1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "tree-log.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "sysfs.h" 30 #include "qgroup.h" 31 #include "ref-verify.h" 32 #include "space-info.h" 33 #include "block-rsv.h" 34 #include "delalloc-space.h" 35 #include "discard.h" 36 #include "rcu-string.h" 37 #include "zoned.h" 38 #include "dev-replace.h" 39 #include "fs.h" 40 #include "accessors.h" 41 #include "root-tree.h" 42 #include "file-item.h" 43 #include "orphan.h" 44 #include "tree-checker.h" 45 #include "raid-stripe-tree.h" 46 47 #undef SCRAMBLE_DELAYED_REFS 48 49 50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 51 struct btrfs_delayed_ref_head *href, 52 struct btrfs_delayed_ref_node *node, u64 parent, 53 u64 root_objectid, u64 owner_objectid, 54 u64 owner_offset, 55 struct btrfs_delayed_extent_op *extra_op); 56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 57 struct extent_buffer *leaf, 58 struct btrfs_extent_item *ei); 59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 60 u64 parent, u64 root_objectid, 61 u64 flags, u64 owner, u64 offset, 62 struct btrfs_key *ins, int ref_mod, u64 oref_root); 63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 64 struct btrfs_delayed_ref_node *node, 65 struct btrfs_delayed_extent_op *extent_op); 66 static int find_next_key(struct btrfs_path *path, int level, 67 struct btrfs_key *key); 68 69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits) 70 { 71 return (cache->flags & bits) == bits; 72 } 73 74 /* simple helper to search for an existing data extent at a given offset */ 75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 76 { 77 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 78 int ret; 79 struct btrfs_key key; 80 struct btrfs_path *path; 81 82 path = btrfs_alloc_path(); 83 if (!path) 84 return -ENOMEM; 85 86 key.objectid = start; 87 key.offset = len; 88 key.type = BTRFS_EXTENT_ITEM_KEY; 89 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 90 btrfs_free_path(path); 91 return ret; 92 } 93 94 /* 95 * helper function to lookup reference count and flags of a tree block. 96 * 97 * the head node for delayed ref is used to store the sum of all the 98 * reference count modifications queued up in the rbtree. the head 99 * node may also store the extent flags to set. This way you can check 100 * to see what the reference count and extent flags would be if all of 101 * the delayed refs are not processed. 102 */ 103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 104 struct btrfs_fs_info *fs_info, u64 bytenr, 105 u64 offset, int metadata, u64 *refs, u64 *flags, 106 u64 *owning_root) 107 { 108 struct btrfs_root *extent_root; 109 struct btrfs_delayed_ref_head *head; 110 struct btrfs_delayed_ref_root *delayed_refs; 111 struct btrfs_path *path; 112 struct btrfs_extent_item *ei; 113 struct extent_buffer *leaf; 114 struct btrfs_key key; 115 u32 item_size; 116 u64 num_refs; 117 u64 extent_flags; 118 u64 owner = 0; 119 int ret; 120 121 /* 122 * If we don't have skinny metadata, don't bother doing anything 123 * different 124 */ 125 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 126 offset = fs_info->nodesize; 127 metadata = 0; 128 } 129 130 path = btrfs_alloc_path(); 131 if (!path) 132 return -ENOMEM; 133 134 if (!trans) { 135 path->skip_locking = 1; 136 path->search_commit_root = 1; 137 } 138 139 search_again: 140 key.objectid = bytenr; 141 key.offset = offset; 142 if (metadata) 143 key.type = BTRFS_METADATA_ITEM_KEY; 144 else 145 key.type = BTRFS_EXTENT_ITEM_KEY; 146 147 extent_root = btrfs_extent_root(fs_info, bytenr); 148 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 149 if (ret < 0) 150 goto out_free; 151 152 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 153 if (path->slots[0]) { 154 path->slots[0]--; 155 btrfs_item_key_to_cpu(path->nodes[0], &key, 156 path->slots[0]); 157 if (key.objectid == bytenr && 158 key.type == BTRFS_EXTENT_ITEM_KEY && 159 key.offset == fs_info->nodesize) 160 ret = 0; 161 } 162 } 163 164 if (ret == 0) { 165 leaf = path->nodes[0]; 166 item_size = btrfs_item_size(leaf, path->slots[0]); 167 if (item_size >= sizeof(*ei)) { 168 ei = btrfs_item_ptr(leaf, path->slots[0], 169 struct btrfs_extent_item); 170 num_refs = btrfs_extent_refs(leaf, ei); 171 extent_flags = btrfs_extent_flags(leaf, ei); 172 owner = btrfs_get_extent_owner_root(fs_info, leaf, 173 path->slots[0]); 174 } else { 175 ret = -EUCLEAN; 176 btrfs_err(fs_info, 177 "unexpected extent item size, has %u expect >= %zu", 178 item_size, sizeof(*ei)); 179 if (trans) 180 btrfs_abort_transaction(trans, ret); 181 else 182 btrfs_handle_fs_error(fs_info, ret, NULL); 183 184 goto out_free; 185 } 186 187 BUG_ON(num_refs == 0); 188 } else { 189 num_refs = 0; 190 extent_flags = 0; 191 ret = 0; 192 } 193 194 if (!trans) 195 goto out; 196 197 delayed_refs = &trans->transaction->delayed_refs; 198 spin_lock(&delayed_refs->lock); 199 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 200 if (head) { 201 if (!mutex_trylock(&head->mutex)) { 202 refcount_inc(&head->refs); 203 spin_unlock(&delayed_refs->lock); 204 205 btrfs_release_path(path); 206 207 /* 208 * Mutex was contended, block until it's released and try 209 * again 210 */ 211 mutex_lock(&head->mutex); 212 mutex_unlock(&head->mutex); 213 btrfs_put_delayed_ref_head(head); 214 goto search_again; 215 } 216 spin_lock(&head->lock); 217 if (head->extent_op && head->extent_op->update_flags) 218 extent_flags |= head->extent_op->flags_to_set; 219 else 220 BUG_ON(num_refs == 0); 221 222 num_refs += head->ref_mod; 223 spin_unlock(&head->lock); 224 mutex_unlock(&head->mutex); 225 } 226 spin_unlock(&delayed_refs->lock); 227 out: 228 WARN_ON(num_refs == 0); 229 if (refs) 230 *refs = num_refs; 231 if (flags) 232 *flags = extent_flags; 233 if (owning_root) 234 *owning_root = owner; 235 out_free: 236 btrfs_free_path(path); 237 return ret; 238 } 239 240 /* 241 * Back reference rules. Back refs have three main goals: 242 * 243 * 1) differentiate between all holders of references to an extent so that 244 * when a reference is dropped we can make sure it was a valid reference 245 * before freeing the extent. 246 * 247 * 2) Provide enough information to quickly find the holders of an extent 248 * if we notice a given block is corrupted or bad. 249 * 250 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 251 * maintenance. This is actually the same as #2, but with a slightly 252 * different use case. 253 * 254 * There are two kinds of back refs. The implicit back refs is optimized 255 * for pointers in non-shared tree blocks. For a given pointer in a block, 256 * back refs of this kind provide information about the block's owner tree 257 * and the pointer's key. These information allow us to find the block by 258 * b-tree searching. The full back refs is for pointers in tree blocks not 259 * referenced by their owner trees. The location of tree block is recorded 260 * in the back refs. Actually the full back refs is generic, and can be 261 * used in all cases the implicit back refs is used. The major shortcoming 262 * of the full back refs is its overhead. Every time a tree block gets 263 * COWed, we have to update back refs entry for all pointers in it. 264 * 265 * For a newly allocated tree block, we use implicit back refs for 266 * pointers in it. This means most tree related operations only involve 267 * implicit back refs. For a tree block created in old transaction, the 268 * only way to drop a reference to it is COW it. So we can detect the 269 * event that tree block loses its owner tree's reference and do the 270 * back refs conversion. 271 * 272 * When a tree block is COWed through a tree, there are four cases: 273 * 274 * The reference count of the block is one and the tree is the block's 275 * owner tree. Nothing to do in this case. 276 * 277 * The reference count of the block is one and the tree is not the 278 * block's owner tree. In this case, full back refs is used for pointers 279 * in the block. Remove these full back refs, add implicit back refs for 280 * every pointers in the new block. 281 * 282 * The reference count of the block is greater than one and the tree is 283 * the block's owner tree. In this case, implicit back refs is used for 284 * pointers in the block. Add full back refs for every pointers in the 285 * block, increase lower level extents' reference counts. The original 286 * implicit back refs are entailed to the new block. 287 * 288 * The reference count of the block is greater than one and the tree is 289 * not the block's owner tree. Add implicit back refs for every pointer in 290 * the new block, increase lower level extents' reference count. 291 * 292 * Back Reference Key composing: 293 * 294 * The key objectid corresponds to the first byte in the extent, 295 * The key type is used to differentiate between types of back refs. 296 * There are different meanings of the key offset for different types 297 * of back refs. 298 * 299 * File extents can be referenced by: 300 * 301 * - multiple snapshots, subvolumes, or different generations in one subvol 302 * - different files inside a single subvolume 303 * - different offsets inside a file (bookend extents in file.c) 304 * 305 * The extent ref structure for the implicit back refs has fields for: 306 * 307 * - Objectid of the subvolume root 308 * - objectid of the file holding the reference 309 * - original offset in the file 310 * - how many bookend extents 311 * 312 * The key offset for the implicit back refs is hash of the first 313 * three fields. 314 * 315 * The extent ref structure for the full back refs has field for: 316 * 317 * - number of pointers in the tree leaf 318 * 319 * The key offset for the implicit back refs is the first byte of 320 * the tree leaf 321 * 322 * When a file extent is allocated, The implicit back refs is used. 323 * the fields are filled in: 324 * 325 * (root_key.objectid, inode objectid, offset in file, 1) 326 * 327 * When a file extent is removed file truncation, we find the 328 * corresponding implicit back refs and check the following fields: 329 * 330 * (btrfs_header_owner(leaf), inode objectid, offset in file) 331 * 332 * Btree extents can be referenced by: 333 * 334 * - Different subvolumes 335 * 336 * Both the implicit back refs and the full back refs for tree blocks 337 * only consist of key. The key offset for the implicit back refs is 338 * objectid of block's owner tree. The key offset for the full back refs 339 * is the first byte of parent block. 340 * 341 * When implicit back refs is used, information about the lowest key and 342 * level of the tree block are required. These information are stored in 343 * tree block info structure. 344 */ 345 346 /* 347 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 348 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 349 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 350 */ 351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 352 struct btrfs_extent_inline_ref *iref, 353 enum btrfs_inline_ref_type is_data) 354 { 355 struct btrfs_fs_info *fs_info = eb->fs_info; 356 int type = btrfs_extent_inline_ref_type(eb, iref); 357 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 358 359 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 360 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 361 return type; 362 } 363 364 if (type == BTRFS_TREE_BLOCK_REF_KEY || 365 type == BTRFS_SHARED_BLOCK_REF_KEY || 366 type == BTRFS_SHARED_DATA_REF_KEY || 367 type == BTRFS_EXTENT_DATA_REF_KEY) { 368 if (is_data == BTRFS_REF_TYPE_BLOCK) { 369 if (type == BTRFS_TREE_BLOCK_REF_KEY) 370 return type; 371 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 372 ASSERT(fs_info); 373 /* 374 * Every shared one has parent tree block, 375 * which must be aligned to sector size. 376 */ 377 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 378 return type; 379 } 380 } else if (is_data == BTRFS_REF_TYPE_DATA) { 381 if (type == BTRFS_EXTENT_DATA_REF_KEY) 382 return type; 383 if (type == BTRFS_SHARED_DATA_REF_KEY) { 384 ASSERT(fs_info); 385 /* 386 * Every shared one has parent tree block, 387 * which must be aligned to sector size. 388 */ 389 if (offset && 390 IS_ALIGNED(offset, fs_info->sectorsize)) 391 return type; 392 } 393 } else { 394 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 395 return type; 396 } 397 } 398 399 WARN_ON(1); 400 btrfs_print_leaf(eb); 401 btrfs_err(fs_info, 402 "eb %llu iref 0x%lx invalid extent inline ref type %d", 403 eb->start, (unsigned long)iref, type); 404 405 return BTRFS_REF_TYPE_INVALID; 406 } 407 408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 409 { 410 u32 high_crc = ~(u32)0; 411 u32 low_crc = ~(u32)0; 412 __le64 lenum; 413 414 lenum = cpu_to_le64(root_objectid); 415 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 416 lenum = cpu_to_le64(owner); 417 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 418 lenum = cpu_to_le64(offset); 419 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 420 421 return ((u64)high_crc << 31) ^ (u64)low_crc; 422 } 423 424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 425 struct btrfs_extent_data_ref *ref) 426 { 427 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 428 btrfs_extent_data_ref_objectid(leaf, ref), 429 btrfs_extent_data_ref_offset(leaf, ref)); 430 } 431 432 static int match_extent_data_ref(struct extent_buffer *leaf, 433 struct btrfs_extent_data_ref *ref, 434 u64 root_objectid, u64 owner, u64 offset) 435 { 436 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 437 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 438 btrfs_extent_data_ref_offset(leaf, ref) != offset) 439 return 0; 440 return 1; 441 } 442 443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 444 struct btrfs_path *path, 445 u64 bytenr, u64 parent, 446 u64 root_objectid, 447 u64 owner, u64 offset) 448 { 449 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 450 struct btrfs_key key; 451 struct btrfs_extent_data_ref *ref; 452 struct extent_buffer *leaf; 453 u32 nritems; 454 int ret; 455 int recow; 456 int err = -ENOENT; 457 458 key.objectid = bytenr; 459 if (parent) { 460 key.type = BTRFS_SHARED_DATA_REF_KEY; 461 key.offset = parent; 462 } else { 463 key.type = BTRFS_EXTENT_DATA_REF_KEY; 464 key.offset = hash_extent_data_ref(root_objectid, 465 owner, offset); 466 } 467 again: 468 recow = 0; 469 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 470 if (ret < 0) { 471 err = ret; 472 goto fail; 473 } 474 475 if (parent) { 476 if (!ret) 477 return 0; 478 goto fail; 479 } 480 481 leaf = path->nodes[0]; 482 nritems = btrfs_header_nritems(leaf); 483 while (1) { 484 if (path->slots[0] >= nritems) { 485 ret = btrfs_next_leaf(root, path); 486 if (ret < 0) 487 err = ret; 488 if (ret) 489 goto fail; 490 491 leaf = path->nodes[0]; 492 nritems = btrfs_header_nritems(leaf); 493 recow = 1; 494 } 495 496 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 497 if (key.objectid != bytenr || 498 key.type != BTRFS_EXTENT_DATA_REF_KEY) 499 goto fail; 500 501 ref = btrfs_item_ptr(leaf, path->slots[0], 502 struct btrfs_extent_data_ref); 503 504 if (match_extent_data_ref(leaf, ref, root_objectid, 505 owner, offset)) { 506 if (recow) { 507 btrfs_release_path(path); 508 goto again; 509 } 510 err = 0; 511 break; 512 } 513 path->slots[0]++; 514 } 515 fail: 516 return err; 517 } 518 519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 520 struct btrfs_path *path, 521 u64 bytenr, u64 parent, 522 u64 root_objectid, u64 owner, 523 u64 offset, int refs_to_add) 524 { 525 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 526 struct btrfs_key key; 527 struct extent_buffer *leaf; 528 u32 size; 529 u32 num_refs; 530 int ret; 531 532 key.objectid = bytenr; 533 if (parent) { 534 key.type = BTRFS_SHARED_DATA_REF_KEY; 535 key.offset = parent; 536 size = sizeof(struct btrfs_shared_data_ref); 537 } else { 538 key.type = BTRFS_EXTENT_DATA_REF_KEY; 539 key.offset = hash_extent_data_ref(root_objectid, 540 owner, offset); 541 size = sizeof(struct btrfs_extent_data_ref); 542 } 543 544 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 545 if (ret && ret != -EEXIST) 546 goto fail; 547 548 leaf = path->nodes[0]; 549 if (parent) { 550 struct btrfs_shared_data_ref *ref; 551 ref = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_shared_data_ref); 553 if (ret == 0) { 554 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 555 } else { 556 num_refs = btrfs_shared_data_ref_count(leaf, ref); 557 num_refs += refs_to_add; 558 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 559 } 560 } else { 561 struct btrfs_extent_data_ref *ref; 562 while (ret == -EEXIST) { 563 ref = btrfs_item_ptr(leaf, path->slots[0], 564 struct btrfs_extent_data_ref); 565 if (match_extent_data_ref(leaf, ref, root_objectid, 566 owner, offset)) 567 break; 568 btrfs_release_path(path); 569 key.offset++; 570 ret = btrfs_insert_empty_item(trans, root, path, &key, 571 size); 572 if (ret && ret != -EEXIST) 573 goto fail; 574 575 leaf = path->nodes[0]; 576 } 577 ref = btrfs_item_ptr(leaf, path->slots[0], 578 struct btrfs_extent_data_ref); 579 if (ret == 0) { 580 btrfs_set_extent_data_ref_root(leaf, ref, 581 root_objectid); 582 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 583 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 584 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 585 } else { 586 num_refs = btrfs_extent_data_ref_count(leaf, ref); 587 num_refs += refs_to_add; 588 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 589 } 590 } 591 btrfs_mark_buffer_dirty(trans, leaf); 592 ret = 0; 593 fail: 594 btrfs_release_path(path); 595 return ret; 596 } 597 598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_path *path, 601 int refs_to_drop) 602 { 603 struct btrfs_key key; 604 struct btrfs_extent_data_ref *ref1 = NULL; 605 struct btrfs_shared_data_ref *ref2 = NULL; 606 struct extent_buffer *leaf; 607 u32 num_refs = 0; 608 int ret = 0; 609 610 leaf = path->nodes[0]; 611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 612 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 614 ref1 = btrfs_item_ptr(leaf, path->slots[0], 615 struct btrfs_extent_data_ref); 616 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 617 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 618 ref2 = btrfs_item_ptr(leaf, path->slots[0], 619 struct btrfs_shared_data_ref); 620 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 621 } else { 622 btrfs_err(trans->fs_info, 623 "unrecognized backref key (%llu %u %llu)", 624 key.objectid, key.type, key.offset); 625 btrfs_abort_transaction(trans, -EUCLEAN); 626 return -EUCLEAN; 627 } 628 629 BUG_ON(num_refs < refs_to_drop); 630 num_refs -= refs_to_drop; 631 632 if (num_refs == 0) { 633 ret = btrfs_del_item(trans, root, path); 634 } else { 635 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 636 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 637 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 638 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 639 btrfs_mark_buffer_dirty(trans, leaf); 640 } 641 return ret; 642 } 643 644 static noinline u32 extent_data_ref_count(struct btrfs_path *path, 645 struct btrfs_extent_inline_ref *iref) 646 { 647 struct btrfs_key key; 648 struct extent_buffer *leaf; 649 struct btrfs_extent_data_ref *ref1; 650 struct btrfs_shared_data_ref *ref2; 651 u32 num_refs = 0; 652 int type; 653 654 leaf = path->nodes[0]; 655 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 656 657 if (iref) { 658 /* 659 * If type is invalid, we should have bailed out earlier than 660 * this call. 661 */ 662 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 663 ASSERT(type != BTRFS_REF_TYPE_INVALID); 664 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 665 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 666 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 667 } else { 668 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 669 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 670 } 671 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 672 ref1 = btrfs_item_ptr(leaf, path->slots[0], 673 struct btrfs_extent_data_ref); 674 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 675 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 676 ref2 = btrfs_item_ptr(leaf, path->slots[0], 677 struct btrfs_shared_data_ref); 678 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 679 } else { 680 WARN_ON(1); 681 } 682 return num_refs; 683 } 684 685 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 686 struct btrfs_path *path, 687 u64 bytenr, u64 parent, 688 u64 root_objectid) 689 { 690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 691 struct btrfs_key key; 692 int ret; 693 694 key.objectid = bytenr; 695 if (parent) { 696 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 697 key.offset = parent; 698 } else { 699 key.type = BTRFS_TREE_BLOCK_REF_KEY; 700 key.offset = root_objectid; 701 } 702 703 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 704 if (ret > 0) 705 ret = -ENOENT; 706 return ret; 707 } 708 709 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 710 struct btrfs_path *path, 711 u64 bytenr, u64 parent, 712 u64 root_objectid) 713 { 714 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 715 struct btrfs_key key; 716 int ret; 717 718 key.objectid = bytenr; 719 if (parent) { 720 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 721 key.offset = parent; 722 } else { 723 key.type = BTRFS_TREE_BLOCK_REF_KEY; 724 key.offset = root_objectid; 725 } 726 727 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 728 btrfs_release_path(path); 729 return ret; 730 } 731 732 static inline int extent_ref_type(u64 parent, u64 owner) 733 { 734 int type; 735 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 736 if (parent > 0) 737 type = BTRFS_SHARED_BLOCK_REF_KEY; 738 else 739 type = BTRFS_TREE_BLOCK_REF_KEY; 740 } else { 741 if (parent > 0) 742 type = BTRFS_SHARED_DATA_REF_KEY; 743 else 744 type = BTRFS_EXTENT_DATA_REF_KEY; 745 } 746 return type; 747 } 748 749 static int find_next_key(struct btrfs_path *path, int level, 750 struct btrfs_key *key) 751 752 { 753 for (; level < BTRFS_MAX_LEVEL; level++) { 754 if (!path->nodes[level]) 755 break; 756 if (path->slots[level] + 1 >= 757 btrfs_header_nritems(path->nodes[level])) 758 continue; 759 if (level == 0) 760 btrfs_item_key_to_cpu(path->nodes[level], key, 761 path->slots[level] + 1); 762 else 763 btrfs_node_key_to_cpu(path->nodes[level], key, 764 path->slots[level] + 1); 765 return 0; 766 } 767 return 1; 768 } 769 770 /* 771 * look for inline back ref. if back ref is found, *ref_ret is set 772 * to the address of inline back ref, and 0 is returned. 773 * 774 * if back ref isn't found, *ref_ret is set to the address where it 775 * should be inserted, and -ENOENT is returned. 776 * 777 * if insert is true and there are too many inline back refs, the path 778 * points to the extent item, and -EAGAIN is returned. 779 * 780 * NOTE: inline back refs are ordered in the same way that back ref 781 * items in the tree are ordered. 782 */ 783 static noinline_for_stack 784 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 785 struct btrfs_path *path, 786 struct btrfs_extent_inline_ref **ref_ret, 787 u64 bytenr, u64 num_bytes, 788 u64 parent, u64 root_objectid, 789 u64 owner, u64 offset, int insert) 790 { 791 struct btrfs_fs_info *fs_info = trans->fs_info; 792 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 793 struct btrfs_key key; 794 struct extent_buffer *leaf; 795 struct btrfs_extent_item *ei; 796 struct btrfs_extent_inline_ref *iref; 797 u64 flags; 798 u64 item_size; 799 unsigned long ptr; 800 unsigned long end; 801 int extra_size; 802 int type; 803 int want; 804 int ret; 805 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 806 int needed; 807 808 key.objectid = bytenr; 809 key.type = BTRFS_EXTENT_ITEM_KEY; 810 key.offset = num_bytes; 811 812 want = extent_ref_type(parent, owner); 813 if (insert) { 814 extra_size = btrfs_extent_inline_ref_size(want); 815 path->search_for_extension = 1; 816 path->keep_locks = 1; 817 } else 818 extra_size = -1; 819 820 /* 821 * Owner is our level, so we can just add one to get the level for the 822 * block we are interested in. 823 */ 824 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 825 key.type = BTRFS_METADATA_ITEM_KEY; 826 key.offset = owner; 827 } 828 829 again: 830 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 831 if (ret < 0) 832 goto out; 833 834 /* 835 * We may be a newly converted file system which still has the old fat 836 * extent entries for metadata, so try and see if we have one of those. 837 */ 838 if (ret > 0 && skinny_metadata) { 839 skinny_metadata = false; 840 if (path->slots[0]) { 841 path->slots[0]--; 842 btrfs_item_key_to_cpu(path->nodes[0], &key, 843 path->slots[0]); 844 if (key.objectid == bytenr && 845 key.type == BTRFS_EXTENT_ITEM_KEY && 846 key.offset == num_bytes) 847 ret = 0; 848 } 849 if (ret) { 850 key.objectid = bytenr; 851 key.type = BTRFS_EXTENT_ITEM_KEY; 852 key.offset = num_bytes; 853 btrfs_release_path(path); 854 goto again; 855 } 856 } 857 858 if (ret && !insert) { 859 ret = -ENOENT; 860 goto out; 861 } else if (WARN_ON(ret)) { 862 btrfs_print_leaf(path->nodes[0]); 863 btrfs_err(fs_info, 864 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 865 bytenr, num_bytes, parent, root_objectid, owner, 866 offset); 867 ret = -EUCLEAN; 868 goto out; 869 } 870 871 leaf = path->nodes[0]; 872 item_size = btrfs_item_size(leaf, path->slots[0]); 873 if (unlikely(item_size < sizeof(*ei))) { 874 ret = -EUCLEAN; 875 btrfs_err(fs_info, 876 "unexpected extent item size, has %llu expect >= %zu", 877 item_size, sizeof(*ei)); 878 btrfs_abort_transaction(trans, ret); 879 goto out; 880 } 881 882 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 883 flags = btrfs_extent_flags(leaf, ei); 884 885 ptr = (unsigned long)(ei + 1); 886 end = (unsigned long)ei + item_size; 887 888 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 889 ptr += sizeof(struct btrfs_tree_block_info); 890 BUG_ON(ptr > end); 891 } 892 893 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 894 needed = BTRFS_REF_TYPE_DATA; 895 else 896 needed = BTRFS_REF_TYPE_BLOCK; 897 898 ret = -ENOENT; 899 while (ptr < end) { 900 iref = (struct btrfs_extent_inline_ref *)ptr; 901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 902 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 903 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 904 ptr += btrfs_extent_inline_ref_size(type); 905 continue; 906 } 907 if (type == BTRFS_REF_TYPE_INVALID) { 908 ret = -EUCLEAN; 909 goto out; 910 } 911 912 if (want < type) 913 break; 914 if (want > type) { 915 ptr += btrfs_extent_inline_ref_size(type); 916 continue; 917 } 918 919 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 920 struct btrfs_extent_data_ref *dref; 921 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 922 if (match_extent_data_ref(leaf, dref, root_objectid, 923 owner, offset)) { 924 ret = 0; 925 break; 926 } 927 if (hash_extent_data_ref_item(leaf, dref) < 928 hash_extent_data_ref(root_objectid, owner, offset)) 929 break; 930 } else { 931 u64 ref_offset; 932 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 933 if (parent > 0) { 934 if (parent == ref_offset) { 935 ret = 0; 936 break; 937 } 938 if (ref_offset < parent) 939 break; 940 } else { 941 if (root_objectid == ref_offset) { 942 ret = 0; 943 break; 944 } 945 if (ref_offset < root_objectid) 946 break; 947 } 948 } 949 ptr += btrfs_extent_inline_ref_size(type); 950 } 951 952 if (unlikely(ptr > end)) { 953 ret = -EUCLEAN; 954 btrfs_print_leaf(path->nodes[0]); 955 btrfs_crit(fs_info, 956 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 957 path->slots[0], root_objectid, owner, offset, parent); 958 goto out; 959 } 960 961 if (ret == -ENOENT && insert) { 962 if (item_size + extra_size >= 963 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 964 ret = -EAGAIN; 965 goto out; 966 } 967 /* 968 * To add new inline back ref, we have to make sure 969 * there is no corresponding back ref item. 970 * For simplicity, we just do not add new inline back 971 * ref if there is any kind of item for this block 972 */ 973 if (find_next_key(path, 0, &key) == 0 && 974 key.objectid == bytenr && 975 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 976 ret = -EAGAIN; 977 goto out; 978 } 979 } 980 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 981 out: 982 if (insert) { 983 path->keep_locks = 0; 984 path->search_for_extension = 0; 985 btrfs_unlock_up_safe(path, 1); 986 } 987 return ret; 988 } 989 990 /* 991 * helper to add new inline back ref 992 */ 993 static noinline_for_stack 994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 995 struct btrfs_path *path, 996 struct btrfs_extent_inline_ref *iref, 997 u64 parent, u64 root_objectid, 998 u64 owner, u64 offset, int refs_to_add, 999 struct btrfs_delayed_extent_op *extent_op) 1000 { 1001 struct extent_buffer *leaf; 1002 struct btrfs_extent_item *ei; 1003 unsigned long ptr; 1004 unsigned long end; 1005 unsigned long item_offset; 1006 u64 refs; 1007 int size; 1008 int type; 1009 1010 leaf = path->nodes[0]; 1011 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1012 item_offset = (unsigned long)iref - (unsigned long)ei; 1013 1014 type = extent_ref_type(parent, owner); 1015 size = btrfs_extent_inline_ref_size(type); 1016 1017 btrfs_extend_item(trans, path, size); 1018 1019 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1020 refs = btrfs_extent_refs(leaf, ei); 1021 refs += refs_to_add; 1022 btrfs_set_extent_refs(leaf, ei, refs); 1023 if (extent_op) 1024 __run_delayed_extent_op(extent_op, leaf, ei); 1025 1026 ptr = (unsigned long)ei + item_offset; 1027 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1028 if (ptr < end - size) 1029 memmove_extent_buffer(leaf, ptr + size, ptr, 1030 end - size - ptr); 1031 1032 iref = (struct btrfs_extent_inline_ref *)ptr; 1033 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1034 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1035 struct btrfs_extent_data_ref *dref; 1036 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1037 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1038 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1039 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1040 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1041 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1042 struct btrfs_shared_data_ref *sref; 1043 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1044 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1046 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1047 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1048 } else { 1049 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1050 } 1051 btrfs_mark_buffer_dirty(trans, leaf); 1052 } 1053 1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1055 struct btrfs_path *path, 1056 struct btrfs_extent_inline_ref **ref_ret, 1057 u64 bytenr, u64 num_bytes, u64 parent, 1058 u64 root_objectid, u64 owner, u64 offset) 1059 { 1060 int ret; 1061 1062 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1063 num_bytes, parent, root_objectid, 1064 owner, offset, 0); 1065 if (ret != -ENOENT) 1066 return ret; 1067 1068 btrfs_release_path(path); 1069 *ref_ret = NULL; 1070 1071 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1072 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1073 root_objectid); 1074 } else { 1075 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1076 root_objectid, owner, offset); 1077 } 1078 return ret; 1079 } 1080 1081 /* 1082 * helper to update/remove inline back ref 1083 */ 1084 static noinline_for_stack int update_inline_extent_backref( 1085 struct btrfs_trans_handle *trans, 1086 struct btrfs_path *path, 1087 struct btrfs_extent_inline_ref *iref, 1088 int refs_to_mod, 1089 struct btrfs_delayed_extent_op *extent_op) 1090 { 1091 struct extent_buffer *leaf = path->nodes[0]; 1092 struct btrfs_fs_info *fs_info = leaf->fs_info; 1093 struct btrfs_extent_item *ei; 1094 struct btrfs_extent_data_ref *dref = NULL; 1095 struct btrfs_shared_data_ref *sref = NULL; 1096 unsigned long ptr; 1097 unsigned long end; 1098 u32 item_size; 1099 int size; 1100 int type; 1101 u64 refs; 1102 1103 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1104 refs = btrfs_extent_refs(leaf, ei); 1105 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1106 struct btrfs_key key; 1107 u32 extent_size; 1108 1109 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1110 if (key.type == BTRFS_METADATA_ITEM_KEY) 1111 extent_size = fs_info->nodesize; 1112 else 1113 extent_size = key.offset; 1114 btrfs_print_leaf(leaf); 1115 btrfs_err(fs_info, 1116 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1117 key.objectid, extent_size, refs_to_mod, refs); 1118 return -EUCLEAN; 1119 } 1120 refs += refs_to_mod; 1121 btrfs_set_extent_refs(leaf, ei, refs); 1122 if (extent_op) 1123 __run_delayed_extent_op(extent_op, leaf, ei); 1124 1125 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1126 /* 1127 * Function btrfs_get_extent_inline_ref_type() has already printed 1128 * error messages. 1129 */ 1130 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1131 return -EUCLEAN; 1132 1133 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1134 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1135 refs = btrfs_extent_data_ref_count(leaf, dref); 1136 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1137 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1138 refs = btrfs_shared_data_ref_count(leaf, sref); 1139 } else { 1140 refs = 1; 1141 /* 1142 * For tree blocks we can only drop one ref for it, and tree 1143 * blocks should not have refs > 1. 1144 * 1145 * Furthermore if we're inserting a new inline backref, we 1146 * won't reach this path either. That would be 1147 * setup_inline_extent_backref(). 1148 */ 1149 if (unlikely(refs_to_mod != -1)) { 1150 struct btrfs_key key; 1151 1152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1153 1154 btrfs_print_leaf(leaf); 1155 btrfs_err(fs_info, 1156 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1157 key.objectid, refs_to_mod); 1158 return -EUCLEAN; 1159 } 1160 } 1161 1162 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1163 struct btrfs_key key; 1164 u32 extent_size; 1165 1166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1167 if (key.type == BTRFS_METADATA_ITEM_KEY) 1168 extent_size = fs_info->nodesize; 1169 else 1170 extent_size = key.offset; 1171 btrfs_print_leaf(leaf); 1172 btrfs_err(fs_info, 1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1174 (unsigned long)iref, key.objectid, extent_size, 1175 refs_to_mod, refs); 1176 return -EUCLEAN; 1177 } 1178 refs += refs_to_mod; 1179 1180 if (refs > 0) { 1181 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1182 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1183 else 1184 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1185 } else { 1186 size = btrfs_extent_inline_ref_size(type); 1187 item_size = btrfs_item_size(leaf, path->slots[0]); 1188 ptr = (unsigned long)iref; 1189 end = (unsigned long)ei + item_size; 1190 if (ptr + size < end) 1191 memmove_extent_buffer(leaf, ptr, ptr + size, 1192 end - ptr - size); 1193 item_size -= size; 1194 btrfs_truncate_item(trans, path, item_size, 1); 1195 } 1196 btrfs_mark_buffer_dirty(trans, leaf); 1197 return 0; 1198 } 1199 1200 static noinline_for_stack 1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1202 struct btrfs_path *path, 1203 u64 bytenr, u64 num_bytes, u64 parent, 1204 u64 root_objectid, u64 owner, 1205 u64 offset, int refs_to_add, 1206 struct btrfs_delayed_extent_op *extent_op) 1207 { 1208 struct btrfs_extent_inline_ref *iref; 1209 int ret; 1210 1211 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1212 num_bytes, parent, root_objectid, 1213 owner, offset, 1); 1214 if (ret == 0) { 1215 /* 1216 * We're adding refs to a tree block we already own, this 1217 * should not happen at all. 1218 */ 1219 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1220 btrfs_print_leaf(path->nodes[0]); 1221 btrfs_crit(trans->fs_info, 1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1223 bytenr, num_bytes, root_objectid, path->slots[0]); 1224 return -EUCLEAN; 1225 } 1226 ret = update_inline_extent_backref(trans, path, iref, 1227 refs_to_add, extent_op); 1228 } else if (ret == -ENOENT) { 1229 setup_inline_extent_backref(trans, path, iref, parent, 1230 root_objectid, owner, offset, 1231 refs_to_add, extent_op); 1232 ret = 0; 1233 } 1234 return ret; 1235 } 1236 1237 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1238 struct btrfs_root *root, 1239 struct btrfs_path *path, 1240 struct btrfs_extent_inline_ref *iref, 1241 int refs_to_drop, int is_data) 1242 { 1243 int ret = 0; 1244 1245 BUG_ON(!is_data && refs_to_drop != 1); 1246 if (iref) 1247 ret = update_inline_extent_backref(trans, path, iref, 1248 -refs_to_drop, NULL); 1249 else if (is_data) 1250 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1251 else 1252 ret = btrfs_del_item(trans, root, path); 1253 return ret; 1254 } 1255 1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1257 u64 *discarded_bytes) 1258 { 1259 int j, ret = 0; 1260 u64 bytes_left, end; 1261 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT); 1262 1263 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1264 if (start != aligned_start) { 1265 len -= aligned_start - start; 1266 len = round_down(len, 1 << SECTOR_SHIFT); 1267 start = aligned_start; 1268 } 1269 1270 *discarded_bytes = 0; 1271 1272 if (!len) 1273 return 0; 1274 1275 end = start + len; 1276 bytes_left = len; 1277 1278 /* Skip any superblocks on this device. */ 1279 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1280 u64 sb_start = btrfs_sb_offset(j); 1281 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1282 u64 size = sb_start - start; 1283 1284 if (!in_range(sb_start, start, bytes_left) && 1285 !in_range(sb_end, start, bytes_left) && 1286 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1287 continue; 1288 1289 /* 1290 * Superblock spans beginning of range. Adjust start and 1291 * try again. 1292 */ 1293 if (sb_start <= start) { 1294 start += sb_end - start; 1295 if (start > end) { 1296 bytes_left = 0; 1297 break; 1298 } 1299 bytes_left = end - start; 1300 continue; 1301 } 1302 1303 if (size) { 1304 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1305 size >> SECTOR_SHIFT, 1306 GFP_NOFS); 1307 if (!ret) 1308 *discarded_bytes += size; 1309 else if (ret != -EOPNOTSUPP) 1310 return ret; 1311 } 1312 1313 start = sb_end; 1314 if (start > end) { 1315 bytes_left = 0; 1316 break; 1317 } 1318 bytes_left = end - start; 1319 } 1320 1321 if (bytes_left) { 1322 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1323 bytes_left >> SECTOR_SHIFT, 1324 GFP_NOFS); 1325 if (!ret) 1326 *discarded_bytes += bytes_left; 1327 } 1328 return ret; 1329 } 1330 1331 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1332 { 1333 struct btrfs_device *dev = stripe->dev; 1334 struct btrfs_fs_info *fs_info = dev->fs_info; 1335 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1336 u64 phys = stripe->physical; 1337 u64 len = stripe->length; 1338 u64 discarded = 0; 1339 int ret = 0; 1340 1341 /* Zone reset on a zoned filesystem */ 1342 if (btrfs_can_zone_reset(dev, phys, len)) { 1343 u64 src_disc; 1344 1345 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1346 if (ret) 1347 goto out; 1348 1349 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1350 dev != dev_replace->srcdev) 1351 goto out; 1352 1353 src_disc = discarded; 1354 1355 /* Send to replace target as well */ 1356 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1357 &discarded); 1358 discarded += src_disc; 1359 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1360 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1361 } else { 1362 ret = 0; 1363 *bytes = 0; 1364 } 1365 1366 out: 1367 *bytes = discarded; 1368 return ret; 1369 } 1370 1371 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1372 u64 num_bytes, u64 *actual_bytes) 1373 { 1374 int ret = 0; 1375 u64 discarded_bytes = 0; 1376 u64 end = bytenr + num_bytes; 1377 u64 cur = bytenr; 1378 1379 /* 1380 * Avoid races with device replace and make sure the devices in the 1381 * stripes don't go away while we are discarding. 1382 */ 1383 btrfs_bio_counter_inc_blocked(fs_info); 1384 while (cur < end) { 1385 struct btrfs_discard_stripe *stripes; 1386 unsigned int num_stripes; 1387 int i; 1388 1389 num_bytes = end - cur; 1390 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1391 if (IS_ERR(stripes)) { 1392 ret = PTR_ERR(stripes); 1393 if (ret == -EOPNOTSUPP) 1394 ret = 0; 1395 break; 1396 } 1397 1398 for (i = 0; i < num_stripes; i++) { 1399 struct btrfs_discard_stripe *stripe = stripes + i; 1400 u64 bytes; 1401 1402 if (!stripe->dev->bdev) { 1403 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1404 continue; 1405 } 1406 1407 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1408 &stripe->dev->dev_state)) 1409 continue; 1410 1411 ret = do_discard_extent(stripe, &bytes); 1412 if (ret) { 1413 /* 1414 * Keep going if discard is not supported by the 1415 * device. 1416 */ 1417 if (ret != -EOPNOTSUPP) 1418 break; 1419 ret = 0; 1420 } else { 1421 discarded_bytes += bytes; 1422 } 1423 } 1424 kfree(stripes); 1425 if (ret) 1426 break; 1427 cur += num_bytes; 1428 } 1429 btrfs_bio_counter_dec(fs_info); 1430 if (actual_bytes) 1431 *actual_bytes = discarded_bytes; 1432 return ret; 1433 } 1434 1435 /* Can return -ENOMEM */ 1436 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1437 struct btrfs_ref *generic_ref) 1438 { 1439 struct btrfs_fs_info *fs_info = trans->fs_info; 1440 int ret; 1441 1442 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1443 generic_ref->action); 1444 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1445 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID); 1446 1447 if (generic_ref->type == BTRFS_REF_METADATA) 1448 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1449 else 1450 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1451 1452 btrfs_ref_tree_mod(fs_info, generic_ref); 1453 1454 return ret; 1455 } 1456 1457 /* 1458 * Insert backreference for a given extent. 1459 * 1460 * The counterpart is in __btrfs_free_extent(), with examples and more details 1461 * how it works. 1462 * 1463 * @trans: Handle of transaction 1464 * 1465 * @node: The delayed ref node used to get the bytenr/length for 1466 * extent whose references are incremented. 1467 * 1468 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ 1469 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical 1470 * bytenr of the parent block. Since new extents are always 1471 * created with indirect references, this will only be the case 1472 * when relocating a shared extent. In that case, root_objectid 1473 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must 1474 * be 0 1475 * 1476 * @root_objectid: The id of the root where this modification has originated, 1477 * this can be either one of the well-known metadata trees or 1478 * the subvolume id which references this extent. 1479 * 1480 * @owner: For data extents it is the inode number of the owning file. 1481 * For metadata extents this parameter holds the level in the 1482 * tree of the extent. 1483 * 1484 * @offset: For metadata extents the offset is ignored and is currently 1485 * always passed as 0. For data extents it is the fileoffset 1486 * this extent belongs to. 1487 * 1488 * @extent_op Pointer to a structure, holding information necessary when 1489 * updating a tree block's flags 1490 * 1491 */ 1492 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1493 struct btrfs_delayed_ref_node *node, 1494 u64 parent, u64 root_objectid, 1495 u64 owner, u64 offset, 1496 struct btrfs_delayed_extent_op *extent_op) 1497 { 1498 struct btrfs_path *path; 1499 struct extent_buffer *leaf; 1500 struct btrfs_extent_item *item; 1501 struct btrfs_key key; 1502 u64 bytenr = node->bytenr; 1503 u64 num_bytes = node->num_bytes; 1504 u64 refs; 1505 int refs_to_add = node->ref_mod; 1506 int ret; 1507 1508 path = btrfs_alloc_path(); 1509 if (!path) 1510 return -ENOMEM; 1511 1512 /* this will setup the path even if it fails to insert the back ref */ 1513 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1514 parent, root_objectid, owner, 1515 offset, refs_to_add, extent_op); 1516 if ((ret < 0 && ret != -EAGAIN) || !ret) 1517 goto out; 1518 1519 /* 1520 * Ok we had -EAGAIN which means we didn't have space to insert and 1521 * inline extent ref, so just update the reference count and add a 1522 * normal backref. 1523 */ 1524 leaf = path->nodes[0]; 1525 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1526 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1527 refs = btrfs_extent_refs(leaf, item); 1528 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1529 if (extent_op) 1530 __run_delayed_extent_op(extent_op, leaf, item); 1531 1532 btrfs_mark_buffer_dirty(trans, leaf); 1533 btrfs_release_path(path); 1534 1535 /* now insert the actual backref */ 1536 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1537 ret = insert_tree_block_ref(trans, path, bytenr, parent, 1538 root_objectid); 1539 else 1540 ret = insert_extent_data_ref(trans, path, bytenr, parent, 1541 root_objectid, owner, offset, 1542 refs_to_add); 1543 1544 if (ret) 1545 btrfs_abort_transaction(trans, ret); 1546 out: 1547 btrfs_free_path(path); 1548 return ret; 1549 } 1550 1551 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1552 struct btrfs_delayed_ref_head *href) 1553 { 1554 u64 root = href->owning_root; 1555 1556 /* 1557 * Don't check must_insert_reserved, as this is called from contexts 1558 * where it has already been unset. 1559 */ 1560 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1561 !href->is_data || !is_fstree(root)) 1562 return; 1563 1564 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1565 BTRFS_QGROUP_RSV_DATA); 1566 } 1567 1568 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1569 struct btrfs_delayed_ref_head *href, 1570 struct btrfs_delayed_ref_node *node, 1571 struct btrfs_delayed_extent_op *extent_op, 1572 bool insert_reserved) 1573 { 1574 int ret = 0; 1575 struct btrfs_delayed_data_ref *ref; 1576 u64 parent = 0; 1577 u64 flags = 0; 1578 1579 ref = btrfs_delayed_node_to_data_ref(node); 1580 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); 1581 1582 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1583 parent = ref->parent; 1584 1585 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1586 struct btrfs_key key; 1587 struct btrfs_squota_delta delta = { 1588 .root = href->owning_root, 1589 .num_bytes = node->num_bytes, 1590 .is_data = true, 1591 .is_inc = true, 1592 .generation = trans->transid, 1593 }; 1594 1595 if (extent_op) 1596 flags |= extent_op->flags_to_set; 1597 1598 key.objectid = node->bytenr; 1599 key.type = BTRFS_EXTENT_ITEM_KEY; 1600 key.offset = node->num_bytes; 1601 1602 ret = alloc_reserved_file_extent(trans, parent, ref->root, 1603 flags, ref->objectid, 1604 ref->offset, &key, 1605 node->ref_mod, href->owning_root); 1606 free_head_ref_squota_rsv(trans->fs_info, href); 1607 if (!ret) 1608 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1609 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1610 ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root, 1611 ref->objectid, ref->offset, 1612 extent_op); 1613 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1614 ret = __btrfs_free_extent(trans, href, node, parent, 1615 ref->root, ref->objectid, 1616 ref->offset, extent_op); 1617 } else { 1618 BUG(); 1619 } 1620 return ret; 1621 } 1622 1623 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1624 struct extent_buffer *leaf, 1625 struct btrfs_extent_item *ei) 1626 { 1627 u64 flags = btrfs_extent_flags(leaf, ei); 1628 if (extent_op->update_flags) { 1629 flags |= extent_op->flags_to_set; 1630 btrfs_set_extent_flags(leaf, ei, flags); 1631 } 1632 1633 if (extent_op->update_key) { 1634 struct btrfs_tree_block_info *bi; 1635 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1636 bi = (struct btrfs_tree_block_info *)(ei + 1); 1637 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1638 } 1639 } 1640 1641 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1642 struct btrfs_delayed_ref_head *head, 1643 struct btrfs_delayed_extent_op *extent_op) 1644 { 1645 struct btrfs_fs_info *fs_info = trans->fs_info; 1646 struct btrfs_root *root; 1647 struct btrfs_key key; 1648 struct btrfs_path *path; 1649 struct btrfs_extent_item *ei; 1650 struct extent_buffer *leaf; 1651 u32 item_size; 1652 int ret; 1653 int metadata = 1; 1654 1655 if (TRANS_ABORTED(trans)) 1656 return 0; 1657 1658 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1659 metadata = 0; 1660 1661 path = btrfs_alloc_path(); 1662 if (!path) 1663 return -ENOMEM; 1664 1665 key.objectid = head->bytenr; 1666 1667 if (metadata) { 1668 key.type = BTRFS_METADATA_ITEM_KEY; 1669 key.offset = extent_op->level; 1670 } else { 1671 key.type = BTRFS_EXTENT_ITEM_KEY; 1672 key.offset = head->num_bytes; 1673 } 1674 1675 root = btrfs_extent_root(fs_info, key.objectid); 1676 again: 1677 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1678 if (ret < 0) { 1679 goto out; 1680 } else if (ret > 0) { 1681 if (metadata) { 1682 if (path->slots[0] > 0) { 1683 path->slots[0]--; 1684 btrfs_item_key_to_cpu(path->nodes[0], &key, 1685 path->slots[0]); 1686 if (key.objectid == head->bytenr && 1687 key.type == BTRFS_EXTENT_ITEM_KEY && 1688 key.offset == head->num_bytes) 1689 ret = 0; 1690 } 1691 if (ret > 0) { 1692 btrfs_release_path(path); 1693 metadata = 0; 1694 1695 key.objectid = head->bytenr; 1696 key.offset = head->num_bytes; 1697 key.type = BTRFS_EXTENT_ITEM_KEY; 1698 goto again; 1699 } 1700 } else { 1701 ret = -EUCLEAN; 1702 btrfs_err(fs_info, 1703 "missing extent item for extent %llu num_bytes %llu level %d", 1704 head->bytenr, head->num_bytes, extent_op->level); 1705 goto out; 1706 } 1707 } 1708 1709 leaf = path->nodes[0]; 1710 item_size = btrfs_item_size(leaf, path->slots[0]); 1711 1712 if (unlikely(item_size < sizeof(*ei))) { 1713 ret = -EUCLEAN; 1714 btrfs_err(fs_info, 1715 "unexpected extent item size, has %u expect >= %zu", 1716 item_size, sizeof(*ei)); 1717 btrfs_abort_transaction(trans, ret); 1718 goto out; 1719 } 1720 1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1722 __run_delayed_extent_op(extent_op, leaf, ei); 1723 1724 btrfs_mark_buffer_dirty(trans, leaf); 1725 out: 1726 btrfs_free_path(path); 1727 return ret; 1728 } 1729 1730 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1731 struct btrfs_delayed_ref_head *href, 1732 struct btrfs_delayed_ref_node *node, 1733 struct btrfs_delayed_extent_op *extent_op, 1734 bool insert_reserved) 1735 { 1736 int ret = 0; 1737 struct btrfs_fs_info *fs_info = trans->fs_info; 1738 struct btrfs_delayed_tree_ref *ref; 1739 u64 parent = 0; 1740 u64 ref_root = 0; 1741 1742 ref = btrfs_delayed_node_to_tree_ref(node); 1743 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); 1744 1745 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1746 parent = ref->parent; 1747 ref_root = ref->root; 1748 1749 if (unlikely(node->ref_mod != 1)) { 1750 btrfs_err(trans->fs_info, 1751 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1752 node->bytenr, node->ref_mod, node->action, ref_root, 1753 parent); 1754 return -EUCLEAN; 1755 } 1756 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1757 struct btrfs_squota_delta delta = { 1758 .root = href->owning_root, 1759 .num_bytes = fs_info->nodesize, 1760 .is_data = false, 1761 .is_inc = true, 1762 .generation = trans->transid, 1763 }; 1764 1765 BUG_ON(!extent_op || !extent_op->update_flags); 1766 ret = alloc_reserved_tree_block(trans, node, extent_op); 1767 if (!ret) 1768 btrfs_record_squota_delta(fs_info, &delta); 1769 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1770 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, 1771 ref->level, 0, extent_op); 1772 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1773 ret = __btrfs_free_extent(trans, href, node, parent, ref_root, 1774 ref->level, 0, extent_op); 1775 } else { 1776 BUG(); 1777 } 1778 return ret; 1779 } 1780 1781 /* helper function to actually process a single delayed ref entry */ 1782 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1783 struct btrfs_delayed_ref_head *href, 1784 struct btrfs_delayed_ref_node *node, 1785 struct btrfs_delayed_extent_op *extent_op, 1786 bool insert_reserved) 1787 { 1788 int ret = 0; 1789 1790 if (TRANS_ABORTED(trans)) { 1791 if (insert_reserved) { 1792 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1793 free_head_ref_squota_rsv(trans->fs_info, href); 1794 } 1795 return 0; 1796 } 1797 1798 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1799 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1800 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1801 insert_reserved); 1802 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1803 node->type == BTRFS_SHARED_DATA_REF_KEY) 1804 ret = run_delayed_data_ref(trans, href, node, extent_op, 1805 insert_reserved); 1806 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1807 ret = 0; 1808 else 1809 BUG(); 1810 if (ret && insert_reserved) 1811 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1812 if (ret < 0) 1813 btrfs_err(trans->fs_info, 1814 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1815 node->bytenr, node->num_bytes, node->type, 1816 node->action, node->ref_mod, ret); 1817 return ret; 1818 } 1819 1820 static inline struct btrfs_delayed_ref_node * 1821 select_delayed_ref(struct btrfs_delayed_ref_head *head) 1822 { 1823 struct btrfs_delayed_ref_node *ref; 1824 1825 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 1826 return NULL; 1827 1828 /* 1829 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. 1830 * This is to prevent a ref count from going down to zero, which deletes 1831 * the extent item from the extent tree, when there still are references 1832 * to add, which would fail because they would not find the extent item. 1833 */ 1834 if (!list_empty(&head->ref_add_list)) 1835 return list_first_entry(&head->ref_add_list, 1836 struct btrfs_delayed_ref_node, add_list); 1837 1838 ref = rb_entry(rb_first_cached(&head->ref_tree), 1839 struct btrfs_delayed_ref_node, ref_node); 1840 ASSERT(list_empty(&ref->add_list)); 1841 return ref; 1842 } 1843 1844 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, 1845 struct btrfs_delayed_ref_head *head) 1846 { 1847 spin_lock(&delayed_refs->lock); 1848 head->processing = false; 1849 delayed_refs->num_heads_ready++; 1850 spin_unlock(&delayed_refs->lock); 1851 btrfs_delayed_ref_unlock(head); 1852 } 1853 1854 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1855 struct btrfs_delayed_ref_head *head) 1856 { 1857 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1858 1859 if (!extent_op) 1860 return NULL; 1861 1862 if (head->must_insert_reserved) { 1863 head->extent_op = NULL; 1864 btrfs_free_delayed_extent_op(extent_op); 1865 return NULL; 1866 } 1867 return extent_op; 1868 } 1869 1870 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1871 struct btrfs_delayed_ref_head *head) 1872 { 1873 struct btrfs_delayed_extent_op *extent_op; 1874 int ret; 1875 1876 extent_op = cleanup_extent_op(head); 1877 if (!extent_op) 1878 return 0; 1879 head->extent_op = NULL; 1880 spin_unlock(&head->lock); 1881 ret = run_delayed_extent_op(trans, head, extent_op); 1882 btrfs_free_delayed_extent_op(extent_op); 1883 return ret ? ret : 1; 1884 } 1885 1886 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1887 struct btrfs_delayed_ref_root *delayed_refs, 1888 struct btrfs_delayed_ref_head *head) 1889 { 1890 u64 ret = 0; 1891 1892 /* 1893 * We had csum deletions accounted for in our delayed refs rsv, we need 1894 * to drop the csum leaves for this update from our delayed_refs_rsv. 1895 */ 1896 if (head->total_ref_mod < 0 && head->is_data) { 1897 int nr_csums; 1898 1899 spin_lock(&delayed_refs->lock); 1900 delayed_refs->pending_csums -= head->num_bytes; 1901 spin_unlock(&delayed_refs->lock); 1902 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1903 1904 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1905 1906 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1907 } 1908 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1909 if (head->must_insert_reserved) 1910 free_head_ref_squota_rsv(fs_info, head); 1911 1912 return ret; 1913 } 1914 1915 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1916 struct btrfs_delayed_ref_head *head, 1917 u64 *bytes_released) 1918 { 1919 1920 struct btrfs_fs_info *fs_info = trans->fs_info; 1921 struct btrfs_delayed_ref_root *delayed_refs; 1922 int ret; 1923 1924 delayed_refs = &trans->transaction->delayed_refs; 1925 1926 ret = run_and_cleanup_extent_op(trans, head); 1927 if (ret < 0) { 1928 unselect_delayed_ref_head(delayed_refs, head); 1929 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1930 return ret; 1931 } else if (ret) { 1932 return ret; 1933 } 1934 1935 /* 1936 * Need to drop our head ref lock and re-acquire the delayed ref lock 1937 * and then re-check to make sure nobody got added. 1938 */ 1939 spin_unlock(&head->lock); 1940 spin_lock(&delayed_refs->lock); 1941 spin_lock(&head->lock); 1942 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1943 spin_unlock(&head->lock); 1944 spin_unlock(&delayed_refs->lock); 1945 return 1; 1946 } 1947 btrfs_delete_ref_head(delayed_refs, head); 1948 spin_unlock(&head->lock); 1949 spin_unlock(&delayed_refs->lock); 1950 1951 if (head->must_insert_reserved) { 1952 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1953 if (head->is_data) { 1954 struct btrfs_root *csum_root; 1955 1956 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1957 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1958 head->num_bytes); 1959 } 1960 } 1961 1962 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1963 1964 trace_run_delayed_ref_head(fs_info, head, 0); 1965 btrfs_delayed_ref_unlock(head); 1966 btrfs_put_delayed_ref_head(head); 1967 return ret; 1968 } 1969 1970 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head( 1971 struct btrfs_trans_handle *trans) 1972 { 1973 struct btrfs_delayed_ref_root *delayed_refs = 1974 &trans->transaction->delayed_refs; 1975 struct btrfs_delayed_ref_head *head = NULL; 1976 int ret; 1977 1978 spin_lock(&delayed_refs->lock); 1979 head = btrfs_select_ref_head(delayed_refs); 1980 if (!head) { 1981 spin_unlock(&delayed_refs->lock); 1982 return head; 1983 } 1984 1985 /* 1986 * Grab the lock that says we are going to process all the refs for 1987 * this head 1988 */ 1989 ret = btrfs_delayed_ref_lock(delayed_refs, head); 1990 spin_unlock(&delayed_refs->lock); 1991 1992 /* 1993 * We may have dropped the spin lock to get the head mutex lock, and 1994 * that might have given someone else time to free the head. If that's 1995 * true, it has been removed from our list and we can move on. 1996 */ 1997 if (ret == -EAGAIN) 1998 head = ERR_PTR(-EAGAIN); 1999 2000 return head; 2001 } 2002 2003 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 2004 struct btrfs_delayed_ref_head *locked_ref, 2005 u64 *bytes_released) 2006 { 2007 struct btrfs_fs_info *fs_info = trans->fs_info; 2008 struct btrfs_delayed_ref_root *delayed_refs; 2009 struct btrfs_delayed_extent_op *extent_op; 2010 struct btrfs_delayed_ref_node *ref; 2011 bool must_insert_reserved; 2012 int ret; 2013 2014 delayed_refs = &trans->transaction->delayed_refs; 2015 2016 lockdep_assert_held(&locked_ref->mutex); 2017 lockdep_assert_held(&locked_ref->lock); 2018 2019 while ((ref = select_delayed_ref(locked_ref))) { 2020 if (ref->seq && 2021 btrfs_check_delayed_seq(fs_info, ref->seq)) { 2022 spin_unlock(&locked_ref->lock); 2023 unselect_delayed_ref_head(delayed_refs, locked_ref); 2024 return -EAGAIN; 2025 } 2026 2027 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 2028 RB_CLEAR_NODE(&ref->ref_node); 2029 if (!list_empty(&ref->add_list)) 2030 list_del(&ref->add_list); 2031 /* 2032 * When we play the delayed ref, also correct the ref_mod on 2033 * head 2034 */ 2035 switch (ref->action) { 2036 case BTRFS_ADD_DELAYED_REF: 2037 case BTRFS_ADD_DELAYED_EXTENT: 2038 locked_ref->ref_mod -= ref->ref_mod; 2039 break; 2040 case BTRFS_DROP_DELAYED_REF: 2041 locked_ref->ref_mod += ref->ref_mod; 2042 break; 2043 default: 2044 WARN_ON(1); 2045 } 2046 atomic_dec(&delayed_refs->num_entries); 2047 2048 /* 2049 * Record the must_insert_reserved flag before we drop the 2050 * spin lock. 2051 */ 2052 must_insert_reserved = locked_ref->must_insert_reserved; 2053 /* 2054 * Unsetting this on the head ref relinquishes ownership of 2055 * the rsv_bytes, so it is critical that every possible code 2056 * path from here forward frees all reserves including qgroup 2057 * reserve. 2058 */ 2059 locked_ref->must_insert_reserved = false; 2060 2061 extent_op = locked_ref->extent_op; 2062 locked_ref->extent_op = NULL; 2063 spin_unlock(&locked_ref->lock); 2064 2065 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 2066 must_insert_reserved); 2067 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 2068 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 2069 2070 btrfs_free_delayed_extent_op(extent_op); 2071 if (ret) { 2072 unselect_delayed_ref_head(delayed_refs, locked_ref); 2073 btrfs_put_delayed_ref(ref); 2074 return ret; 2075 } 2076 2077 btrfs_put_delayed_ref(ref); 2078 cond_resched(); 2079 2080 spin_lock(&locked_ref->lock); 2081 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2082 } 2083 2084 return 0; 2085 } 2086 2087 /* 2088 * Returns 0 on success or if called with an already aborted transaction. 2089 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2090 */ 2091 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2092 u64 min_bytes) 2093 { 2094 struct btrfs_fs_info *fs_info = trans->fs_info; 2095 struct btrfs_delayed_ref_root *delayed_refs; 2096 struct btrfs_delayed_ref_head *locked_ref = NULL; 2097 int ret; 2098 unsigned long count = 0; 2099 unsigned long max_count = 0; 2100 u64 bytes_processed = 0; 2101 2102 delayed_refs = &trans->transaction->delayed_refs; 2103 if (min_bytes == 0) { 2104 max_count = delayed_refs->num_heads_ready; 2105 min_bytes = U64_MAX; 2106 } 2107 2108 do { 2109 if (!locked_ref) { 2110 locked_ref = btrfs_obtain_ref_head(trans); 2111 if (IS_ERR_OR_NULL(locked_ref)) { 2112 if (PTR_ERR(locked_ref) == -EAGAIN) { 2113 continue; 2114 } else { 2115 break; 2116 } 2117 } 2118 count++; 2119 } 2120 /* 2121 * We need to try and merge add/drops of the same ref since we 2122 * can run into issues with relocate dropping the implicit ref 2123 * and then it being added back again before the drop can 2124 * finish. If we merged anything we need to re-loop so we can 2125 * get a good ref. 2126 * Or we can get node references of the same type that weren't 2127 * merged when created due to bumps in the tree mod seq, and 2128 * we need to merge them to prevent adding an inline extent 2129 * backref before dropping it (triggering a BUG_ON at 2130 * insert_inline_extent_backref()). 2131 */ 2132 spin_lock(&locked_ref->lock); 2133 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2134 2135 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2136 if (ret < 0 && ret != -EAGAIN) { 2137 /* 2138 * Error, btrfs_run_delayed_refs_for_head already 2139 * unlocked everything so just bail out 2140 */ 2141 return ret; 2142 } else if (!ret) { 2143 /* 2144 * Success, perform the usual cleanup of a processed 2145 * head 2146 */ 2147 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2148 if (ret > 0 ) { 2149 /* We dropped our lock, we need to loop. */ 2150 ret = 0; 2151 continue; 2152 } else if (ret) { 2153 return ret; 2154 } 2155 } 2156 2157 /* 2158 * Either success case or btrfs_run_delayed_refs_for_head 2159 * returned -EAGAIN, meaning we need to select another head 2160 */ 2161 2162 locked_ref = NULL; 2163 cond_resched(); 2164 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2165 (max_count > 0 && count < max_count) || 2166 locked_ref); 2167 2168 return 0; 2169 } 2170 2171 #ifdef SCRAMBLE_DELAYED_REFS 2172 /* 2173 * Normally delayed refs get processed in ascending bytenr order. This 2174 * correlates in most cases to the order added. To expose dependencies on this 2175 * order, we start to process the tree in the middle instead of the beginning 2176 */ 2177 static u64 find_middle(struct rb_root *root) 2178 { 2179 struct rb_node *n = root->rb_node; 2180 struct btrfs_delayed_ref_node *entry; 2181 int alt = 1; 2182 u64 middle; 2183 u64 first = 0, last = 0; 2184 2185 n = rb_first(root); 2186 if (n) { 2187 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2188 first = entry->bytenr; 2189 } 2190 n = rb_last(root); 2191 if (n) { 2192 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2193 last = entry->bytenr; 2194 } 2195 n = root->rb_node; 2196 2197 while (n) { 2198 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2199 WARN_ON(!entry->in_tree); 2200 2201 middle = entry->bytenr; 2202 2203 if (alt) 2204 n = n->rb_left; 2205 else 2206 n = n->rb_right; 2207 2208 alt = 1 - alt; 2209 } 2210 return middle; 2211 } 2212 #endif 2213 2214 /* 2215 * Start processing the delayed reference count updates and extent insertions 2216 * we have queued up so far. 2217 * 2218 * @trans: Transaction handle. 2219 * @min_bytes: How many bytes of delayed references to process. After this 2220 * many bytes we stop processing delayed references if there are 2221 * any more. If 0 it means to run all existing delayed references, 2222 * but not new ones added after running all existing ones. 2223 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2224 * plus any new ones that are added. 2225 * 2226 * Returns 0 on success or if called with an aborted transaction 2227 * Returns <0 on error and aborts the transaction 2228 */ 2229 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2230 { 2231 struct btrfs_fs_info *fs_info = trans->fs_info; 2232 struct btrfs_delayed_ref_root *delayed_refs; 2233 int ret; 2234 2235 /* We'll clean this up in btrfs_cleanup_transaction */ 2236 if (TRANS_ABORTED(trans)) 2237 return 0; 2238 2239 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2240 return 0; 2241 2242 delayed_refs = &trans->transaction->delayed_refs; 2243 again: 2244 #ifdef SCRAMBLE_DELAYED_REFS 2245 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2246 #endif 2247 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2248 if (ret < 0) { 2249 btrfs_abort_transaction(trans, ret); 2250 return ret; 2251 } 2252 2253 if (min_bytes == U64_MAX) { 2254 btrfs_create_pending_block_groups(trans); 2255 2256 spin_lock(&delayed_refs->lock); 2257 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) { 2258 spin_unlock(&delayed_refs->lock); 2259 return 0; 2260 } 2261 spin_unlock(&delayed_refs->lock); 2262 2263 cond_resched(); 2264 goto again; 2265 } 2266 2267 return 0; 2268 } 2269 2270 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2271 struct extent_buffer *eb, u64 flags) 2272 { 2273 struct btrfs_delayed_extent_op *extent_op; 2274 int level = btrfs_header_level(eb); 2275 int ret; 2276 2277 extent_op = btrfs_alloc_delayed_extent_op(); 2278 if (!extent_op) 2279 return -ENOMEM; 2280 2281 extent_op->flags_to_set = flags; 2282 extent_op->update_flags = true; 2283 extent_op->update_key = false; 2284 extent_op->level = level; 2285 2286 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op); 2287 if (ret) 2288 btrfs_free_delayed_extent_op(extent_op); 2289 return ret; 2290 } 2291 2292 static noinline int check_delayed_ref(struct btrfs_root *root, 2293 struct btrfs_path *path, 2294 u64 objectid, u64 offset, u64 bytenr) 2295 { 2296 struct btrfs_delayed_ref_head *head; 2297 struct btrfs_delayed_ref_node *ref; 2298 struct btrfs_delayed_data_ref *data_ref; 2299 struct btrfs_delayed_ref_root *delayed_refs; 2300 struct btrfs_transaction *cur_trans; 2301 struct rb_node *node; 2302 int ret = 0; 2303 2304 spin_lock(&root->fs_info->trans_lock); 2305 cur_trans = root->fs_info->running_transaction; 2306 if (cur_trans) 2307 refcount_inc(&cur_trans->use_count); 2308 spin_unlock(&root->fs_info->trans_lock); 2309 if (!cur_trans) 2310 return 0; 2311 2312 delayed_refs = &cur_trans->delayed_refs; 2313 spin_lock(&delayed_refs->lock); 2314 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 2315 if (!head) { 2316 spin_unlock(&delayed_refs->lock); 2317 btrfs_put_transaction(cur_trans); 2318 return 0; 2319 } 2320 2321 if (!mutex_trylock(&head->mutex)) { 2322 if (path->nowait) { 2323 spin_unlock(&delayed_refs->lock); 2324 btrfs_put_transaction(cur_trans); 2325 return -EAGAIN; 2326 } 2327 2328 refcount_inc(&head->refs); 2329 spin_unlock(&delayed_refs->lock); 2330 2331 btrfs_release_path(path); 2332 2333 /* 2334 * Mutex was contended, block until it's released and let 2335 * caller try again 2336 */ 2337 mutex_lock(&head->mutex); 2338 mutex_unlock(&head->mutex); 2339 btrfs_put_delayed_ref_head(head); 2340 btrfs_put_transaction(cur_trans); 2341 return -EAGAIN; 2342 } 2343 spin_unlock(&delayed_refs->lock); 2344 2345 spin_lock(&head->lock); 2346 /* 2347 * XXX: We should replace this with a proper search function in the 2348 * future. 2349 */ 2350 for (node = rb_first_cached(&head->ref_tree); node; 2351 node = rb_next(node)) { 2352 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2353 /* If it's a shared ref we know a cross reference exists */ 2354 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2355 ret = 1; 2356 break; 2357 } 2358 2359 data_ref = btrfs_delayed_node_to_data_ref(ref); 2360 2361 /* 2362 * If our ref doesn't match the one we're currently looking at 2363 * then we have a cross reference. 2364 */ 2365 if (data_ref->root != root->root_key.objectid || 2366 data_ref->objectid != objectid || 2367 data_ref->offset != offset) { 2368 ret = 1; 2369 break; 2370 } 2371 } 2372 spin_unlock(&head->lock); 2373 mutex_unlock(&head->mutex); 2374 btrfs_put_transaction(cur_trans); 2375 return ret; 2376 } 2377 2378 static noinline int check_committed_ref(struct btrfs_root *root, 2379 struct btrfs_path *path, 2380 u64 objectid, u64 offset, u64 bytenr, 2381 bool strict) 2382 { 2383 struct btrfs_fs_info *fs_info = root->fs_info; 2384 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2385 struct extent_buffer *leaf; 2386 struct btrfs_extent_data_ref *ref; 2387 struct btrfs_extent_inline_ref *iref; 2388 struct btrfs_extent_item *ei; 2389 struct btrfs_key key; 2390 u32 item_size; 2391 u32 expected_size; 2392 int type; 2393 int ret; 2394 2395 key.objectid = bytenr; 2396 key.offset = (u64)-1; 2397 key.type = BTRFS_EXTENT_ITEM_KEY; 2398 2399 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2400 if (ret < 0) 2401 goto out; 2402 BUG_ON(ret == 0); /* Corruption */ 2403 2404 ret = -ENOENT; 2405 if (path->slots[0] == 0) 2406 goto out; 2407 2408 path->slots[0]--; 2409 leaf = path->nodes[0]; 2410 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2411 2412 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2413 goto out; 2414 2415 ret = 1; 2416 item_size = btrfs_item_size(leaf, path->slots[0]); 2417 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2418 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2419 2420 /* No inline refs; we need to bail before checking for owner ref. */ 2421 if (item_size == sizeof(*ei)) 2422 goto out; 2423 2424 /* Check for an owner ref; skip over it to the real inline refs. */ 2425 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2426 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2427 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2428 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2429 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2430 } 2431 2432 /* If extent item has more than 1 inline ref then it's shared */ 2433 if (item_size != expected_size) 2434 goto out; 2435 2436 /* 2437 * If extent created before last snapshot => it's shared unless the 2438 * snapshot has been deleted. Use the heuristic if strict is false. 2439 */ 2440 if (!strict && 2441 (btrfs_extent_generation(leaf, ei) <= 2442 btrfs_root_last_snapshot(&root->root_item))) 2443 goto out; 2444 2445 /* If this extent has SHARED_DATA_REF then it's shared */ 2446 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2447 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2448 goto out; 2449 2450 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2451 if (btrfs_extent_refs(leaf, ei) != 2452 btrfs_extent_data_ref_count(leaf, ref) || 2453 btrfs_extent_data_ref_root(leaf, ref) != 2454 root->root_key.objectid || 2455 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2456 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2457 goto out; 2458 2459 ret = 0; 2460 out: 2461 return ret; 2462 } 2463 2464 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, 2465 u64 bytenr, bool strict, struct btrfs_path *path) 2466 { 2467 int ret; 2468 2469 do { 2470 ret = check_committed_ref(root, path, objectid, 2471 offset, bytenr, strict); 2472 if (ret && ret != -ENOENT) 2473 goto out; 2474 2475 ret = check_delayed_ref(root, path, objectid, offset, bytenr); 2476 } while (ret == -EAGAIN); 2477 2478 out: 2479 btrfs_release_path(path); 2480 if (btrfs_is_data_reloc_root(root)) 2481 WARN_ON(ret > 0); 2482 return ret; 2483 } 2484 2485 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2486 struct btrfs_root *root, 2487 struct extent_buffer *buf, 2488 int full_backref, int inc) 2489 { 2490 struct btrfs_fs_info *fs_info = root->fs_info; 2491 u64 bytenr; 2492 u64 num_bytes; 2493 u64 parent; 2494 u64 ref_root; 2495 u32 nritems; 2496 struct btrfs_key key; 2497 struct btrfs_file_extent_item *fi; 2498 struct btrfs_ref generic_ref = { 0 }; 2499 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2500 int i; 2501 int action; 2502 int level; 2503 int ret = 0; 2504 2505 if (btrfs_is_testing(fs_info)) 2506 return 0; 2507 2508 ref_root = btrfs_header_owner(buf); 2509 nritems = btrfs_header_nritems(buf); 2510 level = btrfs_header_level(buf); 2511 2512 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2513 return 0; 2514 2515 if (full_backref) 2516 parent = buf->start; 2517 else 2518 parent = 0; 2519 if (inc) 2520 action = BTRFS_ADD_DELAYED_REF; 2521 else 2522 action = BTRFS_DROP_DELAYED_REF; 2523 2524 for (i = 0; i < nritems; i++) { 2525 if (level == 0) { 2526 btrfs_item_key_to_cpu(buf, &key, i); 2527 if (key.type != BTRFS_EXTENT_DATA_KEY) 2528 continue; 2529 fi = btrfs_item_ptr(buf, i, 2530 struct btrfs_file_extent_item); 2531 if (btrfs_file_extent_type(buf, fi) == 2532 BTRFS_FILE_EXTENT_INLINE) 2533 continue; 2534 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2535 if (bytenr == 0) 2536 continue; 2537 2538 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2539 key.offset -= btrfs_file_extent_offset(buf, fi); 2540 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2541 num_bytes, parent, ref_root); 2542 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid, 2543 key.offset, root->root_key.objectid, 2544 for_reloc); 2545 if (inc) 2546 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2547 else 2548 ret = btrfs_free_extent(trans, &generic_ref); 2549 if (ret) 2550 goto fail; 2551 } else { 2552 bytenr = btrfs_node_blockptr(buf, i); 2553 num_bytes = fs_info->nodesize; 2554 /* We don't know the owning_root, use 0. */ 2555 btrfs_init_generic_ref(&generic_ref, action, bytenr, 2556 num_bytes, parent, 0); 2557 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root, 2558 root->root_key.objectid, for_reloc); 2559 if (inc) 2560 ret = btrfs_inc_extent_ref(trans, &generic_ref); 2561 else 2562 ret = btrfs_free_extent(trans, &generic_ref); 2563 if (ret) 2564 goto fail; 2565 } 2566 } 2567 return 0; 2568 fail: 2569 return ret; 2570 } 2571 2572 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2573 struct extent_buffer *buf, int full_backref) 2574 { 2575 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2576 } 2577 2578 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2579 struct extent_buffer *buf, int full_backref) 2580 { 2581 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2582 } 2583 2584 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2585 { 2586 struct btrfs_fs_info *fs_info = root->fs_info; 2587 u64 flags; 2588 u64 ret; 2589 2590 if (data) 2591 flags = BTRFS_BLOCK_GROUP_DATA; 2592 else if (root == fs_info->chunk_root) 2593 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2594 else 2595 flags = BTRFS_BLOCK_GROUP_METADATA; 2596 2597 ret = btrfs_get_alloc_profile(fs_info, flags); 2598 return ret; 2599 } 2600 2601 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2602 { 2603 struct rb_node *leftmost; 2604 u64 bytenr = 0; 2605 2606 read_lock(&fs_info->block_group_cache_lock); 2607 /* Get the block group with the lowest logical start address. */ 2608 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2609 if (leftmost) { 2610 struct btrfs_block_group *bg; 2611 2612 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2613 bytenr = bg->start; 2614 } 2615 read_unlock(&fs_info->block_group_cache_lock); 2616 2617 return bytenr; 2618 } 2619 2620 static int pin_down_extent(struct btrfs_trans_handle *trans, 2621 struct btrfs_block_group *cache, 2622 u64 bytenr, u64 num_bytes, int reserved) 2623 { 2624 struct btrfs_fs_info *fs_info = cache->fs_info; 2625 2626 spin_lock(&cache->space_info->lock); 2627 spin_lock(&cache->lock); 2628 cache->pinned += num_bytes; 2629 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info, 2630 num_bytes); 2631 if (reserved) { 2632 cache->reserved -= num_bytes; 2633 cache->space_info->bytes_reserved -= num_bytes; 2634 } 2635 spin_unlock(&cache->lock); 2636 spin_unlock(&cache->space_info->lock); 2637 2638 set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2639 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2640 return 0; 2641 } 2642 2643 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2644 u64 bytenr, u64 num_bytes, int reserved) 2645 { 2646 struct btrfs_block_group *cache; 2647 2648 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2649 BUG_ON(!cache); /* Logic error */ 2650 2651 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2652 2653 btrfs_put_block_group(cache); 2654 return 0; 2655 } 2656 2657 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2658 const struct extent_buffer *eb) 2659 { 2660 struct btrfs_block_group *cache; 2661 int ret; 2662 2663 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2664 if (!cache) 2665 return -EINVAL; 2666 2667 /* 2668 * Fully cache the free space first so that our pin removes the free space 2669 * from the cache. 2670 */ 2671 ret = btrfs_cache_block_group(cache, true); 2672 if (ret) 2673 goto out; 2674 2675 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2676 2677 /* remove us from the free space cache (if we're there at all) */ 2678 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2679 out: 2680 btrfs_put_block_group(cache); 2681 return ret; 2682 } 2683 2684 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2685 u64 start, u64 num_bytes) 2686 { 2687 int ret; 2688 struct btrfs_block_group *block_group; 2689 2690 block_group = btrfs_lookup_block_group(fs_info, start); 2691 if (!block_group) 2692 return -EINVAL; 2693 2694 ret = btrfs_cache_block_group(block_group, true); 2695 if (ret) 2696 goto out; 2697 2698 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2699 out: 2700 btrfs_put_block_group(block_group); 2701 return ret; 2702 } 2703 2704 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2705 { 2706 struct btrfs_fs_info *fs_info = eb->fs_info; 2707 struct btrfs_file_extent_item *item; 2708 struct btrfs_key key; 2709 int found_type; 2710 int i; 2711 int ret = 0; 2712 2713 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2714 return 0; 2715 2716 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2717 btrfs_item_key_to_cpu(eb, &key, i); 2718 if (key.type != BTRFS_EXTENT_DATA_KEY) 2719 continue; 2720 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2721 found_type = btrfs_file_extent_type(eb, item); 2722 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2723 continue; 2724 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2725 continue; 2726 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2727 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2728 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2729 if (ret) 2730 break; 2731 } 2732 2733 return ret; 2734 } 2735 2736 static void 2737 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2738 { 2739 atomic_inc(&bg->reservations); 2740 } 2741 2742 /* 2743 * Returns the free cluster for the given space info and sets empty_cluster to 2744 * what it should be based on the mount options. 2745 */ 2746 static struct btrfs_free_cluster * 2747 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2748 struct btrfs_space_info *space_info, u64 *empty_cluster) 2749 { 2750 struct btrfs_free_cluster *ret = NULL; 2751 2752 *empty_cluster = 0; 2753 if (btrfs_mixed_space_info(space_info)) 2754 return ret; 2755 2756 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2757 ret = &fs_info->meta_alloc_cluster; 2758 if (btrfs_test_opt(fs_info, SSD)) 2759 *empty_cluster = SZ_2M; 2760 else 2761 *empty_cluster = SZ_64K; 2762 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2763 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2764 *empty_cluster = SZ_2M; 2765 ret = &fs_info->data_alloc_cluster; 2766 } 2767 2768 return ret; 2769 } 2770 2771 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2772 u64 start, u64 end, 2773 const bool return_free_space) 2774 { 2775 struct btrfs_block_group *cache = NULL; 2776 struct btrfs_space_info *space_info; 2777 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 2778 struct btrfs_free_cluster *cluster = NULL; 2779 u64 len; 2780 u64 total_unpinned = 0; 2781 u64 empty_cluster = 0; 2782 bool readonly; 2783 2784 while (start <= end) { 2785 readonly = false; 2786 if (!cache || 2787 start >= cache->start + cache->length) { 2788 if (cache) 2789 btrfs_put_block_group(cache); 2790 total_unpinned = 0; 2791 cache = btrfs_lookup_block_group(fs_info, start); 2792 BUG_ON(!cache); /* Logic error */ 2793 2794 cluster = fetch_cluster_info(fs_info, 2795 cache->space_info, 2796 &empty_cluster); 2797 empty_cluster <<= 1; 2798 } 2799 2800 len = cache->start + cache->length - start; 2801 len = min(len, end + 1 - start); 2802 2803 if (return_free_space) 2804 btrfs_add_free_space(cache, start, len); 2805 2806 start += len; 2807 total_unpinned += len; 2808 space_info = cache->space_info; 2809 2810 /* 2811 * If this space cluster has been marked as fragmented and we've 2812 * unpinned enough in this block group to potentially allow a 2813 * cluster to be created inside of it go ahead and clear the 2814 * fragmented check. 2815 */ 2816 if (cluster && cluster->fragmented && 2817 total_unpinned > empty_cluster) { 2818 spin_lock(&cluster->lock); 2819 cluster->fragmented = 0; 2820 spin_unlock(&cluster->lock); 2821 } 2822 2823 spin_lock(&space_info->lock); 2824 spin_lock(&cache->lock); 2825 cache->pinned -= len; 2826 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len); 2827 space_info->max_extent_size = 0; 2828 if (cache->ro) { 2829 space_info->bytes_readonly += len; 2830 readonly = true; 2831 } else if (btrfs_is_zoned(fs_info)) { 2832 /* Need reset before reusing in a zoned block group */ 2833 space_info->bytes_zone_unusable += len; 2834 readonly = true; 2835 } 2836 spin_unlock(&cache->lock); 2837 if (!readonly && return_free_space && 2838 global_rsv->space_info == space_info) { 2839 spin_lock(&global_rsv->lock); 2840 if (!global_rsv->full) { 2841 u64 to_add = min(len, global_rsv->size - 2842 global_rsv->reserved); 2843 2844 global_rsv->reserved += to_add; 2845 btrfs_space_info_update_bytes_may_use(fs_info, 2846 space_info, to_add); 2847 if (global_rsv->reserved >= global_rsv->size) 2848 global_rsv->full = 1; 2849 len -= to_add; 2850 } 2851 spin_unlock(&global_rsv->lock); 2852 } 2853 /* Add to any tickets we may have */ 2854 if (!readonly && return_free_space && len) 2855 btrfs_try_granting_tickets(fs_info, space_info); 2856 spin_unlock(&space_info->lock); 2857 } 2858 2859 if (cache) 2860 btrfs_put_block_group(cache); 2861 return 0; 2862 } 2863 2864 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2865 { 2866 struct btrfs_fs_info *fs_info = trans->fs_info; 2867 struct btrfs_block_group *block_group, *tmp; 2868 struct list_head *deleted_bgs; 2869 struct extent_io_tree *unpin; 2870 u64 start; 2871 u64 end; 2872 int ret; 2873 2874 unpin = &trans->transaction->pinned_extents; 2875 2876 while (!TRANS_ABORTED(trans)) { 2877 struct extent_state *cached_state = NULL; 2878 2879 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2880 if (!find_first_extent_bit(unpin, 0, &start, &end, 2881 EXTENT_DIRTY, &cached_state)) { 2882 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2883 break; 2884 } 2885 2886 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2887 ret = btrfs_discard_extent(fs_info, start, 2888 end + 1 - start, NULL); 2889 2890 clear_extent_dirty(unpin, start, end, &cached_state); 2891 unpin_extent_range(fs_info, start, end, true); 2892 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2893 free_extent_state(cached_state); 2894 cond_resched(); 2895 } 2896 2897 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2898 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2899 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2900 } 2901 2902 /* 2903 * Transaction is finished. We don't need the lock anymore. We 2904 * do need to clean up the block groups in case of a transaction 2905 * abort. 2906 */ 2907 deleted_bgs = &trans->transaction->deleted_bgs; 2908 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2909 u64 trimmed = 0; 2910 2911 ret = -EROFS; 2912 if (!TRANS_ABORTED(trans)) 2913 ret = btrfs_discard_extent(fs_info, 2914 block_group->start, 2915 block_group->length, 2916 &trimmed); 2917 2918 list_del_init(&block_group->bg_list); 2919 btrfs_unfreeze_block_group(block_group); 2920 btrfs_put_block_group(block_group); 2921 2922 if (ret) { 2923 const char *errstr = btrfs_decode_error(ret); 2924 btrfs_warn(fs_info, 2925 "discard failed while removing blockgroup: errno=%d %s", 2926 ret, errstr); 2927 } 2928 } 2929 2930 return 0; 2931 } 2932 2933 /* 2934 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2935 * 2936 * @fs_info: the btrfs_fs_info for this mount 2937 * @leaf: a leaf in the extent tree containing the extent item 2938 * @slot: the slot in the leaf where the extent item is found 2939 * 2940 * Returns the objectid of the root that originally allocated the extent item 2941 * if the inline owner ref is expected and present, otherwise 0. 2942 * 2943 * If an extent item has an owner ref item, it will be the first inline ref 2944 * item. Therefore the logic is to check whether there are any inline ref 2945 * items, then check the type of the first one. 2946 */ 2947 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2948 struct extent_buffer *leaf, int slot) 2949 { 2950 struct btrfs_extent_item *ei; 2951 struct btrfs_extent_inline_ref *iref; 2952 struct btrfs_extent_owner_ref *oref; 2953 unsigned long ptr; 2954 unsigned long end; 2955 int type; 2956 2957 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2958 return 0; 2959 2960 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2961 ptr = (unsigned long)(ei + 1); 2962 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2963 2964 /* No inline ref items of any kind, can't check type. */ 2965 if (ptr == end) 2966 return 0; 2967 2968 iref = (struct btrfs_extent_inline_ref *)ptr; 2969 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2970 2971 /* We found an owner ref, get the root out of it. */ 2972 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2973 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2974 return btrfs_extent_owner_ref_root_id(leaf, oref); 2975 } 2976 2977 /* We have inline refs, but not an owner ref. */ 2978 return 0; 2979 } 2980 2981 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2982 u64 bytenr, struct btrfs_squota_delta *delta) 2983 { 2984 int ret; 2985 u64 num_bytes = delta->num_bytes; 2986 2987 if (delta->is_data) { 2988 struct btrfs_root *csum_root; 2989 2990 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2991 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2992 if (ret) { 2993 btrfs_abort_transaction(trans, ret); 2994 return ret; 2995 } 2996 2997 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2998 if (ret) { 2999 btrfs_abort_transaction(trans, ret); 3000 return ret; 3001 } 3002 } 3003 3004 ret = btrfs_record_squota_delta(trans->fs_info, delta); 3005 if (ret) { 3006 btrfs_abort_transaction(trans, ret); 3007 return ret; 3008 } 3009 3010 ret = add_to_free_space_tree(trans, bytenr, num_bytes); 3011 if (ret) { 3012 btrfs_abort_transaction(trans, ret); 3013 return ret; 3014 } 3015 3016 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3017 if (ret) 3018 btrfs_abort_transaction(trans, ret); 3019 3020 return ret; 3021 } 3022 3023 #define abort_and_dump(trans, path, fmt, args...) \ 3024 ({ \ 3025 btrfs_abort_transaction(trans, -EUCLEAN); \ 3026 btrfs_print_leaf(path->nodes[0]); \ 3027 btrfs_crit(trans->fs_info, fmt, ##args); \ 3028 }) 3029 3030 /* 3031 * Drop one or more refs of @node. 3032 * 3033 * 1. Locate the extent refs. 3034 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3035 * Locate it, then reduce the refs number or remove the ref line completely. 3036 * 3037 * 2. Update the refs count in EXTENT/METADATA_ITEM 3038 * 3039 * Inline backref case: 3040 * 3041 * in extent tree we have: 3042 * 3043 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3044 * refs 2 gen 6 flags DATA 3045 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3046 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3047 * 3048 * This function gets called with: 3049 * 3050 * node->bytenr = 13631488 3051 * node->num_bytes = 1048576 3052 * root_objectid = FS_TREE 3053 * owner_objectid = 257 3054 * owner_offset = 0 3055 * refs_to_drop = 1 3056 * 3057 * Then we should get some like: 3058 * 3059 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3060 * refs 1 gen 6 flags DATA 3061 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3062 * 3063 * Keyed backref case: 3064 * 3065 * in extent tree we have: 3066 * 3067 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3068 * refs 754 gen 6 flags DATA 3069 * [...] 3070 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3071 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3072 * 3073 * This function get called with: 3074 * 3075 * node->bytenr = 13631488 3076 * node->num_bytes = 1048576 3077 * root_objectid = FS_TREE 3078 * owner_objectid = 866 3079 * owner_offset = 0 3080 * refs_to_drop = 1 3081 * 3082 * Then we should get some like: 3083 * 3084 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3085 * refs 753 gen 6 flags DATA 3086 * 3087 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3088 */ 3089 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3090 struct btrfs_delayed_ref_head *href, 3091 struct btrfs_delayed_ref_node *node, u64 parent, 3092 u64 root_objectid, u64 owner_objectid, 3093 u64 owner_offset, 3094 struct btrfs_delayed_extent_op *extent_op) 3095 { 3096 struct btrfs_fs_info *info = trans->fs_info; 3097 struct btrfs_key key; 3098 struct btrfs_path *path; 3099 struct btrfs_root *extent_root; 3100 struct extent_buffer *leaf; 3101 struct btrfs_extent_item *ei; 3102 struct btrfs_extent_inline_ref *iref; 3103 int ret; 3104 int is_data; 3105 int extent_slot = 0; 3106 int found_extent = 0; 3107 int num_to_del = 1; 3108 int refs_to_drop = node->ref_mod; 3109 u32 item_size; 3110 u64 refs; 3111 u64 bytenr = node->bytenr; 3112 u64 num_bytes = node->num_bytes; 3113 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3114 u64 delayed_ref_root = href->owning_root; 3115 3116 extent_root = btrfs_extent_root(info, bytenr); 3117 ASSERT(extent_root); 3118 3119 path = btrfs_alloc_path(); 3120 if (!path) 3121 return -ENOMEM; 3122 3123 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3124 3125 if (!is_data && refs_to_drop != 1) { 3126 btrfs_crit(info, 3127 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3128 node->bytenr, refs_to_drop); 3129 ret = -EINVAL; 3130 btrfs_abort_transaction(trans, ret); 3131 goto out; 3132 } 3133 3134 if (is_data) 3135 skinny_metadata = false; 3136 3137 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3138 parent, root_objectid, owner_objectid, 3139 owner_offset); 3140 if (ret == 0) { 3141 /* 3142 * Either the inline backref or the SHARED_DATA_REF/ 3143 * SHARED_BLOCK_REF is found 3144 * 3145 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3146 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3147 */ 3148 extent_slot = path->slots[0]; 3149 while (extent_slot >= 0) { 3150 btrfs_item_key_to_cpu(path->nodes[0], &key, 3151 extent_slot); 3152 if (key.objectid != bytenr) 3153 break; 3154 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3155 key.offset == num_bytes) { 3156 found_extent = 1; 3157 break; 3158 } 3159 if (key.type == BTRFS_METADATA_ITEM_KEY && 3160 key.offset == owner_objectid) { 3161 found_extent = 1; 3162 break; 3163 } 3164 3165 /* Quick path didn't find the EXTEMT/METADATA_ITEM */ 3166 if (path->slots[0] - extent_slot > 5) 3167 break; 3168 extent_slot--; 3169 } 3170 3171 if (!found_extent) { 3172 if (iref) { 3173 abort_and_dump(trans, path, 3174 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3175 path->slots[0]); 3176 ret = -EUCLEAN; 3177 goto out; 3178 } 3179 /* Must be SHARED_* item, remove the backref first */ 3180 ret = remove_extent_backref(trans, extent_root, path, 3181 NULL, refs_to_drop, is_data); 3182 if (ret) { 3183 btrfs_abort_transaction(trans, ret); 3184 goto out; 3185 } 3186 btrfs_release_path(path); 3187 3188 /* Slow path to locate EXTENT/METADATA_ITEM */ 3189 key.objectid = bytenr; 3190 key.type = BTRFS_EXTENT_ITEM_KEY; 3191 key.offset = num_bytes; 3192 3193 if (!is_data && skinny_metadata) { 3194 key.type = BTRFS_METADATA_ITEM_KEY; 3195 key.offset = owner_objectid; 3196 } 3197 3198 ret = btrfs_search_slot(trans, extent_root, 3199 &key, path, -1, 1); 3200 if (ret > 0 && skinny_metadata && path->slots[0]) { 3201 /* 3202 * Couldn't find our skinny metadata item, 3203 * see if we have ye olde extent item. 3204 */ 3205 path->slots[0]--; 3206 btrfs_item_key_to_cpu(path->nodes[0], &key, 3207 path->slots[0]); 3208 if (key.objectid == bytenr && 3209 key.type == BTRFS_EXTENT_ITEM_KEY && 3210 key.offset == num_bytes) 3211 ret = 0; 3212 } 3213 3214 if (ret > 0 && skinny_metadata) { 3215 skinny_metadata = false; 3216 key.objectid = bytenr; 3217 key.type = BTRFS_EXTENT_ITEM_KEY; 3218 key.offset = num_bytes; 3219 btrfs_release_path(path); 3220 ret = btrfs_search_slot(trans, extent_root, 3221 &key, path, -1, 1); 3222 } 3223 3224 if (ret) { 3225 if (ret > 0) 3226 btrfs_print_leaf(path->nodes[0]); 3227 btrfs_err(info, 3228 "umm, got %d back from search, was looking for %llu, slot %d", 3229 ret, bytenr, path->slots[0]); 3230 } 3231 if (ret < 0) { 3232 btrfs_abort_transaction(trans, ret); 3233 goto out; 3234 } 3235 extent_slot = path->slots[0]; 3236 } 3237 } else if (WARN_ON(ret == -ENOENT)) { 3238 abort_and_dump(trans, path, 3239 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3240 bytenr, parent, root_objectid, owner_objectid, 3241 owner_offset, path->slots[0]); 3242 goto out; 3243 } else { 3244 btrfs_abort_transaction(trans, ret); 3245 goto out; 3246 } 3247 3248 leaf = path->nodes[0]; 3249 item_size = btrfs_item_size(leaf, extent_slot); 3250 if (unlikely(item_size < sizeof(*ei))) { 3251 ret = -EUCLEAN; 3252 btrfs_err(trans->fs_info, 3253 "unexpected extent item size, has %u expect >= %zu", 3254 item_size, sizeof(*ei)); 3255 btrfs_abort_transaction(trans, ret); 3256 goto out; 3257 } 3258 ei = btrfs_item_ptr(leaf, extent_slot, 3259 struct btrfs_extent_item); 3260 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3261 key.type == BTRFS_EXTENT_ITEM_KEY) { 3262 struct btrfs_tree_block_info *bi; 3263 3264 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3265 abort_and_dump(trans, path, 3266 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3267 key.objectid, key.type, key.offset, 3268 path->slots[0], owner_objectid, item_size, 3269 sizeof(*ei) + sizeof(*bi)); 3270 ret = -EUCLEAN; 3271 goto out; 3272 } 3273 bi = (struct btrfs_tree_block_info *)(ei + 1); 3274 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3275 } 3276 3277 refs = btrfs_extent_refs(leaf, ei); 3278 if (refs < refs_to_drop) { 3279 abort_and_dump(trans, path, 3280 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3281 refs_to_drop, refs, bytenr, path->slots[0]); 3282 ret = -EUCLEAN; 3283 goto out; 3284 } 3285 refs -= refs_to_drop; 3286 3287 if (refs > 0) { 3288 if (extent_op) 3289 __run_delayed_extent_op(extent_op, leaf, ei); 3290 /* 3291 * In the case of inline back ref, reference count will 3292 * be updated by remove_extent_backref 3293 */ 3294 if (iref) { 3295 if (!found_extent) { 3296 abort_and_dump(trans, path, 3297 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3298 path->slots[0]); 3299 ret = -EUCLEAN; 3300 goto out; 3301 } 3302 } else { 3303 btrfs_set_extent_refs(leaf, ei, refs); 3304 btrfs_mark_buffer_dirty(trans, leaf); 3305 } 3306 if (found_extent) { 3307 ret = remove_extent_backref(trans, extent_root, path, 3308 iref, refs_to_drop, is_data); 3309 if (ret) { 3310 btrfs_abort_transaction(trans, ret); 3311 goto out; 3312 } 3313 } 3314 } else { 3315 struct btrfs_squota_delta delta = { 3316 .root = delayed_ref_root, 3317 .num_bytes = num_bytes, 3318 .is_data = is_data, 3319 .is_inc = false, 3320 .generation = btrfs_extent_generation(leaf, ei), 3321 }; 3322 3323 /* In this branch refs == 1 */ 3324 if (found_extent) { 3325 if (is_data && refs_to_drop != 3326 extent_data_ref_count(path, iref)) { 3327 abort_and_dump(trans, path, 3328 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3329 extent_data_ref_count(path, iref), 3330 refs_to_drop, path->slots[0]); 3331 ret = -EUCLEAN; 3332 goto out; 3333 } 3334 if (iref) { 3335 if (path->slots[0] != extent_slot) { 3336 abort_and_dump(trans, path, 3337 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3338 key.objectid, key.type, 3339 key.offset, path->slots[0]); 3340 ret = -EUCLEAN; 3341 goto out; 3342 } 3343 } else { 3344 /* 3345 * No inline ref, we must be at SHARED_* item, 3346 * And it's single ref, it must be: 3347 * | extent_slot ||extent_slot + 1| 3348 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3349 */ 3350 if (path->slots[0] != extent_slot + 1) { 3351 abort_and_dump(trans, path, 3352 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3353 path->slots[0]); 3354 ret = -EUCLEAN; 3355 goto out; 3356 } 3357 path->slots[0] = extent_slot; 3358 num_to_del = 2; 3359 } 3360 } 3361 /* 3362 * We can't infer the data owner from the delayed ref, so we need 3363 * to try to get it from the owning ref item. 3364 * 3365 * If it is not present, then that extent was not written under 3366 * simple quotas mode, so we don't need to account for its deletion. 3367 */ 3368 if (is_data) 3369 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3370 leaf, extent_slot); 3371 3372 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3373 num_to_del); 3374 if (ret) { 3375 btrfs_abort_transaction(trans, ret); 3376 goto out; 3377 } 3378 btrfs_release_path(path); 3379 3380 ret = do_free_extent_accounting(trans, bytenr, &delta); 3381 } 3382 btrfs_release_path(path); 3383 3384 out: 3385 btrfs_free_path(path); 3386 return ret; 3387 } 3388 3389 /* 3390 * when we free an block, it is possible (and likely) that we free the last 3391 * delayed ref for that extent as well. This searches the delayed ref tree for 3392 * a given extent, and if there are no other delayed refs to be processed, it 3393 * removes it from the tree. 3394 */ 3395 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3396 u64 bytenr) 3397 { 3398 struct btrfs_delayed_ref_head *head; 3399 struct btrfs_delayed_ref_root *delayed_refs; 3400 int ret = 0; 3401 3402 delayed_refs = &trans->transaction->delayed_refs; 3403 spin_lock(&delayed_refs->lock); 3404 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 3405 if (!head) 3406 goto out_delayed_unlock; 3407 3408 spin_lock(&head->lock); 3409 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3410 goto out; 3411 3412 if (cleanup_extent_op(head) != NULL) 3413 goto out; 3414 3415 /* 3416 * waiting for the lock here would deadlock. If someone else has it 3417 * locked they are already in the process of dropping it anyway 3418 */ 3419 if (!mutex_trylock(&head->mutex)) 3420 goto out; 3421 3422 btrfs_delete_ref_head(delayed_refs, head); 3423 head->processing = false; 3424 3425 spin_unlock(&head->lock); 3426 spin_unlock(&delayed_refs->lock); 3427 3428 BUG_ON(head->extent_op); 3429 if (head->must_insert_reserved) 3430 ret = 1; 3431 3432 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head); 3433 mutex_unlock(&head->mutex); 3434 btrfs_put_delayed_ref_head(head); 3435 return ret; 3436 out: 3437 spin_unlock(&head->lock); 3438 3439 out_delayed_unlock: 3440 spin_unlock(&delayed_refs->lock); 3441 return 0; 3442 } 3443 3444 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3445 u64 root_id, 3446 struct extent_buffer *buf, 3447 u64 parent, int last_ref) 3448 { 3449 struct btrfs_fs_info *fs_info = trans->fs_info; 3450 struct btrfs_ref generic_ref = { 0 }; 3451 struct btrfs_block_group *bg; 3452 int ret; 3453 3454 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF, 3455 buf->start, buf->len, parent, btrfs_header_owner(buf)); 3456 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 3457 root_id, 0, false); 3458 3459 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3460 btrfs_ref_tree_mod(fs_info, &generic_ref); 3461 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3462 BUG_ON(ret); /* -ENOMEM */ 3463 } 3464 3465 if (!last_ref) 3466 return; 3467 3468 if (btrfs_header_generation(buf) != trans->transid) 3469 goto out; 3470 3471 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3472 ret = check_ref_cleanup(trans, buf->start); 3473 if (!ret) 3474 goto out; 3475 } 3476 3477 bg = btrfs_lookup_block_group(fs_info, buf->start); 3478 3479 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3480 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3481 btrfs_put_block_group(bg); 3482 goto out; 3483 } 3484 3485 /* 3486 * If there are tree mod log users we may have recorded mod log 3487 * operations for this node. If we re-allocate this node we 3488 * could replay operations on this node that happened when it 3489 * existed in a completely different root. For example if it 3490 * was part of root A, then was reallocated to root B, and we 3491 * are doing a btrfs_old_search_slot(root b), we could replay 3492 * operations that happened when the block was part of root A, 3493 * giving us an inconsistent view of the btree. 3494 * 3495 * We are safe from races here because at this point no other 3496 * node or root points to this extent buffer, so if after this 3497 * check a new tree mod log user joins we will not have an 3498 * existing log of operations on this node that we have to 3499 * contend with. 3500 */ 3501 3502 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3503 || btrfs_is_zoned(fs_info)) { 3504 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3505 btrfs_put_block_group(bg); 3506 goto out; 3507 } 3508 3509 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3510 3511 btrfs_add_free_space(bg, buf->start, buf->len); 3512 btrfs_free_reserved_bytes(bg, buf->len, 0); 3513 btrfs_put_block_group(bg); 3514 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3515 3516 out: 3517 3518 /* 3519 * Deleting the buffer, clear the corrupt flag since it doesn't 3520 * matter anymore. 3521 */ 3522 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 3523 } 3524 3525 /* Can return -ENOMEM */ 3526 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3527 { 3528 struct btrfs_fs_info *fs_info = trans->fs_info; 3529 int ret; 3530 3531 if (btrfs_is_testing(fs_info)) 3532 return 0; 3533 3534 /* 3535 * tree log blocks never actually go into the extent allocation 3536 * tree, just update pinning info and exit early. 3537 */ 3538 if ((ref->type == BTRFS_REF_METADATA && 3539 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3540 (ref->type == BTRFS_REF_DATA && 3541 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) { 3542 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1); 3543 ret = 0; 3544 } else if (ref->type == BTRFS_REF_METADATA) { 3545 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3546 } else { 3547 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3548 } 3549 3550 if (!((ref->type == BTRFS_REF_METADATA && 3551 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) || 3552 (ref->type == BTRFS_REF_DATA && 3553 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID))) 3554 btrfs_ref_tree_mod(fs_info, ref); 3555 3556 return ret; 3557 } 3558 3559 enum btrfs_loop_type { 3560 /* 3561 * Start caching block groups but do not wait for progress or for them 3562 * to be done. 3563 */ 3564 LOOP_CACHING_NOWAIT, 3565 3566 /* 3567 * Wait for the block group free_space >= the space we're waiting for if 3568 * the block group isn't cached. 3569 */ 3570 LOOP_CACHING_WAIT, 3571 3572 /* 3573 * Allow allocations to happen from block groups that do not yet have a 3574 * size classification. 3575 */ 3576 LOOP_UNSET_SIZE_CLASS, 3577 3578 /* 3579 * Allocate a chunk and then retry the allocation. 3580 */ 3581 LOOP_ALLOC_CHUNK, 3582 3583 /* 3584 * Ignore the size class restrictions for this allocation. 3585 */ 3586 LOOP_WRONG_SIZE_CLASS, 3587 3588 /* 3589 * Ignore the empty size, only try to allocate the number of bytes 3590 * needed for this allocation. 3591 */ 3592 LOOP_NO_EMPTY_SIZE, 3593 }; 3594 3595 static inline void 3596 btrfs_lock_block_group(struct btrfs_block_group *cache, 3597 int delalloc) 3598 { 3599 if (delalloc) 3600 down_read(&cache->data_rwsem); 3601 } 3602 3603 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3604 int delalloc) 3605 { 3606 btrfs_get_block_group(cache); 3607 if (delalloc) 3608 down_read(&cache->data_rwsem); 3609 } 3610 3611 static struct btrfs_block_group *btrfs_lock_cluster( 3612 struct btrfs_block_group *block_group, 3613 struct btrfs_free_cluster *cluster, 3614 int delalloc) 3615 __acquires(&cluster->refill_lock) 3616 { 3617 struct btrfs_block_group *used_bg = NULL; 3618 3619 spin_lock(&cluster->refill_lock); 3620 while (1) { 3621 used_bg = cluster->block_group; 3622 if (!used_bg) 3623 return NULL; 3624 3625 if (used_bg == block_group) 3626 return used_bg; 3627 3628 btrfs_get_block_group(used_bg); 3629 3630 if (!delalloc) 3631 return used_bg; 3632 3633 if (down_read_trylock(&used_bg->data_rwsem)) 3634 return used_bg; 3635 3636 spin_unlock(&cluster->refill_lock); 3637 3638 /* We should only have one-level nested. */ 3639 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3640 3641 spin_lock(&cluster->refill_lock); 3642 if (used_bg == cluster->block_group) 3643 return used_bg; 3644 3645 up_read(&used_bg->data_rwsem); 3646 btrfs_put_block_group(used_bg); 3647 } 3648 } 3649 3650 static inline void 3651 btrfs_release_block_group(struct btrfs_block_group *cache, 3652 int delalloc) 3653 { 3654 if (delalloc) 3655 up_read(&cache->data_rwsem); 3656 btrfs_put_block_group(cache); 3657 } 3658 3659 /* 3660 * Helper function for find_free_extent(). 3661 * 3662 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3663 * Return >0 to inform caller that we find nothing 3664 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3665 */ 3666 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3667 struct find_free_extent_ctl *ffe_ctl, 3668 struct btrfs_block_group **cluster_bg_ret) 3669 { 3670 struct btrfs_block_group *cluster_bg; 3671 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3672 u64 aligned_cluster; 3673 u64 offset; 3674 int ret; 3675 3676 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3677 if (!cluster_bg) 3678 goto refill_cluster; 3679 if (cluster_bg != bg && (cluster_bg->ro || 3680 !block_group_bits(cluster_bg, ffe_ctl->flags))) 3681 goto release_cluster; 3682 3683 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3684 ffe_ctl->num_bytes, cluster_bg->start, 3685 &ffe_ctl->max_extent_size); 3686 if (offset) { 3687 /* We have a block, we're done */ 3688 spin_unlock(&last_ptr->refill_lock); 3689 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3690 *cluster_bg_ret = cluster_bg; 3691 ffe_ctl->found_offset = offset; 3692 return 0; 3693 } 3694 WARN_ON(last_ptr->block_group != cluster_bg); 3695 3696 release_cluster: 3697 /* 3698 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3699 * lets just skip it and let the allocator find whatever block it can 3700 * find. If we reach this point, we will have tried the cluster 3701 * allocator plenty of times and not have found anything, so we are 3702 * likely way too fragmented for the clustering stuff to find anything. 3703 * 3704 * However, if the cluster is taken from the current block group, 3705 * release the cluster first, so that we stand a better chance of 3706 * succeeding in the unclustered allocation. 3707 */ 3708 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3709 spin_unlock(&last_ptr->refill_lock); 3710 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3711 return -ENOENT; 3712 } 3713 3714 /* This cluster didn't work out, free it and start over */ 3715 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3716 3717 if (cluster_bg != bg) 3718 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3719 3720 refill_cluster: 3721 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3722 spin_unlock(&last_ptr->refill_lock); 3723 return -ENOENT; 3724 } 3725 3726 aligned_cluster = max_t(u64, 3727 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3728 bg->full_stripe_len); 3729 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3730 ffe_ctl->num_bytes, aligned_cluster); 3731 if (ret == 0) { 3732 /* Now pull our allocation out of this cluster */ 3733 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3734 ffe_ctl->num_bytes, ffe_ctl->search_start, 3735 &ffe_ctl->max_extent_size); 3736 if (offset) { 3737 /* We found one, proceed */ 3738 spin_unlock(&last_ptr->refill_lock); 3739 ffe_ctl->found_offset = offset; 3740 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3741 return 0; 3742 } 3743 } 3744 /* 3745 * At this point we either didn't find a cluster or we weren't able to 3746 * allocate a block from our cluster. Free the cluster we've been 3747 * trying to use, and go to the next block group. 3748 */ 3749 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3750 spin_unlock(&last_ptr->refill_lock); 3751 return 1; 3752 } 3753 3754 /* 3755 * Return >0 to inform caller that we find nothing 3756 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3757 */ 3758 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3759 struct find_free_extent_ctl *ffe_ctl) 3760 { 3761 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3762 u64 offset; 3763 3764 /* 3765 * We are doing an unclustered allocation, set the fragmented flag so 3766 * we don't bother trying to setup a cluster again until we get more 3767 * space. 3768 */ 3769 if (unlikely(last_ptr)) { 3770 spin_lock(&last_ptr->lock); 3771 last_ptr->fragmented = 1; 3772 spin_unlock(&last_ptr->lock); 3773 } 3774 if (ffe_ctl->cached) { 3775 struct btrfs_free_space_ctl *free_space_ctl; 3776 3777 free_space_ctl = bg->free_space_ctl; 3778 spin_lock(&free_space_ctl->tree_lock); 3779 if (free_space_ctl->free_space < 3780 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3781 ffe_ctl->empty_size) { 3782 ffe_ctl->total_free_space = max_t(u64, 3783 ffe_ctl->total_free_space, 3784 free_space_ctl->free_space); 3785 spin_unlock(&free_space_ctl->tree_lock); 3786 return 1; 3787 } 3788 spin_unlock(&free_space_ctl->tree_lock); 3789 } 3790 3791 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3792 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3793 &ffe_ctl->max_extent_size); 3794 if (!offset) 3795 return 1; 3796 ffe_ctl->found_offset = offset; 3797 return 0; 3798 } 3799 3800 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3801 struct find_free_extent_ctl *ffe_ctl, 3802 struct btrfs_block_group **bg_ret) 3803 { 3804 int ret; 3805 3806 /* We want to try and use the cluster allocator, so lets look there */ 3807 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3808 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3809 if (ret >= 0) 3810 return ret; 3811 /* ret == -ENOENT case falls through */ 3812 } 3813 3814 return find_free_extent_unclustered(block_group, ffe_ctl); 3815 } 3816 3817 /* 3818 * Tree-log block group locking 3819 * ============================ 3820 * 3821 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3822 * indicates the starting address of a block group, which is reserved only 3823 * for tree-log metadata. 3824 * 3825 * Lock nesting 3826 * ============ 3827 * 3828 * space_info::lock 3829 * block_group::lock 3830 * fs_info::treelog_bg_lock 3831 */ 3832 3833 /* 3834 * Simple allocator for sequential-only block group. It only allows sequential 3835 * allocation. No need to play with trees. This function also reserves the 3836 * bytes as in btrfs_add_reserved_bytes. 3837 */ 3838 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3839 struct find_free_extent_ctl *ffe_ctl, 3840 struct btrfs_block_group **bg_ret) 3841 { 3842 struct btrfs_fs_info *fs_info = block_group->fs_info; 3843 struct btrfs_space_info *space_info = block_group->space_info; 3844 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3845 u64 start = block_group->start; 3846 u64 num_bytes = ffe_ctl->num_bytes; 3847 u64 avail; 3848 u64 bytenr = block_group->start; 3849 u64 log_bytenr; 3850 u64 data_reloc_bytenr; 3851 int ret = 0; 3852 bool skip = false; 3853 3854 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3855 3856 /* 3857 * Do not allow non-tree-log blocks in the dedicated tree-log block 3858 * group, and vice versa. 3859 */ 3860 spin_lock(&fs_info->treelog_bg_lock); 3861 log_bytenr = fs_info->treelog_bg; 3862 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3863 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3864 skip = true; 3865 spin_unlock(&fs_info->treelog_bg_lock); 3866 if (skip) 3867 return 1; 3868 3869 /* 3870 * Do not allow non-relocation blocks in the dedicated relocation block 3871 * group, and vice versa. 3872 */ 3873 spin_lock(&fs_info->relocation_bg_lock); 3874 data_reloc_bytenr = fs_info->data_reloc_bg; 3875 if (data_reloc_bytenr && 3876 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3877 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3878 skip = true; 3879 spin_unlock(&fs_info->relocation_bg_lock); 3880 if (skip) 3881 return 1; 3882 3883 /* Check RO and no space case before trying to activate it */ 3884 spin_lock(&block_group->lock); 3885 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3886 ret = 1; 3887 /* 3888 * May need to clear fs_info->{treelog,data_reloc}_bg. 3889 * Return the error after taking the locks. 3890 */ 3891 } 3892 spin_unlock(&block_group->lock); 3893 3894 /* Metadata block group is activated at write time. */ 3895 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3896 !btrfs_zone_activate(block_group)) { 3897 ret = 1; 3898 /* 3899 * May need to clear fs_info->{treelog,data_reloc}_bg. 3900 * Return the error after taking the locks. 3901 */ 3902 } 3903 3904 spin_lock(&space_info->lock); 3905 spin_lock(&block_group->lock); 3906 spin_lock(&fs_info->treelog_bg_lock); 3907 spin_lock(&fs_info->relocation_bg_lock); 3908 3909 if (ret) 3910 goto out; 3911 3912 ASSERT(!ffe_ctl->for_treelog || 3913 block_group->start == fs_info->treelog_bg || 3914 fs_info->treelog_bg == 0); 3915 ASSERT(!ffe_ctl->for_data_reloc || 3916 block_group->start == fs_info->data_reloc_bg || 3917 fs_info->data_reloc_bg == 0); 3918 3919 if (block_group->ro || 3920 (!ffe_ctl->for_data_reloc && 3921 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3922 ret = 1; 3923 goto out; 3924 } 3925 3926 /* 3927 * Do not allow currently using block group to be tree-log dedicated 3928 * block group. 3929 */ 3930 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3931 (block_group->used || block_group->reserved)) { 3932 ret = 1; 3933 goto out; 3934 } 3935 3936 /* 3937 * Do not allow currently used block group to be the data relocation 3938 * dedicated block group. 3939 */ 3940 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3941 (block_group->used || block_group->reserved)) { 3942 ret = 1; 3943 goto out; 3944 } 3945 3946 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3947 avail = block_group->zone_capacity - block_group->alloc_offset; 3948 if (avail < num_bytes) { 3949 if (ffe_ctl->max_extent_size < avail) { 3950 /* 3951 * With sequential allocator, free space is always 3952 * contiguous 3953 */ 3954 ffe_ctl->max_extent_size = avail; 3955 ffe_ctl->total_free_space = avail; 3956 } 3957 ret = 1; 3958 goto out; 3959 } 3960 3961 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3962 fs_info->treelog_bg = block_group->start; 3963 3964 if (ffe_ctl->for_data_reloc) { 3965 if (!fs_info->data_reloc_bg) 3966 fs_info->data_reloc_bg = block_group->start; 3967 /* 3968 * Do not allow allocations from this block group, unless it is 3969 * for data relocation. Compared to increasing the ->ro, setting 3970 * the ->zoned_data_reloc_ongoing flag still allows nocow 3971 * writers to come in. See btrfs_inc_nocow_writers(). 3972 * 3973 * We need to disable an allocation to avoid an allocation of 3974 * regular (non-relocation data) extent. With mix of relocation 3975 * extents and regular extents, we can dispatch WRITE commands 3976 * (for relocation extents) and ZONE APPEND commands (for 3977 * regular extents) at the same time to the same zone, which 3978 * easily break the write pointer. 3979 * 3980 * Also, this flag avoids this block group to be zone finished. 3981 */ 3982 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3983 } 3984 3985 ffe_ctl->found_offset = start + block_group->alloc_offset; 3986 block_group->alloc_offset += num_bytes; 3987 spin_lock(&ctl->tree_lock); 3988 ctl->free_space -= num_bytes; 3989 spin_unlock(&ctl->tree_lock); 3990 3991 /* 3992 * We do not check if found_offset is aligned to stripesize. The 3993 * address is anyway rewritten when using zone append writing. 3994 */ 3995 3996 ffe_ctl->search_start = ffe_ctl->found_offset; 3997 3998 out: 3999 if (ret && ffe_ctl->for_treelog) 4000 fs_info->treelog_bg = 0; 4001 if (ret && ffe_ctl->for_data_reloc) 4002 fs_info->data_reloc_bg = 0; 4003 spin_unlock(&fs_info->relocation_bg_lock); 4004 spin_unlock(&fs_info->treelog_bg_lock); 4005 spin_unlock(&block_group->lock); 4006 spin_unlock(&space_info->lock); 4007 return ret; 4008 } 4009 4010 static int do_allocation(struct btrfs_block_group *block_group, 4011 struct find_free_extent_ctl *ffe_ctl, 4012 struct btrfs_block_group **bg_ret) 4013 { 4014 switch (ffe_ctl->policy) { 4015 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4016 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 4017 case BTRFS_EXTENT_ALLOC_ZONED: 4018 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 4019 default: 4020 BUG(); 4021 } 4022 } 4023 4024 static void release_block_group(struct btrfs_block_group *block_group, 4025 struct find_free_extent_ctl *ffe_ctl, 4026 int delalloc) 4027 { 4028 switch (ffe_ctl->policy) { 4029 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4030 ffe_ctl->retry_uncached = false; 4031 break; 4032 case BTRFS_EXTENT_ALLOC_ZONED: 4033 /* Nothing to do */ 4034 break; 4035 default: 4036 BUG(); 4037 } 4038 4039 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4040 ffe_ctl->index); 4041 btrfs_release_block_group(block_group, delalloc); 4042 } 4043 4044 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4045 struct btrfs_key *ins) 4046 { 4047 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4048 4049 if (!ffe_ctl->use_cluster && last_ptr) { 4050 spin_lock(&last_ptr->lock); 4051 last_ptr->window_start = ins->objectid; 4052 spin_unlock(&last_ptr->lock); 4053 } 4054 } 4055 4056 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4057 struct btrfs_key *ins) 4058 { 4059 switch (ffe_ctl->policy) { 4060 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4061 found_extent_clustered(ffe_ctl, ins); 4062 break; 4063 case BTRFS_EXTENT_ALLOC_ZONED: 4064 /* Nothing to do */ 4065 break; 4066 default: 4067 BUG(); 4068 } 4069 } 4070 4071 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4072 struct find_free_extent_ctl *ffe_ctl) 4073 { 4074 /* Block group's activeness is not a requirement for METADATA block groups. */ 4075 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4076 return 0; 4077 4078 /* If we can activate new zone, just allocate a chunk and use it */ 4079 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4080 return 0; 4081 4082 /* 4083 * We already reached the max active zones. Try to finish one block 4084 * group to make a room for a new block group. This is only possible 4085 * for a data block group because btrfs_zone_finish() may need to wait 4086 * for a running transaction which can cause a deadlock for metadata 4087 * allocation. 4088 */ 4089 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4090 int ret = btrfs_zone_finish_one_bg(fs_info); 4091 4092 if (ret == 1) 4093 return 0; 4094 else if (ret < 0) 4095 return ret; 4096 } 4097 4098 /* 4099 * If we have enough free space left in an already active block group 4100 * and we can't activate any other zone now, do not allow allocating a 4101 * new chunk and let find_free_extent() retry with a smaller size. 4102 */ 4103 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4104 return -ENOSPC; 4105 4106 /* 4107 * Even min_alloc_size is not left in any block groups. Since we cannot 4108 * activate a new block group, allocating it may not help. Let's tell a 4109 * caller to try again and hope it progress something by writing some 4110 * parts of the region. That is only possible for data block groups, 4111 * where a part of the region can be written. 4112 */ 4113 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4114 return -EAGAIN; 4115 4116 /* 4117 * We cannot activate a new block group and no enough space left in any 4118 * block groups. So, allocating a new block group may not help. But, 4119 * there is nothing to do anyway, so let's go with it. 4120 */ 4121 return 0; 4122 } 4123 4124 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4125 struct find_free_extent_ctl *ffe_ctl) 4126 { 4127 switch (ffe_ctl->policy) { 4128 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4129 return 0; 4130 case BTRFS_EXTENT_ALLOC_ZONED: 4131 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4132 default: 4133 BUG(); 4134 } 4135 } 4136 4137 /* 4138 * Return >0 means caller needs to re-search for free extent 4139 * Return 0 means we have the needed free extent. 4140 * Return <0 means we failed to locate any free extent. 4141 */ 4142 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4143 struct btrfs_key *ins, 4144 struct find_free_extent_ctl *ffe_ctl, 4145 bool full_search) 4146 { 4147 struct btrfs_root *root = fs_info->chunk_root; 4148 int ret; 4149 4150 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4151 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4152 ffe_ctl->orig_have_caching_bg = true; 4153 4154 if (ins->objectid) { 4155 found_extent(ffe_ctl, ins); 4156 return 0; 4157 } 4158 4159 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4160 return 1; 4161 4162 ffe_ctl->index++; 4163 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4164 return 1; 4165 4166 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4167 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4168 ffe_ctl->index = 0; 4169 /* 4170 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4171 * any uncached bgs and we've already done a full search 4172 * through. 4173 */ 4174 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4175 (!ffe_ctl->orig_have_caching_bg && full_search)) 4176 ffe_ctl->loop++; 4177 ffe_ctl->loop++; 4178 4179 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4180 struct btrfs_trans_handle *trans; 4181 int exist = 0; 4182 4183 /* Check if allocation policy allows to create a new chunk */ 4184 ret = can_allocate_chunk(fs_info, ffe_ctl); 4185 if (ret) 4186 return ret; 4187 4188 trans = current->journal_info; 4189 if (trans) 4190 exist = 1; 4191 else 4192 trans = btrfs_join_transaction(root); 4193 4194 if (IS_ERR(trans)) { 4195 ret = PTR_ERR(trans); 4196 return ret; 4197 } 4198 4199 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags, 4200 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4201 4202 /* Do not bail out on ENOSPC since we can do more. */ 4203 if (ret == -ENOSPC) { 4204 ret = 0; 4205 ffe_ctl->loop++; 4206 } 4207 else if (ret < 0) 4208 btrfs_abort_transaction(trans, ret); 4209 else 4210 ret = 0; 4211 if (!exist) 4212 btrfs_end_transaction(trans); 4213 if (ret) 4214 return ret; 4215 } 4216 4217 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4218 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4219 return -ENOSPC; 4220 4221 /* 4222 * Don't loop again if we already have no empty_size and 4223 * no empty_cluster. 4224 */ 4225 if (ffe_ctl->empty_size == 0 && 4226 ffe_ctl->empty_cluster == 0) 4227 return -ENOSPC; 4228 ffe_ctl->empty_size = 0; 4229 ffe_ctl->empty_cluster = 0; 4230 } 4231 return 1; 4232 } 4233 return -ENOSPC; 4234 } 4235 4236 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl, 4237 struct btrfs_block_group *bg) 4238 { 4239 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 4240 return true; 4241 if (!btrfs_block_group_should_use_size_class(bg)) 4242 return true; 4243 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 4244 return true; 4245 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 4246 bg->size_class == BTRFS_BG_SZ_NONE) 4247 return true; 4248 return ffe_ctl->size_class == bg->size_class; 4249 } 4250 4251 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4252 struct find_free_extent_ctl *ffe_ctl, 4253 struct btrfs_space_info *space_info, 4254 struct btrfs_key *ins) 4255 { 4256 /* 4257 * If our free space is heavily fragmented we may not be able to make 4258 * big contiguous allocations, so instead of doing the expensive search 4259 * for free space, simply return ENOSPC with our max_extent_size so we 4260 * can go ahead and search for a more manageable chunk. 4261 * 4262 * If our max_extent_size is large enough for our allocation simply 4263 * disable clustering since we will likely not be able to find enough 4264 * space to create a cluster and induce latency trying. 4265 */ 4266 if (space_info->max_extent_size) { 4267 spin_lock(&space_info->lock); 4268 if (space_info->max_extent_size && 4269 ffe_ctl->num_bytes > space_info->max_extent_size) { 4270 ins->offset = space_info->max_extent_size; 4271 spin_unlock(&space_info->lock); 4272 return -ENOSPC; 4273 } else if (space_info->max_extent_size) { 4274 ffe_ctl->use_cluster = false; 4275 } 4276 spin_unlock(&space_info->lock); 4277 } 4278 4279 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4280 &ffe_ctl->empty_cluster); 4281 if (ffe_ctl->last_ptr) { 4282 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4283 4284 spin_lock(&last_ptr->lock); 4285 if (last_ptr->block_group) 4286 ffe_ctl->hint_byte = last_ptr->window_start; 4287 if (last_ptr->fragmented) { 4288 /* 4289 * We still set window_start so we can keep track of the 4290 * last place we found an allocation to try and save 4291 * some time. 4292 */ 4293 ffe_ctl->hint_byte = last_ptr->window_start; 4294 ffe_ctl->use_cluster = false; 4295 } 4296 spin_unlock(&last_ptr->lock); 4297 } 4298 4299 return 0; 4300 } 4301 4302 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4303 struct find_free_extent_ctl *ffe_ctl) 4304 { 4305 if (ffe_ctl->for_treelog) { 4306 spin_lock(&fs_info->treelog_bg_lock); 4307 if (fs_info->treelog_bg) 4308 ffe_ctl->hint_byte = fs_info->treelog_bg; 4309 spin_unlock(&fs_info->treelog_bg_lock); 4310 } else if (ffe_ctl->for_data_reloc) { 4311 spin_lock(&fs_info->relocation_bg_lock); 4312 if (fs_info->data_reloc_bg) 4313 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4314 spin_unlock(&fs_info->relocation_bg_lock); 4315 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4316 struct btrfs_block_group *block_group; 4317 4318 spin_lock(&fs_info->zone_active_bgs_lock); 4319 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4320 /* 4321 * No lock is OK here because avail is monotinically 4322 * decreasing, and this is just a hint. 4323 */ 4324 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4325 4326 if (block_group_bits(block_group, ffe_ctl->flags) && 4327 avail >= ffe_ctl->num_bytes) { 4328 ffe_ctl->hint_byte = block_group->start; 4329 break; 4330 } 4331 } 4332 spin_unlock(&fs_info->zone_active_bgs_lock); 4333 } 4334 4335 return 0; 4336 } 4337 4338 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4339 struct find_free_extent_ctl *ffe_ctl, 4340 struct btrfs_space_info *space_info, 4341 struct btrfs_key *ins) 4342 { 4343 switch (ffe_ctl->policy) { 4344 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4345 return prepare_allocation_clustered(fs_info, ffe_ctl, 4346 space_info, ins); 4347 case BTRFS_EXTENT_ALLOC_ZONED: 4348 return prepare_allocation_zoned(fs_info, ffe_ctl); 4349 default: 4350 BUG(); 4351 } 4352 } 4353 4354 /* 4355 * walks the btree of allocated extents and find a hole of a given size. 4356 * The key ins is changed to record the hole: 4357 * ins->objectid == start position 4358 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4359 * ins->offset == the size of the hole. 4360 * Any available blocks before search_start are skipped. 4361 * 4362 * If there is no suitable free space, we will record the max size of 4363 * the free space extent currently. 4364 * 4365 * The overall logic and call chain: 4366 * 4367 * find_free_extent() 4368 * |- Iterate through all block groups 4369 * | |- Get a valid block group 4370 * | |- Try to do clustered allocation in that block group 4371 * | |- Try to do unclustered allocation in that block group 4372 * | |- Check if the result is valid 4373 * | | |- If valid, then exit 4374 * | |- Jump to next block group 4375 * | 4376 * |- Push harder to find free extents 4377 * |- If not found, re-iterate all block groups 4378 */ 4379 static noinline int find_free_extent(struct btrfs_root *root, 4380 struct btrfs_key *ins, 4381 struct find_free_extent_ctl *ffe_ctl) 4382 { 4383 struct btrfs_fs_info *fs_info = root->fs_info; 4384 int ret = 0; 4385 int cache_block_group_error = 0; 4386 struct btrfs_block_group *block_group = NULL; 4387 struct btrfs_space_info *space_info; 4388 bool full_search = false; 4389 4390 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4391 4392 ffe_ctl->search_start = 0; 4393 /* For clustered allocation */ 4394 ffe_ctl->empty_cluster = 0; 4395 ffe_ctl->last_ptr = NULL; 4396 ffe_ctl->use_cluster = true; 4397 ffe_ctl->have_caching_bg = false; 4398 ffe_ctl->orig_have_caching_bg = false; 4399 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4400 ffe_ctl->loop = 0; 4401 ffe_ctl->retry_uncached = false; 4402 ffe_ctl->cached = 0; 4403 ffe_ctl->max_extent_size = 0; 4404 ffe_ctl->total_free_space = 0; 4405 ffe_ctl->found_offset = 0; 4406 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4407 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4408 4409 if (btrfs_is_zoned(fs_info)) 4410 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4411 4412 ins->type = BTRFS_EXTENT_ITEM_KEY; 4413 ins->objectid = 0; 4414 ins->offset = 0; 4415 4416 trace_find_free_extent(root, ffe_ctl); 4417 4418 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4419 if (!space_info) { 4420 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags); 4421 return -ENOSPC; 4422 } 4423 4424 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4425 if (ret < 0) 4426 return ret; 4427 4428 ffe_ctl->search_start = max(ffe_ctl->search_start, 4429 first_logical_byte(fs_info)); 4430 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4431 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4432 block_group = btrfs_lookup_block_group(fs_info, 4433 ffe_ctl->search_start); 4434 /* 4435 * we don't want to use the block group if it doesn't match our 4436 * allocation bits, or if its not cached. 4437 * 4438 * However if we are re-searching with an ideal block group 4439 * picked out then we don't care that the block group is cached. 4440 */ 4441 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4442 block_group->cached != BTRFS_CACHE_NO) { 4443 down_read(&space_info->groups_sem); 4444 if (list_empty(&block_group->list) || 4445 block_group->ro) { 4446 /* 4447 * someone is removing this block group, 4448 * we can't jump into the have_block_group 4449 * target because our list pointers are not 4450 * valid 4451 */ 4452 btrfs_put_block_group(block_group); 4453 up_read(&space_info->groups_sem); 4454 } else { 4455 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4456 block_group->flags); 4457 btrfs_lock_block_group(block_group, 4458 ffe_ctl->delalloc); 4459 ffe_ctl->hinted = true; 4460 goto have_block_group; 4461 } 4462 } else if (block_group) { 4463 btrfs_put_block_group(block_group); 4464 } 4465 } 4466 search: 4467 trace_find_free_extent_search_loop(root, ffe_ctl); 4468 ffe_ctl->have_caching_bg = false; 4469 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4470 ffe_ctl->index == 0) 4471 full_search = true; 4472 down_read(&space_info->groups_sem); 4473 list_for_each_entry(block_group, 4474 &space_info->block_groups[ffe_ctl->index], list) { 4475 struct btrfs_block_group *bg_ret; 4476 4477 ffe_ctl->hinted = false; 4478 /* If the block group is read-only, we can skip it entirely. */ 4479 if (unlikely(block_group->ro)) { 4480 if (ffe_ctl->for_treelog) 4481 btrfs_clear_treelog_bg(block_group); 4482 if (ffe_ctl->for_data_reloc) 4483 btrfs_clear_data_reloc_bg(block_group); 4484 continue; 4485 } 4486 4487 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4488 ffe_ctl->search_start = block_group->start; 4489 4490 /* 4491 * this can happen if we end up cycling through all the 4492 * raid types, but we want to make sure we only allocate 4493 * for the proper type. 4494 */ 4495 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4496 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4497 BTRFS_BLOCK_GROUP_RAID1_MASK | 4498 BTRFS_BLOCK_GROUP_RAID56_MASK | 4499 BTRFS_BLOCK_GROUP_RAID10; 4500 4501 /* 4502 * if they asked for extra copies and this block group 4503 * doesn't provide them, bail. This does allow us to 4504 * fill raid0 from raid1. 4505 */ 4506 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4507 goto loop; 4508 4509 /* 4510 * This block group has different flags than we want. 4511 * It's possible that we have MIXED_GROUP flag but no 4512 * block group is mixed. Just skip such block group. 4513 */ 4514 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4515 continue; 4516 } 4517 4518 have_block_group: 4519 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4520 ffe_ctl->cached = btrfs_block_group_done(block_group); 4521 if (unlikely(!ffe_ctl->cached)) { 4522 ffe_ctl->have_caching_bg = true; 4523 ret = btrfs_cache_block_group(block_group, false); 4524 4525 /* 4526 * If we get ENOMEM here or something else we want to 4527 * try other block groups, because it may not be fatal. 4528 * However if we can't find anything else we need to 4529 * save our return here so that we return the actual 4530 * error that caused problems, not ENOSPC. 4531 */ 4532 if (ret < 0) { 4533 if (!cache_block_group_error) 4534 cache_block_group_error = ret; 4535 ret = 0; 4536 goto loop; 4537 } 4538 ret = 0; 4539 } 4540 4541 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4542 if (!cache_block_group_error) 4543 cache_block_group_error = -EIO; 4544 goto loop; 4545 } 4546 4547 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4548 goto loop; 4549 4550 bg_ret = NULL; 4551 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4552 if (ret > 0) 4553 goto loop; 4554 4555 if (bg_ret && bg_ret != block_group) { 4556 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4557 block_group = bg_ret; 4558 } 4559 4560 /* Checks */ 4561 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4562 fs_info->stripesize); 4563 4564 /* move on to the next group */ 4565 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4566 block_group->start + block_group->length) { 4567 btrfs_add_free_space_unused(block_group, 4568 ffe_ctl->found_offset, 4569 ffe_ctl->num_bytes); 4570 goto loop; 4571 } 4572 4573 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4574 btrfs_add_free_space_unused(block_group, 4575 ffe_ctl->found_offset, 4576 ffe_ctl->search_start - ffe_ctl->found_offset); 4577 4578 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4579 ffe_ctl->num_bytes, 4580 ffe_ctl->delalloc, 4581 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4582 if (ret == -EAGAIN) { 4583 btrfs_add_free_space_unused(block_group, 4584 ffe_ctl->found_offset, 4585 ffe_ctl->num_bytes); 4586 goto loop; 4587 } 4588 btrfs_inc_block_group_reservations(block_group); 4589 4590 /* we are all good, lets return */ 4591 ins->objectid = ffe_ctl->search_start; 4592 ins->offset = ffe_ctl->num_bytes; 4593 4594 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4595 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4596 break; 4597 loop: 4598 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4599 !ffe_ctl->retry_uncached) { 4600 ffe_ctl->retry_uncached = true; 4601 btrfs_wait_block_group_cache_progress(block_group, 4602 ffe_ctl->num_bytes + 4603 ffe_ctl->empty_cluster + 4604 ffe_ctl->empty_size); 4605 goto have_block_group; 4606 } 4607 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4608 cond_resched(); 4609 } 4610 up_read(&space_info->groups_sem); 4611 4612 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search); 4613 if (ret > 0) 4614 goto search; 4615 4616 if (ret == -ENOSPC && !cache_block_group_error) { 4617 /* 4618 * Use ffe_ctl->total_free_space as fallback if we can't find 4619 * any contiguous hole. 4620 */ 4621 if (!ffe_ctl->max_extent_size) 4622 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4623 spin_lock(&space_info->lock); 4624 space_info->max_extent_size = ffe_ctl->max_extent_size; 4625 spin_unlock(&space_info->lock); 4626 ins->offset = ffe_ctl->max_extent_size; 4627 } else if (ret == -ENOSPC) { 4628 ret = cache_block_group_error; 4629 } 4630 return ret; 4631 } 4632 4633 /* 4634 * Entry point to the extent allocator. Tries to find a hole that is at least 4635 * as big as @num_bytes. 4636 * 4637 * @root - The root that will contain this extent 4638 * 4639 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4640 * is used for accounting purposes. This value differs 4641 * from @num_bytes only in the case of compressed extents. 4642 * 4643 * @num_bytes - Number of bytes to allocate on-disk. 4644 * 4645 * @min_alloc_size - Indicates the minimum amount of space that the 4646 * allocator should try to satisfy. In some cases 4647 * @num_bytes may be larger than what is required and if 4648 * the filesystem is fragmented then allocation fails. 4649 * However, the presence of @min_alloc_size gives a 4650 * chance to try and satisfy the smaller allocation. 4651 * 4652 * @empty_size - A hint that you plan on doing more COW. This is the 4653 * size in bytes the allocator should try to find free 4654 * next to the block it returns. This is just a hint and 4655 * may be ignored by the allocator. 4656 * 4657 * @hint_byte - Hint to the allocator to start searching above the byte 4658 * address passed. It might be ignored. 4659 * 4660 * @ins - This key is modified to record the found hole. It will 4661 * have the following values: 4662 * ins->objectid == start position 4663 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4664 * ins->offset == the size of the hole. 4665 * 4666 * @is_data - Boolean flag indicating whether an extent is 4667 * allocated for data (true) or metadata (false) 4668 * 4669 * @delalloc - Boolean flag indicating whether this allocation is for 4670 * delalloc or not. If 'true' data_rwsem of block groups 4671 * is going to be acquired. 4672 * 4673 * 4674 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4675 * case -ENOSPC is returned then @ins->offset will contain the size of the 4676 * largest available hole the allocator managed to find. 4677 */ 4678 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4679 u64 num_bytes, u64 min_alloc_size, 4680 u64 empty_size, u64 hint_byte, 4681 struct btrfs_key *ins, int is_data, int delalloc) 4682 { 4683 struct btrfs_fs_info *fs_info = root->fs_info; 4684 struct find_free_extent_ctl ffe_ctl = {}; 4685 bool final_tried = num_bytes == min_alloc_size; 4686 u64 flags; 4687 int ret; 4688 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 4689 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4690 4691 flags = get_alloc_profile_by_root(root, is_data); 4692 again: 4693 WARN_ON(num_bytes < fs_info->sectorsize); 4694 4695 ffe_ctl.ram_bytes = ram_bytes; 4696 ffe_ctl.num_bytes = num_bytes; 4697 ffe_ctl.min_alloc_size = min_alloc_size; 4698 ffe_ctl.empty_size = empty_size; 4699 ffe_ctl.flags = flags; 4700 ffe_ctl.delalloc = delalloc; 4701 ffe_ctl.hint_byte = hint_byte; 4702 ffe_ctl.for_treelog = for_treelog; 4703 ffe_ctl.for_data_reloc = for_data_reloc; 4704 4705 ret = find_free_extent(root, ins, &ffe_ctl); 4706 if (!ret && !is_data) { 4707 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4708 } else if (ret == -ENOSPC) { 4709 if (!final_tried && ins->offset) { 4710 num_bytes = min(num_bytes >> 1, ins->offset); 4711 num_bytes = round_down(num_bytes, 4712 fs_info->sectorsize); 4713 num_bytes = max(num_bytes, min_alloc_size); 4714 ram_bytes = num_bytes; 4715 if (num_bytes == min_alloc_size) 4716 final_tried = true; 4717 goto again; 4718 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4719 struct btrfs_space_info *sinfo; 4720 4721 sinfo = btrfs_find_space_info(fs_info, flags); 4722 btrfs_err(fs_info, 4723 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4724 flags, num_bytes, for_treelog, for_data_reloc); 4725 if (sinfo) 4726 btrfs_dump_space_info(fs_info, sinfo, 4727 num_bytes, 1); 4728 } 4729 } 4730 4731 return ret; 4732 } 4733 4734 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 4735 u64 start, u64 len, int delalloc) 4736 { 4737 struct btrfs_block_group *cache; 4738 4739 cache = btrfs_lookup_block_group(fs_info, start); 4740 if (!cache) { 4741 btrfs_err(fs_info, "Unable to find block group for %llu", 4742 start); 4743 return -ENOSPC; 4744 } 4745 4746 btrfs_add_free_space(cache, start, len); 4747 btrfs_free_reserved_bytes(cache, len, delalloc); 4748 trace_btrfs_reserved_extent_free(fs_info, start, len); 4749 4750 btrfs_put_block_group(cache); 4751 return 0; 4752 } 4753 4754 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4755 const struct extent_buffer *eb) 4756 { 4757 struct btrfs_block_group *cache; 4758 int ret = 0; 4759 4760 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4761 if (!cache) { 4762 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4763 eb->start); 4764 return -ENOSPC; 4765 } 4766 4767 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4768 btrfs_put_block_group(cache); 4769 return ret; 4770 } 4771 4772 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4773 u64 num_bytes) 4774 { 4775 struct btrfs_fs_info *fs_info = trans->fs_info; 4776 int ret; 4777 4778 ret = remove_from_free_space_tree(trans, bytenr, num_bytes); 4779 if (ret) 4780 return ret; 4781 4782 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4783 if (ret) { 4784 ASSERT(!ret); 4785 btrfs_err(fs_info, "update block group failed for %llu %llu", 4786 bytenr, num_bytes); 4787 return ret; 4788 } 4789 4790 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4791 return 0; 4792 } 4793 4794 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4795 u64 parent, u64 root_objectid, 4796 u64 flags, u64 owner, u64 offset, 4797 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4798 { 4799 struct btrfs_fs_info *fs_info = trans->fs_info; 4800 struct btrfs_root *extent_root; 4801 int ret; 4802 struct btrfs_extent_item *extent_item; 4803 struct btrfs_extent_owner_ref *oref; 4804 struct btrfs_extent_inline_ref *iref; 4805 struct btrfs_path *path; 4806 struct extent_buffer *leaf; 4807 int type; 4808 u32 size; 4809 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4810 4811 if (parent > 0) 4812 type = BTRFS_SHARED_DATA_REF_KEY; 4813 else 4814 type = BTRFS_EXTENT_DATA_REF_KEY; 4815 4816 size = sizeof(*extent_item); 4817 if (simple_quota) 4818 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4819 size += btrfs_extent_inline_ref_size(type); 4820 4821 path = btrfs_alloc_path(); 4822 if (!path) 4823 return -ENOMEM; 4824 4825 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4826 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4827 if (ret) { 4828 btrfs_free_path(path); 4829 return ret; 4830 } 4831 4832 leaf = path->nodes[0]; 4833 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4834 struct btrfs_extent_item); 4835 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4836 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4837 btrfs_set_extent_flags(leaf, extent_item, 4838 flags | BTRFS_EXTENT_FLAG_DATA); 4839 4840 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4841 if (simple_quota) { 4842 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4843 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4844 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4845 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4846 } 4847 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4848 4849 if (parent > 0) { 4850 struct btrfs_shared_data_ref *ref; 4851 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4852 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4853 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4854 } else { 4855 struct btrfs_extent_data_ref *ref; 4856 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4857 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4858 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4859 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4860 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4861 } 4862 4863 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 4864 btrfs_free_path(path); 4865 4866 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4867 } 4868 4869 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4870 struct btrfs_delayed_ref_node *node, 4871 struct btrfs_delayed_extent_op *extent_op) 4872 { 4873 struct btrfs_fs_info *fs_info = trans->fs_info; 4874 struct btrfs_root *extent_root; 4875 int ret; 4876 struct btrfs_extent_item *extent_item; 4877 struct btrfs_key extent_key; 4878 struct btrfs_tree_block_info *block_info; 4879 struct btrfs_extent_inline_ref *iref; 4880 struct btrfs_path *path; 4881 struct extent_buffer *leaf; 4882 struct btrfs_delayed_tree_ref *ref; 4883 u32 size = sizeof(*extent_item) + sizeof(*iref); 4884 u64 flags = extent_op->flags_to_set; 4885 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4886 4887 ref = btrfs_delayed_node_to_tree_ref(node); 4888 4889 extent_key.objectid = node->bytenr; 4890 if (skinny_metadata) { 4891 extent_key.offset = ref->level; 4892 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4893 } else { 4894 extent_key.offset = node->num_bytes; 4895 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4896 size += sizeof(*block_info); 4897 } 4898 4899 path = btrfs_alloc_path(); 4900 if (!path) 4901 return -ENOMEM; 4902 4903 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4904 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4905 size); 4906 if (ret) { 4907 btrfs_free_path(path); 4908 return ret; 4909 } 4910 4911 leaf = path->nodes[0]; 4912 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4913 struct btrfs_extent_item); 4914 btrfs_set_extent_refs(leaf, extent_item, 1); 4915 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4916 btrfs_set_extent_flags(leaf, extent_item, 4917 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4918 4919 if (skinny_metadata) { 4920 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4921 } else { 4922 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4923 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4924 btrfs_set_tree_block_level(leaf, block_info, ref->level); 4925 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4926 } 4927 4928 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4929 btrfs_set_extent_inline_ref_type(leaf, iref, 4930 BTRFS_SHARED_BLOCK_REF_KEY); 4931 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); 4932 } else { 4933 btrfs_set_extent_inline_ref_type(leaf, iref, 4934 BTRFS_TREE_BLOCK_REF_KEY); 4935 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); 4936 } 4937 4938 btrfs_mark_buffer_dirty(trans, leaf); 4939 btrfs_free_path(path); 4940 4941 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4942 } 4943 4944 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4945 struct btrfs_root *root, u64 owner, 4946 u64 offset, u64 ram_bytes, 4947 struct btrfs_key *ins) 4948 { 4949 struct btrfs_ref generic_ref = { 0 }; 4950 u64 root_objectid = root->root_key.objectid; 4951 u64 owning_root = root_objectid; 4952 4953 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 4954 4955 if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root)) 4956 owning_root = root->relocation_src_root; 4957 4958 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 4959 ins->objectid, ins->offset, 0, owning_root); 4960 btrfs_init_data_ref(&generic_ref, root_objectid, owner, 4961 offset, 0, false); 4962 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4963 4964 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4965 } 4966 4967 /* 4968 * this is used by the tree logging recovery code. It records that 4969 * an extent has been allocated and makes sure to clear the free 4970 * space cache bits as well 4971 */ 4972 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4973 u64 root_objectid, u64 owner, u64 offset, 4974 struct btrfs_key *ins) 4975 { 4976 struct btrfs_fs_info *fs_info = trans->fs_info; 4977 int ret; 4978 struct btrfs_block_group *block_group; 4979 struct btrfs_space_info *space_info; 4980 struct btrfs_squota_delta delta = { 4981 .root = root_objectid, 4982 .num_bytes = ins->offset, 4983 .generation = trans->transid, 4984 .is_data = true, 4985 .is_inc = true, 4986 }; 4987 4988 /* 4989 * Mixed block groups will exclude before processing the log so we only 4990 * need to do the exclude dance if this fs isn't mixed. 4991 */ 4992 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4993 ret = __exclude_logged_extent(fs_info, ins->objectid, 4994 ins->offset); 4995 if (ret) 4996 return ret; 4997 } 4998 4999 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 5000 if (!block_group) 5001 return -EINVAL; 5002 5003 space_info = block_group->space_info; 5004 spin_lock(&space_info->lock); 5005 spin_lock(&block_group->lock); 5006 space_info->bytes_reserved += ins->offset; 5007 block_group->reserved += ins->offset; 5008 spin_unlock(&block_group->lock); 5009 spin_unlock(&space_info->lock); 5010 5011 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 5012 offset, ins, 1, root_objectid); 5013 if (ret) 5014 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 5015 ret = btrfs_record_squota_delta(fs_info, &delta); 5016 btrfs_put_block_group(block_group); 5017 return ret; 5018 } 5019 5020 #ifdef CONFIG_BTRFS_DEBUG 5021 /* 5022 * Extra safety check in case the extent tree is corrupted and extent allocator 5023 * chooses to use a tree block which is already used and locked. 5024 */ 5025 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5026 { 5027 if (eb->lock_owner == current->pid) { 5028 btrfs_err_rl(eb->fs_info, 5029 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5030 eb->start, btrfs_header_owner(eb), current->pid); 5031 return true; 5032 } 5033 return false; 5034 } 5035 #else 5036 static bool check_eb_lock_owner(struct extent_buffer *eb) 5037 { 5038 return false; 5039 } 5040 #endif 5041 5042 static struct extent_buffer * 5043 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5044 u64 bytenr, int level, u64 owner, 5045 enum btrfs_lock_nesting nest) 5046 { 5047 struct btrfs_fs_info *fs_info = root->fs_info; 5048 struct extent_buffer *buf; 5049 u64 lockdep_owner = owner; 5050 5051 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5052 if (IS_ERR(buf)) 5053 return buf; 5054 5055 if (check_eb_lock_owner(buf)) { 5056 free_extent_buffer(buf); 5057 return ERR_PTR(-EUCLEAN); 5058 } 5059 5060 /* 5061 * The reloc trees are just snapshots, so we need them to appear to be 5062 * just like any other fs tree WRT lockdep. 5063 * 5064 * The exception however is in replace_path() in relocation, where we 5065 * hold the lock on the original fs root and then search for the reloc 5066 * root. At that point we need to make sure any reloc root buffers are 5067 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5068 * lockdep happy. 5069 */ 5070 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5071 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5072 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5073 5074 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5075 btrfs_set_header_generation(buf, trans->transid); 5076 5077 /* 5078 * This needs to stay, because we could allocate a freed block from an 5079 * old tree into a new tree, so we need to make sure this new block is 5080 * set to the appropriate level and owner. 5081 */ 5082 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5083 5084 __btrfs_tree_lock(buf, nest); 5085 btrfs_clear_buffer_dirty(trans, buf); 5086 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5087 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5088 5089 set_extent_buffer_uptodate(buf); 5090 5091 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5092 btrfs_set_header_level(buf, level); 5093 btrfs_set_header_bytenr(buf, buf->start); 5094 btrfs_set_header_generation(buf, trans->transid); 5095 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5096 btrfs_set_header_owner(buf, owner); 5097 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5098 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5099 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 5100 buf->log_index = root->log_transid % 2; 5101 /* 5102 * we allow two log transactions at a time, use different 5103 * EXTENT bit to differentiate dirty pages. 5104 */ 5105 if (buf->log_index == 0) 5106 set_extent_bit(&root->dirty_log_pages, buf->start, 5107 buf->start + buf->len - 1, 5108 EXTENT_DIRTY, NULL); 5109 else 5110 set_extent_bit(&root->dirty_log_pages, buf->start, 5111 buf->start + buf->len - 1, 5112 EXTENT_NEW, NULL); 5113 } else { 5114 buf->log_index = -1; 5115 set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5116 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5117 } 5118 /* this returns a buffer locked for blocking */ 5119 return buf; 5120 } 5121 5122 /* 5123 * finds a free extent and does all the dirty work required for allocation 5124 * returns the tree buffer or an ERR_PTR on error. 5125 */ 5126 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5127 struct btrfs_root *root, 5128 u64 parent, u64 root_objectid, 5129 const struct btrfs_disk_key *key, 5130 int level, u64 hint, 5131 u64 empty_size, 5132 u64 reloc_src_root, 5133 enum btrfs_lock_nesting nest) 5134 { 5135 struct btrfs_fs_info *fs_info = root->fs_info; 5136 struct btrfs_key ins; 5137 struct btrfs_block_rsv *block_rsv; 5138 struct extent_buffer *buf; 5139 struct btrfs_delayed_extent_op *extent_op; 5140 struct btrfs_ref generic_ref = { 0 }; 5141 u64 flags = 0; 5142 int ret; 5143 u32 blocksize = fs_info->nodesize; 5144 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5145 u64 owning_root; 5146 5147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5148 if (btrfs_is_testing(fs_info)) { 5149 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5150 level, root_objectid, nest); 5151 if (!IS_ERR(buf)) 5152 root->alloc_bytenr += blocksize; 5153 return buf; 5154 } 5155 #endif 5156 5157 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5158 if (IS_ERR(block_rsv)) 5159 return ERR_CAST(block_rsv); 5160 5161 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5162 empty_size, hint, &ins, 0, 0); 5163 if (ret) 5164 goto out_unuse; 5165 5166 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5167 root_objectid, nest); 5168 if (IS_ERR(buf)) { 5169 ret = PTR_ERR(buf); 5170 goto out_free_reserved; 5171 } 5172 owning_root = btrfs_header_owner(buf); 5173 5174 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5175 if (parent == 0) 5176 parent = ins.objectid; 5177 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5178 owning_root = reloc_src_root; 5179 } else 5180 BUG_ON(parent > 0); 5181 5182 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5183 extent_op = btrfs_alloc_delayed_extent_op(); 5184 if (!extent_op) { 5185 ret = -ENOMEM; 5186 goto out_free_buf; 5187 } 5188 if (key) 5189 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5190 else 5191 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5192 extent_op->flags_to_set = flags; 5193 extent_op->update_key = skinny_metadata ? false : true; 5194 extent_op->update_flags = true; 5195 extent_op->level = level; 5196 5197 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT, 5198 ins.objectid, ins.offset, parent, owning_root); 5199 btrfs_init_tree_ref(&generic_ref, level, root_objectid, 5200 root->root_key.objectid, false); 5201 btrfs_ref_tree_mod(fs_info, &generic_ref); 5202 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5203 if (ret) 5204 goto out_free_delayed; 5205 } 5206 return buf; 5207 5208 out_free_delayed: 5209 btrfs_free_delayed_extent_op(extent_op); 5210 out_free_buf: 5211 btrfs_tree_unlock(buf); 5212 free_extent_buffer(buf); 5213 out_free_reserved: 5214 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); 5215 out_unuse: 5216 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5217 return ERR_PTR(ret); 5218 } 5219 5220 struct walk_control { 5221 u64 refs[BTRFS_MAX_LEVEL]; 5222 u64 flags[BTRFS_MAX_LEVEL]; 5223 struct btrfs_key update_progress; 5224 struct btrfs_key drop_progress; 5225 int drop_level; 5226 int stage; 5227 int level; 5228 int shared_level; 5229 int update_ref; 5230 int keep_locks; 5231 int reada_slot; 5232 int reada_count; 5233 int restarted; 5234 }; 5235 5236 #define DROP_REFERENCE 1 5237 #define UPDATE_BACKREF 2 5238 5239 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5240 struct btrfs_root *root, 5241 struct walk_control *wc, 5242 struct btrfs_path *path) 5243 { 5244 struct btrfs_fs_info *fs_info = root->fs_info; 5245 u64 bytenr; 5246 u64 generation; 5247 u64 refs; 5248 u64 flags; 5249 u32 nritems; 5250 struct btrfs_key key; 5251 struct extent_buffer *eb; 5252 int ret; 5253 int slot; 5254 int nread = 0; 5255 5256 if (path->slots[wc->level] < wc->reada_slot) { 5257 wc->reada_count = wc->reada_count * 2 / 3; 5258 wc->reada_count = max(wc->reada_count, 2); 5259 } else { 5260 wc->reada_count = wc->reada_count * 3 / 2; 5261 wc->reada_count = min_t(int, wc->reada_count, 5262 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5263 } 5264 5265 eb = path->nodes[wc->level]; 5266 nritems = btrfs_header_nritems(eb); 5267 5268 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5269 if (nread >= wc->reada_count) 5270 break; 5271 5272 cond_resched(); 5273 bytenr = btrfs_node_blockptr(eb, slot); 5274 generation = btrfs_node_ptr_generation(eb, slot); 5275 5276 if (slot == path->slots[wc->level]) 5277 goto reada; 5278 5279 if (wc->stage == UPDATE_BACKREF && 5280 generation <= root->root_key.offset) 5281 continue; 5282 5283 /* We don't lock the tree block, it's OK to be racy here */ 5284 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5285 wc->level - 1, 1, &refs, 5286 &flags, NULL); 5287 /* We don't care about errors in readahead. */ 5288 if (ret < 0) 5289 continue; 5290 BUG_ON(refs == 0); 5291 5292 if (wc->stage == DROP_REFERENCE) { 5293 if (refs == 1) 5294 goto reada; 5295 5296 if (wc->level == 1 && 5297 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5298 continue; 5299 if (!wc->update_ref || 5300 generation <= root->root_key.offset) 5301 continue; 5302 btrfs_node_key_to_cpu(eb, &key, slot); 5303 ret = btrfs_comp_cpu_keys(&key, 5304 &wc->update_progress); 5305 if (ret < 0) 5306 continue; 5307 } else { 5308 if (wc->level == 1 && 5309 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5310 continue; 5311 } 5312 reada: 5313 btrfs_readahead_node_child(eb, slot); 5314 nread++; 5315 } 5316 wc->reada_slot = slot; 5317 } 5318 5319 /* 5320 * helper to process tree block while walking down the tree. 5321 * 5322 * when wc->stage == UPDATE_BACKREF, this function updates 5323 * back refs for pointers in the block. 5324 * 5325 * NOTE: return value 1 means we should stop walking down. 5326 */ 5327 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5328 struct btrfs_root *root, 5329 struct btrfs_path *path, 5330 struct walk_control *wc, int lookup_info) 5331 { 5332 struct btrfs_fs_info *fs_info = root->fs_info; 5333 int level = wc->level; 5334 struct extent_buffer *eb = path->nodes[level]; 5335 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5336 int ret; 5337 5338 if (wc->stage == UPDATE_BACKREF && 5339 btrfs_header_owner(eb) != root->root_key.objectid) 5340 return 1; 5341 5342 /* 5343 * when reference count of tree block is 1, it won't increase 5344 * again. once full backref flag is set, we never clear it. 5345 */ 5346 if (lookup_info && 5347 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5348 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5349 BUG_ON(!path->locks[level]); 5350 ret = btrfs_lookup_extent_info(trans, fs_info, 5351 eb->start, level, 1, 5352 &wc->refs[level], 5353 &wc->flags[level], 5354 NULL); 5355 BUG_ON(ret == -ENOMEM); 5356 if (ret) 5357 return ret; 5358 BUG_ON(wc->refs[level] == 0); 5359 } 5360 5361 if (wc->stage == DROP_REFERENCE) { 5362 if (wc->refs[level] > 1) 5363 return 1; 5364 5365 if (path->locks[level] && !wc->keep_locks) { 5366 btrfs_tree_unlock_rw(eb, path->locks[level]); 5367 path->locks[level] = 0; 5368 } 5369 return 0; 5370 } 5371 5372 /* wc->stage == UPDATE_BACKREF */ 5373 if (!(wc->flags[level] & flag)) { 5374 BUG_ON(!path->locks[level]); 5375 ret = btrfs_inc_ref(trans, root, eb, 1); 5376 BUG_ON(ret); /* -ENOMEM */ 5377 ret = btrfs_dec_ref(trans, root, eb, 0); 5378 BUG_ON(ret); /* -ENOMEM */ 5379 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5380 BUG_ON(ret); /* -ENOMEM */ 5381 wc->flags[level] |= flag; 5382 } 5383 5384 /* 5385 * the block is shared by multiple trees, so it's not good to 5386 * keep the tree lock 5387 */ 5388 if (path->locks[level] && level > 0) { 5389 btrfs_tree_unlock_rw(eb, path->locks[level]); 5390 path->locks[level] = 0; 5391 } 5392 return 0; 5393 } 5394 5395 /* 5396 * This is used to verify a ref exists for this root to deal with a bug where we 5397 * would have a drop_progress key that hadn't been updated properly. 5398 */ 5399 static int check_ref_exists(struct btrfs_trans_handle *trans, 5400 struct btrfs_root *root, u64 bytenr, u64 parent, 5401 int level) 5402 { 5403 struct btrfs_path *path; 5404 struct btrfs_extent_inline_ref *iref; 5405 int ret; 5406 5407 path = btrfs_alloc_path(); 5408 if (!path) 5409 return -ENOMEM; 5410 5411 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5412 root->fs_info->nodesize, parent, 5413 root->root_key.objectid, level, 0); 5414 btrfs_free_path(path); 5415 if (ret == -ENOENT) 5416 return 0; 5417 if (ret < 0) 5418 return ret; 5419 return 1; 5420 } 5421 5422 /* 5423 * helper to process tree block pointer. 5424 * 5425 * when wc->stage == DROP_REFERENCE, this function checks 5426 * reference count of the block pointed to. if the block 5427 * is shared and we need update back refs for the subtree 5428 * rooted at the block, this function changes wc->stage to 5429 * UPDATE_BACKREF. if the block is shared and there is no 5430 * need to update back, this function drops the reference 5431 * to the block. 5432 * 5433 * NOTE: return value 1 means we should stop walking down. 5434 */ 5435 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5436 struct btrfs_root *root, 5437 struct btrfs_path *path, 5438 struct walk_control *wc, int *lookup_info) 5439 { 5440 struct btrfs_fs_info *fs_info = root->fs_info; 5441 u64 bytenr; 5442 u64 generation; 5443 u64 parent; 5444 u64 owner_root = 0; 5445 struct btrfs_tree_parent_check check = { 0 }; 5446 struct btrfs_key key; 5447 struct btrfs_ref ref = { 0 }; 5448 struct extent_buffer *next; 5449 int level = wc->level; 5450 int reada = 0; 5451 int ret = 0; 5452 bool need_account = false; 5453 5454 generation = btrfs_node_ptr_generation(path->nodes[level], 5455 path->slots[level]); 5456 /* 5457 * if the lower level block was created before the snapshot 5458 * was created, we know there is no need to update back refs 5459 * for the subtree 5460 */ 5461 if (wc->stage == UPDATE_BACKREF && 5462 generation <= root->root_key.offset) { 5463 *lookup_info = 1; 5464 return 1; 5465 } 5466 5467 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5468 5469 check.level = level - 1; 5470 check.transid = generation; 5471 check.owner_root = root->root_key.objectid; 5472 check.has_first_key = true; 5473 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, 5474 path->slots[level]); 5475 5476 next = find_extent_buffer(fs_info, bytenr); 5477 if (!next) { 5478 next = btrfs_find_create_tree_block(fs_info, bytenr, 5479 root->root_key.objectid, level - 1); 5480 if (IS_ERR(next)) 5481 return PTR_ERR(next); 5482 reada = 1; 5483 } 5484 btrfs_tree_lock(next); 5485 5486 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5487 &wc->refs[level - 1], 5488 &wc->flags[level - 1], 5489 &owner_root); 5490 if (ret < 0) 5491 goto out_unlock; 5492 5493 if (unlikely(wc->refs[level - 1] == 0)) { 5494 btrfs_err(fs_info, "Missing references."); 5495 ret = -EIO; 5496 goto out_unlock; 5497 } 5498 *lookup_info = 0; 5499 5500 if (wc->stage == DROP_REFERENCE) { 5501 if (wc->refs[level - 1] > 1) { 5502 need_account = true; 5503 if (level == 1 && 5504 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5505 goto skip; 5506 5507 if (!wc->update_ref || 5508 generation <= root->root_key.offset) 5509 goto skip; 5510 5511 btrfs_node_key_to_cpu(path->nodes[level], &key, 5512 path->slots[level]); 5513 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 5514 if (ret < 0) 5515 goto skip; 5516 5517 wc->stage = UPDATE_BACKREF; 5518 wc->shared_level = level - 1; 5519 } 5520 } else { 5521 if (level == 1 && 5522 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 5523 goto skip; 5524 } 5525 5526 if (!btrfs_buffer_uptodate(next, generation, 0)) { 5527 btrfs_tree_unlock(next); 5528 free_extent_buffer(next); 5529 next = NULL; 5530 *lookup_info = 1; 5531 } 5532 5533 if (!next) { 5534 if (reada && level == 1) 5535 reada_walk_down(trans, root, wc, path); 5536 next = read_tree_block(fs_info, bytenr, &check); 5537 if (IS_ERR(next)) { 5538 return PTR_ERR(next); 5539 } else if (!extent_buffer_uptodate(next)) { 5540 free_extent_buffer(next); 5541 return -EIO; 5542 } 5543 btrfs_tree_lock(next); 5544 } 5545 5546 level--; 5547 ASSERT(level == btrfs_header_level(next)); 5548 if (level != btrfs_header_level(next)) { 5549 btrfs_err(root->fs_info, "mismatched level"); 5550 ret = -EIO; 5551 goto out_unlock; 5552 } 5553 path->nodes[level] = next; 5554 path->slots[level] = 0; 5555 path->locks[level] = BTRFS_WRITE_LOCK; 5556 wc->level = level; 5557 if (wc->level == 1) 5558 wc->reada_slot = 0; 5559 return 0; 5560 skip: 5561 wc->refs[level - 1] = 0; 5562 wc->flags[level - 1] = 0; 5563 if (wc->stage == DROP_REFERENCE) { 5564 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5565 parent = path->nodes[level]->start; 5566 } else { 5567 ASSERT(root->root_key.objectid == 5568 btrfs_header_owner(path->nodes[level])); 5569 if (root->root_key.objectid != 5570 btrfs_header_owner(path->nodes[level])) { 5571 btrfs_err(root->fs_info, 5572 "mismatched block owner"); 5573 ret = -EIO; 5574 goto out_unlock; 5575 } 5576 parent = 0; 5577 } 5578 5579 /* 5580 * If we had a drop_progress we need to verify the refs are set 5581 * as expected. If we find our ref then we know that from here 5582 * on out everything should be correct, and we can clear the 5583 * ->restarted flag. 5584 */ 5585 if (wc->restarted) { 5586 ret = check_ref_exists(trans, root, bytenr, parent, 5587 level - 1); 5588 if (ret < 0) 5589 goto out_unlock; 5590 if (ret == 0) 5591 goto no_delete; 5592 ret = 0; 5593 wc->restarted = 0; 5594 } 5595 5596 /* 5597 * Reloc tree doesn't contribute to qgroup numbers, and we have 5598 * already accounted them at merge time (replace_path), 5599 * thus we could skip expensive subtree trace here. 5600 */ 5601 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 5602 need_account) { 5603 ret = btrfs_qgroup_trace_subtree(trans, next, 5604 generation, level - 1); 5605 if (ret) { 5606 btrfs_err_rl(fs_info, 5607 "Error %d accounting shared subtree. Quota is out of sync, rescan required.", 5608 ret); 5609 } 5610 } 5611 5612 /* 5613 * We need to update the next key in our walk control so we can 5614 * update the drop_progress key accordingly. We don't care if 5615 * find_next_key doesn't find a key because that means we're at 5616 * the end and are going to clean up now. 5617 */ 5618 wc->drop_level = level; 5619 find_next_key(path, level, &wc->drop_progress); 5620 5621 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 5622 fs_info->nodesize, parent, owner_root); 5623 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid, 5624 0, false); 5625 ret = btrfs_free_extent(trans, &ref); 5626 if (ret) 5627 goto out_unlock; 5628 } 5629 no_delete: 5630 *lookup_info = 1; 5631 ret = 1; 5632 5633 out_unlock: 5634 btrfs_tree_unlock(next); 5635 free_extent_buffer(next); 5636 5637 return ret; 5638 } 5639 5640 /* 5641 * helper to process tree block while walking up the tree. 5642 * 5643 * when wc->stage == DROP_REFERENCE, this function drops 5644 * reference count on the block. 5645 * 5646 * when wc->stage == UPDATE_BACKREF, this function changes 5647 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5648 * to UPDATE_BACKREF previously while processing the block. 5649 * 5650 * NOTE: return value 1 means we should stop walking up. 5651 */ 5652 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5653 struct btrfs_root *root, 5654 struct btrfs_path *path, 5655 struct walk_control *wc) 5656 { 5657 struct btrfs_fs_info *fs_info = root->fs_info; 5658 int ret; 5659 int level = wc->level; 5660 struct extent_buffer *eb = path->nodes[level]; 5661 u64 parent = 0; 5662 5663 if (wc->stage == UPDATE_BACKREF) { 5664 BUG_ON(wc->shared_level < level); 5665 if (level < wc->shared_level) 5666 goto out; 5667 5668 ret = find_next_key(path, level + 1, &wc->update_progress); 5669 if (ret > 0) 5670 wc->update_ref = 0; 5671 5672 wc->stage = DROP_REFERENCE; 5673 wc->shared_level = -1; 5674 path->slots[level] = 0; 5675 5676 /* 5677 * check reference count again if the block isn't locked. 5678 * we should start walking down the tree again if reference 5679 * count is one. 5680 */ 5681 if (!path->locks[level]) { 5682 BUG_ON(level == 0); 5683 btrfs_tree_lock(eb); 5684 path->locks[level] = BTRFS_WRITE_LOCK; 5685 5686 ret = btrfs_lookup_extent_info(trans, fs_info, 5687 eb->start, level, 1, 5688 &wc->refs[level], 5689 &wc->flags[level], 5690 NULL); 5691 if (ret < 0) { 5692 btrfs_tree_unlock_rw(eb, path->locks[level]); 5693 path->locks[level] = 0; 5694 return ret; 5695 } 5696 BUG_ON(wc->refs[level] == 0); 5697 if (wc->refs[level] == 1) { 5698 btrfs_tree_unlock_rw(eb, path->locks[level]); 5699 path->locks[level] = 0; 5700 return 1; 5701 } 5702 } 5703 } 5704 5705 /* wc->stage == DROP_REFERENCE */ 5706 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 5707 5708 if (wc->refs[level] == 1) { 5709 if (level == 0) { 5710 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5711 ret = btrfs_dec_ref(trans, root, eb, 1); 5712 else 5713 ret = btrfs_dec_ref(trans, root, eb, 0); 5714 BUG_ON(ret); /* -ENOMEM */ 5715 if (is_fstree(root->root_key.objectid)) { 5716 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5717 if (ret) { 5718 btrfs_err_rl(fs_info, 5719 "error %d accounting leaf items, quota is out of sync, rescan required", 5720 ret); 5721 } 5722 } 5723 } 5724 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5725 if (!path->locks[level]) { 5726 btrfs_tree_lock(eb); 5727 path->locks[level] = BTRFS_WRITE_LOCK; 5728 } 5729 btrfs_clear_buffer_dirty(trans, eb); 5730 } 5731 5732 if (eb == root->node) { 5733 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5734 parent = eb->start; 5735 else if (root->root_key.objectid != btrfs_header_owner(eb)) 5736 goto owner_mismatch; 5737 } else { 5738 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5739 parent = path->nodes[level + 1]->start; 5740 else if (root->root_key.objectid != 5741 btrfs_header_owner(path->nodes[level + 1])) 5742 goto owner_mismatch; 5743 } 5744 5745 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5746 wc->refs[level] == 1); 5747 out: 5748 wc->refs[level] = 0; 5749 wc->flags[level] = 0; 5750 return 0; 5751 5752 owner_mismatch: 5753 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5754 btrfs_header_owner(eb), root->root_key.objectid); 5755 return -EUCLEAN; 5756 } 5757 5758 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5759 struct btrfs_root *root, 5760 struct btrfs_path *path, 5761 struct walk_control *wc) 5762 { 5763 int level = wc->level; 5764 int lookup_info = 1; 5765 int ret = 0; 5766 5767 while (level >= 0) { 5768 ret = walk_down_proc(trans, root, path, wc, lookup_info); 5769 if (ret) 5770 break; 5771 5772 if (level == 0) 5773 break; 5774 5775 if (path->slots[level] >= 5776 btrfs_header_nritems(path->nodes[level])) 5777 break; 5778 5779 ret = do_walk_down(trans, root, path, wc, &lookup_info); 5780 if (ret > 0) { 5781 path->slots[level]++; 5782 continue; 5783 } else if (ret < 0) 5784 break; 5785 level = wc->level; 5786 } 5787 return (ret == 1) ? 0 : ret; 5788 } 5789 5790 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5791 struct btrfs_root *root, 5792 struct btrfs_path *path, 5793 struct walk_control *wc, int max_level) 5794 { 5795 int level = wc->level; 5796 int ret; 5797 5798 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 5799 while (level < max_level && path->nodes[level]) { 5800 wc->level = level; 5801 if (path->slots[level] + 1 < 5802 btrfs_header_nritems(path->nodes[level])) { 5803 path->slots[level]++; 5804 return 0; 5805 } else { 5806 ret = walk_up_proc(trans, root, path, wc); 5807 if (ret > 0) 5808 return 0; 5809 if (ret < 0) 5810 return ret; 5811 5812 if (path->locks[level]) { 5813 btrfs_tree_unlock_rw(path->nodes[level], 5814 path->locks[level]); 5815 path->locks[level] = 0; 5816 } 5817 free_extent_buffer(path->nodes[level]); 5818 path->nodes[level] = NULL; 5819 level++; 5820 } 5821 } 5822 return 1; 5823 } 5824 5825 /* 5826 * drop a subvolume tree. 5827 * 5828 * this function traverses the tree freeing any blocks that only 5829 * referenced by the tree. 5830 * 5831 * when a shared tree block is found. this function decreases its 5832 * reference count by one. if update_ref is true, this function 5833 * also make sure backrefs for the shared block and all lower level 5834 * blocks are properly updated. 5835 * 5836 * If called with for_reloc == 0, may exit early with -EAGAIN 5837 */ 5838 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 5839 { 5840 const bool is_reloc_root = (root->root_key.objectid == 5841 BTRFS_TREE_RELOC_OBJECTID); 5842 struct btrfs_fs_info *fs_info = root->fs_info; 5843 struct btrfs_path *path; 5844 struct btrfs_trans_handle *trans; 5845 struct btrfs_root *tree_root = fs_info->tree_root; 5846 struct btrfs_root_item *root_item = &root->root_item; 5847 struct walk_control *wc; 5848 struct btrfs_key key; 5849 int err = 0; 5850 int ret; 5851 int level; 5852 bool root_dropped = false; 5853 bool unfinished_drop = false; 5854 5855 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid); 5856 5857 path = btrfs_alloc_path(); 5858 if (!path) { 5859 err = -ENOMEM; 5860 goto out; 5861 } 5862 5863 wc = kzalloc(sizeof(*wc), GFP_NOFS); 5864 if (!wc) { 5865 btrfs_free_path(path); 5866 err = -ENOMEM; 5867 goto out; 5868 } 5869 5870 /* 5871 * Use join to avoid potential EINTR from transaction start. See 5872 * wait_reserve_ticket and the whole reservation callchain. 5873 */ 5874 if (for_reloc) 5875 trans = btrfs_join_transaction(tree_root); 5876 else 5877 trans = btrfs_start_transaction(tree_root, 0); 5878 if (IS_ERR(trans)) { 5879 err = PTR_ERR(trans); 5880 goto out_free; 5881 } 5882 5883 err = btrfs_run_delayed_items(trans); 5884 if (err) 5885 goto out_end_trans; 5886 5887 /* 5888 * This will help us catch people modifying the fs tree while we're 5889 * dropping it. It is unsafe to mess with the fs tree while it's being 5890 * dropped as we unlock the root node and parent nodes as we walk down 5891 * the tree, assuming nothing will change. If something does change 5892 * then we'll have stale information and drop references to blocks we've 5893 * already dropped. 5894 */ 5895 set_bit(BTRFS_ROOT_DELETING, &root->state); 5896 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 5897 5898 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 5899 level = btrfs_header_level(root->node); 5900 path->nodes[level] = btrfs_lock_root_node(root); 5901 path->slots[level] = 0; 5902 path->locks[level] = BTRFS_WRITE_LOCK; 5903 memset(&wc->update_progress, 0, 5904 sizeof(wc->update_progress)); 5905 } else { 5906 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 5907 memcpy(&wc->update_progress, &key, 5908 sizeof(wc->update_progress)); 5909 5910 level = btrfs_root_drop_level(root_item); 5911 BUG_ON(level == 0); 5912 path->lowest_level = level; 5913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5914 path->lowest_level = 0; 5915 if (ret < 0) { 5916 err = ret; 5917 goto out_end_trans; 5918 } 5919 WARN_ON(ret > 0); 5920 5921 /* 5922 * unlock our path, this is safe because only this 5923 * function is allowed to delete this snapshot 5924 */ 5925 btrfs_unlock_up_safe(path, 0); 5926 5927 level = btrfs_header_level(root->node); 5928 while (1) { 5929 btrfs_tree_lock(path->nodes[level]); 5930 path->locks[level] = BTRFS_WRITE_LOCK; 5931 5932 ret = btrfs_lookup_extent_info(trans, fs_info, 5933 path->nodes[level]->start, 5934 level, 1, &wc->refs[level], 5935 &wc->flags[level], NULL); 5936 if (ret < 0) { 5937 err = ret; 5938 goto out_end_trans; 5939 } 5940 BUG_ON(wc->refs[level] == 0); 5941 5942 if (level == btrfs_root_drop_level(root_item)) 5943 break; 5944 5945 btrfs_tree_unlock(path->nodes[level]); 5946 path->locks[level] = 0; 5947 WARN_ON(wc->refs[level] != 1); 5948 level--; 5949 } 5950 } 5951 5952 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 5953 wc->level = level; 5954 wc->shared_level = -1; 5955 wc->stage = DROP_REFERENCE; 5956 wc->update_ref = update_ref; 5957 wc->keep_locks = 0; 5958 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 5959 5960 while (1) { 5961 5962 ret = walk_down_tree(trans, root, path, wc); 5963 if (ret < 0) { 5964 btrfs_abort_transaction(trans, ret); 5965 err = ret; 5966 break; 5967 } 5968 5969 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 5970 if (ret < 0) { 5971 btrfs_abort_transaction(trans, ret); 5972 err = ret; 5973 break; 5974 } 5975 5976 if (ret > 0) { 5977 BUG_ON(wc->stage != DROP_REFERENCE); 5978 break; 5979 } 5980 5981 if (wc->stage == DROP_REFERENCE) { 5982 wc->drop_level = wc->level; 5983 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 5984 &wc->drop_progress, 5985 path->slots[wc->drop_level]); 5986 } 5987 btrfs_cpu_key_to_disk(&root_item->drop_progress, 5988 &wc->drop_progress); 5989 btrfs_set_root_drop_level(root_item, wc->drop_level); 5990 5991 BUG_ON(wc->level == 0); 5992 if (btrfs_should_end_transaction(trans) || 5993 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 5994 ret = btrfs_update_root(trans, tree_root, 5995 &root->root_key, 5996 root_item); 5997 if (ret) { 5998 btrfs_abort_transaction(trans, ret); 5999 err = ret; 6000 goto out_end_trans; 6001 } 6002 6003 if (!is_reloc_root) 6004 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6005 6006 btrfs_end_transaction_throttle(trans); 6007 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6008 btrfs_debug(fs_info, 6009 "drop snapshot early exit"); 6010 err = -EAGAIN; 6011 goto out_free; 6012 } 6013 6014 /* 6015 * Use join to avoid potential EINTR from transaction 6016 * start. See wait_reserve_ticket and the whole 6017 * reservation callchain. 6018 */ 6019 if (for_reloc) 6020 trans = btrfs_join_transaction(tree_root); 6021 else 6022 trans = btrfs_start_transaction(tree_root, 0); 6023 if (IS_ERR(trans)) { 6024 err = PTR_ERR(trans); 6025 goto out_free; 6026 } 6027 } 6028 } 6029 btrfs_release_path(path); 6030 if (err) 6031 goto out_end_trans; 6032 6033 ret = btrfs_del_root(trans, &root->root_key); 6034 if (ret) { 6035 btrfs_abort_transaction(trans, ret); 6036 err = ret; 6037 goto out_end_trans; 6038 } 6039 6040 if (!is_reloc_root) { 6041 ret = btrfs_find_root(tree_root, &root->root_key, path, 6042 NULL, NULL); 6043 if (ret < 0) { 6044 btrfs_abort_transaction(trans, ret); 6045 err = ret; 6046 goto out_end_trans; 6047 } else if (ret > 0) { 6048 /* if we fail to delete the orphan item this time 6049 * around, it'll get picked up the next time. 6050 * 6051 * The most common failure here is just -ENOENT. 6052 */ 6053 btrfs_del_orphan_item(trans, tree_root, 6054 root->root_key.objectid); 6055 } 6056 } 6057 6058 /* 6059 * This subvolume is going to be completely dropped, and won't be 6060 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6061 * commit transaction time. So free it here manually. 6062 */ 6063 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6064 btrfs_qgroup_free_meta_all_pertrans(root); 6065 6066 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6067 btrfs_add_dropped_root(trans, root); 6068 else 6069 btrfs_put_root(root); 6070 root_dropped = true; 6071 out_end_trans: 6072 if (!is_reloc_root) 6073 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6074 6075 btrfs_end_transaction_throttle(trans); 6076 out_free: 6077 kfree(wc); 6078 btrfs_free_path(path); 6079 out: 6080 /* 6081 * We were an unfinished drop root, check to see if there are any 6082 * pending, and if not clear and wake up any waiters. 6083 */ 6084 if (!err && unfinished_drop) 6085 btrfs_maybe_wake_unfinished_drop(fs_info); 6086 6087 /* 6088 * So if we need to stop dropping the snapshot for whatever reason we 6089 * need to make sure to add it back to the dead root list so that we 6090 * keep trying to do the work later. This also cleans up roots if we 6091 * don't have it in the radix (like when we recover after a power fail 6092 * or unmount) so we don't leak memory. 6093 */ 6094 if (!for_reloc && !root_dropped) 6095 btrfs_add_dead_root(root); 6096 return err; 6097 } 6098 6099 /* 6100 * drop subtree rooted at tree block 'node'. 6101 * 6102 * NOTE: this function will unlock and release tree block 'node' 6103 * only used by relocation code 6104 */ 6105 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6106 struct btrfs_root *root, 6107 struct extent_buffer *node, 6108 struct extent_buffer *parent) 6109 { 6110 struct btrfs_fs_info *fs_info = root->fs_info; 6111 struct btrfs_path *path; 6112 struct walk_control *wc; 6113 int level; 6114 int parent_level; 6115 int ret = 0; 6116 int wret; 6117 6118 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6119 6120 path = btrfs_alloc_path(); 6121 if (!path) 6122 return -ENOMEM; 6123 6124 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6125 if (!wc) { 6126 btrfs_free_path(path); 6127 return -ENOMEM; 6128 } 6129 6130 btrfs_assert_tree_write_locked(parent); 6131 parent_level = btrfs_header_level(parent); 6132 atomic_inc(&parent->refs); 6133 path->nodes[parent_level] = parent; 6134 path->slots[parent_level] = btrfs_header_nritems(parent); 6135 6136 btrfs_assert_tree_write_locked(node); 6137 level = btrfs_header_level(node); 6138 path->nodes[level] = node; 6139 path->slots[level] = 0; 6140 path->locks[level] = BTRFS_WRITE_LOCK; 6141 6142 wc->refs[parent_level] = 1; 6143 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6144 wc->level = level; 6145 wc->shared_level = -1; 6146 wc->stage = DROP_REFERENCE; 6147 wc->update_ref = 0; 6148 wc->keep_locks = 1; 6149 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6150 6151 while (1) { 6152 wret = walk_down_tree(trans, root, path, wc); 6153 if (wret < 0) { 6154 ret = wret; 6155 break; 6156 } 6157 6158 wret = walk_up_tree(trans, root, path, wc, parent_level); 6159 if (wret < 0) 6160 ret = wret; 6161 if (wret != 0) 6162 break; 6163 } 6164 6165 kfree(wc); 6166 btrfs_free_path(path); 6167 return ret; 6168 } 6169 6170 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 6171 u64 start, u64 end) 6172 { 6173 return unpin_extent_range(fs_info, start, end, false); 6174 } 6175 6176 /* 6177 * It used to be that old block groups would be left around forever. 6178 * Iterating over them would be enough to trim unused space. Since we 6179 * now automatically remove them, we also need to iterate over unallocated 6180 * space. 6181 * 6182 * We don't want a transaction for this since the discard may take a 6183 * substantial amount of time. We don't require that a transaction be 6184 * running, but we do need to take a running transaction into account 6185 * to ensure that we're not discarding chunks that were released or 6186 * allocated in the current transaction. 6187 * 6188 * Holding the chunks lock will prevent other threads from allocating 6189 * or releasing chunks, but it won't prevent a running transaction 6190 * from committing and releasing the memory that the pending chunks 6191 * list head uses. For that, we need to take a reference to the 6192 * transaction and hold the commit root sem. We only need to hold 6193 * it while performing the free space search since we have already 6194 * held back allocations. 6195 */ 6196 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6197 { 6198 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6199 int ret; 6200 6201 *trimmed = 0; 6202 6203 /* Discard not supported = nothing to do. */ 6204 if (!bdev_max_discard_sectors(device->bdev)) 6205 return 0; 6206 6207 /* Not writable = nothing to do. */ 6208 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6209 return 0; 6210 6211 /* No free space = nothing to do. */ 6212 if (device->total_bytes <= device->bytes_used) 6213 return 0; 6214 6215 ret = 0; 6216 6217 while (1) { 6218 struct btrfs_fs_info *fs_info = device->fs_info; 6219 u64 bytes; 6220 6221 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6222 if (ret) 6223 break; 6224 6225 find_first_clear_extent_bit(&device->alloc_state, start, 6226 &start, &end, 6227 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6228 6229 /* Check if there are any CHUNK_* bits left */ 6230 if (start > device->total_bytes) { 6231 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 6232 btrfs_warn_in_rcu(fs_info, 6233 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6234 start, end - start + 1, 6235 btrfs_dev_name(device), 6236 device->total_bytes); 6237 mutex_unlock(&fs_info->chunk_mutex); 6238 ret = 0; 6239 break; 6240 } 6241 6242 /* Ensure we skip the reserved space on each device. */ 6243 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6244 6245 /* 6246 * If find_first_clear_extent_bit find a range that spans the 6247 * end of the device it will set end to -1, in this case it's up 6248 * to the caller to trim the value to the size of the device. 6249 */ 6250 end = min(end, device->total_bytes - 1); 6251 6252 len = end - start + 1; 6253 6254 /* We didn't find any extents */ 6255 if (!len) { 6256 mutex_unlock(&fs_info->chunk_mutex); 6257 ret = 0; 6258 break; 6259 } 6260 6261 ret = btrfs_issue_discard(device->bdev, start, len, 6262 &bytes); 6263 if (!ret) 6264 set_extent_bit(&device->alloc_state, start, 6265 start + bytes - 1, CHUNK_TRIMMED, NULL); 6266 mutex_unlock(&fs_info->chunk_mutex); 6267 6268 if (ret) 6269 break; 6270 6271 start += len; 6272 *trimmed += bytes; 6273 6274 if (fatal_signal_pending(current)) { 6275 ret = -ERESTARTSYS; 6276 break; 6277 } 6278 6279 cond_resched(); 6280 } 6281 6282 return ret; 6283 } 6284 6285 /* 6286 * Trim the whole filesystem by: 6287 * 1) trimming the free space in each block group 6288 * 2) trimming the unallocated space on each device 6289 * 6290 * This will also continue trimming even if a block group or device encounters 6291 * an error. The return value will be the last error, or 0 if nothing bad 6292 * happens. 6293 */ 6294 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6295 { 6296 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6297 struct btrfs_block_group *cache = NULL; 6298 struct btrfs_device *device; 6299 u64 group_trimmed; 6300 u64 range_end = U64_MAX; 6301 u64 start; 6302 u64 end; 6303 u64 trimmed = 0; 6304 u64 bg_failed = 0; 6305 u64 dev_failed = 0; 6306 int bg_ret = 0; 6307 int dev_ret = 0; 6308 int ret = 0; 6309 6310 if (range->start == U64_MAX) 6311 return -EINVAL; 6312 6313 /* 6314 * Check range overflow if range->len is set. 6315 * The default range->len is U64_MAX. 6316 */ 6317 if (range->len != U64_MAX && 6318 check_add_overflow(range->start, range->len, &range_end)) 6319 return -EINVAL; 6320 6321 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6322 for (; cache; cache = btrfs_next_block_group(cache)) { 6323 if (cache->start >= range_end) { 6324 btrfs_put_block_group(cache); 6325 break; 6326 } 6327 6328 start = max(range->start, cache->start); 6329 end = min(range_end, cache->start + cache->length); 6330 6331 if (end - start >= range->minlen) { 6332 if (!btrfs_block_group_done(cache)) { 6333 ret = btrfs_cache_block_group(cache, true); 6334 if (ret) { 6335 bg_failed++; 6336 bg_ret = ret; 6337 continue; 6338 } 6339 } 6340 ret = btrfs_trim_block_group(cache, 6341 &group_trimmed, 6342 start, 6343 end, 6344 range->minlen); 6345 6346 trimmed += group_trimmed; 6347 if (ret) { 6348 bg_failed++; 6349 bg_ret = ret; 6350 continue; 6351 } 6352 } 6353 } 6354 6355 if (bg_failed) 6356 btrfs_warn(fs_info, 6357 "failed to trim %llu block group(s), last error %d", 6358 bg_failed, bg_ret); 6359 6360 mutex_lock(&fs_devices->device_list_mutex); 6361 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6362 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6363 continue; 6364 6365 ret = btrfs_trim_free_extents(device, &group_trimmed); 6366 if (ret) { 6367 dev_failed++; 6368 dev_ret = ret; 6369 break; 6370 } 6371 6372 trimmed += group_trimmed; 6373 } 6374 mutex_unlock(&fs_devices->device_list_mutex); 6375 6376 if (dev_failed) 6377 btrfs_warn(fs_info, 6378 "failed to trim %llu device(s), last error %d", 6379 dev_failed, dev_ret); 6380 range->len = trimmed; 6381 if (bg_ret) 6382 return bg_ret; 6383 return dev_ret; 6384 } 6385