1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/sched/signal.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/sort.h> 24 #include <linux/rcupdate.h> 25 #include <linux/kthread.h> 26 #include <linux/slab.h> 27 #include <linux/ratelimit.h> 28 #include <linux/percpu_counter.h> 29 #include "hash.h" 30 #include "tree-log.h" 31 #include "disk-io.h" 32 #include "print-tree.h" 33 #include "volumes.h" 34 #include "raid56.h" 35 #include "locking.h" 36 #include "free-space-cache.h" 37 #include "free-space-tree.h" 38 #include "math.h" 39 #include "sysfs.h" 40 #include "qgroup.h" 41 42 #undef SCRAMBLE_DELAYED_REFS 43 44 /* 45 * control flags for do_chunk_alloc's force field 46 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 47 * if we really need one. 48 * 49 * CHUNK_ALLOC_LIMITED means to only try and allocate one 50 * if we have very few chunks already allocated. This is 51 * used as part of the clustering code to help make sure 52 * we have a good pool of storage to cluster in, without 53 * filling the FS with empty chunks 54 * 55 * CHUNK_ALLOC_FORCE means it must try to allocate one 56 * 57 */ 58 enum { 59 CHUNK_ALLOC_NO_FORCE = 0, 60 CHUNK_ALLOC_LIMITED = 1, 61 CHUNK_ALLOC_FORCE = 2, 62 }; 63 64 static int update_block_group(struct btrfs_trans_handle *trans, 65 struct btrfs_fs_info *fs_info, u64 bytenr, 66 u64 num_bytes, int alloc); 67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 68 struct btrfs_fs_info *fs_info, 69 struct btrfs_delayed_ref_node *node, u64 parent, 70 u64 root_objectid, u64 owner_objectid, 71 u64 owner_offset, int refs_to_drop, 72 struct btrfs_delayed_extent_op *extra_op); 73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 74 struct extent_buffer *leaf, 75 struct btrfs_extent_item *ei); 76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 77 struct btrfs_fs_info *fs_info, 78 u64 parent, u64 root_objectid, 79 u64 flags, u64 owner, u64 offset, 80 struct btrfs_key *ins, int ref_mod); 81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 82 struct btrfs_fs_info *fs_info, 83 u64 parent, u64 root_objectid, 84 u64 flags, struct btrfs_disk_key *key, 85 int level, struct btrfs_key *ins); 86 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 87 struct btrfs_fs_info *fs_info, u64 flags, 88 int force); 89 static int find_next_key(struct btrfs_path *path, int level, 90 struct btrfs_key *key); 91 static void dump_space_info(struct btrfs_fs_info *fs_info, 92 struct btrfs_space_info *info, u64 bytes, 93 int dump_block_groups); 94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 95 u64 ram_bytes, u64 num_bytes, int delalloc); 96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 97 u64 num_bytes, int delalloc); 98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 99 u64 num_bytes); 100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 101 struct btrfs_space_info *space_info, 102 u64 orig_bytes, 103 enum btrfs_reserve_flush_enum flush, 104 bool system_chunk); 105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 106 struct btrfs_space_info *space_info, 107 u64 num_bytes); 108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 109 struct btrfs_space_info *space_info, 110 u64 num_bytes); 111 112 static noinline int 113 block_group_cache_done(struct btrfs_block_group_cache *cache) 114 { 115 smp_mb(); 116 return cache->cached == BTRFS_CACHE_FINISHED || 117 cache->cached == BTRFS_CACHE_ERROR; 118 } 119 120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 121 { 122 return (cache->flags & bits) == bits; 123 } 124 125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 126 { 127 atomic_inc(&cache->count); 128 } 129 130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 131 { 132 if (atomic_dec_and_test(&cache->count)) { 133 WARN_ON(cache->pinned > 0); 134 WARN_ON(cache->reserved > 0); 135 136 /* 137 * If not empty, someone is still holding mutex of 138 * full_stripe_lock, which can only be released by caller. 139 * And it will definitely cause use-after-free when caller 140 * tries to release full stripe lock. 141 * 142 * No better way to resolve, but only to warn. 143 */ 144 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); 145 kfree(cache->free_space_ctl); 146 kfree(cache); 147 } 148 } 149 150 /* 151 * this adds the block group to the fs_info rb tree for the block group 152 * cache 153 */ 154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 155 struct btrfs_block_group_cache *block_group) 156 { 157 struct rb_node **p; 158 struct rb_node *parent = NULL; 159 struct btrfs_block_group_cache *cache; 160 161 spin_lock(&info->block_group_cache_lock); 162 p = &info->block_group_cache_tree.rb_node; 163 164 while (*p) { 165 parent = *p; 166 cache = rb_entry(parent, struct btrfs_block_group_cache, 167 cache_node); 168 if (block_group->key.objectid < cache->key.objectid) { 169 p = &(*p)->rb_left; 170 } else if (block_group->key.objectid > cache->key.objectid) { 171 p = &(*p)->rb_right; 172 } else { 173 spin_unlock(&info->block_group_cache_lock); 174 return -EEXIST; 175 } 176 } 177 178 rb_link_node(&block_group->cache_node, parent, p); 179 rb_insert_color(&block_group->cache_node, 180 &info->block_group_cache_tree); 181 182 if (info->first_logical_byte > block_group->key.objectid) 183 info->first_logical_byte = block_group->key.objectid; 184 185 spin_unlock(&info->block_group_cache_lock); 186 187 return 0; 188 } 189 190 /* 191 * This will return the block group at or after bytenr if contains is 0, else 192 * it will return the block group that contains the bytenr 193 */ 194 static struct btrfs_block_group_cache * 195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 196 int contains) 197 { 198 struct btrfs_block_group_cache *cache, *ret = NULL; 199 struct rb_node *n; 200 u64 end, start; 201 202 spin_lock(&info->block_group_cache_lock); 203 n = info->block_group_cache_tree.rb_node; 204 205 while (n) { 206 cache = rb_entry(n, struct btrfs_block_group_cache, 207 cache_node); 208 end = cache->key.objectid + cache->key.offset - 1; 209 start = cache->key.objectid; 210 211 if (bytenr < start) { 212 if (!contains && (!ret || start < ret->key.objectid)) 213 ret = cache; 214 n = n->rb_left; 215 } else if (bytenr > start) { 216 if (contains && bytenr <= end) { 217 ret = cache; 218 break; 219 } 220 n = n->rb_right; 221 } else { 222 ret = cache; 223 break; 224 } 225 } 226 if (ret) { 227 btrfs_get_block_group(ret); 228 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 229 info->first_logical_byte = ret->key.objectid; 230 } 231 spin_unlock(&info->block_group_cache_lock); 232 233 return ret; 234 } 235 236 static int add_excluded_extent(struct btrfs_fs_info *fs_info, 237 u64 start, u64 num_bytes) 238 { 239 u64 end = start + num_bytes - 1; 240 set_extent_bits(&fs_info->freed_extents[0], 241 start, end, EXTENT_UPTODATE); 242 set_extent_bits(&fs_info->freed_extents[1], 243 start, end, EXTENT_UPTODATE); 244 return 0; 245 } 246 247 static void free_excluded_extents(struct btrfs_fs_info *fs_info, 248 struct btrfs_block_group_cache *cache) 249 { 250 u64 start, end; 251 252 start = cache->key.objectid; 253 end = start + cache->key.offset - 1; 254 255 clear_extent_bits(&fs_info->freed_extents[0], 256 start, end, EXTENT_UPTODATE); 257 clear_extent_bits(&fs_info->freed_extents[1], 258 start, end, EXTENT_UPTODATE); 259 } 260 261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info, 262 struct btrfs_block_group_cache *cache) 263 { 264 u64 bytenr; 265 u64 *logical; 266 int stripe_len; 267 int i, nr, ret; 268 269 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 270 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 271 cache->bytes_super += stripe_len; 272 ret = add_excluded_extent(fs_info, cache->key.objectid, 273 stripe_len); 274 if (ret) 275 return ret; 276 } 277 278 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 279 bytenr = btrfs_sb_offset(i); 280 ret = btrfs_rmap_block(fs_info, cache->key.objectid, 281 bytenr, 0, &logical, &nr, &stripe_len); 282 if (ret) 283 return ret; 284 285 while (nr--) { 286 u64 start, len; 287 288 if (logical[nr] > cache->key.objectid + 289 cache->key.offset) 290 continue; 291 292 if (logical[nr] + stripe_len <= cache->key.objectid) 293 continue; 294 295 start = logical[nr]; 296 if (start < cache->key.objectid) { 297 start = cache->key.objectid; 298 len = (logical[nr] + stripe_len) - start; 299 } else { 300 len = min_t(u64, stripe_len, 301 cache->key.objectid + 302 cache->key.offset - start); 303 } 304 305 cache->bytes_super += len; 306 ret = add_excluded_extent(fs_info, start, len); 307 if (ret) { 308 kfree(logical); 309 return ret; 310 } 311 } 312 313 kfree(logical); 314 } 315 return 0; 316 } 317 318 static struct btrfs_caching_control * 319 get_caching_control(struct btrfs_block_group_cache *cache) 320 { 321 struct btrfs_caching_control *ctl; 322 323 spin_lock(&cache->lock); 324 if (!cache->caching_ctl) { 325 spin_unlock(&cache->lock); 326 return NULL; 327 } 328 329 ctl = cache->caching_ctl; 330 refcount_inc(&ctl->count); 331 spin_unlock(&cache->lock); 332 return ctl; 333 } 334 335 static void put_caching_control(struct btrfs_caching_control *ctl) 336 { 337 if (refcount_dec_and_test(&ctl->count)) 338 kfree(ctl); 339 } 340 341 #ifdef CONFIG_BTRFS_DEBUG 342 static void fragment_free_space(struct btrfs_block_group_cache *block_group) 343 { 344 struct btrfs_fs_info *fs_info = block_group->fs_info; 345 u64 start = block_group->key.objectid; 346 u64 len = block_group->key.offset; 347 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? 348 fs_info->nodesize : fs_info->sectorsize; 349 u64 step = chunk << 1; 350 351 while (len > chunk) { 352 btrfs_remove_free_space(block_group, start, chunk); 353 start += step; 354 if (len < step) 355 len = 0; 356 else 357 len -= step; 358 } 359 } 360 #endif 361 362 /* 363 * this is only called by cache_block_group, since we could have freed extents 364 * we need to check the pinned_extents for any extents that can't be used yet 365 * since their free space will be released as soon as the transaction commits. 366 */ 367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 368 struct btrfs_fs_info *info, u64 start, u64 end) 369 { 370 u64 extent_start, extent_end, size, total_added = 0; 371 int ret; 372 373 while (start < end) { 374 ret = find_first_extent_bit(info->pinned_extents, start, 375 &extent_start, &extent_end, 376 EXTENT_DIRTY | EXTENT_UPTODATE, 377 NULL); 378 if (ret) 379 break; 380 381 if (extent_start <= start) { 382 start = extent_end + 1; 383 } else if (extent_start > start && extent_start < end) { 384 size = extent_start - start; 385 total_added += size; 386 ret = btrfs_add_free_space(block_group, start, 387 size); 388 BUG_ON(ret); /* -ENOMEM or logic error */ 389 start = extent_end + 1; 390 } else { 391 break; 392 } 393 } 394 395 if (start < end) { 396 size = end - start; 397 total_added += size; 398 ret = btrfs_add_free_space(block_group, start, size); 399 BUG_ON(ret); /* -ENOMEM or logic error */ 400 } 401 402 return total_added; 403 } 404 405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) 406 { 407 struct btrfs_block_group_cache *block_group = caching_ctl->block_group; 408 struct btrfs_fs_info *fs_info = block_group->fs_info; 409 struct btrfs_root *extent_root = fs_info->extent_root; 410 struct btrfs_path *path; 411 struct extent_buffer *leaf; 412 struct btrfs_key key; 413 u64 total_found = 0; 414 u64 last = 0; 415 u32 nritems; 416 int ret; 417 bool wakeup = true; 418 419 path = btrfs_alloc_path(); 420 if (!path) 421 return -ENOMEM; 422 423 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 424 425 #ifdef CONFIG_BTRFS_DEBUG 426 /* 427 * If we're fragmenting we don't want to make anybody think we can 428 * allocate from this block group until we've had a chance to fragment 429 * the free space. 430 */ 431 if (btrfs_should_fragment_free_space(block_group)) 432 wakeup = false; 433 #endif 434 /* 435 * We don't want to deadlock with somebody trying to allocate a new 436 * extent for the extent root while also trying to search the extent 437 * root to add free space. So we skip locking and search the commit 438 * root, since its read-only 439 */ 440 path->skip_locking = 1; 441 path->search_commit_root = 1; 442 path->reada = READA_FORWARD; 443 444 key.objectid = last; 445 key.offset = 0; 446 key.type = BTRFS_EXTENT_ITEM_KEY; 447 448 next: 449 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 450 if (ret < 0) 451 goto out; 452 453 leaf = path->nodes[0]; 454 nritems = btrfs_header_nritems(leaf); 455 456 while (1) { 457 if (btrfs_fs_closing(fs_info) > 1) { 458 last = (u64)-1; 459 break; 460 } 461 462 if (path->slots[0] < nritems) { 463 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 464 } else { 465 ret = find_next_key(path, 0, &key); 466 if (ret) 467 break; 468 469 if (need_resched() || 470 rwsem_is_contended(&fs_info->commit_root_sem)) { 471 if (wakeup) 472 caching_ctl->progress = last; 473 btrfs_release_path(path); 474 up_read(&fs_info->commit_root_sem); 475 mutex_unlock(&caching_ctl->mutex); 476 cond_resched(); 477 mutex_lock(&caching_ctl->mutex); 478 down_read(&fs_info->commit_root_sem); 479 goto next; 480 } 481 482 ret = btrfs_next_leaf(extent_root, path); 483 if (ret < 0) 484 goto out; 485 if (ret) 486 break; 487 leaf = path->nodes[0]; 488 nritems = btrfs_header_nritems(leaf); 489 continue; 490 } 491 492 if (key.objectid < last) { 493 key.objectid = last; 494 key.offset = 0; 495 key.type = BTRFS_EXTENT_ITEM_KEY; 496 497 if (wakeup) 498 caching_ctl->progress = last; 499 btrfs_release_path(path); 500 goto next; 501 } 502 503 if (key.objectid < block_group->key.objectid) { 504 path->slots[0]++; 505 continue; 506 } 507 508 if (key.objectid >= block_group->key.objectid + 509 block_group->key.offset) 510 break; 511 512 if (key.type == BTRFS_EXTENT_ITEM_KEY || 513 key.type == BTRFS_METADATA_ITEM_KEY) { 514 total_found += add_new_free_space(block_group, 515 fs_info, last, 516 key.objectid); 517 if (key.type == BTRFS_METADATA_ITEM_KEY) 518 last = key.objectid + 519 fs_info->nodesize; 520 else 521 last = key.objectid + key.offset; 522 523 if (total_found > CACHING_CTL_WAKE_UP) { 524 total_found = 0; 525 if (wakeup) 526 wake_up(&caching_ctl->wait); 527 } 528 } 529 path->slots[0]++; 530 } 531 ret = 0; 532 533 total_found += add_new_free_space(block_group, fs_info, last, 534 block_group->key.objectid + 535 block_group->key.offset); 536 caching_ctl->progress = (u64)-1; 537 538 out: 539 btrfs_free_path(path); 540 return ret; 541 } 542 543 static noinline void caching_thread(struct btrfs_work *work) 544 { 545 struct btrfs_block_group_cache *block_group; 546 struct btrfs_fs_info *fs_info; 547 struct btrfs_caching_control *caching_ctl; 548 struct btrfs_root *extent_root; 549 int ret; 550 551 caching_ctl = container_of(work, struct btrfs_caching_control, work); 552 block_group = caching_ctl->block_group; 553 fs_info = block_group->fs_info; 554 extent_root = fs_info->extent_root; 555 556 mutex_lock(&caching_ctl->mutex); 557 down_read(&fs_info->commit_root_sem); 558 559 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) 560 ret = load_free_space_tree(caching_ctl); 561 else 562 ret = load_extent_tree_free(caching_ctl); 563 564 spin_lock(&block_group->lock); 565 block_group->caching_ctl = NULL; 566 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; 567 spin_unlock(&block_group->lock); 568 569 #ifdef CONFIG_BTRFS_DEBUG 570 if (btrfs_should_fragment_free_space(block_group)) { 571 u64 bytes_used; 572 573 spin_lock(&block_group->space_info->lock); 574 spin_lock(&block_group->lock); 575 bytes_used = block_group->key.offset - 576 btrfs_block_group_used(&block_group->item); 577 block_group->space_info->bytes_used += bytes_used >> 1; 578 spin_unlock(&block_group->lock); 579 spin_unlock(&block_group->space_info->lock); 580 fragment_free_space(block_group); 581 } 582 #endif 583 584 caching_ctl->progress = (u64)-1; 585 586 up_read(&fs_info->commit_root_sem); 587 free_excluded_extents(fs_info, block_group); 588 mutex_unlock(&caching_ctl->mutex); 589 590 wake_up(&caching_ctl->wait); 591 592 put_caching_control(caching_ctl); 593 btrfs_put_block_group(block_group); 594 } 595 596 static int cache_block_group(struct btrfs_block_group_cache *cache, 597 int load_cache_only) 598 { 599 DEFINE_WAIT(wait); 600 struct btrfs_fs_info *fs_info = cache->fs_info; 601 struct btrfs_caching_control *caching_ctl; 602 int ret = 0; 603 604 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 605 if (!caching_ctl) 606 return -ENOMEM; 607 608 INIT_LIST_HEAD(&caching_ctl->list); 609 mutex_init(&caching_ctl->mutex); 610 init_waitqueue_head(&caching_ctl->wait); 611 caching_ctl->block_group = cache; 612 caching_ctl->progress = cache->key.objectid; 613 refcount_set(&caching_ctl->count, 1); 614 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 615 caching_thread, NULL, NULL); 616 617 spin_lock(&cache->lock); 618 /* 619 * This should be a rare occasion, but this could happen I think in the 620 * case where one thread starts to load the space cache info, and then 621 * some other thread starts a transaction commit which tries to do an 622 * allocation while the other thread is still loading the space cache 623 * info. The previous loop should have kept us from choosing this block 624 * group, but if we've moved to the state where we will wait on caching 625 * block groups we need to first check if we're doing a fast load here, 626 * so we can wait for it to finish, otherwise we could end up allocating 627 * from a block group who's cache gets evicted for one reason or 628 * another. 629 */ 630 while (cache->cached == BTRFS_CACHE_FAST) { 631 struct btrfs_caching_control *ctl; 632 633 ctl = cache->caching_ctl; 634 refcount_inc(&ctl->count); 635 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 636 spin_unlock(&cache->lock); 637 638 schedule(); 639 640 finish_wait(&ctl->wait, &wait); 641 put_caching_control(ctl); 642 spin_lock(&cache->lock); 643 } 644 645 if (cache->cached != BTRFS_CACHE_NO) { 646 spin_unlock(&cache->lock); 647 kfree(caching_ctl); 648 return 0; 649 } 650 WARN_ON(cache->caching_ctl); 651 cache->caching_ctl = caching_ctl; 652 cache->cached = BTRFS_CACHE_FAST; 653 spin_unlock(&cache->lock); 654 655 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 656 mutex_lock(&caching_ctl->mutex); 657 ret = load_free_space_cache(fs_info, cache); 658 659 spin_lock(&cache->lock); 660 if (ret == 1) { 661 cache->caching_ctl = NULL; 662 cache->cached = BTRFS_CACHE_FINISHED; 663 cache->last_byte_to_unpin = (u64)-1; 664 caching_ctl->progress = (u64)-1; 665 } else { 666 if (load_cache_only) { 667 cache->caching_ctl = NULL; 668 cache->cached = BTRFS_CACHE_NO; 669 } else { 670 cache->cached = BTRFS_CACHE_STARTED; 671 cache->has_caching_ctl = 1; 672 } 673 } 674 spin_unlock(&cache->lock); 675 #ifdef CONFIG_BTRFS_DEBUG 676 if (ret == 1 && 677 btrfs_should_fragment_free_space(cache)) { 678 u64 bytes_used; 679 680 spin_lock(&cache->space_info->lock); 681 spin_lock(&cache->lock); 682 bytes_used = cache->key.offset - 683 btrfs_block_group_used(&cache->item); 684 cache->space_info->bytes_used += bytes_used >> 1; 685 spin_unlock(&cache->lock); 686 spin_unlock(&cache->space_info->lock); 687 fragment_free_space(cache); 688 } 689 #endif 690 mutex_unlock(&caching_ctl->mutex); 691 692 wake_up(&caching_ctl->wait); 693 if (ret == 1) { 694 put_caching_control(caching_ctl); 695 free_excluded_extents(fs_info, cache); 696 return 0; 697 } 698 } else { 699 /* 700 * We're either using the free space tree or no caching at all. 701 * Set cached to the appropriate value and wakeup any waiters. 702 */ 703 spin_lock(&cache->lock); 704 if (load_cache_only) { 705 cache->caching_ctl = NULL; 706 cache->cached = BTRFS_CACHE_NO; 707 } else { 708 cache->cached = BTRFS_CACHE_STARTED; 709 cache->has_caching_ctl = 1; 710 } 711 spin_unlock(&cache->lock); 712 wake_up(&caching_ctl->wait); 713 } 714 715 if (load_cache_only) { 716 put_caching_control(caching_ctl); 717 return 0; 718 } 719 720 down_write(&fs_info->commit_root_sem); 721 refcount_inc(&caching_ctl->count); 722 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 723 up_write(&fs_info->commit_root_sem); 724 725 btrfs_get_block_group(cache); 726 727 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 728 729 return ret; 730 } 731 732 /* 733 * return the block group that starts at or after bytenr 734 */ 735 static struct btrfs_block_group_cache * 736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 737 { 738 return block_group_cache_tree_search(info, bytenr, 0); 739 } 740 741 /* 742 * return the block group that contains the given bytenr 743 */ 744 struct btrfs_block_group_cache *btrfs_lookup_block_group( 745 struct btrfs_fs_info *info, 746 u64 bytenr) 747 { 748 return block_group_cache_tree_search(info, bytenr, 1); 749 } 750 751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 752 u64 flags) 753 { 754 struct list_head *head = &info->space_info; 755 struct btrfs_space_info *found; 756 757 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 758 759 rcu_read_lock(); 760 list_for_each_entry_rcu(found, head, list) { 761 if (found->flags & flags) { 762 rcu_read_unlock(); 763 return found; 764 } 765 } 766 rcu_read_unlock(); 767 return NULL; 768 } 769 770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, 771 u64 owner, u64 root_objectid) 772 { 773 struct btrfs_space_info *space_info; 774 u64 flags; 775 776 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 777 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 778 flags = BTRFS_BLOCK_GROUP_SYSTEM; 779 else 780 flags = BTRFS_BLOCK_GROUP_METADATA; 781 } else { 782 flags = BTRFS_BLOCK_GROUP_DATA; 783 } 784 785 space_info = __find_space_info(fs_info, flags); 786 ASSERT(space_info); 787 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 788 } 789 790 /* 791 * after adding space to the filesystem, we need to clear the full flags 792 * on all the space infos. 793 */ 794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 795 { 796 struct list_head *head = &info->space_info; 797 struct btrfs_space_info *found; 798 799 rcu_read_lock(); 800 list_for_each_entry_rcu(found, head, list) 801 found->full = 0; 802 rcu_read_unlock(); 803 } 804 805 /* simple helper to search for an existing data extent at a given offset */ 806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 807 { 808 int ret; 809 struct btrfs_key key; 810 struct btrfs_path *path; 811 812 path = btrfs_alloc_path(); 813 if (!path) 814 return -ENOMEM; 815 816 key.objectid = start; 817 key.offset = len; 818 key.type = BTRFS_EXTENT_ITEM_KEY; 819 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 820 btrfs_free_path(path); 821 return ret; 822 } 823 824 /* 825 * helper function to lookup reference count and flags of a tree block. 826 * 827 * the head node for delayed ref is used to store the sum of all the 828 * reference count modifications queued up in the rbtree. the head 829 * node may also store the extent flags to set. This way you can check 830 * to see what the reference count and extent flags would be if all of 831 * the delayed refs are not processed. 832 */ 833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 834 struct btrfs_fs_info *fs_info, u64 bytenr, 835 u64 offset, int metadata, u64 *refs, u64 *flags) 836 { 837 struct btrfs_delayed_ref_head *head; 838 struct btrfs_delayed_ref_root *delayed_refs; 839 struct btrfs_path *path; 840 struct btrfs_extent_item *ei; 841 struct extent_buffer *leaf; 842 struct btrfs_key key; 843 u32 item_size; 844 u64 num_refs; 845 u64 extent_flags; 846 int ret; 847 848 /* 849 * If we don't have skinny metadata, don't bother doing anything 850 * different 851 */ 852 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 853 offset = fs_info->nodesize; 854 metadata = 0; 855 } 856 857 path = btrfs_alloc_path(); 858 if (!path) 859 return -ENOMEM; 860 861 if (!trans) { 862 path->skip_locking = 1; 863 path->search_commit_root = 1; 864 } 865 866 search_again: 867 key.objectid = bytenr; 868 key.offset = offset; 869 if (metadata) 870 key.type = BTRFS_METADATA_ITEM_KEY; 871 else 872 key.type = BTRFS_EXTENT_ITEM_KEY; 873 874 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 875 if (ret < 0) 876 goto out_free; 877 878 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 879 if (path->slots[0]) { 880 path->slots[0]--; 881 btrfs_item_key_to_cpu(path->nodes[0], &key, 882 path->slots[0]); 883 if (key.objectid == bytenr && 884 key.type == BTRFS_EXTENT_ITEM_KEY && 885 key.offset == fs_info->nodesize) 886 ret = 0; 887 } 888 } 889 890 if (ret == 0) { 891 leaf = path->nodes[0]; 892 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 893 if (item_size >= sizeof(*ei)) { 894 ei = btrfs_item_ptr(leaf, path->slots[0], 895 struct btrfs_extent_item); 896 num_refs = btrfs_extent_refs(leaf, ei); 897 extent_flags = btrfs_extent_flags(leaf, ei); 898 } else { 899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 900 struct btrfs_extent_item_v0 *ei0; 901 BUG_ON(item_size != sizeof(*ei0)); 902 ei0 = btrfs_item_ptr(leaf, path->slots[0], 903 struct btrfs_extent_item_v0); 904 num_refs = btrfs_extent_refs_v0(leaf, ei0); 905 /* FIXME: this isn't correct for data */ 906 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 907 #else 908 BUG(); 909 #endif 910 } 911 BUG_ON(num_refs == 0); 912 } else { 913 num_refs = 0; 914 extent_flags = 0; 915 ret = 0; 916 } 917 918 if (!trans) 919 goto out; 920 921 delayed_refs = &trans->transaction->delayed_refs; 922 spin_lock(&delayed_refs->lock); 923 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 924 if (head) { 925 if (!mutex_trylock(&head->mutex)) { 926 refcount_inc(&head->node.refs); 927 spin_unlock(&delayed_refs->lock); 928 929 btrfs_release_path(path); 930 931 /* 932 * Mutex was contended, block until it's released and try 933 * again 934 */ 935 mutex_lock(&head->mutex); 936 mutex_unlock(&head->mutex); 937 btrfs_put_delayed_ref(&head->node); 938 goto search_again; 939 } 940 spin_lock(&head->lock); 941 if (head->extent_op && head->extent_op->update_flags) 942 extent_flags |= head->extent_op->flags_to_set; 943 else 944 BUG_ON(num_refs == 0); 945 946 num_refs += head->node.ref_mod; 947 spin_unlock(&head->lock); 948 mutex_unlock(&head->mutex); 949 } 950 spin_unlock(&delayed_refs->lock); 951 out: 952 WARN_ON(num_refs == 0); 953 if (refs) 954 *refs = num_refs; 955 if (flags) 956 *flags = extent_flags; 957 out_free: 958 btrfs_free_path(path); 959 return ret; 960 } 961 962 /* 963 * Back reference rules. Back refs have three main goals: 964 * 965 * 1) differentiate between all holders of references to an extent so that 966 * when a reference is dropped we can make sure it was a valid reference 967 * before freeing the extent. 968 * 969 * 2) Provide enough information to quickly find the holders of an extent 970 * if we notice a given block is corrupted or bad. 971 * 972 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 973 * maintenance. This is actually the same as #2, but with a slightly 974 * different use case. 975 * 976 * There are two kinds of back refs. The implicit back refs is optimized 977 * for pointers in non-shared tree blocks. For a given pointer in a block, 978 * back refs of this kind provide information about the block's owner tree 979 * and the pointer's key. These information allow us to find the block by 980 * b-tree searching. The full back refs is for pointers in tree blocks not 981 * referenced by their owner trees. The location of tree block is recorded 982 * in the back refs. Actually the full back refs is generic, and can be 983 * used in all cases the implicit back refs is used. The major shortcoming 984 * of the full back refs is its overhead. Every time a tree block gets 985 * COWed, we have to update back refs entry for all pointers in it. 986 * 987 * For a newly allocated tree block, we use implicit back refs for 988 * pointers in it. This means most tree related operations only involve 989 * implicit back refs. For a tree block created in old transaction, the 990 * only way to drop a reference to it is COW it. So we can detect the 991 * event that tree block loses its owner tree's reference and do the 992 * back refs conversion. 993 * 994 * When a tree block is COWed through a tree, there are four cases: 995 * 996 * The reference count of the block is one and the tree is the block's 997 * owner tree. Nothing to do in this case. 998 * 999 * The reference count of the block is one and the tree is not the 1000 * block's owner tree. In this case, full back refs is used for pointers 1001 * in the block. Remove these full back refs, add implicit back refs for 1002 * every pointers in the new block. 1003 * 1004 * The reference count of the block is greater than one and the tree is 1005 * the block's owner tree. In this case, implicit back refs is used for 1006 * pointers in the block. Add full back refs for every pointers in the 1007 * block, increase lower level extents' reference counts. The original 1008 * implicit back refs are entailed to the new block. 1009 * 1010 * The reference count of the block is greater than one and the tree is 1011 * not the block's owner tree. Add implicit back refs for every pointer in 1012 * the new block, increase lower level extents' reference count. 1013 * 1014 * Back Reference Key composing: 1015 * 1016 * The key objectid corresponds to the first byte in the extent, 1017 * The key type is used to differentiate between types of back refs. 1018 * There are different meanings of the key offset for different types 1019 * of back refs. 1020 * 1021 * File extents can be referenced by: 1022 * 1023 * - multiple snapshots, subvolumes, or different generations in one subvol 1024 * - different files inside a single subvolume 1025 * - different offsets inside a file (bookend extents in file.c) 1026 * 1027 * The extent ref structure for the implicit back refs has fields for: 1028 * 1029 * - Objectid of the subvolume root 1030 * - objectid of the file holding the reference 1031 * - original offset in the file 1032 * - how many bookend extents 1033 * 1034 * The key offset for the implicit back refs is hash of the first 1035 * three fields. 1036 * 1037 * The extent ref structure for the full back refs has field for: 1038 * 1039 * - number of pointers in the tree leaf 1040 * 1041 * The key offset for the implicit back refs is the first byte of 1042 * the tree leaf 1043 * 1044 * When a file extent is allocated, The implicit back refs is used. 1045 * the fields are filled in: 1046 * 1047 * (root_key.objectid, inode objectid, offset in file, 1) 1048 * 1049 * When a file extent is removed file truncation, we find the 1050 * corresponding implicit back refs and check the following fields: 1051 * 1052 * (btrfs_header_owner(leaf), inode objectid, offset in file) 1053 * 1054 * Btree extents can be referenced by: 1055 * 1056 * - Different subvolumes 1057 * 1058 * Both the implicit back refs and the full back refs for tree blocks 1059 * only consist of key. The key offset for the implicit back refs is 1060 * objectid of block's owner tree. The key offset for the full back refs 1061 * is the first byte of parent block. 1062 * 1063 * When implicit back refs is used, information about the lowest key and 1064 * level of the tree block are required. These information are stored in 1065 * tree block info structure. 1066 */ 1067 1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 1070 struct btrfs_fs_info *fs_info, 1071 struct btrfs_path *path, 1072 u64 owner, u32 extra_size) 1073 { 1074 struct btrfs_root *root = fs_info->extent_root; 1075 struct btrfs_extent_item *item; 1076 struct btrfs_extent_item_v0 *ei0; 1077 struct btrfs_extent_ref_v0 *ref0; 1078 struct btrfs_tree_block_info *bi; 1079 struct extent_buffer *leaf; 1080 struct btrfs_key key; 1081 struct btrfs_key found_key; 1082 u32 new_size = sizeof(*item); 1083 u64 refs; 1084 int ret; 1085 1086 leaf = path->nodes[0]; 1087 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1088 1089 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1090 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1091 struct btrfs_extent_item_v0); 1092 refs = btrfs_extent_refs_v0(leaf, ei0); 1093 1094 if (owner == (u64)-1) { 1095 while (1) { 1096 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1097 ret = btrfs_next_leaf(root, path); 1098 if (ret < 0) 1099 return ret; 1100 BUG_ON(ret > 0); /* Corruption */ 1101 leaf = path->nodes[0]; 1102 } 1103 btrfs_item_key_to_cpu(leaf, &found_key, 1104 path->slots[0]); 1105 BUG_ON(key.objectid != found_key.objectid); 1106 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1107 path->slots[0]++; 1108 continue; 1109 } 1110 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1111 struct btrfs_extent_ref_v0); 1112 owner = btrfs_ref_objectid_v0(leaf, ref0); 1113 break; 1114 } 1115 } 1116 btrfs_release_path(path); 1117 1118 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1119 new_size += sizeof(*bi); 1120 1121 new_size -= sizeof(*ei0); 1122 ret = btrfs_search_slot(trans, root, &key, path, 1123 new_size + extra_size, 1); 1124 if (ret < 0) 1125 return ret; 1126 BUG_ON(ret); /* Corruption */ 1127 1128 btrfs_extend_item(fs_info, path, new_size); 1129 1130 leaf = path->nodes[0]; 1131 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1132 btrfs_set_extent_refs(leaf, item, refs); 1133 /* FIXME: get real generation */ 1134 btrfs_set_extent_generation(leaf, item, 0); 1135 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1136 btrfs_set_extent_flags(leaf, item, 1137 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1138 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1139 bi = (struct btrfs_tree_block_info *)(item + 1); 1140 /* FIXME: get first key of the block */ 1141 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi)); 1142 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1143 } else { 1144 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1145 } 1146 btrfs_mark_buffer_dirty(leaf); 1147 return 0; 1148 } 1149 #endif 1150 1151 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1152 { 1153 u32 high_crc = ~(u32)0; 1154 u32 low_crc = ~(u32)0; 1155 __le64 lenum; 1156 1157 lenum = cpu_to_le64(root_objectid); 1158 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1159 lenum = cpu_to_le64(owner); 1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1161 lenum = cpu_to_le64(offset); 1162 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1163 1164 return ((u64)high_crc << 31) ^ (u64)low_crc; 1165 } 1166 1167 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1168 struct btrfs_extent_data_ref *ref) 1169 { 1170 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1171 btrfs_extent_data_ref_objectid(leaf, ref), 1172 btrfs_extent_data_ref_offset(leaf, ref)); 1173 } 1174 1175 static int match_extent_data_ref(struct extent_buffer *leaf, 1176 struct btrfs_extent_data_ref *ref, 1177 u64 root_objectid, u64 owner, u64 offset) 1178 { 1179 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1180 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1181 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1182 return 0; 1183 return 1; 1184 } 1185 1186 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1187 struct btrfs_fs_info *fs_info, 1188 struct btrfs_path *path, 1189 u64 bytenr, u64 parent, 1190 u64 root_objectid, 1191 u64 owner, u64 offset) 1192 { 1193 struct btrfs_root *root = fs_info->extent_root; 1194 struct btrfs_key key; 1195 struct btrfs_extent_data_ref *ref; 1196 struct extent_buffer *leaf; 1197 u32 nritems; 1198 int ret; 1199 int recow; 1200 int err = -ENOENT; 1201 1202 key.objectid = bytenr; 1203 if (parent) { 1204 key.type = BTRFS_SHARED_DATA_REF_KEY; 1205 key.offset = parent; 1206 } else { 1207 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1208 key.offset = hash_extent_data_ref(root_objectid, 1209 owner, offset); 1210 } 1211 again: 1212 recow = 0; 1213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1214 if (ret < 0) { 1215 err = ret; 1216 goto fail; 1217 } 1218 1219 if (parent) { 1220 if (!ret) 1221 return 0; 1222 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1223 key.type = BTRFS_EXTENT_REF_V0_KEY; 1224 btrfs_release_path(path); 1225 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1226 if (ret < 0) { 1227 err = ret; 1228 goto fail; 1229 } 1230 if (!ret) 1231 return 0; 1232 #endif 1233 goto fail; 1234 } 1235 1236 leaf = path->nodes[0]; 1237 nritems = btrfs_header_nritems(leaf); 1238 while (1) { 1239 if (path->slots[0] >= nritems) { 1240 ret = btrfs_next_leaf(root, path); 1241 if (ret < 0) 1242 err = ret; 1243 if (ret) 1244 goto fail; 1245 1246 leaf = path->nodes[0]; 1247 nritems = btrfs_header_nritems(leaf); 1248 recow = 1; 1249 } 1250 1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1252 if (key.objectid != bytenr || 1253 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1254 goto fail; 1255 1256 ref = btrfs_item_ptr(leaf, path->slots[0], 1257 struct btrfs_extent_data_ref); 1258 1259 if (match_extent_data_ref(leaf, ref, root_objectid, 1260 owner, offset)) { 1261 if (recow) { 1262 btrfs_release_path(path); 1263 goto again; 1264 } 1265 err = 0; 1266 break; 1267 } 1268 path->slots[0]++; 1269 } 1270 fail: 1271 return err; 1272 } 1273 1274 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1275 struct btrfs_fs_info *fs_info, 1276 struct btrfs_path *path, 1277 u64 bytenr, u64 parent, 1278 u64 root_objectid, u64 owner, 1279 u64 offset, int refs_to_add) 1280 { 1281 struct btrfs_root *root = fs_info->extent_root; 1282 struct btrfs_key key; 1283 struct extent_buffer *leaf; 1284 u32 size; 1285 u32 num_refs; 1286 int ret; 1287 1288 key.objectid = bytenr; 1289 if (parent) { 1290 key.type = BTRFS_SHARED_DATA_REF_KEY; 1291 key.offset = parent; 1292 size = sizeof(struct btrfs_shared_data_ref); 1293 } else { 1294 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1295 key.offset = hash_extent_data_ref(root_objectid, 1296 owner, offset); 1297 size = sizeof(struct btrfs_extent_data_ref); 1298 } 1299 1300 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1301 if (ret && ret != -EEXIST) 1302 goto fail; 1303 1304 leaf = path->nodes[0]; 1305 if (parent) { 1306 struct btrfs_shared_data_ref *ref; 1307 ref = btrfs_item_ptr(leaf, path->slots[0], 1308 struct btrfs_shared_data_ref); 1309 if (ret == 0) { 1310 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1311 } else { 1312 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1313 num_refs += refs_to_add; 1314 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1315 } 1316 } else { 1317 struct btrfs_extent_data_ref *ref; 1318 while (ret == -EEXIST) { 1319 ref = btrfs_item_ptr(leaf, path->slots[0], 1320 struct btrfs_extent_data_ref); 1321 if (match_extent_data_ref(leaf, ref, root_objectid, 1322 owner, offset)) 1323 break; 1324 btrfs_release_path(path); 1325 key.offset++; 1326 ret = btrfs_insert_empty_item(trans, root, path, &key, 1327 size); 1328 if (ret && ret != -EEXIST) 1329 goto fail; 1330 1331 leaf = path->nodes[0]; 1332 } 1333 ref = btrfs_item_ptr(leaf, path->slots[0], 1334 struct btrfs_extent_data_ref); 1335 if (ret == 0) { 1336 btrfs_set_extent_data_ref_root(leaf, ref, 1337 root_objectid); 1338 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1339 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1340 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1341 } else { 1342 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1343 num_refs += refs_to_add; 1344 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1345 } 1346 } 1347 btrfs_mark_buffer_dirty(leaf); 1348 ret = 0; 1349 fail: 1350 btrfs_release_path(path); 1351 return ret; 1352 } 1353 1354 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1355 struct btrfs_fs_info *fs_info, 1356 struct btrfs_path *path, 1357 int refs_to_drop, int *last_ref) 1358 { 1359 struct btrfs_key key; 1360 struct btrfs_extent_data_ref *ref1 = NULL; 1361 struct btrfs_shared_data_ref *ref2 = NULL; 1362 struct extent_buffer *leaf; 1363 u32 num_refs = 0; 1364 int ret = 0; 1365 1366 leaf = path->nodes[0]; 1367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1368 1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1370 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1371 struct btrfs_extent_data_ref); 1372 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1373 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1374 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1375 struct btrfs_shared_data_ref); 1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1377 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1378 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1379 struct btrfs_extent_ref_v0 *ref0; 1380 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1381 struct btrfs_extent_ref_v0); 1382 num_refs = btrfs_ref_count_v0(leaf, ref0); 1383 #endif 1384 } else { 1385 BUG(); 1386 } 1387 1388 BUG_ON(num_refs < refs_to_drop); 1389 num_refs -= refs_to_drop; 1390 1391 if (num_refs == 0) { 1392 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1393 *last_ref = 1; 1394 } else { 1395 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1396 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1397 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1398 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1399 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1400 else { 1401 struct btrfs_extent_ref_v0 *ref0; 1402 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1403 struct btrfs_extent_ref_v0); 1404 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1405 } 1406 #endif 1407 btrfs_mark_buffer_dirty(leaf); 1408 } 1409 return ret; 1410 } 1411 1412 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 1413 struct btrfs_extent_inline_ref *iref) 1414 { 1415 struct btrfs_key key; 1416 struct extent_buffer *leaf; 1417 struct btrfs_extent_data_ref *ref1; 1418 struct btrfs_shared_data_ref *ref2; 1419 u32 num_refs = 0; 1420 1421 leaf = path->nodes[0]; 1422 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1423 if (iref) { 1424 if (btrfs_extent_inline_ref_type(leaf, iref) == 1425 BTRFS_EXTENT_DATA_REF_KEY) { 1426 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1427 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1428 } else { 1429 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1430 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1431 } 1432 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1433 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1434 struct btrfs_extent_data_ref); 1435 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1436 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1437 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1438 struct btrfs_shared_data_ref); 1439 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1440 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1441 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1442 struct btrfs_extent_ref_v0 *ref0; 1443 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1444 struct btrfs_extent_ref_v0); 1445 num_refs = btrfs_ref_count_v0(leaf, ref0); 1446 #endif 1447 } else { 1448 WARN_ON(1); 1449 } 1450 return num_refs; 1451 } 1452 1453 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1454 struct btrfs_fs_info *fs_info, 1455 struct btrfs_path *path, 1456 u64 bytenr, u64 parent, 1457 u64 root_objectid) 1458 { 1459 struct btrfs_root *root = fs_info->extent_root; 1460 struct btrfs_key key; 1461 int ret; 1462 1463 key.objectid = bytenr; 1464 if (parent) { 1465 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1466 key.offset = parent; 1467 } else { 1468 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1469 key.offset = root_objectid; 1470 } 1471 1472 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1473 if (ret > 0) 1474 ret = -ENOENT; 1475 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1476 if (ret == -ENOENT && parent) { 1477 btrfs_release_path(path); 1478 key.type = BTRFS_EXTENT_REF_V0_KEY; 1479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1480 if (ret > 0) 1481 ret = -ENOENT; 1482 } 1483 #endif 1484 return ret; 1485 } 1486 1487 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1488 struct btrfs_fs_info *fs_info, 1489 struct btrfs_path *path, 1490 u64 bytenr, u64 parent, 1491 u64 root_objectid) 1492 { 1493 struct btrfs_key key; 1494 int ret; 1495 1496 key.objectid = bytenr; 1497 if (parent) { 1498 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1499 key.offset = parent; 1500 } else { 1501 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1502 key.offset = root_objectid; 1503 } 1504 1505 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, 1506 path, &key, 0); 1507 btrfs_release_path(path); 1508 return ret; 1509 } 1510 1511 static inline int extent_ref_type(u64 parent, u64 owner) 1512 { 1513 int type; 1514 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1515 if (parent > 0) 1516 type = BTRFS_SHARED_BLOCK_REF_KEY; 1517 else 1518 type = BTRFS_TREE_BLOCK_REF_KEY; 1519 } else { 1520 if (parent > 0) 1521 type = BTRFS_SHARED_DATA_REF_KEY; 1522 else 1523 type = BTRFS_EXTENT_DATA_REF_KEY; 1524 } 1525 return type; 1526 } 1527 1528 static int find_next_key(struct btrfs_path *path, int level, 1529 struct btrfs_key *key) 1530 1531 { 1532 for (; level < BTRFS_MAX_LEVEL; level++) { 1533 if (!path->nodes[level]) 1534 break; 1535 if (path->slots[level] + 1 >= 1536 btrfs_header_nritems(path->nodes[level])) 1537 continue; 1538 if (level == 0) 1539 btrfs_item_key_to_cpu(path->nodes[level], key, 1540 path->slots[level] + 1); 1541 else 1542 btrfs_node_key_to_cpu(path->nodes[level], key, 1543 path->slots[level] + 1); 1544 return 0; 1545 } 1546 return 1; 1547 } 1548 1549 /* 1550 * look for inline back ref. if back ref is found, *ref_ret is set 1551 * to the address of inline back ref, and 0 is returned. 1552 * 1553 * if back ref isn't found, *ref_ret is set to the address where it 1554 * should be inserted, and -ENOENT is returned. 1555 * 1556 * if insert is true and there are too many inline back refs, the path 1557 * points to the extent item, and -EAGAIN is returned. 1558 * 1559 * NOTE: inline back refs are ordered in the same way that back ref 1560 * items in the tree are ordered. 1561 */ 1562 static noinline_for_stack 1563 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1564 struct btrfs_fs_info *fs_info, 1565 struct btrfs_path *path, 1566 struct btrfs_extent_inline_ref **ref_ret, 1567 u64 bytenr, u64 num_bytes, 1568 u64 parent, u64 root_objectid, 1569 u64 owner, u64 offset, int insert) 1570 { 1571 struct btrfs_root *root = fs_info->extent_root; 1572 struct btrfs_key key; 1573 struct extent_buffer *leaf; 1574 struct btrfs_extent_item *ei; 1575 struct btrfs_extent_inline_ref *iref; 1576 u64 flags; 1577 u64 item_size; 1578 unsigned long ptr; 1579 unsigned long end; 1580 int extra_size; 1581 int type; 1582 int want; 1583 int ret; 1584 int err = 0; 1585 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 1586 1587 key.objectid = bytenr; 1588 key.type = BTRFS_EXTENT_ITEM_KEY; 1589 key.offset = num_bytes; 1590 1591 want = extent_ref_type(parent, owner); 1592 if (insert) { 1593 extra_size = btrfs_extent_inline_ref_size(want); 1594 path->keep_locks = 1; 1595 } else 1596 extra_size = -1; 1597 1598 /* 1599 * Owner is our parent level, so we can just add one to get the level 1600 * for the block we are interested in. 1601 */ 1602 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1603 key.type = BTRFS_METADATA_ITEM_KEY; 1604 key.offset = owner; 1605 } 1606 1607 again: 1608 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1609 if (ret < 0) { 1610 err = ret; 1611 goto out; 1612 } 1613 1614 /* 1615 * We may be a newly converted file system which still has the old fat 1616 * extent entries for metadata, so try and see if we have one of those. 1617 */ 1618 if (ret > 0 && skinny_metadata) { 1619 skinny_metadata = false; 1620 if (path->slots[0]) { 1621 path->slots[0]--; 1622 btrfs_item_key_to_cpu(path->nodes[0], &key, 1623 path->slots[0]); 1624 if (key.objectid == bytenr && 1625 key.type == BTRFS_EXTENT_ITEM_KEY && 1626 key.offset == num_bytes) 1627 ret = 0; 1628 } 1629 if (ret) { 1630 key.objectid = bytenr; 1631 key.type = BTRFS_EXTENT_ITEM_KEY; 1632 key.offset = num_bytes; 1633 btrfs_release_path(path); 1634 goto again; 1635 } 1636 } 1637 1638 if (ret && !insert) { 1639 err = -ENOENT; 1640 goto out; 1641 } else if (WARN_ON(ret)) { 1642 err = -EIO; 1643 goto out; 1644 } 1645 1646 leaf = path->nodes[0]; 1647 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1648 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1649 if (item_size < sizeof(*ei)) { 1650 if (!insert) { 1651 err = -ENOENT; 1652 goto out; 1653 } 1654 ret = convert_extent_item_v0(trans, fs_info, path, owner, 1655 extra_size); 1656 if (ret < 0) { 1657 err = ret; 1658 goto out; 1659 } 1660 leaf = path->nodes[0]; 1661 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1662 } 1663 #endif 1664 BUG_ON(item_size < sizeof(*ei)); 1665 1666 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1667 flags = btrfs_extent_flags(leaf, ei); 1668 1669 ptr = (unsigned long)(ei + 1); 1670 end = (unsigned long)ei + item_size; 1671 1672 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1673 ptr += sizeof(struct btrfs_tree_block_info); 1674 BUG_ON(ptr > end); 1675 } 1676 1677 err = -ENOENT; 1678 while (1) { 1679 if (ptr >= end) { 1680 WARN_ON(ptr > end); 1681 break; 1682 } 1683 iref = (struct btrfs_extent_inline_ref *)ptr; 1684 type = btrfs_extent_inline_ref_type(leaf, iref); 1685 if (want < type) 1686 break; 1687 if (want > type) { 1688 ptr += btrfs_extent_inline_ref_size(type); 1689 continue; 1690 } 1691 1692 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1693 struct btrfs_extent_data_ref *dref; 1694 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1695 if (match_extent_data_ref(leaf, dref, root_objectid, 1696 owner, offset)) { 1697 err = 0; 1698 break; 1699 } 1700 if (hash_extent_data_ref_item(leaf, dref) < 1701 hash_extent_data_ref(root_objectid, owner, offset)) 1702 break; 1703 } else { 1704 u64 ref_offset; 1705 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1706 if (parent > 0) { 1707 if (parent == ref_offset) { 1708 err = 0; 1709 break; 1710 } 1711 if (ref_offset < parent) 1712 break; 1713 } else { 1714 if (root_objectid == ref_offset) { 1715 err = 0; 1716 break; 1717 } 1718 if (ref_offset < root_objectid) 1719 break; 1720 } 1721 } 1722 ptr += btrfs_extent_inline_ref_size(type); 1723 } 1724 if (err == -ENOENT && insert) { 1725 if (item_size + extra_size >= 1726 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1727 err = -EAGAIN; 1728 goto out; 1729 } 1730 /* 1731 * To add new inline back ref, we have to make sure 1732 * there is no corresponding back ref item. 1733 * For simplicity, we just do not add new inline back 1734 * ref if there is any kind of item for this block 1735 */ 1736 if (find_next_key(path, 0, &key) == 0 && 1737 key.objectid == bytenr && 1738 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1739 err = -EAGAIN; 1740 goto out; 1741 } 1742 } 1743 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1744 out: 1745 if (insert) { 1746 path->keep_locks = 0; 1747 btrfs_unlock_up_safe(path, 1); 1748 } 1749 return err; 1750 } 1751 1752 /* 1753 * helper to add new inline back ref 1754 */ 1755 static noinline_for_stack 1756 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, 1757 struct btrfs_path *path, 1758 struct btrfs_extent_inline_ref *iref, 1759 u64 parent, u64 root_objectid, 1760 u64 owner, u64 offset, int refs_to_add, 1761 struct btrfs_delayed_extent_op *extent_op) 1762 { 1763 struct extent_buffer *leaf; 1764 struct btrfs_extent_item *ei; 1765 unsigned long ptr; 1766 unsigned long end; 1767 unsigned long item_offset; 1768 u64 refs; 1769 int size; 1770 int type; 1771 1772 leaf = path->nodes[0]; 1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1774 item_offset = (unsigned long)iref - (unsigned long)ei; 1775 1776 type = extent_ref_type(parent, owner); 1777 size = btrfs_extent_inline_ref_size(type); 1778 1779 btrfs_extend_item(fs_info, path, size); 1780 1781 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1782 refs = btrfs_extent_refs(leaf, ei); 1783 refs += refs_to_add; 1784 btrfs_set_extent_refs(leaf, ei, refs); 1785 if (extent_op) 1786 __run_delayed_extent_op(extent_op, leaf, ei); 1787 1788 ptr = (unsigned long)ei + item_offset; 1789 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1790 if (ptr < end - size) 1791 memmove_extent_buffer(leaf, ptr + size, ptr, 1792 end - size - ptr); 1793 1794 iref = (struct btrfs_extent_inline_ref *)ptr; 1795 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1796 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1797 struct btrfs_extent_data_ref *dref; 1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1799 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1800 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1801 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1802 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1803 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1804 struct btrfs_shared_data_ref *sref; 1805 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1806 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1807 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1808 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1809 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1810 } else { 1811 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1812 } 1813 btrfs_mark_buffer_dirty(leaf); 1814 } 1815 1816 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1817 struct btrfs_fs_info *fs_info, 1818 struct btrfs_path *path, 1819 struct btrfs_extent_inline_ref **ref_ret, 1820 u64 bytenr, u64 num_bytes, u64 parent, 1821 u64 root_objectid, u64 owner, u64 offset) 1822 { 1823 int ret; 1824 1825 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret, 1826 bytenr, num_bytes, parent, 1827 root_objectid, owner, offset, 0); 1828 if (ret != -ENOENT) 1829 return ret; 1830 1831 btrfs_release_path(path); 1832 *ref_ret = NULL; 1833 1834 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1835 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr, 1836 parent, root_objectid); 1837 } else { 1838 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr, 1839 parent, root_objectid, owner, 1840 offset); 1841 } 1842 return ret; 1843 } 1844 1845 /* 1846 * helper to update/remove inline back ref 1847 */ 1848 static noinline_for_stack 1849 void update_inline_extent_backref(struct btrfs_fs_info *fs_info, 1850 struct btrfs_path *path, 1851 struct btrfs_extent_inline_ref *iref, 1852 int refs_to_mod, 1853 struct btrfs_delayed_extent_op *extent_op, 1854 int *last_ref) 1855 { 1856 struct extent_buffer *leaf; 1857 struct btrfs_extent_item *ei; 1858 struct btrfs_extent_data_ref *dref = NULL; 1859 struct btrfs_shared_data_ref *sref = NULL; 1860 unsigned long ptr; 1861 unsigned long end; 1862 u32 item_size; 1863 int size; 1864 int type; 1865 u64 refs; 1866 1867 leaf = path->nodes[0]; 1868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1869 refs = btrfs_extent_refs(leaf, ei); 1870 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1871 refs += refs_to_mod; 1872 btrfs_set_extent_refs(leaf, ei, refs); 1873 if (extent_op) 1874 __run_delayed_extent_op(extent_op, leaf, ei); 1875 1876 type = btrfs_extent_inline_ref_type(leaf, iref); 1877 1878 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1879 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1880 refs = btrfs_extent_data_ref_count(leaf, dref); 1881 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1882 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1883 refs = btrfs_shared_data_ref_count(leaf, sref); 1884 } else { 1885 refs = 1; 1886 BUG_ON(refs_to_mod != -1); 1887 } 1888 1889 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1890 refs += refs_to_mod; 1891 1892 if (refs > 0) { 1893 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1894 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1895 else 1896 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1897 } else { 1898 *last_ref = 1; 1899 size = btrfs_extent_inline_ref_size(type); 1900 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1901 ptr = (unsigned long)iref; 1902 end = (unsigned long)ei + item_size; 1903 if (ptr + size < end) 1904 memmove_extent_buffer(leaf, ptr, ptr + size, 1905 end - ptr - size); 1906 item_size -= size; 1907 btrfs_truncate_item(fs_info, path, item_size, 1); 1908 } 1909 btrfs_mark_buffer_dirty(leaf); 1910 } 1911 1912 static noinline_for_stack 1913 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1914 struct btrfs_fs_info *fs_info, 1915 struct btrfs_path *path, 1916 u64 bytenr, u64 num_bytes, u64 parent, 1917 u64 root_objectid, u64 owner, 1918 u64 offset, int refs_to_add, 1919 struct btrfs_delayed_extent_op *extent_op) 1920 { 1921 struct btrfs_extent_inline_ref *iref; 1922 int ret; 1923 1924 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref, 1925 bytenr, num_bytes, parent, 1926 root_objectid, owner, offset, 1); 1927 if (ret == 0) { 1928 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1929 update_inline_extent_backref(fs_info, path, iref, 1930 refs_to_add, extent_op, NULL); 1931 } else if (ret == -ENOENT) { 1932 setup_inline_extent_backref(fs_info, path, iref, parent, 1933 root_objectid, owner, offset, 1934 refs_to_add, extent_op); 1935 ret = 0; 1936 } 1937 return ret; 1938 } 1939 1940 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1941 struct btrfs_fs_info *fs_info, 1942 struct btrfs_path *path, 1943 u64 bytenr, u64 parent, u64 root_objectid, 1944 u64 owner, u64 offset, int refs_to_add) 1945 { 1946 int ret; 1947 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1948 BUG_ON(refs_to_add != 1); 1949 ret = insert_tree_block_ref(trans, fs_info, path, bytenr, 1950 parent, root_objectid); 1951 } else { 1952 ret = insert_extent_data_ref(trans, fs_info, path, bytenr, 1953 parent, root_objectid, 1954 owner, offset, refs_to_add); 1955 } 1956 return ret; 1957 } 1958 1959 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1960 struct btrfs_fs_info *fs_info, 1961 struct btrfs_path *path, 1962 struct btrfs_extent_inline_ref *iref, 1963 int refs_to_drop, int is_data, int *last_ref) 1964 { 1965 int ret = 0; 1966 1967 BUG_ON(!is_data && refs_to_drop != 1); 1968 if (iref) { 1969 update_inline_extent_backref(fs_info, path, iref, 1970 -refs_to_drop, NULL, last_ref); 1971 } else if (is_data) { 1972 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop, 1973 last_ref); 1974 } else { 1975 *last_ref = 1; 1976 ret = btrfs_del_item(trans, fs_info->extent_root, path); 1977 } 1978 return ret; 1979 } 1980 1981 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 1982 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1983 u64 *discarded_bytes) 1984 { 1985 int j, ret = 0; 1986 u64 bytes_left, end; 1987 u64 aligned_start = ALIGN(start, 1 << 9); 1988 1989 if (WARN_ON(start != aligned_start)) { 1990 len -= aligned_start - start; 1991 len = round_down(len, 1 << 9); 1992 start = aligned_start; 1993 } 1994 1995 *discarded_bytes = 0; 1996 1997 if (!len) 1998 return 0; 1999 2000 end = start + len; 2001 bytes_left = len; 2002 2003 /* Skip any superblocks on this device. */ 2004 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 2005 u64 sb_start = btrfs_sb_offset(j); 2006 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 2007 u64 size = sb_start - start; 2008 2009 if (!in_range(sb_start, start, bytes_left) && 2010 !in_range(sb_end, start, bytes_left) && 2011 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 2012 continue; 2013 2014 /* 2015 * Superblock spans beginning of range. Adjust start and 2016 * try again. 2017 */ 2018 if (sb_start <= start) { 2019 start += sb_end - start; 2020 if (start > end) { 2021 bytes_left = 0; 2022 break; 2023 } 2024 bytes_left = end - start; 2025 continue; 2026 } 2027 2028 if (size) { 2029 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, 2030 GFP_NOFS, 0); 2031 if (!ret) 2032 *discarded_bytes += size; 2033 else if (ret != -EOPNOTSUPP) 2034 return ret; 2035 } 2036 2037 start = sb_end; 2038 if (start > end) { 2039 bytes_left = 0; 2040 break; 2041 } 2042 bytes_left = end - start; 2043 } 2044 2045 if (bytes_left) { 2046 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, 2047 GFP_NOFS, 0); 2048 if (!ret) 2049 *discarded_bytes += bytes_left; 2050 } 2051 return ret; 2052 } 2053 2054 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2055 u64 num_bytes, u64 *actual_bytes) 2056 { 2057 int ret; 2058 u64 discarded_bytes = 0; 2059 struct btrfs_bio *bbio = NULL; 2060 2061 2062 /* 2063 * Avoid races with device replace and make sure our bbio has devices 2064 * associated to its stripes that don't go away while we are discarding. 2065 */ 2066 btrfs_bio_counter_inc_blocked(fs_info); 2067 /* Tell the block device(s) that the sectors can be discarded */ 2068 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, 2069 &bbio, 0); 2070 /* Error condition is -ENOMEM */ 2071 if (!ret) { 2072 struct btrfs_bio_stripe *stripe = bbio->stripes; 2073 int i; 2074 2075 2076 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 2077 u64 bytes; 2078 if (!stripe->dev->can_discard) 2079 continue; 2080 2081 ret = btrfs_issue_discard(stripe->dev->bdev, 2082 stripe->physical, 2083 stripe->length, 2084 &bytes); 2085 if (!ret) 2086 discarded_bytes += bytes; 2087 else if (ret != -EOPNOTSUPP) 2088 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 2089 2090 /* 2091 * Just in case we get back EOPNOTSUPP for some reason, 2092 * just ignore the return value so we don't screw up 2093 * people calling discard_extent. 2094 */ 2095 ret = 0; 2096 } 2097 btrfs_put_bbio(bbio); 2098 } 2099 btrfs_bio_counter_dec(fs_info); 2100 2101 if (actual_bytes) 2102 *actual_bytes = discarded_bytes; 2103 2104 2105 if (ret == -EOPNOTSUPP) 2106 ret = 0; 2107 return ret; 2108 } 2109 2110 /* Can return -ENOMEM */ 2111 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2112 struct btrfs_fs_info *fs_info, 2113 u64 bytenr, u64 num_bytes, u64 parent, 2114 u64 root_objectid, u64 owner, u64 offset) 2115 { 2116 int old_ref_mod, new_ref_mod; 2117 int ret; 2118 2119 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 2120 root_objectid == BTRFS_TREE_LOG_OBJECTID); 2121 2122 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 2123 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 2124 num_bytes, parent, 2125 root_objectid, (int)owner, 2126 BTRFS_ADD_DELAYED_REF, NULL, 2127 &old_ref_mod, &new_ref_mod); 2128 } else { 2129 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 2130 num_bytes, parent, 2131 root_objectid, owner, offset, 2132 0, BTRFS_ADD_DELAYED_REF, 2133 &old_ref_mod, &new_ref_mod); 2134 } 2135 2136 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) 2137 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid); 2138 2139 return ret; 2140 } 2141 2142 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2143 struct btrfs_fs_info *fs_info, 2144 struct btrfs_delayed_ref_node *node, 2145 u64 parent, u64 root_objectid, 2146 u64 owner, u64 offset, int refs_to_add, 2147 struct btrfs_delayed_extent_op *extent_op) 2148 { 2149 struct btrfs_path *path; 2150 struct extent_buffer *leaf; 2151 struct btrfs_extent_item *item; 2152 struct btrfs_key key; 2153 u64 bytenr = node->bytenr; 2154 u64 num_bytes = node->num_bytes; 2155 u64 refs; 2156 int ret; 2157 2158 path = btrfs_alloc_path(); 2159 if (!path) 2160 return -ENOMEM; 2161 2162 path->reada = READA_FORWARD; 2163 path->leave_spinning = 1; 2164 /* this will setup the path even if it fails to insert the back ref */ 2165 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr, 2166 num_bytes, parent, root_objectid, 2167 owner, offset, 2168 refs_to_add, extent_op); 2169 if ((ret < 0 && ret != -EAGAIN) || !ret) 2170 goto out; 2171 2172 /* 2173 * Ok we had -EAGAIN which means we didn't have space to insert and 2174 * inline extent ref, so just update the reference count and add a 2175 * normal backref. 2176 */ 2177 leaf = path->nodes[0]; 2178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2179 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2180 refs = btrfs_extent_refs(leaf, item); 2181 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2182 if (extent_op) 2183 __run_delayed_extent_op(extent_op, leaf, item); 2184 2185 btrfs_mark_buffer_dirty(leaf); 2186 btrfs_release_path(path); 2187 2188 path->reada = READA_FORWARD; 2189 path->leave_spinning = 1; 2190 /* now insert the actual backref */ 2191 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent, 2192 root_objectid, owner, offset, refs_to_add); 2193 if (ret) 2194 btrfs_abort_transaction(trans, ret); 2195 out: 2196 btrfs_free_path(path); 2197 return ret; 2198 } 2199 2200 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2201 struct btrfs_fs_info *fs_info, 2202 struct btrfs_delayed_ref_node *node, 2203 struct btrfs_delayed_extent_op *extent_op, 2204 int insert_reserved) 2205 { 2206 int ret = 0; 2207 struct btrfs_delayed_data_ref *ref; 2208 struct btrfs_key ins; 2209 u64 parent = 0; 2210 u64 ref_root = 0; 2211 u64 flags = 0; 2212 2213 ins.objectid = node->bytenr; 2214 ins.offset = node->num_bytes; 2215 ins.type = BTRFS_EXTENT_ITEM_KEY; 2216 2217 ref = btrfs_delayed_node_to_data_ref(node); 2218 trace_run_delayed_data_ref(fs_info, node, ref, node->action); 2219 2220 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2221 parent = ref->parent; 2222 ref_root = ref->root; 2223 2224 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2225 if (extent_op) 2226 flags |= extent_op->flags_to_set; 2227 ret = alloc_reserved_file_extent(trans, fs_info, 2228 parent, ref_root, flags, 2229 ref->objectid, ref->offset, 2230 &ins, node->ref_mod); 2231 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2232 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent, 2233 ref_root, ref->objectid, 2234 ref->offset, node->ref_mod, 2235 extent_op); 2236 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2237 ret = __btrfs_free_extent(trans, fs_info, node, parent, 2238 ref_root, ref->objectid, 2239 ref->offset, node->ref_mod, 2240 extent_op); 2241 } else { 2242 BUG(); 2243 } 2244 return ret; 2245 } 2246 2247 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2248 struct extent_buffer *leaf, 2249 struct btrfs_extent_item *ei) 2250 { 2251 u64 flags = btrfs_extent_flags(leaf, ei); 2252 if (extent_op->update_flags) { 2253 flags |= extent_op->flags_to_set; 2254 btrfs_set_extent_flags(leaf, ei, flags); 2255 } 2256 2257 if (extent_op->update_key) { 2258 struct btrfs_tree_block_info *bi; 2259 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2260 bi = (struct btrfs_tree_block_info *)(ei + 1); 2261 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2262 } 2263 } 2264 2265 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2266 struct btrfs_fs_info *fs_info, 2267 struct btrfs_delayed_ref_node *node, 2268 struct btrfs_delayed_extent_op *extent_op) 2269 { 2270 struct btrfs_key key; 2271 struct btrfs_path *path; 2272 struct btrfs_extent_item *ei; 2273 struct extent_buffer *leaf; 2274 u32 item_size; 2275 int ret; 2276 int err = 0; 2277 int metadata = !extent_op->is_data; 2278 2279 if (trans->aborted) 2280 return 0; 2281 2282 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2283 metadata = 0; 2284 2285 path = btrfs_alloc_path(); 2286 if (!path) 2287 return -ENOMEM; 2288 2289 key.objectid = node->bytenr; 2290 2291 if (metadata) { 2292 key.type = BTRFS_METADATA_ITEM_KEY; 2293 key.offset = extent_op->level; 2294 } else { 2295 key.type = BTRFS_EXTENT_ITEM_KEY; 2296 key.offset = node->num_bytes; 2297 } 2298 2299 again: 2300 path->reada = READA_FORWARD; 2301 path->leave_spinning = 1; 2302 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); 2303 if (ret < 0) { 2304 err = ret; 2305 goto out; 2306 } 2307 if (ret > 0) { 2308 if (metadata) { 2309 if (path->slots[0] > 0) { 2310 path->slots[0]--; 2311 btrfs_item_key_to_cpu(path->nodes[0], &key, 2312 path->slots[0]); 2313 if (key.objectid == node->bytenr && 2314 key.type == BTRFS_EXTENT_ITEM_KEY && 2315 key.offset == node->num_bytes) 2316 ret = 0; 2317 } 2318 if (ret > 0) { 2319 btrfs_release_path(path); 2320 metadata = 0; 2321 2322 key.objectid = node->bytenr; 2323 key.offset = node->num_bytes; 2324 key.type = BTRFS_EXTENT_ITEM_KEY; 2325 goto again; 2326 } 2327 } else { 2328 err = -EIO; 2329 goto out; 2330 } 2331 } 2332 2333 leaf = path->nodes[0]; 2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2336 if (item_size < sizeof(*ei)) { 2337 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0); 2338 if (ret < 0) { 2339 err = ret; 2340 goto out; 2341 } 2342 leaf = path->nodes[0]; 2343 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2344 } 2345 #endif 2346 BUG_ON(item_size < sizeof(*ei)); 2347 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2348 __run_delayed_extent_op(extent_op, leaf, ei); 2349 2350 btrfs_mark_buffer_dirty(leaf); 2351 out: 2352 btrfs_free_path(path); 2353 return err; 2354 } 2355 2356 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2357 struct btrfs_fs_info *fs_info, 2358 struct btrfs_delayed_ref_node *node, 2359 struct btrfs_delayed_extent_op *extent_op, 2360 int insert_reserved) 2361 { 2362 int ret = 0; 2363 struct btrfs_delayed_tree_ref *ref; 2364 struct btrfs_key ins; 2365 u64 parent = 0; 2366 u64 ref_root = 0; 2367 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2368 2369 ref = btrfs_delayed_node_to_tree_ref(node); 2370 trace_run_delayed_tree_ref(fs_info, node, ref, node->action); 2371 2372 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2373 parent = ref->parent; 2374 ref_root = ref->root; 2375 2376 ins.objectid = node->bytenr; 2377 if (skinny_metadata) { 2378 ins.offset = ref->level; 2379 ins.type = BTRFS_METADATA_ITEM_KEY; 2380 } else { 2381 ins.offset = node->num_bytes; 2382 ins.type = BTRFS_EXTENT_ITEM_KEY; 2383 } 2384 2385 if (node->ref_mod != 1) { 2386 btrfs_err(fs_info, 2387 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", 2388 node->bytenr, node->ref_mod, node->action, ref_root, 2389 parent); 2390 return -EIO; 2391 } 2392 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2393 BUG_ON(!extent_op || !extent_op->update_flags); 2394 ret = alloc_reserved_tree_block(trans, fs_info, 2395 parent, ref_root, 2396 extent_op->flags_to_set, 2397 &extent_op->key, 2398 ref->level, &ins); 2399 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2400 ret = __btrfs_inc_extent_ref(trans, fs_info, node, 2401 parent, ref_root, 2402 ref->level, 0, 1, 2403 extent_op); 2404 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2405 ret = __btrfs_free_extent(trans, fs_info, node, 2406 parent, ref_root, 2407 ref->level, 0, 1, extent_op); 2408 } else { 2409 BUG(); 2410 } 2411 return ret; 2412 } 2413 2414 /* helper function to actually process a single delayed ref entry */ 2415 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2416 struct btrfs_fs_info *fs_info, 2417 struct btrfs_delayed_ref_node *node, 2418 struct btrfs_delayed_extent_op *extent_op, 2419 int insert_reserved) 2420 { 2421 int ret = 0; 2422 2423 if (trans->aborted) { 2424 if (insert_reserved) 2425 btrfs_pin_extent(fs_info, node->bytenr, 2426 node->num_bytes, 1); 2427 return 0; 2428 } 2429 2430 if (btrfs_delayed_ref_is_head(node)) { 2431 struct btrfs_delayed_ref_head *head; 2432 /* 2433 * we've hit the end of the chain and we were supposed 2434 * to insert this extent into the tree. But, it got 2435 * deleted before we ever needed to insert it, so all 2436 * we have to do is clean up the accounting 2437 */ 2438 BUG_ON(extent_op); 2439 head = btrfs_delayed_node_to_head(node); 2440 trace_run_delayed_ref_head(fs_info, node, head, node->action); 2441 2442 if (head->total_ref_mod < 0) { 2443 struct btrfs_block_group_cache *cache; 2444 2445 cache = btrfs_lookup_block_group(fs_info, node->bytenr); 2446 ASSERT(cache); 2447 percpu_counter_add(&cache->space_info->total_bytes_pinned, 2448 -node->num_bytes); 2449 btrfs_put_block_group(cache); 2450 } 2451 2452 if (insert_reserved) { 2453 btrfs_pin_extent(fs_info, node->bytenr, 2454 node->num_bytes, 1); 2455 if (head->is_data) { 2456 ret = btrfs_del_csums(trans, fs_info, 2457 node->bytenr, 2458 node->num_bytes); 2459 } 2460 } 2461 2462 /* Also free its reserved qgroup space */ 2463 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, 2464 head->qgroup_reserved); 2465 return ret; 2466 } 2467 2468 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2469 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2470 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op, 2471 insert_reserved); 2472 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2473 node->type == BTRFS_SHARED_DATA_REF_KEY) 2474 ret = run_delayed_data_ref(trans, fs_info, node, extent_op, 2475 insert_reserved); 2476 else 2477 BUG(); 2478 return ret; 2479 } 2480 2481 static inline struct btrfs_delayed_ref_node * 2482 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2483 { 2484 struct btrfs_delayed_ref_node *ref; 2485 2486 if (list_empty(&head->ref_list)) 2487 return NULL; 2488 2489 /* 2490 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 2491 * This is to prevent a ref count from going down to zero, which deletes 2492 * the extent item from the extent tree, when there still are references 2493 * to add, which would fail because they would not find the extent item. 2494 */ 2495 if (!list_empty(&head->ref_add_list)) 2496 return list_first_entry(&head->ref_add_list, 2497 struct btrfs_delayed_ref_node, add_list); 2498 2499 ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node, 2500 list); 2501 ASSERT(list_empty(&ref->add_list)); 2502 return ref; 2503 } 2504 2505 /* 2506 * Returns 0 on success or if called with an already aborted transaction. 2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2508 */ 2509 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2510 struct btrfs_fs_info *fs_info, 2511 unsigned long nr) 2512 { 2513 struct btrfs_delayed_ref_root *delayed_refs; 2514 struct btrfs_delayed_ref_node *ref; 2515 struct btrfs_delayed_ref_head *locked_ref = NULL; 2516 struct btrfs_delayed_extent_op *extent_op; 2517 ktime_t start = ktime_get(); 2518 int ret; 2519 unsigned long count = 0; 2520 unsigned long actual_count = 0; 2521 int must_insert_reserved = 0; 2522 2523 delayed_refs = &trans->transaction->delayed_refs; 2524 while (1) { 2525 if (!locked_ref) { 2526 if (count >= nr) 2527 break; 2528 2529 spin_lock(&delayed_refs->lock); 2530 locked_ref = btrfs_select_ref_head(trans); 2531 if (!locked_ref) { 2532 spin_unlock(&delayed_refs->lock); 2533 break; 2534 } 2535 2536 /* grab the lock that says we are going to process 2537 * all the refs for this head */ 2538 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2539 spin_unlock(&delayed_refs->lock); 2540 /* 2541 * we may have dropped the spin lock to get the head 2542 * mutex lock, and that might have given someone else 2543 * time to free the head. If that's true, it has been 2544 * removed from our list and we can move on. 2545 */ 2546 if (ret == -EAGAIN) { 2547 locked_ref = NULL; 2548 count++; 2549 continue; 2550 } 2551 } 2552 2553 /* 2554 * We need to try and merge add/drops of the same ref since we 2555 * can run into issues with relocate dropping the implicit ref 2556 * and then it being added back again before the drop can 2557 * finish. If we merged anything we need to re-loop so we can 2558 * get a good ref. 2559 * Or we can get node references of the same type that weren't 2560 * merged when created due to bumps in the tree mod seq, and 2561 * we need to merge them to prevent adding an inline extent 2562 * backref before dropping it (triggering a BUG_ON at 2563 * insert_inline_extent_backref()). 2564 */ 2565 spin_lock(&locked_ref->lock); 2566 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2567 locked_ref); 2568 2569 /* 2570 * locked_ref is the head node, so we have to go one 2571 * node back for any delayed ref updates 2572 */ 2573 ref = select_delayed_ref(locked_ref); 2574 2575 if (ref && ref->seq && 2576 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2577 spin_unlock(&locked_ref->lock); 2578 spin_lock(&delayed_refs->lock); 2579 locked_ref->processing = 0; 2580 delayed_refs->num_heads_ready++; 2581 spin_unlock(&delayed_refs->lock); 2582 btrfs_delayed_ref_unlock(locked_ref); 2583 locked_ref = NULL; 2584 cond_resched(); 2585 count++; 2586 continue; 2587 } 2588 2589 /* 2590 * record the must insert reserved flag before we 2591 * drop the spin lock. 2592 */ 2593 must_insert_reserved = locked_ref->must_insert_reserved; 2594 locked_ref->must_insert_reserved = 0; 2595 2596 extent_op = locked_ref->extent_op; 2597 locked_ref->extent_op = NULL; 2598 2599 if (!ref) { 2600 2601 2602 /* All delayed refs have been processed, Go ahead 2603 * and send the head node to run_one_delayed_ref, 2604 * so that any accounting fixes can happen 2605 */ 2606 ref = &locked_ref->node; 2607 2608 if (extent_op && must_insert_reserved) { 2609 btrfs_free_delayed_extent_op(extent_op); 2610 extent_op = NULL; 2611 } 2612 2613 if (extent_op) { 2614 spin_unlock(&locked_ref->lock); 2615 ret = run_delayed_extent_op(trans, fs_info, 2616 ref, extent_op); 2617 btrfs_free_delayed_extent_op(extent_op); 2618 2619 if (ret) { 2620 /* 2621 * Need to reset must_insert_reserved if 2622 * there was an error so the abort stuff 2623 * can cleanup the reserved space 2624 * properly. 2625 */ 2626 if (must_insert_reserved) 2627 locked_ref->must_insert_reserved = 1; 2628 spin_lock(&delayed_refs->lock); 2629 locked_ref->processing = 0; 2630 delayed_refs->num_heads_ready++; 2631 spin_unlock(&delayed_refs->lock); 2632 btrfs_debug(fs_info, 2633 "run_delayed_extent_op returned %d", 2634 ret); 2635 btrfs_delayed_ref_unlock(locked_ref); 2636 return ret; 2637 } 2638 continue; 2639 } 2640 2641 /* 2642 * Need to drop our head ref lock and re-acquire the 2643 * delayed ref lock and then re-check to make sure 2644 * nobody got added. 2645 */ 2646 spin_unlock(&locked_ref->lock); 2647 spin_lock(&delayed_refs->lock); 2648 spin_lock(&locked_ref->lock); 2649 if (!list_empty(&locked_ref->ref_list) || 2650 locked_ref->extent_op) { 2651 spin_unlock(&locked_ref->lock); 2652 spin_unlock(&delayed_refs->lock); 2653 continue; 2654 } 2655 ref->in_tree = 0; 2656 delayed_refs->num_heads--; 2657 rb_erase(&locked_ref->href_node, 2658 &delayed_refs->href_root); 2659 spin_unlock(&delayed_refs->lock); 2660 } else { 2661 actual_count++; 2662 ref->in_tree = 0; 2663 list_del(&ref->list); 2664 if (!list_empty(&ref->add_list)) 2665 list_del(&ref->add_list); 2666 } 2667 atomic_dec(&delayed_refs->num_entries); 2668 2669 if (!btrfs_delayed_ref_is_head(ref)) { 2670 /* 2671 * when we play the delayed ref, also correct the 2672 * ref_mod on head 2673 */ 2674 switch (ref->action) { 2675 case BTRFS_ADD_DELAYED_REF: 2676 case BTRFS_ADD_DELAYED_EXTENT: 2677 locked_ref->node.ref_mod -= ref->ref_mod; 2678 break; 2679 case BTRFS_DROP_DELAYED_REF: 2680 locked_ref->node.ref_mod += ref->ref_mod; 2681 break; 2682 default: 2683 WARN_ON(1); 2684 } 2685 } 2686 spin_unlock(&locked_ref->lock); 2687 2688 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op, 2689 must_insert_reserved); 2690 2691 btrfs_free_delayed_extent_op(extent_op); 2692 if (ret) { 2693 spin_lock(&delayed_refs->lock); 2694 locked_ref->processing = 0; 2695 delayed_refs->num_heads_ready++; 2696 spin_unlock(&delayed_refs->lock); 2697 btrfs_delayed_ref_unlock(locked_ref); 2698 btrfs_put_delayed_ref(ref); 2699 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", 2700 ret); 2701 return ret; 2702 } 2703 2704 /* 2705 * If this node is a head, that means all the refs in this head 2706 * have been dealt with, and we will pick the next head to deal 2707 * with, so we must unlock the head and drop it from the cluster 2708 * list before we release it. 2709 */ 2710 if (btrfs_delayed_ref_is_head(ref)) { 2711 if (locked_ref->is_data && 2712 locked_ref->total_ref_mod < 0) { 2713 spin_lock(&delayed_refs->lock); 2714 delayed_refs->pending_csums -= ref->num_bytes; 2715 spin_unlock(&delayed_refs->lock); 2716 } 2717 btrfs_delayed_ref_unlock(locked_ref); 2718 locked_ref = NULL; 2719 } 2720 btrfs_put_delayed_ref(ref); 2721 count++; 2722 cond_resched(); 2723 } 2724 2725 /* 2726 * We don't want to include ref heads since we can have empty ref heads 2727 * and those will drastically skew our runtime down since we just do 2728 * accounting, no actual extent tree updates. 2729 */ 2730 if (actual_count > 0) { 2731 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2732 u64 avg; 2733 2734 /* 2735 * We weigh the current average higher than our current runtime 2736 * to avoid large swings in the average. 2737 */ 2738 spin_lock(&delayed_refs->lock); 2739 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2740 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2741 spin_unlock(&delayed_refs->lock); 2742 } 2743 return 0; 2744 } 2745 2746 #ifdef SCRAMBLE_DELAYED_REFS 2747 /* 2748 * Normally delayed refs get processed in ascending bytenr order. This 2749 * correlates in most cases to the order added. To expose dependencies on this 2750 * order, we start to process the tree in the middle instead of the beginning 2751 */ 2752 static u64 find_middle(struct rb_root *root) 2753 { 2754 struct rb_node *n = root->rb_node; 2755 struct btrfs_delayed_ref_node *entry; 2756 int alt = 1; 2757 u64 middle; 2758 u64 first = 0, last = 0; 2759 2760 n = rb_first(root); 2761 if (n) { 2762 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2763 first = entry->bytenr; 2764 } 2765 n = rb_last(root); 2766 if (n) { 2767 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2768 last = entry->bytenr; 2769 } 2770 n = root->rb_node; 2771 2772 while (n) { 2773 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2774 WARN_ON(!entry->in_tree); 2775 2776 middle = entry->bytenr; 2777 2778 if (alt) 2779 n = n->rb_left; 2780 else 2781 n = n->rb_right; 2782 2783 alt = 1 - alt; 2784 } 2785 return middle; 2786 } 2787 #endif 2788 2789 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) 2790 { 2791 u64 num_bytes; 2792 2793 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2794 sizeof(struct btrfs_extent_inline_ref)); 2795 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2796 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2797 2798 /* 2799 * We don't ever fill up leaves all the way so multiply by 2 just to be 2800 * closer to what we're really going to want to use. 2801 */ 2802 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); 2803 } 2804 2805 /* 2806 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2807 * would require to store the csums for that many bytes. 2808 */ 2809 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) 2810 { 2811 u64 csum_size; 2812 u64 num_csums_per_leaf; 2813 u64 num_csums; 2814 2815 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); 2816 num_csums_per_leaf = div64_u64(csum_size, 2817 (u64)btrfs_super_csum_size(fs_info->super_copy)); 2818 num_csums = div64_u64(csum_bytes, fs_info->sectorsize); 2819 num_csums += num_csums_per_leaf - 1; 2820 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2821 return num_csums; 2822 } 2823 2824 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2825 struct btrfs_fs_info *fs_info) 2826 { 2827 struct btrfs_block_rsv *global_rsv; 2828 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2829 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2830 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2831 u64 num_bytes, num_dirty_bgs_bytes; 2832 int ret = 0; 2833 2834 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 2835 num_heads = heads_to_leaves(fs_info, num_heads); 2836 if (num_heads > 1) 2837 num_bytes += (num_heads - 1) * fs_info->nodesize; 2838 num_bytes <<= 1; 2839 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * 2840 fs_info->nodesize; 2841 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, 2842 num_dirty_bgs); 2843 global_rsv = &fs_info->global_block_rsv; 2844 2845 /* 2846 * If we can't allocate any more chunks lets make sure we have _lots_ of 2847 * wiggle room since running delayed refs can create more delayed refs. 2848 */ 2849 if (global_rsv->space_info->full) { 2850 num_dirty_bgs_bytes <<= 1; 2851 num_bytes <<= 1; 2852 } 2853 2854 spin_lock(&global_rsv->lock); 2855 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2856 ret = 1; 2857 spin_unlock(&global_rsv->lock); 2858 return ret; 2859 } 2860 2861 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2862 struct btrfs_fs_info *fs_info) 2863 { 2864 u64 num_entries = 2865 atomic_read(&trans->transaction->delayed_refs.num_entries); 2866 u64 avg_runtime; 2867 u64 val; 2868 2869 smp_mb(); 2870 avg_runtime = fs_info->avg_delayed_ref_runtime; 2871 val = num_entries * avg_runtime; 2872 if (val >= NSEC_PER_SEC) 2873 return 1; 2874 if (val >= NSEC_PER_SEC / 2) 2875 return 2; 2876 2877 return btrfs_check_space_for_delayed_refs(trans, fs_info); 2878 } 2879 2880 struct async_delayed_refs { 2881 struct btrfs_root *root; 2882 u64 transid; 2883 int count; 2884 int error; 2885 int sync; 2886 struct completion wait; 2887 struct btrfs_work work; 2888 }; 2889 2890 static inline struct async_delayed_refs * 2891 to_async_delayed_refs(struct btrfs_work *work) 2892 { 2893 return container_of(work, struct async_delayed_refs, work); 2894 } 2895 2896 static void delayed_ref_async_start(struct btrfs_work *work) 2897 { 2898 struct async_delayed_refs *async = to_async_delayed_refs(work); 2899 struct btrfs_trans_handle *trans; 2900 struct btrfs_fs_info *fs_info = async->root->fs_info; 2901 int ret; 2902 2903 /* if the commit is already started, we don't need to wait here */ 2904 if (btrfs_transaction_blocked(fs_info)) 2905 goto done; 2906 2907 trans = btrfs_join_transaction(async->root); 2908 if (IS_ERR(trans)) { 2909 async->error = PTR_ERR(trans); 2910 goto done; 2911 } 2912 2913 /* 2914 * trans->sync means that when we call end_transaction, we won't 2915 * wait on delayed refs 2916 */ 2917 trans->sync = true; 2918 2919 /* Don't bother flushing if we got into a different transaction */ 2920 if (trans->transid > async->transid) 2921 goto end; 2922 2923 ret = btrfs_run_delayed_refs(trans, fs_info, async->count); 2924 if (ret) 2925 async->error = ret; 2926 end: 2927 ret = btrfs_end_transaction(trans); 2928 if (ret && !async->error) 2929 async->error = ret; 2930 done: 2931 if (async->sync) 2932 complete(&async->wait); 2933 else 2934 kfree(async); 2935 } 2936 2937 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, 2938 unsigned long count, u64 transid, int wait) 2939 { 2940 struct async_delayed_refs *async; 2941 int ret; 2942 2943 async = kmalloc(sizeof(*async), GFP_NOFS); 2944 if (!async) 2945 return -ENOMEM; 2946 2947 async->root = fs_info->tree_root; 2948 async->count = count; 2949 async->error = 0; 2950 async->transid = transid; 2951 if (wait) 2952 async->sync = 1; 2953 else 2954 async->sync = 0; 2955 init_completion(&async->wait); 2956 2957 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2958 delayed_ref_async_start, NULL, NULL); 2959 2960 btrfs_queue_work(fs_info->extent_workers, &async->work); 2961 2962 if (wait) { 2963 wait_for_completion(&async->wait); 2964 ret = async->error; 2965 kfree(async); 2966 return ret; 2967 } 2968 return 0; 2969 } 2970 2971 /* 2972 * this starts processing the delayed reference count updates and 2973 * extent insertions we have queued up so far. count can be 2974 * 0, which means to process everything in the tree at the start 2975 * of the run (but not newly added entries), or it can be some target 2976 * number you'd like to process. 2977 * 2978 * Returns 0 on success or if called with an aborted transaction 2979 * Returns <0 on error and aborts the transaction 2980 */ 2981 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2982 struct btrfs_fs_info *fs_info, unsigned long count) 2983 { 2984 struct rb_node *node; 2985 struct btrfs_delayed_ref_root *delayed_refs; 2986 struct btrfs_delayed_ref_head *head; 2987 int ret; 2988 int run_all = count == (unsigned long)-1; 2989 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 2990 2991 /* We'll clean this up in btrfs_cleanup_transaction */ 2992 if (trans->aborted) 2993 return 0; 2994 2995 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2996 return 0; 2997 2998 delayed_refs = &trans->transaction->delayed_refs; 2999 if (count == 0) 3000 count = atomic_read(&delayed_refs->num_entries) * 2; 3001 3002 again: 3003 #ifdef SCRAMBLE_DELAYED_REFS 3004 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 3005 #endif 3006 trans->can_flush_pending_bgs = false; 3007 ret = __btrfs_run_delayed_refs(trans, fs_info, count); 3008 if (ret < 0) { 3009 btrfs_abort_transaction(trans, ret); 3010 return ret; 3011 } 3012 3013 if (run_all) { 3014 if (!list_empty(&trans->new_bgs)) 3015 btrfs_create_pending_block_groups(trans, fs_info); 3016 3017 spin_lock(&delayed_refs->lock); 3018 node = rb_first(&delayed_refs->href_root); 3019 if (!node) { 3020 spin_unlock(&delayed_refs->lock); 3021 goto out; 3022 } 3023 3024 while (node) { 3025 head = rb_entry(node, struct btrfs_delayed_ref_head, 3026 href_node); 3027 if (btrfs_delayed_ref_is_head(&head->node)) { 3028 struct btrfs_delayed_ref_node *ref; 3029 3030 ref = &head->node; 3031 refcount_inc(&ref->refs); 3032 3033 spin_unlock(&delayed_refs->lock); 3034 /* 3035 * Mutex was contended, block until it's 3036 * released and try again 3037 */ 3038 mutex_lock(&head->mutex); 3039 mutex_unlock(&head->mutex); 3040 3041 btrfs_put_delayed_ref(ref); 3042 cond_resched(); 3043 goto again; 3044 } else { 3045 WARN_ON(1); 3046 } 3047 node = rb_next(node); 3048 } 3049 spin_unlock(&delayed_refs->lock); 3050 cond_resched(); 3051 goto again; 3052 } 3053 out: 3054 trans->can_flush_pending_bgs = can_flush_pending_bgs; 3055 return 0; 3056 } 3057 3058 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3059 struct btrfs_fs_info *fs_info, 3060 u64 bytenr, u64 num_bytes, u64 flags, 3061 int level, int is_data) 3062 { 3063 struct btrfs_delayed_extent_op *extent_op; 3064 int ret; 3065 3066 extent_op = btrfs_alloc_delayed_extent_op(); 3067 if (!extent_op) 3068 return -ENOMEM; 3069 3070 extent_op->flags_to_set = flags; 3071 extent_op->update_flags = true; 3072 extent_op->update_key = false; 3073 extent_op->is_data = is_data ? true : false; 3074 extent_op->level = level; 3075 3076 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, 3077 num_bytes, extent_op); 3078 if (ret) 3079 btrfs_free_delayed_extent_op(extent_op); 3080 return ret; 3081 } 3082 3083 static noinline int check_delayed_ref(struct btrfs_root *root, 3084 struct btrfs_path *path, 3085 u64 objectid, u64 offset, u64 bytenr) 3086 { 3087 struct btrfs_delayed_ref_head *head; 3088 struct btrfs_delayed_ref_node *ref; 3089 struct btrfs_delayed_data_ref *data_ref; 3090 struct btrfs_delayed_ref_root *delayed_refs; 3091 struct btrfs_transaction *cur_trans; 3092 int ret = 0; 3093 3094 cur_trans = root->fs_info->running_transaction; 3095 if (!cur_trans) 3096 return 0; 3097 3098 delayed_refs = &cur_trans->delayed_refs; 3099 spin_lock(&delayed_refs->lock); 3100 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3101 if (!head) { 3102 spin_unlock(&delayed_refs->lock); 3103 return 0; 3104 } 3105 3106 if (!mutex_trylock(&head->mutex)) { 3107 refcount_inc(&head->node.refs); 3108 spin_unlock(&delayed_refs->lock); 3109 3110 btrfs_release_path(path); 3111 3112 /* 3113 * Mutex was contended, block until it's released and let 3114 * caller try again 3115 */ 3116 mutex_lock(&head->mutex); 3117 mutex_unlock(&head->mutex); 3118 btrfs_put_delayed_ref(&head->node); 3119 return -EAGAIN; 3120 } 3121 spin_unlock(&delayed_refs->lock); 3122 3123 spin_lock(&head->lock); 3124 list_for_each_entry(ref, &head->ref_list, list) { 3125 /* If it's a shared ref we know a cross reference exists */ 3126 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 3127 ret = 1; 3128 break; 3129 } 3130 3131 data_ref = btrfs_delayed_node_to_data_ref(ref); 3132 3133 /* 3134 * If our ref doesn't match the one we're currently looking at 3135 * then we have a cross reference. 3136 */ 3137 if (data_ref->root != root->root_key.objectid || 3138 data_ref->objectid != objectid || 3139 data_ref->offset != offset) { 3140 ret = 1; 3141 break; 3142 } 3143 } 3144 spin_unlock(&head->lock); 3145 mutex_unlock(&head->mutex); 3146 return ret; 3147 } 3148 3149 static noinline int check_committed_ref(struct btrfs_root *root, 3150 struct btrfs_path *path, 3151 u64 objectid, u64 offset, u64 bytenr) 3152 { 3153 struct btrfs_fs_info *fs_info = root->fs_info; 3154 struct btrfs_root *extent_root = fs_info->extent_root; 3155 struct extent_buffer *leaf; 3156 struct btrfs_extent_data_ref *ref; 3157 struct btrfs_extent_inline_ref *iref; 3158 struct btrfs_extent_item *ei; 3159 struct btrfs_key key; 3160 u32 item_size; 3161 int ret; 3162 3163 key.objectid = bytenr; 3164 key.offset = (u64)-1; 3165 key.type = BTRFS_EXTENT_ITEM_KEY; 3166 3167 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3168 if (ret < 0) 3169 goto out; 3170 BUG_ON(ret == 0); /* Corruption */ 3171 3172 ret = -ENOENT; 3173 if (path->slots[0] == 0) 3174 goto out; 3175 3176 path->slots[0]--; 3177 leaf = path->nodes[0]; 3178 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3179 3180 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 3181 goto out; 3182 3183 ret = 1; 3184 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3185 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3186 if (item_size < sizeof(*ei)) { 3187 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3188 goto out; 3189 } 3190 #endif 3191 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 3192 3193 if (item_size != sizeof(*ei) + 3194 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 3195 goto out; 3196 3197 if (btrfs_extent_generation(leaf, ei) <= 3198 btrfs_root_last_snapshot(&root->root_item)) 3199 goto out; 3200 3201 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3202 if (btrfs_extent_inline_ref_type(leaf, iref) != 3203 BTRFS_EXTENT_DATA_REF_KEY) 3204 goto out; 3205 3206 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3207 if (btrfs_extent_refs(leaf, ei) != 3208 btrfs_extent_data_ref_count(leaf, ref) || 3209 btrfs_extent_data_ref_root(leaf, ref) != 3210 root->root_key.objectid || 3211 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3212 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3213 goto out; 3214 3215 ret = 0; 3216 out: 3217 return ret; 3218 } 3219 3220 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 3221 u64 bytenr) 3222 { 3223 struct btrfs_path *path; 3224 int ret; 3225 int ret2; 3226 3227 path = btrfs_alloc_path(); 3228 if (!path) 3229 return -ENOENT; 3230 3231 do { 3232 ret = check_committed_ref(root, path, objectid, 3233 offset, bytenr); 3234 if (ret && ret != -ENOENT) 3235 goto out; 3236 3237 ret2 = check_delayed_ref(root, path, objectid, 3238 offset, bytenr); 3239 } while (ret2 == -EAGAIN); 3240 3241 if (ret2 && ret2 != -ENOENT) { 3242 ret = ret2; 3243 goto out; 3244 } 3245 3246 if (ret != -ENOENT || ret2 != -ENOENT) 3247 ret = 0; 3248 out: 3249 btrfs_free_path(path); 3250 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3251 WARN_ON(ret > 0); 3252 return ret; 3253 } 3254 3255 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3256 struct btrfs_root *root, 3257 struct extent_buffer *buf, 3258 int full_backref, int inc) 3259 { 3260 struct btrfs_fs_info *fs_info = root->fs_info; 3261 u64 bytenr; 3262 u64 num_bytes; 3263 u64 parent; 3264 u64 ref_root; 3265 u32 nritems; 3266 struct btrfs_key key; 3267 struct btrfs_file_extent_item *fi; 3268 int i; 3269 int level; 3270 int ret = 0; 3271 int (*process_func)(struct btrfs_trans_handle *, 3272 struct btrfs_fs_info *, 3273 u64, u64, u64, u64, u64, u64); 3274 3275 3276 if (btrfs_is_testing(fs_info)) 3277 return 0; 3278 3279 ref_root = btrfs_header_owner(buf); 3280 nritems = btrfs_header_nritems(buf); 3281 level = btrfs_header_level(buf); 3282 3283 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3284 return 0; 3285 3286 if (inc) 3287 process_func = btrfs_inc_extent_ref; 3288 else 3289 process_func = btrfs_free_extent; 3290 3291 if (full_backref) 3292 parent = buf->start; 3293 else 3294 parent = 0; 3295 3296 for (i = 0; i < nritems; i++) { 3297 if (level == 0) { 3298 btrfs_item_key_to_cpu(buf, &key, i); 3299 if (key.type != BTRFS_EXTENT_DATA_KEY) 3300 continue; 3301 fi = btrfs_item_ptr(buf, i, 3302 struct btrfs_file_extent_item); 3303 if (btrfs_file_extent_type(buf, fi) == 3304 BTRFS_FILE_EXTENT_INLINE) 3305 continue; 3306 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3307 if (bytenr == 0) 3308 continue; 3309 3310 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3311 key.offset -= btrfs_file_extent_offset(buf, fi); 3312 ret = process_func(trans, fs_info, bytenr, num_bytes, 3313 parent, ref_root, key.objectid, 3314 key.offset); 3315 if (ret) 3316 goto fail; 3317 } else { 3318 bytenr = btrfs_node_blockptr(buf, i); 3319 num_bytes = fs_info->nodesize; 3320 ret = process_func(trans, fs_info, bytenr, num_bytes, 3321 parent, ref_root, level - 1, 0); 3322 if (ret) 3323 goto fail; 3324 } 3325 } 3326 return 0; 3327 fail: 3328 return ret; 3329 } 3330 3331 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3332 struct extent_buffer *buf, int full_backref) 3333 { 3334 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3335 } 3336 3337 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3338 struct extent_buffer *buf, int full_backref) 3339 { 3340 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3341 } 3342 3343 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3344 struct btrfs_fs_info *fs_info, 3345 struct btrfs_path *path, 3346 struct btrfs_block_group_cache *cache) 3347 { 3348 int ret; 3349 struct btrfs_root *extent_root = fs_info->extent_root; 3350 unsigned long bi; 3351 struct extent_buffer *leaf; 3352 3353 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3354 if (ret) { 3355 if (ret > 0) 3356 ret = -ENOENT; 3357 goto fail; 3358 } 3359 3360 leaf = path->nodes[0]; 3361 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3362 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3363 btrfs_mark_buffer_dirty(leaf); 3364 fail: 3365 btrfs_release_path(path); 3366 return ret; 3367 3368 } 3369 3370 static struct btrfs_block_group_cache * 3371 next_block_group(struct btrfs_fs_info *fs_info, 3372 struct btrfs_block_group_cache *cache) 3373 { 3374 struct rb_node *node; 3375 3376 spin_lock(&fs_info->block_group_cache_lock); 3377 3378 /* If our block group was removed, we need a full search. */ 3379 if (RB_EMPTY_NODE(&cache->cache_node)) { 3380 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3381 3382 spin_unlock(&fs_info->block_group_cache_lock); 3383 btrfs_put_block_group(cache); 3384 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; 3385 } 3386 node = rb_next(&cache->cache_node); 3387 btrfs_put_block_group(cache); 3388 if (node) { 3389 cache = rb_entry(node, struct btrfs_block_group_cache, 3390 cache_node); 3391 btrfs_get_block_group(cache); 3392 } else 3393 cache = NULL; 3394 spin_unlock(&fs_info->block_group_cache_lock); 3395 return cache; 3396 } 3397 3398 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3399 struct btrfs_trans_handle *trans, 3400 struct btrfs_path *path) 3401 { 3402 struct btrfs_fs_info *fs_info = block_group->fs_info; 3403 struct btrfs_root *root = fs_info->tree_root; 3404 struct inode *inode = NULL; 3405 struct extent_changeset *data_reserved = NULL; 3406 u64 alloc_hint = 0; 3407 int dcs = BTRFS_DC_ERROR; 3408 u64 num_pages = 0; 3409 int retries = 0; 3410 int ret = 0; 3411 3412 /* 3413 * If this block group is smaller than 100 megs don't bother caching the 3414 * block group. 3415 */ 3416 if (block_group->key.offset < (100 * SZ_1M)) { 3417 spin_lock(&block_group->lock); 3418 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3419 spin_unlock(&block_group->lock); 3420 return 0; 3421 } 3422 3423 if (trans->aborted) 3424 return 0; 3425 again: 3426 inode = lookup_free_space_inode(fs_info, block_group, path); 3427 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3428 ret = PTR_ERR(inode); 3429 btrfs_release_path(path); 3430 goto out; 3431 } 3432 3433 if (IS_ERR(inode)) { 3434 BUG_ON(retries); 3435 retries++; 3436 3437 if (block_group->ro) 3438 goto out_free; 3439 3440 ret = create_free_space_inode(fs_info, trans, block_group, 3441 path); 3442 if (ret) 3443 goto out_free; 3444 goto again; 3445 } 3446 3447 /* We've already setup this transaction, go ahead and exit */ 3448 if (block_group->cache_generation == trans->transid && 3449 i_size_read(inode)) { 3450 dcs = BTRFS_DC_SETUP; 3451 goto out_put; 3452 } 3453 3454 /* 3455 * We want to set the generation to 0, that way if anything goes wrong 3456 * from here on out we know not to trust this cache when we load up next 3457 * time. 3458 */ 3459 BTRFS_I(inode)->generation = 0; 3460 ret = btrfs_update_inode(trans, root, inode); 3461 if (ret) { 3462 /* 3463 * So theoretically we could recover from this, simply set the 3464 * super cache generation to 0 so we know to invalidate the 3465 * cache, but then we'd have to keep track of the block groups 3466 * that fail this way so we know we _have_ to reset this cache 3467 * before the next commit or risk reading stale cache. So to 3468 * limit our exposure to horrible edge cases lets just abort the 3469 * transaction, this only happens in really bad situations 3470 * anyway. 3471 */ 3472 btrfs_abort_transaction(trans, ret); 3473 goto out_put; 3474 } 3475 WARN_ON(ret); 3476 3477 if (i_size_read(inode) > 0) { 3478 ret = btrfs_check_trunc_cache_free_space(fs_info, 3479 &fs_info->global_block_rsv); 3480 if (ret) 3481 goto out_put; 3482 3483 ret = btrfs_truncate_free_space_cache(trans, NULL, inode); 3484 if (ret) 3485 goto out_put; 3486 } 3487 3488 spin_lock(&block_group->lock); 3489 if (block_group->cached != BTRFS_CACHE_FINISHED || 3490 !btrfs_test_opt(fs_info, SPACE_CACHE)) { 3491 /* 3492 * don't bother trying to write stuff out _if_ 3493 * a) we're not cached, 3494 * b) we're with nospace_cache mount option, 3495 * c) we're with v2 space_cache (FREE_SPACE_TREE). 3496 */ 3497 dcs = BTRFS_DC_WRITTEN; 3498 spin_unlock(&block_group->lock); 3499 goto out_put; 3500 } 3501 spin_unlock(&block_group->lock); 3502 3503 /* 3504 * We hit an ENOSPC when setting up the cache in this transaction, just 3505 * skip doing the setup, we've already cleared the cache so we're safe. 3506 */ 3507 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { 3508 ret = -ENOSPC; 3509 goto out_put; 3510 } 3511 3512 /* 3513 * Try to preallocate enough space based on how big the block group is. 3514 * Keep in mind this has to include any pinned space which could end up 3515 * taking up quite a bit since it's not folded into the other space 3516 * cache. 3517 */ 3518 num_pages = div_u64(block_group->key.offset, SZ_256M); 3519 if (!num_pages) 3520 num_pages = 1; 3521 3522 num_pages *= 16; 3523 num_pages *= PAGE_SIZE; 3524 3525 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); 3526 if (ret) 3527 goto out_put; 3528 3529 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3530 num_pages, num_pages, 3531 &alloc_hint); 3532 /* 3533 * Our cache requires contiguous chunks so that we don't modify a bunch 3534 * of metadata or split extents when writing the cache out, which means 3535 * we can enospc if we are heavily fragmented in addition to just normal 3536 * out of space conditions. So if we hit this just skip setting up any 3537 * other block groups for this transaction, maybe we'll unpin enough 3538 * space the next time around. 3539 */ 3540 if (!ret) 3541 dcs = BTRFS_DC_SETUP; 3542 else if (ret == -ENOSPC) 3543 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); 3544 3545 out_put: 3546 iput(inode); 3547 out_free: 3548 btrfs_release_path(path); 3549 out: 3550 spin_lock(&block_group->lock); 3551 if (!ret && dcs == BTRFS_DC_SETUP) 3552 block_group->cache_generation = trans->transid; 3553 block_group->disk_cache_state = dcs; 3554 spin_unlock(&block_group->lock); 3555 3556 extent_changeset_free(data_reserved); 3557 return ret; 3558 } 3559 3560 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3561 struct btrfs_fs_info *fs_info) 3562 { 3563 struct btrfs_block_group_cache *cache, *tmp; 3564 struct btrfs_transaction *cur_trans = trans->transaction; 3565 struct btrfs_path *path; 3566 3567 if (list_empty(&cur_trans->dirty_bgs) || 3568 !btrfs_test_opt(fs_info, SPACE_CACHE)) 3569 return 0; 3570 3571 path = btrfs_alloc_path(); 3572 if (!path) 3573 return -ENOMEM; 3574 3575 /* Could add new block groups, use _safe just in case */ 3576 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3577 dirty_list) { 3578 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3579 cache_save_setup(cache, trans, path); 3580 } 3581 3582 btrfs_free_path(path); 3583 return 0; 3584 } 3585 3586 /* 3587 * transaction commit does final block group cache writeback during a 3588 * critical section where nothing is allowed to change the FS. This is 3589 * required in order for the cache to actually match the block group, 3590 * but can introduce a lot of latency into the commit. 3591 * 3592 * So, btrfs_start_dirty_block_groups is here to kick off block group 3593 * cache IO. There's a chance we'll have to redo some of it if the 3594 * block group changes again during the commit, but it greatly reduces 3595 * the commit latency by getting rid of the easy block groups while 3596 * we're still allowing others to join the commit. 3597 */ 3598 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3599 struct btrfs_fs_info *fs_info) 3600 { 3601 struct btrfs_block_group_cache *cache; 3602 struct btrfs_transaction *cur_trans = trans->transaction; 3603 int ret = 0; 3604 int should_put; 3605 struct btrfs_path *path = NULL; 3606 LIST_HEAD(dirty); 3607 struct list_head *io = &cur_trans->io_bgs; 3608 int num_started = 0; 3609 int loops = 0; 3610 3611 spin_lock(&cur_trans->dirty_bgs_lock); 3612 if (list_empty(&cur_trans->dirty_bgs)) { 3613 spin_unlock(&cur_trans->dirty_bgs_lock); 3614 return 0; 3615 } 3616 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3617 spin_unlock(&cur_trans->dirty_bgs_lock); 3618 3619 again: 3620 /* 3621 * make sure all the block groups on our dirty list actually 3622 * exist 3623 */ 3624 btrfs_create_pending_block_groups(trans, fs_info); 3625 3626 if (!path) { 3627 path = btrfs_alloc_path(); 3628 if (!path) 3629 return -ENOMEM; 3630 } 3631 3632 /* 3633 * cache_write_mutex is here only to save us from balance or automatic 3634 * removal of empty block groups deleting this block group while we are 3635 * writing out the cache 3636 */ 3637 mutex_lock(&trans->transaction->cache_write_mutex); 3638 while (!list_empty(&dirty)) { 3639 cache = list_first_entry(&dirty, 3640 struct btrfs_block_group_cache, 3641 dirty_list); 3642 /* 3643 * this can happen if something re-dirties a block 3644 * group that is already under IO. Just wait for it to 3645 * finish and then do it all again 3646 */ 3647 if (!list_empty(&cache->io_list)) { 3648 list_del_init(&cache->io_list); 3649 btrfs_wait_cache_io(trans, cache, path); 3650 btrfs_put_block_group(cache); 3651 } 3652 3653 3654 /* 3655 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3656 * if it should update the cache_state. Don't delete 3657 * until after we wait. 3658 * 3659 * Since we're not running in the commit critical section 3660 * we need the dirty_bgs_lock to protect from update_block_group 3661 */ 3662 spin_lock(&cur_trans->dirty_bgs_lock); 3663 list_del_init(&cache->dirty_list); 3664 spin_unlock(&cur_trans->dirty_bgs_lock); 3665 3666 should_put = 1; 3667 3668 cache_save_setup(cache, trans, path); 3669 3670 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3671 cache->io_ctl.inode = NULL; 3672 ret = btrfs_write_out_cache(fs_info, trans, 3673 cache, path); 3674 if (ret == 0 && cache->io_ctl.inode) { 3675 num_started++; 3676 should_put = 0; 3677 3678 /* 3679 * the cache_write_mutex is protecting 3680 * the io_list 3681 */ 3682 list_add_tail(&cache->io_list, io); 3683 } else { 3684 /* 3685 * if we failed to write the cache, the 3686 * generation will be bad and life goes on 3687 */ 3688 ret = 0; 3689 } 3690 } 3691 if (!ret) { 3692 ret = write_one_cache_group(trans, fs_info, 3693 path, cache); 3694 /* 3695 * Our block group might still be attached to the list 3696 * of new block groups in the transaction handle of some 3697 * other task (struct btrfs_trans_handle->new_bgs). This 3698 * means its block group item isn't yet in the extent 3699 * tree. If this happens ignore the error, as we will 3700 * try again later in the critical section of the 3701 * transaction commit. 3702 */ 3703 if (ret == -ENOENT) { 3704 ret = 0; 3705 spin_lock(&cur_trans->dirty_bgs_lock); 3706 if (list_empty(&cache->dirty_list)) { 3707 list_add_tail(&cache->dirty_list, 3708 &cur_trans->dirty_bgs); 3709 btrfs_get_block_group(cache); 3710 } 3711 spin_unlock(&cur_trans->dirty_bgs_lock); 3712 } else if (ret) { 3713 btrfs_abort_transaction(trans, ret); 3714 } 3715 } 3716 3717 /* if its not on the io list, we need to put the block group */ 3718 if (should_put) 3719 btrfs_put_block_group(cache); 3720 3721 if (ret) 3722 break; 3723 3724 /* 3725 * Avoid blocking other tasks for too long. It might even save 3726 * us from writing caches for block groups that are going to be 3727 * removed. 3728 */ 3729 mutex_unlock(&trans->transaction->cache_write_mutex); 3730 mutex_lock(&trans->transaction->cache_write_mutex); 3731 } 3732 mutex_unlock(&trans->transaction->cache_write_mutex); 3733 3734 /* 3735 * go through delayed refs for all the stuff we've just kicked off 3736 * and then loop back (just once) 3737 */ 3738 ret = btrfs_run_delayed_refs(trans, fs_info, 0); 3739 if (!ret && loops == 0) { 3740 loops++; 3741 spin_lock(&cur_trans->dirty_bgs_lock); 3742 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3743 /* 3744 * dirty_bgs_lock protects us from concurrent block group 3745 * deletes too (not just cache_write_mutex). 3746 */ 3747 if (!list_empty(&dirty)) { 3748 spin_unlock(&cur_trans->dirty_bgs_lock); 3749 goto again; 3750 } 3751 spin_unlock(&cur_trans->dirty_bgs_lock); 3752 } else if (ret < 0) { 3753 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 3754 } 3755 3756 btrfs_free_path(path); 3757 return ret; 3758 } 3759 3760 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3761 struct btrfs_fs_info *fs_info) 3762 { 3763 struct btrfs_block_group_cache *cache; 3764 struct btrfs_transaction *cur_trans = trans->transaction; 3765 int ret = 0; 3766 int should_put; 3767 struct btrfs_path *path; 3768 struct list_head *io = &cur_trans->io_bgs; 3769 int num_started = 0; 3770 3771 path = btrfs_alloc_path(); 3772 if (!path) 3773 return -ENOMEM; 3774 3775 /* 3776 * Even though we are in the critical section of the transaction commit, 3777 * we can still have concurrent tasks adding elements to this 3778 * transaction's list of dirty block groups. These tasks correspond to 3779 * endio free space workers started when writeback finishes for a 3780 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can 3781 * allocate new block groups as a result of COWing nodes of the root 3782 * tree when updating the free space inode. The writeback for the space 3783 * caches is triggered by an earlier call to 3784 * btrfs_start_dirty_block_groups() and iterations of the following 3785 * loop. 3786 * Also we want to do the cache_save_setup first and then run the 3787 * delayed refs to make sure we have the best chance at doing this all 3788 * in one shot. 3789 */ 3790 spin_lock(&cur_trans->dirty_bgs_lock); 3791 while (!list_empty(&cur_trans->dirty_bgs)) { 3792 cache = list_first_entry(&cur_trans->dirty_bgs, 3793 struct btrfs_block_group_cache, 3794 dirty_list); 3795 3796 /* 3797 * this can happen if cache_save_setup re-dirties a block 3798 * group that is already under IO. Just wait for it to 3799 * finish and then do it all again 3800 */ 3801 if (!list_empty(&cache->io_list)) { 3802 spin_unlock(&cur_trans->dirty_bgs_lock); 3803 list_del_init(&cache->io_list); 3804 btrfs_wait_cache_io(trans, cache, path); 3805 btrfs_put_block_group(cache); 3806 spin_lock(&cur_trans->dirty_bgs_lock); 3807 } 3808 3809 /* 3810 * don't remove from the dirty list until after we've waited 3811 * on any pending IO 3812 */ 3813 list_del_init(&cache->dirty_list); 3814 spin_unlock(&cur_trans->dirty_bgs_lock); 3815 should_put = 1; 3816 3817 cache_save_setup(cache, trans, path); 3818 3819 if (!ret) 3820 ret = btrfs_run_delayed_refs(trans, fs_info, 3821 (unsigned long) -1); 3822 3823 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3824 cache->io_ctl.inode = NULL; 3825 ret = btrfs_write_out_cache(fs_info, trans, 3826 cache, path); 3827 if (ret == 0 && cache->io_ctl.inode) { 3828 num_started++; 3829 should_put = 0; 3830 list_add_tail(&cache->io_list, io); 3831 } else { 3832 /* 3833 * if we failed to write the cache, the 3834 * generation will be bad and life goes on 3835 */ 3836 ret = 0; 3837 } 3838 } 3839 if (!ret) { 3840 ret = write_one_cache_group(trans, fs_info, 3841 path, cache); 3842 /* 3843 * One of the free space endio workers might have 3844 * created a new block group while updating a free space 3845 * cache's inode (at inode.c:btrfs_finish_ordered_io()) 3846 * and hasn't released its transaction handle yet, in 3847 * which case the new block group is still attached to 3848 * its transaction handle and its creation has not 3849 * finished yet (no block group item in the extent tree 3850 * yet, etc). If this is the case, wait for all free 3851 * space endio workers to finish and retry. This is a 3852 * a very rare case so no need for a more efficient and 3853 * complex approach. 3854 */ 3855 if (ret == -ENOENT) { 3856 wait_event(cur_trans->writer_wait, 3857 atomic_read(&cur_trans->num_writers) == 1); 3858 ret = write_one_cache_group(trans, fs_info, 3859 path, cache); 3860 } 3861 if (ret) 3862 btrfs_abort_transaction(trans, ret); 3863 } 3864 3865 /* if its not on the io list, we need to put the block group */ 3866 if (should_put) 3867 btrfs_put_block_group(cache); 3868 spin_lock(&cur_trans->dirty_bgs_lock); 3869 } 3870 spin_unlock(&cur_trans->dirty_bgs_lock); 3871 3872 while (!list_empty(io)) { 3873 cache = list_first_entry(io, struct btrfs_block_group_cache, 3874 io_list); 3875 list_del_init(&cache->io_list); 3876 btrfs_wait_cache_io(trans, cache, path); 3877 btrfs_put_block_group(cache); 3878 } 3879 3880 btrfs_free_path(path); 3881 return ret; 3882 } 3883 3884 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 3885 { 3886 struct btrfs_block_group_cache *block_group; 3887 int readonly = 0; 3888 3889 block_group = btrfs_lookup_block_group(fs_info, bytenr); 3890 if (!block_group || block_group->ro) 3891 readonly = 1; 3892 if (block_group) 3893 btrfs_put_block_group(block_group); 3894 return readonly; 3895 } 3896 3897 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3898 { 3899 struct btrfs_block_group_cache *bg; 3900 bool ret = true; 3901 3902 bg = btrfs_lookup_block_group(fs_info, bytenr); 3903 if (!bg) 3904 return false; 3905 3906 spin_lock(&bg->lock); 3907 if (bg->ro) 3908 ret = false; 3909 else 3910 atomic_inc(&bg->nocow_writers); 3911 spin_unlock(&bg->lock); 3912 3913 /* no put on block group, done by btrfs_dec_nocow_writers */ 3914 if (!ret) 3915 btrfs_put_block_group(bg); 3916 3917 return ret; 3918 3919 } 3920 3921 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) 3922 { 3923 struct btrfs_block_group_cache *bg; 3924 3925 bg = btrfs_lookup_block_group(fs_info, bytenr); 3926 ASSERT(bg); 3927 if (atomic_dec_and_test(&bg->nocow_writers)) 3928 wake_up_atomic_t(&bg->nocow_writers); 3929 /* 3930 * Once for our lookup and once for the lookup done by a previous call 3931 * to btrfs_inc_nocow_writers() 3932 */ 3933 btrfs_put_block_group(bg); 3934 btrfs_put_block_group(bg); 3935 } 3936 3937 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a) 3938 { 3939 schedule(); 3940 return 0; 3941 } 3942 3943 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) 3944 { 3945 wait_on_atomic_t(&bg->nocow_writers, 3946 btrfs_wait_nocow_writers_atomic_t, 3947 TASK_UNINTERRUPTIBLE); 3948 } 3949 3950 static const char *alloc_name(u64 flags) 3951 { 3952 switch (flags) { 3953 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3954 return "mixed"; 3955 case BTRFS_BLOCK_GROUP_METADATA: 3956 return "metadata"; 3957 case BTRFS_BLOCK_GROUP_DATA: 3958 return "data"; 3959 case BTRFS_BLOCK_GROUP_SYSTEM: 3960 return "system"; 3961 default: 3962 WARN_ON(1); 3963 return "invalid-combination"; 3964 }; 3965 } 3966 3967 static int create_space_info(struct btrfs_fs_info *info, u64 flags, 3968 struct btrfs_space_info **new) 3969 { 3970 3971 struct btrfs_space_info *space_info; 3972 int i; 3973 int ret; 3974 3975 space_info = kzalloc(sizeof(*space_info), GFP_NOFS); 3976 if (!space_info) 3977 return -ENOMEM; 3978 3979 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, 3980 GFP_KERNEL); 3981 if (ret) { 3982 kfree(space_info); 3983 return ret; 3984 } 3985 3986 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3987 INIT_LIST_HEAD(&space_info->block_groups[i]); 3988 init_rwsem(&space_info->groups_sem); 3989 spin_lock_init(&space_info->lock); 3990 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3991 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3992 init_waitqueue_head(&space_info->wait); 3993 INIT_LIST_HEAD(&space_info->ro_bgs); 3994 INIT_LIST_HEAD(&space_info->tickets); 3995 INIT_LIST_HEAD(&space_info->priority_tickets); 3996 3997 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, 3998 info->space_info_kobj, "%s", 3999 alloc_name(space_info->flags)); 4000 if (ret) { 4001 percpu_counter_destroy(&space_info->total_bytes_pinned); 4002 kfree(space_info); 4003 return ret; 4004 } 4005 4006 *new = space_info; 4007 list_add_rcu(&space_info->list, &info->space_info); 4008 if (flags & BTRFS_BLOCK_GROUP_DATA) 4009 info->data_sinfo = space_info; 4010 4011 return ret; 4012 } 4013 4014 static void update_space_info(struct btrfs_fs_info *info, u64 flags, 4015 u64 total_bytes, u64 bytes_used, 4016 u64 bytes_readonly, 4017 struct btrfs_space_info **space_info) 4018 { 4019 struct btrfs_space_info *found; 4020 int factor; 4021 4022 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 4023 BTRFS_BLOCK_GROUP_RAID10)) 4024 factor = 2; 4025 else 4026 factor = 1; 4027 4028 found = __find_space_info(info, flags); 4029 ASSERT(found); 4030 spin_lock(&found->lock); 4031 found->total_bytes += total_bytes; 4032 found->disk_total += total_bytes * factor; 4033 found->bytes_used += bytes_used; 4034 found->disk_used += bytes_used * factor; 4035 found->bytes_readonly += bytes_readonly; 4036 if (total_bytes > 0) 4037 found->full = 0; 4038 space_info_add_new_bytes(info, found, total_bytes - 4039 bytes_used - bytes_readonly); 4040 spin_unlock(&found->lock); 4041 *space_info = found; 4042 } 4043 4044 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 4045 { 4046 u64 extra_flags = chunk_to_extended(flags) & 4047 BTRFS_EXTENDED_PROFILE_MASK; 4048 4049 write_seqlock(&fs_info->profiles_lock); 4050 if (flags & BTRFS_BLOCK_GROUP_DATA) 4051 fs_info->avail_data_alloc_bits |= extra_flags; 4052 if (flags & BTRFS_BLOCK_GROUP_METADATA) 4053 fs_info->avail_metadata_alloc_bits |= extra_flags; 4054 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4055 fs_info->avail_system_alloc_bits |= extra_flags; 4056 write_sequnlock(&fs_info->profiles_lock); 4057 } 4058 4059 /* 4060 * returns target flags in extended format or 0 if restripe for this 4061 * chunk_type is not in progress 4062 * 4063 * should be called with either volume_mutex or balance_lock held 4064 */ 4065 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 4066 { 4067 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4068 u64 target = 0; 4069 4070 if (!bctl) 4071 return 0; 4072 4073 if (flags & BTRFS_BLOCK_GROUP_DATA && 4074 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4075 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 4076 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 4077 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4078 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 4079 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 4080 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 4081 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 4082 } 4083 4084 return target; 4085 } 4086 4087 /* 4088 * @flags: available profiles in extended format (see ctree.h) 4089 * 4090 * Returns reduced profile in chunk format. If profile changing is in 4091 * progress (either running or paused) picks the target profile (if it's 4092 * already available), otherwise falls back to plain reducing. 4093 */ 4094 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) 4095 { 4096 u64 num_devices = fs_info->fs_devices->rw_devices; 4097 u64 target; 4098 u64 raid_type; 4099 u64 allowed = 0; 4100 4101 /* 4102 * see if restripe for this chunk_type is in progress, if so 4103 * try to reduce to the target profile 4104 */ 4105 spin_lock(&fs_info->balance_lock); 4106 target = get_restripe_target(fs_info, flags); 4107 if (target) { 4108 /* pick target profile only if it's already available */ 4109 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 4110 spin_unlock(&fs_info->balance_lock); 4111 return extended_to_chunk(target); 4112 } 4113 } 4114 spin_unlock(&fs_info->balance_lock); 4115 4116 /* First, mask out the RAID levels which aren't possible */ 4117 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4118 if (num_devices >= btrfs_raid_array[raid_type].devs_min) 4119 allowed |= btrfs_raid_group[raid_type]; 4120 } 4121 allowed &= flags; 4122 4123 if (allowed & BTRFS_BLOCK_GROUP_RAID6) 4124 allowed = BTRFS_BLOCK_GROUP_RAID6; 4125 else if (allowed & BTRFS_BLOCK_GROUP_RAID5) 4126 allowed = BTRFS_BLOCK_GROUP_RAID5; 4127 else if (allowed & BTRFS_BLOCK_GROUP_RAID10) 4128 allowed = BTRFS_BLOCK_GROUP_RAID10; 4129 else if (allowed & BTRFS_BLOCK_GROUP_RAID1) 4130 allowed = BTRFS_BLOCK_GROUP_RAID1; 4131 else if (allowed & BTRFS_BLOCK_GROUP_RAID0) 4132 allowed = BTRFS_BLOCK_GROUP_RAID0; 4133 4134 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; 4135 4136 return extended_to_chunk(flags | allowed); 4137 } 4138 4139 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) 4140 { 4141 unsigned seq; 4142 u64 flags; 4143 4144 do { 4145 flags = orig_flags; 4146 seq = read_seqbegin(&fs_info->profiles_lock); 4147 4148 if (flags & BTRFS_BLOCK_GROUP_DATA) 4149 flags |= fs_info->avail_data_alloc_bits; 4150 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 4151 flags |= fs_info->avail_system_alloc_bits; 4152 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 4153 flags |= fs_info->avail_metadata_alloc_bits; 4154 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4155 4156 return btrfs_reduce_alloc_profile(fs_info, flags); 4157 } 4158 4159 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 4160 { 4161 struct btrfs_fs_info *fs_info = root->fs_info; 4162 u64 flags; 4163 u64 ret; 4164 4165 if (data) 4166 flags = BTRFS_BLOCK_GROUP_DATA; 4167 else if (root == fs_info->chunk_root) 4168 flags = BTRFS_BLOCK_GROUP_SYSTEM; 4169 else 4170 flags = BTRFS_BLOCK_GROUP_METADATA; 4171 4172 ret = get_alloc_profile(fs_info, flags); 4173 return ret; 4174 } 4175 4176 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) 4177 { 4178 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); 4179 } 4180 4181 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) 4182 { 4183 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4184 } 4185 4186 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) 4187 { 4188 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4189 } 4190 4191 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, 4192 bool may_use_included) 4193 { 4194 ASSERT(s_info); 4195 return s_info->bytes_used + s_info->bytes_reserved + 4196 s_info->bytes_pinned + s_info->bytes_readonly + 4197 (may_use_included ? s_info->bytes_may_use : 0); 4198 } 4199 4200 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 4201 { 4202 struct btrfs_space_info *data_sinfo; 4203 struct btrfs_root *root = inode->root; 4204 struct btrfs_fs_info *fs_info = root->fs_info; 4205 u64 used; 4206 int ret = 0; 4207 int need_commit = 2; 4208 int have_pinned_space; 4209 4210 /* make sure bytes are sectorsize aligned */ 4211 bytes = ALIGN(bytes, fs_info->sectorsize); 4212 4213 if (btrfs_is_free_space_inode(inode)) { 4214 need_commit = 0; 4215 ASSERT(current->journal_info); 4216 } 4217 4218 data_sinfo = fs_info->data_sinfo; 4219 if (!data_sinfo) 4220 goto alloc; 4221 4222 again: 4223 /* make sure we have enough space to handle the data first */ 4224 spin_lock(&data_sinfo->lock); 4225 used = btrfs_space_info_used(data_sinfo, true); 4226 4227 if (used + bytes > data_sinfo->total_bytes) { 4228 struct btrfs_trans_handle *trans; 4229 4230 /* 4231 * if we don't have enough free bytes in this space then we need 4232 * to alloc a new chunk. 4233 */ 4234 if (!data_sinfo->full) { 4235 u64 alloc_target; 4236 4237 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 4238 spin_unlock(&data_sinfo->lock); 4239 alloc: 4240 alloc_target = btrfs_data_alloc_profile(fs_info); 4241 /* 4242 * It is ugly that we don't call nolock join 4243 * transaction for the free space inode case here. 4244 * But it is safe because we only do the data space 4245 * reservation for the free space cache in the 4246 * transaction context, the common join transaction 4247 * just increase the counter of the current transaction 4248 * handler, doesn't try to acquire the trans_lock of 4249 * the fs. 4250 */ 4251 trans = btrfs_join_transaction(root); 4252 if (IS_ERR(trans)) 4253 return PTR_ERR(trans); 4254 4255 ret = do_chunk_alloc(trans, fs_info, alloc_target, 4256 CHUNK_ALLOC_NO_FORCE); 4257 btrfs_end_transaction(trans); 4258 if (ret < 0) { 4259 if (ret != -ENOSPC) 4260 return ret; 4261 else { 4262 have_pinned_space = 1; 4263 goto commit_trans; 4264 } 4265 } 4266 4267 if (!data_sinfo) 4268 data_sinfo = fs_info->data_sinfo; 4269 4270 goto again; 4271 } 4272 4273 /* 4274 * If we don't have enough pinned space to deal with this 4275 * allocation, and no removed chunk in current transaction, 4276 * don't bother committing the transaction. 4277 */ 4278 have_pinned_space = percpu_counter_compare( 4279 &data_sinfo->total_bytes_pinned, 4280 used + bytes - data_sinfo->total_bytes); 4281 spin_unlock(&data_sinfo->lock); 4282 4283 /* commit the current transaction and try again */ 4284 commit_trans: 4285 if (need_commit && 4286 !atomic_read(&fs_info->open_ioctl_trans)) { 4287 need_commit--; 4288 4289 if (need_commit > 0) { 4290 btrfs_start_delalloc_roots(fs_info, 0, -1); 4291 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, 4292 (u64)-1); 4293 } 4294 4295 trans = btrfs_join_transaction(root); 4296 if (IS_ERR(trans)) 4297 return PTR_ERR(trans); 4298 if (have_pinned_space >= 0 || 4299 test_bit(BTRFS_TRANS_HAVE_FREE_BGS, 4300 &trans->transaction->flags) || 4301 need_commit > 0) { 4302 ret = btrfs_commit_transaction(trans); 4303 if (ret) 4304 return ret; 4305 /* 4306 * The cleaner kthread might still be doing iput 4307 * operations. Wait for it to finish so that 4308 * more space is released. 4309 */ 4310 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 4311 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 4312 goto again; 4313 } else { 4314 btrfs_end_transaction(trans); 4315 } 4316 } 4317 4318 trace_btrfs_space_reservation(fs_info, 4319 "space_info:enospc", 4320 data_sinfo->flags, bytes, 1); 4321 return -ENOSPC; 4322 } 4323 data_sinfo->bytes_may_use += bytes; 4324 trace_btrfs_space_reservation(fs_info, "space_info", 4325 data_sinfo->flags, bytes, 1); 4326 spin_unlock(&data_sinfo->lock); 4327 4328 return ret; 4329 } 4330 4331 int btrfs_check_data_free_space(struct inode *inode, 4332 struct extent_changeset **reserved, u64 start, u64 len) 4333 { 4334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4335 int ret; 4336 4337 /* align the range */ 4338 len = round_up(start + len, fs_info->sectorsize) - 4339 round_down(start, fs_info->sectorsize); 4340 start = round_down(start, fs_info->sectorsize); 4341 4342 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); 4343 if (ret < 0) 4344 return ret; 4345 4346 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 4347 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 4348 if (ret < 0) 4349 btrfs_free_reserved_data_space_noquota(inode, start, len); 4350 else 4351 ret = 0; 4352 return ret; 4353 } 4354 4355 /* 4356 * Called if we need to clear a data reservation for this inode 4357 * Normally in a error case. 4358 * 4359 * This one will *NOT* use accurate qgroup reserved space API, just for case 4360 * which we can't sleep and is sure it won't affect qgroup reserved space. 4361 * Like clear_bit_hook(). 4362 */ 4363 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, 4364 u64 len) 4365 { 4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4367 struct btrfs_space_info *data_sinfo; 4368 4369 /* Make sure the range is aligned to sectorsize */ 4370 len = round_up(start + len, fs_info->sectorsize) - 4371 round_down(start, fs_info->sectorsize); 4372 start = round_down(start, fs_info->sectorsize); 4373 4374 data_sinfo = fs_info->data_sinfo; 4375 spin_lock(&data_sinfo->lock); 4376 if (WARN_ON(data_sinfo->bytes_may_use < len)) 4377 data_sinfo->bytes_may_use = 0; 4378 else 4379 data_sinfo->bytes_may_use -= len; 4380 trace_btrfs_space_reservation(fs_info, "space_info", 4381 data_sinfo->flags, len, 0); 4382 spin_unlock(&data_sinfo->lock); 4383 } 4384 4385 /* 4386 * Called if we need to clear a data reservation for this inode 4387 * Normally in a error case. 4388 * 4389 * This one will handle the per-inode data rsv map for accurate reserved 4390 * space framework. 4391 */ 4392 void btrfs_free_reserved_data_space(struct inode *inode, 4393 struct extent_changeset *reserved, u64 start, u64 len) 4394 { 4395 struct btrfs_root *root = BTRFS_I(inode)->root; 4396 4397 /* Make sure the range is aligned to sectorsize */ 4398 len = round_up(start + len, root->fs_info->sectorsize) - 4399 round_down(start, root->fs_info->sectorsize); 4400 start = round_down(start, root->fs_info->sectorsize); 4401 4402 btrfs_free_reserved_data_space_noquota(inode, start, len); 4403 btrfs_qgroup_free_data(inode, reserved, start, len); 4404 } 4405 4406 static void force_metadata_allocation(struct btrfs_fs_info *info) 4407 { 4408 struct list_head *head = &info->space_info; 4409 struct btrfs_space_info *found; 4410 4411 rcu_read_lock(); 4412 list_for_each_entry_rcu(found, head, list) { 4413 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 4414 found->force_alloc = CHUNK_ALLOC_FORCE; 4415 } 4416 rcu_read_unlock(); 4417 } 4418 4419 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 4420 { 4421 return (global->size << 1); 4422 } 4423 4424 static int should_alloc_chunk(struct btrfs_fs_info *fs_info, 4425 struct btrfs_space_info *sinfo, int force) 4426 { 4427 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4428 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4429 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4430 u64 thresh; 4431 4432 if (force == CHUNK_ALLOC_FORCE) 4433 return 1; 4434 4435 /* 4436 * We need to take into account the global rsv because for all intents 4437 * and purposes it's used space. Don't worry about locking the 4438 * global_rsv, it doesn't change except when the transaction commits. 4439 */ 4440 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4441 num_allocated += calc_global_rsv_need_space(global_rsv); 4442 4443 /* 4444 * in limited mode, we want to have some free space up to 4445 * about 1% of the FS size. 4446 */ 4447 if (force == CHUNK_ALLOC_LIMITED) { 4448 thresh = btrfs_super_total_bytes(fs_info->super_copy); 4449 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); 4450 4451 if (num_bytes - num_allocated < thresh) 4452 return 1; 4453 } 4454 4455 if (num_allocated + SZ_2M < div_factor(num_bytes, 8)) 4456 return 0; 4457 return 1; 4458 } 4459 4460 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) 4461 { 4462 u64 num_dev; 4463 4464 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4465 BTRFS_BLOCK_GROUP_RAID0 | 4466 BTRFS_BLOCK_GROUP_RAID5 | 4467 BTRFS_BLOCK_GROUP_RAID6)) 4468 num_dev = fs_info->fs_devices->rw_devices; 4469 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4470 num_dev = 2; 4471 else 4472 num_dev = 1; /* DUP or single */ 4473 4474 return num_dev; 4475 } 4476 4477 /* 4478 * If @is_allocation is true, reserve space in the system space info necessary 4479 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4480 * removing a chunk. 4481 */ 4482 void check_system_chunk(struct btrfs_trans_handle *trans, 4483 struct btrfs_fs_info *fs_info, u64 type) 4484 { 4485 struct btrfs_space_info *info; 4486 u64 left; 4487 u64 thresh; 4488 int ret = 0; 4489 u64 num_devs; 4490 4491 /* 4492 * Needed because we can end up allocating a system chunk and for an 4493 * atomic and race free space reservation in the chunk block reserve. 4494 */ 4495 ASSERT(mutex_is_locked(&fs_info->chunk_mutex)); 4496 4497 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4498 spin_lock(&info->lock); 4499 left = info->total_bytes - btrfs_space_info_used(info, true); 4500 spin_unlock(&info->lock); 4501 4502 num_devs = get_profile_num_devs(fs_info, type); 4503 4504 /* num_devs device items to update and 1 chunk item to add or remove */ 4505 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + 4506 btrfs_calc_trans_metadata_size(fs_info, 1); 4507 4508 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4509 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", 4510 left, thresh, type); 4511 dump_space_info(fs_info, info, 0, 0); 4512 } 4513 4514 if (left < thresh) { 4515 u64 flags = btrfs_system_alloc_profile(fs_info); 4516 4517 /* 4518 * Ignore failure to create system chunk. We might end up not 4519 * needing it, as we might not need to COW all nodes/leafs from 4520 * the paths we visit in the chunk tree (they were already COWed 4521 * or created in the current transaction for example). 4522 */ 4523 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4524 } 4525 4526 if (!ret) { 4527 ret = btrfs_block_rsv_add(fs_info->chunk_root, 4528 &fs_info->chunk_block_rsv, 4529 thresh, BTRFS_RESERVE_NO_FLUSH); 4530 if (!ret) 4531 trans->chunk_bytes_reserved += thresh; 4532 } 4533 } 4534 4535 /* 4536 * If force is CHUNK_ALLOC_FORCE: 4537 * - return 1 if it successfully allocates a chunk, 4538 * - return errors including -ENOSPC otherwise. 4539 * If force is NOT CHUNK_ALLOC_FORCE: 4540 * - return 0 if it doesn't need to allocate a new chunk, 4541 * - return 1 if it successfully allocates a chunk, 4542 * - return errors including -ENOSPC otherwise. 4543 */ 4544 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4545 struct btrfs_fs_info *fs_info, u64 flags, int force) 4546 { 4547 struct btrfs_space_info *space_info; 4548 int wait_for_alloc = 0; 4549 int ret = 0; 4550 4551 /* Don't re-enter if we're already allocating a chunk */ 4552 if (trans->allocating_chunk) 4553 return -ENOSPC; 4554 4555 space_info = __find_space_info(fs_info, flags); 4556 if (!space_info) { 4557 ret = create_space_info(fs_info, flags, &space_info); 4558 if (ret) 4559 return ret; 4560 } 4561 4562 again: 4563 spin_lock(&space_info->lock); 4564 if (force < space_info->force_alloc) 4565 force = space_info->force_alloc; 4566 if (space_info->full) { 4567 if (should_alloc_chunk(fs_info, space_info, force)) 4568 ret = -ENOSPC; 4569 else 4570 ret = 0; 4571 spin_unlock(&space_info->lock); 4572 return ret; 4573 } 4574 4575 if (!should_alloc_chunk(fs_info, space_info, force)) { 4576 spin_unlock(&space_info->lock); 4577 return 0; 4578 } else if (space_info->chunk_alloc) { 4579 wait_for_alloc = 1; 4580 } else { 4581 space_info->chunk_alloc = 1; 4582 } 4583 4584 spin_unlock(&space_info->lock); 4585 4586 mutex_lock(&fs_info->chunk_mutex); 4587 4588 /* 4589 * The chunk_mutex is held throughout the entirety of a chunk 4590 * allocation, so once we've acquired the chunk_mutex we know that the 4591 * other guy is done and we need to recheck and see if we should 4592 * allocate. 4593 */ 4594 if (wait_for_alloc) { 4595 mutex_unlock(&fs_info->chunk_mutex); 4596 wait_for_alloc = 0; 4597 goto again; 4598 } 4599 4600 trans->allocating_chunk = true; 4601 4602 /* 4603 * If we have mixed data/metadata chunks we want to make sure we keep 4604 * allocating mixed chunks instead of individual chunks. 4605 */ 4606 if (btrfs_mixed_space_info(space_info)) 4607 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4608 4609 /* 4610 * if we're doing a data chunk, go ahead and make sure that 4611 * we keep a reasonable number of metadata chunks allocated in the 4612 * FS as well. 4613 */ 4614 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4615 fs_info->data_chunk_allocations++; 4616 if (!(fs_info->data_chunk_allocations % 4617 fs_info->metadata_ratio)) 4618 force_metadata_allocation(fs_info); 4619 } 4620 4621 /* 4622 * Check if we have enough space in SYSTEM chunk because we may need 4623 * to update devices. 4624 */ 4625 check_system_chunk(trans, fs_info, flags); 4626 4627 ret = btrfs_alloc_chunk(trans, fs_info, flags); 4628 trans->allocating_chunk = false; 4629 4630 spin_lock(&space_info->lock); 4631 if (ret < 0 && ret != -ENOSPC) 4632 goto out; 4633 if (ret) 4634 space_info->full = 1; 4635 else 4636 ret = 1; 4637 4638 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4639 out: 4640 space_info->chunk_alloc = 0; 4641 spin_unlock(&space_info->lock); 4642 mutex_unlock(&fs_info->chunk_mutex); 4643 /* 4644 * When we allocate a new chunk we reserve space in the chunk block 4645 * reserve to make sure we can COW nodes/leafs in the chunk tree or 4646 * add new nodes/leafs to it if we end up needing to do it when 4647 * inserting the chunk item and updating device items as part of the 4648 * second phase of chunk allocation, performed by 4649 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a 4650 * large number of new block groups to create in our transaction 4651 * handle's new_bgs list to avoid exhausting the chunk block reserve 4652 * in extreme cases - like having a single transaction create many new 4653 * block groups when starting to write out the free space caches of all 4654 * the block groups that were made dirty during the lifetime of the 4655 * transaction. 4656 */ 4657 if (trans->can_flush_pending_bgs && 4658 trans->chunk_bytes_reserved >= (u64)SZ_2M) { 4659 btrfs_create_pending_block_groups(trans, fs_info); 4660 btrfs_trans_release_chunk_metadata(trans); 4661 } 4662 return ret; 4663 } 4664 4665 static int can_overcommit(struct btrfs_fs_info *fs_info, 4666 struct btrfs_space_info *space_info, u64 bytes, 4667 enum btrfs_reserve_flush_enum flush, 4668 bool system_chunk) 4669 { 4670 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4671 u64 profile; 4672 u64 space_size; 4673 u64 avail; 4674 u64 used; 4675 4676 /* Don't overcommit when in mixed mode. */ 4677 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) 4678 return 0; 4679 4680 if (system_chunk) 4681 profile = btrfs_system_alloc_profile(fs_info); 4682 else 4683 profile = btrfs_metadata_alloc_profile(fs_info); 4684 4685 used = btrfs_space_info_used(space_info, false); 4686 4687 /* 4688 * We only want to allow over committing if we have lots of actual space 4689 * free, but if we don't have enough space to handle the global reserve 4690 * space then we could end up having a real enospc problem when trying 4691 * to allocate a chunk or some other such important allocation. 4692 */ 4693 spin_lock(&global_rsv->lock); 4694 space_size = calc_global_rsv_need_space(global_rsv); 4695 spin_unlock(&global_rsv->lock); 4696 if (used + space_size >= space_info->total_bytes) 4697 return 0; 4698 4699 used += space_info->bytes_may_use; 4700 4701 avail = atomic64_read(&fs_info->free_chunk_space); 4702 4703 /* 4704 * If we have dup, raid1 or raid10 then only half of the free 4705 * space is actually useable. For raid56, the space info used 4706 * doesn't include the parity drive, so we don't have to 4707 * change the math 4708 */ 4709 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4710 BTRFS_BLOCK_GROUP_RAID1 | 4711 BTRFS_BLOCK_GROUP_RAID10)) 4712 avail >>= 1; 4713 4714 /* 4715 * If we aren't flushing all things, let us overcommit up to 4716 * 1/2th of the space. If we can flush, don't let us overcommit 4717 * too much, let it overcommit up to 1/8 of the space. 4718 */ 4719 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4720 avail >>= 3; 4721 else 4722 avail >>= 1; 4723 4724 if (used + bytes < space_info->total_bytes + avail) 4725 return 1; 4726 return 0; 4727 } 4728 4729 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, 4730 unsigned long nr_pages, int nr_items) 4731 { 4732 struct super_block *sb = fs_info->sb; 4733 4734 if (down_read_trylock(&sb->s_umount)) { 4735 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4736 up_read(&sb->s_umount); 4737 } else { 4738 /* 4739 * We needn't worry the filesystem going from r/w to r/o though 4740 * we don't acquire ->s_umount mutex, because the filesystem 4741 * should guarantee the delalloc inodes list be empty after 4742 * the filesystem is readonly(all dirty pages are written to 4743 * the disk). 4744 */ 4745 btrfs_start_delalloc_roots(fs_info, 0, nr_items); 4746 if (!current->journal_info) 4747 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); 4748 } 4749 } 4750 4751 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, 4752 u64 to_reclaim) 4753 { 4754 u64 bytes; 4755 u64 nr; 4756 4757 bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 4758 nr = div64_u64(to_reclaim, bytes); 4759 if (!nr) 4760 nr = 1; 4761 return nr; 4762 } 4763 4764 #define EXTENT_SIZE_PER_ITEM SZ_256K 4765 4766 /* 4767 * shrink metadata reservation for delalloc 4768 */ 4769 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, 4770 u64 orig, bool wait_ordered) 4771 { 4772 struct btrfs_block_rsv *block_rsv; 4773 struct btrfs_space_info *space_info; 4774 struct btrfs_trans_handle *trans; 4775 u64 delalloc_bytes; 4776 u64 max_reclaim; 4777 u64 items; 4778 long time_left; 4779 unsigned long nr_pages; 4780 int loops; 4781 enum btrfs_reserve_flush_enum flush; 4782 4783 /* Calc the number of the pages we need flush for space reservation */ 4784 items = calc_reclaim_items_nr(fs_info, to_reclaim); 4785 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4786 4787 trans = (struct btrfs_trans_handle *)current->journal_info; 4788 block_rsv = &fs_info->delalloc_block_rsv; 4789 space_info = block_rsv->space_info; 4790 4791 delalloc_bytes = percpu_counter_sum_positive( 4792 &fs_info->delalloc_bytes); 4793 if (delalloc_bytes == 0) { 4794 if (trans) 4795 return; 4796 if (wait_ordered) 4797 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4798 return; 4799 } 4800 4801 loops = 0; 4802 while (delalloc_bytes && loops < 3) { 4803 max_reclaim = min(delalloc_bytes, to_reclaim); 4804 nr_pages = max_reclaim >> PAGE_SHIFT; 4805 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); 4806 /* 4807 * We need to wait for the async pages to actually start before 4808 * we do anything. 4809 */ 4810 max_reclaim = atomic_read(&fs_info->async_delalloc_pages); 4811 if (!max_reclaim) 4812 goto skip_async; 4813 4814 if (max_reclaim <= nr_pages) 4815 max_reclaim = 0; 4816 else 4817 max_reclaim -= nr_pages; 4818 4819 wait_event(fs_info->async_submit_wait, 4820 atomic_read(&fs_info->async_delalloc_pages) <= 4821 (int)max_reclaim); 4822 skip_async: 4823 if (!trans) 4824 flush = BTRFS_RESERVE_FLUSH_ALL; 4825 else 4826 flush = BTRFS_RESERVE_NO_FLUSH; 4827 spin_lock(&space_info->lock); 4828 if (can_overcommit(fs_info, space_info, orig, flush, false)) { 4829 spin_unlock(&space_info->lock); 4830 break; 4831 } 4832 if (list_empty(&space_info->tickets) && 4833 list_empty(&space_info->priority_tickets)) { 4834 spin_unlock(&space_info->lock); 4835 break; 4836 } 4837 spin_unlock(&space_info->lock); 4838 4839 loops++; 4840 if (wait_ordered && !trans) { 4841 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); 4842 } else { 4843 time_left = schedule_timeout_killable(1); 4844 if (time_left) 4845 break; 4846 } 4847 delalloc_bytes = percpu_counter_sum_positive( 4848 &fs_info->delalloc_bytes); 4849 } 4850 } 4851 4852 /** 4853 * maybe_commit_transaction - possibly commit the transaction if its ok to 4854 * @root - the root we're allocating for 4855 * @bytes - the number of bytes we want to reserve 4856 * @force - force the commit 4857 * 4858 * This will check to make sure that committing the transaction will actually 4859 * get us somewhere and then commit the transaction if it does. Otherwise it 4860 * will return -ENOSPC. 4861 */ 4862 static int may_commit_transaction(struct btrfs_fs_info *fs_info, 4863 struct btrfs_space_info *space_info, 4864 u64 bytes, int force) 4865 { 4866 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; 4867 struct btrfs_trans_handle *trans; 4868 4869 trans = (struct btrfs_trans_handle *)current->journal_info; 4870 if (trans) 4871 return -EAGAIN; 4872 4873 if (force) 4874 goto commit; 4875 4876 /* See if there is enough pinned space to make this reservation */ 4877 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4878 bytes) >= 0) 4879 goto commit; 4880 4881 /* 4882 * See if there is some space in the delayed insertion reservation for 4883 * this reservation. 4884 */ 4885 if (space_info != delayed_rsv->space_info) 4886 return -ENOSPC; 4887 4888 spin_lock(&delayed_rsv->lock); 4889 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4890 bytes - delayed_rsv->size) < 0) { 4891 spin_unlock(&delayed_rsv->lock); 4892 return -ENOSPC; 4893 } 4894 spin_unlock(&delayed_rsv->lock); 4895 4896 commit: 4897 trans = btrfs_join_transaction(fs_info->extent_root); 4898 if (IS_ERR(trans)) 4899 return -ENOSPC; 4900 4901 return btrfs_commit_transaction(trans); 4902 } 4903 4904 struct reserve_ticket { 4905 u64 bytes; 4906 int error; 4907 struct list_head list; 4908 wait_queue_head_t wait; 4909 }; 4910 4911 static int flush_space(struct btrfs_fs_info *fs_info, 4912 struct btrfs_space_info *space_info, u64 num_bytes, 4913 u64 orig_bytes, int state) 4914 { 4915 struct btrfs_root *root = fs_info->extent_root; 4916 struct btrfs_trans_handle *trans; 4917 int nr; 4918 int ret = 0; 4919 4920 switch (state) { 4921 case FLUSH_DELAYED_ITEMS_NR: 4922 case FLUSH_DELAYED_ITEMS: 4923 if (state == FLUSH_DELAYED_ITEMS_NR) 4924 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; 4925 else 4926 nr = -1; 4927 4928 trans = btrfs_join_transaction(root); 4929 if (IS_ERR(trans)) { 4930 ret = PTR_ERR(trans); 4931 break; 4932 } 4933 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr); 4934 btrfs_end_transaction(trans); 4935 break; 4936 case FLUSH_DELALLOC: 4937 case FLUSH_DELALLOC_WAIT: 4938 shrink_delalloc(fs_info, num_bytes * 2, orig_bytes, 4939 state == FLUSH_DELALLOC_WAIT); 4940 break; 4941 case ALLOC_CHUNK: 4942 trans = btrfs_join_transaction(root); 4943 if (IS_ERR(trans)) { 4944 ret = PTR_ERR(trans); 4945 break; 4946 } 4947 ret = do_chunk_alloc(trans, fs_info, 4948 btrfs_metadata_alloc_profile(fs_info), 4949 CHUNK_ALLOC_NO_FORCE); 4950 btrfs_end_transaction(trans); 4951 if (ret > 0 || ret == -ENOSPC) 4952 ret = 0; 4953 break; 4954 case COMMIT_TRANS: 4955 ret = may_commit_transaction(fs_info, space_info, 4956 orig_bytes, 0); 4957 break; 4958 default: 4959 ret = -ENOSPC; 4960 break; 4961 } 4962 4963 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, 4964 orig_bytes, state, ret); 4965 return ret; 4966 } 4967 4968 static inline u64 4969 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, 4970 struct btrfs_space_info *space_info, 4971 bool system_chunk) 4972 { 4973 struct reserve_ticket *ticket; 4974 u64 used; 4975 u64 expected; 4976 u64 to_reclaim = 0; 4977 4978 list_for_each_entry(ticket, &space_info->tickets, list) 4979 to_reclaim += ticket->bytes; 4980 list_for_each_entry(ticket, &space_info->priority_tickets, list) 4981 to_reclaim += ticket->bytes; 4982 if (to_reclaim) 4983 return to_reclaim; 4984 4985 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); 4986 if (can_overcommit(fs_info, space_info, to_reclaim, 4987 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 4988 return 0; 4989 4990 used = btrfs_space_info_used(space_info, true); 4991 4992 if (can_overcommit(fs_info, space_info, SZ_1M, 4993 BTRFS_RESERVE_FLUSH_ALL, system_chunk)) 4994 expected = div_factor_fine(space_info->total_bytes, 95); 4995 else 4996 expected = div_factor_fine(space_info->total_bytes, 90); 4997 4998 if (used > expected) 4999 to_reclaim = used - expected; 5000 else 5001 to_reclaim = 0; 5002 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 5003 space_info->bytes_reserved); 5004 return to_reclaim; 5005 } 5006 5007 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, 5008 struct btrfs_space_info *space_info, 5009 u64 used, bool system_chunk) 5010 { 5011 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 5012 5013 /* If we're just plain full then async reclaim just slows us down. */ 5014 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) 5015 return 0; 5016 5017 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5018 system_chunk)) 5019 return 0; 5020 5021 return (used >= thresh && !btrfs_fs_closing(fs_info) && 5022 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 5023 } 5024 5025 static void wake_all_tickets(struct list_head *head) 5026 { 5027 struct reserve_ticket *ticket; 5028 5029 while (!list_empty(head)) { 5030 ticket = list_first_entry(head, struct reserve_ticket, list); 5031 list_del_init(&ticket->list); 5032 ticket->error = -ENOSPC; 5033 wake_up(&ticket->wait); 5034 } 5035 } 5036 5037 /* 5038 * This is for normal flushers, we can wait all goddamned day if we want to. We 5039 * will loop and continuously try to flush as long as we are making progress. 5040 * We count progress as clearing off tickets each time we have to loop. 5041 */ 5042 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 5043 { 5044 struct btrfs_fs_info *fs_info; 5045 struct btrfs_space_info *space_info; 5046 u64 to_reclaim; 5047 int flush_state; 5048 int commit_cycles = 0; 5049 u64 last_tickets_id; 5050 5051 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 5052 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5053 5054 spin_lock(&space_info->lock); 5055 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5056 false); 5057 if (!to_reclaim) { 5058 space_info->flush = 0; 5059 spin_unlock(&space_info->lock); 5060 return; 5061 } 5062 last_tickets_id = space_info->tickets_id; 5063 spin_unlock(&space_info->lock); 5064 5065 flush_state = FLUSH_DELAYED_ITEMS_NR; 5066 do { 5067 struct reserve_ticket *ticket; 5068 int ret; 5069 5070 ret = flush_space(fs_info, space_info, to_reclaim, to_reclaim, 5071 flush_state); 5072 spin_lock(&space_info->lock); 5073 if (list_empty(&space_info->tickets)) { 5074 space_info->flush = 0; 5075 spin_unlock(&space_info->lock); 5076 return; 5077 } 5078 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, 5079 space_info, 5080 false); 5081 ticket = list_first_entry(&space_info->tickets, 5082 struct reserve_ticket, list); 5083 if (last_tickets_id == space_info->tickets_id) { 5084 flush_state++; 5085 } else { 5086 last_tickets_id = space_info->tickets_id; 5087 flush_state = FLUSH_DELAYED_ITEMS_NR; 5088 if (commit_cycles) 5089 commit_cycles--; 5090 } 5091 5092 if (flush_state > COMMIT_TRANS) { 5093 commit_cycles++; 5094 if (commit_cycles > 2) { 5095 wake_all_tickets(&space_info->tickets); 5096 space_info->flush = 0; 5097 } else { 5098 flush_state = FLUSH_DELAYED_ITEMS_NR; 5099 } 5100 } 5101 spin_unlock(&space_info->lock); 5102 } while (flush_state <= COMMIT_TRANS); 5103 } 5104 5105 void btrfs_init_async_reclaim_work(struct work_struct *work) 5106 { 5107 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 5108 } 5109 5110 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, 5111 struct btrfs_space_info *space_info, 5112 struct reserve_ticket *ticket) 5113 { 5114 u64 to_reclaim; 5115 int flush_state = FLUSH_DELAYED_ITEMS_NR; 5116 5117 spin_lock(&space_info->lock); 5118 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, 5119 false); 5120 if (!to_reclaim) { 5121 spin_unlock(&space_info->lock); 5122 return; 5123 } 5124 spin_unlock(&space_info->lock); 5125 5126 do { 5127 flush_space(fs_info, space_info, to_reclaim, to_reclaim, 5128 flush_state); 5129 flush_state++; 5130 spin_lock(&space_info->lock); 5131 if (ticket->bytes == 0) { 5132 spin_unlock(&space_info->lock); 5133 return; 5134 } 5135 spin_unlock(&space_info->lock); 5136 5137 /* 5138 * Priority flushers can't wait on delalloc without 5139 * deadlocking. 5140 */ 5141 if (flush_state == FLUSH_DELALLOC || 5142 flush_state == FLUSH_DELALLOC_WAIT) 5143 flush_state = ALLOC_CHUNK; 5144 } while (flush_state < COMMIT_TRANS); 5145 } 5146 5147 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, 5148 struct btrfs_space_info *space_info, 5149 struct reserve_ticket *ticket, u64 orig_bytes) 5150 5151 { 5152 DEFINE_WAIT(wait); 5153 int ret = 0; 5154 5155 spin_lock(&space_info->lock); 5156 while (ticket->bytes > 0 && ticket->error == 0) { 5157 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); 5158 if (ret) { 5159 ret = -EINTR; 5160 break; 5161 } 5162 spin_unlock(&space_info->lock); 5163 5164 schedule(); 5165 5166 finish_wait(&ticket->wait, &wait); 5167 spin_lock(&space_info->lock); 5168 } 5169 if (!ret) 5170 ret = ticket->error; 5171 if (!list_empty(&ticket->list)) 5172 list_del_init(&ticket->list); 5173 if (ticket->bytes && ticket->bytes < orig_bytes) { 5174 u64 num_bytes = orig_bytes - ticket->bytes; 5175 space_info->bytes_may_use -= num_bytes; 5176 trace_btrfs_space_reservation(fs_info, "space_info", 5177 space_info->flags, num_bytes, 0); 5178 } 5179 spin_unlock(&space_info->lock); 5180 5181 return ret; 5182 } 5183 5184 /** 5185 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5186 * @root - the root we're allocating for 5187 * @space_info - the space info we want to allocate from 5188 * @orig_bytes - the number of bytes we want 5189 * @flush - whether or not we can flush to make our reservation 5190 * 5191 * This will reserve orig_bytes number of bytes from the space info associated 5192 * with the block_rsv. If there is not enough space it will make an attempt to 5193 * flush out space to make room. It will do this by flushing delalloc if 5194 * possible or committing the transaction. If flush is 0 then no attempts to 5195 * regain reservations will be made and this will fail if there is not enough 5196 * space already. 5197 */ 5198 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, 5199 struct btrfs_space_info *space_info, 5200 u64 orig_bytes, 5201 enum btrfs_reserve_flush_enum flush, 5202 bool system_chunk) 5203 { 5204 struct reserve_ticket ticket; 5205 u64 used; 5206 int ret = 0; 5207 5208 ASSERT(orig_bytes); 5209 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); 5210 5211 spin_lock(&space_info->lock); 5212 ret = -ENOSPC; 5213 used = btrfs_space_info_used(space_info, true); 5214 5215 /* 5216 * If we have enough space then hooray, make our reservation and carry 5217 * on. If not see if we can overcommit, and if we can, hooray carry on. 5218 * If not things get more complicated. 5219 */ 5220 if (used + orig_bytes <= space_info->total_bytes) { 5221 space_info->bytes_may_use += orig_bytes; 5222 trace_btrfs_space_reservation(fs_info, "space_info", 5223 space_info->flags, orig_bytes, 1); 5224 ret = 0; 5225 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, 5226 system_chunk)) { 5227 space_info->bytes_may_use += orig_bytes; 5228 trace_btrfs_space_reservation(fs_info, "space_info", 5229 space_info->flags, orig_bytes, 1); 5230 ret = 0; 5231 } 5232 5233 /* 5234 * If we couldn't make a reservation then setup our reservation ticket 5235 * and kick the async worker if it's not already running. 5236 * 5237 * If we are a priority flusher then we just need to add our ticket to 5238 * the list and we will do our own flushing further down. 5239 */ 5240 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 5241 ticket.bytes = orig_bytes; 5242 ticket.error = 0; 5243 init_waitqueue_head(&ticket.wait); 5244 if (flush == BTRFS_RESERVE_FLUSH_ALL) { 5245 list_add_tail(&ticket.list, &space_info->tickets); 5246 if (!space_info->flush) { 5247 space_info->flush = 1; 5248 trace_btrfs_trigger_flush(fs_info, 5249 space_info->flags, 5250 orig_bytes, flush, 5251 "enospc"); 5252 queue_work(system_unbound_wq, 5253 &fs_info->async_reclaim_work); 5254 } 5255 } else { 5256 list_add_tail(&ticket.list, 5257 &space_info->priority_tickets); 5258 } 5259 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 5260 used += orig_bytes; 5261 /* 5262 * We will do the space reservation dance during log replay, 5263 * which means we won't have fs_info->fs_root set, so don't do 5264 * the async reclaim as we will panic. 5265 */ 5266 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && 5267 need_do_async_reclaim(fs_info, space_info, 5268 used, system_chunk) && 5269 !work_busy(&fs_info->async_reclaim_work)) { 5270 trace_btrfs_trigger_flush(fs_info, space_info->flags, 5271 orig_bytes, flush, "preempt"); 5272 queue_work(system_unbound_wq, 5273 &fs_info->async_reclaim_work); 5274 } 5275 } 5276 spin_unlock(&space_info->lock); 5277 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 5278 return ret; 5279 5280 if (flush == BTRFS_RESERVE_FLUSH_ALL) 5281 return wait_reserve_ticket(fs_info, space_info, &ticket, 5282 orig_bytes); 5283 5284 ret = 0; 5285 priority_reclaim_metadata_space(fs_info, space_info, &ticket); 5286 spin_lock(&space_info->lock); 5287 if (ticket.bytes) { 5288 if (ticket.bytes < orig_bytes) { 5289 u64 num_bytes = orig_bytes - ticket.bytes; 5290 space_info->bytes_may_use -= num_bytes; 5291 trace_btrfs_space_reservation(fs_info, "space_info", 5292 space_info->flags, 5293 num_bytes, 0); 5294 5295 } 5296 list_del_init(&ticket.list); 5297 ret = -ENOSPC; 5298 } 5299 spin_unlock(&space_info->lock); 5300 ASSERT(list_empty(&ticket.list)); 5301 return ret; 5302 } 5303 5304 /** 5305 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 5306 * @root - the root we're allocating for 5307 * @block_rsv - the block_rsv we're allocating for 5308 * @orig_bytes - the number of bytes we want 5309 * @flush - whether or not we can flush to make our reservation 5310 * 5311 * This will reserve orgi_bytes number of bytes from the space info associated 5312 * with the block_rsv. If there is not enough space it will make an attempt to 5313 * flush out space to make room. It will do this by flushing delalloc if 5314 * possible or committing the transaction. If flush is 0 then no attempts to 5315 * regain reservations will be made and this will fail if there is not enough 5316 * space already. 5317 */ 5318 static int reserve_metadata_bytes(struct btrfs_root *root, 5319 struct btrfs_block_rsv *block_rsv, 5320 u64 orig_bytes, 5321 enum btrfs_reserve_flush_enum flush) 5322 { 5323 struct btrfs_fs_info *fs_info = root->fs_info; 5324 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5325 int ret; 5326 bool system_chunk = (root == fs_info->chunk_root); 5327 5328 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, 5329 orig_bytes, flush, system_chunk); 5330 if (ret == -ENOSPC && 5331 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 5332 if (block_rsv != global_rsv && 5333 !block_rsv_use_bytes(global_rsv, orig_bytes)) 5334 ret = 0; 5335 } 5336 if (ret == -ENOSPC) 5337 trace_btrfs_space_reservation(fs_info, "space_info:enospc", 5338 block_rsv->space_info->flags, 5339 orig_bytes, 1); 5340 return ret; 5341 } 5342 5343 static struct btrfs_block_rsv *get_block_rsv( 5344 const struct btrfs_trans_handle *trans, 5345 const struct btrfs_root *root) 5346 { 5347 struct btrfs_fs_info *fs_info = root->fs_info; 5348 struct btrfs_block_rsv *block_rsv = NULL; 5349 5350 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 5351 (root == fs_info->csum_root && trans->adding_csums) || 5352 (root == fs_info->uuid_root)) 5353 block_rsv = trans->block_rsv; 5354 5355 if (!block_rsv) 5356 block_rsv = root->block_rsv; 5357 5358 if (!block_rsv) 5359 block_rsv = &fs_info->empty_block_rsv; 5360 5361 return block_rsv; 5362 } 5363 5364 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 5365 u64 num_bytes) 5366 { 5367 int ret = -ENOSPC; 5368 spin_lock(&block_rsv->lock); 5369 if (block_rsv->reserved >= num_bytes) { 5370 block_rsv->reserved -= num_bytes; 5371 if (block_rsv->reserved < block_rsv->size) 5372 block_rsv->full = 0; 5373 ret = 0; 5374 } 5375 spin_unlock(&block_rsv->lock); 5376 return ret; 5377 } 5378 5379 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 5380 u64 num_bytes, int update_size) 5381 { 5382 spin_lock(&block_rsv->lock); 5383 block_rsv->reserved += num_bytes; 5384 if (update_size) 5385 block_rsv->size += num_bytes; 5386 else if (block_rsv->reserved >= block_rsv->size) 5387 block_rsv->full = 1; 5388 spin_unlock(&block_rsv->lock); 5389 } 5390 5391 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 5392 struct btrfs_block_rsv *dest, u64 num_bytes, 5393 int min_factor) 5394 { 5395 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5396 u64 min_bytes; 5397 5398 if (global_rsv->space_info != dest->space_info) 5399 return -ENOSPC; 5400 5401 spin_lock(&global_rsv->lock); 5402 min_bytes = div_factor(global_rsv->size, min_factor); 5403 if (global_rsv->reserved < min_bytes + num_bytes) { 5404 spin_unlock(&global_rsv->lock); 5405 return -ENOSPC; 5406 } 5407 global_rsv->reserved -= num_bytes; 5408 if (global_rsv->reserved < global_rsv->size) 5409 global_rsv->full = 0; 5410 spin_unlock(&global_rsv->lock); 5411 5412 block_rsv_add_bytes(dest, num_bytes, 1); 5413 return 0; 5414 } 5415 5416 /* 5417 * This is for space we already have accounted in space_info->bytes_may_use, so 5418 * basically when we're returning space from block_rsv's. 5419 */ 5420 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, 5421 struct btrfs_space_info *space_info, 5422 u64 num_bytes) 5423 { 5424 struct reserve_ticket *ticket; 5425 struct list_head *head; 5426 u64 used; 5427 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; 5428 bool check_overcommit = false; 5429 5430 spin_lock(&space_info->lock); 5431 head = &space_info->priority_tickets; 5432 5433 /* 5434 * If we are over our limit then we need to check and see if we can 5435 * overcommit, and if we can't then we just need to free up our space 5436 * and not satisfy any requests. 5437 */ 5438 used = btrfs_space_info_used(space_info, true); 5439 if (used - num_bytes >= space_info->total_bytes) 5440 check_overcommit = true; 5441 again: 5442 while (!list_empty(head) && num_bytes) { 5443 ticket = list_first_entry(head, struct reserve_ticket, 5444 list); 5445 /* 5446 * We use 0 bytes because this space is already reserved, so 5447 * adding the ticket space would be a double count. 5448 */ 5449 if (check_overcommit && 5450 !can_overcommit(fs_info, space_info, 0, flush, false)) 5451 break; 5452 if (num_bytes >= ticket->bytes) { 5453 list_del_init(&ticket->list); 5454 num_bytes -= ticket->bytes; 5455 ticket->bytes = 0; 5456 space_info->tickets_id++; 5457 wake_up(&ticket->wait); 5458 } else { 5459 ticket->bytes -= num_bytes; 5460 num_bytes = 0; 5461 } 5462 } 5463 5464 if (num_bytes && head == &space_info->priority_tickets) { 5465 head = &space_info->tickets; 5466 flush = BTRFS_RESERVE_FLUSH_ALL; 5467 goto again; 5468 } 5469 space_info->bytes_may_use -= num_bytes; 5470 trace_btrfs_space_reservation(fs_info, "space_info", 5471 space_info->flags, num_bytes, 0); 5472 spin_unlock(&space_info->lock); 5473 } 5474 5475 /* 5476 * This is for newly allocated space that isn't accounted in 5477 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent 5478 * we use this helper. 5479 */ 5480 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, 5481 struct btrfs_space_info *space_info, 5482 u64 num_bytes) 5483 { 5484 struct reserve_ticket *ticket; 5485 struct list_head *head = &space_info->priority_tickets; 5486 5487 again: 5488 while (!list_empty(head) && num_bytes) { 5489 ticket = list_first_entry(head, struct reserve_ticket, 5490 list); 5491 if (num_bytes >= ticket->bytes) { 5492 trace_btrfs_space_reservation(fs_info, "space_info", 5493 space_info->flags, 5494 ticket->bytes, 1); 5495 list_del_init(&ticket->list); 5496 num_bytes -= ticket->bytes; 5497 space_info->bytes_may_use += ticket->bytes; 5498 ticket->bytes = 0; 5499 space_info->tickets_id++; 5500 wake_up(&ticket->wait); 5501 } else { 5502 trace_btrfs_space_reservation(fs_info, "space_info", 5503 space_info->flags, 5504 num_bytes, 1); 5505 space_info->bytes_may_use += num_bytes; 5506 ticket->bytes -= num_bytes; 5507 num_bytes = 0; 5508 } 5509 } 5510 5511 if (num_bytes && head == &space_info->priority_tickets) { 5512 head = &space_info->tickets; 5513 goto again; 5514 } 5515 } 5516 5517 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 5518 struct btrfs_block_rsv *block_rsv, 5519 struct btrfs_block_rsv *dest, u64 num_bytes) 5520 { 5521 struct btrfs_space_info *space_info = block_rsv->space_info; 5522 5523 spin_lock(&block_rsv->lock); 5524 if (num_bytes == (u64)-1) 5525 num_bytes = block_rsv->size; 5526 block_rsv->size -= num_bytes; 5527 if (block_rsv->reserved >= block_rsv->size) { 5528 num_bytes = block_rsv->reserved - block_rsv->size; 5529 block_rsv->reserved = block_rsv->size; 5530 block_rsv->full = 1; 5531 } else { 5532 num_bytes = 0; 5533 } 5534 spin_unlock(&block_rsv->lock); 5535 5536 if (num_bytes > 0) { 5537 if (dest) { 5538 spin_lock(&dest->lock); 5539 if (!dest->full) { 5540 u64 bytes_to_add; 5541 5542 bytes_to_add = dest->size - dest->reserved; 5543 bytes_to_add = min(num_bytes, bytes_to_add); 5544 dest->reserved += bytes_to_add; 5545 if (dest->reserved >= dest->size) 5546 dest->full = 1; 5547 num_bytes -= bytes_to_add; 5548 } 5549 spin_unlock(&dest->lock); 5550 } 5551 if (num_bytes) 5552 space_info_add_old_bytes(fs_info, space_info, 5553 num_bytes); 5554 } 5555 } 5556 5557 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 5558 struct btrfs_block_rsv *dst, u64 num_bytes, 5559 int update_size) 5560 { 5561 int ret; 5562 5563 ret = block_rsv_use_bytes(src, num_bytes); 5564 if (ret) 5565 return ret; 5566 5567 block_rsv_add_bytes(dst, num_bytes, update_size); 5568 return 0; 5569 } 5570 5571 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 5572 { 5573 memset(rsv, 0, sizeof(*rsv)); 5574 spin_lock_init(&rsv->lock); 5575 rsv->type = type; 5576 } 5577 5578 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 5579 unsigned short type) 5580 { 5581 struct btrfs_block_rsv *block_rsv; 5582 5583 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 5584 if (!block_rsv) 5585 return NULL; 5586 5587 btrfs_init_block_rsv(block_rsv, type); 5588 block_rsv->space_info = __find_space_info(fs_info, 5589 BTRFS_BLOCK_GROUP_METADATA); 5590 return block_rsv; 5591 } 5592 5593 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 5594 struct btrfs_block_rsv *rsv) 5595 { 5596 if (!rsv) 5597 return; 5598 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5599 kfree(rsv); 5600 } 5601 5602 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 5603 { 5604 kfree(rsv); 5605 } 5606 5607 int btrfs_block_rsv_add(struct btrfs_root *root, 5608 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 5609 enum btrfs_reserve_flush_enum flush) 5610 { 5611 int ret; 5612 5613 if (num_bytes == 0) 5614 return 0; 5615 5616 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5617 if (!ret) { 5618 block_rsv_add_bytes(block_rsv, num_bytes, 1); 5619 return 0; 5620 } 5621 5622 return ret; 5623 } 5624 5625 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 5626 { 5627 u64 num_bytes = 0; 5628 int ret = -ENOSPC; 5629 5630 if (!block_rsv) 5631 return 0; 5632 5633 spin_lock(&block_rsv->lock); 5634 num_bytes = div_factor(block_rsv->size, min_factor); 5635 if (block_rsv->reserved >= num_bytes) 5636 ret = 0; 5637 spin_unlock(&block_rsv->lock); 5638 5639 return ret; 5640 } 5641 5642 int btrfs_block_rsv_refill(struct btrfs_root *root, 5643 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 5644 enum btrfs_reserve_flush_enum flush) 5645 { 5646 u64 num_bytes = 0; 5647 int ret = -ENOSPC; 5648 5649 if (!block_rsv) 5650 return 0; 5651 5652 spin_lock(&block_rsv->lock); 5653 num_bytes = min_reserved; 5654 if (block_rsv->reserved >= num_bytes) 5655 ret = 0; 5656 else 5657 num_bytes -= block_rsv->reserved; 5658 spin_unlock(&block_rsv->lock); 5659 5660 if (!ret) 5661 return 0; 5662 5663 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5664 if (!ret) { 5665 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5666 return 0; 5667 } 5668 5669 return ret; 5670 } 5671 5672 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 5673 struct btrfs_block_rsv *block_rsv, 5674 u64 num_bytes) 5675 { 5676 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5677 5678 if (global_rsv == block_rsv || 5679 block_rsv->space_info != global_rsv->space_info) 5680 global_rsv = NULL; 5681 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes); 5682 } 5683 5684 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5685 { 5686 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5687 struct btrfs_space_info *sinfo = block_rsv->space_info; 5688 u64 num_bytes; 5689 5690 /* 5691 * The global block rsv is based on the size of the extent tree, the 5692 * checksum tree and the root tree. If the fs is empty we want to set 5693 * it to a minimal amount for safety. 5694 */ 5695 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 5696 btrfs_root_used(&fs_info->csum_root->root_item) + 5697 btrfs_root_used(&fs_info->tree_root->root_item); 5698 num_bytes = max_t(u64, num_bytes, SZ_16M); 5699 5700 spin_lock(&sinfo->lock); 5701 spin_lock(&block_rsv->lock); 5702 5703 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 5704 5705 if (block_rsv->reserved < block_rsv->size) { 5706 num_bytes = btrfs_space_info_used(sinfo, true); 5707 if (sinfo->total_bytes > num_bytes) { 5708 num_bytes = sinfo->total_bytes - num_bytes; 5709 num_bytes = min(num_bytes, 5710 block_rsv->size - block_rsv->reserved); 5711 block_rsv->reserved += num_bytes; 5712 sinfo->bytes_may_use += num_bytes; 5713 trace_btrfs_space_reservation(fs_info, "space_info", 5714 sinfo->flags, num_bytes, 5715 1); 5716 } 5717 } else if (block_rsv->reserved > block_rsv->size) { 5718 num_bytes = block_rsv->reserved - block_rsv->size; 5719 sinfo->bytes_may_use -= num_bytes; 5720 trace_btrfs_space_reservation(fs_info, "space_info", 5721 sinfo->flags, num_bytes, 0); 5722 block_rsv->reserved = block_rsv->size; 5723 } 5724 5725 if (block_rsv->reserved == block_rsv->size) 5726 block_rsv->full = 1; 5727 else 5728 block_rsv->full = 0; 5729 5730 spin_unlock(&block_rsv->lock); 5731 spin_unlock(&sinfo->lock); 5732 } 5733 5734 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5735 { 5736 struct btrfs_space_info *space_info; 5737 5738 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5739 fs_info->chunk_block_rsv.space_info = space_info; 5740 5741 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5742 fs_info->global_block_rsv.space_info = space_info; 5743 fs_info->delalloc_block_rsv.space_info = space_info; 5744 fs_info->trans_block_rsv.space_info = space_info; 5745 fs_info->empty_block_rsv.space_info = space_info; 5746 fs_info->delayed_block_rsv.space_info = space_info; 5747 5748 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5749 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5750 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5751 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5752 if (fs_info->quota_root) 5753 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5754 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5755 5756 update_global_block_rsv(fs_info); 5757 } 5758 5759 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5760 { 5761 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5762 (u64)-1); 5763 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5764 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5765 WARN_ON(fs_info->trans_block_rsv.size > 0); 5766 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5767 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5768 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5769 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5770 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5771 } 5772 5773 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5774 struct btrfs_fs_info *fs_info) 5775 { 5776 if (!trans->block_rsv) 5777 return; 5778 5779 if (!trans->bytes_reserved) 5780 return; 5781 5782 trace_btrfs_space_reservation(fs_info, "transaction", 5783 trans->transid, trans->bytes_reserved, 0); 5784 btrfs_block_rsv_release(fs_info, trans->block_rsv, 5785 trans->bytes_reserved); 5786 trans->bytes_reserved = 0; 5787 } 5788 5789 /* 5790 * To be called after all the new block groups attached to the transaction 5791 * handle have been created (btrfs_create_pending_block_groups()). 5792 */ 5793 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5794 { 5795 struct btrfs_fs_info *fs_info = trans->fs_info; 5796 5797 if (!trans->chunk_bytes_reserved) 5798 return; 5799 5800 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5801 5802 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5803 trans->chunk_bytes_reserved); 5804 trans->chunk_bytes_reserved = 0; 5805 } 5806 5807 /* Can only return 0 or -ENOSPC */ 5808 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5809 struct btrfs_inode *inode) 5810 { 5811 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5812 struct btrfs_root *root = inode->root; 5813 /* 5814 * We always use trans->block_rsv here as we will have reserved space 5815 * for our orphan when starting the transaction, using get_block_rsv() 5816 * here will sometimes make us choose the wrong block rsv as we could be 5817 * doing a reloc inode for a non refcounted root. 5818 */ 5819 struct btrfs_block_rsv *src_rsv = trans->block_rsv; 5820 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5821 5822 /* 5823 * We need to hold space in order to delete our orphan item once we've 5824 * added it, so this takes the reservation so we can release it later 5825 * when we are truly done with the orphan item. 5826 */ 5827 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5828 5829 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5830 num_bytes, 1); 5831 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 5832 } 5833 5834 void btrfs_orphan_release_metadata(struct btrfs_inode *inode) 5835 { 5836 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5837 struct btrfs_root *root = inode->root; 5838 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 5839 5840 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 5841 num_bytes, 0); 5842 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes); 5843 } 5844 5845 /* 5846 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5847 * root: the root of the parent directory 5848 * rsv: block reservation 5849 * items: the number of items that we need do reservation 5850 * qgroup_reserved: used to return the reserved size in qgroup 5851 * 5852 * This function is used to reserve the space for snapshot/subvolume 5853 * creation and deletion. Those operations are different with the 5854 * common file/directory operations, they change two fs/file trees 5855 * and root tree, the number of items that the qgroup reserves is 5856 * different with the free space reservation. So we can not use 5857 * the space reservation mechanism in start_transaction(). 5858 */ 5859 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5860 struct btrfs_block_rsv *rsv, 5861 int items, 5862 u64 *qgroup_reserved, 5863 bool use_global_rsv) 5864 { 5865 u64 num_bytes; 5866 int ret; 5867 struct btrfs_fs_info *fs_info = root->fs_info; 5868 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5869 5870 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 5871 /* One for parent inode, two for dir entries */ 5872 num_bytes = 3 * fs_info->nodesize; 5873 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true); 5874 if (ret) 5875 return ret; 5876 } else { 5877 num_bytes = 0; 5878 } 5879 5880 *qgroup_reserved = num_bytes; 5881 5882 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); 5883 rsv->space_info = __find_space_info(fs_info, 5884 BTRFS_BLOCK_GROUP_METADATA); 5885 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5886 BTRFS_RESERVE_FLUSH_ALL); 5887 5888 if (ret == -ENOSPC && use_global_rsv) 5889 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); 5890 5891 if (ret && *qgroup_reserved) 5892 btrfs_qgroup_free_meta(root, *qgroup_reserved); 5893 5894 return ret; 5895 } 5896 5897 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, 5898 struct btrfs_block_rsv *rsv) 5899 { 5900 btrfs_block_rsv_release(fs_info, rsv, (u64)-1); 5901 } 5902 5903 /** 5904 * drop_outstanding_extent - drop an outstanding extent 5905 * @inode: the inode we're dropping the extent for 5906 * @num_bytes: the number of bytes we're releasing. 5907 * 5908 * This is called when we are freeing up an outstanding extent, either called 5909 * after an error or after an extent is written. This will return the number of 5910 * reserved extents that need to be freed. This must be called with 5911 * BTRFS_I(inode)->lock held. 5912 */ 5913 static unsigned drop_outstanding_extent(struct btrfs_inode *inode, 5914 u64 num_bytes) 5915 { 5916 unsigned drop_inode_space = 0; 5917 unsigned dropped_extents = 0; 5918 unsigned num_extents; 5919 5920 num_extents = count_max_extents(num_bytes); 5921 ASSERT(num_extents); 5922 ASSERT(inode->outstanding_extents >= num_extents); 5923 inode->outstanding_extents -= num_extents; 5924 5925 if (inode->outstanding_extents == 0 && 5926 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5927 &inode->runtime_flags)) 5928 drop_inode_space = 1; 5929 5930 /* 5931 * If we have more or the same amount of outstanding extents than we have 5932 * reserved then we need to leave the reserved extents count alone. 5933 */ 5934 if (inode->outstanding_extents >= inode->reserved_extents) 5935 return drop_inode_space; 5936 5937 dropped_extents = inode->reserved_extents - inode->outstanding_extents; 5938 inode->reserved_extents -= dropped_extents; 5939 return dropped_extents + drop_inode_space; 5940 } 5941 5942 /** 5943 * calc_csum_metadata_size - return the amount of metadata space that must be 5944 * reserved/freed for the given bytes. 5945 * @inode: the inode we're manipulating 5946 * @num_bytes: the number of bytes in question 5947 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5948 * 5949 * This adjusts the number of csum_bytes in the inode and then returns the 5950 * correct amount of metadata that must either be reserved or freed. We 5951 * calculate how many checksums we can fit into one leaf and then divide the 5952 * number of bytes that will need to be checksumed by this value to figure out 5953 * how many checksums will be required. If we are adding bytes then the number 5954 * may go up and we will return the number of additional bytes that must be 5955 * reserved. If it is going down we will return the number of bytes that must 5956 * be freed. 5957 * 5958 * This must be called with BTRFS_I(inode)->lock held. 5959 */ 5960 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes, 5961 int reserve) 5962 { 5963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5964 u64 old_csums, num_csums; 5965 5966 if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0) 5967 return 0; 5968 5969 old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 5970 if (reserve) 5971 inode->csum_bytes += num_bytes; 5972 else 5973 inode->csum_bytes -= num_bytes; 5974 num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes); 5975 5976 /* No change, no need to reserve more */ 5977 if (old_csums == num_csums) 5978 return 0; 5979 5980 if (reserve) 5981 return btrfs_calc_trans_metadata_size(fs_info, 5982 num_csums - old_csums); 5983 5984 return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums); 5985 } 5986 5987 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) 5988 { 5989 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 5990 struct btrfs_root *root = inode->root; 5991 struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv; 5992 u64 to_reserve = 0; 5993 u64 csum_bytes; 5994 unsigned nr_extents; 5995 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5996 int ret = 0; 5997 bool delalloc_lock = true; 5998 u64 to_free = 0; 5999 unsigned dropped; 6000 bool release_extra = false; 6001 6002 /* If we are a free space inode we need to not flush since we will be in 6003 * the middle of a transaction commit. We also don't need the delalloc 6004 * mutex since we won't race with anybody. We need this mostly to make 6005 * lockdep shut its filthy mouth. 6006 * 6007 * If we have a transaction open (can happen if we call truncate_block 6008 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 6009 */ 6010 if (btrfs_is_free_space_inode(inode)) { 6011 flush = BTRFS_RESERVE_NO_FLUSH; 6012 delalloc_lock = false; 6013 } else if (current->journal_info) { 6014 flush = BTRFS_RESERVE_FLUSH_LIMIT; 6015 } 6016 6017 if (flush != BTRFS_RESERVE_NO_FLUSH && 6018 btrfs_transaction_in_commit(fs_info)) 6019 schedule_timeout(1); 6020 6021 if (delalloc_lock) 6022 mutex_lock(&inode->delalloc_mutex); 6023 6024 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6025 6026 spin_lock(&inode->lock); 6027 nr_extents = count_max_extents(num_bytes); 6028 inode->outstanding_extents += nr_extents; 6029 6030 nr_extents = 0; 6031 if (inode->outstanding_extents > inode->reserved_extents) 6032 nr_extents += inode->outstanding_extents - 6033 inode->reserved_extents; 6034 6035 /* We always want to reserve a slot for updating the inode. */ 6036 to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1); 6037 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 6038 csum_bytes = inode->csum_bytes; 6039 spin_unlock(&inode->lock); 6040 6041 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 6042 ret = btrfs_qgroup_reserve_meta(root, 6043 nr_extents * fs_info->nodesize, true); 6044 if (ret) 6045 goto out_fail; 6046 } 6047 6048 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush); 6049 if (unlikely(ret)) { 6050 btrfs_qgroup_free_meta(root, 6051 nr_extents * fs_info->nodesize); 6052 goto out_fail; 6053 } 6054 6055 spin_lock(&inode->lock); 6056 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 6057 &inode->runtime_flags)) { 6058 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1); 6059 release_extra = true; 6060 } 6061 inode->reserved_extents += nr_extents; 6062 spin_unlock(&inode->lock); 6063 6064 if (delalloc_lock) 6065 mutex_unlock(&inode->delalloc_mutex); 6066 6067 if (to_reserve) 6068 trace_btrfs_space_reservation(fs_info, "delalloc", 6069 btrfs_ino(inode), to_reserve, 1); 6070 if (release_extra) 6071 btrfs_block_rsv_release(fs_info, block_rsv, 6072 btrfs_calc_trans_metadata_size(fs_info, 1)); 6073 return 0; 6074 6075 out_fail: 6076 spin_lock(&inode->lock); 6077 dropped = drop_outstanding_extent(inode, num_bytes); 6078 /* 6079 * If the inodes csum_bytes is the same as the original 6080 * csum_bytes then we know we haven't raced with any free()ers 6081 * so we can just reduce our inodes csum bytes and carry on. 6082 */ 6083 if (inode->csum_bytes == csum_bytes) { 6084 calc_csum_metadata_size(inode, num_bytes, 0); 6085 } else { 6086 u64 orig_csum_bytes = inode->csum_bytes; 6087 u64 bytes; 6088 6089 /* 6090 * This is tricky, but first we need to figure out how much we 6091 * freed from any free-ers that occurred during this 6092 * reservation, so we reset ->csum_bytes to the csum_bytes 6093 * before we dropped our lock, and then call the free for the 6094 * number of bytes that were freed while we were trying our 6095 * reservation. 6096 */ 6097 bytes = csum_bytes - inode->csum_bytes; 6098 inode->csum_bytes = csum_bytes; 6099 to_free = calc_csum_metadata_size(inode, bytes, 0); 6100 6101 6102 /* 6103 * Now we need to see how much we would have freed had we not 6104 * been making this reservation and our ->csum_bytes were not 6105 * artificially inflated. 6106 */ 6107 inode->csum_bytes = csum_bytes - num_bytes; 6108 bytes = csum_bytes - orig_csum_bytes; 6109 bytes = calc_csum_metadata_size(inode, bytes, 0); 6110 6111 /* 6112 * Now reset ->csum_bytes to what it should be. If bytes is 6113 * more than to_free then we would have freed more space had we 6114 * not had an artificially high ->csum_bytes, so we need to free 6115 * the remainder. If bytes is the same or less then we don't 6116 * need to do anything, the other free-ers did the correct 6117 * thing. 6118 */ 6119 inode->csum_bytes = orig_csum_bytes - num_bytes; 6120 if (bytes > to_free) 6121 to_free = bytes - to_free; 6122 else 6123 to_free = 0; 6124 } 6125 spin_unlock(&inode->lock); 6126 if (dropped) 6127 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6128 6129 if (to_free) { 6130 btrfs_block_rsv_release(fs_info, block_rsv, to_free); 6131 trace_btrfs_space_reservation(fs_info, "delalloc", 6132 btrfs_ino(inode), to_free, 0); 6133 } 6134 if (delalloc_lock) 6135 mutex_unlock(&inode->delalloc_mutex); 6136 return ret; 6137 } 6138 6139 /** 6140 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 6141 * @inode: the inode to release the reservation for 6142 * @num_bytes: the number of bytes we're releasing 6143 * 6144 * This will release the metadata reservation for an inode. This can be called 6145 * once we complete IO for a given set of bytes to release their metadata 6146 * reservations. 6147 */ 6148 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes) 6149 { 6150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6151 u64 to_free = 0; 6152 unsigned dropped; 6153 6154 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 6155 spin_lock(&inode->lock); 6156 dropped = drop_outstanding_extent(inode, num_bytes); 6157 6158 if (num_bytes) 6159 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 6160 spin_unlock(&inode->lock); 6161 if (dropped > 0) 6162 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped); 6163 6164 if (btrfs_is_testing(fs_info)) 6165 return; 6166 6167 trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode), 6168 to_free, 0); 6169 6170 btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free); 6171 } 6172 6173 /** 6174 * btrfs_delalloc_reserve_space - reserve data and metadata space for 6175 * delalloc 6176 * @inode: inode we're writing to 6177 * @start: start range we are writing to 6178 * @len: how long the range we are writing to 6179 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 6180 * current reservation. 6181 * 6182 * This will do the following things 6183 * 6184 * o reserve space in data space info for num bytes 6185 * and reserve precious corresponding qgroup space 6186 * (Done in check_data_free_space) 6187 * 6188 * o reserve space for metadata space, based on the number of outstanding 6189 * extents and how much csums will be needed 6190 * also reserve metadata space in a per root over-reserve method. 6191 * o add to the inodes->delalloc_bytes 6192 * o add it to the fs_info's delalloc inodes list. 6193 * (Above 3 all done in delalloc_reserve_metadata) 6194 * 6195 * Return 0 for success 6196 * Return <0 for error(-ENOSPC or -EQUOT) 6197 */ 6198 int btrfs_delalloc_reserve_space(struct inode *inode, 6199 struct extent_changeset **reserved, u64 start, u64 len) 6200 { 6201 int ret; 6202 6203 ret = btrfs_check_data_free_space(inode, reserved, start, len); 6204 if (ret < 0) 6205 return ret; 6206 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); 6207 if (ret < 0) 6208 btrfs_free_reserved_data_space(inode, *reserved, start, len); 6209 return ret; 6210 } 6211 6212 /** 6213 * btrfs_delalloc_release_space - release data and metadata space for delalloc 6214 * @inode: inode we're releasing space for 6215 * @start: start position of the space already reserved 6216 * @len: the len of the space already reserved 6217 * 6218 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 6219 * called in the case that we don't need the metadata AND data reservations 6220 * anymore. So if there is an error or we insert an inline extent. 6221 * 6222 * This function will release the metadata space that was not used and will 6223 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 6224 * list if there are no delalloc bytes left. 6225 * Also it will handle the qgroup reserved space. 6226 */ 6227 void btrfs_delalloc_release_space(struct inode *inode, 6228 struct extent_changeset *reserved, u64 start, u64 len) 6229 { 6230 btrfs_delalloc_release_metadata(BTRFS_I(inode), len); 6231 btrfs_free_reserved_data_space(inode, reserved, start, len); 6232 } 6233 6234 static int update_block_group(struct btrfs_trans_handle *trans, 6235 struct btrfs_fs_info *info, u64 bytenr, 6236 u64 num_bytes, int alloc) 6237 { 6238 struct btrfs_block_group_cache *cache = NULL; 6239 u64 total = num_bytes; 6240 u64 old_val; 6241 u64 byte_in_group; 6242 int factor; 6243 6244 /* block accounting for super block */ 6245 spin_lock(&info->delalloc_root_lock); 6246 old_val = btrfs_super_bytes_used(info->super_copy); 6247 if (alloc) 6248 old_val += num_bytes; 6249 else 6250 old_val -= num_bytes; 6251 btrfs_set_super_bytes_used(info->super_copy, old_val); 6252 spin_unlock(&info->delalloc_root_lock); 6253 6254 while (total) { 6255 cache = btrfs_lookup_block_group(info, bytenr); 6256 if (!cache) 6257 return -ENOENT; 6258 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 6259 BTRFS_BLOCK_GROUP_RAID1 | 6260 BTRFS_BLOCK_GROUP_RAID10)) 6261 factor = 2; 6262 else 6263 factor = 1; 6264 /* 6265 * If this block group has free space cache written out, we 6266 * need to make sure to load it if we are removing space. This 6267 * is because we need the unpinning stage to actually add the 6268 * space back to the block group, otherwise we will leak space. 6269 */ 6270 if (!alloc && cache->cached == BTRFS_CACHE_NO) 6271 cache_block_group(cache, 1); 6272 6273 byte_in_group = bytenr - cache->key.objectid; 6274 WARN_ON(byte_in_group > cache->key.offset); 6275 6276 spin_lock(&cache->space_info->lock); 6277 spin_lock(&cache->lock); 6278 6279 if (btrfs_test_opt(info, SPACE_CACHE) && 6280 cache->disk_cache_state < BTRFS_DC_CLEAR) 6281 cache->disk_cache_state = BTRFS_DC_CLEAR; 6282 6283 old_val = btrfs_block_group_used(&cache->item); 6284 num_bytes = min(total, cache->key.offset - byte_in_group); 6285 if (alloc) { 6286 old_val += num_bytes; 6287 btrfs_set_block_group_used(&cache->item, old_val); 6288 cache->reserved -= num_bytes; 6289 cache->space_info->bytes_reserved -= num_bytes; 6290 cache->space_info->bytes_used += num_bytes; 6291 cache->space_info->disk_used += num_bytes * factor; 6292 spin_unlock(&cache->lock); 6293 spin_unlock(&cache->space_info->lock); 6294 } else { 6295 old_val -= num_bytes; 6296 btrfs_set_block_group_used(&cache->item, old_val); 6297 cache->pinned += num_bytes; 6298 cache->space_info->bytes_pinned += num_bytes; 6299 cache->space_info->bytes_used -= num_bytes; 6300 cache->space_info->disk_used -= num_bytes * factor; 6301 spin_unlock(&cache->lock); 6302 spin_unlock(&cache->space_info->lock); 6303 6304 trace_btrfs_space_reservation(info, "pinned", 6305 cache->space_info->flags, 6306 num_bytes, 1); 6307 percpu_counter_add(&cache->space_info->total_bytes_pinned, 6308 num_bytes); 6309 set_extent_dirty(info->pinned_extents, 6310 bytenr, bytenr + num_bytes - 1, 6311 GFP_NOFS | __GFP_NOFAIL); 6312 } 6313 6314 spin_lock(&trans->transaction->dirty_bgs_lock); 6315 if (list_empty(&cache->dirty_list)) { 6316 list_add_tail(&cache->dirty_list, 6317 &trans->transaction->dirty_bgs); 6318 trans->transaction->num_dirty_bgs++; 6319 btrfs_get_block_group(cache); 6320 } 6321 spin_unlock(&trans->transaction->dirty_bgs_lock); 6322 6323 /* 6324 * No longer have used bytes in this block group, queue it for 6325 * deletion. We do this after adding the block group to the 6326 * dirty list to avoid races between cleaner kthread and space 6327 * cache writeout. 6328 */ 6329 if (!alloc && old_val == 0) { 6330 spin_lock(&info->unused_bgs_lock); 6331 if (list_empty(&cache->bg_list)) { 6332 btrfs_get_block_group(cache); 6333 list_add_tail(&cache->bg_list, 6334 &info->unused_bgs); 6335 } 6336 spin_unlock(&info->unused_bgs_lock); 6337 } 6338 6339 btrfs_put_block_group(cache); 6340 total -= num_bytes; 6341 bytenr += num_bytes; 6342 } 6343 return 0; 6344 } 6345 6346 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) 6347 { 6348 struct btrfs_block_group_cache *cache; 6349 u64 bytenr; 6350 6351 spin_lock(&fs_info->block_group_cache_lock); 6352 bytenr = fs_info->first_logical_byte; 6353 spin_unlock(&fs_info->block_group_cache_lock); 6354 6355 if (bytenr < (u64)-1) 6356 return bytenr; 6357 6358 cache = btrfs_lookup_first_block_group(fs_info, search_start); 6359 if (!cache) 6360 return 0; 6361 6362 bytenr = cache->key.objectid; 6363 btrfs_put_block_group(cache); 6364 6365 return bytenr; 6366 } 6367 6368 static int pin_down_extent(struct btrfs_fs_info *fs_info, 6369 struct btrfs_block_group_cache *cache, 6370 u64 bytenr, u64 num_bytes, int reserved) 6371 { 6372 spin_lock(&cache->space_info->lock); 6373 spin_lock(&cache->lock); 6374 cache->pinned += num_bytes; 6375 cache->space_info->bytes_pinned += num_bytes; 6376 if (reserved) { 6377 cache->reserved -= num_bytes; 6378 cache->space_info->bytes_reserved -= num_bytes; 6379 } 6380 spin_unlock(&cache->lock); 6381 spin_unlock(&cache->space_info->lock); 6382 6383 trace_btrfs_space_reservation(fs_info, "pinned", 6384 cache->space_info->flags, num_bytes, 1); 6385 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes); 6386 set_extent_dirty(fs_info->pinned_extents, bytenr, 6387 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 6388 return 0; 6389 } 6390 6391 /* 6392 * this function must be called within transaction 6393 */ 6394 int btrfs_pin_extent(struct btrfs_fs_info *fs_info, 6395 u64 bytenr, u64 num_bytes, int reserved) 6396 { 6397 struct btrfs_block_group_cache *cache; 6398 6399 cache = btrfs_lookup_block_group(fs_info, bytenr); 6400 BUG_ON(!cache); /* Logic error */ 6401 6402 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); 6403 6404 btrfs_put_block_group(cache); 6405 return 0; 6406 } 6407 6408 /* 6409 * this function must be called within transaction 6410 */ 6411 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, 6412 u64 bytenr, u64 num_bytes) 6413 { 6414 struct btrfs_block_group_cache *cache; 6415 int ret; 6416 6417 cache = btrfs_lookup_block_group(fs_info, bytenr); 6418 if (!cache) 6419 return -EINVAL; 6420 6421 /* 6422 * pull in the free space cache (if any) so that our pin 6423 * removes the free space from the cache. We have load_only set 6424 * to one because the slow code to read in the free extents does check 6425 * the pinned extents. 6426 */ 6427 cache_block_group(cache, 1); 6428 6429 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); 6430 6431 /* remove us from the free space cache (if we're there at all) */ 6432 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 6433 btrfs_put_block_group(cache); 6434 return ret; 6435 } 6436 6437 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 6438 u64 start, u64 num_bytes) 6439 { 6440 int ret; 6441 struct btrfs_block_group_cache *block_group; 6442 struct btrfs_caching_control *caching_ctl; 6443 6444 block_group = btrfs_lookup_block_group(fs_info, start); 6445 if (!block_group) 6446 return -EINVAL; 6447 6448 cache_block_group(block_group, 0); 6449 caching_ctl = get_caching_control(block_group); 6450 6451 if (!caching_ctl) { 6452 /* Logic error */ 6453 BUG_ON(!block_group_cache_done(block_group)); 6454 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6455 } else { 6456 mutex_lock(&caching_ctl->mutex); 6457 6458 if (start >= caching_ctl->progress) { 6459 ret = add_excluded_extent(fs_info, start, num_bytes); 6460 } else if (start + num_bytes <= caching_ctl->progress) { 6461 ret = btrfs_remove_free_space(block_group, 6462 start, num_bytes); 6463 } else { 6464 num_bytes = caching_ctl->progress - start; 6465 ret = btrfs_remove_free_space(block_group, 6466 start, num_bytes); 6467 if (ret) 6468 goto out_lock; 6469 6470 num_bytes = (start + num_bytes) - 6471 caching_ctl->progress; 6472 start = caching_ctl->progress; 6473 ret = add_excluded_extent(fs_info, start, num_bytes); 6474 } 6475 out_lock: 6476 mutex_unlock(&caching_ctl->mutex); 6477 put_caching_control(caching_ctl); 6478 } 6479 btrfs_put_block_group(block_group); 6480 return ret; 6481 } 6482 6483 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, 6484 struct extent_buffer *eb) 6485 { 6486 struct btrfs_file_extent_item *item; 6487 struct btrfs_key key; 6488 int found_type; 6489 int i; 6490 6491 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 6492 return 0; 6493 6494 for (i = 0; i < btrfs_header_nritems(eb); i++) { 6495 btrfs_item_key_to_cpu(eb, &key, i); 6496 if (key.type != BTRFS_EXTENT_DATA_KEY) 6497 continue; 6498 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 6499 found_type = btrfs_file_extent_type(eb, item); 6500 if (found_type == BTRFS_FILE_EXTENT_INLINE) 6501 continue; 6502 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 6503 continue; 6504 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 6505 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 6506 __exclude_logged_extent(fs_info, key.objectid, key.offset); 6507 } 6508 6509 return 0; 6510 } 6511 6512 static void 6513 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) 6514 { 6515 atomic_inc(&bg->reservations); 6516 } 6517 6518 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, 6519 const u64 start) 6520 { 6521 struct btrfs_block_group_cache *bg; 6522 6523 bg = btrfs_lookup_block_group(fs_info, start); 6524 ASSERT(bg); 6525 if (atomic_dec_and_test(&bg->reservations)) 6526 wake_up_atomic_t(&bg->reservations); 6527 btrfs_put_block_group(bg); 6528 } 6529 6530 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a) 6531 { 6532 schedule(); 6533 return 0; 6534 } 6535 6536 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) 6537 { 6538 struct btrfs_space_info *space_info = bg->space_info; 6539 6540 ASSERT(bg->ro); 6541 6542 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) 6543 return; 6544 6545 /* 6546 * Our block group is read only but before we set it to read only, 6547 * some task might have had allocated an extent from it already, but it 6548 * has not yet created a respective ordered extent (and added it to a 6549 * root's list of ordered extents). 6550 * Therefore wait for any task currently allocating extents, since the 6551 * block group's reservations counter is incremented while a read lock 6552 * on the groups' semaphore is held and decremented after releasing 6553 * the read access on that semaphore and creating the ordered extent. 6554 */ 6555 down_write(&space_info->groups_sem); 6556 up_write(&space_info->groups_sem); 6557 6558 wait_on_atomic_t(&bg->reservations, 6559 btrfs_wait_bg_reservations_atomic_t, 6560 TASK_UNINTERRUPTIBLE); 6561 } 6562 6563 /** 6564 * btrfs_add_reserved_bytes - update the block_group and space info counters 6565 * @cache: The cache we are manipulating 6566 * @ram_bytes: The number of bytes of file content, and will be same to 6567 * @num_bytes except for the compress path. 6568 * @num_bytes: The number of bytes in question 6569 * @delalloc: The blocks are allocated for the delalloc write 6570 * 6571 * This is called by the allocator when it reserves space. If this is a 6572 * reservation and the block group has become read only we cannot make the 6573 * reservation and return -EAGAIN, otherwise this function always succeeds. 6574 */ 6575 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, 6576 u64 ram_bytes, u64 num_bytes, int delalloc) 6577 { 6578 struct btrfs_space_info *space_info = cache->space_info; 6579 int ret = 0; 6580 6581 spin_lock(&space_info->lock); 6582 spin_lock(&cache->lock); 6583 if (cache->ro) { 6584 ret = -EAGAIN; 6585 } else { 6586 cache->reserved += num_bytes; 6587 space_info->bytes_reserved += num_bytes; 6588 6589 trace_btrfs_space_reservation(cache->fs_info, 6590 "space_info", space_info->flags, 6591 ram_bytes, 0); 6592 space_info->bytes_may_use -= ram_bytes; 6593 if (delalloc) 6594 cache->delalloc_bytes += num_bytes; 6595 } 6596 spin_unlock(&cache->lock); 6597 spin_unlock(&space_info->lock); 6598 return ret; 6599 } 6600 6601 /** 6602 * btrfs_free_reserved_bytes - update the block_group and space info counters 6603 * @cache: The cache we are manipulating 6604 * @num_bytes: The number of bytes in question 6605 * @delalloc: The blocks are allocated for the delalloc write 6606 * 6607 * This is called by somebody who is freeing space that was never actually used 6608 * on disk. For example if you reserve some space for a new leaf in transaction 6609 * A and before transaction A commits you free that leaf, you call this with 6610 * reserve set to 0 in order to clear the reservation. 6611 */ 6612 6613 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, 6614 u64 num_bytes, int delalloc) 6615 { 6616 struct btrfs_space_info *space_info = cache->space_info; 6617 int ret = 0; 6618 6619 spin_lock(&space_info->lock); 6620 spin_lock(&cache->lock); 6621 if (cache->ro) 6622 space_info->bytes_readonly += num_bytes; 6623 cache->reserved -= num_bytes; 6624 space_info->bytes_reserved -= num_bytes; 6625 6626 if (delalloc) 6627 cache->delalloc_bytes -= num_bytes; 6628 spin_unlock(&cache->lock); 6629 spin_unlock(&space_info->lock); 6630 return ret; 6631 } 6632 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) 6633 { 6634 struct btrfs_caching_control *next; 6635 struct btrfs_caching_control *caching_ctl; 6636 struct btrfs_block_group_cache *cache; 6637 6638 down_write(&fs_info->commit_root_sem); 6639 6640 list_for_each_entry_safe(caching_ctl, next, 6641 &fs_info->caching_block_groups, list) { 6642 cache = caching_ctl->block_group; 6643 if (block_group_cache_done(cache)) { 6644 cache->last_byte_to_unpin = (u64)-1; 6645 list_del_init(&caching_ctl->list); 6646 put_caching_control(caching_ctl); 6647 } else { 6648 cache->last_byte_to_unpin = caching_ctl->progress; 6649 } 6650 } 6651 6652 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6653 fs_info->pinned_extents = &fs_info->freed_extents[1]; 6654 else 6655 fs_info->pinned_extents = &fs_info->freed_extents[0]; 6656 6657 up_write(&fs_info->commit_root_sem); 6658 6659 update_global_block_rsv(fs_info); 6660 } 6661 6662 /* 6663 * Returns the free cluster for the given space info and sets empty_cluster to 6664 * what it should be based on the mount options. 6665 */ 6666 static struct btrfs_free_cluster * 6667 fetch_cluster_info(struct btrfs_fs_info *fs_info, 6668 struct btrfs_space_info *space_info, u64 *empty_cluster) 6669 { 6670 struct btrfs_free_cluster *ret = NULL; 6671 bool ssd = btrfs_test_opt(fs_info, SSD); 6672 6673 *empty_cluster = 0; 6674 if (btrfs_mixed_space_info(space_info)) 6675 return ret; 6676 6677 if (ssd) 6678 *empty_cluster = SZ_2M; 6679 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 6680 ret = &fs_info->meta_alloc_cluster; 6681 if (!ssd) 6682 *empty_cluster = SZ_64K; 6683 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) { 6684 ret = &fs_info->data_alloc_cluster; 6685 } 6686 6687 return ret; 6688 } 6689 6690 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 6691 u64 start, u64 end, 6692 const bool return_free_space) 6693 { 6694 struct btrfs_block_group_cache *cache = NULL; 6695 struct btrfs_space_info *space_info; 6696 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 6697 struct btrfs_free_cluster *cluster = NULL; 6698 u64 len; 6699 u64 total_unpinned = 0; 6700 u64 empty_cluster = 0; 6701 bool readonly; 6702 6703 while (start <= end) { 6704 readonly = false; 6705 if (!cache || 6706 start >= cache->key.objectid + cache->key.offset) { 6707 if (cache) 6708 btrfs_put_block_group(cache); 6709 total_unpinned = 0; 6710 cache = btrfs_lookup_block_group(fs_info, start); 6711 BUG_ON(!cache); /* Logic error */ 6712 6713 cluster = fetch_cluster_info(fs_info, 6714 cache->space_info, 6715 &empty_cluster); 6716 empty_cluster <<= 1; 6717 } 6718 6719 len = cache->key.objectid + cache->key.offset - start; 6720 len = min(len, end + 1 - start); 6721 6722 if (start < cache->last_byte_to_unpin) { 6723 len = min(len, cache->last_byte_to_unpin - start); 6724 if (return_free_space) 6725 btrfs_add_free_space(cache, start, len); 6726 } 6727 6728 start += len; 6729 total_unpinned += len; 6730 space_info = cache->space_info; 6731 6732 /* 6733 * If this space cluster has been marked as fragmented and we've 6734 * unpinned enough in this block group to potentially allow a 6735 * cluster to be created inside of it go ahead and clear the 6736 * fragmented check. 6737 */ 6738 if (cluster && cluster->fragmented && 6739 total_unpinned > empty_cluster) { 6740 spin_lock(&cluster->lock); 6741 cluster->fragmented = 0; 6742 spin_unlock(&cluster->lock); 6743 } 6744 6745 spin_lock(&space_info->lock); 6746 spin_lock(&cache->lock); 6747 cache->pinned -= len; 6748 space_info->bytes_pinned -= len; 6749 6750 trace_btrfs_space_reservation(fs_info, "pinned", 6751 space_info->flags, len, 0); 6752 space_info->max_extent_size = 0; 6753 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6754 if (cache->ro) { 6755 space_info->bytes_readonly += len; 6756 readonly = true; 6757 } 6758 spin_unlock(&cache->lock); 6759 if (!readonly && return_free_space && 6760 global_rsv->space_info == space_info) { 6761 u64 to_add = len; 6762 WARN_ON(!return_free_space); 6763 spin_lock(&global_rsv->lock); 6764 if (!global_rsv->full) { 6765 to_add = min(len, global_rsv->size - 6766 global_rsv->reserved); 6767 global_rsv->reserved += to_add; 6768 space_info->bytes_may_use += to_add; 6769 if (global_rsv->reserved >= global_rsv->size) 6770 global_rsv->full = 1; 6771 trace_btrfs_space_reservation(fs_info, 6772 "space_info", 6773 space_info->flags, 6774 to_add, 1); 6775 len -= to_add; 6776 } 6777 spin_unlock(&global_rsv->lock); 6778 /* Add to any tickets we may have */ 6779 if (len) 6780 space_info_add_new_bytes(fs_info, space_info, 6781 len); 6782 } 6783 spin_unlock(&space_info->lock); 6784 } 6785 6786 if (cache) 6787 btrfs_put_block_group(cache); 6788 return 0; 6789 } 6790 6791 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6792 struct btrfs_fs_info *fs_info) 6793 { 6794 struct btrfs_block_group_cache *block_group, *tmp; 6795 struct list_head *deleted_bgs; 6796 struct extent_io_tree *unpin; 6797 u64 start; 6798 u64 end; 6799 int ret; 6800 6801 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6802 unpin = &fs_info->freed_extents[1]; 6803 else 6804 unpin = &fs_info->freed_extents[0]; 6805 6806 while (!trans->aborted) { 6807 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6808 ret = find_first_extent_bit(unpin, 0, &start, &end, 6809 EXTENT_DIRTY, NULL); 6810 if (ret) { 6811 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6812 break; 6813 } 6814 6815 if (btrfs_test_opt(fs_info, DISCARD)) 6816 ret = btrfs_discard_extent(fs_info, start, 6817 end + 1 - start, NULL); 6818 6819 clear_extent_dirty(unpin, start, end); 6820 unpin_extent_range(fs_info, start, end, true); 6821 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6822 cond_resched(); 6823 } 6824 6825 /* 6826 * Transaction is finished. We don't need the lock anymore. We 6827 * do need to clean up the block groups in case of a transaction 6828 * abort. 6829 */ 6830 deleted_bgs = &trans->transaction->deleted_bgs; 6831 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 6832 u64 trimmed = 0; 6833 6834 ret = -EROFS; 6835 if (!trans->aborted) 6836 ret = btrfs_discard_extent(fs_info, 6837 block_group->key.objectid, 6838 block_group->key.offset, 6839 &trimmed); 6840 6841 list_del_init(&block_group->bg_list); 6842 btrfs_put_block_group_trimming(block_group); 6843 btrfs_put_block_group(block_group); 6844 6845 if (ret) { 6846 const char *errstr = btrfs_decode_error(ret); 6847 btrfs_warn(fs_info, 6848 "Discard failed while removing blockgroup: errno=%d %s\n", 6849 ret, errstr); 6850 } 6851 } 6852 6853 return 0; 6854 } 6855 6856 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6857 struct btrfs_fs_info *info, 6858 struct btrfs_delayed_ref_node *node, u64 parent, 6859 u64 root_objectid, u64 owner_objectid, 6860 u64 owner_offset, int refs_to_drop, 6861 struct btrfs_delayed_extent_op *extent_op) 6862 { 6863 struct btrfs_key key; 6864 struct btrfs_path *path; 6865 struct btrfs_root *extent_root = info->extent_root; 6866 struct extent_buffer *leaf; 6867 struct btrfs_extent_item *ei; 6868 struct btrfs_extent_inline_ref *iref; 6869 int ret; 6870 int is_data; 6871 int extent_slot = 0; 6872 int found_extent = 0; 6873 int num_to_del = 1; 6874 u32 item_size; 6875 u64 refs; 6876 u64 bytenr = node->bytenr; 6877 u64 num_bytes = node->num_bytes; 6878 int last_ref = 0; 6879 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 6880 6881 path = btrfs_alloc_path(); 6882 if (!path) 6883 return -ENOMEM; 6884 6885 path->reada = READA_FORWARD; 6886 path->leave_spinning = 1; 6887 6888 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6889 BUG_ON(!is_data && refs_to_drop != 1); 6890 6891 if (is_data) 6892 skinny_metadata = 0; 6893 6894 ret = lookup_extent_backref(trans, info, path, &iref, 6895 bytenr, num_bytes, parent, 6896 root_objectid, owner_objectid, 6897 owner_offset); 6898 if (ret == 0) { 6899 extent_slot = path->slots[0]; 6900 while (extent_slot >= 0) { 6901 btrfs_item_key_to_cpu(path->nodes[0], &key, 6902 extent_slot); 6903 if (key.objectid != bytenr) 6904 break; 6905 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6906 key.offset == num_bytes) { 6907 found_extent = 1; 6908 break; 6909 } 6910 if (key.type == BTRFS_METADATA_ITEM_KEY && 6911 key.offset == owner_objectid) { 6912 found_extent = 1; 6913 break; 6914 } 6915 if (path->slots[0] - extent_slot > 5) 6916 break; 6917 extent_slot--; 6918 } 6919 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6920 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6921 if (found_extent && item_size < sizeof(*ei)) 6922 found_extent = 0; 6923 #endif 6924 if (!found_extent) { 6925 BUG_ON(iref); 6926 ret = remove_extent_backref(trans, info, path, NULL, 6927 refs_to_drop, 6928 is_data, &last_ref); 6929 if (ret) { 6930 btrfs_abort_transaction(trans, ret); 6931 goto out; 6932 } 6933 btrfs_release_path(path); 6934 path->leave_spinning = 1; 6935 6936 key.objectid = bytenr; 6937 key.type = BTRFS_EXTENT_ITEM_KEY; 6938 key.offset = num_bytes; 6939 6940 if (!is_data && skinny_metadata) { 6941 key.type = BTRFS_METADATA_ITEM_KEY; 6942 key.offset = owner_objectid; 6943 } 6944 6945 ret = btrfs_search_slot(trans, extent_root, 6946 &key, path, -1, 1); 6947 if (ret > 0 && skinny_metadata && path->slots[0]) { 6948 /* 6949 * Couldn't find our skinny metadata item, 6950 * see if we have ye olde extent item. 6951 */ 6952 path->slots[0]--; 6953 btrfs_item_key_to_cpu(path->nodes[0], &key, 6954 path->slots[0]); 6955 if (key.objectid == bytenr && 6956 key.type == BTRFS_EXTENT_ITEM_KEY && 6957 key.offset == num_bytes) 6958 ret = 0; 6959 } 6960 6961 if (ret > 0 && skinny_metadata) { 6962 skinny_metadata = false; 6963 key.objectid = bytenr; 6964 key.type = BTRFS_EXTENT_ITEM_KEY; 6965 key.offset = num_bytes; 6966 btrfs_release_path(path); 6967 ret = btrfs_search_slot(trans, extent_root, 6968 &key, path, -1, 1); 6969 } 6970 6971 if (ret) { 6972 btrfs_err(info, 6973 "umm, got %d back from search, was looking for %llu", 6974 ret, bytenr); 6975 if (ret > 0) 6976 btrfs_print_leaf(info, path->nodes[0]); 6977 } 6978 if (ret < 0) { 6979 btrfs_abort_transaction(trans, ret); 6980 goto out; 6981 } 6982 extent_slot = path->slots[0]; 6983 } 6984 } else if (WARN_ON(ret == -ENOENT)) { 6985 btrfs_print_leaf(info, path->nodes[0]); 6986 btrfs_err(info, 6987 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6988 bytenr, parent, root_objectid, owner_objectid, 6989 owner_offset); 6990 btrfs_abort_transaction(trans, ret); 6991 goto out; 6992 } else { 6993 btrfs_abort_transaction(trans, ret); 6994 goto out; 6995 } 6996 6997 leaf = path->nodes[0]; 6998 item_size = btrfs_item_size_nr(leaf, extent_slot); 6999 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 7000 if (item_size < sizeof(*ei)) { 7001 BUG_ON(found_extent || extent_slot != path->slots[0]); 7002 ret = convert_extent_item_v0(trans, info, path, owner_objectid, 7003 0); 7004 if (ret < 0) { 7005 btrfs_abort_transaction(trans, ret); 7006 goto out; 7007 } 7008 7009 btrfs_release_path(path); 7010 path->leave_spinning = 1; 7011 7012 key.objectid = bytenr; 7013 key.type = BTRFS_EXTENT_ITEM_KEY; 7014 key.offset = num_bytes; 7015 7016 ret = btrfs_search_slot(trans, extent_root, &key, path, 7017 -1, 1); 7018 if (ret) { 7019 btrfs_err(info, 7020 "umm, got %d back from search, was looking for %llu", 7021 ret, bytenr); 7022 btrfs_print_leaf(info, path->nodes[0]); 7023 } 7024 if (ret < 0) { 7025 btrfs_abort_transaction(trans, ret); 7026 goto out; 7027 } 7028 7029 extent_slot = path->slots[0]; 7030 leaf = path->nodes[0]; 7031 item_size = btrfs_item_size_nr(leaf, extent_slot); 7032 } 7033 #endif 7034 BUG_ON(item_size < sizeof(*ei)); 7035 ei = btrfs_item_ptr(leaf, extent_slot, 7036 struct btrfs_extent_item); 7037 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 7038 key.type == BTRFS_EXTENT_ITEM_KEY) { 7039 struct btrfs_tree_block_info *bi; 7040 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 7041 bi = (struct btrfs_tree_block_info *)(ei + 1); 7042 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 7043 } 7044 7045 refs = btrfs_extent_refs(leaf, ei); 7046 if (refs < refs_to_drop) { 7047 btrfs_err(info, 7048 "trying to drop %d refs but we only have %Lu for bytenr %Lu", 7049 refs_to_drop, refs, bytenr); 7050 ret = -EINVAL; 7051 btrfs_abort_transaction(trans, ret); 7052 goto out; 7053 } 7054 refs -= refs_to_drop; 7055 7056 if (refs > 0) { 7057 if (extent_op) 7058 __run_delayed_extent_op(extent_op, leaf, ei); 7059 /* 7060 * In the case of inline back ref, reference count will 7061 * be updated by remove_extent_backref 7062 */ 7063 if (iref) { 7064 BUG_ON(!found_extent); 7065 } else { 7066 btrfs_set_extent_refs(leaf, ei, refs); 7067 btrfs_mark_buffer_dirty(leaf); 7068 } 7069 if (found_extent) { 7070 ret = remove_extent_backref(trans, info, path, 7071 iref, refs_to_drop, 7072 is_data, &last_ref); 7073 if (ret) { 7074 btrfs_abort_transaction(trans, ret); 7075 goto out; 7076 } 7077 } 7078 } else { 7079 if (found_extent) { 7080 BUG_ON(is_data && refs_to_drop != 7081 extent_data_ref_count(path, iref)); 7082 if (iref) { 7083 BUG_ON(path->slots[0] != extent_slot); 7084 } else { 7085 BUG_ON(path->slots[0] != extent_slot + 1); 7086 path->slots[0] = extent_slot; 7087 num_to_del = 2; 7088 } 7089 } 7090 7091 last_ref = 1; 7092 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 7093 num_to_del); 7094 if (ret) { 7095 btrfs_abort_transaction(trans, ret); 7096 goto out; 7097 } 7098 btrfs_release_path(path); 7099 7100 if (is_data) { 7101 ret = btrfs_del_csums(trans, info, bytenr, num_bytes); 7102 if (ret) { 7103 btrfs_abort_transaction(trans, ret); 7104 goto out; 7105 } 7106 } 7107 7108 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes); 7109 if (ret) { 7110 btrfs_abort_transaction(trans, ret); 7111 goto out; 7112 } 7113 7114 ret = update_block_group(trans, info, bytenr, num_bytes, 0); 7115 if (ret) { 7116 btrfs_abort_transaction(trans, ret); 7117 goto out; 7118 } 7119 } 7120 btrfs_release_path(path); 7121 7122 out: 7123 btrfs_free_path(path); 7124 return ret; 7125 } 7126 7127 /* 7128 * when we free an block, it is possible (and likely) that we free the last 7129 * delayed ref for that extent as well. This searches the delayed ref tree for 7130 * a given extent, and if there are no other delayed refs to be processed, it 7131 * removes it from the tree. 7132 */ 7133 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 7134 u64 bytenr) 7135 { 7136 struct btrfs_delayed_ref_head *head; 7137 struct btrfs_delayed_ref_root *delayed_refs; 7138 int ret = 0; 7139 7140 delayed_refs = &trans->transaction->delayed_refs; 7141 spin_lock(&delayed_refs->lock); 7142 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 7143 if (!head) 7144 goto out_delayed_unlock; 7145 7146 spin_lock(&head->lock); 7147 if (!list_empty(&head->ref_list)) 7148 goto out; 7149 7150 if (head->extent_op) { 7151 if (!head->must_insert_reserved) 7152 goto out; 7153 btrfs_free_delayed_extent_op(head->extent_op); 7154 head->extent_op = NULL; 7155 } 7156 7157 /* 7158 * waiting for the lock here would deadlock. If someone else has it 7159 * locked they are already in the process of dropping it anyway 7160 */ 7161 if (!mutex_trylock(&head->mutex)) 7162 goto out; 7163 7164 /* 7165 * at this point we have a head with no other entries. Go 7166 * ahead and process it. 7167 */ 7168 head->node.in_tree = 0; 7169 rb_erase(&head->href_node, &delayed_refs->href_root); 7170 7171 atomic_dec(&delayed_refs->num_entries); 7172 7173 /* 7174 * we don't take a ref on the node because we're removing it from the 7175 * tree, so we just steal the ref the tree was holding. 7176 */ 7177 delayed_refs->num_heads--; 7178 if (head->processing == 0) 7179 delayed_refs->num_heads_ready--; 7180 head->processing = 0; 7181 spin_unlock(&head->lock); 7182 spin_unlock(&delayed_refs->lock); 7183 7184 BUG_ON(head->extent_op); 7185 if (head->must_insert_reserved) 7186 ret = 1; 7187 7188 mutex_unlock(&head->mutex); 7189 btrfs_put_delayed_ref(&head->node); 7190 return ret; 7191 out: 7192 spin_unlock(&head->lock); 7193 7194 out_delayed_unlock: 7195 spin_unlock(&delayed_refs->lock); 7196 return 0; 7197 } 7198 7199 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 7200 struct btrfs_root *root, 7201 struct extent_buffer *buf, 7202 u64 parent, int last_ref) 7203 { 7204 struct btrfs_fs_info *fs_info = root->fs_info; 7205 int pin = 1; 7206 int ret; 7207 7208 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7209 int old_ref_mod, new_ref_mod; 7210 7211 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start, 7212 buf->len, parent, 7213 root->root_key.objectid, 7214 btrfs_header_level(buf), 7215 BTRFS_DROP_DELAYED_REF, NULL, 7216 &old_ref_mod, &new_ref_mod); 7217 BUG_ON(ret); /* -ENOMEM */ 7218 pin = old_ref_mod >= 0 && new_ref_mod < 0; 7219 } 7220 7221 if (last_ref && btrfs_header_generation(buf) == trans->transid) { 7222 struct btrfs_block_group_cache *cache; 7223 7224 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 7225 ret = check_ref_cleanup(trans, buf->start); 7226 if (!ret) 7227 goto out; 7228 } 7229 7230 pin = 0; 7231 cache = btrfs_lookup_block_group(fs_info, buf->start); 7232 7233 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 7234 pin_down_extent(fs_info, cache, buf->start, 7235 buf->len, 1); 7236 btrfs_put_block_group(cache); 7237 goto out; 7238 } 7239 7240 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 7241 7242 btrfs_add_free_space(cache, buf->start, buf->len); 7243 btrfs_free_reserved_bytes(cache, buf->len, 0); 7244 btrfs_put_block_group(cache); 7245 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 7246 } 7247 out: 7248 if (pin) 7249 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf), 7250 root->root_key.objectid); 7251 7252 if (last_ref) { 7253 /* 7254 * Deleting the buffer, clear the corrupt flag since it doesn't 7255 * matter anymore. 7256 */ 7257 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 7258 } 7259 } 7260 7261 /* Can return -ENOMEM */ 7262 int btrfs_free_extent(struct btrfs_trans_handle *trans, 7263 struct btrfs_fs_info *fs_info, 7264 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 7265 u64 owner, u64 offset) 7266 { 7267 int old_ref_mod, new_ref_mod; 7268 int ret; 7269 7270 if (btrfs_is_testing(fs_info)) 7271 return 0; 7272 7273 7274 /* 7275 * tree log blocks never actually go into the extent allocation 7276 * tree, just update pinning info and exit early. 7277 */ 7278 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 7279 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 7280 /* unlocks the pinned mutex */ 7281 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); 7282 old_ref_mod = new_ref_mod = 0; 7283 ret = 0; 7284 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 7285 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 7286 num_bytes, parent, 7287 root_objectid, (int)owner, 7288 BTRFS_DROP_DELAYED_REF, NULL, 7289 &old_ref_mod, &new_ref_mod); 7290 } else { 7291 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 7292 num_bytes, parent, 7293 root_objectid, owner, offset, 7294 0, BTRFS_DROP_DELAYED_REF, 7295 &old_ref_mod, &new_ref_mod); 7296 } 7297 7298 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) 7299 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid); 7300 7301 return ret; 7302 } 7303 7304 /* 7305 * when we wait for progress in the block group caching, its because 7306 * our allocation attempt failed at least once. So, we must sleep 7307 * and let some progress happen before we try again. 7308 * 7309 * This function will sleep at least once waiting for new free space to 7310 * show up, and then it will check the block group free space numbers 7311 * for our min num_bytes. Another option is to have it go ahead 7312 * and look in the rbtree for a free extent of a given size, but this 7313 * is a good start. 7314 * 7315 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 7316 * any of the information in this block group. 7317 */ 7318 static noinline void 7319 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 7320 u64 num_bytes) 7321 { 7322 struct btrfs_caching_control *caching_ctl; 7323 7324 caching_ctl = get_caching_control(cache); 7325 if (!caching_ctl) 7326 return; 7327 7328 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 7329 (cache->free_space_ctl->free_space >= num_bytes)); 7330 7331 put_caching_control(caching_ctl); 7332 } 7333 7334 static noinline int 7335 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 7336 { 7337 struct btrfs_caching_control *caching_ctl; 7338 int ret = 0; 7339 7340 caching_ctl = get_caching_control(cache); 7341 if (!caching_ctl) 7342 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 7343 7344 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 7345 if (cache->cached == BTRFS_CACHE_ERROR) 7346 ret = -EIO; 7347 put_caching_control(caching_ctl); 7348 return ret; 7349 } 7350 7351 int __get_raid_index(u64 flags) 7352 { 7353 if (flags & BTRFS_BLOCK_GROUP_RAID10) 7354 return BTRFS_RAID_RAID10; 7355 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 7356 return BTRFS_RAID_RAID1; 7357 else if (flags & BTRFS_BLOCK_GROUP_DUP) 7358 return BTRFS_RAID_DUP; 7359 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 7360 return BTRFS_RAID_RAID0; 7361 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 7362 return BTRFS_RAID_RAID5; 7363 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 7364 return BTRFS_RAID_RAID6; 7365 7366 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 7367 } 7368 7369 int get_block_group_index(struct btrfs_block_group_cache *cache) 7370 { 7371 return __get_raid_index(cache->flags); 7372 } 7373 7374 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 7375 [BTRFS_RAID_RAID10] = "raid10", 7376 [BTRFS_RAID_RAID1] = "raid1", 7377 [BTRFS_RAID_DUP] = "dup", 7378 [BTRFS_RAID_RAID0] = "raid0", 7379 [BTRFS_RAID_SINGLE] = "single", 7380 [BTRFS_RAID_RAID5] = "raid5", 7381 [BTRFS_RAID_RAID6] = "raid6", 7382 }; 7383 7384 static const char *get_raid_name(enum btrfs_raid_types type) 7385 { 7386 if (type >= BTRFS_NR_RAID_TYPES) 7387 return NULL; 7388 7389 return btrfs_raid_type_names[type]; 7390 } 7391 7392 enum btrfs_loop_type { 7393 LOOP_CACHING_NOWAIT = 0, 7394 LOOP_CACHING_WAIT = 1, 7395 LOOP_ALLOC_CHUNK = 2, 7396 LOOP_NO_EMPTY_SIZE = 3, 7397 }; 7398 7399 static inline void 7400 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 7401 int delalloc) 7402 { 7403 if (delalloc) 7404 down_read(&cache->data_rwsem); 7405 } 7406 7407 static inline void 7408 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 7409 int delalloc) 7410 { 7411 btrfs_get_block_group(cache); 7412 if (delalloc) 7413 down_read(&cache->data_rwsem); 7414 } 7415 7416 static struct btrfs_block_group_cache * 7417 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 7418 struct btrfs_free_cluster *cluster, 7419 int delalloc) 7420 { 7421 struct btrfs_block_group_cache *used_bg = NULL; 7422 7423 spin_lock(&cluster->refill_lock); 7424 while (1) { 7425 used_bg = cluster->block_group; 7426 if (!used_bg) 7427 return NULL; 7428 7429 if (used_bg == block_group) 7430 return used_bg; 7431 7432 btrfs_get_block_group(used_bg); 7433 7434 if (!delalloc) 7435 return used_bg; 7436 7437 if (down_read_trylock(&used_bg->data_rwsem)) 7438 return used_bg; 7439 7440 spin_unlock(&cluster->refill_lock); 7441 7442 /* We should only have one-level nested. */ 7443 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 7444 7445 spin_lock(&cluster->refill_lock); 7446 if (used_bg == cluster->block_group) 7447 return used_bg; 7448 7449 up_read(&used_bg->data_rwsem); 7450 btrfs_put_block_group(used_bg); 7451 } 7452 } 7453 7454 static inline void 7455 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 7456 int delalloc) 7457 { 7458 if (delalloc) 7459 up_read(&cache->data_rwsem); 7460 btrfs_put_block_group(cache); 7461 } 7462 7463 /* 7464 * walks the btree of allocated extents and find a hole of a given size. 7465 * The key ins is changed to record the hole: 7466 * ins->objectid == start position 7467 * ins->flags = BTRFS_EXTENT_ITEM_KEY 7468 * ins->offset == the size of the hole. 7469 * Any available blocks before search_start are skipped. 7470 * 7471 * If there is no suitable free space, we will record the max size of 7472 * the free space extent currently. 7473 */ 7474 static noinline int find_free_extent(struct btrfs_fs_info *fs_info, 7475 u64 ram_bytes, u64 num_bytes, u64 empty_size, 7476 u64 hint_byte, struct btrfs_key *ins, 7477 u64 flags, int delalloc) 7478 { 7479 int ret = 0; 7480 struct btrfs_root *root = fs_info->extent_root; 7481 struct btrfs_free_cluster *last_ptr = NULL; 7482 struct btrfs_block_group_cache *block_group = NULL; 7483 u64 search_start = 0; 7484 u64 max_extent_size = 0; 7485 u64 empty_cluster = 0; 7486 struct btrfs_space_info *space_info; 7487 int loop = 0; 7488 int index = __get_raid_index(flags); 7489 bool failed_cluster_refill = false; 7490 bool failed_alloc = false; 7491 bool use_cluster = true; 7492 bool have_caching_bg = false; 7493 bool orig_have_caching_bg = false; 7494 bool full_search = false; 7495 7496 WARN_ON(num_bytes < fs_info->sectorsize); 7497 ins->type = BTRFS_EXTENT_ITEM_KEY; 7498 ins->objectid = 0; 7499 ins->offset = 0; 7500 7501 trace_find_free_extent(fs_info, num_bytes, empty_size, flags); 7502 7503 space_info = __find_space_info(fs_info, flags); 7504 if (!space_info) { 7505 btrfs_err(fs_info, "No space info for %llu", flags); 7506 return -ENOSPC; 7507 } 7508 7509 /* 7510 * If our free space is heavily fragmented we may not be able to make 7511 * big contiguous allocations, so instead of doing the expensive search 7512 * for free space, simply return ENOSPC with our max_extent_size so we 7513 * can go ahead and search for a more manageable chunk. 7514 * 7515 * If our max_extent_size is large enough for our allocation simply 7516 * disable clustering since we will likely not be able to find enough 7517 * space to create a cluster and induce latency trying. 7518 */ 7519 if (unlikely(space_info->max_extent_size)) { 7520 spin_lock(&space_info->lock); 7521 if (space_info->max_extent_size && 7522 num_bytes > space_info->max_extent_size) { 7523 ins->offset = space_info->max_extent_size; 7524 spin_unlock(&space_info->lock); 7525 return -ENOSPC; 7526 } else if (space_info->max_extent_size) { 7527 use_cluster = false; 7528 } 7529 spin_unlock(&space_info->lock); 7530 } 7531 7532 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); 7533 if (last_ptr) { 7534 spin_lock(&last_ptr->lock); 7535 if (last_ptr->block_group) 7536 hint_byte = last_ptr->window_start; 7537 if (last_ptr->fragmented) { 7538 /* 7539 * We still set window_start so we can keep track of the 7540 * last place we found an allocation to try and save 7541 * some time. 7542 */ 7543 hint_byte = last_ptr->window_start; 7544 use_cluster = false; 7545 } 7546 spin_unlock(&last_ptr->lock); 7547 } 7548 7549 search_start = max(search_start, first_logical_byte(fs_info, 0)); 7550 search_start = max(search_start, hint_byte); 7551 if (search_start == hint_byte) { 7552 block_group = btrfs_lookup_block_group(fs_info, search_start); 7553 /* 7554 * we don't want to use the block group if it doesn't match our 7555 * allocation bits, or if its not cached. 7556 * 7557 * However if we are re-searching with an ideal block group 7558 * picked out then we don't care that the block group is cached. 7559 */ 7560 if (block_group && block_group_bits(block_group, flags) && 7561 block_group->cached != BTRFS_CACHE_NO) { 7562 down_read(&space_info->groups_sem); 7563 if (list_empty(&block_group->list) || 7564 block_group->ro) { 7565 /* 7566 * someone is removing this block group, 7567 * we can't jump into the have_block_group 7568 * target because our list pointers are not 7569 * valid 7570 */ 7571 btrfs_put_block_group(block_group); 7572 up_read(&space_info->groups_sem); 7573 } else { 7574 index = get_block_group_index(block_group); 7575 btrfs_lock_block_group(block_group, delalloc); 7576 goto have_block_group; 7577 } 7578 } else if (block_group) { 7579 btrfs_put_block_group(block_group); 7580 } 7581 } 7582 search: 7583 have_caching_bg = false; 7584 if (index == 0 || index == __get_raid_index(flags)) 7585 full_search = true; 7586 down_read(&space_info->groups_sem); 7587 list_for_each_entry(block_group, &space_info->block_groups[index], 7588 list) { 7589 u64 offset; 7590 int cached; 7591 7592 btrfs_grab_block_group(block_group, delalloc); 7593 search_start = block_group->key.objectid; 7594 7595 /* 7596 * this can happen if we end up cycling through all the 7597 * raid types, but we want to make sure we only allocate 7598 * for the proper type. 7599 */ 7600 if (!block_group_bits(block_group, flags)) { 7601 u64 extra = BTRFS_BLOCK_GROUP_DUP | 7602 BTRFS_BLOCK_GROUP_RAID1 | 7603 BTRFS_BLOCK_GROUP_RAID5 | 7604 BTRFS_BLOCK_GROUP_RAID6 | 7605 BTRFS_BLOCK_GROUP_RAID10; 7606 7607 /* 7608 * if they asked for extra copies and this block group 7609 * doesn't provide them, bail. This does allow us to 7610 * fill raid0 from raid1. 7611 */ 7612 if ((flags & extra) && !(block_group->flags & extra)) 7613 goto loop; 7614 } 7615 7616 have_block_group: 7617 cached = block_group_cache_done(block_group); 7618 if (unlikely(!cached)) { 7619 have_caching_bg = true; 7620 ret = cache_block_group(block_group, 0); 7621 BUG_ON(ret < 0); 7622 ret = 0; 7623 } 7624 7625 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 7626 goto loop; 7627 if (unlikely(block_group->ro)) 7628 goto loop; 7629 7630 /* 7631 * Ok we want to try and use the cluster allocator, so 7632 * lets look there 7633 */ 7634 if (last_ptr && use_cluster) { 7635 struct btrfs_block_group_cache *used_block_group; 7636 unsigned long aligned_cluster; 7637 /* 7638 * the refill lock keeps out other 7639 * people trying to start a new cluster 7640 */ 7641 used_block_group = btrfs_lock_cluster(block_group, 7642 last_ptr, 7643 delalloc); 7644 if (!used_block_group) 7645 goto refill_cluster; 7646 7647 if (used_block_group != block_group && 7648 (used_block_group->ro || 7649 !block_group_bits(used_block_group, flags))) 7650 goto release_cluster; 7651 7652 offset = btrfs_alloc_from_cluster(used_block_group, 7653 last_ptr, 7654 num_bytes, 7655 used_block_group->key.objectid, 7656 &max_extent_size); 7657 if (offset) { 7658 /* we have a block, we're done */ 7659 spin_unlock(&last_ptr->refill_lock); 7660 trace_btrfs_reserve_extent_cluster(fs_info, 7661 used_block_group, 7662 search_start, num_bytes); 7663 if (used_block_group != block_group) { 7664 btrfs_release_block_group(block_group, 7665 delalloc); 7666 block_group = used_block_group; 7667 } 7668 goto checks; 7669 } 7670 7671 WARN_ON(last_ptr->block_group != used_block_group); 7672 release_cluster: 7673 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 7674 * set up a new clusters, so lets just skip it 7675 * and let the allocator find whatever block 7676 * it can find. If we reach this point, we 7677 * will have tried the cluster allocator 7678 * plenty of times and not have found 7679 * anything, so we are likely way too 7680 * fragmented for the clustering stuff to find 7681 * anything. 7682 * 7683 * However, if the cluster is taken from the 7684 * current block group, release the cluster 7685 * first, so that we stand a better chance of 7686 * succeeding in the unclustered 7687 * allocation. */ 7688 if (loop >= LOOP_NO_EMPTY_SIZE && 7689 used_block_group != block_group) { 7690 spin_unlock(&last_ptr->refill_lock); 7691 btrfs_release_block_group(used_block_group, 7692 delalloc); 7693 goto unclustered_alloc; 7694 } 7695 7696 /* 7697 * this cluster didn't work out, free it and 7698 * start over 7699 */ 7700 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7701 7702 if (used_block_group != block_group) 7703 btrfs_release_block_group(used_block_group, 7704 delalloc); 7705 refill_cluster: 7706 if (loop >= LOOP_NO_EMPTY_SIZE) { 7707 spin_unlock(&last_ptr->refill_lock); 7708 goto unclustered_alloc; 7709 } 7710 7711 aligned_cluster = max_t(unsigned long, 7712 empty_cluster + empty_size, 7713 block_group->full_stripe_len); 7714 7715 /* allocate a cluster in this block group */ 7716 ret = btrfs_find_space_cluster(fs_info, block_group, 7717 last_ptr, search_start, 7718 num_bytes, 7719 aligned_cluster); 7720 if (ret == 0) { 7721 /* 7722 * now pull our allocation out of this 7723 * cluster 7724 */ 7725 offset = btrfs_alloc_from_cluster(block_group, 7726 last_ptr, 7727 num_bytes, 7728 search_start, 7729 &max_extent_size); 7730 if (offset) { 7731 /* we found one, proceed */ 7732 spin_unlock(&last_ptr->refill_lock); 7733 trace_btrfs_reserve_extent_cluster(fs_info, 7734 block_group, search_start, 7735 num_bytes); 7736 goto checks; 7737 } 7738 } else if (!cached && loop > LOOP_CACHING_NOWAIT 7739 && !failed_cluster_refill) { 7740 spin_unlock(&last_ptr->refill_lock); 7741 7742 failed_cluster_refill = true; 7743 wait_block_group_cache_progress(block_group, 7744 num_bytes + empty_cluster + empty_size); 7745 goto have_block_group; 7746 } 7747 7748 /* 7749 * at this point we either didn't find a cluster 7750 * or we weren't able to allocate a block from our 7751 * cluster. Free the cluster we've been trying 7752 * to use, and go to the next block group 7753 */ 7754 btrfs_return_cluster_to_free_space(NULL, last_ptr); 7755 spin_unlock(&last_ptr->refill_lock); 7756 goto loop; 7757 } 7758 7759 unclustered_alloc: 7760 /* 7761 * We are doing an unclustered alloc, set the fragmented flag so 7762 * we don't bother trying to setup a cluster again until we get 7763 * more space. 7764 */ 7765 if (unlikely(last_ptr)) { 7766 spin_lock(&last_ptr->lock); 7767 last_ptr->fragmented = 1; 7768 spin_unlock(&last_ptr->lock); 7769 } 7770 if (cached) { 7771 struct btrfs_free_space_ctl *ctl = 7772 block_group->free_space_ctl; 7773 7774 spin_lock(&ctl->tree_lock); 7775 if (ctl->free_space < 7776 num_bytes + empty_cluster + empty_size) { 7777 if (ctl->free_space > max_extent_size) 7778 max_extent_size = ctl->free_space; 7779 spin_unlock(&ctl->tree_lock); 7780 goto loop; 7781 } 7782 spin_unlock(&ctl->tree_lock); 7783 } 7784 7785 offset = btrfs_find_space_for_alloc(block_group, search_start, 7786 num_bytes, empty_size, 7787 &max_extent_size); 7788 /* 7789 * If we didn't find a chunk, and we haven't failed on this 7790 * block group before, and this block group is in the middle of 7791 * caching and we are ok with waiting, then go ahead and wait 7792 * for progress to be made, and set failed_alloc to true. 7793 * 7794 * If failed_alloc is true then we've already waited on this 7795 * block group once and should move on to the next block group. 7796 */ 7797 if (!offset && !failed_alloc && !cached && 7798 loop > LOOP_CACHING_NOWAIT) { 7799 wait_block_group_cache_progress(block_group, 7800 num_bytes + empty_size); 7801 failed_alloc = true; 7802 goto have_block_group; 7803 } else if (!offset) { 7804 goto loop; 7805 } 7806 checks: 7807 search_start = ALIGN(offset, fs_info->stripesize); 7808 7809 /* move on to the next group */ 7810 if (search_start + num_bytes > 7811 block_group->key.objectid + block_group->key.offset) { 7812 btrfs_add_free_space(block_group, offset, num_bytes); 7813 goto loop; 7814 } 7815 7816 if (offset < search_start) 7817 btrfs_add_free_space(block_group, offset, 7818 search_start - offset); 7819 BUG_ON(offset > search_start); 7820 7821 ret = btrfs_add_reserved_bytes(block_group, ram_bytes, 7822 num_bytes, delalloc); 7823 if (ret == -EAGAIN) { 7824 btrfs_add_free_space(block_group, offset, num_bytes); 7825 goto loop; 7826 } 7827 btrfs_inc_block_group_reservations(block_group); 7828 7829 /* we are all good, lets return */ 7830 ins->objectid = search_start; 7831 ins->offset = num_bytes; 7832 7833 trace_btrfs_reserve_extent(fs_info, block_group, 7834 search_start, num_bytes); 7835 btrfs_release_block_group(block_group, delalloc); 7836 break; 7837 loop: 7838 failed_cluster_refill = false; 7839 failed_alloc = false; 7840 BUG_ON(index != get_block_group_index(block_group)); 7841 btrfs_release_block_group(block_group, delalloc); 7842 } 7843 up_read(&space_info->groups_sem); 7844 7845 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg 7846 && !orig_have_caching_bg) 7847 orig_have_caching_bg = true; 7848 7849 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7850 goto search; 7851 7852 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7853 goto search; 7854 7855 /* 7856 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7857 * caching kthreads as we move along 7858 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7859 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7860 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7861 * again 7862 */ 7863 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7864 index = 0; 7865 if (loop == LOOP_CACHING_NOWAIT) { 7866 /* 7867 * We want to skip the LOOP_CACHING_WAIT step if we 7868 * don't have any uncached bgs and we've already done a 7869 * full search through. 7870 */ 7871 if (orig_have_caching_bg || !full_search) 7872 loop = LOOP_CACHING_WAIT; 7873 else 7874 loop = LOOP_ALLOC_CHUNK; 7875 } else { 7876 loop++; 7877 } 7878 7879 if (loop == LOOP_ALLOC_CHUNK) { 7880 struct btrfs_trans_handle *trans; 7881 int exist = 0; 7882 7883 trans = current->journal_info; 7884 if (trans) 7885 exist = 1; 7886 else 7887 trans = btrfs_join_transaction(root); 7888 7889 if (IS_ERR(trans)) { 7890 ret = PTR_ERR(trans); 7891 goto out; 7892 } 7893 7894 ret = do_chunk_alloc(trans, fs_info, flags, 7895 CHUNK_ALLOC_FORCE); 7896 7897 /* 7898 * If we can't allocate a new chunk we've already looped 7899 * through at least once, move on to the NO_EMPTY_SIZE 7900 * case. 7901 */ 7902 if (ret == -ENOSPC) 7903 loop = LOOP_NO_EMPTY_SIZE; 7904 7905 /* 7906 * Do not bail out on ENOSPC since we 7907 * can do more things. 7908 */ 7909 if (ret < 0 && ret != -ENOSPC) 7910 btrfs_abort_transaction(trans, ret); 7911 else 7912 ret = 0; 7913 if (!exist) 7914 btrfs_end_transaction(trans); 7915 if (ret) 7916 goto out; 7917 } 7918 7919 if (loop == LOOP_NO_EMPTY_SIZE) { 7920 /* 7921 * Don't loop again if we already have no empty_size and 7922 * no empty_cluster. 7923 */ 7924 if (empty_size == 0 && 7925 empty_cluster == 0) { 7926 ret = -ENOSPC; 7927 goto out; 7928 } 7929 empty_size = 0; 7930 empty_cluster = 0; 7931 } 7932 7933 goto search; 7934 } else if (!ins->objectid) { 7935 ret = -ENOSPC; 7936 } else if (ins->objectid) { 7937 if (!use_cluster && last_ptr) { 7938 spin_lock(&last_ptr->lock); 7939 last_ptr->window_start = ins->objectid; 7940 spin_unlock(&last_ptr->lock); 7941 } 7942 ret = 0; 7943 } 7944 out: 7945 if (ret == -ENOSPC) { 7946 spin_lock(&space_info->lock); 7947 space_info->max_extent_size = max_extent_size; 7948 spin_unlock(&space_info->lock); 7949 ins->offset = max_extent_size; 7950 } 7951 return ret; 7952 } 7953 7954 static void dump_space_info(struct btrfs_fs_info *fs_info, 7955 struct btrfs_space_info *info, u64 bytes, 7956 int dump_block_groups) 7957 { 7958 struct btrfs_block_group_cache *cache; 7959 int index = 0; 7960 7961 spin_lock(&info->lock); 7962 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", 7963 info->flags, 7964 info->total_bytes - btrfs_space_info_used(info, true), 7965 info->full ? "" : "not "); 7966 btrfs_info(fs_info, 7967 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", 7968 info->total_bytes, info->bytes_used, info->bytes_pinned, 7969 info->bytes_reserved, info->bytes_may_use, 7970 info->bytes_readonly); 7971 spin_unlock(&info->lock); 7972 7973 if (!dump_block_groups) 7974 return; 7975 7976 down_read(&info->groups_sem); 7977 again: 7978 list_for_each_entry(cache, &info->block_groups[index], list) { 7979 spin_lock(&cache->lock); 7980 btrfs_info(fs_info, 7981 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", 7982 cache->key.objectid, cache->key.offset, 7983 btrfs_block_group_used(&cache->item), cache->pinned, 7984 cache->reserved, cache->ro ? "[readonly]" : ""); 7985 btrfs_dump_free_space(cache, bytes); 7986 spin_unlock(&cache->lock); 7987 } 7988 if (++index < BTRFS_NR_RAID_TYPES) 7989 goto again; 7990 up_read(&info->groups_sem); 7991 } 7992 7993 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 7994 u64 num_bytes, u64 min_alloc_size, 7995 u64 empty_size, u64 hint_byte, 7996 struct btrfs_key *ins, int is_data, int delalloc) 7997 { 7998 struct btrfs_fs_info *fs_info = root->fs_info; 7999 bool final_tried = num_bytes == min_alloc_size; 8000 u64 flags; 8001 int ret; 8002 8003 flags = get_alloc_profile_by_root(root, is_data); 8004 again: 8005 WARN_ON(num_bytes < fs_info->sectorsize); 8006 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, 8007 hint_byte, ins, flags, delalloc); 8008 if (!ret && !is_data) { 8009 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 8010 } else if (ret == -ENOSPC) { 8011 if (!final_tried && ins->offset) { 8012 num_bytes = min(num_bytes >> 1, ins->offset); 8013 num_bytes = round_down(num_bytes, 8014 fs_info->sectorsize); 8015 num_bytes = max(num_bytes, min_alloc_size); 8016 ram_bytes = num_bytes; 8017 if (num_bytes == min_alloc_size) 8018 final_tried = true; 8019 goto again; 8020 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8021 struct btrfs_space_info *sinfo; 8022 8023 sinfo = __find_space_info(fs_info, flags); 8024 btrfs_err(fs_info, 8025 "allocation failed flags %llu, wanted %llu", 8026 flags, num_bytes); 8027 if (sinfo) 8028 dump_space_info(fs_info, sinfo, num_bytes, 1); 8029 } 8030 } 8031 8032 return ret; 8033 } 8034 8035 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8036 u64 start, u64 len, 8037 int pin, int delalloc) 8038 { 8039 struct btrfs_block_group_cache *cache; 8040 int ret = 0; 8041 8042 cache = btrfs_lookup_block_group(fs_info, start); 8043 if (!cache) { 8044 btrfs_err(fs_info, "Unable to find block group for %llu", 8045 start); 8046 return -ENOSPC; 8047 } 8048 8049 if (pin) 8050 pin_down_extent(fs_info, cache, start, len, 1); 8051 else { 8052 if (btrfs_test_opt(fs_info, DISCARD)) 8053 ret = btrfs_discard_extent(fs_info, start, len, NULL); 8054 btrfs_add_free_space(cache, start, len); 8055 btrfs_free_reserved_bytes(cache, len, delalloc); 8056 trace_btrfs_reserved_extent_free(fs_info, start, len); 8057 } 8058 8059 btrfs_put_block_group(cache); 8060 return ret; 8061 } 8062 8063 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 8064 u64 start, u64 len, int delalloc) 8065 { 8066 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); 8067 } 8068 8069 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, 8070 u64 start, u64 len) 8071 { 8072 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); 8073 } 8074 8075 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8076 struct btrfs_fs_info *fs_info, 8077 u64 parent, u64 root_objectid, 8078 u64 flags, u64 owner, u64 offset, 8079 struct btrfs_key *ins, int ref_mod) 8080 { 8081 int ret; 8082 struct btrfs_extent_item *extent_item; 8083 struct btrfs_extent_inline_ref *iref; 8084 struct btrfs_path *path; 8085 struct extent_buffer *leaf; 8086 int type; 8087 u32 size; 8088 8089 if (parent > 0) 8090 type = BTRFS_SHARED_DATA_REF_KEY; 8091 else 8092 type = BTRFS_EXTENT_DATA_REF_KEY; 8093 8094 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 8095 8096 path = btrfs_alloc_path(); 8097 if (!path) 8098 return -ENOMEM; 8099 8100 path->leave_spinning = 1; 8101 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8102 ins, size); 8103 if (ret) { 8104 btrfs_free_path(path); 8105 return ret; 8106 } 8107 8108 leaf = path->nodes[0]; 8109 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8110 struct btrfs_extent_item); 8111 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 8112 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8113 btrfs_set_extent_flags(leaf, extent_item, 8114 flags | BTRFS_EXTENT_FLAG_DATA); 8115 8116 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8117 btrfs_set_extent_inline_ref_type(leaf, iref, type); 8118 if (parent > 0) { 8119 struct btrfs_shared_data_ref *ref; 8120 ref = (struct btrfs_shared_data_ref *)(iref + 1); 8121 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8122 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 8123 } else { 8124 struct btrfs_extent_data_ref *ref; 8125 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 8126 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 8127 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 8128 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 8129 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 8130 } 8131 8132 btrfs_mark_buffer_dirty(path->nodes[0]); 8133 btrfs_free_path(path); 8134 8135 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8136 ins->offset); 8137 if (ret) 8138 return ret; 8139 8140 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); 8141 if (ret) { /* -ENOENT, logic error */ 8142 btrfs_err(fs_info, "update block group failed for %llu %llu", 8143 ins->objectid, ins->offset); 8144 BUG(); 8145 } 8146 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); 8147 return ret; 8148 } 8149 8150 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 8151 struct btrfs_fs_info *fs_info, 8152 u64 parent, u64 root_objectid, 8153 u64 flags, struct btrfs_disk_key *key, 8154 int level, struct btrfs_key *ins) 8155 { 8156 int ret; 8157 struct btrfs_extent_item *extent_item; 8158 struct btrfs_tree_block_info *block_info; 8159 struct btrfs_extent_inline_ref *iref; 8160 struct btrfs_path *path; 8161 struct extent_buffer *leaf; 8162 u32 size = sizeof(*extent_item) + sizeof(*iref); 8163 u64 num_bytes = ins->offset; 8164 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8165 8166 if (!skinny_metadata) 8167 size += sizeof(*block_info); 8168 8169 path = btrfs_alloc_path(); 8170 if (!path) { 8171 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8172 fs_info->nodesize); 8173 return -ENOMEM; 8174 } 8175 8176 path->leave_spinning = 1; 8177 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 8178 ins, size); 8179 if (ret) { 8180 btrfs_free_path(path); 8181 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid, 8182 fs_info->nodesize); 8183 return ret; 8184 } 8185 8186 leaf = path->nodes[0]; 8187 extent_item = btrfs_item_ptr(leaf, path->slots[0], 8188 struct btrfs_extent_item); 8189 btrfs_set_extent_refs(leaf, extent_item, 1); 8190 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 8191 btrfs_set_extent_flags(leaf, extent_item, 8192 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 8193 8194 if (skinny_metadata) { 8195 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 8196 num_bytes = fs_info->nodesize; 8197 } else { 8198 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 8199 btrfs_set_tree_block_key(leaf, block_info, key); 8200 btrfs_set_tree_block_level(leaf, block_info, level); 8201 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 8202 } 8203 8204 if (parent > 0) { 8205 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 8206 btrfs_set_extent_inline_ref_type(leaf, iref, 8207 BTRFS_SHARED_BLOCK_REF_KEY); 8208 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 8209 } else { 8210 btrfs_set_extent_inline_ref_type(leaf, iref, 8211 BTRFS_TREE_BLOCK_REF_KEY); 8212 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 8213 } 8214 8215 btrfs_mark_buffer_dirty(leaf); 8216 btrfs_free_path(path); 8217 8218 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid, 8219 num_bytes); 8220 if (ret) 8221 return ret; 8222 8223 ret = update_block_group(trans, fs_info, ins->objectid, 8224 fs_info->nodesize, 1); 8225 if (ret) { /* -ENOENT, logic error */ 8226 btrfs_err(fs_info, "update block group failed for %llu %llu", 8227 ins->objectid, ins->offset); 8228 BUG(); 8229 } 8230 8231 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, 8232 fs_info->nodesize); 8233 return ret; 8234 } 8235 8236 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 8237 u64 root_objectid, u64 owner, 8238 u64 offset, u64 ram_bytes, 8239 struct btrfs_key *ins) 8240 { 8241 struct btrfs_fs_info *fs_info = trans->fs_info; 8242 int ret; 8243 8244 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 8245 8246 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid, 8247 ins->offset, 0, root_objectid, owner, 8248 offset, ram_bytes, 8249 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); 8250 return ret; 8251 } 8252 8253 /* 8254 * this is used by the tree logging recovery code. It records that 8255 * an extent has been allocated and makes sure to clear the free 8256 * space cache bits as well 8257 */ 8258 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 8259 struct btrfs_fs_info *fs_info, 8260 u64 root_objectid, u64 owner, u64 offset, 8261 struct btrfs_key *ins) 8262 { 8263 int ret; 8264 struct btrfs_block_group_cache *block_group; 8265 struct btrfs_space_info *space_info; 8266 8267 /* 8268 * Mixed block groups will exclude before processing the log so we only 8269 * need to do the exclude dance if this fs isn't mixed. 8270 */ 8271 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 8272 ret = __exclude_logged_extent(fs_info, ins->objectid, 8273 ins->offset); 8274 if (ret) 8275 return ret; 8276 } 8277 8278 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 8279 if (!block_group) 8280 return -EINVAL; 8281 8282 space_info = block_group->space_info; 8283 spin_lock(&space_info->lock); 8284 spin_lock(&block_group->lock); 8285 space_info->bytes_reserved += ins->offset; 8286 block_group->reserved += ins->offset; 8287 spin_unlock(&block_group->lock); 8288 spin_unlock(&space_info->lock); 8289 8290 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid, 8291 0, owner, offset, ins, 1); 8292 btrfs_put_block_group(block_group); 8293 return ret; 8294 } 8295 8296 static struct extent_buffer * 8297 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 8298 u64 bytenr, int level) 8299 { 8300 struct btrfs_fs_info *fs_info = root->fs_info; 8301 struct extent_buffer *buf; 8302 8303 buf = btrfs_find_create_tree_block(fs_info, bytenr); 8304 if (IS_ERR(buf)) 8305 return buf; 8306 8307 btrfs_set_header_generation(buf, trans->transid); 8308 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 8309 btrfs_tree_lock(buf); 8310 clean_tree_block(fs_info, buf); 8311 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 8312 8313 btrfs_set_lock_blocking(buf); 8314 set_extent_buffer_uptodate(buf); 8315 8316 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 8317 buf->log_index = root->log_transid % 2; 8318 /* 8319 * we allow two log transactions at a time, use different 8320 * EXENT bit to differentiate dirty pages. 8321 */ 8322 if (buf->log_index == 0) 8323 set_extent_dirty(&root->dirty_log_pages, buf->start, 8324 buf->start + buf->len - 1, GFP_NOFS); 8325 else 8326 set_extent_new(&root->dirty_log_pages, buf->start, 8327 buf->start + buf->len - 1); 8328 } else { 8329 buf->log_index = -1; 8330 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 8331 buf->start + buf->len - 1, GFP_NOFS); 8332 } 8333 trans->dirty = true; 8334 /* this returns a buffer locked for blocking */ 8335 return buf; 8336 } 8337 8338 static struct btrfs_block_rsv * 8339 use_block_rsv(struct btrfs_trans_handle *trans, 8340 struct btrfs_root *root, u32 blocksize) 8341 { 8342 struct btrfs_fs_info *fs_info = root->fs_info; 8343 struct btrfs_block_rsv *block_rsv; 8344 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 8345 int ret; 8346 bool global_updated = false; 8347 8348 block_rsv = get_block_rsv(trans, root); 8349 8350 if (unlikely(block_rsv->size == 0)) 8351 goto try_reserve; 8352 again: 8353 ret = block_rsv_use_bytes(block_rsv, blocksize); 8354 if (!ret) 8355 return block_rsv; 8356 8357 if (block_rsv->failfast) 8358 return ERR_PTR(ret); 8359 8360 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 8361 global_updated = true; 8362 update_global_block_rsv(fs_info); 8363 goto again; 8364 } 8365 8366 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 8367 static DEFINE_RATELIMIT_STATE(_rs, 8368 DEFAULT_RATELIMIT_INTERVAL * 10, 8369 /*DEFAULT_RATELIMIT_BURST*/ 1); 8370 if (__ratelimit(&_rs)) 8371 WARN(1, KERN_DEBUG 8372 "BTRFS: block rsv returned %d\n", ret); 8373 } 8374 try_reserve: 8375 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 8376 BTRFS_RESERVE_NO_FLUSH); 8377 if (!ret) 8378 return block_rsv; 8379 /* 8380 * If we couldn't reserve metadata bytes try and use some from 8381 * the global reserve if its space type is the same as the global 8382 * reservation. 8383 */ 8384 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 8385 block_rsv->space_info == global_rsv->space_info) { 8386 ret = block_rsv_use_bytes(global_rsv, blocksize); 8387 if (!ret) 8388 return global_rsv; 8389 } 8390 return ERR_PTR(ret); 8391 } 8392 8393 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 8394 struct btrfs_block_rsv *block_rsv, u32 blocksize) 8395 { 8396 block_rsv_add_bytes(block_rsv, blocksize, 0); 8397 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 8398 } 8399 8400 /* 8401 * finds a free extent and does all the dirty work required for allocation 8402 * returns the tree buffer or an ERR_PTR on error. 8403 */ 8404 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 8405 struct btrfs_root *root, 8406 u64 parent, u64 root_objectid, 8407 const struct btrfs_disk_key *key, 8408 int level, u64 hint, 8409 u64 empty_size) 8410 { 8411 struct btrfs_fs_info *fs_info = root->fs_info; 8412 struct btrfs_key ins; 8413 struct btrfs_block_rsv *block_rsv; 8414 struct extent_buffer *buf; 8415 struct btrfs_delayed_extent_op *extent_op; 8416 u64 flags = 0; 8417 int ret; 8418 u32 blocksize = fs_info->nodesize; 8419 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 8420 8421 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8422 if (btrfs_is_testing(fs_info)) { 8423 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 8424 level); 8425 if (!IS_ERR(buf)) 8426 root->alloc_bytenr += blocksize; 8427 return buf; 8428 } 8429 #endif 8430 8431 block_rsv = use_block_rsv(trans, root, blocksize); 8432 if (IS_ERR(block_rsv)) 8433 return ERR_CAST(block_rsv); 8434 8435 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 8436 empty_size, hint, &ins, 0, 0); 8437 if (ret) 8438 goto out_unuse; 8439 8440 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 8441 if (IS_ERR(buf)) { 8442 ret = PTR_ERR(buf); 8443 goto out_free_reserved; 8444 } 8445 8446 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 8447 if (parent == 0) 8448 parent = ins.objectid; 8449 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 8450 } else 8451 BUG_ON(parent > 0); 8452 8453 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 8454 extent_op = btrfs_alloc_delayed_extent_op(); 8455 if (!extent_op) { 8456 ret = -ENOMEM; 8457 goto out_free_buf; 8458 } 8459 if (key) 8460 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 8461 else 8462 memset(&extent_op->key, 0, sizeof(extent_op->key)); 8463 extent_op->flags_to_set = flags; 8464 extent_op->update_key = skinny_metadata ? false : true; 8465 extent_op->update_flags = true; 8466 extent_op->is_data = false; 8467 extent_op->level = level; 8468 8469 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid, 8470 ins.offset, parent, 8471 root_objectid, level, 8472 BTRFS_ADD_DELAYED_EXTENT, 8473 extent_op, NULL, NULL); 8474 if (ret) 8475 goto out_free_delayed; 8476 } 8477 return buf; 8478 8479 out_free_delayed: 8480 btrfs_free_delayed_extent_op(extent_op); 8481 out_free_buf: 8482 free_extent_buffer(buf); 8483 out_free_reserved: 8484 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 8485 out_unuse: 8486 unuse_block_rsv(fs_info, block_rsv, blocksize); 8487 return ERR_PTR(ret); 8488 } 8489 8490 struct walk_control { 8491 u64 refs[BTRFS_MAX_LEVEL]; 8492 u64 flags[BTRFS_MAX_LEVEL]; 8493 struct btrfs_key update_progress; 8494 int stage; 8495 int level; 8496 int shared_level; 8497 int update_ref; 8498 int keep_locks; 8499 int reada_slot; 8500 int reada_count; 8501 int for_reloc; 8502 }; 8503 8504 #define DROP_REFERENCE 1 8505 #define UPDATE_BACKREF 2 8506 8507 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 8508 struct btrfs_root *root, 8509 struct walk_control *wc, 8510 struct btrfs_path *path) 8511 { 8512 struct btrfs_fs_info *fs_info = root->fs_info; 8513 u64 bytenr; 8514 u64 generation; 8515 u64 refs; 8516 u64 flags; 8517 u32 nritems; 8518 struct btrfs_key key; 8519 struct extent_buffer *eb; 8520 int ret; 8521 int slot; 8522 int nread = 0; 8523 8524 if (path->slots[wc->level] < wc->reada_slot) { 8525 wc->reada_count = wc->reada_count * 2 / 3; 8526 wc->reada_count = max(wc->reada_count, 2); 8527 } else { 8528 wc->reada_count = wc->reada_count * 3 / 2; 8529 wc->reada_count = min_t(int, wc->reada_count, 8530 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 8531 } 8532 8533 eb = path->nodes[wc->level]; 8534 nritems = btrfs_header_nritems(eb); 8535 8536 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 8537 if (nread >= wc->reada_count) 8538 break; 8539 8540 cond_resched(); 8541 bytenr = btrfs_node_blockptr(eb, slot); 8542 generation = btrfs_node_ptr_generation(eb, slot); 8543 8544 if (slot == path->slots[wc->level]) 8545 goto reada; 8546 8547 if (wc->stage == UPDATE_BACKREF && 8548 generation <= root->root_key.offset) 8549 continue; 8550 8551 /* We don't lock the tree block, it's OK to be racy here */ 8552 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 8553 wc->level - 1, 1, &refs, 8554 &flags); 8555 /* We don't care about errors in readahead. */ 8556 if (ret < 0) 8557 continue; 8558 BUG_ON(refs == 0); 8559 8560 if (wc->stage == DROP_REFERENCE) { 8561 if (refs == 1) 8562 goto reada; 8563 8564 if (wc->level == 1 && 8565 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8566 continue; 8567 if (!wc->update_ref || 8568 generation <= root->root_key.offset) 8569 continue; 8570 btrfs_node_key_to_cpu(eb, &key, slot); 8571 ret = btrfs_comp_cpu_keys(&key, 8572 &wc->update_progress); 8573 if (ret < 0) 8574 continue; 8575 } else { 8576 if (wc->level == 1 && 8577 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8578 continue; 8579 } 8580 reada: 8581 readahead_tree_block(fs_info, bytenr); 8582 nread++; 8583 } 8584 wc->reada_slot = slot; 8585 } 8586 8587 /* 8588 * helper to process tree block while walking down the tree. 8589 * 8590 * when wc->stage == UPDATE_BACKREF, this function updates 8591 * back refs for pointers in the block. 8592 * 8593 * NOTE: return value 1 means we should stop walking down. 8594 */ 8595 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 8596 struct btrfs_root *root, 8597 struct btrfs_path *path, 8598 struct walk_control *wc, int lookup_info) 8599 { 8600 struct btrfs_fs_info *fs_info = root->fs_info; 8601 int level = wc->level; 8602 struct extent_buffer *eb = path->nodes[level]; 8603 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8604 int ret; 8605 8606 if (wc->stage == UPDATE_BACKREF && 8607 btrfs_header_owner(eb) != root->root_key.objectid) 8608 return 1; 8609 8610 /* 8611 * when reference count of tree block is 1, it won't increase 8612 * again. once full backref flag is set, we never clear it. 8613 */ 8614 if (lookup_info && 8615 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 8616 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 8617 BUG_ON(!path->locks[level]); 8618 ret = btrfs_lookup_extent_info(trans, fs_info, 8619 eb->start, level, 1, 8620 &wc->refs[level], 8621 &wc->flags[level]); 8622 BUG_ON(ret == -ENOMEM); 8623 if (ret) 8624 return ret; 8625 BUG_ON(wc->refs[level] == 0); 8626 } 8627 8628 if (wc->stage == DROP_REFERENCE) { 8629 if (wc->refs[level] > 1) 8630 return 1; 8631 8632 if (path->locks[level] && !wc->keep_locks) { 8633 btrfs_tree_unlock_rw(eb, path->locks[level]); 8634 path->locks[level] = 0; 8635 } 8636 return 0; 8637 } 8638 8639 /* wc->stage == UPDATE_BACKREF */ 8640 if (!(wc->flags[level] & flag)) { 8641 BUG_ON(!path->locks[level]); 8642 ret = btrfs_inc_ref(trans, root, eb, 1); 8643 BUG_ON(ret); /* -ENOMEM */ 8644 ret = btrfs_dec_ref(trans, root, eb, 0); 8645 BUG_ON(ret); /* -ENOMEM */ 8646 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, 8647 eb->len, flag, 8648 btrfs_header_level(eb), 0); 8649 BUG_ON(ret); /* -ENOMEM */ 8650 wc->flags[level] |= flag; 8651 } 8652 8653 /* 8654 * the block is shared by multiple trees, so it's not good to 8655 * keep the tree lock 8656 */ 8657 if (path->locks[level] && level > 0) { 8658 btrfs_tree_unlock_rw(eb, path->locks[level]); 8659 path->locks[level] = 0; 8660 } 8661 return 0; 8662 } 8663 8664 /* 8665 * helper to process tree block pointer. 8666 * 8667 * when wc->stage == DROP_REFERENCE, this function checks 8668 * reference count of the block pointed to. if the block 8669 * is shared and we need update back refs for the subtree 8670 * rooted at the block, this function changes wc->stage to 8671 * UPDATE_BACKREF. if the block is shared and there is no 8672 * need to update back, this function drops the reference 8673 * to the block. 8674 * 8675 * NOTE: return value 1 means we should stop walking down. 8676 */ 8677 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8678 struct btrfs_root *root, 8679 struct btrfs_path *path, 8680 struct walk_control *wc, int *lookup_info) 8681 { 8682 struct btrfs_fs_info *fs_info = root->fs_info; 8683 u64 bytenr; 8684 u64 generation; 8685 u64 parent; 8686 u32 blocksize; 8687 struct btrfs_key key; 8688 struct extent_buffer *next; 8689 int level = wc->level; 8690 int reada = 0; 8691 int ret = 0; 8692 bool need_account = false; 8693 8694 generation = btrfs_node_ptr_generation(path->nodes[level], 8695 path->slots[level]); 8696 /* 8697 * if the lower level block was created before the snapshot 8698 * was created, we know there is no need to update back refs 8699 * for the subtree 8700 */ 8701 if (wc->stage == UPDATE_BACKREF && 8702 generation <= root->root_key.offset) { 8703 *lookup_info = 1; 8704 return 1; 8705 } 8706 8707 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8708 blocksize = fs_info->nodesize; 8709 8710 next = find_extent_buffer(fs_info, bytenr); 8711 if (!next) { 8712 next = btrfs_find_create_tree_block(fs_info, bytenr); 8713 if (IS_ERR(next)) 8714 return PTR_ERR(next); 8715 8716 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8717 level - 1); 8718 reada = 1; 8719 } 8720 btrfs_tree_lock(next); 8721 btrfs_set_lock_blocking(next); 8722 8723 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 8724 &wc->refs[level - 1], 8725 &wc->flags[level - 1]); 8726 if (ret < 0) 8727 goto out_unlock; 8728 8729 if (unlikely(wc->refs[level - 1] == 0)) { 8730 btrfs_err(fs_info, "Missing references."); 8731 ret = -EIO; 8732 goto out_unlock; 8733 } 8734 *lookup_info = 0; 8735 8736 if (wc->stage == DROP_REFERENCE) { 8737 if (wc->refs[level - 1] > 1) { 8738 need_account = true; 8739 if (level == 1 && 8740 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8741 goto skip; 8742 8743 if (!wc->update_ref || 8744 generation <= root->root_key.offset) 8745 goto skip; 8746 8747 btrfs_node_key_to_cpu(path->nodes[level], &key, 8748 path->slots[level]); 8749 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8750 if (ret < 0) 8751 goto skip; 8752 8753 wc->stage = UPDATE_BACKREF; 8754 wc->shared_level = level - 1; 8755 } 8756 } else { 8757 if (level == 1 && 8758 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8759 goto skip; 8760 } 8761 8762 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8763 btrfs_tree_unlock(next); 8764 free_extent_buffer(next); 8765 next = NULL; 8766 *lookup_info = 1; 8767 } 8768 8769 if (!next) { 8770 if (reada && level == 1) 8771 reada_walk_down(trans, root, wc, path); 8772 next = read_tree_block(fs_info, bytenr, generation); 8773 if (IS_ERR(next)) { 8774 return PTR_ERR(next); 8775 } else if (!extent_buffer_uptodate(next)) { 8776 free_extent_buffer(next); 8777 return -EIO; 8778 } 8779 btrfs_tree_lock(next); 8780 btrfs_set_lock_blocking(next); 8781 } 8782 8783 level--; 8784 ASSERT(level == btrfs_header_level(next)); 8785 if (level != btrfs_header_level(next)) { 8786 btrfs_err(root->fs_info, "mismatched level"); 8787 ret = -EIO; 8788 goto out_unlock; 8789 } 8790 path->nodes[level] = next; 8791 path->slots[level] = 0; 8792 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8793 wc->level = level; 8794 if (wc->level == 1) 8795 wc->reada_slot = 0; 8796 return 0; 8797 skip: 8798 wc->refs[level - 1] = 0; 8799 wc->flags[level - 1] = 0; 8800 if (wc->stage == DROP_REFERENCE) { 8801 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8802 parent = path->nodes[level]->start; 8803 } else { 8804 ASSERT(root->root_key.objectid == 8805 btrfs_header_owner(path->nodes[level])); 8806 if (root->root_key.objectid != 8807 btrfs_header_owner(path->nodes[level])) { 8808 btrfs_err(root->fs_info, 8809 "mismatched block owner"); 8810 ret = -EIO; 8811 goto out_unlock; 8812 } 8813 parent = 0; 8814 } 8815 8816 if (need_account) { 8817 ret = btrfs_qgroup_trace_subtree(trans, root, next, 8818 generation, level - 1); 8819 if (ret) { 8820 btrfs_err_rl(fs_info, 8821 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 8822 ret); 8823 } 8824 } 8825 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize, 8826 parent, root->root_key.objectid, 8827 level - 1, 0); 8828 if (ret) 8829 goto out_unlock; 8830 } 8831 8832 *lookup_info = 1; 8833 ret = 1; 8834 8835 out_unlock: 8836 btrfs_tree_unlock(next); 8837 free_extent_buffer(next); 8838 8839 return ret; 8840 } 8841 8842 /* 8843 * helper to process tree block while walking up the tree. 8844 * 8845 * when wc->stage == DROP_REFERENCE, this function drops 8846 * reference count on the block. 8847 * 8848 * when wc->stage == UPDATE_BACKREF, this function changes 8849 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8850 * to UPDATE_BACKREF previously while processing the block. 8851 * 8852 * NOTE: return value 1 means we should stop walking up. 8853 */ 8854 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8855 struct btrfs_root *root, 8856 struct btrfs_path *path, 8857 struct walk_control *wc) 8858 { 8859 struct btrfs_fs_info *fs_info = root->fs_info; 8860 int ret; 8861 int level = wc->level; 8862 struct extent_buffer *eb = path->nodes[level]; 8863 u64 parent = 0; 8864 8865 if (wc->stage == UPDATE_BACKREF) { 8866 BUG_ON(wc->shared_level < level); 8867 if (level < wc->shared_level) 8868 goto out; 8869 8870 ret = find_next_key(path, level + 1, &wc->update_progress); 8871 if (ret > 0) 8872 wc->update_ref = 0; 8873 8874 wc->stage = DROP_REFERENCE; 8875 wc->shared_level = -1; 8876 path->slots[level] = 0; 8877 8878 /* 8879 * check reference count again if the block isn't locked. 8880 * we should start walking down the tree again if reference 8881 * count is one. 8882 */ 8883 if (!path->locks[level]) { 8884 BUG_ON(level == 0); 8885 btrfs_tree_lock(eb); 8886 btrfs_set_lock_blocking(eb); 8887 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8888 8889 ret = btrfs_lookup_extent_info(trans, fs_info, 8890 eb->start, level, 1, 8891 &wc->refs[level], 8892 &wc->flags[level]); 8893 if (ret < 0) { 8894 btrfs_tree_unlock_rw(eb, path->locks[level]); 8895 path->locks[level] = 0; 8896 return ret; 8897 } 8898 BUG_ON(wc->refs[level] == 0); 8899 if (wc->refs[level] == 1) { 8900 btrfs_tree_unlock_rw(eb, path->locks[level]); 8901 path->locks[level] = 0; 8902 return 1; 8903 } 8904 } 8905 } 8906 8907 /* wc->stage == DROP_REFERENCE */ 8908 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8909 8910 if (wc->refs[level] == 1) { 8911 if (level == 0) { 8912 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8913 ret = btrfs_dec_ref(trans, root, eb, 1); 8914 else 8915 ret = btrfs_dec_ref(trans, root, eb, 0); 8916 BUG_ON(ret); /* -ENOMEM */ 8917 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb); 8918 if (ret) { 8919 btrfs_err_rl(fs_info, 8920 "error %d accounting leaf items. Quota is out of sync, rescan required.", 8921 ret); 8922 } 8923 } 8924 /* make block locked assertion in clean_tree_block happy */ 8925 if (!path->locks[level] && 8926 btrfs_header_generation(eb) == trans->transid) { 8927 btrfs_tree_lock(eb); 8928 btrfs_set_lock_blocking(eb); 8929 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8930 } 8931 clean_tree_block(fs_info, eb); 8932 } 8933 8934 if (eb == root->node) { 8935 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8936 parent = eb->start; 8937 else 8938 BUG_ON(root->root_key.objectid != 8939 btrfs_header_owner(eb)); 8940 } else { 8941 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8942 parent = path->nodes[level + 1]->start; 8943 else 8944 BUG_ON(root->root_key.objectid != 8945 btrfs_header_owner(path->nodes[level + 1])); 8946 } 8947 8948 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8949 out: 8950 wc->refs[level] = 0; 8951 wc->flags[level] = 0; 8952 return 0; 8953 } 8954 8955 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8956 struct btrfs_root *root, 8957 struct btrfs_path *path, 8958 struct walk_control *wc) 8959 { 8960 int level = wc->level; 8961 int lookup_info = 1; 8962 int ret; 8963 8964 while (level >= 0) { 8965 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8966 if (ret > 0) 8967 break; 8968 8969 if (level == 0) 8970 break; 8971 8972 if (path->slots[level] >= 8973 btrfs_header_nritems(path->nodes[level])) 8974 break; 8975 8976 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8977 if (ret > 0) { 8978 path->slots[level]++; 8979 continue; 8980 } else if (ret < 0) 8981 return ret; 8982 level = wc->level; 8983 } 8984 return 0; 8985 } 8986 8987 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8988 struct btrfs_root *root, 8989 struct btrfs_path *path, 8990 struct walk_control *wc, int max_level) 8991 { 8992 int level = wc->level; 8993 int ret; 8994 8995 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8996 while (level < max_level && path->nodes[level]) { 8997 wc->level = level; 8998 if (path->slots[level] + 1 < 8999 btrfs_header_nritems(path->nodes[level])) { 9000 path->slots[level]++; 9001 return 0; 9002 } else { 9003 ret = walk_up_proc(trans, root, path, wc); 9004 if (ret > 0) 9005 return 0; 9006 9007 if (path->locks[level]) { 9008 btrfs_tree_unlock_rw(path->nodes[level], 9009 path->locks[level]); 9010 path->locks[level] = 0; 9011 } 9012 free_extent_buffer(path->nodes[level]); 9013 path->nodes[level] = NULL; 9014 level++; 9015 } 9016 } 9017 return 1; 9018 } 9019 9020 /* 9021 * drop a subvolume tree. 9022 * 9023 * this function traverses the tree freeing any blocks that only 9024 * referenced by the tree. 9025 * 9026 * when a shared tree block is found. this function decreases its 9027 * reference count by one. if update_ref is true, this function 9028 * also make sure backrefs for the shared block and all lower level 9029 * blocks are properly updated. 9030 * 9031 * If called with for_reloc == 0, may exit early with -EAGAIN 9032 */ 9033 int btrfs_drop_snapshot(struct btrfs_root *root, 9034 struct btrfs_block_rsv *block_rsv, int update_ref, 9035 int for_reloc) 9036 { 9037 struct btrfs_fs_info *fs_info = root->fs_info; 9038 struct btrfs_path *path; 9039 struct btrfs_trans_handle *trans; 9040 struct btrfs_root *tree_root = fs_info->tree_root; 9041 struct btrfs_root_item *root_item = &root->root_item; 9042 struct walk_control *wc; 9043 struct btrfs_key key; 9044 int err = 0; 9045 int ret; 9046 int level; 9047 bool root_dropped = false; 9048 9049 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); 9050 9051 path = btrfs_alloc_path(); 9052 if (!path) { 9053 err = -ENOMEM; 9054 goto out; 9055 } 9056 9057 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9058 if (!wc) { 9059 btrfs_free_path(path); 9060 err = -ENOMEM; 9061 goto out; 9062 } 9063 9064 trans = btrfs_start_transaction(tree_root, 0); 9065 if (IS_ERR(trans)) { 9066 err = PTR_ERR(trans); 9067 goto out_free; 9068 } 9069 9070 if (block_rsv) 9071 trans->block_rsv = block_rsv; 9072 9073 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 9074 level = btrfs_header_level(root->node); 9075 path->nodes[level] = btrfs_lock_root_node(root); 9076 btrfs_set_lock_blocking(path->nodes[level]); 9077 path->slots[level] = 0; 9078 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9079 memset(&wc->update_progress, 0, 9080 sizeof(wc->update_progress)); 9081 } else { 9082 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 9083 memcpy(&wc->update_progress, &key, 9084 sizeof(wc->update_progress)); 9085 9086 level = root_item->drop_level; 9087 BUG_ON(level == 0); 9088 path->lowest_level = level; 9089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 9090 path->lowest_level = 0; 9091 if (ret < 0) { 9092 err = ret; 9093 goto out_end_trans; 9094 } 9095 WARN_ON(ret > 0); 9096 9097 /* 9098 * unlock our path, this is safe because only this 9099 * function is allowed to delete this snapshot 9100 */ 9101 btrfs_unlock_up_safe(path, 0); 9102 9103 level = btrfs_header_level(root->node); 9104 while (1) { 9105 btrfs_tree_lock(path->nodes[level]); 9106 btrfs_set_lock_blocking(path->nodes[level]); 9107 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9108 9109 ret = btrfs_lookup_extent_info(trans, fs_info, 9110 path->nodes[level]->start, 9111 level, 1, &wc->refs[level], 9112 &wc->flags[level]); 9113 if (ret < 0) { 9114 err = ret; 9115 goto out_end_trans; 9116 } 9117 BUG_ON(wc->refs[level] == 0); 9118 9119 if (level == root_item->drop_level) 9120 break; 9121 9122 btrfs_tree_unlock(path->nodes[level]); 9123 path->locks[level] = 0; 9124 WARN_ON(wc->refs[level] != 1); 9125 level--; 9126 } 9127 } 9128 9129 wc->level = level; 9130 wc->shared_level = -1; 9131 wc->stage = DROP_REFERENCE; 9132 wc->update_ref = update_ref; 9133 wc->keep_locks = 0; 9134 wc->for_reloc = for_reloc; 9135 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9136 9137 while (1) { 9138 9139 ret = walk_down_tree(trans, root, path, wc); 9140 if (ret < 0) { 9141 err = ret; 9142 break; 9143 } 9144 9145 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 9146 if (ret < 0) { 9147 err = ret; 9148 break; 9149 } 9150 9151 if (ret > 0) { 9152 BUG_ON(wc->stage != DROP_REFERENCE); 9153 break; 9154 } 9155 9156 if (wc->stage == DROP_REFERENCE) { 9157 level = wc->level; 9158 btrfs_node_key(path->nodes[level], 9159 &root_item->drop_progress, 9160 path->slots[level]); 9161 root_item->drop_level = level; 9162 } 9163 9164 BUG_ON(wc->level == 0); 9165 if (btrfs_should_end_transaction(trans) || 9166 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 9167 ret = btrfs_update_root(trans, tree_root, 9168 &root->root_key, 9169 root_item); 9170 if (ret) { 9171 btrfs_abort_transaction(trans, ret); 9172 err = ret; 9173 goto out_end_trans; 9174 } 9175 9176 btrfs_end_transaction_throttle(trans); 9177 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 9178 btrfs_debug(fs_info, 9179 "drop snapshot early exit"); 9180 err = -EAGAIN; 9181 goto out_free; 9182 } 9183 9184 trans = btrfs_start_transaction(tree_root, 0); 9185 if (IS_ERR(trans)) { 9186 err = PTR_ERR(trans); 9187 goto out_free; 9188 } 9189 if (block_rsv) 9190 trans->block_rsv = block_rsv; 9191 } 9192 } 9193 btrfs_release_path(path); 9194 if (err) 9195 goto out_end_trans; 9196 9197 ret = btrfs_del_root(trans, tree_root, &root->root_key); 9198 if (ret) { 9199 btrfs_abort_transaction(trans, ret); 9200 goto out_end_trans; 9201 } 9202 9203 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 9204 ret = btrfs_find_root(tree_root, &root->root_key, path, 9205 NULL, NULL); 9206 if (ret < 0) { 9207 btrfs_abort_transaction(trans, ret); 9208 err = ret; 9209 goto out_end_trans; 9210 } else if (ret > 0) { 9211 /* if we fail to delete the orphan item this time 9212 * around, it'll get picked up the next time. 9213 * 9214 * The most common failure here is just -ENOENT. 9215 */ 9216 btrfs_del_orphan_item(trans, tree_root, 9217 root->root_key.objectid); 9218 } 9219 } 9220 9221 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 9222 btrfs_add_dropped_root(trans, root); 9223 } else { 9224 free_extent_buffer(root->node); 9225 free_extent_buffer(root->commit_root); 9226 btrfs_put_fs_root(root); 9227 } 9228 root_dropped = true; 9229 out_end_trans: 9230 btrfs_end_transaction_throttle(trans); 9231 out_free: 9232 kfree(wc); 9233 btrfs_free_path(path); 9234 out: 9235 /* 9236 * So if we need to stop dropping the snapshot for whatever reason we 9237 * need to make sure to add it back to the dead root list so that we 9238 * keep trying to do the work later. This also cleans up roots if we 9239 * don't have it in the radix (like when we recover after a power fail 9240 * or unmount) so we don't leak memory. 9241 */ 9242 if (!for_reloc && root_dropped == false) 9243 btrfs_add_dead_root(root); 9244 if (err && err != -EAGAIN) 9245 btrfs_handle_fs_error(fs_info, err, NULL); 9246 return err; 9247 } 9248 9249 /* 9250 * drop subtree rooted at tree block 'node'. 9251 * 9252 * NOTE: this function will unlock and release tree block 'node' 9253 * only used by relocation code 9254 */ 9255 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 9256 struct btrfs_root *root, 9257 struct extent_buffer *node, 9258 struct extent_buffer *parent) 9259 { 9260 struct btrfs_fs_info *fs_info = root->fs_info; 9261 struct btrfs_path *path; 9262 struct walk_control *wc; 9263 int level; 9264 int parent_level; 9265 int ret = 0; 9266 int wret; 9267 9268 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 9269 9270 path = btrfs_alloc_path(); 9271 if (!path) 9272 return -ENOMEM; 9273 9274 wc = kzalloc(sizeof(*wc), GFP_NOFS); 9275 if (!wc) { 9276 btrfs_free_path(path); 9277 return -ENOMEM; 9278 } 9279 9280 btrfs_assert_tree_locked(parent); 9281 parent_level = btrfs_header_level(parent); 9282 extent_buffer_get(parent); 9283 path->nodes[parent_level] = parent; 9284 path->slots[parent_level] = btrfs_header_nritems(parent); 9285 9286 btrfs_assert_tree_locked(node); 9287 level = btrfs_header_level(node); 9288 path->nodes[level] = node; 9289 path->slots[level] = 0; 9290 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 9291 9292 wc->refs[parent_level] = 1; 9293 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 9294 wc->level = level; 9295 wc->shared_level = -1; 9296 wc->stage = DROP_REFERENCE; 9297 wc->update_ref = 0; 9298 wc->keep_locks = 1; 9299 wc->for_reloc = 1; 9300 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 9301 9302 while (1) { 9303 wret = walk_down_tree(trans, root, path, wc); 9304 if (wret < 0) { 9305 ret = wret; 9306 break; 9307 } 9308 9309 wret = walk_up_tree(trans, root, path, wc, parent_level); 9310 if (wret < 0) 9311 ret = wret; 9312 if (wret != 0) 9313 break; 9314 } 9315 9316 kfree(wc); 9317 btrfs_free_path(path); 9318 return ret; 9319 } 9320 9321 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) 9322 { 9323 u64 num_devices; 9324 u64 stripped; 9325 9326 /* 9327 * if restripe for this chunk_type is on pick target profile and 9328 * return, otherwise do the usual balance 9329 */ 9330 stripped = get_restripe_target(fs_info, flags); 9331 if (stripped) 9332 return extended_to_chunk(stripped); 9333 9334 num_devices = fs_info->fs_devices->rw_devices; 9335 9336 stripped = BTRFS_BLOCK_GROUP_RAID0 | 9337 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 9338 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 9339 9340 if (num_devices == 1) { 9341 stripped |= BTRFS_BLOCK_GROUP_DUP; 9342 stripped = flags & ~stripped; 9343 9344 /* turn raid0 into single device chunks */ 9345 if (flags & BTRFS_BLOCK_GROUP_RAID0) 9346 return stripped; 9347 9348 /* turn mirroring into duplication */ 9349 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 9350 BTRFS_BLOCK_GROUP_RAID10)) 9351 return stripped | BTRFS_BLOCK_GROUP_DUP; 9352 } else { 9353 /* they already had raid on here, just return */ 9354 if (flags & stripped) 9355 return flags; 9356 9357 stripped |= BTRFS_BLOCK_GROUP_DUP; 9358 stripped = flags & ~stripped; 9359 9360 /* switch duplicated blocks with raid1 */ 9361 if (flags & BTRFS_BLOCK_GROUP_DUP) 9362 return stripped | BTRFS_BLOCK_GROUP_RAID1; 9363 9364 /* this is drive concat, leave it alone */ 9365 } 9366 9367 return flags; 9368 } 9369 9370 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) 9371 { 9372 struct btrfs_space_info *sinfo = cache->space_info; 9373 u64 num_bytes; 9374 u64 min_allocable_bytes; 9375 int ret = -ENOSPC; 9376 9377 /* 9378 * We need some metadata space and system metadata space for 9379 * allocating chunks in some corner cases until we force to set 9380 * it to be readonly. 9381 */ 9382 if ((sinfo->flags & 9383 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 9384 !force) 9385 min_allocable_bytes = SZ_1M; 9386 else 9387 min_allocable_bytes = 0; 9388 9389 spin_lock(&sinfo->lock); 9390 spin_lock(&cache->lock); 9391 9392 if (cache->ro) { 9393 cache->ro++; 9394 ret = 0; 9395 goto out; 9396 } 9397 9398 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 9399 cache->bytes_super - btrfs_block_group_used(&cache->item); 9400 9401 if (btrfs_space_info_used(sinfo, true) + num_bytes + 9402 min_allocable_bytes <= sinfo->total_bytes) { 9403 sinfo->bytes_readonly += num_bytes; 9404 cache->ro++; 9405 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 9406 ret = 0; 9407 } 9408 out: 9409 spin_unlock(&cache->lock); 9410 spin_unlock(&sinfo->lock); 9411 return ret; 9412 } 9413 9414 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info, 9415 struct btrfs_block_group_cache *cache) 9416 9417 { 9418 struct btrfs_trans_handle *trans; 9419 u64 alloc_flags; 9420 int ret; 9421 9422 again: 9423 trans = btrfs_join_transaction(fs_info->extent_root); 9424 if (IS_ERR(trans)) 9425 return PTR_ERR(trans); 9426 9427 /* 9428 * we're not allowed to set block groups readonly after the dirty 9429 * block groups cache has started writing. If it already started, 9430 * back off and let this transaction commit 9431 */ 9432 mutex_lock(&fs_info->ro_block_group_mutex); 9433 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { 9434 u64 transid = trans->transid; 9435 9436 mutex_unlock(&fs_info->ro_block_group_mutex); 9437 btrfs_end_transaction(trans); 9438 9439 ret = btrfs_wait_for_commit(fs_info, transid); 9440 if (ret) 9441 return ret; 9442 goto again; 9443 } 9444 9445 /* 9446 * if we are changing raid levels, try to allocate a corresponding 9447 * block group with the new raid level. 9448 */ 9449 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9450 if (alloc_flags != cache->flags) { 9451 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9452 CHUNK_ALLOC_FORCE); 9453 /* 9454 * ENOSPC is allowed here, we may have enough space 9455 * already allocated at the new raid level to 9456 * carry on 9457 */ 9458 if (ret == -ENOSPC) 9459 ret = 0; 9460 if (ret < 0) 9461 goto out; 9462 } 9463 9464 ret = inc_block_group_ro(cache, 0); 9465 if (!ret) 9466 goto out; 9467 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); 9468 ret = do_chunk_alloc(trans, fs_info, alloc_flags, 9469 CHUNK_ALLOC_FORCE); 9470 if (ret < 0) 9471 goto out; 9472 ret = inc_block_group_ro(cache, 0); 9473 out: 9474 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 9475 alloc_flags = update_block_group_flags(fs_info, cache->flags); 9476 mutex_lock(&fs_info->chunk_mutex); 9477 check_system_chunk(trans, fs_info, alloc_flags); 9478 mutex_unlock(&fs_info->chunk_mutex); 9479 } 9480 mutex_unlock(&fs_info->ro_block_group_mutex); 9481 9482 btrfs_end_transaction(trans); 9483 return ret; 9484 } 9485 9486 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 9487 struct btrfs_fs_info *fs_info, u64 type) 9488 { 9489 u64 alloc_flags = get_alloc_profile(fs_info, type); 9490 9491 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE); 9492 } 9493 9494 /* 9495 * helper to account the unused space of all the readonly block group in the 9496 * space_info. takes mirrors into account. 9497 */ 9498 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 9499 { 9500 struct btrfs_block_group_cache *block_group; 9501 u64 free_bytes = 0; 9502 int factor; 9503 9504 /* It's df, we don't care if it's racy */ 9505 if (list_empty(&sinfo->ro_bgs)) 9506 return 0; 9507 9508 spin_lock(&sinfo->lock); 9509 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 9510 spin_lock(&block_group->lock); 9511 9512 if (!block_group->ro) { 9513 spin_unlock(&block_group->lock); 9514 continue; 9515 } 9516 9517 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 9518 BTRFS_BLOCK_GROUP_RAID10 | 9519 BTRFS_BLOCK_GROUP_DUP)) 9520 factor = 2; 9521 else 9522 factor = 1; 9523 9524 free_bytes += (block_group->key.offset - 9525 btrfs_block_group_used(&block_group->item)) * 9526 factor; 9527 9528 spin_unlock(&block_group->lock); 9529 } 9530 spin_unlock(&sinfo->lock); 9531 9532 return free_bytes; 9533 } 9534 9535 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) 9536 { 9537 struct btrfs_space_info *sinfo = cache->space_info; 9538 u64 num_bytes; 9539 9540 BUG_ON(!cache->ro); 9541 9542 spin_lock(&sinfo->lock); 9543 spin_lock(&cache->lock); 9544 if (!--cache->ro) { 9545 num_bytes = cache->key.offset - cache->reserved - 9546 cache->pinned - cache->bytes_super - 9547 btrfs_block_group_used(&cache->item); 9548 sinfo->bytes_readonly -= num_bytes; 9549 list_del_init(&cache->ro_list); 9550 } 9551 spin_unlock(&cache->lock); 9552 spin_unlock(&sinfo->lock); 9553 } 9554 9555 /* 9556 * checks to see if its even possible to relocate this block group. 9557 * 9558 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 9559 * ok to go ahead and try. 9560 */ 9561 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) 9562 { 9563 struct btrfs_root *root = fs_info->extent_root; 9564 struct btrfs_block_group_cache *block_group; 9565 struct btrfs_space_info *space_info; 9566 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 9567 struct btrfs_device *device; 9568 struct btrfs_trans_handle *trans; 9569 u64 min_free; 9570 u64 dev_min = 1; 9571 u64 dev_nr = 0; 9572 u64 target; 9573 int debug; 9574 int index; 9575 int full = 0; 9576 int ret = 0; 9577 9578 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); 9579 9580 block_group = btrfs_lookup_block_group(fs_info, bytenr); 9581 9582 /* odd, couldn't find the block group, leave it alone */ 9583 if (!block_group) { 9584 if (debug) 9585 btrfs_warn(fs_info, 9586 "can't find block group for bytenr %llu", 9587 bytenr); 9588 return -1; 9589 } 9590 9591 min_free = btrfs_block_group_used(&block_group->item); 9592 9593 /* no bytes used, we're good */ 9594 if (!min_free) 9595 goto out; 9596 9597 space_info = block_group->space_info; 9598 spin_lock(&space_info->lock); 9599 9600 full = space_info->full; 9601 9602 /* 9603 * if this is the last block group we have in this space, we can't 9604 * relocate it unless we're able to allocate a new chunk below. 9605 * 9606 * Otherwise, we need to make sure we have room in the space to handle 9607 * all of the extents from this block group. If we can, we're good 9608 */ 9609 if ((space_info->total_bytes != block_group->key.offset) && 9610 (btrfs_space_info_used(space_info, false) + min_free < 9611 space_info->total_bytes)) { 9612 spin_unlock(&space_info->lock); 9613 goto out; 9614 } 9615 spin_unlock(&space_info->lock); 9616 9617 /* 9618 * ok we don't have enough space, but maybe we have free space on our 9619 * devices to allocate new chunks for relocation, so loop through our 9620 * alloc devices and guess if we have enough space. if this block 9621 * group is going to be restriped, run checks against the target 9622 * profile instead of the current one. 9623 */ 9624 ret = -1; 9625 9626 /* 9627 * index: 9628 * 0: raid10 9629 * 1: raid1 9630 * 2: dup 9631 * 3: raid0 9632 * 4: single 9633 */ 9634 target = get_restripe_target(fs_info, block_group->flags); 9635 if (target) { 9636 index = __get_raid_index(extended_to_chunk(target)); 9637 } else { 9638 /* 9639 * this is just a balance, so if we were marked as full 9640 * we know there is no space for a new chunk 9641 */ 9642 if (full) { 9643 if (debug) 9644 btrfs_warn(fs_info, 9645 "no space to alloc new chunk for block group %llu", 9646 block_group->key.objectid); 9647 goto out; 9648 } 9649 9650 index = get_block_group_index(block_group); 9651 } 9652 9653 if (index == BTRFS_RAID_RAID10) { 9654 dev_min = 4; 9655 /* Divide by 2 */ 9656 min_free >>= 1; 9657 } else if (index == BTRFS_RAID_RAID1) { 9658 dev_min = 2; 9659 } else if (index == BTRFS_RAID_DUP) { 9660 /* Multiply by 2 */ 9661 min_free <<= 1; 9662 } else if (index == BTRFS_RAID_RAID0) { 9663 dev_min = fs_devices->rw_devices; 9664 min_free = div64_u64(min_free, dev_min); 9665 } 9666 9667 /* We need to do this so that we can look at pending chunks */ 9668 trans = btrfs_join_transaction(root); 9669 if (IS_ERR(trans)) { 9670 ret = PTR_ERR(trans); 9671 goto out; 9672 } 9673 9674 mutex_lock(&fs_info->chunk_mutex); 9675 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 9676 u64 dev_offset; 9677 9678 /* 9679 * check to make sure we can actually find a chunk with enough 9680 * space to fit our block group in. 9681 */ 9682 if (device->total_bytes > device->bytes_used + min_free && 9683 !device->is_tgtdev_for_dev_replace) { 9684 ret = find_free_dev_extent(trans, device, min_free, 9685 &dev_offset, NULL); 9686 if (!ret) 9687 dev_nr++; 9688 9689 if (dev_nr >= dev_min) 9690 break; 9691 9692 ret = -1; 9693 } 9694 } 9695 if (debug && ret == -1) 9696 btrfs_warn(fs_info, 9697 "no space to allocate a new chunk for block group %llu", 9698 block_group->key.objectid); 9699 mutex_unlock(&fs_info->chunk_mutex); 9700 btrfs_end_transaction(trans); 9701 out: 9702 btrfs_put_block_group(block_group); 9703 return ret; 9704 } 9705 9706 static int find_first_block_group(struct btrfs_fs_info *fs_info, 9707 struct btrfs_path *path, 9708 struct btrfs_key *key) 9709 { 9710 struct btrfs_root *root = fs_info->extent_root; 9711 int ret = 0; 9712 struct btrfs_key found_key; 9713 struct extent_buffer *leaf; 9714 int slot; 9715 9716 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9717 if (ret < 0) 9718 goto out; 9719 9720 while (1) { 9721 slot = path->slots[0]; 9722 leaf = path->nodes[0]; 9723 if (slot >= btrfs_header_nritems(leaf)) { 9724 ret = btrfs_next_leaf(root, path); 9725 if (ret == 0) 9726 continue; 9727 if (ret < 0) 9728 goto out; 9729 break; 9730 } 9731 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9732 9733 if (found_key.objectid >= key->objectid && 9734 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9735 struct extent_map_tree *em_tree; 9736 struct extent_map *em; 9737 9738 em_tree = &root->fs_info->mapping_tree.map_tree; 9739 read_lock(&em_tree->lock); 9740 em = lookup_extent_mapping(em_tree, found_key.objectid, 9741 found_key.offset); 9742 read_unlock(&em_tree->lock); 9743 if (!em) { 9744 btrfs_err(fs_info, 9745 "logical %llu len %llu found bg but no related chunk", 9746 found_key.objectid, found_key.offset); 9747 ret = -ENOENT; 9748 } else { 9749 ret = 0; 9750 } 9751 free_extent_map(em); 9752 goto out; 9753 } 9754 path->slots[0]++; 9755 } 9756 out: 9757 return ret; 9758 } 9759 9760 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9761 { 9762 struct btrfs_block_group_cache *block_group; 9763 u64 last = 0; 9764 9765 while (1) { 9766 struct inode *inode; 9767 9768 block_group = btrfs_lookup_first_block_group(info, last); 9769 while (block_group) { 9770 spin_lock(&block_group->lock); 9771 if (block_group->iref) 9772 break; 9773 spin_unlock(&block_group->lock); 9774 block_group = next_block_group(info, block_group); 9775 } 9776 if (!block_group) { 9777 if (last == 0) 9778 break; 9779 last = 0; 9780 continue; 9781 } 9782 9783 inode = block_group->inode; 9784 block_group->iref = 0; 9785 block_group->inode = NULL; 9786 spin_unlock(&block_group->lock); 9787 ASSERT(block_group->io_ctl.inode == NULL); 9788 iput(inode); 9789 last = block_group->key.objectid + block_group->key.offset; 9790 btrfs_put_block_group(block_group); 9791 } 9792 } 9793 9794 /* 9795 * Must be called only after stopping all workers, since we could have block 9796 * group caching kthreads running, and therefore they could race with us if we 9797 * freed the block groups before stopping them. 9798 */ 9799 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9800 { 9801 struct btrfs_block_group_cache *block_group; 9802 struct btrfs_space_info *space_info; 9803 struct btrfs_caching_control *caching_ctl; 9804 struct rb_node *n; 9805 9806 down_write(&info->commit_root_sem); 9807 while (!list_empty(&info->caching_block_groups)) { 9808 caching_ctl = list_entry(info->caching_block_groups.next, 9809 struct btrfs_caching_control, list); 9810 list_del(&caching_ctl->list); 9811 put_caching_control(caching_ctl); 9812 } 9813 up_write(&info->commit_root_sem); 9814 9815 spin_lock(&info->unused_bgs_lock); 9816 while (!list_empty(&info->unused_bgs)) { 9817 block_group = list_first_entry(&info->unused_bgs, 9818 struct btrfs_block_group_cache, 9819 bg_list); 9820 list_del_init(&block_group->bg_list); 9821 btrfs_put_block_group(block_group); 9822 } 9823 spin_unlock(&info->unused_bgs_lock); 9824 9825 spin_lock(&info->block_group_cache_lock); 9826 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9827 block_group = rb_entry(n, struct btrfs_block_group_cache, 9828 cache_node); 9829 rb_erase(&block_group->cache_node, 9830 &info->block_group_cache_tree); 9831 RB_CLEAR_NODE(&block_group->cache_node); 9832 spin_unlock(&info->block_group_cache_lock); 9833 9834 down_write(&block_group->space_info->groups_sem); 9835 list_del(&block_group->list); 9836 up_write(&block_group->space_info->groups_sem); 9837 9838 /* 9839 * We haven't cached this block group, which means we could 9840 * possibly have excluded extents on this block group. 9841 */ 9842 if (block_group->cached == BTRFS_CACHE_NO || 9843 block_group->cached == BTRFS_CACHE_ERROR) 9844 free_excluded_extents(info, block_group); 9845 9846 btrfs_remove_free_space_cache(block_group); 9847 ASSERT(block_group->cached != BTRFS_CACHE_STARTED); 9848 ASSERT(list_empty(&block_group->dirty_list)); 9849 ASSERT(list_empty(&block_group->io_list)); 9850 ASSERT(list_empty(&block_group->bg_list)); 9851 ASSERT(atomic_read(&block_group->count) == 1); 9852 btrfs_put_block_group(block_group); 9853 9854 spin_lock(&info->block_group_cache_lock); 9855 } 9856 spin_unlock(&info->block_group_cache_lock); 9857 9858 /* now that all the block groups are freed, go through and 9859 * free all the space_info structs. This is only called during 9860 * the final stages of unmount, and so we know nobody is 9861 * using them. We call synchronize_rcu() once before we start, 9862 * just to be on the safe side. 9863 */ 9864 synchronize_rcu(); 9865 9866 release_global_block_rsv(info); 9867 9868 while (!list_empty(&info->space_info)) { 9869 int i; 9870 9871 space_info = list_entry(info->space_info.next, 9872 struct btrfs_space_info, 9873 list); 9874 9875 /* 9876 * Do not hide this behind enospc_debug, this is actually 9877 * important and indicates a real bug if this happens. 9878 */ 9879 if (WARN_ON(space_info->bytes_pinned > 0 || 9880 space_info->bytes_reserved > 0 || 9881 space_info->bytes_may_use > 0)) 9882 dump_space_info(info, space_info, 0, 0); 9883 list_del(&space_info->list); 9884 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9885 struct kobject *kobj; 9886 kobj = space_info->block_group_kobjs[i]; 9887 space_info->block_group_kobjs[i] = NULL; 9888 if (kobj) { 9889 kobject_del(kobj); 9890 kobject_put(kobj); 9891 } 9892 } 9893 kobject_del(&space_info->kobj); 9894 kobject_put(&space_info->kobj); 9895 } 9896 return 0; 9897 } 9898 9899 static void __link_block_group(struct btrfs_space_info *space_info, 9900 struct btrfs_block_group_cache *cache) 9901 { 9902 int index = get_block_group_index(cache); 9903 bool first = false; 9904 9905 down_write(&space_info->groups_sem); 9906 if (list_empty(&space_info->block_groups[index])) 9907 first = true; 9908 list_add_tail(&cache->list, &space_info->block_groups[index]); 9909 up_write(&space_info->groups_sem); 9910 9911 if (first) { 9912 struct raid_kobject *rkobj; 9913 int ret; 9914 9915 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9916 if (!rkobj) 9917 goto out_err; 9918 rkobj->raid_type = index; 9919 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9920 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9921 "%s", get_raid_name(index)); 9922 if (ret) { 9923 kobject_put(&rkobj->kobj); 9924 goto out_err; 9925 } 9926 space_info->block_group_kobjs[index] = &rkobj->kobj; 9927 } 9928 9929 return; 9930 out_err: 9931 btrfs_warn(cache->fs_info, 9932 "failed to add kobject for block cache, ignoring"); 9933 } 9934 9935 static struct btrfs_block_group_cache * 9936 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, 9937 u64 start, u64 size) 9938 { 9939 struct btrfs_block_group_cache *cache; 9940 9941 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9942 if (!cache) 9943 return NULL; 9944 9945 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9946 GFP_NOFS); 9947 if (!cache->free_space_ctl) { 9948 kfree(cache); 9949 return NULL; 9950 } 9951 9952 cache->key.objectid = start; 9953 cache->key.offset = size; 9954 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9955 9956 cache->sectorsize = fs_info->sectorsize; 9957 cache->fs_info = fs_info; 9958 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, 9959 &fs_info->mapping_tree, 9960 start); 9961 set_free_space_tree_thresholds(cache); 9962 9963 atomic_set(&cache->count, 1); 9964 spin_lock_init(&cache->lock); 9965 init_rwsem(&cache->data_rwsem); 9966 INIT_LIST_HEAD(&cache->list); 9967 INIT_LIST_HEAD(&cache->cluster_list); 9968 INIT_LIST_HEAD(&cache->bg_list); 9969 INIT_LIST_HEAD(&cache->ro_list); 9970 INIT_LIST_HEAD(&cache->dirty_list); 9971 INIT_LIST_HEAD(&cache->io_list); 9972 btrfs_init_free_space_ctl(cache); 9973 atomic_set(&cache->trimming, 0); 9974 mutex_init(&cache->free_space_lock); 9975 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); 9976 9977 return cache; 9978 } 9979 9980 int btrfs_read_block_groups(struct btrfs_fs_info *info) 9981 { 9982 struct btrfs_path *path; 9983 int ret; 9984 struct btrfs_block_group_cache *cache; 9985 struct btrfs_space_info *space_info; 9986 struct btrfs_key key; 9987 struct btrfs_key found_key; 9988 struct extent_buffer *leaf; 9989 int need_clear = 0; 9990 u64 cache_gen; 9991 u64 feature; 9992 int mixed; 9993 9994 feature = btrfs_super_incompat_flags(info->super_copy); 9995 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); 9996 9997 key.objectid = 0; 9998 key.offset = 0; 9999 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 10000 path = btrfs_alloc_path(); 10001 if (!path) 10002 return -ENOMEM; 10003 path->reada = READA_FORWARD; 10004 10005 cache_gen = btrfs_super_cache_generation(info->super_copy); 10006 if (btrfs_test_opt(info, SPACE_CACHE) && 10007 btrfs_super_generation(info->super_copy) != cache_gen) 10008 need_clear = 1; 10009 if (btrfs_test_opt(info, CLEAR_CACHE)) 10010 need_clear = 1; 10011 10012 while (1) { 10013 ret = find_first_block_group(info, path, &key); 10014 if (ret > 0) 10015 break; 10016 if (ret != 0) 10017 goto error; 10018 10019 leaf = path->nodes[0]; 10020 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 10021 10022 cache = btrfs_create_block_group_cache(info, found_key.objectid, 10023 found_key.offset); 10024 if (!cache) { 10025 ret = -ENOMEM; 10026 goto error; 10027 } 10028 10029 if (need_clear) { 10030 /* 10031 * When we mount with old space cache, we need to 10032 * set BTRFS_DC_CLEAR and set dirty flag. 10033 * 10034 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 10035 * truncate the old free space cache inode and 10036 * setup a new one. 10037 * b) Setting 'dirty flag' makes sure that we flush 10038 * the new space cache info onto disk. 10039 */ 10040 if (btrfs_test_opt(info, SPACE_CACHE)) 10041 cache->disk_cache_state = BTRFS_DC_CLEAR; 10042 } 10043 10044 read_extent_buffer(leaf, &cache->item, 10045 btrfs_item_ptr_offset(leaf, path->slots[0]), 10046 sizeof(cache->item)); 10047 cache->flags = btrfs_block_group_flags(&cache->item); 10048 if (!mixed && 10049 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && 10050 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { 10051 btrfs_err(info, 10052 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", 10053 cache->key.objectid); 10054 ret = -EINVAL; 10055 goto error; 10056 } 10057 10058 key.objectid = found_key.objectid + found_key.offset; 10059 btrfs_release_path(path); 10060 10061 /* 10062 * We need to exclude the super stripes now so that the space 10063 * info has super bytes accounted for, otherwise we'll think 10064 * we have more space than we actually do. 10065 */ 10066 ret = exclude_super_stripes(info, cache); 10067 if (ret) { 10068 /* 10069 * We may have excluded something, so call this just in 10070 * case. 10071 */ 10072 free_excluded_extents(info, cache); 10073 btrfs_put_block_group(cache); 10074 goto error; 10075 } 10076 10077 /* 10078 * check for two cases, either we are full, and therefore 10079 * don't need to bother with the caching work since we won't 10080 * find any space, or we are empty, and we can just add all 10081 * the space in and be done with it. This saves us _alot_ of 10082 * time, particularly in the full case. 10083 */ 10084 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 10085 cache->last_byte_to_unpin = (u64)-1; 10086 cache->cached = BTRFS_CACHE_FINISHED; 10087 free_excluded_extents(info, cache); 10088 } else if (btrfs_block_group_used(&cache->item) == 0) { 10089 cache->last_byte_to_unpin = (u64)-1; 10090 cache->cached = BTRFS_CACHE_FINISHED; 10091 add_new_free_space(cache, info, 10092 found_key.objectid, 10093 found_key.objectid + 10094 found_key.offset); 10095 free_excluded_extents(info, cache); 10096 } 10097 10098 ret = btrfs_add_block_group_cache(info, cache); 10099 if (ret) { 10100 btrfs_remove_free_space_cache(cache); 10101 btrfs_put_block_group(cache); 10102 goto error; 10103 } 10104 10105 trace_btrfs_add_block_group(info, cache, 0); 10106 update_space_info(info, cache->flags, found_key.offset, 10107 btrfs_block_group_used(&cache->item), 10108 cache->bytes_super, &space_info); 10109 10110 cache->space_info = space_info; 10111 10112 __link_block_group(space_info, cache); 10113 10114 set_avail_alloc_bits(info, cache->flags); 10115 if (btrfs_chunk_readonly(info, cache->key.objectid)) { 10116 inc_block_group_ro(cache, 1); 10117 } else if (btrfs_block_group_used(&cache->item) == 0) { 10118 spin_lock(&info->unused_bgs_lock); 10119 /* Should always be true but just in case. */ 10120 if (list_empty(&cache->bg_list)) { 10121 btrfs_get_block_group(cache); 10122 list_add_tail(&cache->bg_list, 10123 &info->unused_bgs); 10124 } 10125 spin_unlock(&info->unused_bgs_lock); 10126 } 10127 } 10128 10129 list_for_each_entry_rcu(space_info, &info->space_info, list) { 10130 if (!(get_alloc_profile(info, space_info->flags) & 10131 (BTRFS_BLOCK_GROUP_RAID10 | 10132 BTRFS_BLOCK_GROUP_RAID1 | 10133 BTRFS_BLOCK_GROUP_RAID5 | 10134 BTRFS_BLOCK_GROUP_RAID6 | 10135 BTRFS_BLOCK_GROUP_DUP))) 10136 continue; 10137 /* 10138 * avoid allocating from un-mirrored block group if there are 10139 * mirrored block groups. 10140 */ 10141 list_for_each_entry(cache, 10142 &space_info->block_groups[BTRFS_RAID_RAID0], 10143 list) 10144 inc_block_group_ro(cache, 1); 10145 list_for_each_entry(cache, 10146 &space_info->block_groups[BTRFS_RAID_SINGLE], 10147 list) 10148 inc_block_group_ro(cache, 1); 10149 } 10150 10151 init_global_block_rsv(info); 10152 ret = 0; 10153 error: 10154 btrfs_free_path(path); 10155 return ret; 10156 } 10157 10158 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 10159 struct btrfs_fs_info *fs_info) 10160 { 10161 struct btrfs_block_group_cache *block_group, *tmp; 10162 struct btrfs_root *extent_root = fs_info->extent_root; 10163 struct btrfs_block_group_item item; 10164 struct btrfs_key key; 10165 int ret = 0; 10166 bool can_flush_pending_bgs = trans->can_flush_pending_bgs; 10167 10168 trans->can_flush_pending_bgs = false; 10169 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 10170 if (ret) 10171 goto next; 10172 10173 spin_lock(&block_group->lock); 10174 memcpy(&item, &block_group->item, sizeof(item)); 10175 memcpy(&key, &block_group->key, sizeof(key)); 10176 spin_unlock(&block_group->lock); 10177 10178 ret = btrfs_insert_item(trans, extent_root, &key, &item, 10179 sizeof(item)); 10180 if (ret) 10181 btrfs_abort_transaction(trans, ret); 10182 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid, 10183 key.offset); 10184 if (ret) 10185 btrfs_abort_transaction(trans, ret); 10186 add_block_group_free_space(trans, fs_info, block_group); 10187 /* already aborted the transaction if it failed. */ 10188 next: 10189 list_del_init(&block_group->bg_list); 10190 } 10191 trans->can_flush_pending_bgs = can_flush_pending_bgs; 10192 } 10193 10194 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 10195 struct btrfs_fs_info *fs_info, u64 bytes_used, 10196 u64 type, u64 chunk_objectid, u64 chunk_offset, 10197 u64 size) 10198 { 10199 struct btrfs_block_group_cache *cache; 10200 int ret; 10201 10202 btrfs_set_log_full_commit(fs_info, trans); 10203 10204 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); 10205 if (!cache) 10206 return -ENOMEM; 10207 10208 btrfs_set_block_group_used(&cache->item, bytes_used); 10209 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 10210 btrfs_set_block_group_flags(&cache->item, type); 10211 10212 cache->flags = type; 10213 cache->last_byte_to_unpin = (u64)-1; 10214 cache->cached = BTRFS_CACHE_FINISHED; 10215 cache->needs_free_space = 1; 10216 ret = exclude_super_stripes(fs_info, cache); 10217 if (ret) { 10218 /* 10219 * We may have excluded something, so call this just in 10220 * case. 10221 */ 10222 free_excluded_extents(fs_info, cache); 10223 btrfs_put_block_group(cache); 10224 return ret; 10225 } 10226 10227 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size); 10228 10229 free_excluded_extents(fs_info, cache); 10230 10231 #ifdef CONFIG_BTRFS_DEBUG 10232 if (btrfs_should_fragment_free_space(cache)) { 10233 u64 new_bytes_used = size - bytes_used; 10234 10235 bytes_used += new_bytes_used >> 1; 10236 fragment_free_space(cache); 10237 } 10238 #endif 10239 /* 10240 * Ensure the corresponding space_info object is created and 10241 * assigned to our block group. We want our bg to be added to the rbtree 10242 * with its ->space_info set. 10243 */ 10244 cache->space_info = __find_space_info(fs_info, cache->flags); 10245 if (!cache->space_info) { 10246 ret = create_space_info(fs_info, cache->flags, 10247 &cache->space_info); 10248 if (ret) { 10249 btrfs_remove_free_space_cache(cache); 10250 btrfs_put_block_group(cache); 10251 return ret; 10252 } 10253 } 10254 10255 ret = btrfs_add_block_group_cache(fs_info, cache); 10256 if (ret) { 10257 btrfs_remove_free_space_cache(cache); 10258 btrfs_put_block_group(cache); 10259 return ret; 10260 } 10261 10262 /* 10263 * Now that our block group has its ->space_info set and is inserted in 10264 * the rbtree, update the space info's counters. 10265 */ 10266 trace_btrfs_add_block_group(fs_info, cache, 1); 10267 update_space_info(fs_info, cache->flags, size, bytes_used, 10268 cache->bytes_super, &cache->space_info); 10269 update_global_block_rsv(fs_info); 10270 10271 __link_block_group(cache->space_info, cache); 10272 10273 list_add_tail(&cache->bg_list, &trans->new_bgs); 10274 10275 set_avail_alloc_bits(fs_info, type); 10276 return 0; 10277 } 10278 10279 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 10280 { 10281 u64 extra_flags = chunk_to_extended(flags) & 10282 BTRFS_EXTENDED_PROFILE_MASK; 10283 10284 write_seqlock(&fs_info->profiles_lock); 10285 if (flags & BTRFS_BLOCK_GROUP_DATA) 10286 fs_info->avail_data_alloc_bits &= ~extra_flags; 10287 if (flags & BTRFS_BLOCK_GROUP_METADATA) 10288 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 10289 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 10290 fs_info->avail_system_alloc_bits &= ~extra_flags; 10291 write_sequnlock(&fs_info->profiles_lock); 10292 } 10293 10294 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 10295 struct btrfs_fs_info *fs_info, u64 group_start, 10296 struct extent_map *em) 10297 { 10298 struct btrfs_root *root = fs_info->extent_root; 10299 struct btrfs_path *path; 10300 struct btrfs_block_group_cache *block_group; 10301 struct btrfs_free_cluster *cluster; 10302 struct btrfs_root *tree_root = fs_info->tree_root; 10303 struct btrfs_key key; 10304 struct inode *inode; 10305 struct kobject *kobj = NULL; 10306 int ret; 10307 int index; 10308 int factor; 10309 struct btrfs_caching_control *caching_ctl = NULL; 10310 bool remove_em; 10311 10312 block_group = btrfs_lookup_block_group(fs_info, group_start); 10313 BUG_ON(!block_group); 10314 BUG_ON(!block_group->ro); 10315 10316 /* 10317 * Free the reserved super bytes from this block group before 10318 * remove it. 10319 */ 10320 free_excluded_extents(fs_info, block_group); 10321 10322 memcpy(&key, &block_group->key, sizeof(key)); 10323 index = get_block_group_index(block_group); 10324 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 10325 BTRFS_BLOCK_GROUP_RAID1 | 10326 BTRFS_BLOCK_GROUP_RAID10)) 10327 factor = 2; 10328 else 10329 factor = 1; 10330 10331 /* make sure this block group isn't part of an allocation cluster */ 10332 cluster = &fs_info->data_alloc_cluster; 10333 spin_lock(&cluster->refill_lock); 10334 btrfs_return_cluster_to_free_space(block_group, cluster); 10335 spin_unlock(&cluster->refill_lock); 10336 10337 /* 10338 * make sure this block group isn't part of a metadata 10339 * allocation cluster 10340 */ 10341 cluster = &fs_info->meta_alloc_cluster; 10342 spin_lock(&cluster->refill_lock); 10343 btrfs_return_cluster_to_free_space(block_group, cluster); 10344 spin_unlock(&cluster->refill_lock); 10345 10346 path = btrfs_alloc_path(); 10347 if (!path) { 10348 ret = -ENOMEM; 10349 goto out; 10350 } 10351 10352 /* 10353 * get the inode first so any iput calls done for the io_list 10354 * aren't the final iput (no unlinks allowed now) 10355 */ 10356 inode = lookup_free_space_inode(fs_info, block_group, path); 10357 10358 mutex_lock(&trans->transaction->cache_write_mutex); 10359 /* 10360 * make sure our free spache cache IO is done before remove the 10361 * free space inode 10362 */ 10363 spin_lock(&trans->transaction->dirty_bgs_lock); 10364 if (!list_empty(&block_group->io_list)) { 10365 list_del_init(&block_group->io_list); 10366 10367 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 10368 10369 spin_unlock(&trans->transaction->dirty_bgs_lock); 10370 btrfs_wait_cache_io(trans, block_group, path); 10371 btrfs_put_block_group(block_group); 10372 spin_lock(&trans->transaction->dirty_bgs_lock); 10373 } 10374 10375 if (!list_empty(&block_group->dirty_list)) { 10376 list_del_init(&block_group->dirty_list); 10377 btrfs_put_block_group(block_group); 10378 } 10379 spin_unlock(&trans->transaction->dirty_bgs_lock); 10380 mutex_unlock(&trans->transaction->cache_write_mutex); 10381 10382 if (!IS_ERR(inode)) { 10383 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10384 if (ret) { 10385 btrfs_add_delayed_iput(inode); 10386 goto out; 10387 } 10388 clear_nlink(inode); 10389 /* One for the block groups ref */ 10390 spin_lock(&block_group->lock); 10391 if (block_group->iref) { 10392 block_group->iref = 0; 10393 block_group->inode = NULL; 10394 spin_unlock(&block_group->lock); 10395 iput(inode); 10396 } else { 10397 spin_unlock(&block_group->lock); 10398 } 10399 /* One for our lookup ref */ 10400 btrfs_add_delayed_iput(inode); 10401 } 10402 10403 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 10404 key.offset = block_group->key.objectid; 10405 key.type = 0; 10406 10407 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 10408 if (ret < 0) 10409 goto out; 10410 if (ret > 0) 10411 btrfs_release_path(path); 10412 if (ret == 0) { 10413 ret = btrfs_del_item(trans, tree_root, path); 10414 if (ret) 10415 goto out; 10416 btrfs_release_path(path); 10417 } 10418 10419 spin_lock(&fs_info->block_group_cache_lock); 10420 rb_erase(&block_group->cache_node, 10421 &fs_info->block_group_cache_tree); 10422 RB_CLEAR_NODE(&block_group->cache_node); 10423 10424 if (fs_info->first_logical_byte == block_group->key.objectid) 10425 fs_info->first_logical_byte = (u64)-1; 10426 spin_unlock(&fs_info->block_group_cache_lock); 10427 10428 down_write(&block_group->space_info->groups_sem); 10429 /* 10430 * we must use list_del_init so people can check to see if they 10431 * are still on the list after taking the semaphore 10432 */ 10433 list_del_init(&block_group->list); 10434 if (list_empty(&block_group->space_info->block_groups[index])) { 10435 kobj = block_group->space_info->block_group_kobjs[index]; 10436 block_group->space_info->block_group_kobjs[index] = NULL; 10437 clear_avail_alloc_bits(fs_info, block_group->flags); 10438 } 10439 up_write(&block_group->space_info->groups_sem); 10440 if (kobj) { 10441 kobject_del(kobj); 10442 kobject_put(kobj); 10443 } 10444 10445 if (block_group->has_caching_ctl) 10446 caching_ctl = get_caching_control(block_group); 10447 if (block_group->cached == BTRFS_CACHE_STARTED) 10448 wait_block_group_cache_done(block_group); 10449 if (block_group->has_caching_ctl) { 10450 down_write(&fs_info->commit_root_sem); 10451 if (!caching_ctl) { 10452 struct btrfs_caching_control *ctl; 10453 10454 list_for_each_entry(ctl, 10455 &fs_info->caching_block_groups, list) 10456 if (ctl->block_group == block_group) { 10457 caching_ctl = ctl; 10458 refcount_inc(&caching_ctl->count); 10459 break; 10460 } 10461 } 10462 if (caching_ctl) 10463 list_del_init(&caching_ctl->list); 10464 up_write(&fs_info->commit_root_sem); 10465 if (caching_ctl) { 10466 /* Once for the caching bgs list and once for us. */ 10467 put_caching_control(caching_ctl); 10468 put_caching_control(caching_ctl); 10469 } 10470 } 10471 10472 spin_lock(&trans->transaction->dirty_bgs_lock); 10473 if (!list_empty(&block_group->dirty_list)) { 10474 WARN_ON(1); 10475 } 10476 if (!list_empty(&block_group->io_list)) { 10477 WARN_ON(1); 10478 } 10479 spin_unlock(&trans->transaction->dirty_bgs_lock); 10480 btrfs_remove_free_space_cache(block_group); 10481 10482 spin_lock(&block_group->space_info->lock); 10483 list_del_init(&block_group->ro_list); 10484 10485 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 10486 WARN_ON(block_group->space_info->total_bytes 10487 < block_group->key.offset); 10488 WARN_ON(block_group->space_info->bytes_readonly 10489 < block_group->key.offset); 10490 WARN_ON(block_group->space_info->disk_total 10491 < block_group->key.offset * factor); 10492 } 10493 block_group->space_info->total_bytes -= block_group->key.offset; 10494 block_group->space_info->bytes_readonly -= block_group->key.offset; 10495 block_group->space_info->disk_total -= block_group->key.offset * factor; 10496 10497 spin_unlock(&block_group->space_info->lock); 10498 10499 memcpy(&key, &block_group->key, sizeof(key)); 10500 10501 mutex_lock(&fs_info->chunk_mutex); 10502 if (!list_empty(&em->list)) { 10503 /* We're in the transaction->pending_chunks list. */ 10504 free_extent_map(em); 10505 } 10506 spin_lock(&block_group->lock); 10507 block_group->removed = 1; 10508 /* 10509 * At this point trimming can't start on this block group, because we 10510 * removed the block group from the tree fs_info->block_group_cache_tree 10511 * so no one can't find it anymore and even if someone already got this 10512 * block group before we removed it from the rbtree, they have already 10513 * incremented block_group->trimming - if they didn't, they won't find 10514 * any free space entries because we already removed them all when we 10515 * called btrfs_remove_free_space_cache(). 10516 * 10517 * And we must not remove the extent map from the fs_info->mapping_tree 10518 * to prevent the same logical address range and physical device space 10519 * ranges from being reused for a new block group. This is because our 10520 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 10521 * completely transactionless, so while it is trimming a range the 10522 * currently running transaction might finish and a new one start, 10523 * allowing for new block groups to be created that can reuse the same 10524 * physical device locations unless we take this special care. 10525 * 10526 * There may also be an implicit trim operation if the file system 10527 * is mounted with -odiscard. The same protections must remain 10528 * in place until the extents have been discarded completely when 10529 * the transaction commit has completed. 10530 */ 10531 remove_em = (atomic_read(&block_group->trimming) == 0); 10532 /* 10533 * Make sure a trimmer task always sees the em in the pinned_chunks list 10534 * if it sees block_group->removed == 1 (needs to lock block_group->lock 10535 * before checking block_group->removed). 10536 */ 10537 if (!remove_em) { 10538 /* 10539 * Our em might be in trans->transaction->pending_chunks which 10540 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 10541 * and so is the fs_info->pinned_chunks list. 10542 * 10543 * So at this point we must be holding the chunk_mutex to avoid 10544 * any races with chunk allocation (more specifically at 10545 * volumes.c:contains_pending_extent()), to ensure it always 10546 * sees the em, either in the pending_chunks list or in the 10547 * pinned_chunks list. 10548 */ 10549 list_move_tail(&em->list, &fs_info->pinned_chunks); 10550 } 10551 spin_unlock(&block_group->lock); 10552 10553 if (remove_em) { 10554 struct extent_map_tree *em_tree; 10555 10556 em_tree = &fs_info->mapping_tree.map_tree; 10557 write_lock(&em_tree->lock); 10558 /* 10559 * The em might be in the pending_chunks list, so make sure the 10560 * chunk mutex is locked, since remove_extent_mapping() will 10561 * delete us from that list. 10562 */ 10563 remove_extent_mapping(em_tree, em); 10564 write_unlock(&em_tree->lock); 10565 /* once for the tree */ 10566 free_extent_map(em); 10567 } 10568 10569 mutex_unlock(&fs_info->chunk_mutex); 10570 10571 ret = remove_block_group_free_space(trans, fs_info, block_group); 10572 if (ret) 10573 goto out; 10574 10575 btrfs_put_block_group(block_group); 10576 btrfs_put_block_group(block_group); 10577 10578 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 10579 if (ret > 0) 10580 ret = -EIO; 10581 if (ret < 0) 10582 goto out; 10583 10584 ret = btrfs_del_item(trans, root, path); 10585 out: 10586 btrfs_free_path(path); 10587 return ret; 10588 } 10589 10590 struct btrfs_trans_handle * 10591 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, 10592 const u64 chunk_offset) 10593 { 10594 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; 10595 struct extent_map *em; 10596 struct map_lookup *map; 10597 unsigned int num_items; 10598 10599 read_lock(&em_tree->lock); 10600 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 10601 read_unlock(&em_tree->lock); 10602 ASSERT(em && em->start == chunk_offset); 10603 10604 /* 10605 * We need to reserve 3 + N units from the metadata space info in order 10606 * to remove a block group (done at btrfs_remove_chunk() and at 10607 * btrfs_remove_block_group()), which are used for: 10608 * 10609 * 1 unit for adding the free space inode's orphan (located in the tree 10610 * of tree roots). 10611 * 1 unit for deleting the block group item (located in the extent 10612 * tree). 10613 * 1 unit for deleting the free space item (located in tree of tree 10614 * roots). 10615 * N units for deleting N device extent items corresponding to each 10616 * stripe (located in the device tree). 10617 * 10618 * In order to remove a block group we also need to reserve units in the 10619 * system space info in order to update the chunk tree (update one or 10620 * more device items and remove one chunk item), but this is done at 10621 * btrfs_remove_chunk() through a call to check_system_chunk(). 10622 */ 10623 map = em->map_lookup; 10624 num_items = 3 + map->num_stripes; 10625 free_extent_map(em); 10626 10627 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, 10628 num_items, 1); 10629 } 10630 10631 /* 10632 * Process the unused_bgs list and remove any that don't have any allocated 10633 * space inside of them. 10634 */ 10635 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 10636 { 10637 struct btrfs_block_group_cache *block_group; 10638 struct btrfs_space_info *space_info; 10639 struct btrfs_trans_handle *trans; 10640 int ret = 0; 10641 10642 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 10643 return; 10644 10645 spin_lock(&fs_info->unused_bgs_lock); 10646 while (!list_empty(&fs_info->unused_bgs)) { 10647 u64 start, end; 10648 int trimming; 10649 10650 block_group = list_first_entry(&fs_info->unused_bgs, 10651 struct btrfs_block_group_cache, 10652 bg_list); 10653 list_del_init(&block_group->bg_list); 10654 10655 space_info = block_group->space_info; 10656 10657 if (ret || btrfs_mixed_space_info(space_info)) { 10658 btrfs_put_block_group(block_group); 10659 continue; 10660 } 10661 spin_unlock(&fs_info->unused_bgs_lock); 10662 10663 mutex_lock(&fs_info->delete_unused_bgs_mutex); 10664 10665 /* Don't want to race with allocators so take the groups_sem */ 10666 down_write(&space_info->groups_sem); 10667 spin_lock(&block_group->lock); 10668 if (block_group->reserved || 10669 btrfs_block_group_used(&block_group->item) || 10670 block_group->ro || 10671 list_is_singular(&block_group->list)) { 10672 /* 10673 * We want to bail if we made new allocations or have 10674 * outstanding allocations in this block group. We do 10675 * the ro check in case balance is currently acting on 10676 * this block group. 10677 */ 10678 spin_unlock(&block_group->lock); 10679 up_write(&space_info->groups_sem); 10680 goto next; 10681 } 10682 spin_unlock(&block_group->lock); 10683 10684 /* We don't want to force the issue, only flip if it's ok. */ 10685 ret = inc_block_group_ro(block_group, 0); 10686 up_write(&space_info->groups_sem); 10687 if (ret < 0) { 10688 ret = 0; 10689 goto next; 10690 } 10691 10692 /* 10693 * Want to do this before we do anything else so we can recover 10694 * properly if we fail to join the transaction. 10695 */ 10696 trans = btrfs_start_trans_remove_block_group(fs_info, 10697 block_group->key.objectid); 10698 if (IS_ERR(trans)) { 10699 btrfs_dec_block_group_ro(block_group); 10700 ret = PTR_ERR(trans); 10701 goto next; 10702 } 10703 10704 /* 10705 * We could have pending pinned extents for this block group, 10706 * just delete them, we don't care about them anymore. 10707 */ 10708 start = block_group->key.objectid; 10709 end = start + block_group->key.offset - 1; 10710 /* 10711 * Hold the unused_bg_unpin_mutex lock to avoid racing with 10712 * btrfs_finish_extent_commit(). If we are at transaction N, 10713 * another task might be running finish_extent_commit() for the 10714 * previous transaction N - 1, and have seen a range belonging 10715 * to the block group in freed_extents[] before we were able to 10716 * clear the whole block group range from freed_extents[]. This 10717 * means that task can lookup for the block group after we 10718 * unpinned it from freed_extents[] and removed it, leading to 10719 * a BUG_ON() at btrfs_unpin_extent_range(). 10720 */ 10721 mutex_lock(&fs_info->unused_bg_unpin_mutex); 10722 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 10723 EXTENT_DIRTY); 10724 if (ret) { 10725 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10726 btrfs_dec_block_group_ro(block_group); 10727 goto end_trans; 10728 } 10729 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 10730 EXTENT_DIRTY); 10731 if (ret) { 10732 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10733 btrfs_dec_block_group_ro(block_group); 10734 goto end_trans; 10735 } 10736 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 10737 10738 /* Reset pinned so btrfs_put_block_group doesn't complain */ 10739 spin_lock(&space_info->lock); 10740 spin_lock(&block_group->lock); 10741 10742 space_info->bytes_pinned -= block_group->pinned; 10743 space_info->bytes_readonly += block_group->pinned; 10744 percpu_counter_add(&space_info->total_bytes_pinned, 10745 -block_group->pinned); 10746 block_group->pinned = 0; 10747 10748 spin_unlock(&block_group->lock); 10749 spin_unlock(&space_info->lock); 10750 10751 /* DISCARD can flip during remount */ 10752 trimming = btrfs_test_opt(fs_info, DISCARD); 10753 10754 /* Implicit trim during transaction commit. */ 10755 if (trimming) 10756 btrfs_get_block_group_trimming(block_group); 10757 10758 /* 10759 * Btrfs_remove_chunk will abort the transaction if things go 10760 * horribly wrong. 10761 */ 10762 ret = btrfs_remove_chunk(trans, fs_info, 10763 block_group->key.objectid); 10764 10765 if (ret) { 10766 if (trimming) 10767 btrfs_put_block_group_trimming(block_group); 10768 goto end_trans; 10769 } 10770 10771 /* 10772 * If we're not mounted with -odiscard, we can just forget 10773 * about this block group. Otherwise we'll need to wait 10774 * until transaction commit to do the actual discard. 10775 */ 10776 if (trimming) { 10777 spin_lock(&fs_info->unused_bgs_lock); 10778 /* 10779 * A concurrent scrub might have added us to the list 10780 * fs_info->unused_bgs, so use a list_move operation 10781 * to add the block group to the deleted_bgs list. 10782 */ 10783 list_move(&block_group->bg_list, 10784 &trans->transaction->deleted_bgs); 10785 spin_unlock(&fs_info->unused_bgs_lock); 10786 btrfs_get_block_group(block_group); 10787 } 10788 end_trans: 10789 btrfs_end_transaction(trans); 10790 next: 10791 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 10792 btrfs_put_block_group(block_group); 10793 spin_lock(&fs_info->unused_bgs_lock); 10794 } 10795 spin_unlock(&fs_info->unused_bgs_lock); 10796 } 10797 10798 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 10799 { 10800 struct btrfs_space_info *space_info; 10801 struct btrfs_super_block *disk_super; 10802 u64 features; 10803 u64 flags; 10804 int mixed = 0; 10805 int ret; 10806 10807 disk_super = fs_info->super_copy; 10808 if (!btrfs_super_root(disk_super)) 10809 return -EINVAL; 10810 10811 features = btrfs_super_incompat_flags(disk_super); 10812 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10813 mixed = 1; 10814 10815 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10816 ret = create_space_info(fs_info, flags, &space_info); 10817 if (ret) 10818 goto out; 10819 10820 if (mixed) { 10821 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10822 ret = create_space_info(fs_info, flags, &space_info); 10823 } else { 10824 flags = BTRFS_BLOCK_GROUP_METADATA; 10825 ret = create_space_info(fs_info, flags, &space_info); 10826 if (ret) 10827 goto out; 10828 10829 flags = BTRFS_BLOCK_GROUP_DATA; 10830 ret = create_space_info(fs_info, flags, &space_info); 10831 } 10832 out: 10833 return ret; 10834 } 10835 10836 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 10837 u64 start, u64 end) 10838 { 10839 return unpin_extent_range(fs_info, start, end, false); 10840 } 10841 10842 /* 10843 * It used to be that old block groups would be left around forever. 10844 * Iterating over them would be enough to trim unused space. Since we 10845 * now automatically remove them, we also need to iterate over unallocated 10846 * space. 10847 * 10848 * We don't want a transaction for this since the discard may take a 10849 * substantial amount of time. We don't require that a transaction be 10850 * running, but we do need to take a running transaction into account 10851 * to ensure that we're not discarding chunks that were released in 10852 * the current transaction. 10853 * 10854 * Holding the chunks lock will prevent other threads from allocating 10855 * or releasing chunks, but it won't prevent a running transaction 10856 * from committing and releasing the memory that the pending chunks 10857 * list head uses. For that, we need to take a reference to the 10858 * transaction. 10859 */ 10860 static int btrfs_trim_free_extents(struct btrfs_device *device, 10861 u64 minlen, u64 *trimmed) 10862 { 10863 u64 start = 0, len = 0; 10864 int ret; 10865 10866 *trimmed = 0; 10867 10868 /* Not writeable = nothing to do. */ 10869 if (!device->writeable) 10870 return 0; 10871 10872 /* No free space = nothing to do. */ 10873 if (device->total_bytes <= device->bytes_used) 10874 return 0; 10875 10876 ret = 0; 10877 10878 while (1) { 10879 struct btrfs_fs_info *fs_info = device->fs_info; 10880 struct btrfs_transaction *trans; 10881 u64 bytes; 10882 10883 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 10884 if (ret) 10885 return ret; 10886 10887 down_read(&fs_info->commit_root_sem); 10888 10889 spin_lock(&fs_info->trans_lock); 10890 trans = fs_info->running_transaction; 10891 if (trans) 10892 refcount_inc(&trans->use_count); 10893 spin_unlock(&fs_info->trans_lock); 10894 10895 ret = find_free_dev_extent_start(trans, device, minlen, start, 10896 &start, &len); 10897 if (trans) 10898 btrfs_put_transaction(trans); 10899 10900 if (ret) { 10901 up_read(&fs_info->commit_root_sem); 10902 mutex_unlock(&fs_info->chunk_mutex); 10903 if (ret == -ENOSPC) 10904 ret = 0; 10905 break; 10906 } 10907 10908 ret = btrfs_issue_discard(device->bdev, start, len, &bytes); 10909 up_read(&fs_info->commit_root_sem); 10910 mutex_unlock(&fs_info->chunk_mutex); 10911 10912 if (ret) 10913 break; 10914 10915 start += len; 10916 *trimmed += bytes; 10917 10918 if (fatal_signal_pending(current)) { 10919 ret = -ERESTARTSYS; 10920 break; 10921 } 10922 10923 cond_resched(); 10924 } 10925 10926 return ret; 10927 } 10928 10929 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 10930 { 10931 struct btrfs_block_group_cache *cache = NULL; 10932 struct btrfs_device *device; 10933 struct list_head *devices; 10934 u64 group_trimmed; 10935 u64 start; 10936 u64 end; 10937 u64 trimmed = 0; 10938 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10939 int ret = 0; 10940 10941 /* 10942 * try to trim all FS space, our block group may start from non-zero. 10943 */ 10944 if (range->len == total_bytes) 10945 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10946 else 10947 cache = btrfs_lookup_block_group(fs_info, range->start); 10948 10949 while (cache) { 10950 if (cache->key.objectid >= (range->start + range->len)) { 10951 btrfs_put_block_group(cache); 10952 break; 10953 } 10954 10955 start = max(range->start, cache->key.objectid); 10956 end = min(range->start + range->len, 10957 cache->key.objectid + cache->key.offset); 10958 10959 if (end - start >= range->minlen) { 10960 if (!block_group_cache_done(cache)) { 10961 ret = cache_block_group(cache, 0); 10962 if (ret) { 10963 btrfs_put_block_group(cache); 10964 break; 10965 } 10966 ret = wait_block_group_cache_done(cache); 10967 if (ret) { 10968 btrfs_put_block_group(cache); 10969 break; 10970 } 10971 } 10972 ret = btrfs_trim_block_group(cache, 10973 &group_trimmed, 10974 start, 10975 end, 10976 range->minlen); 10977 10978 trimmed += group_trimmed; 10979 if (ret) { 10980 btrfs_put_block_group(cache); 10981 break; 10982 } 10983 } 10984 10985 cache = next_block_group(fs_info, cache); 10986 } 10987 10988 mutex_lock(&fs_info->fs_devices->device_list_mutex); 10989 devices = &fs_info->fs_devices->alloc_list; 10990 list_for_each_entry(device, devices, dev_alloc_list) { 10991 ret = btrfs_trim_free_extents(device, range->minlen, 10992 &group_trimmed); 10993 if (ret) 10994 break; 10995 10996 trimmed += group_trimmed; 10997 } 10998 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 10999 11000 range->len = trimmed; 11001 return ret; 11002 } 11003 11004 /* 11005 * btrfs_{start,end}_write_no_snapshoting() are similar to 11006 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 11007 * data into the page cache through nocow before the subvolume is snapshoted, 11008 * but flush the data into disk after the snapshot creation, or to prevent 11009 * operations while snapshoting is ongoing and that cause the snapshot to be 11010 * inconsistent (writes followed by expanding truncates for example). 11011 */ 11012 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 11013 { 11014 percpu_counter_dec(&root->subv_writers->counter); 11015 /* 11016 * Make sure counter is updated before we wake up waiters. 11017 */ 11018 smp_mb(); 11019 if (waitqueue_active(&root->subv_writers->wait)) 11020 wake_up(&root->subv_writers->wait); 11021 } 11022 11023 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 11024 { 11025 if (atomic_read(&root->will_be_snapshoted)) 11026 return 0; 11027 11028 percpu_counter_inc(&root->subv_writers->counter); 11029 /* 11030 * Make sure counter is updated before we check for snapshot creation. 11031 */ 11032 smp_mb(); 11033 if (atomic_read(&root->will_be_snapshoted)) { 11034 btrfs_end_write_no_snapshoting(root); 11035 return 0; 11036 } 11037 return 1; 11038 } 11039 11040 static int wait_snapshoting_atomic_t(atomic_t *a) 11041 { 11042 schedule(); 11043 return 0; 11044 } 11045 11046 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) 11047 { 11048 while (true) { 11049 int ret; 11050 11051 ret = btrfs_start_write_no_snapshoting(root); 11052 if (ret) 11053 break; 11054 wait_on_atomic_t(&root->will_be_snapshoted, 11055 wait_snapshoting_atomic_t, 11056 TASK_UNINTERRUPTIBLE); 11057 } 11058 } 11059