xref: /linux/fs/btrfs/extent-tree.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 
37 /*
38  * control flags for do_chunk_alloc's force field
39  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40  * if we really need one.
41  *
42  * CHUNK_ALLOC_LIMITED means to only try and allocate one
43  * if we have very few chunks already allocated.  This is
44  * used as part of the clustering code to help make sure
45  * we have a good pool of storage to cluster in, without
46  * filling the FS with empty chunks
47  *
48  * CHUNK_ALLOC_FORCE means it must try to allocate one
49  *
50  */
51 enum {
52 	CHUNK_ALLOC_NO_FORCE = 0,
53 	CHUNK_ALLOC_LIMITED = 1,
54 	CHUNK_ALLOC_FORCE = 2,
55 };
56 
57 /*
58  * Control how reservations are dealt with.
59  *
60  * RESERVE_FREE - freeing a reservation.
61  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62  *   ENOSPC accounting
63  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64  *   bytes_may_use as the ENOSPC accounting is done elsewhere
65  */
66 enum {
67 	RESERVE_FREE = 0,
68 	RESERVE_ALLOC = 1,
69 	RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71 
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 			      struct btrfs_root *root,
74 			      u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 				struct btrfs_root *root,
77 				u64 bytenr, u64 num_bytes, u64 parent,
78 				u64 root_objectid, u64 owner_objectid,
79 				u64 owner_offset, int refs_to_drop,
80 				struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 				    struct extent_buffer *leaf,
83 				    struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 				      struct btrfs_root *root,
86 				      u64 parent, u64 root_objectid,
87 				      u64 flags, u64 owner, u64 offset,
88 				      struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 				     struct btrfs_root *root,
91 				     u64 parent, u64 root_objectid,
92 				     u64 flags, struct btrfs_disk_key *key,
93 				     int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 			  struct btrfs_root *extent_root, u64 alloc_bytes,
96 			  u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 			 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 			    int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 				       u64 num_bytes, int reserve);
103 
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 	smp_mb();
108 	return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110 
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 	return (cache->flags & bits) == bits;
114 }
115 
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 	atomic_inc(&cache->count);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 	if (atomic_dec_and_test(&cache->count)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 		kfree(cache->free_space_ctl);
127 		kfree(cache);
128 	}
129 }
130 
131 /*
132  * this adds the block group to the fs_info rb tree for the block group
133  * cache
134  */
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 				struct btrfs_block_group_cache *block_group)
137 {
138 	struct rb_node **p;
139 	struct rb_node *parent = NULL;
140 	struct btrfs_block_group_cache *cache;
141 
142 	spin_lock(&info->block_group_cache_lock);
143 	p = &info->block_group_cache_tree.rb_node;
144 
145 	while (*p) {
146 		parent = *p;
147 		cache = rb_entry(parent, struct btrfs_block_group_cache,
148 				 cache_node);
149 		if (block_group->key.objectid < cache->key.objectid) {
150 			p = &(*p)->rb_left;
151 		} else if (block_group->key.objectid > cache->key.objectid) {
152 			p = &(*p)->rb_right;
153 		} else {
154 			spin_unlock(&info->block_group_cache_lock);
155 			return -EEXIST;
156 		}
157 	}
158 
159 	rb_link_node(&block_group->cache_node, parent, p);
160 	rb_insert_color(&block_group->cache_node,
161 			&info->block_group_cache_tree);
162 	spin_unlock(&info->block_group_cache_lock);
163 
164 	return 0;
165 }
166 
167 /*
168  * This will return the block group at or after bytenr if contains is 0, else
169  * it will return the block group that contains the bytenr
170  */
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 			      int contains)
174 {
175 	struct btrfs_block_group_cache *cache, *ret = NULL;
176 	struct rb_node *n;
177 	u64 end, start;
178 
179 	spin_lock(&info->block_group_cache_lock);
180 	n = info->block_group_cache_tree.rb_node;
181 
182 	while (n) {
183 		cache = rb_entry(n, struct btrfs_block_group_cache,
184 				 cache_node);
185 		end = cache->key.objectid + cache->key.offset - 1;
186 		start = cache->key.objectid;
187 
188 		if (bytenr < start) {
189 			if (!contains && (!ret || start < ret->key.objectid))
190 				ret = cache;
191 			n = n->rb_left;
192 		} else if (bytenr > start) {
193 			if (contains && bytenr <= end) {
194 				ret = cache;
195 				break;
196 			}
197 			n = n->rb_right;
198 		} else {
199 			ret = cache;
200 			break;
201 		}
202 	}
203 	if (ret)
204 		btrfs_get_block_group(ret);
205 	spin_unlock(&info->block_group_cache_lock);
206 
207 	return ret;
208 }
209 
210 static int add_excluded_extent(struct btrfs_root *root,
211 			       u64 start, u64 num_bytes)
212 {
213 	u64 end = start + num_bytes - 1;
214 	set_extent_bits(&root->fs_info->freed_extents[0],
215 			start, end, EXTENT_UPTODATE, GFP_NOFS);
216 	set_extent_bits(&root->fs_info->freed_extents[1],
217 			start, end, EXTENT_UPTODATE, GFP_NOFS);
218 	return 0;
219 }
220 
221 static void free_excluded_extents(struct btrfs_root *root,
222 				  struct btrfs_block_group_cache *cache)
223 {
224 	u64 start, end;
225 
226 	start = cache->key.objectid;
227 	end = start + cache->key.offset - 1;
228 
229 	clear_extent_bits(&root->fs_info->freed_extents[0],
230 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
231 	clear_extent_bits(&root->fs_info->freed_extents[1],
232 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234 
235 static int exclude_super_stripes(struct btrfs_root *root,
236 				 struct btrfs_block_group_cache *cache)
237 {
238 	u64 bytenr;
239 	u64 *logical;
240 	int stripe_len;
241 	int i, nr, ret;
242 
243 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 		cache->bytes_super += stripe_len;
246 		ret = add_excluded_extent(root, cache->key.objectid,
247 					  stripe_len);
248 		BUG_ON(ret); /* -ENOMEM */
249 	}
250 
251 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 		bytenr = btrfs_sb_offset(i);
253 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 				       cache->key.objectid, bytenr,
255 				       0, &logical, &nr, &stripe_len);
256 		BUG_ON(ret); /* -ENOMEM */
257 
258 		while (nr--) {
259 			cache->bytes_super += stripe_len;
260 			ret = add_excluded_extent(root, logical[nr],
261 						  stripe_len);
262 			BUG_ON(ret); /* -ENOMEM */
263 		}
264 
265 		kfree(logical);
266 	}
267 	return 0;
268 }
269 
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 	struct btrfs_caching_control *ctl;
274 
275 	spin_lock(&cache->lock);
276 	if (cache->cached != BTRFS_CACHE_STARTED) {
277 		spin_unlock(&cache->lock);
278 		return NULL;
279 	}
280 
281 	/* We're loading it the fast way, so we don't have a caching_ctl. */
282 	if (!cache->caching_ctl) {
283 		spin_unlock(&cache->lock);
284 		return NULL;
285 	}
286 
287 	ctl = cache->caching_ctl;
288 	atomic_inc(&ctl->count);
289 	spin_unlock(&cache->lock);
290 	return ctl;
291 }
292 
293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 	if (atomic_dec_and_test(&ctl->count))
296 		kfree(ctl);
297 }
298 
299 /*
300  * this is only called by cache_block_group, since we could have freed extents
301  * we need to check the pinned_extents for any extents that can't be used yet
302  * since their free space will be released as soon as the transaction commits.
303  */
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 			      struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 	u64 extent_start, extent_end, size, total_added = 0;
308 	int ret;
309 
310 	while (start < end) {
311 		ret = find_first_extent_bit(info->pinned_extents, start,
312 					    &extent_start, &extent_end,
313 					    EXTENT_DIRTY | EXTENT_UPTODATE);
314 		if (ret)
315 			break;
316 
317 		if (extent_start <= start) {
318 			start = extent_end + 1;
319 		} else if (extent_start > start && extent_start < end) {
320 			size = extent_start - start;
321 			total_added += size;
322 			ret = btrfs_add_free_space(block_group, start,
323 						   size);
324 			BUG_ON(ret); /* -ENOMEM or logic error */
325 			start = extent_end + 1;
326 		} else {
327 			break;
328 		}
329 	}
330 
331 	if (start < end) {
332 		size = end - start;
333 		total_added += size;
334 		ret = btrfs_add_free_space(block_group, start, size);
335 		BUG_ON(ret); /* -ENOMEM or logic error */
336 	}
337 
338 	return total_added;
339 }
340 
341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 	struct btrfs_block_group_cache *block_group;
344 	struct btrfs_fs_info *fs_info;
345 	struct btrfs_caching_control *caching_ctl;
346 	struct btrfs_root *extent_root;
347 	struct btrfs_path *path;
348 	struct extent_buffer *leaf;
349 	struct btrfs_key key;
350 	u64 total_found = 0;
351 	u64 last = 0;
352 	u32 nritems;
353 	int ret = 0;
354 
355 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 	block_group = caching_ctl->block_group;
357 	fs_info = block_group->fs_info;
358 	extent_root = fs_info->extent_root;
359 
360 	path = btrfs_alloc_path();
361 	if (!path)
362 		goto out;
363 
364 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365 
366 	/*
367 	 * We don't want to deadlock with somebody trying to allocate a new
368 	 * extent for the extent root while also trying to search the extent
369 	 * root to add free space.  So we skip locking and search the commit
370 	 * root, since its read-only
371 	 */
372 	path->skip_locking = 1;
373 	path->search_commit_root = 1;
374 	path->reada = 1;
375 
376 	key.objectid = last;
377 	key.offset = 0;
378 	key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 	mutex_lock(&caching_ctl->mutex);
381 	/* need to make sure the commit_root doesn't disappear */
382 	down_read(&fs_info->extent_commit_sem);
383 
384 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 	if (ret < 0)
386 		goto err;
387 
388 	leaf = path->nodes[0];
389 	nritems = btrfs_header_nritems(leaf);
390 
391 	while (1) {
392 		if (btrfs_fs_closing(fs_info) > 1) {
393 			last = (u64)-1;
394 			break;
395 		}
396 
397 		if (path->slots[0] < nritems) {
398 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 		} else {
400 			ret = find_next_key(path, 0, &key);
401 			if (ret)
402 				break;
403 
404 			if (need_resched() ||
405 			    btrfs_next_leaf(extent_root, path)) {
406 				caching_ctl->progress = last;
407 				btrfs_release_path(path);
408 				up_read(&fs_info->extent_commit_sem);
409 				mutex_unlock(&caching_ctl->mutex);
410 				cond_resched();
411 				goto again;
412 			}
413 			leaf = path->nodes[0];
414 			nritems = btrfs_header_nritems(leaf);
415 			continue;
416 		}
417 
418 		if (key.objectid < block_group->key.objectid) {
419 			path->slots[0]++;
420 			continue;
421 		}
422 
423 		if (key.objectid >= block_group->key.objectid +
424 		    block_group->key.offset)
425 			break;
426 
427 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 			total_found += add_new_free_space(block_group,
429 							  fs_info, last,
430 							  key.objectid);
431 			last = key.objectid + key.offset;
432 
433 			if (total_found > (1024 * 1024 * 2)) {
434 				total_found = 0;
435 				wake_up(&caching_ctl->wait);
436 			}
437 		}
438 		path->slots[0]++;
439 	}
440 	ret = 0;
441 
442 	total_found += add_new_free_space(block_group, fs_info, last,
443 					  block_group->key.objectid +
444 					  block_group->key.offset);
445 	caching_ctl->progress = (u64)-1;
446 
447 	spin_lock(&block_group->lock);
448 	block_group->caching_ctl = NULL;
449 	block_group->cached = BTRFS_CACHE_FINISHED;
450 	spin_unlock(&block_group->lock);
451 
452 err:
453 	btrfs_free_path(path);
454 	up_read(&fs_info->extent_commit_sem);
455 
456 	free_excluded_extents(extent_root, block_group);
457 
458 	mutex_unlock(&caching_ctl->mutex);
459 out:
460 	wake_up(&caching_ctl->wait);
461 
462 	put_caching_control(caching_ctl);
463 	btrfs_put_block_group(block_group);
464 }
465 
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 			     struct btrfs_trans_handle *trans,
468 			     struct btrfs_root *root,
469 			     int load_cache_only)
470 {
471 	DEFINE_WAIT(wait);
472 	struct btrfs_fs_info *fs_info = cache->fs_info;
473 	struct btrfs_caching_control *caching_ctl;
474 	int ret = 0;
475 
476 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 	if (!caching_ctl)
478 		return -ENOMEM;
479 
480 	INIT_LIST_HEAD(&caching_ctl->list);
481 	mutex_init(&caching_ctl->mutex);
482 	init_waitqueue_head(&caching_ctl->wait);
483 	caching_ctl->block_group = cache;
484 	caching_ctl->progress = cache->key.objectid;
485 	atomic_set(&caching_ctl->count, 1);
486 	caching_ctl->work.func = caching_thread;
487 
488 	spin_lock(&cache->lock);
489 	/*
490 	 * This should be a rare occasion, but this could happen I think in the
491 	 * case where one thread starts to load the space cache info, and then
492 	 * some other thread starts a transaction commit which tries to do an
493 	 * allocation while the other thread is still loading the space cache
494 	 * info.  The previous loop should have kept us from choosing this block
495 	 * group, but if we've moved to the state where we will wait on caching
496 	 * block groups we need to first check if we're doing a fast load here,
497 	 * so we can wait for it to finish, otherwise we could end up allocating
498 	 * from a block group who's cache gets evicted for one reason or
499 	 * another.
500 	 */
501 	while (cache->cached == BTRFS_CACHE_FAST) {
502 		struct btrfs_caching_control *ctl;
503 
504 		ctl = cache->caching_ctl;
505 		atomic_inc(&ctl->count);
506 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
507 		spin_unlock(&cache->lock);
508 
509 		schedule();
510 
511 		finish_wait(&ctl->wait, &wait);
512 		put_caching_control(ctl);
513 		spin_lock(&cache->lock);
514 	}
515 
516 	if (cache->cached != BTRFS_CACHE_NO) {
517 		spin_unlock(&cache->lock);
518 		kfree(caching_ctl);
519 		return 0;
520 	}
521 	WARN_ON(cache->caching_ctl);
522 	cache->caching_ctl = caching_ctl;
523 	cache->cached = BTRFS_CACHE_FAST;
524 	spin_unlock(&cache->lock);
525 
526 	/*
527 	 * We can't do the read from on-disk cache during a commit since we need
528 	 * to have the normal tree locking.  Also if we are currently trying to
529 	 * allocate blocks for the tree root we can't do the fast caching since
530 	 * we likely hold important locks.
531 	 */
532 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
533 		ret = load_free_space_cache(fs_info, cache);
534 
535 		spin_lock(&cache->lock);
536 		if (ret == 1) {
537 			cache->caching_ctl = NULL;
538 			cache->cached = BTRFS_CACHE_FINISHED;
539 			cache->last_byte_to_unpin = (u64)-1;
540 		} else {
541 			if (load_cache_only) {
542 				cache->caching_ctl = NULL;
543 				cache->cached = BTRFS_CACHE_NO;
544 			} else {
545 				cache->cached = BTRFS_CACHE_STARTED;
546 			}
547 		}
548 		spin_unlock(&cache->lock);
549 		wake_up(&caching_ctl->wait);
550 		if (ret == 1) {
551 			put_caching_control(caching_ctl);
552 			free_excluded_extents(fs_info->extent_root, cache);
553 			return 0;
554 		}
555 	} else {
556 		/*
557 		 * We are not going to do the fast caching, set cached to the
558 		 * appropriate value and wakeup any waiters.
559 		 */
560 		spin_lock(&cache->lock);
561 		if (load_cache_only) {
562 			cache->caching_ctl = NULL;
563 			cache->cached = BTRFS_CACHE_NO;
564 		} else {
565 			cache->cached = BTRFS_CACHE_STARTED;
566 		}
567 		spin_unlock(&cache->lock);
568 		wake_up(&caching_ctl->wait);
569 	}
570 
571 	if (load_cache_only) {
572 		put_caching_control(caching_ctl);
573 		return 0;
574 	}
575 
576 	down_write(&fs_info->extent_commit_sem);
577 	atomic_inc(&caching_ctl->count);
578 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 	up_write(&fs_info->extent_commit_sem);
580 
581 	btrfs_get_block_group(cache);
582 
583 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
584 
585 	return ret;
586 }
587 
588 /*
589  * return the block group that starts at or after bytenr
590  */
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
593 {
594 	struct btrfs_block_group_cache *cache;
595 
596 	cache = block_group_cache_tree_search(info, bytenr, 0);
597 
598 	return cache;
599 }
600 
601 /*
602  * return the block group that contains the given bytenr
603  */
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 						 struct btrfs_fs_info *info,
606 						 u64 bytenr)
607 {
608 	struct btrfs_block_group_cache *cache;
609 
610 	cache = block_group_cache_tree_search(info, bytenr, 1);
611 
612 	return cache;
613 }
614 
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
616 						  u64 flags)
617 {
618 	struct list_head *head = &info->space_info;
619 	struct btrfs_space_info *found;
620 
621 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
622 
623 	rcu_read_lock();
624 	list_for_each_entry_rcu(found, head, list) {
625 		if (found->flags & flags) {
626 			rcu_read_unlock();
627 			return found;
628 		}
629 	}
630 	rcu_read_unlock();
631 	return NULL;
632 }
633 
634 /*
635  * after adding space to the filesystem, we need to clear the full flags
636  * on all the space infos.
637  */
638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
639 {
640 	struct list_head *head = &info->space_info;
641 	struct btrfs_space_info *found;
642 
643 	rcu_read_lock();
644 	list_for_each_entry_rcu(found, head, list)
645 		found->full = 0;
646 	rcu_read_unlock();
647 }
648 
649 static u64 div_factor(u64 num, int factor)
650 {
651 	if (factor == 10)
652 		return num;
653 	num *= factor;
654 	do_div(num, 10);
655 	return num;
656 }
657 
658 static u64 div_factor_fine(u64 num, int factor)
659 {
660 	if (factor == 100)
661 		return num;
662 	num *= factor;
663 	do_div(num, 100);
664 	return num;
665 }
666 
667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 			   u64 search_start, u64 search_hint, int owner)
669 {
670 	struct btrfs_block_group_cache *cache;
671 	u64 used;
672 	u64 last = max(search_hint, search_start);
673 	u64 group_start = 0;
674 	int full_search = 0;
675 	int factor = 9;
676 	int wrapped = 0;
677 again:
678 	while (1) {
679 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
680 		if (!cache)
681 			break;
682 
683 		spin_lock(&cache->lock);
684 		last = cache->key.objectid + cache->key.offset;
685 		used = btrfs_block_group_used(&cache->item);
686 
687 		if ((full_search || !cache->ro) &&
688 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 			if (used + cache->pinned + cache->reserved <
690 			    div_factor(cache->key.offset, factor)) {
691 				group_start = cache->key.objectid;
692 				spin_unlock(&cache->lock);
693 				btrfs_put_block_group(cache);
694 				goto found;
695 			}
696 		}
697 		spin_unlock(&cache->lock);
698 		btrfs_put_block_group(cache);
699 		cond_resched();
700 	}
701 	if (!wrapped) {
702 		last = search_start;
703 		wrapped = 1;
704 		goto again;
705 	}
706 	if (!full_search && factor < 10) {
707 		last = search_start;
708 		full_search = 1;
709 		factor = 10;
710 		goto again;
711 	}
712 found:
713 	return group_start;
714 }
715 
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
718 {
719 	int ret;
720 	struct btrfs_key key;
721 	struct btrfs_path *path;
722 
723 	path = btrfs_alloc_path();
724 	if (!path)
725 		return -ENOMEM;
726 
727 	key.objectid = start;
728 	key.offset = len;
729 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
731 				0, 0);
732 	btrfs_free_path(path);
733 	return ret;
734 }
735 
736 /*
737  * helper function to lookup reference count and flags of extent.
738  *
739  * the head node for delayed ref is used to store the sum of all the
740  * reference count modifications queued up in the rbtree. the head
741  * node may also store the extent flags to set. This way you can check
742  * to see what the reference count and extent flags would be if all of
743  * the delayed refs are not processed.
744  */
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 			     struct btrfs_root *root, u64 bytenr,
747 			     u64 num_bytes, u64 *refs, u64 *flags)
748 {
749 	struct btrfs_delayed_ref_head *head;
750 	struct btrfs_delayed_ref_root *delayed_refs;
751 	struct btrfs_path *path;
752 	struct btrfs_extent_item *ei;
753 	struct extent_buffer *leaf;
754 	struct btrfs_key key;
755 	u32 item_size;
756 	u64 num_refs;
757 	u64 extent_flags;
758 	int ret;
759 
760 	path = btrfs_alloc_path();
761 	if (!path)
762 		return -ENOMEM;
763 
764 	key.objectid = bytenr;
765 	key.type = BTRFS_EXTENT_ITEM_KEY;
766 	key.offset = num_bytes;
767 	if (!trans) {
768 		path->skip_locking = 1;
769 		path->search_commit_root = 1;
770 	}
771 again:
772 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
773 				&key, path, 0, 0);
774 	if (ret < 0)
775 		goto out_free;
776 
777 	if (ret == 0) {
778 		leaf = path->nodes[0];
779 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 		if (item_size >= sizeof(*ei)) {
781 			ei = btrfs_item_ptr(leaf, path->slots[0],
782 					    struct btrfs_extent_item);
783 			num_refs = btrfs_extent_refs(leaf, ei);
784 			extent_flags = btrfs_extent_flags(leaf, ei);
785 		} else {
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 			struct btrfs_extent_item_v0 *ei0;
788 			BUG_ON(item_size != sizeof(*ei0));
789 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 					     struct btrfs_extent_item_v0);
791 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 			/* FIXME: this isn't correct for data */
793 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
794 #else
795 			BUG();
796 #endif
797 		}
798 		BUG_ON(num_refs == 0);
799 	} else {
800 		num_refs = 0;
801 		extent_flags = 0;
802 		ret = 0;
803 	}
804 
805 	if (!trans)
806 		goto out;
807 
808 	delayed_refs = &trans->transaction->delayed_refs;
809 	spin_lock(&delayed_refs->lock);
810 	head = btrfs_find_delayed_ref_head(trans, bytenr);
811 	if (head) {
812 		if (!mutex_trylock(&head->mutex)) {
813 			atomic_inc(&head->node.refs);
814 			spin_unlock(&delayed_refs->lock);
815 
816 			btrfs_release_path(path);
817 
818 			/*
819 			 * Mutex was contended, block until it's released and try
820 			 * again
821 			 */
822 			mutex_lock(&head->mutex);
823 			mutex_unlock(&head->mutex);
824 			btrfs_put_delayed_ref(&head->node);
825 			goto again;
826 		}
827 		if (head->extent_op && head->extent_op->update_flags)
828 			extent_flags |= head->extent_op->flags_to_set;
829 		else
830 			BUG_ON(num_refs == 0);
831 
832 		num_refs += head->node.ref_mod;
833 		mutex_unlock(&head->mutex);
834 	}
835 	spin_unlock(&delayed_refs->lock);
836 out:
837 	WARN_ON(num_refs == 0);
838 	if (refs)
839 		*refs = num_refs;
840 	if (flags)
841 		*flags = extent_flags;
842 out_free:
843 	btrfs_free_path(path);
844 	return ret;
845 }
846 
847 /*
848  * Back reference rules.  Back refs have three main goals:
849  *
850  * 1) differentiate between all holders of references to an extent so that
851  *    when a reference is dropped we can make sure it was a valid reference
852  *    before freeing the extent.
853  *
854  * 2) Provide enough information to quickly find the holders of an extent
855  *    if we notice a given block is corrupted or bad.
856  *
857  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858  *    maintenance.  This is actually the same as #2, but with a slightly
859  *    different use case.
860  *
861  * There are two kinds of back refs. The implicit back refs is optimized
862  * for pointers in non-shared tree blocks. For a given pointer in a block,
863  * back refs of this kind provide information about the block's owner tree
864  * and the pointer's key. These information allow us to find the block by
865  * b-tree searching. The full back refs is for pointers in tree blocks not
866  * referenced by their owner trees. The location of tree block is recorded
867  * in the back refs. Actually the full back refs is generic, and can be
868  * used in all cases the implicit back refs is used. The major shortcoming
869  * of the full back refs is its overhead. Every time a tree block gets
870  * COWed, we have to update back refs entry for all pointers in it.
871  *
872  * For a newly allocated tree block, we use implicit back refs for
873  * pointers in it. This means most tree related operations only involve
874  * implicit back refs. For a tree block created in old transaction, the
875  * only way to drop a reference to it is COW it. So we can detect the
876  * event that tree block loses its owner tree's reference and do the
877  * back refs conversion.
878  *
879  * When a tree block is COW'd through a tree, there are four cases:
880  *
881  * The reference count of the block is one and the tree is the block's
882  * owner tree. Nothing to do in this case.
883  *
884  * The reference count of the block is one and the tree is not the
885  * block's owner tree. In this case, full back refs is used for pointers
886  * in the block. Remove these full back refs, add implicit back refs for
887  * every pointers in the new block.
888  *
889  * The reference count of the block is greater than one and the tree is
890  * the block's owner tree. In this case, implicit back refs is used for
891  * pointers in the block. Add full back refs for every pointers in the
892  * block, increase lower level extents' reference counts. The original
893  * implicit back refs are entailed to the new block.
894  *
895  * The reference count of the block is greater than one and the tree is
896  * not the block's owner tree. Add implicit back refs for every pointer in
897  * the new block, increase lower level extents' reference count.
898  *
899  * Back Reference Key composing:
900  *
901  * The key objectid corresponds to the first byte in the extent,
902  * The key type is used to differentiate between types of back refs.
903  * There are different meanings of the key offset for different types
904  * of back refs.
905  *
906  * File extents can be referenced by:
907  *
908  * - multiple snapshots, subvolumes, or different generations in one subvol
909  * - different files inside a single subvolume
910  * - different offsets inside a file (bookend extents in file.c)
911  *
912  * The extent ref structure for the implicit back refs has fields for:
913  *
914  * - Objectid of the subvolume root
915  * - objectid of the file holding the reference
916  * - original offset in the file
917  * - how many bookend extents
918  *
919  * The key offset for the implicit back refs is hash of the first
920  * three fields.
921  *
922  * The extent ref structure for the full back refs has field for:
923  *
924  * - number of pointers in the tree leaf
925  *
926  * The key offset for the implicit back refs is the first byte of
927  * the tree leaf
928  *
929  * When a file extent is allocated, The implicit back refs is used.
930  * the fields are filled in:
931  *
932  *     (root_key.objectid, inode objectid, offset in file, 1)
933  *
934  * When a file extent is removed file truncation, we find the
935  * corresponding implicit back refs and check the following fields:
936  *
937  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
938  *
939  * Btree extents can be referenced by:
940  *
941  * - Different subvolumes
942  *
943  * Both the implicit back refs and the full back refs for tree blocks
944  * only consist of key. The key offset for the implicit back refs is
945  * objectid of block's owner tree. The key offset for the full back refs
946  * is the first byte of parent block.
947  *
948  * When implicit back refs is used, information about the lowest key and
949  * level of the tree block are required. These information are stored in
950  * tree block info structure.
951  */
952 
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 				  struct btrfs_root *root,
956 				  struct btrfs_path *path,
957 				  u64 owner, u32 extra_size)
958 {
959 	struct btrfs_extent_item *item;
960 	struct btrfs_extent_item_v0 *ei0;
961 	struct btrfs_extent_ref_v0 *ref0;
962 	struct btrfs_tree_block_info *bi;
963 	struct extent_buffer *leaf;
964 	struct btrfs_key key;
965 	struct btrfs_key found_key;
966 	u32 new_size = sizeof(*item);
967 	u64 refs;
968 	int ret;
969 
970 	leaf = path->nodes[0];
971 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
972 
973 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 			     struct btrfs_extent_item_v0);
976 	refs = btrfs_extent_refs_v0(leaf, ei0);
977 
978 	if (owner == (u64)-1) {
979 		while (1) {
980 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 				ret = btrfs_next_leaf(root, path);
982 				if (ret < 0)
983 					return ret;
984 				BUG_ON(ret > 0); /* Corruption */
985 				leaf = path->nodes[0];
986 			}
987 			btrfs_item_key_to_cpu(leaf, &found_key,
988 					      path->slots[0]);
989 			BUG_ON(key.objectid != found_key.objectid);
990 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
991 				path->slots[0]++;
992 				continue;
993 			}
994 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 					      struct btrfs_extent_ref_v0);
996 			owner = btrfs_ref_objectid_v0(leaf, ref0);
997 			break;
998 		}
999 	}
1000 	btrfs_release_path(path);
1001 
1002 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 		new_size += sizeof(*bi);
1004 
1005 	new_size -= sizeof(*ei0);
1006 	ret = btrfs_search_slot(trans, root, &key, path,
1007 				new_size + extra_size, 1);
1008 	if (ret < 0)
1009 		return ret;
1010 	BUG_ON(ret); /* Corruption */
1011 
1012 	btrfs_extend_item(trans, root, path, new_size);
1013 
1014 	leaf = path->nodes[0];
1015 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 	btrfs_set_extent_refs(leaf, item, refs);
1017 	/* FIXME: get real generation */
1018 	btrfs_set_extent_generation(leaf, item, 0);
1019 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 		btrfs_set_extent_flags(leaf, item,
1021 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 		bi = (struct btrfs_tree_block_info *)(item + 1);
1024 		/* FIXME: get first key of the block */
1025 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1027 	} else {
1028 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1029 	}
1030 	btrfs_mark_buffer_dirty(leaf);
1031 	return 0;
1032 }
1033 #endif
1034 
1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1036 {
1037 	u32 high_crc = ~(u32)0;
1038 	u32 low_crc = ~(u32)0;
1039 	__le64 lenum;
1040 
1041 	lenum = cpu_to_le64(root_objectid);
1042 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 	lenum = cpu_to_le64(owner);
1044 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 	lenum = cpu_to_le64(offset);
1046 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1047 
1048 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1049 }
1050 
1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 				     struct btrfs_extent_data_ref *ref)
1053 {
1054 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 				    btrfs_extent_data_ref_objectid(leaf, ref),
1056 				    btrfs_extent_data_ref_offset(leaf, ref));
1057 }
1058 
1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 				 struct btrfs_extent_data_ref *ref,
1061 				 u64 root_objectid, u64 owner, u64 offset)
1062 {
1063 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1066 		return 0;
1067 	return 1;
1068 }
1069 
1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 					   struct btrfs_root *root,
1072 					   struct btrfs_path *path,
1073 					   u64 bytenr, u64 parent,
1074 					   u64 root_objectid,
1075 					   u64 owner, u64 offset)
1076 {
1077 	struct btrfs_key key;
1078 	struct btrfs_extent_data_ref *ref;
1079 	struct extent_buffer *leaf;
1080 	u32 nritems;
1081 	int ret;
1082 	int recow;
1083 	int err = -ENOENT;
1084 
1085 	key.objectid = bytenr;
1086 	if (parent) {
1087 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 		key.offset = parent;
1089 	} else {
1090 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 		key.offset = hash_extent_data_ref(root_objectid,
1092 						  owner, offset);
1093 	}
1094 again:
1095 	recow = 0;
1096 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1097 	if (ret < 0) {
1098 		err = ret;
1099 		goto fail;
1100 	}
1101 
1102 	if (parent) {
1103 		if (!ret)
1104 			return 0;
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 		btrfs_release_path(path);
1108 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 		if (ret < 0) {
1110 			err = ret;
1111 			goto fail;
1112 		}
1113 		if (!ret)
1114 			return 0;
1115 #endif
1116 		goto fail;
1117 	}
1118 
1119 	leaf = path->nodes[0];
1120 	nritems = btrfs_header_nritems(leaf);
1121 	while (1) {
1122 		if (path->slots[0] >= nritems) {
1123 			ret = btrfs_next_leaf(root, path);
1124 			if (ret < 0)
1125 				err = ret;
1126 			if (ret)
1127 				goto fail;
1128 
1129 			leaf = path->nodes[0];
1130 			nritems = btrfs_header_nritems(leaf);
1131 			recow = 1;
1132 		}
1133 
1134 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 		if (key.objectid != bytenr ||
1136 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1137 			goto fail;
1138 
1139 		ref = btrfs_item_ptr(leaf, path->slots[0],
1140 				     struct btrfs_extent_data_ref);
1141 
1142 		if (match_extent_data_ref(leaf, ref, root_objectid,
1143 					  owner, offset)) {
1144 			if (recow) {
1145 				btrfs_release_path(path);
1146 				goto again;
1147 			}
1148 			err = 0;
1149 			break;
1150 		}
1151 		path->slots[0]++;
1152 	}
1153 fail:
1154 	return err;
1155 }
1156 
1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 					   struct btrfs_root *root,
1159 					   struct btrfs_path *path,
1160 					   u64 bytenr, u64 parent,
1161 					   u64 root_objectid, u64 owner,
1162 					   u64 offset, int refs_to_add)
1163 {
1164 	struct btrfs_key key;
1165 	struct extent_buffer *leaf;
1166 	u32 size;
1167 	u32 num_refs;
1168 	int ret;
1169 
1170 	key.objectid = bytenr;
1171 	if (parent) {
1172 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 		key.offset = parent;
1174 		size = sizeof(struct btrfs_shared_data_ref);
1175 	} else {
1176 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 		key.offset = hash_extent_data_ref(root_objectid,
1178 						  owner, offset);
1179 		size = sizeof(struct btrfs_extent_data_ref);
1180 	}
1181 
1182 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 	if (ret && ret != -EEXIST)
1184 		goto fail;
1185 
1186 	leaf = path->nodes[0];
1187 	if (parent) {
1188 		struct btrfs_shared_data_ref *ref;
1189 		ref = btrfs_item_ptr(leaf, path->slots[0],
1190 				     struct btrfs_shared_data_ref);
1191 		if (ret == 0) {
1192 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1193 		} else {
1194 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 			num_refs += refs_to_add;
1196 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1197 		}
1198 	} else {
1199 		struct btrfs_extent_data_ref *ref;
1200 		while (ret == -EEXIST) {
1201 			ref = btrfs_item_ptr(leaf, path->slots[0],
1202 					     struct btrfs_extent_data_ref);
1203 			if (match_extent_data_ref(leaf, ref, root_objectid,
1204 						  owner, offset))
1205 				break;
1206 			btrfs_release_path(path);
1207 			key.offset++;
1208 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1209 						      size);
1210 			if (ret && ret != -EEXIST)
1211 				goto fail;
1212 
1213 			leaf = path->nodes[0];
1214 		}
1215 		ref = btrfs_item_ptr(leaf, path->slots[0],
1216 				     struct btrfs_extent_data_ref);
1217 		if (ret == 0) {
1218 			btrfs_set_extent_data_ref_root(leaf, ref,
1219 						       root_objectid);
1220 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1223 		} else {
1224 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 			num_refs += refs_to_add;
1226 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1227 		}
1228 	}
1229 	btrfs_mark_buffer_dirty(leaf);
1230 	ret = 0;
1231 fail:
1232 	btrfs_release_path(path);
1233 	return ret;
1234 }
1235 
1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 					   struct btrfs_root *root,
1238 					   struct btrfs_path *path,
1239 					   int refs_to_drop)
1240 {
1241 	struct btrfs_key key;
1242 	struct btrfs_extent_data_ref *ref1 = NULL;
1243 	struct btrfs_shared_data_ref *ref2 = NULL;
1244 	struct extent_buffer *leaf;
1245 	u32 num_refs = 0;
1246 	int ret = 0;
1247 
1248 	leaf = path->nodes[0];
1249 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1250 
1251 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 				      struct btrfs_extent_data_ref);
1254 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 				      struct btrfs_shared_data_ref);
1258 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 		struct btrfs_extent_ref_v0 *ref0;
1262 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 				      struct btrfs_extent_ref_v0);
1264 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1265 #endif
1266 	} else {
1267 		BUG();
1268 	}
1269 
1270 	BUG_ON(num_refs < refs_to_drop);
1271 	num_refs -= refs_to_drop;
1272 
1273 	if (num_refs == 0) {
1274 		ret = btrfs_del_item(trans, root, path);
1275 	} else {
1276 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1281 		else {
1282 			struct btrfs_extent_ref_v0 *ref0;
1283 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 					struct btrfs_extent_ref_v0);
1285 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1286 		}
1287 #endif
1288 		btrfs_mark_buffer_dirty(leaf);
1289 	}
1290 	return ret;
1291 }
1292 
1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 					  struct btrfs_path *path,
1295 					  struct btrfs_extent_inline_ref *iref)
1296 {
1297 	struct btrfs_key key;
1298 	struct extent_buffer *leaf;
1299 	struct btrfs_extent_data_ref *ref1;
1300 	struct btrfs_shared_data_ref *ref2;
1301 	u32 num_refs = 0;
1302 
1303 	leaf = path->nodes[0];
1304 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1305 	if (iref) {
1306 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 		    BTRFS_EXTENT_DATA_REF_KEY) {
1308 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1310 		} else {
1311 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1313 		}
1314 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 				      struct btrfs_extent_data_ref);
1317 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 				      struct btrfs_shared_data_ref);
1321 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 		struct btrfs_extent_ref_v0 *ref0;
1325 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 				      struct btrfs_extent_ref_v0);
1327 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1328 #endif
1329 	} else {
1330 		WARN_ON(1);
1331 	}
1332 	return num_refs;
1333 }
1334 
1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 					  struct btrfs_root *root,
1337 					  struct btrfs_path *path,
1338 					  u64 bytenr, u64 parent,
1339 					  u64 root_objectid)
1340 {
1341 	struct btrfs_key key;
1342 	int ret;
1343 
1344 	key.objectid = bytenr;
1345 	if (parent) {
1346 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 		key.offset = parent;
1348 	} else {
1349 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 		key.offset = root_objectid;
1351 	}
1352 
1353 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1354 	if (ret > 0)
1355 		ret = -ENOENT;
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 	if (ret == -ENOENT && parent) {
1358 		btrfs_release_path(path);
1359 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1361 		if (ret > 0)
1362 			ret = -ENOENT;
1363 	}
1364 #endif
1365 	return ret;
1366 }
1367 
1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 					  struct btrfs_root *root,
1370 					  struct btrfs_path *path,
1371 					  u64 bytenr, u64 parent,
1372 					  u64 root_objectid)
1373 {
1374 	struct btrfs_key key;
1375 	int ret;
1376 
1377 	key.objectid = bytenr;
1378 	if (parent) {
1379 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 		key.offset = parent;
1381 	} else {
1382 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 		key.offset = root_objectid;
1384 	}
1385 
1386 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 	btrfs_release_path(path);
1388 	return ret;
1389 }
1390 
1391 static inline int extent_ref_type(u64 parent, u64 owner)
1392 {
1393 	int type;
1394 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1395 		if (parent > 0)
1396 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1397 		else
1398 			type = BTRFS_TREE_BLOCK_REF_KEY;
1399 	} else {
1400 		if (parent > 0)
1401 			type = BTRFS_SHARED_DATA_REF_KEY;
1402 		else
1403 			type = BTRFS_EXTENT_DATA_REF_KEY;
1404 	}
1405 	return type;
1406 }
1407 
1408 static int find_next_key(struct btrfs_path *path, int level,
1409 			 struct btrfs_key *key)
1410 
1411 {
1412 	for (; level < BTRFS_MAX_LEVEL; level++) {
1413 		if (!path->nodes[level])
1414 			break;
1415 		if (path->slots[level] + 1 >=
1416 		    btrfs_header_nritems(path->nodes[level]))
1417 			continue;
1418 		if (level == 0)
1419 			btrfs_item_key_to_cpu(path->nodes[level], key,
1420 					      path->slots[level] + 1);
1421 		else
1422 			btrfs_node_key_to_cpu(path->nodes[level], key,
1423 					      path->slots[level] + 1);
1424 		return 0;
1425 	}
1426 	return 1;
1427 }
1428 
1429 /*
1430  * look for inline back ref. if back ref is found, *ref_ret is set
1431  * to the address of inline back ref, and 0 is returned.
1432  *
1433  * if back ref isn't found, *ref_ret is set to the address where it
1434  * should be inserted, and -ENOENT is returned.
1435  *
1436  * if insert is true and there are too many inline back refs, the path
1437  * points to the extent item, and -EAGAIN is returned.
1438  *
1439  * NOTE: inline back refs are ordered in the same way that back ref
1440  *	 items in the tree are ordered.
1441  */
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 				 struct btrfs_root *root,
1445 				 struct btrfs_path *path,
1446 				 struct btrfs_extent_inline_ref **ref_ret,
1447 				 u64 bytenr, u64 num_bytes,
1448 				 u64 parent, u64 root_objectid,
1449 				 u64 owner, u64 offset, int insert)
1450 {
1451 	struct btrfs_key key;
1452 	struct extent_buffer *leaf;
1453 	struct btrfs_extent_item *ei;
1454 	struct btrfs_extent_inline_ref *iref;
1455 	u64 flags;
1456 	u64 item_size;
1457 	unsigned long ptr;
1458 	unsigned long end;
1459 	int extra_size;
1460 	int type;
1461 	int want;
1462 	int ret;
1463 	int err = 0;
1464 
1465 	key.objectid = bytenr;
1466 	key.type = BTRFS_EXTENT_ITEM_KEY;
1467 	key.offset = num_bytes;
1468 
1469 	want = extent_ref_type(parent, owner);
1470 	if (insert) {
1471 		extra_size = btrfs_extent_inline_ref_size(want);
1472 		path->keep_locks = 1;
1473 	} else
1474 		extra_size = -1;
1475 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1476 	if (ret < 0) {
1477 		err = ret;
1478 		goto out;
1479 	}
1480 	if (ret && !insert) {
1481 		err = -ENOENT;
1482 		goto out;
1483 	}
1484 	BUG_ON(ret); /* Corruption */
1485 
1486 	leaf = path->nodes[0];
1487 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1489 	if (item_size < sizeof(*ei)) {
1490 		if (!insert) {
1491 			err = -ENOENT;
1492 			goto out;
1493 		}
1494 		ret = convert_extent_item_v0(trans, root, path, owner,
1495 					     extra_size);
1496 		if (ret < 0) {
1497 			err = ret;
1498 			goto out;
1499 		}
1500 		leaf = path->nodes[0];
1501 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1502 	}
1503 #endif
1504 	BUG_ON(item_size < sizeof(*ei));
1505 
1506 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1507 	flags = btrfs_extent_flags(leaf, ei);
1508 
1509 	ptr = (unsigned long)(ei + 1);
1510 	end = (unsigned long)ei + item_size;
1511 
1512 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1513 		ptr += sizeof(struct btrfs_tree_block_info);
1514 		BUG_ON(ptr > end);
1515 	} else {
1516 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1517 	}
1518 
1519 	err = -ENOENT;
1520 	while (1) {
1521 		if (ptr >= end) {
1522 			WARN_ON(ptr > end);
1523 			break;
1524 		}
1525 		iref = (struct btrfs_extent_inline_ref *)ptr;
1526 		type = btrfs_extent_inline_ref_type(leaf, iref);
1527 		if (want < type)
1528 			break;
1529 		if (want > type) {
1530 			ptr += btrfs_extent_inline_ref_size(type);
1531 			continue;
1532 		}
1533 
1534 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1535 			struct btrfs_extent_data_ref *dref;
1536 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1537 			if (match_extent_data_ref(leaf, dref, root_objectid,
1538 						  owner, offset)) {
1539 				err = 0;
1540 				break;
1541 			}
1542 			if (hash_extent_data_ref_item(leaf, dref) <
1543 			    hash_extent_data_ref(root_objectid, owner, offset))
1544 				break;
1545 		} else {
1546 			u64 ref_offset;
1547 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1548 			if (parent > 0) {
1549 				if (parent == ref_offset) {
1550 					err = 0;
1551 					break;
1552 				}
1553 				if (ref_offset < parent)
1554 					break;
1555 			} else {
1556 				if (root_objectid == ref_offset) {
1557 					err = 0;
1558 					break;
1559 				}
1560 				if (ref_offset < root_objectid)
1561 					break;
1562 			}
1563 		}
1564 		ptr += btrfs_extent_inline_ref_size(type);
1565 	}
1566 	if (err == -ENOENT && insert) {
1567 		if (item_size + extra_size >=
1568 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1569 			err = -EAGAIN;
1570 			goto out;
1571 		}
1572 		/*
1573 		 * To add new inline back ref, we have to make sure
1574 		 * there is no corresponding back ref item.
1575 		 * For simplicity, we just do not add new inline back
1576 		 * ref if there is any kind of item for this block
1577 		 */
1578 		if (find_next_key(path, 0, &key) == 0 &&
1579 		    key.objectid == bytenr &&
1580 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1581 			err = -EAGAIN;
1582 			goto out;
1583 		}
1584 	}
1585 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1586 out:
1587 	if (insert) {
1588 		path->keep_locks = 0;
1589 		btrfs_unlock_up_safe(path, 1);
1590 	}
1591 	return err;
1592 }
1593 
1594 /*
1595  * helper to add new inline back ref
1596  */
1597 static noinline_for_stack
1598 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1599 				 struct btrfs_root *root,
1600 				 struct btrfs_path *path,
1601 				 struct btrfs_extent_inline_ref *iref,
1602 				 u64 parent, u64 root_objectid,
1603 				 u64 owner, u64 offset, int refs_to_add,
1604 				 struct btrfs_delayed_extent_op *extent_op)
1605 {
1606 	struct extent_buffer *leaf;
1607 	struct btrfs_extent_item *ei;
1608 	unsigned long ptr;
1609 	unsigned long end;
1610 	unsigned long item_offset;
1611 	u64 refs;
1612 	int size;
1613 	int type;
1614 
1615 	leaf = path->nodes[0];
1616 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1617 	item_offset = (unsigned long)iref - (unsigned long)ei;
1618 
1619 	type = extent_ref_type(parent, owner);
1620 	size = btrfs_extent_inline_ref_size(type);
1621 
1622 	btrfs_extend_item(trans, root, path, size);
1623 
1624 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1625 	refs = btrfs_extent_refs(leaf, ei);
1626 	refs += refs_to_add;
1627 	btrfs_set_extent_refs(leaf, ei, refs);
1628 	if (extent_op)
1629 		__run_delayed_extent_op(extent_op, leaf, ei);
1630 
1631 	ptr = (unsigned long)ei + item_offset;
1632 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1633 	if (ptr < end - size)
1634 		memmove_extent_buffer(leaf, ptr + size, ptr,
1635 				      end - size - ptr);
1636 
1637 	iref = (struct btrfs_extent_inline_ref *)ptr;
1638 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1639 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1640 		struct btrfs_extent_data_ref *dref;
1641 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1642 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1643 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1644 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1645 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1646 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1647 		struct btrfs_shared_data_ref *sref;
1648 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1649 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1650 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1652 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1653 	} else {
1654 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1655 	}
1656 	btrfs_mark_buffer_dirty(leaf);
1657 }
1658 
1659 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1660 				 struct btrfs_root *root,
1661 				 struct btrfs_path *path,
1662 				 struct btrfs_extent_inline_ref **ref_ret,
1663 				 u64 bytenr, u64 num_bytes, u64 parent,
1664 				 u64 root_objectid, u64 owner, u64 offset)
1665 {
1666 	int ret;
1667 
1668 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1669 					   bytenr, num_bytes, parent,
1670 					   root_objectid, owner, offset, 0);
1671 	if (ret != -ENOENT)
1672 		return ret;
1673 
1674 	btrfs_release_path(path);
1675 	*ref_ret = NULL;
1676 
1677 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1678 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1679 					    root_objectid);
1680 	} else {
1681 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1682 					     root_objectid, owner, offset);
1683 	}
1684 	return ret;
1685 }
1686 
1687 /*
1688  * helper to update/remove inline back ref
1689  */
1690 static noinline_for_stack
1691 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1692 				  struct btrfs_root *root,
1693 				  struct btrfs_path *path,
1694 				  struct btrfs_extent_inline_ref *iref,
1695 				  int refs_to_mod,
1696 				  struct btrfs_delayed_extent_op *extent_op)
1697 {
1698 	struct extent_buffer *leaf;
1699 	struct btrfs_extent_item *ei;
1700 	struct btrfs_extent_data_ref *dref = NULL;
1701 	struct btrfs_shared_data_ref *sref = NULL;
1702 	unsigned long ptr;
1703 	unsigned long end;
1704 	u32 item_size;
1705 	int size;
1706 	int type;
1707 	u64 refs;
1708 
1709 	leaf = path->nodes[0];
1710 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 	refs = btrfs_extent_refs(leaf, ei);
1712 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 	refs += refs_to_mod;
1714 	btrfs_set_extent_refs(leaf, ei, refs);
1715 	if (extent_op)
1716 		__run_delayed_extent_op(extent_op, leaf, ei);
1717 
1718 	type = btrfs_extent_inline_ref_type(leaf, iref);
1719 
1720 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 		refs = btrfs_extent_data_ref_count(leaf, dref);
1723 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 		refs = btrfs_shared_data_ref_count(leaf, sref);
1726 	} else {
1727 		refs = 1;
1728 		BUG_ON(refs_to_mod != -1);
1729 	}
1730 
1731 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 	refs += refs_to_mod;
1733 
1734 	if (refs > 0) {
1735 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 		else
1738 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 	} else {
1740 		size =  btrfs_extent_inline_ref_size(type);
1741 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 		ptr = (unsigned long)iref;
1743 		end = (unsigned long)ei + item_size;
1744 		if (ptr + size < end)
1745 			memmove_extent_buffer(leaf, ptr, ptr + size,
1746 					      end - ptr - size);
1747 		item_size -= size;
1748 		btrfs_truncate_item(trans, root, path, item_size, 1);
1749 	}
1750 	btrfs_mark_buffer_dirty(leaf);
1751 }
1752 
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 				 struct btrfs_root *root,
1756 				 struct btrfs_path *path,
1757 				 u64 bytenr, u64 num_bytes, u64 parent,
1758 				 u64 root_objectid, u64 owner,
1759 				 u64 offset, int refs_to_add,
1760 				 struct btrfs_delayed_extent_op *extent_op)
1761 {
1762 	struct btrfs_extent_inline_ref *iref;
1763 	int ret;
1764 
1765 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 					   bytenr, num_bytes, parent,
1767 					   root_objectid, owner, offset, 1);
1768 	if (ret == 0) {
1769 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 		update_inline_extent_backref(trans, root, path, iref,
1771 					     refs_to_add, extent_op);
1772 	} else if (ret == -ENOENT) {
1773 		setup_inline_extent_backref(trans, root, path, iref, parent,
1774 					    root_objectid, owner, offset,
1775 					    refs_to_add, extent_op);
1776 		ret = 0;
1777 	}
1778 	return ret;
1779 }
1780 
1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 				 struct btrfs_root *root,
1783 				 struct btrfs_path *path,
1784 				 u64 bytenr, u64 parent, u64 root_objectid,
1785 				 u64 owner, u64 offset, int refs_to_add)
1786 {
1787 	int ret;
1788 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 		BUG_ON(refs_to_add != 1);
1790 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 					    parent, root_objectid);
1792 	} else {
1793 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 					     parent, root_objectid,
1795 					     owner, offset, refs_to_add);
1796 	}
1797 	return ret;
1798 }
1799 
1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 				 struct btrfs_root *root,
1802 				 struct btrfs_path *path,
1803 				 struct btrfs_extent_inline_ref *iref,
1804 				 int refs_to_drop, int is_data)
1805 {
1806 	int ret = 0;
1807 
1808 	BUG_ON(!is_data && refs_to_drop != 1);
1809 	if (iref) {
1810 		update_inline_extent_backref(trans, root, path, iref,
1811 					     -refs_to_drop, NULL);
1812 	} else if (is_data) {
1813 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1814 	} else {
1815 		ret = btrfs_del_item(trans, root, path);
1816 	}
1817 	return ret;
1818 }
1819 
1820 static int btrfs_issue_discard(struct block_device *bdev,
1821 				u64 start, u64 len)
1822 {
1823 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1824 }
1825 
1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 				u64 num_bytes, u64 *actual_bytes)
1828 {
1829 	int ret;
1830 	u64 discarded_bytes = 0;
1831 	struct btrfs_bio *bbio = NULL;
1832 
1833 
1834 	/* Tell the block device(s) that the sectors can be discarded */
1835 	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 			      bytenr, &num_bytes, &bbio, 0);
1837 	/* Error condition is -ENOMEM */
1838 	if (!ret) {
1839 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 		int i;
1841 
1842 
1843 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 			if (!stripe->dev->can_discard)
1845 				continue;
1846 
1847 			ret = btrfs_issue_discard(stripe->dev->bdev,
1848 						  stripe->physical,
1849 						  stripe->length);
1850 			if (!ret)
1851 				discarded_bytes += stripe->length;
1852 			else if (ret != -EOPNOTSUPP)
1853 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1854 
1855 			/*
1856 			 * Just in case we get back EOPNOTSUPP for some reason,
1857 			 * just ignore the return value so we don't screw up
1858 			 * people calling discard_extent.
1859 			 */
1860 			ret = 0;
1861 		}
1862 		kfree(bbio);
1863 	}
1864 
1865 	if (actual_bytes)
1866 		*actual_bytes = discarded_bytes;
1867 
1868 
1869 	return ret;
1870 }
1871 
1872 /* Can return -ENOMEM */
1873 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1874 			 struct btrfs_root *root,
1875 			 u64 bytenr, u64 num_bytes, u64 parent,
1876 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1877 {
1878 	int ret;
1879 	struct btrfs_fs_info *fs_info = root->fs_info;
1880 
1881 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1882 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1883 
1884 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1885 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1886 					num_bytes,
1887 					parent, root_objectid, (int)owner,
1888 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1889 	} else {
1890 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1891 					num_bytes,
1892 					parent, root_objectid, owner, offset,
1893 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1894 	}
1895 	return ret;
1896 }
1897 
1898 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1899 				  struct btrfs_root *root,
1900 				  u64 bytenr, u64 num_bytes,
1901 				  u64 parent, u64 root_objectid,
1902 				  u64 owner, u64 offset, int refs_to_add,
1903 				  struct btrfs_delayed_extent_op *extent_op)
1904 {
1905 	struct btrfs_path *path;
1906 	struct extent_buffer *leaf;
1907 	struct btrfs_extent_item *item;
1908 	u64 refs;
1909 	int ret;
1910 	int err = 0;
1911 
1912 	path = btrfs_alloc_path();
1913 	if (!path)
1914 		return -ENOMEM;
1915 
1916 	path->reada = 1;
1917 	path->leave_spinning = 1;
1918 	/* this will setup the path even if it fails to insert the back ref */
1919 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1920 					   path, bytenr, num_bytes, parent,
1921 					   root_objectid, owner, offset,
1922 					   refs_to_add, extent_op);
1923 	if (ret == 0)
1924 		goto out;
1925 
1926 	if (ret != -EAGAIN) {
1927 		err = ret;
1928 		goto out;
1929 	}
1930 
1931 	leaf = path->nodes[0];
1932 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1933 	refs = btrfs_extent_refs(leaf, item);
1934 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1935 	if (extent_op)
1936 		__run_delayed_extent_op(extent_op, leaf, item);
1937 
1938 	btrfs_mark_buffer_dirty(leaf);
1939 	btrfs_release_path(path);
1940 
1941 	path->reada = 1;
1942 	path->leave_spinning = 1;
1943 
1944 	/* now insert the actual backref */
1945 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1946 				    path, bytenr, parent, root_objectid,
1947 				    owner, offset, refs_to_add);
1948 	if (ret)
1949 		btrfs_abort_transaction(trans, root, ret);
1950 out:
1951 	btrfs_free_path(path);
1952 	return err;
1953 }
1954 
1955 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1956 				struct btrfs_root *root,
1957 				struct btrfs_delayed_ref_node *node,
1958 				struct btrfs_delayed_extent_op *extent_op,
1959 				int insert_reserved)
1960 {
1961 	int ret = 0;
1962 	struct btrfs_delayed_data_ref *ref;
1963 	struct btrfs_key ins;
1964 	u64 parent = 0;
1965 	u64 ref_root = 0;
1966 	u64 flags = 0;
1967 
1968 	ins.objectid = node->bytenr;
1969 	ins.offset = node->num_bytes;
1970 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1971 
1972 	ref = btrfs_delayed_node_to_data_ref(node);
1973 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1974 		parent = ref->parent;
1975 	else
1976 		ref_root = ref->root;
1977 
1978 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1979 		if (extent_op) {
1980 			BUG_ON(extent_op->update_key);
1981 			flags |= extent_op->flags_to_set;
1982 		}
1983 		ret = alloc_reserved_file_extent(trans, root,
1984 						 parent, ref_root, flags,
1985 						 ref->objectid, ref->offset,
1986 						 &ins, node->ref_mod);
1987 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1988 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1989 					     node->num_bytes, parent,
1990 					     ref_root, ref->objectid,
1991 					     ref->offset, node->ref_mod,
1992 					     extent_op);
1993 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1994 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1995 					  node->num_bytes, parent,
1996 					  ref_root, ref->objectid,
1997 					  ref->offset, node->ref_mod,
1998 					  extent_op);
1999 	} else {
2000 		BUG();
2001 	}
2002 	return ret;
2003 }
2004 
2005 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2006 				    struct extent_buffer *leaf,
2007 				    struct btrfs_extent_item *ei)
2008 {
2009 	u64 flags = btrfs_extent_flags(leaf, ei);
2010 	if (extent_op->update_flags) {
2011 		flags |= extent_op->flags_to_set;
2012 		btrfs_set_extent_flags(leaf, ei, flags);
2013 	}
2014 
2015 	if (extent_op->update_key) {
2016 		struct btrfs_tree_block_info *bi;
2017 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2018 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2019 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2020 	}
2021 }
2022 
2023 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2024 				 struct btrfs_root *root,
2025 				 struct btrfs_delayed_ref_node *node,
2026 				 struct btrfs_delayed_extent_op *extent_op)
2027 {
2028 	struct btrfs_key key;
2029 	struct btrfs_path *path;
2030 	struct btrfs_extent_item *ei;
2031 	struct extent_buffer *leaf;
2032 	u32 item_size;
2033 	int ret;
2034 	int err = 0;
2035 
2036 	if (trans->aborted)
2037 		return 0;
2038 
2039 	path = btrfs_alloc_path();
2040 	if (!path)
2041 		return -ENOMEM;
2042 
2043 	key.objectid = node->bytenr;
2044 	key.type = BTRFS_EXTENT_ITEM_KEY;
2045 	key.offset = node->num_bytes;
2046 
2047 	path->reada = 1;
2048 	path->leave_spinning = 1;
2049 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2050 				path, 0, 1);
2051 	if (ret < 0) {
2052 		err = ret;
2053 		goto out;
2054 	}
2055 	if (ret > 0) {
2056 		err = -EIO;
2057 		goto out;
2058 	}
2059 
2060 	leaf = path->nodes[0];
2061 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2062 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2063 	if (item_size < sizeof(*ei)) {
2064 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2065 					     path, (u64)-1, 0);
2066 		if (ret < 0) {
2067 			err = ret;
2068 			goto out;
2069 		}
2070 		leaf = path->nodes[0];
2071 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2072 	}
2073 #endif
2074 	BUG_ON(item_size < sizeof(*ei));
2075 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2076 	__run_delayed_extent_op(extent_op, leaf, ei);
2077 
2078 	btrfs_mark_buffer_dirty(leaf);
2079 out:
2080 	btrfs_free_path(path);
2081 	return err;
2082 }
2083 
2084 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2085 				struct btrfs_root *root,
2086 				struct btrfs_delayed_ref_node *node,
2087 				struct btrfs_delayed_extent_op *extent_op,
2088 				int insert_reserved)
2089 {
2090 	int ret = 0;
2091 	struct btrfs_delayed_tree_ref *ref;
2092 	struct btrfs_key ins;
2093 	u64 parent = 0;
2094 	u64 ref_root = 0;
2095 
2096 	ins.objectid = node->bytenr;
2097 	ins.offset = node->num_bytes;
2098 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2099 
2100 	ref = btrfs_delayed_node_to_tree_ref(node);
2101 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2102 		parent = ref->parent;
2103 	else
2104 		ref_root = ref->root;
2105 
2106 	BUG_ON(node->ref_mod != 1);
2107 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2108 		BUG_ON(!extent_op || !extent_op->update_flags ||
2109 		       !extent_op->update_key);
2110 		ret = alloc_reserved_tree_block(trans, root,
2111 						parent, ref_root,
2112 						extent_op->flags_to_set,
2113 						&extent_op->key,
2114 						ref->level, &ins);
2115 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2116 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2117 					     node->num_bytes, parent, ref_root,
2118 					     ref->level, 0, 1, extent_op);
2119 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2120 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2121 					  node->num_bytes, parent, ref_root,
2122 					  ref->level, 0, 1, extent_op);
2123 	} else {
2124 		BUG();
2125 	}
2126 	return ret;
2127 }
2128 
2129 /* helper function to actually process a single delayed ref entry */
2130 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2131 			       struct btrfs_root *root,
2132 			       struct btrfs_delayed_ref_node *node,
2133 			       struct btrfs_delayed_extent_op *extent_op,
2134 			       int insert_reserved)
2135 {
2136 	int ret = 0;
2137 
2138 	if (trans->aborted)
2139 		return 0;
2140 
2141 	if (btrfs_delayed_ref_is_head(node)) {
2142 		struct btrfs_delayed_ref_head *head;
2143 		/*
2144 		 * we've hit the end of the chain and we were supposed
2145 		 * to insert this extent into the tree.  But, it got
2146 		 * deleted before we ever needed to insert it, so all
2147 		 * we have to do is clean up the accounting
2148 		 */
2149 		BUG_ON(extent_op);
2150 		head = btrfs_delayed_node_to_head(node);
2151 		if (insert_reserved) {
2152 			btrfs_pin_extent(root, node->bytenr,
2153 					 node->num_bytes, 1);
2154 			if (head->is_data) {
2155 				ret = btrfs_del_csums(trans, root,
2156 						      node->bytenr,
2157 						      node->num_bytes);
2158 			}
2159 		}
2160 		mutex_unlock(&head->mutex);
2161 		return ret;
2162 	}
2163 
2164 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2165 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2166 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2167 					   insert_reserved);
2168 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2169 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2170 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2171 					   insert_reserved);
2172 	else
2173 		BUG();
2174 	return ret;
2175 }
2176 
2177 static noinline struct btrfs_delayed_ref_node *
2178 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2179 {
2180 	struct rb_node *node;
2181 	struct btrfs_delayed_ref_node *ref;
2182 	int action = BTRFS_ADD_DELAYED_REF;
2183 again:
2184 	/*
2185 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2186 	 * this prevents ref count from going down to zero when
2187 	 * there still are pending delayed ref.
2188 	 */
2189 	node = rb_prev(&head->node.rb_node);
2190 	while (1) {
2191 		if (!node)
2192 			break;
2193 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2194 				rb_node);
2195 		if (ref->bytenr != head->node.bytenr)
2196 			break;
2197 		if (ref->action == action)
2198 			return ref;
2199 		node = rb_prev(node);
2200 	}
2201 	if (action == BTRFS_ADD_DELAYED_REF) {
2202 		action = BTRFS_DROP_DELAYED_REF;
2203 		goto again;
2204 	}
2205 	return NULL;
2206 }
2207 
2208 /*
2209  * Returns 0 on success or if called with an already aborted transaction.
2210  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2211  */
2212 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2213 				       struct btrfs_root *root,
2214 				       struct list_head *cluster)
2215 {
2216 	struct btrfs_delayed_ref_root *delayed_refs;
2217 	struct btrfs_delayed_ref_node *ref;
2218 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2219 	struct btrfs_delayed_extent_op *extent_op;
2220 	int ret;
2221 	int count = 0;
2222 	int must_insert_reserved = 0;
2223 
2224 	delayed_refs = &trans->transaction->delayed_refs;
2225 	while (1) {
2226 		if (!locked_ref) {
2227 			/* pick a new head ref from the cluster list */
2228 			if (list_empty(cluster))
2229 				break;
2230 
2231 			locked_ref = list_entry(cluster->next,
2232 				     struct btrfs_delayed_ref_head, cluster);
2233 
2234 			/* grab the lock that says we are going to process
2235 			 * all the refs for this head */
2236 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2237 
2238 			/*
2239 			 * we may have dropped the spin lock to get the head
2240 			 * mutex lock, and that might have given someone else
2241 			 * time to free the head.  If that's true, it has been
2242 			 * removed from our list and we can move on.
2243 			 */
2244 			if (ret == -EAGAIN) {
2245 				locked_ref = NULL;
2246 				count++;
2247 				continue;
2248 			}
2249 		}
2250 
2251 		/*
2252 		 * locked_ref is the head node, so we have to go one
2253 		 * node back for any delayed ref updates
2254 		 */
2255 		ref = select_delayed_ref(locked_ref);
2256 
2257 		if (ref && ref->seq &&
2258 		    btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2259 			/*
2260 			 * there are still refs with lower seq numbers in the
2261 			 * process of being added. Don't run this ref yet.
2262 			 */
2263 			list_del_init(&locked_ref->cluster);
2264 			mutex_unlock(&locked_ref->mutex);
2265 			locked_ref = NULL;
2266 			delayed_refs->num_heads_ready++;
2267 			spin_unlock(&delayed_refs->lock);
2268 			cond_resched();
2269 			spin_lock(&delayed_refs->lock);
2270 			continue;
2271 		}
2272 
2273 		/*
2274 		 * record the must insert reserved flag before we
2275 		 * drop the spin lock.
2276 		 */
2277 		must_insert_reserved = locked_ref->must_insert_reserved;
2278 		locked_ref->must_insert_reserved = 0;
2279 
2280 		extent_op = locked_ref->extent_op;
2281 		locked_ref->extent_op = NULL;
2282 
2283 		if (!ref) {
2284 			/* All delayed refs have been processed, Go ahead
2285 			 * and send the head node to run_one_delayed_ref,
2286 			 * so that any accounting fixes can happen
2287 			 */
2288 			ref = &locked_ref->node;
2289 
2290 			if (extent_op && must_insert_reserved) {
2291 				kfree(extent_op);
2292 				extent_op = NULL;
2293 			}
2294 
2295 			if (extent_op) {
2296 				spin_unlock(&delayed_refs->lock);
2297 
2298 				ret = run_delayed_extent_op(trans, root,
2299 							    ref, extent_op);
2300 				kfree(extent_op);
2301 
2302 				if (ret) {
2303 					printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304 					spin_lock(&delayed_refs->lock);
2305 					return ret;
2306 				}
2307 
2308 				goto next;
2309 			}
2310 
2311 			list_del_init(&locked_ref->cluster);
2312 			locked_ref = NULL;
2313 		}
2314 
2315 		ref->in_tree = 0;
2316 		rb_erase(&ref->rb_node, &delayed_refs->root);
2317 		delayed_refs->num_entries--;
2318 		/*
2319 		 * we modified num_entries, but as we're currently running
2320 		 * delayed refs, skip
2321 		 *     wake_up(&delayed_refs->seq_wait);
2322 		 * here.
2323 		 */
2324 		spin_unlock(&delayed_refs->lock);
2325 
2326 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2327 					  must_insert_reserved);
2328 
2329 		btrfs_put_delayed_ref(ref);
2330 		kfree(extent_op);
2331 		count++;
2332 
2333 		if (ret) {
2334 			printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2335 			spin_lock(&delayed_refs->lock);
2336 			return ret;
2337 		}
2338 
2339 next:
2340 		do_chunk_alloc(trans, root->fs_info->extent_root,
2341 			       2 * 1024 * 1024,
2342 			       btrfs_get_alloc_profile(root, 0),
2343 			       CHUNK_ALLOC_NO_FORCE);
2344 		cond_resched();
2345 		spin_lock(&delayed_refs->lock);
2346 	}
2347 	return count;
2348 }
2349 
2350 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2351 			       unsigned long num_refs,
2352 			       struct list_head *first_seq)
2353 {
2354 	spin_unlock(&delayed_refs->lock);
2355 	pr_debug("waiting for more refs (num %ld, first %p)\n",
2356 		 num_refs, first_seq);
2357 	wait_event(delayed_refs->seq_wait,
2358 		   num_refs != delayed_refs->num_entries ||
2359 		   delayed_refs->seq_head.next != first_seq);
2360 	pr_debug("done waiting for more refs (num %ld, first %p)\n",
2361 		 delayed_refs->num_entries, delayed_refs->seq_head.next);
2362 	spin_lock(&delayed_refs->lock);
2363 }
2364 
2365 /*
2366  * this starts processing the delayed reference count updates and
2367  * extent insertions we have queued up so far.  count can be
2368  * 0, which means to process everything in the tree at the start
2369  * of the run (but not newly added entries), or it can be some target
2370  * number you'd like to process.
2371  *
2372  * Returns 0 on success or if called with an aborted transaction
2373  * Returns <0 on error and aborts the transaction
2374  */
2375 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2376 			   struct btrfs_root *root, unsigned long count)
2377 {
2378 	struct rb_node *node;
2379 	struct btrfs_delayed_ref_root *delayed_refs;
2380 	struct btrfs_delayed_ref_node *ref;
2381 	struct list_head cluster;
2382 	struct list_head *first_seq = NULL;
2383 	int ret;
2384 	u64 delayed_start;
2385 	int run_all = count == (unsigned long)-1;
2386 	int run_most = 0;
2387 	unsigned long num_refs = 0;
2388 	int consider_waiting;
2389 
2390 	/* We'll clean this up in btrfs_cleanup_transaction */
2391 	if (trans->aborted)
2392 		return 0;
2393 
2394 	if (root == root->fs_info->extent_root)
2395 		root = root->fs_info->tree_root;
2396 
2397 	do_chunk_alloc(trans, root->fs_info->extent_root,
2398 		       2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2399 		       CHUNK_ALLOC_NO_FORCE);
2400 
2401 	delayed_refs = &trans->transaction->delayed_refs;
2402 	INIT_LIST_HEAD(&cluster);
2403 again:
2404 	consider_waiting = 0;
2405 	spin_lock(&delayed_refs->lock);
2406 	if (count == 0) {
2407 		count = delayed_refs->num_entries * 2;
2408 		run_most = 1;
2409 	}
2410 	while (1) {
2411 		if (!(run_all || run_most) &&
2412 		    delayed_refs->num_heads_ready < 64)
2413 			break;
2414 
2415 		/*
2416 		 * go find something we can process in the rbtree.  We start at
2417 		 * the beginning of the tree, and then build a cluster
2418 		 * of refs to process starting at the first one we are able to
2419 		 * lock
2420 		 */
2421 		delayed_start = delayed_refs->run_delayed_start;
2422 		ret = btrfs_find_ref_cluster(trans, &cluster,
2423 					     delayed_refs->run_delayed_start);
2424 		if (ret)
2425 			break;
2426 
2427 		if (delayed_start >= delayed_refs->run_delayed_start) {
2428 			if (consider_waiting == 0) {
2429 				/*
2430 				 * btrfs_find_ref_cluster looped. let's do one
2431 				 * more cycle. if we don't run any delayed ref
2432 				 * during that cycle (because we can't because
2433 				 * all of them are blocked) and if the number of
2434 				 * refs doesn't change, we avoid busy waiting.
2435 				 */
2436 				consider_waiting = 1;
2437 				num_refs = delayed_refs->num_entries;
2438 				first_seq = root->fs_info->tree_mod_seq_list.next;
2439 			} else {
2440 				wait_for_more_refs(delayed_refs,
2441 						   num_refs, first_seq);
2442 				/*
2443 				 * after waiting, things have changed. we
2444 				 * dropped the lock and someone else might have
2445 				 * run some refs, built new clusters and so on.
2446 				 * therefore, we restart staleness detection.
2447 				 */
2448 				consider_waiting = 0;
2449 			}
2450 		}
2451 
2452 		ret = run_clustered_refs(trans, root, &cluster);
2453 		if (ret < 0) {
2454 			spin_unlock(&delayed_refs->lock);
2455 			btrfs_abort_transaction(trans, root, ret);
2456 			return ret;
2457 		}
2458 
2459 		count -= min_t(unsigned long, ret, count);
2460 
2461 		if (count == 0)
2462 			break;
2463 
2464 		if (ret || delayed_refs->run_delayed_start == 0) {
2465 			/* refs were run, let's reset staleness detection */
2466 			consider_waiting = 0;
2467 		}
2468 	}
2469 
2470 	if (run_all) {
2471 		node = rb_first(&delayed_refs->root);
2472 		if (!node)
2473 			goto out;
2474 		count = (unsigned long)-1;
2475 
2476 		while (node) {
2477 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2478 				       rb_node);
2479 			if (btrfs_delayed_ref_is_head(ref)) {
2480 				struct btrfs_delayed_ref_head *head;
2481 
2482 				head = btrfs_delayed_node_to_head(ref);
2483 				atomic_inc(&ref->refs);
2484 
2485 				spin_unlock(&delayed_refs->lock);
2486 				/*
2487 				 * Mutex was contended, block until it's
2488 				 * released and try again
2489 				 */
2490 				mutex_lock(&head->mutex);
2491 				mutex_unlock(&head->mutex);
2492 
2493 				btrfs_put_delayed_ref(ref);
2494 				cond_resched();
2495 				goto again;
2496 			}
2497 			node = rb_next(node);
2498 		}
2499 		spin_unlock(&delayed_refs->lock);
2500 		schedule_timeout(1);
2501 		goto again;
2502 	}
2503 out:
2504 	spin_unlock(&delayed_refs->lock);
2505 	return 0;
2506 }
2507 
2508 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2509 				struct btrfs_root *root,
2510 				u64 bytenr, u64 num_bytes, u64 flags,
2511 				int is_data)
2512 {
2513 	struct btrfs_delayed_extent_op *extent_op;
2514 	int ret;
2515 
2516 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2517 	if (!extent_op)
2518 		return -ENOMEM;
2519 
2520 	extent_op->flags_to_set = flags;
2521 	extent_op->update_flags = 1;
2522 	extent_op->update_key = 0;
2523 	extent_op->is_data = is_data ? 1 : 0;
2524 
2525 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2526 					  num_bytes, extent_op);
2527 	if (ret)
2528 		kfree(extent_op);
2529 	return ret;
2530 }
2531 
2532 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2533 				      struct btrfs_root *root,
2534 				      struct btrfs_path *path,
2535 				      u64 objectid, u64 offset, u64 bytenr)
2536 {
2537 	struct btrfs_delayed_ref_head *head;
2538 	struct btrfs_delayed_ref_node *ref;
2539 	struct btrfs_delayed_data_ref *data_ref;
2540 	struct btrfs_delayed_ref_root *delayed_refs;
2541 	struct rb_node *node;
2542 	int ret = 0;
2543 
2544 	ret = -ENOENT;
2545 	delayed_refs = &trans->transaction->delayed_refs;
2546 	spin_lock(&delayed_refs->lock);
2547 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2548 	if (!head)
2549 		goto out;
2550 
2551 	if (!mutex_trylock(&head->mutex)) {
2552 		atomic_inc(&head->node.refs);
2553 		spin_unlock(&delayed_refs->lock);
2554 
2555 		btrfs_release_path(path);
2556 
2557 		/*
2558 		 * Mutex was contended, block until it's released and let
2559 		 * caller try again
2560 		 */
2561 		mutex_lock(&head->mutex);
2562 		mutex_unlock(&head->mutex);
2563 		btrfs_put_delayed_ref(&head->node);
2564 		return -EAGAIN;
2565 	}
2566 
2567 	node = rb_prev(&head->node.rb_node);
2568 	if (!node)
2569 		goto out_unlock;
2570 
2571 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2572 
2573 	if (ref->bytenr != bytenr)
2574 		goto out_unlock;
2575 
2576 	ret = 1;
2577 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2578 		goto out_unlock;
2579 
2580 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2581 
2582 	node = rb_prev(node);
2583 	if (node) {
2584 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2585 		if (ref->bytenr == bytenr)
2586 			goto out_unlock;
2587 	}
2588 
2589 	if (data_ref->root != root->root_key.objectid ||
2590 	    data_ref->objectid != objectid || data_ref->offset != offset)
2591 		goto out_unlock;
2592 
2593 	ret = 0;
2594 out_unlock:
2595 	mutex_unlock(&head->mutex);
2596 out:
2597 	spin_unlock(&delayed_refs->lock);
2598 	return ret;
2599 }
2600 
2601 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2602 					struct btrfs_root *root,
2603 					struct btrfs_path *path,
2604 					u64 objectid, u64 offset, u64 bytenr)
2605 {
2606 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2607 	struct extent_buffer *leaf;
2608 	struct btrfs_extent_data_ref *ref;
2609 	struct btrfs_extent_inline_ref *iref;
2610 	struct btrfs_extent_item *ei;
2611 	struct btrfs_key key;
2612 	u32 item_size;
2613 	int ret;
2614 
2615 	key.objectid = bytenr;
2616 	key.offset = (u64)-1;
2617 	key.type = BTRFS_EXTENT_ITEM_KEY;
2618 
2619 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2620 	if (ret < 0)
2621 		goto out;
2622 	BUG_ON(ret == 0); /* Corruption */
2623 
2624 	ret = -ENOENT;
2625 	if (path->slots[0] == 0)
2626 		goto out;
2627 
2628 	path->slots[0]--;
2629 	leaf = path->nodes[0];
2630 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2631 
2632 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2633 		goto out;
2634 
2635 	ret = 1;
2636 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2637 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2638 	if (item_size < sizeof(*ei)) {
2639 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2640 		goto out;
2641 	}
2642 #endif
2643 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2644 
2645 	if (item_size != sizeof(*ei) +
2646 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2647 		goto out;
2648 
2649 	if (btrfs_extent_generation(leaf, ei) <=
2650 	    btrfs_root_last_snapshot(&root->root_item))
2651 		goto out;
2652 
2653 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2654 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2655 	    BTRFS_EXTENT_DATA_REF_KEY)
2656 		goto out;
2657 
2658 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2659 	if (btrfs_extent_refs(leaf, ei) !=
2660 	    btrfs_extent_data_ref_count(leaf, ref) ||
2661 	    btrfs_extent_data_ref_root(leaf, ref) !=
2662 	    root->root_key.objectid ||
2663 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2664 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2665 		goto out;
2666 
2667 	ret = 0;
2668 out:
2669 	return ret;
2670 }
2671 
2672 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2673 			  struct btrfs_root *root,
2674 			  u64 objectid, u64 offset, u64 bytenr)
2675 {
2676 	struct btrfs_path *path;
2677 	int ret;
2678 	int ret2;
2679 
2680 	path = btrfs_alloc_path();
2681 	if (!path)
2682 		return -ENOENT;
2683 
2684 	do {
2685 		ret = check_committed_ref(trans, root, path, objectid,
2686 					  offset, bytenr);
2687 		if (ret && ret != -ENOENT)
2688 			goto out;
2689 
2690 		ret2 = check_delayed_ref(trans, root, path, objectid,
2691 					 offset, bytenr);
2692 	} while (ret2 == -EAGAIN);
2693 
2694 	if (ret2 && ret2 != -ENOENT) {
2695 		ret = ret2;
2696 		goto out;
2697 	}
2698 
2699 	if (ret != -ENOENT || ret2 != -ENOENT)
2700 		ret = 0;
2701 out:
2702 	btrfs_free_path(path);
2703 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2704 		WARN_ON(ret > 0);
2705 	return ret;
2706 }
2707 
2708 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2709 			   struct btrfs_root *root,
2710 			   struct extent_buffer *buf,
2711 			   int full_backref, int inc, int for_cow)
2712 {
2713 	u64 bytenr;
2714 	u64 num_bytes;
2715 	u64 parent;
2716 	u64 ref_root;
2717 	u32 nritems;
2718 	struct btrfs_key key;
2719 	struct btrfs_file_extent_item *fi;
2720 	int i;
2721 	int level;
2722 	int ret = 0;
2723 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2724 			    u64, u64, u64, u64, u64, u64, int);
2725 
2726 	ref_root = btrfs_header_owner(buf);
2727 	nritems = btrfs_header_nritems(buf);
2728 	level = btrfs_header_level(buf);
2729 
2730 	if (!root->ref_cows && level == 0)
2731 		return 0;
2732 
2733 	if (inc)
2734 		process_func = btrfs_inc_extent_ref;
2735 	else
2736 		process_func = btrfs_free_extent;
2737 
2738 	if (full_backref)
2739 		parent = buf->start;
2740 	else
2741 		parent = 0;
2742 
2743 	for (i = 0; i < nritems; i++) {
2744 		if (level == 0) {
2745 			btrfs_item_key_to_cpu(buf, &key, i);
2746 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2747 				continue;
2748 			fi = btrfs_item_ptr(buf, i,
2749 					    struct btrfs_file_extent_item);
2750 			if (btrfs_file_extent_type(buf, fi) ==
2751 			    BTRFS_FILE_EXTENT_INLINE)
2752 				continue;
2753 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2754 			if (bytenr == 0)
2755 				continue;
2756 
2757 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2758 			key.offset -= btrfs_file_extent_offset(buf, fi);
2759 			ret = process_func(trans, root, bytenr, num_bytes,
2760 					   parent, ref_root, key.objectid,
2761 					   key.offset, for_cow);
2762 			if (ret)
2763 				goto fail;
2764 		} else {
2765 			bytenr = btrfs_node_blockptr(buf, i);
2766 			num_bytes = btrfs_level_size(root, level - 1);
2767 			ret = process_func(trans, root, bytenr, num_bytes,
2768 					   parent, ref_root, level - 1, 0,
2769 					   for_cow);
2770 			if (ret)
2771 				goto fail;
2772 		}
2773 	}
2774 	return 0;
2775 fail:
2776 	return ret;
2777 }
2778 
2779 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2780 		  struct extent_buffer *buf, int full_backref, int for_cow)
2781 {
2782 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2783 }
2784 
2785 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2786 		  struct extent_buffer *buf, int full_backref, int for_cow)
2787 {
2788 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2789 }
2790 
2791 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2792 				 struct btrfs_root *root,
2793 				 struct btrfs_path *path,
2794 				 struct btrfs_block_group_cache *cache)
2795 {
2796 	int ret;
2797 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2798 	unsigned long bi;
2799 	struct extent_buffer *leaf;
2800 
2801 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2802 	if (ret < 0)
2803 		goto fail;
2804 	BUG_ON(ret); /* Corruption */
2805 
2806 	leaf = path->nodes[0];
2807 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2808 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2809 	btrfs_mark_buffer_dirty(leaf);
2810 	btrfs_release_path(path);
2811 fail:
2812 	if (ret) {
2813 		btrfs_abort_transaction(trans, root, ret);
2814 		return ret;
2815 	}
2816 	return 0;
2817 
2818 }
2819 
2820 static struct btrfs_block_group_cache *
2821 next_block_group(struct btrfs_root *root,
2822 		 struct btrfs_block_group_cache *cache)
2823 {
2824 	struct rb_node *node;
2825 	spin_lock(&root->fs_info->block_group_cache_lock);
2826 	node = rb_next(&cache->cache_node);
2827 	btrfs_put_block_group(cache);
2828 	if (node) {
2829 		cache = rb_entry(node, struct btrfs_block_group_cache,
2830 				 cache_node);
2831 		btrfs_get_block_group(cache);
2832 	} else
2833 		cache = NULL;
2834 	spin_unlock(&root->fs_info->block_group_cache_lock);
2835 	return cache;
2836 }
2837 
2838 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2839 			    struct btrfs_trans_handle *trans,
2840 			    struct btrfs_path *path)
2841 {
2842 	struct btrfs_root *root = block_group->fs_info->tree_root;
2843 	struct inode *inode = NULL;
2844 	u64 alloc_hint = 0;
2845 	int dcs = BTRFS_DC_ERROR;
2846 	int num_pages = 0;
2847 	int retries = 0;
2848 	int ret = 0;
2849 
2850 	/*
2851 	 * If this block group is smaller than 100 megs don't bother caching the
2852 	 * block group.
2853 	 */
2854 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2855 		spin_lock(&block_group->lock);
2856 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2857 		spin_unlock(&block_group->lock);
2858 		return 0;
2859 	}
2860 
2861 again:
2862 	inode = lookup_free_space_inode(root, block_group, path);
2863 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2864 		ret = PTR_ERR(inode);
2865 		btrfs_release_path(path);
2866 		goto out;
2867 	}
2868 
2869 	if (IS_ERR(inode)) {
2870 		BUG_ON(retries);
2871 		retries++;
2872 
2873 		if (block_group->ro)
2874 			goto out_free;
2875 
2876 		ret = create_free_space_inode(root, trans, block_group, path);
2877 		if (ret)
2878 			goto out_free;
2879 		goto again;
2880 	}
2881 
2882 	/* We've already setup this transaction, go ahead and exit */
2883 	if (block_group->cache_generation == trans->transid &&
2884 	    i_size_read(inode)) {
2885 		dcs = BTRFS_DC_SETUP;
2886 		goto out_put;
2887 	}
2888 
2889 	/*
2890 	 * We want to set the generation to 0, that way if anything goes wrong
2891 	 * from here on out we know not to trust this cache when we load up next
2892 	 * time.
2893 	 */
2894 	BTRFS_I(inode)->generation = 0;
2895 	ret = btrfs_update_inode(trans, root, inode);
2896 	WARN_ON(ret);
2897 
2898 	if (i_size_read(inode) > 0) {
2899 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2900 						      inode);
2901 		if (ret)
2902 			goto out_put;
2903 	}
2904 
2905 	spin_lock(&block_group->lock);
2906 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2907 		/* We're not cached, don't bother trying to write stuff out */
2908 		dcs = BTRFS_DC_WRITTEN;
2909 		spin_unlock(&block_group->lock);
2910 		goto out_put;
2911 	}
2912 	spin_unlock(&block_group->lock);
2913 
2914 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2915 	if (!num_pages)
2916 		num_pages = 1;
2917 
2918 	/*
2919 	 * Just to make absolutely sure we have enough space, we're going to
2920 	 * preallocate 12 pages worth of space for each block group.  In
2921 	 * practice we ought to use at most 8, but we need extra space so we can
2922 	 * add our header and have a terminator between the extents and the
2923 	 * bitmaps.
2924 	 */
2925 	num_pages *= 16;
2926 	num_pages *= PAGE_CACHE_SIZE;
2927 
2928 	ret = btrfs_check_data_free_space(inode, num_pages);
2929 	if (ret)
2930 		goto out_put;
2931 
2932 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2933 					      num_pages, num_pages,
2934 					      &alloc_hint);
2935 	if (!ret)
2936 		dcs = BTRFS_DC_SETUP;
2937 	btrfs_free_reserved_data_space(inode, num_pages);
2938 
2939 out_put:
2940 	iput(inode);
2941 out_free:
2942 	btrfs_release_path(path);
2943 out:
2944 	spin_lock(&block_group->lock);
2945 	if (!ret && dcs == BTRFS_DC_SETUP)
2946 		block_group->cache_generation = trans->transid;
2947 	block_group->disk_cache_state = dcs;
2948 	spin_unlock(&block_group->lock);
2949 
2950 	return ret;
2951 }
2952 
2953 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2954 				   struct btrfs_root *root)
2955 {
2956 	struct btrfs_block_group_cache *cache;
2957 	int err = 0;
2958 	struct btrfs_path *path;
2959 	u64 last = 0;
2960 
2961 	path = btrfs_alloc_path();
2962 	if (!path)
2963 		return -ENOMEM;
2964 
2965 again:
2966 	while (1) {
2967 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2968 		while (cache) {
2969 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2970 				break;
2971 			cache = next_block_group(root, cache);
2972 		}
2973 		if (!cache) {
2974 			if (last == 0)
2975 				break;
2976 			last = 0;
2977 			continue;
2978 		}
2979 		err = cache_save_setup(cache, trans, path);
2980 		last = cache->key.objectid + cache->key.offset;
2981 		btrfs_put_block_group(cache);
2982 	}
2983 
2984 	while (1) {
2985 		if (last == 0) {
2986 			err = btrfs_run_delayed_refs(trans, root,
2987 						     (unsigned long)-1);
2988 			if (err) /* File system offline */
2989 				goto out;
2990 		}
2991 
2992 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2993 		while (cache) {
2994 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2995 				btrfs_put_block_group(cache);
2996 				goto again;
2997 			}
2998 
2999 			if (cache->dirty)
3000 				break;
3001 			cache = next_block_group(root, cache);
3002 		}
3003 		if (!cache) {
3004 			if (last == 0)
3005 				break;
3006 			last = 0;
3007 			continue;
3008 		}
3009 
3010 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3011 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3012 		cache->dirty = 0;
3013 		last = cache->key.objectid + cache->key.offset;
3014 
3015 		err = write_one_cache_group(trans, root, path, cache);
3016 		if (err) /* File system offline */
3017 			goto out;
3018 
3019 		btrfs_put_block_group(cache);
3020 	}
3021 
3022 	while (1) {
3023 		/*
3024 		 * I don't think this is needed since we're just marking our
3025 		 * preallocated extent as written, but just in case it can't
3026 		 * hurt.
3027 		 */
3028 		if (last == 0) {
3029 			err = btrfs_run_delayed_refs(trans, root,
3030 						     (unsigned long)-1);
3031 			if (err) /* File system offline */
3032 				goto out;
3033 		}
3034 
3035 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3036 		while (cache) {
3037 			/*
3038 			 * Really this shouldn't happen, but it could if we
3039 			 * couldn't write the entire preallocated extent and
3040 			 * splitting the extent resulted in a new block.
3041 			 */
3042 			if (cache->dirty) {
3043 				btrfs_put_block_group(cache);
3044 				goto again;
3045 			}
3046 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3047 				break;
3048 			cache = next_block_group(root, cache);
3049 		}
3050 		if (!cache) {
3051 			if (last == 0)
3052 				break;
3053 			last = 0;
3054 			continue;
3055 		}
3056 
3057 		err = btrfs_write_out_cache(root, trans, cache, path);
3058 
3059 		/*
3060 		 * If we didn't have an error then the cache state is still
3061 		 * NEED_WRITE, so we can set it to WRITTEN.
3062 		 */
3063 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3064 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3065 		last = cache->key.objectid + cache->key.offset;
3066 		btrfs_put_block_group(cache);
3067 	}
3068 out:
3069 
3070 	btrfs_free_path(path);
3071 	return err;
3072 }
3073 
3074 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3075 {
3076 	struct btrfs_block_group_cache *block_group;
3077 	int readonly = 0;
3078 
3079 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3080 	if (!block_group || block_group->ro)
3081 		readonly = 1;
3082 	if (block_group)
3083 		btrfs_put_block_group(block_group);
3084 	return readonly;
3085 }
3086 
3087 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3088 			     u64 total_bytes, u64 bytes_used,
3089 			     struct btrfs_space_info **space_info)
3090 {
3091 	struct btrfs_space_info *found;
3092 	int i;
3093 	int factor;
3094 
3095 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3096 		     BTRFS_BLOCK_GROUP_RAID10))
3097 		factor = 2;
3098 	else
3099 		factor = 1;
3100 
3101 	found = __find_space_info(info, flags);
3102 	if (found) {
3103 		spin_lock(&found->lock);
3104 		found->total_bytes += total_bytes;
3105 		found->disk_total += total_bytes * factor;
3106 		found->bytes_used += bytes_used;
3107 		found->disk_used += bytes_used * factor;
3108 		found->full = 0;
3109 		spin_unlock(&found->lock);
3110 		*space_info = found;
3111 		return 0;
3112 	}
3113 	found = kzalloc(sizeof(*found), GFP_NOFS);
3114 	if (!found)
3115 		return -ENOMEM;
3116 
3117 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3118 		INIT_LIST_HEAD(&found->block_groups[i]);
3119 	init_rwsem(&found->groups_sem);
3120 	spin_lock_init(&found->lock);
3121 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3122 	found->total_bytes = total_bytes;
3123 	found->disk_total = total_bytes * factor;
3124 	found->bytes_used = bytes_used;
3125 	found->disk_used = bytes_used * factor;
3126 	found->bytes_pinned = 0;
3127 	found->bytes_reserved = 0;
3128 	found->bytes_readonly = 0;
3129 	found->bytes_may_use = 0;
3130 	found->full = 0;
3131 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3132 	found->chunk_alloc = 0;
3133 	found->flush = 0;
3134 	init_waitqueue_head(&found->wait);
3135 	*space_info = found;
3136 	list_add_rcu(&found->list, &info->space_info);
3137 	return 0;
3138 }
3139 
3140 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3141 {
3142 	u64 extra_flags = chunk_to_extended(flags) &
3143 				BTRFS_EXTENDED_PROFILE_MASK;
3144 
3145 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3146 		fs_info->avail_data_alloc_bits |= extra_flags;
3147 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3148 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3149 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3150 		fs_info->avail_system_alloc_bits |= extra_flags;
3151 }
3152 
3153 /*
3154  * returns target flags in extended format or 0 if restripe for this
3155  * chunk_type is not in progress
3156  *
3157  * should be called with either volume_mutex or balance_lock held
3158  */
3159 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3160 {
3161 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3162 	u64 target = 0;
3163 
3164 	if (!bctl)
3165 		return 0;
3166 
3167 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3168 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3169 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3170 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3171 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3172 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3173 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3174 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3175 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3176 	}
3177 
3178 	return target;
3179 }
3180 
3181 /*
3182  * @flags: available profiles in extended format (see ctree.h)
3183  *
3184  * Returns reduced profile in chunk format.  If profile changing is in
3185  * progress (either running or paused) picks the target profile (if it's
3186  * already available), otherwise falls back to plain reducing.
3187  */
3188 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3189 {
3190 	/*
3191 	 * we add in the count of missing devices because we want
3192 	 * to make sure that any RAID levels on a degraded FS
3193 	 * continue to be honored.
3194 	 */
3195 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3196 		root->fs_info->fs_devices->missing_devices;
3197 	u64 target;
3198 
3199 	/*
3200 	 * see if restripe for this chunk_type is in progress, if so
3201 	 * try to reduce to the target profile
3202 	 */
3203 	spin_lock(&root->fs_info->balance_lock);
3204 	target = get_restripe_target(root->fs_info, flags);
3205 	if (target) {
3206 		/* pick target profile only if it's already available */
3207 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3208 			spin_unlock(&root->fs_info->balance_lock);
3209 			return extended_to_chunk(target);
3210 		}
3211 	}
3212 	spin_unlock(&root->fs_info->balance_lock);
3213 
3214 	if (num_devices == 1)
3215 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3216 	if (num_devices < 4)
3217 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3218 
3219 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3220 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3221 		      BTRFS_BLOCK_GROUP_RAID10))) {
3222 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3223 	}
3224 
3225 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3226 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3227 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3228 	}
3229 
3230 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3231 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3232 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3233 	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
3234 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3235 	}
3236 
3237 	return extended_to_chunk(flags);
3238 }
3239 
3240 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3241 {
3242 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3243 		flags |= root->fs_info->avail_data_alloc_bits;
3244 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3245 		flags |= root->fs_info->avail_system_alloc_bits;
3246 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3247 		flags |= root->fs_info->avail_metadata_alloc_bits;
3248 
3249 	return btrfs_reduce_alloc_profile(root, flags);
3250 }
3251 
3252 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3253 {
3254 	u64 flags;
3255 
3256 	if (data)
3257 		flags = BTRFS_BLOCK_GROUP_DATA;
3258 	else if (root == root->fs_info->chunk_root)
3259 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3260 	else
3261 		flags = BTRFS_BLOCK_GROUP_METADATA;
3262 
3263 	return get_alloc_profile(root, flags);
3264 }
3265 
3266 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3267 {
3268 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3269 						       BTRFS_BLOCK_GROUP_DATA);
3270 }
3271 
3272 /*
3273  * This will check the space that the inode allocates from to make sure we have
3274  * enough space for bytes.
3275  */
3276 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3277 {
3278 	struct btrfs_space_info *data_sinfo;
3279 	struct btrfs_root *root = BTRFS_I(inode)->root;
3280 	u64 used;
3281 	int ret = 0, committed = 0, alloc_chunk = 1;
3282 
3283 	/* make sure bytes are sectorsize aligned */
3284 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3285 
3286 	if (root == root->fs_info->tree_root ||
3287 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3288 		alloc_chunk = 0;
3289 		committed = 1;
3290 	}
3291 
3292 	data_sinfo = BTRFS_I(inode)->space_info;
3293 	if (!data_sinfo)
3294 		goto alloc;
3295 
3296 again:
3297 	/* make sure we have enough space to handle the data first */
3298 	spin_lock(&data_sinfo->lock);
3299 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3300 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3301 		data_sinfo->bytes_may_use;
3302 
3303 	if (used + bytes > data_sinfo->total_bytes) {
3304 		struct btrfs_trans_handle *trans;
3305 
3306 		/*
3307 		 * if we don't have enough free bytes in this space then we need
3308 		 * to alloc a new chunk.
3309 		 */
3310 		if (!data_sinfo->full && alloc_chunk) {
3311 			u64 alloc_target;
3312 
3313 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3314 			spin_unlock(&data_sinfo->lock);
3315 alloc:
3316 			alloc_target = btrfs_get_alloc_profile(root, 1);
3317 			trans = btrfs_join_transaction(root);
3318 			if (IS_ERR(trans))
3319 				return PTR_ERR(trans);
3320 
3321 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3322 					     bytes + 2 * 1024 * 1024,
3323 					     alloc_target,
3324 					     CHUNK_ALLOC_NO_FORCE);
3325 			btrfs_end_transaction(trans, root);
3326 			if (ret < 0) {
3327 				if (ret != -ENOSPC)
3328 					return ret;
3329 				else
3330 					goto commit_trans;
3331 			}
3332 
3333 			if (!data_sinfo) {
3334 				btrfs_set_inode_space_info(root, inode);
3335 				data_sinfo = BTRFS_I(inode)->space_info;
3336 			}
3337 			goto again;
3338 		}
3339 
3340 		/*
3341 		 * If we have less pinned bytes than we want to allocate then
3342 		 * don't bother committing the transaction, it won't help us.
3343 		 */
3344 		if (data_sinfo->bytes_pinned < bytes)
3345 			committed = 1;
3346 		spin_unlock(&data_sinfo->lock);
3347 
3348 		/* commit the current transaction and try again */
3349 commit_trans:
3350 		if (!committed &&
3351 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3352 			committed = 1;
3353 			trans = btrfs_join_transaction(root);
3354 			if (IS_ERR(trans))
3355 				return PTR_ERR(trans);
3356 			ret = btrfs_commit_transaction(trans, root);
3357 			if (ret)
3358 				return ret;
3359 			goto again;
3360 		}
3361 
3362 		return -ENOSPC;
3363 	}
3364 	data_sinfo->bytes_may_use += bytes;
3365 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3366 				      data_sinfo->flags, bytes, 1);
3367 	spin_unlock(&data_sinfo->lock);
3368 
3369 	return 0;
3370 }
3371 
3372 /*
3373  * Called if we need to clear a data reservation for this inode.
3374  */
3375 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3376 {
3377 	struct btrfs_root *root = BTRFS_I(inode)->root;
3378 	struct btrfs_space_info *data_sinfo;
3379 
3380 	/* make sure bytes are sectorsize aligned */
3381 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3382 
3383 	data_sinfo = BTRFS_I(inode)->space_info;
3384 	spin_lock(&data_sinfo->lock);
3385 	data_sinfo->bytes_may_use -= bytes;
3386 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3387 				      data_sinfo->flags, bytes, 0);
3388 	spin_unlock(&data_sinfo->lock);
3389 }
3390 
3391 static void force_metadata_allocation(struct btrfs_fs_info *info)
3392 {
3393 	struct list_head *head = &info->space_info;
3394 	struct btrfs_space_info *found;
3395 
3396 	rcu_read_lock();
3397 	list_for_each_entry_rcu(found, head, list) {
3398 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3399 			found->force_alloc = CHUNK_ALLOC_FORCE;
3400 	}
3401 	rcu_read_unlock();
3402 }
3403 
3404 static int should_alloc_chunk(struct btrfs_root *root,
3405 			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
3406 			      int force)
3407 {
3408 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3409 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3410 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3411 	u64 thresh;
3412 
3413 	if (force == CHUNK_ALLOC_FORCE)
3414 		return 1;
3415 
3416 	/*
3417 	 * We need to take into account the global rsv because for all intents
3418 	 * and purposes it's used space.  Don't worry about locking the
3419 	 * global_rsv, it doesn't change except when the transaction commits.
3420 	 */
3421 	num_allocated += global_rsv->size;
3422 
3423 	/*
3424 	 * in limited mode, we want to have some free space up to
3425 	 * about 1% of the FS size.
3426 	 */
3427 	if (force == CHUNK_ALLOC_LIMITED) {
3428 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3429 		thresh = max_t(u64, 64 * 1024 * 1024,
3430 			       div_factor_fine(thresh, 1));
3431 
3432 		if (num_bytes - num_allocated < thresh)
3433 			return 1;
3434 	}
3435 	thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3436 
3437 	/* 256MB or 2% of the FS */
3438 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3439 	/* system chunks need a much small threshold */
3440 	if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3441 		thresh = 32 * 1024 * 1024;
3442 
3443 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3444 		return 0;
3445 	return 1;
3446 }
3447 
3448 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3449 {
3450 	u64 num_dev;
3451 
3452 	if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3453 	    type & BTRFS_BLOCK_GROUP_RAID0)
3454 		num_dev = root->fs_info->fs_devices->rw_devices;
3455 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3456 		num_dev = 2;
3457 	else
3458 		num_dev = 1;	/* DUP or single */
3459 
3460 	/* metadata for updaing devices and chunk tree */
3461 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3462 }
3463 
3464 static void check_system_chunk(struct btrfs_trans_handle *trans,
3465 			       struct btrfs_root *root, u64 type)
3466 {
3467 	struct btrfs_space_info *info;
3468 	u64 left;
3469 	u64 thresh;
3470 
3471 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3472 	spin_lock(&info->lock);
3473 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3474 		info->bytes_reserved - info->bytes_readonly;
3475 	spin_unlock(&info->lock);
3476 
3477 	thresh = get_system_chunk_thresh(root, type);
3478 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3479 		printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3480 		       left, thresh, type);
3481 		dump_space_info(info, 0, 0);
3482 	}
3483 
3484 	if (left < thresh) {
3485 		u64 flags;
3486 
3487 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3488 		btrfs_alloc_chunk(trans, root, flags);
3489 	}
3490 }
3491 
3492 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3493 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3494 			  u64 flags, int force)
3495 {
3496 	struct btrfs_space_info *space_info;
3497 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3498 	int wait_for_alloc = 0;
3499 	int ret = 0;
3500 
3501 	space_info = __find_space_info(extent_root->fs_info, flags);
3502 	if (!space_info) {
3503 		ret = update_space_info(extent_root->fs_info, flags,
3504 					0, 0, &space_info);
3505 		BUG_ON(ret); /* -ENOMEM */
3506 	}
3507 	BUG_ON(!space_info); /* Logic error */
3508 
3509 again:
3510 	spin_lock(&space_info->lock);
3511 	if (force < space_info->force_alloc)
3512 		force = space_info->force_alloc;
3513 	if (space_info->full) {
3514 		spin_unlock(&space_info->lock);
3515 		return 0;
3516 	}
3517 
3518 	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3519 		spin_unlock(&space_info->lock);
3520 		return 0;
3521 	} else if (space_info->chunk_alloc) {
3522 		wait_for_alloc = 1;
3523 	} else {
3524 		space_info->chunk_alloc = 1;
3525 	}
3526 
3527 	spin_unlock(&space_info->lock);
3528 
3529 	mutex_lock(&fs_info->chunk_mutex);
3530 
3531 	/*
3532 	 * The chunk_mutex is held throughout the entirety of a chunk
3533 	 * allocation, so once we've acquired the chunk_mutex we know that the
3534 	 * other guy is done and we need to recheck and see if we should
3535 	 * allocate.
3536 	 */
3537 	if (wait_for_alloc) {
3538 		mutex_unlock(&fs_info->chunk_mutex);
3539 		wait_for_alloc = 0;
3540 		goto again;
3541 	}
3542 
3543 	/*
3544 	 * If we have mixed data/metadata chunks we want to make sure we keep
3545 	 * allocating mixed chunks instead of individual chunks.
3546 	 */
3547 	if (btrfs_mixed_space_info(space_info))
3548 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3549 
3550 	/*
3551 	 * if we're doing a data chunk, go ahead and make sure that
3552 	 * we keep a reasonable number of metadata chunks allocated in the
3553 	 * FS as well.
3554 	 */
3555 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3556 		fs_info->data_chunk_allocations++;
3557 		if (!(fs_info->data_chunk_allocations %
3558 		      fs_info->metadata_ratio))
3559 			force_metadata_allocation(fs_info);
3560 	}
3561 
3562 	/*
3563 	 * Check if we have enough space in SYSTEM chunk because we may need
3564 	 * to update devices.
3565 	 */
3566 	check_system_chunk(trans, extent_root, flags);
3567 
3568 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3569 	if (ret < 0 && ret != -ENOSPC)
3570 		goto out;
3571 
3572 	spin_lock(&space_info->lock);
3573 	if (ret)
3574 		space_info->full = 1;
3575 	else
3576 		ret = 1;
3577 
3578 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3579 	space_info->chunk_alloc = 0;
3580 	spin_unlock(&space_info->lock);
3581 out:
3582 	mutex_unlock(&fs_info->chunk_mutex);
3583 	return ret;
3584 }
3585 
3586 /*
3587  * shrink metadata reservation for delalloc
3588  */
3589 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3590 			   bool wait_ordered)
3591 {
3592 	struct btrfs_block_rsv *block_rsv;
3593 	struct btrfs_space_info *space_info;
3594 	struct btrfs_trans_handle *trans;
3595 	u64 reserved;
3596 	u64 max_reclaim;
3597 	u64 reclaimed = 0;
3598 	long time_left;
3599 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3600 	int loops = 0;
3601 	unsigned long progress;
3602 
3603 	trans = (struct btrfs_trans_handle *)current->journal_info;
3604 	block_rsv = &root->fs_info->delalloc_block_rsv;
3605 	space_info = block_rsv->space_info;
3606 
3607 	smp_mb();
3608 	reserved = space_info->bytes_may_use;
3609 	progress = space_info->reservation_progress;
3610 
3611 	if (reserved == 0)
3612 		return 0;
3613 
3614 	smp_mb();
3615 	if (root->fs_info->delalloc_bytes == 0) {
3616 		if (trans)
3617 			return 0;
3618 		btrfs_wait_ordered_extents(root, 0, 0);
3619 		return 0;
3620 	}
3621 
3622 	max_reclaim = min(reserved, to_reclaim);
3623 	nr_pages = max_t(unsigned long, nr_pages,
3624 			 max_reclaim >> PAGE_CACHE_SHIFT);
3625 	while (loops < 1024) {
3626 		/* have the flusher threads jump in and do some IO */
3627 		smp_mb();
3628 		nr_pages = min_t(unsigned long, nr_pages,
3629 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3630 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3631 						WB_REASON_FS_FREE_SPACE);
3632 
3633 		spin_lock(&space_info->lock);
3634 		if (reserved > space_info->bytes_may_use)
3635 			reclaimed += reserved - space_info->bytes_may_use;
3636 		reserved = space_info->bytes_may_use;
3637 		spin_unlock(&space_info->lock);
3638 
3639 		loops++;
3640 
3641 		if (reserved == 0 || reclaimed >= max_reclaim)
3642 			break;
3643 
3644 		if (trans && trans->transaction->blocked)
3645 			return -EAGAIN;
3646 
3647 		if (wait_ordered && !trans) {
3648 			btrfs_wait_ordered_extents(root, 0, 0);
3649 		} else {
3650 			time_left = schedule_timeout_interruptible(1);
3651 
3652 			/* We were interrupted, exit */
3653 			if (time_left)
3654 				break;
3655 		}
3656 
3657 		/* we've kicked the IO a few times, if anything has been freed,
3658 		 * exit.  There is no sense in looping here for a long time
3659 		 * when we really need to commit the transaction, or there are
3660 		 * just too many writers without enough free space
3661 		 */
3662 
3663 		if (loops > 3) {
3664 			smp_mb();
3665 			if (progress != space_info->reservation_progress)
3666 				break;
3667 		}
3668 
3669 	}
3670 
3671 	return reclaimed >= to_reclaim;
3672 }
3673 
3674 /**
3675  * maybe_commit_transaction - possibly commit the transaction if its ok to
3676  * @root - the root we're allocating for
3677  * @bytes - the number of bytes we want to reserve
3678  * @force - force the commit
3679  *
3680  * This will check to make sure that committing the transaction will actually
3681  * get us somewhere and then commit the transaction if it does.  Otherwise it
3682  * will return -ENOSPC.
3683  */
3684 static int may_commit_transaction(struct btrfs_root *root,
3685 				  struct btrfs_space_info *space_info,
3686 				  u64 bytes, int force)
3687 {
3688 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3689 	struct btrfs_trans_handle *trans;
3690 
3691 	trans = (struct btrfs_trans_handle *)current->journal_info;
3692 	if (trans)
3693 		return -EAGAIN;
3694 
3695 	if (force)
3696 		goto commit;
3697 
3698 	/* See if there is enough pinned space to make this reservation */
3699 	spin_lock(&space_info->lock);
3700 	if (space_info->bytes_pinned >= bytes) {
3701 		spin_unlock(&space_info->lock);
3702 		goto commit;
3703 	}
3704 	spin_unlock(&space_info->lock);
3705 
3706 	/*
3707 	 * See if there is some space in the delayed insertion reservation for
3708 	 * this reservation.
3709 	 */
3710 	if (space_info != delayed_rsv->space_info)
3711 		return -ENOSPC;
3712 
3713 	spin_lock(&space_info->lock);
3714 	spin_lock(&delayed_rsv->lock);
3715 	if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3716 		spin_unlock(&delayed_rsv->lock);
3717 		spin_unlock(&space_info->lock);
3718 		return -ENOSPC;
3719 	}
3720 	spin_unlock(&delayed_rsv->lock);
3721 	spin_unlock(&space_info->lock);
3722 
3723 commit:
3724 	trans = btrfs_join_transaction(root);
3725 	if (IS_ERR(trans))
3726 		return -ENOSPC;
3727 
3728 	return btrfs_commit_transaction(trans, root);
3729 }
3730 
3731 /**
3732  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3733  * @root - the root we're allocating for
3734  * @block_rsv - the block_rsv we're allocating for
3735  * @orig_bytes - the number of bytes we want
3736  * @flush - wether or not we can flush to make our reservation
3737  *
3738  * This will reserve orgi_bytes number of bytes from the space info associated
3739  * with the block_rsv.  If there is not enough space it will make an attempt to
3740  * flush out space to make room.  It will do this by flushing delalloc if
3741  * possible or committing the transaction.  If flush is 0 then no attempts to
3742  * regain reservations will be made and this will fail if there is not enough
3743  * space already.
3744  */
3745 static int reserve_metadata_bytes(struct btrfs_root *root,
3746 				  struct btrfs_block_rsv *block_rsv,
3747 				  u64 orig_bytes, int flush)
3748 {
3749 	struct btrfs_space_info *space_info = block_rsv->space_info;
3750 	u64 used;
3751 	u64 num_bytes = orig_bytes;
3752 	int retries = 0;
3753 	int ret = 0;
3754 	bool committed = false;
3755 	bool flushing = false;
3756 	bool wait_ordered = false;
3757 
3758 again:
3759 	ret = 0;
3760 	spin_lock(&space_info->lock);
3761 	/*
3762 	 * We only want to wait if somebody other than us is flushing and we are
3763 	 * actually alloed to flush.
3764 	 */
3765 	while (flush && !flushing && space_info->flush) {
3766 		spin_unlock(&space_info->lock);
3767 		/*
3768 		 * If we have a trans handle we can't wait because the flusher
3769 		 * may have to commit the transaction, which would mean we would
3770 		 * deadlock since we are waiting for the flusher to finish, but
3771 		 * hold the current transaction open.
3772 		 */
3773 		if (current->journal_info)
3774 			return -EAGAIN;
3775 		ret = wait_event_killable(space_info->wait, !space_info->flush);
3776 		/* Must have been killed, return */
3777 		if (ret)
3778 			return -EINTR;
3779 
3780 		spin_lock(&space_info->lock);
3781 	}
3782 
3783 	ret = -ENOSPC;
3784 	used = space_info->bytes_used + space_info->bytes_reserved +
3785 		space_info->bytes_pinned + space_info->bytes_readonly +
3786 		space_info->bytes_may_use;
3787 
3788 	/*
3789 	 * The idea here is that we've not already over-reserved the block group
3790 	 * then we can go ahead and save our reservation first and then start
3791 	 * flushing if we need to.  Otherwise if we've already overcommitted
3792 	 * lets start flushing stuff first and then come back and try to make
3793 	 * our reservation.
3794 	 */
3795 	if (used <= space_info->total_bytes) {
3796 		if (used + orig_bytes <= space_info->total_bytes) {
3797 			space_info->bytes_may_use += orig_bytes;
3798 			trace_btrfs_space_reservation(root->fs_info,
3799 				"space_info", space_info->flags, orig_bytes, 1);
3800 			ret = 0;
3801 		} else {
3802 			/*
3803 			 * Ok set num_bytes to orig_bytes since we aren't
3804 			 * overocmmitted, this way we only try and reclaim what
3805 			 * we need.
3806 			 */
3807 			num_bytes = orig_bytes;
3808 		}
3809 	} else {
3810 		/*
3811 		 * Ok we're over committed, set num_bytes to the overcommitted
3812 		 * amount plus the amount of bytes that we need for this
3813 		 * reservation.
3814 		 */
3815 		wait_ordered = true;
3816 		num_bytes = used - space_info->total_bytes +
3817 			(orig_bytes * (retries + 1));
3818 	}
3819 
3820 	if (ret) {
3821 		u64 profile = btrfs_get_alloc_profile(root, 0);
3822 		u64 avail;
3823 
3824 		/*
3825 		 * If we have a lot of space that's pinned, don't bother doing
3826 		 * the overcommit dance yet and just commit the transaction.
3827 		 */
3828 		avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3829 		do_div(avail, 10);
3830 		if (space_info->bytes_pinned >= avail && flush && !committed) {
3831 			space_info->flush = 1;
3832 			flushing = true;
3833 			spin_unlock(&space_info->lock);
3834 			ret = may_commit_transaction(root, space_info,
3835 						     orig_bytes, 1);
3836 			if (ret)
3837 				goto out;
3838 			committed = true;
3839 			goto again;
3840 		}
3841 
3842 		spin_lock(&root->fs_info->free_chunk_lock);
3843 		avail = root->fs_info->free_chunk_space;
3844 
3845 		/*
3846 		 * If we have dup, raid1 or raid10 then only half of the free
3847 		 * space is actually useable.
3848 		 */
3849 		if (profile & (BTRFS_BLOCK_GROUP_DUP |
3850 			       BTRFS_BLOCK_GROUP_RAID1 |
3851 			       BTRFS_BLOCK_GROUP_RAID10))
3852 			avail >>= 1;
3853 
3854 		/*
3855 		 * If we aren't flushing don't let us overcommit too much, say
3856 		 * 1/8th of the space.  If we can flush, let it overcommit up to
3857 		 * 1/2 of the space.
3858 		 */
3859 		if (flush)
3860 			avail >>= 3;
3861 		else
3862 			avail >>= 1;
3863 		 spin_unlock(&root->fs_info->free_chunk_lock);
3864 
3865 		if (used + num_bytes < space_info->total_bytes + avail) {
3866 			space_info->bytes_may_use += orig_bytes;
3867 			trace_btrfs_space_reservation(root->fs_info,
3868 				"space_info", space_info->flags, orig_bytes, 1);
3869 			ret = 0;
3870 		} else {
3871 			wait_ordered = true;
3872 		}
3873 	}
3874 
3875 	/*
3876 	 * Couldn't make our reservation, save our place so while we're trying
3877 	 * to reclaim space we can actually use it instead of somebody else
3878 	 * stealing it from us.
3879 	 */
3880 	if (ret && flush) {
3881 		flushing = true;
3882 		space_info->flush = 1;
3883 	}
3884 
3885 	spin_unlock(&space_info->lock);
3886 
3887 	if (!ret || !flush)
3888 		goto out;
3889 
3890 	/*
3891 	 * We do synchronous shrinking since we don't actually unreserve
3892 	 * metadata until after the IO is completed.
3893 	 */
3894 	ret = shrink_delalloc(root, num_bytes, wait_ordered);
3895 	if (ret < 0)
3896 		goto out;
3897 
3898 	ret = 0;
3899 
3900 	/*
3901 	 * So if we were overcommitted it's possible that somebody else flushed
3902 	 * out enough space and we simply didn't have enough space to reclaim,
3903 	 * so go back around and try again.
3904 	 */
3905 	if (retries < 2) {
3906 		wait_ordered = true;
3907 		retries++;
3908 		goto again;
3909 	}
3910 
3911 	ret = -ENOSPC;
3912 	if (committed)
3913 		goto out;
3914 
3915 	ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3916 	if (!ret) {
3917 		committed = true;
3918 		goto again;
3919 	}
3920 
3921 out:
3922 	if (flushing) {
3923 		spin_lock(&space_info->lock);
3924 		space_info->flush = 0;
3925 		wake_up_all(&space_info->wait);
3926 		spin_unlock(&space_info->lock);
3927 	}
3928 	return ret;
3929 }
3930 
3931 static struct btrfs_block_rsv *get_block_rsv(
3932 					const struct btrfs_trans_handle *trans,
3933 					const struct btrfs_root *root)
3934 {
3935 	struct btrfs_block_rsv *block_rsv = NULL;
3936 
3937 	if (root->ref_cows || root == root->fs_info->csum_root)
3938 		block_rsv = trans->block_rsv;
3939 
3940 	if (!block_rsv)
3941 		block_rsv = root->block_rsv;
3942 
3943 	if (!block_rsv)
3944 		block_rsv = &root->fs_info->empty_block_rsv;
3945 
3946 	return block_rsv;
3947 }
3948 
3949 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3950 			       u64 num_bytes)
3951 {
3952 	int ret = -ENOSPC;
3953 	spin_lock(&block_rsv->lock);
3954 	if (block_rsv->reserved >= num_bytes) {
3955 		block_rsv->reserved -= num_bytes;
3956 		if (block_rsv->reserved < block_rsv->size)
3957 			block_rsv->full = 0;
3958 		ret = 0;
3959 	}
3960 	spin_unlock(&block_rsv->lock);
3961 	return ret;
3962 }
3963 
3964 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3965 				u64 num_bytes, int update_size)
3966 {
3967 	spin_lock(&block_rsv->lock);
3968 	block_rsv->reserved += num_bytes;
3969 	if (update_size)
3970 		block_rsv->size += num_bytes;
3971 	else if (block_rsv->reserved >= block_rsv->size)
3972 		block_rsv->full = 1;
3973 	spin_unlock(&block_rsv->lock);
3974 }
3975 
3976 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3977 				    struct btrfs_block_rsv *block_rsv,
3978 				    struct btrfs_block_rsv *dest, u64 num_bytes)
3979 {
3980 	struct btrfs_space_info *space_info = block_rsv->space_info;
3981 
3982 	spin_lock(&block_rsv->lock);
3983 	if (num_bytes == (u64)-1)
3984 		num_bytes = block_rsv->size;
3985 	block_rsv->size -= num_bytes;
3986 	if (block_rsv->reserved >= block_rsv->size) {
3987 		num_bytes = block_rsv->reserved - block_rsv->size;
3988 		block_rsv->reserved = block_rsv->size;
3989 		block_rsv->full = 1;
3990 	} else {
3991 		num_bytes = 0;
3992 	}
3993 	spin_unlock(&block_rsv->lock);
3994 
3995 	if (num_bytes > 0) {
3996 		if (dest) {
3997 			spin_lock(&dest->lock);
3998 			if (!dest->full) {
3999 				u64 bytes_to_add;
4000 
4001 				bytes_to_add = dest->size - dest->reserved;
4002 				bytes_to_add = min(num_bytes, bytes_to_add);
4003 				dest->reserved += bytes_to_add;
4004 				if (dest->reserved >= dest->size)
4005 					dest->full = 1;
4006 				num_bytes -= bytes_to_add;
4007 			}
4008 			spin_unlock(&dest->lock);
4009 		}
4010 		if (num_bytes) {
4011 			spin_lock(&space_info->lock);
4012 			space_info->bytes_may_use -= num_bytes;
4013 			trace_btrfs_space_reservation(fs_info, "space_info",
4014 					space_info->flags, num_bytes, 0);
4015 			space_info->reservation_progress++;
4016 			spin_unlock(&space_info->lock);
4017 		}
4018 	}
4019 }
4020 
4021 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4022 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4023 {
4024 	int ret;
4025 
4026 	ret = block_rsv_use_bytes(src, num_bytes);
4027 	if (ret)
4028 		return ret;
4029 
4030 	block_rsv_add_bytes(dst, num_bytes, 1);
4031 	return 0;
4032 }
4033 
4034 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4035 {
4036 	memset(rsv, 0, sizeof(*rsv));
4037 	spin_lock_init(&rsv->lock);
4038 }
4039 
4040 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4041 {
4042 	struct btrfs_block_rsv *block_rsv;
4043 	struct btrfs_fs_info *fs_info = root->fs_info;
4044 
4045 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4046 	if (!block_rsv)
4047 		return NULL;
4048 
4049 	btrfs_init_block_rsv(block_rsv);
4050 	block_rsv->space_info = __find_space_info(fs_info,
4051 						  BTRFS_BLOCK_GROUP_METADATA);
4052 	return block_rsv;
4053 }
4054 
4055 void btrfs_free_block_rsv(struct btrfs_root *root,
4056 			  struct btrfs_block_rsv *rsv)
4057 {
4058 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4059 	kfree(rsv);
4060 }
4061 
4062 static inline int __block_rsv_add(struct btrfs_root *root,
4063 				  struct btrfs_block_rsv *block_rsv,
4064 				  u64 num_bytes, int flush)
4065 {
4066 	int ret;
4067 
4068 	if (num_bytes == 0)
4069 		return 0;
4070 
4071 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4072 	if (!ret) {
4073 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4074 		return 0;
4075 	}
4076 
4077 	return ret;
4078 }
4079 
4080 int btrfs_block_rsv_add(struct btrfs_root *root,
4081 			struct btrfs_block_rsv *block_rsv,
4082 			u64 num_bytes)
4083 {
4084 	return __block_rsv_add(root, block_rsv, num_bytes, 1);
4085 }
4086 
4087 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4088 				struct btrfs_block_rsv *block_rsv,
4089 				u64 num_bytes)
4090 {
4091 	return __block_rsv_add(root, block_rsv, num_bytes, 0);
4092 }
4093 
4094 int btrfs_block_rsv_check(struct btrfs_root *root,
4095 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4096 {
4097 	u64 num_bytes = 0;
4098 	int ret = -ENOSPC;
4099 
4100 	if (!block_rsv)
4101 		return 0;
4102 
4103 	spin_lock(&block_rsv->lock);
4104 	num_bytes = div_factor(block_rsv->size, min_factor);
4105 	if (block_rsv->reserved >= num_bytes)
4106 		ret = 0;
4107 	spin_unlock(&block_rsv->lock);
4108 
4109 	return ret;
4110 }
4111 
4112 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4113 					   struct btrfs_block_rsv *block_rsv,
4114 					   u64 min_reserved, int flush)
4115 {
4116 	u64 num_bytes = 0;
4117 	int ret = -ENOSPC;
4118 
4119 	if (!block_rsv)
4120 		return 0;
4121 
4122 	spin_lock(&block_rsv->lock);
4123 	num_bytes = min_reserved;
4124 	if (block_rsv->reserved >= num_bytes)
4125 		ret = 0;
4126 	else
4127 		num_bytes -= block_rsv->reserved;
4128 	spin_unlock(&block_rsv->lock);
4129 
4130 	if (!ret)
4131 		return 0;
4132 
4133 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4134 	if (!ret) {
4135 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4136 		return 0;
4137 	}
4138 
4139 	return ret;
4140 }
4141 
4142 int btrfs_block_rsv_refill(struct btrfs_root *root,
4143 			   struct btrfs_block_rsv *block_rsv,
4144 			   u64 min_reserved)
4145 {
4146 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4147 }
4148 
4149 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4150 				   struct btrfs_block_rsv *block_rsv,
4151 				   u64 min_reserved)
4152 {
4153 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4154 }
4155 
4156 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4157 			    struct btrfs_block_rsv *dst_rsv,
4158 			    u64 num_bytes)
4159 {
4160 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4161 }
4162 
4163 void btrfs_block_rsv_release(struct btrfs_root *root,
4164 			     struct btrfs_block_rsv *block_rsv,
4165 			     u64 num_bytes)
4166 {
4167 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4168 	if (global_rsv->full || global_rsv == block_rsv ||
4169 	    block_rsv->space_info != global_rsv->space_info)
4170 		global_rsv = NULL;
4171 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4172 				num_bytes);
4173 }
4174 
4175 /*
4176  * helper to calculate size of global block reservation.
4177  * the desired value is sum of space used by extent tree,
4178  * checksum tree and root tree
4179  */
4180 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4181 {
4182 	struct btrfs_space_info *sinfo;
4183 	u64 num_bytes;
4184 	u64 meta_used;
4185 	u64 data_used;
4186 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4187 
4188 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4189 	spin_lock(&sinfo->lock);
4190 	data_used = sinfo->bytes_used;
4191 	spin_unlock(&sinfo->lock);
4192 
4193 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4194 	spin_lock(&sinfo->lock);
4195 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4196 		data_used = 0;
4197 	meta_used = sinfo->bytes_used;
4198 	spin_unlock(&sinfo->lock);
4199 
4200 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4201 		    csum_size * 2;
4202 	num_bytes += div64_u64(data_used + meta_used, 50);
4203 
4204 	if (num_bytes * 3 > meta_used)
4205 		num_bytes = div64_u64(meta_used, 3);
4206 
4207 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4208 }
4209 
4210 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4211 {
4212 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4213 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4214 	u64 num_bytes;
4215 
4216 	num_bytes = calc_global_metadata_size(fs_info);
4217 
4218 	spin_lock(&sinfo->lock);
4219 	spin_lock(&block_rsv->lock);
4220 
4221 	block_rsv->size = num_bytes;
4222 
4223 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4224 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4225 		    sinfo->bytes_may_use;
4226 
4227 	if (sinfo->total_bytes > num_bytes) {
4228 		num_bytes = sinfo->total_bytes - num_bytes;
4229 		block_rsv->reserved += num_bytes;
4230 		sinfo->bytes_may_use += num_bytes;
4231 		trace_btrfs_space_reservation(fs_info, "space_info",
4232 				      sinfo->flags, num_bytes, 1);
4233 	}
4234 
4235 	if (block_rsv->reserved >= block_rsv->size) {
4236 		num_bytes = block_rsv->reserved - block_rsv->size;
4237 		sinfo->bytes_may_use -= num_bytes;
4238 		trace_btrfs_space_reservation(fs_info, "space_info",
4239 				      sinfo->flags, num_bytes, 0);
4240 		sinfo->reservation_progress++;
4241 		block_rsv->reserved = block_rsv->size;
4242 		block_rsv->full = 1;
4243 	}
4244 
4245 	spin_unlock(&block_rsv->lock);
4246 	spin_unlock(&sinfo->lock);
4247 }
4248 
4249 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4250 {
4251 	struct btrfs_space_info *space_info;
4252 
4253 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4254 	fs_info->chunk_block_rsv.space_info = space_info;
4255 
4256 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4257 	fs_info->global_block_rsv.space_info = space_info;
4258 	fs_info->delalloc_block_rsv.space_info = space_info;
4259 	fs_info->trans_block_rsv.space_info = space_info;
4260 	fs_info->empty_block_rsv.space_info = space_info;
4261 	fs_info->delayed_block_rsv.space_info = space_info;
4262 
4263 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4264 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4265 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4266 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4267 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4268 
4269 	update_global_block_rsv(fs_info);
4270 }
4271 
4272 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4273 {
4274 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4275 				(u64)-1);
4276 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4277 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4278 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4279 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4280 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4281 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4282 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4283 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4284 }
4285 
4286 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4287 				  struct btrfs_root *root)
4288 {
4289 	if (!trans->bytes_reserved)
4290 		return;
4291 
4292 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4293 				      trans->transid, trans->bytes_reserved, 0);
4294 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4295 	trans->bytes_reserved = 0;
4296 }
4297 
4298 /* Can only return 0 or -ENOSPC */
4299 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4300 				  struct inode *inode)
4301 {
4302 	struct btrfs_root *root = BTRFS_I(inode)->root;
4303 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4304 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4305 
4306 	/*
4307 	 * We need to hold space in order to delete our orphan item once we've
4308 	 * added it, so this takes the reservation so we can release it later
4309 	 * when we are truly done with the orphan item.
4310 	 */
4311 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4312 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4313 				      btrfs_ino(inode), num_bytes, 1);
4314 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4315 }
4316 
4317 void btrfs_orphan_release_metadata(struct inode *inode)
4318 {
4319 	struct btrfs_root *root = BTRFS_I(inode)->root;
4320 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4321 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4322 				      btrfs_ino(inode), num_bytes, 0);
4323 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4324 }
4325 
4326 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4327 				struct btrfs_pending_snapshot *pending)
4328 {
4329 	struct btrfs_root *root = pending->root;
4330 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4331 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4332 	/*
4333 	 * two for root back/forward refs, two for directory entries
4334 	 * and one for root of the snapshot.
4335 	 */
4336 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4337 	dst_rsv->space_info = src_rsv->space_info;
4338 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4339 }
4340 
4341 /**
4342  * drop_outstanding_extent - drop an outstanding extent
4343  * @inode: the inode we're dropping the extent for
4344  *
4345  * This is called when we are freeing up an outstanding extent, either called
4346  * after an error or after an extent is written.  This will return the number of
4347  * reserved extents that need to be freed.  This must be called with
4348  * BTRFS_I(inode)->lock held.
4349  */
4350 static unsigned drop_outstanding_extent(struct inode *inode)
4351 {
4352 	unsigned drop_inode_space = 0;
4353 	unsigned dropped_extents = 0;
4354 
4355 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4356 	BTRFS_I(inode)->outstanding_extents--;
4357 
4358 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4359 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4360 			       &BTRFS_I(inode)->runtime_flags))
4361 		drop_inode_space = 1;
4362 
4363 	/*
4364 	 * If we have more or the same amount of outsanding extents than we have
4365 	 * reserved then we need to leave the reserved extents count alone.
4366 	 */
4367 	if (BTRFS_I(inode)->outstanding_extents >=
4368 	    BTRFS_I(inode)->reserved_extents)
4369 		return drop_inode_space;
4370 
4371 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4372 		BTRFS_I(inode)->outstanding_extents;
4373 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4374 	return dropped_extents + drop_inode_space;
4375 }
4376 
4377 /**
4378  * calc_csum_metadata_size - return the amount of metada space that must be
4379  *	reserved/free'd for the given bytes.
4380  * @inode: the inode we're manipulating
4381  * @num_bytes: the number of bytes in question
4382  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4383  *
4384  * This adjusts the number of csum_bytes in the inode and then returns the
4385  * correct amount of metadata that must either be reserved or freed.  We
4386  * calculate how many checksums we can fit into one leaf and then divide the
4387  * number of bytes that will need to be checksumed by this value to figure out
4388  * how many checksums will be required.  If we are adding bytes then the number
4389  * may go up and we will return the number of additional bytes that must be
4390  * reserved.  If it is going down we will return the number of bytes that must
4391  * be freed.
4392  *
4393  * This must be called with BTRFS_I(inode)->lock held.
4394  */
4395 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4396 				   int reserve)
4397 {
4398 	struct btrfs_root *root = BTRFS_I(inode)->root;
4399 	u64 csum_size;
4400 	int num_csums_per_leaf;
4401 	int num_csums;
4402 	int old_csums;
4403 
4404 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4405 	    BTRFS_I(inode)->csum_bytes == 0)
4406 		return 0;
4407 
4408 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4409 	if (reserve)
4410 		BTRFS_I(inode)->csum_bytes += num_bytes;
4411 	else
4412 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4413 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4414 	num_csums_per_leaf = (int)div64_u64(csum_size,
4415 					    sizeof(struct btrfs_csum_item) +
4416 					    sizeof(struct btrfs_disk_key));
4417 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4418 	num_csums = num_csums + num_csums_per_leaf - 1;
4419 	num_csums = num_csums / num_csums_per_leaf;
4420 
4421 	old_csums = old_csums + num_csums_per_leaf - 1;
4422 	old_csums = old_csums / num_csums_per_leaf;
4423 
4424 	/* No change, no need to reserve more */
4425 	if (old_csums == num_csums)
4426 		return 0;
4427 
4428 	if (reserve)
4429 		return btrfs_calc_trans_metadata_size(root,
4430 						      num_csums - old_csums);
4431 
4432 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4433 }
4434 
4435 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4436 {
4437 	struct btrfs_root *root = BTRFS_I(inode)->root;
4438 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4439 	u64 to_reserve = 0;
4440 	u64 csum_bytes;
4441 	unsigned nr_extents = 0;
4442 	int extra_reserve = 0;
4443 	int flush = 1;
4444 	int ret;
4445 
4446 	/* Need to be holding the i_mutex here if we aren't free space cache */
4447 	if (btrfs_is_free_space_inode(root, inode))
4448 		flush = 0;
4449 
4450 	if (flush && btrfs_transaction_in_commit(root->fs_info))
4451 		schedule_timeout(1);
4452 
4453 	mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4454 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4455 
4456 	spin_lock(&BTRFS_I(inode)->lock);
4457 	BTRFS_I(inode)->outstanding_extents++;
4458 
4459 	if (BTRFS_I(inode)->outstanding_extents >
4460 	    BTRFS_I(inode)->reserved_extents)
4461 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4462 			BTRFS_I(inode)->reserved_extents;
4463 
4464 	/*
4465 	 * Add an item to reserve for updating the inode when we complete the
4466 	 * delalloc io.
4467 	 */
4468 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4469 		      &BTRFS_I(inode)->runtime_flags)) {
4470 		nr_extents++;
4471 		extra_reserve = 1;
4472 	}
4473 
4474 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4475 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4476 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4477 	spin_unlock(&BTRFS_I(inode)->lock);
4478 
4479 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4480 	if (ret) {
4481 		u64 to_free = 0;
4482 		unsigned dropped;
4483 
4484 		spin_lock(&BTRFS_I(inode)->lock);
4485 		dropped = drop_outstanding_extent(inode);
4486 		/*
4487 		 * If the inodes csum_bytes is the same as the original
4488 		 * csum_bytes then we know we haven't raced with any free()ers
4489 		 * so we can just reduce our inodes csum bytes and carry on.
4490 		 * Otherwise we have to do the normal free thing to account for
4491 		 * the case that the free side didn't free up its reserve
4492 		 * because of this outstanding reservation.
4493 		 */
4494 		if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4495 			calc_csum_metadata_size(inode, num_bytes, 0);
4496 		else
4497 			to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4498 		spin_unlock(&BTRFS_I(inode)->lock);
4499 		if (dropped)
4500 			to_free += btrfs_calc_trans_metadata_size(root, dropped);
4501 
4502 		if (to_free) {
4503 			btrfs_block_rsv_release(root, block_rsv, to_free);
4504 			trace_btrfs_space_reservation(root->fs_info,
4505 						      "delalloc",
4506 						      btrfs_ino(inode),
4507 						      to_free, 0);
4508 		}
4509 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4510 		return ret;
4511 	}
4512 
4513 	spin_lock(&BTRFS_I(inode)->lock);
4514 	if (extra_reserve) {
4515 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4516 			&BTRFS_I(inode)->runtime_flags);
4517 		nr_extents--;
4518 	}
4519 	BTRFS_I(inode)->reserved_extents += nr_extents;
4520 	spin_unlock(&BTRFS_I(inode)->lock);
4521 	mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4522 
4523 	if (to_reserve)
4524 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4525 					      btrfs_ino(inode), to_reserve, 1);
4526 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4527 
4528 	return 0;
4529 }
4530 
4531 /**
4532  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4533  * @inode: the inode to release the reservation for
4534  * @num_bytes: the number of bytes we're releasing
4535  *
4536  * This will release the metadata reservation for an inode.  This can be called
4537  * once we complete IO for a given set of bytes to release their metadata
4538  * reservations.
4539  */
4540 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4541 {
4542 	struct btrfs_root *root = BTRFS_I(inode)->root;
4543 	u64 to_free = 0;
4544 	unsigned dropped;
4545 
4546 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4547 	spin_lock(&BTRFS_I(inode)->lock);
4548 	dropped = drop_outstanding_extent(inode);
4549 
4550 	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4551 	spin_unlock(&BTRFS_I(inode)->lock);
4552 	if (dropped > 0)
4553 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4554 
4555 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4556 				      btrfs_ino(inode), to_free, 0);
4557 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4558 				to_free);
4559 }
4560 
4561 /**
4562  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4563  * @inode: inode we're writing to
4564  * @num_bytes: the number of bytes we want to allocate
4565  *
4566  * This will do the following things
4567  *
4568  * o reserve space in the data space info for num_bytes
4569  * o reserve space in the metadata space info based on number of outstanding
4570  *   extents and how much csums will be needed
4571  * o add to the inodes ->delalloc_bytes
4572  * o add it to the fs_info's delalloc inodes list.
4573  *
4574  * This will return 0 for success and -ENOSPC if there is no space left.
4575  */
4576 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4577 {
4578 	int ret;
4579 
4580 	ret = btrfs_check_data_free_space(inode, num_bytes);
4581 	if (ret)
4582 		return ret;
4583 
4584 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4585 	if (ret) {
4586 		btrfs_free_reserved_data_space(inode, num_bytes);
4587 		return ret;
4588 	}
4589 
4590 	return 0;
4591 }
4592 
4593 /**
4594  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4595  * @inode: inode we're releasing space for
4596  * @num_bytes: the number of bytes we want to free up
4597  *
4598  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4599  * called in the case that we don't need the metadata AND data reservations
4600  * anymore.  So if there is an error or we insert an inline extent.
4601  *
4602  * This function will release the metadata space that was not used and will
4603  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4604  * list if there are no delalloc bytes left.
4605  */
4606 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4607 {
4608 	btrfs_delalloc_release_metadata(inode, num_bytes);
4609 	btrfs_free_reserved_data_space(inode, num_bytes);
4610 }
4611 
4612 static int update_block_group(struct btrfs_trans_handle *trans,
4613 			      struct btrfs_root *root,
4614 			      u64 bytenr, u64 num_bytes, int alloc)
4615 {
4616 	struct btrfs_block_group_cache *cache = NULL;
4617 	struct btrfs_fs_info *info = root->fs_info;
4618 	u64 total = num_bytes;
4619 	u64 old_val;
4620 	u64 byte_in_group;
4621 	int factor;
4622 
4623 	/* block accounting for super block */
4624 	spin_lock(&info->delalloc_lock);
4625 	old_val = btrfs_super_bytes_used(info->super_copy);
4626 	if (alloc)
4627 		old_val += num_bytes;
4628 	else
4629 		old_val -= num_bytes;
4630 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4631 	spin_unlock(&info->delalloc_lock);
4632 
4633 	while (total) {
4634 		cache = btrfs_lookup_block_group(info, bytenr);
4635 		if (!cache)
4636 			return -ENOENT;
4637 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4638 				    BTRFS_BLOCK_GROUP_RAID1 |
4639 				    BTRFS_BLOCK_GROUP_RAID10))
4640 			factor = 2;
4641 		else
4642 			factor = 1;
4643 		/*
4644 		 * If this block group has free space cache written out, we
4645 		 * need to make sure to load it if we are removing space.  This
4646 		 * is because we need the unpinning stage to actually add the
4647 		 * space back to the block group, otherwise we will leak space.
4648 		 */
4649 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4650 			cache_block_group(cache, trans, NULL, 1);
4651 
4652 		byte_in_group = bytenr - cache->key.objectid;
4653 		WARN_ON(byte_in_group > cache->key.offset);
4654 
4655 		spin_lock(&cache->space_info->lock);
4656 		spin_lock(&cache->lock);
4657 
4658 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4659 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4660 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4661 
4662 		cache->dirty = 1;
4663 		old_val = btrfs_block_group_used(&cache->item);
4664 		num_bytes = min(total, cache->key.offset - byte_in_group);
4665 		if (alloc) {
4666 			old_val += num_bytes;
4667 			btrfs_set_block_group_used(&cache->item, old_val);
4668 			cache->reserved -= num_bytes;
4669 			cache->space_info->bytes_reserved -= num_bytes;
4670 			cache->space_info->bytes_used += num_bytes;
4671 			cache->space_info->disk_used += num_bytes * factor;
4672 			spin_unlock(&cache->lock);
4673 			spin_unlock(&cache->space_info->lock);
4674 		} else {
4675 			old_val -= num_bytes;
4676 			btrfs_set_block_group_used(&cache->item, old_val);
4677 			cache->pinned += num_bytes;
4678 			cache->space_info->bytes_pinned += num_bytes;
4679 			cache->space_info->bytes_used -= num_bytes;
4680 			cache->space_info->disk_used -= num_bytes * factor;
4681 			spin_unlock(&cache->lock);
4682 			spin_unlock(&cache->space_info->lock);
4683 
4684 			set_extent_dirty(info->pinned_extents,
4685 					 bytenr, bytenr + num_bytes - 1,
4686 					 GFP_NOFS | __GFP_NOFAIL);
4687 		}
4688 		btrfs_put_block_group(cache);
4689 		total -= num_bytes;
4690 		bytenr += num_bytes;
4691 	}
4692 	return 0;
4693 }
4694 
4695 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4696 {
4697 	struct btrfs_block_group_cache *cache;
4698 	u64 bytenr;
4699 
4700 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4701 	if (!cache)
4702 		return 0;
4703 
4704 	bytenr = cache->key.objectid;
4705 	btrfs_put_block_group(cache);
4706 
4707 	return bytenr;
4708 }
4709 
4710 static int pin_down_extent(struct btrfs_root *root,
4711 			   struct btrfs_block_group_cache *cache,
4712 			   u64 bytenr, u64 num_bytes, int reserved)
4713 {
4714 	spin_lock(&cache->space_info->lock);
4715 	spin_lock(&cache->lock);
4716 	cache->pinned += num_bytes;
4717 	cache->space_info->bytes_pinned += num_bytes;
4718 	if (reserved) {
4719 		cache->reserved -= num_bytes;
4720 		cache->space_info->bytes_reserved -= num_bytes;
4721 	}
4722 	spin_unlock(&cache->lock);
4723 	spin_unlock(&cache->space_info->lock);
4724 
4725 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4726 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4727 	return 0;
4728 }
4729 
4730 /*
4731  * this function must be called within transaction
4732  */
4733 int btrfs_pin_extent(struct btrfs_root *root,
4734 		     u64 bytenr, u64 num_bytes, int reserved)
4735 {
4736 	struct btrfs_block_group_cache *cache;
4737 
4738 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4739 	BUG_ON(!cache); /* Logic error */
4740 
4741 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4742 
4743 	btrfs_put_block_group(cache);
4744 	return 0;
4745 }
4746 
4747 /*
4748  * this function must be called within transaction
4749  */
4750 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4751 				    struct btrfs_root *root,
4752 				    u64 bytenr, u64 num_bytes)
4753 {
4754 	struct btrfs_block_group_cache *cache;
4755 
4756 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4757 	BUG_ON(!cache); /* Logic error */
4758 
4759 	/*
4760 	 * pull in the free space cache (if any) so that our pin
4761 	 * removes the free space from the cache.  We have load_only set
4762 	 * to one because the slow code to read in the free extents does check
4763 	 * the pinned extents.
4764 	 */
4765 	cache_block_group(cache, trans, root, 1);
4766 
4767 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
4768 
4769 	/* remove us from the free space cache (if we're there at all) */
4770 	btrfs_remove_free_space(cache, bytenr, num_bytes);
4771 	btrfs_put_block_group(cache);
4772 	return 0;
4773 }
4774 
4775 /**
4776  * btrfs_update_reserved_bytes - update the block_group and space info counters
4777  * @cache:	The cache we are manipulating
4778  * @num_bytes:	The number of bytes in question
4779  * @reserve:	One of the reservation enums
4780  *
4781  * This is called by the allocator when it reserves space, or by somebody who is
4782  * freeing space that was never actually used on disk.  For example if you
4783  * reserve some space for a new leaf in transaction A and before transaction A
4784  * commits you free that leaf, you call this with reserve set to 0 in order to
4785  * clear the reservation.
4786  *
4787  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4788  * ENOSPC accounting.  For data we handle the reservation through clearing the
4789  * delalloc bits in the io_tree.  We have to do this since we could end up
4790  * allocating less disk space for the amount of data we have reserved in the
4791  * case of compression.
4792  *
4793  * If this is a reservation and the block group has become read only we cannot
4794  * make the reservation and return -EAGAIN, otherwise this function always
4795  * succeeds.
4796  */
4797 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4798 				       u64 num_bytes, int reserve)
4799 {
4800 	struct btrfs_space_info *space_info = cache->space_info;
4801 	int ret = 0;
4802 
4803 	spin_lock(&space_info->lock);
4804 	spin_lock(&cache->lock);
4805 	if (reserve != RESERVE_FREE) {
4806 		if (cache->ro) {
4807 			ret = -EAGAIN;
4808 		} else {
4809 			cache->reserved += num_bytes;
4810 			space_info->bytes_reserved += num_bytes;
4811 			if (reserve == RESERVE_ALLOC) {
4812 				trace_btrfs_space_reservation(cache->fs_info,
4813 						"space_info", space_info->flags,
4814 						num_bytes, 0);
4815 				space_info->bytes_may_use -= num_bytes;
4816 			}
4817 		}
4818 	} else {
4819 		if (cache->ro)
4820 			space_info->bytes_readonly += num_bytes;
4821 		cache->reserved -= num_bytes;
4822 		space_info->bytes_reserved -= num_bytes;
4823 		space_info->reservation_progress++;
4824 	}
4825 	spin_unlock(&cache->lock);
4826 	spin_unlock(&space_info->lock);
4827 	return ret;
4828 }
4829 
4830 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4831 				struct btrfs_root *root)
4832 {
4833 	struct btrfs_fs_info *fs_info = root->fs_info;
4834 	struct btrfs_caching_control *next;
4835 	struct btrfs_caching_control *caching_ctl;
4836 	struct btrfs_block_group_cache *cache;
4837 
4838 	down_write(&fs_info->extent_commit_sem);
4839 
4840 	list_for_each_entry_safe(caching_ctl, next,
4841 				 &fs_info->caching_block_groups, list) {
4842 		cache = caching_ctl->block_group;
4843 		if (block_group_cache_done(cache)) {
4844 			cache->last_byte_to_unpin = (u64)-1;
4845 			list_del_init(&caching_ctl->list);
4846 			put_caching_control(caching_ctl);
4847 		} else {
4848 			cache->last_byte_to_unpin = caching_ctl->progress;
4849 		}
4850 	}
4851 
4852 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4853 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4854 	else
4855 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4856 
4857 	up_write(&fs_info->extent_commit_sem);
4858 
4859 	update_global_block_rsv(fs_info);
4860 }
4861 
4862 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4863 {
4864 	struct btrfs_fs_info *fs_info = root->fs_info;
4865 	struct btrfs_block_group_cache *cache = NULL;
4866 	u64 len;
4867 
4868 	while (start <= end) {
4869 		if (!cache ||
4870 		    start >= cache->key.objectid + cache->key.offset) {
4871 			if (cache)
4872 				btrfs_put_block_group(cache);
4873 			cache = btrfs_lookup_block_group(fs_info, start);
4874 			BUG_ON(!cache); /* Logic error */
4875 		}
4876 
4877 		len = cache->key.objectid + cache->key.offset - start;
4878 		len = min(len, end + 1 - start);
4879 
4880 		if (start < cache->last_byte_to_unpin) {
4881 			len = min(len, cache->last_byte_to_unpin - start);
4882 			btrfs_add_free_space(cache, start, len);
4883 		}
4884 
4885 		start += len;
4886 
4887 		spin_lock(&cache->space_info->lock);
4888 		spin_lock(&cache->lock);
4889 		cache->pinned -= len;
4890 		cache->space_info->bytes_pinned -= len;
4891 		if (cache->ro)
4892 			cache->space_info->bytes_readonly += len;
4893 		spin_unlock(&cache->lock);
4894 		spin_unlock(&cache->space_info->lock);
4895 	}
4896 
4897 	if (cache)
4898 		btrfs_put_block_group(cache);
4899 	return 0;
4900 }
4901 
4902 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4903 			       struct btrfs_root *root)
4904 {
4905 	struct btrfs_fs_info *fs_info = root->fs_info;
4906 	struct extent_io_tree *unpin;
4907 	u64 start;
4908 	u64 end;
4909 	int ret;
4910 
4911 	if (trans->aborted)
4912 		return 0;
4913 
4914 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4915 		unpin = &fs_info->freed_extents[1];
4916 	else
4917 		unpin = &fs_info->freed_extents[0];
4918 
4919 	while (1) {
4920 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4921 					    EXTENT_DIRTY);
4922 		if (ret)
4923 			break;
4924 
4925 		if (btrfs_test_opt(root, DISCARD))
4926 			ret = btrfs_discard_extent(root, start,
4927 						   end + 1 - start, NULL);
4928 
4929 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4930 		unpin_extent_range(root, start, end);
4931 		cond_resched();
4932 	}
4933 
4934 	return 0;
4935 }
4936 
4937 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4938 				struct btrfs_root *root,
4939 				u64 bytenr, u64 num_bytes, u64 parent,
4940 				u64 root_objectid, u64 owner_objectid,
4941 				u64 owner_offset, int refs_to_drop,
4942 				struct btrfs_delayed_extent_op *extent_op)
4943 {
4944 	struct btrfs_key key;
4945 	struct btrfs_path *path;
4946 	struct btrfs_fs_info *info = root->fs_info;
4947 	struct btrfs_root *extent_root = info->extent_root;
4948 	struct extent_buffer *leaf;
4949 	struct btrfs_extent_item *ei;
4950 	struct btrfs_extent_inline_ref *iref;
4951 	int ret;
4952 	int is_data;
4953 	int extent_slot = 0;
4954 	int found_extent = 0;
4955 	int num_to_del = 1;
4956 	u32 item_size;
4957 	u64 refs;
4958 
4959 	path = btrfs_alloc_path();
4960 	if (!path)
4961 		return -ENOMEM;
4962 
4963 	path->reada = 1;
4964 	path->leave_spinning = 1;
4965 
4966 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4967 	BUG_ON(!is_data && refs_to_drop != 1);
4968 
4969 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4970 				    bytenr, num_bytes, parent,
4971 				    root_objectid, owner_objectid,
4972 				    owner_offset);
4973 	if (ret == 0) {
4974 		extent_slot = path->slots[0];
4975 		while (extent_slot >= 0) {
4976 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4977 					      extent_slot);
4978 			if (key.objectid != bytenr)
4979 				break;
4980 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4981 			    key.offset == num_bytes) {
4982 				found_extent = 1;
4983 				break;
4984 			}
4985 			if (path->slots[0] - extent_slot > 5)
4986 				break;
4987 			extent_slot--;
4988 		}
4989 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4990 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4991 		if (found_extent && item_size < sizeof(*ei))
4992 			found_extent = 0;
4993 #endif
4994 		if (!found_extent) {
4995 			BUG_ON(iref);
4996 			ret = remove_extent_backref(trans, extent_root, path,
4997 						    NULL, refs_to_drop,
4998 						    is_data);
4999 			if (ret)
5000 				goto abort;
5001 			btrfs_release_path(path);
5002 			path->leave_spinning = 1;
5003 
5004 			key.objectid = bytenr;
5005 			key.type = BTRFS_EXTENT_ITEM_KEY;
5006 			key.offset = num_bytes;
5007 
5008 			ret = btrfs_search_slot(trans, extent_root,
5009 						&key, path, -1, 1);
5010 			if (ret) {
5011 				printk(KERN_ERR "umm, got %d back from search"
5012 				       ", was looking for %llu\n", ret,
5013 				       (unsigned long long)bytenr);
5014 				if (ret > 0)
5015 					btrfs_print_leaf(extent_root,
5016 							 path->nodes[0]);
5017 			}
5018 			if (ret < 0)
5019 				goto abort;
5020 			extent_slot = path->slots[0];
5021 		}
5022 	} else if (ret == -ENOENT) {
5023 		btrfs_print_leaf(extent_root, path->nodes[0]);
5024 		WARN_ON(1);
5025 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5026 		       "parent %llu root %llu  owner %llu offset %llu\n",
5027 		       (unsigned long long)bytenr,
5028 		       (unsigned long long)parent,
5029 		       (unsigned long long)root_objectid,
5030 		       (unsigned long long)owner_objectid,
5031 		       (unsigned long long)owner_offset);
5032 	} else {
5033 		goto abort;
5034 	}
5035 
5036 	leaf = path->nodes[0];
5037 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5038 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5039 	if (item_size < sizeof(*ei)) {
5040 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5041 		ret = convert_extent_item_v0(trans, extent_root, path,
5042 					     owner_objectid, 0);
5043 		if (ret < 0)
5044 			goto abort;
5045 
5046 		btrfs_release_path(path);
5047 		path->leave_spinning = 1;
5048 
5049 		key.objectid = bytenr;
5050 		key.type = BTRFS_EXTENT_ITEM_KEY;
5051 		key.offset = num_bytes;
5052 
5053 		ret = btrfs_search_slot(trans, extent_root, &key, path,
5054 					-1, 1);
5055 		if (ret) {
5056 			printk(KERN_ERR "umm, got %d back from search"
5057 			       ", was looking for %llu\n", ret,
5058 			       (unsigned long long)bytenr);
5059 			btrfs_print_leaf(extent_root, path->nodes[0]);
5060 		}
5061 		if (ret < 0)
5062 			goto abort;
5063 		extent_slot = path->slots[0];
5064 		leaf = path->nodes[0];
5065 		item_size = btrfs_item_size_nr(leaf, extent_slot);
5066 	}
5067 #endif
5068 	BUG_ON(item_size < sizeof(*ei));
5069 	ei = btrfs_item_ptr(leaf, extent_slot,
5070 			    struct btrfs_extent_item);
5071 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5072 		struct btrfs_tree_block_info *bi;
5073 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5074 		bi = (struct btrfs_tree_block_info *)(ei + 1);
5075 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5076 	}
5077 
5078 	refs = btrfs_extent_refs(leaf, ei);
5079 	BUG_ON(refs < refs_to_drop);
5080 	refs -= refs_to_drop;
5081 
5082 	if (refs > 0) {
5083 		if (extent_op)
5084 			__run_delayed_extent_op(extent_op, leaf, ei);
5085 		/*
5086 		 * In the case of inline back ref, reference count will
5087 		 * be updated by remove_extent_backref
5088 		 */
5089 		if (iref) {
5090 			BUG_ON(!found_extent);
5091 		} else {
5092 			btrfs_set_extent_refs(leaf, ei, refs);
5093 			btrfs_mark_buffer_dirty(leaf);
5094 		}
5095 		if (found_extent) {
5096 			ret = remove_extent_backref(trans, extent_root, path,
5097 						    iref, refs_to_drop,
5098 						    is_data);
5099 			if (ret)
5100 				goto abort;
5101 		}
5102 	} else {
5103 		if (found_extent) {
5104 			BUG_ON(is_data && refs_to_drop !=
5105 			       extent_data_ref_count(root, path, iref));
5106 			if (iref) {
5107 				BUG_ON(path->slots[0] != extent_slot);
5108 			} else {
5109 				BUG_ON(path->slots[0] != extent_slot + 1);
5110 				path->slots[0] = extent_slot;
5111 				num_to_del = 2;
5112 			}
5113 		}
5114 
5115 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5116 				      num_to_del);
5117 		if (ret)
5118 			goto abort;
5119 		btrfs_release_path(path);
5120 
5121 		if (is_data) {
5122 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5123 			if (ret)
5124 				goto abort;
5125 		}
5126 
5127 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5128 		if (ret)
5129 			goto abort;
5130 	}
5131 out:
5132 	btrfs_free_path(path);
5133 	return ret;
5134 
5135 abort:
5136 	btrfs_abort_transaction(trans, extent_root, ret);
5137 	goto out;
5138 }
5139 
5140 /*
5141  * when we free an block, it is possible (and likely) that we free the last
5142  * delayed ref for that extent as well.  This searches the delayed ref tree for
5143  * a given extent, and if there are no other delayed refs to be processed, it
5144  * removes it from the tree.
5145  */
5146 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5147 				      struct btrfs_root *root, u64 bytenr)
5148 {
5149 	struct btrfs_delayed_ref_head *head;
5150 	struct btrfs_delayed_ref_root *delayed_refs;
5151 	struct btrfs_delayed_ref_node *ref;
5152 	struct rb_node *node;
5153 	int ret = 0;
5154 
5155 	delayed_refs = &trans->transaction->delayed_refs;
5156 	spin_lock(&delayed_refs->lock);
5157 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5158 	if (!head)
5159 		goto out;
5160 
5161 	node = rb_prev(&head->node.rb_node);
5162 	if (!node)
5163 		goto out;
5164 
5165 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5166 
5167 	/* there are still entries for this ref, we can't drop it */
5168 	if (ref->bytenr == bytenr)
5169 		goto out;
5170 
5171 	if (head->extent_op) {
5172 		if (!head->must_insert_reserved)
5173 			goto out;
5174 		kfree(head->extent_op);
5175 		head->extent_op = NULL;
5176 	}
5177 
5178 	/*
5179 	 * waiting for the lock here would deadlock.  If someone else has it
5180 	 * locked they are already in the process of dropping it anyway
5181 	 */
5182 	if (!mutex_trylock(&head->mutex))
5183 		goto out;
5184 
5185 	/*
5186 	 * at this point we have a head with no other entries.  Go
5187 	 * ahead and process it.
5188 	 */
5189 	head->node.in_tree = 0;
5190 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5191 
5192 	delayed_refs->num_entries--;
5193 	if (waitqueue_active(&delayed_refs->seq_wait))
5194 		wake_up(&delayed_refs->seq_wait);
5195 
5196 	/*
5197 	 * we don't take a ref on the node because we're removing it from the
5198 	 * tree, so we just steal the ref the tree was holding.
5199 	 */
5200 	delayed_refs->num_heads--;
5201 	if (list_empty(&head->cluster))
5202 		delayed_refs->num_heads_ready--;
5203 
5204 	list_del_init(&head->cluster);
5205 	spin_unlock(&delayed_refs->lock);
5206 
5207 	BUG_ON(head->extent_op);
5208 	if (head->must_insert_reserved)
5209 		ret = 1;
5210 
5211 	mutex_unlock(&head->mutex);
5212 	btrfs_put_delayed_ref(&head->node);
5213 	return ret;
5214 out:
5215 	spin_unlock(&delayed_refs->lock);
5216 	return 0;
5217 }
5218 
5219 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5220 			   struct btrfs_root *root,
5221 			   struct extent_buffer *buf,
5222 			   u64 parent, int last_ref)
5223 {
5224 	struct btrfs_block_group_cache *cache = NULL;
5225 	int ret;
5226 
5227 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5228 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5229 					buf->start, buf->len,
5230 					parent, root->root_key.objectid,
5231 					btrfs_header_level(buf),
5232 					BTRFS_DROP_DELAYED_REF, NULL, 0);
5233 		BUG_ON(ret); /* -ENOMEM */
5234 	}
5235 
5236 	if (!last_ref)
5237 		return;
5238 
5239 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5240 
5241 	if (btrfs_header_generation(buf) == trans->transid) {
5242 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5243 			ret = check_ref_cleanup(trans, root, buf->start);
5244 			if (!ret)
5245 				goto out;
5246 		}
5247 
5248 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5249 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5250 			goto out;
5251 		}
5252 
5253 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5254 
5255 		btrfs_add_free_space(cache, buf->start, buf->len);
5256 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5257 	}
5258 out:
5259 	/*
5260 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5261 	 * anymore.
5262 	 */
5263 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5264 	btrfs_put_block_group(cache);
5265 }
5266 
5267 /* Can return -ENOMEM */
5268 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5269 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5270 		      u64 owner, u64 offset, int for_cow)
5271 {
5272 	int ret;
5273 	struct btrfs_fs_info *fs_info = root->fs_info;
5274 
5275 	/*
5276 	 * tree log blocks never actually go into the extent allocation
5277 	 * tree, just update pinning info and exit early.
5278 	 */
5279 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5280 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5281 		/* unlocks the pinned mutex */
5282 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5283 		ret = 0;
5284 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5285 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5286 					num_bytes,
5287 					parent, root_objectid, (int)owner,
5288 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5289 	} else {
5290 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5291 						num_bytes,
5292 						parent, root_objectid, owner,
5293 						offset, BTRFS_DROP_DELAYED_REF,
5294 						NULL, for_cow);
5295 	}
5296 	return ret;
5297 }
5298 
5299 static u64 stripe_align(struct btrfs_root *root, u64 val)
5300 {
5301 	u64 mask = ((u64)root->stripesize - 1);
5302 	u64 ret = (val + mask) & ~mask;
5303 	return ret;
5304 }
5305 
5306 /*
5307  * when we wait for progress in the block group caching, its because
5308  * our allocation attempt failed at least once.  So, we must sleep
5309  * and let some progress happen before we try again.
5310  *
5311  * This function will sleep at least once waiting for new free space to
5312  * show up, and then it will check the block group free space numbers
5313  * for our min num_bytes.  Another option is to have it go ahead
5314  * and look in the rbtree for a free extent of a given size, but this
5315  * is a good start.
5316  */
5317 static noinline int
5318 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5319 				u64 num_bytes)
5320 {
5321 	struct btrfs_caching_control *caching_ctl;
5322 	DEFINE_WAIT(wait);
5323 
5324 	caching_ctl = get_caching_control(cache);
5325 	if (!caching_ctl)
5326 		return 0;
5327 
5328 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5329 		   (cache->free_space_ctl->free_space >= num_bytes));
5330 
5331 	put_caching_control(caching_ctl);
5332 	return 0;
5333 }
5334 
5335 static noinline int
5336 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5337 {
5338 	struct btrfs_caching_control *caching_ctl;
5339 	DEFINE_WAIT(wait);
5340 
5341 	caching_ctl = get_caching_control(cache);
5342 	if (!caching_ctl)
5343 		return 0;
5344 
5345 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5346 
5347 	put_caching_control(caching_ctl);
5348 	return 0;
5349 }
5350 
5351 static int __get_block_group_index(u64 flags)
5352 {
5353 	int index;
5354 
5355 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
5356 		index = 0;
5357 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5358 		index = 1;
5359 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
5360 		index = 2;
5361 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5362 		index = 3;
5363 	else
5364 		index = 4;
5365 
5366 	return index;
5367 }
5368 
5369 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5370 {
5371 	return __get_block_group_index(cache->flags);
5372 }
5373 
5374 enum btrfs_loop_type {
5375 	LOOP_CACHING_NOWAIT = 0,
5376 	LOOP_CACHING_WAIT = 1,
5377 	LOOP_ALLOC_CHUNK = 2,
5378 	LOOP_NO_EMPTY_SIZE = 3,
5379 };
5380 
5381 /*
5382  * walks the btree of allocated extents and find a hole of a given size.
5383  * The key ins is changed to record the hole:
5384  * ins->objectid == block start
5385  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5386  * ins->offset == number of blocks
5387  * Any available blocks before search_start are skipped.
5388  */
5389 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5390 				     struct btrfs_root *orig_root,
5391 				     u64 num_bytes, u64 empty_size,
5392 				     u64 hint_byte, struct btrfs_key *ins,
5393 				     u64 data)
5394 {
5395 	int ret = 0;
5396 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5397 	struct btrfs_free_cluster *last_ptr = NULL;
5398 	struct btrfs_block_group_cache *block_group = NULL;
5399 	struct btrfs_block_group_cache *used_block_group;
5400 	u64 search_start = 0;
5401 	int empty_cluster = 2 * 1024 * 1024;
5402 	int allowed_chunk_alloc = 0;
5403 	int done_chunk_alloc = 0;
5404 	struct btrfs_space_info *space_info;
5405 	int loop = 0;
5406 	int index = 0;
5407 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5408 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5409 	bool found_uncached_bg = false;
5410 	bool failed_cluster_refill = false;
5411 	bool failed_alloc = false;
5412 	bool use_cluster = true;
5413 	bool have_caching_bg = false;
5414 
5415 	WARN_ON(num_bytes < root->sectorsize);
5416 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5417 	ins->objectid = 0;
5418 	ins->offset = 0;
5419 
5420 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5421 
5422 	space_info = __find_space_info(root->fs_info, data);
5423 	if (!space_info) {
5424 		printk(KERN_ERR "No space info for %llu\n", data);
5425 		return -ENOSPC;
5426 	}
5427 
5428 	/*
5429 	 * If the space info is for both data and metadata it means we have a
5430 	 * small filesystem and we can't use the clustering stuff.
5431 	 */
5432 	if (btrfs_mixed_space_info(space_info))
5433 		use_cluster = false;
5434 
5435 	if (orig_root->ref_cows || empty_size)
5436 		allowed_chunk_alloc = 1;
5437 
5438 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5439 		last_ptr = &root->fs_info->meta_alloc_cluster;
5440 		if (!btrfs_test_opt(root, SSD))
5441 			empty_cluster = 64 * 1024;
5442 	}
5443 
5444 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5445 	    btrfs_test_opt(root, SSD)) {
5446 		last_ptr = &root->fs_info->data_alloc_cluster;
5447 	}
5448 
5449 	if (last_ptr) {
5450 		spin_lock(&last_ptr->lock);
5451 		if (last_ptr->block_group)
5452 			hint_byte = last_ptr->window_start;
5453 		spin_unlock(&last_ptr->lock);
5454 	}
5455 
5456 	search_start = max(search_start, first_logical_byte(root, 0));
5457 	search_start = max(search_start, hint_byte);
5458 
5459 	if (!last_ptr)
5460 		empty_cluster = 0;
5461 
5462 	if (search_start == hint_byte) {
5463 		block_group = btrfs_lookup_block_group(root->fs_info,
5464 						       search_start);
5465 		used_block_group = block_group;
5466 		/*
5467 		 * we don't want to use the block group if it doesn't match our
5468 		 * allocation bits, or if its not cached.
5469 		 *
5470 		 * However if we are re-searching with an ideal block group
5471 		 * picked out then we don't care that the block group is cached.
5472 		 */
5473 		if (block_group && block_group_bits(block_group, data) &&
5474 		    block_group->cached != BTRFS_CACHE_NO) {
5475 			down_read(&space_info->groups_sem);
5476 			if (list_empty(&block_group->list) ||
5477 			    block_group->ro) {
5478 				/*
5479 				 * someone is removing this block group,
5480 				 * we can't jump into the have_block_group
5481 				 * target because our list pointers are not
5482 				 * valid
5483 				 */
5484 				btrfs_put_block_group(block_group);
5485 				up_read(&space_info->groups_sem);
5486 			} else {
5487 				index = get_block_group_index(block_group);
5488 				goto have_block_group;
5489 			}
5490 		} else if (block_group) {
5491 			btrfs_put_block_group(block_group);
5492 		}
5493 	}
5494 search:
5495 	have_caching_bg = false;
5496 	down_read(&space_info->groups_sem);
5497 	list_for_each_entry(block_group, &space_info->block_groups[index],
5498 			    list) {
5499 		u64 offset;
5500 		int cached;
5501 
5502 		used_block_group = block_group;
5503 		btrfs_get_block_group(block_group);
5504 		search_start = block_group->key.objectid;
5505 
5506 		/*
5507 		 * this can happen if we end up cycling through all the
5508 		 * raid types, but we want to make sure we only allocate
5509 		 * for the proper type.
5510 		 */
5511 		if (!block_group_bits(block_group, data)) {
5512 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5513 				BTRFS_BLOCK_GROUP_RAID1 |
5514 				BTRFS_BLOCK_GROUP_RAID10;
5515 
5516 			/*
5517 			 * if they asked for extra copies and this block group
5518 			 * doesn't provide them, bail.  This does allow us to
5519 			 * fill raid0 from raid1.
5520 			 */
5521 			if ((data & extra) && !(block_group->flags & extra))
5522 				goto loop;
5523 		}
5524 
5525 have_block_group:
5526 		cached = block_group_cache_done(block_group);
5527 		if (unlikely(!cached)) {
5528 			found_uncached_bg = true;
5529 			ret = cache_block_group(block_group, trans,
5530 						orig_root, 0);
5531 			BUG_ON(ret < 0);
5532 			ret = 0;
5533 		}
5534 
5535 		if (unlikely(block_group->ro))
5536 			goto loop;
5537 
5538 		/*
5539 		 * Ok we want to try and use the cluster allocator, so
5540 		 * lets look there
5541 		 */
5542 		if (last_ptr) {
5543 			/*
5544 			 * the refill lock keeps out other
5545 			 * people trying to start a new cluster
5546 			 */
5547 			spin_lock(&last_ptr->refill_lock);
5548 			used_block_group = last_ptr->block_group;
5549 			if (used_block_group != block_group &&
5550 			    (!used_block_group ||
5551 			     used_block_group->ro ||
5552 			     !block_group_bits(used_block_group, data))) {
5553 				used_block_group = block_group;
5554 				goto refill_cluster;
5555 			}
5556 
5557 			if (used_block_group != block_group)
5558 				btrfs_get_block_group(used_block_group);
5559 
5560 			offset = btrfs_alloc_from_cluster(used_block_group,
5561 			  last_ptr, num_bytes, used_block_group->key.objectid);
5562 			if (offset) {
5563 				/* we have a block, we're done */
5564 				spin_unlock(&last_ptr->refill_lock);
5565 				trace_btrfs_reserve_extent_cluster(root,
5566 					block_group, search_start, num_bytes);
5567 				goto checks;
5568 			}
5569 
5570 			WARN_ON(last_ptr->block_group != used_block_group);
5571 			if (used_block_group != block_group) {
5572 				btrfs_put_block_group(used_block_group);
5573 				used_block_group = block_group;
5574 			}
5575 refill_cluster:
5576 			BUG_ON(used_block_group != block_group);
5577 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5578 			 * set up a new clusters, so lets just skip it
5579 			 * and let the allocator find whatever block
5580 			 * it can find.  If we reach this point, we
5581 			 * will have tried the cluster allocator
5582 			 * plenty of times and not have found
5583 			 * anything, so we are likely way too
5584 			 * fragmented for the clustering stuff to find
5585 			 * anything.
5586 			 *
5587 			 * However, if the cluster is taken from the
5588 			 * current block group, release the cluster
5589 			 * first, so that we stand a better chance of
5590 			 * succeeding in the unclustered
5591 			 * allocation.  */
5592 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5593 			    last_ptr->block_group != block_group) {
5594 				spin_unlock(&last_ptr->refill_lock);
5595 				goto unclustered_alloc;
5596 			}
5597 
5598 			/*
5599 			 * this cluster didn't work out, free it and
5600 			 * start over
5601 			 */
5602 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5603 
5604 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5605 				spin_unlock(&last_ptr->refill_lock);
5606 				goto unclustered_alloc;
5607 			}
5608 
5609 			/* allocate a cluster in this block group */
5610 			ret = btrfs_find_space_cluster(trans, root,
5611 					       block_group, last_ptr,
5612 					       search_start, num_bytes,
5613 					       empty_cluster + empty_size);
5614 			if (ret == 0) {
5615 				/*
5616 				 * now pull our allocation out of this
5617 				 * cluster
5618 				 */
5619 				offset = btrfs_alloc_from_cluster(block_group,
5620 						  last_ptr, num_bytes,
5621 						  search_start);
5622 				if (offset) {
5623 					/* we found one, proceed */
5624 					spin_unlock(&last_ptr->refill_lock);
5625 					trace_btrfs_reserve_extent_cluster(root,
5626 						block_group, search_start,
5627 						num_bytes);
5628 					goto checks;
5629 				}
5630 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5631 				   && !failed_cluster_refill) {
5632 				spin_unlock(&last_ptr->refill_lock);
5633 
5634 				failed_cluster_refill = true;
5635 				wait_block_group_cache_progress(block_group,
5636 				       num_bytes + empty_cluster + empty_size);
5637 				goto have_block_group;
5638 			}
5639 
5640 			/*
5641 			 * at this point we either didn't find a cluster
5642 			 * or we weren't able to allocate a block from our
5643 			 * cluster.  Free the cluster we've been trying
5644 			 * to use, and go to the next block group
5645 			 */
5646 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5647 			spin_unlock(&last_ptr->refill_lock);
5648 			goto loop;
5649 		}
5650 
5651 unclustered_alloc:
5652 		spin_lock(&block_group->free_space_ctl->tree_lock);
5653 		if (cached &&
5654 		    block_group->free_space_ctl->free_space <
5655 		    num_bytes + empty_cluster + empty_size) {
5656 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5657 			goto loop;
5658 		}
5659 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5660 
5661 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5662 						    num_bytes, empty_size);
5663 		/*
5664 		 * If we didn't find a chunk, and we haven't failed on this
5665 		 * block group before, and this block group is in the middle of
5666 		 * caching and we are ok with waiting, then go ahead and wait
5667 		 * for progress to be made, and set failed_alloc to true.
5668 		 *
5669 		 * If failed_alloc is true then we've already waited on this
5670 		 * block group once and should move on to the next block group.
5671 		 */
5672 		if (!offset && !failed_alloc && !cached &&
5673 		    loop > LOOP_CACHING_NOWAIT) {
5674 			wait_block_group_cache_progress(block_group,
5675 						num_bytes + empty_size);
5676 			failed_alloc = true;
5677 			goto have_block_group;
5678 		} else if (!offset) {
5679 			if (!cached)
5680 				have_caching_bg = true;
5681 			goto loop;
5682 		}
5683 checks:
5684 		search_start = stripe_align(root, offset);
5685 
5686 		/* move on to the next group */
5687 		if (search_start + num_bytes >
5688 		    used_block_group->key.objectid + used_block_group->key.offset) {
5689 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5690 			goto loop;
5691 		}
5692 
5693 		if (offset < search_start)
5694 			btrfs_add_free_space(used_block_group, offset,
5695 					     search_start - offset);
5696 		BUG_ON(offset > search_start);
5697 
5698 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5699 						  alloc_type);
5700 		if (ret == -EAGAIN) {
5701 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5702 			goto loop;
5703 		}
5704 
5705 		/* we are all good, lets return */
5706 		ins->objectid = search_start;
5707 		ins->offset = num_bytes;
5708 
5709 		trace_btrfs_reserve_extent(orig_root, block_group,
5710 					   search_start, num_bytes);
5711 		if (offset < search_start)
5712 			btrfs_add_free_space(used_block_group, offset,
5713 					     search_start - offset);
5714 		BUG_ON(offset > search_start);
5715 		if (used_block_group != block_group)
5716 			btrfs_put_block_group(used_block_group);
5717 		btrfs_put_block_group(block_group);
5718 		break;
5719 loop:
5720 		failed_cluster_refill = false;
5721 		failed_alloc = false;
5722 		BUG_ON(index != get_block_group_index(block_group));
5723 		if (used_block_group != block_group)
5724 			btrfs_put_block_group(used_block_group);
5725 		btrfs_put_block_group(block_group);
5726 	}
5727 	up_read(&space_info->groups_sem);
5728 
5729 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5730 		goto search;
5731 
5732 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5733 		goto search;
5734 
5735 	/*
5736 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5737 	 *			caching kthreads as we move along
5738 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5739 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5740 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5741 	 *			again
5742 	 */
5743 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5744 		index = 0;
5745 		loop++;
5746 		if (loop == LOOP_ALLOC_CHUNK) {
5747 		       if (allowed_chunk_alloc) {
5748 				ret = do_chunk_alloc(trans, root, num_bytes +
5749 						     2 * 1024 * 1024, data,
5750 						     CHUNK_ALLOC_LIMITED);
5751 				if (ret < 0) {
5752 					btrfs_abort_transaction(trans,
5753 								root, ret);
5754 					goto out;
5755 				}
5756 				allowed_chunk_alloc = 0;
5757 				if (ret == 1)
5758 					done_chunk_alloc = 1;
5759 			} else if (!done_chunk_alloc &&
5760 				   space_info->force_alloc ==
5761 				   CHUNK_ALLOC_NO_FORCE) {
5762 				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5763 			}
5764 
5765 		       /*
5766 			* We didn't allocate a chunk, go ahead and drop the
5767 			* empty size and loop again.
5768 			*/
5769 		       if (!done_chunk_alloc)
5770 			       loop = LOOP_NO_EMPTY_SIZE;
5771 		}
5772 
5773 		if (loop == LOOP_NO_EMPTY_SIZE) {
5774 			empty_size = 0;
5775 			empty_cluster = 0;
5776 		}
5777 
5778 		goto search;
5779 	} else if (!ins->objectid) {
5780 		ret = -ENOSPC;
5781 	} else if (ins->objectid) {
5782 		ret = 0;
5783 	}
5784 out:
5785 
5786 	return ret;
5787 }
5788 
5789 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5790 			    int dump_block_groups)
5791 {
5792 	struct btrfs_block_group_cache *cache;
5793 	int index = 0;
5794 
5795 	spin_lock(&info->lock);
5796 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5797 	       (unsigned long long)info->flags,
5798 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5799 				    info->bytes_pinned - info->bytes_reserved -
5800 				    info->bytes_readonly),
5801 	       (info->full) ? "" : "not ");
5802 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5803 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5804 	       (unsigned long long)info->total_bytes,
5805 	       (unsigned long long)info->bytes_used,
5806 	       (unsigned long long)info->bytes_pinned,
5807 	       (unsigned long long)info->bytes_reserved,
5808 	       (unsigned long long)info->bytes_may_use,
5809 	       (unsigned long long)info->bytes_readonly);
5810 	spin_unlock(&info->lock);
5811 
5812 	if (!dump_block_groups)
5813 		return;
5814 
5815 	down_read(&info->groups_sem);
5816 again:
5817 	list_for_each_entry(cache, &info->block_groups[index], list) {
5818 		spin_lock(&cache->lock);
5819 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5820 		       "%llu pinned %llu reserved\n",
5821 		       (unsigned long long)cache->key.objectid,
5822 		       (unsigned long long)cache->key.offset,
5823 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5824 		       (unsigned long long)cache->pinned,
5825 		       (unsigned long long)cache->reserved);
5826 		btrfs_dump_free_space(cache, bytes);
5827 		spin_unlock(&cache->lock);
5828 	}
5829 	if (++index < BTRFS_NR_RAID_TYPES)
5830 		goto again;
5831 	up_read(&info->groups_sem);
5832 }
5833 
5834 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5835 			 struct btrfs_root *root,
5836 			 u64 num_bytes, u64 min_alloc_size,
5837 			 u64 empty_size, u64 hint_byte,
5838 			 struct btrfs_key *ins, u64 data)
5839 {
5840 	bool final_tried = false;
5841 	int ret;
5842 
5843 	data = btrfs_get_alloc_profile(root, data);
5844 again:
5845 	/*
5846 	 * the only place that sets empty_size is btrfs_realloc_node, which
5847 	 * is not called recursively on allocations
5848 	 */
5849 	if (empty_size || root->ref_cows) {
5850 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5851 				     num_bytes + 2 * 1024 * 1024, data,
5852 				     CHUNK_ALLOC_NO_FORCE);
5853 		if (ret < 0 && ret != -ENOSPC) {
5854 			btrfs_abort_transaction(trans, root, ret);
5855 			return ret;
5856 		}
5857 	}
5858 
5859 	WARN_ON(num_bytes < root->sectorsize);
5860 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5861 			       hint_byte, ins, data);
5862 
5863 	if (ret == -ENOSPC) {
5864 		if (!final_tried) {
5865 			num_bytes = num_bytes >> 1;
5866 			num_bytes = num_bytes & ~(root->sectorsize - 1);
5867 			num_bytes = max(num_bytes, min_alloc_size);
5868 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5869 				       num_bytes, data, CHUNK_ALLOC_FORCE);
5870 			if (ret < 0 && ret != -ENOSPC) {
5871 				btrfs_abort_transaction(trans, root, ret);
5872 				return ret;
5873 			}
5874 			if (num_bytes == min_alloc_size)
5875 				final_tried = true;
5876 			goto again;
5877 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5878 			struct btrfs_space_info *sinfo;
5879 
5880 			sinfo = __find_space_info(root->fs_info, data);
5881 			printk(KERN_ERR "btrfs allocation failed flags %llu, "
5882 			       "wanted %llu\n", (unsigned long long)data,
5883 			       (unsigned long long)num_bytes);
5884 			if (sinfo)
5885 				dump_space_info(sinfo, num_bytes, 1);
5886 		}
5887 	}
5888 
5889 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5890 
5891 	return ret;
5892 }
5893 
5894 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5895 					u64 start, u64 len, int pin)
5896 {
5897 	struct btrfs_block_group_cache *cache;
5898 	int ret = 0;
5899 
5900 	cache = btrfs_lookup_block_group(root->fs_info, start);
5901 	if (!cache) {
5902 		printk(KERN_ERR "Unable to find block group for %llu\n",
5903 		       (unsigned long long)start);
5904 		return -ENOSPC;
5905 	}
5906 
5907 	if (btrfs_test_opt(root, DISCARD))
5908 		ret = btrfs_discard_extent(root, start, len, NULL);
5909 
5910 	if (pin)
5911 		pin_down_extent(root, cache, start, len, 1);
5912 	else {
5913 		btrfs_add_free_space(cache, start, len);
5914 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5915 	}
5916 	btrfs_put_block_group(cache);
5917 
5918 	trace_btrfs_reserved_extent_free(root, start, len);
5919 
5920 	return ret;
5921 }
5922 
5923 int btrfs_free_reserved_extent(struct btrfs_root *root,
5924 					u64 start, u64 len)
5925 {
5926 	return __btrfs_free_reserved_extent(root, start, len, 0);
5927 }
5928 
5929 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5930 				       u64 start, u64 len)
5931 {
5932 	return __btrfs_free_reserved_extent(root, start, len, 1);
5933 }
5934 
5935 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5936 				      struct btrfs_root *root,
5937 				      u64 parent, u64 root_objectid,
5938 				      u64 flags, u64 owner, u64 offset,
5939 				      struct btrfs_key *ins, int ref_mod)
5940 {
5941 	int ret;
5942 	struct btrfs_fs_info *fs_info = root->fs_info;
5943 	struct btrfs_extent_item *extent_item;
5944 	struct btrfs_extent_inline_ref *iref;
5945 	struct btrfs_path *path;
5946 	struct extent_buffer *leaf;
5947 	int type;
5948 	u32 size;
5949 
5950 	if (parent > 0)
5951 		type = BTRFS_SHARED_DATA_REF_KEY;
5952 	else
5953 		type = BTRFS_EXTENT_DATA_REF_KEY;
5954 
5955 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5956 
5957 	path = btrfs_alloc_path();
5958 	if (!path)
5959 		return -ENOMEM;
5960 
5961 	path->leave_spinning = 1;
5962 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5963 				      ins, size);
5964 	if (ret) {
5965 		btrfs_free_path(path);
5966 		return ret;
5967 	}
5968 
5969 	leaf = path->nodes[0];
5970 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5971 				     struct btrfs_extent_item);
5972 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5973 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5974 	btrfs_set_extent_flags(leaf, extent_item,
5975 			       flags | BTRFS_EXTENT_FLAG_DATA);
5976 
5977 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5978 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5979 	if (parent > 0) {
5980 		struct btrfs_shared_data_ref *ref;
5981 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5982 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5983 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5984 	} else {
5985 		struct btrfs_extent_data_ref *ref;
5986 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5987 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5988 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5989 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5990 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5991 	}
5992 
5993 	btrfs_mark_buffer_dirty(path->nodes[0]);
5994 	btrfs_free_path(path);
5995 
5996 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5997 	if (ret) { /* -ENOENT, logic error */
5998 		printk(KERN_ERR "btrfs update block group failed for %llu "
5999 		       "%llu\n", (unsigned long long)ins->objectid,
6000 		       (unsigned long long)ins->offset);
6001 		BUG();
6002 	}
6003 	return ret;
6004 }
6005 
6006 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6007 				     struct btrfs_root *root,
6008 				     u64 parent, u64 root_objectid,
6009 				     u64 flags, struct btrfs_disk_key *key,
6010 				     int level, struct btrfs_key *ins)
6011 {
6012 	int ret;
6013 	struct btrfs_fs_info *fs_info = root->fs_info;
6014 	struct btrfs_extent_item *extent_item;
6015 	struct btrfs_tree_block_info *block_info;
6016 	struct btrfs_extent_inline_ref *iref;
6017 	struct btrfs_path *path;
6018 	struct extent_buffer *leaf;
6019 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6020 
6021 	path = btrfs_alloc_path();
6022 	if (!path)
6023 		return -ENOMEM;
6024 
6025 	path->leave_spinning = 1;
6026 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6027 				      ins, size);
6028 	if (ret) {
6029 		btrfs_free_path(path);
6030 		return ret;
6031 	}
6032 
6033 	leaf = path->nodes[0];
6034 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
6035 				     struct btrfs_extent_item);
6036 	btrfs_set_extent_refs(leaf, extent_item, 1);
6037 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6038 	btrfs_set_extent_flags(leaf, extent_item,
6039 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6040 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6041 
6042 	btrfs_set_tree_block_key(leaf, block_info, key);
6043 	btrfs_set_tree_block_level(leaf, block_info, level);
6044 
6045 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6046 	if (parent > 0) {
6047 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6048 		btrfs_set_extent_inline_ref_type(leaf, iref,
6049 						 BTRFS_SHARED_BLOCK_REF_KEY);
6050 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6051 	} else {
6052 		btrfs_set_extent_inline_ref_type(leaf, iref,
6053 						 BTRFS_TREE_BLOCK_REF_KEY);
6054 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6055 	}
6056 
6057 	btrfs_mark_buffer_dirty(leaf);
6058 	btrfs_free_path(path);
6059 
6060 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6061 	if (ret) { /* -ENOENT, logic error */
6062 		printk(KERN_ERR "btrfs update block group failed for %llu "
6063 		       "%llu\n", (unsigned long long)ins->objectid,
6064 		       (unsigned long long)ins->offset);
6065 		BUG();
6066 	}
6067 	return ret;
6068 }
6069 
6070 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6071 				     struct btrfs_root *root,
6072 				     u64 root_objectid, u64 owner,
6073 				     u64 offset, struct btrfs_key *ins)
6074 {
6075 	int ret;
6076 
6077 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6078 
6079 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6080 					 ins->offset, 0,
6081 					 root_objectid, owner, offset,
6082 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6083 	return ret;
6084 }
6085 
6086 /*
6087  * this is used by the tree logging recovery code.  It records that
6088  * an extent has been allocated and makes sure to clear the free
6089  * space cache bits as well
6090  */
6091 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6092 				   struct btrfs_root *root,
6093 				   u64 root_objectid, u64 owner, u64 offset,
6094 				   struct btrfs_key *ins)
6095 {
6096 	int ret;
6097 	struct btrfs_block_group_cache *block_group;
6098 	struct btrfs_caching_control *caching_ctl;
6099 	u64 start = ins->objectid;
6100 	u64 num_bytes = ins->offset;
6101 
6102 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6103 	cache_block_group(block_group, trans, NULL, 0);
6104 	caching_ctl = get_caching_control(block_group);
6105 
6106 	if (!caching_ctl) {
6107 		BUG_ON(!block_group_cache_done(block_group));
6108 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6109 		BUG_ON(ret); /* -ENOMEM */
6110 	} else {
6111 		mutex_lock(&caching_ctl->mutex);
6112 
6113 		if (start >= caching_ctl->progress) {
6114 			ret = add_excluded_extent(root, start, num_bytes);
6115 			BUG_ON(ret); /* -ENOMEM */
6116 		} else if (start + num_bytes <= caching_ctl->progress) {
6117 			ret = btrfs_remove_free_space(block_group,
6118 						      start, num_bytes);
6119 			BUG_ON(ret); /* -ENOMEM */
6120 		} else {
6121 			num_bytes = caching_ctl->progress - start;
6122 			ret = btrfs_remove_free_space(block_group,
6123 						      start, num_bytes);
6124 			BUG_ON(ret); /* -ENOMEM */
6125 
6126 			start = caching_ctl->progress;
6127 			num_bytes = ins->objectid + ins->offset -
6128 				    caching_ctl->progress;
6129 			ret = add_excluded_extent(root, start, num_bytes);
6130 			BUG_ON(ret); /* -ENOMEM */
6131 		}
6132 
6133 		mutex_unlock(&caching_ctl->mutex);
6134 		put_caching_control(caching_ctl);
6135 	}
6136 
6137 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6138 					  RESERVE_ALLOC_NO_ACCOUNT);
6139 	BUG_ON(ret); /* logic error */
6140 	btrfs_put_block_group(block_group);
6141 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6142 					 0, owner, offset, ins, 1);
6143 	return ret;
6144 }
6145 
6146 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6147 					    struct btrfs_root *root,
6148 					    u64 bytenr, u32 blocksize,
6149 					    int level)
6150 {
6151 	struct extent_buffer *buf;
6152 
6153 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6154 	if (!buf)
6155 		return ERR_PTR(-ENOMEM);
6156 	btrfs_set_header_generation(buf, trans->transid);
6157 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6158 	btrfs_tree_lock(buf);
6159 	clean_tree_block(trans, root, buf);
6160 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6161 
6162 	btrfs_set_lock_blocking(buf);
6163 	btrfs_set_buffer_uptodate(buf);
6164 
6165 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6166 		/*
6167 		 * we allow two log transactions at a time, use different
6168 		 * EXENT bit to differentiate dirty pages.
6169 		 */
6170 		if (root->log_transid % 2 == 0)
6171 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6172 					buf->start + buf->len - 1, GFP_NOFS);
6173 		else
6174 			set_extent_new(&root->dirty_log_pages, buf->start,
6175 					buf->start + buf->len - 1, GFP_NOFS);
6176 	} else {
6177 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6178 			 buf->start + buf->len - 1, GFP_NOFS);
6179 	}
6180 	trans->blocks_used++;
6181 	/* this returns a buffer locked for blocking */
6182 	return buf;
6183 }
6184 
6185 static struct btrfs_block_rsv *
6186 use_block_rsv(struct btrfs_trans_handle *trans,
6187 	      struct btrfs_root *root, u32 blocksize)
6188 {
6189 	struct btrfs_block_rsv *block_rsv;
6190 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6191 	int ret;
6192 
6193 	block_rsv = get_block_rsv(trans, root);
6194 
6195 	if (block_rsv->size == 0) {
6196 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6197 		/*
6198 		 * If we couldn't reserve metadata bytes try and use some from
6199 		 * the global reserve.
6200 		 */
6201 		if (ret && block_rsv != global_rsv) {
6202 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6203 			if (!ret)
6204 				return global_rsv;
6205 			return ERR_PTR(ret);
6206 		} else if (ret) {
6207 			return ERR_PTR(ret);
6208 		}
6209 		return block_rsv;
6210 	}
6211 
6212 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6213 	if (!ret)
6214 		return block_rsv;
6215 	if (ret) {
6216 		static DEFINE_RATELIMIT_STATE(_rs,
6217 				DEFAULT_RATELIMIT_INTERVAL,
6218 				/*DEFAULT_RATELIMIT_BURST*/ 2);
6219 		if (__ratelimit(&_rs)) {
6220 			printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6221 			WARN_ON(1);
6222 		}
6223 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6224 		if (!ret) {
6225 			return block_rsv;
6226 		} else if (ret && block_rsv != global_rsv) {
6227 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6228 			if (!ret)
6229 				return global_rsv;
6230 		}
6231 	}
6232 
6233 	return ERR_PTR(-ENOSPC);
6234 }
6235 
6236 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6237 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6238 {
6239 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6240 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6241 }
6242 
6243 /*
6244  * finds a free extent and does all the dirty work required for allocation
6245  * returns the key for the extent through ins, and a tree buffer for
6246  * the first block of the extent through buf.
6247  *
6248  * returns the tree buffer or NULL.
6249  */
6250 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6251 					struct btrfs_root *root, u32 blocksize,
6252 					u64 parent, u64 root_objectid,
6253 					struct btrfs_disk_key *key, int level,
6254 					u64 hint, u64 empty_size)
6255 {
6256 	struct btrfs_key ins;
6257 	struct btrfs_block_rsv *block_rsv;
6258 	struct extent_buffer *buf;
6259 	u64 flags = 0;
6260 	int ret;
6261 
6262 
6263 	block_rsv = use_block_rsv(trans, root, blocksize);
6264 	if (IS_ERR(block_rsv))
6265 		return ERR_CAST(block_rsv);
6266 
6267 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6268 				   empty_size, hint, &ins, 0);
6269 	if (ret) {
6270 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6271 		return ERR_PTR(ret);
6272 	}
6273 
6274 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6275 				    blocksize, level);
6276 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6277 
6278 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6279 		if (parent == 0)
6280 			parent = ins.objectid;
6281 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6282 	} else
6283 		BUG_ON(parent > 0);
6284 
6285 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6286 		struct btrfs_delayed_extent_op *extent_op;
6287 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6288 		BUG_ON(!extent_op); /* -ENOMEM */
6289 		if (key)
6290 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6291 		else
6292 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6293 		extent_op->flags_to_set = flags;
6294 		extent_op->update_key = 1;
6295 		extent_op->update_flags = 1;
6296 		extent_op->is_data = 0;
6297 
6298 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6299 					ins.objectid,
6300 					ins.offset, parent, root_objectid,
6301 					level, BTRFS_ADD_DELAYED_EXTENT,
6302 					extent_op, 0);
6303 		BUG_ON(ret); /* -ENOMEM */
6304 	}
6305 	return buf;
6306 }
6307 
6308 struct walk_control {
6309 	u64 refs[BTRFS_MAX_LEVEL];
6310 	u64 flags[BTRFS_MAX_LEVEL];
6311 	struct btrfs_key update_progress;
6312 	int stage;
6313 	int level;
6314 	int shared_level;
6315 	int update_ref;
6316 	int keep_locks;
6317 	int reada_slot;
6318 	int reada_count;
6319 	int for_reloc;
6320 };
6321 
6322 #define DROP_REFERENCE	1
6323 #define UPDATE_BACKREF	2
6324 
6325 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6326 				     struct btrfs_root *root,
6327 				     struct walk_control *wc,
6328 				     struct btrfs_path *path)
6329 {
6330 	u64 bytenr;
6331 	u64 generation;
6332 	u64 refs;
6333 	u64 flags;
6334 	u32 nritems;
6335 	u32 blocksize;
6336 	struct btrfs_key key;
6337 	struct extent_buffer *eb;
6338 	int ret;
6339 	int slot;
6340 	int nread = 0;
6341 
6342 	if (path->slots[wc->level] < wc->reada_slot) {
6343 		wc->reada_count = wc->reada_count * 2 / 3;
6344 		wc->reada_count = max(wc->reada_count, 2);
6345 	} else {
6346 		wc->reada_count = wc->reada_count * 3 / 2;
6347 		wc->reada_count = min_t(int, wc->reada_count,
6348 					BTRFS_NODEPTRS_PER_BLOCK(root));
6349 	}
6350 
6351 	eb = path->nodes[wc->level];
6352 	nritems = btrfs_header_nritems(eb);
6353 	blocksize = btrfs_level_size(root, wc->level - 1);
6354 
6355 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6356 		if (nread >= wc->reada_count)
6357 			break;
6358 
6359 		cond_resched();
6360 		bytenr = btrfs_node_blockptr(eb, slot);
6361 		generation = btrfs_node_ptr_generation(eb, slot);
6362 
6363 		if (slot == path->slots[wc->level])
6364 			goto reada;
6365 
6366 		if (wc->stage == UPDATE_BACKREF &&
6367 		    generation <= root->root_key.offset)
6368 			continue;
6369 
6370 		/* We don't lock the tree block, it's OK to be racy here */
6371 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6372 					       &refs, &flags);
6373 		/* We don't care about errors in readahead. */
6374 		if (ret < 0)
6375 			continue;
6376 		BUG_ON(refs == 0);
6377 
6378 		if (wc->stage == DROP_REFERENCE) {
6379 			if (refs == 1)
6380 				goto reada;
6381 
6382 			if (wc->level == 1 &&
6383 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6384 				continue;
6385 			if (!wc->update_ref ||
6386 			    generation <= root->root_key.offset)
6387 				continue;
6388 			btrfs_node_key_to_cpu(eb, &key, slot);
6389 			ret = btrfs_comp_cpu_keys(&key,
6390 						  &wc->update_progress);
6391 			if (ret < 0)
6392 				continue;
6393 		} else {
6394 			if (wc->level == 1 &&
6395 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6396 				continue;
6397 		}
6398 reada:
6399 		ret = readahead_tree_block(root, bytenr, blocksize,
6400 					   generation);
6401 		if (ret)
6402 			break;
6403 		nread++;
6404 	}
6405 	wc->reada_slot = slot;
6406 }
6407 
6408 /*
6409  * hepler to process tree block while walking down the tree.
6410  *
6411  * when wc->stage == UPDATE_BACKREF, this function updates
6412  * back refs for pointers in the block.
6413  *
6414  * NOTE: return value 1 means we should stop walking down.
6415  */
6416 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6417 				   struct btrfs_root *root,
6418 				   struct btrfs_path *path,
6419 				   struct walk_control *wc, int lookup_info)
6420 {
6421 	int level = wc->level;
6422 	struct extent_buffer *eb = path->nodes[level];
6423 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6424 	int ret;
6425 
6426 	if (wc->stage == UPDATE_BACKREF &&
6427 	    btrfs_header_owner(eb) != root->root_key.objectid)
6428 		return 1;
6429 
6430 	/*
6431 	 * when reference count of tree block is 1, it won't increase
6432 	 * again. once full backref flag is set, we never clear it.
6433 	 */
6434 	if (lookup_info &&
6435 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6436 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6437 		BUG_ON(!path->locks[level]);
6438 		ret = btrfs_lookup_extent_info(trans, root,
6439 					       eb->start, eb->len,
6440 					       &wc->refs[level],
6441 					       &wc->flags[level]);
6442 		BUG_ON(ret == -ENOMEM);
6443 		if (ret)
6444 			return ret;
6445 		BUG_ON(wc->refs[level] == 0);
6446 	}
6447 
6448 	if (wc->stage == DROP_REFERENCE) {
6449 		if (wc->refs[level] > 1)
6450 			return 1;
6451 
6452 		if (path->locks[level] && !wc->keep_locks) {
6453 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6454 			path->locks[level] = 0;
6455 		}
6456 		return 0;
6457 	}
6458 
6459 	/* wc->stage == UPDATE_BACKREF */
6460 	if (!(wc->flags[level] & flag)) {
6461 		BUG_ON(!path->locks[level]);
6462 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6463 		BUG_ON(ret); /* -ENOMEM */
6464 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6465 		BUG_ON(ret); /* -ENOMEM */
6466 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6467 						  eb->len, flag, 0);
6468 		BUG_ON(ret); /* -ENOMEM */
6469 		wc->flags[level] |= flag;
6470 	}
6471 
6472 	/*
6473 	 * the block is shared by multiple trees, so it's not good to
6474 	 * keep the tree lock
6475 	 */
6476 	if (path->locks[level] && level > 0) {
6477 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6478 		path->locks[level] = 0;
6479 	}
6480 	return 0;
6481 }
6482 
6483 /*
6484  * hepler to process tree block pointer.
6485  *
6486  * when wc->stage == DROP_REFERENCE, this function checks
6487  * reference count of the block pointed to. if the block
6488  * is shared and we need update back refs for the subtree
6489  * rooted at the block, this function changes wc->stage to
6490  * UPDATE_BACKREF. if the block is shared and there is no
6491  * need to update back, this function drops the reference
6492  * to the block.
6493  *
6494  * NOTE: return value 1 means we should stop walking down.
6495  */
6496 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6497 				 struct btrfs_root *root,
6498 				 struct btrfs_path *path,
6499 				 struct walk_control *wc, int *lookup_info)
6500 {
6501 	u64 bytenr;
6502 	u64 generation;
6503 	u64 parent;
6504 	u32 blocksize;
6505 	struct btrfs_key key;
6506 	struct extent_buffer *next;
6507 	int level = wc->level;
6508 	int reada = 0;
6509 	int ret = 0;
6510 
6511 	generation = btrfs_node_ptr_generation(path->nodes[level],
6512 					       path->slots[level]);
6513 	/*
6514 	 * if the lower level block was created before the snapshot
6515 	 * was created, we know there is no need to update back refs
6516 	 * for the subtree
6517 	 */
6518 	if (wc->stage == UPDATE_BACKREF &&
6519 	    generation <= root->root_key.offset) {
6520 		*lookup_info = 1;
6521 		return 1;
6522 	}
6523 
6524 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6525 	blocksize = btrfs_level_size(root, level - 1);
6526 
6527 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6528 	if (!next) {
6529 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6530 		if (!next)
6531 			return -ENOMEM;
6532 		reada = 1;
6533 	}
6534 	btrfs_tree_lock(next);
6535 	btrfs_set_lock_blocking(next);
6536 
6537 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6538 				       &wc->refs[level - 1],
6539 				       &wc->flags[level - 1]);
6540 	if (ret < 0) {
6541 		btrfs_tree_unlock(next);
6542 		return ret;
6543 	}
6544 
6545 	BUG_ON(wc->refs[level - 1] == 0);
6546 	*lookup_info = 0;
6547 
6548 	if (wc->stage == DROP_REFERENCE) {
6549 		if (wc->refs[level - 1] > 1) {
6550 			if (level == 1 &&
6551 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6552 				goto skip;
6553 
6554 			if (!wc->update_ref ||
6555 			    generation <= root->root_key.offset)
6556 				goto skip;
6557 
6558 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6559 					      path->slots[level]);
6560 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6561 			if (ret < 0)
6562 				goto skip;
6563 
6564 			wc->stage = UPDATE_BACKREF;
6565 			wc->shared_level = level - 1;
6566 		}
6567 	} else {
6568 		if (level == 1 &&
6569 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6570 			goto skip;
6571 	}
6572 
6573 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
6574 		btrfs_tree_unlock(next);
6575 		free_extent_buffer(next);
6576 		next = NULL;
6577 		*lookup_info = 1;
6578 	}
6579 
6580 	if (!next) {
6581 		if (reada && level == 1)
6582 			reada_walk_down(trans, root, wc, path);
6583 		next = read_tree_block(root, bytenr, blocksize, generation);
6584 		if (!next)
6585 			return -EIO;
6586 		btrfs_tree_lock(next);
6587 		btrfs_set_lock_blocking(next);
6588 	}
6589 
6590 	level--;
6591 	BUG_ON(level != btrfs_header_level(next));
6592 	path->nodes[level] = next;
6593 	path->slots[level] = 0;
6594 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6595 	wc->level = level;
6596 	if (wc->level == 1)
6597 		wc->reada_slot = 0;
6598 	return 0;
6599 skip:
6600 	wc->refs[level - 1] = 0;
6601 	wc->flags[level - 1] = 0;
6602 	if (wc->stage == DROP_REFERENCE) {
6603 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6604 			parent = path->nodes[level]->start;
6605 		} else {
6606 			BUG_ON(root->root_key.objectid !=
6607 			       btrfs_header_owner(path->nodes[level]));
6608 			parent = 0;
6609 		}
6610 
6611 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6612 				root->root_key.objectid, level - 1, 0, 0);
6613 		BUG_ON(ret); /* -ENOMEM */
6614 	}
6615 	btrfs_tree_unlock(next);
6616 	free_extent_buffer(next);
6617 	*lookup_info = 1;
6618 	return 1;
6619 }
6620 
6621 /*
6622  * hepler to process tree block while walking up the tree.
6623  *
6624  * when wc->stage == DROP_REFERENCE, this function drops
6625  * reference count on the block.
6626  *
6627  * when wc->stage == UPDATE_BACKREF, this function changes
6628  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6629  * to UPDATE_BACKREF previously while processing the block.
6630  *
6631  * NOTE: return value 1 means we should stop walking up.
6632  */
6633 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6634 				 struct btrfs_root *root,
6635 				 struct btrfs_path *path,
6636 				 struct walk_control *wc)
6637 {
6638 	int ret;
6639 	int level = wc->level;
6640 	struct extent_buffer *eb = path->nodes[level];
6641 	u64 parent = 0;
6642 
6643 	if (wc->stage == UPDATE_BACKREF) {
6644 		BUG_ON(wc->shared_level < level);
6645 		if (level < wc->shared_level)
6646 			goto out;
6647 
6648 		ret = find_next_key(path, level + 1, &wc->update_progress);
6649 		if (ret > 0)
6650 			wc->update_ref = 0;
6651 
6652 		wc->stage = DROP_REFERENCE;
6653 		wc->shared_level = -1;
6654 		path->slots[level] = 0;
6655 
6656 		/*
6657 		 * check reference count again if the block isn't locked.
6658 		 * we should start walking down the tree again if reference
6659 		 * count is one.
6660 		 */
6661 		if (!path->locks[level]) {
6662 			BUG_ON(level == 0);
6663 			btrfs_tree_lock(eb);
6664 			btrfs_set_lock_blocking(eb);
6665 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6666 
6667 			ret = btrfs_lookup_extent_info(trans, root,
6668 						       eb->start, eb->len,
6669 						       &wc->refs[level],
6670 						       &wc->flags[level]);
6671 			if (ret < 0) {
6672 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6673 				return ret;
6674 			}
6675 			BUG_ON(wc->refs[level] == 0);
6676 			if (wc->refs[level] == 1) {
6677 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6678 				return 1;
6679 			}
6680 		}
6681 	}
6682 
6683 	/* wc->stage == DROP_REFERENCE */
6684 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6685 
6686 	if (wc->refs[level] == 1) {
6687 		if (level == 0) {
6688 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6689 				ret = btrfs_dec_ref(trans, root, eb, 1,
6690 						    wc->for_reloc);
6691 			else
6692 				ret = btrfs_dec_ref(trans, root, eb, 0,
6693 						    wc->for_reloc);
6694 			BUG_ON(ret); /* -ENOMEM */
6695 		}
6696 		/* make block locked assertion in clean_tree_block happy */
6697 		if (!path->locks[level] &&
6698 		    btrfs_header_generation(eb) == trans->transid) {
6699 			btrfs_tree_lock(eb);
6700 			btrfs_set_lock_blocking(eb);
6701 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6702 		}
6703 		clean_tree_block(trans, root, eb);
6704 	}
6705 
6706 	if (eb == root->node) {
6707 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6708 			parent = eb->start;
6709 		else
6710 			BUG_ON(root->root_key.objectid !=
6711 			       btrfs_header_owner(eb));
6712 	} else {
6713 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6714 			parent = path->nodes[level + 1]->start;
6715 		else
6716 			BUG_ON(root->root_key.objectid !=
6717 			       btrfs_header_owner(path->nodes[level + 1]));
6718 	}
6719 
6720 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6721 out:
6722 	wc->refs[level] = 0;
6723 	wc->flags[level] = 0;
6724 	return 0;
6725 }
6726 
6727 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6728 				   struct btrfs_root *root,
6729 				   struct btrfs_path *path,
6730 				   struct walk_control *wc)
6731 {
6732 	int level = wc->level;
6733 	int lookup_info = 1;
6734 	int ret;
6735 
6736 	while (level >= 0) {
6737 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6738 		if (ret > 0)
6739 			break;
6740 
6741 		if (level == 0)
6742 			break;
6743 
6744 		if (path->slots[level] >=
6745 		    btrfs_header_nritems(path->nodes[level]))
6746 			break;
6747 
6748 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6749 		if (ret > 0) {
6750 			path->slots[level]++;
6751 			continue;
6752 		} else if (ret < 0)
6753 			return ret;
6754 		level = wc->level;
6755 	}
6756 	return 0;
6757 }
6758 
6759 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6760 				 struct btrfs_root *root,
6761 				 struct btrfs_path *path,
6762 				 struct walk_control *wc, int max_level)
6763 {
6764 	int level = wc->level;
6765 	int ret;
6766 
6767 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6768 	while (level < max_level && path->nodes[level]) {
6769 		wc->level = level;
6770 		if (path->slots[level] + 1 <
6771 		    btrfs_header_nritems(path->nodes[level])) {
6772 			path->slots[level]++;
6773 			return 0;
6774 		} else {
6775 			ret = walk_up_proc(trans, root, path, wc);
6776 			if (ret > 0)
6777 				return 0;
6778 
6779 			if (path->locks[level]) {
6780 				btrfs_tree_unlock_rw(path->nodes[level],
6781 						     path->locks[level]);
6782 				path->locks[level] = 0;
6783 			}
6784 			free_extent_buffer(path->nodes[level]);
6785 			path->nodes[level] = NULL;
6786 			level++;
6787 		}
6788 	}
6789 	return 1;
6790 }
6791 
6792 /*
6793  * drop a subvolume tree.
6794  *
6795  * this function traverses the tree freeing any blocks that only
6796  * referenced by the tree.
6797  *
6798  * when a shared tree block is found. this function decreases its
6799  * reference count by one. if update_ref is true, this function
6800  * also make sure backrefs for the shared block and all lower level
6801  * blocks are properly updated.
6802  */
6803 int btrfs_drop_snapshot(struct btrfs_root *root,
6804 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6805 			 int for_reloc)
6806 {
6807 	struct btrfs_path *path;
6808 	struct btrfs_trans_handle *trans;
6809 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6810 	struct btrfs_root_item *root_item = &root->root_item;
6811 	struct walk_control *wc;
6812 	struct btrfs_key key;
6813 	int err = 0;
6814 	int ret;
6815 	int level;
6816 
6817 	path = btrfs_alloc_path();
6818 	if (!path) {
6819 		err = -ENOMEM;
6820 		goto out;
6821 	}
6822 
6823 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6824 	if (!wc) {
6825 		btrfs_free_path(path);
6826 		err = -ENOMEM;
6827 		goto out;
6828 	}
6829 
6830 	trans = btrfs_start_transaction(tree_root, 0);
6831 	if (IS_ERR(trans)) {
6832 		err = PTR_ERR(trans);
6833 		goto out_free;
6834 	}
6835 
6836 	if (block_rsv)
6837 		trans->block_rsv = block_rsv;
6838 
6839 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6840 		level = btrfs_header_level(root->node);
6841 		path->nodes[level] = btrfs_lock_root_node(root);
6842 		btrfs_set_lock_blocking(path->nodes[level]);
6843 		path->slots[level] = 0;
6844 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6845 		memset(&wc->update_progress, 0,
6846 		       sizeof(wc->update_progress));
6847 	} else {
6848 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6849 		memcpy(&wc->update_progress, &key,
6850 		       sizeof(wc->update_progress));
6851 
6852 		level = root_item->drop_level;
6853 		BUG_ON(level == 0);
6854 		path->lowest_level = level;
6855 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6856 		path->lowest_level = 0;
6857 		if (ret < 0) {
6858 			err = ret;
6859 			goto out_end_trans;
6860 		}
6861 		WARN_ON(ret > 0);
6862 
6863 		/*
6864 		 * unlock our path, this is safe because only this
6865 		 * function is allowed to delete this snapshot
6866 		 */
6867 		btrfs_unlock_up_safe(path, 0);
6868 
6869 		level = btrfs_header_level(root->node);
6870 		while (1) {
6871 			btrfs_tree_lock(path->nodes[level]);
6872 			btrfs_set_lock_blocking(path->nodes[level]);
6873 
6874 			ret = btrfs_lookup_extent_info(trans, root,
6875 						path->nodes[level]->start,
6876 						path->nodes[level]->len,
6877 						&wc->refs[level],
6878 						&wc->flags[level]);
6879 			if (ret < 0) {
6880 				err = ret;
6881 				goto out_end_trans;
6882 			}
6883 			BUG_ON(wc->refs[level] == 0);
6884 
6885 			if (level == root_item->drop_level)
6886 				break;
6887 
6888 			btrfs_tree_unlock(path->nodes[level]);
6889 			WARN_ON(wc->refs[level] != 1);
6890 			level--;
6891 		}
6892 	}
6893 
6894 	wc->level = level;
6895 	wc->shared_level = -1;
6896 	wc->stage = DROP_REFERENCE;
6897 	wc->update_ref = update_ref;
6898 	wc->keep_locks = 0;
6899 	wc->for_reloc = for_reloc;
6900 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6901 
6902 	while (1) {
6903 		ret = walk_down_tree(trans, root, path, wc);
6904 		if (ret < 0) {
6905 			err = ret;
6906 			break;
6907 		}
6908 
6909 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6910 		if (ret < 0) {
6911 			err = ret;
6912 			break;
6913 		}
6914 
6915 		if (ret > 0) {
6916 			BUG_ON(wc->stage != DROP_REFERENCE);
6917 			break;
6918 		}
6919 
6920 		if (wc->stage == DROP_REFERENCE) {
6921 			level = wc->level;
6922 			btrfs_node_key(path->nodes[level],
6923 				       &root_item->drop_progress,
6924 				       path->slots[level]);
6925 			root_item->drop_level = level;
6926 		}
6927 
6928 		BUG_ON(wc->level == 0);
6929 		if (btrfs_should_end_transaction(trans, tree_root)) {
6930 			ret = btrfs_update_root(trans, tree_root,
6931 						&root->root_key,
6932 						root_item);
6933 			if (ret) {
6934 				btrfs_abort_transaction(trans, tree_root, ret);
6935 				err = ret;
6936 				goto out_end_trans;
6937 			}
6938 
6939 			btrfs_end_transaction_throttle(trans, tree_root);
6940 			trans = btrfs_start_transaction(tree_root, 0);
6941 			if (IS_ERR(trans)) {
6942 				err = PTR_ERR(trans);
6943 				goto out_free;
6944 			}
6945 			if (block_rsv)
6946 				trans->block_rsv = block_rsv;
6947 		}
6948 	}
6949 	btrfs_release_path(path);
6950 	if (err)
6951 		goto out_end_trans;
6952 
6953 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6954 	if (ret) {
6955 		btrfs_abort_transaction(trans, tree_root, ret);
6956 		goto out_end_trans;
6957 	}
6958 
6959 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6960 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6961 					   NULL, NULL);
6962 		if (ret < 0) {
6963 			btrfs_abort_transaction(trans, tree_root, ret);
6964 			err = ret;
6965 			goto out_end_trans;
6966 		} else if (ret > 0) {
6967 			/* if we fail to delete the orphan item this time
6968 			 * around, it'll get picked up the next time.
6969 			 *
6970 			 * The most common failure here is just -ENOENT.
6971 			 */
6972 			btrfs_del_orphan_item(trans, tree_root,
6973 					      root->root_key.objectid);
6974 		}
6975 	}
6976 
6977 	if (root->in_radix) {
6978 		btrfs_free_fs_root(tree_root->fs_info, root);
6979 	} else {
6980 		free_extent_buffer(root->node);
6981 		free_extent_buffer(root->commit_root);
6982 		kfree(root);
6983 	}
6984 out_end_trans:
6985 	btrfs_end_transaction_throttle(trans, tree_root);
6986 out_free:
6987 	kfree(wc);
6988 	btrfs_free_path(path);
6989 out:
6990 	if (err)
6991 		btrfs_std_error(root->fs_info, err);
6992 	return err;
6993 }
6994 
6995 /*
6996  * drop subtree rooted at tree block 'node'.
6997  *
6998  * NOTE: this function will unlock and release tree block 'node'
6999  * only used by relocation code
7000  */
7001 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7002 			struct btrfs_root *root,
7003 			struct extent_buffer *node,
7004 			struct extent_buffer *parent)
7005 {
7006 	struct btrfs_path *path;
7007 	struct walk_control *wc;
7008 	int level;
7009 	int parent_level;
7010 	int ret = 0;
7011 	int wret;
7012 
7013 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7014 
7015 	path = btrfs_alloc_path();
7016 	if (!path)
7017 		return -ENOMEM;
7018 
7019 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
7020 	if (!wc) {
7021 		btrfs_free_path(path);
7022 		return -ENOMEM;
7023 	}
7024 
7025 	btrfs_assert_tree_locked(parent);
7026 	parent_level = btrfs_header_level(parent);
7027 	extent_buffer_get(parent);
7028 	path->nodes[parent_level] = parent;
7029 	path->slots[parent_level] = btrfs_header_nritems(parent);
7030 
7031 	btrfs_assert_tree_locked(node);
7032 	level = btrfs_header_level(node);
7033 	path->nodes[level] = node;
7034 	path->slots[level] = 0;
7035 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7036 
7037 	wc->refs[parent_level] = 1;
7038 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7039 	wc->level = level;
7040 	wc->shared_level = -1;
7041 	wc->stage = DROP_REFERENCE;
7042 	wc->update_ref = 0;
7043 	wc->keep_locks = 1;
7044 	wc->for_reloc = 1;
7045 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7046 
7047 	while (1) {
7048 		wret = walk_down_tree(trans, root, path, wc);
7049 		if (wret < 0) {
7050 			ret = wret;
7051 			break;
7052 		}
7053 
7054 		wret = walk_up_tree(trans, root, path, wc, parent_level);
7055 		if (wret < 0)
7056 			ret = wret;
7057 		if (wret != 0)
7058 			break;
7059 	}
7060 
7061 	kfree(wc);
7062 	btrfs_free_path(path);
7063 	return ret;
7064 }
7065 
7066 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7067 {
7068 	u64 num_devices;
7069 	u64 stripped;
7070 
7071 	/*
7072 	 * if restripe for this chunk_type is on pick target profile and
7073 	 * return, otherwise do the usual balance
7074 	 */
7075 	stripped = get_restripe_target(root->fs_info, flags);
7076 	if (stripped)
7077 		return extended_to_chunk(stripped);
7078 
7079 	/*
7080 	 * we add in the count of missing devices because we want
7081 	 * to make sure that any RAID levels on a degraded FS
7082 	 * continue to be honored.
7083 	 */
7084 	num_devices = root->fs_info->fs_devices->rw_devices +
7085 		root->fs_info->fs_devices->missing_devices;
7086 
7087 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
7088 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7089 
7090 	if (num_devices == 1) {
7091 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7092 		stripped = flags & ~stripped;
7093 
7094 		/* turn raid0 into single device chunks */
7095 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7096 			return stripped;
7097 
7098 		/* turn mirroring into duplication */
7099 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7100 			     BTRFS_BLOCK_GROUP_RAID10))
7101 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7102 	} else {
7103 		/* they already had raid on here, just return */
7104 		if (flags & stripped)
7105 			return flags;
7106 
7107 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7108 		stripped = flags & ~stripped;
7109 
7110 		/* switch duplicated blocks with raid1 */
7111 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7112 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7113 
7114 		/* this is drive concat, leave it alone */
7115 	}
7116 
7117 	return flags;
7118 }
7119 
7120 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7121 {
7122 	struct btrfs_space_info *sinfo = cache->space_info;
7123 	u64 num_bytes;
7124 	u64 min_allocable_bytes;
7125 	int ret = -ENOSPC;
7126 
7127 
7128 	/*
7129 	 * We need some metadata space and system metadata space for
7130 	 * allocating chunks in some corner cases until we force to set
7131 	 * it to be readonly.
7132 	 */
7133 	if ((sinfo->flags &
7134 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7135 	    !force)
7136 		min_allocable_bytes = 1 * 1024 * 1024;
7137 	else
7138 		min_allocable_bytes = 0;
7139 
7140 	spin_lock(&sinfo->lock);
7141 	spin_lock(&cache->lock);
7142 
7143 	if (cache->ro) {
7144 		ret = 0;
7145 		goto out;
7146 	}
7147 
7148 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7149 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7150 
7151 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7152 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7153 	    min_allocable_bytes <= sinfo->total_bytes) {
7154 		sinfo->bytes_readonly += num_bytes;
7155 		cache->ro = 1;
7156 		ret = 0;
7157 	}
7158 out:
7159 	spin_unlock(&cache->lock);
7160 	spin_unlock(&sinfo->lock);
7161 	return ret;
7162 }
7163 
7164 int btrfs_set_block_group_ro(struct btrfs_root *root,
7165 			     struct btrfs_block_group_cache *cache)
7166 
7167 {
7168 	struct btrfs_trans_handle *trans;
7169 	u64 alloc_flags;
7170 	int ret;
7171 
7172 	BUG_ON(cache->ro);
7173 
7174 	trans = btrfs_join_transaction(root);
7175 	if (IS_ERR(trans))
7176 		return PTR_ERR(trans);
7177 
7178 	alloc_flags = update_block_group_flags(root, cache->flags);
7179 	if (alloc_flags != cache->flags) {
7180 		ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7181 				     CHUNK_ALLOC_FORCE);
7182 		if (ret < 0)
7183 			goto out;
7184 	}
7185 
7186 	ret = set_block_group_ro(cache, 0);
7187 	if (!ret)
7188 		goto out;
7189 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7190 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7191 			     CHUNK_ALLOC_FORCE);
7192 	if (ret < 0)
7193 		goto out;
7194 	ret = set_block_group_ro(cache, 0);
7195 out:
7196 	btrfs_end_transaction(trans, root);
7197 	return ret;
7198 }
7199 
7200 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7201 			    struct btrfs_root *root, u64 type)
7202 {
7203 	u64 alloc_flags = get_alloc_profile(root, type);
7204 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7205 			      CHUNK_ALLOC_FORCE);
7206 }
7207 
7208 /*
7209  * helper to account the unused space of all the readonly block group in the
7210  * list. takes mirrors into account.
7211  */
7212 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7213 {
7214 	struct btrfs_block_group_cache *block_group;
7215 	u64 free_bytes = 0;
7216 	int factor;
7217 
7218 	list_for_each_entry(block_group, groups_list, list) {
7219 		spin_lock(&block_group->lock);
7220 
7221 		if (!block_group->ro) {
7222 			spin_unlock(&block_group->lock);
7223 			continue;
7224 		}
7225 
7226 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7227 					  BTRFS_BLOCK_GROUP_RAID10 |
7228 					  BTRFS_BLOCK_GROUP_DUP))
7229 			factor = 2;
7230 		else
7231 			factor = 1;
7232 
7233 		free_bytes += (block_group->key.offset -
7234 			       btrfs_block_group_used(&block_group->item)) *
7235 			       factor;
7236 
7237 		spin_unlock(&block_group->lock);
7238 	}
7239 
7240 	return free_bytes;
7241 }
7242 
7243 /*
7244  * helper to account the unused space of all the readonly block group in the
7245  * space_info. takes mirrors into account.
7246  */
7247 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7248 {
7249 	int i;
7250 	u64 free_bytes = 0;
7251 
7252 	spin_lock(&sinfo->lock);
7253 
7254 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7255 		if (!list_empty(&sinfo->block_groups[i]))
7256 			free_bytes += __btrfs_get_ro_block_group_free_space(
7257 						&sinfo->block_groups[i]);
7258 
7259 	spin_unlock(&sinfo->lock);
7260 
7261 	return free_bytes;
7262 }
7263 
7264 void btrfs_set_block_group_rw(struct btrfs_root *root,
7265 			      struct btrfs_block_group_cache *cache)
7266 {
7267 	struct btrfs_space_info *sinfo = cache->space_info;
7268 	u64 num_bytes;
7269 
7270 	BUG_ON(!cache->ro);
7271 
7272 	spin_lock(&sinfo->lock);
7273 	spin_lock(&cache->lock);
7274 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7275 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7276 	sinfo->bytes_readonly -= num_bytes;
7277 	cache->ro = 0;
7278 	spin_unlock(&cache->lock);
7279 	spin_unlock(&sinfo->lock);
7280 }
7281 
7282 /*
7283  * checks to see if its even possible to relocate this block group.
7284  *
7285  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7286  * ok to go ahead and try.
7287  */
7288 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7289 {
7290 	struct btrfs_block_group_cache *block_group;
7291 	struct btrfs_space_info *space_info;
7292 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7293 	struct btrfs_device *device;
7294 	u64 min_free;
7295 	u64 dev_min = 1;
7296 	u64 dev_nr = 0;
7297 	u64 target;
7298 	int index;
7299 	int full = 0;
7300 	int ret = 0;
7301 
7302 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7303 
7304 	/* odd, couldn't find the block group, leave it alone */
7305 	if (!block_group)
7306 		return -1;
7307 
7308 	min_free = btrfs_block_group_used(&block_group->item);
7309 
7310 	/* no bytes used, we're good */
7311 	if (!min_free)
7312 		goto out;
7313 
7314 	space_info = block_group->space_info;
7315 	spin_lock(&space_info->lock);
7316 
7317 	full = space_info->full;
7318 
7319 	/*
7320 	 * if this is the last block group we have in this space, we can't
7321 	 * relocate it unless we're able to allocate a new chunk below.
7322 	 *
7323 	 * Otherwise, we need to make sure we have room in the space to handle
7324 	 * all of the extents from this block group.  If we can, we're good
7325 	 */
7326 	if ((space_info->total_bytes != block_group->key.offset) &&
7327 	    (space_info->bytes_used + space_info->bytes_reserved +
7328 	     space_info->bytes_pinned + space_info->bytes_readonly +
7329 	     min_free < space_info->total_bytes)) {
7330 		spin_unlock(&space_info->lock);
7331 		goto out;
7332 	}
7333 	spin_unlock(&space_info->lock);
7334 
7335 	/*
7336 	 * ok we don't have enough space, but maybe we have free space on our
7337 	 * devices to allocate new chunks for relocation, so loop through our
7338 	 * alloc devices and guess if we have enough space.  if this block
7339 	 * group is going to be restriped, run checks against the target
7340 	 * profile instead of the current one.
7341 	 */
7342 	ret = -1;
7343 
7344 	/*
7345 	 * index:
7346 	 *      0: raid10
7347 	 *      1: raid1
7348 	 *      2: dup
7349 	 *      3: raid0
7350 	 *      4: single
7351 	 */
7352 	target = get_restripe_target(root->fs_info, block_group->flags);
7353 	if (target) {
7354 		index = __get_block_group_index(extended_to_chunk(target));
7355 	} else {
7356 		/*
7357 		 * this is just a balance, so if we were marked as full
7358 		 * we know there is no space for a new chunk
7359 		 */
7360 		if (full)
7361 			goto out;
7362 
7363 		index = get_block_group_index(block_group);
7364 	}
7365 
7366 	if (index == 0) {
7367 		dev_min = 4;
7368 		/* Divide by 2 */
7369 		min_free >>= 1;
7370 	} else if (index == 1) {
7371 		dev_min = 2;
7372 	} else if (index == 2) {
7373 		/* Multiply by 2 */
7374 		min_free <<= 1;
7375 	} else if (index == 3) {
7376 		dev_min = fs_devices->rw_devices;
7377 		do_div(min_free, dev_min);
7378 	}
7379 
7380 	mutex_lock(&root->fs_info->chunk_mutex);
7381 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7382 		u64 dev_offset;
7383 
7384 		/*
7385 		 * check to make sure we can actually find a chunk with enough
7386 		 * space to fit our block group in.
7387 		 */
7388 		if (device->total_bytes > device->bytes_used + min_free) {
7389 			ret = find_free_dev_extent(device, min_free,
7390 						   &dev_offset, NULL);
7391 			if (!ret)
7392 				dev_nr++;
7393 
7394 			if (dev_nr >= dev_min)
7395 				break;
7396 
7397 			ret = -1;
7398 		}
7399 	}
7400 	mutex_unlock(&root->fs_info->chunk_mutex);
7401 out:
7402 	btrfs_put_block_group(block_group);
7403 	return ret;
7404 }
7405 
7406 static int find_first_block_group(struct btrfs_root *root,
7407 		struct btrfs_path *path, struct btrfs_key *key)
7408 {
7409 	int ret = 0;
7410 	struct btrfs_key found_key;
7411 	struct extent_buffer *leaf;
7412 	int slot;
7413 
7414 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7415 	if (ret < 0)
7416 		goto out;
7417 
7418 	while (1) {
7419 		slot = path->slots[0];
7420 		leaf = path->nodes[0];
7421 		if (slot >= btrfs_header_nritems(leaf)) {
7422 			ret = btrfs_next_leaf(root, path);
7423 			if (ret == 0)
7424 				continue;
7425 			if (ret < 0)
7426 				goto out;
7427 			break;
7428 		}
7429 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7430 
7431 		if (found_key.objectid >= key->objectid &&
7432 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7433 			ret = 0;
7434 			goto out;
7435 		}
7436 		path->slots[0]++;
7437 	}
7438 out:
7439 	return ret;
7440 }
7441 
7442 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7443 {
7444 	struct btrfs_block_group_cache *block_group;
7445 	u64 last = 0;
7446 
7447 	while (1) {
7448 		struct inode *inode;
7449 
7450 		block_group = btrfs_lookup_first_block_group(info, last);
7451 		while (block_group) {
7452 			spin_lock(&block_group->lock);
7453 			if (block_group->iref)
7454 				break;
7455 			spin_unlock(&block_group->lock);
7456 			block_group = next_block_group(info->tree_root,
7457 						       block_group);
7458 		}
7459 		if (!block_group) {
7460 			if (last == 0)
7461 				break;
7462 			last = 0;
7463 			continue;
7464 		}
7465 
7466 		inode = block_group->inode;
7467 		block_group->iref = 0;
7468 		block_group->inode = NULL;
7469 		spin_unlock(&block_group->lock);
7470 		iput(inode);
7471 		last = block_group->key.objectid + block_group->key.offset;
7472 		btrfs_put_block_group(block_group);
7473 	}
7474 }
7475 
7476 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7477 {
7478 	struct btrfs_block_group_cache *block_group;
7479 	struct btrfs_space_info *space_info;
7480 	struct btrfs_caching_control *caching_ctl;
7481 	struct rb_node *n;
7482 
7483 	down_write(&info->extent_commit_sem);
7484 	while (!list_empty(&info->caching_block_groups)) {
7485 		caching_ctl = list_entry(info->caching_block_groups.next,
7486 					 struct btrfs_caching_control, list);
7487 		list_del(&caching_ctl->list);
7488 		put_caching_control(caching_ctl);
7489 	}
7490 	up_write(&info->extent_commit_sem);
7491 
7492 	spin_lock(&info->block_group_cache_lock);
7493 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7494 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7495 				       cache_node);
7496 		rb_erase(&block_group->cache_node,
7497 			 &info->block_group_cache_tree);
7498 		spin_unlock(&info->block_group_cache_lock);
7499 
7500 		down_write(&block_group->space_info->groups_sem);
7501 		list_del(&block_group->list);
7502 		up_write(&block_group->space_info->groups_sem);
7503 
7504 		if (block_group->cached == BTRFS_CACHE_STARTED)
7505 			wait_block_group_cache_done(block_group);
7506 
7507 		/*
7508 		 * We haven't cached this block group, which means we could
7509 		 * possibly have excluded extents on this block group.
7510 		 */
7511 		if (block_group->cached == BTRFS_CACHE_NO)
7512 			free_excluded_extents(info->extent_root, block_group);
7513 
7514 		btrfs_remove_free_space_cache(block_group);
7515 		btrfs_put_block_group(block_group);
7516 
7517 		spin_lock(&info->block_group_cache_lock);
7518 	}
7519 	spin_unlock(&info->block_group_cache_lock);
7520 
7521 	/* now that all the block groups are freed, go through and
7522 	 * free all the space_info structs.  This is only called during
7523 	 * the final stages of unmount, and so we know nobody is
7524 	 * using them.  We call synchronize_rcu() once before we start,
7525 	 * just to be on the safe side.
7526 	 */
7527 	synchronize_rcu();
7528 
7529 	release_global_block_rsv(info);
7530 
7531 	while(!list_empty(&info->space_info)) {
7532 		space_info = list_entry(info->space_info.next,
7533 					struct btrfs_space_info,
7534 					list);
7535 		if (space_info->bytes_pinned > 0 ||
7536 		    space_info->bytes_reserved > 0 ||
7537 		    space_info->bytes_may_use > 0) {
7538 			WARN_ON(1);
7539 			dump_space_info(space_info, 0, 0);
7540 		}
7541 		list_del(&space_info->list);
7542 		kfree(space_info);
7543 	}
7544 	return 0;
7545 }
7546 
7547 static void __link_block_group(struct btrfs_space_info *space_info,
7548 			       struct btrfs_block_group_cache *cache)
7549 {
7550 	int index = get_block_group_index(cache);
7551 
7552 	down_write(&space_info->groups_sem);
7553 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7554 	up_write(&space_info->groups_sem);
7555 }
7556 
7557 int btrfs_read_block_groups(struct btrfs_root *root)
7558 {
7559 	struct btrfs_path *path;
7560 	int ret;
7561 	struct btrfs_block_group_cache *cache;
7562 	struct btrfs_fs_info *info = root->fs_info;
7563 	struct btrfs_space_info *space_info;
7564 	struct btrfs_key key;
7565 	struct btrfs_key found_key;
7566 	struct extent_buffer *leaf;
7567 	int need_clear = 0;
7568 	u64 cache_gen;
7569 
7570 	root = info->extent_root;
7571 	key.objectid = 0;
7572 	key.offset = 0;
7573 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7574 	path = btrfs_alloc_path();
7575 	if (!path)
7576 		return -ENOMEM;
7577 	path->reada = 1;
7578 
7579 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7580 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7581 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7582 		need_clear = 1;
7583 	if (btrfs_test_opt(root, CLEAR_CACHE))
7584 		need_clear = 1;
7585 
7586 	while (1) {
7587 		ret = find_first_block_group(root, path, &key);
7588 		if (ret > 0)
7589 			break;
7590 		if (ret != 0)
7591 			goto error;
7592 		leaf = path->nodes[0];
7593 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7594 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7595 		if (!cache) {
7596 			ret = -ENOMEM;
7597 			goto error;
7598 		}
7599 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7600 						GFP_NOFS);
7601 		if (!cache->free_space_ctl) {
7602 			kfree(cache);
7603 			ret = -ENOMEM;
7604 			goto error;
7605 		}
7606 
7607 		atomic_set(&cache->count, 1);
7608 		spin_lock_init(&cache->lock);
7609 		cache->fs_info = info;
7610 		INIT_LIST_HEAD(&cache->list);
7611 		INIT_LIST_HEAD(&cache->cluster_list);
7612 
7613 		if (need_clear)
7614 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7615 
7616 		read_extent_buffer(leaf, &cache->item,
7617 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7618 				   sizeof(cache->item));
7619 		memcpy(&cache->key, &found_key, sizeof(found_key));
7620 
7621 		key.objectid = found_key.objectid + found_key.offset;
7622 		btrfs_release_path(path);
7623 		cache->flags = btrfs_block_group_flags(&cache->item);
7624 		cache->sectorsize = root->sectorsize;
7625 
7626 		btrfs_init_free_space_ctl(cache);
7627 
7628 		/*
7629 		 * We need to exclude the super stripes now so that the space
7630 		 * info has super bytes accounted for, otherwise we'll think
7631 		 * we have more space than we actually do.
7632 		 */
7633 		exclude_super_stripes(root, cache);
7634 
7635 		/*
7636 		 * check for two cases, either we are full, and therefore
7637 		 * don't need to bother with the caching work since we won't
7638 		 * find any space, or we are empty, and we can just add all
7639 		 * the space in and be done with it.  This saves us _alot_ of
7640 		 * time, particularly in the full case.
7641 		 */
7642 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7643 			cache->last_byte_to_unpin = (u64)-1;
7644 			cache->cached = BTRFS_CACHE_FINISHED;
7645 			free_excluded_extents(root, cache);
7646 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7647 			cache->last_byte_to_unpin = (u64)-1;
7648 			cache->cached = BTRFS_CACHE_FINISHED;
7649 			add_new_free_space(cache, root->fs_info,
7650 					   found_key.objectid,
7651 					   found_key.objectid +
7652 					   found_key.offset);
7653 			free_excluded_extents(root, cache);
7654 		}
7655 
7656 		ret = update_space_info(info, cache->flags, found_key.offset,
7657 					btrfs_block_group_used(&cache->item),
7658 					&space_info);
7659 		BUG_ON(ret); /* -ENOMEM */
7660 		cache->space_info = space_info;
7661 		spin_lock(&cache->space_info->lock);
7662 		cache->space_info->bytes_readonly += cache->bytes_super;
7663 		spin_unlock(&cache->space_info->lock);
7664 
7665 		__link_block_group(space_info, cache);
7666 
7667 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7668 		BUG_ON(ret); /* Logic error */
7669 
7670 		set_avail_alloc_bits(root->fs_info, cache->flags);
7671 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7672 			set_block_group_ro(cache, 1);
7673 	}
7674 
7675 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7676 		if (!(get_alloc_profile(root, space_info->flags) &
7677 		      (BTRFS_BLOCK_GROUP_RAID10 |
7678 		       BTRFS_BLOCK_GROUP_RAID1 |
7679 		       BTRFS_BLOCK_GROUP_DUP)))
7680 			continue;
7681 		/*
7682 		 * avoid allocating from un-mirrored block group if there are
7683 		 * mirrored block groups.
7684 		 */
7685 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7686 			set_block_group_ro(cache, 1);
7687 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7688 			set_block_group_ro(cache, 1);
7689 	}
7690 
7691 	init_global_block_rsv(info);
7692 	ret = 0;
7693 error:
7694 	btrfs_free_path(path);
7695 	return ret;
7696 }
7697 
7698 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7699 			   struct btrfs_root *root, u64 bytes_used,
7700 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7701 			   u64 size)
7702 {
7703 	int ret;
7704 	struct btrfs_root *extent_root;
7705 	struct btrfs_block_group_cache *cache;
7706 
7707 	extent_root = root->fs_info->extent_root;
7708 
7709 	root->fs_info->last_trans_log_full_commit = trans->transid;
7710 
7711 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7712 	if (!cache)
7713 		return -ENOMEM;
7714 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7715 					GFP_NOFS);
7716 	if (!cache->free_space_ctl) {
7717 		kfree(cache);
7718 		return -ENOMEM;
7719 	}
7720 
7721 	cache->key.objectid = chunk_offset;
7722 	cache->key.offset = size;
7723 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7724 	cache->sectorsize = root->sectorsize;
7725 	cache->fs_info = root->fs_info;
7726 
7727 	atomic_set(&cache->count, 1);
7728 	spin_lock_init(&cache->lock);
7729 	INIT_LIST_HEAD(&cache->list);
7730 	INIT_LIST_HEAD(&cache->cluster_list);
7731 
7732 	btrfs_init_free_space_ctl(cache);
7733 
7734 	btrfs_set_block_group_used(&cache->item, bytes_used);
7735 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7736 	cache->flags = type;
7737 	btrfs_set_block_group_flags(&cache->item, type);
7738 
7739 	cache->last_byte_to_unpin = (u64)-1;
7740 	cache->cached = BTRFS_CACHE_FINISHED;
7741 	exclude_super_stripes(root, cache);
7742 
7743 	add_new_free_space(cache, root->fs_info, chunk_offset,
7744 			   chunk_offset + size);
7745 
7746 	free_excluded_extents(root, cache);
7747 
7748 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7749 				&cache->space_info);
7750 	BUG_ON(ret); /* -ENOMEM */
7751 	update_global_block_rsv(root->fs_info);
7752 
7753 	spin_lock(&cache->space_info->lock);
7754 	cache->space_info->bytes_readonly += cache->bytes_super;
7755 	spin_unlock(&cache->space_info->lock);
7756 
7757 	__link_block_group(cache->space_info, cache);
7758 
7759 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7760 	BUG_ON(ret); /* Logic error */
7761 
7762 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7763 				sizeof(cache->item));
7764 	if (ret) {
7765 		btrfs_abort_transaction(trans, extent_root, ret);
7766 		return ret;
7767 	}
7768 
7769 	set_avail_alloc_bits(extent_root->fs_info, type);
7770 
7771 	return 0;
7772 }
7773 
7774 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7775 {
7776 	u64 extra_flags = chunk_to_extended(flags) &
7777 				BTRFS_EXTENDED_PROFILE_MASK;
7778 
7779 	if (flags & BTRFS_BLOCK_GROUP_DATA)
7780 		fs_info->avail_data_alloc_bits &= ~extra_flags;
7781 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
7782 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7783 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7784 		fs_info->avail_system_alloc_bits &= ~extra_flags;
7785 }
7786 
7787 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7788 			     struct btrfs_root *root, u64 group_start)
7789 {
7790 	struct btrfs_path *path;
7791 	struct btrfs_block_group_cache *block_group;
7792 	struct btrfs_free_cluster *cluster;
7793 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7794 	struct btrfs_key key;
7795 	struct inode *inode;
7796 	int ret;
7797 	int index;
7798 	int factor;
7799 
7800 	root = root->fs_info->extent_root;
7801 
7802 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7803 	BUG_ON(!block_group);
7804 	BUG_ON(!block_group->ro);
7805 
7806 	/*
7807 	 * Free the reserved super bytes from this block group before
7808 	 * remove it.
7809 	 */
7810 	free_excluded_extents(root, block_group);
7811 
7812 	memcpy(&key, &block_group->key, sizeof(key));
7813 	index = get_block_group_index(block_group);
7814 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7815 				  BTRFS_BLOCK_GROUP_RAID1 |
7816 				  BTRFS_BLOCK_GROUP_RAID10))
7817 		factor = 2;
7818 	else
7819 		factor = 1;
7820 
7821 	/* make sure this block group isn't part of an allocation cluster */
7822 	cluster = &root->fs_info->data_alloc_cluster;
7823 	spin_lock(&cluster->refill_lock);
7824 	btrfs_return_cluster_to_free_space(block_group, cluster);
7825 	spin_unlock(&cluster->refill_lock);
7826 
7827 	/*
7828 	 * make sure this block group isn't part of a metadata
7829 	 * allocation cluster
7830 	 */
7831 	cluster = &root->fs_info->meta_alloc_cluster;
7832 	spin_lock(&cluster->refill_lock);
7833 	btrfs_return_cluster_to_free_space(block_group, cluster);
7834 	spin_unlock(&cluster->refill_lock);
7835 
7836 	path = btrfs_alloc_path();
7837 	if (!path) {
7838 		ret = -ENOMEM;
7839 		goto out;
7840 	}
7841 
7842 	inode = lookup_free_space_inode(tree_root, block_group, path);
7843 	if (!IS_ERR(inode)) {
7844 		ret = btrfs_orphan_add(trans, inode);
7845 		if (ret) {
7846 			btrfs_add_delayed_iput(inode);
7847 			goto out;
7848 		}
7849 		clear_nlink(inode);
7850 		/* One for the block groups ref */
7851 		spin_lock(&block_group->lock);
7852 		if (block_group->iref) {
7853 			block_group->iref = 0;
7854 			block_group->inode = NULL;
7855 			spin_unlock(&block_group->lock);
7856 			iput(inode);
7857 		} else {
7858 			spin_unlock(&block_group->lock);
7859 		}
7860 		/* One for our lookup ref */
7861 		btrfs_add_delayed_iput(inode);
7862 	}
7863 
7864 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7865 	key.offset = block_group->key.objectid;
7866 	key.type = 0;
7867 
7868 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7869 	if (ret < 0)
7870 		goto out;
7871 	if (ret > 0)
7872 		btrfs_release_path(path);
7873 	if (ret == 0) {
7874 		ret = btrfs_del_item(trans, tree_root, path);
7875 		if (ret)
7876 			goto out;
7877 		btrfs_release_path(path);
7878 	}
7879 
7880 	spin_lock(&root->fs_info->block_group_cache_lock);
7881 	rb_erase(&block_group->cache_node,
7882 		 &root->fs_info->block_group_cache_tree);
7883 	spin_unlock(&root->fs_info->block_group_cache_lock);
7884 
7885 	down_write(&block_group->space_info->groups_sem);
7886 	/*
7887 	 * we must use list_del_init so people can check to see if they
7888 	 * are still on the list after taking the semaphore
7889 	 */
7890 	list_del_init(&block_group->list);
7891 	if (list_empty(&block_group->space_info->block_groups[index]))
7892 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
7893 	up_write(&block_group->space_info->groups_sem);
7894 
7895 	if (block_group->cached == BTRFS_CACHE_STARTED)
7896 		wait_block_group_cache_done(block_group);
7897 
7898 	btrfs_remove_free_space_cache(block_group);
7899 
7900 	spin_lock(&block_group->space_info->lock);
7901 	block_group->space_info->total_bytes -= block_group->key.offset;
7902 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7903 	block_group->space_info->disk_total -= block_group->key.offset * factor;
7904 	spin_unlock(&block_group->space_info->lock);
7905 
7906 	memcpy(&key, &block_group->key, sizeof(key));
7907 
7908 	btrfs_clear_space_info_full(root->fs_info);
7909 
7910 	btrfs_put_block_group(block_group);
7911 	btrfs_put_block_group(block_group);
7912 
7913 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7914 	if (ret > 0)
7915 		ret = -EIO;
7916 	if (ret < 0)
7917 		goto out;
7918 
7919 	ret = btrfs_del_item(trans, root, path);
7920 out:
7921 	btrfs_free_path(path);
7922 	return ret;
7923 }
7924 
7925 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7926 {
7927 	struct btrfs_space_info *space_info;
7928 	struct btrfs_super_block *disk_super;
7929 	u64 features;
7930 	u64 flags;
7931 	int mixed = 0;
7932 	int ret;
7933 
7934 	disk_super = fs_info->super_copy;
7935 	if (!btrfs_super_root(disk_super))
7936 		return 1;
7937 
7938 	features = btrfs_super_incompat_flags(disk_super);
7939 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7940 		mixed = 1;
7941 
7942 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
7943 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7944 	if (ret)
7945 		goto out;
7946 
7947 	if (mixed) {
7948 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7949 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7950 	} else {
7951 		flags = BTRFS_BLOCK_GROUP_METADATA;
7952 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7953 		if (ret)
7954 			goto out;
7955 
7956 		flags = BTRFS_BLOCK_GROUP_DATA;
7957 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7958 	}
7959 out:
7960 	return ret;
7961 }
7962 
7963 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7964 {
7965 	return unpin_extent_range(root, start, end);
7966 }
7967 
7968 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7969 			       u64 num_bytes, u64 *actual_bytes)
7970 {
7971 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7972 }
7973 
7974 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7975 {
7976 	struct btrfs_fs_info *fs_info = root->fs_info;
7977 	struct btrfs_block_group_cache *cache = NULL;
7978 	u64 group_trimmed;
7979 	u64 start;
7980 	u64 end;
7981 	u64 trimmed = 0;
7982 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7983 	int ret = 0;
7984 
7985 	/*
7986 	 * try to trim all FS space, our block group may start from non-zero.
7987 	 */
7988 	if (range->len == total_bytes)
7989 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
7990 	else
7991 		cache = btrfs_lookup_block_group(fs_info, range->start);
7992 
7993 	while (cache) {
7994 		if (cache->key.objectid >= (range->start + range->len)) {
7995 			btrfs_put_block_group(cache);
7996 			break;
7997 		}
7998 
7999 		start = max(range->start, cache->key.objectid);
8000 		end = min(range->start + range->len,
8001 				cache->key.objectid + cache->key.offset);
8002 
8003 		if (end - start >= range->minlen) {
8004 			if (!block_group_cache_done(cache)) {
8005 				ret = cache_block_group(cache, NULL, root, 0);
8006 				if (!ret)
8007 					wait_block_group_cache_done(cache);
8008 			}
8009 			ret = btrfs_trim_block_group(cache,
8010 						     &group_trimmed,
8011 						     start,
8012 						     end,
8013 						     range->minlen);
8014 
8015 			trimmed += group_trimmed;
8016 			if (ret) {
8017 				btrfs_put_block_group(cache);
8018 				break;
8019 			}
8020 		}
8021 
8022 		cache = next_block_group(fs_info->tree_root, cache);
8023 	}
8024 
8025 	range->len = trimmed;
8026 	return ret;
8027 }
8028