1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "misc.h" 20 #include "tree-log.h" 21 #include "disk-io.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "locking.h" 26 #include "free-space-cache.h" 27 #include "free-space-tree.h" 28 #include "sysfs.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "delalloc-space.h" 34 #include "block-group.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "extent-tree.h" 42 #include "root-tree.h" 43 #include "file-item.h" 44 #include "orphan.h" 45 #include "tree-checker.h" 46 47 #undef SCRAMBLE_DELAYED_REFS 48 49 50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_delayed_ref_node *node, u64 parent, 52 u64 root_objectid, u64 owner_objectid, 53 u64 owner_offset, int refs_to_drop, 54 struct btrfs_delayed_extent_op *extra_op); 55 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 56 struct extent_buffer *leaf, 57 struct btrfs_extent_item *ei); 58 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 59 u64 parent, u64 root_objectid, 60 u64 flags, u64 owner, u64 offset, 61 struct btrfs_key *ins, int ref_mod); 62 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 63 struct btrfs_delayed_ref_node *node, 64 struct btrfs_delayed_extent_op *extent_op); 65 static int find_next_key(struct btrfs_path *path, int level, 66 struct btrfs_key *key); 67 68 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 69 { 70 return (cache->flags & bits) == bits; 71 } 72 73 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 74 u64 start, u64 num_bytes) 75 { 76 u64 end = start + num_bytes - 1; 77 set_extent_bits(&fs_info->excluded_extents, start, end, 78 EXTENT_UPTODATE); 79 return 0; 80 } 81 82 void btrfs_free_excluded_extents(struct btrfs_block_group *cache) 83 { 84 struct btrfs_fs_info *fs_info = cache->fs_info; 85 u64 start, end; 86 87 start = cache->start; 88 end = start + cache->length - 1; 89 90 clear_extent_bits(&fs_info->excluded_extents, start, end, 91 EXTENT_UPTODATE); 92 } 93 94 /* simple helper to search for an existing data extent at a given offset */ 95 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 96 { 97 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 98 int ret; 99 struct btrfs_key key; 100 struct btrfs_path *path; 101 102 path = btrfs_alloc_path(); 103 if (!path) 104 return -ENOMEM; 105 106 key.objectid = start; 107 key.offset = len; 108 key.type = BTRFS_EXTENT_ITEM_KEY; 109 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 110 btrfs_free_path(path); 111 return ret; 112 } 113 114 /* 115 * helper function to lookup reference count and flags of a tree block. 116 * 117 * the head node for delayed ref is used to store the sum of all the 118 * reference count modifications queued up in the rbtree. the head 119 * node may also store the extent flags to set. This way you can check 120 * to see what the reference count and extent flags would be if all of 121 * the delayed refs are not processed. 122 */ 123 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 124 struct btrfs_fs_info *fs_info, u64 bytenr, 125 u64 offset, int metadata, u64 *refs, u64 *flags) 126 { 127 struct btrfs_root *extent_root; 128 struct btrfs_delayed_ref_head *head; 129 struct btrfs_delayed_ref_root *delayed_refs; 130 struct btrfs_path *path; 131 struct btrfs_extent_item *ei; 132 struct extent_buffer *leaf; 133 struct btrfs_key key; 134 u32 item_size; 135 u64 num_refs; 136 u64 extent_flags; 137 int ret; 138 139 /* 140 * If we don't have skinny metadata, don't bother doing anything 141 * different 142 */ 143 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 144 offset = fs_info->nodesize; 145 metadata = 0; 146 } 147 148 path = btrfs_alloc_path(); 149 if (!path) 150 return -ENOMEM; 151 152 if (!trans) { 153 path->skip_locking = 1; 154 path->search_commit_root = 1; 155 } 156 157 search_again: 158 key.objectid = bytenr; 159 key.offset = offset; 160 if (metadata) 161 key.type = BTRFS_METADATA_ITEM_KEY; 162 else 163 key.type = BTRFS_EXTENT_ITEM_KEY; 164 165 extent_root = btrfs_extent_root(fs_info, bytenr); 166 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 167 if (ret < 0) 168 goto out_free; 169 170 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 171 if (path->slots[0]) { 172 path->slots[0]--; 173 btrfs_item_key_to_cpu(path->nodes[0], &key, 174 path->slots[0]); 175 if (key.objectid == bytenr && 176 key.type == BTRFS_EXTENT_ITEM_KEY && 177 key.offset == fs_info->nodesize) 178 ret = 0; 179 } 180 } 181 182 if (ret == 0) { 183 leaf = path->nodes[0]; 184 item_size = btrfs_item_size(leaf, path->slots[0]); 185 if (item_size >= sizeof(*ei)) { 186 ei = btrfs_item_ptr(leaf, path->slots[0], 187 struct btrfs_extent_item); 188 num_refs = btrfs_extent_refs(leaf, ei); 189 extent_flags = btrfs_extent_flags(leaf, ei); 190 } else { 191 ret = -EINVAL; 192 btrfs_print_v0_err(fs_info); 193 if (trans) 194 btrfs_abort_transaction(trans, ret); 195 else 196 btrfs_handle_fs_error(fs_info, ret, NULL); 197 198 goto out_free; 199 } 200 201 BUG_ON(num_refs == 0); 202 } else { 203 num_refs = 0; 204 extent_flags = 0; 205 ret = 0; 206 } 207 208 if (!trans) 209 goto out; 210 211 delayed_refs = &trans->transaction->delayed_refs; 212 spin_lock(&delayed_refs->lock); 213 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 214 if (head) { 215 if (!mutex_trylock(&head->mutex)) { 216 refcount_inc(&head->refs); 217 spin_unlock(&delayed_refs->lock); 218 219 btrfs_release_path(path); 220 221 /* 222 * Mutex was contended, block until it's released and try 223 * again 224 */ 225 mutex_lock(&head->mutex); 226 mutex_unlock(&head->mutex); 227 btrfs_put_delayed_ref_head(head); 228 goto search_again; 229 } 230 spin_lock(&head->lock); 231 if (head->extent_op && head->extent_op->update_flags) 232 extent_flags |= head->extent_op->flags_to_set; 233 else 234 BUG_ON(num_refs == 0); 235 236 num_refs += head->ref_mod; 237 spin_unlock(&head->lock); 238 mutex_unlock(&head->mutex); 239 } 240 spin_unlock(&delayed_refs->lock); 241 out: 242 WARN_ON(num_refs == 0); 243 if (refs) 244 *refs = num_refs; 245 if (flags) 246 *flags = extent_flags; 247 out_free: 248 btrfs_free_path(path); 249 return ret; 250 } 251 252 /* 253 * Back reference rules. Back refs have three main goals: 254 * 255 * 1) differentiate between all holders of references to an extent so that 256 * when a reference is dropped we can make sure it was a valid reference 257 * before freeing the extent. 258 * 259 * 2) Provide enough information to quickly find the holders of an extent 260 * if we notice a given block is corrupted or bad. 261 * 262 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 263 * maintenance. This is actually the same as #2, but with a slightly 264 * different use case. 265 * 266 * There are two kinds of back refs. The implicit back refs is optimized 267 * for pointers in non-shared tree blocks. For a given pointer in a block, 268 * back refs of this kind provide information about the block's owner tree 269 * and the pointer's key. These information allow us to find the block by 270 * b-tree searching. The full back refs is for pointers in tree blocks not 271 * referenced by their owner trees. The location of tree block is recorded 272 * in the back refs. Actually the full back refs is generic, and can be 273 * used in all cases the implicit back refs is used. The major shortcoming 274 * of the full back refs is its overhead. Every time a tree block gets 275 * COWed, we have to update back refs entry for all pointers in it. 276 * 277 * For a newly allocated tree block, we use implicit back refs for 278 * pointers in it. This means most tree related operations only involve 279 * implicit back refs. For a tree block created in old transaction, the 280 * only way to drop a reference to it is COW it. So we can detect the 281 * event that tree block loses its owner tree's reference and do the 282 * back refs conversion. 283 * 284 * When a tree block is COWed through a tree, there are four cases: 285 * 286 * The reference count of the block is one and the tree is the block's 287 * owner tree. Nothing to do in this case. 288 * 289 * The reference count of the block is one and the tree is not the 290 * block's owner tree. In this case, full back refs is used for pointers 291 * in the block. Remove these full back refs, add implicit back refs for 292 * every pointers in the new block. 293 * 294 * The reference count of the block is greater than one and the tree is 295 * the block's owner tree. In this case, implicit back refs is used for 296 * pointers in the block. Add full back refs for every pointers in the 297 * block, increase lower level extents' reference counts. The original 298 * implicit back refs are entailed to the new block. 299 * 300 * The reference count of the block is greater than one and the tree is 301 * not the block's owner tree. Add implicit back refs for every pointer in 302 * the new block, increase lower level extents' reference count. 303 * 304 * Back Reference Key composing: 305 * 306 * The key objectid corresponds to the first byte in the extent, 307 * The key type is used to differentiate between types of back refs. 308 * There are different meanings of the key offset for different types 309 * of back refs. 310 * 311 * File extents can be referenced by: 312 * 313 * - multiple snapshots, subvolumes, or different generations in one subvol 314 * - different files inside a single subvolume 315 * - different offsets inside a file (bookend extents in file.c) 316 * 317 * The extent ref structure for the implicit back refs has fields for: 318 * 319 * - Objectid of the subvolume root 320 * - objectid of the file holding the reference 321 * - original offset in the file 322 * - how many bookend extents 323 * 324 * The key offset for the implicit back refs is hash of the first 325 * three fields. 326 * 327 * The extent ref structure for the full back refs has field for: 328 * 329 * - number of pointers in the tree leaf 330 * 331 * The key offset for the implicit back refs is the first byte of 332 * the tree leaf 333 * 334 * When a file extent is allocated, The implicit back refs is used. 335 * the fields are filled in: 336 * 337 * (root_key.objectid, inode objectid, offset in file, 1) 338 * 339 * When a file extent is removed file truncation, we find the 340 * corresponding implicit back refs and check the following fields: 341 * 342 * (btrfs_header_owner(leaf), inode objectid, offset in file) 343 * 344 * Btree extents can be referenced by: 345 * 346 * - Different subvolumes 347 * 348 * Both the implicit back refs and the full back refs for tree blocks 349 * only consist of key. The key offset for the implicit back refs is 350 * objectid of block's owner tree. The key offset for the full back refs 351 * is the first byte of parent block. 352 * 353 * When implicit back refs is used, information about the lowest key and 354 * level of the tree block are required. These information are stored in 355 * tree block info structure. 356 */ 357 358 /* 359 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 360 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 361 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 362 */ 363 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 364 struct btrfs_extent_inline_ref *iref, 365 enum btrfs_inline_ref_type is_data) 366 { 367 int type = btrfs_extent_inline_ref_type(eb, iref); 368 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 369 370 if (type == BTRFS_TREE_BLOCK_REF_KEY || 371 type == BTRFS_SHARED_BLOCK_REF_KEY || 372 type == BTRFS_SHARED_DATA_REF_KEY || 373 type == BTRFS_EXTENT_DATA_REF_KEY) { 374 if (is_data == BTRFS_REF_TYPE_BLOCK) { 375 if (type == BTRFS_TREE_BLOCK_REF_KEY) 376 return type; 377 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 378 ASSERT(eb->fs_info); 379 /* 380 * Every shared one has parent tree block, 381 * which must be aligned to sector size. 382 */ 383 if (offset && 384 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 385 return type; 386 } 387 } else if (is_data == BTRFS_REF_TYPE_DATA) { 388 if (type == BTRFS_EXTENT_DATA_REF_KEY) 389 return type; 390 if (type == BTRFS_SHARED_DATA_REF_KEY) { 391 ASSERT(eb->fs_info); 392 /* 393 * Every shared one has parent tree block, 394 * which must be aligned to sector size. 395 */ 396 if (offset && 397 IS_ALIGNED(offset, eb->fs_info->sectorsize)) 398 return type; 399 } 400 } else { 401 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 402 return type; 403 } 404 } 405 406 btrfs_print_leaf((struct extent_buffer *)eb); 407 btrfs_err(eb->fs_info, 408 "eb %llu iref 0x%lx invalid extent inline ref type %d", 409 eb->start, (unsigned long)iref, type); 410 WARN_ON(1); 411 412 return BTRFS_REF_TYPE_INVALID; 413 } 414 415 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 416 { 417 u32 high_crc = ~(u32)0; 418 u32 low_crc = ~(u32)0; 419 __le64 lenum; 420 421 lenum = cpu_to_le64(root_objectid); 422 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 423 lenum = cpu_to_le64(owner); 424 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 425 lenum = cpu_to_le64(offset); 426 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 427 428 return ((u64)high_crc << 31) ^ (u64)low_crc; 429 } 430 431 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 432 struct btrfs_extent_data_ref *ref) 433 { 434 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 435 btrfs_extent_data_ref_objectid(leaf, ref), 436 btrfs_extent_data_ref_offset(leaf, ref)); 437 } 438 439 static int match_extent_data_ref(struct extent_buffer *leaf, 440 struct btrfs_extent_data_ref *ref, 441 u64 root_objectid, u64 owner, u64 offset) 442 { 443 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 444 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 445 btrfs_extent_data_ref_offset(leaf, ref) != offset) 446 return 0; 447 return 1; 448 } 449 450 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 451 struct btrfs_path *path, 452 u64 bytenr, u64 parent, 453 u64 root_objectid, 454 u64 owner, u64 offset) 455 { 456 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 457 struct btrfs_key key; 458 struct btrfs_extent_data_ref *ref; 459 struct extent_buffer *leaf; 460 u32 nritems; 461 int ret; 462 int recow; 463 int err = -ENOENT; 464 465 key.objectid = bytenr; 466 if (parent) { 467 key.type = BTRFS_SHARED_DATA_REF_KEY; 468 key.offset = parent; 469 } else { 470 key.type = BTRFS_EXTENT_DATA_REF_KEY; 471 key.offset = hash_extent_data_ref(root_objectid, 472 owner, offset); 473 } 474 again: 475 recow = 0; 476 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 477 if (ret < 0) { 478 err = ret; 479 goto fail; 480 } 481 482 if (parent) { 483 if (!ret) 484 return 0; 485 goto fail; 486 } 487 488 leaf = path->nodes[0]; 489 nritems = btrfs_header_nritems(leaf); 490 while (1) { 491 if (path->slots[0] >= nritems) { 492 ret = btrfs_next_leaf(root, path); 493 if (ret < 0) 494 err = ret; 495 if (ret) 496 goto fail; 497 498 leaf = path->nodes[0]; 499 nritems = btrfs_header_nritems(leaf); 500 recow = 1; 501 } 502 503 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 504 if (key.objectid != bytenr || 505 key.type != BTRFS_EXTENT_DATA_REF_KEY) 506 goto fail; 507 508 ref = btrfs_item_ptr(leaf, path->slots[0], 509 struct btrfs_extent_data_ref); 510 511 if (match_extent_data_ref(leaf, ref, root_objectid, 512 owner, offset)) { 513 if (recow) { 514 btrfs_release_path(path); 515 goto again; 516 } 517 err = 0; 518 break; 519 } 520 path->slots[0]++; 521 } 522 fail: 523 return err; 524 } 525 526 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 527 struct btrfs_path *path, 528 u64 bytenr, u64 parent, 529 u64 root_objectid, u64 owner, 530 u64 offset, int refs_to_add) 531 { 532 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 533 struct btrfs_key key; 534 struct extent_buffer *leaf; 535 u32 size; 536 u32 num_refs; 537 int ret; 538 539 key.objectid = bytenr; 540 if (parent) { 541 key.type = BTRFS_SHARED_DATA_REF_KEY; 542 key.offset = parent; 543 size = sizeof(struct btrfs_shared_data_ref); 544 } else { 545 key.type = BTRFS_EXTENT_DATA_REF_KEY; 546 key.offset = hash_extent_data_ref(root_objectid, 547 owner, offset); 548 size = sizeof(struct btrfs_extent_data_ref); 549 } 550 551 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 552 if (ret && ret != -EEXIST) 553 goto fail; 554 555 leaf = path->nodes[0]; 556 if (parent) { 557 struct btrfs_shared_data_ref *ref; 558 ref = btrfs_item_ptr(leaf, path->slots[0], 559 struct btrfs_shared_data_ref); 560 if (ret == 0) { 561 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 562 } else { 563 num_refs = btrfs_shared_data_ref_count(leaf, ref); 564 num_refs += refs_to_add; 565 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 566 } 567 } else { 568 struct btrfs_extent_data_ref *ref; 569 while (ret == -EEXIST) { 570 ref = btrfs_item_ptr(leaf, path->slots[0], 571 struct btrfs_extent_data_ref); 572 if (match_extent_data_ref(leaf, ref, root_objectid, 573 owner, offset)) 574 break; 575 btrfs_release_path(path); 576 key.offset++; 577 ret = btrfs_insert_empty_item(trans, root, path, &key, 578 size); 579 if (ret && ret != -EEXIST) 580 goto fail; 581 582 leaf = path->nodes[0]; 583 } 584 ref = btrfs_item_ptr(leaf, path->slots[0], 585 struct btrfs_extent_data_ref); 586 if (ret == 0) { 587 btrfs_set_extent_data_ref_root(leaf, ref, 588 root_objectid); 589 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 590 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 591 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 592 } else { 593 num_refs = btrfs_extent_data_ref_count(leaf, ref); 594 num_refs += refs_to_add; 595 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 596 } 597 } 598 btrfs_mark_buffer_dirty(leaf); 599 ret = 0; 600 fail: 601 btrfs_release_path(path); 602 return ret; 603 } 604 605 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 606 struct btrfs_root *root, 607 struct btrfs_path *path, 608 int refs_to_drop) 609 { 610 struct btrfs_key key; 611 struct btrfs_extent_data_ref *ref1 = NULL; 612 struct btrfs_shared_data_ref *ref2 = NULL; 613 struct extent_buffer *leaf; 614 u32 num_refs = 0; 615 int ret = 0; 616 617 leaf = path->nodes[0]; 618 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 619 620 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 621 ref1 = btrfs_item_ptr(leaf, path->slots[0], 622 struct btrfs_extent_data_ref); 623 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 624 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 625 ref2 = btrfs_item_ptr(leaf, path->slots[0], 626 struct btrfs_shared_data_ref); 627 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 628 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 629 btrfs_print_v0_err(trans->fs_info); 630 btrfs_abort_transaction(trans, -EINVAL); 631 return -EINVAL; 632 } else { 633 BUG(); 634 } 635 636 BUG_ON(num_refs < refs_to_drop); 637 num_refs -= refs_to_drop; 638 639 if (num_refs == 0) { 640 ret = btrfs_del_item(trans, root, path); 641 } else { 642 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 643 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 644 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 645 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 646 btrfs_mark_buffer_dirty(leaf); 647 } 648 return ret; 649 } 650 651 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 652 struct btrfs_extent_inline_ref *iref) 653 { 654 struct btrfs_key key; 655 struct extent_buffer *leaf; 656 struct btrfs_extent_data_ref *ref1; 657 struct btrfs_shared_data_ref *ref2; 658 u32 num_refs = 0; 659 int type; 660 661 leaf = path->nodes[0]; 662 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 663 664 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 665 if (iref) { 666 /* 667 * If type is invalid, we should have bailed out earlier than 668 * this call. 669 */ 670 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 671 ASSERT(type != BTRFS_REF_TYPE_INVALID); 672 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 673 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 674 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 675 } else { 676 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 677 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 678 } 679 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 680 ref1 = btrfs_item_ptr(leaf, path->slots[0], 681 struct btrfs_extent_data_ref); 682 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 683 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 684 ref2 = btrfs_item_ptr(leaf, path->slots[0], 685 struct btrfs_shared_data_ref); 686 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 687 } else { 688 WARN_ON(1); 689 } 690 return num_refs; 691 } 692 693 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 694 struct btrfs_path *path, 695 u64 bytenr, u64 parent, 696 u64 root_objectid) 697 { 698 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 699 struct btrfs_key key; 700 int ret; 701 702 key.objectid = bytenr; 703 if (parent) { 704 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 705 key.offset = parent; 706 } else { 707 key.type = BTRFS_TREE_BLOCK_REF_KEY; 708 key.offset = root_objectid; 709 } 710 711 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 712 if (ret > 0) 713 ret = -ENOENT; 714 return ret; 715 } 716 717 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 718 struct btrfs_path *path, 719 u64 bytenr, u64 parent, 720 u64 root_objectid) 721 { 722 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 723 struct btrfs_key key; 724 int ret; 725 726 key.objectid = bytenr; 727 if (parent) { 728 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 729 key.offset = parent; 730 } else { 731 key.type = BTRFS_TREE_BLOCK_REF_KEY; 732 key.offset = root_objectid; 733 } 734 735 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 736 btrfs_release_path(path); 737 return ret; 738 } 739 740 static inline int extent_ref_type(u64 parent, u64 owner) 741 { 742 int type; 743 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 744 if (parent > 0) 745 type = BTRFS_SHARED_BLOCK_REF_KEY; 746 else 747 type = BTRFS_TREE_BLOCK_REF_KEY; 748 } else { 749 if (parent > 0) 750 type = BTRFS_SHARED_DATA_REF_KEY; 751 else 752 type = BTRFS_EXTENT_DATA_REF_KEY; 753 } 754 return type; 755 } 756 757 static int find_next_key(struct btrfs_path *path, int level, 758 struct btrfs_key *key) 759 760 { 761 for (; level < BTRFS_MAX_LEVEL; level++) { 762 if (!path->nodes[level]) 763 break; 764 if (path->slots[level] + 1 >= 765 btrfs_header_nritems(path->nodes[level])) 766 continue; 767 if (level == 0) 768 btrfs_item_key_to_cpu(path->nodes[level], key, 769 path->slots[level] + 1); 770 else 771 btrfs_node_key_to_cpu(path->nodes[level], key, 772 path->slots[level] + 1); 773 return 0; 774 } 775 return 1; 776 } 777 778 /* 779 * look for inline back ref. if back ref is found, *ref_ret is set 780 * to the address of inline back ref, and 0 is returned. 781 * 782 * if back ref isn't found, *ref_ret is set to the address where it 783 * should be inserted, and -ENOENT is returned. 784 * 785 * if insert is true and there are too many inline back refs, the path 786 * points to the extent item, and -EAGAIN is returned. 787 * 788 * NOTE: inline back refs are ordered in the same way that back ref 789 * items in the tree are ordered. 790 */ 791 static noinline_for_stack 792 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 793 struct btrfs_path *path, 794 struct btrfs_extent_inline_ref **ref_ret, 795 u64 bytenr, u64 num_bytes, 796 u64 parent, u64 root_objectid, 797 u64 owner, u64 offset, int insert) 798 { 799 struct btrfs_fs_info *fs_info = trans->fs_info; 800 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 801 struct btrfs_key key; 802 struct extent_buffer *leaf; 803 struct btrfs_extent_item *ei; 804 struct btrfs_extent_inline_ref *iref; 805 u64 flags; 806 u64 item_size; 807 unsigned long ptr; 808 unsigned long end; 809 int extra_size; 810 int type; 811 int want; 812 int ret; 813 int err = 0; 814 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 815 int needed; 816 817 key.objectid = bytenr; 818 key.type = BTRFS_EXTENT_ITEM_KEY; 819 key.offset = num_bytes; 820 821 want = extent_ref_type(parent, owner); 822 if (insert) { 823 extra_size = btrfs_extent_inline_ref_size(want); 824 path->search_for_extension = 1; 825 path->keep_locks = 1; 826 } else 827 extra_size = -1; 828 829 /* 830 * Owner is our level, so we can just add one to get the level for the 831 * block we are interested in. 832 */ 833 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 834 key.type = BTRFS_METADATA_ITEM_KEY; 835 key.offset = owner; 836 } 837 838 again: 839 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 840 if (ret < 0) { 841 err = ret; 842 goto out; 843 } 844 845 /* 846 * We may be a newly converted file system which still has the old fat 847 * extent entries for metadata, so try and see if we have one of those. 848 */ 849 if (ret > 0 && skinny_metadata) { 850 skinny_metadata = false; 851 if (path->slots[0]) { 852 path->slots[0]--; 853 btrfs_item_key_to_cpu(path->nodes[0], &key, 854 path->slots[0]); 855 if (key.objectid == bytenr && 856 key.type == BTRFS_EXTENT_ITEM_KEY && 857 key.offset == num_bytes) 858 ret = 0; 859 } 860 if (ret) { 861 key.objectid = bytenr; 862 key.type = BTRFS_EXTENT_ITEM_KEY; 863 key.offset = num_bytes; 864 btrfs_release_path(path); 865 goto again; 866 } 867 } 868 869 if (ret && !insert) { 870 err = -ENOENT; 871 goto out; 872 } else if (WARN_ON(ret)) { 873 err = -EIO; 874 goto out; 875 } 876 877 leaf = path->nodes[0]; 878 item_size = btrfs_item_size(leaf, path->slots[0]); 879 if (unlikely(item_size < sizeof(*ei))) { 880 err = -EINVAL; 881 btrfs_print_v0_err(fs_info); 882 btrfs_abort_transaction(trans, err); 883 goto out; 884 } 885 886 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 887 flags = btrfs_extent_flags(leaf, ei); 888 889 ptr = (unsigned long)(ei + 1); 890 end = (unsigned long)ei + item_size; 891 892 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 893 ptr += sizeof(struct btrfs_tree_block_info); 894 BUG_ON(ptr > end); 895 } 896 897 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 898 needed = BTRFS_REF_TYPE_DATA; 899 else 900 needed = BTRFS_REF_TYPE_BLOCK; 901 902 err = -ENOENT; 903 while (1) { 904 if (ptr >= end) { 905 if (ptr > end) { 906 err = -EUCLEAN; 907 btrfs_print_leaf(path->nodes[0]); 908 btrfs_crit(fs_info, 909 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 910 path->slots[0], root_objectid, owner, offset, parent); 911 } 912 break; 913 } 914 iref = (struct btrfs_extent_inline_ref *)ptr; 915 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 916 if (type == BTRFS_REF_TYPE_INVALID) { 917 err = -EUCLEAN; 918 goto out; 919 } 920 921 if (want < type) 922 break; 923 if (want > type) { 924 ptr += btrfs_extent_inline_ref_size(type); 925 continue; 926 } 927 928 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 929 struct btrfs_extent_data_ref *dref; 930 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 931 if (match_extent_data_ref(leaf, dref, root_objectid, 932 owner, offset)) { 933 err = 0; 934 break; 935 } 936 if (hash_extent_data_ref_item(leaf, dref) < 937 hash_extent_data_ref(root_objectid, owner, offset)) 938 break; 939 } else { 940 u64 ref_offset; 941 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 942 if (parent > 0) { 943 if (parent == ref_offset) { 944 err = 0; 945 break; 946 } 947 if (ref_offset < parent) 948 break; 949 } else { 950 if (root_objectid == ref_offset) { 951 err = 0; 952 break; 953 } 954 if (ref_offset < root_objectid) 955 break; 956 } 957 } 958 ptr += btrfs_extent_inline_ref_size(type); 959 } 960 if (err == -ENOENT && insert) { 961 if (item_size + extra_size >= 962 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 963 err = -EAGAIN; 964 goto out; 965 } 966 /* 967 * To add new inline back ref, we have to make sure 968 * there is no corresponding back ref item. 969 * For simplicity, we just do not add new inline back 970 * ref if there is any kind of item for this block 971 */ 972 if (find_next_key(path, 0, &key) == 0 && 973 key.objectid == bytenr && 974 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 975 err = -EAGAIN; 976 goto out; 977 } 978 } 979 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 980 out: 981 if (insert) { 982 path->keep_locks = 0; 983 path->search_for_extension = 0; 984 btrfs_unlock_up_safe(path, 1); 985 } 986 return err; 987 } 988 989 /* 990 * helper to add new inline back ref 991 */ 992 static noinline_for_stack 993 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 994 struct btrfs_path *path, 995 struct btrfs_extent_inline_ref *iref, 996 u64 parent, u64 root_objectid, 997 u64 owner, u64 offset, int refs_to_add, 998 struct btrfs_delayed_extent_op *extent_op) 999 { 1000 struct extent_buffer *leaf; 1001 struct btrfs_extent_item *ei; 1002 unsigned long ptr; 1003 unsigned long end; 1004 unsigned long item_offset; 1005 u64 refs; 1006 int size; 1007 int type; 1008 1009 leaf = path->nodes[0]; 1010 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1011 item_offset = (unsigned long)iref - (unsigned long)ei; 1012 1013 type = extent_ref_type(parent, owner); 1014 size = btrfs_extent_inline_ref_size(type); 1015 1016 btrfs_extend_item(path, size); 1017 1018 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1019 refs = btrfs_extent_refs(leaf, ei); 1020 refs += refs_to_add; 1021 btrfs_set_extent_refs(leaf, ei, refs); 1022 if (extent_op) 1023 __run_delayed_extent_op(extent_op, leaf, ei); 1024 1025 ptr = (unsigned long)ei + item_offset; 1026 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1027 if (ptr < end - size) 1028 memmove_extent_buffer(leaf, ptr + size, ptr, 1029 end - size - ptr); 1030 1031 iref = (struct btrfs_extent_inline_ref *)ptr; 1032 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1033 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1034 struct btrfs_extent_data_ref *dref; 1035 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1036 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1037 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1038 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1039 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1040 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1041 struct btrfs_shared_data_ref *sref; 1042 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1043 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1044 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1045 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1046 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1047 } else { 1048 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1049 } 1050 btrfs_mark_buffer_dirty(leaf); 1051 } 1052 1053 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1054 struct btrfs_path *path, 1055 struct btrfs_extent_inline_ref **ref_ret, 1056 u64 bytenr, u64 num_bytes, u64 parent, 1057 u64 root_objectid, u64 owner, u64 offset) 1058 { 1059 int ret; 1060 1061 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1062 num_bytes, parent, root_objectid, 1063 owner, offset, 0); 1064 if (ret != -ENOENT) 1065 return ret; 1066 1067 btrfs_release_path(path); 1068 *ref_ret = NULL; 1069 1070 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1071 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1072 root_objectid); 1073 } else { 1074 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1075 root_objectid, owner, offset); 1076 } 1077 return ret; 1078 } 1079 1080 /* 1081 * helper to update/remove inline back ref 1082 */ 1083 static noinline_for_stack 1084 void update_inline_extent_backref(struct btrfs_path *path, 1085 struct btrfs_extent_inline_ref *iref, 1086 int refs_to_mod, 1087 struct btrfs_delayed_extent_op *extent_op) 1088 { 1089 struct extent_buffer *leaf = path->nodes[0]; 1090 struct btrfs_extent_item *ei; 1091 struct btrfs_extent_data_ref *dref = NULL; 1092 struct btrfs_shared_data_ref *sref = NULL; 1093 unsigned long ptr; 1094 unsigned long end; 1095 u32 item_size; 1096 int size; 1097 int type; 1098 u64 refs; 1099 1100 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1101 refs = btrfs_extent_refs(leaf, ei); 1102 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1103 refs += refs_to_mod; 1104 btrfs_set_extent_refs(leaf, ei, refs); 1105 if (extent_op) 1106 __run_delayed_extent_op(extent_op, leaf, ei); 1107 1108 /* 1109 * If type is invalid, we should have bailed out after 1110 * lookup_inline_extent_backref(). 1111 */ 1112 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1113 ASSERT(type != BTRFS_REF_TYPE_INVALID); 1114 1115 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1116 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1117 refs = btrfs_extent_data_ref_count(leaf, dref); 1118 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1119 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1120 refs = btrfs_shared_data_ref_count(leaf, sref); 1121 } else { 1122 refs = 1; 1123 BUG_ON(refs_to_mod != -1); 1124 } 1125 1126 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1127 refs += refs_to_mod; 1128 1129 if (refs > 0) { 1130 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1131 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1132 else 1133 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1134 } else { 1135 size = btrfs_extent_inline_ref_size(type); 1136 item_size = btrfs_item_size(leaf, path->slots[0]); 1137 ptr = (unsigned long)iref; 1138 end = (unsigned long)ei + item_size; 1139 if (ptr + size < end) 1140 memmove_extent_buffer(leaf, ptr, ptr + size, 1141 end - ptr - size); 1142 item_size -= size; 1143 btrfs_truncate_item(path, item_size, 1); 1144 } 1145 btrfs_mark_buffer_dirty(leaf); 1146 } 1147 1148 static noinline_for_stack 1149 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1150 struct btrfs_path *path, 1151 u64 bytenr, u64 num_bytes, u64 parent, 1152 u64 root_objectid, u64 owner, 1153 u64 offset, int refs_to_add, 1154 struct btrfs_delayed_extent_op *extent_op) 1155 { 1156 struct btrfs_extent_inline_ref *iref; 1157 int ret; 1158 1159 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1160 num_bytes, parent, root_objectid, 1161 owner, offset, 1); 1162 if (ret == 0) { 1163 /* 1164 * We're adding refs to a tree block we already own, this 1165 * should not happen at all. 1166 */ 1167 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1168 btrfs_crit(trans->fs_info, 1169 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu", 1170 bytenr, num_bytes, root_objectid); 1171 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 1172 WARN_ON(1); 1173 btrfs_crit(trans->fs_info, 1174 "path->slots[0]=%d path->nodes[0]:", path->slots[0]); 1175 btrfs_print_leaf(path->nodes[0]); 1176 } 1177 return -EUCLEAN; 1178 } 1179 update_inline_extent_backref(path, iref, refs_to_add, extent_op); 1180 } else if (ret == -ENOENT) { 1181 setup_inline_extent_backref(trans->fs_info, path, iref, parent, 1182 root_objectid, owner, offset, 1183 refs_to_add, extent_op); 1184 ret = 0; 1185 } 1186 return ret; 1187 } 1188 1189 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1190 struct btrfs_root *root, 1191 struct btrfs_path *path, 1192 struct btrfs_extent_inline_ref *iref, 1193 int refs_to_drop, int is_data) 1194 { 1195 int ret = 0; 1196 1197 BUG_ON(!is_data && refs_to_drop != 1); 1198 if (iref) 1199 update_inline_extent_backref(path, iref, -refs_to_drop, NULL); 1200 else if (is_data) 1201 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1202 else 1203 ret = btrfs_del_item(trans, root, path); 1204 return ret; 1205 } 1206 1207 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1208 u64 *discarded_bytes) 1209 { 1210 int j, ret = 0; 1211 u64 bytes_left, end; 1212 u64 aligned_start = ALIGN(start, 1 << 9); 1213 1214 if (WARN_ON(start != aligned_start)) { 1215 len -= aligned_start - start; 1216 len = round_down(len, 1 << 9); 1217 start = aligned_start; 1218 } 1219 1220 *discarded_bytes = 0; 1221 1222 if (!len) 1223 return 0; 1224 1225 end = start + len; 1226 bytes_left = len; 1227 1228 /* Skip any superblocks on this device. */ 1229 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1230 u64 sb_start = btrfs_sb_offset(j); 1231 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1232 u64 size = sb_start - start; 1233 1234 if (!in_range(sb_start, start, bytes_left) && 1235 !in_range(sb_end, start, bytes_left) && 1236 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1237 continue; 1238 1239 /* 1240 * Superblock spans beginning of range. Adjust start and 1241 * try again. 1242 */ 1243 if (sb_start <= start) { 1244 start += sb_end - start; 1245 if (start > end) { 1246 bytes_left = 0; 1247 break; 1248 } 1249 bytes_left = end - start; 1250 continue; 1251 } 1252 1253 if (size) { 1254 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 1255 GFP_NOFS); 1256 if (!ret) 1257 *discarded_bytes += size; 1258 else if (ret != -EOPNOTSUPP) 1259 return ret; 1260 } 1261 1262 start = sb_end; 1263 if (start > end) { 1264 bytes_left = 0; 1265 break; 1266 } 1267 bytes_left = end - start; 1268 } 1269 1270 if (bytes_left) { 1271 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 1272 GFP_NOFS); 1273 if (!ret) 1274 *discarded_bytes += bytes_left; 1275 } 1276 return ret; 1277 } 1278 1279 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1280 { 1281 struct btrfs_device *dev = stripe->dev; 1282 struct btrfs_fs_info *fs_info = dev->fs_info; 1283 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1284 u64 phys = stripe->physical; 1285 u64 len = stripe->length; 1286 u64 discarded = 0; 1287 int ret = 0; 1288 1289 /* Zone reset on a zoned filesystem */ 1290 if (btrfs_can_zone_reset(dev, phys, len)) { 1291 u64 src_disc; 1292 1293 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1294 if (ret) 1295 goto out; 1296 1297 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1298 dev != dev_replace->srcdev) 1299 goto out; 1300 1301 src_disc = discarded; 1302 1303 /* Send to replace target as well */ 1304 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1305 &discarded); 1306 discarded += src_disc; 1307 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1308 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1309 } else { 1310 ret = 0; 1311 *bytes = 0; 1312 } 1313 1314 out: 1315 *bytes = discarded; 1316 return ret; 1317 } 1318 1319 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1320 u64 num_bytes, u64 *actual_bytes) 1321 { 1322 int ret = 0; 1323 u64 discarded_bytes = 0; 1324 u64 end = bytenr + num_bytes; 1325 u64 cur = bytenr; 1326 1327 /* 1328 * Avoid races with device replace and make sure the devices in the 1329 * stripes don't go away while we are discarding. 1330 */ 1331 btrfs_bio_counter_inc_blocked(fs_info); 1332 while (cur < end) { 1333 struct btrfs_discard_stripe *stripes; 1334 unsigned int num_stripes; 1335 int i; 1336 1337 num_bytes = end - cur; 1338 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1339 if (IS_ERR(stripes)) { 1340 ret = PTR_ERR(stripes); 1341 if (ret == -EOPNOTSUPP) 1342 ret = 0; 1343 break; 1344 } 1345 1346 for (i = 0; i < num_stripes; i++) { 1347 struct btrfs_discard_stripe *stripe = stripes + i; 1348 u64 bytes; 1349 1350 if (!stripe->dev->bdev) { 1351 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1352 continue; 1353 } 1354 1355 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1356 &stripe->dev->dev_state)) 1357 continue; 1358 1359 ret = do_discard_extent(stripe, &bytes); 1360 if (ret) { 1361 /* 1362 * Keep going if discard is not supported by the 1363 * device. 1364 */ 1365 if (ret != -EOPNOTSUPP) 1366 break; 1367 ret = 0; 1368 } else { 1369 discarded_bytes += bytes; 1370 } 1371 } 1372 kfree(stripes); 1373 if (ret) 1374 break; 1375 cur += num_bytes; 1376 } 1377 btrfs_bio_counter_dec(fs_info); 1378 if (actual_bytes) 1379 *actual_bytes = discarded_bytes; 1380 return ret; 1381 } 1382 1383 /* Can return -ENOMEM */ 1384 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1385 struct btrfs_ref *generic_ref) 1386 { 1387 struct btrfs_fs_info *fs_info = trans->fs_info; 1388 int ret; 1389 1390 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1391 generic_ref->action); 1392 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1393 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID); 1394 1395 if (generic_ref->type == BTRFS_REF_METADATA) 1396 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1397 else 1398 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1399 1400 btrfs_ref_tree_mod(fs_info, generic_ref); 1401 1402 return ret; 1403 } 1404 1405 /* 1406 * __btrfs_inc_extent_ref - insert backreference for a given extent 1407 * 1408 * The counterpart is in __btrfs_free_extent(), with examples and more details 1409 * how it works. 1410 * 1411 * @trans: Handle of transaction 1412 * 1413 * @node: The delayed ref node used to get the bytenr/length for 1414 * extent whose references are incremented. 1415 * 1416 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1417 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1418 * bytenr of the parent block. Since new extents are always 1419 * created with indirect references, this will only be the case 1420 * when relocating a shared extent. In that case, root_objectid 1421 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1422 * be 0 1423 * 1424 * @root_objectid: The id of the root where this modification has originated, 1425 * this can be either one of the well-known metadata trees or 1426 * the subvolume id which references this extent. 1427 * 1428 * @owner: For data extents it is the inode number of the owning file. 1429 * For metadata extents this parameter holds the level in the 1430 * tree of the extent. 1431 * 1432 * @offset: For metadata extents the offset is ignored and is currently 1433 * always passed as 0. For data extents it is the fileoffset 1434 * this extent belongs to. 1435 * 1436 * @refs_to_add Number of references to add 1437 * 1438 * @extent_op Pointer to a structure, holding information necessary when 1439 * updating a tree block's flags 1440 * 1441 */ 1442 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1443 struct btrfs_delayed_ref_node *node, 1444 u64 parent, u64 root_objectid, 1445 u64 owner, u64 offset, int refs_to_add, 1446 struct btrfs_delayed_extent_op *extent_op) 1447 { 1448 struct btrfs_path *path; 1449 struct extent_buffer *leaf; 1450 struct btrfs_extent_item *item; 1451 struct btrfs_key key; 1452 u64 bytenr = node->bytenr; 1453 u64 num_bytes = node->num_bytes; 1454 u64 refs; 1455 int ret; 1456 1457 path = btrfs_alloc_path(); 1458 if (!path) 1459 return -ENOMEM; 1460 1461 /* this will setup the path even if it fails to insert the back ref */ 1462 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1463 parent, root_objectid, owner, 1464 offset, refs_to_add, extent_op); 1465 if ((ret < 0 && ret != -EAGAIN) || !ret) 1466 goto out; 1467 1468 /* 1469 * Ok we had -EAGAIN which means we didn't have space to insert and 1470 * inline extent ref, so just update the reference count and add a 1471 * normal backref. 1472 */ 1473 leaf = path->nodes[0]; 1474 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1475 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1476 refs = btrfs_extent_refs(leaf, item); 1477 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1478 if (extent_op) 1479 __run_delayed_extent_op(extent_op, leaf, item); 1480 1481 btrfs_mark_buffer_dirty(leaf); 1482 btrfs_release_path(path); 1483 1484 /* now insert the actual backref */ 1485 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1486 BUG_ON(refs_to_add != 1); 1487 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1488 root_objectid); 1489 } else { 1490 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1491 root_objectid, owner, offset, 1492 refs_to_add); 1493 } 1494 if (ret) 1495 btrfs_abort_transaction(trans, ret); 1496 out: 1497 btrfs_free_path(path); 1498 return ret; 1499 } 1500 1501 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1502 struct btrfs_delayed_ref_node *node, 1503 struct btrfs_delayed_extent_op *extent_op, 1504 int insert_reserved) 1505 { 1506 int ret = 0; 1507 struct btrfs_delayed_data_ref *ref; 1508 struct btrfs_key ins; 1509 u64 parent = 0; 1510 u64 ref_root = 0; 1511 u64 flags = 0; 1512 1513 ins.objectid = node->bytenr; 1514 ins.offset = node->num_bytes; 1515 ins.type = BTRFS_EXTENT_ITEM_KEY; 1516 1517 ref = btrfs_delayed_node_to_data_ref(node); 1518 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1519 1520 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1521 parent = ref->parent; 1522 ref_root = ref->root; 1523 1524 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1525 if (extent_op) 1526 flags |= extent_op->flags_to_set; 1527 ret = alloc_reserved_file_extent(trans, parent, ref_root, 1528 flags, ref->objectid, 1529 ref->offset, &ins, 1530 node->ref_mod); 1531 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1532 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1533 ref->objectid, ref->offset, 1534 node->ref_mod, extent_op); 1535 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1536 ret = __btrfs_free_extent(trans, node, parent, 1537 ref_root, ref->objectid, 1538 ref->offset, node->ref_mod, 1539 extent_op); 1540 } else { 1541 BUG(); 1542 } 1543 return ret; 1544 } 1545 1546 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1547 struct extent_buffer *leaf, 1548 struct btrfs_extent_item *ei) 1549 { 1550 u64 flags = btrfs_extent_flags(leaf, ei); 1551 if (extent_op->update_flags) { 1552 flags |= extent_op->flags_to_set; 1553 btrfs_set_extent_flags(leaf, ei, flags); 1554 } 1555 1556 if (extent_op->update_key) { 1557 struct btrfs_tree_block_info *bi; 1558 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1559 bi = (struct btrfs_tree_block_info *)(ei + 1); 1560 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1561 } 1562 } 1563 1564 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1565 struct btrfs_delayed_ref_head *head, 1566 struct btrfs_delayed_extent_op *extent_op) 1567 { 1568 struct btrfs_fs_info *fs_info = trans->fs_info; 1569 struct btrfs_root *root; 1570 struct btrfs_key key; 1571 struct btrfs_path *path; 1572 struct btrfs_extent_item *ei; 1573 struct extent_buffer *leaf; 1574 u32 item_size; 1575 int ret; 1576 int err = 0; 1577 int metadata = 1; 1578 1579 if (TRANS_ABORTED(trans)) 1580 return 0; 1581 1582 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1583 metadata = 0; 1584 1585 path = btrfs_alloc_path(); 1586 if (!path) 1587 return -ENOMEM; 1588 1589 key.objectid = head->bytenr; 1590 1591 if (metadata) { 1592 key.type = BTRFS_METADATA_ITEM_KEY; 1593 key.offset = extent_op->level; 1594 } else { 1595 key.type = BTRFS_EXTENT_ITEM_KEY; 1596 key.offset = head->num_bytes; 1597 } 1598 1599 root = btrfs_extent_root(fs_info, key.objectid); 1600 again: 1601 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1602 if (ret < 0) { 1603 err = ret; 1604 goto out; 1605 } 1606 if (ret > 0) { 1607 if (metadata) { 1608 if (path->slots[0] > 0) { 1609 path->slots[0]--; 1610 btrfs_item_key_to_cpu(path->nodes[0], &key, 1611 path->slots[0]); 1612 if (key.objectid == head->bytenr && 1613 key.type == BTRFS_EXTENT_ITEM_KEY && 1614 key.offset == head->num_bytes) 1615 ret = 0; 1616 } 1617 if (ret > 0) { 1618 btrfs_release_path(path); 1619 metadata = 0; 1620 1621 key.objectid = head->bytenr; 1622 key.offset = head->num_bytes; 1623 key.type = BTRFS_EXTENT_ITEM_KEY; 1624 goto again; 1625 } 1626 } else { 1627 err = -EIO; 1628 goto out; 1629 } 1630 } 1631 1632 leaf = path->nodes[0]; 1633 item_size = btrfs_item_size(leaf, path->slots[0]); 1634 1635 if (unlikely(item_size < sizeof(*ei))) { 1636 err = -EINVAL; 1637 btrfs_print_v0_err(fs_info); 1638 btrfs_abort_transaction(trans, err); 1639 goto out; 1640 } 1641 1642 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1643 __run_delayed_extent_op(extent_op, leaf, ei); 1644 1645 btrfs_mark_buffer_dirty(leaf); 1646 out: 1647 btrfs_free_path(path); 1648 return err; 1649 } 1650 1651 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1652 struct btrfs_delayed_ref_node *node, 1653 struct btrfs_delayed_extent_op *extent_op, 1654 int insert_reserved) 1655 { 1656 int ret = 0; 1657 struct btrfs_delayed_tree_ref *ref; 1658 u64 parent = 0; 1659 u64 ref_root = 0; 1660 1661 ref = btrfs_delayed_node_to_tree_ref(node); 1662 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1663 1664 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1665 parent = ref->parent; 1666 ref_root = ref->root; 1667 1668 if (node->ref_mod != 1) { 1669 btrfs_err(trans->fs_info, 1670 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 1671 node->bytenr, node->ref_mod, node->action, ref_root, 1672 parent); 1673 return -EIO; 1674 } 1675 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1676 BUG_ON(!extent_op || !extent_op->update_flags); 1677 ret = alloc_reserved_tree_block(trans, node, extent_op); 1678 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1679 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1680 ref->level, 0, 1, extent_op); 1681 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1682 ret = __btrfs_free_extent(trans, node, parent, ref_root, 1683 ref->level, 0, 1, extent_op); 1684 } else { 1685 BUG(); 1686 } 1687 return ret; 1688 } 1689 1690 /* helper function to actually process a single delayed ref entry */ 1691 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1692 struct btrfs_delayed_ref_node *node, 1693 struct btrfs_delayed_extent_op *extent_op, 1694 int insert_reserved) 1695 { 1696 int ret = 0; 1697 1698 if (TRANS_ABORTED(trans)) { 1699 if (insert_reserved) 1700 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1701 return 0; 1702 } 1703 1704 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1705 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1706 ret = run_delayed_tree_ref(trans, node, extent_op, 1707 insert_reserved); 1708 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1709 node->type == BTRFS_SHARED_DATA_REF_KEY) 1710 ret = run_delayed_data_ref(trans, node, extent_op, 1711 insert_reserved); 1712 else 1713 BUG(); 1714 if (ret && insert_reserved) 1715 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1716 if (ret < 0) 1717 btrfs_err(trans->fs_info, 1718 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1719 node->bytenr, node->num_bytes, node->type, 1720 node->action, node->ref_mod, ret); 1721 return ret; 1722 } 1723 1724 static inline struct btrfs_delayed_ref_node * 1725 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1726 { 1727 struct btrfs_delayed_ref_node *ref; 1728 1729 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1730 return NULL; 1731 1732 /* 1733 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1734 * This is to prevent a ref count from going down to zero, which deletes 1735 * the extent item from the extent tree, when there still are references 1736 * to add, which would fail because they would not find the extent item. 1737 */ 1738 if (!list_empty(&head->ref_add_list)) 1739 return list_first_entry(&head->ref_add_list, 1740 struct btrfs_delayed_ref_node, add_list); 1741 1742 ref = rb_entry(rb_first_cached(&head->ref_tree), 1743 struct btrfs_delayed_ref_node, ref_node); 1744 ASSERT(list_empty(&ref->add_list)); 1745 return ref; 1746 } 1747 1748 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1749 struct btrfs_delayed_ref_head *head) 1750 { 1751 spin_lock(&delayed_refs->lock); 1752 head->processing = 0; 1753 delayed_refs->num_heads_ready++; 1754 spin_unlock(&delayed_refs->lock); 1755 btrfs_delayed_ref_unlock(head); 1756 } 1757 1758 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1759 struct btrfs_delayed_ref_head *head) 1760 { 1761 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1762 1763 if (!extent_op) 1764 return NULL; 1765 1766 if (head->must_insert_reserved) { 1767 head->extent_op = NULL; 1768 btrfs_free_delayed_extent_op(extent_op); 1769 return NULL; 1770 } 1771 return extent_op; 1772 } 1773 1774 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1775 struct btrfs_delayed_ref_head *head) 1776 { 1777 struct btrfs_delayed_extent_op *extent_op; 1778 int ret; 1779 1780 extent_op = cleanup_extent_op(head); 1781 if (!extent_op) 1782 return 0; 1783 head->extent_op = NULL; 1784 spin_unlock(&head->lock); 1785 ret = run_delayed_extent_op(trans, head, extent_op); 1786 btrfs_free_delayed_extent_op(extent_op); 1787 return ret ? ret : 1; 1788 } 1789 1790 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1791 struct btrfs_delayed_ref_root *delayed_refs, 1792 struct btrfs_delayed_ref_head *head) 1793 { 1794 int nr_items = 1; /* Dropping this ref head update. */ 1795 1796 /* 1797 * We had csum deletions accounted for in our delayed refs rsv, we need 1798 * to drop the csum leaves for this update from our delayed_refs_rsv. 1799 */ 1800 if (head->total_ref_mod < 0 && head->is_data) { 1801 spin_lock(&delayed_refs->lock); 1802 delayed_refs->pending_csums -= head->num_bytes; 1803 spin_unlock(&delayed_refs->lock); 1804 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1805 } 1806 1807 btrfs_delayed_refs_rsv_release(fs_info, nr_items); 1808 } 1809 1810 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1811 struct btrfs_delayed_ref_head *head) 1812 { 1813 1814 struct btrfs_fs_info *fs_info = trans->fs_info; 1815 struct btrfs_delayed_ref_root *delayed_refs; 1816 int ret; 1817 1818 delayed_refs = &trans->transaction->delayed_refs; 1819 1820 ret = run_and_cleanup_extent_op(trans, head); 1821 if (ret < 0) { 1822 unselect_delayed_ref_head(delayed_refs, head); 1823 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1824 return ret; 1825 } else if (ret) { 1826 return ret; 1827 } 1828 1829 /* 1830 * Need to drop our head ref lock and re-acquire the delayed ref lock 1831 * and then re-check to make sure nobody got added. 1832 */ 1833 spin_unlock(&head->lock); 1834 spin_lock(&delayed_refs->lock); 1835 spin_lock(&head->lock); 1836 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1837 spin_unlock(&head->lock); 1838 spin_unlock(&delayed_refs->lock); 1839 return 1; 1840 } 1841 btrfs_delete_ref_head(delayed_refs, head); 1842 spin_unlock(&head->lock); 1843 spin_unlock(&delayed_refs->lock); 1844 1845 if (head->must_insert_reserved) { 1846 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1847 if (head->is_data) { 1848 struct btrfs_root *csum_root; 1849 1850 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1851 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1852 head->num_bytes); 1853 } 1854 } 1855 1856 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1857 1858 trace_run_delayed_ref_head(fs_info, head, 0); 1859 btrfs_delayed_ref_unlock(head); 1860 btrfs_put_delayed_ref_head(head); 1861 return ret; 1862 } 1863 1864 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1865 struct btrfs_trans_handle *trans) 1866 { 1867 struct btrfs_delayed_ref_root *delayed_refs = 1868 &trans->transaction->delayed_refs; 1869 struct btrfs_delayed_ref_head *head = NULL; 1870 int ret; 1871 1872 spin_lock(&delayed_refs->lock); 1873 head = btrfs_select_ref_head(delayed_refs); 1874 if (!head) { 1875 spin_unlock(&delayed_refs->lock); 1876 return head; 1877 } 1878 1879 /* 1880 * Grab the lock that says we are going to process all the refs for 1881 * this head 1882 */ 1883 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1884 spin_unlock(&delayed_refs->lock); 1885 1886 /* 1887 * We may have dropped the spin lock to get the head mutex lock, and 1888 * that might have given someone else time to free the head. If that's 1889 * true, it has been removed from our list and we can move on. 1890 */ 1891 if (ret == -EAGAIN) 1892 head = ERR_PTR(-EAGAIN); 1893 1894 return head; 1895 } 1896 1897 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1898 struct btrfs_delayed_ref_head *locked_ref, 1899 unsigned long *run_refs) 1900 { 1901 struct btrfs_fs_info *fs_info = trans->fs_info; 1902 struct btrfs_delayed_ref_root *delayed_refs; 1903 struct btrfs_delayed_extent_op *extent_op; 1904 struct btrfs_delayed_ref_node *ref; 1905 int must_insert_reserved = 0; 1906 int ret; 1907 1908 delayed_refs = &trans->transaction->delayed_refs; 1909 1910 lockdep_assert_held(&locked_ref->mutex); 1911 lockdep_assert_held(&locked_ref->lock); 1912 1913 while ((ref = select_delayed_ref(locked_ref))) { 1914 if (ref->seq && 1915 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1916 spin_unlock(&locked_ref->lock); 1917 unselect_delayed_ref_head(delayed_refs, locked_ref); 1918 return -EAGAIN; 1919 } 1920 1921 (*run_refs)++; 1922 ref->in_tree = 0; 1923 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1924 RB_CLEAR_NODE(&ref->ref_node); 1925 if (!list_empty(&ref->add_list)) 1926 list_del(&ref->add_list); 1927 /* 1928 * When we play the delayed ref, also correct the ref_mod on 1929 * head 1930 */ 1931 switch (ref->action) { 1932 case BTRFS_ADD_DELAYED_REF: 1933 case BTRFS_ADD_DELAYED_EXTENT: 1934 locked_ref->ref_mod -= ref->ref_mod; 1935 break; 1936 case BTRFS_DROP_DELAYED_REF: 1937 locked_ref->ref_mod += ref->ref_mod; 1938 break; 1939 default: 1940 WARN_ON(1); 1941 } 1942 atomic_dec(&delayed_refs->num_entries); 1943 1944 /* 1945 * Record the must_insert_reserved flag before we drop the 1946 * spin lock. 1947 */ 1948 must_insert_reserved = locked_ref->must_insert_reserved; 1949 locked_ref->must_insert_reserved = 0; 1950 1951 extent_op = locked_ref->extent_op; 1952 locked_ref->extent_op = NULL; 1953 spin_unlock(&locked_ref->lock); 1954 1955 ret = run_one_delayed_ref(trans, ref, extent_op, 1956 must_insert_reserved); 1957 1958 btrfs_free_delayed_extent_op(extent_op); 1959 if (ret) { 1960 unselect_delayed_ref_head(delayed_refs, locked_ref); 1961 btrfs_put_delayed_ref(ref); 1962 return ret; 1963 } 1964 1965 btrfs_put_delayed_ref(ref); 1966 cond_resched(); 1967 1968 spin_lock(&locked_ref->lock); 1969 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 1970 } 1971 1972 return 0; 1973 } 1974 1975 /* 1976 * Returns 0 on success or if called with an already aborted transaction. 1977 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1978 */ 1979 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1980 unsigned long nr) 1981 { 1982 struct btrfs_fs_info *fs_info = trans->fs_info; 1983 struct btrfs_delayed_ref_root *delayed_refs; 1984 struct btrfs_delayed_ref_head *locked_ref = NULL; 1985 ktime_t start = ktime_get(); 1986 int ret; 1987 unsigned long count = 0; 1988 unsigned long actual_count = 0; 1989 1990 delayed_refs = &trans->transaction->delayed_refs; 1991 do { 1992 if (!locked_ref) { 1993 locked_ref = btrfs_obtain_ref_head(trans); 1994 if (IS_ERR_OR_NULL(locked_ref)) { 1995 if (PTR_ERR(locked_ref) == -EAGAIN) { 1996 continue; 1997 } else { 1998 break; 1999 } 2000 } 2001 count++; 2002 } 2003 /* 2004 * We need to try and merge add/drops of the same ref since we 2005 * can run into issues with relocate dropping the implicit ref 2006 * and then it being added back again before the drop can 2007 * finish. If we merged anything we need to re-loop so we can 2008 * get a good ref. 2009 * Or we can get node references of the same type that weren't 2010 * merged when created due to bumps in the tree mod seq, and 2011 * we need to merge them to prevent adding an inline extent 2012 * backref before dropping it (triggering a BUG_ON at 2013 * insert_inline_extent_backref()). 2014 */ 2015 spin_lock(&locked_ref->lock); 2016 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); 2017 2018 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, 2019 &actual_count); 2020 if (ret < 0 && ret != -EAGAIN) { 2021 /* 2022 * Error, btrfs_run_delayed_refs_for_head already 2023 * unlocked everything so just bail out 2024 */ 2025 return ret; 2026 } else if (!ret) { 2027 /* 2028 * Success, perform the usual cleanup of a processed 2029 * head 2030 */ 2031 ret = cleanup_ref_head(trans, locked_ref); 2032 if (ret > 0 ) { 2033 /* We dropped our lock, we need to loop. */ 2034 ret = 0; 2035 continue; 2036 } else if (ret) { 2037 return ret; 2038 } 2039 } 2040 2041 /* 2042 * Either success case or btrfs_run_delayed_refs_for_head 2043 * returned -EAGAIN, meaning we need to select another head 2044 */ 2045 2046 locked_ref = NULL; 2047 cond_resched(); 2048 } while ((nr != -1 && count < nr) || locked_ref); 2049 2050 /* 2051 * We don't want to include ref heads since we can have empty ref heads 2052 * and those will drastically skew our runtime down since we just do 2053 * accounting, no actual extent tree updates. 2054 */ 2055 if (actual_count > 0) { 2056 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2057 u64 avg; 2058 2059 /* 2060 * We weigh the current average higher than our current runtime 2061 * to avoid large swings in the average. 2062 */ 2063 spin_lock(&delayed_refs->lock); 2064 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2065 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2066 spin_unlock(&delayed_refs->lock); 2067 } 2068 return 0; 2069 } 2070 2071 #ifdef SCRAMBLE_DELAYED_REFS 2072 /* 2073 * Normally delayed refs get processed in ascending bytenr order. This 2074 * correlates in most cases to the order added. To expose dependencies on this 2075 * order, we start to process the tree in the middle instead of the beginning 2076 */ 2077 static u64 find_middle(struct rb_root *root) 2078 { 2079 struct rb_node *n = root->rb_node; 2080 struct btrfs_delayed_ref_node *entry; 2081 int alt = 1; 2082 u64 middle; 2083 u64 first = 0, last = 0; 2084 2085 n = rb_first(root); 2086 if (n) { 2087 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2088 first = entry->bytenr; 2089 } 2090 n = rb_last(root); 2091 if (n) { 2092 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2093 last = entry->bytenr; 2094 } 2095 n = root->rb_node; 2096 2097 while (n) { 2098 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2099 WARN_ON(!entry->in_tree); 2100 2101 middle = entry->bytenr; 2102 2103 if (alt) 2104 n = n->rb_left; 2105 else 2106 n = n->rb_right; 2107 2108 alt = 1 - alt; 2109 } 2110 return middle; 2111 } 2112 #endif 2113 2114 /* 2115 * this starts processing the delayed reference count updates and 2116 * extent insertions we have queued up so far. count can be 2117 * 0, which means to process everything in the tree at the start 2118 * of the run (but not newly added entries), or it can be some target 2119 * number you'd like to process. 2120 * 2121 * Returns 0 on success or if called with an aborted transaction 2122 * Returns <0 on error and aborts the transaction 2123 */ 2124 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2125 unsigned long count) 2126 { 2127 struct btrfs_fs_info *fs_info = trans->fs_info; 2128 struct rb_node *node; 2129 struct btrfs_delayed_ref_root *delayed_refs; 2130 struct btrfs_delayed_ref_head *head; 2131 int ret; 2132 int run_all = count == (unsigned long)-1; 2133 2134 /* We'll clean this up in btrfs_cleanup_transaction */ 2135 if (TRANS_ABORTED(trans)) 2136 return 0; 2137 2138 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2139 return 0; 2140 2141 delayed_refs = &trans->transaction->delayed_refs; 2142 if (count == 0) 2143 count = delayed_refs->num_heads_ready; 2144 2145 again: 2146 #ifdef SCRAMBLE_DELAYED_REFS 2147 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2148 #endif 2149 ret = __btrfs_run_delayed_refs(trans, count); 2150 if (ret < 0) { 2151 btrfs_abort_transaction(trans, ret); 2152 return ret; 2153 } 2154 2155 if (run_all) { 2156 btrfs_create_pending_block_groups(trans); 2157 2158 spin_lock(&delayed_refs->lock); 2159 node = rb_first_cached(&delayed_refs->href_root); 2160 if (!node) { 2161 spin_unlock(&delayed_refs->lock); 2162 goto out; 2163 } 2164 head = rb_entry(node, struct btrfs_delayed_ref_head, 2165 href_node); 2166 refcount_inc(&head->refs); 2167 spin_unlock(&delayed_refs->lock); 2168 2169 /* Mutex was contended, block until it's released and retry. */ 2170 mutex_lock(&head->mutex); 2171 mutex_unlock(&head->mutex); 2172 2173 btrfs_put_delayed_ref_head(head); 2174 cond_resched(); 2175 goto again; 2176 } 2177 out: 2178 return 0; 2179 } 2180 2181 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2182 struct extent_buffer *eb, u64 flags, 2183 int level) 2184 { 2185 struct btrfs_delayed_extent_op *extent_op; 2186 int ret; 2187 2188 extent_op = btrfs_alloc_delayed_extent_op(); 2189 if (!extent_op) 2190 return -ENOMEM; 2191 2192 extent_op->flags_to_set = flags; 2193 extent_op->update_flags = true; 2194 extent_op->update_key = false; 2195 extent_op->level = level; 2196 2197 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2198 if (ret) 2199 btrfs_free_delayed_extent_op(extent_op); 2200 return ret; 2201 } 2202 2203 static noinline int check_delayed_ref(struct btrfs_root *root, 2204 struct btrfs_path *path, 2205 u64 objectid, u64 offset, u64 bytenr) 2206 { 2207 struct btrfs_delayed_ref_head *head; 2208 struct btrfs_delayed_ref_node *ref; 2209 struct btrfs_delayed_data_ref *data_ref; 2210 struct btrfs_delayed_ref_root *delayed_refs; 2211 struct btrfs_transaction *cur_trans; 2212 struct rb_node *node; 2213 int ret = 0; 2214 2215 spin_lock(&root->fs_info->trans_lock); 2216 cur_trans = root->fs_info->running_transaction; 2217 if (cur_trans) 2218 refcount_inc(&cur_trans->use_count); 2219 spin_unlock(&root->fs_info->trans_lock); 2220 if (!cur_trans) 2221 return 0; 2222 2223 delayed_refs = &cur_trans->delayed_refs; 2224 spin_lock(&delayed_refs->lock); 2225 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2226 if (!head) { 2227 spin_unlock(&delayed_refs->lock); 2228 btrfs_put_transaction(cur_trans); 2229 return 0; 2230 } 2231 2232 if (!mutex_trylock(&head->mutex)) { 2233 if (path->nowait) { 2234 spin_unlock(&delayed_refs->lock); 2235 btrfs_put_transaction(cur_trans); 2236 return -EAGAIN; 2237 } 2238 2239 refcount_inc(&head->refs); 2240 spin_unlock(&delayed_refs->lock); 2241 2242 btrfs_release_path(path); 2243 2244 /* 2245 * Mutex was contended, block until it's released and let 2246 * caller try again 2247 */ 2248 mutex_lock(&head->mutex); 2249 mutex_unlock(&head->mutex); 2250 btrfs_put_delayed_ref_head(head); 2251 btrfs_put_transaction(cur_trans); 2252 return -EAGAIN; 2253 } 2254 spin_unlock(&delayed_refs->lock); 2255 2256 spin_lock(&head->lock); 2257 /* 2258 * XXX: We should replace this with a proper search function in the 2259 * future. 2260 */ 2261 for (node = rb_first_cached(&head->ref_tree); node; 2262 node = rb_next(node)) { 2263 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2264 /* If it's a shared ref we know a cross reference exists */ 2265 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2266 ret = 1; 2267 break; 2268 } 2269 2270 data_ref = btrfs_delayed_node_to_data_ref(ref); 2271 2272 /* 2273 * If our ref doesn't match the one we're currently looking at 2274 * then we have a cross reference. 2275 */ 2276 if (data_ref->root != root->root_key.objectid || 2277 data_ref->objectid != objectid || 2278 data_ref->offset != offset) { 2279 ret = 1; 2280 break; 2281 } 2282 } 2283 spin_unlock(&head->lock); 2284 mutex_unlock(&head->mutex); 2285 btrfs_put_transaction(cur_trans); 2286 return ret; 2287 } 2288 2289 static noinline int check_committed_ref(struct btrfs_root *root, 2290 struct btrfs_path *path, 2291 u64 objectid, u64 offset, u64 bytenr, 2292 bool strict) 2293 { 2294 struct btrfs_fs_info *fs_info = root->fs_info; 2295 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2296 struct extent_buffer *leaf; 2297 struct btrfs_extent_data_ref *ref; 2298 struct btrfs_extent_inline_ref *iref; 2299 struct btrfs_extent_item *ei; 2300 struct btrfs_key key; 2301 u32 item_size; 2302 int type; 2303 int ret; 2304 2305 key.objectid = bytenr; 2306 key.offset = (u64)-1; 2307 key.type = BTRFS_EXTENT_ITEM_KEY; 2308 2309 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2310 if (ret < 0) 2311 goto out; 2312 BUG_ON(ret == 0); /* Corruption */ 2313 2314 ret = -ENOENT; 2315 if (path->slots[0] == 0) 2316 goto out; 2317 2318 path->slots[0]--; 2319 leaf = path->nodes[0]; 2320 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2321 2322 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2323 goto out; 2324 2325 ret = 1; 2326 item_size = btrfs_item_size(leaf, path->slots[0]); 2327 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2328 2329 /* If extent item has more than 1 inline ref then it's shared */ 2330 if (item_size != sizeof(*ei) + 2331 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2332 goto out; 2333 2334 /* 2335 * If extent created before last snapshot => it's shared unless the 2336 * snapshot has been deleted. Use the heuristic if strict is false. 2337 */ 2338 if (!strict && 2339 (btrfs_extent_generation(leaf, ei) <= 2340 btrfs_root_last_snapshot(&root->root_item))) 2341 goto out; 2342 2343 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2344 2345 /* If this extent has SHARED_DATA_REF then it's shared */ 2346 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2347 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2348 goto out; 2349 2350 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2351 if (btrfs_extent_refs(leaf, ei) != 2352 btrfs_extent_data_ref_count(leaf, ref) || 2353 btrfs_extent_data_ref_root(leaf, ref) != 2354 root->root_key.objectid || 2355 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2356 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2357 goto out; 2358 2359 ret = 0; 2360 out: 2361 return ret; 2362 } 2363 2364 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2365 u64 bytenr, bool strict, struct btrfs_path *path) 2366 { 2367 int ret; 2368 2369 do { 2370 ret = check_committed_ref(root, path, objectid, 2371 offset, bytenr, strict); 2372 if (ret && ret != -ENOENT) 2373 goto out; 2374 2375 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2376 } while (ret == -EAGAIN); 2377 2378 out: 2379 btrfs_release_path(path); 2380 if (btrfs_is_data_reloc_root(root)) 2381 WARN_ON(ret > 0); 2382 return ret; 2383 } 2384 2385 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2386 struct btrfs_root *root, 2387 struct extent_buffer *buf, 2388 int full_backref, int inc) 2389 { 2390 struct btrfs_fs_info *fs_info = root->fs_info; 2391 u64 bytenr; 2392 u64 num_bytes; 2393 u64 parent; 2394 u64 ref_root; 2395 u32 nritems; 2396 struct btrfs_key key; 2397 struct btrfs_file_extent_item *fi; 2398 struct btrfs_ref generic_ref = { 0 }; 2399 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2400 int i; 2401 int action; 2402 int level; 2403 int ret = 0; 2404 2405 if (btrfs_is_testing(fs_info)) 2406 return 0; 2407 2408 ref_root = btrfs_header_owner(buf); 2409 nritems = btrfs_header_nritems(buf); 2410 level = btrfs_header_level(buf); 2411 2412 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2413 return 0; 2414 2415 if (full_backref) 2416 parent = buf->start; 2417 else 2418 parent = 0; 2419 if (inc) 2420 action = BTRFS_ADD_DELAYED_REF; 2421 else 2422 action = BTRFS_DROP_DELAYED_REF; 2423 2424 for (i = 0; i < nritems; i++) { 2425 if (level == 0) { 2426 btrfs_item_key_to_cpu(buf, &key, i); 2427 if (key.type != BTRFS_EXTENT_DATA_KEY) 2428 continue; 2429 fi = btrfs_item_ptr(buf, i, 2430 struct btrfs_file_extent_item); 2431 if (btrfs_file_extent_type(buf, fi) == 2432 BTRFS_FILE_EXTENT_INLINE) 2433 continue; 2434 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2435 if (bytenr == 0) 2436 continue; 2437 2438 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2439 key.offset -= btrfs_file_extent_offset(buf, fi); 2440 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2441 num_bytes, parent); 2442 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2443 key.offset, root->root_key.objectid, 2444 for_reloc); 2445 if (inc) 2446 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2447 else 2448 ret = btrfs_free_extent(trans, &generic_ref); 2449 if (ret) 2450 goto fail; 2451 } else { 2452 bytenr = btrfs_node_blockptr(buf, i); 2453 num_bytes = fs_info->nodesize; 2454 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2455 num_bytes, parent); 2456 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2457 root->root_key.objectid, for_reloc); 2458 if (inc) 2459 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2460 else 2461 ret = btrfs_free_extent(trans, &generic_ref); 2462 if (ret) 2463 goto fail; 2464 } 2465 } 2466 return 0; 2467 fail: 2468 return ret; 2469 } 2470 2471 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2472 struct extent_buffer *buf, int full_backref) 2473 { 2474 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2475 } 2476 2477 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2478 struct extent_buffer *buf, int full_backref) 2479 { 2480 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2481 } 2482 2483 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2484 { 2485 struct btrfs_fs_info *fs_info = root->fs_info; 2486 u64 flags; 2487 u64 ret; 2488 2489 if (data) 2490 flags = BTRFS_BLOCK_GROUP_DATA; 2491 else if (root == fs_info->chunk_root) 2492 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2493 else 2494 flags = BTRFS_BLOCK_GROUP_METADATA; 2495 2496 ret = btrfs_get_alloc_profile(fs_info, flags); 2497 return ret; 2498 } 2499 2500 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2501 { 2502 struct rb_node *leftmost; 2503 u64 bytenr = 0; 2504 2505 read_lock(&fs_info->block_group_cache_lock); 2506 /* Get the block group with the lowest logical start address. */ 2507 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2508 if (leftmost) { 2509 struct btrfs_block_group *bg; 2510 2511 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2512 bytenr = bg->start; 2513 } 2514 read_unlock(&fs_info->block_group_cache_lock); 2515 2516 return bytenr; 2517 } 2518 2519 static int pin_down_extent(struct btrfs_trans_handle *trans, 2520 struct btrfs_block_group *cache, 2521 u64 bytenr, u64 num_bytes, int reserved) 2522 { 2523 struct btrfs_fs_info *fs_info = cache->fs_info; 2524 2525 spin_lock(&cache->space_info->lock); 2526 spin_lock(&cache->lock); 2527 cache->pinned += num_bytes; 2528 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2529 num_bytes); 2530 if (reserved) { 2531 cache->reserved -= num_bytes; 2532 cache->space_info->bytes_reserved -= num_bytes; 2533 } 2534 spin_unlock(&cache->lock); 2535 spin_unlock(&cache->space_info->lock); 2536 2537 set_extent_dirty(&trans->transaction->pinned_extents, bytenr, 2538 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 2539 return 0; 2540 } 2541 2542 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2543 u64 bytenr, u64 num_bytes, int reserved) 2544 { 2545 struct btrfs_block_group *cache; 2546 2547 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2548 BUG_ON(!cache); /* Logic error */ 2549 2550 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2551 2552 btrfs_put_block_group(cache); 2553 return 0; 2554 } 2555 2556 /* 2557 * this function must be called within transaction 2558 */ 2559 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2560 u64 bytenr, u64 num_bytes) 2561 { 2562 struct btrfs_block_group *cache; 2563 int ret; 2564 2565 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2566 if (!cache) 2567 return -EINVAL; 2568 2569 /* 2570 * Fully cache the free space first so that our pin removes the free space 2571 * from the cache. 2572 */ 2573 ret = btrfs_cache_block_group(cache, true); 2574 if (ret) 2575 goto out; 2576 2577 pin_down_extent(trans, cache, bytenr, num_bytes, 0); 2578 2579 /* remove us from the free space cache (if we're there at all) */ 2580 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 2581 out: 2582 btrfs_put_block_group(cache); 2583 return ret; 2584 } 2585 2586 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2587 u64 start, u64 num_bytes) 2588 { 2589 int ret; 2590 struct btrfs_block_group *block_group; 2591 2592 block_group = btrfs_lookup_block_group(fs_info, start); 2593 if (!block_group) 2594 return -EINVAL; 2595 2596 ret = btrfs_cache_block_group(block_group, true); 2597 if (ret) 2598 goto out; 2599 2600 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2601 out: 2602 btrfs_put_block_group(block_group); 2603 return ret; 2604 } 2605 2606 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2607 { 2608 struct btrfs_fs_info *fs_info = eb->fs_info; 2609 struct btrfs_file_extent_item *item; 2610 struct btrfs_key key; 2611 int found_type; 2612 int i; 2613 int ret = 0; 2614 2615 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2616 return 0; 2617 2618 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2619 btrfs_item_key_to_cpu(eb, &key, i); 2620 if (key.type != BTRFS_EXTENT_DATA_KEY) 2621 continue; 2622 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2623 found_type = btrfs_file_extent_type(eb, item); 2624 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2625 continue; 2626 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2627 continue; 2628 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2629 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2630 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2631 if (ret) 2632 break; 2633 } 2634 2635 return ret; 2636 } 2637 2638 static void 2639 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2640 { 2641 atomic_inc(&bg->reservations); 2642 } 2643 2644 /* 2645 * Returns the free cluster for the given space info and sets empty_cluster to 2646 * what it should be based on the mount options. 2647 */ 2648 static struct btrfs_free_cluster * 2649 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2650 struct btrfs_space_info *space_info, u64 *empty_cluster) 2651 { 2652 struct btrfs_free_cluster *ret = NULL; 2653 2654 *empty_cluster = 0; 2655 if (btrfs_mixed_space_info(space_info)) 2656 return ret; 2657 2658 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2659 ret = &fs_info->meta_alloc_cluster; 2660 if (btrfs_test_opt(fs_info, SSD)) 2661 *empty_cluster = SZ_2M; 2662 else 2663 *empty_cluster = SZ_64K; 2664 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2665 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2666 *empty_cluster = SZ_2M; 2667 ret = &fs_info->data_alloc_cluster; 2668 } 2669 2670 return ret; 2671 } 2672 2673 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2674 u64 start, u64 end, 2675 const bool return_free_space) 2676 { 2677 struct btrfs_block_group *cache = NULL; 2678 struct btrfs_space_info *space_info; 2679 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2680 struct btrfs_free_cluster *cluster = NULL; 2681 u64 len; 2682 u64 total_unpinned = 0; 2683 u64 empty_cluster = 0; 2684 bool readonly; 2685 2686 while (start <= end) { 2687 readonly = false; 2688 if (!cache || 2689 start >= cache->start + cache->length) { 2690 if (cache) 2691 btrfs_put_block_group(cache); 2692 total_unpinned = 0; 2693 cache = btrfs_lookup_block_group(fs_info, start); 2694 BUG_ON(!cache); /* Logic error */ 2695 2696 cluster = fetch_cluster_info(fs_info, 2697 cache->space_info, 2698 &empty_cluster); 2699 empty_cluster <<= 1; 2700 } 2701 2702 len = cache->start + cache->length - start; 2703 len = min(len, end + 1 - start); 2704 2705 if (return_free_space) 2706 btrfs_add_free_space(cache, start, len); 2707 2708 start += len; 2709 total_unpinned += len; 2710 space_info = cache->space_info; 2711 2712 /* 2713 * If this space cluster has been marked as fragmented and we've 2714 * unpinned enough in this block group to potentially allow a 2715 * cluster to be created inside of it go ahead and clear the 2716 * fragmented check. 2717 */ 2718 if (cluster && cluster->fragmented && 2719 total_unpinned > empty_cluster) { 2720 spin_lock(&cluster->lock); 2721 cluster->fragmented = 0; 2722 spin_unlock(&cluster->lock); 2723 } 2724 2725 spin_lock(&space_info->lock); 2726 spin_lock(&cache->lock); 2727 cache->pinned -= len; 2728 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2729 space_info->max_extent_size = 0; 2730 if (cache->ro) { 2731 space_info->bytes_readonly += len; 2732 readonly = true; 2733 } else if (btrfs_is_zoned(fs_info)) { 2734 /* Need reset before reusing in a zoned block group */ 2735 space_info->bytes_zone_unusable += len; 2736 readonly = true; 2737 } 2738 spin_unlock(&cache->lock); 2739 if (!readonly && return_free_space && 2740 global_rsv->space_info == space_info) { 2741 spin_lock(&global_rsv->lock); 2742 if (!global_rsv->full) { 2743 u64 to_add = min(len, global_rsv->size - 2744 global_rsv->reserved); 2745 2746 global_rsv->reserved += to_add; 2747 btrfs_space_info_update_bytes_may_use(fs_info, 2748 space_info, to_add); 2749 if (global_rsv->reserved >= global_rsv->size) 2750 global_rsv->full = 1; 2751 len -= to_add; 2752 } 2753 spin_unlock(&global_rsv->lock); 2754 } 2755 /* Add to any tickets we may have */ 2756 if (!readonly && return_free_space && len) 2757 btrfs_try_granting_tickets(fs_info, space_info); 2758 spin_unlock(&space_info->lock); 2759 } 2760 2761 if (cache) 2762 btrfs_put_block_group(cache); 2763 return 0; 2764 } 2765 2766 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2767 { 2768 struct btrfs_fs_info *fs_info = trans->fs_info; 2769 struct btrfs_block_group *block_group, *tmp; 2770 struct list_head *deleted_bgs; 2771 struct extent_io_tree *unpin; 2772 u64 start; 2773 u64 end; 2774 int ret; 2775 2776 unpin = &trans->transaction->pinned_extents; 2777 2778 while (!TRANS_ABORTED(trans)) { 2779 struct extent_state *cached_state = NULL; 2780 2781 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2782 ret = find_first_extent_bit(unpin, 0, &start, &end, 2783 EXTENT_DIRTY, &cached_state); 2784 if (ret) { 2785 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2786 break; 2787 } 2788 2789 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2790 ret = btrfs_discard_extent(fs_info, start, 2791 end + 1 - start, NULL); 2792 2793 clear_extent_dirty(unpin, start, end, &cached_state); 2794 unpin_extent_range(fs_info, start, end, true); 2795 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2796 free_extent_state(cached_state); 2797 cond_resched(); 2798 } 2799 2800 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2801 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2802 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2803 } 2804 2805 /* 2806 * Transaction is finished. We don't need the lock anymore. We 2807 * do need to clean up the block groups in case of a transaction 2808 * abort. 2809 */ 2810 deleted_bgs = &trans->transaction->deleted_bgs; 2811 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2812 u64 trimmed = 0; 2813 2814 ret = -EROFS; 2815 if (!TRANS_ABORTED(trans)) 2816 ret = btrfs_discard_extent(fs_info, 2817 block_group->start, 2818 block_group->length, 2819 &trimmed); 2820 2821 list_del_init(&block_group->bg_list); 2822 btrfs_unfreeze_block_group(block_group); 2823 btrfs_put_block_group(block_group); 2824 2825 if (ret) { 2826 const char *errstr = btrfs_decode_error(ret); 2827 btrfs_warn(fs_info, 2828 "discard failed while removing blockgroup: errno=%d %s", 2829 ret, errstr); 2830 } 2831 } 2832 2833 return 0; 2834 } 2835 2836 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2837 u64 bytenr, u64 num_bytes, bool is_data) 2838 { 2839 int ret; 2840 2841 if (is_data) { 2842 struct btrfs_root *csum_root; 2843 2844 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2845 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2846 if (ret) { 2847 btrfs_abort_transaction(trans, ret); 2848 return ret; 2849 } 2850 } 2851 2852 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 2853 if (ret) { 2854 btrfs_abort_transaction(trans, ret); 2855 return ret; 2856 } 2857 2858 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 2859 if (ret) 2860 btrfs_abort_transaction(trans, ret); 2861 2862 return ret; 2863 } 2864 2865 /* 2866 * Drop one or more refs of @node. 2867 * 2868 * 1. Locate the extent refs. 2869 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 2870 * Locate it, then reduce the refs number or remove the ref line completely. 2871 * 2872 * 2. Update the refs count in EXTENT/METADATA_ITEM 2873 * 2874 * Inline backref case: 2875 * 2876 * in extent tree we have: 2877 * 2878 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2879 * refs 2 gen 6 flags DATA 2880 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2881 * extent data backref root FS_TREE objectid 257 offset 0 count 1 2882 * 2883 * This function gets called with: 2884 * 2885 * node->bytenr = 13631488 2886 * node->num_bytes = 1048576 2887 * root_objectid = FS_TREE 2888 * owner_objectid = 257 2889 * owner_offset = 0 2890 * refs_to_drop = 1 2891 * 2892 * Then we should get some like: 2893 * 2894 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 2895 * refs 1 gen 6 flags DATA 2896 * extent data backref root FS_TREE objectid 258 offset 0 count 1 2897 * 2898 * Keyed backref case: 2899 * 2900 * in extent tree we have: 2901 * 2902 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2903 * refs 754 gen 6 flags DATA 2904 * [...] 2905 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 2906 * extent data backref root FS_TREE objectid 866 offset 0 count 1 2907 * 2908 * This function get called with: 2909 * 2910 * node->bytenr = 13631488 2911 * node->num_bytes = 1048576 2912 * root_objectid = FS_TREE 2913 * owner_objectid = 866 2914 * owner_offset = 0 2915 * refs_to_drop = 1 2916 * 2917 * Then we should get some like: 2918 * 2919 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 2920 * refs 753 gen 6 flags DATA 2921 * 2922 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 2923 */ 2924 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 2925 struct btrfs_delayed_ref_node *node, u64 parent, 2926 u64 root_objectid, u64 owner_objectid, 2927 u64 owner_offset, int refs_to_drop, 2928 struct btrfs_delayed_extent_op *extent_op) 2929 { 2930 struct btrfs_fs_info *info = trans->fs_info; 2931 struct btrfs_key key; 2932 struct btrfs_path *path; 2933 struct btrfs_root *extent_root; 2934 struct extent_buffer *leaf; 2935 struct btrfs_extent_item *ei; 2936 struct btrfs_extent_inline_ref *iref; 2937 int ret; 2938 int is_data; 2939 int extent_slot = 0; 2940 int found_extent = 0; 2941 int num_to_del = 1; 2942 u32 item_size; 2943 u64 refs; 2944 u64 bytenr = node->bytenr; 2945 u64 num_bytes = node->num_bytes; 2946 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 2947 2948 extent_root = btrfs_extent_root(info, bytenr); 2949 ASSERT(extent_root); 2950 2951 path = btrfs_alloc_path(); 2952 if (!path) 2953 return -ENOMEM; 2954 2955 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 2956 2957 if (!is_data && refs_to_drop != 1) { 2958 btrfs_crit(info, 2959 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 2960 node->bytenr, refs_to_drop); 2961 ret = -EINVAL; 2962 btrfs_abort_transaction(trans, ret); 2963 goto out; 2964 } 2965 2966 if (is_data) 2967 skinny_metadata = false; 2968 2969 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 2970 parent, root_objectid, owner_objectid, 2971 owner_offset); 2972 if (ret == 0) { 2973 /* 2974 * Either the inline backref or the SHARED_DATA_REF/ 2975 * SHARED_BLOCK_REF is found 2976 * 2977 * Here is a quick path to locate EXTENT/METADATA_ITEM. 2978 * It's possible the EXTENT/METADATA_ITEM is near current slot. 2979 */ 2980 extent_slot = path->slots[0]; 2981 while (extent_slot >= 0) { 2982 btrfs_item_key_to_cpu(path->nodes[0], &key, 2983 extent_slot); 2984 if (key.objectid != bytenr) 2985 break; 2986 if (key.type == BTRFS_EXTENT_ITEM_KEY && 2987 key.offset == num_bytes) { 2988 found_extent = 1; 2989 break; 2990 } 2991 if (key.type == BTRFS_METADATA_ITEM_KEY && 2992 key.offset == owner_objectid) { 2993 found_extent = 1; 2994 break; 2995 } 2996 2997 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 2998 if (path->slots[0] - extent_slot > 5) 2999 break; 3000 extent_slot--; 3001 } 3002 3003 if (!found_extent) { 3004 if (iref) { 3005 btrfs_crit(info, 3006 "invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref"); 3007 btrfs_abort_transaction(trans, -EUCLEAN); 3008 goto err_dump; 3009 } 3010 /* Must be SHARED_* item, remove the backref first */ 3011 ret = remove_extent_backref(trans, extent_root, path, 3012 NULL, refs_to_drop, is_data); 3013 if (ret) { 3014 btrfs_abort_transaction(trans, ret); 3015 goto out; 3016 } 3017 btrfs_release_path(path); 3018 3019 /* Slow path to locate EXTENT/METADATA_ITEM */ 3020 key.objectid = bytenr; 3021 key.type = BTRFS_EXTENT_ITEM_KEY; 3022 key.offset = num_bytes; 3023 3024 if (!is_data && skinny_metadata) { 3025 key.type = BTRFS_METADATA_ITEM_KEY; 3026 key.offset = owner_objectid; 3027 } 3028 3029 ret = btrfs_search_slot(trans, extent_root, 3030 &key, path, -1, 1); 3031 if (ret > 0 && skinny_metadata && path->slots[0]) { 3032 /* 3033 * Couldn't find our skinny metadata item, 3034 * see if we have ye olde extent item. 3035 */ 3036 path->slots[0]--; 3037 btrfs_item_key_to_cpu(path->nodes[0], &key, 3038 path->slots[0]); 3039 if (key.objectid == bytenr && 3040 key.type == BTRFS_EXTENT_ITEM_KEY && 3041 key.offset == num_bytes) 3042 ret = 0; 3043 } 3044 3045 if (ret > 0 && skinny_metadata) { 3046 skinny_metadata = false; 3047 key.objectid = bytenr; 3048 key.type = BTRFS_EXTENT_ITEM_KEY; 3049 key.offset = num_bytes; 3050 btrfs_release_path(path); 3051 ret = btrfs_search_slot(trans, extent_root, 3052 &key, path, -1, 1); 3053 } 3054 3055 if (ret) { 3056 btrfs_err(info, 3057 "umm, got %d back from search, was looking for %llu", 3058 ret, bytenr); 3059 if (ret > 0) 3060 btrfs_print_leaf(path->nodes[0]); 3061 } 3062 if (ret < 0) { 3063 btrfs_abort_transaction(trans, ret); 3064 goto out; 3065 } 3066 extent_slot = path->slots[0]; 3067 } 3068 } else if (WARN_ON(ret == -ENOENT)) { 3069 btrfs_print_leaf(path->nodes[0]); 3070 btrfs_err(info, 3071 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 3072 bytenr, parent, root_objectid, owner_objectid, 3073 owner_offset); 3074 btrfs_abort_transaction(trans, ret); 3075 goto out; 3076 } else { 3077 btrfs_abort_transaction(trans, ret); 3078 goto out; 3079 } 3080 3081 leaf = path->nodes[0]; 3082 item_size = btrfs_item_size(leaf, extent_slot); 3083 if (unlikely(item_size < sizeof(*ei))) { 3084 ret = -EINVAL; 3085 btrfs_print_v0_err(info); 3086 btrfs_abort_transaction(trans, ret); 3087 goto out; 3088 } 3089 ei = btrfs_item_ptr(leaf, extent_slot, 3090 struct btrfs_extent_item); 3091 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3092 key.type == BTRFS_EXTENT_ITEM_KEY) { 3093 struct btrfs_tree_block_info *bi; 3094 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3095 btrfs_crit(info, 3096 "invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu", 3097 key.objectid, key.type, key.offset, 3098 owner_objectid, item_size, 3099 sizeof(*ei) + sizeof(*bi)); 3100 btrfs_abort_transaction(trans, -EUCLEAN); 3101 goto err_dump; 3102 } 3103 bi = (struct btrfs_tree_block_info *)(ei + 1); 3104 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3105 } 3106 3107 refs = btrfs_extent_refs(leaf, ei); 3108 if (refs < refs_to_drop) { 3109 btrfs_crit(info, 3110 "trying to drop %d refs but we only have %llu for bytenr %llu", 3111 refs_to_drop, refs, bytenr); 3112 btrfs_abort_transaction(trans, -EUCLEAN); 3113 goto err_dump; 3114 } 3115 refs -= refs_to_drop; 3116 3117 if (refs > 0) { 3118 if (extent_op) 3119 __run_delayed_extent_op(extent_op, leaf, ei); 3120 /* 3121 * In the case of inline back ref, reference count will 3122 * be updated by remove_extent_backref 3123 */ 3124 if (iref) { 3125 if (!found_extent) { 3126 btrfs_crit(info, 3127 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found"); 3128 btrfs_abort_transaction(trans, -EUCLEAN); 3129 goto err_dump; 3130 } 3131 } else { 3132 btrfs_set_extent_refs(leaf, ei, refs); 3133 btrfs_mark_buffer_dirty(leaf); 3134 } 3135 if (found_extent) { 3136 ret = remove_extent_backref(trans, extent_root, path, 3137 iref, refs_to_drop, is_data); 3138 if (ret) { 3139 btrfs_abort_transaction(trans, ret); 3140 goto out; 3141 } 3142 } 3143 } else { 3144 /* In this branch refs == 1 */ 3145 if (found_extent) { 3146 if (is_data && refs_to_drop != 3147 extent_data_ref_count(path, iref)) { 3148 btrfs_crit(info, 3149 "invalid refs_to_drop, current refs %u refs_to_drop %u", 3150 extent_data_ref_count(path, iref), 3151 refs_to_drop); 3152 btrfs_abort_transaction(trans, -EUCLEAN); 3153 goto err_dump; 3154 } 3155 if (iref) { 3156 if (path->slots[0] != extent_slot) { 3157 btrfs_crit(info, 3158 "invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref", 3159 key.objectid, key.type, 3160 key.offset); 3161 btrfs_abort_transaction(trans, -EUCLEAN); 3162 goto err_dump; 3163 } 3164 } else { 3165 /* 3166 * No inline ref, we must be at SHARED_* item, 3167 * And it's single ref, it must be: 3168 * | extent_slot ||extent_slot + 1| 3169 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3170 */ 3171 if (path->slots[0] != extent_slot + 1) { 3172 btrfs_crit(info, 3173 "invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM"); 3174 btrfs_abort_transaction(trans, -EUCLEAN); 3175 goto err_dump; 3176 } 3177 path->slots[0] = extent_slot; 3178 num_to_del = 2; 3179 } 3180 } 3181 3182 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3183 num_to_del); 3184 if (ret) { 3185 btrfs_abort_transaction(trans, ret); 3186 goto out; 3187 } 3188 btrfs_release_path(path); 3189 3190 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data); 3191 } 3192 btrfs_release_path(path); 3193 3194 out: 3195 btrfs_free_path(path); 3196 return ret; 3197 err_dump: 3198 /* 3199 * Leaf dump can take up a lot of log buffer, so we only do full leaf 3200 * dump for debug build. 3201 */ 3202 if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) { 3203 btrfs_crit(info, "path->slots[0]=%d extent_slot=%d", 3204 path->slots[0], extent_slot); 3205 btrfs_print_leaf(path->nodes[0]); 3206 } 3207 3208 btrfs_free_path(path); 3209 return -EUCLEAN; 3210 } 3211 3212 /* 3213 * when we free an block, it is possible (and likely) that we free the last 3214 * delayed ref for that extent as well. This searches the delayed ref tree for 3215 * a given extent, and if there are no other delayed refs to be processed, it 3216 * removes it from the tree. 3217 */ 3218 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3219 u64 bytenr) 3220 { 3221 struct btrfs_delayed_ref_head *head; 3222 struct btrfs_delayed_ref_root *delayed_refs; 3223 int ret = 0; 3224 3225 delayed_refs = &trans->transaction->delayed_refs; 3226 spin_lock(&delayed_refs->lock); 3227 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3228 if (!head) 3229 goto out_delayed_unlock; 3230 3231 spin_lock(&head->lock); 3232 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3233 goto out; 3234 3235 if (cleanup_extent_op(head) != NULL) 3236 goto out; 3237 3238 /* 3239 * waiting for the lock here would deadlock. If someone else has it 3240 * locked they are already in the process of dropping it anyway 3241 */ 3242 if (!mutex_trylock(&head->mutex)) 3243 goto out; 3244 3245 btrfs_delete_ref_head(delayed_refs, head); 3246 head->processing = 0; 3247 3248 spin_unlock(&head->lock); 3249 spin_unlock(&delayed_refs->lock); 3250 3251 BUG_ON(head->extent_op); 3252 if (head->must_insert_reserved) 3253 ret = 1; 3254 3255 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3256 mutex_unlock(&head->mutex); 3257 btrfs_put_delayed_ref_head(head); 3258 return ret; 3259 out: 3260 spin_unlock(&head->lock); 3261 3262 out_delayed_unlock: 3263 spin_unlock(&delayed_refs->lock); 3264 return 0; 3265 } 3266 3267 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3268 u64 root_id, 3269 struct extent_buffer *buf, 3270 u64 parent, int last_ref) 3271 { 3272 struct btrfs_fs_info *fs_info = trans->fs_info; 3273 struct btrfs_ref generic_ref = { 0 }; 3274 int ret; 3275 3276 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3277 buf->start, buf->len, parent); 3278 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3279 root_id, 0, false); 3280 3281 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3282 btrfs_ref_tree_mod(fs_info, &generic_ref); 3283 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3284 BUG_ON(ret); /* -ENOMEM */ 3285 } 3286 3287 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 3288 struct btrfs_block_group *cache; 3289 bool must_pin = false; 3290 3291 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3292 ret = check_ref_cleanup(trans, buf->start); 3293 if (!ret) { 3294 btrfs_redirty_list_add(trans->transaction, buf); 3295 goto out; 3296 } 3297 } 3298 3299 cache = btrfs_lookup_block_group(fs_info, buf->start); 3300 3301 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3302 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3303 btrfs_put_block_group(cache); 3304 goto out; 3305 } 3306 3307 /* 3308 * If there are tree mod log users we may have recorded mod log 3309 * operations for this node. If we re-allocate this node we 3310 * could replay operations on this node that happened when it 3311 * existed in a completely different root. For example if it 3312 * was part of root A, then was reallocated to root B, and we 3313 * are doing a btrfs_old_search_slot(root b), we could replay 3314 * operations that happened when the block was part of root A, 3315 * giving us an inconsistent view of the btree. 3316 * 3317 * We are safe from races here because at this point no other 3318 * node or root points to this extent buffer, so if after this 3319 * check a new tree mod log user joins we will not have an 3320 * existing log of operations on this node that we have to 3321 * contend with. 3322 */ 3323 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) 3324 must_pin = true; 3325 3326 if (must_pin || btrfs_is_zoned(fs_info)) { 3327 btrfs_redirty_list_add(trans->transaction, buf); 3328 pin_down_extent(trans, cache, buf->start, buf->len, 1); 3329 btrfs_put_block_group(cache); 3330 goto out; 3331 } 3332 3333 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3334 3335 btrfs_add_free_space(cache, buf->start, buf->len); 3336 btrfs_free_reserved_bytes(cache, buf->len, 0); 3337 btrfs_put_block_group(cache); 3338 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3339 } 3340 out: 3341 if (last_ref) { 3342 /* 3343 * Deleting the buffer, clear the corrupt flag since it doesn't 3344 * matter anymore. 3345 */ 3346 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3347 } 3348 } 3349 3350 /* Can return -ENOMEM */ 3351 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3352 { 3353 struct btrfs_fs_info *fs_info = trans->fs_info; 3354 int ret; 3355 3356 if (btrfs_is_testing(fs_info)) 3357 return 0; 3358 3359 /* 3360 * tree log blocks never actually go into the extent allocation 3361 * tree, just update pinning info and exit early. 3362 */ 3363 if ((ref->type == BTRFS_REF_METADATA && 3364 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3365 (ref->type == BTRFS_REF_DATA && 3366 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) { 3367 /* unlocks the pinned mutex */ 3368 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3369 ret = 0; 3370 } else if (ref->type == BTRFS_REF_METADATA) { 3371 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3372 } else { 3373 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3374 } 3375 3376 if (!((ref->type == BTRFS_REF_METADATA && 3377 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) || 3378 (ref->type == BTRFS_REF_DATA && 3379 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID))) 3380 btrfs_ref_tree_mod(fs_info, ref); 3381 3382 return ret; 3383 } 3384 3385 enum btrfs_loop_type { 3386 LOOP_CACHING_NOWAIT, 3387 LOOP_CACHING_WAIT, 3388 LOOP_ALLOC_CHUNK, 3389 LOOP_NO_EMPTY_SIZE, 3390 }; 3391 3392 static inline void 3393 btrfs_lock_block_group(struct btrfs_block_group *cache, 3394 int delalloc) 3395 { 3396 if (delalloc) 3397 down_read(&cache->data_rwsem); 3398 } 3399 3400 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3401 int delalloc) 3402 { 3403 btrfs_get_block_group(cache); 3404 if (delalloc) 3405 down_read(&cache->data_rwsem); 3406 } 3407 3408 static struct btrfs_block_group *btrfs_lock_cluster( 3409 struct btrfs_block_group *block_group, 3410 struct btrfs_free_cluster *cluster, 3411 int delalloc) 3412 __acquires(&cluster->refill_lock) 3413 { 3414 struct btrfs_block_group *used_bg = NULL; 3415 3416 spin_lock(&cluster->refill_lock); 3417 while (1) { 3418 used_bg = cluster->block_group; 3419 if (!used_bg) 3420 return NULL; 3421 3422 if (used_bg == block_group) 3423 return used_bg; 3424 3425 btrfs_get_block_group(used_bg); 3426 3427 if (!delalloc) 3428 return used_bg; 3429 3430 if (down_read_trylock(&used_bg->data_rwsem)) 3431 return used_bg; 3432 3433 spin_unlock(&cluster->refill_lock); 3434 3435 /* We should only have one-level nested. */ 3436 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3437 3438 spin_lock(&cluster->refill_lock); 3439 if (used_bg == cluster->block_group) 3440 return used_bg; 3441 3442 up_read(&used_bg->data_rwsem); 3443 btrfs_put_block_group(used_bg); 3444 } 3445 } 3446 3447 static inline void 3448 btrfs_release_block_group(struct btrfs_block_group *cache, 3449 int delalloc) 3450 { 3451 if (delalloc) 3452 up_read(&cache->data_rwsem); 3453 btrfs_put_block_group(cache); 3454 } 3455 3456 enum btrfs_extent_allocation_policy { 3457 BTRFS_EXTENT_ALLOC_CLUSTERED, 3458 BTRFS_EXTENT_ALLOC_ZONED, 3459 }; 3460 3461 /* 3462 * Structure used internally for find_free_extent() function. Wraps needed 3463 * parameters. 3464 */ 3465 struct find_free_extent_ctl { 3466 /* Basic allocation info */ 3467 u64 ram_bytes; 3468 u64 num_bytes; 3469 u64 min_alloc_size; 3470 u64 empty_size; 3471 u64 flags; 3472 int delalloc; 3473 3474 /* Where to start the search inside the bg */ 3475 u64 search_start; 3476 3477 /* For clustered allocation */ 3478 u64 empty_cluster; 3479 struct btrfs_free_cluster *last_ptr; 3480 bool use_cluster; 3481 3482 bool have_caching_bg; 3483 bool orig_have_caching_bg; 3484 3485 /* Allocation is called for tree-log */ 3486 bool for_treelog; 3487 3488 /* Allocation is called for data relocation */ 3489 bool for_data_reloc; 3490 3491 /* RAID index, converted from flags */ 3492 int index; 3493 3494 /* 3495 * Current loop number, check find_free_extent_update_loop() for details 3496 */ 3497 int loop; 3498 3499 /* 3500 * Whether we're refilling a cluster, if true we need to re-search 3501 * current block group but don't try to refill the cluster again. 3502 */ 3503 bool retry_clustered; 3504 3505 /* 3506 * Whether we're updating free space cache, if true we need to re-search 3507 * current block group but don't try updating free space cache again. 3508 */ 3509 bool retry_unclustered; 3510 3511 /* If current block group is cached */ 3512 int cached; 3513 3514 /* Max contiguous hole found */ 3515 u64 max_extent_size; 3516 3517 /* Total free space from free space cache, not always contiguous */ 3518 u64 total_free_space; 3519 3520 /* Found result */ 3521 u64 found_offset; 3522 3523 /* Hint where to start looking for an empty space */ 3524 u64 hint_byte; 3525 3526 /* Allocation policy */ 3527 enum btrfs_extent_allocation_policy policy; 3528 }; 3529 3530 3531 /* 3532 * Helper function for find_free_extent(). 3533 * 3534 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3535 * Return -EAGAIN to inform caller that we need to re-search this block group 3536 * Return >0 to inform caller that we find nothing 3537 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3538 */ 3539 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3540 struct find_free_extent_ctl *ffe_ctl, 3541 struct btrfs_block_group **cluster_bg_ret) 3542 { 3543 struct btrfs_block_group *cluster_bg; 3544 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3545 u64 aligned_cluster; 3546 u64 offset; 3547 int ret; 3548 3549 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3550 if (!cluster_bg) 3551 goto refill_cluster; 3552 if (cluster_bg != bg && (cluster_bg->ro || 3553 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3554 goto release_cluster; 3555 3556 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3557 ffe_ctl->num_bytes, cluster_bg->start, 3558 &ffe_ctl->max_extent_size); 3559 if (offset) { 3560 /* We have a block, we're done */ 3561 spin_unlock(&last_ptr->refill_lock); 3562 trace_btrfs_reserve_extent_cluster(cluster_bg, 3563 ffe_ctl->search_start, ffe_ctl->num_bytes); 3564 *cluster_bg_ret = cluster_bg; 3565 ffe_ctl->found_offset = offset; 3566 return 0; 3567 } 3568 WARN_ON(last_ptr->block_group != cluster_bg); 3569 3570 release_cluster: 3571 /* 3572 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3573 * lets just skip it and let the allocator find whatever block it can 3574 * find. If we reach this point, we will have tried the cluster 3575 * allocator plenty of times and not have found anything, so we are 3576 * likely way too fragmented for the clustering stuff to find anything. 3577 * 3578 * However, if the cluster is taken from the current block group, 3579 * release the cluster first, so that we stand a better chance of 3580 * succeeding in the unclustered allocation. 3581 */ 3582 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3583 spin_unlock(&last_ptr->refill_lock); 3584 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3585 return -ENOENT; 3586 } 3587 3588 /* This cluster didn't work out, free it and start over */ 3589 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3590 3591 if (cluster_bg != bg) 3592 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3593 3594 refill_cluster: 3595 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3596 spin_unlock(&last_ptr->refill_lock); 3597 return -ENOENT; 3598 } 3599 3600 aligned_cluster = max_t(u64, 3601 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3602 bg->full_stripe_len); 3603 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3604 ffe_ctl->num_bytes, aligned_cluster); 3605 if (ret == 0) { 3606 /* Now pull our allocation out of this cluster */ 3607 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3608 ffe_ctl->num_bytes, ffe_ctl->search_start, 3609 &ffe_ctl->max_extent_size); 3610 if (offset) { 3611 /* We found one, proceed */ 3612 spin_unlock(&last_ptr->refill_lock); 3613 trace_btrfs_reserve_extent_cluster(bg, 3614 ffe_ctl->search_start, 3615 ffe_ctl->num_bytes); 3616 ffe_ctl->found_offset = offset; 3617 return 0; 3618 } 3619 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 3620 !ffe_ctl->retry_clustered) { 3621 spin_unlock(&last_ptr->refill_lock); 3622 3623 ffe_ctl->retry_clustered = true; 3624 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3625 ffe_ctl->empty_cluster + ffe_ctl->empty_size); 3626 return -EAGAIN; 3627 } 3628 /* 3629 * At this point we either didn't find a cluster or we weren't able to 3630 * allocate a block from our cluster. Free the cluster we've been 3631 * trying to use, and go to the next block group. 3632 */ 3633 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3634 spin_unlock(&last_ptr->refill_lock); 3635 return 1; 3636 } 3637 3638 /* 3639 * Return >0 to inform caller that we find nothing 3640 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3641 * Return -EAGAIN to inform caller that we need to re-search this block group 3642 */ 3643 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3644 struct find_free_extent_ctl *ffe_ctl) 3645 { 3646 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3647 u64 offset; 3648 3649 /* 3650 * We are doing an unclustered allocation, set the fragmented flag so 3651 * we don't bother trying to setup a cluster again until we get more 3652 * space. 3653 */ 3654 if (unlikely(last_ptr)) { 3655 spin_lock(&last_ptr->lock); 3656 last_ptr->fragmented = 1; 3657 spin_unlock(&last_ptr->lock); 3658 } 3659 if (ffe_ctl->cached) { 3660 struct btrfs_free_space_ctl *free_space_ctl; 3661 3662 free_space_ctl = bg->free_space_ctl; 3663 spin_lock(&free_space_ctl->tree_lock); 3664 if (free_space_ctl->free_space < 3665 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3666 ffe_ctl->empty_size) { 3667 ffe_ctl->total_free_space = max_t(u64, 3668 ffe_ctl->total_free_space, 3669 free_space_ctl->free_space); 3670 spin_unlock(&free_space_ctl->tree_lock); 3671 return 1; 3672 } 3673 spin_unlock(&free_space_ctl->tree_lock); 3674 } 3675 3676 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3677 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3678 &ffe_ctl->max_extent_size); 3679 3680 /* 3681 * If we didn't find a chunk, and we haven't failed on this block group 3682 * before, and this block group is in the middle of caching and we are 3683 * ok with waiting, then go ahead and wait for progress to be made, and 3684 * set @retry_unclustered to true. 3685 * 3686 * If @retry_unclustered is true then we've already waited on this 3687 * block group once and should move on to the next block group. 3688 */ 3689 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached && 3690 ffe_ctl->loop > LOOP_CACHING_NOWAIT) { 3691 btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes + 3692 ffe_ctl->empty_size); 3693 ffe_ctl->retry_unclustered = true; 3694 return -EAGAIN; 3695 } else if (!offset) { 3696 return 1; 3697 } 3698 ffe_ctl->found_offset = offset; 3699 return 0; 3700 } 3701 3702 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3703 struct find_free_extent_ctl *ffe_ctl, 3704 struct btrfs_block_group **bg_ret) 3705 { 3706 int ret; 3707 3708 /* We want to try and use the cluster allocator, so lets look there */ 3709 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3710 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3711 if (ret >= 0 || ret == -EAGAIN) 3712 return ret; 3713 /* ret == -ENOENT case falls through */ 3714 } 3715 3716 return find_free_extent_unclustered(block_group, ffe_ctl); 3717 } 3718 3719 /* 3720 * Tree-log block group locking 3721 * ============================ 3722 * 3723 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3724 * indicates the starting address of a block group, which is reserved only 3725 * for tree-log metadata. 3726 * 3727 * Lock nesting 3728 * ============ 3729 * 3730 * space_info::lock 3731 * block_group::lock 3732 * fs_info::treelog_bg_lock 3733 */ 3734 3735 /* 3736 * Simple allocator for sequential-only block group. It only allows sequential 3737 * allocation. No need to play with trees. This function also reserves the 3738 * bytes as in btrfs_add_reserved_bytes. 3739 */ 3740 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3741 struct find_free_extent_ctl *ffe_ctl, 3742 struct btrfs_block_group **bg_ret) 3743 { 3744 struct btrfs_fs_info *fs_info = block_group->fs_info; 3745 struct btrfs_space_info *space_info = block_group->space_info; 3746 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3747 u64 start = block_group->start; 3748 u64 num_bytes = ffe_ctl->num_bytes; 3749 u64 avail; 3750 u64 bytenr = block_group->start; 3751 u64 log_bytenr; 3752 u64 data_reloc_bytenr; 3753 int ret = 0; 3754 bool skip = false; 3755 3756 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3757 3758 /* 3759 * Do not allow non-tree-log blocks in the dedicated tree-log block 3760 * group, and vice versa. 3761 */ 3762 spin_lock(&fs_info->treelog_bg_lock); 3763 log_bytenr = fs_info->treelog_bg; 3764 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3765 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3766 skip = true; 3767 spin_unlock(&fs_info->treelog_bg_lock); 3768 if (skip) 3769 return 1; 3770 3771 /* 3772 * Do not allow non-relocation blocks in the dedicated relocation block 3773 * group, and vice versa. 3774 */ 3775 spin_lock(&fs_info->relocation_bg_lock); 3776 data_reloc_bytenr = fs_info->data_reloc_bg; 3777 if (data_reloc_bytenr && 3778 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3779 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3780 skip = true; 3781 spin_unlock(&fs_info->relocation_bg_lock); 3782 if (skip) 3783 return 1; 3784 3785 /* Check RO and no space case before trying to activate it */ 3786 spin_lock(&block_group->lock); 3787 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3788 ret = 1; 3789 /* 3790 * May need to clear fs_info->{treelog,data_reloc}_bg. 3791 * Return the error after taking the locks. 3792 */ 3793 } 3794 spin_unlock(&block_group->lock); 3795 3796 if (!ret && !btrfs_zone_activate(block_group)) { 3797 ret = 1; 3798 /* 3799 * May need to clear fs_info->{treelog,data_reloc}_bg. 3800 * Return the error after taking the locks. 3801 */ 3802 } 3803 3804 spin_lock(&space_info->lock); 3805 spin_lock(&block_group->lock); 3806 spin_lock(&fs_info->treelog_bg_lock); 3807 spin_lock(&fs_info->relocation_bg_lock); 3808 3809 if (ret) 3810 goto out; 3811 3812 ASSERT(!ffe_ctl->for_treelog || 3813 block_group->start == fs_info->treelog_bg || 3814 fs_info->treelog_bg == 0); 3815 ASSERT(!ffe_ctl->for_data_reloc || 3816 block_group->start == fs_info->data_reloc_bg || 3817 fs_info->data_reloc_bg == 0); 3818 3819 if (block_group->ro || 3820 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) { 3821 ret = 1; 3822 goto out; 3823 } 3824 3825 /* 3826 * Do not allow currently using block group to be tree-log dedicated 3827 * block group. 3828 */ 3829 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3830 (block_group->used || block_group->reserved)) { 3831 ret = 1; 3832 goto out; 3833 } 3834 3835 /* 3836 * Do not allow currently used block group to be the data relocation 3837 * dedicated block group. 3838 */ 3839 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3840 (block_group->used || block_group->reserved)) { 3841 ret = 1; 3842 goto out; 3843 } 3844 3845 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3846 avail = block_group->zone_capacity - block_group->alloc_offset; 3847 if (avail < num_bytes) { 3848 if (ffe_ctl->max_extent_size < avail) { 3849 /* 3850 * With sequential allocator, free space is always 3851 * contiguous 3852 */ 3853 ffe_ctl->max_extent_size = avail; 3854 ffe_ctl->total_free_space = avail; 3855 } 3856 ret = 1; 3857 goto out; 3858 } 3859 3860 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3861 fs_info->treelog_bg = block_group->start; 3862 3863 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg) 3864 fs_info->data_reloc_bg = block_group->start; 3865 3866 ffe_ctl->found_offset = start + block_group->alloc_offset; 3867 block_group->alloc_offset += num_bytes; 3868 spin_lock(&ctl->tree_lock); 3869 ctl->free_space -= num_bytes; 3870 spin_unlock(&ctl->tree_lock); 3871 3872 /* 3873 * We do not check if found_offset is aligned to stripesize. The 3874 * address is anyway rewritten when using zone append writing. 3875 */ 3876 3877 ffe_ctl->search_start = ffe_ctl->found_offset; 3878 3879 out: 3880 if (ret && ffe_ctl->for_treelog) 3881 fs_info->treelog_bg = 0; 3882 if (ret && ffe_ctl->for_data_reloc && 3883 fs_info->data_reloc_bg == block_group->start) { 3884 /* 3885 * Do not allow further allocations from this block group. 3886 * Compared to increasing the ->ro, setting the 3887 * ->zoned_data_reloc_ongoing flag still allows nocow 3888 * writers to come in. See btrfs_inc_nocow_writers(). 3889 * 3890 * We need to disable an allocation to avoid an allocation of 3891 * regular (non-relocation data) extent. With mix of relocation 3892 * extents and regular extents, we can dispatch WRITE commands 3893 * (for relocation extents) and ZONE APPEND commands (for 3894 * regular extents) at the same time to the same zone, which 3895 * easily break the write pointer. 3896 */ 3897 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3898 fs_info->data_reloc_bg = 0; 3899 } 3900 spin_unlock(&fs_info->relocation_bg_lock); 3901 spin_unlock(&fs_info->treelog_bg_lock); 3902 spin_unlock(&block_group->lock); 3903 spin_unlock(&space_info->lock); 3904 return ret; 3905 } 3906 3907 static int do_allocation(struct btrfs_block_group *block_group, 3908 struct find_free_extent_ctl *ffe_ctl, 3909 struct btrfs_block_group **bg_ret) 3910 { 3911 switch (ffe_ctl->policy) { 3912 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3913 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 3914 case BTRFS_EXTENT_ALLOC_ZONED: 3915 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 3916 default: 3917 BUG(); 3918 } 3919 } 3920 3921 static void release_block_group(struct btrfs_block_group *block_group, 3922 struct find_free_extent_ctl *ffe_ctl, 3923 int delalloc) 3924 { 3925 switch (ffe_ctl->policy) { 3926 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3927 ffe_ctl->retry_clustered = false; 3928 ffe_ctl->retry_unclustered = false; 3929 break; 3930 case BTRFS_EXTENT_ALLOC_ZONED: 3931 /* Nothing to do */ 3932 break; 3933 default: 3934 BUG(); 3935 } 3936 3937 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 3938 ffe_ctl->index); 3939 btrfs_release_block_group(block_group, delalloc); 3940 } 3941 3942 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 3943 struct btrfs_key *ins) 3944 { 3945 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3946 3947 if (!ffe_ctl->use_cluster && last_ptr) { 3948 spin_lock(&last_ptr->lock); 3949 last_ptr->window_start = ins->objectid; 3950 spin_unlock(&last_ptr->lock); 3951 } 3952 } 3953 3954 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 3955 struct btrfs_key *ins) 3956 { 3957 switch (ffe_ctl->policy) { 3958 case BTRFS_EXTENT_ALLOC_CLUSTERED: 3959 found_extent_clustered(ffe_ctl, ins); 3960 break; 3961 case BTRFS_EXTENT_ALLOC_ZONED: 3962 /* Nothing to do */ 3963 break; 3964 default: 3965 BUG(); 3966 } 3967 } 3968 3969 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 3970 struct find_free_extent_ctl *ffe_ctl) 3971 { 3972 /* If we can activate new zone, just allocate a chunk and use it */ 3973 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 3974 return 0; 3975 3976 /* 3977 * We already reached the max active zones. Try to finish one block 3978 * group to make a room for a new block group. This is only possible 3979 * for a data block group because btrfs_zone_finish() may need to wait 3980 * for a running transaction which can cause a deadlock for metadata 3981 * allocation. 3982 */ 3983 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 3984 int ret = btrfs_zone_finish_one_bg(fs_info); 3985 3986 if (ret == 1) 3987 return 0; 3988 else if (ret < 0) 3989 return ret; 3990 } 3991 3992 /* 3993 * If we have enough free space left in an already active block group 3994 * and we can't activate any other zone now, do not allow allocating a 3995 * new chunk and let find_free_extent() retry with a smaller size. 3996 */ 3997 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 3998 return -ENOSPC; 3999 4000 /* 4001 * Even min_alloc_size is not left in any block groups. Since we cannot 4002 * activate a new block group, allocating it may not help. Let's tell a 4003 * caller to try again and hope it progress something by writing some 4004 * parts of the region. That is only possible for data block groups, 4005 * where a part of the region can be written. 4006 */ 4007 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4008 return -EAGAIN; 4009 4010 /* 4011 * We cannot activate a new block group and no enough space left in any 4012 * block groups. So, allocating a new block group may not help. But, 4013 * there is nothing to do anyway, so let's go with it. 4014 */ 4015 return 0; 4016 } 4017 4018 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4019 struct find_free_extent_ctl *ffe_ctl) 4020 { 4021 switch (ffe_ctl->policy) { 4022 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4023 return 0; 4024 case BTRFS_EXTENT_ALLOC_ZONED: 4025 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4026 default: 4027 BUG(); 4028 } 4029 } 4030 4031 static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl) 4032 { 4033 switch (ffe_ctl->policy) { 4034 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4035 /* 4036 * If we can't allocate a new chunk we've already looped through 4037 * at least once, move on to the NO_EMPTY_SIZE case. 4038 */ 4039 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE; 4040 return 0; 4041 case BTRFS_EXTENT_ALLOC_ZONED: 4042 /* Give up here */ 4043 return -ENOSPC; 4044 default: 4045 BUG(); 4046 } 4047 } 4048 4049 /* 4050 * Return >0 means caller needs to re-search for free extent 4051 * Return 0 means we have the needed free extent. 4052 * Return <0 means we failed to locate any free extent. 4053 */ 4054 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4055 struct btrfs_key *ins, 4056 struct find_free_extent_ctl *ffe_ctl, 4057 bool full_search) 4058 { 4059 struct btrfs_root *root = fs_info->chunk_root; 4060 int ret; 4061 4062 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4063 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4064 ffe_ctl->orig_have_caching_bg = true; 4065 4066 if (ins->objectid) { 4067 found_extent(ffe_ctl, ins); 4068 return 0; 4069 } 4070 4071 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4072 return 1; 4073 4074 ffe_ctl->index++; 4075 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4076 return 1; 4077 4078 /* 4079 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 4080 * caching kthreads as we move along 4081 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 4082 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 4083 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 4084 * again 4085 */ 4086 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4087 ffe_ctl->index = 0; 4088 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) { 4089 /* 4090 * We want to skip the LOOP_CACHING_WAIT step if we 4091 * don't have any uncached bgs and we've already done a 4092 * full search through. 4093 */ 4094 if (ffe_ctl->orig_have_caching_bg || !full_search) 4095 ffe_ctl->loop = LOOP_CACHING_WAIT; 4096 else 4097 ffe_ctl->loop = LOOP_ALLOC_CHUNK; 4098 } else { 4099 ffe_ctl->loop++; 4100 } 4101 4102 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4103 struct btrfs_trans_handle *trans; 4104 int exist = 0; 4105 4106 /*Check if allocation policy allows to create a new chunk */ 4107 ret = can_allocate_chunk(fs_info, ffe_ctl); 4108 if (ret) 4109 return ret; 4110 4111 trans = current->journal_info; 4112 if (trans) 4113 exist = 1; 4114 else 4115 trans = btrfs_join_transaction(root); 4116 4117 if (IS_ERR(trans)) { 4118 ret = PTR_ERR(trans); 4119 return ret; 4120 } 4121 4122 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4123 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4124 4125 /* Do not bail out on ENOSPC since we can do more. */ 4126 if (ret == -ENOSPC) 4127 ret = chunk_allocation_failed(ffe_ctl); 4128 else if (ret < 0) 4129 btrfs_abort_transaction(trans, ret); 4130 else 4131 ret = 0; 4132 if (!exist) 4133 btrfs_end_transaction(trans); 4134 if (ret) 4135 return ret; 4136 } 4137 4138 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4139 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4140 return -ENOSPC; 4141 4142 /* 4143 * Don't loop again if we already have no empty_size and 4144 * no empty_cluster. 4145 */ 4146 if (ffe_ctl->empty_size == 0 && 4147 ffe_ctl->empty_cluster == 0) 4148 return -ENOSPC; 4149 ffe_ctl->empty_size = 0; 4150 ffe_ctl->empty_cluster = 0; 4151 } 4152 return 1; 4153 } 4154 return -ENOSPC; 4155 } 4156 4157 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4158 struct find_free_extent_ctl *ffe_ctl, 4159 struct btrfs_space_info *space_info, 4160 struct btrfs_key *ins) 4161 { 4162 /* 4163 * If our free space is heavily fragmented we may not be able to make 4164 * big contiguous allocations, so instead of doing the expensive search 4165 * for free space, simply return ENOSPC with our max_extent_size so we 4166 * can go ahead and search for a more manageable chunk. 4167 * 4168 * If our max_extent_size is large enough for our allocation simply 4169 * disable clustering since we will likely not be able to find enough 4170 * space to create a cluster and induce latency trying. 4171 */ 4172 if (space_info->max_extent_size) { 4173 spin_lock(&space_info->lock); 4174 if (space_info->max_extent_size && 4175 ffe_ctl->num_bytes > space_info->max_extent_size) { 4176 ins->offset = space_info->max_extent_size; 4177 spin_unlock(&space_info->lock); 4178 return -ENOSPC; 4179 } else if (space_info->max_extent_size) { 4180 ffe_ctl->use_cluster = false; 4181 } 4182 spin_unlock(&space_info->lock); 4183 } 4184 4185 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4186 &ffe_ctl->empty_cluster); 4187 if (ffe_ctl->last_ptr) { 4188 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4189 4190 spin_lock(&last_ptr->lock); 4191 if (last_ptr->block_group) 4192 ffe_ctl->hint_byte = last_ptr->window_start; 4193 if (last_ptr->fragmented) { 4194 /* 4195 * We still set window_start so we can keep track of the 4196 * last place we found an allocation to try and save 4197 * some time. 4198 */ 4199 ffe_ctl->hint_byte = last_ptr->window_start; 4200 ffe_ctl->use_cluster = false; 4201 } 4202 spin_unlock(&last_ptr->lock); 4203 } 4204 4205 return 0; 4206 } 4207 4208 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4209 struct find_free_extent_ctl *ffe_ctl, 4210 struct btrfs_space_info *space_info, 4211 struct btrfs_key *ins) 4212 { 4213 switch (ffe_ctl->policy) { 4214 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4215 return prepare_allocation_clustered(fs_info, ffe_ctl, 4216 space_info, ins); 4217 case BTRFS_EXTENT_ALLOC_ZONED: 4218 if (ffe_ctl->for_treelog) { 4219 spin_lock(&fs_info->treelog_bg_lock); 4220 if (fs_info->treelog_bg) 4221 ffe_ctl->hint_byte = fs_info->treelog_bg; 4222 spin_unlock(&fs_info->treelog_bg_lock); 4223 } 4224 if (ffe_ctl->for_data_reloc) { 4225 spin_lock(&fs_info->relocation_bg_lock); 4226 if (fs_info->data_reloc_bg) 4227 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4228 spin_unlock(&fs_info->relocation_bg_lock); 4229 } 4230 return 0; 4231 default: 4232 BUG(); 4233 } 4234 } 4235 4236 /* 4237 * walks the btree of allocated extents and find a hole of a given size. 4238 * The key ins is changed to record the hole: 4239 * ins->objectid == start position 4240 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4241 * ins->offset == the size of the hole. 4242 * Any available blocks before search_start are skipped. 4243 * 4244 * If there is no suitable free space, we will record the max size of 4245 * the free space extent currently. 4246 * 4247 * The overall logic and call chain: 4248 * 4249 * find_free_extent() 4250 * |- Iterate through all block groups 4251 * | |- Get a valid block group 4252 * | |- Try to do clustered allocation in that block group 4253 * | |- Try to do unclustered allocation in that block group 4254 * | |- Check if the result is valid 4255 * | | |- If valid, then exit 4256 * | |- Jump to next block group 4257 * | 4258 * |- Push harder to find free extents 4259 * |- If not found, re-iterate all block groups 4260 */ 4261 static noinline int find_free_extent(struct btrfs_root *root, 4262 struct btrfs_key *ins, 4263 struct find_free_extent_ctl *ffe_ctl) 4264 { 4265 struct btrfs_fs_info *fs_info = root->fs_info; 4266 int ret = 0; 4267 int cache_block_group_error = 0; 4268 struct btrfs_block_group *block_group = NULL; 4269 struct btrfs_space_info *space_info; 4270 bool full_search = false; 4271 4272 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4273 4274 ffe_ctl->search_start = 0; 4275 /* For clustered allocation */ 4276 ffe_ctl->empty_cluster = 0; 4277 ffe_ctl->last_ptr = NULL; 4278 ffe_ctl->use_cluster = true; 4279 ffe_ctl->have_caching_bg = false; 4280 ffe_ctl->orig_have_caching_bg = false; 4281 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4282 ffe_ctl->loop = 0; 4283 /* For clustered allocation */ 4284 ffe_ctl->retry_clustered = false; 4285 ffe_ctl->retry_unclustered = false; 4286 ffe_ctl->cached = 0; 4287 ffe_ctl->max_extent_size = 0; 4288 ffe_ctl->total_free_space = 0; 4289 ffe_ctl->found_offset = 0; 4290 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4291 4292 if (btrfs_is_zoned(fs_info)) 4293 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4294 4295 ins->type = BTRFS_EXTENT_ITEM_KEY; 4296 ins->objectid = 0; 4297 ins->offset = 0; 4298 4299 trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size, 4300 ffe_ctl->flags); 4301 4302 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4303 if (!space_info) { 4304 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4305 return -ENOSPC; 4306 } 4307 4308 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4309 if (ret < 0) 4310 return ret; 4311 4312 ffe_ctl->search_start = max(ffe_ctl->search_start, 4313 first_logical_byte(fs_info)); 4314 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4315 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4316 block_group = btrfs_lookup_block_group(fs_info, 4317 ffe_ctl->search_start); 4318 /* 4319 * we don't want to use the block group if it doesn't match our 4320 * allocation bits, or if its not cached. 4321 * 4322 * However if we are re-searching with an ideal block group 4323 * picked out then we don't care that the block group is cached. 4324 */ 4325 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4326 block_group->cached != BTRFS_CACHE_NO) { 4327 down_read(&space_info->groups_sem); 4328 if (list_empty(&block_group->list) || 4329 block_group->ro) { 4330 /* 4331 * someone is removing this block group, 4332 * we can't jump into the have_block_group 4333 * target because our list pointers are not 4334 * valid 4335 */ 4336 btrfs_put_block_group(block_group); 4337 up_read(&space_info->groups_sem); 4338 } else { 4339 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4340 block_group->flags); 4341 btrfs_lock_block_group(block_group, 4342 ffe_ctl->delalloc); 4343 goto have_block_group; 4344 } 4345 } else if (block_group) { 4346 btrfs_put_block_group(block_group); 4347 } 4348 } 4349 search: 4350 ffe_ctl->have_caching_bg = false; 4351 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4352 ffe_ctl->index == 0) 4353 full_search = true; 4354 down_read(&space_info->groups_sem); 4355 list_for_each_entry(block_group, 4356 &space_info->block_groups[ffe_ctl->index], list) { 4357 struct btrfs_block_group *bg_ret; 4358 4359 /* If the block group is read-only, we can skip it entirely. */ 4360 if (unlikely(block_group->ro)) { 4361 if (ffe_ctl->for_treelog) 4362 btrfs_clear_treelog_bg(block_group); 4363 if (ffe_ctl->for_data_reloc) 4364 btrfs_clear_data_reloc_bg(block_group); 4365 continue; 4366 } 4367 4368 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4369 ffe_ctl->search_start = block_group->start; 4370 4371 /* 4372 * this can happen if we end up cycling through all the 4373 * raid types, but we want to make sure we only allocate 4374 * for the proper type. 4375 */ 4376 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4377 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4378 BTRFS_BLOCK_GROUP_RAID1_MASK | 4379 BTRFS_BLOCK_GROUP_RAID56_MASK | 4380 BTRFS_BLOCK_GROUP_RAID10; 4381 4382 /* 4383 * if they asked for extra copies and this block group 4384 * doesn't provide them, bail. This does allow us to 4385 * fill raid0 from raid1. 4386 */ 4387 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4388 goto loop; 4389 4390 /* 4391 * This block group has different flags than we want. 4392 * It's possible that we have MIXED_GROUP flag but no 4393 * block group is mixed. Just skip such block group. 4394 */ 4395 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4396 continue; 4397 } 4398 4399 have_block_group: 4400 ffe_ctl->cached = btrfs_block_group_done(block_group); 4401 if (unlikely(!ffe_ctl->cached)) { 4402 ffe_ctl->have_caching_bg = true; 4403 ret = btrfs_cache_block_group(block_group, false); 4404 4405 /* 4406 * If we get ENOMEM here or something else we want to 4407 * try other block groups, because it may not be fatal. 4408 * However if we can't find anything else we need to 4409 * save our return here so that we return the actual 4410 * error that caused problems, not ENOSPC. 4411 */ 4412 if (ret < 0) { 4413 if (!cache_block_group_error) 4414 cache_block_group_error = ret; 4415 ret = 0; 4416 goto loop; 4417 } 4418 ret = 0; 4419 } 4420 4421 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 4422 goto loop; 4423 4424 bg_ret = NULL; 4425 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4426 if (ret == 0) { 4427 if (bg_ret && bg_ret != block_group) { 4428 btrfs_release_block_group(block_group, 4429 ffe_ctl->delalloc); 4430 block_group = bg_ret; 4431 } 4432 } else if (ret == -EAGAIN) { 4433 goto have_block_group; 4434 } else if (ret > 0) { 4435 goto loop; 4436 } 4437 4438 /* Checks */ 4439 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4440 fs_info->stripesize); 4441 4442 /* move on to the next group */ 4443 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4444 block_group->start + block_group->length) { 4445 btrfs_add_free_space_unused(block_group, 4446 ffe_ctl->found_offset, 4447 ffe_ctl->num_bytes); 4448 goto loop; 4449 } 4450 4451 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4452 btrfs_add_free_space_unused(block_group, 4453 ffe_ctl->found_offset, 4454 ffe_ctl->search_start - ffe_ctl->found_offset); 4455 4456 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4457 ffe_ctl->num_bytes, 4458 ffe_ctl->delalloc); 4459 if (ret == -EAGAIN) { 4460 btrfs_add_free_space_unused(block_group, 4461 ffe_ctl->found_offset, 4462 ffe_ctl->num_bytes); 4463 goto loop; 4464 } 4465 btrfs_inc_block_group_reservations(block_group); 4466 4467 /* we are all good, lets return */ 4468 ins->objectid = ffe_ctl->search_start; 4469 ins->offset = ffe_ctl->num_bytes; 4470 4471 trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start, 4472 ffe_ctl->num_bytes); 4473 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4474 break; 4475 loop: 4476 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4477 cond_resched(); 4478 } 4479 up_read(&space_info->groups_sem); 4480 4481 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4482 if (ret > 0) 4483 goto search; 4484 4485 if (ret == -ENOSPC && !cache_block_group_error) { 4486 /* 4487 * Use ffe_ctl->total_free_space as fallback if we can't find 4488 * any contiguous hole. 4489 */ 4490 if (!ffe_ctl->max_extent_size) 4491 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4492 spin_lock(&space_info->lock); 4493 space_info->max_extent_size = ffe_ctl->max_extent_size; 4494 spin_unlock(&space_info->lock); 4495 ins->offset = ffe_ctl->max_extent_size; 4496 } else if (ret == -ENOSPC) { 4497 ret = cache_block_group_error; 4498 } 4499 return ret; 4500 } 4501 4502 /* 4503 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a 4504 * hole that is at least as big as @num_bytes. 4505 * 4506 * @root - The root that will contain this extent 4507 * 4508 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4509 * is used for accounting purposes. This value differs 4510 * from @num_bytes only in the case of compressed extents. 4511 * 4512 * @num_bytes - Number of bytes to allocate on-disk. 4513 * 4514 * @min_alloc_size - Indicates the minimum amount of space that the 4515 * allocator should try to satisfy. In some cases 4516 * @num_bytes may be larger than what is required and if 4517 * the filesystem is fragmented then allocation fails. 4518 * However, the presence of @min_alloc_size gives a 4519 * chance to try and satisfy the smaller allocation. 4520 * 4521 * @empty_size - A hint that you plan on doing more COW. This is the 4522 * size in bytes the allocator should try to find free 4523 * next to the block it returns. This is just a hint and 4524 * may be ignored by the allocator. 4525 * 4526 * @hint_byte - Hint to the allocator to start searching above the byte 4527 * address passed. It might be ignored. 4528 * 4529 * @ins - This key is modified to record the found hole. It will 4530 * have the following values: 4531 * ins->objectid == start position 4532 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4533 * ins->offset == the size of the hole. 4534 * 4535 * @is_data - Boolean flag indicating whether an extent is 4536 * allocated for data (true) or metadata (false) 4537 * 4538 * @delalloc - Boolean flag indicating whether this allocation is for 4539 * delalloc or not. If 'true' data_rwsem of block groups 4540 * is going to be acquired. 4541 * 4542 * 4543 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4544 * case -ENOSPC is returned then @ins->offset will contain the size of the 4545 * largest available hole the allocator managed to find. 4546 */ 4547 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4548 u64 num_bytes, u64 min_alloc_size, 4549 u64 empty_size, u64 hint_byte, 4550 struct btrfs_key *ins, int is_data, int delalloc) 4551 { 4552 struct btrfs_fs_info *fs_info = root->fs_info; 4553 struct find_free_extent_ctl ffe_ctl = {}; 4554 bool final_tried = num_bytes == min_alloc_size; 4555 u64 flags; 4556 int ret; 4557 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4558 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4559 4560 flags = get_alloc_profile_by_root(root, is_data); 4561 again: 4562 WARN_ON(num_bytes < fs_info->sectorsize); 4563 4564 ffe_ctl.ram_bytes = ram_bytes; 4565 ffe_ctl.num_bytes = num_bytes; 4566 ffe_ctl.min_alloc_size = min_alloc_size; 4567 ffe_ctl.empty_size = empty_size; 4568 ffe_ctl.flags = flags; 4569 ffe_ctl.delalloc = delalloc; 4570 ffe_ctl.hint_byte = hint_byte; 4571 ffe_ctl.for_treelog = for_treelog; 4572 ffe_ctl.for_data_reloc = for_data_reloc; 4573 4574 ret = find_free_extent(root, ins, &ffe_ctl); 4575 if (!ret && !is_data) { 4576 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4577 } else if (ret == -ENOSPC) { 4578 if (!final_tried && ins->offset) { 4579 num_bytes = min(num_bytes >> 1, ins->offset); 4580 num_bytes = round_down(num_bytes, 4581 fs_info->sectorsize); 4582 num_bytes = max(num_bytes, min_alloc_size); 4583 ram_bytes = num_bytes; 4584 if (num_bytes == min_alloc_size) 4585 final_tried = true; 4586 goto again; 4587 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4588 struct btrfs_space_info *sinfo; 4589 4590 sinfo = btrfs_find_space_info(fs_info, flags); 4591 btrfs_err(fs_info, 4592 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4593 flags, num_bytes, for_treelog, for_data_reloc); 4594 if (sinfo) 4595 btrfs_dump_space_info(fs_info, sinfo, 4596 num_bytes, 1); 4597 } 4598 } 4599 4600 return ret; 4601 } 4602 4603 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4604 u64 start, u64 len, int delalloc) 4605 { 4606 struct btrfs_block_group *cache; 4607 4608 cache = btrfs_lookup_block_group(fs_info, start); 4609 if (!cache) { 4610 btrfs_err(fs_info, "Unable to find block group for %llu", 4611 start); 4612 return -ENOSPC; 4613 } 4614 4615 btrfs_add_free_space(cache, start, len); 4616 btrfs_free_reserved_bytes(cache, len, delalloc); 4617 trace_btrfs_reserved_extent_free(fs_info, start, len); 4618 4619 btrfs_put_block_group(cache); 4620 return 0; 4621 } 4622 4623 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 4624 u64 len) 4625 { 4626 struct btrfs_block_group *cache; 4627 int ret = 0; 4628 4629 cache = btrfs_lookup_block_group(trans->fs_info, start); 4630 if (!cache) { 4631 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4632 start); 4633 return -ENOSPC; 4634 } 4635 4636 ret = pin_down_extent(trans, cache, start, len, 1); 4637 btrfs_put_block_group(cache); 4638 return ret; 4639 } 4640 4641 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4642 u64 num_bytes) 4643 { 4644 struct btrfs_fs_info *fs_info = trans->fs_info; 4645 int ret; 4646 4647 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4648 if (ret) 4649 return ret; 4650 4651 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4652 if (ret) { 4653 ASSERT(!ret); 4654 btrfs_err(fs_info, "update block group failed for %llu %llu", 4655 bytenr, num_bytes); 4656 return ret; 4657 } 4658 4659 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4660 return 0; 4661 } 4662 4663 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4664 u64 parent, u64 root_objectid, 4665 u64 flags, u64 owner, u64 offset, 4666 struct btrfs_key *ins, int ref_mod) 4667 { 4668 struct btrfs_fs_info *fs_info = trans->fs_info; 4669 struct btrfs_root *extent_root; 4670 int ret; 4671 struct btrfs_extent_item *extent_item; 4672 struct btrfs_extent_inline_ref *iref; 4673 struct btrfs_path *path; 4674 struct extent_buffer *leaf; 4675 int type; 4676 u32 size; 4677 4678 if (parent > 0) 4679 type = BTRFS_SHARED_DATA_REF_KEY; 4680 else 4681 type = BTRFS_EXTENT_DATA_REF_KEY; 4682 4683 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 4684 4685 path = btrfs_alloc_path(); 4686 if (!path) 4687 return -ENOMEM; 4688 4689 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4690 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4691 if (ret) { 4692 btrfs_free_path(path); 4693 return ret; 4694 } 4695 4696 leaf = path->nodes[0]; 4697 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4698 struct btrfs_extent_item); 4699 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4700 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4701 btrfs_set_extent_flags(leaf, extent_item, 4702 flags | BTRFS_EXTENT_FLAG_DATA); 4703 4704 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4705 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4706 if (parent > 0) { 4707 struct btrfs_shared_data_ref *ref; 4708 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4709 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4710 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4711 } else { 4712 struct btrfs_extent_data_ref *ref; 4713 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4714 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4715 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4716 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4717 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4718 } 4719 4720 btrfs_mark_buffer_dirty(path->nodes[0]); 4721 btrfs_free_path(path); 4722 4723 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4724 } 4725 4726 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4727 struct btrfs_delayed_ref_node *node, 4728 struct btrfs_delayed_extent_op *extent_op) 4729 { 4730 struct btrfs_fs_info *fs_info = trans->fs_info; 4731 struct btrfs_root *extent_root; 4732 int ret; 4733 struct btrfs_extent_item *extent_item; 4734 struct btrfs_key extent_key; 4735 struct btrfs_tree_block_info *block_info; 4736 struct btrfs_extent_inline_ref *iref; 4737 struct btrfs_path *path; 4738 struct extent_buffer *leaf; 4739 struct btrfs_delayed_tree_ref *ref; 4740 u32 size = sizeof(*extent_item) + sizeof(*iref); 4741 u64 flags = extent_op->flags_to_set; 4742 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4743 4744 ref = btrfs_delayed_node_to_tree_ref(node); 4745 4746 extent_key.objectid = node->bytenr; 4747 if (skinny_metadata) { 4748 extent_key.offset = ref->level; 4749 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4750 } else { 4751 extent_key.offset = node->num_bytes; 4752 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4753 size += sizeof(*block_info); 4754 } 4755 4756 path = btrfs_alloc_path(); 4757 if (!path) 4758 return -ENOMEM; 4759 4760 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4761 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4762 size); 4763 if (ret) { 4764 btrfs_free_path(path); 4765 return ret; 4766 } 4767 4768 leaf = path->nodes[0]; 4769 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4770 struct btrfs_extent_item); 4771 btrfs_set_extent_refs(leaf, extent_item, 1); 4772 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4773 btrfs_set_extent_flags(leaf, extent_item, 4774 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4775 4776 if (skinny_metadata) { 4777 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4778 } else { 4779 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4780 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4781 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4782 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4783 } 4784 4785 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4786 btrfs_set_extent_inline_ref_type(leaf, iref, 4787 BTRFS_SHARED_BLOCK_REF_KEY); 4788 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4789 } else { 4790 btrfs_set_extent_inline_ref_type(leaf, iref, 4791 BTRFS_TREE_BLOCK_REF_KEY); 4792 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4793 } 4794 4795 btrfs_mark_buffer_dirty(leaf); 4796 btrfs_free_path(path); 4797 4798 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4799 } 4800 4801 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4802 struct btrfs_root *root, u64 owner, 4803 u64 offset, u64 ram_bytes, 4804 struct btrfs_key *ins) 4805 { 4806 struct btrfs_ref generic_ref = { 0 }; 4807 4808 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4809 4810 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4811 ins->objectid, ins->offset, 0); 4812 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, 4813 offset, 0, false); 4814 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4815 4816 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4817 } 4818 4819 /* 4820 * this is used by the tree logging recovery code. It records that 4821 * an extent has been allocated and makes sure to clear the free 4822 * space cache bits as well 4823 */ 4824 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4825 u64 root_objectid, u64 owner, u64 offset, 4826 struct btrfs_key *ins) 4827 { 4828 struct btrfs_fs_info *fs_info = trans->fs_info; 4829 int ret; 4830 struct btrfs_block_group *block_group; 4831 struct btrfs_space_info *space_info; 4832 4833 /* 4834 * Mixed block groups will exclude before processing the log so we only 4835 * need to do the exclude dance if this fs isn't mixed. 4836 */ 4837 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4838 ret = __exclude_logged_extent(fs_info, ins->objectid, 4839 ins->offset); 4840 if (ret) 4841 return ret; 4842 } 4843 4844 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4845 if (!block_group) 4846 return -EINVAL; 4847 4848 space_info = block_group->space_info; 4849 spin_lock(&space_info->lock); 4850 spin_lock(&block_group->lock); 4851 space_info->bytes_reserved += ins->offset; 4852 block_group->reserved += ins->offset; 4853 spin_unlock(&block_group->lock); 4854 spin_unlock(&space_info->lock); 4855 4856 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 4857 offset, ins, 1); 4858 if (ret) 4859 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 4860 btrfs_put_block_group(block_group); 4861 return ret; 4862 } 4863 4864 static struct extent_buffer * 4865 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4866 u64 bytenr, int level, u64 owner, 4867 enum btrfs_lock_nesting nest) 4868 { 4869 struct btrfs_fs_info *fs_info = root->fs_info; 4870 struct extent_buffer *buf; 4871 u64 lockdep_owner = owner; 4872 4873 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 4874 if (IS_ERR(buf)) 4875 return buf; 4876 4877 /* 4878 * Extra safety check in case the extent tree is corrupted and extent 4879 * allocator chooses to use a tree block which is already used and 4880 * locked. 4881 */ 4882 if (buf->lock_owner == current->pid) { 4883 btrfs_err_rl(fs_info, 4884 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 4885 buf->start, btrfs_header_owner(buf), current->pid); 4886 free_extent_buffer(buf); 4887 return ERR_PTR(-EUCLEAN); 4888 } 4889 4890 /* 4891 * The reloc trees are just snapshots, so we need them to appear to be 4892 * just like any other fs tree WRT lockdep. 4893 * 4894 * The exception however is in replace_path() in relocation, where we 4895 * hold the lock on the original fs root and then search for the reloc 4896 * root. At that point we need to make sure any reloc root buffers are 4897 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 4898 * lockdep happy. 4899 */ 4900 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 4901 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 4902 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 4903 4904 /* btrfs_clean_tree_block() accesses generation field. */ 4905 btrfs_set_header_generation(buf, trans->transid); 4906 4907 /* 4908 * This needs to stay, because we could allocate a freed block from an 4909 * old tree into a new tree, so we need to make sure this new block is 4910 * set to the appropriate level and owner. 4911 */ 4912 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 4913 4914 __btrfs_tree_lock(buf, nest); 4915 btrfs_clean_tree_block(buf); 4916 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 4917 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags); 4918 4919 set_extent_buffer_uptodate(buf); 4920 4921 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 4922 btrfs_set_header_level(buf, level); 4923 btrfs_set_header_bytenr(buf, buf->start); 4924 btrfs_set_header_generation(buf, trans->transid); 4925 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 4926 btrfs_set_header_owner(buf, owner); 4927 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 4928 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 4929 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 4930 buf->log_index = root->log_transid % 2; 4931 /* 4932 * we allow two log transactions at a time, use different 4933 * EXTENT bit to differentiate dirty pages. 4934 */ 4935 if (buf->log_index == 0) 4936 set_extent_dirty(&root->dirty_log_pages, buf->start, 4937 buf->start + buf->len - 1, GFP_NOFS); 4938 else 4939 set_extent_new(&root->dirty_log_pages, buf->start, 4940 buf->start + buf->len - 1); 4941 } else { 4942 buf->log_index = -1; 4943 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 4944 buf->start + buf->len - 1, GFP_NOFS); 4945 } 4946 /* this returns a buffer locked for blocking */ 4947 return buf; 4948 } 4949 4950 /* 4951 * finds a free extent and does all the dirty work required for allocation 4952 * returns the tree buffer or an ERR_PTR on error. 4953 */ 4954 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 4955 struct btrfs_root *root, 4956 u64 parent, u64 root_objectid, 4957 const struct btrfs_disk_key *key, 4958 int level, u64 hint, 4959 u64 empty_size, 4960 enum btrfs_lock_nesting nest) 4961 { 4962 struct btrfs_fs_info *fs_info = root->fs_info; 4963 struct btrfs_key ins; 4964 struct btrfs_block_rsv *block_rsv; 4965 struct extent_buffer *buf; 4966 struct btrfs_delayed_extent_op *extent_op; 4967 struct btrfs_ref generic_ref = { 0 }; 4968 u64 flags = 0; 4969 int ret; 4970 u32 blocksize = fs_info->nodesize; 4971 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4972 4973 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4974 if (btrfs_is_testing(fs_info)) { 4975 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 4976 level, root_objectid, nest); 4977 if (!IS_ERR(buf)) 4978 root->alloc_bytenr += blocksize; 4979 return buf; 4980 } 4981 #endif 4982 4983 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 4984 if (IS_ERR(block_rsv)) 4985 return ERR_CAST(block_rsv); 4986 4987 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 4988 empty_size, hint, &ins, 0, 0); 4989 if (ret) 4990 goto out_unuse; 4991 4992 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 4993 root_objectid, nest); 4994 if (IS_ERR(buf)) { 4995 ret = PTR_ERR(buf); 4996 goto out_free_reserved; 4997 } 4998 4999 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5000 if (parent == 0) 5001 parent = ins.objectid; 5002 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5003 } else 5004 BUG_ON(parent > 0); 5005 5006 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5007 extent_op = btrfs_alloc_delayed_extent_op(); 5008 if (!extent_op) { 5009 ret = -ENOMEM; 5010 goto out_free_buf; 5011 } 5012 if (key) 5013 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5014 else 5015 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5016 extent_op->flags_to_set = flags; 5017 extent_op->update_key = skinny_metadata ? false : true; 5018 extent_op->update_flags = true; 5019 extent_op->level = level; 5020 5021 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5022 ins.objectid, ins.offset, parent); 5023 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5024 root->root_key.objectid, false); 5025 btrfs_ref_tree_mod(fs_info, &generic_ref); 5026 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5027 if (ret) 5028 goto out_free_delayed; 5029 } 5030 return buf; 5031 5032 out_free_delayed: 5033 btrfs_free_delayed_extent_op(extent_op); 5034 out_free_buf: 5035 btrfs_tree_unlock(buf); 5036 free_extent_buffer(buf); 5037 out_free_reserved: 5038 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5039 out_unuse: 5040 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5041 return ERR_PTR(ret); 5042 } 5043 5044 struct walk_control { 5045 u64 refs[BTRFS_MAX_LEVEL]; 5046 u64 flags[BTRFS_MAX_LEVEL]; 5047 struct btrfs_key update_progress; 5048 struct btrfs_key drop_progress; 5049 int drop_level; 5050 int stage; 5051 int level; 5052 int shared_level; 5053 int update_ref; 5054 int keep_locks; 5055 int reada_slot; 5056 int reada_count; 5057 int restarted; 5058 }; 5059 5060 #define DROP_REFERENCE 1 5061 #define UPDATE_BACKREF 2 5062 5063 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5064 struct btrfs_root *root, 5065 struct walk_control *wc, 5066 struct btrfs_path *path) 5067 { 5068 struct btrfs_fs_info *fs_info = root->fs_info; 5069 u64 bytenr; 5070 u64 generation; 5071 u64 refs; 5072 u64 flags; 5073 u32 nritems; 5074 struct btrfs_key key; 5075 struct extent_buffer *eb; 5076 int ret; 5077 int slot; 5078 int nread = 0; 5079 5080 if (path->slots[wc->level] < wc->reada_slot) { 5081 wc->reada_count = wc->reada_count * 2 / 3; 5082 wc->reada_count = max(wc->reada_count, 2); 5083 } else { 5084 wc->reada_count = wc->reada_count * 3 / 2; 5085 wc->reada_count = min_t(int, wc->reada_count, 5086 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5087 } 5088 5089 eb = path->nodes[wc->level]; 5090 nritems = btrfs_header_nritems(eb); 5091 5092 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5093 if (nread >= wc->reada_count) 5094 break; 5095 5096 cond_resched(); 5097 bytenr = btrfs_node_blockptr(eb, slot); 5098 generation = btrfs_node_ptr_generation(eb, slot); 5099 5100 if (slot == path->slots[wc->level]) 5101 goto reada; 5102 5103 if (wc->stage == UPDATE_BACKREF && 5104 generation <= root->root_key.offset) 5105 continue; 5106 5107 /* We don't lock the tree block, it's OK to be racy here */ 5108 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5109 wc->level - 1, 1, &refs, 5110 &flags); 5111 /* We don't care about errors in readahead. */ 5112 if (ret < 0) 5113 continue; 5114 BUG_ON(refs == 0); 5115 5116 if (wc->stage == DROP_REFERENCE) { 5117 if (refs == 1) 5118 goto reada; 5119 5120 if (wc->level == 1 && 5121 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5122 continue; 5123 if (!wc->update_ref || 5124 generation <= root->root_key.offset) 5125 continue; 5126 btrfs_node_key_to_cpu(eb, &key, slot); 5127 ret = btrfs_comp_cpu_keys(&key, 5128 &wc->update_progress); 5129 if (ret < 0) 5130 continue; 5131 } else { 5132 if (wc->level == 1 && 5133 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5134 continue; 5135 } 5136 reada: 5137 btrfs_readahead_node_child(eb, slot); 5138 nread++; 5139 } 5140 wc->reada_slot = slot; 5141 } 5142 5143 /* 5144 * helper to process tree block while walking down the tree. 5145 * 5146 * when wc->stage == UPDATE_BACKREF, this function updates 5147 * back refs for pointers in the block. 5148 * 5149 * NOTE: return value 1 means we should stop walking down. 5150 */ 5151 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5152 struct btrfs_root *root, 5153 struct btrfs_path *path, 5154 struct walk_control *wc, int lookup_info) 5155 { 5156 struct btrfs_fs_info *fs_info = root->fs_info; 5157 int level = wc->level; 5158 struct extent_buffer *eb = path->nodes[level]; 5159 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5160 int ret; 5161 5162 if (wc->stage == UPDATE_BACKREF && 5163 btrfs_header_owner(eb) != root->root_key.objectid) 5164 return 1; 5165 5166 /* 5167 * when reference count of tree block is 1, it won't increase 5168 * again. once full backref flag is set, we never clear it. 5169 */ 5170 if (lookup_info && 5171 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5172 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5173 BUG_ON(!path->locks[level]); 5174 ret = btrfs_lookup_extent_info(trans, fs_info, 5175 eb->start, level, 1, 5176 &wc->refs[level], 5177 &wc->flags[level]); 5178 BUG_ON(ret == -ENOMEM); 5179 if (ret) 5180 return ret; 5181 BUG_ON(wc->refs[level] == 0); 5182 } 5183 5184 if (wc->stage == DROP_REFERENCE) { 5185 if (wc->refs[level] > 1) 5186 return 1; 5187 5188 if (path->locks[level] && !wc->keep_locks) { 5189 btrfs_tree_unlock_rw(eb, path->locks[level]); 5190 path->locks[level] = 0; 5191 } 5192 return 0; 5193 } 5194 5195 /* wc->stage == UPDATE_BACKREF */ 5196 if (!(wc->flags[level] & flag)) { 5197 BUG_ON(!path->locks[level]); 5198 ret = btrfs_inc_ref(trans, root, eb, 1); 5199 BUG_ON(ret); /* -ENOMEM */ 5200 ret = btrfs_dec_ref(trans, root, eb, 0); 5201 BUG_ON(ret); /* -ENOMEM */ 5202 ret = btrfs_set_disk_extent_flags(trans, eb, flag, 5203 btrfs_header_level(eb)); 5204 BUG_ON(ret); /* -ENOMEM */ 5205 wc->flags[level] |= flag; 5206 } 5207 5208 /* 5209 * the block is shared by multiple trees, so it's not good to 5210 * keep the tree lock 5211 */ 5212 if (path->locks[level] && level > 0) { 5213 btrfs_tree_unlock_rw(eb, path->locks[level]); 5214 path->locks[level] = 0; 5215 } 5216 return 0; 5217 } 5218 5219 /* 5220 * This is used to verify a ref exists for this root to deal with a bug where we 5221 * would have a drop_progress key that hadn't been updated properly. 5222 */ 5223 static int check_ref_exists(struct btrfs_trans_handle *trans, 5224 struct btrfs_root *root, u64 bytenr, u64 parent, 5225 int level) 5226 { 5227 struct btrfs_path *path; 5228 struct btrfs_extent_inline_ref *iref; 5229 int ret; 5230 5231 path = btrfs_alloc_path(); 5232 if (!path) 5233 return -ENOMEM; 5234 5235 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5236 root->fs_info->nodesize, parent, 5237 root->root_key.objectid, level, 0); 5238 btrfs_free_path(path); 5239 if (ret == -ENOENT) 5240 return 0; 5241 if (ret < 0) 5242 return ret; 5243 return 1; 5244 } 5245 5246 /* 5247 * helper to process tree block pointer. 5248 * 5249 * when wc->stage == DROP_REFERENCE, this function checks 5250 * reference count of the block pointed to. if the block 5251 * is shared and we need update back refs for the subtree 5252 * rooted at the block, this function changes wc->stage to 5253 * UPDATE_BACKREF. if the block is shared and there is no 5254 * need to update back, this function drops the reference 5255 * to the block. 5256 * 5257 * NOTE: return value 1 means we should stop walking down. 5258 */ 5259 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5260 struct btrfs_root *root, 5261 struct btrfs_path *path, 5262 struct walk_control *wc, int *lookup_info) 5263 { 5264 struct btrfs_fs_info *fs_info = root->fs_info; 5265 u64 bytenr; 5266 u64 generation; 5267 u64 parent; 5268 struct btrfs_tree_parent_check check = { 0 }; 5269 struct btrfs_key key; 5270 struct btrfs_ref ref = { 0 }; 5271 struct extent_buffer *next; 5272 int level = wc->level; 5273 int reada = 0; 5274 int ret = 0; 5275 bool need_account = false; 5276 5277 generation = btrfs_node_ptr_generation(path->nodes[level], 5278 path->slots[level]); 5279 /* 5280 * if the lower level block was created before the snapshot 5281 * was created, we know there is no need to update back refs 5282 * for the subtree 5283 */ 5284 if (wc->stage == UPDATE_BACKREF && 5285 generation <= root->root_key.offset) { 5286 *lookup_info = 1; 5287 return 1; 5288 } 5289 5290 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5291 5292 check.level = level - 1; 5293 check.transid = generation; 5294 check.owner_root = root->root_key.objectid; 5295 check.has_first_key = true; 5296 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5297 path->slots[level]); 5298 5299 next = find_extent_buffer(fs_info, bytenr); 5300 if (!next) { 5301 next = btrfs_find_create_tree_block(fs_info, bytenr, 5302 root->root_key.objectid, level - 1); 5303 if (IS_ERR(next)) 5304 return PTR_ERR(next); 5305 reada = 1; 5306 } 5307 btrfs_tree_lock(next); 5308 5309 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5310 &wc->refs[level - 1], 5311 &wc->flags[level - 1]); 5312 if (ret < 0) 5313 goto out_unlock; 5314 5315 if (unlikely(wc->refs[level - 1] == 0)) { 5316 btrfs_err(fs_info, "Missing references."); 5317 ret = -EIO; 5318 goto out_unlock; 5319 } 5320 *lookup_info = 0; 5321 5322 if (wc->stage == DROP_REFERENCE) { 5323 if (wc->refs[level - 1] > 1) { 5324 need_account = true; 5325 if (level == 1 && 5326 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5327 goto skip; 5328 5329 if (!wc->update_ref || 5330 generation <= root->root_key.offset) 5331 goto skip; 5332 5333 btrfs_node_key_to_cpu(path->nodes[level], &key, 5334 path->slots[level]); 5335 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5336 if (ret < 0) 5337 goto skip; 5338 5339 wc->stage = UPDATE_BACKREF; 5340 wc->shared_level = level - 1; 5341 } 5342 } else { 5343 if (level == 1 && 5344 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5345 goto skip; 5346 } 5347 5348 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5349 btrfs_tree_unlock(next); 5350 free_extent_buffer(next); 5351 next = NULL; 5352 *lookup_info = 1; 5353 } 5354 5355 if (!next) { 5356 if (reada && level == 1) 5357 reada_walk_down(trans, root, wc, path); 5358 next = read_tree_block(fs_info, bytenr, &check); 5359 if (IS_ERR(next)) { 5360 return PTR_ERR(next); 5361 } else if (!extent_buffer_uptodate(next)) { 5362 free_extent_buffer(next); 5363 return -EIO; 5364 } 5365 btrfs_tree_lock(next); 5366 } 5367 5368 level--; 5369 ASSERT(level == btrfs_header_level(next)); 5370 if (level != btrfs_header_level(next)) { 5371 btrfs_err(root->fs_info, "mismatched level"); 5372 ret = -EIO; 5373 goto out_unlock; 5374 } 5375 path->nodes[level] = next; 5376 path->slots[level] = 0; 5377 path->locks[level] = BTRFS_WRITE_LOCK; 5378 wc->level = level; 5379 if (wc->level == 1) 5380 wc->reada_slot = 0; 5381 return 0; 5382 skip: 5383 wc->refs[level - 1] = 0; 5384 wc->flags[level - 1] = 0; 5385 if (wc->stage == DROP_REFERENCE) { 5386 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5387 parent = path->nodes[level]->start; 5388 } else { 5389 ASSERT(root->root_key.objectid == 5390 btrfs_header_owner(path->nodes[level])); 5391 if (root->root_key.objectid != 5392 btrfs_header_owner(path->nodes[level])) { 5393 btrfs_err(root->fs_info, 5394 "mismatched block owner"); 5395 ret = -EIO; 5396 goto out_unlock; 5397 } 5398 parent = 0; 5399 } 5400 5401 /* 5402 * If we had a drop_progress we need to verify the refs are set 5403 * as expected. If we find our ref then we know that from here 5404 * on out everything should be correct, and we can clear the 5405 * ->restarted flag. 5406 */ 5407 if (wc->restarted) { 5408 ret = check_ref_exists(trans, root, bytenr, parent, 5409 level - 1); 5410 if (ret < 0) 5411 goto out_unlock; 5412 if (ret == 0) 5413 goto no_delete; 5414 ret = 0; 5415 wc->restarted = 0; 5416 } 5417 5418 /* 5419 * Reloc tree doesn't contribute to qgroup numbers, and we have 5420 * already accounted them at merge time (replace_path), 5421 * thus we could skip expensive subtree trace here. 5422 */ 5423 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5424 need_account) { 5425 ret = btrfs_qgroup_trace_subtree(trans, next, 5426 generation, level - 1); 5427 if (ret) { 5428 btrfs_err_rl(fs_info, 5429 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5430 ret); 5431 } 5432 } 5433 5434 /* 5435 * We need to update the next key in our walk control so we can 5436 * update the drop_progress key accordingly. We don't care if 5437 * find_next_key doesn't find a key because that means we're at 5438 * the end and are going to clean up now. 5439 */ 5440 wc->drop_level = level; 5441 find_next_key(path, level, &wc->drop_progress); 5442 5443 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5444 fs_info->nodesize, parent); 5445 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5446 0, false); 5447 ret = btrfs_free_extent(trans, &ref); 5448 if (ret) 5449 goto out_unlock; 5450 } 5451 no_delete: 5452 *lookup_info = 1; 5453 ret = 1; 5454 5455 out_unlock: 5456 btrfs_tree_unlock(next); 5457 free_extent_buffer(next); 5458 5459 return ret; 5460 } 5461 5462 /* 5463 * helper to process tree block while walking up the tree. 5464 * 5465 * when wc->stage == DROP_REFERENCE, this function drops 5466 * reference count on the block. 5467 * 5468 * when wc->stage == UPDATE_BACKREF, this function changes 5469 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5470 * to UPDATE_BACKREF previously while processing the block. 5471 * 5472 * NOTE: return value 1 means we should stop walking up. 5473 */ 5474 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5475 struct btrfs_root *root, 5476 struct btrfs_path *path, 5477 struct walk_control *wc) 5478 { 5479 struct btrfs_fs_info *fs_info = root->fs_info; 5480 int ret; 5481 int level = wc->level; 5482 struct extent_buffer *eb = path->nodes[level]; 5483 u64 parent = 0; 5484 5485 if (wc->stage == UPDATE_BACKREF) { 5486 BUG_ON(wc->shared_level < level); 5487 if (level < wc->shared_level) 5488 goto out; 5489 5490 ret = find_next_key(path, level + 1, &wc->update_progress); 5491 if (ret > 0) 5492 wc->update_ref = 0; 5493 5494 wc->stage = DROP_REFERENCE; 5495 wc->shared_level = -1; 5496 path->slots[level] = 0; 5497 5498 /* 5499 * check reference count again if the block isn't locked. 5500 * we should start walking down the tree again if reference 5501 * count is one. 5502 */ 5503 if (!path->locks[level]) { 5504 BUG_ON(level == 0); 5505 btrfs_tree_lock(eb); 5506 path->locks[level] = BTRFS_WRITE_LOCK; 5507 5508 ret = btrfs_lookup_extent_info(trans, fs_info, 5509 eb->start, level, 1, 5510 &wc->refs[level], 5511 &wc->flags[level]); 5512 if (ret < 0) { 5513 btrfs_tree_unlock_rw(eb, path->locks[level]); 5514 path->locks[level] = 0; 5515 return ret; 5516 } 5517 BUG_ON(wc->refs[level] == 0); 5518 if (wc->refs[level] == 1) { 5519 btrfs_tree_unlock_rw(eb, path->locks[level]); 5520 path->locks[level] = 0; 5521 return 1; 5522 } 5523 } 5524 } 5525 5526 /* wc->stage == DROP_REFERENCE */ 5527 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5528 5529 if (wc->refs[level] == 1) { 5530 if (level == 0) { 5531 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5532 ret = btrfs_dec_ref(trans, root, eb, 1); 5533 else 5534 ret = btrfs_dec_ref(trans, root, eb, 0); 5535 BUG_ON(ret); /* -ENOMEM */ 5536 if (is_fstree(root->root_key.objectid)) { 5537 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5538 if (ret) { 5539 btrfs_err_rl(fs_info, 5540 "error %d accounting leaf items, quota is out of sync, rescan required", 5541 ret); 5542 } 5543 } 5544 } 5545 /* make block locked assertion in btrfs_clean_tree_block happy */ 5546 if (!path->locks[level] && 5547 btrfs_header_generation(eb) == trans->transid) { 5548 btrfs_tree_lock(eb); 5549 path->locks[level] = BTRFS_WRITE_LOCK; 5550 } 5551 btrfs_clean_tree_block(eb); 5552 } 5553 5554 if (eb == root->node) { 5555 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5556 parent = eb->start; 5557 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5558 goto owner_mismatch; 5559 } else { 5560 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5561 parent = path->nodes[level + 1]->start; 5562 else if (root->root_key.objectid != 5563 btrfs_header_owner(path->nodes[level + 1])) 5564 goto owner_mismatch; 5565 } 5566 5567 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5568 wc->refs[level] == 1); 5569 out: 5570 wc->refs[level] = 0; 5571 wc->flags[level] = 0; 5572 return 0; 5573 5574 owner_mismatch: 5575 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5576 btrfs_header_owner(eb), root->root_key.objectid); 5577 return -EUCLEAN; 5578 } 5579 5580 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5581 struct btrfs_root *root, 5582 struct btrfs_path *path, 5583 struct walk_control *wc) 5584 { 5585 int level = wc->level; 5586 int lookup_info = 1; 5587 int ret; 5588 5589 while (level >= 0) { 5590 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5591 if (ret > 0) 5592 break; 5593 5594 if (level == 0) 5595 break; 5596 5597 if (path->slots[level] >= 5598 btrfs_header_nritems(path->nodes[level])) 5599 break; 5600 5601 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5602 if (ret > 0) { 5603 path->slots[level]++; 5604 continue; 5605 } else if (ret < 0) 5606 return ret; 5607 level = wc->level; 5608 } 5609 return 0; 5610 } 5611 5612 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5613 struct btrfs_root *root, 5614 struct btrfs_path *path, 5615 struct walk_control *wc, int max_level) 5616 { 5617 int level = wc->level; 5618 int ret; 5619 5620 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5621 while (level < max_level && path->nodes[level]) { 5622 wc->level = level; 5623 if (path->slots[level] + 1 < 5624 btrfs_header_nritems(path->nodes[level])) { 5625 path->slots[level]++; 5626 return 0; 5627 } else { 5628 ret = walk_up_proc(trans, root, path, wc); 5629 if (ret > 0) 5630 return 0; 5631 if (ret < 0) 5632 return ret; 5633 5634 if (path->locks[level]) { 5635 btrfs_tree_unlock_rw(path->nodes[level], 5636 path->locks[level]); 5637 path->locks[level] = 0; 5638 } 5639 free_extent_buffer(path->nodes[level]); 5640 path->nodes[level] = NULL; 5641 level++; 5642 } 5643 } 5644 return 1; 5645 } 5646 5647 /* 5648 * drop a subvolume tree. 5649 * 5650 * this function traverses the tree freeing any blocks that only 5651 * referenced by the tree. 5652 * 5653 * when a shared tree block is found. this function decreases its 5654 * reference count by one. if update_ref is true, this function 5655 * also make sure backrefs for the shared block and all lower level 5656 * blocks are properly updated. 5657 * 5658 * If called with for_reloc == 0, may exit early with -EAGAIN 5659 */ 5660 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5661 { 5662 const bool is_reloc_root = (root->root_key.objectid == 5663 BTRFS_TREE_RELOC_OBJECTID); 5664 struct btrfs_fs_info *fs_info = root->fs_info; 5665 struct btrfs_path *path; 5666 struct btrfs_trans_handle *trans; 5667 struct btrfs_root *tree_root = fs_info->tree_root; 5668 struct btrfs_root_item *root_item = &root->root_item; 5669 struct walk_control *wc; 5670 struct btrfs_key key; 5671 int err = 0; 5672 int ret; 5673 int level; 5674 bool root_dropped = false; 5675 bool unfinished_drop = false; 5676 5677 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5678 5679 path = btrfs_alloc_path(); 5680 if (!path) { 5681 err = -ENOMEM; 5682 goto out; 5683 } 5684 5685 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5686 if (!wc) { 5687 btrfs_free_path(path); 5688 err = -ENOMEM; 5689 goto out; 5690 } 5691 5692 /* 5693 * Use join to avoid potential EINTR from transaction start. See 5694 * wait_reserve_ticket and the whole reservation callchain. 5695 */ 5696 if (for_reloc) 5697 trans = btrfs_join_transaction(tree_root); 5698 else 5699 trans = btrfs_start_transaction(tree_root, 0); 5700 if (IS_ERR(trans)) { 5701 err = PTR_ERR(trans); 5702 goto out_free; 5703 } 5704 5705 err = btrfs_run_delayed_items(trans); 5706 if (err) 5707 goto out_end_trans; 5708 5709 /* 5710 * This will help us catch people modifying the fs tree while we're 5711 * dropping it. It is unsafe to mess with the fs tree while it's being 5712 * dropped as we unlock the root node and parent nodes as we walk down 5713 * the tree, assuming nothing will change. If something does change 5714 * then we'll have stale information and drop references to blocks we've 5715 * already dropped. 5716 */ 5717 set_bit(BTRFS_ROOT_DELETING, &root->state); 5718 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5719 5720 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5721 level = btrfs_header_level(root->node); 5722 path->nodes[level] = btrfs_lock_root_node(root); 5723 path->slots[level] = 0; 5724 path->locks[level] = BTRFS_WRITE_LOCK; 5725 memset(&wc->update_progress, 0, 5726 sizeof(wc->update_progress)); 5727 } else { 5728 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5729 memcpy(&wc->update_progress, &key, 5730 sizeof(wc->update_progress)); 5731 5732 level = btrfs_root_drop_level(root_item); 5733 BUG_ON(level == 0); 5734 path->lowest_level = level; 5735 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5736 path->lowest_level = 0; 5737 if (ret < 0) { 5738 err = ret; 5739 goto out_end_trans; 5740 } 5741 WARN_ON(ret > 0); 5742 5743 /* 5744 * unlock our path, this is safe because only this 5745 * function is allowed to delete this snapshot 5746 */ 5747 btrfs_unlock_up_safe(path, 0); 5748 5749 level = btrfs_header_level(root->node); 5750 while (1) { 5751 btrfs_tree_lock(path->nodes[level]); 5752 path->locks[level] = BTRFS_WRITE_LOCK; 5753 5754 ret = btrfs_lookup_extent_info(trans, fs_info, 5755 path->nodes[level]->start, 5756 level, 1, &wc->refs[level], 5757 &wc->flags[level]); 5758 if (ret < 0) { 5759 err = ret; 5760 goto out_end_trans; 5761 } 5762 BUG_ON(wc->refs[level] == 0); 5763 5764 if (level == btrfs_root_drop_level(root_item)) 5765 break; 5766 5767 btrfs_tree_unlock(path->nodes[level]); 5768 path->locks[level] = 0; 5769 WARN_ON(wc->refs[level] != 1); 5770 level--; 5771 } 5772 } 5773 5774 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5775 wc->level = level; 5776 wc->shared_level = -1; 5777 wc->stage = DROP_REFERENCE; 5778 wc->update_ref = update_ref; 5779 wc->keep_locks = 0; 5780 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5781 5782 while (1) { 5783 5784 ret = walk_down_tree(trans, root, path, wc); 5785 if (ret < 0) { 5786 err = ret; 5787 break; 5788 } 5789 5790 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5791 if (ret < 0) { 5792 err = ret; 5793 break; 5794 } 5795 5796 if (ret > 0) { 5797 BUG_ON(wc->stage != DROP_REFERENCE); 5798 break; 5799 } 5800 5801 if (wc->stage == DROP_REFERENCE) { 5802 wc->drop_level = wc->level; 5803 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5804 &wc->drop_progress, 5805 path->slots[wc->drop_level]); 5806 } 5807 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5808 &wc->drop_progress); 5809 btrfs_set_root_drop_level(root_item, wc->drop_level); 5810 5811 BUG_ON(wc->level == 0); 5812 if (btrfs_should_end_transaction(trans) || 5813 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5814 ret = btrfs_update_root(trans, tree_root, 5815 &root->root_key, 5816 root_item); 5817 if (ret) { 5818 btrfs_abort_transaction(trans, ret); 5819 err = ret; 5820 goto out_end_trans; 5821 } 5822 5823 if (!is_reloc_root) 5824 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5825 5826 btrfs_end_transaction_throttle(trans); 5827 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 5828 btrfs_debug(fs_info, 5829 "drop snapshot early exit"); 5830 err = -EAGAIN; 5831 goto out_free; 5832 } 5833 5834 /* 5835 * Use join to avoid potential EINTR from transaction 5836 * start. See wait_reserve_ticket and the whole 5837 * reservation callchain. 5838 */ 5839 if (for_reloc) 5840 trans = btrfs_join_transaction(tree_root); 5841 else 5842 trans = btrfs_start_transaction(tree_root, 0); 5843 if (IS_ERR(trans)) { 5844 err = PTR_ERR(trans); 5845 goto out_free; 5846 } 5847 } 5848 } 5849 btrfs_release_path(path); 5850 if (err) 5851 goto out_end_trans; 5852 5853 ret = btrfs_del_root(trans, &root->root_key); 5854 if (ret) { 5855 btrfs_abort_transaction(trans, ret); 5856 err = ret; 5857 goto out_end_trans; 5858 } 5859 5860 if (!is_reloc_root) { 5861 ret = btrfs_find_root(tree_root, &root->root_key, path, 5862 NULL, NULL); 5863 if (ret < 0) { 5864 btrfs_abort_transaction(trans, ret); 5865 err = ret; 5866 goto out_end_trans; 5867 } else if (ret > 0) { 5868 /* if we fail to delete the orphan item this time 5869 * around, it'll get picked up the next time. 5870 * 5871 * The most common failure here is just -ENOENT. 5872 */ 5873 btrfs_del_orphan_item(trans, tree_root, 5874 root->root_key.objectid); 5875 } 5876 } 5877 5878 /* 5879 * This subvolume is going to be completely dropped, and won't be 5880 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 5881 * commit transaction time. So free it here manually. 5882 */ 5883 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 5884 btrfs_qgroup_free_meta_all_pertrans(root); 5885 5886 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 5887 btrfs_add_dropped_root(trans, root); 5888 else 5889 btrfs_put_root(root); 5890 root_dropped = true; 5891 out_end_trans: 5892 if (!is_reloc_root) 5893 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 5894 5895 btrfs_end_transaction_throttle(trans); 5896 out_free: 5897 kfree(wc); 5898 btrfs_free_path(path); 5899 out: 5900 /* 5901 * We were an unfinished drop root, check to see if there are any 5902 * pending, and if not clear and wake up any waiters. 5903 */ 5904 if (!err && unfinished_drop) 5905 btrfs_maybe_wake_unfinished_drop(fs_info); 5906 5907 /* 5908 * So if we need to stop dropping the snapshot for whatever reason we 5909 * need to make sure to add it back to the dead root list so that we 5910 * keep trying to do the work later. This also cleans up roots if we 5911 * don't have it in the radix (like when we recover after a power fail 5912 * or unmount) so we don't leak memory. 5913 */ 5914 if (!for_reloc && !root_dropped) 5915 btrfs_add_dead_root(root); 5916 return err; 5917 } 5918 5919 /* 5920 * drop subtree rooted at tree block 'node'. 5921 * 5922 * NOTE: this function will unlock and release tree block 'node' 5923 * only used by relocation code 5924 */ 5925 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 5926 struct btrfs_root *root, 5927 struct extent_buffer *node, 5928 struct extent_buffer *parent) 5929 { 5930 struct btrfs_fs_info *fs_info = root->fs_info; 5931 struct btrfs_path *path; 5932 struct walk_control *wc; 5933 int level; 5934 int parent_level; 5935 int ret = 0; 5936 int wret; 5937 5938 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 5939 5940 path = btrfs_alloc_path(); 5941 if (!path) 5942 return -ENOMEM; 5943 5944 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5945 if (!wc) { 5946 btrfs_free_path(path); 5947 return -ENOMEM; 5948 } 5949 5950 btrfs_assert_tree_write_locked(parent); 5951 parent_level = btrfs_header_level(parent); 5952 atomic_inc(&parent->refs); 5953 path->nodes[parent_level] = parent; 5954 path->slots[parent_level] = btrfs_header_nritems(parent); 5955 5956 btrfs_assert_tree_write_locked(node); 5957 level = btrfs_header_level(node); 5958 path->nodes[level] = node; 5959 path->slots[level] = 0; 5960 path->locks[level] = BTRFS_WRITE_LOCK; 5961 5962 wc->refs[parent_level] = 1; 5963 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5964 wc->level = level; 5965 wc->shared_level = -1; 5966 wc->stage = DROP_REFERENCE; 5967 wc->update_ref = 0; 5968 wc->keep_locks = 1; 5969 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5970 5971 while (1) { 5972 wret = walk_down_tree(trans, root, path, wc); 5973 if (wret < 0) { 5974 ret = wret; 5975 break; 5976 } 5977 5978 wret = walk_up_tree(trans, root, path, wc, parent_level); 5979 if (wret < 0) 5980 ret = wret; 5981 if (wret != 0) 5982 break; 5983 } 5984 5985 kfree(wc); 5986 btrfs_free_path(path); 5987 return ret; 5988 } 5989 5990 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 5991 u64 start, u64 end) 5992 { 5993 return unpin_extent_range(fs_info, start, end, false); 5994 } 5995 5996 /* 5997 * It used to be that old block groups would be left around forever. 5998 * Iterating over them would be enough to trim unused space. Since we 5999 * now automatically remove them, we also need to iterate over unallocated 6000 * space. 6001 * 6002 * We don't want a transaction for this since the discard may take a 6003 * substantial amount of time. We don't require that a transaction be 6004 * running, but we do need to take a running transaction into account 6005 * to ensure that we're not discarding chunks that were released or 6006 * allocated in the current transaction. 6007 * 6008 * Holding the chunks lock will prevent other threads from allocating 6009 * or releasing chunks, but it won't prevent a running transaction 6010 * from committing and releasing the memory that the pending chunks 6011 * list head uses. For that, we need to take a reference to the 6012 * transaction and hold the commit root sem. We only need to hold 6013 * it while performing the free space search since we have already 6014 * held back allocations. 6015 */ 6016 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6017 { 6018 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6019 int ret; 6020 6021 *trimmed = 0; 6022 6023 /* Discard not supported = nothing to do. */ 6024 if (!bdev_max_discard_sectors(device->bdev)) 6025 return 0; 6026 6027 /* Not writable = nothing to do. */ 6028 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6029 return 0; 6030 6031 /* No free space = nothing to do. */ 6032 if (device->total_bytes <= device->bytes_used) 6033 return 0; 6034 6035 ret = 0; 6036 6037 while (1) { 6038 struct btrfs_fs_info *fs_info = device->fs_info; 6039 u64 bytes; 6040 6041 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6042 if (ret) 6043 break; 6044 6045 find_first_clear_extent_bit(&device->alloc_state, start, 6046 &start, &end, 6047 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6048 6049 /* Check if there are any CHUNK_* bits left */ 6050 if (start > device->total_bytes) { 6051 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6052 btrfs_warn_in_rcu(fs_info, 6053 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6054 start, end - start + 1, 6055 btrfs_dev_name(device), 6056 device->total_bytes); 6057 mutex_unlock(&fs_info->chunk_mutex); 6058 ret = 0; 6059 break; 6060 } 6061 6062 /* Ensure we skip the reserved space on each device. */ 6063 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6064 6065 /* 6066 * If find_first_clear_extent_bit find a range that spans the 6067 * end of the device it will set end to -1, in this case it's up 6068 * to the caller to trim the value to the size of the device. 6069 */ 6070 end = min(end, device->total_bytes - 1); 6071 6072 len = end - start + 1; 6073 6074 /* We didn't find any extents */ 6075 if (!len) { 6076 mutex_unlock(&fs_info->chunk_mutex); 6077 ret = 0; 6078 break; 6079 } 6080 6081 ret = btrfs_issue_discard(device->bdev, start, len, 6082 &bytes); 6083 if (!ret) 6084 set_extent_bits(&device->alloc_state, start, 6085 start + bytes - 1, 6086 CHUNK_TRIMMED); 6087 mutex_unlock(&fs_info->chunk_mutex); 6088 6089 if (ret) 6090 break; 6091 6092 start += len; 6093 *trimmed += bytes; 6094 6095 if (fatal_signal_pending(current)) { 6096 ret = -ERESTARTSYS; 6097 break; 6098 } 6099 6100 cond_resched(); 6101 } 6102 6103 return ret; 6104 } 6105 6106 /* 6107 * Trim the whole filesystem by: 6108 * 1) trimming the free space in each block group 6109 * 2) trimming the unallocated space on each device 6110 * 6111 * This will also continue trimming even if a block group or device encounters 6112 * an error. The return value will be the last error, or 0 if nothing bad 6113 * happens. 6114 */ 6115 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6116 { 6117 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6118 struct btrfs_block_group *cache = NULL; 6119 struct btrfs_device *device; 6120 u64 group_trimmed; 6121 u64 range_end = U64_MAX; 6122 u64 start; 6123 u64 end; 6124 u64 trimmed = 0; 6125 u64 bg_failed = 0; 6126 u64 dev_failed = 0; 6127 int bg_ret = 0; 6128 int dev_ret = 0; 6129 int ret = 0; 6130 6131 if (range->start == U64_MAX) 6132 return -EINVAL; 6133 6134 /* 6135 * Check range overflow if range->len is set. 6136 * The default range->len is U64_MAX. 6137 */ 6138 if (range->len != U64_MAX && 6139 check_add_overflow(range->start, range->len, &range_end)) 6140 return -EINVAL; 6141 6142 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6143 for (; cache; cache = btrfs_next_block_group(cache)) { 6144 if (cache->start >= range_end) { 6145 btrfs_put_block_group(cache); 6146 break; 6147 } 6148 6149 start = max(range->start, cache->start); 6150 end = min(range_end, cache->start + cache->length); 6151 6152 if (end - start >= range->minlen) { 6153 if (!btrfs_block_group_done(cache)) { 6154 ret = btrfs_cache_block_group(cache, true); 6155 if (ret) { 6156 bg_failed++; 6157 bg_ret = ret; 6158 continue; 6159 } 6160 } 6161 ret = btrfs_trim_block_group(cache, 6162 &group_trimmed, 6163 start, 6164 end, 6165 range->minlen); 6166 6167 trimmed += group_trimmed; 6168 if (ret) { 6169 bg_failed++; 6170 bg_ret = ret; 6171 continue; 6172 } 6173 } 6174 } 6175 6176 if (bg_failed) 6177 btrfs_warn(fs_info, 6178 "failed to trim %llu block group(s), last error %d", 6179 bg_failed, bg_ret); 6180 6181 mutex_lock(&fs_devices->device_list_mutex); 6182 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6183 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6184 continue; 6185 6186 ret = btrfs_trim_free_extents(device, &group_trimmed); 6187 if (ret) { 6188 dev_failed++; 6189 dev_ret = ret; 6190 break; 6191 } 6192 6193 trimmed += group_trimmed; 6194 } 6195 mutex_unlock(&fs_devices->device_list_mutex); 6196 6197 if (dev_failed) 6198 btrfs_warn(fs_info, 6199 "failed to trim %llu device(s), last error %d", 6200 dev_failed, dev_ret); 6201 range->len = trimmed; 6202 if (bg_ret) 6203 return bg_ret; 6204 return dev_ret; 6205 } 6206