10739 * means that task can lookup for the block group after we 10740 * unpinned it from freed_extents[] and removed it, leading to 10741 * a BUG_ON() at btrfs_unpin_extent_range(). 10742 */ 10743 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10744 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10745 EXTENT_DIRTY); 10746 if (ret) { 10747 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10748 btrfs_dec_block_group_ro(block_group); 10749 goto end_trans; 10750 } 10751 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10752 EXTENT_DIRTY); 10753 if (ret) { 10754 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10755 btrfs_dec_block_group_ro(block_group); 10756 goto end_trans; 10757 } 10758 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10759 10760 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10761 spin_lock(&space_info->lock); 10762 spin_lock(&block_group->lock); 10763 10764 space_info->bytes_pinned -= block_group->pinned; 10765 space_info->bytes_readonly += block_group->pinned; 10766 percpu_counter_add(&space_info->total_bytes_pinned, 10767 -block_group->pinned); 10768 block_group->pinned = 0; 10769 10770 spin_unlock(&block_group->lock); 10771 spin_unlock(&space_info->lock); 10772 10773 /* DISCARD can flip during remount */ 10774 trimming = btrfs_test_opt(fs_info, DISCARD); 10775 10776 /* Implicit trim during transaction commit. */ 10777 if (trimming) 10778 btrfs_get_block_group_trimming(block_group); 10779 10780 /* 10781 * Btrfs_remove_chunk will abort the transaction if things go 10782 * horribly wrong. 10783 */ 10784 ret = btrfs_remove_chunk(trans, fs_info, 10785 block_group->key.objectid); 10786 10787 if (ret) { 10788 if (trimming) 10789 btrfs_put_block_group_trimming(block_group); 10790 goto end_trans; 10791 } 10792 10793 /* 10794 * If we're not mounted with -odiscard, we can just forget 10795 * about this block group. Otherwise we'll need to wait 10796 * until transaction commit to do the actual discard. 10797 */ 10798 if (trimming) { 10799 spin_lock(&fs_info->unused_bgs_lock); 10800 /* 10801 * A concurrent scrub might have added us to the list 10802 * fs_info->unused_bgs, so use a list_move operation 10803 * to add the block group to the deleted_bgs list. 10804 */ 10805 list_move(&block_group->bg_list, 10806 &trans->transaction->deleted_bgs); 10807 spin_unlock(&fs_info->unused_bgs_lock); 10808 btrfs_get_block_group(block_group); 10809 } 10810 end_trans: 10811 btrfs_end_transaction(trans); 10812 next: 10813 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10814 btrfs_put_block_group(block_group); 10815 spin_lock(&fs_info->unused_bgs_lock); 10816 } 10817 spin_unlock(&fs_info->unused_bgs_lock); 10818 } 10819 10820 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10821 { 10822 struct btrfs_space_info *space_info; 10823 struct btrfs_super_block *disk_super; 10824 u64 features; 10825 u64 flags; 10826 int mixed = 0; 10827 int ret; 10828 10829 disk_super = fs_info->super_copy; 10830 if (!btrfs_super_root(disk_super)) 10831 return -EINVAL; 10832 10833 features = btrfs_super_incompat_flags(disk_super); 10834 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10835 mixed = 1; 10836 10837 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10838 ret = create_space_info(fs_info, flags, &space_info); 10839 if (ret) 10840 goto out; 10841 10842 if (mixed) { 10843 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10844 ret = create_space_info(fs_info, flags, &space_info); 10845 } else { 10846 flags = BTRFS_BLOCK_GROUP_METADATA; 10847 ret = create_space_info(fs_info, flags, &space_info); 10848 if (ret) 10849 goto out; 10850 10851 flags = BTRFS_BLOCK_GROUP_DATA; 10852 ret = create_space_info(fs_info, flags, &space_info); 10853 } 10854 out: 10855 return ret; 10856 } 10857 10858 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10859 u64 start, u64 end) 10860 { 10861 return unpin_extent_range(fs_info, start, end, false); 10862 } 10863 10864 /* 10865 * It used to be that old block groups would be left around forever. 10866 * Iterating over them would be enough to trim unused space. Since we 10867 * now automatically remove them, we also need to iterate over unallocated 10868 * space. 10869 * 10870 * We don't want a transaction for this since the discard may take a 10871 * substantial amount of time. We don't require that a transaction be 10872 * running, but we do need to take a running transaction into account 10873 * to ensure that we're not discarding chunks that were released in 10874 * the current transaction. 10875 * 10876 * Holding the chunks lock will prevent other threads from allocating 10877 * or releasing chunks, but it won't prevent a running transaction 10878 * from committing and releasing the memory that the pending chunks 10879 * list head uses. For that, we need to take a reference to the 10880 * transaction. 10881 */ 10882 static int btrfs_trim_free_extents(struct btrfs_device *device, 10883 u64 minlen, u64 *trimmed) 10884 { 10885 u64 start = 0, len = 0; 10886 int ret; 10887 10888 *trimmed = 0; 10889 10890 /* Not writeable = nothing to do. */ 10891 if (!device->writeable) 10892 return 0; 10893 10894 /* No free space = nothing to do. */ 10895 if (device->total_bytes <= device->bytes_used) 10896 return 0; 10897 10898 ret = 0; 10899 10900 while (1) { 10901 struct btrfs_fs_info *fs_info = device->fs_info; 10902 struct btrfs_transaction *trans; 10903 u64 bytes; 10904 10905 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10906 if (ret) 10907 return ret; 10908 10909 down_read(&fs_info->commit_root_sem); 10910 10911 spin_lock(&fs_info->trans_lock); 10912 trans = fs_info->running_transaction; 10913 if (trans) 10914 refcount_inc(&trans->use_count); 10915 spin_unlock(&fs_info->trans_lock); 10916 10917 ret = find_free_dev_extent_start(trans, device, minlen, start, 10918 &start, &len); 10919 if (trans) 10920 btrfs_put_transaction(trans); 10921 10922 if (ret) { 10923 up_read(&fs_info->commit_root_sem); 10924 mutex_unlock(&fs_info->chunk_mutex); 10925 if (ret == -ENOSPC) 10926 ret = 0; 10927 break; 10928 } 10929 10930 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10931 up_read(&fs_info->commit_root_sem); 10932 mutex_unlock(&fs_info->chunk_mutex); 10933 10934 if (ret) 10935 break; 10936 10937 start += len; 10938 *trimmed += bytes; 10939 10940 if (fatal_signal_pending(current)) { 10941 ret = -ERESTARTSYS; 10942 break; 10943 } 10944 10945 cond_resched(); 10946 } 10947 10948 return ret; 10949 } 10950 10951 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10952 { 10953 struct btrfs_block_group_cache *cache = NULL; 10954 struct btrfs_device *device; 10955 struct list_head *devices; 10956 u64 group_trimmed; 10957 u64 start; 10958 u64 end; 10959 u64 trimmed = 0; 10960 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10961 int ret = 0; 10962 10963 /* 10964 * try to trim all FS space, our block group may start from non-zero. 10965 */ 10966 if (range->len == total_bytes) 10967 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10968 else 10969 cache = btrfs_lookup_block_group(fs_info, range->start); 10970 10971 while (cache) { 10972 if (cache->key.objectid >= (range->start + range->len)) { 10973 btrfs_put_block_group(cache); 10974 break; 10975 } 10976 10977 start = max(range->start, cache->key.objectid); 10978 end = min(range->start + range->len, 10979 cache->key.objectid + cache->key.offset); 10980 10981 if (end - start >= range->minlen) { 10982 if (!block_group_cache_done(cache)) { 10983 ret = cache_block_group(cache, 0); 10984 if (ret) { 10985 btrfs_put_block_group(cache); 10986 break; 10987 } 10988 ret = wait_block_group_cache_done(cache); 10989 if (ret) { 10990 btrfs_put_block_group(cache); 10991 break; 10992 } 10993 } 10994 ret = btrfs_trim_block_group(cache, 10995 &group_trimmed, 10996 start, 10997 end, 10998 range->minlen); 10999 11000 trimmed += group_trimmed; 11001 if (ret) { 11002 btrfs_put_block_group(cache); 11003 break; 11004 } 11005 } 11006 11007 cache = next_block_group(fs_info, cache); 11008 } 11009 11010 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11011 devices = &fs_info->fs_devices->alloc_list; 11012 list_for_each_entry(device, devices, dev_alloc_list) { 11013 ret = btrfs_trim_free_extents(device, range->minlen, 11014 &group_trimmed); 11015 if (ret) 11016 break; 11017 11018 trimmed += group_trimmed; 11019 } 11020 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11021 11022 range->len = trimmed; 11023 return ret; 11024 } 11025 11026 /* 11027 * btrfs_{start,end}_write_no_snapshotting() are similar to 11028 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11029 * data into the page cache through nocow before the subvolume is snapshoted, 11030 * but flush the data into disk after the snapshot creation, or to prevent 11031 * operations while snapshotting is ongoing and that cause the snapshot to be 11032 * inconsistent (writes followed by expanding truncates for example). 11033 */ 11034 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11035 { 11036 percpu_counter_dec(&root->subv_writers->counter); 11037 /* 11038 * Make sure counter is updated before we wake up waiters. 11039 */ 11040 smp_mb(); 11041 if (waitqueue_active(&root->subv_writers->wait)) 11042 wake_up(&root->subv_writers->wait); 11043 } 11044 11045 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11046 { 11047 if (atomic_read(&root->will_be_snapshotted)) 11048 return 0; 11049 11050 percpu_counter_inc(&root->subv_writers->counter); 11051 /* 11052 * Make sure counter is updated before we check for snapshot creation. 11053 */ 11054 smp_mb(); 11055 if (atomic_read(&root->will_be_snapshotted)) { 11056 btrfs_end_write_no_snapshotting(root); 11057 return 0; 11058 } 11059 return 1; 11060 } 11061 11062 static int wait_snapshotting_atomic_t(atomic_t *a) 11063 { 11064 schedule(); 11065 return 0; 11066 } 11067 11068 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11069 { 11070 while (true) { 11071 int ret; 11072 11073 ret = btrfs_start_write_no_snapshotting(root); 11074 if (ret) 11075 break; 11076 wait_on_atomic_t(&root->will_be_snapshotted, 11077 wait_snapshotting_atomic_t, 11078 TASK_UNINTERRUPTIBLE); 11079 } 11080 } 11081