xref: /linux/fs/btrfs/extent-tree.c (revision 2fe05e1139a555ae91f00a812cb9520e7d3022ab)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41 
42 #undef SCRAMBLE_DELAYED_REFS
43 
44 /*
45  * control flags for do_chunk_alloc's force field
46  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47  * if we really need one.
48  *
49  * CHUNK_ALLOC_LIMITED means to only try and allocate one
50  * if we have very few chunks already allocated.  This is
51  * used as part of the clustering code to help make sure
52  * we have a good pool of storage to cluster in, without
53  * filling the FS with empty chunks
54  *
55  * CHUNK_ALLOC_FORCE means it must try to allocate one
56  *
57  */
58 enum {
59 	CHUNK_ALLOC_NO_FORCE = 0,
60 	CHUNK_ALLOC_LIMITED = 1,
61 	CHUNK_ALLOC_FORCE = 2,
62 };
63 
64 static int update_block_group(struct btrfs_trans_handle *trans,
65 			      struct btrfs_fs_info *fs_info, u64 bytenr,
66 			      u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68 			       struct btrfs_fs_info *fs_info,
69 				struct btrfs_delayed_ref_node *node, u64 parent,
70 				u64 root_objectid, u64 owner_objectid,
71 				u64 owner_offset, int refs_to_drop,
72 				struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74 				    struct extent_buffer *leaf,
75 				    struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77 				      struct btrfs_fs_info *fs_info,
78 				      u64 parent, u64 root_objectid,
79 				      u64 flags, u64 owner, u64 offset,
80 				      struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82 				     struct btrfs_fs_info *fs_info,
83 				     u64 parent, u64 root_objectid,
84 				     u64 flags, struct btrfs_disk_key *key,
85 				     int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87 			  struct btrfs_fs_info *fs_info, u64 flags,
88 			  int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90 			 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 			    struct btrfs_space_info *info, u64 bytes,
93 			    int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95 				    u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97 				     u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99 			       u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101 				    struct btrfs_space_info *space_info,
102 				    u64 orig_bytes,
103 				    enum btrfs_reserve_flush_enum flush,
104 				    bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 				     struct btrfs_space_info *space_info,
107 				     u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 				     struct btrfs_space_info *space_info,
110 				     u64 num_bytes);
111 
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 
136 		/*
137 		 * If not empty, someone is still holding mutex of
138 		 * full_stripe_lock, which can only be released by caller.
139 		 * And it will definitely cause use-after-free when caller
140 		 * tries to release full stripe lock.
141 		 *
142 		 * No better way to resolve, but only to warn.
143 		 */
144 		WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145 		kfree(cache->free_space_ctl);
146 		kfree(cache);
147 	}
148 }
149 
150 /*
151  * this adds the block group to the fs_info rb tree for the block group
152  * cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 				struct btrfs_block_group_cache *block_group)
156 {
157 	struct rb_node **p;
158 	struct rb_node *parent = NULL;
159 	struct btrfs_block_group_cache *cache;
160 
161 	spin_lock(&info->block_group_cache_lock);
162 	p = &info->block_group_cache_tree.rb_node;
163 
164 	while (*p) {
165 		parent = *p;
166 		cache = rb_entry(parent, struct btrfs_block_group_cache,
167 				 cache_node);
168 		if (block_group->key.objectid < cache->key.objectid) {
169 			p = &(*p)->rb_left;
170 		} else if (block_group->key.objectid > cache->key.objectid) {
171 			p = &(*p)->rb_right;
172 		} else {
173 			spin_unlock(&info->block_group_cache_lock);
174 			return -EEXIST;
175 		}
176 	}
177 
178 	rb_link_node(&block_group->cache_node, parent, p);
179 	rb_insert_color(&block_group->cache_node,
180 			&info->block_group_cache_tree);
181 
182 	if (info->first_logical_byte > block_group->key.objectid)
183 		info->first_logical_byte = block_group->key.objectid;
184 
185 	spin_unlock(&info->block_group_cache_lock);
186 
187 	return 0;
188 }
189 
190 /*
191  * This will return the block group at or after bytenr if contains is 0, else
192  * it will return the block group that contains the bytenr
193  */
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196 			      int contains)
197 {
198 	struct btrfs_block_group_cache *cache, *ret = NULL;
199 	struct rb_node *n;
200 	u64 end, start;
201 
202 	spin_lock(&info->block_group_cache_lock);
203 	n = info->block_group_cache_tree.rb_node;
204 
205 	while (n) {
206 		cache = rb_entry(n, struct btrfs_block_group_cache,
207 				 cache_node);
208 		end = cache->key.objectid + cache->key.offset - 1;
209 		start = cache->key.objectid;
210 
211 		if (bytenr < start) {
212 			if (!contains && (!ret || start < ret->key.objectid))
213 				ret = cache;
214 			n = n->rb_left;
215 		} else if (bytenr > start) {
216 			if (contains && bytenr <= end) {
217 				ret = cache;
218 				break;
219 			}
220 			n = n->rb_right;
221 		} else {
222 			ret = cache;
223 			break;
224 		}
225 	}
226 	if (ret) {
227 		btrfs_get_block_group(ret);
228 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229 			info->first_logical_byte = ret->key.objectid;
230 	}
231 	spin_unlock(&info->block_group_cache_lock);
232 
233 	return ret;
234 }
235 
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237 			       u64 start, u64 num_bytes)
238 {
239 	u64 end = start + num_bytes - 1;
240 	set_extent_bits(&fs_info->freed_extents[0],
241 			start, end, EXTENT_UPTODATE);
242 	set_extent_bits(&fs_info->freed_extents[1],
243 			start, end, EXTENT_UPTODATE);
244 	return 0;
245 }
246 
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248 				  struct btrfs_block_group_cache *cache)
249 {
250 	u64 start, end;
251 
252 	start = cache->key.objectid;
253 	end = start + cache->key.offset - 1;
254 
255 	clear_extent_bits(&fs_info->freed_extents[0],
256 			  start, end, EXTENT_UPTODATE);
257 	clear_extent_bits(&fs_info->freed_extents[1],
258 			  start, end, EXTENT_UPTODATE);
259 }
260 
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262 				 struct btrfs_block_group_cache *cache)
263 {
264 	u64 bytenr;
265 	u64 *logical;
266 	int stripe_len;
267 	int i, nr, ret;
268 
269 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271 		cache->bytes_super += stripe_len;
272 		ret = add_excluded_extent(fs_info, cache->key.objectid,
273 					  stripe_len);
274 		if (ret)
275 			return ret;
276 	}
277 
278 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279 		bytenr = btrfs_sb_offset(i);
280 		ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281 				       bytenr, 0, &logical, &nr, &stripe_len);
282 		if (ret)
283 			return ret;
284 
285 		while (nr--) {
286 			u64 start, len;
287 
288 			if (logical[nr] > cache->key.objectid +
289 			    cache->key.offset)
290 				continue;
291 
292 			if (logical[nr] + stripe_len <= cache->key.objectid)
293 				continue;
294 
295 			start = logical[nr];
296 			if (start < cache->key.objectid) {
297 				start = cache->key.objectid;
298 				len = (logical[nr] + stripe_len) - start;
299 			} else {
300 				len = min_t(u64, stripe_len,
301 					    cache->key.objectid +
302 					    cache->key.offset - start);
303 			}
304 
305 			cache->bytes_super += len;
306 			ret = add_excluded_extent(fs_info, start, len);
307 			if (ret) {
308 				kfree(logical);
309 				return ret;
310 			}
311 		}
312 
313 		kfree(logical);
314 	}
315 	return 0;
316 }
317 
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321 	struct btrfs_caching_control *ctl;
322 
323 	spin_lock(&cache->lock);
324 	if (!cache->caching_ctl) {
325 		spin_unlock(&cache->lock);
326 		return NULL;
327 	}
328 
329 	ctl = cache->caching_ctl;
330 	refcount_inc(&ctl->count);
331 	spin_unlock(&cache->lock);
332 	return ctl;
333 }
334 
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 	if (refcount_dec_and_test(&ctl->count))
338 		kfree(ctl);
339 }
340 
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344 	struct btrfs_fs_info *fs_info = block_group->fs_info;
345 	u64 start = block_group->key.objectid;
346 	u64 len = block_group->key.offset;
347 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348 		fs_info->nodesize : fs_info->sectorsize;
349 	u64 step = chunk << 1;
350 
351 	while (len > chunk) {
352 		btrfs_remove_free_space(block_group, start, chunk);
353 		start += step;
354 		if (len < step)
355 			len = 0;
356 		else
357 			len -= step;
358 	}
359 }
360 #endif
361 
362 /*
363  * this is only called by cache_block_group, since we could have freed extents
364  * we need to check the pinned_extents for any extents that can't be used yet
365  * since their free space will be released as soon as the transaction commits.
366  */
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368 		       struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370 	u64 extent_start, extent_end, size, total_added = 0;
371 	int ret;
372 
373 	while (start < end) {
374 		ret = find_first_extent_bit(info->pinned_extents, start,
375 					    &extent_start, &extent_end,
376 					    EXTENT_DIRTY | EXTENT_UPTODATE,
377 					    NULL);
378 		if (ret)
379 			break;
380 
381 		if (extent_start <= start) {
382 			start = extent_end + 1;
383 		} else if (extent_start > start && extent_start < end) {
384 			size = extent_start - start;
385 			total_added += size;
386 			ret = btrfs_add_free_space(block_group, start,
387 						   size);
388 			BUG_ON(ret); /* -ENOMEM or logic error */
389 			start = extent_end + 1;
390 		} else {
391 			break;
392 		}
393 	}
394 
395 	if (start < end) {
396 		size = end - start;
397 		total_added += size;
398 		ret = btrfs_add_free_space(block_group, start, size);
399 		BUG_ON(ret); /* -ENOMEM or logic error */
400 	}
401 
402 	return total_added;
403 }
404 
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407 	struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408 	struct btrfs_fs_info *fs_info = block_group->fs_info;
409 	struct btrfs_root *extent_root = fs_info->extent_root;
410 	struct btrfs_path *path;
411 	struct extent_buffer *leaf;
412 	struct btrfs_key key;
413 	u64 total_found = 0;
414 	u64 last = 0;
415 	u32 nritems;
416 	int ret;
417 	bool wakeup = true;
418 
419 	path = btrfs_alloc_path();
420 	if (!path)
421 		return -ENOMEM;
422 
423 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424 
425 #ifdef CONFIG_BTRFS_DEBUG
426 	/*
427 	 * If we're fragmenting we don't want to make anybody think we can
428 	 * allocate from this block group until we've had a chance to fragment
429 	 * the free space.
430 	 */
431 	if (btrfs_should_fragment_free_space(block_group))
432 		wakeup = false;
433 #endif
434 	/*
435 	 * We don't want to deadlock with somebody trying to allocate a new
436 	 * extent for the extent root while also trying to search the extent
437 	 * root to add free space.  So we skip locking and search the commit
438 	 * root, since its read-only
439 	 */
440 	path->skip_locking = 1;
441 	path->search_commit_root = 1;
442 	path->reada = READA_FORWARD;
443 
444 	key.objectid = last;
445 	key.offset = 0;
446 	key.type = BTRFS_EXTENT_ITEM_KEY;
447 
448 next:
449 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450 	if (ret < 0)
451 		goto out;
452 
453 	leaf = path->nodes[0];
454 	nritems = btrfs_header_nritems(leaf);
455 
456 	while (1) {
457 		if (btrfs_fs_closing(fs_info) > 1) {
458 			last = (u64)-1;
459 			break;
460 		}
461 
462 		if (path->slots[0] < nritems) {
463 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464 		} else {
465 			ret = find_next_key(path, 0, &key);
466 			if (ret)
467 				break;
468 
469 			if (need_resched() ||
470 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
471 				if (wakeup)
472 					caching_ctl->progress = last;
473 				btrfs_release_path(path);
474 				up_read(&fs_info->commit_root_sem);
475 				mutex_unlock(&caching_ctl->mutex);
476 				cond_resched();
477 				mutex_lock(&caching_ctl->mutex);
478 				down_read(&fs_info->commit_root_sem);
479 				goto next;
480 			}
481 
482 			ret = btrfs_next_leaf(extent_root, path);
483 			if (ret < 0)
484 				goto out;
485 			if (ret)
486 				break;
487 			leaf = path->nodes[0];
488 			nritems = btrfs_header_nritems(leaf);
489 			continue;
490 		}
491 
492 		if (key.objectid < last) {
493 			key.objectid = last;
494 			key.offset = 0;
495 			key.type = BTRFS_EXTENT_ITEM_KEY;
496 
497 			if (wakeup)
498 				caching_ctl->progress = last;
499 			btrfs_release_path(path);
500 			goto next;
501 		}
502 
503 		if (key.objectid < block_group->key.objectid) {
504 			path->slots[0]++;
505 			continue;
506 		}
507 
508 		if (key.objectid >= block_group->key.objectid +
509 		    block_group->key.offset)
510 			break;
511 
512 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513 		    key.type == BTRFS_METADATA_ITEM_KEY) {
514 			total_found += add_new_free_space(block_group,
515 							  fs_info, last,
516 							  key.objectid);
517 			if (key.type == BTRFS_METADATA_ITEM_KEY)
518 				last = key.objectid +
519 					fs_info->nodesize;
520 			else
521 				last = key.objectid + key.offset;
522 
523 			if (total_found > CACHING_CTL_WAKE_UP) {
524 				total_found = 0;
525 				if (wakeup)
526 					wake_up(&caching_ctl->wait);
527 			}
528 		}
529 		path->slots[0]++;
530 	}
531 	ret = 0;
532 
533 	total_found += add_new_free_space(block_group, fs_info, last,
534 					  block_group->key.objectid +
535 					  block_group->key.offset);
536 	caching_ctl->progress = (u64)-1;
537 
538 out:
539 	btrfs_free_path(path);
540 	return ret;
541 }
542 
543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545 	struct btrfs_block_group_cache *block_group;
546 	struct btrfs_fs_info *fs_info;
547 	struct btrfs_caching_control *caching_ctl;
548 	struct btrfs_root *extent_root;
549 	int ret;
550 
551 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
552 	block_group = caching_ctl->block_group;
553 	fs_info = block_group->fs_info;
554 	extent_root = fs_info->extent_root;
555 
556 	mutex_lock(&caching_ctl->mutex);
557 	down_read(&fs_info->commit_root_sem);
558 
559 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560 		ret = load_free_space_tree(caching_ctl);
561 	else
562 		ret = load_extent_tree_free(caching_ctl);
563 
564 	spin_lock(&block_group->lock);
565 	block_group->caching_ctl = NULL;
566 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567 	spin_unlock(&block_group->lock);
568 
569 #ifdef CONFIG_BTRFS_DEBUG
570 	if (btrfs_should_fragment_free_space(block_group)) {
571 		u64 bytes_used;
572 
573 		spin_lock(&block_group->space_info->lock);
574 		spin_lock(&block_group->lock);
575 		bytes_used = block_group->key.offset -
576 			btrfs_block_group_used(&block_group->item);
577 		block_group->space_info->bytes_used += bytes_used >> 1;
578 		spin_unlock(&block_group->lock);
579 		spin_unlock(&block_group->space_info->lock);
580 		fragment_free_space(block_group);
581 	}
582 #endif
583 
584 	caching_ctl->progress = (u64)-1;
585 
586 	up_read(&fs_info->commit_root_sem);
587 	free_excluded_extents(fs_info, block_group);
588 	mutex_unlock(&caching_ctl->mutex);
589 
590 	wake_up(&caching_ctl->wait);
591 
592 	put_caching_control(caching_ctl);
593 	btrfs_put_block_group(block_group);
594 }
595 
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597 			     int load_cache_only)
598 {
599 	DEFINE_WAIT(wait);
600 	struct btrfs_fs_info *fs_info = cache->fs_info;
601 	struct btrfs_caching_control *caching_ctl;
602 	int ret = 0;
603 
604 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605 	if (!caching_ctl)
606 		return -ENOMEM;
607 
608 	INIT_LIST_HEAD(&caching_ctl->list);
609 	mutex_init(&caching_ctl->mutex);
610 	init_waitqueue_head(&caching_ctl->wait);
611 	caching_ctl->block_group = cache;
612 	caching_ctl->progress = cache->key.objectid;
613 	refcount_set(&caching_ctl->count, 1);
614 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615 			caching_thread, NULL, NULL);
616 
617 	spin_lock(&cache->lock);
618 	/*
619 	 * This should be a rare occasion, but this could happen I think in the
620 	 * case where one thread starts to load the space cache info, and then
621 	 * some other thread starts a transaction commit which tries to do an
622 	 * allocation while the other thread is still loading the space cache
623 	 * info.  The previous loop should have kept us from choosing this block
624 	 * group, but if we've moved to the state where we will wait on caching
625 	 * block groups we need to first check if we're doing a fast load here,
626 	 * so we can wait for it to finish, otherwise we could end up allocating
627 	 * from a block group who's cache gets evicted for one reason or
628 	 * another.
629 	 */
630 	while (cache->cached == BTRFS_CACHE_FAST) {
631 		struct btrfs_caching_control *ctl;
632 
633 		ctl = cache->caching_ctl;
634 		refcount_inc(&ctl->count);
635 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636 		spin_unlock(&cache->lock);
637 
638 		schedule();
639 
640 		finish_wait(&ctl->wait, &wait);
641 		put_caching_control(ctl);
642 		spin_lock(&cache->lock);
643 	}
644 
645 	if (cache->cached != BTRFS_CACHE_NO) {
646 		spin_unlock(&cache->lock);
647 		kfree(caching_ctl);
648 		return 0;
649 	}
650 	WARN_ON(cache->caching_ctl);
651 	cache->caching_ctl = caching_ctl;
652 	cache->cached = BTRFS_CACHE_FAST;
653 	spin_unlock(&cache->lock);
654 
655 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656 		mutex_lock(&caching_ctl->mutex);
657 		ret = load_free_space_cache(fs_info, cache);
658 
659 		spin_lock(&cache->lock);
660 		if (ret == 1) {
661 			cache->caching_ctl = NULL;
662 			cache->cached = BTRFS_CACHE_FINISHED;
663 			cache->last_byte_to_unpin = (u64)-1;
664 			caching_ctl->progress = (u64)-1;
665 		} else {
666 			if (load_cache_only) {
667 				cache->caching_ctl = NULL;
668 				cache->cached = BTRFS_CACHE_NO;
669 			} else {
670 				cache->cached = BTRFS_CACHE_STARTED;
671 				cache->has_caching_ctl = 1;
672 			}
673 		}
674 		spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676 		if (ret == 1 &&
677 		    btrfs_should_fragment_free_space(cache)) {
678 			u64 bytes_used;
679 
680 			spin_lock(&cache->space_info->lock);
681 			spin_lock(&cache->lock);
682 			bytes_used = cache->key.offset -
683 				btrfs_block_group_used(&cache->item);
684 			cache->space_info->bytes_used += bytes_used >> 1;
685 			spin_unlock(&cache->lock);
686 			spin_unlock(&cache->space_info->lock);
687 			fragment_free_space(cache);
688 		}
689 #endif
690 		mutex_unlock(&caching_ctl->mutex);
691 
692 		wake_up(&caching_ctl->wait);
693 		if (ret == 1) {
694 			put_caching_control(caching_ctl);
695 			free_excluded_extents(fs_info, cache);
696 			return 0;
697 		}
698 	} else {
699 		/*
700 		 * We're either using the free space tree or no caching at all.
701 		 * Set cached to the appropriate value and wakeup any waiters.
702 		 */
703 		spin_lock(&cache->lock);
704 		if (load_cache_only) {
705 			cache->caching_ctl = NULL;
706 			cache->cached = BTRFS_CACHE_NO;
707 		} else {
708 			cache->cached = BTRFS_CACHE_STARTED;
709 			cache->has_caching_ctl = 1;
710 		}
711 		spin_unlock(&cache->lock);
712 		wake_up(&caching_ctl->wait);
713 	}
714 
715 	if (load_cache_only) {
716 		put_caching_control(caching_ctl);
717 		return 0;
718 	}
719 
720 	down_write(&fs_info->commit_root_sem);
721 	refcount_inc(&caching_ctl->count);
722 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723 	up_write(&fs_info->commit_root_sem);
724 
725 	btrfs_get_block_group(cache);
726 
727 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728 
729 	return ret;
730 }
731 
732 /*
733  * return the block group that starts at or after bytenr
734  */
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738 	return block_group_cache_tree_search(info, bytenr, 0);
739 }
740 
741 /*
742  * return the block group that contains the given bytenr
743  */
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745 						 struct btrfs_fs_info *info,
746 						 u64 bytenr)
747 {
748 	return block_group_cache_tree_search(info, bytenr, 1);
749 }
750 
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752 						  u64 flags)
753 {
754 	struct list_head *head = &info->space_info;
755 	struct btrfs_space_info *found;
756 
757 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758 
759 	rcu_read_lock();
760 	list_for_each_entry_rcu(found, head, list) {
761 		if (found->flags & flags) {
762 			rcu_read_unlock();
763 			return found;
764 		}
765 	}
766 	rcu_read_unlock();
767 	return NULL;
768 }
769 
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771 			     u64 owner, u64 root_objectid)
772 {
773 	struct btrfs_space_info *space_info;
774 	u64 flags;
775 
776 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
779 		else
780 			flags = BTRFS_BLOCK_GROUP_METADATA;
781 	} else {
782 		flags = BTRFS_BLOCK_GROUP_DATA;
783 	}
784 
785 	space_info = __find_space_info(fs_info, flags);
786 	ASSERT(space_info);
787 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788 }
789 
790 /*
791  * after adding space to the filesystem, we need to clear the full flags
792  * on all the space infos.
793  */
794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795 {
796 	struct list_head *head = &info->space_info;
797 	struct btrfs_space_info *found;
798 
799 	rcu_read_lock();
800 	list_for_each_entry_rcu(found, head, list)
801 		found->full = 0;
802 	rcu_read_unlock();
803 }
804 
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
807 {
808 	int ret;
809 	struct btrfs_key key;
810 	struct btrfs_path *path;
811 
812 	path = btrfs_alloc_path();
813 	if (!path)
814 		return -ENOMEM;
815 
816 	key.objectid = start;
817 	key.offset = len;
818 	key.type = BTRFS_EXTENT_ITEM_KEY;
819 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820 	btrfs_free_path(path);
821 	return ret;
822 }
823 
824 /*
825  * helper function to lookup reference count and flags of a tree block.
826  *
827  * the head node for delayed ref is used to store the sum of all the
828  * reference count modifications queued up in the rbtree. the head
829  * node may also store the extent flags to set. This way you can check
830  * to see what the reference count and extent flags would be if all of
831  * the delayed refs are not processed.
832  */
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834 			     struct btrfs_fs_info *fs_info, u64 bytenr,
835 			     u64 offset, int metadata, u64 *refs, u64 *flags)
836 {
837 	struct btrfs_delayed_ref_head *head;
838 	struct btrfs_delayed_ref_root *delayed_refs;
839 	struct btrfs_path *path;
840 	struct btrfs_extent_item *ei;
841 	struct extent_buffer *leaf;
842 	struct btrfs_key key;
843 	u32 item_size;
844 	u64 num_refs;
845 	u64 extent_flags;
846 	int ret;
847 
848 	/*
849 	 * If we don't have skinny metadata, don't bother doing anything
850 	 * different
851 	 */
852 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853 		offset = fs_info->nodesize;
854 		metadata = 0;
855 	}
856 
857 	path = btrfs_alloc_path();
858 	if (!path)
859 		return -ENOMEM;
860 
861 	if (!trans) {
862 		path->skip_locking = 1;
863 		path->search_commit_root = 1;
864 	}
865 
866 search_again:
867 	key.objectid = bytenr;
868 	key.offset = offset;
869 	if (metadata)
870 		key.type = BTRFS_METADATA_ITEM_KEY;
871 	else
872 		key.type = BTRFS_EXTENT_ITEM_KEY;
873 
874 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
875 	if (ret < 0)
876 		goto out_free;
877 
878 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879 		if (path->slots[0]) {
880 			path->slots[0]--;
881 			btrfs_item_key_to_cpu(path->nodes[0], &key,
882 					      path->slots[0]);
883 			if (key.objectid == bytenr &&
884 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
885 			    key.offset == fs_info->nodesize)
886 				ret = 0;
887 		}
888 	}
889 
890 	if (ret == 0) {
891 		leaf = path->nodes[0];
892 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893 		if (item_size >= sizeof(*ei)) {
894 			ei = btrfs_item_ptr(leaf, path->slots[0],
895 					    struct btrfs_extent_item);
896 			num_refs = btrfs_extent_refs(leaf, ei);
897 			extent_flags = btrfs_extent_flags(leaf, ei);
898 		} else {
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900 			struct btrfs_extent_item_v0 *ei0;
901 			BUG_ON(item_size != sizeof(*ei0));
902 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
903 					     struct btrfs_extent_item_v0);
904 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
905 			/* FIXME: this isn't correct for data */
906 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 #else
908 			BUG();
909 #endif
910 		}
911 		BUG_ON(num_refs == 0);
912 	} else {
913 		num_refs = 0;
914 		extent_flags = 0;
915 		ret = 0;
916 	}
917 
918 	if (!trans)
919 		goto out;
920 
921 	delayed_refs = &trans->transaction->delayed_refs;
922 	spin_lock(&delayed_refs->lock);
923 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
924 	if (head) {
925 		if (!mutex_trylock(&head->mutex)) {
926 			refcount_inc(&head->node.refs);
927 			spin_unlock(&delayed_refs->lock);
928 
929 			btrfs_release_path(path);
930 
931 			/*
932 			 * Mutex was contended, block until it's released and try
933 			 * again
934 			 */
935 			mutex_lock(&head->mutex);
936 			mutex_unlock(&head->mutex);
937 			btrfs_put_delayed_ref(&head->node);
938 			goto search_again;
939 		}
940 		spin_lock(&head->lock);
941 		if (head->extent_op && head->extent_op->update_flags)
942 			extent_flags |= head->extent_op->flags_to_set;
943 		else
944 			BUG_ON(num_refs == 0);
945 
946 		num_refs += head->node.ref_mod;
947 		spin_unlock(&head->lock);
948 		mutex_unlock(&head->mutex);
949 	}
950 	spin_unlock(&delayed_refs->lock);
951 out:
952 	WARN_ON(num_refs == 0);
953 	if (refs)
954 		*refs = num_refs;
955 	if (flags)
956 		*flags = extent_flags;
957 out_free:
958 	btrfs_free_path(path);
959 	return ret;
960 }
961 
962 /*
963  * Back reference rules.  Back refs have three main goals:
964  *
965  * 1) differentiate between all holders of references to an extent so that
966  *    when a reference is dropped we can make sure it was a valid reference
967  *    before freeing the extent.
968  *
969  * 2) Provide enough information to quickly find the holders of an extent
970  *    if we notice a given block is corrupted or bad.
971  *
972  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973  *    maintenance.  This is actually the same as #2, but with a slightly
974  *    different use case.
975  *
976  * There are two kinds of back refs. The implicit back refs is optimized
977  * for pointers in non-shared tree blocks. For a given pointer in a block,
978  * back refs of this kind provide information about the block's owner tree
979  * and the pointer's key. These information allow us to find the block by
980  * b-tree searching. The full back refs is for pointers in tree blocks not
981  * referenced by their owner trees. The location of tree block is recorded
982  * in the back refs. Actually the full back refs is generic, and can be
983  * used in all cases the implicit back refs is used. The major shortcoming
984  * of the full back refs is its overhead. Every time a tree block gets
985  * COWed, we have to update back refs entry for all pointers in it.
986  *
987  * For a newly allocated tree block, we use implicit back refs for
988  * pointers in it. This means most tree related operations only involve
989  * implicit back refs. For a tree block created in old transaction, the
990  * only way to drop a reference to it is COW it. So we can detect the
991  * event that tree block loses its owner tree's reference and do the
992  * back refs conversion.
993  *
994  * When a tree block is COWed through a tree, there are four cases:
995  *
996  * The reference count of the block is one and the tree is the block's
997  * owner tree. Nothing to do in this case.
998  *
999  * The reference count of the block is one and the tree is not the
1000  * block's owner tree. In this case, full back refs is used for pointers
1001  * in the block. Remove these full back refs, add implicit back refs for
1002  * every pointers in the new block.
1003  *
1004  * The reference count of the block is greater than one and the tree is
1005  * the block's owner tree. In this case, implicit back refs is used for
1006  * pointers in the block. Add full back refs for every pointers in the
1007  * block, increase lower level extents' reference counts. The original
1008  * implicit back refs are entailed to the new block.
1009  *
1010  * The reference count of the block is greater than one and the tree is
1011  * not the block's owner tree. Add implicit back refs for every pointer in
1012  * the new block, increase lower level extents' reference count.
1013  *
1014  * Back Reference Key composing:
1015  *
1016  * The key objectid corresponds to the first byte in the extent,
1017  * The key type is used to differentiate between types of back refs.
1018  * There are different meanings of the key offset for different types
1019  * of back refs.
1020  *
1021  * File extents can be referenced by:
1022  *
1023  * - multiple snapshots, subvolumes, or different generations in one subvol
1024  * - different files inside a single subvolume
1025  * - different offsets inside a file (bookend extents in file.c)
1026  *
1027  * The extent ref structure for the implicit back refs has fields for:
1028  *
1029  * - Objectid of the subvolume root
1030  * - objectid of the file holding the reference
1031  * - original offset in the file
1032  * - how many bookend extents
1033  *
1034  * The key offset for the implicit back refs is hash of the first
1035  * three fields.
1036  *
1037  * The extent ref structure for the full back refs has field for:
1038  *
1039  * - number of pointers in the tree leaf
1040  *
1041  * The key offset for the implicit back refs is the first byte of
1042  * the tree leaf
1043  *
1044  * When a file extent is allocated, The implicit back refs is used.
1045  * the fields are filled in:
1046  *
1047  *     (root_key.objectid, inode objectid, offset in file, 1)
1048  *
1049  * When a file extent is removed file truncation, we find the
1050  * corresponding implicit back refs and check the following fields:
1051  *
1052  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1053  *
1054  * Btree extents can be referenced by:
1055  *
1056  * - Different subvolumes
1057  *
1058  * Both the implicit back refs and the full back refs for tree blocks
1059  * only consist of key. The key offset for the implicit back refs is
1060  * objectid of block's owner tree. The key offset for the full back refs
1061  * is the first byte of parent block.
1062  *
1063  * When implicit back refs is used, information about the lowest key and
1064  * level of the tree block are required. These information are stored in
1065  * tree block info structure.
1066  */
1067 
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070 				  struct btrfs_fs_info *fs_info,
1071 				  struct btrfs_path *path,
1072 				  u64 owner, u32 extra_size)
1073 {
1074 	struct btrfs_root *root = fs_info->extent_root;
1075 	struct btrfs_extent_item *item;
1076 	struct btrfs_extent_item_v0 *ei0;
1077 	struct btrfs_extent_ref_v0 *ref0;
1078 	struct btrfs_tree_block_info *bi;
1079 	struct extent_buffer *leaf;
1080 	struct btrfs_key key;
1081 	struct btrfs_key found_key;
1082 	u32 new_size = sizeof(*item);
1083 	u64 refs;
1084 	int ret;
1085 
1086 	leaf = path->nodes[0];
1087 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088 
1089 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091 			     struct btrfs_extent_item_v0);
1092 	refs = btrfs_extent_refs_v0(leaf, ei0);
1093 
1094 	if (owner == (u64)-1) {
1095 		while (1) {
1096 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097 				ret = btrfs_next_leaf(root, path);
1098 				if (ret < 0)
1099 					return ret;
1100 				BUG_ON(ret > 0); /* Corruption */
1101 				leaf = path->nodes[0];
1102 			}
1103 			btrfs_item_key_to_cpu(leaf, &found_key,
1104 					      path->slots[0]);
1105 			BUG_ON(key.objectid != found_key.objectid);
1106 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107 				path->slots[0]++;
1108 				continue;
1109 			}
1110 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111 					      struct btrfs_extent_ref_v0);
1112 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1113 			break;
1114 		}
1115 	}
1116 	btrfs_release_path(path);
1117 
1118 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119 		new_size += sizeof(*bi);
1120 
1121 	new_size -= sizeof(*ei0);
1122 	ret = btrfs_search_slot(trans, root, &key, path,
1123 				new_size + extra_size, 1);
1124 	if (ret < 0)
1125 		return ret;
1126 	BUG_ON(ret); /* Corruption */
1127 
1128 	btrfs_extend_item(fs_info, path, new_size);
1129 
1130 	leaf = path->nodes[0];
1131 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132 	btrfs_set_extent_refs(leaf, item, refs);
1133 	/* FIXME: get real generation */
1134 	btrfs_set_extent_generation(leaf, item, 0);
1135 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136 		btrfs_set_extent_flags(leaf, item,
1137 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139 		bi = (struct btrfs_tree_block_info *)(item + 1);
1140 		/* FIXME: get first key of the block */
1141 		memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143 	} else {
1144 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145 	}
1146 	btrfs_mark_buffer_dirty(leaf);
1147 	return 0;
1148 }
1149 #endif
1150 
1151 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1152 {
1153 	u32 high_crc = ~(u32)0;
1154 	u32 low_crc = ~(u32)0;
1155 	__le64 lenum;
1156 
1157 	lenum = cpu_to_le64(root_objectid);
1158 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1159 	lenum = cpu_to_le64(owner);
1160 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1161 	lenum = cpu_to_le64(offset);
1162 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1163 
1164 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1165 }
1166 
1167 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1168 				     struct btrfs_extent_data_ref *ref)
1169 {
1170 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1171 				    btrfs_extent_data_ref_objectid(leaf, ref),
1172 				    btrfs_extent_data_ref_offset(leaf, ref));
1173 }
1174 
1175 static int match_extent_data_ref(struct extent_buffer *leaf,
1176 				 struct btrfs_extent_data_ref *ref,
1177 				 u64 root_objectid, u64 owner, u64 offset)
1178 {
1179 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1180 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1181 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1182 		return 0;
1183 	return 1;
1184 }
1185 
1186 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1187 					   struct btrfs_fs_info *fs_info,
1188 					   struct btrfs_path *path,
1189 					   u64 bytenr, u64 parent,
1190 					   u64 root_objectid,
1191 					   u64 owner, u64 offset)
1192 {
1193 	struct btrfs_root *root = fs_info->extent_root;
1194 	struct btrfs_key key;
1195 	struct btrfs_extent_data_ref *ref;
1196 	struct extent_buffer *leaf;
1197 	u32 nritems;
1198 	int ret;
1199 	int recow;
1200 	int err = -ENOENT;
1201 
1202 	key.objectid = bytenr;
1203 	if (parent) {
1204 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1205 		key.offset = parent;
1206 	} else {
1207 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1208 		key.offset = hash_extent_data_ref(root_objectid,
1209 						  owner, offset);
1210 	}
1211 again:
1212 	recow = 0;
1213 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1214 	if (ret < 0) {
1215 		err = ret;
1216 		goto fail;
1217 	}
1218 
1219 	if (parent) {
1220 		if (!ret)
1221 			return 0;
1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1223 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1224 		btrfs_release_path(path);
1225 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1226 		if (ret < 0) {
1227 			err = ret;
1228 			goto fail;
1229 		}
1230 		if (!ret)
1231 			return 0;
1232 #endif
1233 		goto fail;
1234 	}
1235 
1236 	leaf = path->nodes[0];
1237 	nritems = btrfs_header_nritems(leaf);
1238 	while (1) {
1239 		if (path->slots[0] >= nritems) {
1240 			ret = btrfs_next_leaf(root, path);
1241 			if (ret < 0)
1242 				err = ret;
1243 			if (ret)
1244 				goto fail;
1245 
1246 			leaf = path->nodes[0];
1247 			nritems = btrfs_header_nritems(leaf);
1248 			recow = 1;
1249 		}
1250 
1251 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1252 		if (key.objectid != bytenr ||
1253 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1254 			goto fail;
1255 
1256 		ref = btrfs_item_ptr(leaf, path->slots[0],
1257 				     struct btrfs_extent_data_ref);
1258 
1259 		if (match_extent_data_ref(leaf, ref, root_objectid,
1260 					  owner, offset)) {
1261 			if (recow) {
1262 				btrfs_release_path(path);
1263 				goto again;
1264 			}
1265 			err = 0;
1266 			break;
1267 		}
1268 		path->slots[0]++;
1269 	}
1270 fail:
1271 	return err;
1272 }
1273 
1274 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1275 					   struct btrfs_fs_info *fs_info,
1276 					   struct btrfs_path *path,
1277 					   u64 bytenr, u64 parent,
1278 					   u64 root_objectid, u64 owner,
1279 					   u64 offset, int refs_to_add)
1280 {
1281 	struct btrfs_root *root = fs_info->extent_root;
1282 	struct btrfs_key key;
1283 	struct extent_buffer *leaf;
1284 	u32 size;
1285 	u32 num_refs;
1286 	int ret;
1287 
1288 	key.objectid = bytenr;
1289 	if (parent) {
1290 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1291 		key.offset = parent;
1292 		size = sizeof(struct btrfs_shared_data_ref);
1293 	} else {
1294 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1295 		key.offset = hash_extent_data_ref(root_objectid,
1296 						  owner, offset);
1297 		size = sizeof(struct btrfs_extent_data_ref);
1298 	}
1299 
1300 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1301 	if (ret && ret != -EEXIST)
1302 		goto fail;
1303 
1304 	leaf = path->nodes[0];
1305 	if (parent) {
1306 		struct btrfs_shared_data_ref *ref;
1307 		ref = btrfs_item_ptr(leaf, path->slots[0],
1308 				     struct btrfs_shared_data_ref);
1309 		if (ret == 0) {
1310 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1311 		} else {
1312 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1313 			num_refs += refs_to_add;
1314 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1315 		}
1316 	} else {
1317 		struct btrfs_extent_data_ref *ref;
1318 		while (ret == -EEXIST) {
1319 			ref = btrfs_item_ptr(leaf, path->slots[0],
1320 					     struct btrfs_extent_data_ref);
1321 			if (match_extent_data_ref(leaf, ref, root_objectid,
1322 						  owner, offset))
1323 				break;
1324 			btrfs_release_path(path);
1325 			key.offset++;
1326 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1327 						      size);
1328 			if (ret && ret != -EEXIST)
1329 				goto fail;
1330 
1331 			leaf = path->nodes[0];
1332 		}
1333 		ref = btrfs_item_ptr(leaf, path->slots[0],
1334 				     struct btrfs_extent_data_ref);
1335 		if (ret == 0) {
1336 			btrfs_set_extent_data_ref_root(leaf, ref,
1337 						       root_objectid);
1338 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1339 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1340 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1341 		} else {
1342 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1343 			num_refs += refs_to_add;
1344 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1345 		}
1346 	}
1347 	btrfs_mark_buffer_dirty(leaf);
1348 	ret = 0;
1349 fail:
1350 	btrfs_release_path(path);
1351 	return ret;
1352 }
1353 
1354 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1355 					   struct btrfs_fs_info *fs_info,
1356 					   struct btrfs_path *path,
1357 					   int refs_to_drop, int *last_ref)
1358 {
1359 	struct btrfs_key key;
1360 	struct btrfs_extent_data_ref *ref1 = NULL;
1361 	struct btrfs_shared_data_ref *ref2 = NULL;
1362 	struct extent_buffer *leaf;
1363 	u32 num_refs = 0;
1364 	int ret = 0;
1365 
1366 	leaf = path->nodes[0];
1367 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1368 
1369 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1370 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1371 				      struct btrfs_extent_data_ref);
1372 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1373 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1374 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1375 				      struct btrfs_shared_data_ref);
1376 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1378 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1379 		struct btrfs_extent_ref_v0 *ref0;
1380 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1381 				      struct btrfs_extent_ref_v0);
1382 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1383 #endif
1384 	} else {
1385 		BUG();
1386 	}
1387 
1388 	BUG_ON(num_refs < refs_to_drop);
1389 	num_refs -= refs_to_drop;
1390 
1391 	if (num_refs == 0) {
1392 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1393 		*last_ref = 1;
1394 	} else {
1395 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1396 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1397 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1398 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1400 		else {
1401 			struct btrfs_extent_ref_v0 *ref0;
1402 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1403 					struct btrfs_extent_ref_v0);
1404 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1405 		}
1406 #endif
1407 		btrfs_mark_buffer_dirty(leaf);
1408 	}
1409 	return ret;
1410 }
1411 
1412 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1413 					  struct btrfs_extent_inline_ref *iref)
1414 {
1415 	struct btrfs_key key;
1416 	struct extent_buffer *leaf;
1417 	struct btrfs_extent_data_ref *ref1;
1418 	struct btrfs_shared_data_ref *ref2;
1419 	u32 num_refs = 0;
1420 
1421 	leaf = path->nodes[0];
1422 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1423 	if (iref) {
1424 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1425 		    BTRFS_EXTENT_DATA_REF_KEY) {
1426 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1427 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1428 		} else {
1429 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1430 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1431 		}
1432 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1433 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1434 				      struct btrfs_extent_data_ref);
1435 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1436 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1437 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1438 				      struct btrfs_shared_data_ref);
1439 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1441 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1442 		struct btrfs_extent_ref_v0 *ref0;
1443 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1444 				      struct btrfs_extent_ref_v0);
1445 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1446 #endif
1447 	} else {
1448 		WARN_ON(1);
1449 	}
1450 	return num_refs;
1451 }
1452 
1453 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1454 					  struct btrfs_fs_info *fs_info,
1455 					  struct btrfs_path *path,
1456 					  u64 bytenr, u64 parent,
1457 					  u64 root_objectid)
1458 {
1459 	struct btrfs_root *root = fs_info->extent_root;
1460 	struct btrfs_key key;
1461 	int ret;
1462 
1463 	key.objectid = bytenr;
1464 	if (parent) {
1465 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1466 		key.offset = parent;
1467 	} else {
1468 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1469 		key.offset = root_objectid;
1470 	}
1471 
1472 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1473 	if (ret > 0)
1474 		ret = -ENOENT;
1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 	if (ret == -ENOENT && parent) {
1477 		btrfs_release_path(path);
1478 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1479 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1480 		if (ret > 0)
1481 			ret = -ENOENT;
1482 	}
1483 #endif
1484 	return ret;
1485 }
1486 
1487 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1488 					  struct btrfs_fs_info *fs_info,
1489 					  struct btrfs_path *path,
1490 					  u64 bytenr, u64 parent,
1491 					  u64 root_objectid)
1492 {
1493 	struct btrfs_key key;
1494 	int ret;
1495 
1496 	key.objectid = bytenr;
1497 	if (parent) {
1498 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1499 		key.offset = parent;
1500 	} else {
1501 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1502 		key.offset = root_objectid;
1503 	}
1504 
1505 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1506 				      path, &key, 0);
1507 	btrfs_release_path(path);
1508 	return ret;
1509 }
1510 
1511 static inline int extent_ref_type(u64 parent, u64 owner)
1512 {
1513 	int type;
1514 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1515 		if (parent > 0)
1516 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1517 		else
1518 			type = BTRFS_TREE_BLOCK_REF_KEY;
1519 	} else {
1520 		if (parent > 0)
1521 			type = BTRFS_SHARED_DATA_REF_KEY;
1522 		else
1523 			type = BTRFS_EXTENT_DATA_REF_KEY;
1524 	}
1525 	return type;
1526 }
1527 
1528 static int find_next_key(struct btrfs_path *path, int level,
1529 			 struct btrfs_key *key)
1530 
1531 {
1532 	for (; level < BTRFS_MAX_LEVEL; level++) {
1533 		if (!path->nodes[level])
1534 			break;
1535 		if (path->slots[level] + 1 >=
1536 		    btrfs_header_nritems(path->nodes[level]))
1537 			continue;
1538 		if (level == 0)
1539 			btrfs_item_key_to_cpu(path->nodes[level], key,
1540 					      path->slots[level] + 1);
1541 		else
1542 			btrfs_node_key_to_cpu(path->nodes[level], key,
1543 					      path->slots[level] + 1);
1544 		return 0;
1545 	}
1546 	return 1;
1547 }
1548 
1549 /*
1550  * look for inline back ref. if back ref is found, *ref_ret is set
1551  * to the address of inline back ref, and 0 is returned.
1552  *
1553  * if back ref isn't found, *ref_ret is set to the address where it
1554  * should be inserted, and -ENOENT is returned.
1555  *
1556  * if insert is true and there are too many inline back refs, the path
1557  * points to the extent item, and -EAGAIN is returned.
1558  *
1559  * NOTE: inline back refs are ordered in the same way that back ref
1560  *	 items in the tree are ordered.
1561  */
1562 static noinline_for_stack
1563 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1564 				 struct btrfs_fs_info *fs_info,
1565 				 struct btrfs_path *path,
1566 				 struct btrfs_extent_inline_ref **ref_ret,
1567 				 u64 bytenr, u64 num_bytes,
1568 				 u64 parent, u64 root_objectid,
1569 				 u64 owner, u64 offset, int insert)
1570 {
1571 	struct btrfs_root *root = fs_info->extent_root;
1572 	struct btrfs_key key;
1573 	struct extent_buffer *leaf;
1574 	struct btrfs_extent_item *ei;
1575 	struct btrfs_extent_inline_ref *iref;
1576 	u64 flags;
1577 	u64 item_size;
1578 	unsigned long ptr;
1579 	unsigned long end;
1580 	int extra_size;
1581 	int type;
1582 	int want;
1583 	int ret;
1584 	int err = 0;
1585 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1586 
1587 	key.objectid = bytenr;
1588 	key.type = BTRFS_EXTENT_ITEM_KEY;
1589 	key.offset = num_bytes;
1590 
1591 	want = extent_ref_type(parent, owner);
1592 	if (insert) {
1593 		extra_size = btrfs_extent_inline_ref_size(want);
1594 		path->keep_locks = 1;
1595 	} else
1596 		extra_size = -1;
1597 
1598 	/*
1599 	 * Owner is our parent level, so we can just add one to get the level
1600 	 * for the block we are interested in.
1601 	 */
1602 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1603 		key.type = BTRFS_METADATA_ITEM_KEY;
1604 		key.offset = owner;
1605 	}
1606 
1607 again:
1608 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1609 	if (ret < 0) {
1610 		err = ret;
1611 		goto out;
1612 	}
1613 
1614 	/*
1615 	 * We may be a newly converted file system which still has the old fat
1616 	 * extent entries for metadata, so try and see if we have one of those.
1617 	 */
1618 	if (ret > 0 && skinny_metadata) {
1619 		skinny_metadata = false;
1620 		if (path->slots[0]) {
1621 			path->slots[0]--;
1622 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1623 					      path->slots[0]);
1624 			if (key.objectid == bytenr &&
1625 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1626 			    key.offset == num_bytes)
1627 				ret = 0;
1628 		}
1629 		if (ret) {
1630 			key.objectid = bytenr;
1631 			key.type = BTRFS_EXTENT_ITEM_KEY;
1632 			key.offset = num_bytes;
1633 			btrfs_release_path(path);
1634 			goto again;
1635 		}
1636 	}
1637 
1638 	if (ret && !insert) {
1639 		err = -ENOENT;
1640 		goto out;
1641 	} else if (WARN_ON(ret)) {
1642 		err = -EIO;
1643 		goto out;
1644 	}
1645 
1646 	leaf = path->nodes[0];
1647 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1649 	if (item_size < sizeof(*ei)) {
1650 		if (!insert) {
1651 			err = -ENOENT;
1652 			goto out;
1653 		}
1654 		ret = convert_extent_item_v0(trans, fs_info, path, owner,
1655 					     extra_size);
1656 		if (ret < 0) {
1657 			err = ret;
1658 			goto out;
1659 		}
1660 		leaf = path->nodes[0];
1661 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1662 	}
1663 #endif
1664 	BUG_ON(item_size < sizeof(*ei));
1665 
1666 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1667 	flags = btrfs_extent_flags(leaf, ei);
1668 
1669 	ptr = (unsigned long)(ei + 1);
1670 	end = (unsigned long)ei + item_size;
1671 
1672 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1673 		ptr += sizeof(struct btrfs_tree_block_info);
1674 		BUG_ON(ptr > end);
1675 	}
1676 
1677 	err = -ENOENT;
1678 	while (1) {
1679 		if (ptr >= end) {
1680 			WARN_ON(ptr > end);
1681 			break;
1682 		}
1683 		iref = (struct btrfs_extent_inline_ref *)ptr;
1684 		type = btrfs_extent_inline_ref_type(leaf, iref);
1685 		if (want < type)
1686 			break;
1687 		if (want > type) {
1688 			ptr += btrfs_extent_inline_ref_size(type);
1689 			continue;
1690 		}
1691 
1692 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1693 			struct btrfs_extent_data_ref *dref;
1694 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1695 			if (match_extent_data_ref(leaf, dref, root_objectid,
1696 						  owner, offset)) {
1697 				err = 0;
1698 				break;
1699 			}
1700 			if (hash_extent_data_ref_item(leaf, dref) <
1701 			    hash_extent_data_ref(root_objectid, owner, offset))
1702 				break;
1703 		} else {
1704 			u64 ref_offset;
1705 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1706 			if (parent > 0) {
1707 				if (parent == ref_offset) {
1708 					err = 0;
1709 					break;
1710 				}
1711 				if (ref_offset < parent)
1712 					break;
1713 			} else {
1714 				if (root_objectid == ref_offset) {
1715 					err = 0;
1716 					break;
1717 				}
1718 				if (ref_offset < root_objectid)
1719 					break;
1720 			}
1721 		}
1722 		ptr += btrfs_extent_inline_ref_size(type);
1723 	}
1724 	if (err == -ENOENT && insert) {
1725 		if (item_size + extra_size >=
1726 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1727 			err = -EAGAIN;
1728 			goto out;
1729 		}
1730 		/*
1731 		 * To add new inline back ref, we have to make sure
1732 		 * there is no corresponding back ref item.
1733 		 * For simplicity, we just do not add new inline back
1734 		 * ref if there is any kind of item for this block
1735 		 */
1736 		if (find_next_key(path, 0, &key) == 0 &&
1737 		    key.objectid == bytenr &&
1738 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1739 			err = -EAGAIN;
1740 			goto out;
1741 		}
1742 	}
1743 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1744 out:
1745 	if (insert) {
1746 		path->keep_locks = 0;
1747 		btrfs_unlock_up_safe(path, 1);
1748 	}
1749 	return err;
1750 }
1751 
1752 /*
1753  * helper to add new inline back ref
1754  */
1755 static noinline_for_stack
1756 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1757 				 struct btrfs_path *path,
1758 				 struct btrfs_extent_inline_ref *iref,
1759 				 u64 parent, u64 root_objectid,
1760 				 u64 owner, u64 offset, int refs_to_add,
1761 				 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 	struct extent_buffer *leaf;
1764 	struct btrfs_extent_item *ei;
1765 	unsigned long ptr;
1766 	unsigned long end;
1767 	unsigned long item_offset;
1768 	u64 refs;
1769 	int size;
1770 	int type;
1771 
1772 	leaf = path->nodes[0];
1773 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 	item_offset = (unsigned long)iref - (unsigned long)ei;
1775 
1776 	type = extent_ref_type(parent, owner);
1777 	size = btrfs_extent_inline_ref_size(type);
1778 
1779 	btrfs_extend_item(fs_info, path, size);
1780 
1781 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1782 	refs = btrfs_extent_refs(leaf, ei);
1783 	refs += refs_to_add;
1784 	btrfs_set_extent_refs(leaf, ei, refs);
1785 	if (extent_op)
1786 		__run_delayed_extent_op(extent_op, leaf, ei);
1787 
1788 	ptr = (unsigned long)ei + item_offset;
1789 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1790 	if (ptr < end - size)
1791 		memmove_extent_buffer(leaf, ptr + size, ptr,
1792 				      end - size - ptr);
1793 
1794 	iref = (struct btrfs_extent_inline_ref *)ptr;
1795 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1796 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1797 		struct btrfs_extent_data_ref *dref;
1798 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1800 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1801 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1802 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1803 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1804 		struct btrfs_shared_data_ref *sref;
1805 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1806 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1807 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1808 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1809 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1810 	} else {
1811 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1812 	}
1813 	btrfs_mark_buffer_dirty(leaf);
1814 }
1815 
1816 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1817 				 struct btrfs_fs_info *fs_info,
1818 				 struct btrfs_path *path,
1819 				 struct btrfs_extent_inline_ref **ref_ret,
1820 				 u64 bytenr, u64 num_bytes, u64 parent,
1821 				 u64 root_objectid, u64 owner, u64 offset)
1822 {
1823 	int ret;
1824 
1825 	ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1826 					   bytenr, num_bytes, parent,
1827 					   root_objectid, owner, offset, 0);
1828 	if (ret != -ENOENT)
1829 		return ret;
1830 
1831 	btrfs_release_path(path);
1832 	*ref_ret = NULL;
1833 
1834 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1835 		ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1836 					    parent, root_objectid);
1837 	} else {
1838 		ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1839 					     parent, root_objectid, owner,
1840 					     offset);
1841 	}
1842 	return ret;
1843 }
1844 
1845 /*
1846  * helper to update/remove inline back ref
1847  */
1848 static noinline_for_stack
1849 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1850 				  struct btrfs_path *path,
1851 				  struct btrfs_extent_inline_ref *iref,
1852 				  int refs_to_mod,
1853 				  struct btrfs_delayed_extent_op *extent_op,
1854 				  int *last_ref)
1855 {
1856 	struct extent_buffer *leaf;
1857 	struct btrfs_extent_item *ei;
1858 	struct btrfs_extent_data_ref *dref = NULL;
1859 	struct btrfs_shared_data_ref *sref = NULL;
1860 	unsigned long ptr;
1861 	unsigned long end;
1862 	u32 item_size;
1863 	int size;
1864 	int type;
1865 	u64 refs;
1866 
1867 	leaf = path->nodes[0];
1868 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1869 	refs = btrfs_extent_refs(leaf, ei);
1870 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1871 	refs += refs_to_mod;
1872 	btrfs_set_extent_refs(leaf, ei, refs);
1873 	if (extent_op)
1874 		__run_delayed_extent_op(extent_op, leaf, ei);
1875 
1876 	type = btrfs_extent_inline_ref_type(leaf, iref);
1877 
1878 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1879 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1880 		refs = btrfs_extent_data_ref_count(leaf, dref);
1881 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1882 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1883 		refs = btrfs_shared_data_ref_count(leaf, sref);
1884 	} else {
1885 		refs = 1;
1886 		BUG_ON(refs_to_mod != -1);
1887 	}
1888 
1889 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1890 	refs += refs_to_mod;
1891 
1892 	if (refs > 0) {
1893 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1894 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1895 		else
1896 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1897 	} else {
1898 		*last_ref = 1;
1899 		size =  btrfs_extent_inline_ref_size(type);
1900 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1901 		ptr = (unsigned long)iref;
1902 		end = (unsigned long)ei + item_size;
1903 		if (ptr + size < end)
1904 			memmove_extent_buffer(leaf, ptr, ptr + size,
1905 					      end - ptr - size);
1906 		item_size -= size;
1907 		btrfs_truncate_item(fs_info, path, item_size, 1);
1908 	}
1909 	btrfs_mark_buffer_dirty(leaf);
1910 }
1911 
1912 static noinline_for_stack
1913 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1914 				 struct btrfs_fs_info *fs_info,
1915 				 struct btrfs_path *path,
1916 				 u64 bytenr, u64 num_bytes, u64 parent,
1917 				 u64 root_objectid, u64 owner,
1918 				 u64 offset, int refs_to_add,
1919 				 struct btrfs_delayed_extent_op *extent_op)
1920 {
1921 	struct btrfs_extent_inline_ref *iref;
1922 	int ret;
1923 
1924 	ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1925 					   bytenr, num_bytes, parent,
1926 					   root_objectid, owner, offset, 1);
1927 	if (ret == 0) {
1928 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1929 		update_inline_extent_backref(fs_info, path, iref,
1930 					     refs_to_add, extent_op, NULL);
1931 	} else if (ret == -ENOENT) {
1932 		setup_inline_extent_backref(fs_info, path, iref, parent,
1933 					    root_objectid, owner, offset,
1934 					    refs_to_add, extent_op);
1935 		ret = 0;
1936 	}
1937 	return ret;
1938 }
1939 
1940 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1941 				 struct btrfs_fs_info *fs_info,
1942 				 struct btrfs_path *path,
1943 				 u64 bytenr, u64 parent, u64 root_objectid,
1944 				 u64 owner, u64 offset, int refs_to_add)
1945 {
1946 	int ret;
1947 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1948 		BUG_ON(refs_to_add != 1);
1949 		ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
1950 					    parent, root_objectid);
1951 	} else {
1952 		ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
1953 					     parent, root_objectid,
1954 					     owner, offset, refs_to_add);
1955 	}
1956 	return ret;
1957 }
1958 
1959 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1960 				 struct btrfs_fs_info *fs_info,
1961 				 struct btrfs_path *path,
1962 				 struct btrfs_extent_inline_ref *iref,
1963 				 int refs_to_drop, int is_data, int *last_ref)
1964 {
1965 	int ret = 0;
1966 
1967 	BUG_ON(!is_data && refs_to_drop != 1);
1968 	if (iref) {
1969 		update_inline_extent_backref(fs_info, path, iref,
1970 					     -refs_to_drop, NULL, last_ref);
1971 	} else if (is_data) {
1972 		ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
1973 					     last_ref);
1974 	} else {
1975 		*last_ref = 1;
1976 		ret = btrfs_del_item(trans, fs_info->extent_root, path);
1977 	}
1978 	return ret;
1979 }
1980 
1981 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1982 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1983 			       u64 *discarded_bytes)
1984 {
1985 	int j, ret = 0;
1986 	u64 bytes_left, end;
1987 	u64 aligned_start = ALIGN(start, 1 << 9);
1988 
1989 	if (WARN_ON(start != aligned_start)) {
1990 		len -= aligned_start - start;
1991 		len = round_down(len, 1 << 9);
1992 		start = aligned_start;
1993 	}
1994 
1995 	*discarded_bytes = 0;
1996 
1997 	if (!len)
1998 		return 0;
1999 
2000 	end = start + len;
2001 	bytes_left = len;
2002 
2003 	/* Skip any superblocks on this device. */
2004 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2005 		u64 sb_start = btrfs_sb_offset(j);
2006 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2007 		u64 size = sb_start - start;
2008 
2009 		if (!in_range(sb_start, start, bytes_left) &&
2010 		    !in_range(sb_end, start, bytes_left) &&
2011 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2012 			continue;
2013 
2014 		/*
2015 		 * Superblock spans beginning of range.  Adjust start and
2016 		 * try again.
2017 		 */
2018 		if (sb_start <= start) {
2019 			start += sb_end - start;
2020 			if (start > end) {
2021 				bytes_left = 0;
2022 				break;
2023 			}
2024 			bytes_left = end - start;
2025 			continue;
2026 		}
2027 
2028 		if (size) {
2029 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2030 						   GFP_NOFS, 0);
2031 			if (!ret)
2032 				*discarded_bytes += size;
2033 			else if (ret != -EOPNOTSUPP)
2034 				return ret;
2035 		}
2036 
2037 		start = sb_end;
2038 		if (start > end) {
2039 			bytes_left = 0;
2040 			break;
2041 		}
2042 		bytes_left = end - start;
2043 	}
2044 
2045 	if (bytes_left) {
2046 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2047 					   GFP_NOFS, 0);
2048 		if (!ret)
2049 			*discarded_bytes += bytes_left;
2050 	}
2051 	return ret;
2052 }
2053 
2054 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2055 			 u64 num_bytes, u64 *actual_bytes)
2056 {
2057 	int ret;
2058 	u64 discarded_bytes = 0;
2059 	struct btrfs_bio *bbio = NULL;
2060 
2061 
2062 	/*
2063 	 * Avoid races with device replace and make sure our bbio has devices
2064 	 * associated to its stripes that don't go away while we are discarding.
2065 	 */
2066 	btrfs_bio_counter_inc_blocked(fs_info);
2067 	/* Tell the block device(s) that the sectors can be discarded */
2068 	ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2069 			      &bbio, 0);
2070 	/* Error condition is -ENOMEM */
2071 	if (!ret) {
2072 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2073 		int i;
2074 
2075 
2076 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2077 			u64 bytes;
2078 			if (!stripe->dev->can_discard)
2079 				continue;
2080 
2081 			ret = btrfs_issue_discard(stripe->dev->bdev,
2082 						  stripe->physical,
2083 						  stripe->length,
2084 						  &bytes);
2085 			if (!ret)
2086 				discarded_bytes += bytes;
2087 			else if (ret != -EOPNOTSUPP)
2088 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2089 
2090 			/*
2091 			 * Just in case we get back EOPNOTSUPP for some reason,
2092 			 * just ignore the return value so we don't screw up
2093 			 * people calling discard_extent.
2094 			 */
2095 			ret = 0;
2096 		}
2097 		btrfs_put_bbio(bbio);
2098 	}
2099 	btrfs_bio_counter_dec(fs_info);
2100 
2101 	if (actual_bytes)
2102 		*actual_bytes = discarded_bytes;
2103 
2104 
2105 	if (ret == -EOPNOTSUPP)
2106 		ret = 0;
2107 	return ret;
2108 }
2109 
2110 /* Can return -ENOMEM */
2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2112 			 struct btrfs_fs_info *fs_info,
2113 			 u64 bytenr, u64 num_bytes, u64 parent,
2114 			 u64 root_objectid, u64 owner, u64 offset)
2115 {
2116 	int old_ref_mod, new_ref_mod;
2117 	int ret;
2118 
2119 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2120 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2121 
2122 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2123 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2124 						 num_bytes, parent,
2125 						 root_objectid, (int)owner,
2126 						 BTRFS_ADD_DELAYED_REF, NULL,
2127 						 &old_ref_mod, &new_ref_mod);
2128 	} else {
2129 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2130 						 num_bytes, parent,
2131 						 root_objectid, owner, offset,
2132 						 0, BTRFS_ADD_DELAYED_REF,
2133 						 &old_ref_mod, &new_ref_mod);
2134 	}
2135 
2136 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2137 		add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2138 
2139 	return ret;
2140 }
2141 
2142 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2143 				  struct btrfs_fs_info *fs_info,
2144 				  struct btrfs_delayed_ref_node *node,
2145 				  u64 parent, u64 root_objectid,
2146 				  u64 owner, u64 offset, int refs_to_add,
2147 				  struct btrfs_delayed_extent_op *extent_op)
2148 {
2149 	struct btrfs_path *path;
2150 	struct extent_buffer *leaf;
2151 	struct btrfs_extent_item *item;
2152 	struct btrfs_key key;
2153 	u64 bytenr = node->bytenr;
2154 	u64 num_bytes = node->num_bytes;
2155 	u64 refs;
2156 	int ret;
2157 
2158 	path = btrfs_alloc_path();
2159 	if (!path)
2160 		return -ENOMEM;
2161 
2162 	path->reada = READA_FORWARD;
2163 	path->leave_spinning = 1;
2164 	/* this will setup the path even if it fails to insert the back ref */
2165 	ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2166 					   num_bytes, parent, root_objectid,
2167 					   owner, offset,
2168 					   refs_to_add, extent_op);
2169 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2170 		goto out;
2171 
2172 	/*
2173 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2174 	 * inline extent ref, so just update the reference count and add a
2175 	 * normal backref.
2176 	 */
2177 	leaf = path->nodes[0];
2178 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2179 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2180 	refs = btrfs_extent_refs(leaf, item);
2181 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2182 	if (extent_op)
2183 		__run_delayed_extent_op(extent_op, leaf, item);
2184 
2185 	btrfs_mark_buffer_dirty(leaf);
2186 	btrfs_release_path(path);
2187 
2188 	path->reada = READA_FORWARD;
2189 	path->leave_spinning = 1;
2190 	/* now insert the actual backref */
2191 	ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2192 				    root_objectid, owner, offset, refs_to_add);
2193 	if (ret)
2194 		btrfs_abort_transaction(trans, ret);
2195 out:
2196 	btrfs_free_path(path);
2197 	return ret;
2198 }
2199 
2200 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2201 				struct btrfs_fs_info *fs_info,
2202 				struct btrfs_delayed_ref_node *node,
2203 				struct btrfs_delayed_extent_op *extent_op,
2204 				int insert_reserved)
2205 {
2206 	int ret = 0;
2207 	struct btrfs_delayed_data_ref *ref;
2208 	struct btrfs_key ins;
2209 	u64 parent = 0;
2210 	u64 ref_root = 0;
2211 	u64 flags = 0;
2212 
2213 	ins.objectid = node->bytenr;
2214 	ins.offset = node->num_bytes;
2215 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2216 
2217 	ref = btrfs_delayed_node_to_data_ref(node);
2218 	trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2219 
2220 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2221 		parent = ref->parent;
2222 	ref_root = ref->root;
2223 
2224 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2225 		if (extent_op)
2226 			flags |= extent_op->flags_to_set;
2227 		ret = alloc_reserved_file_extent(trans, fs_info,
2228 						 parent, ref_root, flags,
2229 						 ref->objectid, ref->offset,
2230 						 &ins, node->ref_mod);
2231 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2232 		ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2233 					     ref_root, ref->objectid,
2234 					     ref->offset, node->ref_mod,
2235 					     extent_op);
2236 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2237 		ret = __btrfs_free_extent(trans, fs_info, node, parent,
2238 					  ref_root, ref->objectid,
2239 					  ref->offset, node->ref_mod,
2240 					  extent_op);
2241 	} else {
2242 		BUG();
2243 	}
2244 	return ret;
2245 }
2246 
2247 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2248 				    struct extent_buffer *leaf,
2249 				    struct btrfs_extent_item *ei)
2250 {
2251 	u64 flags = btrfs_extent_flags(leaf, ei);
2252 	if (extent_op->update_flags) {
2253 		flags |= extent_op->flags_to_set;
2254 		btrfs_set_extent_flags(leaf, ei, flags);
2255 	}
2256 
2257 	if (extent_op->update_key) {
2258 		struct btrfs_tree_block_info *bi;
2259 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2260 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2261 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2262 	}
2263 }
2264 
2265 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2266 				 struct btrfs_fs_info *fs_info,
2267 				 struct btrfs_delayed_ref_node *node,
2268 				 struct btrfs_delayed_extent_op *extent_op)
2269 {
2270 	struct btrfs_key key;
2271 	struct btrfs_path *path;
2272 	struct btrfs_extent_item *ei;
2273 	struct extent_buffer *leaf;
2274 	u32 item_size;
2275 	int ret;
2276 	int err = 0;
2277 	int metadata = !extent_op->is_data;
2278 
2279 	if (trans->aborted)
2280 		return 0;
2281 
2282 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2283 		metadata = 0;
2284 
2285 	path = btrfs_alloc_path();
2286 	if (!path)
2287 		return -ENOMEM;
2288 
2289 	key.objectid = node->bytenr;
2290 
2291 	if (metadata) {
2292 		key.type = BTRFS_METADATA_ITEM_KEY;
2293 		key.offset = extent_op->level;
2294 	} else {
2295 		key.type = BTRFS_EXTENT_ITEM_KEY;
2296 		key.offset = node->num_bytes;
2297 	}
2298 
2299 again:
2300 	path->reada = READA_FORWARD;
2301 	path->leave_spinning = 1;
2302 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2303 	if (ret < 0) {
2304 		err = ret;
2305 		goto out;
2306 	}
2307 	if (ret > 0) {
2308 		if (metadata) {
2309 			if (path->slots[0] > 0) {
2310 				path->slots[0]--;
2311 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2312 						      path->slots[0]);
2313 				if (key.objectid == node->bytenr &&
2314 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2315 				    key.offset == node->num_bytes)
2316 					ret = 0;
2317 			}
2318 			if (ret > 0) {
2319 				btrfs_release_path(path);
2320 				metadata = 0;
2321 
2322 				key.objectid = node->bytenr;
2323 				key.offset = node->num_bytes;
2324 				key.type = BTRFS_EXTENT_ITEM_KEY;
2325 				goto again;
2326 			}
2327 		} else {
2328 			err = -EIO;
2329 			goto out;
2330 		}
2331 	}
2332 
2333 	leaf = path->nodes[0];
2334 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2336 	if (item_size < sizeof(*ei)) {
2337 		ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2338 		if (ret < 0) {
2339 			err = ret;
2340 			goto out;
2341 		}
2342 		leaf = path->nodes[0];
2343 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2344 	}
2345 #endif
2346 	BUG_ON(item_size < sizeof(*ei));
2347 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2348 	__run_delayed_extent_op(extent_op, leaf, ei);
2349 
2350 	btrfs_mark_buffer_dirty(leaf);
2351 out:
2352 	btrfs_free_path(path);
2353 	return err;
2354 }
2355 
2356 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2357 				struct btrfs_fs_info *fs_info,
2358 				struct btrfs_delayed_ref_node *node,
2359 				struct btrfs_delayed_extent_op *extent_op,
2360 				int insert_reserved)
2361 {
2362 	int ret = 0;
2363 	struct btrfs_delayed_tree_ref *ref;
2364 	struct btrfs_key ins;
2365 	u64 parent = 0;
2366 	u64 ref_root = 0;
2367 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2368 
2369 	ref = btrfs_delayed_node_to_tree_ref(node);
2370 	trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2371 
2372 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2373 		parent = ref->parent;
2374 	ref_root = ref->root;
2375 
2376 	ins.objectid = node->bytenr;
2377 	if (skinny_metadata) {
2378 		ins.offset = ref->level;
2379 		ins.type = BTRFS_METADATA_ITEM_KEY;
2380 	} else {
2381 		ins.offset = node->num_bytes;
2382 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2383 	}
2384 
2385 	if (node->ref_mod != 1) {
2386 		btrfs_err(fs_info,
2387 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2388 			  node->bytenr, node->ref_mod, node->action, ref_root,
2389 			  parent);
2390 		return -EIO;
2391 	}
2392 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2393 		BUG_ON(!extent_op || !extent_op->update_flags);
2394 		ret = alloc_reserved_tree_block(trans, fs_info,
2395 						parent, ref_root,
2396 						extent_op->flags_to_set,
2397 						&extent_op->key,
2398 						ref->level, &ins);
2399 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2400 		ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2401 					     parent, ref_root,
2402 					     ref->level, 0, 1,
2403 					     extent_op);
2404 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2405 		ret = __btrfs_free_extent(trans, fs_info, node,
2406 					  parent, ref_root,
2407 					  ref->level, 0, 1, extent_op);
2408 	} else {
2409 		BUG();
2410 	}
2411 	return ret;
2412 }
2413 
2414 /* helper function to actually process a single delayed ref entry */
2415 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2416 			       struct btrfs_fs_info *fs_info,
2417 			       struct btrfs_delayed_ref_node *node,
2418 			       struct btrfs_delayed_extent_op *extent_op,
2419 			       int insert_reserved)
2420 {
2421 	int ret = 0;
2422 
2423 	if (trans->aborted) {
2424 		if (insert_reserved)
2425 			btrfs_pin_extent(fs_info, node->bytenr,
2426 					 node->num_bytes, 1);
2427 		return 0;
2428 	}
2429 
2430 	if (btrfs_delayed_ref_is_head(node)) {
2431 		struct btrfs_delayed_ref_head *head;
2432 		/*
2433 		 * we've hit the end of the chain and we were supposed
2434 		 * to insert this extent into the tree.  But, it got
2435 		 * deleted before we ever needed to insert it, so all
2436 		 * we have to do is clean up the accounting
2437 		 */
2438 		BUG_ON(extent_op);
2439 		head = btrfs_delayed_node_to_head(node);
2440 		trace_run_delayed_ref_head(fs_info, node, head, node->action);
2441 
2442 		if (head->total_ref_mod < 0) {
2443 			struct btrfs_block_group_cache *cache;
2444 
2445 			cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2446 			ASSERT(cache);
2447 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
2448 					   -node->num_bytes);
2449 			btrfs_put_block_group(cache);
2450 		}
2451 
2452 		if (insert_reserved) {
2453 			btrfs_pin_extent(fs_info, node->bytenr,
2454 					 node->num_bytes, 1);
2455 			if (head->is_data) {
2456 				ret = btrfs_del_csums(trans, fs_info,
2457 						      node->bytenr,
2458 						      node->num_bytes);
2459 			}
2460 		}
2461 
2462 		/* Also free its reserved qgroup space */
2463 		btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2464 					      head->qgroup_reserved);
2465 		return ret;
2466 	}
2467 
2468 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2469 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2470 		ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2471 					   insert_reserved);
2472 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2473 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2474 		ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2475 					   insert_reserved);
2476 	else
2477 		BUG();
2478 	return ret;
2479 }
2480 
2481 static inline struct btrfs_delayed_ref_node *
2482 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2483 {
2484 	struct btrfs_delayed_ref_node *ref;
2485 
2486 	if (list_empty(&head->ref_list))
2487 		return NULL;
2488 
2489 	/*
2490 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2491 	 * This is to prevent a ref count from going down to zero, which deletes
2492 	 * the extent item from the extent tree, when there still are references
2493 	 * to add, which would fail because they would not find the extent item.
2494 	 */
2495 	if (!list_empty(&head->ref_add_list))
2496 		return list_first_entry(&head->ref_add_list,
2497 				struct btrfs_delayed_ref_node, add_list);
2498 
2499 	ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2500 			       list);
2501 	ASSERT(list_empty(&ref->add_list));
2502 	return ref;
2503 }
2504 
2505 /*
2506  * Returns 0 on success or if called with an already aborted transaction.
2507  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508  */
2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2510 					     struct btrfs_fs_info *fs_info,
2511 					     unsigned long nr)
2512 {
2513 	struct btrfs_delayed_ref_root *delayed_refs;
2514 	struct btrfs_delayed_ref_node *ref;
2515 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2516 	struct btrfs_delayed_extent_op *extent_op;
2517 	ktime_t start = ktime_get();
2518 	int ret;
2519 	unsigned long count = 0;
2520 	unsigned long actual_count = 0;
2521 	int must_insert_reserved = 0;
2522 
2523 	delayed_refs = &trans->transaction->delayed_refs;
2524 	while (1) {
2525 		if (!locked_ref) {
2526 			if (count >= nr)
2527 				break;
2528 
2529 			spin_lock(&delayed_refs->lock);
2530 			locked_ref = btrfs_select_ref_head(trans);
2531 			if (!locked_ref) {
2532 				spin_unlock(&delayed_refs->lock);
2533 				break;
2534 			}
2535 
2536 			/* grab the lock that says we are going to process
2537 			 * all the refs for this head */
2538 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2539 			spin_unlock(&delayed_refs->lock);
2540 			/*
2541 			 * we may have dropped the spin lock to get the head
2542 			 * mutex lock, and that might have given someone else
2543 			 * time to free the head.  If that's true, it has been
2544 			 * removed from our list and we can move on.
2545 			 */
2546 			if (ret == -EAGAIN) {
2547 				locked_ref = NULL;
2548 				count++;
2549 				continue;
2550 			}
2551 		}
2552 
2553 		/*
2554 		 * We need to try and merge add/drops of the same ref since we
2555 		 * can run into issues with relocate dropping the implicit ref
2556 		 * and then it being added back again before the drop can
2557 		 * finish.  If we merged anything we need to re-loop so we can
2558 		 * get a good ref.
2559 		 * Or we can get node references of the same type that weren't
2560 		 * merged when created due to bumps in the tree mod seq, and
2561 		 * we need to merge them to prevent adding an inline extent
2562 		 * backref before dropping it (triggering a BUG_ON at
2563 		 * insert_inline_extent_backref()).
2564 		 */
2565 		spin_lock(&locked_ref->lock);
2566 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2567 					 locked_ref);
2568 
2569 		/*
2570 		 * locked_ref is the head node, so we have to go one
2571 		 * node back for any delayed ref updates
2572 		 */
2573 		ref = select_delayed_ref(locked_ref);
2574 
2575 		if (ref && ref->seq &&
2576 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2577 			spin_unlock(&locked_ref->lock);
2578 			spin_lock(&delayed_refs->lock);
2579 			locked_ref->processing = 0;
2580 			delayed_refs->num_heads_ready++;
2581 			spin_unlock(&delayed_refs->lock);
2582 			btrfs_delayed_ref_unlock(locked_ref);
2583 			locked_ref = NULL;
2584 			cond_resched();
2585 			count++;
2586 			continue;
2587 		}
2588 
2589 		/*
2590 		 * record the must insert reserved flag before we
2591 		 * drop the spin lock.
2592 		 */
2593 		must_insert_reserved = locked_ref->must_insert_reserved;
2594 		locked_ref->must_insert_reserved = 0;
2595 
2596 		extent_op = locked_ref->extent_op;
2597 		locked_ref->extent_op = NULL;
2598 
2599 		if (!ref) {
2600 
2601 
2602 			/* All delayed refs have been processed, Go ahead
2603 			 * and send the head node to run_one_delayed_ref,
2604 			 * so that any accounting fixes can happen
2605 			 */
2606 			ref = &locked_ref->node;
2607 
2608 			if (extent_op && must_insert_reserved) {
2609 				btrfs_free_delayed_extent_op(extent_op);
2610 				extent_op = NULL;
2611 			}
2612 
2613 			if (extent_op) {
2614 				spin_unlock(&locked_ref->lock);
2615 				ret = run_delayed_extent_op(trans, fs_info,
2616 							    ref, extent_op);
2617 				btrfs_free_delayed_extent_op(extent_op);
2618 
2619 				if (ret) {
2620 					/*
2621 					 * Need to reset must_insert_reserved if
2622 					 * there was an error so the abort stuff
2623 					 * can cleanup the reserved space
2624 					 * properly.
2625 					 */
2626 					if (must_insert_reserved)
2627 						locked_ref->must_insert_reserved = 1;
2628 					spin_lock(&delayed_refs->lock);
2629 					locked_ref->processing = 0;
2630 					delayed_refs->num_heads_ready++;
2631 					spin_unlock(&delayed_refs->lock);
2632 					btrfs_debug(fs_info,
2633 						    "run_delayed_extent_op returned %d",
2634 						    ret);
2635 					btrfs_delayed_ref_unlock(locked_ref);
2636 					return ret;
2637 				}
2638 				continue;
2639 			}
2640 
2641 			/*
2642 			 * Need to drop our head ref lock and re-acquire the
2643 			 * delayed ref lock and then re-check to make sure
2644 			 * nobody got added.
2645 			 */
2646 			spin_unlock(&locked_ref->lock);
2647 			spin_lock(&delayed_refs->lock);
2648 			spin_lock(&locked_ref->lock);
2649 			if (!list_empty(&locked_ref->ref_list) ||
2650 			    locked_ref->extent_op) {
2651 				spin_unlock(&locked_ref->lock);
2652 				spin_unlock(&delayed_refs->lock);
2653 				continue;
2654 			}
2655 			ref->in_tree = 0;
2656 			delayed_refs->num_heads--;
2657 			rb_erase(&locked_ref->href_node,
2658 				 &delayed_refs->href_root);
2659 			spin_unlock(&delayed_refs->lock);
2660 		} else {
2661 			actual_count++;
2662 			ref->in_tree = 0;
2663 			list_del(&ref->list);
2664 			if (!list_empty(&ref->add_list))
2665 				list_del(&ref->add_list);
2666 		}
2667 		atomic_dec(&delayed_refs->num_entries);
2668 
2669 		if (!btrfs_delayed_ref_is_head(ref)) {
2670 			/*
2671 			 * when we play the delayed ref, also correct the
2672 			 * ref_mod on head
2673 			 */
2674 			switch (ref->action) {
2675 			case BTRFS_ADD_DELAYED_REF:
2676 			case BTRFS_ADD_DELAYED_EXTENT:
2677 				locked_ref->node.ref_mod -= ref->ref_mod;
2678 				break;
2679 			case BTRFS_DROP_DELAYED_REF:
2680 				locked_ref->node.ref_mod += ref->ref_mod;
2681 				break;
2682 			default:
2683 				WARN_ON(1);
2684 			}
2685 		}
2686 		spin_unlock(&locked_ref->lock);
2687 
2688 		ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2689 					  must_insert_reserved);
2690 
2691 		btrfs_free_delayed_extent_op(extent_op);
2692 		if (ret) {
2693 			spin_lock(&delayed_refs->lock);
2694 			locked_ref->processing = 0;
2695 			delayed_refs->num_heads_ready++;
2696 			spin_unlock(&delayed_refs->lock);
2697 			btrfs_delayed_ref_unlock(locked_ref);
2698 			btrfs_put_delayed_ref(ref);
2699 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2700 				    ret);
2701 			return ret;
2702 		}
2703 
2704 		/*
2705 		 * If this node is a head, that means all the refs in this head
2706 		 * have been dealt with, and we will pick the next head to deal
2707 		 * with, so we must unlock the head and drop it from the cluster
2708 		 * list before we release it.
2709 		 */
2710 		if (btrfs_delayed_ref_is_head(ref)) {
2711 			if (locked_ref->is_data &&
2712 			    locked_ref->total_ref_mod < 0) {
2713 				spin_lock(&delayed_refs->lock);
2714 				delayed_refs->pending_csums -= ref->num_bytes;
2715 				spin_unlock(&delayed_refs->lock);
2716 			}
2717 			btrfs_delayed_ref_unlock(locked_ref);
2718 			locked_ref = NULL;
2719 		}
2720 		btrfs_put_delayed_ref(ref);
2721 		count++;
2722 		cond_resched();
2723 	}
2724 
2725 	/*
2726 	 * We don't want to include ref heads since we can have empty ref heads
2727 	 * and those will drastically skew our runtime down since we just do
2728 	 * accounting, no actual extent tree updates.
2729 	 */
2730 	if (actual_count > 0) {
2731 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2732 		u64 avg;
2733 
2734 		/*
2735 		 * We weigh the current average higher than our current runtime
2736 		 * to avoid large swings in the average.
2737 		 */
2738 		spin_lock(&delayed_refs->lock);
2739 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2740 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2741 		spin_unlock(&delayed_refs->lock);
2742 	}
2743 	return 0;
2744 }
2745 
2746 #ifdef SCRAMBLE_DELAYED_REFS
2747 /*
2748  * Normally delayed refs get processed in ascending bytenr order. This
2749  * correlates in most cases to the order added. To expose dependencies on this
2750  * order, we start to process the tree in the middle instead of the beginning
2751  */
2752 static u64 find_middle(struct rb_root *root)
2753 {
2754 	struct rb_node *n = root->rb_node;
2755 	struct btrfs_delayed_ref_node *entry;
2756 	int alt = 1;
2757 	u64 middle;
2758 	u64 first = 0, last = 0;
2759 
2760 	n = rb_first(root);
2761 	if (n) {
2762 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2763 		first = entry->bytenr;
2764 	}
2765 	n = rb_last(root);
2766 	if (n) {
2767 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2768 		last = entry->bytenr;
2769 	}
2770 	n = root->rb_node;
2771 
2772 	while (n) {
2773 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2774 		WARN_ON(!entry->in_tree);
2775 
2776 		middle = entry->bytenr;
2777 
2778 		if (alt)
2779 			n = n->rb_left;
2780 		else
2781 			n = n->rb_right;
2782 
2783 		alt = 1 - alt;
2784 	}
2785 	return middle;
2786 }
2787 #endif
2788 
2789 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2790 {
2791 	u64 num_bytes;
2792 
2793 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2794 			     sizeof(struct btrfs_extent_inline_ref));
2795 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2796 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2797 
2798 	/*
2799 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2800 	 * closer to what we're really going to want to use.
2801 	 */
2802 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2803 }
2804 
2805 /*
2806  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2807  * would require to store the csums for that many bytes.
2808  */
2809 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2810 {
2811 	u64 csum_size;
2812 	u64 num_csums_per_leaf;
2813 	u64 num_csums;
2814 
2815 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2816 	num_csums_per_leaf = div64_u64(csum_size,
2817 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2818 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2819 	num_csums += num_csums_per_leaf - 1;
2820 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2821 	return num_csums;
2822 }
2823 
2824 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2825 				       struct btrfs_fs_info *fs_info)
2826 {
2827 	struct btrfs_block_rsv *global_rsv;
2828 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2829 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2830 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2831 	u64 num_bytes, num_dirty_bgs_bytes;
2832 	int ret = 0;
2833 
2834 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2835 	num_heads = heads_to_leaves(fs_info, num_heads);
2836 	if (num_heads > 1)
2837 		num_bytes += (num_heads - 1) * fs_info->nodesize;
2838 	num_bytes <<= 1;
2839 	num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2840 							fs_info->nodesize;
2841 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2842 							     num_dirty_bgs);
2843 	global_rsv = &fs_info->global_block_rsv;
2844 
2845 	/*
2846 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2847 	 * wiggle room since running delayed refs can create more delayed refs.
2848 	 */
2849 	if (global_rsv->space_info->full) {
2850 		num_dirty_bgs_bytes <<= 1;
2851 		num_bytes <<= 1;
2852 	}
2853 
2854 	spin_lock(&global_rsv->lock);
2855 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2856 		ret = 1;
2857 	spin_unlock(&global_rsv->lock);
2858 	return ret;
2859 }
2860 
2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2862 				       struct btrfs_fs_info *fs_info)
2863 {
2864 	u64 num_entries =
2865 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2866 	u64 avg_runtime;
2867 	u64 val;
2868 
2869 	smp_mb();
2870 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2871 	val = num_entries * avg_runtime;
2872 	if (val >= NSEC_PER_SEC)
2873 		return 1;
2874 	if (val >= NSEC_PER_SEC / 2)
2875 		return 2;
2876 
2877 	return btrfs_check_space_for_delayed_refs(trans, fs_info);
2878 }
2879 
2880 struct async_delayed_refs {
2881 	struct btrfs_root *root;
2882 	u64 transid;
2883 	int count;
2884 	int error;
2885 	int sync;
2886 	struct completion wait;
2887 	struct btrfs_work work;
2888 };
2889 
2890 static inline struct async_delayed_refs *
2891 to_async_delayed_refs(struct btrfs_work *work)
2892 {
2893 	return container_of(work, struct async_delayed_refs, work);
2894 }
2895 
2896 static void delayed_ref_async_start(struct btrfs_work *work)
2897 {
2898 	struct async_delayed_refs *async = to_async_delayed_refs(work);
2899 	struct btrfs_trans_handle *trans;
2900 	struct btrfs_fs_info *fs_info = async->root->fs_info;
2901 	int ret;
2902 
2903 	/* if the commit is already started, we don't need to wait here */
2904 	if (btrfs_transaction_blocked(fs_info))
2905 		goto done;
2906 
2907 	trans = btrfs_join_transaction(async->root);
2908 	if (IS_ERR(trans)) {
2909 		async->error = PTR_ERR(trans);
2910 		goto done;
2911 	}
2912 
2913 	/*
2914 	 * trans->sync means that when we call end_transaction, we won't
2915 	 * wait on delayed refs
2916 	 */
2917 	trans->sync = true;
2918 
2919 	/* Don't bother flushing if we got into a different transaction */
2920 	if (trans->transid > async->transid)
2921 		goto end;
2922 
2923 	ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2924 	if (ret)
2925 		async->error = ret;
2926 end:
2927 	ret = btrfs_end_transaction(trans);
2928 	if (ret && !async->error)
2929 		async->error = ret;
2930 done:
2931 	if (async->sync)
2932 		complete(&async->wait);
2933 	else
2934 		kfree(async);
2935 }
2936 
2937 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2938 				 unsigned long count, u64 transid, int wait)
2939 {
2940 	struct async_delayed_refs *async;
2941 	int ret;
2942 
2943 	async = kmalloc(sizeof(*async), GFP_NOFS);
2944 	if (!async)
2945 		return -ENOMEM;
2946 
2947 	async->root = fs_info->tree_root;
2948 	async->count = count;
2949 	async->error = 0;
2950 	async->transid = transid;
2951 	if (wait)
2952 		async->sync = 1;
2953 	else
2954 		async->sync = 0;
2955 	init_completion(&async->wait);
2956 
2957 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2958 			delayed_ref_async_start, NULL, NULL);
2959 
2960 	btrfs_queue_work(fs_info->extent_workers, &async->work);
2961 
2962 	if (wait) {
2963 		wait_for_completion(&async->wait);
2964 		ret = async->error;
2965 		kfree(async);
2966 		return ret;
2967 	}
2968 	return 0;
2969 }
2970 
2971 /*
2972  * this starts processing the delayed reference count updates and
2973  * extent insertions we have queued up so far.  count can be
2974  * 0, which means to process everything in the tree at the start
2975  * of the run (but not newly added entries), or it can be some target
2976  * number you'd like to process.
2977  *
2978  * Returns 0 on success or if called with an aborted transaction
2979  * Returns <0 on error and aborts the transaction
2980  */
2981 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2982 			   struct btrfs_fs_info *fs_info, unsigned long count)
2983 {
2984 	struct rb_node *node;
2985 	struct btrfs_delayed_ref_root *delayed_refs;
2986 	struct btrfs_delayed_ref_head *head;
2987 	int ret;
2988 	int run_all = count == (unsigned long)-1;
2989 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2990 
2991 	/* We'll clean this up in btrfs_cleanup_transaction */
2992 	if (trans->aborted)
2993 		return 0;
2994 
2995 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2996 		return 0;
2997 
2998 	delayed_refs = &trans->transaction->delayed_refs;
2999 	if (count == 0)
3000 		count = atomic_read(&delayed_refs->num_entries) * 2;
3001 
3002 again:
3003 #ifdef SCRAMBLE_DELAYED_REFS
3004 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3005 #endif
3006 	trans->can_flush_pending_bgs = false;
3007 	ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3008 	if (ret < 0) {
3009 		btrfs_abort_transaction(trans, ret);
3010 		return ret;
3011 	}
3012 
3013 	if (run_all) {
3014 		if (!list_empty(&trans->new_bgs))
3015 			btrfs_create_pending_block_groups(trans, fs_info);
3016 
3017 		spin_lock(&delayed_refs->lock);
3018 		node = rb_first(&delayed_refs->href_root);
3019 		if (!node) {
3020 			spin_unlock(&delayed_refs->lock);
3021 			goto out;
3022 		}
3023 
3024 		while (node) {
3025 			head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 					href_node);
3027 			if (btrfs_delayed_ref_is_head(&head->node)) {
3028 				struct btrfs_delayed_ref_node *ref;
3029 
3030 				ref = &head->node;
3031 				refcount_inc(&ref->refs);
3032 
3033 				spin_unlock(&delayed_refs->lock);
3034 				/*
3035 				 * Mutex was contended, block until it's
3036 				 * released and try again
3037 				 */
3038 				mutex_lock(&head->mutex);
3039 				mutex_unlock(&head->mutex);
3040 
3041 				btrfs_put_delayed_ref(ref);
3042 				cond_resched();
3043 				goto again;
3044 			} else {
3045 				WARN_ON(1);
3046 			}
3047 			node = rb_next(node);
3048 		}
3049 		spin_unlock(&delayed_refs->lock);
3050 		cond_resched();
3051 		goto again;
3052 	}
3053 out:
3054 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3055 	return 0;
3056 }
3057 
3058 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3059 				struct btrfs_fs_info *fs_info,
3060 				u64 bytenr, u64 num_bytes, u64 flags,
3061 				int level, int is_data)
3062 {
3063 	struct btrfs_delayed_extent_op *extent_op;
3064 	int ret;
3065 
3066 	extent_op = btrfs_alloc_delayed_extent_op();
3067 	if (!extent_op)
3068 		return -ENOMEM;
3069 
3070 	extent_op->flags_to_set = flags;
3071 	extent_op->update_flags = true;
3072 	extent_op->update_key = false;
3073 	extent_op->is_data = is_data ? true : false;
3074 	extent_op->level = level;
3075 
3076 	ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3077 					  num_bytes, extent_op);
3078 	if (ret)
3079 		btrfs_free_delayed_extent_op(extent_op);
3080 	return ret;
3081 }
3082 
3083 static noinline int check_delayed_ref(struct btrfs_root *root,
3084 				      struct btrfs_path *path,
3085 				      u64 objectid, u64 offset, u64 bytenr)
3086 {
3087 	struct btrfs_delayed_ref_head *head;
3088 	struct btrfs_delayed_ref_node *ref;
3089 	struct btrfs_delayed_data_ref *data_ref;
3090 	struct btrfs_delayed_ref_root *delayed_refs;
3091 	struct btrfs_transaction *cur_trans;
3092 	int ret = 0;
3093 
3094 	cur_trans = root->fs_info->running_transaction;
3095 	if (!cur_trans)
3096 		return 0;
3097 
3098 	delayed_refs = &cur_trans->delayed_refs;
3099 	spin_lock(&delayed_refs->lock);
3100 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3101 	if (!head) {
3102 		spin_unlock(&delayed_refs->lock);
3103 		return 0;
3104 	}
3105 
3106 	if (!mutex_trylock(&head->mutex)) {
3107 		refcount_inc(&head->node.refs);
3108 		spin_unlock(&delayed_refs->lock);
3109 
3110 		btrfs_release_path(path);
3111 
3112 		/*
3113 		 * Mutex was contended, block until it's released and let
3114 		 * caller try again
3115 		 */
3116 		mutex_lock(&head->mutex);
3117 		mutex_unlock(&head->mutex);
3118 		btrfs_put_delayed_ref(&head->node);
3119 		return -EAGAIN;
3120 	}
3121 	spin_unlock(&delayed_refs->lock);
3122 
3123 	spin_lock(&head->lock);
3124 	list_for_each_entry(ref, &head->ref_list, list) {
3125 		/* If it's a shared ref we know a cross reference exists */
3126 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3127 			ret = 1;
3128 			break;
3129 		}
3130 
3131 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3132 
3133 		/*
3134 		 * If our ref doesn't match the one we're currently looking at
3135 		 * then we have a cross reference.
3136 		 */
3137 		if (data_ref->root != root->root_key.objectid ||
3138 		    data_ref->objectid != objectid ||
3139 		    data_ref->offset != offset) {
3140 			ret = 1;
3141 			break;
3142 		}
3143 	}
3144 	spin_unlock(&head->lock);
3145 	mutex_unlock(&head->mutex);
3146 	return ret;
3147 }
3148 
3149 static noinline int check_committed_ref(struct btrfs_root *root,
3150 					struct btrfs_path *path,
3151 					u64 objectid, u64 offset, u64 bytenr)
3152 {
3153 	struct btrfs_fs_info *fs_info = root->fs_info;
3154 	struct btrfs_root *extent_root = fs_info->extent_root;
3155 	struct extent_buffer *leaf;
3156 	struct btrfs_extent_data_ref *ref;
3157 	struct btrfs_extent_inline_ref *iref;
3158 	struct btrfs_extent_item *ei;
3159 	struct btrfs_key key;
3160 	u32 item_size;
3161 	int ret;
3162 
3163 	key.objectid = bytenr;
3164 	key.offset = (u64)-1;
3165 	key.type = BTRFS_EXTENT_ITEM_KEY;
3166 
3167 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3168 	if (ret < 0)
3169 		goto out;
3170 	BUG_ON(ret == 0); /* Corruption */
3171 
3172 	ret = -ENOENT;
3173 	if (path->slots[0] == 0)
3174 		goto out;
3175 
3176 	path->slots[0]--;
3177 	leaf = path->nodes[0];
3178 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3179 
3180 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3181 		goto out;
3182 
3183 	ret = 1;
3184 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3185 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3186 	if (item_size < sizeof(*ei)) {
3187 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3188 		goto out;
3189 	}
3190 #endif
3191 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3192 
3193 	if (item_size != sizeof(*ei) +
3194 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3195 		goto out;
3196 
3197 	if (btrfs_extent_generation(leaf, ei) <=
3198 	    btrfs_root_last_snapshot(&root->root_item))
3199 		goto out;
3200 
3201 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3202 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3203 	    BTRFS_EXTENT_DATA_REF_KEY)
3204 		goto out;
3205 
3206 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3207 	if (btrfs_extent_refs(leaf, ei) !=
3208 	    btrfs_extent_data_ref_count(leaf, ref) ||
3209 	    btrfs_extent_data_ref_root(leaf, ref) !=
3210 	    root->root_key.objectid ||
3211 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3212 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3213 		goto out;
3214 
3215 	ret = 0;
3216 out:
3217 	return ret;
3218 }
3219 
3220 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3221 			  u64 bytenr)
3222 {
3223 	struct btrfs_path *path;
3224 	int ret;
3225 	int ret2;
3226 
3227 	path = btrfs_alloc_path();
3228 	if (!path)
3229 		return -ENOENT;
3230 
3231 	do {
3232 		ret = check_committed_ref(root, path, objectid,
3233 					  offset, bytenr);
3234 		if (ret && ret != -ENOENT)
3235 			goto out;
3236 
3237 		ret2 = check_delayed_ref(root, path, objectid,
3238 					 offset, bytenr);
3239 	} while (ret2 == -EAGAIN);
3240 
3241 	if (ret2 && ret2 != -ENOENT) {
3242 		ret = ret2;
3243 		goto out;
3244 	}
3245 
3246 	if (ret != -ENOENT || ret2 != -ENOENT)
3247 		ret = 0;
3248 out:
3249 	btrfs_free_path(path);
3250 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3251 		WARN_ON(ret > 0);
3252 	return ret;
3253 }
3254 
3255 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3256 			   struct btrfs_root *root,
3257 			   struct extent_buffer *buf,
3258 			   int full_backref, int inc)
3259 {
3260 	struct btrfs_fs_info *fs_info = root->fs_info;
3261 	u64 bytenr;
3262 	u64 num_bytes;
3263 	u64 parent;
3264 	u64 ref_root;
3265 	u32 nritems;
3266 	struct btrfs_key key;
3267 	struct btrfs_file_extent_item *fi;
3268 	int i;
3269 	int level;
3270 	int ret = 0;
3271 	int (*process_func)(struct btrfs_trans_handle *,
3272 			    struct btrfs_fs_info *,
3273 			    u64, u64, u64, u64, u64, u64);
3274 
3275 
3276 	if (btrfs_is_testing(fs_info))
3277 		return 0;
3278 
3279 	ref_root = btrfs_header_owner(buf);
3280 	nritems = btrfs_header_nritems(buf);
3281 	level = btrfs_header_level(buf);
3282 
3283 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3284 		return 0;
3285 
3286 	if (inc)
3287 		process_func = btrfs_inc_extent_ref;
3288 	else
3289 		process_func = btrfs_free_extent;
3290 
3291 	if (full_backref)
3292 		parent = buf->start;
3293 	else
3294 		parent = 0;
3295 
3296 	for (i = 0; i < nritems; i++) {
3297 		if (level == 0) {
3298 			btrfs_item_key_to_cpu(buf, &key, i);
3299 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3300 				continue;
3301 			fi = btrfs_item_ptr(buf, i,
3302 					    struct btrfs_file_extent_item);
3303 			if (btrfs_file_extent_type(buf, fi) ==
3304 			    BTRFS_FILE_EXTENT_INLINE)
3305 				continue;
3306 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3307 			if (bytenr == 0)
3308 				continue;
3309 
3310 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3311 			key.offset -= btrfs_file_extent_offset(buf, fi);
3312 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3313 					   parent, ref_root, key.objectid,
3314 					   key.offset);
3315 			if (ret)
3316 				goto fail;
3317 		} else {
3318 			bytenr = btrfs_node_blockptr(buf, i);
3319 			num_bytes = fs_info->nodesize;
3320 			ret = process_func(trans, fs_info, bytenr, num_bytes,
3321 					   parent, ref_root, level - 1, 0);
3322 			if (ret)
3323 				goto fail;
3324 		}
3325 	}
3326 	return 0;
3327 fail:
3328 	return ret;
3329 }
3330 
3331 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3332 		  struct extent_buffer *buf, int full_backref)
3333 {
3334 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3335 }
3336 
3337 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3338 		  struct extent_buffer *buf, int full_backref)
3339 {
3340 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3341 }
3342 
3343 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3344 				 struct btrfs_fs_info *fs_info,
3345 				 struct btrfs_path *path,
3346 				 struct btrfs_block_group_cache *cache)
3347 {
3348 	int ret;
3349 	struct btrfs_root *extent_root = fs_info->extent_root;
3350 	unsigned long bi;
3351 	struct extent_buffer *leaf;
3352 
3353 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3354 	if (ret) {
3355 		if (ret > 0)
3356 			ret = -ENOENT;
3357 		goto fail;
3358 	}
3359 
3360 	leaf = path->nodes[0];
3361 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3362 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3363 	btrfs_mark_buffer_dirty(leaf);
3364 fail:
3365 	btrfs_release_path(path);
3366 	return ret;
3367 
3368 }
3369 
3370 static struct btrfs_block_group_cache *
3371 next_block_group(struct btrfs_fs_info *fs_info,
3372 		 struct btrfs_block_group_cache *cache)
3373 {
3374 	struct rb_node *node;
3375 
3376 	spin_lock(&fs_info->block_group_cache_lock);
3377 
3378 	/* If our block group was removed, we need a full search. */
3379 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3380 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3381 
3382 		spin_unlock(&fs_info->block_group_cache_lock);
3383 		btrfs_put_block_group(cache);
3384 		cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3385 	}
3386 	node = rb_next(&cache->cache_node);
3387 	btrfs_put_block_group(cache);
3388 	if (node) {
3389 		cache = rb_entry(node, struct btrfs_block_group_cache,
3390 				 cache_node);
3391 		btrfs_get_block_group(cache);
3392 	} else
3393 		cache = NULL;
3394 	spin_unlock(&fs_info->block_group_cache_lock);
3395 	return cache;
3396 }
3397 
3398 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3399 			    struct btrfs_trans_handle *trans,
3400 			    struct btrfs_path *path)
3401 {
3402 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3403 	struct btrfs_root *root = fs_info->tree_root;
3404 	struct inode *inode = NULL;
3405 	struct extent_changeset *data_reserved = NULL;
3406 	u64 alloc_hint = 0;
3407 	int dcs = BTRFS_DC_ERROR;
3408 	u64 num_pages = 0;
3409 	int retries = 0;
3410 	int ret = 0;
3411 
3412 	/*
3413 	 * If this block group is smaller than 100 megs don't bother caching the
3414 	 * block group.
3415 	 */
3416 	if (block_group->key.offset < (100 * SZ_1M)) {
3417 		spin_lock(&block_group->lock);
3418 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3419 		spin_unlock(&block_group->lock);
3420 		return 0;
3421 	}
3422 
3423 	if (trans->aborted)
3424 		return 0;
3425 again:
3426 	inode = lookup_free_space_inode(fs_info, block_group, path);
3427 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3428 		ret = PTR_ERR(inode);
3429 		btrfs_release_path(path);
3430 		goto out;
3431 	}
3432 
3433 	if (IS_ERR(inode)) {
3434 		BUG_ON(retries);
3435 		retries++;
3436 
3437 		if (block_group->ro)
3438 			goto out_free;
3439 
3440 		ret = create_free_space_inode(fs_info, trans, block_group,
3441 					      path);
3442 		if (ret)
3443 			goto out_free;
3444 		goto again;
3445 	}
3446 
3447 	/* We've already setup this transaction, go ahead and exit */
3448 	if (block_group->cache_generation == trans->transid &&
3449 	    i_size_read(inode)) {
3450 		dcs = BTRFS_DC_SETUP;
3451 		goto out_put;
3452 	}
3453 
3454 	/*
3455 	 * We want to set the generation to 0, that way if anything goes wrong
3456 	 * from here on out we know not to trust this cache when we load up next
3457 	 * time.
3458 	 */
3459 	BTRFS_I(inode)->generation = 0;
3460 	ret = btrfs_update_inode(trans, root, inode);
3461 	if (ret) {
3462 		/*
3463 		 * So theoretically we could recover from this, simply set the
3464 		 * super cache generation to 0 so we know to invalidate the
3465 		 * cache, but then we'd have to keep track of the block groups
3466 		 * that fail this way so we know we _have_ to reset this cache
3467 		 * before the next commit or risk reading stale cache.  So to
3468 		 * limit our exposure to horrible edge cases lets just abort the
3469 		 * transaction, this only happens in really bad situations
3470 		 * anyway.
3471 		 */
3472 		btrfs_abort_transaction(trans, ret);
3473 		goto out_put;
3474 	}
3475 	WARN_ON(ret);
3476 
3477 	if (i_size_read(inode) > 0) {
3478 		ret = btrfs_check_trunc_cache_free_space(fs_info,
3479 					&fs_info->global_block_rsv);
3480 		if (ret)
3481 			goto out_put;
3482 
3483 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3484 		if (ret)
3485 			goto out_put;
3486 	}
3487 
3488 	spin_lock(&block_group->lock);
3489 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3490 	    !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3491 		/*
3492 		 * don't bother trying to write stuff out _if_
3493 		 * a) we're not cached,
3494 		 * b) we're with nospace_cache mount option,
3495 		 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3496 		 */
3497 		dcs = BTRFS_DC_WRITTEN;
3498 		spin_unlock(&block_group->lock);
3499 		goto out_put;
3500 	}
3501 	spin_unlock(&block_group->lock);
3502 
3503 	/*
3504 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3505 	 * skip doing the setup, we've already cleared the cache so we're safe.
3506 	 */
3507 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3508 		ret = -ENOSPC;
3509 		goto out_put;
3510 	}
3511 
3512 	/*
3513 	 * Try to preallocate enough space based on how big the block group is.
3514 	 * Keep in mind this has to include any pinned space which could end up
3515 	 * taking up quite a bit since it's not folded into the other space
3516 	 * cache.
3517 	 */
3518 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3519 	if (!num_pages)
3520 		num_pages = 1;
3521 
3522 	num_pages *= 16;
3523 	num_pages *= PAGE_SIZE;
3524 
3525 	ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3526 	if (ret)
3527 		goto out_put;
3528 
3529 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3530 					      num_pages, num_pages,
3531 					      &alloc_hint);
3532 	/*
3533 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3534 	 * of metadata or split extents when writing the cache out, which means
3535 	 * we can enospc if we are heavily fragmented in addition to just normal
3536 	 * out of space conditions.  So if we hit this just skip setting up any
3537 	 * other block groups for this transaction, maybe we'll unpin enough
3538 	 * space the next time around.
3539 	 */
3540 	if (!ret)
3541 		dcs = BTRFS_DC_SETUP;
3542 	else if (ret == -ENOSPC)
3543 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3544 
3545 out_put:
3546 	iput(inode);
3547 out_free:
3548 	btrfs_release_path(path);
3549 out:
3550 	spin_lock(&block_group->lock);
3551 	if (!ret && dcs == BTRFS_DC_SETUP)
3552 		block_group->cache_generation = trans->transid;
3553 	block_group->disk_cache_state = dcs;
3554 	spin_unlock(&block_group->lock);
3555 
3556 	extent_changeset_free(data_reserved);
3557 	return ret;
3558 }
3559 
3560 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3561 			    struct btrfs_fs_info *fs_info)
3562 {
3563 	struct btrfs_block_group_cache *cache, *tmp;
3564 	struct btrfs_transaction *cur_trans = trans->transaction;
3565 	struct btrfs_path *path;
3566 
3567 	if (list_empty(&cur_trans->dirty_bgs) ||
3568 	    !btrfs_test_opt(fs_info, SPACE_CACHE))
3569 		return 0;
3570 
3571 	path = btrfs_alloc_path();
3572 	if (!path)
3573 		return -ENOMEM;
3574 
3575 	/* Could add new block groups, use _safe just in case */
3576 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3577 				 dirty_list) {
3578 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3579 			cache_save_setup(cache, trans, path);
3580 	}
3581 
3582 	btrfs_free_path(path);
3583 	return 0;
3584 }
3585 
3586 /*
3587  * transaction commit does final block group cache writeback during a
3588  * critical section where nothing is allowed to change the FS.  This is
3589  * required in order for the cache to actually match the block group,
3590  * but can introduce a lot of latency into the commit.
3591  *
3592  * So, btrfs_start_dirty_block_groups is here to kick off block group
3593  * cache IO.  There's a chance we'll have to redo some of it if the
3594  * block group changes again during the commit, but it greatly reduces
3595  * the commit latency by getting rid of the easy block groups while
3596  * we're still allowing others to join the commit.
3597  */
3598 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3599 				   struct btrfs_fs_info *fs_info)
3600 {
3601 	struct btrfs_block_group_cache *cache;
3602 	struct btrfs_transaction *cur_trans = trans->transaction;
3603 	int ret = 0;
3604 	int should_put;
3605 	struct btrfs_path *path = NULL;
3606 	LIST_HEAD(dirty);
3607 	struct list_head *io = &cur_trans->io_bgs;
3608 	int num_started = 0;
3609 	int loops = 0;
3610 
3611 	spin_lock(&cur_trans->dirty_bgs_lock);
3612 	if (list_empty(&cur_trans->dirty_bgs)) {
3613 		spin_unlock(&cur_trans->dirty_bgs_lock);
3614 		return 0;
3615 	}
3616 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3617 	spin_unlock(&cur_trans->dirty_bgs_lock);
3618 
3619 again:
3620 	/*
3621 	 * make sure all the block groups on our dirty list actually
3622 	 * exist
3623 	 */
3624 	btrfs_create_pending_block_groups(trans, fs_info);
3625 
3626 	if (!path) {
3627 		path = btrfs_alloc_path();
3628 		if (!path)
3629 			return -ENOMEM;
3630 	}
3631 
3632 	/*
3633 	 * cache_write_mutex is here only to save us from balance or automatic
3634 	 * removal of empty block groups deleting this block group while we are
3635 	 * writing out the cache
3636 	 */
3637 	mutex_lock(&trans->transaction->cache_write_mutex);
3638 	while (!list_empty(&dirty)) {
3639 		cache = list_first_entry(&dirty,
3640 					 struct btrfs_block_group_cache,
3641 					 dirty_list);
3642 		/*
3643 		 * this can happen if something re-dirties a block
3644 		 * group that is already under IO.  Just wait for it to
3645 		 * finish and then do it all again
3646 		 */
3647 		if (!list_empty(&cache->io_list)) {
3648 			list_del_init(&cache->io_list);
3649 			btrfs_wait_cache_io(trans, cache, path);
3650 			btrfs_put_block_group(cache);
3651 		}
3652 
3653 
3654 		/*
3655 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3656 		 * if it should update the cache_state.  Don't delete
3657 		 * until after we wait.
3658 		 *
3659 		 * Since we're not running in the commit critical section
3660 		 * we need the dirty_bgs_lock to protect from update_block_group
3661 		 */
3662 		spin_lock(&cur_trans->dirty_bgs_lock);
3663 		list_del_init(&cache->dirty_list);
3664 		spin_unlock(&cur_trans->dirty_bgs_lock);
3665 
3666 		should_put = 1;
3667 
3668 		cache_save_setup(cache, trans, path);
3669 
3670 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3671 			cache->io_ctl.inode = NULL;
3672 			ret = btrfs_write_out_cache(fs_info, trans,
3673 						    cache, path);
3674 			if (ret == 0 && cache->io_ctl.inode) {
3675 				num_started++;
3676 				should_put = 0;
3677 
3678 				/*
3679 				 * the cache_write_mutex is protecting
3680 				 * the io_list
3681 				 */
3682 				list_add_tail(&cache->io_list, io);
3683 			} else {
3684 				/*
3685 				 * if we failed to write the cache, the
3686 				 * generation will be bad and life goes on
3687 				 */
3688 				ret = 0;
3689 			}
3690 		}
3691 		if (!ret) {
3692 			ret = write_one_cache_group(trans, fs_info,
3693 						    path, cache);
3694 			/*
3695 			 * Our block group might still be attached to the list
3696 			 * of new block groups in the transaction handle of some
3697 			 * other task (struct btrfs_trans_handle->new_bgs). This
3698 			 * means its block group item isn't yet in the extent
3699 			 * tree. If this happens ignore the error, as we will
3700 			 * try again later in the critical section of the
3701 			 * transaction commit.
3702 			 */
3703 			if (ret == -ENOENT) {
3704 				ret = 0;
3705 				spin_lock(&cur_trans->dirty_bgs_lock);
3706 				if (list_empty(&cache->dirty_list)) {
3707 					list_add_tail(&cache->dirty_list,
3708 						      &cur_trans->dirty_bgs);
3709 					btrfs_get_block_group(cache);
3710 				}
3711 				spin_unlock(&cur_trans->dirty_bgs_lock);
3712 			} else if (ret) {
3713 				btrfs_abort_transaction(trans, ret);
3714 			}
3715 		}
3716 
3717 		/* if its not on the io list, we need to put the block group */
3718 		if (should_put)
3719 			btrfs_put_block_group(cache);
3720 
3721 		if (ret)
3722 			break;
3723 
3724 		/*
3725 		 * Avoid blocking other tasks for too long. It might even save
3726 		 * us from writing caches for block groups that are going to be
3727 		 * removed.
3728 		 */
3729 		mutex_unlock(&trans->transaction->cache_write_mutex);
3730 		mutex_lock(&trans->transaction->cache_write_mutex);
3731 	}
3732 	mutex_unlock(&trans->transaction->cache_write_mutex);
3733 
3734 	/*
3735 	 * go through delayed refs for all the stuff we've just kicked off
3736 	 * and then loop back (just once)
3737 	 */
3738 	ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3739 	if (!ret && loops == 0) {
3740 		loops++;
3741 		spin_lock(&cur_trans->dirty_bgs_lock);
3742 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3743 		/*
3744 		 * dirty_bgs_lock protects us from concurrent block group
3745 		 * deletes too (not just cache_write_mutex).
3746 		 */
3747 		if (!list_empty(&dirty)) {
3748 			spin_unlock(&cur_trans->dirty_bgs_lock);
3749 			goto again;
3750 		}
3751 		spin_unlock(&cur_trans->dirty_bgs_lock);
3752 	} else if (ret < 0) {
3753 		btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3754 	}
3755 
3756 	btrfs_free_path(path);
3757 	return ret;
3758 }
3759 
3760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3761 				   struct btrfs_fs_info *fs_info)
3762 {
3763 	struct btrfs_block_group_cache *cache;
3764 	struct btrfs_transaction *cur_trans = trans->transaction;
3765 	int ret = 0;
3766 	int should_put;
3767 	struct btrfs_path *path;
3768 	struct list_head *io = &cur_trans->io_bgs;
3769 	int num_started = 0;
3770 
3771 	path = btrfs_alloc_path();
3772 	if (!path)
3773 		return -ENOMEM;
3774 
3775 	/*
3776 	 * Even though we are in the critical section of the transaction commit,
3777 	 * we can still have concurrent tasks adding elements to this
3778 	 * transaction's list of dirty block groups. These tasks correspond to
3779 	 * endio free space workers started when writeback finishes for a
3780 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3781 	 * allocate new block groups as a result of COWing nodes of the root
3782 	 * tree when updating the free space inode. The writeback for the space
3783 	 * caches is triggered by an earlier call to
3784 	 * btrfs_start_dirty_block_groups() and iterations of the following
3785 	 * loop.
3786 	 * Also we want to do the cache_save_setup first and then run the
3787 	 * delayed refs to make sure we have the best chance at doing this all
3788 	 * in one shot.
3789 	 */
3790 	spin_lock(&cur_trans->dirty_bgs_lock);
3791 	while (!list_empty(&cur_trans->dirty_bgs)) {
3792 		cache = list_first_entry(&cur_trans->dirty_bgs,
3793 					 struct btrfs_block_group_cache,
3794 					 dirty_list);
3795 
3796 		/*
3797 		 * this can happen if cache_save_setup re-dirties a block
3798 		 * group that is already under IO.  Just wait for it to
3799 		 * finish and then do it all again
3800 		 */
3801 		if (!list_empty(&cache->io_list)) {
3802 			spin_unlock(&cur_trans->dirty_bgs_lock);
3803 			list_del_init(&cache->io_list);
3804 			btrfs_wait_cache_io(trans, cache, path);
3805 			btrfs_put_block_group(cache);
3806 			spin_lock(&cur_trans->dirty_bgs_lock);
3807 		}
3808 
3809 		/*
3810 		 * don't remove from the dirty list until after we've waited
3811 		 * on any pending IO
3812 		 */
3813 		list_del_init(&cache->dirty_list);
3814 		spin_unlock(&cur_trans->dirty_bgs_lock);
3815 		should_put = 1;
3816 
3817 		cache_save_setup(cache, trans, path);
3818 
3819 		if (!ret)
3820 			ret = btrfs_run_delayed_refs(trans, fs_info,
3821 						     (unsigned long) -1);
3822 
3823 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3824 			cache->io_ctl.inode = NULL;
3825 			ret = btrfs_write_out_cache(fs_info, trans,
3826 						    cache, path);
3827 			if (ret == 0 && cache->io_ctl.inode) {
3828 				num_started++;
3829 				should_put = 0;
3830 				list_add_tail(&cache->io_list, io);
3831 			} else {
3832 				/*
3833 				 * if we failed to write the cache, the
3834 				 * generation will be bad and life goes on
3835 				 */
3836 				ret = 0;
3837 			}
3838 		}
3839 		if (!ret) {
3840 			ret = write_one_cache_group(trans, fs_info,
3841 						    path, cache);
3842 			/*
3843 			 * One of the free space endio workers might have
3844 			 * created a new block group while updating a free space
3845 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3846 			 * and hasn't released its transaction handle yet, in
3847 			 * which case the new block group is still attached to
3848 			 * its transaction handle and its creation has not
3849 			 * finished yet (no block group item in the extent tree
3850 			 * yet, etc). If this is the case, wait for all free
3851 			 * space endio workers to finish and retry. This is a
3852 			 * a very rare case so no need for a more efficient and
3853 			 * complex approach.
3854 			 */
3855 			if (ret == -ENOENT) {
3856 				wait_event(cur_trans->writer_wait,
3857 				   atomic_read(&cur_trans->num_writers) == 1);
3858 				ret = write_one_cache_group(trans, fs_info,
3859 							    path, cache);
3860 			}
3861 			if (ret)
3862 				btrfs_abort_transaction(trans, ret);
3863 		}
3864 
3865 		/* if its not on the io list, we need to put the block group */
3866 		if (should_put)
3867 			btrfs_put_block_group(cache);
3868 		spin_lock(&cur_trans->dirty_bgs_lock);
3869 	}
3870 	spin_unlock(&cur_trans->dirty_bgs_lock);
3871 
3872 	while (!list_empty(io)) {
3873 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3874 					 io_list);
3875 		list_del_init(&cache->io_list);
3876 		btrfs_wait_cache_io(trans, cache, path);
3877 		btrfs_put_block_group(cache);
3878 	}
3879 
3880 	btrfs_free_path(path);
3881 	return ret;
3882 }
3883 
3884 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3885 {
3886 	struct btrfs_block_group_cache *block_group;
3887 	int readonly = 0;
3888 
3889 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
3890 	if (!block_group || block_group->ro)
3891 		readonly = 1;
3892 	if (block_group)
3893 		btrfs_put_block_group(block_group);
3894 	return readonly;
3895 }
3896 
3897 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3898 {
3899 	struct btrfs_block_group_cache *bg;
3900 	bool ret = true;
3901 
3902 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3903 	if (!bg)
3904 		return false;
3905 
3906 	spin_lock(&bg->lock);
3907 	if (bg->ro)
3908 		ret = false;
3909 	else
3910 		atomic_inc(&bg->nocow_writers);
3911 	spin_unlock(&bg->lock);
3912 
3913 	/* no put on block group, done by btrfs_dec_nocow_writers */
3914 	if (!ret)
3915 		btrfs_put_block_group(bg);
3916 
3917 	return ret;
3918 
3919 }
3920 
3921 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3922 {
3923 	struct btrfs_block_group_cache *bg;
3924 
3925 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3926 	ASSERT(bg);
3927 	if (atomic_dec_and_test(&bg->nocow_writers))
3928 		wake_up_atomic_t(&bg->nocow_writers);
3929 	/*
3930 	 * Once for our lookup and once for the lookup done by a previous call
3931 	 * to btrfs_inc_nocow_writers()
3932 	 */
3933 	btrfs_put_block_group(bg);
3934 	btrfs_put_block_group(bg);
3935 }
3936 
3937 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3938 {
3939 	schedule();
3940 	return 0;
3941 }
3942 
3943 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3944 {
3945 	wait_on_atomic_t(&bg->nocow_writers,
3946 			 btrfs_wait_nocow_writers_atomic_t,
3947 			 TASK_UNINTERRUPTIBLE);
3948 }
3949 
3950 static const char *alloc_name(u64 flags)
3951 {
3952 	switch (flags) {
3953 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3954 		return "mixed";
3955 	case BTRFS_BLOCK_GROUP_METADATA:
3956 		return "metadata";
3957 	case BTRFS_BLOCK_GROUP_DATA:
3958 		return "data";
3959 	case BTRFS_BLOCK_GROUP_SYSTEM:
3960 		return "system";
3961 	default:
3962 		WARN_ON(1);
3963 		return "invalid-combination";
3964 	};
3965 }
3966 
3967 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
3968 			     struct btrfs_space_info **new)
3969 {
3970 
3971 	struct btrfs_space_info *space_info;
3972 	int i;
3973 	int ret;
3974 
3975 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3976 	if (!space_info)
3977 		return -ENOMEM;
3978 
3979 	ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3980 				 GFP_KERNEL);
3981 	if (ret) {
3982 		kfree(space_info);
3983 		return ret;
3984 	}
3985 
3986 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3987 		INIT_LIST_HEAD(&space_info->block_groups[i]);
3988 	init_rwsem(&space_info->groups_sem);
3989 	spin_lock_init(&space_info->lock);
3990 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3991 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3992 	init_waitqueue_head(&space_info->wait);
3993 	INIT_LIST_HEAD(&space_info->ro_bgs);
3994 	INIT_LIST_HEAD(&space_info->tickets);
3995 	INIT_LIST_HEAD(&space_info->priority_tickets);
3996 
3997 	ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3998 				    info->space_info_kobj, "%s",
3999 				    alloc_name(space_info->flags));
4000 	if (ret) {
4001 		percpu_counter_destroy(&space_info->total_bytes_pinned);
4002 		kfree(space_info);
4003 		return ret;
4004 	}
4005 
4006 	*new = space_info;
4007 	list_add_rcu(&space_info->list, &info->space_info);
4008 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4009 		info->data_sinfo = space_info;
4010 
4011 	return ret;
4012 }
4013 
4014 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4015 			     u64 total_bytes, u64 bytes_used,
4016 			     u64 bytes_readonly,
4017 			     struct btrfs_space_info **space_info)
4018 {
4019 	struct btrfs_space_info *found;
4020 	int factor;
4021 
4022 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4023 		     BTRFS_BLOCK_GROUP_RAID10))
4024 		factor = 2;
4025 	else
4026 		factor = 1;
4027 
4028 	found = __find_space_info(info, flags);
4029 	ASSERT(found);
4030 	spin_lock(&found->lock);
4031 	found->total_bytes += total_bytes;
4032 	found->disk_total += total_bytes * factor;
4033 	found->bytes_used += bytes_used;
4034 	found->disk_used += bytes_used * factor;
4035 	found->bytes_readonly += bytes_readonly;
4036 	if (total_bytes > 0)
4037 		found->full = 0;
4038 	space_info_add_new_bytes(info, found, total_bytes -
4039 				 bytes_used - bytes_readonly);
4040 	spin_unlock(&found->lock);
4041 	*space_info = found;
4042 }
4043 
4044 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4045 {
4046 	u64 extra_flags = chunk_to_extended(flags) &
4047 				BTRFS_EXTENDED_PROFILE_MASK;
4048 
4049 	write_seqlock(&fs_info->profiles_lock);
4050 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4051 		fs_info->avail_data_alloc_bits |= extra_flags;
4052 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4053 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4054 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4055 		fs_info->avail_system_alloc_bits |= extra_flags;
4056 	write_sequnlock(&fs_info->profiles_lock);
4057 }
4058 
4059 /*
4060  * returns target flags in extended format or 0 if restripe for this
4061  * chunk_type is not in progress
4062  *
4063  * should be called with either volume_mutex or balance_lock held
4064  */
4065 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4066 {
4067 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4068 	u64 target = 0;
4069 
4070 	if (!bctl)
4071 		return 0;
4072 
4073 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4074 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4075 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4076 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4077 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4078 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4079 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4080 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4081 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4082 	}
4083 
4084 	return target;
4085 }
4086 
4087 /*
4088  * @flags: available profiles in extended format (see ctree.h)
4089  *
4090  * Returns reduced profile in chunk format.  If profile changing is in
4091  * progress (either running or paused) picks the target profile (if it's
4092  * already available), otherwise falls back to plain reducing.
4093  */
4094 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4095 {
4096 	u64 num_devices = fs_info->fs_devices->rw_devices;
4097 	u64 target;
4098 	u64 raid_type;
4099 	u64 allowed = 0;
4100 
4101 	/*
4102 	 * see if restripe for this chunk_type is in progress, if so
4103 	 * try to reduce to the target profile
4104 	 */
4105 	spin_lock(&fs_info->balance_lock);
4106 	target = get_restripe_target(fs_info, flags);
4107 	if (target) {
4108 		/* pick target profile only if it's already available */
4109 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4110 			spin_unlock(&fs_info->balance_lock);
4111 			return extended_to_chunk(target);
4112 		}
4113 	}
4114 	spin_unlock(&fs_info->balance_lock);
4115 
4116 	/* First, mask out the RAID levels which aren't possible */
4117 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4118 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4119 			allowed |= btrfs_raid_group[raid_type];
4120 	}
4121 	allowed &= flags;
4122 
4123 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4124 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4125 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4126 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4127 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4128 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4129 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4130 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4131 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4132 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4133 
4134 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4135 
4136 	return extended_to_chunk(flags | allowed);
4137 }
4138 
4139 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4140 {
4141 	unsigned seq;
4142 	u64 flags;
4143 
4144 	do {
4145 		flags = orig_flags;
4146 		seq = read_seqbegin(&fs_info->profiles_lock);
4147 
4148 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4149 			flags |= fs_info->avail_data_alloc_bits;
4150 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4151 			flags |= fs_info->avail_system_alloc_bits;
4152 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4153 			flags |= fs_info->avail_metadata_alloc_bits;
4154 	} while (read_seqretry(&fs_info->profiles_lock, seq));
4155 
4156 	return btrfs_reduce_alloc_profile(fs_info, flags);
4157 }
4158 
4159 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4160 {
4161 	struct btrfs_fs_info *fs_info = root->fs_info;
4162 	u64 flags;
4163 	u64 ret;
4164 
4165 	if (data)
4166 		flags = BTRFS_BLOCK_GROUP_DATA;
4167 	else if (root == fs_info->chunk_root)
4168 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4169 	else
4170 		flags = BTRFS_BLOCK_GROUP_METADATA;
4171 
4172 	ret = get_alloc_profile(fs_info, flags);
4173 	return ret;
4174 }
4175 
4176 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4177 {
4178 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4179 }
4180 
4181 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4182 {
4183 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4184 }
4185 
4186 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4187 {
4188 	return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4189 }
4190 
4191 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4192 				 bool may_use_included)
4193 {
4194 	ASSERT(s_info);
4195 	return s_info->bytes_used + s_info->bytes_reserved +
4196 		s_info->bytes_pinned + s_info->bytes_readonly +
4197 		(may_use_included ? s_info->bytes_may_use : 0);
4198 }
4199 
4200 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4201 {
4202 	struct btrfs_space_info *data_sinfo;
4203 	struct btrfs_root *root = inode->root;
4204 	struct btrfs_fs_info *fs_info = root->fs_info;
4205 	u64 used;
4206 	int ret = 0;
4207 	int need_commit = 2;
4208 	int have_pinned_space;
4209 
4210 	/* make sure bytes are sectorsize aligned */
4211 	bytes = ALIGN(bytes, fs_info->sectorsize);
4212 
4213 	if (btrfs_is_free_space_inode(inode)) {
4214 		need_commit = 0;
4215 		ASSERT(current->journal_info);
4216 	}
4217 
4218 	data_sinfo = fs_info->data_sinfo;
4219 	if (!data_sinfo)
4220 		goto alloc;
4221 
4222 again:
4223 	/* make sure we have enough space to handle the data first */
4224 	spin_lock(&data_sinfo->lock);
4225 	used = btrfs_space_info_used(data_sinfo, true);
4226 
4227 	if (used + bytes > data_sinfo->total_bytes) {
4228 		struct btrfs_trans_handle *trans;
4229 
4230 		/*
4231 		 * if we don't have enough free bytes in this space then we need
4232 		 * to alloc a new chunk.
4233 		 */
4234 		if (!data_sinfo->full) {
4235 			u64 alloc_target;
4236 
4237 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4238 			spin_unlock(&data_sinfo->lock);
4239 alloc:
4240 			alloc_target = btrfs_data_alloc_profile(fs_info);
4241 			/*
4242 			 * It is ugly that we don't call nolock join
4243 			 * transaction for the free space inode case here.
4244 			 * But it is safe because we only do the data space
4245 			 * reservation for the free space cache in the
4246 			 * transaction context, the common join transaction
4247 			 * just increase the counter of the current transaction
4248 			 * handler, doesn't try to acquire the trans_lock of
4249 			 * the fs.
4250 			 */
4251 			trans = btrfs_join_transaction(root);
4252 			if (IS_ERR(trans))
4253 				return PTR_ERR(trans);
4254 
4255 			ret = do_chunk_alloc(trans, fs_info, alloc_target,
4256 					     CHUNK_ALLOC_NO_FORCE);
4257 			btrfs_end_transaction(trans);
4258 			if (ret < 0) {
4259 				if (ret != -ENOSPC)
4260 					return ret;
4261 				else {
4262 					have_pinned_space = 1;
4263 					goto commit_trans;
4264 				}
4265 			}
4266 
4267 			if (!data_sinfo)
4268 				data_sinfo = fs_info->data_sinfo;
4269 
4270 			goto again;
4271 		}
4272 
4273 		/*
4274 		 * If we don't have enough pinned space to deal with this
4275 		 * allocation, and no removed chunk in current transaction,
4276 		 * don't bother committing the transaction.
4277 		 */
4278 		have_pinned_space = percpu_counter_compare(
4279 			&data_sinfo->total_bytes_pinned,
4280 			used + bytes - data_sinfo->total_bytes);
4281 		spin_unlock(&data_sinfo->lock);
4282 
4283 		/* commit the current transaction and try again */
4284 commit_trans:
4285 		if (need_commit &&
4286 		    !atomic_read(&fs_info->open_ioctl_trans)) {
4287 			need_commit--;
4288 
4289 			if (need_commit > 0) {
4290 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4291 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4292 							 (u64)-1);
4293 			}
4294 
4295 			trans = btrfs_join_transaction(root);
4296 			if (IS_ERR(trans))
4297 				return PTR_ERR(trans);
4298 			if (have_pinned_space >= 0 ||
4299 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4300 				     &trans->transaction->flags) ||
4301 			    need_commit > 0) {
4302 				ret = btrfs_commit_transaction(trans);
4303 				if (ret)
4304 					return ret;
4305 				/*
4306 				 * The cleaner kthread might still be doing iput
4307 				 * operations. Wait for it to finish so that
4308 				 * more space is released.
4309 				 */
4310 				mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4311 				mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4312 				goto again;
4313 			} else {
4314 				btrfs_end_transaction(trans);
4315 			}
4316 		}
4317 
4318 		trace_btrfs_space_reservation(fs_info,
4319 					      "space_info:enospc",
4320 					      data_sinfo->flags, bytes, 1);
4321 		return -ENOSPC;
4322 	}
4323 	data_sinfo->bytes_may_use += bytes;
4324 	trace_btrfs_space_reservation(fs_info, "space_info",
4325 				      data_sinfo->flags, bytes, 1);
4326 	spin_unlock(&data_sinfo->lock);
4327 
4328 	return ret;
4329 }
4330 
4331 int btrfs_check_data_free_space(struct inode *inode,
4332 			struct extent_changeset **reserved, u64 start, u64 len)
4333 {
4334 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4335 	int ret;
4336 
4337 	/* align the range */
4338 	len = round_up(start + len, fs_info->sectorsize) -
4339 	      round_down(start, fs_info->sectorsize);
4340 	start = round_down(start, fs_info->sectorsize);
4341 
4342 	ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4343 	if (ret < 0)
4344 		return ret;
4345 
4346 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4347 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4348 	if (ret < 0)
4349 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4350 	else
4351 		ret = 0;
4352 	return ret;
4353 }
4354 
4355 /*
4356  * Called if we need to clear a data reservation for this inode
4357  * Normally in a error case.
4358  *
4359  * This one will *NOT* use accurate qgroup reserved space API, just for case
4360  * which we can't sleep and is sure it won't affect qgroup reserved space.
4361  * Like clear_bit_hook().
4362  */
4363 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4364 					    u64 len)
4365 {
4366 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4367 	struct btrfs_space_info *data_sinfo;
4368 
4369 	/* Make sure the range is aligned to sectorsize */
4370 	len = round_up(start + len, fs_info->sectorsize) -
4371 	      round_down(start, fs_info->sectorsize);
4372 	start = round_down(start, fs_info->sectorsize);
4373 
4374 	data_sinfo = fs_info->data_sinfo;
4375 	spin_lock(&data_sinfo->lock);
4376 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4377 		data_sinfo->bytes_may_use = 0;
4378 	else
4379 		data_sinfo->bytes_may_use -= len;
4380 	trace_btrfs_space_reservation(fs_info, "space_info",
4381 				      data_sinfo->flags, len, 0);
4382 	spin_unlock(&data_sinfo->lock);
4383 }
4384 
4385 /*
4386  * Called if we need to clear a data reservation for this inode
4387  * Normally in a error case.
4388  *
4389  * This one will handle the per-inode data rsv map for accurate reserved
4390  * space framework.
4391  */
4392 void btrfs_free_reserved_data_space(struct inode *inode,
4393 			struct extent_changeset *reserved, u64 start, u64 len)
4394 {
4395 	struct btrfs_root *root = BTRFS_I(inode)->root;
4396 
4397 	/* Make sure the range is aligned to sectorsize */
4398 	len = round_up(start + len, root->fs_info->sectorsize) -
4399 	      round_down(start, root->fs_info->sectorsize);
4400 	start = round_down(start, root->fs_info->sectorsize);
4401 
4402 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4403 	btrfs_qgroup_free_data(inode, reserved, start, len);
4404 }
4405 
4406 static void force_metadata_allocation(struct btrfs_fs_info *info)
4407 {
4408 	struct list_head *head = &info->space_info;
4409 	struct btrfs_space_info *found;
4410 
4411 	rcu_read_lock();
4412 	list_for_each_entry_rcu(found, head, list) {
4413 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4414 			found->force_alloc = CHUNK_ALLOC_FORCE;
4415 	}
4416 	rcu_read_unlock();
4417 }
4418 
4419 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4420 {
4421 	return (global->size << 1);
4422 }
4423 
4424 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4425 			      struct btrfs_space_info *sinfo, int force)
4426 {
4427 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4428 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4429 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4430 	u64 thresh;
4431 
4432 	if (force == CHUNK_ALLOC_FORCE)
4433 		return 1;
4434 
4435 	/*
4436 	 * We need to take into account the global rsv because for all intents
4437 	 * and purposes it's used space.  Don't worry about locking the
4438 	 * global_rsv, it doesn't change except when the transaction commits.
4439 	 */
4440 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4441 		num_allocated += calc_global_rsv_need_space(global_rsv);
4442 
4443 	/*
4444 	 * in limited mode, we want to have some free space up to
4445 	 * about 1% of the FS size.
4446 	 */
4447 	if (force == CHUNK_ALLOC_LIMITED) {
4448 		thresh = btrfs_super_total_bytes(fs_info->super_copy);
4449 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4450 
4451 		if (num_bytes - num_allocated < thresh)
4452 			return 1;
4453 	}
4454 
4455 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4456 		return 0;
4457 	return 1;
4458 }
4459 
4460 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4461 {
4462 	u64 num_dev;
4463 
4464 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4465 		    BTRFS_BLOCK_GROUP_RAID0 |
4466 		    BTRFS_BLOCK_GROUP_RAID5 |
4467 		    BTRFS_BLOCK_GROUP_RAID6))
4468 		num_dev = fs_info->fs_devices->rw_devices;
4469 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4470 		num_dev = 2;
4471 	else
4472 		num_dev = 1;	/* DUP or single */
4473 
4474 	return num_dev;
4475 }
4476 
4477 /*
4478  * If @is_allocation is true, reserve space in the system space info necessary
4479  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4480  * removing a chunk.
4481  */
4482 void check_system_chunk(struct btrfs_trans_handle *trans,
4483 			struct btrfs_fs_info *fs_info, u64 type)
4484 {
4485 	struct btrfs_space_info *info;
4486 	u64 left;
4487 	u64 thresh;
4488 	int ret = 0;
4489 	u64 num_devs;
4490 
4491 	/*
4492 	 * Needed because we can end up allocating a system chunk and for an
4493 	 * atomic and race free space reservation in the chunk block reserve.
4494 	 */
4495 	ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4496 
4497 	info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4498 	spin_lock(&info->lock);
4499 	left = info->total_bytes - btrfs_space_info_used(info, true);
4500 	spin_unlock(&info->lock);
4501 
4502 	num_devs = get_profile_num_devs(fs_info, type);
4503 
4504 	/* num_devs device items to update and 1 chunk item to add or remove */
4505 	thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4506 		btrfs_calc_trans_metadata_size(fs_info, 1);
4507 
4508 	if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4509 		btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4510 			   left, thresh, type);
4511 		dump_space_info(fs_info, info, 0, 0);
4512 	}
4513 
4514 	if (left < thresh) {
4515 		u64 flags = btrfs_system_alloc_profile(fs_info);
4516 
4517 		/*
4518 		 * Ignore failure to create system chunk. We might end up not
4519 		 * needing it, as we might not need to COW all nodes/leafs from
4520 		 * the paths we visit in the chunk tree (they were already COWed
4521 		 * or created in the current transaction for example).
4522 		 */
4523 		ret = btrfs_alloc_chunk(trans, fs_info, flags);
4524 	}
4525 
4526 	if (!ret) {
4527 		ret = btrfs_block_rsv_add(fs_info->chunk_root,
4528 					  &fs_info->chunk_block_rsv,
4529 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4530 		if (!ret)
4531 			trans->chunk_bytes_reserved += thresh;
4532 	}
4533 }
4534 
4535 /*
4536  * If force is CHUNK_ALLOC_FORCE:
4537  *    - return 1 if it successfully allocates a chunk,
4538  *    - return errors including -ENOSPC otherwise.
4539  * If force is NOT CHUNK_ALLOC_FORCE:
4540  *    - return 0 if it doesn't need to allocate a new chunk,
4541  *    - return 1 if it successfully allocates a chunk,
4542  *    - return errors including -ENOSPC otherwise.
4543  */
4544 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4545 			  struct btrfs_fs_info *fs_info, u64 flags, int force)
4546 {
4547 	struct btrfs_space_info *space_info;
4548 	int wait_for_alloc = 0;
4549 	int ret = 0;
4550 
4551 	/* Don't re-enter if we're already allocating a chunk */
4552 	if (trans->allocating_chunk)
4553 		return -ENOSPC;
4554 
4555 	space_info = __find_space_info(fs_info, flags);
4556 	if (!space_info) {
4557 		ret = create_space_info(fs_info, flags, &space_info);
4558 		if (ret)
4559 			return ret;
4560 	}
4561 
4562 again:
4563 	spin_lock(&space_info->lock);
4564 	if (force < space_info->force_alloc)
4565 		force = space_info->force_alloc;
4566 	if (space_info->full) {
4567 		if (should_alloc_chunk(fs_info, space_info, force))
4568 			ret = -ENOSPC;
4569 		else
4570 			ret = 0;
4571 		spin_unlock(&space_info->lock);
4572 		return ret;
4573 	}
4574 
4575 	if (!should_alloc_chunk(fs_info, space_info, force)) {
4576 		spin_unlock(&space_info->lock);
4577 		return 0;
4578 	} else if (space_info->chunk_alloc) {
4579 		wait_for_alloc = 1;
4580 	} else {
4581 		space_info->chunk_alloc = 1;
4582 	}
4583 
4584 	spin_unlock(&space_info->lock);
4585 
4586 	mutex_lock(&fs_info->chunk_mutex);
4587 
4588 	/*
4589 	 * The chunk_mutex is held throughout the entirety of a chunk
4590 	 * allocation, so once we've acquired the chunk_mutex we know that the
4591 	 * other guy is done and we need to recheck and see if we should
4592 	 * allocate.
4593 	 */
4594 	if (wait_for_alloc) {
4595 		mutex_unlock(&fs_info->chunk_mutex);
4596 		wait_for_alloc = 0;
4597 		goto again;
4598 	}
4599 
4600 	trans->allocating_chunk = true;
4601 
4602 	/*
4603 	 * If we have mixed data/metadata chunks we want to make sure we keep
4604 	 * allocating mixed chunks instead of individual chunks.
4605 	 */
4606 	if (btrfs_mixed_space_info(space_info))
4607 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4608 
4609 	/*
4610 	 * if we're doing a data chunk, go ahead and make sure that
4611 	 * we keep a reasonable number of metadata chunks allocated in the
4612 	 * FS as well.
4613 	 */
4614 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4615 		fs_info->data_chunk_allocations++;
4616 		if (!(fs_info->data_chunk_allocations %
4617 		      fs_info->metadata_ratio))
4618 			force_metadata_allocation(fs_info);
4619 	}
4620 
4621 	/*
4622 	 * Check if we have enough space in SYSTEM chunk because we may need
4623 	 * to update devices.
4624 	 */
4625 	check_system_chunk(trans, fs_info, flags);
4626 
4627 	ret = btrfs_alloc_chunk(trans, fs_info, flags);
4628 	trans->allocating_chunk = false;
4629 
4630 	spin_lock(&space_info->lock);
4631 	if (ret < 0 && ret != -ENOSPC)
4632 		goto out;
4633 	if (ret)
4634 		space_info->full = 1;
4635 	else
4636 		ret = 1;
4637 
4638 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4639 out:
4640 	space_info->chunk_alloc = 0;
4641 	spin_unlock(&space_info->lock);
4642 	mutex_unlock(&fs_info->chunk_mutex);
4643 	/*
4644 	 * When we allocate a new chunk we reserve space in the chunk block
4645 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4646 	 * add new nodes/leafs to it if we end up needing to do it when
4647 	 * inserting the chunk item and updating device items as part of the
4648 	 * second phase of chunk allocation, performed by
4649 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4650 	 * large number of new block groups to create in our transaction
4651 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4652 	 * in extreme cases - like having a single transaction create many new
4653 	 * block groups when starting to write out the free space caches of all
4654 	 * the block groups that were made dirty during the lifetime of the
4655 	 * transaction.
4656 	 */
4657 	if (trans->can_flush_pending_bgs &&
4658 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4659 		btrfs_create_pending_block_groups(trans, fs_info);
4660 		btrfs_trans_release_chunk_metadata(trans);
4661 	}
4662 	return ret;
4663 }
4664 
4665 static int can_overcommit(struct btrfs_fs_info *fs_info,
4666 			  struct btrfs_space_info *space_info, u64 bytes,
4667 			  enum btrfs_reserve_flush_enum flush,
4668 			  bool system_chunk)
4669 {
4670 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4671 	u64 profile;
4672 	u64 space_size;
4673 	u64 avail;
4674 	u64 used;
4675 
4676 	/* Don't overcommit when in mixed mode. */
4677 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4678 		return 0;
4679 
4680 	if (system_chunk)
4681 		profile = btrfs_system_alloc_profile(fs_info);
4682 	else
4683 		profile = btrfs_metadata_alloc_profile(fs_info);
4684 
4685 	used = btrfs_space_info_used(space_info, false);
4686 
4687 	/*
4688 	 * We only want to allow over committing if we have lots of actual space
4689 	 * free, but if we don't have enough space to handle the global reserve
4690 	 * space then we could end up having a real enospc problem when trying
4691 	 * to allocate a chunk or some other such important allocation.
4692 	 */
4693 	spin_lock(&global_rsv->lock);
4694 	space_size = calc_global_rsv_need_space(global_rsv);
4695 	spin_unlock(&global_rsv->lock);
4696 	if (used + space_size >= space_info->total_bytes)
4697 		return 0;
4698 
4699 	used += space_info->bytes_may_use;
4700 
4701 	avail = atomic64_read(&fs_info->free_chunk_space);
4702 
4703 	/*
4704 	 * If we have dup, raid1 or raid10 then only half of the free
4705 	 * space is actually useable.  For raid56, the space info used
4706 	 * doesn't include the parity drive, so we don't have to
4707 	 * change the math
4708 	 */
4709 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4710 		       BTRFS_BLOCK_GROUP_RAID1 |
4711 		       BTRFS_BLOCK_GROUP_RAID10))
4712 		avail >>= 1;
4713 
4714 	/*
4715 	 * If we aren't flushing all things, let us overcommit up to
4716 	 * 1/2th of the space. If we can flush, don't let us overcommit
4717 	 * too much, let it overcommit up to 1/8 of the space.
4718 	 */
4719 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4720 		avail >>= 3;
4721 	else
4722 		avail >>= 1;
4723 
4724 	if (used + bytes < space_info->total_bytes + avail)
4725 		return 1;
4726 	return 0;
4727 }
4728 
4729 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4730 					 unsigned long nr_pages, int nr_items)
4731 {
4732 	struct super_block *sb = fs_info->sb;
4733 
4734 	if (down_read_trylock(&sb->s_umount)) {
4735 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4736 		up_read(&sb->s_umount);
4737 	} else {
4738 		/*
4739 		 * We needn't worry the filesystem going from r/w to r/o though
4740 		 * we don't acquire ->s_umount mutex, because the filesystem
4741 		 * should guarantee the delalloc inodes list be empty after
4742 		 * the filesystem is readonly(all dirty pages are written to
4743 		 * the disk).
4744 		 */
4745 		btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4746 		if (!current->journal_info)
4747 			btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4748 	}
4749 }
4750 
4751 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4752 					u64 to_reclaim)
4753 {
4754 	u64 bytes;
4755 	u64 nr;
4756 
4757 	bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4758 	nr = div64_u64(to_reclaim, bytes);
4759 	if (!nr)
4760 		nr = 1;
4761 	return nr;
4762 }
4763 
4764 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4765 
4766 /*
4767  * shrink metadata reservation for delalloc
4768  */
4769 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4770 			    u64 orig, bool wait_ordered)
4771 {
4772 	struct btrfs_block_rsv *block_rsv;
4773 	struct btrfs_space_info *space_info;
4774 	struct btrfs_trans_handle *trans;
4775 	u64 delalloc_bytes;
4776 	u64 max_reclaim;
4777 	u64 items;
4778 	long time_left;
4779 	unsigned long nr_pages;
4780 	int loops;
4781 	enum btrfs_reserve_flush_enum flush;
4782 
4783 	/* Calc the number of the pages we need flush for space reservation */
4784 	items = calc_reclaim_items_nr(fs_info, to_reclaim);
4785 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4786 
4787 	trans = (struct btrfs_trans_handle *)current->journal_info;
4788 	block_rsv = &fs_info->delalloc_block_rsv;
4789 	space_info = block_rsv->space_info;
4790 
4791 	delalloc_bytes = percpu_counter_sum_positive(
4792 						&fs_info->delalloc_bytes);
4793 	if (delalloc_bytes == 0) {
4794 		if (trans)
4795 			return;
4796 		if (wait_ordered)
4797 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4798 		return;
4799 	}
4800 
4801 	loops = 0;
4802 	while (delalloc_bytes && loops < 3) {
4803 		max_reclaim = min(delalloc_bytes, to_reclaim);
4804 		nr_pages = max_reclaim >> PAGE_SHIFT;
4805 		btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4806 		/*
4807 		 * We need to wait for the async pages to actually start before
4808 		 * we do anything.
4809 		 */
4810 		max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4811 		if (!max_reclaim)
4812 			goto skip_async;
4813 
4814 		if (max_reclaim <= nr_pages)
4815 			max_reclaim = 0;
4816 		else
4817 			max_reclaim -= nr_pages;
4818 
4819 		wait_event(fs_info->async_submit_wait,
4820 			   atomic_read(&fs_info->async_delalloc_pages) <=
4821 			   (int)max_reclaim);
4822 skip_async:
4823 		if (!trans)
4824 			flush = BTRFS_RESERVE_FLUSH_ALL;
4825 		else
4826 			flush = BTRFS_RESERVE_NO_FLUSH;
4827 		spin_lock(&space_info->lock);
4828 		if (can_overcommit(fs_info, space_info, orig, flush, false)) {
4829 			spin_unlock(&space_info->lock);
4830 			break;
4831 		}
4832 		if (list_empty(&space_info->tickets) &&
4833 		    list_empty(&space_info->priority_tickets)) {
4834 			spin_unlock(&space_info->lock);
4835 			break;
4836 		}
4837 		spin_unlock(&space_info->lock);
4838 
4839 		loops++;
4840 		if (wait_ordered && !trans) {
4841 			btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4842 		} else {
4843 			time_left = schedule_timeout_killable(1);
4844 			if (time_left)
4845 				break;
4846 		}
4847 		delalloc_bytes = percpu_counter_sum_positive(
4848 						&fs_info->delalloc_bytes);
4849 	}
4850 }
4851 
4852 /**
4853  * maybe_commit_transaction - possibly commit the transaction if its ok to
4854  * @root - the root we're allocating for
4855  * @bytes - the number of bytes we want to reserve
4856  * @force - force the commit
4857  *
4858  * This will check to make sure that committing the transaction will actually
4859  * get us somewhere and then commit the transaction if it does.  Otherwise it
4860  * will return -ENOSPC.
4861  */
4862 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4863 				  struct btrfs_space_info *space_info,
4864 				  u64 bytes, int force)
4865 {
4866 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4867 	struct btrfs_trans_handle *trans;
4868 
4869 	trans = (struct btrfs_trans_handle *)current->journal_info;
4870 	if (trans)
4871 		return -EAGAIN;
4872 
4873 	if (force)
4874 		goto commit;
4875 
4876 	/* See if there is enough pinned space to make this reservation */
4877 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4878 				   bytes) >= 0)
4879 		goto commit;
4880 
4881 	/*
4882 	 * See if there is some space in the delayed insertion reservation for
4883 	 * this reservation.
4884 	 */
4885 	if (space_info != delayed_rsv->space_info)
4886 		return -ENOSPC;
4887 
4888 	spin_lock(&delayed_rsv->lock);
4889 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4890 				   bytes - delayed_rsv->size) < 0) {
4891 		spin_unlock(&delayed_rsv->lock);
4892 		return -ENOSPC;
4893 	}
4894 	spin_unlock(&delayed_rsv->lock);
4895 
4896 commit:
4897 	trans = btrfs_join_transaction(fs_info->extent_root);
4898 	if (IS_ERR(trans))
4899 		return -ENOSPC;
4900 
4901 	return btrfs_commit_transaction(trans);
4902 }
4903 
4904 struct reserve_ticket {
4905 	u64 bytes;
4906 	int error;
4907 	struct list_head list;
4908 	wait_queue_head_t wait;
4909 };
4910 
4911 static int flush_space(struct btrfs_fs_info *fs_info,
4912 		       struct btrfs_space_info *space_info, u64 num_bytes,
4913 		       u64 orig_bytes, int state)
4914 {
4915 	struct btrfs_root *root = fs_info->extent_root;
4916 	struct btrfs_trans_handle *trans;
4917 	int nr;
4918 	int ret = 0;
4919 
4920 	switch (state) {
4921 	case FLUSH_DELAYED_ITEMS_NR:
4922 	case FLUSH_DELAYED_ITEMS:
4923 		if (state == FLUSH_DELAYED_ITEMS_NR)
4924 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4925 		else
4926 			nr = -1;
4927 
4928 		trans = btrfs_join_transaction(root);
4929 		if (IS_ERR(trans)) {
4930 			ret = PTR_ERR(trans);
4931 			break;
4932 		}
4933 		ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4934 		btrfs_end_transaction(trans);
4935 		break;
4936 	case FLUSH_DELALLOC:
4937 	case FLUSH_DELALLOC_WAIT:
4938 		shrink_delalloc(fs_info, num_bytes * 2, orig_bytes,
4939 				state == FLUSH_DELALLOC_WAIT);
4940 		break;
4941 	case ALLOC_CHUNK:
4942 		trans = btrfs_join_transaction(root);
4943 		if (IS_ERR(trans)) {
4944 			ret = PTR_ERR(trans);
4945 			break;
4946 		}
4947 		ret = do_chunk_alloc(trans, fs_info,
4948 				     btrfs_metadata_alloc_profile(fs_info),
4949 				     CHUNK_ALLOC_NO_FORCE);
4950 		btrfs_end_transaction(trans);
4951 		if (ret > 0 || ret == -ENOSPC)
4952 			ret = 0;
4953 		break;
4954 	case COMMIT_TRANS:
4955 		ret = may_commit_transaction(fs_info, space_info,
4956 					     orig_bytes, 0);
4957 		break;
4958 	default:
4959 		ret = -ENOSPC;
4960 		break;
4961 	}
4962 
4963 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes,
4964 				orig_bytes, state, ret);
4965 	return ret;
4966 }
4967 
4968 static inline u64
4969 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4970 				 struct btrfs_space_info *space_info,
4971 				 bool system_chunk)
4972 {
4973 	struct reserve_ticket *ticket;
4974 	u64 used;
4975 	u64 expected;
4976 	u64 to_reclaim = 0;
4977 
4978 	list_for_each_entry(ticket, &space_info->tickets, list)
4979 		to_reclaim += ticket->bytes;
4980 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4981 		to_reclaim += ticket->bytes;
4982 	if (to_reclaim)
4983 		return to_reclaim;
4984 
4985 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4986 	if (can_overcommit(fs_info, space_info, to_reclaim,
4987 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4988 		return 0;
4989 
4990 	used = btrfs_space_info_used(space_info, true);
4991 
4992 	if (can_overcommit(fs_info, space_info, SZ_1M,
4993 			   BTRFS_RESERVE_FLUSH_ALL, system_chunk))
4994 		expected = div_factor_fine(space_info->total_bytes, 95);
4995 	else
4996 		expected = div_factor_fine(space_info->total_bytes, 90);
4997 
4998 	if (used > expected)
4999 		to_reclaim = used - expected;
5000 	else
5001 		to_reclaim = 0;
5002 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5003 				     space_info->bytes_reserved);
5004 	return to_reclaim;
5005 }
5006 
5007 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5008 					struct btrfs_space_info *space_info,
5009 					u64 used, bool system_chunk)
5010 {
5011 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5012 
5013 	/* If we're just plain full then async reclaim just slows us down. */
5014 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5015 		return 0;
5016 
5017 	if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5018 					      system_chunk))
5019 		return 0;
5020 
5021 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5022 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5023 }
5024 
5025 static void wake_all_tickets(struct list_head *head)
5026 {
5027 	struct reserve_ticket *ticket;
5028 
5029 	while (!list_empty(head)) {
5030 		ticket = list_first_entry(head, struct reserve_ticket, list);
5031 		list_del_init(&ticket->list);
5032 		ticket->error = -ENOSPC;
5033 		wake_up(&ticket->wait);
5034 	}
5035 }
5036 
5037 /*
5038  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5039  * will loop and continuously try to flush as long as we are making progress.
5040  * We count progress as clearing off tickets each time we have to loop.
5041  */
5042 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5043 {
5044 	struct btrfs_fs_info *fs_info;
5045 	struct btrfs_space_info *space_info;
5046 	u64 to_reclaim;
5047 	int flush_state;
5048 	int commit_cycles = 0;
5049 	u64 last_tickets_id;
5050 
5051 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5052 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5053 
5054 	spin_lock(&space_info->lock);
5055 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5056 						      false);
5057 	if (!to_reclaim) {
5058 		space_info->flush = 0;
5059 		spin_unlock(&space_info->lock);
5060 		return;
5061 	}
5062 	last_tickets_id = space_info->tickets_id;
5063 	spin_unlock(&space_info->lock);
5064 
5065 	flush_state = FLUSH_DELAYED_ITEMS_NR;
5066 	do {
5067 		struct reserve_ticket *ticket;
5068 		int ret;
5069 
5070 		ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5071 				  flush_state);
5072 		spin_lock(&space_info->lock);
5073 		if (list_empty(&space_info->tickets)) {
5074 			space_info->flush = 0;
5075 			spin_unlock(&space_info->lock);
5076 			return;
5077 		}
5078 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5079 							      space_info,
5080 							      false);
5081 		ticket = list_first_entry(&space_info->tickets,
5082 					  struct reserve_ticket, list);
5083 		if (last_tickets_id == space_info->tickets_id) {
5084 			flush_state++;
5085 		} else {
5086 			last_tickets_id = space_info->tickets_id;
5087 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5088 			if (commit_cycles)
5089 				commit_cycles--;
5090 		}
5091 
5092 		if (flush_state > COMMIT_TRANS) {
5093 			commit_cycles++;
5094 			if (commit_cycles > 2) {
5095 				wake_all_tickets(&space_info->tickets);
5096 				space_info->flush = 0;
5097 			} else {
5098 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5099 			}
5100 		}
5101 		spin_unlock(&space_info->lock);
5102 	} while (flush_state <= COMMIT_TRANS);
5103 }
5104 
5105 void btrfs_init_async_reclaim_work(struct work_struct *work)
5106 {
5107 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5108 }
5109 
5110 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5111 					    struct btrfs_space_info *space_info,
5112 					    struct reserve_ticket *ticket)
5113 {
5114 	u64 to_reclaim;
5115 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5116 
5117 	spin_lock(&space_info->lock);
5118 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119 						      false);
5120 	if (!to_reclaim) {
5121 		spin_unlock(&space_info->lock);
5122 		return;
5123 	}
5124 	spin_unlock(&space_info->lock);
5125 
5126 	do {
5127 		flush_space(fs_info, space_info, to_reclaim, to_reclaim,
5128 			    flush_state);
5129 		flush_state++;
5130 		spin_lock(&space_info->lock);
5131 		if (ticket->bytes == 0) {
5132 			spin_unlock(&space_info->lock);
5133 			return;
5134 		}
5135 		spin_unlock(&space_info->lock);
5136 
5137 		/*
5138 		 * Priority flushers can't wait on delalloc without
5139 		 * deadlocking.
5140 		 */
5141 		if (flush_state == FLUSH_DELALLOC ||
5142 		    flush_state == FLUSH_DELALLOC_WAIT)
5143 			flush_state = ALLOC_CHUNK;
5144 	} while (flush_state < COMMIT_TRANS);
5145 }
5146 
5147 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5148 			       struct btrfs_space_info *space_info,
5149 			       struct reserve_ticket *ticket, u64 orig_bytes)
5150 
5151 {
5152 	DEFINE_WAIT(wait);
5153 	int ret = 0;
5154 
5155 	spin_lock(&space_info->lock);
5156 	while (ticket->bytes > 0 && ticket->error == 0) {
5157 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5158 		if (ret) {
5159 			ret = -EINTR;
5160 			break;
5161 		}
5162 		spin_unlock(&space_info->lock);
5163 
5164 		schedule();
5165 
5166 		finish_wait(&ticket->wait, &wait);
5167 		spin_lock(&space_info->lock);
5168 	}
5169 	if (!ret)
5170 		ret = ticket->error;
5171 	if (!list_empty(&ticket->list))
5172 		list_del_init(&ticket->list);
5173 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5174 		u64 num_bytes = orig_bytes - ticket->bytes;
5175 		space_info->bytes_may_use -= num_bytes;
5176 		trace_btrfs_space_reservation(fs_info, "space_info",
5177 					      space_info->flags, num_bytes, 0);
5178 	}
5179 	spin_unlock(&space_info->lock);
5180 
5181 	return ret;
5182 }
5183 
5184 /**
5185  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5186  * @root - the root we're allocating for
5187  * @space_info - the space info we want to allocate from
5188  * @orig_bytes - the number of bytes we want
5189  * @flush - whether or not we can flush to make our reservation
5190  *
5191  * This will reserve orig_bytes number of bytes from the space info associated
5192  * with the block_rsv.  If there is not enough space it will make an attempt to
5193  * flush out space to make room.  It will do this by flushing delalloc if
5194  * possible or committing the transaction.  If flush is 0 then no attempts to
5195  * regain reservations will be made and this will fail if there is not enough
5196  * space already.
5197  */
5198 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5199 				    struct btrfs_space_info *space_info,
5200 				    u64 orig_bytes,
5201 				    enum btrfs_reserve_flush_enum flush,
5202 				    bool system_chunk)
5203 {
5204 	struct reserve_ticket ticket;
5205 	u64 used;
5206 	int ret = 0;
5207 
5208 	ASSERT(orig_bytes);
5209 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5210 
5211 	spin_lock(&space_info->lock);
5212 	ret = -ENOSPC;
5213 	used = btrfs_space_info_used(space_info, true);
5214 
5215 	/*
5216 	 * If we have enough space then hooray, make our reservation and carry
5217 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5218 	 * If not things get more complicated.
5219 	 */
5220 	if (used + orig_bytes <= space_info->total_bytes) {
5221 		space_info->bytes_may_use += orig_bytes;
5222 		trace_btrfs_space_reservation(fs_info, "space_info",
5223 					      space_info->flags, orig_bytes, 1);
5224 		ret = 0;
5225 	} else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5226 				  system_chunk)) {
5227 		space_info->bytes_may_use += orig_bytes;
5228 		trace_btrfs_space_reservation(fs_info, "space_info",
5229 					      space_info->flags, orig_bytes, 1);
5230 		ret = 0;
5231 	}
5232 
5233 	/*
5234 	 * If we couldn't make a reservation then setup our reservation ticket
5235 	 * and kick the async worker if it's not already running.
5236 	 *
5237 	 * If we are a priority flusher then we just need to add our ticket to
5238 	 * the list and we will do our own flushing further down.
5239 	 */
5240 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5241 		ticket.bytes = orig_bytes;
5242 		ticket.error = 0;
5243 		init_waitqueue_head(&ticket.wait);
5244 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5245 			list_add_tail(&ticket.list, &space_info->tickets);
5246 			if (!space_info->flush) {
5247 				space_info->flush = 1;
5248 				trace_btrfs_trigger_flush(fs_info,
5249 							  space_info->flags,
5250 							  orig_bytes, flush,
5251 							  "enospc");
5252 				queue_work(system_unbound_wq,
5253 					   &fs_info->async_reclaim_work);
5254 			}
5255 		} else {
5256 			list_add_tail(&ticket.list,
5257 				      &space_info->priority_tickets);
5258 		}
5259 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5260 		used += orig_bytes;
5261 		/*
5262 		 * We will do the space reservation dance during log replay,
5263 		 * which means we won't have fs_info->fs_root set, so don't do
5264 		 * the async reclaim as we will panic.
5265 		 */
5266 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5267 		    need_do_async_reclaim(fs_info, space_info,
5268 					  used, system_chunk) &&
5269 		    !work_busy(&fs_info->async_reclaim_work)) {
5270 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
5271 						  orig_bytes, flush, "preempt");
5272 			queue_work(system_unbound_wq,
5273 				   &fs_info->async_reclaim_work);
5274 		}
5275 	}
5276 	spin_unlock(&space_info->lock);
5277 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5278 		return ret;
5279 
5280 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5281 		return wait_reserve_ticket(fs_info, space_info, &ticket,
5282 					   orig_bytes);
5283 
5284 	ret = 0;
5285 	priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5286 	spin_lock(&space_info->lock);
5287 	if (ticket.bytes) {
5288 		if (ticket.bytes < orig_bytes) {
5289 			u64 num_bytes = orig_bytes - ticket.bytes;
5290 			space_info->bytes_may_use -= num_bytes;
5291 			trace_btrfs_space_reservation(fs_info, "space_info",
5292 						      space_info->flags,
5293 						      num_bytes, 0);
5294 
5295 		}
5296 		list_del_init(&ticket.list);
5297 		ret = -ENOSPC;
5298 	}
5299 	spin_unlock(&space_info->lock);
5300 	ASSERT(list_empty(&ticket.list));
5301 	return ret;
5302 }
5303 
5304 /**
5305  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5306  * @root - the root we're allocating for
5307  * @block_rsv - the block_rsv we're allocating for
5308  * @orig_bytes - the number of bytes we want
5309  * @flush - whether or not we can flush to make our reservation
5310  *
5311  * This will reserve orgi_bytes number of bytes from the space info associated
5312  * with the block_rsv.  If there is not enough space it will make an attempt to
5313  * flush out space to make room.  It will do this by flushing delalloc if
5314  * possible or committing the transaction.  If flush is 0 then no attempts to
5315  * regain reservations will be made and this will fail if there is not enough
5316  * space already.
5317  */
5318 static int reserve_metadata_bytes(struct btrfs_root *root,
5319 				  struct btrfs_block_rsv *block_rsv,
5320 				  u64 orig_bytes,
5321 				  enum btrfs_reserve_flush_enum flush)
5322 {
5323 	struct btrfs_fs_info *fs_info = root->fs_info;
5324 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5325 	int ret;
5326 	bool system_chunk = (root == fs_info->chunk_root);
5327 
5328 	ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5329 				       orig_bytes, flush, system_chunk);
5330 	if (ret == -ENOSPC &&
5331 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5332 		if (block_rsv != global_rsv &&
5333 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5334 			ret = 0;
5335 	}
5336 	if (ret == -ENOSPC)
5337 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5338 					      block_rsv->space_info->flags,
5339 					      orig_bytes, 1);
5340 	return ret;
5341 }
5342 
5343 static struct btrfs_block_rsv *get_block_rsv(
5344 					const struct btrfs_trans_handle *trans,
5345 					const struct btrfs_root *root)
5346 {
5347 	struct btrfs_fs_info *fs_info = root->fs_info;
5348 	struct btrfs_block_rsv *block_rsv = NULL;
5349 
5350 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5351 	    (root == fs_info->csum_root && trans->adding_csums) ||
5352 	    (root == fs_info->uuid_root))
5353 		block_rsv = trans->block_rsv;
5354 
5355 	if (!block_rsv)
5356 		block_rsv = root->block_rsv;
5357 
5358 	if (!block_rsv)
5359 		block_rsv = &fs_info->empty_block_rsv;
5360 
5361 	return block_rsv;
5362 }
5363 
5364 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5365 			       u64 num_bytes)
5366 {
5367 	int ret = -ENOSPC;
5368 	spin_lock(&block_rsv->lock);
5369 	if (block_rsv->reserved >= num_bytes) {
5370 		block_rsv->reserved -= num_bytes;
5371 		if (block_rsv->reserved < block_rsv->size)
5372 			block_rsv->full = 0;
5373 		ret = 0;
5374 	}
5375 	spin_unlock(&block_rsv->lock);
5376 	return ret;
5377 }
5378 
5379 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5380 				u64 num_bytes, int update_size)
5381 {
5382 	spin_lock(&block_rsv->lock);
5383 	block_rsv->reserved += num_bytes;
5384 	if (update_size)
5385 		block_rsv->size += num_bytes;
5386 	else if (block_rsv->reserved >= block_rsv->size)
5387 		block_rsv->full = 1;
5388 	spin_unlock(&block_rsv->lock);
5389 }
5390 
5391 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5392 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5393 			     int min_factor)
5394 {
5395 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5396 	u64 min_bytes;
5397 
5398 	if (global_rsv->space_info != dest->space_info)
5399 		return -ENOSPC;
5400 
5401 	spin_lock(&global_rsv->lock);
5402 	min_bytes = div_factor(global_rsv->size, min_factor);
5403 	if (global_rsv->reserved < min_bytes + num_bytes) {
5404 		spin_unlock(&global_rsv->lock);
5405 		return -ENOSPC;
5406 	}
5407 	global_rsv->reserved -= num_bytes;
5408 	if (global_rsv->reserved < global_rsv->size)
5409 		global_rsv->full = 0;
5410 	spin_unlock(&global_rsv->lock);
5411 
5412 	block_rsv_add_bytes(dest, num_bytes, 1);
5413 	return 0;
5414 }
5415 
5416 /*
5417  * This is for space we already have accounted in space_info->bytes_may_use, so
5418  * basically when we're returning space from block_rsv's.
5419  */
5420 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5421 				     struct btrfs_space_info *space_info,
5422 				     u64 num_bytes)
5423 {
5424 	struct reserve_ticket *ticket;
5425 	struct list_head *head;
5426 	u64 used;
5427 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5428 	bool check_overcommit = false;
5429 
5430 	spin_lock(&space_info->lock);
5431 	head = &space_info->priority_tickets;
5432 
5433 	/*
5434 	 * If we are over our limit then we need to check and see if we can
5435 	 * overcommit, and if we can't then we just need to free up our space
5436 	 * and not satisfy any requests.
5437 	 */
5438 	used = btrfs_space_info_used(space_info, true);
5439 	if (used - num_bytes >= space_info->total_bytes)
5440 		check_overcommit = true;
5441 again:
5442 	while (!list_empty(head) && num_bytes) {
5443 		ticket = list_first_entry(head, struct reserve_ticket,
5444 					  list);
5445 		/*
5446 		 * We use 0 bytes because this space is already reserved, so
5447 		 * adding the ticket space would be a double count.
5448 		 */
5449 		if (check_overcommit &&
5450 		    !can_overcommit(fs_info, space_info, 0, flush, false))
5451 			break;
5452 		if (num_bytes >= ticket->bytes) {
5453 			list_del_init(&ticket->list);
5454 			num_bytes -= ticket->bytes;
5455 			ticket->bytes = 0;
5456 			space_info->tickets_id++;
5457 			wake_up(&ticket->wait);
5458 		} else {
5459 			ticket->bytes -= num_bytes;
5460 			num_bytes = 0;
5461 		}
5462 	}
5463 
5464 	if (num_bytes && head == &space_info->priority_tickets) {
5465 		head = &space_info->tickets;
5466 		flush = BTRFS_RESERVE_FLUSH_ALL;
5467 		goto again;
5468 	}
5469 	space_info->bytes_may_use -= num_bytes;
5470 	trace_btrfs_space_reservation(fs_info, "space_info",
5471 				      space_info->flags, num_bytes, 0);
5472 	spin_unlock(&space_info->lock);
5473 }
5474 
5475 /*
5476  * This is for newly allocated space that isn't accounted in
5477  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5478  * we use this helper.
5479  */
5480 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5481 				     struct btrfs_space_info *space_info,
5482 				     u64 num_bytes)
5483 {
5484 	struct reserve_ticket *ticket;
5485 	struct list_head *head = &space_info->priority_tickets;
5486 
5487 again:
5488 	while (!list_empty(head) && num_bytes) {
5489 		ticket = list_first_entry(head, struct reserve_ticket,
5490 					  list);
5491 		if (num_bytes >= ticket->bytes) {
5492 			trace_btrfs_space_reservation(fs_info, "space_info",
5493 						      space_info->flags,
5494 						      ticket->bytes, 1);
5495 			list_del_init(&ticket->list);
5496 			num_bytes -= ticket->bytes;
5497 			space_info->bytes_may_use += ticket->bytes;
5498 			ticket->bytes = 0;
5499 			space_info->tickets_id++;
5500 			wake_up(&ticket->wait);
5501 		} else {
5502 			trace_btrfs_space_reservation(fs_info, "space_info",
5503 						      space_info->flags,
5504 						      num_bytes, 1);
5505 			space_info->bytes_may_use += num_bytes;
5506 			ticket->bytes -= num_bytes;
5507 			num_bytes = 0;
5508 		}
5509 	}
5510 
5511 	if (num_bytes && head == &space_info->priority_tickets) {
5512 		head = &space_info->tickets;
5513 		goto again;
5514 	}
5515 }
5516 
5517 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5518 				    struct btrfs_block_rsv *block_rsv,
5519 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5520 {
5521 	struct btrfs_space_info *space_info = block_rsv->space_info;
5522 
5523 	spin_lock(&block_rsv->lock);
5524 	if (num_bytes == (u64)-1)
5525 		num_bytes = block_rsv->size;
5526 	block_rsv->size -= num_bytes;
5527 	if (block_rsv->reserved >= block_rsv->size) {
5528 		num_bytes = block_rsv->reserved - block_rsv->size;
5529 		block_rsv->reserved = block_rsv->size;
5530 		block_rsv->full = 1;
5531 	} else {
5532 		num_bytes = 0;
5533 	}
5534 	spin_unlock(&block_rsv->lock);
5535 
5536 	if (num_bytes > 0) {
5537 		if (dest) {
5538 			spin_lock(&dest->lock);
5539 			if (!dest->full) {
5540 				u64 bytes_to_add;
5541 
5542 				bytes_to_add = dest->size - dest->reserved;
5543 				bytes_to_add = min(num_bytes, bytes_to_add);
5544 				dest->reserved += bytes_to_add;
5545 				if (dest->reserved >= dest->size)
5546 					dest->full = 1;
5547 				num_bytes -= bytes_to_add;
5548 			}
5549 			spin_unlock(&dest->lock);
5550 		}
5551 		if (num_bytes)
5552 			space_info_add_old_bytes(fs_info, space_info,
5553 						 num_bytes);
5554 	}
5555 }
5556 
5557 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5558 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5559 			    int update_size)
5560 {
5561 	int ret;
5562 
5563 	ret = block_rsv_use_bytes(src, num_bytes);
5564 	if (ret)
5565 		return ret;
5566 
5567 	block_rsv_add_bytes(dst, num_bytes, update_size);
5568 	return 0;
5569 }
5570 
5571 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5572 {
5573 	memset(rsv, 0, sizeof(*rsv));
5574 	spin_lock_init(&rsv->lock);
5575 	rsv->type = type;
5576 }
5577 
5578 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5579 					      unsigned short type)
5580 {
5581 	struct btrfs_block_rsv *block_rsv;
5582 
5583 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5584 	if (!block_rsv)
5585 		return NULL;
5586 
5587 	btrfs_init_block_rsv(block_rsv, type);
5588 	block_rsv->space_info = __find_space_info(fs_info,
5589 						  BTRFS_BLOCK_GROUP_METADATA);
5590 	return block_rsv;
5591 }
5592 
5593 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5594 			  struct btrfs_block_rsv *rsv)
5595 {
5596 	if (!rsv)
5597 		return;
5598 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5599 	kfree(rsv);
5600 }
5601 
5602 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5603 {
5604 	kfree(rsv);
5605 }
5606 
5607 int btrfs_block_rsv_add(struct btrfs_root *root,
5608 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5609 			enum btrfs_reserve_flush_enum flush)
5610 {
5611 	int ret;
5612 
5613 	if (num_bytes == 0)
5614 		return 0;
5615 
5616 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5617 	if (!ret) {
5618 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5619 		return 0;
5620 	}
5621 
5622 	return ret;
5623 }
5624 
5625 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5626 {
5627 	u64 num_bytes = 0;
5628 	int ret = -ENOSPC;
5629 
5630 	if (!block_rsv)
5631 		return 0;
5632 
5633 	spin_lock(&block_rsv->lock);
5634 	num_bytes = div_factor(block_rsv->size, min_factor);
5635 	if (block_rsv->reserved >= num_bytes)
5636 		ret = 0;
5637 	spin_unlock(&block_rsv->lock);
5638 
5639 	return ret;
5640 }
5641 
5642 int btrfs_block_rsv_refill(struct btrfs_root *root,
5643 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5644 			   enum btrfs_reserve_flush_enum flush)
5645 {
5646 	u64 num_bytes = 0;
5647 	int ret = -ENOSPC;
5648 
5649 	if (!block_rsv)
5650 		return 0;
5651 
5652 	spin_lock(&block_rsv->lock);
5653 	num_bytes = min_reserved;
5654 	if (block_rsv->reserved >= num_bytes)
5655 		ret = 0;
5656 	else
5657 		num_bytes -= block_rsv->reserved;
5658 	spin_unlock(&block_rsv->lock);
5659 
5660 	if (!ret)
5661 		return 0;
5662 
5663 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5664 	if (!ret) {
5665 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5666 		return 0;
5667 	}
5668 
5669 	return ret;
5670 }
5671 
5672 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5673 			     struct btrfs_block_rsv *block_rsv,
5674 			     u64 num_bytes)
5675 {
5676 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5677 
5678 	if (global_rsv == block_rsv ||
5679 	    block_rsv->space_info != global_rsv->space_info)
5680 		global_rsv = NULL;
5681 	block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5682 }
5683 
5684 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5685 {
5686 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5687 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5688 	u64 num_bytes;
5689 
5690 	/*
5691 	 * The global block rsv is based on the size of the extent tree, the
5692 	 * checksum tree and the root tree.  If the fs is empty we want to set
5693 	 * it to a minimal amount for safety.
5694 	 */
5695 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5696 		btrfs_root_used(&fs_info->csum_root->root_item) +
5697 		btrfs_root_used(&fs_info->tree_root->root_item);
5698 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5699 
5700 	spin_lock(&sinfo->lock);
5701 	spin_lock(&block_rsv->lock);
5702 
5703 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5704 
5705 	if (block_rsv->reserved < block_rsv->size) {
5706 		num_bytes = btrfs_space_info_used(sinfo, true);
5707 		if (sinfo->total_bytes > num_bytes) {
5708 			num_bytes = sinfo->total_bytes - num_bytes;
5709 			num_bytes = min(num_bytes,
5710 					block_rsv->size - block_rsv->reserved);
5711 			block_rsv->reserved += num_bytes;
5712 			sinfo->bytes_may_use += num_bytes;
5713 			trace_btrfs_space_reservation(fs_info, "space_info",
5714 						      sinfo->flags, num_bytes,
5715 						      1);
5716 		}
5717 	} else if (block_rsv->reserved > block_rsv->size) {
5718 		num_bytes = block_rsv->reserved - block_rsv->size;
5719 		sinfo->bytes_may_use -= num_bytes;
5720 		trace_btrfs_space_reservation(fs_info, "space_info",
5721 				      sinfo->flags, num_bytes, 0);
5722 		block_rsv->reserved = block_rsv->size;
5723 	}
5724 
5725 	if (block_rsv->reserved == block_rsv->size)
5726 		block_rsv->full = 1;
5727 	else
5728 		block_rsv->full = 0;
5729 
5730 	spin_unlock(&block_rsv->lock);
5731 	spin_unlock(&sinfo->lock);
5732 }
5733 
5734 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5735 {
5736 	struct btrfs_space_info *space_info;
5737 
5738 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5739 	fs_info->chunk_block_rsv.space_info = space_info;
5740 
5741 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5742 	fs_info->global_block_rsv.space_info = space_info;
5743 	fs_info->delalloc_block_rsv.space_info = space_info;
5744 	fs_info->trans_block_rsv.space_info = space_info;
5745 	fs_info->empty_block_rsv.space_info = space_info;
5746 	fs_info->delayed_block_rsv.space_info = space_info;
5747 
5748 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5749 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5750 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5751 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5752 	if (fs_info->quota_root)
5753 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5754 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5755 
5756 	update_global_block_rsv(fs_info);
5757 }
5758 
5759 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5760 {
5761 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5762 				(u64)-1);
5763 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5764 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5765 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5766 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5767 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5768 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5769 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5770 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5771 }
5772 
5773 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5774 				  struct btrfs_fs_info *fs_info)
5775 {
5776 	if (!trans->block_rsv)
5777 		return;
5778 
5779 	if (!trans->bytes_reserved)
5780 		return;
5781 
5782 	trace_btrfs_space_reservation(fs_info, "transaction",
5783 				      trans->transid, trans->bytes_reserved, 0);
5784 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
5785 				trans->bytes_reserved);
5786 	trans->bytes_reserved = 0;
5787 }
5788 
5789 /*
5790  * To be called after all the new block groups attached to the transaction
5791  * handle have been created (btrfs_create_pending_block_groups()).
5792  */
5793 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5794 {
5795 	struct btrfs_fs_info *fs_info = trans->fs_info;
5796 
5797 	if (!trans->chunk_bytes_reserved)
5798 		return;
5799 
5800 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5801 
5802 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5803 				trans->chunk_bytes_reserved);
5804 	trans->chunk_bytes_reserved = 0;
5805 }
5806 
5807 /* Can only return 0 or -ENOSPC */
5808 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5809 				  struct btrfs_inode *inode)
5810 {
5811 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5812 	struct btrfs_root *root = inode->root;
5813 	/*
5814 	 * We always use trans->block_rsv here as we will have reserved space
5815 	 * for our orphan when starting the transaction, using get_block_rsv()
5816 	 * here will sometimes make us choose the wrong block rsv as we could be
5817 	 * doing a reloc inode for a non refcounted root.
5818 	 */
5819 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5820 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5821 
5822 	/*
5823 	 * We need to hold space in order to delete our orphan item once we've
5824 	 * added it, so this takes the reservation so we can release it later
5825 	 * when we are truly done with the orphan item.
5826 	 */
5827 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5828 
5829 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5830 			num_bytes, 1);
5831 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5832 }
5833 
5834 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5835 {
5836 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5837 	struct btrfs_root *root = inode->root;
5838 	u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5839 
5840 	trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5841 			num_bytes, 0);
5842 	btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5843 }
5844 
5845 /*
5846  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5847  * root: the root of the parent directory
5848  * rsv: block reservation
5849  * items: the number of items that we need do reservation
5850  * qgroup_reserved: used to return the reserved size in qgroup
5851  *
5852  * This function is used to reserve the space for snapshot/subvolume
5853  * creation and deletion. Those operations are different with the
5854  * common file/directory operations, they change two fs/file trees
5855  * and root tree, the number of items that the qgroup reserves is
5856  * different with the free space reservation. So we can not use
5857  * the space reservation mechanism in start_transaction().
5858  */
5859 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5860 				     struct btrfs_block_rsv *rsv,
5861 				     int items,
5862 				     u64 *qgroup_reserved,
5863 				     bool use_global_rsv)
5864 {
5865 	u64 num_bytes;
5866 	int ret;
5867 	struct btrfs_fs_info *fs_info = root->fs_info;
5868 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5869 
5870 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5871 		/* One for parent inode, two for dir entries */
5872 		num_bytes = 3 * fs_info->nodesize;
5873 		ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5874 		if (ret)
5875 			return ret;
5876 	} else {
5877 		num_bytes = 0;
5878 	}
5879 
5880 	*qgroup_reserved = num_bytes;
5881 
5882 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5883 	rsv->space_info = __find_space_info(fs_info,
5884 					    BTRFS_BLOCK_GROUP_METADATA);
5885 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5886 				  BTRFS_RESERVE_FLUSH_ALL);
5887 
5888 	if (ret == -ENOSPC && use_global_rsv)
5889 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5890 
5891 	if (ret && *qgroup_reserved)
5892 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5893 
5894 	return ret;
5895 }
5896 
5897 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5898 				      struct btrfs_block_rsv *rsv)
5899 {
5900 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5901 }
5902 
5903 /**
5904  * drop_outstanding_extent - drop an outstanding extent
5905  * @inode: the inode we're dropping the extent for
5906  * @num_bytes: the number of bytes we're releasing.
5907  *
5908  * This is called when we are freeing up an outstanding extent, either called
5909  * after an error or after an extent is written.  This will return the number of
5910  * reserved extents that need to be freed.  This must be called with
5911  * BTRFS_I(inode)->lock held.
5912  */
5913 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
5914 		u64 num_bytes)
5915 {
5916 	unsigned drop_inode_space = 0;
5917 	unsigned dropped_extents = 0;
5918 	unsigned num_extents;
5919 
5920 	num_extents = count_max_extents(num_bytes);
5921 	ASSERT(num_extents);
5922 	ASSERT(inode->outstanding_extents >= num_extents);
5923 	inode->outstanding_extents -= num_extents;
5924 
5925 	if (inode->outstanding_extents == 0 &&
5926 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5927 			       &inode->runtime_flags))
5928 		drop_inode_space = 1;
5929 
5930 	/*
5931 	 * If we have more or the same amount of outstanding extents than we have
5932 	 * reserved then we need to leave the reserved extents count alone.
5933 	 */
5934 	if (inode->outstanding_extents >= inode->reserved_extents)
5935 		return drop_inode_space;
5936 
5937 	dropped_extents = inode->reserved_extents - inode->outstanding_extents;
5938 	inode->reserved_extents -= dropped_extents;
5939 	return dropped_extents + drop_inode_space;
5940 }
5941 
5942 /**
5943  * calc_csum_metadata_size - return the amount of metadata space that must be
5944  *	reserved/freed for the given bytes.
5945  * @inode: the inode we're manipulating
5946  * @num_bytes: the number of bytes in question
5947  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5948  *
5949  * This adjusts the number of csum_bytes in the inode and then returns the
5950  * correct amount of metadata that must either be reserved or freed.  We
5951  * calculate how many checksums we can fit into one leaf and then divide the
5952  * number of bytes that will need to be checksumed by this value to figure out
5953  * how many checksums will be required.  If we are adding bytes then the number
5954  * may go up and we will return the number of additional bytes that must be
5955  * reserved.  If it is going down we will return the number of bytes that must
5956  * be freed.
5957  *
5958  * This must be called with BTRFS_I(inode)->lock held.
5959  */
5960 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
5961 				   int reserve)
5962 {
5963 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5964 	u64 old_csums, num_csums;
5965 
5966 	if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
5967 		return 0;
5968 
5969 	old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5970 	if (reserve)
5971 		inode->csum_bytes += num_bytes;
5972 	else
5973 		inode->csum_bytes -= num_bytes;
5974 	num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
5975 
5976 	/* No change, no need to reserve more */
5977 	if (old_csums == num_csums)
5978 		return 0;
5979 
5980 	if (reserve)
5981 		return btrfs_calc_trans_metadata_size(fs_info,
5982 						      num_csums - old_csums);
5983 
5984 	return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
5985 }
5986 
5987 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
5988 {
5989 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5990 	struct btrfs_root *root = inode->root;
5991 	struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
5992 	u64 to_reserve = 0;
5993 	u64 csum_bytes;
5994 	unsigned nr_extents;
5995 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5996 	int ret = 0;
5997 	bool delalloc_lock = true;
5998 	u64 to_free = 0;
5999 	unsigned dropped;
6000 	bool release_extra = false;
6001 
6002 	/* If we are a free space inode we need to not flush since we will be in
6003 	 * the middle of a transaction commit.  We also don't need the delalloc
6004 	 * mutex since we won't race with anybody.  We need this mostly to make
6005 	 * lockdep shut its filthy mouth.
6006 	 *
6007 	 * If we have a transaction open (can happen if we call truncate_block
6008 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6009 	 */
6010 	if (btrfs_is_free_space_inode(inode)) {
6011 		flush = BTRFS_RESERVE_NO_FLUSH;
6012 		delalloc_lock = false;
6013 	} else if (current->journal_info) {
6014 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
6015 	}
6016 
6017 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
6018 	    btrfs_transaction_in_commit(fs_info))
6019 		schedule_timeout(1);
6020 
6021 	if (delalloc_lock)
6022 		mutex_lock(&inode->delalloc_mutex);
6023 
6024 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6025 
6026 	spin_lock(&inode->lock);
6027 	nr_extents = count_max_extents(num_bytes);
6028 	inode->outstanding_extents += nr_extents;
6029 
6030 	nr_extents = 0;
6031 	if (inode->outstanding_extents > inode->reserved_extents)
6032 		nr_extents += inode->outstanding_extents -
6033 			inode->reserved_extents;
6034 
6035 	/* We always want to reserve a slot for updating the inode. */
6036 	to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
6037 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6038 	csum_bytes = inode->csum_bytes;
6039 	spin_unlock(&inode->lock);
6040 
6041 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6042 		ret = btrfs_qgroup_reserve_meta(root,
6043 				nr_extents * fs_info->nodesize, true);
6044 		if (ret)
6045 			goto out_fail;
6046 	}
6047 
6048 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6049 	if (unlikely(ret)) {
6050 		btrfs_qgroup_free_meta(root,
6051 				       nr_extents * fs_info->nodesize);
6052 		goto out_fail;
6053 	}
6054 
6055 	spin_lock(&inode->lock);
6056 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6057 			     &inode->runtime_flags)) {
6058 		to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6059 		release_extra = true;
6060 	}
6061 	inode->reserved_extents += nr_extents;
6062 	spin_unlock(&inode->lock);
6063 
6064 	if (delalloc_lock)
6065 		mutex_unlock(&inode->delalloc_mutex);
6066 
6067 	if (to_reserve)
6068 		trace_btrfs_space_reservation(fs_info, "delalloc",
6069 					      btrfs_ino(inode), to_reserve, 1);
6070 	if (release_extra)
6071 		btrfs_block_rsv_release(fs_info, block_rsv,
6072 				btrfs_calc_trans_metadata_size(fs_info, 1));
6073 	return 0;
6074 
6075 out_fail:
6076 	spin_lock(&inode->lock);
6077 	dropped = drop_outstanding_extent(inode, num_bytes);
6078 	/*
6079 	 * If the inodes csum_bytes is the same as the original
6080 	 * csum_bytes then we know we haven't raced with any free()ers
6081 	 * so we can just reduce our inodes csum bytes and carry on.
6082 	 */
6083 	if (inode->csum_bytes == csum_bytes) {
6084 		calc_csum_metadata_size(inode, num_bytes, 0);
6085 	} else {
6086 		u64 orig_csum_bytes = inode->csum_bytes;
6087 		u64 bytes;
6088 
6089 		/*
6090 		 * This is tricky, but first we need to figure out how much we
6091 		 * freed from any free-ers that occurred during this
6092 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6093 		 * before we dropped our lock, and then call the free for the
6094 		 * number of bytes that were freed while we were trying our
6095 		 * reservation.
6096 		 */
6097 		bytes = csum_bytes - inode->csum_bytes;
6098 		inode->csum_bytes = csum_bytes;
6099 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6100 
6101 
6102 		/*
6103 		 * Now we need to see how much we would have freed had we not
6104 		 * been making this reservation and our ->csum_bytes were not
6105 		 * artificially inflated.
6106 		 */
6107 		inode->csum_bytes = csum_bytes - num_bytes;
6108 		bytes = csum_bytes - orig_csum_bytes;
6109 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6110 
6111 		/*
6112 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6113 		 * more than to_free then we would have freed more space had we
6114 		 * not had an artificially high ->csum_bytes, so we need to free
6115 		 * the remainder.  If bytes is the same or less then we don't
6116 		 * need to do anything, the other free-ers did the correct
6117 		 * thing.
6118 		 */
6119 		inode->csum_bytes = orig_csum_bytes - num_bytes;
6120 		if (bytes > to_free)
6121 			to_free = bytes - to_free;
6122 		else
6123 			to_free = 0;
6124 	}
6125 	spin_unlock(&inode->lock);
6126 	if (dropped)
6127 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6128 
6129 	if (to_free) {
6130 		btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6131 		trace_btrfs_space_reservation(fs_info, "delalloc",
6132 					      btrfs_ino(inode), to_free, 0);
6133 	}
6134 	if (delalloc_lock)
6135 		mutex_unlock(&inode->delalloc_mutex);
6136 	return ret;
6137 }
6138 
6139 /**
6140  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6141  * @inode: the inode to release the reservation for
6142  * @num_bytes: the number of bytes we're releasing
6143  *
6144  * This will release the metadata reservation for an inode.  This can be called
6145  * once we complete IO for a given set of bytes to release their metadata
6146  * reservations.
6147  */
6148 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6149 {
6150 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6151 	u64 to_free = 0;
6152 	unsigned dropped;
6153 
6154 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6155 	spin_lock(&inode->lock);
6156 	dropped = drop_outstanding_extent(inode, num_bytes);
6157 
6158 	if (num_bytes)
6159 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6160 	spin_unlock(&inode->lock);
6161 	if (dropped > 0)
6162 		to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6163 
6164 	if (btrfs_is_testing(fs_info))
6165 		return;
6166 
6167 	trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6168 				      to_free, 0);
6169 
6170 	btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6171 }
6172 
6173 /**
6174  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6175  * delalloc
6176  * @inode: inode we're writing to
6177  * @start: start range we are writing to
6178  * @len: how long the range we are writing to
6179  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6180  * 	      current reservation.
6181  *
6182  * This will do the following things
6183  *
6184  * o reserve space in data space info for num bytes
6185  *   and reserve precious corresponding qgroup space
6186  *   (Done in check_data_free_space)
6187  *
6188  * o reserve space for metadata space, based on the number of outstanding
6189  *   extents and how much csums will be needed
6190  *   also reserve metadata space in a per root over-reserve method.
6191  * o add to the inodes->delalloc_bytes
6192  * o add it to the fs_info's delalloc inodes list.
6193  *   (Above 3 all done in delalloc_reserve_metadata)
6194  *
6195  * Return 0 for success
6196  * Return <0 for error(-ENOSPC or -EQUOT)
6197  */
6198 int btrfs_delalloc_reserve_space(struct inode *inode,
6199 			struct extent_changeset **reserved, u64 start, u64 len)
6200 {
6201 	int ret;
6202 
6203 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
6204 	if (ret < 0)
6205 		return ret;
6206 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6207 	if (ret < 0)
6208 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
6209 	return ret;
6210 }
6211 
6212 /**
6213  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6214  * @inode: inode we're releasing space for
6215  * @start: start position of the space already reserved
6216  * @len: the len of the space already reserved
6217  *
6218  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6219  * called in the case that we don't need the metadata AND data reservations
6220  * anymore.  So if there is an error or we insert an inline extent.
6221  *
6222  * This function will release the metadata space that was not used and will
6223  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6224  * list if there are no delalloc bytes left.
6225  * Also it will handle the qgroup reserved space.
6226  */
6227 void btrfs_delalloc_release_space(struct inode *inode,
6228 			struct extent_changeset *reserved, u64 start, u64 len)
6229 {
6230 	btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6231 	btrfs_free_reserved_data_space(inode, reserved, start, len);
6232 }
6233 
6234 static int update_block_group(struct btrfs_trans_handle *trans,
6235 			      struct btrfs_fs_info *info, u64 bytenr,
6236 			      u64 num_bytes, int alloc)
6237 {
6238 	struct btrfs_block_group_cache *cache = NULL;
6239 	u64 total = num_bytes;
6240 	u64 old_val;
6241 	u64 byte_in_group;
6242 	int factor;
6243 
6244 	/* block accounting for super block */
6245 	spin_lock(&info->delalloc_root_lock);
6246 	old_val = btrfs_super_bytes_used(info->super_copy);
6247 	if (alloc)
6248 		old_val += num_bytes;
6249 	else
6250 		old_val -= num_bytes;
6251 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6252 	spin_unlock(&info->delalloc_root_lock);
6253 
6254 	while (total) {
6255 		cache = btrfs_lookup_block_group(info, bytenr);
6256 		if (!cache)
6257 			return -ENOENT;
6258 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6259 				    BTRFS_BLOCK_GROUP_RAID1 |
6260 				    BTRFS_BLOCK_GROUP_RAID10))
6261 			factor = 2;
6262 		else
6263 			factor = 1;
6264 		/*
6265 		 * If this block group has free space cache written out, we
6266 		 * need to make sure to load it if we are removing space.  This
6267 		 * is because we need the unpinning stage to actually add the
6268 		 * space back to the block group, otherwise we will leak space.
6269 		 */
6270 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6271 			cache_block_group(cache, 1);
6272 
6273 		byte_in_group = bytenr - cache->key.objectid;
6274 		WARN_ON(byte_in_group > cache->key.offset);
6275 
6276 		spin_lock(&cache->space_info->lock);
6277 		spin_lock(&cache->lock);
6278 
6279 		if (btrfs_test_opt(info, SPACE_CACHE) &&
6280 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6281 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6282 
6283 		old_val = btrfs_block_group_used(&cache->item);
6284 		num_bytes = min(total, cache->key.offset - byte_in_group);
6285 		if (alloc) {
6286 			old_val += num_bytes;
6287 			btrfs_set_block_group_used(&cache->item, old_val);
6288 			cache->reserved -= num_bytes;
6289 			cache->space_info->bytes_reserved -= num_bytes;
6290 			cache->space_info->bytes_used += num_bytes;
6291 			cache->space_info->disk_used += num_bytes * factor;
6292 			spin_unlock(&cache->lock);
6293 			spin_unlock(&cache->space_info->lock);
6294 		} else {
6295 			old_val -= num_bytes;
6296 			btrfs_set_block_group_used(&cache->item, old_val);
6297 			cache->pinned += num_bytes;
6298 			cache->space_info->bytes_pinned += num_bytes;
6299 			cache->space_info->bytes_used -= num_bytes;
6300 			cache->space_info->disk_used -= num_bytes * factor;
6301 			spin_unlock(&cache->lock);
6302 			spin_unlock(&cache->space_info->lock);
6303 
6304 			trace_btrfs_space_reservation(info, "pinned",
6305 						      cache->space_info->flags,
6306 						      num_bytes, 1);
6307 			percpu_counter_add(&cache->space_info->total_bytes_pinned,
6308 					   num_bytes);
6309 			set_extent_dirty(info->pinned_extents,
6310 					 bytenr, bytenr + num_bytes - 1,
6311 					 GFP_NOFS | __GFP_NOFAIL);
6312 		}
6313 
6314 		spin_lock(&trans->transaction->dirty_bgs_lock);
6315 		if (list_empty(&cache->dirty_list)) {
6316 			list_add_tail(&cache->dirty_list,
6317 				      &trans->transaction->dirty_bgs);
6318 				trans->transaction->num_dirty_bgs++;
6319 			btrfs_get_block_group(cache);
6320 		}
6321 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6322 
6323 		/*
6324 		 * No longer have used bytes in this block group, queue it for
6325 		 * deletion. We do this after adding the block group to the
6326 		 * dirty list to avoid races between cleaner kthread and space
6327 		 * cache writeout.
6328 		 */
6329 		if (!alloc && old_val == 0) {
6330 			spin_lock(&info->unused_bgs_lock);
6331 			if (list_empty(&cache->bg_list)) {
6332 				btrfs_get_block_group(cache);
6333 				list_add_tail(&cache->bg_list,
6334 					      &info->unused_bgs);
6335 			}
6336 			spin_unlock(&info->unused_bgs_lock);
6337 		}
6338 
6339 		btrfs_put_block_group(cache);
6340 		total -= num_bytes;
6341 		bytenr += num_bytes;
6342 	}
6343 	return 0;
6344 }
6345 
6346 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6347 {
6348 	struct btrfs_block_group_cache *cache;
6349 	u64 bytenr;
6350 
6351 	spin_lock(&fs_info->block_group_cache_lock);
6352 	bytenr = fs_info->first_logical_byte;
6353 	spin_unlock(&fs_info->block_group_cache_lock);
6354 
6355 	if (bytenr < (u64)-1)
6356 		return bytenr;
6357 
6358 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
6359 	if (!cache)
6360 		return 0;
6361 
6362 	bytenr = cache->key.objectid;
6363 	btrfs_put_block_group(cache);
6364 
6365 	return bytenr;
6366 }
6367 
6368 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6369 			   struct btrfs_block_group_cache *cache,
6370 			   u64 bytenr, u64 num_bytes, int reserved)
6371 {
6372 	spin_lock(&cache->space_info->lock);
6373 	spin_lock(&cache->lock);
6374 	cache->pinned += num_bytes;
6375 	cache->space_info->bytes_pinned += num_bytes;
6376 	if (reserved) {
6377 		cache->reserved -= num_bytes;
6378 		cache->space_info->bytes_reserved -= num_bytes;
6379 	}
6380 	spin_unlock(&cache->lock);
6381 	spin_unlock(&cache->space_info->lock);
6382 
6383 	trace_btrfs_space_reservation(fs_info, "pinned",
6384 				      cache->space_info->flags, num_bytes, 1);
6385 	percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6386 	set_extent_dirty(fs_info->pinned_extents, bytenr,
6387 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6388 	return 0;
6389 }
6390 
6391 /*
6392  * this function must be called within transaction
6393  */
6394 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6395 		     u64 bytenr, u64 num_bytes, int reserved)
6396 {
6397 	struct btrfs_block_group_cache *cache;
6398 
6399 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6400 	BUG_ON(!cache); /* Logic error */
6401 
6402 	pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6403 
6404 	btrfs_put_block_group(cache);
6405 	return 0;
6406 }
6407 
6408 /*
6409  * this function must be called within transaction
6410  */
6411 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6412 				    u64 bytenr, u64 num_bytes)
6413 {
6414 	struct btrfs_block_group_cache *cache;
6415 	int ret;
6416 
6417 	cache = btrfs_lookup_block_group(fs_info, bytenr);
6418 	if (!cache)
6419 		return -EINVAL;
6420 
6421 	/*
6422 	 * pull in the free space cache (if any) so that our pin
6423 	 * removes the free space from the cache.  We have load_only set
6424 	 * to one because the slow code to read in the free extents does check
6425 	 * the pinned extents.
6426 	 */
6427 	cache_block_group(cache, 1);
6428 
6429 	pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6430 
6431 	/* remove us from the free space cache (if we're there at all) */
6432 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6433 	btrfs_put_block_group(cache);
6434 	return ret;
6435 }
6436 
6437 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6438 				   u64 start, u64 num_bytes)
6439 {
6440 	int ret;
6441 	struct btrfs_block_group_cache *block_group;
6442 	struct btrfs_caching_control *caching_ctl;
6443 
6444 	block_group = btrfs_lookup_block_group(fs_info, start);
6445 	if (!block_group)
6446 		return -EINVAL;
6447 
6448 	cache_block_group(block_group, 0);
6449 	caching_ctl = get_caching_control(block_group);
6450 
6451 	if (!caching_ctl) {
6452 		/* Logic error */
6453 		BUG_ON(!block_group_cache_done(block_group));
6454 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6455 	} else {
6456 		mutex_lock(&caching_ctl->mutex);
6457 
6458 		if (start >= caching_ctl->progress) {
6459 			ret = add_excluded_extent(fs_info, start, num_bytes);
6460 		} else if (start + num_bytes <= caching_ctl->progress) {
6461 			ret = btrfs_remove_free_space(block_group,
6462 						      start, num_bytes);
6463 		} else {
6464 			num_bytes = caching_ctl->progress - start;
6465 			ret = btrfs_remove_free_space(block_group,
6466 						      start, num_bytes);
6467 			if (ret)
6468 				goto out_lock;
6469 
6470 			num_bytes = (start + num_bytes) -
6471 				caching_ctl->progress;
6472 			start = caching_ctl->progress;
6473 			ret = add_excluded_extent(fs_info, start, num_bytes);
6474 		}
6475 out_lock:
6476 		mutex_unlock(&caching_ctl->mutex);
6477 		put_caching_control(caching_ctl);
6478 	}
6479 	btrfs_put_block_group(block_group);
6480 	return ret;
6481 }
6482 
6483 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6484 				 struct extent_buffer *eb)
6485 {
6486 	struct btrfs_file_extent_item *item;
6487 	struct btrfs_key key;
6488 	int found_type;
6489 	int i;
6490 
6491 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6492 		return 0;
6493 
6494 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6495 		btrfs_item_key_to_cpu(eb, &key, i);
6496 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6497 			continue;
6498 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6499 		found_type = btrfs_file_extent_type(eb, item);
6500 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6501 			continue;
6502 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6503 			continue;
6504 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6505 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6506 		__exclude_logged_extent(fs_info, key.objectid, key.offset);
6507 	}
6508 
6509 	return 0;
6510 }
6511 
6512 static void
6513 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6514 {
6515 	atomic_inc(&bg->reservations);
6516 }
6517 
6518 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6519 					const u64 start)
6520 {
6521 	struct btrfs_block_group_cache *bg;
6522 
6523 	bg = btrfs_lookup_block_group(fs_info, start);
6524 	ASSERT(bg);
6525 	if (atomic_dec_and_test(&bg->reservations))
6526 		wake_up_atomic_t(&bg->reservations);
6527 	btrfs_put_block_group(bg);
6528 }
6529 
6530 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6531 {
6532 	schedule();
6533 	return 0;
6534 }
6535 
6536 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6537 {
6538 	struct btrfs_space_info *space_info = bg->space_info;
6539 
6540 	ASSERT(bg->ro);
6541 
6542 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6543 		return;
6544 
6545 	/*
6546 	 * Our block group is read only but before we set it to read only,
6547 	 * some task might have had allocated an extent from it already, but it
6548 	 * has not yet created a respective ordered extent (and added it to a
6549 	 * root's list of ordered extents).
6550 	 * Therefore wait for any task currently allocating extents, since the
6551 	 * block group's reservations counter is incremented while a read lock
6552 	 * on the groups' semaphore is held and decremented after releasing
6553 	 * the read access on that semaphore and creating the ordered extent.
6554 	 */
6555 	down_write(&space_info->groups_sem);
6556 	up_write(&space_info->groups_sem);
6557 
6558 	wait_on_atomic_t(&bg->reservations,
6559 			 btrfs_wait_bg_reservations_atomic_t,
6560 			 TASK_UNINTERRUPTIBLE);
6561 }
6562 
6563 /**
6564  * btrfs_add_reserved_bytes - update the block_group and space info counters
6565  * @cache:	The cache we are manipulating
6566  * @ram_bytes:  The number of bytes of file content, and will be same to
6567  *              @num_bytes except for the compress path.
6568  * @num_bytes:	The number of bytes in question
6569  * @delalloc:   The blocks are allocated for the delalloc write
6570  *
6571  * This is called by the allocator when it reserves space. If this is a
6572  * reservation and the block group has become read only we cannot make the
6573  * reservation and return -EAGAIN, otherwise this function always succeeds.
6574  */
6575 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6576 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6577 {
6578 	struct btrfs_space_info *space_info = cache->space_info;
6579 	int ret = 0;
6580 
6581 	spin_lock(&space_info->lock);
6582 	spin_lock(&cache->lock);
6583 	if (cache->ro) {
6584 		ret = -EAGAIN;
6585 	} else {
6586 		cache->reserved += num_bytes;
6587 		space_info->bytes_reserved += num_bytes;
6588 
6589 		trace_btrfs_space_reservation(cache->fs_info,
6590 				"space_info", space_info->flags,
6591 				ram_bytes, 0);
6592 		space_info->bytes_may_use -= ram_bytes;
6593 		if (delalloc)
6594 			cache->delalloc_bytes += num_bytes;
6595 	}
6596 	spin_unlock(&cache->lock);
6597 	spin_unlock(&space_info->lock);
6598 	return ret;
6599 }
6600 
6601 /**
6602  * btrfs_free_reserved_bytes - update the block_group and space info counters
6603  * @cache:      The cache we are manipulating
6604  * @num_bytes:  The number of bytes in question
6605  * @delalloc:   The blocks are allocated for the delalloc write
6606  *
6607  * This is called by somebody who is freeing space that was never actually used
6608  * on disk.  For example if you reserve some space for a new leaf in transaction
6609  * A and before transaction A commits you free that leaf, you call this with
6610  * reserve set to 0 in order to clear the reservation.
6611  */
6612 
6613 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6614 				     u64 num_bytes, int delalloc)
6615 {
6616 	struct btrfs_space_info *space_info = cache->space_info;
6617 	int ret = 0;
6618 
6619 	spin_lock(&space_info->lock);
6620 	spin_lock(&cache->lock);
6621 	if (cache->ro)
6622 		space_info->bytes_readonly += num_bytes;
6623 	cache->reserved -= num_bytes;
6624 	space_info->bytes_reserved -= num_bytes;
6625 
6626 	if (delalloc)
6627 		cache->delalloc_bytes -= num_bytes;
6628 	spin_unlock(&cache->lock);
6629 	spin_unlock(&space_info->lock);
6630 	return ret;
6631 }
6632 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6633 {
6634 	struct btrfs_caching_control *next;
6635 	struct btrfs_caching_control *caching_ctl;
6636 	struct btrfs_block_group_cache *cache;
6637 
6638 	down_write(&fs_info->commit_root_sem);
6639 
6640 	list_for_each_entry_safe(caching_ctl, next,
6641 				 &fs_info->caching_block_groups, list) {
6642 		cache = caching_ctl->block_group;
6643 		if (block_group_cache_done(cache)) {
6644 			cache->last_byte_to_unpin = (u64)-1;
6645 			list_del_init(&caching_ctl->list);
6646 			put_caching_control(caching_ctl);
6647 		} else {
6648 			cache->last_byte_to_unpin = caching_ctl->progress;
6649 		}
6650 	}
6651 
6652 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6653 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6654 	else
6655 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6656 
6657 	up_write(&fs_info->commit_root_sem);
6658 
6659 	update_global_block_rsv(fs_info);
6660 }
6661 
6662 /*
6663  * Returns the free cluster for the given space info and sets empty_cluster to
6664  * what it should be based on the mount options.
6665  */
6666 static struct btrfs_free_cluster *
6667 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6668 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
6669 {
6670 	struct btrfs_free_cluster *ret = NULL;
6671 	bool ssd = btrfs_test_opt(fs_info, SSD);
6672 
6673 	*empty_cluster = 0;
6674 	if (btrfs_mixed_space_info(space_info))
6675 		return ret;
6676 
6677 	if (ssd)
6678 		*empty_cluster = SZ_2M;
6679 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6680 		ret = &fs_info->meta_alloc_cluster;
6681 		if (!ssd)
6682 			*empty_cluster = SZ_64K;
6683 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6684 		ret = &fs_info->data_alloc_cluster;
6685 	}
6686 
6687 	return ret;
6688 }
6689 
6690 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6691 			      u64 start, u64 end,
6692 			      const bool return_free_space)
6693 {
6694 	struct btrfs_block_group_cache *cache = NULL;
6695 	struct btrfs_space_info *space_info;
6696 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6697 	struct btrfs_free_cluster *cluster = NULL;
6698 	u64 len;
6699 	u64 total_unpinned = 0;
6700 	u64 empty_cluster = 0;
6701 	bool readonly;
6702 
6703 	while (start <= end) {
6704 		readonly = false;
6705 		if (!cache ||
6706 		    start >= cache->key.objectid + cache->key.offset) {
6707 			if (cache)
6708 				btrfs_put_block_group(cache);
6709 			total_unpinned = 0;
6710 			cache = btrfs_lookup_block_group(fs_info, start);
6711 			BUG_ON(!cache); /* Logic error */
6712 
6713 			cluster = fetch_cluster_info(fs_info,
6714 						     cache->space_info,
6715 						     &empty_cluster);
6716 			empty_cluster <<= 1;
6717 		}
6718 
6719 		len = cache->key.objectid + cache->key.offset - start;
6720 		len = min(len, end + 1 - start);
6721 
6722 		if (start < cache->last_byte_to_unpin) {
6723 			len = min(len, cache->last_byte_to_unpin - start);
6724 			if (return_free_space)
6725 				btrfs_add_free_space(cache, start, len);
6726 		}
6727 
6728 		start += len;
6729 		total_unpinned += len;
6730 		space_info = cache->space_info;
6731 
6732 		/*
6733 		 * If this space cluster has been marked as fragmented and we've
6734 		 * unpinned enough in this block group to potentially allow a
6735 		 * cluster to be created inside of it go ahead and clear the
6736 		 * fragmented check.
6737 		 */
6738 		if (cluster && cluster->fragmented &&
6739 		    total_unpinned > empty_cluster) {
6740 			spin_lock(&cluster->lock);
6741 			cluster->fragmented = 0;
6742 			spin_unlock(&cluster->lock);
6743 		}
6744 
6745 		spin_lock(&space_info->lock);
6746 		spin_lock(&cache->lock);
6747 		cache->pinned -= len;
6748 		space_info->bytes_pinned -= len;
6749 
6750 		trace_btrfs_space_reservation(fs_info, "pinned",
6751 					      space_info->flags, len, 0);
6752 		space_info->max_extent_size = 0;
6753 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6754 		if (cache->ro) {
6755 			space_info->bytes_readonly += len;
6756 			readonly = true;
6757 		}
6758 		spin_unlock(&cache->lock);
6759 		if (!readonly && return_free_space &&
6760 		    global_rsv->space_info == space_info) {
6761 			u64 to_add = len;
6762 			WARN_ON(!return_free_space);
6763 			spin_lock(&global_rsv->lock);
6764 			if (!global_rsv->full) {
6765 				to_add = min(len, global_rsv->size -
6766 					     global_rsv->reserved);
6767 				global_rsv->reserved += to_add;
6768 				space_info->bytes_may_use += to_add;
6769 				if (global_rsv->reserved >= global_rsv->size)
6770 					global_rsv->full = 1;
6771 				trace_btrfs_space_reservation(fs_info,
6772 							      "space_info",
6773 							      space_info->flags,
6774 							      to_add, 1);
6775 				len -= to_add;
6776 			}
6777 			spin_unlock(&global_rsv->lock);
6778 			/* Add to any tickets we may have */
6779 			if (len)
6780 				space_info_add_new_bytes(fs_info, space_info,
6781 							 len);
6782 		}
6783 		spin_unlock(&space_info->lock);
6784 	}
6785 
6786 	if (cache)
6787 		btrfs_put_block_group(cache);
6788 	return 0;
6789 }
6790 
6791 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6792 			       struct btrfs_fs_info *fs_info)
6793 {
6794 	struct btrfs_block_group_cache *block_group, *tmp;
6795 	struct list_head *deleted_bgs;
6796 	struct extent_io_tree *unpin;
6797 	u64 start;
6798 	u64 end;
6799 	int ret;
6800 
6801 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6802 		unpin = &fs_info->freed_extents[1];
6803 	else
6804 		unpin = &fs_info->freed_extents[0];
6805 
6806 	while (!trans->aborted) {
6807 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6808 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6809 					    EXTENT_DIRTY, NULL);
6810 		if (ret) {
6811 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6812 			break;
6813 		}
6814 
6815 		if (btrfs_test_opt(fs_info, DISCARD))
6816 			ret = btrfs_discard_extent(fs_info, start,
6817 						   end + 1 - start, NULL);
6818 
6819 		clear_extent_dirty(unpin, start, end);
6820 		unpin_extent_range(fs_info, start, end, true);
6821 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6822 		cond_resched();
6823 	}
6824 
6825 	/*
6826 	 * Transaction is finished.  We don't need the lock anymore.  We
6827 	 * do need to clean up the block groups in case of a transaction
6828 	 * abort.
6829 	 */
6830 	deleted_bgs = &trans->transaction->deleted_bgs;
6831 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6832 		u64 trimmed = 0;
6833 
6834 		ret = -EROFS;
6835 		if (!trans->aborted)
6836 			ret = btrfs_discard_extent(fs_info,
6837 						   block_group->key.objectid,
6838 						   block_group->key.offset,
6839 						   &trimmed);
6840 
6841 		list_del_init(&block_group->bg_list);
6842 		btrfs_put_block_group_trimming(block_group);
6843 		btrfs_put_block_group(block_group);
6844 
6845 		if (ret) {
6846 			const char *errstr = btrfs_decode_error(ret);
6847 			btrfs_warn(fs_info,
6848 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6849 				   ret, errstr);
6850 		}
6851 	}
6852 
6853 	return 0;
6854 }
6855 
6856 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6857 				struct btrfs_fs_info *info,
6858 				struct btrfs_delayed_ref_node *node, u64 parent,
6859 				u64 root_objectid, u64 owner_objectid,
6860 				u64 owner_offset, int refs_to_drop,
6861 				struct btrfs_delayed_extent_op *extent_op)
6862 {
6863 	struct btrfs_key key;
6864 	struct btrfs_path *path;
6865 	struct btrfs_root *extent_root = info->extent_root;
6866 	struct extent_buffer *leaf;
6867 	struct btrfs_extent_item *ei;
6868 	struct btrfs_extent_inline_ref *iref;
6869 	int ret;
6870 	int is_data;
6871 	int extent_slot = 0;
6872 	int found_extent = 0;
6873 	int num_to_del = 1;
6874 	u32 item_size;
6875 	u64 refs;
6876 	u64 bytenr = node->bytenr;
6877 	u64 num_bytes = node->num_bytes;
6878 	int last_ref = 0;
6879 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6880 
6881 	path = btrfs_alloc_path();
6882 	if (!path)
6883 		return -ENOMEM;
6884 
6885 	path->reada = READA_FORWARD;
6886 	path->leave_spinning = 1;
6887 
6888 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6889 	BUG_ON(!is_data && refs_to_drop != 1);
6890 
6891 	if (is_data)
6892 		skinny_metadata = 0;
6893 
6894 	ret = lookup_extent_backref(trans, info, path, &iref,
6895 				    bytenr, num_bytes, parent,
6896 				    root_objectid, owner_objectid,
6897 				    owner_offset);
6898 	if (ret == 0) {
6899 		extent_slot = path->slots[0];
6900 		while (extent_slot >= 0) {
6901 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6902 					      extent_slot);
6903 			if (key.objectid != bytenr)
6904 				break;
6905 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6906 			    key.offset == num_bytes) {
6907 				found_extent = 1;
6908 				break;
6909 			}
6910 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6911 			    key.offset == owner_objectid) {
6912 				found_extent = 1;
6913 				break;
6914 			}
6915 			if (path->slots[0] - extent_slot > 5)
6916 				break;
6917 			extent_slot--;
6918 		}
6919 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6920 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6921 		if (found_extent && item_size < sizeof(*ei))
6922 			found_extent = 0;
6923 #endif
6924 		if (!found_extent) {
6925 			BUG_ON(iref);
6926 			ret = remove_extent_backref(trans, info, path, NULL,
6927 						    refs_to_drop,
6928 						    is_data, &last_ref);
6929 			if (ret) {
6930 				btrfs_abort_transaction(trans, ret);
6931 				goto out;
6932 			}
6933 			btrfs_release_path(path);
6934 			path->leave_spinning = 1;
6935 
6936 			key.objectid = bytenr;
6937 			key.type = BTRFS_EXTENT_ITEM_KEY;
6938 			key.offset = num_bytes;
6939 
6940 			if (!is_data && skinny_metadata) {
6941 				key.type = BTRFS_METADATA_ITEM_KEY;
6942 				key.offset = owner_objectid;
6943 			}
6944 
6945 			ret = btrfs_search_slot(trans, extent_root,
6946 						&key, path, -1, 1);
6947 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6948 				/*
6949 				 * Couldn't find our skinny metadata item,
6950 				 * see if we have ye olde extent item.
6951 				 */
6952 				path->slots[0]--;
6953 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6954 						      path->slots[0]);
6955 				if (key.objectid == bytenr &&
6956 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6957 				    key.offset == num_bytes)
6958 					ret = 0;
6959 			}
6960 
6961 			if (ret > 0 && skinny_metadata) {
6962 				skinny_metadata = false;
6963 				key.objectid = bytenr;
6964 				key.type = BTRFS_EXTENT_ITEM_KEY;
6965 				key.offset = num_bytes;
6966 				btrfs_release_path(path);
6967 				ret = btrfs_search_slot(trans, extent_root,
6968 							&key, path, -1, 1);
6969 			}
6970 
6971 			if (ret) {
6972 				btrfs_err(info,
6973 					  "umm, got %d back from search, was looking for %llu",
6974 					  ret, bytenr);
6975 				if (ret > 0)
6976 					btrfs_print_leaf(info, path->nodes[0]);
6977 			}
6978 			if (ret < 0) {
6979 				btrfs_abort_transaction(trans, ret);
6980 				goto out;
6981 			}
6982 			extent_slot = path->slots[0];
6983 		}
6984 	} else if (WARN_ON(ret == -ENOENT)) {
6985 		btrfs_print_leaf(info, path->nodes[0]);
6986 		btrfs_err(info,
6987 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6988 			bytenr, parent, root_objectid, owner_objectid,
6989 			owner_offset);
6990 		btrfs_abort_transaction(trans, ret);
6991 		goto out;
6992 	} else {
6993 		btrfs_abort_transaction(trans, ret);
6994 		goto out;
6995 	}
6996 
6997 	leaf = path->nodes[0];
6998 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6999 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7000 	if (item_size < sizeof(*ei)) {
7001 		BUG_ON(found_extent || extent_slot != path->slots[0]);
7002 		ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7003 					     0);
7004 		if (ret < 0) {
7005 			btrfs_abort_transaction(trans, ret);
7006 			goto out;
7007 		}
7008 
7009 		btrfs_release_path(path);
7010 		path->leave_spinning = 1;
7011 
7012 		key.objectid = bytenr;
7013 		key.type = BTRFS_EXTENT_ITEM_KEY;
7014 		key.offset = num_bytes;
7015 
7016 		ret = btrfs_search_slot(trans, extent_root, &key, path,
7017 					-1, 1);
7018 		if (ret) {
7019 			btrfs_err(info,
7020 				  "umm, got %d back from search, was looking for %llu",
7021 				ret, bytenr);
7022 			btrfs_print_leaf(info, path->nodes[0]);
7023 		}
7024 		if (ret < 0) {
7025 			btrfs_abort_transaction(trans, ret);
7026 			goto out;
7027 		}
7028 
7029 		extent_slot = path->slots[0];
7030 		leaf = path->nodes[0];
7031 		item_size = btrfs_item_size_nr(leaf, extent_slot);
7032 	}
7033 #endif
7034 	BUG_ON(item_size < sizeof(*ei));
7035 	ei = btrfs_item_ptr(leaf, extent_slot,
7036 			    struct btrfs_extent_item);
7037 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7038 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7039 		struct btrfs_tree_block_info *bi;
7040 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7041 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7042 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7043 	}
7044 
7045 	refs = btrfs_extent_refs(leaf, ei);
7046 	if (refs < refs_to_drop) {
7047 		btrfs_err(info,
7048 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7049 			  refs_to_drop, refs, bytenr);
7050 		ret = -EINVAL;
7051 		btrfs_abort_transaction(trans, ret);
7052 		goto out;
7053 	}
7054 	refs -= refs_to_drop;
7055 
7056 	if (refs > 0) {
7057 		if (extent_op)
7058 			__run_delayed_extent_op(extent_op, leaf, ei);
7059 		/*
7060 		 * In the case of inline back ref, reference count will
7061 		 * be updated by remove_extent_backref
7062 		 */
7063 		if (iref) {
7064 			BUG_ON(!found_extent);
7065 		} else {
7066 			btrfs_set_extent_refs(leaf, ei, refs);
7067 			btrfs_mark_buffer_dirty(leaf);
7068 		}
7069 		if (found_extent) {
7070 			ret = remove_extent_backref(trans, info, path,
7071 						    iref, refs_to_drop,
7072 						    is_data, &last_ref);
7073 			if (ret) {
7074 				btrfs_abort_transaction(trans, ret);
7075 				goto out;
7076 			}
7077 		}
7078 	} else {
7079 		if (found_extent) {
7080 			BUG_ON(is_data && refs_to_drop !=
7081 			       extent_data_ref_count(path, iref));
7082 			if (iref) {
7083 				BUG_ON(path->slots[0] != extent_slot);
7084 			} else {
7085 				BUG_ON(path->slots[0] != extent_slot + 1);
7086 				path->slots[0] = extent_slot;
7087 				num_to_del = 2;
7088 			}
7089 		}
7090 
7091 		last_ref = 1;
7092 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7093 				      num_to_del);
7094 		if (ret) {
7095 			btrfs_abort_transaction(trans, ret);
7096 			goto out;
7097 		}
7098 		btrfs_release_path(path);
7099 
7100 		if (is_data) {
7101 			ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7102 			if (ret) {
7103 				btrfs_abort_transaction(trans, ret);
7104 				goto out;
7105 			}
7106 		}
7107 
7108 		ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7109 		if (ret) {
7110 			btrfs_abort_transaction(trans, ret);
7111 			goto out;
7112 		}
7113 
7114 		ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7115 		if (ret) {
7116 			btrfs_abort_transaction(trans, ret);
7117 			goto out;
7118 		}
7119 	}
7120 	btrfs_release_path(path);
7121 
7122 out:
7123 	btrfs_free_path(path);
7124 	return ret;
7125 }
7126 
7127 /*
7128  * when we free an block, it is possible (and likely) that we free the last
7129  * delayed ref for that extent as well.  This searches the delayed ref tree for
7130  * a given extent, and if there are no other delayed refs to be processed, it
7131  * removes it from the tree.
7132  */
7133 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7134 				      u64 bytenr)
7135 {
7136 	struct btrfs_delayed_ref_head *head;
7137 	struct btrfs_delayed_ref_root *delayed_refs;
7138 	int ret = 0;
7139 
7140 	delayed_refs = &trans->transaction->delayed_refs;
7141 	spin_lock(&delayed_refs->lock);
7142 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7143 	if (!head)
7144 		goto out_delayed_unlock;
7145 
7146 	spin_lock(&head->lock);
7147 	if (!list_empty(&head->ref_list))
7148 		goto out;
7149 
7150 	if (head->extent_op) {
7151 		if (!head->must_insert_reserved)
7152 			goto out;
7153 		btrfs_free_delayed_extent_op(head->extent_op);
7154 		head->extent_op = NULL;
7155 	}
7156 
7157 	/*
7158 	 * waiting for the lock here would deadlock.  If someone else has it
7159 	 * locked they are already in the process of dropping it anyway
7160 	 */
7161 	if (!mutex_trylock(&head->mutex))
7162 		goto out;
7163 
7164 	/*
7165 	 * at this point we have a head with no other entries.  Go
7166 	 * ahead and process it.
7167 	 */
7168 	head->node.in_tree = 0;
7169 	rb_erase(&head->href_node, &delayed_refs->href_root);
7170 
7171 	atomic_dec(&delayed_refs->num_entries);
7172 
7173 	/*
7174 	 * we don't take a ref on the node because we're removing it from the
7175 	 * tree, so we just steal the ref the tree was holding.
7176 	 */
7177 	delayed_refs->num_heads--;
7178 	if (head->processing == 0)
7179 		delayed_refs->num_heads_ready--;
7180 	head->processing = 0;
7181 	spin_unlock(&head->lock);
7182 	spin_unlock(&delayed_refs->lock);
7183 
7184 	BUG_ON(head->extent_op);
7185 	if (head->must_insert_reserved)
7186 		ret = 1;
7187 
7188 	mutex_unlock(&head->mutex);
7189 	btrfs_put_delayed_ref(&head->node);
7190 	return ret;
7191 out:
7192 	spin_unlock(&head->lock);
7193 
7194 out_delayed_unlock:
7195 	spin_unlock(&delayed_refs->lock);
7196 	return 0;
7197 }
7198 
7199 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7200 			   struct btrfs_root *root,
7201 			   struct extent_buffer *buf,
7202 			   u64 parent, int last_ref)
7203 {
7204 	struct btrfs_fs_info *fs_info = root->fs_info;
7205 	int pin = 1;
7206 	int ret;
7207 
7208 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7209 		int old_ref_mod, new_ref_mod;
7210 
7211 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7212 						 buf->len, parent,
7213 						 root->root_key.objectid,
7214 						 btrfs_header_level(buf),
7215 						 BTRFS_DROP_DELAYED_REF, NULL,
7216 						 &old_ref_mod, &new_ref_mod);
7217 		BUG_ON(ret); /* -ENOMEM */
7218 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
7219 	}
7220 
7221 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7222 		struct btrfs_block_group_cache *cache;
7223 
7224 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7225 			ret = check_ref_cleanup(trans, buf->start);
7226 			if (!ret)
7227 				goto out;
7228 		}
7229 
7230 		pin = 0;
7231 		cache = btrfs_lookup_block_group(fs_info, buf->start);
7232 
7233 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7234 			pin_down_extent(fs_info, cache, buf->start,
7235 					buf->len, 1);
7236 			btrfs_put_block_group(cache);
7237 			goto out;
7238 		}
7239 
7240 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7241 
7242 		btrfs_add_free_space(cache, buf->start, buf->len);
7243 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7244 		btrfs_put_block_group(cache);
7245 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7246 	}
7247 out:
7248 	if (pin)
7249 		add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7250 				 root->root_key.objectid);
7251 
7252 	if (last_ref) {
7253 		/*
7254 		 * Deleting the buffer, clear the corrupt flag since it doesn't
7255 		 * matter anymore.
7256 		 */
7257 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7258 	}
7259 }
7260 
7261 /* Can return -ENOMEM */
7262 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7263 		      struct btrfs_fs_info *fs_info,
7264 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7265 		      u64 owner, u64 offset)
7266 {
7267 	int old_ref_mod, new_ref_mod;
7268 	int ret;
7269 
7270 	if (btrfs_is_testing(fs_info))
7271 		return 0;
7272 
7273 
7274 	/*
7275 	 * tree log blocks never actually go into the extent allocation
7276 	 * tree, just update pinning info and exit early.
7277 	 */
7278 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7279 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7280 		/* unlocks the pinned mutex */
7281 		btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7282 		old_ref_mod = new_ref_mod = 0;
7283 		ret = 0;
7284 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7285 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7286 						 num_bytes, parent,
7287 						 root_objectid, (int)owner,
7288 						 BTRFS_DROP_DELAYED_REF, NULL,
7289 						 &old_ref_mod, &new_ref_mod);
7290 	} else {
7291 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7292 						 num_bytes, parent,
7293 						 root_objectid, owner, offset,
7294 						 0, BTRFS_DROP_DELAYED_REF,
7295 						 &old_ref_mod, &new_ref_mod);
7296 	}
7297 
7298 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7299 		add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7300 
7301 	return ret;
7302 }
7303 
7304 /*
7305  * when we wait for progress in the block group caching, its because
7306  * our allocation attempt failed at least once.  So, we must sleep
7307  * and let some progress happen before we try again.
7308  *
7309  * This function will sleep at least once waiting for new free space to
7310  * show up, and then it will check the block group free space numbers
7311  * for our min num_bytes.  Another option is to have it go ahead
7312  * and look in the rbtree for a free extent of a given size, but this
7313  * is a good start.
7314  *
7315  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7316  * any of the information in this block group.
7317  */
7318 static noinline void
7319 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7320 				u64 num_bytes)
7321 {
7322 	struct btrfs_caching_control *caching_ctl;
7323 
7324 	caching_ctl = get_caching_control(cache);
7325 	if (!caching_ctl)
7326 		return;
7327 
7328 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7329 		   (cache->free_space_ctl->free_space >= num_bytes));
7330 
7331 	put_caching_control(caching_ctl);
7332 }
7333 
7334 static noinline int
7335 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7336 {
7337 	struct btrfs_caching_control *caching_ctl;
7338 	int ret = 0;
7339 
7340 	caching_ctl = get_caching_control(cache);
7341 	if (!caching_ctl)
7342 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7343 
7344 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7345 	if (cache->cached == BTRFS_CACHE_ERROR)
7346 		ret = -EIO;
7347 	put_caching_control(caching_ctl);
7348 	return ret;
7349 }
7350 
7351 int __get_raid_index(u64 flags)
7352 {
7353 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7354 		return BTRFS_RAID_RAID10;
7355 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7356 		return BTRFS_RAID_RAID1;
7357 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7358 		return BTRFS_RAID_DUP;
7359 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7360 		return BTRFS_RAID_RAID0;
7361 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7362 		return BTRFS_RAID_RAID5;
7363 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7364 		return BTRFS_RAID_RAID6;
7365 
7366 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7367 }
7368 
7369 int get_block_group_index(struct btrfs_block_group_cache *cache)
7370 {
7371 	return __get_raid_index(cache->flags);
7372 }
7373 
7374 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7375 	[BTRFS_RAID_RAID10]	= "raid10",
7376 	[BTRFS_RAID_RAID1]	= "raid1",
7377 	[BTRFS_RAID_DUP]	= "dup",
7378 	[BTRFS_RAID_RAID0]	= "raid0",
7379 	[BTRFS_RAID_SINGLE]	= "single",
7380 	[BTRFS_RAID_RAID5]	= "raid5",
7381 	[BTRFS_RAID_RAID6]	= "raid6",
7382 };
7383 
7384 static const char *get_raid_name(enum btrfs_raid_types type)
7385 {
7386 	if (type >= BTRFS_NR_RAID_TYPES)
7387 		return NULL;
7388 
7389 	return btrfs_raid_type_names[type];
7390 }
7391 
7392 enum btrfs_loop_type {
7393 	LOOP_CACHING_NOWAIT = 0,
7394 	LOOP_CACHING_WAIT = 1,
7395 	LOOP_ALLOC_CHUNK = 2,
7396 	LOOP_NO_EMPTY_SIZE = 3,
7397 };
7398 
7399 static inline void
7400 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7401 		       int delalloc)
7402 {
7403 	if (delalloc)
7404 		down_read(&cache->data_rwsem);
7405 }
7406 
7407 static inline void
7408 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7409 		       int delalloc)
7410 {
7411 	btrfs_get_block_group(cache);
7412 	if (delalloc)
7413 		down_read(&cache->data_rwsem);
7414 }
7415 
7416 static struct btrfs_block_group_cache *
7417 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7418 		   struct btrfs_free_cluster *cluster,
7419 		   int delalloc)
7420 {
7421 	struct btrfs_block_group_cache *used_bg = NULL;
7422 
7423 	spin_lock(&cluster->refill_lock);
7424 	while (1) {
7425 		used_bg = cluster->block_group;
7426 		if (!used_bg)
7427 			return NULL;
7428 
7429 		if (used_bg == block_group)
7430 			return used_bg;
7431 
7432 		btrfs_get_block_group(used_bg);
7433 
7434 		if (!delalloc)
7435 			return used_bg;
7436 
7437 		if (down_read_trylock(&used_bg->data_rwsem))
7438 			return used_bg;
7439 
7440 		spin_unlock(&cluster->refill_lock);
7441 
7442 		/* We should only have one-level nested. */
7443 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7444 
7445 		spin_lock(&cluster->refill_lock);
7446 		if (used_bg == cluster->block_group)
7447 			return used_bg;
7448 
7449 		up_read(&used_bg->data_rwsem);
7450 		btrfs_put_block_group(used_bg);
7451 	}
7452 }
7453 
7454 static inline void
7455 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7456 			 int delalloc)
7457 {
7458 	if (delalloc)
7459 		up_read(&cache->data_rwsem);
7460 	btrfs_put_block_group(cache);
7461 }
7462 
7463 /*
7464  * walks the btree of allocated extents and find a hole of a given size.
7465  * The key ins is changed to record the hole:
7466  * ins->objectid == start position
7467  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7468  * ins->offset == the size of the hole.
7469  * Any available blocks before search_start are skipped.
7470  *
7471  * If there is no suitable free space, we will record the max size of
7472  * the free space extent currently.
7473  */
7474 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7475 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7476 				u64 hint_byte, struct btrfs_key *ins,
7477 				u64 flags, int delalloc)
7478 {
7479 	int ret = 0;
7480 	struct btrfs_root *root = fs_info->extent_root;
7481 	struct btrfs_free_cluster *last_ptr = NULL;
7482 	struct btrfs_block_group_cache *block_group = NULL;
7483 	u64 search_start = 0;
7484 	u64 max_extent_size = 0;
7485 	u64 empty_cluster = 0;
7486 	struct btrfs_space_info *space_info;
7487 	int loop = 0;
7488 	int index = __get_raid_index(flags);
7489 	bool failed_cluster_refill = false;
7490 	bool failed_alloc = false;
7491 	bool use_cluster = true;
7492 	bool have_caching_bg = false;
7493 	bool orig_have_caching_bg = false;
7494 	bool full_search = false;
7495 
7496 	WARN_ON(num_bytes < fs_info->sectorsize);
7497 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7498 	ins->objectid = 0;
7499 	ins->offset = 0;
7500 
7501 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7502 
7503 	space_info = __find_space_info(fs_info, flags);
7504 	if (!space_info) {
7505 		btrfs_err(fs_info, "No space info for %llu", flags);
7506 		return -ENOSPC;
7507 	}
7508 
7509 	/*
7510 	 * If our free space is heavily fragmented we may not be able to make
7511 	 * big contiguous allocations, so instead of doing the expensive search
7512 	 * for free space, simply return ENOSPC with our max_extent_size so we
7513 	 * can go ahead and search for a more manageable chunk.
7514 	 *
7515 	 * If our max_extent_size is large enough for our allocation simply
7516 	 * disable clustering since we will likely not be able to find enough
7517 	 * space to create a cluster and induce latency trying.
7518 	 */
7519 	if (unlikely(space_info->max_extent_size)) {
7520 		spin_lock(&space_info->lock);
7521 		if (space_info->max_extent_size &&
7522 		    num_bytes > space_info->max_extent_size) {
7523 			ins->offset = space_info->max_extent_size;
7524 			spin_unlock(&space_info->lock);
7525 			return -ENOSPC;
7526 		} else if (space_info->max_extent_size) {
7527 			use_cluster = false;
7528 		}
7529 		spin_unlock(&space_info->lock);
7530 	}
7531 
7532 	last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7533 	if (last_ptr) {
7534 		spin_lock(&last_ptr->lock);
7535 		if (last_ptr->block_group)
7536 			hint_byte = last_ptr->window_start;
7537 		if (last_ptr->fragmented) {
7538 			/*
7539 			 * We still set window_start so we can keep track of the
7540 			 * last place we found an allocation to try and save
7541 			 * some time.
7542 			 */
7543 			hint_byte = last_ptr->window_start;
7544 			use_cluster = false;
7545 		}
7546 		spin_unlock(&last_ptr->lock);
7547 	}
7548 
7549 	search_start = max(search_start, first_logical_byte(fs_info, 0));
7550 	search_start = max(search_start, hint_byte);
7551 	if (search_start == hint_byte) {
7552 		block_group = btrfs_lookup_block_group(fs_info, search_start);
7553 		/*
7554 		 * we don't want to use the block group if it doesn't match our
7555 		 * allocation bits, or if its not cached.
7556 		 *
7557 		 * However if we are re-searching with an ideal block group
7558 		 * picked out then we don't care that the block group is cached.
7559 		 */
7560 		if (block_group && block_group_bits(block_group, flags) &&
7561 		    block_group->cached != BTRFS_CACHE_NO) {
7562 			down_read(&space_info->groups_sem);
7563 			if (list_empty(&block_group->list) ||
7564 			    block_group->ro) {
7565 				/*
7566 				 * someone is removing this block group,
7567 				 * we can't jump into the have_block_group
7568 				 * target because our list pointers are not
7569 				 * valid
7570 				 */
7571 				btrfs_put_block_group(block_group);
7572 				up_read(&space_info->groups_sem);
7573 			} else {
7574 				index = get_block_group_index(block_group);
7575 				btrfs_lock_block_group(block_group, delalloc);
7576 				goto have_block_group;
7577 			}
7578 		} else if (block_group) {
7579 			btrfs_put_block_group(block_group);
7580 		}
7581 	}
7582 search:
7583 	have_caching_bg = false;
7584 	if (index == 0 || index == __get_raid_index(flags))
7585 		full_search = true;
7586 	down_read(&space_info->groups_sem);
7587 	list_for_each_entry(block_group, &space_info->block_groups[index],
7588 			    list) {
7589 		u64 offset;
7590 		int cached;
7591 
7592 		btrfs_grab_block_group(block_group, delalloc);
7593 		search_start = block_group->key.objectid;
7594 
7595 		/*
7596 		 * this can happen if we end up cycling through all the
7597 		 * raid types, but we want to make sure we only allocate
7598 		 * for the proper type.
7599 		 */
7600 		if (!block_group_bits(block_group, flags)) {
7601 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7602 				BTRFS_BLOCK_GROUP_RAID1 |
7603 				BTRFS_BLOCK_GROUP_RAID5 |
7604 				BTRFS_BLOCK_GROUP_RAID6 |
7605 				BTRFS_BLOCK_GROUP_RAID10;
7606 
7607 			/*
7608 			 * if they asked for extra copies and this block group
7609 			 * doesn't provide them, bail.  This does allow us to
7610 			 * fill raid0 from raid1.
7611 			 */
7612 			if ((flags & extra) && !(block_group->flags & extra))
7613 				goto loop;
7614 		}
7615 
7616 have_block_group:
7617 		cached = block_group_cache_done(block_group);
7618 		if (unlikely(!cached)) {
7619 			have_caching_bg = true;
7620 			ret = cache_block_group(block_group, 0);
7621 			BUG_ON(ret < 0);
7622 			ret = 0;
7623 		}
7624 
7625 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7626 			goto loop;
7627 		if (unlikely(block_group->ro))
7628 			goto loop;
7629 
7630 		/*
7631 		 * Ok we want to try and use the cluster allocator, so
7632 		 * lets look there
7633 		 */
7634 		if (last_ptr && use_cluster) {
7635 			struct btrfs_block_group_cache *used_block_group;
7636 			unsigned long aligned_cluster;
7637 			/*
7638 			 * the refill lock keeps out other
7639 			 * people trying to start a new cluster
7640 			 */
7641 			used_block_group = btrfs_lock_cluster(block_group,
7642 							      last_ptr,
7643 							      delalloc);
7644 			if (!used_block_group)
7645 				goto refill_cluster;
7646 
7647 			if (used_block_group != block_group &&
7648 			    (used_block_group->ro ||
7649 			     !block_group_bits(used_block_group, flags)))
7650 				goto release_cluster;
7651 
7652 			offset = btrfs_alloc_from_cluster(used_block_group,
7653 						last_ptr,
7654 						num_bytes,
7655 						used_block_group->key.objectid,
7656 						&max_extent_size);
7657 			if (offset) {
7658 				/* we have a block, we're done */
7659 				spin_unlock(&last_ptr->refill_lock);
7660 				trace_btrfs_reserve_extent_cluster(fs_info,
7661 						used_block_group,
7662 						search_start, num_bytes);
7663 				if (used_block_group != block_group) {
7664 					btrfs_release_block_group(block_group,
7665 								  delalloc);
7666 					block_group = used_block_group;
7667 				}
7668 				goto checks;
7669 			}
7670 
7671 			WARN_ON(last_ptr->block_group != used_block_group);
7672 release_cluster:
7673 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7674 			 * set up a new clusters, so lets just skip it
7675 			 * and let the allocator find whatever block
7676 			 * it can find.  If we reach this point, we
7677 			 * will have tried the cluster allocator
7678 			 * plenty of times and not have found
7679 			 * anything, so we are likely way too
7680 			 * fragmented for the clustering stuff to find
7681 			 * anything.
7682 			 *
7683 			 * However, if the cluster is taken from the
7684 			 * current block group, release the cluster
7685 			 * first, so that we stand a better chance of
7686 			 * succeeding in the unclustered
7687 			 * allocation.  */
7688 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7689 			    used_block_group != block_group) {
7690 				spin_unlock(&last_ptr->refill_lock);
7691 				btrfs_release_block_group(used_block_group,
7692 							  delalloc);
7693 				goto unclustered_alloc;
7694 			}
7695 
7696 			/*
7697 			 * this cluster didn't work out, free it and
7698 			 * start over
7699 			 */
7700 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7701 
7702 			if (used_block_group != block_group)
7703 				btrfs_release_block_group(used_block_group,
7704 							  delalloc);
7705 refill_cluster:
7706 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7707 				spin_unlock(&last_ptr->refill_lock);
7708 				goto unclustered_alloc;
7709 			}
7710 
7711 			aligned_cluster = max_t(unsigned long,
7712 						empty_cluster + empty_size,
7713 					      block_group->full_stripe_len);
7714 
7715 			/* allocate a cluster in this block group */
7716 			ret = btrfs_find_space_cluster(fs_info, block_group,
7717 						       last_ptr, search_start,
7718 						       num_bytes,
7719 						       aligned_cluster);
7720 			if (ret == 0) {
7721 				/*
7722 				 * now pull our allocation out of this
7723 				 * cluster
7724 				 */
7725 				offset = btrfs_alloc_from_cluster(block_group,
7726 							last_ptr,
7727 							num_bytes,
7728 							search_start,
7729 							&max_extent_size);
7730 				if (offset) {
7731 					/* we found one, proceed */
7732 					spin_unlock(&last_ptr->refill_lock);
7733 					trace_btrfs_reserve_extent_cluster(fs_info,
7734 						block_group, search_start,
7735 						num_bytes);
7736 					goto checks;
7737 				}
7738 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7739 				   && !failed_cluster_refill) {
7740 				spin_unlock(&last_ptr->refill_lock);
7741 
7742 				failed_cluster_refill = true;
7743 				wait_block_group_cache_progress(block_group,
7744 				       num_bytes + empty_cluster + empty_size);
7745 				goto have_block_group;
7746 			}
7747 
7748 			/*
7749 			 * at this point we either didn't find a cluster
7750 			 * or we weren't able to allocate a block from our
7751 			 * cluster.  Free the cluster we've been trying
7752 			 * to use, and go to the next block group
7753 			 */
7754 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7755 			spin_unlock(&last_ptr->refill_lock);
7756 			goto loop;
7757 		}
7758 
7759 unclustered_alloc:
7760 		/*
7761 		 * We are doing an unclustered alloc, set the fragmented flag so
7762 		 * we don't bother trying to setup a cluster again until we get
7763 		 * more space.
7764 		 */
7765 		if (unlikely(last_ptr)) {
7766 			spin_lock(&last_ptr->lock);
7767 			last_ptr->fragmented = 1;
7768 			spin_unlock(&last_ptr->lock);
7769 		}
7770 		if (cached) {
7771 			struct btrfs_free_space_ctl *ctl =
7772 				block_group->free_space_ctl;
7773 
7774 			spin_lock(&ctl->tree_lock);
7775 			if (ctl->free_space <
7776 			    num_bytes + empty_cluster + empty_size) {
7777 				if (ctl->free_space > max_extent_size)
7778 					max_extent_size = ctl->free_space;
7779 				spin_unlock(&ctl->tree_lock);
7780 				goto loop;
7781 			}
7782 			spin_unlock(&ctl->tree_lock);
7783 		}
7784 
7785 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7786 						    num_bytes, empty_size,
7787 						    &max_extent_size);
7788 		/*
7789 		 * If we didn't find a chunk, and we haven't failed on this
7790 		 * block group before, and this block group is in the middle of
7791 		 * caching and we are ok with waiting, then go ahead and wait
7792 		 * for progress to be made, and set failed_alloc to true.
7793 		 *
7794 		 * If failed_alloc is true then we've already waited on this
7795 		 * block group once and should move on to the next block group.
7796 		 */
7797 		if (!offset && !failed_alloc && !cached &&
7798 		    loop > LOOP_CACHING_NOWAIT) {
7799 			wait_block_group_cache_progress(block_group,
7800 						num_bytes + empty_size);
7801 			failed_alloc = true;
7802 			goto have_block_group;
7803 		} else if (!offset) {
7804 			goto loop;
7805 		}
7806 checks:
7807 		search_start = ALIGN(offset, fs_info->stripesize);
7808 
7809 		/* move on to the next group */
7810 		if (search_start + num_bytes >
7811 		    block_group->key.objectid + block_group->key.offset) {
7812 			btrfs_add_free_space(block_group, offset, num_bytes);
7813 			goto loop;
7814 		}
7815 
7816 		if (offset < search_start)
7817 			btrfs_add_free_space(block_group, offset,
7818 					     search_start - offset);
7819 		BUG_ON(offset > search_start);
7820 
7821 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7822 				num_bytes, delalloc);
7823 		if (ret == -EAGAIN) {
7824 			btrfs_add_free_space(block_group, offset, num_bytes);
7825 			goto loop;
7826 		}
7827 		btrfs_inc_block_group_reservations(block_group);
7828 
7829 		/* we are all good, lets return */
7830 		ins->objectid = search_start;
7831 		ins->offset = num_bytes;
7832 
7833 		trace_btrfs_reserve_extent(fs_info, block_group,
7834 					   search_start, num_bytes);
7835 		btrfs_release_block_group(block_group, delalloc);
7836 		break;
7837 loop:
7838 		failed_cluster_refill = false;
7839 		failed_alloc = false;
7840 		BUG_ON(index != get_block_group_index(block_group));
7841 		btrfs_release_block_group(block_group, delalloc);
7842 	}
7843 	up_read(&space_info->groups_sem);
7844 
7845 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7846 		&& !orig_have_caching_bg)
7847 		orig_have_caching_bg = true;
7848 
7849 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7850 		goto search;
7851 
7852 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7853 		goto search;
7854 
7855 	/*
7856 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7857 	 *			caching kthreads as we move along
7858 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7859 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7860 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7861 	 *			again
7862 	 */
7863 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7864 		index = 0;
7865 		if (loop == LOOP_CACHING_NOWAIT) {
7866 			/*
7867 			 * We want to skip the LOOP_CACHING_WAIT step if we
7868 			 * don't have any uncached bgs and we've already done a
7869 			 * full search through.
7870 			 */
7871 			if (orig_have_caching_bg || !full_search)
7872 				loop = LOOP_CACHING_WAIT;
7873 			else
7874 				loop = LOOP_ALLOC_CHUNK;
7875 		} else {
7876 			loop++;
7877 		}
7878 
7879 		if (loop == LOOP_ALLOC_CHUNK) {
7880 			struct btrfs_trans_handle *trans;
7881 			int exist = 0;
7882 
7883 			trans = current->journal_info;
7884 			if (trans)
7885 				exist = 1;
7886 			else
7887 				trans = btrfs_join_transaction(root);
7888 
7889 			if (IS_ERR(trans)) {
7890 				ret = PTR_ERR(trans);
7891 				goto out;
7892 			}
7893 
7894 			ret = do_chunk_alloc(trans, fs_info, flags,
7895 					     CHUNK_ALLOC_FORCE);
7896 
7897 			/*
7898 			 * If we can't allocate a new chunk we've already looped
7899 			 * through at least once, move on to the NO_EMPTY_SIZE
7900 			 * case.
7901 			 */
7902 			if (ret == -ENOSPC)
7903 				loop = LOOP_NO_EMPTY_SIZE;
7904 
7905 			/*
7906 			 * Do not bail out on ENOSPC since we
7907 			 * can do more things.
7908 			 */
7909 			if (ret < 0 && ret != -ENOSPC)
7910 				btrfs_abort_transaction(trans, ret);
7911 			else
7912 				ret = 0;
7913 			if (!exist)
7914 				btrfs_end_transaction(trans);
7915 			if (ret)
7916 				goto out;
7917 		}
7918 
7919 		if (loop == LOOP_NO_EMPTY_SIZE) {
7920 			/*
7921 			 * Don't loop again if we already have no empty_size and
7922 			 * no empty_cluster.
7923 			 */
7924 			if (empty_size == 0 &&
7925 			    empty_cluster == 0) {
7926 				ret = -ENOSPC;
7927 				goto out;
7928 			}
7929 			empty_size = 0;
7930 			empty_cluster = 0;
7931 		}
7932 
7933 		goto search;
7934 	} else if (!ins->objectid) {
7935 		ret = -ENOSPC;
7936 	} else if (ins->objectid) {
7937 		if (!use_cluster && last_ptr) {
7938 			spin_lock(&last_ptr->lock);
7939 			last_ptr->window_start = ins->objectid;
7940 			spin_unlock(&last_ptr->lock);
7941 		}
7942 		ret = 0;
7943 	}
7944 out:
7945 	if (ret == -ENOSPC) {
7946 		spin_lock(&space_info->lock);
7947 		space_info->max_extent_size = max_extent_size;
7948 		spin_unlock(&space_info->lock);
7949 		ins->offset = max_extent_size;
7950 	}
7951 	return ret;
7952 }
7953 
7954 static void dump_space_info(struct btrfs_fs_info *fs_info,
7955 			    struct btrfs_space_info *info, u64 bytes,
7956 			    int dump_block_groups)
7957 {
7958 	struct btrfs_block_group_cache *cache;
7959 	int index = 0;
7960 
7961 	spin_lock(&info->lock);
7962 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7963 		   info->flags,
7964 		   info->total_bytes - btrfs_space_info_used(info, true),
7965 		   info->full ? "" : "not ");
7966 	btrfs_info(fs_info,
7967 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7968 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7969 		info->bytes_reserved, info->bytes_may_use,
7970 		info->bytes_readonly);
7971 	spin_unlock(&info->lock);
7972 
7973 	if (!dump_block_groups)
7974 		return;
7975 
7976 	down_read(&info->groups_sem);
7977 again:
7978 	list_for_each_entry(cache, &info->block_groups[index], list) {
7979 		spin_lock(&cache->lock);
7980 		btrfs_info(fs_info,
7981 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7982 			cache->key.objectid, cache->key.offset,
7983 			btrfs_block_group_used(&cache->item), cache->pinned,
7984 			cache->reserved, cache->ro ? "[readonly]" : "");
7985 		btrfs_dump_free_space(cache, bytes);
7986 		spin_unlock(&cache->lock);
7987 	}
7988 	if (++index < BTRFS_NR_RAID_TYPES)
7989 		goto again;
7990 	up_read(&info->groups_sem);
7991 }
7992 
7993 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7994 			 u64 num_bytes, u64 min_alloc_size,
7995 			 u64 empty_size, u64 hint_byte,
7996 			 struct btrfs_key *ins, int is_data, int delalloc)
7997 {
7998 	struct btrfs_fs_info *fs_info = root->fs_info;
7999 	bool final_tried = num_bytes == min_alloc_size;
8000 	u64 flags;
8001 	int ret;
8002 
8003 	flags = get_alloc_profile_by_root(root, is_data);
8004 again:
8005 	WARN_ON(num_bytes < fs_info->sectorsize);
8006 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8007 			       hint_byte, ins, flags, delalloc);
8008 	if (!ret && !is_data) {
8009 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8010 	} else if (ret == -ENOSPC) {
8011 		if (!final_tried && ins->offset) {
8012 			num_bytes = min(num_bytes >> 1, ins->offset);
8013 			num_bytes = round_down(num_bytes,
8014 					       fs_info->sectorsize);
8015 			num_bytes = max(num_bytes, min_alloc_size);
8016 			ram_bytes = num_bytes;
8017 			if (num_bytes == min_alloc_size)
8018 				final_tried = true;
8019 			goto again;
8020 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8021 			struct btrfs_space_info *sinfo;
8022 
8023 			sinfo = __find_space_info(fs_info, flags);
8024 			btrfs_err(fs_info,
8025 				  "allocation failed flags %llu, wanted %llu",
8026 				  flags, num_bytes);
8027 			if (sinfo)
8028 				dump_space_info(fs_info, sinfo, num_bytes, 1);
8029 		}
8030 	}
8031 
8032 	return ret;
8033 }
8034 
8035 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8036 					u64 start, u64 len,
8037 					int pin, int delalloc)
8038 {
8039 	struct btrfs_block_group_cache *cache;
8040 	int ret = 0;
8041 
8042 	cache = btrfs_lookup_block_group(fs_info, start);
8043 	if (!cache) {
8044 		btrfs_err(fs_info, "Unable to find block group for %llu",
8045 			  start);
8046 		return -ENOSPC;
8047 	}
8048 
8049 	if (pin)
8050 		pin_down_extent(fs_info, cache, start, len, 1);
8051 	else {
8052 		if (btrfs_test_opt(fs_info, DISCARD))
8053 			ret = btrfs_discard_extent(fs_info, start, len, NULL);
8054 		btrfs_add_free_space(cache, start, len);
8055 		btrfs_free_reserved_bytes(cache, len, delalloc);
8056 		trace_btrfs_reserved_extent_free(fs_info, start, len);
8057 	}
8058 
8059 	btrfs_put_block_group(cache);
8060 	return ret;
8061 }
8062 
8063 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8064 			       u64 start, u64 len, int delalloc)
8065 {
8066 	return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8067 }
8068 
8069 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8070 				       u64 start, u64 len)
8071 {
8072 	return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8073 }
8074 
8075 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8076 				      struct btrfs_fs_info *fs_info,
8077 				      u64 parent, u64 root_objectid,
8078 				      u64 flags, u64 owner, u64 offset,
8079 				      struct btrfs_key *ins, int ref_mod)
8080 {
8081 	int ret;
8082 	struct btrfs_extent_item *extent_item;
8083 	struct btrfs_extent_inline_ref *iref;
8084 	struct btrfs_path *path;
8085 	struct extent_buffer *leaf;
8086 	int type;
8087 	u32 size;
8088 
8089 	if (parent > 0)
8090 		type = BTRFS_SHARED_DATA_REF_KEY;
8091 	else
8092 		type = BTRFS_EXTENT_DATA_REF_KEY;
8093 
8094 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8095 
8096 	path = btrfs_alloc_path();
8097 	if (!path)
8098 		return -ENOMEM;
8099 
8100 	path->leave_spinning = 1;
8101 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8102 				      ins, size);
8103 	if (ret) {
8104 		btrfs_free_path(path);
8105 		return ret;
8106 	}
8107 
8108 	leaf = path->nodes[0];
8109 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8110 				     struct btrfs_extent_item);
8111 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8112 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8113 	btrfs_set_extent_flags(leaf, extent_item,
8114 			       flags | BTRFS_EXTENT_FLAG_DATA);
8115 
8116 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8117 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8118 	if (parent > 0) {
8119 		struct btrfs_shared_data_ref *ref;
8120 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8121 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8122 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8123 	} else {
8124 		struct btrfs_extent_data_ref *ref;
8125 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8126 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8127 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8128 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8129 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8130 	}
8131 
8132 	btrfs_mark_buffer_dirty(path->nodes[0]);
8133 	btrfs_free_path(path);
8134 
8135 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8136 					  ins->offset);
8137 	if (ret)
8138 		return ret;
8139 
8140 	ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8141 	if (ret) { /* -ENOENT, logic error */
8142 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8143 			ins->objectid, ins->offset);
8144 		BUG();
8145 	}
8146 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8147 	return ret;
8148 }
8149 
8150 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8151 				     struct btrfs_fs_info *fs_info,
8152 				     u64 parent, u64 root_objectid,
8153 				     u64 flags, struct btrfs_disk_key *key,
8154 				     int level, struct btrfs_key *ins)
8155 {
8156 	int ret;
8157 	struct btrfs_extent_item *extent_item;
8158 	struct btrfs_tree_block_info *block_info;
8159 	struct btrfs_extent_inline_ref *iref;
8160 	struct btrfs_path *path;
8161 	struct extent_buffer *leaf;
8162 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8163 	u64 num_bytes = ins->offset;
8164 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8165 
8166 	if (!skinny_metadata)
8167 		size += sizeof(*block_info);
8168 
8169 	path = btrfs_alloc_path();
8170 	if (!path) {
8171 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8172 						   fs_info->nodesize);
8173 		return -ENOMEM;
8174 	}
8175 
8176 	path->leave_spinning = 1;
8177 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8178 				      ins, size);
8179 	if (ret) {
8180 		btrfs_free_path(path);
8181 		btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8182 						   fs_info->nodesize);
8183 		return ret;
8184 	}
8185 
8186 	leaf = path->nodes[0];
8187 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8188 				     struct btrfs_extent_item);
8189 	btrfs_set_extent_refs(leaf, extent_item, 1);
8190 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8191 	btrfs_set_extent_flags(leaf, extent_item,
8192 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8193 
8194 	if (skinny_metadata) {
8195 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8196 		num_bytes = fs_info->nodesize;
8197 	} else {
8198 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8199 		btrfs_set_tree_block_key(leaf, block_info, key);
8200 		btrfs_set_tree_block_level(leaf, block_info, level);
8201 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8202 	}
8203 
8204 	if (parent > 0) {
8205 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8206 		btrfs_set_extent_inline_ref_type(leaf, iref,
8207 						 BTRFS_SHARED_BLOCK_REF_KEY);
8208 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8209 	} else {
8210 		btrfs_set_extent_inline_ref_type(leaf, iref,
8211 						 BTRFS_TREE_BLOCK_REF_KEY);
8212 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8213 	}
8214 
8215 	btrfs_mark_buffer_dirty(leaf);
8216 	btrfs_free_path(path);
8217 
8218 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8219 					  num_bytes);
8220 	if (ret)
8221 		return ret;
8222 
8223 	ret = update_block_group(trans, fs_info, ins->objectid,
8224 				 fs_info->nodesize, 1);
8225 	if (ret) { /* -ENOENT, logic error */
8226 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8227 			ins->objectid, ins->offset);
8228 		BUG();
8229 	}
8230 
8231 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8232 					  fs_info->nodesize);
8233 	return ret;
8234 }
8235 
8236 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8237 				     u64 root_objectid, u64 owner,
8238 				     u64 offset, u64 ram_bytes,
8239 				     struct btrfs_key *ins)
8240 {
8241 	struct btrfs_fs_info *fs_info = trans->fs_info;
8242 	int ret;
8243 
8244 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8245 
8246 	ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8247 					 ins->offset, 0, root_objectid, owner,
8248 					 offset, ram_bytes,
8249 					 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8250 	return ret;
8251 }
8252 
8253 /*
8254  * this is used by the tree logging recovery code.  It records that
8255  * an extent has been allocated and makes sure to clear the free
8256  * space cache bits as well
8257  */
8258 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8259 				   struct btrfs_fs_info *fs_info,
8260 				   u64 root_objectid, u64 owner, u64 offset,
8261 				   struct btrfs_key *ins)
8262 {
8263 	int ret;
8264 	struct btrfs_block_group_cache *block_group;
8265 	struct btrfs_space_info *space_info;
8266 
8267 	/*
8268 	 * Mixed block groups will exclude before processing the log so we only
8269 	 * need to do the exclude dance if this fs isn't mixed.
8270 	 */
8271 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8272 		ret = __exclude_logged_extent(fs_info, ins->objectid,
8273 					      ins->offset);
8274 		if (ret)
8275 			return ret;
8276 	}
8277 
8278 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8279 	if (!block_group)
8280 		return -EINVAL;
8281 
8282 	space_info = block_group->space_info;
8283 	spin_lock(&space_info->lock);
8284 	spin_lock(&block_group->lock);
8285 	space_info->bytes_reserved += ins->offset;
8286 	block_group->reserved += ins->offset;
8287 	spin_unlock(&block_group->lock);
8288 	spin_unlock(&space_info->lock);
8289 
8290 	ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8291 					 0, owner, offset, ins, 1);
8292 	btrfs_put_block_group(block_group);
8293 	return ret;
8294 }
8295 
8296 static struct extent_buffer *
8297 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8298 		      u64 bytenr, int level)
8299 {
8300 	struct btrfs_fs_info *fs_info = root->fs_info;
8301 	struct extent_buffer *buf;
8302 
8303 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
8304 	if (IS_ERR(buf))
8305 		return buf;
8306 
8307 	btrfs_set_header_generation(buf, trans->transid);
8308 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8309 	btrfs_tree_lock(buf);
8310 	clean_tree_block(fs_info, buf);
8311 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8312 
8313 	btrfs_set_lock_blocking(buf);
8314 	set_extent_buffer_uptodate(buf);
8315 
8316 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8317 		buf->log_index = root->log_transid % 2;
8318 		/*
8319 		 * we allow two log transactions at a time, use different
8320 		 * EXENT bit to differentiate dirty pages.
8321 		 */
8322 		if (buf->log_index == 0)
8323 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8324 					buf->start + buf->len - 1, GFP_NOFS);
8325 		else
8326 			set_extent_new(&root->dirty_log_pages, buf->start,
8327 					buf->start + buf->len - 1);
8328 	} else {
8329 		buf->log_index = -1;
8330 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8331 			 buf->start + buf->len - 1, GFP_NOFS);
8332 	}
8333 	trans->dirty = true;
8334 	/* this returns a buffer locked for blocking */
8335 	return buf;
8336 }
8337 
8338 static struct btrfs_block_rsv *
8339 use_block_rsv(struct btrfs_trans_handle *trans,
8340 	      struct btrfs_root *root, u32 blocksize)
8341 {
8342 	struct btrfs_fs_info *fs_info = root->fs_info;
8343 	struct btrfs_block_rsv *block_rsv;
8344 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8345 	int ret;
8346 	bool global_updated = false;
8347 
8348 	block_rsv = get_block_rsv(trans, root);
8349 
8350 	if (unlikely(block_rsv->size == 0))
8351 		goto try_reserve;
8352 again:
8353 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8354 	if (!ret)
8355 		return block_rsv;
8356 
8357 	if (block_rsv->failfast)
8358 		return ERR_PTR(ret);
8359 
8360 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8361 		global_updated = true;
8362 		update_global_block_rsv(fs_info);
8363 		goto again;
8364 	}
8365 
8366 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8367 		static DEFINE_RATELIMIT_STATE(_rs,
8368 				DEFAULT_RATELIMIT_INTERVAL * 10,
8369 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8370 		if (__ratelimit(&_rs))
8371 			WARN(1, KERN_DEBUG
8372 				"BTRFS: block rsv returned %d\n", ret);
8373 	}
8374 try_reserve:
8375 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8376 				     BTRFS_RESERVE_NO_FLUSH);
8377 	if (!ret)
8378 		return block_rsv;
8379 	/*
8380 	 * If we couldn't reserve metadata bytes try and use some from
8381 	 * the global reserve if its space type is the same as the global
8382 	 * reservation.
8383 	 */
8384 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8385 	    block_rsv->space_info == global_rsv->space_info) {
8386 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8387 		if (!ret)
8388 			return global_rsv;
8389 	}
8390 	return ERR_PTR(ret);
8391 }
8392 
8393 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8394 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8395 {
8396 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8397 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8398 }
8399 
8400 /*
8401  * finds a free extent and does all the dirty work required for allocation
8402  * returns the tree buffer or an ERR_PTR on error.
8403  */
8404 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8405 					     struct btrfs_root *root,
8406 					     u64 parent, u64 root_objectid,
8407 					     const struct btrfs_disk_key *key,
8408 					     int level, u64 hint,
8409 					     u64 empty_size)
8410 {
8411 	struct btrfs_fs_info *fs_info = root->fs_info;
8412 	struct btrfs_key ins;
8413 	struct btrfs_block_rsv *block_rsv;
8414 	struct extent_buffer *buf;
8415 	struct btrfs_delayed_extent_op *extent_op;
8416 	u64 flags = 0;
8417 	int ret;
8418 	u32 blocksize = fs_info->nodesize;
8419 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8420 
8421 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8422 	if (btrfs_is_testing(fs_info)) {
8423 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8424 					    level);
8425 		if (!IS_ERR(buf))
8426 			root->alloc_bytenr += blocksize;
8427 		return buf;
8428 	}
8429 #endif
8430 
8431 	block_rsv = use_block_rsv(trans, root, blocksize);
8432 	if (IS_ERR(block_rsv))
8433 		return ERR_CAST(block_rsv);
8434 
8435 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8436 				   empty_size, hint, &ins, 0, 0);
8437 	if (ret)
8438 		goto out_unuse;
8439 
8440 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8441 	if (IS_ERR(buf)) {
8442 		ret = PTR_ERR(buf);
8443 		goto out_free_reserved;
8444 	}
8445 
8446 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8447 		if (parent == 0)
8448 			parent = ins.objectid;
8449 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8450 	} else
8451 		BUG_ON(parent > 0);
8452 
8453 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8454 		extent_op = btrfs_alloc_delayed_extent_op();
8455 		if (!extent_op) {
8456 			ret = -ENOMEM;
8457 			goto out_free_buf;
8458 		}
8459 		if (key)
8460 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8461 		else
8462 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8463 		extent_op->flags_to_set = flags;
8464 		extent_op->update_key = skinny_metadata ? false : true;
8465 		extent_op->update_flags = true;
8466 		extent_op->is_data = false;
8467 		extent_op->level = level;
8468 
8469 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8470 						 ins.offset, parent,
8471 						 root_objectid, level,
8472 						 BTRFS_ADD_DELAYED_EXTENT,
8473 						 extent_op, NULL, NULL);
8474 		if (ret)
8475 			goto out_free_delayed;
8476 	}
8477 	return buf;
8478 
8479 out_free_delayed:
8480 	btrfs_free_delayed_extent_op(extent_op);
8481 out_free_buf:
8482 	free_extent_buffer(buf);
8483 out_free_reserved:
8484 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8485 out_unuse:
8486 	unuse_block_rsv(fs_info, block_rsv, blocksize);
8487 	return ERR_PTR(ret);
8488 }
8489 
8490 struct walk_control {
8491 	u64 refs[BTRFS_MAX_LEVEL];
8492 	u64 flags[BTRFS_MAX_LEVEL];
8493 	struct btrfs_key update_progress;
8494 	int stage;
8495 	int level;
8496 	int shared_level;
8497 	int update_ref;
8498 	int keep_locks;
8499 	int reada_slot;
8500 	int reada_count;
8501 	int for_reloc;
8502 };
8503 
8504 #define DROP_REFERENCE	1
8505 #define UPDATE_BACKREF	2
8506 
8507 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8508 				     struct btrfs_root *root,
8509 				     struct walk_control *wc,
8510 				     struct btrfs_path *path)
8511 {
8512 	struct btrfs_fs_info *fs_info = root->fs_info;
8513 	u64 bytenr;
8514 	u64 generation;
8515 	u64 refs;
8516 	u64 flags;
8517 	u32 nritems;
8518 	struct btrfs_key key;
8519 	struct extent_buffer *eb;
8520 	int ret;
8521 	int slot;
8522 	int nread = 0;
8523 
8524 	if (path->slots[wc->level] < wc->reada_slot) {
8525 		wc->reada_count = wc->reada_count * 2 / 3;
8526 		wc->reada_count = max(wc->reada_count, 2);
8527 	} else {
8528 		wc->reada_count = wc->reada_count * 3 / 2;
8529 		wc->reada_count = min_t(int, wc->reada_count,
8530 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8531 	}
8532 
8533 	eb = path->nodes[wc->level];
8534 	nritems = btrfs_header_nritems(eb);
8535 
8536 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8537 		if (nread >= wc->reada_count)
8538 			break;
8539 
8540 		cond_resched();
8541 		bytenr = btrfs_node_blockptr(eb, slot);
8542 		generation = btrfs_node_ptr_generation(eb, slot);
8543 
8544 		if (slot == path->slots[wc->level])
8545 			goto reada;
8546 
8547 		if (wc->stage == UPDATE_BACKREF &&
8548 		    generation <= root->root_key.offset)
8549 			continue;
8550 
8551 		/* We don't lock the tree block, it's OK to be racy here */
8552 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8553 					       wc->level - 1, 1, &refs,
8554 					       &flags);
8555 		/* We don't care about errors in readahead. */
8556 		if (ret < 0)
8557 			continue;
8558 		BUG_ON(refs == 0);
8559 
8560 		if (wc->stage == DROP_REFERENCE) {
8561 			if (refs == 1)
8562 				goto reada;
8563 
8564 			if (wc->level == 1 &&
8565 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8566 				continue;
8567 			if (!wc->update_ref ||
8568 			    generation <= root->root_key.offset)
8569 				continue;
8570 			btrfs_node_key_to_cpu(eb, &key, slot);
8571 			ret = btrfs_comp_cpu_keys(&key,
8572 						  &wc->update_progress);
8573 			if (ret < 0)
8574 				continue;
8575 		} else {
8576 			if (wc->level == 1 &&
8577 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8578 				continue;
8579 		}
8580 reada:
8581 		readahead_tree_block(fs_info, bytenr);
8582 		nread++;
8583 	}
8584 	wc->reada_slot = slot;
8585 }
8586 
8587 /*
8588  * helper to process tree block while walking down the tree.
8589  *
8590  * when wc->stage == UPDATE_BACKREF, this function updates
8591  * back refs for pointers in the block.
8592  *
8593  * NOTE: return value 1 means we should stop walking down.
8594  */
8595 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8596 				   struct btrfs_root *root,
8597 				   struct btrfs_path *path,
8598 				   struct walk_control *wc, int lookup_info)
8599 {
8600 	struct btrfs_fs_info *fs_info = root->fs_info;
8601 	int level = wc->level;
8602 	struct extent_buffer *eb = path->nodes[level];
8603 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8604 	int ret;
8605 
8606 	if (wc->stage == UPDATE_BACKREF &&
8607 	    btrfs_header_owner(eb) != root->root_key.objectid)
8608 		return 1;
8609 
8610 	/*
8611 	 * when reference count of tree block is 1, it won't increase
8612 	 * again. once full backref flag is set, we never clear it.
8613 	 */
8614 	if (lookup_info &&
8615 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8616 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8617 		BUG_ON(!path->locks[level]);
8618 		ret = btrfs_lookup_extent_info(trans, fs_info,
8619 					       eb->start, level, 1,
8620 					       &wc->refs[level],
8621 					       &wc->flags[level]);
8622 		BUG_ON(ret == -ENOMEM);
8623 		if (ret)
8624 			return ret;
8625 		BUG_ON(wc->refs[level] == 0);
8626 	}
8627 
8628 	if (wc->stage == DROP_REFERENCE) {
8629 		if (wc->refs[level] > 1)
8630 			return 1;
8631 
8632 		if (path->locks[level] && !wc->keep_locks) {
8633 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8634 			path->locks[level] = 0;
8635 		}
8636 		return 0;
8637 	}
8638 
8639 	/* wc->stage == UPDATE_BACKREF */
8640 	if (!(wc->flags[level] & flag)) {
8641 		BUG_ON(!path->locks[level]);
8642 		ret = btrfs_inc_ref(trans, root, eb, 1);
8643 		BUG_ON(ret); /* -ENOMEM */
8644 		ret = btrfs_dec_ref(trans, root, eb, 0);
8645 		BUG_ON(ret); /* -ENOMEM */
8646 		ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8647 						  eb->len, flag,
8648 						  btrfs_header_level(eb), 0);
8649 		BUG_ON(ret); /* -ENOMEM */
8650 		wc->flags[level] |= flag;
8651 	}
8652 
8653 	/*
8654 	 * the block is shared by multiple trees, so it's not good to
8655 	 * keep the tree lock
8656 	 */
8657 	if (path->locks[level] && level > 0) {
8658 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8659 		path->locks[level] = 0;
8660 	}
8661 	return 0;
8662 }
8663 
8664 /*
8665  * helper to process tree block pointer.
8666  *
8667  * when wc->stage == DROP_REFERENCE, this function checks
8668  * reference count of the block pointed to. if the block
8669  * is shared and we need update back refs for the subtree
8670  * rooted at the block, this function changes wc->stage to
8671  * UPDATE_BACKREF. if the block is shared and there is no
8672  * need to update back, this function drops the reference
8673  * to the block.
8674  *
8675  * NOTE: return value 1 means we should stop walking down.
8676  */
8677 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8678 				 struct btrfs_root *root,
8679 				 struct btrfs_path *path,
8680 				 struct walk_control *wc, int *lookup_info)
8681 {
8682 	struct btrfs_fs_info *fs_info = root->fs_info;
8683 	u64 bytenr;
8684 	u64 generation;
8685 	u64 parent;
8686 	u32 blocksize;
8687 	struct btrfs_key key;
8688 	struct extent_buffer *next;
8689 	int level = wc->level;
8690 	int reada = 0;
8691 	int ret = 0;
8692 	bool need_account = false;
8693 
8694 	generation = btrfs_node_ptr_generation(path->nodes[level],
8695 					       path->slots[level]);
8696 	/*
8697 	 * if the lower level block was created before the snapshot
8698 	 * was created, we know there is no need to update back refs
8699 	 * for the subtree
8700 	 */
8701 	if (wc->stage == UPDATE_BACKREF &&
8702 	    generation <= root->root_key.offset) {
8703 		*lookup_info = 1;
8704 		return 1;
8705 	}
8706 
8707 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8708 	blocksize = fs_info->nodesize;
8709 
8710 	next = find_extent_buffer(fs_info, bytenr);
8711 	if (!next) {
8712 		next = btrfs_find_create_tree_block(fs_info, bytenr);
8713 		if (IS_ERR(next))
8714 			return PTR_ERR(next);
8715 
8716 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8717 					       level - 1);
8718 		reada = 1;
8719 	}
8720 	btrfs_tree_lock(next);
8721 	btrfs_set_lock_blocking(next);
8722 
8723 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8724 				       &wc->refs[level - 1],
8725 				       &wc->flags[level - 1]);
8726 	if (ret < 0)
8727 		goto out_unlock;
8728 
8729 	if (unlikely(wc->refs[level - 1] == 0)) {
8730 		btrfs_err(fs_info, "Missing references.");
8731 		ret = -EIO;
8732 		goto out_unlock;
8733 	}
8734 	*lookup_info = 0;
8735 
8736 	if (wc->stage == DROP_REFERENCE) {
8737 		if (wc->refs[level - 1] > 1) {
8738 			need_account = true;
8739 			if (level == 1 &&
8740 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8741 				goto skip;
8742 
8743 			if (!wc->update_ref ||
8744 			    generation <= root->root_key.offset)
8745 				goto skip;
8746 
8747 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8748 					      path->slots[level]);
8749 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8750 			if (ret < 0)
8751 				goto skip;
8752 
8753 			wc->stage = UPDATE_BACKREF;
8754 			wc->shared_level = level - 1;
8755 		}
8756 	} else {
8757 		if (level == 1 &&
8758 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8759 			goto skip;
8760 	}
8761 
8762 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8763 		btrfs_tree_unlock(next);
8764 		free_extent_buffer(next);
8765 		next = NULL;
8766 		*lookup_info = 1;
8767 	}
8768 
8769 	if (!next) {
8770 		if (reada && level == 1)
8771 			reada_walk_down(trans, root, wc, path);
8772 		next = read_tree_block(fs_info, bytenr, generation);
8773 		if (IS_ERR(next)) {
8774 			return PTR_ERR(next);
8775 		} else if (!extent_buffer_uptodate(next)) {
8776 			free_extent_buffer(next);
8777 			return -EIO;
8778 		}
8779 		btrfs_tree_lock(next);
8780 		btrfs_set_lock_blocking(next);
8781 	}
8782 
8783 	level--;
8784 	ASSERT(level == btrfs_header_level(next));
8785 	if (level != btrfs_header_level(next)) {
8786 		btrfs_err(root->fs_info, "mismatched level");
8787 		ret = -EIO;
8788 		goto out_unlock;
8789 	}
8790 	path->nodes[level] = next;
8791 	path->slots[level] = 0;
8792 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8793 	wc->level = level;
8794 	if (wc->level == 1)
8795 		wc->reada_slot = 0;
8796 	return 0;
8797 skip:
8798 	wc->refs[level - 1] = 0;
8799 	wc->flags[level - 1] = 0;
8800 	if (wc->stage == DROP_REFERENCE) {
8801 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8802 			parent = path->nodes[level]->start;
8803 		} else {
8804 			ASSERT(root->root_key.objectid ==
8805 			       btrfs_header_owner(path->nodes[level]));
8806 			if (root->root_key.objectid !=
8807 			    btrfs_header_owner(path->nodes[level])) {
8808 				btrfs_err(root->fs_info,
8809 						"mismatched block owner");
8810 				ret = -EIO;
8811 				goto out_unlock;
8812 			}
8813 			parent = 0;
8814 		}
8815 
8816 		if (need_account) {
8817 			ret = btrfs_qgroup_trace_subtree(trans, root, next,
8818 							 generation, level - 1);
8819 			if (ret) {
8820 				btrfs_err_rl(fs_info,
8821 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8822 					     ret);
8823 			}
8824 		}
8825 		ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8826 					parent, root->root_key.objectid,
8827 					level - 1, 0);
8828 		if (ret)
8829 			goto out_unlock;
8830 	}
8831 
8832 	*lookup_info = 1;
8833 	ret = 1;
8834 
8835 out_unlock:
8836 	btrfs_tree_unlock(next);
8837 	free_extent_buffer(next);
8838 
8839 	return ret;
8840 }
8841 
8842 /*
8843  * helper to process tree block while walking up the tree.
8844  *
8845  * when wc->stage == DROP_REFERENCE, this function drops
8846  * reference count on the block.
8847  *
8848  * when wc->stage == UPDATE_BACKREF, this function changes
8849  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8850  * to UPDATE_BACKREF previously while processing the block.
8851  *
8852  * NOTE: return value 1 means we should stop walking up.
8853  */
8854 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8855 				 struct btrfs_root *root,
8856 				 struct btrfs_path *path,
8857 				 struct walk_control *wc)
8858 {
8859 	struct btrfs_fs_info *fs_info = root->fs_info;
8860 	int ret;
8861 	int level = wc->level;
8862 	struct extent_buffer *eb = path->nodes[level];
8863 	u64 parent = 0;
8864 
8865 	if (wc->stage == UPDATE_BACKREF) {
8866 		BUG_ON(wc->shared_level < level);
8867 		if (level < wc->shared_level)
8868 			goto out;
8869 
8870 		ret = find_next_key(path, level + 1, &wc->update_progress);
8871 		if (ret > 0)
8872 			wc->update_ref = 0;
8873 
8874 		wc->stage = DROP_REFERENCE;
8875 		wc->shared_level = -1;
8876 		path->slots[level] = 0;
8877 
8878 		/*
8879 		 * check reference count again if the block isn't locked.
8880 		 * we should start walking down the tree again if reference
8881 		 * count is one.
8882 		 */
8883 		if (!path->locks[level]) {
8884 			BUG_ON(level == 0);
8885 			btrfs_tree_lock(eb);
8886 			btrfs_set_lock_blocking(eb);
8887 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8888 
8889 			ret = btrfs_lookup_extent_info(trans, fs_info,
8890 						       eb->start, level, 1,
8891 						       &wc->refs[level],
8892 						       &wc->flags[level]);
8893 			if (ret < 0) {
8894 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8895 				path->locks[level] = 0;
8896 				return ret;
8897 			}
8898 			BUG_ON(wc->refs[level] == 0);
8899 			if (wc->refs[level] == 1) {
8900 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8901 				path->locks[level] = 0;
8902 				return 1;
8903 			}
8904 		}
8905 	}
8906 
8907 	/* wc->stage == DROP_REFERENCE */
8908 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8909 
8910 	if (wc->refs[level] == 1) {
8911 		if (level == 0) {
8912 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8913 				ret = btrfs_dec_ref(trans, root, eb, 1);
8914 			else
8915 				ret = btrfs_dec_ref(trans, root, eb, 0);
8916 			BUG_ON(ret); /* -ENOMEM */
8917 			ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8918 			if (ret) {
8919 				btrfs_err_rl(fs_info,
8920 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
8921 					     ret);
8922 			}
8923 		}
8924 		/* make block locked assertion in clean_tree_block happy */
8925 		if (!path->locks[level] &&
8926 		    btrfs_header_generation(eb) == trans->transid) {
8927 			btrfs_tree_lock(eb);
8928 			btrfs_set_lock_blocking(eb);
8929 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8930 		}
8931 		clean_tree_block(fs_info, eb);
8932 	}
8933 
8934 	if (eb == root->node) {
8935 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8936 			parent = eb->start;
8937 		else
8938 			BUG_ON(root->root_key.objectid !=
8939 			       btrfs_header_owner(eb));
8940 	} else {
8941 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8942 			parent = path->nodes[level + 1]->start;
8943 		else
8944 			BUG_ON(root->root_key.objectid !=
8945 			       btrfs_header_owner(path->nodes[level + 1]));
8946 	}
8947 
8948 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8949 out:
8950 	wc->refs[level] = 0;
8951 	wc->flags[level] = 0;
8952 	return 0;
8953 }
8954 
8955 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8956 				   struct btrfs_root *root,
8957 				   struct btrfs_path *path,
8958 				   struct walk_control *wc)
8959 {
8960 	int level = wc->level;
8961 	int lookup_info = 1;
8962 	int ret;
8963 
8964 	while (level >= 0) {
8965 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8966 		if (ret > 0)
8967 			break;
8968 
8969 		if (level == 0)
8970 			break;
8971 
8972 		if (path->slots[level] >=
8973 		    btrfs_header_nritems(path->nodes[level]))
8974 			break;
8975 
8976 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8977 		if (ret > 0) {
8978 			path->slots[level]++;
8979 			continue;
8980 		} else if (ret < 0)
8981 			return ret;
8982 		level = wc->level;
8983 	}
8984 	return 0;
8985 }
8986 
8987 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8988 				 struct btrfs_root *root,
8989 				 struct btrfs_path *path,
8990 				 struct walk_control *wc, int max_level)
8991 {
8992 	int level = wc->level;
8993 	int ret;
8994 
8995 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8996 	while (level < max_level && path->nodes[level]) {
8997 		wc->level = level;
8998 		if (path->slots[level] + 1 <
8999 		    btrfs_header_nritems(path->nodes[level])) {
9000 			path->slots[level]++;
9001 			return 0;
9002 		} else {
9003 			ret = walk_up_proc(trans, root, path, wc);
9004 			if (ret > 0)
9005 				return 0;
9006 
9007 			if (path->locks[level]) {
9008 				btrfs_tree_unlock_rw(path->nodes[level],
9009 						     path->locks[level]);
9010 				path->locks[level] = 0;
9011 			}
9012 			free_extent_buffer(path->nodes[level]);
9013 			path->nodes[level] = NULL;
9014 			level++;
9015 		}
9016 	}
9017 	return 1;
9018 }
9019 
9020 /*
9021  * drop a subvolume tree.
9022  *
9023  * this function traverses the tree freeing any blocks that only
9024  * referenced by the tree.
9025  *
9026  * when a shared tree block is found. this function decreases its
9027  * reference count by one. if update_ref is true, this function
9028  * also make sure backrefs for the shared block and all lower level
9029  * blocks are properly updated.
9030  *
9031  * If called with for_reloc == 0, may exit early with -EAGAIN
9032  */
9033 int btrfs_drop_snapshot(struct btrfs_root *root,
9034 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9035 			 int for_reloc)
9036 {
9037 	struct btrfs_fs_info *fs_info = root->fs_info;
9038 	struct btrfs_path *path;
9039 	struct btrfs_trans_handle *trans;
9040 	struct btrfs_root *tree_root = fs_info->tree_root;
9041 	struct btrfs_root_item *root_item = &root->root_item;
9042 	struct walk_control *wc;
9043 	struct btrfs_key key;
9044 	int err = 0;
9045 	int ret;
9046 	int level;
9047 	bool root_dropped = false;
9048 
9049 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9050 
9051 	path = btrfs_alloc_path();
9052 	if (!path) {
9053 		err = -ENOMEM;
9054 		goto out;
9055 	}
9056 
9057 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9058 	if (!wc) {
9059 		btrfs_free_path(path);
9060 		err = -ENOMEM;
9061 		goto out;
9062 	}
9063 
9064 	trans = btrfs_start_transaction(tree_root, 0);
9065 	if (IS_ERR(trans)) {
9066 		err = PTR_ERR(trans);
9067 		goto out_free;
9068 	}
9069 
9070 	if (block_rsv)
9071 		trans->block_rsv = block_rsv;
9072 
9073 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9074 		level = btrfs_header_level(root->node);
9075 		path->nodes[level] = btrfs_lock_root_node(root);
9076 		btrfs_set_lock_blocking(path->nodes[level]);
9077 		path->slots[level] = 0;
9078 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9079 		memset(&wc->update_progress, 0,
9080 		       sizeof(wc->update_progress));
9081 	} else {
9082 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9083 		memcpy(&wc->update_progress, &key,
9084 		       sizeof(wc->update_progress));
9085 
9086 		level = root_item->drop_level;
9087 		BUG_ON(level == 0);
9088 		path->lowest_level = level;
9089 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9090 		path->lowest_level = 0;
9091 		if (ret < 0) {
9092 			err = ret;
9093 			goto out_end_trans;
9094 		}
9095 		WARN_ON(ret > 0);
9096 
9097 		/*
9098 		 * unlock our path, this is safe because only this
9099 		 * function is allowed to delete this snapshot
9100 		 */
9101 		btrfs_unlock_up_safe(path, 0);
9102 
9103 		level = btrfs_header_level(root->node);
9104 		while (1) {
9105 			btrfs_tree_lock(path->nodes[level]);
9106 			btrfs_set_lock_blocking(path->nodes[level]);
9107 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9108 
9109 			ret = btrfs_lookup_extent_info(trans, fs_info,
9110 						path->nodes[level]->start,
9111 						level, 1, &wc->refs[level],
9112 						&wc->flags[level]);
9113 			if (ret < 0) {
9114 				err = ret;
9115 				goto out_end_trans;
9116 			}
9117 			BUG_ON(wc->refs[level] == 0);
9118 
9119 			if (level == root_item->drop_level)
9120 				break;
9121 
9122 			btrfs_tree_unlock(path->nodes[level]);
9123 			path->locks[level] = 0;
9124 			WARN_ON(wc->refs[level] != 1);
9125 			level--;
9126 		}
9127 	}
9128 
9129 	wc->level = level;
9130 	wc->shared_level = -1;
9131 	wc->stage = DROP_REFERENCE;
9132 	wc->update_ref = update_ref;
9133 	wc->keep_locks = 0;
9134 	wc->for_reloc = for_reloc;
9135 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9136 
9137 	while (1) {
9138 
9139 		ret = walk_down_tree(trans, root, path, wc);
9140 		if (ret < 0) {
9141 			err = ret;
9142 			break;
9143 		}
9144 
9145 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9146 		if (ret < 0) {
9147 			err = ret;
9148 			break;
9149 		}
9150 
9151 		if (ret > 0) {
9152 			BUG_ON(wc->stage != DROP_REFERENCE);
9153 			break;
9154 		}
9155 
9156 		if (wc->stage == DROP_REFERENCE) {
9157 			level = wc->level;
9158 			btrfs_node_key(path->nodes[level],
9159 				       &root_item->drop_progress,
9160 				       path->slots[level]);
9161 			root_item->drop_level = level;
9162 		}
9163 
9164 		BUG_ON(wc->level == 0);
9165 		if (btrfs_should_end_transaction(trans) ||
9166 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9167 			ret = btrfs_update_root(trans, tree_root,
9168 						&root->root_key,
9169 						root_item);
9170 			if (ret) {
9171 				btrfs_abort_transaction(trans, ret);
9172 				err = ret;
9173 				goto out_end_trans;
9174 			}
9175 
9176 			btrfs_end_transaction_throttle(trans);
9177 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9178 				btrfs_debug(fs_info,
9179 					    "drop snapshot early exit");
9180 				err = -EAGAIN;
9181 				goto out_free;
9182 			}
9183 
9184 			trans = btrfs_start_transaction(tree_root, 0);
9185 			if (IS_ERR(trans)) {
9186 				err = PTR_ERR(trans);
9187 				goto out_free;
9188 			}
9189 			if (block_rsv)
9190 				trans->block_rsv = block_rsv;
9191 		}
9192 	}
9193 	btrfs_release_path(path);
9194 	if (err)
9195 		goto out_end_trans;
9196 
9197 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9198 	if (ret) {
9199 		btrfs_abort_transaction(trans, ret);
9200 		goto out_end_trans;
9201 	}
9202 
9203 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9204 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9205 				      NULL, NULL);
9206 		if (ret < 0) {
9207 			btrfs_abort_transaction(trans, ret);
9208 			err = ret;
9209 			goto out_end_trans;
9210 		} else if (ret > 0) {
9211 			/* if we fail to delete the orphan item this time
9212 			 * around, it'll get picked up the next time.
9213 			 *
9214 			 * The most common failure here is just -ENOENT.
9215 			 */
9216 			btrfs_del_orphan_item(trans, tree_root,
9217 					      root->root_key.objectid);
9218 		}
9219 	}
9220 
9221 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9222 		btrfs_add_dropped_root(trans, root);
9223 	} else {
9224 		free_extent_buffer(root->node);
9225 		free_extent_buffer(root->commit_root);
9226 		btrfs_put_fs_root(root);
9227 	}
9228 	root_dropped = true;
9229 out_end_trans:
9230 	btrfs_end_transaction_throttle(trans);
9231 out_free:
9232 	kfree(wc);
9233 	btrfs_free_path(path);
9234 out:
9235 	/*
9236 	 * So if we need to stop dropping the snapshot for whatever reason we
9237 	 * need to make sure to add it back to the dead root list so that we
9238 	 * keep trying to do the work later.  This also cleans up roots if we
9239 	 * don't have it in the radix (like when we recover after a power fail
9240 	 * or unmount) so we don't leak memory.
9241 	 */
9242 	if (!for_reloc && root_dropped == false)
9243 		btrfs_add_dead_root(root);
9244 	if (err && err != -EAGAIN)
9245 		btrfs_handle_fs_error(fs_info, err, NULL);
9246 	return err;
9247 }
9248 
9249 /*
9250  * drop subtree rooted at tree block 'node'.
9251  *
9252  * NOTE: this function will unlock and release tree block 'node'
9253  * only used by relocation code
9254  */
9255 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9256 			struct btrfs_root *root,
9257 			struct extent_buffer *node,
9258 			struct extent_buffer *parent)
9259 {
9260 	struct btrfs_fs_info *fs_info = root->fs_info;
9261 	struct btrfs_path *path;
9262 	struct walk_control *wc;
9263 	int level;
9264 	int parent_level;
9265 	int ret = 0;
9266 	int wret;
9267 
9268 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9269 
9270 	path = btrfs_alloc_path();
9271 	if (!path)
9272 		return -ENOMEM;
9273 
9274 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9275 	if (!wc) {
9276 		btrfs_free_path(path);
9277 		return -ENOMEM;
9278 	}
9279 
9280 	btrfs_assert_tree_locked(parent);
9281 	parent_level = btrfs_header_level(parent);
9282 	extent_buffer_get(parent);
9283 	path->nodes[parent_level] = parent;
9284 	path->slots[parent_level] = btrfs_header_nritems(parent);
9285 
9286 	btrfs_assert_tree_locked(node);
9287 	level = btrfs_header_level(node);
9288 	path->nodes[level] = node;
9289 	path->slots[level] = 0;
9290 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9291 
9292 	wc->refs[parent_level] = 1;
9293 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9294 	wc->level = level;
9295 	wc->shared_level = -1;
9296 	wc->stage = DROP_REFERENCE;
9297 	wc->update_ref = 0;
9298 	wc->keep_locks = 1;
9299 	wc->for_reloc = 1;
9300 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9301 
9302 	while (1) {
9303 		wret = walk_down_tree(trans, root, path, wc);
9304 		if (wret < 0) {
9305 			ret = wret;
9306 			break;
9307 		}
9308 
9309 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9310 		if (wret < 0)
9311 			ret = wret;
9312 		if (wret != 0)
9313 			break;
9314 	}
9315 
9316 	kfree(wc);
9317 	btrfs_free_path(path);
9318 	return ret;
9319 }
9320 
9321 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9322 {
9323 	u64 num_devices;
9324 	u64 stripped;
9325 
9326 	/*
9327 	 * if restripe for this chunk_type is on pick target profile and
9328 	 * return, otherwise do the usual balance
9329 	 */
9330 	stripped = get_restripe_target(fs_info, flags);
9331 	if (stripped)
9332 		return extended_to_chunk(stripped);
9333 
9334 	num_devices = fs_info->fs_devices->rw_devices;
9335 
9336 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9337 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9338 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9339 
9340 	if (num_devices == 1) {
9341 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9342 		stripped = flags & ~stripped;
9343 
9344 		/* turn raid0 into single device chunks */
9345 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9346 			return stripped;
9347 
9348 		/* turn mirroring into duplication */
9349 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9350 			     BTRFS_BLOCK_GROUP_RAID10))
9351 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9352 	} else {
9353 		/* they already had raid on here, just return */
9354 		if (flags & stripped)
9355 			return flags;
9356 
9357 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9358 		stripped = flags & ~stripped;
9359 
9360 		/* switch duplicated blocks with raid1 */
9361 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9362 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9363 
9364 		/* this is drive concat, leave it alone */
9365 	}
9366 
9367 	return flags;
9368 }
9369 
9370 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9371 {
9372 	struct btrfs_space_info *sinfo = cache->space_info;
9373 	u64 num_bytes;
9374 	u64 min_allocable_bytes;
9375 	int ret = -ENOSPC;
9376 
9377 	/*
9378 	 * We need some metadata space and system metadata space for
9379 	 * allocating chunks in some corner cases until we force to set
9380 	 * it to be readonly.
9381 	 */
9382 	if ((sinfo->flags &
9383 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9384 	    !force)
9385 		min_allocable_bytes = SZ_1M;
9386 	else
9387 		min_allocable_bytes = 0;
9388 
9389 	spin_lock(&sinfo->lock);
9390 	spin_lock(&cache->lock);
9391 
9392 	if (cache->ro) {
9393 		cache->ro++;
9394 		ret = 0;
9395 		goto out;
9396 	}
9397 
9398 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9399 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9400 
9401 	if (btrfs_space_info_used(sinfo, true) + num_bytes +
9402 	    min_allocable_bytes <= sinfo->total_bytes) {
9403 		sinfo->bytes_readonly += num_bytes;
9404 		cache->ro++;
9405 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9406 		ret = 0;
9407 	}
9408 out:
9409 	spin_unlock(&cache->lock);
9410 	spin_unlock(&sinfo->lock);
9411 	return ret;
9412 }
9413 
9414 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9415 			     struct btrfs_block_group_cache *cache)
9416 
9417 {
9418 	struct btrfs_trans_handle *trans;
9419 	u64 alloc_flags;
9420 	int ret;
9421 
9422 again:
9423 	trans = btrfs_join_transaction(fs_info->extent_root);
9424 	if (IS_ERR(trans))
9425 		return PTR_ERR(trans);
9426 
9427 	/*
9428 	 * we're not allowed to set block groups readonly after the dirty
9429 	 * block groups cache has started writing.  If it already started,
9430 	 * back off and let this transaction commit
9431 	 */
9432 	mutex_lock(&fs_info->ro_block_group_mutex);
9433 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9434 		u64 transid = trans->transid;
9435 
9436 		mutex_unlock(&fs_info->ro_block_group_mutex);
9437 		btrfs_end_transaction(trans);
9438 
9439 		ret = btrfs_wait_for_commit(fs_info, transid);
9440 		if (ret)
9441 			return ret;
9442 		goto again;
9443 	}
9444 
9445 	/*
9446 	 * if we are changing raid levels, try to allocate a corresponding
9447 	 * block group with the new raid level.
9448 	 */
9449 	alloc_flags = update_block_group_flags(fs_info, cache->flags);
9450 	if (alloc_flags != cache->flags) {
9451 		ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9452 				     CHUNK_ALLOC_FORCE);
9453 		/*
9454 		 * ENOSPC is allowed here, we may have enough space
9455 		 * already allocated at the new raid level to
9456 		 * carry on
9457 		 */
9458 		if (ret == -ENOSPC)
9459 			ret = 0;
9460 		if (ret < 0)
9461 			goto out;
9462 	}
9463 
9464 	ret = inc_block_group_ro(cache, 0);
9465 	if (!ret)
9466 		goto out;
9467 	alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9468 	ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9469 			     CHUNK_ALLOC_FORCE);
9470 	if (ret < 0)
9471 		goto out;
9472 	ret = inc_block_group_ro(cache, 0);
9473 out:
9474 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9475 		alloc_flags = update_block_group_flags(fs_info, cache->flags);
9476 		mutex_lock(&fs_info->chunk_mutex);
9477 		check_system_chunk(trans, fs_info, alloc_flags);
9478 		mutex_unlock(&fs_info->chunk_mutex);
9479 	}
9480 	mutex_unlock(&fs_info->ro_block_group_mutex);
9481 
9482 	btrfs_end_transaction(trans);
9483 	return ret;
9484 }
9485 
9486 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9487 			    struct btrfs_fs_info *fs_info, u64 type)
9488 {
9489 	u64 alloc_flags = get_alloc_profile(fs_info, type);
9490 
9491 	return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9492 }
9493 
9494 /*
9495  * helper to account the unused space of all the readonly block group in the
9496  * space_info. takes mirrors into account.
9497  */
9498 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9499 {
9500 	struct btrfs_block_group_cache *block_group;
9501 	u64 free_bytes = 0;
9502 	int factor;
9503 
9504 	/* It's df, we don't care if it's racy */
9505 	if (list_empty(&sinfo->ro_bgs))
9506 		return 0;
9507 
9508 	spin_lock(&sinfo->lock);
9509 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9510 		spin_lock(&block_group->lock);
9511 
9512 		if (!block_group->ro) {
9513 			spin_unlock(&block_group->lock);
9514 			continue;
9515 		}
9516 
9517 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9518 					  BTRFS_BLOCK_GROUP_RAID10 |
9519 					  BTRFS_BLOCK_GROUP_DUP))
9520 			factor = 2;
9521 		else
9522 			factor = 1;
9523 
9524 		free_bytes += (block_group->key.offset -
9525 			       btrfs_block_group_used(&block_group->item)) *
9526 			       factor;
9527 
9528 		spin_unlock(&block_group->lock);
9529 	}
9530 	spin_unlock(&sinfo->lock);
9531 
9532 	return free_bytes;
9533 }
9534 
9535 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9536 {
9537 	struct btrfs_space_info *sinfo = cache->space_info;
9538 	u64 num_bytes;
9539 
9540 	BUG_ON(!cache->ro);
9541 
9542 	spin_lock(&sinfo->lock);
9543 	spin_lock(&cache->lock);
9544 	if (!--cache->ro) {
9545 		num_bytes = cache->key.offset - cache->reserved -
9546 			    cache->pinned - cache->bytes_super -
9547 			    btrfs_block_group_used(&cache->item);
9548 		sinfo->bytes_readonly -= num_bytes;
9549 		list_del_init(&cache->ro_list);
9550 	}
9551 	spin_unlock(&cache->lock);
9552 	spin_unlock(&sinfo->lock);
9553 }
9554 
9555 /*
9556  * checks to see if its even possible to relocate this block group.
9557  *
9558  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9559  * ok to go ahead and try.
9560  */
9561 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9562 {
9563 	struct btrfs_root *root = fs_info->extent_root;
9564 	struct btrfs_block_group_cache *block_group;
9565 	struct btrfs_space_info *space_info;
9566 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9567 	struct btrfs_device *device;
9568 	struct btrfs_trans_handle *trans;
9569 	u64 min_free;
9570 	u64 dev_min = 1;
9571 	u64 dev_nr = 0;
9572 	u64 target;
9573 	int debug;
9574 	int index;
9575 	int full = 0;
9576 	int ret = 0;
9577 
9578 	debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9579 
9580 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
9581 
9582 	/* odd, couldn't find the block group, leave it alone */
9583 	if (!block_group) {
9584 		if (debug)
9585 			btrfs_warn(fs_info,
9586 				   "can't find block group for bytenr %llu",
9587 				   bytenr);
9588 		return -1;
9589 	}
9590 
9591 	min_free = btrfs_block_group_used(&block_group->item);
9592 
9593 	/* no bytes used, we're good */
9594 	if (!min_free)
9595 		goto out;
9596 
9597 	space_info = block_group->space_info;
9598 	spin_lock(&space_info->lock);
9599 
9600 	full = space_info->full;
9601 
9602 	/*
9603 	 * if this is the last block group we have in this space, we can't
9604 	 * relocate it unless we're able to allocate a new chunk below.
9605 	 *
9606 	 * Otherwise, we need to make sure we have room in the space to handle
9607 	 * all of the extents from this block group.  If we can, we're good
9608 	 */
9609 	if ((space_info->total_bytes != block_group->key.offset) &&
9610 	    (btrfs_space_info_used(space_info, false) + min_free <
9611 	     space_info->total_bytes)) {
9612 		spin_unlock(&space_info->lock);
9613 		goto out;
9614 	}
9615 	spin_unlock(&space_info->lock);
9616 
9617 	/*
9618 	 * ok we don't have enough space, but maybe we have free space on our
9619 	 * devices to allocate new chunks for relocation, so loop through our
9620 	 * alloc devices and guess if we have enough space.  if this block
9621 	 * group is going to be restriped, run checks against the target
9622 	 * profile instead of the current one.
9623 	 */
9624 	ret = -1;
9625 
9626 	/*
9627 	 * index:
9628 	 *      0: raid10
9629 	 *      1: raid1
9630 	 *      2: dup
9631 	 *      3: raid0
9632 	 *      4: single
9633 	 */
9634 	target = get_restripe_target(fs_info, block_group->flags);
9635 	if (target) {
9636 		index = __get_raid_index(extended_to_chunk(target));
9637 	} else {
9638 		/*
9639 		 * this is just a balance, so if we were marked as full
9640 		 * we know there is no space for a new chunk
9641 		 */
9642 		if (full) {
9643 			if (debug)
9644 				btrfs_warn(fs_info,
9645 					   "no space to alloc new chunk for block group %llu",
9646 					   block_group->key.objectid);
9647 			goto out;
9648 		}
9649 
9650 		index = get_block_group_index(block_group);
9651 	}
9652 
9653 	if (index == BTRFS_RAID_RAID10) {
9654 		dev_min = 4;
9655 		/* Divide by 2 */
9656 		min_free >>= 1;
9657 	} else if (index == BTRFS_RAID_RAID1) {
9658 		dev_min = 2;
9659 	} else if (index == BTRFS_RAID_DUP) {
9660 		/* Multiply by 2 */
9661 		min_free <<= 1;
9662 	} else if (index == BTRFS_RAID_RAID0) {
9663 		dev_min = fs_devices->rw_devices;
9664 		min_free = div64_u64(min_free, dev_min);
9665 	}
9666 
9667 	/* We need to do this so that we can look at pending chunks */
9668 	trans = btrfs_join_transaction(root);
9669 	if (IS_ERR(trans)) {
9670 		ret = PTR_ERR(trans);
9671 		goto out;
9672 	}
9673 
9674 	mutex_lock(&fs_info->chunk_mutex);
9675 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9676 		u64 dev_offset;
9677 
9678 		/*
9679 		 * check to make sure we can actually find a chunk with enough
9680 		 * space to fit our block group in.
9681 		 */
9682 		if (device->total_bytes > device->bytes_used + min_free &&
9683 		    !device->is_tgtdev_for_dev_replace) {
9684 			ret = find_free_dev_extent(trans, device, min_free,
9685 						   &dev_offset, NULL);
9686 			if (!ret)
9687 				dev_nr++;
9688 
9689 			if (dev_nr >= dev_min)
9690 				break;
9691 
9692 			ret = -1;
9693 		}
9694 	}
9695 	if (debug && ret == -1)
9696 		btrfs_warn(fs_info,
9697 			   "no space to allocate a new chunk for block group %llu",
9698 			   block_group->key.objectid);
9699 	mutex_unlock(&fs_info->chunk_mutex);
9700 	btrfs_end_transaction(trans);
9701 out:
9702 	btrfs_put_block_group(block_group);
9703 	return ret;
9704 }
9705 
9706 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9707 				  struct btrfs_path *path,
9708 				  struct btrfs_key *key)
9709 {
9710 	struct btrfs_root *root = fs_info->extent_root;
9711 	int ret = 0;
9712 	struct btrfs_key found_key;
9713 	struct extent_buffer *leaf;
9714 	int slot;
9715 
9716 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9717 	if (ret < 0)
9718 		goto out;
9719 
9720 	while (1) {
9721 		slot = path->slots[0];
9722 		leaf = path->nodes[0];
9723 		if (slot >= btrfs_header_nritems(leaf)) {
9724 			ret = btrfs_next_leaf(root, path);
9725 			if (ret == 0)
9726 				continue;
9727 			if (ret < 0)
9728 				goto out;
9729 			break;
9730 		}
9731 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9732 
9733 		if (found_key.objectid >= key->objectid &&
9734 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9735 			struct extent_map_tree *em_tree;
9736 			struct extent_map *em;
9737 
9738 			em_tree = &root->fs_info->mapping_tree.map_tree;
9739 			read_lock(&em_tree->lock);
9740 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9741 						   found_key.offset);
9742 			read_unlock(&em_tree->lock);
9743 			if (!em) {
9744 				btrfs_err(fs_info,
9745 			"logical %llu len %llu found bg but no related chunk",
9746 					  found_key.objectid, found_key.offset);
9747 				ret = -ENOENT;
9748 			} else {
9749 				ret = 0;
9750 			}
9751 			free_extent_map(em);
9752 			goto out;
9753 		}
9754 		path->slots[0]++;
9755 	}
9756 out:
9757 	return ret;
9758 }
9759 
9760 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9761 {
9762 	struct btrfs_block_group_cache *block_group;
9763 	u64 last = 0;
9764 
9765 	while (1) {
9766 		struct inode *inode;
9767 
9768 		block_group = btrfs_lookup_first_block_group(info, last);
9769 		while (block_group) {
9770 			spin_lock(&block_group->lock);
9771 			if (block_group->iref)
9772 				break;
9773 			spin_unlock(&block_group->lock);
9774 			block_group = next_block_group(info, block_group);
9775 		}
9776 		if (!block_group) {
9777 			if (last == 0)
9778 				break;
9779 			last = 0;
9780 			continue;
9781 		}
9782 
9783 		inode = block_group->inode;
9784 		block_group->iref = 0;
9785 		block_group->inode = NULL;
9786 		spin_unlock(&block_group->lock);
9787 		ASSERT(block_group->io_ctl.inode == NULL);
9788 		iput(inode);
9789 		last = block_group->key.objectid + block_group->key.offset;
9790 		btrfs_put_block_group(block_group);
9791 	}
9792 }
9793 
9794 /*
9795  * Must be called only after stopping all workers, since we could have block
9796  * group caching kthreads running, and therefore they could race with us if we
9797  * freed the block groups before stopping them.
9798  */
9799 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9800 {
9801 	struct btrfs_block_group_cache *block_group;
9802 	struct btrfs_space_info *space_info;
9803 	struct btrfs_caching_control *caching_ctl;
9804 	struct rb_node *n;
9805 
9806 	down_write(&info->commit_root_sem);
9807 	while (!list_empty(&info->caching_block_groups)) {
9808 		caching_ctl = list_entry(info->caching_block_groups.next,
9809 					 struct btrfs_caching_control, list);
9810 		list_del(&caching_ctl->list);
9811 		put_caching_control(caching_ctl);
9812 	}
9813 	up_write(&info->commit_root_sem);
9814 
9815 	spin_lock(&info->unused_bgs_lock);
9816 	while (!list_empty(&info->unused_bgs)) {
9817 		block_group = list_first_entry(&info->unused_bgs,
9818 					       struct btrfs_block_group_cache,
9819 					       bg_list);
9820 		list_del_init(&block_group->bg_list);
9821 		btrfs_put_block_group(block_group);
9822 	}
9823 	spin_unlock(&info->unused_bgs_lock);
9824 
9825 	spin_lock(&info->block_group_cache_lock);
9826 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9827 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9828 				       cache_node);
9829 		rb_erase(&block_group->cache_node,
9830 			 &info->block_group_cache_tree);
9831 		RB_CLEAR_NODE(&block_group->cache_node);
9832 		spin_unlock(&info->block_group_cache_lock);
9833 
9834 		down_write(&block_group->space_info->groups_sem);
9835 		list_del(&block_group->list);
9836 		up_write(&block_group->space_info->groups_sem);
9837 
9838 		/*
9839 		 * We haven't cached this block group, which means we could
9840 		 * possibly have excluded extents on this block group.
9841 		 */
9842 		if (block_group->cached == BTRFS_CACHE_NO ||
9843 		    block_group->cached == BTRFS_CACHE_ERROR)
9844 			free_excluded_extents(info, block_group);
9845 
9846 		btrfs_remove_free_space_cache(block_group);
9847 		ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9848 		ASSERT(list_empty(&block_group->dirty_list));
9849 		ASSERT(list_empty(&block_group->io_list));
9850 		ASSERT(list_empty(&block_group->bg_list));
9851 		ASSERT(atomic_read(&block_group->count) == 1);
9852 		btrfs_put_block_group(block_group);
9853 
9854 		spin_lock(&info->block_group_cache_lock);
9855 	}
9856 	spin_unlock(&info->block_group_cache_lock);
9857 
9858 	/* now that all the block groups are freed, go through and
9859 	 * free all the space_info structs.  This is only called during
9860 	 * the final stages of unmount, and so we know nobody is
9861 	 * using them.  We call synchronize_rcu() once before we start,
9862 	 * just to be on the safe side.
9863 	 */
9864 	synchronize_rcu();
9865 
9866 	release_global_block_rsv(info);
9867 
9868 	while (!list_empty(&info->space_info)) {
9869 		int i;
9870 
9871 		space_info = list_entry(info->space_info.next,
9872 					struct btrfs_space_info,
9873 					list);
9874 
9875 		/*
9876 		 * Do not hide this behind enospc_debug, this is actually
9877 		 * important and indicates a real bug if this happens.
9878 		 */
9879 		if (WARN_ON(space_info->bytes_pinned > 0 ||
9880 			    space_info->bytes_reserved > 0 ||
9881 			    space_info->bytes_may_use > 0))
9882 			dump_space_info(info, space_info, 0, 0);
9883 		list_del(&space_info->list);
9884 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9885 			struct kobject *kobj;
9886 			kobj = space_info->block_group_kobjs[i];
9887 			space_info->block_group_kobjs[i] = NULL;
9888 			if (kobj) {
9889 				kobject_del(kobj);
9890 				kobject_put(kobj);
9891 			}
9892 		}
9893 		kobject_del(&space_info->kobj);
9894 		kobject_put(&space_info->kobj);
9895 	}
9896 	return 0;
9897 }
9898 
9899 static void __link_block_group(struct btrfs_space_info *space_info,
9900 			       struct btrfs_block_group_cache *cache)
9901 {
9902 	int index = get_block_group_index(cache);
9903 	bool first = false;
9904 
9905 	down_write(&space_info->groups_sem);
9906 	if (list_empty(&space_info->block_groups[index]))
9907 		first = true;
9908 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9909 	up_write(&space_info->groups_sem);
9910 
9911 	if (first) {
9912 		struct raid_kobject *rkobj;
9913 		int ret;
9914 
9915 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9916 		if (!rkobj)
9917 			goto out_err;
9918 		rkobj->raid_type = index;
9919 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9920 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9921 				  "%s", get_raid_name(index));
9922 		if (ret) {
9923 			kobject_put(&rkobj->kobj);
9924 			goto out_err;
9925 		}
9926 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9927 	}
9928 
9929 	return;
9930 out_err:
9931 	btrfs_warn(cache->fs_info,
9932 		   "failed to add kobject for block cache, ignoring");
9933 }
9934 
9935 static struct btrfs_block_group_cache *
9936 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9937 			       u64 start, u64 size)
9938 {
9939 	struct btrfs_block_group_cache *cache;
9940 
9941 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9942 	if (!cache)
9943 		return NULL;
9944 
9945 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9946 					GFP_NOFS);
9947 	if (!cache->free_space_ctl) {
9948 		kfree(cache);
9949 		return NULL;
9950 	}
9951 
9952 	cache->key.objectid = start;
9953 	cache->key.offset = size;
9954 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9955 
9956 	cache->sectorsize = fs_info->sectorsize;
9957 	cache->fs_info = fs_info;
9958 	cache->full_stripe_len = btrfs_full_stripe_len(fs_info,
9959 						       &fs_info->mapping_tree,
9960 						       start);
9961 	set_free_space_tree_thresholds(cache);
9962 
9963 	atomic_set(&cache->count, 1);
9964 	spin_lock_init(&cache->lock);
9965 	init_rwsem(&cache->data_rwsem);
9966 	INIT_LIST_HEAD(&cache->list);
9967 	INIT_LIST_HEAD(&cache->cluster_list);
9968 	INIT_LIST_HEAD(&cache->bg_list);
9969 	INIT_LIST_HEAD(&cache->ro_list);
9970 	INIT_LIST_HEAD(&cache->dirty_list);
9971 	INIT_LIST_HEAD(&cache->io_list);
9972 	btrfs_init_free_space_ctl(cache);
9973 	atomic_set(&cache->trimming, 0);
9974 	mutex_init(&cache->free_space_lock);
9975 	btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9976 
9977 	return cache;
9978 }
9979 
9980 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9981 {
9982 	struct btrfs_path *path;
9983 	int ret;
9984 	struct btrfs_block_group_cache *cache;
9985 	struct btrfs_space_info *space_info;
9986 	struct btrfs_key key;
9987 	struct btrfs_key found_key;
9988 	struct extent_buffer *leaf;
9989 	int need_clear = 0;
9990 	u64 cache_gen;
9991 	u64 feature;
9992 	int mixed;
9993 
9994 	feature = btrfs_super_incompat_flags(info->super_copy);
9995 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9996 
9997 	key.objectid = 0;
9998 	key.offset = 0;
9999 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10000 	path = btrfs_alloc_path();
10001 	if (!path)
10002 		return -ENOMEM;
10003 	path->reada = READA_FORWARD;
10004 
10005 	cache_gen = btrfs_super_cache_generation(info->super_copy);
10006 	if (btrfs_test_opt(info, SPACE_CACHE) &&
10007 	    btrfs_super_generation(info->super_copy) != cache_gen)
10008 		need_clear = 1;
10009 	if (btrfs_test_opt(info, CLEAR_CACHE))
10010 		need_clear = 1;
10011 
10012 	while (1) {
10013 		ret = find_first_block_group(info, path, &key);
10014 		if (ret > 0)
10015 			break;
10016 		if (ret != 0)
10017 			goto error;
10018 
10019 		leaf = path->nodes[0];
10020 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10021 
10022 		cache = btrfs_create_block_group_cache(info, found_key.objectid,
10023 						       found_key.offset);
10024 		if (!cache) {
10025 			ret = -ENOMEM;
10026 			goto error;
10027 		}
10028 
10029 		if (need_clear) {
10030 			/*
10031 			 * When we mount with old space cache, we need to
10032 			 * set BTRFS_DC_CLEAR and set dirty flag.
10033 			 *
10034 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10035 			 *    truncate the old free space cache inode and
10036 			 *    setup a new one.
10037 			 * b) Setting 'dirty flag' makes sure that we flush
10038 			 *    the new space cache info onto disk.
10039 			 */
10040 			if (btrfs_test_opt(info, SPACE_CACHE))
10041 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10042 		}
10043 
10044 		read_extent_buffer(leaf, &cache->item,
10045 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10046 				   sizeof(cache->item));
10047 		cache->flags = btrfs_block_group_flags(&cache->item);
10048 		if (!mixed &&
10049 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10050 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10051 			btrfs_err(info,
10052 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10053 				  cache->key.objectid);
10054 			ret = -EINVAL;
10055 			goto error;
10056 		}
10057 
10058 		key.objectid = found_key.objectid + found_key.offset;
10059 		btrfs_release_path(path);
10060 
10061 		/*
10062 		 * We need to exclude the super stripes now so that the space
10063 		 * info has super bytes accounted for, otherwise we'll think
10064 		 * we have more space than we actually do.
10065 		 */
10066 		ret = exclude_super_stripes(info, cache);
10067 		if (ret) {
10068 			/*
10069 			 * We may have excluded something, so call this just in
10070 			 * case.
10071 			 */
10072 			free_excluded_extents(info, cache);
10073 			btrfs_put_block_group(cache);
10074 			goto error;
10075 		}
10076 
10077 		/*
10078 		 * check for two cases, either we are full, and therefore
10079 		 * don't need to bother with the caching work since we won't
10080 		 * find any space, or we are empty, and we can just add all
10081 		 * the space in and be done with it.  This saves us _alot_ of
10082 		 * time, particularly in the full case.
10083 		 */
10084 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10085 			cache->last_byte_to_unpin = (u64)-1;
10086 			cache->cached = BTRFS_CACHE_FINISHED;
10087 			free_excluded_extents(info, cache);
10088 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10089 			cache->last_byte_to_unpin = (u64)-1;
10090 			cache->cached = BTRFS_CACHE_FINISHED;
10091 			add_new_free_space(cache, info,
10092 					   found_key.objectid,
10093 					   found_key.objectid +
10094 					   found_key.offset);
10095 			free_excluded_extents(info, cache);
10096 		}
10097 
10098 		ret = btrfs_add_block_group_cache(info, cache);
10099 		if (ret) {
10100 			btrfs_remove_free_space_cache(cache);
10101 			btrfs_put_block_group(cache);
10102 			goto error;
10103 		}
10104 
10105 		trace_btrfs_add_block_group(info, cache, 0);
10106 		update_space_info(info, cache->flags, found_key.offset,
10107 				  btrfs_block_group_used(&cache->item),
10108 				  cache->bytes_super, &space_info);
10109 
10110 		cache->space_info = space_info;
10111 
10112 		__link_block_group(space_info, cache);
10113 
10114 		set_avail_alloc_bits(info, cache->flags);
10115 		if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10116 			inc_block_group_ro(cache, 1);
10117 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10118 			spin_lock(&info->unused_bgs_lock);
10119 			/* Should always be true but just in case. */
10120 			if (list_empty(&cache->bg_list)) {
10121 				btrfs_get_block_group(cache);
10122 				list_add_tail(&cache->bg_list,
10123 					      &info->unused_bgs);
10124 			}
10125 			spin_unlock(&info->unused_bgs_lock);
10126 		}
10127 	}
10128 
10129 	list_for_each_entry_rcu(space_info, &info->space_info, list) {
10130 		if (!(get_alloc_profile(info, space_info->flags) &
10131 		      (BTRFS_BLOCK_GROUP_RAID10 |
10132 		       BTRFS_BLOCK_GROUP_RAID1 |
10133 		       BTRFS_BLOCK_GROUP_RAID5 |
10134 		       BTRFS_BLOCK_GROUP_RAID6 |
10135 		       BTRFS_BLOCK_GROUP_DUP)))
10136 			continue;
10137 		/*
10138 		 * avoid allocating from un-mirrored block group if there are
10139 		 * mirrored block groups.
10140 		 */
10141 		list_for_each_entry(cache,
10142 				&space_info->block_groups[BTRFS_RAID_RAID0],
10143 				list)
10144 			inc_block_group_ro(cache, 1);
10145 		list_for_each_entry(cache,
10146 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10147 				list)
10148 			inc_block_group_ro(cache, 1);
10149 	}
10150 
10151 	init_global_block_rsv(info);
10152 	ret = 0;
10153 error:
10154 	btrfs_free_path(path);
10155 	return ret;
10156 }
10157 
10158 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10159 				       struct btrfs_fs_info *fs_info)
10160 {
10161 	struct btrfs_block_group_cache *block_group, *tmp;
10162 	struct btrfs_root *extent_root = fs_info->extent_root;
10163 	struct btrfs_block_group_item item;
10164 	struct btrfs_key key;
10165 	int ret = 0;
10166 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10167 
10168 	trans->can_flush_pending_bgs = false;
10169 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10170 		if (ret)
10171 			goto next;
10172 
10173 		spin_lock(&block_group->lock);
10174 		memcpy(&item, &block_group->item, sizeof(item));
10175 		memcpy(&key, &block_group->key, sizeof(key));
10176 		spin_unlock(&block_group->lock);
10177 
10178 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10179 					sizeof(item));
10180 		if (ret)
10181 			btrfs_abort_transaction(trans, ret);
10182 		ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10183 					       key.offset);
10184 		if (ret)
10185 			btrfs_abort_transaction(trans, ret);
10186 		add_block_group_free_space(trans, fs_info, block_group);
10187 		/* already aborted the transaction if it failed. */
10188 next:
10189 		list_del_init(&block_group->bg_list);
10190 	}
10191 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10192 }
10193 
10194 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10195 			   struct btrfs_fs_info *fs_info, u64 bytes_used,
10196 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10197 			   u64 size)
10198 {
10199 	struct btrfs_block_group_cache *cache;
10200 	int ret;
10201 
10202 	btrfs_set_log_full_commit(fs_info, trans);
10203 
10204 	cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10205 	if (!cache)
10206 		return -ENOMEM;
10207 
10208 	btrfs_set_block_group_used(&cache->item, bytes_used);
10209 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10210 	btrfs_set_block_group_flags(&cache->item, type);
10211 
10212 	cache->flags = type;
10213 	cache->last_byte_to_unpin = (u64)-1;
10214 	cache->cached = BTRFS_CACHE_FINISHED;
10215 	cache->needs_free_space = 1;
10216 	ret = exclude_super_stripes(fs_info, cache);
10217 	if (ret) {
10218 		/*
10219 		 * We may have excluded something, so call this just in
10220 		 * case.
10221 		 */
10222 		free_excluded_extents(fs_info, cache);
10223 		btrfs_put_block_group(cache);
10224 		return ret;
10225 	}
10226 
10227 	add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10228 
10229 	free_excluded_extents(fs_info, cache);
10230 
10231 #ifdef CONFIG_BTRFS_DEBUG
10232 	if (btrfs_should_fragment_free_space(cache)) {
10233 		u64 new_bytes_used = size - bytes_used;
10234 
10235 		bytes_used += new_bytes_used >> 1;
10236 		fragment_free_space(cache);
10237 	}
10238 #endif
10239 	/*
10240 	 * Ensure the corresponding space_info object is created and
10241 	 * assigned to our block group. We want our bg to be added to the rbtree
10242 	 * with its ->space_info set.
10243 	 */
10244 	cache->space_info = __find_space_info(fs_info, cache->flags);
10245 	if (!cache->space_info) {
10246 		ret = create_space_info(fs_info, cache->flags,
10247 				       &cache->space_info);
10248 		if (ret) {
10249 			btrfs_remove_free_space_cache(cache);
10250 			btrfs_put_block_group(cache);
10251 			return ret;
10252 		}
10253 	}
10254 
10255 	ret = btrfs_add_block_group_cache(fs_info, cache);
10256 	if (ret) {
10257 		btrfs_remove_free_space_cache(cache);
10258 		btrfs_put_block_group(cache);
10259 		return ret;
10260 	}
10261 
10262 	/*
10263 	 * Now that our block group has its ->space_info set and is inserted in
10264 	 * the rbtree, update the space info's counters.
10265 	 */
10266 	trace_btrfs_add_block_group(fs_info, cache, 1);
10267 	update_space_info(fs_info, cache->flags, size, bytes_used,
10268 				cache->bytes_super, &cache->space_info);
10269 	update_global_block_rsv(fs_info);
10270 
10271 	__link_block_group(cache->space_info, cache);
10272 
10273 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10274 
10275 	set_avail_alloc_bits(fs_info, type);
10276 	return 0;
10277 }
10278 
10279 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10280 {
10281 	u64 extra_flags = chunk_to_extended(flags) &
10282 				BTRFS_EXTENDED_PROFILE_MASK;
10283 
10284 	write_seqlock(&fs_info->profiles_lock);
10285 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10286 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10287 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10288 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10289 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10290 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10291 	write_sequnlock(&fs_info->profiles_lock);
10292 }
10293 
10294 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10295 			     struct btrfs_fs_info *fs_info, u64 group_start,
10296 			     struct extent_map *em)
10297 {
10298 	struct btrfs_root *root = fs_info->extent_root;
10299 	struct btrfs_path *path;
10300 	struct btrfs_block_group_cache *block_group;
10301 	struct btrfs_free_cluster *cluster;
10302 	struct btrfs_root *tree_root = fs_info->tree_root;
10303 	struct btrfs_key key;
10304 	struct inode *inode;
10305 	struct kobject *kobj = NULL;
10306 	int ret;
10307 	int index;
10308 	int factor;
10309 	struct btrfs_caching_control *caching_ctl = NULL;
10310 	bool remove_em;
10311 
10312 	block_group = btrfs_lookup_block_group(fs_info, group_start);
10313 	BUG_ON(!block_group);
10314 	BUG_ON(!block_group->ro);
10315 
10316 	/*
10317 	 * Free the reserved super bytes from this block group before
10318 	 * remove it.
10319 	 */
10320 	free_excluded_extents(fs_info, block_group);
10321 
10322 	memcpy(&key, &block_group->key, sizeof(key));
10323 	index = get_block_group_index(block_group);
10324 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10325 				  BTRFS_BLOCK_GROUP_RAID1 |
10326 				  BTRFS_BLOCK_GROUP_RAID10))
10327 		factor = 2;
10328 	else
10329 		factor = 1;
10330 
10331 	/* make sure this block group isn't part of an allocation cluster */
10332 	cluster = &fs_info->data_alloc_cluster;
10333 	spin_lock(&cluster->refill_lock);
10334 	btrfs_return_cluster_to_free_space(block_group, cluster);
10335 	spin_unlock(&cluster->refill_lock);
10336 
10337 	/*
10338 	 * make sure this block group isn't part of a metadata
10339 	 * allocation cluster
10340 	 */
10341 	cluster = &fs_info->meta_alloc_cluster;
10342 	spin_lock(&cluster->refill_lock);
10343 	btrfs_return_cluster_to_free_space(block_group, cluster);
10344 	spin_unlock(&cluster->refill_lock);
10345 
10346 	path = btrfs_alloc_path();
10347 	if (!path) {
10348 		ret = -ENOMEM;
10349 		goto out;
10350 	}
10351 
10352 	/*
10353 	 * get the inode first so any iput calls done for the io_list
10354 	 * aren't the final iput (no unlinks allowed now)
10355 	 */
10356 	inode = lookup_free_space_inode(fs_info, block_group, path);
10357 
10358 	mutex_lock(&trans->transaction->cache_write_mutex);
10359 	/*
10360 	 * make sure our free spache cache IO is done before remove the
10361 	 * free space inode
10362 	 */
10363 	spin_lock(&trans->transaction->dirty_bgs_lock);
10364 	if (!list_empty(&block_group->io_list)) {
10365 		list_del_init(&block_group->io_list);
10366 
10367 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10368 
10369 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10370 		btrfs_wait_cache_io(trans, block_group, path);
10371 		btrfs_put_block_group(block_group);
10372 		spin_lock(&trans->transaction->dirty_bgs_lock);
10373 	}
10374 
10375 	if (!list_empty(&block_group->dirty_list)) {
10376 		list_del_init(&block_group->dirty_list);
10377 		btrfs_put_block_group(block_group);
10378 	}
10379 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10380 	mutex_unlock(&trans->transaction->cache_write_mutex);
10381 
10382 	if (!IS_ERR(inode)) {
10383 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10384 		if (ret) {
10385 			btrfs_add_delayed_iput(inode);
10386 			goto out;
10387 		}
10388 		clear_nlink(inode);
10389 		/* One for the block groups ref */
10390 		spin_lock(&block_group->lock);
10391 		if (block_group->iref) {
10392 			block_group->iref = 0;
10393 			block_group->inode = NULL;
10394 			spin_unlock(&block_group->lock);
10395 			iput(inode);
10396 		} else {
10397 			spin_unlock(&block_group->lock);
10398 		}
10399 		/* One for our lookup ref */
10400 		btrfs_add_delayed_iput(inode);
10401 	}
10402 
10403 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10404 	key.offset = block_group->key.objectid;
10405 	key.type = 0;
10406 
10407 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10408 	if (ret < 0)
10409 		goto out;
10410 	if (ret > 0)
10411 		btrfs_release_path(path);
10412 	if (ret == 0) {
10413 		ret = btrfs_del_item(trans, tree_root, path);
10414 		if (ret)
10415 			goto out;
10416 		btrfs_release_path(path);
10417 	}
10418 
10419 	spin_lock(&fs_info->block_group_cache_lock);
10420 	rb_erase(&block_group->cache_node,
10421 		 &fs_info->block_group_cache_tree);
10422 	RB_CLEAR_NODE(&block_group->cache_node);
10423 
10424 	if (fs_info->first_logical_byte == block_group->key.objectid)
10425 		fs_info->first_logical_byte = (u64)-1;
10426 	spin_unlock(&fs_info->block_group_cache_lock);
10427 
10428 	down_write(&block_group->space_info->groups_sem);
10429 	/*
10430 	 * we must use list_del_init so people can check to see if they
10431 	 * are still on the list after taking the semaphore
10432 	 */
10433 	list_del_init(&block_group->list);
10434 	if (list_empty(&block_group->space_info->block_groups[index])) {
10435 		kobj = block_group->space_info->block_group_kobjs[index];
10436 		block_group->space_info->block_group_kobjs[index] = NULL;
10437 		clear_avail_alloc_bits(fs_info, block_group->flags);
10438 	}
10439 	up_write(&block_group->space_info->groups_sem);
10440 	if (kobj) {
10441 		kobject_del(kobj);
10442 		kobject_put(kobj);
10443 	}
10444 
10445 	if (block_group->has_caching_ctl)
10446 		caching_ctl = get_caching_control(block_group);
10447 	if (block_group->cached == BTRFS_CACHE_STARTED)
10448 		wait_block_group_cache_done(block_group);
10449 	if (block_group->has_caching_ctl) {
10450 		down_write(&fs_info->commit_root_sem);
10451 		if (!caching_ctl) {
10452 			struct btrfs_caching_control *ctl;
10453 
10454 			list_for_each_entry(ctl,
10455 				    &fs_info->caching_block_groups, list)
10456 				if (ctl->block_group == block_group) {
10457 					caching_ctl = ctl;
10458 					refcount_inc(&caching_ctl->count);
10459 					break;
10460 				}
10461 		}
10462 		if (caching_ctl)
10463 			list_del_init(&caching_ctl->list);
10464 		up_write(&fs_info->commit_root_sem);
10465 		if (caching_ctl) {
10466 			/* Once for the caching bgs list and once for us. */
10467 			put_caching_control(caching_ctl);
10468 			put_caching_control(caching_ctl);
10469 		}
10470 	}
10471 
10472 	spin_lock(&trans->transaction->dirty_bgs_lock);
10473 	if (!list_empty(&block_group->dirty_list)) {
10474 		WARN_ON(1);
10475 	}
10476 	if (!list_empty(&block_group->io_list)) {
10477 		WARN_ON(1);
10478 	}
10479 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10480 	btrfs_remove_free_space_cache(block_group);
10481 
10482 	spin_lock(&block_group->space_info->lock);
10483 	list_del_init(&block_group->ro_list);
10484 
10485 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10486 		WARN_ON(block_group->space_info->total_bytes
10487 			< block_group->key.offset);
10488 		WARN_ON(block_group->space_info->bytes_readonly
10489 			< block_group->key.offset);
10490 		WARN_ON(block_group->space_info->disk_total
10491 			< block_group->key.offset * factor);
10492 	}
10493 	block_group->space_info->total_bytes -= block_group->key.offset;
10494 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10495 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10496 
10497 	spin_unlock(&block_group->space_info->lock);
10498 
10499 	memcpy(&key, &block_group->key, sizeof(key));
10500 
10501 	mutex_lock(&fs_info->chunk_mutex);
10502 	if (!list_empty(&em->list)) {
10503 		/* We're in the transaction->pending_chunks list. */
10504 		free_extent_map(em);
10505 	}
10506 	spin_lock(&block_group->lock);
10507 	block_group->removed = 1;
10508 	/*
10509 	 * At this point trimming can't start on this block group, because we
10510 	 * removed the block group from the tree fs_info->block_group_cache_tree
10511 	 * so no one can't find it anymore and even if someone already got this
10512 	 * block group before we removed it from the rbtree, they have already
10513 	 * incremented block_group->trimming - if they didn't, they won't find
10514 	 * any free space entries because we already removed them all when we
10515 	 * called btrfs_remove_free_space_cache().
10516 	 *
10517 	 * And we must not remove the extent map from the fs_info->mapping_tree
10518 	 * to prevent the same logical address range and physical device space
10519 	 * ranges from being reused for a new block group. This is because our
10520 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10521 	 * completely transactionless, so while it is trimming a range the
10522 	 * currently running transaction might finish and a new one start,
10523 	 * allowing for new block groups to be created that can reuse the same
10524 	 * physical device locations unless we take this special care.
10525 	 *
10526 	 * There may also be an implicit trim operation if the file system
10527 	 * is mounted with -odiscard. The same protections must remain
10528 	 * in place until the extents have been discarded completely when
10529 	 * the transaction commit has completed.
10530 	 */
10531 	remove_em = (atomic_read(&block_group->trimming) == 0);
10532 	/*
10533 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10534 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10535 	 * before checking block_group->removed).
10536 	 */
10537 	if (!remove_em) {
10538 		/*
10539 		 * Our em might be in trans->transaction->pending_chunks which
10540 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10541 		 * and so is the fs_info->pinned_chunks list.
10542 		 *
10543 		 * So at this point we must be holding the chunk_mutex to avoid
10544 		 * any races with chunk allocation (more specifically at
10545 		 * volumes.c:contains_pending_extent()), to ensure it always
10546 		 * sees the em, either in the pending_chunks list or in the
10547 		 * pinned_chunks list.
10548 		 */
10549 		list_move_tail(&em->list, &fs_info->pinned_chunks);
10550 	}
10551 	spin_unlock(&block_group->lock);
10552 
10553 	if (remove_em) {
10554 		struct extent_map_tree *em_tree;
10555 
10556 		em_tree = &fs_info->mapping_tree.map_tree;
10557 		write_lock(&em_tree->lock);
10558 		/*
10559 		 * The em might be in the pending_chunks list, so make sure the
10560 		 * chunk mutex is locked, since remove_extent_mapping() will
10561 		 * delete us from that list.
10562 		 */
10563 		remove_extent_mapping(em_tree, em);
10564 		write_unlock(&em_tree->lock);
10565 		/* once for the tree */
10566 		free_extent_map(em);
10567 	}
10568 
10569 	mutex_unlock(&fs_info->chunk_mutex);
10570 
10571 	ret = remove_block_group_free_space(trans, fs_info, block_group);
10572 	if (ret)
10573 		goto out;
10574 
10575 	btrfs_put_block_group(block_group);
10576 	btrfs_put_block_group(block_group);
10577 
10578 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10579 	if (ret > 0)
10580 		ret = -EIO;
10581 	if (ret < 0)
10582 		goto out;
10583 
10584 	ret = btrfs_del_item(trans, root, path);
10585 out:
10586 	btrfs_free_path(path);
10587 	return ret;
10588 }
10589 
10590 struct btrfs_trans_handle *
10591 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10592 				     const u64 chunk_offset)
10593 {
10594 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10595 	struct extent_map *em;
10596 	struct map_lookup *map;
10597 	unsigned int num_items;
10598 
10599 	read_lock(&em_tree->lock);
10600 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10601 	read_unlock(&em_tree->lock);
10602 	ASSERT(em && em->start == chunk_offset);
10603 
10604 	/*
10605 	 * We need to reserve 3 + N units from the metadata space info in order
10606 	 * to remove a block group (done at btrfs_remove_chunk() and at
10607 	 * btrfs_remove_block_group()), which are used for:
10608 	 *
10609 	 * 1 unit for adding the free space inode's orphan (located in the tree
10610 	 * of tree roots).
10611 	 * 1 unit for deleting the block group item (located in the extent
10612 	 * tree).
10613 	 * 1 unit for deleting the free space item (located in tree of tree
10614 	 * roots).
10615 	 * N units for deleting N device extent items corresponding to each
10616 	 * stripe (located in the device tree).
10617 	 *
10618 	 * In order to remove a block group we also need to reserve units in the
10619 	 * system space info in order to update the chunk tree (update one or
10620 	 * more device items and remove one chunk item), but this is done at
10621 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10622 	 */
10623 	map = em->map_lookup;
10624 	num_items = 3 + map->num_stripes;
10625 	free_extent_map(em);
10626 
10627 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10628 							   num_items, 1);
10629 }
10630 
10631 /*
10632  * Process the unused_bgs list and remove any that don't have any allocated
10633  * space inside of them.
10634  */
10635 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10636 {
10637 	struct btrfs_block_group_cache *block_group;
10638 	struct btrfs_space_info *space_info;
10639 	struct btrfs_trans_handle *trans;
10640 	int ret = 0;
10641 
10642 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10643 		return;
10644 
10645 	spin_lock(&fs_info->unused_bgs_lock);
10646 	while (!list_empty(&fs_info->unused_bgs)) {
10647 		u64 start, end;
10648 		int trimming;
10649 
10650 		block_group = list_first_entry(&fs_info->unused_bgs,
10651 					       struct btrfs_block_group_cache,
10652 					       bg_list);
10653 		list_del_init(&block_group->bg_list);
10654 
10655 		space_info = block_group->space_info;
10656 
10657 		if (ret || btrfs_mixed_space_info(space_info)) {
10658 			btrfs_put_block_group(block_group);
10659 			continue;
10660 		}
10661 		spin_unlock(&fs_info->unused_bgs_lock);
10662 
10663 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10664 
10665 		/* Don't want to race with allocators so take the groups_sem */
10666 		down_write(&space_info->groups_sem);
10667 		spin_lock(&block_group->lock);
10668 		if (block_group->reserved ||
10669 		    btrfs_block_group_used(&block_group->item) ||
10670 		    block_group->ro ||
10671 		    list_is_singular(&block_group->list)) {
10672 			/*
10673 			 * We want to bail if we made new allocations or have
10674 			 * outstanding allocations in this block group.  We do
10675 			 * the ro check in case balance is currently acting on
10676 			 * this block group.
10677 			 */
10678 			spin_unlock(&block_group->lock);
10679 			up_write(&space_info->groups_sem);
10680 			goto next;
10681 		}
10682 		spin_unlock(&block_group->lock);
10683 
10684 		/* We don't want to force the issue, only flip if it's ok. */
10685 		ret = inc_block_group_ro(block_group, 0);
10686 		up_write(&space_info->groups_sem);
10687 		if (ret < 0) {
10688 			ret = 0;
10689 			goto next;
10690 		}
10691 
10692 		/*
10693 		 * Want to do this before we do anything else so we can recover
10694 		 * properly if we fail to join the transaction.
10695 		 */
10696 		trans = btrfs_start_trans_remove_block_group(fs_info,
10697 						     block_group->key.objectid);
10698 		if (IS_ERR(trans)) {
10699 			btrfs_dec_block_group_ro(block_group);
10700 			ret = PTR_ERR(trans);
10701 			goto next;
10702 		}
10703 
10704 		/*
10705 		 * We could have pending pinned extents for this block group,
10706 		 * just delete them, we don't care about them anymore.
10707 		 */
10708 		start = block_group->key.objectid;
10709 		end = start + block_group->key.offset - 1;
10710 		/*
10711 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10712 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10713 		 * another task might be running finish_extent_commit() for the
10714 		 * previous transaction N - 1, and have seen a range belonging
10715 		 * to the block group in freed_extents[] before we were able to
10716 		 * clear the whole block group range from freed_extents[]. This
10717 		 * means that task can lookup for the block group after we
10718 		 * unpinned it from freed_extents[] and removed it, leading to
10719 		 * a BUG_ON() at btrfs_unpin_extent_range().
10720 		 */
10721 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10722 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10723 				  EXTENT_DIRTY);
10724 		if (ret) {
10725 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10726 			btrfs_dec_block_group_ro(block_group);
10727 			goto end_trans;
10728 		}
10729 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10730 				  EXTENT_DIRTY);
10731 		if (ret) {
10732 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10733 			btrfs_dec_block_group_ro(block_group);
10734 			goto end_trans;
10735 		}
10736 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10737 
10738 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10739 		spin_lock(&space_info->lock);
10740 		spin_lock(&block_group->lock);
10741 
10742 		space_info->bytes_pinned -= block_group->pinned;
10743 		space_info->bytes_readonly += block_group->pinned;
10744 		percpu_counter_add(&space_info->total_bytes_pinned,
10745 				   -block_group->pinned);
10746 		block_group->pinned = 0;
10747 
10748 		spin_unlock(&block_group->lock);
10749 		spin_unlock(&space_info->lock);
10750 
10751 		/* DISCARD can flip during remount */
10752 		trimming = btrfs_test_opt(fs_info, DISCARD);
10753 
10754 		/* Implicit trim during transaction commit. */
10755 		if (trimming)
10756 			btrfs_get_block_group_trimming(block_group);
10757 
10758 		/*
10759 		 * Btrfs_remove_chunk will abort the transaction if things go
10760 		 * horribly wrong.
10761 		 */
10762 		ret = btrfs_remove_chunk(trans, fs_info,
10763 					 block_group->key.objectid);
10764 
10765 		if (ret) {
10766 			if (trimming)
10767 				btrfs_put_block_group_trimming(block_group);
10768 			goto end_trans;
10769 		}
10770 
10771 		/*
10772 		 * If we're not mounted with -odiscard, we can just forget
10773 		 * about this block group. Otherwise we'll need to wait
10774 		 * until transaction commit to do the actual discard.
10775 		 */
10776 		if (trimming) {
10777 			spin_lock(&fs_info->unused_bgs_lock);
10778 			/*
10779 			 * A concurrent scrub might have added us to the list
10780 			 * fs_info->unused_bgs, so use a list_move operation
10781 			 * to add the block group to the deleted_bgs list.
10782 			 */
10783 			list_move(&block_group->bg_list,
10784 				  &trans->transaction->deleted_bgs);
10785 			spin_unlock(&fs_info->unused_bgs_lock);
10786 			btrfs_get_block_group(block_group);
10787 		}
10788 end_trans:
10789 		btrfs_end_transaction(trans);
10790 next:
10791 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10792 		btrfs_put_block_group(block_group);
10793 		spin_lock(&fs_info->unused_bgs_lock);
10794 	}
10795 	spin_unlock(&fs_info->unused_bgs_lock);
10796 }
10797 
10798 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10799 {
10800 	struct btrfs_space_info *space_info;
10801 	struct btrfs_super_block *disk_super;
10802 	u64 features;
10803 	u64 flags;
10804 	int mixed = 0;
10805 	int ret;
10806 
10807 	disk_super = fs_info->super_copy;
10808 	if (!btrfs_super_root(disk_super))
10809 		return -EINVAL;
10810 
10811 	features = btrfs_super_incompat_flags(disk_super);
10812 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10813 		mixed = 1;
10814 
10815 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10816 	ret = create_space_info(fs_info, flags, &space_info);
10817 	if (ret)
10818 		goto out;
10819 
10820 	if (mixed) {
10821 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10822 		ret = create_space_info(fs_info, flags, &space_info);
10823 	} else {
10824 		flags = BTRFS_BLOCK_GROUP_METADATA;
10825 		ret = create_space_info(fs_info, flags, &space_info);
10826 		if (ret)
10827 			goto out;
10828 
10829 		flags = BTRFS_BLOCK_GROUP_DATA;
10830 		ret = create_space_info(fs_info, flags, &space_info);
10831 	}
10832 out:
10833 	return ret;
10834 }
10835 
10836 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10837 				   u64 start, u64 end)
10838 {
10839 	return unpin_extent_range(fs_info, start, end, false);
10840 }
10841 
10842 /*
10843  * It used to be that old block groups would be left around forever.
10844  * Iterating over them would be enough to trim unused space.  Since we
10845  * now automatically remove them, we also need to iterate over unallocated
10846  * space.
10847  *
10848  * We don't want a transaction for this since the discard may take a
10849  * substantial amount of time.  We don't require that a transaction be
10850  * running, but we do need to take a running transaction into account
10851  * to ensure that we're not discarding chunks that were released in
10852  * the current transaction.
10853  *
10854  * Holding the chunks lock will prevent other threads from allocating
10855  * or releasing chunks, but it won't prevent a running transaction
10856  * from committing and releasing the memory that the pending chunks
10857  * list head uses.  For that, we need to take a reference to the
10858  * transaction.
10859  */
10860 static int btrfs_trim_free_extents(struct btrfs_device *device,
10861 				   u64 minlen, u64 *trimmed)
10862 {
10863 	u64 start = 0, len = 0;
10864 	int ret;
10865 
10866 	*trimmed = 0;
10867 
10868 	/* Not writeable = nothing to do. */
10869 	if (!device->writeable)
10870 		return 0;
10871 
10872 	/* No free space = nothing to do. */
10873 	if (device->total_bytes <= device->bytes_used)
10874 		return 0;
10875 
10876 	ret = 0;
10877 
10878 	while (1) {
10879 		struct btrfs_fs_info *fs_info = device->fs_info;
10880 		struct btrfs_transaction *trans;
10881 		u64 bytes;
10882 
10883 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10884 		if (ret)
10885 			return ret;
10886 
10887 		down_read(&fs_info->commit_root_sem);
10888 
10889 		spin_lock(&fs_info->trans_lock);
10890 		trans = fs_info->running_transaction;
10891 		if (trans)
10892 			refcount_inc(&trans->use_count);
10893 		spin_unlock(&fs_info->trans_lock);
10894 
10895 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10896 						 &start, &len);
10897 		if (trans)
10898 			btrfs_put_transaction(trans);
10899 
10900 		if (ret) {
10901 			up_read(&fs_info->commit_root_sem);
10902 			mutex_unlock(&fs_info->chunk_mutex);
10903 			if (ret == -ENOSPC)
10904 				ret = 0;
10905 			break;
10906 		}
10907 
10908 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10909 		up_read(&fs_info->commit_root_sem);
10910 		mutex_unlock(&fs_info->chunk_mutex);
10911 
10912 		if (ret)
10913 			break;
10914 
10915 		start += len;
10916 		*trimmed += bytes;
10917 
10918 		if (fatal_signal_pending(current)) {
10919 			ret = -ERESTARTSYS;
10920 			break;
10921 		}
10922 
10923 		cond_resched();
10924 	}
10925 
10926 	return ret;
10927 }
10928 
10929 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10930 {
10931 	struct btrfs_block_group_cache *cache = NULL;
10932 	struct btrfs_device *device;
10933 	struct list_head *devices;
10934 	u64 group_trimmed;
10935 	u64 start;
10936 	u64 end;
10937 	u64 trimmed = 0;
10938 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10939 	int ret = 0;
10940 
10941 	/*
10942 	 * try to trim all FS space, our block group may start from non-zero.
10943 	 */
10944 	if (range->len == total_bytes)
10945 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10946 	else
10947 		cache = btrfs_lookup_block_group(fs_info, range->start);
10948 
10949 	while (cache) {
10950 		if (cache->key.objectid >= (range->start + range->len)) {
10951 			btrfs_put_block_group(cache);
10952 			break;
10953 		}
10954 
10955 		start = max(range->start, cache->key.objectid);
10956 		end = min(range->start + range->len,
10957 				cache->key.objectid + cache->key.offset);
10958 
10959 		if (end - start >= range->minlen) {
10960 			if (!block_group_cache_done(cache)) {
10961 				ret = cache_block_group(cache, 0);
10962 				if (ret) {
10963 					btrfs_put_block_group(cache);
10964 					break;
10965 				}
10966 				ret = wait_block_group_cache_done(cache);
10967 				if (ret) {
10968 					btrfs_put_block_group(cache);
10969 					break;
10970 				}
10971 			}
10972 			ret = btrfs_trim_block_group(cache,
10973 						     &group_trimmed,
10974 						     start,
10975 						     end,
10976 						     range->minlen);
10977 
10978 			trimmed += group_trimmed;
10979 			if (ret) {
10980 				btrfs_put_block_group(cache);
10981 				break;
10982 			}
10983 		}
10984 
10985 		cache = next_block_group(fs_info, cache);
10986 	}
10987 
10988 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
10989 	devices = &fs_info->fs_devices->alloc_list;
10990 	list_for_each_entry(device, devices, dev_alloc_list) {
10991 		ret = btrfs_trim_free_extents(device, range->minlen,
10992 					      &group_trimmed);
10993 		if (ret)
10994 			break;
10995 
10996 		trimmed += group_trimmed;
10997 	}
10998 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10999 
11000 	range->len = trimmed;
11001 	return ret;
11002 }
11003 
11004 /*
11005  * btrfs_{start,end}_write_no_snapshoting() are similar to
11006  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11007  * data into the page cache through nocow before the subvolume is snapshoted,
11008  * but flush the data into disk after the snapshot creation, or to prevent
11009  * operations while snapshoting is ongoing and that cause the snapshot to be
11010  * inconsistent (writes followed by expanding truncates for example).
11011  */
11012 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11013 {
11014 	percpu_counter_dec(&root->subv_writers->counter);
11015 	/*
11016 	 * Make sure counter is updated before we wake up waiters.
11017 	 */
11018 	smp_mb();
11019 	if (waitqueue_active(&root->subv_writers->wait))
11020 		wake_up(&root->subv_writers->wait);
11021 }
11022 
11023 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11024 {
11025 	if (atomic_read(&root->will_be_snapshoted))
11026 		return 0;
11027 
11028 	percpu_counter_inc(&root->subv_writers->counter);
11029 	/*
11030 	 * Make sure counter is updated before we check for snapshot creation.
11031 	 */
11032 	smp_mb();
11033 	if (atomic_read(&root->will_be_snapshoted)) {
11034 		btrfs_end_write_no_snapshoting(root);
11035 		return 0;
11036 	}
11037 	return 1;
11038 }
11039 
11040 static int wait_snapshoting_atomic_t(atomic_t *a)
11041 {
11042 	schedule();
11043 	return 0;
11044 }
11045 
11046 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11047 {
11048 	while (true) {
11049 		int ret;
11050 
11051 		ret = btrfs_start_write_no_snapshoting(root);
11052 		if (ret)
11053 			break;
11054 		wait_on_atomic_t(&root->will_be_snapshoted,
11055 				 wait_snapshoting_atomic_t,
11056 				 TASK_UNINTERRUPTIBLE);
11057 	}
11058 }
11059