1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 43 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 44 struct btrfs_delayed_ref_node *node, u64 parent, 45 u64 root_objectid, u64 owner_objectid, 46 u64 owner_offset, int refs_to_drop, 47 struct btrfs_delayed_extent_op *extra_op); 48 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 49 struct extent_buffer *leaf, 50 struct btrfs_extent_item *ei); 51 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 52 u64 parent, u64 root_objectid, 53 u64 flags, u64 owner, u64 offset, 54 struct btrfs_key *ins, int ref_mod); 55 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 56 struct btrfs_delayed_ref_node *node, 57 struct btrfs_delayed_extent_op *extent_op); 58 static int find_next_key(struct btrfs_path *path, int level, 59 struct btrfs_key *key); 60 61 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 62 { 63 return (cache->flags & bits) == bits; 64 } 65 66 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 67 u64 start, u64 num_bytes) 68 { 69 u64 end = start + num_bytes - 1; 70 set_extent_bits(&fs_info->excluded_extents, start, end, 71 EXTENT_UPTODATE); 72 return 0; 73 } 74 75 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 76 { 77 struct btrfs_fs_info *fs_info = cache->fs_info; 78 u64 start, end; 79 80 start = cache->start; 81 end = start + cache->length - 1; 82 83 clear_extent_bits(&fs_info->excluded_extents, start, end, 84 EXTENT_UPTODATE); 85 } 86 87 /* simple helper to search for an existing data extent at a given offset */ 88 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 89 { 90 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 91 int ret; 92 struct btrfs_key key; 93 struct btrfs_path *path; 94 95 path = btrfs_alloc_path(); 96 if (!path) 97 return -ENOMEM; 98 99 key.objectid = start; 100 key.offset = len; 101 key.type = BTRFS_EXTENT_ITEM_KEY; 102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 103 btrfs_free_path(path); 104 return ret; 105 } 106 107 /* 108 * helper function to lookup reference count and flags of a tree block. 109 * 110 * the head node for delayed ref is used to store the sum of all the 111 * reference count modifications queued up in the rbtree. the head 112 * node may also store the extent flags to set. This way you can check 113 * to see what the reference count and extent flags would be if all of 114 * the delayed refs are not processed. 115 */ 116 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 117 struct btrfs_fs_info *fs_info, u64 bytenr, 118 u64 offset, int metadata, u64 *refs, u64 *flags) 119 { 120 struct btrfs_root *extent_root; 121 struct btrfs_delayed_ref_head *head; 122 struct btrfs_delayed_ref_root *delayed_refs; 123 struct btrfs_path *path; 124 struct btrfs_extent_item *ei; 125 struct extent_buffer *leaf; 126 struct btrfs_key key; 127 u32 item_size; 128 u64 num_refs; 129 u64 extent_flags; 130 int ret; 131 132 /* 133 * If we don't have skinny metadata, don't bother doing anything 134 * different 135 */ 136 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 137 offset = fs_info->nodesize; 138 metadata = 0; 139 } 140 141 path = btrfs_alloc_path(); 142 if (!path) 143 return -ENOMEM; 144 145 if (!trans) { 146 path->skip_locking = 1; 147 path->search_commit_root = 1; 148 } 149 150 search_again: 151 key.objectid = bytenr; 152 key.offset = offset; 153 if (metadata) 154 key.type = BTRFS_METADATA_ITEM_KEY; 155 else 156 key.type = BTRFS_EXTENT_ITEM_KEY; 157 158 extent_root = btrfs_extent_root(fs_info, bytenr); 159 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 160 if (ret < 0) 161 goto out_free; 162 163 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 164 if (path->slots[0]) { 165 path->slots[0]--; 166 btrfs_item_key_to_cpu(path->nodes[0], &key, 167 path->slots[0]); 168 if (key.objectid == bytenr && 169 key.type == BTRFS_EXTENT_ITEM_KEY && 170 key.offset == fs_info->nodesize) 171 ret = 0; 172 } 173 } 174 175 if (ret == 0) { 176 leaf = path->nodes[0]; 177 item_size = btrfs_item_size(leaf, path->slots[0]); 178 if (item_size >= sizeof(*ei)) { 179 ei = btrfs_item_ptr(leaf, path->slots[0], 180 struct btrfs_extent_item); 181 num_refs = btrfs_extent_refs(leaf, ei); 182 extent_flags = btrfs_extent_flags(leaf, ei); 183 } else { 184 ret = -EINVAL; 185 btrfs_print_v0_err(fs_info); 186 if (trans) 187 btrfs_abort_transaction(trans, ret); 188 else 189 btrfs_handle_fs_error(fs_info, ret, NULL); 190 191 goto out_free; 192 } 193 194 BUG_ON(num_refs == 0); 195 } else { 196 num_refs = 0; 197 extent_flags = 0; 198 ret = 0; 199 } 200 201 if (!trans) 202 goto out; 203 204 delayed_refs = &trans->transaction->delayed_refs; 205 spin_lock(&delayed_refs->lock); 206 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 207 if (head) { 208 if (!mutex_trylock(&head->mutex)) { 209 refcount_inc(&head->refs); 210 spin_unlock(&delayed_refs->lock); 211 212 btrfs_release_path(path); 213 214 /* 215 * Mutex was contended, block until it's released and try 216 * again 217 */ 218 mutex_lock(&head->mutex); 219 mutex_unlock(&head->mutex); 220 btrfs_put_delayed_ref_head(head); 221 goto search_again; 222 } 223 spin_lock(&head->lock); 224 if (head->extent_op && head->extent_op->update_flags) 225 extent_flags |= head->extent_op->flags_to_set; 226 else 227 BUG_ON(num_refs == 0); 228 229 num_refs += head->ref_mod; 230 spin_unlock(&head->lock); 231 mutex_unlock(&head->mutex); 232 } 233 spin_unlock(&delayed_refs->lock); 234 out: 235 WARN_ON(num_refs == 0); 236 if (refs) 237 *refs = num_refs; 238 if (flags) 239 *flags = extent_flags; 240 out_free: 241 btrfs_free_path(path); 242 return ret; 243 } 244 245 /* 246 * Back reference rules. Back refs have three main goals: 247 * 248 * 1) differentiate between all holders of references to an extent so that 249 * when a reference is dropped we can make sure it was a valid reference 250 * before freeing the extent. 251 * 252 * 2) Provide enough information to quickly find the holders of an extent 253 * if we notice a given block is corrupted or bad. 254 * 255 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 256 * maintenance. This is actually the same as #2, but with a slightly 257 * different use case. 258 * 259 * There are two kinds of back refs. The implicit back refs is optimized 260 * for pointers in non-shared tree blocks. For a given pointer in a block, 261 * back refs of this kind provide information about the block's owner tree 262 * and the pointer's key. These information allow us to find the block by 263 * b-tree searching. The full back refs is for pointers in tree blocks not 264 * referenced by their owner trees. The location of tree block is recorded 265 * in the back refs. Actually the full back refs is generic, and can be 266 * used in all cases the implicit back refs is used. The major shortcoming 267 * of the full back refs is its overhead. Every time a tree block gets 268 * COWed, we have to update back refs entry for all pointers in it. 269 * 270 * For a newly allocated tree block, we use implicit back refs for 271 * pointers in it. This means most tree related operations only involve 272 * implicit back refs. For a tree block created in old transaction, the 273 * only way to drop a reference to it is COW it. So we can detect the 274 * event that tree block loses its owner tree's reference and do the 275 * back refs conversion. 276 * 277 * When a tree block is COWed through a tree, there are four cases: 278 * 279 * The reference count of the block is one and the tree is the block's 280 * owner tree. Nothing to do in this case. 281 * 282 * The reference count of the block is one and the tree is not the 283 * block's owner tree. In this case, full back refs is used for pointers 284 * in the block. Remove these full back refs, add implicit back refs for 285 * every pointers in the new block. 286 * 287 * The reference count of the block is greater than one and the tree is 288 * the block's owner tree. In this case, implicit back refs is used for 289 * pointers in the block. Add full back refs for every pointers in the 290 * block, increase lower level extents' reference counts. The original 291 * implicit back refs are entailed to the new block. 292 * 293 * The reference count of the block is greater than one and the tree is 294 * not the block's owner tree. Add implicit back refs for every pointer in 295 * the new block, increase lower level extents' reference count. 296 * 297 * Back Reference Key composing: 298 * 299 * The key objectid corresponds to the first byte in the extent, 300 * The key type is used to differentiate between types of back refs. 301 * There are different meanings of the key offset for different types 302 * of back refs. 303 * 304 * File extents can be referenced by: 305 * 306 * - multiple snapshots, subvolumes, or different generations in one subvol 307 * - different files inside a single subvolume 308 * - different offsets inside a file (bookend extents in file.c) 309 * 310 * The extent ref structure for the implicit back refs has fields for: 311 * 312 * - Objectid of the subvolume root 313 * - objectid of the file holding the reference 314 * - original offset in the file 315 * - how many bookend extents 316 * 317 * The key offset for the implicit back refs is hash of the first 318 * three fields. 319 * 320 * The extent ref structure for the full back refs has field for: 321 * 322 * - number of pointers in the tree leaf 323 * 324 * The key offset for the implicit back refs is the first byte of 325 * the tree leaf 326 * 327 * When a file extent is allocated, The implicit back refs is used. 328 * the fields are filled in: 329 * 330 * (root_key.objectid, inode objectid, offset in file, 1) 331 * 332 * When a file extent is removed file truncation, we find the 333 * corresponding implicit back refs and check the following fields: 334 * 335 * (btrfs_header_owner(leaf), inode objectid, offset in file) 336 * 337 * Btree extents can be referenced by: 338 * 339 * - Different subvolumes 340 * 341 * Both the implicit back refs and the full back refs for tree blocks 342 * only consist of key. The key offset for the implicit back refs is 343 * objectid of block's owner tree. The key offset for the full back refs 344 * is the first byte of parent block. 345 * 346 * When implicit back refs is used, information about the lowest key and 347 * level of the tree block are required. These information are stored in 348 * tree block info structure. 349 */ 350 351 /* 352 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 353 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 354 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 355 */ 356 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 357 struct btrfs_extent_inline_ref *iref, 358 enum btrfs_inline_ref_type is_data) 359 { 360 int type = btrfs_extent_inline_ref_type(eb, iref); 361 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 362 363 if (type == BTRFS_TREE_BLOCK_REF_KEY || 364 type == BTRFS_SHARED_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_DATA_REF_KEY || 366 type == BTRFS_EXTENT_DATA_REF_KEY) { 367 if (is_data == BTRFS_REF_TYPE_BLOCK) { 368 if (type == BTRFS_TREE_BLOCK_REF_KEY) 369 return type; 370 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 371 ASSERT(eb->fs_info); 372 /* 373 * Every shared one has parent tree block, 374 * which must be aligned to sector size. 375 */ 376 if (offset && 377 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(eb->fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 btrfs_print_leaf((struct extent_buffer *)eb); 400 btrfs_err(eb->fs_info, 401 "eb %llu iref 0x%lx invalid extent inline ref type %d", 402 eb->start, (unsigned long)iref, type); 403 WARN_ON(1); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 622 btrfs_print_v0_err(trans->fs_info); 623 btrfs_abort_transaction(trans, -EINVAL); 624 return -EINVAL; 625 } else { 626 BUG(); 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 658 if (iref) { 659 /* 660 * If type is invalid, we should have bailed out earlier than 661 * this call. 662 */ 663 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 664 ASSERT(type != BTRFS_REF_TYPE_INVALID); 665 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 666 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 667 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 668 } else { 669 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 670 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 671 } 672 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 673 ref1 = btrfs_item_ptr(leaf, path->slots[0], 674 struct btrfs_extent_data_ref); 675 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 676 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 677 ref2 = btrfs_item_ptr(leaf, path->slots[0], 678 struct btrfs_shared_data_ref); 679 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 680 } else { 681 WARN_ON(1); 682 } 683 return num_refs; 684 } 685 686 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 687 struct btrfs_path *path, 688 u64 bytenr, u64 parent, 689 u64 root_objectid) 690 { 691 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 692 struct btrfs_key key; 693 int ret; 694 695 key.objectid = bytenr; 696 if (parent) { 697 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 698 key.offset = parent; 699 } else { 700 key.type = BTRFS_TREE_BLOCK_REF_KEY; 701 key.offset = root_objectid; 702 } 703 704 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 705 if (ret > 0) 706 ret = -ENOENT; 707 return ret; 708 } 709 710 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 711 struct btrfs_path *path, 712 u64 bytenr, u64 parent, 713 u64 root_objectid) 714 { 715 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 716 struct btrfs_key key; 717 int ret; 718 719 key.objectid = bytenr; 720 if (parent) { 721 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 722 key.offset = parent; 723 } else { 724 key.type = BTRFS_TREE_BLOCK_REF_KEY; 725 key.offset = root_objectid; 726 } 727 728 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 729 btrfs_release_path(path); 730 return ret; 731 } 732 733 static inline int extent_ref_type(u64 parent, u64 owner) 734 { 735 int type; 736 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 737 if (parent > 0) 738 type = BTRFS_SHARED_BLOCK_REF_KEY; 739 else 740 type = BTRFS_TREE_BLOCK_REF_KEY; 741 } else { 742 if (parent > 0) 743 type = BTRFS_SHARED_DATA_REF_KEY; 744 else 745 type = BTRFS_EXTENT_DATA_REF_KEY; 746 } 747 return type; 748 } 749 750 static int find_next_key(struct btrfs_path *path, int level, 751 struct btrfs_key *key) 752 753 { 754 for (; level < BTRFS_MAX_LEVEL; level++) { 755 if (!path->nodes[level]) 756 break; 757 if (path->slots[level] + 1 >= 758 btrfs_header_nritems(path->nodes[level])) 759 continue; 760 if (level == 0) 761 btrfs_item_key_to_cpu(path->nodes[level], key, 762 path->slots[level] + 1); 763 else 764 btrfs_node_key_to_cpu(path->nodes[level], key, 765 path->slots[level] + 1); 766 return 0; 767 } 768 return 1; 769 } 770 771 /* 772 * look for inline back ref. if back ref is found, *ref_ret is set 773 * to the address of inline back ref, and 0 is returned. 774 * 775 * if back ref isn't found, *ref_ret is set to the address where it 776 * should be inserted, and -ENOENT is returned. 777 * 778 * if insert is true and there are too many inline back refs, the path 779 * points to the extent item, and -EAGAIN is returned. 780 * 781 * NOTE: inline back refs are ordered in the same way that back ref 782 * items in the tree are ordered. 783 */ 784 static noinline_for_stack 785 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 786 struct btrfs_path *path, 787 struct btrfs_extent_inline_ref **ref_ret, 788 u64 bytenr, u64 num_bytes, 789 u64 parent, u64 root_objectid, 790 u64 owner, u64 offset, int insert) 791 { 792 struct btrfs_fs_info *fs_info = trans->fs_info; 793 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 794 struct btrfs_key key; 795 struct extent_buffer *leaf; 796 struct btrfs_extent_item *ei; 797 struct btrfs_extent_inline_ref *iref; 798 u64 flags; 799 u64 item_size; 800 unsigned long ptr; 801 unsigned long end; 802 int extra_size; 803 int type; 804 int want; 805 int ret; 806 int err = 0; 807 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 808 int needed; 809 810 key.objectid = bytenr; 811 key.type = BTRFS_EXTENT_ITEM_KEY; 812 key.offset = num_bytes; 813 814 want = extent_ref_type(parent, owner); 815 if (insert) { 816 extra_size = btrfs_extent_inline_ref_size(want); 817 path->search_for_extension = 1; 818 path->keep_locks = 1; 819 } else 820 extra_size = -1; 821 822 /* 823 * Owner is our level, so we can just add one to get the level for the 824 * block we are interested in. 825 */ 826 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 827 key.type = BTRFS_METADATA_ITEM_KEY; 828 key.offset = owner; 829 } 830 831 again: 832 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 833 if (ret < 0) { 834 err = ret; 835 goto out; 836 } 837 838 /* 839 * We may be a newly converted file system which still has the old fat 840 * extent entries for metadata, so try and see if we have one of those. 841 */ 842 if (ret > 0 && skinny_metadata) { 843 skinny_metadata = false; 844 if (path->slots[0]) { 845 path->slots[0]--; 846 btrfs_item_key_to_cpu(path->nodes[0], &key, 847 path->slots[0]); 848 if (key.objectid == bytenr && 849 key.type == BTRFS_EXTENT_ITEM_KEY && 850 key.offset == num_bytes) 851 ret = 0; 852 } 853 if (ret) { 854 key.objectid = bytenr; 855 key.type = BTRFS_EXTENT_ITEM_KEY; 856 key.offset = num_bytes; 857 btrfs_release_path(path); 858 goto again; 859 } 860 } 861 862 if (ret && !insert) { 863 err = -ENOENT; 864 goto out; 865 } else if (WARN_ON(ret)) { 866 err = -EIO; 867 goto out; 868 } 869 870 leaf = path->nodes[0]; 871 item_size = btrfs_item_size(leaf, path->slots[0]); 872 if (unlikely(item_size < sizeof(*ei))) { 873 err = -EINVAL; 874 btrfs_print_v0_err(fs_info); 875 btrfs_abort_transaction(trans, err); 876 goto out; 877 } 878 879 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 880 flags = btrfs_extent_flags(leaf, ei); 881 882 ptr = (unsigned long)(ei + 1); 883 end = (unsigned long)ei + item_size; 884 885 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 886 ptr += sizeof(struct btrfs_tree_block_info); 887 BUG_ON(ptr > end); 888 } 889 890 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 891 needed = BTRFS_REF_TYPE_DATA; 892 else 893 needed = BTRFS_REF_TYPE_BLOCK; 894 895 err = -ENOENT; 896 while (1) { 897 if (ptr >= end) { 898 if (ptr > end) { 899 err = -EUCLEAN; 900 btrfs_print_leaf(path->nodes[0]); 901 btrfs_crit(fs_info, 902 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 903 path->slots[0], root_objectid, owner, offset, parent); 904 } 905 break; 906 } 907 iref = (struct btrfs_extent_inline_ref *)ptr; 908 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 909 if (type == BTRFS_REF_TYPE_INVALID) { 910 err = -EUCLEAN; 911 goto out; 912 } 913 914 if (want < type) 915 break; 916 if (want > type) { 917 ptr += btrfs_extent_inline_ref_size(type); 918 continue; 919 } 920 921 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 922 struct btrfs_extent_data_ref *dref; 923 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 924 if (match_extent_data_ref(leaf, dref, root_objectid, 925 owner, offset)) { 926 err = 0; 927 break; 928 } 929 if (hash_extent_data_ref_item(leaf, dref) < 930 hash_extent_data_ref(root_objectid, owner, offset)) 931 break; 932 } else { 933 u64 ref_offset; 934 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 935 if (parent > 0) { 936 if (parent == ref_offset) { 937 err = 0; 938 break; 939 } 940 if (ref_offset < parent) 941 break; 942 } else { 943 if (root_objectid == ref_offset) { 944 err = 0; 945 break; 946 } 947 if (ref_offset < root_objectid) 948 break; 949 } 950 } 951 ptr += btrfs_extent_inline_ref_size(type); 952 } 953 if (err == -ENOENT && insert) { 954 if (item_size + extra_size >= 955 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 956 err = -EAGAIN; 957 goto out; 958 } 959 /* 960 * To add new inline back ref, we have to make sure 961 * there is no corresponding back ref item. 962 * For simplicity, we just do not add new inline back 963 * ref if there is any kind of item for this block 964 */ 965 if (find_next_key(path, 0, &key) == 0 && 966 key.objectid == bytenr && 967 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 968 err = -EAGAIN; 969 goto out; 970 } 971 } 972 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 973 out: 974 if (insert) { 975 path->keep_locks = 0; 976 path->search_for_extension = 0; 977 btrfs_unlock_up_safe(path, 1); 978 } 979 return err; 980 } 981 982 /* 983 * helper to add new inline back ref 984 */ 985 static noinline_for_stack 986 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 987 struct btrfs_path *path, 988 struct btrfs_extent_inline_ref *iref, 989 u64 parent, u64 root_objectid, 990 u64 owner, u64 offset, int refs_to_add, 991 struct btrfs_delayed_extent_op *extent_op) 992 { 993 struct extent_buffer *leaf; 994 struct btrfs_extent_item *ei; 995 unsigned long ptr; 996 unsigned long end; 997 unsigned long item_offset; 998 u64 refs; 999 int size; 1000 int type; 1001 1002 leaf = path->nodes[0]; 1003 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1004 item_offset = (unsigned long)iref - (unsigned long)ei; 1005 1006 type = extent_ref_type(parent, owner); 1007 size = btrfs_extent_inline_ref_size(type); 1008 1009 btrfs_extend_item(path, size); 1010 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 refs = btrfs_extent_refs(leaf, ei); 1013 refs += refs_to_add; 1014 btrfs_set_extent_refs(leaf, ei, refs); 1015 if (extent_op) 1016 __run_delayed_extent_op(extent_op, leaf, ei); 1017 1018 ptr = (unsigned long)ei + item_offset; 1019 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1020 if (ptr < end - size) 1021 memmove_extent_buffer(leaf, ptr + size, ptr, 1022 end - size - ptr); 1023 1024 iref = (struct btrfs_extent_inline_ref *)ptr; 1025 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1026 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1027 struct btrfs_extent_data_ref *dref; 1028 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1029 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1030 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1031 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1032 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1033 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1034 struct btrfs_shared_data_ref *sref; 1035 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1036 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1037 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1038 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1039 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1040 } else { 1041 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1042 } 1043 btrfs_mark_buffer_dirty(leaf); 1044 } 1045 1046 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1047 struct btrfs_path *path, 1048 struct btrfs_extent_inline_ref **ref_ret, 1049 u64 bytenr, u64 num_bytes, u64 parent, 1050 u64 root_objectid, u64 owner, u64 offset) 1051 { 1052 int ret; 1053 1054 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1055 num_bytes, parent, root_objectid, 1056 owner, offset, 0); 1057 if (ret != -ENOENT) 1058 return ret; 1059 1060 btrfs_release_path(path); 1061 *ref_ret = NULL; 1062 1063 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1064 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1065 root_objectid); 1066 } else { 1067 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1068 root_objectid, owner, offset); 1069 } 1070 return ret; 1071 } 1072 1073 /* 1074 * helper to update/remove inline back ref 1075 */ 1076 static noinline_for_stack 1077 void update_inline_extent_backref(struct btrfs_path *path, 1078 struct btrfs_extent_inline_ref *iref, 1079 int refs_to_mod, 1080 struct btrfs_delayed_extent_op *extent_op) 1081 { 1082 struct extent_buffer *leaf = path->nodes[0]; 1083 struct btrfs_extent_item *ei; 1084 struct btrfs_extent_data_ref *dref = NULL; 1085 struct btrfs_shared_data_ref *sref = NULL; 1086 unsigned long ptr; 1087 unsigned long end; 1088 u32 item_size; 1089 int size; 1090 int type; 1091 u64 refs; 1092 1093 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1094 refs = btrfs_extent_refs(leaf, ei); 1095 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1096 refs += refs_to_mod; 1097 btrfs_set_extent_refs(leaf, ei, refs); 1098 if (extent_op) 1099 __run_delayed_extent_op(extent_op, leaf, ei); 1100 1101 /* 1102 * If type is invalid, we should have bailed out after 1103 * lookup_inline_extent_backref(). 1104 */ 1105 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1106 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1107 1108 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1109 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1110 refs = btrfs_extent_data_ref_count(leaf, dref); 1111 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1112 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1113 refs = btrfs_shared_data_ref_count(leaf, sref); 1114 } else { 1115 refs = 1; 1116 BUG_ON(refs_to_mod != -1); 1117 } 1118 1119 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1120 refs += refs_to_mod; 1121 1122 if (refs > 0) { 1123 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1124 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1125 else 1126 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1127 } else { 1128 size = btrfs_extent_inline_ref_size(type); 1129 item_size = btrfs_item_size(leaf, path->slots[0]); 1130 ptr = (unsigned long)iref; 1131 end = (unsigned long)ei + item_size; 1132 if (ptr + size < end) 1133 memmove_extent_buffer(leaf, ptr, ptr + size, 1134 end - ptr - size); 1135 item_size -= size; 1136 btrfs_truncate_item(path, item_size, 1); 1137 } 1138 btrfs_mark_buffer_dirty(leaf); 1139 } 1140 1141 static noinline_for_stack 1142 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1143 struct btrfs_path *path, 1144 u64 bytenr, u64 num_bytes, u64 parent, 1145 u64 root_objectid, u64 owner, 1146 u64 offset, int refs_to_add, 1147 struct btrfs_delayed_extent_op *extent_op) 1148 { 1149 struct btrfs_extent_inline_ref *iref; 1150 int ret; 1151 1152 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1153 num_bytes, parent, root_objectid, 1154 owner, offset, 1); 1155 if (ret == 0) { 1156 /* 1157 * We're adding refs to a tree block we already own, this 1158 * should not happen at all. 1159 */ 1160 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1161 btrfs_crit(trans->fs_info, 1162 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1163 bytenr, num_bytes, root_objectid); 1164 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1165 WARN_ON(1); 1166 btrfs_crit(trans->fs_info, 1167 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1168 btrfs_print_leaf(path->nodes[0]); 1169 } 1170 return -EUCLEAN; 1171 } 1172 update_inline_extent_backref(path, iref, refs_to_add, extent_op); 1173 } else if (ret == -ENOENT) { 1174 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1175 root_objectid, owner, offset, 1176 refs_to_add, extent_op); 1177 ret = 0; 1178 } 1179 return ret; 1180 } 1181 1182 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 struct btrfs_extent_inline_ref *iref, 1186 int refs_to_drop, int is_data) 1187 { 1188 int ret = 0; 1189 1190 BUG_ON(!is_data && refs_to_drop != 1); 1191 if (iref) 1192 update_inline_extent_backref(path, iref, -refs_to_drop, NULL); 1193 else if (is_data) 1194 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1195 else 1196 ret = btrfs_del_item(trans, root, path); 1197 return ret; 1198 } 1199 1200 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1201 u64 *discarded_bytes) 1202 { 1203 int j, ret = 0; 1204 u64 bytes_left, end; 1205 u64 aligned_start = ALIGN(start, 1 << 9); 1206 1207 if (WARN_ON(start != aligned_start)) { 1208 len -= aligned_start - start; 1209 len = round_down(len, 1 << 9); 1210 start = aligned_start; 1211 } 1212 1213 *discarded_bytes = 0; 1214 1215 if (!len) 1216 return 0; 1217 1218 end = start + len; 1219 bytes_left = len; 1220 1221 /* Skip any superblocks on this device. */ 1222 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1223 u64 sb_start = btrfs_sb_offset(j); 1224 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1225 u64 size = sb_start - start; 1226 1227 if (!in_range(sb_start, start, bytes_left) && 1228 !in_range(sb_end, start, bytes_left) && 1229 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1230 continue; 1231 1232 /* 1233 * Superblock spans beginning of range. Adjust start and 1234 * try again. 1235 */ 1236 if (sb_start <= start) { 1237 start += sb_end - start; 1238 if (start > end) { 1239 bytes_left = 0; 1240 break; 1241 } 1242 bytes_left = end - start; 1243 continue; 1244 } 1245 1246 if (size) { 1247 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1248 GFP_NOFS); 1249 if (!ret) 1250 *discarded_bytes += size; 1251 else if (ret != -EOPNOTSUPP) 1252 return ret; 1253 } 1254 1255 start = sb_end; 1256 if (start > end) { 1257 bytes_left = 0; 1258 break; 1259 } 1260 bytes_left = end - start; 1261 } 1262 1263 if (bytes_left) { 1264 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1265 GFP_NOFS); 1266 if (!ret) 1267 *discarded_bytes += bytes_left; 1268 } 1269 return ret; 1270 } 1271 1272 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1273 { 1274 struct btrfs_device *dev = stripe->dev; 1275 struct btrfs_fs_info *fs_info = dev->fs_info; 1276 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1277 u64 phys = stripe->physical; 1278 u64 len = stripe->length; 1279 u64 discarded = 0; 1280 int ret = 0; 1281 1282 /* Zone reset on a zoned filesystem */ 1283 if (btrfs_can_zone_reset(dev, phys, len)) { 1284 u64 src_disc; 1285 1286 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1287 if (ret) 1288 goto out; 1289 1290 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1291 dev != dev_replace->srcdev) 1292 goto out; 1293 1294 src_disc = discarded; 1295 1296 /* Send to replace target as well */ 1297 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1298 &discarded); 1299 discarded += src_disc; 1300 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1301 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1302 } else { 1303 ret = 0; 1304 *bytes = 0; 1305 } 1306 1307 out: 1308 *bytes = discarded; 1309 return ret; 1310 } 1311 1312 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1313 u64 num_bytes, u64 *actual_bytes) 1314 { 1315 int ret = 0; 1316 u64 discarded_bytes = 0; 1317 u64 end = bytenr + num_bytes; 1318 u64 cur = bytenr; 1319 1320 /* 1321 * Avoid races with device replace and make sure the devices in the 1322 * stripes don't go away while we are discarding. 1323 */ 1324 btrfs_bio_counter_inc_blocked(fs_info); 1325 while (cur < end) { 1326 struct btrfs_discard_stripe *stripes; 1327 unsigned int num_stripes; 1328 int i; 1329 1330 num_bytes = end - cur; 1331 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1332 if (IS_ERR(stripes)) { 1333 ret = PTR_ERR(stripes); 1334 if (ret == -EOPNOTSUPP) 1335 ret = 0; 1336 break; 1337 } 1338 1339 for (i = 0; i < num_stripes; i++) { 1340 struct btrfs_discard_stripe *stripe = stripes + i; 1341 u64 bytes; 1342 1343 if (!stripe->dev->bdev) { 1344 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1345 continue; 1346 } 1347 1348 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1349 &stripe->dev->dev_state)) 1350 continue; 1351 1352 ret = do_discard_extent(stripe, &bytes); 1353 if (ret) { 1354 /* 1355 * Keep going if discard is not supported by the 1356 * device. 1357 */ 1358 if (ret != -EOPNOTSUPP) 1359 break; 1360 ret = 0; 1361 } else { 1362 discarded_bytes += bytes; 1363 } 1364 } 1365 kfree(stripes); 1366 if (ret) 1367 break; 1368 cur += num_bytes; 1369 } 1370 btrfs_bio_counter_dec(fs_info); 1371 if (actual_bytes) 1372 *actual_bytes = discarded_bytes; 1373 return ret; 1374 } 1375 1376 /* Can return -ENOMEM */ 1377 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1378 struct btrfs_ref *generic_ref) 1379 { 1380 struct btrfs_fs_info *fs_info = trans->fs_info; 1381 int ret; 1382 1383 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1384 generic_ref->action); 1385 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1386 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1387 1388 if (generic_ref->type == BTRFS_REF_METADATA) 1389 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1390 else 1391 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1392 1393 btrfs_ref_tree_mod(fs_info, generic_ref); 1394 1395 return ret; 1396 } 1397 1398 /* 1399 * __btrfs_inc_extent_ref - insert backreference for a given extent 1400 * 1401 * The counterpart is in __btrfs_free_extent(), with examples and more details 1402 * how it works. 1403 * 1404 * @trans: Handle of transaction 1405 * 1406 * @node: The delayed ref node used to get the bytenr/length for 1407 * extent whose references are incremented. 1408 * 1409 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1410 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1411 * bytenr of the parent block. Since new extents are always 1412 * created with indirect references, this will only be the case 1413 * when relocating a shared extent. In that case, root_objectid 1414 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1415 * be 0 1416 * 1417 * @root_objectid: The id of the root where this modification has originated, 1418 * this can be either one of the well-known metadata trees or 1419 * the subvolume id which references this extent. 1420 * 1421 * @owner: For data extents it is the inode number of the owning file. 1422 * For metadata extents this parameter holds the level in the 1423 * tree of the extent. 1424 * 1425 * @offset: For metadata extents the offset is ignored and is currently 1426 * always passed as 0. For data extents it is the fileoffset 1427 * this extent belongs to. 1428 * 1429 * @refs_to_add Number of references to add 1430 * 1431 * @extent_op Pointer to a structure, holding information necessary when 1432 * updating a tree block's flags 1433 * 1434 */ 1435 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1436 struct btrfs_delayed_ref_node *node, 1437 u64 parent, u64 root_objectid, 1438 u64 owner, u64 offset, int refs_to_add, 1439 struct btrfs_delayed_extent_op *extent_op) 1440 { 1441 struct btrfs_path *path; 1442 struct extent_buffer *leaf; 1443 struct btrfs_extent_item *item; 1444 struct btrfs_key key; 1445 u64 bytenr = node->bytenr; 1446 u64 num_bytes = node->num_bytes; 1447 u64 refs; 1448 int ret; 1449 1450 path = btrfs_alloc_path(); 1451 if (!path) 1452 return -ENOMEM; 1453 1454 /* this will setup the path even if it fails to insert the back ref */ 1455 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1456 parent, root_objectid, owner, 1457 offset, refs_to_add, extent_op); 1458 if ((ret < 0 && ret != -EAGAIN) || !ret) 1459 goto out; 1460 1461 /* 1462 * Ok we had -EAGAIN which means we didn't have space to insert and 1463 * inline extent ref, so just update the reference count and add a 1464 * normal backref. 1465 */ 1466 leaf = path->nodes[0]; 1467 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1468 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1469 refs = btrfs_extent_refs(leaf, item); 1470 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1471 if (extent_op) 1472 __run_delayed_extent_op(extent_op, leaf, item); 1473 1474 btrfs_mark_buffer_dirty(leaf); 1475 btrfs_release_path(path); 1476 1477 /* now insert the actual backref */ 1478 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1479 BUG_ON(refs_to_add != 1); 1480 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1481 root_objectid); 1482 } else { 1483 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1484 root_objectid, owner, offset, 1485 refs_to_add); 1486 } 1487 if (ret) 1488 btrfs_abort_transaction(trans, ret); 1489 out: 1490 btrfs_free_path(path); 1491 return ret; 1492 } 1493 1494 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1495 struct btrfs_delayed_ref_node *node, 1496 struct btrfs_delayed_extent_op *extent_op, 1497 int insert_reserved) 1498 { 1499 int ret = 0; 1500 struct btrfs_delayed_data_ref *ref; 1501 struct btrfs_key ins; 1502 u64 parent = 0; 1503 u64 ref_root = 0; 1504 u64 flags = 0; 1505 1506 ins.objectid = node->bytenr; 1507 ins.offset = node->num_bytes; 1508 ins.type = BTRFS_EXTENT_ITEM_KEY; 1509 1510 ref = btrfs_delayed_node_to_data_ref(node); 1511 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1512 1513 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1514 parent = ref->parent; 1515 ref_root = ref->root; 1516 1517 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1518 if (extent_op) 1519 flags |= extent_op->flags_to_set; 1520 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1521 flags, ref->objectid, 1522 ref->offset, &ins, 1523 node->ref_mod); 1524 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1525 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1526 ref->objectid, ref->offset, 1527 node->ref_mod, extent_op); 1528 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1529 ret = __btrfs_free_extent(trans, node, parent, 1530 ref_root, ref->objectid, 1531 ref->offset, node->ref_mod, 1532 extent_op); 1533 } else { 1534 BUG(); 1535 } 1536 return ret; 1537 } 1538 1539 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1540 struct extent_buffer *leaf, 1541 struct btrfs_extent_item *ei) 1542 { 1543 u64 flags = btrfs_extent_flags(leaf, ei); 1544 if (extent_op->update_flags) { 1545 flags |= extent_op->flags_to_set; 1546 btrfs_set_extent_flags(leaf, ei, flags); 1547 } 1548 1549 if (extent_op->update_key) { 1550 struct btrfs_tree_block_info *bi; 1551 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1552 bi = (struct btrfs_tree_block_info *)(ei + 1); 1553 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1554 } 1555 } 1556 1557 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1558 struct btrfs_delayed_ref_head *head, 1559 struct btrfs_delayed_extent_op *extent_op) 1560 { 1561 struct btrfs_fs_info *fs_info = trans->fs_info; 1562 struct btrfs_root *root; 1563 struct btrfs_key key; 1564 struct btrfs_path *path; 1565 struct btrfs_extent_item *ei; 1566 struct extent_buffer *leaf; 1567 u32 item_size; 1568 int ret; 1569 int err = 0; 1570 int metadata = 1; 1571 1572 if (TRANS_ABORTED(trans)) 1573 return 0; 1574 1575 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1576 metadata = 0; 1577 1578 path = btrfs_alloc_path(); 1579 if (!path) 1580 return -ENOMEM; 1581 1582 key.objectid = head->bytenr; 1583 1584 if (metadata) { 1585 key.type = BTRFS_METADATA_ITEM_KEY; 1586 key.offset = extent_op->level; 1587 } else { 1588 key.type = BTRFS_EXTENT_ITEM_KEY; 1589 key.offset = head->num_bytes; 1590 } 1591 1592 root = btrfs_extent_root(fs_info, key.objectid); 1593 again: 1594 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1595 if (ret < 0) { 1596 err = ret; 1597 goto out; 1598 } 1599 if (ret > 0) { 1600 if (metadata) { 1601 if (path->slots[0] > 0) { 1602 path->slots[0]--; 1603 btrfs_item_key_to_cpu(path->nodes[0], &key, 1604 path->slots[0]); 1605 if (key.objectid == head->bytenr && 1606 key.type == BTRFS_EXTENT_ITEM_KEY && 1607 key.offset == head->num_bytes) 1608 ret = 0; 1609 } 1610 if (ret > 0) { 1611 btrfs_release_path(path); 1612 metadata = 0; 1613 1614 key.objectid = head->bytenr; 1615 key.offset = head->num_bytes; 1616 key.type = BTRFS_EXTENT_ITEM_KEY; 1617 goto again; 1618 } 1619 } else { 1620 err = -EIO; 1621 goto out; 1622 } 1623 } 1624 1625 leaf = path->nodes[0]; 1626 item_size = btrfs_item_size(leaf, path->slots[0]); 1627 1628 if (unlikely(item_size < sizeof(*ei))) { 1629 err = -EINVAL; 1630 btrfs_print_v0_err(fs_info); 1631 btrfs_abort_transaction(trans, err); 1632 goto out; 1633 } 1634 1635 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1636 __run_delayed_extent_op(extent_op, leaf, ei); 1637 1638 btrfs_mark_buffer_dirty(leaf); 1639 out: 1640 btrfs_free_path(path); 1641 return err; 1642 } 1643 1644 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1645 struct btrfs_delayed_ref_node *node, 1646 struct btrfs_delayed_extent_op *extent_op, 1647 int insert_reserved) 1648 { 1649 int ret = 0; 1650 struct btrfs_delayed_tree_ref *ref; 1651 u64 parent = 0; 1652 u64 ref_root = 0; 1653 1654 ref = btrfs_delayed_node_to_tree_ref(node); 1655 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1656 1657 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1658 parent = ref->parent; 1659 ref_root = ref->root; 1660 1661 if (node->ref_mod != 1) { 1662 btrfs_err(trans->fs_info, 1663 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1664 node->bytenr, node->ref_mod, node->action, ref_root, 1665 parent); 1666 return -EIO; 1667 } 1668 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1669 BUG_ON(!extent_op || !extent_op->update_flags); 1670 ret = alloc_reserved_tree_block(trans, node, extent_op); 1671 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1672 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1673 ref->level, 0, 1, extent_op); 1674 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1675 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1676 ref->level, 0, 1, extent_op); 1677 } else { 1678 BUG(); 1679 } 1680 return ret; 1681 } 1682 1683 /* helper function to actually process a single delayed ref entry */ 1684 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1685 struct btrfs_delayed_ref_node *node, 1686 struct btrfs_delayed_extent_op *extent_op, 1687 int insert_reserved) 1688 { 1689 int ret = 0; 1690 1691 if (TRANS_ABORTED(trans)) { 1692 if (insert_reserved) 1693 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1694 return 0; 1695 } 1696 1697 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1698 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1699 ret = run_delayed_tree_ref(trans, node, extent_op, 1700 insert_reserved); 1701 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1702 node->type == BTRFS_SHARED_DATA_REF_KEY) 1703 ret = run_delayed_data_ref(trans, node, extent_op, 1704 insert_reserved); 1705 else 1706 BUG(); 1707 if (ret && insert_reserved) 1708 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1709 return ret; 1710 } 1711 1712 static inline struct btrfs_delayed_ref_node * 1713 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1714 { 1715 struct btrfs_delayed_ref_node *ref; 1716 1717 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1718 return NULL; 1719 1720 /* 1721 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1722 * This is to prevent a ref count from going down to zero, which deletes 1723 * the extent item from the extent tree, when there still are references 1724 * to add, which would fail because they would not find the extent item. 1725 */ 1726 if (!list_empty(&head->ref_add_list)) 1727 return list_first_entry(&head->ref_add_list, 1728 struct btrfs_delayed_ref_node, add_list); 1729 1730 ref = rb_entry(rb_first_cached(&head->ref_tree), 1731 struct btrfs_delayed_ref_node, ref_node); 1732 ASSERT(list_empty(&ref->add_list)); 1733 return ref; 1734 } 1735 1736 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1737 struct btrfs_delayed_ref_head *head) 1738 { 1739 spin_lock(&delayed_refs->lock); 1740 head->processing = 0; 1741 delayed_refs->num_heads_ready++; 1742 spin_unlock(&delayed_refs->lock); 1743 btrfs_delayed_ref_unlock(head); 1744 } 1745 1746 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1747 struct btrfs_delayed_ref_head *head) 1748 { 1749 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1750 1751 if (!extent_op) 1752 return NULL; 1753 1754 if (head->must_insert_reserved) { 1755 head->extent_op = NULL; 1756 btrfs_free_delayed_extent_op(extent_op); 1757 return NULL; 1758 } 1759 return extent_op; 1760 } 1761 1762 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1763 struct btrfs_delayed_ref_head *head) 1764 { 1765 struct btrfs_delayed_extent_op *extent_op; 1766 int ret; 1767 1768 extent_op = cleanup_extent_op(head); 1769 if (!extent_op) 1770 return 0; 1771 head->extent_op = NULL; 1772 spin_unlock(&head->lock); 1773 ret = run_delayed_extent_op(trans, head, extent_op); 1774 btrfs_free_delayed_extent_op(extent_op); 1775 return ret ? ret : 1; 1776 } 1777 1778 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1779 struct btrfs_delayed_ref_root *delayed_refs, 1780 struct btrfs_delayed_ref_head *head) 1781 { 1782 int nr_items = 1; /* Dropping this ref head update. */ 1783 1784 /* 1785 * We had csum deletions accounted for in our delayed refs rsv, we need 1786 * to drop the csum leaves for this update from our delayed_refs_rsv. 1787 */ 1788 if (head->total_ref_mod < 0 && head->is_data) { 1789 spin_lock(&delayed_refs->lock); 1790 delayed_refs->pending_csums -= head->num_bytes; 1791 spin_unlock(&delayed_refs->lock); 1792 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1793 } 1794 1795 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1796 } 1797 1798 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1799 struct btrfs_delayed_ref_head *head) 1800 { 1801 1802 struct btrfs_fs_info *fs_info = trans->fs_info; 1803 struct btrfs_delayed_ref_root *delayed_refs; 1804 int ret; 1805 1806 delayed_refs = &trans->transaction->delayed_refs; 1807 1808 ret = run_and_cleanup_extent_op(trans, head); 1809 if (ret < 0) { 1810 unselect_delayed_ref_head(delayed_refs, head); 1811 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1812 return ret; 1813 } else if (ret) { 1814 return ret; 1815 } 1816 1817 /* 1818 * Need to drop our head ref lock and re-acquire the delayed ref lock 1819 * and then re-check to make sure nobody got added. 1820 */ 1821 spin_unlock(&head->lock); 1822 spin_lock(&delayed_refs->lock); 1823 spin_lock(&head->lock); 1824 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1825 spin_unlock(&head->lock); 1826 spin_unlock(&delayed_refs->lock); 1827 return 1; 1828 } 1829 btrfs_delete_ref_head(delayed_refs, head); 1830 spin_unlock(&head->lock); 1831 spin_unlock(&delayed_refs->lock); 1832 1833 if (head->must_insert_reserved) { 1834 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1835 if (head->is_data) { 1836 struct btrfs_root *csum_root; 1837 1838 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1839 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1840 head->num_bytes); 1841 } 1842 } 1843 1844 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1845 1846 trace_run_delayed_ref_head(fs_info, head, 0); 1847 btrfs_delayed_ref_unlock(head); 1848 btrfs_put_delayed_ref_head(head); 1849 return ret; 1850 } 1851 1852 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1853 struct btrfs_trans_handle *trans) 1854 { 1855 struct btrfs_delayed_ref_root *delayed_refs = 1856 &trans->transaction->delayed_refs; 1857 struct btrfs_delayed_ref_head *head = NULL; 1858 int ret; 1859 1860 spin_lock(&delayed_refs->lock); 1861 head = btrfs_select_ref_head(delayed_refs); 1862 if (!head) { 1863 spin_unlock(&delayed_refs->lock); 1864 return head; 1865 } 1866 1867 /* 1868 * Grab the lock that says we are going to process all the refs for 1869 * this head 1870 */ 1871 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1872 spin_unlock(&delayed_refs->lock); 1873 1874 /* 1875 * We may have dropped the spin lock to get the head mutex lock, and 1876 * that might have given someone else time to free the head. If that's 1877 * true, it has been removed from our list and we can move on. 1878 */ 1879 if (ret == -EAGAIN) 1880 head = ERR_PTR(-EAGAIN); 1881 1882 return head; 1883 } 1884 1885 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1886 struct btrfs_delayed_ref_head *locked_ref, 1887 unsigned long *run_refs) 1888 { 1889 struct btrfs_fs_info *fs_info = trans->fs_info; 1890 struct btrfs_delayed_ref_root *delayed_refs; 1891 struct btrfs_delayed_extent_op *extent_op; 1892 struct btrfs_delayed_ref_node *ref; 1893 int must_insert_reserved = 0; 1894 int ret; 1895 1896 delayed_refs = &trans->transaction->delayed_refs; 1897 1898 lockdep_assert_held(&locked_ref->mutex); 1899 lockdep_assert_held(&locked_ref->lock); 1900 1901 while ((ref = select_delayed_ref(locked_ref))) { 1902 if (ref->seq && 1903 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1904 spin_unlock(&locked_ref->lock); 1905 unselect_delayed_ref_head(delayed_refs, locked_ref); 1906 return -EAGAIN; 1907 } 1908 1909 (*run_refs)++; 1910 ref->in_tree = 0; 1911 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1912 RB_CLEAR_NODE(&ref->ref_node); 1913 if (!list_empty(&ref->add_list)) 1914 list_del(&ref->add_list); 1915 /* 1916 * When we play the delayed ref, also correct the ref_mod on 1917 * head 1918 */ 1919 switch (ref->action) { 1920 case BTRFS_ADD_DELAYED_REF: 1921 case BTRFS_ADD_DELAYED_EXTENT: 1922 locked_ref->ref_mod -= ref->ref_mod; 1923 break; 1924 case BTRFS_DROP_DELAYED_REF: 1925 locked_ref->ref_mod += ref->ref_mod; 1926 break; 1927 default: 1928 WARN_ON(1); 1929 } 1930 atomic_dec(&delayed_refs->num_entries); 1931 1932 /* 1933 * Record the must_insert_reserved flag before we drop the 1934 * spin lock. 1935 */ 1936 must_insert_reserved = locked_ref->must_insert_reserved; 1937 locked_ref->must_insert_reserved = 0; 1938 1939 extent_op = locked_ref->extent_op; 1940 locked_ref->extent_op = NULL; 1941 spin_unlock(&locked_ref->lock); 1942 1943 ret = run_one_delayed_ref(trans, ref, extent_op, 1944 must_insert_reserved); 1945 1946 btrfs_free_delayed_extent_op(extent_op); 1947 if (ret) { 1948 unselect_delayed_ref_head(delayed_refs, locked_ref); 1949 btrfs_put_delayed_ref(ref); 1950 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 1951 ret); 1952 return ret; 1953 } 1954 1955 btrfs_put_delayed_ref(ref); 1956 cond_resched(); 1957 1958 spin_lock(&locked_ref->lock); 1959 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1960 } 1961 1962 return 0; 1963 } 1964 1965 /* 1966 * Returns 0 on success or if called with an already aborted transaction. 1967 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1968 */ 1969 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1970 unsigned long nr) 1971 { 1972 struct btrfs_fs_info *fs_info = trans->fs_info; 1973 struct btrfs_delayed_ref_root *delayed_refs; 1974 struct btrfs_delayed_ref_head *locked_ref = NULL; 1975 ktime_t start = ktime_get(); 1976 int ret; 1977 unsigned long count = 0; 1978 unsigned long actual_count = 0; 1979 1980 delayed_refs = &trans->transaction->delayed_refs; 1981 do { 1982 if (!locked_ref) { 1983 locked_ref = btrfs_obtain_ref_head(trans); 1984 if (IS_ERR_OR_NULL(locked_ref)) { 1985 if (PTR_ERR(locked_ref) == -EAGAIN) { 1986 continue; 1987 } else { 1988 break; 1989 } 1990 } 1991 count++; 1992 } 1993 /* 1994 * We need to try and merge add/drops of the same ref since we 1995 * can run into issues with relocate dropping the implicit ref 1996 * and then it being added back again before the drop can 1997 * finish. If we merged anything we need to re-loop so we can 1998 * get a good ref. 1999 * Or we can get node references of the same type that weren't 2000 * merged when created due to bumps in the tree mod seq, and 2001 * we need to merge them to prevent adding an inline extent 2002 * backref before dropping it (triggering a BUG_ON at 2003 * insert_inline_extent_backref()). 2004 */ 2005 spin_lock(&locked_ref->lock); 2006 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2007 2008 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2009 &actual_count); 2010 if (ret < 0 && ret != -EAGAIN) { 2011 /* 2012 * Error, btrfs_run_delayed_refs_for_head already 2013 * unlocked everything so just bail out 2014 */ 2015 return ret; 2016 } else if (!ret) { 2017 /* 2018 * Success, perform the usual cleanup of a processed 2019 * head 2020 */ 2021 ret = cleanup_ref_head(trans, locked_ref); 2022 if (ret > 0 ) { 2023 /* We dropped our lock, we need to loop. */ 2024 ret = 0; 2025 continue; 2026 } else if (ret) { 2027 return ret; 2028 } 2029 } 2030 2031 /* 2032 * Either success case or btrfs_run_delayed_refs_for_head 2033 * returned -EAGAIN, meaning we need to select another head 2034 */ 2035 2036 locked_ref = NULL; 2037 cond_resched(); 2038 } while ((nr != -1 && count < nr) || locked_ref); 2039 2040 /* 2041 * We don't want to include ref heads since we can have empty ref heads 2042 * and those will drastically skew our runtime down since we just do 2043 * accounting, no actual extent tree updates. 2044 */ 2045 if (actual_count > 0) { 2046 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2047 u64 avg; 2048 2049 /* 2050 * We weigh the current average higher than our current runtime 2051 * to avoid large swings in the average. 2052 */ 2053 spin_lock(&delayed_refs->lock); 2054 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2055 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2056 spin_unlock(&delayed_refs->lock); 2057 } 2058 return 0; 2059 } 2060 2061 #ifdef SCRAMBLE_DELAYED_REFS 2062 /* 2063 * Normally delayed refs get processed in ascending bytenr order. This 2064 * correlates in most cases to the order added. To expose dependencies on this 2065 * order, we start to process the tree in the middle instead of the beginning 2066 */ 2067 static u64 find_middle(struct rb_root *root) 2068 { 2069 struct rb_node *n = root->rb_node; 2070 struct btrfs_delayed_ref_node *entry; 2071 int alt = 1; 2072 u64 middle; 2073 u64 first = 0, last = 0; 2074 2075 n = rb_first(root); 2076 if (n) { 2077 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2078 first = entry->bytenr; 2079 } 2080 n = rb_last(root); 2081 if (n) { 2082 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2083 last = entry->bytenr; 2084 } 2085 n = root->rb_node; 2086 2087 while (n) { 2088 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2089 WARN_ON(!entry->in_tree); 2090 2091 middle = entry->bytenr; 2092 2093 if (alt) 2094 n = n->rb_left; 2095 else 2096 n = n->rb_right; 2097 2098 alt = 1 - alt; 2099 } 2100 return middle; 2101 } 2102 #endif 2103 2104 /* 2105 * this starts processing the delayed reference count updates and 2106 * extent insertions we have queued up so far. count can be 2107 * 0, which means to process everything in the tree at the start 2108 * of the run (but not newly added entries), or it can be some target 2109 * number you'd like to process. 2110 * 2111 * Returns 0 on success or if called with an aborted transaction 2112 * Returns <0 on error and aborts the transaction 2113 */ 2114 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2115 unsigned long count) 2116 { 2117 struct btrfs_fs_info *fs_info = trans->fs_info; 2118 struct rb_node *node; 2119 struct btrfs_delayed_ref_root *delayed_refs; 2120 struct btrfs_delayed_ref_head *head; 2121 int ret; 2122 int run_all = count == (unsigned long)-1; 2123 2124 /* We'll clean this up in btrfs_cleanup_transaction */ 2125 if (TRANS_ABORTED(trans)) 2126 return 0; 2127 2128 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2129 return 0; 2130 2131 delayed_refs = &trans->transaction->delayed_refs; 2132 if (count == 0) 2133 count = delayed_refs->num_heads_ready; 2134 2135 again: 2136 #ifdef SCRAMBLE_DELAYED_REFS 2137 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2138 #endif 2139 ret = __btrfs_run_delayed_refs(trans, count); 2140 if (ret < 0) { 2141 btrfs_abort_transaction(trans, ret); 2142 return ret; 2143 } 2144 2145 if (run_all) { 2146 btrfs_create_pending_block_groups(trans); 2147 2148 spin_lock(&delayed_refs->lock); 2149 node = rb_first_cached(&delayed_refs->href_root); 2150 if (!node) { 2151 spin_unlock(&delayed_refs->lock); 2152 goto out; 2153 } 2154 head = rb_entry(node, struct btrfs_delayed_ref_head, 2155 href_node); 2156 refcount_inc(&head->refs); 2157 spin_unlock(&delayed_refs->lock); 2158 2159 /* Mutex was contended, block until it's released and retry. */ 2160 mutex_lock(&head->mutex); 2161 mutex_unlock(&head->mutex); 2162 2163 btrfs_put_delayed_ref_head(head); 2164 cond_resched(); 2165 goto again; 2166 } 2167 out: 2168 return 0; 2169 } 2170 2171 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2172 struct extent_buffer *eb, u64 flags, 2173 int level) 2174 { 2175 struct btrfs_delayed_extent_op *extent_op; 2176 int ret; 2177 2178 extent_op = btrfs_alloc_delayed_extent_op(); 2179 if (!extent_op) 2180 return -ENOMEM; 2181 2182 extent_op->flags_to_set = flags; 2183 extent_op->update_flags = true; 2184 extent_op->update_key = false; 2185 extent_op->level = level; 2186 2187 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2188 if (ret) 2189 btrfs_free_delayed_extent_op(extent_op); 2190 return ret; 2191 } 2192 2193 static noinline int check_delayed_ref(struct btrfs_root *root, 2194 struct btrfs_path *path, 2195 u64 objectid, u64 offset, u64 bytenr) 2196 { 2197 struct btrfs_delayed_ref_head *head; 2198 struct btrfs_delayed_ref_node *ref; 2199 struct btrfs_delayed_data_ref *data_ref; 2200 struct btrfs_delayed_ref_root *delayed_refs; 2201 struct btrfs_transaction *cur_trans; 2202 struct rb_node *node; 2203 int ret = 0; 2204 2205 spin_lock(&root->fs_info->trans_lock); 2206 cur_trans = root->fs_info->running_transaction; 2207 if (cur_trans) 2208 refcount_inc(&cur_trans->use_count); 2209 spin_unlock(&root->fs_info->trans_lock); 2210 if (!cur_trans) 2211 return 0; 2212 2213 delayed_refs = &cur_trans->delayed_refs; 2214 spin_lock(&delayed_refs->lock); 2215 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2216 if (!head) { 2217 spin_unlock(&delayed_refs->lock); 2218 btrfs_put_transaction(cur_trans); 2219 return 0; 2220 } 2221 2222 if (!mutex_trylock(&head->mutex)) { 2223 refcount_inc(&head->refs); 2224 spin_unlock(&delayed_refs->lock); 2225 2226 btrfs_release_path(path); 2227 2228 /* 2229 * Mutex was contended, block until it's released and let 2230 * caller try again 2231 */ 2232 mutex_lock(&head->mutex); 2233 mutex_unlock(&head->mutex); 2234 btrfs_put_delayed_ref_head(head); 2235 btrfs_put_transaction(cur_trans); 2236 return -EAGAIN; 2237 } 2238 spin_unlock(&delayed_refs->lock); 2239 2240 spin_lock(&head->lock); 2241 /* 2242 * XXX: We should replace this with a proper search function in the 2243 * future. 2244 */ 2245 for (node = rb_first_cached(&head->ref_tree); node; 2246 node = rb_next(node)) { 2247 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2248 /* If it's a shared ref we know a cross reference exists */ 2249 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2250 ret = 1; 2251 break; 2252 } 2253 2254 data_ref = btrfs_delayed_node_to_data_ref(ref); 2255 2256 /* 2257 * If our ref doesn't match the one we're currently looking at 2258 * then we have a cross reference. 2259 */ 2260 if (data_ref->root != root->root_key.objectid || 2261 data_ref->objectid != objectid || 2262 data_ref->offset != offset) { 2263 ret = 1; 2264 break; 2265 } 2266 } 2267 spin_unlock(&head->lock); 2268 mutex_unlock(&head->mutex); 2269 btrfs_put_transaction(cur_trans); 2270 return ret; 2271 } 2272 2273 static noinline int check_committed_ref(struct btrfs_root *root, 2274 struct btrfs_path *path, 2275 u64 objectid, u64 offset, u64 bytenr, 2276 bool strict) 2277 { 2278 struct btrfs_fs_info *fs_info = root->fs_info; 2279 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2280 struct extent_buffer *leaf; 2281 struct btrfs_extent_data_ref *ref; 2282 struct btrfs_extent_inline_ref *iref; 2283 struct btrfs_extent_item *ei; 2284 struct btrfs_key key; 2285 u32 item_size; 2286 int type; 2287 int ret; 2288 2289 key.objectid = bytenr; 2290 key.offset = (u64)-1; 2291 key.type = BTRFS_EXTENT_ITEM_KEY; 2292 2293 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2294 if (ret < 0) 2295 goto out; 2296 BUG_ON(ret == 0); /* Corruption */ 2297 2298 ret = -ENOENT; 2299 if (path->slots[0] == 0) 2300 goto out; 2301 2302 path->slots[0]--; 2303 leaf = path->nodes[0]; 2304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2305 2306 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2307 goto out; 2308 2309 ret = 1; 2310 item_size = btrfs_item_size(leaf, path->slots[0]); 2311 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2312 2313 /* If extent item has more than 1 inline ref then it's shared */ 2314 if (item_size != sizeof(*ei) + 2315 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2316 goto out; 2317 2318 /* 2319 * If extent created before last snapshot => it's shared unless the 2320 * snapshot has been deleted. Use the heuristic if strict is false. 2321 */ 2322 if (!strict && 2323 (btrfs_extent_generation(leaf, ei) <= 2324 btrfs_root_last_snapshot(&root->root_item))) 2325 goto out; 2326 2327 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2328 2329 /* If this extent has SHARED_DATA_REF then it's shared */ 2330 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2331 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2332 goto out; 2333 2334 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2335 if (btrfs_extent_refs(leaf, ei) != 2336 btrfs_extent_data_ref_count(leaf, ref) || 2337 btrfs_extent_data_ref_root(leaf, ref) != 2338 root->root_key.objectid || 2339 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2340 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2341 goto out; 2342 2343 ret = 0; 2344 out: 2345 return ret; 2346 } 2347 2348 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2349 u64 bytenr, bool strict, struct btrfs_path *path) 2350 { 2351 int ret; 2352 2353 do { 2354 ret = check_committed_ref(root, path, objectid, 2355 offset, bytenr, strict); 2356 if (ret && ret != -ENOENT) 2357 goto out; 2358 2359 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2360 } while (ret == -EAGAIN); 2361 2362 out: 2363 btrfs_release_path(path); 2364 if (btrfs_is_data_reloc_root(root)) 2365 WARN_ON(ret > 0); 2366 return ret; 2367 } 2368 2369 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2370 struct btrfs_root *root, 2371 struct extent_buffer *buf, 2372 int full_backref, int inc) 2373 { 2374 struct btrfs_fs_info *fs_info = root->fs_info; 2375 u64 bytenr; 2376 u64 num_bytes; 2377 u64 parent; 2378 u64 ref_root; 2379 u32 nritems; 2380 struct btrfs_key key; 2381 struct btrfs_file_extent_item *fi; 2382 struct btrfs_ref generic_ref = { 0 }; 2383 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2384 int i; 2385 int action; 2386 int level; 2387 int ret = 0; 2388 2389 if (btrfs_is_testing(fs_info)) 2390 return 0; 2391 2392 ref_root = btrfs_header_owner(buf); 2393 nritems = btrfs_header_nritems(buf); 2394 level = btrfs_header_level(buf); 2395 2396 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2397 return 0; 2398 2399 if (full_backref) 2400 parent = buf->start; 2401 else 2402 parent = 0; 2403 if (inc) 2404 action = BTRFS_ADD_DELAYED_REF; 2405 else 2406 action = BTRFS_DROP_DELAYED_REF; 2407 2408 for (i = 0; i < nritems; i++) { 2409 if (level == 0) { 2410 btrfs_item_key_to_cpu(buf, &key, i); 2411 if (key.type != BTRFS_EXTENT_DATA_KEY) 2412 continue; 2413 fi = btrfs_item_ptr(buf, i, 2414 struct btrfs_file_extent_item); 2415 if (btrfs_file_extent_type(buf, fi) == 2416 BTRFS_FILE_EXTENT_INLINE) 2417 continue; 2418 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2419 if (bytenr == 0) 2420 continue; 2421 2422 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2423 key.offset -= btrfs_file_extent_offset(buf, fi); 2424 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2425 num_bytes, parent); 2426 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2427 key.offset, root->root_key.objectid, 2428 for_reloc); 2429 if (inc) 2430 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2431 else 2432 ret = btrfs_free_extent(trans, &generic_ref); 2433 if (ret) 2434 goto fail; 2435 } else { 2436 bytenr = btrfs_node_blockptr(buf, i); 2437 num_bytes = fs_info->nodesize; 2438 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2439 num_bytes, parent); 2440 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2441 root->root_key.objectid, for_reloc); 2442 if (inc) 2443 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2444 else 2445 ret = btrfs_free_extent(trans, &generic_ref); 2446 if (ret) 2447 goto fail; 2448 } 2449 } 2450 return 0; 2451 fail: 2452 return ret; 2453 } 2454 2455 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2456 struct extent_buffer *buf, int full_backref) 2457 { 2458 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2459 } 2460 2461 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2462 struct extent_buffer *buf, int full_backref) 2463 { 2464 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2465 } 2466 2467 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2468 { 2469 struct btrfs_fs_info *fs_info = root->fs_info; 2470 u64 flags; 2471 u64 ret; 2472 2473 if (data) 2474 flags = BTRFS_BLOCK_GROUP_DATA; 2475 else if (root == fs_info->chunk_root) 2476 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2477 else 2478 flags = BTRFS_BLOCK_GROUP_METADATA; 2479 2480 ret = btrfs_get_alloc_profile(fs_info, flags); 2481 return ret; 2482 } 2483 2484 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2485 { 2486 struct rb_node *leftmost; 2487 u64 bytenr = 0; 2488 2489 read_lock(&fs_info->block_group_cache_lock); 2490 /* Get the block group with the lowest logical start address. */ 2491 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2492 if (leftmost) { 2493 struct btrfs_block_group *bg; 2494 2495 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2496 bytenr = bg->start; 2497 } 2498 read_unlock(&fs_info->block_group_cache_lock); 2499 2500 return bytenr; 2501 } 2502 2503 static int pin_down_extent(struct btrfs_trans_handle *trans, 2504 struct btrfs_block_group *cache, 2505 u64 bytenr, u64 num_bytes, int reserved) 2506 { 2507 struct btrfs_fs_info *fs_info = cache->fs_info; 2508 2509 spin_lock(&cache->space_info->lock); 2510 spin_lock(&cache->lock); 2511 cache->pinned += num_bytes; 2512 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2513 num_bytes); 2514 if (reserved) { 2515 cache->reserved -= num_bytes; 2516 cache->space_info->bytes_reserved -= num_bytes; 2517 } 2518 spin_unlock(&cache->lock); 2519 spin_unlock(&cache->space_info->lock); 2520 2521 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2522 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2523 return 0; 2524 } 2525 2526 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2527 u64 bytenr, u64 num_bytes, int reserved) 2528 { 2529 struct btrfs_block_group *cache; 2530 2531 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2532 BUG_ON(!cache); /* Logic error */ 2533 2534 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2535 2536 btrfs_put_block_group(cache); 2537 return 0; 2538 } 2539 2540 /* 2541 * this function must be called within transaction 2542 */ 2543 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2544 u64 bytenr, u64 num_bytes) 2545 { 2546 struct btrfs_block_group *cache; 2547 int ret; 2548 2549 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2550 if (!cache) 2551 return -EINVAL; 2552 2553 /* 2554 * Fully cache the free space first so that our pin removes the free space 2555 * from the cache. 2556 */ 2557 ret = btrfs_cache_block_group(cache, true); 2558 if (ret) 2559 goto out; 2560 2561 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2562 2563 /* remove us from the free space cache (if we're there at all) */ 2564 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2565 out: 2566 btrfs_put_block_group(cache); 2567 return ret; 2568 } 2569 2570 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2571 u64 start, u64 num_bytes) 2572 { 2573 int ret; 2574 struct btrfs_block_group *block_group; 2575 2576 block_group = btrfs_lookup_block_group(fs_info, start); 2577 if (!block_group) 2578 return -EINVAL; 2579 2580 ret = btrfs_cache_block_group(block_group, true); 2581 if (ret) 2582 goto out; 2583 2584 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2585 out: 2586 btrfs_put_block_group(block_group); 2587 return ret; 2588 } 2589 2590 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2591 { 2592 struct btrfs_fs_info *fs_info = eb->fs_info; 2593 struct btrfs_file_extent_item *item; 2594 struct btrfs_key key; 2595 int found_type; 2596 int i; 2597 int ret = 0; 2598 2599 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2600 return 0; 2601 2602 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2603 btrfs_item_key_to_cpu(eb, &key, i); 2604 if (key.type != BTRFS_EXTENT_DATA_KEY) 2605 continue; 2606 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2607 found_type = btrfs_file_extent_type(eb, item); 2608 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2609 continue; 2610 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2611 continue; 2612 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2613 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2614 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2615 if (ret) 2616 break; 2617 } 2618 2619 return ret; 2620 } 2621 2622 static void 2623 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2624 { 2625 atomic_inc(&bg->reservations); 2626 } 2627 2628 /* 2629 * Returns the free cluster for the given space info and sets empty_cluster to 2630 * what it should be based on the mount options. 2631 */ 2632 static struct btrfs_free_cluster * 2633 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2634 struct btrfs_space_info *space_info, u64 *empty_cluster) 2635 { 2636 struct btrfs_free_cluster *ret = NULL; 2637 2638 *empty_cluster = 0; 2639 if (btrfs_mixed_space_info(space_info)) 2640 return ret; 2641 2642 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2643 ret = &fs_info->meta_alloc_cluster; 2644 if (btrfs_test_opt(fs_info, SSD)) 2645 *empty_cluster = SZ_2M; 2646 else 2647 *empty_cluster = SZ_64K; 2648 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2649 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2650 *empty_cluster = SZ_2M; 2651 ret = &fs_info->data_alloc_cluster; 2652 } 2653 2654 return ret; 2655 } 2656 2657 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2658 u64 start, u64 end, 2659 const bool return_free_space) 2660 { 2661 struct btrfs_block_group *cache = NULL; 2662 struct btrfs_space_info *space_info; 2663 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2664 struct btrfs_free_cluster *cluster = NULL; 2665 u64 len; 2666 u64 total_unpinned = 0; 2667 u64 empty_cluster = 0; 2668 bool readonly; 2669 2670 while (start <= end) { 2671 readonly = false; 2672 if (!cache || 2673 start >= cache->start + cache->length) { 2674 if (cache) 2675 btrfs_put_block_group(cache); 2676 total_unpinned = 0; 2677 cache = btrfs_lookup_block_group(fs_info, start); 2678 BUG_ON(!cache); /* Logic error */ 2679 2680 cluster = fetch_cluster_info(fs_info, 2681 cache->space_info, 2682 &empty_cluster); 2683 empty_cluster <<= 1; 2684 } 2685 2686 len = cache->start + cache->length - start; 2687 len = min(len, end + 1 - start); 2688 2689 down_read(&fs_info->commit_root_sem); 2690 if (start < cache->last_byte_to_unpin && return_free_space) { 2691 u64 add_len = min(len, cache->last_byte_to_unpin - start); 2692 2693 btrfs_add_free_space(cache, start, add_len); 2694 } 2695 up_read(&fs_info->commit_root_sem); 2696 2697 start += len; 2698 total_unpinned += len; 2699 space_info = cache->space_info; 2700 2701 /* 2702 * If this space cluster has been marked as fragmented and we've 2703 * unpinned enough in this block group to potentially allow a 2704 * cluster to be created inside of it go ahead and clear the 2705 * fragmented check. 2706 */ 2707 if (cluster && cluster->fragmented && 2708 total_unpinned > empty_cluster) { 2709 spin_lock(&cluster->lock); 2710 cluster->fragmented = 0; 2711 spin_unlock(&cluster->lock); 2712 } 2713 2714 spin_lock(&space_info->lock); 2715 spin_lock(&cache->lock); 2716 cache->pinned -= len; 2717 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2718 space_info->max_extent_size = 0; 2719 if (cache->ro) { 2720 space_info->bytes_readonly += len; 2721 readonly = true; 2722 } else if (btrfs_is_zoned(fs_info)) { 2723 /* Need reset before reusing in a zoned block group */ 2724 space_info->bytes_zone_unusable += len; 2725 readonly = true; 2726 } 2727 spin_unlock(&cache->lock); 2728 if (!readonly && return_free_space && 2729 global_rsv->space_info == space_info) { 2730 spin_lock(&global_rsv->lock); 2731 if (!global_rsv->full) { 2732 u64 to_add = min(len, global_rsv->size - 2733 global_rsv->reserved); 2734 2735 global_rsv->reserved += to_add; 2736 btrfs_space_info_update_bytes_may_use(fs_info, 2737 space_info, to_add); 2738 if (global_rsv->reserved >= global_rsv->size) 2739 global_rsv->full = 1; 2740 len -= to_add; 2741 } 2742 spin_unlock(&global_rsv->lock); 2743 } 2744 /* Add to any tickets we may have */ 2745 if (!readonly && return_free_space && len) 2746 btrfs_try_granting_tickets(fs_info, space_info); 2747 spin_unlock(&space_info->lock); 2748 } 2749 2750 if (cache) 2751 btrfs_put_block_group(cache); 2752 return 0; 2753 } 2754 2755 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2756 { 2757 struct btrfs_fs_info *fs_info = trans->fs_info; 2758 struct btrfs_block_group *block_group, *tmp; 2759 struct list_head *deleted_bgs; 2760 struct extent_io_tree *unpin; 2761 u64 start; 2762 u64 end; 2763 int ret; 2764 2765 unpin = &trans->transaction->pinned_extents; 2766 2767 while (!TRANS_ABORTED(trans)) { 2768 struct extent_state *cached_state = NULL; 2769 2770 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2771 ret = find_first_extent_bit(unpin, 0, &start, &end, 2772 EXTENT_DIRTY, &cached_state); 2773 if (ret) { 2774 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2775 break; 2776 } 2777 2778 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2779 ret = btrfs_discard_extent(fs_info, start, 2780 end + 1 - start, NULL); 2781 2782 clear_extent_dirty(unpin, start, end, &cached_state); 2783 unpin_extent_range(fs_info, start, end, true); 2784 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2785 free_extent_state(cached_state); 2786 cond_resched(); 2787 } 2788 2789 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2790 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2791 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2792 } 2793 2794 /* 2795 * Transaction is finished. We don't need the lock anymore. We 2796 * do need to clean up the block groups in case of a transaction 2797 * abort. 2798 */ 2799 deleted_bgs = &trans->transaction->deleted_bgs; 2800 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2801 u64 trimmed = 0; 2802 2803 ret = -EROFS; 2804 if (!TRANS_ABORTED(trans)) 2805 ret = btrfs_discard_extent(fs_info, 2806 block_group->start, 2807 block_group->length, 2808 &trimmed); 2809 2810 list_del_init(&block_group->bg_list); 2811 btrfs_unfreeze_block_group(block_group); 2812 btrfs_put_block_group(block_group); 2813 2814 if (ret) { 2815 const char *errstr = btrfs_decode_error(ret); 2816 btrfs_warn(fs_info, 2817 "discard failed while removing blockgroup: errno=%d %s", 2818 ret, errstr); 2819 } 2820 } 2821 2822 return 0; 2823 } 2824 2825 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2826 u64 bytenr, u64 num_bytes, bool is_data) 2827 { 2828 int ret; 2829 2830 if (is_data) { 2831 struct btrfs_root *csum_root; 2832 2833 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2834 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2835 if (ret) { 2836 btrfs_abort_transaction(trans, ret); 2837 return ret; 2838 } 2839 } 2840 2841 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2842 if (ret) { 2843 btrfs_abort_transaction(trans, ret); 2844 return ret; 2845 } 2846 2847 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2848 if (ret) 2849 btrfs_abort_transaction(trans, ret); 2850 2851 return ret; 2852 } 2853 2854 /* 2855 * Drop one or more refs of @node. 2856 * 2857 * 1. Locate the extent refs. 2858 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2859 * Locate it, then reduce the refs number or remove the ref line completely. 2860 * 2861 * 2. Update the refs count in EXTENT/METADATA_ITEM 2862 * 2863 * Inline backref case: 2864 * 2865 * in extent tree we have: 2866 * 2867 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2868 * refs 2 gen 6 flags DATA 2869 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2870 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2871 * 2872 * This function gets called with: 2873 * 2874 * node->bytenr = 13631488 2875 * node->num_bytes = 1048576 2876 * root_objectid = FS_TREE 2877 * owner_objectid = 257 2878 * owner_offset = 0 2879 * refs_to_drop = 1 2880 * 2881 * Then we should get some like: 2882 * 2883 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2884 * refs 1 gen 6 flags DATA 2885 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2886 * 2887 * Keyed backref case: 2888 * 2889 * in extent tree we have: 2890 * 2891 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2892 * refs 754 gen 6 flags DATA 2893 * [...] 2894 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2895 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2896 * 2897 * This function get called with: 2898 * 2899 * node->bytenr = 13631488 2900 * node->num_bytes = 1048576 2901 * root_objectid = FS_TREE 2902 * owner_objectid = 866 2903 * owner_offset = 0 2904 * refs_to_drop = 1 2905 * 2906 * Then we should get some like: 2907 * 2908 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2909 * refs 753 gen 6 flags DATA 2910 * 2911 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2912 */ 2913 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2914 struct btrfs_delayed_ref_node *node, u64 parent, 2915 u64 root_objectid, u64 owner_objectid, 2916 u64 owner_offset, int refs_to_drop, 2917 struct btrfs_delayed_extent_op *extent_op) 2918 { 2919 struct btrfs_fs_info *info = trans->fs_info; 2920 struct btrfs_key key; 2921 struct btrfs_path *path; 2922 struct btrfs_root *extent_root; 2923 struct extent_buffer *leaf; 2924 struct btrfs_extent_item *ei; 2925 struct btrfs_extent_inline_ref *iref; 2926 int ret; 2927 int is_data; 2928 int extent_slot = 0; 2929 int found_extent = 0; 2930 int num_to_del = 1; 2931 u32 item_size; 2932 u64 refs; 2933 u64 bytenr = node->bytenr; 2934 u64 num_bytes = node->num_bytes; 2935 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2936 2937 extent_root = btrfs_extent_root(info, bytenr); 2938 ASSERT(extent_root); 2939 2940 path = btrfs_alloc_path(); 2941 if (!path) 2942 return -ENOMEM; 2943 2944 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2945 2946 if (!is_data && refs_to_drop != 1) { 2947 btrfs_crit(info, 2948 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2949 node->bytenr, refs_to_drop); 2950 ret = -EINVAL; 2951 btrfs_abort_transaction(trans, ret); 2952 goto out; 2953 } 2954 2955 if (is_data) 2956 skinny_metadata = false; 2957 2958 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2959 parent, root_objectid, owner_objectid, 2960 owner_offset); 2961 if (ret == 0) { 2962 /* 2963 * Either the inline backref or the SHARED_DATA_REF/ 2964 * SHARED_BLOCK_REF is found 2965 * 2966 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2967 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2968 */ 2969 extent_slot = path->slots[0]; 2970 while (extent_slot >= 0) { 2971 btrfs_item_key_to_cpu(path->nodes[0], &key, 2972 extent_slot); 2973 if (key.objectid != bytenr) 2974 break; 2975 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2976 key.offset == num_bytes) { 2977 found_extent = 1; 2978 break; 2979 } 2980 if (key.type == BTRFS_METADATA_ITEM_KEY && 2981 key.offset == owner_objectid) { 2982 found_extent = 1; 2983 break; 2984 } 2985 2986 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2987 if (path->slots[0] - extent_slot > 5) 2988 break; 2989 extent_slot--; 2990 } 2991 2992 if (!found_extent) { 2993 if (iref) { 2994 btrfs_crit(info, 2995 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 2996 btrfs_abort_transaction(trans, -EUCLEAN); 2997 goto err_dump; 2998 } 2999 /* Must be SHARED_* item, remove the backref first */ 3000 ret = remove_extent_backref(trans, extent_root, path, 3001 NULL, refs_to_drop, is_data); 3002 if (ret) { 3003 btrfs_abort_transaction(trans, ret); 3004 goto out; 3005 } 3006 btrfs_release_path(path); 3007 3008 /* Slow path to locate EXTENT/METADATA_ITEM */ 3009 key.objectid = bytenr; 3010 key.type = BTRFS_EXTENT_ITEM_KEY; 3011 key.offset = num_bytes; 3012 3013 if (!is_data && skinny_metadata) { 3014 key.type = BTRFS_METADATA_ITEM_KEY; 3015 key.offset = owner_objectid; 3016 } 3017 3018 ret = btrfs_search_slot(trans, extent_root, 3019 &key, path, -1, 1); 3020 if (ret > 0 && skinny_metadata && path->slots[0]) { 3021 /* 3022 * Couldn't find our skinny metadata item, 3023 * see if we have ye olde extent item. 3024 */ 3025 path->slots[0]--; 3026 btrfs_item_key_to_cpu(path->nodes[0], &key, 3027 path->slots[0]); 3028 if (key.objectid == bytenr && 3029 key.type == BTRFS_EXTENT_ITEM_KEY && 3030 key.offset == num_bytes) 3031 ret = 0; 3032 } 3033 3034 if (ret > 0 && skinny_metadata) { 3035 skinny_metadata = false; 3036 key.objectid = bytenr; 3037 key.type = BTRFS_EXTENT_ITEM_KEY; 3038 key.offset = num_bytes; 3039 btrfs_release_path(path); 3040 ret = btrfs_search_slot(trans, extent_root, 3041 &key, path, -1, 1); 3042 } 3043 3044 if (ret) { 3045 btrfs_err(info, 3046 "umm, got %d back from search, was looking for %llu", 3047 ret, bytenr); 3048 if (ret > 0) 3049 btrfs_print_leaf(path->nodes[0]); 3050 } 3051 if (ret < 0) { 3052 btrfs_abort_transaction(trans, ret); 3053 goto out; 3054 } 3055 extent_slot = path->slots[0]; 3056 } 3057 } else if (WARN_ON(ret == -ENOENT)) { 3058 btrfs_print_leaf(path->nodes[0]); 3059 btrfs_err(info, 3060 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3061 bytenr, parent, root_objectid, owner_objectid, 3062 owner_offset); 3063 btrfs_abort_transaction(trans, ret); 3064 goto out; 3065 } else { 3066 btrfs_abort_transaction(trans, ret); 3067 goto out; 3068 } 3069 3070 leaf = path->nodes[0]; 3071 item_size = btrfs_item_size(leaf, extent_slot); 3072 if (unlikely(item_size < sizeof(*ei))) { 3073 ret = -EINVAL; 3074 btrfs_print_v0_err(info); 3075 btrfs_abort_transaction(trans, ret); 3076 goto out; 3077 } 3078 ei = btrfs_item_ptr(leaf, extent_slot, 3079 struct btrfs_extent_item); 3080 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3081 key.type == BTRFS_EXTENT_ITEM_KEY) { 3082 struct btrfs_tree_block_info *bi; 3083 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3084 btrfs_crit(info, 3085 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3086 key.objectid, key.type, key.offset, 3087 owner_objectid, item_size, 3088 sizeof(*ei) + sizeof(*bi)); 3089 btrfs_abort_transaction(trans, -EUCLEAN); 3090 goto err_dump; 3091 } 3092 bi = (struct btrfs_tree_block_info *)(ei + 1); 3093 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3094 } 3095 3096 refs = btrfs_extent_refs(leaf, ei); 3097 if (refs < refs_to_drop) { 3098 btrfs_crit(info, 3099 "trying to drop %d refs but we only have %llu for bytenr %llu", 3100 refs_to_drop, refs, bytenr); 3101 btrfs_abort_transaction(trans, -EUCLEAN); 3102 goto err_dump; 3103 } 3104 refs -= refs_to_drop; 3105 3106 if (refs > 0) { 3107 if (extent_op) 3108 __run_delayed_extent_op(extent_op, leaf, ei); 3109 /* 3110 * In the case of inline back ref, reference count will 3111 * be updated by remove_extent_backref 3112 */ 3113 if (iref) { 3114 if (!found_extent) { 3115 btrfs_crit(info, 3116 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3117 btrfs_abort_transaction(trans, -EUCLEAN); 3118 goto err_dump; 3119 } 3120 } else { 3121 btrfs_set_extent_refs(leaf, ei, refs); 3122 btrfs_mark_buffer_dirty(leaf); 3123 } 3124 if (found_extent) { 3125 ret = remove_extent_backref(trans, extent_root, path, 3126 iref, refs_to_drop, is_data); 3127 if (ret) { 3128 btrfs_abort_transaction(trans, ret); 3129 goto out; 3130 } 3131 } 3132 } else { 3133 /* In this branch refs == 1 */ 3134 if (found_extent) { 3135 if (is_data && refs_to_drop != 3136 extent_data_ref_count(path, iref)) { 3137 btrfs_crit(info, 3138 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3139 extent_data_ref_count(path, iref), 3140 refs_to_drop); 3141 btrfs_abort_transaction(trans, -EUCLEAN); 3142 goto err_dump; 3143 } 3144 if (iref) { 3145 if (path->slots[0] != extent_slot) { 3146 btrfs_crit(info, 3147 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3148 key.objectid, key.type, 3149 key.offset); 3150 btrfs_abort_transaction(trans, -EUCLEAN); 3151 goto err_dump; 3152 } 3153 } else { 3154 /* 3155 * No inline ref, we must be at SHARED_* item, 3156 * And it's single ref, it must be: 3157 * | extent_slot ||extent_slot + 1| 3158 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3159 */ 3160 if (path->slots[0] != extent_slot + 1) { 3161 btrfs_crit(info, 3162 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3163 btrfs_abort_transaction(trans, -EUCLEAN); 3164 goto err_dump; 3165 } 3166 path->slots[0] = extent_slot; 3167 num_to_del = 2; 3168 } 3169 } 3170 3171 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3172 num_to_del); 3173 if (ret) { 3174 btrfs_abort_transaction(trans, ret); 3175 goto out; 3176 } 3177 btrfs_release_path(path); 3178 3179 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3180 } 3181 btrfs_release_path(path); 3182 3183 out: 3184 btrfs_free_path(path); 3185 return ret; 3186 err_dump: 3187 /* 3188 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3189 * dump for debug build. 3190 */ 3191 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3192 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3193 path->slots[0], extent_slot); 3194 btrfs_print_leaf(path->nodes[0]); 3195 } 3196 3197 btrfs_free_path(path); 3198 return -EUCLEAN; 3199 } 3200 3201 /* 3202 * when we free an block, it is possible (and likely) that we free the last 3203 * delayed ref for that extent as well. This searches the delayed ref tree for 3204 * a given extent, and if there are no other delayed refs to be processed, it 3205 * removes it from the tree. 3206 */ 3207 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3208 u64 bytenr) 3209 { 3210 struct btrfs_delayed_ref_head *head; 3211 struct btrfs_delayed_ref_root *delayed_refs; 3212 int ret = 0; 3213 3214 delayed_refs = &trans->transaction->delayed_refs; 3215 spin_lock(&delayed_refs->lock); 3216 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3217 if (!head) 3218 goto out_delayed_unlock; 3219 3220 spin_lock(&head->lock); 3221 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3222 goto out; 3223 3224 if (cleanup_extent_op(head) != NULL) 3225 goto out; 3226 3227 /* 3228 * waiting for the lock here would deadlock. If someone else has it 3229 * locked they are already in the process of dropping it anyway 3230 */ 3231 if (!mutex_trylock(&head->mutex)) 3232 goto out; 3233 3234 btrfs_delete_ref_head(delayed_refs, head); 3235 head->processing = 0; 3236 3237 spin_unlock(&head->lock); 3238 spin_unlock(&delayed_refs->lock); 3239 3240 BUG_ON(head->extent_op); 3241 if (head->must_insert_reserved) 3242 ret = 1; 3243 3244 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3245 mutex_unlock(&head->mutex); 3246 btrfs_put_delayed_ref_head(head); 3247 return ret; 3248 out: 3249 spin_unlock(&head->lock); 3250 3251 out_delayed_unlock: 3252 spin_unlock(&delayed_refs->lock); 3253 return 0; 3254 } 3255 3256 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3257 u64 root_id, 3258 struct extent_buffer *buf, 3259 u64 parent, int last_ref) 3260 { 3261 struct btrfs_fs_info *fs_info = trans->fs_info; 3262 struct btrfs_ref generic_ref = { 0 }; 3263 int ret; 3264 3265 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3266 buf->start, buf->len, parent); 3267 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3268 root_id, 0, false); 3269 3270 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3271 btrfs_ref_tree_mod(fs_info, &generic_ref); 3272 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3273 BUG_ON(ret); /* -ENOMEM */ 3274 } 3275 3276 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3277 struct btrfs_block_group *cache; 3278 bool must_pin = false; 3279 3280 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3281 ret = check_ref_cleanup(trans, buf->start); 3282 if (!ret) { 3283 btrfs_redirty_list_add(trans->transaction, buf); 3284 goto out; 3285 } 3286 } 3287 3288 cache = btrfs_lookup_block_group(fs_info, buf->start); 3289 3290 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3291 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3292 btrfs_put_block_group(cache); 3293 goto out; 3294 } 3295 3296 /* 3297 * If this is a leaf and there are tree mod log users, we may 3298 * have recorded mod log operations that point to this leaf. 3299 * So we must make sure no one reuses this leaf's extent before 3300 * mod log operations are applied to a node, otherwise after 3301 * rewinding a node using the mod log operations we get an 3302 * inconsistent btree, as the leaf's extent may now be used as 3303 * a node or leaf for another different btree. 3304 * We are safe from races here because at this point no other 3305 * node or root points to this extent buffer, so if after this 3306 * check a new tree mod log user joins, it will not be able to 3307 * find a node pointing to this leaf and record operations that 3308 * point to this leaf. 3309 */ 3310 if (btrfs_header_level(buf) == 0 && 3311 test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3312 must_pin = true; 3313 3314 if (must_pin || btrfs_is_zoned(fs_info)) { 3315 btrfs_redirty_list_add(trans->transaction, buf); 3316 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3317 btrfs_put_block_group(cache); 3318 goto out; 3319 } 3320 3321 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3322 3323 btrfs_add_free_space(cache, buf->start, buf->len); 3324 btrfs_free_reserved_bytes(cache, buf->len, 0); 3325 btrfs_put_block_group(cache); 3326 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3327 } 3328 out: 3329 if (last_ref) { 3330 /* 3331 * Deleting the buffer, clear the corrupt flag since it doesn't 3332 * matter anymore. 3333 */ 3334 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3335 } 3336 } 3337 3338 /* Can return -ENOMEM */ 3339 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3340 { 3341 struct btrfs_fs_info *fs_info = trans->fs_info; 3342 int ret; 3343 3344 if (btrfs_is_testing(fs_info)) 3345 return 0; 3346 3347 /* 3348 * tree log blocks never actually go into the extent allocation 3349 * tree, just update pinning info and exit early. 3350 */ 3351 if ((ref->type == BTRFS_REF_METADATA && 3352 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3353 (ref->type == BTRFS_REF_DATA && 3354 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3355 /* unlocks the pinned mutex */ 3356 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3357 ret = 0; 3358 } else if (ref->type == BTRFS_REF_METADATA) { 3359 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3360 } else { 3361 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3362 } 3363 3364 if (!((ref->type == BTRFS_REF_METADATA && 3365 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3366 (ref->type == BTRFS_REF_DATA && 3367 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3368 btrfs_ref_tree_mod(fs_info, ref); 3369 3370 return ret; 3371 } 3372 3373 enum btrfs_loop_type { 3374 LOOP_CACHING_NOWAIT, 3375 LOOP_CACHING_WAIT, 3376 LOOP_ALLOC_CHUNK, 3377 LOOP_NO_EMPTY_SIZE, 3378 }; 3379 3380 static inline void 3381 btrfs_lock_block_group(struct btrfs_block_group *cache, 3382 int delalloc) 3383 { 3384 if (delalloc) 3385 down_read(&cache->data_rwsem); 3386 } 3387 3388 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3389 int delalloc) 3390 { 3391 btrfs_get_block_group(cache); 3392 if (delalloc) 3393 down_read(&cache->data_rwsem); 3394 } 3395 3396 static struct btrfs_block_group *btrfs_lock_cluster( 3397 struct btrfs_block_group *block_group, 3398 struct btrfs_free_cluster *cluster, 3399 int delalloc) 3400 __acquires(&cluster->refill_lock) 3401 { 3402 struct btrfs_block_group *used_bg = NULL; 3403 3404 spin_lock(&cluster->refill_lock); 3405 while (1) { 3406 used_bg = cluster->block_group; 3407 if (!used_bg) 3408 return NULL; 3409 3410 if (used_bg == block_group) 3411 return used_bg; 3412 3413 btrfs_get_block_group(used_bg); 3414 3415 if (!delalloc) 3416 return used_bg; 3417 3418 if (down_read_trylock(&used_bg->data_rwsem)) 3419 return used_bg; 3420 3421 spin_unlock(&cluster->refill_lock); 3422 3423 /* We should only have one-level nested. */ 3424 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3425 3426 spin_lock(&cluster->refill_lock); 3427 if (used_bg == cluster->block_group) 3428 return used_bg; 3429 3430 up_read(&used_bg->data_rwsem); 3431 btrfs_put_block_group(used_bg); 3432 } 3433 } 3434 3435 static inline void 3436 btrfs_release_block_group(struct btrfs_block_group *cache, 3437 int delalloc) 3438 { 3439 if (delalloc) 3440 up_read(&cache->data_rwsem); 3441 btrfs_put_block_group(cache); 3442 } 3443 3444 enum btrfs_extent_allocation_policy { 3445 BTRFS_EXTENT_ALLOC_CLUSTERED, 3446 BTRFS_EXTENT_ALLOC_ZONED, 3447 }; 3448 3449 /* 3450 * Structure used internally for find_free_extent() function. Wraps needed 3451 * parameters. 3452 */ 3453 struct find_free_extent_ctl { 3454 /* Basic allocation info */ 3455 u64 ram_bytes; 3456 u64 num_bytes; 3457 u64 min_alloc_size; 3458 u64 empty_size; 3459 u64 flags; 3460 int delalloc; 3461 3462 /* Where to start the search inside the bg */ 3463 u64 search_start; 3464 3465 /* For clustered allocation */ 3466 u64 empty_cluster; 3467 struct btrfs_free_cluster *last_ptr; 3468 bool use_cluster; 3469 3470 bool have_caching_bg; 3471 bool orig_have_caching_bg; 3472 3473 /* Allocation is called for tree-log */ 3474 bool for_treelog; 3475 3476 /* Allocation is called for data relocation */ 3477 bool for_data_reloc; 3478 3479 /* RAID index, converted from flags */ 3480 int index; 3481 3482 /* 3483 * Current loop number, check find_free_extent_update_loop() for details 3484 */ 3485 int loop; 3486 3487 /* 3488 * Whether we're refilling a cluster, if true we need to re-search 3489 * current block group but don't try to refill the cluster again. 3490 */ 3491 bool retry_clustered; 3492 3493 /* 3494 * Whether we're updating free space cache, if true we need to re-search 3495 * current block group but don't try updating free space cache again. 3496 */ 3497 bool retry_unclustered; 3498 3499 /* If current block group is cached */ 3500 int cached; 3501 3502 /* Max contiguous hole found */ 3503 u64 max_extent_size; 3504 3505 /* Total free space from free space cache, not always contiguous */ 3506 u64 total_free_space; 3507 3508 /* Found result */ 3509 u64 found_offset; 3510 3511 /* Hint where to start looking for an empty space */ 3512 u64 hint_byte; 3513 3514 /* Allocation policy */ 3515 enum btrfs_extent_allocation_policy policy; 3516 }; 3517 3518 3519 /* 3520 * Helper function for find_free_extent(). 3521 * 3522 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3523 * Return -EAGAIN to inform caller that we need to re-search this block group 3524 * Return >0 to inform caller that we find nothing 3525 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3526 */ 3527 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3528 struct find_free_extent_ctl *ffe_ctl, 3529 struct btrfs_block_group **cluster_bg_ret) 3530 { 3531 struct btrfs_block_group *cluster_bg; 3532 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3533 u64 aligned_cluster; 3534 u64 offset; 3535 int ret; 3536 3537 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3538 if (!cluster_bg) 3539 goto refill_cluster; 3540 if (cluster_bg != bg && (cluster_bg->ro || 3541 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3542 goto release_cluster; 3543 3544 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3545 ffe_ctl->num_bytes, cluster_bg->start, 3546 &ffe_ctl->max_extent_size); 3547 if (offset) { 3548 /* We have a block, we're done */ 3549 spin_unlock(&last_ptr->refill_lock); 3550 trace_btrfs_reserve_extent_cluster(cluster_bg, 3551 ffe_ctl->search_start, ffe_ctl->num_bytes); 3552 *cluster_bg_ret = cluster_bg; 3553 ffe_ctl->found_offset = offset; 3554 return 0; 3555 } 3556 WARN_ON(last_ptr->block_group != cluster_bg); 3557 3558 release_cluster: 3559 /* 3560 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3561 * lets just skip it and let the allocator find whatever block it can 3562 * find. If we reach this point, we will have tried the cluster 3563 * allocator plenty of times and not have found anything, so we are 3564 * likely way too fragmented for the clustering stuff to find anything. 3565 * 3566 * However, if the cluster is taken from the current block group, 3567 * release the cluster first, so that we stand a better chance of 3568 * succeeding in the unclustered allocation. 3569 */ 3570 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3571 spin_unlock(&last_ptr->refill_lock); 3572 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3573 return -ENOENT; 3574 } 3575 3576 /* This cluster didn't work out, free it and start over */ 3577 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3578 3579 if (cluster_bg != bg) 3580 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3581 3582 refill_cluster: 3583 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3584 spin_unlock(&last_ptr->refill_lock); 3585 return -ENOENT; 3586 } 3587 3588 aligned_cluster = max_t(u64, 3589 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3590 bg->full_stripe_len); 3591 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3592 ffe_ctl->num_bytes, aligned_cluster); 3593 if (ret == 0) { 3594 /* Now pull our allocation out of this cluster */ 3595 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3596 ffe_ctl->num_bytes, ffe_ctl->search_start, 3597 &ffe_ctl->max_extent_size); 3598 if (offset) { 3599 /* We found one, proceed */ 3600 spin_unlock(&last_ptr->refill_lock); 3601 trace_btrfs_reserve_extent_cluster(bg, 3602 ffe_ctl->search_start, 3603 ffe_ctl->num_bytes); 3604 ffe_ctl->found_offset = offset; 3605 return 0; 3606 } 3607 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3608 !ffe_ctl->retry_clustered) { 3609 spin_unlock(&last_ptr->refill_lock); 3610 3611 ffe_ctl->retry_clustered = true; 3612 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3613 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3614 return -EAGAIN; 3615 } 3616 /* 3617 * At this point we either didn't find a cluster or we weren't able to 3618 * allocate a block from our cluster. Free the cluster we've been 3619 * trying to use, and go to the next block group. 3620 */ 3621 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3622 spin_unlock(&last_ptr->refill_lock); 3623 return 1; 3624 } 3625 3626 /* 3627 * Return >0 to inform caller that we find nothing 3628 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3629 * Return -EAGAIN to inform caller that we need to re-search this block group 3630 */ 3631 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3632 struct find_free_extent_ctl *ffe_ctl) 3633 { 3634 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3635 u64 offset; 3636 3637 /* 3638 * We are doing an unclustered allocation, set the fragmented flag so 3639 * we don't bother trying to setup a cluster again until we get more 3640 * space. 3641 */ 3642 if (unlikely(last_ptr)) { 3643 spin_lock(&last_ptr->lock); 3644 last_ptr->fragmented = 1; 3645 spin_unlock(&last_ptr->lock); 3646 } 3647 if (ffe_ctl->cached) { 3648 struct btrfs_free_space_ctl *free_space_ctl; 3649 3650 free_space_ctl = bg->free_space_ctl; 3651 spin_lock(&free_space_ctl->tree_lock); 3652 if (free_space_ctl->free_space < 3653 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3654 ffe_ctl->empty_size) { 3655 ffe_ctl->total_free_space = max_t(u64, 3656 ffe_ctl->total_free_space, 3657 free_space_ctl->free_space); 3658 spin_unlock(&free_space_ctl->tree_lock); 3659 return 1; 3660 } 3661 spin_unlock(&free_space_ctl->tree_lock); 3662 } 3663 3664 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3665 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3666 &ffe_ctl->max_extent_size); 3667 3668 /* 3669 * If we didn't find a chunk, and we haven't failed on this block group 3670 * before, and this block group is in the middle of caching and we are 3671 * ok with waiting, then go ahead and wait for progress to be made, and 3672 * set @retry_unclustered to true. 3673 * 3674 * If @retry_unclustered is true then we've already waited on this 3675 * block group once and should move on to the next block group. 3676 */ 3677 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3678 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3679 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3680 ffe_ctl->empty_size); 3681 ffe_ctl->retry_unclustered = true; 3682 return -EAGAIN; 3683 } else if (!offset) { 3684 return 1; 3685 } 3686 ffe_ctl->found_offset = offset; 3687 return 0; 3688 } 3689 3690 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3691 struct find_free_extent_ctl *ffe_ctl, 3692 struct btrfs_block_group **bg_ret) 3693 { 3694 int ret; 3695 3696 /* We want to try and use the cluster allocator, so lets look there */ 3697 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3698 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3699 if (ret >= 0 || ret == -EAGAIN) 3700 return ret; 3701 /* ret == -ENOENT case falls through */ 3702 } 3703 3704 return find_free_extent_unclustered(block_group, ffe_ctl); 3705 } 3706 3707 /* 3708 * Tree-log block group locking 3709 * ============================ 3710 * 3711 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3712 * indicates the starting address of a block group, which is reserved only 3713 * for tree-log metadata. 3714 * 3715 * Lock nesting 3716 * ============ 3717 * 3718 * space_info::lock 3719 * block_group::lock 3720 * fs_info::treelog_bg_lock 3721 */ 3722 3723 /* 3724 * Simple allocator for sequential-only block group. It only allows sequential 3725 * allocation. No need to play with trees. This function also reserves the 3726 * bytes as in btrfs_add_reserved_bytes. 3727 */ 3728 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3729 struct find_free_extent_ctl *ffe_ctl, 3730 struct btrfs_block_group **bg_ret) 3731 { 3732 struct btrfs_fs_info *fs_info = block_group->fs_info; 3733 struct btrfs_space_info *space_info = block_group->space_info; 3734 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3735 u64 start = block_group->start; 3736 u64 num_bytes = ffe_ctl->num_bytes; 3737 u64 avail; 3738 u64 bytenr = block_group->start; 3739 u64 log_bytenr; 3740 u64 data_reloc_bytenr; 3741 int ret = 0; 3742 bool skip = false; 3743 3744 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3745 3746 /* 3747 * Do not allow non-tree-log blocks in the dedicated tree-log block 3748 * group, and vice versa. 3749 */ 3750 spin_lock(&fs_info->treelog_bg_lock); 3751 log_bytenr = fs_info->treelog_bg; 3752 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3753 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3754 skip = true; 3755 spin_unlock(&fs_info->treelog_bg_lock); 3756 if (skip) 3757 return 1; 3758 3759 /* 3760 * Do not allow non-relocation blocks in the dedicated relocation block 3761 * group, and vice versa. 3762 */ 3763 spin_lock(&fs_info->relocation_bg_lock); 3764 data_reloc_bytenr = fs_info->data_reloc_bg; 3765 if (data_reloc_bytenr && 3766 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3767 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3768 skip = true; 3769 spin_unlock(&fs_info->relocation_bg_lock); 3770 if (skip) 3771 return 1; 3772 3773 /* Check RO and no space case before trying to activate it */ 3774 spin_lock(&block_group->lock); 3775 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3776 ret = 1; 3777 /* 3778 * May need to clear fs_info->{treelog,data_reloc}_bg. 3779 * Return the error after taking the locks. 3780 */ 3781 } 3782 spin_unlock(&block_group->lock); 3783 3784 if (!ret && !btrfs_zone_activate(block_group)) { 3785 ret = 1; 3786 /* 3787 * May need to clear fs_info->{treelog,data_reloc}_bg. 3788 * Return the error after taking the locks. 3789 */ 3790 } 3791 3792 spin_lock(&space_info->lock); 3793 spin_lock(&block_group->lock); 3794 spin_lock(&fs_info->treelog_bg_lock); 3795 spin_lock(&fs_info->relocation_bg_lock); 3796 3797 if (ret) 3798 goto out; 3799 3800 ASSERT(!ffe_ctl->for_treelog || 3801 block_group->start == fs_info->treelog_bg || 3802 fs_info->treelog_bg == 0); 3803 ASSERT(!ffe_ctl->for_data_reloc || 3804 block_group->start == fs_info->data_reloc_bg || 3805 fs_info->data_reloc_bg == 0); 3806 3807 if (block_group->ro || block_group->zoned_data_reloc_ongoing) { 3808 ret = 1; 3809 goto out; 3810 } 3811 3812 /* 3813 * Do not allow currently using block group to be tree-log dedicated 3814 * block group. 3815 */ 3816 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3817 (block_group->used || block_group->reserved)) { 3818 ret = 1; 3819 goto out; 3820 } 3821 3822 /* 3823 * Do not allow currently used block group to be the data relocation 3824 * dedicated block group. 3825 */ 3826 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3827 (block_group->used || block_group->reserved)) { 3828 ret = 1; 3829 goto out; 3830 } 3831 3832 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3833 avail = block_group->zone_capacity - block_group->alloc_offset; 3834 if (avail < num_bytes) { 3835 if (ffe_ctl->max_extent_size < avail) { 3836 /* 3837 * With sequential allocator, free space is always 3838 * contiguous 3839 */ 3840 ffe_ctl->max_extent_size = avail; 3841 ffe_ctl->total_free_space = avail; 3842 } 3843 ret = 1; 3844 goto out; 3845 } 3846 3847 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3848 fs_info->treelog_bg = block_group->start; 3849 3850 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3851 fs_info->data_reloc_bg = block_group->start; 3852 3853 ffe_ctl->found_offset = start + block_group->alloc_offset; 3854 block_group->alloc_offset += num_bytes; 3855 spin_lock(&ctl->tree_lock); 3856 ctl->free_space -= num_bytes; 3857 spin_unlock(&ctl->tree_lock); 3858 3859 /* 3860 * We do not check if found_offset is aligned to stripesize. The 3861 * address is anyway rewritten when using zone append writing. 3862 */ 3863 3864 ffe_ctl->search_start = ffe_ctl->found_offset; 3865 3866 out: 3867 if (ret && ffe_ctl->for_treelog) 3868 fs_info->treelog_bg = 0; 3869 if (ret && ffe_ctl->for_data_reloc && 3870 fs_info->data_reloc_bg == block_group->start) { 3871 /* 3872 * Do not allow further allocations from this block group. 3873 * Compared to increasing the ->ro, setting the 3874 * ->zoned_data_reloc_ongoing flag still allows nocow 3875 * writers to come in. See btrfs_inc_nocow_writers(). 3876 * 3877 * We need to disable an allocation to avoid an allocation of 3878 * regular (non-relocation data) extent. With mix of relocation 3879 * extents and regular extents, we can dispatch WRITE commands 3880 * (for relocation extents) and ZONE APPEND commands (for 3881 * regular extents) at the same time to the same zone, which 3882 * easily break the write pointer. 3883 */ 3884 block_group->zoned_data_reloc_ongoing = 1; 3885 fs_info->data_reloc_bg = 0; 3886 } 3887 spin_unlock(&fs_info->relocation_bg_lock); 3888 spin_unlock(&fs_info->treelog_bg_lock); 3889 spin_unlock(&block_group->lock); 3890 spin_unlock(&space_info->lock); 3891 return ret; 3892 } 3893 3894 static int do_allocation(struct btrfs_block_group *block_group, 3895 struct find_free_extent_ctl *ffe_ctl, 3896 struct btrfs_block_group **bg_ret) 3897 { 3898 switch (ffe_ctl->policy) { 3899 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3900 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3901 case BTRFS_EXTENT_ALLOC_ZONED: 3902 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3903 default: 3904 BUG(); 3905 } 3906 } 3907 3908 static void release_block_group(struct btrfs_block_group *block_group, 3909 struct find_free_extent_ctl *ffe_ctl, 3910 int delalloc) 3911 { 3912 switch (ffe_ctl->policy) { 3913 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3914 ffe_ctl->retry_clustered = false; 3915 ffe_ctl->retry_unclustered = false; 3916 break; 3917 case BTRFS_EXTENT_ALLOC_ZONED: 3918 /* Nothing to do */ 3919 break; 3920 default: 3921 BUG(); 3922 } 3923 3924 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3925 ffe_ctl->index); 3926 btrfs_release_block_group(block_group, delalloc); 3927 } 3928 3929 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3930 struct btrfs_key *ins) 3931 { 3932 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3933 3934 if (!ffe_ctl->use_cluster && last_ptr) { 3935 spin_lock(&last_ptr->lock); 3936 last_ptr->window_start = ins->objectid; 3937 spin_unlock(&last_ptr->lock); 3938 } 3939 } 3940 3941 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3942 struct btrfs_key *ins) 3943 { 3944 switch (ffe_ctl->policy) { 3945 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3946 found_extent_clustered(ffe_ctl, ins); 3947 break; 3948 case BTRFS_EXTENT_ALLOC_ZONED: 3949 /* Nothing to do */ 3950 break; 3951 default: 3952 BUG(); 3953 } 3954 } 3955 3956 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3957 struct find_free_extent_ctl *ffe_ctl) 3958 { 3959 /* If we can activate new zone, just allocate a chunk and use it */ 3960 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3961 return 0; 3962 3963 /* 3964 * We already reached the max active zones. Try to finish one block 3965 * group to make a room for a new block group. This is only possible 3966 * for a data block group because btrfs_zone_finish() may need to wait 3967 * for a running transaction which can cause a deadlock for metadata 3968 * allocation. 3969 */ 3970 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3971 int ret = btrfs_zone_finish_one_bg(fs_info); 3972 3973 if (ret == 1) 3974 return 0; 3975 else if (ret < 0) 3976 return ret; 3977 } 3978 3979 /* 3980 * If we have enough free space left in an already active block group 3981 * and we can't activate any other zone now, do not allow allocating a 3982 * new chunk and let find_free_extent() retry with a smaller size. 3983 */ 3984 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3985 return -ENOSPC; 3986 3987 /* 3988 * Even min_alloc_size is not left in any block groups. Since we cannot 3989 * activate a new block group, allocating it may not help. Let's tell a 3990 * caller to try again and hope it progress something by writing some 3991 * parts of the region. That is only possible for data block groups, 3992 * where a part of the region can be written. 3993 */ 3994 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 3995 return -EAGAIN; 3996 3997 /* 3998 * We cannot activate a new block group and no enough space left in any 3999 * block groups. So, allocating a new block group may not help. But, 4000 * there is nothing to do anyway, so let's go with it. 4001 */ 4002 return 0; 4003 } 4004 4005 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4006 struct find_free_extent_ctl *ffe_ctl) 4007 { 4008 switch (ffe_ctl->policy) { 4009 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4010 return 0; 4011 case BTRFS_EXTENT_ALLOC_ZONED: 4012 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4013 default: 4014 BUG(); 4015 } 4016 } 4017 4018 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 4019 { 4020 switch (ffe_ctl->policy) { 4021 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4022 /* 4023 * If we can't allocate a new chunk we've already looped through 4024 * at least once, move on to the NO_EMPTY_SIZE case. 4025 */ 4026 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 4027 return 0; 4028 case BTRFS_EXTENT_ALLOC_ZONED: 4029 /* Give up here */ 4030 return -ENOSPC; 4031 default: 4032 BUG(); 4033 } 4034 } 4035 4036 /* 4037 * Return >0 means caller needs to re-search for free extent 4038 * Return 0 means we have the needed free extent. 4039 * Return <0 means we failed to locate any free extent. 4040 */ 4041 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4042 struct btrfs_key *ins, 4043 struct find_free_extent_ctl *ffe_ctl, 4044 bool full_search) 4045 { 4046 struct btrfs_root *root = fs_info->chunk_root; 4047 int ret; 4048 4049 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4050 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4051 ffe_ctl->orig_have_caching_bg = true; 4052 4053 if (ins->objectid) { 4054 found_extent(ffe_ctl, ins); 4055 return 0; 4056 } 4057 4058 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4059 return 1; 4060 4061 ffe_ctl->index++; 4062 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4063 return 1; 4064 4065 /* 4066 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4067 * caching kthreads as we move along 4068 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4069 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4070 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4071 * again 4072 */ 4073 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4074 ffe_ctl->index = 0; 4075 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 4076 /* 4077 * We want to skip the LOOP_CACHING_WAIT step if we 4078 * don't have any uncached bgs and we've already done a 4079 * full search through. 4080 */ 4081 if (ffe_ctl->orig_have_caching_bg || !full_search) 4082 ffe_ctl->loop = LOOP_CACHING_WAIT; 4083 else 4084 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 4085 } else { 4086 ffe_ctl->loop++; 4087 } 4088 4089 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4090 struct btrfs_trans_handle *trans; 4091 int exist = 0; 4092 4093 /*Check if allocation policy allows to create a new chunk */ 4094 ret = can_allocate_chunk(fs_info, ffe_ctl); 4095 if (ret) 4096 return ret; 4097 4098 trans = current->journal_info; 4099 if (trans) 4100 exist = 1; 4101 else 4102 trans = btrfs_join_transaction(root); 4103 4104 if (IS_ERR(trans)) { 4105 ret = PTR_ERR(trans); 4106 return ret; 4107 } 4108 4109 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4110 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4111 4112 /* Do not bail out on ENOSPC since we can do more. */ 4113 if (ret == -ENOSPC) 4114 ret = chunk_allocation_failed(ffe_ctl); 4115 else if (ret < 0) 4116 btrfs_abort_transaction(trans, ret); 4117 else 4118 ret = 0; 4119 if (!exist) 4120 btrfs_end_transaction(trans); 4121 if (ret) 4122 return ret; 4123 } 4124 4125 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4126 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4127 return -ENOSPC; 4128 4129 /* 4130 * Don't loop again if we already have no empty_size and 4131 * no empty_cluster. 4132 */ 4133 if (ffe_ctl->empty_size == 0 && 4134 ffe_ctl->empty_cluster == 0) 4135 return -ENOSPC; 4136 ffe_ctl->empty_size = 0; 4137 ffe_ctl->empty_cluster = 0; 4138 } 4139 return 1; 4140 } 4141 return -ENOSPC; 4142 } 4143 4144 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4145 struct find_free_extent_ctl *ffe_ctl, 4146 struct btrfs_space_info *space_info, 4147 struct btrfs_key *ins) 4148 { 4149 /* 4150 * If our free space is heavily fragmented we may not be able to make 4151 * big contiguous allocations, so instead of doing the expensive search 4152 * for free space, simply return ENOSPC with our max_extent_size so we 4153 * can go ahead and search for a more manageable chunk. 4154 * 4155 * If our max_extent_size is large enough for our allocation simply 4156 * disable clustering since we will likely not be able to find enough 4157 * space to create a cluster and induce latency trying. 4158 */ 4159 if (space_info->max_extent_size) { 4160 spin_lock(&space_info->lock); 4161 if (space_info->max_extent_size && 4162 ffe_ctl->num_bytes > space_info->max_extent_size) { 4163 ins->offset = space_info->max_extent_size; 4164 spin_unlock(&space_info->lock); 4165 return -ENOSPC; 4166 } else if (space_info->max_extent_size) { 4167 ffe_ctl->use_cluster = false; 4168 } 4169 spin_unlock(&space_info->lock); 4170 } 4171 4172 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4173 &ffe_ctl->empty_cluster); 4174 if (ffe_ctl->last_ptr) { 4175 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4176 4177 spin_lock(&last_ptr->lock); 4178 if (last_ptr->block_group) 4179 ffe_ctl->hint_byte = last_ptr->window_start; 4180 if (last_ptr->fragmented) { 4181 /* 4182 * We still set window_start so we can keep track of the 4183 * last place we found an allocation to try and save 4184 * some time. 4185 */ 4186 ffe_ctl->hint_byte = last_ptr->window_start; 4187 ffe_ctl->use_cluster = false; 4188 } 4189 spin_unlock(&last_ptr->lock); 4190 } 4191 4192 return 0; 4193 } 4194 4195 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4196 struct find_free_extent_ctl *ffe_ctl, 4197 struct btrfs_space_info *space_info, 4198 struct btrfs_key *ins) 4199 { 4200 switch (ffe_ctl->policy) { 4201 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4202 return prepare_allocation_clustered(fs_info, ffe_ctl, 4203 space_info, ins); 4204 case BTRFS_EXTENT_ALLOC_ZONED: 4205 if (ffe_ctl->for_treelog) { 4206 spin_lock(&fs_info->treelog_bg_lock); 4207 if (fs_info->treelog_bg) 4208 ffe_ctl->hint_byte = fs_info->treelog_bg; 4209 spin_unlock(&fs_info->treelog_bg_lock); 4210 } 4211 if (ffe_ctl->for_data_reloc) { 4212 spin_lock(&fs_info->relocation_bg_lock); 4213 if (fs_info->data_reloc_bg) 4214 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4215 spin_unlock(&fs_info->relocation_bg_lock); 4216 } 4217 return 0; 4218 default: 4219 BUG(); 4220 } 4221 } 4222 4223 /* 4224 * walks the btree of allocated extents and find a hole of a given size. 4225 * The key ins is changed to record the hole: 4226 * ins->objectid == start position 4227 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4228 * ins->offset == the size of the hole. 4229 * Any available blocks before search_start are skipped. 4230 * 4231 * If there is no suitable free space, we will record the max size of 4232 * the free space extent currently. 4233 * 4234 * The overall logic and call chain: 4235 * 4236 * find_free_extent() 4237 * |- Iterate through all block groups 4238 * | |- Get a valid block group 4239 * | |- Try to do clustered allocation in that block group 4240 * | |- Try to do unclustered allocation in that block group 4241 * | |- Check if the result is valid 4242 * | | |- If valid, then exit 4243 * | |- Jump to next block group 4244 * | 4245 * |- Push harder to find free extents 4246 * |- If not found, re-iterate all block groups 4247 */ 4248 static noinline int find_free_extent(struct btrfs_root *root, 4249 struct btrfs_key *ins, 4250 struct find_free_extent_ctl *ffe_ctl) 4251 { 4252 struct btrfs_fs_info *fs_info = root->fs_info; 4253 int ret = 0; 4254 int cache_block_group_error = 0; 4255 struct btrfs_block_group *block_group = NULL; 4256 struct btrfs_space_info *space_info; 4257 bool full_search = false; 4258 4259 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4260 4261 ffe_ctl->search_start = 0; 4262 /* For clustered allocation */ 4263 ffe_ctl->empty_cluster = 0; 4264 ffe_ctl->last_ptr = NULL; 4265 ffe_ctl->use_cluster = true; 4266 ffe_ctl->have_caching_bg = false; 4267 ffe_ctl->orig_have_caching_bg = false; 4268 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4269 ffe_ctl->loop = 0; 4270 /* For clustered allocation */ 4271 ffe_ctl->retry_clustered = false; 4272 ffe_ctl->retry_unclustered = false; 4273 ffe_ctl->cached = 0; 4274 ffe_ctl->max_extent_size = 0; 4275 ffe_ctl->total_free_space = 0; 4276 ffe_ctl->found_offset = 0; 4277 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4278 4279 if (btrfs_is_zoned(fs_info)) 4280 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4281 4282 ins->type = BTRFS_EXTENT_ITEM_KEY; 4283 ins->objectid = 0; 4284 ins->offset = 0; 4285 4286 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size, 4287 ffe_ctl->flags); 4288 4289 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4290 if (!space_info) { 4291 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4292 return -ENOSPC; 4293 } 4294 4295 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4296 if (ret < 0) 4297 return ret; 4298 4299 ffe_ctl->search_start = max(ffe_ctl->search_start, 4300 first_logical_byte(fs_info)); 4301 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4302 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4303 block_group = btrfs_lookup_block_group(fs_info, 4304 ffe_ctl->search_start); 4305 /* 4306 * we don't want to use the block group if it doesn't match our 4307 * allocation bits, or if its not cached. 4308 * 4309 * However if we are re-searching with an ideal block group 4310 * picked out then we don't care that the block group is cached. 4311 */ 4312 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4313 block_group->cached != BTRFS_CACHE_NO) { 4314 down_read(&space_info->groups_sem); 4315 if (list_empty(&block_group->list) || 4316 block_group->ro) { 4317 /* 4318 * someone is removing this block group, 4319 * we can't jump into the have_block_group 4320 * target because our list pointers are not 4321 * valid 4322 */ 4323 btrfs_put_block_group(block_group); 4324 up_read(&space_info->groups_sem); 4325 } else { 4326 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4327 block_group->flags); 4328 btrfs_lock_block_group(block_group, 4329 ffe_ctl->delalloc); 4330 goto have_block_group; 4331 } 4332 } else if (block_group) { 4333 btrfs_put_block_group(block_group); 4334 } 4335 } 4336 search: 4337 ffe_ctl->have_caching_bg = false; 4338 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4339 ffe_ctl->index == 0) 4340 full_search = true; 4341 down_read(&space_info->groups_sem); 4342 list_for_each_entry(block_group, 4343 &space_info->block_groups[ffe_ctl->index], list) { 4344 struct btrfs_block_group *bg_ret; 4345 4346 /* If the block group is read-only, we can skip it entirely. */ 4347 if (unlikely(block_group->ro)) { 4348 if (ffe_ctl->for_treelog) 4349 btrfs_clear_treelog_bg(block_group); 4350 if (ffe_ctl->for_data_reloc) 4351 btrfs_clear_data_reloc_bg(block_group); 4352 continue; 4353 } 4354 4355 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4356 ffe_ctl->search_start = block_group->start; 4357 4358 /* 4359 * this can happen if we end up cycling through all the 4360 * raid types, but we want to make sure we only allocate 4361 * for the proper type. 4362 */ 4363 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4364 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4365 BTRFS_BLOCK_GROUP_RAID1_MASK | 4366 BTRFS_BLOCK_GROUP_RAID56_MASK | 4367 BTRFS_BLOCK_GROUP_RAID10; 4368 4369 /* 4370 * if they asked for extra copies and this block group 4371 * doesn't provide them, bail. This does allow us to 4372 * fill raid0 from raid1. 4373 */ 4374 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4375 goto loop; 4376 4377 /* 4378 * This block group has different flags than we want. 4379 * It's possible that we have MIXED_GROUP flag but no 4380 * block group is mixed. Just skip such block group. 4381 */ 4382 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4383 continue; 4384 } 4385 4386 have_block_group: 4387 ffe_ctl->cached = btrfs_block_group_done(block_group); 4388 if (unlikely(!ffe_ctl->cached)) { 4389 ffe_ctl->have_caching_bg = true; 4390 ret = btrfs_cache_block_group(block_group, false); 4391 4392 /* 4393 * If we get ENOMEM here or something else we want to 4394 * try other block groups, because it may not be fatal. 4395 * However if we can't find anything else we need to 4396 * save our return here so that we return the actual 4397 * error that caused problems, not ENOSPC. 4398 */ 4399 if (ret < 0) { 4400 if (!cache_block_group_error) 4401 cache_block_group_error = ret; 4402 ret = 0; 4403 goto loop; 4404 } 4405 ret = 0; 4406 } 4407 4408 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4409 goto loop; 4410 4411 bg_ret = NULL; 4412 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4413 if (ret == 0) { 4414 if (bg_ret && bg_ret != block_group) { 4415 btrfs_release_block_group(block_group, 4416 ffe_ctl->delalloc); 4417 block_group = bg_ret; 4418 } 4419 } else if (ret == -EAGAIN) { 4420 goto have_block_group; 4421 } else if (ret > 0) { 4422 goto loop; 4423 } 4424 4425 /* Checks */ 4426 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4427 fs_info->stripesize); 4428 4429 /* move on to the next group */ 4430 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4431 block_group->start + block_group->length) { 4432 btrfs_add_free_space_unused(block_group, 4433 ffe_ctl->found_offset, 4434 ffe_ctl->num_bytes); 4435 goto loop; 4436 } 4437 4438 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4439 btrfs_add_free_space_unused(block_group, 4440 ffe_ctl->found_offset, 4441 ffe_ctl->search_start - ffe_ctl->found_offset); 4442 4443 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4444 ffe_ctl->num_bytes, 4445 ffe_ctl->delalloc); 4446 if (ret == -EAGAIN) { 4447 btrfs_add_free_space_unused(block_group, 4448 ffe_ctl->found_offset, 4449 ffe_ctl->num_bytes); 4450 goto loop; 4451 } 4452 btrfs_inc_block_group_reservations(block_group); 4453 4454 /* we are all good, lets return */ 4455 ins->objectid = ffe_ctl->search_start; 4456 ins->offset = ffe_ctl->num_bytes; 4457 4458 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start, 4459 ffe_ctl->num_bytes); 4460 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4461 break; 4462 loop: 4463 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4464 cond_resched(); 4465 } 4466 up_read(&space_info->groups_sem); 4467 4468 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4469 if (ret > 0) 4470 goto search; 4471 4472 if (ret == -ENOSPC && !cache_block_group_error) { 4473 /* 4474 * Use ffe_ctl->total_free_space as fallback if we can't find 4475 * any contiguous hole. 4476 */ 4477 if (!ffe_ctl->max_extent_size) 4478 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4479 spin_lock(&space_info->lock); 4480 space_info->max_extent_size = ffe_ctl->max_extent_size; 4481 spin_unlock(&space_info->lock); 4482 ins->offset = ffe_ctl->max_extent_size; 4483 } else if (ret == -ENOSPC) { 4484 ret = cache_block_group_error; 4485 } 4486 return ret; 4487 } 4488 4489 /* 4490 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4491 * hole that is at least as big as @num_bytes. 4492 * 4493 * @root - The root that will contain this extent 4494 * 4495 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4496 * is used for accounting purposes. This value differs 4497 * from @num_bytes only in the case of compressed extents. 4498 * 4499 * @num_bytes - Number of bytes to allocate on-disk. 4500 * 4501 * @min_alloc_size - Indicates the minimum amount of space that the 4502 * allocator should try to satisfy. In some cases 4503 * @num_bytes may be larger than what is required and if 4504 * the filesystem is fragmented then allocation fails. 4505 * However, the presence of @min_alloc_size gives a 4506 * chance to try and satisfy the smaller allocation. 4507 * 4508 * @empty_size - A hint that you plan on doing more COW. This is the 4509 * size in bytes the allocator should try to find free 4510 * next to the block it returns. This is just a hint and 4511 * may be ignored by the allocator. 4512 * 4513 * @hint_byte - Hint to the allocator to start searching above the byte 4514 * address passed. It might be ignored. 4515 * 4516 * @ins - This key is modified to record the found hole. It will 4517 * have the following values: 4518 * ins->objectid == start position 4519 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4520 * ins->offset == the size of the hole. 4521 * 4522 * @is_data - Boolean flag indicating whether an extent is 4523 * allocated for data (true) or metadata (false) 4524 * 4525 * @delalloc - Boolean flag indicating whether this allocation is for 4526 * delalloc or not. If 'true' data_rwsem of block groups 4527 * is going to be acquired. 4528 * 4529 * 4530 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4531 * case -ENOSPC is returned then @ins->offset will contain the size of the 4532 * largest available hole the allocator managed to find. 4533 */ 4534 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4535 u64 num_bytes, u64 min_alloc_size, 4536 u64 empty_size, u64 hint_byte, 4537 struct btrfs_key *ins, int is_data, int delalloc) 4538 { 4539 struct btrfs_fs_info *fs_info = root->fs_info; 4540 struct find_free_extent_ctl ffe_ctl = {}; 4541 bool final_tried = num_bytes == min_alloc_size; 4542 u64 flags; 4543 int ret; 4544 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4545 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4546 4547 flags = get_alloc_profile_by_root(root, is_data); 4548 again: 4549 WARN_ON(num_bytes < fs_info->sectorsize); 4550 4551 ffe_ctl.ram_bytes = ram_bytes; 4552 ffe_ctl.num_bytes = num_bytes; 4553 ffe_ctl.min_alloc_size = min_alloc_size; 4554 ffe_ctl.empty_size = empty_size; 4555 ffe_ctl.flags = flags; 4556 ffe_ctl.delalloc = delalloc; 4557 ffe_ctl.hint_byte = hint_byte; 4558 ffe_ctl.for_treelog = for_treelog; 4559 ffe_ctl.for_data_reloc = for_data_reloc; 4560 4561 ret = find_free_extent(root, ins, &ffe_ctl); 4562 if (!ret && !is_data) { 4563 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4564 } else if (ret == -ENOSPC) { 4565 if (!final_tried && ins->offset) { 4566 num_bytes = min(num_bytes >> 1, ins->offset); 4567 num_bytes = round_down(num_bytes, 4568 fs_info->sectorsize); 4569 num_bytes = max(num_bytes, min_alloc_size); 4570 ram_bytes = num_bytes; 4571 if (num_bytes == min_alloc_size) 4572 final_tried = true; 4573 goto again; 4574 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4575 struct btrfs_space_info *sinfo; 4576 4577 sinfo = btrfs_find_space_info(fs_info, flags); 4578 btrfs_err(fs_info, 4579 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4580 flags, num_bytes, for_treelog, for_data_reloc); 4581 if (sinfo) 4582 btrfs_dump_space_info(fs_info, sinfo, 4583 num_bytes, 1); 4584 } 4585 } 4586 4587 return ret; 4588 } 4589 4590 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4591 u64 start, u64 len, int delalloc) 4592 { 4593 struct btrfs_block_group *cache; 4594 4595 cache = btrfs_lookup_block_group(fs_info, start); 4596 if (!cache) { 4597 btrfs_err(fs_info, "Unable to find block group for %llu", 4598 start); 4599 return -ENOSPC; 4600 } 4601 4602 btrfs_add_free_space(cache, start, len); 4603 btrfs_free_reserved_bytes(cache, len, delalloc); 4604 trace_btrfs_reserved_extent_free(fs_info, start, len); 4605 4606 btrfs_put_block_group(cache); 4607 return 0; 4608 } 4609 4610 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4611 u64 len) 4612 { 4613 struct btrfs_block_group *cache; 4614 int ret = 0; 4615 4616 cache = btrfs_lookup_block_group(trans->fs_info, start); 4617 if (!cache) { 4618 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4619 start); 4620 return -ENOSPC; 4621 } 4622 4623 ret = pin_down_extent(trans, cache, start, len, 1); 4624 btrfs_put_block_group(cache); 4625 return ret; 4626 } 4627 4628 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4629 u64 num_bytes) 4630 { 4631 struct btrfs_fs_info *fs_info = trans->fs_info; 4632 int ret; 4633 4634 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4635 if (ret) 4636 return ret; 4637 4638 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4639 if (ret) { 4640 ASSERT(!ret); 4641 btrfs_err(fs_info, "update block group failed for %llu %llu", 4642 bytenr, num_bytes); 4643 return ret; 4644 } 4645 4646 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4647 return 0; 4648 } 4649 4650 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4651 u64 parent, u64 root_objectid, 4652 u64 flags, u64 owner, u64 offset, 4653 struct btrfs_key *ins, int ref_mod) 4654 { 4655 struct btrfs_fs_info *fs_info = trans->fs_info; 4656 struct btrfs_root *extent_root; 4657 int ret; 4658 struct btrfs_extent_item *extent_item; 4659 struct btrfs_extent_inline_ref *iref; 4660 struct btrfs_path *path; 4661 struct extent_buffer *leaf; 4662 int type; 4663 u32 size; 4664 4665 if (parent > 0) 4666 type = BTRFS_SHARED_DATA_REF_KEY; 4667 else 4668 type = BTRFS_EXTENT_DATA_REF_KEY; 4669 4670 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4671 4672 path = btrfs_alloc_path(); 4673 if (!path) 4674 return -ENOMEM; 4675 4676 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4677 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4678 if (ret) { 4679 btrfs_free_path(path); 4680 return ret; 4681 } 4682 4683 leaf = path->nodes[0]; 4684 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4685 struct btrfs_extent_item); 4686 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4687 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4688 btrfs_set_extent_flags(leaf, extent_item, 4689 flags | BTRFS_EXTENT_FLAG_DATA); 4690 4691 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4692 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4693 if (parent > 0) { 4694 struct btrfs_shared_data_ref *ref; 4695 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4696 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4697 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4698 } else { 4699 struct btrfs_extent_data_ref *ref; 4700 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4701 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4702 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4703 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4704 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4705 } 4706 4707 btrfs_mark_buffer_dirty(path->nodes[0]); 4708 btrfs_free_path(path); 4709 4710 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4711 } 4712 4713 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4714 struct btrfs_delayed_ref_node *node, 4715 struct btrfs_delayed_extent_op *extent_op) 4716 { 4717 struct btrfs_fs_info *fs_info = trans->fs_info; 4718 struct btrfs_root *extent_root; 4719 int ret; 4720 struct btrfs_extent_item *extent_item; 4721 struct btrfs_key extent_key; 4722 struct btrfs_tree_block_info *block_info; 4723 struct btrfs_extent_inline_ref *iref; 4724 struct btrfs_path *path; 4725 struct extent_buffer *leaf; 4726 struct btrfs_delayed_tree_ref *ref; 4727 u32 size = sizeof(*extent_item) + sizeof(*iref); 4728 u64 flags = extent_op->flags_to_set; 4729 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4730 4731 ref = btrfs_delayed_node_to_tree_ref(node); 4732 4733 extent_key.objectid = node->bytenr; 4734 if (skinny_metadata) { 4735 extent_key.offset = ref->level; 4736 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4737 } else { 4738 extent_key.offset = node->num_bytes; 4739 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4740 size += sizeof(*block_info); 4741 } 4742 4743 path = btrfs_alloc_path(); 4744 if (!path) 4745 return -ENOMEM; 4746 4747 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4748 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4749 size); 4750 if (ret) { 4751 btrfs_free_path(path); 4752 return ret; 4753 } 4754 4755 leaf = path->nodes[0]; 4756 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4757 struct btrfs_extent_item); 4758 btrfs_set_extent_refs(leaf, extent_item, 1); 4759 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4760 btrfs_set_extent_flags(leaf, extent_item, 4761 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4762 4763 if (skinny_metadata) { 4764 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4765 } else { 4766 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4767 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4768 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4769 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4770 } 4771 4772 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4773 btrfs_set_extent_inline_ref_type(leaf, iref, 4774 BTRFS_SHARED_BLOCK_REF_KEY); 4775 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4776 } else { 4777 btrfs_set_extent_inline_ref_type(leaf, iref, 4778 BTRFS_TREE_BLOCK_REF_KEY); 4779 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4780 } 4781 4782 btrfs_mark_buffer_dirty(leaf); 4783 btrfs_free_path(path); 4784 4785 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4786 } 4787 4788 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4789 struct btrfs_root *root, u64 owner, 4790 u64 offset, u64 ram_bytes, 4791 struct btrfs_key *ins) 4792 { 4793 struct btrfs_ref generic_ref = { 0 }; 4794 4795 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4796 4797 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4798 ins->objectid, ins->offset, 0); 4799 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4800 offset, 0, false); 4801 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4802 4803 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4804 } 4805 4806 /* 4807 * this is used by the tree logging recovery code. It records that 4808 * an extent has been allocated and makes sure to clear the free 4809 * space cache bits as well 4810 */ 4811 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4812 u64 root_objectid, u64 owner, u64 offset, 4813 struct btrfs_key *ins) 4814 { 4815 struct btrfs_fs_info *fs_info = trans->fs_info; 4816 int ret; 4817 struct btrfs_block_group *block_group; 4818 struct btrfs_space_info *space_info; 4819 4820 /* 4821 * Mixed block groups will exclude before processing the log so we only 4822 * need to do the exclude dance if this fs isn't mixed. 4823 */ 4824 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4825 ret = __exclude_logged_extent(fs_info, ins->objectid, 4826 ins->offset); 4827 if (ret) 4828 return ret; 4829 } 4830 4831 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4832 if (!block_group) 4833 return -EINVAL; 4834 4835 space_info = block_group->space_info; 4836 spin_lock(&space_info->lock); 4837 spin_lock(&block_group->lock); 4838 space_info->bytes_reserved += ins->offset; 4839 block_group->reserved += ins->offset; 4840 spin_unlock(&block_group->lock); 4841 spin_unlock(&space_info->lock); 4842 4843 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4844 offset, ins, 1); 4845 if (ret) 4846 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4847 btrfs_put_block_group(block_group); 4848 return ret; 4849 } 4850 4851 static struct extent_buffer * 4852 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4853 u64 bytenr, int level, u64 owner, 4854 enum btrfs_lock_nesting nest) 4855 { 4856 struct btrfs_fs_info *fs_info = root->fs_info; 4857 struct extent_buffer *buf; 4858 u64 lockdep_owner = owner; 4859 4860 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4861 if (IS_ERR(buf)) 4862 return buf; 4863 4864 /* 4865 * Extra safety check in case the extent tree is corrupted and extent 4866 * allocator chooses to use a tree block which is already used and 4867 * locked. 4868 */ 4869 if (buf->lock_owner == current->pid) { 4870 btrfs_err_rl(fs_info, 4871 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4872 buf->start, btrfs_header_owner(buf), current->pid); 4873 free_extent_buffer(buf); 4874 return ERR_PTR(-EUCLEAN); 4875 } 4876 4877 /* 4878 * The reloc trees are just snapshots, so we need them to appear to be 4879 * just like any other fs tree WRT lockdep. 4880 * 4881 * The exception however is in replace_path() in relocation, where we 4882 * hold the lock on the original fs root and then search for the reloc 4883 * root. At that point we need to make sure any reloc root buffers are 4884 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4885 * lockdep happy. 4886 */ 4887 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4888 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4889 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4890 4891 /* 4892 * This needs to stay, because we could allocate a freed block from an 4893 * old tree into a new tree, so we need to make sure this new block is 4894 * set to the appropriate level and owner. 4895 */ 4896 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4897 4898 __btrfs_tree_lock(buf, nest); 4899 btrfs_clean_tree_block(buf); 4900 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4901 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4902 4903 set_extent_buffer_uptodate(buf); 4904 4905 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4906 btrfs_set_header_level(buf, level); 4907 btrfs_set_header_bytenr(buf, buf->start); 4908 btrfs_set_header_generation(buf, trans->transid); 4909 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4910 btrfs_set_header_owner(buf, owner); 4911 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4912 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4913 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4914 buf->log_index = root->log_transid % 2; 4915 /* 4916 * we allow two log transactions at a time, use different 4917 * EXTENT bit to differentiate dirty pages. 4918 */ 4919 if (buf->log_index == 0) 4920 set_extent_dirty(&root->dirty_log_pages, buf->start, 4921 buf->start + buf->len - 1, GFP_NOFS); 4922 else 4923 set_extent_new(&root->dirty_log_pages, buf->start, 4924 buf->start + buf->len - 1); 4925 } else { 4926 buf->log_index = -1; 4927 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4928 buf->start + buf->len - 1, GFP_NOFS); 4929 } 4930 /* this returns a buffer locked for blocking */ 4931 return buf; 4932 } 4933 4934 /* 4935 * finds a free extent and does all the dirty work required for allocation 4936 * returns the tree buffer or an ERR_PTR on error. 4937 */ 4938 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4939 struct btrfs_root *root, 4940 u64 parent, u64 root_objectid, 4941 const struct btrfs_disk_key *key, 4942 int level, u64 hint, 4943 u64 empty_size, 4944 enum btrfs_lock_nesting nest) 4945 { 4946 struct btrfs_fs_info *fs_info = root->fs_info; 4947 struct btrfs_key ins; 4948 struct btrfs_block_rsv *block_rsv; 4949 struct extent_buffer *buf; 4950 struct btrfs_delayed_extent_op *extent_op; 4951 struct btrfs_ref generic_ref = { 0 }; 4952 u64 flags = 0; 4953 int ret; 4954 u32 blocksize = fs_info->nodesize; 4955 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4956 4957 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4958 if (btrfs_is_testing(fs_info)) { 4959 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4960 level, root_objectid, nest); 4961 if (!IS_ERR(buf)) 4962 root->alloc_bytenr += blocksize; 4963 return buf; 4964 } 4965 #endif 4966 4967 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4968 if (IS_ERR(block_rsv)) 4969 return ERR_CAST(block_rsv); 4970 4971 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4972 empty_size, hint, &ins, 0, 0); 4973 if (ret) 4974 goto out_unuse; 4975 4976 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4977 root_objectid, nest); 4978 if (IS_ERR(buf)) { 4979 ret = PTR_ERR(buf); 4980 goto out_free_reserved; 4981 } 4982 4983 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 4984 if (parent == 0) 4985 parent = ins.objectid; 4986 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 4987 } else 4988 BUG_ON(parent > 0); 4989 4990 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 4991 extent_op = btrfs_alloc_delayed_extent_op(); 4992 if (!extent_op) { 4993 ret = -ENOMEM; 4994 goto out_free_buf; 4995 } 4996 if (key) 4997 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 4998 else 4999 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5000 extent_op->flags_to_set = flags; 5001 extent_op->update_key = skinny_metadata ? false : true; 5002 extent_op->update_flags = true; 5003 extent_op->level = level; 5004 5005 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5006 ins.objectid, ins.offset, parent); 5007 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5008 root->root_key.objectid, false); 5009 btrfs_ref_tree_mod(fs_info, &generic_ref); 5010 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5011 if (ret) 5012 goto out_free_delayed; 5013 } 5014 return buf; 5015 5016 out_free_delayed: 5017 btrfs_free_delayed_extent_op(extent_op); 5018 out_free_buf: 5019 btrfs_tree_unlock(buf); 5020 free_extent_buffer(buf); 5021 out_free_reserved: 5022 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5023 out_unuse: 5024 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5025 return ERR_PTR(ret); 5026 } 5027 5028 struct walk_control { 5029 u64 refs[BTRFS_MAX_LEVEL]; 5030 u64 flags[BTRFS_MAX_LEVEL]; 5031 struct btrfs_key update_progress; 5032 struct btrfs_key drop_progress; 5033 int drop_level; 5034 int stage; 5035 int level; 5036 int shared_level; 5037 int update_ref; 5038 int keep_locks; 5039 int reada_slot; 5040 int reada_count; 5041 int restarted; 5042 }; 5043 5044 #define DROP_REFERENCE 1 5045 #define UPDATE_BACKREF 2 5046 5047 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5048 struct btrfs_root *root, 5049 struct walk_control *wc, 5050 struct btrfs_path *path) 5051 { 5052 struct btrfs_fs_info *fs_info = root->fs_info; 5053 u64 bytenr; 5054 u64 generation; 5055 u64 refs; 5056 u64 flags; 5057 u32 nritems; 5058 struct btrfs_key key; 5059 struct extent_buffer *eb; 5060 int ret; 5061 int slot; 5062 int nread = 0; 5063 5064 if (path->slots[wc->level] < wc->reada_slot) { 5065 wc->reada_count = wc->reada_count * 2 / 3; 5066 wc->reada_count = max(wc->reada_count, 2); 5067 } else { 5068 wc->reada_count = wc->reada_count * 3 / 2; 5069 wc->reada_count = min_t(int, wc->reada_count, 5070 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5071 } 5072 5073 eb = path->nodes[wc->level]; 5074 nritems = btrfs_header_nritems(eb); 5075 5076 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5077 if (nread >= wc->reada_count) 5078 break; 5079 5080 cond_resched(); 5081 bytenr = btrfs_node_blockptr(eb, slot); 5082 generation = btrfs_node_ptr_generation(eb, slot); 5083 5084 if (slot == path->slots[wc->level]) 5085 goto reada; 5086 5087 if (wc->stage == UPDATE_BACKREF && 5088 generation <= root->root_key.offset) 5089 continue; 5090 5091 /* We don't lock the tree block, it's OK to be racy here */ 5092 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5093 wc->level - 1, 1, &refs, 5094 &flags); 5095 /* We don't care about errors in readahead. */ 5096 if (ret < 0) 5097 continue; 5098 BUG_ON(refs == 0); 5099 5100 if (wc->stage == DROP_REFERENCE) { 5101 if (refs == 1) 5102 goto reada; 5103 5104 if (wc->level == 1 && 5105 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5106 continue; 5107 if (!wc->update_ref || 5108 generation <= root->root_key.offset) 5109 continue; 5110 btrfs_node_key_to_cpu(eb, &key, slot); 5111 ret = btrfs_comp_cpu_keys(&key, 5112 &wc->update_progress); 5113 if (ret < 0) 5114 continue; 5115 } else { 5116 if (wc->level == 1 && 5117 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5118 continue; 5119 } 5120 reada: 5121 btrfs_readahead_node_child(eb, slot); 5122 nread++; 5123 } 5124 wc->reada_slot = slot; 5125 } 5126 5127 /* 5128 * helper to process tree block while walking down the tree. 5129 * 5130 * when wc->stage == UPDATE_BACKREF, this function updates 5131 * back refs for pointers in the block. 5132 * 5133 * NOTE: return value 1 means we should stop walking down. 5134 */ 5135 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5136 struct btrfs_root *root, 5137 struct btrfs_path *path, 5138 struct walk_control *wc, int lookup_info) 5139 { 5140 struct btrfs_fs_info *fs_info = root->fs_info; 5141 int level = wc->level; 5142 struct extent_buffer *eb = path->nodes[level]; 5143 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5144 int ret; 5145 5146 if (wc->stage == UPDATE_BACKREF && 5147 btrfs_header_owner(eb) != root->root_key.objectid) 5148 return 1; 5149 5150 /* 5151 * when reference count of tree block is 1, it won't increase 5152 * again. once full backref flag is set, we never clear it. 5153 */ 5154 if (lookup_info && 5155 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5156 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5157 BUG_ON(!path->locks[level]); 5158 ret = btrfs_lookup_extent_info(trans, fs_info, 5159 eb->start, level, 1, 5160 &wc->refs[level], 5161 &wc->flags[level]); 5162 BUG_ON(ret == -ENOMEM); 5163 if (ret) 5164 return ret; 5165 BUG_ON(wc->refs[level] == 0); 5166 } 5167 5168 if (wc->stage == DROP_REFERENCE) { 5169 if (wc->refs[level] > 1) 5170 return 1; 5171 5172 if (path->locks[level] && !wc->keep_locks) { 5173 btrfs_tree_unlock_rw(eb, path->locks[level]); 5174 path->locks[level] = 0; 5175 } 5176 return 0; 5177 } 5178 5179 /* wc->stage == UPDATE_BACKREF */ 5180 if (!(wc->flags[level] & flag)) { 5181 BUG_ON(!path->locks[level]); 5182 ret = btrfs_inc_ref(trans, root, eb, 1); 5183 BUG_ON(ret); /* -ENOMEM */ 5184 ret = btrfs_dec_ref(trans, root, eb, 0); 5185 BUG_ON(ret); /* -ENOMEM */ 5186 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5187 btrfs_header_level(eb)); 5188 BUG_ON(ret); /* -ENOMEM */ 5189 wc->flags[level] |= flag; 5190 } 5191 5192 /* 5193 * the block is shared by multiple trees, so it's not good to 5194 * keep the tree lock 5195 */ 5196 if (path->locks[level] && level > 0) { 5197 btrfs_tree_unlock_rw(eb, path->locks[level]); 5198 path->locks[level] = 0; 5199 } 5200 return 0; 5201 } 5202 5203 /* 5204 * This is used to verify a ref exists for this root to deal with a bug where we 5205 * would have a drop_progress key that hadn't been updated properly. 5206 */ 5207 static int check_ref_exists(struct btrfs_trans_handle *trans, 5208 struct btrfs_root *root, u64 bytenr, u64 parent, 5209 int level) 5210 { 5211 struct btrfs_path *path; 5212 struct btrfs_extent_inline_ref *iref; 5213 int ret; 5214 5215 path = btrfs_alloc_path(); 5216 if (!path) 5217 return -ENOMEM; 5218 5219 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5220 root->fs_info->nodesize, parent, 5221 root->root_key.objectid, level, 0); 5222 btrfs_free_path(path); 5223 if (ret == -ENOENT) 5224 return 0; 5225 if (ret < 0) 5226 return ret; 5227 return 1; 5228 } 5229 5230 /* 5231 * helper to process tree block pointer. 5232 * 5233 * when wc->stage == DROP_REFERENCE, this function checks 5234 * reference count of the block pointed to. if the block 5235 * is shared and we need update back refs for the subtree 5236 * rooted at the block, this function changes wc->stage to 5237 * UPDATE_BACKREF. if the block is shared and there is no 5238 * need to update back, this function drops the reference 5239 * to the block. 5240 * 5241 * NOTE: return value 1 means we should stop walking down. 5242 */ 5243 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5244 struct btrfs_root *root, 5245 struct btrfs_path *path, 5246 struct walk_control *wc, int *lookup_info) 5247 { 5248 struct btrfs_fs_info *fs_info = root->fs_info; 5249 u64 bytenr; 5250 u64 generation; 5251 u64 parent; 5252 struct btrfs_key key; 5253 struct btrfs_key first_key; 5254 struct btrfs_ref ref = { 0 }; 5255 struct extent_buffer *next; 5256 int level = wc->level; 5257 int reada = 0; 5258 int ret = 0; 5259 bool need_account = false; 5260 5261 generation = btrfs_node_ptr_generation(path->nodes[level], 5262 path->slots[level]); 5263 /* 5264 * if the lower level block was created before the snapshot 5265 * was created, we know there is no need to update back refs 5266 * for the subtree 5267 */ 5268 if (wc->stage == UPDATE_BACKREF && 5269 generation <= root->root_key.offset) { 5270 *lookup_info = 1; 5271 return 1; 5272 } 5273 5274 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5275 btrfs_node_key_to_cpu(path->nodes[level], &first_key, 5276 path->slots[level]); 5277 5278 next = find_extent_buffer(fs_info, bytenr); 5279 if (!next) { 5280 next = btrfs_find_create_tree_block(fs_info, bytenr, 5281 root->root_key.objectid, level - 1); 5282 if (IS_ERR(next)) 5283 return PTR_ERR(next); 5284 reada = 1; 5285 } 5286 btrfs_tree_lock(next); 5287 5288 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5289 &wc->refs[level - 1], 5290 &wc->flags[level - 1]); 5291 if (ret < 0) 5292 goto out_unlock; 5293 5294 if (unlikely(wc->refs[level - 1] == 0)) { 5295 btrfs_err(fs_info, "Missing references."); 5296 ret = -EIO; 5297 goto out_unlock; 5298 } 5299 *lookup_info = 0; 5300 5301 if (wc->stage == DROP_REFERENCE) { 5302 if (wc->refs[level - 1] > 1) { 5303 need_account = true; 5304 if (level == 1 && 5305 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5306 goto skip; 5307 5308 if (!wc->update_ref || 5309 generation <= root->root_key.offset) 5310 goto skip; 5311 5312 btrfs_node_key_to_cpu(path->nodes[level], &key, 5313 path->slots[level]); 5314 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5315 if (ret < 0) 5316 goto skip; 5317 5318 wc->stage = UPDATE_BACKREF; 5319 wc->shared_level = level - 1; 5320 } 5321 } else { 5322 if (level == 1 && 5323 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5324 goto skip; 5325 } 5326 5327 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5328 btrfs_tree_unlock(next); 5329 free_extent_buffer(next); 5330 next = NULL; 5331 *lookup_info = 1; 5332 } 5333 5334 if (!next) { 5335 if (reada && level == 1) 5336 reada_walk_down(trans, root, wc, path); 5337 next = read_tree_block(fs_info, bytenr, root->root_key.objectid, 5338 generation, level - 1, &first_key); 5339 if (IS_ERR(next)) { 5340 return PTR_ERR(next); 5341 } else if (!extent_buffer_uptodate(next)) { 5342 free_extent_buffer(next); 5343 return -EIO; 5344 } 5345 btrfs_tree_lock(next); 5346 } 5347 5348 level--; 5349 ASSERT(level == btrfs_header_level(next)); 5350 if (level != btrfs_header_level(next)) { 5351 btrfs_err(root->fs_info, "mismatched level"); 5352 ret = -EIO; 5353 goto out_unlock; 5354 } 5355 path->nodes[level] = next; 5356 path->slots[level] = 0; 5357 path->locks[level] = BTRFS_WRITE_LOCK; 5358 wc->level = level; 5359 if (wc->level == 1) 5360 wc->reada_slot = 0; 5361 return 0; 5362 skip: 5363 wc->refs[level - 1] = 0; 5364 wc->flags[level - 1] = 0; 5365 if (wc->stage == DROP_REFERENCE) { 5366 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5367 parent = path->nodes[level]->start; 5368 } else { 5369 ASSERT(root->root_key.objectid == 5370 btrfs_header_owner(path->nodes[level])); 5371 if (root->root_key.objectid != 5372 btrfs_header_owner(path->nodes[level])) { 5373 btrfs_err(root->fs_info, 5374 "mismatched block owner"); 5375 ret = -EIO; 5376 goto out_unlock; 5377 } 5378 parent = 0; 5379 } 5380 5381 /* 5382 * If we had a drop_progress we need to verify the refs are set 5383 * as expected. If we find our ref then we know that from here 5384 * on out everything should be correct, and we can clear the 5385 * ->restarted flag. 5386 */ 5387 if (wc->restarted) { 5388 ret = check_ref_exists(trans, root, bytenr, parent, 5389 level - 1); 5390 if (ret < 0) 5391 goto out_unlock; 5392 if (ret == 0) 5393 goto no_delete; 5394 ret = 0; 5395 wc->restarted = 0; 5396 } 5397 5398 /* 5399 * Reloc tree doesn't contribute to qgroup numbers, and we have 5400 * already accounted them at merge time (replace_path), 5401 * thus we could skip expensive subtree trace here. 5402 */ 5403 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5404 need_account) { 5405 ret = btrfs_qgroup_trace_subtree(trans, next, 5406 generation, level - 1); 5407 if (ret) { 5408 btrfs_err_rl(fs_info, 5409 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5410 ret); 5411 } 5412 } 5413 5414 /* 5415 * We need to update the next key in our walk control so we can 5416 * update the drop_progress key accordingly. We don't care if 5417 * find_next_key doesn't find a key because that means we're at 5418 * the end and are going to clean up now. 5419 */ 5420 wc->drop_level = level; 5421 find_next_key(path, level, &wc->drop_progress); 5422 5423 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5424 fs_info->nodesize, parent); 5425 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5426 0, false); 5427 ret = btrfs_free_extent(trans, &ref); 5428 if (ret) 5429 goto out_unlock; 5430 } 5431 no_delete: 5432 *lookup_info = 1; 5433 ret = 1; 5434 5435 out_unlock: 5436 btrfs_tree_unlock(next); 5437 free_extent_buffer(next); 5438 5439 return ret; 5440 } 5441 5442 /* 5443 * helper to process tree block while walking up the tree. 5444 * 5445 * when wc->stage == DROP_REFERENCE, this function drops 5446 * reference count on the block. 5447 * 5448 * when wc->stage == UPDATE_BACKREF, this function changes 5449 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5450 * to UPDATE_BACKREF previously while processing the block. 5451 * 5452 * NOTE: return value 1 means we should stop walking up. 5453 */ 5454 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5455 struct btrfs_root *root, 5456 struct btrfs_path *path, 5457 struct walk_control *wc) 5458 { 5459 struct btrfs_fs_info *fs_info = root->fs_info; 5460 int ret; 5461 int level = wc->level; 5462 struct extent_buffer *eb = path->nodes[level]; 5463 u64 parent = 0; 5464 5465 if (wc->stage == UPDATE_BACKREF) { 5466 BUG_ON(wc->shared_level < level); 5467 if (level < wc->shared_level) 5468 goto out; 5469 5470 ret = find_next_key(path, level + 1, &wc->update_progress); 5471 if (ret > 0) 5472 wc->update_ref = 0; 5473 5474 wc->stage = DROP_REFERENCE; 5475 wc->shared_level = -1; 5476 path->slots[level] = 0; 5477 5478 /* 5479 * check reference count again if the block isn't locked. 5480 * we should start walking down the tree again if reference 5481 * count is one. 5482 */ 5483 if (!path->locks[level]) { 5484 BUG_ON(level == 0); 5485 btrfs_tree_lock(eb); 5486 path->locks[level] = BTRFS_WRITE_LOCK; 5487 5488 ret = btrfs_lookup_extent_info(trans, fs_info, 5489 eb->start, level, 1, 5490 &wc->refs[level], 5491 &wc->flags[level]); 5492 if (ret < 0) { 5493 btrfs_tree_unlock_rw(eb, path->locks[level]); 5494 path->locks[level] = 0; 5495 return ret; 5496 } 5497 BUG_ON(wc->refs[level] == 0); 5498 if (wc->refs[level] == 1) { 5499 btrfs_tree_unlock_rw(eb, path->locks[level]); 5500 path->locks[level] = 0; 5501 return 1; 5502 } 5503 } 5504 } 5505 5506 /* wc->stage == DROP_REFERENCE */ 5507 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5508 5509 if (wc->refs[level] == 1) { 5510 if (level == 0) { 5511 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5512 ret = btrfs_dec_ref(trans, root, eb, 1); 5513 else 5514 ret = btrfs_dec_ref(trans, root, eb, 0); 5515 BUG_ON(ret); /* -ENOMEM */ 5516 if (is_fstree(root->root_key.objectid)) { 5517 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5518 if (ret) { 5519 btrfs_err_rl(fs_info, 5520 "error %d accounting leaf items, quota is out of sync, rescan required", 5521 ret); 5522 } 5523 } 5524 } 5525 /* make block locked assertion in btrfs_clean_tree_block happy */ 5526 if (!path->locks[level] && 5527 btrfs_header_generation(eb) == trans->transid) { 5528 btrfs_tree_lock(eb); 5529 path->locks[level] = BTRFS_WRITE_LOCK; 5530 } 5531 btrfs_clean_tree_block(eb); 5532 } 5533 5534 if (eb == root->node) { 5535 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5536 parent = eb->start; 5537 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5538 goto owner_mismatch; 5539 } else { 5540 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5541 parent = path->nodes[level + 1]->start; 5542 else if (root->root_key.objectid != 5543 btrfs_header_owner(path->nodes[level + 1])) 5544 goto owner_mismatch; 5545 } 5546 5547 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5548 wc->refs[level] == 1); 5549 out: 5550 wc->refs[level] = 0; 5551 wc->flags[level] = 0; 5552 return 0; 5553 5554 owner_mismatch: 5555 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5556 btrfs_header_owner(eb), root->root_key.objectid); 5557 return -EUCLEAN; 5558 } 5559 5560 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5561 struct btrfs_root *root, 5562 struct btrfs_path *path, 5563 struct walk_control *wc) 5564 { 5565 int level = wc->level; 5566 int lookup_info = 1; 5567 int ret; 5568 5569 while (level >= 0) { 5570 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5571 if (ret > 0) 5572 break; 5573 5574 if (level == 0) 5575 break; 5576 5577 if (path->slots[level] >= 5578 btrfs_header_nritems(path->nodes[level])) 5579 break; 5580 5581 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5582 if (ret > 0) { 5583 path->slots[level]++; 5584 continue; 5585 } else if (ret < 0) 5586 return ret; 5587 level = wc->level; 5588 } 5589 return 0; 5590 } 5591 5592 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5593 struct btrfs_root *root, 5594 struct btrfs_path *path, 5595 struct walk_control *wc, int max_level) 5596 { 5597 int level = wc->level; 5598 int ret; 5599 5600 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5601 while (level < max_level && path->nodes[level]) { 5602 wc->level = level; 5603 if (path->slots[level] + 1 < 5604 btrfs_header_nritems(path->nodes[level])) { 5605 path->slots[level]++; 5606 return 0; 5607 } else { 5608 ret = walk_up_proc(trans, root, path, wc); 5609 if (ret > 0) 5610 return 0; 5611 if (ret < 0) 5612 return ret; 5613 5614 if (path->locks[level]) { 5615 btrfs_tree_unlock_rw(path->nodes[level], 5616 path->locks[level]); 5617 path->locks[level] = 0; 5618 } 5619 free_extent_buffer(path->nodes[level]); 5620 path->nodes[level] = NULL; 5621 level++; 5622 } 5623 } 5624 return 1; 5625 } 5626 5627 /* 5628 * drop a subvolume tree. 5629 * 5630 * this function traverses the tree freeing any blocks that only 5631 * referenced by the tree. 5632 * 5633 * when a shared tree block is found. this function decreases its 5634 * reference count by one. if update_ref is true, this function 5635 * also make sure backrefs for the shared block and all lower level 5636 * blocks are properly updated. 5637 * 5638 * If called with for_reloc == 0, may exit early with -EAGAIN 5639 */ 5640 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5641 { 5642 struct btrfs_fs_info *fs_info = root->fs_info; 5643 struct btrfs_path *path; 5644 struct btrfs_trans_handle *trans; 5645 struct btrfs_root *tree_root = fs_info->tree_root; 5646 struct btrfs_root_item *root_item = &root->root_item; 5647 struct walk_control *wc; 5648 struct btrfs_key key; 5649 int err = 0; 5650 int ret; 5651 int level; 5652 bool root_dropped = false; 5653 bool unfinished_drop = false; 5654 5655 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5656 5657 path = btrfs_alloc_path(); 5658 if (!path) { 5659 err = -ENOMEM; 5660 goto out; 5661 } 5662 5663 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5664 if (!wc) { 5665 btrfs_free_path(path); 5666 err = -ENOMEM; 5667 goto out; 5668 } 5669 5670 /* 5671 * Use join to avoid potential EINTR from transaction start. See 5672 * wait_reserve_ticket and the whole reservation callchain. 5673 */ 5674 if (for_reloc) 5675 trans = btrfs_join_transaction(tree_root); 5676 else 5677 trans = btrfs_start_transaction(tree_root, 0); 5678 if (IS_ERR(trans)) { 5679 err = PTR_ERR(trans); 5680 goto out_free; 5681 } 5682 5683 err = btrfs_run_delayed_items(trans); 5684 if (err) 5685 goto out_end_trans; 5686 5687 /* 5688 * This will help us catch people modifying the fs tree while we're 5689 * dropping it. It is unsafe to mess with the fs tree while it's being 5690 * dropped as we unlock the root node and parent nodes as we walk down 5691 * the tree, assuming nothing will change. If something does change 5692 * then we'll have stale information and drop references to blocks we've 5693 * already dropped. 5694 */ 5695 set_bit(BTRFS_ROOT_DELETING, &root->state); 5696 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5697 5698 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5699 level = btrfs_header_level(root->node); 5700 path->nodes[level] = btrfs_lock_root_node(root); 5701 path->slots[level] = 0; 5702 path->locks[level] = BTRFS_WRITE_LOCK; 5703 memset(&wc->update_progress, 0, 5704 sizeof(wc->update_progress)); 5705 } else { 5706 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5707 memcpy(&wc->update_progress, &key, 5708 sizeof(wc->update_progress)); 5709 5710 level = btrfs_root_drop_level(root_item); 5711 BUG_ON(level == 0); 5712 path->lowest_level = level; 5713 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5714 path->lowest_level = 0; 5715 if (ret < 0) { 5716 err = ret; 5717 goto out_end_trans; 5718 } 5719 WARN_ON(ret > 0); 5720 5721 /* 5722 * unlock our path, this is safe because only this 5723 * function is allowed to delete this snapshot 5724 */ 5725 btrfs_unlock_up_safe(path, 0); 5726 5727 level = btrfs_header_level(root->node); 5728 while (1) { 5729 btrfs_tree_lock(path->nodes[level]); 5730 path->locks[level] = BTRFS_WRITE_LOCK; 5731 5732 ret = btrfs_lookup_extent_info(trans, fs_info, 5733 path->nodes[level]->start, 5734 level, 1, &wc->refs[level], 5735 &wc->flags[level]); 5736 if (ret < 0) { 5737 err = ret; 5738 goto out_end_trans; 5739 } 5740 BUG_ON(wc->refs[level] == 0); 5741 5742 if (level == btrfs_root_drop_level(root_item)) 5743 break; 5744 5745 btrfs_tree_unlock(path->nodes[level]); 5746 path->locks[level] = 0; 5747 WARN_ON(wc->refs[level] != 1); 5748 level--; 5749 } 5750 } 5751 5752 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5753 wc->level = level; 5754 wc->shared_level = -1; 5755 wc->stage = DROP_REFERENCE; 5756 wc->update_ref = update_ref; 5757 wc->keep_locks = 0; 5758 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5759 5760 while (1) { 5761 5762 ret = walk_down_tree(trans, root, path, wc); 5763 if (ret < 0) { 5764 err = ret; 5765 break; 5766 } 5767 5768 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5769 if (ret < 0) { 5770 err = ret; 5771 break; 5772 } 5773 5774 if (ret > 0) { 5775 BUG_ON(wc->stage != DROP_REFERENCE); 5776 break; 5777 } 5778 5779 if (wc->stage == DROP_REFERENCE) { 5780 wc->drop_level = wc->level; 5781 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5782 &wc->drop_progress, 5783 path->slots[wc->drop_level]); 5784 } 5785 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5786 &wc->drop_progress); 5787 btrfs_set_root_drop_level(root_item, wc->drop_level); 5788 5789 BUG_ON(wc->level == 0); 5790 if (btrfs_should_end_transaction(trans) || 5791 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5792 ret = btrfs_update_root(trans, tree_root, 5793 &root->root_key, 5794 root_item); 5795 if (ret) { 5796 btrfs_abort_transaction(trans, ret); 5797 err = ret; 5798 goto out_end_trans; 5799 } 5800 5801 btrfs_end_transaction_throttle(trans); 5802 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5803 btrfs_debug(fs_info, 5804 "drop snapshot early exit"); 5805 err = -EAGAIN; 5806 goto out_free; 5807 } 5808 5809 /* 5810 * Use join to avoid potential EINTR from transaction 5811 * start. See wait_reserve_ticket and the whole 5812 * reservation callchain. 5813 */ 5814 if (for_reloc) 5815 trans = btrfs_join_transaction(tree_root); 5816 else 5817 trans = btrfs_start_transaction(tree_root, 0); 5818 if (IS_ERR(trans)) { 5819 err = PTR_ERR(trans); 5820 goto out_free; 5821 } 5822 } 5823 } 5824 btrfs_release_path(path); 5825 if (err) 5826 goto out_end_trans; 5827 5828 ret = btrfs_del_root(trans, &root->root_key); 5829 if (ret) { 5830 btrfs_abort_transaction(trans, ret); 5831 err = ret; 5832 goto out_end_trans; 5833 } 5834 5835 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 5836 ret = btrfs_find_root(tree_root, &root->root_key, path, 5837 NULL, NULL); 5838 if (ret < 0) { 5839 btrfs_abort_transaction(trans, ret); 5840 err = ret; 5841 goto out_end_trans; 5842 } else if (ret > 0) { 5843 /* if we fail to delete the orphan item this time 5844 * around, it'll get picked up the next time. 5845 * 5846 * The most common failure here is just -ENOENT. 5847 */ 5848 btrfs_del_orphan_item(trans, tree_root, 5849 root->root_key.objectid); 5850 } 5851 } 5852 5853 /* 5854 * This subvolume is going to be completely dropped, and won't be 5855 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5856 * commit transaction time. So free it here manually. 5857 */ 5858 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5859 btrfs_qgroup_free_meta_all_pertrans(root); 5860 5861 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5862 btrfs_add_dropped_root(trans, root); 5863 else 5864 btrfs_put_root(root); 5865 root_dropped = true; 5866 out_end_trans: 5867 btrfs_end_transaction_throttle(trans); 5868 out_free: 5869 kfree(wc); 5870 btrfs_free_path(path); 5871 out: 5872 /* 5873 * We were an unfinished drop root, check to see if there are any 5874 * pending, and if not clear and wake up any waiters. 5875 */ 5876 if (!err && unfinished_drop) 5877 btrfs_maybe_wake_unfinished_drop(fs_info); 5878 5879 /* 5880 * So if we need to stop dropping the snapshot for whatever reason we 5881 * need to make sure to add it back to the dead root list so that we 5882 * keep trying to do the work later. This also cleans up roots if we 5883 * don't have it in the radix (like when we recover after a power fail 5884 * or unmount) so we don't leak memory. 5885 */ 5886 if (!for_reloc && !root_dropped) 5887 btrfs_add_dead_root(root); 5888 return err; 5889 } 5890 5891 /* 5892 * drop subtree rooted at tree block 'node'. 5893 * 5894 * NOTE: this function will unlock and release tree block 'node' 5895 * only used by relocation code 5896 */ 5897 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5898 struct btrfs_root *root, 5899 struct extent_buffer *node, 5900 struct extent_buffer *parent) 5901 { 5902 struct btrfs_fs_info *fs_info = root->fs_info; 5903 struct btrfs_path *path; 5904 struct walk_control *wc; 5905 int level; 5906 int parent_level; 5907 int ret = 0; 5908 int wret; 5909 5910 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5911 5912 path = btrfs_alloc_path(); 5913 if (!path) 5914 return -ENOMEM; 5915 5916 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5917 if (!wc) { 5918 btrfs_free_path(path); 5919 return -ENOMEM; 5920 } 5921 5922 btrfs_assert_tree_write_locked(parent); 5923 parent_level = btrfs_header_level(parent); 5924 atomic_inc(&parent->refs); 5925 path->nodes[parent_level] = parent; 5926 path->slots[parent_level] = btrfs_header_nritems(parent); 5927 5928 btrfs_assert_tree_write_locked(node); 5929 level = btrfs_header_level(node); 5930 path->nodes[level] = node; 5931 path->slots[level] = 0; 5932 path->locks[level] = BTRFS_WRITE_LOCK; 5933 5934 wc->refs[parent_level] = 1; 5935 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5936 wc->level = level; 5937 wc->shared_level = -1; 5938 wc->stage = DROP_REFERENCE; 5939 wc->update_ref = 0; 5940 wc->keep_locks = 1; 5941 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5942 5943 while (1) { 5944 wret = walk_down_tree(trans, root, path, wc); 5945 if (wret < 0) { 5946 ret = wret; 5947 break; 5948 } 5949 5950 wret = walk_up_tree(trans, root, path, wc, parent_level); 5951 if (wret < 0) 5952 ret = wret; 5953 if (wret != 0) 5954 break; 5955 } 5956 5957 kfree(wc); 5958 btrfs_free_path(path); 5959 return ret; 5960 } 5961 5962 /* 5963 * helper to account the unused space of all the readonly block group in the 5964 * space_info. takes mirrors into account. 5965 */ 5966 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 5967 { 5968 struct btrfs_block_group *block_group; 5969 u64 free_bytes = 0; 5970 int factor; 5971 5972 /* It's df, we don't care if it's racy */ 5973 if (list_empty(&sinfo->ro_bgs)) 5974 return 0; 5975 5976 spin_lock(&sinfo->lock); 5977 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 5978 spin_lock(&block_group->lock); 5979 5980 if (!block_group->ro) { 5981 spin_unlock(&block_group->lock); 5982 continue; 5983 } 5984 5985 factor = btrfs_bg_type_to_factor(block_group->flags); 5986 free_bytes += (block_group->length - 5987 block_group->used) * factor; 5988 5989 spin_unlock(&block_group->lock); 5990 } 5991 spin_unlock(&sinfo->lock); 5992 5993 return free_bytes; 5994 } 5995 5996 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5997 u64 start, u64 end) 5998 { 5999 return unpin_extent_range(fs_info, start, end, false); 6000 } 6001 6002 /* 6003 * It used to be that old block groups would be left around forever. 6004 * Iterating over them would be enough to trim unused space. Since we 6005 * now automatically remove them, we also need to iterate over unallocated 6006 * space. 6007 * 6008 * We don't want a transaction for this since the discard may take a 6009 * substantial amount of time. We don't require that a transaction be 6010 * running, but we do need to take a running transaction into account 6011 * to ensure that we're not discarding chunks that were released or 6012 * allocated in the current transaction. 6013 * 6014 * Holding the chunks lock will prevent other threads from allocating 6015 * or releasing chunks, but it won't prevent a running transaction 6016 * from committing and releasing the memory that the pending chunks 6017 * list head uses. For that, we need to take a reference to the 6018 * transaction and hold the commit root sem. We only need to hold 6019 * it while performing the free space search since we have already 6020 * held back allocations. 6021 */ 6022 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6023 { 6024 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6025 int ret; 6026 6027 *trimmed = 0; 6028 6029 /* Discard not supported = nothing to do. */ 6030 if (!bdev_max_discard_sectors(device->bdev)) 6031 return 0; 6032 6033 /* Not writable = nothing to do. */ 6034 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6035 return 0; 6036 6037 /* No free space = nothing to do. */ 6038 if (device->total_bytes <= device->bytes_used) 6039 return 0; 6040 6041 ret = 0; 6042 6043 while (1) { 6044 struct btrfs_fs_info *fs_info = device->fs_info; 6045 u64 bytes; 6046 6047 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6048 if (ret) 6049 break; 6050 6051 find_first_clear_extent_bit(&device->alloc_state, start, 6052 &start, &end, 6053 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6054 6055 /* Check if there are any CHUNK_* bits left */ 6056 if (start > device->total_bytes) { 6057 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6058 btrfs_warn_in_rcu(fs_info, 6059 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6060 start, end - start + 1, 6061 rcu_str_deref(device->name), 6062 device->total_bytes); 6063 mutex_unlock(&fs_info->chunk_mutex); 6064 ret = 0; 6065 break; 6066 } 6067 6068 /* Ensure we skip the reserved space on each device. */ 6069 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6070 6071 /* 6072 * If find_first_clear_extent_bit find a range that spans the 6073 * end of the device it will set end to -1, in this case it's up 6074 * to the caller to trim the value to the size of the device. 6075 */ 6076 end = min(end, device->total_bytes - 1); 6077 6078 len = end - start + 1; 6079 6080 /* We didn't find any extents */ 6081 if (!len) { 6082 mutex_unlock(&fs_info->chunk_mutex); 6083 ret = 0; 6084 break; 6085 } 6086 6087 ret = btrfs_issue_discard(device->bdev, start, len, 6088 &bytes); 6089 if (!ret) 6090 set_extent_bits(&device->alloc_state, start, 6091 start + bytes - 1, 6092 CHUNK_TRIMMED); 6093 mutex_unlock(&fs_info->chunk_mutex); 6094 6095 if (ret) 6096 break; 6097 6098 start += len; 6099 *trimmed += bytes; 6100 6101 if (fatal_signal_pending(current)) { 6102 ret = -ERESTARTSYS; 6103 break; 6104 } 6105 6106 cond_resched(); 6107 } 6108 6109 return ret; 6110 } 6111 6112 /* 6113 * Trim the whole filesystem by: 6114 * 1) trimming the free space in each block group 6115 * 2) trimming the unallocated space on each device 6116 * 6117 * This will also continue trimming even if a block group or device encounters 6118 * an error. The return value will be the last error, or 0 if nothing bad 6119 * happens. 6120 */ 6121 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6122 { 6123 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6124 struct btrfs_block_group *cache = NULL; 6125 struct btrfs_device *device; 6126 u64 group_trimmed; 6127 u64 range_end = U64_MAX; 6128 u64 start; 6129 u64 end; 6130 u64 trimmed = 0; 6131 u64 bg_failed = 0; 6132 u64 dev_failed = 0; 6133 int bg_ret = 0; 6134 int dev_ret = 0; 6135 int ret = 0; 6136 6137 if (range->start == U64_MAX) 6138 return -EINVAL; 6139 6140 /* 6141 * Check range overflow if range->len is set. 6142 * The default range->len is U64_MAX. 6143 */ 6144 if (range->len != U64_MAX && 6145 check_add_overflow(range->start, range->len, &range_end)) 6146 return -EINVAL; 6147 6148 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6149 for (; cache; cache = btrfs_next_block_group(cache)) { 6150 if (cache->start >= range_end) { 6151 btrfs_put_block_group(cache); 6152 break; 6153 } 6154 6155 start = max(range->start, cache->start); 6156 end = min(range_end, cache->start + cache->length); 6157 6158 if (end - start >= range->minlen) { 6159 if (!btrfs_block_group_done(cache)) { 6160 ret = btrfs_cache_block_group(cache, true); 6161 if (ret) { 6162 bg_failed++; 6163 bg_ret = ret; 6164 continue; 6165 } 6166 } 6167 ret = btrfs_trim_block_group(cache, 6168 &group_trimmed, 6169 start, 6170 end, 6171 range->minlen); 6172 6173 trimmed += group_trimmed; 6174 if (ret) { 6175 bg_failed++; 6176 bg_ret = ret; 6177 continue; 6178 } 6179 } 6180 } 6181 6182 if (bg_failed) 6183 btrfs_warn(fs_info, 6184 "failed to trim %llu block group(s), last error %d", 6185 bg_failed, bg_ret); 6186 6187 mutex_lock(&fs_devices->device_list_mutex); 6188 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6189 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6190 continue; 6191 6192 ret = btrfs_trim_free_extents(device, &group_trimmed); 6193 if (ret) { 6194 dev_failed++; 6195 dev_ret = ret; 6196 break; 6197 } 6198 6199 trimmed += group_trimmed; 6200 } 6201 mutex_unlock(&fs_devices->device_list_mutex); 6202 6203 if (dev_failed) 6204 btrfs_warn(fs_info, 6205 "failed to trim %llu device(s), last error %d", 6206 dev_failed, dev_ret); 6207 range->len = trimmed; 6208 if (bg_ret) 6209 return bg_ret; 6210 return dev_ret; 6211 } 6212