1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/sched/signal.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/sort.h> 24 #include <linux/rcupdate.h> 25 #include <linux/kthread.h> 26 #include <linux/slab.h> 27 #include <linux/ratelimit.h> 28 #include <linux/percpu_counter.h> 29 #include <linux/lockdep.h> 30 #include "hash.h" 31 #include "tree-log.h" 32 #include "disk-io.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "raid56.h" 36 #include "locking.h" 37 #include "free-space-cache.h" 38 #include "free-space-tree.h" 39 #include "math.h" 40 #include "sysfs.h" 41 #include "qgroup.h" 42 #include "ref-verify.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 /* 47 * control flags for do_chunk_alloc's force field 48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 49 * if we really need one. 50 * 51 * CHUNK_ALLOC_LIMITED means to only try and allocate one 52 * if we have very few chunks already allocated. This is 53 * used as part of the clustering code to help make sure 54 * we have a good pool of storage to cluster in, without 55 * filling the FS with empty chunks 56 * 57 * CHUNK_ALLOC_FORCE means it must try to allocate one 58 * 59 */ 60 enum { 61 CHUNK_ALLOC_NO_FORCE = 0, 62 CHUNK_ALLOC_LIMITED = 1, 63 CHUNK_ALLOC_FORCE = 2, 64 }; 65 66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 67 struct btrfs_fs_info *fs_info, 68 struct btrfs_delayed_ref_node *node, u64 parent, 69 u64 root_objectid, u64 owner_objectid, 70 u64 owner_offset, int refs_to_drop, 71 struct btrfs_delayed_extent_op *extra_op); 72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 73 struct extent_buffer *leaf, 74 struct btrfs_extent_item *ei); 75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_fs_info *fs_info, 77 u64 parent, u64 root_objectid, 78 u64 flags, u64 owner, u64 offset, 79 struct btrfs_key *ins, int ref_mod); 80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 81 struct btrfs_fs_info *fs_info, 82 u64 parent, u64 root_objectid, 83 u64 flags, struct btrfs_disk_key *key, 84 int level, struct btrfs_key *ins); 85 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 86 struct btrfs_fs_info *fs_info, u64 flags, 87 int force); 88 static int find_next_key(struct btrfs_path *path, int level, 89 struct btrfs_key *key); 90 static void dump_space_info(struct btrfs_fs_info *fs_info, 91 struct btrfs_space_info *info, u64 bytes, 92 int dump_block_groups); 93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 94 u64 num_bytes); 95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 96 struct btrfs_space_info *space_info, 97 u64 num_bytes); 98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 99 struct btrfs_space_info *space_info, 100 u64 num_bytes); 101 102 static noinline int 103 block_group_cache_done(struct btrfs_block_group_cache *cache) 104 { 105 smp_mb(); 106 return cache->cached == BTRFS_CACHE_FINISHED || 107 cache->cached == BTRFS_CACHE_ERROR; 108 } 109 110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 111 { 112 return (cache->flags & bits) == bits; 113 } 114 115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 116 { 117 atomic_inc(&cache->count); 118 } 119 120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 121 { 122 if (atomic_dec_and_test(&cache->count)) { 123 WARN_ON(cache->pinned > 0); 124 WARN_ON(cache->reserved > 0); 125 126 /* 127 * If not empty, someone is still holding mutex of 128 * full_stripe_lock, which can only be released by caller. 129 * And it will definitely cause use-after-free when caller 130 * tries to release full stripe lock. 131 * 132 * No better way to resolve, but only to warn. 133 */ 134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 135 kfree(cache->free_space_ctl); 136 kfree(cache); 137 } 138 } 139 140 /* 141 * this adds the block group to the fs_info rb tree for the block group 142 * cache 143 */ 144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 145 struct btrfs_block_group_cache *block_group) 146 { 147 struct rb_node **p; 148 struct rb_node *parent = NULL; 149 struct btrfs_block_group_cache *cache; 150 151 spin_lock(&info->block_group_cache_lock); 152 p = &info->block_group_cache_tree.rb_node; 153 154 while (*p) { 155 parent = *p; 156 cache = rb_entry(parent, struct btrfs_block_group_cache, 157 cache_node); 158 if (block_group->key.objectid < cache->key.objectid) { 159 p = &(*p)->rb_left; 160 } else if (block_group->key.objectid > cache->key.objectid) { 161 p = &(*p)->rb_right; 162 } else { 163 spin_unlock(&info->block_group_cache_lock); 164 return -EEXIST; 165 } 166 } 167 168 rb_link_node(&block_group->cache_node, parent, p); 169 rb_insert_color(&block_group->cache_node, 170 &info->block_group_cache_tree); 171 172 if (info->first_logical_byte > block_group->key.objectid) 173 info->first_logical_byte = block_group->key.objectid; 174 175 spin_unlock(&info->block_group_cache_lock); 176 177 return 0; 178 } 179 180 /* 181 * This will return the block group at or after bytenr if contains is 0, else 182 * it will return the block group that contains the bytenr 183 */ 184 static struct btrfs_block_group_cache * 185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 186 int contains) 187 { 188 struct btrfs_block_group_cache *cache, *ret = NULL; 189 struct rb_node *n; 190 u64 end, start; 191 192 spin_lock(&info->block_group_cache_lock); 193 n = info->block_group_cache_tree.rb_node; 194 195 while (n) { 196 cache = rb_entry(n, struct btrfs_block_group_cache, 197 cache_node); 198 end = cache->key.objectid + cache->key.offset - 1; 199 start = cache->key.objectid; 200 201 if (bytenr < start) { 202 if (!contains && (!ret || start < ret->key.objectid)) 203 ret = cache; 204 n = n->rb_left; 205 } else if (bytenr > start) { 206 if (contains && bytenr <= end) { 207 ret = cache; 208 break; 209 } 210 n = n->rb_right; 211 } else { 212 ret = cache; 213 break; 214 } 215 } 216 if (ret) { 217 btrfs_get_block_group(ret); 218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 219 info->first_logical_byte = ret->key.objectid; 220 } 221 spin_unlock(&info->block_group_cache_lock); 222 223 return ret; 224 } 225 226 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 227 u64 start, u64 num_bytes) 228 { 229 u64 end = start + num_bytes - 1; 230 set_extent_bits(&fs_info->freed_extents[0], 231 start, end, EXTENT_UPTODATE); 232 set_extent_bits(&fs_info->freed_extents[1], 233 start, end, EXTENT_UPTODATE); 234 return 0; 235 } 236 237 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 start, end; 241 242 start = cache->key.objectid; 243 end = start + cache->key.offset - 1; 244 245 clear_extent_bits(&fs_info->freed_extents[0], 246 start, end, EXTENT_UPTODATE); 247 clear_extent_bits(&fs_info->freed_extents[1], 248 start, end, EXTENT_UPTODATE); 249 } 250 251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 252 struct btrfs_block_group_cache *cache) 253 { 254 u64 bytenr; 255 u64 *logical; 256 int stripe_len; 257 int i, nr, ret; 258 259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(fs_info, cache->key.objectid, 263 stripe_len); 264 if (ret) 265 return ret; 266 } 267 268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 269 bytenr = btrfs_sb_offset(i); 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 271 bytenr, 0, &logical, &nr, &stripe_len); 272 if (ret) 273 return ret; 274 275 while (nr--) { 276 u64 start, len; 277 278 if (logical[nr] > cache->key.objectid + 279 cache->key.offset) 280 continue; 281 282 if (logical[nr] + stripe_len <= cache->key.objectid) 283 continue; 284 285 start = logical[nr]; 286 if (start < cache->key.objectid) { 287 start = cache->key.objectid; 288 len = (logical[nr] + stripe_len) - start; 289 } else { 290 len = min_t(u64, stripe_len, 291 cache->key.objectid + 292 cache->key.offset - start); 293 } 294 295 cache->bytes_super += len; 296 ret = add_excluded_extent(fs_info, start, len); 297 if (ret) { 298 kfree(logical); 299 return ret; 300 } 301 } 302 303 kfree(logical); 304 } 305 return 0; 306 } 307 308 static struct btrfs_caching_control * 309 get_caching_control(struct btrfs_block_group_cache *cache) 310 { 311 struct btrfs_caching_control *ctl; 312 313 spin_lock(&cache->lock); 314 if (!cache->caching_ctl) { 315 spin_unlock(&cache->lock); 316 return NULL; 317 } 318 319 ctl = cache->caching_ctl; 320 refcount_inc(&ctl->count); 321 spin_unlock(&cache->lock); 322 return ctl; 323 } 324 325 static void put_caching_control(struct btrfs_caching_control *ctl) 326 { 327 if (refcount_dec_and_test(&ctl->count)) 328 kfree(ctl); 329 } 330 331 #ifdef CONFIG_BTRFS_DEBUG 332 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 333 { 334 struct btrfs_fs_info *fs_info = block_group->fs_info; 335 u64 start = block_group->key.objectid; 336 u64 len = block_group->key.offset; 337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 338 fs_info->nodesize : fs_info->sectorsize; 339 u64 step = chunk << 1; 340 341 while (len > chunk) { 342 btrfs_remove_free_space(block_group, start, chunk); 343 start += step; 344 if (len < step) 345 len = 0; 346 else 347 len -= step; 348 } 349 } 350 #endif 351 352 /* 353 * this is only called by cache_block_group, since we could have freed extents 354 * we need to check the pinned_extents for any extents that can't be used yet 355 * since their free space will be released as soon as the transaction commits. 356 */ 357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 358 struct btrfs_fs_info *info, u64 start, u64 end) 359 { 360 u64 extent_start, extent_end, size, total_added = 0; 361 int ret; 362 363 while (start < end) { 364 ret = find_first_extent_bit(info->pinned_extents, start, 365 &extent_start, &extent_end, 366 EXTENT_DIRTY | EXTENT_UPTODATE, 367 NULL); 368 if (ret) 369 break; 370 371 if (extent_start <= start) { 372 start = extent_end + 1; 373 } else if (extent_start > start && extent_start < end) { 374 size = extent_start - start; 375 total_added += size; 376 ret = btrfs_add_free_space(block_group, start, 377 size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 start = extent_end + 1; 380 } else { 381 break; 382 } 383 } 384 385 if (start < end) { 386 size = end - start; 387 total_added += size; 388 ret = btrfs_add_free_space(block_group, start, size); 389 BUG_ON(ret); /* -ENOMEM or logic error */ 390 } 391 392 return total_added; 393 } 394 395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 396 { 397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 398 struct btrfs_fs_info *fs_info = block_group->fs_info; 399 struct btrfs_root *extent_root = fs_info->extent_root; 400 struct btrfs_path *path; 401 struct extent_buffer *leaf; 402 struct btrfs_key key; 403 u64 total_found = 0; 404 u64 last = 0; 405 u32 nritems; 406 int ret; 407 bool wakeup = true; 408 409 path = btrfs_alloc_path(); 410 if (!path) 411 return -ENOMEM; 412 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 414 415 #ifdef CONFIG_BTRFS_DEBUG 416 /* 417 * If we're fragmenting we don't want to make anybody think we can 418 * allocate from this block group until we've had a chance to fragment 419 * the free space. 420 */ 421 if (btrfs_should_fragment_free_space(block_group)) 422 wakeup = false; 423 #endif 424 /* 425 * We don't want to deadlock with somebody trying to allocate a new 426 * extent for the extent root while also trying to search the extent 427 * root to add free space. So we skip locking and search the commit 428 * root, since its read-only 429 */ 430 path->skip_locking = 1; 431 path->search_commit_root = 1; 432 path->reada = READA_FORWARD; 433 434 key.objectid = last; 435 key.offset = 0; 436 key.type = BTRFS_EXTENT_ITEM_KEY; 437 438 next: 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 440 if (ret < 0) 441 goto out; 442 443 leaf = path->nodes[0]; 444 nritems = btrfs_header_nritems(leaf); 445 446 while (1) { 447 if (btrfs_fs_closing(fs_info) > 1) { 448 last = (u64)-1; 449 break; 450 } 451 452 if (path->slots[0] < nritems) { 453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 454 } else { 455 ret = find_next_key(path, 0, &key); 456 if (ret) 457 break; 458 459 if (need_resched() || 460 rwsem_is_contended(&fs_info->commit_root_sem)) { 461 if (wakeup) 462 caching_ctl->progress = last; 463 btrfs_release_path(path); 464 up_read(&fs_info->commit_root_sem); 465 mutex_unlock(&caching_ctl->mutex); 466 cond_resched(); 467 mutex_lock(&caching_ctl->mutex); 468 down_read(&fs_info->commit_root_sem); 469 goto next; 470 } 471 472 ret = btrfs_next_leaf(extent_root, path); 473 if (ret < 0) 474 goto out; 475 if (ret) 476 break; 477 leaf = path->nodes[0]; 478 nritems = btrfs_header_nritems(leaf); 479 continue; 480 } 481 482 if (key.objectid < last) { 483 key.objectid = last; 484 key.offset = 0; 485 key.type = BTRFS_EXTENT_ITEM_KEY; 486 487 if (wakeup) 488 caching_ctl->progress = last; 489 btrfs_release_path(path); 490 goto next; 491 } 492 493 if (key.objectid < block_group->key.objectid) { 494 path->slots[0]++; 495 continue; 496 } 497 498 if (key.objectid >= block_group->key.objectid + 499 block_group->key.offset) 500 break; 501 502 if (key.type == BTRFS_EXTENT_ITEM_KEY || 503 key.type == BTRFS_METADATA_ITEM_KEY) { 504 total_found += add_new_free_space(block_group, 505 fs_info, last, 506 key.objectid); 507 if (key.type == BTRFS_METADATA_ITEM_KEY) 508 last = key.objectid + 509 fs_info->nodesize; 510 else 511 last = key.objectid + key.offset; 512 513 if (total_found > CACHING_CTL_WAKE_UP) { 514 total_found = 0; 515 if (wakeup) 516 wake_up(&caching_ctl->wait); 517 } 518 } 519 path->slots[0]++; 520 } 521 ret = 0; 522 523 total_found += add_new_free_space(block_group, fs_info, last, 524 block_group->key.objectid + 525 block_group->key.offset); 526 caching_ctl->progress = (u64)-1; 527 528 out: 529 btrfs_free_path(path); 530 return ret; 531 } 532 533 static noinline void caching_thread(struct btrfs_work *work) 534 { 535 struct btrfs_block_group_cache *block_group; 536 struct btrfs_fs_info *fs_info; 537 struct btrfs_caching_control *caching_ctl; 538 struct btrfs_root *extent_root; 539 int ret; 540 541 caching_ctl = container_of(work, struct btrfs_caching_control, work); 542 block_group = caching_ctl->block_group; 543 fs_info = block_group->fs_info; 544 extent_root = fs_info->extent_root; 545 546 mutex_lock(&caching_ctl->mutex); 547 down_read(&fs_info->commit_root_sem); 548 549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 550 ret = load_free_space_tree(caching_ctl); 551 else 552 ret = load_extent_tree_free(caching_ctl); 553 554 spin_lock(&block_group->lock); 555 block_group->caching_ctl = NULL; 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 557 spin_unlock(&block_group->lock); 558 559 #ifdef CONFIG_BTRFS_DEBUG 560 if (btrfs_should_fragment_free_space(block_group)) { 561 u64 bytes_used; 562 563 spin_lock(&block_group->space_info->lock); 564 spin_lock(&block_group->lock); 565 bytes_used = block_group->key.offset - 566 btrfs_block_group_used(&block_group->item); 567 block_group->space_info->bytes_used += bytes_used >> 1; 568 spin_unlock(&block_group->lock); 569 spin_unlock(&block_group->space_info->lock); 570 fragment_free_space(block_group); 571 } 572 #endif 573 574 caching_ctl->progress = (u64)-1; 575 576 up_read(&fs_info->commit_root_sem); 577 free_excluded_extents(fs_info, block_group); 578 mutex_unlock(&caching_ctl->mutex); 579 580 wake_up(&caching_ctl->wait); 581 582 put_caching_control(caching_ctl); 583 btrfs_put_block_group(block_group); 584 } 585 586 static int cache_block_group(struct btrfs_block_group_cache *cache, 587 int load_cache_only) 588 { 589 DEFINE_WAIT(wait); 590 struct btrfs_fs_info *fs_info = cache->fs_info; 591 struct btrfs_caching_control *caching_ctl; 592 int ret = 0; 593 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 595 if (!caching_ctl) 596 return -ENOMEM; 597 598 INIT_LIST_HEAD(&caching_ctl->list); 599 mutex_init(&caching_ctl->mutex); 600 init_waitqueue_head(&caching_ctl->wait); 601 caching_ctl->block_group = cache; 602 caching_ctl->progress = cache->key.objectid; 603 refcount_set(&caching_ctl->count, 1); 604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 605 caching_thread, NULL, NULL); 606 607 spin_lock(&cache->lock); 608 /* 609 * This should be a rare occasion, but this could happen I think in the 610 * case where one thread starts to load the space cache info, and then 611 * some other thread starts a transaction commit which tries to do an 612 * allocation while the other thread is still loading the space cache 613 * info. The previous loop should have kept us from choosing this block 614 * group, but if we've moved to the state where we will wait on caching 615 * block groups we need to first check if we're doing a fast load here, 616 * so we can wait for it to finish, otherwise we could end up allocating 617 * from a block group who's cache gets evicted for one reason or 618 * another. 619 */ 620 while (cache->cached == BTRFS_CACHE_FAST) { 621 struct btrfs_caching_control *ctl; 622 623 ctl = cache->caching_ctl; 624 refcount_inc(&ctl->count); 625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 626 spin_unlock(&cache->lock); 627 628 schedule(); 629 630 finish_wait(&ctl->wait, &wait); 631 put_caching_control(ctl); 632 spin_lock(&cache->lock); 633 } 634 635 if (cache->cached != BTRFS_CACHE_NO) { 636 spin_unlock(&cache->lock); 637 kfree(caching_ctl); 638 return 0; 639 } 640 WARN_ON(cache->caching_ctl); 641 cache->caching_ctl = caching_ctl; 642 cache->cached = BTRFS_CACHE_FAST; 643 spin_unlock(&cache->lock); 644 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) { 646 mutex_lock(&caching_ctl->mutex); 647 ret = load_free_space_cache(fs_info, cache); 648 649 spin_lock(&cache->lock); 650 if (ret == 1) { 651 cache->caching_ctl = NULL; 652 cache->cached = BTRFS_CACHE_FINISHED; 653 cache->last_byte_to_unpin = (u64)-1; 654 caching_ctl->progress = (u64)-1; 655 } else { 656 if (load_cache_only) { 657 cache->caching_ctl = NULL; 658 cache->cached = BTRFS_CACHE_NO; 659 } else { 660 cache->cached = BTRFS_CACHE_STARTED; 661 cache->has_caching_ctl = 1; 662 } 663 } 664 spin_unlock(&cache->lock); 665 #ifdef CONFIG_BTRFS_DEBUG 666 if (ret == 1 && 667 btrfs_should_fragment_free_space(cache)) { 668 u64 bytes_used; 669 670 spin_lock(&cache->space_info->lock); 671 spin_lock(&cache->lock); 672 bytes_used = cache->key.offset - 673 btrfs_block_group_used(&cache->item); 674 cache->space_info->bytes_used += bytes_used >> 1; 675 spin_unlock(&cache->lock); 676 spin_unlock(&cache->space_info->lock); 677 fragment_free_space(cache); 678 } 679 #endif 680 mutex_unlock(&caching_ctl->mutex); 681 682 wake_up(&caching_ctl->wait); 683 if (ret == 1) { 684 put_caching_control(caching_ctl); 685 free_excluded_extents(fs_info, cache); 686 return 0; 687 } 688 } else { 689 /* 690 * We're either using the free space tree or no caching at all. 691 * Set cached to the appropriate value and wakeup any waiters. 692 */ 693 spin_lock(&cache->lock); 694 if (load_cache_only) { 695 cache->caching_ctl = NULL; 696 cache->cached = BTRFS_CACHE_NO; 697 } else { 698 cache->cached = BTRFS_CACHE_STARTED; 699 cache->has_caching_ctl = 1; 700 } 701 spin_unlock(&cache->lock); 702 wake_up(&caching_ctl->wait); 703 } 704 705 if (load_cache_only) { 706 put_caching_control(caching_ctl); 707 return 0; 708 } 709 710 down_write(&fs_info->commit_root_sem); 711 refcount_inc(&caching_ctl->count); 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 713 up_write(&fs_info->commit_root_sem); 714 715 btrfs_get_block_group(cache); 716 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 718 719 return ret; 720 } 721 722 /* 723 * return the block group that starts at or after bytenr 724 */ 725 static struct btrfs_block_group_cache * 726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 727 { 728 return block_group_cache_tree_search(info, bytenr, 0); 729 } 730 731 /* 732 * return the block group that contains the given bytenr 733 */ 734 struct btrfs_block_group_cache *btrfs_lookup_block_group( 735 struct btrfs_fs_info *info, 736 u64 bytenr) 737 { 738 return block_group_cache_tree_search(info, bytenr, 1); 739 } 740 741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 742 u64 flags) 743 { 744 struct list_head *head = &info->space_info; 745 struct btrfs_space_info *found; 746 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 748 749 rcu_read_lock(); 750 list_for_each_entry_rcu(found, head, list) { 751 if (found->flags & flags) { 752 rcu_read_unlock(); 753 return found; 754 } 755 } 756 rcu_read_unlock(); 757 return NULL; 758 } 759 760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 761 u64 owner, u64 root_objectid) 762 { 763 struct btrfs_space_info *space_info; 764 u64 flags; 765 766 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 768 flags = BTRFS_BLOCK_GROUP_SYSTEM; 769 else 770 flags = BTRFS_BLOCK_GROUP_METADATA; 771 } else { 772 flags = BTRFS_BLOCK_GROUP_DATA; 773 } 774 775 space_info = __find_space_info(fs_info, flags); 776 ASSERT(space_info); 777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 778 } 779 780 /* 781 * after adding space to the filesystem, we need to clear the full flags 782 * on all the space infos. 783 */ 784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 785 { 786 struct list_head *head = &info->space_info; 787 struct btrfs_space_info *found; 788 789 rcu_read_lock(); 790 list_for_each_entry_rcu(found, head, list) 791 found->full = 0; 792 rcu_read_unlock(); 793 } 794 795 /* simple helper to search for an existing data extent at a given offset */ 796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 797 { 798 int ret; 799 struct btrfs_key key; 800 struct btrfs_path *path; 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 806 key.objectid = start; 807 key.offset = len; 808 key.type = BTRFS_EXTENT_ITEM_KEY; 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 810 btrfs_free_path(path); 811 return ret; 812 } 813 814 /* 815 * helper function to lookup reference count and flags of a tree block. 816 * 817 * the head node for delayed ref is used to store the sum of all the 818 * reference count modifications queued up in the rbtree. the head 819 * node may also store the extent flags to set. This way you can check 820 * to see what the reference count and extent flags would be if all of 821 * the delayed refs are not processed. 822 */ 823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 824 struct btrfs_fs_info *fs_info, u64 bytenr, 825 u64 offset, int metadata, u64 *refs, u64 *flags) 826 { 827 struct btrfs_delayed_ref_head *head; 828 struct btrfs_delayed_ref_root *delayed_refs; 829 struct btrfs_path *path; 830 struct btrfs_extent_item *ei; 831 struct extent_buffer *leaf; 832 struct btrfs_key key; 833 u32 item_size; 834 u64 num_refs; 835 u64 extent_flags; 836 int ret; 837 838 /* 839 * If we don't have skinny metadata, don't bother doing anything 840 * different 841 */ 842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 843 offset = fs_info->nodesize; 844 metadata = 0; 845 } 846 847 path = btrfs_alloc_path(); 848 if (!path) 849 return -ENOMEM; 850 851 if (!trans) { 852 path->skip_locking = 1; 853 path->search_commit_root = 1; 854 } 855 856 search_again: 857 key.objectid = bytenr; 858 key.offset = offset; 859 if (metadata) 860 key.type = BTRFS_METADATA_ITEM_KEY; 861 else 862 key.type = BTRFS_EXTENT_ITEM_KEY; 863 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 865 if (ret < 0) 866 goto out_free; 867 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 869 if (path->slots[0]) { 870 path->slots[0]--; 871 btrfs_item_key_to_cpu(path->nodes[0], &key, 872 path->slots[0]); 873 if (key.objectid == bytenr && 874 key.type == BTRFS_EXTENT_ITEM_KEY && 875 key.offset == fs_info->nodesize) 876 ret = 0; 877 } 878 } 879 880 if (ret == 0) { 881 leaf = path->nodes[0]; 882 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 883 if (item_size >= sizeof(*ei)) { 884 ei = btrfs_item_ptr(leaf, path->slots[0], 885 struct btrfs_extent_item); 886 num_refs = btrfs_extent_refs(leaf, ei); 887 extent_flags = btrfs_extent_flags(leaf, ei); 888 } else { 889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 890 struct btrfs_extent_item_v0 *ei0; 891 BUG_ON(item_size != sizeof(*ei0)); 892 ei0 = btrfs_item_ptr(leaf, path->slots[0], 893 struct btrfs_extent_item_v0); 894 num_refs = btrfs_extent_refs_v0(leaf, ei0); 895 /* FIXME: this isn't correct for data */ 896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 897 #else 898 BUG(); 899 #endif 900 } 901 BUG_ON(num_refs == 0); 902 } else { 903 num_refs = 0; 904 extent_flags = 0; 905 ret = 0; 906 } 907 908 if (!trans) 909 goto out; 910 911 delayed_refs = &trans->transaction->delayed_refs; 912 spin_lock(&delayed_refs->lock); 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 914 if (head) { 915 if (!mutex_trylock(&head->mutex)) { 916 refcount_inc(&head->refs); 917 spin_unlock(&delayed_refs->lock); 918 919 btrfs_release_path(path); 920 921 /* 922 * Mutex was contended, block until it's released and try 923 * again 924 */ 925 mutex_lock(&head->mutex); 926 mutex_unlock(&head->mutex); 927 btrfs_put_delayed_ref_head(head); 928 goto search_again; 929 } 930 spin_lock(&head->lock); 931 if (head->extent_op && head->extent_op->update_flags) 932 extent_flags |= head->extent_op->flags_to_set; 933 else 934 BUG_ON(num_refs == 0); 935 936 num_refs += head->ref_mod; 937 spin_unlock(&head->lock); 938 mutex_unlock(&head->mutex); 939 } 940 spin_unlock(&delayed_refs->lock); 941 out: 942 WARN_ON(num_refs == 0); 943 if (refs) 944 *refs = num_refs; 945 if (flags) 946 *flags = extent_flags; 947 out_free: 948 btrfs_free_path(path); 949 return ret; 950 } 951 952 /* 953 * Back reference rules. Back refs have three main goals: 954 * 955 * 1) differentiate between all holders of references to an extent so that 956 * when a reference is dropped we can make sure it was a valid reference 957 * before freeing the extent. 958 * 959 * 2) Provide enough information to quickly find the holders of an extent 960 * if we notice a given block is corrupted or bad. 961 * 962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 963 * maintenance. This is actually the same as #2, but with a slightly 964 * different use case. 965 * 966 * There are two kinds of back refs. The implicit back refs is optimized 967 * for pointers in non-shared tree blocks. For a given pointer in a block, 968 * back refs of this kind provide information about the block's owner tree 969 * and the pointer's key. These information allow us to find the block by 970 * b-tree searching. The full back refs is for pointers in tree blocks not 971 * referenced by their owner trees. The location of tree block is recorded 972 * in the back refs. Actually the full back refs is generic, and can be 973 * used in all cases the implicit back refs is used. The major shortcoming 974 * of the full back refs is its overhead. Every time a tree block gets 975 * COWed, we have to update back refs entry for all pointers in it. 976 * 977 * For a newly allocated tree block, we use implicit back refs for 978 * pointers in it. This means most tree related operations only involve 979 * implicit back refs. For a tree block created in old transaction, the 980 * only way to drop a reference to it is COW it. So we can detect the 981 * event that tree block loses its owner tree's reference and do the 982 * back refs conversion. 983 * 984 * When a tree block is COWed through a tree, there are four cases: 985 * 986 * The reference count of the block is one and the tree is the block's 987 * owner tree. Nothing to do in this case. 988 * 989 * The reference count of the block is one and the tree is not the 990 * block's owner tree. In this case, full back refs is used for pointers 991 * in the block. Remove these full back refs, add implicit back refs for 992 * every pointers in the new block. 993 * 994 * The reference count of the block is greater than one and the tree is 995 * the block's owner tree. In this case, implicit back refs is used for 996 * pointers in the block. Add full back refs for every pointers in the 997 * block, increase lower level extents' reference counts. The original 998 * implicit back refs are entailed to the new block. 999 * 1000 * The reference count of the block is greater than one and the tree is 1001 * not the block's owner tree. Add implicit back refs for every pointer in 1002 * the new block, increase lower level extents' reference count. 1003 * 1004 * Back Reference Key composing: 1005 * 1006 * The key objectid corresponds to the first byte in the extent, 1007 * The key type is used to differentiate between types of back refs. 1008 * There are different meanings of the key offset for different types 1009 * of back refs. 1010 * 1011 * File extents can be referenced by: 1012 * 1013 * - multiple snapshots, subvolumes, or different generations in one subvol 1014 * - different files inside a single subvolume 1015 * - different offsets inside a file (bookend extents in file.c) 1016 * 1017 * The extent ref structure for the implicit back refs has fields for: 1018 * 1019 * - Objectid of the subvolume root 1020 * - objectid of the file holding the reference 1021 * - original offset in the file 1022 * - how many bookend extents 1023 * 1024 * The key offset for the implicit back refs is hash of the first 1025 * three fields. 1026 * 1027 * The extent ref structure for the full back refs has field for: 1028 * 1029 * - number of pointers in the tree leaf 1030 * 1031 * The key offset for the implicit back refs is the first byte of 1032 * the tree leaf 1033 * 1034 * When a file extent is allocated, The implicit back refs is used. 1035 * the fields are filled in: 1036 * 1037 * (root_key.objectid, inode objectid, offset in file, 1) 1038 * 1039 * When a file extent is removed file truncation, we find the 1040 * corresponding implicit back refs and check the following fields: 1041 * 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1043 * 1044 * Btree extents can be referenced by: 1045 * 1046 * - Different subvolumes 1047 * 1048 * Both the implicit back refs and the full back refs for tree blocks 1049 * only consist of key. The key offset for the implicit back refs is 1050 * objectid of block's owner tree. The key offset for the full back refs 1051 * is the first byte of parent block. 1052 * 1053 * When implicit back refs is used, information about the lowest key and 1054 * level of the tree block are required. These information are stored in 1055 * tree block info structure. 1056 */ 1057 1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1060 struct btrfs_fs_info *fs_info, 1061 struct btrfs_path *path, 1062 u64 owner, u32 extra_size) 1063 { 1064 struct btrfs_root *root = fs_info->extent_root; 1065 struct btrfs_extent_item *item; 1066 struct btrfs_extent_item_v0 *ei0; 1067 struct btrfs_extent_ref_v0 *ref0; 1068 struct btrfs_tree_block_info *bi; 1069 struct extent_buffer *leaf; 1070 struct btrfs_key key; 1071 struct btrfs_key found_key; 1072 u32 new_size = sizeof(*item); 1073 u64 refs; 1074 int ret; 1075 1076 leaf = path->nodes[0]; 1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1078 1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1080 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1081 struct btrfs_extent_item_v0); 1082 refs = btrfs_extent_refs_v0(leaf, ei0); 1083 1084 if (owner == (u64)-1) { 1085 while (1) { 1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1087 ret = btrfs_next_leaf(root, path); 1088 if (ret < 0) 1089 return ret; 1090 BUG_ON(ret > 0); /* Corruption */ 1091 leaf = path->nodes[0]; 1092 } 1093 btrfs_item_key_to_cpu(leaf, &found_key, 1094 path->slots[0]); 1095 BUG_ON(key.objectid != found_key.objectid); 1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1097 path->slots[0]++; 1098 continue; 1099 } 1100 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1101 struct btrfs_extent_ref_v0); 1102 owner = btrfs_ref_objectid_v0(leaf, ref0); 1103 break; 1104 } 1105 } 1106 btrfs_release_path(path); 1107 1108 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1109 new_size += sizeof(*bi); 1110 1111 new_size -= sizeof(*ei0); 1112 ret = btrfs_search_slot(trans, root, &key, path, 1113 new_size + extra_size, 1); 1114 if (ret < 0) 1115 return ret; 1116 BUG_ON(ret); /* Corruption */ 1117 1118 btrfs_extend_item(fs_info, path, new_size); 1119 1120 leaf = path->nodes[0]; 1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1122 btrfs_set_extent_refs(leaf, item, refs); 1123 /* FIXME: get real generation */ 1124 btrfs_set_extent_generation(leaf, item, 0); 1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1126 btrfs_set_extent_flags(leaf, item, 1127 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1128 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1129 bi = (struct btrfs_tree_block_info *)(item + 1); 1130 /* FIXME: get first key of the block */ 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1132 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1133 } else { 1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1135 } 1136 btrfs_mark_buffer_dirty(leaf); 1137 return 0; 1138 } 1139 #endif 1140 1141 /* 1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried, 1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 1145 */ 1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 1147 struct btrfs_extent_inline_ref *iref, 1148 enum btrfs_inline_ref_type is_data) 1149 { 1150 int type = btrfs_extent_inline_ref_type(eb, iref); 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 1152 1153 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1154 type == BTRFS_SHARED_BLOCK_REF_KEY || 1155 type == BTRFS_SHARED_DATA_REF_KEY || 1156 type == BTRFS_EXTENT_DATA_REF_KEY) { 1157 if (is_data == BTRFS_REF_TYPE_BLOCK) { 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY) 1159 return type; 1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1161 ASSERT(eb->fs_info); 1162 /* 1163 * Every shared one has parent tree 1164 * block, which must be aligned to 1165 * nodesize. 1166 */ 1167 if (offset && 1168 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1169 return type; 1170 } 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) { 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1173 return type; 1174 if (type == BTRFS_SHARED_DATA_REF_KEY) { 1175 ASSERT(eb->fs_info); 1176 /* 1177 * Every shared one has parent tree 1178 * block, which must be aligned to 1179 * nodesize. 1180 */ 1181 if (offset && 1182 IS_ALIGNED(offset, eb->fs_info->nodesize)) 1183 return type; 1184 } 1185 } else { 1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 1187 return type; 1188 } 1189 } 1190 1191 btrfs_print_leaf((struct extent_buffer *)eb); 1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", 1193 eb->start, type); 1194 WARN_ON(1); 1195 1196 return BTRFS_REF_TYPE_INVALID; 1197 } 1198 1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1200 { 1201 u32 high_crc = ~(u32)0; 1202 u32 low_crc = ~(u32)0; 1203 __le64 lenum; 1204 1205 lenum = cpu_to_le64(root_objectid); 1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1207 lenum = cpu_to_le64(owner); 1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1209 lenum = cpu_to_le64(offset); 1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1211 1212 return ((u64)high_crc << 31) ^ (u64)low_crc; 1213 } 1214 1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1216 struct btrfs_extent_data_ref *ref) 1217 { 1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1219 btrfs_extent_data_ref_objectid(leaf, ref), 1220 btrfs_extent_data_ref_offset(leaf, ref)); 1221 } 1222 1223 static int match_extent_data_ref(struct extent_buffer *leaf, 1224 struct btrfs_extent_data_ref *ref, 1225 u64 root_objectid, u64 owner, u64 offset) 1226 { 1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1229 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1230 return 0; 1231 return 1; 1232 } 1233 1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1235 struct btrfs_fs_info *fs_info, 1236 struct btrfs_path *path, 1237 u64 bytenr, u64 parent, 1238 u64 root_objectid, 1239 u64 owner, u64 offset) 1240 { 1241 struct btrfs_root *root = fs_info->extent_root; 1242 struct btrfs_key key; 1243 struct btrfs_extent_data_ref *ref; 1244 struct extent_buffer *leaf; 1245 u32 nritems; 1246 int ret; 1247 int recow; 1248 int err = -ENOENT; 1249 1250 key.objectid = bytenr; 1251 if (parent) { 1252 key.type = BTRFS_SHARED_DATA_REF_KEY; 1253 key.offset = parent; 1254 } else { 1255 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1256 key.offset = hash_extent_data_ref(root_objectid, 1257 owner, offset); 1258 } 1259 again: 1260 recow = 0; 1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1262 if (ret < 0) { 1263 err = ret; 1264 goto fail; 1265 } 1266 1267 if (parent) { 1268 if (!ret) 1269 return 0; 1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1271 key.type = BTRFS_EXTENT_REF_V0_KEY; 1272 btrfs_release_path(path); 1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1274 if (ret < 0) { 1275 err = ret; 1276 goto fail; 1277 } 1278 if (!ret) 1279 return 0; 1280 #endif 1281 goto fail; 1282 } 1283 1284 leaf = path->nodes[0]; 1285 nritems = btrfs_header_nritems(leaf); 1286 while (1) { 1287 if (path->slots[0] >= nritems) { 1288 ret = btrfs_next_leaf(root, path); 1289 if (ret < 0) 1290 err = ret; 1291 if (ret) 1292 goto fail; 1293 1294 leaf = path->nodes[0]; 1295 nritems = btrfs_header_nritems(leaf); 1296 recow = 1; 1297 } 1298 1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1300 if (key.objectid != bytenr || 1301 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1302 goto fail; 1303 1304 ref = btrfs_item_ptr(leaf, path->slots[0], 1305 struct btrfs_extent_data_ref); 1306 1307 if (match_extent_data_ref(leaf, ref, root_objectid, 1308 owner, offset)) { 1309 if (recow) { 1310 btrfs_release_path(path); 1311 goto again; 1312 } 1313 err = 0; 1314 break; 1315 } 1316 path->slots[0]++; 1317 } 1318 fail: 1319 return err; 1320 } 1321 1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1323 struct btrfs_fs_info *fs_info, 1324 struct btrfs_path *path, 1325 u64 bytenr, u64 parent, 1326 u64 root_objectid, u64 owner, 1327 u64 offset, int refs_to_add) 1328 { 1329 struct btrfs_root *root = fs_info->extent_root; 1330 struct btrfs_key key; 1331 struct extent_buffer *leaf; 1332 u32 size; 1333 u32 num_refs; 1334 int ret; 1335 1336 key.objectid = bytenr; 1337 if (parent) { 1338 key.type = BTRFS_SHARED_DATA_REF_KEY; 1339 key.offset = parent; 1340 size = sizeof(struct btrfs_shared_data_ref); 1341 } else { 1342 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1343 key.offset = hash_extent_data_ref(root_objectid, 1344 owner, offset); 1345 size = sizeof(struct btrfs_extent_data_ref); 1346 } 1347 1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1349 if (ret && ret != -EEXIST) 1350 goto fail; 1351 1352 leaf = path->nodes[0]; 1353 if (parent) { 1354 struct btrfs_shared_data_ref *ref; 1355 ref = btrfs_item_ptr(leaf, path->slots[0], 1356 struct btrfs_shared_data_ref); 1357 if (ret == 0) { 1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1359 } else { 1360 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1361 num_refs += refs_to_add; 1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1363 } 1364 } else { 1365 struct btrfs_extent_data_ref *ref; 1366 while (ret == -EEXIST) { 1367 ref = btrfs_item_ptr(leaf, path->slots[0], 1368 struct btrfs_extent_data_ref); 1369 if (match_extent_data_ref(leaf, ref, root_objectid, 1370 owner, offset)) 1371 break; 1372 btrfs_release_path(path); 1373 key.offset++; 1374 ret = btrfs_insert_empty_item(trans, root, path, &key, 1375 size); 1376 if (ret && ret != -EEXIST) 1377 goto fail; 1378 1379 leaf = path->nodes[0]; 1380 } 1381 ref = btrfs_item_ptr(leaf, path->slots[0], 1382 struct btrfs_extent_data_ref); 1383 if (ret == 0) { 1384 btrfs_set_extent_data_ref_root(leaf, ref, 1385 root_objectid); 1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1389 } else { 1390 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1391 num_refs += refs_to_add; 1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1393 } 1394 } 1395 btrfs_mark_buffer_dirty(leaf); 1396 ret = 0; 1397 fail: 1398 btrfs_release_path(path); 1399 return ret; 1400 } 1401 1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1403 struct btrfs_fs_info *fs_info, 1404 struct btrfs_path *path, 1405 int refs_to_drop, int *last_ref) 1406 { 1407 struct btrfs_key key; 1408 struct btrfs_extent_data_ref *ref1 = NULL; 1409 struct btrfs_shared_data_ref *ref2 = NULL; 1410 struct extent_buffer *leaf; 1411 u32 num_refs = 0; 1412 int ret = 0; 1413 1414 leaf = path->nodes[0]; 1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1416 1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1418 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1419 struct btrfs_extent_data_ref); 1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1422 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1423 struct btrfs_shared_data_ref); 1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1427 struct btrfs_extent_ref_v0 *ref0; 1428 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1429 struct btrfs_extent_ref_v0); 1430 num_refs = btrfs_ref_count_v0(leaf, ref0); 1431 #endif 1432 } else { 1433 BUG(); 1434 } 1435 1436 BUG_ON(num_refs < refs_to_drop); 1437 num_refs -= refs_to_drop; 1438 1439 if (num_refs == 0) { 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1441 *last_ref = 1; 1442 } else { 1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1448 else { 1449 struct btrfs_extent_ref_v0 *ref0; 1450 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1451 struct btrfs_extent_ref_v0); 1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1453 } 1454 #endif 1455 btrfs_mark_buffer_dirty(leaf); 1456 } 1457 return ret; 1458 } 1459 1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1461 struct btrfs_extent_inline_ref *iref) 1462 { 1463 struct btrfs_key key; 1464 struct extent_buffer *leaf; 1465 struct btrfs_extent_data_ref *ref1; 1466 struct btrfs_shared_data_ref *ref2; 1467 u32 num_refs = 0; 1468 int type; 1469 1470 leaf = path->nodes[0]; 1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1472 if (iref) { 1473 /* 1474 * If type is invalid, we should have bailed out earlier than 1475 * this call. 1476 */ 1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 1478 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1482 } else { 1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1485 } 1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1487 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1488 struct btrfs_extent_data_ref); 1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1491 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1492 struct btrfs_shared_data_ref); 1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1496 struct btrfs_extent_ref_v0 *ref0; 1497 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1498 struct btrfs_extent_ref_v0); 1499 num_refs = btrfs_ref_count_v0(leaf, ref0); 1500 #endif 1501 } else { 1502 WARN_ON(1); 1503 } 1504 return num_refs; 1505 } 1506 1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1508 struct btrfs_fs_info *fs_info, 1509 struct btrfs_path *path, 1510 u64 bytenr, u64 parent, 1511 u64 root_objectid) 1512 { 1513 struct btrfs_root *root = fs_info->extent_root; 1514 struct btrfs_key key; 1515 int ret; 1516 1517 key.objectid = bytenr; 1518 if (parent) { 1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1520 key.offset = parent; 1521 } else { 1522 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1523 key.offset = root_objectid; 1524 } 1525 1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1527 if (ret > 0) 1528 ret = -ENOENT; 1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1530 if (ret == -ENOENT && parent) { 1531 btrfs_release_path(path); 1532 key.type = BTRFS_EXTENT_REF_V0_KEY; 1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1534 if (ret > 0) 1535 ret = -ENOENT; 1536 } 1537 #endif 1538 return ret; 1539 } 1540 1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1542 struct btrfs_fs_info *fs_info, 1543 struct btrfs_path *path, 1544 u64 bytenr, u64 parent, 1545 u64 root_objectid) 1546 { 1547 struct btrfs_key key; 1548 int ret; 1549 1550 key.objectid = bytenr; 1551 if (parent) { 1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1553 key.offset = parent; 1554 } else { 1555 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1556 key.offset = root_objectid; 1557 } 1558 1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1560 path, &key, 0); 1561 btrfs_release_path(path); 1562 return ret; 1563 } 1564 1565 static inline int extent_ref_type(u64 parent, u64 owner) 1566 { 1567 int type; 1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1569 if (parent > 0) 1570 type = BTRFS_SHARED_BLOCK_REF_KEY; 1571 else 1572 type = BTRFS_TREE_BLOCK_REF_KEY; 1573 } else { 1574 if (parent > 0) 1575 type = BTRFS_SHARED_DATA_REF_KEY; 1576 else 1577 type = BTRFS_EXTENT_DATA_REF_KEY; 1578 } 1579 return type; 1580 } 1581 1582 static int find_next_key(struct btrfs_path *path, int level, 1583 struct btrfs_key *key) 1584 1585 { 1586 for (; level < BTRFS_MAX_LEVEL; level++) { 1587 if (!path->nodes[level]) 1588 break; 1589 if (path->slots[level] + 1 >= 1590 btrfs_header_nritems(path->nodes[level])) 1591 continue; 1592 if (level == 0) 1593 btrfs_item_key_to_cpu(path->nodes[level], key, 1594 path->slots[level] + 1); 1595 else 1596 btrfs_node_key_to_cpu(path->nodes[level], key, 1597 path->slots[level] + 1); 1598 return 0; 1599 } 1600 return 1; 1601 } 1602 1603 /* 1604 * look for inline back ref. if back ref is found, *ref_ret is set 1605 * to the address of inline back ref, and 0 is returned. 1606 * 1607 * if back ref isn't found, *ref_ret is set to the address where it 1608 * should be inserted, and -ENOENT is returned. 1609 * 1610 * if insert is true and there are too many inline back refs, the path 1611 * points to the extent item, and -EAGAIN is returned. 1612 * 1613 * NOTE: inline back refs are ordered in the same way that back ref 1614 * items in the tree are ordered. 1615 */ 1616 static noinline_for_stack 1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1618 struct btrfs_fs_info *fs_info, 1619 struct btrfs_path *path, 1620 struct btrfs_extent_inline_ref **ref_ret, 1621 u64 bytenr, u64 num_bytes, 1622 u64 parent, u64 root_objectid, 1623 u64 owner, u64 offset, int insert) 1624 { 1625 struct btrfs_root *root = fs_info->extent_root; 1626 struct btrfs_key key; 1627 struct extent_buffer *leaf; 1628 struct btrfs_extent_item *ei; 1629 struct btrfs_extent_inline_ref *iref; 1630 u64 flags; 1631 u64 item_size; 1632 unsigned long ptr; 1633 unsigned long end; 1634 int extra_size; 1635 int type; 1636 int want; 1637 int ret; 1638 int err = 0; 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1640 int needed; 1641 1642 key.objectid = bytenr; 1643 key.type = BTRFS_EXTENT_ITEM_KEY; 1644 key.offset = num_bytes; 1645 1646 want = extent_ref_type(parent, owner); 1647 if (insert) { 1648 extra_size = btrfs_extent_inline_ref_size(want); 1649 path->keep_locks = 1; 1650 } else 1651 extra_size = -1; 1652 1653 /* 1654 * Owner is our parent level, so we can just add one to get the level 1655 * for the block we are interested in. 1656 */ 1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1658 key.type = BTRFS_METADATA_ITEM_KEY; 1659 key.offset = owner; 1660 } 1661 1662 again: 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1664 if (ret < 0) { 1665 err = ret; 1666 goto out; 1667 } 1668 1669 /* 1670 * We may be a newly converted file system which still has the old fat 1671 * extent entries for metadata, so try and see if we have one of those. 1672 */ 1673 if (ret > 0 && skinny_metadata) { 1674 skinny_metadata = false; 1675 if (path->slots[0]) { 1676 path->slots[0]--; 1677 btrfs_item_key_to_cpu(path->nodes[0], &key, 1678 path->slots[0]); 1679 if (key.objectid == bytenr && 1680 key.type == BTRFS_EXTENT_ITEM_KEY && 1681 key.offset == num_bytes) 1682 ret = 0; 1683 } 1684 if (ret) { 1685 key.objectid = bytenr; 1686 key.type = BTRFS_EXTENT_ITEM_KEY; 1687 key.offset = num_bytes; 1688 btrfs_release_path(path); 1689 goto again; 1690 } 1691 } 1692 1693 if (ret && !insert) { 1694 err = -ENOENT; 1695 goto out; 1696 } else if (WARN_ON(ret)) { 1697 err = -EIO; 1698 goto out; 1699 } 1700 1701 leaf = path->nodes[0]; 1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1704 if (item_size < sizeof(*ei)) { 1705 if (!insert) { 1706 err = -ENOENT; 1707 goto out; 1708 } 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1710 extra_size); 1711 if (ret < 0) { 1712 err = ret; 1713 goto out; 1714 } 1715 leaf = path->nodes[0]; 1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1717 } 1718 #endif 1719 BUG_ON(item_size < sizeof(*ei)); 1720 1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1722 flags = btrfs_extent_flags(leaf, ei); 1723 1724 ptr = (unsigned long)(ei + 1); 1725 end = (unsigned long)ei + item_size; 1726 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1728 ptr += sizeof(struct btrfs_tree_block_info); 1729 BUG_ON(ptr > end); 1730 } 1731 1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 1733 needed = BTRFS_REF_TYPE_DATA; 1734 else 1735 needed = BTRFS_REF_TYPE_BLOCK; 1736 1737 err = -ENOENT; 1738 while (1) { 1739 if (ptr >= end) { 1740 WARN_ON(ptr > end); 1741 break; 1742 } 1743 iref = (struct btrfs_extent_inline_ref *)ptr; 1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 1745 if (type == BTRFS_REF_TYPE_INVALID) { 1746 err = -EINVAL; 1747 goto out; 1748 } 1749 1750 if (want < type) 1751 break; 1752 if (want > type) { 1753 ptr += btrfs_extent_inline_ref_size(type); 1754 continue; 1755 } 1756 1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1758 struct btrfs_extent_data_ref *dref; 1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1760 if (match_extent_data_ref(leaf, dref, root_objectid, 1761 owner, offset)) { 1762 err = 0; 1763 break; 1764 } 1765 if (hash_extent_data_ref_item(leaf, dref) < 1766 hash_extent_data_ref(root_objectid, owner, offset)) 1767 break; 1768 } else { 1769 u64 ref_offset; 1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1771 if (parent > 0) { 1772 if (parent == ref_offset) { 1773 err = 0; 1774 break; 1775 } 1776 if (ref_offset < parent) 1777 break; 1778 } else { 1779 if (root_objectid == ref_offset) { 1780 err = 0; 1781 break; 1782 } 1783 if (ref_offset < root_objectid) 1784 break; 1785 } 1786 } 1787 ptr += btrfs_extent_inline_ref_size(type); 1788 } 1789 if (err == -ENOENT && insert) { 1790 if (item_size + extra_size >= 1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1792 err = -EAGAIN; 1793 goto out; 1794 } 1795 /* 1796 * To add new inline back ref, we have to make sure 1797 * there is no corresponding back ref item. 1798 * For simplicity, we just do not add new inline back 1799 * ref if there is any kind of item for this block 1800 */ 1801 if (find_next_key(path, 0, &key) == 0 && 1802 key.objectid == bytenr && 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1804 err = -EAGAIN; 1805 goto out; 1806 } 1807 } 1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1809 out: 1810 if (insert) { 1811 path->keep_locks = 0; 1812 btrfs_unlock_up_safe(path, 1); 1813 } 1814 return err; 1815 } 1816 1817 /* 1818 * helper to add new inline back ref 1819 */ 1820 static noinline_for_stack 1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1822 struct btrfs_path *path, 1823 struct btrfs_extent_inline_ref *iref, 1824 u64 parent, u64 root_objectid, 1825 u64 owner, u64 offset, int refs_to_add, 1826 struct btrfs_delayed_extent_op *extent_op) 1827 { 1828 struct extent_buffer *leaf; 1829 struct btrfs_extent_item *ei; 1830 unsigned long ptr; 1831 unsigned long end; 1832 unsigned long item_offset; 1833 u64 refs; 1834 int size; 1835 int type; 1836 1837 leaf = path->nodes[0]; 1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1839 item_offset = (unsigned long)iref - (unsigned long)ei; 1840 1841 type = extent_ref_type(parent, owner); 1842 size = btrfs_extent_inline_ref_size(type); 1843 1844 btrfs_extend_item(fs_info, path, size); 1845 1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1847 refs = btrfs_extent_refs(leaf, ei); 1848 refs += refs_to_add; 1849 btrfs_set_extent_refs(leaf, ei, refs); 1850 if (extent_op) 1851 __run_delayed_extent_op(extent_op, leaf, ei); 1852 1853 ptr = (unsigned long)ei + item_offset; 1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1855 if (ptr < end - size) 1856 memmove_extent_buffer(leaf, ptr + size, ptr, 1857 end - size - ptr); 1858 1859 iref = (struct btrfs_extent_inline_ref *)ptr; 1860 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1862 struct btrfs_extent_data_ref *dref; 1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1869 struct btrfs_shared_data_ref *sref; 1870 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1875 } else { 1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1877 } 1878 btrfs_mark_buffer_dirty(leaf); 1879 } 1880 1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1882 struct btrfs_fs_info *fs_info, 1883 struct btrfs_path *path, 1884 struct btrfs_extent_inline_ref **ref_ret, 1885 u64 bytenr, u64 num_bytes, u64 parent, 1886 u64 root_objectid, u64 owner, u64 offset) 1887 { 1888 int ret; 1889 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1891 bytenr, num_bytes, parent, 1892 root_objectid, owner, offset, 0); 1893 if (ret != -ENOENT) 1894 return ret; 1895 1896 btrfs_release_path(path); 1897 *ref_ret = NULL; 1898 1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1901 parent, root_objectid); 1902 } else { 1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1904 parent, root_objectid, owner, 1905 offset); 1906 } 1907 return ret; 1908 } 1909 1910 /* 1911 * helper to update/remove inline back ref 1912 */ 1913 static noinline_for_stack 1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1915 struct btrfs_path *path, 1916 struct btrfs_extent_inline_ref *iref, 1917 int refs_to_mod, 1918 struct btrfs_delayed_extent_op *extent_op, 1919 int *last_ref) 1920 { 1921 struct extent_buffer *leaf; 1922 struct btrfs_extent_item *ei; 1923 struct btrfs_extent_data_ref *dref = NULL; 1924 struct btrfs_shared_data_ref *sref = NULL; 1925 unsigned long ptr; 1926 unsigned long end; 1927 u32 item_size; 1928 int size; 1929 int type; 1930 u64 refs; 1931 1932 leaf = path->nodes[0]; 1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1934 refs = btrfs_extent_refs(leaf, ei); 1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1936 refs += refs_to_mod; 1937 btrfs_set_extent_refs(leaf, ei, refs); 1938 if (extent_op) 1939 __run_delayed_extent_op(extent_op, leaf, ei); 1940 1941 /* 1942 * If type is invalid, we should have bailed out after 1943 * lookup_inline_extent_backref(). 1944 */ 1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1946 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1947 1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1950 refs = btrfs_extent_data_ref_count(leaf, dref); 1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1952 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1953 refs = btrfs_shared_data_ref_count(leaf, sref); 1954 } else { 1955 refs = 1; 1956 BUG_ON(refs_to_mod != -1); 1957 } 1958 1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1960 refs += refs_to_mod; 1961 1962 if (refs > 0) { 1963 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1964 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1965 else 1966 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1967 } else { 1968 *last_ref = 1; 1969 size = btrfs_extent_inline_ref_size(type); 1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1971 ptr = (unsigned long)iref; 1972 end = (unsigned long)ei + item_size; 1973 if (ptr + size < end) 1974 memmove_extent_buffer(leaf, ptr, ptr + size, 1975 end - ptr - size); 1976 item_size -= size; 1977 btrfs_truncate_item(fs_info, path, item_size, 1); 1978 } 1979 btrfs_mark_buffer_dirty(leaf); 1980 } 1981 1982 static noinline_for_stack 1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1984 struct btrfs_fs_info *fs_info, 1985 struct btrfs_path *path, 1986 u64 bytenr, u64 num_bytes, u64 parent, 1987 u64 root_objectid, u64 owner, 1988 u64 offset, int refs_to_add, 1989 struct btrfs_delayed_extent_op *extent_op) 1990 { 1991 struct btrfs_extent_inline_ref *iref; 1992 int ret; 1993 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1995 bytenr, num_bytes, parent, 1996 root_objectid, owner, offset, 1); 1997 if (ret == 0) { 1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1999 update_inline_extent_backref(fs_info, path, iref, 2000 refs_to_add, extent_op, NULL); 2001 } else if (ret == -ENOENT) { 2002 setup_inline_extent_backref(fs_info, path, iref, parent, 2003 root_objectid, owner, offset, 2004 refs_to_add, extent_op); 2005 ret = 0; 2006 } 2007 return ret; 2008 } 2009 2010 static int insert_extent_backref(struct btrfs_trans_handle *trans, 2011 struct btrfs_fs_info *fs_info, 2012 struct btrfs_path *path, 2013 u64 bytenr, u64 parent, u64 root_objectid, 2014 u64 owner, u64 offset, int refs_to_add) 2015 { 2016 int ret; 2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2018 BUG_ON(refs_to_add != 1); 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 2020 parent, root_objectid); 2021 } else { 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 2023 parent, root_objectid, 2024 owner, offset, refs_to_add); 2025 } 2026 return ret; 2027 } 2028 2029 static int remove_extent_backref(struct btrfs_trans_handle *trans, 2030 struct btrfs_fs_info *fs_info, 2031 struct btrfs_path *path, 2032 struct btrfs_extent_inline_ref *iref, 2033 int refs_to_drop, int is_data, int *last_ref) 2034 { 2035 int ret = 0; 2036 2037 BUG_ON(!is_data && refs_to_drop != 1); 2038 if (iref) { 2039 update_inline_extent_backref(fs_info, path, iref, 2040 -refs_to_drop, NULL, last_ref); 2041 } else if (is_data) { 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 2043 last_ref); 2044 } else { 2045 *last_ref = 1; 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path); 2047 } 2048 return ret; 2049 } 2050 2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 2053 u64 *discarded_bytes) 2054 { 2055 int j, ret = 0; 2056 u64 bytes_left, end; 2057 u64 aligned_start = ALIGN(start, 1 << 9); 2058 2059 if (WARN_ON(start != aligned_start)) { 2060 len -= aligned_start - start; 2061 len = round_down(len, 1 << 9); 2062 start = aligned_start; 2063 } 2064 2065 *discarded_bytes = 0; 2066 2067 if (!len) 2068 return 0; 2069 2070 end = start + len; 2071 bytes_left = len; 2072 2073 /* Skip any superblocks on this device. */ 2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2075 u64 sb_start = btrfs_sb_offset(j); 2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2077 u64 size = sb_start - start; 2078 2079 if (!in_range(sb_start, start, bytes_left) && 2080 !in_range(sb_end, start, bytes_left) && 2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2082 continue; 2083 2084 /* 2085 * Superblock spans beginning of range. Adjust start and 2086 * try again. 2087 */ 2088 if (sb_start <= start) { 2089 start += sb_end - start; 2090 if (start > end) { 2091 bytes_left = 0; 2092 break; 2093 } 2094 bytes_left = end - start; 2095 continue; 2096 } 2097 2098 if (size) { 2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2100 GFP_NOFS, 0); 2101 if (!ret) 2102 *discarded_bytes += size; 2103 else if (ret != -EOPNOTSUPP) 2104 return ret; 2105 } 2106 2107 start = sb_end; 2108 if (start > end) { 2109 bytes_left = 0; 2110 break; 2111 } 2112 bytes_left = end - start; 2113 } 2114 2115 if (bytes_left) { 2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2117 GFP_NOFS, 0); 2118 if (!ret) 2119 *discarded_bytes += bytes_left; 2120 } 2121 return ret; 2122 } 2123 2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2125 u64 num_bytes, u64 *actual_bytes) 2126 { 2127 int ret; 2128 u64 discarded_bytes = 0; 2129 struct btrfs_bio *bbio = NULL; 2130 2131 2132 /* 2133 * Avoid races with device replace and make sure our bbio has devices 2134 * associated to its stripes that don't go away while we are discarding. 2135 */ 2136 btrfs_bio_counter_inc_blocked(fs_info); 2137 /* Tell the block device(s) that the sectors can be discarded */ 2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2139 &bbio, 0); 2140 /* Error condition is -ENOMEM */ 2141 if (!ret) { 2142 struct btrfs_bio_stripe *stripe = bbio->stripes; 2143 int i; 2144 2145 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2147 u64 bytes; 2148 struct request_queue *req_q; 2149 2150 if (!stripe->dev->bdev) { 2151 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 2152 continue; 2153 } 2154 req_q = bdev_get_queue(stripe->dev->bdev); 2155 if (!blk_queue_discard(req_q)) 2156 continue; 2157 2158 ret = btrfs_issue_discard(stripe->dev->bdev, 2159 stripe->physical, 2160 stripe->length, 2161 &bytes); 2162 if (!ret) 2163 discarded_bytes += bytes; 2164 else if (ret != -EOPNOTSUPP) 2165 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2166 2167 /* 2168 * Just in case we get back EOPNOTSUPP for some reason, 2169 * just ignore the return value so we don't screw up 2170 * people calling discard_extent. 2171 */ 2172 ret = 0; 2173 } 2174 btrfs_put_bbio(bbio); 2175 } 2176 btrfs_bio_counter_dec(fs_info); 2177 2178 if (actual_bytes) 2179 *actual_bytes = discarded_bytes; 2180 2181 2182 if (ret == -EOPNOTSUPP) 2183 ret = 0; 2184 return ret; 2185 } 2186 2187 /* Can return -ENOMEM */ 2188 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2189 struct btrfs_root *root, 2190 u64 bytenr, u64 num_bytes, u64 parent, 2191 u64 root_objectid, u64 owner, u64 offset) 2192 { 2193 struct btrfs_fs_info *fs_info = root->fs_info; 2194 int old_ref_mod, new_ref_mod; 2195 int ret; 2196 2197 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2198 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2199 2200 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, 2201 owner, offset, BTRFS_ADD_DELAYED_REF); 2202 2203 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2204 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2205 num_bytes, parent, 2206 root_objectid, (int)owner, 2207 BTRFS_ADD_DELAYED_REF, NULL, 2208 &old_ref_mod, &new_ref_mod); 2209 } else { 2210 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2211 num_bytes, parent, 2212 root_objectid, owner, offset, 2213 0, BTRFS_ADD_DELAYED_REF, 2214 &old_ref_mod, &new_ref_mod); 2215 } 2216 2217 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2218 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2219 2220 return ret; 2221 } 2222 2223 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2224 struct btrfs_fs_info *fs_info, 2225 struct btrfs_delayed_ref_node *node, 2226 u64 parent, u64 root_objectid, 2227 u64 owner, u64 offset, int refs_to_add, 2228 struct btrfs_delayed_extent_op *extent_op) 2229 { 2230 struct btrfs_path *path; 2231 struct extent_buffer *leaf; 2232 struct btrfs_extent_item *item; 2233 struct btrfs_key key; 2234 u64 bytenr = node->bytenr; 2235 u64 num_bytes = node->num_bytes; 2236 u64 refs; 2237 int ret; 2238 2239 path = btrfs_alloc_path(); 2240 if (!path) 2241 return -ENOMEM; 2242 2243 path->reada = READA_FORWARD; 2244 path->leave_spinning = 1; 2245 /* this will setup the path even if it fails to insert the back ref */ 2246 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2247 num_bytes, parent, root_objectid, 2248 owner, offset, 2249 refs_to_add, extent_op); 2250 if ((ret < 0 && ret != -EAGAIN) || !ret) 2251 goto out; 2252 2253 /* 2254 * Ok we had -EAGAIN which means we didn't have space to insert and 2255 * inline extent ref, so just update the reference count and add a 2256 * normal backref. 2257 */ 2258 leaf = path->nodes[0]; 2259 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2260 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2261 refs = btrfs_extent_refs(leaf, item); 2262 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2263 if (extent_op) 2264 __run_delayed_extent_op(extent_op, leaf, item); 2265 2266 btrfs_mark_buffer_dirty(leaf); 2267 btrfs_release_path(path); 2268 2269 path->reada = READA_FORWARD; 2270 path->leave_spinning = 1; 2271 /* now insert the actual backref */ 2272 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2273 root_objectid, owner, offset, refs_to_add); 2274 if (ret) 2275 btrfs_abort_transaction(trans, ret); 2276 out: 2277 btrfs_free_path(path); 2278 return ret; 2279 } 2280 2281 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2282 struct btrfs_fs_info *fs_info, 2283 struct btrfs_delayed_ref_node *node, 2284 struct btrfs_delayed_extent_op *extent_op, 2285 int insert_reserved) 2286 { 2287 int ret = 0; 2288 struct btrfs_delayed_data_ref *ref; 2289 struct btrfs_key ins; 2290 u64 parent = 0; 2291 u64 ref_root = 0; 2292 u64 flags = 0; 2293 2294 ins.objectid = node->bytenr; 2295 ins.offset = node->num_bytes; 2296 ins.type = BTRFS_EXTENT_ITEM_KEY; 2297 2298 ref = btrfs_delayed_node_to_data_ref(node); 2299 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2300 2301 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2302 parent = ref->parent; 2303 ref_root = ref->root; 2304 2305 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2306 if (extent_op) 2307 flags |= extent_op->flags_to_set; 2308 ret = alloc_reserved_file_extent(trans, fs_info, 2309 parent, ref_root, flags, 2310 ref->objectid, ref->offset, 2311 &ins, node->ref_mod); 2312 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2313 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2314 ref_root, ref->objectid, 2315 ref->offset, node->ref_mod, 2316 extent_op); 2317 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2318 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2319 ref_root, ref->objectid, 2320 ref->offset, node->ref_mod, 2321 extent_op); 2322 } else { 2323 BUG(); 2324 } 2325 return ret; 2326 } 2327 2328 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2329 struct extent_buffer *leaf, 2330 struct btrfs_extent_item *ei) 2331 { 2332 u64 flags = btrfs_extent_flags(leaf, ei); 2333 if (extent_op->update_flags) { 2334 flags |= extent_op->flags_to_set; 2335 btrfs_set_extent_flags(leaf, ei, flags); 2336 } 2337 2338 if (extent_op->update_key) { 2339 struct btrfs_tree_block_info *bi; 2340 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2341 bi = (struct btrfs_tree_block_info *)(ei + 1); 2342 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2343 } 2344 } 2345 2346 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2347 struct btrfs_fs_info *fs_info, 2348 struct btrfs_delayed_ref_head *head, 2349 struct btrfs_delayed_extent_op *extent_op) 2350 { 2351 struct btrfs_key key; 2352 struct btrfs_path *path; 2353 struct btrfs_extent_item *ei; 2354 struct extent_buffer *leaf; 2355 u32 item_size; 2356 int ret; 2357 int err = 0; 2358 int metadata = !extent_op->is_data; 2359 2360 if (trans->aborted) 2361 return 0; 2362 2363 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2364 metadata = 0; 2365 2366 path = btrfs_alloc_path(); 2367 if (!path) 2368 return -ENOMEM; 2369 2370 key.objectid = head->bytenr; 2371 2372 if (metadata) { 2373 key.type = BTRFS_METADATA_ITEM_KEY; 2374 key.offset = extent_op->level; 2375 } else { 2376 key.type = BTRFS_EXTENT_ITEM_KEY; 2377 key.offset = head->num_bytes; 2378 } 2379 2380 again: 2381 path->reada = READA_FORWARD; 2382 path->leave_spinning = 1; 2383 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2384 if (ret < 0) { 2385 err = ret; 2386 goto out; 2387 } 2388 if (ret > 0) { 2389 if (metadata) { 2390 if (path->slots[0] > 0) { 2391 path->slots[0]--; 2392 btrfs_item_key_to_cpu(path->nodes[0], &key, 2393 path->slots[0]); 2394 if (key.objectid == head->bytenr && 2395 key.type == BTRFS_EXTENT_ITEM_KEY && 2396 key.offset == head->num_bytes) 2397 ret = 0; 2398 } 2399 if (ret > 0) { 2400 btrfs_release_path(path); 2401 metadata = 0; 2402 2403 key.objectid = head->bytenr; 2404 key.offset = head->num_bytes; 2405 key.type = BTRFS_EXTENT_ITEM_KEY; 2406 goto again; 2407 } 2408 } else { 2409 err = -EIO; 2410 goto out; 2411 } 2412 } 2413 2414 leaf = path->nodes[0]; 2415 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2416 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2417 if (item_size < sizeof(*ei)) { 2418 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2419 if (ret < 0) { 2420 err = ret; 2421 goto out; 2422 } 2423 leaf = path->nodes[0]; 2424 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2425 } 2426 #endif 2427 BUG_ON(item_size < sizeof(*ei)); 2428 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2429 __run_delayed_extent_op(extent_op, leaf, ei); 2430 2431 btrfs_mark_buffer_dirty(leaf); 2432 out: 2433 btrfs_free_path(path); 2434 return err; 2435 } 2436 2437 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2438 struct btrfs_fs_info *fs_info, 2439 struct btrfs_delayed_ref_node *node, 2440 struct btrfs_delayed_extent_op *extent_op, 2441 int insert_reserved) 2442 { 2443 int ret = 0; 2444 struct btrfs_delayed_tree_ref *ref; 2445 struct btrfs_key ins; 2446 u64 parent = 0; 2447 u64 ref_root = 0; 2448 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2449 2450 ref = btrfs_delayed_node_to_tree_ref(node); 2451 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2452 2453 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2454 parent = ref->parent; 2455 ref_root = ref->root; 2456 2457 ins.objectid = node->bytenr; 2458 if (skinny_metadata) { 2459 ins.offset = ref->level; 2460 ins.type = BTRFS_METADATA_ITEM_KEY; 2461 } else { 2462 ins.offset = node->num_bytes; 2463 ins.type = BTRFS_EXTENT_ITEM_KEY; 2464 } 2465 2466 if (node->ref_mod != 1) { 2467 btrfs_err(fs_info, 2468 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2469 node->bytenr, node->ref_mod, node->action, ref_root, 2470 parent); 2471 return -EIO; 2472 } 2473 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2474 BUG_ON(!extent_op || !extent_op->update_flags); 2475 ret = alloc_reserved_tree_block(trans, fs_info, 2476 parent, ref_root, 2477 extent_op->flags_to_set, 2478 &extent_op->key, 2479 ref->level, &ins); 2480 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2481 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2482 parent, ref_root, 2483 ref->level, 0, 1, 2484 extent_op); 2485 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2486 ret = __btrfs_free_extent(trans, fs_info, node, 2487 parent, ref_root, 2488 ref->level, 0, 1, extent_op); 2489 } else { 2490 BUG(); 2491 } 2492 return ret; 2493 } 2494 2495 /* helper function to actually process a single delayed ref entry */ 2496 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2497 struct btrfs_fs_info *fs_info, 2498 struct btrfs_delayed_ref_node *node, 2499 struct btrfs_delayed_extent_op *extent_op, 2500 int insert_reserved) 2501 { 2502 int ret = 0; 2503 2504 if (trans->aborted) { 2505 if (insert_reserved) 2506 btrfs_pin_extent(fs_info, node->bytenr, 2507 node->num_bytes, 1); 2508 return 0; 2509 } 2510 2511 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2512 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2513 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2514 insert_reserved); 2515 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2516 node->type == BTRFS_SHARED_DATA_REF_KEY) 2517 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2518 insert_reserved); 2519 else 2520 BUG(); 2521 return ret; 2522 } 2523 2524 static inline struct btrfs_delayed_ref_node * 2525 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2526 { 2527 struct btrfs_delayed_ref_node *ref; 2528 2529 if (RB_EMPTY_ROOT(&head->ref_tree)) 2530 return NULL; 2531 2532 /* 2533 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2534 * This is to prevent a ref count from going down to zero, which deletes 2535 * the extent item from the extent tree, when there still are references 2536 * to add, which would fail because they would not find the extent item. 2537 */ 2538 if (!list_empty(&head->ref_add_list)) 2539 return list_first_entry(&head->ref_add_list, 2540 struct btrfs_delayed_ref_node, add_list); 2541 2542 ref = rb_entry(rb_first(&head->ref_tree), 2543 struct btrfs_delayed_ref_node, ref_node); 2544 ASSERT(list_empty(&ref->add_list)); 2545 return ref; 2546 } 2547 2548 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 2549 struct btrfs_delayed_ref_head *head) 2550 { 2551 spin_lock(&delayed_refs->lock); 2552 head->processing = 0; 2553 delayed_refs->num_heads_ready++; 2554 spin_unlock(&delayed_refs->lock); 2555 btrfs_delayed_ref_unlock(head); 2556 } 2557 2558 static int cleanup_extent_op(struct btrfs_trans_handle *trans, 2559 struct btrfs_fs_info *fs_info, 2560 struct btrfs_delayed_ref_head *head) 2561 { 2562 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 2563 int ret; 2564 2565 if (!extent_op) 2566 return 0; 2567 head->extent_op = NULL; 2568 if (head->must_insert_reserved) { 2569 btrfs_free_delayed_extent_op(extent_op); 2570 return 0; 2571 } 2572 spin_unlock(&head->lock); 2573 ret = run_delayed_extent_op(trans, fs_info, head, extent_op); 2574 btrfs_free_delayed_extent_op(extent_op); 2575 return ret ? ret : 1; 2576 } 2577 2578 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 2579 struct btrfs_fs_info *fs_info, 2580 struct btrfs_delayed_ref_head *head) 2581 { 2582 struct btrfs_delayed_ref_root *delayed_refs; 2583 int ret; 2584 2585 delayed_refs = &trans->transaction->delayed_refs; 2586 2587 ret = cleanup_extent_op(trans, fs_info, head); 2588 if (ret < 0) { 2589 unselect_delayed_ref_head(delayed_refs, head); 2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2591 return ret; 2592 } else if (ret) { 2593 return ret; 2594 } 2595 2596 /* 2597 * Need to drop our head ref lock and re-acquire the delayed ref lock 2598 * and then re-check to make sure nobody got added. 2599 */ 2600 spin_unlock(&head->lock); 2601 spin_lock(&delayed_refs->lock); 2602 spin_lock(&head->lock); 2603 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { 2604 spin_unlock(&head->lock); 2605 spin_unlock(&delayed_refs->lock); 2606 return 1; 2607 } 2608 delayed_refs->num_heads--; 2609 rb_erase(&head->href_node, &delayed_refs->href_root); 2610 RB_CLEAR_NODE(&head->href_node); 2611 spin_unlock(&delayed_refs->lock); 2612 spin_unlock(&head->lock); 2613 atomic_dec(&delayed_refs->num_entries); 2614 2615 trace_run_delayed_ref_head(fs_info, head, 0); 2616 2617 if (head->total_ref_mod < 0) { 2618 struct btrfs_block_group_cache *cache; 2619 2620 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 2621 ASSERT(cache); 2622 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2623 -head->num_bytes); 2624 btrfs_put_block_group(cache); 2625 2626 if (head->is_data) { 2627 spin_lock(&delayed_refs->lock); 2628 delayed_refs->pending_csums -= head->num_bytes; 2629 spin_unlock(&delayed_refs->lock); 2630 } 2631 } 2632 2633 if (head->must_insert_reserved) { 2634 btrfs_pin_extent(fs_info, head->bytenr, 2635 head->num_bytes, 1); 2636 if (head->is_data) { 2637 ret = btrfs_del_csums(trans, fs_info, head->bytenr, 2638 head->num_bytes); 2639 } 2640 } 2641 2642 /* Also free its reserved qgroup space */ 2643 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2644 head->qgroup_reserved); 2645 btrfs_delayed_ref_unlock(head); 2646 btrfs_put_delayed_ref_head(head); 2647 return 0; 2648 } 2649 2650 /* 2651 * Returns 0 on success or if called with an already aborted transaction. 2652 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2653 */ 2654 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2655 struct btrfs_fs_info *fs_info, 2656 unsigned long nr) 2657 { 2658 struct btrfs_delayed_ref_root *delayed_refs; 2659 struct btrfs_delayed_ref_node *ref; 2660 struct btrfs_delayed_ref_head *locked_ref = NULL; 2661 struct btrfs_delayed_extent_op *extent_op; 2662 ktime_t start = ktime_get(); 2663 int ret; 2664 unsigned long count = 0; 2665 unsigned long actual_count = 0; 2666 int must_insert_reserved = 0; 2667 2668 delayed_refs = &trans->transaction->delayed_refs; 2669 while (1) { 2670 if (!locked_ref) { 2671 if (count >= nr) 2672 break; 2673 2674 spin_lock(&delayed_refs->lock); 2675 locked_ref = btrfs_select_ref_head(trans); 2676 if (!locked_ref) { 2677 spin_unlock(&delayed_refs->lock); 2678 break; 2679 } 2680 2681 /* grab the lock that says we are going to process 2682 * all the refs for this head */ 2683 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2684 spin_unlock(&delayed_refs->lock); 2685 /* 2686 * we may have dropped the spin lock to get the head 2687 * mutex lock, and that might have given someone else 2688 * time to free the head. If that's true, it has been 2689 * removed from our list and we can move on. 2690 */ 2691 if (ret == -EAGAIN) { 2692 locked_ref = NULL; 2693 count++; 2694 continue; 2695 } 2696 } 2697 2698 /* 2699 * We need to try and merge add/drops of the same ref since we 2700 * can run into issues with relocate dropping the implicit ref 2701 * and then it being added back again before the drop can 2702 * finish. If we merged anything we need to re-loop so we can 2703 * get a good ref. 2704 * Or we can get node references of the same type that weren't 2705 * merged when created due to bumps in the tree mod seq, and 2706 * we need to merge them to prevent adding an inline extent 2707 * backref before dropping it (triggering a BUG_ON at 2708 * insert_inline_extent_backref()). 2709 */ 2710 spin_lock(&locked_ref->lock); 2711 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2712 locked_ref); 2713 2714 /* 2715 * locked_ref is the head node, so we have to go one 2716 * node back for any delayed ref updates 2717 */ 2718 ref = select_delayed_ref(locked_ref); 2719 2720 if (ref && ref->seq && 2721 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2722 spin_unlock(&locked_ref->lock); 2723 unselect_delayed_ref_head(delayed_refs, locked_ref); 2724 locked_ref = NULL; 2725 cond_resched(); 2726 count++; 2727 continue; 2728 } 2729 2730 /* 2731 * We're done processing refs in this ref_head, clean everything 2732 * up and move on to the next ref_head. 2733 */ 2734 if (!ref) { 2735 ret = cleanup_ref_head(trans, fs_info, locked_ref); 2736 if (ret > 0 ) { 2737 /* We dropped our lock, we need to loop. */ 2738 ret = 0; 2739 continue; 2740 } else if (ret) { 2741 return ret; 2742 } 2743 locked_ref = NULL; 2744 count++; 2745 continue; 2746 } 2747 2748 actual_count++; 2749 ref->in_tree = 0; 2750 rb_erase(&ref->ref_node, &locked_ref->ref_tree); 2751 RB_CLEAR_NODE(&ref->ref_node); 2752 if (!list_empty(&ref->add_list)) 2753 list_del(&ref->add_list); 2754 /* 2755 * When we play the delayed ref, also correct the ref_mod on 2756 * head 2757 */ 2758 switch (ref->action) { 2759 case BTRFS_ADD_DELAYED_REF: 2760 case BTRFS_ADD_DELAYED_EXTENT: 2761 locked_ref->ref_mod -= ref->ref_mod; 2762 break; 2763 case BTRFS_DROP_DELAYED_REF: 2764 locked_ref->ref_mod += ref->ref_mod; 2765 break; 2766 default: 2767 WARN_ON(1); 2768 } 2769 atomic_dec(&delayed_refs->num_entries); 2770 2771 /* 2772 * Record the must-insert_reserved flag before we drop the spin 2773 * lock. 2774 */ 2775 must_insert_reserved = locked_ref->must_insert_reserved; 2776 locked_ref->must_insert_reserved = 0; 2777 2778 extent_op = locked_ref->extent_op; 2779 locked_ref->extent_op = NULL; 2780 spin_unlock(&locked_ref->lock); 2781 2782 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2783 must_insert_reserved); 2784 2785 btrfs_free_delayed_extent_op(extent_op); 2786 if (ret) { 2787 unselect_delayed_ref_head(delayed_refs, locked_ref); 2788 btrfs_put_delayed_ref(ref); 2789 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2790 ret); 2791 return ret; 2792 } 2793 2794 btrfs_put_delayed_ref(ref); 2795 count++; 2796 cond_resched(); 2797 } 2798 2799 /* 2800 * We don't want to include ref heads since we can have empty ref heads 2801 * and those will drastically skew our runtime down since we just do 2802 * accounting, no actual extent tree updates. 2803 */ 2804 if (actual_count > 0) { 2805 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2806 u64 avg; 2807 2808 /* 2809 * We weigh the current average higher than our current runtime 2810 * to avoid large swings in the average. 2811 */ 2812 spin_lock(&delayed_refs->lock); 2813 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2814 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2815 spin_unlock(&delayed_refs->lock); 2816 } 2817 return 0; 2818 } 2819 2820 #ifdef SCRAMBLE_DELAYED_REFS 2821 /* 2822 * Normally delayed refs get processed in ascending bytenr order. This 2823 * correlates in most cases to the order added. To expose dependencies on this 2824 * order, we start to process the tree in the middle instead of the beginning 2825 */ 2826 static u64 find_middle(struct rb_root *root) 2827 { 2828 struct rb_node *n = root->rb_node; 2829 struct btrfs_delayed_ref_node *entry; 2830 int alt = 1; 2831 u64 middle; 2832 u64 first = 0, last = 0; 2833 2834 n = rb_first(root); 2835 if (n) { 2836 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2837 first = entry->bytenr; 2838 } 2839 n = rb_last(root); 2840 if (n) { 2841 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2842 last = entry->bytenr; 2843 } 2844 n = root->rb_node; 2845 2846 while (n) { 2847 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2848 WARN_ON(!entry->in_tree); 2849 2850 middle = entry->bytenr; 2851 2852 if (alt) 2853 n = n->rb_left; 2854 else 2855 n = n->rb_right; 2856 2857 alt = 1 - alt; 2858 } 2859 return middle; 2860 } 2861 #endif 2862 2863 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2864 { 2865 u64 num_bytes; 2866 2867 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2868 sizeof(struct btrfs_extent_inline_ref)); 2869 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2870 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2871 2872 /* 2873 * We don't ever fill up leaves all the way so multiply by 2 just to be 2874 * closer to what we're really going to want to use. 2875 */ 2876 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2877 } 2878 2879 /* 2880 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2881 * would require to store the csums for that many bytes. 2882 */ 2883 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2884 { 2885 u64 csum_size; 2886 u64 num_csums_per_leaf; 2887 u64 num_csums; 2888 2889 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2890 num_csums_per_leaf = div64_u64(csum_size, 2891 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2892 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2893 num_csums += num_csums_per_leaf - 1; 2894 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2895 return num_csums; 2896 } 2897 2898 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2899 struct btrfs_fs_info *fs_info) 2900 { 2901 struct btrfs_block_rsv *global_rsv; 2902 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2903 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2904 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; 2905 u64 num_bytes, num_dirty_bgs_bytes; 2906 int ret = 0; 2907 2908 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2909 num_heads = heads_to_leaves(fs_info, num_heads); 2910 if (num_heads > 1) 2911 num_bytes += (num_heads - 1) * fs_info->nodesize; 2912 num_bytes <<= 1; 2913 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2914 fs_info->nodesize; 2915 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2916 num_dirty_bgs); 2917 global_rsv = &fs_info->global_block_rsv; 2918 2919 /* 2920 * If we can't allocate any more chunks lets make sure we have _lots_ of 2921 * wiggle room since running delayed refs can create more delayed refs. 2922 */ 2923 if (global_rsv->space_info->full) { 2924 num_dirty_bgs_bytes <<= 1; 2925 num_bytes <<= 1; 2926 } 2927 2928 spin_lock(&global_rsv->lock); 2929 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2930 ret = 1; 2931 spin_unlock(&global_rsv->lock); 2932 return ret; 2933 } 2934 2935 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2936 struct btrfs_fs_info *fs_info) 2937 { 2938 u64 num_entries = 2939 atomic_read(&trans->transaction->delayed_refs.num_entries); 2940 u64 avg_runtime; 2941 u64 val; 2942 2943 smp_mb(); 2944 avg_runtime = fs_info->avg_delayed_ref_runtime; 2945 val = num_entries * avg_runtime; 2946 if (val >= NSEC_PER_SEC) 2947 return 1; 2948 if (val >= NSEC_PER_SEC / 2) 2949 return 2; 2950 2951 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2952 } 2953 2954 struct async_delayed_refs { 2955 struct btrfs_root *root; 2956 u64 transid; 2957 int count; 2958 int error; 2959 int sync; 2960 struct completion wait; 2961 struct btrfs_work work; 2962 }; 2963 2964 static inline struct async_delayed_refs * 2965 to_async_delayed_refs(struct btrfs_work *work) 2966 { 2967 return container_of(work, struct async_delayed_refs, work); 2968 } 2969 2970 static void delayed_ref_async_start(struct btrfs_work *work) 2971 { 2972 struct async_delayed_refs *async = to_async_delayed_refs(work); 2973 struct btrfs_trans_handle *trans; 2974 struct btrfs_fs_info *fs_info = async->root->fs_info; 2975 int ret; 2976 2977 /* if the commit is already started, we don't need to wait here */ 2978 if (btrfs_transaction_blocked(fs_info)) 2979 goto done; 2980 2981 trans = btrfs_join_transaction(async->root); 2982 if (IS_ERR(trans)) { 2983 async->error = PTR_ERR(trans); 2984 goto done; 2985 } 2986 2987 /* 2988 * trans->sync means that when we call end_transaction, we won't 2989 * wait on delayed refs 2990 */ 2991 trans->sync = true; 2992 2993 /* Don't bother flushing if we got into a different transaction */ 2994 if (trans->transid > async->transid) 2995 goto end; 2996 2997 ret = btrfs_run_delayed_refs(trans, fs_info, async->count); 2998 if (ret) 2999 async->error = ret; 3000 end: 3001 ret = btrfs_end_transaction(trans); 3002 if (ret && !async->error) 3003 async->error = ret; 3004 done: 3005 if (async->sync) 3006 complete(&async->wait); 3007 else 3008 kfree(async); 3009 } 3010 3011 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 3012 unsigned long count, u64 transid, int wait) 3013 { 3014 struct async_delayed_refs *async; 3015 int ret; 3016 3017 async = kmalloc(sizeof(*async), GFP_NOFS); 3018 if (!async) 3019 return -ENOMEM; 3020 3021 async->root = fs_info->tree_root; 3022 async->count = count; 3023 async->error = 0; 3024 async->transid = transid; 3025 if (wait) 3026 async->sync = 1; 3027 else 3028 async->sync = 0; 3029 init_completion(&async->wait); 3030 3031 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 3032 delayed_ref_async_start, NULL, NULL); 3033 3034 btrfs_queue_work(fs_info->extent_workers, &async->work); 3035 3036 if (wait) { 3037 wait_for_completion(&async->wait); 3038 ret = async->error; 3039 kfree(async); 3040 return ret; 3041 } 3042 return 0; 3043 } 3044 3045 /* 3046 * this starts processing the delayed reference count updates and 3047 * extent insertions we have queued up so far. count can be 3048 * 0, which means to process everything in the tree at the start 3049 * of the run (but not newly added entries), or it can be some target 3050 * number you'd like to process. 3051 * 3052 * Returns 0 on success or if called with an aborted transaction 3053 * Returns <0 on error and aborts the transaction 3054 */ 3055 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3056 struct btrfs_fs_info *fs_info, unsigned long count) 3057 { 3058 struct rb_node *node; 3059 struct btrfs_delayed_ref_root *delayed_refs; 3060 struct btrfs_delayed_ref_head *head; 3061 int ret; 3062 int run_all = count == (unsigned long)-1; 3063 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 3064 3065 /* We'll clean this up in btrfs_cleanup_transaction */ 3066 if (trans->aborted) 3067 return 0; 3068 3069 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 3070 return 0; 3071 3072 delayed_refs = &trans->transaction->delayed_refs; 3073 if (count == 0) 3074 count = atomic_read(&delayed_refs->num_entries) * 2; 3075 3076 again: 3077 #ifdef SCRAMBLE_DELAYED_REFS 3078 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3079 #endif 3080 trans->can_flush_pending_bgs = false; 3081 ret = __btrfs_run_delayed_refs(trans, fs_info, count); 3082 if (ret < 0) { 3083 btrfs_abort_transaction(trans, ret); 3084 return ret; 3085 } 3086 3087 if (run_all) { 3088 if (!list_empty(&trans->new_bgs)) 3089 btrfs_create_pending_block_groups(trans, fs_info); 3090 3091 spin_lock(&delayed_refs->lock); 3092 node = rb_first(&delayed_refs->href_root); 3093 if (!node) { 3094 spin_unlock(&delayed_refs->lock); 3095 goto out; 3096 } 3097 head = rb_entry(node, struct btrfs_delayed_ref_head, 3098 href_node); 3099 refcount_inc(&head->refs); 3100 spin_unlock(&delayed_refs->lock); 3101 3102 /* Mutex was contended, block until it's released and retry. */ 3103 mutex_lock(&head->mutex); 3104 mutex_unlock(&head->mutex); 3105 3106 btrfs_put_delayed_ref_head(head); 3107 cond_resched(); 3108 goto again; 3109 } 3110 out: 3111 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3112 return 0; 3113 } 3114 3115 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3116 struct btrfs_fs_info *fs_info, 3117 u64 bytenr, u64 num_bytes, u64 flags, 3118 int level, int is_data) 3119 { 3120 struct btrfs_delayed_extent_op *extent_op; 3121 int ret; 3122 3123 extent_op = btrfs_alloc_delayed_extent_op(); 3124 if (!extent_op) 3125 return -ENOMEM; 3126 3127 extent_op->flags_to_set = flags; 3128 extent_op->update_flags = true; 3129 extent_op->update_key = false; 3130 extent_op->is_data = is_data ? true : false; 3131 extent_op->level = level; 3132 3133 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3134 num_bytes, extent_op); 3135 if (ret) 3136 btrfs_free_delayed_extent_op(extent_op); 3137 return ret; 3138 } 3139 3140 static noinline int check_delayed_ref(struct btrfs_root *root, 3141 struct btrfs_path *path, 3142 u64 objectid, u64 offset, u64 bytenr) 3143 { 3144 struct btrfs_delayed_ref_head *head; 3145 struct btrfs_delayed_ref_node *ref; 3146 struct btrfs_delayed_data_ref *data_ref; 3147 struct btrfs_delayed_ref_root *delayed_refs; 3148 struct btrfs_transaction *cur_trans; 3149 struct rb_node *node; 3150 int ret = 0; 3151 3152 cur_trans = root->fs_info->running_transaction; 3153 if (!cur_trans) 3154 return 0; 3155 3156 delayed_refs = &cur_trans->delayed_refs; 3157 spin_lock(&delayed_refs->lock); 3158 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3159 if (!head) { 3160 spin_unlock(&delayed_refs->lock); 3161 return 0; 3162 } 3163 3164 if (!mutex_trylock(&head->mutex)) { 3165 refcount_inc(&head->refs); 3166 spin_unlock(&delayed_refs->lock); 3167 3168 btrfs_release_path(path); 3169 3170 /* 3171 * Mutex was contended, block until it's released and let 3172 * caller try again 3173 */ 3174 mutex_lock(&head->mutex); 3175 mutex_unlock(&head->mutex); 3176 btrfs_put_delayed_ref_head(head); 3177 return -EAGAIN; 3178 } 3179 spin_unlock(&delayed_refs->lock); 3180 3181 spin_lock(&head->lock); 3182 /* 3183 * XXX: We should replace this with a proper search function in the 3184 * future. 3185 */ 3186 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { 3187 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 3188 /* If it's a shared ref we know a cross reference exists */ 3189 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3190 ret = 1; 3191 break; 3192 } 3193 3194 data_ref = btrfs_delayed_node_to_data_ref(ref); 3195 3196 /* 3197 * If our ref doesn't match the one we're currently looking at 3198 * then we have a cross reference. 3199 */ 3200 if (data_ref->root != root->root_key.objectid || 3201 data_ref->objectid != objectid || 3202 data_ref->offset != offset) { 3203 ret = 1; 3204 break; 3205 } 3206 } 3207 spin_unlock(&head->lock); 3208 mutex_unlock(&head->mutex); 3209 return ret; 3210 } 3211 3212 static noinline int check_committed_ref(struct btrfs_root *root, 3213 struct btrfs_path *path, 3214 u64 objectid, u64 offset, u64 bytenr) 3215 { 3216 struct btrfs_fs_info *fs_info = root->fs_info; 3217 struct btrfs_root *extent_root = fs_info->extent_root; 3218 struct extent_buffer *leaf; 3219 struct btrfs_extent_data_ref *ref; 3220 struct btrfs_extent_inline_ref *iref; 3221 struct btrfs_extent_item *ei; 3222 struct btrfs_key key; 3223 u32 item_size; 3224 int type; 3225 int ret; 3226 3227 key.objectid = bytenr; 3228 key.offset = (u64)-1; 3229 key.type = BTRFS_EXTENT_ITEM_KEY; 3230 3231 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3232 if (ret < 0) 3233 goto out; 3234 BUG_ON(ret == 0); /* Corruption */ 3235 3236 ret = -ENOENT; 3237 if (path->slots[0] == 0) 3238 goto out; 3239 3240 path->slots[0]--; 3241 leaf = path->nodes[0]; 3242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3243 3244 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3245 goto out; 3246 3247 ret = 1; 3248 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3250 if (item_size < sizeof(*ei)) { 3251 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3252 goto out; 3253 } 3254 #endif 3255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3256 3257 if (item_size != sizeof(*ei) + 3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3259 goto out; 3260 3261 if (btrfs_extent_generation(leaf, ei) <= 3262 btrfs_root_last_snapshot(&root->root_item)) 3263 goto out; 3264 3265 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3266 3267 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 3268 if (type != BTRFS_EXTENT_DATA_REF_KEY) 3269 goto out; 3270 3271 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3272 if (btrfs_extent_refs(leaf, ei) != 3273 btrfs_extent_data_ref_count(leaf, ref) || 3274 btrfs_extent_data_ref_root(leaf, ref) != 3275 root->root_key.objectid || 3276 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3277 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3278 goto out; 3279 3280 ret = 0; 3281 out: 3282 return ret; 3283 } 3284 3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3286 u64 bytenr) 3287 { 3288 struct btrfs_path *path; 3289 int ret; 3290 int ret2; 3291 3292 path = btrfs_alloc_path(); 3293 if (!path) 3294 return -ENOENT; 3295 3296 do { 3297 ret = check_committed_ref(root, path, objectid, 3298 offset, bytenr); 3299 if (ret && ret != -ENOENT) 3300 goto out; 3301 3302 ret2 = check_delayed_ref(root, path, objectid, 3303 offset, bytenr); 3304 } while (ret2 == -EAGAIN); 3305 3306 if (ret2 && ret2 != -ENOENT) { 3307 ret = ret2; 3308 goto out; 3309 } 3310 3311 if (ret != -ENOENT || ret2 != -ENOENT) 3312 ret = 0; 3313 out: 3314 btrfs_free_path(path); 3315 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3316 WARN_ON(ret > 0); 3317 return ret; 3318 } 3319 3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3321 struct btrfs_root *root, 3322 struct extent_buffer *buf, 3323 int full_backref, int inc) 3324 { 3325 struct btrfs_fs_info *fs_info = root->fs_info; 3326 u64 bytenr; 3327 u64 num_bytes; 3328 u64 parent; 3329 u64 ref_root; 3330 u32 nritems; 3331 struct btrfs_key key; 3332 struct btrfs_file_extent_item *fi; 3333 int i; 3334 int level; 3335 int ret = 0; 3336 int (*process_func)(struct btrfs_trans_handle *, 3337 struct btrfs_root *, 3338 u64, u64, u64, u64, u64, u64); 3339 3340 3341 if (btrfs_is_testing(fs_info)) 3342 return 0; 3343 3344 ref_root = btrfs_header_owner(buf); 3345 nritems = btrfs_header_nritems(buf); 3346 level = btrfs_header_level(buf); 3347 3348 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3349 return 0; 3350 3351 if (inc) 3352 process_func = btrfs_inc_extent_ref; 3353 else 3354 process_func = btrfs_free_extent; 3355 3356 if (full_backref) 3357 parent = buf->start; 3358 else 3359 parent = 0; 3360 3361 for (i = 0; i < nritems; i++) { 3362 if (level == 0) { 3363 btrfs_item_key_to_cpu(buf, &key, i); 3364 if (key.type != BTRFS_EXTENT_DATA_KEY) 3365 continue; 3366 fi = btrfs_item_ptr(buf, i, 3367 struct btrfs_file_extent_item); 3368 if (btrfs_file_extent_type(buf, fi) == 3369 BTRFS_FILE_EXTENT_INLINE) 3370 continue; 3371 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3372 if (bytenr == 0) 3373 continue; 3374 3375 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3376 key.offset -= btrfs_file_extent_offset(buf, fi); 3377 ret = process_func(trans, root, bytenr, num_bytes, 3378 parent, ref_root, key.objectid, 3379 key.offset); 3380 if (ret) 3381 goto fail; 3382 } else { 3383 bytenr = btrfs_node_blockptr(buf, i); 3384 num_bytes = fs_info->nodesize; 3385 ret = process_func(trans, root, bytenr, num_bytes, 3386 parent, ref_root, level - 1, 0); 3387 if (ret) 3388 goto fail; 3389 } 3390 } 3391 return 0; 3392 fail: 3393 return ret; 3394 } 3395 3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3397 struct extent_buffer *buf, int full_backref) 3398 { 3399 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3400 } 3401 3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3403 struct extent_buffer *buf, int full_backref) 3404 { 3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3406 } 3407 3408 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3409 struct btrfs_fs_info *fs_info, 3410 struct btrfs_path *path, 3411 struct btrfs_block_group_cache *cache) 3412 { 3413 int ret; 3414 struct btrfs_root *extent_root = fs_info->extent_root; 3415 unsigned long bi; 3416 struct extent_buffer *leaf; 3417 3418 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3419 if (ret) { 3420 if (ret > 0) 3421 ret = -ENOENT; 3422 goto fail; 3423 } 3424 3425 leaf = path->nodes[0]; 3426 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3427 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3428 btrfs_mark_buffer_dirty(leaf); 3429 fail: 3430 btrfs_release_path(path); 3431 return ret; 3432 3433 } 3434 3435 static struct btrfs_block_group_cache * 3436 next_block_group(struct btrfs_fs_info *fs_info, 3437 struct btrfs_block_group_cache *cache) 3438 { 3439 struct rb_node *node; 3440 3441 spin_lock(&fs_info->block_group_cache_lock); 3442 3443 /* If our block group was removed, we need a full search. */ 3444 if (RB_EMPTY_NODE(&cache->cache_node)) { 3445 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3446 3447 spin_unlock(&fs_info->block_group_cache_lock); 3448 btrfs_put_block_group(cache); 3449 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3450 } 3451 node = rb_next(&cache->cache_node); 3452 btrfs_put_block_group(cache); 3453 if (node) { 3454 cache = rb_entry(node, struct btrfs_block_group_cache, 3455 cache_node); 3456 btrfs_get_block_group(cache); 3457 } else 3458 cache = NULL; 3459 spin_unlock(&fs_info->block_group_cache_lock); 3460 return cache; 3461 } 3462 3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3464 struct btrfs_trans_handle *trans, 3465 struct btrfs_path *path) 3466 { 3467 struct btrfs_fs_info *fs_info = block_group->fs_info; 3468 struct btrfs_root *root = fs_info->tree_root; 3469 struct inode *inode = NULL; 3470 struct extent_changeset *data_reserved = NULL; 3471 u64 alloc_hint = 0; 3472 int dcs = BTRFS_DC_ERROR; 3473 u64 num_pages = 0; 3474 int retries = 0; 3475 int ret = 0; 3476 3477 /* 3478 * If this block group is smaller than 100 megs don't bother caching the 3479 * block group. 3480 */ 3481 if (block_group->key.offset < (100 * SZ_1M)) { 3482 spin_lock(&block_group->lock); 3483 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3484 spin_unlock(&block_group->lock); 3485 return 0; 3486 } 3487 3488 if (trans->aborted) 3489 return 0; 3490 again: 3491 inode = lookup_free_space_inode(fs_info, block_group, path); 3492 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3493 ret = PTR_ERR(inode); 3494 btrfs_release_path(path); 3495 goto out; 3496 } 3497 3498 if (IS_ERR(inode)) { 3499 BUG_ON(retries); 3500 retries++; 3501 3502 if (block_group->ro) 3503 goto out_free; 3504 3505 ret = create_free_space_inode(fs_info, trans, block_group, 3506 path); 3507 if (ret) 3508 goto out_free; 3509 goto again; 3510 } 3511 3512 /* 3513 * We want to set the generation to 0, that way if anything goes wrong 3514 * from here on out we know not to trust this cache when we load up next 3515 * time. 3516 */ 3517 BTRFS_I(inode)->generation = 0; 3518 ret = btrfs_update_inode(trans, root, inode); 3519 if (ret) { 3520 /* 3521 * So theoretically we could recover from this, simply set the 3522 * super cache generation to 0 so we know to invalidate the 3523 * cache, but then we'd have to keep track of the block groups 3524 * that fail this way so we know we _have_ to reset this cache 3525 * before the next commit or risk reading stale cache. So to 3526 * limit our exposure to horrible edge cases lets just abort the 3527 * transaction, this only happens in really bad situations 3528 * anyway. 3529 */ 3530 btrfs_abort_transaction(trans, ret); 3531 goto out_put; 3532 } 3533 WARN_ON(ret); 3534 3535 /* We've already setup this transaction, go ahead and exit */ 3536 if (block_group->cache_generation == trans->transid && 3537 i_size_read(inode)) { 3538 dcs = BTRFS_DC_SETUP; 3539 goto out_put; 3540 } 3541 3542 if (i_size_read(inode) > 0) { 3543 ret = btrfs_check_trunc_cache_free_space(fs_info, 3544 &fs_info->global_block_rsv); 3545 if (ret) 3546 goto out_put; 3547 3548 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3549 if (ret) 3550 goto out_put; 3551 } 3552 3553 spin_lock(&block_group->lock); 3554 if (block_group->cached != BTRFS_CACHE_FINISHED || 3555 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3556 /* 3557 * don't bother trying to write stuff out _if_ 3558 * a) we're not cached, 3559 * b) we're with nospace_cache mount option, 3560 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3561 */ 3562 dcs = BTRFS_DC_WRITTEN; 3563 spin_unlock(&block_group->lock); 3564 goto out_put; 3565 } 3566 spin_unlock(&block_group->lock); 3567 3568 /* 3569 * We hit an ENOSPC when setting up the cache in this transaction, just 3570 * skip doing the setup, we've already cleared the cache so we're safe. 3571 */ 3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3573 ret = -ENOSPC; 3574 goto out_put; 3575 } 3576 3577 /* 3578 * Try to preallocate enough space based on how big the block group is. 3579 * Keep in mind this has to include any pinned space which could end up 3580 * taking up quite a bit since it's not folded into the other space 3581 * cache. 3582 */ 3583 num_pages = div_u64(block_group->key.offset, SZ_256M); 3584 if (!num_pages) 3585 num_pages = 1; 3586 3587 num_pages *= 16; 3588 num_pages *= PAGE_SIZE; 3589 3590 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3591 if (ret) 3592 goto out_put; 3593 3594 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3595 num_pages, num_pages, 3596 &alloc_hint); 3597 /* 3598 * Our cache requires contiguous chunks so that we don't modify a bunch 3599 * of metadata or split extents when writing the cache out, which means 3600 * we can enospc if we are heavily fragmented in addition to just normal 3601 * out of space conditions. So if we hit this just skip setting up any 3602 * other block groups for this transaction, maybe we'll unpin enough 3603 * space the next time around. 3604 */ 3605 if (!ret) 3606 dcs = BTRFS_DC_SETUP; 3607 else if (ret == -ENOSPC) 3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3609 3610 out_put: 3611 iput(inode); 3612 out_free: 3613 btrfs_release_path(path); 3614 out: 3615 spin_lock(&block_group->lock); 3616 if (!ret && dcs == BTRFS_DC_SETUP) 3617 block_group->cache_generation = trans->transid; 3618 block_group->disk_cache_state = dcs; 3619 spin_unlock(&block_group->lock); 3620 3621 extent_changeset_free(data_reserved); 3622 return ret; 3623 } 3624 3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3626 struct btrfs_fs_info *fs_info) 3627 { 3628 struct btrfs_block_group_cache *cache, *tmp; 3629 struct btrfs_transaction *cur_trans = trans->transaction; 3630 struct btrfs_path *path; 3631 3632 if (list_empty(&cur_trans->dirty_bgs) || 3633 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3634 return 0; 3635 3636 path = btrfs_alloc_path(); 3637 if (!path) 3638 return -ENOMEM; 3639 3640 /* Could add new block groups, use _safe just in case */ 3641 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3642 dirty_list) { 3643 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3644 cache_save_setup(cache, trans, path); 3645 } 3646 3647 btrfs_free_path(path); 3648 return 0; 3649 } 3650 3651 /* 3652 * transaction commit does final block group cache writeback during a 3653 * critical section where nothing is allowed to change the FS. This is 3654 * required in order for the cache to actually match the block group, 3655 * but can introduce a lot of latency into the commit. 3656 * 3657 * So, btrfs_start_dirty_block_groups is here to kick off block group 3658 * cache IO. There's a chance we'll have to redo some of it if the 3659 * block group changes again during the commit, but it greatly reduces 3660 * the commit latency by getting rid of the easy block groups while 3661 * we're still allowing others to join the commit. 3662 */ 3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3664 struct btrfs_fs_info *fs_info) 3665 { 3666 struct btrfs_block_group_cache *cache; 3667 struct btrfs_transaction *cur_trans = trans->transaction; 3668 int ret = 0; 3669 int should_put; 3670 struct btrfs_path *path = NULL; 3671 LIST_HEAD(dirty); 3672 struct list_head *io = &cur_trans->io_bgs; 3673 int num_started = 0; 3674 int loops = 0; 3675 3676 spin_lock(&cur_trans->dirty_bgs_lock); 3677 if (list_empty(&cur_trans->dirty_bgs)) { 3678 spin_unlock(&cur_trans->dirty_bgs_lock); 3679 return 0; 3680 } 3681 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3682 spin_unlock(&cur_trans->dirty_bgs_lock); 3683 3684 again: 3685 /* 3686 * make sure all the block groups on our dirty list actually 3687 * exist 3688 */ 3689 btrfs_create_pending_block_groups(trans, fs_info); 3690 3691 if (!path) { 3692 path = btrfs_alloc_path(); 3693 if (!path) 3694 return -ENOMEM; 3695 } 3696 3697 /* 3698 * cache_write_mutex is here only to save us from balance or automatic 3699 * removal of empty block groups deleting this block group while we are 3700 * writing out the cache 3701 */ 3702 mutex_lock(&trans->transaction->cache_write_mutex); 3703 while (!list_empty(&dirty)) { 3704 cache = list_first_entry(&dirty, 3705 struct btrfs_block_group_cache, 3706 dirty_list); 3707 /* 3708 * this can happen if something re-dirties a block 3709 * group that is already under IO. Just wait for it to 3710 * finish and then do it all again 3711 */ 3712 if (!list_empty(&cache->io_list)) { 3713 list_del_init(&cache->io_list); 3714 btrfs_wait_cache_io(trans, cache, path); 3715 btrfs_put_block_group(cache); 3716 } 3717 3718 3719 /* 3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3721 * if it should update the cache_state. Don't delete 3722 * until after we wait. 3723 * 3724 * Since we're not running in the commit critical section 3725 * we need the dirty_bgs_lock to protect from update_block_group 3726 */ 3727 spin_lock(&cur_trans->dirty_bgs_lock); 3728 list_del_init(&cache->dirty_list); 3729 spin_unlock(&cur_trans->dirty_bgs_lock); 3730 3731 should_put = 1; 3732 3733 cache_save_setup(cache, trans, path); 3734 3735 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3736 cache->io_ctl.inode = NULL; 3737 ret = btrfs_write_out_cache(fs_info, trans, 3738 cache, path); 3739 if (ret == 0 && cache->io_ctl.inode) { 3740 num_started++; 3741 should_put = 0; 3742 3743 /* 3744 * the cache_write_mutex is protecting 3745 * the io_list 3746 */ 3747 list_add_tail(&cache->io_list, io); 3748 } else { 3749 /* 3750 * if we failed to write the cache, the 3751 * generation will be bad and life goes on 3752 */ 3753 ret = 0; 3754 } 3755 } 3756 if (!ret) { 3757 ret = write_one_cache_group(trans, fs_info, 3758 path, cache); 3759 /* 3760 * Our block group might still be attached to the list 3761 * of new block groups in the transaction handle of some 3762 * other task (struct btrfs_trans_handle->new_bgs). This 3763 * means its block group item isn't yet in the extent 3764 * tree. If this happens ignore the error, as we will 3765 * try again later in the critical section of the 3766 * transaction commit. 3767 */ 3768 if (ret == -ENOENT) { 3769 ret = 0; 3770 spin_lock(&cur_trans->dirty_bgs_lock); 3771 if (list_empty(&cache->dirty_list)) { 3772 list_add_tail(&cache->dirty_list, 3773 &cur_trans->dirty_bgs); 3774 btrfs_get_block_group(cache); 3775 } 3776 spin_unlock(&cur_trans->dirty_bgs_lock); 3777 } else if (ret) { 3778 btrfs_abort_transaction(trans, ret); 3779 } 3780 } 3781 3782 /* if its not on the io list, we need to put the block group */ 3783 if (should_put) 3784 btrfs_put_block_group(cache); 3785 3786 if (ret) 3787 break; 3788 3789 /* 3790 * Avoid blocking other tasks for too long. It might even save 3791 * us from writing caches for block groups that are going to be 3792 * removed. 3793 */ 3794 mutex_unlock(&trans->transaction->cache_write_mutex); 3795 mutex_lock(&trans->transaction->cache_write_mutex); 3796 } 3797 mutex_unlock(&trans->transaction->cache_write_mutex); 3798 3799 /* 3800 * go through delayed refs for all the stuff we've just kicked off 3801 * and then loop back (just once) 3802 */ 3803 ret = btrfs_run_delayed_refs(trans, fs_info, 0); 3804 if (!ret && loops == 0) { 3805 loops++; 3806 spin_lock(&cur_trans->dirty_bgs_lock); 3807 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3808 /* 3809 * dirty_bgs_lock protects us from concurrent block group 3810 * deletes too (not just cache_write_mutex). 3811 */ 3812 if (!list_empty(&dirty)) { 3813 spin_unlock(&cur_trans->dirty_bgs_lock); 3814 goto again; 3815 } 3816 spin_unlock(&cur_trans->dirty_bgs_lock); 3817 } else if (ret < 0) { 3818 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3819 } 3820 3821 btrfs_free_path(path); 3822 return ret; 3823 } 3824 3825 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3826 struct btrfs_fs_info *fs_info) 3827 { 3828 struct btrfs_block_group_cache *cache; 3829 struct btrfs_transaction *cur_trans = trans->transaction; 3830 int ret = 0; 3831 int should_put; 3832 struct btrfs_path *path; 3833 struct list_head *io = &cur_trans->io_bgs; 3834 int num_started = 0; 3835 3836 path = btrfs_alloc_path(); 3837 if (!path) 3838 return -ENOMEM; 3839 3840 /* 3841 * Even though we are in the critical section of the transaction commit, 3842 * we can still have concurrent tasks adding elements to this 3843 * transaction's list of dirty block groups. These tasks correspond to 3844 * endio free space workers started when writeback finishes for a 3845 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3846 * allocate new block groups as a result of COWing nodes of the root 3847 * tree when updating the free space inode. The writeback for the space 3848 * caches is triggered by an earlier call to 3849 * btrfs_start_dirty_block_groups() and iterations of the following 3850 * loop. 3851 * Also we want to do the cache_save_setup first and then run the 3852 * delayed refs to make sure we have the best chance at doing this all 3853 * in one shot. 3854 */ 3855 spin_lock(&cur_trans->dirty_bgs_lock); 3856 while (!list_empty(&cur_trans->dirty_bgs)) { 3857 cache = list_first_entry(&cur_trans->dirty_bgs, 3858 struct btrfs_block_group_cache, 3859 dirty_list); 3860 3861 /* 3862 * this can happen if cache_save_setup re-dirties a block 3863 * group that is already under IO. Just wait for it to 3864 * finish and then do it all again 3865 */ 3866 if (!list_empty(&cache->io_list)) { 3867 spin_unlock(&cur_trans->dirty_bgs_lock); 3868 list_del_init(&cache->io_list); 3869 btrfs_wait_cache_io(trans, cache, path); 3870 btrfs_put_block_group(cache); 3871 spin_lock(&cur_trans->dirty_bgs_lock); 3872 } 3873 3874 /* 3875 * don't remove from the dirty list until after we've waited 3876 * on any pending IO 3877 */ 3878 list_del_init(&cache->dirty_list); 3879 spin_unlock(&cur_trans->dirty_bgs_lock); 3880 should_put = 1; 3881 3882 cache_save_setup(cache, trans, path); 3883 3884 if (!ret) 3885 ret = btrfs_run_delayed_refs(trans, fs_info, 3886 (unsigned long) -1); 3887 3888 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3889 cache->io_ctl.inode = NULL; 3890 ret = btrfs_write_out_cache(fs_info, trans, 3891 cache, path); 3892 if (ret == 0 && cache->io_ctl.inode) { 3893 num_started++; 3894 should_put = 0; 3895 list_add_tail(&cache->io_list, io); 3896 } else { 3897 /* 3898 * if we failed to write the cache, the 3899 * generation will be bad and life goes on 3900 */ 3901 ret = 0; 3902 } 3903 } 3904 if (!ret) { 3905 ret = write_one_cache_group(trans, fs_info, 3906 path, cache); 3907 /* 3908 * One of the free space endio workers might have 3909 * created a new block group while updating a free space 3910 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3911 * and hasn't released its transaction handle yet, in 3912 * which case the new block group is still attached to 3913 * its transaction handle and its creation has not 3914 * finished yet (no block group item in the extent tree 3915 * yet, etc). If this is the case, wait for all free 3916 * space endio workers to finish and retry. This is a 3917 * a very rare case so no need for a more efficient and 3918 * complex approach. 3919 */ 3920 if (ret == -ENOENT) { 3921 wait_event(cur_trans->writer_wait, 3922 atomic_read(&cur_trans->num_writers) == 1); 3923 ret = write_one_cache_group(trans, fs_info, 3924 path, cache); 3925 } 3926 if (ret) 3927 btrfs_abort_transaction(trans, ret); 3928 } 3929 3930 /* if its not on the io list, we need to put the block group */ 3931 if (should_put) 3932 btrfs_put_block_group(cache); 3933 spin_lock(&cur_trans->dirty_bgs_lock); 3934 } 3935 spin_unlock(&cur_trans->dirty_bgs_lock); 3936 3937 while (!list_empty(io)) { 3938 cache = list_first_entry(io, struct btrfs_block_group_cache, 3939 io_list); 3940 list_del_init(&cache->io_list); 3941 btrfs_wait_cache_io(trans, cache, path); 3942 btrfs_put_block_group(cache); 3943 } 3944 3945 btrfs_free_path(path); 3946 return ret; 3947 } 3948 3949 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3950 { 3951 struct btrfs_block_group_cache *block_group; 3952 int readonly = 0; 3953 3954 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3955 if (!block_group || block_group->ro) 3956 readonly = 1; 3957 if (block_group) 3958 btrfs_put_block_group(block_group); 3959 return readonly; 3960 } 3961 3962 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3963 { 3964 struct btrfs_block_group_cache *bg; 3965 bool ret = true; 3966 3967 bg = btrfs_lookup_block_group(fs_info, bytenr); 3968 if (!bg) 3969 return false; 3970 3971 spin_lock(&bg->lock); 3972 if (bg->ro) 3973 ret = false; 3974 else 3975 atomic_inc(&bg->nocow_writers); 3976 spin_unlock(&bg->lock); 3977 3978 /* no put on block group, done by btrfs_dec_nocow_writers */ 3979 if (!ret) 3980 btrfs_put_block_group(bg); 3981 3982 return ret; 3983 3984 } 3985 3986 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3987 { 3988 struct btrfs_block_group_cache *bg; 3989 3990 bg = btrfs_lookup_block_group(fs_info, bytenr); 3991 ASSERT(bg); 3992 if (atomic_dec_and_test(&bg->nocow_writers)) 3993 wake_up_var(&bg->nocow_writers); 3994 /* 3995 * Once for our lookup and once for the lookup done by a previous call 3996 * to btrfs_inc_nocow_writers() 3997 */ 3998 btrfs_put_block_group(bg); 3999 btrfs_put_block_group(bg); 4000 } 4001 4002 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 4003 { 4004 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); 4005 } 4006 4007 static const char *alloc_name(u64 flags) 4008 { 4009 switch (flags) { 4010 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 4011 return "mixed"; 4012 case BTRFS_BLOCK_GROUP_METADATA: 4013 return "metadata"; 4014 case BTRFS_BLOCK_GROUP_DATA: 4015 return "data"; 4016 case BTRFS_BLOCK_GROUP_SYSTEM: 4017 return "system"; 4018 default: 4019 WARN_ON(1); 4020 return "invalid-combination"; 4021 }; 4022 } 4023 4024 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 4025 struct btrfs_space_info **new) 4026 { 4027 4028 struct btrfs_space_info *space_info; 4029 int i; 4030 int ret; 4031 4032 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 4033 if (!space_info) 4034 return -ENOMEM; 4035 4036 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 4037 GFP_KERNEL); 4038 if (ret) { 4039 kfree(space_info); 4040 return ret; 4041 } 4042 4043 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 4044 INIT_LIST_HEAD(&space_info->block_groups[i]); 4045 init_rwsem(&space_info->groups_sem); 4046 spin_lock_init(&space_info->lock); 4047 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 4048 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4049 init_waitqueue_head(&space_info->wait); 4050 INIT_LIST_HEAD(&space_info->ro_bgs); 4051 INIT_LIST_HEAD(&space_info->tickets); 4052 INIT_LIST_HEAD(&space_info->priority_tickets); 4053 4054 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 4055 info->space_info_kobj, "%s", 4056 alloc_name(space_info->flags)); 4057 if (ret) { 4058 percpu_counter_destroy(&space_info->total_bytes_pinned); 4059 kfree(space_info); 4060 return ret; 4061 } 4062 4063 *new = space_info; 4064 list_add_rcu(&space_info->list, &info->space_info); 4065 if (flags & BTRFS_BLOCK_GROUP_DATA) 4066 info->data_sinfo = space_info; 4067 4068 return ret; 4069 } 4070 4071 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4072 u64 total_bytes, u64 bytes_used, 4073 u64 bytes_readonly, 4074 struct btrfs_space_info **space_info) 4075 { 4076 struct btrfs_space_info *found; 4077 int factor; 4078 4079 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4080 BTRFS_BLOCK_GROUP_RAID10)) 4081 factor = 2; 4082 else 4083 factor = 1; 4084 4085 found = __find_space_info(info, flags); 4086 ASSERT(found); 4087 spin_lock(&found->lock); 4088 found->total_bytes += total_bytes; 4089 found->disk_total += total_bytes * factor; 4090 found->bytes_used += bytes_used; 4091 found->disk_used += bytes_used * factor; 4092 found->bytes_readonly += bytes_readonly; 4093 if (total_bytes > 0) 4094 found->full = 0; 4095 space_info_add_new_bytes(info, found, total_bytes - 4096 bytes_used - bytes_readonly); 4097 spin_unlock(&found->lock); 4098 *space_info = found; 4099 } 4100 4101 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4102 { 4103 u64 extra_flags = chunk_to_extended(flags) & 4104 BTRFS_EXTENDED_PROFILE_MASK; 4105 4106 write_seqlock(&fs_info->profiles_lock); 4107 if (flags & BTRFS_BLOCK_GROUP_DATA) 4108 fs_info->avail_data_alloc_bits |= extra_flags; 4109 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4110 fs_info->avail_metadata_alloc_bits |= extra_flags; 4111 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4112 fs_info->avail_system_alloc_bits |= extra_flags; 4113 write_sequnlock(&fs_info->profiles_lock); 4114 } 4115 4116 /* 4117 * returns target flags in extended format or 0 if restripe for this 4118 * chunk_type is not in progress 4119 * 4120 * should be called with either volume_mutex or balance_lock held 4121 */ 4122 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4123 { 4124 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4125 u64 target = 0; 4126 4127 if (!bctl) 4128 return 0; 4129 4130 if (flags & BTRFS_BLOCK_GROUP_DATA && 4131 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4132 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4133 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4134 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4135 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4136 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4137 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4138 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4139 } 4140 4141 return target; 4142 } 4143 4144 /* 4145 * @flags: available profiles in extended format (see ctree.h) 4146 * 4147 * Returns reduced profile in chunk format. If profile changing is in 4148 * progress (either running or paused) picks the target profile (if it's 4149 * already available), otherwise falls back to plain reducing. 4150 */ 4151 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4152 { 4153 u64 num_devices = fs_info->fs_devices->rw_devices; 4154 u64 target; 4155 u64 raid_type; 4156 u64 allowed = 0; 4157 4158 /* 4159 * see if restripe for this chunk_type is in progress, if so 4160 * try to reduce to the target profile 4161 */ 4162 spin_lock(&fs_info->balance_lock); 4163 target = get_restripe_target(fs_info, flags); 4164 if (target) { 4165 /* pick target profile only if it's already available */ 4166 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4167 spin_unlock(&fs_info->balance_lock); 4168 return extended_to_chunk(target); 4169 } 4170 } 4171 spin_unlock(&fs_info->balance_lock); 4172 4173 /* First, mask out the RAID levels which aren't possible */ 4174 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4175 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4176 allowed |= btrfs_raid_group[raid_type]; 4177 } 4178 allowed &= flags; 4179 4180 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4181 allowed = BTRFS_BLOCK_GROUP_RAID6; 4182 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4183 allowed = BTRFS_BLOCK_GROUP_RAID5; 4184 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4185 allowed = BTRFS_BLOCK_GROUP_RAID10; 4186 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4187 allowed = BTRFS_BLOCK_GROUP_RAID1; 4188 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4189 allowed = BTRFS_BLOCK_GROUP_RAID0; 4190 4191 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4192 4193 return extended_to_chunk(flags | allowed); 4194 } 4195 4196 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4197 { 4198 unsigned seq; 4199 u64 flags; 4200 4201 do { 4202 flags = orig_flags; 4203 seq = read_seqbegin(&fs_info->profiles_lock); 4204 4205 if (flags & BTRFS_BLOCK_GROUP_DATA) 4206 flags |= fs_info->avail_data_alloc_bits; 4207 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4208 flags |= fs_info->avail_system_alloc_bits; 4209 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4210 flags |= fs_info->avail_metadata_alloc_bits; 4211 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4212 4213 return btrfs_reduce_alloc_profile(fs_info, flags); 4214 } 4215 4216 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4217 { 4218 struct btrfs_fs_info *fs_info = root->fs_info; 4219 u64 flags; 4220 u64 ret; 4221 4222 if (data) 4223 flags = BTRFS_BLOCK_GROUP_DATA; 4224 else if (root == fs_info->chunk_root) 4225 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4226 else 4227 flags = BTRFS_BLOCK_GROUP_METADATA; 4228 4229 ret = get_alloc_profile(fs_info, flags); 4230 return ret; 4231 } 4232 4233 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4234 { 4235 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4236 } 4237 4238 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4239 { 4240 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4241 } 4242 4243 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4244 { 4245 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4246 } 4247 4248 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4249 bool may_use_included) 4250 { 4251 ASSERT(s_info); 4252 return s_info->bytes_used + s_info->bytes_reserved + 4253 s_info->bytes_pinned + s_info->bytes_readonly + 4254 (may_use_included ? s_info->bytes_may_use : 0); 4255 } 4256 4257 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4258 { 4259 struct btrfs_root *root = inode->root; 4260 struct btrfs_fs_info *fs_info = root->fs_info; 4261 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; 4262 u64 used; 4263 int ret = 0; 4264 int need_commit = 2; 4265 int have_pinned_space; 4266 4267 /* make sure bytes are sectorsize aligned */ 4268 bytes = ALIGN(bytes, fs_info->sectorsize); 4269 4270 if (btrfs_is_free_space_inode(inode)) { 4271 need_commit = 0; 4272 ASSERT(current->journal_info); 4273 } 4274 4275 again: 4276 /* make sure we have enough space to handle the data first */ 4277 spin_lock(&data_sinfo->lock); 4278 used = btrfs_space_info_used(data_sinfo, true); 4279 4280 if (used + bytes > data_sinfo->total_bytes) { 4281 struct btrfs_trans_handle *trans; 4282 4283 /* 4284 * if we don't have enough free bytes in this space then we need 4285 * to alloc a new chunk. 4286 */ 4287 if (!data_sinfo->full) { 4288 u64 alloc_target; 4289 4290 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4291 spin_unlock(&data_sinfo->lock); 4292 4293 alloc_target = btrfs_data_alloc_profile(fs_info); 4294 /* 4295 * It is ugly that we don't call nolock join 4296 * transaction for the free space inode case here. 4297 * But it is safe because we only do the data space 4298 * reservation for the free space cache in the 4299 * transaction context, the common join transaction 4300 * just increase the counter of the current transaction 4301 * handler, doesn't try to acquire the trans_lock of 4302 * the fs. 4303 */ 4304 trans = btrfs_join_transaction(root); 4305 if (IS_ERR(trans)) 4306 return PTR_ERR(trans); 4307 4308 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4309 CHUNK_ALLOC_NO_FORCE); 4310 btrfs_end_transaction(trans); 4311 if (ret < 0) { 4312 if (ret != -ENOSPC) 4313 return ret; 4314 else { 4315 have_pinned_space = 1; 4316 goto commit_trans; 4317 } 4318 } 4319 4320 goto again; 4321 } 4322 4323 /* 4324 * If we don't have enough pinned space to deal with this 4325 * allocation, and no removed chunk in current transaction, 4326 * don't bother committing the transaction. 4327 */ 4328 have_pinned_space = percpu_counter_compare( 4329 &data_sinfo->total_bytes_pinned, 4330 used + bytes - data_sinfo->total_bytes); 4331 spin_unlock(&data_sinfo->lock); 4332 4333 /* commit the current transaction and try again */ 4334 commit_trans: 4335 if (need_commit && 4336 !atomic_read(&fs_info->open_ioctl_trans)) { 4337 need_commit--; 4338 4339 if (need_commit > 0) { 4340 btrfs_start_delalloc_roots(fs_info, 0, -1); 4341 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4342 (u64)-1); 4343 } 4344 4345 trans = btrfs_join_transaction(root); 4346 if (IS_ERR(trans)) 4347 return PTR_ERR(trans); 4348 if (have_pinned_space >= 0 || 4349 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4350 &trans->transaction->flags) || 4351 need_commit > 0) { 4352 ret = btrfs_commit_transaction(trans); 4353 if (ret) 4354 return ret; 4355 /* 4356 * The cleaner kthread might still be doing iput 4357 * operations. Wait for it to finish so that 4358 * more space is released. 4359 */ 4360 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4361 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4362 goto again; 4363 } else { 4364 btrfs_end_transaction(trans); 4365 } 4366 } 4367 4368 trace_btrfs_space_reservation(fs_info, 4369 "space_info:enospc", 4370 data_sinfo->flags, bytes, 1); 4371 return -ENOSPC; 4372 } 4373 data_sinfo->bytes_may_use += bytes; 4374 trace_btrfs_space_reservation(fs_info, "space_info", 4375 data_sinfo->flags, bytes, 1); 4376 spin_unlock(&data_sinfo->lock); 4377 4378 return ret; 4379 } 4380 4381 int btrfs_check_data_free_space(struct inode *inode, 4382 struct extent_changeset **reserved, u64 start, u64 len) 4383 { 4384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4385 int ret; 4386 4387 /* align the range */ 4388 len = round_up(start + len, fs_info->sectorsize) - 4389 round_down(start, fs_info->sectorsize); 4390 start = round_down(start, fs_info->sectorsize); 4391 4392 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4393 if (ret < 0) 4394 return ret; 4395 4396 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4397 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4398 if (ret < 0) 4399 btrfs_free_reserved_data_space_noquota(inode, start, len); 4400 else 4401 ret = 0; 4402 return ret; 4403 } 4404 4405 /* 4406 * Called if we need to clear a data reservation for this inode 4407 * Normally in a error case. 4408 * 4409 * This one will *NOT* use accurate qgroup reserved space API, just for case 4410 * which we can't sleep and is sure it won't affect qgroup reserved space. 4411 * Like clear_bit_hook(). 4412 */ 4413 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4414 u64 len) 4415 { 4416 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4417 struct btrfs_space_info *data_sinfo; 4418 4419 /* Make sure the range is aligned to sectorsize */ 4420 len = round_up(start + len, fs_info->sectorsize) - 4421 round_down(start, fs_info->sectorsize); 4422 start = round_down(start, fs_info->sectorsize); 4423 4424 data_sinfo = fs_info->data_sinfo; 4425 spin_lock(&data_sinfo->lock); 4426 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4427 data_sinfo->bytes_may_use = 0; 4428 else 4429 data_sinfo->bytes_may_use -= len; 4430 trace_btrfs_space_reservation(fs_info, "space_info", 4431 data_sinfo->flags, len, 0); 4432 spin_unlock(&data_sinfo->lock); 4433 } 4434 4435 /* 4436 * Called if we need to clear a data reservation for this inode 4437 * Normally in a error case. 4438 * 4439 * This one will handle the per-inode data rsv map for accurate reserved 4440 * space framework. 4441 */ 4442 void btrfs_free_reserved_data_space(struct inode *inode, 4443 struct extent_changeset *reserved, u64 start, u64 len) 4444 { 4445 struct btrfs_root *root = BTRFS_I(inode)->root; 4446 4447 /* Make sure the range is aligned to sectorsize */ 4448 len = round_up(start + len, root->fs_info->sectorsize) - 4449 round_down(start, root->fs_info->sectorsize); 4450 start = round_down(start, root->fs_info->sectorsize); 4451 4452 btrfs_free_reserved_data_space_noquota(inode, start, len); 4453 btrfs_qgroup_free_data(inode, reserved, start, len); 4454 } 4455 4456 static void force_metadata_allocation(struct btrfs_fs_info *info) 4457 { 4458 struct list_head *head = &info->space_info; 4459 struct btrfs_space_info *found; 4460 4461 rcu_read_lock(); 4462 list_for_each_entry_rcu(found, head, list) { 4463 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4464 found->force_alloc = CHUNK_ALLOC_FORCE; 4465 } 4466 rcu_read_unlock(); 4467 } 4468 4469 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4470 { 4471 return (global->size << 1); 4472 } 4473 4474 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4475 struct btrfs_space_info *sinfo, int force) 4476 { 4477 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4478 u64 bytes_used = btrfs_space_info_used(sinfo, false); 4479 u64 thresh; 4480 4481 if (force == CHUNK_ALLOC_FORCE) 4482 return 1; 4483 4484 /* 4485 * We need to take into account the global rsv because for all intents 4486 * and purposes it's used space. Don't worry about locking the 4487 * global_rsv, it doesn't change except when the transaction commits. 4488 */ 4489 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4490 bytes_used += calc_global_rsv_need_space(global_rsv); 4491 4492 /* 4493 * in limited mode, we want to have some free space up to 4494 * about 1% of the FS size. 4495 */ 4496 if (force == CHUNK_ALLOC_LIMITED) { 4497 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4498 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4499 4500 if (sinfo->total_bytes - bytes_used < thresh) 4501 return 1; 4502 } 4503 4504 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) 4505 return 0; 4506 return 1; 4507 } 4508 4509 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4510 { 4511 u64 num_dev; 4512 4513 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4514 BTRFS_BLOCK_GROUP_RAID0 | 4515 BTRFS_BLOCK_GROUP_RAID5 | 4516 BTRFS_BLOCK_GROUP_RAID6)) 4517 num_dev = fs_info->fs_devices->rw_devices; 4518 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4519 num_dev = 2; 4520 else 4521 num_dev = 1; /* DUP or single */ 4522 4523 return num_dev; 4524 } 4525 4526 /* 4527 * If @is_allocation is true, reserve space in the system space info necessary 4528 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4529 * removing a chunk. 4530 */ 4531 void check_system_chunk(struct btrfs_trans_handle *trans, 4532 struct btrfs_fs_info *fs_info, u64 type) 4533 { 4534 struct btrfs_space_info *info; 4535 u64 left; 4536 u64 thresh; 4537 int ret = 0; 4538 u64 num_devs; 4539 4540 /* 4541 * Needed because we can end up allocating a system chunk and for an 4542 * atomic and race free space reservation in the chunk block reserve. 4543 */ 4544 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4545 4546 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4547 spin_lock(&info->lock); 4548 left = info->total_bytes - btrfs_space_info_used(info, true); 4549 spin_unlock(&info->lock); 4550 4551 num_devs = get_profile_num_devs(fs_info, type); 4552 4553 /* num_devs device items to update and 1 chunk item to add or remove */ 4554 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4555 btrfs_calc_trans_metadata_size(fs_info, 1); 4556 4557 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4558 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4559 left, thresh, type); 4560 dump_space_info(fs_info, info, 0, 0); 4561 } 4562 4563 if (left < thresh) { 4564 u64 flags = btrfs_system_alloc_profile(fs_info); 4565 4566 /* 4567 * Ignore failure to create system chunk. We might end up not 4568 * needing it, as we might not need to COW all nodes/leafs from 4569 * the paths we visit in the chunk tree (they were already COWed 4570 * or created in the current transaction for example). 4571 */ 4572 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4573 } 4574 4575 if (!ret) { 4576 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4577 &fs_info->chunk_block_rsv, 4578 thresh, BTRFS_RESERVE_NO_FLUSH); 4579 if (!ret) 4580 trans->chunk_bytes_reserved += thresh; 4581 } 4582 } 4583 4584 /* 4585 * If force is CHUNK_ALLOC_FORCE: 4586 * - return 1 if it successfully allocates a chunk, 4587 * - return errors including -ENOSPC otherwise. 4588 * If force is NOT CHUNK_ALLOC_FORCE: 4589 * - return 0 if it doesn't need to allocate a new chunk, 4590 * - return 1 if it successfully allocates a chunk, 4591 * - return errors including -ENOSPC otherwise. 4592 */ 4593 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4594 struct btrfs_fs_info *fs_info, u64 flags, int force) 4595 { 4596 struct btrfs_space_info *space_info; 4597 int wait_for_alloc = 0; 4598 int ret = 0; 4599 4600 /* Don't re-enter if we're already allocating a chunk */ 4601 if (trans->allocating_chunk) 4602 return -ENOSPC; 4603 4604 space_info = __find_space_info(fs_info, flags); 4605 if (!space_info) { 4606 ret = create_space_info(fs_info, flags, &space_info); 4607 if (ret) 4608 return ret; 4609 } 4610 4611 again: 4612 spin_lock(&space_info->lock); 4613 if (force < space_info->force_alloc) 4614 force = space_info->force_alloc; 4615 if (space_info->full) { 4616 if (should_alloc_chunk(fs_info, space_info, force)) 4617 ret = -ENOSPC; 4618 else 4619 ret = 0; 4620 spin_unlock(&space_info->lock); 4621 return ret; 4622 } 4623 4624 if (!should_alloc_chunk(fs_info, space_info, force)) { 4625 spin_unlock(&space_info->lock); 4626 return 0; 4627 } else if (space_info->chunk_alloc) { 4628 wait_for_alloc = 1; 4629 } else { 4630 space_info->chunk_alloc = 1; 4631 } 4632 4633 spin_unlock(&space_info->lock); 4634 4635 mutex_lock(&fs_info->chunk_mutex); 4636 4637 /* 4638 * The chunk_mutex is held throughout the entirety of a chunk 4639 * allocation, so once we've acquired the chunk_mutex we know that the 4640 * other guy is done and we need to recheck and see if we should 4641 * allocate. 4642 */ 4643 if (wait_for_alloc) { 4644 mutex_unlock(&fs_info->chunk_mutex); 4645 wait_for_alloc = 0; 4646 goto again; 4647 } 4648 4649 trans->allocating_chunk = true; 4650 4651 /* 4652 * If we have mixed data/metadata chunks we want to make sure we keep 4653 * allocating mixed chunks instead of individual chunks. 4654 */ 4655 if (btrfs_mixed_space_info(space_info)) 4656 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4657 4658 /* 4659 * if we're doing a data chunk, go ahead and make sure that 4660 * we keep a reasonable number of metadata chunks allocated in the 4661 * FS as well. 4662 */ 4663 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4664 fs_info->data_chunk_allocations++; 4665 if (!(fs_info->data_chunk_allocations % 4666 fs_info->metadata_ratio)) 4667 force_metadata_allocation(fs_info); 4668 } 4669 4670 /* 4671 * Check if we have enough space in SYSTEM chunk because we may need 4672 * to update devices. 4673 */ 4674 check_system_chunk(trans, fs_info, flags); 4675 4676 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4677 trans->allocating_chunk = false; 4678 4679 spin_lock(&space_info->lock); 4680 if (ret < 0 && ret != -ENOSPC) 4681 goto out; 4682 if (ret) 4683 space_info->full = 1; 4684 else 4685 ret = 1; 4686 4687 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4688 out: 4689 space_info->chunk_alloc = 0; 4690 spin_unlock(&space_info->lock); 4691 mutex_unlock(&fs_info->chunk_mutex); 4692 /* 4693 * When we allocate a new chunk we reserve space in the chunk block 4694 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4695 * add new nodes/leafs to it if we end up needing to do it when 4696 * inserting the chunk item and updating device items as part of the 4697 * second phase of chunk allocation, performed by 4698 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4699 * large number of new block groups to create in our transaction 4700 * handle's new_bgs list to avoid exhausting the chunk block reserve 4701 * in extreme cases - like having a single transaction create many new 4702 * block groups when starting to write out the free space caches of all 4703 * the block groups that were made dirty during the lifetime of the 4704 * transaction. 4705 */ 4706 if (trans->can_flush_pending_bgs && 4707 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4708 btrfs_create_pending_block_groups(trans, fs_info); 4709 btrfs_trans_release_chunk_metadata(trans); 4710 } 4711 return ret; 4712 } 4713 4714 static int can_overcommit(struct btrfs_fs_info *fs_info, 4715 struct btrfs_space_info *space_info, u64 bytes, 4716 enum btrfs_reserve_flush_enum flush, 4717 bool system_chunk) 4718 { 4719 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4720 u64 profile; 4721 u64 space_size; 4722 u64 avail; 4723 u64 used; 4724 4725 /* Don't overcommit when in mixed mode. */ 4726 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4727 return 0; 4728 4729 if (system_chunk) 4730 profile = btrfs_system_alloc_profile(fs_info); 4731 else 4732 profile = btrfs_metadata_alloc_profile(fs_info); 4733 4734 used = btrfs_space_info_used(space_info, false); 4735 4736 /* 4737 * We only want to allow over committing if we have lots of actual space 4738 * free, but if we don't have enough space to handle the global reserve 4739 * space then we could end up having a real enospc problem when trying 4740 * to allocate a chunk or some other such important allocation. 4741 */ 4742 spin_lock(&global_rsv->lock); 4743 space_size = calc_global_rsv_need_space(global_rsv); 4744 spin_unlock(&global_rsv->lock); 4745 if (used + space_size >= space_info->total_bytes) 4746 return 0; 4747 4748 used += space_info->bytes_may_use; 4749 4750 avail = atomic64_read(&fs_info->free_chunk_space); 4751 4752 /* 4753 * If we have dup, raid1 or raid10 then only half of the free 4754 * space is actually useable. For raid56, the space info used 4755 * doesn't include the parity drive, so we don't have to 4756 * change the math 4757 */ 4758 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4759 BTRFS_BLOCK_GROUP_RAID1 | 4760 BTRFS_BLOCK_GROUP_RAID10)) 4761 avail >>= 1; 4762 4763 /* 4764 * If we aren't flushing all things, let us overcommit up to 4765 * 1/2th of the space. If we can flush, don't let us overcommit 4766 * too much, let it overcommit up to 1/8 of the space. 4767 */ 4768 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4769 avail >>= 3; 4770 else 4771 avail >>= 1; 4772 4773 if (used + bytes < space_info->total_bytes + avail) 4774 return 1; 4775 return 0; 4776 } 4777 4778 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4779 unsigned long nr_pages, int nr_items) 4780 { 4781 struct super_block *sb = fs_info->sb; 4782 4783 if (down_read_trylock(&sb->s_umount)) { 4784 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4785 up_read(&sb->s_umount); 4786 } else { 4787 /* 4788 * We needn't worry the filesystem going from r/w to r/o though 4789 * we don't acquire ->s_umount mutex, because the filesystem 4790 * should guarantee the delalloc inodes list be empty after 4791 * the filesystem is readonly(all dirty pages are written to 4792 * the disk). 4793 */ 4794 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4795 if (!current->journal_info) 4796 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4797 } 4798 } 4799 4800 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4801 u64 to_reclaim) 4802 { 4803 u64 bytes; 4804 u64 nr; 4805 4806 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4807 nr = div64_u64(to_reclaim, bytes); 4808 if (!nr) 4809 nr = 1; 4810 return nr; 4811 } 4812 4813 #define EXTENT_SIZE_PER_ITEM SZ_256K 4814 4815 /* 4816 * shrink metadata reservation for delalloc 4817 */ 4818 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4819 u64 orig, bool wait_ordered) 4820 { 4821 struct btrfs_space_info *space_info; 4822 struct btrfs_trans_handle *trans; 4823 u64 delalloc_bytes; 4824 u64 max_reclaim; 4825 u64 items; 4826 long time_left; 4827 unsigned long nr_pages; 4828 int loops; 4829 enum btrfs_reserve_flush_enum flush; 4830 4831 /* Calc the number of the pages we need flush for space reservation */ 4832 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4833 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4834 4835 trans = (struct btrfs_trans_handle *)current->journal_info; 4836 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4837 4838 delalloc_bytes = percpu_counter_sum_positive( 4839 &fs_info->delalloc_bytes); 4840 if (delalloc_bytes == 0) { 4841 if (trans) 4842 return; 4843 if (wait_ordered) 4844 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4845 return; 4846 } 4847 4848 loops = 0; 4849 while (delalloc_bytes && loops < 3) { 4850 max_reclaim = min(delalloc_bytes, to_reclaim); 4851 nr_pages = max_reclaim >> PAGE_SHIFT; 4852 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4853 /* 4854 * We need to wait for the async pages to actually start before 4855 * we do anything. 4856 */ 4857 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4858 if (!max_reclaim) 4859 goto skip_async; 4860 4861 if (max_reclaim <= nr_pages) 4862 max_reclaim = 0; 4863 else 4864 max_reclaim -= nr_pages; 4865 4866 wait_event(fs_info->async_submit_wait, 4867 atomic_read(&fs_info->async_delalloc_pages) <= 4868 (int)max_reclaim); 4869 skip_async: 4870 if (!trans) 4871 flush = BTRFS_RESERVE_FLUSH_ALL; 4872 else 4873 flush = BTRFS_RESERVE_NO_FLUSH; 4874 spin_lock(&space_info->lock); 4875 if (list_empty(&space_info->tickets) && 4876 list_empty(&space_info->priority_tickets)) { 4877 spin_unlock(&space_info->lock); 4878 break; 4879 } 4880 spin_unlock(&space_info->lock); 4881 4882 loops++; 4883 if (wait_ordered && !trans) { 4884 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4885 } else { 4886 time_left = schedule_timeout_killable(1); 4887 if (time_left) 4888 break; 4889 } 4890 delalloc_bytes = percpu_counter_sum_positive( 4891 &fs_info->delalloc_bytes); 4892 } 4893 } 4894 4895 struct reserve_ticket { 4896 u64 bytes; 4897 int error; 4898 struct list_head list; 4899 wait_queue_head_t wait; 4900 }; 4901 4902 /** 4903 * maybe_commit_transaction - possibly commit the transaction if its ok to 4904 * @root - the root we're allocating for 4905 * @bytes - the number of bytes we want to reserve 4906 * @force - force the commit 4907 * 4908 * This will check to make sure that committing the transaction will actually 4909 * get us somewhere and then commit the transaction if it does. Otherwise it 4910 * will return -ENOSPC. 4911 */ 4912 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4913 struct btrfs_space_info *space_info) 4914 { 4915 struct reserve_ticket *ticket = NULL; 4916 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4917 struct btrfs_trans_handle *trans; 4918 u64 bytes; 4919 4920 trans = (struct btrfs_trans_handle *)current->journal_info; 4921 if (trans) 4922 return -EAGAIN; 4923 4924 spin_lock(&space_info->lock); 4925 if (!list_empty(&space_info->priority_tickets)) 4926 ticket = list_first_entry(&space_info->priority_tickets, 4927 struct reserve_ticket, list); 4928 else if (!list_empty(&space_info->tickets)) 4929 ticket = list_first_entry(&space_info->tickets, 4930 struct reserve_ticket, list); 4931 bytes = (ticket) ? ticket->bytes : 0; 4932 spin_unlock(&space_info->lock); 4933 4934 if (!bytes) 4935 return 0; 4936 4937 /* See if there is enough pinned space to make this reservation */ 4938 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4939 bytes) >= 0) 4940 goto commit; 4941 4942 /* 4943 * See if there is some space in the delayed insertion reservation for 4944 * this reservation. 4945 */ 4946 if (space_info != delayed_rsv->space_info) 4947 return -ENOSPC; 4948 4949 spin_lock(&delayed_rsv->lock); 4950 if (delayed_rsv->size > bytes) 4951 bytes = 0; 4952 else 4953 bytes -= delayed_rsv->size; 4954 spin_unlock(&delayed_rsv->lock); 4955 4956 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4957 bytes) < 0) { 4958 return -ENOSPC; 4959 } 4960 4961 commit: 4962 trans = btrfs_join_transaction(fs_info->extent_root); 4963 if (IS_ERR(trans)) 4964 return -ENOSPC; 4965 4966 return btrfs_commit_transaction(trans); 4967 } 4968 4969 /* 4970 * Try to flush some data based on policy set by @state. This is only advisory 4971 * and may fail for various reasons. The caller is supposed to examine the 4972 * state of @space_info to detect the outcome. 4973 */ 4974 static void flush_space(struct btrfs_fs_info *fs_info, 4975 struct btrfs_space_info *space_info, u64 num_bytes, 4976 int state) 4977 { 4978 struct btrfs_root *root = fs_info->extent_root; 4979 struct btrfs_trans_handle *trans; 4980 int nr; 4981 int ret = 0; 4982 4983 switch (state) { 4984 case FLUSH_DELAYED_ITEMS_NR: 4985 case FLUSH_DELAYED_ITEMS: 4986 if (state == FLUSH_DELAYED_ITEMS_NR) 4987 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4988 else 4989 nr = -1; 4990 4991 trans = btrfs_join_transaction(root); 4992 if (IS_ERR(trans)) { 4993 ret = PTR_ERR(trans); 4994 break; 4995 } 4996 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr); 4997 btrfs_end_transaction(trans); 4998 break; 4999 case FLUSH_DELALLOC: 5000 case FLUSH_DELALLOC_WAIT: 5001 shrink_delalloc(fs_info, num_bytes * 2, num_bytes, 5002 state == FLUSH_DELALLOC_WAIT); 5003 break; 5004 case ALLOC_CHUNK: 5005 trans = btrfs_join_transaction(root); 5006 if (IS_ERR(trans)) { 5007 ret = PTR_ERR(trans); 5008 break; 5009 } 5010 ret = do_chunk_alloc(trans, fs_info, 5011 btrfs_metadata_alloc_profile(fs_info), 5012 CHUNK_ALLOC_NO_FORCE); 5013 btrfs_end_transaction(trans); 5014 if (ret > 0 || ret == -ENOSPC) 5015 ret = 0; 5016 break; 5017 case COMMIT_TRANS: 5018 ret = may_commit_transaction(fs_info, space_info); 5019 break; 5020 default: 5021 ret = -ENOSPC; 5022 break; 5023 } 5024 5025 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, 5026 ret); 5027 return; 5028 } 5029 5030 static inline u64 5031 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 5032 struct btrfs_space_info *space_info, 5033 bool system_chunk) 5034 { 5035 struct reserve_ticket *ticket; 5036 u64 used; 5037 u64 expected; 5038 u64 to_reclaim = 0; 5039 5040 list_for_each_entry(ticket, &space_info->tickets, list) 5041 to_reclaim += ticket->bytes; 5042 list_for_each_entry(ticket, &space_info->priority_tickets, list) 5043 to_reclaim += ticket->bytes; 5044 if (to_reclaim) 5045 return to_reclaim; 5046 5047 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 5048 if (can_overcommit(fs_info, space_info, to_reclaim, 5049 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5050 return 0; 5051 5052 used = btrfs_space_info_used(space_info, true); 5053 5054 if (can_overcommit(fs_info, space_info, SZ_1M, 5055 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 5056 expected = div_factor_fine(space_info->total_bytes, 95); 5057 else 5058 expected = div_factor_fine(space_info->total_bytes, 90); 5059 5060 if (used > expected) 5061 to_reclaim = used - expected; 5062 else 5063 to_reclaim = 0; 5064 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5065 space_info->bytes_reserved); 5066 return to_reclaim; 5067 } 5068 5069 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5070 struct btrfs_space_info *space_info, 5071 u64 used, bool system_chunk) 5072 { 5073 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5074 5075 /* If we're just plain full then async reclaim just slows us down. */ 5076 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5077 return 0; 5078 5079 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5080 system_chunk)) 5081 return 0; 5082 5083 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5084 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5085 } 5086 5087 static void wake_all_tickets(struct list_head *head) 5088 { 5089 struct reserve_ticket *ticket; 5090 5091 while (!list_empty(head)) { 5092 ticket = list_first_entry(head, struct reserve_ticket, list); 5093 list_del_init(&ticket->list); 5094 ticket->error = -ENOSPC; 5095 wake_up(&ticket->wait); 5096 } 5097 } 5098 5099 /* 5100 * This is for normal flushers, we can wait all goddamned day if we want to. We 5101 * will loop and continuously try to flush as long as we are making progress. 5102 * We count progress as clearing off tickets each time we have to loop. 5103 */ 5104 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5105 { 5106 struct btrfs_fs_info *fs_info; 5107 struct btrfs_space_info *space_info; 5108 u64 to_reclaim; 5109 int flush_state; 5110 int commit_cycles = 0; 5111 u64 last_tickets_id; 5112 5113 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5114 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5115 5116 spin_lock(&space_info->lock); 5117 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5118 false); 5119 if (!to_reclaim) { 5120 space_info->flush = 0; 5121 spin_unlock(&space_info->lock); 5122 return; 5123 } 5124 last_tickets_id = space_info->tickets_id; 5125 spin_unlock(&space_info->lock); 5126 5127 flush_state = FLUSH_DELAYED_ITEMS_NR; 5128 do { 5129 flush_space(fs_info, space_info, to_reclaim, flush_state); 5130 spin_lock(&space_info->lock); 5131 if (list_empty(&space_info->tickets)) { 5132 space_info->flush = 0; 5133 spin_unlock(&space_info->lock); 5134 return; 5135 } 5136 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5137 space_info, 5138 false); 5139 if (last_tickets_id == space_info->tickets_id) { 5140 flush_state++; 5141 } else { 5142 last_tickets_id = space_info->tickets_id; 5143 flush_state = FLUSH_DELAYED_ITEMS_NR; 5144 if (commit_cycles) 5145 commit_cycles--; 5146 } 5147 5148 if (flush_state > COMMIT_TRANS) { 5149 commit_cycles++; 5150 if (commit_cycles > 2) { 5151 wake_all_tickets(&space_info->tickets); 5152 space_info->flush = 0; 5153 } else { 5154 flush_state = FLUSH_DELAYED_ITEMS_NR; 5155 } 5156 } 5157 spin_unlock(&space_info->lock); 5158 } while (flush_state <= COMMIT_TRANS); 5159 } 5160 5161 void btrfs_init_async_reclaim_work(struct work_struct *work) 5162 { 5163 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5164 } 5165 5166 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5167 struct btrfs_space_info *space_info, 5168 struct reserve_ticket *ticket) 5169 { 5170 u64 to_reclaim; 5171 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5172 5173 spin_lock(&space_info->lock); 5174 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5175 false); 5176 if (!to_reclaim) { 5177 spin_unlock(&space_info->lock); 5178 return; 5179 } 5180 spin_unlock(&space_info->lock); 5181 5182 do { 5183 flush_space(fs_info, space_info, to_reclaim, flush_state); 5184 flush_state++; 5185 spin_lock(&space_info->lock); 5186 if (ticket->bytes == 0) { 5187 spin_unlock(&space_info->lock); 5188 return; 5189 } 5190 spin_unlock(&space_info->lock); 5191 5192 /* 5193 * Priority flushers can't wait on delalloc without 5194 * deadlocking. 5195 */ 5196 if (flush_state == FLUSH_DELALLOC || 5197 flush_state == FLUSH_DELALLOC_WAIT) 5198 flush_state = ALLOC_CHUNK; 5199 } while (flush_state < COMMIT_TRANS); 5200 } 5201 5202 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5203 struct btrfs_space_info *space_info, 5204 struct reserve_ticket *ticket, u64 orig_bytes) 5205 5206 { 5207 DEFINE_WAIT(wait); 5208 int ret = 0; 5209 5210 spin_lock(&space_info->lock); 5211 while (ticket->bytes > 0 && ticket->error == 0) { 5212 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5213 if (ret) { 5214 ret = -EINTR; 5215 break; 5216 } 5217 spin_unlock(&space_info->lock); 5218 5219 schedule(); 5220 5221 finish_wait(&ticket->wait, &wait); 5222 spin_lock(&space_info->lock); 5223 } 5224 if (!ret) 5225 ret = ticket->error; 5226 if (!list_empty(&ticket->list)) 5227 list_del_init(&ticket->list); 5228 if (ticket->bytes && ticket->bytes < orig_bytes) { 5229 u64 num_bytes = orig_bytes - ticket->bytes; 5230 space_info->bytes_may_use -= num_bytes; 5231 trace_btrfs_space_reservation(fs_info, "space_info", 5232 space_info->flags, num_bytes, 0); 5233 } 5234 spin_unlock(&space_info->lock); 5235 5236 return ret; 5237 } 5238 5239 /** 5240 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5241 * @root - the root we're allocating for 5242 * @space_info - the space info we want to allocate from 5243 * @orig_bytes - the number of bytes we want 5244 * @flush - whether or not we can flush to make our reservation 5245 * 5246 * This will reserve orig_bytes number of bytes from the space info associated 5247 * with the block_rsv. If there is not enough space it will make an attempt to 5248 * flush out space to make room. It will do this by flushing delalloc if 5249 * possible or committing the transaction. If flush is 0 then no attempts to 5250 * regain reservations will be made and this will fail if there is not enough 5251 * space already. 5252 */ 5253 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5254 struct btrfs_space_info *space_info, 5255 u64 orig_bytes, 5256 enum btrfs_reserve_flush_enum flush, 5257 bool system_chunk) 5258 { 5259 struct reserve_ticket ticket; 5260 u64 used; 5261 int ret = 0; 5262 5263 ASSERT(orig_bytes); 5264 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5265 5266 spin_lock(&space_info->lock); 5267 ret = -ENOSPC; 5268 used = btrfs_space_info_used(space_info, true); 5269 5270 /* 5271 * If we have enough space then hooray, make our reservation and carry 5272 * on. If not see if we can overcommit, and if we can, hooray carry on. 5273 * If not things get more complicated. 5274 */ 5275 if (used + orig_bytes <= space_info->total_bytes) { 5276 space_info->bytes_may_use += orig_bytes; 5277 trace_btrfs_space_reservation(fs_info, "space_info", 5278 space_info->flags, orig_bytes, 1); 5279 ret = 0; 5280 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5281 system_chunk)) { 5282 space_info->bytes_may_use += orig_bytes; 5283 trace_btrfs_space_reservation(fs_info, "space_info", 5284 space_info->flags, orig_bytes, 1); 5285 ret = 0; 5286 } 5287 5288 /* 5289 * If we couldn't make a reservation then setup our reservation ticket 5290 * and kick the async worker if it's not already running. 5291 * 5292 * If we are a priority flusher then we just need to add our ticket to 5293 * the list and we will do our own flushing further down. 5294 */ 5295 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5296 ticket.bytes = orig_bytes; 5297 ticket.error = 0; 5298 init_waitqueue_head(&ticket.wait); 5299 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5300 list_add_tail(&ticket.list, &space_info->tickets); 5301 if (!space_info->flush) { 5302 space_info->flush = 1; 5303 trace_btrfs_trigger_flush(fs_info, 5304 space_info->flags, 5305 orig_bytes, flush, 5306 "enospc"); 5307 queue_work(system_unbound_wq, 5308 &fs_info->async_reclaim_work); 5309 } 5310 } else { 5311 list_add_tail(&ticket.list, 5312 &space_info->priority_tickets); 5313 } 5314 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5315 used += orig_bytes; 5316 /* 5317 * We will do the space reservation dance during log replay, 5318 * which means we won't have fs_info->fs_root set, so don't do 5319 * the async reclaim as we will panic. 5320 */ 5321 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5322 need_do_async_reclaim(fs_info, space_info, 5323 used, system_chunk) && 5324 !work_busy(&fs_info->async_reclaim_work)) { 5325 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5326 orig_bytes, flush, "preempt"); 5327 queue_work(system_unbound_wq, 5328 &fs_info->async_reclaim_work); 5329 } 5330 } 5331 spin_unlock(&space_info->lock); 5332 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5333 return ret; 5334 5335 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5336 return wait_reserve_ticket(fs_info, space_info, &ticket, 5337 orig_bytes); 5338 5339 ret = 0; 5340 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5341 spin_lock(&space_info->lock); 5342 if (ticket.bytes) { 5343 if (ticket.bytes < orig_bytes) { 5344 u64 num_bytes = orig_bytes - ticket.bytes; 5345 space_info->bytes_may_use -= num_bytes; 5346 trace_btrfs_space_reservation(fs_info, "space_info", 5347 space_info->flags, 5348 num_bytes, 0); 5349 5350 } 5351 list_del_init(&ticket.list); 5352 ret = -ENOSPC; 5353 } 5354 spin_unlock(&space_info->lock); 5355 ASSERT(list_empty(&ticket.list)); 5356 return ret; 5357 } 5358 5359 /** 5360 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5361 * @root - the root we're allocating for 5362 * @block_rsv - the block_rsv we're allocating for 5363 * @orig_bytes - the number of bytes we want 5364 * @flush - whether or not we can flush to make our reservation 5365 * 5366 * This will reserve orgi_bytes number of bytes from the space info associated 5367 * with the block_rsv. If there is not enough space it will make an attempt to 5368 * flush out space to make room. It will do this by flushing delalloc if 5369 * possible or committing the transaction. If flush is 0 then no attempts to 5370 * regain reservations will be made and this will fail if there is not enough 5371 * space already. 5372 */ 5373 static int reserve_metadata_bytes(struct btrfs_root *root, 5374 struct btrfs_block_rsv *block_rsv, 5375 u64 orig_bytes, 5376 enum btrfs_reserve_flush_enum flush) 5377 { 5378 struct btrfs_fs_info *fs_info = root->fs_info; 5379 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5380 int ret; 5381 bool system_chunk = (root == fs_info->chunk_root); 5382 5383 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5384 orig_bytes, flush, system_chunk); 5385 if (ret == -ENOSPC && 5386 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5387 if (block_rsv != global_rsv && 5388 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5389 ret = 0; 5390 } 5391 if (ret == -ENOSPC) 5392 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5393 block_rsv->space_info->flags, 5394 orig_bytes, 1); 5395 return ret; 5396 } 5397 5398 static struct btrfs_block_rsv *get_block_rsv( 5399 const struct btrfs_trans_handle *trans, 5400 const struct btrfs_root *root) 5401 { 5402 struct btrfs_fs_info *fs_info = root->fs_info; 5403 struct btrfs_block_rsv *block_rsv = NULL; 5404 5405 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5406 (root == fs_info->csum_root && trans->adding_csums) || 5407 (root == fs_info->uuid_root)) 5408 block_rsv = trans->block_rsv; 5409 5410 if (!block_rsv) 5411 block_rsv = root->block_rsv; 5412 5413 if (!block_rsv) 5414 block_rsv = &fs_info->empty_block_rsv; 5415 5416 return block_rsv; 5417 } 5418 5419 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5420 u64 num_bytes) 5421 { 5422 int ret = -ENOSPC; 5423 spin_lock(&block_rsv->lock); 5424 if (block_rsv->reserved >= num_bytes) { 5425 block_rsv->reserved -= num_bytes; 5426 if (block_rsv->reserved < block_rsv->size) 5427 block_rsv->full = 0; 5428 ret = 0; 5429 } 5430 spin_unlock(&block_rsv->lock); 5431 return ret; 5432 } 5433 5434 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5435 u64 num_bytes, int update_size) 5436 { 5437 spin_lock(&block_rsv->lock); 5438 block_rsv->reserved += num_bytes; 5439 if (update_size) 5440 block_rsv->size += num_bytes; 5441 else if (block_rsv->reserved >= block_rsv->size) 5442 block_rsv->full = 1; 5443 spin_unlock(&block_rsv->lock); 5444 } 5445 5446 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5447 struct btrfs_block_rsv *dest, u64 num_bytes, 5448 int min_factor) 5449 { 5450 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5451 u64 min_bytes; 5452 5453 if (global_rsv->space_info != dest->space_info) 5454 return -ENOSPC; 5455 5456 spin_lock(&global_rsv->lock); 5457 min_bytes = div_factor(global_rsv->size, min_factor); 5458 if (global_rsv->reserved < min_bytes + num_bytes) { 5459 spin_unlock(&global_rsv->lock); 5460 return -ENOSPC; 5461 } 5462 global_rsv->reserved -= num_bytes; 5463 if (global_rsv->reserved < global_rsv->size) 5464 global_rsv->full = 0; 5465 spin_unlock(&global_rsv->lock); 5466 5467 block_rsv_add_bytes(dest, num_bytes, 1); 5468 return 0; 5469 } 5470 5471 /* 5472 * This is for space we already have accounted in space_info->bytes_may_use, so 5473 * basically when we're returning space from block_rsv's. 5474 */ 5475 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5476 struct btrfs_space_info *space_info, 5477 u64 num_bytes) 5478 { 5479 struct reserve_ticket *ticket; 5480 struct list_head *head; 5481 u64 used; 5482 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5483 bool check_overcommit = false; 5484 5485 spin_lock(&space_info->lock); 5486 head = &space_info->priority_tickets; 5487 5488 /* 5489 * If we are over our limit then we need to check and see if we can 5490 * overcommit, and if we can't then we just need to free up our space 5491 * and not satisfy any requests. 5492 */ 5493 used = btrfs_space_info_used(space_info, true); 5494 if (used - num_bytes >= space_info->total_bytes) 5495 check_overcommit = true; 5496 again: 5497 while (!list_empty(head) && num_bytes) { 5498 ticket = list_first_entry(head, struct reserve_ticket, 5499 list); 5500 /* 5501 * We use 0 bytes because this space is already reserved, so 5502 * adding the ticket space would be a double count. 5503 */ 5504 if (check_overcommit && 5505 !can_overcommit(fs_info, space_info, 0, flush, false)) 5506 break; 5507 if (num_bytes >= ticket->bytes) { 5508 list_del_init(&ticket->list); 5509 num_bytes -= ticket->bytes; 5510 ticket->bytes = 0; 5511 space_info->tickets_id++; 5512 wake_up(&ticket->wait); 5513 } else { 5514 ticket->bytes -= num_bytes; 5515 num_bytes = 0; 5516 } 5517 } 5518 5519 if (num_bytes && head == &space_info->priority_tickets) { 5520 head = &space_info->tickets; 5521 flush = BTRFS_RESERVE_FLUSH_ALL; 5522 goto again; 5523 } 5524 space_info->bytes_may_use -= num_bytes; 5525 trace_btrfs_space_reservation(fs_info, "space_info", 5526 space_info->flags, num_bytes, 0); 5527 spin_unlock(&space_info->lock); 5528 } 5529 5530 /* 5531 * This is for newly allocated space that isn't accounted in 5532 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5533 * we use this helper. 5534 */ 5535 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5536 struct btrfs_space_info *space_info, 5537 u64 num_bytes) 5538 { 5539 struct reserve_ticket *ticket; 5540 struct list_head *head = &space_info->priority_tickets; 5541 5542 again: 5543 while (!list_empty(head) && num_bytes) { 5544 ticket = list_first_entry(head, struct reserve_ticket, 5545 list); 5546 if (num_bytes >= ticket->bytes) { 5547 trace_btrfs_space_reservation(fs_info, "space_info", 5548 space_info->flags, 5549 ticket->bytes, 1); 5550 list_del_init(&ticket->list); 5551 num_bytes -= ticket->bytes; 5552 space_info->bytes_may_use += ticket->bytes; 5553 ticket->bytes = 0; 5554 space_info->tickets_id++; 5555 wake_up(&ticket->wait); 5556 } else { 5557 trace_btrfs_space_reservation(fs_info, "space_info", 5558 space_info->flags, 5559 num_bytes, 1); 5560 space_info->bytes_may_use += num_bytes; 5561 ticket->bytes -= num_bytes; 5562 num_bytes = 0; 5563 } 5564 } 5565 5566 if (num_bytes && head == &space_info->priority_tickets) { 5567 head = &space_info->tickets; 5568 goto again; 5569 } 5570 } 5571 5572 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5573 struct btrfs_block_rsv *block_rsv, 5574 struct btrfs_block_rsv *dest, u64 num_bytes) 5575 { 5576 struct btrfs_space_info *space_info = block_rsv->space_info; 5577 u64 ret; 5578 5579 spin_lock(&block_rsv->lock); 5580 if (num_bytes == (u64)-1) 5581 num_bytes = block_rsv->size; 5582 block_rsv->size -= num_bytes; 5583 if (block_rsv->reserved >= block_rsv->size) { 5584 num_bytes = block_rsv->reserved - block_rsv->size; 5585 block_rsv->reserved = block_rsv->size; 5586 block_rsv->full = 1; 5587 } else { 5588 num_bytes = 0; 5589 } 5590 spin_unlock(&block_rsv->lock); 5591 5592 ret = num_bytes; 5593 if (num_bytes > 0) { 5594 if (dest) { 5595 spin_lock(&dest->lock); 5596 if (!dest->full) { 5597 u64 bytes_to_add; 5598 5599 bytes_to_add = dest->size - dest->reserved; 5600 bytes_to_add = min(num_bytes, bytes_to_add); 5601 dest->reserved += bytes_to_add; 5602 if (dest->reserved >= dest->size) 5603 dest->full = 1; 5604 num_bytes -= bytes_to_add; 5605 } 5606 spin_unlock(&dest->lock); 5607 } 5608 if (num_bytes) 5609 space_info_add_old_bytes(fs_info, space_info, 5610 num_bytes); 5611 } 5612 return ret; 5613 } 5614 5615 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5616 struct btrfs_block_rsv *dst, u64 num_bytes, 5617 int update_size) 5618 { 5619 int ret; 5620 5621 ret = block_rsv_use_bytes(src, num_bytes); 5622 if (ret) 5623 return ret; 5624 5625 block_rsv_add_bytes(dst, num_bytes, update_size); 5626 return 0; 5627 } 5628 5629 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5630 { 5631 memset(rsv, 0, sizeof(*rsv)); 5632 spin_lock_init(&rsv->lock); 5633 rsv->type = type; 5634 } 5635 5636 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 5637 struct btrfs_block_rsv *rsv, 5638 unsigned short type) 5639 { 5640 btrfs_init_block_rsv(rsv, type); 5641 rsv->space_info = __find_space_info(fs_info, 5642 BTRFS_BLOCK_GROUP_METADATA); 5643 } 5644 5645 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5646 unsigned short type) 5647 { 5648 struct btrfs_block_rsv *block_rsv; 5649 5650 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5651 if (!block_rsv) 5652 return NULL; 5653 5654 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 5655 return block_rsv; 5656 } 5657 5658 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5659 struct btrfs_block_rsv *rsv) 5660 { 5661 if (!rsv) 5662 return; 5663 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5664 kfree(rsv); 5665 } 5666 5667 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5668 { 5669 kfree(rsv); 5670 } 5671 5672 int btrfs_block_rsv_add(struct btrfs_root *root, 5673 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5674 enum btrfs_reserve_flush_enum flush) 5675 { 5676 int ret; 5677 5678 if (num_bytes == 0) 5679 return 0; 5680 5681 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5682 if (!ret) { 5683 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5684 return 0; 5685 } 5686 5687 return ret; 5688 } 5689 5690 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5691 { 5692 u64 num_bytes = 0; 5693 int ret = -ENOSPC; 5694 5695 if (!block_rsv) 5696 return 0; 5697 5698 spin_lock(&block_rsv->lock); 5699 num_bytes = div_factor(block_rsv->size, min_factor); 5700 if (block_rsv->reserved >= num_bytes) 5701 ret = 0; 5702 spin_unlock(&block_rsv->lock); 5703 5704 return ret; 5705 } 5706 5707 int btrfs_block_rsv_refill(struct btrfs_root *root, 5708 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5709 enum btrfs_reserve_flush_enum flush) 5710 { 5711 u64 num_bytes = 0; 5712 int ret = -ENOSPC; 5713 5714 if (!block_rsv) 5715 return 0; 5716 5717 spin_lock(&block_rsv->lock); 5718 num_bytes = min_reserved; 5719 if (block_rsv->reserved >= num_bytes) 5720 ret = 0; 5721 else 5722 num_bytes -= block_rsv->reserved; 5723 spin_unlock(&block_rsv->lock); 5724 5725 if (!ret) 5726 return 0; 5727 5728 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5729 if (!ret) { 5730 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5731 return 0; 5732 } 5733 5734 return ret; 5735 } 5736 5737 /** 5738 * btrfs_inode_rsv_refill - refill the inode block rsv. 5739 * @inode - the inode we are refilling. 5740 * @flush - the flusing restriction. 5741 * 5742 * Essentially the same as btrfs_block_rsv_refill, except it uses the 5743 * block_rsv->size as the minimum size. We'll either refill the missing amount 5744 * or return if we already have enough space. This will also handle the resreve 5745 * tracepoint for the reserved amount. 5746 */ 5747 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, 5748 enum btrfs_reserve_flush_enum flush) 5749 { 5750 struct btrfs_root *root = inode->root; 5751 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5752 u64 num_bytes = 0; 5753 int ret = -ENOSPC; 5754 5755 spin_lock(&block_rsv->lock); 5756 if (block_rsv->reserved < block_rsv->size) 5757 num_bytes = block_rsv->size - block_rsv->reserved; 5758 spin_unlock(&block_rsv->lock); 5759 5760 if (num_bytes == 0) 5761 return 0; 5762 5763 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5764 if (!ret) { 5765 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5766 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5767 btrfs_ino(inode), num_bytes, 1); 5768 } 5769 return ret; 5770 } 5771 5772 /** 5773 * btrfs_inode_rsv_release - release any excessive reservation. 5774 * @inode - the inode we need to release from. 5775 * 5776 * This is the same as btrfs_block_rsv_release, except that it handles the 5777 * tracepoint for the reservation. 5778 */ 5779 static void btrfs_inode_rsv_release(struct btrfs_inode *inode) 5780 { 5781 struct btrfs_fs_info *fs_info = inode->root->fs_info; 5782 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5783 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 5784 u64 released = 0; 5785 5786 /* 5787 * Since we statically set the block_rsv->size we just want to say we 5788 * are releasing 0 bytes, and then we'll just get the reservation over 5789 * the size free'd. 5790 */ 5791 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0); 5792 if (released > 0) 5793 trace_btrfs_space_reservation(fs_info, "delalloc", 5794 btrfs_ino(inode), released, 0); 5795 } 5796 5797 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5798 struct btrfs_block_rsv *block_rsv, 5799 u64 num_bytes) 5800 { 5801 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5802 5803 if (global_rsv == block_rsv || 5804 block_rsv->space_info != global_rsv->space_info) 5805 global_rsv = NULL; 5806 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5807 } 5808 5809 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5810 { 5811 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5812 struct btrfs_space_info *sinfo = block_rsv->space_info; 5813 u64 num_bytes; 5814 5815 /* 5816 * The global block rsv is based on the size of the extent tree, the 5817 * checksum tree and the root tree. If the fs is empty we want to set 5818 * it to a minimal amount for safety. 5819 */ 5820 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5821 btrfs_root_used(&fs_info->csum_root->root_item) + 5822 btrfs_root_used(&fs_info->tree_root->root_item); 5823 num_bytes = max_t(u64, num_bytes, SZ_16M); 5824 5825 spin_lock(&sinfo->lock); 5826 spin_lock(&block_rsv->lock); 5827 5828 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5829 5830 if (block_rsv->reserved < block_rsv->size) { 5831 num_bytes = btrfs_space_info_used(sinfo, true); 5832 if (sinfo->total_bytes > num_bytes) { 5833 num_bytes = sinfo->total_bytes - num_bytes; 5834 num_bytes = min(num_bytes, 5835 block_rsv->size - block_rsv->reserved); 5836 block_rsv->reserved += num_bytes; 5837 sinfo->bytes_may_use += num_bytes; 5838 trace_btrfs_space_reservation(fs_info, "space_info", 5839 sinfo->flags, num_bytes, 5840 1); 5841 } 5842 } else if (block_rsv->reserved > block_rsv->size) { 5843 num_bytes = block_rsv->reserved - block_rsv->size; 5844 sinfo->bytes_may_use -= num_bytes; 5845 trace_btrfs_space_reservation(fs_info, "space_info", 5846 sinfo->flags, num_bytes, 0); 5847 block_rsv->reserved = block_rsv->size; 5848 } 5849 5850 if (block_rsv->reserved == block_rsv->size) 5851 block_rsv->full = 1; 5852 else 5853 block_rsv->full = 0; 5854 5855 spin_unlock(&block_rsv->lock); 5856 spin_unlock(&sinfo->lock); 5857 } 5858 5859 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5860 { 5861 struct btrfs_space_info *space_info; 5862 5863 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5864 fs_info->chunk_block_rsv.space_info = space_info; 5865 5866 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5867 fs_info->global_block_rsv.space_info = space_info; 5868 fs_info->trans_block_rsv.space_info = space_info; 5869 fs_info->empty_block_rsv.space_info = space_info; 5870 fs_info->delayed_block_rsv.space_info = space_info; 5871 5872 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5873 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5874 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5875 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5876 if (fs_info->quota_root) 5877 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5878 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5879 5880 update_global_block_rsv(fs_info); 5881 } 5882 5883 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5884 { 5885 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5886 (u64)-1); 5887 WARN_ON(fs_info->trans_block_rsv.size > 0); 5888 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5889 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5890 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5891 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5892 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5893 } 5894 5895 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5896 struct btrfs_fs_info *fs_info) 5897 { 5898 if (!trans->block_rsv) { 5899 ASSERT(!trans->bytes_reserved); 5900 return; 5901 } 5902 5903 if (!trans->bytes_reserved) 5904 return; 5905 5906 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 5907 trace_btrfs_space_reservation(fs_info, "transaction", 5908 trans->transid, trans->bytes_reserved, 0); 5909 btrfs_block_rsv_release(fs_info, trans->block_rsv, 5910 trans->bytes_reserved); 5911 trans->bytes_reserved = 0; 5912 } 5913 5914 /* 5915 * To be called after all the new block groups attached to the transaction 5916 * handle have been created (btrfs_create_pending_block_groups()). 5917 */ 5918 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5919 { 5920 struct btrfs_fs_info *fs_info = trans->fs_info; 5921 5922 if (!trans->chunk_bytes_reserved) 5923 return; 5924 5925 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5926 5927 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5928 trans->chunk_bytes_reserved); 5929 trans->chunk_bytes_reserved = 0; 5930 } 5931 5932 /* Can only return 0 or -ENOSPC */ 5933 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5934 struct btrfs_inode *inode) 5935 { 5936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5937 struct btrfs_root *root = inode->root; 5938 /* 5939 * We always use trans->block_rsv here as we will have reserved space 5940 * for our orphan when starting the transaction, using get_block_rsv() 5941 * here will sometimes make us choose the wrong block rsv as we could be 5942 * doing a reloc inode for a non refcounted root. 5943 */ 5944 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5945 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5946 5947 /* 5948 * We need to hold space in order to delete our orphan item once we've 5949 * added it, so this takes the reservation so we can release it later 5950 * when we are truly done with the orphan item. 5951 */ 5952 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5953 5954 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5955 num_bytes, 1); 5956 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5957 } 5958 5959 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5960 { 5961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5962 struct btrfs_root *root = inode->root; 5963 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5964 5965 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5966 num_bytes, 0); 5967 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5968 } 5969 5970 /* 5971 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5972 * root: the root of the parent directory 5973 * rsv: block reservation 5974 * items: the number of items that we need do reservation 5975 * qgroup_reserved: used to return the reserved size in qgroup 5976 * 5977 * This function is used to reserve the space for snapshot/subvolume 5978 * creation and deletion. Those operations are different with the 5979 * common file/directory operations, they change two fs/file trees 5980 * and root tree, the number of items that the qgroup reserves is 5981 * different with the free space reservation. So we can not use 5982 * the space reservation mechanism in start_transaction(). 5983 */ 5984 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5985 struct btrfs_block_rsv *rsv, 5986 int items, 5987 u64 *qgroup_reserved, 5988 bool use_global_rsv) 5989 { 5990 u64 num_bytes; 5991 int ret; 5992 struct btrfs_fs_info *fs_info = root->fs_info; 5993 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5994 5995 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5996 /* One for parent inode, two for dir entries */ 5997 num_bytes = 3 * fs_info->nodesize; 5998 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true); 5999 if (ret) 6000 return ret; 6001 } else { 6002 num_bytes = 0; 6003 } 6004 6005 *qgroup_reserved = num_bytes; 6006 6007 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 6008 rsv->space_info = __find_space_info(fs_info, 6009 BTRFS_BLOCK_GROUP_METADATA); 6010 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 6011 BTRFS_RESERVE_FLUSH_ALL); 6012 6013 if (ret == -ENOSPC && use_global_rsv) 6014 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 6015 6016 if (ret && *qgroup_reserved) 6017 btrfs_qgroup_free_meta(root, *qgroup_reserved); 6018 6019 return ret; 6020 } 6021 6022 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 6023 struct btrfs_block_rsv *rsv) 6024 { 6025 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 6026 } 6027 6028 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 6029 struct btrfs_inode *inode) 6030 { 6031 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 6032 u64 reserve_size = 0; 6033 u64 csum_leaves; 6034 unsigned outstanding_extents; 6035 6036 lockdep_assert_held(&inode->lock); 6037 outstanding_extents = inode->outstanding_extents; 6038 if (outstanding_extents) 6039 reserve_size = btrfs_calc_trans_metadata_size(fs_info, 6040 outstanding_extents + 1); 6041 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 6042 inode->csum_bytes); 6043 reserve_size += btrfs_calc_trans_metadata_size(fs_info, 6044 csum_leaves); 6045 6046 spin_lock(&block_rsv->lock); 6047 block_rsv->size = reserve_size; 6048 spin_unlock(&block_rsv->lock); 6049 } 6050 6051 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 6052 { 6053 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6054 struct btrfs_root *root = inode->root; 6055 unsigned nr_extents; 6056 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 6057 int ret = 0; 6058 bool delalloc_lock = true; 6059 6060 /* If we are a free space inode we need to not flush since we will be in 6061 * the middle of a transaction commit. We also don't need the delalloc 6062 * mutex since we won't race with anybody. We need this mostly to make 6063 * lockdep shut its filthy mouth. 6064 * 6065 * If we have a transaction open (can happen if we call truncate_block 6066 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6067 */ 6068 if (btrfs_is_free_space_inode(inode)) { 6069 flush = BTRFS_RESERVE_NO_FLUSH; 6070 delalloc_lock = false; 6071 } else if (current->journal_info) { 6072 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6073 } 6074 6075 if (flush != BTRFS_RESERVE_NO_FLUSH && 6076 btrfs_transaction_in_commit(fs_info)) 6077 schedule_timeout(1); 6078 6079 if (delalloc_lock) 6080 mutex_lock(&inode->delalloc_mutex); 6081 6082 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6083 6084 /* Add our new extents and calculate the new rsv size. */ 6085 spin_lock(&inode->lock); 6086 nr_extents = count_max_extents(num_bytes); 6087 btrfs_mod_outstanding_extents(inode, nr_extents); 6088 inode->csum_bytes += num_bytes; 6089 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6090 spin_unlock(&inode->lock); 6091 6092 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6093 ret = btrfs_qgroup_reserve_meta(root, 6094 nr_extents * fs_info->nodesize, true); 6095 if (ret) 6096 goto out_fail; 6097 } 6098 6099 ret = btrfs_inode_rsv_refill(inode, flush); 6100 if (unlikely(ret)) { 6101 btrfs_qgroup_free_meta(root, 6102 nr_extents * fs_info->nodesize); 6103 goto out_fail; 6104 } 6105 6106 if (delalloc_lock) 6107 mutex_unlock(&inode->delalloc_mutex); 6108 return 0; 6109 6110 out_fail: 6111 spin_lock(&inode->lock); 6112 nr_extents = count_max_extents(num_bytes); 6113 btrfs_mod_outstanding_extents(inode, -nr_extents); 6114 inode->csum_bytes -= num_bytes; 6115 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6116 spin_unlock(&inode->lock); 6117 6118 btrfs_inode_rsv_release(inode); 6119 if (delalloc_lock) 6120 mutex_unlock(&inode->delalloc_mutex); 6121 return ret; 6122 } 6123 6124 /** 6125 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6126 * @inode: the inode to release the reservation for. 6127 * @num_bytes: the number of bytes we are releasing. 6128 * 6129 * This will release the metadata reservation for an inode. This can be called 6130 * once we complete IO for a given set of bytes to release their metadata 6131 * reservations, or on error for the same reason. 6132 */ 6133 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes) 6134 { 6135 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6136 6137 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6138 spin_lock(&inode->lock); 6139 inode->csum_bytes -= num_bytes; 6140 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6141 spin_unlock(&inode->lock); 6142 6143 if (btrfs_is_testing(fs_info)) 6144 return; 6145 6146 btrfs_inode_rsv_release(inode); 6147 } 6148 6149 /** 6150 * btrfs_delalloc_release_extents - release our outstanding_extents 6151 * @inode: the inode to balance the reservation for. 6152 * @num_bytes: the number of bytes we originally reserved with 6153 * 6154 * When we reserve space we increase outstanding_extents for the extents we may 6155 * add. Once we've set the range as delalloc or created our ordered extents we 6156 * have outstanding_extents to track the real usage, so we use this to free our 6157 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 6158 * with btrfs_delalloc_reserve_metadata. 6159 */ 6160 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 6161 { 6162 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6163 unsigned num_extents; 6164 6165 spin_lock(&inode->lock); 6166 num_extents = count_max_extents(num_bytes); 6167 btrfs_mod_outstanding_extents(inode, -num_extents); 6168 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 6169 spin_unlock(&inode->lock); 6170 6171 if (btrfs_is_testing(fs_info)) 6172 return; 6173 6174 btrfs_inode_rsv_release(inode); 6175 } 6176 6177 /** 6178 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6179 * delalloc 6180 * @inode: inode we're writing to 6181 * @start: start range we are writing to 6182 * @len: how long the range we are writing to 6183 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6184 * current reservation. 6185 * 6186 * This will do the following things 6187 * 6188 * o reserve space in data space info for num bytes 6189 * and reserve precious corresponding qgroup space 6190 * (Done in check_data_free_space) 6191 * 6192 * o reserve space for metadata space, based on the number of outstanding 6193 * extents and how much csums will be needed 6194 * also reserve metadata space in a per root over-reserve method. 6195 * o add to the inodes->delalloc_bytes 6196 * o add it to the fs_info's delalloc inodes list. 6197 * (Above 3 all done in delalloc_reserve_metadata) 6198 * 6199 * Return 0 for success 6200 * Return <0 for error(-ENOSPC or -EQUOT) 6201 */ 6202 int btrfs_delalloc_reserve_space(struct inode *inode, 6203 struct extent_changeset **reserved, u64 start, u64 len) 6204 { 6205 int ret; 6206 6207 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6208 if (ret < 0) 6209 return ret; 6210 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6211 if (ret < 0) 6212 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6213 return ret; 6214 } 6215 6216 /** 6217 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6218 * @inode: inode we're releasing space for 6219 * @start: start position of the space already reserved 6220 * @len: the len of the space already reserved 6221 * @release_bytes: the len of the space we consumed or didn't use 6222 * 6223 * This function will release the metadata space that was not used and will 6224 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6225 * list if there are no delalloc bytes left. 6226 * Also it will handle the qgroup reserved space. 6227 */ 6228 void btrfs_delalloc_release_space(struct inode *inode, 6229 struct extent_changeset *reserved, 6230 u64 start, u64 len) 6231 { 6232 btrfs_delalloc_release_metadata(BTRFS_I(inode), len); 6233 btrfs_free_reserved_data_space(inode, reserved, start, len); 6234 } 6235 6236 static int update_block_group(struct btrfs_trans_handle *trans, 6237 struct btrfs_fs_info *info, u64 bytenr, 6238 u64 num_bytes, int alloc) 6239 { 6240 struct btrfs_block_group_cache *cache = NULL; 6241 u64 total = num_bytes; 6242 u64 old_val; 6243 u64 byte_in_group; 6244 int factor; 6245 6246 /* block accounting for super block */ 6247 spin_lock(&info->delalloc_root_lock); 6248 old_val = btrfs_super_bytes_used(info->super_copy); 6249 if (alloc) 6250 old_val += num_bytes; 6251 else 6252 old_val -= num_bytes; 6253 btrfs_set_super_bytes_used(info->super_copy, old_val); 6254 spin_unlock(&info->delalloc_root_lock); 6255 6256 while (total) { 6257 cache = btrfs_lookup_block_group(info, bytenr); 6258 if (!cache) 6259 return -ENOENT; 6260 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6261 BTRFS_BLOCK_GROUP_RAID1 | 6262 BTRFS_BLOCK_GROUP_RAID10)) 6263 factor = 2; 6264 else 6265 factor = 1; 6266 /* 6267 * If this block group has free space cache written out, we 6268 * need to make sure to load it if we are removing space. This 6269 * is because we need the unpinning stage to actually add the 6270 * space back to the block group, otherwise we will leak space. 6271 */ 6272 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6273 cache_block_group(cache, 1); 6274 6275 byte_in_group = bytenr - cache->key.objectid; 6276 WARN_ON(byte_in_group > cache->key.offset); 6277 6278 spin_lock(&cache->space_info->lock); 6279 spin_lock(&cache->lock); 6280 6281 if (btrfs_test_opt(info, SPACE_CACHE) && 6282 cache->disk_cache_state < BTRFS_DC_CLEAR) 6283 cache->disk_cache_state = BTRFS_DC_CLEAR; 6284 6285 old_val = btrfs_block_group_used(&cache->item); 6286 num_bytes = min(total, cache->key.offset - byte_in_group); 6287 if (alloc) { 6288 old_val += num_bytes; 6289 btrfs_set_block_group_used(&cache->item, old_val); 6290 cache->reserved -= num_bytes; 6291 cache->space_info->bytes_reserved -= num_bytes; 6292 cache->space_info->bytes_used += num_bytes; 6293 cache->space_info->disk_used += num_bytes * factor; 6294 spin_unlock(&cache->lock); 6295 spin_unlock(&cache->space_info->lock); 6296 } else { 6297 old_val -= num_bytes; 6298 btrfs_set_block_group_used(&cache->item, old_val); 6299 cache->pinned += num_bytes; 6300 cache->space_info->bytes_pinned += num_bytes; 6301 cache->space_info->bytes_used -= num_bytes; 6302 cache->space_info->disk_used -= num_bytes * factor; 6303 spin_unlock(&cache->lock); 6304 spin_unlock(&cache->space_info->lock); 6305 6306 trace_btrfs_space_reservation(info, "pinned", 6307 cache->space_info->flags, 6308 num_bytes, 1); 6309 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6310 num_bytes); 6311 set_extent_dirty(info->pinned_extents, 6312 bytenr, bytenr + num_bytes - 1, 6313 GFP_NOFS | __GFP_NOFAIL); 6314 } 6315 6316 spin_lock(&trans->transaction->dirty_bgs_lock); 6317 if (list_empty(&cache->dirty_list)) { 6318 list_add_tail(&cache->dirty_list, 6319 &trans->transaction->dirty_bgs); 6320 trans->transaction->num_dirty_bgs++; 6321 btrfs_get_block_group(cache); 6322 } 6323 spin_unlock(&trans->transaction->dirty_bgs_lock); 6324 6325 /* 6326 * No longer have used bytes in this block group, queue it for 6327 * deletion. We do this after adding the block group to the 6328 * dirty list to avoid races between cleaner kthread and space 6329 * cache writeout. 6330 */ 6331 if (!alloc && old_val == 0) { 6332 spin_lock(&info->unused_bgs_lock); 6333 if (list_empty(&cache->bg_list)) { 6334 btrfs_get_block_group(cache); 6335 list_add_tail(&cache->bg_list, 6336 &info->unused_bgs); 6337 } 6338 spin_unlock(&info->unused_bgs_lock); 6339 } 6340 6341 btrfs_put_block_group(cache); 6342 total -= num_bytes; 6343 bytenr += num_bytes; 6344 } 6345 return 0; 6346 } 6347 6348 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6349 { 6350 struct btrfs_block_group_cache *cache; 6351 u64 bytenr; 6352 6353 spin_lock(&fs_info->block_group_cache_lock); 6354 bytenr = fs_info->first_logical_byte; 6355 spin_unlock(&fs_info->block_group_cache_lock); 6356 6357 if (bytenr < (u64)-1) 6358 return bytenr; 6359 6360 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6361 if (!cache) 6362 return 0; 6363 6364 bytenr = cache->key.objectid; 6365 btrfs_put_block_group(cache); 6366 6367 return bytenr; 6368 } 6369 6370 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6371 struct btrfs_block_group_cache *cache, 6372 u64 bytenr, u64 num_bytes, int reserved) 6373 { 6374 spin_lock(&cache->space_info->lock); 6375 spin_lock(&cache->lock); 6376 cache->pinned += num_bytes; 6377 cache->space_info->bytes_pinned += num_bytes; 6378 if (reserved) { 6379 cache->reserved -= num_bytes; 6380 cache->space_info->bytes_reserved -= num_bytes; 6381 } 6382 spin_unlock(&cache->lock); 6383 spin_unlock(&cache->space_info->lock); 6384 6385 trace_btrfs_space_reservation(fs_info, "pinned", 6386 cache->space_info->flags, num_bytes, 1); 6387 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6388 set_extent_dirty(fs_info->pinned_extents, bytenr, 6389 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6390 return 0; 6391 } 6392 6393 /* 6394 * this function must be called within transaction 6395 */ 6396 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6397 u64 bytenr, u64 num_bytes, int reserved) 6398 { 6399 struct btrfs_block_group_cache *cache; 6400 6401 cache = btrfs_lookup_block_group(fs_info, bytenr); 6402 BUG_ON(!cache); /* Logic error */ 6403 6404 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6405 6406 btrfs_put_block_group(cache); 6407 return 0; 6408 } 6409 6410 /* 6411 * this function must be called within transaction 6412 */ 6413 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6414 u64 bytenr, u64 num_bytes) 6415 { 6416 struct btrfs_block_group_cache *cache; 6417 int ret; 6418 6419 cache = btrfs_lookup_block_group(fs_info, bytenr); 6420 if (!cache) 6421 return -EINVAL; 6422 6423 /* 6424 * pull in the free space cache (if any) so that our pin 6425 * removes the free space from the cache. We have load_only set 6426 * to one because the slow code to read in the free extents does check 6427 * the pinned extents. 6428 */ 6429 cache_block_group(cache, 1); 6430 6431 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6432 6433 /* remove us from the free space cache (if we're there at all) */ 6434 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6435 btrfs_put_block_group(cache); 6436 return ret; 6437 } 6438 6439 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6440 u64 start, u64 num_bytes) 6441 { 6442 int ret; 6443 struct btrfs_block_group_cache *block_group; 6444 struct btrfs_caching_control *caching_ctl; 6445 6446 block_group = btrfs_lookup_block_group(fs_info, start); 6447 if (!block_group) 6448 return -EINVAL; 6449 6450 cache_block_group(block_group, 0); 6451 caching_ctl = get_caching_control(block_group); 6452 6453 if (!caching_ctl) { 6454 /* Logic error */ 6455 BUG_ON(!block_group_cache_done(block_group)); 6456 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6457 } else { 6458 mutex_lock(&caching_ctl->mutex); 6459 6460 if (start >= caching_ctl->progress) { 6461 ret = add_excluded_extent(fs_info, start, num_bytes); 6462 } else if (start + num_bytes <= caching_ctl->progress) { 6463 ret = btrfs_remove_free_space(block_group, 6464 start, num_bytes); 6465 } else { 6466 num_bytes = caching_ctl->progress - start; 6467 ret = btrfs_remove_free_space(block_group, 6468 start, num_bytes); 6469 if (ret) 6470 goto out_lock; 6471 6472 num_bytes = (start + num_bytes) - 6473 caching_ctl->progress; 6474 start = caching_ctl->progress; 6475 ret = add_excluded_extent(fs_info, start, num_bytes); 6476 } 6477 out_lock: 6478 mutex_unlock(&caching_ctl->mutex); 6479 put_caching_control(caching_ctl); 6480 } 6481 btrfs_put_block_group(block_group); 6482 return ret; 6483 } 6484 6485 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6486 struct extent_buffer *eb) 6487 { 6488 struct btrfs_file_extent_item *item; 6489 struct btrfs_key key; 6490 int found_type; 6491 int i; 6492 6493 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6494 return 0; 6495 6496 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6497 btrfs_item_key_to_cpu(eb, &key, i); 6498 if (key.type != BTRFS_EXTENT_DATA_KEY) 6499 continue; 6500 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6501 found_type = btrfs_file_extent_type(eb, item); 6502 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6503 continue; 6504 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6505 continue; 6506 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6507 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6508 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6509 } 6510 6511 return 0; 6512 } 6513 6514 static void 6515 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6516 { 6517 atomic_inc(&bg->reservations); 6518 } 6519 6520 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6521 const u64 start) 6522 { 6523 struct btrfs_block_group_cache *bg; 6524 6525 bg = btrfs_lookup_block_group(fs_info, start); 6526 ASSERT(bg); 6527 if (atomic_dec_and_test(&bg->reservations)) 6528 wake_up_var(&bg->reservations); 6529 btrfs_put_block_group(bg); 6530 } 6531 6532 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6533 { 6534 struct btrfs_space_info *space_info = bg->space_info; 6535 6536 ASSERT(bg->ro); 6537 6538 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6539 return; 6540 6541 /* 6542 * Our block group is read only but before we set it to read only, 6543 * some task might have had allocated an extent from it already, but it 6544 * has not yet created a respective ordered extent (and added it to a 6545 * root's list of ordered extents). 6546 * Therefore wait for any task currently allocating extents, since the 6547 * block group's reservations counter is incremented while a read lock 6548 * on the groups' semaphore is held and decremented after releasing 6549 * the read access on that semaphore and creating the ordered extent. 6550 */ 6551 down_write(&space_info->groups_sem); 6552 up_write(&space_info->groups_sem); 6553 6554 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); 6555 } 6556 6557 /** 6558 * btrfs_add_reserved_bytes - update the block_group and space info counters 6559 * @cache: The cache we are manipulating 6560 * @ram_bytes: The number of bytes of file content, and will be same to 6561 * @num_bytes except for the compress path. 6562 * @num_bytes: The number of bytes in question 6563 * @delalloc: The blocks are allocated for the delalloc write 6564 * 6565 * This is called by the allocator when it reserves space. If this is a 6566 * reservation and the block group has become read only we cannot make the 6567 * reservation and return -EAGAIN, otherwise this function always succeeds. 6568 */ 6569 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6570 u64 ram_bytes, u64 num_bytes, int delalloc) 6571 { 6572 struct btrfs_space_info *space_info = cache->space_info; 6573 int ret = 0; 6574 6575 spin_lock(&space_info->lock); 6576 spin_lock(&cache->lock); 6577 if (cache->ro) { 6578 ret = -EAGAIN; 6579 } else { 6580 cache->reserved += num_bytes; 6581 space_info->bytes_reserved += num_bytes; 6582 6583 trace_btrfs_space_reservation(cache->fs_info, 6584 "space_info", space_info->flags, 6585 ram_bytes, 0); 6586 space_info->bytes_may_use -= ram_bytes; 6587 if (delalloc) 6588 cache->delalloc_bytes += num_bytes; 6589 } 6590 spin_unlock(&cache->lock); 6591 spin_unlock(&space_info->lock); 6592 return ret; 6593 } 6594 6595 /** 6596 * btrfs_free_reserved_bytes - update the block_group and space info counters 6597 * @cache: The cache we are manipulating 6598 * @num_bytes: The number of bytes in question 6599 * @delalloc: The blocks are allocated for the delalloc write 6600 * 6601 * This is called by somebody who is freeing space that was never actually used 6602 * on disk. For example if you reserve some space for a new leaf in transaction 6603 * A and before transaction A commits you free that leaf, you call this with 6604 * reserve set to 0 in order to clear the reservation. 6605 */ 6606 6607 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6608 u64 num_bytes, int delalloc) 6609 { 6610 struct btrfs_space_info *space_info = cache->space_info; 6611 int ret = 0; 6612 6613 spin_lock(&space_info->lock); 6614 spin_lock(&cache->lock); 6615 if (cache->ro) 6616 space_info->bytes_readonly += num_bytes; 6617 cache->reserved -= num_bytes; 6618 space_info->bytes_reserved -= num_bytes; 6619 6620 if (delalloc) 6621 cache->delalloc_bytes -= num_bytes; 6622 spin_unlock(&cache->lock); 6623 spin_unlock(&space_info->lock); 6624 return ret; 6625 } 6626 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6627 { 6628 struct btrfs_caching_control *next; 6629 struct btrfs_caching_control *caching_ctl; 6630 struct btrfs_block_group_cache *cache; 6631 6632 down_write(&fs_info->commit_root_sem); 6633 6634 list_for_each_entry_safe(caching_ctl, next, 6635 &fs_info->caching_block_groups, list) { 6636 cache = caching_ctl->block_group; 6637 if (block_group_cache_done(cache)) { 6638 cache->last_byte_to_unpin = (u64)-1; 6639 list_del_init(&caching_ctl->list); 6640 put_caching_control(caching_ctl); 6641 } else { 6642 cache->last_byte_to_unpin = caching_ctl->progress; 6643 } 6644 } 6645 6646 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6647 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6648 else 6649 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6650 6651 up_write(&fs_info->commit_root_sem); 6652 6653 update_global_block_rsv(fs_info); 6654 } 6655 6656 /* 6657 * Returns the free cluster for the given space info and sets empty_cluster to 6658 * what it should be based on the mount options. 6659 */ 6660 static struct btrfs_free_cluster * 6661 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6662 struct btrfs_space_info *space_info, u64 *empty_cluster) 6663 { 6664 struct btrfs_free_cluster *ret = NULL; 6665 6666 *empty_cluster = 0; 6667 if (btrfs_mixed_space_info(space_info)) 6668 return ret; 6669 6670 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6671 ret = &fs_info->meta_alloc_cluster; 6672 if (btrfs_test_opt(fs_info, SSD)) 6673 *empty_cluster = SZ_2M; 6674 else 6675 *empty_cluster = SZ_64K; 6676 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 6677 btrfs_test_opt(fs_info, SSD_SPREAD)) { 6678 *empty_cluster = SZ_2M; 6679 ret = &fs_info->data_alloc_cluster; 6680 } 6681 6682 return ret; 6683 } 6684 6685 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6686 u64 start, u64 end, 6687 const bool return_free_space) 6688 { 6689 struct btrfs_block_group_cache *cache = NULL; 6690 struct btrfs_space_info *space_info; 6691 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6692 struct btrfs_free_cluster *cluster = NULL; 6693 u64 len; 6694 u64 total_unpinned = 0; 6695 u64 empty_cluster = 0; 6696 bool readonly; 6697 6698 while (start <= end) { 6699 readonly = false; 6700 if (!cache || 6701 start >= cache->key.objectid + cache->key.offset) { 6702 if (cache) 6703 btrfs_put_block_group(cache); 6704 total_unpinned = 0; 6705 cache = btrfs_lookup_block_group(fs_info, start); 6706 BUG_ON(!cache); /* Logic error */ 6707 6708 cluster = fetch_cluster_info(fs_info, 6709 cache->space_info, 6710 &empty_cluster); 6711 empty_cluster <<= 1; 6712 } 6713 6714 len = cache->key.objectid + cache->key.offset - start; 6715 len = min(len, end + 1 - start); 6716 6717 if (start < cache->last_byte_to_unpin) { 6718 len = min(len, cache->last_byte_to_unpin - start); 6719 if (return_free_space) 6720 btrfs_add_free_space(cache, start, len); 6721 } 6722 6723 start += len; 6724 total_unpinned += len; 6725 space_info = cache->space_info; 6726 6727 /* 6728 * If this space cluster has been marked as fragmented and we've 6729 * unpinned enough in this block group to potentially allow a 6730 * cluster to be created inside of it go ahead and clear the 6731 * fragmented check. 6732 */ 6733 if (cluster && cluster->fragmented && 6734 total_unpinned > empty_cluster) { 6735 spin_lock(&cluster->lock); 6736 cluster->fragmented = 0; 6737 spin_unlock(&cluster->lock); 6738 } 6739 6740 spin_lock(&space_info->lock); 6741 spin_lock(&cache->lock); 6742 cache->pinned -= len; 6743 space_info->bytes_pinned -= len; 6744 6745 trace_btrfs_space_reservation(fs_info, "pinned", 6746 space_info->flags, len, 0); 6747 space_info->max_extent_size = 0; 6748 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6749 if (cache->ro) { 6750 space_info->bytes_readonly += len; 6751 readonly = true; 6752 } 6753 spin_unlock(&cache->lock); 6754 if (!readonly && return_free_space && 6755 global_rsv->space_info == space_info) { 6756 u64 to_add = len; 6757 6758 spin_lock(&global_rsv->lock); 6759 if (!global_rsv->full) { 6760 to_add = min(len, global_rsv->size - 6761 global_rsv->reserved); 6762 global_rsv->reserved += to_add; 6763 space_info->bytes_may_use += to_add; 6764 if (global_rsv->reserved >= global_rsv->size) 6765 global_rsv->full = 1; 6766 trace_btrfs_space_reservation(fs_info, 6767 "space_info", 6768 space_info->flags, 6769 to_add, 1); 6770 len -= to_add; 6771 } 6772 spin_unlock(&global_rsv->lock); 6773 /* Add to any tickets we may have */ 6774 if (len) 6775 space_info_add_new_bytes(fs_info, space_info, 6776 len); 6777 } 6778 spin_unlock(&space_info->lock); 6779 } 6780 6781 if (cache) 6782 btrfs_put_block_group(cache); 6783 return 0; 6784 } 6785 6786 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6787 struct btrfs_fs_info *fs_info) 6788 { 6789 struct btrfs_block_group_cache *block_group, *tmp; 6790 struct list_head *deleted_bgs; 6791 struct extent_io_tree *unpin; 6792 u64 start; 6793 u64 end; 6794 int ret; 6795 6796 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6797 unpin = &fs_info->freed_extents[1]; 6798 else 6799 unpin = &fs_info->freed_extents[0]; 6800 6801 while (!trans->aborted) { 6802 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6803 ret = find_first_extent_bit(unpin, 0, &start, &end, 6804 EXTENT_DIRTY, NULL); 6805 if (ret) { 6806 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6807 break; 6808 } 6809 6810 if (btrfs_test_opt(fs_info, DISCARD)) 6811 ret = btrfs_discard_extent(fs_info, start, 6812 end + 1 - start, NULL); 6813 6814 clear_extent_dirty(unpin, start, end); 6815 unpin_extent_range(fs_info, start, end, true); 6816 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6817 cond_resched(); 6818 } 6819 6820 /* 6821 * Transaction is finished. We don't need the lock anymore. We 6822 * do need to clean up the block groups in case of a transaction 6823 * abort. 6824 */ 6825 deleted_bgs = &trans->transaction->deleted_bgs; 6826 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6827 u64 trimmed = 0; 6828 6829 ret = -EROFS; 6830 if (!trans->aborted) 6831 ret = btrfs_discard_extent(fs_info, 6832 block_group->key.objectid, 6833 block_group->key.offset, 6834 &trimmed); 6835 6836 list_del_init(&block_group->bg_list); 6837 btrfs_put_block_group_trimming(block_group); 6838 btrfs_put_block_group(block_group); 6839 6840 if (ret) { 6841 const char *errstr = btrfs_decode_error(ret); 6842 btrfs_warn(fs_info, 6843 "discard failed while removing blockgroup: errno=%d %s", 6844 ret, errstr); 6845 } 6846 } 6847 6848 return 0; 6849 } 6850 6851 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6852 struct btrfs_fs_info *info, 6853 struct btrfs_delayed_ref_node *node, u64 parent, 6854 u64 root_objectid, u64 owner_objectid, 6855 u64 owner_offset, int refs_to_drop, 6856 struct btrfs_delayed_extent_op *extent_op) 6857 { 6858 struct btrfs_key key; 6859 struct btrfs_path *path; 6860 struct btrfs_root *extent_root = info->extent_root; 6861 struct extent_buffer *leaf; 6862 struct btrfs_extent_item *ei; 6863 struct btrfs_extent_inline_ref *iref; 6864 int ret; 6865 int is_data; 6866 int extent_slot = 0; 6867 int found_extent = 0; 6868 int num_to_del = 1; 6869 u32 item_size; 6870 u64 refs; 6871 u64 bytenr = node->bytenr; 6872 u64 num_bytes = node->num_bytes; 6873 int last_ref = 0; 6874 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6875 6876 path = btrfs_alloc_path(); 6877 if (!path) 6878 return -ENOMEM; 6879 6880 path->reada = READA_FORWARD; 6881 path->leave_spinning = 1; 6882 6883 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6884 BUG_ON(!is_data && refs_to_drop != 1); 6885 6886 if (is_data) 6887 skinny_metadata = false; 6888 6889 ret = lookup_extent_backref(trans, info, path, &iref, 6890 bytenr, num_bytes, parent, 6891 root_objectid, owner_objectid, 6892 owner_offset); 6893 if (ret == 0) { 6894 extent_slot = path->slots[0]; 6895 while (extent_slot >= 0) { 6896 btrfs_item_key_to_cpu(path->nodes[0], &key, 6897 extent_slot); 6898 if (key.objectid != bytenr) 6899 break; 6900 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6901 key.offset == num_bytes) { 6902 found_extent = 1; 6903 break; 6904 } 6905 if (key.type == BTRFS_METADATA_ITEM_KEY && 6906 key.offset == owner_objectid) { 6907 found_extent = 1; 6908 break; 6909 } 6910 if (path->slots[0] - extent_slot > 5) 6911 break; 6912 extent_slot--; 6913 } 6914 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6915 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6916 if (found_extent && item_size < sizeof(*ei)) 6917 found_extent = 0; 6918 #endif 6919 if (!found_extent) { 6920 BUG_ON(iref); 6921 ret = remove_extent_backref(trans, info, path, NULL, 6922 refs_to_drop, 6923 is_data, &last_ref); 6924 if (ret) { 6925 btrfs_abort_transaction(trans, ret); 6926 goto out; 6927 } 6928 btrfs_release_path(path); 6929 path->leave_spinning = 1; 6930 6931 key.objectid = bytenr; 6932 key.type = BTRFS_EXTENT_ITEM_KEY; 6933 key.offset = num_bytes; 6934 6935 if (!is_data && skinny_metadata) { 6936 key.type = BTRFS_METADATA_ITEM_KEY; 6937 key.offset = owner_objectid; 6938 } 6939 6940 ret = btrfs_search_slot(trans, extent_root, 6941 &key, path, -1, 1); 6942 if (ret > 0 && skinny_metadata && path->slots[0]) { 6943 /* 6944 * Couldn't find our skinny metadata item, 6945 * see if we have ye olde extent item. 6946 */ 6947 path->slots[0]--; 6948 btrfs_item_key_to_cpu(path->nodes[0], &key, 6949 path->slots[0]); 6950 if (key.objectid == bytenr && 6951 key.type == BTRFS_EXTENT_ITEM_KEY && 6952 key.offset == num_bytes) 6953 ret = 0; 6954 } 6955 6956 if (ret > 0 && skinny_metadata) { 6957 skinny_metadata = false; 6958 key.objectid = bytenr; 6959 key.type = BTRFS_EXTENT_ITEM_KEY; 6960 key.offset = num_bytes; 6961 btrfs_release_path(path); 6962 ret = btrfs_search_slot(trans, extent_root, 6963 &key, path, -1, 1); 6964 } 6965 6966 if (ret) { 6967 btrfs_err(info, 6968 "umm, got %d back from search, was looking for %llu", 6969 ret, bytenr); 6970 if (ret > 0) 6971 btrfs_print_leaf(path->nodes[0]); 6972 } 6973 if (ret < 0) { 6974 btrfs_abort_transaction(trans, ret); 6975 goto out; 6976 } 6977 extent_slot = path->slots[0]; 6978 } 6979 } else if (WARN_ON(ret == -ENOENT)) { 6980 btrfs_print_leaf(path->nodes[0]); 6981 btrfs_err(info, 6982 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6983 bytenr, parent, root_objectid, owner_objectid, 6984 owner_offset); 6985 btrfs_abort_transaction(trans, ret); 6986 goto out; 6987 } else { 6988 btrfs_abort_transaction(trans, ret); 6989 goto out; 6990 } 6991 6992 leaf = path->nodes[0]; 6993 item_size = btrfs_item_size_nr(leaf, extent_slot); 6994 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6995 if (item_size < sizeof(*ei)) { 6996 BUG_ON(found_extent || extent_slot != path->slots[0]); 6997 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 6998 0); 6999 if (ret < 0) { 7000 btrfs_abort_transaction(trans, ret); 7001 goto out; 7002 } 7003 7004 btrfs_release_path(path); 7005 path->leave_spinning = 1; 7006 7007 key.objectid = bytenr; 7008 key.type = BTRFS_EXTENT_ITEM_KEY; 7009 key.offset = num_bytes; 7010 7011 ret = btrfs_search_slot(trans, extent_root, &key, path, 7012 -1, 1); 7013 if (ret) { 7014 btrfs_err(info, 7015 "umm, got %d back from search, was looking for %llu", 7016 ret, bytenr); 7017 btrfs_print_leaf(path->nodes[0]); 7018 } 7019 if (ret < 0) { 7020 btrfs_abort_transaction(trans, ret); 7021 goto out; 7022 } 7023 7024 extent_slot = path->slots[0]; 7025 leaf = path->nodes[0]; 7026 item_size = btrfs_item_size_nr(leaf, extent_slot); 7027 } 7028 #endif 7029 BUG_ON(item_size < sizeof(*ei)); 7030 ei = btrfs_item_ptr(leaf, extent_slot, 7031 struct btrfs_extent_item); 7032 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7033 key.type == BTRFS_EXTENT_ITEM_KEY) { 7034 struct btrfs_tree_block_info *bi; 7035 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7036 bi = (struct btrfs_tree_block_info *)(ei + 1); 7037 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7038 } 7039 7040 refs = btrfs_extent_refs(leaf, ei); 7041 if (refs < refs_to_drop) { 7042 btrfs_err(info, 7043 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7044 refs_to_drop, refs, bytenr); 7045 ret = -EINVAL; 7046 btrfs_abort_transaction(trans, ret); 7047 goto out; 7048 } 7049 refs -= refs_to_drop; 7050 7051 if (refs > 0) { 7052 if (extent_op) 7053 __run_delayed_extent_op(extent_op, leaf, ei); 7054 /* 7055 * In the case of inline back ref, reference count will 7056 * be updated by remove_extent_backref 7057 */ 7058 if (iref) { 7059 BUG_ON(!found_extent); 7060 } else { 7061 btrfs_set_extent_refs(leaf, ei, refs); 7062 btrfs_mark_buffer_dirty(leaf); 7063 } 7064 if (found_extent) { 7065 ret = remove_extent_backref(trans, info, path, 7066 iref, refs_to_drop, 7067 is_data, &last_ref); 7068 if (ret) { 7069 btrfs_abort_transaction(trans, ret); 7070 goto out; 7071 } 7072 } 7073 } else { 7074 if (found_extent) { 7075 BUG_ON(is_data && refs_to_drop != 7076 extent_data_ref_count(path, iref)); 7077 if (iref) { 7078 BUG_ON(path->slots[0] != extent_slot); 7079 } else { 7080 BUG_ON(path->slots[0] != extent_slot + 1); 7081 path->slots[0] = extent_slot; 7082 num_to_del = 2; 7083 } 7084 } 7085 7086 last_ref = 1; 7087 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7088 num_to_del); 7089 if (ret) { 7090 btrfs_abort_transaction(trans, ret); 7091 goto out; 7092 } 7093 btrfs_release_path(path); 7094 7095 if (is_data) { 7096 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7097 if (ret) { 7098 btrfs_abort_transaction(trans, ret); 7099 goto out; 7100 } 7101 } 7102 7103 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7104 if (ret) { 7105 btrfs_abort_transaction(trans, ret); 7106 goto out; 7107 } 7108 7109 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7110 if (ret) { 7111 btrfs_abort_transaction(trans, ret); 7112 goto out; 7113 } 7114 } 7115 btrfs_release_path(path); 7116 7117 out: 7118 btrfs_free_path(path); 7119 return ret; 7120 } 7121 7122 /* 7123 * when we free an block, it is possible (and likely) that we free the last 7124 * delayed ref for that extent as well. This searches the delayed ref tree for 7125 * a given extent, and if there are no other delayed refs to be processed, it 7126 * removes it from the tree. 7127 */ 7128 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7129 u64 bytenr) 7130 { 7131 struct btrfs_delayed_ref_head *head; 7132 struct btrfs_delayed_ref_root *delayed_refs; 7133 int ret = 0; 7134 7135 delayed_refs = &trans->transaction->delayed_refs; 7136 spin_lock(&delayed_refs->lock); 7137 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7138 if (!head) 7139 goto out_delayed_unlock; 7140 7141 spin_lock(&head->lock); 7142 if (!RB_EMPTY_ROOT(&head->ref_tree)) 7143 goto out; 7144 7145 if (head->extent_op) { 7146 if (!head->must_insert_reserved) 7147 goto out; 7148 btrfs_free_delayed_extent_op(head->extent_op); 7149 head->extent_op = NULL; 7150 } 7151 7152 /* 7153 * waiting for the lock here would deadlock. If someone else has it 7154 * locked they are already in the process of dropping it anyway 7155 */ 7156 if (!mutex_trylock(&head->mutex)) 7157 goto out; 7158 7159 /* 7160 * at this point we have a head with no other entries. Go 7161 * ahead and process it. 7162 */ 7163 rb_erase(&head->href_node, &delayed_refs->href_root); 7164 RB_CLEAR_NODE(&head->href_node); 7165 atomic_dec(&delayed_refs->num_entries); 7166 7167 /* 7168 * we don't take a ref on the node because we're removing it from the 7169 * tree, so we just steal the ref the tree was holding. 7170 */ 7171 delayed_refs->num_heads--; 7172 if (head->processing == 0) 7173 delayed_refs->num_heads_ready--; 7174 head->processing = 0; 7175 spin_unlock(&head->lock); 7176 spin_unlock(&delayed_refs->lock); 7177 7178 BUG_ON(head->extent_op); 7179 if (head->must_insert_reserved) 7180 ret = 1; 7181 7182 mutex_unlock(&head->mutex); 7183 btrfs_put_delayed_ref_head(head); 7184 return ret; 7185 out: 7186 spin_unlock(&head->lock); 7187 7188 out_delayed_unlock: 7189 spin_unlock(&delayed_refs->lock); 7190 return 0; 7191 } 7192 7193 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7194 struct btrfs_root *root, 7195 struct extent_buffer *buf, 7196 u64 parent, int last_ref) 7197 { 7198 struct btrfs_fs_info *fs_info = root->fs_info; 7199 int pin = 1; 7200 int ret; 7201 7202 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7203 int old_ref_mod, new_ref_mod; 7204 7205 btrfs_ref_tree_mod(root, buf->start, buf->len, parent, 7206 root->root_key.objectid, 7207 btrfs_header_level(buf), 0, 7208 BTRFS_DROP_DELAYED_REF); 7209 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7210 buf->len, parent, 7211 root->root_key.objectid, 7212 btrfs_header_level(buf), 7213 BTRFS_DROP_DELAYED_REF, NULL, 7214 &old_ref_mod, &new_ref_mod); 7215 BUG_ON(ret); /* -ENOMEM */ 7216 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7217 } 7218 7219 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7220 struct btrfs_block_group_cache *cache; 7221 7222 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7223 ret = check_ref_cleanup(trans, buf->start); 7224 if (!ret) 7225 goto out; 7226 } 7227 7228 pin = 0; 7229 cache = btrfs_lookup_block_group(fs_info, buf->start); 7230 7231 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7232 pin_down_extent(fs_info, cache, buf->start, 7233 buf->len, 1); 7234 btrfs_put_block_group(cache); 7235 goto out; 7236 } 7237 7238 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7239 7240 btrfs_add_free_space(cache, buf->start, buf->len); 7241 btrfs_free_reserved_bytes(cache, buf->len, 0); 7242 btrfs_put_block_group(cache); 7243 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7244 } 7245 out: 7246 if (pin) 7247 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7248 root->root_key.objectid); 7249 7250 if (last_ref) { 7251 /* 7252 * Deleting the buffer, clear the corrupt flag since it doesn't 7253 * matter anymore. 7254 */ 7255 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7256 } 7257 } 7258 7259 /* Can return -ENOMEM */ 7260 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7261 struct btrfs_root *root, 7262 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7263 u64 owner, u64 offset) 7264 { 7265 struct btrfs_fs_info *fs_info = root->fs_info; 7266 int old_ref_mod, new_ref_mod; 7267 int ret; 7268 7269 if (btrfs_is_testing(fs_info)) 7270 return 0; 7271 7272 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) 7273 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, 7274 root_objectid, owner, offset, 7275 BTRFS_DROP_DELAYED_REF); 7276 7277 /* 7278 * tree log blocks never actually go into the extent allocation 7279 * tree, just update pinning info and exit early. 7280 */ 7281 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7282 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7283 /* unlocks the pinned mutex */ 7284 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7285 old_ref_mod = new_ref_mod = 0; 7286 ret = 0; 7287 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7288 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7289 num_bytes, parent, 7290 root_objectid, (int)owner, 7291 BTRFS_DROP_DELAYED_REF, NULL, 7292 &old_ref_mod, &new_ref_mod); 7293 } else { 7294 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7295 num_bytes, parent, 7296 root_objectid, owner, offset, 7297 0, BTRFS_DROP_DELAYED_REF, 7298 &old_ref_mod, &new_ref_mod); 7299 } 7300 7301 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7302 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7303 7304 return ret; 7305 } 7306 7307 /* 7308 * when we wait for progress in the block group caching, its because 7309 * our allocation attempt failed at least once. So, we must sleep 7310 * and let some progress happen before we try again. 7311 * 7312 * This function will sleep at least once waiting for new free space to 7313 * show up, and then it will check the block group free space numbers 7314 * for our min num_bytes. Another option is to have it go ahead 7315 * and look in the rbtree for a free extent of a given size, but this 7316 * is a good start. 7317 * 7318 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7319 * any of the information in this block group. 7320 */ 7321 static noinline void 7322 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7323 u64 num_bytes) 7324 { 7325 struct btrfs_caching_control *caching_ctl; 7326 7327 caching_ctl = get_caching_control(cache); 7328 if (!caching_ctl) 7329 return; 7330 7331 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7332 (cache->free_space_ctl->free_space >= num_bytes)); 7333 7334 put_caching_control(caching_ctl); 7335 } 7336 7337 static noinline int 7338 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7339 { 7340 struct btrfs_caching_control *caching_ctl; 7341 int ret = 0; 7342 7343 caching_ctl = get_caching_control(cache); 7344 if (!caching_ctl) 7345 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7346 7347 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7348 if (cache->cached == BTRFS_CACHE_ERROR) 7349 ret = -EIO; 7350 put_caching_control(caching_ctl); 7351 return ret; 7352 } 7353 7354 int __get_raid_index(u64 flags) 7355 { 7356 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7357 return BTRFS_RAID_RAID10; 7358 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7359 return BTRFS_RAID_RAID1; 7360 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7361 return BTRFS_RAID_DUP; 7362 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7363 return BTRFS_RAID_RAID0; 7364 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7365 return BTRFS_RAID_RAID5; 7366 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7367 return BTRFS_RAID_RAID6; 7368 7369 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7370 } 7371 7372 int get_block_group_index(struct btrfs_block_group_cache *cache) 7373 { 7374 return __get_raid_index(cache->flags); 7375 } 7376 7377 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7378 [BTRFS_RAID_RAID10] = "raid10", 7379 [BTRFS_RAID_RAID1] = "raid1", 7380 [BTRFS_RAID_DUP] = "dup", 7381 [BTRFS_RAID_RAID0] = "raid0", 7382 [BTRFS_RAID_SINGLE] = "single", 7383 [BTRFS_RAID_RAID5] = "raid5", 7384 [BTRFS_RAID_RAID6] = "raid6", 7385 }; 7386 7387 static const char *get_raid_name(enum btrfs_raid_types type) 7388 { 7389 if (type >= BTRFS_NR_RAID_TYPES) 7390 return NULL; 7391 7392 return btrfs_raid_type_names[type]; 7393 } 7394 7395 enum btrfs_loop_type { 7396 LOOP_CACHING_NOWAIT = 0, 7397 LOOP_CACHING_WAIT = 1, 7398 LOOP_ALLOC_CHUNK = 2, 7399 LOOP_NO_EMPTY_SIZE = 3, 7400 }; 7401 7402 static inline void 7403 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7404 int delalloc) 7405 { 7406 if (delalloc) 7407 down_read(&cache->data_rwsem); 7408 } 7409 7410 static inline void 7411 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7412 int delalloc) 7413 { 7414 btrfs_get_block_group(cache); 7415 if (delalloc) 7416 down_read(&cache->data_rwsem); 7417 } 7418 7419 static struct btrfs_block_group_cache * 7420 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7421 struct btrfs_free_cluster *cluster, 7422 int delalloc) 7423 { 7424 struct btrfs_block_group_cache *used_bg = NULL; 7425 7426 spin_lock(&cluster->refill_lock); 7427 while (1) { 7428 used_bg = cluster->block_group; 7429 if (!used_bg) 7430 return NULL; 7431 7432 if (used_bg == block_group) 7433 return used_bg; 7434 7435 btrfs_get_block_group(used_bg); 7436 7437 if (!delalloc) 7438 return used_bg; 7439 7440 if (down_read_trylock(&used_bg->data_rwsem)) 7441 return used_bg; 7442 7443 spin_unlock(&cluster->refill_lock); 7444 7445 /* We should only have one-level nested. */ 7446 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7447 7448 spin_lock(&cluster->refill_lock); 7449 if (used_bg == cluster->block_group) 7450 return used_bg; 7451 7452 up_read(&used_bg->data_rwsem); 7453 btrfs_put_block_group(used_bg); 7454 } 7455 } 7456 7457 static inline void 7458 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7459 int delalloc) 7460 { 7461 if (delalloc) 7462 up_read(&cache->data_rwsem); 7463 btrfs_put_block_group(cache); 7464 } 7465 7466 /* 7467 * walks the btree of allocated extents and find a hole of a given size. 7468 * The key ins is changed to record the hole: 7469 * ins->objectid == start position 7470 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7471 * ins->offset == the size of the hole. 7472 * Any available blocks before search_start are skipped. 7473 * 7474 * If there is no suitable free space, we will record the max size of 7475 * the free space extent currently. 7476 */ 7477 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7478 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7479 u64 hint_byte, struct btrfs_key *ins, 7480 u64 flags, int delalloc) 7481 { 7482 int ret = 0; 7483 struct btrfs_root *root = fs_info->extent_root; 7484 struct btrfs_free_cluster *last_ptr = NULL; 7485 struct btrfs_block_group_cache *block_group = NULL; 7486 u64 search_start = 0; 7487 u64 max_extent_size = 0; 7488 u64 empty_cluster = 0; 7489 struct btrfs_space_info *space_info; 7490 int loop = 0; 7491 int index = __get_raid_index(flags); 7492 bool failed_cluster_refill = false; 7493 bool failed_alloc = false; 7494 bool use_cluster = true; 7495 bool have_caching_bg = false; 7496 bool orig_have_caching_bg = false; 7497 bool full_search = false; 7498 7499 WARN_ON(num_bytes < fs_info->sectorsize); 7500 ins->type = BTRFS_EXTENT_ITEM_KEY; 7501 ins->objectid = 0; 7502 ins->offset = 0; 7503 7504 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7505 7506 space_info = __find_space_info(fs_info, flags); 7507 if (!space_info) { 7508 btrfs_err(fs_info, "No space info for %llu", flags); 7509 return -ENOSPC; 7510 } 7511 7512 /* 7513 * If our free space is heavily fragmented we may not be able to make 7514 * big contiguous allocations, so instead of doing the expensive search 7515 * for free space, simply return ENOSPC with our max_extent_size so we 7516 * can go ahead and search for a more manageable chunk. 7517 * 7518 * If our max_extent_size is large enough for our allocation simply 7519 * disable clustering since we will likely not be able to find enough 7520 * space to create a cluster and induce latency trying. 7521 */ 7522 if (unlikely(space_info->max_extent_size)) { 7523 spin_lock(&space_info->lock); 7524 if (space_info->max_extent_size && 7525 num_bytes > space_info->max_extent_size) { 7526 ins->offset = space_info->max_extent_size; 7527 spin_unlock(&space_info->lock); 7528 return -ENOSPC; 7529 } else if (space_info->max_extent_size) { 7530 use_cluster = false; 7531 } 7532 spin_unlock(&space_info->lock); 7533 } 7534 7535 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7536 if (last_ptr) { 7537 spin_lock(&last_ptr->lock); 7538 if (last_ptr->block_group) 7539 hint_byte = last_ptr->window_start; 7540 if (last_ptr->fragmented) { 7541 /* 7542 * We still set window_start so we can keep track of the 7543 * last place we found an allocation to try and save 7544 * some time. 7545 */ 7546 hint_byte = last_ptr->window_start; 7547 use_cluster = false; 7548 } 7549 spin_unlock(&last_ptr->lock); 7550 } 7551 7552 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7553 search_start = max(search_start, hint_byte); 7554 if (search_start == hint_byte) { 7555 block_group = btrfs_lookup_block_group(fs_info, search_start); 7556 /* 7557 * we don't want to use the block group if it doesn't match our 7558 * allocation bits, or if its not cached. 7559 * 7560 * However if we are re-searching with an ideal block group 7561 * picked out then we don't care that the block group is cached. 7562 */ 7563 if (block_group && block_group_bits(block_group, flags) && 7564 block_group->cached != BTRFS_CACHE_NO) { 7565 down_read(&space_info->groups_sem); 7566 if (list_empty(&block_group->list) || 7567 block_group->ro) { 7568 /* 7569 * someone is removing this block group, 7570 * we can't jump into the have_block_group 7571 * target because our list pointers are not 7572 * valid 7573 */ 7574 btrfs_put_block_group(block_group); 7575 up_read(&space_info->groups_sem); 7576 } else { 7577 index = get_block_group_index(block_group); 7578 btrfs_lock_block_group(block_group, delalloc); 7579 goto have_block_group; 7580 } 7581 } else if (block_group) { 7582 btrfs_put_block_group(block_group); 7583 } 7584 } 7585 search: 7586 have_caching_bg = false; 7587 if (index == 0 || index == __get_raid_index(flags)) 7588 full_search = true; 7589 down_read(&space_info->groups_sem); 7590 list_for_each_entry(block_group, &space_info->block_groups[index], 7591 list) { 7592 u64 offset; 7593 int cached; 7594 7595 /* If the block group is read-only, we can skip it entirely. */ 7596 if (unlikely(block_group->ro)) 7597 continue; 7598 7599 btrfs_grab_block_group(block_group, delalloc); 7600 search_start = block_group->key.objectid; 7601 7602 /* 7603 * this can happen if we end up cycling through all the 7604 * raid types, but we want to make sure we only allocate 7605 * for the proper type. 7606 */ 7607 if (!block_group_bits(block_group, flags)) { 7608 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7609 BTRFS_BLOCK_GROUP_RAID1 | 7610 BTRFS_BLOCK_GROUP_RAID5 | 7611 BTRFS_BLOCK_GROUP_RAID6 | 7612 BTRFS_BLOCK_GROUP_RAID10; 7613 7614 /* 7615 * if they asked for extra copies and this block group 7616 * doesn't provide them, bail. This does allow us to 7617 * fill raid0 from raid1. 7618 */ 7619 if ((flags & extra) && !(block_group->flags & extra)) 7620 goto loop; 7621 } 7622 7623 have_block_group: 7624 cached = block_group_cache_done(block_group); 7625 if (unlikely(!cached)) { 7626 have_caching_bg = true; 7627 ret = cache_block_group(block_group, 0); 7628 BUG_ON(ret < 0); 7629 ret = 0; 7630 } 7631 7632 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7633 goto loop; 7634 7635 /* 7636 * Ok we want to try and use the cluster allocator, so 7637 * lets look there 7638 */ 7639 if (last_ptr && use_cluster) { 7640 struct btrfs_block_group_cache *used_block_group; 7641 unsigned long aligned_cluster; 7642 /* 7643 * the refill lock keeps out other 7644 * people trying to start a new cluster 7645 */ 7646 used_block_group = btrfs_lock_cluster(block_group, 7647 last_ptr, 7648 delalloc); 7649 if (!used_block_group) 7650 goto refill_cluster; 7651 7652 if (used_block_group != block_group && 7653 (used_block_group->ro || 7654 !block_group_bits(used_block_group, flags))) 7655 goto release_cluster; 7656 7657 offset = btrfs_alloc_from_cluster(used_block_group, 7658 last_ptr, 7659 num_bytes, 7660 used_block_group->key.objectid, 7661 &max_extent_size); 7662 if (offset) { 7663 /* we have a block, we're done */ 7664 spin_unlock(&last_ptr->refill_lock); 7665 trace_btrfs_reserve_extent_cluster(fs_info, 7666 used_block_group, 7667 search_start, num_bytes); 7668 if (used_block_group != block_group) { 7669 btrfs_release_block_group(block_group, 7670 delalloc); 7671 block_group = used_block_group; 7672 } 7673 goto checks; 7674 } 7675 7676 WARN_ON(last_ptr->block_group != used_block_group); 7677 release_cluster: 7678 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7679 * set up a new clusters, so lets just skip it 7680 * and let the allocator find whatever block 7681 * it can find. If we reach this point, we 7682 * will have tried the cluster allocator 7683 * plenty of times and not have found 7684 * anything, so we are likely way too 7685 * fragmented for the clustering stuff to find 7686 * anything. 7687 * 7688 * However, if the cluster is taken from the 7689 * current block group, release the cluster 7690 * first, so that we stand a better chance of 7691 * succeeding in the unclustered 7692 * allocation. */ 7693 if (loop >= LOOP_NO_EMPTY_SIZE && 7694 used_block_group != block_group) { 7695 spin_unlock(&last_ptr->refill_lock); 7696 btrfs_release_block_group(used_block_group, 7697 delalloc); 7698 goto unclustered_alloc; 7699 } 7700 7701 /* 7702 * this cluster didn't work out, free it and 7703 * start over 7704 */ 7705 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7706 7707 if (used_block_group != block_group) 7708 btrfs_release_block_group(used_block_group, 7709 delalloc); 7710 refill_cluster: 7711 if (loop >= LOOP_NO_EMPTY_SIZE) { 7712 spin_unlock(&last_ptr->refill_lock); 7713 goto unclustered_alloc; 7714 } 7715 7716 aligned_cluster = max_t(unsigned long, 7717 empty_cluster + empty_size, 7718 block_group->full_stripe_len); 7719 7720 /* allocate a cluster in this block group */ 7721 ret = btrfs_find_space_cluster(fs_info, block_group, 7722 last_ptr, search_start, 7723 num_bytes, 7724 aligned_cluster); 7725 if (ret == 0) { 7726 /* 7727 * now pull our allocation out of this 7728 * cluster 7729 */ 7730 offset = btrfs_alloc_from_cluster(block_group, 7731 last_ptr, 7732 num_bytes, 7733 search_start, 7734 &max_extent_size); 7735 if (offset) { 7736 /* we found one, proceed */ 7737 spin_unlock(&last_ptr->refill_lock); 7738 trace_btrfs_reserve_extent_cluster(fs_info, 7739 block_group, search_start, 7740 num_bytes); 7741 goto checks; 7742 } 7743 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7744 && !failed_cluster_refill) { 7745 spin_unlock(&last_ptr->refill_lock); 7746 7747 failed_cluster_refill = true; 7748 wait_block_group_cache_progress(block_group, 7749 num_bytes + empty_cluster + empty_size); 7750 goto have_block_group; 7751 } 7752 7753 /* 7754 * at this point we either didn't find a cluster 7755 * or we weren't able to allocate a block from our 7756 * cluster. Free the cluster we've been trying 7757 * to use, and go to the next block group 7758 */ 7759 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7760 spin_unlock(&last_ptr->refill_lock); 7761 goto loop; 7762 } 7763 7764 unclustered_alloc: 7765 /* 7766 * We are doing an unclustered alloc, set the fragmented flag so 7767 * we don't bother trying to setup a cluster again until we get 7768 * more space. 7769 */ 7770 if (unlikely(last_ptr)) { 7771 spin_lock(&last_ptr->lock); 7772 last_ptr->fragmented = 1; 7773 spin_unlock(&last_ptr->lock); 7774 } 7775 if (cached) { 7776 struct btrfs_free_space_ctl *ctl = 7777 block_group->free_space_ctl; 7778 7779 spin_lock(&ctl->tree_lock); 7780 if (ctl->free_space < 7781 num_bytes + empty_cluster + empty_size) { 7782 if (ctl->free_space > max_extent_size) 7783 max_extent_size = ctl->free_space; 7784 spin_unlock(&ctl->tree_lock); 7785 goto loop; 7786 } 7787 spin_unlock(&ctl->tree_lock); 7788 } 7789 7790 offset = btrfs_find_space_for_alloc(block_group, search_start, 7791 num_bytes, empty_size, 7792 &max_extent_size); 7793 /* 7794 * If we didn't find a chunk, and we haven't failed on this 7795 * block group before, and this block group is in the middle of 7796 * caching and we are ok with waiting, then go ahead and wait 7797 * for progress to be made, and set failed_alloc to true. 7798 * 7799 * If failed_alloc is true then we've already waited on this 7800 * block group once and should move on to the next block group. 7801 */ 7802 if (!offset && !failed_alloc && !cached && 7803 loop > LOOP_CACHING_NOWAIT) { 7804 wait_block_group_cache_progress(block_group, 7805 num_bytes + empty_size); 7806 failed_alloc = true; 7807 goto have_block_group; 7808 } else if (!offset) { 7809 goto loop; 7810 } 7811 checks: 7812 search_start = ALIGN(offset, fs_info->stripesize); 7813 7814 /* move on to the next group */ 7815 if (search_start + num_bytes > 7816 block_group->key.objectid + block_group->key.offset) { 7817 btrfs_add_free_space(block_group, offset, num_bytes); 7818 goto loop; 7819 } 7820 7821 if (offset < search_start) 7822 btrfs_add_free_space(block_group, offset, 7823 search_start - offset); 7824 BUG_ON(offset > search_start); 7825 7826 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7827 num_bytes, delalloc); 7828 if (ret == -EAGAIN) { 7829 btrfs_add_free_space(block_group, offset, num_bytes); 7830 goto loop; 7831 } 7832 btrfs_inc_block_group_reservations(block_group); 7833 7834 /* we are all good, lets return */ 7835 ins->objectid = search_start; 7836 ins->offset = num_bytes; 7837 7838 trace_btrfs_reserve_extent(fs_info, block_group, 7839 search_start, num_bytes); 7840 btrfs_release_block_group(block_group, delalloc); 7841 break; 7842 loop: 7843 failed_cluster_refill = false; 7844 failed_alloc = false; 7845 BUG_ON(index != get_block_group_index(block_group)); 7846 btrfs_release_block_group(block_group, delalloc); 7847 cond_resched(); 7848 } 7849 up_read(&space_info->groups_sem); 7850 7851 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7852 && !orig_have_caching_bg) 7853 orig_have_caching_bg = true; 7854 7855 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7856 goto search; 7857 7858 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7859 goto search; 7860 7861 /* 7862 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7863 * caching kthreads as we move along 7864 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7865 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7866 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7867 * again 7868 */ 7869 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7870 index = 0; 7871 if (loop == LOOP_CACHING_NOWAIT) { 7872 /* 7873 * We want to skip the LOOP_CACHING_WAIT step if we 7874 * don't have any uncached bgs and we've already done a 7875 * full search through. 7876 */ 7877 if (orig_have_caching_bg || !full_search) 7878 loop = LOOP_CACHING_WAIT; 7879 else 7880 loop = LOOP_ALLOC_CHUNK; 7881 } else { 7882 loop++; 7883 } 7884 7885 if (loop == LOOP_ALLOC_CHUNK) { 7886 struct btrfs_trans_handle *trans; 7887 int exist = 0; 7888 7889 trans = current->journal_info; 7890 if (trans) 7891 exist = 1; 7892 else 7893 trans = btrfs_join_transaction(root); 7894 7895 if (IS_ERR(trans)) { 7896 ret = PTR_ERR(trans); 7897 goto out; 7898 } 7899 7900 ret = do_chunk_alloc(trans, fs_info, flags, 7901 CHUNK_ALLOC_FORCE); 7902 7903 /* 7904 * If we can't allocate a new chunk we've already looped 7905 * through at least once, move on to the NO_EMPTY_SIZE 7906 * case. 7907 */ 7908 if (ret == -ENOSPC) 7909 loop = LOOP_NO_EMPTY_SIZE; 7910 7911 /* 7912 * Do not bail out on ENOSPC since we 7913 * can do more things. 7914 */ 7915 if (ret < 0 && ret != -ENOSPC) 7916 btrfs_abort_transaction(trans, ret); 7917 else 7918 ret = 0; 7919 if (!exist) 7920 btrfs_end_transaction(trans); 7921 if (ret) 7922 goto out; 7923 } 7924 7925 if (loop == LOOP_NO_EMPTY_SIZE) { 7926 /* 7927 * Don't loop again if we already have no empty_size and 7928 * no empty_cluster. 7929 */ 7930 if (empty_size == 0 && 7931 empty_cluster == 0) { 7932 ret = -ENOSPC; 7933 goto out; 7934 } 7935 empty_size = 0; 7936 empty_cluster = 0; 7937 } 7938 7939 goto search; 7940 } else if (!ins->objectid) { 7941 ret = -ENOSPC; 7942 } else if (ins->objectid) { 7943 if (!use_cluster && last_ptr) { 7944 spin_lock(&last_ptr->lock); 7945 last_ptr->window_start = ins->objectid; 7946 spin_unlock(&last_ptr->lock); 7947 } 7948 ret = 0; 7949 } 7950 out: 7951 if (ret == -ENOSPC) { 7952 spin_lock(&space_info->lock); 7953 space_info->max_extent_size = max_extent_size; 7954 spin_unlock(&space_info->lock); 7955 ins->offset = max_extent_size; 7956 } 7957 return ret; 7958 } 7959 7960 static void dump_space_info(struct btrfs_fs_info *fs_info, 7961 struct btrfs_space_info *info, u64 bytes, 7962 int dump_block_groups) 7963 { 7964 struct btrfs_block_group_cache *cache; 7965 int index = 0; 7966 7967 spin_lock(&info->lock); 7968 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7969 info->flags, 7970 info->total_bytes - btrfs_space_info_used(info, true), 7971 info->full ? "" : "not "); 7972 btrfs_info(fs_info, 7973 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7974 info->total_bytes, info->bytes_used, info->bytes_pinned, 7975 info->bytes_reserved, info->bytes_may_use, 7976 info->bytes_readonly); 7977 spin_unlock(&info->lock); 7978 7979 if (!dump_block_groups) 7980 return; 7981 7982 down_read(&info->groups_sem); 7983 again: 7984 list_for_each_entry(cache, &info->block_groups[index], list) { 7985 spin_lock(&cache->lock); 7986 btrfs_info(fs_info, 7987 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7988 cache->key.objectid, cache->key.offset, 7989 btrfs_block_group_used(&cache->item), cache->pinned, 7990 cache->reserved, cache->ro ? "[readonly]" : ""); 7991 btrfs_dump_free_space(cache, bytes); 7992 spin_unlock(&cache->lock); 7993 } 7994 if (++index < BTRFS_NR_RAID_TYPES) 7995 goto again; 7996 up_read(&info->groups_sem); 7997 } 7998 7999 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 8000 u64 num_bytes, u64 min_alloc_size, 8001 u64 empty_size, u64 hint_byte, 8002 struct btrfs_key *ins, int is_data, int delalloc) 8003 { 8004 struct btrfs_fs_info *fs_info = root->fs_info; 8005 bool final_tried = num_bytes == min_alloc_size; 8006 u64 flags; 8007 int ret; 8008 8009 flags = get_alloc_profile_by_root(root, is_data); 8010 again: 8011 WARN_ON(num_bytes < fs_info->sectorsize); 8012 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8013 hint_byte, ins, flags, delalloc); 8014 if (!ret && !is_data) { 8015 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8016 } else if (ret == -ENOSPC) { 8017 if (!final_tried && ins->offset) { 8018 num_bytes = min(num_bytes >> 1, ins->offset); 8019 num_bytes = round_down(num_bytes, 8020 fs_info->sectorsize); 8021 num_bytes = max(num_bytes, min_alloc_size); 8022 ram_bytes = num_bytes; 8023 if (num_bytes == min_alloc_size) 8024 final_tried = true; 8025 goto again; 8026 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8027 struct btrfs_space_info *sinfo; 8028 8029 sinfo = __find_space_info(fs_info, flags); 8030 btrfs_err(fs_info, 8031 "allocation failed flags %llu, wanted %llu", 8032 flags, num_bytes); 8033 if (sinfo) 8034 dump_space_info(fs_info, sinfo, num_bytes, 1); 8035 } 8036 } 8037 8038 return ret; 8039 } 8040 8041 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8042 u64 start, u64 len, 8043 int pin, int delalloc) 8044 { 8045 struct btrfs_block_group_cache *cache; 8046 int ret = 0; 8047 8048 cache = btrfs_lookup_block_group(fs_info, start); 8049 if (!cache) { 8050 btrfs_err(fs_info, "Unable to find block group for %llu", 8051 start); 8052 return -ENOSPC; 8053 } 8054 8055 if (pin) 8056 pin_down_extent(fs_info, cache, start, len, 1); 8057 else { 8058 if (btrfs_test_opt(fs_info, DISCARD)) 8059 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8060 btrfs_add_free_space(cache, start, len); 8061 btrfs_free_reserved_bytes(cache, len, delalloc); 8062 trace_btrfs_reserved_extent_free(fs_info, start, len); 8063 } 8064 8065 btrfs_put_block_group(cache); 8066 return ret; 8067 } 8068 8069 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8070 u64 start, u64 len, int delalloc) 8071 { 8072 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8073 } 8074 8075 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8076 u64 start, u64 len) 8077 { 8078 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8079 } 8080 8081 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8082 struct btrfs_fs_info *fs_info, 8083 u64 parent, u64 root_objectid, 8084 u64 flags, u64 owner, u64 offset, 8085 struct btrfs_key *ins, int ref_mod) 8086 { 8087 int ret; 8088 struct btrfs_extent_item *extent_item; 8089 struct btrfs_extent_inline_ref *iref; 8090 struct btrfs_path *path; 8091 struct extent_buffer *leaf; 8092 int type; 8093 u32 size; 8094 8095 if (parent > 0) 8096 type = BTRFS_SHARED_DATA_REF_KEY; 8097 else 8098 type = BTRFS_EXTENT_DATA_REF_KEY; 8099 8100 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8101 8102 path = btrfs_alloc_path(); 8103 if (!path) 8104 return -ENOMEM; 8105 8106 path->leave_spinning = 1; 8107 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8108 ins, size); 8109 if (ret) { 8110 btrfs_free_path(path); 8111 return ret; 8112 } 8113 8114 leaf = path->nodes[0]; 8115 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8116 struct btrfs_extent_item); 8117 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8118 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8119 btrfs_set_extent_flags(leaf, extent_item, 8120 flags | BTRFS_EXTENT_FLAG_DATA); 8121 8122 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8123 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8124 if (parent > 0) { 8125 struct btrfs_shared_data_ref *ref; 8126 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8127 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8128 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8129 } else { 8130 struct btrfs_extent_data_ref *ref; 8131 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8132 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8133 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8134 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8135 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8136 } 8137 8138 btrfs_mark_buffer_dirty(path->nodes[0]); 8139 btrfs_free_path(path); 8140 8141 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8142 ins->offset); 8143 if (ret) 8144 return ret; 8145 8146 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8147 if (ret) { /* -ENOENT, logic error */ 8148 btrfs_err(fs_info, "update block group failed for %llu %llu", 8149 ins->objectid, ins->offset); 8150 BUG(); 8151 } 8152 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8153 return ret; 8154 } 8155 8156 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8157 struct btrfs_fs_info *fs_info, 8158 u64 parent, u64 root_objectid, 8159 u64 flags, struct btrfs_disk_key *key, 8160 int level, struct btrfs_key *ins) 8161 { 8162 int ret; 8163 struct btrfs_extent_item *extent_item; 8164 struct btrfs_tree_block_info *block_info; 8165 struct btrfs_extent_inline_ref *iref; 8166 struct btrfs_path *path; 8167 struct extent_buffer *leaf; 8168 u32 size = sizeof(*extent_item) + sizeof(*iref); 8169 u64 num_bytes = ins->offset; 8170 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8171 8172 if (!skinny_metadata) 8173 size += sizeof(*block_info); 8174 8175 path = btrfs_alloc_path(); 8176 if (!path) { 8177 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8178 fs_info->nodesize); 8179 return -ENOMEM; 8180 } 8181 8182 path->leave_spinning = 1; 8183 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8184 ins, size); 8185 if (ret) { 8186 btrfs_free_path(path); 8187 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8188 fs_info->nodesize); 8189 return ret; 8190 } 8191 8192 leaf = path->nodes[0]; 8193 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8194 struct btrfs_extent_item); 8195 btrfs_set_extent_refs(leaf, extent_item, 1); 8196 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8197 btrfs_set_extent_flags(leaf, extent_item, 8198 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8199 8200 if (skinny_metadata) { 8201 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8202 num_bytes = fs_info->nodesize; 8203 } else { 8204 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8205 btrfs_set_tree_block_key(leaf, block_info, key); 8206 btrfs_set_tree_block_level(leaf, block_info, level); 8207 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8208 } 8209 8210 if (parent > 0) { 8211 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8212 btrfs_set_extent_inline_ref_type(leaf, iref, 8213 BTRFS_SHARED_BLOCK_REF_KEY); 8214 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8215 } else { 8216 btrfs_set_extent_inline_ref_type(leaf, iref, 8217 BTRFS_TREE_BLOCK_REF_KEY); 8218 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8219 } 8220 8221 btrfs_mark_buffer_dirty(leaf); 8222 btrfs_free_path(path); 8223 8224 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8225 num_bytes); 8226 if (ret) 8227 return ret; 8228 8229 ret = update_block_group(trans, fs_info, ins->objectid, 8230 fs_info->nodesize, 1); 8231 if (ret) { /* -ENOENT, logic error */ 8232 btrfs_err(fs_info, "update block group failed for %llu %llu", 8233 ins->objectid, ins->offset); 8234 BUG(); 8235 } 8236 8237 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8238 fs_info->nodesize); 8239 return ret; 8240 } 8241 8242 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8243 struct btrfs_root *root, u64 owner, 8244 u64 offset, u64 ram_bytes, 8245 struct btrfs_key *ins) 8246 { 8247 struct btrfs_fs_info *fs_info = root->fs_info; 8248 int ret; 8249 8250 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 8251 8252 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, 8253 root->root_key.objectid, owner, offset, 8254 BTRFS_ADD_DELAYED_EXTENT); 8255 8256 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8257 ins->offset, 0, 8258 root->root_key.objectid, owner, 8259 offset, ram_bytes, 8260 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8261 return ret; 8262 } 8263 8264 /* 8265 * this is used by the tree logging recovery code. It records that 8266 * an extent has been allocated and makes sure to clear the free 8267 * space cache bits as well 8268 */ 8269 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8270 struct btrfs_fs_info *fs_info, 8271 u64 root_objectid, u64 owner, u64 offset, 8272 struct btrfs_key *ins) 8273 { 8274 int ret; 8275 struct btrfs_block_group_cache *block_group; 8276 struct btrfs_space_info *space_info; 8277 8278 /* 8279 * Mixed block groups will exclude before processing the log so we only 8280 * need to do the exclude dance if this fs isn't mixed. 8281 */ 8282 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8283 ret = __exclude_logged_extent(fs_info, ins->objectid, 8284 ins->offset); 8285 if (ret) 8286 return ret; 8287 } 8288 8289 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8290 if (!block_group) 8291 return -EINVAL; 8292 8293 space_info = block_group->space_info; 8294 spin_lock(&space_info->lock); 8295 spin_lock(&block_group->lock); 8296 space_info->bytes_reserved += ins->offset; 8297 block_group->reserved += ins->offset; 8298 spin_unlock(&block_group->lock); 8299 spin_unlock(&space_info->lock); 8300 8301 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8302 0, owner, offset, ins, 1); 8303 btrfs_put_block_group(block_group); 8304 return ret; 8305 } 8306 8307 static struct extent_buffer * 8308 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8309 u64 bytenr, int level) 8310 { 8311 struct btrfs_fs_info *fs_info = root->fs_info; 8312 struct extent_buffer *buf; 8313 8314 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8315 if (IS_ERR(buf)) 8316 return buf; 8317 8318 btrfs_set_header_generation(buf, trans->transid); 8319 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8320 btrfs_tree_lock(buf); 8321 clean_tree_block(fs_info, buf); 8322 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8323 8324 btrfs_set_lock_blocking(buf); 8325 set_extent_buffer_uptodate(buf); 8326 8327 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8328 buf->log_index = root->log_transid % 2; 8329 /* 8330 * we allow two log transactions at a time, use different 8331 * EXENT bit to differentiate dirty pages. 8332 */ 8333 if (buf->log_index == 0) 8334 set_extent_dirty(&root->dirty_log_pages, buf->start, 8335 buf->start + buf->len - 1, GFP_NOFS); 8336 else 8337 set_extent_new(&root->dirty_log_pages, buf->start, 8338 buf->start + buf->len - 1); 8339 } else { 8340 buf->log_index = -1; 8341 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8342 buf->start + buf->len - 1, GFP_NOFS); 8343 } 8344 trans->dirty = true; 8345 /* this returns a buffer locked for blocking */ 8346 return buf; 8347 } 8348 8349 static struct btrfs_block_rsv * 8350 use_block_rsv(struct btrfs_trans_handle *trans, 8351 struct btrfs_root *root, u32 blocksize) 8352 { 8353 struct btrfs_fs_info *fs_info = root->fs_info; 8354 struct btrfs_block_rsv *block_rsv; 8355 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8356 int ret; 8357 bool global_updated = false; 8358 8359 block_rsv = get_block_rsv(trans, root); 8360 8361 if (unlikely(block_rsv->size == 0)) 8362 goto try_reserve; 8363 again: 8364 ret = block_rsv_use_bytes(block_rsv, blocksize); 8365 if (!ret) 8366 return block_rsv; 8367 8368 if (block_rsv->failfast) 8369 return ERR_PTR(ret); 8370 8371 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8372 global_updated = true; 8373 update_global_block_rsv(fs_info); 8374 goto again; 8375 } 8376 8377 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8378 static DEFINE_RATELIMIT_STATE(_rs, 8379 DEFAULT_RATELIMIT_INTERVAL * 10, 8380 /*DEFAULT_RATELIMIT_BURST*/ 1); 8381 if (__ratelimit(&_rs)) 8382 WARN(1, KERN_DEBUG 8383 "BTRFS: block rsv returned %d\n", ret); 8384 } 8385 try_reserve: 8386 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8387 BTRFS_RESERVE_NO_FLUSH); 8388 if (!ret) 8389 return block_rsv; 8390 /* 8391 * If we couldn't reserve metadata bytes try and use some from 8392 * the global reserve if its space type is the same as the global 8393 * reservation. 8394 */ 8395 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8396 block_rsv->space_info == global_rsv->space_info) { 8397 ret = block_rsv_use_bytes(global_rsv, blocksize); 8398 if (!ret) 8399 return global_rsv; 8400 } 8401 return ERR_PTR(ret); 8402 } 8403 8404 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8405 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8406 { 8407 block_rsv_add_bytes(block_rsv, blocksize, 0); 8408 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8409 } 8410 8411 /* 8412 * finds a free extent and does all the dirty work required for allocation 8413 * returns the tree buffer or an ERR_PTR on error. 8414 */ 8415 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8416 struct btrfs_root *root, 8417 u64 parent, u64 root_objectid, 8418 const struct btrfs_disk_key *key, 8419 int level, u64 hint, 8420 u64 empty_size) 8421 { 8422 struct btrfs_fs_info *fs_info = root->fs_info; 8423 struct btrfs_key ins; 8424 struct btrfs_block_rsv *block_rsv; 8425 struct extent_buffer *buf; 8426 struct btrfs_delayed_extent_op *extent_op; 8427 u64 flags = 0; 8428 int ret; 8429 u32 blocksize = fs_info->nodesize; 8430 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8431 8432 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8433 if (btrfs_is_testing(fs_info)) { 8434 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8435 level); 8436 if (!IS_ERR(buf)) 8437 root->alloc_bytenr += blocksize; 8438 return buf; 8439 } 8440 #endif 8441 8442 block_rsv = use_block_rsv(trans, root, blocksize); 8443 if (IS_ERR(block_rsv)) 8444 return ERR_CAST(block_rsv); 8445 8446 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8447 empty_size, hint, &ins, 0, 0); 8448 if (ret) 8449 goto out_unuse; 8450 8451 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8452 if (IS_ERR(buf)) { 8453 ret = PTR_ERR(buf); 8454 goto out_free_reserved; 8455 } 8456 8457 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8458 if (parent == 0) 8459 parent = ins.objectid; 8460 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8461 } else 8462 BUG_ON(parent > 0); 8463 8464 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8465 extent_op = btrfs_alloc_delayed_extent_op(); 8466 if (!extent_op) { 8467 ret = -ENOMEM; 8468 goto out_free_buf; 8469 } 8470 if (key) 8471 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8472 else 8473 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8474 extent_op->flags_to_set = flags; 8475 extent_op->update_key = skinny_metadata ? false : true; 8476 extent_op->update_flags = true; 8477 extent_op->is_data = false; 8478 extent_op->level = level; 8479 8480 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, 8481 root_objectid, level, 0, 8482 BTRFS_ADD_DELAYED_EXTENT); 8483 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8484 ins.offset, parent, 8485 root_objectid, level, 8486 BTRFS_ADD_DELAYED_EXTENT, 8487 extent_op, NULL, NULL); 8488 if (ret) 8489 goto out_free_delayed; 8490 } 8491 return buf; 8492 8493 out_free_delayed: 8494 btrfs_free_delayed_extent_op(extent_op); 8495 out_free_buf: 8496 free_extent_buffer(buf); 8497 out_free_reserved: 8498 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8499 out_unuse: 8500 unuse_block_rsv(fs_info, block_rsv, blocksize); 8501 return ERR_PTR(ret); 8502 } 8503 8504 struct walk_control { 8505 u64 refs[BTRFS_MAX_LEVEL]; 8506 u64 flags[BTRFS_MAX_LEVEL]; 8507 struct btrfs_key update_progress; 8508 int stage; 8509 int level; 8510 int shared_level; 8511 int update_ref; 8512 int keep_locks; 8513 int reada_slot; 8514 int reada_count; 8515 int for_reloc; 8516 }; 8517 8518 #define DROP_REFERENCE 1 8519 #define UPDATE_BACKREF 2 8520 8521 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8522 struct btrfs_root *root, 8523 struct walk_control *wc, 8524 struct btrfs_path *path) 8525 { 8526 struct btrfs_fs_info *fs_info = root->fs_info; 8527 u64 bytenr; 8528 u64 generation; 8529 u64 refs; 8530 u64 flags; 8531 u32 nritems; 8532 struct btrfs_key key; 8533 struct extent_buffer *eb; 8534 int ret; 8535 int slot; 8536 int nread = 0; 8537 8538 if (path->slots[wc->level] < wc->reada_slot) { 8539 wc->reada_count = wc->reada_count * 2 / 3; 8540 wc->reada_count = max(wc->reada_count, 2); 8541 } else { 8542 wc->reada_count = wc->reada_count * 3 / 2; 8543 wc->reada_count = min_t(int, wc->reada_count, 8544 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8545 } 8546 8547 eb = path->nodes[wc->level]; 8548 nritems = btrfs_header_nritems(eb); 8549 8550 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8551 if (nread >= wc->reada_count) 8552 break; 8553 8554 cond_resched(); 8555 bytenr = btrfs_node_blockptr(eb, slot); 8556 generation = btrfs_node_ptr_generation(eb, slot); 8557 8558 if (slot == path->slots[wc->level]) 8559 goto reada; 8560 8561 if (wc->stage == UPDATE_BACKREF && 8562 generation <= root->root_key.offset) 8563 continue; 8564 8565 /* We don't lock the tree block, it's OK to be racy here */ 8566 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8567 wc->level - 1, 1, &refs, 8568 &flags); 8569 /* We don't care about errors in readahead. */ 8570 if (ret < 0) 8571 continue; 8572 BUG_ON(refs == 0); 8573 8574 if (wc->stage == DROP_REFERENCE) { 8575 if (refs == 1) 8576 goto reada; 8577 8578 if (wc->level == 1 && 8579 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8580 continue; 8581 if (!wc->update_ref || 8582 generation <= root->root_key.offset) 8583 continue; 8584 btrfs_node_key_to_cpu(eb, &key, slot); 8585 ret = btrfs_comp_cpu_keys(&key, 8586 &wc->update_progress); 8587 if (ret < 0) 8588 continue; 8589 } else { 8590 if (wc->level == 1 && 8591 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8592 continue; 8593 } 8594 reada: 8595 readahead_tree_block(fs_info, bytenr); 8596 nread++; 8597 } 8598 wc->reada_slot = slot; 8599 } 8600 8601 /* 8602 * helper to process tree block while walking down the tree. 8603 * 8604 * when wc->stage == UPDATE_BACKREF, this function updates 8605 * back refs for pointers in the block. 8606 * 8607 * NOTE: return value 1 means we should stop walking down. 8608 */ 8609 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8610 struct btrfs_root *root, 8611 struct btrfs_path *path, 8612 struct walk_control *wc, int lookup_info) 8613 { 8614 struct btrfs_fs_info *fs_info = root->fs_info; 8615 int level = wc->level; 8616 struct extent_buffer *eb = path->nodes[level]; 8617 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8618 int ret; 8619 8620 if (wc->stage == UPDATE_BACKREF && 8621 btrfs_header_owner(eb) != root->root_key.objectid) 8622 return 1; 8623 8624 /* 8625 * when reference count of tree block is 1, it won't increase 8626 * again. once full backref flag is set, we never clear it. 8627 */ 8628 if (lookup_info && 8629 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8630 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8631 BUG_ON(!path->locks[level]); 8632 ret = btrfs_lookup_extent_info(trans, fs_info, 8633 eb->start, level, 1, 8634 &wc->refs[level], 8635 &wc->flags[level]); 8636 BUG_ON(ret == -ENOMEM); 8637 if (ret) 8638 return ret; 8639 BUG_ON(wc->refs[level] == 0); 8640 } 8641 8642 if (wc->stage == DROP_REFERENCE) { 8643 if (wc->refs[level] > 1) 8644 return 1; 8645 8646 if (path->locks[level] && !wc->keep_locks) { 8647 btrfs_tree_unlock_rw(eb, path->locks[level]); 8648 path->locks[level] = 0; 8649 } 8650 return 0; 8651 } 8652 8653 /* wc->stage == UPDATE_BACKREF */ 8654 if (!(wc->flags[level] & flag)) { 8655 BUG_ON(!path->locks[level]); 8656 ret = btrfs_inc_ref(trans, root, eb, 1); 8657 BUG_ON(ret); /* -ENOMEM */ 8658 ret = btrfs_dec_ref(trans, root, eb, 0); 8659 BUG_ON(ret); /* -ENOMEM */ 8660 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8661 eb->len, flag, 8662 btrfs_header_level(eb), 0); 8663 BUG_ON(ret); /* -ENOMEM */ 8664 wc->flags[level] |= flag; 8665 } 8666 8667 /* 8668 * the block is shared by multiple trees, so it's not good to 8669 * keep the tree lock 8670 */ 8671 if (path->locks[level] && level > 0) { 8672 btrfs_tree_unlock_rw(eb, path->locks[level]); 8673 path->locks[level] = 0; 8674 } 8675 return 0; 8676 } 8677 8678 /* 8679 * helper to process tree block pointer. 8680 * 8681 * when wc->stage == DROP_REFERENCE, this function checks 8682 * reference count of the block pointed to. if the block 8683 * is shared and we need update back refs for the subtree 8684 * rooted at the block, this function changes wc->stage to 8685 * UPDATE_BACKREF. if the block is shared and there is no 8686 * need to update back, this function drops the reference 8687 * to the block. 8688 * 8689 * NOTE: return value 1 means we should stop walking down. 8690 */ 8691 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8692 struct btrfs_root *root, 8693 struct btrfs_path *path, 8694 struct walk_control *wc, int *lookup_info) 8695 { 8696 struct btrfs_fs_info *fs_info = root->fs_info; 8697 u64 bytenr; 8698 u64 generation; 8699 u64 parent; 8700 u32 blocksize; 8701 struct btrfs_key key; 8702 struct extent_buffer *next; 8703 int level = wc->level; 8704 int reada = 0; 8705 int ret = 0; 8706 bool need_account = false; 8707 8708 generation = btrfs_node_ptr_generation(path->nodes[level], 8709 path->slots[level]); 8710 /* 8711 * if the lower level block was created before the snapshot 8712 * was created, we know there is no need to update back refs 8713 * for the subtree 8714 */ 8715 if (wc->stage == UPDATE_BACKREF && 8716 generation <= root->root_key.offset) { 8717 *lookup_info = 1; 8718 return 1; 8719 } 8720 8721 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8722 blocksize = fs_info->nodesize; 8723 8724 next = find_extent_buffer(fs_info, bytenr); 8725 if (!next) { 8726 next = btrfs_find_create_tree_block(fs_info, bytenr); 8727 if (IS_ERR(next)) 8728 return PTR_ERR(next); 8729 8730 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8731 level - 1); 8732 reada = 1; 8733 } 8734 btrfs_tree_lock(next); 8735 btrfs_set_lock_blocking(next); 8736 8737 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8738 &wc->refs[level - 1], 8739 &wc->flags[level - 1]); 8740 if (ret < 0) 8741 goto out_unlock; 8742 8743 if (unlikely(wc->refs[level - 1] == 0)) { 8744 btrfs_err(fs_info, "Missing references."); 8745 ret = -EIO; 8746 goto out_unlock; 8747 } 8748 *lookup_info = 0; 8749 8750 if (wc->stage == DROP_REFERENCE) { 8751 if (wc->refs[level - 1] > 1) { 8752 need_account = true; 8753 if (level == 1 && 8754 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8755 goto skip; 8756 8757 if (!wc->update_ref || 8758 generation <= root->root_key.offset) 8759 goto skip; 8760 8761 btrfs_node_key_to_cpu(path->nodes[level], &key, 8762 path->slots[level]); 8763 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8764 if (ret < 0) 8765 goto skip; 8766 8767 wc->stage = UPDATE_BACKREF; 8768 wc->shared_level = level - 1; 8769 } 8770 } else { 8771 if (level == 1 && 8772 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8773 goto skip; 8774 } 8775 8776 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8777 btrfs_tree_unlock(next); 8778 free_extent_buffer(next); 8779 next = NULL; 8780 *lookup_info = 1; 8781 } 8782 8783 if (!next) { 8784 if (reada && level == 1) 8785 reada_walk_down(trans, root, wc, path); 8786 next = read_tree_block(fs_info, bytenr, generation); 8787 if (IS_ERR(next)) { 8788 return PTR_ERR(next); 8789 } else if (!extent_buffer_uptodate(next)) { 8790 free_extent_buffer(next); 8791 return -EIO; 8792 } 8793 btrfs_tree_lock(next); 8794 btrfs_set_lock_blocking(next); 8795 } 8796 8797 level--; 8798 ASSERT(level == btrfs_header_level(next)); 8799 if (level != btrfs_header_level(next)) { 8800 btrfs_err(root->fs_info, "mismatched level"); 8801 ret = -EIO; 8802 goto out_unlock; 8803 } 8804 path->nodes[level] = next; 8805 path->slots[level] = 0; 8806 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8807 wc->level = level; 8808 if (wc->level == 1) 8809 wc->reada_slot = 0; 8810 return 0; 8811 skip: 8812 wc->refs[level - 1] = 0; 8813 wc->flags[level - 1] = 0; 8814 if (wc->stage == DROP_REFERENCE) { 8815 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8816 parent = path->nodes[level]->start; 8817 } else { 8818 ASSERT(root->root_key.objectid == 8819 btrfs_header_owner(path->nodes[level])); 8820 if (root->root_key.objectid != 8821 btrfs_header_owner(path->nodes[level])) { 8822 btrfs_err(root->fs_info, 8823 "mismatched block owner"); 8824 ret = -EIO; 8825 goto out_unlock; 8826 } 8827 parent = 0; 8828 } 8829 8830 if (need_account) { 8831 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8832 generation, level - 1); 8833 if (ret) { 8834 btrfs_err_rl(fs_info, 8835 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8836 ret); 8837 } 8838 } 8839 ret = btrfs_free_extent(trans, root, bytenr, blocksize, 8840 parent, root->root_key.objectid, 8841 level - 1, 0); 8842 if (ret) 8843 goto out_unlock; 8844 } 8845 8846 *lookup_info = 1; 8847 ret = 1; 8848 8849 out_unlock: 8850 btrfs_tree_unlock(next); 8851 free_extent_buffer(next); 8852 8853 return ret; 8854 } 8855 8856 /* 8857 * helper to process tree block while walking up the tree. 8858 * 8859 * when wc->stage == DROP_REFERENCE, this function drops 8860 * reference count on the block. 8861 * 8862 * when wc->stage == UPDATE_BACKREF, this function changes 8863 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8864 * to UPDATE_BACKREF previously while processing the block. 8865 * 8866 * NOTE: return value 1 means we should stop walking up. 8867 */ 8868 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8869 struct btrfs_root *root, 8870 struct btrfs_path *path, 8871 struct walk_control *wc) 8872 { 8873 struct btrfs_fs_info *fs_info = root->fs_info; 8874 int ret; 8875 int level = wc->level; 8876 struct extent_buffer *eb = path->nodes[level]; 8877 u64 parent = 0; 8878 8879 if (wc->stage == UPDATE_BACKREF) { 8880 BUG_ON(wc->shared_level < level); 8881 if (level < wc->shared_level) 8882 goto out; 8883 8884 ret = find_next_key(path, level + 1, &wc->update_progress); 8885 if (ret > 0) 8886 wc->update_ref = 0; 8887 8888 wc->stage = DROP_REFERENCE; 8889 wc->shared_level = -1; 8890 path->slots[level] = 0; 8891 8892 /* 8893 * check reference count again if the block isn't locked. 8894 * we should start walking down the tree again if reference 8895 * count is one. 8896 */ 8897 if (!path->locks[level]) { 8898 BUG_ON(level == 0); 8899 btrfs_tree_lock(eb); 8900 btrfs_set_lock_blocking(eb); 8901 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8902 8903 ret = btrfs_lookup_extent_info(trans, fs_info, 8904 eb->start, level, 1, 8905 &wc->refs[level], 8906 &wc->flags[level]); 8907 if (ret < 0) { 8908 btrfs_tree_unlock_rw(eb, path->locks[level]); 8909 path->locks[level] = 0; 8910 return ret; 8911 } 8912 BUG_ON(wc->refs[level] == 0); 8913 if (wc->refs[level] == 1) { 8914 btrfs_tree_unlock_rw(eb, path->locks[level]); 8915 path->locks[level] = 0; 8916 return 1; 8917 } 8918 } 8919 } 8920 8921 /* wc->stage == DROP_REFERENCE */ 8922 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8923 8924 if (wc->refs[level] == 1) { 8925 if (level == 0) { 8926 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8927 ret = btrfs_dec_ref(trans, root, eb, 1); 8928 else 8929 ret = btrfs_dec_ref(trans, root, eb, 0); 8930 BUG_ON(ret); /* -ENOMEM */ 8931 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8932 if (ret) { 8933 btrfs_err_rl(fs_info, 8934 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8935 ret); 8936 } 8937 } 8938 /* make block locked assertion in clean_tree_block happy */ 8939 if (!path->locks[level] && 8940 btrfs_header_generation(eb) == trans->transid) { 8941 btrfs_tree_lock(eb); 8942 btrfs_set_lock_blocking(eb); 8943 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8944 } 8945 clean_tree_block(fs_info, eb); 8946 } 8947 8948 if (eb == root->node) { 8949 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8950 parent = eb->start; 8951 else 8952 BUG_ON(root->root_key.objectid != 8953 btrfs_header_owner(eb)); 8954 } else { 8955 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8956 parent = path->nodes[level + 1]->start; 8957 else 8958 BUG_ON(root->root_key.objectid != 8959 btrfs_header_owner(path->nodes[level + 1])); 8960 } 8961 8962 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8963 out: 8964 wc->refs[level] = 0; 8965 wc->flags[level] = 0; 8966 return 0; 8967 } 8968 8969 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8970 struct btrfs_root *root, 8971 struct btrfs_path *path, 8972 struct walk_control *wc) 8973 { 8974 int level = wc->level; 8975 int lookup_info = 1; 8976 int ret; 8977 8978 while (level >= 0) { 8979 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8980 if (ret > 0) 8981 break; 8982 8983 if (level == 0) 8984 break; 8985 8986 if (path->slots[level] >= 8987 btrfs_header_nritems(path->nodes[level])) 8988 break; 8989 8990 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8991 if (ret > 0) { 8992 path->slots[level]++; 8993 continue; 8994 } else if (ret < 0) 8995 return ret; 8996 level = wc->level; 8997 } 8998 return 0; 8999 } 9000 9001 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 9002 struct btrfs_root *root, 9003 struct btrfs_path *path, 9004 struct walk_control *wc, int max_level) 9005 { 9006 int level = wc->level; 9007 int ret; 9008 9009 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 9010 while (level < max_level && path->nodes[level]) { 9011 wc->level = level; 9012 if (path->slots[level] + 1 < 9013 btrfs_header_nritems(path->nodes[level])) { 9014 path->slots[level]++; 9015 return 0; 9016 } else { 9017 ret = walk_up_proc(trans, root, path, wc); 9018 if (ret > 0) 9019 return 0; 9020 9021 if (path->locks[level]) { 9022 btrfs_tree_unlock_rw(path->nodes[level], 9023 path->locks[level]); 9024 path->locks[level] = 0; 9025 } 9026 free_extent_buffer(path->nodes[level]); 9027 path->nodes[level] = NULL; 9028 level++; 9029 } 9030 } 9031 return 1; 9032 } 9033 9034 /* 9035 * drop a subvolume tree. 9036 * 9037 * this function traverses the tree freeing any blocks that only 9038 * referenced by the tree. 9039 * 9040 * when a shared tree block is found. this function decreases its 9041 * reference count by one. if update_ref is true, this function 9042 * also make sure backrefs for the shared block and all lower level 9043 * blocks are properly updated. 9044 * 9045 * If called with for_reloc == 0, may exit early with -EAGAIN 9046 */ 9047 int btrfs_drop_snapshot(struct btrfs_root *root, 9048 struct btrfs_block_rsv *block_rsv, int update_ref, 9049 int for_reloc) 9050 { 9051 struct btrfs_fs_info *fs_info = root->fs_info; 9052 struct btrfs_path *path; 9053 struct btrfs_trans_handle *trans; 9054 struct btrfs_root *tree_root = fs_info->tree_root; 9055 struct btrfs_root_item *root_item = &root->root_item; 9056 struct walk_control *wc; 9057 struct btrfs_key key; 9058 int err = 0; 9059 int ret; 9060 int level; 9061 bool root_dropped = false; 9062 9063 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9064 9065 path = btrfs_alloc_path(); 9066 if (!path) { 9067 err = -ENOMEM; 9068 goto out; 9069 } 9070 9071 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9072 if (!wc) { 9073 btrfs_free_path(path); 9074 err = -ENOMEM; 9075 goto out; 9076 } 9077 9078 trans = btrfs_start_transaction(tree_root, 0); 9079 if (IS_ERR(trans)) { 9080 err = PTR_ERR(trans); 9081 goto out_free; 9082 } 9083 9084 if (block_rsv) 9085 trans->block_rsv = block_rsv; 9086 9087 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9088 level = btrfs_header_level(root->node); 9089 path->nodes[level] = btrfs_lock_root_node(root); 9090 btrfs_set_lock_blocking(path->nodes[level]); 9091 path->slots[level] = 0; 9092 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9093 memset(&wc->update_progress, 0, 9094 sizeof(wc->update_progress)); 9095 } else { 9096 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9097 memcpy(&wc->update_progress, &key, 9098 sizeof(wc->update_progress)); 9099 9100 level = root_item->drop_level; 9101 BUG_ON(level == 0); 9102 path->lowest_level = level; 9103 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9104 path->lowest_level = 0; 9105 if (ret < 0) { 9106 err = ret; 9107 goto out_end_trans; 9108 } 9109 WARN_ON(ret > 0); 9110 9111 /* 9112 * unlock our path, this is safe because only this 9113 * function is allowed to delete this snapshot 9114 */ 9115 btrfs_unlock_up_safe(path, 0); 9116 9117 level = btrfs_header_level(root->node); 9118 while (1) { 9119 btrfs_tree_lock(path->nodes[level]); 9120 btrfs_set_lock_blocking(path->nodes[level]); 9121 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9122 9123 ret = btrfs_lookup_extent_info(trans, fs_info, 9124 path->nodes[level]->start, 9125 level, 1, &wc->refs[level], 9126 &wc->flags[level]); 9127 if (ret < 0) { 9128 err = ret; 9129 goto out_end_trans; 9130 } 9131 BUG_ON(wc->refs[level] == 0); 9132 9133 if (level == root_item->drop_level) 9134 break; 9135 9136 btrfs_tree_unlock(path->nodes[level]); 9137 path->locks[level] = 0; 9138 WARN_ON(wc->refs[level] != 1); 9139 level--; 9140 } 9141 } 9142 9143 wc->level = level; 9144 wc->shared_level = -1; 9145 wc->stage = DROP_REFERENCE; 9146 wc->update_ref = update_ref; 9147 wc->keep_locks = 0; 9148 wc->for_reloc = for_reloc; 9149 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9150 9151 while (1) { 9152 9153 ret = walk_down_tree(trans, root, path, wc); 9154 if (ret < 0) { 9155 err = ret; 9156 break; 9157 } 9158 9159 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9160 if (ret < 0) { 9161 err = ret; 9162 break; 9163 } 9164 9165 if (ret > 0) { 9166 BUG_ON(wc->stage != DROP_REFERENCE); 9167 break; 9168 } 9169 9170 if (wc->stage == DROP_REFERENCE) { 9171 level = wc->level; 9172 btrfs_node_key(path->nodes[level], 9173 &root_item->drop_progress, 9174 path->slots[level]); 9175 root_item->drop_level = level; 9176 } 9177 9178 BUG_ON(wc->level == 0); 9179 if (btrfs_should_end_transaction(trans) || 9180 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9181 ret = btrfs_update_root(trans, tree_root, 9182 &root->root_key, 9183 root_item); 9184 if (ret) { 9185 btrfs_abort_transaction(trans, ret); 9186 err = ret; 9187 goto out_end_trans; 9188 } 9189 9190 btrfs_end_transaction_throttle(trans); 9191 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9192 btrfs_debug(fs_info, 9193 "drop snapshot early exit"); 9194 err = -EAGAIN; 9195 goto out_free; 9196 } 9197 9198 trans = btrfs_start_transaction(tree_root, 0); 9199 if (IS_ERR(trans)) { 9200 err = PTR_ERR(trans); 9201 goto out_free; 9202 } 9203 if (block_rsv) 9204 trans->block_rsv = block_rsv; 9205 } 9206 } 9207 btrfs_release_path(path); 9208 if (err) 9209 goto out_end_trans; 9210 9211 ret = btrfs_del_root(trans, fs_info, &root->root_key); 9212 if (ret) { 9213 btrfs_abort_transaction(trans, ret); 9214 err = ret; 9215 goto out_end_trans; 9216 } 9217 9218 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9219 ret = btrfs_find_root(tree_root, &root->root_key, path, 9220 NULL, NULL); 9221 if (ret < 0) { 9222 btrfs_abort_transaction(trans, ret); 9223 err = ret; 9224 goto out_end_trans; 9225 } else if (ret > 0) { 9226 /* if we fail to delete the orphan item this time 9227 * around, it'll get picked up the next time. 9228 * 9229 * The most common failure here is just -ENOENT. 9230 */ 9231 btrfs_del_orphan_item(trans, tree_root, 9232 root->root_key.objectid); 9233 } 9234 } 9235 9236 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9237 btrfs_add_dropped_root(trans, root); 9238 } else { 9239 free_extent_buffer(root->node); 9240 free_extent_buffer(root->commit_root); 9241 btrfs_put_fs_root(root); 9242 } 9243 root_dropped = true; 9244 out_end_trans: 9245 btrfs_end_transaction_throttle(trans); 9246 out_free: 9247 kfree(wc); 9248 btrfs_free_path(path); 9249 out: 9250 /* 9251 * So if we need to stop dropping the snapshot for whatever reason we 9252 * need to make sure to add it back to the dead root list so that we 9253 * keep trying to do the work later. This also cleans up roots if we 9254 * don't have it in the radix (like when we recover after a power fail 9255 * or unmount) so we don't leak memory. 9256 */ 9257 if (!for_reloc && !root_dropped) 9258 btrfs_add_dead_root(root); 9259 if (err && err != -EAGAIN) 9260 btrfs_handle_fs_error(fs_info, err, NULL); 9261 return err; 9262 } 9263 9264 /* 9265 * drop subtree rooted at tree block 'node'. 9266 * 9267 * NOTE: this function will unlock and release tree block 'node' 9268 * only used by relocation code 9269 */ 9270 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9271 struct btrfs_root *root, 9272 struct extent_buffer *node, 9273 struct extent_buffer *parent) 9274 { 9275 struct btrfs_fs_info *fs_info = root->fs_info; 9276 struct btrfs_path *path; 9277 struct walk_control *wc; 9278 int level; 9279 int parent_level; 9280 int ret = 0; 9281 int wret; 9282 9283 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9284 9285 path = btrfs_alloc_path(); 9286 if (!path) 9287 return -ENOMEM; 9288 9289 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9290 if (!wc) { 9291 btrfs_free_path(path); 9292 return -ENOMEM; 9293 } 9294 9295 btrfs_assert_tree_locked(parent); 9296 parent_level = btrfs_header_level(parent); 9297 extent_buffer_get(parent); 9298 path->nodes[parent_level] = parent; 9299 path->slots[parent_level] = btrfs_header_nritems(parent); 9300 9301 btrfs_assert_tree_locked(node); 9302 level = btrfs_header_level(node); 9303 path->nodes[level] = node; 9304 path->slots[level] = 0; 9305 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9306 9307 wc->refs[parent_level] = 1; 9308 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9309 wc->level = level; 9310 wc->shared_level = -1; 9311 wc->stage = DROP_REFERENCE; 9312 wc->update_ref = 0; 9313 wc->keep_locks = 1; 9314 wc->for_reloc = 1; 9315 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9316 9317 while (1) { 9318 wret = walk_down_tree(trans, root, path, wc); 9319 if (wret < 0) { 9320 ret = wret; 9321 break; 9322 } 9323 9324 wret = walk_up_tree(trans, root, path, wc, parent_level); 9325 if (wret < 0) 9326 ret = wret; 9327 if (wret != 0) 9328 break; 9329 } 9330 9331 kfree(wc); 9332 btrfs_free_path(path); 9333 return ret; 9334 } 9335 9336 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9337 { 9338 u64 num_devices; 9339 u64 stripped; 9340 9341 /* 9342 * if restripe for this chunk_type is on pick target profile and 9343 * return, otherwise do the usual balance 9344 */ 9345 stripped = get_restripe_target(fs_info, flags); 9346 if (stripped) 9347 return extended_to_chunk(stripped); 9348 9349 num_devices = fs_info->fs_devices->rw_devices; 9350 9351 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9352 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9353 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9354 9355 if (num_devices == 1) { 9356 stripped |= BTRFS_BLOCK_GROUP_DUP; 9357 stripped = flags & ~stripped; 9358 9359 /* turn raid0 into single device chunks */ 9360 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9361 return stripped; 9362 9363 /* turn mirroring into duplication */ 9364 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9365 BTRFS_BLOCK_GROUP_RAID10)) 9366 return stripped | BTRFS_BLOCK_GROUP_DUP; 9367 } else { 9368 /* they already had raid on here, just return */ 9369 if (flags & stripped) 9370 return flags; 9371 9372 stripped |= BTRFS_BLOCK_GROUP_DUP; 9373 stripped = flags & ~stripped; 9374 9375 /* switch duplicated blocks with raid1 */ 9376 if (flags & BTRFS_BLOCK_GROUP_DUP) 9377 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9378 9379 /* this is drive concat, leave it alone */ 9380 } 9381 9382 return flags; 9383 } 9384 9385 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9386 { 9387 struct btrfs_space_info *sinfo = cache->space_info; 9388 u64 num_bytes; 9389 u64 min_allocable_bytes; 9390 int ret = -ENOSPC; 9391 9392 /* 9393 * We need some metadata space and system metadata space for 9394 * allocating chunks in some corner cases until we force to set 9395 * it to be readonly. 9396 */ 9397 if ((sinfo->flags & 9398 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9399 !force) 9400 min_allocable_bytes = SZ_1M; 9401 else 9402 min_allocable_bytes = 0; 9403 9404 spin_lock(&sinfo->lock); 9405 spin_lock(&cache->lock); 9406 9407 if (cache->ro) { 9408 cache->ro++; 9409 ret = 0; 9410 goto out; 9411 } 9412 9413 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9414 cache->bytes_super - btrfs_block_group_used(&cache->item); 9415 9416 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9417 min_allocable_bytes <= sinfo->total_bytes) { 9418 sinfo->bytes_readonly += num_bytes; 9419 cache->ro++; 9420 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9421 ret = 0; 9422 } 9423 out: 9424 spin_unlock(&cache->lock); 9425 spin_unlock(&sinfo->lock); 9426 return ret; 9427 } 9428 9429 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9430 struct btrfs_block_group_cache *cache) 9431 9432 { 9433 struct btrfs_trans_handle *trans; 9434 u64 alloc_flags; 9435 int ret; 9436 9437 again: 9438 trans = btrfs_join_transaction(fs_info->extent_root); 9439 if (IS_ERR(trans)) 9440 return PTR_ERR(trans); 9441 9442 /* 9443 * we're not allowed to set block groups readonly after the dirty 9444 * block groups cache has started writing. If it already started, 9445 * back off and let this transaction commit 9446 */ 9447 mutex_lock(&fs_info->ro_block_group_mutex); 9448 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9449 u64 transid = trans->transid; 9450 9451 mutex_unlock(&fs_info->ro_block_group_mutex); 9452 btrfs_end_transaction(trans); 9453 9454 ret = btrfs_wait_for_commit(fs_info, transid); 9455 if (ret) 9456 return ret; 9457 goto again; 9458 } 9459 9460 /* 9461 * if we are changing raid levels, try to allocate a corresponding 9462 * block group with the new raid level. 9463 */ 9464 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9465 if (alloc_flags != cache->flags) { 9466 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9467 CHUNK_ALLOC_FORCE); 9468 /* 9469 * ENOSPC is allowed here, we may have enough space 9470 * already allocated at the new raid level to 9471 * carry on 9472 */ 9473 if (ret == -ENOSPC) 9474 ret = 0; 9475 if (ret < 0) 9476 goto out; 9477 } 9478 9479 ret = inc_block_group_ro(cache, 0); 9480 if (!ret) 9481 goto out; 9482 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9483 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9484 CHUNK_ALLOC_FORCE); 9485 if (ret < 0) 9486 goto out; 9487 ret = inc_block_group_ro(cache, 0); 9488 out: 9489 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9490 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9491 mutex_lock(&fs_info->chunk_mutex); 9492 check_system_chunk(trans, fs_info, alloc_flags); 9493 mutex_unlock(&fs_info->chunk_mutex); 9494 } 9495 mutex_unlock(&fs_info->ro_block_group_mutex); 9496 9497 btrfs_end_transaction(trans); 9498 return ret; 9499 } 9500 9501 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9502 struct btrfs_fs_info *fs_info, u64 type) 9503 { 9504 u64 alloc_flags = get_alloc_profile(fs_info, type); 9505 9506 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9507 } 9508 9509 /* 9510 * helper to account the unused space of all the readonly block group in the 9511 * space_info. takes mirrors into account. 9512 */ 9513 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9514 { 9515 struct btrfs_block_group_cache *block_group; 9516 u64 free_bytes = 0; 9517 int factor; 9518 9519 /* It's df, we don't care if it's racy */ 9520 if (list_empty(&sinfo->ro_bgs)) 9521 return 0; 9522 9523 spin_lock(&sinfo->lock); 9524 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9525 spin_lock(&block_group->lock); 9526 9527 if (!block_group->ro) { 9528 spin_unlock(&block_group->lock); 9529 continue; 9530 } 9531 9532 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9533 BTRFS_BLOCK_GROUP_RAID10 | 9534 BTRFS_BLOCK_GROUP_DUP)) 9535 factor = 2; 9536 else 9537 factor = 1; 9538 9539 free_bytes += (block_group->key.offset - 9540 btrfs_block_group_used(&block_group->item)) * 9541 factor; 9542 9543 spin_unlock(&block_group->lock); 9544 } 9545 spin_unlock(&sinfo->lock); 9546 9547 return free_bytes; 9548 } 9549 9550 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9551 { 9552 struct btrfs_space_info *sinfo = cache->space_info; 9553 u64 num_bytes; 9554 9555 BUG_ON(!cache->ro); 9556 9557 spin_lock(&sinfo->lock); 9558 spin_lock(&cache->lock); 9559 if (!--cache->ro) { 9560 num_bytes = cache->key.offset - cache->reserved - 9561 cache->pinned - cache->bytes_super - 9562 btrfs_block_group_used(&cache->item); 9563 sinfo->bytes_readonly -= num_bytes; 9564 list_del_init(&cache->ro_list); 9565 } 9566 spin_unlock(&cache->lock); 9567 spin_unlock(&sinfo->lock); 9568 } 9569 9570 /* 9571 * checks to see if its even possible to relocate this block group. 9572 * 9573 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9574 * ok to go ahead and try. 9575 */ 9576 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9577 { 9578 struct btrfs_root *root = fs_info->extent_root; 9579 struct btrfs_block_group_cache *block_group; 9580 struct btrfs_space_info *space_info; 9581 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9582 struct btrfs_device *device; 9583 struct btrfs_trans_handle *trans; 9584 u64 min_free; 9585 u64 dev_min = 1; 9586 u64 dev_nr = 0; 9587 u64 target; 9588 int debug; 9589 int index; 9590 int full = 0; 9591 int ret = 0; 9592 9593 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9594 9595 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9596 9597 /* odd, couldn't find the block group, leave it alone */ 9598 if (!block_group) { 9599 if (debug) 9600 btrfs_warn(fs_info, 9601 "can't find block group for bytenr %llu", 9602 bytenr); 9603 return -1; 9604 } 9605 9606 min_free = btrfs_block_group_used(&block_group->item); 9607 9608 /* no bytes used, we're good */ 9609 if (!min_free) 9610 goto out; 9611 9612 space_info = block_group->space_info; 9613 spin_lock(&space_info->lock); 9614 9615 full = space_info->full; 9616 9617 /* 9618 * if this is the last block group we have in this space, we can't 9619 * relocate it unless we're able to allocate a new chunk below. 9620 * 9621 * Otherwise, we need to make sure we have room in the space to handle 9622 * all of the extents from this block group. If we can, we're good 9623 */ 9624 if ((space_info->total_bytes != block_group->key.offset) && 9625 (btrfs_space_info_used(space_info, false) + min_free < 9626 space_info->total_bytes)) { 9627 spin_unlock(&space_info->lock); 9628 goto out; 9629 } 9630 spin_unlock(&space_info->lock); 9631 9632 /* 9633 * ok we don't have enough space, but maybe we have free space on our 9634 * devices to allocate new chunks for relocation, so loop through our 9635 * alloc devices and guess if we have enough space. if this block 9636 * group is going to be restriped, run checks against the target 9637 * profile instead of the current one. 9638 */ 9639 ret = -1; 9640 9641 /* 9642 * index: 9643 * 0: raid10 9644 * 1: raid1 9645 * 2: dup 9646 * 3: raid0 9647 * 4: single 9648 */ 9649 target = get_restripe_target(fs_info, block_group->flags); 9650 if (target) { 9651 index = __get_raid_index(extended_to_chunk(target)); 9652 } else { 9653 /* 9654 * this is just a balance, so if we were marked as full 9655 * we know there is no space for a new chunk 9656 */ 9657 if (full) { 9658 if (debug) 9659 btrfs_warn(fs_info, 9660 "no space to alloc new chunk for block group %llu", 9661 block_group->key.objectid); 9662 goto out; 9663 } 9664 9665 index = get_block_group_index(block_group); 9666 } 9667 9668 if (index == BTRFS_RAID_RAID10) { 9669 dev_min = 4; 9670 /* Divide by 2 */ 9671 min_free >>= 1; 9672 } else if (index == BTRFS_RAID_RAID1) { 9673 dev_min = 2; 9674 } else if (index == BTRFS_RAID_DUP) { 9675 /* Multiply by 2 */ 9676 min_free <<= 1; 9677 } else if (index == BTRFS_RAID_RAID0) { 9678 dev_min = fs_devices->rw_devices; 9679 min_free = div64_u64(min_free, dev_min); 9680 } 9681 9682 /* We need to do this so that we can look at pending chunks */ 9683 trans = btrfs_join_transaction(root); 9684 if (IS_ERR(trans)) { 9685 ret = PTR_ERR(trans); 9686 goto out; 9687 } 9688 9689 mutex_lock(&fs_info->chunk_mutex); 9690 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9691 u64 dev_offset; 9692 9693 /* 9694 * check to make sure we can actually find a chunk with enough 9695 * space to fit our block group in. 9696 */ 9697 if (device->total_bytes > device->bytes_used + min_free && 9698 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 9699 ret = find_free_dev_extent(trans, device, min_free, 9700 &dev_offset, NULL); 9701 if (!ret) 9702 dev_nr++; 9703 9704 if (dev_nr >= dev_min) 9705 break; 9706 9707 ret = -1; 9708 } 9709 } 9710 if (debug && ret == -1) 9711 btrfs_warn(fs_info, 9712 "no space to allocate a new chunk for block group %llu", 9713 block_group->key.objectid); 9714 mutex_unlock(&fs_info->chunk_mutex); 9715 btrfs_end_transaction(trans); 9716 out: 9717 btrfs_put_block_group(block_group); 9718 return ret; 9719 } 9720 9721 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9722 struct btrfs_path *path, 9723 struct btrfs_key *key) 9724 { 9725 struct btrfs_root *root = fs_info->extent_root; 9726 int ret = 0; 9727 struct btrfs_key found_key; 9728 struct extent_buffer *leaf; 9729 int slot; 9730 9731 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9732 if (ret < 0) 9733 goto out; 9734 9735 while (1) { 9736 slot = path->slots[0]; 9737 leaf = path->nodes[0]; 9738 if (slot >= btrfs_header_nritems(leaf)) { 9739 ret = btrfs_next_leaf(root, path); 9740 if (ret == 0) 9741 continue; 9742 if (ret < 0) 9743 goto out; 9744 break; 9745 } 9746 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9747 9748 if (found_key.objectid >= key->objectid && 9749 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9750 struct extent_map_tree *em_tree; 9751 struct extent_map *em; 9752 9753 em_tree = &root->fs_info->mapping_tree.map_tree; 9754 read_lock(&em_tree->lock); 9755 em = lookup_extent_mapping(em_tree, found_key.objectid, 9756 found_key.offset); 9757 read_unlock(&em_tree->lock); 9758 if (!em) { 9759 btrfs_err(fs_info, 9760 "logical %llu len %llu found bg but no related chunk", 9761 found_key.objectid, found_key.offset); 9762 ret = -ENOENT; 9763 } else { 9764 ret = 0; 9765 } 9766 free_extent_map(em); 9767 goto out; 9768 } 9769 path->slots[0]++; 9770 } 9771 out: 9772 return ret; 9773 } 9774 9775 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9776 { 9777 struct btrfs_block_group_cache *block_group; 9778 u64 last = 0; 9779 9780 while (1) { 9781 struct inode *inode; 9782 9783 block_group = btrfs_lookup_first_block_group(info, last); 9784 while (block_group) { 9785 spin_lock(&block_group->lock); 9786 if (block_group->iref) 9787 break; 9788 spin_unlock(&block_group->lock); 9789 block_group = next_block_group(info, block_group); 9790 } 9791 if (!block_group) { 9792 if (last == 0) 9793 break; 9794 last = 0; 9795 continue; 9796 } 9797 9798 inode = block_group->inode; 9799 block_group->iref = 0; 9800 block_group->inode = NULL; 9801 spin_unlock(&block_group->lock); 9802 ASSERT(block_group->io_ctl.inode == NULL); 9803 iput(inode); 9804 last = block_group->key.objectid + block_group->key.offset; 9805 btrfs_put_block_group(block_group); 9806 } 9807 } 9808 9809 /* 9810 * Must be called only after stopping all workers, since we could have block 9811 * group caching kthreads running, and therefore they could race with us if we 9812 * freed the block groups before stopping them. 9813 */ 9814 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9815 { 9816 struct btrfs_block_group_cache *block_group; 9817 struct btrfs_space_info *space_info; 9818 struct btrfs_caching_control *caching_ctl; 9819 struct rb_node *n; 9820 9821 down_write(&info->commit_root_sem); 9822 while (!list_empty(&info->caching_block_groups)) { 9823 caching_ctl = list_entry(info->caching_block_groups.next, 9824 struct btrfs_caching_control, list); 9825 list_del(&caching_ctl->list); 9826 put_caching_control(caching_ctl); 9827 } 9828 up_write(&info->commit_root_sem); 9829 9830 spin_lock(&info->unused_bgs_lock); 9831 while (!list_empty(&info->unused_bgs)) { 9832 block_group = list_first_entry(&info->unused_bgs, 9833 struct btrfs_block_group_cache, 9834 bg_list); 9835 list_del_init(&block_group->bg_list); 9836 btrfs_put_block_group(block_group); 9837 } 9838 spin_unlock(&info->unused_bgs_lock); 9839 9840 spin_lock(&info->block_group_cache_lock); 9841 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9842 block_group = rb_entry(n, struct btrfs_block_group_cache, 9843 cache_node); 9844 rb_erase(&block_group->cache_node, 9845 &info->block_group_cache_tree); 9846 RB_CLEAR_NODE(&block_group->cache_node); 9847 spin_unlock(&info->block_group_cache_lock); 9848 9849 down_write(&block_group->space_info->groups_sem); 9850 list_del(&block_group->list); 9851 up_write(&block_group->space_info->groups_sem); 9852 9853 /* 9854 * We haven't cached this block group, which means we could 9855 * possibly have excluded extents on this block group. 9856 */ 9857 if (block_group->cached == BTRFS_CACHE_NO || 9858 block_group->cached == BTRFS_CACHE_ERROR) 9859 free_excluded_extents(info, block_group); 9860 9861 btrfs_remove_free_space_cache(block_group); 9862 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9863 ASSERT(list_empty(&block_group->dirty_list)); 9864 ASSERT(list_empty(&block_group->io_list)); 9865 ASSERT(list_empty(&block_group->bg_list)); 9866 ASSERT(atomic_read(&block_group->count) == 1); 9867 btrfs_put_block_group(block_group); 9868 9869 spin_lock(&info->block_group_cache_lock); 9870 } 9871 spin_unlock(&info->block_group_cache_lock); 9872 9873 /* now that all the block groups are freed, go through and 9874 * free all the space_info structs. This is only called during 9875 * the final stages of unmount, and so we know nobody is 9876 * using them. We call synchronize_rcu() once before we start, 9877 * just to be on the safe side. 9878 */ 9879 synchronize_rcu(); 9880 9881 release_global_block_rsv(info); 9882 9883 while (!list_empty(&info->space_info)) { 9884 int i; 9885 9886 space_info = list_entry(info->space_info.next, 9887 struct btrfs_space_info, 9888 list); 9889 9890 /* 9891 * Do not hide this behind enospc_debug, this is actually 9892 * important and indicates a real bug if this happens. 9893 */ 9894 if (WARN_ON(space_info->bytes_pinned > 0 || 9895 space_info->bytes_reserved > 0 || 9896 space_info->bytes_may_use > 0)) 9897 dump_space_info(info, space_info, 0, 0); 9898 list_del(&space_info->list); 9899 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9900 struct kobject *kobj; 9901 kobj = space_info->block_group_kobjs[i]; 9902 space_info->block_group_kobjs[i] = NULL; 9903 if (kobj) { 9904 kobject_del(kobj); 9905 kobject_put(kobj); 9906 } 9907 } 9908 kobject_del(&space_info->kobj); 9909 kobject_put(&space_info->kobj); 9910 } 9911 return 0; 9912 } 9913 9914 static void link_block_group(struct btrfs_block_group_cache *cache) 9915 { 9916 struct btrfs_space_info *space_info = cache->space_info; 9917 int index = get_block_group_index(cache); 9918 bool first = false; 9919 9920 down_write(&space_info->groups_sem); 9921 if (list_empty(&space_info->block_groups[index])) 9922 first = true; 9923 list_add_tail(&cache->list, &space_info->block_groups[index]); 9924 up_write(&space_info->groups_sem); 9925 9926 if (first) { 9927 struct raid_kobject *rkobj; 9928 int ret; 9929 9930 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9931 if (!rkobj) 9932 goto out_err; 9933 rkobj->raid_type = index; 9934 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9935 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9936 "%s", get_raid_name(index)); 9937 if (ret) { 9938 kobject_put(&rkobj->kobj); 9939 goto out_err; 9940 } 9941 space_info->block_group_kobjs[index] = &rkobj->kobj; 9942 } 9943 9944 return; 9945 out_err: 9946 btrfs_warn(cache->fs_info, 9947 "failed to add kobject for block cache, ignoring"); 9948 } 9949 9950 static struct btrfs_block_group_cache * 9951 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9952 u64 start, u64 size) 9953 { 9954 struct btrfs_block_group_cache *cache; 9955 9956 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9957 if (!cache) 9958 return NULL; 9959 9960 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9961 GFP_NOFS); 9962 if (!cache->free_space_ctl) { 9963 kfree(cache); 9964 return NULL; 9965 } 9966 9967 cache->key.objectid = start; 9968 cache->key.offset = size; 9969 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9970 9971 cache->fs_info = fs_info; 9972 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); 9973 set_free_space_tree_thresholds(cache); 9974 9975 atomic_set(&cache->count, 1); 9976 spin_lock_init(&cache->lock); 9977 init_rwsem(&cache->data_rwsem); 9978 INIT_LIST_HEAD(&cache->list); 9979 INIT_LIST_HEAD(&cache->cluster_list); 9980 INIT_LIST_HEAD(&cache->bg_list); 9981 INIT_LIST_HEAD(&cache->ro_list); 9982 INIT_LIST_HEAD(&cache->dirty_list); 9983 INIT_LIST_HEAD(&cache->io_list); 9984 btrfs_init_free_space_ctl(cache); 9985 atomic_set(&cache->trimming, 0); 9986 mutex_init(&cache->free_space_lock); 9987 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 9988 9989 return cache; 9990 } 9991 9992 int btrfs_read_block_groups(struct btrfs_fs_info *info) 9993 { 9994 struct btrfs_path *path; 9995 int ret; 9996 struct btrfs_block_group_cache *cache; 9997 struct btrfs_space_info *space_info; 9998 struct btrfs_key key; 9999 struct btrfs_key found_key; 10000 struct extent_buffer *leaf; 10001 int need_clear = 0; 10002 u64 cache_gen; 10003 u64 feature; 10004 int mixed; 10005 10006 feature = btrfs_super_incompat_flags(info->super_copy); 10007 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 10008 10009 key.objectid = 0; 10010 key.offset = 0; 10011 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10012 path = btrfs_alloc_path(); 10013 if (!path) 10014 return -ENOMEM; 10015 path->reada = READA_FORWARD; 10016 10017 cache_gen = btrfs_super_cache_generation(info->super_copy); 10018 if (btrfs_test_opt(info, SPACE_CACHE) && 10019 btrfs_super_generation(info->super_copy) != cache_gen) 10020 need_clear = 1; 10021 if (btrfs_test_opt(info, CLEAR_CACHE)) 10022 need_clear = 1; 10023 10024 while (1) { 10025 ret = find_first_block_group(info, path, &key); 10026 if (ret > 0) 10027 break; 10028 if (ret != 0) 10029 goto error; 10030 10031 leaf = path->nodes[0]; 10032 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10033 10034 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10035 found_key.offset); 10036 if (!cache) { 10037 ret = -ENOMEM; 10038 goto error; 10039 } 10040 10041 if (need_clear) { 10042 /* 10043 * When we mount with old space cache, we need to 10044 * set BTRFS_DC_CLEAR and set dirty flag. 10045 * 10046 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10047 * truncate the old free space cache inode and 10048 * setup a new one. 10049 * b) Setting 'dirty flag' makes sure that we flush 10050 * the new space cache info onto disk. 10051 */ 10052 if (btrfs_test_opt(info, SPACE_CACHE)) 10053 cache->disk_cache_state = BTRFS_DC_CLEAR; 10054 } 10055 10056 read_extent_buffer(leaf, &cache->item, 10057 btrfs_item_ptr_offset(leaf, path->slots[0]), 10058 sizeof(cache->item)); 10059 cache->flags = btrfs_block_group_flags(&cache->item); 10060 if (!mixed && 10061 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10062 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10063 btrfs_err(info, 10064 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10065 cache->key.objectid); 10066 ret = -EINVAL; 10067 goto error; 10068 } 10069 10070 key.objectid = found_key.objectid + found_key.offset; 10071 btrfs_release_path(path); 10072 10073 /* 10074 * We need to exclude the super stripes now so that the space 10075 * info has super bytes accounted for, otherwise we'll think 10076 * we have more space than we actually do. 10077 */ 10078 ret = exclude_super_stripes(info, cache); 10079 if (ret) { 10080 /* 10081 * We may have excluded something, so call this just in 10082 * case. 10083 */ 10084 free_excluded_extents(info, cache); 10085 btrfs_put_block_group(cache); 10086 goto error; 10087 } 10088 10089 /* 10090 * check for two cases, either we are full, and therefore 10091 * don't need to bother with the caching work since we won't 10092 * find any space, or we are empty, and we can just add all 10093 * the space in and be done with it. This saves us _alot_ of 10094 * time, particularly in the full case. 10095 */ 10096 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10097 cache->last_byte_to_unpin = (u64)-1; 10098 cache->cached = BTRFS_CACHE_FINISHED; 10099 free_excluded_extents(info, cache); 10100 } else if (btrfs_block_group_used(&cache->item) == 0) { 10101 cache->last_byte_to_unpin = (u64)-1; 10102 cache->cached = BTRFS_CACHE_FINISHED; 10103 add_new_free_space(cache, info, 10104 found_key.objectid, 10105 found_key.objectid + 10106 found_key.offset); 10107 free_excluded_extents(info, cache); 10108 } 10109 10110 ret = btrfs_add_block_group_cache(info, cache); 10111 if (ret) { 10112 btrfs_remove_free_space_cache(cache); 10113 btrfs_put_block_group(cache); 10114 goto error; 10115 } 10116 10117 trace_btrfs_add_block_group(info, cache, 0); 10118 update_space_info(info, cache->flags, found_key.offset, 10119 btrfs_block_group_used(&cache->item), 10120 cache->bytes_super, &space_info); 10121 10122 cache->space_info = space_info; 10123 10124 link_block_group(cache); 10125 10126 set_avail_alloc_bits(info, cache->flags); 10127 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10128 inc_block_group_ro(cache, 1); 10129 } else if (btrfs_block_group_used(&cache->item) == 0) { 10130 spin_lock(&info->unused_bgs_lock); 10131 /* Should always be true but just in case. */ 10132 if (list_empty(&cache->bg_list)) { 10133 btrfs_get_block_group(cache); 10134 list_add_tail(&cache->bg_list, 10135 &info->unused_bgs); 10136 } 10137 spin_unlock(&info->unused_bgs_lock); 10138 } 10139 } 10140 10141 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10142 if (!(get_alloc_profile(info, space_info->flags) & 10143 (BTRFS_BLOCK_GROUP_RAID10 | 10144 BTRFS_BLOCK_GROUP_RAID1 | 10145 BTRFS_BLOCK_GROUP_RAID5 | 10146 BTRFS_BLOCK_GROUP_RAID6 | 10147 BTRFS_BLOCK_GROUP_DUP))) 10148 continue; 10149 /* 10150 * avoid allocating from un-mirrored block group if there are 10151 * mirrored block groups. 10152 */ 10153 list_for_each_entry(cache, 10154 &space_info->block_groups[BTRFS_RAID_RAID0], 10155 list) 10156 inc_block_group_ro(cache, 1); 10157 list_for_each_entry(cache, 10158 &space_info->block_groups[BTRFS_RAID_SINGLE], 10159 list) 10160 inc_block_group_ro(cache, 1); 10161 } 10162 10163 init_global_block_rsv(info); 10164 ret = 0; 10165 error: 10166 btrfs_free_path(path); 10167 return ret; 10168 } 10169 10170 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10171 struct btrfs_fs_info *fs_info) 10172 { 10173 struct btrfs_block_group_cache *block_group, *tmp; 10174 struct btrfs_root *extent_root = fs_info->extent_root; 10175 struct btrfs_block_group_item item; 10176 struct btrfs_key key; 10177 int ret = 0; 10178 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10179 10180 trans->can_flush_pending_bgs = false; 10181 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10182 if (ret) 10183 goto next; 10184 10185 spin_lock(&block_group->lock); 10186 memcpy(&item, &block_group->item, sizeof(item)); 10187 memcpy(&key, &block_group->key, sizeof(key)); 10188 spin_unlock(&block_group->lock); 10189 10190 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10191 sizeof(item)); 10192 if (ret) 10193 btrfs_abort_transaction(trans, ret); 10194 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10195 key.offset); 10196 if (ret) 10197 btrfs_abort_transaction(trans, ret); 10198 add_block_group_free_space(trans, fs_info, block_group); 10199 /* already aborted the transaction if it failed. */ 10200 next: 10201 list_del_init(&block_group->bg_list); 10202 } 10203 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10204 } 10205 10206 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10207 struct btrfs_fs_info *fs_info, u64 bytes_used, 10208 u64 type, u64 chunk_offset, u64 size) 10209 { 10210 struct btrfs_block_group_cache *cache; 10211 int ret; 10212 10213 btrfs_set_log_full_commit(fs_info, trans); 10214 10215 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10216 if (!cache) 10217 return -ENOMEM; 10218 10219 btrfs_set_block_group_used(&cache->item, bytes_used); 10220 btrfs_set_block_group_chunk_objectid(&cache->item, 10221 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 10222 btrfs_set_block_group_flags(&cache->item, type); 10223 10224 cache->flags = type; 10225 cache->last_byte_to_unpin = (u64)-1; 10226 cache->cached = BTRFS_CACHE_FINISHED; 10227 cache->needs_free_space = 1; 10228 ret = exclude_super_stripes(fs_info, cache); 10229 if (ret) { 10230 /* 10231 * We may have excluded something, so call this just in 10232 * case. 10233 */ 10234 free_excluded_extents(fs_info, cache); 10235 btrfs_put_block_group(cache); 10236 return ret; 10237 } 10238 10239 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10240 10241 free_excluded_extents(fs_info, cache); 10242 10243 #ifdef CONFIG_BTRFS_DEBUG 10244 if (btrfs_should_fragment_free_space(cache)) { 10245 u64 new_bytes_used = size - bytes_used; 10246 10247 bytes_used += new_bytes_used >> 1; 10248 fragment_free_space(cache); 10249 } 10250 #endif 10251 /* 10252 * Ensure the corresponding space_info object is created and 10253 * assigned to our block group. We want our bg to be added to the rbtree 10254 * with its ->space_info set. 10255 */ 10256 cache->space_info = __find_space_info(fs_info, cache->flags); 10257 if (!cache->space_info) { 10258 ret = create_space_info(fs_info, cache->flags, 10259 &cache->space_info); 10260 if (ret) { 10261 btrfs_remove_free_space_cache(cache); 10262 btrfs_put_block_group(cache); 10263 return ret; 10264 } 10265 } 10266 10267 ret = btrfs_add_block_group_cache(fs_info, cache); 10268 if (ret) { 10269 btrfs_remove_free_space_cache(cache); 10270 btrfs_put_block_group(cache); 10271 return ret; 10272 } 10273 10274 /* 10275 * Now that our block group has its ->space_info set and is inserted in 10276 * the rbtree, update the space info's counters. 10277 */ 10278 trace_btrfs_add_block_group(fs_info, cache, 1); 10279 update_space_info(fs_info, cache->flags, size, bytes_used, 10280 cache->bytes_super, &cache->space_info); 10281 update_global_block_rsv(fs_info); 10282 10283 link_block_group(cache); 10284 10285 list_add_tail(&cache->bg_list, &trans->new_bgs); 10286 10287 set_avail_alloc_bits(fs_info, type); 10288 return 0; 10289 } 10290 10291 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10292 { 10293 u64 extra_flags = chunk_to_extended(flags) & 10294 BTRFS_EXTENDED_PROFILE_MASK; 10295 10296 write_seqlock(&fs_info->profiles_lock); 10297 if (flags & BTRFS_BLOCK_GROUP_DATA) 10298 fs_info->avail_data_alloc_bits &= ~extra_flags; 10299 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10300 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10301 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10302 fs_info->avail_system_alloc_bits &= ~extra_flags; 10303 write_sequnlock(&fs_info->profiles_lock); 10304 } 10305 10306 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10307 struct btrfs_fs_info *fs_info, u64 group_start, 10308 struct extent_map *em) 10309 { 10310 struct btrfs_root *root = fs_info->extent_root; 10311 struct btrfs_path *path; 10312 struct btrfs_block_group_cache *block_group; 10313 struct btrfs_free_cluster *cluster; 10314 struct btrfs_root *tree_root = fs_info->tree_root; 10315 struct btrfs_key key; 10316 struct inode *inode; 10317 struct kobject *kobj = NULL; 10318 int ret; 10319 int index; 10320 int factor; 10321 struct btrfs_caching_control *caching_ctl = NULL; 10322 bool remove_em; 10323 10324 block_group = btrfs_lookup_block_group(fs_info, group_start); 10325 BUG_ON(!block_group); 10326 BUG_ON(!block_group->ro); 10327 10328 /* 10329 * Free the reserved super bytes from this block group before 10330 * remove it. 10331 */ 10332 free_excluded_extents(fs_info, block_group); 10333 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, 10334 block_group->key.offset); 10335 10336 memcpy(&key, &block_group->key, sizeof(key)); 10337 index = get_block_group_index(block_group); 10338 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10339 BTRFS_BLOCK_GROUP_RAID1 | 10340 BTRFS_BLOCK_GROUP_RAID10)) 10341 factor = 2; 10342 else 10343 factor = 1; 10344 10345 /* make sure this block group isn't part of an allocation cluster */ 10346 cluster = &fs_info->data_alloc_cluster; 10347 spin_lock(&cluster->refill_lock); 10348 btrfs_return_cluster_to_free_space(block_group, cluster); 10349 spin_unlock(&cluster->refill_lock); 10350 10351 /* 10352 * make sure this block group isn't part of a metadata 10353 * allocation cluster 10354 */ 10355 cluster = &fs_info->meta_alloc_cluster; 10356 spin_lock(&cluster->refill_lock); 10357 btrfs_return_cluster_to_free_space(block_group, cluster); 10358 spin_unlock(&cluster->refill_lock); 10359 10360 path = btrfs_alloc_path(); 10361 if (!path) { 10362 ret = -ENOMEM; 10363 goto out; 10364 } 10365 10366 /* 10367 * get the inode first so any iput calls done for the io_list 10368 * aren't the final iput (no unlinks allowed now) 10369 */ 10370 inode = lookup_free_space_inode(fs_info, block_group, path); 10371 10372 mutex_lock(&trans->transaction->cache_write_mutex); 10373 /* 10374 * make sure our free spache cache IO is done before remove the 10375 * free space inode 10376 */ 10377 spin_lock(&trans->transaction->dirty_bgs_lock); 10378 if (!list_empty(&block_group->io_list)) { 10379 list_del_init(&block_group->io_list); 10380 10381 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10382 10383 spin_unlock(&trans->transaction->dirty_bgs_lock); 10384 btrfs_wait_cache_io(trans, block_group, path); 10385 btrfs_put_block_group(block_group); 10386 spin_lock(&trans->transaction->dirty_bgs_lock); 10387 } 10388 10389 if (!list_empty(&block_group->dirty_list)) { 10390 list_del_init(&block_group->dirty_list); 10391 btrfs_put_block_group(block_group); 10392 } 10393 spin_unlock(&trans->transaction->dirty_bgs_lock); 10394 mutex_unlock(&trans->transaction->cache_write_mutex); 10395 10396 if (!IS_ERR(inode)) { 10397 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10398 if (ret) { 10399 btrfs_add_delayed_iput(inode); 10400 goto out; 10401 } 10402 clear_nlink(inode); 10403 /* One for the block groups ref */ 10404 spin_lock(&block_group->lock); 10405 if (block_group->iref) { 10406 block_group->iref = 0; 10407 block_group->inode = NULL; 10408 spin_unlock(&block_group->lock); 10409 iput(inode); 10410 } else { 10411 spin_unlock(&block_group->lock); 10412 } 10413 /* One for our lookup ref */ 10414 btrfs_add_delayed_iput(inode); 10415 } 10416 10417 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10418 key.offset = block_group->key.objectid; 10419 key.type = 0; 10420 10421 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10422 if (ret < 0) 10423 goto out; 10424 if (ret > 0) 10425 btrfs_release_path(path); 10426 if (ret == 0) { 10427 ret = btrfs_del_item(trans, tree_root, path); 10428 if (ret) 10429 goto out; 10430 btrfs_release_path(path); 10431 } 10432 10433 spin_lock(&fs_info->block_group_cache_lock); 10434 rb_erase(&block_group->cache_node, 10435 &fs_info->block_group_cache_tree); 10436 RB_CLEAR_NODE(&block_group->cache_node); 10437 10438 if (fs_info->first_logical_byte == block_group->key.objectid) 10439 fs_info->first_logical_byte = (u64)-1; 10440 spin_unlock(&fs_info->block_group_cache_lock); 10441 10442 down_write(&block_group->space_info->groups_sem); 10443 /* 10444 * we must use list_del_init so people can check to see if they 10445 * are still on the list after taking the semaphore 10446 */ 10447 list_del_init(&block_group->list); 10448 if (list_empty(&block_group->space_info->block_groups[index])) { 10449 kobj = block_group->space_info->block_group_kobjs[index]; 10450 block_group->space_info->block_group_kobjs[index] = NULL; 10451 clear_avail_alloc_bits(fs_info, block_group->flags); 10452 } 10453 up_write(&block_group->space_info->groups_sem); 10454 if (kobj) { 10455 kobject_del(kobj); 10456 kobject_put(kobj); 10457 } 10458 10459 if (block_group->has_caching_ctl) 10460 caching_ctl = get_caching_control(block_group); 10461 if (block_group->cached == BTRFS_CACHE_STARTED) 10462 wait_block_group_cache_done(block_group); 10463 if (block_group->has_caching_ctl) { 10464 down_write(&fs_info->commit_root_sem); 10465 if (!caching_ctl) { 10466 struct btrfs_caching_control *ctl; 10467 10468 list_for_each_entry(ctl, 10469 &fs_info->caching_block_groups, list) 10470 if (ctl->block_group == block_group) { 10471 caching_ctl = ctl; 10472 refcount_inc(&caching_ctl->count); 10473 break; 10474 } 10475 } 10476 if (caching_ctl) 10477 list_del_init(&caching_ctl->list); 10478 up_write(&fs_info->commit_root_sem); 10479 if (caching_ctl) { 10480 /* Once for the caching bgs list and once for us. */ 10481 put_caching_control(caching_ctl); 10482 put_caching_control(caching_ctl); 10483 } 10484 } 10485 10486 spin_lock(&trans->transaction->dirty_bgs_lock); 10487 if (!list_empty(&block_group->dirty_list)) { 10488 WARN_ON(1); 10489 } 10490 if (!list_empty(&block_group->io_list)) { 10491 WARN_ON(1); 10492 } 10493 spin_unlock(&trans->transaction->dirty_bgs_lock); 10494 btrfs_remove_free_space_cache(block_group); 10495 10496 spin_lock(&block_group->space_info->lock); 10497 list_del_init(&block_group->ro_list); 10498 10499 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10500 WARN_ON(block_group->space_info->total_bytes 10501 < block_group->key.offset); 10502 WARN_ON(block_group->space_info->bytes_readonly 10503 < block_group->key.offset); 10504 WARN_ON(block_group->space_info->disk_total 10505 < block_group->key.offset * factor); 10506 } 10507 block_group->space_info->total_bytes -= block_group->key.offset; 10508 block_group->space_info->bytes_readonly -= block_group->key.offset; 10509 block_group->space_info->disk_total -= block_group->key.offset * factor; 10510 10511 spin_unlock(&block_group->space_info->lock); 10512 10513 memcpy(&key, &block_group->key, sizeof(key)); 10514 10515 mutex_lock(&fs_info->chunk_mutex); 10516 if (!list_empty(&em->list)) { 10517 /* We're in the transaction->pending_chunks list. */ 10518 free_extent_map(em); 10519 } 10520 spin_lock(&block_group->lock); 10521 block_group->removed = 1; 10522 /* 10523 * At this point trimming can't start on this block group, because we 10524 * removed the block group from the tree fs_info->block_group_cache_tree 10525 * so no one can't find it anymore and even if someone already got this 10526 * block group before we removed it from the rbtree, they have already 10527 * incremented block_group->trimming - if they didn't, they won't find 10528 * any free space entries because we already removed them all when we 10529 * called btrfs_remove_free_space_cache(). 10530 * 10531 * And we must not remove the extent map from the fs_info->mapping_tree 10532 * to prevent the same logical address range and physical device space 10533 * ranges from being reused for a new block group. This is because our 10534 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10535 * completely transactionless, so while it is trimming a range the 10536 * currently running transaction might finish and a new one start, 10537 * allowing for new block groups to be created that can reuse the same 10538 * physical device locations unless we take this special care. 10539 * 10540 * There may also be an implicit trim operation if the file system 10541 * is mounted with -odiscard. The same protections must remain 10542 * in place until the extents have been discarded completely when 10543 * the transaction commit has completed. 10544 */ 10545 remove_em = (atomic_read(&block_group->trimming) == 0); 10546 /* 10547 * Make sure a trimmer task always sees the em in the pinned_chunks list 10548 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10549 * before checking block_group->removed). 10550 */ 10551 if (!remove_em) { 10552 /* 10553 * Our em might be in trans->transaction->pending_chunks which 10554 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10555 * and so is the fs_info->pinned_chunks list. 10556 * 10557 * So at this point we must be holding the chunk_mutex to avoid 10558 * any races with chunk allocation (more specifically at 10559 * volumes.c:contains_pending_extent()), to ensure it always 10560 * sees the em, either in the pending_chunks list or in the 10561 * pinned_chunks list. 10562 */ 10563 list_move_tail(&em->list, &fs_info->pinned_chunks); 10564 } 10565 spin_unlock(&block_group->lock); 10566 10567 if (remove_em) { 10568 struct extent_map_tree *em_tree; 10569 10570 em_tree = &fs_info->mapping_tree.map_tree; 10571 write_lock(&em_tree->lock); 10572 /* 10573 * The em might be in the pending_chunks list, so make sure the 10574 * chunk mutex is locked, since remove_extent_mapping() will 10575 * delete us from that list. 10576 */ 10577 remove_extent_mapping(em_tree, em); 10578 write_unlock(&em_tree->lock); 10579 /* once for the tree */ 10580 free_extent_map(em); 10581 } 10582 10583 mutex_unlock(&fs_info->chunk_mutex); 10584 10585 ret = remove_block_group_free_space(trans, fs_info, block_group); 10586 if (ret) 10587 goto out; 10588 10589 btrfs_put_block_group(block_group); 10590 btrfs_put_block_group(block_group); 10591 10592 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10593 if (ret > 0) 10594 ret = -EIO; 10595 if (ret < 0) 10596 goto out; 10597 10598 ret = btrfs_del_item(trans, root, path); 10599 out: 10600 btrfs_free_path(path); 10601 return ret; 10602 } 10603 10604 struct btrfs_trans_handle * 10605 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10606 const u64 chunk_offset) 10607 { 10608 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10609 struct extent_map *em; 10610 struct map_lookup *map; 10611 unsigned int num_items; 10612 10613 read_lock(&em_tree->lock); 10614 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10615 read_unlock(&em_tree->lock); 10616 ASSERT(em && em->start == chunk_offset); 10617 10618 /* 10619 * We need to reserve 3 + N units from the metadata space info in order 10620 * to remove a block group (done at btrfs_remove_chunk() and at 10621 * btrfs_remove_block_group()), which are used for: 10622 * 10623 * 1 unit for adding the free space inode's orphan (located in the tree 10624 * of tree roots). 10625 * 1 unit for deleting the block group item (located in the extent 10626 * tree). 10627 * 1 unit for deleting the free space item (located in tree of tree 10628 * roots). 10629 * N units for deleting N device extent items corresponding to each 10630 * stripe (located in the device tree). 10631 * 10632 * In order to remove a block group we also need to reserve units in the 10633 * system space info in order to update the chunk tree (update one or 10634 * more device items and remove one chunk item), but this is done at 10635 * btrfs_remove_chunk() through a call to check_system_chunk(). 10636 */ 10637 map = em->map_lookup; 10638 num_items = 3 + map->num_stripes; 10639 free_extent_map(em); 10640 10641 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10642 num_items, 1); 10643 } 10644 10645 /* 10646 * Process the unused_bgs list and remove any that don't have any allocated 10647 * space inside of them. 10648 */ 10649 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10650 { 10651 struct btrfs_block_group_cache *block_group; 10652 struct btrfs_space_info *space_info; 10653 struct btrfs_trans_handle *trans; 10654 int ret = 0; 10655 10656 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10657 return; 10658 10659 spin_lock(&fs_info->unused_bgs_lock); 10660 while (!list_empty(&fs_info->unused_bgs)) { 10661 u64 start, end; 10662 int trimming; 10663 10664 block_group = list_first_entry(&fs_info->unused_bgs, 10665 struct btrfs_block_group_cache, 10666 bg_list); 10667 list_del_init(&block_group->bg_list); 10668 10669 space_info = block_group->space_info; 10670 10671 if (ret || btrfs_mixed_space_info(space_info)) { 10672 btrfs_put_block_group(block_group); 10673 continue; 10674 } 10675 spin_unlock(&fs_info->unused_bgs_lock); 10676 10677 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10678 10679 /* Don't want to race with allocators so take the groups_sem */ 10680 down_write(&space_info->groups_sem); 10681 spin_lock(&block_group->lock); 10682 if (block_group->reserved || 10683 btrfs_block_group_used(&block_group->item) || 10684 block_group->ro || 10685 list_is_singular(&block_group->list)) { 10686 /* 10687 * We want to bail if we made new allocations or have 10688 * outstanding allocations in this block group. We do 10689 * the ro check in case balance is currently acting on 10690 * this block group. 10691 */ 10692 spin_unlock(&block_group->lock); 10693 up_write(&space_info->groups_sem); 10694 goto next; 10695 } 10696 spin_unlock(&block_group->lock); 10697 10698 /* We don't want to force the issue, only flip if it's ok. */ 10699 ret = inc_block_group_ro(block_group, 0); 10700 up_write(&space_info->groups_sem); 10701 if (ret < 0) { 10702 ret = 0; 10703 goto next; 10704 } 10705 10706 /* 10707 * Want to do this before we do anything else so we can recover 10708 * properly if we fail to join the transaction. 10709 */ 10710 trans = btrfs_start_trans_remove_block_group(fs_info, 10711 block_group->key.objectid); 10712 if (IS_ERR(trans)) { 10713 btrfs_dec_block_group_ro(block_group); 10714 ret = PTR_ERR(trans); 10715 goto next; 10716 } 10717 10718 /* 10719 * We could have pending pinned extents for this block group, 10720 * just delete them, we don't care about them anymore. 10721 */ 10722 start = block_group->key.objectid; 10723 end = start + block_group->key.offset - 1; 10724 /* 10725 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10726 * btrfs_finish_extent_commit(). If we are at transaction N, 10727 * another task might be running finish_extent_commit() for the 10728 * previous transaction N - 1, and have seen a range belonging 10729 * to the block group in freed_extents[] before we were able to 10730 * clear the whole block group range from freed_extents[]. This 10731 * means that task can lookup for the block group after we 10732 * unpinned it from freed_extents[] and removed it, leading to 10733 * a BUG_ON() at btrfs_unpin_extent_range(). 10734 */ 10735 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10736 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10737 EXTENT_DIRTY); 10738 if (ret) { 10739 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10740 btrfs_dec_block_group_ro(block_group); 10741 goto end_trans; 10742 } 10743 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10744 EXTENT_DIRTY); 10745 if (ret) { 10746 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10747 btrfs_dec_block_group_ro(block_group); 10748 goto end_trans; 10749 } 10750 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10751 10752 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10753 spin_lock(&space_info->lock); 10754 spin_lock(&block_group->lock); 10755 10756 space_info->bytes_pinned -= block_group->pinned; 10757 space_info->bytes_readonly += block_group->pinned; 10758 percpu_counter_add(&space_info->total_bytes_pinned, 10759 -block_group->pinned); 10760 block_group->pinned = 0; 10761 10762 spin_unlock(&block_group->lock); 10763 spin_unlock(&space_info->lock); 10764 10765 /* DISCARD can flip during remount */ 10766 trimming = btrfs_test_opt(fs_info, DISCARD); 10767 10768 /* Implicit trim during transaction commit. */ 10769 if (trimming) 10770 btrfs_get_block_group_trimming(block_group); 10771 10772 /* 10773 * Btrfs_remove_chunk will abort the transaction if things go 10774 * horribly wrong. 10775 */ 10776 ret = btrfs_remove_chunk(trans, fs_info, 10777 block_group->key.objectid); 10778 10779 if (ret) { 10780 if (trimming) 10781 btrfs_put_block_group_trimming(block_group); 10782 goto end_trans; 10783 } 10784 10785 /* 10786 * If we're not mounted with -odiscard, we can just forget 10787 * about this block group. Otherwise we'll need to wait 10788 * until transaction commit to do the actual discard. 10789 */ 10790 if (trimming) { 10791 spin_lock(&fs_info->unused_bgs_lock); 10792 /* 10793 * A concurrent scrub might have added us to the list 10794 * fs_info->unused_bgs, so use a list_move operation 10795 * to add the block group to the deleted_bgs list. 10796 */ 10797 list_move(&block_group->bg_list, 10798 &trans->transaction->deleted_bgs); 10799 spin_unlock(&fs_info->unused_bgs_lock); 10800 btrfs_get_block_group(block_group); 10801 } 10802 end_trans: 10803 btrfs_end_transaction(trans); 10804 next: 10805 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10806 btrfs_put_block_group(block_group); 10807 spin_lock(&fs_info->unused_bgs_lock); 10808 } 10809 spin_unlock(&fs_info->unused_bgs_lock); 10810 } 10811 10812 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10813 { 10814 struct btrfs_space_info *space_info; 10815 struct btrfs_super_block *disk_super; 10816 u64 features; 10817 u64 flags; 10818 int mixed = 0; 10819 int ret; 10820 10821 disk_super = fs_info->super_copy; 10822 if (!btrfs_super_root(disk_super)) 10823 return -EINVAL; 10824 10825 features = btrfs_super_incompat_flags(disk_super); 10826 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10827 mixed = 1; 10828 10829 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10830 ret = create_space_info(fs_info, flags, &space_info); 10831 if (ret) 10832 goto out; 10833 10834 if (mixed) { 10835 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10836 ret = create_space_info(fs_info, flags, &space_info); 10837 } else { 10838 flags = BTRFS_BLOCK_GROUP_METADATA; 10839 ret = create_space_info(fs_info, flags, &space_info); 10840 if (ret) 10841 goto out; 10842 10843 flags = BTRFS_BLOCK_GROUP_DATA; 10844 ret = create_space_info(fs_info, flags, &space_info); 10845 } 10846 out: 10847 return ret; 10848 } 10849 10850 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10851 u64 start, u64 end) 10852 { 10853 return unpin_extent_range(fs_info, start, end, false); 10854 } 10855 10856 /* 10857 * It used to be that old block groups would be left around forever. 10858 * Iterating over them would be enough to trim unused space. Since we 10859 * now automatically remove them, we also need to iterate over unallocated 10860 * space. 10861 * 10862 * We don't want a transaction for this since the discard may take a 10863 * substantial amount of time. We don't require that a transaction be 10864 * running, but we do need to take a running transaction into account 10865 * to ensure that we're not discarding chunks that were released in 10866 * the current transaction. 10867 * 10868 * Holding the chunks lock will prevent other threads from allocating 10869 * or releasing chunks, but it won't prevent a running transaction 10870 * from committing and releasing the memory that the pending chunks 10871 * list head uses. For that, we need to take a reference to the 10872 * transaction. 10873 */ 10874 static int btrfs_trim_free_extents(struct btrfs_device *device, 10875 u64 minlen, u64 *trimmed) 10876 { 10877 u64 start = 0, len = 0; 10878 int ret; 10879 10880 *trimmed = 0; 10881 10882 /* Not writeable = nothing to do. */ 10883 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 10884 return 0; 10885 10886 /* No free space = nothing to do. */ 10887 if (device->total_bytes <= device->bytes_used) 10888 return 0; 10889 10890 ret = 0; 10891 10892 while (1) { 10893 struct btrfs_fs_info *fs_info = device->fs_info; 10894 struct btrfs_transaction *trans; 10895 u64 bytes; 10896 10897 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10898 if (ret) 10899 return ret; 10900 10901 down_read(&fs_info->commit_root_sem); 10902 10903 spin_lock(&fs_info->trans_lock); 10904 trans = fs_info->running_transaction; 10905 if (trans) 10906 refcount_inc(&trans->use_count); 10907 spin_unlock(&fs_info->trans_lock); 10908 10909 ret = find_free_dev_extent_start(trans, device, minlen, start, 10910 &start, &len); 10911 if (trans) 10912 btrfs_put_transaction(trans); 10913 10914 if (ret) { 10915 up_read(&fs_info->commit_root_sem); 10916 mutex_unlock(&fs_info->chunk_mutex); 10917 if (ret == -ENOSPC) 10918 ret = 0; 10919 break; 10920 } 10921 10922 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10923 up_read(&fs_info->commit_root_sem); 10924 mutex_unlock(&fs_info->chunk_mutex); 10925 10926 if (ret) 10927 break; 10928 10929 start += len; 10930 *trimmed += bytes; 10931 10932 if (fatal_signal_pending(current)) { 10933 ret = -ERESTARTSYS; 10934 break; 10935 } 10936 10937 cond_resched(); 10938 } 10939 10940 return ret; 10941 } 10942 10943 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10944 { 10945 struct btrfs_block_group_cache *cache = NULL; 10946 struct btrfs_device *device; 10947 struct list_head *devices; 10948 u64 group_trimmed; 10949 u64 start; 10950 u64 end; 10951 u64 trimmed = 0; 10952 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10953 int ret = 0; 10954 10955 /* 10956 * try to trim all FS space, our block group may start from non-zero. 10957 */ 10958 if (range->len == total_bytes) 10959 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10960 else 10961 cache = btrfs_lookup_block_group(fs_info, range->start); 10962 10963 while (cache) { 10964 if (cache->key.objectid >= (range->start + range->len)) { 10965 btrfs_put_block_group(cache); 10966 break; 10967 } 10968 10969 start = max(range->start, cache->key.objectid); 10970 end = min(range->start + range->len, 10971 cache->key.objectid + cache->key.offset); 10972 10973 if (end - start >= range->minlen) { 10974 if (!block_group_cache_done(cache)) { 10975 ret = cache_block_group(cache, 0); 10976 if (ret) { 10977 btrfs_put_block_group(cache); 10978 break; 10979 } 10980 ret = wait_block_group_cache_done(cache); 10981 if (ret) { 10982 btrfs_put_block_group(cache); 10983 break; 10984 } 10985 } 10986 ret = btrfs_trim_block_group(cache, 10987 &group_trimmed, 10988 start, 10989 end, 10990 range->minlen); 10991 10992 trimmed += group_trimmed; 10993 if (ret) { 10994 btrfs_put_block_group(cache); 10995 break; 10996 } 10997 } 10998 10999 cache = next_block_group(fs_info, cache); 11000 } 11001 11002 mutex_lock(&fs_info->fs_devices->device_list_mutex); 11003 devices = &fs_info->fs_devices->alloc_list; 11004 list_for_each_entry(device, devices, dev_alloc_list) { 11005 ret = btrfs_trim_free_extents(device, range->minlen, 11006 &group_trimmed); 11007 if (ret) 11008 break; 11009 11010 trimmed += group_trimmed; 11011 } 11012 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 11013 11014 range->len = trimmed; 11015 return ret; 11016 } 11017 11018 /* 11019 * btrfs_{start,end}_write_no_snapshotting() are similar to 11020 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11021 * data into the page cache through nocow before the subvolume is snapshoted, 11022 * but flush the data into disk after the snapshot creation, or to prevent 11023 * operations while snapshotting is ongoing and that cause the snapshot to be 11024 * inconsistent (writes followed by expanding truncates for example). 11025 */ 11026 void btrfs_end_write_no_snapshotting(struct btrfs_root *root) 11027 { 11028 percpu_counter_dec(&root->subv_writers->counter); 11029 /* 11030 * Make sure counter is updated before we wake up waiters. 11031 */ 11032 smp_mb(); 11033 if (waitqueue_active(&root->subv_writers->wait)) 11034 wake_up(&root->subv_writers->wait); 11035 } 11036 11037 int btrfs_start_write_no_snapshotting(struct btrfs_root *root) 11038 { 11039 if (atomic_read(&root->will_be_snapshotted)) 11040 return 0; 11041 11042 percpu_counter_inc(&root->subv_writers->counter); 11043 /* 11044 * Make sure counter is updated before we check for snapshot creation. 11045 */ 11046 smp_mb(); 11047 if (atomic_read(&root->will_be_snapshotted)) { 11048 btrfs_end_write_no_snapshotting(root); 11049 return 0; 11050 } 11051 return 1; 11052 } 11053 11054 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11055 { 11056 while (true) { 11057 int ret; 11058 11059 ret = btrfs_start_write_no_snapshotting(root); 11060 if (ret) 11061 break; 11062 wait_var_event(&root->will_be_snapshotted, 11063 !atomic_read(&root->will_be_snapshotted)); 11064 } 11065 } 11066