xref: /linux/fs/btrfs/extent-tree.c (revision 43347d56c8d9dd732cee2f8efd384ad21dd1f6c4)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61 	CHUNK_ALLOC_NO_FORCE = 0,
62 	CHUNK_ALLOC_LIMITED = 1,
63 	CHUNK_ALLOC_FORCE = 2,
64 };
65 
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 			       struct btrfs_fs_info *fs_info,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_fs_info *fs_info,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_fs_info *fs_info,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_fs_info *fs_info, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 			    struct btrfs_space_info *info, u64 bytes,
92 			    int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 			       u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 				     struct btrfs_space_info *space_info,
97 				     u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 				     struct btrfs_space_info *space_info,
100 				     u64 num_bytes);
101 
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105 	smp_mb();
106 	return cache->cached == BTRFS_CACHE_FINISHED ||
107 		cache->cached == BTRFS_CACHE_ERROR;
108 }
109 
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 	return (cache->flags & bits) == bits;
113 }
114 
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 	atomic_inc(&cache->count);
118 }
119 
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 	if (atomic_dec_and_test(&cache->count)) {
123 		WARN_ON(cache->pinned > 0);
124 		WARN_ON(cache->reserved > 0);
125 
126 		/*
127 		 * If not empty, someone is still holding mutex of
128 		 * full_stripe_lock, which can only be released by caller.
129 		 * And it will definitely cause use-after-free when caller
130 		 * tries to release full stripe lock.
131 		 *
132 		 * No better way to resolve, but only to warn.
133 		 */
134 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE);
232 	set_extent_bits(&fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE);
247 	clear_extent_bits(&fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(fs_info, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 				       bytenr, 0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(fs_info, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (!cache->caching_ctl) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	ctl = cache->caching_ctl;
320 	refcount_inc(&ctl->count);
321 	spin_unlock(&cache->lock);
322 	return ctl;
323 }
324 
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 	if (refcount_dec_and_test(&ctl->count))
328 		kfree(ctl);
329 }
330 
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334 	struct btrfs_fs_info *fs_info = block_group->fs_info;
335 	u64 start = block_group->key.objectid;
336 	u64 len = block_group->key.offset;
337 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 		fs_info->nodesize : fs_info->sectorsize;
339 	u64 step = chunk << 1;
340 
341 	while (len > chunk) {
342 		btrfs_remove_free_space(block_group, start, chunk);
343 		start += step;
344 		if (len < step)
345 			len = 0;
346 		else
347 			len -= step;
348 	}
349 }
350 #endif
351 
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 		       struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 	u64 extent_start, extent_end, size, total_added = 0;
361 	int ret;
362 
363 	while (start < end) {
364 		ret = find_first_extent_bit(info->pinned_extents, start,
365 					    &extent_start, &extent_end,
366 					    EXTENT_DIRTY | EXTENT_UPTODATE,
367 					    NULL);
368 		if (ret)
369 			break;
370 
371 		if (extent_start <= start) {
372 			start = extent_end + 1;
373 		} else if (extent_start > start && extent_start < end) {
374 			size = extent_start - start;
375 			total_added += size;
376 			ret = btrfs_add_free_space(block_group, start,
377 						   size);
378 			BUG_ON(ret); /* -ENOMEM or logic error */
379 			start = extent_end + 1;
380 		} else {
381 			break;
382 		}
383 	}
384 
385 	if (start < end) {
386 		size = end - start;
387 		total_added += size;
388 		ret = btrfs_add_free_space(block_group, start, size);
389 		BUG_ON(ret); /* -ENOMEM or logic error */
390 	}
391 
392 	return total_added;
393 }
394 
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 	struct btrfs_fs_info *fs_info = block_group->fs_info;
399 	struct btrfs_root *extent_root = fs_info->extent_root;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	u64 total_found = 0;
404 	u64 last = 0;
405 	u32 nritems;
406 	int ret;
407 	bool wakeup = true;
408 
409 	path = btrfs_alloc_path();
410 	if (!path)
411 		return -ENOMEM;
412 
413 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414 
415 #ifdef CONFIG_BTRFS_DEBUG
416 	/*
417 	 * If we're fragmenting we don't want to make anybody think we can
418 	 * allocate from this block group until we've had a chance to fragment
419 	 * the free space.
420 	 */
421 	if (btrfs_should_fragment_free_space(block_group))
422 		wakeup = false;
423 #endif
424 	/*
425 	 * We don't want to deadlock with somebody trying to allocate a new
426 	 * extent for the extent root while also trying to search the extent
427 	 * root to add free space.  So we skip locking and search the commit
428 	 * root, since its read-only
429 	 */
430 	path->skip_locking = 1;
431 	path->search_commit_root = 1;
432 	path->reada = READA_FORWARD;
433 
434 	key.objectid = last;
435 	key.offset = 0;
436 	key.type = BTRFS_EXTENT_ITEM_KEY;
437 
438 next:
439 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 	if (ret < 0)
441 		goto out;
442 
443 	leaf = path->nodes[0];
444 	nritems = btrfs_header_nritems(leaf);
445 
446 	while (1) {
447 		if (btrfs_fs_closing(fs_info) > 1) {
448 			last = (u64)-1;
449 			break;
450 		}
451 
452 		if (path->slots[0] < nritems) {
453 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 		} else {
455 			ret = find_next_key(path, 0, &key);
456 			if (ret)
457 				break;
458 
459 			if (need_resched() ||
460 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
461 				if (wakeup)
462 					caching_ctl->progress = last;
463 				btrfs_release_path(path);
464 				up_read(&fs_info->commit_root_sem);
465 				mutex_unlock(&caching_ctl->mutex);
466 				cond_resched();
467 				mutex_lock(&caching_ctl->mutex);
468 				down_read(&fs_info->commit_root_sem);
469 				goto next;
470 			}
471 
472 			ret = btrfs_next_leaf(extent_root, path);
473 			if (ret < 0)
474 				goto out;
475 			if (ret)
476 				break;
477 			leaf = path->nodes[0];
478 			nritems = btrfs_header_nritems(leaf);
479 			continue;
480 		}
481 
482 		if (key.objectid < last) {
483 			key.objectid = last;
484 			key.offset = 0;
485 			key.type = BTRFS_EXTENT_ITEM_KEY;
486 
487 			if (wakeup)
488 				caching_ctl->progress = last;
489 			btrfs_release_path(path);
490 			goto next;
491 		}
492 
493 		if (key.objectid < block_group->key.objectid) {
494 			path->slots[0]++;
495 			continue;
496 		}
497 
498 		if (key.objectid >= block_group->key.objectid +
499 		    block_group->key.offset)
500 			break;
501 
502 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 		    key.type == BTRFS_METADATA_ITEM_KEY) {
504 			total_found += add_new_free_space(block_group,
505 							  fs_info, last,
506 							  key.objectid);
507 			if (key.type == BTRFS_METADATA_ITEM_KEY)
508 				last = key.objectid +
509 					fs_info->nodesize;
510 			else
511 				last = key.objectid + key.offset;
512 
513 			if (total_found > CACHING_CTL_WAKE_UP) {
514 				total_found = 0;
515 				if (wakeup)
516 					wake_up(&caching_ctl->wait);
517 			}
518 		}
519 		path->slots[0]++;
520 	}
521 	ret = 0;
522 
523 	total_found += add_new_free_space(block_group, fs_info, last,
524 					  block_group->key.objectid +
525 					  block_group->key.offset);
526 	caching_ctl->progress = (u64)-1;
527 
528 out:
529 	btrfs_free_path(path);
530 	return ret;
531 }
532 
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535 	struct btrfs_block_group_cache *block_group;
536 	struct btrfs_fs_info *fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	struct btrfs_root *extent_root;
539 	int ret;
540 
541 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 	block_group = caching_ctl->block_group;
543 	fs_info = block_group->fs_info;
544 	extent_root = fs_info->extent_root;
545 
546 	mutex_lock(&caching_ctl->mutex);
547 	down_read(&fs_info->commit_root_sem);
548 
549 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 		ret = load_free_space_tree(caching_ctl);
551 	else
552 		ret = load_extent_tree_free(caching_ctl);
553 
554 	spin_lock(&block_group->lock);
555 	block_group->caching_ctl = NULL;
556 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557 	spin_unlock(&block_group->lock);
558 
559 #ifdef CONFIG_BTRFS_DEBUG
560 	if (btrfs_should_fragment_free_space(block_group)) {
561 		u64 bytes_used;
562 
563 		spin_lock(&block_group->space_info->lock);
564 		spin_lock(&block_group->lock);
565 		bytes_used = block_group->key.offset -
566 			btrfs_block_group_used(&block_group->item);
567 		block_group->space_info->bytes_used += bytes_used >> 1;
568 		spin_unlock(&block_group->lock);
569 		spin_unlock(&block_group->space_info->lock);
570 		fragment_free_space(block_group);
571 	}
572 #endif
573 
574 	caching_ctl->progress = (u64)-1;
575 
576 	up_read(&fs_info->commit_root_sem);
577 	free_excluded_extents(fs_info, block_group);
578 	mutex_unlock(&caching_ctl->mutex);
579 
580 	wake_up(&caching_ctl->wait);
581 
582 	put_caching_control(caching_ctl);
583 	btrfs_put_block_group(block_group);
584 }
585 
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587 			     int load_cache_only)
588 {
589 	DEFINE_WAIT(wait);
590 	struct btrfs_fs_info *fs_info = cache->fs_info;
591 	struct btrfs_caching_control *caching_ctl;
592 	int ret = 0;
593 
594 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595 	if (!caching_ctl)
596 		return -ENOMEM;
597 
598 	INIT_LIST_HEAD(&caching_ctl->list);
599 	mutex_init(&caching_ctl->mutex);
600 	init_waitqueue_head(&caching_ctl->wait);
601 	caching_ctl->block_group = cache;
602 	caching_ctl->progress = cache->key.objectid;
603 	refcount_set(&caching_ctl->count, 1);
604 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 			caching_thread, NULL, NULL);
606 
607 	spin_lock(&cache->lock);
608 	/*
609 	 * This should be a rare occasion, but this could happen I think in the
610 	 * case where one thread starts to load the space cache info, and then
611 	 * some other thread starts a transaction commit which tries to do an
612 	 * allocation while the other thread is still loading the space cache
613 	 * info.  The previous loop should have kept us from choosing this block
614 	 * group, but if we've moved to the state where we will wait on caching
615 	 * block groups we need to first check if we're doing a fast load here,
616 	 * so we can wait for it to finish, otherwise we could end up allocating
617 	 * from a block group who's cache gets evicted for one reason or
618 	 * another.
619 	 */
620 	while (cache->cached == BTRFS_CACHE_FAST) {
621 		struct btrfs_caching_control *ctl;
622 
623 		ctl = cache->caching_ctl;
624 		refcount_inc(&ctl->count);
625 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 		spin_unlock(&cache->lock);
627 
628 		schedule();
629 
630 		finish_wait(&ctl->wait, &wait);
631 		put_caching_control(ctl);
632 		spin_lock(&cache->lock);
633 	}
634 
635 	if (cache->cached != BTRFS_CACHE_NO) {
636 		spin_unlock(&cache->lock);
637 		kfree(caching_ctl);
638 		return 0;
639 	}
640 	WARN_ON(cache->caching_ctl);
641 	cache->caching_ctl = caching_ctl;
642 	cache->cached = BTRFS_CACHE_FAST;
643 	spin_unlock(&cache->lock);
644 
645 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646 		mutex_lock(&caching_ctl->mutex);
647 		ret = load_free_space_cache(fs_info, cache);
648 
649 		spin_lock(&cache->lock);
650 		if (ret == 1) {
651 			cache->caching_ctl = NULL;
652 			cache->cached = BTRFS_CACHE_FINISHED;
653 			cache->last_byte_to_unpin = (u64)-1;
654 			caching_ctl->progress = (u64)-1;
655 		} else {
656 			if (load_cache_only) {
657 				cache->caching_ctl = NULL;
658 				cache->cached = BTRFS_CACHE_NO;
659 			} else {
660 				cache->cached = BTRFS_CACHE_STARTED;
661 				cache->has_caching_ctl = 1;
662 			}
663 		}
664 		spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666 		if (ret == 1 &&
667 		    btrfs_should_fragment_free_space(cache)) {
668 			u64 bytes_used;
669 
670 			spin_lock(&cache->space_info->lock);
671 			spin_lock(&cache->lock);
672 			bytes_used = cache->key.offset -
673 				btrfs_block_group_used(&cache->item);
674 			cache->space_info->bytes_used += bytes_used >> 1;
675 			spin_unlock(&cache->lock);
676 			spin_unlock(&cache->space_info->lock);
677 			fragment_free_space(cache);
678 		}
679 #endif
680 		mutex_unlock(&caching_ctl->mutex);
681 
682 		wake_up(&caching_ctl->wait);
683 		if (ret == 1) {
684 			put_caching_control(caching_ctl);
685 			free_excluded_extents(fs_info, cache);
686 			return 0;
687 		}
688 	} else {
689 		/*
690 		 * We're either using the free space tree or no caching at all.
691 		 * Set cached to the appropriate value and wakeup any waiters.
692 		 */
693 		spin_lock(&cache->lock);
694 		if (load_cache_only) {
695 			cache->caching_ctl = NULL;
696 			cache->cached = BTRFS_CACHE_NO;
697 		} else {
698 			cache->cached = BTRFS_CACHE_STARTED;
699 			cache->has_caching_ctl = 1;
700 		}
701 		spin_unlock(&cache->lock);
702 		wake_up(&caching_ctl->wait);
703 	}
704 
705 	if (load_cache_only) {
706 		put_caching_control(caching_ctl);
707 		return 0;
708 	}
709 
710 	down_write(&fs_info->commit_root_sem);
711 	refcount_inc(&caching_ctl->count);
712 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713 	up_write(&fs_info->commit_root_sem);
714 
715 	btrfs_get_block_group(cache);
716 
717 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718 
719 	return ret;
720 }
721 
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728 	return block_group_cache_tree_search(info, bytenr, 0);
729 }
730 
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 						 struct btrfs_fs_info *info,
736 						 u64 bytenr)
737 {
738 	return block_group_cache_tree_search(info, bytenr, 1);
739 }
740 
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 						  u64 flags)
743 {
744 	struct list_head *head = &info->space_info;
745 	struct btrfs_space_info *found;
746 
747 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748 
749 	rcu_read_lock();
750 	list_for_each_entry_rcu(found, head, list) {
751 		if (found->flags & flags) {
752 			rcu_read_unlock();
753 			return found;
754 		}
755 	}
756 	rcu_read_unlock();
757 	return NULL;
758 }
759 
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 			     u64 owner, u64 root_objectid)
762 {
763 	struct btrfs_space_info *space_info;
764 	u64 flags;
765 
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 		else
770 			flags = BTRFS_BLOCK_GROUP_METADATA;
771 	} else {
772 		flags = BTRFS_BLOCK_GROUP_DATA;
773 	}
774 
775 	space_info = __find_space_info(fs_info, flags);
776 	ASSERT(space_info);
777 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779 
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786 	struct list_head *head = &info->space_info;
787 	struct btrfs_space_info *found;
788 
789 	rcu_read_lock();
790 	list_for_each_entry_rcu(found, head, list)
791 		found->full = 0;
792 	rcu_read_unlock();
793 }
794 
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798 	int ret;
799 	struct btrfs_key key;
800 	struct btrfs_path *path;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 
806 	key.objectid = start;
807 	key.offset = len;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 	btrfs_free_path(path);
811 	return ret;
812 }
813 
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 			     struct btrfs_fs_info *fs_info, u64 bytenr,
825 			     u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827 	struct btrfs_delayed_ref_head *head;
828 	struct btrfs_delayed_ref_root *delayed_refs;
829 	struct btrfs_path *path;
830 	struct btrfs_extent_item *ei;
831 	struct extent_buffer *leaf;
832 	struct btrfs_key key;
833 	u32 item_size;
834 	u64 num_refs;
835 	u64 extent_flags;
836 	int ret;
837 
838 	/*
839 	 * If we don't have skinny metadata, don't bother doing anything
840 	 * different
841 	 */
842 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 		offset = fs_info->nodesize;
844 		metadata = 0;
845 	}
846 
847 	path = btrfs_alloc_path();
848 	if (!path)
849 		return -ENOMEM;
850 
851 	if (!trans) {
852 		path->skip_locking = 1;
853 		path->search_commit_root = 1;
854 	}
855 
856 search_again:
857 	key.objectid = bytenr;
858 	key.offset = offset;
859 	if (metadata)
860 		key.type = BTRFS_METADATA_ITEM_KEY;
861 	else
862 		key.type = BTRFS_EXTENT_ITEM_KEY;
863 
864 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 	if (ret < 0)
866 		goto out_free;
867 
868 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 		if (path->slots[0]) {
870 			path->slots[0]--;
871 			btrfs_item_key_to_cpu(path->nodes[0], &key,
872 					      path->slots[0]);
873 			if (key.objectid == bytenr &&
874 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
875 			    key.offset == fs_info->nodesize)
876 				ret = 0;
877 		}
878 	}
879 
880 	if (ret == 0) {
881 		leaf = path->nodes[0];
882 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 		if (item_size >= sizeof(*ei)) {
884 			ei = btrfs_item_ptr(leaf, path->slots[0],
885 					    struct btrfs_extent_item);
886 			num_refs = btrfs_extent_refs(leaf, ei);
887 			extent_flags = btrfs_extent_flags(leaf, ei);
888 		} else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 			struct btrfs_extent_item_v0 *ei0;
891 			BUG_ON(item_size != sizeof(*ei0));
892 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 					     struct btrfs_extent_item_v0);
894 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 			/* FIXME: this isn't correct for data */
896 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898 			BUG();
899 #endif
900 		}
901 		BUG_ON(num_refs == 0);
902 	} else {
903 		num_refs = 0;
904 		extent_flags = 0;
905 		ret = 0;
906 	}
907 
908 	if (!trans)
909 		goto out;
910 
911 	delayed_refs = &trans->transaction->delayed_refs;
912 	spin_lock(&delayed_refs->lock);
913 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914 	if (head) {
915 		if (!mutex_trylock(&head->mutex)) {
916 			refcount_inc(&head->refs);
917 			spin_unlock(&delayed_refs->lock);
918 
919 			btrfs_release_path(path);
920 
921 			/*
922 			 * Mutex was contended, block until it's released and try
923 			 * again
924 			 */
925 			mutex_lock(&head->mutex);
926 			mutex_unlock(&head->mutex);
927 			btrfs_put_delayed_ref_head(head);
928 			goto search_again;
929 		}
930 		spin_lock(&head->lock);
931 		if (head->extent_op && head->extent_op->update_flags)
932 			extent_flags |= head->extent_op->flags_to_set;
933 		else
934 			BUG_ON(num_refs == 0);
935 
936 		num_refs += head->ref_mod;
937 		spin_unlock(&head->lock);
938 		mutex_unlock(&head->mutex);
939 	}
940 	spin_unlock(&delayed_refs->lock);
941 out:
942 	WARN_ON(num_refs == 0);
943 	if (refs)
944 		*refs = num_refs;
945 	if (flags)
946 		*flags = extent_flags;
947 out_free:
948 	btrfs_free_path(path);
949 	return ret;
950 }
951 
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057 
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060 				  struct btrfs_fs_info *fs_info,
1061 				  struct btrfs_path *path,
1062 				  u64 owner, u32 extra_size)
1063 {
1064 	struct btrfs_root *root = fs_info->extent_root;
1065 	struct btrfs_extent_item *item;
1066 	struct btrfs_extent_item_v0 *ei0;
1067 	struct btrfs_extent_ref_v0 *ref0;
1068 	struct btrfs_tree_block_info *bi;
1069 	struct extent_buffer *leaf;
1070 	struct btrfs_key key;
1071 	struct btrfs_key found_key;
1072 	u32 new_size = sizeof(*item);
1073 	u64 refs;
1074 	int ret;
1075 
1076 	leaf = path->nodes[0];
1077 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078 
1079 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 			     struct btrfs_extent_item_v0);
1082 	refs = btrfs_extent_refs_v0(leaf, ei0);
1083 
1084 	if (owner == (u64)-1) {
1085 		while (1) {
1086 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 				ret = btrfs_next_leaf(root, path);
1088 				if (ret < 0)
1089 					return ret;
1090 				BUG_ON(ret > 0); /* Corruption */
1091 				leaf = path->nodes[0];
1092 			}
1093 			btrfs_item_key_to_cpu(leaf, &found_key,
1094 					      path->slots[0]);
1095 			BUG_ON(key.objectid != found_key.objectid);
1096 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 				path->slots[0]++;
1098 				continue;
1099 			}
1100 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 					      struct btrfs_extent_ref_v0);
1102 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 			break;
1104 		}
1105 	}
1106 	btrfs_release_path(path);
1107 
1108 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 		new_size += sizeof(*bi);
1110 
1111 	new_size -= sizeof(*ei0);
1112 	ret = btrfs_search_slot(trans, root, &key, path,
1113 				new_size + extra_size, 1);
1114 	if (ret < 0)
1115 		return ret;
1116 	BUG_ON(ret); /* Corruption */
1117 
1118 	btrfs_extend_item(fs_info, path, new_size);
1119 
1120 	leaf = path->nodes[0];
1121 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 	btrfs_set_extent_refs(leaf, item, refs);
1123 	/* FIXME: get real generation */
1124 	btrfs_set_extent_generation(leaf, item, 0);
1125 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 		btrfs_set_extent_flags(leaf, item,
1127 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 		bi = (struct btrfs_tree_block_info *)(item + 1);
1130 		/* FIXME: get first key of the block */
1131 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 	} else {
1134 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 	}
1136 	btrfs_mark_buffer_dirty(leaf);
1137 	return 0;
1138 }
1139 #endif
1140 
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 				     struct btrfs_extent_inline_ref *iref,
1148 				     enum btrfs_inline_ref_type is_data)
1149 {
1150 	int type = btrfs_extent_inline_ref_type(eb, iref);
1151 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152 
1153 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1156 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159 				return type;
1160 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 				ASSERT(eb->fs_info);
1162 				/*
1163 				 * Every shared one has parent tree
1164 				 * block, which must be aligned to
1165 				 * nodesize.
1166 				 */
1167 				if (offset &&
1168 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 					return type;
1170 			}
1171 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1172 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173 				return type;
1174 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 				ASSERT(eb->fs_info);
1176 				/*
1177 				 * Every shared one has parent tree
1178 				 * block, which must be aligned to
1179 				 * nodesize.
1180 				 */
1181 				if (offset &&
1182 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 					return type;
1184 			}
1185 		} else {
1186 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 			return type;
1188 		}
1189 	}
1190 
1191 	btrfs_print_leaf((struct extent_buffer *)eb);
1192 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 		  eb->start, type);
1194 	WARN_ON(1);
1195 
1196 	return BTRFS_REF_TYPE_INVALID;
1197 }
1198 
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201 	u32 high_crc = ~(u32)0;
1202 	u32 low_crc = ~(u32)0;
1203 	__le64 lenum;
1204 
1205 	lenum = cpu_to_le64(root_objectid);
1206 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207 	lenum = cpu_to_le64(owner);
1208 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209 	lenum = cpu_to_le64(offset);
1210 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211 
1212 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214 
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 				     struct btrfs_extent_data_ref *ref)
1217 {
1218 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 				    btrfs_extent_data_ref_objectid(leaf, ref),
1220 				    btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222 
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224 				 struct btrfs_extent_data_ref *ref,
1225 				 u64 root_objectid, u64 owner, u64 offset)
1226 {
1227 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 		return 0;
1231 	return 1;
1232 }
1233 
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235 					   struct btrfs_fs_info *fs_info,
1236 					   struct btrfs_path *path,
1237 					   u64 bytenr, u64 parent,
1238 					   u64 root_objectid,
1239 					   u64 owner, u64 offset)
1240 {
1241 	struct btrfs_root *root = fs_info->extent_root;
1242 	struct btrfs_key key;
1243 	struct btrfs_extent_data_ref *ref;
1244 	struct extent_buffer *leaf;
1245 	u32 nritems;
1246 	int ret;
1247 	int recow;
1248 	int err = -ENOENT;
1249 
1250 	key.objectid = bytenr;
1251 	if (parent) {
1252 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 		key.offset = parent;
1254 	} else {
1255 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 		key.offset = hash_extent_data_ref(root_objectid,
1257 						  owner, offset);
1258 	}
1259 again:
1260 	recow = 0;
1261 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 	if (ret < 0) {
1263 		err = ret;
1264 		goto fail;
1265 	}
1266 
1267 	if (parent) {
1268 		if (!ret)
1269 			return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1272 		btrfs_release_path(path);
1273 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 		if (ret < 0) {
1275 			err = ret;
1276 			goto fail;
1277 		}
1278 		if (!ret)
1279 			return 0;
1280 #endif
1281 		goto fail;
1282 	}
1283 
1284 	leaf = path->nodes[0];
1285 	nritems = btrfs_header_nritems(leaf);
1286 	while (1) {
1287 		if (path->slots[0] >= nritems) {
1288 			ret = btrfs_next_leaf(root, path);
1289 			if (ret < 0)
1290 				err = ret;
1291 			if (ret)
1292 				goto fail;
1293 
1294 			leaf = path->nodes[0];
1295 			nritems = btrfs_header_nritems(leaf);
1296 			recow = 1;
1297 		}
1298 
1299 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 		if (key.objectid != bytenr ||
1301 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 			goto fail;
1303 
1304 		ref = btrfs_item_ptr(leaf, path->slots[0],
1305 				     struct btrfs_extent_data_ref);
1306 
1307 		if (match_extent_data_ref(leaf, ref, root_objectid,
1308 					  owner, offset)) {
1309 			if (recow) {
1310 				btrfs_release_path(path);
1311 				goto again;
1312 			}
1313 			err = 0;
1314 			break;
1315 		}
1316 		path->slots[0]++;
1317 	}
1318 fail:
1319 	return err;
1320 }
1321 
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323 					   struct btrfs_fs_info *fs_info,
1324 					   struct btrfs_path *path,
1325 					   u64 bytenr, u64 parent,
1326 					   u64 root_objectid, u64 owner,
1327 					   u64 offset, int refs_to_add)
1328 {
1329 	struct btrfs_root *root = fs_info->extent_root;
1330 	struct btrfs_key key;
1331 	struct extent_buffer *leaf;
1332 	u32 size;
1333 	u32 num_refs;
1334 	int ret;
1335 
1336 	key.objectid = bytenr;
1337 	if (parent) {
1338 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 		key.offset = parent;
1340 		size = sizeof(struct btrfs_shared_data_ref);
1341 	} else {
1342 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 		key.offset = hash_extent_data_ref(root_objectid,
1344 						  owner, offset);
1345 		size = sizeof(struct btrfs_extent_data_ref);
1346 	}
1347 
1348 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 	if (ret && ret != -EEXIST)
1350 		goto fail;
1351 
1352 	leaf = path->nodes[0];
1353 	if (parent) {
1354 		struct btrfs_shared_data_ref *ref;
1355 		ref = btrfs_item_ptr(leaf, path->slots[0],
1356 				     struct btrfs_shared_data_ref);
1357 		if (ret == 0) {
1358 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 		} else {
1360 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 			num_refs += refs_to_add;
1362 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363 		}
1364 	} else {
1365 		struct btrfs_extent_data_ref *ref;
1366 		while (ret == -EEXIST) {
1367 			ref = btrfs_item_ptr(leaf, path->slots[0],
1368 					     struct btrfs_extent_data_ref);
1369 			if (match_extent_data_ref(leaf, ref, root_objectid,
1370 						  owner, offset))
1371 				break;
1372 			btrfs_release_path(path);
1373 			key.offset++;
1374 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 						      size);
1376 			if (ret && ret != -EEXIST)
1377 				goto fail;
1378 
1379 			leaf = path->nodes[0];
1380 		}
1381 		ref = btrfs_item_ptr(leaf, path->slots[0],
1382 				     struct btrfs_extent_data_ref);
1383 		if (ret == 0) {
1384 			btrfs_set_extent_data_ref_root(leaf, ref,
1385 						       root_objectid);
1386 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 		} else {
1390 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 			num_refs += refs_to_add;
1392 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393 		}
1394 	}
1395 	btrfs_mark_buffer_dirty(leaf);
1396 	ret = 0;
1397 fail:
1398 	btrfs_release_path(path);
1399 	return ret;
1400 }
1401 
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403 					   struct btrfs_fs_info *fs_info,
1404 					   struct btrfs_path *path,
1405 					   int refs_to_drop, int *last_ref)
1406 {
1407 	struct btrfs_key key;
1408 	struct btrfs_extent_data_ref *ref1 = NULL;
1409 	struct btrfs_shared_data_ref *ref2 = NULL;
1410 	struct extent_buffer *leaf;
1411 	u32 num_refs = 0;
1412 	int ret = 0;
1413 
1414 	leaf = path->nodes[0];
1415 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416 
1417 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 				      struct btrfs_extent_data_ref);
1420 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 				      struct btrfs_shared_data_ref);
1424 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 		struct btrfs_extent_ref_v0 *ref0;
1428 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 				      struct btrfs_extent_ref_v0);
1430 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432 	} else {
1433 		BUG();
1434 	}
1435 
1436 	BUG_ON(num_refs < refs_to_drop);
1437 	num_refs -= refs_to_drop;
1438 
1439 	if (num_refs == 0) {
1440 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441 		*last_ref = 1;
1442 	} else {
1443 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 		else {
1449 			struct btrfs_extent_ref_v0 *ref0;
1450 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 					struct btrfs_extent_ref_v0);
1452 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 		}
1454 #endif
1455 		btrfs_mark_buffer_dirty(leaf);
1456 	}
1457 	return ret;
1458 }
1459 
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461 					  struct btrfs_extent_inline_ref *iref)
1462 {
1463 	struct btrfs_key key;
1464 	struct extent_buffer *leaf;
1465 	struct btrfs_extent_data_ref *ref1;
1466 	struct btrfs_shared_data_ref *ref2;
1467 	u32 num_refs = 0;
1468 	int type;
1469 
1470 	leaf = path->nodes[0];
1471 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 	if (iref) {
1473 		/*
1474 		 * If type is invalid, we should have bailed out earlier than
1475 		 * this call.
1476 		 */
1477 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 		} else {
1483 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 		}
1486 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 				      struct btrfs_extent_data_ref);
1489 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 				      struct btrfs_shared_data_ref);
1493 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 		struct btrfs_extent_ref_v0 *ref0;
1497 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 				      struct btrfs_extent_ref_v0);
1499 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501 	} else {
1502 		WARN_ON(1);
1503 	}
1504 	return num_refs;
1505 }
1506 
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508 					  struct btrfs_fs_info *fs_info,
1509 					  struct btrfs_path *path,
1510 					  u64 bytenr, u64 parent,
1511 					  u64 root_objectid)
1512 {
1513 	struct btrfs_root *root = fs_info->extent_root;
1514 	struct btrfs_key key;
1515 	int ret;
1516 
1517 	key.objectid = bytenr;
1518 	if (parent) {
1519 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 		key.offset = parent;
1521 	} else {
1522 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 		key.offset = root_objectid;
1524 	}
1525 
1526 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 	if (ret > 0)
1528 		ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 	if (ret == -ENOENT && parent) {
1531 		btrfs_release_path(path);
1532 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 		if (ret > 0)
1535 			ret = -ENOENT;
1536 	}
1537 #endif
1538 	return ret;
1539 }
1540 
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542 					  struct btrfs_fs_info *fs_info,
1543 					  struct btrfs_path *path,
1544 					  u64 bytenr, u64 parent,
1545 					  u64 root_objectid)
1546 {
1547 	struct btrfs_key key;
1548 	int ret;
1549 
1550 	key.objectid = bytenr;
1551 	if (parent) {
1552 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 		key.offset = parent;
1554 	} else {
1555 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 		key.offset = root_objectid;
1557 	}
1558 
1559 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 				      path, &key, 0);
1561 	btrfs_release_path(path);
1562 	return ret;
1563 }
1564 
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567 	int type;
1568 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 		if (parent > 0)
1570 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 		else
1572 			type = BTRFS_TREE_BLOCK_REF_KEY;
1573 	} else {
1574 		if (parent > 0)
1575 			type = BTRFS_SHARED_DATA_REF_KEY;
1576 		else
1577 			type = BTRFS_EXTENT_DATA_REF_KEY;
1578 	}
1579 	return type;
1580 }
1581 
1582 static int find_next_key(struct btrfs_path *path, int level,
1583 			 struct btrfs_key *key)
1584 
1585 {
1586 	for (; level < BTRFS_MAX_LEVEL; level++) {
1587 		if (!path->nodes[level])
1588 			break;
1589 		if (path->slots[level] + 1 >=
1590 		    btrfs_header_nritems(path->nodes[level]))
1591 			continue;
1592 		if (level == 0)
1593 			btrfs_item_key_to_cpu(path->nodes[level], key,
1594 					      path->slots[level] + 1);
1595 		else
1596 			btrfs_node_key_to_cpu(path->nodes[level], key,
1597 					      path->slots[level] + 1);
1598 		return 0;
1599 	}
1600 	return 1;
1601 }
1602 
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *	 items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618 				 struct btrfs_fs_info *fs_info,
1619 				 struct btrfs_path *path,
1620 				 struct btrfs_extent_inline_ref **ref_ret,
1621 				 u64 bytenr, u64 num_bytes,
1622 				 u64 parent, u64 root_objectid,
1623 				 u64 owner, u64 offset, int insert)
1624 {
1625 	struct btrfs_root *root = fs_info->extent_root;
1626 	struct btrfs_key key;
1627 	struct extent_buffer *leaf;
1628 	struct btrfs_extent_item *ei;
1629 	struct btrfs_extent_inline_ref *iref;
1630 	u64 flags;
1631 	u64 item_size;
1632 	unsigned long ptr;
1633 	unsigned long end;
1634 	int extra_size;
1635 	int type;
1636 	int want;
1637 	int ret;
1638 	int err = 0;
1639 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640 	int needed;
1641 
1642 	key.objectid = bytenr;
1643 	key.type = BTRFS_EXTENT_ITEM_KEY;
1644 	key.offset = num_bytes;
1645 
1646 	want = extent_ref_type(parent, owner);
1647 	if (insert) {
1648 		extra_size = btrfs_extent_inline_ref_size(want);
1649 		path->keep_locks = 1;
1650 	} else
1651 		extra_size = -1;
1652 
1653 	/*
1654 	 * Owner is our parent level, so we can just add one to get the level
1655 	 * for the block we are interested in.
1656 	 */
1657 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 		key.type = BTRFS_METADATA_ITEM_KEY;
1659 		key.offset = owner;
1660 	}
1661 
1662 again:
1663 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664 	if (ret < 0) {
1665 		err = ret;
1666 		goto out;
1667 	}
1668 
1669 	/*
1670 	 * We may be a newly converted file system which still has the old fat
1671 	 * extent entries for metadata, so try and see if we have one of those.
1672 	 */
1673 	if (ret > 0 && skinny_metadata) {
1674 		skinny_metadata = false;
1675 		if (path->slots[0]) {
1676 			path->slots[0]--;
1677 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 					      path->slots[0]);
1679 			if (key.objectid == bytenr &&
1680 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 			    key.offset == num_bytes)
1682 				ret = 0;
1683 		}
1684 		if (ret) {
1685 			key.objectid = bytenr;
1686 			key.type = BTRFS_EXTENT_ITEM_KEY;
1687 			key.offset = num_bytes;
1688 			btrfs_release_path(path);
1689 			goto again;
1690 		}
1691 	}
1692 
1693 	if (ret && !insert) {
1694 		err = -ENOENT;
1695 		goto out;
1696 	} else if (WARN_ON(ret)) {
1697 		err = -EIO;
1698 		goto out;
1699 	}
1700 
1701 	leaf = path->nodes[0];
1702 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 	if (item_size < sizeof(*ei)) {
1705 		if (!insert) {
1706 			err = -ENOENT;
1707 			goto out;
1708 		}
1709 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710 					     extra_size);
1711 		if (ret < 0) {
1712 			err = ret;
1713 			goto out;
1714 		}
1715 		leaf = path->nodes[0];
1716 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 	}
1718 #endif
1719 	BUG_ON(item_size < sizeof(*ei));
1720 
1721 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 	flags = btrfs_extent_flags(leaf, ei);
1723 
1724 	ptr = (unsigned long)(ei + 1);
1725 	end = (unsigned long)ei + item_size;
1726 
1727 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728 		ptr += sizeof(struct btrfs_tree_block_info);
1729 		BUG_ON(ptr > end);
1730 	}
1731 
1732 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 		needed = BTRFS_REF_TYPE_DATA;
1734 	else
1735 		needed = BTRFS_REF_TYPE_BLOCK;
1736 
1737 	err = -ENOENT;
1738 	while (1) {
1739 		if (ptr >= end) {
1740 			WARN_ON(ptr > end);
1741 			break;
1742 		}
1743 		iref = (struct btrfs_extent_inline_ref *)ptr;
1744 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 		if (type == BTRFS_REF_TYPE_INVALID) {
1746 			err = -EINVAL;
1747 			goto out;
1748 		}
1749 
1750 		if (want < type)
1751 			break;
1752 		if (want > type) {
1753 			ptr += btrfs_extent_inline_ref_size(type);
1754 			continue;
1755 		}
1756 
1757 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 			struct btrfs_extent_data_ref *dref;
1759 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 			if (match_extent_data_ref(leaf, dref, root_objectid,
1761 						  owner, offset)) {
1762 				err = 0;
1763 				break;
1764 			}
1765 			if (hash_extent_data_ref_item(leaf, dref) <
1766 			    hash_extent_data_ref(root_objectid, owner, offset))
1767 				break;
1768 		} else {
1769 			u64 ref_offset;
1770 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 			if (parent > 0) {
1772 				if (parent == ref_offset) {
1773 					err = 0;
1774 					break;
1775 				}
1776 				if (ref_offset < parent)
1777 					break;
1778 			} else {
1779 				if (root_objectid == ref_offset) {
1780 					err = 0;
1781 					break;
1782 				}
1783 				if (ref_offset < root_objectid)
1784 					break;
1785 			}
1786 		}
1787 		ptr += btrfs_extent_inline_ref_size(type);
1788 	}
1789 	if (err == -ENOENT && insert) {
1790 		if (item_size + extra_size >=
1791 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 			err = -EAGAIN;
1793 			goto out;
1794 		}
1795 		/*
1796 		 * To add new inline back ref, we have to make sure
1797 		 * there is no corresponding back ref item.
1798 		 * For simplicity, we just do not add new inline back
1799 		 * ref if there is any kind of item for this block
1800 		 */
1801 		if (find_next_key(path, 0, &key) == 0 &&
1802 		    key.objectid == bytenr &&
1803 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804 			err = -EAGAIN;
1805 			goto out;
1806 		}
1807 	}
1808 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810 	if (insert) {
1811 		path->keep_locks = 0;
1812 		btrfs_unlock_up_safe(path, 1);
1813 	}
1814 	return err;
1815 }
1816 
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822 				 struct btrfs_path *path,
1823 				 struct btrfs_extent_inline_ref *iref,
1824 				 u64 parent, u64 root_objectid,
1825 				 u64 owner, u64 offset, int refs_to_add,
1826 				 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 	struct extent_buffer *leaf;
1829 	struct btrfs_extent_item *ei;
1830 	unsigned long ptr;
1831 	unsigned long end;
1832 	unsigned long item_offset;
1833 	u64 refs;
1834 	int size;
1835 	int type;
1836 
1837 	leaf = path->nodes[0];
1838 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 	item_offset = (unsigned long)iref - (unsigned long)ei;
1840 
1841 	type = extent_ref_type(parent, owner);
1842 	size = btrfs_extent_inline_ref_size(type);
1843 
1844 	btrfs_extend_item(fs_info, path, size);
1845 
1846 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 	refs = btrfs_extent_refs(leaf, ei);
1848 	refs += refs_to_add;
1849 	btrfs_set_extent_refs(leaf, ei, refs);
1850 	if (extent_op)
1851 		__run_delayed_extent_op(extent_op, leaf, ei);
1852 
1853 	ptr = (unsigned long)ei + item_offset;
1854 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 	if (ptr < end - size)
1856 		memmove_extent_buffer(leaf, ptr + size, ptr,
1857 				      end - size - ptr);
1858 
1859 	iref = (struct btrfs_extent_inline_ref *)ptr;
1860 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 		struct btrfs_extent_data_ref *dref;
1863 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 		struct btrfs_shared_data_ref *sref;
1870 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 	} else {
1876 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 	}
1878 	btrfs_mark_buffer_dirty(leaf);
1879 }
1880 
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882 				 struct btrfs_fs_info *fs_info,
1883 				 struct btrfs_path *path,
1884 				 struct btrfs_extent_inline_ref **ref_ret,
1885 				 u64 bytenr, u64 num_bytes, u64 parent,
1886 				 u64 root_objectid, u64 owner, u64 offset)
1887 {
1888 	int ret;
1889 
1890 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891 					   bytenr, num_bytes, parent,
1892 					   root_objectid, owner, offset, 0);
1893 	if (ret != -ENOENT)
1894 		return ret;
1895 
1896 	btrfs_release_path(path);
1897 	*ref_ret = NULL;
1898 
1899 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 					    parent, root_objectid);
1902 	} else {
1903 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 					     parent, root_objectid, owner,
1905 					     offset);
1906 	}
1907 	return ret;
1908 }
1909 
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915 				  struct btrfs_path *path,
1916 				  struct btrfs_extent_inline_ref *iref,
1917 				  int refs_to_mod,
1918 				  struct btrfs_delayed_extent_op *extent_op,
1919 				  int *last_ref)
1920 {
1921 	struct extent_buffer *leaf;
1922 	struct btrfs_extent_item *ei;
1923 	struct btrfs_extent_data_ref *dref = NULL;
1924 	struct btrfs_shared_data_ref *sref = NULL;
1925 	unsigned long ptr;
1926 	unsigned long end;
1927 	u32 item_size;
1928 	int size;
1929 	int type;
1930 	u64 refs;
1931 
1932 	leaf = path->nodes[0];
1933 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 	refs = btrfs_extent_refs(leaf, ei);
1935 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 	refs += refs_to_mod;
1937 	btrfs_set_extent_refs(leaf, ei, refs);
1938 	if (extent_op)
1939 		__run_delayed_extent_op(extent_op, leaf, ei);
1940 
1941 	/*
1942 	 * If type is invalid, we should have bailed out after
1943 	 * lookup_inline_extent_backref().
1944 	 */
1945 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947 
1948 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 		refs = btrfs_extent_data_ref_count(leaf, dref);
1951 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 		refs = btrfs_shared_data_ref_count(leaf, sref);
1954 	} else {
1955 		refs = 1;
1956 		BUG_ON(refs_to_mod != -1);
1957 	}
1958 
1959 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 	refs += refs_to_mod;
1961 
1962 	if (refs > 0) {
1963 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 		else
1966 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 	} else {
1968 		*last_ref = 1;
1969 		size =  btrfs_extent_inline_ref_size(type);
1970 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 		ptr = (unsigned long)iref;
1972 		end = (unsigned long)ei + item_size;
1973 		if (ptr + size < end)
1974 			memmove_extent_buffer(leaf, ptr, ptr + size,
1975 					      end - ptr - size);
1976 		item_size -= size;
1977 		btrfs_truncate_item(fs_info, path, item_size, 1);
1978 	}
1979 	btrfs_mark_buffer_dirty(leaf);
1980 }
1981 
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984 				 struct btrfs_fs_info *fs_info,
1985 				 struct btrfs_path *path,
1986 				 u64 bytenr, u64 num_bytes, u64 parent,
1987 				 u64 root_objectid, u64 owner,
1988 				 u64 offset, int refs_to_add,
1989 				 struct btrfs_delayed_extent_op *extent_op)
1990 {
1991 	struct btrfs_extent_inline_ref *iref;
1992 	int ret;
1993 
1994 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995 					   bytenr, num_bytes, parent,
1996 					   root_objectid, owner, offset, 1);
1997 	if (ret == 0) {
1998 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999 		update_inline_extent_backref(fs_info, path, iref,
2000 					     refs_to_add, extent_op, NULL);
2001 	} else if (ret == -ENOENT) {
2002 		setup_inline_extent_backref(fs_info, path, iref, parent,
2003 					    root_objectid, owner, offset,
2004 					    refs_to_add, extent_op);
2005 		ret = 0;
2006 	}
2007 	return ret;
2008 }
2009 
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011 				 struct btrfs_fs_info *fs_info,
2012 				 struct btrfs_path *path,
2013 				 u64 bytenr, u64 parent, u64 root_objectid,
2014 				 u64 owner, u64 offset, int refs_to_add)
2015 {
2016 	int ret;
2017 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 		BUG_ON(refs_to_add != 1);
2019 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020 					    parent, root_objectid);
2021 	} else {
2022 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023 					     parent, root_objectid,
2024 					     owner, offset, refs_to_add);
2025 	}
2026 	return ret;
2027 }
2028 
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030 				 struct btrfs_fs_info *fs_info,
2031 				 struct btrfs_path *path,
2032 				 struct btrfs_extent_inline_ref *iref,
2033 				 int refs_to_drop, int is_data, int *last_ref)
2034 {
2035 	int ret = 0;
2036 
2037 	BUG_ON(!is_data && refs_to_drop != 1);
2038 	if (iref) {
2039 		update_inline_extent_backref(fs_info, path, iref,
2040 					     -refs_to_drop, NULL, last_ref);
2041 	} else if (is_data) {
2042 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043 					     last_ref);
2044 	} else {
2045 		*last_ref = 1;
2046 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047 	}
2048 	return ret;
2049 }
2050 
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 			       u64 *discarded_bytes)
2054 {
2055 	int j, ret = 0;
2056 	u64 bytes_left, end;
2057 	u64 aligned_start = ALIGN(start, 1 << 9);
2058 
2059 	if (WARN_ON(start != aligned_start)) {
2060 		len -= aligned_start - start;
2061 		len = round_down(len, 1 << 9);
2062 		start = aligned_start;
2063 	}
2064 
2065 	*discarded_bytes = 0;
2066 
2067 	if (!len)
2068 		return 0;
2069 
2070 	end = start + len;
2071 	bytes_left = len;
2072 
2073 	/* Skip any superblocks on this device. */
2074 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 		u64 sb_start = btrfs_sb_offset(j);
2076 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 		u64 size = sb_start - start;
2078 
2079 		if (!in_range(sb_start, start, bytes_left) &&
2080 		    !in_range(sb_end, start, bytes_left) &&
2081 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 			continue;
2083 
2084 		/*
2085 		 * Superblock spans beginning of range.  Adjust start and
2086 		 * try again.
2087 		 */
2088 		if (sb_start <= start) {
2089 			start += sb_end - start;
2090 			if (start > end) {
2091 				bytes_left = 0;
2092 				break;
2093 			}
2094 			bytes_left = end - start;
2095 			continue;
2096 		}
2097 
2098 		if (size) {
2099 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 						   GFP_NOFS, 0);
2101 			if (!ret)
2102 				*discarded_bytes += size;
2103 			else if (ret != -EOPNOTSUPP)
2104 				return ret;
2105 		}
2106 
2107 		start = sb_end;
2108 		if (start > end) {
2109 			bytes_left = 0;
2110 			break;
2111 		}
2112 		bytes_left = end - start;
2113 	}
2114 
2115 	if (bytes_left) {
2116 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117 					   GFP_NOFS, 0);
2118 		if (!ret)
2119 			*discarded_bytes += bytes_left;
2120 	}
2121 	return ret;
2122 }
2123 
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125 			 u64 num_bytes, u64 *actual_bytes)
2126 {
2127 	int ret;
2128 	u64 discarded_bytes = 0;
2129 	struct btrfs_bio *bbio = NULL;
2130 
2131 
2132 	/*
2133 	 * Avoid races with device replace and make sure our bbio has devices
2134 	 * associated to its stripes that don't go away while we are discarding.
2135 	 */
2136 	btrfs_bio_counter_inc_blocked(fs_info);
2137 	/* Tell the block device(s) that the sectors can be discarded */
2138 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 			      &bbio, 0);
2140 	/* Error condition is -ENOMEM */
2141 	if (!ret) {
2142 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2143 		int i;
2144 
2145 
2146 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147 			u64 bytes;
2148 			if (!stripe->dev->can_discard)
2149 				continue;
2150 
2151 			ret = btrfs_issue_discard(stripe->dev->bdev,
2152 						  stripe->physical,
2153 						  stripe->length,
2154 						  &bytes);
2155 			if (!ret)
2156 				discarded_bytes += bytes;
2157 			else if (ret != -EOPNOTSUPP)
2158 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2159 
2160 			/*
2161 			 * Just in case we get back EOPNOTSUPP for some reason,
2162 			 * just ignore the return value so we don't screw up
2163 			 * people calling discard_extent.
2164 			 */
2165 			ret = 0;
2166 		}
2167 		btrfs_put_bbio(bbio);
2168 	}
2169 	btrfs_bio_counter_dec(fs_info);
2170 
2171 	if (actual_bytes)
2172 		*actual_bytes = discarded_bytes;
2173 
2174 
2175 	if (ret == -EOPNOTSUPP)
2176 		ret = 0;
2177 	return ret;
2178 }
2179 
2180 /* Can return -ENOMEM */
2181 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2182 			 struct btrfs_root *root,
2183 			 u64 bytenr, u64 num_bytes, u64 parent,
2184 			 u64 root_objectid, u64 owner, u64 offset)
2185 {
2186 	struct btrfs_fs_info *fs_info = root->fs_info;
2187 	int old_ref_mod, new_ref_mod;
2188 	int ret;
2189 
2190 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2191 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2192 
2193 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2194 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2195 
2196 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2197 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2198 						 num_bytes, parent,
2199 						 root_objectid, (int)owner,
2200 						 BTRFS_ADD_DELAYED_REF, NULL,
2201 						 &old_ref_mod, &new_ref_mod);
2202 	} else {
2203 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2204 						 num_bytes, parent,
2205 						 root_objectid, owner, offset,
2206 						 0, BTRFS_ADD_DELAYED_REF,
2207 						 &old_ref_mod, &new_ref_mod);
2208 	}
2209 
2210 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2211 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2212 
2213 	return ret;
2214 }
2215 
2216 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2217 				  struct btrfs_fs_info *fs_info,
2218 				  struct btrfs_delayed_ref_node *node,
2219 				  u64 parent, u64 root_objectid,
2220 				  u64 owner, u64 offset, int refs_to_add,
2221 				  struct btrfs_delayed_extent_op *extent_op)
2222 {
2223 	struct btrfs_path *path;
2224 	struct extent_buffer *leaf;
2225 	struct btrfs_extent_item *item;
2226 	struct btrfs_key key;
2227 	u64 bytenr = node->bytenr;
2228 	u64 num_bytes = node->num_bytes;
2229 	u64 refs;
2230 	int ret;
2231 
2232 	path = btrfs_alloc_path();
2233 	if (!path)
2234 		return -ENOMEM;
2235 
2236 	path->reada = READA_FORWARD;
2237 	path->leave_spinning = 1;
2238 	/* this will setup the path even if it fails to insert the back ref */
2239 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2240 					   num_bytes, parent, root_objectid,
2241 					   owner, offset,
2242 					   refs_to_add, extent_op);
2243 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2244 		goto out;
2245 
2246 	/*
2247 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2248 	 * inline extent ref, so just update the reference count and add a
2249 	 * normal backref.
2250 	 */
2251 	leaf = path->nodes[0];
2252 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2253 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2254 	refs = btrfs_extent_refs(leaf, item);
2255 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2256 	if (extent_op)
2257 		__run_delayed_extent_op(extent_op, leaf, item);
2258 
2259 	btrfs_mark_buffer_dirty(leaf);
2260 	btrfs_release_path(path);
2261 
2262 	path->reada = READA_FORWARD;
2263 	path->leave_spinning = 1;
2264 	/* now insert the actual backref */
2265 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2266 				    root_objectid, owner, offset, refs_to_add);
2267 	if (ret)
2268 		btrfs_abort_transaction(trans, ret);
2269 out:
2270 	btrfs_free_path(path);
2271 	return ret;
2272 }
2273 
2274 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2275 				struct btrfs_fs_info *fs_info,
2276 				struct btrfs_delayed_ref_node *node,
2277 				struct btrfs_delayed_extent_op *extent_op,
2278 				int insert_reserved)
2279 {
2280 	int ret = 0;
2281 	struct btrfs_delayed_data_ref *ref;
2282 	struct btrfs_key ins;
2283 	u64 parent = 0;
2284 	u64 ref_root = 0;
2285 	u64 flags = 0;
2286 
2287 	ins.objectid = node->bytenr;
2288 	ins.offset = node->num_bytes;
2289 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2290 
2291 	ref = btrfs_delayed_node_to_data_ref(node);
2292 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2293 
2294 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2295 		parent = ref->parent;
2296 	ref_root = ref->root;
2297 
2298 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2299 		if (extent_op)
2300 			flags |= extent_op->flags_to_set;
2301 		ret = alloc_reserved_file_extent(trans, fs_info,
2302 						 parent, ref_root, flags,
2303 						 ref->objectid, ref->offset,
2304 						 &ins, node->ref_mod);
2305 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2306 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2307 					     ref_root, ref->objectid,
2308 					     ref->offset, node->ref_mod,
2309 					     extent_op);
2310 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2311 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2312 					  ref_root, ref->objectid,
2313 					  ref->offset, node->ref_mod,
2314 					  extent_op);
2315 	} else {
2316 		BUG();
2317 	}
2318 	return ret;
2319 }
2320 
2321 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2322 				    struct extent_buffer *leaf,
2323 				    struct btrfs_extent_item *ei)
2324 {
2325 	u64 flags = btrfs_extent_flags(leaf, ei);
2326 	if (extent_op->update_flags) {
2327 		flags |= extent_op->flags_to_set;
2328 		btrfs_set_extent_flags(leaf, ei, flags);
2329 	}
2330 
2331 	if (extent_op->update_key) {
2332 		struct btrfs_tree_block_info *bi;
2333 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2334 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2335 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2336 	}
2337 }
2338 
2339 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2340 				 struct btrfs_fs_info *fs_info,
2341 				 struct btrfs_delayed_ref_head *head,
2342 				 struct btrfs_delayed_extent_op *extent_op)
2343 {
2344 	struct btrfs_key key;
2345 	struct btrfs_path *path;
2346 	struct btrfs_extent_item *ei;
2347 	struct extent_buffer *leaf;
2348 	u32 item_size;
2349 	int ret;
2350 	int err = 0;
2351 	int metadata = !extent_op->is_data;
2352 
2353 	if (trans->aborted)
2354 		return 0;
2355 
2356 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2357 		metadata = 0;
2358 
2359 	path = btrfs_alloc_path();
2360 	if (!path)
2361 		return -ENOMEM;
2362 
2363 	key.objectid = head->bytenr;
2364 
2365 	if (metadata) {
2366 		key.type = BTRFS_METADATA_ITEM_KEY;
2367 		key.offset = extent_op->level;
2368 	} else {
2369 		key.type = BTRFS_EXTENT_ITEM_KEY;
2370 		key.offset = head->num_bytes;
2371 	}
2372 
2373 again:
2374 	path->reada = READA_FORWARD;
2375 	path->leave_spinning = 1;
2376 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2377 	if (ret < 0) {
2378 		err = ret;
2379 		goto out;
2380 	}
2381 	if (ret > 0) {
2382 		if (metadata) {
2383 			if (path->slots[0] > 0) {
2384 				path->slots[0]--;
2385 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2386 						      path->slots[0]);
2387 				if (key.objectid == head->bytenr &&
2388 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2389 				    key.offset == head->num_bytes)
2390 					ret = 0;
2391 			}
2392 			if (ret > 0) {
2393 				btrfs_release_path(path);
2394 				metadata = 0;
2395 
2396 				key.objectid = head->bytenr;
2397 				key.offset = head->num_bytes;
2398 				key.type = BTRFS_EXTENT_ITEM_KEY;
2399 				goto again;
2400 			}
2401 		} else {
2402 			err = -EIO;
2403 			goto out;
2404 		}
2405 	}
2406 
2407 	leaf = path->nodes[0];
2408 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2410 	if (item_size < sizeof(*ei)) {
2411 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2412 		if (ret < 0) {
2413 			err = ret;
2414 			goto out;
2415 		}
2416 		leaf = path->nodes[0];
2417 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2418 	}
2419 #endif
2420 	BUG_ON(item_size < sizeof(*ei));
2421 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422 	__run_delayed_extent_op(extent_op, leaf, ei);
2423 
2424 	btrfs_mark_buffer_dirty(leaf);
2425 out:
2426 	btrfs_free_path(path);
2427 	return err;
2428 }
2429 
2430 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2431 				struct btrfs_fs_info *fs_info,
2432 				struct btrfs_delayed_ref_node *node,
2433 				struct btrfs_delayed_extent_op *extent_op,
2434 				int insert_reserved)
2435 {
2436 	int ret = 0;
2437 	struct btrfs_delayed_tree_ref *ref;
2438 	struct btrfs_key ins;
2439 	u64 parent = 0;
2440 	u64 ref_root = 0;
2441 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2442 
2443 	ref = btrfs_delayed_node_to_tree_ref(node);
2444 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2445 
2446 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 		parent = ref->parent;
2448 	ref_root = ref->root;
2449 
2450 	ins.objectid = node->bytenr;
2451 	if (skinny_metadata) {
2452 		ins.offset = ref->level;
2453 		ins.type = BTRFS_METADATA_ITEM_KEY;
2454 	} else {
2455 		ins.offset = node->num_bytes;
2456 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2457 	}
2458 
2459 	if (node->ref_mod != 1) {
2460 		btrfs_err(fs_info,
2461 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2462 			  node->bytenr, node->ref_mod, node->action, ref_root,
2463 			  parent);
2464 		return -EIO;
2465 	}
2466 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2467 		BUG_ON(!extent_op || !extent_op->update_flags);
2468 		ret = alloc_reserved_tree_block(trans, fs_info,
2469 						parent, ref_root,
2470 						extent_op->flags_to_set,
2471 						&extent_op->key,
2472 						ref->level, &ins);
2473 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2474 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2475 					     parent, ref_root,
2476 					     ref->level, 0, 1,
2477 					     extent_op);
2478 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2479 		ret = __btrfs_free_extent(trans, fs_info, node,
2480 					  parent, ref_root,
2481 					  ref->level, 0, 1, extent_op);
2482 	} else {
2483 		BUG();
2484 	}
2485 	return ret;
2486 }
2487 
2488 /* helper function to actually process a single delayed ref entry */
2489 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2490 			       struct btrfs_fs_info *fs_info,
2491 			       struct btrfs_delayed_ref_node *node,
2492 			       struct btrfs_delayed_extent_op *extent_op,
2493 			       int insert_reserved)
2494 {
2495 	int ret = 0;
2496 
2497 	if (trans->aborted) {
2498 		if (insert_reserved)
2499 			btrfs_pin_extent(fs_info, node->bytenr,
2500 					 node->num_bytes, 1);
2501 		return 0;
2502 	}
2503 
2504 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2505 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2506 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2507 					   insert_reserved);
2508 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2509 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2510 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2511 					   insert_reserved);
2512 	else
2513 		BUG();
2514 	return ret;
2515 }
2516 
2517 static inline struct btrfs_delayed_ref_node *
2518 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2519 {
2520 	struct btrfs_delayed_ref_node *ref;
2521 
2522 	if (RB_EMPTY_ROOT(&head->ref_tree))
2523 		return NULL;
2524 
2525 	/*
2526 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2527 	 * This is to prevent a ref count from going down to zero, which deletes
2528 	 * the extent item from the extent tree, when there still are references
2529 	 * to add, which would fail because they would not find the extent item.
2530 	 */
2531 	if (!list_empty(&head->ref_add_list))
2532 		return list_first_entry(&head->ref_add_list,
2533 				struct btrfs_delayed_ref_node, add_list);
2534 
2535 	ref = rb_entry(rb_first(&head->ref_tree),
2536 		       struct btrfs_delayed_ref_node, ref_node);
2537 	ASSERT(list_empty(&ref->add_list));
2538 	return ref;
2539 }
2540 
2541 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2542 				      struct btrfs_delayed_ref_head *head)
2543 {
2544 	spin_lock(&delayed_refs->lock);
2545 	head->processing = 0;
2546 	delayed_refs->num_heads_ready++;
2547 	spin_unlock(&delayed_refs->lock);
2548 	btrfs_delayed_ref_unlock(head);
2549 }
2550 
2551 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2552 			     struct btrfs_fs_info *fs_info,
2553 			     struct btrfs_delayed_ref_head *head)
2554 {
2555 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2556 	int ret;
2557 
2558 	if (!extent_op)
2559 		return 0;
2560 	head->extent_op = NULL;
2561 	if (head->must_insert_reserved) {
2562 		btrfs_free_delayed_extent_op(extent_op);
2563 		return 0;
2564 	}
2565 	spin_unlock(&head->lock);
2566 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2567 	btrfs_free_delayed_extent_op(extent_op);
2568 	return ret ? ret : 1;
2569 }
2570 
2571 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2572 			    struct btrfs_fs_info *fs_info,
2573 			    struct btrfs_delayed_ref_head *head)
2574 {
2575 	struct btrfs_delayed_ref_root *delayed_refs;
2576 	int ret;
2577 
2578 	delayed_refs = &trans->transaction->delayed_refs;
2579 
2580 	ret = cleanup_extent_op(trans, fs_info, head);
2581 	if (ret < 0) {
2582 		unselect_delayed_ref_head(delayed_refs, head);
2583 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2584 		return ret;
2585 	} else if (ret) {
2586 		return ret;
2587 	}
2588 
2589 	/*
2590 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2591 	 * and then re-check to make sure nobody got added.
2592 	 */
2593 	spin_unlock(&head->lock);
2594 	spin_lock(&delayed_refs->lock);
2595 	spin_lock(&head->lock);
2596 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2597 		spin_unlock(&head->lock);
2598 		spin_unlock(&delayed_refs->lock);
2599 		return 1;
2600 	}
2601 	delayed_refs->num_heads--;
2602 	rb_erase(&head->href_node, &delayed_refs->href_root);
2603 	RB_CLEAR_NODE(&head->href_node);
2604 	spin_unlock(&delayed_refs->lock);
2605 	spin_unlock(&head->lock);
2606 	atomic_dec(&delayed_refs->num_entries);
2607 
2608 	trace_run_delayed_ref_head(fs_info, head, 0);
2609 
2610 	if (head->total_ref_mod < 0) {
2611 		struct btrfs_block_group_cache *cache;
2612 
2613 		cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2614 		ASSERT(cache);
2615 		percpu_counter_add(&cache->space_info->total_bytes_pinned,
2616 				   -head->num_bytes);
2617 		btrfs_put_block_group(cache);
2618 
2619 		if (head->is_data) {
2620 			spin_lock(&delayed_refs->lock);
2621 			delayed_refs->pending_csums -= head->num_bytes;
2622 			spin_unlock(&delayed_refs->lock);
2623 		}
2624 	}
2625 
2626 	if (head->must_insert_reserved) {
2627 		btrfs_pin_extent(fs_info, head->bytenr,
2628 				 head->num_bytes, 1);
2629 		if (head->is_data) {
2630 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2631 					      head->num_bytes);
2632 		}
2633 	}
2634 
2635 	/* Also free its reserved qgroup space */
2636 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2637 				      head->qgroup_reserved);
2638 	btrfs_delayed_ref_unlock(head);
2639 	btrfs_put_delayed_ref_head(head);
2640 	return 0;
2641 }
2642 
2643 /*
2644  * Returns 0 on success or if called with an already aborted transaction.
2645  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2646  */
2647 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2648 					     struct btrfs_fs_info *fs_info,
2649 					     unsigned long nr)
2650 {
2651 	struct btrfs_delayed_ref_root *delayed_refs;
2652 	struct btrfs_delayed_ref_node *ref;
2653 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2654 	struct btrfs_delayed_extent_op *extent_op;
2655 	ktime_t start = ktime_get();
2656 	int ret;
2657 	unsigned long count = 0;
2658 	unsigned long actual_count = 0;
2659 	int must_insert_reserved = 0;
2660 
2661 	delayed_refs = &trans->transaction->delayed_refs;
2662 	while (1) {
2663 		if (!locked_ref) {
2664 			if (count >= nr)
2665 				break;
2666 
2667 			spin_lock(&delayed_refs->lock);
2668 			locked_ref = btrfs_select_ref_head(trans);
2669 			if (!locked_ref) {
2670 				spin_unlock(&delayed_refs->lock);
2671 				break;
2672 			}
2673 
2674 			/* grab the lock that says we are going to process
2675 			 * all the refs for this head */
2676 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2677 			spin_unlock(&delayed_refs->lock);
2678 			/*
2679 			 * we may have dropped the spin lock to get the head
2680 			 * mutex lock, and that might have given someone else
2681 			 * time to free the head.  If that's true, it has been
2682 			 * removed from our list and we can move on.
2683 			 */
2684 			if (ret == -EAGAIN) {
2685 				locked_ref = NULL;
2686 				count++;
2687 				continue;
2688 			}
2689 		}
2690 
2691 		/*
2692 		 * We need to try and merge add/drops of the same ref since we
2693 		 * can run into issues with relocate dropping the implicit ref
2694 		 * and then it being added back again before the drop can
2695 		 * finish.  If we merged anything we need to re-loop so we can
2696 		 * get a good ref.
2697 		 * Or we can get node references of the same type that weren't
2698 		 * merged when created due to bumps in the tree mod seq, and
2699 		 * we need to merge them to prevent adding an inline extent
2700 		 * backref before dropping it (triggering a BUG_ON at
2701 		 * insert_inline_extent_backref()).
2702 		 */
2703 		spin_lock(&locked_ref->lock);
2704 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2705 					 locked_ref);
2706 
2707 		/*
2708 		 * locked_ref is the head node, so we have to go one
2709 		 * node back for any delayed ref updates
2710 		 */
2711 		ref = select_delayed_ref(locked_ref);
2712 
2713 		if (ref && ref->seq &&
2714 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2715 			spin_unlock(&locked_ref->lock);
2716 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2717 			locked_ref = NULL;
2718 			cond_resched();
2719 			count++;
2720 			continue;
2721 		}
2722 
2723 		/*
2724 		 * We're done processing refs in this ref_head, clean everything
2725 		 * up and move on to the next ref_head.
2726 		 */
2727 		if (!ref) {
2728 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2729 			if (ret > 0 ) {
2730 				/* We dropped our lock, we need to loop. */
2731 				ret = 0;
2732 				continue;
2733 			} else if (ret) {
2734 				return ret;
2735 			}
2736 			locked_ref = NULL;
2737 			count++;
2738 			continue;
2739 		}
2740 
2741 		actual_count++;
2742 		ref->in_tree = 0;
2743 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2744 		RB_CLEAR_NODE(&ref->ref_node);
2745 		if (!list_empty(&ref->add_list))
2746 			list_del(&ref->add_list);
2747 		/*
2748 		 * When we play the delayed ref, also correct the ref_mod on
2749 		 * head
2750 		 */
2751 		switch (ref->action) {
2752 		case BTRFS_ADD_DELAYED_REF:
2753 		case BTRFS_ADD_DELAYED_EXTENT:
2754 			locked_ref->ref_mod -= ref->ref_mod;
2755 			break;
2756 		case BTRFS_DROP_DELAYED_REF:
2757 			locked_ref->ref_mod += ref->ref_mod;
2758 			break;
2759 		default:
2760 			WARN_ON(1);
2761 		}
2762 		atomic_dec(&delayed_refs->num_entries);
2763 
2764 		/*
2765 		 * Record the must-insert_reserved flag before we drop the spin
2766 		 * lock.
2767 		 */
2768 		must_insert_reserved = locked_ref->must_insert_reserved;
2769 		locked_ref->must_insert_reserved = 0;
2770 
2771 		extent_op = locked_ref->extent_op;
2772 		locked_ref->extent_op = NULL;
2773 		spin_unlock(&locked_ref->lock);
2774 
2775 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2776 					  must_insert_reserved);
2777 
2778 		btrfs_free_delayed_extent_op(extent_op);
2779 		if (ret) {
2780 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2781 			btrfs_put_delayed_ref(ref);
2782 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2783 				    ret);
2784 			return ret;
2785 		}
2786 
2787 		btrfs_put_delayed_ref(ref);
2788 		count++;
2789 		cond_resched();
2790 	}
2791 
2792 	/*
2793 	 * We don't want to include ref heads since we can have empty ref heads
2794 	 * and those will drastically skew our runtime down since we just do
2795 	 * accounting, no actual extent tree updates.
2796 	 */
2797 	if (actual_count > 0) {
2798 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2799 		u64 avg;
2800 
2801 		/*
2802 		 * We weigh the current average higher than our current runtime
2803 		 * to avoid large swings in the average.
2804 		 */
2805 		spin_lock(&delayed_refs->lock);
2806 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2807 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2808 		spin_unlock(&delayed_refs->lock);
2809 	}
2810 	return 0;
2811 }
2812 
2813 #ifdef SCRAMBLE_DELAYED_REFS
2814 /*
2815  * Normally delayed refs get processed in ascending bytenr order. This
2816  * correlates in most cases to the order added. To expose dependencies on this
2817  * order, we start to process the tree in the middle instead of the beginning
2818  */
2819 static u64 find_middle(struct rb_root *root)
2820 {
2821 	struct rb_node *n = root->rb_node;
2822 	struct btrfs_delayed_ref_node *entry;
2823 	int alt = 1;
2824 	u64 middle;
2825 	u64 first = 0, last = 0;
2826 
2827 	n = rb_first(root);
2828 	if (n) {
2829 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2830 		first = entry->bytenr;
2831 	}
2832 	n = rb_last(root);
2833 	if (n) {
2834 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835 		last = entry->bytenr;
2836 	}
2837 	n = root->rb_node;
2838 
2839 	while (n) {
2840 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2841 		WARN_ON(!entry->in_tree);
2842 
2843 		middle = entry->bytenr;
2844 
2845 		if (alt)
2846 			n = n->rb_left;
2847 		else
2848 			n = n->rb_right;
2849 
2850 		alt = 1 - alt;
2851 	}
2852 	return middle;
2853 }
2854 #endif
2855 
2856 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2857 {
2858 	u64 num_bytes;
2859 
2860 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2861 			     sizeof(struct btrfs_extent_inline_ref));
2862 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2863 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2864 
2865 	/*
2866 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2867 	 * closer to what we're really going to want to use.
2868 	 */
2869 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2870 }
2871 
2872 /*
2873  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2874  * would require to store the csums for that many bytes.
2875  */
2876 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2877 {
2878 	u64 csum_size;
2879 	u64 num_csums_per_leaf;
2880 	u64 num_csums;
2881 
2882 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2883 	num_csums_per_leaf = div64_u64(csum_size,
2884 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2885 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2886 	num_csums += num_csums_per_leaf - 1;
2887 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2888 	return num_csums;
2889 }
2890 
2891 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2892 				       struct btrfs_fs_info *fs_info)
2893 {
2894 	struct btrfs_block_rsv *global_rsv;
2895 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2896 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2897 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2898 	u64 num_bytes, num_dirty_bgs_bytes;
2899 	int ret = 0;
2900 
2901 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2902 	num_heads = heads_to_leaves(fs_info, num_heads);
2903 	if (num_heads > 1)
2904 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2905 	num_bytes <<= 1;
2906 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2907 							fs_info->nodesize;
2908 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2909 							     num_dirty_bgs);
2910 	global_rsv = &fs_info->global_block_rsv;
2911 
2912 	/*
2913 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2914 	 * wiggle room since running delayed refs can create more delayed refs.
2915 	 */
2916 	if (global_rsv->space_info->full) {
2917 		num_dirty_bgs_bytes <<= 1;
2918 		num_bytes <<= 1;
2919 	}
2920 
2921 	spin_lock(&global_rsv->lock);
2922 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2923 		ret = 1;
2924 	spin_unlock(&global_rsv->lock);
2925 	return ret;
2926 }
2927 
2928 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2929 				       struct btrfs_fs_info *fs_info)
2930 {
2931 	u64 num_entries =
2932 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2933 	u64 avg_runtime;
2934 	u64 val;
2935 
2936 	smp_mb();
2937 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2938 	val = num_entries * avg_runtime;
2939 	if (val >= NSEC_PER_SEC)
2940 		return 1;
2941 	if (val >= NSEC_PER_SEC / 2)
2942 		return 2;
2943 
2944 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2945 }
2946 
2947 struct async_delayed_refs {
2948 	struct btrfs_root *root;
2949 	u64 transid;
2950 	int count;
2951 	int error;
2952 	int sync;
2953 	struct completion wait;
2954 	struct btrfs_work work;
2955 };
2956 
2957 static inline struct async_delayed_refs *
2958 to_async_delayed_refs(struct btrfs_work *work)
2959 {
2960 	return container_of(work, struct async_delayed_refs, work);
2961 }
2962 
2963 static void delayed_ref_async_start(struct btrfs_work *work)
2964 {
2965 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2966 	struct btrfs_trans_handle *trans;
2967 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2968 	int ret;
2969 
2970 	/* if the commit is already started, we don't need to wait here */
2971 	if (btrfs_transaction_blocked(fs_info))
2972 		goto done;
2973 
2974 	trans = btrfs_join_transaction(async->root);
2975 	if (IS_ERR(trans)) {
2976 		async->error = PTR_ERR(trans);
2977 		goto done;
2978 	}
2979 
2980 	/*
2981 	 * trans->sync means that when we call end_transaction, we won't
2982 	 * wait on delayed refs
2983 	 */
2984 	trans->sync = true;
2985 
2986 	/* Don't bother flushing if we got into a different transaction */
2987 	if (trans->transid > async->transid)
2988 		goto end;
2989 
2990 	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2991 	if (ret)
2992 		async->error = ret;
2993 end:
2994 	ret = btrfs_end_transaction(trans);
2995 	if (ret && !async->error)
2996 		async->error = ret;
2997 done:
2998 	if (async->sync)
2999 		complete(&async->wait);
3000 	else
3001 		kfree(async);
3002 }
3003 
3004 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3005 				 unsigned long count, u64 transid, int wait)
3006 {
3007 	struct async_delayed_refs *async;
3008 	int ret;
3009 
3010 	async = kmalloc(sizeof(*async), GFP_NOFS);
3011 	if (!async)
3012 		return -ENOMEM;
3013 
3014 	async->root = fs_info->tree_root;
3015 	async->count = count;
3016 	async->error = 0;
3017 	async->transid = transid;
3018 	if (wait)
3019 		async->sync = 1;
3020 	else
3021 		async->sync = 0;
3022 	init_completion(&async->wait);
3023 
3024 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3025 			delayed_ref_async_start, NULL, NULL);
3026 
3027 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3028 
3029 	if (wait) {
3030 		wait_for_completion(&async->wait);
3031 		ret = async->error;
3032 		kfree(async);
3033 		return ret;
3034 	}
3035 	return 0;
3036 }
3037 
3038 /*
3039  * this starts processing the delayed reference count updates and
3040  * extent insertions we have queued up so far.  count can be
3041  * 0, which means to process everything in the tree at the start
3042  * of the run (but not newly added entries), or it can be some target
3043  * number you'd like to process.
3044  *
3045  * Returns 0 on success or if called with an aborted transaction
3046  * Returns <0 on error and aborts the transaction
3047  */
3048 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3049 			   struct btrfs_fs_info *fs_info, unsigned long count)
3050 {
3051 	struct rb_node *node;
3052 	struct btrfs_delayed_ref_root *delayed_refs;
3053 	struct btrfs_delayed_ref_head *head;
3054 	int ret;
3055 	int run_all = count == (unsigned long)-1;
3056 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3057 
3058 	/* We'll clean this up in btrfs_cleanup_transaction */
3059 	if (trans->aborted)
3060 		return 0;
3061 
3062 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3063 		return 0;
3064 
3065 	delayed_refs = &trans->transaction->delayed_refs;
3066 	if (count == 0)
3067 		count = atomic_read(&delayed_refs->num_entries) * 2;
3068 
3069 again:
3070 #ifdef SCRAMBLE_DELAYED_REFS
3071 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072 #endif
3073 	trans->can_flush_pending_bgs = false;
3074 	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3075 	if (ret < 0) {
3076 		btrfs_abort_transaction(trans, ret);
3077 		return ret;
3078 	}
3079 
3080 	if (run_all) {
3081 		if (!list_empty(&trans->new_bgs))
3082 			btrfs_create_pending_block_groups(trans, fs_info);
3083 
3084 		spin_lock(&delayed_refs->lock);
3085 		node = rb_first(&delayed_refs->href_root);
3086 		if (!node) {
3087 			spin_unlock(&delayed_refs->lock);
3088 			goto out;
3089 		}
3090 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3091 				href_node);
3092 		refcount_inc(&head->refs);
3093 		spin_unlock(&delayed_refs->lock);
3094 
3095 		/* Mutex was contended, block until it's released and retry. */
3096 		mutex_lock(&head->mutex);
3097 		mutex_unlock(&head->mutex);
3098 
3099 		btrfs_put_delayed_ref_head(head);
3100 		cond_resched();
3101 		goto again;
3102 	}
3103 out:
3104 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3105 	return 0;
3106 }
3107 
3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3109 				struct btrfs_fs_info *fs_info,
3110 				u64 bytenr, u64 num_bytes, u64 flags,
3111 				int level, int is_data)
3112 {
3113 	struct btrfs_delayed_extent_op *extent_op;
3114 	int ret;
3115 
3116 	extent_op = btrfs_alloc_delayed_extent_op();
3117 	if (!extent_op)
3118 		return -ENOMEM;
3119 
3120 	extent_op->flags_to_set = flags;
3121 	extent_op->update_flags = true;
3122 	extent_op->update_key = false;
3123 	extent_op->is_data = is_data ? true : false;
3124 	extent_op->level = level;
3125 
3126 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3127 					  num_bytes, extent_op);
3128 	if (ret)
3129 		btrfs_free_delayed_extent_op(extent_op);
3130 	return ret;
3131 }
3132 
3133 static noinline int check_delayed_ref(struct btrfs_root *root,
3134 				      struct btrfs_path *path,
3135 				      u64 objectid, u64 offset, u64 bytenr)
3136 {
3137 	struct btrfs_delayed_ref_head *head;
3138 	struct btrfs_delayed_ref_node *ref;
3139 	struct btrfs_delayed_data_ref *data_ref;
3140 	struct btrfs_delayed_ref_root *delayed_refs;
3141 	struct btrfs_transaction *cur_trans;
3142 	struct rb_node *node;
3143 	int ret = 0;
3144 
3145 	cur_trans = root->fs_info->running_transaction;
3146 	if (!cur_trans)
3147 		return 0;
3148 
3149 	delayed_refs = &cur_trans->delayed_refs;
3150 	spin_lock(&delayed_refs->lock);
3151 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3152 	if (!head) {
3153 		spin_unlock(&delayed_refs->lock);
3154 		return 0;
3155 	}
3156 
3157 	if (!mutex_trylock(&head->mutex)) {
3158 		refcount_inc(&head->refs);
3159 		spin_unlock(&delayed_refs->lock);
3160 
3161 		btrfs_release_path(path);
3162 
3163 		/*
3164 		 * Mutex was contended, block until it's released and let
3165 		 * caller try again
3166 		 */
3167 		mutex_lock(&head->mutex);
3168 		mutex_unlock(&head->mutex);
3169 		btrfs_put_delayed_ref_head(head);
3170 		return -EAGAIN;
3171 	}
3172 	spin_unlock(&delayed_refs->lock);
3173 
3174 	spin_lock(&head->lock);
3175 	/*
3176 	 * XXX: We should replace this with a proper search function in the
3177 	 * future.
3178 	 */
3179 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3180 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3181 		/* If it's a shared ref we know a cross reference exists */
3182 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3183 			ret = 1;
3184 			break;
3185 		}
3186 
3187 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3188 
3189 		/*
3190 		 * If our ref doesn't match the one we're currently looking at
3191 		 * then we have a cross reference.
3192 		 */
3193 		if (data_ref->root != root->root_key.objectid ||
3194 		    data_ref->objectid != objectid ||
3195 		    data_ref->offset != offset) {
3196 			ret = 1;
3197 			break;
3198 		}
3199 	}
3200 	spin_unlock(&head->lock);
3201 	mutex_unlock(&head->mutex);
3202 	return ret;
3203 }
3204 
3205 static noinline int check_committed_ref(struct btrfs_root *root,
3206 					struct btrfs_path *path,
3207 					u64 objectid, u64 offset, u64 bytenr)
3208 {
3209 	struct btrfs_fs_info *fs_info = root->fs_info;
3210 	struct btrfs_root *extent_root = fs_info->extent_root;
3211 	struct extent_buffer *leaf;
3212 	struct btrfs_extent_data_ref *ref;
3213 	struct btrfs_extent_inline_ref *iref;
3214 	struct btrfs_extent_item *ei;
3215 	struct btrfs_key key;
3216 	u32 item_size;
3217 	int type;
3218 	int ret;
3219 
3220 	key.objectid = bytenr;
3221 	key.offset = (u64)-1;
3222 	key.type = BTRFS_EXTENT_ITEM_KEY;
3223 
3224 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3225 	if (ret < 0)
3226 		goto out;
3227 	BUG_ON(ret == 0); /* Corruption */
3228 
3229 	ret = -ENOENT;
3230 	if (path->slots[0] == 0)
3231 		goto out;
3232 
3233 	path->slots[0]--;
3234 	leaf = path->nodes[0];
3235 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3236 
3237 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3238 		goto out;
3239 
3240 	ret = 1;
3241 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3243 	if (item_size < sizeof(*ei)) {
3244 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3245 		goto out;
3246 	}
3247 #endif
3248 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3249 
3250 	if (item_size != sizeof(*ei) +
3251 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3252 		goto out;
3253 
3254 	if (btrfs_extent_generation(leaf, ei) <=
3255 	    btrfs_root_last_snapshot(&root->root_item))
3256 		goto out;
3257 
3258 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3259 
3260 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3261 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3262 		goto out;
3263 
3264 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3265 	if (btrfs_extent_refs(leaf, ei) !=
3266 	    btrfs_extent_data_ref_count(leaf, ref) ||
3267 	    btrfs_extent_data_ref_root(leaf, ref) !=
3268 	    root->root_key.objectid ||
3269 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3270 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3271 		goto out;
3272 
3273 	ret = 0;
3274 out:
3275 	return ret;
3276 }
3277 
3278 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3279 			  u64 bytenr)
3280 {
3281 	struct btrfs_path *path;
3282 	int ret;
3283 	int ret2;
3284 
3285 	path = btrfs_alloc_path();
3286 	if (!path)
3287 		return -ENOENT;
3288 
3289 	do {
3290 		ret = check_committed_ref(root, path, objectid,
3291 					  offset, bytenr);
3292 		if (ret && ret != -ENOENT)
3293 			goto out;
3294 
3295 		ret2 = check_delayed_ref(root, path, objectid,
3296 					 offset, bytenr);
3297 	} while (ret2 == -EAGAIN);
3298 
3299 	if (ret2 && ret2 != -ENOENT) {
3300 		ret = ret2;
3301 		goto out;
3302 	}
3303 
3304 	if (ret != -ENOENT || ret2 != -ENOENT)
3305 		ret = 0;
3306 out:
3307 	btrfs_free_path(path);
3308 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3309 		WARN_ON(ret > 0);
3310 	return ret;
3311 }
3312 
3313 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3314 			   struct btrfs_root *root,
3315 			   struct extent_buffer *buf,
3316 			   int full_backref, int inc)
3317 {
3318 	struct btrfs_fs_info *fs_info = root->fs_info;
3319 	u64 bytenr;
3320 	u64 num_bytes;
3321 	u64 parent;
3322 	u64 ref_root;
3323 	u32 nritems;
3324 	struct btrfs_key key;
3325 	struct btrfs_file_extent_item *fi;
3326 	int i;
3327 	int level;
3328 	int ret = 0;
3329 	int (*process_func)(struct btrfs_trans_handle *,
3330 			    struct btrfs_root *,
3331 			    u64, u64, u64, u64, u64, u64);
3332 
3333 
3334 	if (btrfs_is_testing(fs_info))
3335 		return 0;
3336 
3337 	ref_root = btrfs_header_owner(buf);
3338 	nritems = btrfs_header_nritems(buf);
3339 	level = btrfs_header_level(buf);
3340 
3341 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3342 		return 0;
3343 
3344 	if (inc)
3345 		process_func = btrfs_inc_extent_ref;
3346 	else
3347 		process_func = btrfs_free_extent;
3348 
3349 	if (full_backref)
3350 		parent = buf->start;
3351 	else
3352 		parent = 0;
3353 
3354 	for (i = 0; i < nritems; i++) {
3355 		if (level == 0) {
3356 			btrfs_item_key_to_cpu(buf, &key, i);
3357 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3358 				continue;
3359 			fi = btrfs_item_ptr(buf, i,
3360 					    struct btrfs_file_extent_item);
3361 			if (btrfs_file_extent_type(buf, fi) ==
3362 			    BTRFS_FILE_EXTENT_INLINE)
3363 				continue;
3364 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3365 			if (bytenr == 0)
3366 				continue;
3367 
3368 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3369 			key.offset -= btrfs_file_extent_offset(buf, fi);
3370 			ret = process_func(trans, root, bytenr, num_bytes,
3371 					   parent, ref_root, key.objectid,
3372 					   key.offset);
3373 			if (ret)
3374 				goto fail;
3375 		} else {
3376 			bytenr = btrfs_node_blockptr(buf, i);
3377 			num_bytes = fs_info->nodesize;
3378 			ret = process_func(trans, root, bytenr, num_bytes,
3379 					   parent, ref_root, level - 1, 0);
3380 			if (ret)
3381 				goto fail;
3382 		}
3383 	}
3384 	return 0;
3385 fail:
3386 	return ret;
3387 }
3388 
3389 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3390 		  struct extent_buffer *buf, int full_backref)
3391 {
3392 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3393 }
3394 
3395 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396 		  struct extent_buffer *buf, int full_backref)
3397 {
3398 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3399 }
3400 
3401 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3402 				 struct btrfs_fs_info *fs_info,
3403 				 struct btrfs_path *path,
3404 				 struct btrfs_block_group_cache *cache)
3405 {
3406 	int ret;
3407 	struct btrfs_root *extent_root = fs_info->extent_root;
3408 	unsigned long bi;
3409 	struct extent_buffer *leaf;
3410 
3411 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3412 	if (ret) {
3413 		if (ret > 0)
3414 			ret = -ENOENT;
3415 		goto fail;
3416 	}
3417 
3418 	leaf = path->nodes[0];
3419 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3420 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3421 	btrfs_mark_buffer_dirty(leaf);
3422 fail:
3423 	btrfs_release_path(path);
3424 	return ret;
3425 
3426 }
3427 
3428 static struct btrfs_block_group_cache *
3429 next_block_group(struct btrfs_fs_info *fs_info,
3430 		 struct btrfs_block_group_cache *cache)
3431 {
3432 	struct rb_node *node;
3433 
3434 	spin_lock(&fs_info->block_group_cache_lock);
3435 
3436 	/* If our block group was removed, we need a full search. */
3437 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3438 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3439 
3440 		spin_unlock(&fs_info->block_group_cache_lock);
3441 		btrfs_put_block_group(cache);
3442 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3443 	}
3444 	node = rb_next(&cache->cache_node);
3445 	btrfs_put_block_group(cache);
3446 	if (node) {
3447 		cache = rb_entry(node, struct btrfs_block_group_cache,
3448 				 cache_node);
3449 		btrfs_get_block_group(cache);
3450 	} else
3451 		cache = NULL;
3452 	spin_unlock(&fs_info->block_group_cache_lock);
3453 	return cache;
3454 }
3455 
3456 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3457 			    struct btrfs_trans_handle *trans,
3458 			    struct btrfs_path *path)
3459 {
3460 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3461 	struct btrfs_root *root = fs_info->tree_root;
3462 	struct inode *inode = NULL;
3463 	struct extent_changeset *data_reserved = NULL;
3464 	u64 alloc_hint = 0;
3465 	int dcs = BTRFS_DC_ERROR;
3466 	u64 num_pages = 0;
3467 	int retries = 0;
3468 	int ret = 0;
3469 
3470 	/*
3471 	 * If this block group is smaller than 100 megs don't bother caching the
3472 	 * block group.
3473 	 */
3474 	if (block_group->key.offset < (100 * SZ_1M)) {
3475 		spin_lock(&block_group->lock);
3476 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3477 		spin_unlock(&block_group->lock);
3478 		return 0;
3479 	}
3480 
3481 	if (trans->aborted)
3482 		return 0;
3483 again:
3484 	inode = lookup_free_space_inode(fs_info, block_group, path);
3485 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3486 		ret = PTR_ERR(inode);
3487 		btrfs_release_path(path);
3488 		goto out;
3489 	}
3490 
3491 	if (IS_ERR(inode)) {
3492 		BUG_ON(retries);
3493 		retries++;
3494 
3495 		if (block_group->ro)
3496 			goto out_free;
3497 
3498 		ret = create_free_space_inode(fs_info, trans, block_group,
3499 					      path);
3500 		if (ret)
3501 			goto out_free;
3502 		goto again;
3503 	}
3504 
3505 	/* We've already setup this transaction, go ahead and exit */
3506 	if (block_group->cache_generation == trans->transid &&
3507 	    i_size_read(inode)) {
3508 		dcs = BTRFS_DC_SETUP;
3509 		goto out_put;
3510 	}
3511 
3512 	/*
3513 	 * We want to set the generation to 0, that way if anything goes wrong
3514 	 * from here on out we know not to trust this cache when we load up next
3515 	 * time.
3516 	 */
3517 	BTRFS_I(inode)->generation = 0;
3518 	ret = btrfs_update_inode(trans, root, inode);
3519 	if (ret) {
3520 		/*
3521 		 * So theoretically we could recover from this, simply set the
3522 		 * super cache generation to 0 so we know to invalidate the
3523 		 * cache, but then we'd have to keep track of the block groups
3524 		 * that fail this way so we know we _have_ to reset this cache
3525 		 * before the next commit or risk reading stale cache.  So to
3526 		 * limit our exposure to horrible edge cases lets just abort the
3527 		 * transaction, this only happens in really bad situations
3528 		 * anyway.
3529 		 */
3530 		btrfs_abort_transaction(trans, ret);
3531 		goto out_put;
3532 	}
3533 	WARN_ON(ret);
3534 
3535 	if (i_size_read(inode) > 0) {
3536 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3537 					&fs_info->global_block_rsv);
3538 		if (ret)
3539 			goto out_put;
3540 
3541 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3542 		if (ret)
3543 			goto out_put;
3544 	}
3545 
3546 	spin_lock(&block_group->lock);
3547 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3548 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3549 		/*
3550 		 * don't bother trying to write stuff out _if_
3551 		 * a) we're not cached,
3552 		 * b) we're with nospace_cache mount option,
3553 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3554 		 */
3555 		dcs = BTRFS_DC_WRITTEN;
3556 		spin_unlock(&block_group->lock);
3557 		goto out_put;
3558 	}
3559 	spin_unlock(&block_group->lock);
3560 
3561 	/*
3562 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3563 	 * skip doing the setup, we've already cleared the cache so we're safe.
3564 	 */
3565 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3566 		ret = -ENOSPC;
3567 		goto out_put;
3568 	}
3569 
3570 	/*
3571 	 * Try to preallocate enough space based on how big the block group is.
3572 	 * Keep in mind this has to include any pinned space which could end up
3573 	 * taking up quite a bit since it's not folded into the other space
3574 	 * cache.
3575 	 */
3576 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3577 	if (!num_pages)
3578 		num_pages = 1;
3579 
3580 	num_pages *= 16;
3581 	num_pages *= PAGE_SIZE;
3582 
3583 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3584 	if (ret)
3585 		goto out_put;
3586 
3587 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3588 					      num_pages, num_pages,
3589 					      &alloc_hint);
3590 	/*
3591 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3592 	 * of metadata or split extents when writing the cache out, which means
3593 	 * we can enospc if we are heavily fragmented in addition to just normal
3594 	 * out of space conditions.  So if we hit this just skip setting up any
3595 	 * other block groups for this transaction, maybe we'll unpin enough
3596 	 * space the next time around.
3597 	 */
3598 	if (!ret)
3599 		dcs = BTRFS_DC_SETUP;
3600 	else if (ret == -ENOSPC)
3601 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3602 
3603 out_put:
3604 	iput(inode);
3605 out_free:
3606 	btrfs_release_path(path);
3607 out:
3608 	spin_lock(&block_group->lock);
3609 	if (!ret && dcs == BTRFS_DC_SETUP)
3610 		block_group->cache_generation = trans->transid;
3611 	block_group->disk_cache_state = dcs;
3612 	spin_unlock(&block_group->lock);
3613 
3614 	extent_changeset_free(data_reserved);
3615 	return ret;
3616 }
3617 
3618 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3619 			    struct btrfs_fs_info *fs_info)
3620 {
3621 	struct btrfs_block_group_cache *cache, *tmp;
3622 	struct btrfs_transaction *cur_trans = trans->transaction;
3623 	struct btrfs_path *path;
3624 
3625 	if (list_empty(&cur_trans->dirty_bgs) ||
3626 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3627 		return 0;
3628 
3629 	path = btrfs_alloc_path();
3630 	if (!path)
3631 		return -ENOMEM;
3632 
3633 	/* Could add new block groups, use _safe just in case */
3634 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3635 				 dirty_list) {
3636 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3637 			cache_save_setup(cache, trans, path);
3638 	}
3639 
3640 	btrfs_free_path(path);
3641 	return 0;
3642 }
3643 
3644 /*
3645  * transaction commit does final block group cache writeback during a
3646  * critical section where nothing is allowed to change the FS.  This is
3647  * required in order for the cache to actually match the block group,
3648  * but can introduce a lot of latency into the commit.
3649  *
3650  * So, btrfs_start_dirty_block_groups is here to kick off block group
3651  * cache IO.  There's a chance we'll have to redo some of it if the
3652  * block group changes again during the commit, but it greatly reduces
3653  * the commit latency by getting rid of the easy block groups while
3654  * we're still allowing others to join the commit.
3655  */
3656 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3657 				   struct btrfs_fs_info *fs_info)
3658 {
3659 	struct btrfs_block_group_cache *cache;
3660 	struct btrfs_transaction *cur_trans = trans->transaction;
3661 	int ret = 0;
3662 	int should_put;
3663 	struct btrfs_path *path = NULL;
3664 	LIST_HEAD(dirty);
3665 	struct list_head *io = &cur_trans->io_bgs;
3666 	int num_started = 0;
3667 	int loops = 0;
3668 
3669 	spin_lock(&cur_trans->dirty_bgs_lock);
3670 	if (list_empty(&cur_trans->dirty_bgs)) {
3671 		spin_unlock(&cur_trans->dirty_bgs_lock);
3672 		return 0;
3673 	}
3674 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675 	spin_unlock(&cur_trans->dirty_bgs_lock);
3676 
3677 again:
3678 	/*
3679 	 * make sure all the block groups on our dirty list actually
3680 	 * exist
3681 	 */
3682 	btrfs_create_pending_block_groups(trans, fs_info);
3683 
3684 	if (!path) {
3685 		path = btrfs_alloc_path();
3686 		if (!path)
3687 			return -ENOMEM;
3688 	}
3689 
3690 	/*
3691 	 * cache_write_mutex is here only to save us from balance or automatic
3692 	 * removal of empty block groups deleting this block group while we are
3693 	 * writing out the cache
3694 	 */
3695 	mutex_lock(&trans->transaction->cache_write_mutex);
3696 	while (!list_empty(&dirty)) {
3697 		cache = list_first_entry(&dirty,
3698 					 struct btrfs_block_group_cache,
3699 					 dirty_list);
3700 		/*
3701 		 * this can happen if something re-dirties a block
3702 		 * group that is already under IO.  Just wait for it to
3703 		 * finish and then do it all again
3704 		 */
3705 		if (!list_empty(&cache->io_list)) {
3706 			list_del_init(&cache->io_list);
3707 			btrfs_wait_cache_io(trans, cache, path);
3708 			btrfs_put_block_group(cache);
3709 		}
3710 
3711 
3712 		/*
3713 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3714 		 * if it should update the cache_state.  Don't delete
3715 		 * until after we wait.
3716 		 *
3717 		 * Since we're not running in the commit critical section
3718 		 * we need the dirty_bgs_lock to protect from update_block_group
3719 		 */
3720 		spin_lock(&cur_trans->dirty_bgs_lock);
3721 		list_del_init(&cache->dirty_list);
3722 		spin_unlock(&cur_trans->dirty_bgs_lock);
3723 
3724 		should_put = 1;
3725 
3726 		cache_save_setup(cache, trans, path);
3727 
3728 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3729 			cache->io_ctl.inode = NULL;
3730 			ret = btrfs_write_out_cache(fs_info, trans,
3731 						    cache, path);
3732 			if (ret == 0 && cache->io_ctl.inode) {
3733 				num_started++;
3734 				should_put = 0;
3735 
3736 				/*
3737 				 * the cache_write_mutex is protecting
3738 				 * the io_list
3739 				 */
3740 				list_add_tail(&cache->io_list, io);
3741 			} else {
3742 				/*
3743 				 * if we failed to write the cache, the
3744 				 * generation will be bad and life goes on
3745 				 */
3746 				ret = 0;
3747 			}
3748 		}
3749 		if (!ret) {
3750 			ret = write_one_cache_group(trans, fs_info,
3751 						    path, cache);
3752 			/*
3753 			 * Our block group might still be attached to the list
3754 			 * of new block groups in the transaction handle of some
3755 			 * other task (struct btrfs_trans_handle->new_bgs). This
3756 			 * means its block group item isn't yet in the extent
3757 			 * tree. If this happens ignore the error, as we will
3758 			 * try again later in the critical section of the
3759 			 * transaction commit.
3760 			 */
3761 			if (ret == -ENOENT) {
3762 				ret = 0;
3763 				spin_lock(&cur_trans->dirty_bgs_lock);
3764 				if (list_empty(&cache->dirty_list)) {
3765 					list_add_tail(&cache->dirty_list,
3766 						      &cur_trans->dirty_bgs);
3767 					btrfs_get_block_group(cache);
3768 				}
3769 				spin_unlock(&cur_trans->dirty_bgs_lock);
3770 			} else if (ret) {
3771 				btrfs_abort_transaction(trans, ret);
3772 			}
3773 		}
3774 
3775 		/* if its not on the io list, we need to put the block group */
3776 		if (should_put)
3777 			btrfs_put_block_group(cache);
3778 
3779 		if (ret)
3780 			break;
3781 
3782 		/*
3783 		 * Avoid blocking other tasks for too long. It might even save
3784 		 * us from writing caches for block groups that are going to be
3785 		 * removed.
3786 		 */
3787 		mutex_unlock(&trans->transaction->cache_write_mutex);
3788 		mutex_lock(&trans->transaction->cache_write_mutex);
3789 	}
3790 	mutex_unlock(&trans->transaction->cache_write_mutex);
3791 
3792 	/*
3793 	 * go through delayed refs for all the stuff we've just kicked off
3794 	 * and then loop back (just once)
3795 	 */
3796 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3797 	if (!ret && loops == 0) {
3798 		loops++;
3799 		spin_lock(&cur_trans->dirty_bgs_lock);
3800 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3801 		/*
3802 		 * dirty_bgs_lock protects us from concurrent block group
3803 		 * deletes too (not just cache_write_mutex).
3804 		 */
3805 		if (!list_empty(&dirty)) {
3806 			spin_unlock(&cur_trans->dirty_bgs_lock);
3807 			goto again;
3808 		}
3809 		spin_unlock(&cur_trans->dirty_bgs_lock);
3810 	} else if (ret < 0) {
3811 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3812 	}
3813 
3814 	btrfs_free_path(path);
3815 	return ret;
3816 }
3817 
3818 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3819 				   struct btrfs_fs_info *fs_info)
3820 {
3821 	struct btrfs_block_group_cache *cache;
3822 	struct btrfs_transaction *cur_trans = trans->transaction;
3823 	int ret = 0;
3824 	int should_put;
3825 	struct btrfs_path *path;
3826 	struct list_head *io = &cur_trans->io_bgs;
3827 	int num_started = 0;
3828 
3829 	path = btrfs_alloc_path();
3830 	if (!path)
3831 		return -ENOMEM;
3832 
3833 	/*
3834 	 * Even though we are in the critical section of the transaction commit,
3835 	 * we can still have concurrent tasks adding elements to this
3836 	 * transaction's list of dirty block groups. These tasks correspond to
3837 	 * endio free space workers started when writeback finishes for a
3838 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3839 	 * allocate new block groups as a result of COWing nodes of the root
3840 	 * tree when updating the free space inode. The writeback for the space
3841 	 * caches is triggered by an earlier call to
3842 	 * btrfs_start_dirty_block_groups() and iterations of the following
3843 	 * loop.
3844 	 * Also we want to do the cache_save_setup first and then run the
3845 	 * delayed refs to make sure we have the best chance at doing this all
3846 	 * in one shot.
3847 	 */
3848 	spin_lock(&cur_trans->dirty_bgs_lock);
3849 	while (!list_empty(&cur_trans->dirty_bgs)) {
3850 		cache = list_first_entry(&cur_trans->dirty_bgs,
3851 					 struct btrfs_block_group_cache,
3852 					 dirty_list);
3853 
3854 		/*
3855 		 * this can happen if cache_save_setup re-dirties a block
3856 		 * group that is already under IO.  Just wait for it to
3857 		 * finish and then do it all again
3858 		 */
3859 		if (!list_empty(&cache->io_list)) {
3860 			spin_unlock(&cur_trans->dirty_bgs_lock);
3861 			list_del_init(&cache->io_list);
3862 			btrfs_wait_cache_io(trans, cache, path);
3863 			btrfs_put_block_group(cache);
3864 			spin_lock(&cur_trans->dirty_bgs_lock);
3865 		}
3866 
3867 		/*
3868 		 * don't remove from the dirty list until after we've waited
3869 		 * on any pending IO
3870 		 */
3871 		list_del_init(&cache->dirty_list);
3872 		spin_unlock(&cur_trans->dirty_bgs_lock);
3873 		should_put = 1;
3874 
3875 		cache_save_setup(cache, trans, path);
3876 
3877 		if (!ret)
3878 			ret = btrfs_run_delayed_refs(trans, fs_info,
3879 						     (unsigned long) -1);
3880 
3881 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3882 			cache->io_ctl.inode = NULL;
3883 			ret = btrfs_write_out_cache(fs_info, trans,
3884 						    cache, path);
3885 			if (ret == 0 && cache->io_ctl.inode) {
3886 				num_started++;
3887 				should_put = 0;
3888 				list_add_tail(&cache->io_list, io);
3889 			} else {
3890 				/*
3891 				 * if we failed to write the cache, the
3892 				 * generation will be bad and life goes on
3893 				 */
3894 				ret = 0;
3895 			}
3896 		}
3897 		if (!ret) {
3898 			ret = write_one_cache_group(trans, fs_info,
3899 						    path, cache);
3900 			/*
3901 			 * One of the free space endio workers might have
3902 			 * created a new block group while updating a free space
3903 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3904 			 * and hasn't released its transaction handle yet, in
3905 			 * which case the new block group is still attached to
3906 			 * its transaction handle and its creation has not
3907 			 * finished yet (no block group item in the extent tree
3908 			 * yet, etc). If this is the case, wait for all free
3909 			 * space endio workers to finish and retry. This is a
3910 			 * a very rare case so no need for a more efficient and
3911 			 * complex approach.
3912 			 */
3913 			if (ret == -ENOENT) {
3914 				wait_event(cur_trans->writer_wait,
3915 				   atomic_read(&cur_trans->num_writers) == 1);
3916 				ret = write_one_cache_group(trans, fs_info,
3917 							    path, cache);
3918 			}
3919 			if (ret)
3920 				btrfs_abort_transaction(trans, ret);
3921 		}
3922 
3923 		/* if its not on the io list, we need to put the block group */
3924 		if (should_put)
3925 			btrfs_put_block_group(cache);
3926 		spin_lock(&cur_trans->dirty_bgs_lock);
3927 	}
3928 	spin_unlock(&cur_trans->dirty_bgs_lock);
3929 
3930 	while (!list_empty(io)) {
3931 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3932 					 io_list);
3933 		list_del_init(&cache->io_list);
3934 		btrfs_wait_cache_io(trans, cache, path);
3935 		btrfs_put_block_group(cache);
3936 	}
3937 
3938 	btrfs_free_path(path);
3939 	return ret;
3940 }
3941 
3942 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3943 {
3944 	struct btrfs_block_group_cache *block_group;
3945 	int readonly = 0;
3946 
3947 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3948 	if (!block_group || block_group->ro)
3949 		readonly = 1;
3950 	if (block_group)
3951 		btrfs_put_block_group(block_group);
3952 	return readonly;
3953 }
3954 
3955 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3956 {
3957 	struct btrfs_block_group_cache *bg;
3958 	bool ret = true;
3959 
3960 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3961 	if (!bg)
3962 		return false;
3963 
3964 	spin_lock(&bg->lock);
3965 	if (bg->ro)
3966 		ret = false;
3967 	else
3968 		atomic_inc(&bg->nocow_writers);
3969 	spin_unlock(&bg->lock);
3970 
3971 	/* no put on block group, done by btrfs_dec_nocow_writers */
3972 	if (!ret)
3973 		btrfs_put_block_group(bg);
3974 
3975 	return ret;
3976 
3977 }
3978 
3979 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3980 {
3981 	struct btrfs_block_group_cache *bg;
3982 
3983 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3984 	ASSERT(bg);
3985 	if (atomic_dec_and_test(&bg->nocow_writers))
3986 		wake_up_atomic_t(&bg->nocow_writers);
3987 	/*
3988 	 * Once for our lookup and once for the lookup done by a previous call
3989 	 * to btrfs_inc_nocow_writers()
3990 	 */
3991 	btrfs_put_block_group(bg);
3992 	btrfs_put_block_group(bg);
3993 }
3994 
3995 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3996 {
3997 	schedule();
3998 	return 0;
3999 }
4000 
4001 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4002 {
4003 	wait_on_atomic_t(&bg->nocow_writers,
4004 			 btrfs_wait_nocow_writers_atomic_t,
4005 			 TASK_UNINTERRUPTIBLE);
4006 }
4007 
4008 static const char *alloc_name(u64 flags)
4009 {
4010 	switch (flags) {
4011 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4012 		return "mixed";
4013 	case BTRFS_BLOCK_GROUP_METADATA:
4014 		return "metadata";
4015 	case BTRFS_BLOCK_GROUP_DATA:
4016 		return "data";
4017 	case BTRFS_BLOCK_GROUP_SYSTEM:
4018 		return "system";
4019 	default:
4020 		WARN_ON(1);
4021 		return "invalid-combination";
4022 	};
4023 }
4024 
4025 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4026 			     struct btrfs_space_info **new)
4027 {
4028 
4029 	struct btrfs_space_info *space_info;
4030 	int i;
4031 	int ret;
4032 
4033 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4034 	if (!space_info)
4035 		return -ENOMEM;
4036 
4037 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4038 				 GFP_KERNEL);
4039 	if (ret) {
4040 		kfree(space_info);
4041 		return ret;
4042 	}
4043 
4044 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4045 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4046 	init_rwsem(&space_info->groups_sem);
4047 	spin_lock_init(&space_info->lock);
4048 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4049 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4050 	init_waitqueue_head(&space_info->wait);
4051 	INIT_LIST_HEAD(&space_info->ro_bgs);
4052 	INIT_LIST_HEAD(&space_info->tickets);
4053 	INIT_LIST_HEAD(&space_info->priority_tickets);
4054 
4055 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4056 				    info->space_info_kobj, "%s",
4057 				    alloc_name(space_info->flags));
4058 	if (ret) {
4059 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4060 		kfree(space_info);
4061 		return ret;
4062 	}
4063 
4064 	*new = space_info;
4065 	list_add_rcu(&space_info->list, &info->space_info);
4066 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4067 		info->data_sinfo = space_info;
4068 
4069 	return ret;
4070 }
4071 
4072 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4073 			     u64 total_bytes, u64 bytes_used,
4074 			     u64 bytes_readonly,
4075 			     struct btrfs_space_info **space_info)
4076 {
4077 	struct btrfs_space_info *found;
4078 	int factor;
4079 
4080 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4081 		     BTRFS_BLOCK_GROUP_RAID10))
4082 		factor = 2;
4083 	else
4084 		factor = 1;
4085 
4086 	found = __find_space_info(info, flags);
4087 	ASSERT(found);
4088 	spin_lock(&found->lock);
4089 	found->total_bytes += total_bytes;
4090 	found->disk_total += total_bytes * factor;
4091 	found->bytes_used += bytes_used;
4092 	found->disk_used += bytes_used * factor;
4093 	found->bytes_readonly += bytes_readonly;
4094 	if (total_bytes > 0)
4095 		found->full = 0;
4096 	space_info_add_new_bytes(info, found, total_bytes -
4097 				 bytes_used - bytes_readonly);
4098 	spin_unlock(&found->lock);
4099 	*space_info = found;
4100 }
4101 
4102 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4103 {
4104 	u64 extra_flags = chunk_to_extended(flags) &
4105 				BTRFS_EXTENDED_PROFILE_MASK;
4106 
4107 	write_seqlock(&fs_info->profiles_lock);
4108 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4109 		fs_info->avail_data_alloc_bits |= extra_flags;
4110 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4111 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4112 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4113 		fs_info->avail_system_alloc_bits |= extra_flags;
4114 	write_sequnlock(&fs_info->profiles_lock);
4115 }
4116 
4117 /*
4118  * returns target flags in extended format or 0 if restripe for this
4119  * chunk_type is not in progress
4120  *
4121  * should be called with either volume_mutex or balance_lock held
4122  */
4123 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4124 {
4125 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4126 	u64 target = 0;
4127 
4128 	if (!bctl)
4129 		return 0;
4130 
4131 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4132 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4133 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4134 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4135 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4136 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4137 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4138 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4139 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4140 	}
4141 
4142 	return target;
4143 }
4144 
4145 /*
4146  * @flags: available profiles in extended format (see ctree.h)
4147  *
4148  * Returns reduced profile in chunk format.  If profile changing is in
4149  * progress (either running or paused) picks the target profile (if it's
4150  * already available), otherwise falls back to plain reducing.
4151  */
4152 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4153 {
4154 	u64 num_devices = fs_info->fs_devices->rw_devices;
4155 	u64 target;
4156 	u64 raid_type;
4157 	u64 allowed = 0;
4158 
4159 	/*
4160 	 * see if restripe for this chunk_type is in progress, if so
4161 	 * try to reduce to the target profile
4162 	 */
4163 	spin_lock(&fs_info->balance_lock);
4164 	target = get_restripe_target(fs_info, flags);
4165 	if (target) {
4166 		/* pick target profile only if it's already available */
4167 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4168 			spin_unlock(&fs_info->balance_lock);
4169 			return extended_to_chunk(target);
4170 		}
4171 	}
4172 	spin_unlock(&fs_info->balance_lock);
4173 
4174 	/* First, mask out the RAID levels which aren't possible */
4175 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4176 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4177 			allowed |= btrfs_raid_group[raid_type];
4178 	}
4179 	allowed &= flags;
4180 
4181 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4182 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4183 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4184 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4185 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4186 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4187 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4188 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4189 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4190 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4191 
4192 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4193 
4194 	return extended_to_chunk(flags | allowed);
4195 }
4196 
4197 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4198 {
4199 	unsigned seq;
4200 	u64 flags;
4201 
4202 	do {
4203 		flags = orig_flags;
4204 		seq = read_seqbegin(&fs_info->profiles_lock);
4205 
4206 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4207 			flags |= fs_info->avail_data_alloc_bits;
4208 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4209 			flags |= fs_info->avail_system_alloc_bits;
4210 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4211 			flags |= fs_info->avail_metadata_alloc_bits;
4212 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4213 
4214 	return btrfs_reduce_alloc_profile(fs_info, flags);
4215 }
4216 
4217 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4218 {
4219 	struct btrfs_fs_info *fs_info = root->fs_info;
4220 	u64 flags;
4221 	u64 ret;
4222 
4223 	if (data)
4224 		flags = BTRFS_BLOCK_GROUP_DATA;
4225 	else if (root == fs_info->chunk_root)
4226 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4227 	else
4228 		flags = BTRFS_BLOCK_GROUP_METADATA;
4229 
4230 	ret = get_alloc_profile(fs_info, flags);
4231 	return ret;
4232 }
4233 
4234 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4235 {
4236 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4237 }
4238 
4239 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4240 {
4241 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4242 }
4243 
4244 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4245 {
4246 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4247 }
4248 
4249 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4250 				 bool may_use_included)
4251 {
4252 	ASSERT(s_info);
4253 	return s_info->bytes_used + s_info->bytes_reserved +
4254 		s_info->bytes_pinned + s_info->bytes_readonly +
4255 		(may_use_included ? s_info->bytes_may_use : 0);
4256 }
4257 
4258 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4259 {
4260 	struct btrfs_root *root = inode->root;
4261 	struct btrfs_fs_info *fs_info = root->fs_info;
4262 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4263 	u64 used;
4264 	int ret = 0;
4265 	int need_commit = 2;
4266 	int have_pinned_space;
4267 
4268 	/* make sure bytes are sectorsize aligned */
4269 	bytes = ALIGN(bytes, fs_info->sectorsize);
4270 
4271 	if (btrfs_is_free_space_inode(inode)) {
4272 		need_commit = 0;
4273 		ASSERT(current->journal_info);
4274 	}
4275 
4276 again:
4277 	/* make sure we have enough space to handle the data first */
4278 	spin_lock(&data_sinfo->lock);
4279 	used = btrfs_space_info_used(data_sinfo, true);
4280 
4281 	if (used + bytes > data_sinfo->total_bytes) {
4282 		struct btrfs_trans_handle *trans;
4283 
4284 		/*
4285 		 * if we don't have enough free bytes in this space then we need
4286 		 * to alloc a new chunk.
4287 		 */
4288 		if (!data_sinfo->full) {
4289 			u64 alloc_target;
4290 
4291 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4292 			spin_unlock(&data_sinfo->lock);
4293 
4294 			alloc_target = btrfs_data_alloc_profile(fs_info);
4295 			/*
4296 			 * It is ugly that we don't call nolock join
4297 			 * transaction for the free space inode case here.
4298 			 * But it is safe because we only do the data space
4299 			 * reservation for the free space cache in the
4300 			 * transaction context, the common join transaction
4301 			 * just increase the counter of the current transaction
4302 			 * handler, doesn't try to acquire the trans_lock of
4303 			 * the fs.
4304 			 */
4305 			trans = btrfs_join_transaction(root);
4306 			if (IS_ERR(trans))
4307 				return PTR_ERR(trans);
4308 
4309 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4310 					     CHUNK_ALLOC_NO_FORCE);
4311 			btrfs_end_transaction(trans);
4312 			if (ret < 0) {
4313 				if (ret != -ENOSPC)
4314 					return ret;
4315 				else {
4316 					have_pinned_space = 1;
4317 					goto commit_trans;
4318 				}
4319 			}
4320 
4321 			goto again;
4322 		}
4323 
4324 		/*
4325 		 * If we don't have enough pinned space to deal with this
4326 		 * allocation, and no removed chunk in current transaction,
4327 		 * don't bother committing the transaction.
4328 		 */
4329 		have_pinned_space = percpu_counter_compare(
4330 			&data_sinfo->total_bytes_pinned,
4331 			used + bytes - data_sinfo->total_bytes);
4332 		spin_unlock(&data_sinfo->lock);
4333 
4334 		/* commit the current transaction and try again */
4335 commit_trans:
4336 		if (need_commit &&
4337 		    !atomic_read(&fs_info->open_ioctl_trans)) {
4338 			need_commit--;
4339 
4340 			if (need_commit > 0) {
4341 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4342 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4343 							 (u64)-1);
4344 			}
4345 
4346 			trans = btrfs_join_transaction(root);
4347 			if (IS_ERR(trans))
4348 				return PTR_ERR(trans);
4349 			if (have_pinned_space >= 0 ||
4350 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4351 				     &trans->transaction->flags) ||
4352 			    need_commit > 0) {
4353 				ret = btrfs_commit_transaction(trans);
4354 				if (ret)
4355 					return ret;
4356 				/*
4357 				 * The cleaner kthread might still be doing iput
4358 				 * operations. Wait for it to finish so that
4359 				 * more space is released.
4360 				 */
4361 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4362 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4363 				goto again;
4364 			} else {
4365 				btrfs_end_transaction(trans);
4366 			}
4367 		}
4368 
4369 		trace_btrfs_space_reservation(fs_info,
4370 					      "space_info:enospc",
4371 					      data_sinfo->flags, bytes, 1);
4372 		return -ENOSPC;
4373 	}
4374 	data_sinfo->bytes_may_use += bytes;
4375 	trace_btrfs_space_reservation(fs_info, "space_info",
4376 				      data_sinfo->flags, bytes, 1);
4377 	spin_unlock(&data_sinfo->lock);
4378 
4379 	return ret;
4380 }
4381 
4382 int btrfs_check_data_free_space(struct inode *inode,
4383 			struct extent_changeset **reserved, u64 start, u64 len)
4384 {
4385 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4386 	int ret;
4387 
4388 	/* align the range */
4389 	len = round_up(start + len, fs_info->sectorsize) -
4390 	      round_down(start, fs_info->sectorsize);
4391 	start = round_down(start, fs_info->sectorsize);
4392 
4393 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4394 	if (ret < 0)
4395 		return ret;
4396 
4397 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4398 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4399 	if (ret < 0)
4400 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4401 	else
4402 		ret = 0;
4403 	return ret;
4404 }
4405 
4406 /*
4407  * Called if we need to clear a data reservation for this inode
4408  * Normally in a error case.
4409  *
4410  * This one will *NOT* use accurate qgroup reserved space API, just for case
4411  * which we can't sleep and is sure it won't affect qgroup reserved space.
4412  * Like clear_bit_hook().
4413  */
4414 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4415 					    u64 len)
4416 {
4417 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4418 	struct btrfs_space_info *data_sinfo;
4419 
4420 	/* Make sure the range is aligned to sectorsize */
4421 	len = round_up(start + len, fs_info->sectorsize) -
4422 	      round_down(start, fs_info->sectorsize);
4423 	start = round_down(start, fs_info->sectorsize);
4424 
4425 	data_sinfo = fs_info->data_sinfo;
4426 	spin_lock(&data_sinfo->lock);
4427 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4428 		data_sinfo->bytes_may_use = 0;
4429 	else
4430 		data_sinfo->bytes_may_use -= len;
4431 	trace_btrfs_space_reservation(fs_info, "space_info",
4432 				      data_sinfo->flags, len, 0);
4433 	spin_unlock(&data_sinfo->lock);
4434 }
4435 
4436 /*
4437  * Called if we need to clear a data reservation for this inode
4438  * Normally in a error case.
4439  *
4440  * This one will handle the per-inode data rsv map for accurate reserved
4441  * space framework.
4442  */
4443 void btrfs_free_reserved_data_space(struct inode *inode,
4444 			struct extent_changeset *reserved, u64 start, u64 len)
4445 {
4446 	struct btrfs_root *root = BTRFS_I(inode)->root;
4447 
4448 	/* Make sure the range is aligned to sectorsize */
4449 	len = round_up(start + len, root->fs_info->sectorsize) -
4450 	      round_down(start, root->fs_info->sectorsize);
4451 	start = round_down(start, root->fs_info->sectorsize);
4452 
4453 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4454 	btrfs_qgroup_free_data(inode, reserved, start, len);
4455 }
4456 
4457 static void force_metadata_allocation(struct btrfs_fs_info *info)
4458 {
4459 	struct list_head *head = &info->space_info;
4460 	struct btrfs_space_info *found;
4461 
4462 	rcu_read_lock();
4463 	list_for_each_entry_rcu(found, head, list) {
4464 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4465 			found->force_alloc = CHUNK_ALLOC_FORCE;
4466 	}
4467 	rcu_read_unlock();
4468 }
4469 
4470 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4471 {
4472 	return (global->size << 1);
4473 }
4474 
4475 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4476 			      struct btrfs_space_info *sinfo, int force)
4477 {
4478 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4479 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4480 	u64 thresh;
4481 
4482 	if (force == CHUNK_ALLOC_FORCE)
4483 		return 1;
4484 
4485 	/*
4486 	 * We need to take into account the global rsv because for all intents
4487 	 * and purposes it's used space.  Don't worry about locking the
4488 	 * global_rsv, it doesn't change except when the transaction commits.
4489 	 */
4490 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4491 		bytes_used += calc_global_rsv_need_space(global_rsv);
4492 
4493 	/*
4494 	 * in limited mode, we want to have some free space up to
4495 	 * about 1% of the FS size.
4496 	 */
4497 	if (force == CHUNK_ALLOC_LIMITED) {
4498 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4499 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4500 
4501 		if (sinfo->total_bytes - bytes_used < thresh)
4502 			return 1;
4503 	}
4504 
4505 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4506 		return 0;
4507 	return 1;
4508 }
4509 
4510 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4511 {
4512 	u64 num_dev;
4513 
4514 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4515 		    BTRFS_BLOCK_GROUP_RAID0 |
4516 		    BTRFS_BLOCK_GROUP_RAID5 |
4517 		    BTRFS_BLOCK_GROUP_RAID6))
4518 		num_dev = fs_info->fs_devices->rw_devices;
4519 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4520 		num_dev = 2;
4521 	else
4522 		num_dev = 1;	/* DUP or single */
4523 
4524 	return num_dev;
4525 }
4526 
4527 /*
4528  * If @is_allocation is true, reserve space in the system space info necessary
4529  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4530  * removing a chunk.
4531  */
4532 void check_system_chunk(struct btrfs_trans_handle *trans,
4533 			struct btrfs_fs_info *fs_info, u64 type)
4534 {
4535 	struct btrfs_space_info *info;
4536 	u64 left;
4537 	u64 thresh;
4538 	int ret = 0;
4539 	u64 num_devs;
4540 
4541 	/*
4542 	 * Needed because we can end up allocating a system chunk and for an
4543 	 * atomic and race free space reservation in the chunk block reserve.
4544 	 */
4545 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4546 
4547 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4548 	spin_lock(&info->lock);
4549 	left = info->total_bytes - btrfs_space_info_used(info, true);
4550 	spin_unlock(&info->lock);
4551 
4552 	num_devs = get_profile_num_devs(fs_info, type);
4553 
4554 	/* num_devs device items to update and 1 chunk item to add or remove */
4555 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4556 		btrfs_calc_trans_metadata_size(fs_info, 1);
4557 
4558 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4559 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4560 			   left, thresh, type);
4561 		dump_space_info(fs_info, info, 0, 0);
4562 	}
4563 
4564 	if (left < thresh) {
4565 		u64 flags = btrfs_system_alloc_profile(fs_info);
4566 
4567 		/*
4568 		 * Ignore failure to create system chunk. We might end up not
4569 		 * needing it, as we might not need to COW all nodes/leafs from
4570 		 * the paths we visit in the chunk tree (they were already COWed
4571 		 * or created in the current transaction for example).
4572 		 */
4573 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4574 	}
4575 
4576 	if (!ret) {
4577 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4578 					  &fs_info->chunk_block_rsv,
4579 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4580 		if (!ret)
4581 			trans->chunk_bytes_reserved += thresh;
4582 	}
4583 }
4584 
4585 /*
4586  * If force is CHUNK_ALLOC_FORCE:
4587  *    - return 1 if it successfully allocates a chunk,
4588  *    - return errors including -ENOSPC otherwise.
4589  * If force is NOT CHUNK_ALLOC_FORCE:
4590  *    - return 0 if it doesn't need to allocate a new chunk,
4591  *    - return 1 if it successfully allocates a chunk,
4592  *    - return errors including -ENOSPC otherwise.
4593  */
4594 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4595 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4596 {
4597 	struct btrfs_space_info *space_info;
4598 	int wait_for_alloc = 0;
4599 	int ret = 0;
4600 
4601 	/* Don't re-enter if we're already allocating a chunk */
4602 	if (trans->allocating_chunk)
4603 		return -ENOSPC;
4604 
4605 	space_info = __find_space_info(fs_info, flags);
4606 	if (!space_info) {
4607 		ret = create_space_info(fs_info, flags, &space_info);
4608 		if (ret)
4609 			return ret;
4610 	}
4611 
4612 again:
4613 	spin_lock(&space_info->lock);
4614 	if (force < space_info->force_alloc)
4615 		force = space_info->force_alloc;
4616 	if (space_info->full) {
4617 		if (should_alloc_chunk(fs_info, space_info, force))
4618 			ret = -ENOSPC;
4619 		else
4620 			ret = 0;
4621 		spin_unlock(&space_info->lock);
4622 		return ret;
4623 	}
4624 
4625 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4626 		spin_unlock(&space_info->lock);
4627 		return 0;
4628 	} else if (space_info->chunk_alloc) {
4629 		wait_for_alloc = 1;
4630 	} else {
4631 		space_info->chunk_alloc = 1;
4632 	}
4633 
4634 	spin_unlock(&space_info->lock);
4635 
4636 	mutex_lock(&fs_info->chunk_mutex);
4637 
4638 	/*
4639 	 * The chunk_mutex is held throughout the entirety of a chunk
4640 	 * allocation, so once we've acquired the chunk_mutex we know that the
4641 	 * other guy is done and we need to recheck and see if we should
4642 	 * allocate.
4643 	 */
4644 	if (wait_for_alloc) {
4645 		mutex_unlock(&fs_info->chunk_mutex);
4646 		wait_for_alloc = 0;
4647 		goto again;
4648 	}
4649 
4650 	trans->allocating_chunk = true;
4651 
4652 	/*
4653 	 * If we have mixed data/metadata chunks we want to make sure we keep
4654 	 * allocating mixed chunks instead of individual chunks.
4655 	 */
4656 	if (btrfs_mixed_space_info(space_info))
4657 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4658 
4659 	/*
4660 	 * if we're doing a data chunk, go ahead and make sure that
4661 	 * we keep a reasonable number of metadata chunks allocated in the
4662 	 * FS as well.
4663 	 */
4664 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4665 		fs_info->data_chunk_allocations++;
4666 		if (!(fs_info->data_chunk_allocations %
4667 		      fs_info->metadata_ratio))
4668 			force_metadata_allocation(fs_info);
4669 	}
4670 
4671 	/*
4672 	 * Check if we have enough space in SYSTEM chunk because we may need
4673 	 * to update devices.
4674 	 */
4675 	check_system_chunk(trans, fs_info, flags);
4676 
4677 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4678 	trans->allocating_chunk = false;
4679 
4680 	spin_lock(&space_info->lock);
4681 	if (ret < 0 && ret != -ENOSPC)
4682 		goto out;
4683 	if (ret)
4684 		space_info->full = 1;
4685 	else
4686 		ret = 1;
4687 
4688 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4689 out:
4690 	space_info->chunk_alloc = 0;
4691 	spin_unlock(&space_info->lock);
4692 	mutex_unlock(&fs_info->chunk_mutex);
4693 	/*
4694 	 * When we allocate a new chunk we reserve space in the chunk block
4695 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 	 * add new nodes/leafs to it if we end up needing to do it when
4697 	 * inserting the chunk item and updating device items as part of the
4698 	 * second phase of chunk allocation, performed by
4699 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 	 * large number of new block groups to create in our transaction
4701 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 	 * in extreme cases - like having a single transaction create many new
4703 	 * block groups when starting to write out the free space caches of all
4704 	 * the block groups that were made dirty during the lifetime of the
4705 	 * transaction.
4706 	 */
4707 	if (trans->can_flush_pending_bgs &&
4708 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4709 		btrfs_create_pending_block_groups(trans, fs_info);
4710 		btrfs_trans_release_chunk_metadata(trans);
4711 	}
4712 	return ret;
4713 }
4714 
4715 static int can_overcommit(struct btrfs_fs_info *fs_info,
4716 			  struct btrfs_space_info *space_info, u64 bytes,
4717 			  enum btrfs_reserve_flush_enum flush,
4718 			  bool system_chunk)
4719 {
4720 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4721 	u64 profile;
4722 	u64 space_size;
4723 	u64 avail;
4724 	u64 used;
4725 
4726 	/* Don't overcommit when in mixed mode. */
4727 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728 		return 0;
4729 
4730 	if (system_chunk)
4731 		profile = btrfs_system_alloc_profile(fs_info);
4732 	else
4733 		profile = btrfs_metadata_alloc_profile(fs_info);
4734 
4735 	used = btrfs_space_info_used(space_info, false);
4736 
4737 	/*
4738 	 * We only want to allow over committing if we have lots of actual space
4739 	 * free, but if we don't have enough space to handle the global reserve
4740 	 * space then we could end up having a real enospc problem when trying
4741 	 * to allocate a chunk or some other such important allocation.
4742 	 */
4743 	spin_lock(&global_rsv->lock);
4744 	space_size = calc_global_rsv_need_space(global_rsv);
4745 	spin_unlock(&global_rsv->lock);
4746 	if (used + space_size >= space_info->total_bytes)
4747 		return 0;
4748 
4749 	used += space_info->bytes_may_use;
4750 
4751 	avail = atomic64_read(&fs_info->free_chunk_space);
4752 
4753 	/*
4754 	 * If we have dup, raid1 or raid10 then only half of the free
4755 	 * space is actually useable.  For raid56, the space info used
4756 	 * doesn't include the parity drive, so we don't have to
4757 	 * change the math
4758 	 */
4759 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760 		       BTRFS_BLOCK_GROUP_RAID1 |
4761 		       BTRFS_BLOCK_GROUP_RAID10))
4762 		avail >>= 1;
4763 
4764 	/*
4765 	 * If we aren't flushing all things, let us overcommit up to
4766 	 * 1/2th of the space. If we can flush, don't let us overcommit
4767 	 * too much, let it overcommit up to 1/8 of the space.
4768 	 */
4769 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4770 		avail >>= 3;
4771 	else
4772 		avail >>= 1;
4773 
4774 	if (used + bytes < space_info->total_bytes + avail)
4775 		return 1;
4776 	return 0;
4777 }
4778 
4779 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4780 					 unsigned long nr_pages, int nr_items)
4781 {
4782 	struct super_block *sb = fs_info->sb;
4783 
4784 	if (down_read_trylock(&sb->s_umount)) {
4785 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786 		up_read(&sb->s_umount);
4787 	} else {
4788 		/*
4789 		 * We needn't worry the filesystem going from r/w to r/o though
4790 		 * we don't acquire ->s_umount mutex, because the filesystem
4791 		 * should guarantee the delalloc inodes list be empty after
4792 		 * the filesystem is readonly(all dirty pages are written to
4793 		 * the disk).
4794 		 */
4795 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4796 		if (!current->journal_info)
4797 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4798 	}
4799 }
4800 
4801 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4802 					u64 to_reclaim)
4803 {
4804 	u64 bytes;
4805 	u64 nr;
4806 
4807 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4808 	nr = div64_u64(to_reclaim, bytes);
4809 	if (!nr)
4810 		nr = 1;
4811 	return nr;
4812 }
4813 
4814 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4815 
4816 /*
4817  * shrink metadata reservation for delalloc
4818  */
4819 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820 			    u64 orig, bool wait_ordered)
4821 {
4822 	struct btrfs_space_info *space_info;
4823 	struct btrfs_trans_handle *trans;
4824 	u64 delalloc_bytes;
4825 	u64 max_reclaim;
4826 	u64 items;
4827 	long time_left;
4828 	unsigned long nr_pages;
4829 	int loops;
4830 	enum btrfs_reserve_flush_enum flush;
4831 
4832 	/* Calc the number of the pages we need flush for space reservation */
4833 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4834 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4835 
4836 	trans = (struct btrfs_trans_handle *)current->journal_info;
4837 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4838 
4839 	delalloc_bytes = percpu_counter_sum_positive(
4840 						&fs_info->delalloc_bytes);
4841 	if (delalloc_bytes == 0) {
4842 		if (trans)
4843 			return;
4844 		if (wait_ordered)
4845 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4846 		return;
4847 	}
4848 
4849 	loops = 0;
4850 	while (delalloc_bytes && loops < 3) {
4851 		max_reclaim = min(delalloc_bytes, to_reclaim);
4852 		nr_pages = max_reclaim >> PAGE_SHIFT;
4853 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4854 		/*
4855 		 * We need to wait for the async pages to actually start before
4856 		 * we do anything.
4857 		 */
4858 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4859 		if (!max_reclaim)
4860 			goto skip_async;
4861 
4862 		if (max_reclaim <= nr_pages)
4863 			max_reclaim = 0;
4864 		else
4865 			max_reclaim -= nr_pages;
4866 
4867 		wait_event(fs_info->async_submit_wait,
4868 			   atomic_read(&fs_info->async_delalloc_pages) <=
4869 			   (int)max_reclaim);
4870 skip_async:
4871 		if (!trans)
4872 			flush = BTRFS_RESERVE_FLUSH_ALL;
4873 		else
4874 			flush = BTRFS_RESERVE_NO_FLUSH;
4875 		spin_lock(&space_info->lock);
4876 		if (list_empty(&space_info->tickets) &&
4877 		    list_empty(&space_info->priority_tickets)) {
4878 			spin_unlock(&space_info->lock);
4879 			break;
4880 		}
4881 		spin_unlock(&space_info->lock);
4882 
4883 		loops++;
4884 		if (wait_ordered && !trans) {
4885 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4886 		} else {
4887 			time_left = schedule_timeout_killable(1);
4888 			if (time_left)
4889 				break;
4890 		}
4891 		delalloc_bytes = percpu_counter_sum_positive(
4892 						&fs_info->delalloc_bytes);
4893 	}
4894 }
4895 
4896 struct reserve_ticket {
4897 	u64 bytes;
4898 	int error;
4899 	struct list_head list;
4900 	wait_queue_head_t wait;
4901 };
4902 
4903 /**
4904  * maybe_commit_transaction - possibly commit the transaction if its ok to
4905  * @root - the root we're allocating for
4906  * @bytes - the number of bytes we want to reserve
4907  * @force - force the commit
4908  *
4909  * This will check to make sure that committing the transaction will actually
4910  * get us somewhere and then commit the transaction if it does.  Otherwise it
4911  * will return -ENOSPC.
4912  */
4913 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4914 				  struct btrfs_space_info *space_info)
4915 {
4916 	struct reserve_ticket *ticket = NULL;
4917 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4918 	struct btrfs_trans_handle *trans;
4919 	u64 bytes;
4920 
4921 	trans = (struct btrfs_trans_handle *)current->journal_info;
4922 	if (trans)
4923 		return -EAGAIN;
4924 
4925 	spin_lock(&space_info->lock);
4926 	if (!list_empty(&space_info->priority_tickets))
4927 		ticket = list_first_entry(&space_info->priority_tickets,
4928 					  struct reserve_ticket, list);
4929 	else if (!list_empty(&space_info->tickets))
4930 		ticket = list_first_entry(&space_info->tickets,
4931 					  struct reserve_ticket, list);
4932 	bytes = (ticket) ? ticket->bytes : 0;
4933 	spin_unlock(&space_info->lock);
4934 
4935 	if (!bytes)
4936 		return 0;
4937 
4938 	/* See if there is enough pinned space to make this reservation */
4939 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4940 				   bytes) >= 0)
4941 		goto commit;
4942 
4943 	/*
4944 	 * See if there is some space in the delayed insertion reservation for
4945 	 * this reservation.
4946 	 */
4947 	if (space_info != delayed_rsv->space_info)
4948 		return -ENOSPC;
4949 
4950 	spin_lock(&delayed_rsv->lock);
4951 	if (delayed_rsv->size > bytes)
4952 		bytes = 0;
4953 	else
4954 		bytes -= delayed_rsv->size;
4955 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4956 				   bytes) < 0) {
4957 		spin_unlock(&delayed_rsv->lock);
4958 		return -ENOSPC;
4959 	}
4960 	spin_unlock(&delayed_rsv->lock);
4961 
4962 commit:
4963 	trans = btrfs_join_transaction(fs_info->extent_root);
4964 	if (IS_ERR(trans))
4965 		return -ENOSPC;
4966 
4967 	return btrfs_commit_transaction(trans);
4968 }
4969 
4970 /*
4971  * Try to flush some data based on policy set by @state. This is only advisory
4972  * and may fail for various reasons. The caller is supposed to examine the
4973  * state of @space_info to detect the outcome.
4974  */
4975 static void flush_space(struct btrfs_fs_info *fs_info,
4976 		       struct btrfs_space_info *space_info, u64 num_bytes,
4977 		       int state)
4978 {
4979 	struct btrfs_root *root = fs_info->extent_root;
4980 	struct btrfs_trans_handle *trans;
4981 	int nr;
4982 	int ret = 0;
4983 
4984 	switch (state) {
4985 	case FLUSH_DELAYED_ITEMS_NR:
4986 	case FLUSH_DELAYED_ITEMS:
4987 		if (state == FLUSH_DELAYED_ITEMS_NR)
4988 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4989 		else
4990 			nr = -1;
4991 
4992 		trans = btrfs_join_transaction(root);
4993 		if (IS_ERR(trans)) {
4994 			ret = PTR_ERR(trans);
4995 			break;
4996 		}
4997 		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4998 		btrfs_end_transaction(trans);
4999 		break;
5000 	case FLUSH_DELALLOC:
5001 	case FLUSH_DELALLOC_WAIT:
5002 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5003 				state == FLUSH_DELALLOC_WAIT);
5004 		break;
5005 	case ALLOC_CHUNK:
5006 		trans = btrfs_join_transaction(root);
5007 		if (IS_ERR(trans)) {
5008 			ret = PTR_ERR(trans);
5009 			break;
5010 		}
5011 		ret = do_chunk_alloc(trans, fs_info,
5012 				     btrfs_metadata_alloc_profile(fs_info),
5013 				     CHUNK_ALLOC_NO_FORCE);
5014 		btrfs_end_transaction(trans);
5015 		if (ret > 0 || ret == -ENOSPC)
5016 			ret = 0;
5017 		break;
5018 	case COMMIT_TRANS:
5019 		ret = may_commit_transaction(fs_info, space_info);
5020 		break;
5021 	default:
5022 		ret = -ENOSPC;
5023 		break;
5024 	}
5025 
5026 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5027 				ret);
5028 	return;
5029 }
5030 
5031 static inline u64
5032 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5033 				 struct btrfs_space_info *space_info,
5034 				 bool system_chunk)
5035 {
5036 	struct reserve_ticket *ticket;
5037 	u64 used;
5038 	u64 expected;
5039 	u64 to_reclaim = 0;
5040 
5041 	list_for_each_entry(ticket, &space_info->tickets, list)
5042 		to_reclaim += ticket->bytes;
5043 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5044 		to_reclaim += ticket->bytes;
5045 	if (to_reclaim)
5046 		return to_reclaim;
5047 
5048 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5049 	if (can_overcommit(fs_info, space_info, to_reclaim,
5050 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5051 		return 0;
5052 
5053 	used = btrfs_space_info_used(space_info, true);
5054 
5055 	if (can_overcommit(fs_info, space_info, SZ_1M,
5056 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5057 		expected = div_factor_fine(space_info->total_bytes, 95);
5058 	else
5059 		expected = div_factor_fine(space_info->total_bytes, 90);
5060 
5061 	if (used > expected)
5062 		to_reclaim = used - expected;
5063 	else
5064 		to_reclaim = 0;
5065 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5066 				     space_info->bytes_reserved);
5067 	return to_reclaim;
5068 }
5069 
5070 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5071 					struct btrfs_space_info *space_info,
5072 					u64 used, bool system_chunk)
5073 {
5074 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5075 
5076 	/* If we're just plain full then async reclaim just slows us down. */
5077 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5078 		return 0;
5079 
5080 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5081 					      system_chunk))
5082 		return 0;
5083 
5084 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5085 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5086 }
5087 
5088 static void wake_all_tickets(struct list_head *head)
5089 {
5090 	struct reserve_ticket *ticket;
5091 
5092 	while (!list_empty(head)) {
5093 		ticket = list_first_entry(head, struct reserve_ticket, list);
5094 		list_del_init(&ticket->list);
5095 		ticket->error = -ENOSPC;
5096 		wake_up(&ticket->wait);
5097 	}
5098 }
5099 
5100 /*
5101  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5102  * will loop and continuously try to flush as long as we are making progress.
5103  * We count progress as clearing off tickets each time we have to loop.
5104  */
5105 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5106 {
5107 	struct btrfs_fs_info *fs_info;
5108 	struct btrfs_space_info *space_info;
5109 	u64 to_reclaim;
5110 	int flush_state;
5111 	int commit_cycles = 0;
5112 	u64 last_tickets_id;
5113 
5114 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5115 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5116 
5117 	spin_lock(&space_info->lock);
5118 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119 						      false);
5120 	if (!to_reclaim) {
5121 		space_info->flush = 0;
5122 		spin_unlock(&space_info->lock);
5123 		return;
5124 	}
5125 	last_tickets_id = space_info->tickets_id;
5126 	spin_unlock(&space_info->lock);
5127 
5128 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5129 	do {
5130 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5131 		spin_lock(&space_info->lock);
5132 		if (list_empty(&space_info->tickets)) {
5133 			space_info->flush = 0;
5134 			spin_unlock(&space_info->lock);
5135 			return;
5136 		}
5137 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5138 							      space_info,
5139 							      false);
5140 		if (last_tickets_id == space_info->tickets_id) {
5141 			flush_state++;
5142 		} else {
5143 			last_tickets_id = space_info->tickets_id;
5144 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5145 			if (commit_cycles)
5146 				commit_cycles--;
5147 		}
5148 
5149 		if (flush_state > COMMIT_TRANS) {
5150 			commit_cycles++;
5151 			if (commit_cycles > 2) {
5152 				wake_all_tickets(&space_info->tickets);
5153 				space_info->flush = 0;
5154 			} else {
5155 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5156 			}
5157 		}
5158 		spin_unlock(&space_info->lock);
5159 	} while (flush_state <= COMMIT_TRANS);
5160 }
5161 
5162 void btrfs_init_async_reclaim_work(struct work_struct *work)
5163 {
5164 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5165 }
5166 
5167 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5168 					    struct btrfs_space_info *space_info,
5169 					    struct reserve_ticket *ticket)
5170 {
5171 	u64 to_reclaim;
5172 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5173 
5174 	spin_lock(&space_info->lock);
5175 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5176 						      false);
5177 	if (!to_reclaim) {
5178 		spin_unlock(&space_info->lock);
5179 		return;
5180 	}
5181 	spin_unlock(&space_info->lock);
5182 
5183 	do {
5184 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5185 		flush_state++;
5186 		spin_lock(&space_info->lock);
5187 		if (ticket->bytes == 0) {
5188 			spin_unlock(&space_info->lock);
5189 			return;
5190 		}
5191 		spin_unlock(&space_info->lock);
5192 
5193 		/*
5194 		 * Priority flushers can't wait on delalloc without
5195 		 * deadlocking.
5196 		 */
5197 		if (flush_state == FLUSH_DELALLOC ||
5198 		    flush_state == FLUSH_DELALLOC_WAIT)
5199 			flush_state = ALLOC_CHUNK;
5200 	} while (flush_state < COMMIT_TRANS);
5201 }
5202 
5203 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5204 			       struct btrfs_space_info *space_info,
5205 			       struct reserve_ticket *ticket, u64 orig_bytes)
5206 
5207 {
5208 	DEFINE_WAIT(wait);
5209 	int ret = 0;
5210 
5211 	spin_lock(&space_info->lock);
5212 	while (ticket->bytes > 0 && ticket->error == 0) {
5213 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5214 		if (ret) {
5215 			ret = -EINTR;
5216 			break;
5217 		}
5218 		spin_unlock(&space_info->lock);
5219 
5220 		schedule();
5221 
5222 		finish_wait(&ticket->wait, &wait);
5223 		spin_lock(&space_info->lock);
5224 	}
5225 	if (!ret)
5226 		ret = ticket->error;
5227 	if (!list_empty(&ticket->list))
5228 		list_del_init(&ticket->list);
5229 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5230 		u64 num_bytes = orig_bytes - ticket->bytes;
5231 		space_info->bytes_may_use -= num_bytes;
5232 		trace_btrfs_space_reservation(fs_info, "space_info",
5233 					      space_info->flags, num_bytes, 0);
5234 	}
5235 	spin_unlock(&space_info->lock);
5236 
5237 	return ret;
5238 }
5239 
5240 /**
5241  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242  * @root - the root we're allocating for
5243  * @space_info - the space info we want to allocate from
5244  * @orig_bytes - the number of bytes we want
5245  * @flush - whether or not we can flush to make our reservation
5246  *
5247  * This will reserve orig_bytes number of bytes from the space info associated
5248  * with the block_rsv.  If there is not enough space it will make an attempt to
5249  * flush out space to make room.  It will do this by flushing delalloc if
5250  * possible or committing the transaction.  If flush is 0 then no attempts to
5251  * regain reservations will be made and this will fail if there is not enough
5252  * space already.
5253  */
5254 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5255 				    struct btrfs_space_info *space_info,
5256 				    u64 orig_bytes,
5257 				    enum btrfs_reserve_flush_enum flush,
5258 				    bool system_chunk)
5259 {
5260 	struct reserve_ticket ticket;
5261 	u64 used;
5262 	int ret = 0;
5263 
5264 	ASSERT(orig_bytes);
5265 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5266 
5267 	spin_lock(&space_info->lock);
5268 	ret = -ENOSPC;
5269 	used = btrfs_space_info_used(space_info, true);
5270 
5271 	/*
5272 	 * If we have enough space then hooray, make our reservation and carry
5273 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5274 	 * If not things get more complicated.
5275 	 */
5276 	if (used + orig_bytes <= space_info->total_bytes) {
5277 		space_info->bytes_may_use += orig_bytes;
5278 		trace_btrfs_space_reservation(fs_info, "space_info",
5279 					      space_info->flags, orig_bytes, 1);
5280 		ret = 0;
5281 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5282 				  system_chunk)) {
5283 		space_info->bytes_may_use += orig_bytes;
5284 		trace_btrfs_space_reservation(fs_info, "space_info",
5285 					      space_info->flags, orig_bytes, 1);
5286 		ret = 0;
5287 	}
5288 
5289 	/*
5290 	 * If we couldn't make a reservation then setup our reservation ticket
5291 	 * and kick the async worker if it's not already running.
5292 	 *
5293 	 * If we are a priority flusher then we just need to add our ticket to
5294 	 * the list and we will do our own flushing further down.
5295 	 */
5296 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5297 		ticket.bytes = orig_bytes;
5298 		ticket.error = 0;
5299 		init_waitqueue_head(&ticket.wait);
5300 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5301 			list_add_tail(&ticket.list, &space_info->tickets);
5302 			if (!space_info->flush) {
5303 				space_info->flush = 1;
5304 				trace_btrfs_trigger_flush(fs_info,
5305 							  space_info->flags,
5306 							  orig_bytes, flush,
5307 							  "enospc");
5308 				queue_work(system_unbound_wq,
5309 					   &fs_info->async_reclaim_work);
5310 			}
5311 		} else {
5312 			list_add_tail(&ticket.list,
5313 				      &space_info->priority_tickets);
5314 		}
5315 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5316 		used += orig_bytes;
5317 		/*
5318 		 * We will do the space reservation dance during log replay,
5319 		 * which means we won't have fs_info->fs_root set, so don't do
5320 		 * the async reclaim as we will panic.
5321 		 */
5322 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5323 		    need_do_async_reclaim(fs_info, space_info,
5324 					  used, system_chunk) &&
5325 		    !work_busy(&fs_info->async_reclaim_work)) {
5326 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5327 						  orig_bytes, flush, "preempt");
5328 			queue_work(system_unbound_wq,
5329 				   &fs_info->async_reclaim_work);
5330 		}
5331 	}
5332 	spin_unlock(&space_info->lock);
5333 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5334 		return ret;
5335 
5336 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5337 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5338 					   orig_bytes);
5339 
5340 	ret = 0;
5341 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5342 	spin_lock(&space_info->lock);
5343 	if (ticket.bytes) {
5344 		if (ticket.bytes < orig_bytes) {
5345 			u64 num_bytes = orig_bytes - ticket.bytes;
5346 			space_info->bytes_may_use -= num_bytes;
5347 			trace_btrfs_space_reservation(fs_info, "space_info",
5348 						      space_info->flags,
5349 						      num_bytes, 0);
5350 
5351 		}
5352 		list_del_init(&ticket.list);
5353 		ret = -ENOSPC;
5354 	}
5355 	spin_unlock(&space_info->lock);
5356 	ASSERT(list_empty(&ticket.list));
5357 	return ret;
5358 }
5359 
5360 /**
5361  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5362  * @root - the root we're allocating for
5363  * @block_rsv - the block_rsv we're allocating for
5364  * @orig_bytes - the number of bytes we want
5365  * @flush - whether or not we can flush to make our reservation
5366  *
5367  * This will reserve orgi_bytes number of bytes from the space info associated
5368  * with the block_rsv.  If there is not enough space it will make an attempt to
5369  * flush out space to make room.  It will do this by flushing delalloc if
5370  * possible or committing the transaction.  If flush is 0 then no attempts to
5371  * regain reservations will be made and this will fail if there is not enough
5372  * space already.
5373  */
5374 static int reserve_metadata_bytes(struct btrfs_root *root,
5375 				  struct btrfs_block_rsv *block_rsv,
5376 				  u64 orig_bytes,
5377 				  enum btrfs_reserve_flush_enum flush)
5378 {
5379 	struct btrfs_fs_info *fs_info = root->fs_info;
5380 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5381 	int ret;
5382 	bool system_chunk = (root == fs_info->chunk_root);
5383 
5384 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5385 				       orig_bytes, flush, system_chunk);
5386 	if (ret == -ENOSPC &&
5387 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5388 		if (block_rsv != global_rsv &&
5389 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5390 			ret = 0;
5391 	}
5392 	if (ret == -ENOSPC)
5393 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5394 					      block_rsv->space_info->flags,
5395 					      orig_bytes, 1);
5396 	return ret;
5397 }
5398 
5399 static struct btrfs_block_rsv *get_block_rsv(
5400 					const struct btrfs_trans_handle *trans,
5401 					const struct btrfs_root *root)
5402 {
5403 	struct btrfs_fs_info *fs_info = root->fs_info;
5404 	struct btrfs_block_rsv *block_rsv = NULL;
5405 
5406 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5407 	    (root == fs_info->csum_root && trans->adding_csums) ||
5408 	    (root == fs_info->uuid_root))
5409 		block_rsv = trans->block_rsv;
5410 
5411 	if (!block_rsv)
5412 		block_rsv = root->block_rsv;
5413 
5414 	if (!block_rsv)
5415 		block_rsv = &fs_info->empty_block_rsv;
5416 
5417 	return block_rsv;
5418 }
5419 
5420 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421 			       u64 num_bytes)
5422 {
5423 	int ret = -ENOSPC;
5424 	spin_lock(&block_rsv->lock);
5425 	if (block_rsv->reserved >= num_bytes) {
5426 		block_rsv->reserved -= num_bytes;
5427 		if (block_rsv->reserved < block_rsv->size)
5428 			block_rsv->full = 0;
5429 		ret = 0;
5430 	}
5431 	spin_unlock(&block_rsv->lock);
5432 	return ret;
5433 }
5434 
5435 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436 				u64 num_bytes, int update_size)
5437 {
5438 	spin_lock(&block_rsv->lock);
5439 	block_rsv->reserved += num_bytes;
5440 	if (update_size)
5441 		block_rsv->size += num_bytes;
5442 	else if (block_rsv->reserved >= block_rsv->size)
5443 		block_rsv->full = 1;
5444 	spin_unlock(&block_rsv->lock);
5445 }
5446 
5447 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5449 			     int min_factor)
5450 {
5451 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452 	u64 min_bytes;
5453 
5454 	if (global_rsv->space_info != dest->space_info)
5455 		return -ENOSPC;
5456 
5457 	spin_lock(&global_rsv->lock);
5458 	min_bytes = div_factor(global_rsv->size, min_factor);
5459 	if (global_rsv->reserved < min_bytes + num_bytes) {
5460 		spin_unlock(&global_rsv->lock);
5461 		return -ENOSPC;
5462 	}
5463 	global_rsv->reserved -= num_bytes;
5464 	if (global_rsv->reserved < global_rsv->size)
5465 		global_rsv->full = 0;
5466 	spin_unlock(&global_rsv->lock);
5467 
5468 	block_rsv_add_bytes(dest, num_bytes, 1);
5469 	return 0;
5470 }
5471 
5472 /*
5473  * This is for space we already have accounted in space_info->bytes_may_use, so
5474  * basically when we're returning space from block_rsv's.
5475  */
5476 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477 				     struct btrfs_space_info *space_info,
5478 				     u64 num_bytes)
5479 {
5480 	struct reserve_ticket *ticket;
5481 	struct list_head *head;
5482 	u64 used;
5483 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484 	bool check_overcommit = false;
5485 
5486 	spin_lock(&space_info->lock);
5487 	head = &space_info->priority_tickets;
5488 
5489 	/*
5490 	 * If we are over our limit then we need to check and see if we can
5491 	 * overcommit, and if we can't then we just need to free up our space
5492 	 * and not satisfy any requests.
5493 	 */
5494 	used = btrfs_space_info_used(space_info, true);
5495 	if (used - num_bytes >= space_info->total_bytes)
5496 		check_overcommit = true;
5497 again:
5498 	while (!list_empty(head) && num_bytes) {
5499 		ticket = list_first_entry(head, struct reserve_ticket,
5500 					  list);
5501 		/*
5502 		 * We use 0 bytes because this space is already reserved, so
5503 		 * adding the ticket space would be a double count.
5504 		 */
5505 		if (check_overcommit &&
5506 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5507 			break;
5508 		if (num_bytes >= ticket->bytes) {
5509 			list_del_init(&ticket->list);
5510 			num_bytes -= ticket->bytes;
5511 			ticket->bytes = 0;
5512 			space_info->tickets_id++;
5513 			wake_up(&ticket->wait);
5514 		} else {
5515 			ticket->bytes -= num_bytes;
5516 			num_bytes = 0;
5517 		}
5518 	}
5519 
5520 	if (num_bytes && head == &space_info->priority_tickets) {
5521 		head = &space_info->tickets;
5522 		flush = BTRFS_RESERVE_FLUSH_ALL;
5523 		goto again;
5524 	}
5525 	space_info->bytes_may_use -= num_bytes;
5526 	trace_btrfs_space_reservation(fs_info, "space_info",
5527 				      space_info->flags, num_bytes, 0);
5528 	spin_unlock(&space_info->lock);
5529 }
5530 
5531 /*
5532  * This is for newly allocated space that isn't accounted in
5533  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5534  * we use this helper.
5535  */
5536 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537 				     struct btrfs_space_info *space_info,
5538 				     u64 num_bytes)
5539 {
5540 	struct reserve_ticket *ticket;
5541 	struct list_head *head = &space_info->priority_tickets;
5542 
5543 again:
5544 	while (!list_empty(head) && num_bytes) {
5545 		ticket = list_first_entry(head, struct reserve_ticket,
5546 					  list);
5547 		if (num_bytes >= ticket->bytes) {
5548 			trace_btrfs_space_reservation(fs_info, "space_info",
5549 						      space_info->flags,
5550 						      ticket->bytes, 1);
5551 			list_del_init(&ticket->list);
5552 			num_bytes -= ticket->bytes;
5553 			space_info->bytes_may_use += ticket->bytes;
5554 			ticket->bytes = 0;
5555 			space_info->tickets_id++;
5556 			wake_up(&ticket->wait);
5557 		} else {
5558 			trace_btrfs_space_reservation(fs_info, "space_info",
5559 						      space_info->flags,
5560 						      num_bytes, 1);
5561 			space_info->bytes_may_use += num_bytes;
5562 			ticket->bytes -= num_bytes;
5563 			num_bytes = 0;
5564 		}
5565 	}
5566 
5567 	if (num_bytes && head == &space_info->priority_tickets) {
5568 		head = &space_info->tickets;
5569 		goto again;
5570 	}
5571 }
5572 
5573 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5574 				    struct btrfs_block_rsv *block_rsv,
5575 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5576 {
5577 	struct btrfs_space_info *space_info = block_rsv->space_info;
5578 	u64 ret;
5579 
5580 	spin_lock(&block_rsv->lock);
5581 	if (num_bytes == (u64)-1)
5582 		num_bytes = block_rsv->size;
5583 	block_rsv->size -= num_bytes;
5584 	if (block_rsv->reserved >= block_rsv->size) {
5585 		num_bytes = block_rsv->reserved - block_rsv->size;
5586 		block_rsv->reserved = block_rsv->size;
5587 		block_rsv->full = 1;
5588 	} else {
5589 		num_bytes = 0;
5590 	}
5591 	spin_unlock(&block_rsv->lock);
5592 
5593 	ret = num_bytes;
5594 	if (num_bytes > 0) {
5595 		if (dest) {
5596 			spin_lock(&dest->lock);
5597 			if (!dest->full) {
5598 				u64 bytes_to_add;
5599 
5600 				bytes_to_add = dest->size - dest->reserved;
5601 				bytes_to_add = min(num_bytes, bytes_to_add);
5602 				dest->reserved += bytes_to_add;
5603 				if (dest->reserved >= dest->size)
5604 					dest->full = 1;
5605 				num_bytes -= bytes_to_add;
5606 			}
5607 			spin_unlock(&dest->lock);
5608 		}
5609 		if (num_bytes)
5610 			space_info_add_old_bytes(fs_info, space_info,
5611 						 num_bytes);
5612 	}
5613 	return ret;
5614 }
5615 
5616 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5617 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5618 			    int update_size)
5619 {
5620 	int ret;
5621 
5622 	ret = block_rsv_use_bytes(src, num_bytes);
5623 	if (ret)
5624 		return ret;
5625 
5626 	block_rsv_add_bytes(dst, num_bytes, update_size);
5627 	return 0;
5628 }
5629 
5630 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5631 {
5632 	memset(rsv, 0, sizeof(*rsv));
5633 	spin_lock_init(&rsv->lock);
5634 	rsv->type = type;
5635 }
5636 
5637 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5638 				   struct btrfs_block_rsv *rsv,
5639 				   unsigned short type)
5640 {
5641 	btrfs_init_block_rsv(rsv, type);
5642 	rsv->space_info = __find_space_info(fs_info,
5643 					    BTRFS_BLOCK_GROUP_METADATA);
5644 }
5645 
5646 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5647 					      unsigned short type)
5648 {
5649 	struct btrfs_block_rsv *block_rsv;
5650 
5651 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5652 	if (!block_rsv)
5653 		return NULL;
5654 
5655 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5656 	return block_rsv;
5657 }
5658 
5659 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5660 			  struct btrfs_block_rsv *rsv)
5661 {
5662 	if (!rsv)
5663 		return;
5664 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5665 	kfree(rsv);
5666 }
5667 
5668 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5669 {
5670 	kfree(rsv);
5671 }
5672 
5673 int btrfs_block_rsv_add(struct btrfs_root *root,
5674 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5675 			enum btrfs_reserve_flush_enum flush)
5676 {
5677 	int ret;
5678 
5679 	if (num_bytes == 0)
5680 		return 0;
5681 
5682 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5683 	if (!ret) {
5684 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5685 		return 0;
5686 	}
5687 
5688 	return ret;
5689 }
5690 
5691 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5692 {
5693 	u64 num_bytes = 0;
5694 	int ret = -ENOSPC;
5695 
5696 	if (!block_rsv)
5697 		return 0;
5698 
5699 	spin_lock(&block_rsv->lock);
5700 	num_bytes = div_factor(block_rsv->size, min_factor);
5701 	if (block_rsv->reserved >= num_bytes)
5702 		ret = 0;
5703 	spin_unlock(&block_rsv->lock);
5704 
5705 	return ret;
5706 }
5707 
5708 int btrfs_block_rsv_refill(struct btrfs_root *root,
5709 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5710 			   enum btrfs_reserve_flush_enum flush)
5711 {
5712 	u64 num_bytes = 0;
5713 	int ret = -ENOSPC;
5714 
5715 	if (!block_rsv)
5716 		return 0;
5717 
5718 	spin_lock(&block_rsv->lock);
5719 	num_bytes = min_reserved;
5720 	if (block_rsv->reserved >= num_bytes)
5721 		ret = 0;
5722 	else
5723 		num_bytes -= block_rsv->reserved;
5724 	spin_unlock(&block_rsv->lock);
5725 
5726 	if (!ret)
5727 		return 0;
5728 
5729 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5730 	if (!ret) {
5731 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5732 		return 0;
5733 	}
5734 
5735 	return ret;
5736 }
5737 
5738 /**
5739  * btrfs_inode_rsv_refill - refill the inode block rsv.
5740  * @inode - the inode we are refilling.
5741  * @flush - the flusing restriction.
5742  *
5743  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5744  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5745  * or return if we already have enough space.  This will also handle the resreve
5746  * tracepoint for the reserved amount.
5747  */
5748 int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5749 			   enum btrfs_reserve_flush_enum flush)
5750 {
5751 	struct btrfs_root *root = inode->root;
5752 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5753 	u64 num_bytes = 0;
5754 	int ret = -ENOSPC;
5755 
5756 	spin_lock(&block_rsv->lock);
5757 	if (block_rsv->reserved < block_rsv->size)
5758 		num_bytes = block_rsv->size - block_rsv->reserved;
5759 	spin_unlock(&block_rsv->lock);
5760 
5761 	if (num_bytes == 0)
5762 		return 0;
5763 
5764 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5765 	if (!ret) {
5766 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5767 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5768 					      btrfs_ino(inode), num_bytes, 1);
5769 	}
5770 	return ret;
5771 }
5772 
5773 /**
5774  * btrfs_inode_rsv_release - release any excessive reservation.
5775  * @inode - the inode we need to release from.
5776  *
5777  * This is the same as btrfs_block_rsv_release, except that it handles the
5778  * tracepoint for the reservation.
5779  */
5780 void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5781 {
5782 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5783 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5784 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5785 	u64 released = 0;
5786 
5787 	/*
5788 	 * Since we statically set the block_rsv->size we just want to say we
5789 	 * are releasing 0 bytes, and then we'll just get the reservation over
5790 	 * the size free'd.
5791 	 */
5792 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5793 	if (released > 0)
5794 		trace_btrfs_space_reservation(fs_info, "delalloc",
5795 					      btrfs_ino(inode), released, 0);
5796 }
5797 
5798 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5799 			     struct btrfs_block_rsv *block_rsv,
5800 			     u64 num_bytes)
5801 {
5802 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5803 
5804 	if (global_rsv == block_rsv ||
5805 	    block_rsv->space_info != global_rsv->space_info)
5806 		global_rsv = NULL;
5807 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5808 }
5809 
5810 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5811 {
5812 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5813 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5814 	u64 num_bytes;
5815 
5816 	/*
5817 	 * The global block rsv is based on the size of the extent tree, the
5818 	 * checksum tree and the root tree.  If the fs is empty we want to set
5819 	 * it to a minimal amount for safety.
5820 	 */
5821 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5822 		btrfs_root_used(&fs_info->csum_root->root_item) +
5823 		btrfs_root_used(&fs_info->tree_root->root_item);
5824 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5825 
5826 	spin_lock(&sinfo->lock);
5827 	spin_lock(&block_rsv->lock);
5828 
5829 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5830 
5831 	if (block_rsv->reserved < block_rsv->size) {
5832 		num_bytes = btrfs_space_info_used(sinfo, true);
5833 		if (sinfo->total_bytes > num_bytes) {
5834 			num_bytes = sinfo->total_bytes - num_bytes;
5835 			num_bytes = min(num_bytes,
5836 					block_rsv->size - block_rsv->reserved);
5837 			block_rsv->reserved += num_bytes;
5838 			sinfo->bytes_may_use += num_bytes;
5839 			trace_btrfs_space_reservation(fs_info, "space_info",
5840 						      sinfo->flags, num_bytes,
5841 						      1);
5842 		}
5843 	} else if (block_rsv->reserved > block_rsv->size) {
5844 		num_bytes = block_rsv->reserved - block_rsv->size;
5845 		sinfo->bytes_may_use -= num_bytes;
5846 		trace_btrfs_space_reservation(fs_info, "space_info",
5847 				      sinfo->flags, num_bytes, 0);
5848 		block_rsv->reserved = block_rsv->size;
5849 	}
5850 
5851 	if (block_rsv->reserved == block_rsv->size)
5852 		block_rsv->full = 1;
5853 	else
5854 		block_rsv->full = 0;
5855 
5856 	spin_unlock(&block_rsv->lock);
5857 	spin_unlock(&sinfo->lock);
5858 }
5859 
5860 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5861 {
5862 	struct btrfs_space_info *space_info;
5863 
5864 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5865 	fs_info->chunk_block_rsv.space_info = space_info;
5866 
5867 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5868 	fs_info->global_block_rsv.space_info = space_info;
5869 	fs_info->trans_block_rsv.space_info = space_info;
5870 	fs_info->empty_block_rsv.space_info = space_info;
5871 	fs_info->delayed_block_rsv.space_info = space_info;
5872 
5873 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5874 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5875 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5876 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5877 	if (fs_info->quota_root)
5878 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5879 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5880 
5881 	update_global_block_rsv(fs_info);
5882 }
5883 
5884 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5885 {
5886 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5887 				(u64)-1);
5888 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5889 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5890 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5891 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5892 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5893 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5894 }
5895 
5896 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5897 				  struct btrfs_fs_info *fs_info)
5898 {
5899 	if (!trans->block_rsv) {
5900 		ASSERT(!trans->bytes_reserved);
5901 		return;
5902 	}
5903 
5904 	if (!trans->bytes_reserved)
5905 		return;
5906 
5907 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5908 	trace_btrfs_space_reservation(fs_info, "transaction",
5909 				      trans->transid, trans->bytes_reserved, 0);
5910 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
5911 				trans->bytes_reserved);
5912 	trans->bytes_reserved = 0;
5913 }
5914 
5915 /*
5916  * To be called after all the new block groups attached to the transaction
5917  * handle have been created (btrfs_create_pending_block_groups()).
5918  */
5919 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5920 {
5921 	struct btrfs_fs_info *fs_info = trans->fs_info;
5922 
5923 	if (!trans->chunk_bytes_reserved)
5924 		return;
5925 
5926 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5927 
5928 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5929 				trans->chunk_bytes_reserved);
5930 	trans->chunk_bytes_reserved = 0;
5931 }
5932 
5933 /* Can only return 0 or -ENOSPC */
5934 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5935 				  struct btrfs_inode *inode)
5936 {
5937 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5938 	struct btrfs_root *root = inode->root;
5939 	/*
5940 	 * We always use trans->block_rsv here as we will have reserved space
5941 	 * for our orphan when starting the transaction, using get_block_rsv()
5942 	 * here will sometimes make us choose the wrong block rsv as we could be
5943 	 * doing a reloc inode for a non refcounted root.
5944 	 */
5945 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5946 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5947 
5948 	/*
5949 	 * We need to hold space in order to delete our orphan item once we've
5950 	 * added it, so this takes the reservation so we can release it later
5951 	 * when we are truly done with the orphan item.
5952 	 */
5953 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5954 
5955 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5956 			num_bytes, 1);
5957 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5958 }
5959 
5960 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5961 {
5962 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5963 	struct btrfs_root *root = inode->root;
5964 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5965 
5966 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5967 			num_bytes, 0);
5968 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5969 }
5970 
5971 /*
5972  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5973  * root: the root of the parent directory
5974  * rsv: block reservation
5975  * items: the number of items that we need do reservation
5976  * qgroup_reserved: used to return the reserved size in qgroup
5977  *
5978  * This function is used to reserve the space for snapshot/subvolume
5979  * creation and deletion. Those operations are different with the
5980  * common file/directory operations, they change two fs/file trees
5981  * and root tree, the number of items that the qgroup reserves is
5982  * different with the free space reservation. So we can not use
5983  * the space reservation mechanism in start_transaction().
5984  */
5985 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5986 				     struct btrfs_block_rsv *rsv,
5987 				     int items,
5988 				     u64 *qgroup_reserved,
5989 				     bool use_global_rsv)
5990 {
5991 	u64 num_bytes;
5992 	int ret;
5993 	struct btrfs_fs_info *fs_info = root->fs_info;
5994 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5995 
5996 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5997 		/* One for parent inode, two for dir entries */
5998 		num_bytes = 3 * fs_info->nodesize;
5999 		ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
6000 		if (ret)
6001 			return ret;
6002 	} else {
6003 		num_bytes = 0;
6004 	}
6005 
6006 	*qgroup_reserved = num_bytes;
6007 
6008 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6009 	rsv->space_info = __find_space_info(fs_info,
6010 					    BTRFS_BLOCK_GROUP_METADATA);
6011 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6012 				  BTRFS_RESERVE_FLUSH_ALL);
6013 
6014 	if (ret == -ENOSPC && use_global_rsv)
6015 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6016 
6017 	if (ret && *qgroup_reserved)
6018 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
6019 
6020 	return ret;
6021 }
6022 
6023 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6024 				      struct btrfs_block_rsv *rsv)
6025 {
6026 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6027 }
6028 
6029 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6030 						 struct btrfs_inode *inode)
6031 {
6032 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6033 	u64 reserve_size = 0;
6034 	u64 csum_leaves;
6035 	unsigned outstanding_extents;
6036 
6037 	lockdep_assert_held(&inode->lock);
6038 	outstanding_extents = inode->outstanding_extents;
6039 	if (outstanding_extents)
6040 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6041 						outstanding_extents + 1);
6042 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6043 						 inode->csum_bytes);
6044 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6045 						       csum_leaves);
6046 
6047 	spin_lock(&block_rsv->lock);
6048 	block_rsv->size = reserve_size;
6049 	spin_unlock(&block_rsv->lock);
6050 }
6051 
6052 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6053 {
6054 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6055 	struct btrfs_root *root = inode->root;
6056 	unsigned nr_extents;
6057 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6058 	int ret = 0;
6059 	bool delalloc_lock = true;
6060 
6061 	/* If we are a free space inode we need to not flush since we will be in
6062 	 * the middle of a transaction commit.  We also don't need the delalloc
6063 	 * mutex since we won't race with anybody.  We need this mostly to make
6064 	 * lockdep shut its filthy mouth.
6065 	 *
6066 	 * If we have a transaction open (can happen if we call truncate_block
6067 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6068 	 */
6069 	if (btrfs_is_free_space_inode(inode)) {
6070 		flush = BTRFS_RESERVE_NO_FLUSH;
6071 		delalloc_lock = false;
6072 	} else if (current->journal_info) {
6073 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
6074 	}
6075 
6076 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
6077 	    btrfs_transaction_in_commit(fs_info))
6078 		schedule_timeout(1);
6079 
6080 	if (delalloc_lock)
6081 		mutex_lock(&inode->delalloc_mutex);
6082 
6083 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6084 
6085 	/* Add our new extents and calculate the new rsv size. */
6086 	spin_lock(&inode->lock);
6087 	nr_extents = count_max_extents(num_bytes);
6088 	btrfs_mod_outstanding_extents(inode, nr_extents);
6089 	inode->csum_bytes += num_bytes;
6090 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6091 	spin_unlock(&inode->lock);
6092 
6093 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6094 		ret = btrfs_qgroup_reserve_meta(root,
6095 				nr_extents * fs_info->nodesize, true);
6096 		if (ret)
6097 			goto out_fail;
6098 	}
6099 
6100 	ret = btrfs_inode_rsv_refill(inode, flush);
6101 	if (unlikely(ret)) {
6102 		btrfs_qgroup_free_meta(root,
6103 				       nr_extents * fs_info->nodesize);
6104 		goto out_fail;
6105 	}
6106 
6107 	if (delalloc_lock)
6108 		mutex_unlock(&inode->delalloc_mutex);
6109 	return 0;
6110 
6111 out_fail:
6112 	spin_lock(&inode->lock);
6113 	nr_extents = count_max_extents(num_bytes);
6114 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6115 	inode->csum_bytes -= num_bytes;
6116 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6117 	spin_unlock(&inode->lock);
6118 
6119 	btrfs_inode_rsv_release(inode);
6120 	if (delalloc_lock)
6121 		mutex_unlock(&inode->delalloc_mutex);
6122 	return ret;
6123 }
6124 
6125 /**
6126  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6127  * @inode: the inode to release the reservation for.
6128  * @num_bytes: the number of bytes we are releasing.
6129  *
6130  * This will release the metadata reservation for an inode.  This can be called
6131  * once we complete IO for a given set of bytes to release their metadata
6132  * reservations, or on error for the same reason.
6133  */
6134 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6135 {
6136 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6137 
6138 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6139 	spin_lock(&inode->lock);
6140 	inode->csum_bytes -= num_bytes;
6141 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6142 	spin_unlock(&inode->lock);
6143 
6144 	if (btrfs_is_testing(fs_info))
6145 		return;
6146 
6147 	btrfs_inode_rsv_release(inode);
6148 }
6149 
6150 /**
6151  * btrfs_delalloc_release_extents - release our outstanding_extents
6152  * @inode: the inode to balance the reservation for.
6153  * @num_bytes: the number of bytes we originally reserved with
6154  *
6155  * When we reserve space we increase outstanding_extents for the extents we may
6156  * add.  Once we've set the range as delalloc or created our ordered extents we
6157  * have outstanding_extents to track the real usage, so we use this to free our
6158  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6159  * with btrfs_delalloc_reserve_metadata.
6160  */
6161 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6162 {
6163 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6164 	unsigned num_extents;
6165 
6166 	spin_lock(&inode->lock);
6167 	num_extents = count_max_extents(num_bytes);
6168 	btrfs_mod_outstanding_extents(inode, -num_extents);
6169 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6170 	spin_unlock(&inode->lock);
6171 
6172 	if (btrfs_is_testing(fs_info))
6173 		return;
6174 
6175 	btrfs_inode_rsv_release(inode);
6176 }
6177 
6178 /**
6179  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6180  * delalloc
6181  * @inode: inode we're writing to
6182  * @start: start range we are writing to
6183  * @len: how long the range we are writing to
6184  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6185  * 	      current reservation.
6186  *
6187  * This will do the following things
6188  *
6189  * o reserve space in data space info for num bytes
6190  *   and reserve precious corresponding qgroup space
6191  *   (Done in check_data_free_space)
6192  *
6193  * o reserve space for metadata space, based on the number of outstanding
6194  *   extents and how much csums will be needed
6195  *   also reserve metadata space in a per root over-reserve method.
6196  * o add to the inodes->delalloc_bytes
6197  * o add it to the fs_info's delalloc inodes list.
6198  *   (Above 3 all done in delalloc_reserve_metadata)
6199  *
6200  * Return 0 for success
6201  * Return <0 for error(-ENOSPC or -EQUOT)
6202  */
6203 int btrfs_delalloc_reserve_space(struct inode *inode,
6204 			struct extent_changeset **reserved, u64 start, u64 len)
6205 {
6206 	int ret;
6207 
6208 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6209 	if (ret < 0)
6210 		return ret;
6211 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6212 	if (ret < 0)
6213 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6214 	return ret;
6215 }
6216 
6217 /**
6218  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6219  * @inode: inode we're releasing space for
6220  * @start: start position of the space already reserved
6221  * @len: the len of the space already reserved
6222  * @release_bytes: the len of the space we consumed or didn't use
6223  *
6224  * This function will release the metadata space that was not used and will
6225  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6226  * list if there are no delalloc bytes left.
6227  * Also it will handle the qgroup reserved space.
6228  */
6229 void btrfs_delalloc_release_space(struct inode *inode,
6230 				  struct extent_changeset *reserved,
6231 				  u64 start, u64 len)
6232 {
6233 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6234 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6235 }
6236 
6237 static int update_block_group(struct btrfs_trans_handle *trans,
6238 			      struct btrfs_fs_info *info, u64 bytenr,
6239 			      u64 num_bytes, int alloc)
6240 {
6241 	struct btrfs_block_group_cache *cache = NULL;
6242 	u64 total = num_bytes;
6243 	u64 old_val;
6244 	u64 byte_in_group;
6245 	int factor;
6246 
6247 	/* block accounting for super block */
6248 	spin_lock(&info->delalloc_root_lock);
6249 	old_val = btrfs_super_bytes_used(info->super_copy);
6250 	if (alloc)
6251 		old_val += num_bytes;
6252 	else
6253 		old_val -= num_bytes;
6254 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6255 	spin_unlock(&info->delalloc_root_lock);
6256 
6257 	while (total) {
6258 		cache = btrfs_lookup_block_group(info, bytenr);
6259 		if (!cache)
6260 			return -ENOENT;
6261 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6262 				    BTRFS_BLOCK_GROUP_RAID1 |
6263 				    BTRFS_BLOCK_GROUP_RAID10))
6264 			factor = 2;
6265 		else
6266 			factor = 1;
6267 		/*
6268 		 * If this block group has free space cache written out, we
6269 		 * need to make sure to load it if we are removing space.  This
6270 		 * is because we need the unpinning stage to actually add the
6271 		 * space back to the block group, otherwise we will leak space.
6272 		 */
6273 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6274 			cache_block_group(cache, 1);
6275 
6276 		byte_in_group = bytenr - cache->key.objectid;
6277 		WARN_ON(byte_in_group > cache->key.offset);
6278 
6279 		spin_lock(&cache->space_info->lock);
6280 		spin_lock(&cache->lock);
6281 
6282 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6283 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6284 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6285 
6286 		old_val = btrfs_block_group_used(&cache->item);
6287 		num_bytes = min(total, cache->key.offset - byte_in_group);
6288 		if (alloc) {
6289 			old_val += num_bytes;
6290 			btrfs_set_block_group_used(&cache->item, old_val);
6291 			cache->reserved -= num_bytes;
6292 			cache->space_info->bytes_reserved -= num_bytes;
6293 			cache->space_info->bytes_used += num_bytes;
6294 			cache->space_info->disk_used += num_bytes * factor;
6295 			spin_unlock(&cache->lock);
6296 			spin_unlock(&cache->space_info->lock);
6297 		} else {
6298 			old_val -= num_bytes;
6299 			btrfs_set_block_group_used(&cache->item, old_val);
6300 			cache->pinned += num_bytes;
6301 			cache->space_info->bytes_pinned += num_bytes;
6302 			cache->space_info->bytes_used -= num_bytes;
6303 			cache->space_info->disk_used -= num_bytes * factor;
6304 			spin_unlock(&cache->lock);
6305 			spin_unlock(&cache->space_info->lock);
6306 
6307 			trace_btrfs_space_reservation(info, "pinned",
6308 						      cache->space_info->flags,
6309 						      num_bytes, 1);
6310 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6311 					   num_bytes);
6312 			set_extent_dirty(info->pinned_extents,
6313 					 bytenr, bytenr + num_bytes - 1,
6314 					 GFP_NOFS | __GFP_NOFAIL);
6315 		}
6316 
6317 		spin_lock(&trans->transaction->dirty_bgs_lock);
6318 		if (list_empty(&cache->dirty_list)) {
6319 			list_add_tail(&cache->dirty_list,
6320 				      &trans->transaction->dirty_bgs);
6321 				trans->transaction->num_dirty_bgs++;
6322 			btrfs_get_block_group(cache);
6323 		}
6324 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6325 
6326 		/*
6327 		 * No longer have used bytes in this block group, queue it for
6328 		 * deletion. We do this after adding the block group to the
6329 		 * dirty list to avoid races between cleaner kthread and space
6330 		 * cache writeout.
6331 		 */
6332 		if (!alloc && old_val == 0) {
6333 			spin_lock(&info->unused_bgs_lock);
6334 			if (list_empty(&cache->bg_list)) {
6335 				btrfs_get_block_group(cache);
6336 				list_add_tail(&cache->bg_list,
6337 					      &info->unused_bgs);
6338 			}
6339 			spin_unlock(&info->unused_bgs_lock);
6340 		}
6341 
6342 		btrfs_put_block_group(cache);
6343 		total -= num_bytes;
6344 		bytenr += num_bytes;
6345 	}
6346 	return 0;
6347 }
6348 
6349 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6350 {
6351 	struct btrfs_block_group_cache *cache;
6352 	u64 bytenr;
6353 
6354 	spin_lock(&fs_info->block_group_cache_lock);
6355 	bytenr = fs_info->first_logical_byte;
6356 	spin_unlock(&fs_info->block_group_cache_lock);
6357 
6358 	if (bytenr < (u64)-1)
6359 		return bytenr;
6360 
6361 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6362 	if (!cache)
6363 		return 0;
6364 
6365 	bytenr = cache->key.objectid;
6366 	btrfs_put_block_group(cache);
6367 
6368 	return bytenr;
6369 }
6370 
6371 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6372 			   struct btrfs_block_group_cache *cache,
6373 			   u64 bytenr, u64 num_bytes, int reserved)
6374 {
6375 	spin_lock(&cache->space_info->lock);
6376 	spin_lock(&cache->lock);
6377 	cache->pinned += num_bytes;
6378 	cache->space_info->bytes_pinned += num_bytes;
6379 	if (reserved) {
6380 		cache->reserved -= num_bytes;
6381 		cache->space_info->bytes_reserved -= num_bytes;
6382 	}
6383 	spin_unlock(&cache->lock);
6384 	spin_unlock(&cache->space_info->lock);
6385 
6386 	trace_btrfs_space_reservation(fs_info, "pinned",
6387 				      cache->space_info->flags, num_bytes, 1);
6388 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6389 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6390 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6391 	return 0;
6392 }
6393 
6394 /*
6395  * this function must be called within transaction
6396  */
6397 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6398 		     u64 bytenr, u64 num_bytes, int reserved)
6399 {
6400 	struct btrfs_block_group_cache *cache;
6401 
6402 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6403 	BUG_ON(!cache); /* Logic error */
6404 
6405 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6406 
6407 	btrfs_put_block_group(cache);
6408 	return 0;
6409 }
6410 
6411 /*
6412  * this function must be called within transaction
6413  */
6414 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6415 				    u64 bytenr, u64 num_bytes)
6416 {
6417 	struct btrfs_block_group_cache *cache;
6418 	int ret;
6419 
6420 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6421 	if (!cache)
6422 		return -EINVAL;
6423 
6424 	/*
6425 	 * pull in the free space cache (if any) so that our pin
6426 	 * removes the free space from the cache.  We have load_only set
6427 	 * to one because the slow code to read in the free extents does check
6428 	 * the pinned extents.
6429 	 */
6430 	cache_block_group(cache, 1);
6431 
6432 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6433 
6434 	/* remove us from the free space cache (if we're there at all) */
6435 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6436 	btrfs_put_block_group(cache);
6437 	return ret;
6438 }
6439 
6440 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6441 				   u64 start, u64 num_bytes)
6442 {
6443 	int ret;
6444 	struct btrfs_block_group_cache *block_group;
6445 	struct btrfs_caching_control *caching_ctl;
6446 
6447 	block_group = btrfs_lookup_block_group(fs_info, start);
6448 	if (!block_group)
6449 		return -EINVAL;
6450 
6451 	cache_block_group(block_group, 0);
6452 	caching_ctl = get_caching_control(block_group);
6453 
6454 	if (!caching_ctl) {
6455 		/* Logic error */
6456 		BUG_ON(!block_group_cache_done(block_group));
6457 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6458 	} else {
6459 		mutex_lock(&caching_ctl->mutex);
6460 
6461 		if (start >= caching_ctl->progress) {
6462 			ret = add_excluded_extent(fs_info, start, num_bytes);
6463 		} else if (start + num_bytes <= caching_ctl->progress) {
6464 			ret = btrfs_remove_free_space(block_group,
6465 						      start, num_bytes);
6466 		} else {
6467 			num_bytes = caching_ctl->progress - start;
6468 			ret = btrfs_remove_free_space(block_group,
6469 						      start, num_bytes);
6470 			if (ret)
6471 				goto out_lock;
6472 
6473 			num_bytes = (start + num_bytes) -
6474 				caching_ctl->progress;
6475 			start = caching_ctl->progress;
6476 			ret = add_excluded_extent(fs_info, start, num_bytes);
6477 		}
6478 out_lock:
6479 		mutex_unlock(&caching_ctl->mutex);
6480 		put_caching_control(caching_ctl);
6481 	}
6482 	btrfs_put_block_group(block_group);
6483 	return ret;
6484 }
6485 
6486 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6487 				 struct extent_buffer *eb)
6488 {
6489 	struct btrfs_file_extent_item *item;
6490 	struct btrfs_key key;
6491 	int found_type;
6492 	int i;
6493 
6494 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6495 		return 0;
6496 
6497 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6498 		btrfs_item_key_to_cpu(eb, &key, i);
6499 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6500 			continue;
6501 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6502 		found_type = btrfs_file_extent_type(eb, item);
6503 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6504 			continue;
6505 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6506 			continue;
6507 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6508 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6509 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6510 	}
6511 
6512 	return 0;
6513 }
6514 
6515 static void
6516 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6517 {
6518 	atomic_inc(&bg->reservations);
6519 }
6520 
6521 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6522 					const u64 start)
6523 {
6524 	struct btrfs_block_group_cache *bg;
6525 
6526 	bg = btrfs_lookup_block_group(fs_info, start);
6527 	ASSERT(bg);
6528 	if (atomic_dec_and_test(&bg->reservations))
6529 		wake_up_atomic_t(&bg->reservations);
6530 	btrfs_put_block_group(bg);
6531 }
6532 
6533 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6534 {
6535 	schedule();
6536 	return 0;
6537 }
6538 
6539 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6540 {
6541 	struct btrfs_space_info *space_info = bg->space_info;
6542 
6543 	ASSERT(bg->ro);
6544 
6545 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6546 		return;
6547 
6548 	/*
6549 	 * Our block group is read only but before we set it to read only,
6550 	 * some task might have had allocated an extent from it already, but it
6551 	 * has not yet created a respective ordered extent (and added it to a
6552 	 * root's list of ordered extents).
6553 	 * Therefore wait for any task currently allocating extents, since the
6554 	 * block group's reservations counter is incremented while a read lock
6555 	 * on the groups' semaphore is held and decremented after releasing
6556 	 * the read access on that semaphore and creating the ordered extent.
6557 	 */
6558 	down_write(&space_info->groups_sem);
6559 	up_write(&space_info->groups_sem);
6560 
6561 	wait_on_atomic_t(&bg->reservations,
6562 			 btrfs_wait_bg_reservations_atomic_t,
6563 			 TASK_UNINTERRUPTIBLE);
6564 }
6565 
6566 /**
6567  * btrfs_add_reserved_bytes - update the block_group and space info counters
6568  * @cache:	The cache we are manipulating
6569  * @ram_bytes:  The number of bytes of file content, and will be same to
6570  *              @num_bytes except for the compress path.
6571  * @num_bytes:	The number of bytes in question
6572  * @delalloc:   The blocks are allocated for the delalloc write
6573  *
6574  * This is called by the allocator when it reserves space. If this is a
6575  * reservation and the block group has become read only we cannot make the
6576  * reservation and return -EAGAIN, otherwise this function always succeeds.
6577  */
6578 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6579 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6580 {
6581 	struct btrfs_space_info *space_info = cache->space_info;
6582 	int ret = 0;
6583 
6584 	spin_lock(&space_info->lock);
6585 	spin_lock(&cache->lock);
6586 	if (cache->ro) {
6587 		ret = -EAGAIN;
6588 	} else {
6589 		cache->reserved += num_bytes;
6590 		space_info->bytes_reserved += num_bytes;
6591 
6592 		trace_btrfs_space_reservation(cache->fs_info,
6593 				"space_info", space_info->flags,
6594 				ram_bytes, 0);
6595 		space_info->bytes_may_use -= ram_bytes;
6596 		if (delalloc)
6597 			cache->delalloc_bytes += num_bytes;
6598 	}
6599 	spin_unlock(&cache->lock);
6600 	spin_unlock(&space_info->lock);
6601 	return ret;
6602 }
6603 
6604 /**
6605  * btrfs_free_reserved_bytes - update the block_group and space info counters
6606  * @cache:      The cache we are manipulating
6607  * @num_bytes:  The number of bytes in question
6608  * @delalloc:   The blocks are allocated for the delalloc write
6609  *
6610  * This is called by somebody who is freeing space that was never actually used
6611  * on disk.  For example if you reserve some space for a new leaf in transaction
6612  * A and before transaction A commits you free that leaf, you call this with
6613  * reserve set to 0 in order to clear the reservation.
6614  */
6615 
6616 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6617 				     u64 num_bytes, int delalloc)
6618 {
6619 	struct btrfs_space_info *space_info = cache->space_info;
6620 	int ret = 0;
6621 
6622 	spin_lock(&space_info->lock);
6623 	spin_lock(&cache->lock);
6624 	if (cache->ro)
6625 		space_info->bytes_readonly += num_bytes;
6626 	cache->reserved -= num_bytes;
6627 	space_info->bytes_reserved -= num_bytes;
6628 
6629 	if (delalloc)
6630 		cache->delalloc_bytes -= num_bytes;
6631 	spin_unlock(&cache->lock);
6632 	spin_unlock(&space_info->lock);
6633 	return ret;
6634 }
6635 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6636 {
6637 	struct btrfs_caching_control *next;
6638 	struct btrfs_caching_control *caching_ctl;
6639 	struct btrfs_block_group_cache *cache;
6640 
6641 	down_write(&fs_info->commit_root_sem);
6642 
6643 	list_for_each_entry_safe(caching_ctl, next,
6644 				 &fs_info->caching_block_groups, list) {
6645 		cache = caching_ctl->block_group;
6646 		if (block_group_cache_done(cache)) {
6647 			cache->last_byte_to_unpin = (u64)-1;
6648 			list_del_init(&caching_ctl->list);
6649 			put_caching_control(caching_ctl);
6650 		} else {
6651 			cache->last_byte_to_unpin = caching_ctl->progress;
6652 		}
6653 	}
6654 
6655 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6656 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6657 	else
6658 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6659 
6660 	up_write(&fs_info->commit_root_sem);
6661 
6662 	update_global_block_rsv(fs_info);
6663 }
6664 
6665 /*
6666  * Returns the free cluster for the given space info and sets empty_cluster to
6667  * what it should be based on the mount options.
6668  */
6669 static struct btrfs_free_cluster *
6670 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6671 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6672 {
6673 	struct btrfs_free_cluster *ret = NULL;
6674 
6675 	*empty_cluster = 0;
6676 	if (btrfs_mixed_space_info(space_info))
6677 		return ret;
6678 
6679 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6680 		ret = &fs_info->meta_alloc_cluster;
6681 		if (btrfs_test_opt(fs_info, SSD))
6682 			*empty_cluster = SZ_2M;
6683 		else
6684 			*empty_cluster = SZ_64K;
6685 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6686 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6687 		*empty_cluster = SZ_2M;
6688 		ret = &fs_info->data_alloc_cluster;
6689 	}
6690 
6691 	return ret;
6692 }
6693 
6694 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6695 			      u64 start, u64 end,
6696 			      const bool return_free_space)
6697 {
6698 	struct btrfs_block_group_cache *cache = NULL;
6699 	struct btrfs_space_info *space_info;
6700 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6701 	struct btrfs_free_cluster *cluster = NULL;
6702 	u64 len;
6703 	u64 total_unpinned = 0;
6704 	u64 empty_cluster = 0;
6705 	bool readonly;
6706 
6707 	while (start <= end) {
6708 		readonly = false;
6709 		if (!cache ||
6710 		    start >= cache->key.objectid + cache->key.offset) {
6711 			if (cache)
6712 				btrfs_put_block_group(cache);
6713 			total_unpinned = 0;
6714 			cache = btrfs_lookup_block_group(fs_info, start);
6715 			BUG_ON(!cache); /* Logic error */
6716 
6717 			cluster = fetch_cluster_info(fs_info,
6718 						     cache->space_info,
6719 						     &empty_cluster);
6720 			empty_cluster <<= 1;
6721 		}
6722 
6723 		len = cache->key.objectid + cache->key.offset - start;
6724 		len = min(len, end + 1 - start);
6725 
6726 		if (start < cache->last_byte_to_unpin) {
6727 			len = min(len, cache->last_byte_to_unpin - start);
6728 			if (return_free_space)
6729 				btrfs_add_free_space(cache, start, len);
6730 		}
6731 
6732 		start += len;
6733 		total_unpinned += len;
6734 		space_info = cache->space_info;
6735 
6736 		/*
6737 		 * If this space cluster has been marked as fragmented and we've
6738 		 * unpinned enough in this block group to potentially allow a
6739 		 * cluster to be created inside of it go ahead and clear the
6740 		 * fragmented check.
6741 		 */
6742 		if (cluster && cluster->fragmented &&
6743 		    total_unpinned > empty_cluster) {
6744 			spin_lock(&cluster->lock);
6745 			cluster->fragmented = 0;
6746 			spin_unlock(&cluster->lock);
6747 		}
6748 
6749 		spin_lock(&space_info->lock);
6750 		spin_lock(&cache->lock);
6751 		cache->pinned -= len;
6752 		space_info->bytes_pinned -= len;
6753 
6754 		trace_btrfs_space_reservation(fs_info, "pinned",
6755 					      space_info->flags, len, 0);
6756 		space_info->max_extent_size = 0;
6757 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6758 		if (cache->ro) {
6759 			space_info->bytes_readonly += len;
6760 			readonly = true;
6761 		}
6762 		spin_unlock(&cache->lock);
6763 		if (!readonly && return_free_space &&
6764 		    global_rsv->space_info == space_info) {
6765 			u64 to_add = len;
6766 
6767 			spin_lock(&global_rsv->lock);
6768 			if (!global_rsv->full) {
6769 				to_add = min(len, global_rsv->size -
6770 					     global_rsv->reserved);
6771 				global_rsv->reserved += to_add;
6772 				space_info->bytes_may_use += to_add;
6773 				if (global_rsv->reserved >= global_rsv->size)
6774 					global_rsv->full = 1;
6775 				trace_btrfs_space_reservation(fs_info,
6776 							      "space_info",
6777 							      space_info->flags,
6778 							      to_add, 1);
6779 				len -= to_add;
6780 			}
6781 			spin_unlock(&global_rsv->lock);
6782 			/* Add to any tickets we may have */
6783 			if (len)
6784 				space_info_add_new_bytes(fs_info, space_info,
6785 							 len);
6786 		}
6787 		spin_unlock(&space_info->lock);
6788 	}
6789 
6790 	if (cache)
6791 		btrfs_put_block_group(cache);
6792 	return 0;
6793 }
6794 
6795 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6796 			       struct btrfs_fs_info *fs_info)
6797 {
6798 	struct btrfs_block_group_cache *block_group, *tmp;
6799 	struct list_head *deleted_bgs;
6800 	struct extent_io_tree *unpin;
6801 	u64 start;
6802 	u64 end;
6803 	int ret;
6804 
6805 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6806 		unpin = &fs_info->freed_extents[1];
6807 	else
6808 		unpin = &fs_info->freed_extents[0];
6809 
6810 	while (!trans->aborted) {
6811 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6812 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6813 					    EXTENT_DIRTY, NULL);
6814 		if (ret) {
6815 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6816 			break;
6817 		}
6818 
6819 		if (btrfs_test_opt(fs_info, DISCARD))
6820 			ret = btrfs_discard_extent(fs_info, start,
6821 						   end + 1 - start, NULL);
6822 
6823 		clear_extent_dirty(unpin, start, end);
6824 		unpin_extent_range(fs_info, start, end, true);
6825 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6826 		cond_resched();
6827 	}
6828 
6829 	/*
6830 	 * Transaction is finished.  We don't need the lock anymore.  We
6831 	 * do need to clean up the block groups in case of a transaction
6832 	 * abort.
6833 	 */
6834 	deleted_bgs = &trans->transaction->deleted_bgs;
6835 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6836 		u64 trimmed = 0;
6837 
6838 		ret = -EROFS;
6839 		if (!trans->aborted)
6840 			ret = btrfs_discard_extent(fs_info,
6841 						   block_group->key.objectid,
6842 						   block_group->key.offset,
6843 						   &trimmed);
6844 
6845 		list_del_init(&block_group->bg_list);
6846 		btrfs_put_block_group_trimming(block_group);
6847 		btrfs_put_block_group(block_group);
6848 
6849 		if (ret) {
6850 			const char *errstr = btrfs_decode_error(ret);
6851 			btrfs_warn(fs_info,
6852 			   "discard failed while removing blockgroup: errno=%d %s",
6853 				   ret, errstr);
6854 		}
6855 	}
6856 
6857 	return 0;
6858 }
6859 
6860 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6861 				struct btrfs_fs_info *info,
6862 				struct btrfs_delayed_ref_node *node, u64 parent,
6863 				u64 root_objectid, u64 owner_objectid,
6864 				u64 owner_offset, int refs_to_drop,
6865 				struct btrfs_delayed_extent_op *extent_op)
6866 {
6867 	struct btrfs_key key;
6868 	struct btrfs_path *path;
6869 	struct btrfs_root *extent_root = info->extent_root;
6870 	struct extent_buffer *leaf;
6871 	struct btrfs_extent_item *ei;
6872 	struct btrfs_extent_inline_ref *iref;
6873 	int ret;
6874 	int is_data;
6875 	int extent_slot = 0;
6876 	int found_extent = 0;
6877 	int num_to_del = 1;
6878 	u32 item_size;
6879 	u64 refs;
6880 	u64 bytenr = node->bytenr;
6881 	u64 num_bytes = node->num_bytes;
6882 	int last_ref = 0;
6883 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6884 
6885 	path = btrfs_alloc_path();
6886 	if (!path)
6887 		return -ENOMEM;
6888 
6889 	path->reada = READA_FORWARD;
6890 	path->leave_spinning = 1;
6891 
6892 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6893 	BUG_ON(!is_data && refs_to_drop != 1);
6894 
6895 	if (is_data)
6896 		skinny_metadata = false;
6897 
6898 	ret = lookup_extent_backref(trans, info, path, &iref,
6899 				    bytenr, num_bytes, parent,
6900 				    root_objectid, owner_objectid,
6901 				    owner_offset);
6902 	if (ret == 0) {
6903 		extent_slot = path->slots[0];
6904 		while (extent_slot >= 0) {
6905 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6906 					      extent_slot);
6907 			if (key.objectid != bytenr)
6908 				break;
6909 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6910 			    key.offset == num_bytes) {
6911 				found_extent = 1;
6912 				break;
6913 			}
6914 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6915 			    key.offset == owner_objectid) {
6916 				found_extent = 1;
6917 				break;
6918 			}
6919 			if (path->slots[0] - extent_slot > 5)
6920 				break;
6921 			extent_slot--;
6922 		}
6923 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6924 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6925 		if (found_extent && item_size < sizeof(*ei))
6926 			found_extent = 0;
6927 #endif
6928 		if (!found_extent) {
6929 			BUG_ON(iref);
6930 			ret = remove_extent_backref(trans, info, path, NULL,
6931 						    refs_to_drop,
6932 						    is_data, &last_ref);
6933 			if (ret) {
6934 				btrfs_abort_transaction(trans, ret);
6935 				goto out;
6936 			}
6937 			btrfs_release_path(path);
6938 			path->leave_spinning = 1;
6939 
6940 			key.objectid = bytenr;
6941 			key.type = BTRFS_EXTENT_ITEM_KEY;
6942 			key.offset = num_bytes;
6943 
6944 			if (!is_data && skinny_metadata) {
6945 				key.type = BTRFS_METADATA_ITEM_KEY;
6946 				key.offset = owner_objectid;
6947 			}
6948 
6949 			ret = btrfs_search_slot(trans, extent_root,
6950 						&key, path, -1, 1);
6951 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6952 				/*
6953 				 * Couldn't find our skinny metadata item,
6954 				 * see if we have ye olde extent item.
6955 				 */
6956 				path->slots[0]--;
6957 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6958 						      path->slots[0]);
6959 				if (key.objectid == bytenr &&
6960 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6961 				    key.offset == num_bytes)
6962 					ret = 0;
6963 			}
6964 
6965 			if (ret > 0 && skinny_metadata) {
6966 				skinny_metadata = false;
6967 				key.objectid = bytenr;
6968 				key.type = BTRFS_EXTENT_ITEM_KEY;
6969 				key.offset = num_bytes;
6970 				btrfs_release_path(path);
6971 				ret = btrfs_search_slot(trans, extent_root,
6972 							&key, path, -1, 1);
6973 			}
6974 
6975 			if (ret) {
6976 				btrfs_err(info,
6977 					  "umm, got %d back from search, was looking for %llu",
6978 					  ret, bytenr);
6979 				if (ret > 0)
6980 					btrfs_print_leaf(path->nodes[0]);
6981 			}
6982 			if (ret < 0) {
6983 				btrfs_abort_transaction(trans, ret);
6984 				goto out;
6985 			}
6986 			extent_slot = path->slots[0];
6987 		}
6988 	} else if (WARN_ON(ret == -ENOENT)) {
6989 		btrfs_print_leaf(path->nodes[0]);
6990 		btrfs_err(info,
6991 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6992 			bytenr, parent, root_objectid, owner_objectid,
6993 			owner_offset);
6994 		btrfs_abort_transaction(trans, ret);
6995 		goto out;
6996 	} else {
6997 		btrfs_abort_transaction(trans, ret);
6998 		goto out;
6999 	}
7000 
7001 	leaf = path->nodes[0];
7002 	item_size = btrfs_item_size_nr(leaf, extent_slot);
7003 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7004 	if (item_size < sizeof(*ei)) {
7005 		BUG_ON(found_extent || extent_slot != path->slots[0]);
7006 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7007 					     0);
7008 		if (ret < 0) {
7009 			btrfs_abort_transaction(trans, ret);
7010 			goto out;
7011 		}
7012 
7013 		btrfs_release_path(path);
7014 		path->leave_spinning = 1;
7015 
7016 		key.objectid = bytenr;
7017 		key.type = BTRFS_EXTENT_ITEM_KEY;
7018 		key.offset = num_bytes;
7019 
7020 		ret = btrfs_search_slot(trans, extent_root, &key, path,
7021 					-1, 1);
7022 		if (ret) {
7023 			btrfs_err(info,
7024 				  "umm, got %d back from search, was looking for %llu",
7025 				ret, bytenr);
7026 			btrfs_print_leaf(path->nodes[0]);
7027 		}
7028 		if (ret < 0) {
7029 			btrfs_abort_transaction(trans, ret);
7030 			goto out;
7031 		}
7032 
7033 		extent_slot = path->slots[0];
7034 		leaf = path->nodes[0];
7035 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7036 	}
7037 #endif
7038 	BUG_ON(item_size < sizeof(*ei));
7039 	ei = btrfs_item_ptr(leaf, extent_slot,
7040 			    struct btrfs_extent_item);
7041 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7042 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7043 		struct btrfs_tree_block_info *bi;
7044 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7045 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7046 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7047 	}
7048 
7049 	refs = btrfs_extent_refs(leaf, ei);
7050 	if (refs < refs_to_drop) {
7051 		btrfs_err(info,
7052 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7053 			  refs_to_drop, refs, bytenr);
7054 		ret = -EINVAL;
7055 		btrfs_abort_transaction(trans, ret);
7056 		goto out;
7057 	}
7058 	refs -= refs_to_drop;
7059 
7060 	if (refs > 0) {
7061 		if (extent_op)
7062 			__run_delayed_extent_op(extent_op, leaf, ei);
7063 		/*
7064 		 * In the case of inline back ref, reference count will
7065 		 * be updated by remove_extent_backref
7066 		 */
7067 		if (iref) {
7068 			BUG_ON(!found_extent);
7069 		} else {
7070 			btrfs_set_extent_refs(leaf, ei, refs);
7071 			btrfs_mark_buffer_dirty(leaf);
7072 		}
7073 		if (found_extent) {
7074 			ret = remove_extent_backref(trans, info, path,
7075 						    iref, refs_to_drop,
7076 						    is_data, &last_ref);
7077 			if (ret) {
7078 				btrfs_abort_transaction(trans, ret);
7079 				goto out;
7080 			}
7081 		}
7082 	} else {
7083 		if (found_extent) {
7084 			BUG_ON(is_data && refs_to_drop !=
7085 			       extent_data_ref_count(path, iref));
7086 			if (iref) {
7087 				BUG_ON(path->slots[0] != extent_slot);
7088 			} else {
7089 				BUG_ON(path->slots[0] != extent_slot + 1);
7090 				path->slots[0] = extent_slot;
7091 				num_to_del = 2;
7092 			}
7093 		}
7094 
7095 		last_ref = 1;
7096 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7097 				      num_to_del);
7098 		if (ret) {
7099 			btrfs_abort_transaction(trans, ret);
7100 			goto out;
7101 		}
7102 		btrfs_release_path(path);
7103 
7104 		if (is_data) {
7105 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7106 			if (ret) {
7107 				btrfs_abort_transaction(trans, ret);
7108 				goto out;
7109 			}
7110 		}
7111 
7112 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7113 		if (ret) {
7114 			btrfs_abort_transaction(trans, ret);
7115 			goto out;
7116 		}
7117 
7118 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7119 		if (ret) {
7120 			btrfs_abort_transaction(trans, ret);
7121 			goto out;
7122 		}
7123 	}
7124 	btrfs_release_path(path);
7125 
7126 out:
7127 	btrfs_free_path(path);
7128 	return ret;
7129 }
7130 
7131 /*
7132  * when we free an block, it is possible (and likely) that we free the last
7133  * delayed ref for that extent as well.  This searches the delayed ref tree for
7134  * a given extent, and if there are no other delayed refs to be processed, it
7135  * removes it from the tree.
7136  */
7137 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7138 				      u64 bytenr)
7139 {
7140 	struct btrfs_delayed_ref_head *head;
7141 	struct btrfs_delayed_ref_root *delayed_refs;
7142 	int ret = 0;
7143 
7144 	delayed_refs = &trans->transaction->delayed_refs;
7145 	spin_lock(&delayed_refs->lock);
7146 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7147 	if (!head)
7148 		goto out_delayed_unlock;
7149 
7150 	spin_lock(&head->lock);
7151 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7152 		goto out;
7153 
7154 	if (head->extent_op) {
7155 		if (!head->must_insert_reserved)
7156 			goto out;
7157 		btrfs_free_delayed_extent_op(head->extent_op);
7158 		head->extent_op = NULL;
7159 	}
7160 
7161 	/*
7162 	 * waiting for the lock here would deadlock.  If someone else has it
7163 	 * locked they are already in the process of dropping it anyway
7164 	 */
7165 	if (!mutex_trylock(&head->mutex))
7166 		goto out;
7167 
7168 	/*
7169 	 * at this point we have a head with no other entries.  Go
7170 	 * ahead and process it.
7171 	 */
7172 	rb_erase(&head->href_node, &delayed_refs->href_root);
7173 	RB_CLEAR_NODE(&head->href_node);
7174 	atomic_dec(&delayed_refs->num_entries);
7175 
7176 	/*
7177 	 * we don't take a ref on the node because we're removing it from the
7178 	 * tree, so we just steal the ref the tree was holding.
7179 	 */
7180 	delayed_refs->num_heads--;
7181 	if (head->processing == 0)
7182 		delayed_refs->num_heads_ready--;
7183 	head->processing = 0;
7184 	spin_unlock(&head->lock);
7185 	spin_unlock(&delayed_refs->lock);
7186 
7187 	BUG_ON(head->extent_op);
7188 	if (head->must_insert_reserved)
7189 		ret = 1;
7190 
7191 	mutex_unlock(&head->mutex);
7192 	btrfs_put_delayed_ref_head(head);
7193 	return ret;
7194 out:
7195 	spin_unlock(&head->lock);
7196 
7197 out_delayed_unlock:
7198 	spin_unlock(&delayed_refs->lock);
7199 	return 0;
7200 }
7201 
7202 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7203 			   struct btrfs_root *root,
7204 			   struct extent_buffer *buf,
7205 			   u64 parent, int last_ref)
7206 {
7207 	struct btrfs_fs_info *fs_info = root->fs_info;
7208 	int pin = 1;
7209 	int ret;
7210 
7211 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7212 		int old_ref_mod, new_ref_mod;
7213 
7214 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7215 				   root->root_key.objectid,
7216 				   btrfs_header_level(buf), 0,
7217 				   BTRFS_DROP_DELAYED_REF);
7218 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7219 						 buf->len, parent,
7220 						 root->root_key.objectid,
7221 						 btrfs_header_level(buf),
7222 						 BTRFS_DROP_DELAYED_REF, NULL,
7223 						 &old_ref_mod, &new_ref_mod);
7224 		BUG_ON(ret); /* -ENOMEM */
7225 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7226 	}
7227 
7228 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7229 		struct btrfs_block_group_cache *cache;
7230 
7231 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7232 			ret = check_ref_cleanup(trans, buf->start);
7233 			if (!ret)
7234 				goto out;
7235 		}
7236 
7237 		pin = 0;
7238 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7239 
7240 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7241 			pin_down_extent(fs_info, cache, buf->start,
7242 					buf->len, 1);
7243 			btrfs_put_block_group(cache);
7244 			goto out;
7245 		}
7246 
7247 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7248 
7249 		btrfs_add_free_space(cache, buf->start, buf->len);
7250 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7251 		btrfs_put_block_group(cache);
7252 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7253 	}
7254 out:
7255 	if (pin)
7256 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7257 				 root->root_key.objectid);
7258 
7259 	if (last_ref) {
7260 		/*
7261 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7262 		 * matter anymore.
7263 		 */
7264 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7265 	}
7266 }
7267 
7268 /* Can return -ENOMEM */
7269 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7270 		      struct btrfs_root *root,
7271 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7272 		      u64 owner, u64 offset)
7273 {
7274 	struct btrfs_fs_info *fs_info = root->fs_info;
7275 	int old_ref_mod, new_ref_mod;
7276 	int ret;
7277 
7278 	if (btrfs_is_testing(fs_info))
7279 		return 0;
7280 
7281 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7282 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7283 				   root_objectid, owner, offset,
7284 				   BTRFS_DROP_DELAYED_REF);
7285 
7286 	/*
7287 	 * tree log blocks never actually go into the extent allocation
7288 	 * tree, just update pinning info and exit early.
7289 	 */
7290 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7291 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7292 		/* unlocks the pinned mutex */
7293 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7294 		old_ref_mod = new_ref_mod = 0;
7295 		ret = 0;
7296 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7297 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7298 						 num_bytes, parent,
7299 						 root_objectid, (int)owner,
7300 						 BTRFS_DROP_DELAYED_REF, NULL,
7301 						 &old_ref_mod, &new_ref_mod);
7302 	} else {
7303 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7304 						 num_bytes, parent,
7305 						 root_objectid, owner, offset,
7306 						 0, BTRFS_DROP_DELAYED_REF,
7307 						 &old_ref_mod, &new_ref_mod);
7308 	}
7309 
7310 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7311 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7312 
7313 	return ret;
7314 }
7315 
7316 /*
7317  * when we wait for progress in the block group caching, its because
7318  * our allocation attempt failed at least once.  So, we must sleep
7319  * and let some progress happen before we try again.
7320  *
7321  * This function will sleep at least once waiting for new free space to
7322  * show up, and then it will check the block group free space numbers
7323  * for our min num_bytes.  Another option is to have it go ahead
7324  * and look in the rbtree for a free extent of a given size, but this
7325  * is a good start.
7326  *
7327  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7328  * any of the information in this block group.
7329  */
7330 static noinline void
7331 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7332 				u64 num_bytes)
7333 {
7334 	struct btrfs_caching_control *caching_ctl;
7335 
7336 	caching_ctl = get_caching_control(cache);
7337 	if (!caching_ctl)
7338 		return;
7339 
7340 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7341 		   (cache->free_space_ctl->free_space >= num_bytes));
7342 
7343 	put_caching_control(caching_ctl);
7344 }
7345 
7346 static noinline int
7347 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7348 {
7349 	struct btrfs_caching_control *caching_ctl;
7350 	int ret = 0;
7351 
7352 	caching_ctl = get_caching_control(cache);
7353 	if (!caching_ctl)
7354 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7355 
7356 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7357 	if (cache->cached == BTRFS_CACHE_ERROR)
7358 		ret = -EIO;
7359 	put_caching_control(caching_ctl);
7360 	return ret;
7361 }
7362 
7363 int __get_raid_index(u64 flags)
7364 {
7365 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7366 		return BTRFS_RAID_RAID10;
7367 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7368 		return BTRFS_RAID_RAID1;
7369 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7370 		return BTRFS_RAID_DUP;
7371 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7372 		return BTRFS_RAID_RAID0;
7373 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7374 		return BTRFS_RAID_RAID5;
7375 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7376 		return BTRFS_RAID_RAID6;
7377 
7378 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7379 }
7380 
7381 int get_block_group_index(struct btrfs_block_group_cache *cache)
7382 {
7383 	return __get_raid_index(cache->flags);
7384 }
7385 
7386 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7387 	[BTRFS_RAID_RAID10]	= "raid10",
7388 	[BTRFS_RAID_RAID1]	= "raid1",
7389 	[BTRFS_RAID_DUP]	= "dup",
7390 	[BTRFS_RAID_RAID0]	= "raid0",
7391 	[BTRFS_RAID_SINGLE]	= "single",
7392 	[BTRFS_RAID_RAID5]	= "raid5",
7393 	[BTRFS_RAID_RAID6]	= "raid6",
7394 };
7395 
7396 static const char *get_raid_name(enum btrfs_raid_types type)
7397 {
7398 	if (type >= BTRFS_NR_RAID_TYPES)
7399 		return NULL;
7400 
7401 	return btrfs_raid_type_names[type];
7402 }
7403 
7404 enum btrfs_loop_type {
7405 	LOOP_CACHING_NOWAIT = 0,
7406 	LOOP_CACHING_WAIT = 1,
7407 	LOOP_ALLOC_CHUNK = 2,
7408 	LOOP_NO_EMPTY_SIZE = 3,
7409 };
7410 
7411 static inline void
7412 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7413 		       int delalloc)
7414 {
7415 	if (delalloc)
7416 		down_read(&cache->data_rwsem);
7417 }
7418 
7419 static inline void
7420 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7421 		       int delalloc)
7422 {
7423 	btrfs_get_block_group(cache);
7424 	if (delalloc)
7425 		down_read(&cache->data_rwsem);
7426 }
7427 
7428 static struct btrfs_block_group_cache *
7429 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7430 		   struct btrfs_free_cluster *cluster,
7431 		   int delalloc)
7432 {
7433 	struct btrfs_block_group_cache *used_bg = NULL;
7434 
7435 	spin_lock(&cluster->refill_lock);
7436 	while (1) {
7437 		used_bg = cluster->block_group;
7438 		if (!used_bg)
7439 			return NULL;
7440 
7441 		if (used_bg == block_group)
7442 			return used_bg;
7443 
7444 		btrfs_get_block_group(used_bg);
7445 
7446 		if (!delalloc)
7447 			return used_bg;
7448 
7449 		if (down_read_trylock(&used_bg->data_rwsem))
7450 			return used_bg;
7451 
7452 		spin_unlock(&cluster->refill_lock);
7453 
7454 		/* We should only have one-level nested. */
7455 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7456 
7457 		spin_lock(&cluster->refill_lock);
7458 		if (used_bg == cluster->block_group)
7459 			return used_bg;
7460 
7461 		up_read(&used_bg->data_rwsem);
7462 		btrfs_put_block_group(used_bg);
7463 	}
7464 }
7465 
7466 static inline void
7467 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7468 			 int delalloc)
7469 {
7470 	if (delalloc)
7471 		up_read(&cache->data_rwsem);
7472 	btrfs_put_block_group(cache);
7473 }
7474 
7475 /*
7476  * walks the btree of allocated extents and find a hole of a given size.
7477  * The key ins is changed to record the hole:
7478  * ins->objectid == start position
7479  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7480  * ins->offset == the size of the hole.
7481  * Any available blocks before search_start are skipped.
7482  *
7483  * If there is no suitable free space, we will record the max size of
7484  * the free space extent currently.
7485  */
7486 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7487 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7488 				u64 hint_byte, struct btrfs_key *ins,
7489 				u64 flags, int delalloc)
7490 {
7491 	int ret = 0;
7492 	struct btrfs_root *root = fs_info->extent_root;
7493 	struct btrfs_free_cluster *last_ptr = NULL;
7494 	struct btrfs_block_group_cache *block_group = NULL;
7495 	u64 search_start = 0;
7496 	u64 max_extent_size = 0;
7497 	u64 empty_cluster = 0;
7498 	struct btrfs_space_info *space_info;
7499 	int loop = 0;
7500 	int index = __get_raid_index(flags);
7501 	bool failed_cluster_refill = false;
7502 	bool failed_alloc = false;
7503 	bool use_cluster = true;
7504 	bool have_caching_bg = false;
7505 	bool orig_have_caching_bg = false;
7506 	bool full_search = false;
7507 
7508 	WARN_ON(num_bytes < fs_info->sectorsize);
7509 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7510 	ins->objectid = 0;
7511 	ins->offset = 0;
7512 
7513 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7514 
7515 	space_info = __find_space_info(fs_info, flags);
7516 	if (!space_info) {
7517 		btrfs_err(fs_info, "No space info for %llu", flags);
7518 		return -ENOSPC;
7519 	}
7520 
7521 	/*
7522 	 * If our free space is heavily fragmented we may not be able to make
7523 	 * big contiguous allocations, so instead of doing the expensive search
7524 	 * for free space, simply return ENOSPC with our max_extent_size so we
7525 	 * can go ahead and search for a more manageable chunk.
7526 	 *
7527 	 * If our max_extent_size is large enough for our allocation simply
7528 	 * disable clustering since we will likely not be able to find enough
7529 	 * space to create a cluster and induce latency trying.
7530 	 */
7531 	if (unlikely(space_info->max_extent_size)) {
7532 		spin_lock(&space_info->lock);
7533 		if (space_info->max_extent_size &&
7534 		    num_bytes > space_info->max_extent_size) {
7535 			ins->offset = space_info->max_extent_size;
7536 			spin_unlock(&space_info->lock);
7537 			return -ENOSPC;
7538 		} else if (space_info->max_extent_size) {
7539 			use_cluster = false;
7540 		}
7541 		spin_unlock(&space_info->lock);
7542 	}
7543 
7544 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7545 	if (last_ptr) {
7546 		spin_lock(&last_ptr->lock);
7547 		if (last_ptr->block_group)
7548 			hint_byte = last_ptr->window_start;
7549 		if (last_ptr->fragmented) {
7550 			/*
7551 			 * We still set window_start so we can keep track of the
7552 			 * last place we found an allocation to try and save
7553 			 * some time.
7554 			 */
7555 			hint_byte = last_ptr->window_start;
7556 			use_cluster = false;
7557 		}
7558 		spin_unlock(&last_ptr->lock);
7559 	}
7560 
7561 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7562 	search_start = max(search_start, hint_byte);
7563 	if (search_start == hint_byte) {
7564 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7565 		/*
7566 		 * we don't want to use the block group if it doesn't match our
7567 		 * allocation bits, or if its not cached.
7568 		 *
7569 		 * However if we are re-searching with an ideal block group
7570 		 * picked out then we don't care that the block group is cached.
7571 		 */
7572 		if (block_group && block_group_bits(block_group, flags) &&
7573 		    block_group->cached != BTRFS_CACHE_NO) {
7574 			down_read(&space_info->groups_sem);
7575 			if (list_empty(&block_group->list) ||
7576 			    block_group->ro) {
7577 				/*
7578 				 * someone is removing this block group,
7579 				 * we can't jump into the have_block_group
7580 				 * target because our list pointers are not
7581 				 * valid
7582 				 */
7583 				btrfs_put_block_group(block_group);
7584 				up_read(&space_info->groups_sem);
7585 			} else {
7586 				index = get_block_group_index(block_group);
7587 				btrfs_lock_block_group(block_group, delalloc);
7588 				goto have_block_group;
7589 			}
7590 		} else if (block_group) {
7591 			btrfs_put_block_group(block_group);
7592 		}
7593 	}
7594 search:
7595 	have_caching_bg = false;
7596 	if (index == 0 || index == __get_raid_index(flags))
7597 		full_search = true;
7598 	down_read(&space_info->groups_sem);
7599 	list_for_each_entry(block_group, &space_info->block_groups[index],
7600 			    list) {
7601 		u64 offset;
7602 		int cached;
7603 
7604 		/* If the block group is read-only, we can skip it entirely. */
7605 		if (unlikely(block_group->ro))
7606 			continue;
7607 
7608 		btrfs_grab_block_group(block_group, delalloc);
7609 		search_start = block_group->key.objectid;
7610 
7611 		/*
7612 		 * this can happen if we end up cycling through all the
7613 		 * raid types, but we want to make sure we only allocate
7614 		 * for the proper type.
7615 		 */
7616 		if (!block_group_bits(block_group, flags)) {
7617 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7618 				BTRFS_BLOCK_GROUP_RAID1 |
7619 				BTRFS_BLOCK_GROUP_RAID5 |
7620 				BTRFS_BLOCK_GROUP_RAID6 |
7621 				BTRFS_BLOCK_GROUP_RAID10;
7622 
7623 			/*
7624 			 * if they asked for extra copies and this block group
7625 			 * doesn't provide them, bail.  This does allow us to
7626 			 * fill raid0 from raid1.
7627 			 */
7628 			if ((flags & extra) && !(block_group->flags & extra))
7629 				goto loop;
7630 		}
7631 
7632 have_block_group:
7633 		cached = block_group_cache_done(block_group);
7634 		if (unlikely(!cached)) {
7635 			have_caching_bg = true;
7636 			ret = cache_block_group(block_group, 0);
7637 			BUG_ON(ret < 0);
7638 			ret = 0;
7639 		}
7640 
7641 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7642 			goto loop;
7643 
7644 		/*
7645 		 * Ok we want to try and use the cluster allocator, so
7646 		 * lets look there
7647 		 */
7648 		if (last_ptr && use_cluster) {
7649 			struct btrfs_block_group_cache *used_block_group;
7650 			unsigned long aligned_cluster;
7651 			/*
7652 			 * the refill lock keeps out other
7653 			 * people trying to start a new cluster
7654 			 */
7655 			used_block_group = btrfs_lock_cluster(block_group,
7656 							      last_ptr,
7657 							      delalloc);
7658 			if (!used_block_group)
7659 				goto refill_cluster;
7660 
7661 			if (used_block_group != block_group &&
7662 			    (used_block_group->ro ||
7663 			     !block_group_bits(used_block_group, flags)))
7664 				goto release_cluster;
7665 
7666 			offset = btrfs_alloc_from_cluster(used_block_group,
7667 						last_ptr,
7668 						num_bytes,
7669 						used_block_group->key.objectid,
7670 						&max_extent_size);
7671 			if (offset) {
7672 				/* we have a block, we're done */
7673 				spin_unlock(&last_ptr->refill_lock);
7674 				trace_btrfs_reserve_extent_cluster(fs_info,
7675 						used_block_group,
7676 						search_start, num_bytes);
7677 				if (used_block_group != block_group) {
7678 					btrfs_release_block_group(block_group,
7679 								  delalloc);
7680 					block_group = used_block_group;
7681 				}
7682 				goto checks;
7683 			}
7684 
7685 			WARN_ON(last_ptr->block_group != used_block_group);
7686 release_cluster:
7687 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7688 			 * set up a new clusters, so lets just skip it
7689 			 * and let the allocator find whatever block
7690 			 * it can find.  If we reach this point, we
7691 			 * will have tried the cluster allocator
7692 			 * plenty of times and not have found
7693 			 * anything, so we are likely way too
7694 			 * fragmented for the clustering stuff to find
7695 			 * anything.
7696 			 *
7697 			 * However, if the cluster is taken from the
7698 			 * current block group, release the cluster
7699 			 * first, so that we stand a better chance of
7700 			 * succeeding in the unclustered
7701 			 * allocation.  */
7702 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7703 			    used_block_group != block_group) {
7704 				spin_unlock(&last_ptr->refill_lock);
7705 				btrfs_release_block_group(used_block_group,
7706 							  delalloc);
7707 				goto unclustered_alloc;
7708 			}
7709 
7710 			/*
7711 			 * this cluster didn't work out, free it and
7712 			 * start over
7713 			 */
7714 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7715 
7716 			if (used_block_group != block_group)
7717 				btrfs_release_block_group(used_block_group,
7718 							  delalloc);
7719 refill_cluster:
7720 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7721 				spin_unlock(&last_ptr->refill_lock);
7722 				goto unclustered_alloc;
7723 			}
7724 
7725 			aligned_cluster = max_t(unsigned long,
7726 						empty_cluster + empty_size,
7727 					      block_group->full_stripe_len);
7728 
7729 			/* allocate a cluster in this block group */
7730 			ret = btrfs_find_space_cluster(fs_info, block_group,
7731 						       last_ptr, search_start,
7732 						       num_bytes,
7733 						       aligned_cluster);
7734 			if (ret == 0) {
7735 				/*
7736 				 * now pull our allocation out of this
7737 				 * cluster
7738 				 */
7739 				offset = btrfs_alloc_from_cluster(block_group,
7740 							last_ptr,
7741 							num_bytes,
7742 							search_start,
7743 							&max_extent_size);
7744 				if (offset) {
7745 					/* we found one, proceed */
7746 					spin_unlock(&last_ptr->refill_lock);
7747 					trace_btrfs_reserve_extent_cluster(fs_info,
7748 						block_group, search_start,
7749 						num_bytes);
7750 					goto checks;
7751 				}
7752 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7753 				   && !failed_cluster_refill) {
7754 				spin_unlock(&last_ptr->refill_lock);
7755 
7756 				failed_cluster_refill = true;
7757 				wait_block_group_cache_progress(block_group,
7758 				       num_bytes + empty_cluster + empty_size);
7759 				goto have_block_group;
7760 			}
7761 
7762 			/*
7763 			 * at this point we either didn't find a cluster
7764 			 * or we weren't able to allocate a block from our
7765 			 * cluster.  Free the cluster we've been trying
7766 			 * to use, and go to the next block group
7767 			 */
7768 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7769 			spin_unlock(&last_ptr->refill_lock);
7770 			goto loop;
7771 		}
7772 
7773 unclustered_alloc:
7774 		/*
7775 		 * We are doing an unclustered alloc, set the fragmented flag so
7776 		 * we don't bother trying to setup a cluster again until we get
7777 		 * more space.
7778 		 */
7779 		if (unlikely(last_ptr)) {
7780 			spin_lock(&last_ptr->lock);
7781 			last_ptr->fragmented = 1;
7782 			spin_unlock(&last_ptr->lock);
7783 		}
7784 		if (cached) {
7785 			struct btrfs_free_space_ctl *ctl =
7786 				block_group->free_space_ctl;
7787 
7788 			spin_lock(&ctl->tree_lock);
7789 			if (ctl->free_space <
7790 			    num_bytes + empty_cluster + empty_size) {
7791 				if (ctl->free_space > max_extent_size)
7792 					max_extent_size = ctl->free_space;
7793 				spin_unlock(&ctl->tree_lock);
7794 				goto loop;
7795 			}
7796 			spin_unlock(&ctl->tree_lock);
7797 		}
7798 
7799 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7800 						    num_bytes, empty_size,
7801 						    &max_extent_size);
7802 		/*
7803 		 * If we didn't find a chunk, and we haven't failed on this
7804 		 * block group before, and this block group is in the middle of
7805 		 * caching and we are ok with waiting, then go ahead and wait
7806 		 * for progress to be made, and set failed_alloc to true.
7807 		 *
7808 		 * If failed_alloc is true then we've already waited on this
7809 		 * block group once and should move on to the next block group.
7810 		 */
7811 		if (!offset && !failed_alloc && !cached &&
7812 		    loop > LOOP_CACHING_NOWAIT) {
7813 			wait_block_group_cache_progress(block_group,
7814 						num_bytes + empty_size);
7815 			failed_alloc = true;
7816 			goto have_block_group;
7817 		} else if (!offset) {
7818 			goto loop;
7819 		}
7820 checks:
7821 		search_start = ALIGN(offset, fs_info->stripesize);
7822 
7823 		/* move on to the next group */
7824 		if (search_start + num_bytes >
7825 		    block_group->key.objectid + block_group->key.offset) {
7826 			btrfs_add_free_space(block_group, offset, num_bytes);
7827 			goto loop;
7828 		}
7829 
7830 		if (offset < search_start)
7831 			btrfs_add_free_space(block_group, offset,
7832 					     search_start - offset);
7833 		BUG_ON(offset > search_start);
7834 
7835 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7836 				num_bytes, delalloc);
7837 		if (ret == -EAGAIN) {
7838 			btrfs_add_free_space(block_group, offset, num_bytes);
7839 			goto loop;
7840 		}
7841 		btrfs_inc_block_group_reservations(block_group);
7842 
7843 		/* we are all good, lets return */
7844 		ins->objectid = search_start;
7845 		ins->offset = num_bytes;
7846 
7847 		trace_btrfs_reserve_extent(fs_info, block_group,
7848 					   search_start, num_bytes);
7849 		btrfs_release_block_group(block_group, delalloc);
7850 		break;
7851 loop:
7852 		failed_cluster_refill = false;
7853 		failed_alloc = false;
7854 		BUG_ON(index != get_block_group_index(block_group));
7855 		btrfs_release_block_group(block_group, delalloc);
7856 		cond_resched();
7857 	}
7858 	up_read(&space_info->groups_sem);
7859 
7860 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7861 		&& !orig_have_caching_bg)
7862 		orig_have_caching_bg = true;
7863 
7864 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7865 		goto search;
7866 
7867 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7868 		goto search;
7869 
7870 	/*
7871 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7872 	 *			caching kthreads as we move along
7873 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7874 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7875 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7876 	 *			again
7877 	 */
7878 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7879 		index = 0;
7880 		if (loop == LOOP_CACHING_NOWAIT) {
7881 			/*
7882 			 * We want to skip the LOOP_CACHING_WAIT step if we
7883 			 * don't have any uncached bgs and we've already done a
7884 			 * full search through.
7885 			 */
7886 			if (orig_have_caching_bg || !full_search)
7887 				loop = LOOP_CACHING_WAIT;
7888 			else
7889 				loop = LOOP_ALLOC_CHUNK;
7890 		} else {
7891 			loop++;
7892 		}
7893 
7894 		if (loop == LOOP_ALLOC_CHUNK) {
7895 			struct btrfs_trans_handle *trans;
7896 			int exist = 0;
7897 
7898 			trans = current->journal_info;
7899 			if (trans)
7900 				exist = 1;
7901 			else
7902 				trans = btrfs_join_transaction(root);
7903 
7904 			if (IS_ERR(trans)) {
7905 				ret = PTR_ERR(trans);
7906 				goto out;
7907 			}
7908 
7909 			ret = do_chunk_alloc(trans, fs_info, flags,
7910 					     CHUNK_ALLOC_FORCE);
7911 
7912 			/*
7913 			 * If we can't allocate a new chunk we've already looped
7914 			 * through at least once, move on to the NO_EMPTY_SIZE
7915 			 * case.
7916 			 */
7917 			if (ret == -ENOSPC)
7918 				loop = LOOP_NO_EMPTY_SIZE;
7919 
7920 			/*
7921 			 * Do not bail out on ENOSPC since we
7922 			 * can do more things.
7923 			 */
7924 			if (ret < 0 && ret != -ENOSPC)
7925 				btrfs_abort_transaction(trans, ret);
7926 			else
7927 				ret = 0;
7928 			if (!exist)
7929 				btrfs_end_transaction(trans);
7930 			if (ret)
7931 				goto out;
7932 		}
7933 
7934 		if (loop == LOOP_NO_EMPTY_SIZE) {
7935 			/*
7936 			 * Don't loop again if we already have no empty_size and
7937 			 * no empty_cluster.
7938 			 */
7939 			if (empty_size == 0 &&
7940 			    empty_cluster == 0) {
7941 				ret = -ENOSPC;
7942 				goto out;
7943 			}
7944 			empty_size = 0;
7945 			empty_cluster = 0;
7946 		}
7947 
7948 		goto search;
7949 	} else if (!ins->objectid) {
7950 		ret = -ENOSPC;
7951 	} else if (ins->objectid) {
7952 		if (!use_cluster && last_ptr) {
7953 			spin_lock(&last_ptr->lock);
7954 			last_ptr->window_start = ins->objectid;
7955 			spin_unlock(&last_ptr->lock);
7956 		}
7957 		ret = 0;
7958 	}
7959 out:
7960 	if (ret == -ENOSPC) {
7961 		spin_lock(&space_info->lock);
7962 		space_info->max_extent_size = max_extent_size;
7963 		spin_unlock(&space_info->lock);
7964 		ins->offset = max_extent_size;
7965 	}
7966 	return ret;
7967 }
7968 
7969 static void dump_space_info(struct btrfs_fs_info *fs_info,
7970 			    struct btrfs_space_info *info, u64 bytes,
7971 			    int dump_block_groups)
7972 {
7973 	struct btrfs_block_group_cache *cache;
7974 	int index = 0;
7975 
7976 	spin_lock(&info->lock);
7977 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7978 		   info->flags,
7979 		   info->total_bytes - btrfs_space_info_used(info, true),
7980 		   info->full ? "" : "not ");
7981 	btrfs_info(fs_info,
7982 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7983 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7984 		info->bytes_reserved, info->bytes_may_use,
7985 		info->bytes_readonly);
7986 	spin_unlock(&info->lock);
7987 
7988 	if (!dump_block_groups)
7989 		return;
7990 
7991 	down_read(&info->groups_sem);
7992 again:
7993 	list_for_each_entry(cache, &info->block_groups[index], list) {
7994 		spin_lock(&cache->lock);
7995 		btrfs_info(fs_info,
7996 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7997 			cache->key.objectid, cache->key.offset,
7998 			btrfs_block_group_used(&cache->item), cache->pinned,
7999 			cache->reserved, cache->ro ? "[readonly]" : "");
8000 		btrfs_dump_free_space(cache, bytes);
8001 		spin_unlock(&cache->lock);
8002 	}
8003 	if (++index < BTRFS_NR_RAID_TYPES)
8004 		goto again;
8005 	up_read(&info->groups_sem);
8006 }
8007 
8008 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8009 			 u64 num_bytes, u64 min_alloc_size,
8010 			 u64 empty_size, u64 hint_byte,
8011 			 struct btrfs_key *ins, int is_data, int delalloc)
8012 {
8013 	struct btrfs_fs_info *fs_info = root->fs_info;
8014 	bool final_tried = num_bytes == min_alloc_size;
8015 	u64 flags;
8016 	int ret;
8017 
8018 	flags = get_alloc_profile_by_root(root, is_data);
8019 again:
8020 	WARN_ON(num_bytes < fs_info->sectorsize);
8021 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8022 			       hint_byte, ins, flags, delalloc);
8023 	if (!ret && !is_data) {
8024 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8025 	} else if (ret == -ENOSPC) {
8026 		if (!final_tried && ins->offset) {
8027 			num_bytes = min(num_bytes >> 1, ins->offset);
8028 			num_bytes = round_down(num_bytes,
8029 					       fs_info->sectorsize);
8030 			num_bytes = max(num_bytes, min_alloc_size);
8031 			ram_bytes = num_bytes;
8032 			if (num_bytes == min_alloc_size)
8033 				final_tried = true;
8034 			goto again;
8035 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8036 			struct btrfs_space_info *sinfo;
8037 
8038 			sinfo = __find_space_info(fs_info, flags);
8039 			btrfs_err(fs_info,
8040 				  "allocation failed flags %llu, wanted %llu",
8041 				  flags, num_bytes);
8042 			if (sinfo)
8043 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8044 		}
8045 	}
8046 
8047 	return ret;
8048 }
8049 
8050 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8051 					u64 start, u64 len,
8052 					int pin, int delalloc)
8053 {
8054 	struct btrfs_block_group_cache *cache;
8055 	int ret = 0;
8056 
8057 	cache = btrfs_lookup_block_group(fs_info, start);
8058 	if (!cache) {
8059 		btrfs_err(fs_info, "Unable to find block group for %llu",
8060 			  start);
8061 		return -ENOSPC;
8062 	}
8063 
8064 	if (pin)
8065 		pin_down_extent(fs_info, cache, start, len, 1);
8066 	else {
8067 		if (btrfs_test_opt(fs_info, DISCARD))
8068 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8069 		btrfs_add_free_space(cache, start, len);
8070 		btrfs_free_reserved_bytes(cache, len, delalloc);
8071 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8072 	}
8073 
8074 	btrfs_put_block_group(cache);
8075 	return ret;
8076 }
8077 
8078 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8079 			       u64 start, u64 len, int delalloc)
8080 {
8081 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8082 }
8083 
8084 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8085 				       u64 start, u64 len)
8086 {
8087 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8088 }
8089 
8090 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8091 				      struct btrfs_fs_info *fs_info,
8092 				      u64 parent, u64 root_objectid,
8093 				      u64 flags, u64 owner, u64 offset,
8094 				      struct btrfs_key *ins, int ref_mod)
8095 {
8096 	int ret;
8097 	struct btrfs_extent_item *extent_item;
8098 	struct btrfs_extent_inline_ref *iref;
8099 	struct btrfs_path *path;
8100 	struct extent_buffer *leaf;
8101 	int type;
8102 	u32 size;
8103 
8104 	if (parent > 0)
8105 		type = BTRFS_SHARED_DATA_REF_KEY;
8106 	else
8107 		type = BTRFS_EXTENT_DATA_REF_KEY;
8108 
8109 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8110 
8111 	path = btrfs_alloc_path();
8112 	if (!path)
8113 		return -ENOMEM;
8114 
8115 	path->leave_spinning = 1;
8116 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8117 				      ins, size);
8118 	if (ret) {
8119 		btrfs_free_path(path);
8120 		return ret;
8121 	}
8122 
8123 	leaf = path->nodes[0];
8124 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8125 				     struct btrfs_extent_item);
8126 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8127 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8128 	btrfs_set_extent_flags(leaf, extent_item,
8129 			       flags | BTRFS_EXTENT_FLAG_DATA);
8130 
8131 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8132 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8133 	if (parent > 0) {
8134 		struct btrfs_shared_data_ref *ref;
8135 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8136 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8137 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8138 	} else {
8139 		struct btrfs_extent_data_ref *ref;
8140 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8141 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8142 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8143 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8144 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8145 	}
8146 
8147 	btrfs_mark_buffer_dirty(path->nodes[0]);
8148 	btrfs_free_path(path);
8149 
8150 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8151 					  ins->offset);
8152 	if (ret)
8153 		return ret;
8154 
8155 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8156 	if (ret) { /* -ENOENT, logic error */
8157 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8158 			ins->objectid, ins->offset);
8159 		BUG();
8160 	}
8161 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8162 	return ret;
8163 }
8164 
8165 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8166 				     struct btrfs_fs_info *fs_info,
8167 				     u64 parent, u64 root_objectid,
8168 				     u64 flags, struct btrfs_disk_key *key,
8169 				     int level, struct btrfs_key *ins)
8170 {
8171 	int ret;
8172 	struct btrfs_extent_item *extent_item;
8173 	struct btrfs_tree_block_info *block_info;
8174 	struct btrfs_extent_inline_ref *iref;
8175 	struct btrfs_path *path;
8176 	struct extent_buffer *leaf;
8177 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8178 	u64 num_bytes = ins->offset;
8179 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8180 
8181 	if (!skinny_metadata)
8182 		size += sizeof(*block_info);
8183 
8184 	path = btrfs_alloc_path();
8185 	if (!path) {
8186 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8187 						   fs_info->nodesize);
8188 		return -ENOMEM;
8189 	}
8190 
8191 	path->leave_spinning = 1;
8192 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8193 				      ins, size);
8194 	if (ret) {
8195 		btrfs_free_path(path);
8196 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8197 						   fs_info->nodesize);
8198 		return ret;
8199 	}
8200 
8201 	leaf = path->nodes[0];
8202 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8203 				     struct btrfs_extent_item);
8204 	btrfs_set_extent_refs(leaf, extent_item, 1);
8205 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8206 	btrfs_set_extent_flags(leaf, extent_item,
8207 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8208 
8209 	if (skinny_metadata) {
8210 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8211 		num_bytes = fs_info->nodesize;
8212 	} else {
8213 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8214 		btrfs_set_tree_block_key(leaf, block_info, key);
8215 		btrfs_set_tree_block_level(leaf, block_info, level);
8216 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8217 	}
8218 
8219 	if (parent > 0) {
8220 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8221 		btrfs_set_extent_inline_ref_type(leaf, iref,
8222 						 BTRFS_SHARED_BLOCK_REF_KEY);
8223 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8224 	} else {
8225 		btrfs_set_extent_inline_ref_type(leaf, iref,
8226 						 BTRFS_TREE_BLOCK_REF_KEY);
8227 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8228 	}
8229 
8230 	btrfs_mark_buffer_dirty(leaf);
8231 	btrfs_free_path(path);
8232 
8233 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8234 					  num_bytes);
8235 	if (ret)
8236 		return ret;
8237 
8238 	ret = update_block_group(trans, fs_info, ins->objectid,
8239 				 fs_info->nodesize, 1);
8240 	if (ret) { /* -ENOENT, logic error */
8241 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8242 			ins->objectid, ins->offset);
8243 		BUG();
8244 	}
8245 
8246 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8247 					  fs_info->nodesize);
8248 	return ret;
8249 }
8250 
8251 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8252 				     struct btrfs_root *root, u64 owner,
8253 				     u64 offset, u64 ram_bytes,
8254 				     struct btrfs_key *ins)
8255 {
8256 	struct btrfs_fs_info *fs_info = root->fs_info;
8257 	int ret;
8258 
8259 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8260 
8261 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8262 			   root->root_key.objectid, owner, offset,
8263 			   BTRFS_ADD_DELAYED_EXTENT);
8264 
8265 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8266 					 ins->offset, 0,
8267 					 root->root_key.objectid, owner,
8268 					 offset, ram_bytes,
8269 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8270 	return ret;
8271 }
8272 
8273 /*
8274  * this is used by the tree logging recovery code.  It records that
8275  * an extent has been allocated and makes sure to clear the free
8276  * space cache bits as well
8277  */
8278 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8279 				   struct btrfs_fs_info *fs_info,
8280 				   u64 root_objectid, u64 owner, u64 offset,
8281 				   struct btrfs_key *ins)
8282 {
8283 	int ret;
8284 	struct btrfs_block_group_cache *block_group;
8285 	struct btrfs_space_info *space_info;
8286 
8287 	/*
8288 	 * Mixed block groups will exclude before processing the log so we only
8289 	 * need to do the exclude dance if this fs isn't mixed.
8290 	 */
8291 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8292 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8293 					      ins->offset);
8294 		if (ret)
8295 			return ret;
8296 	}
8297 
8298 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8299 	if (!block_group)
8300 		return -EINVAL;
8301 
8302 	space_info = block_group->space_info;
8303 	spin_lock(&space_info->lock);
8304 	spin_lock(&block_group->lock);
8305 	space_info->bytes_reserved += ins->offset;
8306 	block_group->reserved += ins->offset;
8307 	spin_unlock(&block_group->lock);
8308 	spin_unlock(&space_info->lock);
8309 
8310 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8311 					 0, owner, offset, ins, 1);
8312 	btrfs_put_block_group(block_group);
8313 	return ret;
8314 }
8315 
8316 static struct extent_buffer *
8317 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8318 		      u64 bytenr, int level)
8319 {
8320 	struct btrfs_fs_info *fs_info = root->fs_info;
8321 	struct extent_buffer *buf;
8322 
8323 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8324 	if (IS_ERR(buf))
8325 		return buf;
8326 
8327 	btrfs_set_header_generation(buf, trans->transid);
8328 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8329 	btrfs_tree_lock(buf);
8330 	clean_tree_block(fs_info, buf);
8331 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8332 
8333 	btrfs_set_lock_blocking(buf);
8334 	set_extent_buffer_uptodate(buf);
8335 
8336 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8337 		buf->log_index = root->log_transid % 2;
8338 		/*
8339 		 * we allow two log transactions at a time, use different
8340 		 * EXENT bit to differentiate dirty pages.
8341 		 */
8342 		if (buf->log_index == 0)
8343 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8344 					buf->start + buf->len - 1, GFP_NOFS);
8345 		else
8346 			set_extent_new(&root->dirty_log_pages, buf->start,
8347 					buf->start + buf->len - 1);
8348 	} else {
8349 		buf->log_index = -1;
8350 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8351 			 buf->start + buf->len - 1, GFP_NOFS);
8352 	}
8353 	trans->dirty = true;
8354 	/* this returns a buffer locked for blocking */
8355 	return buf;
8356 }
8357 
8358 static struct btrfs_block_rsv *
8359 use_block_rsv(struct btrfs_trans_handle *trans,
8360 	      struct btrfs_root *root, u32 blocksize)
8361 {
8362 	struct btrfs_fs_info *fs_info = root->fs_info;
8363 	struct btrfs_block_rsv *block_rsv;
8364 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8365 	int ret;
8366 	bool global_updated = false;
8367 
8368 	block_rsv = get_block_rsv(trans, root);
8369 
8370 	if (unlikely(block_rsv->size == 0))
8371 		goto try_reserve;
8372 again:
8373 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8374 	if (!ret)
8375 		return block_rsv;
8376 
8377 	if (block_rsv->failfast)
8378 		return ERR_PTR(ret);
8379 
8380 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8381 		global_updated = true;
8382 		update_global_block_rsv(fs_info);
8383 		goto again;
8384 	}
8385 
8386 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8387 		static DEFINE_RATELIMIT_STATE(_rs,
8388 				DEFAULT_RATELIMIT_INTERVAL * 10,
8389 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8390 		if (__ratelimit(&_rs))
8391 			WARN(1, KERN_DEBUG
8392 				"BTRFS: block rsv returned %d\n", ret);
8393 	}
8394 try_reserve:
8395 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8396 				     BTRFS_RESERVE_NO_FLUSH);
8397 	if (!ret)
8398 		return block_rsv;
8399 	/*
8400 	 * If we couldn't reserve metadata bytes try and use some from
8401 	 * the global reserve if its space type is the same as the global
8402 	 * reservation.
8403 	 */
8404 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8405 	    block_rsv->space_info == global_rsv->space_info) {
8406 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8407 		if (!ret)
8408 			return global_rsv;
8409 	}
8410 	return ERR_PTR(ret);
8411 }
8412 
8413 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8414 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8415 {
8416 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8417 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8418 }
8419 
8420 /*
8421  * finds a free extent and does all the dirty work required for allocation
8422  * returns the tree buffer or an ERR_PTR on error.
8423  */
8424 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8425 					     struct btrfs_root *root,
8426 					     u64 parent, u64 root_objectid,
8427 					     const struct btrfs_disk_key *key,
8428 					     int level, u64 hint,
8429 					     u64 empty_size)
8430 {
8431 	struct btrfs_fs_info *fs_info = root->fs_info;
8432 	struct btrfs_key ins;
8433 	struct btrfs_block_rsv *block_rsv;
8434 	struct extent_buffer *buf;
8435 	struct btrfs_delayed_extent_op *extent_op;
8436 	u64 flags = 0;
8437 	int ret;
8438 	u32 blocksize = fs_info->nodesize;
8439 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8440 
8441 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8442 	if (btrfs_is_testing(fs_info)) {
8443 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8444 					    level);
8445 		if (!IS_ERR(buf))
8446 			root->alloc_bytenr += blocksize;
8447 		return buf;
8448 	}
8449 #endif
8450 
8451 	block_rsv = use_block_rsv(trans, root, blocksize);
8452 	if (IS_ERR(block_rsv))
8453 		return ERR_CAST(block_rsv);
8454 
8455 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8456 				   empty_size, hint, &ins, 0, 0);
8457 	if (ret)
8458 		goto out_unuse;
8459 
8460 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8461 	if (IS_ERR(buf)) {
8462 		ret = PTR_ERR(buf);
8463 		goto out_free_reserved;
8464 	}
8465 
8466 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8467 		if (parent == 0)
8468 			parent = ins.objectid;
8469 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8470 	} else
8471 		BUG_ON(parent > 0);
8472 
8473 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8474 		extent_op = btrfs_alloc_delayed_extent_op();
8475 		if (!extent_op) {
8476 			ret = -ENOMEM;
8477 			goto out_free_buf;
8478 		}
8479 		if (key)
8480 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8481 		else
8482 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8483 		extent_op->flags_to_set = flags;
8484 		extent_op->update_key = skinny_metadata ? false : true;
8485 		extent_op->update_flags = true;
8486 		extent_op->is_data = false;
8487 		extent_op->level = level;
8488 
8489 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8490 				   root_objectid, level, 0,
8491 				   BTRFS_ADD_DELAYED_EXTENT);
8492 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8493 						 ins.offset, parent,
8494 						 root_objectid, level,
8495 						 BTRFS_ADD_DELAYED_EXTENT,
8496 						 extent_op, NULL, NULL);
8497 		if (ret)
8498 			goto out_free_delayed;
8499 	}
8500 	return buf;
8501 
8502 out_free_delayed:
8503 	btrfs_free_delayed_extent_op(extent_op);
8504 out_free_buf:
8505 	free_extent_buffer(buf);
8506 out_free_reserved:
8507 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8508 out_unuse:
8509 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8510 	return ERR_PTR(ret);
8511 }
8512 
8513 struct walk_control {
8514 	u64 refs[BTRFS_MAX_LEVEL];
8515 	u64 flags[BTRFS_MAX_LEVEL];
8516 	struct btrfs_key update_progress;
8517 	int stage;
8518 	int level;
8519 	int shared_level;
8520 	int update_ref;
8521 	int keep_locks;
8522 	int reada_slot;
8523 	int reada_count;
8524 	int for_reloc;
8525 };
8526 
8527 #define DROP_REFERENCE	1
8528 #define UPDATE_BACKREF	2
8529 
8530 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8531 				     struct btrfs_root *root,
8532 				     struct walk_control *wc,
8533 				     struct btrfs_path *path)
8534 {
8535 	struct btrfs_fs_info *fs_info = root->fs_info;
8536 	u64 bytenr;
8537 	u64 generation;
8538 	u64 refs;
8539 	u64 flags;
8540 	u32 nritems;
8541 	struct btrfs_key key;
8542 	struct extent_buffer *eb;
8543 	int ret;
8544 	int slot;
8545 	int nread = 0;
8546 
8547 	if (path->slots[wc->level] < wc->reada_slot) {
8548 		wc->reada_count = wc->reada_count * 2 / 3;
8549 		wc->reada_count = max(wc->reada_count, 2);
8550 	} else {
8551 		wc->reada_count = wc->reada_count * 3 / 2;
8552 		wc->reada_count = min_t(int, wc->reada_count,
8553 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8554 	}
8555 
8556 	eb = path->nodes[wc->level];
8557 	nritems = btrfs_header_nritems(eb);
8558 
8559 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8560 		if (nread >= wc->reada_count)
8561 			break;
8562 
8563 		cond_resched();
8564 		bytenr = btrfs_node_blockptr(eb, slot);
8565 		generation = btrfs_node_ptr_generation(eb, slot);
8566 
8567 		if (slot == path->slots[wc->level])
8568 			goto reada;
8569 
8570 		if (wc->stage == UPDATE_BACKREF &&
8571 		    generation <= root->root_key.offset)
8572 			continue;
8573 
8574 		/* We don't lock the tree block, it's OK to be racy here */
8575 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8576 					       wc->level - 1, 1, &refs,
8577 					       &flags);
8578 		/* We don't care about errors in readahead. */
8579 		if (ret < 0)
8580 			continue;
8581 		BUG_ON(refs == 0);
8582 
8583 		if (wc->stage == DROP_REFERENCE) {
8584 			if (refs == 1)
8585 				goto reada;
8586 
8587 			if (wc->level == 1 &&
8588 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8589 				continue;
8590 			if (!wc->update_ref ||
8591 			    generation <= root->root_key.offset)
8592 				continue;
8593 			btrfs_node_key_to_cpu(eb, &key, slot);
8594 			ret = btrfs_comp_cpu_keys(&key,
8595 						  &wc->update_progress);
8596 			if (ret < 0)
8597 				continue;
8598 		} else {
8599 			if (wc->level == 1 &&
8600 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8601 				continue;
8602 		}
8603 reada:
8604 		readahead_tree_block(fs_info, bytenr);
8605 		nread++;
8606 	}
8607 	wc->reada_slot = slot;
8608 }
8609 
8610 /*
8611  * helper to process tree block while walking down the tree.
8612  *
8613  * when wc->stage == UPDATE_BACKREF, this function updates
8614  * back refs for pointers in the block.
8615  *
8616  * NOTE: return value 1 means we should stop walking down.
8617  */
8618 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8619 				   struct btrfs_root *root,
8620 				   struct btrfs_path *path,
8621 				   struct walk_control *wc, int lookup_info)
8622 {
8623 	struct btrfs_fs_info *fs_info = root->fs_info;
8624 	int level = wc->level;
8625 	struct extent_buffer *eb = path->nodes[level];
8626 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8627 	int ret;
8628 
8629 	if (wc->stage == UPDATE_BACKREF &&
8630 	    btrfs_header_owner(eb) != root->root_key.objectid)
8631 		return 1;
8632 
8633 	/*
8634 	 * when reference count of tree block is 1, it won't increase
8635 	 * again. once full backref flag is set, we never clear it.
8636 	 */
8637 	if (lookup_info &&
8638 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8639 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8640 		BUG_ON(!path->locks[level]);
8641 		ret = btrfs_lookup_extent_info(trans, fs_info,
8642 					       eb->start, level, 1,
8643 					       &wc->refs[level],
8644 					       &wc->flags[level]);
8645 		BUG_ON(ret == -ENOMEM);
8646 		if (ret)
8647 			return ret;
8648 		BUG_ON(wc->refs[level] == 0);
8649 	}
8650 
8651 	if (wc->stage == DROP_REFERENCE) {
8652 		if (wc->refs[level] > 1)
8653 			return 1;
8654 
8655 		if (path->locks[level] && !wc->keep_locks) {
8656 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8657 			path->locks[level] = 0;
8658 		}
8659 		return 0;
8660 	}
8661 
8662 	/* wc->stage == UPDATE_BACKREF */
8663 	if (!(wc->flags[level] & flag)) {
8664 		BUG_ON(!path->locks[level]);
8665 		ret = btrfs_inc_ref(trans, root, eb, 1);
8666 		BUG_ON(ret); /* -ENOMEM */
8667 		ret = btrfs_dec_ref(trans, root, eb, 0);
8668 		BUG_ON(ret); /* -ENOMEM */
8669 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8670 						  eb->len, flag,
8671 						  btrfs_header_level(eb), 0);
8672 		BUG_ON(ret); /* -ENOMEM */
8673 		wc->flags[level] |= flag;
8674 	}
8675 
8676 	/*
8677 	 * the block is shared by multiple trees, so it's not good to
8678 	 * keep the tree lock
8679 	 */
8680 	if (path->locks[level] && level > 0) {
8681 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8682 		path->locks[level] = 0;
8683 	}
8684 	return 0;
8685 }
8686 
8687 /*
8688  * helper to process tree block pointer.
8689  *
8690  * when wc->stage == DROP_REFERENCE, this function checks
8691  * reference count of the block pointed to. if the block
8692  * is shared and we need update back refs for the subtree
8693  * rooted at the block, this function changes wc->stage to
8694  * UPDATE_BACKREF. if the block is shared and there is no
8695  * need to update back, this function drops the reference
8696  * to the block.
8697  *
8698  * NOTE: return value 1 means we should stop walking down.
8699  */
8700 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8701 				 struct btrfs_root *root,
8702 				 struct btrfs_path *path,
8703 				 struct walk_control *wc, int *lookup_info)
8704 {
8705 	struct btrfs_fs_info *fs_info = root->fs_info;
8706 	u64 bytenr;
8707 	u64 generation;
8708 	u64 parent;
8709 	u32 blocksize;
8710 	struct btrfs_key key;
8711 	struct extent_buffer *next;
8712 	int level = wc->level;
8713 	int reada = 0;
8714 	int ret = 0;
8715 	bool need_account = false;
8716 
8717 	generation = btrfs_node_ptr_generation(path->nodes[level],
8718 					       path->slots[level]);
8719 	/*
8720 	 * if the lower level block was created before the snapshot
8721 	 * was created, we know there is no need to update back refs
8722 	 * for the subtree
8723 	 */
8724 	if (wc->stage == UPDATE_BACKREF &&
8725 	    generation <= root->root_key.offset) {
8726 		*lookup_info = 1;
8727 		return 1;
8728 	}
8729 
8730 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8731 	blocksize = fs_info->nodesize;
8732 
8733 	next = find_extent_buffer(fs_info, bytenr);
8734 	if (!next) {
8735 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8736 		if (IS_ERR(next))
8737 			return PTR_ERR(next);
8738 
8739 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8740 					       level - 1);
8741 		reada = 1;
8742 	}
8743 	btrfs_tree_lock(next);
8744 	btrfs_set_lock_blocking(next);
8745 
8746 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8747 				       &wc->refs[level - 1],
8748 				       &wc->flags[level - 1]);
8749 	if (ret < 0)
8750 		goto out_unlock;
8751 
8752 	if (unlikely(wc->refs[level - 1] == 0)) {
8753 		btrfs_err(fs_info, "Missing references.");
8754 		ret = -EIO;
8755 		goto out_unlock;
8756 	}
8757 	*lookup_info = 0;
8758 
8759 	if (wc->stage == DROP_REFERENCE) {
8760 		if (wc->refs[level - 1] > 1) {
8761 			need_account = true;
8762 			if (level == 1 &&
8763 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8764 				goto skip;
8765 
8766 			if (!wc->update_ref ||
8767 			    generation <= root->root_key.offset)
8768 				goto skip;
8769 
8770 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8771 					      path->slots[level]);
8772 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8773 			if (ret < 0)
8774 				goto skip;
8775 
8776 			wc->stage = UPDATE_BACKREF;
8777 			wc->shared_level = level - 1;
8778 		}
8779 	} else {
8780 		if (level == 1 &&
8781 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8782 			goto skip;
8783 	}
8784 
8785 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8786 		btrfs_tree_unlock(next);
8787 		free_extent_buffer(next);
8788 		next = NULL;
8789 		*lookup_info = 1;
8790 	}
8791 
8792 	if (!next) {
8793 		if (reada && level == 1)
8794 			reada_walk_down(trans, root, wc, path);
8795 		next = read_tree_block(fs_info, bytenr, generation);
8796 		if (IS_ERR(next)) {
8797 			return PTR_ERR(next);
8798 		} else if (!extent_buffer_uptodate(next)) {
8799 			free_extent_buffer(next);
8800 			return -EIO;
8801 		}
8802 		btrfs_tree_lock(next);
8803 		btrfs_set_lock_blocking(next);
8804 	}
8805 
8806 	level--;
8807 	ASSERT(level == btrfs_header_level(next));
8808 	if (level != btrfs_header_level(next)) {
8809 		btrfs_err(root->fs_info, "mismatched level");
8810 		ret = -EIO;
8811 		goto out_unlock;
8812 	}
8813 	path->nodes[level] = next;
8814 	path->slots[level] = 0;
8815 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8816 	wc->level = level;
8817 	if (wc->level == 1)
8818 		wc->reada_slot = 0;
8819 	return 0;
8820 skip:
8821 	wc->refs[level - 1] = 0;
8822 	wc->flags[level - 1] = 0;
8823 	if (wc->stage == DROP_REFERENCE) {
8824 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8825 			parent = path->nodes[level]->start;
8826 		} else {
8827 			ASSERT(root->root_key.objectid ==
8828 			       btrfs_header_owner(path->nodes[level]));
8829 			if (root->root_key.objectid !=
8830 			    btrfs_header_owner(path->nodes[level])) {
8831 				btrfs_err(root->fs_info,
8832 						"mismatched block owner");
8833 				ret = -EIO;
8834 				goto out_unlock;
8835 			}
8836 			parent = 0;
8837 		}
8838 
8839 		if (need_account) {
8840 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8841 							 generation, level - 1);
8842 			if (ret) {
8843 				btrfs_err_rl(fs_info,
8844 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8845 					     ret);
8846 			}
8847 		}
8848 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8849 					parent, root->root_key.objectid,
8850 					level - 1, 0);
8851 		if (ret)
8852 			goto out_unlock;
8853 	}
8854 
8855 	*lookup_info = 1;
8856 	ret = 1;
8857 
8858 out_unlock:
8859 	btrfs_tree_unlock(next);
8860 	free_extent_buffer(next);
8861 
8862 	return ret;
8863 }
8864 
8865 /*
8866  * helper to process tree block while walking up the tree.
8867  *
8868  * when wc->stage == DROP_REFERENCE, this function drops
8869  * reference count on the block.
8870  *
8871  * when wc->stage == UPDATE_BACKREF, this function changes
8872  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8873  * to UPDATE_BACKREF previously while processing the block.
8874  *
8875  * NOTE: return value 1 means we should stop walking up.
8876  */
8877 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8878 				 struct btrfs_root *root,
8879 				 struct btrfs_path *path,
8880 				 struct walk_control *wc)
8881 {
8882 	struct btrfs_fs_info *fs_info = root->fs_info;
8883 	int ret;
8884 	int level = wc->level;
8885 	struct extent_buffer *eb = path->nodes[level];
8886 	u64 parent = 0;
8887 
8888 	if (wc->stage == UPDATE_BACKREF) {
8889 		BUG_ON(wc->shared_level < level);
8890 		if (level < wc->shared_level)
8891 			goto out;
8892 
8893 		ret = find_next_key(path, level + 1, &wc->update_progress);
8894 		if (ret > 0)
8895 			wc->update_ref = 0;
8896 
8897 		wc->stage = DROP_REFERENCE;
8898 		wc->shared_level = -1;
8899 		path->slots[level] = 0;
8900 
8901 		/*
8902 		 * check reference count again if the block isn't locked.
8903 		 * we should start walking down the tree again if reference
8904 		 * count is one.
8905 		 */
8906 		if (!path->locks[level]) {
8907 			BUG_ON(level == 0);
8908 			btrfs_tree_lock(eb);
8909 			btrfs_set_lock_blocking(eb);
8910 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8911 
8912 			ret = btrfs_lookup_extent_info(trans, fs_info,
8913 						       eb->start, level, 1,
8914 						       &wc->refs[level],
8915 						       &wc->flags[level]);
8916 			if (ret < 0) {
8917 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8918 				path->locks[level] = 0;
8919 				return ret;
8920 			}
8921 			BUG_ON(wc->refs[level] == 0);
8922 			if (wc->refs[level] == 1) {
8923 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8924 				path->locks[level] = 0;
8925 				return 1;
8926 			}
8927 		}
8928 	}
8929 
8930 	/* wc->stage == DROP_REFERENCE */
8931 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8932 
8933 	if (wc->refs[level] == 1) {
8934 		if (level == 0) {
8935 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8936 				ret = btrfs_dec_ref(trans, root, eb, 1);
8937 			else
8938 				ret = btrfs_dec_ref(trans, root, eb, 0);
8939 			BUG_ON(ret); /* -ENOMEM */
8940 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8941 			if (ret) {
8942 				btrfs_err_rl(fs_info,
8943 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8944 					     ret);
8945 			}
8946 		}
8947 		/* make block locked assertion in clean_tree_block happy */
8948 		if (!path->locks[level] &&
8949 		    btrfs_header_generation(eb) == trans->transid) {
8950 			btrfs_tree_lock(eb);
8951 			btrfs_set_lock_blocking(eb);
8952 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8953 		}
8954 		clean_tree_block(fs_info, eb);
8955 	}
8956 
8957 	if (eb == root->node) {
8958 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8959 			parent = eb->start;
8960 		else
8961 			BUG_ON(root->root_key.objectid !=
8962 			       btrfs_header_owner(eb));
8963 	} else {
8964 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8965 			parent = path->nodes[level + 1]->start;
8966 		else
8967 			BUG_ON(root->root_key.objectid !=
8968 			       btrfs_header_owner(path->nodes[level + 1]));
8969 	}
8970 
8971 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8972 out:
8973 	wc->refs[level] = 0;
8974 	wc->flags[level] = 0;
8975 	return 0;
8976 }
8977 
8978 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8979 				   struct btrfs_root *root,
8980 				   struct btrfs_path *path,
8981 				   struct walk_control *wc)
8982 {
8983 	int level = wc->level;
8984 	int lookup_info = 1;
8985 	int ret;
8986 
8987 	while (level >= 0) {
8988 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8989 		if (ret > 0)
8990 			break;
8991 
8992 		if (level == 0)
8993 			break;
8994 
8995 		if (path->slots[level] >=
8996 		    btrfs_header_nritems(path->nodes[level]))
8997 			break;
8998 
8999 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9000 		if (ret > 0) {
9001 			path->slots[level]++;
9002 			continue;
9003 		} else if (ret < 0)
9004 			return ret;
9005 		level = wc->level;
9006 	}
9007 	return 0;
9008 }
9009 
9010 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9011 				 struct btrfs_root *root,
9012 				 struct btrfs_path *path,
9013 				 struct walk_control *wc, int max_level)
9014 {
9015 	int level = wc->level;
9016 	int ret;
9017 
9018 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9019 	while (level < max_level && path->nodes[level]) {
9020 		wc->level = level;
9021 		if (path->slots[level] + 1 <
9022 		    btrfs_header_nritems(path->nodes[level])) {
9023 			path->slots[level]++;
9024 			return 0;
9025 		} else {
9026 			ret = walk_up_proc(trans, root, path, wc);
9027 			if (ret > 0)
9028 				return 0;
9029 
9030 			if (path->locks[level]) {
9031 				btrfs_tree_unlock_rw(path->nodes[level],
9032 						     path->locks[level]);
9033 				path->locks[level] = 0;
9034 			}
9035 			free_extent_buffer(path->nodes[level]);
9036 			path->nodes[level] = NULL;
9037 			level++;
9038 		}
9039 	}
9040 	return 1;
9041 }
9042 
9043 /*
9044  * drop a subvolume tree.
9045  *
9046  * this function traverses the tree freeing any blocks that only
9047  * referenced by the tree.
9048  *
9049  * when a shared tree block is found. this function decreases its
9050  * reference count by one. if update_ref is true, this function
9051  * also make sure backrefs for the shared block and all lower level
9052  * blocks are properly updated.
9053  *
9054  * If called with for_reloc == 0, may exit early with -EAGAIN
9055  */
9056 int btrfs_drop_snapshot(struct btrfs_root *root,
9057 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9058 			 int for_reloc)
9059 {
9060 	struct btrfs_fs_info *fs_info = root->fs_info;
9061 	struct btrfs_path *path;
9062 	struct btrfs_trans_handle *trans;
9063 	struct btrfs_root *tree_root = fs_info->tree_root;
9064 	struct btrfs_root_item *root_item = &root->root_item;
9065 	struct walk_control *wc;
9066 	struct btrfs_key key;
9067 	int err = 0;
9068 	int ret;
9069 	int level;
9070 	bool root_dropped = false;
9071 
9072 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9073 
9074 	path = btrfs_alloc_path();
9075 	if (!path) {
9076 		err = -ENOMEM;
9077 		goto out;
9078 	}
9079 
9080 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9081 	if (!wc) {
9082 		btrfs_free_path(path);
9083 		err = -ENOMEM;
9084 		goto out;
9085 	}
9086 
9087 	trans = btrfs_start_transaction(tree_root, 0);
9088 	if (IS_ERR(trans)) {
9089 		err = PTR_ERR(trans);
9090 		goto out_free;
9091 	}
9092 
9093 	if (block_rsv)
9094 		trans->block_rsv = block_rsv;
9095 
9096 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9097 		level = btrfs_header_level(root->node);
9098 		path->nodes[level] = btrfs_lock_root_node(root);
9099 		btrfs_set_lock_blocking(path->nodes[level]);
9100 		path->slots[level] = 0;
9101 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9102 		memset(&wc->update_progress, 0,
9103 		       sizeof(wc->update_progress));
9104 	} else {
9105 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9106 		memcpy(&wc->update_progress, &key,
9107 		       sizeof(wc->update_progress));
9108 
9109 		level = root_item->drop_level;
9110 		BUG_ON(level == 0);
9111 		path->lowest_level = level;
9112 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9113 		path->lowest_level = 0;
9114 		if (ret < 0) {
9115 			err = ret;
9116 			goto out_end_trans;
9117 		}
9118 		WARN_ON(ret > 0);
9119 
9120 		/*
9121 		 * unlock our path, this is safe because only this
9122 		 * function is allowed to delete this snapshot
9123 		 */
9124 		btrfs_unlock_up_safe(path, 0);
9125 
9126 		level = btrfs_header_level(root->node);
9127 		while (1) {
9128 			btrfs_tree_lock(path->nodes[level]);
9129 			btrfs_set_lock_blocking(path->nodes[level]);
9130 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9131 
9132 			ret = btrfs_lookup_extent_info(trans, fs_info,
9133 						path->nodes[level]->start,
9134 						level, 1, &wc->refs[level],
9135 						&wc->flags[level]);
9136 			if (ret < 0) {
9137 				err = ret;
9138 				goto out_end_trans;
9139 			}
9140 			BUG_ON(wc->refs[level] == 0);
9141 
9142 			if (level == root_item->drop_level)
9143 				break;
9144 
9145 			btrfs_tree_unlock(path->nodes[level]);
9146 			path->locks[level] = 0;
9147 			WARN_ON(wc->refs[level] != 1);
9148 			level--;
9149 		}
9150 	}
9151 
9152 	wc->level = level;
9153 	wc->shared_level = -1;
9154 	wc->stage = DROP_REFERENCE;
9155 	wc->update_ref = update_ref;
9156 	wc->keep_locks = 0;
9157 	wc->for_reloc = for_reloc;
9158 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9159 
9160 	while (1) {
9161 
9162 		ret = walk_down_tree(trans, root, path, wc);
9163 		if (ret < 0) {
9164 			err = ret;
9165 			break;
9166 		}
9167 
9168 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9169 		if (ret < 0) {
9170 			err = ret;
9171 			break;
9172 		}
9173 
9174 		if (ret > 0) {
9175 			BUG_ON(wc->stage != DROP_REFERENCE);
9176 			break;
9177 		}
9178 
9179 		if (wc->stage == DROP_REFERENCE) {
9180 			level = wc->level;
9181 			btrfs_node_key(path->nodes[level],
9182 				       &root_item->drop_progress,
9183 				       path->slots[level]);
9184 			root_item->drop_level = level;
9185 		}
9186 
9187 		BUG_ON(wc->level == 0);
9188 		if (btrfs_should_end_transaction(trans) ||
9189 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9190 			ret = btrfs_update_root(trans, tree_root,
9191 						&root->root_key,
9192 						root_item);
9193 			if (ret) {
9194 				btrfs_abort_transaction(trans, ret);
9195 				err = ret;
9196 				goto out_end_trans;
9197 			}
9198 
9199 			btrfs_end_transaction_throttle(trans);
9200 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9201 				btrfs_debug(fs_info,
9202 					    "drop snapshot early exit");
9203 				err = -EAGAIN;
9204 				goto out_free;
9205 			}
9206 
9207 			trans = btrfs_start_transaction(tree_root, 0);
9208 			if (IS_ERR(trans)) {
9209 				err = PTR_ERR(trans);
9210 				goto out_free;
9211 			}
9212 			if (block_rsv)
9213 				trans->block_rsv = block_rsv;
9214 		}
9215 	}
9216 	btrfs_release_path(path);
9217 	if (err)
9218 		goto out_end_trans;
9219 
9220 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9221 	if (ret) {
9222 		btrfs_abort_transaction(trans, ret);
9223 		goto out_end_trans;
9224 	}
9225 
9226 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9227 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9228 				      NULL, NULL);
9229 		if (ret < 0) {
9230 			btrfs_abort_transaction(trans, ret);
9231 			err = ret;
9232 			goto out_end_trans;
9233 		} else if (ret > 0) {
9234 			/* if we fail to delete the orphan item this time
9235 			 * around, it'll get picked up the next time.
9236 			 *
9237 			 * The most common failure here is just -ENOENT.
9238 			 */
9239 			btrfs_del_orphan_item(trans, tree_root,
9240 					      root->root_key.objectid);
9241 		}
9242 	}
9243 
9244 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9245 		btrfs_add_dropped_root(trans, root);
9246 	} else {
9247 		free_extent_buffer(root->node);
9248 		free_extent_buffer(root->commit_root);
9249 		btrfs_put_fs_root(root);
9250 	}
9251 	root_dropped = true;
9252 out_end_trans:
9253 	btrfs_end_transaction_throttle(trans);
9254 out_free:
9255 	kfree(wc);
9256 	btrfs_free_path(path);
9257 out:
9258 	/*
9259 	 * So if we need to stop dropping the snapshot for whatever reason we
9260 	 * need to make sure to add it back to the dead root list so that we
9261 	 * keep trying to do the work later.  This also cleans up roots if we
9262 	 * don't have it in the radix (like when we recover after a power fail
9263 	 * or unmount) so we don't leak memory.
9264 	 */
9265 	if (!for_reloc && !root_dropped)
9266 		btrfs_add_dead_root(root);
9267 	if (err && err != -EAGAIN)
9268 		btrfs_handle_fs_error(fs_info, err, NULL);
9269 	return err;
9270 }
9271 
9272 /*
9273  * drop subtree rooted at tree block 'node'.
9274  *
9275  * NOTE: this function will unlock and release tree block 'node'
9276  * only used by relocation code
9277  */
9278 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9279 			struct btrfs_root *root,
9280 			struct extent_buffer *node,
9281 			struct extent_buffer *parent)
9282 {
9283 	struct btrfs_fs_info *fs_info = root->fs_info;
9284 	struct btrfs_path *path;
9285 	struct walk_control *wc;
9286 	int level;
9287 	int parent_level;
9288 	int ret = 0;
9289 	int wret;
9290 
9291 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9292 
9293 	path = btrfs_alloc_path();
9294 	if (!path)
9295 		return -ENOMEM;
9296 
9297 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9298 	if (!wc) {
9299 		btrfs_free_path(path);
9300 		return -ENOMEM;
9301 	}
9302 
9303 	btrfs_assert_tree_locked(parent);
9304 	parent_level = btrfs_header_level(parent);
9305 	extent_buffer_get(parent);
9306 	path->nodes[parent_level] = parent;
9307 	path->slots[parent_level] = btrfs_header_nritems(parent);
9308 
9309 	btrfs_assert_tree_locked(node);
9310 	level = btrfs_header_level(node);
9311 	path->nodes[level] = node;
9312 	path->slots[level] = 0;
9313 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9314 
9315 	wc->refs[parent_level] = 1;
9316 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9317 	wc->level = level;
9318 	wc->shared_level = -1;
9319 	wc->stage = DROP_REFERENCE;
9320 	wc->update_ref = 0;
9321 	wc->keep_locks = 1;
9322 	wc->for_reloc = 1;
9323 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9324 
9325 	while (1) {
9326 		wret = walk_down_tree(trans, root, path, wc);
9327 		if (wret < 0) {
9328 			ret = wret;
9329 			break;
9330 		}
9331 
9332 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9333 		if (wret < 0)
9334 			ret = wret;
9335 		if (wret != 0)
9336 			break;
9337 	}
9338 
9339 	kfree(wc);
9340 	btrfs_free_path(path);
9341 	return ret;
9342 }
9343 
9344 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9345 {
9346 	u64 num_devices;
9347 	u64 stripped;
9348 
9349 	/*
9350 	 * if restripe for this chunk_type is on pick target profile and
9351 	 * return, otherwise do the usual balance
9352 	 */
9353 	stripped = get_restripe_target(fs_info, flags);
9354 	if (stripped)
9355 		return extended_to_chunk(stripped);
9356 
9357 	num_devices = fs_info->fs_devices->rw_devices;
9358 
9359 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9360 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9361 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9362 
9363 	if (num_devices == 1) {
9364 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9365 		stripped = flags & ~stripped;
9366 
9367 		/* turn raid0 into single device chunks */
9368 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9369 			return stripped;
9370 
9371 		/* turn mirroring into duplication */
9372 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9373 			     BTRFS_BLOCK_GROUP_RAID10))
9374 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9375 	} else {
9376 		/* they already had raid on here, just return */
9377 		if (flags & stripped)
9378 			return flags;
9379 
9380 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9381 		stripped = flags & ~stripped;
9382 
9383 		/* switch duplicated blocks with raid1 */
9384 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9385 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9386 
9387 		/* this is drive concat, leave it alone */
9388 	}
9389 
9390 	return flags;
9391 }
9392 
9393 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9394 {
9395 	struct btrfs_space_info *sinfo = cache->space_info;
9396 	u64 num_bytes;
9397 	u64 min_allocable_bytes;
9398 	int ret = -ENOSPC;
9399 
9400 	/*
9401 	 * We need some metadata space and system metadata space for
9402 	 * allocating chunks in some corner cases until we force to set
9403 	 * it to be readonly.
9404 	 */
9405 	if ((sinfo->flags &
9406 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9407 	    !force)
9408 		min_allocable_bytes = SZ_1M;
9409 	else
9410 		min_allocable_bytes = 0;
9411 
9412 	spin_lock(&sinfo->lock);
9413 	spin_lock(&cache->lock);
9414 
9415 	if (cache->ro) {
9416 		cache->ro++;
9417 		ret = 0;
9418 		goto out;
9419 	}
9420 
9421 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9422 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9423 
9424 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9425 	    min_allocable_bytes <= sinfo->total_bytes) {
9426 		sinfo->bytes_readonly += num_bytes;
9427 		cache->ro++;
9428 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9429 		ret = 0;
9430 	}
9431 out:
9432 	spin_unlock(&cache->lock);
9433 	spin_unlock(&sinfo->lock);
9434 	return ret;
9435 }
9436 
9437 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9438 			     struct btrfs_block_group_cache *cache)
9439 
9440 {
9441 	struct btrfs_trans_handle *trans;
9442 	u64 alloc_flags;
9443 	int ret;
9444 
9445 again:
9446 	trans = btrfs_join_transaction(fs_info->extent_root);
9447 	if (IS_ERR(trans))
9448 		return PTR_ERR(trans);
9449 
9450 	/*
9451 	 * we're not allowed to set block groups readonly after the dirty
9452 	 * block groups cache has started writing.  If it already started,
9453 	 * back off and let this transaction commit
9454 	 */
9455 	mutex_lock(&fs_info->ro_block_group_mutex);
9456 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9457 		u64 transid = trans->transid;
9458 
9459 		mutex_unlock(&fs_info->ro_block_group_mutex);
9460 		btrfs_end_transaction(trans);
9461 
9462 		ret = btrfs_wait_for_commit(fs_info, transid);
9463 		if (ret)
9464 			return ret;
9465 		goto again;
9466 	}
9467 
9468 	/*
9469 	 * if we are changing raid levels, try to allocate a corresponding
9470 	 * block group with the new raid level.
9471 	 */
9472 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9473 	if (alloc_flags != cache->flags) {
9474 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9475 				     CHUNK_ALLOC_FORCE);
9476 		/*
9477 		 * ENOSPC is allowed here, we may have enough space
9478 		 * already allocated at the new raid level to
9479 		 * carry on
9480 		 */
9481 		if (ret == -ENOSPC)
9482 			ret = 0;
9483 		if (ret < 0)
9484 			goto out;
9485 	}
9486 
9487 	ret = inc_block_group_ro(cache, 0);
9488 	if (!ret)
9489 		goto out;
9490 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9491 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9492 			     CHUNK_ALLOC_FORCE);
9493 	if (ret < 0)
9494 		goto out;
9495 	ret = inc_block_group_ro(cache, 0);
9496 out:
9497 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9498 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9499 		mutex_lock(&fs_info->chunk_mutex);
9500 		check_system_chunk(trans, fs_info, alloc_flags);
9501 		mutex_unlock(&fs_info->chunk_mutex);
9502 	}
9503 	mutex_unlock(&fs_info->ro_block_group_mutex);
9504 
9505 	btrfs_end_transaction(trans);
9506 	return ret;
9507 }
9508 
9509 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9510 			    struct btrfs_fs_info *fs_info, u64 type)
9511 {
9512 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9513 
9514 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9515 }
9516 
9517 /*
9518  * helper to account the unused space of all the readonly block group in the
9519  * space_info. takes mirrors into account.
9520  */
9521 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9522 {
9523 	struct btrfs_block_group_cache *block_group;
9524 	u64 free_bytes = 0;
9525 	int factor;
9526 
9527 	/* It's df, we don't care if it's racy */
9528 	if (list_empty(&sinfo->ro_bgs))
9529 		return 0;
9530 
9531 	spin_lock(&sinfo->lock);
9532 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9533 		spin_lock(&block_group->lock);
9534 
9535 		if (!block_group->ro) {
9536 			spin_unlock(&block_group->lock);
9537 			continue;
9538 		}
9539 
9540 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9541 					  BTRFS_BLOCK_GROUP_RAID10 |
9542 					  BTRFS_BLOCK_GROUP_DUP))
9543 			factor = 2;
9544 		else
9545 			factor = 1;
9546 
9547 		free_bytes += (block_group->key.offset -
9548 			       btrfs_block_group_used(&block_group->item)) *
9549 			       factor;
9550 
9551 		spin_unlock(&block_group->lock);
9552 	}
9553 	spin_unlock(&sinfo->lock);
9554 
9555 	return free_bytes;
9556 }
9557 
9558 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9559 {
9560 	struct btrfs_space_info *sinfo = cache->space_info;
9561 	u64 num_bytes;
9562 
9563 	BUG_ON(!cache->ro);
9564 
9565 	spin_lock(&sinfo->lock);
9566 	spin_lock(&cache->lock);
9567 	if (!--cache->ro) {
9568 		num_bytes = cache->key.offset - cache->reserved -
9569 			    cache->pinned - cache->bytes_super -
9570 			    btrfs_block_group_used(&cache->item);
9571 		sinfo->bytes_readonly -= num_bytes;
9572 		list_del_init(&cache->ro_list);
9573 	}
9574 	spin_unlock(&cache->lock);
9575 	spin_unlock(&sinfo->lock);
9576 }
9577 
9578 /*
9579  * checks to see if its even possible to relocate this block group.
9580  *
9581  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9582  * ok to go ahead and try.
9583  */
9584 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9585 {
9586 	struct btrfs_root *root = fs_info->extent_root;
9587 	struct btrfs_block_group_cache *block_group;
9588 	struct btrfs_space_info *space_info;
9589 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9590 	struct btrfs_device *device;
9591 	struct btrfs_trans_handle *trans;
9592 	u64 min_free;
9593 	u64 dev_min = 1;
9594 	u64 dev_nr = 0;
9595 	u64 target;
9596 	int debug;
9597 	int index;
9598 	int full = 0;
9599 	int ret = 0;
9600 
9601 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9602 
9603 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9604 
9605 	/* odd, couldn't find the block group, leave it alone */
9606 	if (!block_group) {
9607 		if (debug)
9608 			btrfs_warn(fs_info,
9609 				   "can't find block group for bytenr %llu",
9610 				   bytenr);
9611 		return -1;
9612 	}
9613 
9614 	min_free = btrfs_block_group_used(&block_group->item);
9615 
9616 	/* no bytes used, we're good */
9617 	if (!min_free)
9618 		goto out;
9619 
9620 	space_info = block_group->space_info;
9621 	spin_lock(&space_info->lock);
9622 
9623 	full = space_info->full;
9624 
9625 	/*
9626 	 * if this is the last block group we have in this space, we can't
9627 	 * relocate it unless we're able to allocate a new chunk below.
9628 	 *
9629 	 * Otherwise, we need to make sure we have room in the space to handle
9630 	 * all of the extents from this block group.  If we can, we're good
9631 	 */
9632 	if ((space_info->total_bytes != block_group->key.offset) &&
9633 	    (btrfs_space_info_used(space_info, false) + min_free <
9634 	     space_info->total_bytes)) {
9635 		spin_unlock(&space_info->lock);
9636 		goto out;
9637 	}
9638 	spin_unlock(&space_info->lock);
9639 
9640 	/*
9641 	 * ok we don't have enough space, but maybe we have free space on our
9642 	 * devices to allocate new chunks for relocation, so loop through our
9643 	 * alloc devices and guess if we have enough space.  if this block
9644 	 * group is going to be restriped, run checks against the target
9645 	 * profile instead of the current one.
9646 	 */
9647 	ret = -1;
9648 
9649 	/*
9650 	 * index:
9651 	 *      0: raid10
9652 	 *      1: raid1
9653 	 *      2: dup
9654 	 *      3: raid0
9655 	 *      4: single
9656 	 */
9657 	target = get_restripe_target(fs_info, block_group->flags);
9658 	if (target) {
9659 		index = __get_raid_index(extended_to_chunk(target));
9660 	} else {
9661 		/*
9662 		 * this is just a balance, so if we were marked as full
9663 		 * we know there is no space for a new chunk
9664 		 */
9665 		if (full) {
9666 			if (debug)
9667 				btrfs_warn(fs_info,
9668 					   "no space to alloc new chunk for block group %llu",
9669 					   block_group->key.objectid);
9670 			goto out;
9671 		}
9672 
9673 		index = get_block_group_index(block_group);
9674 	}
9675 
9676 	if (index == BTRFS_RAID_RAID10) {
9677 		dev_min = 4;
9678 		/* Divide by 2 */
9679 		min_free >>= 1;
9680 	} else if (index == BTRFS_RAID_RAID1) {
9681 		dev_min = 2;
9682 	} else if (index == BTRFS_RAID_DUP) {
9683 		/* Multiply by 2 */
9684 		min_free <<= 1;
9685 	} else if (index == BTRFS_RAID_RAID0) {
9686 		dev_min = fs_devices->rw_devices;
9687 		min_free = div64_u64(min_free, dev_min);
9688 	}
9689 
9690 	/* We need to do this so that we can look at pending chunks */
9691 	trans = btrfs_join_transaction(root);
9692 	if (IS_ERR(trans)) {
9693 		ret = PTR_ERR(trans);
9694 		goto out;
9695 	}
9696 
9697 	mutex_lock(&fs_info->chunk_mutex);
9698 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9699 		u64 dev_offset;
9700 
9701 		/*
9702 		 * check to make sure we can actually find a chunk with enough
9703 		 * space to fit our block group in.
9704 		 */
9705 		if (device->total_bytes > device->bytes_used + min_free &&
9706 		    !device->is_tgtdev_for_dev_replace) {
9707 			ret = find_free_dev_extent(trans, device, min_free,
9708 						   &dev_offset, NULL);
9709 			if (!ret)
9710 				dev_nr++;
9711 
9712 			if (dev_nr >= dev_min)
9713 				break;
9714 
9715 			ret = -1;
9716 		}
9717 	}
9718 	if (debug && ret == -1)
9719 		btrfs_warn(fs_info,
9720 			   "no space to allocate a new chunk for block group %llu",
9721 			   block_group->key.objectid);
9722 	mutex_unlock(&fs_info->chunk_mutex);
9723 	btrfs_end_transaction(trans);
9724 out:
9725 	btrfs_put_block_group(block_group);
9726 	return ret;
9727 }
9728 
9729 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9730 				  struct btrfs_path *path,
9731 				  struct btrfs_key *key)
9732 {
9733 	struct btrfs_root *root = fs_info->extent_root;
9734 	int ret = 0;
9735 	struct btrfs_key found_key;
9736 	struct extent_buffer *leaf;
9737 	int slot;
9738 
9739 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9740 	if (ret < 0)
9741 		goto out;
9742 
9743 	while (1) {
9744 		slot = path->slots[0];
9745 		leaf = path->nodes[0];
9746 		if (slot >= btrfs_header_nritems(leaf)) {
9747 			ret = btrfs_next_leaf(root, path);
9748 			if (ret == 0)
9749 				continue;
9750 			if (ret < 0)
9751 				goto out;
9752 			break;
9753 		}
9754 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9755 
9756 		if (found_key.objectid >= key->objectid &&
9757 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9758 			struct extent_map_tree *em_tree;
9759 			struct extent_map *em;
9760 
9761 			em_tree = &root->fs_info->mapping_tree.map_tree;
9762 			read_lock(&em_tree->lock);
9763 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9764 						   found_key.offset);
9765 			read_unlock(&em_tree->lock);
9766 			if (!em) {
9767 				btrfs_err(fs_info,
9768 			"logical %llu len %llu found bg but no related chunk",
9769 					  found_key.objectid, found_key.offset);
9770 				ret = -ENOENT;
9771 			} else {
9772 				ret = 0;
9773 			}
9774 			free_extent_map(em);
9775 			goto out;
9776 		}
9777 		path->slots[0]++;
9778 	}
9779 out:
9780 	return ret;
9781 }
9782 
9783 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9784 {
9785 	struct btrfs_block_group_cache *block_group;
9786 	u64 last = 0;
9787 
9788 	while (1) {
9789 		struct inode *inode;
9790 
9791 		block_group = btrfs_lookup_first_block_group(info, last);
9792 		while (block_group) {
9793 			spin_lock(&block_group->lock);
9794 			if (block_group->iref)
9795 				break;
9796 			spin_unlock(&block_group->lock);
9797 			block_group = next_block_group(info, block_group);
9798 		}
9799 		if (!block_group) {
9800 			if (last == 0)
9801 				break;
9802 			last = 0;
9803 			continue;
9804 		}
9805 
9806 		inode = block_group->inode;
9807 		block_group->iref = 0;
9808 		block_group->inode = NULL;
9809 		spin_unlock(&block_group->lock);
9810 		ASSERT(block_group->io_ctl.inode == NULL);
9811 		iput(inode);
9812 		last = block_group->key.objectid + block_group->key.offset;
9813 		btrfs_put_block_group(block_group);
9814 	}
9815 }
9816 
9817 /*
9818  * Must be called only after stopping all workers, since we could have block
9819  * group caching kthreads running, and therefore they could race with us if we
9820  * freed the block groups before stopping them.
9821  */
9822 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9823 {
9824 	struct btrfs_block_group_cache *block_group;
9825 	struct btrfs_space_info *space_info;
9826 	struct btrfs_caching_control *caching_ctl;
9827 	struct rb_node *n;
9828 
9829 	down_write(&info->commit_root_sem);
9830 	while (!list_empty(&info->caching_block_groups)) {
9831 		caching_ctl = list_entry(info->caching_block_groups.next,
9832 					 struct btrfs_caching_control, list);
9833 		list_del(&caching_ctl->list);
9834 		put_caching_control(caching_ctl);
9835 	}
9836 	up_write(&info->commit_root_sem);
9837 
9838 	spin_lock(&info->unused_bgs_lock);
9839 	while (!list_empty(&info->unused_bgs)) {
9840 		block_group = list_first_entry(&info->unused_bgs,
9841 					       struct btrfs_block_group_cache,
9842 					       bg_list);
9843 		list_del_init(&block_group->bg_list);
9844 		btrfs_put_block_group(block_group);
9845 	}
9846 	spin_unlock(&info->unused_bgs_lock);
9847 
9848 	spin_lock(&info->block_group_cache_lock);
9849 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9850 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9851 				       cache_node);
9852 		rb_erase(&block_group->cache_node,
9853 			 &info->block_group_cache_tree);
9854 		RB_CLEAR_NODE(&block_group->cache_node);
9855 		spin_unlock(&info->block_group_cache_lock);
9856 
9857 		down_write(&block_group->space_info->groups_sem);
9858 		list_del(&block_group->list);
9859 		up_write(&block_group->space_info->groups_sem);
9860 
9861 		/*
9862 		 * We haven't cached this block group, which means we could
9863 		 * possibly have excluded extents on this block group.
9864 		 */
9865 		if (block_group->cached == BTRFS_CACHE_NO ||
9866 		    block_group->cached == BTRFS_CACHE_ERROR)
9867 			free_excluded_extents(info, block_group);
9868 
9869 		btrfs_remove_free_space_cache(block_group);
9870 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9871 		ASSERT(list_empty(&block_group->dirty_list));
9872 		ASSERT(list_empty(&block_group->io_list));
9873 		ASSERT(list_empty(&block_group->bg_list));
9874 		ASSERT(atomic_read(&block_group->count) == 1);
9875 		btrfs_put_block_group(block_group);
9876 
9877 		spin_lock(&info->block_group_cache_lock);
9878 	}
9879 	spin_unlock(&info->block_group_cache_lock);
9880 
9881 	/* now that all the block groups are freed, go through and
9882 	 * free all the space_info structs.  This is only called during
9883 	 * the final stages of unmount, and so we know nobody is
9884 	 * using them.  We call synchronize_rcu() once before we start,
9885 	 * just to be on the safe side.
9886 	 */
9887 	synchronize_rcu();
9888 
9889 	release_global_block_rsv(info);
9890 
9891 	while (!list_empty(&info->space_info)) {
9892 		int i;
9893 
9894 		space_info = list_entry(info->space_info.next,
9895 					struct btrfs_space_info,
9896 					list);
9897 
9898 		/*
9899 		 * Do not hide this behind enospc_debug, this is actually
9900 		 * important and indicates a real bug if this happens.
9901 		 */
9902 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9903 			    space_info->bytes_reserved > 0 ||
9904 			    space_info->bytes_may_use > 0))
9905 			dump_space_info(info, space_info, 0, 0);
9906 		list_del(&space_info->list);
9907 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9908 			struct kobject *kobj;
9909 			kobj = space_info->block_group_kobjs[i];
9910 			space_info->block_group_kobjs[i] = NULL;
9911 			if (kobj) {
9912 				kobject_del(kobj);
9913 				kobject_put(kobj);
9914 			}
9915 		}
9916 		kobject_del(&space_info->kobj);
9917 		kobject_put(&space_info->kobj);
9918 	}
9919 	return 0;
9920 }
9921 
9922 static void link_block_group(struct btrfs_block_group_cache *cache)
9923 {
9924 	struct btrfs_space_info *space_info = cache->space_info;
9925 	int index = get_block_group_index(cache);
9926 	bool first = false;
9927 
9928 	down_write(&space_info->groups_sem);
9929 	if (list_empty(&space_info->block_groups[index]))
9930 		first = true;
9931 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9932 	up_write(&space_info->groups_sem);
9933 
9934 	if (first) {
9935 		struct raid_kobject *rkobj;
9936 		int ret;
9937 
9938 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9939 		if (!rkobj)
9940 			goto out_err;
9941 		rkobj->raid_type = index;
9942 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9943 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9944 				  "%s", get_raid_name(index));
9945 		if (ret) {
9946 			kobject_put(&rkobj->kobj);
9947 			goto out_err;
9948 		}
9949 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9950 	}
9951 
9952 	return;
9953 out_err:
9954 	btrfs_warn(cache->fs_info,
9955 		   "failed to add kobject for block cache, ignoring");
9956 }
9957 
9958 static struct btrfs_block_group_cache *
9959 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9960 			       u64 start, u64 size)
9961 {
9962 	struct btrfs_block_group_cache *cache;
9963 
9964 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9965 	if (!cache)
9966 		return NULL;
9967 
9968 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9969 					GFP_NOFS);
9970 	if (!cache->free_space_ctl) {
9971 		kfree(cache);
9972 		return NULL;
9973 	}
9974 
9975 	cache->key.objectid = start;
9976 	cache->key.offset = size;
9977 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9978 
9979 	cache->fs_info = fs_info;
9980 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9981 	set_free_space_tree_thresholds(cache);
9982 
9983 	atomic_set(&cache->count, 1);
9984 	spin_lock_init(&cache->lock);
9985 	init_rwsem(&cache->data_rwsem);
9986 	INIT_LIST_HEAD(&cache->list);
9987 	INIT_LIST_HEAD(&cache->cluster_list);
9988 	INIT_LIST_HEAD(&cache->bg_list);
9989 	INIT_LIST_HEAD(&cache->ro_list);
9990 	INIT_LIST_HEAD(&cache->dirty_list);
9991 	INIT_LIST_HEAD(&cache->io_list);
9992 	btrfs_init_free_space_ctl(cache);
9993 	atomic_set(&cache->trimming, 0);
9994 	mutex_init(&cache->free_space_lock);
9995 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9996 
9997 	return cache;
9998 }
9999 
10000 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10001 {
10002 	struct btrfs_path *path;
10003 	int ret;
10004 	struct btrfs_block_group_cache *cache;
10005 	struct btrfs_space_info *space_info;
10006 	struct btrfs_key key;
10007 	struct btrfs_key found_key;
10008 	struct extent_buffer *leaf;
10009 	int need_clear = 0;
10010 	u64 cache_gen;
10011 	u64 feature;
10012 	int mixed;
10013 
10014 	feature = btrfs_super_incompat_flags(info->super_copy);
10015 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10016 
10017 	key.objectid = 0;
10018 	key.offset = 0;
10019 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10020 	path = btrfs_alloc_path();
10021 	if (!path)
10022 		return -ENOMEM;
10023 	path->reada = READA_FORWARD;
10024 
10025 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10026 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10027 	    btrfs_super_generation(info->super_copy) != cache_gen)
10028 		need_clear = 1;
10029 	if (btrfs_test_opt(info, CLEAR_CACHE))
10030 		need_clear = 1;
10031 
10032 	while (1) {
10033 		ret = find_first_block_group(info, path, &key);
10034 		if (ret > 0)
10035 			break;
10036 		if (ret != 0)
10037 			goto error;
10038 
10039 		leaf = path->nodes[0];
10040 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10041 
10042 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10043 						       found_key.offset);
10044 		if (!cache) {
10045 			ret = -ENOMEM;
10046 			goto error;
10047 		}
10048 
10049 		if (need_clear) {
10050 			/*
10051 			 * When we mount with old space cache, we need to
10052 			 * set BTRFS_DC_CLEAR and set dirty flag.
10053 			 *
10054 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10055 			 *    truncate the old free space cache inode and
10056 			 *    setup a new one.
10057 			 * b) Setting 'dirty flag' makes sure that we flush
10058 			 *    the new space cache info onto disk.
10059 			 */
10060 			if (btrfs_test_opt(info, SPACE_CACHE))
10061 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10062 		}
10063 
10064 		read_extent_buffer(leaf, &cache->item,
10065 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10066 				   sizeof(cache->item));
10067 		cache->flags = btrfs_block_group_flags(&cache->item);
10068 		if (!mixed &&
10069 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10070 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10071 			btrfs_err(info,
10072 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10073 				  cache->key.objectid);
10074 			ret = -EINVAL;
10075 			goto error;
10076 		}
10077 
10078 		key.objectid = found_key.objectid + found_key.offset;
10079 		btrfs_release_path(path);
10080 
10081 		/*
10082 		 * We need to exclude the super stripes now so that the space
10083 		 * info has super bytes accounted for, otherwise we'll think
10084 		 * we have more space than we actually do.
10085 		 */
10086 		ret = exclude_super_stripes(info, cache);
10087 		if (ret) {
10088 			/*
10089 			 * We may have excluded something, so call this just in
10090 			 * case.
10091 			 */
10092 			free_excluded_extents(info, cache);
10093 			btrfs_put_block_group(cache);
10094 			goto error;
10095 		}
10096 
10097 		/*
10098 		 * check for two cases, either we are full, and therefore
10099 		 * don't need to bother with the caching work since we won't
10100 		 * find any space, or we are empty, and we can just add all
10101 		 * the space in and be done with it.  This saves us _alot_ of
10102 		 * time, particularly in the full case.
10103 		 */
10104 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10105 			cache->last_byte_to_unpin = (u64)-1;
10106 			cache->cached = BTRFS_CACHE_FINISHED;
10107 			free_excluded_extents(info, cache);
10108 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10109 			cache->last_byte_to_unpin = (u64)-1;
10110 			cache->cached = BTRFS_CACHE_FINISHED;
10111 			add_new_free_space(cache, info,
10112 					   found_key.objectid,
10113 					   found_key.objectid +
10114 					   found_key.offset);
10115 			free_excluded_extents(info, cache);
10116 		}
10117 
10118 		ret = btrfs_add_block_group_cache(info, cache);
10119 		if (ret) {
10120 			btrfs_remove_free_space_cache(cache);
10121 			btrfs_put_block_group(cache);
10122 			goto error;
10123 		}
10124 
10125 		trace_btrfs_add_block_group(info, cache, 0);
10126 		update_space_info(info, cache->flags, found_key.offset,
10127 				  btrfs_block_group_used(&cache->item),
10128 				  cache->bytes_super, &space_info);
10129 
10130 		cache->space_info = space_info;
10131 
10132 		link_block_group(cache);
10133 
10134 		set_avail_alloc_bits(info, cache->flags);
10135 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10136 			inc_block_group_ro(cache, 1);
10137 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10138 			spin_lock(&info->unused_bgs_lock);
10139 			/* Should always be true but just in case. */
10140 			if (list_empty(&cache->bg_list)) {
10141 				btrfs_get_block_group(cache);
10142 				list_add_tail(&cache->bg_list,
10143 					      &info->unused_bgs);
10144 			}
10145 			spin_unlock(&info->unused_bgs_lock);
10146 		}
10147 	}
10148 
10149 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10150 		if (!(get_alloc_profile(info, space_info->flags) &
10151 		      (BTRFS_BLOCK_GROUP_RAID10 |
10152 		       BTRFS_BLOCK_GROUP_RAID1 |
10153 		       BTRFS_BLOCK_GROUP_RAID5 |
10154 		       BTRFS_BLOCK_GROUP_RAID6 |
10155 		       BTRFS_BLOCK_GROUP_DUP)))
10156 			continue;
10157 		/*
10158 		 * avoid allocating from un-mirrored block group if there are
10159 		 * mirrored block groups.
10160 		 */
10161 		list_for_each_entry(cache,
10162 				&space_info->block_groups[BTRFS_RAID_RAID0],
10163 				list)
10164 			inc_block_group_ro(cache, 1);
10165 		list_for_each_entry(cache,
10166 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10167 				list)
10168 			inc_block_group_ro(cache, 1);
10169 	}
10170 
10171 	init_global_block_rsv(info);
10172 	ret = 0;
10173 error:
10174 	btrfs_free_path(path);
10175 	return ret;
10176 }
10177 
10178 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10179 				       struct btrfs_fs_info *fs_info)
10180 {
10181 	struct btrfs_block_group_cache *block_group, *tmp;
10182 	struct btrfs_root *extent_root = fs_info->extent_root;
10183 	struct btrfs_block_group_item item;
10184 	struct btrfs_key key;
10185 	int ret = 0;
10186 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10187 
10188 	trans->can_flush_pending_bgs = false;
10189 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10190 		if (ret)
10191 			goto next;
10192 
10193 		spin_lock(&block_group->lock);
10194 		memcpy(&item, &block_group->item, sizeof(item));
10195 		memcpy(&key, &block_group->key, sizeof(key));
10196 		spin_unlock(&block_group->lock);
10197 
10198 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10199 					sizeof(item));
10200 		if (ret)
10201 			btrfs_abort_transaction(trans, ret);
10202 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10203 					       key.offset);
10204 		if (ret)
10205 			btrfs_abort_transaction(trans, ret);
10206 		add_block_group_free_space(trans, fs_info, block_group);
10207 		/* already aborted the transaction if it failed. */
10208 next:
10209 		list_del_init(&block_group->bg_list);
10210 	}
10211 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10212 }
10213 
10214 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10215 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10216 			   u64 type, u64 chunk_offset, u64 size)
10217 {
10218 	struct btrfs_block_group_cache *cache;
10219 	int ret;
10220 
10221 	btrfs_set_log_full_commit(fs_info, trans);
10222 
10223 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10224 	if (!cache)
10225 		return -ENOMEM;
10226 
10227 	btrfs_set_block_group_used(&cache->item, bytes_used);
10228 	btrfs_set_block_group_chunk_objectid(&cache->item,
10229 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10230 	btrfs_set_block_group_flags(&cache->item, type);
10231 
10232 	cache->flags = type;
10233 	cache->last_byte_to_unpin = (u64)-1;
10234 	cache->cached = BTRFS_CACHE_FINISHED;
10235 	cache->needs_free_space = 1;
10236 	ret = exclude_super_stripes(fs_info, cache);
10237 	if (ret) {
10238 		/*
10239 		 * We may have excluded something, so call this just in
10240 		 * case.
10241 		 */
10242 		free_excluded_extents(fs_info, cache);
10243 		btrfs_put_block_group(cache);
10244 		return ret;
10245 	}
10246 
10247 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10248 
10249 	free_excluded_extents(fs_info, cache);
10250 
10251 #ifdef CONFIG_BTRFS_DEBUG
10252 	if (btrfs_should_fragment_free_space(cache)) {
10253 		u64 new_bytes_used = size - bytes_used;
10254 
10255 		bytes_used += new_bytes_used >> 1;
10256 		fragment_free_space(cache);
10257 	}
10258 #endif
10259 	/*
10260 	 * Ensure the corresponding space_info object is created and
10261 	 * assigned to our block group. We want our bg to be added to the rbtree
10262 	 * with its ->space_info set.
10263 	 */
10264 	cache->space_info = __find_space_info(fs_info, cache->flags);
10265 	if (!cache->space_info) {
10266 		ret = create_space_info(fs_info, cache->flags,
10267 				       &cache->space_info);
10268 		if (ret) {
10269 			btrfs_remove_free_space_cache(cache);
10270 			btrfs_put_block_group(cache);
10271 			return ret;
10272 		}
10273 	}
10274 
10275 	ret = btrfs_add_block_group_cache(fs_info, cache);
10276 	if (ret) {
10277 		btrfs_remove_free_space_cache(cache);
10278 		btrfs_put_block_group(cache);
10279 		return ret;
10280 	}
10281 
10282 	/*
10283 	 * Now that our block group has its ->space_info set and is inserted in
10284 	 * the rbtree, update the space info's counters.
10285 	 */
10286 	trace_btrfs_add_block_group(fs_info, cache, 1);
10287 	update_space_info(fs_info, cache->flags, size, bytes_used,
10288 				cache->bytes_super, &cache->space_info);
10289 	update_global_block_rsv(fs_info);
10290 
10291 	link_block_group(cache);
10292 
10293 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10294 
10295 	set_avail_alloc_bits(fs_info, type);
10296 	return 0;
10297 }
10298 
10299 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10300 {
10301 	u64 extra_flags = chunk_to_extended(flags) &
10302 				BTRFS_EXTENDED_PROFILE_MASK;
10303 
10304 	write_seqlock(&fs_info->profiles_lock);
10305 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10306 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10307 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10308 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10309 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10310 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10311 	write_sequnlock(&fs_info->profiles_lock);
10312 }
10313 
10314 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10315 			     struct btrfs_fs_info *fs_info, u64 group_start,
10316 			     struct extent_map *em)
10317 {
10318 	struct btrfs_root *root = fs_info->extent_root;
10319 	struct btrfs_path *path;
10320 	struct btrfs_block_group_cache *block_group;
10321 	struct btrfs_free_cluster *cluster;
10322 	struct btrfs_root *tree_root = fs_info->tree_root;
10323 	struct btrfs_key key;
10324 	struct inode *inode;
10325 	struct kobject *kobj = NULL;
10326 	int ret;
10327 	int index;
10328 	int factor;
10329 	struct btrfs_caching_control *caching_ctl = NULL;
10330 	bool remove_em;
10331 
10332 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10333 	BUG_ON(!block_group);
10334 	BUG_ON(!block_group->ro);
10335 
10336 	/*
10337 	 * Free the reserved super bytes from this block group before
10338 	 * remove it.
10339 	 */
10340 	free_excluded_extents(fs_info, block_group);
10341 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10342 				  block_group->key.offset);
10343 
10344 	memcpy(&key, &block_group->key, sizeof(key));
10345 	index = get_block_group_index(block_group);
10346 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10347 				  BTRFS_BLOCK_GROUP_RAID1 |
10348 				  BTRFS_BLOCK_GROUP_RAID10))
10349 		factor = 2;
10350 	else
10351 		factor = 1;
10352 
10353 	/* make sure this block group isn't part of an allocation cluster */
10354 	cluster = &fs_info->data_alloc_cluster;
10355 	spin_lock(&cluster->refill_lock);
10356 	btrfs_return_cluster_to_free_space(block_group, cluster);
10357 	spin_unlock(&cluster->refill_lock);
10358 
10359 	/*
10360 	 * make sure this block group isn't part of a metadata
10361 	 * allocation cluster
10362 	 */
10363 	cluster = &fs_info->meta_alloc_cluster;
10364 	spin_lock(&cluster->refill_lock);
10365 	btrfs_return_cluster_to_free_space(block_group, cluster);
10366 	spin_unlock(&cluster->refill_lock);
10367 
10368 	path = btrfs_alloc_path();
10369 	if (!path) {
10370 		ret = -ENOMEM;
10371 		goto out;
10372 	}
10373 
10374 	/*
10375 	 * get the inode first so any iput calls done for the io_list
10376 	 * aren't the final iput (no unlinks allowed now)
10377 	 */
10378 	inode = lookup_free_space_inode(fs_info, block_group, path);
10379 
10380 	mutex_lock(&trans->transaction->cache_write_mutex);
10381 	/*
10382 	 * make sure our free spache cache IO is done before remove the
10383 	 * free space inode
10384 	 */
10385 	spin_lock(&trans->transaction->dirty_bgs_lock);
10386 	if (!list_empty(&block_group->io_list)) {
10387 		list_del_init(&block_group->io_list);
10388 
10389 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10390 
10391 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10392 		btrfs_wait_cache_io(trans, block_group, path);
10393 		btrfs_put_block_group(block_group);
10394 		spin_lock(&trans->transaction->dirty_bgs_lock);
10395 	}
10396 
10397 	if (!list_empty(&block_group->dirty_list)) {
10398 		list_del_init(&block_group->dirty_list);
10399 		btrfs_put_block_group(block_group);
10400 	}
10401 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10402 	mutex_unlock(&trans->transaction->cache_write_mutex);
10403 
10404 	if (!IS_ERR(inode)) {
10405 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10406 		if (ret) {
10407 			btrfs_add_delayed_iput(inode);
10408 			goto out;
10409 		}
10410 		clear_nlink(inode);
10411 		/* One for the block groups ref */
10412 		spin_lock(&block_group->lock);
10413 		if (block_group->iref) {
10414 			block_group->iref = 0;
10415 			block_group->inode = NULL;
10416 			spin_unlock(&block_group->lock);
10417 			iput(inode);
10418 		} else {
10419 			spin_unlock(&block_group->lock);
10420 		}
10421 		/* One for our lookup ref */
10422 		btrfs_add_delayed_iput(inode);
10423 	}
10424 
10425 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10426 	key.offset = block_group->key.objectid;
10427 	key.type = 0;
10428 
10429 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10430 	if (ret < 0)
10431 		goto out;
10432 	if (ret > 0)
10433 		btrfs_release_path(path);
10434 	if (ret == 0) {
10435 		ret = btrfs_del_item(trans, tree_root, path);
10436 		if (ret)
10437 			goto out;
10438 		btrfs_release_path(path);
10439 	}
10440 
10441 	spin_lock(&fs_info->block_group_cache_lock);
10442 	rb_erase(&block_group->cache_node,
10443 		 &fs_info->block_group_cache_tree);
10444 	RB_CLEAR_NODE(&block_group->cache_node);
10445 
10446 	if (fs_info->first_logical_byte == block_group->key.objectid)
10447 		fs_info->first_logical_byte = (u64)-1;
10448 	spin_unlock(&fs_info->block_group_cache_lock);
10449 
10450 	down_write(&block_group->space_info->groups_sem);
10451 	/*
10452 	 * we must use list_del_init so people can check to see if they
10453 	 * are still on the list after taking the semaphore
10454 	 */
10455 	list_del_init(&block_group->list);
10456 	if (list_empty(&block_group->space_info->block_groups[index])) {
10457 		kobj = block_group->space_info->block_group_kobjs[index];
10458 		block_group->space_info->block_group_kobjs[index] = NULL;
10459 		clear_avail_alloc_bits(fs_info, block_group->flags);
10460 	}
10461 	up_write(&block_group->space_info->groups_sem);
10462 	if (kobj) {
10463 		kobject_del(kobj);
10464 		kobject_put(kobj);
10465 	}
10466 
10467 	if (block_group->has_caching_ctl)
10468 		caching_ctl = get_caching_control(block_group);
10469 	if (block_group->cached == BTRFS_CACHE_STARTED)
10470 		wait_block_group_cache_done(block_group);
10471 	if (block_group->has_caching_ctl) {
10472 		down_write(&fs_info->commit_root_sem);
10473 		if (!caching_ctl) {
10474 			struct btrfs_caching_control *ctl;
10475 
10476 			list_for_each_entry(ctl,
10477 				    &fs_info->caching_block_groups, list)
10478 				if (ctl->block_group == block_group) {
10479 					caching_ctl = ctl;
10480 					refcount_inc(&caching_ctl->count);
10481 					break;
10482 				}
10483 		}
10484 		if (caching_ctl)
10485 			list_del_init(&caching_ctl->list);
10486 		up_write(&fs_info->commit_root_sem);
10487 		if (caching_ctl) {
10488 			/* Once for the caching bgs list and once for us. */
10489 			put_caching_control(caching_ctl);
10490 			put_caching_control(caching_ctl);
10491 		}
10492 	}
10493 
10494 	spin_lock(&trans->transaction->dirty_bgs_lock);
10495 	if (!list_empty(&block_group->dirty_list)) {
10496 		WARN_ON(1);
10497 	}
10498 	if (!list_empty(&block_group->io_list)) {
10499 		WARN_ON(1);
10500 	}
10501 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10502 	btrfs_remove_free_space_cache(block_group);
10503 
10504 	spin_lock(&block_group->space_info->lock);
10505 	list_del_init(&block_group->ro_list);
10506 
10507 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10508 		WARN_ON(block_group->space_info->total_bytes
10509 			< block_group->key.offset);
10510 		WARN_ON(block_group->space_info->bytes_readonly
10511 			< block_group->key.offset);
10512 		WARN_ON(block_group->space_info->disk_total
10513 			< block_group->key.offset * factor);
10514 	}
10515 	block_group->space_info->total_bytes -= block_group->key.offset;
10516 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10517 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10518 
10519 	spin_unlock(&block_group->space_info->lock);
10520 
10521 	memcpy(&key, &block_group->key, sizeof(key));
10522 
10523 	mutex_lock(&fs_info->chunk_mutex);
10524 	if (!list_empty(&em->list)) {
10525 		/* We're in the transaction->pending_chunks list. */
10526 		free_extent_map(em);
10527 	}
10528 	spin_lock(&block_group->lock);
10529 	block_group->removed = 1;
10530 	/*
10531 	 * At this point trimming can't start on this block group, because we
10532 	 * removed the block group from the tree fs_info->block_group_cache_tree
10533 	 * so no one can't find it anymore and even if someone already got this
10534 	 * block group before we removed it from the rbtree, they have already
10535 	 * incremented block_group->trimming - if they didn't, they won't find
10536 	 * any free space entries because we already removed them all when we
10537 	 * called btrfs_remove_free_space_cache().
10538 	 *
10539 	 * And we must not remove the extent map from the fs_info->mapping_tree
10540 	 * to prevent the same logical address range and physical device space
10541 	 * ranges from being reused for a new block group. This is because our
10542 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10543 	 * completely transactionless, so while it is trimming a range the
10544 	 * currently running transaction might finish and a new one start,
10545 	 * allowing for new block groups to be created that can reuse the same
10546 	 * physical device locations unless we take this special care.
10547 	 *
10548 	 * There may also be an implicit trim operation if the file system
10549 	 * is mounted with -odiscard. The same protections must remain
10550 	 * in place until the extents have been discarded completely when
10551 	 * the transaction commit has completed.
10552 	 */
10553 	remove_em = (atomic_read(&block_group->trimming) == 0);
10554 	/*
10555 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10556 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10557 	 * before checking block_group->removed).
10558 	 */
10559 	if (!remove_em) {
10560 		/*
10561 		 * Our em might be in trans->transaction->pending_chunks which
10562 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10563 		 * and so is the fs_info->pinned_chunks list.
10564 		 *
10565 		 * So at this point we must be holding the chunk_mutex to avoid
10566 		 * any races with chunk allocation (more specifically at
10567 		 * volumes.c:contains_pending_extent()), to ensure it always
10568 		 * sees the em, either in the pending_chunks list or in the
10569 		 * pinned_chunks list.
10570 		 */
10571 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10572 	}
10573 	spin_unlock(&block_group->lock);
10574 
10575 	if (remove_em) {
10576 		struct extent_map_tree *em_tree;
10577 
10578 		em_tree = &fs_info->mapping_tree.map_tree;
10579 		write_lock(&em_tree->lock);
10580 		/*
10581 		 * The em might be in the pending_chunks list, so make sure the
10582 		 * chunk mutex is locked, since remove_extent_mapping() will
10583 		 * delete us from that list.
10584 		 */
10585 		remove_extent_mapping(em_tree, em);
10586 		write_unlock(&em_tree->lock);
10587 		/* once for the tree */
10588 		free_extent_map(em);
10589 	}
10590 
10591 	mutex_unlock(&fs_info->chunk_mutex);
10592 
10593 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10594 	if (ret)
10595 		goto out;
10596 
10597 	btrfs_put_block_group(block_group);
10598 	btrfs_put_block_group(block_group);
10599 
10600 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10601 	if (ret > 0)
10602 		ret = -EIO;
10603 	if (ret < 0)
10604 		goto out;
10605 
10606 	ret = btrfs_del_item(trans, root, path);
10607 out:
10608 	btrfs_free_path(path);
10609 	return ret;
10610 }
10611 
10612 struct btrfs_trans_handle *
10613 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10614 				     const u64 chunk_offset)
10615 {
10616 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10617 	struct extent_map *em;
10618 	struct map_lookup *map;
10619 	unsigned int num_items;
10620 
10621 	read_lock(&em_tree->lock);
10622 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10623 	read_unlock(&em_tree->lock);
10624 	ASSERT(em && em->start == chunk_offset);
10625 
10626 	/*
10627 	 * We need to reserve 3 + N units from the metadata space info in order
10628 	 * to remove a block group (done at btrfs_remove_chunk() and at
10629 	 * btrfs_remove_block_group()), which are used for:
10630 	 *
10631 	 * 1 unit for adding the free space inode's orphan (located in the tree
10632 	 * of tree roots).
10633 	 * 1 unit for deleting the block group item (located in the extent
10634 	 * tree).
10635 	 * 1 unit for deleting the free space item (located in tree of tree
10636 	 * roots).
10637 	 * N units for deleting N device extent items corresponding to each
10638 	 * stripe (located in the device tree).
10639 	 *
10640 	 * In order to remove a block group we also need to reserve units in the
10641 	 * system space info in order to update the chunk tree (update one or
10642 	 * more device items and remove one chunk item), but this is done at
10643 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10644 	 */
10645 	map = em->map_lookup;
10646 	num_items = 3 + map->num_stripes;
10647 	free_extent_map(em);
10648 
10649 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10650 							   num_items, 1);
10651 }
10652 
10653 /*
10654  * Process the unused_bgs list and remove any that don't have any allocated
10655  * space inside of them.
10656  */
10657 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10658 {
10659 	struct btrfs_block_group_cache *block_group;
10660 	struct btrfs_space_info *space_info;
10661 	struct btrfs_trans_handle *trans;
10662 	int ret = 0;
10663 
10664 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10665 		return;
10666 
10667 	spin_lock(&fs_info->unused_bgs_lock);
10668 	while (!list_empty(&fs_info->unused_bgs)) {
10669 		u64 start, end;
10670 		int trimming;
10671 
10672 		block_group = list_first_entry(&fs_info->unused_bgs,
10673 					       struct btrfs_block_group_cache,
10674 					       bg_list);
10675 		list_del_init(&block_group->bg_list);
10676 
10677 		space_info = block_group->space_info;
10678 
10679 		if (ret || btrfs_mixed_space_info(space_info)) {
10680 			btrfs_put_block_group(block_group);
10681 			continue;
10682 		}
10683 		spin_unlock(&fs_info->unused_bgs_lock);
10684 
10685 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10686 
10687 		/* Don't want to race with allocators so take the groups_sem */
10688 		down_write(&space_info->groups_sem);
10689 		spin_lock(&block_group->lock);
10690 		if (block_group->reserved ||
10691 		    btrfs_block_group_used(&block_group->item) ||
10692 		    block_group->ro ||
10693 		    list_is_singular(&block_group->list)) {
10694 			/*
10695 			 * We want to bail if we made new allocations or have
10696 			 * outstanding allocations in this block group.  We do
10697 			 * the ro check in case balance is currently acting on
10698 			 * this block group.
10699 			 */
10700 			spin_unlock(&block_group->lock);
10701 			up_write(&space_info->groups_sem);
10702 			goto next;
10703 		}
10704 		spin_unlock(&block_group->lock);
10705 
10706 		/* We don't want to force the issue, only flip if it's ok. */
10707 		ret = inc_block_group_ro(block_group, 0);
10708 		up_write(&space_info->groups_sem);
10709 		if (ret < 0) {
10710 			ret = 0;
10711 			goto next;
10712 		}
10713 
10714 		/*
10715 		 * Want to do this before we do anything else so we can recover
10716 		 * properly if we fail to join the transaction.
10717 		 */
10718 		trans = btrfs_start_trans_remove_block_group(fs_info,
10719 						     block_group->key.objectid);
10720 		if (IS_ERR(trans)) {
10721 			btrfs_dec_block_group_ro(block_group);
10722 			ret = PTR_ERR(trans);
10723 			goto next;
10724 		}
10725 
10726 		/*
10727 		 * We could have pending pinned extents for this block group,
10728 		 * just delete them, we don't care about them anymore.
10729 		 */
10730 		start = block_group->key.objectid;
10731 		end = start + block_group->key.offset - 1;
10732 		/*
10733 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10734 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10735 		 * another task might be running finish_extent_commit() for the
10736 		 * previous transaction N - 1, and have seen a range belonging
10737 		 * to the block group in freed_extents[] before we were able to
10738 		 * clear the whole block group range from freed_extents[]. This
10739 		 * means that task can lookup for the block group after we
10740 		 * unpinned it from freed_extents[] and removed it, leading to
10741 		 * a BUG_ON() at btrfs_unpin_extent_range().
10742 		 */
10743 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10744 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10745 				  EXTENT_DIRTY);
10746 		if (ret) {
10747 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10748 			btrfs_dec_block_group_ro(block_group);
10749 			goto end_trans;
10750 		}
10751 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10752 				  EXTENT_DIRTY);
10753 		if (ret) {
10754 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10755 			btrfs_dec_block_group_ro(block_group);
10756 			goto end_trans;
10757 		}
10758 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10759 
10760 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10761 		spin_lock(&space_info->lock);
10762 		spin_lock(&block_group->lock);
10763 
10764 		space_info->bytes_pinned -= block_group->pinned;
10765 		space_info->bytes_readonly += block_group->pinned;
10766 		percpu_counter_add(&space_info->total_bytes_pinned,
10767 				   -block_group->pinned);
10768 		block_group->pinned = 0;
10769 
10770 		spin_unlock(&block_group->lock);
10771 		spin_unlock(&space_info->lock);
10772 
10773 		/* DISCARD can flip during remount */
10774 		trimming = btrfs_test_opt(fs_info, DISCARD);
10775 
10776 		/* Implicit trim during transaction commit. */
10777 		if (trimming)
10778 			btrfs_get_block_group_trimming(block_group);
10779 
10780 		/*
10781 		 * Btrfs_remove_chunk will abort the transaction if things go
10782 		 * horribly wrong.
10783 		 */
10784 		ret = btrfs_remove_chunk(trans, fs_info,
10785 					 block_group->key.objectid);
10786 
10787 		if (ret) {
10788 			if (trimming)
10789 				btrfs_put_block_group_trimming(block_group);
10790 			goto end_trans;
10791 		}
10792 
10793 		/*
10794 		 * If we're not mounted with -odiscard, we can just forget
10795 		 * about this block group. Otherwise we'll need to wait
10796 		 * until transaction commit to do the actual discard.
10797 		 */
10798 		if (trimming) {
10799 			spin_lock(&fs_info->unused_bgs_lock);
10800 			/*
10801 			 * A concurrent scrub might have added us to the list
10802 			 * fs_info->unused_bgs, so use a list_move operation
10803 			 * to add the block group to the deleted_bgs list.
10804 			 */
10805 			list_move(&block_group->bg_list,
10806 				  &trans->transaction->deleted_bgs);
10807 			spin_unlock(&fs_info->unused_bgs_lock);
10808 			btrfs_get_block_group(block_group);
10809 		}
10810 end_trans:
10811 		btrfs_end_transaction(trans);
10812 next:
10813 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10814 		btrfs_put_block_group(block_group);
10815 		spin_lock(&fs_info->unused_bgs_lock);
10816 	}
10817 	spin_unlock(&fs_info->unused_bgs_lock);
10818 }
10819 
10820 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10821 {
10822 	struct btrfs_space_info *space_info;
10823 	struct btrfs_super_block *disk_super;
10824 	u64 features;
10825 	u64 flags;
10826 	int mixed = 0;
10827 	int ret;
10828 
10829 	disk_super = fs_info->super_copy;
10830 	if (!btrfs_super_root(disk_super))
10831 		return -EINVAL;
10832 
10833 	features = btrfs_super_incompat_flags(disk_super);
10834 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10835 		mixed = 1;
10836 
10837 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10838 	ret = create_space_info(fs_info, flags, &space_info);
10839 	if (ret)
10840 		goto out;
10841 
10842 	if (mixed) {
10843 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10844 		ret = create_space_info(fs_info, flags, &space_info);
10845 	} else {
10846 		flags = BTRFS_BLOCK_GROUP_METADATA;
10847 		ret = create_space_info(fs_info, flags, &space_info);
10848 		if (ret)
10849 			goto out;
10850 
10851 		flags = BTRFS_BLOCK_GROUP_DATA;
10852 		ret = create_space_info(fs_info, flags, &space_info);
10853 	}
10854 out:
10855 	return ret;
10856 }
10857 
10858 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10859 				   u64 start, u64 end)
10860 {
10861 	return unpin_extent_range(fs_info, start, end, false);
10862 }
10863 
10864 /*
10865  * It used to be that old block groups would be left around forever.
10866  * Iterating over them would be enough to trim unused space.  Since we
10867  * now automatically remove them, we also need to iterate over unallocated
10868  * space.
10869  *
10870  * We don't want a transaction for this since the discard may take a
10871  * substantial amount of time.  We don't require that a transaction be
10872  * running, but we do need to take a running transaction into account
10873  * to ensure that we're not discarding chunks that were released in
10874  * the current transaction.
10875  *
10876  * Holding the chunks lock will prevent other threads from allocating
10877  * or releasing chunks, but it won't prevent a running transaction
10878  * from committing and releasing the memory that the pending chunks
10879  * list head uses.  For that, we need to take a reference to the
10880  * transaction.
10881  */
10882 static int btrfs_trim_free_extents(struct btrfs_device *device,
10883 				   u64 minlen, u64 *trimmed)
10884 {
10885 	u64 start = 0, len = 0;
10886 	int ret;
10887 
10888 	*trimmed = 0;
10889 
10890 	/* Not writeable = nothing to do. */
10891 	if (!device->writeable)
10892 		return 0;
10893 
10894 	/* No free space = nothing to do. */
10895 	if (device->total_bytes <= device->bytes_used)
10896 		return 0;
10897 
10898 	ret = 0;
10899 
10900 	while (1) {
10901 		struct btrfs_fs_info *fs_info = device->fs_info;
10902 		struct btrfs_transaction *trans;
10903 		u64 bytes;
10904 
10905 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10906 		if (ret)
10907 			return ret;
10908 
10909 		down_read(&fs_info->commit_root_sem);
10910 
10911 		spin_lock(&fs_info->trans_lock);
10912 		trans = fs_info->running_transaction;
10913 		if (trans)
10914 			refcount_inc(&trans->use_count);
10915 		spin_unlock(&fs_info->trans_lock);
10916 
10917 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10918 						 &start, &len);
10919 		if (trans)
10920 			btrfs_put_transaction(trans);
10921 
10922 		if (ret) {
10923 			up_read(&fs_info->commit_root_sem);
10924 			mutex_unlock(&fs_info->chunk_mutex);
10925 			if (ret == -ENOSPC)
10926 				ret = 0;
10927 			break;
10928 		}
10929 
10930 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10931 		up_read(&fs_info->commit_root_sem);
10932 		mutex_unlock(&fs_info->chunk_mutex);
10933 
10934 		if (ret)
10935 			break;
10936 
10937 		start += len;
10938 		*trimmed += bytes;
10939 
10940 		if (fatal_signal_pending(current)) {
10941 			ret = -ERESTARTSYS;
10942 			break;
10943 		}
10944 
10945 		cond_resched();
10946 	}
10947 
10948 	return ret;
10949 }
10950 
10951 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10952 {
10953 	struct btrfs_block_group_cache *cache = NULL;
10954 	struct btrfs_device *device;
10955 	struct list_head *devices;
10956 	u64 group_trimmed;
10957 	u64 start;
10958 	u64 end;
10959 	u64 trimmed = 0;
10960 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10961 	int ret = 0;
10962 
10963 	/*
10964 	 * try to trim all FS space, our block group may start from non-zero.
10965 	 */
10966 	if (range->len == total_bytes)
10967 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10968 	else
10969 		cache = btrfs_lookup_block_group(fs_info, range->start);
10970 
10971 	while (cache) {
10972 		if (cache->key.objectid >= (range->start + range->len)) {
10973 			btrfs_put_block_group(cache);
10974 			break;
10975 		}
10976 
10977 		start = max(range->start, cache->key.objectid);
10978 		end = min(range->start + range->len,
10979 				cache->key.objectid + cache->key.offset);
10980 
10981 		if (end - start >= range->minlen) {
10982 			if (!block_group_cache_done(cache)) {
10983 				ret = cache_block_group(cache, 0);
10984 				if (ret) {
10985 					btrfs_put_block_group(cache);
10986 					break;
10987 				}
10988 				ret = wait_block_group_cache_done(cache);
10989 				if (ret) {
10990 					btrfs_put_block_group(cache);
10991 					break;
10992 				}
10993 			}
10994 			ret = btrfs_trim_block_group(cache,
10995 						     &group_trimmed,
10996 						     start,
10997 						     end,
10998 						     range->minlen);
10999 
11000 			trimmed += group_trimmed;
11001 			if (ret) {
11002 				btrfs_put_block_group(cache);
11003 				break;
11004 			}
11005 		}
11006 
11007 		cache = next_block_group(fs_info, cache);
11008 	}
11009 
11010 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11011 	devices = &fs_info->fs_devices->alloc_list;
11012 	list_for_each_entry(device, devices, dev_alloc_list) {
11013 		ret = btrfs_trim_free_extents(device, range->minlen,
11014 					      &group_trimmed);
11015 		if (ret)
11016 			break;
11017 
11018 		trimmed += group_trimmed;
11019 	}
11020 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11021 
11022 	range->len = trimmed;
11023 	return ret;
11024 }
11025 
11026 /*
11027  * btrfs_{start,end}_write_no_snapshotting() are similar to
11028  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11029  * data into the page cache through nocow before the subvolume is snapshoted,
11030  * but flush the data into disk after the snapshot creation, or to prevent
11031  * operations while snapshotting is ongoing and that cause the snapshot to be
11032  * inconsistent (writes followed by expanding truncates for example).
11033  */
11034 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11035 {
11036 	percpu_counter_dec(&root->subv_writers->counter);
11037 	/*
11038 	 * Make sure counter is updated before we wake up waiters.
11039 	 */
11040 	smp_mb();
11041 	if (waitqueue_active(&root->subv_writers->wait))
11042 		wake_up(&root->subv_writers->wait);
11043 }
11044 
11045 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11046 {
11047 	if (atomic_read(&root->will_be_snapshotted))
11048 		return 0;
11049 
11050 	percpu_counter_inc(&root->subv_writers->counter);
11051 	/*
11052 	 * Make sure counter is updated before we check for snapshot creation.
11053 	 */
11054 	smp_mb();
11055 	if (atomic_read(&root->will_be_snapshotted)) {
11056 		btrfs_end_write_no_snapshotting(root);
11057 		return 0;
11058 	}
11059 	return 1;
11060 }
11061 
11062 static int wait_snapshotting_atomic_t(atomic_t *a)
11063 {
11064 	schedule();
11065 	return 0;
11066 }
11067 
11068 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11069 {
11070 	while (true) {
11071 		int ret;
11072 
11073 		ret = btrfs_start_write_no_snapshotting(root);
11074 		if (ret)
11075 			break;
11076 		wait_on_atomic_t(&root->will_be_snapshotted,
11077 				 wait_snapshotting_atomic_t,
11078 				 TASK_UNINTERRUPTIBLE);
11079 	}
11080 }
11081