xref: /linux/fs/btrfs/extent-tree.c (revision 293d5b43948309434568f4dcbb36cce4c3c51bd5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 /*
64  * Control how reservations are dealt with.
65  *
66  * RESERVE_FREE - freeing a reservation.
67  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68  *   ENOSPC accounting
69  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70  *   bytes_may_use as the ENOSPC accounting is done elsewhere
71  */
72 enum {
73 	RESERVE_FREE = 0,
74 	RESERVE_ALLOC = 1,
75 	RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77 
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 			      struct btrfs_root *root, u64 bytenr,
80 			      u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 				struct btrfs_root *root,
83 				struct btrfs_delayed_ref_node *node, u64 parent,
84 				u64 root_objectid, u64 owner_objectid,
85 				u64 owner_offset, int refs_to_drop,
86 				struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 static int __reserve_metadata_bytes(struct btrfs_root *root,
115 				    struct btrfs_space_info *space_info,
116 				    u64 orig_bytes,
117 				    enum btrfs_reserve_flush_enum flush);
118 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
119 				     struct btrfs_space_info *space_info,
120 				     u64 num_bytes);
121 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
122 				     struct btrfs_space_info *space_info,
123 				     u64 num_bytes);
124 
125 static noinline int
126 block_group_cache_done(struct btrfs_block_group_cache *cache)
127 {
128 	smp_mb();
129 	return cache->cached == BTRFS_CACHE_FINISHED ||
130 		cache->cached == BTRFS_CACHE_ERROR;
131 }
132 
133 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
134 {
135 	return (cache->flags & bits) == bits;
136 }
137 
138 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
139 {
140 	atomic_inc(&cache->count);
141 }
142 
143 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
144 {
145 	if (atomic_dec_and_test(&cache->count)) {
146 		WARN_ON(cache->pinned > 0);
147 		WARN_ON(cache->reserved > 0);
148 		kfree(cache->free_space_ctl);
149 		kfree(cache);
150 	}
151 }
152 
153 /*
154  * this adds the block group to the fs_info rb tree for the block group
155  * cache
156  */
157 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
158 				struct btrfs_block_group_cache *block_group)
159 {
160 	struct rb_node **p;
161 	struct rb_node *parent = NULL;
162 	struct btrfs_block_group_cache *cache;
163 
164 	spin_lock(&info->block_group_cache_lock);
165 	p = &info->block_group_cache_tree.rb_node;
166 
167 	while (*p) {
168 		parent = *p;
169 		cache = rb_entry(parent, struct btrfs_block_group_cache,
170 				 cache_node);
171 		if (block_group->key.objectid < cache->key.objectid) {
172 			p = &(*p)->rb_left;
173 		} else if (block_group->key.objectid > cache->key.objectid) {
174 			p = &(*p)->rb_right;
175 		} else {
176 			spin_unlock(&info->block_group_cache_lock);
177 			return -EEXIST;
178 		}
179 	}
180 
181 	rb_link_node(&block_group->cache_node, parent, p);
182 	rb_insert_color(&block_group->cache_node,
183 			&info->block_group_cache_tree);
184 
185 	if (info->first_logical_byte > block_group->key.objectid)
186 		info->first_logical_byte = block_group->key.objectid;
187 
188 	spin_unlock(&info->block_group_cache_lock);
189 
190 	return 0;
191 }
192 
193 /*
194  * This will return the block group at or after bytenr if contains is 0, else
195  * it will return the block group that contains the bytenr
196  */
197 static struct btrfs_block_group_cache *
198 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
199 			      int contains)
200 {
201 	struct btrfs_block_group_cache *cache, *ret = NULL;
202 	struct rb_node *n;
203 	u64 end, start;
204 
205 	spin_lock(&info->block_group_cache_lock);
206 	n = info->block_group_cache_tree.rb_node;
207 
208 	while (n) {
209 		cache = rb_entry(n, struct btrfs_block_group_cache,
210 				 cache_node);
211 		end = cache->key.objectid + cache->key.offset - 1;
212 		start = cache->key.objectid;
213 
214 		if (bytenr < start) {
215 			if (!contains && (!ret || start < ret->key.objectid))
216 				ret = cache;
217 			n = n->rb_left;
218 		} else if (bytenr > start) {
219 			if (contains && bytenr <= end) {
220 				ret = cache;
221 				break;
222 			}
223 			n = n->rb_right;
224 		} else {
225 			ret = cache;
226 			break;
227 		}
228 	}
229 	if (ret) {
230 		btrfs_get_block_group(ret);
231 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
232 			info->first_logical_byte = ret->key.objectid;
233 	}
234 	spin_unlock(&info->block_group_cache_lock);
235 
236 	return ret;
237 }
238 
239 static int add_excluded_extent(struct btrfs_root *root,
240 			       u64 start, u64 num_bytes)
241 {
242 	u64 end = start + num_bytes - 1;
243 	set_extent_bits(&root->fs_info->freed_extents[0],
244 			start, end, EXTENT_UPTODATE);
245 	set_extent_bits(&root->fs_info->freed_extents[1],
246 			start, end, EXTENT_UPTODATE);
247 	return 0;
248 }
249 
250 static void free_excluded_extents(struct btrfs_root *root,
251 				  struct btrfs_block_group_cache *cache)
252 {
253 	u64 start, end;
254 
255 	start = cache->key.objectid;
256 	end = start + cache->key.offset - 1;
257 
258 	clear_extent_bits(&root->fs_info->freed_extents[0],
259 			  start, end, EXTENT_UPTODATE);
260 	clear_extent_bits(&root->fs_info->freed_extents[1],
261 			  start, end, EXTENT_UPTODATE);
262 }
263 
264 static int exclude_super_stripes(struct btrfs_root *root,
265 				 struct btrfs_block_group_cache *cache)
266 {
267 	u64 bytenr;
268 	u64 *logical;
269 	int stripe_len;
270 	int i, nr, ret;
271 
272 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
273 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
274 		cache->bytes_super += stripe_len;
275 		ret = add_excluded_extent(root, cache->key.objectid,
276 					  stripe_len);
277 		if (ret)
278 			return ret;
279 	}
280 
281 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
282 		bytenr = btrfs_sb_offset(i);
283 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
284 				       cache->key.objectid, bytenr,
285 				       0, &logical, &nr, &stripe_len);
286 		if (ret)
287 			return ret;
288 
289 		while (nr--) {
290 			u64 start, len;
291 
292 			if (logical[nr] > cache->key.objectid +
293 			    cache->key.offset)
294 				continue;
295 
296 			if (logical[nr] + stripe_len <= cache->key.objectid)
297 				continue;
298 
299 			start = logical[nr];
300 			if (start < cache->key.objectid) {
301 				start = cache->key.objectid;
302 				len = (logical[nr] + stripe_len) - start;
303 			} else {
304 				len = min_t(u64, stripe_len,
305 					    cache->key.objectid +
306 					    cache->key.offset - start);
307 			}
308 
309 			cache->bytes_super += len;
310 			ret = add_excluded_extent(root, start, len);
311 			if (ret) {
312 				kfree(logical);
313 				return ret;
314 			}
315 		}
316 
317 		kfree(logical);
318 	}
319 	return 0;
320 }
321 
322 static struct btrfs_caching_control *
323 get_caching_control(struct btrfs_block_group_cache *cache)
324 {
325 	struct btrfs_caching_control *ctl;
326 
327 	spin_lock(&cache->lock);
328 	if (!cache->caching_ctl) {
329 		spin_unlock(&cache->lock);
330 		return NULL;
331 	}
332 
333 	ctl = cache->caching_ctl;
334 	atomic_inc(&ctl->count);
335 	spin_unlock(&cache->lock);
336 	return ctl;
337 }
338 
339 static void put_caching_control(struct btrfs_caching_control *ctl)
340 {
341 	if (atomic_dec_and_test(&ctl->count))
342 		kfree(ctl);
343 }
344 
345 #ifdef CONFIG_BTRFS_DEBUG
346 static void fragment_free_space(struct btrfs_root *root,
347 				struct btrfs_block_group_cache *block_group)
348 {
349 	u64 start = block_group->key.objectid;
350 	u64 len = block_group->key.offset;
351 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
352 		root->nodesize : root->sectorsize;
353 	u64 step = chunk << 1;
354 
355 	while (len > chunk) {
356 		btrfs_remove_free_space(block_group, start, chunk);
357 		start += step;
358 		if (len < step)
359 			len = 0;
360 		else
361 			len -= step;
362 	}
363 }
364 #endif
365 
366 /*
367  * this is only called by cache_block_group, since we could have freed extents
368  * we need to check the pinned_extents for any extents that can't be used yet
369  * since their free space will be released as soon as the transaction commits.
370  */
371 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
372 		       struct btrfs_fs_info *info, u64 start, u64 end)
373 {
374 	u64 extent_start, extent_end, size, total_added = 0;
375 	int ret;
376 
377 	while (start < end) {
378 		ret = find_first_extent_bit(info->pinned_extents, start,
379 					    &extent_start, &extent_end,
380 					    EXTENT_DIRTY | EXTENT_UPTODATE,
381 					    NULL);
382 		if (ret)
383 			break;
384 
385 		if (extent_start <= start) {
386 			start = extent_end + 1;
387 		} else if (extent_start > start && extent_start < end) {
388 			size = extent_start - start;
389 			total_added += size;
390 			ret = btrfs_add_free_space(block_group, start,
391 						   size);
392 			BUG_ON(ret); /* -ENOMEM or logic error */
393 			start = extent_end + 1;
394 		} else {
395 			break;
396 		}
397 	}
398 
399 	if (start < end) {
400 		size = end - start;
401 		total_added += size;
402 		ret = btrfs_add_free_space(block_group, start, size);
403 		BUG_ON(ret); /* -ENOMEM or logic error */
404 	}
405 
406 	return total_added;
407 }
408 
409 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
410 {
411 	struct btrfs_block_group_cache *block_group;
412 	struct btrfs_fs_info *fs_info;
413 	struct btrfs_root *extent_root;
414 	struct btrfs_path *path;
415 	struct extent_buffer *leaf;
416 	struct btrfs_key key;
417 	u64 total_found = 0;
418 	u64 last = 0;
419 	u32 nritems;
420 	int ret;
421 	bool wakeup = true;
422 
423 	block_group = caching_ctl->block_group;
424 	fs_info = block_group->fs_info;
425 	extent_root = fs_info->extent_root;
426 
427 	path = btrfs_alloc_path();
428 	if (!path)
429 		return -ENOMEM;
430 
431 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
432 
433 #ifdef CONFIG_BTRFS_DEBUG
434 	/*
435 	 * If we're fragmenting we don't want to make anybody think we can
436 	 * allocate from this block group until we've had a chance to fragment
437 	 * the free space.
438 	 */
439 	if (btrfs_should_fragment_free_space(extent_root, block_group))
440 		wakeup = false;
441 #endif
442 	/*
443 	 * We don't want to deadlock with somebody trying to allocate a new
444 	 * extent for the extent root while also trying to search the extent
445 	 * root to add free space.  So we skip locking and search the commit
446 	 * root, since its read-only
447 	 */
448 	path->skip_locking = 1;
449 	path->search_commit_root = 1;
450 	path->reada = READA_FORWARD;
451 
452 	key.objectid = last;
453 	key.offset = 0;
454 	key.type = BTRFS_EXTENT_ITEM_KEY;
455 
456 next:
457 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
458 	if (ret < 0)
459 		goto out;
460 
461 	leaf = path->nodes[0];
462 	nritems = btrfs_header_nritems(leaf);
463 
464 	while (1) {
465 		if (btrfs_fs_closing(fs_info) > 1) {
466 			last = (u64)-1;
467 			break;
468 		}
469 
470 		if (path->slots[0] < nritems) {
471 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
472 		} else {
473 			ret = find_next_key(path, 0, &key);
474 			if (ret)
475 				break;
476 
477 			if (need_resched() ||
478 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
479 				if (wakeup)
480 					caching_ctl->progress = last;
481 				btrfs_release_path(path);
482 				up_read(&fs_info->commit_root_sem);
483 				mutex_unlock(&caching_ctl->mutex);
484 				cond_resched();
485 				mutex_lock(&caching_ctl->mutex);
486 				down_read(&fs_info->commit_root_sem);
487 				goto next;
488 			}
489 
490 			ret = btrfs_next_leaf(extent_root, path);
491 			if (ret < 0)
492 				goto out;
493 			if (ret)
494 				break;
495 			leaf = path->nodes[0];
496 			nritems = btrfs_header_nritems(leaf);
497 			continue;
498 		}
499 
500 		if (key.objectid < last) {
501 			key.objectid = last;
502 			key.offset = 0;
503 			key.type = BTRFS_EXTENT_ITEM_KEY;
504 
505 			if (wakeup)
506 				caching_ctl->progress = last;
507 			btrfs_release_path(path);
508 			goto next;
509 		}
510 
511 		if (key.objectid < block_group->key.objectid) {
512 			path->slots[0]++;
513 			continue;
514 		}
515 
516 		if (key.objectid >= block_group->key.objectid +
517 		    block_group->key.offset)
518 			break;
519 
520 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
521 		    key.type == BTRFS_METADATA_ITEM_KEY) {
522 			total_found += add_new_free_space(block_group,
523 							  fs_info, last,
524 							  key.objectid);
525 			if (key.type == BTRFS_METADATA_ITEM_KEY)
526 				last = key.objectid +
527 					fs_info->tree_root->nodesize;
528 			else
529 				last = key.objectid + key.offset;
530 
531 			if (total_found > CACHING_CTL_WAKE_UP) {
532 				total_found = 0;
533 				if (wakeup)
534 					wake_up(&caching_ctl->wait);
535 			}
536 		}
537 		path->slots[0]++;
538 	}
539 	ret = 0;
540 
541 	total_found += add_new_free_space(block_group, fs_info, last,
542 					  block_group->key.objectid +
543 					  block_group->key.offset);
544 	caching_ctl->progress = (u64)-1;
545 
546 out:
547 	btrfs_free_path(path);
548 	return ret;
549 }
550 
551 static noinline void caching_thread(struct btrfs_work *work)
552 {
553 	struct btrfs_block_group_cache *block_group;
554 	struct btrfs_fs_info *fs_info;
555 	struct btrfs_caching_control *caching_ctl;
556 	struct btrfs_root *extent_root;
557 	int ret;
558 
559 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
560 	block_group = caching_ctl->block_group;
561 	fs_info = block_group->fs_info;
562 	extent_root = fs_info->extent_root;
563 
564 	mutex_lock(&caching_ctl->mutex);
565 	down_read(&fs_info->commit_root_sem);
566 
567 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
568 		ret = load_free_space_tree(caching_ctl);
569 	else
570 		ret = load_extent_tree_free(caching_ctl);
571 
572 	spin_lock(&block_group->lock);
573 	block_group->caching_ctl = NULL;
574 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
575 	spin_unlock(&block_group->lock);
576 
577 #ifdef CONFIG_BTRFS_DEBUG
578 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
579 		u64 bytes_used;
580 
581 		spin_lock(&block_group->space_info->lock);
582 		spin_lock(&block_group->lock);
583 		bytes_used = block_group->key.offset -
584 			btrfs_block_group_used(&block_group->item);
585 		block_group->space_info->bytes_used += bytes_used >> 1;
586 		spin_unlock(&block_group->lock);
587 		spin_unlock(&block_group->space_info->lock);
588 		fragment_free_space(extent_root, block_group);
589 	}
590 #endif
591 
592 	caching_ctl->progress = (u64)-1;
593 
594 	up_read(&fs_info->commit_root_sem);
595 	free_excluded_extents(fs_info->extent_root, block_group);
596 	mutex_unlock(&caching_ctl->mutex);
597 
598 	wake_up(&caching_ctl->wait);
599 
600 	put_caching_control(caching_ctl);
601 	btrfs_put_block_group(block_group);
602 }
603 
604 static int cache_block_group(struct btrfs_block_group_cache *cache,
605 			     int load_cache_only)
606 {
607 	DEFINE_WAIT(wait);
608 	struct btrfs_fs_info *fs_info = cache->fs_info;
609 	struct btrfs_caching_control *caching_ctl;
610 	int ret = 0;
611 
612 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
613 	if (!caching_ctl)
614 		return -ENOMEM;
615 
616 	INIT_LIST_HEAD(&caching_ctl->list);
617 	mutex_init(&caching_ctl->mutex);
618 	init_waitqueue_head(&caching_ctl->wait);
619 	caching_ctl->block_group = cache;
620 	caching_ctl->progress = cache->key.objectid;
621 	atomic_set(&caching_ctl->count, 1);
622 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
623 			caching_thread, NULL, NULL);
624 
625 	spin_lock(&cache->lock);
626 	/*
627 	 * This should be a rare occasion, but this could happen I think in the
628 	 * case where one thread starts to load the space cache info, and then
629 	 * some other thread starts a transaction commit which tries to do an
630 	 * allocation while the other thread is still loading the space cache
631 	 * info.  The previous loop should have kept us from choosing this block
632 	 * group, but if we've moved to the state where we will wait on caching
633 	 * block groups we need to first check if we're doing a fast load here,
634 	 * so we can wait for it to finish, otherwise we could end up allocating
635 	 * from a block group who's cache gets evicted for one reason or
636 	 * another.
637 	 */
638 	while (cache->cached == BTRFS_CACHE_FAST) {
639 		struct btrfs_caching_control *ctl;
640 
641 		ctl = cache->caching_ctl;
642 		atomic_inc(&ctl->count);
643 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
644 		spin_unlock(&cache->lock);
645 
646 		schedule();
647 
648 		finish_wait(&ctl->wait, &wait);
649 		put_caching_control(ctl);
650 		spin_lock(&cache->lock);
651 	}
652 
653 	if (cache->cached != BTRFS_CACHE_NO) {
654 		spin_unlock(&cache->lock);
655 		kfree(caching_ctl);
656 		return 0;
657 	}
658 	WARN_ON(cache->caching_ctl);
659 	cache->caching_ctl = caching_ctl;
660 	cache->cached = BTRFS_CACHE_FAST;
661 	spin_unlock(&cache->lock);
662 
663 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
664 		mutex_lock(&caching_ctl->mutex);
665 		ret = load_free_space_cache(fs_info, cache);
666 
667 		spin_lock(&cache->lock);
668 		if (ret == 1) {
669 			cache->caching_ctl = NULL;
670 			cache->cached = BTRFS_CACHE_FINISHED;
671 			cache->last_byte_to_unpin = (u64)-1;
672 			caching_ctl->progress = (u64)-1;
673 		} else {
674 			if (load_cache_only) {
675 				cache->caching_ctl = NULL;
676 				cache->cached = BTRFS_CACHE_NO;
677 			} else {
678 				cache->cached = BTRFS_CACHE_STARTED;
679 				cache->has_caching_ctl = 1;
680 			}
681 		}
682 		spin_unlock(&cache->lock);
683 #ifdef CONFIG_BTRFS_DEBUG
684 		if (ret == 1 &&
685 		    btrfs_should_fragment_free_space(fs_info->extent_root,
686 						     cache)) {
687 			u64 bytes_used;
688 
689 			spin_lock(&cache->space_info->lock);
690 			spin_lock(&cache->lock);
691 			bytes_used = cache->key.offset -
692 				btrfs_block_group_used(&cache->item);
693 			cache->space_info->bytes_used += bytes_used >> 1;
694 			spin_unlock(&cache->lock);
695 			spin_unlock(&cache->space_info->lock);
696 			fragment_free_space(fs_info->extent_root, cache);
697 		}
698 #endif
699 		mutex_unlock(&caching_ctl->mutex);
700 
701 		wake_up(&caching_ctl->wait);
702 		if (ret == 1) {
703 			put_caching_control(caching_ctl);
704 			free_excluded_extents(fs_info->extent_root, cache);
705 			return 0;
706 		}
707 	} else {
708 		/*
709 		 * We're either using the free space tree or no caching at all.
710 		 * Set cached to the appropriate value and wakeup any waiters.
711 		 */
712 		spin_lock(&cache->lock);
713 		if (load_cache_only) {
714 			cache->caching_ctl = NULL;
715 			cache->cached = BTRFS_CACHE_NO;
716 		} else {
717 			cache->cached = BTRFS_CACHE_STARTED;
718 			cache->has_caching_ctl = 1;
719 		}
720 		spin_unlock(&cache->lock);
721 		wake_up(&caching_ctl->wait);
722 	}
723 
724 	if (load_cache_only) {
725 		put_caching_control(caching_ctl);
726 		return 0;
727 	}
728 
729 	down_write(&fs_info->commit_root_sem);
730 	atomic_inc(&caching_ctl->count);
731 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
732 	up_write(&fs_info->commit_root_sem);
733 
734 	btrfs_get_block_group(cache);
735 
736 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
737 
738 	return ret;
739 }
740 
741 /*
742  * return the block group that starts at or after bytenr
743  */
744 static struct btrfs_block_group_cache *
745 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
746 {
747 	struct btrfs_block_group_cache *cache;
748 
749 	cache = block_group_cache_tree_search(info, bytenr, 0);
750 
751 	return cache;
752 }
753 
754 /*
755  * return the block group that contains the given bytenr
756  */
757 struct btrfs_block_group_cache *btrfs_lookup_block_group(
758 						 struct btrfs_fs_info *info,
759 						 u64 bytenr)
760 {
761 	struct btrfs_block_group_cache *cache;
762 
763 	cache = block_group_cache_tree_search(info, bytenr, 1);
764 
765 	return cache;
766 }
767 
768 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
769 						  u64 flags)
770 {
771 	struct list_head *head = &info->space_info;
772 	struct btrfs_space_info *found;
773 
774 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
775 
776 	rcu_read_lock();
777 	list_for_each_entry_rcu(found, head, list) {
778 		if (found->flags & flags) {
779 			rcu_read_unlock();
780 			return found;
781 		}
782 	}
783 	rcu_read_unlock();
784 	return NULL;
785 }
786 
787 /*
788  * after adding space to the filesystem, we need to clear the full flags
789  * on all the space infos.
790  */
791 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
792 {
793 	struct list_head *head = &info->space_info;
794 	struct btrfs_space_info *found;
795 
796 	rcu_read_lock();
797 	list_for_each_entry_rcu(found, head, list)
798 		found->full = 0;
799 	rcu_read_unlock();
800 }
801 
802 /* simple helper to search for an existing data extent at a given offset */
803 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
804 {
805 	int ret;
806 	struct btrfs_key key;
807 	struct btrfs_path *path;
808 
809 	path = btrfs_alloc_path();
810 	if (!path)
811 		return -ENOMEM;
812 
813 	key.objectid = start;
814 	key.offset = len;
815 	key.type = BTRFS_EXTENT_ITEM_KEY;
816 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
817 				0, 0);
818 	btrfs_free_path(path);
819 	return ret;
820 }
821 
822 /*
823  * helper function to lookup reference count and flags of a tree block.
824  *
825  * the head node for delayed ref is used to store the sum of all the
826  * reference count modifications queued up in the rbtree. the head
827  * node may also store the extent flags to set. This way you can check
828  * to see what the reference count and extent flags would be if all of
829  * the delayed refs are not processed.
830  */
831 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
832 			     struct btrfs_root *root, u64 bytenr,
833 			     u64 offset, int metadata, u64 *refs, u64 *flags)
834 {
835 	struct btrfs_delayed_ref_head *head;
836 	struct btrfs_delayed_ref_root *delayed_refs;
837 	struct btrfs_path *path;
838 	struct btrfs_extent_item *ei;
839 	struct extent_buffer *leaf;
840 	struct btrfs_key key;
841 	u32 item_size;
842 	u64 num_refs;
843 	u64 extent_flags;
844 	int ret;
845 
846 	/*
847 	 * If we don't have skinny metadata, don't bother doing anything
848 	 * different
849 	 */
850 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
851 		offset = root->nodesize;
852 		metadata = 0;
853 	}
854 
855 	path = btrfs_alloc_path();
856 	if (!path)
857 		return -ENOMEM;
858 
859 	if (!trans) {
860 		path->skip_locking = 1;
861 		path->search_commit_root = 1;
862 	}
863 
864 search_again:
865 	key.objectid = bytenr;
866 	key.offset = offset;
867 	if (metadata)
868 		key.type = BTRFS_METADATA_ITEM_KEY;
869 	else
870 		key.type = BTRFS_EXTENT_ITEM_KEY;
871 
872 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
873 				&key, path, 0, 0);
874 	if (ret < 0)
875 		goto out_free;
876 
877 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
878 		if (path->slots[0]) {
879 			path->slots[0]--;
880 			btrfs_item_key_to_cpu(path->nodes[0], &key,
881 					      path->slots[0]);
882 			if (key.objectid == bytenr &&
883 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
884 			    key.offset == root->nodesize)
885 				ret = 0;
886 		}
887 	}
888 
889 	if (ret == 0) {
890 		leaf = path->nodes[0];
891 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
892 		if (item_size >= sizeof(*ei)) {
893 			ei = btrfs_item_ptr(leaf, path->slots[0],
894 					    struct btrfs_extent_item);
895 			num_refs = btrfs_extent_refs(leaf, ei);
896 			extent_flags = btrfs_extent_flags(leaf, ei);
897 		} else {
898 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
899 			struct btrfs_extent_item_v0 *ei0;
900 			BUG_ON(item_size != sizeof(*ei0));
901 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
902 					     struct btrfs_extent_item_v0);
903 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
904 			/* FIXME: this isn't correct for data */
905 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
906 #else
907 			BUG();
908 #endif
909 		}
910 		BUG_ON(num_refs == 0);
911 	} else {
912 		num_refs = 0;
913 		extent_flags = 0;
914 		ret = 0;
915 	}
916 
917 	if (!trans)
918 		goto out;
919 
920 	delayed_refs = &trans->transaction->delayed_refs;
921 	spin_lock(&delayed_refs->lock);
922 	head = btrfs_find_delayed_ref_head(trans, bytenr);
923 	if (head) {
924 		if (!mutex_trylock(&head->mutex)) {
925 			atomic_inc(&head->node.refs);
926 			spin_unlock(&delayed_refs->lock);
927 
928 			btrfs_release_path(path);
929 
930 			/*
931 			 * Mutex was contended, block until it's released and try
932 			 * again
933 			 */
934 			mutex_lock(&head->mutex);
935 			mutex_unlock(&head->mutex);
936 			btrfs_put_delayed_ref(&head->node);
937 			goto search_again;
938 		}
939 		spin_lock(&head->lock);
940 		if (head->extent_op && head->extent_op->update_flags)
941 			extent_flags |= head->extent_op->flags_to_set;
942 		else
943 			BUG_ON(num_refs == 0);
944 
945 		num_refs += head->node.ref_mod;
946 		spin_unlock(&head->lock);
947 		mutex_unlock(&head->mutex);
948 	}
949 	spin_unlock(&delayed_refs->lock);
950 out:
951 	WARN_ON(num_refs == 0);
952 	if (refs)
953 		*refs = num_refs;
954 	if (flags)
955 		*flags = extent_flags;
956 out_free:
957 	btrfs_free_path(path);
958 	return ret;
959 }
960 
961 /*
962  * Back reference rules.  Back refs have three main goals:
963  *
964  * 1) differentiate between all holders of references to an extent so that
965  *    when a reference is dropped we can make sure it was a valid reference
966  *    before freeing the extent.
967  *
968  * 2) Provide enough information to quickly find the holders of an extent
969  *    if we notice a given block is corrupted or bad.
970  *
971  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
972  *    maintenance.  This is actually the same as #2, but with a slightly
973  *    different use case.
974  *
975  * There are two kinds of back refs. The implicit back refs is optimized
976  * for pointers in non-shared tree blocks. For a given pointer in a block,
977  * back refs of this kind provide information about the block's owner tree
978  * and the pointer's key. These information allow us to find the block by
979  * b-tree searching. The full back refs is for pointers in tree blocks not
980  * referenced by their owner trees. The location of tree block is recorded
981  * in the back refs. Actually the full back refs is generic, and can be
982  * used in all cases the implicit back refs is used. The major shortcoming
983  * of the full back refs is its overhead. Every time a tree block gets
984  * COWed, we have to update back refs entry for all pointers in it.
985  *
986  * For a newly allocated tree block, we use implicit back refs for
987  * pointers in it. This means most tree related operations only involve
988  * implicit back refs. For a tree block created in old transaction, the
989  * only way to drop a reference to it is COW it. So we can detect the
990  * event that tree block loses its owner tree's reference and do the
991  * back refs conversion.
992  *
993  * When a tree block is COWed through a tree, there are four cases:
994  *
995  * The reference count of the block is one and the tree is the block's
996  * owner tree. Nothing to do in this case.
997  *
998  * The reference count of the block is one and the tree is not the
999  * block's owner tree. In this case, full back refs is used for pointers
1000  * in the block. Remove these full back refs, add implicit back refs for
1001  * every pointers in the new block.
1002  *
1003  * The reference count of the block is greater than one and the tree is
1004  * the block's owner tree. In this case, implicit back refs is used for
1005  * pointers in the block. Add full back refs for every pointers in the
1006  * block, increase lower level extents' reference counts. The original
1007  * implicit back refs are entailed to the new block.
1008  *
1009  * The reference count of the block is greater than one and the tree is
1010  * not the block's owner tree. Add implicit back refs for every pointer in
1011  * the new block, increase lower level extents' reference count.
1012  *
1013  * Back Reference Key composing:
1014  *
1015  * The key objectid corresponds to the first byte in the extent,
1016  * The key type is used to differentiate between types of back refs.
1017  * There are different meanings of the key offset for different types
1018  * of back refs.
1019  *
1020  * File extents can be referenced by:
1021  *
1022  * - multiple snapshots, subvolumes, or different generations in one subvol
1023  * - different files inside a single subvolume
1024  * - different offsets inside a file (bookend extents in file.c)
1025  *
1026  * The extent ref structure for the implicit back refs has fields for:
1027  *
1028  * - Objectid of the subvolume root
1029  * - objectid of the file holding the reference
1030  * - original offset in the file
1031  * - how many bookend extents
1032  *
1033  * The key offset for the implicit back refs is hash of the first
1034  * three fields.
1035  *
1036  * The extent ref structure for the full back refs has field for:
1037  *
1038  * - number of pointers in the tree leaf
1039  *
1040  * The key offset for the implicit back refs is the first byte of
1041  * the tree leaf
1042  *
1043  * When a file extent is allocated, The implicit back refs is used.
1044  * the fields are filled in:
1045  *
1046  *     (root_key.objectid, inode objectid, offset in file, 1)
1047  *
1048  * When a file extent is removed file truncation, we find the
1049  * corresponding implicit back refs and check the following fields:
1050  *
1051  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1052  *
1053  * Btree extents can be referenced by:
1054  *
1055  * - Different subvolumes
1056  *
1057  * Both the implicit back refs and the full back refs for tree blocks
1058  * only consist of key. The key offset for the implicit back refs is
1059  * objectid of block's owner tree. The key offset for the full back refs
1060  * is the first byte of parent block.
1061  *
1062  * When implicit back refs is used, information about the lowest key and
1063  * level of the tree block are required. These information are stored in
1064  * tree block info structure.
1065  */
1066 
1067 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1068 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1069 				  struct btrfs_root *root,
1070 				  struct btrfs_path *path,
1071 				  u64 owner, u32 extra_size)
1072 {
1073 	struct btrfs_extent_item *item;
1074 	struct btrfs_extent_item_v0 *ei0;
1075 	struct btrfs_extent_ref_v0 *ref0;
1076 	struct btrfs_tree_block_info *bi;
1077 	struct extent_buffer *leaf;
1078 	struct btrfs_key key;
1079 	struct btrfs_key found_key;
1080 	u32 new_size = sizeof(*item);
1081 	u64 refs;
1082 	int ret;
1083 
1084 	leaf = path->nodes[0];
1085 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1086 
1087 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1088 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1089 			     struct btrfs_extent_item_v0);
1090 	refs = btrfs_extent_refs_v0(leaf, ei0);
1091 
1092 	if (owner == (u64)-1) {
1093 		while (1) {
1094 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 				ret = btrfs_next_leaf(root, path);
1096 				if (ret < 0)
1097 					return ret;
1098 				BUG_ON(ret > 0); /* Corruption */
1099 				leaf = path->nodes[0];
1100 			}
1101 			btrfs_item_key_to_cpu(leaf, &found_key,
1102 					      path->slots[0]);
1103 			BUG_ON(key.objectid != found_key.objectid);
1104 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1105 				path->slots[0]++;
1106 				continue;
1107 			}
1108 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1109 					      struct btrfs_extent_ref_v0);
1110 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1111 			break;
1112 		}
1113 	}
1114 	btrfs_release_path(path);
1115 
1116 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1117 		new_size += sizeof(*bi);
1118 
1119 	new_size -= sizeof(*ei0);
1120 	ret = btrfs_search_slot(trans, root, &key, path,
1121 				new_size + extra_size, 1);
1122 	if (ret < 0)
1123 		return ret;
1124 	BUG_ON(ret); /* Corruption */
1125 
1126 	btrfs_extend_item(root, path, new_size);
1127 
1128 	leaf = path->nodes[0];
1129 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1130 	btrfs_set_extent_refs(leaf, item, refs);
1131 	/* FIXME: get real generation */
1132 	btrfs_set_extent_generation(leaf, item, 0);
1133 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1134 		btrfs_set_extent_flags(leaf, item,
1135 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1136 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1137 		bi = (struct btrfs_tree_block_info *)(item + 1);
1138 		/* FIXME: get first key of the block */
1139 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1140 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1141 	} else {
1142 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1143 	}
1144 	btrfs_mark_buffer_dirty(leaf);
1145 	return 0;
1146 }
1147 #endif
1148 
1149 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1150 {
1151 	u32 high_crc = ~(u32)0;
1152 	u32 low_crc = ~(u32)0;
1153 	__le64 lenum;
1154 
1155 	lenum = cpu_to_le64(root_objectid);
1156 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1157 	lenum = cpu_to_le64(owner);
1158 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1159 	lenum = cpu_to_le64(offset);
1160 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1161 
1162 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1163 }
1164 
1165 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1166 				     struct btrfs_extent_data_ref *ref)
1167 {
1168 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1169 				    btrfs_extent_data_ref_objectid(leaf, ref),
1170 				    btrfs_extent_data_ref_offset(leaf, ref));
1171 }
1172 
1173 static int match_extent_data_ref(struct extent_buffer *leaf,
1174 				 struct btrfs_extent_data_ref *ref,
1175 				 u64 root_objectid, u64 owner, u64 offset)
1176 {
1177 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1178 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1179 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1180 		return 0;
1181 	return 1;
1182 }
1183 
1184 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1185 					   struct btrfs_root *root,
1186 					   struct btrfs_path *path,
1187 					   u64 bytenr, u64 parent,
1188 					   u64 root_objectid,
1189 					   u64 owner, u64 offset)
1190 {
1191 	struct btrfs_key key;
1192 	struct btrfs_extent_data_ref *ref;
1193 	struct extent_buffer *leaf;
1194 	u32 nritems;
1195 	int ret;
1196 	int recow;
1197 	int err = -ENOENT;
1198 
1199 	key.objectid = bytenr;
1200 	if (parent) {
1201 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1202 		key.offset = parent;
1203 	} else {
1204 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1205 		key.offset = hash_extent_data_ref(root_objectid,
1206 						  owner, offset);
1207 	}
1208 again:
1209 	recow = 0;
1210 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1211 	if (ret < 0) {
1212 		err = ret;
1213 		goto fail;
1214 	}
1215 
1216 	if (parent) {
1217 		if (!ret)
1218 			return 0;
1219 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1221 		btrfs_release_path(path);
1222 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1223 		if (ret < 0) {
1224 			err = ret;
1225 			goto fail;
1226 		}
1227 		if (!ret)
1228 			return 0;
1229 #endif
1230 		goto fail;
1231 	}
1232 
1233 	leaf = path->nodes[0];
1234 	nritems = btrfs_header_nritems(leaf);
1235 	while (1) {
1236 		if (path->slots[0] >= nritems) {
1237 			ret = btrfs_next_leaf(root, path);
1238 			if (ret < 0)
1239 				err = ret;
1240 			if (ret)
1241 				goto fail;
1242 
1243 			leaf = path->nodes[0];
1244 			nritems = btrfs_header_nritems(leaf);
1245 			recow = 1;
1246 		}
1247 
1248 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249 		if (key.objectid != bytenr ||
1250 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1251 			goto fail;
1252 
1253 		ref = btrfs_item_ptr(leaf, path->slots[0],
1254 				     struct btrfs_extent_data_ref);
1255 
1256 		if (match_extent_data_ref(leaf, ref, root_objectid,
1257 					  owner, offset)) {
1258 			if (recow) {
1259 				btrfs_release_path(path);
1260 				goto again;
1261 			}
1262 			err = 0;
1263 			break;
1264 		}
1265 		path->slots[0]++;
1266 	}
1267 fail:
1268 	return err;
1269 }
1270 
1271 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1272 					   struct btrfs_root *root,
1273 					   struct btrfs_path *path,
1274 					   u64 bytenr, u64 parent,
1275 					   u64 root_objectid, u64 owner,
1276 					   u64 offset, int refs_to_add)
1277 {
1278 	struct btrfs_key key;
1279 	struct extent_buffer *leaf;
1280 	u32 size;
1281 	u32 num_refs;
1282 	int ret;
1283 
1284 	key.objectid = bytenr;
1285 	if (parent) {
1286 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1287 		key.offset = parent;
1288 		size = sizeof(struct btrfs_shared_data_ref);
1289 	} else {
1290 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1291 		key.offset = hash_extent_data_ref(root_objectid,
1292 						  owner, offset);
1293 		size = sizeof(struct btrfs_extent_data_ref);
1294 	}
1295 
1296 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1297 	if (ret && ret != -EEXIST)
1298 		goto fail;
1299 
1300 	leaf = path->nodes[0];
1301 	if (parent) {
1302 		struct btrfs_shared_data_ref *ref;
1303 		ref = btrfs_item_ptr(leaf, path->slots[0],
1304 				     struct btrfs_shared_data_ref);
1305 		if (ret == 0) {
1306 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1307 		} else {
1308 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1309 			num_refs += refs_to_add;
1310 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1311 		}
1312 	} else {
1313 		struct btrfs_extent_data_ref *ref;
1314 		while (ret == -EEXIST) {
1315 			ref = btrfs_item_ptr(leaf, path->slots[0],
1316 					     struct btrfs_extent_data_ref);
1317 			if (match_extent_data_ref(leaf, ref, root_objectid,
1318 						  owner, offset))
1319 				break;
1320 			btrfs_release_path(path);
1321 			key.offset++;
1322 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1323 						      size);
1324 			if (ret && ret != -EEXIST)
1325 				goto fail;
1326 
1327 			leaf = path->nodes[0];
1328 		}
1329 		ref = btrfs_item_ptr(leaf, path->slots[0],
1330 				     struct btrfs_extent_data_ref);
1331 		if (ret == 0) {
1332 			btrfs_set_extent_data_ref_root(leaf, ref,
1333 						       root_objectid);
1334 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1335 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1336 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1337 		} else {
1338 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1339 			num_refs += refs_to_add;
1340 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1341 		}
1342 	}
1343 	btrfs_mark_buffer_dirty(leaf);
1344 	ret = 0;
1345 fail:
1346 	btrfs_release_path(path);
1347 	return ret;
1348 }
1349 
1350 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1351 					   struct btrfs_root *root,
1352 					   struct btrfs_path *path,
1353 					   int refs_to_drop, int *last_ref)
1354 {
1355 	struct btrfs_key key;
1356 	struct btrfs_extent_data_ref *ref1 = NULL;
1357 	struct btrfs_shared_data_ref *ref2 = NULL;
1358 	struct extent_buffer *leaf;
1359 	u32 num_refs = 0;
1360 	int ret = 0;
1361 
1362 	leaf = path->nodes[0];
1363 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1364 
1365 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1366 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1367 				      struct btrfs_extent_data_ref);
1368 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1369 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1370 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1371 				      struct btrfs_shared_data_ref);
1372 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1375 		struct btrfs_extent_ref_v0 *ref0;
1376 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 				      struct btrfs_extent_ref_v0);
1378 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1379 #endif
1380 	} else {
1381 		BUG();
1382 	}
1383 
1384 	BUG_ON(num_refs < refs_to_drop);
1385 	num_refs -= refs_to_drop;
1386 
1387 	if (num_refs == 0) {
1388 		ret = btrfs_del_item(trans, root, path);
1389 		*last_ref = 1;
1390 	} else {
1391 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1392 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1393 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1394 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1395 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1396 		else {
1397 			struct btrfs_extent_ref_v0 *ref0;
1398 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1399 					struct btrfs_extent_ref_v0);
1400 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1401 		}
1402 #endif
1403 		btrfs_mark_buffer_dirty(leaf);
1404 	}
1405 	return ret;
1406 }
1407 
1408 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1409 					  struct btrfs_extent_inline_ref *iref)
1410 {
1411 	struct btrfs_key key;
1412 	struct extent_buffer *leaf;
1413 	struct btrfs_extent_data_ref *ref1;
1414 	struct btrfs_shared_data_ref *ref2;
1415 	u32 num_refs = 0;
1416 
1417 	leaf = path->nodes[0];
1418 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1419 	if (iref) {
1420 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1421 		    BTRFS_EXTENT_DATA_REF_KEY) {
1422 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1423 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1424 		} else {
1425 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1426 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1427 		}
1428 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1429 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1430 				      struct btrfs_extent_data_ref);
1431 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1432 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1433 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1434 				      struct btrfs_shared_data_ref);
1435 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1436 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1437 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1438 		struct btrfs_extent_ref_v0 *ref0;
1439 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1440 				      struct btrfs_extent_ref_v0);
1441 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1442 #endif
1443 	} else {
1444 		WARN_ON(1);
1445 	}
1446 	return num_refs;
1447 }
1448 
1449 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1450 					  struct btrfs_root *root,
1451 					  struct btrfs_path *path,
1452 					  u64 bytenr, u64 parent,
1453 					  u64 root_objectid)
1454 {
1455 	struct btrfs_key key;
1456 	int ret;
1457 
1458 	key.objectid = bytenr;
1459 	if (parent) {
1460 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1461 		key.offset = parent;
1462 	} else {
1463 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1464 		key.offset = root_objectid;
1465 	}
1466 
1467 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1468 	if (ret > 0)
1469 		ret = -ENOENT;
1470 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1471 	if (ret == -ENOENT && parent) {
1472 		btrfs_release_path(path);
1473 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1474 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1475 		if (ret > 0)
1476 			ret = -ENOENT;
1477 	}
1478 #endif
1479 	return ret;
1480 }
1481 
1482 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1483 					  struct btrfs_root *root,
1484 					  struct btrfs_path *path,
1485 					  u64 bytenr, u64 parent,
1486 					  u64 root_objectid)
1487 {
1488 	struct btrfs_key key;
1489 	int ret;
1490 
1491 	key.objectid = bytenr;
1492 	if (parent) {
1493 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1494 		key.offset = parent;
1495 	} else {
1496 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1497 		key.offset = root_objectid;
1498 	}
1499 
1500 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1501 	btrfs_release_path(path);
1502 	return ret;
1503 }
1504 
1505 static inline int extent_ref_type(u64 parent, u64 owner)
1506 {
1507 	int type;
1508 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 		if (parent > 0)
1510 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1511 		else
1512 			type = BTRFS_TREE_BLOCK_REF_KEY;
1513 	} else {
1514 		if (parent > 0)
1515 			type = BTRFS_SHARED_DATA_REF_KEY;
1516 		else
1517 			type = BTRFS_EXTENT_DATA_REF_KEY;
1518 	}
1519 	return type;
1520 }
1521 
1522 static int find_next_key(struct btrfs_path *path, int level,
1523 			 struct btrfs_key *key)
1524 
1525 {
1526 	for (; level < BTRFS_MAX_LEVEL; level++) {
1527 		if (!path->nodes[level])
1528 			break;
1529 		if (path->slots[level] + 1 >=
1530 		    btrfs_header_nritems(path->nodes[level]))
1531 			continue;
1532 		if (level == 0)
1533 			btrfs_item_key_to_cpu(path->nodes[level], key,
1534 					      path->slots[level] + 1);
1535 		else
1536 			btrfs_node_key_to_cpu(path->nodes[level], key,
1537 					      path->slots[level] + 1);
1538 		return 0;
1539 	}
1540 	return 1;
1541 }
1542 
1543 /*
1544  * look for inline back ref. if back ref is found, *ref_ret is set
1545  * to the address of inline back ref, and 0 is returned.
1546  *
1547  * if back ref isn't found, *ref_ret is set to the address where it
1548  * should be inserted, and -ENOENT is returned.
1549  *
1550  * if insert is true and there are too many inline back refs, the path
1551  * points to the extent item, and -EAGAIN is returned.
1552  *
1553  * NOTE: inline back refs are ordered in the same way that back ref
1554  *	 items in the tree are ordered.
1555  */
1556 static noinline_for_stack
1557 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1558 				 struct btrfs_root *root,
1559 				 struct btrfs_path *path,
1560 				 struct btrfs_extent_inline_ref **ref_ret,
1561 				 u64 bytenr, u64 num_bytes,
1562 				 u64 parent, u64 root_objectid,
1563 				 u64 owner, u64 offset, int insert)
1564 {
1565 	struct btrfs_key key;
1566 	struct extent_buffer *leaf;
1567 	struct btrfs_extent_item *ei;
1568 	struct btrfs_extent_inline_ref *iref;
1569 	u64 flags;
1570 	u64 item_size;
1571 	unsigned long ptr;
1572 	unsigned long end;
1573 	int extra_size;
1574 	int type;
1575 	int want;
1576 	int ret;
1577 	int err = 0;
1578 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1579 						 SKINNY_METADATA);
1580 
1581 	key.objectid = bytenr;
1582 	key.type = BTRFS_EXTENT_ITEM_KEY;
1583 	key.offset = num_bytes;
1584 
1585 	want = extent_ref_type(parent, owner);
1586 	if (insert) {
1587 		extra_size = btrfs_extent_inline_ref_size(want);
1588 		path->keep_locks = 1;
1589 	} else
1590 		extra_size = -1;
1591 
1592 	/*
1593 	 * Owner is our parent level, so we can just add one to get the level
1594 	 * for the block we are interested in.
1595 	 */
1596 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1597 		key.type = BTRFS_METADATA_ITEM_KEY;
1598 		key.offset = owner;
1599 	}
1600 
1601 again:
1602 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1603 	if (ret < 0) {
1604 		err = ret;
1605 		goto out;
1606 	}
1607 
1608 	/*
1609 	 * We may be a newly converted file system which still has the old fat
1610 	 * extent entries for metadata, so try and see if we have one of those.
1611 	 */
1612 	if (ret > 0 && skinny_metadata) {
1613 		skinny_metadata = false;
1614 		if (path->slots[0]) {
1615 			path->slots[0]--;
1616 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1617 					      path->slots[0]);
1618 			if (key.objectid == bytenr &&
1619 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1620 			    key.offset == num_bytes)
1621 				ret = 0;
1622 		}
1623 		if (ret) {
1624 			key.objectid = bytenr;
1625 			key.type = BTRFS_EXTENT_ITEM_KEY;
1626 			key.offset = num_bytes;
1627 			btrfs_release_path(path);
1628 			goto again;
1629 		}
1630 	}
1631 
1632 	if (ret && !insert) {
1633 		err = -ENOENT;
1634 		goto out;
1635 	} else if (WARN_ON(ret)) {
1636 		err = -EIO;
1637 		goto out;
1638 	}
1639 
1640 	leaf = path->nodes[0];
1641 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1643 	if (item_size < sizeof(*ei)) {
1644 		if (!insert) {
1645 			err = -ENOENT;
1646 			goto out;
1647 		}
1648 		ret = convert_extent_item_v0(trans, root, path, owner,
1649 					     extra_size);
1650 		if (ret < 0) {
1651 			err = ret;
1652 			goto out;
1653 		}
1654 		leaf = path->nodes[0];
1655 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1656 	}
1657 #endif
1658 	BUG_ON(item_size < sizeof(*ei));
1659 
1660 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1661 	flags = btrfs_extent_flags(leaf, ei);
1662 
1663 	ptr = (unsigned long)(ei + 1);
1664 	end = (unsigned long)ei + item_size;
1665 
1666 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1667 		ptr += sizeof(struct btrfs_tree_block_info);
1668 		BUG_ON(ptr > end);
1669 	}
1670 
1671 	err = -ENOENT;
1672 	while (1) {
1673 		if (ptr >= end) {
1674 			WARN_ON(ptr > end);
1675 			break;
1676 		}
1677 		iref = (struct btrfs_extent_inline_ref *)ptr;
1678 		type = btrfs_extent_inline_ref_type(leaf, iref);
1679 		if (want < type)
1680 			break;
1681 		if (want > type) {
1682 			ptr += btrfs_extent_inline_ref_size(type);
1683 			continue;
1684 		}
1685 
1686 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1687 			struct btrfs_extent_data_ref *dref;
1688 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1689 			if (match_extent_data_ref(leaf, dref, root_objectid,
1690 						  owner, offset)) {
1691 				err = 0;
1692 				break;
1693 			}
1694 			if (hash_extent_data_ref_item(leaf, dref) <
1695 			    hash_extent_data_ref(root_objectid, owner, offset))
1696 				break;
1697 		} else {
1698 			u64 ref_offset;
1699 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1700 			if (parent > 0) {
1701 				if (parent == ref_offset) {
1702 					err = 0;
1703 					break;
1704 				}
1705 				if (ref_offset < parent)
1706 					break;
1707 			} else {
1708 				if (root_objectid == ref_offset) {
1709 					err = 0;
1710 					break;
1711 				}
1712 				if (ref_offset < root_objectid)
1713 					break;
1714 			}
1715 		}
1716 		ptr += btrfs_extent_inline_ref_size(type);
1717 	}
1718 	if (err == -ENOENT && insert) {
1719 		if (item_size + extra_size >=
1720 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1721 			err = -EAGAIN;
1722 			goto out;
1723 		}
1724 		/*
1725 		 * To add new inline back ref, we have to make sure
1726 		 * there is no corresponding back ref item.
1727 		 * For simplicity, we just do not add new inline back
1728 		 * ref if there is any kind of item for this block
1729 		 */
1730 		if (find_next_key(path, 0, &key) == 0 &&
1731 		    key.objectid == bytenr &&
1732 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1733 			err = -EAGAIN;
1734 			goto out;
1735 		}
1736 	}
1737 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1738 out:
1739 	if (insert) {
1740 		path->keep_locks = 0;
1741 		btrfs_unlock_up_safe(path, 1);
1742 	}
1743 	return err;
1744 }
1745 
1746 /*
1747  * helper to add new inline back ref
1748  */
1749 static noinline_for_stack
1750 void setup_inline_extent_backref(struct btrfs_root *root,
1751 				 struct btrfs_path *path,
1752 				 struct btrfs_extent_inline_ref *iref,
1753 				 u64 parent, u64 root_objectid,
1754 				 u64 owner, u64 offset, int refs_to_add,
1755 				 struct btrfs_delayed_extent_op *extent_op)
1756 {
1757 	struct extent_buffer *leaf;
1758 	struct btrfs_extent_item *ei;
1759 	unsigned long ptr;
1760 	unsigned long end;
1761 	unsigned long item_offset;
1762 	u64 refs;
1763 	int size;
1764 	int type;
1765 
1766 	leaf = path->nodes[0];
1767 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1768 	item_offset = (unsigned long)iref - (unsigned long)ei;
1769 
1770 	type = extent_ref_type(parent, owner);
1771 	size = btrfs_extent_inline_ref_size(type);
1772 
1773 	btrfs_extend_item(root, path, size);
1774 
1775 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 	refs = btrfs_extent_refs(leaf, ei);
1777 	refs += refs_to_add;
1778 	btrfs_set_extent_refs(leaf, ei, refs);
1779 	if (extent_op)
1780 		__run_delayed_extent_op(extent_op, leaf, ei);
1781 
1782 	ptr = (unsigned long)ei + item_offset;
1783 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1784 	if (ptr < end - size)
1785 		memmove_extent_buffer(leaf, ptr + size, ptr,
1786 				      end - size - ptr);
1787 
1788 	iref = (struct btrfs_extent_inline_ref *)ptr;
1789 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1790 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 		struct btrfs_extent_data_ref *dref;
1792 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1794 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1795 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1796 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1797 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1798 		struct btrfs_shared_data_ref *sref;
1799 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1800 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1801 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1802 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1803 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1804 	} else {
1805 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1806 	}
1807 	btrfs_mark_buffer_dirty(leaf);
1808 }
1809 
1810 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1811 				 struct btrfs_root *root,
1812 				 struct btrfs_path *path,
1813 				 struct btrfs_extent_inline_ref **ref_ret,
1814 				 u64 bytenr, u64 num_bytes, u64 parent,
1815 				 u64 root_objectid, u64 owner, u64 offset)
1816 {
1817 	int ret;
1818 
1819 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1820 					   bytenr, num_bytes, parent,
1821 					   root_objectid, owner, offset, 0);
1822 	if (ret != -ENOENT)
1823 		return ret;
1824 
1825 	btrfs_release_path(path);
1826 	*ref_ret = NULL;
1827 
1828 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1829 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1830 					    root_objectid);
1831 	} else {
1832 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1833 					     root_objectid, owner, offset);
1834 	}
1835 	return ret;
1836 }
1837 
1838 /*
1839  * helper to update/remove inline back ref
1840  */
1841 static noinline_for_stack
1842 void update_inline_extent_backref(struct btrfs_root *root,
1843 				  struct btrfs_path *path,
1844 				  struct btrfs_extent_inline_ref *iref,
1845 				  int refs_to_mod,
1846 				  struct btrfs_delayed_extent_op *extent_op,
1847 				  int *last_ref)
1848 {
1849 	struct extent_buffer *leaf;
1850 	struct btrfs_extent_item *ei;
1851 	struct btrfs_extent_data_ref *dref = NULL;
1852 	struct btrfs_shared_data_ref *sref = NULL;
1853 	unsigned long ptr;
1854 	unsigned long end;
1855 	u32 item_size;
1856 	int size;
1857 	int type;
1858 	u64 refs;
1859 
1860 	leaf = path->nodes[0];
1861 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1862 	refs = btrfs_extent_refs(leaf, ei);
1863 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1864 	refs += refs_to_mod;
1865 	btrfs_set_extent_refs(leaf, ei, refs);
1866 	if (extent_op)
1867 		__run_delayed_extent_op(extent_op, leaf, ei);
1868 
1869 	type = btrfs_extent_inline_ref_type(leaf, iref);
1870 
1871 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1872 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1873 		refs = btrfs_extent_data_ref_count(leaf, dref);
1874 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1875 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1876 		refs = btrfs_shared_data_ref_count(leaf, sref);
1877 	} else {
1878 		refs = 1;
1879 		BUG_ON(refs_to_mod != -1);
1880 	}
1881 
1882 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1883 	refs += refs_to_mod;
1884 
1885 	if (refs > 0) {
1886 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1887 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1888 		else
1889 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1890 	} else {
1891 		*last_ref = 1;
1892 		size =  btrfs_extent_inline_ref_size(type);
1893 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1894 		ptr = (unsigned long)iref;
1895 		end = (unsigned long)ei + item_size;
1896 		if (ptr + size < end)
1897 			memmove_extent_buffer(leaf, ptr, ptr + size,
1898 					      end - ptr - size);
1899 		item_size -= size;
1900 		btrfs_truncate_item(root, path, item_size, 1);
1901 	}
1902 	btrfs_mark_buffer_dirty(leaf);
1903 }
1904 
1905 static noinline_for_stack
1906 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1907 				 struct btrfs_root *root,
1908 				 struct btrfs_path *path,
1909 				 u64 bytenr, u64 num_bytes, u64 parent,
1910 				 u64 root_objectid, u64 owner,
1911 				 u64 offset, int refs_to_add,
1912 				 struct btrfs_delayed_extent_op *extent_op)
1913 {
1914 	struct btrfs_extent_inline_ref *iref;
1915 	int ret;
1916 
1917 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1918 					   bytenr, num_bytes, parent,
1919 					   root_objectid, owner, offset, 1);
1920 	if (ret == 0) {
1921 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1922 		update_inline_extent_backref(root, path, iref,
1923 					     refs_to_add, extent_op, NULL);
1924 	} else if (ret == -ENOENT) {
1925 		setup_inline_extent_backref(root, path, iref, parent,
1926 					    root_objectid, owner, offset,
1927 					    refs_to_add, extent_op);
1928 		ret = 0;
1929 	}
1930 	return ret;
1931 }
1932 
1933 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1934 				 struct btrfs_root *root,
1935 				 struct btrfs_path *path,
1936 				 u64 bytenr, u64 parent, u64 root_objectid,
1937 				 u64 owner, u64 offset, int refs_to_add)
1938 {
1939 	int ret;
1940 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1941 		BUG_ON(refs_to_add != 1);
1942 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1943 					    parent, root_objectid);
1944 	} else {
1945 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1946 					     parent, root_objectid,
1947 					     owner, offset, refs_to_add);
1948 	}
1949 	return ret;
1950 }
1951 
1952 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1953 				 struct btrfs_root *root,
1954 				 struct btrfs_path *path,
1955 				 struct btrfs_extent_inline_ref *iref,
1956 				 int refs_to_drop, int is_data, int *last_ref)
1957 {
1958 	int ret = 0;
1959 
1960 	BUG_ON(!is_data && refs_to_drop != 1);
1961 	if (iref) {
1962 		update_inline_extent_backref(root, path, iref,
1963 					     -refs_to_drop, NULL, last_ref);
1964 	} else if (is_data) {
1965 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1966 					     last_ref);
1967 	} else {
1968 		*last_ref = 1;
1969 		ret = btrfs_del_item(trans, root, path);
1970 	}
1971 	return ret;
1972 }
1973 
1974 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1975 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1976 			       u64 *discarded_bytes)
1977 {
1978 	int j, ret = 0;
1979 	u64 bytes_left, end;
1980 	u64 aligned_start = ALIGN(start, 1 << 9);
1981 
1982 	if (WARN_ON(start != aligned_start)) {
1983 		len -= aligned_start - start;
1984 		len = round_down(len, 1 << 9);
1985 		start = aligned_start;
1986 	}
1987 
1988 	*discarded_bytes = 0;
1989 
1990 	if (!len)
1991 		return 0;
1992 
1993 	end = start + len;
1994 	bytes_left = len;
1995 
1996 	/* Skip any superblocks on this device. */
1997 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1998 		u64 sb_start = btrfs_sb_offset(j);
1999 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2000 		u64 size = sb_start - start;
2001 
2002 		if (!in_range(sb_start, start, bytes_left) &&
2003 		    !in_range(sb_end, start, bytes_left) &&
2004 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2005 			continue;
2006 
2007 		/*
2008 		 * Superblock spans beginning of range.  Adjust start and
2009 		 * try again.
2010 		 */
2011 		if (sb_start <= start) {
2012 			start += sb_end - start;
2013 			if (start > end) {
2014 				bytes_left = 0;
2015 				break;
2016 			}
2017 			bytes_left = end - start;
2018 			continue;
2019 		}
2020 
2021 		if (size) {
2022 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2023 						   GFP_NOFS, 0);
2024 			if (!ret)
2025 				*discarded_bytes += size;
2026 			else if (ret != -EOPNOTSUPP)
2027 				return ret;
2028 		}
2029 
2030 		start = sb_end;
2031 		if (start > end) {
2032 			bytes_left = 0;
2033 			break;
2034 		}
2035 		bytes_left = end - start;
2036 	}
2037 
2038 	if (bytes_left) {
2039 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2040 					   GFP_NOFS, 0);
2041 		if (!ret)
2042 			*discarded_bytes += bytes_left;
2043 	}
2044 	return ret;
2045 }
2046 
2047 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2048 			 u64 num_bytes, u64 *actual_bytes)
2049 {
2050 	int ret;
2051 	u64 discarded_bytes = 0;
2052 	struct btrfs_bio *bbio = NULL;
2053 
2054 
2055 	/*
2056 	 * Avoid races with device replace and make sure our bbio has devices
2057 	 * associated to its stripes that don't go away while we are discarding.
2058 	 */
2059 	btrfs_bio_counter_inc_blocked(root->fs_info);
2060 	/* Tell the block device(s) that the sectors can be discarded */
2061 	ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2062 			      bytenr, &num_bytes, &bbio, 0);
2063 	/* Error condition is -ENOMEM */
2064 	if (!ret) {
2065 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2066 		int i;
2067 
2068 
2069 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2070 			u64 bytes;
2071 			if (!stripe->dev->can_discard)
2072 				continue;
2073 
2074 			ret = btrfs_issue_discard(stripe->dev->bdev,
2075 						  stripe->physical,
2076 						  stripe->length,
2077 						  &bytes);
2078 			if (!ret)
2079 				discarded_bytes += bytes;
2080 			else if (ret != -EOPNOTSUPP)
2081 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2082 
2083 			/*
2084 			 * Just in case we get back EOPNOTSUPP for some reason,
2085 			 * just ignore the return value so we don't screw up
2086 			 * people calling discard_extent.
2087 			 */
2088 			ret = 0;
2089 		}
2090 		btrfs_put_bbio(bbio);
2091 	}
2092 	btrfs_bio_counter_dec(root->fs_info);
2093 
2094 	if (actual_bytes)
2095 		*actual_bytes = discarded_bytes;
2096 
2097 
2098 	if (ret == -EOPNOTSUPP)
2099 		ret = 0;
2100 	return ret;
2101 }
2102 
2103 /* Can return -ENOMEM */
2104 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105 			 struct btrfs_root *root,
2106 			 u64 bytenr, u64 num_bytes, u64 parent,
2107 			 u64 root_objectid, u64 owner, u64 offset)
2108 {
2109 	int ret;
2110 	struct btrfs_fs_info *fs_info = root->fs_info;
2111 
2112 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2113 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2114 
2115 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2116 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2117 					num_bytes,
2118 					parent, root_objectid, (int)owner,
2119 					BTRFS_ADD_DELAYED_REF, NULL);
2120 	} else {
2121 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2122 					num_bytes, parent, root_objectid,
2123 					owner, offset, 0,
2124 					BTRFS_ADD_DELAYED_REF, NULL);
2125 	}
2126 	return ret;
2127 }
2128 
2129 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2130 				  struct btrfs_root *root,
2131 				  struct btrfs_delayed_ref_node *node,
2132 				  u64 parent, u64 root_objectid,
2133 				  u64 owner, u64 offset, int refs_to_add,
2134 				  struct btrfs_delayed_extent_op *extent_op)
2135 {
2136 	struct btrfs_fs_info *fs_info = root->fs_info;
2137 	struct btrfs_path *path;
2138 	struct extent_buffer *leaf;
2139 	struct btrfs_extent_item *item;
2140 	struct btrfs_key key;
2141 	u64 bytenr = node->bytenr;
2142 	u64 num_bytes = node->num_bytes;
2143 	u64 refs;
2144 	int ret;
2145 
2146 	path = btrfs_alloc_path();
2147 	if (!path)
2148 		return -ENOMEM;
2149 
2150 	path->reada = READA_FORWARD;
2151 	path->leave_spinning = 1;
2152 	/* this will setup the path even if it fails to insert the back ref */
2153 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2154 					   bytenr, num_bytes, parent,
2155 					   root_objectid, owner, offset,
2156 					   refs_to_add, extent_op);
2157 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2158 		goto out;
2159 
2160 	/*
2161 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2162 	 * inline extent ref, so just update the reference count and add a
2163 	 * normal backref.
2164 	 */
2165 	leaf = path->nodes[0];
2166 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2167 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2168 	refs = btrfs_extent_refs(leaf, item);
2169 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2170 	if (extent_op)
2171 		__run_delayed_extent_op(extent_op, leaf, item);
2172 
2173 	btrfs_mark_buffer_dirty(leaf);
2174 	btrfs_release_path(path);
2175 
2176 	path->reada = READA_FORWARD;
2177 	path->leave_spinning = 1;
2178 	/* now insert the actual backref */
2179 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2180 				    path, bytenr, parent, root_objectid,
2181 				    owner, offset, refs_to_add);
2182 	if (ret)
2183 		btrfs_abort_transaction(trans, ret);
2184 out:
2185 	btrfs_free_path(path);
2186 	return ret;
2187 }
2188 
2189 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2190 				struct btrfs_root *root,
2191 				struct btrfs_delayed_ref_node *node,
2192 				struct btrfs_delayed_extent_op *extent_op,
2193 				int insert_reserved)
2194 {
2195 	int ret = 0;
2196 	struct btrfs_delayed_data_ref *ref;
2197 	struct btrfs_key ins;
2198 	u64 parent = 0;
2199 	u64 ref_root = 0;
2200 	u64 flags = 0;
2201 
2202 	ins.objectid = node->bytenr;
2203 	ins.offset = node->num_bytes;
2204 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2205 
2206 	ref = btrfs_delayed_node_to_data_ref(node);
2207 	trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2208 
2209 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2210 		parent = ref->parent;
2211 	ref_root = ref->root;
2212 
2213 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2214 		if (extent_op)
2215 			flags |= extent_op->flags_to_set;
2216 		ret = alloc_reserved_file_extent(trans, root,
2217 						 parent, ref_root, flags,
2218 						 ref->objectid, ref->offset,
2219 						 &ins, node->ref_mod);
2220 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2221 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2222 					     ref_root, ref->objectid,
2223 					     ref->offset, node->ref_mod,
2224 					     extent_op);
2225 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2226 		ret = __btrfs_free_extent(trans, root, node, parent,
2227 					  ref_root, ref->objectid,
2228 					  ref->offset, node->ref_mod,
2229 					  extent_op);
2230 	} else {
2231 		BUG();
2232 	}
2233 	return ret;
2234 }
2235 
2236 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2237 				    struct extent_buffer *leaf,
2238 				    struct btrfs_extent_item *ei)
2239 {
2240 	u64 flags = btrfs_extent_flags(leaf, ei);
2241 	if (extent_op->update_flags) {
2242 		flags |= extent_op->flags_to_set;
2243 		btrfs_set_extent_flags(leaf, ei, flags);
2244 	}
2245 
2246 	if (extent_op->update_key) {
2247 		struct btrfs_tree_block_info *bi;
2248 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2249 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2250 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2251 	}
2252 }
2253 
2254 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2255 				 struct btrfs_root *root,
2256 				 struct btrfs_delayed_ref_node *node,
2257 				 struct btrfs_delayed_extent_op *extent_op)
2258 {
2259 	struct btrfs_key key;
2260 	struct btrfs_path *path;
2261 	struct btrfs_extent_item *ei;
2262 	struct extent_buffer *leaf;
2263 	u32 item_size;
2264 	int ret;
2265 	int err = 0;
2266 	int metadata = !extent_op->is_data;
2267 
2268 	if (trans->aborted)
2269 		return 0;
2270 
2271 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2272 		metadata = 0;
2273 
2274 	path = btrfs_alloc_path();
2275 	if (!path)
2276 		return -ENOMEM;
2277 
2278 	key.objectid = node->bytenr;
2279 
2280 	if (metadata) {
2281 		key.type = BTRFS_METADATA_ITEM_KEY;
2282 		key.offset = extent_op->level;
2283 	} else {
2284 		key.type = BTRFS_EXTENT_ITEM_KEY;
2285 		key.offset = node->num_bytes;
2286 	}
2287 
2288 again:
2289 	path->reada = READA_FORWARD;
2290 	path->leave_spinning = 1;
2291 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2292 				path, 0, 1);
2293 	if (ret < 0) {
2294 		err = ret;
2295 		goto out;
2296 	}
2297 	if (ret > 0) {
2298 		if (metadata) {
2299 			if (path->slots[0] > 0) {
2300 				path->slots[0]--;
2301 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2302 						      path->slots[0]);
2303 				if (key.objectid == node->bytenr &&
2304 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2305 				    key.offset == node->num_bytes)
2306 					ret = 0;
2307 			}
2308 			if (ret > 0) {
2309 				btrfs_release_path(path);
2310 				metadata = 0;
2311 
2312 				key.objectid = node->bytenr;
2313 				key.offset = node->num_bytes;
2314 				key.type = BTRFS_EXTENT_ITEM_KEY;
2315 				goto again;
2316 			}
2317 		} else {
2318 			err = -EIO;
2319 			goto out;
2320 		}
2321 	}
2322 
2323 	leaf = path->nodes[0];
2324 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2326 	if (item_size < sizeof(*ei)) {
2327 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2328 					     path, (u64)-1, 0);
2329 		if (ret < 0) {
2330 			err = ret;
2331 			goto out;
2332 		}
2333 		leaf = path->nodes[0];
2334 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 	}
2336 #endif
2337 	BUG_ON(item_size < sizeof(*ei));
2338 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2339 	__run_delayed_extent_op(extent_op, leaf, ei);
2340 
2341 	btrfs_mark_buffer_dirty(leaf);
2342 out:
2343 	btrfs_free_path(path);
2344 	return err;
2345 }
2346 
2347 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2348 				struct btrfs_root *root,
2349 				struct btrfs_delayed_ref_node *node,
2350 				struct btrfs_delayed_extent_op *extent_op,
2351 				int insert_reserved)
2352 {
2353 	int ret = 0;
2354 	struct btrfs_delayed_tree_ref *ref;
2355 	struct btrfs_key ins;
2356 	u64 parent = 0;
2357 	u64 ref_root = 0;
2358 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2359 						 SKINNY_METADATA);
2360 
2361 	ref = btrfs_delayed_node_to_tree_ref(node);
2362 	trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2363 
2364 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2365 		parent = ref->parent;
2366 	ref_root = ref->root;
2367 
2368 	ins.objectid = node->bytenr;
2369 	if (skinny_metadata) {
2370 		ins.offset = ref->level;
2371 		ins.type = BTRFS_METADATA_ITEM_KEY;
2372 	} else {
2373 		ins.offset = node->num_bytes;
2374 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2375 	}
2376 
2377 	BUG_ON(node->ref_mod != 1);
2378 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2379 		BUG_ON(!extent_op || !extent_op->update_flags);
2380 		ret = alloc_reserved_tree_block(trans, root,
2381 						parent, ref_root,
2382 						extent_op->flags_to_set,
2383 						&extent_op->key,
2384 						ref->level, &ins);
2385 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2386 		ret = __btrfs_inc_extent_ref(trans, root, node,
2387 					     parent, ref_root,
2388 					     ref->level, 0, 1,
2389 					     extent_op);
2390 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2391 		ret = __btrfs_free_extent(trans, root, node,
2392 					  parent, ref_root,
2393 					  ref->level, 0, 1, extent_op);
2394 	} else {
2395 		BUG();
2396 	}
2397 	return ret;
2398 }
2399 
2400 /* helper function to actually process a single delayed ref entry */
2401 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2402 			       struct btrfs_root *root,
2403 			       struct btrfs_delayed_ref_node *node,
2404 			       struct btrfs_delayed_extent_op *extent_op,
2405 			       int insert_reserved)
2406 {
2407 	int ret = 0;
2408 
2409 	if (trans->aborted) {
2410 		if (insert_reserved)
2411 			btrfs_pin_extent(root, node->bytenr,
2412 					 node->num_bytes, 1);
2413 		return 0;
2414 	}
2415 
2416 	if (btrfs_delayed_ref_is_head(node)) {
2417 		struct btrfs_delayed_ref_head *head;
2418 		/*
2419 		 * we've hit the end of the chain and we were supposed
2420 		 * to insert this extent into the tree.  But, it got
2421 		 * deleted before we ever needed to insert it, so all
2422 		 * we have to do is clean up the accounting
2423 		 */
2424 		BUG_ON(extent_op);
2425 		head = btrfs_delayed_node_to_head(node);
2426 		trace_run_delayed_ref_head(root->fs_info, node, head,
2427 					   node->action);
2428 
2429 		if (insert_reserved) {
2430 			btrfs_pin_extent(root, node->bytenr,
2431 					 node->num_bytes, 1);
2432 			if (head->is_data) {
2433 				ret = btrfs_del_csums(trans, root,
2434 						      node->bytenr,
2435 						      node->num_bytes);
2436 			}
2437 		}
2438 
2439 		/* Also free its reserved qgroup space */
2440 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2441 					      head->qgroup_ref_root,
2442 					      head->qgroup_reserved);
2443 		return ret;
2444 	}
2445 
2446 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2447 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2448 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2449 					   insert_reserved);
2450 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2451 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2452 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2453 					   insert_reserved);
2454 	else
2455 		BUG();
2456 	return ret;
2457 }
2458 
2459 static inline struct btrfs_delayed_ref_node *
2460 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2461 {
2462 	struct btrfs_delayed_ref_node *ref;
2463 
2464 	if (list_empty(&head->ref_list))
2465 		return NULL;
2466 
2467 	/*
2468 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2469 	 * This is to prevent a ref count from going down to zero, which deletes
2470 	 * the extent item from the extent tree, when there still are references
2471 	 * to add, which would fail because they would not find the extent item.
2472 	 */
2473 	list_for_each_entry(ref, &head->ref_list, list) {
2474 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2475 			return ref;
2476 	}
2477 
2478 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2479 			  list);
2480 }
2481 
2482 /*
2483  * Returns 0 on success or if called with an already aborted transaction.
2484  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2485  */
2486 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2487 					     struct btrfs_root *root,
2488 					     unsigned long nr)
2489 {
2490 	struct btrfs_delayed_ref_root *delayed_refs;
2491 	struct btrfs_delayed_ref_node *ref;
2492 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2493 	struct btrfs_delayed_extent_op *extent_op;
2494 	struct btrfs_fs_info *fs_info = root->fs_info;
2495 	ktime_t start = ktime_get();
2496 	int ret;
2497 	unsigned long count = 0;
2498 	unsigned long actual_count = 0;
2499 	int must_insert_reserved = 0;
2500 
2501 	delayed_refs = &trans->transaction->delayed_refs;
2502 	while (1) {
2503 		if (!locked_ref) {
2504 			if (count >= nr)
2505 				break;
2506 
2507 			spin_lock(&delayed_refs->lock);
2508 			locked_ref = btrfs_select_ref_head(trans);
2509 			if (!locked_ref) {
2510 				spin_unlock(&delayed_refs->lock);
2511 				break;
2512 			}
2513 
2514 			/* grab the lock that says we are going to process
2515 			 * all the refs for this head */
2516 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2517 			spin_unlock(&delayed_refs->lock);
2518 			/*
2519 			 * we may have dropped the spin lock to get the head
2520 			 * mutex lock, and that might have given someone else
2521 			 * time to free the head.  If that's true, it has been
2522 			 * removed from our list and we can move on.
2523 			 */
2524 			if (ret == -EAGAIN) {
2525 				locked_ref = NULL;
2526 				count++;
2527 				continue;
2528 			}
2529 		}
2530 
2531 		/*
2532 		 * We need to try and merge add/drops of the same ref since we
2533 		 * can run into issues with relocate dropping the implicit ref
2534 		 * and then it being added back again before the drop can
2535 		 * finish.  If we merged anything we need to re-loop so we can
2536 		 * get a good ref.
2537 		 * Or we can get node references of the same type that weren't
2538 		 * merged when created due to bumps in the tree mod seq, and
2539 		 * we need to merge them to prevent adding an inline extent
2540 		 * backref before dropping it (triggering a BUG_ON at
2541 		 * insert_inline_extent_backref()).
2542 		 */
2543 		spin_lock(&locked_ref->lock);
2544 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2545 					 locked_ref);
2546 
2547 		/*
2548 		 * locked_ref is the head node, so we have to go one
2549 		 * node back for any delayed ref updates
2550 		 */
2551 		ref = select_delayed_ref(locked_ref);
2552 
2553 		if (ref && ref->seq &&
2554 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2555 			spin_unlock(&locked_ref->lock);
2556 			btrfs_delayed_ref_unlock(locked_ref);
2557 			spin_lock(&delayed_refs->lock);
2558 			locked_ref->processing = 0;
2559 			delayed_refs->num_heads_ready++;
2560 			spin_unlock(&delayed_refs->lock);
2561 			locked_ref = NULL;
2562 			cond_resched();
2563 			count++;
2564 			continue;
2565 		}
2566 
2567 		/*
2568 		 * record the must insert reserved flag before we
2569 		 * drop the spin lock.
2570 		 */
2571 		must_insert_reserved = locked_ref->must_insert_reserved;
2572 		locked_ref->must_insert_reserved = 0;
2573 
2574 		extent_op = locked_ref->extent_op;
2575 		locked_ref->extent_op = NULL;
2576 
2577 		if (!ref) {
2578 
2579 
2580 			/* All delayed refs have been processed, Go ahead
2581 			 * and send the head node to run_one_delayed_ref,
2582 			 * so that any accounting fixes can happen
2583 			 */
2584 			ref = &locked_ref->node;
2585 
2586 			if (extent_op && must_insert_reserved) {
2587 				btrfs_free_delayed_extent_op(extent_op);
2588 				extent_op = NULL;
2589 			}
2590 
2591 			if (extent_op) {
2592 				spin_unlock(&locked_ref->lock);
2593 				ret = run_delayed_extent_op(trans, root,
2594 							    ref, extent_op);
2595 				btrfs_free_delayed_extent_op(extent_op);
2596 
2597 				if (ret) {
2598 					/*
2599 					 * Need to reset must_insert_reserved if
2600 					 * there was an error so the abort stuff
2601 					 * can cleanup the reserved space
2602 					 * properly.
2603 					 */
2604 					if (must_insert_reserved)
2605 						locked_ref->must_insert_reserved = 1;
2606 					locked_ref->processing = 0;
2607 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2608 					btrfs_delayed_ref_unlock(locked_ref);
2609 					return ret;
2610 				}
2611 				continue;
2612 			}
2613 
2614 			/*
2615 			 * Need to drop our head ref lock and re-acquire the
2616 			 * delayed ref lock and then re-check to make sure
2617 			 * nobody got added.
2618 			 */
2619 			spin_unlock(&locked_ref->lock);
2620 			spin_lock(&delayed_refs->lock);
2621 			spin_lock(&locked_ref->lock);
2622 			if (!list_empty(&locked_ref->ref_list) ||
2623 			    locked_ref->extent_op) {
2624 				spin_unlock(&locked_ref->lock);
2625 				spin_unlock(&delayed_refs->lock);
2626 				continue;
2627 			}
2628 			ref->in_tree = 0;
2629 			delayed_refs->num_heads--;
2630 			rb_erase(&locked_ref->href_node,
2631 				 &delayed_refs->href_root);
2632 			spin_unlock(&delayed_refs->lock);
2633 		} else {
2634 			actual_count++;
2635 			ref->in_tree = 0;
2636 			list_del(&ref->list);
2637 		}
2638 		atomic_dec(&delayed_refs->num_entries);
2639 
2640 		if (!btrfs_delayed_ref_is_head(ref)) {
2641 			/*
2642 			 * when we play the delayed ref, also correct the
2643 			 * ref_mod on head
2644 			 */
2645 			switch (ref->action) {
2646 			case BTRFS_ADD_DELAYED_REF:
2647 			case BTRFS_ADD_DELAYED_EXTENT:
2648 				locked_ref->node.ref_mod -= ref->ref_mod;
2649 				break;
2650 			case BTRFS_DROP_DELAYED_REF:
2651 				locked_ref->node.ref_mod += ref->ref_mod;
2652 				break;
2653 			default:
2654 				WARN_ON(1);
2655 			}
2656 		}
2657 		spin_unlock(&locked_ref->lock);
2658 
2659 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2660 					  must_insert_reserved);
2661 
2662 		btrfs_free_delayed_extent_op(extent_op);
2663 		if (ret) {
2664 			locked_ref->processing = 0;
2665 			btrfs_delayed_ref_unlock(locked_ref);
2666 			btrfs_put_delayed_ref(ref);
2667 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2668 			return ret;
2669 		}
2670 
2671 		/*
2672 		 * If this node is a head, that means all the refs in this head
2673 		 * have been dealt with, and we will pick the next head to deal
2674 		 * with, so we must unlock the head and drop it from the cluster
2675 		 * list before we release it.
2676 		 */
2677 		if (btrfs_delayed_ref_is_head(ref)) {
2678 			if (locked_ref->is_data &&
2679 			    locked_ref->total_ref_mod < 0) {
2680 				spin_lock(&delayed_refs->lock);
2681 				delayed_refs->pending_csums -= ref->num_bytes;
2682 				spin_unlock(&delayed_refs->lock);
2683 			}
2684 			btrfs_delayed_ref_unlock(locked_ref);
2685 			locked_ref = NULL;
2686 		}
2687 		btrfs_put_delayed_ref(ref);
2688 		count++;
2689 		cond_resched();
2690 	}
2691 
2692 	/*
2693 	 * We don't want to include ref heads since we can have empty ref heads
2694 	 * and those will drastically skew our runtime down since we just do
2695 	 * accounting, no actual extent tree updates.
2696 	 */
2697 	if (actual_count > 0) {
2698 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2699 		u64 avg;
2700 
2701 		/*
2702 		 * We weigh the current average higher than our current runtime
2703 		 * to avoid large swings in the average.
2704 		 */
2705 		spin_lock(&delayed_refs->lock);
2706 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2707 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2708 		spin_unlock(&delayed_refs->lock);
2709 	}
2710 	return 0;
2711 }
2712 
2713 #ifdef SCRAMBLE_DELAYED_REFS
2714 /*
2715  * Normally delayed refs get processed in ascending bytenr order. This
2716  * correlates in most cases to the order added. To expose dependencies on this
2717  * order, we start to process the tree in the middle instead of the beginning
2718  */
2719 static u64 find_middle(struct rb_root *root)
2720 {
2721 	struct rb_node *n = root->rb_node;
2722 	struct btrfs_delayed_ref_node *entry;
2723 	int alt = 1;
2724 	u64 middle;
2725 	u64 first = 0, last = 0;
2726 
2727 	n = rb_first(root);
2728 	if (n) {
2729 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 		first = entry->bytenr;
2731 	}
2732 	n = rb_last(root);
2733 	if (n) {
2734 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2735 		last = entry->bytenr;
2736 	}
2737 	n = root->rb_node;
2738 
2739 	while (n) {
2740 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2741 		WARN_ON(!entry->in_tree);
2742 
2743 		middle = entry->bytenr;
2744 
2745 		if (alt)
2746 			n = n->rb_left;
2747 		else
2748 			n = n->rb_right;
2749 
2750 		alt = 1 - alt;
2751 	}
2752 	return middle;
2753 }
2754 #endif
2755 
2756 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2757 {
2758 	u64 num_bytes;
2759 
2760 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2761 			     sizeof(struct btrfs_extent_inline_ref));
2762 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2763 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2764 
2765 	/*
2766 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2767 	 * closer to what we're really going to want to use.
2768 	 */
2769 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2770 }
2771 
2772 /*
2773  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2774  * would require to store the csums for that many bytes.
2775  */
2776 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2777 {
2778 	u64 csum_size;
2779 	u64 num_csums_per_leaf;
2780 	u64 num_csums;
2781 
2782 	csum_size = BTRFS_MAX_ITEM_SIZE(root);
2783 	num_csums_per_leaf = div64_u64(csum_size,
2784 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2785 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2786 	num_csums += num_csums_per_leaf - 1;
2787 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2788 	return num_csums;
2789 }
2790 
2791 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2792 				       struct btrfs_root *root)
2793 {
2794 	struct btrfs_block_rsv *global_rsv;
2795 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2796 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2797 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2798 	u64 num_bytes, num_dirty_bgs_bytes;
2799 	int ret = 0;
2800 
2801 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2802 	num_heads = heads_to_leaves(root, num_heads);
2803 	if (num_heads > 1)
2804 		num_bytes += (num_heads - 1) * root->nodesize;
2805 	num_bytes <<= 1;
2806 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2807 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2808 							     num_dirty_bgs);
2809 	global_rsv = &root->fs_info->global_block_rsv;
2810 
2811 	/*
2812 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2813 	 * wiggle room since running delayed refs can create more delayed refs.
2814 	 */
2815 	if (global_rsv->space_info->full) {
2816 		num_dirty_bgs_bytes <<= 1;
2817 		num_bytes <<= 1;
2818 	}
2819 
2820 	spin_lock(&global_rsv->lock);
2821 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2822 		ret = 1;
2823 	spin_unlock(&global_rsv->lock);
2824 	return ret;
2825 }
2826 
2827 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2828 				       struct btrfs_root *root)
2829 {
2830 	struct btrfs_fs_info *fs_info = root->fs_info;
2831 	u64 num_entries =
2832 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2833 	u64 avg_runtime;
2834 	u64 val;
2835 
2836 	smp_mb();
2837 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2838 	val = num_entries * avg_runtime;
2839 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2840 		return 1;
2841 	if (val >= NSEC_PER_SEC / 2)
2842 		return 2;
2843 
2844 	return btrfs_check_space_for_delayed_refs(trans, root);
2845 }
2846 
2847 struct async_delayed_refs {
2848 	struct btrfs_root *root;
2849 	u64 transid;
2850 	int count;
2851 	int error;
2852 	int sync;
2853 	struct completion wait;
2854 	struct btrfs_work work;
2855 };
2856 
2857 static void delayed_ref_async_start(struct btrfs_work *work)
2858 {
2859 	struct async_delayed_refs *async;
2860 	struct btrfs_trans_handle *trans;
2861 	int ret;
2862 
2863 	async = container_of(work, struct async_delayed_refs, work);
2864 
2865 	/* if the commit is already started, we don't need to wait here */
2866 	if (btrfs_transaction_blocked(async->root->fs_info))
2867 		goto done;
2868 
2869 	trans = btrfs_join_transaction(async->root);
2870 	if (IS_ERR(trans)) {
2871 		async->error = PTR_ERR(trans);
2872 		goto done;
2873 	}
2874 
2875 	/*
2876 	 * trans->sync means that when we call end_transaction, we won't
2877 	 * wait on delayed refs
2878 	 */
2879 	trans->sync = true;
2880 
2881 	/* Don't bother flushing if we got into a different transaction */
2882 	if (trans->transid > async->transid)
2883 		goto end;
2884 
2885 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2886 	if (ret)
2887 		async->error = ret;
2888 end:
2889 	ret = btrfs_end_transaction(trans, async->root);
2890 	if (ret && !async->error)
2891 		async->error = ret;
2892 done:
2893 	if (async->sync)
2894 		complete(&async->wait);
2895 	else
2896 		kfree(async);
2897 }
2898 
2899 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2900 				 unsigned long count, u64 transid, int wait)
2901 {
2902 	struct async_delayed_refs *async;
2903 	int ret;
2904 
2905 	async = kmalloc(sizeof(*async), GFP_NOFS);
2906 	if (!async)
2907 		return -ENOMEM;
2908 
2909 	async->root = root->fs_info->tree_root;
2910 	async->count = count;
2911 	async->error = 0;
2912 	async->transid = transid;
2913 	if (wait)
2914 		async->sync = 1;
2915 	else
2916 		async->sync = 0;
2917 	init_completion(&async->wait);
2918 
2919 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2920 			delayed_ref_async_start, NULL, NULL);
2921 
2922 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2923 
2924 	if (wait) {
2925 		wait_for_completion(&async->wait);
2926 		ret = async->error;
2927 		kfree(async);
2928 		return ret;
2929 	}
2930 	return 0;
2931 }
2932 
2933 /*
2934  * this starts processing the delayed reference count updates and
2935  * extent insertions we have queued up so far.  count can be
2936  * 0, which means to process everything in the tree at the start
2937  * of the run (but not newly added entries), or it can be some target
2938  * number you'd like to process.
2939  *
2940  * Returns 0 on success or if called with an aborted transaction
2941  * Returns <0 on error and aborts the transaction
2942  */
2943 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2944 			   struct btrfs_root *root, unsigned long count)
2945 {
2946 	struct rb_node *node;
2947 	struct btrfs_delayed_ref_root *delayed_refs;
2948 	struct btrfs_delayed_ref_head *head;
2949 	int ret;
2950 	int run_all = count == (unsigned long)-1;
2951 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2952 
2953 	/* We'll clean this up in btrfs_cleanup_transaction */
2954 	if (trans->aborted)
2955 		return 0;
2956 
2957 	if (root->fs_info->creating_free_space_tree)
2958 		return 0;
2959 
2960 	if (root == root->fs_info->extent_root)
2961 		root = root->fs_info->tree_root;
2962 
2963 	delayed_refs = &trans->transaction->delayed_refs;
2964 	if (count == 0)
2965 		count = atomic_read(&delayed_refs->num_entries) * 2;
2966 
2967 again:
2968 #ifdef SCRAMBLE_DELAYED_REFS
2969 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2970 #endif
2971 	trans->can_flush_pending_bgs = false;
2972 	ret = __btrfs_run_delayed_refs(trans, root, count);
2973 	if (ret < 0) {
2974 		btrfs_abort_transaction(trans, ret);
2975 		return ret;
2976 	}
2977 
2978 	if (run_all) {
2979 		if (!list_empty(&trans->new_bgs))
2980 			btrfs_create_pending_block_groups(trans, root);
2981 
2982 		spin_lock(&delayed_refs->lock);
2983 		node = rb_first(&delayed_refs->href_root);
2984 		if (!node) {
2985 			spin_unlock(&delayed_refs->lock);
2986 			goto out;
2987 		}
2988 		count = (unsigned long)-1;
2989 
2990 		while (node) {
2991 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2992 					href_node);
2993 			if (btrfs_delayed_ref_is_head(&head->node)) {
2994 				struct btrfs_delayed_ref_node *ref;
2995 
2996 				ref = &head->node;
2997 				atomic_inc(&ref->refs);
2998 
2999 				spin_unlock(&delayed_refs->lock);
3000 				/*
3001 				 * Mutex was contended, block until it's
3002 				 * released and try again
3003 				 */
3004 				mutex_lock(&head->mutex);
3005 				mutex_unlock(&head->mutex);
3006 
3007 				btrfs_put_delayed_ref(ref);
3008 				cond_resched();
3009 				goto again;
3010 			} else {
3011 				WARN_ON(1);
3012 			}
3013 			node = rb_next(node);
3014 		}
3015 		spin_unlock(&delayed_refs->lock);
3016 		cond_resched();
3017 		goto again;
3018 	}
3019 out:
3020 	assert_qgroups_uptodate(trans);
3021 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3022 	return 0;
3023 }
3024 
3025 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3026 				struct btrfs_root *root,
3027 				u64 bytenr, u64 num_bytes, u64 flags,
3028 				int level, int is_data)
3029 {
3030 	struct btrfs_delayed_extent_op *extent_op;
3031 	int ret;
3032 
3033 	extent_op = btrfs_alloc_delayed_extent_op();
3034 	if (!extent_op)
3035 		return -ENOMEM;
3036 
3037 	extent_op->flags_to_set = flags;
3038 	extent_op->update_flags = true;
3039 	extent_op->update_key = false;
3040 	extent_op->is_data = is_data ? true : false;
3041 	extent_op->level = level;
3042 
3043 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3044 					  num_bytes, extent_op);
3045 	if (ret)
3046 		btrfs_free_delayed_extent_op(extent_op);
3047 	return ret;
3048 }
3049 
3050 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3051 				      struct btrfs_root *root,
3052 				      struct btrfs_path *path,
3053 				      u64 objectid, u64 offset, u64 bytenr)
3054 {
3055 	struct btrfs_delayed_ref_head *head;
3056 	struct btrfs_delayed_ref_node *ref;
3057 	struct btrfs_delayed_data_ref *data_ref;
3058 	struct btrfs_delayed_ref_root *delayed_refs;
3059 	int ret = 0;
3060 
3061 	delayed_refs = &trans->transaction->delayed_refs;
3062 	spin_lock(&delayed_refs->lock);
3063 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3064 	if (!head) {
3065 		spin_unlock(&delayed_refs->lock);
3066 		return 0;
3067 	}
3068 
3069 	if (!mutex_trylock(&head->mutex)) {
3070 		atomic_inc(&head->node.refs);
3071 		spin_unlock(&delayed_refs->lock);
3072 
3073 		btrfs_release_path(path);
3074 
3075 		/*
3076 		 * Mutex was contended, block until it's released and let
3077 		 * caller try again
3078 		 */
3079 		mutex_lock(&head->mutex);
3080 		mutex_unlock(&head->mutex);
3081 		btrfs_put_delayed_ref(&head->node);
3082 		return -EAGAIN;
3083 	}
3084 	spin_unlock(&delayed_refs->lock);
3085 
3086 	spin_lock(&head->lock);
3087 	list_for_each_entry(ref, &head->ref_list, list) {
3088 		/* If it's a shared ref we know a cross reference exists */
3089 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3090 			ret = 1;
3091 			break;
3092 		}
3093 
3094 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3095 
3096 		/*
3097 		 * If our ref doesn't match the one we're currently looking at
3098 		 * then we have a cross reference.
3099 		 */
3100 		if (data_ref->root != root->root_key.objectid ||
3101 		    data_ref->objectid != objectid ||
3102 		    data_ref->offset != offset) {
3103 			ret = 1;
3104 			break;
3105 		}
3106 	}
3107 	spin_unlock(&head->lock);
3108 	mutex_unlock(&head->mutex);
3109 	return ret;
3110 }
3111 
3112 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3113 					struct btrfs_root *root,
3114 					struct btrfs_path *path,
3115 					u64 objectid, u64 offset, u64 bytenr)
3116 {
3117 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3118 	struct extent_buffer *leaf;
3119 	struct btrfs_extent_data_ref *ref;
3120 	struct btrfs_extent_inline_ref *iref;
3121 	struct btrfs_extent_item *ei;
3122 	struct btrfs_key key;
3123 	u32 item_size;
3124 	int ret;
3125 
3126 	key.objectid = bytenr;
3127 	key.offset = (u64)-1;
3128 	key.type = BTRFS_EXTENT_ITEM_KEY;
3129 
3130 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3131 	if (ret < 0)
3132 		goto out;
3133 	BUG_ON(ret == 0); /* Corruption */
3134 
3135 	ret = -ENOENT;
3136 	if (path->slots[0] == 0)
3137 		goto out;
3138 
3139 	path->slots[0]--;
3140 	leaf = path->nodes[0];
3141 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3142 
3143 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3144 		goto out;
3145 
3146 	ret = 1;
3147 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3148 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3149 	if (item_size < sizeof(*ei)) {
3150 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3151 		goto out;
3152 	}
3153 #endif
3154 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3155 
3156 	if (item_size != sizeof(*ei) +
3157 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3158 		goto out;
3159 
3160 	if (btrfs_extent_generation(leaf, ei) <=
3161 	    btrfs_root_last_snapshot(&root->root_item))
3162 		goto out;
3163 
3164 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3165 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3166 	    BTRFS_EXTENT_DATA_REF_KEY)
3167 		goto out;
3168 
3169 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3170 	if (btrfs_extent_refs(leaf, ei) !=
3171 	    btrfs_extent_data_ref_count(leaf, ref) ||
3172 	    btrfs_extent_data_ref_root(leaf, ref) !=
3173 	    root->root_key.objectid ||
3174 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3175 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3176 		goto out;
3177 
3178 	ret = 0;
3179 out:
3180 	return ret;
3181 }
3182 
3183 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3184 			  struct btrfs_root *root,
3185 			  u64 objectid, u64 offset, u64 bytenr)
3186 {
3187 	struct btrfs_path *path;
3188 	int ret;
3189 	int ret2;
3190 
3191 	path = btrfs_alloc_path();
3192 	if (!path)
3193 		return -ENOENT;
3194 
3195 	do {
3196 		ret = check_committed_ref(trans, root, path, objectid,
3197 					  offset, bytenr);
3198 		if (ret && ret != -ENOENT)
3199 			goto out;
3200 
3201 		ret2 = check_delayed_ref(trans, root, path, objectid,
3202 					 offset, bytenr);
3203 	} while (ret2 == -EAGAIN);
3204 
3205 	if (ret2 && ret2 != -ENOENT) {
3206 		ret = ret2;
3207 		goto out;
3208 	}
3209 
3210 	if (ret != -ENOENT || ret2 != -ENOENT)
3211 		ret = 0;
3212 out:
3213 	btrfs_free_path(path);
3214 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3215 		WARN_ON(ret > 0);
3216 	return ret;
3217 }
3218 
3219 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3220 			   struct btrfs_root *root,
3221 			   struct extent_buffer *buf,
3222 			   int full_backref, int inc)
3223 {
3224 	u64 bytenr;
3225 	u64 num_bytes;
3226 	u64 parent;
3227 	u64 ref_root;
3228 	u32 nritems;
3229 	struct btrfs_key key;
3230 	struct btrfs_file_extent_item *fi;
3231 	int i;
3232 	int level;
3233 	int ret = 0;
3234 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3235 			    u64, u64, u64, u64, u64, u64);
3236 
3237 
3238 	if (btrfs_is_testing(root->fs_info))
3239 		return 0;
3240 
3241 	ref_root = btrfs_header_owner(buf);
3242 	nritems = btrfs_header_nritems(buf);
3243 	level = btrfs_header_level(buf);
3244 
3245 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3246 		return 0;
3247 
3248 	if (inc)
3249 		process_func = btrfs_inc_extent_ref;
3250 	else
3251 		process_func = btrfs_free_extent;
3252 
3253 	if (full_backref)
3254 		parent = buf->start;
3255 	else
3256 		parent = 0;
3257 
3258 	for (i = 0; i < nritems; i++) {
3259 		if (level == 0) {
3260 			btrfs_item_key_to_cpu(buf, &key, i);
3261 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3262 				continue;
3263 			fi = btrfs_item_ptr(buf, i,
3264 					    struct btrfs_file_extent_item);
3265 			if (btrfs_file_extent_type(buf, fi) ==
3266 			    BTRFS_FILE_EXTENT_INLINE)
3267 				continue;
3268 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3269 			if (bytenr == 0)
3270 				continue;
3271 
3272 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3273 			key.offset -= btrfs_file_extent_offset(buf, fi);
3274 			ret = process_func(trans, root, bytenr, num_bytes,
3275 					   parent, ref_root, key.objectid,
3276 					   key.offset);
3277 			if (ret)
3278 				goto fail;
3279 		} else {
3280 			bytenr = btrfs_node_blockptr(buf, i);
3281 			num_bytes = root->nodesize;
3282 			ret = process_func(trans, root, bytenr, num_bytes,
3283 					   parent, ref_root, level - 1, 0);
3284 			if (ret)
3285 				goto fail;
3286 		}
3287 	}
3288 	return 0;
3289 fail:
3290 	return ret;
3291 }
3292 
3293 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3294 		  struct extent_buffer *buf, int full_backref)
3295 {
3296 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3297 }
3298 
3299 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3300 		  struct extent_buffer *buf, int full_backref)
3301 {
3302 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3303 }
3304 
3305 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3306 				 struct btrfs_root *root,
3307 				 struct btrfs_path *path,
3308 				 struct btrfs_block_group_cache *cache)
3309 {
3310 	int ret;
3311 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3312 	unsigned long bi;
3313 	struct extent_buffer *leaf;
3314 
3315 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3316 	if (ret) {
3317 		if (ret > 0)
3318 			ret = -ENOENT;
3319 		goto fail;
3320 	}
3321 
3322 	leaf = path->nodes[0];
3323 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3324 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3325 	btrfs_mark_buffer_dirty(leaf);
3326 fail:
3327 	btrfs_release_path(path);
3328 	return ret;
3329 
3330 }
3331 
3332 static struct btrfs_block_group_cache *
3333 next_block_group(struct btrfs_root *root,
3334 		 struct btrfs_block_group_cache *cache)
3335 {
3336 	struct rb_node *node;
3337 
3338 	spin_lock(&root->fs_info->block_group_cache_lock);
3339 
3340 	/* If our block group was removed, we need a full search. */
3341 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3342 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3343 
3344 		spin_unlock(&root->fs_info->block_group_cache_lock);
3345 		btrfs_put_block_group(cache);
3346 		cache = btrfs_lookup_first_block_group(root->fs_info,
3347 						       next_bytenr);
3348 		return cache;
3349 	}
3350 	node = rb_next(&cache->cache_node);
3351 	btrfs_put_block_group(cache);
3352 	if (node) {
3353 		cache = rb_entry(node, struct btrfs_block_group_cache,
3354 				 cache_node);
3355 		btrfs_get_block_group(cache);
3356 	} else
3357 		cache = NULL;
3358 	spin_unlock(&root->fs_info->block_group_cache_lock);
3359 	return cache;
3360 }
3361 
3362 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3363 			    struct btrfs_trans_handle *trans,
3364 			    struct btrfs_path *path)
3365 {
3366 	struct btrfs_root *root = block_group->fs_info->tree_root;
3367 	struct inode *inode = NULL;
3368 	u64 alloc_hint = 0;
3369 	int dcs = BTRFS_DC_ERROR;
3370 	u64 num_pages = 0;
3371 	int retries = 0;
3372 	int ret = 0;
3373 
3374 	/*
3375 	 * If this block group is smaller than 100 megs don't bother caching the
3376 	 * block group.
3377 	 */
3378 	if (block_group->key.offset < (100 * SZ_1M)) {
3379 		spin_lock(&block_group->lock);
3380 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3381 		spin_unlock(&block_group->lock);
3382 		return 0;
3383 	}
3384 
3385 	if (trans->aborted)
3386 		return 0;
3387 again:
3388 	inode = lookup_free_space_inode(root, block_group, path);
3389 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3390 		ret = PTR_ERR(inode);
3391 		btrfs_release_path(path);
3392 		goto out;
3393 	}
3394 
3395 	if (IS_ERR(inode)) {
3396 		BUG_ON(retries);
3397 		retries++;
3398 
3399 		if (block_group->ro)
3400 			goto out_free;
3401 
3402 		ret = create_free_space_inode(root, trans, block_group, path);
3403 		if (ret)
3404 			goto out_free;
3405 		goto again;
3406 	}
3407 
3408 	/* We've already setup this transaction, go ahead and exit */
3409 	if (block_group->cache_generation == trans->transid &&
3410 	    i_size_read(inode)) {
3411 		dcs = BTRFS_DC_SETUP;
3412 		goto out_put;
3413 	}
3414 
3415 	/*
3416 	 * We want to set the generation to 0, that way if anything goes wrong
3417 	 * from here on out we know not to trust this cache when we load up next
3418 	 * time.
3419 	 */
3420 	BTRFS_I(inode)->generation = 0;
3421 	ret = btrfs_update_inode(trans, root, inode);
3422 	if (ret) {
3423 		/*
3424 		 * So theoretically we could recover from this, simply set the
3425 		 * super cache generation to 0 so we know to invalidate the
3426 		 * cache, but then we'd have to keep track of the block groups
3427 		 * that fail this way so we know we _have_ to reset this cache
3428 		 * before the next commit or risk reading stale cache.  So to
3429 		 * limit our exposure to horrible edge cases lets just abort the
3430 		 * transaction, this only happens in really bad situations
3431 		 * anyway.
3432 		 */
3433 		btrfs_abort_transaction(trans, ret);
3434 		goto out_put;
3435 	}
3436 	WARN_ON(ret);
3437 
3438 	if (i_size_read(inode) > 0) {
3439 		ret = btrfs_check_trunc_cache_free_space(root,
3440 					&root->fs_info->global_block_rsv);
3441 		if (ret)
3442 			goto out_put;
3443 
3444 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3445 		if (ret)
3446 			goto out_put;
3447 	}
3448 
3449 	spin_lock(&block_group->lock);
3450 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3451 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3452 		/*
3453 		 * don't bother trying to write stuff out _if_
3454 		 * a) we're not cached,
3455 		 * b) we're with nospace_cache mount option.
3456 		 */
3457 		dcs = BTRFS_DC_WRITTEN;
3458 		spin_unlock(&block_group->lock);
3459 		goto out_put;
3460 	}
3461 	spin_unlock(&block_group->lock);
3462 
3463 	/*
3464 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3465 	 * skip doing the setup, we've already cleared the cache so we're safe.
3466 	 */
3467 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3468 		ret = -ENOSPC;
3469 		goto out_put;
3470 	}
3471 
3472 	/*
3473 	 * Try to preallocate enough space based on how big the block group is.
3474 	 * Keep in mind this has to include any pinned space which could end up
3475 	 * taking up quite a bit since it's not folded into the other space
3476 	 * cache.
3477 	 */
3478 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3479 	if (!num_pages)
3480 		num_pages = 1;
3481 
3482 	num_pages *= 16;
3483 	num_pages *= PAGE_SIZE;
3484 
3485 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3486 	if (ret)
3487 		goto out_put;
3488 
3489 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3490 					      num_pages, num_pages,
3491 					      &alloc_hint);
3492 	/*
3493 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3494 	 * of metadata or split extents when writing the cache out, which means
3495 	 * we can enospc if we are heavily fragmented in addition to just normal
3496 	 * out of space conditions.  So if we hit this just skip setting up any
3497 	 * other block groups for this transaction, maybe we'll unpin enough
3498 	 * space the next time around.
3499 	 */
3500 	if (!ret)
3501 		dcs = BTRFS_DC_SETUP;
3502 	else if (ret == -ENOSPC)
3503 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3504 	btrfs_free_reserved_data_space(inode, 0, num_pages);
3505 
3506 out_put:
3507 	iput(inode);
3508 out_free:
3509 	btrfs_release_path(path);
3510 out:
3511 	spin_lock(&block_group->lock);
3512 	if (!ret && dcs == BTRFS_DC_SETUP)
3513 		block_group->cache_generation = trans->transid;
3514 	block_group->disk_cache_state = dcs;
3515 	spin_unlock(&block_group->lock);
3516 
3517 	return ret;
3518 }
3519 
3520 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3521 			    struct btrfs_root *root)
3522 {
3523 	struct btrfs_block_group_cache *cache, *tmp;
3524 	struct btrfs_transaction *cur_trans = trans->transaction;
3525 	struct btrfs_path *path;
3526 
3527 	if (list_empty(&cur_trans->dirty_bgs) ||
3528 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3529 		return 0;
3530 
3531 	path = btrfs_alloc_path();
3532 	if (!path)
3533 		return -ENOMEM;
3534 
3535 	/* Could add new block groups, use _safe just in case */
3536 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3537 				 dirty_list) {
3538 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3539 			cache_save_setup(cache, trans, path);
3540 	}
3541 
3542 	btrfs_free_path(path);
3543 	return 0;
3544 }
3545 
3546 /*
3547  * transaction commit does final block group cache writeback during a
3548  * critical section where nothing is allowed to change the FS.  This is
3549  * required in order for the cache to actually match the block group,
3550  * but can introduce a lot of latency into the commit.
3551  *
3552  * So, btrfs_start_dirty_block_groups is here to kick off block group
3553  * cache IO.  There's a chance we'll have to redo some of it if the
3554  * block group changes again during the commit, but it greatly reduces
3555  * the commit latency by getting rid of the easy block groups while
3556  * we're still allowing others to join the commit.
3557  */
3558 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3559 				   struct btrfs_root *root)
3560 {
3561 	struct btrfs_block_group_cache *cache;
3562 	struct btrfs_transaction *cur_trans = trans->transaction;
3563 	int ret = 0;
3564 	int should_put;
3565 	struct btrfs_path *path = NULL;
3566 	LIST_HEAD(dirty);
3567 	struct list_head *io = &cur_trans->io_bgs;
3568 	int num_started = 0;
3569 	int loops = 0;
3570 
3571 	spin_lock(&cur_trans->dirty_bgs_lock);
3572 	if (list_empty(&cur_trans->dirty_bgs)) {
3573 		spin_unlock(&cur_trans->dirty_bgs_lock);
3574 		return 0;
3575 	}
3576 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3577 	spin_unlock(&cur_trans->dirty_bgs_lock);
3578 
3579 again:
3580 	/*
3581 	 * make sure all the block groups on our dirty list actually
3582 	 * exist
3583 	 */
3584 	btrfs_create_pending_block_groups(trans, root);
3585 
3586 	if (!path) {
3587 		path = btrfs_alloc_path();
3588 		if (!path)
3589 			return -ENOMEM;
3590 	}
3591 
3592 	/*
3593 	 * cache_write_mutex is here only to save us from balance or automatic
3594 	 * removal of empty block groups deleting this block group while we are
3595 	 * writing out the cache
3596 	 */
3597 	mutex_lock(&trans->transaction->cache_write_mutex);
3598 	while (!list_empty(&dirty)) {
3599 		cache = list_first_entry(&dirty,
3600 					 struct btrfs_block_group_cache,
3601 					 dirty_list);
3602 		/*
3603 		 * this can happen if something re-dirties a block
3604 		 * group that is already under IO.  Just wait for it to
3605 		 * finish and then do it all again
3606 		 */
3607 		if (!list_empty(&cache->io_list)) {
3608 			list_del_init(&cache->io_list);
3609 			btrfs_wait_cache_io(root, trans, cache,
3610 					    &cache->io_ctl, path,
3611 					    cache->key.objectid);
3612 			btrfs_put_block_group(cache);
3613 		}
3614 
3615 
3616 		/*
3617 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3618 		 * if it should update the cache_state.  Don't delete
3619 		 * until after we wait.
3620 		 *
3621 		 * Since we're not running in the commit critical section
3622 		 * we need the dirty_bgs_lock to protect from update_block_group
3623 		 */
3624 		spin_lock(&cur_trans->dirty_bgs_lock);
3625 		list_del_init(&cache->dirty_list);
3626 		spin_unlock(&cur_trans->dirty_bgs_lock);
3627 
3628 		should_put = 1;
3629 
3630 		cache_save_setup(cache, trans, path);
3631 
3632 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3633 			cache->io_ctl.inode = NULL;
3634 			ret = btrfs_write_out_cache(root, trans, cache, path);
3635 			if (ret == 0 && cache->io_ctl.inode) {
3636 				num_started++;
3637 				should_put = 0;
3638 
3639 				/*
3640 				 * the cache_write_mutex is protecting
3641 				 * the io_list
3642 				 */
3643 				list_add_tail(&cache->io_list, io);
3644 			} else {
3645 				/*
3646 				 * if we failed to write the cache, the
3647 				 * generation will be bad and life goes on
3648 				 */
3649 				ret = 0;
3650 			}
3651 		}
3652 		if (!ret) {
3653 			ret = write_one_cache_group(trans, root, path, cache);
3654 			/*
3655 			 * Our block group might still be attached to the list
3656 			 * of new block groups in the transaction handle of some
3657 			 * other task (struct btrfs_trans_handle->new_bgs). This
3658 			 * means its block group item isn't yet in the extent
3659 			 * tree. If this happens ignore the error, as we will
3660 			 * try again later in the critical section of the
3661 			 * transaction commit.
3662 			 */
3663 			if (ret == -ENOENT) {
3664 				ret = 0;
3665 				spin_lock(&cur_trans->dirty_bgs_lock);
3666 				if (list_empty(&cache->dirty_list)) {
3667 					list_add_tail(&cache->dirty_list,
3668 						      &cur_trans->dirty_bgs);
3669 					btrfs_get_block_group(cache);
3670 				}
3671 				spin_unlock(&cur_trans->dirty_bgs_lock);
3672 			} else if (ret) {
3673 				btrfs_abort_transaction(trans, ret);
3674 			}
3675 		}
3676 
3677 		/* if its not on the io list, we need to put the block group */
3678 		if (should_put)
3679 			btrfs_put_block_group(cache);
3680 
3681 		if (ret)
3682 			break;
3683 
3684 		/*
3685 		 * Avoid blocking other tasks for too long. It might even save
3686 		 * us from writing caches for block groups that are going to be
3687 		 * removed.
3688 		 */
3689 		mutex_unlock(&trans->transaction->cache_write_mutex);
3690 		mutex_lock(&trans->transaction->cache_write_mutex);
3691 	}
3692 	mutex_unlock(&trans->transaction->cache_write_mutex);
3693 
3694 	/*
3695 	 * go through delayed refs for all the stuff we've just kicked off
3696 	 * and then loop back (just once)
3697 	 */
3698 	ret = btrfs_run_delayed_refs(trans, root, 0);
3699 	if (!ret && loops == 0) {
3700 		loops++;
3701 		spin_lock(&cur_trans->dirty_bgs_lock);
3702 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3703 		/*
3704 		 * dirty_bgs_lock protects us from concurrent block group
3705 		 * deletes too (not just cache_write_mutex).
3706 		 */
3707 		if (!list_empty(&dirty)) {
3708 			spin_unlock(&cur_trans->dirty_bgs_lock);
3709 			goto again;
3710 		}
3711 		spin_unlock(&cur_trans->dirty_bgs_lock);
3712 	}
3713 
3714 	btrfs_free_path(path);
3715 	return ret;
3716 }
3717 
3718 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3719 				   struct btrfs_root *root)
3720 {
3721 	struct btrfs_block_group_cache *cache;
3722 	struct btrfs_transaction *cur_trans = trans->transaction;
3723 	int ret = 0;
3724 	int should_put;
3725 	struct btrfs_path *path;
3726 	struct list_head *io = &cur_trans->io_bgs;
3727 	int num_started = 0;
3728 
3729 	path = btrfs_alloc_path();
3730 	if (!path)
3731 		return -ENOMEM;
3732 
3733 	/*
3734 	 * Even though we are in the critical section of the transaction commit,
3735 	 * we can still have concurrent tasks adding elements to this
3736 	 * transaction's list of dirty block groups. These tasks correspond to
3737 	 * endio free space workers started when writeback finishes for a
3738 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3739 	 * allocate new block groups as a result of COWing nodes of the root
3740 	 * tree when updating the free space inode. The writeback for the space
3741 	 * caches is triggered by an earlier call to
3742 	 * btrfs_start_dirty_block_groups() and iterations of the following
3743 	 * loop.
3744 	 * Also we want to do the cache_save_setup first and then run the
3745 	 * delayed refs to make sure we have the best chance at doing this all
3746 	 * in one shot.
3747 	 */
3748 	spin_lock(&cur_trans->dirty_bgs_lock);
3749 	while (!list_empty(&cur_trans->dirty_bgs)) {
3750 		cache = list_first_entry(&cur_trans->dirty_bgs,
3751 					 struct btrfs_block_group_cache,
3752 					 dirty_list);
3753 
3754 		/*
3755 		 * this can happen if cache_save_setup re-dirties a block
3756 		 * group that is already under IO.  Just wait for it to
3757 		 * finish and then do it all again
3758 		 */
3759 		if (!list_empty(&cache->io_list)) {
3760 			spin_unlock(&cur_trans->dirty_bgs_lock);
3761 			list_del_init(&cache->io_list);
3762 			btrfs_wait_cache_io(root, trans, cache,
3763 					    &cache->io_ctl, path,
3764 					    cache->key.objectid);
3765 			btrfs_put_block_group(cache);
3766 			spin_lock(&cur_trans->dirty_bgs_lock);
3767 		}
3768 
3769 		/*
3770 		 * don't remove from the dirty list until after we've waited
3771 		 * on any pending IO
3772 		 */
3773 		list_del_init(&cache->dirty_list);
3774 		spin_unlock(&cur_trans->dirty_bgs_lock);
3775 		should_put = 1;
3776 
3777 		cache_save_setup(cache, trans, path);
3778 
3779 		if (!ret)
3780 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3781 
3782 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3783 			cache->io_ctl.inode = NULL;
3784 			ret = btrfs_write_out_cache(root, trans, cache, path);
3785 			if (ret == 0 && cache->io_ctl.inode) {
3786 				num_started++;
3787 				should_put = 0;
3788 				list_add_tail(&cache->io_list, io);
3789 			} else {
3790 				/*
3791 				 * if we failed to write the cache, the
3792 				 * generation will be bad and life goes on
3793 				 */
3794 				ret = 0;
3795 			}
3796 		}
3797 		if (!ret) {
3798 			ret = write_one_cache_group(trans, root, path, cache);
3799 			/*
3800 			 * One of the free space endio workers might have
3801 			 * created a new block group while updating a free space
3802 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3803 			 * and hasn't released its transaction handle yet, in
3804 			 * which case the new block group is still attached to
3805 			 * its transaction handle and its creation has not
3806 			 * finished yet (no block group item in the extent tree
3807 			 * yet, etc). If this is the case, wait for all free
3808 			 * space endio workers to finish and retry. This is a
3809 			 * a very rare case so no need for a more efficient and
3810 			 * complex approach.
3811 			 */
3812 			if (ret == -ENOENT) {
3813 				wait_event(cur_trans->writer_wait,
3814 				   atomic_read(&cur_trans->num_writers) == 1);
3815 				ret = write_one_cache_group(trans, root, path,
3816 							    cache);
3817 			}
3818 			if (ret)
3819 				btrfs_abort_transaction(trans, ret);
3820 		}
3821 
3822 		/* if its not on the io list, we need to put the block group */
3823 		if (should_put)
3824 			btrfs_put_block_group(cache);
3825 		spin_lock(&cur_trans->dirty_bgs_lock);
3826 	}
3827 	spin_unlock(&cur_trans->dirty_bgs_lock);
3828 
3829 	while (!list_empty(io)) {
3830 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3831 					 io_list);
3832 		list_del_init(&cache->io_list);
3833 		btrfs_wait_cache_io(root, trans, cache,
3834 				    &cache->io_ctl, path, cache->key.objectid);
3835 		btrfs_put_block_group(cache);
3836 	}
3837 
3838 	btrfs_free_path(path);
3839 	return ret;
3840 }
3841 
3842 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3843 {
3844 	struct btrfs_block_group_cache *block_group;
3845 	int readonly = 0;
3846 
3847 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3848 	if (!block_group || block_group->ro)
3849 		readonly = 1;
3850 	if (block_group)
3851 		btrfs_put_block_group(block_group);
3852 	return readonly;
3853 }
3854 
3855 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3856 {
3857 	struct btrfs_block_group_cache *bg;
3858 	bool ret = true;
3859 
3860 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3861 	if (!bg)
3862 		return false;
3863 
3864 	spin_lock(&bg->lock);
3865 	if (bg->ro)
3866 		ret = false;
3867 	else
3868 		atomic_inc(&bg->nocow_writers);
3869 	spin_unlock(&bg->lock);
3870 
3871 	/* no put on block group, done by btrfs_dec_nocow_writers */
3872 	if (!ret)
3873 		btrfs_put_block_group(bg);
3874 
3875 	return ret;
3876 
3877 }
3878 
3879 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3880 {
3881 	struct btrfs_block_group_cache *bg;
3882 
3883 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3884 	ASSERT(bg);
3885 	if (atomic_dec_and_test(&bg->nocow_writers))
3886 		wake_up_atomic_t(&bg->nocow_writers);
3887 	/*
3888 	 * Once for our lookup and once for the lookup done by a previous call
3889 	 * to btrfs_inc_nocow_writers()
3890 	 */
3891 	btrfs_put_block_group(bg);
3892 	btrfs_put_block_group(bg);
3893 }
3894 
3895 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3896 {
3897 	schedule();
3898 	return 0;
3899 }
3900 
3901 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3902 {
3903 	wait_on_atomic_t(&bg->nocow_writers,
3904 			 btrfs_wait_nocow_writers_atomic_t,
3905 			 TASK_UNINTERRUPTIBLE);
3906 }
3907 
3908 static const char *alloc_name(u64 flags)
3909 {
3910 	switch (flags) {
3911 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3912 		return "mixed";
3913 	case BTRFS_BLOCK_GROUP_METADATA:
3914 		return "metadata";
3915 	case BTRFS_BLOCK_GROUP_DATA:
3916 		return "data";
3917 	case BTRFS_BLOCK_GROUP_SYSTEM:
3918 		return "system";
3919 	default:
3920 		WARN_ON(1);
3921 		return "invalid-combination";
3922 	};
3923 }
3924 
3925 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3926 			     u64 total_bytes, u64 bytes_used,
3927 			     u64 bytes_readonly,
3928 			     struct btrfs_space_info **space_info)
3929 {
3930 	struct btrfs_space_info *found;
3931 	int i;
3932 	int factor;
3933 	int ret;
3934 
3935 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3936 		     BTRFS_BLOCK_GROUP_RAID10))
3937 		factor = 2;
3938 	else
3939 		factor = 1;
3940 
3941 	found = __find_space_info(info, flags);
3942 	if (found) {
3943 		spin_lock(&found->lock);
3944 		found->total_bytes += total_bytes;
3945 		found->disk_total += total_bytes * factor;
3946 		found->bytes_used += bytes_used;
3947 		found->disk_used += bytes_used * factor;
3948 		found->bytes_readonly += bytes_readonly;
3949 		if (total_bytes > 0)
3950 			found->full = 0;
3951 		space_info_add_new_bytes(info, found, total_bytes -
3952 					 bytes_used - bytes_readonly);
3953 		spin_unlock(&found->lock);
3954 		*space_info = found;
3955 		return 0;
3956 	}
3957 	found = kzalloc(sizeof(*found), GFP_NOFS);
3958 	if (!found)
3959 		return -ENOMEM;
3960 
3961 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3962 	if (ret) {
3963 		kfree(found);
3964 		return ret;
3965 	}
3966 
3967 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3968 		INIT_LIST_HEAD(&found->block_groups[i]);
3969 	init_rwsem(&found->groups_sem);
3970 	spin_lock_init(&found->lock);
3971 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3972 	found->total_bytes = total_bytes;
3973 	found->disk_total = total_bytes * factor;
3974 	found->bytes_used = bytes_used;
3975 	found->disk_used = bytes_used * factor;
3976 	found->bytes_pinned = 0;
3977 	found->bytes_reserved = 0;
3978 	found->bytes_readonly = bytes_readonly;
3979 	found->bytes_may_use = 0;
3980 	found->full = 0;
3981 	found->max_extent_size = 0;
3982 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3983 	found->chunk_alloc = 0;
3984 	found->flush = 0;
3985 	init_waitqueue_head(&found->wait);
3986 	INIT_LIST_HEAD(&found->ro_bgs);
3987 	INIT_LIST_HEAD(&found->tickets);
3988 	INIT_LIST_HEAD(&found->priority_tickets);
3989 
3990 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3991 				    info->space_info_kobj, "%s",
3992 				    alloc_name(found->flags));
3993 	if (ret) {
3994 		kfree(found);
3995 		return ret;
3996 	}
3997 
3998 	*space_info = found;
3999 	list_add_rcu(&found->list, &info->space_info);
4000 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4001 		info->data_sinfo = found;
4002 
4003 	return ret;
4004 }
4005 
4006 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4007 {
4008 	u64 extra_flags = chunk_to_extended(flags) &
4009 				BTRFS_EXTENDED_PROFILE_MASK;
4010 
4011 	write_seqlock(&fs_info->profiles_lock);
4012 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4013 		fs_info->avail_data_alloc_bits |= extra_flags;
4014 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4015 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4016 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4017 		fs_info->avail_system_alloc_bits |= extra_flags;
4018 	write_sequnlock(&fs_info->profiles_lock);
4019 }
4020 
4021 /*
4022  * returns target flags in extended format or 0 if restripe for this
4023  * chunk_type is not in progress
4024  *
4025  * should be called with either volume_mutex or balance_lock held
4026  */
4027 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4028 {
4029 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4030 	u64 target = 0;
4031 
4032 	if (!bctl)
4033 		return 0;
4034 
4035 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4036 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4037 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4038 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4039 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4040 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4041 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4042 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4043 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4044 	}
4045 
4046 	return target;
4047 }
4048 
4049 /*
4050  * @flags: available profiles in extended format (see ctree.h)
4051  *
4052  * Returns reduced profile in chunk format.  If profile changing is in
4053  * progress (either running or paused) picks the target profile (if it's
4054  * already available), otherwise falls back to plain reducing.
4055  */
4056 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4057 {
4058 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
4059 	u64 target;
4060 	u64 raid_type;
4061 	u64 allowed = 0;
4062 
4063 	/*
4064 	 * see if restripe for this chunk_type is in progress, if so
4065 	 * try to reduce to the target profile
4066 	 */
4067 	spin_lock(&root->fs_info->balance_lock);
4068 	target = get_restripe_target(root->fs_info, flags);
4069 	if (target) {
4070 		/* pick target profile only if it's already available */
4071 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4072 			spin_unlock(&root->fs_info->balance_lock);
4073 			return extended_to_chunk(target);
4074 		}
4075 	}
4076 	spin_unlock(&root->fs_info->balance_lock);
4077 
4078 	/* First, mask out the RAID levels which aren't possible */
4079 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4080 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4081 			allowed |= btrfs_raid_group[raid_type];
4082 	}
4083 	allowed &= flags;
4084 
4085 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4086 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4087 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4088 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4089 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4090 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4091 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4092 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4093 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4094 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4095 
4096 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4097 
4098 	return extended_to_chunk(flags | allowed);
4099 }
4100 
4101 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4102 {
4103 	unsigned seq;
4104 	u64 flags;
4105 
4106 	do {
4107 		flags = orig_flags;
4108 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4109 
4110 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4111 			flags |= root->fs_info->avail_data_alloc_bits;
4112 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4113 			flags |= root->fs_info->avail_system_alloc_bits;
4114 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4115 			flags |= root->fs_info->avail_metadata_alloc_bits;
4116 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4117 
4118 	return btrfs_reduce_alloc_profile(root, flags);
4119 }
4120 
4121 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4122 {
4123 	u64 flags;
4124 	u64 ret;
4125 
4126 	if (data)
4127 		flags = BTRFS_BLOCK_GROUP_DATA;
4128 	else if (root == root->fs_info->chunk_root)
4129 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4130 	else
4131 		flags = BTRFS_BLOCK_GROUP_METADATA;
4132 
4133 	ret = get_alloc_profile(root, flags);
4134 	return ret;
4135 }
4136 
4137 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4138 {
4139 	struct btrfs_space_info *data_sinfo;
4140 	struct btrfs_root *root = BTRFS_I(inode)->root;
4141 	struct btrfs_fs_info *fs_info = root->fs_info;
4142 	u64 used;
4143 	int ret = 0;
4144 	int need_commit = 2;
4145 	int have_pinned_space;
4146 
4147 	/* make sure bytes are sectorsize aligned */
4148 	bytes = ALIGN(bytes, root->sectorsize);
4149 
4150 	if (btrfs_is_free_space_inode(inode)) {
4151 		need_commit = 0;
4152 		ASSERT(current->journal_info);
4153 	}
4154 
4155 	data_sinfo = fs_info->data_sinfo;
4156 	if (!data_sinfo)
4157 		goto alloc;
4158 
4159 again:
4160 	/* make sure we have enough space to handle the data first */
4161 	spin_lock(&data_sinfo->lock);
4162 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4163 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4164 		data_sinfo->bytes_may_use;
4165 
4166 	if (used + bytes > data_sinfo->total_bytes) {
4167 		struct btrfs_trans_handle *trans;
4168 
4169 		/*
4170 		 * if we don't have enough free bytes in this space then we need
4171 		 * to alloc a new chunk.
4172 		 */
4173 		if (!data_sinfo->full) {
4174 			u64 alloc_target;
4175 
4176 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4177 			spin_unlock(&data_sinfo->lock);
4178 alloc:
4179 			alloc_target = btrfs_get_alloc_profile(root, 1);
4180 			/*
4181 			 * It is ugly that we don't call nolock join
4182 			 * transaction for the free space inode case here.
4183 			 * But it is safe because we only do the data space
4184 			 * reservation for the free space cache in the
4185 			 * transaction context, the common join transaction
4186 			 * just increase the counter of the current transaction
4187 			 * handler, doesn't try to acquire the trans_lock of
4188 			 * the fs.
4189 			 */
4190 			trans = btrfs_join_transaction(root);
4191 			if (IS_ERR(trans))
4192 				return PTR_ERR(trans);
4193 
4194 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4195 					     alloc_target,
4196 					     CHUNK_ALLOC_NO_FORCE);
4197 			btrfs_end_transaction(trans, root);
4198 			if (ret < 0) {
4199 				if (ret != -ENOSPC)
4200 					return ret;
4201 				else {
4202 					have_pinned_space = 1;
4203 					goto commit_trans;
4204 				}
4205 			}
4206 
4207 			if (!data_sinfo)
4208 				data_sinfo = fs_info->data_sinfo;
4209 
4210 			goto again;
4211 		}
4212 
4213 		/*
4214 		 * If we don't have enough pinned space to deal with this
4215 		 * allocation, and no removed chunk in current transaction,
4216 		 * don't bother committing the transaction.
4217 		 */
4218 		have_pinned_space = percpu_counter_compare(
4219 			&data_sinfo->total_bytes_pinned,
4220 			used + bytes - data_sinfo->total_bytes);
4221 		spin_unlock(&data_sinfo->lock);
4222 
4223 		/* commit the current transaction and try again */
4224 commit_trans:
4225 		if (need_commit &&
4226 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4227 			need_commit--;
4228 
4229 			if (need_commit > 0) {
4230 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4231 				btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4232 			}
4233 
4234 			trans = btrfs_join_transaction(root);
4235 			if (IS_ERR(trans))
4236 				return PTR_ERR(trans);
4237 			if (have_pinned_space >= 0 ||
4238 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4239 				     &trans->transaction->flags) ||
4240 			    need_commit > 0) {
4241 				ret = btrfs_commit_transaction(trans, root);
4242 				if (ret)
4243 					return ret;
4244 				/*
4245 				 * The cleaner kthread might still be doing iput
4246 				 * operations. Wait for it to finish so that
4247 				 * more space is released.
4248 				 */
4249 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4250 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4251 				goto again;
4252 			} else {
4253 				btrfs_end_transaction(trans, root);
4254 			}
4255 		}
4256 
4257 		trace_btrfs_space_reservation(root->fs_info,
4258 					      "space_info:enospc",
4259 					      data_sinfo->flags, bytes, 1);
4260 		return -ENOSPC;
4261 	}
4262 	data_sinfo->bytes_may_use += bytes;
4263 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4264 				      data_sinfo->flags, bytes, 1);
4265 	spin_unlock(&data_sinfo->lock);
4266 
4267 	return ret;
4268 }
4269 
4270 /*
4271  * New check_data_free_space() with ability for precious data reservation
4272  * Will replace old btrfs_check_data_free_space(), but for patch split,
4273  * add a new function first and then replace it.
4274  */
4275 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4276 {
4277 	struct btrfs_root *root = BTRFS_I(inode)->root;
4278 	int ret;
4279 
4280 	/* align the range */
4281 	len = round_up(start + len, root->sectorsize) -
4282 	      round_down(start, root->sectorsize);
4283 	start = round_down(start, root->sectorsize);
4284 
4285 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4286 	if (ret < 0)
4287 		return ret;
4288 
4289 	/*
4290 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4291 	 *
4292 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4293 	 * range, but don't impact performance on quota disable case.
4294 	 */
4295 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4296 	return ret;
4297 }
4298 
4299 /*
4300  * Called if we need to clear a data reservation for this inode
4301  * Normally in a error case.
4302  *
4303  * This one will *NOT* use accurate qgroup reserved space API, just for case
4304  * which we can't sleep and is sure it won't affect qgroup reserved space.
4305  * Like clear_bit_hook().
4306  */
4307 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4308 					    u64 len)
4309 {
4310 	struct btrfs_root *root = BTRFS_I(inode)->root;
4311 	struct btrfs_space_info *data_sinfo;
4312 
4313 	/* Make sure the range is aligned to sectorsize */
4314 	len = round_up(start + len, root->sectorsize) -
4315 	      round_down(start, root->sectorsize);
4316 	start = round_down(start, root->sectorsize);
4317 
4318 	data_sinfo = root->fs_info->data_sinfo;
4319 	spin_lock(&data_sinfo->lock);
4320 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4321 		data_sinfo->bytes_may_use = 0;
4322 	else
4323 		data_sinfo->bytes_may_use -= len;
4324 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4325 				      data_sinfo->flags, len, 0);
4326 	spin_unlock(&data_sinfo->lock);
4327 }
4328 
4329 /*
4330  * Called if we need to clear a data reservation for this inode
4331  * Normally in a error case.
4332  *
4333  * This one will handle the per-inode data rsv map for accurate reserved
4334  * space framework.
4335  */
4336 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4337 {
4338 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4339 	btrfs_qgroup_free_data(inode, start, len);
4340 }
4341 
4342 static void force_metadata_allocation(struct btrfs_fs_info *info)
4343 {
4344 	struct list_head *head = &info->space_info;
4345 	struct btrfs_space_info *found;
4346 
4347 	rcu_read_lock();
4348 	list_for_each_entry_rcu(found, head, list) {
4349 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4350 			found->force_alloc = CHUNK_ALLOC_FORCE;
4351 	}
4352 	rcu_read_unlock();
4353 }
4354 
4355 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4356 {
4357 	return (global->size << 1);
4358 }
4359 
4360 static int should_alloc_chunk(struct btrfs_root *root,
4361 			      struct btrfs_space_info *sinfo, int force)
4362 {
4363 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4364 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4365 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4366 	u64 thresh;
4367 
4368 	if (force == CHUNK_ALLOC_FORCE)
4369 		return 1;
4370 
4371 	/*
4372 	 * We need to take into account the global rsv because for all intents
4373 	 * and purposes it's used space.  Don't worry about locking the
4374 	 * global_rsv, it doesn't change except when the transaction commits.
4375 	 */
4376 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4377 		num_allocated += calc_global_rsv_need_space(global_rsv);
4378 
4379 	/*
4380 	 * in limited mode, we want to have some free space up to
4381 	 * about 1% of the FS size.
4382 	 */
4383 	if (force == CHUNK_ALLOC_LIMITED) {
4384 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4385 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4386 
4387 		if (num_bytes - num_allocated < thresh)
4388 			return 1;
4389 	}
4390 
4391 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4392 		return 0;
4393 	return 1;
4394 }
4395 
4396 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4397 {
4398 	u64 num_dev;
4399 
4400 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4401 		    BTRFS_BLOCK_GROUP_RAID0 |
4402 		    BTRFS_BLOCK_GROUP_RAID5 |
4403 		    BTRFS_BLOCK_GROUP_RAID6))
4404 		num_dev = root->fs_info->fs_devices->rw_devices;
4405 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4406 		num_dev = 2;
4407 	else
4408 		num_dev = 1;	/* DUP or single */
4409 
4410 	return num_dev;
4411 }
4412 
4413 /*
4414  * If @is_allocation is true, reserve space in the system space info necessary
4415  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4416  * removing a chunk.
4417  */
4418 void check_system_chunk(struct btrfs_trans_handle *trans,
4419 			struct btrfs_root *root,
4420 			u64 type)
4421 {
4422 	struct btrfs_space_info *info;
4423 	u64 left;
4424 	u64 thresh;
4425 	int ret = 0;
4426 	u64 num_devs;
4427 
4428 	/*
4429 	 * Needed because we can end up allocating a system chunk and for an
4430 	 * atomic and race free space reservation in the chunk block reserve.
4431 	 */
4432 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4433 
4434 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4435 	spin_lock(&info->lock);
4436 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4437 		info->bytes_reserved - info->bytes_readonly -
4438 		info->bytes_may_use;
4439 	spin_unlock(&info->lock);
4440 
4441 	num_devs = get_profile_num_devs(root, type);
4442 
4443 	/* num_devs device items to update and 1 chunk item to add or remove */
4444 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4445 		btrfs_calc_trans_metadata_size(root, 1);
4446 
4447 	if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4448 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4449 			left, thresh, type);
4450 		dump_space_info(info, 0, 0);
4451 	}
4452 
4453 	if (left < thresh) {
4454 		u64 flags;
4455 
4456 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4457 		/*
4458 		 * Ignore failure to create system chunk. We might end up not
4459 		 * needing it, as we might not need to COW all nodes/leafs from
4460 		 * the paths we visit in the chunk tree (they were already COWed
4461 		 * or created in the current transaction for example).
4462 		 */
4463 		ret = btrfs_alloc_chunk(trans, root, flags);
4464 	}
4465 
4466 	if (!ret) {
4467 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4468 					  &root->fs_info->chunk_block_rsv,
4469 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4470 		if (!ret)
4471 			trans->chunk_bytes_reserved += thresh;
4472 	}
4473 }
4474 
4475 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4476 			  struct btrfs_root *extent_root, u64 flags, int force)
4477 {
4478 	struct btrfs_space_info *space_info;
4479 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4480 	int wait_for_alloc = 0;
4481 	int ret = 0;
4482 
4483 	/* Don't re-enter if we're already allocating a chunk */
4484 	if (trans->allocating_chunk)
4485 		return -ENOSPC;
4486 
4487 	space_info = __find_space_info(extent_root->fs_info, flags);
4488 	if (!space_info) {
4489 		ret = update_space_info(extent_root->fs_info, flags,
4490 					0, 0, 0, &space_info);
4491 		BUG_ON(ret); /* -ENOMEM */
4492 	}
4493 	BUG_ON(!space_info); /* Logic error */
4494 
4495 again:
4496 	spin_lock(&space_info->lock);
4497 	if (force < space_info->force_alloc)
4498 		force = space_info->force_alloc;
4499 	if (space_info->full) {
4500 		if (should_alloc_chunk(extent_root, space_info, force))
4501 			ret = -ENOSPC;
4502 		else
4503 			ret = 0;
4504 		spin_unlock(&space_info->lock);
4505 		return ret;
4506 	}
4507 
4508 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4509 		spin_unlock(&space_info->lock);
4510 		return 0;
4511 	} else if (space_info->chunk_alloc) {
4512 		wait_for_alloc = 1;
4513 	} else {
4514 		space_info->chunk_alloc = 1;
4515 	}
4516 
4517 	spin_unlock(&space_info->lock);
4518 
4519 	mutex_lock(&fs_info->chunk_mutex);
4520 
4521 	/*
4522 	 * The chunk_mutex is held throughout the entirety of a chunk
4523 	 * allocation, so once we've acquired the chunk_mutex we know that the
4524 	 * other guy is done and we need to recheck and see if we should
4525 	 * allocate.
4526 	 */
4527 	if (wait_for_alloc) {
4528 		mutex_unlock(&fs_info->chunk_mutex);
4529 		wait_for_alloc = 0;
4530 		goto again;
4531 	}
4532 
4533 	trans->allocating_chunk = true;
4534 
4535 	/*
4536 	 * If we have mixed data/metadata chunks we want to make sure we keep
4537 	 * allocating mixed chunks instead of individual chunks.
4538 	 */
4539 	if (btrfs_mixed_space_info(space_info))
4540 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4541 
4542 	/*
4543 	 * if we're doing a data chunk, go ahead and make sure that
4544 	 * we keep a reasonable number of metadata chunks allocated in the
4545 	 * FS as well.
4546 	 */
4547 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4548 		fs_info->data_chunk_allocations++;
4549 		if (!(fs_info->data_chunk_allocations %
4550 		      fs_info->metadata_ratio))
4551 			force_metadata_allocation(fs_info);
4552 	}
4553 
4554 	/*
4555 	 * Check if we have enough space in SYSTEM chunk because we may need
4556 	 * to update devices.
4557 	 */
4558 	check_system_chunk(trans, extent_root, flags);
4559 
4560 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4561 	trans->allocating_chunk = false;
4562 
4563 	spin_lock(&space_info->lock);
4564 	if (ret < 0 && ret != -ENOSPC)
4565 		goto out;
4566 	if (ret)
4567 		space_info->full = 1;
4568 	else
4569 		ret = 1;
4570 
4571 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4572 out:
4573 	space_info->chunk_alloc = 0;
4574 	spin_unlock(&space_info->lock);
4575 	mutex_unlock(&fs_info->chunk_mutex);
4576 	/*
4577 	 * When we allocate a new chunk we reserve space in the chunk block
4578 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4579 	 * add new nodes/leafs to it if we end up needing to do it when
4580 	 * inserting the chunk item and updating device items as part of the
4581 	 * second phase of chunk allocation, performed by
4582 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4583 	 * large number of new block groups to create in our transaction
4584 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4585 	 * in extreme cases - like having a single transaction create many new
4586 	 * block groups when starting to write out the free space caches of all
4587 	 * the block groups that were made dirty during the lifetime of the
4588 	 * transaction.
4589 	 */
4590 	if (trans->can_flush_pending_bgs &&
4591 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4592 		btrfs_create_pending_block_groups(trans, extent_root);
4593 		btrfs_trans_release_chunk_metadata(trans);
4594 	}
4595 	return ret;
4596 }
4597 
4598 static int can_overcommit(struct btrfs_root *root,
4599 			  struct btrfs_space_info *space_info, u64 bytes,
4600 			  enum btrfs_reserve_flush_enum flush)
4601 {
4602 	struct btrfs_block_rsv *global_rsv;
4603 	u64 profile;
4604 	u64 space_size;
4605 	u64 avail;
4606 	u64 used;
4607 
4608 	/* Don't overcommit when in mixed mode. */
4609 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4610 		return 0;
4611 
4612 	BUG_ON(root->fs_info == NULL);
4613 	global_rsv = &root->fs_info->global_block_rsv;
4614 	profile = btrfs_get_alloc_profile(root, 0);
4615 	used = space_info->bytes_used + space_info->bytes_reserved +
4616 		space_info->bytes_pinned + space_info->bytes_readonly;
4617 
4618 	/*
4619 	 * We only want to allow over committing if we have lots of actual space
4620 	 * free, but if we don't have enough space to handle the global reserve
4621 	 * space then we could end up having a real enospc problem when trying
4622 	 * to allocate a chunk or some other such important allocation.
4623 	 */
4624 	spin_lock(&global_rsv->lock);
4625 	space_size = calc_global_rsv_need_space(global_rsv);
4626 	spin_unlock(&global_rsv->lock);
4627 	if (used + space_size >= space_info->total_bytes)
4628 		return 0;
4629 
4630 	used += space_info->bytes_may_use;
4631 
4632 	spin_lock(&root->fs_info->free_chunk_lock);
4633 	avail = root->fs_info->free_chunk_space;
4634 	spin_unlock(&root->fs_info->free_chunk_lock);
4635 
4636 	/*
4637 	 * If we have dup, raid1 or raid10 then only half of the free
4638 	 * space is actually useable.  For raid56, the space info used
4639 	 * doesn't include the parity drive, so we don't have to
4640 	 * change the math
4641 	 */
4642 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4643 		       BTRFS_BLOCK_GROUP_RAID1 |
4644 		       BTRFS_BLOCK_GROUP_RAID10))
4645 		avail >>= 1;
4646 
4647 	/*
4648 	 * If we aren't flushing all things, let us overcommit up to
4649 	 * 1/2th of the space. If we can flush, don't let us overcommit
4650 	 * too much, let it overcommit up to 1/8 of the space.
4651 	 */
4652 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4653 		avail >>= 3;
4654 	else
4655 		avail >>= 1;
4656 
4657 	if (used + bytes < space_info->total_bytes + avail)
4658 		return 1;
4659 	return 0;
4660 }
4661 
4662 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4663 					 unsigned long nr_pages, int nr_items)
4664 {
4665 	struct super_block *sb = root->fs_info->sb;
4666 
4667 	if (down_read_trylock(&sb->s_umount)) {
4668 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4669 		up_read(&sb->s_umount);
4670 	} else {
4671 		/*
4672 		 * We needn't worry the filesystem going from r/w to r/o though
4673 		 * we don't acquire ->s_umount mutex, because the filesystem
4674 		 * should guarantee the delalloc inodes list be empty after
4675 		 * the filesystem is readonly(all dirty pages are written to
4676 		 * the disk).
4677 		 */
4678 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4679 		if (!current->journal_info)
4680 			btrfs_wait_ordered_roots(root->fs_info, nr_items,
4681 						 0, (u64)-1);
4682 	}
4683 }
4684 
4685 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4686 {
4687 	u64 bytes;
4688 	int nr;
4689 
4690 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4691 	nr = (int)div64_u64(to_reclaim, bytes);
4692 	if (!nr)
4693 		nr = 1;
4694 	return nr;
4695 }
4696 
4697 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4698 
4699 /*
4700  * shrink metadata reservation for delalloc
4701  */
4702 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4703 			    bool wait_ordered)
4704 {
4705 	struct btrfs_block_rsv *block_rsv;
4706 	struct btrfs_space_info *space_info;
4707 	struct btrfs_trans_handle *trans;
4708 	u64 delalloc_bytes;
4709 	u64 max_reclaim;
4710 	long time_left;
4711 	unsigned long nr_pages;
4712 	int loops;
4713 	int items;
4714 	enum btrfs_reserve_flush_enum flush;
4715 
4716 	/* Calc the number of the pages we need flush for space reservation */
4717 	items = calc_reclaim_items_nr(root, to_reclaim);
4718 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4719 
4720 	trans = (struct btrfs_trans_handle *)current->journal_info;
4721 	block_rsv = &root->fs_info->delalloc_block_rsv;
4722 	space_info = block_rsv->space_info;
4723 
4724 	delalloc_bytes = percpu_counter_sum_positive(
4725 						&root->fs_info->delalloc_bytes);
4726 	if (delalloc_bytes == 0) {
4727 		if (trans)
4728 			return;
4729 		if (wait_ordered)
4730 			btrfs_wait_ordered_roots(root->fs_info, items,
4731 						 0, (u64)-1);
4732 		return;
4733 	}
4734 
4735 	loops = 0;
4736 	while (delalloc_bytes && loops < 3) {
4737 		max_reclaim = min(delalloc_bytes, to_reclaim);
4738 		nr_pages = max_reclaim >> PAGE_SHIFT;
4739 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4740 		/*
4741 		 * We need to wait for the async pages to actually start before
4742 		 * we do anything.
4743 		 */
4744 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4745 		if (!max_reclaim)
4746 			goto skip_async;
4747 
4748 		if (max_reclaim <= nr_pages)
4749 			max_reclaim = 0;
4750 		else
4751 			max_reclaim -= nr_pages;
4752 
4753 		wait_event(root->fs_info->async_submit_wait,
4754 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4755 			   (int)max_reclaim);
4756 skip_async:
4757 		if (!trans)
4758 			flush = BTRFS_RESERVE_FLUSH_ALL;
4759 		else
4760 			flush = BTRFS_RESERVE_NO_FLUSH;
4761 		spin_lock(&space_info->lock);
4762 		if (can_overcommit(root, space_info, orig, flush)) {
4763 			spin_unlock(&space_info->lock);
4764 			break;
4765 		}
4766 		if (list_empty(&space_info->tickets) &&
4767 		    list_empty(&space_info->priority_tickets)) {
4768 			spin_unlock(&space_info->lock);
4769 			break;
4770 		}
4771 		spin_unlock(&space_info->lock);
4772 
4773 		loops++;
4774 		if (wait_ordered && !trans) {
4775 			btrfs_wait_ordered_roots(root->fs_info, items,
4776 						 0, (u64)-1);
4777 		} else {
4778 			time_left = schedule_timeout_killable(1);
4779 			if (time_left)
4780 				break;
4781 		}
4782 		delalloc_bytes = percpu_counter_sum_positive(
4783 						&root->fs_info->delalloc_bytes);
4784 	}
4785 }
4786 
4787 /**
4788  * maybe_commit_transaction - possibly commit the transaction if its ok to
4789  * @root - the root we're allocating for
4790  * @bytes - the number of bytes we want to reserve
4791  * @force - force the commit
4792  *
4793  * This will check to make sure that committing the transaction will actually
4794  * get us somewhere and then commit the transaction if it does.  Otherwise it
4795  * will return -ENOSPC.
4796  */
4797 static int may_commit_transaction(struct btrfs_root *root,
4798 				  struct btrfs_space_info *space_info,
4799 				  u64 bytes, int force)
4800 {
4801 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4802 	struct btrfs_trans_handle *trans;
4803 
4804 	trans = (struct btrfs_trans_handle *)current->journal_info;
4805 	if (trans)
4806 		return -EAGAIN;
4807 
4808 	if (force)
4809 		goto commit;
4810 
4811 	/* See if there is enough pinned space to make this reservation */
4812 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4813 				   bytes) >= 0)
4814 		goto commit;
4815 
4816 	/*
4817 	 * See if there is some space in the delayed insertion reservation for
4818 	 * this reservation.
4819 	 */
4820 	if (space_info != delayed_rsv->space_info)
4821 		return -ENOSPC;
4822 
4823 	spin_lock(&delayed_rsv->lock);
4824 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4825 				   bytes - delayed_rsv->size) >= 0) {
4826 		spin_unlock(&delayed_rsv->lock);
4827 		return -ENOSPC;
4828 	}
4829 	spin_unlock(&delayed_rsv->lock);
4830 
4831 commit:
4832 	trans = btrfs_join_transaction(root);
4833 	if (IS_ERR(trans))
4834 		return -ENOSPC;
4835 
4836 	return btrfs_commit_transaction(trans, root);
4837 }
4838 
4839 struct reserve_ticket {
4840 	u64 bytes;
4841 	int error;
4842 	struct list_head list;
4843 	wait_queue_head_t wait;
4844 };
4845 
4846 static int flush_space(struct btrfs_root *root,
4847 		       struct btrfs_space_info *space_info, u64 num_bytes,
4848 		       u64 orig_bytes, int state)
4849 {
4850 	struct btrfs_trans_handle *trans;
4851 	int nr;
4852 	int ret = 0;
4853 
4854 	switch (state) {
4855 	case FLUSH_DELAYED_ITEMS_NR:
4856 	case FLUSH_DELAYED_ITEMS:
4857 		if (state == FLUSH_DELAYED_ITEMS_NR)
4858 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4859 		else
4860 			nr = -1;
4861 
4862 		trans = btrfs_join_transaction(root);
4863 		if (IS_ERR(trans)) {
4864 			ret = PTR_ERR(trans);
4865 			break;
4866 		}
4867 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4868 		btrfs_end_transaction(trans, root);
4869 		break;
4870 	case FLUSH_DELALLOC:
4871 	case FLUSH_DELALLOC_WAIT:
4872 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4873 				state == FLUSH_DELALLOC_WAIT);
4874 		break;
4875 	case ALLOC_CHUNK:
4876 		trans = btrfs_join_transaction(root);
4877 		if (IS_ERR(trans)) {
4878 			ret = PTR_ERR(trans);
4879 			break;
4880 		}
4881 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4882 				     btrfs_get_alloc_profile(root, 0),
4883 				     CHUNK_ALLOC_NO_FORCE);
4884 		btrfs_end_transaction(trans, root);
4885 		if (ret == -ENOSPC)
4886 			ret = 0;
4887 		break;
4888 	case COMMIT_TRANS:
4889 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4890 		break;
4891 	default:
4892 		ret = -ENOSPC;
4893 		break;
4894 	}
4895 
4896 	trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4897 				orig_bytes, state, ret);
4898 	return ret;
4899 }
4900 
4901 static inline u64
4902 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4903 				 struct btrfs_space_info *space_info)
4904 {
4905 	struct reserve_ticket *ticket;
4906 	u64 used;
4907 	u64 expected;
4908 	u64 to_reclaim = 0;
4909 
4910 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4911 	if (can_overcommit(root, space_info, to_reclaim,
4912 			   BTRFS_RESERVE_FLUSH_ALL))
4913 		return 0;
4914 
4915 	list_for_each_entry(ticket, &space_info->tickets, list)
4916 		to_reclaim += ticket->bytes;
4917 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4918 		to_reclaim += ticket->bytes;
4919 	if (to_reclaim)
4920 		return to_reclaim;
4921 
4922 	used = space_info->bytes_used + space_info->bytes_reserved +
4923 	       space_info->bytes_pinned + space_info->bytes_readonly +
4924 	       space_info->bytes_may_use;
4925 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4926 		expected = div_factor_fine(space_info->total_bytes, 95);
4927 	else
4928 		expected = div_factor_fine(space_info->total_bytes, 90);
4929 
4930 	if (used > expected)
4931 		to_reclaim = used - expected;
4932 	else
4933 		to_reclaim = 0;
4934 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4935 				     space_info->bytes_reserved);
4936 	return to_reclaim;
4937 }
4938 
4939 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4940 					struct btrfs_root *root, u64 used)
4941 {
4942 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4943 
4944 	/* If we're just plain full then async reclaim just slows us down. */
4945 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4946 		return 0;
4947 
4948 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4949 		return 0;
4950 
4951 	return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4952 		!test_bit(BTRFS_FS_STATE_REMOUNTING,
4953 			  &root->fs_info->fs_state));
4954 }
4955 
4956 static void wake_all_tickets(struct list_head *head)
4957 {
4958 	struct reserve_ticket *ticket;
4959 
4960 	while (!list_empty(head)) {
4961 		ticket = list_first_entry(head, struct reserve_ticket, list);
4962 		list_del_init(&ticket->list);
4963 		ticket->error = -ENOSPC;
4964 		wake_up(&ticket->wait);
4965 	}
4966 }
4967 
4968 /*
4969  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4970  * will loop and continuously try to flush as long as we are making progress.
4971  * We count progress as clearing off tickets each time we have to loop.
4972  */
4973 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4974 {
4975 	struct reserve_ticket *last_ticket = NULL;
4976 	struct btrfs_fs_info *fs_info;
4977 	struct btrfs_space_info *space_info;
4978 	u64 to_reclaim;
4979 	int flush_state;
4980 	int commit_cycles = 0;
4981 
4982 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4983 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4984 
4985 	spin_lock(&space_info->lock);
4986 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4987 						      space_info);
4988 	if (!to_reclaim) {
4989 		space_info->flush = 0;
4990 		spin_unlock(&space_info->lock);
4991 		return;
4992 	}
4993 	last_ticket = list_first_entry(&space_info->tickets,
4994 				       struct reserve_ticket, list);
4995 	spin_unlock(&space_info->lock);
4996 
4997 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4998 	do {
4999 		struct reserve_ticket *ticket;
5000 		int ret;
5001 
5002 		ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5003 			    to_reclaim, flush_state);
5004 		spin_lock(&space_info->lock);
5005 		if (list_empty(&space_info->tickets)) {
5006 			space_info->flush = 0;
5007 			spin_unlock(&space_info->lock);
5008 			return;
5009 		}
5010 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5011 							      space_info);
5012 		ticket = list_first_entry(&space_info->tickets,
5013 					  struct reserve_ticket, list);
5014 		if (last_ticket == ticket) {
5015 			flush_state++;
5016 		} else {
5017 			last_ticket = ticket;
5018 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5019 			if (commit_cycles)
5020 				commit_cycles--;
5021 		}
5022 
5023 		if (flush_state > COMMIT_TRANS) {
5024 			commit_cycles++;
5025 			if (commit_cycles > 2) {
5026 				wake_all_tickets(&space_info->tickets);
5027 				space_info->flush = 0;
5028 			} else {
5029 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5030 			}
5031 		}
5032 		spin_unlock(&space_info->lock);
5033 	} while (flush_state <= COMMIT_TRANS);
5034 }
5035 
5036 void btrfs_init_async_reclaim_work(struct work_struct *work)
5037 {
5038 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5039 }
5040 
5041 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5042 					    struct btrfs_space_info *space_info,
5043 					    struct reserve_ticket *ticket)
5044 {
5045 	u64 to_reclaim;
5046 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5047 
5048 	spin_lock(&space_info->lock);
5049 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5050 						      space_info);
5051 	if (!to_reclaim) {
5052 		spin_unlock(&space_info->lock);
5053 		return;
5054 	}
5055 	spin_unlock(&space_info->lock);
5056 
5057 	do {
5058 		flush_space(fs_info->fs_root, space_info, to_reclaim,
5059 			    to_reclaim, flush_state);
5060 		flush_state++;
5061 		spin_lock(&space_info->lock);
5062 		if (ticket->bytes == 0) {
5063 			spin_unlock(&space_info->lock);
5064 			return;
5065 		}
5066 		spin_unlock(&space_info->lock);
5067 
5068 		/*
5069 		 * Priority flushers can't wait on delalloc without
5070 		 * deadlocking.
5071 		 */
5072 		if (flush_state == FLUSH_DELALLOC ||
5073 		    flush_state == FLUSH_DELALLOC_WAIT)
5074 			flush_state = ALLOC_CHUNK;
5075 	} while (flush_state < COMMIT_TRANS);
5076 }
5077 
5078 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5079 			       struct btrfs_space_info *space_info,
5080 			       struct reserve_ticket *ticket, u64 orig_bytes)
5081 
5082 {
5083 	DEFINE_WAIT(wait);
5084 	int ret = 0;
5085 
5086 	spin_lock(&space_info->lock);
5087 	while (ticket->bytes > 0 && ticket->error == 0) {
5088 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5089 		if (ret) {
5090 			ret = -EINTR;
5091 			break;
5092 		}
5093 		spin_unlock(&space_info->lock);
5094 
5095 		schedule();
5096 
5097 		finish_wait(&ticket->wait, &wait);
5098 		spin_lock(&space_info->lock);
5099 	}
5100 	if (!ret)
5101 		ret = ticket->error;
5102 	if (!list_empty(&ticket->list))
5103 		list_del_init(&ticket->list);
5104 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5105 		u64 num_bytes = orig_bytes - ticket->bytes;
5106 		space_info->bytes_may_use -= num_bytes;
5107 		trace_btrfs_space_reservation(fs_info, "space_info",
5108 					      space_info->flags, num_bytes, 0);
5109 	}
5110 	spin_unlock(&space_info->lock);
5111 
5112 	return ret;
5113 }
5114 
5115 /**
5116  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5117  * @root - the root we're allocating for
5118  * @space_info - the space info we want to allocate from
5119  * @orig_bytes - the number of bytes we want
5120  * @flush - whether or not we can flush to make our reservation
5121  *
5122  * This will reserve orig_bytes number of bytes from the space info associated
5123  * with the block_rsv.  If there is not enough space it will make an attempt to
5124  * flush out space to make room.  It will do this by flushing delalloc if
5125  * possible or committing the transaction.  If flush is 0 then no attempts to
5126  * regain reservations will be made and this will fail if there is not enough
5127  * space already.
5128  */
5129 static int __reserve_metadata_bytes(struct btrfs_root *root,
5130 				    struct btrfs_space_info *space_info,
5131 				    u64 orig_bytes,
5132 				    enum btrfs_reserve_flush_enum flush)
5133 {
5134 	struct reserve_ticket ticket;
5135 	u64 used;
5136 	int ret = 0;
5137 
5138 	ASSERT(orig_bytes);
5139 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5140 
5141 	spin_lock(&space_info->lock);
5142 	ret = -ENOSPC;
5143 	used = space_info->bytes_used + space_info->bytes_reserved +
5144 		space_info->bytes_pinned + space_info->bytes_readonly +
5145 		space_info->bytes_may_use;
5146 
5147 	/*
5148 	 * If we have enough space then hooray, make our reservation and carry
5149 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5150 	 * If not things get more complicated.
5151 	 */
5152 	if (used + orig_bytes <= space_info->total_bytes) {
5153 		space_info->bytes_may_use += orig_bytes;
5154 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5155 					      space_info->flags, orig_bytes,
5156 					      1);
5157 		ret = 0;
5158 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5159 		space_info->bytes_may_use += orig_bytes;
5160 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5161 					      space_info->flags, orig_bytes,
5162 					      1);
5163 		ret = 0;
5164 	}
5165 
5166 	/*
5167 	 * If we couldn't make a reservation then setup our reservation ticket
5168 	 * and kick the async worker if it's not already running.
5169 	 *
5170 	 * If we are a priority flusher then we just need to add our ticket to
5171 	 * the list and we will do our own flushing further down.
5172 	 */
5173 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5174 		ticket.bytes = orig_bytes;
5175 		ticket.error = 0;
5176 		init_waitqueue_head(&ticket.wait);
5177 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5178 			list_add_tail(&ticket.list, &space_info->tickets);
5179 			if (!space_info->flush) {
5180 				space_info->flush = 1;
5181 				trace_btrfs_trigger_flush(root->fs_info,
5182 							  space_info->flags,
5183 							  orig_bytes, flush,
5184 							  "enospc");
5185 				queue_work(system_unbound_wq,
5186 					   &root->fs_info->async_reclaim_work);
5187 			}
5188 		} else {
5189 			list_add_tail(&ticket.list,
5190 				      &space_info->priority_tickets);
5191 		}
5192 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5193 		used += orig_bytes;
5194 		/*
5195 		 * We will do the space reservation dance during log replay,
5196 		 * which means we won't have fs_info->fs_root set, so don't do
5197 		 * the async reclaim as we will panic.
5198 		 */
5199 		if (!root->fs_info->log_root_recovering &&
5200 		    need_do_async_reclaim(space_info, root, used) &&
5201 		    !work_busy(&root->fs_info->async_reclaim_work)) {
5202 			trace_btrfs_trigger_flush(root->fs_info,
5203 						  space_info->flags,
5204 						  orig_bytes, flush,
5205 						  "preempt");
5206 			queue_work(system_unbound_wq,
5207 				   &root->fs_info->async_reclaim_work);
5208 		}
5209 	}
5210 	spin_unlock(&space_info->lock);
5211 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5212 		return ret;
5213 
5214 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5215 		return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5216 					   orig_bytes);
5217 
5218 	ret = 0;
5219 	priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5220 	spin_lock(&space_info->lock);
5221 	if (ticket.bytes) {
5222 		if (ticket.bytes < orig_bytes) {
5223 			u64 num_bytes = orig_bytes - ticket.bytes;
5224 			space_info->bytes_may_use -= num_bytes;
5225 			trace_btrfs_space_reservation(root->fs_info,
5226 					"space_info", space_info->flags,
5227 					num_bytes, 0);
5228 
5229 		}
5230 		list_del_init(&ticket.list);
5231 		ret = -ENOSPC;
5232 	}
5233 	spin_unlock(&space_info->lock);
5234 	ASSERT(list_empty(&ticket.list));
5235 	return ret;
5236 }
5237 
5238 /**
5239  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5240  * @root - the root we're allocating for
5241  * @block_rsv - the block_rsv we're allocating for
5242  * @orig_bytes - the number of bytes we want
5243  * @flush - whether or not we can flush to make our reservation
5244  *
5245  * This will reserve orgi_bytes number of bytes from the space info associated
5246  * with the block_rsv.  If there is not enough space it will make an attempt to
5247  * flush out space to make room.  It will do this by flushing delalloc if
5248  * possible or committing the transaction.  If flush is 0 then no attempts to
5249  * regain reservations will be made and this will fail if there is not enough
5250  * space already.
5251  */
5252 static int reserve_metadata_bytes(struct btrfs_root *root,
5253 				  struct btrfs_block_rsv *block_rsv,
5254 				  u64 orig_bytes,
5255 				  enum btrfs_reserve_flush_enum flush)
5256 {
5257 	int ret;
5258 
5259 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5260 				       flush);
5261 	if (ret == -ENOSPC &&
5262 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5263 		struct btrfs_block_rsv *global_rsv =
5264 			&root->fs_info->global_block_rsv;
5265 
5266 		if (block_rsv != global_rsv &&
5267 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5268 			ret = 0;
5269 	}
5270 	if (ret == -ENOSPC)
5271 		trace_btrfs_space_reservation(root->fs_info,
5272 					      "space_info:enospc",
5273 					      block_rsv->space_info->flags,
5274 					      orig_bytes, 1);
5275 	return ret;
5276 }
5277 
5278 static struct btrfs_block_rsv *get_block_rsv(
5279 					const struct btrfs_trans_handle *trans,
5280 					const struct btrfs_root *root)
5281 {
5282 	struct btrfs_block_rsv *block_rsv = NULL;
5283 
5284 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5285 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5286 	     (root == root->fs_info->uuid_root))
5287 		block_rsv = trans->block_rsv;
5288 
5289 	if (!block_rsv)
5290 		block_rsv = root->block_rsv;
5291 
5292 	if (!block_rsv)
5293 		block_rsv = &root->fs_info->empty_block_rsv;
5294 
5295 	return block_rsv;
5296 }
5297 
5298 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5299 			       u64 num_bytes)
5300 {
5301 	int ret = -ENOSPC;
5302 	spin_lock(&block_rsv->lock);
5303 	if (block_rsv->reserved >= num_bytes) {
5304 		block_rsv->reserved -= num_bytes;
5305 		if (block_rsv->reserved < block_rsv->size)
5306 			block_rsv->full = 0;
5307 		ret = 0;
5308 	}
5309 	spin_unlock(&block_rsv->lock);
5310 	return ret;
5311 }
5312 
5313 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5314 				u64 num_bytes, int update_size)
5315 {
5316 	spin_lock(&block_rsv->lock);
5317 	block_rsv->reserved += num_bytes;
5318 	if (update_size)
5319 		block_rsv->size += num_bytes;
5320 	else if (block_rsv->reserved >= block_rsv->size)
5321 		block_rsv->full = 1;
5322 	spin_unlock(&block_rsv->lock);
5323 }
5324 
5325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5326 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5327 			     int min_factor)
5328 {
5329 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5330 	u64 min_bytes;
5331 
5332 	if (global_rsv->space_info != dest->space_info)
5333 		return -ENOSPC;
5334 
5335 	spin_lock(&global_rsv->lock);
5336 	min_bytes = div_factor(global_rsv->size, min_factor);
5337 	if (global_rsv->reserved < min_bytes + num_bytes) {
5338 		spin_unlock(&global_rsv->lock);
5339 		return -ENOSPC;
5340 	}
5341 	global_rsv->reserved -= num_bytes;
5342 	if (global_rsv->reserved < global_rsv->size)
5343 		global_rsv->full = 0;
5344 	spin_unlock(&global_rsv->lock);
5345 
5346 	block_rsv_add_bytes(dest, num_bytes, 1);
5347 	return 0;
5348 }
5349 
5350 /*
5351  * This is for space we already have accounted in space_info->bytes_may_use, so
5352  * basically when we're returning space from block_rsv's.
5353  */
5354 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5355 				     struct btrfs_space_info *space_info,
5356 				     u64 num_bytes)
5357 {
5358 	struct reserve_ticket *ticket;
5359 	struct list_head *head;
5360 	u64 used;
5361 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5362 	bool check_overcommit = false;
5363 
5364 	spin_lock(&space_info->lock);
5365 	head = &space_info->priority_tickets;
5366 
5367 	/*
5368 	 * If we are over our limit then we need to check and see if we can
5369 	 * overcommit, and if we can't then we just need to free up our space
5370 	 * and not satisfy any requests.
5371 	 */
5372 	used = space_info->bytes_used + space_info->bytes_reserved +
5373 		space_info->bytes_pinned + space_info->bytes_readonly +
5374 		space_info->bytes_may_use;
5375 	if (used - num_bytes >= space_info->total_bytes)
5376 		check_overcommit = true;
5377 again:
5378 	while (!list_empty(head) && num_bytes) {
5379 		ticket = list_first_entry(head, struct reserve_ticket,
5380 					  list);
5381 		/*
5382 		 * We use 0 bytes because this space is already reserved, so
5383 		 * adding the ticket space would be a double count.
5384 		 */
5385 		if (check_overcommit &&
5386 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5387 				    flush))
5388 			break;
5389 		if (num_bytes >= ticket->bytes) {
5390 			list_del_init(&ticket->list);
5391 			num_bytes -= ticket->bytes;
5392 			ticket->bytes = 0;
5393 			wake_up(&ticket->wait);
5394 		} else {
5395 			ticket->bytes -= num_bytes;
5396 			num_bytes = 0;
5397 		}
5398 	}
5399 
5400 	if (num_bytes && head == &space_info->priority_tickets) {
5401 		head = &space_info->tickets;
5402 		flush = BTRFS_RESERVE_FLUSH_ALL;
5403 		goto again;
5404 	}
5405 	space_info->bytes_may_use -= num_bytes;
5406 	trace_btrfs_space_reservation(fs_info, "space_info",
5407 				      space_info->flags, num_bytes, 0);
5408 	spin_unlock(&space_info->lock);
5409 }
5410 
5411 /*
5412  * This is for newly allocated space that isn't accounted in
5413  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5414  * we use this helper.
5415  */
5416 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5417 				     struct btrfs_space_info *space_info,
5418 				     u64 num_bytes)
5419 {
5420 	struct reserve_ticket *ticket;
5421 	struct list_head *head = &space_info->priority_tickets;
5422 
5423 again:
5424 	while (!list_empty(head) && num_bytes) {
5425 		ticket = list_first_entry(head, struct reserve_ticket,
5426 					  list);
5427 		if (num_bytes >= ticket->bytes) {
5428 			trace_btrfs_space_reservation(fs_info, "space_info",
5429 						      space_info->flags,
5430 						      ticket->bytes, 1);
5431 			list_del_init(&ticket->list);
5432 			num_bytes -= ticket->bytes;
5433 			space_info->bytes_may_use += ticket->bytes;
5434 			ticket->bytes = 0;
5435 			wake_up(&ticket->wait);
5436 		} else {
5437 			trace_btrfs_space_reservation(fs_info, "space_info",
5438 						      space_info->flags,
5439 						      num_bytes, 1);
5440 			space_info->bytes_may_use += num_bytes;
5441 			ticket->bytes -= num_bytes;
5442 			num_bytes = 0;
5443 		}
5444 	}
5445 
5446 	if (num_bytes && head == &space_info->priority_tickets) {
5447 		head = &space_info->tickets;
5448 		goto again;
5449 	}
5450 }
5451 
5452 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5453 				    struct btrfs_block_rsv *block_rsv,
5454 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5455 {
5456 	struct btrfs_space_info *space_info = block_rsv->space_info;
5457 
5458 	spin_lock(&block_rsv->lock);
5459 	if (num_bytes == (u64)-1)
5460 		num_bytes = block_rsv->size;
5461 	block_rsv->size -= num_bytes;
5462 	if (block_rsv->reserved >= block_rsv->size) {
5463 		num_bytes = block_rsv->reserved - block_rsv->size;
5464 		block_rsv->reserved = block_rsv->size;
5465 		block_rsv->full = 1;
5466 	} else {
5467 		num_bytes = 0;
5468 	}
5469 	spin_unlock(&block_rsv->lock);
5470 
5471 	if (num_bytes > 0) {
5472 		if (dest) {
5473 			spin_lock(&dest->lock);
5474 			if (!dest->full) {
5475 				u64 bytes_to_add;
5476 
5477 				bytes_to_add = dest->size - dest->reserved;
5478 				bytes_to_add = min(num_bytes, bytes_to_add);
5479 				dest->reserved += bytes_to_add;
5480 				if (dest->reserved >= dest->size)
5481 					dest->full = 1;
5482 				num_bytes -= bytes_to_add;
5483 			}
5484 			spin_unlock(&dest->lock);
5485 		}
5486 		if (num_bytes)
5487 			space_info_add_old_bytes(fs_info, space_info,
5488 						 num_bytes);
5489 	}
5490 }
5491 
5492 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5493 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5494 			    int update_size)
5495 {
5496 	int ret;
5497 
5498 	ret = block_rsv_use_bytes(src, num_bytes);
5499 	if (ret)
5500 		return ret;
5501 
5502 	block_rsv_add_bytes(dst, num_bytes, update_size);
5503 	return 0;
5504 }
5505 
5506 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5507 {
5508 	memset(rsv, 0, sizeof(*rsv));
5509 	spin_lock_init(&rsv->lock);
5510 	rsv->type = type;
5511 }
5512 
5513 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5514 					      unsigned short type)
5515 {
5516 	struct btrfs_block_rsv *block_rsv;
5517 	struct btrfs_fs_info *fs_info = root->fs_info;
5518 
5519 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5520 	if (!block_rsv)
5521 		return NULL;
5522 
5523 	btrfs_init_block_rsv(block_rsv, type);
5524 	block_rsv->space_info = __find_space_info(fs_info,
5525 						  BTRFS_BLOCK_GROUP_METADATA);
5526 	return block_rsv;
5527 }
5528 
5529 void btrfs_free_block_rsv(struct btrfs_root *root,
5530 			  struct btrfs_block_rsv *rsv)
5531 {
5532 	if (!rsv)
5533 		return;
5534 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5535 	kfree(rsv);
5536 }
5537 
5538 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5539 {
5540 	kfree(rsv);
5541 }
5542 
5543 int btrfs_block_rsv_add(struct btrfs_root *root,
5544 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5545 			enum btrfs_reserve_flush_enum flush)
5546 {
5547 	int ret;
5548 
5549 	if (num_bytes == 0)
5550 		return 0;
5551 
5552 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5553 	if (!ret) {
5554 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5555 		return 0;
5556 	}
5557 
5558 	return ret;
5559 }
5560 
5561 int btrfs_block_rsv_check(struct btrfs_root *root,
5562 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5563 {
5564 	u64 num_bytes = 0;
5565 	int ret = -ENOSPC;
5566 
5567 	if (!block_rsv)
5568 		return 0;
5569 
5570 	spin_lock(&block_rsv->lock);
5571 	num_bytes = div_factor(block_rsv->size, min_factor);
5572 	if (block_rsv->reserved >= num_bytes)
5573 		ret = 0;
5574 	spin_unlock(&block_rsv->lock);
5575 
5576 	return ret;
5577 }
5578 
5579 int btrfs_block_rsv_refill(struct btrfs_root *root,
5580 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5581 			   enum btrfs_reserve_flush_enum flush)
5582 {
5583 	u64 num_bytes = 0;
5584 	int ret = -ENOSPC;
5585 
5586 	if (!block_rsv)
5587 		return 0;
5588 
5589 	spin_lock(&block_rsv->lock);
5590 	num_bytes = min_reserved;
5591 	if (block_rsv->reserved >= num_bytes)
5592 		ret = 0;
5593 	else
5594 		num_bytes -= block_rsv->reserved;
5595 	spin_unlock(&block_rsv->lock);
5596 
5597 	if (!ret)
5598 		return 0;
5599 
5600 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5601 	if (!ret) {
5602 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5603 		return 0;
5604 	}
5605 
5606 	return ret;
5607 }
5608 
5609 void btrfs_block_rsv_release(struct btrfs_root *root,
5610 			     struct btrfs_block_rsv *block_rsv,
5611 			     u64 num_bytes)
5612 {
5613 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5614 	if (global_rsv == block_rsv ||
5615 	    block_rsv->space_info != global_rsv->space_info)
5616 		global_rsv = NULL;
5617 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5618 				num_bytes);
5619 }
5620 
5621 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5622 {
5623 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5624 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5625 	u64 num_bytes;
5626 
5627 	/*
5628 	 * The global block rsv is based on the size of the extent tree, the
5629 	 * checksum tree and the root tree.  If the fs is empty we want to set
5630 	 * it to a minimal amount for safety.
5631 	 */
5632 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5633 		btrfs_root_used(&fs_info->csum_root->root_item) +
5634 		btrfs_root_used(&fs_info->tree_root->root_item);
5635 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5636 
5637 	spin_lock(&sinfo->lock);
5638 	spin_lock(&block_rsv->lock);
5639 
5640 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5641 
5642 	if (block_rsv->reserved < block_rsv->size) {
5643 		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5644 			sinfo->bytes_reserved + sinfo->bytes_readonly +
5645 			sinfo->bytes_may_use;
5646 		if (sinfo->total_bytes > num_bytes) {
5647 			num_bytes = sinfo->total_bytes - num_bytes;
5648 			num_bytes = min(num_bytes,
5649 					block_rsv->size - block_rsv->reserved);
5650 			block_rsv->reserved += num_bytes;
5651 			sinfo->bytes_may_use += num_bytes;
5652 			trace_btrfs_space_reservation(fs_info, "space_info",
5653 						      sinfo->flags, num_bytes,
5654 						      1);
5655 		}
5656 	} else if (block_rsv->reserved > block_rsv->size) {
5657 		num_bytes = block_rsv->reserved - block_rsv->size;
5658 		sinfo->bytes_may_use -= num_bytes;
5659 		trace_btrfs_space_reservation(fs_info, "space_info",
5660 				      sinfo->flags, num_bytes, 0);
5661 		block_rsv->reserved = block_rsv->size;
5662 	}
5663 
5664 	if (block_rsv->reserved == block_rsv->size)
5665 		block_rsv->full = 1;
5666 	else
5667 		block_rsv->full = 0;
5668 
5669 	spin_unlock(&block_rsv->lock);
5670 	spin_unlock(&sinfo->lock);
5671 }
5672 
5673 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5674 {
5675 	struct btrfs_space_info *space_info;
5676 
5677 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5678 	fs_info->chunk_block_rsv.space_info = space_info;
5679 
5680 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5681 	fs_info->global_block_rsv.space_info = space_info;
5682 	fs_info->delalloc_block_rsv.space_info = space_info;
5683 	fs_info->trans_block_rsv.space_info = space_info;
5684 	fs_info->empty_block_rsv.space_info = space_info;
5685 	fs_info->delayed_block_rsv.space_info = space_info;
5686 
5687 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5688 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5689 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5690 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5691 	if (fs_info->quota_root)
5692 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5693 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5694 
5695 	update_global_block_rsv(fs_info);
5696 }
5697 
5698 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5699 {
5700 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5701 				(u64)-1);
5702 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5703 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5704 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5705 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5706 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5707 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5708 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5709 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5710 }
5711 
5712 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5713 				  struct btrfs_root *root)
5714 {
5715 	if (!trans->block_rsv)
5716 		return;
5717 
5718 	if (!trans->bytes_reserved)
5719 		return;
5720 
5721 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5722 				      trans->transid, trans->bytes_reserved, 0);
5723 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5724 	trans->bytes_reserved = 0;
5725 }
5726 
5727 /*
5728  * To be called after all the new block groups attached to the transaction
5729  * handle have been created (btrfs_create_pending_block_groups()).
5730  */
5731 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5732 {
5733 	struct btrfs_fs_info *fs_info = trans->fs_info;
5734 
5735 	if (!trans->chunk_bytes_reserved)
5736 		return;
5737 
5738 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5739 
5740 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5741 				trans->chunk_bytes_reserved);
5742 	trans->chunk_bytes_reserved = 0;
5743 }
5744 
5745 /* Can only return 0 or -ENOSPC */
5746 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5747 				  struct inode *inode)
5748 {
5749 	struct btrfs_root *root = BTRFS_I(inode)->root;
5750 	/*
5751 	 * We always use trans->block_rsv here as we will have reserved space
5752 	 * for our orphan when starting the transaction, using get_block_rsv()
5753 	 * here will sometimes make us choose the wrong block rsv as we could be
5754 	 * doing a reloc inode for a non refcounted root.
5755 	 */
5756 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5757 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5758 
5759 	/*
5760 	 * We need to hold space in order to delete our orphan item once we've
5761 	 * added it, so this takes the reservation so we can release it later
5762 	 * when we are truly done with the orphan item.
5763 	 */
5764 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5765 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5766 				      btrfs_ino(inode), num_bytes, 1);
5767 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5768 }
5769 
5770 void btrfs_orphan_release_metadata(struct inode *inode)
5771 {
5772 	struct btrfs_root *root = BTRFS_I(inode)->root;
5773 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5774 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5775 				      btrfs_ino(inode), num_bytes, 0);
5776 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5777 }
5778 
5779 /*
5780  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5781  * root: the root of the parent directory
5782  * rsv: block reservation
5783  * items: the number of items that we need do reservation
5784  * qgroup_reserved: used to return the reserved size in qgroup
5785  *
5786  * This function is used to reserve the space for snapshot/subvolume
5787  * creation and deletion. Those operations are different with the
5788  * common file/directory operations, they change two fs/file trees
5789  * and root tree, the number of items that the qgroup reserves is
5790  * different with the free space reservation. So we can not use
5791  * the space reservation mechanism in start_transaction().
5792  */
5793 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5794 				     struct btrfs_block_rsv *rsv,
5795 				     int items,
5796 				     u64 *qgroup_reserved,
5797 				     bool use_global_rsv)
5798 {
5799 	u64 num_bytes;
5800 	int ret;
5801 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5802 
5803 	if (root->fs_info->quota_enabled) {
5804 		/* One for parent inode, two for dir entries */
5805 		num_bytes = 3 * root->nodesize;
5806 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5807 		if (ret)
5808 			return ret;
5809 	} else {
5810 		num_bytes = 0;
5811 	}
5812 
5813 	*qgroup_reserved = num_bytes;
5814 
5815 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5816 	rsv->space_info = __find_space_info(root->fs_info,
5817 					    BTRFS_BLOCK_GROUP_METADATA);
5818 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5819 				  BTRFS_RESERVE_FLUSH_ALL);
5820 
5821 	if (ret == -ENOSPC && use_global_rsv)
5822 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5823 
5824 	if (ret && *qgroup_reserved)
5825 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5826 
5827 	return ret;
5828 }
5829 
5830 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5831 				      struct btrfs_block_rsv *rsv,
5832 				      u64 qgroup_reserved)
5833 {
5834 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5835 }
5836 
5837 /**
5838  * drop_outstanding_extent - drop an outstanding extent
5839  * @inode: the inode we're dropping the extent for
5840  * @num_bytes: the number of bytes we're releasing.
5841  *
5842  * This is called when we are freeing up an outstanding extent, either called
5843  * after an error or after an extent is written.  This will return the number of
5844  * reserved extents that need to be freed.  This must be called with
5845  * BTRFS_I(inode)->lock held.
5846  */
5847 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5848 {
5849 	unsigned drop_inode_space = 0;
5850 	unsigned dropped_extents = 0;
5851 	unsigned num_extents = 0;
5852 
5853 	num_extents = (unsigned)div64_u64(num_bytes +
5854 					  BTRFS_MAX_EXTENT_SIZE - 1,
5855 					  BTRFS_MAX_EXTENT_SIZE);
5856 	ASSERT(num_extents);
5857 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5858 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5859 
5860 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5861 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5862 			       &BTRFS_I(inode)->runtime_flags))
5863 		drop_inode_space = 1;
5864 
5865 	/*
5866 	 * If we have more or the same amount of outstanding extents than we have
5867 	 * reserved then we need to leave the reserved extents count alone.
5868 	 */
5869 	if (BTRFS_I(inode)->outstanding_extents >=
5870 	    BTRFS_I(inode)->reserved_extents)
5871 		return drop_inode_space;
5872 
5873 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5874 		BTRFS_I(inode)->outstanding_extents;
5875 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5876 	return dropped_extents + drop_inode_space;
5877 }
5878 
5879 /**
5880  * calc_csum_metadata_size - return the amount of metadata space that must be
5881  *	reserved/freed for the given bytes.
5882  * @inode: the inode we're manipulating
5883  * @num_bytes: the number of bytes in question
5884  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5885  *
5886  * This adjusts the number of csum_bytes in the inode and then returns the
5887  * correct amount of metadata that must either be reserved or freed.  We
5888  * calculate how many checksums we can fit into one leaf and then divide the
5889  * number of bytes that will need to be checksumed by this value to figure out
5890  * how many checksums will be required.  If we are adding bytes then the number
5891  * may go up and we will return the number of additional bytes that must be
5892  * reserved.  If it is going down we will return the number of bytes that must
5893  * be freed.
5894  *
5895  * This must be called with BTRFS_I(inode)->lock held.
5896  */
5897 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5898 				   int reserve)
5899 {
5900 	struct btrfs_root *root = BTRFS_I(inode)->root;
5901 	u64 old_csums, num_csums;
5902 
5903 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5904 	    BTRFS_I(inode)->csum_bytes == 0)
5905 		return 0;
5906 
5907 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5908 	if (reserve)
5909 		BTRFS_I(inode)->csum_bytes += num_bytes;
5910 	else
5911 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5912 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5913 
5914 	/* No change, no need to reserve more */
5915 	if (old_csums == num_csums)
5916 		return 0;
5917 
5918 	if (reserve)
5919 		return btrfs_calc_trans_metadata_size(root,
5920 						      num_csums - old_csums);
5921 
5922 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5923 }
5924 
5925 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5926 {
5927 	struct btrfs_root *root = BTRFS_I(inode)->root;
5928 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5929 	u64 to_reserve = 0;
5930 	u64 csum_bytes;
5931 	unsigned nr_extents = 0;
5932 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5933 	int ret = 0;
5934 	bool delalloc_lock = true;
5935 	u64 to_free = 0;
5936 	unsigned dropped;
5937 	bool release_extra = false;
5938 
5939 	/* If we are a free space inode we need to not flush since we will be in
5940 	 * the middle of a transaction commit.  We also don't need the delalloc
5941 	 * mutex since we won't race with anybody.  We need this mostly to make
5942 	 * lockdep shut its filthy mouth.
5943 	 *
5944 	 * If we have a transaction open (can happen if we call truncate_block
5945 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5946 	 */
5947 	if (btrfs_is_free_space_inode(inode)) {
5948 		flush = BTRFS_RESERVE_NO_FLUSH;
5949 		delalloc_lock = false;
5950 	} else if (current->journal_info) {
5951 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5952 	}
5953 
5954 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5955 	    btrfs_transaction_in_commit(root->fs_info))
5956 		schedule_timeout(1);
5957 
5958 	if (delalloc_lock)
5959 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5960 
5961 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5962 
5963 	spin_lock(&BTRFS_I(inode)->lock);
5964 	nr_extents = (unsigned)div64_u64(num_bytes +
5965 					 BTRFS_MAX_EXTENT_SIZE - 1,
5966 					 BTRFS_MAX_EXTENT_SIZE);
5967 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5968 
5969 	nr_extents = 0;
5970 	if (BTRFS_I(inode)->outstanding_extents >
5971 	    BTRFS_I(inode)->reserved_extents)
5972 		nr_extents += BTRFS_I(inode)->outstanding_extents -
5973 			BTRFS_I(inode)->reserved_extents;
5974 
5975 	/* We always want to reserve a slot for updating the inode. */
5976 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5977 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5978 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5979 	spin_unlock(&BTRFS_I(inode)->lock);
5980 
5981 	if (root->fs_info->quota_enabled) {
5982 		ret = btrfs_qgroup_reserve_meta(root,
5983 				nr_extents * root->nodesize);
5984 		if (ret)
5985 			goto out_fail;
5986 	}
5987 
5988 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5989 	if (unlikely(ret)) {
5990 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5991 		goto out_fail;
5992 	}
5993 
5994 	spin_lock(&BTRFS_I(inode)->lock);
5995 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5996 			     &BTRFS_I(inode)->runtime_flags)) {
5997 		to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5998 		release_extra = true;
5999 	}
6000 	BTRFS_I(inode)->reserved_extents += nr_extents;
6001 	spin_unlock(&BTRFS_I(inode)->lock);
6002 
6003 	if (delalloc_lock)
6004 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6005 
6006 	if (to_reserve)
6007 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6008 					      btrfs_ino(inode), to_reserve, 1);
6009 	if (release_extra)
6010 		btrfs_block_rsv_release(root, block_rsv,
6011 					btrfs_calc_trans_metadata_size(root,
6012 								       1));
6013 	return 0;
6014 
6015 out_fail:
6016 	spin_lock(&BTRFS_I(inode)->lock);
6017 	dropped = drop_outstanding_extent(inode, num_bytes);
6018 	/*
6019 	 * If the inodes csum_bytes is the same as the original
6020 	 * csum_bytes then we know we haven't raced with any free()ers
6021 	 * so we can just reduce our inodes csum bytes and carry on.
6022 	 */
6023 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6024 		calc_csum_metadata_size(inode, num_bytes, 0);
6025 	} else {
6026 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6027 		u64 bytes;
6028 
6029 		/*
6030 		 * This is tricky, but first we need to figure out how much we
6031 		 * freed from any free-ers that occurred during this
6032 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6033 		 * before we dropped our lock, and then call the free for the
6034 		 * number of bytes that were freed while we were trying our
6035 		 * reservation.
6036 		 */
6037 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6038 		BTRFS_I(inode)->csum_bytes = csum_bytes;
6039 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6040 
6041 
6042 		/*
6043 		 * Now we need to see how much we would have freed had we not
6044 		 * been making this reservation and our ->csum_bytes were not
6045 		 * artificially inflated.
6046 		 */
6047 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6048 		bytes = csum_bytes - orig_csum_bytes;
6049 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6050 
6051 		/*
6052 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6053 		 * more than to_free then we would have freed more space had we
6054 		 * not had an artificially high ->csum_bytes, so we need to free
6055 		 * the remainder.  If bytes is the same or less then we don't
6056 		 * need to do anything, the other free-ers did the correct
6057 		 * thing.
6058 		 */
6059 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6060 		if (bytes > to_free)
6061 			to_free = bytes - to_free;
6062 		else
6063 			to_free = 0;
6064 	}
6065 	spin_unlock(&BTRFS_I(inode)->lock);
6066 	if (dropped)
6067 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6068 
6069 	if (to_free) {
6070 		btrfs_block_rsv_release(root, block_rsv, to_free);
6071 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6072 					      btrfs_ino(inode), to_free, 0);
6073 	}
6074 	if (delalloc_lock)
6075 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6076 	return ret;
6077 }
6078 
6079 /**
6080  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6081  * @inode: the inode to release the reservation for
6082  * @num_bytes: the number of bytes we're releasing
6083  *
6084  * This will release the metadata reservation for an inode.  This can be called
6085  * once we complete IO for a given set of bytes to release their metadata
6086  * reservations.
6087  */
6088 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6089 {
6090 	struct btrfs_root *root = BTRFS_I(inode)->root;
6091 	u64 to_free = 0;
6092 	unsigned dropped;
6093 
6094 	num_bytes = ALIGN(num_bytes, root->sectorsize);
6095 	spin_lock(&BTRFS_I(inode)->lock);
6096 	dropped = drop_outstanding_extent(inode, num_bytes);
6097 
6098 	if (num_bytes)
6099 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6100 	spin_unlock(&BTRFS_I(inode)->lock);
6101 	if (dropped > 0)
6102 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6103 
6104 	if (btrfs_is_testing(root->fs_info))
6105 		return;
6106 
6107 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
6108 				      btrfs_ino(inode), to_free, 0);
6109 
6110 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6111 				to_free);
6112 }
6113 
6114 /**
6115  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6116  * delalloc
6117  * @inode: inode we're writing to
6118  * @start: start range we are writing to
6119  * @len: how long the range we are writing to
6120  *
6121  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6122  *
6123  * This will do the following things
6124  *
6125  * o reserve space in data space info for num bytes
6126  *   and reserve precious corresponding qgroup space
6127  *   (Done in check_data_free_space)
6128  *
6129  * o reserve space for metadata space, based on the number of outstanding
6130  *   extents and how much csums will be needed
6131  *   also reserve metadata space in a per root over-reserve method.
6132  * o add to the inodes->delalloc_bytes
6133  * o add it to the fs_info's delalloc inodes list.
6134  *   (Above 3 all done in delalloc_reserve_metadata)
6135  *
6136  * Return 0 for success
6137  * Return <0 for error(-ENOSPC or -EQUOT)
6138  */
6139 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6140 {
6141 	int ret;
6142 
6143 	ret = btrfs_check_data_free_space(inode, start, len);
6144 	if (ret < 0)
6145 		return ret;
6146 	ret = btrfs_delalloc_reserve_metadata(inode, len);
6147 	if (ret < 0)
6148 		btrfs_free_reserved_data_space(inode, start, len);
6149 	return ret;
6150 }
6151 
6152 /**
6153  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6154  * @inode: inode we're releasing space for
6155  * @start: start position of the space already reserved
6156  * @len: the len of the space already reserved
6157  *
6158  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6159  * called in the case that we don't need the metadata AND data reservations
6160  * anymore.  So if there is an error or we insert an inline extent.
6161  *
6162  * This function will release the metadata space that was not used and will
6163  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6164  * list if there are no delalloc bytes left.
6165  * Also it will handle the qgroup reserved space.
6166  */
6167 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6168 {
6169 	btrfs_delalloc_release_metadata(inode, len);
6170 	btrfs_free_reserved_data_space(inode, start, len);
6171 }
6172 
6173 static int update_block_group(struct btrfs_trans_handle *trans,
6174 			      struct btrfs_root *root, u64 bytenr,
6175 			      u64 num_bytes, int alloc)
6176 {
6177 	struct btrfs_block_group_cache *cache = NULL;
6178 	struct btrfs_fs_info *info = root->fs_info;
6179 	u64 total = num_bytes;
6180 	u64 old_val;
6181 	u64 byte_in_group;
6182 	int factor;
6183 
6184 	/* block accounting for super block */
6185 	spin_lock(&info->delalloc_root_lock);
6186 	old_val = btrfs_super_bytes_used(info->super_copy);
6187 	if (alloc)
6188 		old_val += num_bytes;
6189 	else
6190 		old_val -= num_bytes;
6191 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6192 	spin_unlock(&info->delalloc_root_lock);
6193 
6194 	while (total) {
6195 		cache = btrfs_lookup_block_group(info, bytenr);
6196 		if (!cache)
6197 			return -ENOENT;
6198 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6199 				    BTRFS_BLOCK_GROUP_RAID1 |
6200 				    BTRFS_BLOCK_GROUP_RAID10))
6201 			factor = 2;
6202 		else
6203 			factor = 1;
6204 		/*
6205 		 * If this block group has free space cache written out, we
6206 		 * need to make sure to load it if we are removing space.  This
6207 		 * is because we need the unpinning stage to actually add the
6208 		 * space back to the block group, otherwise we will leak space.
6209 		 */
6210 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6211 			cache_block_group(cache, 1);
6212 
6213 		byte_in_group = bytenr - cache->key.objectid;
6214 		WARN_ON(byte_in_group > cache->key.offset);
6215 
6216 		spin_lock(&cache->space_info->lock);
6217 		spin_lock(&cache->lock);
6218 
6219 		if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6220 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6221 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6222 
6223 		old_val = btrfs_block_group_used(&cache->item);
6224 		num_bytes = min(total, cache->key.offset - byte_in_group);
6225 		if (alloc) {
6226 			old_val += num_bytes;
6227 			btrfs_set_block_group_used(&cache->item, old_val);
6228 			cache->reserved -= num_bytes;
6229 			cache->space_info->bytes_reserved -= num_bytes;
6230 			cache->space_info->bytes_used += num_bytes;
6231 			cache->space_info->disk_used += num_bytes * factor;
6232 			spin_unlock(&cache->lock);
6233 			spin_unlock(&cache->space_info->lock);
6234 		} else {
6235 			old_val -= num_bytes;
6236 			btrfs_set_block_group_used(&cache->item, old_val);
6237 			cache->pinned += num_bytes;
6238 			cache->space_info->bytes_pinned += num_bytes;
6239 			cache->space_info->bytes_used -= num_bytes;
6240 			cache->space_info->disk_used -= num_bytes * factor;
6241 			spin_unlock(&cache->lock);
6242 			spin_unlock(&cache->space_info->lock);
6243 
6244 			trace_btrfs_space_reservation(root->fs_info, "pinned",
6245 						      cache->space_info->flags,
6246 						      num_bytes, 1);
6247 			set_extent_dirty(info->pinned_extents,
6248 					 bytenr, bytenr + num_bytes - 1,
6249 					 GFP_NOFS | __GFP_NOFAIL);
6250 		}
6251 
6252 		spin_lock(&trans->transaction->dirty_bgs_lock);
6253 		if (list_empty(&cache->dirty_list)) {
6254 			list_add_tail(&cache->dirty_list,
6255 				      &trans->transaction->dirty_bgs);
6256 				trans->transaction->num_dirty_bgs++;
6257 			btrfs_get_block_group(cache);
6258 		}
6259 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6260 
6261 		/*
6262 		 * No longer have used bytes in this block group, queue it for
6263 		 * deletion. We do this after adding the block group to the
6264 		 * dirty list to avoid races between cleaner kthread and space
6265 		 * cache writeout.
6266 		 */
6267 		if (!alloc && old_val == 0) {
6268 			spin_lock(&info->unused_bgs_lock);
6269 			if (list_empty(&cache->bg_list)) {
6270 				btrfs_get_block_group(cache);
6271 				list_add_tail(&cache->bg_list,
6272 					      &info->unused_bgs);
6273 			}
6274 			spin_unlock(&info->unused_bgs_lock);
6275 		}
6276 
6277 		btrfs_put_block_group(cache);
6278 		total -= num_bytes;
6279 		bytenr += num_bytes;
6280 	}
6281 	return 0;
6282 }
6283 
6284 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6285 {
6286 	struct btrfs_block_group_cache *cache;
6287 	u64 bytenr;
6288 
6289 	spin_lock(&root->fs_info->block_group_cache_lock);
6290 	bytenr = root->fs_info->first_logical_byte;
6291 	spin_unlock(&root->fs_info->block_group_cache_lock);
6292 
6293 	if (bytenr < (u64)-1)
6294 		return bytenr;
6295 
6296 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6297 	if (!cache)
6298 		return 0;
6299 
6300 	bytenr = cache->key.objectid;
6301 	btrfs_put_block_group(cache);
6302 
6303 	return bytenr;
6304 }
6305 
6306 static int pin_down_extent(struct btrfs_root *root,
6307 			   struct btrfs_block_group_cache *cache,
6308 			   u64 bytenr, u64 num_bytes, int reserved)
6309 {
6310 	spin_lock(&cache->space_info->lock);
6311 	spin_lock(&cache->lock);
6312 	cache->pinned += num_bytes;
6313 	cache->space_info->bytes_pinned += num_bytes;
6314 	if (reserved) {
6315 		cache->reserved -= num_bytes;
6316 		cache->space_info->bytes_reserved -= num_bytes;
6317 	}
6318 	spin_unlock(&cache->lock);
6319 	spin_unlock(&cache->space_info->lock);
6320 
6321 	trace_btrfs_space_reservation(root->fs_info, "pinned",
6322 				      cache->space_info->flags, num_bytes, 1);
6323 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6324 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6325 	return 0;
6326 }
6327 
6328 /*
6329  * this function must be called within transaction
6330  */
6331 int btrfs_pin_extent(struct btrfs_root *root,
6332 		     u64 bytenr, u64 num_bytes, int reserved)
6333 {
6334 	struct btrfs_block_group_cache *cache;
6335 
6336 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6337 	BUG_ON(!cache); /* Logic error */
6338 
6339 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6340 
6341 	btrfs_put_block_group(cache);
6342 	return 0;
6343 }
6344 
6345 /*
6346  * this function must be called within transaction
6347  */
6348 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6349 				    u64 bytenr, u64 num_bytes)
6350 {
6351 	struct btrfs_block_group_cache *cache;
6352 	int ret;
6353 
6354 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6355 	if (!cache)
6356 		return -EINVAL;
6357 
6358 	/*
6359 	 * pull in the free space cache (if any) so that our pin
6360 	 * removes the free space from the cache.  We have load_only set
6361 	 * to one because the slow code to read in the free extents does check
6362 	 * the pinned extents.
6363 	 */
6364 	cache_block_group(cache, 1);
6365 
6366 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6367 
6368 	/* remove us from the free space cache (if we're there at all) */
6369 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6370 	btrfs_put_block_group(cache);
6371 	return ret;
6372 }
6373 
6374 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6375 {
6376 	int ret;
6377 	struct btrfs_block_group_cache *block_group;
6378 	struct btrfs_caching_control *caching_ctl;
6379 
6380 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6381 	if (!block_group)
6382 		return -EINVAL;
6383 
6384 	cache_block_group(block_group, 0);
6385 	caching_ctl = get_caching_control(block_group);
6386 
6387 	if (!caching_ctl) {
6388 		/* Logic error */
6389 		BUG_ON(!block_group_cache_done(block_group));
6390 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6391 	} else {
6392 		mutex_lock(&caching_ctl->mutex);
6393 
6394 		if (start >= caching_ctl->progress) {
6395 			ret = add_excluded_extent(root, start, num_bytes);
6396 		} else if (start + num_bytes <= caching_ctl->progress) {
6397 			ret = btrfs_remove_free_space(block_group,
6398 						      start, num_bytes);
6399 		} else {
6400 			num_bytes = caching_ctl->progress - start;
6401 			ret = btrfs_remove_free_space(block_group,
6402 						      start, num_bytes);
6403 			if (ret)
6404 				goto out_lock;
6405 
6406 			num_bytes = (start + num_bytes) -
6407 				caching_ctl->progress;
6408 			start = caching_ctl->progress;
6409 			ret = add_excluded_extent(root, start, num_bytes);
6410 		}
6411 out_lock:
6412 		mutex_unlock(&caching_ctl->mutex);
6413 		put_caching_control(caching_ctl);
6414 	}
6415 	btrfs_put_block_group(block_group);
6416 	return ret;
6417 }
6418 
6419 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6420 				 struct extent_buffer *eb)
6421 {
6422 	struct btrfs_file_extent_item *item;
6423 	struct btrfs_key key;
6424 	int found_type;
6425 	int i;
6426 
6427 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6428 		return 0;
6429 
6430 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6431 		btrfs_item_key_to_cpu(eb, &key, i);
6432 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6433 			continue;
6434 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6435 		found_type = btrfs_file_extent_type(eb, item);
6436 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6437 			continue;
6438 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6439 			continue;
6440 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6441 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6442 		__exclude_logged_extent(log, key.objectid, key.offset);
6443 	}
6444 
6445 	return 0;
6446 }
6447 
6448 static void
6449 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6450 {
6451 	atomic_inc(&bg->reservations);
6452 }
6453 
6454 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6455 					const u64 start)
6456 {
6457 	struct btrfs_block_group_cache *bg;
6458 
6459 	bg = btrfs_lookup_block_group(fs_info, start);
6460 	ASSERT(bg);
6461 	if (atomic_dec_and_test(&bg->reservations))
6462 		wake_up_atomic_t(&bg->reservations);
6463 	btrfs_put_block_group(bg);
6464 }
6465 
6466 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6467 {
6468 	schedule();
6469 	return 0;
6470 }
6471 
6472 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6473 {
6474 	struct btrfs_space_info *space_info = bg->space_info;
6475 
6476 	ASSERT(bg->ro);
6477 
6478 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6479 		return;
6480 
6481 	/*
6482 	 * Our block group is read only but before we set it to read only,
6483 	 * some task might have had allocated an extent from it already, but it
6484 	 * has not yet created a respective ordered extent (and added it to a
6485 	 * root's list of ordered extents).
6486 	 * Therefore wait for any task currently allocating extents, since the
6487 	 * block group's reservations counter is incremented while a read lock
6488 	 * on the groups' semaphore is held and decremented after releasing
6489 	 * the read access on that semaphore and creating the ordered extent.
6490 	 */
6491 	down_write(&space_info->groups_sem);
6492 	up_write(&space_info->groups_sem);
6493 
6494 	wait_on_atomic_t(&bg->reservations,
6495 			 btrfs_wait_bg_reservations_atomic_t,
6496 			 TASK_UNINTERRUPTIBLE);
6497 }
6498 
6499 /**
6500  * btrfs_update_reserved_bytes - update the block_group and space info counters
6501  * @cache:	The cache we are manipulating
6502  * @num_bytes:	The number of bytes in question
6503  * @reserve:	One of the reservation enums
6504  * @delalloc:   The blocks are allocated for the delalloc write
6505  *
6506  * This is called by the allocator when it reserves space, or by somebody who is
6507  * freeing space that was never actually used on disk.  For example if you
6508  * reserve some space for a new leaf in transaction A and before transaction A
6509  * commits you free that leaf, you call this with reserve set to 0 in order to
6510  * clear the reservation.
6511  *
6512  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6513  * ENOSPC accounting.  For data we handle the reservation through clearing the
6514  * delalloc bits in the io_tree.  We have to do this since we could end up
6515  * allocating less disk space for the amount of data we have reserved in the
6516  * case of compression.
6517  *
6518  * If this is a reservation and the block group has become read only we cannot
6519  * make the reservation and return -EAGAIN, otherwise this function always
6520  * succeeds.
6521  */
6522 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6523 				       u64 num_bytes, int reserve, int delalloc)
6524 {
6525 	struct btrfs_space_info *space_info = cache->space_info;
6526 	int ret = 0;
6527 
6528 	spin_lock(&space_info->lock);
6529 	spin_lock(&cache->lock);
6530 	if (reserve != RESERVE_FREE) {
6531 		if (cache->ro) {
6532 			ret = -EAGAIN;
6533 		} else {
6534 			cache->reserved += num_bytes;
6535 			space_info->bytes_reserved += num_bytes;
6536 			if (reserve == RESERVE_ALLOC) {
6537 				trace_btrfs_space_reservation(cache->fs_info,
6538 						"space_info", space_info->flags,
6539 						num_bytes, 0);
6540 				space_info->bytes_may_use -= num_bytes;
6541 			}
6542 
6543 			if (delalloc)
6544 				cache->delalloc_bytes += num_bytes;
6545 		}
6546 	} else {
6547 		if (cache->ro)
6548 			space_info->bytes_readonly += num_bytes;
6549 		cache->reserved -= num_bytes;
6550 		space_info->bytes_reserved -= num_bytes;
6551 
6552 		if (delalloc)
6553 			cache->delalloc_bytes -= num_bytes;
6554 	}
6555 	spin_unlock(&cache->lock);
6556 	spin_unlock(&space_info->lock);
6557 	return ret;
6558 }
6559 
6560 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6561 				struct btrfs_root *root)
6562 {
6563 	struct btrfs_fs_info *fs_info = root->fs_info;
6564 	struct btrfs_caching_control *next;
6565 	struct btrfs_caching_control *caching_ctl;
6566 	struct btrfs_block_group_cache *cache;
6567 
6568 	down_write(&fs_info->commit_root_sem);
6569 
6570 	list_for_each_entry_safe(caching_ctl, next,
6571 				 &fs_info->caching_block_groups, list) {
6572 		cache = caching_ctl->block_group;
6573 		if (block_group_cache_done(cache)) {
6574 			cache->last_byte_to_unpin = (u64)-1;
6575 			list_del_init(&caching_ctl->list);
6576 			put_caching_control(caching_ctl);
6577 		} else {
6578 			cache->last_byte_to_unpin = caching_ctl->progress;
6579 		}
6580 	}
6581 
6582 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6583 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6584 	else
6585 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6586 
6587 	up_write(&fs_info->commit_root_sem);
6588 
6589 	update_global_block_rsv(fs_info);
6590 }
6591 
6592 /*
6593  * Returns the free cluster for the given space info and sets empty_cluster to
6594  * what it should be based on the mount options.
6595  */
6596 static struct btrfs_free_cluster *
6597 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6598 		   u64 *empty_cluster)
6599 {
6600 	struct btrfs_free_cluster *ret = NULL;
6601 	bool ssd = btrfs_test_opt(root->fs_info, SSD);
6602 
6603 	*empty_cluster = 0;
6604 	if (btrfs_mixed_space_info(space_info))
6605 		return ret;
6606 
6607 	if (ssd)
6608 		*empty_cluster = SZ_2M;
6609 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6610 		ret = &root->fs_info->meta_alloc_cluster;
6611 		if (!ssd)
6612 			*empty_cluster = SZ_64K;
6613 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6614 		ret = &root->fs_info->data_alloc_cluster;
6615 	}
6616 
6617 	return ret;
6618 }
6619 
6620 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6621 			      const bool return_free_space)
6622 {
6623 	struct btrfs_fs_info *fs_info = root->fs_info;
6624 	struct btrfs_block_group_cache *cache = NULL;
6625 	struct btrfs_space_info *space_info;
6626 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6627 	struct btrfs_free_cluster *cluster = NULL;
6628 	u64 len;
6629 	u64 total_unpinned = 0;
6630 	u64 empty_cluster = 0;
6631 	bool readonly;
6632 
6633 	while (start <= end) {
6634 		readonly = false;
6635 		if (!cache ||
6636 		    start >= cache->key.objectid + cache->key.offset) {
6637 			if (cache)
6638 				btrfs_put_block_group(cache);
6639 			total_unpinned = 0;
6640 			cache = btrfs_lookup_block_group(fs_info, start);
6641 			BUG_ON(!cache); /* Logic error */
6642 
6643 			cluster = fetch_cluster_info(root,
6644 						     cache->space_info,
6645 						     &empty_cluster);
6646 			empty_cluster <<= 1;
6647 		}
6648 
6649 		len = cache->key.objectid + cache->key.offset - start;
6650 		len = min(len, end + 1 - start);
6651 
6652 		if (start < cache->last_byte_to_unpin) {
6653 			len = min(len, cache->last_byte_to_unpin - start);
6654 			if (return_free_space)
6655 				btrfs_add_free_space(cache, start, len);
6656 		}
6657 
6658 		start += len;
6659 		total_unpinned += len;
6660 		space_info = cache->space_info;
6661 
6662 		/*
6663 		 * If this space cluster has been marked as fragmented and we've
6664 		 * unpinned enough in this block group to potentially allow a
6665 		 * cluster to be created inside of it go ahead and clear the
6666 		 * fragmented check.
6667 		 */
6668 		if (cluster && cluster->fragmented &&
6669 		    total_unpinned > empty_cluster) {
6670 			spin_lock(&cluster->lock);
6671 			cluster->fragmented = 0;
6672 			spin_unlock(&cluster->lock);
6673 		}
6674 
6675 		spin_lock(&space_info->lock);
6676 		spin_lock(&cache->lock);
6677 		cache->pinned -= len;
6678 		space_info->bytes_pinned -= len;
6679 
6680 		trace_btrfs_space_reservation(fs_info, "pinned",
6681 					      space_info->flags, len, 0);
6682 		space_info->max_extent_size = 0;
6683 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6684 		if (cache->ro) {
6685 			space_info->bytes_readonly += len;
6686 			readonly = true;
6687 		}
6688 		spin_unlock(&cache->lock);
6689 		if (!readonly && return_free_space &&
6690 		    global_rsv->space_info == space_info) {
6691 			u64 to_add = len;
6692 			WARN_ON(!return_free_space);
6693 			spin_lock(&global_rsv->lock);
6694 			if (!global_rsv->full) {
6695 				to_add = min(len, global_rsv->size -
6696 					     global_rsv->reserved);
6697 				global_rsv->reserved += to_add;
6698 				space_info->bytes_may_use += to_add;
6699 				if (global_rsv->reserved >= global_rsv->size)
6700 					global_rsv->full = 1;
6701 				trace_btrfs_space_reservation(fs_info,
6702 							      "space_info",
6703 							      space_info->flags,
6704 							      to_add, 1);
6705 				len -= to_add;
6706 			}
6707 			spin_unlock(&global_rsv->lock);
6708 			/* Add to any tickets we may have */
6709 			if (len)
6710 				space_info_add_new_bytes(fs_info, space_info,
6711 							 len);
6712 		}
6713 		spin_unlock(&space_info->lock);
6714 	}
6715 
6716 	if (cache)
6717 		btrfs_put_block_group(cache);
6718 	return 0;
6719 }
6720 
6721 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6722 			       struct btrfs_root *root)
6723 {
6724 	struct btrfs_fs_info *fs_info = root->fs_info;
6725 	struct btrfs_block_group_cache *block_group, *tmp;
6726 	struct list_head *deleted_bgs;
6727 	struct extent_io_tree *unpin;
6728 	u64 start;
6729 	u64 end;
6730 	int ret;
6731 
6732 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6733 		unpin = &fs_info->freed_extents[1];
6734 	else
6735 		unpin = &fs_info->freed_extents[0];
6736 
6737 	while (!trans->aborted) {
6738 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6739 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6740 					    EXTENT_DIRTY, NULL);
6741 		if (ret) {
6742 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6743 			break;
6744 		}
6745 
6746 		if (btrfs_test_opt(root->fs_info, DISCARD))
6747 			ret = btrfs_discard_extent(root, start,
6748 						   end + 1 - start, NULL);
6749 
6750 		clear_extent_dirty(unpin, start, end);
6751 		unpin_extent_range(root, start, end, true);
6752 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6753 		cond_resched();
6754 	}
6755 
6756 	/*
6757 	 * Transaction is finished.  We don't need the lock anymore.  We
6758 	 * do need to clean up the block groups in case of a transaction
6759 	 * abort.
6760 	 */
6761 	deleted_bgs = &trans->transaction->deleted_bgs;
6762 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6763 		u64 trimmed = 0;
6764 
6765 		ret = -EROFS;
6766 		if (!trans->aborted)
6767 			ret = btrfs_discard_extent(root,
6768 						   block_group->key.objectid,
6769 						   block_group->key.offset,
6770 						   &trimmed);
6771 
6772 		list_del_init(&block_group->bg_list);
6773 		btrfs_put_block_group_trimming(block_group);
6774 		btrfs_put_block_group(block_group);
6775 
6776 		if (ret) {
6777 			const char *errstr = btrfs_decode_error(ret);
6778 			btrfs_warn(fs_info,
6779 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6780 				   ret, errstr);
6781 		}
6782 	}
6783 
6784 	return 0;
6785 }
6786 
6787 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6788 			     u64 owner, u64 root_objectid)
6789 {
6790 	struct btrfs_space_info *space_info;
6791 	u64 flags;
6792 
6793 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6794 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6795 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6796 		else
6797 			flags = BTRFS_BLOCK_GROUP_METADATA;
6798 	} else {
6799 		flags = BTRFS_BLOCK_GROUP_DATA;
6800 	}
6801 
6802 	space_info = __find_space_info(fs_info, flags);
6803 	BUG_ON(!space_info); /* Logic bug */
6804 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6805 }
6806 
6807 
6808 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6809 				struct btrfs_root *root,
6810 				struct btrfs_delayed_ref_node *node, u64 parent,
6811 				u64 root_objectid, u64 owner_objectid,
6812 				u64 owner_offset, int refs_to_drop,
6813 				struct btrfs_delayed_extent_op *extent_op)
6814 {
6815 	struct btrfs_key key;
6816 	struct btrfs_path *path;
6817 	struct btrfs_fs_info *info = root->fs_info;
6818 	struct btrfs_root *extent_root = info->extent_root;
6819 	struct extent_buffer *leaf;
6820 	struct btrfs_extent_item *ei;
6821 	struct btrfs_extent_inline_ref *iref;
6822 	int ret;
6823 	int is_data;
6824 	int extent_slot = 0;
6825 	int found_extent = 0;
6826 	int num_to_del = 1;
6827 	u32 item_size;
6828 	u64 refs;
6829 	u64 bytenr = node->bytenr;
6830 	u64 num_bytes = node->num_bytes;
6831 	int last_ref = 0;
6832 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6833 						 SKINNY_METADATA);
6834 
6835 	path = btrfs_alloc_path();
6836 	if (!path)
6837 		return -ENOMEM;
6838 
6839 	path->reada = READA_FORWARD;
6840 	path->leave_spinning = 1;
6841 
6842 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6843 	BUG_ON(!is_data && refs_to_drop != 1);
6844 
6845 	if (is_data)
6846 		skinny_metadata = 0;
6847 
6848 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6849 				    bytenr, num_bytes, parent,
6850 				    root_objectid, owner_objectid,
6851 				    owner_offset);
6852 	if (ret == 0) {
6853 		extent_slot = path->slots[0];
6854 		while (extent_slot >= 0) {
6855 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6856 					      extent_slot);
6857 			if (key.objectid != bytenr)
6858 				break;
6859 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6860 			    key.offset == num_bytes) {
6861 				found_extent = 1;
6862 				break;
6863 			}
6864 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6865 			    key.offset == owner_objectid) {
6866 				found_extent = 1;
6867 				break;
6868 			}
6869 			if (path->slots[0] - extent_slot > 5)
6870 				break;
6871 			extent_slot--;
6872 		}
6873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6874 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6875 		if (found_extent && item_size < sizeof(*ei))
6876 			found_extent = 0;
6877 #endif
6878 		if (!found_extent) {
6879 			BUG_ON(iref);
6880 			ret = remove_extent_backref(trans, extent_root, path,
6881 						    NULL, refs_to_drop,
6882 						    is_data, &last_ref);
6883 			if (ret) {
6884 				btrfs_abort_transaction(trans, ret);
6885 				goto out;
6886 			}
6887 			btrfs_release_path(path);
6888 			path->leave_spinning = 1;
6889 
6890 			key.objectid = bytenr;
6891 			key.type = BTRFS_EXTENT_ITEM_KEY;
6892 			key.offset = num_bytes;
6893 
6894 			if (!is_data && skinny_metadata) {
6895 				key.type = BTRFS_METADATA_ITEM_KEY;
6896 				key.offset = owner_objectid;
6897 			}
6898 
6899 			ret = btrfs_search_slot(trans, extent_root,
6900 						&key, path, -1, 1);
6901 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6902 				/*
6903 				 * Couldn't find our skinny metadata item,
6904 				 * see if we have ye olde extent item.
6905 				 */
6906 				path->slots[0]--;
6907 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6908 						      path->slots[0]);
6909 				if (key.objectid == bytenr &&
6910 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6911 				    key.offset == num_bytes)
6912 					ret = 0;
6913 			}
6914 
6915 			if (ret > 0 && skinny_metadata) {
6916 				skinny_metadata = false;
6917 				key.objectid = bytenr;
6918 				key.type = BTRFS_EXTENT_ITEM_KEY;
6919 				key.offset = num_bytes;
6920 				btrfs_release_path(path);
6921 				ret = btrfs_search_slot(trans, extent_root,
6922 							&key, path, -1, 1);
6923 			}
6924 
6925 			if (ret) {
6926 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6927 					ret, bytenr);
6928 				if (ret > 0)
6929 					btrfs_print_leaf(extent_root,
6930 							 path->nodes[0]);
6931 			}
6932 			if (ret < 0) {
6933 				btrfs_abort_transaction(trans, ret);
6934 				goto out;
6935 			}
6936 			extent_slot = path->slots[0];
6937 		}
6938 	} else if (WARN_ON(ret == -ENOENT)) {
6939 		btrfs_print_leaf(extent_root, path->nodes[0]);
6940 		btrfs_err(info,
6941 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6942 			bytenr, parent, root_objectid, owner_objectid,
6943 			owner_offset);
6944 		btrfs_abort_transaction(trans, ret);
6945 		goto out;
6946 	} else {
6947 		btrfs_abort_transaction(trans, ret);
6948 		goto out;
6949 	}
6950 
6951 	leaf = path->nodes[0];
6952 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6954 	if (item_size < sizeof(*ei)) {
6955 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6956 		ret = convert_extent_item_v0(trans, extent_root, path,
6957 					     owner_objectid, 0);
6958 		if (ret < 0) {
6959 			btrfs_abort_transaction(trans, ret);
6960 			goto out;
6961 		}
6962 
6963 		btrfs_release_path(path);
6964 		path->leave_spinning = 1;
6965 
6966 		key.objectid = bytenr;
6967 		key.type = BTRFS_EXTENT_ITEM_KEY;
6968 		key.offset = num_bytes;
6969 
6970 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6971 					-1, 1);
6972 		if (ret) {
6973 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6974 				ret, bytenr);
6975 			btrfs_print_leaf(extent_root, path->nodes[0]);
6976 		}
6977 		if (ret < 0) {
6978 			btrfs_abort_transaction(trans, ret);
6979 			goto out;
6980 		}
6981 
6982 		extent_slot = path->slots[0];
6983 		leaf = path->nodes[0];
6984 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6985 	}
6986 #endif
6987 	BUG_ON(item_size < sizeof(*ei));
6988 	ei = btrfs_item_ptr(leaf, extent_slot,
6989 			    struct btrfs_extent_item);
6990 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6991 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6992 		struct btrfs_tree_block_info *bi;
6993 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6994 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6995 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6996 	}
6997 
6998 	refs = btrfs_extent_refs(leaf, ei);
6999 	if (refs < refs_to_drop) {
7000 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
7001 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
7002 		ret = -EINVAL;
7003 		btrfs_abort_transaction(trans, ret);
7004 		goto out;
7005 	}
7006 	refs -= refs_to_drop;
7007 
7008 	if (refs > 0) {
7009 		if (extent_op)
7010 			__run_delayed_extent_op(extent_op, leaf, ei);
7011 		/*
7012 		 * In the case of inline back ref, reference count will
7013 		 * be updated by remove_extent_backref
7014 		 */
7015 		if (iref) {
7016 			BUG_ON(!found_extent);
7017 		} else {
7018 			btrfs_set_extent_refs(leaf, ei, refs);
7019 			btrfs_mark_buffer_dirty(leaf);
7020 		}
7021 		if (found_extent) {
7022 			ret = remove_extent_backref(trans, extent_root, path,
7023 						    iref, refs_to_drop,
7024 						    is_data, &last_ref);
7025 			if (ret) {
7026 				btrfs_abort_transaction(trans, ret);
7027 				goto out;
7028 			}
7029 		}
7030 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7031 				 root_objectid);
7032 	} else {
7033 		if (found_extent) {
7034 			BUG_ON(is_data && refs_to_drop !=
7035 			       extent_data_ref_count(path, iref));
7036 			if (iref) {
7037 				BUG_ON(path->slots[0] != extent_slot);
7038 			} else {
7039 				BUG_ON(path->slots[0] != extent_slot + 1);
7040 				path->slots[0] = extent_slot;
7041 				num_to_del = 2;
7042 			}
7043 		}
7044 
7045 		last_ref = 1;
7046 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7047 				      num_to_del);
7048 		if (ret) {
7049 			btrfs_abort_transaction(trans, ret);
7050 			goto out;
7051 		}
7052 		btrfs_release_path(path);
7053 
7054 		if (is_data) {
7055 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7056 			if (ret) {
7057 				btrfs_abort_transaction(trans, ret);
7058 				goto out;
7059 			}
7060 		}
7061 
7062 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7063 					     num_bytes);
7064 		if (ret) {
7065 			btrfs_abort_transaction(trans, ret);
7066 			goto out;
7067 		}
7068 
7069 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7070 		if (ret) {
7071 			btrfs_abort_transaction(trans, ret);
7072 			goto out;
7073 		}
7074 	}
7075 	btrfs_release_path(path);
7076 
7077 out:
7078 	btrfs_free_path(path);
7079 	return ret;
7080 }
7081 
7082 /*
7083  * when we free an block, it is possible (and likely) that we free the last
7084  * delayed ref for that extent as well.  This searches the delayed ref tree for
7085  * a given extent, and if there are no other delayed refs to be processed, it
7086  * removes it from the tree.
7087  */
7088 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7089 				      struct btrfs_root *root, u64 bytenr)
7090 {
7091 	struct btrfs_delayed_ref_head *head;
7092 	struct btrfs_delayed_ref_root *delayed_refs;
7093 	int ret = 0;
7094 
7095 	delayed_refs = &trans->transaction->delayed_refs;
7096 	spin_lock(&delayed_refs->lock);
7097 	head = btrfs_find_delayed_ref_head(trans, bytenr);
7098 	if (!head)
7099 		goto out_delayed_unlock;
7100 
7101 	spin_lock(&head->lock);
7102 	if (!list_empty(&head->ref_list))
7103 		goto out;
7104 
7105 	if (head->extent_op) {
7106 		if (!head->must_insert_reserved)
7107 			goto out;
7108 		btrfs_free_delayed_extent_op(head->extent_op);
7109 		head->extent_op = NULL;
7110 	}
7111 
7112 	/*
7113 	 * waiting for the lock here would deadlock.  If someone else has it
7114 	 * locked they are already in the process of dropping it anyway
7115 	 */
7116 	if (!mutex_trylock(&head->mutex))
7117 		goto out;
7118 
7119 	/*
7120 	 * at this point we have a head with no other entries.  Go
7121 	 * ahead and process it.
7122 	 */
7123 	head->node.in_tree = 0;
7124 	rb_erase(&head->href_node, &delayed_refs->href_root);
7125 
7126 	atomic_dec(&delayed_refs->num_entries);
7127 
7128 	/*
7129 	 * we don't take a ref on the node because we're removing it from the
7130 	 * tree, so we just steal the ref the tree was holding.
7131 	 */
7132 	delayed_refs->num_heads--;
7133 	if (head->processing == 0)
7134 		delayed_refs->num_heads_ready--;
7135 	head->processing = 0;
7136 	spin_unlock(&head->lock);
7137 	spin_unlock(&delayed_refs->lock);
7138 
7139 	BUG_ON(head->extent_op);
7140 	if (head->must_insert_reserved)
7141 		ret = 1;
7142 
7143 	mutex_unlock(&head->mutex);
7144 	btrfs_put_delayed_ref(&head->node);
7145 	return ret;
7146 out:
7147 	spin_unlock(&head->lock);
7148 
7149 out_delayed_unlock:
7150 	spin_unlock(&delayed_refs->lock);
7151 	return 0;
7152 }
7153 
7154 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7155 			   struct btrfs_root *root,
7156 			   struct extent_buffer *buf,
7157 			   u64 parent, int last_ref)
7158 {
7159 	int pin = 1;
7160 	int ret;
7161 
7162 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7163 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7164 					buf->start, buf->len,
7165 					parent, root->root_key.objectid,
7166 					btrfs_header_level(buf),
7167 					BTRFS_DROP_DELAYED_REF, NULL);
7168 		BUG_ON(ret); /* -ENOMEM */
7169 	}
7170 
7171 	if (!last_ref)
7172 		return;
7173 
7174 	if (btrfs_header_generation(buf) == trans->transid) {
7175 		struct btrfs_block_group_cache *cache;
7176 
7177 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7178 			ret = check_ref_cleanup(trans, root, buf->start);
7179 			if (!ret)
7180 				goto out;
7181 		}
7182 
7183 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7184 
7185 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7186 			pin_down_extent(root, cache, buf->start, buf->len, 1);
7187 			btrfs_put_block_group(cache);
7188 			goto out;
7189 		}
7190 
7191 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7192 
7193 		btrfs_add_free_space(cache, buf->start, buf->len);
7194 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
7195 		btrfs_put_block_group(cache);
7196 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7197 		pin = 0;
7198 	}
7199 out:
7200 	if (pin)
7201 		add_pinned_bytes(root->fs_info, buf->len,
7202 				 btrfs_header_level(buf),
7203 				 root->root_key.objectid);
7204 
7205 	/*
7206 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7207 	 * anymore.
7208 	 */
7209 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7210 }
7211 
7212 /* Can return -ENOMEM */
7213 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7214 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7215 		      u64 owner, u64 offset)
7216 {
7217 	int ret;
7218 	struct btrfs_fs_info *fs_info = root->fs_info;
7219 
7220 	if (btrfs_is_testing(fs_info))
7221 		return 0;
7222 
7223 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7224 
7225 	/*
7226 	 * tree log blocks never actually go into the extent allocation
7227 	 * tree, just update pinning info and exit early.
7228 	 */
7229 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7230 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7231 		/* unlocks the pinned mutex */
7232 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
7233 		ret = 0;
7234 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7235 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7236 					num_bytes,
7237 					parent, root_objectid, (int)owner,
7238 					BTRFS_DROP_DELAYED_REF, NULL);
7239 	} else {
7240 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7241 						num_bytes,
7242 						parent, root_objectid, owner,
7243 						offset, 0,
7244 						BTRFS_DROP_DELAYED_REF, NULL);
7245 	}
7246 	return ret;
7247 }
7248 
7249 /*
7250  * when we wait for progress in the block group caching, its because
7251  * our allocation attempt failed at least once.  So, we must sleep
7252  * and let some progress happen before we try again.
7253  *
7254  * This function will sleep at least once waiting for new free space to
7255  * show up, and then it will check the block group free space numbers
7256  * for our min num_bytes.  Another option is to have it go ahead
7257  * and look in the rbtree for a free extent of a given size, but this
7258  * is a good start.
7259  *
7260  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7261  * any of the information in this block group.
7262  */
7263 static noinline void
7264 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7265 				u64 num_bytes)
7266 {
7267 	struct btrfs_caching_control *caching_ctl;
7268 
7269 	caching_ctl = get_caching_control(cache);
7270 	if (!caching_ctl)
7271 		return;
7272 
7273 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7274 		   (cache->free_space_ctl->free_space >= num_bytes));
7275 
7276 	put_caching_control(caching_ctl);
7277 }
7278 
7279 static noinline int
7280 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7281 {
7282 	struct btrfs_caching_control *caching_ctl;
7283 	int ret = 0;
7284 
7285 	caching_ctl = get_caching_control(cache);
7286 	if (!caching_ctl)
7287 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7288 
7289 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7290 	if (cache->cached == BTRFS_CACHE_ERROR)
7291 		ret = -EIO;
7292 	put_caching_control(caching_ctl);
7293 	return ret;
7294 }
7295 
7296 int __get_raid_index(u64 flags)
7297 {
7298 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7299 		return BTRFS_RAID_RAID10;
7300 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7301 		return BTRFS_RAID_RAID1;
7302 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7303 		return BTRFS_RAID_DUP;
7304 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7305 		return BTRFS_RAID_RAID0;
7306 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7307 		return BTRFS_RAID_RAID5;
7308 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7309 		return BTRFS_RAID_RAID6;
7310 
7311 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7312 }
7313 
7314 int get_block_group_index(struct btrfs_block_group_cache *cache)
7315 {
7316 	return __get_raid_index(cache->flags);
7317 }
7318 
7319 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7320 	[BTRFS_RAID_RAID10]	= "raid10",
7321 	[BTRFS_RAID_RAID1]	= "raid1",
7322 	[BTRFS_RAID_DUP]	= "dup",
7323 	[BTRFS_RAID_RAID0]	= "raid0",
7324 	[BTRFS_RAID_SINGLE]	= "single",
7325 	[BTRFS_RAID_RAID5]	= "raid5",
7326 	[BTRFS_RAID_RAID6]	= "raid6",
7327 };
7328 
7329 static const char *get_raid_name(enum btrfs_raid_types type)
7330 {
7331 	if (type >= BTRFS_NR_RAID_TYPES)
7332 		return NULL;
7333 
7334 	return btrfs_raid_type_names[type];
7335 }
7336 
7337 enum btrfs_loop_type {
7338 	LOOP_CACHING_NOWAIT = 0,
7339 	LOOP_CACHING_WAIT = 1,
7340 	LOOP_ALLOC_CHUNK = 2,
7341 	LOOP_NO_EMPTY_SIZE = 3,
7342 };
7343 
7344 static inline void
7345 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7346 		       int delalloc)
7347 {
7348 	if (delalloc)
7349 		down_read(&cache->data_rwsem);
7350 }
7351 
7352 static inline void
7353 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7354 		       int delalloc)
7355 {
7356 	btrfs_get_block_group(cache);
7357 	if (delalloc)
7358 		down_read(&cache->data_rwsem);
7359 }
7360 
7361 static struct btrfs_block_group_cache *
7362 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7363 		   struct btrfs_free_cluster *cluster,
7364 		   int delalloc)
7365 {
7366 	struct btrfs_block_group_cache *used_bg = NULL;
7367 
7368 	spin_lock(&cluster->refill_lock);
7369 	while (1) {
7370 		used_bg = cluster->block_group;
7371 		if (!used_bg)
7372 			return NULL;
7373 
7374 		if (used_bg == block_group)
7375 			return used_bg;
7376 
7377 		btrfs_get_block_group(used_bg);
7378 
7379 		if (!delalloc)
7380 			return used_bg;
7381 
7382 		if (down_read_trylock(&used_bg->data_rwsem))
7383 			return used_bg;
7384 
7385 		spin_unlock(&cluster->refill_lock);
7386 
7387 		down_read(&used_bg->data_rwsem);
7388 
7389 		spin_lock(&cluster->refill_lock);
7390 		if (used_bg == cluster->block_group)
7391 			return used_bg;
7392 
7393 		up_read(&used_bg->data_rwsem);
7394 		btrfs_put_block_group(used_bg);
7395 	}
7396 }
7397 
7398 static inline void
7399 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7400 			 int delalloc)
7401 {
7402 	if (delalloc)
7403 		up_read(&cache->data_rwsem);
7404 	btrfs_put_block_group(cache);
7405 }
7406 
7407 /*
7408  * walks the btree of allocated extents and find a hole of a given size.
7409  * The key ins is changed to record the hole:
7410  * ins->objectid == start position
7411  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7412  * ins->offset == the size of the hole.
7413  * Any available blocks before search_start are skipped.
7414  *
7415  * If there is no suitable free space, we will record the max size of
7416  * the free space extent currently.
7417  */
7418 static noinline int find_free_extent(struct btrfs_root *orig_root,
7419 				     u64 num_bytes, u64 empty_size,
7420 				     u64 hint_byte, struct btrfs_key *ins,
7421 				     u64 flags, int delalloc)
7422 {
7423 	int ret = 0;
7424 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7425 	struct btrfs_free_cluster *last_ptr = NULL;
7426 	struct btrfs_block_group_cache *block_group = NULL;
7427 	u64 search_start = 0;
7428 	u64 max_extent_size = 0;
7429 	u64 empty_cluster = 0;
7430 	struct btrfs_space_info *space_info;
7431 	int loop = 0;
7432 	int index = __get_raid_index(flags);
7433 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7434 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7435 	bool failed_cluster_refill = false;
7436 	bool failed_alloc = false;
7437 	bool use_cluster = true;
7438 	bool have_caching_bg = false;
7439 	bool orig_have_caching_bg = false;
7440 	bool full_search = false;
7441 
7442 	WARN_ON(num_bytes < root->sectorsize);
7443 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7444 	ins->objectid = 0;
7445 	ins->offset = 0;
7446 
7447 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7448 
7449 	space_info = __find_space_info(root->fs_info, flags);
7450 	if (!space_info) {
7451 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7452 		return -ENOSPC;
7453 	}
7454 
7455 	/*
7456 	 * If our free space is heavily fragmented we may not be able to make
7457 	 * big contiguous allocations, so instead of doing the expensive search
7458 	 * for free space, simply return ENOSPC with our max_extent_size so we
7459 	 * can go ahead and search for a more manageable chunk.
7460 	 *
7461 	 * If our max_extent_size is large enough for our allocation simply
7462 	 * disable clustering since we will likely not be able to find enough
7463 	 * space to create a cluster and induce latency trying.
7464 	 */
7465 	if (unlikely(space_info->max_extent_size)) {
7466 		spin_lock(&space_info->lock);
7467 		if (space_info->max_extent_size &&
7468 		    num_bytes > space_info->max_extent_size) {
7469 			ins->offset = space_info->max_extent_size;
7470 			spin_unlock(&space_info->lock);
7471 			return -ENOSPC;
7472 		} else if (space_info->max_extent_size) {
7473 			use_cluster = false;
7474 		}
7475 		spin_unlock(&space_info->lock);
7476 	}
7477 
7478 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7479 	if (last_ptr) {
7480 		spin_lock(&last_ptr->lock);
7481 		if (last_ptr->block_group)
7482 			hint_byte = last_ptr->window_start;
7483 		if (last_ptr->fragmented) {
7484 			/*
7485 			 * We still set window_start so we can keep track of the
7486 			 * last place we found an allocation to try and save
7487 			 * some time.
7488 			 */
7489 			hint_byte = last_ptr->window_start;
7490 			use_cluster = false;
7491 		}
7492 		spin_unlock(&last_ptr->lock);
7493 	}
7494 
7495 	search_start = max(search_start, first_logical_byte(root, 0));
7496 	search_start = max(search_start, hint_byte);
7497 	if (search_start == hint_byte) {
7498 		block_group = btrfs_lookup_block_group(root->fs_info,
7499 						       search_start);
7500 		/*
7501 		 * we don't want to use the block group if it doesn't match our
7502 		 * allocation bits, or if its not cached.
7503 		 *
7504 		 * However if we are re-searching with an ideal block group
7505 		 * picked out then we don't care that the block group is cached.
7506 		 */
7507 		if (block_group && block_group_bits(block_group, flags) &&
7508 		    block_group->cached != BTRFS_CACHE_NO) {
7509 			down_read(&space_info->groups_sem);
7510 			if (list_empty(&block_group->list) ||
7511 			    block_group->ro) {
7512 				/*
7513 				 * someone is removing this block group,
7514 				 * we can't jump into the have_block_group
7515 				 * target because our list pointers are not
7516 				 * valid
7517 				 */
7518 				btrfs_put_block_group(block_group);
7519 				up_read(&space_info->groups_sem);
7520 			} else {
7521 				index = get_block_group_index(block_group);
7522 				btrfs_lock_block_group(block_group, delalloc);
7523 				goto have_block_group;
7524 			}
7525 		} else if (block_group) {
7526 			btrfs_put_block_group(block_group);
7527 		}
7528 	}
7529 search:
7530 	have_caching_bg = false;
7531 	if (index == 0 || index == __get_raid_index(flags))
7532 		full_search = true;
7533 	down_read(&space_info->groups_sem);
7534 	list_for_each_entry(block_group, &space_info->block_groups[index],
7535 			    list) {
7536 		u64 offset;
7537 		int cached;
7538 
7539 		btrfs_grab_block_group(block_group, delalloc);
7540 		search_start = block_group->key.objectid;
7541 
7542 		/*
7543 		 * this can happen if we end up cycling through all the
7544 		 * raid types, but we want to make sure we only allocate
7545 		 * for the proper type.
7546 		 */
7547 		if (!block_group_bits(block_group, flags)) {
7548 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7549 				BTRFS_BLOCK_GROUP_RAID1 |
7550 				BTRFS_BLOCK_GROUP_RAID5 |
7551 				BTRFS_BLOCK_GROUP_RAID6 |
7552 				BTRFS_BLOCK_GROUP_RAID10;
7553 
7554 			/*
7555 			 * if they asked for extra copies and this block group
7556 			 * doesn't provide them, bail.  This does allow us to
7557 			 * fill raid0 from raid1.
7558 			 */
7559 			if ((flags & extra) && !(block_group->flags & extra))
7560 				goto loop;
7561 		}
7562 
7563 have_block_group:
7564 		cached = block_group_cache_done(block_group);
7565 		if (unlikely(!cached)) {
7566 			have_caching_bg = true;
7567 			ret = cache_block_group(block_group, 0);
7568 			BUG_ON(ret < 0);
7569 			ret = 0;
7570 		}
7571 
7572 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7573 			goto loop;
7574 		if (unlikely(block_group->ro))
7575 			goto loop;
7576 
7577 		/*
7578 		 * Ok we want to try and use the cluster allocator, so
7579 		 * lets look there
7580 		 */
7581 		if (last_ptr && use_cluster) {
7582 			struct btrfs_block_group_cache *used_block_group;
7583 			unsigned long aligned_cluster;
7584 			/*
7585 			 * the refill lock keeps out other
7586 			 * people trying to start a new cluster
7587 			 */
7588 			used_block_group = btrfs_lock_cluster(block_group,
7589 							      last_ptr,
7590 							      delalloc);
7591 			if (!used_block_group)
7592 				goto refill_cluster;
7593 
7594 			if (used_block_group != block_group &&
7595 			    (used_block_group->ro ||
7596 			     !block_group_bits(used_block_group, flags)))
7597 				goto release_cluster;
7598 
7599 			offset = btrfs_alloc_from_cluster(used_block_group,
7600 						last_ptr,
7601 						num_bytes,
7602 						used_block_group->key.objectid,
7603 						&max_extent_size);
7604 			if (offset) {
7605 				/* we have a block, we're done */
7606 				spin_unlock(&last_ptr->refill_lock);
7607 				trace_btrfs_reserve_extent_cluster(root,
7608 						used_block_group,
7609 						search_start, num_bytes);
7610 				if (used_block_group != block_group) {
7611 					btrfs_release_block_group(block_group,
7612 								  delalloc);
7613 					block_group = used_block_group;
7614 				}
7615 				goto checks;
7616 			}
7617 
7618 			WARN_ON(last_ptr->block_group != used_block_group);
7619 release_cluster:
7620 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7621 			 * set up a new clusters, so lets just skip it
7622 			 * and let the allocator find whatever block
7623 			 * it can find.  If we reach this point, we
7624 			 * will have tried the cluster allocator
7625 			 * plenty of times and not have found
7626 			 * anything, so we are likely way too
7627 			 * fragmented for the clustering stuff to find
7628 			 * anything.
7629 			 *
7630 			 * However, if the cluster is taken from the
7631 			 * current block group, release the cluster
7632 			 * first, so that we stand a better chance of
7633 			 * succeeding in the unclustered
7634 			 * allocation.  */
7635 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7636 			    used_block_group != block_group) {
7637 				spin_unlock(&last_ptr->refill_lock);
7638 				btrfs_release_block_group(used_block_group,
7639 							  delalloc);
7640 				goto unclustered_alloc;
7641 			}
7642 
7643 			/*
7644 			 * this cluster didn't work out, free it and
7645 			 * start over
7646 			 */
7647 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7648 
7649 			if (used_block_group != block_group)
7650 				btrfs_release_block_group(used_block_group,
7651 							  delalloc);
7652 refill_cluster:
7653 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7654 				spin_unlock(&last_ptr->refill_lock);
7655 				goto unclustered_alloc;
7656 			}
7657 
7658 			aligned_cluster = max_t(unsigned long,
7659 						empty_cluster + empty_size,
7660 					      block_group->full_stripe_len);
7661 
7662 			/* allocate a cluster in this block group */
7663 			ret = btrfs_find_space_cluster(root, block_group,
7664 						       last_ptr, search_start,
7665 						       num_bytes,
7666 						       aligned_cluster);
7667 			if (ret == 0) {
7668 				/*
7669 				 * now pull our allocation out of this
7670 				 * cluster
7671 				 */
7672 				offset = btrfs_alloc_from_cluster(block_group,
7673 							last_ptr,
7674 							num_bytes,
7675 							search_start,
7676 							&max_extent_size);
7677 				if (offset) {
7678 					/* we found one, proceed */
7679 					spin_unlock(&last_ptr->refill_lock);
7680 					trace_btrfs_reserve_extent_cluster(root,
7681 						block_group, search_start,
7682 						num_bytes);
7683 					goto checks;
7684 				}
7685 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7686 				   && !failed_cluster_refill) {
7687 				spin_unlock(&last_ptr->refill_lock);
7688 
7689 				failed_cluster_refill = true;
7690 				wait_block_group_cache_progress(block_group,
7691 				       num_bytes + empty_cluster + empty_size);
7692 				goto have_block_group;
7693 			}
7694 
7695 			/*
7696 			 * at this point we either didn't find a cluster
7697 			 * or we weren't able to allocate a block from our
7698 			 * cluster.  Free the cluster we've been trying
7699 			 * to use, and go to the next block group
7700 			 */
7701 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7702 			spin_unlock(&last_ptr->refill_lock);
7703 			goto loop;
7704 		}
7705 
7706 unclustered_alloc:
7707 		/*
7708 		 * We are doing an unclustered alloc, set the fragmented flag so
7709 		 * we don't bother trying to setup a cluster again until we get
7710 		 * more space.
7711 		 */
7712 		if (unlikely(last_ptr)) {
7713 			spin_lock(&last_ptr->lock);
7714 			last_ptr->fragmented = 1;
7715 			spin_unlock(&last_ptr->lock);
7716 		}
7717 		spin_lock(&block_group->free_space_ctl->tree_lock);
7718 		if (cached &&
7719 		    block_group->free_space_ctl->free_space <
7720 		    num_bytes + empty_cluster + empty_size) {
7721 			if (block_group->free_space_ctl->free_space >
7722 			    max_extent_size)
7723 				max_extent_size =
7724 					block_group->free_space_ctl->free_space;
7725 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7726 			goto loop;
7727 		}
7728 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7729 
7730 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7731 						    num_bytes, empty_size,
7732 						    &max_extent_size);
7733 		/*
7734 		 * If we didn't find a chunk, and we haven't failed on this
7735 		 * block group before, and this block group is in the middle of
7736 		 * caching and we are ok with waiting, then go ahead and wait
7737 		 * for progress to be made, and set failed_alloc to true.
7738 		 *
7739 		 * If failed_alloc is true then we've already waited on this
7740 		 * block group once and should move on to the next block group.
7741 		 */
7742 		if (!offset && !failed_alloc && !cached &&
7743 		    loop > LOOP_CACHING_NOWAIT) {
7744 			wait_block_group_cache_progress(block_group,
7745 						num_bytes + empty_size);
7746 			failed_alloc = true;
7747 			goto have_block_group;
7748 		} else if (!offset) {
7749 			goto loop;
7750 		}
7751 checks:
7752 		search_start = ALIGN(offset, root->stripesize);
7753 
7754 		/* move on to the next group */
7755 		if (search_start + num_bytes >
7756 		    block_group->key.objectid + block_group->key.offset) {
7757 			btrfs_add_free_space(block_group, offset, num_bytes);
7758 			goto loop;
7759 		}
7760 
7761 		if (offset < search_start)
7762 			btrfs_add_free_space(block_group, offset,
7763 					     search_start - offset);
7764 		BUG_ON(offset > search_start);
7765 
7766 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7767 						  alloc_type, delalloc);
7768 		if (ret == -EAGAIN) {
7769 			btrfs_add_free_space(block_group, offset, num_bytes);
7770 			goto loop;
7771 		}
7772 		btrfs_inc_block_group_reservations(block_group);
7773 
7774 		/* we are all good, lets return */
7775 		ins->objectid = search_start;
7776 		ins->offset = num_bytes;
7777 
7778 		trace_btrfs_reserve_extent(orig_root, block_group,
7779 					   search_start, num_bytes);
7780 		btrfs_release_block_group(block_group, delalloc);
7781 		break;
7782 loop:
7783 		failed_cluster_refill = false;
7784 		failed_alloc = false;
7785 		BUG_ON(index != get_block_group_index(block_group));
7786 		btrfs_release_block_group(block_group, delalloc);
7787 	}
7788 	up_read(&space_info->groups_sem);
7789 
7790 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7791 		&& !orig_have_caching_bg)
7792 		orig_have_caching_bg = true;
7793 
7794 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7795 		goto search;
7796 
7797 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7798 		goto search;
7799 
7800 	/*
7801 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7802 	 *			caching kthreads as we move along
7803 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7804 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7805 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7806 	 *			again
7807 	 */
7808 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7809 		index = 0;
7810 		if (loop == LOOP_CACHING_NOWAIT) {
7811 			/*
7812 			 * We want to skip the LOOP_CACHING_WAIT step if we
7813 			 * don't have any uncached bgs and we've already done a
7814 			 * full search through.
7815 			 */
7816 			if (orig_have_caching_bg || !full_search)
7817 				loop = LOOP_CACHING_WAIT;
7818 			else
7819 				loop = LOOP_ALLOC_CHUNK;
7820 		} else {
7821 			loop++;
7822 		}
7823 
7824 		if (loop == LOOP_ALLOC_CHUNK) {
7825 			struct btrfs_trans_handle *trans;
7826 			int exist = 0;
7827 
7828 			trans = current->journal_info;
7829 			if (trans)
7830 				exist = 1;
7831 			else
7832 				trans = btrfs_join_transaction(root);
7833 
7834 			if (IS_ERR(trans)) {
7835 				ret = PTR_ERR(trans);
7836 				goto out;
7837 			}
7838 
7839 			ret = do_chunk_alloc(trans, root, flags,
7840 					     CHUNK_ALLOC_FORCE);
7841 
7842 			/*
7843 			 * If we can't allocate a new chunk we've already looped
7844 			 * through at least once, move on to the NO_EMPTY_SIZE
7845 			 * case.
7846 			 */
7847 			if (ret == -ENOSPC)
7848 				loop = LOOP_NO_EMPTY_SIZE;
7849 
7850 			/*
7851 			 * Do not bail out on ENOSPC since we
7852 			 * can do more things.
7853 			 */
7854 			if (ret < 0 && ret != -ENOSPC)
7855 				btrfs_abort_transaction(trans, ret);
7856 			else
7857 				ret = 0;
7858 			if (!exist)
7859 				btrfs_end_transaction(trans, root);
7860 			if (ret)
7861 				goto out;
7862 		}
7863 
7864 		if (loop == LOOP_NO_EMPTY_SIZE) {
7865 			/*
7866 			 * Don't loop again if we already have no empty_size and
7867 			 * no empty_cluster.
7868 			 */
7869 			if (empty_size == 0 &&
7870 			    empty_cluster == 0) {
7871 				ret = -ENOSPC;
7872 				goto out;
7873 			}
7874 			empty_size = 0;
7875 			empty_cluster = 0;
7876 		}
7877 
7878 		goto search;
7879 	} else if (!ins->objectid) {
7880 		ret = -ENOSPC;
7881 	} else if (ins->objectid) {
7882 		if (!use_cluster && last_ptr) {
7883 			spin_lock(&last_ptr->lock);
7884 			last_ptr->window_start = ins->objectid;
7885 			spin_unlock(&last_ptr->lock);
7886 		}
7887 		ret = 0;
7888 	}
7889 out:
7890 	if (ret == -ENOSPC) {
7891 		spin_lock(&space_info->lock);
7892 		space_info->max_extent_size = max_extent_size;
7893 		spin_unlock(&space_info->lock);
7894 		ins->offset = max_extent_size;
7895 	}
7896 	return ret;
7897 }
7898 
7899 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7900 			    int dump_block_groups)
7901 {
7902 	struct btrfs_block_group_cache *cache;
7903 	int index = 0;
7904 
7905 	spin_lock(&info->lock);
7906 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7907 	       info->flags,
7908 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7909 	       info->bytes_reserved - info->bytes_readonly -
7910 	       info->bytes_may_use, (info->full) ? "" : "not ");
7911 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7912 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7913 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7914 	       info->bytes_reserved, info->bytes_may_use,
7915 	       info->bytes_readonly);
7916 	spin_unlock(&info->lock);
7917 
7918 	if (!dump_block_groups)
7919 		return;
7920 
7921 	down_read(&info->groups_sem);
7922 again:
7923 	list_for_each_entry(cache, &info->block_groups[index], list) {
7924 		spin_lock(&cache->lock);
7925 		printk(KERN_INFO "BTRFS: "
7926 			   "block group %llu has %llu bytes, "
7927 			   "%llu used %llu pinned %llu reserved %s\n",
7928 		       cache->key.objectid, cache->key.offset,
7929 		       btrfs_block_group_used(&cache->item), cache->pinned,
7930 		       cache->reserved, cache->ro ? "[readonly]" : "");
7931 		btrfs_dump_free_space(cache, bytes);
7932 		spin_unlock(&cache->lock);
7933 	}
7934 	if (++index < BTRFS_NR_RAID_TYPES)
7935 		goto again;
7936 	up_read(&info->groups_sem);
7937 }
7938 
7939 int btrfs_reserve_extent(struct btrfs_root *root,
7940 			 u64 num_bytes, u64 min_alloc_size,
7941 			 u64 empty_size, u64 hint_byte,
7942 			 struct btrfs_key *ins, int is_data, int delalloc)
7943 {
7944 	bool final_tried = num_bytes == min_alloc_size;
7945 	u64 flags;
7946 	int ret;
7947 
7948 	flags = btrfs_get_alloc_profile(root, is_data);
7949 again:
7950 	WARN_ON(num_bytes < root->sectorsize);
7951 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7952 			       flags, delalloc);
7953 	if (!ret && !is_data) {
7954 		btrfs_dec_block_group_reservations(root->fs_info,
7955 						   ins->objectid);
7956 	} else if (ret == -ENOSPC) {
7957 		if (!final_tried && ins->offset) {
7958 			num_bytes = min(num_bytes >> 1, ins->offset);
7959 			num_bytes = round_down(num_bytes, root->sectorsize);
7960 			num_bytes = max(num_bytes, min_alloc_size);
7961 			if (num_bytes == min_alloc_size)
7962 				final_tried = true;
7963 			goto again;
7964 		} else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
7965 			struct btrfs_space_info *sinfo;
7966 
7967 			sinfo = __find_space_info(root->fs_info, flags);
7968 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7969 				flags, num_bytes);
7970 			if (sinfo)
7971 				dump_space_info(sinfo, num_bytes, 1);
7972 		}
7973 	}
7974 
7975 	return ret;
7976 }
7977 
7978 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7979 					u64 start, u64 len,
7980 					int pin, int delalloc)
7981 {
7982 	struct btrfs_block_group_cache *cache;
7983 	int ret = 0;
7984 
7985 	cache = btrfs_lookup_block_group(root->fs_info, start);
7986 	if (!cache) {
7987 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7988 			start);
7989 		return -ENOSPC;
7990 	}
7991 
7992 	if (pin)
7993 		pin_down_extent(root, cache, start, len, 1);
7994 	else {
7995 		if (btrfs_test_opt(root->fs_info, DISCARD))
7996 			ret = btrfs_discard_extent(root, start, len, NULL);
7997 		btrfs_add_free_space(cache, start, len);
7998 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7999 		trace_btrfs_reserved_extent_free(root, start, len);
8000 	}
8001 
8002 	btrfs_put_block_group(cache);
8003 	return ret;
8004 }
8005 
8006 int btrfs_free_reserved_extent(struct btrfs_root *root,
8007 			       u64 start, u64 len, int delalloc)
8008 {
8009 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8010 }
8011 
8012 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8013 				       u64 start, u64 len)
8014 {
8015 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8016 }
8017 
8018 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8019 				      struct btrfs_root *root,
8020 				      u64 parent, u64 root_objectid,
8021 				      u64 flags, u64 owner, u64 offset,
8022 				      struct btrfs_key *ins, int ref_mod)
8023 {
8024 	int ret;
8025 	struct btrfs_fs_info *fs_info = root->fs_info;
8026 	struct btrfs_extent_item *extent_item;
8027 	struct btrfs_extent_inline_ref *iref;
8028 	struct btrfs_path *path;
8029 	struct extent_buffer *leaf;
8030 	int type;
8031 	u32 size;
8032 
8033 	if (parent > 0)
8034 		type = BTRFS_SHARED_DATA_REF_KEY;
8035 	else
8036 		type = BTRFS_EXTENT_DATA_REF_KEY;
8037 
8038 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8039 
8040 	path = btrfs_alloc_path();
8041 	if (!path)
8042 		return -ENOMEM;
8043 
8044 	path->leave_spinning = 1;
8045 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8046 				      ins, size);
8047 	if (ret) {
8048 		btrfs_free_path(path);
8049 		return ret;
8050 	}
8051 
8052 	leaf = path->nodes[0];
8053 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8054 				     struct btrfs_extent_item);
8055 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8056 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8057 	btrfs_set_extent_flags(leaf, extent_item,
8058 			       flags | BTRFS_EXTENT_FLAG_DATA);
8059 
8060 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8061 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8062 	if (parent > 0) {
8063 		struct btrfs_shared_data_ref *ref;
8064 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8065 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8066 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8067 	} else {
8068 		struct btrfs_extent_data_ref *ref;
8069 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8070 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8071 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8072 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8073 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8074 	}
8075 
8076 	btrfs_mark_buffer_dirty(path->nodes[0]);
8077 	btrfs_free_path(path);
8078 
8079 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8080 					  ins->offset);
8081 	if (ret)
8082 		return ret;
8083 
8084 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8085 	if (ret) { /* -ENOENT, logic error */
8086 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8087 			ins->objectid, ins->offset);
8088 		BUG();
8089 	}
8090 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8091 	return ret;
8092 }
8093 
8094 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8095 				     struct btrfs_root *root,
8096 				     u64 parent, u64 root_objectid,
8097 				     u64 flags, struct btrfs_disk_key *key,
8098 				     int level, struct btrfs_key *ins)
8099 {
8100 	int ret;
8101 	struct btrfs_fs_info *fs_info = root->fs_info;
8102 	struct btrfs_extent_item *extent_item;
8103 	struct btrfs_tree_block_info *block_info;
8104 	struct btrfs_extent_inline_ref *iref;
8105 	struct btrfs_path *path;
8106 	struct extent_buffer *leaf;
8107 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8108 	u64 num_bytes = ins->offset;
8109 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8110 						 SKINNY_METADATA);
8111 
8112 	if (!skinny_metadata)
8113 		size += sizeof(*block_info);
8114 
8115 	path = btrfs_alloc_path();
8116 	if (!path) {
8117 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8118 						   root->nodesize);
8119 		return -ENOMEM;
8120 	}
8121 
8122 	path->leave_spinning = 1;
8123 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8124 				      ins, size);
8125 	if (ret) {
8126 		btrfs_free_path(path);
8127 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8128 						   root->nodesize);
8129 		return ret;
8130 	}
8131 
8132 	leaf = path->nodes[0];
8133 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8134 				     struct btrfs_extent_item);
8135 	btrfs_set_extent_refs(leaf, extent_item, 1);
8136 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8137 	btrfs_set_extent_flags(leaf, extent_item,
8138 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8139 
8140 	if (skinny_metadata) {
8141 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8142 		num_bytes = root->nodesize;
8143 	} else {
8144 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8145 		btrfs_set_tree_block_key(leaf, block_info, key);
8146 		btrfs_set_tree_block_level(leaf, block_info, level);
8147 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8148 	}
8149 
8150 	if (parent > 0) {
8151 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8152 		btrfs_set_extent_inline_ref_type(leaf, iref,
8153 						 BTRFS_SHARED_BLOCK_REF_KEY);
8154 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8155 	} else {
8156 		btrfs_set_extent_inline_ref_type(leaf, iref,
8157 						 BTRFS_TREE_BLOCK_REF_KEY);
8158 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8159 	}
8160 
8161 	btrfs_mark_buffer_dirty(leaf);
8162 	btrfs_free_path(path);
8163 
8164 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8165 					  num_bytes);
8166 	if (ret)
8167 		return ret;
8168 
8169 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8170 				 1);
8171 	if (ret) { /* -ENOENT, logic error */
8172 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8173 			ins->objectid, ins->offset);
8174 		BUG();
8175 	}
8176 
8177 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8178 	return ret;
8179 }
8180 
8181 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8182 				     struct btrfs_root *root,
8183 				     u64 root_objectid, u64 owner,
8184 				     u64 offset, u64 ram_bytes,
8185 				     struct btrfs_key *ins)
8186 {
8187 	int ret;
8188 
8189 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8190 
8191 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8192 					 ins->offset, 0,
8193 					 root_objectid, owner, offset,
8194 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8195 					 NULL);
8196 	return ret;
8197 }
8198 
8199 /*
8200  * this is used by the tree logging recovery code.  It records that
8201  * an extent has been allocated and makes sure to clear the free
8202  * space cache bits as well
8203  */
8204 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8205 				   struct btrfs_root *root,
8206 				   u64 root_objectid, u64 owner, u64 offset,
8207 				   struct btrfs_key *ins)
8208 {
8209 	int ret;
8210 	struct btrfs_block_group_cache *block_group;
8211 
8212 	/*
8213 	 * Mixed block groups will exclude before processing the log so we only
8214 	 * need to do the exclude dance if this fs isn't mixed.
8215 	 */
8216 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8217 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8218 		if (ret)
8219 			return ret;
8220 	}
8221 
8222 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8223 	if (!block_group)
8224 		return -EINVAL;
8225 
8226 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8227 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
8228 	BUG_ON(ret); /* logic error */
8229 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8230 					 0, owner, offset, ins, 1);
8231 	btrfs_put_block_group(block_group);
8232 	return ret;
8233 }
8234 
8235 static struct extent_buffer *
8236 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8237 		      u64 bytenr, int level)
8238 {
8239 	struct extent_buffer *buf;
8240 
8241 	buf = btrfs_find_create_tree_block(root, bytenr);
8242 	if (IS_ERR(buf))
8243 		return buf;
8244 
8245 	btrfs_set_header_generation(buf, trans->transid);
8246 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8247 	btrfs_tree_lock(buf);
8248 	clean_tree_block(trans, root->fs_info, buf);
8249 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8250 
8251 	btrfs_set_lock_blocking(buf);
8252 	set_extent_buffer_uptodate(buf);
8253 
8254 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8255 		buf->log_index = root->log_transid % 2;
8256 		/*
8257 		 * we allow two log transactions at a time, use different
8258 		 * EXENT bit to differentiate dirty pages.
8259 		 */
8260 		if (buf->log_index == 0)
8261 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8262 					buf->start + buf->len - 1, GFP_NOFS);
8263 		else
8264 			set_extent_new(&root->dirty_log_pages, buf->start,
8265 					buf->start + buf->len - 1);
8266 	} else {
8267 		buf->log_index = -1;
8268 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8269 			 buf->start + buf->len - 1, GFP_NOFS);
8270 	}
8271 	trans->dirty = true;
8272 	/* this returns a buffer locked for blocking */
8273 	return buf;
8274 }
8275 
8276 static struct btrfs_block_rsv *
8277 use_block_rsv(struct btrfs_trans_handle *trans,
8278 	      struct btrfs_root *root, u32 blocksize)
8279 {
8280 	struct btrfs_block_rsv *block_rsv;
8281 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8282 	int ret;
8283 	bool global_updated = false;
8284 
8285 	block_rsv = get_block_rsv(trans, root);
8286 
8287 	if (unlikely(block_rsv->size == 0))
8288 		goto try_reserve;
8289 again:
8290 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8291 	if (!ret)
8292 		return block_rsv;
8293 
8294 	if (block_rsv->failfast)
8295 		return ERR_PTR(ret);
8296 
8297 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8298 		global_updated = true;
8299 		update_global_block_rsv(root->fs_info);
8300 		goto again;
8301 	}
8302 
8303 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8304 		static DEFINE_RATELIMIT_STATE(_rs,
8305 				DEFAULT_RATELIMIT_INTERVAL * 10,
8306 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8307 		if (__ratelimit(&_rs))
8308 			WARN(1, KERN_DEBUG
8309 				"BTRFS: block rsv returned %d\n", ret);
8310 	}
8311 try_reserve:
8312 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8313 				     BTRFS_RESERVE_NO_FLUSH);
8314 	if (!ret)
8315 		return block_rsv;
8316 	/*
8317 	 * If we couldn't reserve metadata bytes try and use some from
8318 	 * the global reserve if its space type is the same as the global
8319 	 * reservation.
8320 	 */
8321 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8322 	    block_rsv->space_info == global_rsv->space_info) {
8323 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8324 		if (!ret)
8325 			return global_rsv;
8326 	}
8327 	return ERR_PTR(ret);
8328 }
8329 
8330 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8331 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8332 {
8333 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8334 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8335 }
8336 
8337 /*
8338  * finds a free extent and does all the dirty work required for allocation
8339  * returns the tree buffer or an ERR_PTR on error.
8340  */
8341 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8342 					struct btrfs_root *root,
8343 					u64 parent, u64 root_objectid,
8344 					struct btrfs_disk_key *key, int level,
8345 					u64 hint, u64 empty_size)
8346 {
8347 	struct btrfs_key ins;
8348 	struct btrfs_block_rsv *block_rsv;
8349 	struct extent_buffer *buf;
8350 	struct btrfs_delayed_extent_op *extent_op;
8351 	u64 flags = 0;
8352 	int ret;
8353 	u32 blocksize = root->nodesize;
8354 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8355 						 SKINNY_METADATA);
8356 
8357 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8358 	if (btrfs_is_testing(root->fs_info)) {
8359 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8360 					    level);
8361 		if (!IS_ERR(buf))
8362 			root->alloc_bytenr += blocksize;
8363 		return buf;
8364 	}
8365 #endif
8366 
8367 	block_rsv = use_block_rsv(trans, root, blocksize);
8368 	if (IS_ERR(block_rsv))
8369 		return ERR_CAST(block_rsv);
8370 
8371 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
8372 				   empty_size, hint, &ins, 0, 0);
8373 	if (ret)
8374 		goto out_unuse;
8375 
8376 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8377 	if (IS_ERR(buf)) {
8378 		ret = PTR_ERR(buf);
8379 		goto out_free_reserved;
8380 	}
8381 
8382 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8383 		if (parent == 0)
8384 			parent = ins.objectid;
8385 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8386 	} else
8387 		BUG_ON(parent > 0);
8388 
8389 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8390 		extent_op = btrfs_alloc_delayed_extent_op();
8391 		if (!extent_op) {
8392 			ret = -ENOMEM;
8393 			goto out_free_buf;
8394 		}
8395 		if (key)
8396 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8397 		else
8398 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8399 		extent_op->flags_to_set = flags;
8400 		extent_op->update_key = skinny_metadata ? false : true;
8401 		extent_op->update_flags = true;
8402 		extent_op->is_data = false;
8403 		extent_op->level = level;
8404 
8405 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8406 						 ins.objectid, ins.offset,
8407 						 parent, root_objectid, level,
8408 						 BTRFS_ADD_DELAYED_EXTENT,
8409 						 extent_op);
8410 		if (ret)
8411 			goto out_free_delayed;
8412 	}
8413 	return buf;
8414 
8415 out_free_delayed:
8416 	btrfs_free_delayed_extent_op(extent_op);
8417 out_free_buf:
8418 	free_extent_buffer(buf);
8419 out_free_reserved:
8420 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8421 out_unuse:
8422 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8423 	return ERR_PTR(ret);
8424 }
8425 
8426 struct walk_control {
8427 	u64 refs[BTRFS_MAX_LEVEL];
8428 	u64 flags[BTRFS_MAX_LEVEL];
8429 	struct btrfs_key update_progress;
8430 	int stage;
8431 	int level;
8432 	int shared_level;
8433 	int update_ref;
8434 	int keep_locks;
8435 	int reada_slot;
8436 	int reada_count;
8437 	int for_reloc;
8438 };
8439 
8440 #define DROP_REFERENCE	1
8441 #define UPDATE_BACKREF	2
8442 
8443 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8444 				     struct btrfs_root *root,
8445 				     struct walk_control *wc,
8446 				     struct btrfs_path *path)
8447 {
8448 	u64 bytenr;
8449 	u64 generation;
8450 	u64 refs;
8451 	u64 flags;
8452 	u32 nritems;
8453 	u32 blocksize;
8454 	struct btrfs_key key;
8455 	struct extent_buffer *eb;
8456 	int ret;
8457 	int slot;
8458 	int nread = 0;
8459 
8460 	if (path->slots[wc->level] < wc->reada_slot) {
8461 		wc->reada_count = wc->reada_count * 2 / 3;
8462 		wc->reada_count = max(wc->reada_count, 2);
8463 	} else {
8464 		wc->reada_count = wc->reada_count * 3 / 2;
8465 		wc->reada_count = min_t(int, wc->reada_count,
8466 					BTRFS_NODEPTRS_PER_BLOCK(root));
8467 	}
8468 
8469 	eb = path->nodes[wc->level];
8470 	nritems = btrfs_header_nritems(eb);
8471 	blocksize = root->nodesize;
8472 
8473 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8474 		if (nread >= wc->reada_count)
8475 			break;
8476 
8477 		cond_resched();
8478 		bytenr = btrfs_node_blockptr(eb, slot);
8479 		generation = btrfs_node_ptr_generation(eb, slot);
8480 
8481 		if (slot == path->slots[wc->level])
8482 			goto reada;
8483 
8484 		if (wc->stage == UPDATE_BACKREF &&
8485 		    generation <= root->root_key.offset)
8486 			continue;
8487 
8488 		/* We don't lock the tree block, it's OK to be racy here */
8489 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8490 					       wc->level - 1, 1, &refs,
8491 					       &flags);
8492 		/* We don't care about errors in readahead. */
8493 		if (ret < 0)
8494 			continue;
8495 		BUG_ON(refs == 0);
8496 
8497 		if (wc->stage == DROP_REFERENCE) {
8498 			if (refs == 1)
8499 				goto reada;
8500 
8501 			if (wc->level == 1 &&
8502 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8503 				continue;
8504 			if (!wc->update_ref ||
8505 			    generation <= root->root_key.offset)
8506 				continue;
8507 			btrfs_node_key_to_cpu(eb, &key, slot);
8508 			ret = btrfs_comp_cpu_keys(&key,
8509 						  &wc->update_progress);
8510 			if (ret < 0)
8511 				continue;
8512 		} else {
8513 			if (wc->level == 1 &&
8514 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8515 				continue;
8516 		}
8517 reada:
8518 		readahead_tree_block(root, bytenr);
8519 		nread++;
8520 	}
8521 	wc->reada_slot = slot;
8522 }
8523 
8524 /*
8525  * These may not be seen by the usual inc/dec ref code so we have to
8526  * add them here.
8527  */
8528 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8529 				     struct btrfs_root *root, u64 bytenr,
8530 				     u64 num_bytes)
8531 {
8532 	struct btrfs_qgroup_extent_record *qrecord;
8533 	struct btrfs_delayed_ref_root *delayed_refs;
8534 
8535 	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8536 	if (!qrecord)
8537 		return -ENOMEM;
8538 
8539 	qrecord->bytenr = bytenr;
8540 	qrecord->num_bytes = num_bytes;
8541 	qrecord->old_roots = NULL;
8542 
8543 	delayed_refs = &trans->transaction->delayed_refs;
8544 	spin_lock(&delayed_refs->lock);
8545 	if (btrfs_qgroup_insert_dirty_extent(trans->fs_info,
8546 					     delayed_refs, qrecord))
8547 		kfree(qrecord);
8548 	spin_unlock(&delayed_refs->lock);
8549 
8550 	return 0;
8551 }
8552 
8553 static int account_leaf_items(struct btrfs_trans_handle *trans,
8554 			      struct btrfs_root *root,
8555 			      struct extent_buffer *eb)
8556 {
8557 	int nr = btrfs_header_nritems(eb);
8558 	int i, extent_type, ret;
8559 	struct btrfs_key key;
8560 	struct btrfs_file_extent_item *fi;
8561 	u64 bytenr, num_bytes;
8562 
8563 	/* We can be called directly from walk_up_proc() */
8564 	if (!root->fs_info->quota_enabled)
8565 		return 0;
8566 
8567 	for (i = 0; i < nr; i++) {
8568 		btrfs_item_key_to_cpu(eb, &key, i);
8569 
8570 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8571 			continue;
8572 
8573 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8574 		/* filter out non qgroup-accountable extents  */
8575 		extent_type = btrfs_file_extent_type(eb, fi);
8576 
8577 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8578 			continue;
8579 
8580 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8581 		if (!bytenr)
8582 			continue;
8583 
8584 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8585 
8586 		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8587 		if (ret)
8588 			return ret;
8589 	}
8590 	return 0;
8591 }
8592 
8593 /*
8594  * Walk up the tree from the bottom, freeing leaves and any interior
8595  * nodes which have had all slots visited. If a node (leaf or
8596  * interior) is freed, the node above it will have it's slot
8597  * incremented. The root node will never be freed.
8598  *
8599  * At the end of this function, we should have a path which has all
8600  * slots incremented to the next position for a search. If we need to
8601  * read a new node it will be NULL and the node above it will have the
8602  * correct slot selected for a later read.
8603  *
8604  * If we increment the root nodes slot counter past the number of
8605  * elements, 1 is returned to signal completion of the search.
8606  */
8607 static int adjust_slots_upwards(struct btrfs_root *root,
8608 				struct btrfs_path *path, int root_level)
8609 {
8610 	int level = 0;
8611 	int nr, slot;
8612 	struct extent_buffer *eb;
8613 
8614 	if (root_level == 0)
8615 		return 1;
8616 
8617 	while (level <= root_level) {
8618 		eb = path->nodes[level];
8619 		nr = btrfs_header_nritems(eb);
8620 		path->slots[level]++;
8621 		slot = path->slots[level];
8622 		if (slot >= nr || level == 0) {
8623 			/*
8624 			 * Don't free the root -  we will detect this
8625 			 * condition after our loop and return a
8626 			 * positive value for caller to stop walking the tree.
8627 			 */
8628 			if (level != root_level) {
8629 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8630 				path->locks[level] = 0;
8631 
8632 				free_extent_buffer(eb);
8633 				path->nodes[level] = NULL;
8634 				path->slots[level] = 0;
8635 			}
8636 		} else {
8637 			/*
8638 			 * We have a valid slot to walk back down
8639 			 * from. Stop here so caller can process these
8640 			 * new nodes.
8641 			 */
8642 			break;
8643 		}
8644 
8645 		level++;
8646 	}
8647 
8648 	eb = path->nodes[root_level];
8649 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8650 		return 1;
8651 
8652 	return 0;
8653 }
8654 
8655 /*
8656  * root_eb is the subtree root and is locked before this function is called.
8657  */
8658 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8659 				  struct btrfs_root *root,
8660 				  struct extent_buffer *root_eb,
8661 				  u64 root_gen,
8662 				  int root_level)
8663 {
8664 	int ret = 0;
8665 	int level;
8666 	struct extent_buffer *eb = root_eb;
8667 	struct btrfs_path *path = NULL;
8668 
8669 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8670 	BUG_ON(root_eb == NULL);
8671 
8672 	if (!root->fs_info->quota_enabled)
8673 		return 0;
8674 
8675 	if (!extent_buffer_uptodate(root_eb)) {
8676 		ret = btrfs_read_buffer(root_eb, root_gen);
8677 		if (ret)
8678 			goto out;
8679 	}
8680 
8681 	if (root_level == 0) {
8682 		ret = account_leaf_items(trans, root, root_eb);
8683 		goto out;
8684 	}
8685 
8686 	path = btrfs_alloc_path();
8687 	if (!path)
8688 		return -ENOMEM;
8689 
8690 	/*
8691 	 * Walk down the tree.  Missing extent blocks are filled in as
8692 	 * we go. Metadata is accounted every time we read a new
8693 	 * extent block.
8694 	 *
8695 	 * When we reach a leaf, we account for file extent items in it,
8696 	 * walk back up the tree (adjusting slot pointers as we go)
8697 	 * and restart the search process.
8698 	 */
8699 	extent_buffer_get(root_eb); /* For path */
8700 	path->nodes[root_level] = root_eb;
8701 	path->slots[root_level] = 0;
8702 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8703 walk_down:
8704 	level = root_level;
8705 	while (level >= 0) {
8706 		if (path->nodes[level] == NULL) {
8707 			int parent_slot;
8708 			u64 child_gen;
8709 			u64 child_bytenr;
8710 
8711 			/* We need to get child blockptr/gen from
8712 			 * parent before we can read it. */
8713 			eb = path->nodes[level + 1];
8714 			parent_slot = path->slots[level + 1];
8715 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8716 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8717 
8718 			eb = read_tree_block(root, child_bytenr, child_gen);
8719 			if (IS_ERR(eb)) {
8720 				ret = PTR_ERR(eb);
8721 				goto out;
8722 			} else if (!extent_buffer_uptodate(eb)) {
8723 				free_extent_buffer(eb);
8724 				ret = -EIO;
8725 				goto out;
8726 			}
8727 
8728 			path->nodes[level] = eb;
8729 			path->slots[level] = 0;
8730 
8731 			btrfs_tree_read_lock(eb);
8732 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8733 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8734 
8735 			ret = record_one_subtree_extent(trans, root, child_bytenr,
8736 							root->nodesize);
8737 			if (ret)
8738 				goto out;
8739 		}
8740 
8741 		if (level == 0) {
8742 			ret = account_leaf_items(trans, root, path->nodes[level]);
8743 			if (ret)
8744 				goto out;
8745 
8746 			/* Nonzero return here means we completed our search */
8747 			ret = adjust_slots_upwards(root, path, root_level);
8748 			if (ret)
8749 				break;
8750 
8751 			/* Restart search with new slots */
8752 			goto walk_down;
8753 		}
8754 
8755 		level--;
8756 	}
8757 
8758 	ret = 0;
8759 out:
8760 	btrfs_free_path(path);
8761 
8762 	return ret;
8763 }
8764 
8765 /*
8766  * helper to process tree block while walking down the tree.
8767  *
8768  * when wc->stage == UPDATE_BACKREF, this function updates
8769  * back refs for pointers in the block.
8770  *
8771  * NOTE: return value 1 means we should stop walking down.
8772  */
8773 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8774 				   struct btrfs_root *root,
8775 				   struct btrfs_path *path,
8776 				   struct walk_control *wc, int lookup_info)
8777 {
8778 	int level = wc->level;
8779 	struct extent_buffer *eb = path->nodes[level];
8780 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8781 	int ret;
8782 
8783 	if (wc->stage == UPDATE_BACKREF &&
8784 	    btrfs_header_owner(eb) != root->root_key.objectid)
8785 		return 1;
8786 
8787 	/*
8788 	 * when reference count of tree block is 1, it won't increase
8789 	 * again. once full backref flag is set, we never clear it.
8790 	 */
8791 	if (lookup_info &&
8792 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8793 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8794 		BUG_ON(!path->locks[level]);
8795 		ret = btrfs_lookup_extent_info(trans, root,
8796 					       eb->start, level, 1,
8797 					       &wc->refs[level],
8798 					       &wc->flags[level]);
8799 		BUG_ON(ret == -ENOMEM);
8800 		if (ret)
8801 			return ret;
8802 		BUG_ON(wc->refs[level] == 0);
8803 	}
8804 
8805 	if (wc->stage == DROP_REFERENCE) {
8806 		if (wc->refs[level] > 1)
8807 			return 1;
8808 
8809 		if (path->locks[level] && !wc->keep_locks) {
8810 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8811 			path->locks[level] = 0;
8812 		}
8813 		return 0;
8814 	}
8815 
8816 	/* wc->stage == UPDATE_BACKREF */
8817 	if (!(wc->flags[level] & flag)) {
8818 		BUG_ON(!path->locks[level]);
8819 		ret = btrfs_inc_ref(trans, root, eb, 1);
8820 		BUG_ON(ret); /* -ENOMEM */
8821 		ret = btrfs_dec_ref(trans, root, eb, 0);
8822 		BUG_ON(ret); /* -ENOMEM */
8823 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8824 						  eb->len, flag,
8825 						  btrfs_header_level(eb), 0);
8826 		BUG_ON(ret); /* -ENOMEM */
8827 		wc->flags[level] |= flag;
8828 	}
8829 
8830 	/*
8831 	 * the block is shared by multiple trees, so it's not good to
8832 	 * keep the tree lock
8833 	 */
8834 	if (path->locks[level] && level > 0) {
8835 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8836 		path->locks[level] = 0;
8837 	}
8838 	return 0;
8839 }
8840 
8841 /*
8842  * helper to process tree block pointer.
8843  *
8844  * when wc->stage == DROP_REFERENCE, this function checks
8845  * reference count of the block pointed to. if the block
8846  * is shared and we need update back refs for the subtree
8847  * rooted at the block, this function changes wc->stage to
8848  * UPDATE_BACKREF. if the block is shared and there is no
8849  * need to update back, this function drops the reference
8850  * to the block.
8851  *
8852  * NOTE: return value 1 means we should stop walking down.
8853  */
8854 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8855 				 struct btrfs_root *root,
8856 				 struct btrfs_path *path,
8857 				 struct walk_control *wc, int *lookup_info)
8858 {
8859 	u64 bytenr;
8860 	u64 generation;
8861 	u64 parent;
8862 	u32 blocksize;
8863 	struct btrfs_key key;
8864 	struct extent_buffer *next;
8865 	int level = wc->level;
8866 	int reada = 0;
8867 	int ret = 0;
8868 	bool need_account = false;
8869 
8870 	generation = btrfs_node_ptr_generation(path->nodes[level],
8871 					       path->slots[level]);
8872 	/*
8873 	 * if the lower level block was created before the snapshot
8874 	 * was created, we know there is no need to update back refs
8875 	 * for the subtree
8876 	 */
8877 	if (wc->stage == UPDATE_BACKREF &&
8878 	    generation <= root->root_key.offset) {
8879 		*lookup_info = 1;
8880 		return 1;
8881 	}
8882 
8883 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8884 	blocksize = root->nodesize;
8885 
8886 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8887 	if (!next) {
8888 		next = btrfs_find_create_tree_block(root, bytenr);
8889 		if (IS_ERR(next))
8890 			return PTR_ERR(next);
8891 
8892 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8893 					       level - 1);
8894 		reada = 1;
8895 	}
8896 	btrfs_tree_lock(next);
8897 	btrfs_set_lock_blocking(next);
8898 
8899 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8900 				       &wc->refs[level - 1],
8901 				       &wc->flags[level - 1]);
8902 	if (ret < 0) {
8903 		btrfs_tree_unlock(next);
8904 		return ret;
8905 	}
8906 
8907 	if (unlikely(wc->refs[level - 1] == 0)) {
8908 		btrfs_err(root->fs_info, "Missing references.");
8909 		BUG();
8910 	}
8911 	*lookup_info = 0;
8912 
8913 	if (wc->stage == DROP_REFERENCE) {
8914 		if (wc->refs[level - 1] > 1) {
8915 			need_account = true;
8916 			if (level == 1 &&
8917 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8918 				goto skip;
8919 
8920 			if (!wc->update_ref ||
8921 			    generation <= root->root_key.offset)
8922 				goto skip;
8923 
8924 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8925 					      path->slots[level]);
8926 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8927 			if (ret < 0)
8928 				goto skip;
8929 
8930 			wc->stage = UPDATE_BACKREF;
8931 			wc->shared_level = level - 1;
8932 		}
8933 	} else {
8934 		if (level == 1 &&
8935 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8936 			goto skip;
8937 	}
8938 
8939 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8940 		btrfs_tree_unlock(next);
8941 		free_extent_buffer(next);
8942 		next = NULL;
8943 		*lookup_info = 1;
8944 	}
8945 
8946 	if (!next) {
8947 		if (reada && level == 1)
8948 			reada_walk_down(trans, root, wc, path);
8949 		next = read_tree_block(root, bytenr, generation);
8950 		if (IS_ERR(next)) {
8951 			return PTR_ERR(next);
8952 		} else if (!extent_buffer_uptodate(next)) {
8953 			free_extent_buffer(next);
8954 			return -EIO;
8955 		}
8956 		btrfs_tree_lock(next);
8957 		btrfs_set_lock_blocking(next);
8958 	}
8959 
8960 	level--;
8961 	BUG_ON(level != btrfs_header_level(next));
8962 	path->nodes[level] = next;
8963 	path->slots[level] = 0;
8964 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8965 	wc->level = level;
8966 	if (wc->level == 1)
8967 		wc->reada_slot = 0;
8968 	return 0;
8969 skip:
8970 	wc->refs[level - 1] = 0;
8971 	wc->flags[level - 1] = 0;
8972 	if (wc->stage == DROP_REFERENCE) {
8973 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8974 			parent = path->nodes[level]->start;
8975 		} else {
8976 			BUG_ON(root->root_key.objectid !=
8977 			       btrfs_header_owner(path->nodes[level]));
8978 			parent = 0;
8979 		}
8980 
8981 		if (need_account) {
8982 			ret = account_shared_subtree(trans, root, next,
8983 						     generation, level - 1);
8984 			if (ret) {
8985 				btrfs_err_rl(root->fs_info,
8986 					"Error "
8987 					"%d accounting shared subtree. Quota "
8988 					"is out of sync, rescan required.",
8989 					ret);
8990 			}
8991 		}
8992 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8993 				root->root_key.objectid, level - 1, 0);
8994 		BUG_ON(ret); /* -ENOMEM */
8995 	}
8996 	btrfs_tree_unlock(next);
8997 	free_extent_buffer(next);
8998 	*lookup_info = 1;
8999 	return 1;
9000 }
9001 
9002 /*
9003  * helper to process tree block while walking up the tree.
9004  *
9005  * when wc->stage == DROP_REFERENCE, this function drops
9006  * reference count on the block.
9007  *
9008  * when wc->stage == UPDATE_BACKREF, this function changes
9009  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9010  * to UPDATE_BACKREF previously while processing the block.
9011  *
9012  * NOTE: return value 1 means we should stop walking up.
9013  */
9014 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9015 				 struct btrfs_root *root,
9016 				 struct btrfs_path *path,
9017 				 struct walk_control *wc)
9018 {
9019 	int ret;
9020 	int level = wc->level;
9021 	struct extent_buffer *eb = path->nodes[level];
9022 	u64 parent = 0;
9023 
9024 	if (wc->stage == UPDATE_BACKREF) {
9025 		BUG_ON(wc->shared_level < level);
9026 		if (level < wc->shared_level)
9027 			goto out;
9028 
9029 		ret = find_next_key(path, level + 1, &wc->update_progress);
9030 		if (ret > 0)
9031 			wc->update_ref = 0;
9032 
9033 		wc->stage = DROP_REFERENCE;
9034 		wc->shared_level = -1;
9035 		path->slots[level] = 0;
9036 
9037 		/*
9038 		 * check reference count again if the block isn't locked.
9039 		 * we should start walking down the tree again if reference
9040 		 * count is one.
9041 		 */
9042 		if (!path->locks[level]) {
9043 			BUG_ON(level == 0);
9044 			btrfs_tree_lock(eb);
9045 			btrfs_set_lock_blocking(eb);
9046 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9047 
9048 			ret = btrfs_lookup_extent_info(trans, root,
9049 						       eb->start, level, 1,
9050 						       &wc->refs[level],
9051 						       &wc->flags[level]);
9052 			if (ret < 0) {
9053 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9054 				path->locks[level] = 0;
9055 				return ret;
9056 			}
9057 			BUG_ON(wc->refs[level] == 0);
9058 			if (wc->refs[level] == 1) {
9059 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9060 				path->locks[level] = 0;
9061 				return 1;
9062 			}
9063 		}
9064 	}
9065 
9066 	/* wc->stage == DROP_REFERENCE */
9067 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9068 
9069 	if (wc->refs[level] == 1) {
9070 		if (level == 0) {
9071 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9072 				ret = btrfs_dec_ref(trans, root, eb, 1);
9073 			else
9074 				ret = btrfs_dec_ref(trans, root, eb, 0);
9075 			BUG_ON(ret); /* -ENOMEM */
9076 			ret = account_leaf_items(trans, root, eb);
9077 			if (ret) {
9078 				btrfs_err_rl(root->fs_info,
9079 					"error "
9080 					"%d accounting leaf items. Quota "
9081 					"is out of sync, rescan required.",
9082 					ret);
9083 			}
9084 		}
9085 		/* make block locked assertion in clean_tree_block happy */
9086 		if (!path->locks[level] &&
9087 		    btrfs_header_generation(eb) == trans->transid) {
9088 			btrfs_tree_lock(eb);
9089 			btrfs_set_lock_blocking(eb);
9090 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9091 		}
9092 		clean_tree_block(trans, root->fs_info, eb);
9093 	}
9094 
9095 	if (eb == root->node) {
9096 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9097 			parent = eb->start;
9098 		else
9099 			BUG_ON(root->root_key.objectid !=
9100 			       btrfs_header_owner(eb));
9101 	} else {
9102 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9103 			parent = path->nodes[level + 1]->start;
9104 		else
9105 			BUG_ON(root->root_key.objectid !=
9106 			       btrfs_header_owner(path->nodes[level + 1]));
9107 	}
9108 
9109 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9110 out:
9111 	wc->refs[level] = 0;
9112 	wc->flags[level] = 0;
9113 	return 0;
9114 }
9115 
9116 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9117 				   struct btrfs_root *root,
9118 				   struct btrfs_path *path,
9119 				   struct walk_control *wc)
9120 {
9121 	int level = wc->level;
9122 	int lookup_info = 1;
9123 	int ret;
9124 
9125 	while (level >= 0) {
9126 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9127 		if (ret > 0)
9128 			break;
9129 
9130 		if (level == 0)
9131 			break;
9132 
9133 		if (path->slots[level] >=
9134 		    btrfs_header_nritems(path->nodes[level]))
9135 			break;
9136 
9137 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9138 		if (ret > 0) {
9139 			path->slots[level]++;
9140 			continue;
9141 		} else if (ret < 0)
9142 			return ret;
9143 		level = wc->level;
9144 	}
9145 	return 0;
9146 }
9147 
9148 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9149 				 struct btrfs_root *root,
9150 				 struct btrfs_path *path,
9151 				 struct walk_control *wc, int max_level)
9152 {
9153 	int level = wc->level;
9154 	int ret;
9155 
9156 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9157 	while (level < max_level && path->nodes[level]) {
9158 		wc->level = level;
9159 		if (path->slots[level] + 1 <
9160 		    btrfs_header_nritems(path->nodes[level])) {
9161 			path->slots[level]++;
9162 			return 0;
9163 		} else {
9164 			ret = walk_up_proc(trans, root, path, wc);
9165 			if (ret > 0)
9166 				return 0;
9167 
9168 			if (path->locks[level]) {
9169 				btrfs_tree_unlock_rw(path->nodes[level],
9170 						     path->locks[level]);
9171 				path->locks[level] = 0;
9172 			}
9173 			free_extent_buffer(path->nodes[level]);
9174 			path->nodes[level] = NULL;
9175 			level++;
9176 		}
9177 	}
9178 	return 1;
9179 }
9180 
9181 /*
9182  * drop a subvolume tree.
9183  *
9184  * this function traverses the tree freeing any blocks that only
9185  * referenced by the tree.
9186  *
9187  * when a shared tree block is found. this function decreases its
9188  * reference count by one. if update_ref is true, this function
9189  * also make sure backrefs for the shared block and all lower level
9190  * blocks are properly updated.
9191  *
9192  * If called with for_reloc == 0, may exit early with -EAGAIN
9193  */
9194 int btrfs_drop_snapshot(struct btrfs_root *root,
9195 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9196 			 int for_reloc)
9197 {
9198 	struct btrfs_path *path;
9199 	struct btrfs_trans_handle *trans;
9200 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9201 	struct btrfs_root_item *root_item = &root->root_item;
9202 	struct walk_control *wc;
9203 	struct btrfs_key key;
9204 	int err = 0;
9205 	int ret;
9206 	int level;
9207 	bool root_dropped = false;
9208 
9209 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9210 
9211 	path = btrfs_alloc_path();
9212 	if (!path) {
9213 		err = -ENOMEM;
9214 		goto out;
9215 	}
9216 
9217 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9218 	if (!wc) {
9219 		btrfs_free_path(path);
9220 		err = -ENOMEM;
9221 		goto out;
9222 	}
9223 
9224 	trans = btrfs_start_transaction(tree_root, 0);
9225 	if (IS_ERR(trans)) {
9226 		err = PTR_ERR(trans);
9227 		goto out_free;
9228 	}
9229 
9230 	if (block_rsv)
9231 		trans->block_rsv = block_rsv;
9232 
9233 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9234 		level = btrfs_header_level(root->node);
9235 		path->nodes[level] = btrfs_lock_root_node(root);
9236 		btrfs_set_lock_blocking(path->nodes[level]);
9237 		path->slots[level] = 0;
9238 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9239 		memset(&wc->update_progress, 0,
9240 		       sizeof(wc->update_progress));
9241 	} else {
9242 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9243 		memcpy(&wc->update_progress, &key,
9244 		       sizeof(wc->update_progress));
9245 
9246 		level = root_item->drop_level;
9247 		BUG_ON(level == 0);
9248 		path->lowest_level = level;
9249 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9250 		path->lowest_level = 0;
9251 		if (ret < 0) {
9252 			err = ret;
9253 			goto out_end_trans;
9254 		}
9255 		WARN_ON(ret > 0);
9256 
9257 		/*
9258 		 * unlock our path, this is safe because only this
9259 		 * function is allowed to delete this snapshot
9260 		 */
9261 		btrfs_unlock_up_safe(path, 0);
9262 
9263 		level = btrfs_header_level(root->node);
9264 		while (1) {
9265 			btrfs_tree_lock(path->nodes[level]);
9266 			btrfs_set_lock_blocking(path->nodes[level]);
9267 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9268 
9269 			ret = btrfs_lookup_extent_info(trans, root,
9270 						path->nodes[level]->start,
9271 						level, 1, &wc->refs[level],
9272 						&wc->flags[level]);
9273 			if (ret < 0) {
9274 				err = ret;
9275 				goto out_end_trans;
9276 			}
9277 			BUG_ON(wc->refs[level] == 0);
9278 
9279 			if (level == root_item->drop_level)
9280 				break;
9281 
9282 			btrfs_tree_unlock(path->nodes[level]);
9283 			path->locks[level] = 0;
9284 			WARN_ON(wc->refs[level] != 1);
9285 			level--;
9286 		}
9287 	}
9288 
9289 	wc->level = level;
9290 	wc->shared_level = -1;
9291 	wc->stage = DROP_REFERENCE;
9292 	wc->update_ref = update_ref;
9293 	wc->keep_locks = 0;
9294 	wc->for_reloc = for_reloc;
9295 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9296 
9297 	while (1) {
9298 
9299 		ret = walk_down_tree(trans, root, path, wc);
9300 		if (ret < 0) {
9301 			err = ret;
9302 			break;
9303 		}
9304 
9305 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9306 		if (ret < 0) {
9307 			err = ret;
9308 			break;
9309 		}
9310 
9311 		if (ret > 0) {
9312 			BUG_ON(wc->stage != DROP_REFERENCE);
9313 			break;
9314 		}
9315 
9316 		if (wc->stage == DROP_REFERENCE) {
9317 			level = wc->level;
9318 			btrfs_node_key(path->nodes[level],
9319 				       &root_item->drop_progress,
9320 				       path->slots[level]);
9321 			root_item->drop_level = level;
9322 		}
9323 
9324 		BUG_ON(wc->level == 0);
9325 		if (btrfs_should_end_transaction(trans, tree_root) ||
9326 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9327 			ret = btrfs_update_root(trans, tree_root,
9328 						&root->root_key,
9329 						root_item);
9330 			if (ret) {
9331 				btrfs_abort_transaction(trans, ret);
9332 				err = ret;
9333 				goto out_end_trans;
9334 			}
9335 
9336 			btrfs_end_transaction_throttle(trans, tree_root);
9337 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9338 				pr_debug("BTRFS: drop snapshot early exit\n");
9339 				err = -EAGAIN;
9340 				goto out_free;
9341 			}
9342 
9343 			trans = btrfs_start_transaction(tree_root, 0);
9344 			if (IS_ERR(trans)) {
9345 				err = PTR_ERR(trans);
9346 				goto out_free;
9347 			}
9348 			if (block_rsv)
9349 				trans->block_rsv = block_rsv;
9350 		}
9351 	}
9352 	btrfs_release_path(path);
9353 	if (err)
9354 		goto out_end_trans;
9355 
9356 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9357 	if (ret) {
9358 		btrfs_abort_transaction(trans, ret);
9359 		goto out_end_trans;
9360 	}
9361 
9362 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9363 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9364 				      NULL, NULL);
9365 		if (ret < 0) {
9366 			btrfs_abort_transaction(trans, ret);
9367 			err = ret;
9368 			goto out_end_trans;
9369 		} else if (ret > 0) {
9370 			/* if we fail to delete the orphan item this time
9371 			 * around, it'll get picked up the next time.
9372 			 *
9373 			 * The most common failure here is just -ENOENT.
9374 			 */
9375 			btrfs_del_orphan_item(trans, tree_root,
9376 					      root->root_key.objectid);
9377 		}
9378 	}
9379 
9380 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9381 		btrfs_add_dropped_root(trans, root);
9382 	} else {
9383 		free_extent_buffer(root->node);
9384 		free_extent_buffer(root->commit_root);
9385 		btrfs_put_fs_root(root);
9386 	}
9387 	root_dropped = true;
9388 out_end_trans:
9389 	btrfs_end_transaction_throttle(trans, tree_root);
9390 out_free:
9391 	kfree(wc);
9392 	btrfs_free_path(path);
9393 out:
9394 	/*
9395 	 * So if we need to stop dropping the snapshot for whatever reason we
9396 	 * need to make sure to add it back to the dead root list so that we
9397 	 * keep trying to do the work later.  This also cleans up roots if we
9398 	 * don't have it in the radix (like when we recover after a power fail
9399 	 * or unmount) so we don't leak memory.
9400 	 */
9401 	if (!for_reloc && root_dropped == false)
9402 		btrfs_add_dead_root(root);
9403 	if (err && err != -EAGAIN)
9404 		btrfs_handle_fs_error(root->fs_info, err, NULL);
9405 	return err;
9406 }
9407 
9408 /*
9409  * drop subtree rooted at tree block 'node'.
9410  *
9411  * NOTE: this function will unlock and release tree block 'node'
9412  * only used by relocation code
9413  */
9414 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9415 			struct btrfs_root *root,
9416 			struct extent_buffer *node,
9417 			struct extent_buffer *parent)
9418 {
9419 	struct btrfs_path *path;
9420 	struct walk_control *wc;
9421 	int level;
9422 	int parent_level;
9423 	int ret = 0;
9424 	int wret;
9425 
9426 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9427 
9428 	path = btrfs_alloc_path();
9429 	if (!path)
9430 		return -ENOMEM;
9431 
9432 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9433 	if (!wc) {
9434 		btrfs_free_path(path);
9435 		return -ENOMEM;
9436 	}
9437 
9438 	btrfs_assert_tree_locked(parent);
9439 	parent_level = btrfs_header_level(parent);
9440 	extent_buffer_get(parent);
9441 	path->nodes[parent_level] = parent;
9442 	path->slots[parent_level] = btrfs_header_nritems(parent);
9443 
9444 	btrfs_assert_tree_locked(node);
9445 	level = btrfs_header_level(node);
9446 	path->nodes[level] = node;
9447 	path->slots[level] = 0;
9448 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9449 
9450 	wc->refs[parent_level] = 1;
9451 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9452 	wc->level = level;
9453 	wc->shared_level = -1;
9454 	wc->stage = DROP_REFERENCE;
9455 	wc->update_ref = 0;
9456 	wc->keep_locks = 1;
9457 	wc->for_reloc = 1;
9458 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9459 
9460 	while (1) {
9461 		wret = walk_down_tree(trans, root, path, wc);
9462 		if (wret < 0) {
9463 			ret = wret;
9464 			break;
9465 		}
9466 
9467 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9468 		if (wret < 0)
9469 			ret = wret;
9470 		if (wret != 0)
9471 			break;
9472 	}
9473 
9474 	kfree(wc);
9475 	btrfs_free_path(path);
9476 	return ret;
9477 }
9478 
9479 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9480 {
9481 	u64 num_devices;
9482 	u64 stripped;
9483 
9484 	/*
9485 	 * if restripe for this chunk_type is on pick target profile and
9486 	 * return, otherwise do the usual balance
9487 	 */
9488 	stripped = get_restripe_target(root->fs_info, flags);
9489 	if (stripped)
9490 		return extended_to_chunk(stripped);
9491 
9492 	num_devices = root->fs_info->fs_devices->rw_devices;
9493 
9494 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9495 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9496 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9497 
9498 	if (num_devices == 1) {
9499 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9500 		stripped = flags & ~stripped;
9501 
9502 		/* turn raid0 into single device chunks */
9503 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9504 			return stripped;
9505 
9506 		/* turn mirroring into duplication */
9507 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9508 			     BTRFS_BLOCK_GROUP_RAID10))
9509 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9510 	} else {
9511 		/* they already had raid on here, just return */
9512 		if (flags & stripped)
9513 			return flags;
9514 
9515 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9516 		stripped = flags & ~stripped;
9517 
9518 		/* switch duplicated blocks with raid1 */
9519 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9520 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9521 
9522 		/* this is drive concat, leave it alone */
9523 	}
9524 
9525 	return flags;
9526 }
9527 
9528 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9529 {
9530 	struct btrfs_space_info *sinfo = cache->space_info;
9531 	u64 num_bytes;
9532 	u64 min_allocable_bytes;
9533 	int ret = -ENOSPC;
9534 
9535 	/*
9536 	 * We need some metadata space and system metadata space for
9537 	 * allocating chunks in some corner cases until we force to set
9538 	 * it to be readonly.
9539 	 */
9540 	if ((sinfo->flags &
9541 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9542 	    !force)
9543 		min_allocable_bytes = SZ_1M;
9544 	else
9545 		min_allocable_bytes = 0;
9546 
9547 	spin_lock(&sinfo->lock);
9548 	spin_lock(&cache->lock);
9549 
9550 	if (cache->ro) {
9551 		cache->ro++;
9552 		ret = 0;
9553 		goto out;
9554 	}
9555 
9556 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9557 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9558 
9559 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9560 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9561 	    min_allocable_bytes <= sinfo->total_bytes) {
9562 		sinfo->bytes_readonly += num_bytes;
9563 		cache->ro++;
9564 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9565 		ret = 0;
9566 	}
9567 out:
9568 	spin_unlock(&cache->lock);
9569 	spin_unlock(&sinfo->lock);
9570 	return ret;
9571 }
9572 
9573 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9574 			     struct btrfs_block_group_cache *cache)
9575 
9576 {
9577 	struct btrfs_trans_handle *trans;
9578 	u64 alloc_flags;
9579 	int ret;
9580 
9581 again:
9582 	trans = btrfs_join_transaction(root);
9583 	if (IS_ERR(trans))
9584 		return PTR_ERR(trans);
9585 
9586 	/*
9587 	 * we're not allowed to set block groups readonly after the dirty
9588 	 * block groups cache has started writing.  If it already started,
9589 	 * back off and let this transaction commit
9590 	 */
9591 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9592 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9593 		u64 transid = trans->transid;
9594 
9595 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9596 		btrfs_end_transaction(trans, root);
9597 
9598 		ret = btrfs_wait_for_commit(root, transid);
9599 		if (ret)
9600 			return ret;
9601 		goto again;
9602 	}
9603 
9604 	/*
9605 	 * if we are changing raid levels, try to allocate a corresponding
9606 	 * block group with the new raid level.
9607 	 */
9608 	alloc_flags = update_block_group_flags(root, cache->flags);
9609 	if (alloc_flags != cache->flags) {
9610 		ret = do_chunk_alloc(trans, root, alloc_flags,
9611 				     CHUNK_ALLOC_FORCE);
9612 		/*
9613 		 * ENOSPC is allowed here, we may have enough space
9614 		 * already allocated at the new raid level to
9615 		 * carry on
9616 		 */
9617 		if (ret == -ENOSPC)
9618 			ret = 0;
9619 		if (ret < 0)
9620 			goto out;
9621 	}
9622 
9623 	ret = inc_block_group_ro(cache, 0);
9624 	if (!ret)
9625 		goto out;
9626 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9627 	ret = do_chunk_alloc(trans, root, alloc_flags,
9628 			     CHUNK_ALLOC_FORCE);
9629 	if (ret < 0)
9630 		goto out;
9631 	ret = inc_block_group_ro(cache, 0);
9632 out:
9633 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9634 		alloc_flags = update_block_group_flags(root, cache->flags);
9635 		lock_chunks(root->fs_info->chunk_root);
9636 		check_system_chunk(trans, root, alloc_flags);
9637 		unlock_chunks(root->fs_info->chunk_root);
9638 	}
9639 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9640 
9641 	btrfs_end_transaction(trans, root);
9642 	return ret;
9643 }
9644 
9645 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9646 			    struct btrfs_root *root, u64 type)
9647 {
9648 	u64 alloc_flags = get_alloc_profile(root, type);
9649 	return do_chunk_alloc(trans, root, alloc_flags,
9650 			      CHUNK_ALLOC_FORCE);
9651 }
9652 
9653 /*
9654  * helper to account the unused space of all the readonly block group in the
9655  * space_info. takes mirrors into account.
9656  */
9657 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9658 {
9659 	struct btrfs_block_group_cache *block_group;
9660 	u64 free_bytes = 0;
9661 	int factor;
9662 
9663 	/* It's df, we don't care if it's racy */
9664 	if (list_empty(&sinfo->ro_bgs))
9665 		return 0;
9666 
9667 	spin_lock(&sinfo->lock);
9668 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9669 		spin_lock(&block_group->lock);
9670 
9671 		if (!block_group->ro) {
9672 			spin_unlock(&block_group->lock);
9673 			continue;
9674 		}
9675 
9676 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9677 					  BTRFS_BLOCK_GROUP_RAID10 |
9678 					  BTRFS_BLOCK_GROUP_DUP))
9679 			factor = 2;
9680 		else
9681 			factor = 1;
9682 
9683 		free_bytes += (block_group->key.offset -
9684 			       btrfs_block_group_used(&block_group->item)) *
9685 			       factor;
9686 
9687 		spin_unlock(&block_group->lock);
9688 	}
9689 	spin_unlock(&sinfo->lock);
9690 
9691 	return free_bytes;
9692 }
9693 
9694 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9695 			      struct btrfs_block_group_cache *cache)
9696 {
9697 	struct btrfs_space_info *sinfo = cache->space_info;
9698 	u64 num_bytes;
9699 
9700 	BUG_ON(!cache->ro);
9701 
9702 	spin_lock(&sinfo->lock);
9703 	spin_lock(&cache->lock);
9704 	if (!--cache->ro) {
9705 		num_bytes = cache->key.offset - cache->reserved -
9706 			    cache->pinned - cache->bytes_super -
9707 			    btrfs_block_group_used(&cache->item);
9708 		sinfo->bytes_readonly -= num_bytes;
9709 		list_del_init(&cache->ro_list);
9710 	}
9711 	spin_unlock(&cache->lock);
9712 	spin_unlock(&sinfo->lock);
9713 }
9714 
9715 /*
9716  * checks to see if its even possible to relocate this block group.
9717  *
9718  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9719  * ok to go ahead and try.
9720  */
9721 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9722 {
9723 	struct btrfs_block_group_cache *block_group;
9724 	struct btrfs_space_info *space_info;
9725 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9726 	struct btrfs_device *device;
9727 	struct btrfs_trans_handle *trans;
9728 	u64 min_free;
9729 	u64 dev_min = 1;
9730 	u64 dev_nr = 0;
9731 	u64 target;
9732 	int debug;
9733 	int index;
9734 	int full = 0;
9735 	int ret = 0;
9736 
9737 	debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9738 
9739 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9740 
9741 	/* odd, couldn't find the block group, leave it alone */
9742 	if (!block_group) {
9743 		if (debug)
9744 			btrfs_warn(root->fs_info,
9745 				   "can't find block group for bytenr %llu",
9746 				   bytenr);
9747 		return -1;
9748 	}
9749 
9750 	min_free = btrfs_block_group_used(&block_group->item);
9751 
9752 	/* no bytes used, we're good */
9753 	if (!min_free)
9754 		goto out;
9755 
9756 	space_info = block_group->space_info;
9757 	spin_lock(&space_info->lock);
9758 
9759 	full = space_info->full;
9760 
9761 	/*
9762 	 * if this is the last block group we have in this space, we can't
9763 	 * relocate it unless we're able to allocate a new chunk below.
9764 	 *
9765 	 * Otherwise, we need to make sure we have room in the space to handle
9766 	 * all of the extents from this block group.  If we can, we're good
9767 	 */
9768 	if ((space_info->total_bytes != block_group->key.offset) &&
9769 	    (space_info->bytes_used + space_info->bytes_reserved +
9770 	     space_info->bytes_pinned + space_info->bytes_readonly +
9771 	     min_free < space_info->total_bytes)) {
9772 		spin_unlock(&space_info->lock);
9773 		goto out;
9774 	}
9775 	spin_unlock(&space_info->lock);
9776 
9777 	/*
9778 	 * ok we don't have enough space, but maybe we have free space on our
9779 	 * devices to allocate new chunks for relocation, so loop through our
9780 	 * alloc devices and guess if we have enough space.  if this block
9781 	 * group is going to be restriped, run checks against the target
9782 	 * profile instead of the current one.
9783 	 */
9784 	ret = -1;
9785 
9786 	/*
9787 	 * index:
9788 	 *      0: raid10
9789 	 *      1: raid1
9790 	 *      2: dup
9791 	 *      3: raid0
9792 	 *      4: single
9793 	 */
9794 	target = get_restripe_target(root->fs_info, block_group->flags);
9795 	if (target) {
9796 		index = __get_raid_index(extended_to_chunk(target));
9797 	} else {
9798 		/*
9799 		 * this is just a balance, so if we were marked as full
9800 		 * we know there is no space for a new chunk
9801 		 */
9802 		if (full) {
9803 			if (debug)
9804 				btrfs_warn(root->fs_info,
9805 					"no space to alloc new chunk for block group %llu",
9806 					block_group->key.objectid);
9807 			goto out;
9808 		}
9809 
9810 		index = get_block_group_index(block_group);
9811 	}
9812 
9813 	if (index == BTRFS_RAID_RAID10) {
9814 		dev_min = 4;
9815 		/* Divide by 2 */
9816 		min_free >>= 1;
9817 	} else if (index == BTRFS_RAID_RAID1) {
9818 		dev_min = 2;
9819 	} else if (index == BTRFS_RAID_DUP) {
9820 		/* Multiply by 2 */
9821 		min_free <<= 1;
9822 	} else if (index == BTRFS_RAID_RAID0) {
9823 		dev_min = fs_devices->rw_devices;
9824 		min_free = div64_u64(min_free, dev_min);
9825 	}
9826 
9827 	/* We need to do this so that we can look at pending chunks */
9828 	trans = btrfs_join_transaction(root);
9829 	if (IS_ERR(trans)) {
9830 		ret = PTR_ERR(trans);
9831 		goto out;
9832 	}
9833 
9834 	mutex_lock(&root->fs_info->chunk_mutex);
9835 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9836 		u64 dev_offset;
9837 
9838 		/*
9839 		 * check to make sure we can actually find a chunk with enough
9840 		 * space to fit our block group in.
9841 		 */
9842 		if (device->total_bytes > device->bytes_used + min_free &&
9843 		    !device->is_tgtdev_for_dev_replace) {
9844 			ret = find_free_dev_extent(trans, device, min_free,
9845 						   &dev_offset, NULL);
9846 			if (!ret)
9847 				dev_nr++;
9848 
9849 			if (dev_nr >= dev_min)
9850 				break;
9851 
9852 			ret = -1;
9853 		}
9854 	}
9855 	if (debug && ret == -1)
9856 		btrfs_warn(root->fs_info,
9857 			"no space to allocate a new chunk for block group %llu",
9858 			block_group->key.objectid);
9859 	mutex_unlock(&root->fs_info->chunk_mutex);
9860 	btrfs_end_transaction(trans, root);
9861 out:
9862 	btrfs_put_block_group(block_group);
9863 	return ret;
9864 }
9865 
9866 static int find_first_block_group(struct btrfs_root *root,
9867 		struct btrfs_path *path, struct btrfs_key *key)
9868 {
9869 	int ret = 0;
9870 	struct btrfs_key found_key;
9871 	struct extent_buffer *leaf;
9872 	int slot;
9873 
9874 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9875 	if (ret < 0)
9876 		goto out;
9877 
9878 	while (1) {
9879 		slot = path->slots[0];
9880 		leaf = path->nodes[0];
9881 		if (slot >= btrfs_header_nritems(leaf)) {
9882 			ret = btrfs_next_leaf(root, path);
9883 			if (ret == 0)
9884 				continue;
9885 			if (ret < 0)
9886 				goto out;
9887 			break;
9888 		}
9889 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9890 
9891 		if (found_key.objectid >= key->objectid &&
9892 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9893 			struct extent_map_tree *em_tree;
9894 			struct extent_map *em;
9895 
9896 			em_tree = &root->fs_info->mapping_tree.map_tree;
9897 			read_lock(&em_tree->lock);
9898 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9899 						   found_key.offset);
9900 			read_unlock(&em_tree->lock);
9901 			if (!em) {
9902 				btrfs_err(root->fs_info,
9903 			"logical %llu len %llu found bg but no related chunk",
9904 					  found_key.objectid, found_key.offset);
9905 				ret = -ENOENT;
9906 			} else {
9907 				ret = 0;
9908 			}
9909 			goto out;
9910 		}
9911 		path->slots[0]++;
9912 	}
9913 out:
9914 	return ret;
9915 }
9916 
9917 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9918 {
9919 	struct btrfs_block_group_cache *block_group;
9920 	u64 last = 0;
9921 
9922 	while (1) {
9923 		struct inode *inode;
9924 
9925 		block_group = btrfs_lookup_first_block_group(info, last);
9926 		while (block_group) {
9927 			spin_lock(&block_group->lock);
9928 			if (block_group->iref)
9929 				break;
9930 			spin_unlock(&block_group->lock);
9931 			block_group = next_block_group(info->tree_root,
9932 						       block_group);
9933 		}
9934 		if (!block_group) {
9935 			if (last == 0)
9936 				break;
9937 			last = 0;
9938 			continue;
9939 		}
9940 
9941 		inode = block_group->inode;
9942 		block_group->iref = 0;
9943 		block_group->inode = NULL;
9944 		spin_unlock(&block_group->lock);
9945 		iput(inode);
9946 		last = block_group->key.objectid + block_group->key.offset;
9947 		btrfs_put_block_group(block_group);
9948 	}
9949 }
9950 
9951 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9952 {
9953 	struct btrfs_block_group_cache *block_group;
9954 	struct btrfs_space_info *space_info;
9955 	struct btrfs_caching_control *caching_ctl;
9956 	struct rb_node *n;
9957 
9958 	down_write(&info->commit_root_sem);
9959 	while (!list_empty(&info->caching_block_groups)) {
9960 		caching_ctl = list_entry(info->caching_block_groups.next,
9961 					 struct btrfs_caching_control, list);
9962 		list_del(&caching_ctl->list);
9963 		put_caching_control(caching_ctl);
9964 	}
9965 	up_write(&info->commit_root_sem);
9966 
9967 	spin_lock(&info->unused_bgs_lock);
9968 	while (!list_empty(&info->unused_bgs)) {
9969 		block_group = list_first_entry(&info->unused_bgs,
9970 					       struct btrfs_block_group_cache,
9971 					       bg_list);
9972 		list_del_init(&block_group->bg_list);
9973 		btrfs_put_block_group(block_group);
9974 	}
9975 	spin_unlock(&info->unused_bgs_lock);
9976 
9977 	spin_lock(&info->block_group_cache_lock);
9978 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9979 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9980 				       cache_node);
9981 		rb_erase(&block_group->cache_node,
9982 			 &info->block_group_cache_tree);
9983 		RB_CLEAR_NODE(&block_group->cache_node);
9984 		spin_unlock(&info->block_group_cache_lock);
9985 
9986 		down_write(&block_group->space_info->groups_sem);
9987 		list_del(&block_group->list);
9988 		up_write(&block_group->space_info->groups_sem);
9989 
9990 		if (block_group->cached == BTRFS_CACHE_STARTED)
9991 			wait_block_group_cache_done(block_group);
9992 
9993 		/*
9994 		 * We haven't cached this block group, which means we could
9995 		 * possibly have excluded extents on this block group.
9996 		 */
9997 		if (block_group->cached == BTRFS_CACHE_NO ||
9998 		    block_group->cached == BTRFS_CACHE_ERROR)
9999 			free_excluded_extents(info->extent_root, block_group);
10000 
10001 		btrfs_remove_free_space_cache(block_group);
10002 		btrfs_put_block_group(block_group);
10003 
10004 		spin_lock(&info->block_group_cache_lock);
10005 	}
10006 	spin_unlock(&info->block_group_cache_lock);
10007 
10008 	/* now that all the block groups are freed, go through and
10009 	 * free all the space_info structs.  This is only called during
10010 	 * the final stages of unmount, and so we know nobody is
10011 	 * using them.  We call synchronize_rcu() once before we start,
10012 	 * just to be on the safe side.
10013 	 */
10014 	synchronize_rcu();
10015 
10016 	release_global_block_rsv(info);
10017 
10018 	while (!list_empty(&info->space_info)) {
10019 		int i;
10020 
10021 		space_info = list_entry(info->space_info.next,
10022 					struct btrfs_space_info,
10023 					list);
10024 
10025 		/*
10026 		 * Do not hide this behind enospc_debug, this is actually
10027 		 * important and indicates a real bug if this happens.
10028 		 */
10029 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10030 			    space_info->bytes_reserved > 0 ||
10031 			    space_info->bytes_may_use > 0))
10032 			dump_space_info(space_info, 0, 0);
10033 		list_del(&space_info->list);
10034 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10035 			struct kobject *kobj;
10036 			kobj = space_info->block_group_kobjs[i];
10037 			space_info->block_group_kobjs[i] = NULL;
10038 			if (kobj) {
10039 				kobject_del(kobj);
10040 				kobject_put(kobj);
10041 			}
10042 		}
10043 		kobject_del(&space_info->kobj);
10044 		kobject_put(&space_info->kobj);
10045 	}
10046 	return 0;
10047 }
10048 
10049 static void __link_block_group(struct btrfs_space_info *space_info,
10050 			       struct btrfs_block_group_cache *cache)
10051 {
10052 	int index = get_block_group_index(cache);
10053 	bool first = false;
10054 
10055 	down_write(&space_info->groups_sem);
10056 	if (list_empty(&space_info->block_groups[index]))
10057 		first = true;
10058 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10059 	up_write(&space_info->groups_sem);
10060 
10061 	if (first) {
10062 		struct raid_kobject *rkobj;
10063 		int ret;
10064 
10065 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10066 		if (!rkobj)
10067 			goto out_err;
10068 		rkobj->raid_type = index;
10069 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10070 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10071 				  "%s", get_raid_name(index));
10072 		if (ret) {
10073 			kobject_put(&rkobj->kobj);
10074 			goto out_err;
10075 		}
10076 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10077 	}
10078 
10079 	return;
10080 out_err:
10081 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10082 }
10083 
10084 static struct btrfs_block_group_cache *
10085 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10086 {
10087 	struct btrfs_block_group_cache *cache;
10088 
10089 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10090 	if (!cache)
10091 		return NULL;
10092 
10093 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10094 					GFP_NOFS);
10095 	if (!cache->free_space_ctl) {
10096 		kfree(cache);
10097 		return NULL;
10098 	}
10099 
10100 	cache->key.objectid = start;
10101 	cache->key.offset = size;
10102 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10103 
10104 	cache->sectorsize = root->sectorsize;
10105 	cache->fs_info = root->fs_info;
10106 	cache->full_stripe_len = btrfs_full_stripe_len(root,
10107 					       &root->fs_info->mapping_tree,
10108 					       start);
10109 	set_free_space_tree_thresholds(cache);
10110 
10111 	atomic_set(&cache->count, 1);
10112 	spin_lock_init(&cache->lock);
10113 	init_rwsem(&cache->data_rwsem);
10114 	INIT_LIST_HEAD(&cache->list);
10115 	INIT_LIST_HEAD(&cache->cluster_list);
10116 	INIT_LIST_HEAD(&cache->bg_list);
10117 	INIT_LIST_HEAD(&cache->ro_list);
10118 	INIT_LIST_HEAD(&cache->dirty_list);
10119 	INIT_LIST_HEAD(&cache->io_list);
10120 	btrfs_init_free_space_ctl(cache);
10121 	atomic_set(&cache->trimming, 0);
10122 	mutex_init(&cache->free_space_lock);
10123 
10124 	return cache;
10125 }
10126 
10127 int btrfs_read_block_groups(struct btrfs_root *root)
10128 {
10129 	struct btrfs_path *path;
10130 	int ret;
10131 	struct btrfs_block_group_cache *cache;
10132 	struct btrfs_fs_info *info = root->fs_info;
10133 	struct btrfs_space_info *space_info;
10134 	struct btrfs_key key;
10135 	struct btrfs_key found_key;
10136 	struct extent_buffer *leaf;
10137 	int need_clear = 0;
10138 	u64 cache_gen;
10139 
10140 	root = info->extent_root;
10141 	key.objectid = 0;
10142 	key.offset = 0;
10143 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10144 	path = btrfs_alloc_path();
10145 	if (!path)
10146 		return -ENOMEM;
10147 	path->reada = READA_FORWARD;
10148 
10149 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10150 	if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10151 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10152 		need_clear = 1;
10153 	if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10154 		need_clear = 1;
10155 
10156 	while (1) {
10157 		ret = find_first_block_group(root, path, &key);
10158 		if (ret > 0)
10159 			break;
10160 		if (ret != 0)
10161 			goto error;
10162 
10163 		leaf = path->nodes[0];
10164 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10165 
10166 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
10167 						       found_key.offset);
10168 		if (!cache) {
10169 			ret = -ENOMEM;
10170 			goto error;
10171 		}
10172 
10173 		if (need_clear) {
10174 			/*
10175 			 * When we mount with old space cache, we need to
10176 			 * set BTRFS_DC_CLEAR and set dirty flag.
10177 			 *
10178 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10179 			 *    truncate the old free space cache inode and
10180 			 *    setup a new one.
10181 			 * b) Setting 'dirty flag' makes sure that we flush
10182 			 *    the new space cache info onto disk.
10183 			 */
10184 			if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10185 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10186 		}
10187 
10188 		read_extent_buffer(leaf, &cache->item,
10189 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10190 				   sizeof(cache->item));
10191 		cache->flags = btrfs_block_group_flags(&cache->item);
10192 
10193 		key.objectid = found_key.objectid + found_key.offset;
10194 		btrfs_release_path(path);
10195 
10196 		/*
10197 		 * We need to exclude the super stripes now so that the space
10198 		 * info has super bytes accounted for, otherwise we'll think
10199 		 * we have more space than we actually do.
10200 		 */
10201 		ret = exclude_super_stripes(root, cache);
10202 		if (ret) {
10203 			/*
10204 			 * We may have excluded something, so call this just in
10205 			 * case.
10206 			 */
10207 			free_excluded_extents(root, cache);
10208 			btrfs_put_block_group(cache);
10209 			goto error;
10210 		}
10211 
10212 		/*
10213 		 * check for two cases, either we are full, and therefore
10214 		 * don't need to bother with the caching work since we won't
10215 		 * find any space, or we are empty, and we can just add all
10216 		 * the space in and be done with it.  This saves us _alot_ of
10217 		 * time, particularly in the full case.
10218 		 */
10219 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10220 			cache->last_byte_to_unpin = (u64)-1;
10221 			cache->cached = BTRFS_CACHE_FINISHED;
10222 			free_excluded_extents(root, cache);
10223 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10224 			cache->last_byte_to_unpin = (u64)-1;
10225 			cache->cached = BTRFS_CACHE_FINISHED;
10226 			add_new_free_space(cache, root->fs_info,
10227 					   found_key.objectid,
10228 					   found_key.objectid +
10229 					   found_key.offset);
10230 			free_excluded_extents(root, cache);
10231 		}
10232 
10233 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
10234 		if (ret) {
10235 			btrfs_remove_free_space_cache(cache);
10236 			btrfs_put_block_group(cache);
10237 			goto error;
10238 		}
10239 
10240 		trace_btrfs_add_block_group(root->fs_info, cache, 0);
10241 		ret = update_space_info(info, cache->flags, found_key.offset,
10242 					btrfs_block_group_used(&cache->item),
10243 					cache->bytes_super, &space_info);
10244 		if (ret) {
10245 			btrfs_remove_free_space_cache(cache);
10246 			spin_lock(&info->block_group_cache_lock);
10247 			rb_erase(&cache->cache_node,
10248 				 &info->block_group_cache_tree);
10249 			RB_CLEAR_NODE(&cache->cache_node);
10250 			spin_unlock(&info->block_group_cache_lock);
10251 			btrfs_put_block_group(cache);
10252 			goto error;
10253 		}
10254 
10255 		cache->space_info = space_info;
10256 
10257 		__link_block_group(space_info, cache);
10258 
10259 		set_avail_alloc_bits(root->fs_info, cache->flags);
10260 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10261 			inc_block_group_ro(cache, 1);
10262 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10263 			spin_lock(&info->unused_bgs_lock);
10264 			/* Should always be true but just in case. */
10265 			if (list_empty(&cache->bg_list)) {
10266 				btrfs_get_block_group(cache);
10267 				list_add_tail(&cache->bg_list,
10268 					      &info->unused_bgs);
10269 			}
10270 			spin_unlock(&info->unused_bgs_lock);
10271 		}
10272 	}
10273 
10274 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10275 		if (!(get_alloc_profile(root, space_info->flags) &
10276 		      (BTRFS_BLOCK_GROUP_RAID10 |
10277 		       BTRFS_BLOCK_GROUP_RAID1 |
10278 		       BTRFS_BLOCK_GROUP_RAID5 |
10279 		       BTRFS_BLOCK_GROUP_RAID6 |
10280 		       BTRFS_BLOCK_GROUP_DUP)))
10281 			continue;
10282 		/*
10283 		 * avoid allocating from un-mirrored block group if there are
10284 		 * mirrored block groups.
10285 		 */
10286 		list_for_each_entry(cache,
10287 				&space_info->block_groups[BTRFS_RAID_RAID0],
10288 				list)
10289 			inc_block_group_ro(cache, 1);
10290 		list_for_each_entry(cache,
10291 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10292 				list)
10293 			inc_block_group_ro(cache, 1);
10294 	}
10295 
10296 	init_global_block_rsv(info);
10297 	ret = 0;
10298 error:
10299 	btrfs_free_path(path);
10300 	return ret;
10301 }
10302 
10303 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10304 				       struct btrfs_root *root)
10305 {
10306 	struct btrfs_block_group_cache *block_group, *tmp;
10307 	struct btrfs_root *extent_root = root->fs_info->extent_root;
10308 	struct btrfs_block_group_item item;
10309 	struct btrfs_key key;
10310 	int ret = 0;
10311 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10312 
10313 	trans->can_flush_pending_bgs = false;
10314 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10315 		if (ret)
10316 			goto next;
10317 
10318 		spin_lock(&block_group->lock);
10319 		memcpy(&item, &block_group->item, sizeof(item));
10320 		memcpy(&key, &block_group->key, sizeof(key));
10321 		spin_unlock(&block_group->lock);
10322 
10323 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10324 					sizeof(item));
10325 		if (ret)
10326 			btrfs_abort_transaction(trans, ret);
10327 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
10328 					       key.objectid, key.offset);
10329 		if (ret)
10330 			btrfs_abort_transaction(trans, ret);
10331 		add_block_group_free_space(trans, root->fs_info, block_group);
10332 		/* already aborted the transaction if it failed. */
10333 next:
10334 		list_del_init(&block_group->bg_list);
10335 	}
10336 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10337 }
10338 
10339 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10340 			   struct btrfs_root *root, u64 bytes_used,
10341 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10342 			   u64 size)
10343 {
10344 	int ret;
10345 	struct btrfs_root *extent_root;
10346 	struct btrfs_block_group_cache *cache;
10347 	extent_root = root->fs_info->extent_root;
10348 
10349 	btrfs_set_log_full_commit(root->fs_info, trans);
10350 
10351 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10352 	if (!cache)
10353 		return -ENOMEM;
10354 
10355 	btrfs_set_block_group_used(&cache->item, bytes_used);
10356 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10357 	btrfs_set_block_group_flags(&cache->item, type);
10358 
10359 	cache->flags = type;
10360 	cache->last_byte_to_unpin = (u64)-1;
10361 	cache->cached = BTRFS_CACHE_FINISHED;
10362 	cache->needs_free_space = 1;
10363 	ret = exclude_super_stripes(root, cache);
10364 	if (ret) {
10365 		/*
10366 		 * We may have excluded something, so call this just in
10367 		 * case.
10368 		 */
10369 		free_excluded_extents(root, cache);
10370 		btrfs_put_block_group(cache);
10371 		return ret;
10372 	}
10373 
10374 	add_new_free_space(cache, root->fs_info, chunk_offset,
10375 			   chunk_offset + size);
10376 
10377 	free_excluded_extents(root, cache);
10378 
10379 #ifdef CONFIG_BTRFS_DEBUG
10380 	if (btrfs_should_fragment_free_space(root, cache)) {
10381 		u64 new_bytes_used = size - bytes_used;
10382 
10383 		bytes_used += new_bytes_used >> 1;
10384 		fragment_free_space(root, cache);
10385 	}
10386 #endif
10387 	/*
10388 	 * Call to ensure the corresponding space_info object is created and
10389 	 * assigned to our block group, but don't update its counters just yet.
10390 	 * We want our bg to be added to the rbtree with its ->space_info set.
10391 	 */
10392 	ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10393 				&cache->space_info);
10394 	if (ret) {
10395 		btrfs_remove_free_space_cache(cache);
10396 		btrfs_put_block_group(cache);
10397 		return ret;
10398 	}
10399 
10400 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10401 	if (ret) {
10402 		btrfs_remove_free_space_cache(cache);
10403 		btrfs_put_block_group(cache);
10404 		return ret;
10405 	}
10406 
10407 	/*
10408 	 * Now that our block group has its ->space_info set and is inserted in
10409 	 * the rbtree, update the space info's counters.
10410 	 */
10411 	trace_btrfs_add_block_group(root->fs_info, cache, 1);
10412 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10413 				cache->bytes_super, &cache->space_info);
10414 	if (ret) {
10415 		btrfs_remove_free_space_cache(cache);
10416 		spin_lock(&root->fs_info->block_group_cache_lock);
10417 		rb_erase(&cache->cache_node,
10418 			 &root->fs_info->block_group_cache_tree);
10419 		RB_CLEAR_NODE(&cache->cache_node);
10420 		spin_unlock(&root->fs_info->block_group_cache_lock);
10421 		btrfs_put_block_group(cache);
10422 		return ret;
10423 	}
10424 	update_global_block_rsv(root->fs_info);
10425 
10426 	__link_block_group(cache->space_info, cache);
10427 
10428 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10429 
10430 	set_avail_alloc_bits(extent_root->fs_info, type);
10431 	return 0;
10432 }
10433 
10434 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10435 {
10436 	u64 extra_flags = chunk_to_extended(flags) &
10437 				BTRFS_EXTENDED_PROFILE_MASK;
10438 
10439 	write_seqlock(&fs_info->profiles_lock);
10440 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10441 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10442 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10443 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10444 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10445 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10446 	write_sequnlock(&fs_info->profiles_lock);
10447 }
10448 
10449 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10450 			     struct btrfs_root *root, u64 group_start,
10451 			     struct extent_map *em)
10452 {
10453 	struct btrfs_path *path;
10454 	struct btrfs_block_group_cache *block_group;
10455 	struct btrfs_free_cluster *cluster;
10456 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10457 	struct btrfs_key key;
10458 	struct inode *inode;
10459 	struct kobject *kobj = NULL;
10460 	int ret;
10461 	int index;
10462 	int factor;
10463 	struct btrfs_caching_control *caching_ctl = NULL;
10464 	bool remove_em;
10465 
10466 	root = root->fs_info->extent_root;
10467 
10468 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10469 	BUG_ON(!block_group);
10470 	BUG_ON(!block_group->ro);
10471 
10472 	/*
10473 	 * Free the reserved super bytes from this block group before
10474 	 * remove it.
10475 	 */
10476 	free_excluded_extents(root, block_group);
10477 
10478 	memcpy(&key, &block_group->key, sizeof(key));
10479 	index = get_block_group_index(block_group);
10480 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10481 				  BTRFS_BLOCK_GROUP_RAID1 |
10482 				  BTRFS_BLOCK_GROUP_RAID10))
10483 		factor = 2;
10484 	else
10485 		factor = 1;
10486 
10487 	/* make sure this block group isn't part of an allocation cluster */
10488 	cluster = &root->fs_info->data_alloc_cluster;
10489 	spin_lock(&cluster->refill_lock);
10490 	btrfs_return_cluster_to_free_space(block_group, cluster);
10491 	spin_unlock(&cluster->refill_lock);
10492 
10493 	/*
10494 	 * make sure this block group isn't part of a metadata
10495 	 * allocation cluster
10496 	 */
10497 	cluster = &root->fs_info->meta_alloc_cluster;
10498 	spin_lock(&cluster->refill_lock);
10499 	btrfs_return_cluster_to_free_space(block_group, cluster);
10500 	spin_unlock(&cluster->refill_lock);
10501 
10502 	path = btrfs_alloc_path();
10503 	if (!path) {
10504 		ret = -ENOMEM;
10505 		goto out;
10506 	}
10507 
10508 	/*
10509 	 * get the inode first so any iput calls done for the io_list
10510 	 * aren't the final iput (no unlinks allowed now)
10511 	 */
10512 	inode = lookup_free_space_inode(tree_root, block_group, path);
10513 
10514 	mutex_lock(&trans->transaction->cache_write_mutex);
10515 	/*
10516 	 * make sure our free spache cache IO is done before remove the
10517 	 * free space inode
10518 	 */
10519 	spin_lock(&trans->transaction->dirty_bgs_lock);
10520 	if (!list_empty(&block_group->io_list)) {
10521 		list_del_init(&block_group->io_list);
10522 
10523 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10524 
10525 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10526 		btrfs_wait_cache_io(root, trans, block_group,
10527 				    &block_group->io_ctl, path,
10528 				    block_group->key.objectid);
10529 		btrfs_put_block_group(block_group);
10530 		spin_lock(&trans->transaction->dirty_bgs_lock);
10531 	}
10532 
10533 	if (!list_empty(&block_group->dirty_list)) {
10534 		list_del_init(&block_group->dirty_list);
10535 		btrfs_put_block_group(block_group);
10536 	}
10537 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10538 	mutex_unlock(&trans->transaction->cache_write_mutex);
10539 
10540 	if (!IS_ERR(inode)) {
10541 		ret = btrfs_orphan_add(trans, inode);
10542 		if (ret) {
10543 			btrfs_add_delayed_iput(inode);
10544 			goto out;
10545 		}
10546 		clear_nlink(inode);
10547 		/* One for the block groups ref */
10548 		spin_lock(&block_group->lock);
10549 		if (block_group->iref) {
10550 			block_group->iref = 0;
10551 			block_group->inode = NULL;
10552 			spin_unlock(&block_group->lock);
10553 			iput(inode);
10554 		} else {
10555 			spin_unlock(&block_group->lock);
10556 		}
10557 		/* One for our lookup ref */
10558 		btrfs_add_delayed_iput(inode);
10559 	}
10560 
10561 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10562 	key.offset = block_group->key.objectid;
10563 	key.type = 0;
10564 
10565 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10566 	if (ret < 0)
10567 		goto out;
10568 	if (ret > 0)
10569 		btrfs_release_path(path);
10570 	if (ret == 0) {
10571 		ret = btrfs_del_item(trans, tree_root, path);
10572 		if (ret)
10573 			goto out;
10574 		btrfs_release_path(path);
10575 	}
10576 
10577 	spin_lock(&root->fs_info->block_group_cache_lock);
10578 	rb_erase(&block_group->cache_node,
10579 		 &root->fs_info->block_group_cache_tree);
10580 	RB_CLEAR_NODE(&block_group->cache_node);
10581 
10582 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10583 		root->fs_info->first_logical_byte = (u64)-1;
10584 	spin_unlock(&root->fs_info->block_group_cache_lock);
10585 
10586 	down_write(&block_group->space_info->groups_sem);
10587 	/*
10588 	 * we must use list_del_init so people can check to see if they
10589 	 * are still on the list after taking the semaphore
10590 	 */
10591 	list_del_init(&block_group->list);
10592 	if (list_empty(&block_group->space_info->block_groups[index])) {
10593 		kobj = block_group->space_info->block_group_kobjs[index];
10594 		block_group->space_info->block_group_kobjs[index] = NULL;
10595 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10596 	}
10597 	up_write(&block_group->space_info->groups_sem);
10598 	if (kobj) {
10599 		kobject_del(kobj);
10600 		kobject_put(kobj);
10601 	}
10602 
10603 	if (block_group->has_caching_ctl)
10604 		caching_ctl = get_caching_control(block_group);
10605 	if (block_group->cached == BTRFS_CACHE_STARTED)
10606 		wait_block_group_cache_done(block_group);
10607 	if (block_group->has_caching_ctl) {
10608 		down_write(&root->fs_info->commit_root_sem);
10609 		if (!caching_ctl) {
10610 			struct btrfs_caching_control *ctl;
10611 
10612 			list_for_each_entry(ctl,
10613 				    &root->fs_info->caching_block_groups, list)
10614 				if (ctl->block_group == block_group) {
10615 					caching_ctl = ctl;
10616 					atomic_inc(&caching_ctl->count);
10617 					break;
10618 				}
10619 		}
10620 		if (caching_ctl)
10621 			list_del_init(&caching_ctl->list);
10622 		up_write(&root->fs_info->commit_root_sem);
10623 		if (caching_ctl) {
10624 			/* Once for the caching bgs list and once for us. */
10625 			put_caching_control(caching_ctl);
10626 			put_caching_control(caching_ctl);
10627 		}
10628 	}
10629 
10630 	spin_lock(&trans->transaction->dirty_bgs_lock);
10631 	if (!list_empty(&block_group->dirty_list)) {
10632 		WARN_ON(1);
10633 	}
10634 	if (!list_empty(&block_group->io_list)) {
10635 		WARN_ON(1);
10636 	}
10637 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10638 	btrfs_remove_free_space_cache(block_group);
10639 
10640 	spin_lock(&block_group->space_info->lock);
10641 	list_del_init(&block_group->ro_list);
10642 
10643 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10644 		WARN_ON(block_group->space_info->total_bytes
10645 			< block_group->key.offset);
10646 		WARN_ON(block_group->space_info->bytes_readonly
10647 			< block_group->key.offset);
10648 		WARN_ON(block_group->space_info->disk_total
10649 			< block_group->key.offset * factor);
10650 	}
10651 	block_group->space_info->total_bytes -= block_group->key.offset;
10652 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10653 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10654 
10655 	spin_unlock(&block_group->space_info->lock);
10656 
10657 	memcpy(&key, &block_group->key, sizeof(key));
10658 
10659 	lock_chunks(root);
10660 	if (!list_empty(&em->list)) {
10661 		/* We're in the transaction->pending_chunks list. */
10662 		free_extent_map(em);
10663 	}
10664 	spin_lock(&block_group->lock);
10665 	block_group->removed = 1;
10666 	/*
10667 	 * At this point trimming can't start on this block group, because we
10668 	 * removed the block group from the tree fs_info->block_group_cache_tree
10669 	 * so no one can't find it anymore and even if someone already got this
10670 	 * block group before we removed it from the rbtree, they have already
10671 	 * incremented block_group->trimming - if they didn't, they won't find
10672 	 * any free space entries because we already removed them all when we
10673 	 * called btrfs_remove_free_space_cache().
10674 	 *
10675 	 * And we must not remove the extent map from the fs_info->mapping_tree
10676 	 * to prevent the same logical address range and physical device space
10677 	 * ranges from being reused for a new block group. This is because our
10678 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10679 	 * completely transactionless, so while it is trimming a range the
10680 	 * currently running transaction might finish and a new one start,
10681 	 * allowing for new block groups to be created that can reuse the same
10682 	 * physical device locations unless we take this special care.
10683 	 *
10684 	 * There may also be an implicit trim operation if the file system
10685 	 * is mounted with -odiscard. The same protections must remain
10686 	 * in place until the extents have been discarded completely when
10687 	 * the transaction commit has completed.
10688 	 */
10689 	remove_em = (atomic_read(&block_group->trimming) == 0);
10690 	/*
10691 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10692 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10693 	 * before checking block_group->removed).
10694 	 */
10695 	if (!remove_em) {
10696 		/*
10697 		 * Our em might be in trans->transaction->pending_chunks which
10698 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10699 		 * and so is the fs_info->pinned_chunks list.
10700 		 *
10701 		 * So at this point we must be holding the chunk_mutex to avoid
10702 		 * any races with chunk allocation (more specifically at
10703 		 * volumes.c:contains_pending_extent()), to ensure it always
10704 		 * sees the em, either in the pending_chunks list or in the
10705 		 * pinned_chunks list.
10706 		 */
10707 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10708 	}
10709 	spin_unlock(&block_group->lock);
10710 
10711 	if (remove_em) {
10712 		struct extent_map_tree *em_tree;
10713 
10714 		em_tree = &root->fs_info->mapping_tree.map_tree;
10715 		write_lock(&em_tree->lock);
10716 		/*
10717 		 * The em might be in the pending_chunks list, so make sure the
10718 		 * chunk mutex is locked, since remove_extent_mapping() will
10719 		 * delete us from that list.
10720 		 */
10721 		remove_extent_mapping(em_tree, em);
10722 		write_unlock(&em_tree->lock);
10723 		/* once for the tree */
10724 		free_extent_map(em);
10725 	}
10726 
10727 	unlock_chunks(root);
10728 
10729 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10730 	if (ret)
10731 		goto out;
10732 
10733 	btrfs_put_block_group(block_group);
10734 	btrfs_put_block_group(block_group);
10735 
10736 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10737 	if (ret > 0)
10738 		ret = -EIO;
10739 	if (ret < 0)
10740 		goto out;
10741 
10742 	ret = btrfs_del_item(trans, root, path);
10743 out:
10744 	btrfs_free_path(path);
10745 	return ret;
10746 }
10747 
10748 struct btrfs_trans_handle *
10749 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10750 				     const u64 chunk_offset)
10751 {
10752 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10753 	struct extent_map *em;
10754 	struct map_lookup *map;
10755 	unsigned int num_items;
10756 
10757 	read_lock(&em_tree->lock);
10758 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10759 	read_unlock(&em_tree->lock);
10760 	ASSERT(em && em->start == chunk_offset);
10761 
10762 	/*
10763 	 * We need to reserve 3 + N units from the metadata space info in order
10764 	 * to remove a block group (done at btrfs_remove_chunk() and at
10765 	 * btrfs_remove_block_group()), which are used for:
10766 	 *
10767 	 * 1 unit for adding the free space inode's orphan (located in the tree
10768 	 * of tree roots).
10769 	 * 1 unit for deleting the block group item (located in the extent
10770 	 * tree).
10771 	 * 1 unit for deleting the free space item (located in tree of tree
10772 	 * roots).
10773 	 * N units for deleting N device extent items corresponding to each
10774 	 * stripe (located in the device tree).
10775 	 *
10776 	 * In order to remove a block group we also need to reserve units in the
10777 	 * system space info in order to update the chunk tree (update one or
10778 	 * more device items and remove one chunk item), but this is done at
10779 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10780 	 */
10781 	map = em->map_lookup;
10782 	num_items = 3 + map->num_stripes;
10783 	free_extent_map(em);
10784 
10785 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10786 							   num_items, 1);
10787 }
10788 
10789 /*
10790  * Process the unused_bgs list and remove any that don't have any allocated
10791  * space inside of them.
10792  */
10793 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10794 {
10795 	struct btrfs_block_group_cache *block_group;
10796 	struct btrfs_space_info *space_info;
10797 	struct btrfs_root *root = fs_info->extent_root;
10798 	struct btrfs_trans_handle *trans;
10799 	int ret = 0;
10800 
10801 	if (!fs_info->open)
10802 		return;
10803 
10804 	spin_lock(&fs_info->unused_bgs_lock);
10805 	while (!list_empty(&fs_info->unused_bgs)) {
10806 		u64 start, end;
10807 		int trimming;
10808 
10809 		block_group = list_first_entry(&fs_info->unused_bgs,
10810 					       struct btrfs_block_group_cache,
10811 					       bg_list);
10812 		list_del_init(&block_group->bg_list);
10813 
10814 		space_info = block_group->space_info;
10815 
10816 		if (ret || btrfs_mixed_space_info(space_info)) {
10817 			btrfs_put_block_group(block_group);
10818 			continue;
10819 		}
10820 		spin_unlock(&fs_info->unused_bgs_lock);
10821 
10822 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10823 
10824 		/* Don't want to race with allocators so take the groups_sem */
10825 		down_write(&space_info->groups_sem);
10826 		spin_lock(&block_group->lock);
10827 		if (block_group->reserved ||
10828 		    btrfs_block_group_used(&block_group->item) ||
10829 		    block_group->ro ||
10830 		    list_is_singular(&block_group->list)) {
10831 			/*
10832 			 * We want to bail if we made new allocations or have
10833 			 * outstanding allocations in this block group.  We do
10834 			 * the ro check in case balance is currently acting on
10835 			 * this block group.
10836 			 */
10837 			spin_unlock(&block_group->lock);
10838 			up_write(&space_info->groups_sem);
10839 			goto next;
10840 		}
10841 		spin_unlock(&block_group->lock);
10842 
10843 		/* We don't want to force the issue, only flip if it's ok. */
10844 		ret = inc_block_group_ro(block_group, 0);
10845 		up_write(&space_info->groups_sem);
10846 		if (ret < 0) {
10847 			ret = 0;
10848 			goto next;
10849 		}
10850 
10851 		/*
10852 		 * Want to do this before we do anything else so we can recover
10853 		 * properly if we fail to join the transaction.
10854 		 */
10855 		trans = btrfs_start_trans_remove_block_group(fs_info,
10856 						     block_group->key.objectid);
10857 		if (IS_ERR(trans)) {
10858 			btrfs_dec_block_group_ro(root, block_group);
10859 			ret = PTR_ERR(trans);
10860 			goto next;
10861 		}
10862 
10863 		/*
10864 		 * We could have pending pinned extents for this block group,
10865 		 * just delete them, we don't care about them anymore.
10866 		 */
10867 		start = block_group->key.objectid;
10868 		end = start + block_group->key.offset - 1;
10869 		/*
10870 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10871 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10872 		 * another task might be running finish_extent_commit() for the
10873 		 * previous transaction N - 1, and have seen a range belonging
10874 		 * to the block group in freed_extents[] before we were able to
10875 		 * clear the whole block group range from freed_extents[]. This
10876 		 * means that task can lookup for the block group after we
10877 		 * unpinned it from freed_extents[] and removed it, leading to
10878 		 * a BUG_ON() at btrfs_unpin_extent_range().
10879 		 */
10880 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10881 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10882 				  EXTENT_DIRTY);
10883 		if (ret) {
10884 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10885 			btrfs_dec_block_group_ro(root, block_group);
10886 			goto end_trans;
10887 		}
10888 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10889 				  EXTENT_DIRTY);
10890 		if (ret) {
10891 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10892 			btrfs_dec_block_group_ro(root, block_group);
10893 			goto end_trans;
10894 		}
10895 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10896 
10897 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10898 		spin_lock(&space_info->lock);
10899 		spin_lock(&block_group->lock);
10900 
10901 		space_info->bytes_pinned -= block_group->pinned;
10902 		space_info->bytes_readonly += block_group->pinned;
10903 		percpu_counter_add(&space_info->total_bytes_pinned,
10904 				   -block_group->pinned);
10905 		block_group->pinned = 0;
10906 
10907 		spin_unlock(&block_group->lock);
10908 		spin_unlock(&space_info->lock);
10909 
10910 		/* DISCARD can flip during remount */
10911 		trimming = btrfs_test_opt(root->fs_info, DISCARD);
10912 
10913 		/* Implicit trim during transaction commit. */
10914 		if (trimming)
10915 			btrfs_get_block_group_trimming(block_group);
10916 
10917 		/*
10918 		 * Btrfs_remove_chunk will abort the transaction if things go
10919 		 * horribly wrong.
10920 		 */
10921 		ret = btrfs_remove_chunk(trans, root,
10922 					 block_group->key.objectid);
10923 
10924 		if (ret) {
10925 			if (trimming)
10926 				btrfs_put_block_group_trimming(block_group);
10927 			goto end_trans;
10928 		}
10929 
10930 		/*
10931 		 * If we're not mounted with -odiscard, we can just forget
10932 		 * about this block group. Otherwise we'll need to wait
10933 		 * until transaction commit to do the actual discard.
10934 		 */
10935 		if (trimming) {
10936 			spin_lock(&fs_info->unused_bgs_lock);
10937 			/*
10938 			 * A concurrent scrub might have added us to the list
10939 			 * fs_info->unused_bgs, so use a list_move operation
10940 			 * to add the block group to the deleted_bgs list.
10941 			 */
10942 			list_move(&block_group->bg_list,
10943 				  &trans->transaction->deleted_bgs);
10944 			spin_unlock(&fs_info->unused_bgs_lock);
10945 			btrfs_get_block_group(block_group);
10946 		}
10947 end_trans:
10948 		btrfs_end_transaction(trans, root);
10949 next:
10950 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10951 		btrfs_put_block_group(block_group);
10952 		spin_lock(&fs_info->unused_bgs_lock);
10953 	}
10954 	spin_unlock(&fs_info->unused_bgs_lock);
10955 }
10956 
10957 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10958 {
10959 	struct btrfs_space_info *space_info;
10960 	struct btrfs_super_block *disk_super;
10961 	u64 features;
10962 	u64 flags;
10963 	int mixed = 0;
10964 	int ret;
10965 
10966 	disk_super = fs_info->super_copy;
10967 	if (!btrfs_super_root(disk_super))
10968 		return -EINVAL;
10969 
10970 	features = btrfs_super_incompat_flags(disk_super);
10971 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10972 		mixed = 1;
10973 
10974 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10975 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10976 	if (ret)
10977 		goto out;
10978 
10979 	if (mixed) {
10980 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10981 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10982 	} else {
10983 		flags = BTRFS_BLOCK_GROUP_METADATA;
10984 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10985 		if (ret)
10986 			goto out;
10987 
10988 		flags = BTRFS_BLOCK_GROUP_DATA;
10989 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10990 	}
10991 out:
10992 	return ret;
10993 }
10994 
10995 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10996 {
10997 	return unpin_extent_range(root, start, end, false);
10998 }
10999 
11000 /*
11001  * It used to be that old block groups would be left around forever.
11002  * Iterating over them would be enough to trim unused space.  Since we
11003  * now automatically remove them, we also need to iterate over unallocated
11004  * space.
11005  *
11006  * We don't want a transaction for this since the discard may take a
11007  * substantial amount of time.  We don't require that a transaction be
11008  * running, but we do need to take a running transaction into account
11009  * to ensure that we're not discarding chunks that were released in
11010  * the current transaction.
11011  *
11012  * Holding the chunks lock will prevent other threads from allocating
11013  * or releasing chunks, but it won't prevent a running transaction
11014  * from committing and releasing the memory that the pending chunks
11015  * list head uses.  For that, we need to take a reference to the
11016  * transaction.
11017  */
11018 static int btrfs_trim_free_extents(struct btrfs_device *device,
11019 				   u64 minlen, u64 *trimmed)
11020 {
11021 	u64 start = 0, len = 0;
11022 	int ret;
11023 
11024 	*trimmed = 0;
11025 
11026 	/* Not writeable = nothing to do. */
11027 	if (!device->writeable)
11028 		return 0;
11029 
11030 	/* No free space = nothing to do. */
11031 	if (device->total_bytes <= device->bytes_used)
11032 		return 0;
11033 
11034 	ret = 0;
11035 
11036 	while (1) {
11037 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11038 		struct btrfs_transaction *trans;
11039 		u64 bytes;
11040 
11041 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11042 		if (ret)
11043 			return ret;
11044 
11045 		down_read(&fs_info->commit_root_sem);
11046 
11047 		spin_lock(&fs_info->trans_lock);
11048 		trans = fs_info->running_transaction;
11049 		if (trans)
11050 			atomic_inc(&trans->use_count);
11051 		spin_unlock(&fs_info->trans_lock);
11052 
11053 		ret = find_free_dev_extent_start(trans, device, minlen, start,
11054 						 &start, &len);
11055 		if (trans)
11056 			btrfs_put_transaction(trans);
11057 
11058 		if (ret) {
11059 			up_read(&fs_info->commit_root_sem);
11060 			mutex_unlock(&fs_info->chunk_mutex);
11061 			if (ret == -ENOSPC)
11062 				ret = 0;
11063 			break;
11064 		}
11065 
11066 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11067 		up_read(&fs_info->commit_root_sem);
11068 		mutex_unlock(&fs_info->chunk_mutex);
11069 
11070 		if (ret)
11071 			break;
11072 
11073 		start += len;
11074 		*trimmed += bytes;
11075 
11076 		if (fatal_signal_pending(current)) {
11077 			ret = -ERESTARTSYS;
11078 			break;
11079 		}
11080 
11081 		cond_resched();
11082 	}
11083 
11084 	return ret;
11085 }
11086 
11087 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11088 {
11089 	struct btrfs_fs_info *fs_info = root->fs_info;
11090 	struct btrfs_block_group_cache *cache = NULL;
11091 	struct btrfs_device *device;
11092 	struct list_head *devices;
11093 	u64 group_trimmed;
11094 	u64 start;
11095 	u64 end;
11096 	u64 trimmed = 0;
11097 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11098 	int ret = 0;
11099 
11100 	/*
11101 	 * try to trim all FS space, our block group may start from non-zero.
11102 	 */
11103 	if (range->len == total_bytes)
11104 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11105 	else
11106 		cache = btrfs_lookup_block_group(fs_info, range->start);
11107 
11108 	while (cache) {
11109 		if (cache->key.objectid >= (range->start + range->len)) {
11110 			btrfs_put_block_group(cache);
11111 			break;
11112 		}
11113 
11114 		start = max(range->start, cache->key.objectid);
11115 		end = min(range->start + range->len,
11116 				cache->key.objectid + cache->key.offset);
11117 
11118 		if (end - start >= range->minlen) {
11119 			if (!block_group_cache_done(cache)) {
11120 				ret = cache_block_group(cache, 0);
11121 				if (ret) {
11122 					btrfs_put_block_group(cache);
11123 					break;
11124 				}
11125 				ret = wait_block_group_cache_done(cache);
11126 				if (ret) {
11127 					btrfs_put_block_group(cache);
11128 					break;
11129 				}
11130 			}
11131 			ret = btrfs_trim_block_group(cache,
11132 						     &group_trimmed,
11133 						     start,
11134 						     end,
11135 						     range->minlen);
11136 
11137 			trimmed += group_trimmed;
11138 			if (ret) {
11139 				btrfs_put_block_group(cache);
11140 				break;
11141 			}
11142 		}
11143 
11144 		cache = next_block_group(fs_info->tree_root, cache);
11145 	}
11146 
11147 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11148 	devices = &root->fs_info->fs_devices->alloc_list;
11149 	list_for_each_entry(device, devices, dev_alloc_list) {
11150 		ret = btrfs_trim_free_extents(device, range->minlen,
11151 					      &group_trimmed);
11152 		if (ret)
11153 			break;
11154 
11155 		trimmed += group_trimmed;
11156 	}
11157 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11158 
11159 	range->len = trimmed;
11160 	return ret;
11161 }
11162 
11163 /*
11164  * btrfs_{start,end}_write_no_snapshoting() are similar to
11165  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11166  * data into the page cache through nocow before the subvolume is snapshoted,
11167  * but flush the data into disk after the snapshot creation, or to prevent
11168  * operations while snapshoting is ongoing and that cause the snapshot to be
11169  * inconsistent (writes followed by expanding truncates for example).
11170  */
11171 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11172 {
11173 	percpu_counter_dec(&root->subv_writers->counter);
11174 	/*
11175 	 * Make sure counter is updated before we wake up waiters.
11176 	 */
11177 	smp_mb();
11178 	if (waitqueue_active(&root->subv_writers->wait))
11179 		wake_up(&root->subv_writers->wait);
11180 }
11181 
11182 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11183 {
11184 	if (atomic_read(&root->will_be_snapshoted))
11185 		return 0;
11186 
11187 	percpu_counter_inc(&root->subv_writers->counter);
11188 	/*
11189 	 * Make sure counter is updated before we check for snapshot creation.
11190 	 */
11191 	smp_mb();
11192 	if (atomic_read(&root->will_be_snapshoted)) {
11193 		btrfs_end_write_no_snapshoting(root);
11194 		return 0;
11195 	}
11196 	return 1;
11197 }
11198 
11199 static int wait_snapshoting_atomic_t(atomic_t *a)
11200 {
11201 	schedule();
11202 	return 0;
11203 }
11204 
11205 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11206 {
11207 	while (true) {
11208 		int ret;
11209 
11210 		ret = btrfs_start_write_no_snapshoting(root);
11211 		if (ret)
11212 			break;
11213 		wait_on_atomic_t(&root->will_be_snapshoted,
11214 				 wait_snapshoting_atomic_t,
11215 				 TASK_UNINTERRUPTIBLE);
11216 	}
11217 }
11218