xref: /linux/fs/btrfs/extent-tree.c (revision 402cb8dda949d9b8c0df20ad2527d139faad7ca1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43 
44 #undef SCRAMBLE_DELAYED_REFS
45 
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61 	CHUNK_ALLOC_NO_FORCE = 0,
62 	CHUNK_ALLOC_LIMITED = 1,
63 	CHUNK_ALLOC_FORCE = 2,
64 };
65 
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 			       struct btrfs_fs_info *fs_info,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_fs_info *fs_info,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_fs_info *fs_info,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_fs_info *fs_info, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 			    struct btrfs_space_info *info, u64 bytes,
92 			    int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 			       u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 				     struct btrfs_space_info *space_info,
97 				     u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 				     struct btrfs_space_info *space_info,
100 				     u64 num_bytes);
101 
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105 	smp_mb();
106 	return cache->cached == BTRFS_CACHE_FINISHED ||
107 		cache->cached == BTRFS_CACHE_ERROR;
108 }
109 
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 	return (cache->flags & bits) == bits;
113 }
114 
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 	atomic_inc(&cache->count);
118 }
119 
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 	if (atomic_dec_and_test(&cache->count)) {
123 		WARN_ON(cache->pinned > 0);
124 		WARN_ON(cache->reserved > 0);
125 
126 		/*
127 		 * If not empty, someone is still holding mutex of
128 		 * full_stripe_lock, which can only be released by caller.
129 		 * And it will definitely cause use-after-free when caller
130 		 * tries to release full stripe lock.
131 		 *
132 		 * No better way to resolve, but only to warn.
133 		 */
134 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE);
232 	set_extent_bits(&fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE);
234 	return 0;
235 }
236 
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE);
247 	clear_extent_bits(&fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE);
249 }
250 
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(fs_info, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 				       bytenr, 0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(fs_info, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (!cache->caching_ctl) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	ctl = cache->caching_ctl;
320 	refcount_inc(&ctl->count);
321 	spin_unlock(&cache->lock);
322 	return ctl;
323 }
324 
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 	if (refcount_dec_and_test(&ctl->count))
328 		kfree(ctl);
329 }
330 
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334 	struct btrfs_fs_info *fs_info = block_group->fs_info;
335 	u64 start = block_group->key.objectid;
336 	u64 len = block_group->key.offset;
337 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 		fs_info->nodesize : fs_info->sectorsize;
339 	u64 step = chunk << 1;
340 
341 	while (len > chunk) {
342 		btrfs_remove_free_space(block_group, start, chunk);
343 		start += step;
344 		if (len < step)
345 			len = 0;
346 		else
347 			len -= step;
348 	}
349 }
350 #endif
351 
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 		       struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 	u64 extent_start, extent_end, size, total_added = 0;
361 	int ret;
362 
363 	while (start < end) {
364 		ret = find_first_extent_bit(info->pinned_extents, start,
365 					    &extent_start, &extent_end,
366 					    EXTENT_DIRTY | EXTENT_UPTODATE,
367 					    NULL);
368 		if (ret)
369 			break;
370 
371 		if (extent_start <= start) {
372 			start = extent_end + 1;
373 		} else if (extent_start > start && extent_start < end) {
374 			size = extent_start - start;
375 			total_added += size;
376 			ret = btrfs_add_free_space(block_group, start,
377 						   size);
378 			BUG_ON(ret); /* -ENOMEM or logic error */
379 			start = extent_end + 1;
380 		} else {
381 			break;
382 		}
383 	}
384 
385 	if (start < end) {
386 		size = end - start;
387 		total_added += size;
388 		ret = btrfs_add_free_space(block_group, start, size);
389 		BUG_ON(ret); /* -ENOMEM or logic error */
390 	}
391 
392 	return total_added;
393 }
394 
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 	struct btrfs_fs_info *fs_info = block_group->fs_info;
399 	struct btrfs_root *extent_root = fs_info->extent_root;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	u64 total_found = 0;
404 	u64 last = 0;
405 	u32 nritems;
406 	int ret;
407 	bool wakeup = true;
408 
409 	path = btrfs_alloc_path();
410 	if (!path)
411 		return -ENOMEM;
412 
413 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414 
415 #ifdef CONFIG_BTRFS_DEBUG
416 	/*
417 	 * If we're fragmenting we don't want to make anybody think we can
418 	 * allocate from this block group until we've had a chance to fragment
419 	 * the free space.
420 	 */
421 	if (btrfs_should_fragment_free_space(block_group))
422 		wakeup = false;
423 #endif
424 	/*
425 	 * We don't want to deadlock with somebody trying to allocate a new
426 	 * extent for the extent root while also trying to search the extent
427 	 * root to add free space.  So we skip locking and search the commit
428 	 * root, since its read-only
429 	 */
430 	path->skip_locking = 1;
431 	path->search_commit_root = 1;
432 	path->reada = READA_FORWARD;
433 
434 	key.objectid = last;
435 	key.offset = 0;
436 	key.type = BTRFS_EXTENT_ITEM_KEY;
437 
438 next:
439 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 	if (ret < 0)
441 		goto out;
442 
443 	leaf = path->nodes[0];
444 	nritems = btrfs_header_nritems(leaf);
445 
446 	while (1) {
447 		if (btrfs_fs_closing(fs_info) > 1) {
448 			last = (u64)-1;
449 			break;
450 		}
451 
452 		if (path->slots[0] < nritems) {
453 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 		} else {
455 			ret = find_next_key(path, 0, &key);
456 			if (ret)
457 				break;
458 
459 			if (need_resched() ||
460 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
461 				if (wakeup)
462 					caching_ctl->progress = last;
463 				btrfs_release_path(path);
464 				up_read(&fs_info->commit_root_sem);
465 				mutex_unlock(&caching_ctl->mutex);
466 				cond_resched();
467 				mutex_lock(&caching_ctl->mutex);
468 				down_read(&fs_info->commit_root_sem);
469 				goto next;
470 			}
471 
472 			ret = btrfs_next_leaf(extent_root, path);
473 			if (ret < 0)
474 				goto out;
475 			if (ret)
476 				break;
477 			leaf = path->nodes[0];
478 			nritems = btrfs_header_nritems(leaf);
479 			continue;
480 		}
481 
482 		if (key.objectid < last) {
483 			key.objectid = last;
484 			key.offset = 0;
485 			key.type = BTRFS_EXTENT_ITEM_KEY;
486 
487 			if (wakeup)
488 				caching_ctl->progress = last;
489 			btrfs_release_path(path);
490 			goto next;
491 		}
492 
493 		if (key.objectid < block_group->key.objectid) {
494 			path->slots[0]++;
495 			continue;
496 		}
497 
498 		if (key.objectid >= block_group->key.objectid +
499 		    block_group->key.offset)
500 			break;
501 
502 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 		    key.type == BTRFS_METADATA_ITEM_KEY) {
504 			total_found += add_new_free_space(block_group,
505 							  fs_info, last,
506 							  key.objectid);
507 			if (key.type == BTRFS_METADATA_ITEM_KEY)
508 				last = key.objectid +
509 					fs_info->nodesize;
510 			else
511 				last = key.objectid + key.offset;
512 
513 			if (total_found > CACHING_CTL_WAKE_UP) {
514 				total_found = 0;
515 				if (wakeup)
516 					wake_up(&caching_ctl->wait);
517 			}
518 		}
519 		path->slots[0]++;
520 	}
521 	ret = 0;
522 
523 	total_found += add_new_free_space(block_group, fs_info, last,
524 					  block_group->key.objectid +
525 					  block_group->key.offset);
526 	caching_ctl->progress = (u64)-1;
527 
528 out:
529 	btrfs_free_path(path);
530 	return ret;
531 }
532 
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535 	struct btrfs_block_group_cache *block_group;
536 	struct btrfs_fs_info *fs_info;
537 	struct btrfs_caching_control *caching_ctl;
538 	struct btrfs_root *extent_root;
539 	int ret;
540 
541 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 	block_group = caching_ctl->block_group;
543 	fs_info = block_group->fs_info;
544 	extent_root = fs_info->extent_root;
545 
546 	mutex_lock(&caching_ctl->mutex);
547 	down_read(&fs_info->commit_root_sem);
548 
549 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 		ret = load_free_space_tree(caching_ctl);
551 	else
552 		ret = load_extent_tree_free(caching_ctl);
553 
554 	spin_lock(&block_group->lock);
555 	block_group->caching_ctl = NULL;
556 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557 	spin_unlock(&block_group->lock);
558 
559 #ifdef CONFIG_BTRFS_DEBUG
560 	if (btrfs_should_fragment_free_space(block_group)) {
561 		u64 bytes_used;
562 
563 		spin_lock(&block_group->space_info->lock);
564 		spin_lock(&block_group->lock);
565 		bytes_used = block_group->key.offset -
566 			btrfs_block_group_used(&block_group->item);
567 		block_group->space_info->bytes_used += bytes_used >> 1;
568 		spin_unlock(&block_group->lock);
569 		spin_unlock(&block_group->space_info->lock);
570 		fragment_free_space(block_group);
571 	}
572 #endif
573 
574 	caching_ctl->progress = (u64)-1;
575 
576 	up_read(&fs_info->commit_root_sem);
577 	free_excluded_extents(fs_info, block_group);
578 	mutex_unlock(&caching_ctl->mutex);
579 
580 	wake_up(&caching_ctl->wait);
581 
582 	put_caching_control(caching_ctl);
583 	btrfs_put_block_group(block_group);
584 }
585 
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587 			     int load_cache_only)
588 {
589 	DEFINE_WAIT(wait);
590 	struct btrfs_fs_info *fs_info = cache->fs_info;
591 	struct btrfs_caching_control *caching_ctl;
592 	int ret = 0;
593 
594 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595 	if (!caching_ctl)
596 		return -ENOMEM;
597 
598 	INIT_LIST_HEAD(&caching_ctl->list);
599 	mutex_init(&caching_ctl->mutex);
600 	init_waitqueue_head(&caching_ctl->wait);
601 	caching_ctl->block_group = cache;
602 	caching_ctl->progress = cache->key.objectid;
603 	refcount_set(&caching_ctl->count, 1);
604 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 			caching_thread, NULL, NULL);
606 
607 	spin_lock(&cache->lock);
608 	/*
609 	 * This should be a rare occasion, but this could happen I think in the
610 	 * case where one thread starts to load the space cache info, and then
611 	 * some other thread starts a transaction commit which tries to do an
612 	 * allocation while the other thread is still loading the space cache
613 	 * info.  The previous loop should have kept us from choosing this block
614 	 * group, but if we've moved to the state where we will wait on caching
615 	 * block groups we need to first check if we're doing a fast load here,
616 	 * so we can wait for it to finish, otherwise we could end up allocating
617 	 * from a block group who's cache gets evicted for one reason or
618 	 * another.
619 	 */
620 	while (cache->cached == BTRFS_CACHE_FAST) {
621 		struct btrfs_caching_control *ctl;
622 
623 		ctl = cache->caching_ctl;
624 		refcount_inc(&ctl->count);
625 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 		spin_unlock(&cache->lock);
627 
628 		schedule();
629 
630 		finish_wait(&ctl->wait, &wait);
631 		put_caching_control(ctl);
632 		spin_lock(&cache->lock);
633 	}
634 
635 	if (cache->cached != BTRFS_CACHE_NO) {
636 		spin_unlock(&cache->lock);
637 		kfree(caching_ctl);
638 		return 0;
639 	}
640 	WARN_ON(cache->caching_ctl);
641 	cache->caching_ctl = caching_ctl;
642 	cache->cached = BTRFS_CACHE_FAST;
643 	spin_unlock(&cache->lock);
644 
645 	if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646 		mutex_lock(&caching_ctl->mutex);
647 		ret = load_free_space_cache(fs_info, cache);
648 
649 		spin_lock(&cache->lock);
650 		if (ret == 1) {
651 			cache->caching_ctl = NULL;
652 			cache->cached = BTRFS_CACHE_FINISHED;
653 			cache->last_byte_to_unpin = (u64)-1;
654 			caching_ctl->progress = (u64)-1;
655 		} else {
656 			if (load_cache_only) {
657 				cache->caching_ctl = NULL;
658 				cache->cached = BTRFS_CACHE_NO;
659 			} else {
660 				cache->cached = BTRFS_CACHE_STARTED;
661 				cache->has_caching_ctl = 1;
662 			}
663 		}
664 		spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666 		if (ret == 1 &&
667 		    btrfs_should_fragment_free_space(cache)) {
668 			u64 bytes_used;
669 
670 			spin_lock(&cache->space_info->lock);
671 			spin_lock(&cache->lock);
672 			bytes_used = cache->key.offset -
673 				btrfs_block_group_used(&cache->item);
674 			cache->space_info->bytes_used += bytes_used >> 1;
675 			spin_unlock(&cache->lock);
676 			spin_unlock(&cache->space_info->lock);
677 			fragment_free_space(cache);
678 		}
679 #endif
680 		mutex_unlock(&caching_ctl->mutex);
681 
682 		wake_up(&caching_ctl->wait);
683 		if (ret == 1) {
684 			put_caching_control(caching_ctl);
685 			free_excluded_extents(fs_info, cache);
686 			return 0;
687 		}
688 	} else {
689 		/*
690 		 * We're either using the free space tree or no caching at all.
691 		 * Set cached to the appropriate value and wakeup any waiters.
692 		 */
693 		spin_lock(&cache->lock);
694 		if (load_cache_only) {
695 			cache->caching_ctl = NULL;
696 			cache->cached = BTRFS_CACHE_NO;
697 		} else {
698 			cache->cached = BTRFS_CACHE_STARTED;
699 			cache->has_caching_ctl = 1;
700 		}
701 		spin_unlock(&cache->lock);
702 		wake_up(&caching_ctl->wait);
703 	}
704 
705 	if (load_cache_only) {
706 		put_caching_control(caching_ctl);
707 		return 0;
708 	}
709 
710 	down_write(&fs_info->commit_root_sem);
711 	refcount_inc(&caching_ctl->count);
712 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713 	up_write(&fs_info->commit_root_sem);
714 
715 	btrfs_get_block_group(cache);
716 
717 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718 
719 	return ret;
720 }
721 
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728 	return block_group_cache_tree_search(info, bytenr, 0);
729 }
730 
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 						 struct btrfs_fs_info *info,
736 						 u64 bytenr)
737 {
738 	return block_group_cache_tree_search(info, bytenr, 1);
739 }
740 
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 						  u64 flags)
743 {
744 	struct list_head *head = &info->space_info;
745 	struct btrfs_space_info *found;
746 
747 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748 
749 	rcu_read_lock();
750 	list_for_each_entry_rcu(found, head, list) {
751 		if (found->flags & flags) {
752 			rcu_read_unlock();
753 			return found;
754 		}
755 	}
756 	rcu_read_unlock();
757 	return NULL;
758 }
759 
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 			     u64 owner, u64 root_objectid)
762 {
763 	struct btrfs_space_info *space_info;
764 	u64 flags;
765 
766 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 		else
770 			flags = BTRFS_BLOCK_GROUP_METADATA;
771 	} else {
772 		flags = BTRFS_BLOCK_GROUP_DATA;
773 	}
774 
775 	space_info = __find_space_info(fs_info, flags);
776 	ASSERT(space_info);
777 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779 
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786 	struct list_head *head = &info->space_info;
787 	struct btrfs_space_info *found;
788 
789 	rcu_read_lock();
790 	list_for_each_entry_rcu(found, head, list)
791 		found->full = 0;
792 	rcu_read_unlock();
793 }
794 
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798 	int ret;
799 	struct btrfs_key key;
800 	struct btrfs_path *path;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 
806 	key.objectid = start;
807 	key.offset = len;
808 	key.type = BTRFS_EXTENT_ITEM_KEY;
809 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 	btrfs_free_path(path);
811 	return ret;
812 }
813 
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 			     struct btrfs_fs_info *fs_info, u64 bytenr,
825 			     u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827 	struct btrfs_delayed_ref_head *head;
828 	struct btrfs_delayed_ref_root *delayed_refs;
829 	struct btrfs_path *path;
830 	struct btrfs_extent_item *ei;
831 	struct extent_buffer *leaf;
832 	struct btrfs_key key;
833 	u32 item_size;
834 	u64 num_refs;
835 	u64 extent_flags;
836 	int ret;
837 
838 	/*
839 	 * If we don't have skinny metadata, don't bother doing anything
840 	 * different
841 	 */
842 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 		offset = fs_info->nodesize;
844 		metadata = 0;
845 	}
846 
847 	path = btrfs_alloc_path();
848 	if (!path)
849 		return -ENOMEM;
850 
851 	if (!trans) {
852 		path->skip_locking = 1;
853 		path->search_commit_root = 1;
854 	}
855 
856 search_again:
857 	key.objectid = bytenr;
858 	key.offset = offset;
859 	if (metadata)
860 		key.type = BTRFS_METADATA_ITEM_KEY;
861 	else
862 		key.type = BTRFS_EXTENT_ITEM_KEY;
863 
864 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 	if (ret < 0)
866 		goto out_free;
867 
868 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 		if (path->slots[0]) {
870 			path->slots[0]--;
871 			btrfs_item_key_to_cpu(path->nodes[0], &key,
872 					      path->slots[0]);
873 			if (key.objectid == bytenr &&
874 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
875 			    key.offset == fs_info->nodesize)
876 				ret = 0;
877 		}
878 	}
879 
880 	if (ret == 0) {
881 		leaf = path->nodes[0];
882 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 		if (item_size >= sizeof(*ei)) {
884 			ei = btrfs_item_ptr(leaf, path->slots[0],
885 					    struct btrfs_extent_item);
886 			num_refs = btrfs_extent_refs(leaf, ei);
887 			extent_flags = btrfs_extent_flags(leaf, ei);
888 		} else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 			struct btrfs_extent_item_v0 *ei0;
891 			BUG_ON(item_size != sizeof(*ei0));
892 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 					     struct btrfs_extent_item_v0);
894 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 			/* FIXME: this isn't correct for data */
896 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898 			BUG();
899 #endif
900 		}
901 		BUG_ON(num_refs == 0);
902 	} else {
903 		num_refs = 0;
904 		extent_flags = 0;
905 		ret = 0;
906 	}
907 
908 	if (!trans)
909 		goto out;
910 
911 	delayed_refs = &trans->transaction->delayed_refs;
912 	spin_lock(&delayed_refs->lock);
913 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914 	if (head) {
915 		if (!mutex_trylock(&head->mutex)) {
916 			refcount_inc(&head->refs);
917 			spin_unlock(&delayed_refs->lock);
918 
919 			btrfs_release_path(path);
920 
921 			/*
922 			 * Mutex was contended, block until it's released and try
923 			 * again
924 			 */
925 			mutex_lock(&head->mutex);
926 			mutex_unlock(&head->mutex);
927 			btrfs_put_delayed_ref_head(head);
928 			goto search_again;
929 		}
930 		spin_lock(&head->lock);
931 		if (head->extent_op && head->extent_op->update_flags)
932 			extent_flags |= head->extent_op->flags_to_set;
933 		else
934 			BUG_ON(num_refs == 0);
935 
936 		num_refs += head->ref_mod;
937 		spin_unlock(&head->lock);
938 		mutex_unlock(&head->mutex);
939 	}
940 	spin_unlock(&delayed_refs->lock);
941 out:
942 	WARN_ON(num_refs == 0);
943 	if (refs)
944 		*refs = num_refs;
945 	if (flags)
946 		*flags = extent_flags;
947 out_free:
948 	btrfs_free_path(path);
949 	return ret;
950 }
951 
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057 
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060 				  struct btrfs_fs_info *fs_info,
1061 				  struct btrfs_path *path,
1062 				  u64 owner, u32 extra_size)
1063 {
1064 	struct btrfs_root *root = fs_info->extent_root;
1065 	struct btrfs_extent_item *item;
1066 	struct btrfs_extent_item_v0 *ei0;
1067 	struct btrfs_extent_ref_v0 *ref0;
1068 	struct btrfs_tree_block_info *bi;
1069 	struct extent_buffer *leaf;
1070 	struct btrfs_key key;
1071 	struct btrfs_key found_key;
1072 	u32 new_size = sizeof(*item);
1073 	u64 refs;
1074 	int ret;
1075 
1076 	leaf = path->nodes[0];
1077 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078 
1079 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 			     struct btrfs_extent_item_v0);
1082 	refs = btrfs_extent_refs_v0(leaf, ei0);
1083 
1084 	if (owner == (u64)-1) {
1085 		while (1) {
1086 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 				ret = btrfs_next_leaf(root, path);
1088 				if (ret < 0)
1089 					return ret;
1090 				BUG_ON(ret > 0); /* Corruption */
1091 				leaf = path->nodes[0];
1092 			}
1093 			btrfs_item_key_to_cpu(leaf, &found_key,
1094 					      path->slots[0]);
1095 			BUG_ON(key.objectid != found_key.objectid);
1096 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 				path->slots[0]++;
1098 				continue;
1099 			}
1100 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 					      struct btrfs_extent_ref_v0);
1102 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 			break;
1104 		}
1105 	}
1106 	btrfs_release_path(path);
1107 
1108 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 		new_size += sizeof(*bi);
1110 
1111 	new_size -= sizeof(*ei0);
1112 	ret = btrfs_search_slot(trans, root, &key, path,
1113 				new_size + extra_size, 1);
1114 	if (ret < 0)
1115 		return ret;
1116 	BUG_ON(ret); /* Corruption */
1117 
1118 	btrfs_extend_item(fs_info, path, new_size);
1119 
1120 	leaf = path->nodes[0];
1121 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 	btrfs_set_extent_refs(leaf, item, refs);
1123 	/* FIXME: get real generation */
1124 	btrfs_set_extent_generation(leaf, item, 0);
1125 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 		btrfs_set_extent_flags(leaf, item,
1127 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 		bi = (struct btrfs_tree_block_info *)(item + 1);
1130 		/* FIXME: get first key of the block */
1131 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 	} else {
1134 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 	}
1136 	btrfs_mark_buffer_dirty(leaf);
1137 	return 0;
1138 }
1139 #endif
1140 
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 				     struct btrfs_extent_inline_ref *iref,
1148 				     enum btrfs_inline_ref_type is_data)
1149 {
1150 	int type = btrfs_extent_inline_ref_type(eb, iref);
1151 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152 
1153 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 	    type == BTRFS_SHARED_DATA_REF_KEY ||
1156 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159 				return type;
1160 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 				ASSERT(eb->fs_info);
1162 				/*
1163 				 * Every shared one has parent tree
1164 				 * block, which must be aligned to
1165 				 * nodesize.
1166 				 */
1167 				if (offset &&
1168 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 					return type;
1170 			}
1171 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
1172 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173 				return type;
1174 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 				ASSERT(eb->fs_info);
1176 				/*
1177 				 * Every shared one has parent tree
1178 				 * block, which must be aligned to
1179 				 * nodesize.
1180 				 */
1181 				if (offset &&
1182 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 					return type;
1184 			}
1185 		} else {
1186 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 			return type;
1188 		}
1189 	}
1190 
1191 	btrfs_print_leaf((struct extent_buffer *)eb);
1192 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 		  eb->start, type);
1194 	WARN_ON(1);
1195 
1196 	return BTRFS_REF_TYPE_INVALID;
1197 }
1198 
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201 	u32 high_crc = ~(u32)0;
1202 	u32 low_crc = ~(u32)0;
1203 	__le64 lenum;
1204 
1205 	lenum = cpu_to_le64(root_objectid);
1206 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207 	lenum = cpu_to_le64(owner);
1208 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209 	lenum = cpu_to_le64(offset);
1210 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211 
1212 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214 
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 				     struct btrfs_extent_data_ref *ref)
1217 {
1218 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 				    btrfs_extent_data_ref_objectid(leaf, ref),
1220 				    btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222 
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224 				 struct btrfs_extent_data_ref *ref,
1225 				 u64 root_objectid, u64 owner, u64 offset)
1226 {
1227 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 		return 0;
1231 	return 1;
1232 }
1233 
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235 					   struct btrfs_fs_info *fs_info,
1236 					   struct btrfs_path *path,
1237 					   u64 bytenr, u64 parent,
1238 					   u64 root_objectid,
1239 					   u64 owner, u64 offset)
1240 {
1241 	struct btrfs_root *root = fs_info->extent_root;
1242 	struct btrfs_key key;
1243 	struct btrfs_extent_data_ref *ref;
1244 	struct extent_buffer *leaf;
1245 	u32 nritems;
1246 	int ret;
1247 	int recow;
1248 	int err = -ENOENT;
1249 
1250 	key.objectid = bytenr;
1251 	if (parent) {
1252 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 		key.offset = parent;
1254 	} else {
1255 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 		key.offset = hash_extent_data_ref(root_objectid,
1257 						  owner, offset);
1258 	}
1259 again:
1260 	recow = 0;
1261 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 	if (ret < 0) {
1263 		err = ret;
1264 		goto fail;
1265 	}
1266 
1267 	if (parent) {
1268 		if (!ret)
1269 			return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1272 		btrfs_release_path(path);
1273 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 		if (ret < 0) {
1275 			err = ret;
1276 			goto fail;
1277 		}
1278 		if (!ret)
1279 			return 0;
1280 #endif
1281 		goto fail;
1282 	}
1283 
1284 	leaf = path->nodes[0];
1285 	nritems = btrfs_header_nritems(leaf);
1286 	while (1) {
1287 		if (path->slots[0] >= nritems) {
1288 			ret = btrfs_next_leaf(root, path);
1289 			if (ret < 0)
1290 				err = ret;
1291 			if (ret)
1292 				goto fail;
1293 
1294 			leaf = path->nodes[0];
1295 			nritems = btrfs_header_nritems(leaf);
1296 			recow = 1;
1297 		}
1298 
1299 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 		if (key.objectid != bytenr ||
1301 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 			goto fail;
1303 
1304 		ref = btrfs_item_ptr(leaf, path->slots[0],
1305 				     struct btrfs_extent_data_ref);
1306 
1307 		if (match_extent_data_ref(leaf, ref, root_objectid,
1308 					  owner, offset)) {
1309 			if (recow) {
1310 				btrfs_release_path(path);
1311 				goto again;
1312 			}
1313 			err = 0;
1314 			break;
1315 		}
1316 		path->slots[0]++;
1317 	}
1318 fail:
1319 	return err;
1320 }
1321 
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323 					   struct btrfs_fs_info *fs_info,
1324 					   struct btrfs_path *path,
1325 					   u64 bytenr, u64 parent,
1326 					   u64 root_objectid, u64 owner,
1327 					   u64 offset, int refs_to_add)
1328 {
1329 	struct btrfs_root *root = fs_info->extent_root;
1330 	struct btrfs_key key;
1331 	struct extent_buffer *leaf;
1332 	u32 size;
1333 	u32 num_refs;
1334 	int ret;
1335 
1336 	key.objectid = bytenr;
1337 	if (parent) {
1338 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 		key.offset = parent;
1340 		size = sizeof(struct btrfs_shared_data_ref);
1341 	} else {
1342 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 		key.offset = hash_extent_data_ref(root_objectid,
1344 						  owner, offset);
1345 		size = sizeof(struct btrfs_extent_data_ref);
1346 	}
1347 
1348 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 	if (ret && ret != -EEXIST)
1350 		goto fail;
1351 
1352 	leaf = path->nodes[0];
1353 	if (parent) {
1354 		struct btrfs_shared_data_ref *ref;
1355 		ref = btrfs_item_ptr(leaf, path->slots[0],
1356 				     struct btrfs_shared_data_ref);
1357 		if (ret == 0) {
1358 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 		} else {
1360 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 			num_refs += refs_to_add;
1362 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363 		}
1364 	} else {
1365 		struct btrfs_extent_data_ref *ref;
1366 		while (ret == -EEXIST) {
1367 			ref = btrfs_item_ptr(leaf, path->slots[0],
1368 					     struct btrfs_extent_data_ref);
1369 			if (match_extent_data_ref(leaf, ref, root_objectid,
1370 						  owner, offset))
1371 				break;
1372 			btrfs_release_path(path);
1373 			key.offset++;
1374 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 						      size);
1376 			if (ret && ret != -EEXIST)
1377 				goto fail;
1378 
1379 			leaf = path->nodes[0];
1380 		}
1381 		ref = btrfs_item_ptr(leaf, path->slots[0],
1382 				     struct btrfs_extent_data_ref);
1383 		if (ret == 0) {
1384 			btrfs_set_extent_data_ref_root(leaf, ref,
1385 						       root_objectid);
1386 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 		} else {
1390 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 			num_refs += refs_to_add;
1392 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393 		}
1394 	}
1395 	btrfs_mark_buffer_dirty(leaf);
1396 	ret = 0;
1397 fail:
1398 	btrfs_release_path(path);
1399 	return ret;
1400 }
1401 
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403 					   struct btrfs_fs_info *fs_info,
1404 					   struct btrfs_path *path,
1405 					   int refs_to_drop, int *last_ref)
1406 {
1407 	struct btrfs_key key;
1408 	struct btrfs_extent_data_ref *ref1 = NULL;
1409 	struct btrfs_shared_data_ref *ref2 = NULL;
1410 	struct extent_buffer *leaf;
1411 	u32 num_refs = 0;
1412 	int ret = 0;
1413 
1414 	leaf = path->nodes[0];
1415 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416 
1417 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 				      struct btrfs_extent_data_ref);
1420 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 				      struct btrfs_shared_data_ref);
1424 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 		struct btrfs_extent_ref_v0 *ref0;
1428 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 				      struct btrfs_extent_ref_v0);
1430 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432 	} else {
1433 		BUG();
1434 	}
1435 
1436 	BUG_ON(num_refs < refs_to_drop);
1437 	num_refs -= refs_to_drop;
1438 
1439 	if (num_refs == 0) {
1440 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441 		*last_ref = 1;
1442 	} else {
1443 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 		else {
1449 			struct btrfs_extent_ref_v0 *ref0;
1450 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 					struct btrfs_extent_ref_v0);
1452 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 		}
1454 #endif
1455 		btrfs_mark_buffer_dirty(leaf);
1456 	}
1457 	return ret;
1458 }
1459 
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461 					  struct btrfs_extent_inline_ref *iref)
1462 {
1463 	struct btrfs_key key;
1464 	struct extent_buffer *leaf;
1465 	struct btrfs_extent_data_ref *ref1;
1466 	struct btrfs_shared_data_ref *ref2;
1467 	u32 num_refs = 0;
1468 	int type;
1469 
1470 	leaf = path->nodes[0];
1471 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 	if (iref) {
1473 		/*
1474 		 * If type is invalid, we should have bailed out earlier than
1475 		 * this call.
1476 		 */
1477 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 		} else {
1483 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 		}
1486 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 				      struct btrfs_extent_data_ref);
1489 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 				      struct btrfs_shared_data_ref);
1493 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 		struct btrfs_extent_ref_v0 *ref0;
1497 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 				      struct btrfs_extent_ref_v0);
1499 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501 	} else {
1502 		WARN_ON(1);
1503 	}
1504 	return num_refs;
1505 }
1506 
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508 					  struct btrfs_fs_info *fs_info,
1509 					  struct btrfs_path *path,
1510 					  u64 bytenr, u64 parent,
1511 					  u64 root_objectid)
1512 {
1513 	struct btrfs_root *root = fs_info->extent_root;
1514 	struct btrfs_key key;
1515 	int ret;
1516 
1517 	key.objectid = bytenr;
1518 	if (parent) {
1519 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 		key.offset = parent;
1521 	} else {
1522 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 		key.offset = root_objectid;
1524 	}
1525 
1526 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 	if (ret > 0)
1528 		ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 	if (ret == -ENOENT && parent) {
1531 		btrfs_release_path(path);
1532 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 		if (ret > 0)
1535 			ret = -ENOENT;
1536 	}
1537 #endif
1538 	return ret;
1539 }
1540 
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542 					  struct btrfs_fs_info *fs_info,
1543 					  struct btrfs_path *path,
1544 					  u64 bytenr, u64 parent,
1545 					  u64 root_objectid)
1546 {
1547 	struct btrfs_key key;
1548 	int ret;
1549 
1550 	key.objectid = bytenr;
1551 	if (parent) {
1552 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 		key.offset = parent;
1554 	} else {
1555 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 		key.offset = root_objectid;
1557 	}
1558 
1559 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 				      path, &key, 0);
1561 	btrfs_release_path(path);
1562 	return ret;
1563 }
1564 
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567 	int type;
1568 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 		if (parent > 0)
1570 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 		else
1572 			type = BTRFS_TREE_BLOCK_REF_KEY;
1573 	} else {
1574 		if (parent > 0)
1575 			type = BTRFS_SHARED_DATA_REF_KEY;
1576 		else
1577 			type = BTRFS_EXTENT_DATA_REF_KEY;
1578 	}
1579 	return type;
1580 }
1581 
1582 static int find_next_key(struct btrfs_path *path, int level,
1583 			 struct btrfs_key *key)
1584 
1585 {
1586 	for (; level < BTRFS_MAX_LEVEL; level++) {
1587 		if (!path->nodes[level])
1588 			break;
1589 		if (path->slots[level] + 1 >=
1590 		    btrfs_header_nritems(path->nodes[level]))
1591 			continue;
1592 		if (level == 0)
1593 			btrfs_item_key_to_cpu(path->nodes[level], key,
1594 					      path->slots[level] + 1);
1595 		else
1596 			btrfs_node_key_to_cpu(path->nodes[level], key,
1597 					      path->slots[level] + 1);
1598 		return 0;
1599 	}
1600 	return 1;
1601 }
1602 
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *	 items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618 				 struct btrfs_fs_info *fs_info,
1619 				 struct btrfs_path *path,
1620 				 struct btrfs_extent_inline_ref **ref_ret,
1621 				 u64 bytenr, u64 num_bytes,
1622 				 u64 parent, u64 root_objectid,
1623 				 u64 owner, u64 offset, int insert)
1624 {
1625 	struct btrfs_root *root = fs_info->extent_root;
1626 	struct btrfs_key key;
1627 	struct extent_buffer *leaf;
1628 	struct btrfs_extent_item *ei;
1629 	struct btrfs_extent_inline_ref *iref;
1630 	u64 flags;
1631 	u64 item_size;
1632 	unsigned long ptr;
1633 	unsigned long end;
1634 	int extra_size;
1635 	int type;
1636 	int want;
1637 	int ret;
1638 	int err = 0;
1639 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640 	int needed;
1641 
1642 	key.objectid = bytenr;
1643 	key.type = BTRFS_EXTENT_ITEM_KEY;
1644 	key.offset = num_bytes;
1645 
1646 	want = extent_ref_type(parent, owner);
1647 	if (insert) {
1648 		extra_size = btrfs_extent_inline_ref_size(want);
1649 		path->keep_locks = 1;
1650 	} else
1651 		extra_size = -1;
1652 
1653 	/*
1654 	 * Owner is our parent level, so we can just add one to get the level
1655 	 * for the block we are interested in.
1656 	 */
1657 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 		key.type = BTRFS_METADATA_ITEM_KEY;
1659 		key.offset = owner;
1660 	}
1661 
1662 again:
1663 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664 	if (ret < 0) {
1665 		err = ret;
1666 		goto out;
1667 	}
1668 
1669 	/*
1670 	 * We may be a newly converted file system which still has the old fat
1671 	 * extent entries for metadata, so try and see if we have one of those.
1672 	 */
1673 	if (ret > 0 && skinny_metadata) {
1674 		skinny_metadata = false;
1675 		if (path->slots[0]) {
1676 			path->slots[0]--;
1677 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 					      path->slots[0]);
1679 			if (key.objectid == bytenr &&
1680 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 			    key.offset == num_bytes)
1682 				ret = 0;
1683 		}
1684 		if (ret) {
1685 			key.objectid = bytenr;
1686 			key.type = BTRFS_EXTENT_ITEM_KEY;
1687 			key.offset = num_bytes;
1688 			btrfs_release_path(path);
1689 			goto again;
1690 		}
1691 	}
1692 
1693 	if (ret && !insert) {
1694 		err = -ENOENT;
1695 		goto out;
1696 	} else if (WARN_ON(ret)) {
1697 		err = -EIO;
1698 		goto out;
1699 	}
1700 
1701 	leaf = path->nodes[0];
1702 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 	if (item_size < sizeof(*ei)) {
1705 		if (!insert) {
1706 			err = -ENOENT;
1707 			goto out;
1708 		}
1709 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710 					     extra_size);
1711 		if (ret < 0) {
1712 			err = ret;
1713 			goto out;
1714 		}
1715 		leaf = path->nodes[0];
1716 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 	}
1718 #endif
1719 	BUG_ON(item_size < sizeof(*ei));
1720 
1721 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 	flags = btrfs_extent_flags(leaf, ei);
1723 
1724 	ptr = (unsigned long)(ei + 1);
1725 	end = (unsigned long)ei + item_size;
1726 
1727 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728 		ptr += sizeof(struct btrfs_tree_block_info);
1729 		BUG_ON(ptr > end);
1730 	}
1731 
1732 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 		needed = BTRFS_REF_TYPE_DATA;
1734 	else
1735 		needed = BTRFS_REF_TYPE_BLOCK;
1736 
1737 	err = -ENOENT;
1738 	while (1) {
1739 		if (ptr >= end) {
1740 			WARN_ON(ptr > end);
1741 			break;
1742 		}
1743 		iref = (struct btrfs_extent_inline_ref *)ptr;
1744 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 		if (type == BTRFS_REF_TYPE_INVALID) {
1746 			err = -EINVAL;
1747 			goto out;
1748 		}
1749 
1750 		if (want < type)
1751 			break;
1752 		if (want > type) {
1753 			ptr += btrfs_extent_inline_ref_size(type);
1754 			continue;
1755 		}
1756 
1757 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 			struct btrfs_extent_data_ref *dref;
1759 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 			if (match_extent_data_ref(leaf, dref, root_objectid,
1761 						  owner, offset)) {
1762 				err = 0;
1763 				break;
1764 			}
1765 			if (hash_extent_data_ref_item(leaf, dref) <
1766 			    hash_extent_data_ref(root_objectid, owner, offset))
1767 				break;
1768 		} else {
1769 			u64 ref_offset;
1770 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 			if (parent > 0) {
1772 				if (parent == ref_offset) {
1773 					err = 0;
1774 					break;
1775 				}
1776 				if (ref_offset < parent)
1777 					break;
1778 			} else {
1779 				if (root_objectid == ref_offset) {
1780 					err = 0;
1781 					break;
1782 				}
1783 				if (ref_offset < root_objectid)
1784 					break;
1785 			}
1786 		}
1787 		ptr += btrfs_extent_inline_ref_size(type);
1788 	}
1789 	if (err == -ENOENT && insert) {
1790 		if (item_size + extra_size >=
1791 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 			err = -EAGAIN;
1793 			goto out;
1794 		}
1795 		/*
1796 		 * To add new inline back ref, we have to make sure
1797 		 * there is no corresponding back ref item.
1798 		 * For simplicity, we just do not add new inline back
1799 		 * ref if there is any kind of item for this block
1800 		 */
1801 		if (find_next_key(path, 0, &key) == 0 &&
1802 		    key.objectid == bytenr &&
1803 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804 			err = -EAGAIN;
1805 			goto out;
1806 		}
1807 	}
1808 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810 	if (insert) {
1811 		path->keep_locks = 0;
1812 		btrfs_unlock_up_safe(path, 1);
1813 	}
1814 	return err;
1815 }
1816 
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822 				 struct btrfs_path *path,
1823 				 struct btrfs_extent_inline_ref *iref,
1824 				 u64 parent, u64 root_objectid,
1825 				 u64 owner, u64 offset, int refs_to_add,
1826 				 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 	struct extent_buffer *leaf;
1829 	struct btrfs_extent_item *ei;
1830 	unsigned long ptr;
1831 	unsigned long end;
1832 	unsigned long item_offset;
1833 	u64 refs;
1834 	int size;
1835 	int type;
1836 
1837 	leaf = path->nodes[0];
1838 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 	item_offset = (unsigned long)iref - (unsigned long)ei;
1840 
1841 	type = extent_ref_type(parent, owner);
1842 	size = btrfs_extent_inline_ref_size(type);
1843 
1844 	btrfs_extend_item(fs_info, path, size);
1845 
1846 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 	refs = btrfs_extent_refs(leaf, ei);
1848 	refs += refs_to_add;
1849 	btrfs_set_extent_refs(leaf, ei, refs);
1850 	if (extent_op)
1851 		__run_delayed_extent_op(extent_op, leaf, ei);
1852 
1853 	ptr = (unsigned long)ei + item_offset;
1854 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 	if (ptr < end - size)
1856 		memmove_extent_buffer(leaf, ptr + size, ptr,
1857 				      end - size - ptr);
1858 
1859 	iref = (struct btrfs_extent_inline_ref *)ptr;
1860 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 		struct btrfs_extent_data_ref *dref;
1863 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 		struct btrfs_shared_data_ref *sref;
1870 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 	} else {
1876 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 	}
1878 	btrfs_mark_buffer_dirty(leaf);
1879 }
1880 
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882 				 struct btrfs_fs_info *fs_info,
1883 				 struct btrfs_path *path,
1884 				 struct btrfs_extent_inline_ref **ref_ret,
1885 				 u64 bytenr, u64 num_bytes, u64 parent,
1886 				 u64 root_objectid, u64 owner, u64 offset)
1887 {
1888 	int ret;
1889 
1890 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891 					   bytenr, num_bytes, parent,
1892 					   root_objectid, owner, offset, 0);
1893 	if (ret != -ENOENT)
1894 		return ret;
1895 
1896 	btrfs_release_path(path);
1897 	*ref_ret = NULL;
1898 
1899 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 					    parent, root_objectid);
1902 	} else {
1903 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 					     parent, root_objectid, owner,
1905 					     offset);
1906 	}
1907 	return ret;
1908 }
1909 
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915 				  struct btrfs_path *path,
1916 				  struct btrfs_extent_inline_ref *iref,
1917 				  int refs_to_mod,
1918 				  struct btrfs_delayed_extent_op *extent_op,
1919 				  int *last_ref)
1920 {
1921 	struct extent_buffer *leaf;
1922 	struct btrfs_extent_item *ei;
1923 	struct btrfs_extent_data_ref *dref = NULL;
1924 	struct btrfs_shared_data_ref *sref = NULL;
1925 	unsigned long ptr;
1926 	unsigned long end;
1927 	u32 item_size;
1928 	int size;
1929 	int type;
1930 	u64 refs;
1931 
1932 	leaf = path->nodes[0];
1933 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 	refs = btrfs_extent_refs(leaf, ei);
1935 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 	refs += refs_to_mod;
1937 	btrfs_set_extent_refs(leaf, ei, refs);
1938 	if (extent_op)
1939 		__run_delayed_extent_op(extent_op, leaf, ei);
1940 
1941 	/*
1942 	 * If type is invalid, we should have bailed out after
1943 	 * lookup_inline_extent_backref().
1944 	 */
1945 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947 
1948 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 		refs = btrfs_extent_data_ref_count(leaf, dref);
1951 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 		refs = btrfs_shared_data_ref_count(leaf, sref);
1954 	} else {
1955 		refs = 1;
1956 		BUG_ON(refs_to_mod != -1);
1957 	}
1958 
1959 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 	refs += refs_to_mod;
1961 
1962 	if (refs > 0) {
1963 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 		else
1966 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 	} else {
1968 		*last_ref = 1;
1969 		size =  btrfs_extent_inline_ref_size(type);
1970 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 		ptr = (unsigned long)iref;
1972 		end = (unsigned long)ei + item_size;
1973 		if (ptr + size < end)
1974 			memmove_extent_buffer(leaf, ptr, ptr + size,
1975 					      end - ptr - size);
1976 		item_size -= size;
1977 		btrfs_truncate_item(fs_info, path, item_size, 1);
1978 	}
1979 	btrfs_mark_buffer_dirty(leaf);
1980 }
1981 
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984 				 struct btrfs_fs_info *fs_info,
1985 				 struct btrfs_path *path,
1986 				 u64 bytenr, u64 num_bytes, u64 parent,
1987 				 u64 root_objectid, u64 owner,
1988 				 u64 offset, int refs_to_add,
1989 				 struct btrfs_delayed_extent_op *extent_op)
1990 {
1991 	struct btrfs_extent_inline_ref *iref;
1992 	int ret;
1993 
1994 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995 					   bytenr, num_bytes, parent,
1996 					   root_objectid, owner, offset, 1);
1997 	if (ret == 0) {
1998 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999 		update_inline_extent_backref(fs_info, path, iref,
2000 					     refs_to_add, extent_op, NULL);
2001 	} else if (ret == -ENOENT) {
2002 		setup_inline_extent_backref(fs_info, path, iref, parent,
2003 					    root_objectid, owner, offset,
2004 					    refs_to_add, extent_op);
2005 		ret = 0;
2006 	}
2007 	return ret;
2008 }
2009 
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011 				 struct btrfs_fs_info *fs_info,
2012 				 struct btrfs_path *path,
2013 				 u64 bytenr, u64 parent, u64 root_objectid,
2014 				 u64 owner, u64 offset, int refs_to_add)
2015 {
2016 	int ret;
2017 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 		BUG_ON(refs_to_add != 1);
2019 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020 					    parent, root_objectid);
2021 	} else {
2022 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023 					     parent, root_objectid,
2024 					     owner, offset, refs_to_add);
2025 	}
2026 	return ret;
2027 }
2028 
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030 				 struct btrfs_fs_info *fs_info,
2031 				 struct btrfs_path *path,
2032 				 struct btrfs_extent_inline_ref *iref,
2033 				 int refs_to_drop, int is_data, int *last_ref)
2034 {
2035 	int ret = 0;
2036 
2037 	BUG_ON(!is_data && refs_to_drop != 1);
2038 	if (iref) {
2039 		update_inline_extent_backref(fs_info, path, iref,
2040 					     -refs_to_drop, NULL, last_ref);
2041 	} else if (is_data) {
2042 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043 					     last_ref);
2044 	} else {
2045 		*last_ref = 1;
2046 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047 	}
2048 	return ret;
2049 }
2050 
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 			       u64 *discarded_bytes)
2054 {
2055 	int j, ret = 0;
2056 	u64 bytes_left, end;
2057 	u64 aligned_start = ALIGN(start, 1 << 9);
2058 
2059 	if (WARN_ON(start != aligned_start)) {
2060 		len -= aligned_start - start;
2061 		len = round_down(len, 1 << 9);
2062 		start = aligned_start;
2063 	}
2064 
2065 	*discarded_bytes = 0;
2066 
2067 	if (!len)
2068 		return 0;
2069 
2070 	end = start + len;
2071 	bytes_left = len;
2072 
2073 	/* Skip any superblocks on this device. */
2074 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 		u64 sb_start = btrfs_sb_offset(j);
2076 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 		u64 size = sb_start - start;
2078 
2079 		if (!in_range(sb_start, start, bytes_left) &&
2080 		    !in_range(sb_end, start, bytes_left) &&
2081 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 			continue;
2083 
2084 		/*
2085 		 * Superblock spans beginning of range.  Adjust start and
2086 		 * try again.
2087 		 */
2088 		if (sb_start <= start) {
2089 			start += sb_end - start;
2090 			if (start > end) {
2091 				bytes_left = 0;
2092 				break;
2093 			}
2094 			bytes_left = end - start;
2095 			continue;
2096 		}
2097 
2098 		if (size) {
2099 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 						   GFP_NOFS, 0);
2101 			if (!ret)
2102 				*discarded_bytes += size;
2103 			else if (ret != -EOPNOTSUPP)
2104 				return ret;
2105 		}
2106 
2107 		start = sb_end;
2108 		if (start > end) {
2109 			bytes_left = 0;
2110 			break;
2111 		}
2112 		bytes_left = end - start;
2113 	}
2114 
2115 	if (bytes_left) {
2116 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117 					   GFP_NOFS, 0);
2118 		if (!ret)
2119 			*discarded_bytes += bytes_left;
2120 	}
2121 	return ret;
2122 }
2123 
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125 			 u64 num_bytes, u64 *actual_bytes)
2126 {
2127 	int ret;
2128 	u64 discarded_bytes = 0;
2129 	struct btrfs_bio *bbio = NULL;
2130 
2131 
2132 	/*
2133 	 * Avoid races with device replace and make sure our bbio has devices
2134 	 * associated to its stripes that don't go away while we are discarding.
2135 	 */
2136 	btrfs_bio_counter_inc_blocked(fs_info);
2137 	/* Tell the block device(s) that the sectors can be discarded */
2138 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 			      &bbio, 0);
2140 	/* Error condition is -ENOMEM */
2141 	if (!ret) {
2142 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2143 		int i;
2144 
2145 
2146 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147 			u64 bytes;
2148 			struct request_queue *req_q;
2149 
2150 			if (!stripe->dev->bdev) {
2151 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2152 				continue;
2153 			}
2154 			req_q = bdev_get_queue(stripe->dev->bdev);
2155 			if (!blk_queue_discard(req_q))
2156 				continue;
2157 
2158 			ret = btrfs_issue_discard(stripe->dev->bdev,
2159 						  stripe->physical,
2160 						  stripe->length,
2161 						  &bytes);
2162 			if (!ret)
2163 				discarded_bytes += bytes;
2164 			else if (ret != -EOPNOTSUPP)
2165 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2166 
2167 			/*
2168 			 * Just in case we get back EOPNOTSUPP for some reason,
2169 			 * just ignore the return value so we don't screw up
2170 			 * people calling discard_extent.
2171 			 */
2172 			ret = 0;
2173 		}
2174 		btrfs_put_bbio(bbio);
2175 	}
2176 	btrfs_bio_counter_dec(fs_info);
2177 
2178 	if (actual_bytes)
2179 		*actual_bytes = discarded_bytes;
2180 
2181 
2182 	if (ret == -EOPNOTSUPP)
2183 		ret = 0;
2184 	return ret;
2185 }
2186 
2187 /* Can return -ENOMEM */
2188 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2189 			 struct btrfs_root *root,
2190 			 u64 bytenr, u64 num_bytes, u64 parent,
2191 			 u64 root_objectid, u64 owner, u64 offset)
2192 {
2193 	struct btrfs_fs_info *fs_info = root->fs_info;
2194 	int old_ref_mod, new_ref_mod;
2195 	int ret;
2196 
2197 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2198 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2199 
2200 	btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2201 			   owner, offset, BTRFS_ADD_DELAYED_REF);
2202 
2203 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2204 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2205 						 num_bytes, parent,
2206 						 root_objectid, (int)owner,
2207 						 BTRFS_ADD_DELAYED_REF, NULL,
2208 						 &old_ref_mod, &new_ref_mod);
2209 	} else {
2210 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2211 						 num_bytes, parent,
2212 						 root_objectid, owner, offset,
2213 						 0, BTRFS_ADD_DELAYED_REF,
2214 						 &old_ref_mod, &new_ref_mod);
2215 	}
2216 
2217 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2218 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2219 
2220 	return ret;
2221 }
2222 
2223 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2224 				  struct btrfs_fs_info *fs_info,
2225 				  struct btrfs_delayed_ref_node *node,
2226 				  u64 parent, u64 root_objectid,
2227 				  u64 owner, u64 offset, int refs_to_add,
2228 				  struct btrfs_delayed_extent_op *extent_op)
2229 {
2230 	struct btrfs_path *path;
2231 	struct extent_buffer *leaf;
2232 	struct btrfs_extent_item *item;
2233 	struct btrfs_key key;
2234 	u64 bytenr = node->bytenr;
2235 	u64 num_bytes = node->num_bytes;
2236 	u64 refs;
2237 	int ret;
2238 
2239 	path = btrfs_alloc_path();
2240 	if (!path)
2241 		return -ENOMEM;
2242 
2243 	path->reada = READA_FORWARD;
2244 	path->leave_spinning = 1;
2245 	/* this will setup the path even if it fails to insert the back ref */
2246 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2247 					   num_bytes, parent, root_objectid,
2248 					   owner, offset,
2249 					   refs_to_add, extent_op);
2250 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2251 		goto out;
2252 
2253 	/*
2254 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2255 	 * inline extent ref, so just update the reference count and add a
2256 	 * normal backref.
2257 	 */
2258 	leaf = path->nodes[0];
2259 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2260 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2261 	refs = btrfs_extent_refs(leaf, item);
2262 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263 	if (extent_op)
2264 		__run_delayed_extent_op(extent_op, leaf, item);
2265 
2266 	btrfs_mark_buffer_dirty(leaf);
2267 	btrfs_release_path(path);
2268 
2269 	path->reada = READA_FORWARD;
2270 	path->leave_spinning = 1;
2271 	/* now insert the actual backref */
2272 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2273 				    root_objectid, owner, offset, refs_to_add);
2274 	if (ret)
2275 		btrfs_abort_transaction(trans, ret);
2276 out:
2277 	btrfs_free_path(path);
2278 	return ret;
2279 }
2280 
2281 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2282 				struct btrfs_fs_info *fs_info,
2283 				struct btrfs_delayed_ref_node *node,
2284 				struct btrfs_delayed_extent_op *extent_op,
2285 				int insert_reserved)
2286 {
2287 	int ret = 0;
2288 	struct btrfs_delayed_data_ref *ref;
2289 	struct btrfs_key ins;
2290 	u64 parent = 0;
2291 	u64 ref_root = 0;
2292 	u64 flags = 0;
2293 
2294 	ins.objectid = node->bytenr;
2295 	ins.offset = node->num_bytes;
2296 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2297 
2298 	ref = btrfs_delayed_node_to_data_ref(node);
2299 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2300 
2301 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2302 		parent = ref->parent;
2303 	ref_root = ref->root;
2304 
2305 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2306 		if (extent_op)
2307 			flags |= extent_op->flags_to_set;
2308 		ret = alloc_reserved_file_extent(trans, fs_info,
2309 						 parent, ref_root, flags,
2310 						 ref->objectid, ref->offset,
2311 						 &ins, node->ref_mod);
2312 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2313 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2314 					     ref_root, ref->objectid,
2315 					     ref->offset, node->ref_mod,
2316 					     extent_op);
2317 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2318 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2319 					  ref_root, ref->objectid,
2320 					  ref->offset, node->ref_mod,
2321 					  extent_op);
2322 	} else {
2323 		BUG();
2324 	}
2325 	return ret;
2326 }
2327 
2328 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2329 				    struct extent_buffer *leaf,
2330 				    struct btrfs_extent_item *ei)
2331 {
2332 	u64 flags = btrfs_extent_flags(leaf, ei);
2333 	if (extent_op->update_flags) {
2334 		flags |= extent_op->flags_to_set;
2335 		btrfs_set_extent_flags(leaf, ei, flags);
2336 	}
2337 
2338 	if (extent_op->update_key) {
2339 		struct btrfs_tree_block_info *bi;
2340 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2341 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2342 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2343 	}
2344 }
2345 
2346 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2347 				 struct btrfs_fs_info *fs_info,
2348 				 struct btrfs_delayed_ref_head *head,
2349 				 struct btrfs_delayed_extent_op *extent_op)
2350 {
2351 	struct btrfs_key key;
2352 	struct btrfs_path *path;
2353 	struct btrfs_extent_item *ei;
2354 	struct extent_buffer *leaf;
2355 	u32 item_size;
2356 	int ret;
2357 	int err = 0;
2358 	int metadata = !extent_op->is_data;
2359 
2360 	if (trans->aborted)
2361 		return 0;
2362 
2363 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2364 		metadata = 0;
2365 
2366 	path = btrfs_alloc_path();
2367 	if (!path)
2368 		return -ENOMEM;
2369 
2370 	key.objectid = head->bytenr;
2371 
2372 	if (metadata) {
2373 		key.type = BTRFS_METADATA_ITEM_KEY;
2374 		key.offset = extent_op->level;
2375 	} else {
2376 		key.type = BTRFS_EXTENT_ITEM_KEY;
2377 		key.offset = head->num_bytes;
2378 	}
2379 
2380 again:
2381 	path->reada = READA_FORWARD;
2382 	path->leave_spinning = 1;
2383 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2384 	if (ret < 0) {
2385 		err = ret;
2386 		goto out;
2387 	}
2388 	if (ret > 0) {
2389 		if (metadata) {
2390 			if (path->slots[0] > 0) {
2391 				path->slots[0]--;
2392 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2393 						      path->slots[0]);
2394 				if (key.objectid == head->bytenr &&
2395 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2396 				    key.offset == head->num_bytes)
2397 					ret = 0;
2398 			}
2399 			if (ret > 0) {
2400 				btrfs_release_path(path);
2401 				metadata = 0;
2402 
2403 				key.objectid = head->bytenr;
2404 				key.offset = head->num_bytes;
2405 				key.type = BTRFS_EXTENT_ITEM_KEY;
2406 				goto again;
2407 			}
2408 		} else {
2409 			err = -EIO;
2410 			goto out;
2411 		}
2412 	}
2413 
2414 	leaf = path->nodes[0];
2415 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417 	if (item_size < sizeof(*ei)) {
2418 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2419 		if (ret < 0) {
2420 			err = ret;
2421 			goto out;
2422 		}
2423 		leaf = path->nodes[0];
2424 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2425 	}
2426 #endif
2427 	BUG_ON(item_size < sizeof(*ei));
2428 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429 	__run_delayed_extent_op(extent_op, leaf, ei);
2430 
2431 	btrfs_mark_buffer_dirty(leaf);
2432 out:
2433 	btrfs_free_path(path);
2434 	return err;
2435 }
2436 
2437 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2438 				struct btrfs_fs_info *fs_info,
2439 				struct btrfs_delayed_ref_node *node,
2440 				struct btrfs_delayed_extent_op *extent_op,
2441 				int insert_reserved)
2442 {
2443 	int ret = 0;
2444 	struct btrfs_delayed_tree_ref *ref;
2445 	struct btrfs_key ins;
2446 	u64 parent = 0;
2447 	u64 ref_root = 0;
2448 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2449 
2450 	ref = btrfs_delayed_node_to_tree_ref(node);
2451 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2452 
2453 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454 		parent = ref->parent;
2455 	ref_root = ref->root;
2456 
2457 	ins.objectid = node->bytenr;
2458 	if (skinny_metadata) {
2459 		ins.offset = ref->level;
2460 		ins.type = BTRFS_METADATA_ITEM_KEY;
2461 	} else {
2462 		ins.offset = node->num_bytes;
2463 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2464 	}
2465 
2466 	if (node->ref_mod != 1) {
2467 		btrfs_err(fs_info,
2468 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469 			  node->bytenr, node->ref_mod, node->action, ref_root,
2470 			  parent);
2471 		return -EIO;
2472 	}
2473 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2474 		BUG_ON(!extent_op || !extent_op->update_flags);
2475 		ret = alloc_reserved_tree_block(trans, fs_info,
2476 						parent, ref_root,
2477 						extent_op->flags_to_set,
2478 						&extent_op->key,
2479 						ref->level, &ins);
2480 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2481 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2482 					     parent, ref_root,
2483 					     ref->level, 0, 1,
2484 					     extent_op);
2485 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2486 		ret = __btrfs_free_extent(trans, fs_info, node,
2487 					  parent, ref_root,
2488 					  ref->level, 0, 1, extent_op);
2489 	} else {
2490 		BUG();
2491 	}
2492 	return ret;
2493 }
2494 
2495 /* helper function to actually process a single delayed ref entry */
2496 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2497 			       struct btrfs_fs_info *fs_info,
2498 			       struct btrfs_delayed_ref_node *node,
2499 			       struct btrfs_delayed_extent_op *extent_op,
2500 			       int insert_reserved)
2501 {
2502 	int ret = 0;
2503 
2504 	if (trans->aborted) {
2505 		if (insert_reserved)
2506 			btrfs_pin_extent(fs_info, node->bytenr,
2507 					 node->num_bytes, 1);
2508 		return 0;
2509 	}
2510 
2511 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2512 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2513 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2514 					   insert_reserved);
2515 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2516 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2517 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2518 					   insert_reserved);
2519 	else
2520 		BUG();
2521 	return ret;
2522 }
2523 
2524 static inline struct btrfs_delayed_ref_node *
2525 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2526 {
2527 	struct btrfs_delayed_ref_node *ref;
2528 
2529 	if (RB_EMPTY_ROOT(&head->ref_tree))
2530 		return NULL;
2531 
2532 	/*
2533 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534 	 * This is to prevent a ref count from going down to zero, which deletes
2535 	 * the extent item from the extent tree, when there still are references
2536 	 * to add, which would fail because they would not find the extent item.
2537 	 */
2538 	if (!list_empty(&head->ref_add_list))
2539 		return list_first_entry(&head->ref_add_list,
2540 				struct btrfs_delayed_ref_node, add_list);
2541 
2542 	ref = rb_entry(rb_first(&head->ref_tree),
2543 		       struct btrfs_delayed_ref_node, ref_node);
2544 	ASSERT(list_empty(&ref->add_list));
2545 	return ref;
2546 }
2547 
2548 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2549 				      struct btrfs_delayed_ref_head *head)
2550 {
2551 	spin_lock(&delayed_refs->lock);
2552 	head->processing = 0;
2553 	delayed_refs->num_heads_ready++;
2554 	spin_unlock(&delayed_refs->lock);
2555 	btrfs_delayed_ref_unlock(head);
2556 }
2557 
2558 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2559 			     struct btrfs_fs_info *fs_info,
2560 			     struct btrfs_delayed_ref_head *head)
2561 {
2562 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2563 	int ret;
2564 
2565 	if (!extent_op)
2566 		return 0;
2567 	head->extent_op = NULL;
2568 	if (head->must_insert_reserved) {
2569 		btrfs_free_delayed_extent_op(extent_op);
2570 		return 0;
2571 	}
2572 	spin_unlock(&head->lock);
2573 	ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2574 	btrfs_free_delayed_extent_op(extent_op);
2575 	return ret ? ret : 1;
2576 }
2577 
2578 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2579 			    struct btrfs_fs_info *fs_info,
2580 			    struct btrfs_delayed_ref_head *head)
2581 {
2582 	struct btrfs_delayed_ref_root *delayed_refs;
2583 	int ret;
2584 
2585 	delayed_refs = &trans->transaction->delayed_refs;
2586 
2587 	ret = cleanup_extent_op(trans, fs_info, head);
2588 	if (ret < 0) {
2589 		unselect_delayed_ref_head(delayed_refs, head);
2590 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 		return ret;
2592 	} else if (ret) {
2593 		return ret;
2594 	}
2595 
2596 	/*
2597 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
2598 	 * and then re-check to make sure nobody got added.
2599 	 */
2600 	spin_unlock(&head->lock);
2601 	spin_lock(&delayed_refs->lock);
2602 	spin_lock(&head->lock);
2603 	if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2604 		spin_unlock(&head->lock);
2605 		spin_unlock(&delayed_refs->lock);
2606 		return 1;
2607 	}
2608 	delayed_refs->num_heads--;
2609 	rb_erase(&head->href_node, &delayed_refs->href_root);
2610 	RB_CLEAR_NODE(&head->href_node);
2611 	spin_unlock(&delayed_refs->lock);
2612 	spin_unlock(&head->lock);
2613 	atomic_dec(&delayed_refs->num_entries);
2614 
2615 	trace_run_delayed_ref_head(fs_info, head, 0);
2616 
2617 	if (head->total_ref_mod < 0) {
2618 		struct btrfs_block_group_cache *cache;
2619 
2620 		cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2621 		ASSERT(cache);
2622 		percpu_counter_add(&cache->space_info->total_bytes_pinned,
2623 				   -head->num_bytes);
2624 		btrfs_put_block_group(cache);
2625 
2626 		if (head->is_data) {
2627 			spin_lock(&delayed_refs->lock);
2628 			delayed_refs->pending_csums -= head->num_bytes;
2629 			spin_unlock(&delayed_refs->lock);
2630 		}
2631 	}
2632 
2633 	if (head->must_insert_reserved) {
2634 		btrfs_pin_extent(fs_info, head->bytenr,
2635 				 head->num_bytes, 1);
2636 		if (head->is_data) {
2637 			ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2638 					      head->num_bytes);
2639 		}
2640 	}
2641 
2642 	/* Also free its reserved qgroup space */
2643 	btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2644 				      head->qgroup_reserved);
2645 	btrfs_delayed_ref_unlock(head);
2646 	btrfs_put_delayed_ref_head(head);
2647 	return 0;
2648 }
2649 
2650 /*
2651  * Returns 0 on success or if called with an already aborted transaction.
2652  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2653  */
2654 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2655 					     struct btrfs_fs_info *fs_info,
2656 					     unsigned long nr)
2657 {
2658 	struct btrfs_delayed_ref_root *delayed_refs;
2659 	struct btrfs_delayed_ref_node *ref;
2660 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2661 	struct btrfs_delayed_extent_op *extent_op;
2662 	ktime_t start = ktime_get();
2663 	int ret;
2664 	unsigned long count = 0;
2665 	unsigned long actual_count = 0;
2666 	int must_insert_reserved = 0;
2667 
2668 	delayed_refs = &trans->transaction->delayed_refs;
2669 	while (1) {
2670 		if (!locked_ref) {
2671 			if (count >= nr)
2672 				break;
2673 
2674 			spin_lock(&delayed_refs->lock);
2675 			locked_ref = btrfs_select_ref_head(trans);
2676 			if (!locked_ref) {
2677 				spin_unlock(&delayed_refs->lock);
2678 				break;
2679 			}
2680 
2681 			/* grab the lock that says we are going to process
2682 			 * all the refs for this head */
2683 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2684 			spin_unlock(&delayed_refs->lock);
2685 			/*
2686 			 * we may have dropped the spin lock to get the head
2687 			 * mutex lock, and that might have given someone else
2688 			 * time to free the head.  If that's true, it has been
2689 			 * removed from our list and we can move on.
2690 			 */
2691 			if (ret == -EAGAIN) {
2692 				locked_ref = NULL;
2693 				count++;
2694 				continue;
2695 			}
2696 		}
2697 
2698 		/*
2699 		 * We need to try and merge add/drops of the same ref since we
2700 		 * can run into issues with relocate dropping the implicit ref
2701 		 * and then it being added back again before the drop can
2702 		 * finish.  If we merged anything we need to re-loop so we can
2703 		 * get a good ref.
2704 		 * Or we can get node references of the same type that weren't
2705 		 * merged when created due to bumps in the tree mod seq, and
2706 		 * we need to merge them to prevent adding an inline extent
2707 		 * backref before dropping it (triggering a BUG_ON at
2708 		 * insert_inline_extent_backref()).
2709 		 */
2710 		spin_lock(&locked_ref->lock);
2711 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2712 					 locked_ref);
2713 
2714 		/*
2715 		 * locked_ref is the head node, so we have to go one
2716 		 * node back for any delayed ref updates
2717 		 */
2718 		ref = select_delayed_ref(locked_ref);
2719 
2720 		if (ref && ref->seq &&
2721 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2722 			spin_unlock(&locked_ref->lock);
2723 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2724 			locked_ref = NULL;
2725 			cond_resched();
2726 			count++;
2727 			continue;
2728 		}
2729 
2730 		/*
2731 		 * We're done processing refs in this ref_head, clean everything
2732 		 * up and move on to the next ref_head.
2733 		 */
2734 		if (!ref) {
2735 			ret = cleanup_ref_head(trans, fs_info, locked_ref);
2736 			if (ret > 0 ) {
2737 				/* We dropped our lock, we need to loop. */
2738 				ret = 0;
2739 				continue;
2740 			} else if (ret) {
2741 				return ret;
2742 			}
2743 			locked_ref = NULL;
2744 			count++;
2745 			continue;
2746 		}
2747 
2748 		actual_count++;
2749 		ref->in_tree = 0;
2750 		rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2751 		RB_CLEAR_NODE(&ref->ref_node);
2752 		if (!list_empty(&ref->add_list))
2753 			list_del(&ref->add_list);
2754 		/*
2755 		 * When we play the delayed ref, also correct the ref_mod on
2756 		 * head
2757 		 */
2758 		switch (ref->action) {
2759 		case BTRFS_ADD_DELAYED_REF:
2760 		case BTRFS_ADD_DELAYED_EXTENT:
2761 			locked_ref->ref_mod -= ref->ref_mod;
2762 			break;
2763 		case BTRFS_DROP_DELAYED_REF:
2764 			locked_ref->ref_mod += ref->ref_mod;
2765 			break;
2766 		default:
2767 			WARN_ON(1);
2768 		}
2769 		atomic_dec(&delayed_refs->num_entries);
2770 
2771 		/*
2772 		 * Record the must-insert_reserved flag before we drop the spin
2773 		 * lock.
2774 		 */
2775 		must_insert_reserved = locked_ref->must_insert_reserved;
2776 		locked_ref->must_insert_reserved = 0;
2777 
2778 		extent_op = locked_ref->extent_op;
2779 		locked_ref->extent_op = NULL;
2780 		spin_unlock(&locked_ref->lock);
2781 
2782 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2783 					  must_insert_reserved);
2784 
2785 		btrfs_free_delayed_extent_op(extent_op);
2786 		if (ret) {
2787 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2788 			btrfs_put_delayed_ref(ref);
2789 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2790 				    ret);
2791 			return ret;
2792 		}
2793 
2794 		btrfs_put_delayed_ref(ref);
2795 		count++;
2796 		cond_resched();
2797 	}
2798 
2799 	/*
2800 	 * We don't want to include ref heads since we can have empty ref heads
2801 	 * and those will drastically skew our runtime down since we just do
2802 	 * accounting, no actual extent tree updates.
2803 	 */
2804 	if (actual_count > 0) {
2805 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2806 		u64 avg;
2807 
2808 		/*
2809 		 * We weigh the current average higher than our current runtime
2810 		 * to avoid large swings in the average.
2811 		 */
2812 		spin_lock(&delayed_refs->lock);
2813 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2814 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2815 		spin_unlock(&delayed_refs->lock);
2816 	}
2817 	return 0;
2818 }
2819 
2820 #ifdef SCRAMBLE_DELAYED_REFS
2821 /*
2822  * Normally delayed refs get processed in ascending bytenr order. This
2823  * correlates in most cases to the order added. To expose dependencies on this
2824  * order, we start to process the tree in the middle instead of the beginning
2825  */
2826 static u64 find_middle(struct rb_root *root)
2827 {
2828 	struct rb_node *n = root->rb_node;
2829 	struct btrfs_delayed_ref_node *entry;
2830 	int alt = 1;
2831 	u64 middle;
2832 	u64 first = 0, last = 0;
2833 
2834 	n = rb_first(root);
2835 	if (n) {
2836 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837 		first = entry->bytenr;
2838 	}
2839 	n = rb_last(root);
2840 	if (n) {
2841 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842 		last = entry->bytenr;
2843 	}
2844 	n = root->rb_node;
2845 
2846 	while (n) {
2847 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848 		WARN_ON(!entry->in_tree);
2849 
2850 		middle = entry->bytenr;
2851 
2852 		if (alt)
2853 			n = n->rb_left;
2854 		else
2855 			n = n->rb_right;
2856 
2857 		alt = 1 - alt;
2858 	}
2859 	return middle;
2860 }
2861 #endif
2862 
2863 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2864 {
2865 	u64 num_bytes;
2866 
2867 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2868 			     sizeof(struct btrfs_extent_inline_ref));
2869 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2870 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2871 
2872 	/*
2873 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2874 	 * closer to what we're really going to want to use.
2875 	 */
2876 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2877 }
2878 
2879 /*
2880  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881  * would require to store the csums for that many bytes.
2882  */
2883 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2884 {
2885 	u64 csum_size;
2886 	u64 num_csums_per_leaf;
2887 	u64 num_csums;
2888 
2889 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2890 	num_csums_per_leaf = div64_u64(csum_size,
2891 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2892 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2893 	num_csums += num_csums_per_leaf - 1;
2894 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2895 	return num_csums;
2896 }
2897 
2898 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2899 				       struct btrfs_fs_info *fs_info)
2900 {
2901 	struct btrfs_block_rsv *global_rsv;
2902 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2903 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2904 	unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2905 	u64 num_bytes, num_dirty_bgs_bytes;
2906 	int ret = 0;
2907 
2908 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2909 	num_heads = heads_to_leaves(fs_info, num_heads);
2910 	if (num_heads > 1)
2911 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2912 	num_bytes <<= 1;
2913 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2914 							fs_info->nodesize;
2915 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2916 							     num_dirty_bgs);
2917 	global_rsv = &fs_info->global_block_rsv;
2918 
2919 	/*
2920 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2921 	 * wiggle room since running delayed refs can create more delayed refs.
2922 	 */
2923 	if (global_rsv->space_info->full) {
2924 		num_dirty_bgs_bytes <<= 1;
2925 		num_bytes <<= 1;
2926 	}
2927 
2928 	spin_lock(&global_rsv->lock);
2929 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2930 		ret = 1;
2931 	spin_unlock(&global_rsv->lock);
2932 	return ret;
2933 }
2934 
2935 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2936 				       struct btrfs_fs_info *fs_info)
2937 {
2938 	u64 num_entries =
2939 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2940 	u64 avg_runtime;
2941 	u64 val;
2942 
2943 	smp_mb();
2944 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2945 	val = num_entries * avg_runtime;
2946 	if (val >= NSEC_PER_SEC)
2947 		return 1;
2948 	if (val >= NSEC_PER_SEC / 2)
2949 		return 2;
2950 
2951 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2952 }
2953 
2954 struct async_delayed_refs {
2955 	struct btrfs_root *root;
2956 	u64 transid;
2957 	int count;
2958 	int error;
2959 	int sync;
2960 	struct completion wait;
2961 	struct btrfs_work work;
2962 };
2963 
2964 static inline struct async_delayed_refs *
2965 to_async_delayed_refs(struct btrfs_work *work)
2966 {
2967 	return container_of(work, struct async_delayed_refs, work);
2968 }
2969 
2970 static void delayed_ref_async_start(struct btrfs_work *work)
2971 {
2972 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2973 	struct btrfs_trans_handle *trans;
2974 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2975 	int ret;
2976 
2977 	/* if the commit is already started, we don't need to wait here */
2978 	if (btrfs_transaction_blocked(fs_info))
2979 		goto done;
2980 
2981 	trans = btrfs_join_transaction(async->root);
2982 	if (IS_ERR(trans)) {
2983 		async->error = PTR_ERR(trans);
2984 		goto done;
2985 	}
2986 
2987 	/*
2988 	 * trans->sync means that when we call end_transaction, we won't
2989 	 * wait on delayed refs
2990 	 */
2991 	trans->sync = true;
2992 
2993 	/* Don't bother flushing if we got into a different transaction */
2994 	if (trans->transid > async->transid)
2995 		goto end;
2996 
2997 	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2998 	if (ret)
2999 		async->error = ret;
3000 end:
3001 	ret = btrfs_end_transaction(trans);
3002 	if (ret && !async->error)
3003 		async->error = ret;
3004 done:
3005 	if (async->sync)
3006 		complete(&async->wait);
3007 	else
3008 		kfree(async);
3009 }
3010 
3011 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3012 				 unsigned long count, u64 transid, int wait)
3013 {
3014 	struct async_delayed_refs *async;
3015 	int ret;
3016 
3017 	async = kmalloc(sizeof(*async), GFP_NOFS);
3018 	if (!async)
3019 		return -ENOMEM;
3020 
3021 	async->root = fs_info->tree_root;
3022 	async->count = count;
3023 	async->error = 0;
3024 	async->transid = transid;
3025 	if (wait)
3026 		async->sync = 1;
3027 	else
3028 		async->sync = 0;
3029 	init_completion(&async->wait);
3030 
3031 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3032 			delayed_ref_async_start, NULL, NULL);
3033 
3034 	btrfs_queue_work(fs_info->extent_workers, &async->work);
3035 
3036 	if (wait) {
3037 		wait_for_completion(&async->wait);
3038 		ret = async->error;
3039 		kfree(async);
3040 		return ret;
3041 	}
3042 	return 0;
3043 }
3044 
3045 /*
3046  * this starts processing the delayed reference count updates and
3047  * extent insertions we have queued up so far.  count can be
3048  * 0, which means to process everything in the tree at the start
3049  * of the run (but not newly added entries), or it can be some target
3050  * number you'd like to process.
3051  *
3052  * Returns 0 on success or if called with an aborted transaction
3053  * Returns <0 on error and aborts the transaction
3054  */
3055 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3056 			   struct btrfs_fs_info *fs_info, unsigned long count)
3057 {
3058 	struct rb_node *node;
3059 	struct btrfs_delayed_ref_root *delayed_refs;
3060 	struct btrfs_delayed_ref_head *head;
3061 	int ret;
3062 	int run_all = count == (unsigned long)-1;
3063 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3064 
3065 	/* We'll clean this up in btrfs_cleanup_transaction */
3066 	if (trans->aborted)
3067 		return 0;
3068 
3069 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3070 		return 0;
3071 
3072 	delayed_refs = &trans->transaction->delayed_refs;
3073 	if (count == 0)
3074 		count = atomic_read(&delayed_refs->num_entries) * 2;
3075 
3076 again:
3077 #ifdef SCRAMBLE_DELAYED_REFS
3078 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3079 #endif
3080 	trans->can_flush_pending_bgs = false;
3081 	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3082 	if (ret < 0) {
3083 		btrfs_abort_transaction(trans, ret);
3084 		return ret;
3085 	}
3086 
3087 	if (run_all) {
3088 		if (!list_empty(&trans->new_bgs))
3089 			btrfs_create_pending_block_groups(trans, fs_info);
3090 
3091 		spin_lock(&delayed_refs->lock);
3092 		node = rb_first(&delayed_refs->href_root);
3093 		if (!node) {
3094 			spin_unlock(&delayed_refs->lock);
3095 			goto out;
3096 		}
3097 		head = rb_entry(node, struct btrfs_delayed_ref_head,
3098 				href_node);
3099 		refcount_inc(&head->refs);
3100 		spin_unlock(&delayed_refs->lock);
3101 
3102 		/* Mutex was contended, block until it's released and retry. */
3103 		mutex_lock(&head->mutex);
3104 		mutex_unlock(&head->mutex);
3105 
3106 		btrfs_put_delayed_ref_head(head);
3107 		cond_resched();
3108 		goto again;
3109 	}
3110 out:
3111 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3112 	return 0;
3113 }
3114 
3115 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3116 				struct btrfs_fs_info *fs_info,
3117 				u64 bytenr, u64 num_bytes, u64 flags,
3118 				int level, int is_data)
3119 {
3120 	struct btrfs_delayed_extent_op *extent_op;
3121 	int ret;
3122 
3123 	extent_op = btrfs_alloc_delayed_extent_op();
3124 	if (!extent_op)
3125 		return -ENOMEM;
3126 
3127 	extent_op->flags_to_set = flags;
3128 	extent_op->update_flags = true;
3129 	extent_op->update_key = false;
3130 	extent_op->is_data = is_data ? true : false;
3131 	extent_op->level = level;
3132 
3133 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3134 					  num_bytes, extent_op);
3135 	if (ret)
3136 		btrfs_free_delayed_extent_op(extent_op);
3137 	return ret;
3138 }
3139 
3140 static noinline int check_delayed_ref(struct btrfs_root *root,
3141 				      struct btrfs_path *path,
3142 				      u64 objectid, u64 offset, u64 bytenr)
3143 {
3144 	struct btrfs_delayed_ref_head *head;
3145 	struct btrfs_delayed_ref_node *ref;
3146 	struct btrfs_delayed_data_ref *data_ref;
3147 	struct btrfs_delayed_ref_root *delayed_refs;
3148 	struct btrfs_transaction *cur_trans;
3149 	struct rb_node *node;
3150 	int ret = 0;
3151 
3152 	cur_trans = root->fs_info->running_transaction;
3153 	if (!cur_trans)
3154 		return 0;
3155 
3156 	delayed_refs = &cur_trans->delayed_refs;
3157 	spin_lock(&delayed_refs->lock);
3158 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3159 	if (!head) {
3160 		spin_unlock(&delayed_refs->lock);
3161 		return 0;
3162 	}
3163 
3164 	if (!mutex_trylock(&head->mutex)) {
3165 		refcount_inc(&head->refs);
3166 		spin_unlock(&delayed_refs->lock);
3167 
3168 		btrfs_release_path(path);
3169 
3170 		/*
3171 		 * Mutex was contended, block until it's released and let
3172 		 * caller try again
3173 		 */
3174 		mutex_lock(&head->mutex);
3175 		mutex_unlock(&head->mutex);
3176 		btrfs_put_delayed_ref_head(head);
3177 		return -EAGAIN;
3178 	}
3179 	spin_unlock(&delayed_refs->lock);
3180 
3181 	spin_lock(&head->lock);
3182 	/*
3183 	 * XXX: We should replace this with a proper search function in the
3184 	 * future.
3185 	 */
3186 	for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3187 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3188 		/* If it's a shared ref we know a cross reference exists */
3189 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3190 			ret = 1;
3191 			break;
3192 		}
3193 
3194 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3195 
3196 		/*
3197 		 * If our ref doesn't match the one we're currently looking at
3198 		 * then we have a cross reference.
3199 		 */
3200 		if (data_ref->root != root->root_key.objectid ||
3201 		    data_ref->objectid != objectid ||
3202 		    data_ref->offset != offset) {
3203 			ret = 1;
3204 			break;
3205 		}
3206 	}
3207 	spin_unlock(&head->lock);
3208 	mutex_unlock(&head->mutex);
3209 	return ret;
3210 }
3211 
3212 static noinline int check_committed_ref(struct btrfs_root *root,
3213 					struct btrfs_path *path,
3214 					u64 objectid, u64 offset, u64 bytenr)
3215 {
3216 	struct btrfs_fs_info *fs_info = root->fs_info;
3217 	struct btrfs_root *extent_root = fs_info->extent_root;
3218 	struct extent_buffer *leaf;
3219 	struct btrfs_extent_data_ref *ref;
3220 	struct btrfs_extent_inline_ref *iref;
3221 	struct btrfs_extent_item *ei;
3222 	struct btrfs_key key;
3223 	u32 item_size;
3224 	int type;
3225 	int ret;
3226 
3227 	key.objectid = bytenr;
3228 	key.offset = (u64)-1;
3229 	key.type = BTRFS_EXTENT_ITEM_KEY;
3230 
3231 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232 	if (ret < 0)
3233 		goto out;
3234 	BUG_ON(ret == 0); /* Corruption */
3235 
3236 	ret = -ENOENT;
3237 	if (path->slots[0] == 0)
3238 		goto out;
3239 
3240 	path->slots[0]--;
3241 	leaf = path->nodes[0];
3242 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3243 
3244 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3245 		goto out;
3246 
3247 	ret = 1;
3248 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 	if (item_size < sizeof(*ei)) {
3251 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252 		goto out;
3253 	}
3254 #endif
3255 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3256 
3257 	if (item_size != sizeof(*ei) +
3258 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259 		goto out;
3260 
3261 	if (btrfs_extent_generation(leaf, ei) <=
3262 	    btrfs_root_last_snapshot(&root->root_item))
3263 		goto out;
3264 
3265 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3266 
3267 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
3269 		goto out;
3270 
3271 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272 	if (btrfs_extent_refs(leaf, ei) !=
3273 	    btrfs_extent_data_ref_count(leaf, ref) ||
3274 	    btrfs_extent_data_ref_root(leaf, ref) !=
3275 	    root->root_key.objectid ||
3276 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278 		goto out;
3279 
3280 	ret = 0;
3281 out:
3282 	return ret;
3283 }
3284 
3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286 			  u64 bytenr)
3287 {
3288 	struct btrfs_path *path;
3289 	int ret;
3290 	int ret2;
3291 
3292 	path = btrfs_alloc_path();
3293 	if (!path)
3294 		return -ENOENT;
3295 
3296 	do {
3297 		ret = check_committed_ref(root, path, objectid,
3298 					  offset, bytenr);
3299 		if (ret && ret != -ENOENT)
3300 			goto out;
3301 
3302 		ret2 = check_delayed_ref(root, path, objectid,
3303 					 offset, bytenr);
3304 	} while (ret2 == -EAGAIN);
3305 
3306 	if (ret2 && ret2 != -ENOENT) {
3307 		ret = ret2;
3308 		goto out;
3309 	}
3310 
3311 	if (ret != -ENOENT || ret2 != -ENOENT)
3312 		ret = 0;
3313 out:
3314 	btrfs_free_path(path);
3315 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316 		WARN_ON(ret > 0);
3317 	return ret;
3318 }
3319 
3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3321 			   struct btrfs_root *root,
3322 			   struct extent_buffer *buf,
3323 			   int full_backref, int inc)
3324 {
3325 	struct btrfs_fs_info *fs_info = root->fs_info;
3326 	u64 bytenr;
3327 	u64 num_bytes;
3328 	u64 parent;
3329 	u64 ref_root;
3330 	u32 nritems;
3331 	struct btrfs_key key;
3332 	struct btrfs_file_extent_item *fi;
3333 	int i;
3334 	int level;
3335 	int ret = 0;
3336 	int (*process_func)(struct btrfs_trans_handle *,
3337 			    struct btrfs_root *,
3338 			    u64, u64, u64, u64, u64, u64);
3339 
3340 
3341 	if (btrfs_is_testing(fs_info))
3342 		return 0;
3343 
3344 	ref_root = btrfs_header_owner(buf);
3345 	nritems = btrfs_header_nritems(buf);
3346 	level = btrfs_header_level(buf);
3347 
3348 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3349 		return 0;
3350 
3351 	if (inc)
3352 		process_func = btrfs_inc_extent_ref;
3353 	else
3354 		process_func = btrfs_free_extent;
3355 
3356 	if (full_backref)
3357 		parent = buf->start;
3358 	else
3359 		parent = 0;
3360 
3361 	for (i = 0; i < nritems; i++) {
3362 		if (level == 0) {
3363 			btrfs_item_key_to_cpu(buf, &key, i);
3364 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3365 				continue;
3366 			fi = btrfs_item_ptr(buf, i,
3367 					    struct btrfs_file_extent_item);
3368 			if (btrfs_file_extent_type(buf, fi) ==
3369 			    BTRFS_FILE_EXTENT_INLINE)
3370 				continue;
3371 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372 			if (bytenr == 0)
3373 				continue;
3374 
3375 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376 			key.offset -= btrfs_file_extent_offset(buf, fi);
3377 			ret = process_func(trans, root, bytenr, num_bytes,
3378 					   parent, ref_root, key.objectid,
3379 					   key.offset);
3380 			if (ret)
3381 				goto fail;
3382 		} else {
3383 			bytenr = btrfs_node_blockptr(buf, i);
3384 			num_bytes = fs_info->nodesize;
3385 			ret = process_func(trans, root, bytenr, num_bytes,
3386 					   parent, ref_root, level - 1, 0);
3387 			if (ret)
3388 				goto fail;
3389 		}
3390 	}
3391 	return 0;
3392 fail:
3393 	return ret;
3394 }
3395 
3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3397 		  struct extent_buffer *buf, int full_backref)
3398 {
3399 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3400 }
3401 
3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403 		  struct extent_buffer *buf, int full_backref)
3404 {
3405 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3406 }
3407 
3408 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3409 				 struct btrfs_fs_info *fs_info,
3410 				 struct btrfs_path *path,
3411 				 struct btrfs_block_group_cache *cache)
3412 {
3413 	int ret;
3414 	struct btrfs_root *extent_root = fs_info->extent_root;
3415 	unsigned long bi;
3416 	struct extent_buffer *leaf;
3417 
3418 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3419 	if (ret) {
3420 		if (ret > 0)
3421 			ret = -ENOENT;
3422 		goto fail;
3423 	}
3424 
3425 	leaf = path->nodes[0];
3426 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428 	btrfs_mark_buffer_dirty(leaf);
3429 fail:
3430 	btrfs_release_path(path);
3431 	return ret;
3432 
3433 }
3434 
3435 static struct btrfs_block_group_cache *
3436 next_block_group(struct btrfs_fs_info *fs_info,
3437 		 struct btrfs_block_group_cache *cache)
3438 {
3439 	struct rb_node *node;
3440 
3441 	spin_lock(&fs_info->block_group_cache_lock);
3442 
3443 	/* If our block group was removed, we need a full search. */
3444 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3445 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446 
3447 		spin_unlock(&fs_info->block_group_cache_lock);
3448 		btrfs_put_block_group(cache);
3449 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3450 	}
3451 	node = rb_next(&cache->cache_node);
3452 	btrfs_put_block_group(cache);
3453 	if (node) {
3454 		cache = rb_entry(node, struct btrfs_block_group_cache,
3455 				 cache_node);
3456 		btrfs_get_block_group(cache);
3457 	} else
3458 		cache = NULL;
3459 	spin_unlock(&fs_info->block_group_cache_lock);
3460 	return cache;
3461 }
3462 
3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464 			    struct btrfs_trans_handle *trans,
3465 			    struct btrfs_path *path)
3466 {
3467 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3468 	struct btrfs_root *root = fs_info->tree_root;
3469 	struct inode *inode = NULL;
3470 	struct extent_changeset *data_reserved = NULL;
3471 	u64 alloc_hint = 0;
3472 	int dcs = BTRFS_DC_ERROR;
3473 	u64 num_pages = 0;
3474 	int retries = 0;
3475 	int ret = 0;
3476 
3477 	/*
3478 	 * If this block group is smaller than 100 megs don't bother caching the
3479 	 * block group.
3480 	 */
3481 	if (block_group->key.offset < (100 * SZ_1M)) {
3482 		spin_lock(&block_group->lock);
3483 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484 		spin_unlock(&block_group->lock);
3485 		return 0;
3486 	}
3487 
3488 	if (trans->aborted)
3489 		return 0;
3490 again:
3491 	inode = lookup_free_space_inode(fs_info, block_group, path);
3492 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493 		ret = PTR_ERR(inode);
3494 		btrfs_release_path(path);
3495 		goto out;
3496 	}
3497 
3498 	if (IS_ERR(inode)) {
3499 		BUG_ON(retries);
3500 		retries++;
3501 
3502 		if (block_group->ro)
3503 			goto out_free;
3504 
3505 		ret = create_free_space_inode(fs_info, trans, block_group,
3506 					      path);
3507 		if (ret)
3508 			goto out_free;
3509 		goto again;
3510 	}
3511 
3512 	/*
3513 	 * We want to set the generation to 0, that way if anything goes wrong
3514 	 * from here on out we know not to trust this cache when we load up next
3515 	 * time.
3516 	 */
3517 	BTRFS_I(inode)->generation = 0;
3518 	ret = btrfs_update_inode(trans, root, inode);
3519 	if (ret) {
3520 		/*
3521 		 * So theoretically we could recover from this, simply set the
3522 		 * super cache generation to 0 so we know to invalidate the
3523 		 * cache, but then we'd have to keep track of the block groups
3524 		 * that fail this way so we know we _have_ to reset this cache
3525 		 * before the next commit or risk reading stale cache.  So to
3526 		 * limit our exposure to horrible edge cases lets just abort the
3527 		 * transaction, this only happens in really bad situations
3528 		 * anyway.
3529 		 */
3530 		btrfs_abort_transaction(trans, ret);
3531 		goto out_put;
3532 	}
3533 	WARN_ON(ret);
3534 
3535 	/* We've already setup this transaction, go ahead and exit */
3536 	if (block_group->cache_generation == trans->transid &&
3537 	    i_size_read(inode)) {
3538 		dcs = BTRFS_DC_SETUP;
3539 		goto out_put;
3540 	}
3541 
3542 	if (i_size_read(inode) > 0) {
3543 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3544 					&fs_info->global_block_rsv);
3545 		if (ret)
3546 			goto out_put;
3547 
3548 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3549 		if (ret)
3550 			goto out_put;
3551 	}
3552 
3553 	spin_lock(&block_group->lock);
3554 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3555 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3556 		/*
3557 		 * don't bother trying to write stuff out _if_
3558 		 * a) we're not cached,
3559 		 * b) we're with nospace_cache mount option,
3560 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3561 		 */
3562 		dcs = BTRFS_DC_WRITTEN;
3563 		spin_unlock(&block_group->lock);
3564 		goto out_put;
3565 	}
3566 	spin_unlock(&block_group->lock);
3567 
3568 	/*
3569 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 	 * skip doing the setup, we've already cleared the cache so we're safe.
3571 	 */
3572 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573 		ret = -ENOSPC;
3574 		goto out_put;
3575 	}
3576 
3577 	/*
3578 	 * Try to preallocate enough space based on how big the block group is.
3579 	 * Keep in mind this has to include any pinned space which could end up
3580 	 * taking up quite a bit since it's not folded into the other space
3581 	 * cache.
3582 	 */
3583 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3584 	if (!num_pages)
3585 		num_pages = 1;
3586 
3587 	num_pages *= 16;
3588 	num_pages *= PAGE_SIZE;
3589 
3590 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3591 	if (ret)
3592 		goto out_put;
3593 
3594 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595 					      num_pages, num_pages,
3596 					      &alloc_hint);
3597 	/*
3598 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 	 * of metadata or split extents when writing the cache out, which means
3600 	 * we can enospc if we are heavily fragmented in addition to just normal
3601 	 * out of space conditions.  So if we hit this just skip setting up any
3602 	 * other block groups for this transaction, maybe we'll unpin enough
3603 	 * space the next time around.
3604 	 */
3605 	if (!ret)
3606 		dcs = BTRFS_DC_SETUP;
3607 	else if (ret == -ENOSPC)
3608 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3609 
3610 out_put:
3611 	iput(inode);
3612 out_free:
3613 	btrfs_release_path(path);
3614 out:
3615 	spin_lock(&block_group->lock);
3616 	if (!ret && dcs == BTRFS_DC_SETUP)
3617 		block_group->cache_generation = trans->transid;
3618 	block_group->disk_cache_state = dcs;
3619 	spin_unlock(&block_group->lock);
3620 
3621 	extent_changeset_free(data_reserved);
3622 	return ret;
3623 }
3624 
3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3626 			    struct btrfs_fs_info *fs_info)
3627 {
3628 	struct btrfs_block_group_cache *cache, *tmp;
3629 	struct btrfs_transaction *cur_trans = trans->transaction;
3630 	struct btrfs_path *path;
3631 
3632 	if (list_empty(&cur_trans->dirty_bgs) ||
3633 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3634 		return 0;
3635 
3636 	path = btrfs_alloc_path();
3637 	if (!path)
3638 		return -ENOMEM;
3639 
3640 	/* Could add new block groups, use _safe just in case */
3641 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642 				 dirty_list) {
3643 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644 			cache_save_setup(cache, trans, path);
3645 	}
3646 
3647 	btrfs_free_path(path);
3648 	return 0;
3649 }
3650 
3651 /*
3652  * transaction commit does final block group cache writeback during a
3653  * critical section where nothing is allowed to change the FS.  This is
3654  * required in order for the cache to actually match the block group,
3655  * but can introduce a lot of latency into the commit.
3656  *
3657  * So, btrfs_start_dirty_block_groups is here to kick off block group
3658  * cache IO.  There's a chance we'll have to redo some of it if the
3659  * block group changes again during the commit, but it greatly reduces
3660  * the commit latency by getting rid of the easy block groups while
3661  * we're still allowing others to join the commit.
3662  */
3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3664 				   struct btrfs_fs_info *fs_info)
3665 {
3666 	struct btrfs_block_group_cache *cache;
3667 	struct btrfs_transaction *cur_trans = trans->transaction;
3668 	int ret = 0;
3669 	int should_put;
3670 	struct btrfs_path *path = NULL;
3671 	LIST_HEAD(dirty);
3672 	struct list_head *io = &cur_trans->io_bgs;
3673 	int num_started = 0;
3674 	int loops = 0;
3675 
3676 	spin_lock(&cur_trans->dirty_bgs_lock);
3677 	if (list_empty(&cur_trans->dirty_bgs)) {
3678 		spin_unlock(&cur_trans->dirty_bgs_lock);
3679 		return 0;
3680 	}
3681 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682 	spin_unlock(&cur_trans->dirty_bgs_lock);
3683 
3684 again:
3685 	/*
3686 	 * make sure all the block groups on our dirty list actually
3687 	 * exist
3688 	 */
3689 	btrfs_create_pending_block_groups(trans, fs_info);
3690 
3691 	if (!path) {
3692 		path = btrfs_alloc_path();
3693 		if (!path)
3694 			return -ENOMEM;
3695 	}
3696 
3697 	/*
3698 	 * cache_write_mutex is here only to save us from balance or automatic
3699 	 * removal of empty block groups deleting this block group while we are
3700 	 * writing out the cache
3701 	 */
3702 	mutex_lock(&trans->transaction->cache_write_mutex);
3703 	while (!list_empty(&dirty)) {
3704 		cache = list_first_entry(&dirty,
3705 					 struct btrfs_block_group_cache,
3706 					 dirty_list);
3707 		/*
3708 		 * this can happen if something re-dirties a block
3709 		 * group that is already under IO.  Just wait for it to
3710 		 * finish and then do it all again
3711 		 */
3712 		if (!list_empty(&cache->io_list)) {
3713 			list_del_init(&cache->io_list);
3714 			btrfs_wait_cache_io(trans, cache, path);
3715 			btrfs_put_block_group(cache);
3716 		}
3717 
3718 
3719 		/*
3720 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 		 * if it should update the cache_state.  Don't delete
3722 		 * until after we wait.
3723 		 *
3724 		 * Since we're not running in the commit critical section
3725 		 * we need the dirty_bgs_lock to protect from update_block_group
3726 		 */
3727 		spin_lock(&cur_trans->dirty_bgs_lock);
3728 		list_del_init(&cache->dirty_list);
3729 		spin_unlock(&cur_trans->dirty_bgs_lock);
3730 
3731 		should_put = 1;
3732 
3733 		cache_save_setup(cache, trans, path);
3734 
3735 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 			cache->io_ctl.inode = NULL;
3737 			ret = btrfs_write_out_cache(fs_info, trans,
3738 						    cache, path);
3739 			if (ret == 0 && cache->io_ctl.inode) {
3740 				num_started++;
3741 				should_put = 0;
3742 
3743 				/*
3744 				 * the cache_write_mutex is protecting
3745 				 * the io_list
3746 				 */
3747 				list_add_tail(&cache->io_list, io);
3748 			} else {
3749 				/*
3750 				 * if we failed to write the cache, the
3751 				 * generation will be bad and life goes on
3752 				 */
3753 				ret = 0;
3754 			}
3755 		}
3756 		if (!ret) {
3757 			ret = write_one_cache_group(trans, fs_info,
3758 						    path, cache);
3759 			/*
3760 			 * Our block group might still be attached to the list
3761 			 * of new block groups in the transaction handle of some
3762 			 * other task (struct btrfs_trans_handle->new_bgs). This
3763 			 * means its block group item isn't yet in the extent
3764 			 * tree. If this happens ignore the error, as we will
3765 			 * try again later in the critical section of the
3766 			 * transaction commit.
3767 			 */
3768 			if (ret == -ENOENT) {
3769 				ret = 0;
3770 				spin_lock(&cur_trans->dirty_bgs_lock);
3771 				if (list_empty(&cache->dirty_list)) {
3772 					list_add_tail(&cache->dirty_list,
3773 						      &cur_trans->dirty_bgs);
3774 					btrfs_get_block_group(cache);
3775 				}
3776 				spin_unlock(&cur_trans->dirty_bgs_lock);
3777 			} else if (ret) {
3778 				btrfs_abort_transaction(trans, ret);
3779 			}
3780 		}
3781 
3782 		/* if its not on the io list, we need to put the block group */
3783 		if (should_put)
3784 			btrfs_put_block_group(cache);
3785 
3786 		if (ret)
3787 			break;
3788 
3789 		/*
3790 		 * Avoid blocking other tasks for too long. It might even save
3791 		 * us from writing caches for block groups that are going to be
3792 		 * removed.
3793 		 */
3794 		mutex_unlock(&trans->transaction->cache_write_mutex);
3795 		mutex_lock(&trans->transaction->cache_write_mutex);
3796 	}
3797 	mutex_unlock(&trans->transaction->cache_write_mutex);
3798 
3799 	/*
3800 	 * go through delayed refs for all the stuff we've just kicked off
3801 	 * and then loop back (just once)
3802 	 */
3803 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3804 	if (!ret && loops == 0) {
3805 		loops++;
3806 		spin_lock(&cur_trans->dirty_bgs_lock);
3807 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3808 		/*
3809 		 * dirty_bgs_lock protects us from concurrent block group
3810 		 * deletes too (not just cache_write_mutex).
3811 		 */
3812 		if (!list_empty(&dirty)) {
3813 			spin_unlock(&cur_trans->dirty_bgs_lock);
3814 			goto again;
3815 		}
3816 		spin_unlock(&cur_trans->dirty_bgs_lock);
3817 	} else if (ret < 0) {
3818 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3819 	}
3820 
3821 	btrfs_free_path(path);
3822 	return ret;
3823 }
3824 
3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3826 				   struct btrfs_fs_info *fs_info)
3827 {
3828 	struct btrfs_block_group_cache *cache;
3829 	struct btrfs_transaction *cur_trans = trans->transaction;
3830 	int ret = 0;
3831 	int should_put;
3832 	struct btrfs_path *path;
3833 	struct list_head *io = &cur_trans->io_bgs;
3834 	int num_started = 0;
3835 
3836 	path = btrfs_alloc_path();
3837 	if (!path)
3838 		return -ENOMEM;
3839 
3840 	/*
3841 	 * Even though we are in the critical section of the transaction commit,
3842 	 * we can still have concurrent tasks adding elements to this
3843 	 * transaction's list of dirty block groups. These tasks correspond to
3844 	 * endio free space workers started when writeback finishes for a
3845 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3846 	 * allocate new block groups as a result of COWing nodes of the root
3847 	 * tree when updating the free space inode. The writeback for the space
3848 	 * caches is triggered by an earlier call to
3849 	 * btrfs_start_dirty_block_groups() and iterations of the following
3850 	 * loop.
3851 	 * Also we want to do the cache_save_setup first and then run the
3852 	 * delayed refs to make sure we have the best chance at doing this all
3853 	 * in one shot.
3854 	 */
3855 	spin_lock(&cur_trans->dirty_bgs_lock);
3856 	while (!list_empty(&cur_trans->dirty_bgs)) {
3857 		cache = list_first_entry(&cur_trans->dirty_bgs,
3858 					 struct btrfs_block_group_cache,
3859 					 dirty_list);
3860 
3861 		/*
3862 		 * this can happen if cache_save_setup re-dirties a block
3863 		 * group that is already under IO.  Just wait for it to
3864 		 * finish and then do it all again
3865 		 */
3866 		if (!list_empty(&cache->io_list)) {
3867 			spin_unlock(&cur_trans->dirty_bgs_lock);
3868 			list_del_init(&cache->io_list);
3869 			btrfs_wait_cache_io(trans, cache, path);
3870 			btrfs_put_block_group(cache);
3871 			spin_lock(&cur_trans->dirty_bgs_lock);
3872 		}
3873 
3874 		/*
3875 		 * don't remove from the dirty list until after we've waited
3876 		 * on any pending IO
3877 		 */
3878 		list_del_init(&cache->dirty_list);
3879 		spin_unlock(&cur_trans->dirty_bgs_lock);
3880 		should_put = 1;
3881 
3882 		cache_save_setup(cache, trans, path);
3883 
3884 		if (!ret)
3885 			ret = btrfs_run_delayed_refs(trans, fs_info,
3886 						     (unsigned long) -1);
3887 
3888 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3889 			cache->io_ctl.inode = NULL;
3890 			ret = btrfs_write_out_cache(fs_info, trans,
3891 						    cache, path);
3892 			if (ret == 0 && cache->io_ctl.inode) {
3893 				num_started++;
3894 				should_put = 0;
3895 				list_add_tail(&cache->io_list, io);
3896 			} else {
3897 				/*
3898 				 * if we failed to write the cache, the
3899 				 * generation will be bad and life goes on
3900 				 */
3901 				ret = 0;
3902 			}
3903 		}
3904 		if (!ret) {
3905 			ret = write_one_cache_group(trans, fs_info,
3906 						    path, cache);
3907 			/*
3908 			 * One of the free space endio workers might have
3909 			 * created a new block group while updating a free space
3910 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3911 			 * and hasn't released its transaction handle yet, in
3912 			 * which case the new block group is still attached to
3913 			 * its transaction handle and its creation has not
3914 			 * finished yet (no block group item in the extent tree
3915 			 * yet, etc). If this is the case, wait for all free
3916 			 * space endio workers to finish and retry. This is a
3917 			 * a very rare case so no need for a more efficient and
3918 			 * complex approach.
3919 			 */
3920 			if (ret == -ENOENT) {
3921 				wait_event(cur_trans->writer_wait,
3922 				   atomic_read(&cur_trans->num_writers) == 1);
3923 				ret = write_one_cache_group(trans, fs_info,
3924 							    path, cache);
3925 			}
3926 			if (ret)
3927 				btrfs_abort_transaction(trans, ret);
3928 		}
3929 
3930 		/* if its not on the io list, we need to put the block group */
3931 		if (should_put)
3932 			btrfs_put_block_group(cache);
3933 		spin_lock(&cur_trans->dirty_bgs_lock);
3934 	}
3935 	spin_unlock(&cur_trans->dirty_bgs_lock);
3936 
3937 	while (!list_empty(io)) {
3938 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3939 					 io_list);
3940 		list_del_init(&cache->io_list);
3941 		btrfs_wait_cache_io(trans, cache, path);
3942 		btrfs_put_block_group(cache);
3943 	}
3944 
3945 	btrfs_free_path(path);
3946 	return ret;
3947 }
3948 
3949 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3950 {
3951 	struct btrfs_block_group_cache *block_group;
3952 	int readonly = 0;
3953 
3954 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3955 	if (!block_group || block_group->ro)
3956 		readonly = 1;
3957 	if (block_group)
3958 		btrfs_put_block_group(block_group);
3959 	return readonly;
3960 }
3961 
3962 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3963 {
3964 	struct btrfs_block_group_cache *bg;
3965 	bool ret = true;
3966 
3967 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3968 	if (!bg)
3969 		return false;
3970 
3971 	spin_lock(&bg->lock);
3972 	if (bg->ro)
3973 		ret = false;
3974 	else
3975 		atomic_inc(&bg->nocow_writers);
3976 	spin_unlock(&bg->lock);
3977 
3978 	/* no put on block group, done by btrfs_dec_nocow_writers */
3979 	if (!ret)
3980 		btrfs_put_block_group(bg);
3981 
3982 	return ret;
3983 
3984 }
3985 
3986 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3987 {
3988 	struct btrfs_block_group_cache *bg;
3989 
3990 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3991 	ASSERT(bg);
3992 	if (atomic_dec_and_test(&bg->nocow_writers))
3993 		wake_up_var(&bg->nocow_writers);
3994 	/*
3995 	 * Once for our lookup and once for the lookup done by a previous call
3996 	 * to btrfs_inc_nocow_writers()
3997 	 */
3998 	btrfs_put_block_group(bg);
3999 	btrfs_put_block_group(bg);
4000 }
4001 
4002 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4003 {
4004 	wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
4005 }
4006 
4007 static const char *alloc_name(u64 flags)
4008 {
4009 	switch (flags) {
4010 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4011 		return "mixed";
4012 	case BTRFS_BLOCK_GROUP_METADATA:
4013 		return "metadata";
4014 	case BTRFS_BLOCK_GROUP_DATA:
4015 		return "data";
4016 	case BTRFS_BLOCK_GROUP_SYSTEM:
4017 		return "system";
4018 	default:
4019 		WARN_ON(1);
4020 		return "invalid-combination";
4021 	};
4022 }
4023 
4024 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4025 			     struct btrfs_space_info **new)
4026 {
4027 
4028 	struct btrfs_space_info *space_info;
4029 	int i;
4030 	int ret;
4031 
4032 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4033 	if (!space_info)
4034 		return -ENOMEM;
4035 
4036 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4037 				 GFP_KERNEL);
4038 	if (ret) {
4039 		kfree(space_info);
4040 		return ret;
4041 	}
4042 
4043 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4044 		INIT_LIST_HEAD(&space_info->block_groups[i]);
4045 	init_rwsem(&space_info->groups_sem);
4046 	spin_lock_init(&space_info->lock);
4047 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4048 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4049 	init_waitqueue_head(&space_info->wait);
4050 	INIT_LIST_HEAD(&space_info->ro_bgs);
4051 	INIT_LIST_HEAD(&space_info->tickets);
4052 	INIT_LIST_HEAD(&space_info->priority_tickets);
4053 
4054 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4055 				    info->space_info_kobj, "%s",
4056 				    alloc_name(space_info->flags));
4057 	if (ret) {
4058 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4059 		kfree(space_info);
4060 		return ret;
4061 	}
4062 
4063 	*new = space_info;
4064 	list_add_rcu(&space_info->list, &info->space_info);
4065 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4066 		info->data_sinfo = space_info;
4067 
4068 	return ret;
4069 }
4070 
4071 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4072 			     u64 total_bytes, u64 bytes_used,
4073 			     u64 bytes_readonly,
4074 			     struct btrfs_space_info **space_info)
4075 {
4076 	struct btrfs_space_info *found;
4077 	int factor;
4078 
4079 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4080 		     BTRFS_BLOCK_GROUP_RAID10))
4081 		factor = 2;
4082 	else
4083 		factor = 1;
4084 
4085 	found = __find_space_info(info, flags);
4086 	ASSERT(found);
4087 	spin_lock(&found->lock);
4088 	found->total_bytes += total_bytes;
4089 	found->disk_total += total_bytes * factor;
4090 	found->bytes_used += bytes_used;
4091 	found->disk_used += bytes_used * factor;
4092 	found->bytes_readonly += bytes_readonly;
4093 	if (total_bytes > 0)
4094 		found->full = 0;
4095 	space_info_add_new_bytes(info, found, total_bytes -
4096 				 bytes_used - bytes_readonly);
4097 	spin_unlock(&found->lock);
4098 	*space_info = found;
4099 }
4100 
4101 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4102 {
4103 	u64 extra_flags = chunk_to_extended(flags) &
4104 				BTRFS_EXTENDED_PROFILE_MASK;
4105 
4106 	write_seqlock(&fs_info->profiles_lock);
4107 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4108 		fs_info->avail_data_alloc_bits |= extra_flags;
4109 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4110 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4111 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4112 		fs_info->avail_system_alloc_bits |= extra_flags;
4113 	write_sequnlock(&fs_info->profiles_lock);
4114 }
4115 
4116 /*
4117  * returns target flags in extended format or 0 if restripe for this
4118  * chunk_type is not in progress
4119  *
4120  * should be called with either volume_mutex or balance_lock held
4121  */
4122 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4123 {
4124 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4125 	u64 target = 0;
4126 
4127 	if (!bctl)
4128 		return 0;
4129 
4130 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4131 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4133 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4134 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4135 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4136 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4137 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4138 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4139 	}
4140 
4141 	return target;
4142 }
4143 
4144 /*
4145  * @flags: available profiles in extended format (see ctree.h)
4146  *
4147  * Returns reduced profile in chunk format.  If profile changing is in
4148  * progress (either running or paused) picks the target profile (if it's
4149  * already available), otherwise falls back to plain reducing.
4150  */
4151 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4152 {
4153 	u64 num_devices = fs_info->fs_devices->rw_devices;
4154 	u64 target;
4155 	u64 raid_type;
4156 	u64 allowed = 0;
4157 
4158 	/*
4159 	 * see if restripe for this chunk_type is in progress, if so
4160 	 * try to reduce to the target profile
4161 	 */
4162 	spin_lock(&fs_info->balance_lock);
4163 	target = get_restripe_target(fs_info, flags);
4164 	if (target) {
4165 		/* pick target profile only if it's already available */
4166 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4167 			spin_unlock(&fs_info->balance_lock);
4168 			return extended_to_chunk(target);
4169 		}
4170 	}
4171 	spin_unlock(&fs_info->balance_lock);
4172 
4173 	/* First, mask out the RAID levels which aren't possible */
4174 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4175 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4176 			allowed |= btrfs_raid_group[raid_type];
4177 	}
4178 	allowed &= flags;
4179 
4180 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4181 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4182 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4183 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4184 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4185 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4186 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4187 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4188 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4189 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4190 
4191 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4192 
4193 	return extended_to_chunk(flags | allowed);
4194 }
4195 
4196 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4197 {
4198 	unsigned seq;
4199 	u64 flags;
4200 
4201 	do {
4202 		flags = orig_flags;
4203 		seq = read_seqbegin(&fs_info->profiles_lock);
4204 
4205 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4206 			flags |= fs_info->avail_data_alloc_bits;
4207 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4208 			flags |= fs_info->avail_system_alloc_bits;
4209 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4210 			flags |= fs_info->avail_metadata_alloc_bits;
4211 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4212 
4213 	return btrfs_reduce_alloc_profile(fs_info, flags);
4214 }
4215 
4216 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4217 {
4218 	struct btrfs_fs_info *fs_info = root->fs_info;
4219 	u64 flags;
4220 	u64 ret;
4221 
4222 	if (data)
4223 		flags = BTRFS_BLOCK_GROUP_DATA;
4224 	else if (root == fs_info->chunk_root)
4225 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4226 	else
4227 		flags = BTRFS_BLOCK_GROUP_METADATA;
4228 
4229 	ret = get_alloc_profile(fs_info, flags);
4230 	return ret;
4231 }
4232 
4233 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4234 {
4235 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4236 }
4237 
4238 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4239 {
4240 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4241 }
4242 
4243 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4244 {
4245 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4246 }
4247 
4248 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4249 				 bool may_use_included)
4250 {
4251 	ASSERT(s_info);
4252 	return s_info->bytes_used + s_info->bytes_reserved +
4253 		s_info->bytes_pinned + s_info->bytes_readonly +
4254 		(may_use_included ? s_info->bytes_may_use : 0);
4255 }
4256 
4257 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4258 {
4259 	struct btrfs_root *root = inode->root;
4260 	struct btrfs_fs_info *fs_info = root->fs_info;
4261 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4262 	u64 used;
4263 	int ret = 0;
4264 	int need_commit = 2;
4265 	int have_pinned_space;
4266 
4267 	/* make sure bytes are sectorsize aligned */
4268 	bytes = ALIGN(bytes, fs_info->sectorsize);
4269 
4270 	if (btrfs_is_free_space_inode(inode)) {
4271 		need_commit = 0;
4272 		ASSERT(current->journal_info);
4273 	}
4274 
4275 again:
4276 	/* make sure we have enough space to handle the data first */
4277 	spin_lock(&data_sinfo->lock);
4278 	used = btrfs_space_info_used(data_sinfo, true);
4279 
4280 	if (used + bytes > data_sinfo->total_bytes) {
4281 		struct btrfs_trans_handle *trans;
4282 
4283 		/*
4284 		 * if we don't have enough free bytes in this space then we need
4285 		 * to alloc a new chunk.
4286 		 */
4287 		if (!data_sinfo->full) {
4288 			u64 alloc_target;
4289 
4290 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4291 			spin_unlock(&data_sinfo->lock);
4292 
4293 			alloc_target = btrfs_data_alloc_profile(fs_info);
4294 			/*
4295 			 * It is ugly that we don't call nolock join
4296 			 * transaction for the free space inode case here.
4297 			 * But it is safe because we only do the data space
4298 			 * reservation for the free space cache in the
4299 			 * transaction context, the common join transaction
4300 			 * just increase the counter of the current transaction
4301 			 * handler, doesn't try to acquire the trans_lock of
4302 			 * the fs.
4303 			 */
4304 			trans = btrfs_join_transaction(root);
4305 			if (IS_ERR(trans))
4306 				return PTR_ERR(trans);
4307 
4308 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4309 					     CHUNK_ALLOC_NO_FORCE);
4310 			btrfs_end_transaction(trans);
4311 			if (ret < 0) {
4312 				if (ret != -ENOSPC)
4313 					return ret;
4314 				else {
4315 					have_pinned_space = 1;
4316 					goto commit_trans;
4317 				}
4318 			}
4319 
4320 			goto again;
4321 		}
4322 
4323 		/*
4324 		 * If we don't have enough pinned space to deal with this
4325 		 * allocation, and no removed chunk in current transaction,
4326 		 * don't bother committing the transaction.
4327 		 */
4328 		have_pinned_space = percpu_counter_compare(
4329 			&data_sinfo->total_bytes_pinned,
4330 			used + bytes - data_sinfo->total_bytes);
4331 		spin_unlock(&data_sinfo->lock);
4332 
4333 		/* commit the current transaction and try again */
4334 commit_trans:
4335 		if (need_commit &&
4336 		    !atomic_read(&fs_info->open_ioctl_trans)) {
4337 			need_commit--;
4338 
4339 			if (need_commit > 0) {
4340 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4341 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4342 							 (u64)-1);
4343 			}
4344 
4345 			trans = btrfs_join_transaction(root);
4346 			if (IS_ERR(trans))
4347 				return PTR_ERR(trans);
4348 			if (have_pinned_space >= 0 ||
4349 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4350 				     &trans->transaction->flags) ||
4351 			    need_commit > 0) {
4352 				ret = btrfs_commit_transaction(trans);
4353 				if (ret)
4354 					return ret;
4355 				/*
4356 				 * The cleaner kthread might still be doing iput
4357 				 * operations. Wait for it to finish so that
4358 				 * more space is released.
4359 				 */
4360 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4361 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4362 				goto again;
4363 			} else {
4364 				btrfs_end_transaction(trans);
4365 			}
4366 		}
4367 
4368 		trace_btrfs_space_reservation(fs_info,
4369 					      "space_info:enospc",
4370 					      data_sinfo->flags, bytes, 1);
4371 		return -ENOSPC;
4372 	}
4373 	data_sinfo->bytes_may_use += bytes;
4374 	trace_btrfs_space_reservation(fs_info, "space_info",
4375 				      data_sinfo->flags, bytes, 1);
4376 	spin_unlock(&data_sinfo->lock);
4377 
4378 	return ret;
4379 }
4380 
4381 int btrfs_check_data_free_space(struct inode *inode,
4382 			struct extent_changeset **reserved, u64 start, u64 len)
4383 {
4384 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4385 	int ret;
4386 
4387 	/* align the range */
4388 	len = round_up(start + len, fs_info->sectorsize) -
4389 	      round_down(start, fs_info->sectorsize);
4390 	start = round_down(start, fs_info->sectorsize);
4391 
4392 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4393 	if (ret < 0)
4394 		return ret;
4395 
4396 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4397 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4398 	if (ret < 0)
4399 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4400 	else
4401 		ret = 0;
4402 	return ret;
4403 }
4404 
4405 /*
4406  * Called if we need to clear a data reservation for this inode
4407  * Normally in a error case.
4408  *
4409  * This one will *NOT* use accurate qgroup reserved space API, just for case
4410  * which we can't sleep and is sure it won't affect qgroup reserved space.
4411  * Like clear_bit_hook().
4412  */
4413 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4414 					    u64 len)
4415 {
4416 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4417 	struct btrfs_space_info *data_sinfo;
4418 
4419 	/* Make sure the range is aligned to sectorsize */
4420 	len = round_up(start + len, fs_info->sectorsize) -
4421 	      round_down(start, fs_info->sectorsize);
4422 	start = round_down(start, fs_info->sectorsize);
4423 
4424 	data_sinfo = fs_info->data_sinfo;
4425 	spin_lock(&data_sinfo->lock);
4426 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4427 		data_sinfo->bytes_may_use = 0;
4428 	else
4429 		data_sinfo->bytes_may_use -= len;
4430 	trace_btrfs_space_reservation(fs_info, "space_info",
4431 				      data_sinfo->flags, len, 0);
4432 	spin_unlock(&data_sinfo->lock);
4433 }
4434 
4435 /*
4436  * Called if we need to clear a data reservation for this inode
4437  * Normally in a error case.
4438  *
4439  * This one will handle the per-inode data rsv map for accurate reserved
4440  * space framework.
4441  */
4442 void btrfs_free_reserved_data_space(struct inode *inode,
4443 			struct extent_changeset *reserved, u64 start, u64 len)
4444 {
4445 	struct btrfs_root *root = BTRFS_I(inode)->root;
4446 
4447 	/* Make sure the range is aligned to sectorsize */
4448 	len = round_up(start + len, root->fs_info->sectorsize) -
4449 	      round_down(start, root->fs_info->sectorsize);
4450 	start = round_down(start, root->fs_info->sectorsize);
4451 
4452 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4453 	btrfs_qgroup_free_data(inode, reserved, start, len);
4454 }
4455 
4456 static void force_metadata_allocation(struct btrfs_fs_info *info)
4457 {
4458 	struct list_head *head = &info->space_info;
4459 	struct btrfs_space_info *found;
4460 
4461 	rcu_read_lock();
4462 	list_for_each_entry_rcu(found, head, list) {
4463 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4464 			found->force_alloc = CHUNK_ALLOC_FORCE;
4465 	}
4466 	rcu_read_unlock();
4467 }
4468 
4469 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4470 {
4471 	return (global->size << 1);
4472 }
4473 
4474 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4475 			      struct btrfs_space_info *sinfo, int force)
4476 {
4477 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4478 	u64 bytes_used = btrfs_space_info_used(sinfo, false);
4479 	u64 thresh;
4480 
4481 	if (force == CHUNK_ALLOC_FORCE)
4482 		return 1;
4483 
4484 	/*
4485 	 * We need to take into account the global rsv because for all intents
4486 	 * and purposes it's used space.  Don't worry about locking the
4487 	 * global_rsv, it doesn't change except when the transaction commits.
4488 	 */
4489 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4490 		bytes_used += calc_global_rsv_need_space(global_rsv);
4491 
4492 	/*
4493 	 * in limited mode, we want to have some free space up to
4494 	 * about 1% of the FS size.
4495 	 */
4496 	if (force == CHUNK_ALLOC_LIMITED) {
4497 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4498 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4499 
4500 		if (sinfo->total_bytes - bytes_used < thresh)
4501 			return 1;
4502 	}
4503 
4504 	if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4505 		return 0;
4506 	return 1;
4507 }
4508 
4509 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4510 {
4511 	u64 num_dev;
4512 
4513 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4514 		    BTRFS_BLOCK_GROUP_RAID0 |
4515 		    BTRFS_BLOCK_GROUP_RAID5 |
4516 		    BTRFS_BLOCK_GROUP_RAID6))
4517 		num_dev = fs_info->fs_devices->rw_devices;
4518 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4519 		num_dev = 2;
4520 	else
4521 		num_dev = 1;	/* DUP or single */
4522 
4523 	return num_dev;
4524 }
4525 
4526 /*
4527  * If @is_allocation is true, reserve space in the system space info necessary
4528  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4529  * removing a chunk.
4530  */
4531 void check_system_chunk(struct btrfs_trans_handle *trans,
4532 			struct btrfs_fs_info *fs_info, u64 type)
4533 {
4534 	struct btrfs_space_info *info;
4535 	u64 left;
4536 	u64 thresh;
4537 	int ret = 0;
4538 	u64 num_devs;
4539 
4540 	/*
4541 	 * Needed because we can end up allocating a system chunk and for an
4542 	 * atomic and race free space reservation in the chunk block reserve.
4543 	 */
4544 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4545 
4546 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4547 	spin_lock(&info->lock);
4548 	left = info->total_bytes - btrfs_space_info_used(info, true);
4549 	spin_unlock(&info->lock);
4550 
4551 	num_devs = get_profile_num_devs(fs_info, type);
4552 
4553 	/* num_devs device items to update and 1 chunk item to add or remove */
4554 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4555 		btrfs_calc_trans_metadata_size(fs_info, 1);
4556 
4557 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4558 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4559 			   left, thresh, type);
4560 		dump_space_info(fs_info, info, 0, 0);
4561 	}
4562 
4563 	if (left < thresh) {
4564 		u64 flags = btrfs_system_alloc_profile(fs_info);
4565 
4566 		/*
4567 		 * Ignore failure to create system chunk. We might end up not
4568 		 * needing it, as we might not need to COW all nodes/leafs from
4569 		 * the paths we visit in the chunk tree (they were already COWed
4570 		 * or created in the current transaction for example).
4571 		 */
4572 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4573 	}
4574 
4575 	if (!ret) {
4576 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4577 					  &fs_info->chunk_block_rsv,
4578 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4579 		if (!ret)
4580 			trans->chunk_bytes_reserved += thresh;
4581 	}
4582 }
4583 
4584 /*
4585  * If force is CHUNK_ALLOC_FORCE:
4586  *    - return 1 if it successfully allocates a chunk,
4587  *    - return errors including -ENOSPC otherwise.
4588  * If force is NOT CHUNK_ALLOC_FORCE:
4589  *    - return 0 if it doesn't need to allocate a new chunk,
4590  *    - return 1 if it successfully allocates a chunk,
4591  *    - return errors including -ENOSPC otherwise.
4592  */
4593 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4594 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4595 {
4596 	struct btrfs_space_info *space_info;
4597 	int wait_for_alloc = 0;
4598 	int ret = 0;
4599 
4600 	/* Don't re-enter if we're already allocating a chunk */
4601 	if (trans->allocating_chunk)
4602 		return -ENOSPC;
4603 
4604 	space_info = __find_space_info(fs_info, flags);
4605 	if (!space_info) {
4606 		ret = create_space_info(fs_info, flags, &space_info);
4607 		if (ret)
4608 			return ret;
4609 	}
4610 
4611 again:
4612 	spin_lock(&space_info->lock);
4613 	if (force < space_info->force_alloc)
4614 		force = space_info->force_alloc;
4615 	if (space_info->full) {
4616 		if (should_alloc_chunk(fs_info, space_info, force))
4617 			ret = -ENOSPC;
4618 		else
4619 			ret = 0;
4620 		spin_unlock(&space_info->lock);
4621 		return ret;
4622 	}
4623 
4624 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4625 		spin_unlock(&space_info->lock);
4626 		return 0;
4627 	} else if (space_info->chunk_alloc) {
4628 		wait_for_alloc = 1;
4629 	} else {
4630 		space_info->chunk_alloc = 1;
4631 	}
4632 
4633 	spin_unlock(&space_info->lock);
4634 
4635 	mutex_lock(&fs_info->chunk_mutex);
4636 
4637 	/*
4638 	 * The chunk_mutex is held throughout the entirety of a chunk
4639 	 * allocation, so once we've acquired the chunk_mutex we know that the
4640 	 * other guy is done and we need to recheck and see if we should
4641 	 * allocate.
4642 	 */
4643 	if (wait_for_alloc) {
4644 		mutex_unlock(&fs_info->chunk_mutex);
4645 		wait_for_alloc = 0;
4646 		goto again;
4647 	}
4648 
4649 	trans->allocating_chunk = true;
4650 
4651 	/*
4652 	 * If we have mixed data/metadata chunks we want to make sure we keep
4653 	 * allocating mixed chunks instead of individual chunks.
4654 	 */
4655 	if (btrfs_mixed_space_info(space_info))
4656 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4657 
4658 	/*
4659 	 * if we're doing a data chunk, go ahead and make sure that
4660 	 * we keep a reasonable number of metadata chunks allocated in the
4661 	 * FS as well.
4662 	 */
4663 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4664 		fs_info->data_chunk_allocations++;
4665 		if (!(fs_info->data_chunk_allocations %
4666 		      fs_info->metadata_ratio))
4667 			force_metadata_allocation(fs_info);
4668 	}
4669 
4670 	/*
4671 	 * Check if we have enough space in SYSTEM chunk because we may need
4672 	 * to update devices.
4673 	 */
4674 	check_system_chunk(trans, fs_info, flags);
4675 
4676 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4677 	trans->allocating_chunk = false;
4678 
4679 	spin_lock(&space_info->lock);
4680 	if (ret < 0 && ret != -ENOSPC)
4681 		goto out;
4682 	if (ret)
4683 		space_info->full = 1;
4684 	else
4685 		ret = 1;
4686 
4687 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4688 out:
4689 	space_info->chunk_alloc = 0;
4690 	spin_unlock(&space_info->lock);
4691 	mutex_unlock(&fs_info->chunk_mutex);
4692 	/*
4693 	 * When we allocate a new chunk we reserve space in the chunk block
4694 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4695 	 * add new nodes/leafs to it if we end up needing to do it when
4696 	 * inserting the chunk item and updating device items as part of the
4697 	 * second phase of chunk allocation, performed by
4698 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4699 	 * large number of new block groups to create in our transaction
4700 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4701 	 * in extreme cases - like having a single transaction create many new
4702 	 * block groups when starting to write out the free space caches of all
4703 	 * the block groups that were made dirty during the lifetime of the
4704 	 * transaction.
4705 	 */
4706 	if (trans->can_flush_pending_bgs &&
4707 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4708 		btrfs_create_pending_block_groups(trans, fs_info);
4709 		btrfs_trans_release_chunk_metadata(trans);
4710 	}
4711 	return ret;
4712 }
4713 
4714 static int can_overcommit(struct btrfs_fs_info *fs_info,
4715 			  struct btrfs_space_info *space_info, u64 bytes,
4716 			  enum btrfs_reserve_flush_enum flush,
4717 			  bool system_chunk)
4718 {
4719 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4720 	u64 profile;
4721 	u64 space_size;
4722 	u64 avail;
4723 	u64 used;
4724 
4725 	/* Don't overcommit when in mixed mode. */
4726 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4727 		return 0;
4728 
4729 	if (system_chunk)
4730 		profile = btrfs_system_alloc_profile(fs_info);
4731 	else
4732 		profile = btrfs_metadata_alloc_profile(fs_info);
4733 
4734 	used = btrfs_space_info_used(space_info, false);
4735 
4736 	/*
4737 	 * We only want to allow over committing if we have lots of actual space
4738 	 * free, but if we don't have enough space to handle the global reserve
4739 	 * space then we could end up having a real enospc problem when trying
4740 	 * to allocate a chunk or some other such important allocation.
4741 	 */
4742 	spin_lock(&global_rsv->lock);
4743 	space_size = calc_global_rsv_need_space(global_rsv);
4744 	spin_unlock(&global_rsv->lock);
4745 	if (used + space_size >= space_info->total_bytes)
4746 		return 0;
4747 
4748 	used += space_info->bytes_may_use;
4749 
4750 	avail = atomic64_read(&fs_info->free_chunk_space);
4751 
4752 	/*
4753 	 * If we have dup, raid1 or raid10 then only half of the free
4754 	 * space is actually useable.  For raid56, the space info used
4755 	 * doesn't include the parity drive, so we don't have to
4756 	 * change the math
4757 	 */
4758 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4759 		       BTRFS_BLOCK_GROUP_RAID1 |
4760 		       BTRFS_BLOCK_GROUP_RAID10))
4761 		avail >>= 1;
4762 
4763 	/*
4764 	 * If we aren't flushing all things, let us overcommit up to
4765 	 * 1/2th of the space. If we can flush, don't let us overcommit
4766 	 * too much, let it overcommit up to 1/8 of the space.
4767 	 */
4768 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4769 		avail >>= 3;
4770 	else
4771 		avail >>= 1;
4772 
4773 	if (used + bytes < space_info->total_bytes + avail)
4774 		return 1;
4775 	return 0;
4776 }
4777 
4778 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4779 					 unsigned long nr_pages, int nr_items)
4780 {
4781 	struct super_block *sb = fs_info->sb;
4782 
4783 	if (down_read_trylock(&sb->s_umount)) {
4784 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4785 		up_read(&sb->s_umount);
4786 	} else {
4787 		/*
4788 		 * We needn't worry the filesystem going from r/w to r/o though
4789 		 * we don't acquire ->s_umount mutex, because the filesystem
4790 		 * should guarantee the delalloc inodes list be empty after
4791 		 * the filesystem is readonly(all dirty pages are written to
4792 		 * the disk).
4793 		 */
4794 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4795 		if (!current->journal_info)
4796 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4797 	}
4798 }
4799 
4800 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4801 					u64 to_reclaim)
4802 {
4803 	u64 bytes;
4804 	u64 nr;
4805 
4806 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4807 	nr = div64_u64(to_reclaim, bytes);
4808 	if (!nr)
4809 		nr = 1;
4810 	return nr;
4811 }
4812 
4813 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4814 
4815 /*
4816  * shrink metadata reservation for delalloc
4817  */
4818 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4819 			    u64 orig, bool wait_ordered)
4820 {
4821 	struct btrfs_space_info *space_info;
4822 	struct btrfs_trans_handle *trans;
4823 	u64 delalloc_bytes;
4824 	u64 max_reclaim;
4825 	u64 items;
4826 	long time_left;
4827 	unsigned long nr_pages;
4828 	int loops;
4829 	enum btrfs_reserve_flush_enum flush;
4830 
4831 	/* Calc the number of the pages we need flush for space reservation */
4832 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4833 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4834 
4835 	trans = (struct btrfs_trans_handle *)current->journal_info;
4836 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4837 
4838 	delalloc_bytes = percpu_counter_sum_positive(
4839 						&fs_info->delalloc_bytes);
4840 	if (delalloc_bytes == 0) {
4841 		if (trans)
4842 			return;
4843 		if (wait_ordered)
4844 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4845 		return;
4846 	}
4847 
4848 	loops = 0;
4849 	while (delalloc_bytes && loops < 3) {
4850 		max_reclaim = min(delalloc_bytes, to_reclaim);
4851 		nr_pages = max_reclaim >> PAGE_SHIFT;
4852 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4853 		/*
4854 		 * We need to wait for the async pages to actually start before
4855 		 * we do anything.
4856 		 */
4857 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4858 		if (!max_reclaim)
4859 			goto skip_async;
4860 
4861 		if (max_reclaim <= nr_pages)
4862 			max_reclaim = 0;
4863 		else
4864 			max_reclaim -= nr_pages;
4865 
4866 		wait_event(fs_info->async_submit_wait,
4867 			   atomic_read(&fs_info->async_delalloc_pages) <=
4868 			   (int)max_reclaim);
4869 skip_async:
4870 		if (!trans)
4871 			flush = BTRFS_RESERVE_FLUSH_ALL;
4872 		else
4873 			flush = BTRFS_RESERVE_NO_FLUSH;
4874 		spin_lock(&space_info->lock);
4875 		if (list_empty(&space_info->tickets) &&
4876 		    list_empty(&space_info->priority_tickets)) {
4877 			spin_unlock(&space_info->lock);
4878 			break;
4879 		}
4880 		spin_unlock(&space_info->lock);
4881 
4882 		loops++;
4883 		if (wait_ordered && !trans) {
4884 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4885 		} else {
4886 			time_left = schedule_timeout_killable(1);
4887 			if (time_left)
4888 				break;
4889 		}
4890 		delalloc_bytes = percpu_counter_sum_positive(
4891 						&fs_info->delalloc_bytes);
4892 	}
4893 }
4894 
4895 struct reserve_ticket {
4896 	u64 bytes;
4897 	int error;
4898 	struct list_head list;
4899 	wait_queue_head_t wait;
4900 };
4901 
4902 /**
4903  * maybe_commit_transaction - possibly commit the transaction if its ok to
4904  * @root - the root we're allocating for
4905  * @bytes - the number of bytes we want to reserve
4906  * @force - force the commit
4907  *
4908  * This will check to make sure that committing the transaction will actually
4909  * get us somewhere and then commit the transaction if it does.  Otherwise it
4910  * will return -ENOSPC.
4911  */
4912 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4913 				  struct btrfs_space_info *space_info)
4914 {
4915 	struct reserve_ticket *ticket = NULL;
4916 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4917 	struct btrfs_trans_handle *trans;
4918 	u64 bytes;
4919 
4920 	trans = (struct btrfs_trans_handle *)current->journal_info;
4921 	if (trans)
4922 		return -EAGAIN;
4923 
4924 	spin_lock(&space_info->lock);
4925 	if (!list_empty(&space_info->priority_tickets))
4926 		ticket = list_first_entry(&space_info->priority_tickets,
4927 					  struct reserve_ticket, list);
4928 	else if (!list_empty(&space_info->tickets))
4929 		ticket = list_first_entry(&space_info->tickets,
4930 					  struct reserve_ticket, list);
4931 	bytes = (ticket) ? ticket->bytes : 0;
4932 	spin_unlock(&space_info->lock);
4933 
4934 	if (!bytes)
4935 		return 0;
4936 
4937 	/* See if there is enough pinned space to make this reservation */
4938 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4939 				   bytes) >= 0)
4940 		goto commit;
4941 
4942 	/*
4943 	 * See if there is some space in the delayed insertion reservation for
4944 	 * this reservation.
4945 	 */
4946 	if (space_info != delayed_rsv->space_info)
4947 		return -ENOSPC;
4948 
4949 	spin_lock(&delayed_rsv->lock);
4950 	if (delayed_rsv->size > bytes)
4951 		bytes = 0;
4952 	else
4953 		bytes -= delayed_rsv->size;
4954 	spin_unlock(&delayed_rsv->lock);
4955 
4956 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4957 				   bytes) < 0) {
4958 		return -ENOSPC;
4959 	}
4960 
4961 commit:
4962 	trans = btrfs_join_transaction(fs_info->extent_root);
4963 	if (IS_ERR(trans))
4964 		return -ENOSPC;
4965 
4966 	return btrfs_commit_transaction(trans);
4967 }
4968 
4969 /*
4970  * Try to flush some data based on policy set by @state. This is only advisory
4971  * and may fail for various reasons. The caller is supposed to examine the
4972  * state of @space_info to detect the outcome.
4973  */
4974 static void flush_space(struct btrfs_fs_info *fs_info,
4975 		       struct btrfs_space_info *space_info, u64 num_bytes,
4976 		       int state)
4977 {
4978 	struct btrfs_root *root = fs_info->extent_root;
4979 	struct btrfs_trans_handle *trans;
4980 	int nr;
4981 	int ret = 0;
4982 
4983 	switch (state) {
4984 	case FLUSH_DELAYED_ITEMS_NR:
4985 	case FLUSH_DELAYED_ITEMS:
4986 		if (state == FLUSH_DELAYED_ITEMS_NR)
4987 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4988 		else
4989 			nr = -1;
4990 
4991 		trans = btrfs_join_transaction(root);
4992 		if (IS_ERR(trans)) {
4993 			ret = PTR_ERR(trans);
4994 			break;
4995 		}
4996 		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4997 		btrfs_end_transaction(trans);
4998 		break;
4999 	case FLUSH_DELALLOC:
5000 	case FLUSH_DELALLOC_WAIT:
5001 		shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5002 				state == FLUSH_DELALLOC_WAIT);
5003 		break;
5004 	case ALLOC_CHUNK:
5005 		trans = btrfs_join_transaction(root);
5006 		if (IS_ERR(trans)) {
5007 			ret = PTR_ERR(trans);
5008 			break;
5009 		}
5010 		ret = do_chunk_alloc(trans, fs_info,
5011 				     btrfs_metadata_alloc_profile(fs_info),
5012 				     CHUNK_ALLOC_NO_FORCE);
5013 		btrfs_end_transaction(trans);
5014 		if (ret > 0 || ret == -ENOSPC)
5015 			ret = 0;
5016 		break;
5017 	case COMMIT_TRANS:
5018 		ret = may_commit_transaction(fs_info, space_info);
5019 		break;
5020 	default:
5021 		ret = -ENOSPC;
5022 		break;
5023 	}
5024 
5025 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5026 				ret);
5027 	return;
5028 }
5029 
5030 static inline u64
5031 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5032 				 struct btrfs_space_info *space_info,
5033 				 bool system_chunk)
5034 {
5035 	struct reserve_ticket *ticket;
5036 	u64 used;
5037 	u64 expected;
5038 	u64 to_reclaim = 0;
5039 
5040 	list_for_each_entry(ticket, &space_info->tickets, list)
5041 		to_reclaim += ticket->bytes;
5042 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
5043 		to_reclaim += ticket->bytes;
5044 	if (to_reclaim)
5045 		return to_reclaim;
5046 
5047 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5048 	if (can_overcommit(fs_info, space_info, to_reclaim,
5049 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050 		return 0;
5051 
5052 	used = btrfs_space_info_used(space_info, true);
5053 
5054 	if (can_overcommit(fs_info, space_info, SZ_1M,
5055 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5056 		expected = div_factor_fine(space_info->total_bytes, 95);
5057 	else
5058 		expected = div_factor_fine(space_info->total_bytes, 90);
5059 
5060 	if (used > expected)
5061 		to_reclaim = used - expected;
5062 	else
5063 		to_reclaim = 0;
5064 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5065 				     space_info->bytes_reserved);
5066 	return to_reclaim;
5067 }
5068 
5069 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5070 					struct btrfs_space_info *space_info,
5071 					u64 used, bool system_chunk)
5072 {
5073 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5074 
5075 	/* If we're just plain full then async reclaim just slows us down. */
5076 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5077 		return 0;
5078 
5079 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5080 					      system_chunk))
5081 		return 0;
5082 
5083 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5084 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5085 }
5086 
5087 static void wake_all_tickets(struct list_head *head)
5088 {
5089 	struct reserve_ticket *ticket;
5090 
5091 	while (!list_empty(head)) {
5092 		ticket = list_first_entry(head, struct reserve_ticket, list);
5093 		list_del_init(&ticket->list);
5094 		ticket->error = -ENOSPC;
5095 		wake_up(&ticket->wait);
5096 	}
5097 }
5098 
5099 /*
5100  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5101  * will loop and continuously try to flush as long as we are making progress.
5102  * We count progress as clearing off tickets each time we have to loop.
5103  */
5104 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5105 {
5106 	struct btrfs_fs_info *fs_info;
5107 	struct btrfs_space_info *space_info;
5108 	u64 to_reclaim;
5109 	int flush_state;
5110 	int commit_cycles = 0;
5111 	u64 last_tickets_id;
5112 
5113 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5114 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5115 
5116 	spin_lock(&space_info->lock);
5117 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5118 						      false);
5119 	if (!to_reclaim) {
5120 		space_info->flush = 0;
5121 		spin_unlock(&space_info->lock);
5122 		return;
5123 	}
5124 	last_tickets_id = space_info->tickets_id;
5125 	spin_unlock(&space_info->lock);
5126 
5127 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5128 	do {
5129 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5130 		spin_lock(&space_info->lock);
5131 		if (list_empty(&space_info->tickets)) {
5132 			space_info->flush = 0;
5133 			spin_unlock(&space_info->lock);
5134 			return;
5135 		}
5136 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5137 							      space_info,
5138 							      false);
5139 		if (last_tickets_id == space_info->tickets_id) {
5140 			flush_state++;
5141 		} else {
5142 			last_tickets_id = space_info->tickets_id;
5143 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5144 			if (commit_cycles)
5145 				commit_cycles--;
5146 		}
5147 
5148 		if (flush_state > COMMIT_TRANS) {
5149 			commit_cycles++;
5150 			if (commit_cycles > 2) {
5151 				wake_all_tickets(&space_info->tickets);
5152 				space_info->flush = 0;
5153 			} else {
5154 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5155 			}
5156 		}
5157 		spin_unlock(&space_info->lock);
5158 	} while (flush_state <= COMMIT_TRANS);
5159 }
5160 
5161 void btrfs_init_async_reclaim_work(struct work_struct *work)
5162 {
5163 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5164 }
5165 
5166 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5167 					    struct btrfs_space_info *space_info,
5168 					    struct reserve_ticket *ticket)
5169 {
5170 	u64 to_reclaim;
5171 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5172 
5173 	spin_lock(&space_info->lock);
5174 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5175 						      false);
5176 	if (!to_reclaim) {
5177 		spin_unlock(&space_info->lock);
5178 		return;
5179 	}
5180 	spin_unlock(&space_info->lock);
5181 
5182 	do {
5183 		flush_space(fs_info, space_info, to_reclaim, flush_state);
5184 		flush_state++;
5185 		spin_lock(&space_info->lock);
5186 		if (ticket->bytes == 0) {
5187 			spin_unlock(&space_info->lock);
5188 			return;
5189 		}
5190 		spin_unlock(&space_info->lock);
5191 
5192 		/*
5193 		 * Priority flushers can't wait on delalloc without
5194 		 * deadlocking.
5195 		 */
5196 		if (flush_state == FLUSH_DELALLOC ||
5197 		    flush_state == FLUSH_DELALLOC_WAIT)
5198 			flush_state = ALLOC_CHUNK;
5199 	} while (flush_state < COMMIT_TRANS);
5200 }
5201 
5202 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5203 			       struct btrfs_space_info *space_info,
5204 			       struct reserve_ticket *ticket, u64 orig_bytes)
5205 
5206 {
5207 	DEFINE_WAIT(wait);
5208 	int ret = 0;
5209 
5210 	spin_lock(&space_info->lock);
5211 	while (ticket->bytes > 0 && ticket->error == 0) {
5212 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5213 		if (ret) {
5214 			ret = -EINTR;
5215 			break;
5216 		}
5217 		spin_unlock(&space_info->lock);
5218 
5219 		schedule();
5220 
5221 		finish_wait(&ticket->wait, &wait);
5222 		spin_lock(&space_info->lock);
5223 	}
5224 	if (!ret)
5225 		ret = ticket->error;
5226 	if (!list_empty(&ticket->list))
5227 		list_del_init(&ticket->list);
5228 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5229 		u64 num_bytes = orig_bytes - ticket->bytes;
5230 		space_info->bytes_may_use -= num_bytes;
5231 		trace_btrfs_space_reservation(fs_info, "space_info",
5232 					      space_info->flags, num_bytes, 0);
5233 	}
5234 	spin_unlock(&space_info->lock);
5235 
5236 	return ret;
5237 }
5238 
5239 /**
5240  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5241  * @root - the root we're allocating for
5242  * @space_info - the space info we want to allocate from
5243  * @orig_bytes - the number of bytes we want
5244  * @flush - whether or not we can flush to make our reservation
5245  *
5246  * This will reserve orig_bytes number of bytes from the space info associated
5247  * with the block_rsv.  If there is not enough space it will make an attempt to
5248  * flush out space to make room.  It will do this by flushing delalloc if
5249  * possible or committing the transaction.  If flush is 0 then no attempts to
5250  * regain reservations will be made and this will fail if there is not enough
5251  * space already.
5252  */
5253 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5254 				    struct btrfs_space_info *space_info,
5255 				    u64 orig_bytes,
5256 				    enum btrfs_reserve_flush_enum flush,
5257 				    bool system_chunk)
5258 {
5259 	struct reserve_ticket ticket;
5260 	u64 used;
5261 	int ret = 0;
5262 
5263 	ASSERT(orig_bytes);
5264 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5265 
5266 	spin_lock(&space_info->lock);
5267 	ret = -ENOSPC;
5268 	used = btrfs_space_info_used(space_info, true);
5269 
5270 	/*
5271 	 * If we have enough space then hooray, make our reservation and carry
5272 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5273 	 * If not things get more complicated.
5274 	 */
5275 	if (used + orig_bytes <= space_info->total_bytes) {
5276 		space_info->bytes_may_use += orig_bytes;
5277 		trace_btrfs_space_reservation(fs_info, "space_info",
5278 					      space_info->flags, orig_bytes, 1);
5279 		ret = 0;
5280 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5281 				  system_chunk)) {
5282 		space_info->bytes_may_use += orig_bytes;
5283 		trace_btrfs_space_reservation(fs_info, "space_info",
5284 					      space_info->flags, orig_bytes, 1);
5285 		ret = 0;
5286 	}
5287 
5288 	/*
5289 	 * If we couldn't make a reservation then setup our reservation ticket
5290 	 * and kick the async worker if it's not already running.
5291 	 *
5292 	 * If we are a priority flusher then we just need to add our ticket to
5293 	 * the list and we will do our own flushing further down.
5294 	 */
5295 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5296 		ticket.bytes = orig_bytes;
5297 		ticket.error = 0;
5298 		init_waitqueue_head(&ticket.wait);
5299 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5300 			list_add_tail(&ticket.list, &space_info->tickets);
5301 			if (!space_info->flush) {
5302 				space_info->flush = 1;
5303 				trace_btrfs_trigger_flush(fs_info,
5304 							  space_info->flags,
5305 							  orig_bytes, flush,
5306 							  "enospc");
5307 				queue_work(system_unbound_wq,
5308 					   &fs_info->async_reclaim_work);
5309 			}
5310 		} else {
5311 			list_add_tail(&ticket.list,
5312 				      &space_info->priority_tickets);
5313 		}
5314 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5315 		used += orig_bytes;
5316 		/*
5317 		 * We will do the space reservation dance during log replay,
5318 		 * which means we won't have fs_info->fs_root set, so don't do
5319 		 * the async reclaim as we will panic.
5320 		 */
5321 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5322 		    need_do_async_reclaim(fs_info, space_info,
5323 					  used, system_chunk) &&
5324 		    !work_busy(&fs_info->async_reclaim_work)) {
5325 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5326 						  orig_bytes, flush, "preempt");
5327 			queue_work(system_unbound_wq,
5328 				   &fs_info->async_reclaim_work);
5329 		}
5330 	}
5331 	spin_unlock(&space_info->lock);
5332 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5333 		return ret;
5334 
5335 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5336 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5337 					   orig_bytes);
5338 
5339 	ret = 0;
5340 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5341 	spin_lock(&space_info->lock);
5342 	if (ticket.bytes) {
5343 		if (ticket.bytes < orig_bytes) {
5344 			u64 num_bytes = orig_bytes - ticket.bytes;
5345 			space_info->bytes_may_use -= num_bytes;
5346 			trace_btrfs_space_reservation(fs_info, "space_info",
5347 						      space_info->flags,
5348 						      num_bytes, 0);
5349 
5350 		}
5351 		list_del_init(&ticket.list);
5352 		ret = -ENOSPC;
5353 	}
5354 	spin_unlock(&space_info->lock);
5355 	ASSERT(list_empty(&ticket.list));
5356 	return ret;
5357 }
5358 
5359 /**
5360  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5361  * @root - the root we're allocating for
5362  * @block_rsv - the block_rsv we're allocating for
5363  * @orig_bytes - the number of bytes we want
5364  * @flush - whether or not we can flush to make our reservation
5365  *
5366  * This will reserve orgi_bytes number of bytes from the space info associated
5367  * with the block_rsv.  If there is not enough space it will make an attempt to
5368  * flush out space to make room.  It will do this by flushing delalloc if
5369  * possible or committing the transaction.  If flush is 0 then no attempts to
5370  * regain reservations will be made and this will fail if there is not enough
5371  * space already.
5372  */
5373 static int reserve_metadata_bytes(struct btrfs_root *root,
5374 				  struct btrfs_block_rsv *block_rsv,
5375 				  u64 orig_bytes,
5376 				  enum btrfs_reserve_flush_enum flush)
5377 {
5378 	struct btrfs_fs_info *fs_info = root->fs_info;
5379 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5380 	int ret;
5381 	bool system_chunk = (root == fs_info->chunk_root);
5382 
5383 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5384 				       orig_bytes, flush, system_chunk);
5385 	if (ret == -ENOSPC &&
5386 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5387 		if (block_rsv != global_rsv &&
5388 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5389 			ret = 0;
5390 	}
5391 	if (ret == -ENOSPC)
5392 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5393 					      block_rsv->space_info->flags,
5394 					      orig_bytes, 1);
5395 	return ret;
5396 }
5397 
5398 static struct btrfs_block_rsv *get_block_rsv(
5399 					const struct btrfs_trans_handle *trans,
5400 					const struct btrfs_root *root)
5401 {
5402 	struct btrfs_fs_info *fs_info = root->fs_info;
5403 	struct btrfs_block_rsv *block_rsv = NULL;
5404 
5405 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5406 	    (root == fs_info->csum_root && trans->adding_csums) ||
5407 	    (root == fs_info->uuid_root))
5408 		block_rsv = trans->block_rsv;
5409 
5410 	if (!block_rsv)
5411 		block_rsv = root->block_rsv;
5412 
5413 	if (!block_rsv)
5414 		block_rsv = &fs_info->empty_block_rsv;
5415 
5416 	return block_rsv;
5417 }
5418 
5419 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5420 			       u64 num_bytes)
5421 {
5422 	int ret = -ENOSPC;
5423 	spin_lock(&block_rsv->lock);
5424 	if (block_rsv->reserved >= num_bytes) {
5425 		block_rsv->reserved -= num_bytes;
5426 		if (block_rsv->reserved < block_rsv->size)
5427 			block_rsv->full = 0;
5428 		ret = 0;
5429 	}
5430 	spin_unlock(&block_rsv->lock);
5431 	return ret;
5432 }
5433 
5434 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5435 				u64 num_bytes, int update_size)
5436 {
5437 	spin_lock(&block_rsv->lock);
5438 	block_rsv->reserved += num_bytes;
5439 	if (update_size)
5440 		block_rsv->size += num_bytes;
5441 	else if (block_rsv->reserved >= block_rsv->size)
5442 		block_rsv->full = 1;
5443 	spin_unlock(&block_rsv->lock);
5444 }
5445 
5446 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5447 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5448 			     int min_factor)
5449 {
5450 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5451 	u64 min_bytes;
5452 
5453 	if (global_rsv->space_info != dest->space_info)
5454 		return -ENOSPC;
5455 
5456 	spin_lock(&global_rsv->lock);
5457 	min_bytes = div_factor(global_rsv->size, min_factor);
5458 	if (global_rsv->reserved < min_bytes + num_bytes) {
5459 		spin_unlock(&global_rsv->lock);
5460 		return -ENOSPC;
5461 	}
5462 	global_rsv->reserved -= num_bytes;
5463 	if (global_rsv->reserved < global_rsv->size)
5464 		global_rsv->full = 0;
5465 	spin_unlock(&global_rsv->lock);
5466 
5467 	block_rsv_add_bytes(dest, num_bytes, 1);
5468 	return 0;
5469 }
5470 
5471 /*
5472  * This is for space we already have accounted in space_info->bytes_may_use, so
5473  * basically when we're returning space from block_rsv's.
5474  */
5475 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5476 				     struct btrfs_space_info *space_info,
5477 				     u64 num_bytes)
5478 {
5479 	struct reserve_ticket *ticket;
5480 	struct list_head *head;
5481 	u64 used;
5482 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5483 	bool check_overcommit = false;
5484 
5485 	spin_lock(&space_info->lock);
5486 	head = &space_info->priority_tickets;
5487 
5488 	/*
5489 	 * If we are over our limit then we need to check and see if we can
5490 	 * overcommit, and if we can't then we just need to free up our space
5491 	 * and not satisfy any requests.
5492 	 */
5493 	used = btrfs_space_info_used(space_info, true);
5494 	if (used - num_bytes >= space_info->total_bytes)
5495 		check_overcommit = true;
5496 again:
5497 	while (!list_empty(head) && num_bytes) {
5498 		ticket = list_first_entry(head, struct reserve_ticket,
5499 					  list);
5500 		/*
5501 		 * We use 0 bytes because this space is already reserved, so
5502 		 * adding the ticket space would be a double count.
5503 		 */
5504 		if (check_overcommit &&
5505 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5506 			break;
5507 		if (num_bytes >= ticket->bytes) {
5508 			list_del_init(&ticket->list);
5509 			num_bytes -= ticket->bytes;
5510 			ticket->bytes = 0;
5511 			space_info->tickets_id++;
5512 			wake_up(&ticket->wait);
5513 		} else {
5514 			ticket->bytes -= num_bytes;
5515 			num_bytes = 0;
5516 		}
5517 	}
5518 
5519 	if (num_bytes && head == &space_info->priority_tickets) {
5520 		head = &space_info->tickets;
5521 		flush = BTRFS_RESERVE_FLUSH_ALL;
5522 		goto again;
5523 	}
5524 	space_info->bytes_may_use -= num_bytes;
5525 	trace_btrfs_space_reservation(fs_info, "space_info",
5526 				      space_info->flags, num_bytes, 0);
5527 	spin_unlock(&space_info->lock);
5528 }
5529 
5530 /*
5531  * This is for newly allocated space that isn't accounted in
5532  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5533  * we use this helper.
5534  */
5535 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5536 				     struct btrfs_space_info *space_info,
5537 				     u64 num_bytes)
5538 {
5539 	struct reserve_ticket *ticket;
5540 	struct list_head *head = &space_info->priority_tickets;
5541 
5542 again:
5543 	while (!list_empty(head) && num_bytes) {
5544 		ticket = list_first_entry(head, struct reserve_ticket,
5545 					  list);
5546 		if (num_bytes >= ticket->bytes) {
5547 			trace_btrfs_space_reservation(fs_info, "space_info",
5548 						      space_info->flags,
5549 						      ticket->bytes, 1);
5550 			list_del_init(&ticket->list);
5551 			num_bytes -= ticket->bytes;
5552 			space_info->bytes_may_use += ticket->bytes;
5553 			ticket->bytes = 0;
5554 			space_info->tickets_id++;
5555 			wake_up(&ticket->wait);
5556 		} else {
5557 			trace_btrfs_space_reservation(fs_info, "space_info",
5558 						      space_info->flags,
5559 						      num_bytes, 1);
5560 			space_info->bytes_may_use += num_bytes;
5561 			ticket->bytes -= num_bytes;
5562 			num_bytes = 0;
5563 		}
5564 	}
5565 
5566 	if (num_bytes && head == &space_info->priority_tickets) {
5567 		head = &space_info->tickets;
5568 		goto again;
5569 	}
5570 }
5571 
5572 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5573 				    struct btrfs_block_rsv *block_rsv,
5574 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5575 {
5576 	struct btrfs_space_info *space_info = block_rsv->space_info;
5577 	u64 ret;
5578 
5579 	spin_lock(&block_rsv->lock);
5580 	if (num_bytes == (u64)-1)
5581 		num_bytes = block_rsv->size;
5582 	block_rsv->size -= num_bytes;
5583 	if (block_rsv->reserved >= block_rsv->size) {
5584 		num_bytes = block_rsv->reserved - block_rsv->size;
5585 		block_rsv->reserved = block_rsv->size;
5586 		block_rsv->full = 1;
5587 	} else {
5588 		num_bytes = 0;
5589 	}
5590 	spin_unlock(&block_rsv->lock);
5591 
5592 	ret = num_bytes;
5593 	if (num_bytes > 0) {
5594 		if (dest) {
5595 			spin_lock(&dest->lock);
5596 			if (!dest->full) {
5597 				u64 bytes_to_add;
5598 
5599 				bytes_to_add = dest->size - dest->reserved;
5600 				bytes_to_add = min(num_bytes, bytes_to_add);
5601 				dest->reserved += bytes_to_add;
5602 				if (dest->reserved >= dest->size)
5603 					dest->full = 1;
5604 				num_bytes -= bytes_to_add;
5605 			}
5606 			spin_unlock(&dest->lock);
5607 		}
5608 		if (num_bytes)
5609 			space_info_add_old_bytes(fs_info, space_info,
5610 						 num_bytes);
5611 	}
5612 	return ret;
5613 }
5614 
5615 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5616 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5617 			    int update_size)
5618 {
5619 	int ret;
5620 
5621 	ret = block_rsv_use_bytes(src, num_bytes);
5622 	if (ret)
5623 		return ret;
5624 
5625 	block_rsv_add_bytes(dst, num_bytes, update_size);
5626 	return 0;
5627 }
5628 
5629 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5630 {
5631 	memset(rsv, 0, sizeof(*rsv));
5632 	spin_lock_init(&rsv->lock);
5633 	rsv->type = type;
5634 }
5635 
5636 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5637 				   struct btrfs_block_rsv *rsv,
5638 				   unsigned short type)
5639 {
5640 	btrfs_init_block_rsv(rsv, type);
5641 	rsv->space_info = __find_space_info(fs_info,
5642 					    BTRFS_BLOCK_GROUP_METADATA);
5643 }
5644 
5645 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5646 					      unsigned short type)
5647 {
5648 	struct btrfs_block_rsv *block_rsv;
5649 
5650 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5651 	if (!block_rsv)
5652 		return NULL;
5653 
5654 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5655 	return block_rsv;
5656 }
5657 
5658 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5659 			  struct btrfs_block_rsv *rsv)
5660 {
5661 	if (!rsv)
5662 		return;
5663 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5664 	kfree(rsv);
5665 }
5666 
5667 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5668 {
5669 	kfree(rsv);
5670 }
5671 
5672 int btrfs_block_rsv_add(struct btrfs_root *root,
5673 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5674 			enum btrfs_reserve_flush_enum flush)
5675 {
5676 	int ret;
5677 
5678 	if (num_bytes == 0)
5679 		return 0;
5680 
5681 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5682 	if (!ret) {
5683 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5684 		return 0;
5685 	}
5686 
5687 	return ret;
5688 }
5689 
5690 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5691 {
5692 	u64 num_bytes = 0;
5693 	int ret = -ENOSPC;
5694 
5695 	if (!block_rsv)
5696 		return 0;
5697 
5698 	spin_lock(&block_rsv->lock);
5699 	num_bytes = div_factor(block_rsv->size, min_factor);
5700 	if (block_rsv->reserved >= num_bytes)
5701 		ret = 0;
5702 	spin_unlock(&block_rsv->lock);
5703 
5704 	return ret;
5705 }
5706 
5707 int btrfs_block_rsv_refill(struct btrfs_root *root,
5708 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5709 			   enum btrfs_reserve_flush_enum flush)
5710 {
5711 	u64 num_bytes = 0;
5712 	int ret = -ENOSPC;
5713 
5714 	if (!block_rsv)
5715 		return 0;
5716 
5717 	spin_lock(&block_rsv->lock);
5718 	num_bytes = min_reserved;
5719 	if (block_rsv->reserved >= num_bytes)
5720 		ret = 0;
5721 	else
5722 		num_bytes -= block_rsv->reserved;
5723 	spin_unlock(&block_rsv->lock);
5724 
5725 	if (!ret)
5726 		return 0;
5727 
5728 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5729 	if (!ret) {
5730 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5731 		return 0;
5732 	}
5733 
5734 	return ret;
5735 }
5736 
5737 /**
5738  * btrfs_inode_rsv_refill - refill the inode block rsv.
5739  * @inode - the inode we are refilling.
5740  * @flush - the flusing restriction.
5741  *
5742  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5743  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5744  * or return if we already have enough space.  This will also handle the resreve
5745  * tracepoint for the reserved amount.
5746  */
5747 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5748 				  enum btrfs_reserve_flush_enum flush)
5749 {
5750 	struct btrfs_root *root = inode->root;
5751 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5752 	u64 num_bytes = 0;
5753 	int ret = -ENOSPC;
5754 
5755 	spin_lock(&block_rsv->lock);
5756 	if (block_rsv->reserved < block_rsv->size)
5757 		num_bytes = block_rsv->size - block_rsv->reserved;
5758 	spin_unlock(&block_rsv->lock);
5759 
5760 	if (num_bytes == 0)
5761 		return 0;
5762 
5763 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5764 	if (!ret) {
5765 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5766 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5767 					      btrfs_ino(inode), num_bytes, 1);
5768 	}
5769 	return ret;
5770 }
5771 
5772 /**
5773  * btrfs_inode_rsv_release - release any excessive reservation.
5774  * @inode - the inode we need to release from.
5775  *
5776  * This is the same as btrfs_block_rsv_release, except that it handles the
5777  * tracepoint for the reservation.
5778  */
5779 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5780 {
5781 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5782 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5783 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5784 	u64 released = 0;
5785 
5786 	/*
5787 	 * Since we statically set the block_rsv->size we just want to say we
5788 	 * are releasing 0 bytes, and then we'll just get the reservation over
5789 	 * the size free'd.
5790 	 */
5791 	released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5792 	if (released > 0)
5793 		trace_btrfs_space_reservation(fs_info, "delalloc",
5794 					      btrfs_ino(inode), released, 0);
5795 }
5796 
5797 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5798 			     struct btrfs_block_rsv *block_rsv,
5799 			     u64 num_bytes)
5800 {
5801 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5802 
5803 	if (global_rsv == block_rsv ||
5804 	    block_rsv->space_info != global_rsv->space_info)
5805 		global_rsv = NULL;
5806 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5807 }
5808 
5809 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5810 {
5811 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5812 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5813 	u64 num_bytes;
5814 
5815 	/*
5816 	 * The global block rsv is based on the size of the extent tree, the
5817 	 * checksum tree and the root tree.  If the fs is empty we want to set
5818 	 * it to a minimal amount for safety.
5819 	 */
5820 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5821 		btrfs_root_used(&fs_info->csum_root->root_item) +
5822 		btrfs_root_used(&fs_info->tree_root->root_item);
5823 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5824 
5825 	spin_lock(&sinfo->lock);
5826 	spin_lock(&block_rsv->lock);
5827 
5828 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5829 
5830 	if (block_rsv->reserved < block_rsv->size) {
5831 		num_bytes = btrfs_space_info_used(sinfo, true);
5832 		if (sinfo->total_bytes > num_bytes) {
5833 			num_bytes = sinfo->total_bytes - num_bytes;
5834 			num_bytes = min(num_bytes,
5835 					block_rsv->size - block_rsv->reserved);
5836 			block_rsv->reserved += num_bytes;
5837 			sinfo->bytes_may_use += num_bytes;
5838 			trace_btrfs_space_reservation(fs_info, "space_info",
5839 						      sinfo->flags, num_bytes,
5840 						      1);
5841 		}
5842 	} else if (block_rsv->reserved > block_rsv->size) {
5843 		num_bytes = block_rsv->reserved - block_rsv->size;
5844 		sinfo->bytes_may_use -= num_bytes;
5845 		trace_btrfs_space_reservation(fs_info, "space_info",
5846 				      sinfo->flags, num_bytes, 0);
5847 		block_rsv->reserved = block_rsv->size;
5848 	}
5849 
5850 	if (block_rsv->reserved == block_rsv->size)
5851 		block_rsv->full = 1;
5852 	else
5853 		block_rsv->full = 0;
5854 
5855 	spin_unlock(&block_rsv->lock);
5856 	spin_unlock(&sinfo->lock);
5857 }
5858 
5859 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5860 {
5861 	struct btrfs_space_info *space_info;
5862 
5863 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5864 	fs_info->chunk_block_rsv.space_info = space_info;
5865 
5866 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5867 	fs_info->global_block_rsv.space_info = space_info;
5868 	fs_info->trans_block_rsv.space_info = space_info;
5869 	fs_info->empty_block_rsv.space_info = space_info;
5870 	fs_info->delayed_block_rsv.space_info = space_info;
5871 
5872 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5873 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5874 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5875 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5876 	if (fs_info->quota_root)
5877 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5878 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5879 
5880 	update_global_block_rsv(fs_info);
5881 }
5882 
5883 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5884 {
5885 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5886 				(u64)-1);
5887 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5888 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5889 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5890 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5891 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5892 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5893 }
5894 
5895 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5896 				  struct btrfs_fs_info *fs_info)
5897 {
5898 	if (!trans->block_rsv) {
5899 		ASSERT(!trans->bytes_reserved);
5900 		return;
5901 	}
5902 
5903 	if (!trans->bytes_reserved)
5904 		return;
5905 
5906 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5907 	trace_btrfs_space_reservation(fs_info, "transaction",
5908 				      trans->transid, trans->bytes_reserved, 0);
5909 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
5910 				trans->bytes_reserved);
5911 	trans->bytes_reserved = 0;
5912 }
5913 
5914 /*
5915  * To be called after all the new block groups attached to the transaction
5916  * handle have been created (btrfs_create_pending_block_groups()).
5917  */
5918 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5919 {
5920 	struct btrfs_fs_info *fs_info = trans->fs_info;
5921 
5922 	if (!trans->chunk_bytes_reserved)
5923 		return;
5924 
5925 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5926 
5927 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5928 				trans->chunk_bytes_reserved);
5929 	trans->chunk_bytes_reserved = 0;
5930 }
5931 
5932 /* Can only return 0 or -ENOSPC */
5933 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5934 				  struct btrfs_inode *inode)
5935 {
5936 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5937 	struct btrfs_root *root = inode->root;
5938 	/*
5939 	 * We always use trans->block_rsv here as we will have reserved space
5940 	 * for our orphan when starting the transaction, using get_block_rsv()
5941 	 * here will sometimes make us choose the wrong block rsv as we could be
5942 	 * doing a reloc inode for a non refcounted root.
5943 	 */
5944 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5945 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5946 
5947 	/*
5948 	 * We need to hold space in order to delete our orphan item once we've
5949 	 * added it, so this takes the reservation so we can release it later
5950 	 * when we are truly done with the orphan item.
5951 	 */
5952 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5953 
5954 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5955 			num_bytes, 1);
5956 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5957 }
5958 
5959 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5960 {
5961 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5962 	struct btrfs_root *root = inode->root;
5963 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5964 
5965 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5966 			num_bytes, 0);
5967 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5968 }
5969 
5970 /*
5971  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5972  * root: the root of the parent directory
5973  * rsv: block reservation
5974  * items: the number of items that we need do reservation
5975  * qgroup_reserved: used to return the reserved size in qgroup
5976  *
5977  * This function is used to reserve the space for snapshot/subvolume
5978  * creation and deletion. Those operations are different with the
5979  * common file/directory operations, they change two fs/file trees
5980  * and root tree, the number of items that the qgroup reserves is
5981  * different with the free space reservation. So we can not use
5982  * the space reservation mechanism in start_transaction().
5983  */
5984 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5985 				     struct btrfs_block_rsv *rsv,
5986 				     int items,
5987 				     u64 *qgroup_reserved,
5988 				     bool use_global_rsv)
5989 {
5990 	u64 num_bytes;
5991 	int ret;
5992 	struct btrfs_fs_info *fs_info = root->fs_info;
5993 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5994 
5995 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5996 		/* One for parent inode, two for dir entries */
5997 		num_bytes = 3 * fs_info->nodesize;
5998 		ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5999 		if (ret)
6000 			return ret;
6001 	} else {
6002 		num_bytes = 0;
6003 	}
6004 
6005 	*qgroup_reserved = num_bytes;
6006 
6007 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6008 	rsv->space_info = __find_space_info(fs_info,
6009 					    BTRFS_BLOCK_GROUP_METADATA);
6010 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6011 				  BTRFS_RESERVE_FLUSH_ALL);
6012 
6013 	if (ret == -ENOSPC && use_global_rsv)
6014 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6015 
6016 	if (ret && *qgroup_reserved)
6017 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
6018 
6019 	return ret;
6020 }
6021 
6022 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6023 				      struct btrfs_block_rsv *rsv)
6024 {
6025 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6026 }
6027 
6028 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6029 						 struct btrfs_inode *inode)
6030 {
6031 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6032 	u64 reserve_size = 0;
6033 	u64 csum_leaves;
6034 	unsigned outstanding_extents;
6035 
6036 	lockdep_assert_held(&inode->lock);
6037 	outstanding_extents = inode->outstanding_extents;
6038 	if (outstanding_extents)
6039 		reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6040 						outstanding_extents + 1);
6041 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6042 						 inode->csum_bytes);
6043 	reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6044 						       csum_leaves);
6045 
6046 	spin_lock(&block_rsv->lock);
6047 	block_rsv->size = reserve_size;
6048 	spin_unlock(&block_rsv->lock);
6049 }
6050 
6051 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6052 {
6053 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6054 	struct btrfs_root *root = inode->root;
6055 	unsigned nr_extents;
6056 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6057 	int ret = 0;
6058 	bool delalloc_lock = true;
6059 
6060 	/* If we are a free space inode we need to not flush since we will be in
6061 	 * the middle of a transaction commit.  We also don't need the delalloc
6062 	 * mutex since we won't race with anybody.  We need this mostly to make
6063 	 * lockdep shut its filthy mouth.
6064 	 *
6065 	 * If we have a transaction open (can happen if we call truncate_block
6066 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6067 	 */
6068 	if (btrfs_is_free_space_inode(inode)) {
6069 		flush = BTRFS_RESERVE_NO_FLUSH;
6070 		delalloc_lock = false;
6071 	} else if (current->journal_info) {
6072 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
6073 	}
6074 
6075 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
6076 	    btrfs_transaction_in_commit(fs_info))
6077 		schedule_timeout(1);
6078 
6079 	if (delalloc_lock)
6080 		mutex_lock(&inode->delalloc_mutex);
6081 
6082 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6083 
6084 	/* Add our new extents and calculate the new rsv size. */
6085 	spin_lock(&inode->lock);
6086 	nr_extents = count_max_extents(num_bytes);
6087 	btrfs_mod_outstanding_extents(inode, nr_extents);
6088 	inode->csum_bytes += num_bytes;
6089 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6090 	spin_unlock(&inode->lock);
6091 
6092 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6093 		ret = btrfs_qgroup_reserve_meta(root,
6094 				nr_extents * fs_info->nodesize, true);
6095 		if (ret)
6096 			goto out_fail;
6097 	}
6098 
6099 	ret = btrfs_inode_rsv_refill(inode, flush);
6100 	if (unlikely(ret)) {
6101 		btrfs_qgroup_free_meta(root,
6102 				       nr_extents * fs_info->nodesize);
6103 		goto out_fail;
6104 	}
6105 
6106 	if (delalloc_lock)
6107 		mutex_unlock(&inode->delalloc_mutex);
6108 	return 0;
6109 
6110 out_fail:
6111 	spin_lock(&inode->lock);
6112 	nr_extents = count_max_extents(num_bytes);
6113 	btrfs_mod_outstanding_extents(inode, -nr_extents);
6114 	inode->csum_bytes -= num_bytes;
6115 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6116 	spin_unlock(&inode->lock);
6117 
6118 	btrfs_inode_rsv_release(inode);
6119 	if (delalloc_lock)
6120 		mutex_unlock(&inode->delalloc_mutex);
6121 	return ret;
6122 }
6123 
6124 /**
6125  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6126  * @inode: the inode to release the reservation for.
6127  * @num_bytes: the number of bytes we are releasing.
6128  *
6129  * This will release the metadata reservation for an inode.  This can be called
6130  * once we complete IO for a given set of bytes to release their metadata
6131  * reservations, or on error for the same reason.
6132  */
6133 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6134 {
6135 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6136 
6137 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6138 	spin_lock(&inode->lock);
6139 	inode->csum_bytes -= num_bytes;
6140 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6141 	spin_unlock(&inode->lock);
6142 
6143 	if (btrfs_is_testing(fs_info))
6144 		return;
6145 
6146 	btrfs_inode_rsv_release(inode);
6147 }
6148 
6149 /**
6150  * btrfs_delalloc_release_extents - release our outstanding_extents
6151  * @inode: the inode to balance the reservation for.
6152  * @num_bytes: the number of bytes we originally reserved with
6153  *
6154  * When we reserve space we increase outstanding_extents for the extents we may
6155  * add.  Once we've set the range as delalloc or created our ordered extents we
6156  * have outstanding_extents to track the real usage, so we use this to free our
6157  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6158  * with btrfs_delalloc_reserve_metadata.
6159  */
6160 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6161 {
6162 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6163 	unsigned num_extents;
6164 
6165 	spin_lock(&inode->lock);
6166 	num_extents = count_max_extents(num_bytes);
6167 	btrfs_mod_outstanding_extents(inode, -num_extents);
6168 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6169 	spin_unlock(&inode->lock);
6170 
6171 	if (btrfs_is_testing(fs_info))
6172 		return;
6173 
6174 	btrfs_inode_rsv_release(inode);
6175 }
6176 
6177 /**
6178  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6179  * delalloc
6180  * @inode: inode we're writing to
6181  * @start: start range we are writing to
6182  * @len: how long the range we are writing to
6183  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6184  * 	      current reservation.
6185  *
6186  * This will do the following things
6187  *
6188  * o reserve space in data space info for num bytes
6189  *   and reserve precious corresponding qgroup space
6190  *   (Done in check_data_free_space)
6191  *
6192  * o reserve space for metadata space, based on the number of outstanding
6193  *   extents and how much csums will be needed
6194  *   also reserve metadata space in a per root over-reserve method.
6195  * o add to the inodes->delalloc_bytes
6196  * o add it to the fs_info's delalloc inodes list.
6197  *   (Above 3 all done in delalloc_reserve_metadata)
6198  *
6199  * Return 0 for success
6200  * Return <0 for error(-ENOSPC or -EQUOT)
6201  */
6202 int btrfs_delalloc_reserve_space(struct inode *inode,
6203 			struct extent_changeset **reserved, u64 start, u64 len)
6204 {
6205 	int ret;
6206 
6207 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6208 	if (ret < 0)
6209 		return ret;
6210 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6211 	if (ret < 0)
6212 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6213 	return ret;
6214 }
6215 
6216 /**
6217  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6218  * @inode: inode we're releasing space for
6219  * @start: start position of the space already reserved
6220  * @len: the len of the space already reserved
6221  * @release_bytes: the len of the space we consumed or didn't use
6222  *
6223  * This function will release the metadata space that was not used and will
6224  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6225  * list if there are no delalloc bytes left.
6226  * Also it will handle the qgroup reserved space.
6227  */
6228 void btrfs_delalloc_release_space(struct inode *inode,
6229 				  struct extent_changeset *reserved,
6230 				  u64 start, u64 len)
6231 {
6232 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6233 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6234 }
6235 
6236 static int update_block_group(struct btrfs_trans_handle *trans,
6237 			      struct btrfs_fs_info *info, u64 bytenr,
6238 			      u64 num_bytes, int alloc)
6239 {
6240 	struct btrfs_block_group_cache *cache = NULL;
6241 	u64 total = num_bytes;
6242 	u64 old_val;
6243 	u64 byte_in_group;
6244 	int factor;
6245 
6246 	/* block accounting for super block */
6247 	spin_lock(&info->delalloc_root_lock);
6248 	old_val = btrfs_super_bytes_used(info->super_copy);
6249 	if (alloc)
6250 		old_val += num_bytes;
6251 	else
6252 		old_val -= num_bytes;
6253 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6254 	spin_unlock(&info->delalloc_root_lock);
6255 
6256 	while (total) {
6257 		cache = btrfs_lookup_block_group(info, bytenr);
6258 		if (!cache)
6259 			return -ENOENT;
6260 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6261 				    BTRFS_BLOCK_GROUP_RAID1 |
6262 				    BTRFS_BLOCK_GROUP_RAID10))
6263 			factor = 2;
6264 		else
6265 			factor = 1;
6266 		/*
6267 		 * If this block group has free space cache written out, we
6268 		 * need to make sure to load it if we are removing space.  This
6269 		 * is because we need the unpinning stage to actually add the
6270 		 * space back to the block group, otherwise we will leak space.
6271 		 */
6272 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6273 			cache_block_group(cache, 1);
6274 
6275 		byte_in_group = bytenr - cache->key.objectid;
6276 		WARN_ON(byte_in_group > cache->key.offset);
6277 
6278 		spin_lock(&cache->space_info->lock);
6279 		spin_lock(&cache->lock);
6280 
6281 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6282 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6283 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6284 
6285 		old_val = btrfs_block_group_used(&cache->item);
6286 		num_bytes = min(total, cache->key.offset - byte_in_group);
6287 		if (alloc) {
6288 			old_val += num_bytes;
6289 			btrfs_set_block_group_used(&cache->item, old_val);
6290 			cache->reserved -= num_bytes;
6291 			cache->space_info->bytes_reserved -= num_bytes;
6292 			cache->space_info->bytes_used += num_bytes;
6293 			cache->space_info->disk_used += num_bytes * factor;
6294 			spin_unlock(&cache->lock);
6295 			spin_unlock(&cache->space_info->lock);
6296 		} else {
6297 			old_val -= num_bytes;
6298 			btrfs_set_block_group_used(&cache->item, old_val);
6299 			cache->pinned += num_bytes;
6300 			cache->space_info->bytes_pinned += num_bytes;
6301 			cache->space_info->bytes_used -= num_bytes;
6302 			cache->space_info->disk_used -= num_bytes * factor;
6303 			spin_unlock(&cache->lock);
6304 			spin_unlock(&cache->space_info->lock);
6305 
6306 			trace_btrfs_space_reservation(info, "pinned",
6307 						      cache->space_info->flags,
6308 						      num_bytes, 1);
6309 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6310 					   num_bytes);
6311 			set_extent_dirty(info->pinned_extents,
6312 					 bytenr, bytenr + num_bytes - 1,
6313 					 GFP_NOFS | __GFP_NOFAIL);
6314 		}
6315 
6316 		spin_lock(&trans->transaction->dirty_bgs_lock);
6317 		if (list_empty(&cache->dirty_list)) {
6318 			list_add_tail(&cache->dirty_list,
6319 				      &trans->transaction->dirty_bgs);
6320 				trans->transaction->num_dirty_bgs++;
6321 			btrfs_get_block_group(cache);
6322 		}
6323 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6324 
6325 		/*
6326 		 * No longer have used bytes in this block group, queue it for
6327 		 * deletion. We do this after adding the block group to the
6328 		 * dirty list to avoid races between cleaner kthread and space
6329 		 * cache writeout.
6330 		 */
6331 		if (!alloc && old_val == 0) {
6332 			spin_lock(&info->unused_bgs_lock);
6333 			if (list_empty(&cache->bg_list)) {
6334 				btrfs_get_block_group(cache);
6335 				list_add_tail(&cache->bg_list,
6336 					      &info->unused_bgs);
6337 			}
6338 			spin_unlock(&info->unused_bgs_lock);
6339 		}
6340 
6341 		btrfs_put_block_group(cache);
6342 		total -= num_bytes;
6343 		bytenr += num_bytes;
6344 	}
6345 	return 0;
6346 }
6347 
6348 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6349 {
6350 	struct btrfs_block_group_cache *cache;
6351 	u64 bytenr;
6352 
6353 	spin_lock(&fs_info->block_group_cache_lock);
6354 	bytenr = fs_info->first_logical_byte;
6355 	spin_unlock(&fs_info->block_group_cache_lock);
6356 
6357 	if (bytenr < (u64)-1)
6358 		return bytenr;
6359 
6360 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6361 	if (!cache)
6362 		return 0;
6363 
6364 	bytenr = cache->key.objectid;
6365 	btrfs_put_block_group(cache);
6366 
6367 	return bytenr;
6368 }
6369 
6370 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6371 			   struct btrfs_block_group_cache *cache,
6372 			   u64 bytenr, u64 num_bytes, int reserved)
6373 {
6374 	spin_lock(&cache->space_info->lock);
6375 	spin_lock(&cache->lock);
6376 	cache->pinned += num_bytes;
6377 	cache->space_info->bytes_pinned += num_bytes;
6378 	if (reserved) {
6379 		cache->reserved -= num_bytes;
6380 		cache->space_info->bytes_reserved -= num_bytes;
6381 	}
6382 	spin_unlock(&cache->lock);
6383 	spin_unlock(&cache->space_info->lock);
6384 
6385 	trace_btrfs_space_reservation(fs_info, "pinned",
6386 				      cache->space_info->flags, num_bytes, 1);
6387 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6388 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6389 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6390 	return 0;
6391 }
6392 
6393 /*
6394  * this function must be called within transaction
6395  */
6396 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6397 		     u64 bytenr, u64 num_bytes, int reserved)
6398 {
6399 	struct btrfs_block_group_cache *cache;
6400 
6401 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6402 	BUG_ON(!cache); /* Logic error */
6403 
6404 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6405 
6406 	btrfs_put_block_group(cache);
6407 	return 0;
6408 }
6409 
6410 /*
6411  * this function must be called within transaction
6412  */
6413 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6414 				    u64 bytenr, u64 num_bytes)
6415 {
6416 	struct btrfs_block_group_cache *cache;
6417 	int ret;
6418 
6419 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6420 	if (!cache)
6421 		return -EINVAL;
6422 
6423 	/*
6424 	 * pull in the free space cache (if any) so that our pin
6425 	 * removes the free space from the cache.  We have load_only set
6426 	 * to one because the slow code to read in the free extents does check
6427 	 * the pinned extents.
6428 	 */
6429 	cache_block_group(cache, 1);
6430 
6431 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6432 
6433 	/* remove us from the free space cache (if we're there at all) */
6434 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6435 	btrfs_put_block_group(cache);
6436 	return ret;
6437 }
6438 
6439 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6440 				   u64 start, u64 num_bytes)
6441 {
6442 	int ret;
6443 	struct btrfs_block_group_cache *block_group;
6444 	struct btrfs_caching_control *caching_ctl;
6445 
6446 	block_group = btrfs_lookup_block_group(fs_info, start);
6447 	if (!block_group)
6448 		return -EINVAL;
6449 
6450 	cache_block_group(block_group, 0);
6451 	caching_ctl = get_caching_control(block_group);
6452 
6453 	if (!caching_ctl) {
6454 		/* Logic error */
6455 		BUG_ON(!block_group_cache_done(block_group));
6456 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6457 	} else {
6458 		mutex_lock(&caching_ctl->mutex);
6459 
6460 		if (start >= caching_ctl->progress) {
6461 			ret = add_excluded_extent(fs_info, start, num_bytes);
6462 		} else if (start + num_bytes <= caching_ctl->progress) {
6463 			ret = btrfs_remove_free_space(block_group,
6464 						      start, num_bytes);
6465 		} else {
6466 			num_bytes = caching_ctl->progress - start;
6467 			ret = btrfs_remove_free_space(block_group,
6468 						      start, num_bytes);
6469 			if (ret)
6470 				goto out_lock;
6471 
6472 			num_bytes = (start + num_bytes) -
6473 				caching_ctl->progress;
6474 			start = caching_ctl->progress;
6475 			ret = add_excluded_extent(fs_info, start, num_bytes);
6476 		}
6477 out_lock:
6478 		mutex_unlock(&caching_ctl->mutex);
6479 		put_caching_control(caching_ctl);
6480 	}
6481 	btrfs_put_block_group(block_group);
6482 	return ret;
6483 }
6484 
6485 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6486 				 struct extent_buffer *eb)
6487 {
6488 	struct btrfs_file_extent_item *item;
6489 	struct btrfs_key key;
6490 	int found_type;
6491 	int i;
6492 
6493 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6494 		return 0;
6495 
6496 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6497 		btrfs_item_key_to_cpu(eb, &key, i);
6498 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6499 			continue;
6500 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6501 		found_type = btrfs_file_extent_type(eb, item);
6502 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6503 			continue;
6504 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6505 			continue;
6506 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6507 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6508 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6509 	}
6510 
6511 	return 0;
6512 }
6513 
6514 static void
6515 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6516 {
6517 	atomic_inc(&bg->reservations);
6518 }
6519 
6520 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6521 					const u64 start)
6522 {
6523 	struct btrfs_block_group_cache *bg;
6524 
6525 	bg = btrfs_lookup_block_group(fs_info, start);
6526 	ASSERT(bg);
6527 	if (atomic_dec_and_test(&bg->reservations))
6528 		wake_up_var(&bg->reservations);
6529 	btrfs_put_block_group(bg);
6530 }
6531 
6532 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6533 {
6534 	struct btrfs_space_info *space_info = bg->space_info;
6535 
6536 	ASSERT(bg->ro);
6537 
6538 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6539 		return;
6540 
6541 	/*
6542 	 * Our block group is read only but before we set it to read only,
6543 	 * some task might have had allocated an extent from it already, but it
6544 	 * has not yet created a respective ordered extent (and added it to a
6545 	 * root's list of ordered extents).
6546 	 * Therefore wait for any task currently allocating extents, since the
6547 	 * block group's reservations counter is incremented while a read lock
6548 	 * on the groups' semaphore is held and decremented after releasing
6549 	 * the read access on that semaphore and creating the ordered extent.
6550 	 */
6551 	down_write(&space_info->groups_sem);
6552 	up_write(&space_info->groups_sem);
6553 
6554 	wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6555 }
6556 
6557 /**
6558  * btrfs_add_reserved_bytes - update the block_group and space info counters
6559  * @cache:	The cache we are manipulating
6560  * @ram_bytes:  The number of bytes of file content, and will be same to
6561  *              @num_bytes except for the compress path.
6562  * @num_bytes:	The number of bytes in question
6563  * @delalloc:   The blocks are allocated for the delalloc write
6564  *
6565  * This is called by the allocator when it reserves space. If this is a
6566  * reservation and the block group has become read only we cannot make the
6567  * reservation and return -EAGAIN, otherwise this function always succeeds.
6568  */
6569 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6570 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6571 {
6572 	struct btrfs_space_info *space_info = cache->space_info;
6573 	int ret = 0;
6574 
6575 	spin_lock(&space_info->lock);
6576 	spin_lock(&cache->lock);
6577 	if (cache->ro) {
6578 		ret = -EAGAIN;
6579 	} else {
6580 		cache->reserved += num_bytes;
6581 		space_info->bytes_reserved += num_bytes;
6582 
6583 		trace_btrfs_space_reservation(cache->fs_info,
6584 				"space_info", space_info->flags,
6585 				ram_bytes, 0);
6586 		space_info->bytes_may_use -= ram_bytes;
6587 		if (delalloc)
6588 			cache->delalloc_bytes += num_bytes;
6589 	}
6590 	spin_unlock(&cache->lock);
6591 	spin_unlock(&space_info->lock);
6592 	return ret;
6593 }
6594 
6595 /**
6596  * btrfs_free_reserved_bytes - update the block_group and space info counters
6597  * @cache:      The cache we are manipulating
6598  * @num_bytes:  The number of bytes in question
6599  * @delalloc:   The blocks are allocated for the delalloc write
6600  *
6601  * This is called by somebody who is freeing space that was never actually used
6602  * on disk.  For example if you reserve some space for a new leaf in transaction
6603  * A and before transaction A commits you free that leaf, you call this with
6604  * reserve set to 0 in order to clear the reservation.
6605  */
6606 
6607 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6608 				     u64 num_bytes, int delalloc)
6609 {
6610 	struct btrfs_space_info *space_info = cache->space_info;
6611 	int ret = 0;
6612 
6613 	spin_lock(&space_info->lock);
6614 	spin_lock(&cache->lock);
6615 	if (cache->ro)
6616 		space_info->bytes_readonly += num_bytes;
6617 	cache->reserved -= num_bytes;
6618 	space_info->bytes_reserved -= num_bytes;
6619 
6620 	if (delalloc)
6621 		cache->delalloc_bytes -= num_bytes;
6622 	spin_unlock(&cache->lock);
6623 	spin_unlock(&space_info->lock);
6624 	return ret;
6625 }
6626 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6627 {
6628 	struct btrfs_caching_control *next;
6629 	struct btrfs_caching_control *caching_ctl;
6630 	struct btrfs_block_group_cache *cache;
6631 
6632 	down_write(&fs_info->commit_root_sem);
6633 
6634 	list_for_each_entry_safe(caching_ctl, next,
6635 				 &fs_info->caching_block_groups, list) {
6636 		cache = caching_ctl->block_group;
6637 		if (block_group_cache_done(cache)) {
6638 			cache->last_byte_to_unpin = (u64)-1;
6639 			list_del_init(&caching_ctl->list);
6640 			put_caching_control(caching_ctl);
6641 		} else {
6642 			cache->last_byte_to_unpin = caching_ctl->progress;
6643 		}
6644 	}
6645 
6646 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6647 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6648 	else
6649 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6650 
6651 	up_write(&fs_info->commit_root_sem);
6652 
6653 	update_global_block_rsv(fs_info);
6654 }
6655 
6656 /*
6657  * Returns the free cluster for the given space info and sets empty_cluster to
6658  * what it should be based on the mount options.
6659  */
6660 static struct btrfs_free_cluster *
6661 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6662 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6663 {
6664 	struct btrfs_free_cluster *ret = NULL;
6665 
6666 	*empty_cluster = 0;
6667 	if (btrfs_mixed_space_info(space_info))
6668 		return ret;
6669 
6670 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6671 		ret = &fs_info->meta_alloc_cluster;
6672 		if (btrfs_test_opt(fs_info, SSD))
6673 			*empty_cluster = SZ_2M;
6674 		else
6675 			*empty_cluster = SZ_64K;
6676 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6677 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
6678 		*empty_cluster = SZ_2M;
6679 		ret = &fs_info->data_alloc_cluster;
6680 	}
6681 
6682 	return ret;
6683 }
6684 
6685 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6686 			      u64 start, u64 end,
6687 			      const bool return_free_space)
6688 {
6689 	struct btrfs_block_group_cache *cache = NULL;
6690 	struct btrfs_space_info *space_info;
6691 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6692 	struct btrfs_free_cluster *cluster = NULL;
6693 	u64 len;
6694 	u64 total_unpinned = 0;
6695 	u64 empty_cluster = 0;
6696 	bool readonly;
6697 
6698 	while (start <= end) {
6699 		readonly = false;
6700 		if (!cache ||
6701 		    start >= cache->key.objectid + cache->key.offset) {
6702 			if (cache)
6703 				btrfs_put_block_group(cache);
6704 			total_unpinned = 0;
6705 			cache = btrfs_lookup_block_group(fs_info, start);
6706 			BUG_ON(!cache); /* Logic error */
6707 
6708 			cluster = fetch_cluster_info(fs_info,
6709 						     cache->space_info,
6710 						     &empty_cluster);
6711 			empty_cluster <<= 1;
6712 		}
6713 
6714 		len = cache->key.objectid + cache->key.offset - start;
6715 		len = min(len, end + 1 - start);
6716 
6717 		if (start < cache->last_byte_to_unpin) {
6718 			len = min(len, cache->last_byte_to_unpin - start);
6719 			if (return_free_space)
6720 				btrfs_add_free_space(cache, start, len);
6721 		}
6722 
6723 		start += len;
6724 		total_unpinned += len;
6725 		space_info = cache->space_info;
6726 
6727 		/*
6728 		 * If this space cluster has been marked as fragmented and we've
6729 		 * unpinned enough in this block group to potentially allow a
6730 		 * cluster to be created inside of it go ahead and clear the
6731 		 * fragmented check.
6732 		 */
6733 		if (cluster && cluster->fragmented &&
6734 		    total_unpinned > empty_cluster) {
6735 			spin_lock(&cluster->lock);
6736 			cluster->fragmented = 0;
6737 			spin_unlock(&cluster->lock);
6738 		}
6739 
6740 		spin_lock(&space_info->lock);
6741 		spin_lock(&cache->lock);
6742 		cache->pinned -= len;
6743 		space_info->bytes_pinned -= len;
6744 
6745 		trace_btrfs_space_reservation(fs_info, "pinned",
6746 					      space_info->flags, len, 0);
6747 		space_info->max_extent_size = 0;
6748 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6749 		if (cache->ro) {
6750 			space_info->bytes_readonly += len;
6751 			readonly = true;
6752 		}
6753 		spin_unlock(&cache->lock);
6754 		if (!readonly && return_free_space &&
6755 		    global_rsv->space_info == space_info) {
6756 			u64 to_add = len;
6757 
6758 			spin_lock(&global_rsv->lock);
6759 			if (!global_rsv->full) {
6760 				to_add = min(len, global_rsv->size -
6761 					     global_rsv->reserved);
6762 				global_rsv->reserved += to_add;
6763 				space_info->bytes_may_use += to_add;
6764 				if (global_rsv->reserved >= global_rsv->size)
6765 					global_rsv->full = 1;
6766 				trace_btrfs_space_reservation(fs_info,
6767 							      "space_info",
6768 							      space_info->flags,
6769 							      to_add, 1);
6770 				len -= to_add;
6771 			}
6772 			spin_unlock(&global_rsv->lock);
6773 			/* Add to any tickets we may have */
6774 			if (len)
6775 				space_info_add_new_bytes(fs_info, space_info,
6776 							 len);
6777 		}
6778 		spin_unlock(&space_info->lock);
6779 	}
6780 
6781 	if (cache)
6782 		btrfs_put_block_group(cache);
6783 	return 0;
6784 }
6785 
6786 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6787 			       struct btrfs_fs_info *fs_info)
6788 {
6789 	struct btrfs_block_group_cache *block_group, *tmp;
6790 	struct list_head *deleted_bgs;
6791 	struct extent_io_tree *unpin;
6792 	u64 start;
6793 	u64 end;
6794 	int ret;
6795 
6796 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6797 		unpin = &fs_info->freed_extents[1];
6798 	else
6799 		unpin = &fs_info->freed_extents[0];
6800 
6801 	while (!trans->aborted) {
6802 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6803 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6804 					    EXTENT_DIRTY, NULL);
6805 		if (ret) {
6806 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6807 			break;
6808 		}
6809 
6810 		if (btrfs_test_opt(fs_info, DISCARD))
6811 			ret = btrfs_discard_extent(fs_info, start,
6812 						   end + 1 - start, NULL);
6813 
6814 		clear_extent_dirty(unpin, start, end);
6815 		unpin_extent_range(fs_info, start, end, true);
6816 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6817 		cond_resched();
6818 	}
6819 
6820 	/*
6821 	 * Transaction is finished.  We don't need the lock anymore.  We
6822 	 * do need to clean up the block groups in case of a transaction
6823 	 * abort.
6824 	 */
6825 	deleted_bgs = &trans->transaction->deleted_bgs;
6826 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6827 		u64 trimmed = 0;
6828 
6829 		ret = -EROFS;
6830 		if (!trans->aborted)
6831 			ret = btrfs_discard_extent(fs_info,
6832 						   block_group->key.objectid,
6833 						   block_group->key.offset,
6834 						   &trimmed);
6835 
6836 		list_del_init(&block_group->bg_list);
6837 		btrfs_put_block_group_trimming(block_group);
6838 		btrfs_put_block_group(block_group);
6839 
6840 		if (ret) {
6841 			const char *errstr = btrfs_decode_error(ret);
6842 			btrfs_warn(fs_info,
6843 			   "discard failed while removing blockgroup: errno=%d %s",
6844 				   ret, errstr);
6845 		}
6846 	}
6847 
6848 	return 0;
6849 }
6850 
6851 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6852 				struct btrfs_fs_info *info,
6853 				struct btrfs_delayed_ref_node *node, u64 parent,
6854 				u64 root_objectid, u64 owner_objectid,
6855 				u64 owner_offset, int refs_to_drop,
6856 				struct btrfs_delayed_extent_op *extent_op)
6857 {
6858 	struct btrfs_key key;
6859 	struct btrfs_path *path;
6860 	struct btrfs_root *extent_root = info->extent_root;
6861 	struct extent_buffer *leaf;
6862 	struct btrfs_extent_item *ei;
6863 	struct btrfs_extent_inline_ref *iref;
6864 	int ret;
6865 	int is_data;
6866 	int extent_slot = 0;
6867 	int found_extent = 0;
6868 	int num_to_del = 1;
6869 	u32 item_size;
6870 	u64 refs;
6871 	u64 bytenr = node->bytenr;
6872 	u64 num_bytes = node->num_bytes;
6873 	int last_ref = 0;
6874 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6875 
6876 	path = btrfs_alloc_path();
6877 	if (!path)
6878 		return -ENOMEM;
6879 
6880 	path->reada = READA_FORWARD;
6881 	path->leave_spinning = 1;
6882 
6883 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6884 	BUG_ON(!is_data && refs_to_drop != 1);
6885 
6886 	if (is_data)
6887 		skinny_metadata = false;
6888 
6889 	ret = lookup_extent_backref(trans, info, path, &iref,
6890 				    bytenr, num_bytes, parent,
6891 				    root_objectid, owner_objectid,
6892 				    owner_offset);
6893 	if (ret == 0) {
6894 		extent_slot = path->slots[0];
6895 		while (extent_slot >= 0) {
6896 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6897 					      extent_slot);
6898 			if (key.objectid != bytenr)
6899 				break;
6900 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6901 			    key.offset == num_bytes) {
6902 				found_extent = 1;
6903 				break;
6904 			}
6905 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6906 			    key.offset == owner_objectid) {
6907 				found_extent = 1;
6908 				break;
6909 			}
6910 			if (path->slots[0] - extent_slot > 5)
6911 				break;
6912 			extent_slot--;
6913 		}
6914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6915 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6916 		if (found_extent && item_size < sizeof(*ei))
6917 			found_extent = 0;
6918 #endif
6919 		if (!found_extent) {
6920 			BUG_ON(iref);
6921 			ret = remove_extent_backref(trans, info, path, NULL,
6922 						    refs_to_drop,
6923 						    is_data, &last_ref);
6924 			if (ret) {
6925 				btrfs_abort_transaction(trans, ret);
6926 				goto out;
6927 			}
6928 			btrfs_release_path(path);
6929 			path->leave_spinning = 1;
6930 
6931 			key.objectid = bytenr;
6932 			key.type = BTRFS_EXTENT_ITEM_KEY;
6933 			key.offset = num_bytes;
6934 
6935 			if (!is_data && skinny_metadata) {
6936 				key.type = BTRFS_METADATA_ITEM_KEY;
6937 				key.offset = owner_objectid;
6938 			}
6939 
6940 			ret = btrfs_search_slot(trans, extent_root,
6941 						&key, path, -1, 1);
6942 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6943 				/*
6944 				 * Couldn't find our skinny metadata item,
6945 				 * see if we have ye olde extent item.
6946 				 */
6947 				path->slots[0]--;
6948 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6949 						      path->slots[0]);
6950 				if (key.objectid == bytenr &&
6951 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6952 				    key.offset == num_bytes)
6953 					ret = 0;
6954 			}
6955 
6956 			if (ret > 0 && skinny_metadata) {
6957 				skinny_metadata = false;
6958 				key.objectid = bytenr;
6959 				key.type = BTRFS_EXTENT_ITEM_KEY;
6960 				key.offset = num_bytes;
6961 				btrfs_release_path(path);
6962 				ret = btrfs_search_slot(trans, extent_root,
6963 							&key, path, -1, 1);
6964 			}
6965 
6966 			if (ret) {
6967 				btrfs_err(info,
6968 					  "umm, got %d back from search, was looking for %llu",
6969 					  ret, bytenr);
6970 				if (ret > 0)
6971 					btrfs_print_leaf(path->nodes[0]);
6972 			}
6973 			if (ret < 0) {
6974 				btrfs_abort_transaction(trans, ret);
6975 				goto out;
6976 			}
6977 			extent_slot = path->slots[0];
6978 		}
6979 	} else if (WARN_ON(ret == -ENOENT)) {
6980 		btrfs_print_leaf(path->nodes[0]);
6981 		btrfs_err(info,
6982 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6983 			bytenr, parent, root_objectid, owner_objectid,
6984 			owner_offset);
6985 		btrfs_abort_transaction(trans, ret);
6986 		goto out;
6987 	} else {
6988 		btrfs_abort_transaction(trans, ret);
6989 		goto out;
6990 	}
6991 
6992 	leaf = path->nodes[0];
6993 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6995 	if (item_size < sizeof(*ei)) {
6996 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6997 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6998 					     0);
6999 		if (ret < 0) {
7000 			btrfs_abort_transaction(trans, ret);
7001 			goto out;
7002 		}
7003 
7004 		btrfs_release_path(path);
7005 		path->leave_spinning = 1;
7006 
7007 		key.objectid = bytenr;
7008 		key.type = BTRFS_EXTENT_ITEM_KEY;
7009 		key.offset = num_bytes;
7010 
7011 		ret = btrfs_search_slot(trans, extent_root, &key, path,
7012 					-1, 1);
7013 		if (ret) {
7014 			btrfs_err(info,
7015 				  "umm, got %d back from search, was looking for %llu",
7016 				ret, bytenr);
7017 			btrfs_print_leaf(path->nodes[0]);
7018 		}
7019 		if (ret < 0) {
7020 			btrfs_abort_transaction(trans, ret);
7021 			goto out;
7022 		}
7023 
7024 		extent_slot = path->slots[0];
7025 		leaf = path->nodes[0];
7026 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7027 	}
7028 #endif
7029 	BUG_ON(item_size < sizeof(*ei));
7030 	ei = btrfs_item_ptr(leaf, extent_slot,
7031 			    struct btrfs_extent_item);
7032 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7033 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7034 		struct btrfs_tree_block_info *bi;
7035 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7036 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7037 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7038 	}
7039 
7040 	refs = btrfs_extent_refs(leaf, ei);
7041 	if (refs < refs_to_drop) {
7042 		btrfs_err(info,
7043 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7044 			  refs_to_drop, refs, bytenr);
7045 		ret = -EINVAL;
7046 		btrfs_abort_transaction(trans, ret);
7047 		goto out;
7048 	}
7049 	refs -= refs_to_drop;
7050 
7051 	if (refs > 0) {
7052 		if (extent_op)
7053 			__run_delayed_extent_op(extent_op, leaf, ei);
7054 		/*
7055 		 * In the case of inline back ref, reference count will
7056 		 * be updated by remove_extent_backref
7057 		 */
7058 		if (iref) {
7059 			BUG_ON(!found_extent);
7060 		} else {
7061 			btrfs_set_extent_refs(leaf, ei, refs);
7062 			btrfs_mark_buffer_dirty(leaf);
7063 		}
7064 		if (found_extent) {
7065 			ret = remove_extent_backref(trans, info, path,
7066 						    iref, refs_to_drop,
7067 						    is_data, &last_ref);
7068 			if (ret) {
7069 				btrfs_abort_transaction(trans, ret);
7070 				goto out;
7071 			}
7072 		}
7073 	} else {
7074 		if (found_extent) {
7075 			BUG_ON(is_data && refs_to_drop !=
7076 			       extent_data_ref_count(path, iref));
7077 			if (iref) {
7078 				BUG_ON(path->slots[0] != extent_slot);
7079 			} else {
7080 				BUG_ON(path->slots[0] != extent_slot + 1);
7081 				path->slots[0] = extent_slot;
7082 				num_to_del = 2;
7083 			}
7084 		}
7085 
7086 		last_ref = 1;
7087 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7088 				      num_to_del);
7089 		if (ret) {
7090 			btrfs_abort_transaction(trans, ret);
7091 			goto out;
7092 		}
7093 		btrfs_release_path(path);
7094 
7095 		if (is_data) {
7096 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7097 			if (ret) {
7098 				btrfs_abort_transaction(trans, ret);
7099 				goto out;
7100 			}
7101 		}
7102 
7103 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7104 		if (ret) {
7105 			btrfs_abort_transaction(trans, ret);
7106 			goto out;
7107 		}
7108 
7109 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7110 		if (ret) {
7111 			btrfs_abort_transaction(trans, ret);
7112 			goto out;
7113 		}
7114 	}
7115 	btrfs_release_path(path);
7116 
7117 out:
7118 	btrfs_free_path(path);
7119 	return ret;
7120 }
7121 
7122 /*
7123  * when we free an block, it is possible (and likely) that we free the last
7124  * delayed ref for that extent as well.  This searches the delayed ref tree for
7125  * a given extent, and if there are no other delayed refs to be processed, it
7126  * removes it from the tree.
7127  */
7128 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7129 				      u64 bytenr)
7130 {
7131 	struct btrfs_delayed_ref_head *head;
7132 	struct btrfs_delayed_ref_root *delayed_refs;
7133 	int ret = 0;
7134 
7135 	delayed_refs = &trans->transaction->delayed_refs;
7136 	spin_lock(&delayed_refs->lock);
7137 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7138 	if (!head)
7139 		goto out_delayed_unlock;
7140 
7141 	spin_lock(&head->lock);
7142 	if (!RB_EMPTY_ROOT(&head->ref_tree))
7143 		goto out;
7144 
7145 	if (head->extent_op) {
7146 		if (!head->must_insert_reserved)
7147 			goto out;
7148 		btrfs_free_delayed_extent_op(head->extent_op);
7149 		head->extent_op = NULL;
7150 	}
7151 
7152 	/*
7153 	 * waiting for the lock here would deadlock.  If someone else has it
7154 	 * locked they are already in the process of dropping it anyway
7155 	 */
7156 	if (!mutex_trylock(&head->mutex))
7157 		goto out;
7158 
7159 	/*
7160 	 * at this point we have a head with no other entries.  Go
7161 	 * ahead and process it.
7162 	 */
7163 	rb_erase(&head->href_node, &delayed_refs->href_root);
7164 	RB_CLEAR_NODE(&head->href_node);
7165 	atomic_dec(&delayed_refs->num_entries);
7166 
7167 	/*
7168 	 * we don't take a ref on the node because we're removing it from the
7169 	 * tree, so we just steal the ref the tree was holding.
7170 	 */
7171 	delayed_refs->num_heads--;
7172 	if (head->processing == 0)
7173 		delayed_refs->num_heads_ready--;
7174 	head->processing = 0;
7175 	spin_unlock(&head->lock);
7176 	spin_unlock(&delayed_refs->lock);
7177 
7178 	BUG_ON(head->extent_op);
7179 	if (head->must_insert_reserved)
7180 		ret = 1;
7181 
7182 	mutex_unlock(&head->mutex);
7183 	btrfs_put_delayed_ref_head(head);
7184 	return ret;
7185 out:
7186 	spin_unlock(&head->lock);
7187 
7188 out_delayed_unlock:
7189 	spin_unlock(&delayed_refs->lock);
7190 	return 0;
7191 }
7192 
7193 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7194 			   struct btrfs_root *root,
7195 			   struct extent_buffer *buf,
7196 			   u64 parent, int last_ref)
7197 {
7198 	struct btrfs_fs_info *fs_info = root->fs_info;
7199 	int pin = 1;
7200 	int ret;
7201 
7202 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7203 		int old_ref_mod, new_ref_mod;
7204 
7205 		btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7206 				   root->root_key.objectid,
7207 				   btrfs_header_level(buf), 0,
7208 				   BTRFS_DROP_DELAYED_REF);
7209 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7210 						 buf->len, parent,
7211 						 root->root_key.objectid,
7212 						 btrfs_header_level(buf),
7213 						 BTRFS_DROP_DELAYED_REF, NULL,
7214 						 &old_ref_mod, &new_ref_mod);
7215 		BUG_ON(ret); /* -ENOMEM */
7216 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7217 	}
7218 
7219 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7220 		struct btrfs_block_group_cache *cache;
7221 
7222 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7223 			ret = check_ref_cleanup(trans, buf->start);
7224 			if (!ret)
7225 				goto out;
7226 		}
7227 
7228 		pin = 0;
7229 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7230 
7231 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7232 			pin_down_extent(fs_info, cache, buf->start,
7233 					buf->len, 1);
7234 			btrfs_put_block_group(cache);
7235 			goto out;
7236 		}
7237 
7238 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7239 
7240 		btrfs_add_free_space(cache, buf->start, buf->len);
7241 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7242 		btrfs_put_block_group(cache);
7243 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7244 	}
7245 out:
7246 	if (pin)
7247 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7248 				 root->root_key.objectid);
7249 
7250 	if (last_ref) {
7251 		/*
7252 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7253 		 * matter anymore.
7254 		 */
7255 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7256 	}
7257 }
7258 
7259 /* Can return -ENOMEM */
7260 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7261 		      struct btrfs_root *root,
7262 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7263 		      u64 owner, u64 offset)
7264 {
7265 	struct btrfs_fs_info *fs_info = root->fs_info;
7266 	int old_ref_mod, new_ref_mod;
7267 	int ret;
7268 
7269 	if (btrfs_is_testing(fs_info))
7270 		return 0;
7271 
7272 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7273 		btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7274 				   root_objectid, owner, offset,
7275 				   BTRFS_DROP_DELAYED_REF);
7276 
7277 	/*
7278 	 * tree log blocks never actually go into the extent allocation
7279 	 * tree, just update pinning info and exit early.
7280 	 */
7281 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7282 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7283 		/* unlocks the pinned mutex */
7284 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7285 		old_ref_mod = new_ref_mod = 0;
7286 		ret = 0;
7287 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7288 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7289 						 num_bytes, parent,
7290 						 root_objectid, (int)owner,
7291 						 BTRFS_DROP_DELAYED_REF, NULL,
7292 						 &old_ref_mod, &new_ref_mod);
7293 	} else {
7294 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7295 						 num_bytes, parent,
7296 						 root_objectid, owner, offset,
7297 						 0, BTRFS_DROP_DELAYED_REF,
7298 						 &old_ref_mod, &new_ref_mod);
7299 	}
7300 
7301 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7302 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7303 
7304 	return ret;
7305 }
7306 
7307 /*
7308  * when we wait for progress in the block group caching, its because
7309  * our allocation attempt failed at least once.  So, we must sleep
7310  * and let some progress happen before we try again.
7311  *
7312  * This function will sleep at least once waiting for new free space to
7313  * show up, and then it will check the block group free space numbers
7314  * for our min num_bytes.  Another option is to have it go ahead
7315  * and look in the rbtree for a free extent of a given size, but this
7316  * is a good start.
7317  *
7318  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7319  * any of the information in this block group.
7320  */
7321 static noinline void
7322 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7323 				u64 num_bytes)
7324 {
7325 	struct btrfs_caching_control *caching_ctl;
7326 
7327 	caching_ctl = get_caching_control(cache);
7328 	if (!caching_ctl)
7329 		return;
7330 
7331 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7332 		   (cache->free_space_ctl->free_space >= num_bytes));
7333 
7334 	put_caching_control(caching_ctl);
7335 }
7336 
7337 static noinline int
7338 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7339 {
7340 	struct btrfs_caching_control *caching_ctl;
7341 	int ret = 0;
7342 
7343 	caching_ctl = get_caching_control(cache);
7344 	if (!caching_ctl)
7345 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7346 
7347 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7348 	if (cache->cached == BTRFS_CACHE_ERROR)
7349 		ret = -EIO;
7350 	put_caching_control(caching_ctl);
7351 	return ret;
7352 }
7353 
7354 int __get_raid_index(u64 flags)
7355 {
7356 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7357 		return BTRFS_RAID_RAID10;
7358 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7359 		return BTRFS_RAID_RAID1;
7360 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7361 		return BTRFS_RAID_DUP;
7362 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7363 		return BTRFS_RAID_RAID0;
7364 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7365 		return BTRFS_RAID_RAID5;
7366 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7367 		return BTRFS_RAID_RAID6;
7368 
7369 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7370 }
7371 
7372 int get_block_group_index(struct btrfs_block_group_cache *cache)
7373 {
7374 	return __get_raid_index(cache->flags);
7375 }
7376 
7377 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7378 	[BTRFS_RAID_RAID10]	= "raid10",
7379 	[BTRFS_RAID_RAID1]	= "raid1",
7380 	[BTRFS_RAID_DUP]	= "dup",
7381 	[BTRFS_RAID_RAID0]	= "raid0",
7382 	[BTRFS_RAID_SINGLE]	= "single",
7383 	[BTRFS_RAID_RAID5]	= "raid5",
7384 	[BTRFS_RAID_RAID6]	= "raid6",
7385 };
7386 
7387 static const char *get_raid_name(enum btrfs_raid_types type)
7388 {
7389 	if (type >= BTRFS_NR_RAID_TYPES)
7390 		return NULL;
7391 
7392 	return btrfs_raid_type_names[type];
7393 }
7394 
7395 enum btrfs_loop_type {
7396 	LOOP_CACHING_NOWAIT = 0,
7397 	LOOP_CACHING_WAIT = 1,
7398 	LOOP_ALLOC_CHUNK = 2,
7399 	LOOP_NO_EMPTY_SIZE = 3,
7400 };
7401 
7402 static inline void
7403 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7404 		       int delalloc)
7405 {
7406 	if (delalloc)
7407 		down_read(&cache->data_rwsem);
7408 }
7409 
7410 static inline void
7411 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7412 		       int delalloc)
7413 {
7414 	btrfs_get_block_group(cache);
7415 	if (delalloc)
7416 		down_read(&cache->data_rwsem);
7417 }
7418 
7419 static struct btrfs_block_group_cache *
7420 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7421 		   struct btrfs_free_cluster *cluster,
7422 		   int delalloc)
7423 {
7424 	struct btrfs_block_group_cache *used_bg = NULL;
7425 
7426 	spin_lock(&cluster->refill_lock);
7427 	while (1) {
7428 		used_bg = cluster->block_group;
7429 		if (!used_bg)
7430 			return NULL;
7431 
7432 		if (used_bg == block_group)
7433 			return used_bg;
7434 
7435 		btrfs_get_block_group(used_bg);
7436 
7437 		if (!delalloc)
7438 			return used_bg;
7439 
7440 		if (down_read_trylock(&used_bg->data_rwsem))
7441 			return used_bg;
7442 
7443 		spin_unlock(&cluster->refill_lock);
7444 
7445 		/* We should only have one-level nested. */
7446 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7447 
7448 		spin_lock(&cluster->refill_lock);
7449 		if (used_bg == cluster->block_group)
7450 			return used_bg;
7451 
7452 		up_read(&used_bg->data_rwsem);
7453 		btrfs_put_block_group(used_bg);
7454 	}
7455 }
7456 
7457 static inline void
7458 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7459 			 int delalloc)
7460 {
7461 	if (delalloc)
7462 		up_read(&cache->data_rwsem);
7463 	btrfs_put_block_group(cache);
7464 }
7465 
7466 /*
7467  * walks the btree of allocated extents and find a hole of a given size.
7468  * The key ins is changed to record the hole:
7469  * ins->objectid == start position
7470  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7471  * ins->offset == the size of the hole.
7472  * Any available blocks before search_start are skipped.
7473  *
7474  * If there is no suitable free space, we will record the max size of
7475  * the free space extent currently.
7476  */
7477 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7478 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7479 				u64 hint_byte, struct btrfs_key *ins,
7480 				u64 flags, int delalloc)
7481 {
7482 	int ret = 0;
7483 	struct btrfs_root *root = fs_info->extent_root;
7484 	struct btrfs_free_cluster *last_ptr = NULL;
7485 	struct btrfs_block_group_cache *block_group = NULL;
7486 	u64 search_start = 0;
7487 	u64 max_extent_size = 0;
7488 	u64 empty_cluster = 0;
7489 	struct btrfs_space_info *space_info;
7490 	int loop = 0;
7491 	int index = __get_raid_index(flags);
7492 	bool failed_cluster_refill = false;
7493 	bool failed_alloc = false;
7494 	bool use_cluster = true;
7495 	bool have_caching_bg = false;
7496 	bool orig_have_caching_bg = false;
7497 	bool full_search = false;
7498 
7499 	WARN_ON(num_bytes < fs_info->sectorsize);
7500 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7501 	ins->objectid = 0;
7502 	ins->offset = 0;
7503 
7504 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7505 
7506 	space_info = __find_space_info(fs_info, flags);
7507 	if (!space_info) {
7508 		btrfs_err(fs_info, "No space info for %llu", flags);
7509 		return -ENOSPC;
7510 	}
7511 
7512 	/*
7513 	 * If our free space is heavily fragmented we may not be able to make
7514 	 * big contiguous allocations, so instead of doing the expensive search
7515 	 * for free space, simply return ENOSPC with our max_extent_size so we
7516 	 * can go ahead and search for a more manageable chunk.
7517 	 *
7518 	 * If our max_extent_size is large enough for our allocation simply
7519 	 * disable clustering since we will likely not be able to find enough
7520 	 * space to create a cluster and induce latency trying.
7521 	 */
7522 	if (unlikely(space_info->max_extent_size)) {
7523 		spin_lock(&space_info->lock);
7524 		if (space_info->max_extent_size &&
7525 		    num_bytes > space_info->max_extent_size) {
7526 			ins->offset = space_info->max_extent_size;
7527 			spin_unlock(&space_info->lock);
7528 			return -ENOSPC;
7529 		} else if (space_info->max_extent_size) {
7530 			use_cluster = false;
7531 		}
7532 		spin_unlock(&space_info->lock);
7533 	}
7534 
7535 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7536 	if (last_ptr) {
7537 		spin_lock(&last_ptr->lock);
7538 		if (last_ptr->block_group)
7539 			hint_byte = last_ptr->window_start;
7540 		if (last_ptr->fragmented) {
7541 			/*
7542 			 * We still set window_start so we can keep track of the
7543 			 * last place we found an allocation to try and save
7544 			 * some time.
7545 			 */
7546 			hint_byte = last_ptr->window_start;
7547 			use_cluster = false;
7548 		}
7549 		spin_unlock(&last_ptr->lock);
7550 	}
7551 
7552 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7553 	search_start = max(search_start, hint_byte);
7554 	if (search_start == hint_byte) {
7555 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7556 		/*
7557 		 * we don't want to use the block group if it doesn't match our
7558 		 * allocation bits, or if its not cached.
7559 		 *
7560 		 * However if we are re-searching with an ideal block group
7561 		 * picked out then we don't care that the block group is cached.
7562 		 */
7563 		if (block_group && block_group_bits(block_group, flags) &&
7564 		    block_group->cached != BTRFS_CACHE_NO) {
7565 			down_read(&space_info->groups_sem);
7566 			if (list_empty(&block_group->list) ||
7567 			    block_group->ro) {
7568 				/*
7569 				 * someone is removing this block group,
7570 				 * we can't jump into the have_block_group
7571 				 * target because our list pointers are not
7572 				 * valid
7573 				 */
7574 				btrfs_put_block_group(block_group);
7575 				up_read(&space_info->groups_sem);
7576 			} else {
7577 				index = get_block_group_index(block_group);
7578 				btrfs_lock_block_group(block_group, delalloc);
7579 				goto have_block_group;
7580 			}
7581 		} else if (block_group) {
7582 			btrfs_put_block_group(block_group);
7583 		}
7584 	}
7585 search:
7586 	have_caching_bg = false;
7587 	if (index == 0 || index == __get_raid_index(flags))
7588 		full_search = true;
7589 	down_read(&space_info->groups_sem);
7590 	list_for_each_entry(block_group, &space_info->block_groups[index],
7591 			    list) {
7592 		u64 offset;
7593 		int cached;
7594 
7595 		/* If the block group is read-only, we can skip it entirely. */
7596 		if (unlikely(block_group->ro))
7597 			continue;
7598 
7599 		btrfs_grab_block_group(block_group, delalloc);
7600 		search_start = block_group->key.objectid;
7601 
7602 		/*
7603 		 * this can happen if we end up cycling through all the
7604 		 * raid types, but we want to make sure we only allocate
7605 		 * for the proper type.
7606 		 */
7607 		if (!block_group_bits(block_group, flags)) {
7608 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7609 				BTRFS_BLOCK_GROUP_RAID1 |
7610 				BTRFS_BLOCK_GROUP_RAID5 |
7611 				BTRFS_BLOCK_GROUP_RAID6 |
7612 				BTRFS_BLOCK_GROUP_RAID10;
7613 
7614 			/*
7615 			 * if they asked for extra copies and this block group
7616 			 * doesn't provide them, bail.  This does allow us to
7617 			 * fill raid0 from raid1.
7618 			 */
7619 			if ((flags & extra) && !(block_group->flags & extra))
7620 				goto loop;
7621 		}
7622 
7623 have_block_group:
7624 		cached = block_group_cache_done(block_group);
7625 		if (unlikely(!cached)) {
7626 			have_caching_bg = true;
7627 			ret = cache_block_group(block_group, 0);
7628 			BUG_ON(ret < 0);
7629 			ret = 0;
7630 		}
7631 
7632 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7633 			goto loop;
7634 
7635 		/*
7636 		 * Ok we want to try and use the cluster allocator, so
7637 		 * lets look there
7638 		 */
7639 		if (last_ptr && use_cluster) {
7640 			struct btrfs_block_group_cache *used_block_group;
7641 			unsigned long aligned_cluster;
7642 			/*
7643 			 * the refill lock keeps out other
7644 			 * people trying to start a new cluster
7645 			 */
7646 			used_block_group = btrfs_lock_cluster(block_group,
7647 							      last_ptr,
7648 							      delalloc);
7649 			if (!used_block_group)
7650 				goto refill_cluster;
7651 
7652 			if (used_block_group != block_group &&
7653 			    (used_block_group->ro ||
7654 			     !block_group_bits(used_block_group, flags)))
7655 				goto release_cluster;
7656 
7657 			offset = btrfs_alloc_from_cluster(used_block_group,
7658 						last_ptr,
7659 						num_bytes,
7660 						used_block_group->key.objectid,
7661 						&max_extent_size);
7662 			if (offset) {
7663 				/* we have a block, we're done */
7664 				spin_unlock(&last_ptr->refill_lock);
7665 				trace_btrfs_reserve_extent_cluster(fs_info,
7666 						used_block_group,
7667 						search_start, num_bytes);
7668 				if (used_block_group != block_group) {
7669 					btrfs_release_block_group(block_group,
7670 								  delalloc);
7671 					block_group = used_block_group;
7672 				}
7673 				goto checks;
7674 			}
7675 
7676 			WARN_ON(last_ptr->block_group != used_block_group);
7677 release_cluster:
7678 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7679 			 * set up a new clusters, so lets just skip it
7680 			 * and let the allocator find whatever block
7681 			 * it can find.  If we reach this point, we
7682 			 * will have tried the cluster allocator
7683 			 * plenty of times and not have found
7684 			 * anything, so we are likely way too
7685 			 * fragmented for the clustering stuff to find
7686 			 * anything.
7687 			 *
7688 			 * However, if the cluster is taken from the
7689 			 * current block group, release the cluster
7690 			 * first, so that we stand a better chance of
7691 			 * succeeding in the unclustered
7692 			 * allocation.  */
7693 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7694 			    used_block_group != block_group) {
7695 				spin_unlock(&last_ptr->refill_lock);
7696 				btrfs_release_block_group(used_block_group,
7697 							  delalloc);
7698 				goto unclustered_alloc;
7699 			}
7700 
7701 			/*
7702 			 * this cluster didn't work out, free it and
7703 			 * start over
7704 			 */
7705 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7706 
7707 			if (used_block_group != block_group)
7708 				btrfs_release_block_group(used_block_group,
7709 							  delalloc);
7710 refill_cluster:
7711 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7712 				spin_unlock(&last_ptr->refill_lock);
7713 				goto unclustered_alloc;
7714 			}
7715 
7716 			aligned_cluster = max_t(unsigned long,
7717 						empty_cluster + empty_size,
7718 					      block_group->full_stripe_len);
7719 
7720 			/* allocate a cluster in this block group */
7721 			ret = btrfs_find_space_cluster(fs_info, block_group,
7722 						       last_ptr, search_start,
7723 						       num_bytes,
7724 						       aligned_cluster);
7725 			if (ret == 0) {
7726 				/*
7727 				 * now pull our allocation out of this
7728 				 * cluster
7729 				 */
7730 				offset = btrfs_alloc_from_cluster(block_group,
7731 							last_ptr,
7732 							num_bytes,
7733 							search_start,
7734 							&max_extent_size);
7735 				if (offset) {
7736 					/* we found one, proceed */
7737 					spin_unlock(&last_ptr->refill_lock);
7738 					trace_btrfs_reserve_extent_cluster(fs_info,
7739 						block_group, search_start,
7740 						num_bytes);
7741 					goto checks;
7742 				}
7743 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7744 				   && !failed_cluster_refill) {
7745 				spin_unlock(&last_ptr->refill_lock);
7746 
7747 				failed_cluster_refill = true;
7748 				wait_block_group_cache_progress(block_group,
7749 				       num_bytes + empty_cluster + empty_size);
7750 				goto have_block_group;
7751 			}
7752 
7753 			/*
7754 			 * at this point we either didn't find a cluster
7755 			 * or we weren't able to allocate a block from our
7756 			 * cluster.  Free the cluster we've been trying
7757 			 * to use, and go to the next block group
7758 			 */
7759 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7760 			spin_unlock(&last_ptr->refill_lock);
7761 			goto loop;
7762 		}
7763 
7764 unclustered_alloc:
7765 		/*
7766 		 * We are doing an unclustered alloc, set the fragmented flag so
7767 		 * we don't bother trying to setup a cluster again until we get
7768 		 * more space.
7769 		 */
7770 		if (unlikely(last_ptr)) {
7771 			spin_lock(&last_ptr->lock);
7772 			last_ptr->fragmented = 1;
7773 			spin_unlock(&last_ptr->lock);
7774 		}
7775 		if (cached) {
7776 			struct btrfs_free_space_ctl *ctl =
7777 				block_group->free_space_ctl;
7778 
7779 			spin_lock(&ctl->tree_lock);
7780 			if (ctl->free_space <
7781 			    num_bytes + empty_cluster + empty_size) {
7782 				if (ctl->free_space > max_extent_size)
7783 					max_extent_size = ctl->free_space;
7784 				spin_unlock(&ctl->tree_lock);
7785 				goto loop;
7786 			}
7787 			spin_unlock(&ctl->tree_lock);
7788 		}
7789 
7790 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7791 						    num_bytes, empty_size,
7792 						    &max_extent_size);
7793 		/*
7794 		 * If we didn't find a chunk, and we haven't failed on this
7795 		 * block group before, and this block group is in the middle of
7796 		 * caching and we are ok with waiting, then go ahead and wait
7797 		 * for progress to be made, and set failed_alloc to true.
7798 		 *
7799 		 * If failed_alloc is true then we've already waited on this
7800 		 * block group once and should move on to the next block group.
7801 		 */
7802 		if (!offset && !failed_alloc && !cached &&
7803 		    loop > LOOP_CACHING_NOWAIT) {
7804 			wait_block_group_cache_progress(block_group,
7805 						num_bytes + empty_size);
7806 			failed_alloc = true;
7807 			goto have_block_group;
7808 		} else if (!offset) {
7809 			goto loop;
7810 		}
7811 checks:
7812 		search_start = ALIGN(offset, fs_info->stripesize);
7813 
7814 		/* move on to the next group */
7815 		if (search_start + num_bytes >
7816 		    block_group->key.objectid + block_group->key.offset) {
7817 			btrfs_add_free_space(block_group, offset, num_bytes);
7818 			goto loop;
7819 		}
7820 
7821 		if (offset < search_start)
7822 			btrfs_add_free_space(block_group, offset,
7823 					     search_start - offset);
7824 		BUG_ON(offset > search_start);
7825 
7826 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7827 				num_bytes, delalloc);
7828 		if (ret == -EAGAIN) {
7829 			btrfs_add_free_space(block_group, offset, num_bytes);
7830 			goto loop;
7831 		}
7832 		btrfs_inc_block_group_reservations(block_group);
7833 
7834 		/* we are all good, lets return */
7835 		ins->objectid = search_start;
7836 		ins->offset = num_bytes;
7837 
7838 		trace_btrfs_reserve_extent(fs_info, block_group,
7839 					   search_start, num_bytes);
7840 		btrfs_release_block_group(block_group, delalloc);
7841 		break;
7842 loop:
7843 		failed_cluster_refill = false;
7844 		failed_alloc = false;
7845 		BUG_ON(index != get_block_group_index(block_group));
7846 		btrfs_release_block_group(block_group, delalloc);
7847 		cond_resched();
7848 	}
7849 	up_read(&space_info->groups_sem);
7850 
7851 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7852 		&& !orig_have_caching_bg)
7853 		orig_have_caching_bg = true;
7854 
7855 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7856 		goto search;
7857 
7858 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7859 		goto search;
7860 
7861 	/*
7862 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7863 	 *			caching kthreads as we move along
7864 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7865 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7866 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7867 	 *			again
7868 	 */
7869 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7870 		index = 0;
7871 		if (loop == LOOP_CACHING_NOWAIT) {
7872 			/*
7873 			 * We want to skip the LOOP_CACHING_WAIT step if we
7874 			 * don't have any uncached bgs and we've already done a
7875 			 * full search through.
7876 			 */
7877 			if (orig_have_caching_bg || !full_search)
7878 				loop = LOOP_CACHING_WAIT;
7879 			else
7880 				loop = LOOP_ALLOC_CHUNK;
7881 		} else {
7882 			loop++;
7883 		}
7884 
7885 		if (loop == LOOP_ALLOC_CHUNK) {
7886 			struct btrfs_trans_handle *trans;
7887 			int exist = 0;
7888 
7889 			trans = current->journal_info;
7890 			if (trans)
7891 				exist = 1;
7892 			else
7893 				trans = btrfs_join_transaction(root);
7894 
7895 			if (IS_ERR(trans)) {
7896 				ret = PTR_ERR(trans);
7897 				goto out;
7898 			}
7899 
7900 			ret = do_chunk_alloc(trans, fs_info, flags,
7901 					     CHUNK_ALLOC_FORCE);
7902 
7903 			/*
7904 			 * If we can't allocate a new chunk we've already looped
7905 			 * through at least once, move on to the NO_EMPTY_SIZE
7906 			 * case.
7907 			 */
7908 			if (ret == -ENOSPC)
7909 				loop = LOOP_NO_EMPTY_SIZE;
7910 
7911 			/*
7912 			 * Do not bail out on ENOSPC since we
7913 			 * can do more things.
7914 			 */
7915 			if (ret < 0 && ret != -ENOSPC)
7916 				btrfs_abort_transaction(trans, ret);
7917 			else
7918 				ret = 0;
7919 			if (!exist)
7920 				btrfs_end_transaction(trans);
7921 			if (ret)
7922 				goto out;
7923 		}
7924 
7925 		if (loop == LOOP_NO_EMPTY_SIZE) {
7926 			/*
7927 			 * Don't loop again if we already have no empty_size and
7928 			 * no empty_cluster.
7929 			 */
7930 			if (empty_size == 0 &&
7931 			    empty_cluster == 0) {
7932 				ret = -ENOSPC;
7933 				goto out;
7934 			}
7935 			empty_size = 0;
7936 			empty_cluster = 0;
7937 		}
7938 
7939 		goto search;
7940 	} else if (!ins->objectid) {
7941 		ret = -ENOSPC;
7942 	} else if (ins->objectid) {
7943 		if (!use_cluster && last_ptr) {
7944 			spin_lock(&last_ptr->lock);
7945 			last_ptr->window_start = ins->objectid;
7946 			spin_unlock(&last_ptr->lock);
7947 		}
7948 		ret = 0;
7949 	}
7950 out:
7951 	if (ret == -ENOSPC) {
7952 		spin_lock(&space_info->lock);
7953 		space_info->max_extent_size = max_extent_size;
7954 		spin_unlock(&space_info->lock);
7955 		ins->offset = max_extent_size;
7956 	}
7957 	return ret;
7958 }
7959 
7960 static void dump_space_info(struct btrfs_fs_info *fs_info,
7961 			    struct btrfs_space_info *info, u64 bytes,
7962 			    int dump_block_groups)
7963 {
7964 	struct btrfs_block_group_cache *cache;
7965 	int index = 0;
7966 
7967 	spin_lock(&info->lock);
7968 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7969 		   info->flags,
7970 		   info->total_bytes - btrfs_space_info_used(info, true),
7971 		   info->full ? "" : "not ");
7972 	btrfs_info(fs_info,
7973 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7974 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7975 		info->bytes_reserved, info->bytes_may_use,
7976 		info->bytes_readonly);
7977 	spin_unlock(&info->lock);
7978 
7979 	if (!dump_block_groups)
7980 		return;
7981 
7982 	down_read(&info->groups_sem);
7983 again:
7984 	list_for_each_entry(cache, &info->block_groups[index], list) {
7985 		spin_lock(&cache->lock);
7986 		btrfs_info(fs_info,
7987 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7988 			cache->key.objectid, cache->key.offset,
7989 			btrfs_block_group_used(&cache->item), cache->pinned,
7990 			cache->reserved, cache->ro ? "[readonly]" : "");
7991 		btrfs_dump_free_space(cache, bytes);
7992 		spin_unlock(&cache->lock);
7993 	}
7994 	if (++index < BTRFS_NR_RAID_TYPES)
7995 		goto again;
7996 	up_read(&info->groups_sem);
7997 }
7998 
7999 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8000 			 u64 num_bytes, u64 min_alloc_size,
8001 			 u64 empty_size, u64 hint_byte,
8002 			 struct btrfs_key *ins, int is_data, int delalloc)
8003 {
8004 	struct btrfs_fs_info *fs_info = root->fs_info;
8005 	bool final_tried = num_bytes == min_alloc_size;
8006 	u64 flags;
8007 	int ret;
8008 
8009 	flags = get_alloc_profile_by_root(root, is_data);
8010 again:
8011 	WARN_ON(num_bytes < fs_info->sectorsize);
8012 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8013 			       hint_byte, ins, flags, delalloc);
8014 	if (!ret && !is_data) {
8015 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8016 	} else if (ret == -ENOSPC) {
8017 		if (!final_tried && ins->offset) {
8018 			num_bytes = min(num_bytes >> 1, ins->offset);
8019 			num_bytes = round_down(num_bytes,
8020 					       fs_info->sectorsize);
8021 			num_bytes = max(num_bytes, min_alloc_size);
8022 			ram_bytes = num_bytes;
8023 			if (num_bytes == min_alloc_size)
8024 				final_tried = true;
8025 			goto again;
8026 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8027 			struct btrfs_space_info *sinfo;
8028 
8029 			sinfo = __find_space_info(fs_info, flags);
8030 			btrfs_err(fs_info,
8031 				  "allocation failed flags %llu, wanted %llu",
8032 				  flags, num_bytes);
8033 			if (sinfo)
8034 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8035 		}
8036 	}
8037 
8038 	return ret;
8039 }
8040 
8041 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8042 					u64 start, u64 len,
8043 					int pin, int delalloc)
8044 {
8045 	struct btrfs_block_group_cache *cache;
8046 	int ret = 0;
8047 
8048 	cache = btrfs_lookup_block_group(fs_info, start);
8049 	if (!cache) {
8050 		btrfs_err(fs_info, "Unable to find block group for %llu",
8051 			  start);
8052 		return -ENOSPC;
8053 	}
8054 
8055 	if (pin)
8056 		pin_down_extent(fs_info, cache, start, len, 1);
8057 	else {
8058 		if (btrfs_test_opt(fs_info, DISCARD))
8059 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8060 		btrfs_add_free_space(cache, start, len);
8061 		btrfs_free_reserved_bytes(cache, len, delalloc);
8062 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8063 	}
8064 
8065 	btrfs_put_block_group(cache);
8066 	return ret;
8067 }
8068 
8069 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8070 			       u64 start, u64 len, int delalloc)
8071 {
8072 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8073 }
8074 
8075 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8076 				       u64 start, u64 len)
8077 {
8078 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8079 }
8080 
8081 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8082 				      struct btrfs_fs_info *fs_info,
8083 				      u64 parent, u64 root_objectid,
8084 				      u64 flags, u64 owner, u64 offset,
8085 				      struct btrfs_key *ins, int ref_mod)
8086 {
8087 	int ret;
8088 	struct btrfs_extent_item *extent_item;
8089 	struct btrfs_extent_inline_ref *iref;
8090 	struct btrfs_path *path;
8091 	struct extent_buffer *leaf;
8092 	int type;
8093 	u32 size;
8094 
8095 	if (parent > 0)
8096 		type = BTRFS_SHARED_DATA_REF_KEY;
8097 	else
8098 		type = BTRFS_EXTENT_DATA_REF_KEY;
8099 
8100 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8101 
8102 	path = btrfs_alloc_path();
8103 	if (!path)
8104 		return -ENOMEM;
8105 
8106 	path->leave_spinning = 1;
8107 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8108 				      ins, size);
8109 	if (ret) {
8110 		btrfs_free_path(path);
8111 		return ret;
8112 	}
8113 
8114 	leaf = path->nodes[0];
8115 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8116 				     struct btrfs_extent_item);
8117 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8118 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8119 	btrfs_set_extent_flags(leaf, extent_item,
8120 			       flags | BTRFS_EXTENT_FLAG_DATA);
8121 
8122 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8123 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8124 	if (parent > 0) {
8125 		struct btrfs_shared_data_ref *ref;
8126 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8127 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8128 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8129 	} else {
8130 		struct btrfs_extent_data_ref *ref;
8131 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8132 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8133 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8134 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8135 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8136 	}
8137 
8138 	btrfs_mark_buffer_dirty(path->nodes[0]);
8139 	btrfs_free_path(path);
8140 
8141 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8142 					  ins->offset);
8143 	if (ret)
8144 		return ret;
8145 
8146 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8147 	if (ret) { /* -ENOENT, logic error */
8148 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8149 			ins->objectid, ins->offset);
8150 		BUG();
8151 	}
8152 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8153 	return ret;
8154 }
8155 
8156 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8157 				     struct btrfs_fs_info *fs_info,
8158 				     u64 parent, u64 root_objectid,
8159 				     u64 flags, struct btrfs_disk_key *key,
8160 				     int level, struct btrfs_key *ins)
8161 {
8162 	int ret;
8163 	struct btrfs_extent_item *extent_item;
8164 	struct btrfs_tree_block_info *block_info;
8165 	struct btrfs_extent_inline_ref *iref;
8166 	struct btrfs_path *path;
8167 	struct extent_buffer *leaf;
8168 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8169 	u64 num_bytes = ins->offset;
8170 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8171 
8172 	if (!skinny_metadata)
8173 		size += sizeof(*block_info);
8174 
8175 	path = btrfs_alloc_path();
8176 	if (!path) {
8177 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8178 						   fs_info->nodesize);
8179 		return -ENOMEM;
8180 	}
8181 
8182 	path->leave_spinning = 1;
8183 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8184 				      ins, size);
8185 	if (ret) {
8186 		btrfs_free_path(path);
8187 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8188 						   fs_info->nodesize);
8189 		return ret;
8190 	}
8191 
8192 	leaf = path->nodes[0];
8193 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8194 				     struct btrfs_extent_item);
8195 	btrfs_set_extent_refs(leaf, extent_item, 1);
8196 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8197 	btrfs_set_extent_flags(leaf, extent_item,
8198 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8199 
8200 	if (skinny_metadata) {
8201 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8202 		num_bytes = fs_info->nodesize;
8203 	} else {
8204 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8205 		btrfs_set_tree_block_key(leaf, block_info, key);
8206 		btrfs_set_tree_block_level(leaf, block_info, level);
8207 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8208 	}
8209 
8210 	if (parent > 0) {
8211 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8212 		btrfs_set_extent_inline_ref_type(leaf, iref,
8213 						 BTRFS_SHARED_BLOCK_REF_KEY);
8214 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8215 	} else {
8216 		btrfs_set_extent_inline_ref_type(leaf, iref,
8217 						 BTRFS_TREE_BLOCK_REF_KEY);
8218 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8219 	}
8220 
8221 	btrfs_mark_buffer_dirty(leaf);
8222 	btrfs_free_path(path);
8223 
8224 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8225 					  num_bytes);
8226 	if (ret)
8227 		return ret;
8228 
8229 	ret = update_block_group(trans, fs_info, ins->objectid,
8230 				 fs_info->nodesize, 1);
8231 	if (ret) { /* -ENOENT, logic error */
8232 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8233 			ins->objectid, ins->offset);
8234 		BUG();
8235 	}
8236 
8237 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8238 					  fs_info->nodesize);
8239 	return ret;
8240 }
8241 
8242 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8243 				     struct btrfs_root *root, u64 owner,
8244 				     u64 offset, u64 ram_bytes,
8245 				     struct btrfs_key *ins)
8246 {
8247 	struct btrfs_fs_info *fs_info = root->fs_info;
8248 	int ret;
8249 
8250 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8251 
8252 	btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8253 			   root->root_key.objectid, owner, offset,
8254 			   BTRFS_ADD_DELAYED_EXTENT);
8255 
8256 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8257 					 ins->offset, 0,
8258 					 root->root_key.objectid, owner,
8259 					 offset, ram_bytes,
8260 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8261 	return ret;
8262 }
8263 
8264 /*
8265  * this is used by the tree logging recovery code.  It records that
8266  * an extent has been allocated and makes sure to clear the free
8267  * space cache bits as well
8268  */
8269 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8270 				   struct btrfs_fs_info *fs_info,
8271 				   u64 root_objectid, u64 owner, u64 offset,
8272 				   struct btrfs_key *ins)
8273 {
8274 	int ret;
8275 	struct btrfs_block_group_cache *block_group;
8276 	struct btrfs_space_info *space_info;
8277 
8278 	/*
8279 	 * Mixed block groups will exclude before processing the log so we only
8280 	 * need to do the exclude dance if this fs isn't mixed.
8281 	 */
8282 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8283 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8284 					      ins->offset);
8285 		if (ret)
8286 			return ret;
8287 	}
8288 
8289 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8290 	if (!block_group)
8291 		return -EINVAL;
8292 
8293 	space_info = block_group->space_info;
8294 	spin_lock(&space_info->lock);
8295 	spin_lock(&block_group->lock);
8296 	space_info->bytes_reserved += ins->offset;
8297 	block_group->reserved += ins->offset;
8298 	spin_unlock(&block_group->lock);
8299 	spin_unlock(&space_info->lock);
8300 
8301 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8302 					 0, owner, offset, ins, 1);
8303 	btrfs_put_block_group(block_group);
8304 	return ret;
8305 }
8306 
8307 static struct extent_buffer *
8308 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8309 		      u64 bytenr, int level)
8310 {
8311 	struct btrfs_fs_info *fs_info = root->fs_info;
8312 	struct extent_buffer *buf;
8313 
8314 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8315 	if (IS_ERR(buf))
8316 		return buf;
8317 
8318 	btrfs_set_header_generation(buf, trans->transid);
8319 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8320 	btrfs_tree_lock(buf);
8321 	clean_tree_block(fs_info, buf);
8322 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8323 
8324 	btrfs_set_lock_blocking(buf);
8325 	set_extent_buffer_uptodate(buf);
8326 
8327 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8328 		buf->log_index = root->log_transid % 2;
8329 		/*
8330 		 * we allow two log transactions at a time, use different
8331 		 * EXENT bit to differentiate dirty pages.
8332 		 */
8333 		if (buf->log_index == 0)
8334 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8335 					buf->start + buf->len - 1, GFP_NOFS);
8336 		else
8337 			set_extent_new(&root->dirty_log_pages, buf->start,
8338 					buf->start + buf->len - 1);
8339 	} else {
8340 		buf->log_index = -1;
8341 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8342 			 buf->start + buf->len - 1, GFP_NOFS);
8343 	}
8344 	trans->dirty = true;
8345 	/* this returns a buffer locked for blocking */
8346 	return buf;
8347 }
8348 
8349 static struct btrfs_block_rsv *
8350 use_block_rsv(struct btrfs_trans_handle *trans,
8351 	      struct btrfs_root *root, u32 blocksize)
8352 {
8353 	struct btrfs_fs_info *fs_info = root->fs_info;
8354 	struct btrfs_block_rsv *block_rsv;
8355 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8356 	int ret;
8357 	bool global_updated = false;
8358 
8359 	block_rsv = get_block_rsv(trans, root);
8360 
8361 	if (unlikely(block_rsv->size == 0))
8362 		goto try_reserve;
8363 again:
8364 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8365 	if (!ret)
8366 		return block_rsv;
8367 
8368 	if (block_rsv->failfast)
8369 		return ERR_PTR(ret);
8370 
8371 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8372 		global_updated = true;
8373 		update_global_block_rsv(fs_info);
8374 		goto again;
8375 	}
8376 
8377 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8378 		static DEFINE_RATELIMIT_STATE(_rs,
8379 				DEFAULT_RATELIMIT_INTERVAL * 10,
8380 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8381 		if (__ratelimit(&_rs))
8382 			WARN(1, KERN_DEBUG
8383 				"BTRFS: block rsv returned %d\n", ret);
8384 	}
8385 try_reserve:
8386 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8387 				     BTRFS_RESERVE_NO_FLUSH);
8388 	if (!ret)
8389 		return block_rsv;
8390 	/*
8391 	 * If we couldn't reserve metadata bytes try and use some from
8392 	 * the global reserve if its space type is the same as the global
8393 	 * reservation.
8394 	 */
8395 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8396 	    block_rsv->space_info == global_rsv->space_info) {
8397 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8398 		if (!ret)
8399 			return global_rsv;
8400 	}
8401 	return ERR_PTR(ret);
8402 }
8403 
8404 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8405 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8406 {
8407 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8408 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8409 }
8410 
8411 /*
8412  * finds a free extent and does all the dirty work required for allocation
8413  * returns the tree buffer or an ERR_PTR on error.
8414  */
8415 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8416 					     struct btrfs_root *root,
8417 					     u64 parent, u64 root_objectid,
8418 					     const struct btrfs_disk_key *key,
8419 					     int level, u64 hint,
8420 					     u64 empty_size)
8421 {
8422 	struct btrfs_fs_info *fs_info = root->fs_info;
8423 	struct btrfs_key ins;
8424 	struct btrfs_block_rsv *block_rsv;
8425 	struct extent_buffer *buf;
8426 	struct btrfs_delayed_extent_op *extent_op;
8427 	u64 flags = 0;
8428 	int ret;
8429 	u32 blocksize = fs_info->nodesize;
8430 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8431 
8432 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8433 	if (btrfs_is_testing(fs_info)) {
8434 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8435 					    level);
8436 		if (!IS_ERR(buf))
8437 			root->alloc_bytenr += blocksize;
8438 		return buf;
8439 	}
8440 #endif
8441 
8442 	block_rsv = use_block_rsv(trans, root, blocksize);
8443 	if (IS_ERR(block_rsv))
8444 		return ERR_CAST(block_rsv);
8445 
8446 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8447 				   empty_size, hint, &ins, 0, 0);
8448 	if (ret)
8449 		goto out_unuse;
8450 
8451 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8452 	if (IS_ERR(buf)) {
8453 		ret = PTR_ERR(buf);
8454 		goto out_free_reserved;
8455 	}
8456 
8457 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8458 		if (parent == 0)
8459 			parent = ins.objectid;
8460 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8461 	} else
8462 		BUG_ON(parent > 0);
8463 
8464 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8465 		extent_op = btrfs_alloc_delayed_extent_op();
8466 		if (!extent_op) {
8467 			ret = -ENOMEM;
8468 			goto out_free_buf;
8469 		}
8470 		if (key)
8471 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8472 		else
8473 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8474 		extent_op->flags_to_set = flags;
8475 		extent_op->update_key = skinny_metadata ? false : true;
8476 		extent_op->update_flags = true;
8477 		extent_op->is_data = false;
8478 		extent_op->level = level;
8479 
8480 		btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8481 				   root_objectid, level, 0,
8482 				   BTRFS_ADD_DELAYED_EXTENT);
8483 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8484 						 ins.offset, parent,
8485 						 root_objectid, level,
8486 						 BTRFS_ADD_DELAYED_EXTENT,
8487 						 extent_op, NULL, NULL);
8488 		if (ret)
8489 			goto out_free_delayed;
8490 	}
8491 	return buf;
8492 
8493 out_free_delayed:
8494 	btrfs_free_delayed_extent_op(extent_op);
8495 out_free_buf:
8496 	free_extent_buffer(buf);
8497 out_free_reserved:
8498 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8499 out_unuse:
8500 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8501 	return ERR_PTR(ret);
8502 }
8503 
8504 struct walk_control {
8505 	u64 refs[BTRFS_MAX_LEVEL];
8506 	u64 flags[BTRFS_MAX_LEVEL];
8507 	struct btrfs_key update_progress;
8508 	int stage;
8509 	int level;
8510 	int shared_level;
8511 	int update_ref;
8512 	int keep_locks;
8513 	int reada_slot;
8514 	int reada_count;
8515 	int for_reloc;
8516 };
8517 
8518 #define DROP_REFERENCE	1
8519 #define UPDATE_BACKREF	2
8520 
8521 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8522 				     struct btrfs_root *root,
8523 				     struct walk_control *wc,
8524 				     struct btrfs_path *path)
8525 {
8526 	struct btrfs_fs_info *fs_info = root->fs_info;
8527 	u64 bytenr;
8528 	u64 generation;
8529 	u64 refs;
8530 	u64 flags;
8531 	u32 nritems;
8532 	struct btrfs_key key;
8533 	struct extent_buffer *eb;
8534 	int ret;
8535 	int slot;
8536 	int nread = 0;
8537 
8538 	if (path->slots[wc->level] < wc->reada_slot) {
8539 		wc->reada_count = wc->reada_count * 2 / 3;
8540 		wc->reada_count = max(wc->reada_count, 2);
8541 	} else {
8542 		wc->reada_count = wc->reada_count * 3 / 2;
8543 		wc->reada_count = min_t(int, wc->reada_count,
8544 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8545 	}
8546 
8547 	eb = path->nodes[wc->level];
8548 	nritems = btrfs_header_nritems(eb);
8549 
8550 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8551 		if (nread >= wc->reada_count)
8552 			break;
8553 
8554 		cond_resched();
8555 		bytenr = btrfs_node_blockptr(eb, slot);
8556 		generation = btrfs_node_ptr_generation(eb, slot);
8557 
8558 		if (slot == path->slots[wc->level])
8559 			goto reada;
8560 
8561 		if (wc->stage == UPDATE_BACKREF &&
8562 		    generation <= root->root_key.offset)
8563 			continue;
8564 
8565 		/* We don't lock the tree block, it's OK to be racy here */
8566 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8567 					       wc->level - 1, 1, &refs,
8568 					       &flags);
8569 		/* We don't care about errors in readahead. */
8570 		if (ret < 0)
8571 			continue;
8572 		BUG_ON(refs == 0);
8573 
8574 		if (wc->stage == DROP_REFERENCE) {
8575 			if (refs == 1)
8576 				goto reada;
8577 
8578 			if (wc->level == 1 &&
8579 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8580 				continue;
8581 			if (!wc->update_ref ||
8582 			    generation <= root->root_key.offset)
8583 				continue;
8584 			btrfs_node_key_to_cpu(eb, &key, slot);
8585 			ret = btrfs_comp_cpu_keys(&key,
8586 						  &wc->update_progress);
8587 			if (ret < 0)
8588 				continue;
8589 		} else {
8590 			if (wc->level == 1 &&
8591 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8592 				continue;
8593 		}
8594 reada:
8595 		readahead_tree_block(fs_info, bytenr);
8596 		nread++;
8597 	}
8598 	wc->reada_slot = slot;
8599 }
8600 
8601 /*
8602  * helper to process tree block while walking down the tree.
8603  *
8604  * when wc->stage == UPDATE_BACKREF, this function updates
8605  * back refs for pointers in the block.
8606  *
8607  * NOTE: return value 1 means we should stop walking down.
8608  */
8609 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8610 				   struct btrfs_root *root,
8611 				   struct btrfs_path *path,
8612 				   struct walk_control *wc, int lookup_info)
8613 {
8614 	struct btrfs_fs_info *fs_info = root->fs_info;
8615 	int level = wc->level;
8616 	struct extent_buffer *eb = path->nodes[level];
8617 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8618 	int ret;
8619 
8620 	if (wc->stage == UPDATE_BACKREF &&
8621 	    btrfs_header_owner(eb) != root->root_key.objectid)
8622 		return 1;
8623 
8624 	/*
8625 	 * when reference count of tree block is 1, it won't increase
8626 	 * again. once full backref flag is set, we never clear it.
8627 	 */
8628 	if (lookup_info &&
8629 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8630 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8631 		BUG_ON(!path->locks[level]);
8632 		ret = btrfs_lookup_extent_info(trans, fs_info,
8633 					       eb->start, level, 1,
8634 					       &wc->refs[level],
8635 					       &wc->flags[level]);
8636 		BUG_ON(ret == -ENOMEM);
8637 		if (ret)
8638 			return ret;
8639 		BUG_ON(wc->refs[level] == 0);
8640 	}
8641 
8642 	if (wc->stage == DROP_REFERENCE) {
8643 		if (wc->refs[level] > 1)
8644 			return 1;
8645 
8646 		if (path->locks[level] && !wc->keep_locks) {
8647 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8648 			path->locks[level] = 0;
8649 		}
8650 		return 0;
8651 	}
8652 
8653 	/* wc->stage == UPDATE_BACKREF */
8654 	if (!(wc->flags[level] & flag)) {
8655 		BUG_ON(!path->locks[level]);
8656 		ret = btrfs_inc_ref(trans, root, eb, 1);
8657 		BUG_ON(ret); /* -ENOMEM */
8658 		ret = btrfs_dec_ref(trans, root, eb, 0);
8659 		BUG_ON(ret); /* -ENOMEM */
8660 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8661 						  eb->len, flag,
8662 						  btrfs_header_level(eb), 0);
8663 		BUG_ON(ret); /* -ENOMEM */
8664 		wc->flags[level] |= flag;
8665 	}
8666 
8667 	/*
8668 	 * the block is shared by multiple trees, so it's not good to
8669 	 * keep the tree lock
8670 	 */
8671 	if (path->locks[level] && level > 0) {
8672 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8673 		path->locks[level] = 0;
8674 	}
8675 	return 0;
8676 }
8677 
8678 /*
8679  * helper to process tree block pointer.
8680  *
8681  * when wc->stage == DROP_REFERENCE, this function checks
8682  * reference count of the block pointed to. if the block
8683  * is shared and we need update back refs for the subtree
8684  * rooted at the block, this function changes wc->stage to
8685  * UPDATE_BACKREF. if the block is shared and there is no
8686  * need to update back, this function drops the reference
8687  * to the block.
8688  *
8689  * NOTE: return value 1 means we should stop walking down.
8690  */
8691 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8692 				 struct btrfs_root *root,
8693 				 struct btrfs_path *path,
8694 				 struct walk_control *wc, int *lookup_info)
8695 {
8696 	struct btrfs_fs_info *fs_info = root->fs_info;
8697 	u64 bytenr;
8698 	u64 generation;
8699 	u64 parent;
8700 	u32 blocksize;
8701 	struct btrfs_key key;
8702 	struct extent_buffer *next;
8703 	int level = wc->level;
8704 	int reada = 0;
8705 	int ret = 0;
8706 	bool need_account = false;
8707 
8708 	generation = btrfs_node_ptr_generation(path->nodes[level],
8709 					       path->slots[level]);
8710 	/*
8711 	 * if the lower level block was created before the snapshot
8712 	 * was created, we know there is no need to update back refs
8713 	 * for the subtree
8714 	 */
8715 	if (wc->stage == UPDATE_BACKREF &&
8716 	    generation <= root->root_key.offset) {
8717 		*lookup_info = 1;
8718 		return 1;
8719 	}
8720 
8721 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8722 	blocksize = fs_info->nodesize;
8723 
8724 	next = find_extent_buffer(fs_info, bytenr);
8725 	if (!next) {
8726 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8727 		if (IS_ERR(next))
8728 			return PTR_ERR(next);
8729 
8730 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8731 					       level - 1);
8732 		reada = 1;
8733 	}
8734 	btrfs_tree_lock(next);
8735 	btrfs_set_lock_blocking(next);
8736 
8737 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8738 				       &wc->refs[level - 1],
8739 				       &wc->flags[level - 1]);
8740 	if (ret < 0)
8741 		goto out_unlock;
8742 
8743 	if (unlikely(wc->refs[level - 1] == 0)) {
8744 		btrfs_err(fs_info, "Missing references.");
8745 		ret = -EIO;
8746 		goto out_unlock;
8747 	}
8748 	*lookup_info = 0;
8749 
8750 	if (wc->stage == DROP_REFERENCE) {
8751 		if (wc->refs[level - 1] > 1) {
8752 			need_account = true;
8753 			if (level == 1 &&
8754 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8755 				goto skip;
8756 
8757 			if (!wc->update_ref ||
8758 			    generation <= root->root_key.offset)
8759 				goto skip;
8760 
8761 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8762 					      path->slots[level]);
8763 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8764 			if (ret < 0)
8765 				goto skip;
8766 
8767 			wc->stage = UPDATE_BACKREF;
8768 			wc->shared_level = level - 1;
8769 		}
8770 	} else {
8771 		if (level == 1 &&
8772 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8773 			goto skip;
8774 	}
8775 
8776 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8777 		btrfs_tree_unlock(next);
8778 		free_extent_buffer(next);
8779 		next = NULL;
8780 		*lookup_info = 1;
8781 	}
8782 
8783 	if (!next) {
8784 		if (reada && level == 1)
8785 			reada_walk_down(trans, root, wc, path);
8786 		next = read_tree_block(fs_info, bytenr, generation);
8787 		if (IS_ERR(next)) {
8788 			return PTR_ERR(next);
8789 		} else if (!extent_buffer_uptodate(next)) {
8790 			free_extent_buffer(next);
8791 			return -EIO;
8792 		}
8793 		btrfs_tree_lock(next);
8794 		btrfs_set_lock_blocking(next);
8795 	}
8796 
8797 	level--;
8798 	ASSERT(level == btrfs_header_level(next));
8799 	if (level != btrfs_header_level(next)) {
8800 		btrfs_err(root->fs_info, "mismatched level");
8801 		ret = -EIO;
8802 		goto out_unlock;
8803 	}
8804 	path->nodes[level] = next;
8805 	path->slots[level] = 0;
8806 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8807 	wc->level = level;
8808 	if (wc->level == 1)
8809 		wc->reada_slot = 0;
8810 	return 0;
8811 skip:
8812 	wc->refs[level - 1] = 0;
8813 	wc->flags[level - 1] = 0;
8814 	if (wc->stage == DROP_REFERENCE) {
8815 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8816 			parent = path->nodes[level]->start;
8817 		} else {
8818 			ASSERT(root->root_key.objectid ==
8819 			       btrfs_header_owner(path->nodes[level]));
8820 			if (root->root_key.objectid !=
8821 			    btrfs_header_owner(path->nodes[level])) {
8822 				btrfs_err(root->fs_info,
8823 						"mismatched block owner");
8824 				ret = -EIO;
8825 				goto out_unlock;
8826 			}
8827 			parent = 0;
8828 		}
8829 
8830 		if (need_account) {
8831 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8832 							 generation, level - 1);
8833 			if (ret) {
8834 				btrfs_err_rl(fs_info,
8835 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8836 					     ret);
8837 			}
8838 		}
8839 		ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8840 					parent, root->root_key.objectid,
8841 					level - 1, 0);
8842 		if (ret)
8843 			goto out_unlock;
8844 	}
8845 
8846 	*lookup_info = 1;
8847 	ret = 1;
8848 
8849 out_unlock:
8850 	btrfs_tree_unlock(next);
8851 	free_extent_buffer(next);
8852 
8853 	return ret;
8854 }
8855 
8856 /*
8857  * helper to process tree block while walking up the tree.
8858  *
8859  * when wc->stage == DROP_REFERENCE, this function drops
8860  * reference count on the block.
8861  *
8862  * when wc->stage == UPDATE_BACKREF, this function changes
8863  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8864  * to UPDATE_BACKREF previously while processing the block.
8865  *
8866  * NOTE: return value 1 means we should stop walking up.
8867  */
8868 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8869 				 struct btrfs_root *root,
8870 				 struct btrfs_path *path,
8871 				 struct walk_control *wc)
8872 {
8873 	struct btrfs_fs_info *fs_info = root->fs_info;
8874 	int ret;
8875 	int level = wc->level;
8876 	struct extent_buffer *eb = path->nodes[level];
8877 	u64 parent = 0;
8878 
8879 	if (wc->stage == UPDATE_BACKREF) {
8880 		BUG_ON(wc->shared_level < level);
8881 		if (level < wc->shared_level)
8882 			goto out;
8883 
8884 		ret = find_next_key(path, level + 1, &wc->update_progress);
8885 		if (ret > 0)
8886 			wc->update_ref = 0;
8887 
8888 		wc->stage = DROP_REFERENCE;
8889 		wc->shared_level = -1;
8890 		path->slots[level] = 0;
8891 
8892 		/*
8893 		 * check reference count again if the block isn't locked.
8894 		 * we should start walking down the tree again if reference
8895 		 * count is one.
8896 		 */
8897 		if (!path->locks[level]) {
8898 			BUG_ON(level == 0);
8899 			btrfs_tree_lock(eb);
8900 			btrfs_set_lock_blocking(eb);
8901 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8902 
8903 			ret = btrfs_lookup_extent_info(trans, fs_info,
8904 						       eb->start, level, 1,
8905 						       &wc->refs[level],
8906 						       &wc->flags[level]);
8907 			if (ret < 0) {
8908 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8909 				path->locks[level] = 0;
8910 				return ret;
8911 			}
8912 			BUG_ON(wc->refs[level] == 0);
8913 			if (wc->refs[level] == 1) {
8914 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8915 				path->locks[level] = 0;
8916 				return 1;
8917 			}
8918 		}
8919 	}
8920 
8921 	/* wc->stage == DROP_REFERENCE */
8922 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8923 
8924 	if (wc->refs[level] == 1) {
8925 		if (level == 0) {
8926 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8927 				ret = btrfs_dec_ref(trans, root, eb, 1);
8928 			else
8929 				ret = btrfs_dec_ref(trans, root, eb, 0);
8930 			BUG_ON(ret); /* -ENOMEM */
8931 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8932 			if (ret) {
8933 				btrfs_err_rl(fs_info,
8934 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8935 					     ret);
8936 			}
8937 		}
8938 		/* make block locked assertion in clean_tree_block happy */
8939 		if (!path->locks[level] &&
8940 		    btrfs_header_generation(eb) == trans->transid) {
8941 			btrfs_tree_lock(eb);
8942 			btrfs_set_lock_blocking(eb);
8943 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8944 		}
8945 		clean_tree_block(fs_info, eb);
8946 	}
8947 
8948 	if (eb == root->node) {
8949 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8950 			parent = eb->start;
8951 		else
8952 			BUG_ON(root->root_key.objectid !=
8953 			       btrfs_header_owner(eb));
8954 	} else {
8955 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8956 			parent = path->nodes[level + 1]->start;
8957 		else
8958 			BUG_ON(root->root_key.objectid !=
8959 			       btrfs_header_owner(path->nodes[level + 1]));
8960 	}
8961 
8962 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8963 out:
8964 	wc->refs[level] = 0;
8965 	wc->flags[level] = 0;
8966 	return 0;
8967 }
8968 
8969 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8970 				   struct btrfs_root *root,
8971 				   struct btrfs_path *path,
8972 				   struct walk_control *wc)
8973 {
8974 	int level = wc->level;
8975 	int lookup_info = 1;
8976 	int ret;
8977 
8978 	while (level >= 0) {
8979 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8980 		if (ret > 0)
8981 			break;
8982 
8983 		if (level == 0)
8984 			break;
8985 
8986 		if (path->slots[level] >=
8987 		    btrfs_header_nritems(path->nodes[level]))
8988 			break;
8989 
8990 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8991 		if (ret > 0) {
8992 			path->slots[level]++;
8993 			continue;
8994 		} else if (ret < 0)
8995 			return ret;
8996 		level = wc->level;
8997 	}
8998 	return 0;
8999 }
9000 
9001 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9002 				 struct btrfs_root *root,
9003 				 struct btrfs_path *path,
9004 				 struct walk_control *wc, int max_level)
9005 {
9006 	int level = wc->level;
9007 	int ret;
9008 
9009 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9010 	while (level < max_level && path->nodes[level]) {
9011 		wc->level = level;
9012 		if (path->slots[level] + 1 <
9013 		    btrfs_header_nritems(path->nodes[level])) {
9014 			path->slots[level]++;
9015 			return 0;
9016 		} else {
9017 			ret = walk_up_proc(trans, root, path, wc);
9018 			if (ret > 0)
9019 				return 0;
9020 
9021 			if (path->locks[level]) {
9022 				btrfs_tree_unlock_rw(path->nodes[level],
9023 						     path->locks[level]);
9024 				path->locks[level] = 0;
9025 			}
9026 			free_extent_buffer(path->nodes[level]);
9027 			path->nodes[level] = NULL;
9028 			level++;
9029 		}
9030 	}
9031 	return 1;
9032 }
9033 
9034 /*
9035  * drop a subvolume tree.
9036  *
9037  * this function traverses the tree freeing any blocks that only
9038  * referenced by the tree.
9039  *
9040  * when a shared tree block is found. this function decreases its
9041  * reference count by one. if update_ref is true, this function
9042  * also make sure backrefs for the shared block and all lower level
9043  * blocks are properly updated.
9044  *
9045  * If called with for_reloc == 0, may exit early with -EAGAIN
9046  */
9047 int btrfs_drop_snapshot(struct btrfs_root *root,
9048 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9049 			 int for_reloc)
9050 {
9051 	struct btrfs_fs_info *fs_info = root->fs_info;
9052 	struct btrfs_path *path;
9053 	struct btrfs_trans_handle *trans;
9054 	struct btrfs_root *tree_root = fs_info->tree_root;
9055 	struct btrfs_root_item *root_item = &root->root_item;
9056 	struct walk_control *wc;
9057 	struct btrfs_key key;
9058 	int err = 0;
9059 	int ret;
9060 	int level;
9061 	bool root_dropped = false;
9062 
9063 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9064 
9065 	path = btrfs_alloc_path();
9066 	if (!path) {
9067 		err = -ENOMEM;
9068 		goto out;
9069 	}
9070 
9071 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9072 	if (!wc) {
9073 		btrfs_free_path(path);
9074 		err = -ENOMEM;
9075 		goto out;
9076 	}
9077 
9078 	trans = btrfs_start_transaction(tree_root, 0);
9079 	if (IS_ERR(trans)) {
9080 		err = PTR_ERR(trans);
9081 		goto out_free;
9082 	}
9083 
9084 	if (block_rsv)
9085 		trans->block_rsv = block_rsv;
9086 
9087 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9088 		level = btrfs_header_level(root->node);
9089 		path->nodes[level] = btrfs_lock_root_node(root);
9090 		btrfs_set_lock_blocking(path->nodes[level]);
9091 		path->slots[level] = 0;
9092 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9093 		memset(&wc->update_progress, 0,
9094 		       sizeof(wc->update_progress));
9095 	} else {
9096 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9097 		memcpy(&wc->update_progress, &key,
9098 		       sizeof(wc->update_progress));
9099 
9100 		level = root_item->drop_level;
9101 		BUG_ON(level == 0);
9102 		path->lowest_level = level;
9103 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9104 		path->lowest_level = 0;
9105 		if (ret < 0) {
9106 			err = ret;
9107 			goto out_end_trans;
9108 		}
9109 		WARN_ON(ret > 0);
9110 
9111 		/*
9112 		 * unlock our path, this is safe because only this
9113 		 * function is allowed to delete this snapshot
9114 		 */
9115 		btrfs_unlock_up_safe(path, 0);
9116 
9117 		level = btrfs_header_level(root->node);
9118 		while (1) {
9119 			btrfs_tree_lock(path->nodes[level]);
9120 			btrfs_set_lock_blocking(path->nodes[level]);
9121 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9122 
9123 			ret = btrfs_lookup_extent_info(trans, fs_info,
9124 						path->nodes[level]->start,
9125 						level, 1, &wc->refs[level],
9126 						&wc->flags[level]);
9127 			if (ret < 0) {
9128 				err = ret;
9129 				goto out_end_trans;
9130 			}
9131 			BUG_ON(wc->refs[level] == 0);
9132 
9133 			if (level == root_item->drop_level)
9134 				break;
9135 
9136 			btrfs_tree_unlock(path->nodes[level]);
9137 			path->locks[level] = 0;
9138 			WARN_ON(wc->refs[level] != 1);
9139 			level--;
9140 		}
9141 	}
9142 
9143 	wc->level = level;
9144 	wc->shared_level = -1;
9145 	wc->stage = DROP_REFERENCE;
9146 	wc->update_ref = update_ref;
9147 	wc->keep_locks = 0;
9148 	wc->for_reloc = for_reloc;
9149 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9150 
9151 	while (1) {
9152 
9153 		ret = walk_down_tree(trans, root, path, wc);
9154 		if (ret < 0) {
9155 			err = ret;
9156 			break;
9157 		}
9158 
9159 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9160 		if (ret < 0) {
9161 			err = ret;
9162 			break;
9163 		}
9164 
9165 		if (ret > 0) {
9166 			BUG_ON(wc->stage != DROP_REFERENCE);
9167 			break;
9168 		}
9169 
9170 		if (wc->stage == DROP_REFERENCE) {
9171 			level = wc->level;
9172 			btrfs_node_key(path->nodes[level],
9173 				       &root_item->drop_progress,
9174 				       path->slots[level]);
9175 			root_item->drop_level = level;
9176 		}
9177 
9178 		BUG_ON(wc->level == 0);
9179 		if (btrfs_should_end_transaction(trans) ||
9180 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9181 			ret = btrfs_update_root(trans, tree_root,
9182 						&root->root_key,
9183 						root_item);
9184 			if (ret) {
9185 				btrfs_abort_transaction(trans, ret);
9186 				err = ret;
9187 				goto out_end_trans;
9188 			}
9189 
9190 			btrfs_end_transaction_throttle(trans);
9191 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9192 				btrfs_debug(fs_info,
9193 					    "drop snapshot early exit");
9194 				err = -EAGAIN;
9195 				goto out_free;
9196 			}
9197 
9198 			trans = btrfs_start_transaction(tree_root, 0);
9199 			if (IS_ERR(trans)) {
9200 				err = PTR_ERR(trans);
9201 				goto out_free;
9202 			}
9203 			if (block_rsv)
9204 				trans->block_rsv = block_rsv;
9205 		}
9206 	}
9207 	btrfs_release_path(path);
9208 	if (err)
9209 		goto out_end_trans;
9210 
9211 	ret = btrfs_del_root(trans, fs_info, &root->root_key);
9212 	if (ret) {
9213 		btrfs_abort_transaction(trans, ret);
9214 		err = ret;
9215 		goto out_end_trans;
9216 	}
9217 
9218 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9219 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9220 				      NULL, NULL);
9221 		if (ret < 0) {
9222 			btrfs_abort_transaction(trans, ret);
9223 			err = ret;
9224 			goto out_end_trans;
9225 		} else if (ret > 0) {
9226 			/* if we fail to delete the orphan item this time
9227 			 * around, it'll get picked up the next time.
9228 			 *
9229 			 * The most common failure here is just -ENOENT.
9230 			 */
9231 			btrfs_del_orphan_item(trans, tree_root,
9232 					      root->root_key.objectid);
9233 		}
9234 	}
9235 
9236 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9237 		btrfs_add_dropped_root(trans, root);
9238 	} else {
9239 		free_extent_buffer(root->node);
9240 		free_extent_buffer(root->commit_root);
9241 		btrfs_put_fs_root(root);
9242 	}
9243 	root_dropped = true;
9244 out_end_trans:
9245 	btrfs_end_transaction_throttle(trans);
9246 out_free:
9247 	kfree(wc);
9248 	btrfs_free_path(path);
9249 out:
9250 	/*
9251 	 * So if we need to stop dropping the snapshot for whatever reason we
9252 	 * need to make sure to add it back to the dead root list so that we
9253 	 * keep trying to do the work later.  This also cleans up roots if we
9254 	 * don't have it in the radix (like when we recover after a power fail
9255 	 * or unmount) so we don't leak memory.
9256 	 */
9257 	if (!for_reloc && !root_dropped)
9258 		btrfs_add_dead_root(root);
9259 	if (err && err != -EAGAIN)
9260 		btrfs_handle_fs_error(fs_info, err, NULL);
9261 	return err;
9262 }
9263 
9264 /*
9265  * drop subtree rooted at tree block 'node'.
9266  *
9267  * NOTE: this function will unlock and release tree block 'node'
9268  * only used by relocation code
9269  */
9270 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9271 			struct btrfs_root *root,
9272 			struct extent_buffer *node,
9273 			struct extent_buffer *parent)
9274 {
9275 	struct btrfs_fs_info *fs_info = root->fs_info;
9276 	struct btrfs_path *path;
9277 	struct walk_control *wc;
9278 	int level;
9279 	int parent_level;
9280 	int ret = 0;
9281 	int wret;
9282 
9283 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9284 
9285 	path = btrfs_alloc_path();
9286 	if (!path)
9287 		return -ENOMEM;
9288 
9289 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9290 	if (!wc) {
9291 		btrfs_free_path(path);
9292 		return -ENOMEM;
9293 	}
9294 
9295 	btrfs_assert_tree_locked(parent);
9296 	parent_level = btrfs_header_level(parent);
9297 	extent_buffer_get(parent);
9298 	path->nodes[parent_level] = parent;
9299 	path->slots[parent_level] = btrfs_header_nritems(parent);
9300 
9301 	btrfs_assert_tree_locked(node);
9302 	level = btrfs_header_level(node);
9303 	path->nodes[level] = node;
9304 	path->slots[level] = 0;
9305 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9306 
9307 	wc->refs[parent_level] = 1;
9308 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9309 	wc->level = level;
9310 	wc->shared_level = -1;
9311 	wc->stage = DROP_REFERENCE;
9312 	wc->update_ref = 0;
9313 	wc->keep_locks = 1;
9314 	wc->for_reloc = 1;
9315 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9316 
9317 	while (1) {
9318 		wret = walk_down_tree(trans, root, path, wc);
9319 		if (wret < 0) {
9320 			ret = wret;
9321 			break;
9322 		}
9323 
9324 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9325 		if (wret < 0)
9326 			ret = wret;
9327 		if (wret != 0)
9328 			break;
9329 	}
9330 
9331 	kfree(wc);
9332 	btrfs_free_path(path);
9333 	return ret;
9334 }
9335 
9336 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9337 {
9338 	u64 num_devices;
9339 	u64 stripped;
9340 
9341 	/*
9342 	 * if restripe for this chunk_type is on pick target profile and
9343 	 * return, otherwise do the usual balance
9344 	 */
9345 	stripped = get_restripe_target(fs_info, flags);
9346 	if (stripped)
9347 		return extended_to_chunk(stripped);
9348 
9349 	num_devices = fs_info->fs_devices->rw_devices;
9350 
9351 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9352 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9353 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9354 
9355 	if (num_devices == 1) {
9356 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9357 		stripped = flags & ~stripped;
9358 
9359 		/* turn raid0 into single device chunks */
9360 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9361 			return stripped;
9362 
9363 		/* turn mirroring into duplication */
9364 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9365 			     BTRFS_BLOCK_GROUP_RAID10))
9366 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9367 	} else {
9368 		/* they already had raid on here, just return */
9369 		if (flags & stripped)
9370 			return flags;
9371 
9372 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9373 		stripped = flags & ~stripped;
9374 
9375 		/* switch duplicated blocks with raid1 */
9376 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9377 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9378 
9379 		/* this is drive concat, leave it alone */
9380 	}
9381 
9382 	return flags;
9383 }
9384 
9385 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9386 {
9387 	struct btrfs_space_info *sinfo = cache->space_info;
9388 	u64 num_bytes;
9389 	u64 min_allocable_bytes;
9390 	int ret = -ENOSPC;
9391 
9392 	/*
9393 	 * We need some metadata space and system metadata space for
9394 	 * allocating chunks in some corner cases until we force to set
9395 	 * it to be readonly.
9396 	 */
9397 	if ((sinfo->flags &
9398 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9399 	    !force)
9400 		min_allocable_bytes = SZ_1M;
9401 	else
9402 		min_allocable_bytes = 0;
9403 
9404 	spin_lock(&sinfo->lock);
9405 	spin_lock(&cache->lock);
9406 
9407 	if (cache->ro) {
9408 		cache->ro++;
9409 		ret = 0;
9410 		goto out;
9411 	}
9412 
9413 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9414 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9415 
9416 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9417 	    min_allocable_bytes <= sinfo->total_bytes) {
9418 		sinfo->bytes_readonly += num_bytes;
9419 		cache->ro++;
9420 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9421 		ret = 0;
9422 	}
9423 out:
9424 	spin_unlock(&cache->lock);
9425 	spin_unlock(&sinfo->lock);
9426 	return ret;
9427 }
9428 
9429 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9430 			     struct btrfs_block_group_cache *cache)
9431 
9432 {
9433 	struct btrfs_trans_handle *trans;
9434 	u64 alloc_flags;
9435 	int ret;
9436 
9437 again:
9438 	trans = btrfs_join_transaction(fs_info->extent_root);
9439 	if (IS_ERR(trans))
9440 		return PTR_ERR(trans);
9441 
9442 	/*
9443 	 * we're not allowed to set block groups readonly after the dirty
9444 	 * block groups cache has started writing.  If it already started,
9445 	 * back off and let this transaction commit
9446 	 */
9447 	mutex_lock(&fs_info->ro_block_group_mutex);
9448 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9449 		u64 transid = trans->transid;
9450 
9451 		mutex_unlock(&fs_info->ro_block_group_mutex);
9452 		btrfs_end_transaction(trans);
9453 
9454 		ret = btrfs_wait_for_commit(fs_info, transid);
9455 		if (ret)
9456 			return ret;
9457 		goto again;
9458 	}
9459 
9460 	/*
9461 	 * if we are changing raid levels, try to allocate a corresponding
9462 	 * block group with the new raid level.
9463 	 */
9464 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9465 	if (alloc_flags != cache->flags) {
9466 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9467 				     CHUNK_ALLOC_FORCE);
9468 		/*
9469 		 * ENOSPC is allowed here, we may have enough space
9470 		 * already allocated at the new raid level to
9471 		 * carry on
9472 		 */
9473 		if (ret == -ENOSPC)
9474 			ret = 0;
9475 		if (ret < 0)
9476 			goto out;
9477 	}
9478 
9479 	ret = inc_block_group_ro(cache, 0);
9480 	if (!ret)
9481 		goto out;
9482 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9483 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9484 			     CHUNK_ALLOC_FORCE);
9485 	if (ret < 0)
9486 		goto out;
9487 	ret = inc_block_group_ro(cache, 0);
9488 out:
9489 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9490 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9491 		mutex_lock(&fs_info->chunk_mutex);
9492 		check_system_chunk(trans, fs_info, alloc_flags);
9493 		mutex_unlock(&fs_info->chunk_mutex);
9494 	}
9495 	mutex_unlock(&fs_info->ro_block_group_mutex);
9496 
9497 	btrfs_end_transaction(trans);
9498 	return ret;
9499 }
9500 
9501 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9502 			    struct btrfs_fs_info *fs_info, u64 type)
9503 {
9504 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9505 
9506 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9507 }
9508 
9509 /*
9510  * helper to account the unused space of all the readonly block group in the
9511  * space_info. takes mirrors into account.
9512  */
9513 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9514 {
9515 	struct btrfs_block_group_cache *block_group;
9516 	u64 free_bytes = 0;
9517 	int factor;
9518 
9519 	/* It's df, we don't care if it's racy */
9520 	if (list_empty(&sinfo->ro_bgs))
9521 		return 0;
9522 
9523 	spin_lock(&sinfo->lock);
9524 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9525 		spin_lock(&block_group->lock);
9526 
9527 		if (!block_group->ro) {
9528 			spin_unlock(&block_group->lock);
9529 			continue;
9530 		}
9531 
9532 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9533 					  BTRFS_BLOCK_GROUP_RAID10 |
9534 					  BTRFS_BLOCK_GROUP_DUP))
9535 			factor = 2;
9536 		else
9537 			factor = 1;
9538 
9539 		free_bytes += (block_group->key.offset -
9540 			       btrfs_block_group_used(&block_group->item)) *
9541 			       factor;
9542 
9543 		spin_unlock(&block_group->lock);
9544 	}
9545 	spin_unlock(&sinfo->lock);
9546 
9547 	return free_bytes;
9548 }
9549 
9550 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9551 {
9552 	struct btrfs_space_info *sinfo = cache->space_info;
9553 	u64 num_bytes;
9554 
9555 	BUG_ON(!cache->ro);
9556 
9557 	spin_lock(&sinfo->lock);
9558 	spin_lock(&cache->lock);
9559 	if (!--cache->ro) {
9560 		num_bytes = cache->key.offset - cache->reserved -
9561 			    cache->pinned - cache->bytes_super -
9562 			    btrfs_block_group_used(&cache->item);
9563 		sinfo->bytes_readonly -= num_bytes;
9564 		list_del_init(&cache->ro_list);
9565 	}
9566 	spin_unlock(&cache->lock);
9567 	spin_unlock(&sinfo->lock);
9568 }
9569 
9570 /*
9571  * checks to see if its even possible to relocate this block group.
9572  *
9573  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9574  * ok to go ahead and try.
9575  */
9576 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9577 {
9578 	struct btrfs_root *root = fs_info->extent_root;
9579 	struct btrfs_block_group_cache *block_group;
9580 	struct btrfs_space_info *space_info;
9581 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9582 	struct btrfs_device *device;
9583 	struct btrfs_trans_handle *trans;
9584 	u64 min_free;
9585 	u64 dev_min = 1;
9586 	u64 dev_nr = 0;
9587 	u64 target;
9588 	int debug;
9589 	int index;
9590 	int full = 0;
9591 	int ret = 0;
9592 
9593 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9594 
9595 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9596 
9597 	/* odd, couldn't find the block group, leave it alone */
9598 	if (!block_group) {
9599 		if (debug)
9600 			btrfs_warn(fs_info,
9601 				   "can't find block group for bytenr %llu",
9602 				   bytenr);
9603 		return -1;
9604 	}
9605 
9606 	min_free = btrfs_block_group_used(&block_group->item);
9607 
9608 	/* no bytes used, we're good */
9609 	if (!min_free)
9610 		goto out;
9611 
9612 	space_info = block_group->space_info;
9613 	spin_lock(&space_info->lock);
9614 
9615 	full = space_info->full;
9616 
9617 	/*
9618 	 * if this is the last block group we have in this space, we can't
9619 	 * relocate it unless we're able to allocate a new chunk below.
9620 	 *
9621 	 * Otherwise, we need to make sure we have room in the space to handle
9622 	 * all of the extents from this block group.  If we can, we're good
9623 	 */
9624 	if ((space_info->total_bytes != block_group->key.offset) &&
9625 	    (btrfs_space_info_used(space_info, false) + min_free <
9626 	     space_info->total_bytes)) {
9627 		spin_unlock(&space_info->lock);
9628 		goto out;
9629 	}
9630 	spin_unlock(&space_info->lock);
9631 
9632 	/*
9633 	 * ok we don't have enough space, but maybe we have free space on our
9634 	 * devices to allocate new chunks for relocation, so loop through our
9635 	 * alloc devices and guess if we have enough space.  if this block
9636 	 * group is going to be restriped, run checks against the target
9637 	 * profile instead of the current one.
9638 	 */
9639 	ret = -1;
9640 
9641 	/*
9642 	 * index:
9643 	 *      0: raid10
9644 	 *      1: raid1
9645 	 *      2: dup
9646 	 *      3: raid0
9647 	 *      4: single
9648 	 */
9649 	target = get_restripe_target(fs_info, block_group->flags);
9650 	if (target) {
9651 		index = __get_raid_index(extended_to_chunk(target));
9652 	} else {
9653 		/*
9654 		 * this is just a balance, so if we were marked as full
9655 		 * we know there is no space for a new chunk
9656 		 */
9657 		if (full) {
9658 			if (debug)
9659 				btrfs_warn(fs_info,
9660 					   "no space to alloc new chunk for block group %llu",
9661 					   block_group->key.objectid);
9662 			goto out;
9663 		}
9664 
9665 		index = get_block_group_index(block_group);
9666 	}
9667 
9668 	if (index == BTRFS_RAID_RAID10) {
9669 		dev_min = 4;
9670 		/* Divide by 2 */
9671 		min_free >>= 1;
9672 	} else if (index == BTRFS_RAID_RAID1) {
9673 		dev_min = 2;
9674 	} else if (index == BTRFS_RAID_DUP) {
9675 		/* Multiply by 2 */
9676 		min_free <<= 1;
9677 	} else if (index == BTRFS_RAID_RAID0) {
9678 		dev_min = fs_devices->rw_devices;
9679 		min_free = div64_u64(min_free, dev_min);
9680 	}
9681 
9682 	/* We need to do this so that we can look at pending chunks */
9683 	trans = btrfs_join_transaction(root);
9684 	if (IS_ERR(trans)) {
9685 		ret = PTR_ERR(trans);
9686 		goto out;
9687 	}
9688 
9689 	mutex_lock(&fs_info->chunk_mutex);
9690 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9691 		u64 dev_offset;
9692 
9693 		/*
9694 		 * check to make sure we can actually find a chunk with enough
9695 		 * space to fit our block group in.
9696 		 */
9697 		if (device->total_bytes > device->bytes_used + min_free &&
9698 		    !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9699 			ret = find_free_dev_extent(trans, device, min_free,
9700 						   &dev_offset, NULL);
9701 			if (!ret)
9702 				dev_nr++;
9703 
9704 			if (dev_nr >= dev_min)
9705 				break;
9706 
9707 			ret = -1;
9708 		}
9709 	}
9710 	if (debug && ret == -1)
9711 		btrfs_warn(fs_info,
9712 			   "no space to allocate a new chunk for block group %llu",
9713 			   block_group->key.objectid);
9714 	mutex_unlock(&fs_info->chunk_mutex);
9715 	btrfs_end_transaction(trans);
9716 out:
9717 	btrfs_put_block_group(block_group);
9718 	return ret;
9719 }
9720 
9721 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9722 				  struct btrfs_path *path,
9723 				  struct btrfs_key *key)
9724 {
9725 	struct btrfs_root *root = fs_info->extent_root;
9726 	int ret = 0;
9727 	struct btrfs_key found_key;
9728 	struct extent_buffer *leaf;
9729 	int slot;
9730 
9731 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9732 	if (ret < 0)
9733 		goto out;
9734 
9735 	while (1) {
9736 		slot = path->slots[0];
9737 		leaf = path->nodes[0];
9738 		if (slot >= btrfs_header_nritems(leaf)) {
9739 			ret = btrfs_next_leaf(root, path);
9740 			if (ret == 0)
9741 				continue;
9742 			if (ret < 0)
9743 				goto out;
9744 			break;
9745 		}
9746 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9747 
9748 		if (found_key.objectid >= key->objectid &&
9749 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9750 			struct extent_map_tree *em_tree;
9751 			struct extent_map *em;
9752 
9753 			em_tree = &root->fs_info->mapping_tree.map_tree;
9754 			read_lock(&em_tree->lock);
9755 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9756 						   found_key.offset);
9757 			read_unlock(&em_tree->lock);
9758 			if (!em) {
9759 				btrfs_err(fs_info,
9760 			"logical %llu len %llu found bg but no related chunk",
9761 					  found_key.objectid, found_key.offset);
9762 				ret = -ENOENT;
9763 			} else {
9764 				ret = 0;
9765 			}
9766 			free_extent_map(em);
9767 			goto out;
9768 		}
9769 		path->slots[0]++;
9770 	}
9771 out:
9772 	return ret;
9773 }
9774 
9775 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9776 {
9777 	struct btrfs_block_group_cache *block_group;
9778 	u64 last = 0;
9779 
9780 	while (1) {
9781 		struct inode *inode;
9782 
9783 		block_group = btrfs_lookup_first_block_group(info, last);
9784 		while (block_group) {
9785 			spin_lock(&block_group->lock);
9786 			if (block_group->iref)
9787 				break;
9788 			spin_unlock(&block_group->lock);
9789 			block_group = next_block_group(info, block_group);
9790 		}
9791 		if (!block_group) {
9792 			if (last == 0)
9793 				break;
9794 			last = 0;
9795 			continue;
9796 		}
9797 
9798 		inode = block_group->inode;
9799 		block_group->iref = 0;
9800 		block_group->inode = NULL;
9801 		spin_unlock(&block_group->lock);
9802 		ASSERT(block_group->io_ctl.inode == NULL);
9803 		iput(inode);
9804 		last = block_group->key.objectid + block_group->key.offset;
9805 		btrfs_put_block_group(block_group);
9806 	}
9807 }
9808 
9809 /*
9810  * Must be called only after stopping all workers, since we could have block
9811  * group caching kthreads running, and therefore they could race with us if we
9812  * freed the block groups before stopping them.
9813  */
9814 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9815 {
9816 	struct btrfs_block_group_cache *block_group;
9817 	struct btrfs_space_info *space_info;
9818 	struct btrfs_caching_control *caching_ctl;
9819 	struct rb_node *n;
9820 
9821 	down_write(&info->commit_root_sem);
9822 	while (!list_empty(&info->caching_block_groups)) {
9823 		caching_ctl = list_entry(info->caching_block_groups.next,
9824 					 struct btrfs_caching_control, list);
9825 		list_del(&caching_ctl->list);
9826 		put_caching_control(caching_ctl);
9827 	}
9828 	up_write(&info->commit_root_sem);
9829 
9830 	spin_lock(&info->unused_bgs_lock);
9831 	while (!list_empty(&info->unused_bgs)) {
9832 		block_group = list_first_entry(&info->unused_bgs,
9833 					       struct btrfs_block_group_cache,
9834 					       bg_list);
9835 		list_del_init(&block_group->bg_list);
9836 		btrfs_put_block_group(block_group);
9837 	}
9838 	spin_unlock(&info->unused_bgs_lock);
9839 
9840 	spin_lock(&info->block_group_cache_lock);
9841 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9842 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9843 				       cache_node);
9844 		rb_erase(&block_group->cache_node,
9845 			 &info->block_group_cache_tree);
9846 		RB_CLEAR_NODE(&block_group->cache_node);
9847 		spin_unlock(&info->block_group_cache_lock);
9848 
9849 		down_write(&block_group->space_info->groups_sem);
9850 		list_del(&block_group->list);
9851 		up_write(&block_group->space_info->groups_sem);
9852 
9853 		/*
9854 		 * We haven't cached this block group, which means we could
9855 		 * possibly have excluded extents on this block group.
9856 		 */
9857 		if (block_group->cached == BTRFS_CACHE_NO ||
9858 		    block_group->cached == BTRFS_CACHE_ERROR)
9859 			free_excluded_extents(info, block_group);
9860 
9861 		btrfs_remove_free_space_cache(block_group);
9862 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9863 		ASSERT(list_empty(&block_group->dirty_list));
9864 		ASSERT(list_empty(&block_group->io_list));
9865 		ASSERT(list_empty(&block_group->bg_list));
9866 		ASSERT(atomic_read(&block_group->count) == 1);
9867 		btrfs_put_block_group(block_group);
9868 
9869 		spin_lock(&info->block_group_cache_lock);
9870 	}
9871 	spin_unlock(&info->block_group_cache_lock);
9872 
9873 	/* now that all the block groups are freed, go through and
9874 	 * free all the space_info structs.  This is only called during
9875 	 * the final stages of unmount, and so we know nobody is
9876 	 * using them.  We call synchronize_rcu() once before we start,
9877 	 * just to be on the safe side.
9878 	 */
9879 	synchronize_rcu();
9880 
9881 	release_global_block_rsv(info);
9882 
9883 	while (!list_empty(&info->space_info)) {
9884 		int i;
9885 
9886 		space_info = list_entry(info->space_info.next,
9887 					struct btrfs_space_info,
9888 					list);
9889 
9890 		/*
9891 		 * Do not hide this behind enospc_debug, this is actually
9892 		 * important and indicates a real bug if this happens.
9893 		 */
9894 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9895 			    space_info->bytes_reserved > 0 ||
9896 			    space_info->bytes_may_use > 0))
9897 			dump_space_info(info, space_info, 0, 0);
9898 		list_del(&space_info->list);
9899 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9900 			struct kobject *kobj;
9901 			kobj = space_info->block_group_kobjs[i];
9902 			space_info->block_group_kobjs[i] = NULL;
9903 			if (kobj) {
9904 				kobject_del(kobj);
9905 				kobject_put(kobj);
9906 			}
9907 		}
9908 		kobject_del(&space_info->kobj);
9909 		kobject_put(&space_info->kobj);
9910 	}
9911 	return 0;
9912 }
9913 
9914 static void link_block_group(struct btrfs_block_group_cache *cache)
9915 {
9916 	struct btrfs_space_info *space_info = cache->space_info;
9917 	int index = get_block_group_index(cache);
9918 	bool first = false;
9919 
9920 	down_write(&space_info->groups_sem);
9921 	if (list_empty(&space_info->block_groups[index]))
9922 		first = true;
9923 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9924 	up_write(&space_info->groups_sem);
9925 
9926 	if (first) {
9927 		struct raid_kobject *rkobj;
9928 		int ret;
9929 
9930 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9931 		if (!rkobj)
9932 			goto out_err;
9933 		rkobj->raid_type = index;
9934 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9935 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9936 				  "%s", get_raid_name(index));
9937 		if (ret) {
9938 			kobject_put(&rkobj->kobj);
9939 			goto out_err;
9940 		}
9941 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9942 	}
9943 
9944 	return;
9945 out_err:
9946 	btrfs_warn(cache->fs_info,
9947 		   "failed to add kobject for block cache, ignoring");
9948 }
9949 
9950 static struct btrfs_block_group_cache *
9951 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9952 			       u64 start, u64 size)
9953 {
9954 	struct btrfs_block_group_cache *cache;
9955 
9956 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9957 	if (!cache)
9958 		return NULL;
9959 
9960 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9961 					GFP_NOFS);
9962 	if (!cache->free_space_ctl) {
9963 		kfree(cache);
9964 		return NULL;
9965 	}
9966 
9967 	cache->key.objectid = start;
9968 	cache->key.offset = size;
9969 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9970 
9971 	cache->fs_info = fs_info;
9972 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9973 	set_free_space_tree_thresholds(cache);
9974 
9975 	atomic_set(&cache->count, 1);
9976 	spin_lock_init(&cache->lock);
9977 	init_rwsem(&cache->data_rwsem);
9978 	INIT_LIST_HEAD(&cache->list);
9979 	INIT_LIST_HEAD(&cache->cluster_list);
9980 	INIT_LIST_HEAD(&cache->bg_list);
9981 	INIT_LIST_HEAD(&cache->ro_list);
9982 	INIT_LIST_HEAD(&cache->dirty_list);
9983 	INIT_LIST_HEAD(&cache->io_list);
9984 	btrfs_init_free_space_ctl(cache);
9985 	atomic_set(&cache->trimming, 0);
9986 	mutex_init(&cache->free_space_lock);
9987 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9988 
9989 	return cache;
9990 }
9991 
9992 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9993 {
9994 	struct btrfs_path *path;
9995 	int ret;
9996 	struct btrfs_block_group_cache *cache;
9997 	struct btrfs_space_info *space_info;
9998 	struct btrfs_key key;
9999 	struct btrfs_key found_key;
10000 	struct extent_buffer *leaf;
10001 	int need_clear = 0;
10002 	u64 cache_gen;
10003 	u64 feature;
10004 	int mixed;
10005 
10006 	feature = btrfs_super_incompat_flags(info->super_copy);
10007 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10008 
10009 	key.objectid = 0;
10010 	key.offset = 0;
10011 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10012 	path = btrfs_alloc_path();
10013 	if (!path)
10014 		return -ENOMEM;
10015 	path->reada = READA_FORWARD;
10016 
10017 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10018 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10019 	    btrfs_super_generation(info->super_copy) != cache_gen)
10020 		need_clear = 1;
10021 	if (btrfs_test_opt(info, CLEAR_CACHE))
10022 		need_clear = 1;
10023 
10024 	while (1) {
10025 		ret = find_first_block_group(info, path, &key);
10026 		if (ret > 0)
10027 			break;
10028 		if (ret != 0)
10029 			goto error;
10030 
10031 		leaf = path->nodes[0];
10032 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10033 
10034 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10035 						       found_key.offset);
10036 		if (!cache) {
10037 			ret = -ENOMEM;
10038 			goto error;
10039 		}
10040 
10041 		if (need_clear) {
10042 			/*
10043 			 * When we mount with old space cache, we need to
10044 			 * set BTRFS_DC_CLEAR and set dirty flag.
10045 			 *
10046 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10047 			 *    truncate the old free space cache inode and
10048 			 *    setup a new one.
10049 			 * b) Setting 'dirty flag' makes sure that we flush
10050 			 *    the new space cache info onto disk.
10051 			 */
10052 			if (btrfs_test_opt(info, SPACE_CACHE))
10053 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10054 		}
10055 
10056 		read_extent_buffer(leaf, &cache->item,
10057 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10058 				   sizeof(cache->item));
10059 		cache->flags = btrfs_block_group_flags(&cache->item);
10060 		if (!mixed &&
10061 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10062 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10063 			btrfs_err(info,
10064 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10065 				  cache->key.objectid);
10066 			ret = -EINVAL;
10067 			goto error;
10068 		}
10069 
10070 		key.objectid = found_key.objectid + found_key.offset;
10071 		btrfs_release_path(path);
10072 
10073 		/*
10074 		 * We need to exclude the super stripes now so that the space
10075 		 * info has super bytes accounted for, otherwise we'll think
10076 		 * we have more space than we actually do.
10077 		 */
10078 		ret = exclude_super_stripes(info, cache);
10079 		if (ret) {
10080 			/*
10081 			 * We may have excluded something, so call this just in
10082 			 * case.
10083 			 */
10084 			free_excluded_extents(info, cache);
10085 			btrfs_put_block_group(cache);
10086 			goto error;
10087 		}
10088 
10089 		/*
10090 		 * check for two cases, either we are full, and therefore
10091 		 * don't need to bother with the caching work since we won't
10092 		 * find any space, or we are empty, and we can just add all
10093 		 * the space in and be done with it.  This saves us _alot_ of
10094 		 * time, particularly in the full case.
10095 		 */
10096 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10097 			cache->last_byte_to_unpin = (u64)-1;
10098 			cache->cached = BTRFS_CACHE_FINISHED;
10099 			free_excluded_extents(info, cache);
10100 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10101 			cache->last_byte_to_unpin = (u64)-1;
10102 			cache->cached = BTRFS_CACHE_FINISHED;
10103 			add_new_free_space(cache, info,
10104 					   found_key.objectid,
10105 					   found_key.objectid +
10106 					   found_key.offset);
10107 			free_excluded_extents(info, cache);
10108 		}
10109 
10110 		ret = btrfs_add_block_group_cache(info, cache);
10111 		if (ret) {
10112 			btrfs_remove_free_space_cache(cache);
10113 			btrfs_put_block_group(cache);
10114 			goto error;
10115 		}
10116 
10117 		trace_btrfs_add_block_group(info, cache, 0);
10118 		update_space_info(info, cache->flags, found_key.offset,
10119 				  btrfs_block_group_used(&cache->item),
10120 				  cache->bytes_super, &space_info);
10121 
10122 		cache->space_info = space_info;
10123 
10124 		link_block_group(cache);
10125 
10126 		set_avail_alloc_bits(info, cache->flags);
10127 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10128 			inc_block_group_ro(cache, 1);
10129 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10130 			spin_lock(&info->unused_bgs_lock);
10131 			/* Should always be true but just in case. */
10132 			if (list_empty(&cache->bg_list)) {
10133 				btrfs_get_block_group(cache);
10134 				list_add_tail(&cache->bg_list,
10135 					      &info->unused_bgs);
10136 			}
10137 			spin_unlock(&info->unused_bgs_lock);
10138 		}
10139 	}
10140 
10141 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10142 		if (!(get_alloc_profile(info, space_info->flags) &
10143 		      (BTRFS_BLOCK_GROUP_RAID10 |
10144 		       BTRFS_BLOCK_GROUP_RAID1 |
10145 		       BTRFS_BLOCK_GROUP_RAID5 |
10146 		       BTRFS_BLOCK_GROUP_RAID6 |
10147 		       BTRFS_BLOCK_GROUP_DUP)))
10148 			continue;
10149 		/*
10150 		 * avoid allocating from un-mirrored block group if there are
10151 		 * mirrored block groups.
10152 		 */
10153 		list_for_each_entry(cache,
10154 				&space_info->block_groups[BTRFS_RAID_RAID0],
10155 				list)
10156 			inc_block_group_ro(cache, 1);
10157 		list_for_each_entry(cache,
10158 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10159 				list)
10160 			inc_block_group_ro(cache, 1);
10161 	}
10162 
10163 	init_global_block_rsv(info);
10164 	ret = 0;
10165 error:
10166 	btrfs_free_path(path);
10167 	return ret;
10168 }
10169 
10170 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10171 				       struct btrfs_fs_info *fs_info)
10172 {
10173 	struct btrfs_block_group_cache *block_group, *tmp;
10174 	struct btrfs_root *extent_root = fs_info->extent_root;
10175 	struct btrfs_block_group_item item;
10176 	struct btrfs_key key;
10177 	int ret = 0;
10178 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10179 
10180 	trans->can_flush_pending_bgs = false;
10181 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10182 		if (ret)
10183 			goto next;
10184 
10185 		spin_lock(&block_group->lock);
10186 		memcpy(&item, &block_group->item, sizeof(item));
10187 		memcpy(&key, &block_group->key, sizeof(key));
10188 		spin_unlock(&block_group->lock);
10189 
10190 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10191 					sizeof(item));
10192 		if (ret)
10193 			btrfs_abort_transaction(trans, ret);
10194 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10195 					       key.offset);
10196 		if (ret)
10197 			btrfs_abort_transaction(trans, ret);
10198 		add_block_group_free_space(trans, fs_info, block_group);
10199 		/* already aborted the transaction if it failed. */
10200 next:
10201 		list_del_init(&block_group->bg_list);
10202 	}
10203 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10204 }
10205 
10206 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10207 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10208 			   u64 type, u64 chunk_offset, u64 size)
10209 {
10210 	struct btrfs_block_group_cache *cache;
10211 	int ret;
10212 
10213 	btrfs_set_log_full_commit(fs_info, trans);
10214 
10215 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10216 	if (!cache)
10217 		return -ENOMEM;
10218 
10219 	btrfs_set_block_group_used(&cache->item, bytes_used);
10220 	btrfs_set_block_group_chunk_objectid(&cache->item,
10221 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10222 	btrfs_set_block_group_flags(&cache->item, type);
10223 
10224 	cache->flags = type;
10225 	cache->last_byte_to_unpin = (u64)-1;
10226 	cache->cached = BTRFS_CACHE_FINISHED;
10227 	cache->needs_free_space = 1;
10228 	ret = exclude_super_stripes(fs_info, cache);
10229 	if (ret) {
10230 		/*
10231 		 * We may have excluded something, so call this just in
10232 		 * case.
10233 		 */
10234 		free_excluded_extents(fs_info, cache);
10235 		btrfs_put_block_group(cache);
10236 		return ret;
10237 	}
10238 
10239 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10240 
10241 	free_excluded_extents(fs_info, cache);
10242 
10243 #ifdef CONFIG_BTRFS_DEBUG
10244 	if (btrfs_should_fragment_free_space(cache)) {
10245 		u64 new_bytes_used = size - bytes_used;
10246 
10247 		bytes_used += new_bytes_used >> 1;
10248 		fragment_free_space(cache);
10249 	}
10250 #endif
10251 	/*
10252 	 * Ensure the corresponding space_info object is created and
10253 	 * assigned to our block group. We want our bg to be added to the rbtree
10254 	 * with its ->space_info set.
10255 	 */
10256 	cache->space_info = __find_space_info(fs_info, cache->flags);
10257 	if (!cache->space_info) {
10258 		ret = create_space_info(fs_info, cache->flags,
10259 				       &cache->space_info);
10260 		if (ret) {
10261 			btrfs_remove_free_space_cache(cache);
10262 			btrfs_put_block_group(cache);
10263 			return ret;
10264 		}
10265 	}
10266 
10267 	ret = btrfs_add_block_group_cache(fs_info, cache);
10268 	if (ret) {
10269 		btrfs_remove_free_space_cache(cache);
10270 		btrfs_put_block_group(cache);
10271 		return ret;
10272 	}
10273 
10274 	/*
10275 	 * Now that our block group has its ->space_info set and is inserted in
10276 	 * the rbtree, update the space info's counters.
10277 	 */
10278 	trace_btrfs_add_block_group(fs_info, cache, 1);
10279 	update_space_info(fs_info, cache->flags, size, bytes_used,
10280 				cache->bytes_super, &cache->space_info);
10281 	update_global_block_rsv(fs_info);
10282 
10283 	link_block_group(cache);
10284 
10285 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10286 
10287 	set_avail_alloc_bits(fs_info, type);
10288 	return 0;
10289 }
10290 
10291 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10292 {
10293 	u64 extra_flags = chunk_to_extended(flags) &
10294 				BTRFS_EXTENDED_PROFILE_MASK;
10295 
10296 	write_seqlock(&fs_info->profiles_lock);
10297 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10298 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10299 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10300 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10301 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10302 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10303 	write_sequnlock(&fs_info->profiles_lock);
10304 }
10305 
10306 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10307 			     struct btrfs_fs_info *fs_info, u64 group_start,
10308 			     struct extent_map *em)
10309 {
10310 	struct btrfs_root *root = fs_info->extent_root;
10311 	struct btrfs_path *path;
10312 	struct btrfs_block_group_cache *block_group;
10313 	struct btrfs_free_cluster *cluster;
10314 	struct btrfs_root *tree_root = fs_info->tree_root;
10315 	struct btrfs_key key;
10316 	struct inode *inode;
10317 	struct kobject *kobj = NULL;
10318 	int ret;
10319 	int index;
10320 	int factor;
10321 	struct btrfs_caching_control *caching_ctl = NULL;
10322 	bool remove_em;
10323 
10324 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10325 	BUG_ON(!block_group);
10326 	BUG_ON(!block_group->ro);
10327 
10328 	/*
10329 	 * Free the reserved super bytes from this block group before
10330 	 * remove it.
10331 	 */
10332 	free_excluded_extents(fs_info, block_group);
10333 	btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10334 				  block_group->key.offset);
10335 
10336 	memcpy(&key, &block_group->key, sizeof(key));
10337 	index = get_block_group_index(block_group);
10338 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10339 				  BTRFS_BLOCK_GROUP_RAID1 |
10340 				  BTRFS_BLOCK_GROUP_RAID10))
10341 		factor = 2;
10342 	else
10343 		factor = 1;
10344 
10345 	/* make sure this block group isn't part of an allocation cluster */
10346 	cluster = &fs_info->data_alloc_cluster;
10347 	spin_lock(&cluster->refill_lock);
10348 	btrfs_return_cluster_to_free_space(block_group, cluster);
10349 	spin_unlock(&cluster->refill_lock);
10350 
10351 	/*
10352 	 * make sure this block group isn't part of a metadata
10353 	 * allocation cluster
10354 	 */
10355 	cluster = &fs_info->meta_alloc_cluster;
10356 	spin_lock(&cluster->refill_lock);
10357 	btrfs_return_cluster_to_free_space(block_group, cluster);
10358 	spin_unlock(&cluster->refill_lock);
10359 
10360 	path = btrfs_alloc_path();
10361 	if (!path) {
10362 		ret = -ENOMEM;
10363 		goto out;
10364 	}
10365 
10366 	/*
10367 	 * get the inode first so any iput calls done for the io_list
10368 	 * aren't the final iput (no unlinks allowed now)
10369 	 */
10370 	inode = lookup_free_space_inode(fs_info, block_group, path);
10371 
10372 	mutex_lock(&trans->transaction->cache_write_mutex);
10373 	/*
10374 	 * make sure our free spache cache IO is done before remove the
10375 	 * free space inode
10376 	 */
10377 	spin_lock(&trans->transaction->dirty_bgs_lock);
10378 	if (!list_empty(&block_group->io_list)) {
10379 		list_del_init(&block_group->io_list);
10380 
10381 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10382 
10383 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10384 		btrfs_wait_cache_io(trans, block_group, path);
10385 		btrfs_put_block_group(block_group);
10386 		spin_lock(&trans->transaction->dirty_bgs_lock);
10387 	}
10388 
10389 	if (!list_empty(&block_group->dirty_list)) {
10390 		list_del_init(&block_group->dirty_list);
10391 		btrfs_put_block_group(block_group);
10392 	}
10393 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10394 	mutex_unlock(&trans->transaction->cache_write_mutex);
10395 
10396 	if (!IS_ERR(inode)) {
10397 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10398 		if (ret) {
10399 			btrfs_add_delayed_iput(inode);
10400 			goto out;
10401 		}
10402 		clear_nlink(inode);
10403 		/* One for the block groups ref */
10404 		spin_lock(&block_group->lock);
10405 		if (block_group->iref) {
10406 			block_group->iref = 0;
10407 			block_group->inode = NULL;
10408 			spin_unlock(&block_group->lock);
10409 			iput(inode);
10410 		} else {
10411 			spin_unlock(&block_group->lock);
10412 		}
10413 		/* One for our lookup ref */
10414 		btrfs_add_delayed_iput(inode);
10415 	}
10416 
10417 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10418 	key.offset = block_group->key.objectid;
10419 	key.type = 0;
10420 
10421 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10422 	if (ret < 0)
10423 		goto out;
10424 	if (ret > 0)
10425 		btrfs_release_path(path);
10426 	if (ret == 0) {
10427 		ret = btrfs_del_item(trans, tree_root, path);
10428 		if (ret)
10429 			goto out;
10430 		btrfs_release_path(path);
10431 	}
10432 
10433 	spin_lock(&fs_info->block_group_cache_lock);
10434 	rb_erase(&block_group->cache_node,
10435 		 &fs_info->block_group_cache_tree);
10436 	RB_CLEAR_NODE(&block_group->cache_node);
10437 
10438 	if (fs_info->first_logical_byte == block_group->key.objectid)
10439 		fs_info->first_logical_byte = (u64)-1;
10440 	spin_unlock(&fs_info->block_group_cache_lock);
10441 
10442 	down_write(&block_group->space_info->groups_sem);
10443 	/*
10444 	 * we must use list_del_init so people can check to see if they
10445 	 * are still on the list after taking the semaphore
10446 	 */
10447 	list_del_init(&block_group->list);
10448 	if (list_empty(&block_group->space_info->block_groups[index])) {
10449 		kobj = block_group->space_info->block_group_kobjs[index];
10450 		block_group->space_info->block_group_kobjs[index] = NULL;
10451 		clear_avail_alloc_bits(fs_info, block_group->flags);
10452 	}
10453 	up_write(&block_group->space_info->groups_sem);
10454 	if (kobj) {
10455 		kobject_del(kobj);
10456 		kobject_put(kobj);
10457 	}
10458 
10459 	if (block_group->has_caching_ctl)
10460 		caching_ctl = get_caching_control(block_group);
10461 	if (block_group->cached == BTRFS_CACHE_STARTED)
10462 		wait_block_group_cache_done(block_group);
10463 	if (block_group->has_caching_ctl) {
10464 		down_write(&fs_info->commit_root_sem);
10465 		if (!caching_ctl) {
10466 			struct btrfs_caching_control *ctl;
10467 
10468 			list_for_each_entry(ctl,
10469 				    &fs_info->caching_block_groups, list)
10470 				if (ctl->block_group == block_group) {
10471 					caching_ctl = ctl;
10472 					refcount_inc(&caching_ctl->count);
10473 					break;
10474 				}
10475 		}
10476 		if (caching_ctl)
10477 			list_del_init(&caching_ctl->list);
10478 		up_write(&fs_info->commit_root_sem);
10479 		if (caching_ctl) {
10480 			/* Once for the caching bgs list and once for us. */
10481 			put_caching_control(caching_ctl);
10482 			put_caching_control(caching_ctl);
10483 		}
10484 	}
10485 
10486 	spin_lock(&trans->transaction->dirty_bgs_lock);
10487 	if (!list_empty(&block_group->dirty_list)) {
10488 		WARN_ON(1);
10489 	}
10490 	if (!list_empty(&block_group->io_list)) {
10491 		WARN_ON(1);
10492 	}
10493 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10494 	btrfs_remove_free_space_cache(block_group);
10495 
10496 	spin_lock(&block_group->space_info->lock);
10497 	list_del_init(&block_group->ro_list);
10498 
10499 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10500 		WARN_ON(block_group->space_info->total_bytes
10501 			< block_group->key.offset);
10502 		WARN_ON(block_group->space_info->bytes_readonly
10503 			< block_group->key.offset);
10504 		WARN_ON(block_group->space_info->disk_total
10505 			< block_group->key.offset * factor);
10506 	}
10507 	block_group->space_info->total_bytes -= block_group->key.offset;
10508 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10509 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10510 
10511 	spin_unlock(&block_group->space_info->lock);
10512 
10513 	memcpy(&key, &block_group->key, sizeof(key));
10514 
10515 	mutex_lock(&fs_info->chunk_mutex);
10516 	if (!list_empty(&em->list)) {
10517 		/* We're in the transaction->pending_chunks list. */
10518 		free_extent_map(em);
10519 	}
10520 	spin_lock(&block_group->lock);
10521 	block_group->removed = 1;
10522 	/*
10523 	 * At this point trimming can't start on this block group, because we
10524 	 * removed the block group from the tree fs_info->block_group_cache_tree
10525 	 * so no one can't find it anymore and even if someone already got this
10526 	 * block group before we removed it from the rbtree, they have already
10527 	 * incremented block_group->trimming - if they didn't, they won't find
10528 	 * any free space entries because we already removed them all when we
10529 	 * called btrfs_remove_free_space_cache().
10530 	 *
10531 	 * And we must not remove the extent map from the fs_info->mapping_tree
10532 	 * to prevent the same logical address range and physical device space
10533 	 * ranges from being reused for a new block group. This is because our
10534 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10535 	 * completely transactionless, so while it is trimming a range the
10536 	 * currently running transaction might finish and a new one start,
10537 	 * allowing for new block groups to be created that can reuse the same
10538 	 * physical device locations unless we take this special care.
10539 	 *
10540 	 * There may also be an implicit trim operation if the file system
10541 	 * is mounted with -odiscard. The same protections must remain
10542 	 * in place until the extents have been discarded completely when
10543 	 * the transaction commit has completed.
10544 	 */
10545 	remove_em = (atomic_read(&block_group->trimming) == 0);
10546 	/*
10547 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10548 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10549 	 * before checking block_group->removed).
10550 	 */
10551 	if (!remove_em) {
10552 		/*
10553 		 * Our em might be in trans->transaction->pending_chunks which
10554 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10555 		 * and so is the fs_info->pinned_chunks list.
10556 		 *
10557 		 * So at this point we must be holding the chunk_mutex to avoid
10558 		 * any races with chunk allocation (more specifically at
10559 		 * volumes.c:contains_pending_extent()), to ensure it always
10560 		 * sees the em, either in the pending_chunks list or in the
10561 		 * pinned_chunks list.
10562 		 */
10563 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10564 	}
10565 	spin_unlock(&block_group->lock);
10566 
10567 	if (remove_em) {
10568 		struct extent_map_tree *em_tree;
10569 
10570 		em_tree = &fs_info->mapping_tree.map_tree;
10571 		write_lock(&em_tree->lock);
10572 		/*
10573 		 * The em might be in the pending_chunks list, so make sure the
10574 		 * chunk mutex is locked, since remove_extent_mapping() will
10575 		 * delete us from that list.
10576 		 */
10577 		remove_extent_mapping(em_tree, em);
10578 		write_unlock(&em_tree->lock);
10579 		/* once for the tree */
10580 		free_extent_map(em);
10581 	}
10582 
10583 	mutex_unlock(&fs_info->chunk_mutex);
10584 
10585 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10586 	if (ret)
10587 		goto out;
10588 
10589 	btrfs_put_block_group(block_group);
10590 	btrfs_put_block_group(block_group);
10591 
10592 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10593 	if (ret > 0)
10594 		ret = -EIO;
10595 	if (ret < 0)
10596 		goto out;
10597 
10598 	ret = btrfs_del_item(trans, root, path);
10599 out:
10600 	btrfs_free_path(path);
10601 	return ret;
10602 }
10603 
10604 struct btrfs_trans_handle *
10605 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10606 				     const u64 chunk_offset)
10607 {
10608 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10609 	struct extent_map *em;
10610 	struct map_lookup *map;
10611 	unsigned int num_items;
10612 
10613 	read_lock(&em_tree->lock);
10614 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10615 	read_unlock(&em_tree->lock);
10616 	ASSERT(em && em->start == chunk_offset);
10617 
10618 	/*
10619 	 * We need to reserve 3 + N units from the metadata space info in order
10620 	 * to remove a block group (done at btrfs_remove_chunk() and at
10621 	 * btrfs_remove_block_group()), which are used for:
10622 	 *
10623 	 * 1 unit for adding the free space inode's orphan (located in the tree
10624 	 * of tree roots).
10625 	 * 1 unit for deleting the block group item (located in the extent
10626 	 * tree).
10627 	 * 1 unit for deleting the free space item (located in tree of tree
10628 	 * roots).
10629 	 * N units for deleting N device extent items corresponding to each
10630 	 * stripe (located in the device tree).
10631 	 *
10632 	 * In order to remove a block group we also need to reserve units in the
10633 	 * system space info in order to update the chunk tree (update one or
10634 	 * more device items and remove one chunk item), but this is done at
10635 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10636 	 */
10637 	map = em->map_lookup;
10638 	num_items = 3 + map->num_stripes;
10639 	free_extent_map(em);
10640 
10641 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10642 							   num_items, 1);
10643 }
10644 
10645 /*
10646  * Process the unused_bgs list and remove any that don't have any allocated
10647  * space inside of them.
10648  */
10649 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10650 {
10651 	struct btrfs_block_group_cache *block_group;
10652 	struct btrfs_space_info *space_info;
10653 	struct btrfs_trans_handle *trans;
10654 	int ret = 0;
10655 
10656 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10657 		return;
10658 
10659 	spin_lock(&fs_info->unused_bgs_lock);
10660 	while (!list_empty(&fs_info->unused_bgs)) {
10661 		u64 start, end;
10662 		int trimming;
10663 
10664 		block_group = list_first_entry(&fs_info->unused_bgs,
10665 					       struct btrfs_block_group_cache,
10666 					       bg_list);
10667 		list_del_init(&block_group->bg_list);
10668 
10669 		space_info = block_group->space_info;
10670 
10671 		if (ret || btrfs_mixed_space_info(space_info)) {
10672 			btrfs_put_block_group(block_group);
10673 			continue;
10674 		}
10675 		spin_unlock(&fs_info->unused_bgs_lock);
10676 
10677 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10678 
10679 		/* Don't want to race with allocators so take the groups_sem */
10680 		down_write(&space_info->groups_sem);
10681 		spin_lock(&block_group->lock);
10682 		if (block_group->reserved ||
10683 		    btrfs_block_group_used(&block_group->item) ||
10684 		    block_group->ro ||
10685 		    list_is_singular(&block_group->list)) {
10686 			/*
10687 			 * We want to bail if we made new allocations or have
10688 			 * outstanding allocations in this block group.  We do
10689 			 * the ro check in case balance is currently acting on
10690 			 * this block group.
10691 			 */
10692 			spin_unlock(&block_group->lock);
10693 			up_write(&space_info->groups_sem);
10694 			goto next;
10695 		}
10696 		spin_unlock(&block_group->lock);
10697 
10698 		/* We don't want to force the issue, only flip if it's ok. */
10699 		ret = inc_block_group_ro(block_group, 0);
10700 		up_write(&space_info->groups_sem);
10701 		if (ret < 0) {
10702 			ret = 0;
10703 			goto next;
10704 		}
10705 
10706 		/*
10707 		 * Want to do this before we do anything else so we can recover
10708 		 * properly if we fail to join the transaction.
10709 		 */
10710 		trans = btrfs_start_trans_remove_block_group(fs_info,
10711 						     block_group->key.objectid);
10712 		if (IS_ERR(trans)) {
10713 			btrfs_dec_block_group_ro(block_group);
10714 			ret = PTR_ERR(trans);
10715 			goto next;
10716 		}
10717 
10718 		/*
10719 		 * We could have pending pinned extents for this block group,
10720 		 * just delete them, we don't care about them anymore.
10721 		 */
10722 		start = block_group->key.objectid;
10723 		end = start + block_group->key.offset - 1;
10724 		/*
10725 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10726 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10727 		 * another task might be running finish_extent_commit() for the
10728 		 * previous transaction N - 1, and have seen a range belonging
10729 		 * to the block group in freed_extents[] before we were able to
10730 		 * clear the whole block group range from freed_extents[]. This
10731 		 * means that task can lookup for the block group after we
10732 		 * unpinned it from freed_extents[] and removed it, leading to
10733 		 * a BUG_ON() at btrfs_unpin_extent_range().
10734 		 */
10735 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10736 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10737 				  EXTENT_DIRTY);
10738 		if (ret) {
10739 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10740 			btrfs_dec_block_group_ro(block_group);
10741 			goto end_trans;
10742 		}
10743 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10744 				  EXTENT_DIRTY);
10745 		if (ret) {
10746 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10747 			btrfs_dec_block_group_ro(block_group);
10748 			goto end_trans;
10749 		}
10750 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10751 
10752 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10753 		spin_lock(&space_info->lock);
10754 		spin_lock(&block_group->lock);
10755 
10756 		space_info->bytes_pinned -= block_group->pinned;
10757 		space_info->bytes_readonly += block_group->pinned;
10758 		percpu_counter_add(&space_info->total_bytes_pinned,
10759 				   -block_group->pinned);
10760 		block_group->pinned = 0;
10761 
10762 		spin_unlock(&block_group->lock);
10763 		spin_unlock(&space_info->lock);
10764 
10765 		/* DISCARD can flip during remount */
10766 		trimming = btrfs_test_opt(fs_info, DISCARD);
10767 
10768 		/* Implicit trim during transaction commit. */
10769 		if (trimming)
10770 			btrfs_get_block_group_trimming(block_group);
10771 
10772 		/*
10773 		 * Btrfs_remove_chunk will abort the transaction if things go
10774 		 * horribly wrong.
10775 		 */
10776 		ret = btrfs_remove_chunk(trans, fs_info,
10777 					 block_group->key.objectid);
10778 
10779 		if (ret) {
10780 			if (trimming)
10781 				btrfs_put_block_group_trimming(block_group);
10782 			goto end_trans;
10783 		}
10784 
10785 		/*
10786 		 * If we're not mounted with -odiscard, we can just forget
10787 		 * about this block group. Otherwise we'll need to wait
10788 		 * until transaction commit to do the actual discard.
10789 		 */
10790 		if (trimming) {
10791 			spin_lock(&fs_info->unused_bgs_lock);
10792 			/*
10793 			 * A concurrent scrub might have added us to the list
10794 			 * fs_info->unused_bgs, so use a list_move operation
10795 			 * to add the block group to the deleted_bgs list.
10796 			 */
10797 			list_move(&block_group->bg_list,
10798 				  &trans->transaction->deleted_bgs);
10799 			spin_unlock(&fs_info->unused_bgs_lock);
10800 			btrfs_get_block_group(block_group);
10801 		}
10802 end_trans:
10803 		btrfs_end_transaction(trans);
10804 next:
10805 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10806 		btrfs_put_block_group(block_group);
10807 		spin_lock(&fs_info->unused_bgs_lock);
10808 	}
10809 	spin_unlock(&fs_info->unused_bgs_lock);
10810 }
10811 
10812 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10813 {
10814 	struct btrfs_space_info *space_info;
10815 	struct btrfs_super_block *disk_super;
10816 	u64 features;
10817 	u64 flags;
10818 	int mixed = 0;
10819 	int ret;
10820 
10821 	disk_super = fs_info->super_copy;
10822 	if (!btrfs_super_root(disk_super))
10823 		return -EINVAL;
10824 
10825 	features = btrfs_super_incompat_flags(disk_super);
10826 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10827 		mixed = 1;
10828 
10829 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10830 	ret = create_space_info(fs_info, flags, &space_info);
10831 	if (ret)
10832 		goto out;
10833 
10834 	if (mixed) {
10835 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10836 		ret = create_space_info(fs_info, flags, &space_info);
10837 	} else {
10838 		flags = BTRFS_BLOCK_GROUP_METADATA;
10839 		ret = create_space_info(fs_info, flags, &space_info);
10840 		if (ret)
10841 			goto out;
10842 
10843 		flags = BTRFS_BLOCK_GROUP_DATA;
10844 		ret = create_space_info(fs_info, flags, &space_info);
10845 	}
10846 out:
10847 	return ret;
10848 }
10849 
10850 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10851 				   u64 start, u64 end)
10852 {
10853 	return unpin_extent_range(fs_info, start, end, false);
10854 }
10855 
10856 /*
10857  * It used to be that old block groups would be left around forever.
10858  * Iterating over them would be enough to trim unused space.  Since we
10859  * now automatically remove them, we also need to iterate over unallocated
10860  * space.
10861  *
10862  * We don't want a transaction for this since the discard may take a
10863  * substantial amount of time.  We don't require that a transaction be
10864  * running, but we do need to take a running transaction into account
10865  * to ensure that we're not discarding chunks that were released in
10866  * the current transaction.
10867  *
10868  * Holding the chunks lock will prevent other threads from allocating
10869  * or releasing chunks, but it won't prevent a running transaction
10870  * from committing and releasing the memory that the pending chunks
10871  * list head uses.  For that, we need to take a reference to the
10872  * transaction.
10873  */
10874 static int btrfs_trim_free_extents(struct btrfs_device *device,
10875 				   u64 minlen, u64 *trimmed)
10876 {
10877 	u64 start = 0, len = 0;
10878 	int ret;
10879 
10880 	*trimmed = 0;
10881 
10882 	/* Not writeable = nothing to do. */
10883 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10884 		return 0;
10885 
10886 	/* No free space = nothing to do. */
10887 	if (device->total_bytes <= device->bytes_used)
10888 		return 0;
10889 
10890 	ret = 0;
10891 
10892 	while (1) {
10893 		struct btrfs_fs_info *fs_info = device->fs_info;
10894 		struct btrfs_transaction *trans;
10895 		u64 bytes;
10896 
10897 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10898 		if (ret)
10899 			return ret;
10900 
10901 		down_read(&fs_info->commit_root_sem);
10902 
10903 		spin_lock(&fs_info->trans_lock);
10904 		trans = fs_info->running_transaction;
10905 		if (trans)
10906 			refcount_inc(&trans->use_count);
10907 		spin_unlock(&fs_info->trans_lock);
10908 
10909 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10910 						 &start, &len);
10911 		if (trans)
10912 			btrfs_put_transaction(trans);
10913 
10914 		if (ret) {
10915 			up_read(&fs_info->commit_root_sem);
10916 			mutex_unlock(&fs_info->chunk_mutex);
10917 			if (ret == -ENOSPC)
10918 				ret = 0;
10919 			break;
10920 		}
10921 
10922 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10923 		up_read(&fs_info->commit_root_sem);
10924 		mutex_unlock(&fs_info->chunk_mutex);
10925 
10926 		if (ret)
10927 			break;
10928 
10929 		start += len;
10930 		*trimmed += bytes;
10931 
10932 		if (fatal_signal_pending(current)) {
10933 			ret = -ERESTARTSYS;
10934 			break;
10935 		}
10936 
10937 		cond_resched();
10938 	}
10939 
10940 	return ret;
10941 }
10942 
10943 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10944 {
10945 	struct btrfs_block_group_cache *cache = NULL;
10946 	struct btrfs_device *device;
10947 	struct list_head *devices;
10948 	u64 group_trimmed;
10949 	u64 start;
10950 	u64 end;
10951 	u64 trimmed = 0;
10952 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10953 	int ret = 0;
10954 
10955 	/*
10956 	 * try to trim all FS space, our block group may start from non-zero.
10957 	 */
10958 	if (range->len == total_bytes)
10959 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10960 	else
10961 		cache = btrfs_lookup_block_group(fs_info, range->start);
10962 
10963 	while (cache) {
10964 		if (cache->key.objectid >= (range->start + range->len)) {
10965 			btrfs_put_block_group(cache);
10966 			break;
10967 		}
10968 
10969 		start = max(range->start, cache->key.objectid);
10970 		end = min(range->start + range->len,
10971 				cache->key.objectid + cache->key.offset);
10972 
10973 		if (end - start >= range->minlen) {
10974 			if (!block_group_cache_done(cache)) {
10975 				ret = cache_block_group(cache, 0);
10976 				if (ret) {
10977 					btrfs_put_block_group(cache);
10978 					break;
10979 				}
10980 				ret = wait_block_group_cache_done(cache);
10981 				if (ret) {
10982 					btrfs_put_block_group(cache);
10983 					break;
10984 				}
10985 			}
10986 			ret = btrfs_trim_block_group(cache,
10987 						     &group_trimmed,
10988 						     start,
10989 						     end,
10990 						     range->minlen);
10991 
10992 			trimmed += group_trimmed;
10993 			if (ret) {
10994 				btrfs_put_block_group(cache);
10995 				break;
10996 			}
10997 		}
10998 
10999 		cache = next_block_group(fs_info, cache);
11000 	}
11001 
11002 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
11003 	devices = &fs_info->fs_devices->alloc_list;
11004 	list_for_each_entry(device, devices, dev_alloc_list) {
11005 		ret = btrfs_trim_free_extents(device, range->minlen,
11006 					      &group_trimmed);
11007 		if (ret)
11008 			break;
11009 
11010 		trimmed += group_trimmed;
11011 	}
11012 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11013 
11014 	range->len = trimmed;
11015 	return ret;
11016 }
11017 
11018 /*
11019  * btrfs_{start,end}_write_no_snapshotting() are similar to
11020  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11021  * data into the page cache through nocow before the subvolume is snapshoted,
11022  * but flush the data into disk after the snapshot creation, or to prevent
11023  * operations while snapshotting is ongoing and that cause the snapshot to be
11024  * inconsistent (writes followed by expanding truncates for example).
11025  */
11026 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11027 {
11028 	percpu_counter_dec(&root->subv_writers->counter);
11029 	/*
11030 	 * Make sure counter is updated before we wake up waiters.
11031 	 */
11032 	smp_mb();
11033 	if (waitqueue_active(&root->subv_writers->wait))
11034 		wake_up(&root->subv_writers->wait);
11035 }
11036 
11037 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11038 {
11039 	if (atomic_read(&root->will_be_snapshotted))
11040 		return 0;
11041 
11042 	percpu_counter_inc(&root->subv_writers->counter);
11043 	/*
11044 	 * Make sure counter is updated before we check for snapshot creation.
11045 	 */
11046 	smp_mb();
11047 	if (atomic_read(&root->will_be_snapshotted)) {
11048 		btrfs_end_write_no_snapshotting(root);
11049 		return 0;
11050 	}
11051 	return 1;
11052 }
11053 
11054 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11055 {
11056 	while (true) {
11057 		int ret;
11058 
11059 		ret = btrfs_start_write_no_snapshotting(root);
11060 		if (ret)
11061 			break;
11062 		wait_var_event(&root->will_be_snapshotted,
11063 			       !atomic_read(&root->will_be_snapshotted));
11064 	}
11065 }
11066