xref: /linux/fs/btrfs/extent-tree.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45 #include "raid-stripe-tree.h"
46 
47 #undef SCRAMBLE_DELAYED_REFS
48 
49 
50 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 			       struct btrfs_delayed_ref_head *href,
52 			       struct btrfs_delayed_ref_node *node, u64 parent,
53 			       u64 root_objectid, u64 owner_objectid,
54 			       u64 owner_offset,
55 			       struct btrfs_delayed_extent_op *extra_op);
56 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
57 				    struct extent_buffer *leaf,
58 				    struct btrfs_extent_item *ei);
59 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
60 				      u64 parent, u64 root_objectid,
61 				      u64 flags, u64 owner, u64 offset,
62 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
63 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
64 				     struct btrfs_delayed_ref_node *node,
65 				     struct btrfs_delayed_extent_op *extent_op);
66 static int find_next_key(struct btrfs_path *path, int level,
67 			 struct btrfs_key *key);
68 
69 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
70 {
71 	return (cache->flags & bits) == bits;
72 }
73 
74 /* simple helper to search for an existing data extent at a given offset */
75 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
76 {
77 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
78 	int ret;
79 	struct btrfs_key key;
80 	struct btrfs_path *path;
81 
82 	path = btrfs_alloc_path();
83 	if (!path)
84 		return -ENOMEM;
85 
86 	key.objectid = start;
87 	key.offset = len;
88 	key.type = BTRFS_EXTENT_ITEM_KEY;
89 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
90 	btrfs_free_path(path);
91 	return ret;
92 }
93 
94 /*
95  * helper function to lookup reference count and flags of a tree block.
96  *
97  * the head node for delayed ref is used to store the sum of all the
98  * reference count modifications queued up in the rbtree. the head
99  * node may also store the extent flags to set. This way you can check
100  * to see what the reference count and extent flags would be if all of
101  * the delayed refs are not processed.
102  */
103 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
104 			     struct btrfs_fs_info *fs_info, u64 bytenr,
105 			     u64 offset, int metadata, u64 *refs, u64 *flags,
106 			     u64 *owning_root)
107 {
108 	struct btrfs_root *extent_root;
109 	struct btrfs_delayed_ref_head *head;
110 	struct btrfs_delayed_ref_root *delayed_refs;
111 	struct btrfs_path *path;
112 	struct btrfs_extent_item *ei;
113 	struct extent_buffer *leaf;
114 	struct btrfs_key key;
115 	u32 item_size;
116 	u64 num_refs;
117 	u64 extent_flags;
118 	u64 owner = 0;
119 	int ret;
120 
121 	/*
122 	 * If we don't have skinny metadata, don't bother doing anything
123 	 * different
124 	 */
125 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
126 		offset = fs_info->nodesize;
127 		metadata = 0;
128 	}
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	if (!trans) {
135 		path->skip_locking = 1;
136 		path->search_commit_root = 1;
137 	}
138 
139 search_again:
140 	key.objectid = bytenr;
141 	key.offset = offset;
142 	if (metadata)
143 		key.type = BTRFS_METADATA_ITEM_KEY;
144 	else
145 		key.type = BTRFS_EXTENT_ITEM_KEY;
146 
147 	extent_root = btrfs_extent_root(fs_info, bytenr);
148 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
149 	if (ret < 0)
150 		goto out_free;
151 
152 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
153 		if (path->slots[0]) {
154 			path->slots[0]--;
155 			btrfs_item_key_to_cpu(path->nodes[0], &key,
156 					      path->slots[0]);
157 			if (key.objectid == bytenr &&
158 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
159 			    key.offset == fs_info->nodesize)
160 				ret = 0;
161 		}
162 	}
163 
164 	if (ret == 0) {
165 		leaf = path->nodes[0];
166 		item_size = btrfs_item_size(leaf, path->slots[0]);
167 		if (item_size >= sizeof(*ei)) {
168 			ei = btrfs_item_ptr(leaf, path->slots[0],
169 					    struct btrfs_extent_item);
170 			num_refs = btrfs_extent_refs(leaf, ei);
171 			extent_flags = btrfs_extent_flags(leaf, ei);
172 			owner = btrfs_get_extent_owner_root(fs_info, leaf,
173 							    path->slots[0]);
174 		} else {
175 			ret = -EUCLEAN;
176 			btrfs_err(fs_info,
177 			"unexpected extent item size, has %u expect >= %zu",
178 				  item_size, sizeof(*ei));
179 			if (trans)
180 				btrfs_abort_transaction(trans, ret);
181 			else
182 				btrfs_handle_fs_error(fs_info, ret, NULL);
183 
184 			goto out_free;
185 		}
186 
187 		BUG_ON(num_refs == 0);
188 	} else {
189 		num_refs = 0;
190 		extent_flags = 0;
191 		ret = 0;
192 	}
193 
194 	if (!trans)
195 		goto out;
196 
197 	delayed_refs = &trans->transaction->delayed_refs;
198 	spin_lock(&delayed_refs->lock);
199 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
200 	if (head) {
201 		if (!mutex_trylock(&head->mutex)) {
202 			refcount_inc(&head->refs);
203 			spin_unlock(&delayed_refs->lock);
204 
205 			btrfs_release_path(path);
206 
207 			/*
208 			 * Mutex was contended, block until it's released and try
209 			 * again
210 			 */
211 			mutex_lock(&head->mutex);
212 			mutex_unlock(&head->mutex);
213 			btrfs_put_delayed_ref_head(head);
214 			goto search_again;
215 		}
216 		spin_lock(&head->lock);
217 		if (head->extent_op && head->extent_op->update_flags)
218 			extent_flags |= head->extent_op->flags_to_set;
219 		else
220 			BUG_ON(num_refs == 0);
221 
222 		num_refs += head->ref_mod;
223 		spin_unlock(&head->lock);
224 		mutex_unlock(&head->mutex);
225 	}
226 	spin_unlock(&delayed_refs->lock);
227 out:
228 	WARN_ON(num_refs == 0);
229 	if (refs)
230 		*refs = num_refs;
231 	if (flags)
232 		*flags = extent_flags;
233 	if (owning_root)
234 		*owning_root = owner;
235 out_free:
236 	btrfs_free_path(path);
237 	return ret;
238 }
239 
240 /*
241  * Back reference rules.  Back refs have three main goals:
242  *
243  * 1) differentiate between all holders of references to an extent so that
244  *    when a reference is dropped we can make sure it was a valid reference
245  *    before freeing the extent.
246  *
247  * 2) Provide enough information to quickly find the holders of an extent
248  *    if we notice a given block is corrupted or bad.
249  *
250  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
251  *    maintenance.  This is actually the same as #2, but with a slightly
252  *    different use case.
253  *
254  * There are two kinds of back refs. The implicit back refs is optimized
255  * for pointers in non-shared tree blocks. For a given pointer in a block,
256  * back refs of this kind provide information about the block's owner tree
257  * and the pointer's key. These information allow us to find the block by
258  * b-tree searching. The full back refs is for pointers in tree blocks not
259  * referenced by their owner trees. The location of tree block is recorded
260  * in the back refs. Actually the full back refs is generic, and can be
261  * used in all cases the implicit back refs is used. The major shortcoming
262  * of the full back refs is its overhead. Every time a tree block gets
263  * COWed, we have to update back refs entry for all pointers in it.
264  *
265  * For a newly allocated tree block, we use implicit back refs for
266  * pointers in it. This means most tree related operations only involve
267  * implicit back refs. For a tree block created in old transaction, the
268  * only way to drop a reference to it is COW it. So we can detect the
269  * event that tree block loses its owner tree's reference and do the
270  * back refs conversion.
271  *
272  * When a tree block is COWed through a tree, there are four cases:
273  *
274  * The reference count of the block is one and the tree is the block's
275  * owner tree. Nothing to do in this case.
276  *
277  * The reference count of the block is one and the tree is not the
278  * block's owner tree. In this case, full back refs is used for pointers
279  * in the block. Remove these full back refs, add implicit back refs for
280  * every pointers in the new block.
281  *
282  * The reference count of the block is greater than one and the tree is
283  * the block's owner tree. In this case, implicit back refs is used for
284  * pointers in the block. Add full back refs for every pointers in the
285  * block, increase lower level extents' reference counts. The original
286  * implicit back refs are entailed to the new block.
287  *
288  * The reference count of the block is greater than one and the tree is
289  * not the block's owner tree. Add implicit back refs for every pointer in
290  * the new block, increase lower level extents' reference count.
291  *
292  * Back Reference Key composing:
293  *
294  * The key objectid corresponds to the first byte in the extent,
295  * The key type is used to differentiate between types of back refs.
296  * There are different meanings of the key offset for different types
297  * of back refs.
298  *
299  * File extents can be referenced by:
300  *
301  * - multiple snapshots, subvolumes, or different generations in one subvol
302  * - different files inside a single subvolume
303  * - different offsets inside a file (bookend extents in file.c)
304  *
305  * The extent ref structure for the implicit back refs has fields for:
306  *
307  * - Objectid of the subvolume root
308  * - objectid of the file holding the reference
309  * - original offset in the file
310  * - how many bookend extents
311  *
312  * The key offset for the implicit back refs is hash of the first
313  * three fields.
314  *
315  * The extent ref structure for the full back refs has field for:
316  *
317  * - number of pointers in the tree leaf
318  *
319  * The key offset for the implicit back refs is the first byte of
320  * the tree leaf
321  *
322  * When a file extent is allocated, The implicit back refs is used.
323  * the fields are filled in:
324  *
325  *     (root_key.objectid, inode objectid, offset in file, 1)
326  *
327  * When a file extent is removed file truncation, we find the
328  * corresponding implicit back refs and check the following fields:
329  *
330  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
331  *
332  * Btree extents can be referenced by:
333  *
334  * - Different subvolumes
335  *
336  * Both the implicit back refs and the full back refs for tree blocks
337  * only consist of key. The key offset for the implicit back refs is
338  * objectid of block's owner tree. The key offset for the full back refs
339  * is the first byte of parent block.
340  *
341  * When implicit back refs is used, information about the lowest key and
342  * level of the tree block are required. These information are stored in
343  * tree block info structure.
344  */
345 
346 /*
347  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
348  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
349  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
350  */
351 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
352 				     struct btrfs_extent_inline_ref *iref,
353 				     enum btrfs_inline_ref_type is_data)
354 {
355 	struct btrfs_fs_info *fs_info = eb->fs_info;
356 	int type = btrfs_extent_inline_ref_type(eb, iref);
357 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
358 
359 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
360 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
361 		return type;
362 	}
363 
364 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
365 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
366 	    type == BTRFS_SHARED_DATA_REF_KEY ||
367 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
368 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
369 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
370 				return type;
371 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
372 				ASSERT(fs_info);
373 				/*
374 				 * Every shared one has parent tree block,
375 				 * which must be aligned to sector size.
376 				 */
377 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
378 					return type;
379 			}
380 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
381 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
382 				return type;
383 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
384 				ASSERT(fs_info);
385 				/*
386 				 * Every shared one has parent tree block,
387 				 * which must be aligned to sector size.
388 				 */
389 				if (offset &&
390 				    IS_ALIGNED(offset, fs_info->sectorsize))
391 					return type;
392 			}
393 		} else {
394 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
395 			return type;
396 		}
397 	}
398 
399 	WARN_ON(1);
400 	btrfs_print_leaf(eb);
401 	btrfs_err(fs_info,
402 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
403 		  eb->start, (unsigned long)iref, type);
404 
405 	return BTRFS_REF_TYPE_INVALID;
406 }
407 
408 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
409 {
410 	u32 high_crc = ~(u32)0;
411 	u32 low_crc = ~(u32)0;
412 	__le64 lenum;
413 
414 	lenum = cpu_to_le64(root_objectid);
415 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
416 	lenum = cpu_to_le64(owner);
417 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
418 	lenum = cpu_to_le64(offset);
419 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
420 
421 	return ((u64)high_crc << 31) ^ (u64)low_crc;
422 }
423 
424 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
425 				     struct btrfs_extent_data_ref *ref)
426 {
427 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
428 				    btrfs_extent_data_ref_objectid(leaf, ref),
429 				    btrfs_extent_data_ref_offset(leaf, ref));
430 }
431 
432 static int match_extent_data_ref(struct extent_buffer *leaf,
433 				 struct btrfs_extent_data_ref *ref,
434 				 u64 root_objectid, u64 owner, u64 offset)
435 {
436 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
437 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
438 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
439 		return 0;
440 	return 1;
441 }
442 
443 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
444 					   struct btrfs_path *path,
445 					   u64 bytenr, u64 parent,
446 					   u64 root_objectid,
447 					   u64 owner, u64 offset)
448 {
449 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
450 	struct btrfs_key key;
451 	struct btrfs_extent_data_ref *ref;
452 	struct extent_buffer *leaf;
453 	u32 nritems;
454 	int ret;
455 	int recow;
456 	int err = -ENOENT;
457 
458 	key.objectid = bytenr;
459 	if (parent) {
460 		key.type = BTRFS_SHARED_DATA_REF_KEY;
461 		key.offset = parent;
462 	} else {
463 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
464 		key.offset = hash_extent_data_ref(root_objectid,
465 						  owner, offset);
466 	}
467 again:
468 	recow = 0;
469 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
470 	if (ret < 0) {
471 		err = ret;
472 		goto fail;
473 	}
474 
475 	if (parent) {
476 		if (!ret)
477 			return 0;
478 		goto fail;
479 	}
480 
481 	leaf = path->nodes[0];
482 	nritems = btrfs_header_nritems(leaf);
483 	while (1) {
484 		if (path->slots[0] >= nritems) {
485 			ret = btrfs_next_leaf(root, path);
486 			if (ret < 0)
487 				err = ret;
488 			if (ret)
489 				goto fail;
490 
491 			leaf = path->nodes[0];
492 			nritems = btrfs_header_nritems(leaf);
493 			recow = 1;
494 		}
495 
496 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
497 		if (key.objectid != bytenr ||
498 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
499 			goto fail;
500 
501 		ref = btrfs_item_ptr(leaf, path->slots[0],
502 				     struct btrfs_extent_data_ref);
503 
504 		if (match_extent_data_ref(leaf, ref, root_objectid,
505 					  owner, offset)) {
506 			if (recow) {
507 				btrfs_release_path(path);
508 				goto again;
509 			}
510 			err = 0;
511 			break;
512 		}
513 		path->slots[0]++;
514 	}
515 fail:
516 	return err;
517 }
518 
519 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
520 					   struct btrfs_path *path,
521 					   u64 bytenr, u64 parent,
522 					   u64 root_objectid, u64 owner,
523 					   u64 offset, int refs_to_add)
524 {
525 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
526 	struct btrfs_key key;
527 	struct extent_buffer *leaf;
528 	u32 size;
529 	u32 num_refs;
530 	int ret;
531 
532 	key.objectid = bytenr;
533 	if (parent) {
534 		key.type = BTRFS_SHARED_DATA_REF_KEY;
535 		key.offset = parent;
536 		size = sizeof(struct btrfs_shared_data_ref);
537 	} else {
538 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
539 		key.offset = hash_extent_data_ref(root_objectid,
540 						  owner, offset);
541 		size = sizeof(struct btrfs_extent_data_ref);
542 	}
543 
544 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
545 	if (ret && ret != -EEXIST)
546 		goto fail;
547 
548 	leaf = path->nodes[0];
549 	if (parent) {
550 		struct btrfs_shared_data_ref *ref;
551 		ref = btrfs_item_ptr(leaf, path->slots[0],
552 				     struct btrfs_shared_data_ref);
553 		if (ret == 0) {
554 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
555 		} else {
556 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
557 			num_refs += refs_to_add;
558 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
559 		}
560 	} else {
561 		struct btrfs_extent_data_ref *ref;
562 		while (ret == -EEXIST) {
563 			ref = btrfs_item_ptr(leaf, path->slots[0],
564 					     struct btrfs_extent_data_ref);
565 			if (match_extent_data_ref(leaf, ref, root_objectid,
566 						  owner, offset))
567 				break;
568 			btrfs_release_path(path);
569 			key.offset++;
570 			ret = btrfs_insert_empty_item(trans, root, path, &key,
571 						      size);
572 			if (ret && ret != -EEXIST)
573 				goto fail;
574 
575 			leaf = path->nodes[0];
576 		}
577 		ref = btrfs_item_ptr(leaf, path->slots[0],
578 				     struct btrfs_extent_data_ref);
579 		if (ret == 0) {
580 			btrfs_set_extent_data_ref_root(leaf, ref,
581 						       root_objectid);
582 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
583 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
584 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
585 		} else {
586 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
587 			num_refs += refs_to_add;
588 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
589 		}
590 	}
591 	btrfs_mark_buffer_dirty(trans, leaf);
592 	ret = 0;
593 fail:
594 	btrfs_release_path(path);
595 	return ret;
596 }
597 
598 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
599 					   struct btrfs_root *root,
600 					   struct btrfs_path *path,
601 					   int refs_to_drop)
602 {
603 	struct btrfs_key key;
604 	struct btrfs_extent_data_ref *ref1 = NULL;
605 	struct btrfs_shared_data_ref *ref2 = NULL;
606 	struct extent_buffer *leaf;
607 	u32 num_refs = 0;
608 	int ret = 0;
609 
610 	leaf = path->nodes[0];
611 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
612 
613 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
614 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
615 				      struct btrfs_extent_data_ref);
616 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
617 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
618 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
619 				      struct btrfs_shared_data_ref);
620 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
621 	} else {
622 		btrfs_err(trans->fs_info,
623 			  "unrecognized backref key (%llu %u %llu)",
624 			  key.objectid, key.type, key.offset);
625 		btrfs_abort_transaction(trans, -EUCLEAN);
626 		return -EUCLEAN;
627 	}
628 
629 	BUG_ON(num_refs < refs_to_drop);
630 	num_refs -= refs_to_drop;
631 
632 	if (num_refs == 0) {
633 		ret = btrfs_del_item(trans, root, path);
634 	} else {
635 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
636 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
637 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
638 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
639 		btrfs_mark_buffer_dirty(trans, leaf);
640 	}
641 	return ret;
642 }
643 
644 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
645 					  struct btrfs_extent_inline_ref *iref)
646 {
647 	struct btrfs_key key;
648 	struct extent_buffer *leaf;
649 	struct btrfs_extent_data_ref *ref1;
650 	struct btrfs_shared_data_ref *ref2;
651 	u32 num_refs = 0;
652 	int type;
653 
654 	leaf = path->nodes[0];
655 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
656 
657 	if (iref) {
658 		/*
659 		 * If type is invalid, we should have bailed out earlier than
660 		 * this call.
661 		 */
662 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
663 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
664 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
665 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
666 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
667 		} else {
668 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
669 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
670 		}
671 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
672 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
673 				      struct btrfs_extent_data_ref);
674 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
675 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
676 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
677 				      struct btrfs_shared_data_ref);
678 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
679 	} else {
680 		WARN_ON(1);
681 	}
682 	return num_refs;
683 }
684 
685 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
686 					  struct btrfs_path *path,
687 					  u64 bytenr, u64 parent,
688 					  u64 root_objectid)
689 {
690 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
691 	struct btrfs_key key;
692 	int ret;
693 
694 	key.objectid = bytenr;
695 	if (parent) {
696 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
697 		key.offset = parent;
698 	} else {
699 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
700 		key.offset = root_objectid;
701 	}
702 
703 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
704 	if (ret > 0)
705 		ret = -ENOENT;
706 	return ret;
707 }
708 
709 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
710 					  struct btrfs_path *path,
711 					  u64 bytenr, u64 parent,
712 					  u64 root_objectid)
713 {
714 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
715 	struct btrfs_key key;
716 	int ret;
717 
718 	key.objectid = bytenr;
719 	if (parent) {
720 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
721 		key.offset = parent;
722 	} else {
723 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
724 		key.offset = root_objectid;
725 	}
726 
727 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
728 	btrfs_release_path(path);
729 	return ret;
730 }
731 
732 static inline int extent_ref_type(u64 parent, u64 owner)
733 {
734 	int type;
735 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
736 		if (parent > 0)
737 			type = BTRFS_SHARED_BLOCK_REF_KEY;
738 		else
739 			type = BTRFS_TREE_BLOCK_REF_KEY;
740 	} else {
741 		if (parent > 0)
742 			type = BTRFS_SHARED_DATA_REF_KEY;
743 		else
744 			type = BTRFS_EXTENT_DATA_REF_KEY;
745 	}
746 	return type;
747 }
748 
749 static int find_next_key(struct btrfs_path *path, int level,
750 			 struct btrfs_key *key)
751 
752 {
753 	for (; level < BTRFS_MAX_LEVEL; level++) {
754 		if (!path->nodes[level])
755 			break;
756 		if (path->slots[level] + 1 >=
757 		    btrfs_header_nritems(path->nodes[level]))
758 			continue;
759 		if (level == 0)
760 			btrfs_item_key_to_cpu(path->nodes[level], key,
761 					      path->slots[level] + 1);
762 		else
763 			btrfs_node_key_to_cpu(path->nodes[level], key,
764 					      path->slots[level] + 1);
765 		return 0;
766 	}
767 	return 1;
768 }
769 
770 /*
771  * look for inline back ref. if back ref is found, *ref_ret is set
772  * to the address of inline back ref, and 0 is returned.
773  *
774  * if back ref isn't found, *ref_ret is set to the address where it
775  * should be inserted, and -ENOENT is returned.
776  *
777  * if insert is true and there are too many inline back refs, the path
778  * points to the extent item, and -EAGAIN is returned.
779  *
780  * NOTE: inline back refs are ordered in the same way that back ref
781  *	 items in the tree are ordered.
782  */
783 static noinline_for_stack
784 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
785 				 struct btrfs_path *path,
786 				 struct btrfs_extent_inline_ref **ref_ret,
787 				 u64 bytenr, u64 num_bytes,
788 				 u64 parent, u64 root_objectid,
789 				 u64 owner, u64 offset, int insert)
790 {
791 	struct btrfs_fs_info *fs_info = trans->fs_info;
792 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
793 	struct btrfs_key key;
794 	struct extent_buffer *leaf;
795 	struct btrfs_extent_item *ei;
796 	struct btrfs_extent_inline_ref *iref;
797 	u64 flags;
798 	u64 item_size;
799 	unsigned long ptr;
800 	unsigned long end;
801 	int extra_size;
802 	int type;
803 	int want;
804 	int ret;
805 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
806 	int needed;
807 
808 	key.objectid = bytenr;
809 	key.type = BTRFS_EXTENT_ITEM_KEY;
810 	key.offset = num_bytes;
811 
812 	want = extent_ref_type(parent, owner);
813 	if (insert) {
814 		extra_size = btrfs_extent_inline_ref_size(want);
815 		path->search_for_extension = 1;
816 		path->keep_locks = 1;
817 	} else
818 		extra_size = -1;
819 
820 	/*
821 	 * Owner is our level, so we can just add one to get the level for the
822 	 * block we are interested in.
823 	 */
824 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
825 		key.type = BTRFS_METADATA_ITEM_KEY;
826 		key.offset = owner;
827 	}
828 
829 again:
830 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
831 	if (ret < 0)
832 		goto out;
833 
834 	/*
835 	 * We may be a newly converted file system which still has the old fat
836 	 * extent entries for metadata, so try and see if we have one of those.
837 	 */
838 	if (ret > 0 && skinny_metadata) {
839 		skinny_metadata = false;
840 		if (path->slots[0]) {
841 			path->slots[0]--;
842 			btrfs_item_key_to_cpu(path->nodes[0], &key,
843 					      path->slots[0]);
844 			if (key.objectid == bytenr &&
845 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
846 			    key.offset == num_bytes)
847 				ret = 0;
848 		}
849 		if (ret) {
850 			key.objectid = bytenr;
851 			key.type = BTRFS_EXTENT_ITEM_KEY;
852 			key.offset = num_bytes;
853 			btrfs_release_path(path);
854 			goto again;
855 		}
856 	}
857 
858 	if (ret && !insert) {
859 		ret = -ENOENT;
860 		goto out;
861 	} else if (WARN_ON(ret)) {
862 		btrfs_print_leaf(path->nodes[0]);
863 		btrfs_err(fs_info,
864 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
865 			  bytenr, num_bytes, parent, root_objectid, owner,
866 			  offset);
867 		ret = -EUCLEAN;
868 		goto out;
869 	}
870 
871 	leaf = path->nodes[0];
872 	item_size = btrfs_item_size(leaf, path->slots[0]);
873 	if (unlikely(item_size < sizeof(*ei))) {
874 		ret = -EUCLEAN;
875 		btrfs_err(fs_info,
876 			  "unexpected extent item size, has %llu expect >= %zu",
877 			  item_size, sizeof(*ei));
878 		btrfs_abort_transaction(trans, ret);
879 		goto out;
880 	}
881 
882 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
883 	flags = btrfs_extent_flags(leaf, ei);
884 
885 	ptr = (unsigned long)(ei + 1);
886 	end = (unsigned long)ei + item_size;
887 
888 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
889 		ptr += sizeof(struct btrfs_tree_block_info);
890 		BUG_ON(ptr > end);
891 	}
892 
893 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
894 		needed = BTRFS_REF_TYPE_DATA;
895 	else
896 		needed = BTRFS_REF_TYPE_BLOCK;
897 
898 	ret = -ENOENT;
899 	while (ptr < end) {
900 		iref = (struct btrfs_extent_inline_ref *)ptr;
901 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
903 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
904 			ptr += btrfs_extent_inline_ref_size(type);
905 			continue;
906 		}
907 		if (type == BTRFS_REF_TYPE_INVALID) {
908 			ret = -EUCLEAN;
909 			goto out;
910 		}
911 
912 		if (want < type)
913 			break;
914 		if (want > type) {
915 			ptr += btrfs_extent_inline_ref_size(type);
916 			continue;
917 		}
918 
919 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
920 			struct btrfs_extent_data_ref *dref;
921 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
922 			if (match_extent_data_ref(leaf, dref, root_objectid,
923 						  owner, offset)) {
924 				ret = 0;
925 				break;
926 			}
927 			if (hash_extent_data_ref_item(leaf, dref) <
928 			    hash_extent_data_ref(root_objectid, owner, offset))
929 				break;
930 		} else {
931 			u64 ref_offset;
932 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
933 			if (parent > 0) {
934 				if (parent == ref_offset) {
935 					ret = 0;
936 					break;
937 				}
938 				if (ref_offset < parent)
939 					break;
940 			} else {
941 				if (root_objectid == ref_offset) {
942 					ret = 0;
943 					break;
944 				}
945 				if (ref_offset < root_objectid)
946 					break;
947 			}
948 		}
949 		ptr += btrfs_extent_inline_ref_size(type);
950 	}
951 
952 	if (unlikely(ptr > end)) {
953 		ret = -EUCLEAN;
954 		btrfs_print_leaf(path->nodes[0]);
955 		btrfs_crit(fs_info,
956 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
957 			   path->slots[0], root_objectid, owner, offset, parent);
958 		goto out;
959 	}
960 
961 	if (ret == -ENOENT && insert) {
962 		if (item_size + extra_size >=
963 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
964 			ret = -EAGAIN;
965 			goto out;
966 		}
967 		/*
968 		 * To add new inline back ref, we have to make sure
969 		 * there is no corresponding back ref item.
970 		 * For simplicity, we just do not add new inline back
971 		 * ref if there is any kind of item for this block
972 		 */
973 		if (find_next_key(path, 0, &key) == 0 &&
974 		    key.objectid == bytenr &&
975 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
976 			ret = -EAGAIN;
977 			goto out;
978 		}
979 	}
980 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
981 out:
982 	if (insert) {
983 		path->keep_locks = 0;
984 		path->search_for_extension = 0;
985 		btrfs_unlock_up_safe(path, 1);
986 	}
987 	return ret;
988 }
989 
990 /*
991  * helper to add new inline back ref
992  */
993 static noinline_for_stack
994 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
995 				 struct btrfs_path *path,
996 				 struct btrfs_extent_inline_ref *iref,
997 				 u64 parent, u64 root_objectid,
998 				 u64 owner, u64 offset, int refs_to_add,
999 				 struct btrfs_delayed_extent_op *extent_op)
1000 {
1001 	struct extent_buffer *leaf;
1002 	struct btrfs_extent_item *ei;
1003 	unsigned long ptr;
1004 	unsigned long end;
1005 	unsigned long item_offset;
1006 	u64 refs;
1007 	int size;
1008 	int type;
1009 
1010 	leaf = path->nodes[0];
1011 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1012 	item_offset = (unsigned long)iref - (unsigned long)ei;
1013 
1014 	type = extent_ref_type(parent, owner);
1015 	size = btrfs_extent_inline_ref_size(type);
1016 
1017 	btrfs_extend_item(trans, path, size);
1018 
1019 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1020 	refs = btrfs_extent_refs(leaf, ei);
1021 	refs += refs_to_add;
1022 	btrfs_set_extent_refs(leaf, ei, refs);
1023 	if (extent_op)
1024 		__run_delayed_extent_op(extent_op, leaf, ei);
1025 
1026 	ptr = (unsigned long)ei + item_offset;
1027 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1028 	if (ptr < end - size)
1029 		memmove_extent_buffer(leaf, ptr + size, ptr,
1030 				      end - size - ptr);
1031 
1032 	iref = (struct btrfs_extent_inline_ref *)ptr;
1033 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1034 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1035 		struct btrfs_extent_data_ref *dref;
1036 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1037 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1038 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1039 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1040 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1041 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1042 		struct btrfs_shared_data_ref *sref;
1043 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1044 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1046 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1047 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1048 	} else {
1049 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1050 	}
1051 	btrfs_mark_buffer_dirty(trans, leaf);
1052 }
1053 
1054 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1055 				 struct btrfs_path *path,
1056 				 struct btrfs_extent_inline_ref **ref_ret,
1057 				 u64 bytenr, u64 num_bytes, u64 parent,
1058 				 u64 root_objectid, u64 owner, u64 offset)
1059 {
1060 	int ret;
1061 
1062 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1063 					   num_bytes, parent, root_objectid,
1064 					   owner, offset, 0);
1065 	if (ret != -ENOENT)
1066 		return ret;
1067 
1068 	btrfs_release_path(path);
1069 	*ref_ret = NULL;
1070 
1071 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1072 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1073 					    root_objectid);
1074 	} else {
1075 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1076 					     root_objectid, owner, offset);
1077 	}
1078 	return ret;
1079 }
1080 
1081 /*
1082  * helper to update/remove inline back ref
1083  */
1084 static noinline_for_stack int update_inline_extent_backref(
1085 				  struct btrfs_trans_handle *trans,
1086 				  struct btrfs_path *path,
1087 				  struct btrfs_extent_inline_ref *iref,
1088 				  int refs_to_mod,
1089 				  struct btrfs_delayed_extent_op *extent_op)
1090 {
1091 	struct extent_buffer *leaf = path->nodes[0];
1092 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1093 	struct btrfs_extent_item *ei;
1094 	struct btrfs_extent_data_ref *dref = NULL;
1095 	struct btrfs_shared_data_ref *sref = NULL;
1096 	unsigned long ptr;
1097 	unsigned long end;
1098 	u32 item_size;
1099 	int size;
1100 	int type;
1101 	u64 refs;
1102 
1103 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1104 	refs = btrfs_extent_refs(leaf, ei);
1105 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1106 		struct btrfs_key key;
1107 		u32 extent_size;
1108 
1109 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1110 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1111 			extent_size = fs_info->nodesize;
1112 		else
1113 			extent_size = key.offset;
1114 		btrfs_print_leaf(leaf);
1115 		btrfs_err(fs_info,
1116 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1117 			  key.objectid, extent_size, refs_to_mod, refs);
1118 		return -EUCLEAN;
1119 	}
1120 	refs += refs_to_mod;
1121 	btrfs_set_extent_refs(leaf, ei, refs);
1122 	if (extent_op)
1123 		__run_delayed_extent_op(extent_op, leaf, ei);
1124 
1125 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1126 	/*
1127 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1128 	 * error messages.
1129 	 */
1130 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1131 		return -EUCLEAN;
1132 
1133 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1134 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1135 		refs = btrfs_extent_data_ref_count(leaf, dref);
1136 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1137 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1138 		refs = btrfs_shared_data_ref_count(leaf, sref);
1139 	} else {
1140 		refs = 1;
1141 		/*
1142 		 * For tree blocks we can only drop one ref for it, and tree
1143 		 * blocks should not have refs > 1.
1144 		 *
1145 		 * Furthermore if we're inserting a new inline backref, we
1146 		 * won't reach this path either. That would be
1147 		 * setup_inline_extent_backref().
1148 		 */
1149 		if (unlikely(refs_to_mod != -1)) {
1150 			struct btrfs_key key;
1151 
1152 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1153 
1154 			btrfs_print_leaf(leaf);
1155 			btrfs_err(fs_info,
1156 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1157 				  key.objectid, refs_to_mod);
1158 			return -EUCLEAN;
1159 		}
1160 	}
1161 
1162 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1163 		struct btrfs_key key;
1164 		u32 extent_size;
1165 
1166 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1167 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1168 			extent_size = fs_info->nodesize;
1169 		else
1170 			extent_size = key.offset;
1171 		btrfs_print_leaf(leaf);
1172 		btrfs_err(fs_info,
1173 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1174 			  (unsigned long)iref, key.objectid, extent_size,
1175 			  refs_to_mod, refs);
1176 		return -EUCLEAN;
1177 	}
1178 	refs += refs_to_mod;
1179 
1180 	if (refs > 0) {
1181 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1183 		else
1184 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1185 	} else {
1186 		size =  btrfs_extent_inline_ref_size(type);
1187 		item_size = btrfs_item_size(leaf, path->slots[0]);
1188 		ptr = (unsigned long)iref;
1189 		end = (unsigned long)ei + item_size;
1190 		if (ptr + size < end)
1191 			memmove_extent_buffer(leaf, ptr, ptr + size,
1192 					      end - ptr - size);
1193 		item_size -= size;
1194 		btrfs_truncate_item(trans, path, item_size, 1);
1195 	}
1196 	btrfs_mark_buffer_dirty(trans, leaf);
1197 	return 0;
1198 }
1199 
1200 static noinline_for_stack
1201 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1202 				 struct btrfs_path *path,
1203 				 u64 bytenr, u64 num_bytes, u64 parent,
1204 				 u64 root_objectid, u64 owner,
1205 				 u64 offset, int refs_to_add,
1206 				 struct btrfs_delayed_extent_op *extent_op)
1207 {
1208 	struct btrfs_extent_inline_ref *iref;
1209 	int ret;
1210 
1211 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1212 					   num_bytes, parent, root_objectid,
1213 					   owner, offset, 1);
1214 	if (ret == 0) {
1215 		/*
1216 		 * We're adding refs to a tree block we already own, this
1217 		 * should not happen at all.
1218 		 */
1219 		if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1220 			btrfs_print_leaf(path->nodes[0]);
1221 			btrfs_crit(trans->fs_info,
1222 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1223 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1224 			return -EUCLEAN;
1225 		}
1226 		ret = update_inline_extent_backref(trans, path, iref,
1227 						   refs_to_add, extent_op);
1228 	} else if (ret == -ENOENT) {
1229 		setup_inline_extent_backref(trans, path, iref, parent,
1230 					    root_objectid, owner, offset,
1231 					    refs_to_add, extent_op);
1232 		ret = 0;
1233 	}
1234 	return ret;
1235 }
1236 
1237 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1238 				 struct btrfs_root *root,
1239 				 struct btrfs_path *path,
1240 				 struct btrfs_extent_inline_ref *iref,
1241 				 int refs_to_drop, int is_data)
1242 {
1243 	int ret = 0;
1244 
1245 	BUG_ON(!is_data && refs_to_drop != 1);
1246 	if (iref)
1247 		ret = update_inline_extent_backref(trans, path, iref,
1248 						   -refs_to_drop, NULL);
1249 	else if (is_data)
1250 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1251 	else
1252 		ret = btrfs_del_item(trans, root, path);
1253 	return ret;
1254 }
1255 
1256 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1257 			       u64 *discarded_bytes)
1258 {
1259 	int j, ret = 0;
1260 	u64 bytes_left, end;
1261 	u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1262 
1263 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1264 	if (start != aligned_start) {
1265 		len -= aligned_start - start;
1266 		len = round_down(len, 1 << SECTOR_SHIFT);
1267 		start = aligned_start;
1268 	}
1269 
1270 	*discarded_bytes = 0;
1271 
1272 	if (!len)
1273 		return 0;
1274 
1275 	end = start + len;
1276 	bytes_left = len;
1277 
1278 	/* Skip any superblocks on this device. */
1279 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1280 		u64 sb_start = btrfs_sb_offset(j);
1281 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1282 		u64 size = sb_start - start;
1283 
1284 		if (!in_range(sb_start, start, bytes_left) &&
1285 		    !in_range(sb_end, start, bytes_left) &&
1286 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1287 			continue;
1288 
1289 		/*
1290 		 * Superblock spans beginning of range.  Adjust start and
1291 		 * try again.
1292 		 */
1293 		if (sb_start <= start) {
1294 			start += sb_end - start;
1295 			if (start > end) {
1296 				bytes_left = 0;
1297 				break;
1298 			}
1299 			bytes_left = end - start;
1300 			continue;
1301 		}
1302 
1303 		if (size) {
1304 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1305 						   size >> SECTOR_SHIFT,
1306 						   GFP_NOFS);
1307 			if (!ret)
1308 				*discarded_bytes += size;
1309 			else if (ret != -EOPNOTSUPP)
1310 				return ret;
1311 		}
1312 
1313 		start = sb_end;
1314 		if (start > end) {
1315 			bytes_left = 0;
1316 			break;
1317 		}
1318 		bytes_left = end - start;
1319 	}
1320 
1321 	if (bytes_left) {
1322 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1323 					   bytes_left >> SECTOR_SHIFT,
1324 					   GFP_NOFS);
1325 		if (!ret)
1326 			*discarded_bytes += bytes_left;
1327 	}
1328 	return ret;
1329 }
1330 
1331 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1332 {
1333 	struct btrfs_device *dev = stripe->dev;
1334 	struct btrfs_fs_info *fs_info = dev->fs_info;
1335 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1336 	u64 phys = stripe->physical;
1337 	u64 len = stripe->length;
1338 	u64 discarded = 0;
1339 	int ret = 0;
1340 
1341 	/* Zone reset on a zoned filesystem */
1342 	if (btrfs_can_zone_reset(dev, phys, len)) {
1343 		u64 src_disc;
1344 
1345 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1346 		if (ret)
1347 			goto out;
1348 
1349 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1350 		    dev != dev_replace->srcdev)
1351 			goto out;
1352 
1353 		src_disc = discarded;
1354 
1355 		/* Send to replace target as well */
1356 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1357 					      &discarded);
1358 		discarded += src_disc;
1359 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1360 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1361 	} else {
1362 		ret = 0;
1363 		*bytes = 0;
1364 	}
1365 
1366 out:
1367 	*bytes = discarded;
1368 	return ret;
1369 }
1370 
1371 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1372 			 u64 num_bytes, u64 *actual_bytes)
1373 {
1374 	int ret = 0;
1375 	u64 discarded_bytes = 0;
1376 	u64 end = bytenr + num_bytes;
1377 	u64 cur = bytenr;
1378 
1379 	/*
1380 	 * Avoid races with device replace and make sure the devices in the
1381 	 * stripes don't go away while we are discarding.
1382 	 */
1383 	btrfs_bio_counter_inc_blocked(fs_info);
1384 	while (cur < end) {
1385 		struct btrfs_discard_stripe *stripes;
1386 		unsigned int num_stripes;
1387 		int i;
1388 
1389 		num_bytes = end - cur;
1390 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1391 		if (IS_ERR(stripes)) {
1392 			ret = PTR_ERR(stripes);
1393 			if (ret == -EOPNOTSUPP)
1394 				ret = 0;
1395 			break;
1396 		}
1397 
1398 		for (i = 0; i < num_stripes; i++) {
1399 			struct btrfs_discard_stripe *stripe = stripes + i;
1400 			u64 bytes;
1401 
1402 			if (!stripe->dev->bdev) {
1403 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1404 				continue;
1405 			}
1406 
1407 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1408 					&stripe->dev->dev_state))
1409 				continue;
1410 
1411 			ret = do_discard_extent(stripe, &bytes);
1412 			if (ret) {
1413 				/*
1414 				 * Keep going if discard is not supported by the
1415 				 * device.
1416 				 */
1417 				if (ret != -EOPNOTSUPP)
1418 					break;
1419 				ret = 0;
1420 			} else {
1421 				discarded_bytes += bytes;
1422 			}
1423 		}
1424 		kfree(stripes);
1425 		if (ret)
1426 			break;
1427 		cur += num_bytes;
1428 	}
1429 	btrfs_bio_counter_dec(fs_info);
1430 	if (actual_bytes)
1431 		*actual_bytes = discarded_bytes;
1432 	return ret;
1433 }
1434 
1435 /* Can return -ENOMEM */
1436 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1437 			 struct btrfs_ref *generic_ref)
1438 {
1439 	struct btrfs_fs_info *fs_info = trans->fs_info;
1440 	int ret;
1441 
1442 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1443 	       generic_ref->action);
1444 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1445 	       generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1446 
1447 	if (generic_ref->type == BTRFS_REF_METADATA)
1448 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1449 	else
1450 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1451 
1452 	btrfs_ref_tree_mod(fs_info, generic_ref);
1453 
1454 	return ret;
1455 }
1456 
1457 /*
1458  * Insert backreference for a given extent.
1459  *
1460  * The counterpart is in __btrfs_free_extent(), with examples and more details
1461  * how it works.
1462  *
1463  * @trans:	    Handle of transaction
1464  *
1465  * @node:	    The delayed ref node used to get the bytenr/length for
1466  *		    extent whose references are incremented.
1467  *
1468  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1469  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1470  *		    bytenr of the parent block. Since new extents are always
1471  *		    created with indirect references, this will only be the case
1472  *		    when relocating a shared extent. In that case, root_objectid
1473  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1474  *		    be 0
1475  *
1476  * @root_objectid:  The id of the root where this modification has originated,
1477  *		    this can be either one of the well-known metadata trees or
1478  *		    the subvolume id which references this extent.
1479  *
1480  * @owner:	    For data extents it is the inode number of the owning file.
1481  *		    For metadata extents this parameter holds the level in the
1482  *		    tree of the extent.
1483  *
1484  * @offset:	    For metadata extents the offset is ignored and is currently
1485  *		    always passed as 0. For data extents it is the fileoffset
1486  *		    this extent belongs to.
1487  *
1488  * @extent_op       Pointer to a structure, holding information necessary when
1489  *                  updating a tree block's flags
1490  *
1491  */
1492 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1493 				  struct btrfs_delayed_ref_node *node,
1494 				  u64 parent, u64 root_objectid,
1495 				  u64 owner, u64 offset,
1496 				  struct btrfs_delayed_extent_op *extent_op)
1497 {
1498 	struct btrfs_path *path;
1499 	struct extent_buffer *leaf;
1500 	struct btrfs_extent_item *item;
1501 	struct btrfs_key key;
1502 	u64 bytenr = node->bytenr;
1503 	u64 num_bytes = node->num_bytes;
1504 	u64 refs;
1505 	int refs_to_add = node->ref_mod;
1506 	int ret;
1507 
1508 	path = btrfs_alloc_path();
1509 	if (!path)
1510 		return -ENOMEM;
1511 
1512 	/* this will setup the path even if it fails to insert the back ref */
1513 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1514 					   parent, root_objectid, owner,
1515 					   offset, refs_to_add, extent_op);
1516 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1517 		goto out;
1518 
1519 	/*
1520 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1521 	 * inline extent ref, so just update the reference count and add a
1522 	 * normal backref.
1523 	 */
1524 	leaf = path->nodes[0];
1525 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1526 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1527 	refs = btrfs_extent_refs(leaf, item);
1528 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1529 	if (extent_op)
1530 		__run_delayed_extent_op(extent_op, leaf, item);
1531 
1532 	btrfs_mark_buffer_dirty(trans, leaf);
1533 	btrfs_release_path(path);
1534 
1535 	/* now insert the actual backref */
1536 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1537 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1538 					    root_objectid);
1539 	else
1540 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1541 					     root_objectid, owner, offset,
1542 					     refs_to_add);
1543 
1544 	if (ret)
1545 		btrfs_abort_transaction(trans, ret);
1546 out:
1547 	btrfs_free_path(path);
1548 	return ret;
1549 }
1550 
1551 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1552 				     struct btrfs_delayed_ref_head *href)
1553 {
1554 	u64 root = href->owning_root;
1555 
1556 	/*
1557 	 * Don't check must_insert_reserved, as this is called from contexts
1558 	 * where it has already been unset.
1559 	 */
1560 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1561 	    !href->is_data || !is_fstree(root))
1562 		return;
1563 
1564 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1565 				  BTRFS_QGROUP_RSV_DATA);
1566 }
1567 
1568 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1569 				struct btrfs_delayed_ref_head *href,
1570 				struct btrfs_delayed_ref_node *node,
1571 				struct btrfs_delayed_extent_op *extent_op,
1572 				bool insert_reserved)
1573 {
1574 	int ret = 0;
1575 	struct btrfs_delayed_data_ref *ref;
1576 	u64 parent = 0;
1577 	u64 flags = 0;
1578 
1579 	ref = btrfs_delayed_node_to_data_ref(node);
1580 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1581 
1582 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1583 		parent = ref->parent;
1584 
1585 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1586 		struct btrfs_key key;
1587 		struct btrfs_squota_delta delta = {
1588 			.root = href->owning_root,
1589 			.num_bytes = node->num_bytes,
1590 			.is_data = true,
1591 			.is_inc	= true,
1592 			.generation = trans->transid,
1593 		};
1594 
1595 		if (extent_op)
1596 			flags |= extent_op->flags_to_set;
1597 
1598 		key.objectid = node->bytenr;
1599 		key.type = BTRFS_EXTENT_ITEM_KEY;
1600 		key.offset = node->num_bytes;
1601 
1602 		ret = alloc_reserved_file_extent(trans, parent, ref->root,
1603 						 flags, ref->objectid,
1604 						 ref->offset, &key,
1605 						 node->ref_mod, href->owning_root);
1606 		free_head_ref_squota_rsv(trans->fs_info, href);
1607 		if (!ret)
1608 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1609 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1610 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref->root,
1611 					     ref->objectid, ref->offset,
1612 					     extent_op);
1613 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1614 		ret = __btrfs_free_extent(trans, href, node, parent,
1615 					  ref->root, ref->objectid,
1616 					  ref->offset, extent_op);
1617 	} else {
1618 		BUG();
1619 	}
1620 	return ret;
1621 }
1622 
1623 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1624 				    struct extent_buffer *leaf,
1625 				    struct btrfs_extent_item *ei)
1626 {
1627 	u64 flags = btrfs_extent_flags(leaf, ei);
1628 	if (extent_op->update_flags) {
1629 		flags |= extent_op->flags_to_set;
1630 		btrfs_set_extent_flags(leaf, ei, flags);
1631 	}
1632 
1633 	if (extent_op->update_key) {
1634 		struct btrfs_tree_block_info *bi;
1635 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1636 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1637 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1638 	}
1639 }
1640 
1641 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1642 				 struct btrfs_delayed_ref_head *head,
1643 				 struct btrfs_delayed_extent_op *extent_op)
1644 {
1645 	struct btrfs_fs_info *fs_info = trans->fs_info;
1646 	struct btrfs_root *root;
1647 	struct btrfs_key key;
1648 	struct btrfs_path *path;
1649 	struct btrfs_extent_item *ei;
1650 	struct extent_buffer *leaf;
1651 	u32 item_size;
1652 	int ret;
1653 	int metadata = 1;
1654 
1655 	if (TRANS_ABORTED(trans))
1656 		return 0;
1657 
1658 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1659 		metadata = 0;
1660 
1661 	path = btrfs_alloc_path();
1662 	if (!path)
1663 		return -ENOMEM;
1664 
1665 	key.objectid = head->bytenr;
1666 
1667 	if (metadata) {
1668 		key.type = BTRFS_METADATA_ITEM_KEY;
1669 		key.offset = extent_op->level;
1670 	} else {
1671 		key.type = BTRFS_EXTENT_ITEM_KEY;
1672 		key.offset = head->num_bytes;
1673 	}
1674 
1675 	root = btrfs_extent_root(fs_info, key.objectid);
1676 again:
1677 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1678 	if (ret < 0) {
1679 		goto out;
1680 	} else if (ret > 0) {
1681 		if (metadata) {
1682 			if (path->slots[0] > 0) {
1683 				path->slots[0]--;
1684 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1685 						      path->slots[0]);
1686 				if (key.objectid == head->bytenr &&
1687 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1688 				    key.offset == head->num_bytes)
1689 					ret = 0;
1690 			}
1691 			if (ret > 0) {
1692 				btrfs_release_path(path);
1693 				metadata = 0;
1694 
1695 				key.objectid = head->bytenr;
1696 				key.offset = head->num_bytes;
1697 				key.type = BTRFS_EXTENT_ITEM_KEY;
1698 				goto again;
1699 			}
1700 		} else {
1701 			ret = -EUCLEAN;
1702 			btrfs_err(fs_info,
1703 		  "missing extent item for extent %llu num_bytes %llu level %d",
1704 				  head->bytenr, head->num_bytes, extent_op->level);
1705 			goto out;
1706 		}
1707 	}
1708 
1709 	leaf = path->nodes[0];
1710 	item_size = btrfs_item_size(leaf, path->slots[0]);
1711 
1712 	if (unlikely(item_size < sizeof(*ei))) {
1713 		ret = -EUCLEAN;
1714 		btrfs_err(fs_info,
1715 			  "unexpected extent item size, has %u expect >= %zu",
1716 			  item_size, sizeof(*ei));
1717 		btrfs_abort_transaction(trans, ret);
1718 		goto out;
1719 	}
1720 
1721 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 	__run_delayed_extent_op(extent_op, leaf, ei);
1723 
1724 	btrfs_mark_buffer_dirty(trans, leaf);
1725 out:
1726 	btrfs_free_path(path);
1727 	return ret;
1728 }
1729 
1730 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1731 				struct btrfs_delayed_ref_head *href,
1732 				struct btrfs_delayed_ref_node *node,
1733 				struct btrfs_delayed_extent_op *extent_op,
1734 				bool insert_reserved)
1735 {
1736 	int ret = 0;
1737 	struct btrfs_fs_info *fs_info = trans->fs_info;
1738 	struct btrfs_delayed_tree_ref *ref;
1739 	u64 parent = 0;
1740 	u64 ref_root = 0;
1741 
1742 	ref = btrfs_delayed_node_to_tree_ref(node);
1743 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1744 
1745 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1746 		parent = ref->parent;
1747 	ref_root = ref->root;
1748 
1749 	if (unlikely(node->ref_mod != 1)) {
1750 		btrfs_err(trans->fs_info,
1751 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1752 			  node->bytenr, node->ref_mod, node->action, ref_root,
1753 			  parent);
1754 		return -EUCLEAN;
1755 	}
1756 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1757 		struct btrfs_squota_delta delta = {
1758 			.root = href->owning_root,
1759 			.num_bytes = fs_info->nodesize,
1760 			.is_data = false,
1761 			.is_inc = true,
1762 			.generation = trans->transid,
1763 		};
1764 
1765 		BUG_ON(!extent_op || !extent_op->update_flags);
1766 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1767 		if (!ret)
1768 			btrfs_record_squota_delta(fs_info, &delta);
1769 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1770 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1771 					     ref->level, 0, extent_op);
1772 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1773 		ret = __btrfs_free_extent(trans, href, node, parent, ref_root,
1774 					  ref->level, 0, extent_op);
1775 	} else {
1776 		BUG();
1777 	}
1778 	return ret;
1779 }
1780 
1781 /* helper function to actually process a single delayed ref entry */
1782 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1783 			       struct btrfs_delayed_ref_head *href,
1784 			       struct btrfs_delayed_ref_node *node,
1785 			       struct btrfs_delayed_extent_op *extent_op,
1786 			       bool insert_reserved)
1787 {
1788 	int ret = 0;
1789 
1790 	if (TRANS_ABORTED(trans)) {
1791 		if (insert_reserved) {
1792 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1793 			free_head_ref_squota_rsv(trans->fs_info, href);
1794 		}
1795 		return 0;
1796 	}
1797 
1798 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1799 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1800 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1801 					   insert_reserved);
1802 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1803 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1804 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1805 					   insert_reserved);
1806 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1807 		ret = 0;
1808 	else
1809 		BUG();
1810 	if (ret && insert_reserved)
1811 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1812 	if (ret < 0)
1813 		btrfs_err(trans->fs_info,
1814 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1815 			  node->bytenr, node->num_bytes, node->type,
1816 			  node->action, node->ref_mod, ret);
1817 	return ret;
1818 }
1819 
1820 static inline struct btrfs_delayed_ref_node *
1821 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1822 {
1823 	struct btrfs_delayed_ref_node *ref;
1824 
1825 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1826 		return NULL;
1827 
1828 	/*
1829 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1830 	 * This is to prevent a ref count from going down to zero, which deletes
1831 	 * the extent item from the extent tree, when there still are references
1832 	 * to add, which would fail because they would not find the extent item.
1833 	 */
1834 	if (!list_empty(&head->ref_add_list))
1835 		return list_first_entry(&head->ref_add_list,
1836 				struct btrfs_delayed_ref_node, add_list);
1837 
1838 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1839 		       struct btrfs_delayed_ref_node, ref_node);
1840 	ASSERT(list_empty(&ref->add_list));
1841 	return ref;
1842 }
1843 
1844 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1845 				      struct btrfs_delayed_ref_head *head)
1846 {
1847 	spin_lock(&delayed_refs->lock);
1848 	head->processing = false;
1849 	delayed_refs->num_heads_ready++;
1850 	spin_unlock(&delayed_refs->lock);
1851 	btrfs_delayed_ref_unlock(head);
1852 }
1853 
1854 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1855 				struct btrfs_delayed_ref_head *head)
1856 {
1857 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1858 
1859 	if (!extent_op)
1860 		return NULL;
1861 
1862 	if (head->must_insert_reserved) {
1863 		head->extent_op = NULL;
1864 		btrfs_free_delayed_extent_op(extent_op);
1865 		return NULL;
1866 	}
1867 	return extent_op;
1868 }
1869 
1870 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1871 				     struct btrfs_delayed_ref_head *head)
1872 {
1873 	struct btrfs_delayed_extent_op *extent_op;
1874 	int ret;
1875 
1876 	extent_op = cleanup_extent_op(head);
1877 	if (!extent_op)
1878 		return 0;
1879 	head->extent_op = NULL;
1880 	spin_unlock(&head->lock);
1881 	ret = run_delayed_extent_op(trans, head, extent_op);
1882 	btrfs_free_delayed_extent_op(extent_op);
1883 	return ret ? ret : 1;
1884 }
1885 
1886 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1887 				  struct btrfs_delayed_ref_root *delayed_refs,
1888 				  struct btrfs_delayed_ref_head *head)
1889 {
1890 	u64 ret = 0;
1891 
1892 	/*
1893 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1894 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1895 	 */
1896 	if (head->total_ref_mod < 0 && head->is_data) {
1897 		int nr_csums;
1898 
1899 		spin_lock(&delayed_refs->lock);
1900 		delayed_refs->pending_csums -= head->num_bytes;
1901 		spin_unlock(&delayed_refs->lock);
1902 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1903 
1904 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1905 
1906 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1907 	}
1908 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1909 	if (head->must_insert_reserved)
1910 		free_head_ref_squota_rsv(fs_info, head);
1911 
1912 	return ret;
1913 }
1914 
1915 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1916 			    struct btrfs_delayed_ref_head *head,
1917 			    u64 *bytes_released)
1918 {
1919 
1920 	struct btrfs_fs_info *fs_info = trans->fs_info;
1921 	struct btrfs_delayed_ref_root *delayed_refs;
1922 	int ret;
1923 
1924 	delayed_refs = &trans->transaction->delayed_refs;
1925 
1926 	ret = run_and_cleanup_extent_op(trans, head);
1927 	if (ret < 0) {
1928 		unselect_delayed_ref_head(delayed_refs, head);
1929 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1930 		return ret;
1931 	} else if (ret) {
1932 		return ret;
1933 	}
1934 
1935 	/*
1936 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1937 	 * and then re-check to make sure nobody got added.
1938 	 */
1939 	spin_unlock(&head->lock);
1940 	spin_lock(&delayed_refs->lock);
1941 	spin_lock(&head->lock);
1942 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1943 		spin_unlock(&head->lock);
1944 		spin_unlock(&delayed_refs->lock);
1945 		return 1;
1946 	}
1947 	btrfs_delete_ref_head(delayed_refs, head);
1948 	spin_unlock(&head->lock);
1949 	spin_unlock(&delayed_refs->lock);
1950 
1951 	if (head->must_insert_reserved) {
1952 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1953 		if (head->is_data) {
1954 			struct btrfs_root *csum_root;
1955 
1956 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1957 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1958 					      head->num_bytes);
1959 		}
1960 	}
1961 
1962 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1963 
1964 	trace_run_delayed_ref_head(fs_info, head, 0);
1965 	btrfs_delayed_ref_unlock(head);
1966 	btrfs_put_delayed_ref_head(head);
1967 	return ret;
1968 }
1969 
1970 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1971 					struct btrfs_trans_handle *trans)
1972 {
1973 	struct btrfs_delayed_ref_root *delayed_refs =
1974 		&trans->transaction->delayed_refs;
1975 	struct btrfs_delayed_ref_head *head = NULL;
1976 	int ret;
1977 
1978 	spin_lock(&delayed_refs->lock);
1979 	head = btrfs_select_ref_head(delayed_refs);
1980 	if (!head) {
1981 		spin_unlock(&delayed_refs->lock);
1982 		return head;
1983 	}
1984 
1985 	/*
1986 	 * Grab the lock that says we are going to process all the refs for
1987 	 * this head
1988 	 */
1989 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1990 	spin_unlock(&delayed_refs->lock);
1991 
1992 	/*
1993 	 * We may have dropped the spin lock to get the head mutex lock, and
1994 	 * that might have given someone else time to free the head.  If that's
1995 	 * true, it has been removed from our list and we can move on.
1996 	 */
1997 	if (ret == -EAGAIN)
1998 		head = ERR_PTR(-EAGAIN);
1999 
2000 	return head;
2001 }
2002 
2003 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2004 					   struct btrfs_delayed_ref_head *locked_ref,
2005 					   u64 *bytes_released)
2006 {
2007 	struct btrfs_fs_info *fs_info = trans->fs_info;
2008 	struct btrfs_delayed_ref_root *delayed_refs;
2009 	struct btrfs_delayed_extent_op *extent_op;
2010 	struct btrfs_delayed_ref_node *ref;
2011 	bool must_insert_reserved;
2012 	int ret;
2013 
2014 	delayed_refs = &trans->transaction->delayed_refs;
2015 
2016 	lockdep_assert_held(&locked_ref->mutex);
2017 	lockdep_assert_held(&locked_ref->lock);
2018 
2019 	while ((ref = select_delayed_ref(locked_ref))) {
2020 		if (ref->seq &&
2021 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
2022 			spin_unlock(&locked_ref->lock);
2023 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2024 			return -EAGAIN;
2025 		}
2026 
2027 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2028 		RB_CLEAR_NODE(&ref->ref_node);
2029 		if (!list_empty(&ref->add_list))
2030 			list_del(&ref->add_list);
2031 		/*
2032 		 * When we play the delayed ref, also correct the ref_mod on
2033 		 * head
2034 		 */
2035 		switch (ref->action) {
2036 		case BTRFS_ADD_DELAYED_REF:
2037 		case BTRFS_ADD_DELAYED_EXTENT:
2038 			locked_ref->ref_mod -= ref->ref_mod;
2039 			break;
2040 		case BTRFS_DROP_DELAYED_REF:
2041 			locked_ref->ref_mod += ref->ref_mod;
2042 			break;
2043 		default:
2044 			WARN_ON(1);
2045 		}
2046 		atomic_dec(&delayed_refs->num_entries);
2047 
2048 		/*
2049 		 * Record the must_insert_reserved flag before we drop the
2050 		 * spin lock.
2051 		 */
2052 		must_insert_reserved = locked_ref->must_insert_reserved;
2053 		/*
2054 		 * Unsetting this on the head ref relinquishes ownership of
2055 		 * the rsv_bytes, so it is critical that every possible code
2056 		 * path from here forward frees all reserves including qgroup
2057 		 * reserve.
2058 		 */
2059 		locked_ref->must_insert_reserved = false;
2060 
2061 		extent_op = locked_ref->extent_op;
2062 		locked_ref->extent_op = NULL;
2063 		spin_unlock(&locked_ref->lock);
2064 
2065 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
2066 					  must_insert_reserved);
2067 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2068 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
2069 
2070 		btrfs_free_delayed_extent_op(extent_op);
2071 		if (ret) {
2072 			unselect_delayed_ref_head(delayed_refs, locked_ref);
2073 			btrfs_put_delayed_ref(ref);
2074 			return ret;
2075 		}
2076 
2077 		btrfs_put_delayed_ref(ref);
2078 		cond_resched();
2079 
2080 		spin_lock(&locked_ref->lock);
2081 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 /*
2088  * Returns 0 on success or if called with an already aborted transaction.
2089  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2090  */
2091 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2092 					     u64 min_bytes)
2093 {
2094 	struct btrfs_fs_info *fs_info = trans->fs_info;
2095 	struct btrfs_delayed_ref_root *delayed_refs;
2096 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2097 	int ret;
2098 	unsigned long count = 0;
2099 	unsigned long max_count = 0;
2100 	u64 bytes_processed = 0;
2101 
2102 	delayed_refs = &trans->transaction->delayed_refs;
2103 	if (min_bytes == 0) {
2104 		max_count = delayed_refs->num_heads_ready;
2105 		min_bytes = U64_MAX;
2106 	}
2107 
2108 	do {
2109 		if (!locked_ref) {
2110 			locked_ref = btrfs_obtain_ref_head(trans);
2111 			if (IS_ERR_OR_NULL(locked_ref)) {
2112 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2113 					continue;
2114 				} else {
2115 					break;
2116 				}
2117 			}
2118 			count++;
2119 		}
2120 		/*
2121 		 * We need to try and merge add/drops of the same ref since we
2122 		 * can run into issues with relocate dropping the implicit ref
2123 		 * and then it being added back again before the drop can
2124 		 * finish.  If we merged anything we need to re-loop so we can
2125 		 * get a good ref.
2126 		 * Or we can get node references of the same type that weren't
2127 		 * merged when created due to bumps in the tree mod seq, and
2128 		 * we need to merge them to prevent adding an inline extent
2129 		 * backref before dropping it (triggering a BUG_ON at
2130 		 * insert_inline_extent_backref()).
2131 		 */
2132 		spin_lock(&locked_ref->lock);
2133 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2134 
2135 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2136 		if (ret < 0 && ret != -EAGAIN) {
2137 			/*
2138 			 * Error, btrfs_run_delayed_refs_for_head already
2139 			 * unlocked everything so just bail out
2140 			 */
2141 			return ret;
2142 		} else if (!ret) {
2143 			/*
2144 			 * Success, perform the usual cleanup of a processed
2145 			 * head
2146 			 */
2147 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2148 			if (ret > 0 ) {
2149 				/* We dropped our lock, we need to loop. */
2150 				ret = 0;
2151 				continue;
2152 			} else if (ret) {
2153 				return ret;
2154 			}
2155 		}
2156 
2157 		/*
2158 		 * Either success case or btrfs_run_delayed_refs_for_head
2159 		 * returned -EAGAIN, meaning we need to select another head
2160 		 */
2161 
2162 		locked_ref = NULL;
2163 		cond_resched();
2164 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2165 		 (max_count > 0 && count < max_count) ||
2166 		 locked_ref);
2167 
2168 	return 0;
2169 }
2170 
2171 #ifdef SCRAMBLE_DELAYED_REFS
2172 /*
2173  * Normally delayed refs get processed in ascending bytenr order. This
2174  * correlates in most cases to the order added. To expose dependencies on this
2175  * order, we start to process the tree in the middle instead of the beginning
2176  */
2177 static u64 find_middle(struct rb_root *root)
2178 {
2179 	struct rb_node *n = root->rb_node;
2180 	struct btrfs_delayed_ref_node *entry;
2181 	int alt = 1;
2182 	u64 middle;
2183 	u64 first = 0, last = 0;
2184 
2185 	n = rb_first(root);
2186 	if (n) {
2187 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2188 		first = entry->bytenr;
2189 	}
2190 	n = rb_last(root);
2191 	if (n) {
2192 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2193 		last = entry->bytenr;
2194 	}
2195 	n = root->rb_node;
2196 
2197 	while (n) {
2198 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2199 		WARN_ON(!entry->in_tree);
2200 
2201 		middle = entry->bytenr;
2202 
2203 		if (alt)
2204 			n = n->rb_left;
2205 		else
2206 			n = n->rb_right;
2207 
2208 		alt = 1 - alt;
2209 	}
2210 	return middle;
2211 }
2212 #endif
2213 
2214 /*
2215  * Start processing the delayed reference count updates and extent insertions
2216  * we have queued up so far.
2217  *
2218  * @trans:	Transaction handle.
2219  * @min_bytes:	How many bytes of delayed references to process. After this
2220  *		many bytes we stop processing delayed references if there are
2221  *		any more. If 0 it means to run all existing delayed references,
2222  *		but not new ones added after running all existing ones.
2223  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2224  *		plus any new ones that are added.
2225  *
2226  * Returns 0 on success or if called with an aborted transaction
2227  * Returns <0 on error and aborts the transaction
2228  */
2229 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2230 {
2231 	struct btrfs_fs_info *fs_info = trans->fs_info;
2232 	struct btrfs_delayed_ref_root *delayed_refs;
2233 	int ret;
2234 
2235 	/* We'll clean this up in btrfs_cleanup_transaction */
2236 	if (TRANS_ABORTED(trans))
2237 		return 0;
2238 
2239 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2240 		return 0;
2241 
2242 	delayed_refs = &trans->transaction->delayed_refs;
2243 again:
2244 #ifdef SCRAMBLE_DELAYED_REFS
2245 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2246 #endif
2247 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2248 	if (ret < 0) {
2249 		btrfs_abort_transaction(trans, ret);
2250 		return ret;
2251 	}
2252 
2253 	if (min_bytes == U64_MAX) {
2254 		btrfs_create_pending_block_groups(trans);
2255 
2256 		spin_lock(&delayed_refs->lock);
2257 		if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2258 			spin_unlock(&delayed_refs->lock);
2259 			return 0;
2260 		}
2261 		spin_unlock(&delayed_refs->lock);
2262 
2263 		cond_resched();
2264 		goto again;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2271 				struct extent_buffer *eb, u64 flags)
2272 {
2273 	struct btrfs_delayed_extent_op *extent_op;
2274 	int level = btrfs_header_level(eb);
2275 	int ret;
2276 
2277 	extent_op = btrfs_alloc_delayed_extent_op();
2278 	if (!extent_op)
2279 		return -ENOMEM;
2280 
2281 	extent_op->flags_to_set = flags;
2282 	extent_op->update_flags = true;
2283 	extent_op->update_key = false;
2284 	extent_op->level = level;
2285 
2286 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2287 	if (ret)
2288 		btrfs_free_delayed_extent_op(extent_op);
2289 	return ret;
2290 }
2291 
2292 static noinline int check_delayed_ref(struct btrfs_root *root,
2293 				      struct btrfs_path *path,
2294 				      u64 objectid, u64 offset, u64 bytenr)
2295 {
2296 	struct btrfs_delayed_ref_head *head;
2297 	struct btrfs_delayed_ref_node *ref;
2298 	struct btrfs_delayed_data_ref *data_ref;
2299 	struct btrfs_delayed_ref_root *delayed_refs;
2300 	struct btrfs_transaction *cur_trans;
2301 	struct rb_node *node;
2302 	int ret = 0;
2303 
2304 	spin_lock(&root->fs_info->trans_lock);
2305 	cur_trans = root->fs_info->running_transaction;
2306 	if (cur_trans)
2307 		refcount_inc(&cur_trans->use_count);
2308 	spin_unlock(&root->fs_info->trans_lock);
2309 	if (!cur_trans)
2310 		return 0;
2311 
2312 	delayed_refs = &cur_trans->delayed_refs;
2313 	spin_lock(&delayed_refs->lock);
2314 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2315 	if (!head) {
2316 		spin_unlock(&delayed_refs->lock);
2317 		btrfs_put_transaction(cur_trans);
2318 		return 0;
2319 	}
2320 
2321 	if (!mutex_trylock(&head->mutex)) {
2322 		if (path->nowait) {
2323 			spin_unlock(&delayed_refs->lock);
2324 			btrfs_put_transaction(cur_trans);
2325 			return -EAGAIN;
2326 		}
2327 
2328 		refcount_inc(&head->refs);
2329 		spin_unlock(&delayed_refs->lock);
2330 
2331 		btrfs_release_path(path);
2332 
2333 		/*
2334 		 * Mutex was contended, block until it's released and let
2335 		 * caller try again
2336 		 */
2337 		mutex_lock(&head->mutex);
2338 		mutex_unlock(&head->mutex);
2339 		btrfs_put_delayed_ref_head(head);
2340 		btrfs_put_transaction(cur_trans);
2341 		return -EAGAIN;
2342 	}
2343 	spin_unlock(&delayed_refs->lock);
2344 
2345 	spin_lock(&head->lock);
2346 	/*
2347 	 * XXX: We should replace this with a proper search function in the
2348 	 * future.
2349 	 */
2350 	for (node = rb_first_cached(&head->ref_tree); node;
2351 	     node = rb_next(node)) {
2352 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2353 		/* If it's a shared ref we know a cross reference exists */
2354 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2355 			ret = 1;
2356 			break;
2357 		}
2358 
2359 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2360 
2361 		/*
2362 		 * If our ref doesn't match the one we're currently looking at
2363 		 * then we have a cross reference.
2364 		 */
2365 		if (data_ref->root != root->root_key.objectid ||
2366 		    data_ref->objectid != objectid ||
2367 		    data_ref->offset != offset) {
2368 			ret = 1;
2369 			break;
2370 		}
2371 	}
2372 	spin_unlock(&head->lock);
2373 	mutex_unlock(&head->mutex);
2374 	btrfs_put_transaction(cur_trans);
2375 	return ret;
2376 }
2377 
2378 static noinline int check_committed_ref(struct btrfs_root *root,
2379 					struct btrfs_path *path,
2380 					u64 objectid, u64 offset, u64 bytenr,
2381 					bool strict)
2382 {
2383 	struct btrfs_fs_info *fs_info = root->fs_info;
2384 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2385 	struct extent_buffer *leaf;
2386 	struct btrfs_extent_data_ref *ref;
2387 	struct btrfs_extent_inline_ref *iref;
2388 	struct btrfs_extent_item *ei;
2389 	struct btrfs_key key;
2390 	u32 item_size;
2391 	u32 expected_size;
2392 	int type;
2393 	int ret;
2394 
2395 	key.objectid = bytenr;
2396 	key.offset = (u64)-1;
2397 	key.type = BTRFS_EXTENT_ITEM_KEY;
2398 
2399 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2400 	if (ret < 0)
2401 		goto out;
2402 	BUG_ON(ret == 0); /* Corruption */
2403 
2404 	ret = -ENOENT;
2405 	if (path->slots[0] == 0)
2406 		goto out;
2407 
2408 	path->slots[0]--;
2409 	leaf = path->nodes[0];
2410 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2411 
2412 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2413 		goto out;
2414 
2415 	ret = 1;
2416 	item_size = btrfs_item_size(leaf, path->slots[0]);
2417 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2419 
2420 	/* No inline refs; we need to bail before checking for owner ref. */
2421 	if (item_size == sizeof(*ei))
2422 		goto out;
2423 
2424 	/* Check for an owner ref; skip over it to the real inline refs. */
2425 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2426 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2427 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2428 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2429 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2430 	}
2431 
2432 	/* If extent item has more than 1 inline ref then it's shared */
2433 	if (item_size != expected_size)
2434 		goto out;
2435 
2436 	/*
2437 	 * If extent created before last snapshot => it's shared unless the
2438 	 * snapshot has been deleted. Use the heuristic if strict is false.
2439 	 */
2440 	if (!strict &&
2441 	    (btrfs_extent_generation(leaf, ei) <=
2442 	     btrfs_root_last_snapshot(&root->root_item)))
2443 		goto out;
2444 
2445 	/* If this extent has SHARED_DATA_REF then it's shared */
2446 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2447 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2448 		goto out;
2449 
2450 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2451 	if (btrfs_extent_refs(leaf, ei) !=
2452 	    btrfs_extent_data_ref_count(leaf, ref) ||
2453 	    btrfs_extent_data_ref_root(leaf, ref) !=
2454 	    root->root_key.objectid ||
2455 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2456 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2457 		goto out;
2458 
2459 	ret = 0;
2460 out:
2461 	return ret;
2462 }
2463 
2464 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2465 			  u64 bytenr, bool strict, struct btrfs_path *path)
2466 {
2467 	int ret;
2468 
2469 	do {
2470 		ret = check_committed_ref(root, path, objectid,
2471 					  offset, bytenr, strict);
2472 		if (ret && ret != -ENOENT)
2473 			goto out;
2474 
2475 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2476 	} while (ret == -EAGAIN);
2477 
2478 out:
2479 	btrfs_release_path(path);
2480 	if (btrfs_is_data_reloc_root(root))
2481 		WARN_ON(ret > 0);
2482 	return ret;
2483 }
2484 
2485 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2486 			   struct btrfs_root *root,
2487 			   struct extent_buffer *buf,
2488 			   int full_backref, int inc)
2489 {
2490 	struct btrfs_fs_info *fs_info = root->fs_info;
2491 	u64 bytenr;
2492 	u64 num_bytes;
2493 	u64 parent;
2494 	u64 ref_root;
2495 	u32 nritems;
2496 	struct btrfs_key key;
2497 	struct btrfs_file_extent_item *fi;
2498 	struct btrfs_ref generic_ref = { 0 };
2499 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2500 	int i;
2501 	int action;
2502 	int level;
2503 	int ret = 0;
2504 
2505 	if (btrfs_is_testing(fs_info))
2506 		return 0;
2507 
2508 	ref_root = btrfs_header_owner(buf);
2509 	nritems = btrfs_header_nritems(buf);
2510 	level = btrfs_header_level(buf);
2511 
2512 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2513 		return 0;
2514 
2515 	if (full_backref)
2516 		parent = buf->start;
2517 	else
2518 		parent = 0;
2519 	if (inc)
2520 		action = BTRFS_ADD_DELAYED_REF;
2521 	else
2522 		action = BTRFS_DROP_DELAYED_REF;
2523 
2524 	for (i = 0; i < nritems; i++) {
2525 		if (level == 0) {
2526 			btrfs_item_key_to_cpu(buf, &key, i);
2527 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2528 				continue;
2529 			fi = btrfs_item_ptr(buf, i,
2530 					    struct btrfs_file_extent_item);
2531 			if (btrfs_file_extent_type(buf, fi) ==
2532 			    BTRFS_FILE_EXTENT_INLINE)
2533 				continue;
2534 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2535 			if (bytenr == 0)
2536 				continue;
2537 
2538 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2539 			key.offset -= btrfs_file_extent_offset(buf, fi);
2540 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2541 					       num_bytes, parent, ref_root);
2542 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2543 					    key.offset, root->root_key.objectid,
2544 					    for_reloc);
2545 			if (inc)
2546 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2547 			else
2548 				ret = btrfs_free_extent(trans, &generic_ref);
2549 			if (ret)
2550 				goto fail;
2551 		} else {
2552 			bytenr = btrfs_node_blockptr(buf, i);
2553 			num_bytes = fs_info->nodesize;
2554 			/* We don't know the owning_root, use 0. */
2555 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2556 					       num_bytes, parent, 0);
2557 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2558 					    root->root_key.objectid, for_reloc);
2559 			if (inc)
2560 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2561 			else
2562 				ret = btrfs_free_extent(trans, &generic_ref);
2563 			if (ret)
2564 				goto fail;
2565 		}
2566 	}
2567 	return 0;
2568 fail:
2569 	return ret;
2570 }
2571 
2572 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2573 		  struct extent_buffer *buf, int full_backref)
2574 {
2575 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2576 }
2577 
2578 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2579 		  struct extent_buffer *buf, int full_backref)
2580 {
2581 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2582 }
2583 
2584 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2585 {
2586 	struct btrfs_fs_info *fs_info = root->fs_info;
2587 	u64 flags;
2588 	u64 ret;
2589 
2590 	if (data)
2591 		flags = BTRFS_BLOCK_GROUP_DATA;
2592 	else if (root == fs_info->chunk_root)
2593 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2594 	else
2595 		flags = BTRFS_BLOCK_GROUP_METADATA;
2596 
2597 	ret = btrfs_get_alloc_profile(fs_info, flags);
2598 	return ret;
2599 }
2600 
2601 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2602 {
2603 	struct rb_node *leftmost;
2604 	u64 bytenr = 0;
2605 
2606 	read_lock(&fs_info->block_group_cache_lock);
2607 	/* Get the block group with the lowest logical start address. */
2608 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2609 	if (leftmost) {
2610 		struct btrfs_block_group *bg;
2611 
2612 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2613 		bytenr = bg->start;
2614 	}
2615 	read_unlock(&fs_info->block_group_cache_lock);
2616 
2617 	return bytenr;
2618 }
2619 
2620 static int pin_down_extent(struct btrfs_trans_handle *trans,
2621 			   struct btrfs_block_group *cache,
2622 			   u64 bytenr, u64 num_bytes, int reserved)
2623 {
2624 	struct btrfs_fs_info *fs_info = cache->fs_info;
2625 
2626 	spin_lock(&cache->space_info->lock);
2627 	spin_lock(&cache->lock);
2628 	cache->pinned += num_bytes;
2629 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2630 					     num_bytes);
2631 	if (reserved) {
2632 		cache->reserved -= num_bytes;
2633 		cache->space_info->bytes_reserved -= num_bytes;
2634 	}
2635 	spin_unlock(&cache->lock);
2636 	spin_unlock(&cache->space_info->lock);
2637 
2638 	set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2639 		       bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2640 	return 0;
2641 }
2642 
2643 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2644 		     u64 bytenr, u64 num_bytes, int reserved)
2645 {
2646 	struct btrfs_block_group *cache;
2647 
2648 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2649 	BUG_ON(!cache); /* Logic error */
2650 
2651 	pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2652 
2653 	btrfs_put_block_group(cache);
2654 	return 0;
2655 }
2656 
2657 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2658 				    const struct extent_buffer *eb)
2659 {
2660 	struct btrfs_block_group *cache;
2661 	int ret;
2662 
2663 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2664 	if (!cache)
2665 		return -EINVAL;
2666 
2667 	/*
2668 	 * Fully cache the free space first so that our pin removes the free space
2669 	 * from the cache.
2670 	 */
2671 	ret = btrfs_cache_block_group(cache, true);
2672 	if (ret)
2673 		goto out;
2674 
2675 	pin_down_extent(trans, cache, eb->start, eb->len, 0);
2676 
2677 	/* remove us from the free space cache (if we're there at all) */
2678 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2679 out:
2680 	btrfs_put_block_group(cache);
2681 	return ret;
2682 }
2683 
2684 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2685 				   u64 start, u64 num_bytes)
2686 {
2687 	int ret;
2688 	struct btrfs_block_group *block_group;
2689 
2690 	block_group = btrfs_lookup_block_group(fs_info, start);
2691 	if (!block_group)
2692 		return -EINVAL;
2693 
2694 	ret = btrfs_cache_block_group(block_group, true);
2695 	if (ret)
2696 		goto out;
2697 
2698 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2699 out:
2700 	btrfs_put_block_group(block_group);
2701 	return ret;
2702 }
2703 
2704 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2705 {
2706 	struct btrfs_fs_info *fs_info = eb->fs_info;
2707 	struct btrfs_file_extent_item *item;
2708 	struct btrfs_key key;
2709 	int found_type;
2710 	int i;
2711 	int ret = 0;
2712 
2713 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2714 		return 0;
2715 
2716 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2717 		btrfs_item_key_to_cpu(eb, &key, i);
2718 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2719 			continue;
2720 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2721 		found_type = btrfs_file_extent_type(eb, item);
2722 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2723 			continue;
2724 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2725 			continue;
2726 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2727 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2728 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2729 		if (ret)
2730 			break;
2731 	}
2732 
2733 	return ret;
2734 }
2735 
2736 static void
2737 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2738 {
2739 	atomic_inc(&bg->reservations);
2740 }
2741 
2742 /*
2743  * Returns the free cluster for the given space info and sets empty_cluster to
2744  * what it should be based on the mount options.
2745  */
2746 static struct btrfs_free_cluster *
2747 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2748 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2749 {
2750 	struct btrfs_free_cluster *ret = NULL;
2751 
2752 	*empty_cluster = 0;
2753 	if (btrfs_mixed_space_info(space_info))
2754 		return ret;
2755 
2756 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2757 		ret = &fs_info->meta_alloc_cluster;
2758 		if (btrfs_test_opt(fs_info, SSD))
2759 			*empty_cluster = SZ_2M;
2760 		else
2761 			*empty_cluster = SZ_64K;
2762 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2763 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2764 		*empty_cluster = SZ_2M;
2765 		ret = &fs_info->data_alloc_cluster;
2766 	}
2767 
2768 	return ret;
2769 }
2770 
2771 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2772 			      u64 start, u64 end,
2773 			      const bool return_free_space)
2774 {
2775 	struct btrfs_block_group *cache = NULL;
2776 	struct btrfs_space_info *space_info;
2777 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2778 	struct btrfs_free_cluster *cluster = NULL;
2779 	u64 len;
2780 	u64 total_unpinned = 0;
2781 	u64 empty_cluster = 0;
2782 	bool readonly;
2783 
2784 	while (start <= end) {
2785 		readonly = false;
2786 		if (!cache ||
2787 		    start >= cache->start + cache->length) {
2788 			if (cache)
2789 				btrfs_put_block_group(cache);
2790 			total_unpinned = 0;
2791 			cache = btrfs_lookup_block_group(fs_info, start);
2792 			BUG_ON(!cache); /* Logic error */
2793 
2794 			cluster = fetch_cluster_info(fs_info,
2795 						     cache->space_info,
2796 						     &empty_cluster);
2797 			empty_cluster <<= 1;
2798 		}
2799 
2800 		len = cache->start + cache->length - start;
2801 		len = min(len, end + 1 - start);
2802 
2803 		if (return_free_space)
2804 			btrfs_add_free_space(cache, start, len);
2805 
2806 		start += len;
2807 		total_unpinned += len;
2808 		space_info = cache->space_info;
2809 
2810 		/*
2811 		 * If this space cluster has been marked as fragmented and we've
2812 		 * unpinned enough in this block group to potentially allow a
2813 		 * cluster to be created inside of it go ahead and clear the
2814 		 * fragmented check.
2815 		 */
2816 		if (cluster && cluster->fragmented &&
2817 		    total_unpinned > empty_cluster) {
2818 			spin_lock(&cluster->lock);
2819 			cluster->fragmented = 0;
2820 			spin_unlock(&cluster->lock);
2821 		}
2822 
2823 		spin_lock(&space_info->lock);
2824 		spin_lock(&cache->lock);
2825 		cache->pinned -= len;
2826 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2827 		space_info->max_extent_size = 0;
2828 		if (cache->ro) {
2829 			space_info->bytes_readonly += len;
2830 			readonly = true;
2831 		} else if (btrfs_is_zoned(fs_info)) {
2832 			/* Need reset before reusing in a zoned block group */
2833 			space_info->bytes_zone_unusable += len;
2834 			readonly = true;
2835 		}
2836 		spin_unlock(&cache->lock);
2837 		if (!readonly && return_free_space &&
2838 		    global_rsv->space_info == space_info) {
2839 			spin_lock(&global_rsv->lock);
2840 			if (!global_rsv->full) {
2841 				u64 to_add = min(len, global_rsv->size -
2842 						      global_rsv->reserved);
2843 
2844 				global_rsv->reserved += to_add;
2845 				btrfs_space_info_update_bytes_may_use(fs_info,
2846 						space_info, to_add);
2847 				if (global_rsv->reserved >= global_rsv->size)
2848 					global_rsv->full = 1;
2849 				len -= to_add;
2850 			}
2851 			spin_unlock(&global_rsv->lock);
2852 		}
2853 		/* Add to any tickets we may have */
2854 		if (!readonly && return_free_space && len)
2855 			btrfs_try_granting_tickets(fs_info, space_info);
2856 		spin_unlock(&space_info->lock);
2857 	}
2858 
2859 	if (cache)
2860 		btrfs_put_block_group(cache);
2861 	return 0;
2862 }
2863 
2864 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2865 {
2866 	struct btrfs_fs_info *fs_info = trans->fs_info;
2867 	struct btrfs_block_group *block_group, *tmp;
2868 	struct list_head *deleted_bgs;
2869 	struct extent_io_tree *unpin;
2870 	u64 start;
2871 	u64 end;
2872 	int ret;
2873 
2874 	unpin = &trans->transaction->pinned_extents;
2875 
2876 	while (!TRANS_ABORTED(trans)) {
2877 		struct extent_state *cached_state = NULL;
2878 
2879 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2880 		if (!find_first_extent_bit(unpin, 0, &start, &end,
2881 					   EXTENT_DIRTY, &cached_state)) {
2882 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2883 			break;
2884 		}
2885 
2886 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2887 			ret = btrfs_discard_extent(fs_info, start,
2888 						   end + 1 - start, NULL);
2889 
2890 		clear_extent_dirty(unpin, start, end, &cached_state);
2891 		unpin_extent_range(fs_info, start, end, true);
2892 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2893 		free_extent_state(cached_state);
2894 		cond_resched();
2895 	}
2896 
2897 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2898 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2899 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2900 	}
2901 
2902 	/*
2903 	 * Transaction is finished.  We don't need the lock anymore.  We
2904 	 * do need to clean up the block groups in case of a transaction
2905 	 * abort.
2906 	 */
2907 	deleted_bgs = &trans->transaction->deleted_bgs;
2908 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2909 		u64 trimmed = 0;
2910 
2911 		ret = -EROFS;
2912 		if (!TRANS_ABORTED(trans))
2913 			ret = btrfs_discard_extent(fs_info,
2914 						   block_group->start,
2915 						   block_group->length,
2916 						   &trimmed);
2917 
2918 		list_del_init(&block_group->bg_list);
2919 		btrfs_unfreeze_block_group(block_group);
2920 		btrfs_put_block_group(block_group);
2921 
2922 		if (ret) {
2923 			const char *errstr = btrfs_decode_error(ret);
2924 			btrfs_warn(fs_info,
2925 			   "discard failed while removing blockgroup: errno=%d %s",
2926 				   ret, errstr);
2927 		}
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 /*
2934  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2935  *
2936  * @fs_info:	the btrfs_fs_info for this mount
2937  * @leaf:	a leaf in the extent tree containing the extent item
2938  * @slot:	the slot in the leaf where the extent item is found
2939  *
2940  * Returns the objectid of the root that originally allocated the extent item
2941  * if the inline owner ref is expected and present, otherwise 0.
2942  *
2943  * If an extent item has an owner ref item, it will be the first inline ref
2944  * item. Therefore the logic is to check whether there are any inline ref
2945  * items, then check the type of the first one.
2946  */
2947 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2948 				struct extent_buffer *leaf, int slot)
2949 {
2950 	struct btrfs_extent_item *ei;
2951 	struct btrfs_extent_inline_ref *iref;
2952 	struct btrfs_extent_owner_ref *oref;
2953 	unsigned long ptr;
2954 	unsigned long end;
2955 	int type;
2956 
2957 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2958 		return 0;
2959 
2960 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2961 	ptr = (unsigned long)(ei + 1);
2962 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2963 
2964 	/* No inline ref items of any kind, can't check type. */
2965 	if (ptr == end)
2966 		return 0;
2967 
2968 	iref = (struct btrfs_extent_inline_ref *)ptr;
2969 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2970 
2971 	/* We found an owner ref, get the root out of it. */
2972 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2973 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2974 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2975 	}
2976 
2977 	/* We have inline refs, but not an owner ref. */
2978 	return 0;
2979 }
2980 
2981 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2982 				     u64 bytenr, struct btrfs_squota_delta *delta)
2983 {
2984 	int ret;
2985 	u64 num_bytes = delta->num_bytes;
2986 
2987 	if (delta->is_data) {
2988 		struct btrfs_root *csum_root;
2989 
2990 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2991 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2992 		if (ret) {
2993 			btrfs_abort_transaction(trans, ret);
2994 			return ret;
2995 		}
2996 
2997 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2998 		if (ret) {
2999 			btrfs_abort_transaction(trans, ret);
3000 			return ret;
3001 		}
3002 	}
3003 
3004 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
3005 	if (ret) {
3006 		btrfs_abort_transaction(trans, ret);
3007 		return ret;
3008 	}
3009 
3010 	ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3011 	if (ret) {
3012 		btrfs_abort_transaction(trans, ret);
3013 		return ret;
3014 	}
3015 
3016 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3017 	if (ret)
3018 		btrfs_abort_transaction(trans, ret);
3019 
3020 	return ret;
3021 }
3022 
3023 #define abort_and_dump(trans, path, fmt, args...)	\
3024 ({							\
3025 	btrfs_abort_transaction(trans, -EUCLEAN);	\
3026 	btrfs_print_leaf(path->nodes[0]);		\
3027 	btrfs_crit(trans->fs_info, fmt, ##args);	\
3028 })
3029 
3030 /*
3031  * Drop one or more refs of @node.
3032  *
3033  * 1. Locate the extent refs.
3034  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3035  *    Locate it, then reduce the refs number or remove the ref line completely.
3036  *
3037  * 2. Update the refs count in EXTENT/METADATA_ITEM
3038  *
3039  * Inline backref case:
3040  *
3041  * in extent tree we have:
3042  *
3043  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3044  *		refs 2 gen 6 flags DATA
3045  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3046  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3047  *
3048  * This function gets called with:
3049  *
3050  *    node->bytenr = 13631488
3051  *    node->num_bytes = 1048576
3052  *    root_objectid = FS_TREE
3053  *    owner_objectid = 257
3054  *    owner_offset = 0
3055  *    refs_to_drop = 1
3056  *
3057  * Then we should get some like:
3058  *
3059  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3060  *		refs 1 gen 6 flags DATA
3061  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3062  *
3063  * Keyed backref case:
3064  *
3065  * in extent tree we have:
3066  *
3067  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3068  *		refs 754 gen 6 flags DATA
3069  *	[...]
3070  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3071  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3072  *
3073  * This function get called with:
3074  *
3075  *    node->bytenr = 13631488
3076  *    node->num_bytes = 1048576
3077  *    root_objectid = FS_TREE
3078  *    owner_objectid = 866
3079  *    owner_offset = 0
3080  *    refs_to_drop = 1
3081  *
3082  * Then we should get some like:
3083  *
3084  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3085  *		refs 753 gen 6 flags DATA
3086  *
3087  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3088  */
3089 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3090 			       struct btrfs_delayed_ref_head *href,
3091 			       struct btrfs_delayed_ref_node *node, u64 parent,
3092 			       u64 root_objectid, u64 owner_objectid,
3093 			       u64 owner_offset,
3094 			       struct btrfs_delayed_extent_op *extent_op)
3095 {
3096 	struct btrfs_fs_info *info = trans->fs_info;
3097 	struct btrfs_key key;
3098 	struct btrfs_path *path;
3099 	struct btrfs_root *extent_root;
3100 	struct extent_buffer *leaf;
3101 	struct btrfs_extent_item *ei;
3102 	struct btrfs_extent_inline_ref *iref;
3103 	int ret;
3104 	int is_data;
3105 	int extent_slot = 0;
3106 	int found_extent = 0;
3107 	int num_to_del = 1;
3108 	int refs_to_drop = node->ref_mod;
3109 	u32 item_size;
3110 	u64 refs;
3111 	u64 bytenr = node->bytenr;
3112 	u64 num_bytes = node->num_bytes;
3113 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3114 	u64 delayed_ref_root = href->owning_root;
3115 
3116 	extent_root = btrfs_extent_root(info, bytenr);
3117 	ASSERT(extent_root);
3118 
3119 	path = btrfs_alloc_path();
3120 	if (!path)
3121 		return -ENOMEM;
3122 
3123 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3124 
3125 	if (!is_data && refs_to_drop != 1) {
3126 		btrfs_crit(info,
3127 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3128 			   node->bytenr, refs_to_drop);
3129 		ret = -EINVAL;
3130 		btrfs_abort_transaction(trans, ret);
3131 		goto out;
3132 	}
3133 
3134 	if (is_data)
3135 		skinny_metadata = false;
3136 
3137 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3138 				    parent, root_objectid, owner_objectid,
3139 				    owner_offset);
3140 	if (ret == 0) {
3141 		/*
3142 		 * Either the inline backref or the SHARED_DATA_REF/
3143 		 * SHARED_BLOCK_REF is found
3144 		 *
3145 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3146 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3147 		 */
3148 		extent_slot = path->slots[0];
3149 		while (extent_slot >= 0) {
3150 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3151 					      extent_slot);
3152 			if (key.objectid != bytenr)
3153 				break;
3154 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3155 			    key.offset == num_bytes) {
3156 				found_extent = 1;
3157 				break;
3158 			}
3159 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3160 			    key.offset == owner_objectid) {
3161 				found_extent = 1;
3162 				break;
3163 			}
3164 
3165 			/* Quick path didn't find the EXTEMT/METADATA_ITEM */
3166 			if (path->slots[0] - extent_slot > 5)
3167 				break;
3168 			extent_slot--;
3169 		}
3170 
3171 		if (!found_extent) {
3172 			if (iref) {
3173 				abort_and_dump(trans, path,
3174 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3175 					   path->slots[0]);
3176 				ret = -EUCLEAN;
3177 				goto out;
3178 			}
3179 			/* Must be SHARED_* item, remove the backref first */
3180 			ret = remove_extent_backref(trans, extent_root, path,
3181 						    NULL, refs_to_drop, is_data);
3182 			if (ret) {
3183 				btrfs_abort_transaction(trans, ret);
3184 				goto out;
3185 			}
3186 			btrfs_release_path(path);
3187 
3188 			/* Slow path to locate EXTENT/METADATA_ITEM */
3189 			key.objectid = bytenr;
3190 			key.type = BTRFS_EXTENT_ITEM_KEY;
3191 			key.offset = num_bytes;
3192 
3193 			if (!is_data && skinny_metadata) {
3194 				key.type = BTRFS_METADATA_ITEM_KEY;
3195 				key.offset = owner_objectid;
3196 			}
3197 
3198 			ret = btrfs_search_slot(trans, extent_root,
3199 						&key, path, -1, 1);
3200 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3201 				/*
3202 				 * Couldn't find our skinny metadata item,
3203 				 * see if we have ye olde extent item.
3204 				 */
3205 				path->slots[0]--;
3206 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3207 						      path->slots[0]);
3208 				if (key.objectid == bytenr &&
3209 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3210 				    key.offset == num_bytes)
3211 					ret = 0;
3212 			}
3213 
3214 			if (ret > 0 && skinny_metadata) {
3215 				skinny_metadata = false;
3216 				key.objectid = bytenr;
3217 				key.type = BTRFS_EXTENT_ITEM_KEY;
3218 				key.offset = num_bytes;
3219 				btrfs_release_path(path);
3220 				ret = btrfs_search_slot(trans, extent_root,
3221 							&key, path, -1, 1);
3222 			}
3223 
3224 			if (ret) {
3225 				if (ret > 0)
3226 					btrfs_print_leaf(path->nodes[0]);
3227 				btrfs_err(info,
3228 			"umm, got %d back from search, was looking for %llu, slot %d",
3229 					  ret, bytenr, path->slots[0]);
3230 			}
3231 			if (ret < 0) {
3232 				btrfs_abort_transaction(trans, ret);
3233 				goto out;
3234 			}
3235 			extent_slot = path->slots[0];
3236 		}
3237 	} else if (WARN_ON(ret == -ENOENT)) {
3238 		abort_and_dump(trans, path,
3239 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3240 			       bytenr, parent, root_objectid, owner_objectid,
3241 			       owner_offset, path->slots[0]);
3242 		goto out;
3243 	} else {
3244 		btrfs_abort_transaction(trans, ret);
3245 		goto out;
3246 	}
3247 
3248 	leaf = path->nodes[0];
3249 	item_size = btrfs_item_size(leaf, extent_slot);
3250 	if (unlikely(item_size < sizeof(*ei))) {
3251 		ret = -EUCLEAN;
3252 		btrfs_err(trans->fs_info,
3253 			  "unexpected extent item size, has %u expect >= %zu",
3254 			  item_size, sizeof(*ei));
3255 		btrfs_abort_transaction(trans, ret);
3256 		goto out;
3257 	}
3258 	ei = btrfs_item_ptr(leaf, extent_slot,
3259 			    struct btrfs_extent_item);
3260 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3261 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3262 		struct btrfs_tree_block_info *bi;
3263 
3264 		if (item_size < sizeof(*ei) + sizeof(*bi)) {
3265 			abort_and_dump(trans, path,
3266 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3267 				       key.objectid, key.type, key.offset,
3268 				       path->slots[0], owner_objectid, item_size,
3269 				       sizeof(*ei) + sizeof(*bi));
3270 			ret = -EUCLEAN;
3271 			goto out;
3272 		}
3273 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3274 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3275 	}
3276 
3277 	refs = btrfs_extent_refs(leaf, ei);
3278 	if (refs < refs_to_drop) {
3279 		abort_and_dump(trans, path,
3280 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3281 			       refs_to_drop, refs, bytenr, path->slots[0]);
3282 		ret = -EUCLEAN;
3283 		goto out;
3284 	}
3285 	refs -= refs_to_drop;
3286 
3287 	if (refs > 0) {
3288 		if (extent_op)
3289 			__run_delayed_extent_op(extent_op, leaf, ei);
3290 		/*
3291 		 * In the case of inline back ref, reference count will
3292 		 * be updated by remove_extent_backref
3293 		 */
3294 		if (iref) {
3295 			if (!found_extent) {
3296 				abort_and_dump(trans, path,
3297 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3298 					       path->slots[0]);
3299 				ret = -EUCLEAN;
3300 				goto out;
3301 			}
3302 		} else {
3303 			btrfs_set_extent_refs(leaf, ei, refs);
3304 			btrfs_mark_buffer_dirty(trans, leaf);
3305 		}
3306 		if (found_extent) {
3307 			ret = remove_extent_backref(trans, extent_root, path,
3308 						    iref, refs_to_drop, is_data);
3309 			if (ret) {
3310 				btrfs_abort_transaction(trans, ret);
3311 				goto out;
3312 			}
3313 		}
3314 	} else {
3315 		struct btrfs_squota_delta delta = {
3316 			.root = delayed_ref_root,
3317 			.num_bytes = num_bytes,
3318 			.is_data = is_data,
3319 			.is_inc = false,
3320 			.generation = btrfs_extent_generation(leaf, ei),
3321 		};
3322 
3323 		/* In this branch refs == 1 */
3324 		if (found_extent) {
3325 			if (is_data && refs_to_drop !=
3326 			    extent_data_ref_count(path, iref)) {
3327 				abort_and_dump(trans, path,
3328 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3329 					       extent_data_ref_count(path, iref),
3330 					       refs_to_drop, path->slots[0]);
3331 				ret = -EUCLEAN;
3332 				goto out;
3333 			}
3334 			if (iref) {
3335 				if (path->slots[0] != extent_slot) {
3336 					abort_and_dump(trans, path,
3337 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3338 						       key.objectid, key.type,
3339 						       key.offset, path->slots[0]);
3340 					ret = -EUCLEAN;
3341 					goto out;
3342 				}
3343 			} else {
3344 				/*
3345 				 * No inline ref, we must be at SHARED_* item,
3346 				 * And it's single ref, it must be:
3347 				 * |	extent_slot	  ||extent_slot + 1|
3348 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3349 				 */
3350 				if (path->slots[0] != extent_slot + 1) {
3351 					abort_and_dump(trans, path,
3352 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3353 						       path->slots[0]);
3354 					ret = -EUCLEAN;
3355 					goto out;
3356 				}
3357 				path->slots[0] = extent_slot;
3358 				num_to_del = 2;
3359 			}
3360 		}
3361 		/*
3362 		 * We can't infer the data owner from the delayed ref, so we need
3363 		 * to try to get it from the owning ref item.
3364 		 *
3365 		 * If it is not present, then that extent was not written under
3366 		 * simple quotas mode, so we don't need to account for its deletion.
3367 		 */
3368 		if (is_data)
3369 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3370 								 leaf, extent_slot);
3371 
3372 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3373 				      num_to_del);
3374 		if (ret) {
3375 			btrfs_abort_transaction(trans, ret);
3376 			goto out;
3377 		}
3378 		btrfs_release_path(path);
3379 
3380 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3381 	}
3382 	btrfs_release_path(path);
3383 
3384 out:
3385 	btrfs_free_path(path);
3386 	return ret;
3387 }
3388 
3389 /*
3390  * when we free an block, it is possible (and likely) that we free the last
3391  * delayed ref for that extent as well.  This searches the delayed ref tree for
3392  * a given extent, and if there are no other delayed refs to be processed, it
3393  * removes it from the tree.
3394  */
3395 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3396 				      u64 bytenr)
3397 {
3398 	struct btrfs_delayed_ref_head *head;
3399 	struct btrfs_delayed_ref_root *delayed_refs;
3400 	int ret = 0;
3401 
3402 	delayed_refs = &trans->transaction->delayed_refs;
3403 	spin_lock(&delayed_refs->lock);
3404 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3405 	if (!head)
3406 		goto out_delayed_unlock;
3407 
3408 	spin_lock(&head->lock);
3409 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3410 		goto out;
3411 
3412 	if (cleanup_extent_op(head) != NULL)
3413 		goto out;
3414 
3415 	/*
3416 	 * waiting for the lock here would deadlock.  If someone else has it
3417 	 * locked they are already in the process of dropping it anyway
3418 	 */
3419 	if (!mutex_trylock(&head->mutex))
3420 		goto out;
3421 
3422 	btrfs_delete_ref_head(delayed_refs, head);
3423 	head->processing = false;
3424 
3425 	spin_unlock(&head->lock);
3426 	spin_unlock(&delayed_refs->lock);
3427 
3428 	BUG_ON(head->extent_op);
3429 	if (head->must_insert_reserved)
3430 		ret = 1;
3431 
3432 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3433 	mutex_unlock(&head->mutex);
3434 	btrfs_put_delayed_ref_head(head);
3435 	return ret;
3436 out:
3437 	spin_unlock(&head->lock);
3438 
3439 out_delayed_unlock:
3440 	spin_unlock(&delayed_refs->lock);
3441 	return 0;
3442 }
3443 
3444 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3445 			   u64 root_id,
3446 			   struct extent_buffer *buf,
3447 			   u64 parent, int last_ref)
3448 {
3449 	struct btrfs_fs_info *fs_info = trans->fs_info;
3450 	struct btrfs_ref generic_ref = { 0 };
3451 	struct btrfs_block_group *bg;
3452 	int ret;
3453 
3454 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3455 			       buf->start, buf->len, parent, btrfs_header_owner(buf));
3456 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3457 			    root_id, 0, false);
3458 
3459 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3460 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3461 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3462 		BUG_ON(ret); /* -ENOMEM */
3463 	}
3464 
3465 	if (!last_ref)
3466 		return;
3467 
3468 	if (btrfs_header_generation(buf) != trans->transid)
3469 		goto out;
3470 
3471 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3472 		ret = check_ref_cleanup(trans, buf->start);
3473 		if (!ret)
3474 			goto out;
3475 	}
3476 
3477 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3478 
3479 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3480 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3481 		btrfs_put_block_group(bg);
3482 		goto out;
3483 	}
3484 
3485 	/*
3486 	 * If there are tree mod log users we may have recorded mod log
3487 	 * operations for this node.  If we re-allocate this node we
3488 	 * could replay operations on this node that happened when it
3489 	 * existed in a completely different root.  For example if it
3490 	 * was part of root A, then was reallocated to root B, and we
3491 	 * are doing a btrfs_old_search_slot(root b), we could replay
3492 	 * operations that happened when the block was part of root A,
3493 	 * giving us an inconsistent view of the btree.
3494 	 *
3495 	 * We are safe from races here because at this point no other
3496 	 * node or root points to this extent buffer, so if after this
3497 	 * check a new tree mod log user joins we will not have an
3498 	 * existing log of operations on this node that we have to
3499 	 * contend with.
3500 	 */
3501 
3502 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3503 		     || btrfs_is_zoned(fs_info)) {
3504 		pin_down_extent(trans, bg, buf->start, buf->len, 1);
3505 		btrfs_put_block_group(bg);
3506 		goto out;
3507 	}
3508 
3509 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3510 
3511 	btrfs_add_free_space(bg, buf->start, buf->len);
3512 	btrfs_free_reserved_bytes(bg, buf->len, 0);
3513 	btrfs_put_block_group(bg);
3514 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3515 
3516 out:
3517 
3518 	/*
3519 	 * Deleting the buffer, clear the corrupt flag since it doesn't
3520 	 * matter anymore.
3521 	 */
3522 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3523 }
3524 
3525 /* Can return -ENOMEM */
3526 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3527 {
3528 	struct btrfs_fs_info *fs_info = trans->fs_info;
3529 	int ret;
3530 
3531 	if (btrfs_is_testing(fs_info))
3532 		return 0;
3533 
3534 	/*
3535 	 * tree log blocks never actually go into the extent allocation
3536 	 * tree, just update pinning info and exit early.
3537 	 */
3538 	if ((ref->type == BTRFS_REF_METADATA &&
3539 	     ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3540 	    (ref->type == BTRFS_REF_DATA &&
3541 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3542 		btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3543 		ret = 0;
3544 	} else if (ref->type == BTRFS_REF_METADATA) {
3545 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3546 	} else {
3547 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3548 	}
3549 
3550 	if (!((ref->type == BTRFS_REF_METADATA &&
3551 	       ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3552 	      (ref->type == BTRFS_REF_DATA &&
3553 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3554 		btrfs_ref_tree_mod(fs_info, ref);
3555 
3556 	return ret;
3557 }
3558 
3559 enum btrfs_loop_type {
3560 	/*
3561 	 * Start caching block groups but do not wait for progress or for them
3562 	 * to be done.
3563 	 */
3564 	LOOP_CACHING_NOWAIT,
3565 
3566 	/*
3567 	 * Wait for the block group free_space >= the space we're waiting for if
3568 	 * the block group isn't cached.
3569 	 */
3570 	LOOP_CACHING_WAIT,
3571 
3572 	/*
3573 	 * Allow allocations to happen from block groups that do not yet have a
3574 	 * size classification.
3575 	 */
3576 	LOOP_UNSET_SIZE_CLASS,
3577 
3578 	/*
3579 	 * Allocate a chunk and then retry the allocation.
3580 	 */
3581 	LOOP_ALLOC_CHUNK,
3582 
3583 	/*
3584 	 * Ignore the size class restrictions for this allocation.
3585 	 */
3586 	LOOP_WRONG_SIZE_CLASS,
3587 
3588 	/*
3589 	 * Ignore the empty size, only try to allocate the number of bytes
3590 	 * needed for this allocation.
3591 	 */
3592 	LOOP_NO_EMPTY_SIZE,
3593 };
3594 
3595 static inline void
3596 btrfs_lock_block_group(struct btrfs_block_group *cache,
3597 		       int delalloc)
3598 {
3599 	if (delalloc)
3600 		down_read(&cache->data_rwsem);
3601 }
3602 
3603 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3604 		       int delalloc)
3605 {
3606 	btrfs_get_block_group(cache);
3607 	if (delalloc)
3608 		down_read(&cache->data_rwsem);
3609 }
3610 
3611 static struct btrfs_block_group *btrfs_lock_cluster(
3612 		   struct btrfs_block_group *block_group,
3613 		   struct btrfs_free_cluster *cluster,
3614 		   int delalloc)
3615 	__acquires(&cluster->refill_lock)
3616 {
3617 	struct btrfs_block_group *used_bg = NULL;
3618 
3619 	spin_lock(&cluster->refill_lock);
3620 	while (1) {
3621 		used_bg = cluster->block_group;
3622 		if (!used_bg)
3623 			return NULL;
3624 
3625 		if (used_bg == block_group)
3626 			return used_bg;
3627 
3628 		btrfs_get_block_group(used_bg);
3629 
3630 		if (!delalloc)
3631 			return used_bg;
3632 
3633 		if (down_read_trylock(&used_bg->data_rwsem))
3634 			return used_bg;
3635 
3636 		spin_unlock(&cluster->refill_lock);
3637 
3638 		/* We should only have one-level nested. */
3639 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3640 
3641 		spin_lock(&cluster->refill_lock);
3642 		if (used_bg == cluster->block_group)
3643 			return used_bg;
3644 
3645 		up_read(&used_bg->data_rwsem);
3646 		btrfs_put_block_group(used_bg);
3647 	}
3648 }
3649 
3650 static inline void
3651 btrfs_release_block_group(struct btrfs_block_group *cache,
3652 			 int delalloc)
3653 {
3654 	if (delalloc)
3655 		up_read(&cache->data_rwsem);
3656 	btrfs_put_block_group(cache);
3657 }
3658 
3659 /*
3660  * Helper function for find_free_extent().
3661  *
3662  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3663  * Return >0 to inform caller that we find nothing
3664  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3665  */
3666 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3667 				      struct find_free_extent_ctl *ffe_ctl,
3668 				      struct btrfs_block_group **cluster_bg_ret)
3669 {
3670 	struct btrfs_block_group *cluster_bg;
3671 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3672 	u64 aligned_cluster;
3673 	u64 offset;
3674 	int ret;
3675 
3676 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3677 	if (!cluster_bg)
3678 		goto refill_cluster;
3679 	if (cluster_bg != bg && (cluster_bg->ro ||
3680 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3681 		goto release_cluster;
3682 
3683 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3684 			ffe_ctl->num_bytes, cluster_bg->start,
3685 			&ffe_ctl->max_extent_size);
3686 	if (offset) {
3687 		/* We have a block, we're done */
3688 		spin_unlock(&last_ptr->refill_lock);
3689 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3690 		*cluster_bg_ret = cluster_bg;
3691 		ffe_ctl->found_offset = offset;
3692 		return 0;
3693 	}
3694 	WARN_ON(last_ptr->block_group != cluster_bg);
3695 
3696 release_cluster:
3697 	/*
3698 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3699 	 * lets just skip it and let the allocator find whatever block it can
3700 	 * find. If we reach this point, we will have tried the cluster
3701 	 * allocator plenty of times and not have found anything, so we are
3702 	 * likely way too fragmented for the clustering stuff to find anything.
3703 	 *
3704 	 * However, if the cluster is taken from the current block group,
3705 	 * release the cluster first, so that we stand a better chance of
3706 	 * succeeding in the unclustered allocation.
3707 	 */
3708 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3709 		spin_unlock(&last_ptr->refill_lock);
3710 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3711 		return -ENOENT;
3712 	}
3713 
3714 	/* This cluster didn't work out, free it and start over */
3715 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3716 
3717 	if (cluster_bg != bg)
3718 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3719 
3720 refill_cluster:
3721 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3722 		spin_unlock(&last_ptr->refill_lock);
3723 		return -ENOENT;
3724 	}
3725 
3726 	aligned_cluster = max_t(u64,
3727 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3728 			bg->full_stripe_len);
3729 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3730 			ffe_ctl->num_bytes, aligned_cluster);
3731 	if (ret == 0) {
3732 		/* Now pull our allocation out of this cluster */
3733 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3734 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3735 				&ffe_ctl->max_extent_size);
3736 		if (offset) {
3737 			/* We found one, proceed */
3738 			spin_unlock(&last_ptr->refill_lock);
3739 			ffe_ctl->found_offset = offset;
3740 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3741 			return 0;
3742 		}
3743 	}
3744 	/*
3745 	 * At this point we either didn't find a cluster or we weren't able to
3746 	 * allocate a block from our cluster.  Free the cluster we've been
3747 	 * trying to use, and go to the next block group.
3748 	 */
3749 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3750 	spin_unlock(&last_ptr->refill_lock);
3751 	return 1;
3752 }
3753 
3754 /*
3755  * Return >0 to inform caller that we find nothing
3756  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3757  */
3758 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3759 					struct find_free_extent_ctl *ffe_ctl)
3760 {
3761 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3762 	u64 offset;
3763 
3764 	/*
3765 	 * We are doing an unclustered allocation, set the fragmented flag so
3766 	 * we don't bother trying to setup a cluster again until we get more
3767 	 * space.
3768 	 */
3769 	if (unlikely(last_ptr)) {
3770 		spin_lock(&last_ptr->lock);
3771 		last_ptr->fragmented = 1;
3772 		spin_unlock(&last_ptr->lock);
3773 	}
3774 	if (ffe_ctl->cached) {
3775 		struct btrfs_free_space_ctl *free_space_ctl;
3776 
3777 		free_space_ctl = bg->free_space_ctl;
3778 		spin_lock(&free_space_ctl->tree_lock);
3779 		if (free_space_ctl->free_space <
3780 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3781 		    ffe_ctl->empty_size) {
3782 			ffe_ctl->total_free_space = max_t(u64,
3783 					ffe_ctl->total_free_space,
3784 					free_space_ctl->free_space);
3785 			spin_unlock(&free_space_ctl->tree_lock);
3786 			return 1;
3787 		}
3788 		spin_unlock(&free_space_ctl->tree_lock);
3789 	}
3790 
3791 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3792 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3793 			&ffe_ctl->max_extent_size);
3794 	if (!offset)
3795 		return 1;
3796 	ffe_ctl->found_offset = offset;
3797 	return 0;
3798 }
3799 
3800 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3801 				   struct find_free_extent_ctl *ffe_ctl,
3802 				   struct btrfs_block_group **bg_ret)
3803 {
3804 	int ret;
3805 
3806 	/* We want to try and use the cluster allocator, so lets look there */
3807 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3808 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3809 		if (ret >= 0)
3810 			return ret;
3811 		/* ret == -ENOENT case falls through */
3812 	}
3813 
3814 	return find_free_extent_unclustered(block_group, ffe_ctl);
3815 }
3816 
3817 /*
3818  * Tree-log block group locking
3819  * ============================
3820  *
3821  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3822  * indicates the starting address of a block group, which is reserved only
3823  * for tree-log metadata.
3824  *
3825  * Lock nesting
3826  * ============
3827  *
3828  * space_info::lock
3829  *   block_group::lock
3830  *     fs_info::treelog_bg_lock
3831  */
3832 
3833 /*
3834  * Simple allocator for sequential-only block group. It only allows sequential
3835  * allocation. No need to play with trees. This function also reserves the
3836  * bytes as in btrfs_add_reserved_bytes.
3837  */
3838 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3839 			       struct find_free_extent_ctl *ffe_ctl,
3840 			       struct btrfs_block_group **bg_ret)
3841 {
3842 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3843 	struct btrfs_space_info *space_info = block_group->space_info;
3844 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3845 	u64 start = block_group->start;
3846 	u64 num_bytes = ffe_ctl->num_bytes;
3847 	u64 avail;
3848 	u64 bytenr = block_group->start;
3849 	u64 log_bytenr;
3850 	u64 data_reloc_bytenr;
3851 	int ret = 0;
3852 	bool skip = false;
3853 
3854 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3855 
3856 	/*
3857 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3858 	 * group, and vice versa.
3859 	 */
3860 	spin_lock(&fs_info->treelog_bg_lock);
3861 	log_bytenr = fs_info->treelog_bg;
3862 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3863 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3864 		skip = true;
3865 	spin_unlock(&fs_info->treelog_bg_lock);
3866 	if (skip)
3867 		return 1;
3868 
3869 	/*
3870 	 * Do not allow non-relocation blocks in the dedicated relocation block
3871 	 * group, and vice versa.
3872 	 */
3873 	spin_lock(&fs_info->relocation_bg_lock);
3874 	data_reloc_bytenr = fs_info->data_reloc_bg;
3875 	if (data_reloc_bytenr &&
3876 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3877 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3878 		skip = true;
3879 	spin_unlock(&fs_info->relocation_bg_lock);
3880 	if (skip)
3881 		return 1;
3882 
3883 	/* Check RO and no space case before trying to activate it */
3884 	spin_lock(&block_group->lock);
3885 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3886 		ret = 1;
3887 		/*
3888 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3889 		 * Return the error after taking the locks.
3890 		 */
3891 	}
3892 	spin_unlock(&block_group->lock);
3893 
3894 	/* Metadata block group is activated at write time. */
3895 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3896 	    !btrfs_zone_activate(block_group)) {
3897 		ret = 1;
3898 		/*
3899 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3900 		 * Return the error after taking the locks.
3901 		 */
3902 	}
3903 
3904 	spin_lock(&space_info->lock);
3905 	spin_lock(&block_group->lock);
3906 	spin_lock(&fs_info->treelog_bg_lock);
3907 	spin_lock(&fs_info->relocation_bg_lock);
3908 
3909 	if (ret)
3910 		goto out;
3911 
3912 	ASSERT(!ffe_ctl->for_treelog ||
3913 	       block_group->start == fs_info->treelog_bg ||
3914 	       fs_info->treelog_bg == 0);
3915 	ASSERT(!ffe_ctl->for_data_reloc ||
3916 	       block_group->start == fs_info->data_reloc_bg ||
3917 	       fs_info->data_reloc_bg == 0);
3918 
3919 	if (block_group->ro ||
3920 	    (!ffe_ctl->for_data_reloc &&
3921 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3922 		ret = 1;
3923 		goto out;
3924 	}
3925 
3926 	/*
3927 	 * Do not allow currently using block group to be tree-log dedicated
3928 	 * block group.
3929 	 */
3930 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3931 	    (block_group->used || block_group->reserved)) {
3932 		ret = 1;
3933 		goto out;
3934 	}
3935 
3936 	/*
3937 	 * Do not allow currently used block group to be the data relocation
3938 	 * dedicated block group.
3939 	 */
3940 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3941 	    (block_group->used || block_group->reserved)) {
3942 		ret = 1;
3943 		goto out;
3944 	}
3945 
3946 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3947 	avail = block_group->zone_capacity - block_group->alloc_offset;
3948 	if (avail < num_bytes) {
3949 		if (ffe_ctl->max_extent_size < avail) {
3950 			/*
3951 			 * With sequential allocator, free space is always
3952 			 * contiguous
3953 			 */
3954 			ffe_ctl->max_extent_size = avail;
3955 			ffe_ctl->total_free_space = avail;
3956 		}
3957 		ret = 1;
3958 		goto out;
3959 	}
3960 
3961 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3962 		fs_info->treelog_bg = block_group->start;
3963 
3964 	if (ffe_ctl->for_data_reloc) {
3965 		if (!fs_info->data_reloc_bg)
3966 			fs_info->data_reloc_bg = block_group->start;
3967 		/*
3968 		 * Do not allow allocations from this block group, unless it is
3969 		 * for data relocation. Compared to increasing the ->ro, setting
3970 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3971 		 * writers to come in. See btrfs_inc_nocow_writers().
3972 		 *
3973 		 * We need to disable an allocation to avoid an allocation of
3974 		 * regular (non-relocation data) extent. With mix of relocation
3975 		 * extents and regular extents, we can dispatch WRITE commands
3976 		 * (for relocation extents) and ZONE APPEND commands (for
3977 		 * regular extents) at the same time to the same zone, which
3978 		 * easily break the write pointer.
3979 		 *
3980 		 * Also, this flag avoids this block group to be zone finished.
3981 		 */
3982 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3983 	}
3984 
3985 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3986 	block_group->alloc_offset += num_bytes;
3987 	spin_lock(&ctl->tree_lock);
3988 	ctl->free_space -= num_bytes;
3989 	spin_unlock(&ctl->tree_lock);
3990 
3991 	/*
3992 	 * We do not check if found_offset is aligned to stripesize. The
3993 	 * address is anyway rewritten when using zone append writing.
3994 	 */
3995 
3996 	ffe_ctl->search_start = ffe_ctl->found_offset;
3997 
3998 out:
3999 	if (ret && ffe_ctl->for_treelog)
4000 		fs_info->treelog_bg = 0;
4001 	if (ret && ffe_ctl->for_data_reloc)
4002 		fs_info->data_reloc_bg = 0;
4003 	spin_unlock(&fs_info->relocation_bg_lock);
4004 	spin_unlock(&fs_info->treelog_bg_lock);
4005 	spin_unlock(&block_group->lock);
4006 	spin_unlock(&space_info->lock);
4007 	return ret;
4008 }
4009 
4010 static int do_allocation(struct btrfs_block_group *block_group,
4011 			 struct find_free_extent_ctl *ffe_ctl,
4012 			 struct btrfs_block_group **bg_ret)
4013 {
4014 	switch (ffe_ctl->policy) {
4015 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4016 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4017 	case BTRFS_EXTENT_ALLOC_ZONED:
4018 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4019 	default:
4020 		BUG();
4021 	}
4022 }
4023 
4024 static void release_block_group(struct btrfs_block_group *block_group,
4025 				struct find_free_extent_ctl *ffe_ctl,
4026 				int delalloc)
4027 {
4028 	switch (ffe_ctl->policy) {
4029 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4030 		ffe_ctl->retry_uncached = false;
4031 		break;
4032 	case BTRFS_EXTENT_ALLOC_ZONED:
4033 		/* Nothing to do */
4034 		break;
4035 	default:
4036 		BUG();
4037 	}
4038 
4039 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4040 	       ffe_ctl->index);
4041 	btrfs_release_block_group(block_group, delalloc);
4042 }
4043 
4044 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4045 				   struct btrfs_key *ins)
4046 {
4047 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4048 
4049 	if (!ffe_ctl->use_cluster && last_ptr) {
4050 		spin_lock(&last_ptr->lock);
4051 		last_ptr->window_start = ins->objectid;
4052 		spin_unlock(&last_ptr->lock);
4053 	}
4054 }
4055 
4056 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4057 			 struct btrfs_key *ins)
4058 {
4059 	switch (ffe_ctl->policy) {
4060 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4061 		found_extent_clustered(ffe_ctl, ins);
4062 		break;
4063 	case BTRFS_EXTENT_ALLOC_ZONED:
4064 		/* Nothing to do */
4065 		break;
4066 	default:
4067 		BUG();
4068 	}
4069 }
4070 
4071 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4072 				    struct find_free_extent_ctl *ffe_ctl)
4073 {
4074 	/* Block group's activeness is not a requirement for METADATA block groups. */
4075 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4076 		return 0;
4077 
4078 	/* If we can activate new zone, just allocate a chunk and use it */
4079 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4080 		return 0;
4081 
4082 	/*
4083 	 * We already reached the max active zones. Try to finish one block
4084 	 * group to make a room for a new block group. This is only possible
4085 	 * for a data block group because btrfs_zone_finish() may need to wait
4086 	 * for a running transaction which can cause a deadlock for metadata
4087 	 * allocation.
4088 	 */
4089 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4090 		int ret = btrfs_zone_finish_one_bg(fs_info);
4091 
4092 		if (ret == 1)
4093 			return 0;
4094 		else if (ret < 0)
4095 			return ret;
4096 	}
4097 
4098 	/*
4099 	 * If we have enough free space left in an already active block group
4100 	 * and we can't activate any other zone now, do not allow allocating a
4101 	 * new chunk and let find_free_extent() retry with a smaller size.
4102 	 */
4103 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4104 		return -ENOSPC;
4105 
4106 	/*
4107 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4108 	 * activate a new block group, allocating it may not help. Let's tell a
4109 	 * caller to try again and hope it progress something by writing some
4110 	 * parts of the region. That is only possible for data block groups,
4111 	 * where a part of the region can be written.
4112 	 */
4113 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4114 		return -EAGAIN;
4115 
4116 	/*
4117 	 * We cannot activate a new block group and no enough space left in any
4118 	 * block groups. So, allocating a new block group may not help. But,
4119 	 * there is nothing to do anyway, so let's go with it.
4120 	 */
4121 	return 0;
4122 }
4123 
4124 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4125 			      struct find_free_extent_ctl *ffe_ctl)
4126 {
4127 	switch (ffe_ctl->policy) {
4128 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4129 		return 0;
4130 	case BTRFS_EXTENT_ALLOC_ZONED:
4131 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4132 	default:
4133 		BUG();
4134 	}
4135 }
4136 
4137 /*
4138  * Return >0 means caller needs to re-search for free extent
4139  * Return 0 means we have the needed free extent.
4140  * Return <0 means we failed to locate any free extent.
4141  */
4142 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4143 					struct btrfs_key *ins,
4144 					struct find_free_extent_ctl *ffe_ctl,
4145 					bool full_search)
4146 {
4147 	struct btrfs_root *root = fs_info->chunk_root;
4148 	int ret;
4149 
4150 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4151 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4152 		ffe_ctl->orig_have_caching_bg = true;
4153 
4154 	if (ins->objectid) {
4155 		found_extent(ffe_ctl, ins);
4156 		return 0;
4157 	}
4158 
4159 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4160 		return 1;
4161 
4162 	ffe_ctl->index++;
4163 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4164 		return 1;
4165 
4166 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4167 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4168 		ffe_ctl->index = 0;
4169 		/*
4170 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4171 		 * any uncached bgs and we've already done a full search
4172 		 * through.
4173 		 */
4174 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4175 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4176 			ffe_ctl->loop++;
4177 		ffe_ctl->loop++;
4178 
4179 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4180 			struct btrfs_trans_handle *trans;
4181 			int exist = 0;
4182 
4183 			/* Check if allocation policy allows to create a new chunk */
4184 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4185 			if (ret)
4186 				return ret;
4187 
4188 			trans = current->journal_info;
4189 			if (trans)
4190 				exist = 1;
4191 			else
4192 				trans = btrfs_join_transaction(root);
4193 
4194 			if (IS_ERR(trans)) {
4195 				ret = PTR_ERR(trans);
4196 				return ret;
4197 			}
4198 
4199 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4200 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4201 
4202 			/* Do not bail out on ENOSPC since we can do more. */
4203 			if (ret == -ENOSPC) {
4204 				ret = 0;
4205 				ffe_ctl->loop++;
4206 			}
4207 			else if (ret < 0)
4208 				btrfs_abort_transaction(trans, ret);
4209 			else
4210 				ret = 0;
4211 			if (!exist)
4212 				btrfs_end_transaction(trans);
4213 			if (ret)
4214 				return ret;
4215 		}
4216 
4217 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4218 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4219 				return -ENOSPC;
4220 
4221 			/*
4222 			 * Don't loop again if we already have no empty_size and
4223 			 * no empty_cluster.
4224 			 */
4225 			if (ffe_ctl->empty_size == 0 &&
4226 			    ffe_ctl->empty_cluster == 0)
4227 				return -ENOSPC;
4228 			ffe_ctl->empty_size = 0;
4229 			ffe_ctl->empty_cluster = 0;
4230 		}
4231 		return 1;
4232 	}
4233 	return -ENOSPC;
4234 }
4235 
4236 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4237 					      struct btrfs_block_group *bg)
4238 {
4239 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4240 		return true;
4241 	if (!btrfs_block_group_should_use_size_class(bg))
4242 		return true;
4243 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4244 		return true;
4245 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4246 	    bg->size_class == BTRFS_BG_SZ_NONE)
4247 		return true;
4248 	return ffe_ctl->size_class == bg->size_class;
4249 }
4250 
4251 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4252 					struct find_free_extent_ctl *ffe_ctl,
4253 					struct btrfs_space_info *space_info,
4254 					struct btrfs_key *ins)
4255 {
4256 	/*
4257 	 * If our free space is heavily fragmented we may not be able to make
4258 	 * big contiguous allocations, so instead of doing the expensive search
4259 	 * for free space, simply return ENOSPC with our max_extent_size so we
4260 	 * can go ahead and search for a more manageable chunk.
4261 	 *
4262 	 * If our max_extent_size is large enough for our allocation simply
4263 	 * disable clustering since we will likely not be able to find enough
4264 	 * space to create a cluster and induce latency trying.
4265 	 */
4266 	if (space_info->max_extent_size) {
4267 		spin_lock(&space_info->lock);
4268 		if (space_info->max_extent_size &&
4269 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4270 			ins->offset = space_info->max_extent_size;
4271 			spin_unlock(&space_info->lock);
4272 			return -ENOSPC;
4273 		} else if (space_info->max_extent_size) {
4274 			ffe_ctl->use_cluster = false;
4275 		}
4276 		spin_unlock(&space_info->lock);
4277 	}
4278 
4279 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4280 					       &ffe_ctl->empty_cluster);
4281 	if (ffe_ctl->last_ptr) {
4282 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4283 
4284 		spin_lock(&last_ptr->lock);
4285 		if (last_ptr->block_group)
4286 			ffe_ctl->hint_byte = last_ptr->window_start;
4287 		if (last_ptr->fragmented) {
4288 			/*
4289 			 * We still set window_start so we can keep track of the
4290 			 * last place we found an allocation to try and save
4291 			 * some time.
4292 			 */
4293 			ffe_ctl->hint_byte = last_ptr->window_start;
4294 			ffe_ctl->use_cluster = false;
4295 		}
4296 		spin_unlock(&last_ptr->lock);
4297 	}
4298 
4299 	return 0;
4300 }
4301 
4302 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4303 				    struct find_free_extent_ctl *ffe_ctl)
4304 {
4305 	if (ffe_ctl->for_treelog) {
4306 		spin_lock(&fs_info->treelog_bg_lock);
4307 		if (fs_info->treelog_bg)
4308 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4309 		spin_unlock(&fs_info->treelog_bg_lock);
4310 	} else if (ffe_ctl->for_data_reloc) {
4311 		spin_lock(&fs_info->relocation_bg_lock);
4312 		if (fs_info->data_reloc_bg)
4313 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4314 		spin_unlock(&fs_info->relocation_bg_lock);
4315 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4316 		struct btrfs_block_group *block_group;
4317 
4318 		spin_lock(&fs_info->zone_active_bgs_lock);
4319 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4320 			/*
4321 			 * No lock is OK here because avail is monotinically
4322 			 * decreasing, and this is just a hint.
4323 			 */
4324 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4325 
4326 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4327 			    avail >= ffe_ctl->num_bytes) {
4328 				ffe_ctl->hint_byte = block_group->start;
4329 				break;
4330 			}
4331 		}
4332 		spin_unlock(&fs_info->zone_active_bgs_lock);
4333 	}
4334 
4335 	return 0;
4336 }
4337 
4338 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4339 			      struct find_free_extent_ctl *ffe_ctl,
4340 			      struct btrfs_space_info *space_info,
4341 			      struct btrfs_key *ins)
4342 {
4343 	switch (ffe_ctl->policy) {
4344 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4345 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4346 						    space_info, ins);
4347 	case BTRFS_EXTENT_ALLOC_ZONED:
4348 		return prepare_allocation_zoned(fs_info, ffe_ctl);
4349 	default:
4350 		BUG();
4351 	}
4352 }
4353 
4354 /*
4355  * walks the btree of allocated extents and find a hole of a given size.
4356  * The key ins is changed to record the hole:
4357  * ins->objectid == start position
4358  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4359  * ins->offset == the size of the hole.
4360  * Any available blocks before search_start are skipped.
4361  *
4362  * If there is no suitable free space, we will record the max size of
4363  * the free space extent currently.
4364  *
4365  * The overall logic and call chain:
4366  *
4367  * find_free_extent()
4368  * |- Iterate through all block groups
4369  * |  |- Get a valid block group
4370  * |  |- Try to do clustered allocation in that block group
4371  * |  |- Try to do unclustered allocation in that block group
4372  * |  |- Check if the result is valid
4373  * |  |  |- If valid, then exit
4374  * |  |- Jump to next block group
4375  * |
4376  * |- Push harder to find free extents
4377  *    |- If not found, re-iterate all block groups
4378  */
4379 static noinline int find_free_extent(struct btrfs_root *root,
4380 				     struct btrfs_key *ins,
4381 				     struct find_free_extent_ctl *ffe_ctl)
4382 {
4383 	struct btrfs_fs_info *fs_info = root->fs_info;
4384 	int ret = 0;
4385 	int cache_block_group_error = 0;
4386 	struct btrfs_block_group *block_group = NULL;
4387 	struct btrfs_space_info *space_info;
4388 	bool full_search = false;
4389 
4390 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4391 
4392 	ffe_ctl->search_start = 0;
4393 	/* For clustered allocation */
4394 	ffe_ctl->empty_cluster = 0;
4395 	ffe_ctl->last_ptr = NULL;
4396 	ffe_ctl->use_cluster = true;
4397 	ffe_ctl->have_caching_bg = false;
4398 	ffe_ctl->orig_have_caching_bg = false;
4399 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4400 	ffe_ctl->loop = 0;
4401 	ffe_ctl->retry_uncached = false;
4402 	ffe_ctl->cached = 0;
4403 	ffe_ctl->max_extent_size = 0;
4404 	ffe_ctl->total_free_space = 0;
4405 	ffe_ctl->found_offset = 0;
4406 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4407 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4408 
4409 	if (btrfs_is_zoned(fs_info))
4410 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4411 
4412 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4413 	ins->objectid = 0;
4414 	ins->offset = 0;
4415 
4416 	trace_find_free_extent(root, ffe_ctl);
4417 
4418 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4419 	if (!space_info) {
4420 		btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4421 		return -ENOSPC;
4422 	}
4423 
4424 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4425 	if (ret < 0)
4426 		return ret;
4427 
4428 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4429 				    first_logical_byte(fs_info));
4430 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4431 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4432 		block_group = btrfs_lookup_block_group(fs_info,
4433 						       ffe_ctl->search_start);
4434 		/*
4435 		 * we don't want to use the block group if it doesn't match our
4436 		 * allocation bits, or if its not cached.
4437 		 *
4438 		 * However if we are re-searching with an ideal block group
4439 		 * picked out then we don't care that the block group is cached.
4440 		 */
4441 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4442 		    block_group->cached != BTRFS_CACHE_NO) {
4443 			down_read(&space_info->groups_sem);
4444 			if (list_empty(&block_group->list) ||
4445 			    block_group->ro) {
4446 				/*
4447 				 * someone is removing this block group,
4448 				 * we can't jump into the have_block_group
4449 				 * target because our list pointers are not
4450 				 * valid
4451 				 */
4452 				btrfs_put_block_group(block_group);
4453 				up_read(&space_info->groups_sem);
4454 			} else {
4455 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4456 							block_group->flags);
4457 				btrfs_lock_block_group(block_group,
4458 						       ffe_ctl->delalloc);
4459 				ffe_ctl->hinted = true;
4460 				goto have_block_group;
4461 			}
4462 		} else if (block_group) {
4463 			btrfs_put_block_group(block_group);
4464 		}
4465 	}
4466 search:
4467 	trace_find_free_extent_search_loop(root, ffe_ctl);
4468 	ffe_ctl->have_caching_bg = false;
4469 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4470 	    ffe_ctl->index == 0)
4471 		full_search = true;
4472 	down_read(&space_info->groups_sem);
4473 	list_for_each_entry(block_group,
4474 			    &space_info->block_groups[ffe_ctl->index], list) {
4475 		struct btrfs_block_group *bg_ret;
4476 
4477 		ffe_ctl->hinted = false;
4478 		/* If the block group is read-only, we can skip it entirely. */
4479 		if (unlikely(block_group->ro)) {
4480 			if (ffe_ctl->for_treelog)
4481 				btrfs_clear_treelog_bg(block_group);
4482 			if (ffe_ctl->for_data_reloc)
4483 				btrfs_clear_data_reloc_bg(block_group);
4484 			continue;
4485 		}
4486 
4487 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4488 		ffe_ctl->search_start = block_group->start;
4489 
4490 		/*
4491 		 * this can happen if we end up cycling through all the
4492 		 * raid types, but we want to make sure we only allocate
4493 		 * for the proper type.
4494 		 */
4495 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4496 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4497 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4498 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4499 				BTRFS_BLOCK_GROUP_RAID10;
4500 
4501 			/*
4502 			 * if they asked for extra copies and this block group
4503 			 * doesn't provide them, bail.  This does allow us to
4504 			 * fill raid0 from raid1.
4505 			 */
4506 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4507 				goto loop;
4508 
4509 			/*
4510 			 * This block group has different flags than we want.
4511 			 * It's possible that we have MIXED_GROUP flag but no
4512 			 * block group is mixed.  Just skip such block group.
4513 			 */
4514 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4515 			continue;
4516 		}
4517 
4518 have_block_group:
4519 		trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4520 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4521 		if (unlikely(!ffe_ctl->cached)) {
4522 			ffe_ctl->have_caching_bg = true;
4523 			ret = btrfs_cache_block_group(block_group, false);
4524 
4525 			/*
4526 			 * If we get ENOMEM here or something else we want to
4527 			 * try other block groups, because it may not be fatal.
4528 			 * However if we can't find anything else we need to
4529 			 * save our return here so that we return the actual
4530 			 * error that caused problems, not ENOSPC.
4531 			 */
4532 			if (ret < 0) {
4533 				if (!cache_block_group_error)
4534 					cache_block_group_error = ret;
4535 				ret = 0;
4536 				goto loop;
4537 			}
4538 			ret = 0;
4539 		}
4540 
4541 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4542 			if (!cache_block_group_error)
4543 				cache_block_group_error = -EIO;
4544 			goto loop;
4545 		}
4546 
4547 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4548 			goto loop;
4549 
4550 		bg_ret = NULL;
4551 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4552 		if (ret > 0)
4553 			goto loop;
4554 
4555 		if (bg_ret && bg_ret != block_group) {
4556 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4557 			block_group = bg_ret;
4558 		}
4559 
4560 		/* Checks */
4561 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4562 						 fs_info->stripesize);
4563 
4564 		/* move on to the next group */
4565 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4566 		    block_group->start + block_group->length) {
4567 			btrfs_add_free_space_unused(block_group,
4568 					    ffe_ctl->found_offset,
4569 					    ffe_ctl->num_bytes);
4570 			goto loop;
4571 		}
4572 
4573 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4574 			btrfs_add_free_space_unused(block_group,
4575 					ffe_ctl->found_offset,
4576 					ffe_ctl->search_start - ffe_ctl->found_offset);
4577 
4578 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4579 					       ffe_ctl->num_bytes,
4580 					       ffe_ctl->delalloc,
4581 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4582 		if (ret == -EAGAIN) {
4583 			btrfs_add_free_space_unused(block_group,
4584 					ffe_ctl->found_offset,
4585 					ffe_ctl->num_bytes);
4586 			goto loop;
4587 		}
4588 		btrfs_inc_block_group_reservations(block_group);
4589 
4590 		/* we are all good, lets return */
4591 		ins->objectid = ffe_ctl->search_start;
4592 		ins->offset = ffe_ctl->num_bytes;
4593 
4594 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4595 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4596 		break;
4597 loop:
4598 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4599 		    !ffe_ctl->retry_uncached) {
4600 			ffe_ctl->retry_uncached = true;
4601 			btrfs_wait_block_group_cache_progress(block_group,
4602 						ffe_ctl->num_bytes +
4603 						ffe_ctl->empty_cluster +
4604 						ffe_ctl->empty_size);
4605 			goto have_block_group;
4606 		}
4607 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4608 		cond_resched();
4609 	}
4610 	up_read(&space_info->groups_sem);
4611 
4612 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4613 	if (ret > 0)
4614 		goto search;
4615 
4616 	if (ret == -ENOSPC && !cache_block_group_error) {
4617 		/*
4618 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4619 		 * any contiguous hole.
4620 		 */
4621 		if (!ffe_ctl->max_extent_size)
4622 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4623 		spin_lock(&space_info->lock);
4624 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4625 		spin_unlock(&space_info->lock);
4626 		ins->offset = ffe_ctl->max_extent_size;
4627 	} else if (ret == -ENOSPC) {
4628 		ret = cache_block_group_error;
4629 	}
4630 	return ret;
4631 }
4632 
4633 /*
4634  * Entry point to the extent allocator. Tries to find a hole that is at least
4635  * as big as @num_bytes.
4636  *
4637  * @root           -	The root that will contain this extent
4638  *
4639  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4640  *			is used for accounting purposes. This value differs
4641  *			from @num_bytes only in the case of compressed extents.
4642  *
4643  * @num_bytes      -	Number of bytes to allocate on-disk.
4644  *
4645  * @min_alloc_size -	Indicates the minimum amount of space that the
4646  *			allocator should try to satisfy. In some cases
4647  *			@num_bytes may be larger than what is required and if
4648  *			the filesystem is fragmented then allocation fails.
4649  *			However, the presence of @min_alloc_size gives a
4650  *			chance to try and satisfy the smaller allocation.
4651  *
4652  * @empty_size     -	A hint that you plan on doing more COW. This is the
4653  *			size in bytes the allocator should try to find free
4654  *			next to the block it returns.  This is just a hint and
4655  *			may be ignored by the allocator.
4656  *
4657  * @hint_byte      -	Hint to the allocator to start searching above the byte
4658  *			address passed. It might be ignored.
4659  *
4660  * @ins            -	This key is modified to record the found hole. It will
4661  *			have the following values:
4662  *			ins->objectid == start position
4663  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4664  *			ins->offset == the size of the hole.
4665  *
4666  * @is_data        -	Boolean flag indicating whether an extent is
4667  *			allocated for data (true) or metadata (false)
4668  *
4669  * @delalloc       -	Boolean flag indicating whether this allocation is for
4670  *			delalloc or not. If 'true' data_rwsem of block groups
4671  *			is going to be acquired.
4672  *
4673  *
4674  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4675  * case -ENOSPC is returned then @ins->offset will contain the size of the
4676  * largest available hole the allocator managed to find.
4677  */
4678 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4679 			 u64 num_bytes, u64 min_alloc_size,
4680 			 u64 empty_size, u64 hint_byte,
4681 			 struct btrfs_key *ins, int is_data, int delalloc)
4682 {
4683 	struct btrfs_fs_info *fs_info = root->fs_info;
4684 	struct find_free_extent_ctl ffe_ctl = {};
4685 	bool final_tried = num_bytes == min_alloc_size;
4686 	u64 flags;
4687 	int ret;
4688 	bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4689 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4690 
4691 	flags = get_alloc_profile_by_root(root, is_data);
4692 again:
4693 	WARN_ON(num_bytes < fs_info->sectorsize);
4694 
4695 	ffe_ctl.ram_bytes = ram_bytes;
4696 	ffe_ctl.num_bytes = num_bytes;
4697 	ffe_ctl.min_alloc_size = min_alloc_size;
4698 	ffe_ctl.empty_size = empty_size;
4699 	ffe_ctl.flags = flags;
4700 	ffe_ctl.delalloc = delalloc;
4701 	ffe_ctl.hint_byte = hint_byte;
4702 	ffe_ctl.for_treelog = for_treelog;
4703 	ffe_ctl.for_data_reloc = for_data_reloc;
4704 
4705 	ret = find_free_extent(root, ins, &ffe_ctl);
4706 	if (!ret && !is_data) {
4707 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4708 	} else if (ret == -ENOSPC) {
4709 		if (!final_tried && ins->offset) {
4710 			num_bytes = min(num_bytes >> 1, ins->offset);
4711 			num_bytes = round_down(num_bytes,
4712 					       fs_info->sectorsize);
4713 			num_bytes = max(num_bytes, min_alloc_size);
4714 			ram_bytes = num_bytes;
4715 			if (num_bytes == min_alloc_size)
4716 				final_tried = true;
4717 			goto again;
4718 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4719 			struct btrfs_space_info *sinfo;
4720 
4721 			sinfo = btrfs_find_space_info(fs_info, flags);
4722 			btrfs_err(fs_info,
4723 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4724 				  flags, num_bytes, for_treelog, for_data_reloc);
4725 			if (sinfo)
4726 				btrfs_dump_space_info(fs_info, sinfo,
4727 						      num_bytes, 1);
4728 		}
4729 	}
4730 
4731 	return ret;
4732 }
4733 
4734 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4735 			       u64 start, u64 len, int delalloc)
4736 {
4737 	struct btrfs_block_group *cache;
4738 
4739 	cache = btrfs_lookup_block_group(fs_info, start);
4740 	if (!cache) {
4741 		btrfs_err(fs_info, "Unable to find block group for %llu",
4742 			  start);
4743 		return -ENOSPC;
4744 	}
4745 
4746 	btrfs_add_free_space(cache, start, len);
4747 	btrfs_free_reserved_bytes(cache, len, delalloc);
4748 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4749 
4750 	btrfs_put_block_group(cache);
4751 	return 0;
4752 }
4753 
4754 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4755 			      const struct extent_buffer *eb)
4756 {
4757 	struct btrfs_block_group *cache;
4758 	int ret = 0;
4759 
4760 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4761 	if (!cache) {
4762 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4763 			  eb->start);
4764 		return -ENOSPC;
4765 	}
4766 
4767 	ret = pin_down_extent(trans, cache, eb->start, eb->len, 1);
4768 	btrfs_put_block_group(cache);
4769 	return ret;
4770 }
4771 
4772 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4773 				 u64 num_bytes)
4774 {
4775 	struct btrfs_fs_info *fs_info = trans->fs_info;
4776 	int ret;
4777 
4778 	ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4779 	if (ret)
4780 		return ret;
4781 
4782 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4783 	if (ret) {
4784 		ASSERT(!ret);
4785 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4786 			  bytenr, num_bytes);
4787 		return ret;
4788 	}
4789 
4790 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4791 	return 0;
4792 }
4793 
4794 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4795 				      u64 parent, u64 root_objectid,
4796 				      u64 flags, u64 owner, u64 offset,
4797 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4798 {
4799 	struct btrfs_fs_info *fs_info = trans->fs_info;
4800 	struct btrfs_root *extent_root;
4801 	int ret;
4802 	struct btrfs_extent_item *extent_item;
4803 	struct btrfs_extent_owner_ref *oref;
4804 	struct btrfs_extent_inline_ref *iref;
4805 	struct btrfs_path *path;
4806 	struct extent_buffer *leaf;
4807 	int type;
4808 	u32 size;
4809 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4810 
4811 	if (parent > 0)
4812 		type = BTRFS_SHARED_DATA_REF_KEY;
4813 	else
4814 		type = BTRFS_EXTENT_DATA_REF_KEY;
4815 
4816 	size = sizeof(*extent_item);
4817 	if (simple_quota)
4818 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4819 	size += btrfs_extent_inline_ref_size(type);
4820 
4821 	path = btrfs_alloc_path();
4822 	if (!path)
4823 		return -ENOMEM;
4824 
4825 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4826 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4827 	if (ret) {
4828 		btrfs_free_path(path);
4829 		return ret;
4830 	}
4831 
4832 	leaf = path->nodes[0];
4833 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4834 				     struct btrfs_extent_item);
4835 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4836 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4837 	btrfs_set_extent_flags(leaf, extent_item,
4838 			       flags | BTRFS_EXTENT_FLAG_DATA);
4839 
4840 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4841 	if (simple_quota) {
4842 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4843 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4844 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4845 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4846 	}
4847 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4848 
4849 	if (parent > 0) {
4850 		struct btrfs_shared_data_ref *ref;
4851 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4852 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4853 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4854 	} else {
4855 		struct btrfs_extent_data_ref *ref;
4856 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4857 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4858 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4859 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4860 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4861 	}
4862 
4863 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
4864 	btrfs_free_path(path);
4865 
4866 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4867 }
4868 
4869 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4870 				     struct btrfs_delayed_ref_node *node,
4871 				     struct btrfs_delayed_extent_op *extent_op)
4872 {
4873 	struct btrfs_fs_info *fs_info = trans->fs_info;
4874 	struct btrfs_root *extent_root;
4875 	int ret;
4876 	struct btrfs_extent_item *extent_item;
4877 	struct btrfs_key extent_key;
4878 	struct btrfs_tree_block_info *block_info;
4879 	struct btrfs_extent_inline_ref *iref;
4880 	struct btrfs_path *path;
4881 	struct extent_buffer *leaf;
4882 	struct btrfs_delayed_tree_ref *ref;
4883 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4884 	u64 flags = extent_op->flags_to_set;
4885 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4886 
4887 	ref = btrfs_delayed_node_to_tree_ref(node);
4888 
4889 	extent_key.objectid = node->bytenr;
4890 	if (skinny_metadata) {
4891 		extent_key.offset = ref->level;
4892 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4893 	} else {
4894 		extent_key.offset = node->num_bytes;
4895 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4896 		size += sizeof(*block_info);
4897 	}
4898 
4899 	path = btrfs_alloc_path();
4900 	if (!path)
4901 		return -ENOMEM;
4902 
4903 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4904 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4905 				      size);
4906 	if (ret) {
4907 		btrfs_free_path(path);
4908 		return ret;
4909 	}
4910 
4911 	leaf = path->nodes[0];
4912 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4913 				     struct btrfs_extent_item);
4914 	btrfs_set_extent_refs(leaf, extent_item, 1);
4915 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4916 	btrfs_set_extent_flags(leaf, extent_item,
4917 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4918 
4919 	if (skinny_metadata) {
4920 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4921 	} else {
4922 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4923 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4924 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4925 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4926 	}
4927 
4928 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4929 		btrfs_set_extent_inline_ref_type(leaf, iref,
4930 						 BTRFS_SHARED_BLOCK_REF_KEY);
4931 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4932 	} else {
4933 		btrfs_set_extent_inline_ref_type(leaf, iref,
4934 						 BTRFS_TREE_BLOCK_REF_KEY);
4935 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4936 	}
4937 
4938 	btrfs_mark_buffer_dirty(trans, leaf);
4939 	btrfs_free_path(path);
4940 
4941 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4942 }
4943 
4944 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4945 				     struct btrfs_root *root, u64 owner,
4946 				     u64 offset, u64 ram_bytes,
4947 				     struct btrfs_key *ins)
4948 {
4949 	struct btrfs_ref generic_ref = { 0 };
4950 	u64 root_objectid = root->root_key.objectid;
4951 	u64 owning_root = root_objectid;
4952 
4953 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4954 
4955 	if (btrfs_is_data_reloc_root(root) && is_fstree(root->relocation_src_root))
4956 		owning_root = root->relocation_src_root;
4957 
4958 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4959 			       ins->objectid, ins->offset, 0, owning_root);
4960 	btrfs_init_data_ref(&generic_ref, root_objectid, owner,
4961 			    offset, 0, false);
4962 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4963 
4964 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4965 }
4966 
4967 /*
4968  * this is used by the tree logging recovery code.  It records that
4969  * an extent has been allocated and makes sure to clear the free
4970  * space cache bits as well
4971  */
4972 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4973 				   u64 root_objectid, u64 owner, u64 offset,
4974 				   struct btrfs_key *ins)
4975 {
4976 	struct btrfs_fs_info *fs_info = trans->fs_info;
4977 	int ret;
4978 	struct btrfs_block_group *block_group;
4979 	struct btrfs_space_info *space_info;
4980 	struct btrfs_squota_delta delta = {
4981 		.root = root_objectid,
4982 		.num_bytes = ins->offset,
4983 		.generation = trans->transid,
4984 		.is_data = true,
4985 		.is_inc = true,
4986 	};
4987 
4988 	/*
4989 	 * Mixed block groups will exclude before processing the log so we only
4990 	 * need to do the exclude dance if this fs isn't mixed.
4991 	 */
4992 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4993 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4994 					      ins->offset);
4995 		if (ret)
4996 			return ret;
4997 	}
4998 
4999 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
5000 	if (!block_group)
5001 		return -EINVAL;
5002 
5003 	space_info = block_group->space_info;
5004 	spin_lock(&space_info->lock);
5005 	spin_lock(&block_group->lock);
5006 	space_info->bytes_reserved += ins->offset;
5007 	block_group->reserved += ins->offset;
5008 	spin_unlock(&block_group->lock);
5009 	spin_unlock(&space_info->lock);
5010 
5011 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5012 					 offset, ins, 1, root_objectid);
5013 	if (ret)
5014 		btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
5015 	ret = btrfs_record_squota_delta(fs_info, &delta);
5016 	btrfs_put_block_group(block_group);
5017 	return ret;
5018 }
5019 
5020 #ifdef CONFIG_BTRFS_DEBUG
5021 /*
5022  * Extra safety check in case the extent tree is corrupted and extent allocator
5023  * chooses to use a tree block which is already used and locked.
5024  */
5025 static bool check_eb_lock_owner(const struct extent_buffer *eb)
5026 {
5027 	if (eb->lock_owner == current->pid) {
5028 		btrfs_err_rl(eb->fs_info,
5029 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5030 			     eb->start, btrfs_header_owner(eb), current->pid);
5031 		return true;
5032 	}
5033 	return false;
5034 }
5035 #else
5036 static bool check_eb_lock_owner(struct extent_buffer *eb)
5037 {
5038 	return false;
5039 }
5040 #endif
5041 
5042 static struct extent_buffer *
5043 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5044 		      u64 bytenr, int level, u64 owner,
5045 		      enum btrfs_lock_nesting nest)
5046 {
5047 	struct btrfs_fs_info *fs_info = root->fs_info;
5048 	struct extent_buffer *buf;
5049 	u64 lockdep_owner = owner;
5050 
5051 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5052 	if (IS_ERR(buf))
5053 		return buf;
5054 
5055 	if (check_eb_lock_owner(buf)) {
5056 		free_extent_buffer(buf);
5057 		return ERR_PTR(-EUCLEAN);
5058 	}
5059 
5060 	/*
5061 	 * The reloc trees are just snapshots, so we need them to appear to be
5062 	 * just like any other fs tree WRT lockdep.
5063 	 *
5064 	 * The exception however is in replace_path() in relocation, where we
5065 	 * hold the lock on the original fs root and then search for the reloc
5066 	 * root.  At that point we need to make sure any reloc root buffers are
5067 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5068 	 * lockdep happy.
5069 	 */
5070 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5071 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5072 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5073 
5074 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5075 	btrfs_set_header_generation(buf, trans->transid);
5076 
5077 	/*
5078 	 * This needs to stay, because we could allocate a freed block from an
5079 	 * old tree into a new tree, so we need to make sure this new block is
5080 	 * set to the appropriate level and owner.
5081 	 */
5082 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5083 
5084 	__btrfs_tree_lock(buf, nest);
5085 	btrfs_clear_buffer_dirty(trans, buf);
5086 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5087 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5088 
5089 	set_extent_buffer_uptodate(buf);
5090 
5091 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5092 	btrfs_set_header_level(buf, level);
5093 	btrfs_set_header_bytenr(buf, buf->start);
5094 	btrfs_set_header_generation(buf, trans->transid);
5095 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5096 	btrfs_set_header_owner(buf, owner);
5097 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5098 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5099 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5100 		buf->log_index = root->log_transid % 2;
5101 		/*
5102 		 * we allow two log transactions at a time, use different
5103 		 * EXTENT bit to differentiate dirty pages.
5104 		 */
5105 		if (buf->log_index == 0)
5106 			set_extent_bit(&root->dirty_log_pages, buf->start,
5107 				       buf->start + buf->len - 1,
5108 				       EXTENT_DIRTY, NULL);
5109 		else
5110 			set_extent_bit(&root->dirty_log_pages, buf->start,
5111 				       buf->start + buf->len - 1,
5112 				       EXTENT_NEW, NULL);
5113 	} else {
5114 		buf->log_index = -1;
5115 		set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5116 			       buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5117 	}
5118 	/* this returns a buffer locked for blocking */
5119 	return buf;
5120 }
5121 
5122 /*
5123  * finds a free extent and does all the dirty work required for allocation
5124  * returns the tree buffer or an ERR_PTR on error.
5125  */
5126 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5127 					     struct btrfs_root *root,
5128 					     u64 parent, u64 root_objectid,
5129 					     const struct btrfs_disk_key *key,
5130 					     int level, u64 hint,
5131 					     u64 empty_size,
5132 					     u64 reloc_src_root,
5133 					     enum btrfs_lock_nesting nest)
5134 {
5135 	struct btrfs_fs_info *fs_info = root->fs_info;
5136 	struct btrfs_key ins;
5137 	struct btrfs_block_rsv *block_rsv;
5138 	struct extent_buffer *buf;
5139 	struct btrfs_delayed_extent_op *extent_op;
5140 	struct btrfs_ref generic_ref = { 0 };
5141 	u64 flags = 0;
5142 	int ret;
5143 	u32 blocksize = fs_info->nodesize;
5144 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5145 	u64 owning_root;
5146 
5147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5148 	if (btrfs_is_testing(fs_info)) {
5149 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5150 					    level, root_objectid, nest);
5151 		if (!IS_ERR(buf))
5152 			root->alloc_bytenr += blocksize;
5153 		return buf;
5154 	}
5155 #endif
5156 
5157 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5158 	if (IS_ERR(block_rsv))
5159 		return ERR_CAST(block_rsv);
5160 
5161 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5162 				   empty_size, hint, &ins, 0, 0);
5163 	if (ret)
5164 		goto out_unuse;
5165 
5166 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5167 				    root_objectid, nest);
5168 	if (IS_ERR(buf)) {
5169 		ret = PTR_ERR(buf);
5170 		goto out_free_reserved;
5171 	}
5172 	owning_root = btrfs_header_owner(buf);
5173 
5174 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5175 		if (parent == 0)
5176 			parent = ins.objectid;
5177 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5178 		owning_root = reloc_src_root;
5179 	} else
5180 		BUG_ON(parent > 0);
5181 
5182 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5183 		extent_op = btrfs_alloc_delayed_extent_op();
5184 		if (!extent_op) {
5185 			ret = -ENOMEM;
5186 			goto out_free_buf;
5187 		}
5188 		if (key)
5189 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
5190 		else
5191 			memset(&extent_op->key, 0, sizeof(extent_op->key));
5192 		extent_op->flags_to_set = flags;
5193 		extent_op->update_key = skinny_metadata ? false : true;
5194 		extent_op->update_flags = true;
5195 		extent_op->level = level;
5196 
5197 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
5198 				       ins.objectid, ins.offset, parent, owning_root);
5199 		btrfs_init_tree_ref(&generic_ref, level, root_objectid,
5200 				    root->root_key.objectid, false);
5201 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5202 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5203 		if (ret)
5204 			goto out_free_delayed;
5205 	}
5206 	return buf;
5207 
5208 out_free_delayed:
5209 	btrfs_free_delayed_extent_op(extent_op);
5210 out_free_buf:
5211 	btrfs_tree_unlock(buf);
5212 	free_extent_buffer(buf);
5213 out_free_reserved:
5214 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
5215 out_unuse:
5216 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5217 	return ERR_PTR(ret);
5218 }
5219 
5220 struct walk_control {
5221 	u64 refs[BTRFS_MAX_LEVEL];
5222 	u64 flags[BTRFS_MAX_LEVEL];
5223 	struct btrfs_key update_progress;
5224 	struct btrfs_key drop_progress;
5225 	int drop_level;
5226 	int stage;
5227 	int level;
5228 	int shared_level;
5229 	int update_ref;
5230 	int keep_locks;
5231 	int reada_slot;
5232 	int reada_count;
5233 	int restarted;
5234 };
5235 
5236 #define DROP_REFERENCE	1
5237 #define UPDATE_BACKREF	2
5238 
5239 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5240 				     struct btrfs_root *root,
5241 				     struct walk_control *wc,
5242 				     struct btrfs_path *path)
5243 {
5244 	struct btrfs_fs_info *fs_info = root->fs_info;
5245 	u64 bytenr;
5246 	u64 generation;
5247 	u64 refs;
5248 	u64 flags;
5249 	u32 nritems;
5250 	struct btrfs_key key;
5251 	struct extent_buffer *eb;
5252 	int ret;
5253 	int slot;
5254 	int nread = 0;
5255 
5256 	if (path->slots[wc->level] < wc->reada_slot) {
5257 		wc->reada_count = wc->reada_count * 2 / 3;
5258 		wc->reada_count = max(wc->reada_count, 2);
5259 	} else {
5260 		wc->reada_count = wc->reada_count * 3 / 2;
5261 		wc->reada_count = min_t(int, wc->reada_count,
5262 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5263 	}
5264 
5265 	eb = path->nodes[wc->level];
5266 	nritems = btrfs_header_nritems(eb);
5267 
5268 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5269 		if (nread >= wc->reada_count)
5270 			break;
5271 
5272 		cond_resched();
5273 		bytenr = btrfs_node_blockptr(eb, slot);
5274 		generation = btrfs_node_ptr_generation(eb, slot);
5275 
5276 		if (slot == path->slots[wc->level])
5277 			goto reada;
5278 
5279 		if (wc->stage == UPDATE_BACKREF &&
5280 		    generation <= root->root_key.offset)
5281 			continue;
5282 
5283 		/* We don't lock the tree block, it's OK to be racy here */
5284 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5285 					       wc->level - 1, 1, &refs,
5286 					       &flags, NULL);
5287 		/* We don't care about errors in readahead. */
5288 		if (ret < 0)
5289 			continue;
5290 		BUG_ON(refs == 0);
5291 
5292 		if (wc->stage == DROP_REFERENCE) {
5293 			if (refs == 1)
5294 				goto reada;
5295 
5296 			if (wc->level == 1 &&
5297 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5298 				continue;
5299 			if (!wc->update_ref ||
5300 			    generation <= root->root_key.offset)
5301 				continue;
5302 			btrfs_node_key_to_cpu(eb, &key, slot);
5303 			ret = btrfs_comp_cpu_keys(&key,
5304 						  &wc->update_progress);
5305 			if (ret < 0)
5306 				continue;
5307 		} else {
5308 			if (wc->level == 1 &&
5309 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5310 				continue;
5311 		}
5312 reada:
5313 		btrfs_readahead_node_child(eb, slot);
5314 		nread++;
5315 	}
5316 	wc->reada_slot = slot;
5317 }
5318 
5319 /*
5320  * helper to process tree block while walking down the tree.
5321  *
5322  * when wc->stage == UPDATE_BACKREF, this function updates
5323  * back refs for pointers in the block.
5324  *
5325  * NOTE: return value 1 means we should stop walking down.
5326  */
5327 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5328 				   struct btrfs_root *root,
5329 				   struct btrfs_path *path,
5330 				   struct walk_control *wc, int lookup_info)
5331 {
5332 	struct btrfs_fs_info *fs_info = root->fs_info;
5333 	int level = wc->level;
5334 	struct extent_buffer *eb = path->nodes[level];
5335 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5336 	int ret;
5337 
5338 	if (wc->stage == UPDATE_BACKREF &&
5339 	    btrfs_header_owner(eb) != root->root_key.objectid)
5340 		return 1;
5341 
5342 	/*
5343 	 * when reference count of tree block is 1, it won't increase
5344 	 * again. once full backref flag is set, we never clear it.
5345 	 */
5346 	if (lookup_info &&
5347 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5348 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5349 		BUG_ON(!path->locks[level]);
5350 		ret = btrfs_lookup_extent_info(trans, fs_info,
5351 					       eb->start, level, 1,
5352 					       &wc->refs[level],
5353 					       &wc->flags[level],
5354 					       NULL);
5355 		BUG_ON(ret == -ENOMEM);
5356 		if (ret)
5357 			return ret;
5358 		BUG_ON(wc->refs[level] == 0);
5359 	}
5360 
5361 	if (wc->stage == DROP_REFERENCE) {
5362 		if (wc->refs[level] > 1)
5363 			return 1;
5364 
5365 		if (path->locks[level] && !wc->keep_locks) {
5366 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5367 			path->locks[level] = 0;
5368 		}
5369 		return 0;
5370 	}
5371 
5372 	/* wc->stage == UPDATE_BACKREF */
5373 	if (!(wc->flags[level] & flag)) {
5374 		BUG_ON(!path->locks[level]);
5375 		ret = btrfs_inc_ref(trans, root, eb, 1);
5376 		BUG_ON(ret); /* -ENOMEM */
5377 		ret = btrfs_dec_ref(trans, root, eb, 0);
5378 		BUG_ON(ret); /* -ENOMEM */
5379 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5380 		BUG_ON(ret); /* -ENOMEM */
5381 		wc->flags[level] |= flag;
5382 	}
5383 
5384 	/*
5385 	 * the block is shared by multiple trees, so it's not good to
5386 	 * keep the tree lock
5387 	 */
5388 	if (path->locks[level] && level > 0) {
5389 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5390 		path->locks[level] = 0;
5391 	}
5392 	return 0;
5393 }
5394 
5395 /*
5396  * This is used to verify a ref exists for this root to deal with a bug where we
5397  * would have a drop_progress key that hadn't been updated properly.
5398  */
5399 static int check_ref_exists(struct btrfs_trans_handle *trans,
5400 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5401 			    int level)
5402 {
5403 	struct btrfs_path *path;
5404 	struct btrfs_extent_inline_ref *iref;
5405 	int ret;
5406 
5407 	path = btrfs_alloc_path();
5408 	if (!path)
5409 		return -ENOMEM;
5410 
5411 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5412 				    root->fs_info->nodesize, parent,
5413 				    root->root_key.objectid, level, 0);
5414 	btrfs_free_path(path);
5415 	if (ret == -ENOENT)
5416 		return 0;
5417 	if (ret < 0)
5418 		return ret;
5419 	return 1;
5420 }
5421 
5422 /*
5423  * helper to process tree block pointer.
5424  *
5425  * when wc->stage == DROP_REFERENCE, this function checks
5426  * reference count of the block pointed to. if the block
5427  * is shared and we need update back refs for the subtree
5428  * rooted at the block, this function changes wc->stage to
5429  * UPDATE_BACKREF. if the block is shared and there is no
5430  * need to update back, this function drops the reference
5431  * to the block.
5432  *
5433  * NOTE: return value 1 means we should stop walking down.
5434  */
5435 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5436 				 struct btrfs_root *root,
5437 				 struct btrfs_path *path,
5438 				 struct walk_control *wc, int *lookup_info)
5439 {
5440 	struct btrfs_fs_info *fs_info = root->fs_info;
5441 	u64 bytenr;
5442 	u64 generation;
5443 	u64 parent;
5444 	u64 owner_root = 0;
5445 	struct btrfs_tree_parent_check check = { 0 };
5446 	struct btrfs_key key;
5447 	struct btrfs_ref ref = { 0 };
5448 	struct extent_buffer *next;
5449 	int level = wc->level;
5450 	int reada = 0;
5451 	int ret = 0;
5452 	bool need_account = false;
5453 
5454 	generation = btrfs_node_ptr_generation(path->nodes[level],
5455 					       path->slots[level]);
5456 	/*
5457 	 * if the lower level block was created before the snapshot
5458 	 * was created, we know there is no need to update back refs
5459 	 * for the subtree
5460 	 */
5461 	if (wc->stage == UPDATE_BACKREF &&
5462 	    generation <= root->root_key.offset) {
5463 		*lookup_info = 1;
5464 		return 1;
5465 	}
5466 
5467 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5468 
5469 	check.level = level - 1;
5470 	check.transid = generation;
5471 	check.owner_root = root->root_key.objectid;
5472 	check.has_first_key = true;
5473 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5474 			      path->slots[level]);
5475 
5476 	next = find_extent_buffer(fs_info, bytenr);
5477 	if (!next) {
5478 		next = btrfs_find_create_tree_block(fs_info, bytenr,
5479 				root->root_key.objectid, level - 1);
5480 		if (IS_ERR(next))
5481 			return PTR_ERR(next);
5482 		reada = 1;
5483 	}
5484 	btrfs_tree_lock(next);
5485 
5486 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5487 				       &wc->refs[level - 1],
5488 				       &wc->flags[level - 1],
5489 				       &owner_root);
5490 	if (ret < 0)
5491 		goto out_unlock;
5492 
5493 	if (unlikely(wc->refs[level - 1] == 0)) {
5494 		btrfs_err(fs_info, "Missing references.");
5495 		ret = -EIO;
5496 		goto out_unlock;
5497 	}
5498 	*lookup_info = 0;
5499 
5500 	if (wc->stage == DROP_REFERENCE) {
5501 		if (wc->refs[level - 1] > 1) {
5502 			need_account = true;
5503 			if (level == 1 &&
5504 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5505 				goto skip;
5506 
5507 			if (!wc->update_ref ||
5508 			    generation <= root->root_key.offset)
5509 				goto skip;
5510 
5511 			btrfs_node_key_to_cpu(path->nodes[level], &key,
5512 					      path->slots[level]);
5513 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5514 			if (ret < 0)
5515 				goto skip;
5516 
5517 			wc->stage = UPDATE_BACKREF;
5518 			wc->shared_level = level - 1;
5519 		}
5520 	} else {
5521 		if (level == 1 &&
5522 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5523 			goto skip;
5524 	}
5525 
5526 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
5527 		btrfs_tree_unlock(next);
5528 		free_extent_buffer(next);
5529 		next = NULL;
5530 		*lookup_info = 1;
5531 	}
5532 
5533 	if (!next) {
5534 		if (reada && level == 1)
5535 			reada_walk_down(trans, root, wc, path);
5536 		next = read_tree_block(fs_info, bytenr, &check);
5537 		if (IS_ERR(next)) {
5538 			return PTR_ERR(next);
5539 		} else if (!extent_buffer_uptodate(next)) {
5540 			free_extent_buffer(next);
5541 			return -EIO;
5542 		}
5543 		btrfs_tree_lock(next);
5544 	}
5545 
5546 	level--;
5547 	ASSERT(level == btrfs_header_level(next));
5548 	if (level != btrfs_header_level(next)) {
5549 		btrfs_err(root->fs_info, "mismatched level");
5550 		ret = -EIO;
5551 		goto out_unlock;
5552 	}
5553 	path->nodes[level] = next;
5554 	path->slots[level] = 0;
5555 	path->locks[level] = BTRFS_WRITE_LOCK;
5556 	wc->level = level;
5557 	if (wc->level == 1)
5558 		wc->reada_slot = 0;
5559 	return 0;
5560 skip:
5561 	wc->refs[level - 1] = 0;
5562 	wc->flags[level - 1] = 0;
5563 	if (wc->stage == DROP_REFERENCE) {
5564 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5565 			parent = path->nodes[level]->start;
5566 		} else {
5567 			ASSERT(root->root_key.objectid ==
5568 			       btrfs_header_owner(path->nodes[level]));
5569 			if (root->root_key.objectid !=
5570 			    btrfs_header_owner(path->nodes[level])) {
5571 				btrfs_err(root->fs_info,
5572 						"mismatched block owner");
5573 				ret = -EIO;
5574 				goto out_unlock;
5575 			}
5576 			parent = 0;
5577 		}
5578 
5579 		/*
5580 		 * If we had a drop_progress we need to verify the refs are set
5581 		 * as expected.  If we find our ref then we know that from here
5582 		 * on out everything should be correct, and we can clear the
5583 		 * ->restarted flag.
5584 		 */
5585 		if (wc->restarted) {
5586 			ret = check_ref_exists(trans, root, bytenr, parent,
5587 					       level - 1);
5588 			if (ret < 0)
5589 				goto out_unlock;
5590 			if (ret == 0)
5591 				goto no_delete;
5592 			ret = 0;
5593 			wc->restarted = 0;
5594 		}
5595 
5596 		/*
5597 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
5598 		 * already accounted them at merge time (replace_path),
5599 		 * thus we could skip expensive subtree trace here.
5600 		 */
5601 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5602 		    need_account) {
5603 			ret = btrfs_qgroup_trace_subtree(trans, next,
5604 							 generation, level - 1);
5605 			if (ret) {
5606 				btrfs_err_rl(fs_info,
5607 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5608 					     ret);
5609 			}
5610 		}
5611 
5612 		/*
5613 		 * We need to update the next key in our walk control so we can
5614 		 * update the drop_progress key accordingly.  We don't care if
5615 		 * find_next_key doesn't find a key because that means we're at
5616 		 * the end and are going to clean up now.
5617 		 */
5618 		wc->drop_level = level;
5619 		find_next_key(path, level, &wc->drop_progress);
5620 
5621 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5622 				       fs_info->nodesize, parent, owner_root);
5623 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5624 				    0, false);
5625 		ret = btrfs_free_extent(trans, &ref);
5626 		if (ret)
5627 			goto out_unlock;
5628 	}
5629 no_delete:
5630 	*lookup_info = 1;
5631 	ret = 1;
5632 
5633 out_unlock:
5634 	btrfs_tree_unlock(next);
5635 	free_extent_buffer(next);
5636 
5637 	return ret;
5638 }
5639 
5640 /*
5641  * helper to process tree block while walking up the tree.
5642  *
5643  * when wc->stage == DROP_REFERENCE, this function drops
5644  * reference count on the block.
5645  *
5646  * when wc->stage == UPDATE_BACKREF, this function changes
5647  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5648  * to UPDATE_BACKREF previously while processing the block.
5649  *
5650  * NOTE: return value 1 means we should stop walking up.
5651  */
5652 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5653 				 struct btrfs_root *root,
5654 				 struct btrfs_path *path,
5655 				 struct walk_control *wc)
5656 {
5657 	struct btrfs_fs_info *fs_info = root->fs_info;
5658 	int ret;
5659 	int level = wc->level;
5660 	struct extent_buffer *eb = path->nodes[level];
5661 	u64 parent = 0;
5662 
5663 	if (wc->stage == UPDATE_BACKREF) {
5664 		BUG_ON(wc->shared_level < level);
5665 		if (level < wc->shared_level)
5666 			goto out;
5667 
5668 		ret = find_next_key(path, level + 1, &wc->update_progress);
5669 		if (ret > 0)
5670 			wc->update_ref = 0;
5671 
5672 		wc->stage = DROP_REFERENCE;
5673 		wc->shared_level = -1;
5674 		path->slots[level] = 0;
5675 
5676 		/*
5677 		 * check reference count again if the block isn't locked.
5678 		 * we should start walking down the tree again if reference
5679 		 * count is one.
5680 		 */
5681 		if (!path->locks[level]) {
5682 			BUG_ON(level == 0);
5683 			btrfs_tree_lock(eb);
5684 			path->locks[level] = BTRFS_WRITE_LOCK;
5685 
5686 			ret = btrfs_lookup_extent_info(trans, fs_info,
5687 						       eb->start, level, 1,
5688 						       &wc->refs[level],
5689 						       &wc->flags[level],
5690 						       NULL);
5691 			if (ret < 0) {
5692 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5693 				path->locks[level] = 0;
5694 				return ret;
5695 			}
5696 			BUG_ON(wc->refs[level] == 0);
5697 			if (wc->refs[level] == 1) {
5698 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5699 				path->locks[level] = 0;
5700 				return 1;
5701 			}
5702 		}
5703 	}
5704 
5705 	/* wc->stage == DROP_REFERENCE */
5706 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5707 
5708 	if (wc->refs[level] == 1) {
5709 		if (level == 0) {
5710 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5711 				ret = btrfs_dec_ref(trans, root, eb, 1);
5712 			else
5713 				ret = btrfs_dec_ref(trans, root, eb, 0);
5714 			BUG_ON(ret); /* -ENOMEM */
5715 			if (is_fstree(root->root_key.objectid)) {
5716 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5717 				if (ret) {
5718 					btrfs_err_rl(fs_info,
5719 	"error %d accounting leaf items, quota is out of sync, rescan required",
5720 					     ret);
5721 				}
5722 			}
5723 		}
5724 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5725 		if (!path->locks[level]) {
5726 			btrfs_tree_lock(eb);
5727 			path->locks[level] = BTRFS_WRITE_LOCK;
5728 		}
5729 		btrfs_clear_buffer_dirty(trans, eb);
5730 	}
5731 
5732 	if (eb == root->node) {
5733 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5734 			parent = eb->start;
5735 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5736 			goto owner_mismatch;
5737 	} else {
5738 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5739 			parent = path->nodes[level + 1]->start;
5740 		else if (root->root_key.objectid !=
5741 			 btrfs_header_owner(path->nodes[level + 1]))
5742 			goto owner_mismatch;
5743 	}
5744 
5745 	btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5746 			      wc->refs[level] == 1);
5747 out:
5748 	wc->refs[level] = 0;
5749 	wc->flags[level] = 0;
5750 	return 0;
5751 
5752 owner_mismatch:
5753 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5754 		     btrfs_header_owner(eb), root->root_key.objectid);
5755 	return -EUCLEAN;
5756 }
5757 
5758 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5759 				   struct btrfs_root *root,
5760 				   struct btrfs_path *path,
5761 				   struct walk_control *wc)
5762 {
5763 	int level = wc->level;
5764 	int lookup_info = 1;
5765 	int ret = 0;
5766 
5767 	while (level >= 0) {
5768 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5769 		if (ret)
5770 			break;
5771 
5772 		if (level == 0)
5773 			break;
5774 
5775 		if (path->slots[level] >=
5776 		    btrfs_header_nritems(path->nodes[level]))
5777 			break;
5778 
5779 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5780 		if (ret > 0) {
5781 			path->slots[level]++;
5782 			continue;
5783 		} else if (ret < 0)
5784 			break;
5785 		level = wc->level;
5786 	}
5787 	return (ret == 1) ? 0 : ret;
5788 }
5789 
5790 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5791 				 struct btrfs_root *root,
5792 				 struct btrfs_path *path,
5793 				 struct walk_control *wc, int max_level)
5794 {
5795 	int level = wc->level;
5796 	int ret;
5797 
5798 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5799 	while (level < max_level && path->nodes[level]) {
5800 		wc->level = level;
5801 		if (path->slots[level] + 1 <
5802 		    btrfs_header_nritems(path->nodes[level])) {
5803 			path->slots[level]++;
5804 			return 0;
5805 		} else {
5806 			ret = walk_up_proc(trans, root, path, wc);
5807 			if (ret > 0)
5808 				return 0;
5809 			if (ret < 0)
5810 				return ret;
5811 
5812 			if (path->locks[level]) {
5813 				btrfs_tree_unlock_rw(path->nodes[level],
5814 						     path->locks[level]);
5815 				path->locks[level] = 0;
5816 			}
5817 			free_extent_buffer(path->nodes[level]);
5818 			path->nodes[level] = NULL;
5819 			level++;
5820 		}
5821 	}
5822 	return 1;
5823 }
5824 
5825 /*
5826  * drop a subvolume tree.
5827  *
5828  * this function traverses the tree freeing any blocks that only
5829  * referenced by the tree.
5830  *
5831  * when a shared tree block is found. this function decreases its
5832  * reference count by one. if update_ref is true, this function
5833  * also make sure backrefs for the shared block and all lower level
5834  * blocks are properly updated.
5835  *
5836  * If called with for_reloc == 0, may exit early with -EAGAIN
5837  */
5838 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5839 {
5840 	const bool is_reloc_root = (root->root_key.objectid ==
5841 				    BTRFS_TREE_RELOC_OBJECTID);
5842 	struct btrfs_fs_info *fs_info = root->fs_info;
5843 	struct btrfs_path *path;
5844 	struct btrfs_trans_handle *trans;
5845 	struct btrfs_root *tree_root = fs_info->tree_root;
5846 	struct btrfs_root_item *root_item = &root->root_item;
5847 	struct walk_control *wc;
5848 	struct btrfs_key key;
5849 	int err = 0;
5850 	int ret;
5851 	int level;
5852 	bool root_dropped = false;
5853 	bool unfinished_drop = false;
5854 
5855 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5856 
5857 	path = btrfs_alloc_path();
5858 	if (!path) {
5859 		err = -ENOMEM;
5860 		goto out;
5861 	}
5862 
5863 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5864 	if (!wc) {
5865 		btrfs_free_path(path);
5866 		err = -ENOMEM;
5867 		goto out;
5868 	}
5869 
5870 	/*
5871 	 * Use join to avoid potential EINTR from transaction start. See
5872 	 * wait_reserve_ticket and the whole reservation callchain.
5873 	 */
5874 	if (for_reloc)
5875 		trans = btrfs_join_transaction(tree_root);
5876 	else
5877 		trans = btrfs_start_transaction(tree_root, 0);
5878 	if (IS_ERR(trans)) {
5879 		err = PTR_ERR(trans);
5880 		goto out_free;
5881 	}
5882 
5883 	err = btrfs_run_delayed_items(trans);
5884 	if (err)
5885 		goto out_end_trans;
5886 
5887 	/*
5888 	 * This will help us catch people modifying the fs tree while we're
5889 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5890 	 * dropped as we unlock the root node and parent nodes as we walk down
5891 	 * the tree, assuming nothing will change.  If something does change
5892 	 * then we'll have stale information and drop references to blocks we've
5893 	 * already dropped.
5894 	 */
5895 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5896 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5897 
5898 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5899 		level = btrfs_header_level(root->node);
5900 		path->nodes[level] = btrfs_lock_root_node(root);
5901 		path->slots[level] = 0;
5902 		path->locks[level] = BTRFS_WRITE_LOCK;
5903 		memset(&wc->update_progress, 0,
5904 		       sizeof(wc->update_progress));
5905 	} else {
5906 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5907 		memcpy(&wc->update_progress, &key,
5908 		       sizeof(wc->update_progress));
5909 
5910 		level = btrfs_root_drop_level(root_item);
5911 		BUG_ON(level == 0);
5912 		path->lowest_level = level;
5913 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5914 		path->lowest_level = 0;
5915 		if (ret < 0) {
5916 			err = ret;
5917 			goto out_end_trans;
5918 		}
5919 		WARN_ON(ret > 0);
5920 
5921 		/*
5922 		 * unlock our path, this is safe because only this
5923 		 * function is allowed to delete this snapshot
5924 		 */
5925 		btrfs_unlock_up_safe(path, 0);
5926 
5927 		level = btrfs_header_level(root->node);
5928 		while (1) {
5929 			btrfs_tree_lock(path->nodes[level]);
5930 			path->locks[level] = BTRFS_WRITE_LOCK;
5931 
5932 			ret = btrfs_lookup_extent_info(trans, fs_info,
5933 						path->nodes[level]->start,
5934 						level, 1, &wc->refs[level],
5935 						&wc->flags[level], NULL);
5936 			if (ret < 0) {
5937 				err = ret;
5938 				goto out_end_trans;
5939 			}
5940 			BUG_ON(wc->refs[level] == 0);
5941 
5942 			if (level == btrfs_root_drop_level(root_item))
5943 				break;
5944 
5945 			btrfs_tree_unlock(path->nodes[level]);
5946 			path->locks[level] = 0;
5947 			WARN_ON(wc->refs[level] != 1);
5948 			level--;
5949 		}
5950 	}
5951 
5952 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5953 	wc->level = level;
5954 	wc->shared_level = -1;
5955 	wc->stage = DROP_REFERENCE;
5956 	wc->update_ref = update_ref;
5957 	wc->keep_locks = 0;
5958 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5959 
5960 	while (1) {
5961 
5962 		ret = walk_down_tree(trans, root, path, wc);
5963 		if (ret < 0) {
5964 			btrfs_abort_transaction(trans, ret);
5965 			err = ret;
5966 			break;
5967 		}
5968 
5969 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5970 		if (ret < 0) {
5971 			btrfs_abort_transaction(trans, ret);
5972 			err = ret;
5973 			break;
5974 		}
5975 
5976 		if (ret > 0) {
5977 			BUG_ON(wc->stage != DROP_REFERENCE);
5978 			break;
5979 		}
5980 
5981 		if (wc->stage == DROP_REFERENCE) {
5982 			wc->drop_level = wc->level;
5983 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5984 					      &wc->drop_progress,
5985 					      path->slots[wc->drop_level]);
5986 		}
5987 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5988 				      &wc->drop_progress);
5989 		btrfs_set_root_drop_level(root_item, wc->drop_level);
5990 
5991 		BUG_ON(wc->level == 0);
5992 		if (btrfs_should_end_transaction(trans) ||
5993 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5994 			ret = btrfs_update_root(trans, tree_root,
5995 						&root->root_key,
5996 						root_item);
5997 			if (ret) {
5998 				btrfs_abort_transaction(trans, ret);
5999 				err = ret;
6000 				goto out_end_trans;
6001 			}
6002 
6003 			if (!is_reloc_root)
6004 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6005 
6006 			btrfs_end_transaction_throttle(trans);
6007 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6008 				btrfs_debug(fs_info,
6009 					    "drop snapshot early exit");
6010 				err = -EAGAIN;
6011 				goto out_free;
6012 			}
6013 
6014 		       /*
6015 			* Use join to avoid potential EINTR from transaction
6016 			* start. See wait_reserve_ticket and the whole
6017 			* reservation callchain.
6018 			*/
6019 			if (for_reloc)
6020 				trans = btrfs_join_transaction(tree_root);
6021 			else
6022 				trans = btrfs_start_transaction(tree_root, 0);
6023 			if (IS_ERR(trans)) {
6024 				err = PTR_ERR(trans);
6025 				goto out_free;
6026 			}
6027 		}
6028 	}
6029 	btrfs_release_path(path);
6030 	if (err)
6031 		goto out_end_trans;
6032 
6033 	ret = btrfs_del_root(trans, &root->root_key);
6034 	if (ret) {
6035 		btrfs_abort_transaction(trans, ret);
6036 		err = ret;
6037 		goto out_end_trans;
6038 	}
6039 
6040 	if (!is_reloc_root) {
6041 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6042 				      NULL, NULL);
6043 		if (ret < 0) {
6044 			btrfs_abort_transaction(trans, ret);
6045 			err = ret;
6046 			goto out_end_trans;
6047 		} else if (ret > 0) {
6048 			/* if we fail to delete the orphan item this time
6049 			 * around, it'll get picked up the next time.
6050 			 *
6051 			 * The most common failure here is just -ENOENT.
6052 			 */
6053 			btrfs_del_orphan_item(trans, tree_root,
6054 					      root->root_key.objectid);
6055 		}
6056 	}
6057 
6058 	/*
6059 	 * This subvolume is going to be completely dropped, and won't be
6060 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6061 	 * commit transaction time.  So free it here manually.
6062 	 */
6063 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6064 	btrfs_qgroup_free_meta_all_pertrans(root);
6065 
6066 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6067 		btrfs_add_dropped_root(trans, root);
6068 	else
6069 		btrfs_put_root(root);
6070 	root_dropped = true;
6071 out_end_trans:
6072 	if (!is_reloc_root)
6073 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6074 
6075 	btrfs_end_transaction_throttle(trans);
6076 out_free:
6077 	kfree(wc);
6078 	btrfs_free_path(path);
6079 out:
6080 	/*
6081 	 * We were an unfinished drop root, check to see if there are any
6082 	 * pending, and if not clear and wake up any waiters.
6083 	 */
6084 	if (!err && unfinished_drop)
6085 		btrfs_maybe_wake_unfinished_drop(fs_info);
6086 
6087 	/*
6088 	 * So if we need to stop dropping the snapshot for whatever reason we
6089 	 * need to make sure to add it back to the dead root list so that we
6090 	 * keep trying to do the work later.  This also cleans up roots if we
6091 	 * don't have it in the radix (like when we recover after a power fail
6092 	 * or unmount) so we don't leak memory.
6093 	 */
6094 	if (!for_reloc && !root_dropped)
6095 		btrfs_add_dead_root(root);
6096 	return err;
6097 }
6098 
6099 /*
6100  * drop subtree rooted at tree block 'node'.
6101  *
6102  * NOTE: this function will unlock and release tree block 'node'
6103  * only used by relocation code
6104  */
6105 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6106 			struct btrfs_root *root,
6107 			struct extent_buffer *node,
6108 			struct extent_buffer *parent)
6109 {
6110 	struct btrfs_fs_info *fs_info = root->fs_info;
6111 	struct btrfs_path *path;
6112 	struct walk_control *wc;
6113 	int level;
6114 	int parent_level;
6115 	int ret = 0;
6116 	int wret;
6117 
6118 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6119 
6120 	path = btrfs_alloc_path();
6121 	if (!path)
6122 		return -ENOMEM;
6123 
6124 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6125 	if (!wc) {
6126 		btrfs_free_path(path);
6127 		return -ENOMEM;
6128 	}
6129 
6130 	btrfs_assert_tree_write_locked(parent);
6131 	parent_level = btrfs_header_level(parent);
6132 	atomic_inc(&parent->refs);
6133 	path->nodes[parent_level] = parent;
6134 	path->slots[parent_level] = btrfs_header_nritems(parent);
6135 
6136 	btrfs_assert_tree_write_locked(node);
6137 	level = btrfs_header_level(node);
6138 	path->nodes[level] = node;
6139 	path->slots[level] = 0;
6140 	path->locks[level] = BTRFS_WRITE_LOCK;
6141 
6142 	wc->refs[parent_level] = 1;
6143 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6144 	wc->level = level;
6145 	wc->shared_level = -1;
6146 	wc->stage = DROP_REFERENCE;
6147 	wc->update_ref = 0;
6148 	wc->keep_locks = 1;
6149 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6150 
6151 	while (1) {
6152 		wret = walk_down_tree(trans, root, path, wc);
6153 		if (wret < 0) {
6154 			ret = wret;
6155 			break;
6156 		}
6157 
6158 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6159 		if (wret < 0)
6160 			ret = wret;
6161 		if (wret != 0)
6162 			break;
6163 	}
6164 
6165 	kfree(wc);
6166 	btrfs_free_path(path);
6167 	return ret;
6168 }
6169 
6170 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6171 				   u64 start, u64 end)
6172 {
6173 	return unpin_extent_range(fs_info, start, end, false);
6174 }
6175 
6176 /*
6177  * It used to be that old block groups would be left around forever.
6178  * Iterating over them would be enough to trim unused space.  Since we
6179  * now automatically remove them, we also need to iterate over unallocated
6180  * space.
6181  *
6182  * We don't want a transaction for this since the discard may take a
6183  * substantial amount of time.  We don't require that a transaction be
6184  * running, but we do need to take a running transaction into account
6185  * to ensure that we're not discarding chunks that were released or
6186  * allocated in the current transaction.
6187  *
6188  * Holding the chunks lock will prevent other threads from allocating
6189  * or releasing chunks, but it won't prevent a running transaction
6190  * from committing and releasing the memory that the pending chunks
6191  * list head uses.  For that, we need to take a reference to the
6192  * transaction and hold the commit root sem.  We only need to hold
6193  * it while performing the free space search since we have already
6194  * held back allocations.
6195  */
6196 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6197 {
6198 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6199 	int ret;
6200 
6201 	*trimmed = 0;
6202 
6203 	/* Discard not supported = nothing to do. */
6204 	if (!bdev_max_discard_sectors(device->bdev))
6205 		return 0;
6206 
6207 	/* Not writable = nothing to do. */
6208 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6209 		return 0;
6210 
6211 	/* No free space = nothing to do. */
6212 	if (device->total_bytes <= device->bytes_used)
6213 		return 0;
6214 
6215 	ret = 0;
6216 
6217 	while (1) {
6218 		struct btrfs_fs_info *fs_info = device->fs_info;
6219 		u64 bytes;
6220 
6221 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6222 		if (ret)
6223 			break;
6224 
6225 		find_first_clear_extent_bit(&device->alloc_state, start,
6226 					    &start, &end,
6227 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
6228 
6229 		/* Check if there are any CHUNK_* bits left */
6230 		if (start > device->total_bytes) {
6231 			WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6232 			btrfs_warn_in_rcu(fs_info,
6233 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6234 					  start, end - start + 1,
6235 					  btrfs_dev_name(device),
6236 					  device->total_bytes);
6237 			mutex_unlock(&fs_info->chunk_mutex);
6238 			ret = 0;
6239 			break;
6240 		}
6241 
6242 		/* Ensure we skip the reserved space on each device. */
6243 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6244 
6245 		/*
6246 		 * If find_first_clear_extent_bit find a range that spans the
6247 		 * end of the device it will set end to -1, in this case it's up
6248 		 * to the caller to trim the value to the size of the device.
6249 		 */
6250 		end = min(end, device->total_bytes - 1);
6251 
6252 		len = end - start + 1;
6253 
6254 		/* We didn't find any extents */
6255 		if (!len) {
6256 			mutex_unlock(&fs_info->chunk_mutex);
6257 			ret = 0;
6258 			break;
6259 		}
6260 
6261 		ret = btrfs_issue_discard(device->bdev, start, len,
6262 					  &bytes);
6263 		if (!ret)
6264 			set_extent_bit(&device->alloc_state, start,
6265 				       start + bytes - 1, CHUNK_TRIMMED, NULL);
6266 		mutex_unlock(&fs_info->chunk_mutex);
6267 
6268 		if (ret)
6269 			break;
6270 
6271 		start += len;
6272 		*trimmed += bytes;
6273 
6274 		if (fatal_signal_pending(current)) {
6275 			ret = -ERESTARTSYS;
6276 			break;
6277 		}
6278 
6279 		cond_resched();
6280 	}
6281 
6282 	return ret;
6283 }
6284 
6285 /*
6286  * Trim the whole filesystem by:
6287  * 1) trimming the free space in each block group
6288  * 2) trimming the unallocated space on each device
6289  *
6290  * This will also continue trimming even if a block group or device encounters
6291  * an error.  The return value will be the last error, or 0 if nothing bad
6292  * happens.
6293  */
6294 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6295 {
6296 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6297 	struct btrfs_block_group *cache = NULL;
6298 	struct btrfs_device *device;
6299 	u64 group_trimmed;
6300 	u64 range_end = U64_MAX;
6301 	u64 start;
6302 	u64 end;
6303 	u64 trimmed = 0;
6304 	u64 bg_failed = 0;
6305 	u64 dev_failed = 0;
6306 	int bg_ret = 0;
6307 	int dev_ret = 0;
6308 	int ret = 0;
6309 
6310 	if (range->start == U64_MAX)
6311 		return -EINVAL;
6312 
6313 	/*
6314 	 * Check range overflow if range->len is set.
6315 	 * The default range->len is U64_MAX.
6316 	 */
6317 	if (range->len != U64_MAX &&
6318 	    check_add_overflow(range->start, range->len, &range_end))
6319 		return -EINVAL;
6320 
6321 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6322 	for (; cache; cache = btrfs_next_block_group(cache)) {
6323 		if (cache->start >= range_end) {
6324 			btrfs_put_block_group(cache);
6325 			break;
6326 		}
6327 
6328 		start = max(range->start, cache->start);
6329 		end = min(range_end, cache->start + cache->length);
6330 
6331 		if (end - start >= range->minlen) {
6332 			if (!btrfs_block_group_done(cache)) {
6333 				ret = btrfs_cache_block_group(cache, true);
6334 				if (ret) {
6335 					bg_failed++;
6336 					bg_ret = ret;
6337 					continue;
6338 				}
6339 			}
6340 			ret = btrfs_trim_block_group(cache,
6341 						     &group_trimmed,
6342 						     start,
6343 						     end,
6344 						     range->minlen);
6345 
6346 			trimmed += group_trimmed;
6347 			if (ret) {
6348 				bg_failed++;
6349 				bg_ret = ret;
6350 				continue;
6351 			}
6352 		}
6353 	}
6354 
6355 	if (bg_failed)
6356 		btrfs_warn(fs_info,
6357 			"failed to trim %llu block group(s), last error %d",
6358 			bg_failed, bg_ret);
6359 
6360 	mutex_lock(&fs_devices->device_list_mutex);
6361 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6362 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6363 			continue;
6364 
6365 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6366 		if (ret) {
6367 			dev_failed++;
6368 			dev_ret = ret;
6369 			break;
6370 		}
6371 
6372 		trimmed += group_trimmed;
6373 	}
6374 	mutex_unlock(&fs_devices->device_list_mutex);
6375 
6376 	if (dev_failed)
6377 		btrfs_warn(fs_info,
6378 			"failed to trim %llu device(s), last error %d",
6379 			dev_failed, dev_ret);
6380 	range->len = trimmed;
6381 	if (bg_ret)
6382 		return bg_ret;
6383 	return dev_ret;
6384 }
6385