1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 37 #undef SCRAMBLE_DELAYED_REFS 38 39 /* 40 * control flags for do_chunk_alloc's force field 41 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 42 * if we really need one. 43 * 44 * CHUNK_ALLOC_LIMITED means to only try and allocate one 45 * if we have very few chunks already allocated. This is 46 * used as part of the clustering code to help make sure 47 * we have a good pool of storage to cluster in, without 48 * filling the FS with empty chunks 49 * 50 * CHUNK_ALLOC_FORCE means it must try to allocate one 51 * 52 */ 53 enum { 54 CHUNK_ALLOC_NO_FORCE = 0, 55 CHUNK_ALLOC_LIMITED = 1, 56 CHUNK_ALLOC_FORCE = 2, 57 }; 58 59 /* 60 * Control how reservations are dealt with. 61 * 62 * RESERVE_FREE - freeing a reservation. 63 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 64 * ENOSPC accounting 65 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 66 * bytes_may_use as the ENOSPC accounting is done elsewhere 67 */ 68 enum { 69 RESERVE_FREE = 0, 70 RESERVE_ALLOC = 1, 71 RESERVE_ALLOC_NO_ACCOUNT = 2, 72 }; 73 74 static int update_block_group(struct btrfs_trans_handle *trans, 75 struct btrfs_root *root, 76 u64 bytenr, u64 num_bytes, int alloc); 77 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, 79 u64 bytenr, u64 num_bytes, u64 parent, 80 u64 root_objectid, u64 owner_objectid, 81 u64 owner_offset, int refs_to_drop, 82 struct btrfs_delayed_extent_op *extra_op); 83 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 84 struct extent_buffer *leaf, 85 struct btrfs_extent_item *ei); 86 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 87 struct btrfs_root *root, 88 u64 parent, u64 root_objectid, 89 u64 flags, u64 owner, u64 offset, 90 struct btrfs_key *ins, int ref_mod); 91 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 92 struct btrfs_root *root, 93 u64 parent, u64 root_objectid, 94 u64 flags, struct btrfs_disk_key *key, 95 int level, struct btrfs_key *ins); 96 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 97 struct btrfs_root *extent_root, u64 alloc_bytes, 98 u64 flags, int force); 99 static int find_next_key(struct btrfs_path *path, int level, 100 struct btrfs_key *key); 101 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 102 int dump_block_groups); 103 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 104 u64 num_bytes, int reserve); 105 106 static noinline int 107 block_group_cache_done(struct btrfs_block_group_cache *cache) 108 { 109 smp_mb(); 110 return cache->cached == BTRFS_CACHE_FINISHED; 111 } 112 113 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 114 { 115 return (cache->flags & bits) == bits; 116 } 117 118 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 119 { 120 atomic_inc(&cache->count); 121 } 122 123 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 124 { 125 if (atomic_dec_and_test(&cache->count)) { 126 WARN_ON(cache->pinned > 0); 127 WARN_ON(cache->reserved > 0); 128 kfree(cache->free_space_ctl); 129 kfree(cache); 130 } 131 } 132 133 /* 134 * this adds the block group to the fs_info rb tree for the block group 135 * cache 136 */ 137 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 138 struct btrfs_block_group_cache *block_group) 139 { 140 struct rb_node **p; 141 struct rb_node *parent = NULL; 142 struct btrfs_block_group_cache *cache; 143 144 spin_lock(&info->block_group_cache_lock); 145 p = &info->block_group_cache_tree.rb_node; 146 147 while (*p) { 148 parent = *p; 149 cache = rb_entry(parent, struct btrfs_block_group_cache, 150 cache_node); 151 if (block_group->key.objectid < cache->key.objectid) { 152 p = &(*p)->rb_left; 153 } else if (block_group->key.objectid > cache->key.objectid) { 154 p = &(*p)->rb_right; 155 } else { 156 spin_unlock(&info->block_group_cache_lock); 157 return -EEXIST; 158 } 159 } 160 161 rb_link_node(&block_group->cache_node, parent, p); 162 rb_insert_color(&block_group->cache_node, 163 &info->block_group_cache_tree); 164 spin_unlock(&info->block_group_cache_lock); 165 166 return 0; 167 } 168 169 /* 170 * This will return the block group at or after bytenr if contains is 0, else 171 * it will return the block group that contains the bytenr 172 */ 173 static struct btrfs_block_group_cache * 174 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 175 int contains) 176 { 177 struct btrfs_block_group_cache *cache, *ret = NULL; 178 struct rb_node *n; 179 u64 end, start; 180 181 spin_lock(&info->block_group_cache_lock); 182 n = info->block_group_cache_tree.rb_node; 183 184 while (n) { 185 cache = rb_entry(n, struct btrfs_block_group_cache, 186 cache_node); 187 end = cache->key.objectid + cache->key.offset - 1; 188 start = cache->key.objectid; 189 190 if (bytenr < start) { 191 if (!contains && (!ret || start < ret->key.objectid)) 192 ret = cache; 193 n = n->rb_left; 194 } else if (bytenr > start) { 195 if (contains && bytenr <= end) { 196 ret = cache; 197 break; 198 } 199 n = n->rb_right; 200 } else { 201 ret = cache; 202 break; 203 } 204 } 205 if (ret) 206 btrfs_get_block_group(ret); 207 spin_unlock(&info->block_group_cache_lock); 208 209 return ret; 210 } 211 212 static int add_excluded_extent(struct btrfs_root *root, 213 u64 start, u64 num_bytes) 214 { 215 u64 end = start + num_bytes - 1; 216 set_extent_bits(&root->fs_info->freed_extents[0], 217 start, end, EXTENT_UPTODATE, GFP_NOFS); 218 set_extent_bits(&root->fs_info->freed_extents[1], 219 start, end, EXTENT_UPTODATE, GFP_NOFS); 220 return 0; 221 } 222 223 static void free_excluded_extents(struct btrfs_root *root, 224 struct btrfs_block_group_cache *cache) 225 { 226 u64 start, end; 227 228 start = cache->key.objectid; 229 end = start + cache->key.offset - 1; 230 231 clear_extent_bits(&root->fs_info->freed_extents[0], 232 start, end, EXTENT_UPTODATE, GFP_NOFS); 233 clear_extent_bits(&root->fs_info->freed_extents[1], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 } 236 237 static int exclude_super_stripes(struct btrfs_root *root, 238 struct btrfs_block_group_cache *cache) 239 { 240 u64 bytenr; 241 u64 *logical; 242 int stripe_len; 243 int i, nr, ret; 244 245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 247 cache->bytes_super += stripe_len; 248 ret = add_excluded_extent(root, cache->key.objectid, 249 stripe_len); 250 BUG_ON(ret); /* -ENOMEM */ 251 } 252 253 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 254 bytenr = btrfs_sb_offset(i); 255 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 256 cache->key.objectid, bytenr, 257 0, &logical, &nr, &stripe_len); 258 BUG_ON(ret); /* -ENOMEM */ 259 260 while (nr--) { 261 cache->bytes_super += stripe_len; 262 ret = add_excluded_extent(root, logical[nr], 263 stripe_len); 264 BUG_ON(ret); /* -ENOMEM */ 265 } 266 267 kfree(logical); 268 } 269 return 0; 270 } 271 272 static struct btrfs_caching_control * 273 get_caching_control(struct btrfs_block_group_cache *cache) 274 { 275 struct btrfs_caching_control *ctl; 276 277 spin_lock(&cache->lock); 278 if (cache->cached != BTRFS_CACHE_STARTED) { 279 spin_unlock(&cache->lock); 280 return NULL; 281 } 282 283 /* We're loading it the fast way, so we don't have a caching_ctl. */ 284 if (!cache->caching_ctl) { 285 spin_unlock(&cache->lock); 286 return NULL; 287 } 288 289 ctl = cache->caching_ctl; 290 atomic_inc(&ctl->count); 291 spin_unlock(&cache->lock); 292 return ctl; 293 } 294 295 static void put_caching_control(struct btrfs_caching_control *ctl) 296 { 297 if (atomic_dec_and_test(&ctl->count)) 298 kfree(ctl); 299 } 300 301 /* 302 * this is only called by cache_block_group, since we could have freed extents 303 * we need to check the pinned_extents for any extents that can't be used yet 304 * since their free space will be released as soon as the transaction commits. 305 */ 306 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 307 struct btrfs_fs_info *info, u64 start, u64 end) 308 { 309 u64 extent_start, extent_end, size, total_added = 0; 310 int ret; 311 312 while (start < end) { 313 ret = find_first_extent_bit(info->pinned_extents, start, 314 &extent_start, &extent_end, 315 EXTENT_DIRTY | EXTENT_UPTODATE); 316 if (ret) 317 break; 318 319 if (extent_start <= start) { 320 start = extent_end + 1; 321 } else if (extent_start > start && extent_start < end) { 322 size = extent_start - start; 323 total_added += size; 324 ret = btrfs_add_free_space(block_group, start, 325 size); 326 BUG_ON(ret); /* -ENOMEM or logic error */ 327 start = extent_end + 1; 328 } else { 329 break; 330 } 331 } 332 333 if (start < end) { 334 size = end - start; 335 total_added += size; 336 ret = btrfs_add_free_space(block_group, start, size); 337 BUG_ON(ret); /* -ENOMEM or logic error */ 338 } 339 340 return total_added; 341 } 342 343 static noinline void caching_thread(struct btrfs_work *work) 344 { 345 struct btrfs_block_group_cache *block_group; 346 struct btrfs_fs_info *fs_info; 347 struct btrfs_caching_control *caching_ctl; 348 struct btrfs_root *extent_root; 349 struct btrfs_path *path; 350 struct extent_buffer *leaf; 351 struct btrfs_key key; 352 u64 total_found = 0; 353 u64 last = 0; 354 u32 nritems; 355 int ret = 0; 356 357 caching_ctl = container_of(work, struct btrfs_caching_control, work); 358 block_group = caching_ctl->block_group; 359 fs_info = block_group->fs_info; 360 extent_root = fs_info->extent_root; 361 362 path = btrfs_alloc_path(); 363 if (!path) 364 goto out; 365 366 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 367 368 /* 369 * We don't want to deadlock with somebody trying to allocate a new 370 * extent for the extent root while also trying to search the extent 371 * root to add free space. So we skip locking and search the commit 372 * root, since its read-only 373 */ 374 path->skip_locking = 1; 375 path->search_commit_root = 1; 376 path->reada = 1; 377 378 key.objectid = last; 379 key.offset = 0; 380 key.type = BTRFS_EXTENT_ITEM_KEY; 381 again: 382 mutex_lock(&caching_ctl->mutex); 383 /* need to make sure the commit_root doesn't disappear */ 384 down_read(&fs_info->extent_commit_sem); 385 386 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 387 if (ret < 0) 388 goto err; 389 390 leaf = path->nodes[0]; 391 nritems = btrfs_header_nritems(leaf); 392 393 while (1) { 394 if (btrfs_fs_closing(fs_info) > 1) { 395 last = (u64)-1; 396 break; 397 } 398 399 if (path->slots[0] < nritems) { 400 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 401 } else { 402 ret = find_next_key(path, 0, &key); 403 if (ret) 404 break; 405 406 if (need_resched() || 407 btrfs_next_leaf(extent_root, path)) { 408 caching_ctl->progress = last; 409 btrfs_release_path(path); 410 up_read(&fs_info->extent_commit_sem); 411 mutex_unlock(&caching_ctl->mutex); 412 cond_resched(); 413 goto again; 414 } 415 leaf = path->nodes[0]; 416 nritems = btrfs_header_nritems(leaf); 417 continue; 418 } 419 420 if (key.objectid < block_group->key.objectid) { 421 path->slots[0]++; 422 continue; 423 } 424 425 if (key.objectid >= block_group->key.objectid + 426 block_group->key.offset) 427 break; 428 429 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 430 total_found += add_new_free_space(block_group, 431 fs_info, last, 432 key.objectid); 433 last = key.objectid + key.offset; 434 435 if (total_found > (1024 * 1024 * 2)) { 436 total_found = 0; 437 wake_up(&caching_ctl->wait); 438 } 439 } 440 path->slots[0]++; 441 } 442 ret = 0; 443 444 total_found += add_new_free_space(block_group, fs_info, last, 445 block_group->key.objectid + 446 block_group->key.offset); 447 caching_ctl->progress = (u64)-1; 448 449 spin_lock(&block_group->lock); 450 block_group->caching_ctl = NULL; 451 block_group->cached = BTRFS_CACHE_FINISHED; 452 spin_unlock(&block_group->lock); 453 454 err: 455 btrfs_free_path(path); 456 up_read(&fs_info->extent_commit_sem); 457 458 free_excluded_extents(extent_root, block_group); 459 460 mutex_unlock(&caching_ctl->mutex); 461 out: 462 wake_up(&caching_ctl->wait); 463 464 put_caching_control(caching_ctl); 465 btrfs_put_block_group(block_group); 466 } 467 468 static int cache_block_group(struct btrfs_block_group_cache *cache, 469 struct btrfs_trans_handle *trans, 470 struct btrfs_root *root, 471 int load_cache_only) 472 { 473 DEFINE_WAIT(wait); 474 struct btrfs_fs_info *fs_info = cache->fs_info; 475 struct btrfs_caching_control *caching_ctl; 476 int ret = 0; 477 478 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 479 if (!caching_ctl) 480 return -ENOMEM; 481 482 INIT_LIST_HEAD(&caching_ctl->list); 483 mutex_init(&caching_ctl->mutex); 484 init_waitqueue_head(&caching_ctl->wait); 485 caching_ctl->block_group = cache; 486 caching_ctl->progress = cache->key.objectid; 487 atomic_set(&caching_ctl->count, 1); 488 caching_ctl->work.func = caching_thread; 489 490 spin_lock(&cache->lock); 491 /* 492 * This should be a rare occasion, but this could happen I think in the 493 * case where one thread starts to load the space cache info, and then 494 * some other thread starts a transaction commit which tries to do an 495 * allocation while the other thread is still loading the space cache 496 * info. The previous loop should have kept us from choosing this block 497 * group, but if we've moved to the state where we will wait on caching 498 * block groups we need to first check if we're doing a fast load here, 499 * so we can wait for it to finish, otherwise we could end up allocating 500 * from a block group who's cache gets evicted for one reason or 501 * another. 502 */ 503 while (cache->cached == BTRFS_CACHE_FAST) { 504 struct btrfs_caching_control *ctl; 505 506 ctl = cache->caching_ctl; 507 atomic_inc(&ctl->count); 508 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 509 spin_unlock(&cache->lock); 510 511 schedule(); 512 513 finish_wait(&ctl->wait, &wait); 514 put_caching_control(ctl); 515 spin_lock(&cache->lock); 516 } 517 518 if (cache->cached != BTRFS_CACHE_NO) { 519 spin_unlock(&cache->lock); 520 kfree(caching_ctl); 521 return 0; 522 } 523 WARN_ON(cache->caching_ctl); 524 cache->caching_ctl = caching_ctl; 525 cache->cached = BTRFS_CACHE_FAST; 526 spin_unlock(&cache->lock); 527 528 /* 529 * We can't do the read from on-disk cache during a commit since we need 530 * to have the normal tree locking. Also if we are currently trying to 531 * allocate blocks for the tree root we can't do the fast caching since 532 * we likely hold important locks. 533 */ 534 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 535 ret = load_free_space_cache(fs_info, cache); 536 537 spin_lock(&cache->lock); 538 if (ret == 1) { 539 cache->caching_ctl = NULL; 540 cache->cached = BTRFS_CACHE_FINISHED; 541 cache->last_byte_to_unpin = (u64)-1; 542 } else { 543 if (load_cache_only) { 544 cache->caching_ctl = NULL; 545 cache->cached = BTRFS_CACHE_NO; 546 } else { 547 cache->cached = BTRFS_CACHE_STARTED; 548 } 549 } 550 spin_unlock(&cache->lock); 551 wake_up(&caching_ctl->wait); 552 if (ret == 1) { 553 put_caching_control(caching_ctl); 554 free_excluded_extents(fs_info->extent_root, cache); 555 return 0; 556 } 557 } else { 558 /* 559 * We are not going to do the fast caching, set cached to the 560 * appropriate value and wakeup any waiters. 561 */ 562 spin_lock(&cache->lock); 563 if (load_cache_only) { 564 cache->caching_ctl = NULL; 565 cache->cached = BTRFS_CACHE_NO; 566 } else { 567 cache->cached = BTRFS_CACHE_STARTED; 568 } 569 spin_unlock(&cache->lock); 570 wake_up(&caching_ctl->wait); 571 } 572 573 if (load_cache_only) { 574 put_caching_control(caching_ctl); 575 return 0; 576 } 577 578 down_write(&fs_info->extent_commit_sem); 579 atomic_inc(&caching_ctl->count); 580 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 581 up_write(&fs_info->extent_commit_sem); 582 583 btrfs_get_block_group(cache); 584 585 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 586 587 return ret; 588 } 589 590 /* 591 * return the block group that starts at or after bytenr 592 */ 593 static struct btrfs_block_group_cache * 594 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 595 { 596 struct btrfs_block_group_cache *cache; 597 598 cache = block_group_cache_tree_search(info, bytenr, 0); 599 600 return cache; 601 } 602 603 /* 604 * return the block group that contains the given bytenr 605 */ 606 struct btrfs_block_group_cache *btrfs_lookup_block_group( 607 struct btrfs_fs_info *info, 608 u64 bytenr) 609 { 610 struct btrfs_block_group_cache *cache; 611 612 cache = block_group_cache_tree_search(info, bytenr, 1); 613 614 return cache; 615 } 616 617 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 618 u64 flags) 619 { 620 struct list_head *head = &info->space_info; 621 struct btrfs_space_info *found; 622 623 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 624 625 rcu_read_lock(); 626 list_for_each_entry_rcu(found, head, list) { 627 if (found->flags & flags) { 628 rcu_read_unlock(); 629 return found; 630 } 631 } 632 rcu_read_unlock(); 633 return NULL; 634 } 635 636 /* 637 * after adding space to the filesystem, we need to clear the full flags 638 * on all the space infos. 639 */ 640 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 641 { 642 struct list_head *head = &info->space_info; 643 struct btrfs_space_info *found; 644 645 rcu_read_lock(); 646 list_for_each_entry_rcu(found, head, list) 647 found->full = 0; 648 rcu_read_unlock(); 649 } 650 651 static u64 div_factor(u64 num, int factor) 652 { 653 if (factor == 10) 654 return num; 655 num *= factor; 656 do_div(num, 10); 657 return num; 658 } 659 660 static u64 div_factor_fine(u64 num, int factor) 661 { 662 if (factor == 100) 663 return num; 664 num *= factor; 665 do_div(num, 100); 666 return num; 667 } 668 669 u64 btrfs_find_block_group(struct btrfs_root *root, 670 u64 search_start, u64 search_hint, int owner) 671 { 672 struct btrfs_block_group_cache *cache; 673 u64 used; 674 u64 last = max(search_hint, search_start); 675 u64 group_start = 0; 676 int full_search = 0; 677 int factor = 9; 678 int wrapped = 0; 679 again: 680 while (1) { 681 cache = btrfs_lookup_first_block_group(root->fs_info, last); 682 if (!cache) 683 break; 684 685 spin_lock(&cache->lock); 686 last = cache->key.objectid + cache->key.offset; 687 used = btrfs_block_group_used(&cache->item); 688 689 if ((full_search || !cache->ro) && 690 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 691 if (used + cache->pinned + cache->reserved < 692 div_factor(cache->key.offset, factor)) { 693 group_start = cache->key.objectid; 694 spin_unlock(&cache->lock); 695 btrfs_put_block_group(cache); 696 goto found; 697 } 698 } 699 spin_unlock(&cache->lock); 700 btrfs_put_block_group(cache); 701 cond_resched(); 702 } 703 if (!wrapped) { 704 last = search_start; 705 wrapped = 1; 706 goto again; 707 } 708 if (!full_search && factor < 10) { 709 last = search_start; 710 full_search = 1; 711 factor = 10; 712 goto again; 713 } 714 found: 715 return group_start; 716 } 717 718 /* simple helper to search for an existing extent at a given offset */ 719 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 720 { 721 int ret; 722 struct btrfs_key key; 723 struct btrfs_path *path; 724 725 path = btrfs_alloc_path(); 726 if (!path) 727 return -ENOMEM; 728 729 key.objectid = start; 730 key.offset = len; 731 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 732 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 733 0, 0); 734 btrfs_free_path(path); 735 return ret; 736 } 737 738 /* 739 * helper function to lookup reference count and flags of extent. 740 * 741 * the head node for delayed ref is used to store the sum of all the 742 * reference count modifications queued up in the rbtree. the head 743 * node may also store the extent flags to set. This way you can check 744 * to see what the reference count and extent flags would be if all of 745 * the delayed refs are not processed. 746 */ 747 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 748 struct btrfs_root *root, u64 bytenr, 749 u64 num_bytes, u64 *refs, u64 *flags) 750 { 751 struct btrfs_delayed_ref_head *head; 752 struct btrfs_delayed_ref_root *delayed_refs; 753 struct btrfs_path *path; 754 struct btrfs_extent_item *ei; 755 struct extent_buffer *leaf; 756 struct btrfs_key key; 757 u32 item_size; 758 u64 num_refs; 759 u64 extent_flags; 760 int ret; 761 762 path = btrfs_alloc_path(); 763 if (!path) 764 return -ENOMEM; 765 766 key.objectid = bytenr; 767 key.type = BTRFS_EXTENT_ITEM_KEY; 768 key.offset = num_bytes; 769 if (!trans) { 770 path->skip_locking = 1; 771 path->search_commit_root = 1; 772 } 773 again: 774 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 775 &key, path, 0, 0); 776 if (ret < 0) 777 goto out_free; 778 779 if (ret == 0) { 780 leaf = path->nodes[0]; 781 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 782 if (item_size >= sizeof(*ei)) { 783 ei = btrfs_item_ptr(leaf, path->slots[0], 784 struct btrfs_extent_item); 785 num_refs = btrfs_extent_refs(leaf, ei); 786 extent_flags = btrfs_extent_flags(leaf, ei); 787 } else { 788 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 789 struct btrfs_extent_item_v0 *ei0; 790 BUG_ON(item_size != sizeof(*ei0)); 791 ei0 = btrfs_item_ptr(leaf, path->slots[0], 792 struct btrfs_extent_item_v0); 793 num_refs = btrfs_extent_refs_v0(leaf, ei0); 794 /* FIXME: this isn't correct for data */ 795 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 796 #else 797 BUG(); 798 #endif 799 } 800 BUG_ON(num_refs == 0); 801 } else { 802 num_refs = 0; 803 extent_flags = 0; 804 ret = 0; 805 } 806 807 if (!trans) 808 goto out; 809 810 delayed_refs = &trans->transaction->delayed_refs; 811 spin_lock(&delayed_refs->lock); 812 head = btrfs_find_delayed_ref_head(trans, bytenr); 813 if (head) { 814 if (!mutex_trylock(&head->mutex)) { 815 atomic_inc(&head->node.refs); 816 spin_unlock(&delayed_refs->lock); 817 818 btrfs_release_path(path); 819 820 /* 821 * Mutex was contended, block until it's released and try 822 * again 823 */ 824 mutex_lock(&head->mutex); 825 mutex_unlock(&head->mutex); 826 btrfs_put_delayed_ref(&head->node); 827 goto again; 828 } 829 if (head->extent_op && head->extent_op->update_flags) 830 extent_flags |= head->extent_op->flags_to_set; 831 else 832 BUG_ON(num_refs == 0); 833 834 num_refs += head->node.ref_mod; 835 mutex_unlock(&head->mutex); 836 } 837 spin_unlock(&delayed_refs->lock); 838 out: 839 WARN_ON(num_refs == 0); 840 if (refs) 841 *refs = num_refs; 842 if (flags) 843 *flags = extent_flags; 844 out_free: 845 btrfs_free_path(path); 846 return ret; 847 } 848 849 /* 850 * Back reference rules. Back refs have three main goals: 851 * 852 * 1) differentiate between all holders of references to an extent so that 853 * when a reference is dropped we can make sure it was a valid reference 854 * before freeing the extent. 855 * 856 * 2) Provide enough information to quickly find the holders of an extent 857 * if we notice a given block is corrupted or bad. 858 * 859 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 860 * maintenance. This is actually the same as #2, but with a slightly 861 * different use case. 862 * 863 * There are two kinds of back refs. The implicit back refs is optimized 864 * for pointers in non-shared tree blocks. For a given pointer in a block, 865 * back refs of this kind provide information about the block's owner tree 866 * and the pointer's key. These information allow us to find the block by 867 * b-tree searching. The full back refs is for pointers in tree blocks not 868 * referenced by their owner trees. The location of tree block is recorded 869 * in the back refs. Actually the full back refs is generic, and can be 870 * used in all cases the implicit back refs is used. The major shortcoming 871 * of the full back refs is its overhead. Every time a tree block gets 872 * COWed, we have to update back refs entry for all pointers in it. 873 * 874 * For a newly allocated tree block, we use implicit back refs for 875 * pointers in it. This means most tree related operations only involve 876 * implicit back refs. For a tree block created in old transaction, the 877 * only way to drop a reference to it is COW it. So we can detect the 878 * event that tree block loses its owner tree's reference and do the 879 * back refs conversion. 880 * 881 * When a tree block is COW'd through a tree, there are four cases: 882 * 883 * The reference count of the block is one and the tree is the block's 884 * owner tree. Nothing to do in this case. 885 * 886 * The reference count of the block is one and the tree is not the 887 * block's owner tree. In this case, full back refs is used for pointers 888 * in the block. Remove these full back refs, add implicit back refs for 889 * every pointers in the new block. 890 * 891 * The reference count of the block is greater than one and the tree is 892 * the block's owner tree. In this case, implicit back refs is used for 893 * pointers in the block. Add full back refs for every pointers in the 894 * block, increase lower level extents' reference counts. The original 895 * implicit back refs are entailed to the new block. 896 * 897 * The reference count of the block is greater than one and the tree is 898 * not the block's owner tree. Add implicit back refs for every pointer in 899 * the new block, increase lower level extents' reference count. 900 * 901 * Back Reference Key composing: 902 * 903 * The key objectid corresponds to the first byte in the extent, 904 * The key type is used to differentiate between types of back refs. 905 * There are different meanings of the key offset for different types 906 * of back refs. 907 * 908 * File extents can be referenced by: 909 * 910 * - multiple snapshots, subvolumes, or different generations in one subvol 911 * - different files inside a single subvolume 912 * - different offsets inside a file (bookend extents in file.c) 913 * 914 * The extent ref structure for the implicit back refs has fields for: 915 * 916 * - Objectid of the subvolume root 917 * - objectid of the file holding the reference 918 * - original offset in the file 919 * - how many bookend extents 920 * 921 * The key offset for the implicit back refs is hash of the first 922 * three fields. 923 * 924 * The extent ref structure for the full back refs has field for: 925 * 926 * - number of pointers in the tree leaf 927 * 928 * The key offset for the implicit back refs is the first byte of 929 * the tree leaf 930 * 931 * When a file extent is allocated, The implicit back refs is used. 932 * the fields are filled in: 933 * 934 * (root_key.objectid, inode objectid, offset in file, 1) 935 * 936 * When a file extent is removed file truncation, we find the 937 * corresponding implicit back refs and check the following fields: 938 * 939 * (btrfs_header_owner(leaf), inode objectid, offset in file) 940 * 941 * Btree extents can be referenced by: 942 * 943 * - Different subvolumes 944 * 945 * Both the implicit back refs and the full back refs for tree blocks 946 * only consist of key. The key offset for the implicit back refs is 947 * objectid of block's owner tree. The key offset for the full back refs 948 * is the first byte of parent block. 949 * 950 * When implicit back refs is used, information about the lowest key and 951 * level of the tree block are required. These information are stored in 952 * tree block info structure. 953 */ 954 955 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 956 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 957 struct btrfs_root *root, 958 struct btrfs_path *path, 959 u64 owner, u32 extra_size) 960 { 961 struct btrfs_extent_item *item; 962 struct btrfs_extent_item_v0 *ei0; 963 struct btrfs_extent_ref_v0 *ref0; 964 struct btrfs_tree_block_info *bi; 965 struct extent_buffer *leaf; 966 struct btrfs_key key; 967 struct btrfs_key found_key; 968 u32 new_size = sizeof(*item); 969 u64 refs; 970 int ret; 971 972 leaf = path->nodes[0]; 973 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 974 975 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 976 ei0 = btrfs_item_ptr(leaf, path->slots[0], 977 struct btrfs_extent_item_v0); 978 refs = btrfs_extent_refs_v0(leaf, ei0); 979 980 if (owner == (u64)-1) { 981 while (1) { 982 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 983 ret = btrfs_next_leaf(root, path); 984 if (ret < 0) 985 return ret; 986 BUG_ON(ret > 0); /* Corruption */ 987 leaf = path->nodes[0]; 988 } 989 btrfs_item_key_to_cpu(leaf, &found_key, 990 path->slots[0]); 991 BUG_ON(key.objectid != found_key.objectid); 992 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 993 path->slots[0]++; 994 continue; 995 } 996 ref0 = btrfs_item_ptr(leaf, path->slots[0], 997 struct btrfs_extent_ref_v0); 998 owner = btrfs_ref_objectid_v0(leaf, ref0); 999 break; 1000 } 1001 } 1002 btrfs_release_path(path); 1003 1004 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1005 new_size += sizeof(*bi); 1006 1007 new_size -= sizeof(*ei0); 1008 ret = btrfs_search_slot(trans, root, &key, path, 1009 new_size + extra_size, 1); 1010 if (ret < 0) 1011 return ret; 1012 BUG_ON(ret); /* Corruption */ 1013 1014 btrfs_extend_item(trans, root, path, new_size); 1015 1016 leaf = path->nodes[0]; 1017 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1018 btrfs_set_extent_refs(leaf, item, refs); 1019 /* FIXME: get real generation */ 1020 btrfs_set_extent_generation(leaf, item, 0); 1021 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1022 btrfs_set_extent_flags(leaf, item, 1023 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1024 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1025 bi = (struct btrfs_tree_block_info *)(item + 1); 1026 /* FIXME: get first key of the block */ 1027 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1028 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1029 } else { 1030 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1031 } 1032 btrfs_mark_buffer_dirty(leaf); 1033 return 0; 1034 } 1035 #endif 1036 1037 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1038 { 1039 u32 high_crc = ~(u32)0; 1040 u32 low_crc = ~(u32)0; 1041 __le64 lenum; 1042 1043 lenum = cpu_to_le64(root_objectid); 1044 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1045 lenum = cpu_to_le64(owner); 1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1047 lenum = cpu_to_le64(offset); 1048 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1049 1050 return ((u64)high_crc << 31) ^ (u64)low_crc; 1051 } 1052 1053 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1054 struct btrfs_extent_data_ref *ref) 1055 { 1056 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1057 btrfs_extent_data_ref_objectid(leaf, ref), 1058 btrfs_extent_data_ref_offset(leaf, ref)); 1059 } 1060 1061 static int match_extent_data_ref(struct extent_buffer *leaf, 1062 struct btrfs_extent_data_ref *ref, 1063 u64 root_objectid, u64 owner, u64 offset) 1064 { 1065 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1066 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1067 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1068 return 0; 1069 return 1; 1070 } 1071 1072 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1073 struct btrfs_root *root, 1074 struct btrfs_path *path, 1075 u64 bytenr, u64 parent, 1076 u64 root_objectid, 1077 u64 owner, u64 offset) 1078 { 1079 struct btrfs_key key; 1080 struct btrfs_extent_data_ref *ref; 1081 struct extent_buffer *leaf; 1082 u32 nritems; 1083 int ret; 1084 int recow; 1085 int err = -ENOENT; 1086 1087 key.objectid = bytenr; 1088 if (parent) { 1089 key.type = BTRFS_SHARED_DATA_REF_KEY; 1090 key.offset = parent; 1091 } else { 1092 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1093 key.offset = hash_extent_data_ref(root_objectid, 1094 owner, offset); 1095 } 1096 again: 1097 recow = 0; 1098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1099 if (ret < 0) { 1100 err = ret; 1101 goto fail; 1102 } 1103 1104 if (parent) { 1105 if (!ret) 1106 return 0; 1107 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1108 key.type = BTRFS_EXTENT_REF_V0_KEY; 1109 btrfs_release_path(path); 1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1111 if (ret < 0) { 1112 err = ret; 1113 goto fail; 1114 } 1115 if (!ret) 1116 return 0; 1117 #endif 1118 goto fail; 1119 } 1120 1121 leaf = path->nodes[0]; 1122 nritems = btrfs_header_nritems(leaf); 1123 while (1) { 1124 if (path->slots[0] >= nritems) { 1125 ret = btrfs_next_leaf(root, path); 1126 if (ret < 0) 1127 err = ret; 1128 if (ret) 1129 goto fail; 1130 1131 leaf = path->nodes[0]; 1132 nritems = btrfs_header_nritems(leaf); 1133 recow = 1; 1134 } 1135 1136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1137 if (key.objectid != bytenr || 1138 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1139 goto fail; 1140 1141 ref = btrfs_item_ptr(leaf, path->slots[0], 1142 struct btrfs_extent_data_ref); 1143 1144 if (match_extent_data_ref(leaf, ref, root_objectid, 1145 owner, offset)) { 1146 if (recow) { 1147 btrfs_release_path(path); 1148 goto again; 1149 } 1150 err = 0; 1151 break; 1152 } 1153 path->slots[0]++; 1154 } 1155 fail: 1156 return err; 1157 } 1158 1159 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1160 struct btrfs_root *root, 1161 struct btrfs_path *path, 1162 u64 bytenr, u64 parent, 1163 u64 root_objectid, u64 owner, 1164 u64 offset, int refs_to_add) 1165 { 1166 struct btrfs_key key; 1167 struct extent_buffer *leaf; 1168 u32 size; 1169 u32 num_refs; 1170 int ret; 1171 1172 key.objectid = bytenr; 1173 if (parent) { 1174 key.type = BTRFS_SHARED_DATA_REF_KEY; 1175 key.offset = parent; 1176 size = sizeof(struct btrfs_shared_data_ref); 1177 } else { 1178 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1179 key.offset = hash_extent_data_ref(root_objectid, 1180 owner, offset); 1181 size = sizeof(struct btrfs_extent_data_ref); 1182 } 1183 1184 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1185 if (ret && ret != -EEXIST) 1186 goto fail; 1187 1188 leaf = path->nodes[0]; 1189 if (parent) { 1190 struct btrfs_shared_data_ref *ref; 1191 ref = btrfs_item_ptr(leaf, path->slots[0], 1192 struct btrfs_shared_data_ref); 1193 if (ret == 0) { 1194 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1195 } else { 1196 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1197 num_refs += refs_to_add; 1198 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1199 } 1200 } else { 1201 struct btrfs_extent_data_ref *ref; 1202 while (ret == -EEXIST) { 1203 ref = btrfs_item_ptr(leaf, path->slots[0], 1204 struct btrfs_extent_data_ref); 1205 if (match_extent_data_ref(leaf, ref, root_objectid, 1206 owner, offset)) 1207 break; 1208 btrfs_release_path(path); 1209 key.offset++; 1210 ret = btrfs_insert_empty_item(trans, root, path, &key, 1211 size); 1212 if (ret && ret != -EEXIST) 1213 goto fail; 1214 1215 leaf = path->nodes[0]; 1216 } 1217 ref = btrfs_item_ptr(leaf, path->slots[0], 1218 struct btrfs_extent_data_ref); 1219 if (ret == 0) { 1220 btrfs_set_extent_data_ref_root(leaf, ref, 1221 root_objectid); 1222 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1223 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1224 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1225 } else { 1226 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1227 num_refs += refs_to_add; 1228 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1229 } 1230 } 1231 btrfs_mark_buffer_dirty(leaf); 1232 ret = 0; 1233 fail: 1234 btrfs_release_path(path); 1235 return ret; 1236 } 1237 1238 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1239 struct btrfs_root *root, 1240 struct btrfs_path *path, 1241 int refs_to_drop) 1242 { 1243 struct btrfs_key key; 1244 struct btrfs_extent_data_ref *ref1 = NULL; 1245 struct btrfs_shared_data_ref *ref2 = NULL; 1246 struct extent_buffer *leaf; 1247 u32 num_refs = 0; 1248 int ret = 0; 1249 1250 leaf = path->nodes[0]; 1251 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1252 1253 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1254 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1255 struct btrfs_extent_data_ref); 1256 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1257 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1258 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1259 struct btrfs_shared_data_ref); 1260 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1261 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1262 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1263 struct btrfs_extent_ref_v0 *ref0; 1264 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1265 struct btrfs_extent_ref_v0); 1266 num_refs = btrfs_ref_count_v0(leaf, ref0); 1267 #endif 1268 } else { 1269 BUG(); 1270 } 1271 1272 BUG_ON(num_refs < refs_to_drop); 1273 num_refs -= refs_to_drop; 1274 1275 if (num_refs == 0) { 1276 ret = btrfs_del_item(trans, root, path); 1277 } else { 1278 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1279 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1280 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1281 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1283 else { 1284 struct btrfs_extent_ref_v0 *ref0; 1285 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1286 struct btrfs_extent_ref_v0); 1287 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1288 } 1289 #endif 1290 btrfs_mark_buffer_dirty(leaf); 1291 } 1292 return ret; 1293 } 1294 1295 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1296 struct btrfs_path *path, 1297 struct btrfs_extent_inline_ref *iref) 1298 { 1299 struct btrfs_key key; 1300 struct extent_buffer *leaf; 1301 struct btrfs_extent_data_ref *ref1; 1302 struct btrfs_shared_data_ref *ref2; 1303 u32 num_refs = 0; 1304 1305 leaf = path->nodes[0]; 1306 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1307 if (iref) { 1308 if (btrfs_extent_inline_ref_type(leaf, iref) == 1309 BTRFS_EXTENT_DATA_REF_KEY) { 1310 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1311 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1312 } else { 1313 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1314 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1315 } 1316 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1317 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1318 struct btrfs_extent_data_ref); 1319 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1320 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1321 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1322 struct btrfs_shared_data_ref); 1323 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1324 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1325 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1326 struct btrfs_extent_ref_v0 *ref0; 1327 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1328 struct btrfs_extent_ref_v0); 1329 num_refs = btrfs_ref_count_v0(leaf, ref0); 1330 #endif 1331 } else { 1332 WARN_ON(1); 1333 } 1334 return num_refs; 1335 } 1336 1337 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1338 struct btrfs_root *root, 1339 struct btrfs_path *path, 1340 u64 bytenr, u64 parent, 1341 u64 root_objectid) 1342 { 1343 struct btrfs_key key; 1344 int ret; 1345 1346 key.objectid = bytenr; 1347 if (parent) { 1348 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1349 key.offset = parent; 1350 } else { 1351 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1352 key.offset = root_objectid; 1353 } 1354 1355 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1356 if (ret > 0) 1357 ret = -ENOENT; 1358 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1359 if (ret == -ENOENT && parent) { 1360 btrfs_release_path(path); 1361 key.type = BTRFS_EXTENT_REF_V0_KEY; 1362 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1363 if (ret > 0) 1364 ret = -ENOENT; 1365 } 1366 #endif 1367 return ret; 1368 } 1369 1370 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1371 struct btrfs_root *root, 1372 struct btrfs_path *path, 1373 u64 bytenr, u64 parent, 1374 u64 root_objectid) 1375 { 1376 struct btrfs_key key; 1377 int ret; 1378 1379 key.objectid = bytenr; 1380 if (parent) { 1381 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1382 key.offset = parent; 1383 } else { 1384 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1385 key.offset = root_objectid; 1386 } 1387 1388 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1389 btrfs_release_path(path); 1390 return ret; 1391 } 1392 1393 static inline int extent_ref_type(u64 parent, u64 owner) 1394 { 1395 int type; 1396 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1397 if (parent > 0) 1398 type = BTRFS_SHARED_BLOCK_REF_KEY; 1399 else 1400 type = BTRFS_TREE_BLOCK_REF_KEY; 1401 } else { 1402 if (parent > 0) 1403 type = BTRFS_SHARED_DATA_REF_KEY; 1404 else 1405 type = BTRFS_EXTENT_DATA_REF_KEY; 1406 } 1407 return type; 1408 } 1409 1410 static int find_next_key(struct btrfs_path *path, int level, 1411 struct btrfs_key *key) 1412 1413 { 1414 for (; level < BTRFS_MAX_LEVEL; level++) { 1415 if (!path->nodes[level]) 1416 break; 1417 if (path->slots[level] + 1 >= 1418 btrfs_header_nritems(path->nodes[level])) 1419 continue; 1420 if (level == 0) 1421 btrfs_item_key_to_cpu(path->nodes[level], key, 1422 path->slots[level] + 1); 1423 else 1424 btrfs_node_key_to_cpu(path->nodes[level], key, 1425 path->slots[level] + 1); 1426 return 0; 1427 } 1428 return 1; 1429 } 1430 1431 /* 1432 * look for inline back ref. if back ref is found, *ref_ret is set 1433 * to the address of inline back ref, and 0 is returned. 1434 * 1435 * if back ref isn't found, *ref_ret is set to the address where it 1436 * should be inserted, and -ENOENT is returned. 1437 * 1438 * if insert is true and there are too many inline back refs, the path 1439 * points to the extent item, and -EAGAIN is returned. 1440 * 1441 * NOTE: inline back refs are ordered in the same way that back ref 1442 * items in the tree are ordered. 1443 */ 1444 static noinline_for_stack 1445 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1446 struct btrfs_root *root, 1447 struct btrfs_path *path, 1448 struct btrfs_extent_inline_ref **ref_ret, 1449 u64 bytenr, u64 num_bytes, 1450 u64 parent, u64 root_objectid, 1451 u64 owner, u64 offset, int insert) 1452 { 1453 struct btrfs_key key; 1454 struct extent_buffer *leaf; 1455 struct btrfs_extent_item *ei; 1456 struct btrfs_extent_inline_ref *iref; 1457 u64 flags; 1458 u64 item_size; 1459 unsigned long ptr; 1460 unsigned long end; 1461 int extra_size; 1462 int type; 1463 int want; 1464 int ret; 1465 int err = 0; 1466 1467 key.objectid = bytenr; 1468 key.type = BTRFS_EXTENT_ITEM_KEY; 1469 key.offset = num_bytes; 1470 1471 want = extent_ref_type(parent, owner); 1472 if (insert) { 1473 extra_size = btrfs_extent_inline_ref_size(want); 1474 path->keep_locks = 1; 1475 } else 1476 extra_size = -1; 1477 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1478 if (ret < 0) { 1479 err = ret; 1480 goto out; 1481 } 1482 if (ret && !insert) { 1483 err = -ENOENT; 1484 goto out; 1485 } 1486 BUG_ON(ret); /* Corruption */ 1487 1488 leaf = path->nodes[0]; 1489 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1490 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1491 if (item_size < sizeof(*ei)) { 1492 if (!insert) { 1493 err = -ENOENT; 1494 goto out; 1495 } 1496 ret = convert_extent_item_v0(trans, root, path, owner, 1497 extra_size); 1498 if (ret < 0) { 1499 err = ret; 1500 goto out; 1501 } 1502 leaf = path->nodes[0]; 1503 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1504 } 1505 #endif 1506 BUG_ON(item_size < sizeof(*ei)); 1507 1508 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1509 flags = btrfs_extent_flags(leaf, ei); 1510 1511 ptr = (unsigned long)(ei + 1); 1512 end = (unsigned long)ei + item_size; 1513 1514 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1515 ptr += sizeof(struct btrfs_tree_block_info); 1516 BUG_ON(ptr > end); 1517 } else { 1518 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1519 } 1520 1521 err = -ENOENT; 1522 while (1) { 1523 if (ptr >= end) { 1524 WARN_ON(ptr > end); 1525 break; 1526 } 1527 iref = (struct btrfs_extent_inline_ref *)ptr; 1528 type = btrfs_extent_inline_ref_type(leaf, iref); 1529 if (want < type) 1530 break; 1531 if (want > type) { 1532 ptr += btrfs_extent_inline_ref_size(type); 1533 continue; 1534 } 1535 1536 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1537 struct btrfs_extent_data_ref *dref; 1538 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1539 if (match_extent_data_ref(leaf, dref, root_objectid, 1540 owner, offset)) { 1541 err = 0; 1542 break; 1543 } 1544 if (hash_extent_data_ref_item(leaf, dref) < 1545 hash_extent_data_ref(root_objectid, owner, offset)) 1546 break; 1547 } else { 1548 u64 ref_offset; 1549 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1550 if (parent > 0) { 1551 if (parent == ref_offset) { 1552 err = 0; 1553 break; 1554 } 1555 if (ref_offset < parent) 1556 break; 1557 } else { 1558 if (root_objectid == ref_offset) { 1559 err = 0; 1560 break; 1561 } 1562 if (ref_offset < root_objectid) 1563 break; 1564 } 1565 } 1566 ptr += btrfs_extent_inline_ref_size(type); 1567 } 1568 if (err == -ENOENT && insert) { 1569 if (item_size + extra_size >= 1570 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1571 err = -EAGAIN; 1572 goto out; 1573 } 1574 /* 1575 * To add new inline back ref, we have to make sure 1576 * there is no corresponding back ref item. 1577 * For simplicity, we just do not add new inline back 1578 * ref if there is any kind of item for this block 1579 */ 1580 if (find_next_key(path, 0, &key) == 0 && 1581 key.objectid == bytenr && 1582 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1583 err = -EAGAIN; 1584 goto out; 1585 } 1586 } 1587 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1588 out: 1589 if (insert) { 1590 path->keep_locks = 0; 1591 btrfs_unlock_up_safe(path, 1); 1592 } 1593 return err; 1594 } 1595 1596 /* 1597 * helper to add new inline back ref 1598 */ 1599 static noinline_for_stack 1600 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1601 struct btrfs_root *root, 1602 struct btrfs_path *path, 1603 struct btrfs_extent_inline_ref *iref, 1604 u64 parent, u64 root_objectid, 1605 u64 owner, u64 offset, int refs_to_add, 1606 struct btrfs_delayed_extent_op *extent_op) 1607 { 1608 struct extent_buffer *leaf; 1609 struct btrfs_extent_item *ei; 1610 unsigned long ptr; 1611 unsigned long end; 1612 unsigned long item_offset; 1613 u64 refs; 1614 int size; 1615 int type; 1616 1617 leaf = path->nodes[0]; 1618 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1619 item_offset = (unsigned long)iref - (unsigned long)ei; 1620 1621 type = extent_ref_type(parent, owner); 1622 size = btrfs_extent_inline_ref_size(type); 1623 1624 btrfs_extend_item(trans, root, path, size); 1625 1626 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1627 refs = btrfs_extent_refs(leaf, ei); 1628 refs += refs_to_add; 1629 btrfs_set_extent_refs(leaf, ei, refs); 1630 if (extent_op) 1631 __run_delayed_extent_op(extent_op, leaf, ei); 1632 1633 ptr = (unsigned long)ei + item_offset; 1634 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1635 if (ptr < end - size) 1636 memmove_extent_buffer(leaf, ptr + size, ptr, 1637 end - size - ptr); 1638 1639 iref = (struct btrfs_extent_inline_ref *)ptr; 1640 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1641 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1642 struct btrfs_extent_data_ref *dref; 1643 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1644 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1645 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1646 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1647 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1648 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1649 struct btrfs_shared_data_ref *sref; 1650 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1651 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1653 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1654 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1655 } else { 1656 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1657 } 1658 btrfs_mark_buffer_dirty(leaf); 1659 } 1660 1661 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1662 struct btrfs_root *root, 1663 struct btrfs_path *path, 1664 struct btrfs_extent_inline_ref **ref_ret, 1665 u64 bytenr, u64 num_bytes, u64 parent, 1666 u64 root_objectid, u64 owner, u64 offset) 1667 { 1668 int ret; 1669 1670 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1671 bytenr, num_bytes, parent, 1672 root_objectid, owner, offset, 0); 1673 if (ret != -ENOENT) 1674 return ret; 1675 1676 btrfs_release_path(path); 1677 *ref_ret = NULL; 1678 1679 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1680 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1681 root_objectid); 1682 } else { 1683 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1684 root_objectid, owner, offset); 1685 } 1686 return ret; 1687 } 1688 1689 /* 1690 * helper to update/remove inline back ref 1691 */ 1692 static noinline_for_stack 1693 void update_inline_extent_backref(struct btrfs_trans_handle *trans, 1694 struct btrfs_root *root, 1695 struct btrfs_path *path, 1696 struct btrfs_extent_inline_ref *iref, 1697 int refs_to_mod, 1698 struct btrfs_delayed_extent_op *extent_op) 1699 { 1700 struct extent_buffer *leaf; 1701 struct btrfs_extent_item *ei; 1702 struct btrfs_extent_data_ref *dref = NULL; 1703 struct btrfs_shared_data_ref *sref = NULL; 1704 unsigned long ptr; 1705 unsigned long end; 1706 u32 item_size; 1707 int size; 1708 int type; 1709 u64 refs; 1710 1711 leaf = path->nodes[0]; 1712 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1713 refs = btrfs_extent_refs(leaf, ei); 1714 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1715 refs += refs_to_mod; 1716 btrfs_set_extent_refs(leaf, ei, refs); 1717 if (extent_op) 1718 __run_delayed_extent_op(extent_op, leaf, ei); 1719 1720 type = btrfs_extent_inline_ref_type(leaf, iref); 1721 1722 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1723 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1724 refs = btrfs_extent_data_ref_count(leaf, dref); 1725 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1726 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1727 refs = btrfs_shared_data_ref_count(leaf, sref); 1728 } else { 1729 refs = 1; 1730 BUG_ON(refs_to_mod != -1); 1731 } 1732 1733 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1734 refs += refs_to_mod; 1735 1736 if (refs > 0) { 1737 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1738 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1739 else 1740 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1741 } else { 1742 size = btrfs_extent_inline_ref_size(type); 1743 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1744 ptr = (unsigned long)iref; 1745 end = (unsigned long)ei + item_size; 1746 if (ptr + size < end) 1747 memmove_extent_buffer(leaf, ptr, ptr + size, 1748 end - ptr - size); 1749 item_size -= size; 1750 btrfs_truncate_item(trans, root, path, item_size, 1); 1751 } 1752 btrfs_mark_buffer_dirty(leaf); 1753 } 1754 1755 static noinline_for_stack 1756 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1757 struct btrfs_root *root, 1758 struct btrfs_path *path, 1759 u64 bytenr, u64 num_bytes, u64 parent, 1760 u64 root_objectid, u64 owner, 1761 u64 offset, int refs_to_add, 1762 struct btrfs_delayed_extent_op *extent_op) 1763 { 1764 struct btrfs_extent_inline_ref *iref; 1765 int ret; 1766 1767 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1768 bytenr, num_bytes, parent, 1769 root_objectid, owner, offset, 1); 1770 if (ret == 0) { 1771 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1772 update_inline_extent_backref(trans, root, path, iref, 1773 refs_to_add, extent_op); 1774 } else if (ret == -ENOENT) { 1775 setup_inline_extent_backref(trans, root, path, iref, parent, 1776 root_objectid, owner, offset, 1777 refs_to_add, extent_op); 1778 ret = 0; 1779 } 1780 return ret; 1781 } 1782 1783 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1784 struct btrfs_root *root, 1785 struct btrfs_path *path, 1786 u64 bytenr, u64 parent, u64 root_objectid, 1787 u64 owner, u64 offset, int refs_to_add) 1788 { 1789 int ret; 1790 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1791 BUG_ON(refs_to_add != 1); 1792 ret = insert_tree_block_ref(trans, root, path, bytenr, 1793 parent, root_objectid); 1794 } else { 1795 ret = insert_extent_data_ref(trans, root, path, bytenr, 1796 parent, root_objectid, 1797 owner, offset, refs_to_add); 1798 } 1799 return ret; 1800 } 1801 1802 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1803 struct btrfs_root *root, 1804 struct btrfs_path *path, 1805 struct btrfs_extent_inline_ref *iref, 1806 int refs_to_drop, int is_data) 1807 { 1808 int ret = 0; 1809 1810 BUG_ON(!is_data && refs_to_drop != 1); 1811 if (iref) { 1812 update_inline_extent_backref(trans, root, path, iref, 1813 -refs_to_drop, NULL); 1814 } else if (is_data) { 1815 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1816 } else { 1817 ret = btrfs_del_item(trans, root, path); 1818 } 1819 return ret; 1820 } 1821 1822 static int btrfs_issue_discard(struct block_device *bdev, 1823 u64 start, u64 len) 1824 { 1825 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1826 } 1827 1828 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1829 u64 num_bytes, u64 *actual_bytes) 1830 { 1831 int ret; 1832 u64 discarded_bytes = 0; 1833 struct btrfs_bio *bbio = NULL; 1834 1835 1836 /* Tell the block device(s) that the sectors can be discarded */ 1837 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, 1838 bytenr, &num_bytes, &bbio, 0); 1839 /* Error condition is -ENOMEM */ 1840 if (!ret) { 1841 struct btrfs_bio_stripe *stripe = bbio->stripes; 1842 int i; 1843 1844 1845 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1846 if (!stripe->dev->can_discard) 1847 continue; 1848 1849 ret = btrfs_issue_discard(stripe->dev->bdev, 1850 stripe->physical, 1851 stripe->length); 1852 if (!ret) 1853 discarded_bytes += stripe->length; 1854 else if (ret != -EOPNOTSUPP) 1855 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1856 1857 /* 1858 * Just in case we get back EOPNOTSUPP for some reason, 1859 * just ignore the return value so we don't screw up 1860 * people calling discard_extent. 1861 */ 1862 ret = 0; 1863 } 1864 kfree(bbio); 1865 } 1866 1867 if (actual_bytes) 1868 *actual_bytes = discarded_bytes; 1869 1870 1871 return ret; 1872 } 1873 1874 /* Can return -ENOMEM */ 1875 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1876 struct btrfs_root *root, 1877 u64 bytenr, u64 num_bytes, u64 parent, 1878 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1879 { 1880 int ret; 1881 struct btrfs_fs_info *fs_info = root->fs_info; 1882 1883 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1884 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1885 1886 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1887 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1888 num_bytes, 1889 parent, root_objectid, (int)owner, 1890 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1891 } else { 1892 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1893 num_bytes, 1894 parent, root_objectid, owner, offset, 1895 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1896 } 1897 return ret; 1898 } 1899 1900 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1901 struct btrfs_root *root, 1902 u64 bytenr, u64 num_bytes, 1903 u64 parent, u64 root_objectid, 1904 u64 owner, u64 offset, int refs_to_add, 1905 struct btrfs_delayed_extent_op *extent_op) 1906 { 1907 struct btrfs_path *path; 1908 struct extent_buffer *leaf; 1909 struct btrfs_extent_item *item; 1910 u64 refs; 1911 int ret; 1912 int err = 0; 1913 1914 path = btrfs_alloc_path(); 1915 if (!path) 1916 return -ENOMEM; 1917 1918 path->reada = 1; 1919 path->leave_spinning = 1; 1920 /* this will setup the path even if it fails to insert the back ref */ 1921 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1922 path, bytenr, num_bytes, parent, 1923 root_objectid, owner, offset, 1924 refs_to_add, extent_op); 1925 if (ret == 0) 1926 goto out; 1927 1928 if (ret != -EAGAIN) { 1929 err = ret; 1930 goto out; 1931 } 1932 1933 leaf = path->nodes[0]; 1934 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1935 refs = btrfs_extent_refs(leaf, item); 1936 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1937 if (extent_op) 1938 __run_delayed_extent_op(extent_op, leaf, item); 1939 1940 btrfs_mark_buffer_dirty(leaf); 1941 btrfs_release_path(path); 1942 1943 path->reada = 1; 1944 path->leave_spinning = 1; 1945 1946 /* now insert the actual backref */ 1947 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1948 path, bytenr, parent, root_objectid, 1949 owner, offset, refs_to_add); 1950 if (ret) 1951 btrfs_abort_transaction(trans, root, ret); 1952 out: 1953 btrfs_free_path(path); 1954 return err; 1955 } 1956 1957 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1958 struct btrfs_root *root, 1959 struct btrfs_delayed_ref_node *node, 1960 struct btrfs_delayed_extent_op *extent_op, 1961 int insert_reserved) 1962 { 1963 int ret = 0; 1964 struct btrfs_delayed_data_ref *ref; 1965 struct btrfs_key ins; 1966 u64 parent = 0; 1967 u64 ref_root = 0; 1968 u64 flags = 0; 1969 1970 ins.objectid = node->bytenr; 1971 ins.offset = node->num_bytes; 1972 ins.type = BTRFS_EXTENT_ITEM_KEY; 1973 1974 ref = btrfs_delayed_node_to_data_ref(node); 1975 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1976 parent = ref->parent; 1977 else 1978 ref_root = ref->root; 1979 1980 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1981 if (extent_op) { 1982 BUG_ON(extent_op->update_key); 1983 flags |= extent_op->flags_to_set; 1984 } 1985 ret = alloc_reserved_file_extent(trans, root, 1986 parent, ref_root, flags, 1987 ref->objectid, ref->offset, 1988 &ins, node->ref_mod); 1989 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1990 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1991 node->num_bytes, parent, 1992 ref_root, ref->objectid, 1993 ref->offset, node->ref_mod, 1994 extent_op); 1995 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1996 ret = __btrfs_free_extent(trans, root, node->bytenr, 1997 node->num_bytes, parent, 1998 ref_root, ref->objectid, 1999 ref->offset, node->ref_mod, 2000 extent_op); 2001 } else { 2002 BUG(); 2003 } 2004 return ret; 2005 } 2006 2007 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2008 struct extent_buffer *leaf, 2009 struct btrfs_extent_item *ei) 2010 { 2011 u64 flags = btrfs_extent_flags(leaf, ei); 2012 if (extent_op->update_flags) { 2013 flags |= extent_op->flags_to_set; 2014 btrfs_set_extent_flags(leaf, ei, flags); 2015 } 2016 2017 if (extent_op->update_key) { 2018 struct btrfs_tree_block_info *bi; 2019 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2020 bi = (struct btrfs_tree_block_info *)(ei + 1); 2021 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2022 } 2023 } 2024 2025 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2026 struct btrfs_root *root, 2027 struct btrfs_delayed_ref_node *node, 2028 struct btrfs_delayed_extent_op *extent_op) 2029 { 2030 struct btrfs_key key; 2031 struct btrfs_path *path; 2032 struct btrfs_extent_item *ei; 2033 struct extent_buffer *leaf; 2034 u32 item_size; 2035 int ret; 2036 int err = 0; 2037 2038 if (trans->aborted) 2039 return 0; 2040 2041 path = btrfs_alloc_path(); 2042 if (!path) 2043 return -ENOMEM; 2044 2045 key.objectid = node->bytenr; 2046 key.type = BTRFS_EXTENT_ITEM_KEY; 2047 key.offset = node->num_bytes; 2048 2049 path->reada = 1; 2050 path->leave_spinning = 1; 2051 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2052 path, 0, 1); 2053 if (ret < 0) { 2054 err = ret; 2055 goto out; 2056 } 2057 if (ret > 0) { 2058 err = -EIO; 2059 goto out; 2060 } 2061 2062 leaf = path->nodes[0]; 2063 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2064 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2065 if (item_size < sizeof(*ei)) { 2066 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2067 path, (u64)-1, 0); 2068 if (ret < 0) { 2069 err = ret; 2070 goto out; 2071 } 2072 leaf = path->nodes[0]; 2073 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2074 } 2075 #endif 2076 BUG_ON(item_size < sizeof(*ei)); 2077 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2078 __run_delayed_extent_op(extent_op, leaf, ei); 2079 2080 btrfs_mark_buffer_dirty(leaf); 2081 out: 2082 btrfs_free_path(path); 2083 return err; 2084 } 2085 2086 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2087 struct btrfs_root *root, 2088 struct btrfs_delayed_ref_node *node, 2089 struct btrfs_delayed_extent_op *extent_op, 2090 int insert_reserved) 2091 { 2092 int ret = 0; 2093 struct btrfs_delayed_tree_ref *ref; 2094 struct btrfs_key ins; 2095 u64 parent = 0; 2096 u64 ref_root = 0; 2097 2098 ins.objectid = node->bytenr; 2099 ins.offset = node->num_bytes; 2100 ins.type = BTRFS_EXTENT_ITEM_KEY; 2101 2102 ref = btrfs_delayed_node_to_tree_ref(node); 2103 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2104 parent = ref->parent; 2105 else 2106 ref_root = ref->root; 2107 2108 BUG_ON(node->ref_mod != 1); 2109 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2110 BUG_ON(!extent_op || !extent_op->update_flags || 2111 !extent_op->update_key); 2112 ret = alloc_reserved_tree_block(trans, root, 2113 parent, ref_root, 2114 extent_op->flags_to_set, 2115 &extent_op->key, 2116 ref->level, &ins); 2117 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2118 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2119 node->num_bytes, parent, ref_root, 2120 ref->level, 0, 1, extent_op); 2121 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2122 ret = __btrfs_free_extent(trans, root, node->bytenr, 2123 node->num_bytes, parent, ref_root, 2124 ref->level, 0, 1, extent_op); 2125 } else { 2126 BUG(); 2127 } 2128 return ret; 2129 } 2130 2131 /* helper function to actually process a single delayed ref entry */ 2132 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2133 struct btrfs_root *root, 2134 struct btrfs_delayed_ref_node *node, 2135 struct btrfs_delayed_extent_op *extent_op, 2136 int insert_reserved) 2137 { 2138 int ret = 0; 2139 2140 if (trans->aborted) 2141 return 0; 2142 2143 if (btrfs_delayed_ref_is_head(node)) { 2144 struct btrfs_delayed_ref_head *head; 2145 /* 2146 * we've hit the end of the chain and we were supposed 2147 * to insert this extent into the tree. But, it got 2148 * deleted before we ever needed to insert it, so all 2149 * we have to do is clean up the accounting 2150 */ 2151 BUG_ON(extent_op); 2152 head = btrfs_delayed_node_to_head(node); 2153 if (insert_reserved) { 2154 btrfs_pin_extent(root, node->bytenr, 2155 node->num_bytes, 1); 2156 if (head->is_data) { 2157 ret = btrfs_del_csums(trans, root, 2158 node->bytenr, 2159 node->num_bytes); 2160 } 2161 } 2162 mutex_unlock(&head->mutex); 2163 return ret; 2164 } 2165 2166 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2167 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2168 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2169 insert_reserved); 2170 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2171 node->type == BTRFS_SHARED_DATA_REF_KEY) 2172 ret = run_delayed_data_ref(trans, root, node, extent_op, 2173 insert_reserved); 2174 else 2175 BUG(); 2176 return ret; 2177 } 2178 2179 static noinline struct btrfs_delayed_ref_node * 2180 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2181 { 2182 struct rb_node *node; 2183 struct btrfs_delayed_ref_node *ref; 2184 int action = BTRFS_ADD_DELAYED_REF; 2185 again: 2186 /* 2187 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2188 * this prevents ref count from going down to zero when 2189 * there still are pending delayed ref. 2190 */ 2191 node = rb_prev(&head->node.rb_node); 2192 while (1) { 2193 if (!node) 2194 break; 2195 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2196 rb_node); 2197 if (ref->bytenr != head->node.bytenr) 2198 break; 2199 if (ref->action == action) 2200 return ref; 2201 node = rb_prev(node); 2202 } 2203 if (action == BTRFS_ADD_DELAYED_REF) { 2204 action = BTRFS_DROP_DELAYED_REF; 2205 goto again; 2206 } 2207 return NULL; 2208 } 2209 2210 /* 2211 * Returns 0 on success or if called with an already aborted transaction. 2212 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2213 */ 2214 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2215 struct btrfs_root *root, 2216 struct list_head *cluster) 2217 { 2218 struct btrfs_delayed_ref_root *delayed_refs; 2219 struct btrfs_delayed_ref_node *ref; 2220 struct btrfs_delayed_ref_head *locked_ref = NULL; 2221 struct btrfs_delayed_extent_op *extent_op; 2222 struct btrfs_fs_info *fs_info = root->fs_info; 2223 int ret; 2224 int count = 0; 2225 int must_insert_reserved = 0; 2226 2227 delayed_refs = &trans->transaction->delayed_refs; 2228 while (1) { 2229 if (!locked_ref) { 2230 /* pick a new head ref from the cluster list */ 2231 if (list_empty(cluster)) 2232 break; 2233 2234 locked_ref = list_entry(cluster->next, 2235 struct btrfs_delayed_ref_head, cluster); 2236 2237 /* grab the lock that says we are going to process 2238 * all the refs for this head */ 2239 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2240 2241 /* 2242 * we may have dropped the spin lock to get the head 2243 * mutex lock, and that might have given someone else 2244 * time to free the head. If that's true, it has been 2245 * removed from our list and we can move on. 2246 */ 2247 if (ret == -EAGAIN) { 2248 locked_ref = NULL; 2249 count++; 2250 continue; 2251 } 2252 } 2253 2254 /* 2255 * locked_ref is the head node, so we have to go one 2256 * node back for any delayed ref updates 2257 */ 2258 ref = select_delayed_ref(locked_ref); 2259 2260 if (ref && ref->seq && 2261 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2262 /* 2263 * there are still refs with lower seq numbers in the 2264 * process of being added. Don't run this ref yet. 2265 */ 2266 list_del_init(&locked_ref->cluster); 2267 mutex_unlock(&locked_ref->mutex); 2268 locked_ref = NULL; 2269 delayed_refs->num_heads_ready++; 2270 spin_unlock(&delayed_refs->lock); 2271 cond_resched(); 2272 spin_lock(&delayed_refs->lock); 2273 continue; 2274 } 2275 2276 /* 2277 * record the must insert reserved flag before we 2278 * drop the spin lock. 2279 */ 2280 must_insert_reserved = locked_ref->must_insert_reserved; 2281 locked_ref->must_insert_reserved = 0; 2282 2283 extent_op = locked_ref->extent_op; 2284 locked_ref->extent_op = NULL; 2285 2286 if (!ref) { 2287 /* All delayed refs have been processed, Go ahead 2288 * and send the head node to run_one_delayed_ref, 2289 * so that any accounting fixes can happen 2290 */ 2291 ref = &locked_ref->node; 2292 2293 if (extent_op && must_insert_reserved) { 2294 kfree(extent_op); 2295 extent_op = NULL; 2296 } 2297 2298 if (extent_op) { 2299 spin_unlock(&delayed_refs->lock); 2300 2301 ret = run_delayed_extent_op(trans, root, 2302 ref, extent_op); 2303 kfree(extent_op); 2304 2305 if (ret) { 2306 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret); 2307 spin_lock(&delayed_refs->lock); 2308 return ret; 2309 } 2310 2311 goto next; 2312 } 2313 2314 list_del_init(&locked_ref->cluster); 2315 locked_ref = NULL; 2316 } 2317 2318 ref->in_tree = 0; 2319 rb_erase(&ref->rb_node, &delayed_refs->root); 2320 delayed_refs->num_entries--; 2321 /* 2322 * we modified num_entries, but as we're currently running 2323 * delayed refs, skip 2324 * wake_up(&delayed_refs->seq_wait); 2325 * here. 2326 */ 2327 spin_unlock(&delayed_refs->lock); 2328 2329 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2330 must_insert_reserved); 2331 2332 btrfs_put_delayed_ref(ref); 2333 kfree(extent_op); 2334 count++; 2335 2336 if (ret) { 2337 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret); 2338 spin_lock(&delayed_refs->lock); 2339 return ret; 2340 } 2341 2342 next: 2343 do_chunk_alloc(trans, fs_info->extent_root, 2344 2 * 1024 * 1024, 2345 btrfs_get_alloc_profile(root, 0), 2346 CHUNK_ALLOC_NO_FORCE); 2347 cond_resched(); 2348 spin_lock(&delayed_refs->lock); 2349 } 2350 return count; 2351 } 2352 2353 static void wait_for_more_refs(struct btrfs_fs_info *fs_info, 2354 struct btrfs_delayed_ref_root *delayed_refs, 2355 unsigned long num_refs, 2356 struct list_head *first_seq) 2357 { 2358 spin_unlock(&delayed_refs->lock); 2359 pr_debug("waiting for more refs (num %ld, first %p)\n", 2360 num_refs, first_seq); 2361 wait_event(fs_info->tree_mod_seq_wait, 2362 num_refs != delayed_refs->num_entries || 2363 fs_info->tree_mod_seq_list.next != first_seq); 2364 pr_debug("done waiting for more refs (num %ld, first %p)\n", 2365 delayed_refs->num_entries, fs_info->tree_mod_seq_list.next); 2366 spin_lock(&delayed_refs->lock); 2367 } 2368 2369 #ifdef SCRAMBLE_DELAYED_REFS 2370 /* 2371 * Normally delayed refs get processed in ascending bytenr order. This 2372 * correlates in most cases to the order added. To expose dependencies on this 2373 * order, we start to process the tree in the middle instead of the beginning 2374 */ 2375 static u64 find_middle(struct rb_root *root) 2376 { 2377 struct rb_node *n = root->rb_node; 2378 struct btrfs_delayed_ref_node *entry; 2379 int alt = 1; 2380 u64 middle; 2381 u64 first = 0, last = 0; 2382 2383 n = rb_first(root); 2384 if (n) { 2385 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2386 first = entry->bytenr; 2387 } 2388 n = rb_last(root); 2389 if (n) { 2390 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2391 last = entry->bytenr; 2392 } 2393 n = root->rb_node; 2394 2395 while (n) { 2396 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2397 WARN_ON(!entry->in_tree); 2398 2399 middle = entry->bytenr; 2400 2401 if (alt) 2402 n = n->rb_left; 2403 else 2404 n = n->rb_right; 2405 2406 alt = 1 - alt; 2407 } 2408 return middle; 2409 } 2410 #endif 2411 2412 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2413 struct btrfs_fs_info *fs_info) 2414 { 2415 struct qgroup_update *qgroup_update; 2416 int ret = 0; 2417 2418 if (list_empty(&trans->qgroup_ref_list) != 2419 !trans->delayed_ref_elem.seq) { 2420 /* list without seq or seq without list */ 2421 printk(KERN_ERR "btrfs: qgroup accounting update error, list is%s empty, seq is %llu\n", 2422 list_empty(&trans->qgroup_ref_list) ? "" : " not", 2423 trans->delayed_ref_elem.seq); 2424 BUG(); 2425 } 2426 2427 if (!trans->delayed_ref_elem.seq) 2428 return 0; 2429 2430 while (!list_empty(&trans->qgroup_ref_list)) { 2431 qgroup_update = list_first_entry(&trans->qgroup_ref_list, 2432 struct qgroup_update, list); 2433 list_del(&qgroup_update->list); 2434 if (!ret) 2435 ret = btrfs_qgroup_account_ref( 2436 trans, fs_info, qgroup_update->node, 2437 qgroup_update->extent_op); 2438 kfree(qgroup_update); 2439 } 2440 2441 btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem); 2442 2443 return ret; 2444 } 2445 2446 /* 2447 * this starts processing the delayed reference count updates and 2448 * extent insertions we have queued up so far. count can be 2449 * 0, which means to process everything in the tree at the start 2450 * of the run (but not newly added entries), or it can be some target 2451 * number you'd like to process. 2452 * 2453 * Returns 0 on success or if called with an aborted transaction 2454 * Returns <0 on error and aborts the transaction 2455 */ 2456 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2457 struct btrfs_root *root, unsigned long count) 2458 { 2459 struct rb_node *node; 2460 struct btrfs_delayed_ref_root *delayed_refs; 2461 struct btrfs_delayed_ref_node *ref; 2462 struct list_head cluster; 2463 struct list_head *first_seq = NULL; 2464 int ret; 2465 u64 delayed_start; 2466 int run_all = count == (unsigned long)-1; 2467 int run_most = 0; 2468 unsigned long num_refs = 0; 2469 int consider_waiting; 2470 2471 /* We'll clean this up in btrfs_cleanup_transaction */ 2472 if (trans->aborted) 2473 return 0; 2474 2475 if (root == root->fs_info->extent_root) 2476 root = root->fs_info->tree_root; 2477 2478 do_chunk_alloc(trans, root->fs_info->extent_root, 2479 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0), 2480 CHUNK_ALLOC_NO_FORCE); 2481 2482 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 2483 2484 delayed_refs = &trans->transaction->delayed_refs; 2485 INIT_LIST_HEAD(&cluster); 2486 again: 2487 consider_waiting = 0; 2488 spin_lock(&delayed_refs->lock); 2489 2490 #ifdef SCRAMBLE_DELAYED_REFS 2491 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2492 #endif 2493 2494 if (count == 0) { 2495 count = delayed_refs->num_entries * 2; 2496 run_most = 1; 2497 } 2498 while (1) { 2499 if (!(run_all || run_most) && 2500 delayed_refs->num_heads_ready < 64) 2501 break; 2502 2503 /* 2504 * go find something we can process in the rbtree. We start at 2505 * the beginning of the tree, and then build a cluster 2506 * of refs to process starting at the first one we are able to 2507 * lock 2508 */ 2509 delayed_start = delayed_refs->run_delayed_start; 2510 ret = btrfs_find_ref_cluster(trans, &cluster, 2511 delayed_refs->run_delayed_start); 2512 if (ret) 2513 break; 2514 2515 if (delayed_start >= delayed_refs->run_delayed_start) { 2516 if (consider_waiting == 0) { 2517 /* 2518 * btrfs_find_ref_cluster looped. let's do one 2519 * more cycle. if we don't run any delayed ref 2520 * during that cycle (because we can't because 2521 * all of them are blocked) and if the number of 2522 * refs doesn't change, we avoid busy waiting. 2523 */ 2524 consider_waiting = 1; 2525 num_refs = delayed_refs->num_entries; 2526 first_seq = root->fs_info->tree_mod_seq_list.next; 2527 } else { 2528 wait_for_more_refs(root->fs_info, delayed_refs, 2529 num_refs, first_seq); 2530 /* 2531 * after waiting, things have changed. we 2532 * dropped the lock and someone else might have 2533 * run some refs, built new clusters and so on. 2534 * therefore, we restart staleness detection. 2535 */ 2536 consider_waiting = 0; 2537 } 2538 } 2539 2540 ret = run_clustered_refs(trans, root, &cluster); 2541 if (ret < 0) { 2542 spin_unlock(&delayed_refs->lock); 2543 btrfs_abort_transaction(trans, root, ret); 2544 return ret; 2545 } 2546 2547 count -= min_t(unsigned long, ret, count); 2548 2549 if (count == 0) 2550 break; 2551 2552 if (ret || delayed_refs->run_delayed_start == 0) { 2553 /* refs were run, let's reset staleness detection */ 2554 consider_waiting = 0; 2555 } 2556 } 2557 2558 if (run_all) { 2559 node = rb_first(&delayed_refs->root); 2560 if (!node) 2561 goto out; 2562 count = (unsigned long)-1; 2563 2564 while (node) { 2565 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2566 rb_node); 2567 if (btrfs_delayed_ref_is_head(ref)) { 2568 struct btrfs_delayed_ref_head *head; 2569 2570 head = btrfs_delayed_node_to_head(ref); 2571 atomic_inc(&ref->refs); 2572 2573 spin_unlock(&delayed_refs->lock); 2574 /* 2575 * Mutex was contended, block until it's 2576 * released and try again 2577 */ 2578 mutex_lock(&head->mutex); 2579 mutex_unlock(&head->mutex); 2580 2581 btrfs_put_delayed_ref(ref); 2582 cond_resched(); 2583 goto again; 2584 } 2585 node = rb_next(node); 2586 } 2587 spin_unlock(&delayed_refs->lock); 2588 schedule_timeout(1); 2589 goto again; 2590 } 2591 out: 2592 spin_unlock(&delayed_refs->lock); 2593 assert_qgroups_uptodate(trans); 2594 return 0; 2595 } 2596 2597 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2598 struct btrfs_root *root, 2599 u64 bytenr, u64 num_bytes, u64 flags, 2600 int is_data) 2601 { 2602 struct btrfs_delayed_extent_op *extent_op; 2603 int ret; 2604 2605 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2606 if (!extent_op) 2607 return -ENOMEM; 2608 2609 extent_op->flags_to_set = flags; 2610 extent_op->update_flags = 1; 2611 extent_op->update_key = 0; 2612 extent_op->is_data = is_data ? 1 : 0; 2613 2614 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2615 num_bytes, extent_op); 2616 if (ret) 2617 kfree(extent_op); 2618 return ret; 2619 } 2620 2621 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2622 struct btrfs_root *root, 2623 struct btrfs_path *path, 2624 u64 objectid, u64 offset, u64 bytenr) 2625 { 2626 struct btrfs_delayed_ref_head *head; 2627 struct btrfs_delayed_ref_node *ref; 2628 struct btrfs_delayed_data_ref *data_ref; 2629 struct btrfs_delayed_ref_root *delayed_refs; 2630 struct rb_node *node; 2631 int ret = 0; 2632 2633 ret = -ENOENT; 2634 delayed_refs = &trans->transaction->delayed_refs; 2635 spin_lock(&delayed_refs->lock); 2636 head = btrfs_find_delayed_ref_head(trans, bytenr); 2637 if (!head) 2638 goto out; 2639 2640 if (!mutex_trylock(&head->mutex)) { 2641 atomic_inc(&head->node.refs); 2642 spin_unlock(&delayed_refs->lock); 2643 2644 btrfs_release_path(path); 2645 2646 /* 2647 * Mutex was contended, block until it's released and let 2648 * caller try again 2649 */ 2650 mutex_lock(&head->mutex); 2651 mutex_unlock(&head->mutex); 2652 btrfs_put_delayed_ref(&head->node); 2653 return -EAGAIN; 2654 } 2655 2656 node = rb_prev(&head->node.rb_node); 2657 if (!node) 2658 goto out_unlock; 2659 2660 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2661 2662 if (ref->bytenr != bytenr) 2663 goto out_unlock; 2664 2665 ret = 1; 2666 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2667 goto out_unlock; 2668 2669 data_ref = btrfs_delayed_node_to_data_ref(ref); 2670 2671 node = rb_prev(node); 2672 if (node) { 2673 int seq = ref->seq; 2674 2675 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2676 if (ref->bytenr == bytenr && ref->seq == seq) 2677 goto out_unlock; 2678 } 2679 2680 if (data_ref->root != root->root_key.objectid || 2681 data_ref->objectid != objectid || data_ref->offset != offset) 2682 goto out_unlock; 2683 2684 ret = 0; 2685 out_unlock: 2686 mutex_unlock(&head->mutex); 2687 out: 2688 spin_unlock(&delayed_refs->lock); 2689 return ret; 2690 } 2691 2692 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2693 struct btrfs_root *root, 2694 struct btrfs_path *path, 2695 u64 objectid, u64 offset, u64 bytenr) 2696 { 2697 struct btrfs_root *extent_root = root->fs_info->extent_root; 2698 struct extent_buffer *leaf; 2699 struct btrfs_extent_data_ref *ref; 2700 struct btrfs_extent_inline_ref *iref; 2701 struct btrfs_extent_item *ei; 2702 struct btrfs_key key; 2703 u32 item_size; 2704 int ret; 2705 2706 key.objectid = bytenr; 2707 key.offset = (u64)-1; 2708 key.type = BTRFS_EXTENT_ITEM_KEY; 2709 2710 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2711 if (ret < 0) 2712 goto out; 2713 BUG_ON(ret == 0); /* Corruption */ 2714 2715 ret = -ENOENT; 2716 if (path->slots[0] == 0) 2717 goto out; 2718 2719 path->slots[0]--; 2720 leaf = path->nodes[0]; 2721 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2722 2723 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2724 goto out; 2725 2726 ret = 1; 2727 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2729 if (item_size < sizeof(*ei)) { 2730 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2731 goto out; 2732 } 2733 #endif 2734 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2735 2736 if (item_size != sizeof(*ei) + 2737 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2738 goto out; 2739 2740 if (btrfs_extent_generation(leaf, ei) <= 2741 btrfs_root_last_snapshot(&root->root_item)) 2742 goto out; 2743 2744 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2745 if (btrfs_extent_inline_ref_type(leaf, iref) != 2746 BTRFS_EXTENT_DATA_REF_KEY) 2747 goto out; 2748 2749 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2750 if (btrfs_extent_refs(leaf, ei) != 2751 btrfs_extent_data_ref_count(leaf, ref) || 2752 btrfs_extent_data_ref_root(leaf, ref) != 2753 root->root_key.objectid || 2754 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2755 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2756 goto out; 2757 2758 ret = 0; 2759 out: 2760 return ret; 2761 } 2762 2763 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2764 struct btrfs_root *root, 2765 u64 objectid, u64 offset, u64 bytenr) 2766 { 2767 struct btrfs_path *path; 2768 int ret; 2769 int ret2; 2770 2771 path = btrfs_alloc_path(); 2772 if (!path) 2773 return -ENOENT; 2774 2775 do { 2776 ret = check_committed_ref(trans, root, path, objectid, 2777 offset, bytenr); 2778 if (ret && ret != -ENOENT) 2779 goto out; 2780 2781 ret2 = check_delayed_ref(trans, root, path, objectid, 2782 offset, bytenr); 2783 } while (ret2 == -EAGAIN); 2784 2785 if (ret2 && ret2 != -ENOENT) { 2786 ret = ret2; 2787 goto out; 2788 } 2789 2790 if (ret != -ENOENT || ret2 != -ENOENT) 2791 ret = 0; 2792 out: 2793 btrfs_free_path(path); 2794 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2795 WARN_ON(ret > 0); 2796 return ret; 2797 } 2798 2799 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2800 struct btrfs_root *root, 2801 struct extent_buffer *buf, 2802 int full_backref, int inc, int for_cow) 2803 { 2804 u64 bytenr; 2805 u64 num_bytes; 2806 u64 parent; 2807 u64 ref_root; 2808 u32 nritems; 2809 struct btrfs_key key; 2810 struct btrfs_file_extent_item *fi; 2811 int i; 2812 int level; 2813 int ret = 0; 2814 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2815 u64, u64, u64, u64, u64, u64, int); 2816 2817 ref_root = btrfs_header_owner(buf); 2818 nritems = btrfs_header_nritems(buf); 2819 level = btrfs_header_level(buf); 2820 2821 if (!root->ref_cows && level == 0) 2822 return 0; 2823 2824 if (inc) 2825 process_func = btrfs_inc_extent_ref; 2826 else 2827 process_func = btrfs_free_extent; 2828 2829 if (full_backref) 2830 parent = buf->start; 2831 else 2832 parent = 0; 2833 2834 for (i = 0; i < nritems; i++) { 2835 if (level == 0) { 2836 btrfs_item_key_to_cpu(buf, &key, i); 2837 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2838 continue; 2839 fi = btrfs_item_ptr(buf, i, 2840 struct btrfs_file_extent_item); 2841 if (btrfs_file_extent_type(buf, fi) == 2842 BTRFS_FILE_EXTENT_INLINE) 2843 continue; 2844 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2845 if (bytenr == 0) 2846 continue; 2847 2848 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2849 key.offset -= btrfs_file_extent_offset(buf, fi); 2850 ret = process_func(trans, root, bytenr, num_bytes, 2851 parent, ref_root, key.objectid, 2852 key.offset, for_cow); 2853 if (ret) 2854 goto fail; 2855 } else { 2856 bytenr = btrfs_node_blockptr(buf, i); 2857 num_bytes = btrfs_level_size(root, level - 1); 2858 ret = process_func(trans, root, bytenr, num_bytes, 2859 parent, ref_root, level - 1, 0, 2860 for_cow); 2861 if (ret) 2862 goto fail; 2863 } 2864 } 2865 return 0; 2866 fail: 2867 return ret; 2868 } 2869 2870 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2871 struct extent_buffer *buf, int full_backref, int for_cow) 2872 { 2873 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2874 } 2875 2876 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2877 struct extent_buffer *buf, int full_backref, int for_cow) 2878 { 2879 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2880 } 2881 2882 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2883 struct btrfs_root *root, 2884 struct btrfs_path *path, 2885 struct btrfs_block_group_cache *cache) 2886 { 2887 int ret; 2888 struct btrfs_root *extent_root = root->fs_info->extent_root; 2889 unsigned long bi; 2890 struct extent_buffer *leaf; 2891 2892 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2893 if (ret < 0) 2894 goto fail; 2895 BUG_ON(ret); /* Corruption */ 2896 2897 leaf = path->nodes[0]; 2898 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2899 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2900 btrfs_mark_buffer_dirty(leaf); 2901 btrfs_release_path(path); 2902 fail: 2903 if (ret) { 2904 btrfs_abort_transaction(trans, root, ret); 2905 return ret; 2906 } 2907 return 0; 2908 2909 } 2910 2911 static struct btrfs_block_group_cache * 2912 next_block_group(struct btrfs_root *root, 2913 struct btrfs_block_group_cache *cache) 2914 { 2915 struct rb_node *node; 2916 spin_lock(&root->fs_info->block_group_cache_lock); 2917 node = rb_next(&cache->cache_node); 2918 btrfs_put_block_group(cache); 2919 if (node) { 2920 cache = rb_entry(node, struct btrfs_block_group_cache, 2921 cache_node); 2922 btrfs_get_block_group(cache); 2923 } else 2924 cache = NULL; 2925 spin_unlock(&root->fs_info->block_group_cache_lock); 2926 return cache; 2927 } 2928 2929 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2930 struct btrfs_trans_handle *trans, 2931 struct btrfs_path *path) 2932 { 2933 struct btrfs_root *root = block_group->fs_info->tree_root; 2934 struct inode *inode = NULL; 2935 u64 alloc_hint = 0; 2936 int dcs = BTRFS_DC_ERROR; 2937 int num_pages = 0; 2938 int retries = 0; 2939 int ret = 0; 2940 2941 /* 2942 * If this block group is smaller than 100 megs don't bother caching the 2943 * block group. 2944 */ 2945 if (block_group->key.offset < (100 * 1024 * 1024)) { 2946 spin_lock(&block_group->lock); 2947 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2948 spin_unlock(&block_group->lock); 2949 return 0; 2950 } 2951 2952 again: 2953 inode = lookup_free_space_inode(root, block_group, path); 2954 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2955 ret = PTR_ERR(inode); 2956 btrfs_release_path(path); 2957 goto out; 2958 } 2959 2960 if (IS_ERR(inode)) { 2961 BUG_ON(retries); 2962 retries++; 2963 2964 if (block_group->ro) 2965 goto out_free; 2966 2967 ret = create_free_space_inode(root, trans, block_group, path); 2968 if (ret) 2969 goto out_free; 2970 goto again; 2971 } 2972 2973 /* We've already setup this transaction, go ahead and exit */ 2974 if (block_group->cache_generation == trans->transid && 2975 i_size_read(inode)) { 2976 dcs = BTRFS_DC_SETUP; 2977 goto out_put; 2978 } 2979 2980 /* 2981 * We want to set the generation to 0, that way if anything goes wrong 2982 * from here on out we know not to trust this cache when we load up next 2983 * time. 2984 */ 2985 BTRFS_I(inode)->generation = 0; 2986 ret = btrfs_update_inode(trans, root, inode); 2987 WARN_ON(ret); 2988 2989 if (i_size_read(inode) > 0) { 2990 ret = btrfs_truncate_free_space_cache(root, trans, path, 2991 inode); 2992 if (ret) 2993 goto out_put; 2994 } 2995 2996 spin_lock(&block_group->lock); 2997 if (block_group->cached != BTRFS_CACHE_FINISHED || 2998 !btrfs_test_opt(root, SPACE_CACHE)) { 2999 /* 3000 * don't bother trying to write stuff out _if_ 3001 * a) we're not cached, 3002 * b) we're with nospace_cache mount option. 3003 */ 3004 dcs = BTRFS_DC_WRITTEN; 3005 spin_unlock(&block_group->lock); 3006 goto out_put; 3007 } 3008 spin_unlock(&block_group->lock); 3009 3010 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); 3011 if (!num_pages) 3012 num_pages = 1; 3013 3014 /* 3015 * Just to make absolutely sure we have enough space, we're going to 3016 * preallocate 12 pages worth of space for each block group. In 3017 * practice we ought to use at most 8, but we need extra space so we can 3018 * add our header and have a terminator between the extents and the 3019 * bitmaps. 3020 */ 3021 num_pages *= 16; 3022 num_pages *= PAGE_CACHE_SIZE; 3023 3024 ret = btrfs_check_data_free_space(inode, num_pages); 3025 if (ret) 3026 goto out_put; 3027 3028 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3029 num_pages, num_pages, 3030 &alloc_hint); 3031 if (!ret) 3032 dcs = BTRFS_DC_SETUP; 3033 btrfs_free_reserved_data_space(inode, num_pages); 3034 3035 out_put: 3036 iput(inode); 3037 out_free: 3038 btrfs_release_path(path); 3039 out: 3040 spin_lock(&block_group->lock); 3041 if (!ret && dcs == BTRFS_DC_SETUP) 3042 block_group->cache_generation = trans->transid; 3043 block_group->disk_cache_state = dcs; 3044 spin_unlock(&block_group->lock); 3045 3046 return ret; 3047 } 3048 3049 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3050 struct btrfs_root *root) 3051 { 3052 struct btrfs_block_group_cache *cache; 3053 int err = 0; 3054 struct btrfs_path *path; 3055 u64 last = 0; 3056 3057 path = btrfs_alloc_path(); 3058 if (!path) 3059 return -ENOMEM; 3060 3061 again: 3062 while (1) { 3063 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3064 while (cache) { 3065 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3066 break; 3067 cache = next_block_group(root, cache); 3068 } 3069 if (!cache) { 3070 if (last == 0) 3071 break; 3072 last = 0; 3073 continue; 3074 } 3075 err = cache_save_setup(cache, trans, path); 3076 last = cache->key.objectid + cache->key.offset; 3077 btrfs_put_block_group(cache); 3078 } 3079 3080 while (1) { 3081 if (last == 0) { 3082 err = btrfs_run_delayed_refs(trans, root, 3083 (unsigned long)-1); 3084 if (err) /* File system offline */ 3085 goto out; 3086 } 3087 3088 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3089 while (cache) { 3090 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3091 btrfs_put_block_group(cache); 3092 goto again; 3093 } 3094 3095 if (cache->dirty) 3096 break; 3097 cache = next_block_group(root, cache); 3098 } 3099 if (!cache) { 3100 if (last == 0) 3101 break; 3102 last = 0; 3103 continue; 3104 } 3105 3106 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3107 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3108 cache->dirty = 0; 3109 last = cache->key.objectid + cache->key.offset; 3110 3111 err = write_one_cache_group(trans, root, path, cache); 3112 if (err) /* File system offline */ 3113 goto out; 3114 3115 btrfs_put_block_group(cache); 3116 } 3117 3118 while (1) { 3119 /* 3120 * I don't think this is needed since we're just marking our 3121 * preallocated extent as written, but just in case it can't 3122 * hurt. 3123 */ 3124 if (last == 0) { 3125 err = btrfs_run_delayed_refs(trans, root, 3126 (unsigned long)-1); 3127 if (err) /* File system offline */ 3128 goto out; 3129 } 3130 3131 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3132 while (cache) { 3133 /* 3134 * Really this shouldn't happen, but it could if we 3135 * couldn't write the entire preallocated extent and 3136 * splitting the extent resulted in a new block. 3137 */ 3138 if (cache->dirty) { 3139 btrfs_put_block_group(cache); 3140 goto again; 3141 } 3142 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3143 break; 3144 cache = next_block_group(root, cache); 3145 } 3146 if (!cache) { 3147 if (last == 0) 3148 break; 3149 last = 0; 3150 continue; 3151 } 3152 3153 err = btrfs_write_out_cache(root, trans, cache, path); 3154 3155 /* 3156 * If we didn't have an error then the cache state is still 3157 * NEED_WRITE, so we can set it to WRITTEN. 3158 */ 3159 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3160 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3161 last = cache->key.objectid + cache->key.offset; 3162 btrfs_put_block_group(cache); 3163 } 3164 out: 3165 3166 btrfs_free_path(path); 3167 return err; 3168 } 3169 3170 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3171 { 3172 struct btrfs_block_group_cache *block_group; 3173 int readonly = 0; 3174 3175 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3176 if (!block_group || block_group->ro) 3177 readonly = 1; 3178 if (block_group) 3179 btrfs_put_block_group(block_group); 3180 return readonly; 3181 } 3182 3183 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3184 u64 total_bytes, u64 bytes_used, 3185 struct btrfs_space_info **space_info) 3186 { 3187 struct btrfs_space_info *found; 3188 int i; 3189 int factor; 3190 3191 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3192 BTRFS_BLOCK_GROUP_RAID10)) 3193 factor = 2; 3194 else 3195 factor = 1; 3196 3197 found = __find_space_info(info, flags); 3198 if (found) { 3199 spin_lock(&found->lock); 3200 found->total_bytes += total_bytes; 3201 found->disk_total += total_bytes * factor; 3202 found->bytes_used += bytes_used; 3203 found->disk_used += bytes_used * factor; 3204 found->full = 0; 3205 spin_unlock(&found->lock); 3206 *space_info = found; 3207 return 0; 3208 } 3209 found = kzalloc(sizeof(*found), GFP_NOFS); 3210 if (!found) 3211 return -ENOMEM; 3212 3213 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3214 INIT_LIST_HEAD(&found->block_groups[i]); 3215 init_rwsem(&found->groups_sem); 3216 spin_lock_init(&found->lock); 3217 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3218 found->total_bytes = total_bytes; 3219 found->disk_total = total_bytes * factor; 3220 found->bytes_used = bytes_used; 3221 found->disk_used = bytes_used * factor; 3222 found->bytes_pinned = 0; 3223 found->bytes_reserved = 0; 3224 found->bytes_readonly = 0; 3225 found->bytes_may_use = 0; 3226 found->full = 0; 3227 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3228 found->chunk_alloc = 0; 3229 found->flush = 0; 3230 init_waitqueue_head(&found->wait); 3231 *space_info = found; 3232 list_add_rcu(&found->list, &info->space_info); 3233 if (flags & BTRFS_BLOCK_GROUP_DATA) 3234 info->data_sinfo = found; 3235 return 0; 3236 } 3237 3238 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3239 { 3240 u64 extra_flags = chunk_to_extended(flags) & 3241 BTRFS_EXTENDED_PROFILE_MASK; 3242 3243 if (flags & BTRFS_BLOCK_GROUP_DATA) 3244 fs_info->avail_data_alloc_bits |= extra_flags; 3245 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3246 fs_info->avail_metadata_alloc_bits |= extra_flags; 3247 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3248 fs_info->avail_system_alloc_bits |= extra_flags; 3249 } 3250 3251 /* 3252 * returns target flags in extended format or 0 if restripe for this 3253 * chunk_type is not in progress 3254 * 3255 * should be called with either volume_mutex or balance_lock held 3256 */ 3257 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3258 { 3259 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3260 u64 target = 0; 3261 3262 if (!bctl) 3263 return 0; 3264 3265 if (flags & BTRFS_BLOCK_GROUP_DATA && 3266 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3267 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3268 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3269 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3270 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3271 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3272 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3273 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3274 } 3275 3276 return target; 3277 } 3278 3279 /* 3280 * @flags: available profiles in extended format (see ctree.h) 3281 * 3282 * Returns reduced profile in chunk format. If profile changing is in 3283 * progress (either running or paused) picks the target profile (if it's 3284 * already available), otherwise falls back to plain reducing. 3285 */ 3286 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3287 { 3288 /* 3289 * we add in the count of missing devices because we want 3290 * to make sure that any RAID levels on a degraded FS 3291 * continue to be honored. 3292 */ 3293 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3294 root->fs_info->fs_devices->missing_devices; 3295 u64 target; 3296 3297 /* 3298 * see if restripe for this chunk_type is in progress, if so 3299 * try to reduce to the target profile 3300 */ 3301 spin_lock(&root->fs_info->balance_lock); 3302 target = get_restripe_target(root->fs_info, flags); 3303 if (target) { 3304 /* pick target profile only if it's already available */ 3305 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3306 spin_unlock(&root->fs_info->balance_lock); 3307 return extended_to_chunk(target); 3308 } 3309 } 3310 spin_unlock(&root->fs_info->balance_lock); 3311 3312 if (num_devices == 1) 3313 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3314 if (num_devices < 4) 3315 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3316 3317 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3318 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3319 BTRFS_BLOCK_GROUP_RAID10))) { 3320 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3321 } 3322 3323 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3324 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3325 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3326 } 3327 3328 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3329 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3330 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3331 (flags & BTRFS_BLOCK_GROUP_DUP))) { 3332 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3333 } 3334 3335 return extended_to_chunk(flags); 3336 } 3337 3338 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3339 { 3340 if (flags & BTRFS_BLOCK_GROUP_DATA) 3341 flags |= root->fs_info->avail_data_alloc_bits; 3342 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3343 flags |= root->fs_info->avail_system_alloc_bits; 3344 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3345 flags |= root->fs_info->avail_metadata_alloc_bits; 3346 3347 return btrfs_reduce_alloc_profile(root, flags); 3348 } 3349 3350 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3351 { 3352 u64 flags; 3353 3354 if (data) 3355 flags = BTRFS_BLOCK_GROUP_DATA; 3356 else if (root == root->fs_info->chunk_root) 3357 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3358 else 3359 flags = BTRFS_BLOCK_GROUP_METADATA; 3360 3361 return get_alloc_profile(root, flags); 3362 } 3363 3364 /* 3365 * This will check the space that the inode allocates from to make sure we have 3366 * enough space for bytes. 3367 */ 3368 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3369 { 3370 struct btrfs_space_info *data_sinfo; 3371 struct btrfs_root *root = BTRFS_I(inode)->root; 3372 struct btrfs_fs_info *fs_info = root->fs_info; 3373 u64 used; 3374 int ret = 0, committed = 0, alloc_chunk = 1; 3375 3376 /* make sure bytes are sectorsize aligned */ 3377 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3378 3379 if (root == root->fs_info->tree_root || 3380 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3381 alloc_chunk = 0; 3382 committed = 1; 3383 } 3384 3385 data_sinfo = fs_info->data_sinfo; 3386 if (!data_sinfo) 3387 goto alloc; 3388 3389 again: 3390 /* make sure we have enough space to handle the data first */ 3391 spin_lock(&data_sinfo->lock); 3392 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3393 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3394 data_sinfo->bytes_may_use; 3395 3396 if (used + bytes > data_sinfo->total_bytes) { 3397 struct btrfs_trans_handle *trans; 3398 3399 /* 3400 * if we don't have enough free bytes in this space then we need 3401 * to alloc a new chunk. 3402 */ 3403 if (!data_sinfo->full && alloc_chunk) { 3404 u64 alloc_target; 3405 3406 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3407 spin_unlock(&data_sinfo->lock); 3408 alloc: 3409 alloc_target = btrfs_get_alloc_profile(root, 1); 3410 trans = btrfs_join_transaction(root); 3411 if (IS_ERR(trans)) 3412 return PTR_ERR(trans); 3413 3414 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3415 bytes + 2 * 1024 * 1024, 3416 alloc_target, 3417 CHUNK_ALLOC_NO_FORCE); 3418 btrfs_end_transaction(trans, root); 3419 if (ret < 0) { 3420 if (ret != -ENOSPC) 3421 return ret; 3422 else 3423 goto commit_trans; 3424 } 3425 3426 if (!data_sinfo) 3427 data_sinfo = fs_info->data_sinfo; 3428 3429 goto again; 3430 } 3431 3432 /* 3433 * If we have less pinned bytes than we want to allocate then 3434 * don't bother committing the transaction, it won't help us. 3435 */ 3436 if (data_sinfo->bytes_pinned < bytes) 3437 committed = 1; 3438 spin_unlock(&data_sinfo->lock); 3439 3440 /* commit the current transaction and try again */ 3441 commit_trans: 3442 if (!committed && 3443 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3444 committed = 1; 3445 trans = btrfs_join_transaction(root); 3446 if (IS_ERR(trans)) 3447 return PTR_ERR(trans); 3448 ret = btrfs_commit_transaction(trans, root); 3449 if (ret) 3450 return ret; 3451 goto again; 3452 } 3453 3454 return -ENOSPC; 3455 } 3456 data_sinfo->bytes_may_use += bytes; 3457 trace_btrfs_space_reservation(root->fs_info, "space_info", 3458 data_sinfo->flags, bytes, 1); 3459 spin_unlock(&data_sinfo->lock); 3460 3461 return 0; 3462 } 3463 3464 /* 3465 * Called if we need to clear a data reservation for this inode. 3466 */ 3467 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3468 { 3469 struct btrfs_root *root = BTRFS_I(inode)->root; 3470 struct btrfs_space_info *data_sinfo; 3471 3472 /* make sure bytes are sectorsize aligned */ 3473 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3474 3475 data_sinfo = root->fs_info->data_sinfo; 3476 spin_lock(&data_sinfo->lock); 3477 data_sinfo->bytes_may_use -= bytes; 3478 trace_btrfs_space_reservation(root->fs_info, "space_info", 3479 data_sinfo->flags, bytes, 0); 3480 spin_unlock(&data_sinfo->lock); 3481 } 3482 3483 static void force_metadata_allocation(struct btrfs_fs_info *info) 3484 { 3485 struct list_head *head = &info->space_info; 3486 struct btrfs_space_info *found; 3487 3488 rcu_read_lock(); 3489 list_for_each_entry_rcu(found, head, list) { 3490 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3491 found->force_alloc = CHUNK_ALLOC_FORCE; 3492 } 3493 rcu_read_unlock(); 3494 } 3495 3496 static int should_alloc_chunk(struct btrfs_root *root, 3497 struct btrfs_space_info *sinfo, u64 alloc_bytes, 3498 int force) 3499 { 3500 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3501 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3502 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3503 u64 thresh; 3504 3505 if (force == CHUNK_ALLOC_FORCE) 3506 return 1; 3507 3508 /* 3509 * We need to take into account the global rsv because for all intents 3510 * and purposes it's used space. Don't worry about locking the 3511 * global_rsv, it doesn't change except when the transaction commits. 3512 */ 3513 num_allocated += global_rsv->size; 3514 3515 /* 3516 * in limited mode, we want to have some free space up to 3517 * about 1% of the FS size. 3518 */ 3519 if (force == CHUNK_ALLOC_LIMITED) { 3520 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3521 thresh = max_t(u64, 64 * 1024 * 1024, 3522 div_factor_fine(thresh, 1)); 3523 3524 if (num_bytes - num_allocated < thresh) 3525 return 1; 3526 } 3527 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3528 3529 /* 256MB or 2% of the FS */ 3530 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2)); 3531 /* system chunks need a much small threshold */ 3532 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM) 3533 thresh = 32 * 1024 * 1024; 3534 3535 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8)) 3536 return 0; 3537 return 1; 3538 } 3539 3540 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3541 { 3542 u64 num_dev; 3543 3544 if (type & BTRFS_BLOCK_GROUP_RAID10 || 3545 type & BTRFS_BLOCK_GROUP_RAID0) 3546 num_dev = root->fs_info->fs_devices->rw_devices; 3547 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3548 num_dev = 2; 3549 else 3550 num_dev = 1; /* DUP or single */ 3551 3552 /* metadata for updaing devices and chunk tree */ 3553 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3554 } 3555 3556 static void check_system_chunk(struct btrfs_trans_handle *trans, 3557 struct btrfs_root *root, u64 type) 3558 { 3559 struct btrfs_space_info *info; 3560 u64 left; 3561 u64 thresh; 3562 3563 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3564 spin_lock(&info->lock); 3565 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3566 info->bytes_reserved - info->bytes_readonly; 3567 spin_unlock(&info->lock); 3568 3569 thresh = get_system_chunk_thresh(root, type); 3570 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3571 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n", 3572 left, thresh, type); 3573 dump_space_info(info, 0, 0); 3574 } 3575 3576 if (left < thresh) { 3577 u64 flags; 3578 3579 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3580 btrfs_alloc_chunk(trans, root, flags); 3581 } 3582 } 3583 3584 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3585 struct btrfs_root *extent_root, u64 alloc_bytes, 3586 u64 flags, int force) 3587 { 3588 struct btrfs_space_info *space_info; 3589 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3590 int wait_for_alloc = 0; 3591 int ret = 0; 3592 3593 space_info = __find_space_info(extent_root->fs_info, flags); 3594 if (!space_info) { 3595 ret = update_space_info(extent_root->fs_info, flags, 3596 0, 0, &space_info); 3597 BUG_ON(ret); /* -ENOMEM */ 3598 } 3599 BUG_ON(!space_info); /* Logic error */ 3600 3601 again: 3602 spin_lock(&space_info->lock); 3603 if (force < space_info->force_alloc) 3604 force = space_info->force_alloc; 3605 if (space_info->full) { 3606 spin_unlock(&space_info->lock); 3607 return 0; 3608 } 3609 3610 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) { 3611 spin_unlock(&space_info->lock); 3612 return 0; 3613 } else if (space_info->chunk_alloc) { 3614 wait_for_alloc = 1; 3615 } else { 3616 space_info->chunk_alloc = 1; 3617 } 3618 3619 spin_unlock(&space_info->lock); 3620 3621 mutex_lock(&fs_info->chunk_mutex); 3622 3623 /* 3624 * The chunk_mutex is held throughout the entirety of a chunk 3625 * allocation, so once we've acquired the chunk_mutex we know that the 3626 * other guy is done and we need to recheck and see if we should 3627 * allocate. 3628 */ 3629 if (wait_for_alloc) { 3630 mutex_unlock(&fs_info->chunk_mutex); 3631 wait_for_alloc = 0; 3632 goto again; 3633 } 3634 3635 /* 3636 * If we have mixed data/metadata chunks we want to make sure we keep 3637 * allocating mixed chunks instead of individual chunks. 3638 */ 3639 if (btrfs_mixed_space_info(space_info)) 3640 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3641 3642 /* 3643 * if we're doing a data chunk, go ahead and make sure that 3644 * we keep a reasonable number of metadata chunks allocated in the 3645 * FS as well. 3646 */ 3647 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3648 fs_info->data_chunk_allocations++; 3649 if (!(fs_info->data_chunk_allocations % 3650 fs_info->metadata_ratio)) 3651 force_metadata_allocation(fs_info); 3652 } 3653 3654 /* 3655 * Check if we have enough space in SYSTEM chunk because we may need 3656 * to update devices. 3657 */ 3658 check_system_chunk(trans, extent_root, flags); 3659 3660 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3661 if (ret < 0 && ret != -ENOSPC) 3662 goto out; 3663 3664 spin_lock(&space_info->lock); 3665 if (ret) 3666 space_info->full = 1; 3667 else 3668 ret = 1; 3669 3670 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3671 space_info->chunk_alloc = 0; 3672 spin_unlock(&space_info->lock); 3673 out: 3674 mutex_unlock(&fs_info->chunk_mutex); 3675 return ret; 3676 } 3677 3678 /* 3679 * shrink metadata reservation for delalloc 3680 */ 3681 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 3682 bool wait_ordered) 3683 { 3684 struct btrfs_block_rsv *block_rsv; 3685 struct btrfs_space_info *space_info; 3686 struct btrfs_trans_handle *trans; 3687 u64 delalloc_bytes; 3688 u64 max_reclaim; 3689 long time_left; 3690 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3691 int loops = 0; 3692 3693 trans = (struct btrfs_trans_handle *)current->journal_info; 3694 block_rsv = &root->fs_info->delalloc_block_rsv; 3695 space_info = block_rsv->space_info; 3696 3697 smp_mb(); 3698 delalloc_bytes = root->fs_info->delalloc_bytes; 3699 if (delalloc_bytes == 0) { 3700 if (trans) 3701 return; 3702 btrfs_wait_ordered_extents(root, 0, 0); 3703 return; 3704 } 3705 3706 while (delalloc_bytes && loops < 3) { 3707 max_reclaim = min(delalloc_bytes, to_reclaim); 3708 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 3709 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages, 3710 WB_REASON_FS_FREE_SPACE); 3711 3712 spin_lock(&space_info->lock); 3713 if (space_info->bytes_used + space_info->bytes_reserved + 3714 space_info->bytes_pinned + space_info->bytes_readonly + 3715 space_info->bytes_may_use + orig <= 3716 space_info->total_bytes) { 3717 spin_unlock(&space_info->lock); 3718 break; 3719 } 3720 spin_unlock(&space_info->lock); 3721 3722 loops++; 3723 if (wait_ordered && !trans) { 3724 btrfs_wait_ordered_extents(root, 0, 0); 3725 } else { 3726 time_left = schedule_timeout_killable(1); 3727 if (time_left) 3728 break; 3729 } 3730 smp_mb(); 3731 delalloc_bytes = root->fs_info->delalloc_bytes; 3732 } 3733 } 3734 3735 /** 3736 * maybe_commit_transaction - possibly commit the transaction if its ok to 3737 * @root - the root we're allocating for 3738 * @bytes - the number of bytes we want to reserve 3739 * @force - force the commit 3740 * 3741 * This will check to make sure that committing the transaction will actually 3742 * get us somewhere and then commit the transaction if it does. Otherwise it 3743 * will return -ENOSPC. 3744 */ 3745 static int may_commit_transaction(struct btrfs_root *root, 3746 struct btrfs_space_info *space_info, 3747 u64 bytes, int force) 3748 { 3749 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3750 struct btrfs_trans_handle *trans; 3751 3752 trans = (struct btrfs_trans_handle *)current->journal_info; 3753 if (trans) 3754 return -EAGAIN; 3755 3756 if (force) 3757 goto commit; 3758 3759 /* See if there is enough pinned space to make this reservation */ 3760 spin_lock(&space_info->lock); 3761 if (space_info->bytes_pinned >= bytes) { 3762 spin_unlock(&space_info->lock); 3763 goto commit; 3764 } 3765 spin_unlock(&space_info->lock); 3766 3767 /* 3768 * See if there is some space in the delayed insertion reservation for 3769 * this reservation. 3770 */ 3771 if (space_info != delayed_rsv->space_info) 3772 return -ENOSPC; 3773 3774 spin_lock(&space_info->lock); 3775 spin_lock(&delayed_rsv->lock); 3776 if (space_info->bytes_pinned + delayed_rsv->size < bytes) { 3777 spin_unlock(&delayed_rsv->lock); 3778 spin_unlock(&space_info->lock); 3779 return -ENOSPC; 3780 } 3781 spin_unlock(&delayed_rsv->lock); 3782 spin_unlock(&space_info->lock); 3783 3784 commit: 3785 trans = btrfs_join_transaction(root); 3786 if (IS_ERR(trans)) 3787 return -ENOSPC; 3788 3789 return btrfs_commit_transaction(trans, root); 3790 } 3791 3792 enum flush_state { 3793 FLUSH_DELALLOC = 1, 3794 FLUSH_DELALLOC_WAIT = 2, 3795 FLUSH_DELAYED_ITEMS_NR = 3, 3796 FLUSH_DELAYED_ITEMS = 4, 3797 COMMIT_TRANS = 5, 3798 }; 3799 3800 static int flush_space(struct btrfs_root *root, 3801 struct btrfs_space_info *space_info, u64 num_bytes, 3802 u64 orig_bytes, int state) 3803 { 3804 struct btrfs_trans_handle *trans; 3805 int nr; 3806 int ret = 0; 3807 3808 switch (state) { 3809 case FLUSH_DELALLOC: 3810 case FLUSH_DELALLOC_WAIT: 3811 shrink_delalloc(root, num_bytes, orig_bytes, 3812 state == FLUSH_DELALLOC_WAIT); 3813 break; 3814 case FLUSH_DELAYED_ITEMS_NR: 3815 case FLUSH_DELAYED_ITEMS: 3816 if (state == FLUSH_DELAYED_ITEMS_NR) { 3817 u64 bytes = btrfs_calc_trans_metadata_size(root, 1); 3818 3819 nr = (int)div64_u64(num_bytes, bytes); 3820 if (!nr) 3821 nr = 1; 3822 nr *= 2; 3823 } else { 3824 nr = -1; 3825 } 3826 trans = btrfs_join_transaction(root); 3827 if (IS_ERR(trans)) { 3828 ret = PTR_ERR(trans); 3829 break; 3830 } 3831 ret = btrfs_run_delayed_items_nr(trans, root, nr); 3832 btrfs_end_transaction(trans, root); 3833 break; 3834 case COMMIT_TRANS: 3835 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 3836 break; 3837 default: 3838 ret = -ENOSPC; 3839 break; 3840 } 3841 3842 return ret; 3843 } 3844 /** 3845 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 3846 * @root - the root we're allocating for 3847 * @block_rsv - the block_rsv we're allocating for 3848 * @orig_bytes - the number of bytes we want 3849 * @flush - wether or not we can flush to make our reservation 3850 * 3851 * This will reserve orgi_bytes number of bytes from the space info associated 3852 * with the block_rsv. If there is not enough space it will make an attempt to 3853 * flush out space to make room. It will do this by flushing delalloc if 3854 * possible or committing the transaction. If flush is 0 then no attempts to 3855 * regain reservations will be made and this will fail if there is not enough 3856 * space already. 3857 */ 3858 static int reserve_metadata_bytes(struct btrfs_root *root, 3859 struct btrfs_block_rsv *block_rsv, 3860 u64 orig_bytes, int flush) 3861 { 3862 struct btrfs_space_info *space_info = block_rsv->space_info; 3863 u64 used; 3864 u64 num_bytes = orig_bytes; 3865 int flush_state = FLUSH_DELALLOC; 3866 int ret = 0; 3867 bool flushing = false; 3868 bool committed = false; 3869 3870 again: 3871 ret = 0; 3872 spin_lock(&space_info->lock); 3873 /* 3874 * We only want to wait if somebody other than us is flushing and we are 3875 * actually alloed to flush. 3876 */ 3877 while (flush && !flushing && space_info->flush) { 3878 spin_unlock(&space_info->lock); 3879 /* 3880 * If we have a trans handle we can't wait because the flusher 3881 * may have to commit the transaction, which would mean we would 3882 * deadlock since we are waiting for the flusher to finish, but 3883 * hold the current transaction open. 3884 */ 3885 if (current->journal_info) 3886 return -EAGAIN; 3887 ret = wait_event_killable(space_info->wait, !space_info->flush); 3888 /* Must have been killed, return */ 3889 if (ret) 3890 return -EINTR; 3891 3892 spin_lock(&space_info->lock); 3893 } 3894 3895 ret = -ENOSPC; 3896 used = space_info->bytes_used + space_info->bytes_reserved + 3897 space_info->bytes_pinned + space_info->bytes_readonly + 3898 space_info->bytes_may_use; 3899 3900 /* 3901 * The idea here is that we've not already over-reserved the block group 3902 * then we can go ahead and save our reservation first and then start 3903 * flushing if we need to. Otherwise if we've already overcommitted 3904 * lets start flushing stuff first and then come back and try to make 3905 * our reservation. 3906 */ 3907 if (used <= space_info->total_bytes) { 3908 if (used + orig_bytes <= space_info->total_bytes) { 3909 space_info->bytes_may_use += orig_bytes; 3910 trace_btrfs_space_reservation(root->fs_info, 3911 "space_info", space_info->flags, orig_bytes, 1); 3912 ret = 0; 3913 } else { 3914 /* 3915 * Ok set num_bytes to orig_bytes since we aren't 3916 * overocmmitted, this way we only try and reclaim what 3917 * we need. 3918 */ 3919 num_bytes = orig_bytes; 3920 } 3921 } else { 3922 /* 3923 * Ok we're over committed, set num_bytes to the overcommitted 3924 * amount plus the amount of bytes that we need for this 3925 * reservation. 3926 */ 3927 num_bytes = used - space_info->total_bytes + 3928 (orig_bytes * 2); 3929 } 3930 3931 if (ret) { 3932 u64 profile = btrfs_get_alloc_profile(root, 0); 3933 u64 avail; 3934 3935 /* 3936 * If we have a lot of space that's pinned, don't bother doing 3937 * the overcommit dance yet and just commit the transaction. 3938 */ 3939 avail = (space_info->total_bytes - space_info->bytes_used) * 8; 3940 do_div(avail, 10); 3941 if (space_info->bytes_pinned >= avail && flush && !committed) { 3942 space_info->flush = 1; 3943 flushing = true; 3944 spin_unlock(&space_info->lock); 3945 ret = may_commit_transaction(root, space_info, 3946 orig_bytes, 1); 3947 if (ret) 3948 goto out; 3949 committed = true; 3950 goto again; 3951 } 3952 3953 spin_lock(&root->fs_info->free_chunk_lock); 3954 avail = root->fs_info->free_chunk_space; 3955 3956 /* 3957 * If we have dup, raid1 or raid10 then only half of the free 3958 * space is actually useable. 3959 */ 3960 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3961 BTRFS_BLOCK_GROUP_RAID1 | 3962 BTRFS_BLOCK_GROUP_RAID10)) 3963 avail >>= 1; 3964 3965 /* 3966 * If we aren't flushing don't let us overcommit too much, say 3967 * 1/8th of the space. If we can flush, let it overcommit up to 3968 * 1/2 of the space. 3969 */ 3970 if (flush) 3971 avail >>= 3; 3972 else 3973 avail >>= 1; 3974 spin_unlock(&root->fs_info->free_chunk_lock); 3975 3976 if (used + num_bytes < space_info->total_bytes + avail) { 3977 space_info->bytes_may_use += orig_bytes; 3978 trace_btrfs_space_reservation(root->fs_info, 3979 "space_info", space_info->flags, orig_bytes, 1); 3980 ret = 0; 3981 } 3982 } 3983 3984 /* 3985 * Couldn't make our reservation, save our place so while we're trying 3986 * to reclaim space we can actually use it instead of somebody else 3987 * stealing it from us. 3988 */ 3989 if (ret && flush) { 3990 flushing = true; 3991 space_info->flush = 1; 3992 } 3993 3994 spin_unlock(&space_info->lock); 3995 3996 if (!ret || !flush) 3997 goto out; 3998 3999 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4000 flush_state); 4001 flush_state++; 4002 if (!ret) 4003 goto again; 4004 else if (flush_state <= COMMIT_TRANS) 4005 goto again; 4006 4007 out: 4008 if (flushing) { 4009 spin_lock(&space_info->lock); 4010 space_info->flush = 0; 4011 wake_up_all(&space_info->wait); 4012 spin_unlock(&space_info->lock); 4013 } 4014 return ret; 4015 } 4016 4017 static struct btrfs_block_rsv *get_block_rsv( 4018 const struct btrfs_trans_handle *trans, 4019 const struct btrfs_root *root) 4020 { 4021 struct btrfs_block_rsv *block_rsv = NULL; 4022 4023 if (root->ref_cows) 4024 block_rsv = trans->block_rsv; 4025 4026 if (root == root->fs_info->csum_root && trans->adding_csums) 4027 block_rsv = trans->block_rsv; 4028 4029 if (!block_rsv) 4030 block_rsv = root->block_rsv; 4031 4032 if (!block_rsv) 4033 block_rsv = &root->fs_info->empty_block_rsv; 4034 4035 return block_rsv; 4036 } 4037 4038 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4039 u64 num_bytes) 4040 { 4041 int ret = -ENOSPC; 4042 spin_lock(&block_rsv->lock); 4043 if (block_rsv->reserved >= num_bytes) { 4044 block_rsv->reserved -= num_bytes; 4045 if (block_rsv->reserved < block_rsv->size) 4046 block_rsv->full = 0; 4047 ret = 0; 4048 } 4049 spin_unlock(&block_rsv->lock); 4050 return ret; 4051 } 4052 4053 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4054 u64 num_bytes, int update_size) 4055 { 4056 spin_lock(&block_rsv->lock); 4057 block_rsv->reserved += num_bytes; 4058 if (update_size) 4059 block_rsv->size += num_bytes; 4060 else if (block_rsv->reserved >= block_rsv->size) 4061 block_rsv->full = 1; 4062 spin_unlock(&block_rsv->lock); 4063 } 4064 4065 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4066 struct btrfs_block_rsv *block_rsv, 4067 struct btrfs_block_rsv *dest, u64 num_bytes) 4068 { 4069 struct btrfs_space_info *space_info = block_rsv->space_info; 4070 4071 spin_lock(&block_rsv->lock); 4072 if (num_bytes == (u64)-1) 4073 num_bytes = block_rsv->size; 4074 block_rsv->size -= num_bytes; 4075 if (block_rsv->reserved >= block_rsv->size) { 4076 num_bytes = block_rsv->reserved - block_rsv->size; 4077 block_rsv->reserved = block_rsv->size; 4078 block_rsv->full = 1; 4079 } else { 4080 num_bytes = 0; 4081 } 4082 spin_unlock(&block_rsv->lock); 4083 4084 if (num_bytes > 0) { 4085 if (dest) { 4086 spin_lock(&dest->lock); 4087 if (!dest->full) { 4088 u64 bytes_to_add; 4089 4090 bytes_to_add = dest->size - dest->reserved; 4091 bytes_to_add = min(num_bytes, bytes_to_add); 4092 dest->reserved += bytes_to_add; 4093 if (dest->reserved >= dest->size) 4094 dest->full = 1; 4095 num_bytes -= bytes_to_add; 4096 } 4097 spin_unlock(&dest->lock); 4098 } 4099 if (num_bytes) { 4100 spin_lock(&space_info->lock); 4101 space_info->bytes_may_use -= num_bytes; 4102 trace_btrfs_space_reservation(fs_info, "space_info", 4103 space_info->flags, num_bytes, 0); 4104 space_info->reservation_progress++; 4105 spin_unlock(&space_info->lock); 4106 } 4107 } 4108 } 4109 4110 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4111 struct btrfs_block_rsv *dst, u64 num_bytes) 4112 { 4113 int ret; 4114 4115 ret = block_rsv_use_bytes(src, num_bytes); 4116 if (ret) 4117 return ret; 4118 4119 block_rsv_add_bytes(dst, num_bytes, 1); 4120 return 0; 4121 } 4122 4123 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 4124 { 4125 memset(rsv, 0, sizeof(*rsv)); 4126 spin_lock_init(&rsv->lock); 4127 } 4128 4129 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 4130 { 4131 struct btrfs_block_rsv *block_rsv; 4132 struct btrfs_fs_info *fs_info = root->fs_info; 4133 4134 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4135 if (!block_rsv) 4136 return NULL; 4137 4138 btrfs_init_block_rsv(block_rsv); 4139 block_rsv->space_info = __find_space_info(fs_info, 4140 BTRFS_BLOCK_GROUP_METADATA); 4141 return block_rsv; 4142 } 4143 4144 void btrfs_free_block_rsv(struct btrfs_root *root, 4145 struct btrfs_block_rsv *rsv) 4146 { 4147 btrfs_block_rsv_release(root, rsv, (u64)-1); 4148 kfree(rsv); 4149 } 4150 4151 static inline int __block_rsv_add(struct btrfs_root *root, 4152 struct btrfs_block_rsv *block_rsv, 4153 u64 num_bytes, int flush) 4154 { 4155 int ret; 4156 4157 if (num_bytes == 0) 4158 return 0; 4159 4160 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4161 if (!ret) { 4162 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4163 return 0; 4164 } 4165 4166 return ret; 4167 } 4168 4169 int btrfs_block_rsv_add(struct btrfs_root *root, 4170 struct btrfs_block_rsv *block_rsv, 4171 u64 num_bytes) 4172 { 4173 return __block_rsv_add(root, block_rsv, num_bytes, 1); 4174 } 4175 4176 int btrfs_block_rsv_add_noflush(struct btrfs_root *root, 4177 struct btrfs_block_rsv *block_rsv, 4178 u64 num_bytes) 4179 { 4180 return __block_rsv_add(root, block_rsv, num_bytes, 0); 4181 } 4182 4183 int btrfs_block_rsv_check(struct btrfs_root *root, 4184 struct btrfs_block_rsv *block_rsv, int min_factor) 4185 { 4186 u64 num_bytes = 0; 4187 int ret = -ENOSPC; 4188 4189 if (!block_rsv) 4190 return 0; 4191 4192 spin_lock(&block_rsv->lock); 4193 num_bytes = div_factor(block_rsv->size, min_factor); 4194 if (block_rsv->reserved >= num_bytes) 4195 ret = 0; 4196 spin_unlock(&block_rsv->lock); 4197 4198 return ret; 4199 } 4200 4201 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root, 4202 struct btrfs_block_rsv *block_rsv, 4203 u64 min_reserved, int flush) 4204 { 4205 u64 num_bytes = 0; 4206 int ret = -ENOSPC; 4207 4208 if (!block_rsv) 4209 return 0; 4210 4211 spin_lock(&block_rsv->lock); 4212 num_bytes = min_reserved; 4213 if (block_rsv->reserved >= num_bytes) 4214 ret = 0; 4215 else 4216 num_bytes -= block_rsv->reserved; 4217 spin_unlock(&block_rsv->lock); 4218 4219 if (!ret) 4220 return 0; 4221 4222 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4223 if (!ret) { 4224 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4225 return 0; 4226 } 4227 4228 return ret; 4229 } 4230 4231 int btrfs_block_rsv_refill(struct btrfs_root *root, 4232 struct btrfs_block_rsv *block_rsv, 4233 u64 min_reserved) 4234 { 4235 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1); 4236 } 4237 4238 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root, 4239 struct btrfs_block_rsv *block_rsv, 4240 u64 min_reserved) 4241 { 4242 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0); 4243 } 4244 4245 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4246 struct btrfs_block_rsv *dst_rsv, 4247 u64 num_bytes) 4248 { 4249 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4250 } 4251 4252 void btrfs_block_rsv_release(struct btrfs_root *root, 4253 struct btrfs_block_rsv *block_rsv, 4254 u64 num_bytes) 4255 { 4256 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4257 if (global_rsv->full || global_rsv == block_rsv || 4258 block_rsv->space_info != global_rsv->space_info) 4259 global_rsv = NULL; 4260 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4261 num_bytes); 4262 } 4263 4264 /* 4265 * helper to calculate size of global block reservation. 4266 * the desired value is sum of space used by extent tree, 4267 * checksum tree and root tree 4268 */ 4269 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4270 { 4271 struct btrfs_space_info *sinfo; 4272 u64 num_bytes; 4273 u64 meta_used; 4274 u64 data_used; 4275 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4276 4277 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4278 spin_lock(&sinfo->lock); 4279 data_used = sinfo->bytes_used; 4280 spin_unlock(&sinfo->lock); 4281 4282 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4283 spin_lock(&sinfo->lock); 4284 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4285 data_used = 0; 4286 meta_used = sinfo->bytes_used; 4287 spin_unlock(&sinfo->lock); 4288 4289 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4290 csum_size * 2; 4291 num_bytes += div64_u64(data_used + meta_used, 50); 4292 4293 if (num_bytes * 3 > meta_used) 4294 num_bytes = div64_u64(meta_used, 3); 4295 4296 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4297 } 4298 4299 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4300 { 4301 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4302 struct btrfs_space_info *sinfo = block_rsv->space_info; 4303 u64 num_bytes; 4304 4305 num_bytes = calc_global_metadata_size(fs_info); 4306 4307 spin_lock(&sinfo->lock); 4308 spin_lock(&block_rsv->lock); 4309 4310 block_rsv->size = num_bytes; 4311 4312 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4313 sinfo->bytes_reserved + sinfo->bytes_readonly + 4314 sinfo->bytes_may_use; 4315 4316 if (sinfo->total_bytes > num_bytes) { 4317 num_bytes = sinfo->total_bytes - num_bytes; 4318 block_rsv->reserved += num_bytes; 4319 sinfo->bytes_may_use += num_bytes; 4320 trace_btrfs_space_reservation(fs_info, "space_info", 4321 sinfo->flags, num_bytes, 1); 4322 } 4323 4324 if (block_rsv->reserved >= block_rsv->size) { 4325 num_bytes = block_rsv->reserved - block_rsv->size; 4326 sinfo->bytes_may_use -= num_bytes; 4327 trace_btrfs_space_reservation(fs_info, "space_info", 4328 sinfo->flags, num_bytes, 0); 4329 sinfo->reservation_progress++; 4330 block_rsv->reserved = block_rsv->size; 4331 block_rsv->full = 1; 4332 } 4333 4334 spin_unlock(&block_rsv->lock); 4335 spin_unlock(&sinfo->lock); 4336 } 4337 4338 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4339 { 4340 struct btrfs_space_info *space_info; 4341 4342 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4343 fs_info->chunk_block_rsv.space_info = space_info; 4344 4345 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4346 fs_info->global_block_rsv.space_info = space_info; 4347 fs_info->delalloc_block_rsv.space_info = space_info; 4348 fs_info->trans_block_rsv.space_info = space_info; 4349 fs_info->empty_block_rsv.space_info = space_info; 4350 fs_info->delayed_block_rsv.space_info = space_info; 4351 4352 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4353 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4354 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4355 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4356 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4357 4358 update_global_block_rsv(fs_info); 4359 } 4360 4361 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4362 { 4363 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4364 (u64)-1); 4365 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4366 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4367 WARN_ON(fs_info->trans_block_rsv.size > 0); 4368 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4369 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4370 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4371 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4372 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4373 } 4374 4375 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4376 struct btrfs_root *root) 4377 { 4378 if (!trans->block_rsv) 4379 return; 4380 4381 if (!trans->bytes_reserved) 4382 return; 4383 4384 trace_btrfs_space_reservation(root->fs_info, "transaction", 4385 trans->transid, trans->bytes_reserved, 0); 4386 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4387 trans->bytes_reserved = 0; 4388 } 4389 4390 /* Can only return 0 or -ENOSPC */ 4391 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4392 struct inode *inode) 4393 { 4394 struct btrfs_root *root = BTRFS_I(inode)->root; 4395 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4396 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4397 4398 /* 4399 * We need to hold space in order to delete our orphan item once we've 4400 * added it, so this takes the reservation so we can release it later 4401 * when we are truly done with the orphan item. 4402 */ 4403 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4404 trace_btrfs_space_reservation(root->fs_info, "orphan", 4405 btrfs_ino(inode), num_bytes, 1); 4406 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4407 } 4408 4409 void btrfs_orphan_release_metadata(struct inode *inode) 4410 { 4411 struct btrfs_root *root = BTRFS_I(inode)->root; 4412 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4413 trace_btrfs_space_reservation(root->fs_info, "orphan", 4414 btrfs_ino(inode), num_bytes, 0); 4415 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4416 } 4417 4418 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 4419 struct btrfs_pending_snapshot *pending) 4420 { 4421 struct btrfs_root *root = pending->root; 4422 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4423 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 4424 /* 4425 * two for root back/forward refs, two for directory entries 4426 * and one for root of the snapshot. 4427 */ 4428 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4429 dst_rsv->space_info = src_rsv->space_info; 4430 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4431 } 4432 4433 /** 4434 * drop_outstanding_extent - drop an outstanding extent 4435 * @inode: the inode we're dropping the extent for 4436 * 4437 * This is called when we are freeing up an outstanding extent, either called 4438 * after an error or after an extent is written. This will return the number of 4439 * reserved extents that need to be freed. This must be called with 4440 * BTRFS_I(inode)->lock held. 4441 */ 4442 static unsigned drop_outstanding_extent(struct inode *inode) 4443 { 4444 unsigned drop_inode_space = 0; 4445 unsigned dropped_extents = 0; 4446 4447 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4448 BTRFS_I(inode)->outstanding_extents--; 4449 4450 if (BTRFS_I(inode)->outstanding_extents == 0 && 4451 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4452 &BTRFS_I(inode)->runtime_flags)) 4453 drop_inode_space = 1; 4454 4455 /* 4456 * If we have more or the same amount of outsanding extents than we have 4457 * reserved then we need to leave the reserved extents count alone. 4458 */ 4459 if (BTRFS_I(inode)->outstanding_extents >= 4460 BTRFS_I(inode)->reserved_extents) 4461 return drop_inode_space; 4462 4463 dropped_extents = BTRFS_I(inode)->reserved_extents - 4464 BTRFS_I(inode)->outstanding_extents; 4465 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4466 return dropped_extents + drop_inode_space; 4467 } 4468 4469 /** 4470 * calc_csum_metadata_size - return the amount of metada space that must be 4471 * reserved/free'd for the given bytes. 4472 * @inode: the inode we're manipulating 4473 * @num_bytes: the number of bytes in question 4474 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4475 * 4476 * This adjusts the number of csum_bytes in the inode and then returns the 4477 * correct amount of metadata that must either be reserved or freed. We 4478 * calculate how many checksums we can fit into one leaf and then divide the 4479 * number of bytes that will need to be checksumed by this value to figure out 4480 * how many checksums will be required. If we are adding bytes then the number 4481 * may go up and we will return the number of additional bytes that must be 4482 * reserved. If it is going down we will return the number of bytes that must 4483 * be freed. 4484 * 4485 * This must be called with BTRFS_I(inode)->lock held. 4486 */ 4487 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4488 int reserve) 4489 { 4490 struct btrfs_root *root = BTRFS_I(inode)->root; 4491 u64 csum_size; 4492 int num_csums_per_leaf; 4493 int num_csums; 4494 int old_csums; 4495 4496 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4497 BTRFS_I(inode)->csum_bytes == 0) 4498 return 0; 4499 4500 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4501 if (reserve) 4502 BTRFS_I(inode)->csum_bytes += num_bytes; 4503 else 4504 BTRFS_I(inode)->csum_bytes -= num_bytes; 4505 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4506 num_csums_per_leaf = (int)div64_u64(csum_size, 4507 sizeof(struct btrfs_csum_item) + 4508 sizeof(struct btrfs_disk_key)); 4509 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4510 num_csums = num_csums + num_csums_per_leaf - 1; 4511 num_csums = num_csums / num_csums_per_leaf; 4512 4513 old_csums = old_csums + num_csums_per_leaf - 1; 4514 old_csums = old_csums / num_csums_per_leaf; 4515 4516 /* No change, no need to reserve more */ 4517 if (old_csums == num_csums) 4518 return 0; 4519 4520 if (reserve) 4521 return btrfs_calc_trans_metadata_size(root, 4522 num_csums - old_csums); 4523 4524 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4525 } 4526 4527 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4528 { 4529 struct btrfs_root *root = BTRFS_I(inode)->root; 4530 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4531 u64 to_reserve = 0; 4532 u64 csum_bytes; 4533 unsigned nr_extents = 0; 4534 int extra_reserve = 0; 4535 int flush = 1; 4536 int ret; 4537 4538 /* Need to be holding the i_mutex here if we aren't free space cache */ 4539 if (btrfs_is_free_space_inode(inode)) 4540 flush = 0; 4541 4542 if (flush && btrfs_transaction_in_commit(root->fs_info)) 4543 schedule_timeout(1); 4544 4545 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4546 num_bytes = ALIGN(num_bytes, root->sectorsize); 4547 4548 spin_lock(&BTRFS_I(inode)->lock); 4549 BTRFS_I(inode)->outstanding_extents++; 4550 4551 if (BTRFS_I(inode)->outstanding_extents > 4552 BTRFS_I(inode)->reserved_extents) 4553 nr_extents = BTRFS_I(inode)->outstanding_extents - 4554 BTRFS_I(inode)->reserved_extents; 4555 4556 /* 4557 * Add an item to reserve for updating the inode when we complete the 4558 * delalloc io. 4559 */ 4560 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4561 &BTRFS_I(inode)->runtime_flags)) { 4562 nr_extents++; 4563 extra_reserve = 1; 4564 } 4565 4566 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4567 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4568 csum_bytes = BTRFS_I(inode)->csum_bytes; 4569 spin_unlock(&BTRFS_I(inode)->lock); 4570 4571 if (root->fs_info->quota_enabled) { 4572 ret = btrfs_qgroup_reserve(root, num_bytes + 4573 nr_extents * root->leafsize); 4574 if (ret) 4575 return ret; 4576 } 4577 4578 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4579 if (ret) { 4580 u64 to_free = 0; 4581 unsigned dropped; 4582 4583 spin_lock(&BTRFS_I(inode)->lock); 4584 dropped = drop_outstanding_extent(inode); 4585 /* 4586 * If the inodes csum_bytes is the same as the original 4587 * csum_bytes then we know we haven't raced with any free()ers 4588 * so we can just reduce our inodes csum bytes and carry on. 4589 * Otherwise we have to do the normal free thing to account for 4590 * the case that the free side didn't free up its reserve 4591 * because of this outstanding reservation. 4592 */ 4593 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4594 calc_csum_metadata_size(inode, num_bytes, 0); 4595 else 4596 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4597 spin_unlock(&BTRFS_I(inode)->lock); 4598 if (dropped) 4599 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4600 4601 if (to_free) { 4602 btrfs_block_rsv_release(root, block_rsv, to_free); 4603 trace_btrfs_space_reservation(root->fs_info, 4604 "delalloc", 4605 btrfs_ino(inode), 4606 to_free, 0); 4607 } 4608 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4609 return ret; 4610 } 4611 4612 spin_lock(&BTRFS_I(inode)->lock); 4613 if (extra_reserve) { 4614 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 4615 &BTRFS_I(inode)->runtime_flags); 4616 nr_extents--; 4617 } 4618 BTRFS_I(inode)->reserved_extents += nr_extents; 4619 spin_unlock(&BTRFS_I(inode)->lock); 4620 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4621 4622 if (to_reserve) 4623 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4624 btrfs_ino(inode), to_reserve, 1); 4625 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4626 4627 return 0; 4628 } 4629 4630 /** 4631 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4632 * @inode: the inode to release the reservation for 4633 * @num_bytes: the number of bytes we're releasing 4634 * 4635 * This will release the metadata reservation for an inode. This can be called 4636 * once we complete IO for a given set of bytes to release their metadata 4637 * reservations. 4638 */ 4639 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4640 { 4641 struct btrfs_root *root = BTRFS_I(inode)->root; 4642 u64 to_free = 0; 4643 unsigned dropped; 4644 4645 num_bytes = ALIGN(num_bytes, root->sectorsize); 4646 spin_lock(&BTRFS_I(inode)->lock); 4647 dropped = drop_outstanding_extent(inode); 4648 4649 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4650 spin_unlock(&BTRFS_I(inode)->lock); 4651 if (dropped > 0) 4652 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4653 4654 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4655 btrfs_ino(inode), to_free, 0); 4656 if (root->fs_info->quota_enabled) { 4657 btrfs_qgroup_free(root, num_bytes + 4658 dropped * root->leafsize); 4659 } 4660 4661 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4662 to_free); 4663 } 4664 4665 /** 4666 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4667 * @inode: inode we're writing to 4668 * @num_bytes: the number of bytes we want to allocate 4669 * 4670 * This will do the following things 4671 * 4672 * o reserve space in the data space info for num_bytes 4673 * o reserve space in the metadata space info based on number of outstanding 4674 * extents and how much csums will be needed 4675 * o add to the inodes ->delalloc_bytes 4676 * o add it to the fs_info's delalloc inodes list. 4677 * 4678 * This will return 0 for success and -ENOSPC if there is no space left. 4679 */ 4680 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4681 { 4682 int ret; 4683 4684 ret = btrfs_check_data_free_space(inode, num_bytes); 4685 if (ret) 4686 return ret; 4687 4688 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4689 if (ret) { 4690 btrfs_free_reserved_data_space(inode, num_bytes); 4691 return ret; 4692 } 4693 4694 return 0; 4695 } 4696 4697 /** 4698 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4699 * @inode: inode we're releasing space for 4700 * @num_bytes: the number of bytes we want to free up 4701 * 4702 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4703 * called in the case that we don't need the metadata AND data reservations 4704 * anymore. So if there is an error or we insert an inline extent. 4705 * 4706 * This function will release the metadata space that was not used and will 4707 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4708 * list if there are no delalloc bytes left. 4709 */ 4710 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4711 { 4712 btrfs_delalloc_release_metadata(inode, num_bytes); 4713 btrfs_free_reserved_data_space(inode, num_bytes); 4714 } 4715 4716 static int update_block_group(struct btrfs_trans_handle *trans, 4717 struct btrfs_root *root, 4718 u64 bytenr, u64 num_bytes, int alloc) 4719 { 4720 struct btrfs_block_group_cache *cache = NULL; 4721 struct btrfs_fs_info *info = root->fs_info; 4722 u64 total = num_bytes; 4723 u64 old_val; 4724 u64 byte_in_group; 4725 int factor; 4726 4727 /* block accounting for super block */ 4728 spin_lock(&info->delalloc_lock); 4729 old_val = btrfs_super_bytes_used(info->super_copy); 4730 if (alloc) 4731 old_val += num_bytes; 4732 else 4733 old_val -= num_bytes; 4734 btrfs_set_super_bytes_used(info->super_copy, old_val); 4735 spin_unlock(&info->delalloc_lock); 4736 4737 while (total) { 4738 cache = btrfs_lookup_block_group(info, bytenr); 4739 if (!cache) 4740 return -ENOENT; 4741 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4742 BTRFS_BLOCK_GROUP_RAID1 | 4743 BTRFS_BLOCK_GROUP_RAID10)) 4744 factor = 2; 4745 else 4746 factor = 1; 4747 /* 4748 * If this block group has free space cache written out, we 4749 * need to make sure to load it if we are removing space. This 4750 * is because we need the unpinning stage to actually add the 4751 * space back to the block group, otherwise we will leak space. 4752 */ 4753 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4754 cache_block_group(cache, trans, NULL, 1); 4755 4756 byte_in_group = bytenr - cache->key.objectid; 4757 WARN_ON(byte_in_group > cache->key.offset); 4758 4759 spin_lock(&cache->space_info->lock); 4760 spin_lock(&cache->lock); 4761 4762 if (btrfs_test_opt(root, SPACE_CACHE) && 4763 cache->disk_cache_state < BTRFS_DC_CLEAR) 4764 cache->disk_cache_state = BTRFS_DC_CLEAR; 4765 4766 cache->dirty = 1; 4767 old_val = btrfs_block_group_used(&cache->item); 4768 num_bytes = min(total, cache->key.offset - byte_in_group); 4769 if (alloc) { 4770 old_val += num_bytes; 4771 btrfs_set_block_group_used(&cache->item, old_val); 4772 cache->reserved -= num_bytes; 4773 cache->space_info->bytes_reserved -= num_bytes; 4774 cache->space_info->bytes_used += num_bytes; 4775 cache->space_info->disk_used += num_bytes * factor; 4776 spin_unlock(&cache->lock); 4777 spin_unlock(&cache->space_info->lock); 4778 } else { 4779 old_val -= num_bytes; 4780 btrfs_set_block_group_used(&cache->item, old_val); 4781 cache->pinned += num_bytes; 4782 cache->space_info->bytes_pinned += num_bytes; 4783 cache->space_info->bytes_used -= num_bytes; 4784 cache->space_info->disk_used -= num_bytes * factor; 4785 spin_unlock(&cache->lock); 4786 spin_unlock(&cache->space_info->lock); 4787 4788 set_extent_dirty(info->pinned_extents, 4789 bytenr, bytenr + num_bytes - 1, 4790 GFP_NOFS | __GFP_NOFAIL); 4791 } 4792 btrfs_put_block_group(cache); 4793 total -= num_bytes; 4794 bytenr += num_bytes; 4795 } 4796 return 0; 4797 } 4798 4799 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4800 { 4801 struct btrfs_block_group_cache *cache; 4802 u64 bytenr; 4803 4804 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4805 if (!cache) 4806 return 0; 4807 4808 bytenr = cache->key.objectid; 4809 btrfs_put_block_group(cache); 4810 4811 return bytenr; 4812 } 4813 4814 static int pin_down_extent(struct btrfs_root *root, 4815 struct btrfs_block_group_cache *cache, 4816 u64 bytenr, u64 num_bytes, int reserved) 4817 { 4818 spin_lock(&cache->space_info->lock); 4819 spin_lock(&cache->lock); 4820 cache->pinned += num_bytes; 4821 cache->space_info->bytes_pinned += num_bytes; 4822 if (reserved) { 4823 cache->reserved -= num_bytes; 4824 cache->space_info->bytes_reserved -= num_bytes; 4825 } 4826 spin_unlock(&cache->lock); 4827 spin_unlock(&cache->space_info->lock); 4828 4829 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4830 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4831 return 0; 4832 } 4833 4834 /* 4835 * this function must be called within transaction 4836 */ 4837 int btrfs_pin_extent(struct btrfs_root *root, 4838 u64 bytenr, u64 num_bytes, int reserved) 4839 { 4840 struct btrfs_block_group_cache *cache; 4841 4842 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4843 BUG_ON(!cache); /* Logic error */ 4844 4845 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4846 4847 btrfs_put_block_group(cache); 4848 return 0; 4849 } 4850 4851 /* 4852 * this function must be called within transaction 4853 */ 4854 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 4855 struct btrfs_root *root, 4856 u64 bytenr, u64 num_bytes) 4857 { 4858 struct btrfs_block_group_cache *cache; 4859 4860 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4861 BUG_ON(!cache); /* Logic error */ 4862 4863 /* 4864 * pull in the free space cache (if any) so that our pin 4865 * removes the free space from the cache. We have load_only set 4866 * to one because the slow code to read in the free extents does check 4867 * the pinned extents. 4868 */ 4869 cache_block_group(cache, trans, root, 1); 4870 4871 pin_down_extent(root, cache, bytenr, num_bytes, 0); 4872 4873 /* remove us from the free space cache (if we're there at all) */ 4874 btrfs_remove_free_space(cache, bytenr, num_bytes); 4875 btrfs_put_block_group(cache); 4876 return 0; 4877 } 4878 4879 /** 4880 * btrfs_update_reserved_bytes - update the block_group and space info counters 4881 * @cache: The cache we are manipulating 4882 * @num_bytes: The number of bytes in question 4883 * @reserve: One of the reservation enums 4884 * 4885 * This is called by the allocator when it reserves space, or by somebody who is 4886 * freeing space that was never actually used on disk. For example if you 4887 * reserve some space for a new leaf in transaction A and before transaction A 4888 * commits you free that leaf, you call this with reserve set to 0 in order to 4889 * clear the reservation. 4890 * 4891 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 4892 * ENOSPC accounting. For data we handle the reservation through clearing the 4893 * delalloc bits in the io_tree. We have to do this since we could end up 4894 * allocating less disk space for the amount of data we have reserved in the 4895 * case of compression. 4896 * 4897 * If this is a reservation and the block group has become read only we cannot 4898 * make the reservation and return -EAGAIN, otherwise this function always 4899 * succeeds. 4900 */ 4901 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4902 u64 num_bytes, int reserve) 4903 { 4904 struct btrfs_space_info *space_info = cache->space_info; 4905 int ret = 0; 4906 4907 spin_lock(&space_info->lock); 4908 spin_lock(&cache->lock); 4909 if (reserve != RESERVE_FREE) { 4910 if (cache->ro) { 4911 ret = -EAGAIN; 4912 } else { 4913 cache->reserved += num_bytes; 4914 space_info->bytes_reserved += num_bytes; 4915 if (reserve == RESERVE_ALLOC) { 4916 trace_btrfs_space_reservation(cache->fs_info, 4917 "space_info", space_info->flags, 4918 num_bytes, 0); 4919 space_info->bytes_may_use -= num_bytes; 4920 } 4921 } 4922 } else { 4923 if (cache->ro) 4924 space_info->bytes_readonly += num_bytes; 4925 cache->reserved -= num_bytes; 4926 space_info->bytes_reserved -= num_bytes; 4927 space_info->reservation_progress++; 4928 } 4929 spin_unlock(&cache->lock); 4930 spin_unlock(&space_info->lock); 4931 return ret; 4932 } 4933 4934 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4935 struct btrfs_root *root) 4936 { 4937 struct btrfs_fs_info *fs_info = root->fs_info; 4938 struct btrfs_caching_control *next; 4939 struct btrfs_caching_control *caching_ctl; 4940 struct btrfs_block_group_cache *cache; 4941 4942 down_write(&fs_info->extent_commit_sem); 4943 4944 list_for_each_entry_safe(caching_ctl, next, 4945 &fs_info->caching_block_groups, list) { 4946 cache = caching_ctl->block_group; 4947 if (block_group_cache_done(cache)) { 4948 cache->last_byte_to_unpin = (u64)-1; 4949 list_del_init(&caching_ctl->list); 4950 put_caching_control(caching_ctl); 4951 } else { 4952 cache->last_byte_to_unpin = caching_ctl->progress; 4953 } 4954 } 4955 4956 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4957 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4958 else 4959 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4960 4961 up_write(&fs_info->extent_commit_sem); 4962 4963 update_global_block_rsv(fs_info); 4964 } 4965 4966 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4967 { 4968 struct btrfs_fs_info *fs_info = root->fs_info; 4969 struct btrfs_block_group_cache *cache = NULL; 4970 u64 len; 4971 4972 while (start <= end) { 4973 if (!cache || 4974 start >= cache->key.objectid + cache->key.offset) { 4975 if (cache) 4976 btrfs_put_block_group(cache); 4977 cache = btrfs_lookup_block_group(fs_info, start); 4978 BUG_ON(!cache); /* Logic error */ 4979 } 4980 4981 len = cache->key.objectid + cache->key.offset - start; 4982 len = min(len, end + 1 - start); 4983 4984 if (start < cache->last_byte_to_unpin) { 4985 len = min(len, cache->last_byte_to_unpin - start); 4986 btrfs_add_free_space(cache, start, len); 4987 } 4988 4989 start += len; 4990 4991 spin_lock(&cache->space_info->lock); 4992 spin_lock(&cache->lock); 4993 cache->pinned -= len; 4994 cache->space_info->bytes_pinned -= len; 4995 if (cache->ro) 4996 cache->space_info->bytes_readonly += len; 4997 spin_unlock(&cache->lock); 4998 spin_unlock(&cache->space_info->lock); 4999 } 5000 5001 if (cache) 5002 btrfs_put_block_group(cache); 5003 return 0; 5004 } 5005 5006 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5007 struct btrfs_root *root) 5008 { 5009 struct btrfs_fs_info *fs_info = root->fs_info; 5010 struct extent_io_tree *unpin; 5011 u64 start; 5012 u64 end; 5013 int ret; 5014 5015 if (trans->aborted) 5016 return 0; 5017 5018 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5019 unpin = &fs_info->freed_extents[1]; 5020 else 5021 unpin = &fs_info->freed_extents[0]; 5022 5023 while (1) { 5024 ret = find_first_extent_bit(unpin, 0, &start, &end, 5025 EXTENT_DIRTY); 5026 if (ret) 5027 break; 5028 5029 if (btrfs_test_opt(root, DISCARD)) 5030 ret = btrfs_discard_extent(root, start, 5031 end + 1 - start, NULL); 5032 5033 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5034 unpin_extent_range(root, start, end); 5035 cond_resched(); 5036 } 5037 5038 return 0; 5039 } 5040 5041 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5042 struct btrfs_root *root, 5043 u64 bytenr, u64 num_bytes, u64 parent, 5044 u64 root_objectid, u64 owner_objectid, 5045 u64 owner_offset, int refs_to_drop, 5046 struct btrfs_delayed_extent_op *extent_op) 5047 { 5048 struct btrfs_key key; 5049 struct btrfs_path *path; 5050 struct btrfs_fs_info *info = root->fs_info; 5051 struct btrfs_root *extent_root = info->extent_root; 5052 struct extent_buffer *leaf; 5053 struct btrfs_extent_item *ei; 5054 struct btrfs_extent_inline_ref *iref; 5055 int ret; 5056 int is_data; 5057 int extent_slot = 0; 5058 int found_extent = 0; 5059 int num_to_del = 1; 5060 u32 item_size; 5061 u64 refs; 5062 5063 path = btrfs_alloc_path(); 5064 if (!path) 5065 return -ENOMEM; 5066 5067 path->reada = 1; 5068 path->leave_spinning = 1; 5069 5070 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5071 BUG_ON(!is_data && refs_to_drop != 1); 5072 5073 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5074 bytenr, num_bytes, parent, 5075 root_objectid, owner_objectid, 5076 owner_offset); 5077 if (ret == 0) { 5078 extent_slot = path->slots[0]; 5079 while (extent_slot >= 0) { 5080 btrfs_item_key_to_cpu(path->nodes[0], &key, 5081 extent_slot); 5082 if (key.objectid != bytenr) 5083 break; 5084 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5085 key.offset == num_bytes) { 5086 found_extent = 1; 5087 break; 5088 } 5089 if (path->slots[0] - extent_slot > 5) 5090 break; 5091 extent_slot--; 5092 } 5093 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5094 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5095 if (found_extent && item_size < sizeof(*ei)) 5096 found_extent = 0; 5097 #endif 5098 if (!found_extent) { 5099 BUG_ON(iref); 5100 ret = remove_extent_backref(trans, extent_root, path, 5101 NULL, refs_to_drop, 5102 is_data); 5103 if (ret) 5104 goto abort; 5105 btrfs_release_path(path); 5106 path->leave_spinning = 1; 5107 5108 key.objectid = bytenr; 5109 key.type = BTRFS_EXTENT_ITEM_KEY; 5110 key.offset = num_bytes; 5111 5112 ret = btrfs_search_slot(trans, extent_root, 5113 &key, path, -1, 1); 5114 if (ret) { 5115 printk(KERN_ERR "umm, got %d back from search" 5116 ", was looking for %llu\n", ret, 5117 (unsigned long long)bytenr); 5118 if (ret > 0) 5119 btrfs_print_leaf(extent_root, 5120 path->nodes[0]); 5121 } 5122 if (ret < 0) 5123 goto abort; 5124 extent_slot = path->slots[0]; 5125 } 5126 } else if (ret == -ENOENT) { 5127 btrfs_print_leaf(extent_root, path->nodes[0]); 5128 WARN_ON(1); 5129 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 5130 "parent %llu root %llu owner %llu offset %llu\n", 5131 (unsigned long long)bytenr, 5132 (unsigned long long)parent, 5133 (unsigned long long)root_objectid, 5134 (unsigned long long)owner_objectid, 5135 (unsigned long long)owner_offset); 5136 } else { 5137 goto abort; 5138 } 5139 5140 leaf = path->nodes[0]; 5141 item_size = btrfs_item_size_nr(leaf, extent_slot); 5142 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5143 if (item_size < sizeof(*ei)) { 5144 BUG_ON(found_extent || extent_slot != path->slots[0]); 5145 ret = convert_extent_item_v0(trans, extent_root, path, 5146 owner_objectid, 0); 5147 if (ret < 0) 5148 goto abort; 5149 5150 btrfs_release_path(path); 5151 path->leave_spinning = 1; 5152 5153 key.objectid = bytenr; 5154 key.type = BTRFS_EXTENT_ITEM_KEY; 5155 key.offset = num_bytes; 5156 5157 ret = btrfs_search_slot(trans, extent_root, &key, path, 5158 -1, 1); 5159 if (ret) { 5160 printk(KERN_ERR "umm, got %d back from search" 5161 ", was looking for %llu\n", ret, 5162 (unsigned long long)bytenr); 5163 btrfs_print_leaf(extent_root, path->nodes[0]); 5164 } 5165 if (ret < 0) 5166 goto abort; 5167 extent_slot = path->slots[0]; 5168 leaf = path->nodes[0]; 5169 item_size = btrfs_item_size_nr(leaf, extent_slot); 5170 } 5171 #endif 5172 BUG_ON(item_size < sizeof(*ei)); 5173 ei = btrfs_item_ptr(leaf, extent_slot, 5174 struct btrfs_extent_item); 5175 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 5176 struct btrfs_tree_block_info *bi; 5177 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 5178 bi = (struct btrfs_tree_block_info *)(ei + 1); 5179 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 5180 } 5181 5182 refs = btrfs_extent_refs(leaf, ei); 5183 BUG_ON(refs < refs_to_drop); 5184 refs -= refs_to_drop; 5185 5186 if (refs > 0) { 5187 if (extent_op) 5188 __run_delayed_extent_op(extent_op, leaf, ei); 5189 /* 5190 * In the case of inline back ref, reference count will 5191 * be updated by remove_extent_backref 5192 */ 5193 if (iref) { 5194 BUG_ON(!found_extent); 5195 } else { 5196 btrfs_set_extent_refs(leaf, ei, refs); 5197 btrfs_mark_buffer_dirty(leaf); 5198 } 5199 if (found_extent) { 5200 ret = remove_extent_backref(trans, extent_root, path, 5201 iref, refs_to_drop, 5202 is_data); 5203 if (ret) 5204 goto abort; 5205 } 5206 } else { 5207 if (found_extent) { 5208 BUG_ON(is_data && refs_to_drop != 5209 extent_data_ref_count(root, path, iref)); 5210 if (iref) { 5211 BUG_ON(path->slots[0] != extent_slot); 5212 } else { 5213 BUG_ON(path->slots[0] != extent_slot + 1); 5214 path->slots[0] = extent_slot; 5215 num_to_del = 2; 5216 } 5217 } 5218 5219 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5220 num_to_del); 5221 if (ret) 5222 goto abort; 5223 btrfs_release_path(path); 5224 5225 if (is_data) { 5226 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5227 if (ret) 5228 goto abort; 5229 } 5230 5231 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 5232 if (ret) 5233 goto abort; 5234 } 5235 out: 5236 btrfs_free_path(path); 5237 return ret; 5238 5239 abort: 5240 btrfs_abort_transaction(trans, extent_root, ret); 5241 goto out; 5242 } 5243 5244 /* 5245 * when we free an block, it is possible (and likely) that we free the last 5246 * delayed ref for that extent as well. This searches the delayed ref tree for 5247 * a given extent, and if there are no other delayed refs to be processed, it 5248 * removes it from the tree. 5249 */ 5250 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5251 struct btrfs_root *root, u64 bytenr) 5252 { 5253 struct btrfs_delayed_ref_head *head; 5254 struct btrfs_delayed_ref_root *delayed_refs; 5255 struct btrfs_delayed_ref_node *ref; 5256 struct rb_node *node; 5257 int ret = 0; 5258 5259 delayed_refs = &trans->transaction->delayed_refs; 5260 spin_lock(&delayed_refs->lock); 5261 head = btrfs_find_delayed_ref_head(trans, bytenr); 5262 if (!head) 5263 goto out; 5264 5265 node = rb_prev(&head->node.rb_node); 5266 if (!node) 5267 goto out; 5268 5269 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5270 5271 /* there are still entries for this ref, we can't drop it */ 5272 if (ref->bytenr == bytenr) 5273 goto out; 5274 5275 if (head->extent_op) { 5276 if (!head->must_insert_reserved) 5277 goto out; 5278 kfree(head->extent_op); 5279 head->extent_op = NULL; 5280 } 5281 5282 /* 5283 * waiting for the lock here would deadlock. If someone else has it 5284 * locked they are already in the process of dropping it anyway 5285 */ 5286 if (!mutex_trylock(&head->mutex)) 5287 goto out; 5288 5289 /* 5290 * at this point we have a head with no other entries. Go 5291 * ahead and process it. 5292 */ 5293 head->node.in_tree = 0; 5294 rb_erase(&head->node.rb_node, &delayed_refs->root); 5295 5296 delayed_refs->num_entries--; 5297 smp_mb(); 5298 if (waitqueue_active(&root->fs_info->tree_mod_seq_wait)) 5299 wake_up(&root->fs_info->tree_mod_seq_wait); 5300 5301 /* 5302 * we don't take a ref on the node because we're removing it from the 5303 * tree, so we just steal the ref the tree was holding. 5304 */ 5305 delayed_refs->num_heads--; 5306 if (list_empty(&head->cluster)) 5307 delayed_refs->num_heads_ready--; 5308 5309 list_del_init(&head->cluster); 5310 spin_unlock(&delayed_refs->lock); 5311 5312 BUG_ON(head->extent_op); 5313 if (head->must_insert_reserved) 5314 ret = 1; 5315 5316 mutex_unlock(&head->mutex); 5317 btrfs_put_delayed_ref(&head->node); 5318 return ret; 5319 out: 5320 spin_unlock(&delayed_refs->lock); 5321 return 0; 5322 } 5323 5324 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5325 struct btrfs_root *root, 5326 struct extent_buffer *buf, 5327 u64 parent, int last_ref) 5328 { 5329 struct btrfs_block_group_cache *cache = NULL; 5330 int ret; 5331 5332 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5333 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5334 buf->start, buf->len, 5335 parent, root->root_key.objectid, 5336 btrfs_header_level(buf), 5337 BTRFS_DROP_DELAYED_REF, NULL, 0); 5338 BUG_ON(ret); /* -ENOMEM */ 5339 } 5340 5341 if (!last_ref) 5342 return; 5343 5344 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5345 5346 if (btrfs_header_generation(buf) == trans->transid) { 5347 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5348 ret = check_ref_cleanup(trans, root, buf->start); 5349 if (!ret) 5350 goto out; 5351 } 5352 5353 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5354 pin_down_extent(root, cache, buf->start, buf->len, 1); 5355 goto out; 5356 } 5357 5358 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5359 5360 btrfs_add_free_space(cache, buf->start, buf->len); 5361 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5362 } 5363 out: 5364 /* 5365 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5366 * anymore. 5367 */ 5368 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5369 btrfs_put_block_group(cache); 5370 } 5371 5372 /* Can return -ENOMEM */ 5373 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5374 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5375 u64 owner, u64 offset, int for_cow) 5376 { 5377 int ret; 5378 struct btrfs_fs_info *fs_info = root->fs_info; 5379 5380 /* 5381 * tree log blocks never actually go into the extent allocation 5382 * tree, just update pinning info and exit early. 5383 */ 5384 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5385 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5386 /* unlocks the pinned mutex */ 5387 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5388 ret = 0; 5389 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5390 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5391 num_bytes, 5392 parent, root_objectid, (int)owner, 5393 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5394 } else { 5395 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5396 num_bytes, 5397 parent, root_objectid, owner, 5398 offset, BTRFS_DROP_DELAYED_REF, 5399 NULL, for_cow); 5400 } 5401 return ret; 5402 } 5403 5404 static u64 stripe_align(struct btrfs_root *root, u64 val) 5405 { 5406 u64 mask = ((u64)root->stripesize - 1); 5407 u64 ret = (val + mask) & ~mask; 5408 return ret; 5409 } 5410 5411 /* 5412 * when we wait for progress in the block group caching, its because 5413 * our allocation attempt failed at least once. So, we must sleep 5414 * and let some progress happen before we try again. 5415 * 5416 * This function will sleep at least once waiting for new free space to 5417 * show up, and then it will check the block group free space numbers 5418 * for our min num_bytes. Another option is to have it go ahead 5419 * and look in the rbtree for a free extent of a given size, but this 5420 * is a good start. 5421 */ 5422 static noinline int 5423 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5424 u64 num_bytes) 5425 { 5426 struct btrfs_caching_control *caching_ctl; 5427 DEFINE_WAIT(wait); 5428 5429 caching_ctl = get_caching_control(cache); 5430 if (!caching_ctl) 5431 return 0; 5432 5433 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5434 (cache->free_space_ctl->free_space >= num_bytes)); 5435 5436 put_caching_control(caching_ctl); 5437 return 0; 5438 } 5439 5440 static noinline int 5441 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5442 { 5443 struct btrfs_caching_control *caching_ctl; 5444 DEFINE_WAIT(wait); 5445 5446 caching_ctl = get_caching_control(cache); 5447 if (!caching_ctl) 5448 return 0; 5449 5450 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5451 5452 put_caching_control(caching_ctl); 5453 return 0; 5454 } 5455 5456 static int __get_block_group_index(u64 flags) 5457 { 5458 int index; 5459 5460 if (flags & BTRFS_BLOCK_GROUP_RAID10) 5461 index = 0; 5462 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 5463 index = 1; 5464 else if (flags & BTRFS_BLOCK_GROUP_DUP) 5465 index = 2; 5466 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 5467 index = 3; 5468 else 5469 index = 4; 5470 5471 return index; 5472 } 5473 5474 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5475 { 5476 return __get_block_group_index(cache->flags); 5477 } 5478 5479 enum btrfs_loop_type { 5480 LOOP_CACHING_NOWAIT = 0, 5481 LOOP_CACHING_WAIT = 1, 5482 LOOP_ALLOC_CHUNK = 2, 5483 LOOP_NO_EMPTY_SIZE = 3, 5484 }; 5485 5486 /* 5487 * walks the btree of allocated extents and find a hole of a given size. 5488 * The key ins is changed to record the hole: 5489 * ins->objectid == block start 5490 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5491 * ins->offset == number of blocks 5492 * Any available blocks before search_start are skipped. 5493 */ 5494 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5495 struct btrfs_root *orig_root, 5496 u64 num_bytes, u64 empty_size, 5497 u64 hint_byte, struct btrfs_key *ins, 5498 u64 data) 5499 { 5500 int ret = 0; 5501 struct btrfs_root *root = orig_root->fs_info->extent_root; 5502 struct btrfs_free_cluster *last_ptr = NULL; 5503 struct btrfs_block_group_cache *block_group = NULL; 5504 struct btrfs_block_group_cache *used_block_group; 5505 u64 search_start = 0; 5506 int empty_cluster = 2 * 1024 * 1024; 5507 int allowed_chunk_alloc = 0; 5508 int done_chunk_alloc = 0; 5509 struct btrfs_space_info *space_info; 5510 int loop = 0; 5511 int index = 0; 5512 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5513 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5514 bool found_uncached_bg = false; 5515 bool failed_cluster_refill = false; 5516 bool failed_alloc = false; 5517 bool use_cluster = true; 5518 bool have_caching_bg = false; 5519 5520 WARN_ON(num_bytes < root->sectorsize); 5521 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5522 ins->objectid = 0; 5523 ins->offset = 0; 5524 5525 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5526 5527 space_info = __find_space_info(root->fs_info, data); 5528 if (!space_info) { 5529 printk(KERN_ERR "No space info for %llu\n", data); 5530 return -ENOSPC; 5531 } 5532 5533 /* 5534 * If the space info is for both data and metadata it means we have a 5535 * small filesystem and we can't use the clustering stuff. 5536 */ 5537 if (btrfs_mixed_space_info(space_info)) 5538 use_cluster = false; 5539 5540 if (orig_root->ref_cows || empty_size) 5541 allowed_chunk_alloc = 1; 5542 5543 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5544 last_ptr = &root->fs_info->meta_alloc_cluster; 5545 if (!btrfs_test_opt(root, SSD)) 5546 empty_cluster = 64 * 1024; 5547 } 5548 5549 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5550 btrfs_test_opt(root, SSD)) { 5551 last_ptr = &root->fs_info->data_alloc_cluster; 5552 } 5553 5554 if (last_ptr) { 5555 spin_lock(&last_ptr->lock); 5556 if (last_ptr->block_group) 5557 hint_byte = last_ptr->window_start; 5558 spin_unlock(&last_ptr->lock); 5559 } 5560 5561 search_start = max(search_start, first_logical_byte(root, 0)); 5562 search_start = max(search_start, hint_byte); 5563 5564 if (!last_ptr) 5565 empty_cluster = 0; 5566 5567 if (search_start == hint_byte) { 5568 block_group = btrfs_lookup_block_group(root->fs_info, 5569 search_start); 5570 used_block_group = block_group; 5571 /* 5572 * we don't want to use the block group if it doesn't match our 5573 * allocation bits, or if its not cached. 5574 * 5575 * However if we are re-searching with an ideal block group 5576 * picked out then we don't care that the block group is cached. 5577 */ 5578 if (block_group && block_group_bits(block_group, data) && 5579 block_group->cached != BTRFS_CACHE_NO) { 5580 down_read(&space_info->groups_sem); 5581 if (list_empty(&block_group->list) || 5582 block_group->ro) { 5583 /* 5584 * someone is removing this block group, 5585 * we can't jump into the have_block_group 5586 * target because our list pointers are not 5587 * valid 5588 */ 5589 btrfs_put_block_group(block_group); 5590 up_read(&space_info->groups_sem); 5591 } else { 5592 index = get_block_group_index(block_group); 5593 goto have_block_group; 5594 } 5595 } else if (block_group) { 5596 btrfs_put_block_group(block_group); 5597 } 5598 } 5599 search: 5600 have_caching_bg = false; 5601 down_read(&space_info->groups_sem); 5602 list_for_each_entry(block_group, &space_info->block_groups[index], 5603 list) { 5604 u64 offset; 5605 int cached; 5606 5607 used_block_group = block_group; 5608 btrfs_get_block_group(block_group); 5609 search_start = block_group->key.objectid; 5610 5611 /* 5612 * this can happen if we end up cycling through all the 5613 * raid types, but we want to make sure we only allocate 5614 * for the proper type. 5615 */ 5616 if (!block_group_bits(block_group, data)) { 5617 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5618 BTRFS_BLOCK_GROUP_RAID1 | 5619 BTRFS_BLOCK_GROUP_RAID10; 5620 5621 /* 5622 * if they asked for extra copies and this block group 5623 * doesn't provide them, bail. This does allow us to 5624 * fill raid0 from raid1. 5625 */ 5626 if ((data & extra) && !(block_group->flags & extra)) 5627 goto loop; 5628 } 5629 5630 have_block_group: 5631 cached = block_group_cache_done(block_group); 5632 if (unlikely(!cached)) { 5633 found_uncached_bg = true; 5634 ret = cache_block_group(block_group, trans, 5635 orig_root, 0); 5636 BUG_ON(ret < 0); 5637 ret = 0; 5638 } 5639 5640 if (unlikely(block_group->ro)) 5641 goto loop; 5642 5643 /* 5644 * Ok we want to try and use the cluster allocator, so 5645 * lets look there 5646 */ 5647 if (last_ptr) { 5648 /* 5649 * the refill lock keeps out other 5650 * people trying to start a new cluster 5651 */ 5652 spin_lock(&last_ptr->refill_lock); 5653 used_block_group = last_ptr->block_group; 5654 if (used_block_group != block_group && 5655 (!used_block_group || 5656 used_block_group->ro || 5657 !block_group_bits(used_block_group, data))) { 5658 used_block_group = block_group; 5659 goto refill_cluster; 5660 } 5661 5662 if (used_block_group != block_group) 5663 btrfs_get_block_group(used_block_group); 5664 5665 offset = btrfs_alloc_from_cluster(used_block_group, 5666 last_ptr, num_bytes, used_block_group->key.objectid); 5667 if (offset) { 5668 /* we have a block, we're done */ 5669 spin_unlock(&last_ptr->refill_lock); 5670 trace_btrfs_reserve_extent_cluster(root, 5671 block_group, search_start, num_bytes); 5672 goto checks; 5673 } 5674 5675 WARN_ON(last_ptr->block_group != used_block_group); 5676 if (used_block_group != block_group) { 5677 btrfs_put_block_group(used_block_group); 5678 used_block_group = block_group; 5679 } 5680 refill_cluster: 5681 BUG_ON(used_block_group != block_group); 5682 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5683 * set up a new clusters, so lets just skip it 5684 * and let the allocator find whatever block 5685 * it can find. If we reach this point, we 5686 * will have tried the cluster allocator 5687 * plenty of times and not have found 5688 * anything, so we are likely way too 5689 * fragmented for the clustering stuff to find 5690 * anything. 5691 * 5692 * However, if the cluster is taken from the 5693 * current block group, release the cluster 5694 * first, so that we stand a better chance of 5695 * succeeding in the unclustered 5696 * allocation. */ 5697 if (loop >= LOOP_NO_EMPTY_SIZE && 5698 last_ptr->block_group != block_group) { 5699 spin_unlock(&last_ptr->refill_lock); 5700 goto unclustered_alloc; 5701 } 5702 5703 /* 5704 * this cluster didn't work out, free it and 5705 * start over 5706 */ 5707 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5708 5709 if (loop >= LOOP_NO_EMPTY_SIZE) { 5710 spin_unlock(&last_ptr->refill_lock); 5711 goto unclustered_alloc; 5712 } 5713 5714 /* allocate a cluster in this block group */ 5715 ret = btrfs_find_space_cluster(trans, root, 5716 block_group, last_ptr, 5717 search_start, num_bytes, 5718 empty_cluster + empty_size); 5719 if (ret == 0) { 5720 /* 5721 * now pull our allocation out of this 5722 * cluster 5723 */ 5724 offset = btrfs_alloc_from_cluster(block_group, 5725 last_ptr, num_bytes, 5726 search_start); 5727 if (offset) { 5728 /* we found one, proceed */ 5729 spin_unlock(&last_ptr->refill_lock); 5730 trace_btrfs_reserve_extent_cluster(root, 5731 block_group, search_start, 5732 num_bytes); 5733 goto checks; 5734 } 5735 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5736 && !failed_cluster_refill) { 5737 spin_unlock(&last_ptr->refill_lock); 5738 5739 failed_cluster_refill = true; 5740 wait_block_group_cache_progress(block_group, 5741 num_bytes + empty_cluster + empty_size); 5742 goto have_block_group; 5743 } 5744 5745 /* 5746 * at this point we either didn't find a cluster 5747 * or we weren't able to allocate a block from our 5748 * cluster. Free the cluster we've been trying 5749 * to use, and go to the next block group 5750 */ 5751 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5752 spin_unlock(&last_ptr->refill_lock); 5753 goto loop; 5754 } 5755 5756 unclustered_alloc: 5757 spin_lock(&block_group->free_space_ctl->tree_lock); 5758 if (cached && 5759 block_group->free_space_ctl->free_space < 5760 num_bytes + empty_cluster + empty_size) { 5761 spin_unlock(&block_group->free_space_ctl->tree_lock); 5762 goto loop; 5763 } 5764 spin_unlock(&block_group->free_space_ctl->tree_lock); 5765 5766 offset = btrfs_find_space_for_alloc(block_group, search_start, 5767 num_bytes, empty_size); 5768 /* 5769 * If we didn't find a chunk, and we haven't failed on this 5770 * block group before, and this block group is in the middle of 5771 * caching and we are ok with waiting, then go ahead and wait 5772 * for progress to be made, and set failed_alloc to true. 5773 * 5774 * If failed_alloc is true then we've already waited on this 5775 * block group once and should move on to the next block group. 5776 */ 5777 if (!offset && !failed_alloc && !cached && 5778 loop > LOOP_CACHING_NOWAIT) { 5779 wait_block_group_cache_progress(block_group, 5780 num_bytes + empty_size); 5781 failed_alloc = true; 5782 goto have_block_group; 5783 } else if (!offset) { 5784 if (!cached) 5785 have_caching_bg = true; 5786 goto loop; 5787 } 5788 checks: 5789 search_start = stripe_align(root, offset); 5790 5791 /* move on to the next group */ 5792 if (search_start + num_bytes > 5793 used_block_group->key.objectid + used_block_group->key.offset) { 5794 btrfs_add_free_space(used_block_group, offset, num_bytes); 5795 goto loop; 5796 } 5797 5798 if (offset < search_start) 5799 btrfs_add_free_space(used_block_group, offset, 5800 search_start - offset); 5801 BUG_ON(offset > search_start); 5802 5803 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 5804 alloc_type); 5805 if (ret == -EAGAIN) { 5806 btrfs_add_free_space(used_block_group, offset, num_bytes); 5807 goto loop; 5808 } 5809 5810 /* we are all good, lets return */ 5811 ins->objectid = search_start; 5812 ins->offset = num_bytes; 5813 5814 trace_btrfs_reserve_extent(orig_root, block_group, 5815 search_start, num_bytes); 5816 if (offset < search_start) 5817 btrfs_add_free_space(used_block_group, offset, 5818 search_start - offset); 5819 BUG_ON(offset > search_start); 5820 if (used_block_group != block_group) 5821 btrfs_put_block_group(used_block_group); 5822 btrfs_put_block_group(block_group); 5823 break; 5824 loop: 5825 failed_cluster_refill = false; 5826 failed_alloc = false; 5827 BUG_ON(index != get_block_group_index(block_group)); 5828 if (used_block_group != block_group) 5829 btrfs_put_block_group(used_block_group); 5830 btrfs_put_block_group(block_group); 5831 } 5832 up_read(&space_info->groups_sem); 5833 5834 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 5835 goto search; 5836 5837 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5838 goto search; 5839 5840 /* 5841 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5842 * caching kthreads as we move along 5843 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5844 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5845 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5846 * again 5847 */ 5848 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5849 index = 0; 5850 loop++; 5851 if (loop == LOOP_ALLOC_CHUNK) { 5852 if (allowed_chunk_alloc) { 5853 ret = do_chunk_alloc(trans, root, num_bytes + 5854 2 * 1024 * 1024, data, 5855 CHUNK_ALLOC_LIMITED); 5856 /* 5857 * Do not bail out on ENOSPC since we 5858 * can do more things. 5859 */ 5860 if (ret < 0 && ret != -ENOSPC) { 5861 btrfs_abort_transaction(trans, 5862 root, ret); 5863 goto out; 5864 } 5865 allowed_chunk_alloc = 0; 5866 if (ret == 1) 5867 done_chunk_alloc = 1; 5868 } else if (!done_chunk_alloc && 5869 space_info->force_alloc == 5870 CHUNK_ALLOC_NO_FORCE) { 5871 space_info->force_alloc = CHUNK_ALLOC_LIMITED; 5872 } 5873 5874 /* 5875 * We didn't allocate a chunk, go ahead and drop the 5876 * empty size and loop again. 5877 */ 5878 if (!done_chunk_alloc) 5879 loop = LOOP_NO_EMPTY_SIZE; 5880 } 5881 5882 if (loop == LOOP_NO_EMPTY_SIZE) { 5883 empty_size = 0; 5884 empty_cluster = 0; 5885 } 5886 5887 goto search; 5888 } else if (!ins->objectid) { 5889 ret = -ENOSPC; 5890 } else if (ins->objectid) { 5891 ret = 0; 5892 } 5893 out: 5894 5895 return ret; 5896 } 5897 5898 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5899 int dump_block_groups) 5900 { 5901 struct btrfs_block_group_cache *cache; 5902 int index = 0; 5903 5904 spin_lock(&info->lock); 5905 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 5906 (unsigned long long)info->flags, 5907 (unsigned long long)(info->total_bytes - info->bytes_used - 5908 info->bytes_pinned - info->bytes_reserved - 5909 info->bytes_readonly), 5910 (info->full) ? "" : "not "); 5911 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5912 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5913 (unsigned long long)info->total_bytes, 5914 (unsigned long long)info->bytes_used, 5915 (unsigned long long)info->bytes_pinned, 5916 (unsigned long long)info->bytes_reserved, 5917 (unsigned long long)info->bytes_may_use, 5918 (unsigned long long)info->bytes_readonly); 5919 spin_unlock(&info->lock); 5920 5921 if (!dump_block_groups) 5922 return; 5923 5924 down_read(&info->groups_sem); 5925 again: 5926 list_for_each_entry(cache, &info->block_groups[index], list) { 5927 spin_lock(&cache->lock); 5928 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n", 5929 (unsigned long long)cache->key.objectid, 5930 (unsigned long long)cache->key.offset, 5931 (unsigned long long)btrfs_block_group_used(&cache->item), 5932 (unsigned long long)cache->pinned, 5933 (unsigned long long)cache->reserved, 5934 cache->ro ? "[readonly]" : ""); 5935 btrfs_dump_free_space(cache, bytes); 5936 spin_unlock(&cache->lock); 5937 } 5938 if (++index < BTRFS_NR_RAID_TYPES) 5939 goto again; 5940 up_read(&info->groups_sem); 5941 } 5942 5943 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5944 struct btrfs_root *root, 5945 u64 num_bytes, u64 min_alloc_size, 5946 u64 empty_size, u64 hint_byte, 5947 struct btrfs_key *ins, u64 data) 5948 { 5949 bool final_tried = false; 5950 int ret; 5951 5952 data = btrfs_get_alloc_profile(root, data); 5953 again: 5954 /* 5955 * the only place that sets empty_size is btrfs_realloc_node, which 5956 * is not called recursively on allocations 5957 */ 5958 if (empty_size || root->ref_cows) { 5959 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5960 num_bytes + 2 * 1024 * 1024, data, 5961 CHUNK_ALLOC_NO_FORCE); 5962 if (ret < 0 && ret != -ENOSPC) { 5963 btrfs_abort_transaction(trans, root, ret); 5964 return ret; 5965 } 5966 } 5967 5968 WARN_ON(num_bytes < root->sectorsize); 5969 ret = find_free_extent(trans, root, num_bytes, empty_size, 5970 hint_byte, ins, data); 5971 5972 if (ret == -ENOSPC) { 5973 if (!final_tried) { 5974 num_bytes = num_bytes >> 1; 5975 num_bytes = num_bytes & ~(root->sectorsize - 1); 5976 num_bytes = max(num_bytes, min_alloc_size); 5977 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5978 num_bytes, data, CHUNK_ALLOC_FORCE); 5979 if (ret < 0 && ret != -ENOSPC) { 5980 btrfs_abort_transaction(trans, root, ret); 5981 return ret; 5982 } 5983 if (num_bytes == min_alloc_size) 5984 final_tried = true; 5985 goto again; 5986 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 5987 struct btrfs_space_info *sinfo; 5988 5989 sinfo = __find_space_info(root->fs_info, data); 5990 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5991 "wanted %llu\n", (unsigned long long)data, 5992 (unsigned long long)num_bytes); 5993 if (sinfo) 5994 dump_space_info(sinfo, num_bytes, 1); 5995 } 5996 } 5997 5998 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 5999 6000 return ret; 6001 } 6002 6003 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6004 u64 start, u64 len, int pin) 6005 { 6006 struct btrfs_block_group_cache *cache; 6007 int ret = 0; 6008 6009 cache = btrfs_lookup_block_group(root->fs_info, start); 6010 if (!cache) { 6011 printk(KERN_ERR "Unable to find block group for %llu\n", 6012 (unsigned long long)start); 6013 return -ENOSPC; 6014 } 6015 6016 if (btrfs_test_opt(root, DISCARD)) 6017 ret = btrfs_discard_extent(root, start, len, NULL); 6018 6019 if (pin) 6020 pin_down_extent(root, cache, start, len, 1); 6021 else { 6022 btrfs_add_free_space(cache, start, len); 6023 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 6024 } 6025 btrfs_put_block_group(cache); 6026 6027 trace_btrfs_reserved_extent_free(root, start, len); 6028 6029 return ret; 6030 } 6031 6032 int btrfs_free_reserved_extent(struct btrfs_root *root, 6033 u64 start, u64 len) 6034 { 6035 return __btrfs_free_reserved_extent(root, start, len, 0); 6036 } 6037 6038 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6039 u64 start, u64 len) 6040 { 6041 return __btrfs_free_reserved_extent(root, start, len, 1); 6042 } 6043 6044 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6045 struct btrfs_root *root, 6046 u64 parent, u64 root_objectid, 6047 u64 flags, u64 owner, u64 offset, 6048 struct btrfs_key *ins, int ref_mod) 6049 { 6050 int ret; 6051 struct btrfs_fs_info *fs_info = root->fs_info; 6052 struct btrfs_extent_item *extent_item; 6053 struct btrfs_extent_inline_ref *iref; 6054 struct btrfs_path *path; 6055 struct extent_buffer *leaf; 6056 int type; 6057 u32 size; 6058 6059 if (parent > 0) 6060 type = BTRFS_SHARED_DATA_REF_KEY; 6061 else 6062 type = BTRFS_EXTENT_DATA_REF_KEY; 6063 6064 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 6065 6066 path = btrfs_alloc_path(); 6067 if (!path) 6068 return -ENOMEM; 6069 6070 path->leave_spinning = 1; 6071 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6072 ins, size); 6073 if (ret) { 6074 btrfs_free_path(path); 6075 return ret; 6076 } 6077 6078 leaf = path->nodes[0]; 6079 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6080 struct btrfs_extent_item); 6081 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 6082 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6083 btrfs_set_extent_flags(leaf, extent_item, 6084 flags | BTRFS_EXTENT_FLAG_DATA); 6085 6086 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 6087 btrfs_set_extent_inline_ref_type(leaf, iref, type); 6088 if (parent > 0) { 6089 struct btrfs_shared_data_ref *ref; 6090 ref = (struct btrfs_shared_data_ref *)(iref + 1); 6091 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6092 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 6093 } else { 6094 struct btrfs_extent_data_ref *ref; 6095 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 6096 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 6097 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 6098 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 6099 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 6100 } 6101 6102 btrfs_mark_buffer_dirty(path->nodes[0]); 6103 btrfs_free_path(path); 6104 6105 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6106 if (ret) { /* -ENOENT, logic error */ 6107 printk(KERN_ERR "btrfs update block group failed for %llu " 6108 "%llu\n", (unsigned long long)ins->objectid, 6109 (unsigned long long)ins->offset); 6110 BUG(); 6111 } 6112 return ret; 6113 } 6114 6115 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 6116 struct btrfs_root *root, 6117 u64 parent, u64 root_objectid, 6118 u64 flags, struct btrfs_disk_key *key, 6119 int level, struct btrfs_key *ins) 6120 { 6121 int ret; 6122 struct btrfs_fs_info *fs_info = root->fs_info; 6123 struct btrfs_extent_item *extent_item; 6124 struct btrfs_tree_block_info *block_info; 6125 struct btrfs_extent_inline_ref *iref; 6126 struct btrfs_path *path; 6127 struct extent_buffer *leaf; 6128 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 6129 6130 path = btrfs_alloc_path(); 6131 if (!path) 6132 return -ENOMEM; 6133 6134 path->leave_spinning = 1; 6135 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 6136 ins, size); 6137 if (ret) { 6138 btrfs_free_path(path); 6139 return ret; 6140 } 6141 6142 leaf = path->nodes[0]; 6143 extent_item = btrfs_item_ptr(leaf, path->slots[0], 6144 struct btrfs_extent_item); 6145 btrfs_set_extent_refs(leaf, extent_item, 1); 6146 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 6147 btrfs_set_extent_flags(leaf, extent_item, 6148 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 6149 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 6150 6151 btrfs_set_tree_block_key(leaf, block_info, key); 6152 btrfs_set_tree_block_level(leaf, block_info, level); 6153 6154 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 6155 if (parent > 0) { 6156 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 6157 btrfs_set_extent_inline_ref_type(leaf, iref, 6158 BTRFS_SHARED_BLOCK_REF_KEY); 6159 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 6160 } else { 6161 btrfs_set_extent_inline_ref_type(leaf, iref, 6162 BTRFS_TREE_BLOCK_REF_KEY); 6163 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 6164 } 6165 6166 btrfs_mark_buffer_dirty(leaf); 6167 btrfs_free_path(path); 6168 6169 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6170 if (ret) { /* -ENOENT, logic error */ 6171 printk(KERN_ERR "btrfs update block group failed for %llu " 6172 "%llu\n", (unsigned long long)ins->objectid, 6173 (unsigned long long)ins->offset); 6174 BUG(); 6175 } 6176 return ret; 6177 } 6178 6179 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6180 struct btrfs_root *root, 6181 u64 root_objectid, u64 owner, 6182 u64 offset, struct btrfs_key *ins) 6183 { 6184 int ret; 6185 6186 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6187 6188 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6189 ins->offset, 0, 6190 root_objectid, owner, offset, 6191 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6192 return ret; 6193 } 6194 6195 /* 6196 * this is used by the tree logging recovery code. It records that 6197 * an extent has been allocated and makes sure to clear the free 6198 * space cache bits as well 6199 */ 6200 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6201 struct btrfs_root *root, 6202 u64 root_objectid, u64 owner, u64 offset, 6203 struct btrfs_key *ins) 6204 { 6205 int ret; 6206 struct btrfs_block_group_cache *block_group; 6207 struct btrfs_caching_control *caching_ctl; 6208 u64 start = ins->objectid; 6209 u64 num_bytes = ins->offset; 6210 6211 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6212 cache_block_group(block_group, trans, NULL, 0); 6213 caching_ctl = get_caching_control(block_group); 6214 6215 if (!caching_ctl) { 6216 BUG_ON(!block_group_cache_done(block_group)); 6217 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6218 BUG_ON(ret); /* -ENOMEM */ 6219 } else { 6220 mutex_lock(&caching_ctl->mutex); 6221 6222 if (start >= caching_ctl->progress) { 6223 ret = add_excluded_extent(root, start, num_bytes); 6224 BUG_ON(ret); /* -ENOMEM */ 6225 } else if (start + num_bytes <= caching_ctl->progress) { 6226 ret = btrfs_remove_free_space(block_group, 6227 start, num_bytes); 6228 BUG_ON(ret); /* -ENOMEM */ 6229 } else { 6230 num_bytes = caching_ctl->progress - start; 6231 ret = btrfs_remove_free_space(block_group, 6232 start, num_bytes); 6233 BUG_ON(ret); /* -ENOMEM */ 6234 6235 start = caching_ctl->progress; 6236 num_bytes = ins->objectid + ins->offset - 6237 caching_ctl->progress; 6238 ret = add_excluded_extent(root, start, num_bytes); 6239 BUG_ON(ret); /* -ENOMEM */ 6240 } 6241 6242 mutex_unlock(&caching_ctl->mutex); 6243 put_caching_control(caching_ctl); 6244 } 6245 6246 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6247 RESERVE_ALLOC_NO_ACCOUNT); 6248 BUG_ON(ret); /* logic error */ 6249 btrfs_put_block_group(block_group); 6250 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6251 0, owner, offset, ins, 1); 6252 return ret; 6253 } 6254 6255 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6256 struct btrfs_root *root, 6257 u64 bytenr, u32 blocksize, 6258 int level) 6259 { 6260 struct extent_buffer *buf; 6261 6262 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6263 if (!buf) 6264 return ERR_PTR(-ENOMEM); 6265 btrfs_set_header_generation(buf, trans->transid); 6266 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6267 btrfs_tree_lock(buf); 6268 clean_tree_block(trans, root, buf); 6269 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 6270 6271 btrfs_set_lock_blocking(buf); 6272 btrfs_set_buffer_uptodate(buf); 6273 6274 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6275 /* 6276 * we allow two log transactions at a time, use different 6277 * EXENT bit to differentiate dirty pages. 6278 */ 6279 if (root->log_transid % 2 == 0) 6280 set_extent_dirty(&root->dirty_log_pages, buf->start, 6281 buf->start + buf->len - 1, GFP_NOFS); 6282 else 6283 set_extent_new(&root->dirty_log_pages, buf->start, 6284 buf->start + buf->len - 1, GFP_NOFS); 6285 } else { 6286 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6287 buf->start + buf->len - 1, GFP_NOFS); 6288 } 6289 trans->blocks_used++; 6290 /* this returns a buffer locked for blocking */ 6291 return buf; 6292 } 6293 6294 static struct btrfs_block_rsv * 6295 use_block_rsv(struct btrfs_trans_handle *trans, 6296 struct btrfs_root *root, u32 blocksize) 6297 { 6298 struct btrfs_block_rsv *block_rsv; 6299 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6300 int ret; 6301 6302 block_rsv = get_block_rsv(trans, root); 6303 6304 if (block_rsv->size == 0) { 6305 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6306 /* 6307 * If we couldn't reserve metadata bytes try and use some from 6308 * the global reserve. 6309 */ 6310 if (ret && block_rsv != global_rsv) { 6311 ret = block_rsv_use_bytes(global_rsv, blocksize); 6312 if (!ret) 6313 return global_rsv; 6314 return ERR_PTR(ret); 6315 } else if (ret) { 6316 return ERR_PTR(ret); 6317 } 6318 return block_rsv; 6319 } 6320 6321 ret = block_rsv_use_bytes(block_rsv, blocksize); 6322 if (!ret) 6323 return block_rsv; 6324 if (ret) { 6325 static DEFINE_RATELIMIT_STATE(_rs, 6326 DEFAULT_RATELIMIT_INTERVAL, 6327 /*DEFAULT_RATELIMIT_BURST*/ 2); 6328 if (__ratelimit(&_rs)) { 6329 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret); 6330 WARN_ON(1); 6331 } 6332 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6333 if (!ret) { 6334 return block_rsv; 6335 } else if (ret && block_rsv != global_rsv) { 6336 ret = block_rsv_use_bytes(global_rsv, blocksize); 6337 if (!ret) 6338 return global_rsv; 6339 } 6340 } 6341 6342 return ERR_PTR(-ENOSPC); 6343 } 6344 6345 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6346 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6347 { 6348 block_rsv_add_bytes(block_rsv, blocksize, 0); 6349 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6350 } 6351 6352 /* 6353 * finds a free extent and does all the dirty work required for allocation 6354 * returns the key for the extent through ins, and a tree buffer for 6355 * the first block of the extent through buf. 6356 * 6357 * returns the tree buffer or NULL. 6358 */ 6359 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6360 struct btrfs_root *root, u32 blocksize, 6361 u64 parent, u64 root_objectid, 6362 struct btrfs_disk_key *key, int level, 6363 u64 hint, u64 empty_size) 6364 { 6365 struct btrfs_key ins; 6366 struct btrfs_block_rsv *block_rsv; 6367 struct extent_buffer *buf; 6368 u64 flags = 0; 6369 int ret; 6370 6371 6372 block_rsv = use_block_rsv(trans, root, blocksize); 6373 if (IS_ERR(block_rsv)) 6374 return ERR_CAST(block_rsv); 6375 6376 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6377 empty_size, hint, &ins, 0); 6378 if (ret) { 6379 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6380 return ERR_PTR(ret); 6381 } 6382 6383 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6384 blocksize, level); 6385 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 6386 6387 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6388 if (parent == 0) 6389 parent = ins.objectid; 6390 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6391 } else 6392 BUG_ON(parent > 0); 6393 6394 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6395 struct btrfs_delayed_extent_op *extent_op; 6396 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 6397 BUG_ON(!extent_op); /* -ENOMEM */ 6398 if (key) 6399 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6400 else 6401 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6402 extent_op->flags_to_set = flags; 6403 extent_op->update_key = 1; 6404 extent_op->update_flags = 1; 6405 extent_op->is_data = 0; 6406 6407 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6408 ins.objectid, 6409 ins.offset, parent, root_objectid, 6410 level, BTRFS_ADD_DELAYED_EXTENT, 6411 extent_op, 0); 6412 BUG_ON(ret); /* -ENOMEM */ 6413 } 6414 return buf; 6415 } 6416 6417 struct walk_control { 6418 u64 refs[BTRFS_MAX_LEVEL]; 6419 u64 flags[BTRFS_MAX_LEVEL]; 6420 struct btrfs_key update_progress; 6421 int stage; 6422 int level; 6423 int shared_level; 6424 int update_ref; 6425 int keep_locks; 6426 int reada_slot; 6427 int reada_count; 6428 int for_reloc; 6429 }; 6430 6431 #define DROP_REFERENCE 1 6432 #define UPDATE_BACKREF 2 6433 6434 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6435 struct btrfs_root *root, 6436 struct walk_control *wc, 6437 struct btrfs_path *path) 6438 { 6439 u64 bytenr; 6440 u64 generation; 6441 u64 refs; 6442 u64 flags; 6443 u32 nritems; 6444 u32 blocksize; 6445 struct btrfs_key key; 6446 struct extent_buffer *eb; 6447 int ret; 6448 int slot; 6449 int nread = 0; 6450 6451 if (path->slots[wc->level] < wc->reada_slot) { 6452 wc->reada_count = wc->reada_count * 2 / 3; 6453 wc->reada_count = max(wc->reada_count, 2); 6454 } else { 6455 wc->reada_count = wc->reada_count * 3 / 2; 6456 wc->reada_count = min_t(int, wc->reada_count, 6457 BTRFS_NODEPTRS_PER_BLOCK(root)); 6458 } 6459 6460 eb = path->nodes[wc->level]; 6461 nritems = btrfs_header_nritems(eb); 6462 blocksize = btrfs_level_size(root, wc->level - 1); 6463 6464 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6465 if (nread >= wc->reada_count) 6466 break; 6467 6468 cond_resched(); 6469 bytenr = btrfs_node_blockptr(eb, slot); 6470 generation = btrfs_node_ptr_generation(eb, slot); 6471 6472 if (slot == path->slots[wc->level]) 6473 goto reada; 6474 6475 if (wc->stage == UPDATE_BACKREF && 6476 generation <= root->root_key.offset) 6477 continue; 6478 6479 /* We don't lock the tree block, it's OK to be racy here */ 6480 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6481 &refs, &flags); 6482 /* We don't care about errors in readahead. */ 6483 if (ret < 0) 6484 continue; 6485 BUG_ON(refs == 0); 6486 6487 if (wc->stage == DROP_REFERENCE) { 6488 if (refs == 1) 6489 goto reada; 6490 6491 if (wc->level == 1 && 6492 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6493 continue; 6494 if (!wc->update_ref || 6495 generation <= root->root_key.offset) 6496 continue; 6497 btrfs_node_key_to_cpu(eb, &key, slot); 6498 ret = btrfs_comp_cpu_keys(&key, 6499 &wc->update_progress); 6500 if (ret < 0) 6501 continue; 6502 } else { 6503 if (wc->level == 1 && 6504 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6505 continue; 6506 } 6507 reada: 6508 ret = readahead_tree_block(root, bytenr, blocksize, 6509 generation); 6510 if (ret) 6511 break; 6512 nread++; 6513 } 6514 wc->reada_slot = slot; 6515 } 6516 6517 /* 6518 * hepler to process tree block while walking down the tree. 6519 * 6520 * when wc->stage == UPDATE_BACKREF, this function updates 6521 * back refs for pointers in the block. 6522 * 6523 * NOTE: return value 1 means we should stop walking down. 6524 */ 6525 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6526 struct btrfs_root *root, 6527 struct btrfs_path *path, 6528 struct walk_control *wc, int lookup_info) 6529 { 6530 int level = wc->level; 6531 struct extent_buffer *eb = path->nodes[level]; 6532 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6533 int ret; 6534 6535 if (wc->stage == UPDATE_BACKREF && 6536 btrfs_header_owner(eb) != root->root_key.objectid) 6537 return 1; 6538 6539 /* 6540 * when reference count of tree block is 1, it won't increase 6541 * again. once full backref flag is set, we never clear it. 6542 */ 6543 if (lookup_info && 6544 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6545 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6546 BUG_ON(!path->locks[level]); 6547 ret = btrfs_lookup_extent_info(trans, root, 6548 eb->start, eb->len, 6549 &wc->refs[level], 6550 &wc->flags[level]); 6551 BUG_ON(ret == -ENOMEM); 6552 if (ret) 6553 return ret; 6554 BUG_ON(wc->refs[level] == 0); 6555 } 6556 6557 if (wc->stage == DROP_REFERENCE) { 6558 if (wc->refs[level] > 1) 6559 return 1; 6560 6561 if (path->locks[level] && !wc->keep_locks) { 6562 btrfs_tree_unlock_rw(eb, path->locks[level]); 6563 path->locks[level] = 0; 6564 } 6565 return 0; 6566 } 6567 6568 /* wc->stage == UPDATE_BACKREF */ 6569 if (!(wc->flags[level] & flag)) { 6570 BUG_ON(!path->locks[level]); 6571 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6572 BUG_ON(ret); /* -ENOMEM */ 6573 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6574 BUG_ON(ret); /* -ENOMEM */ 6575 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6576 eb->len, flag, 0); 6577 BUG_ON(ret); /* -ENOMEM */ 6578 wc->flags[level] |= flag; 6579 } 6580 6581 /* 6582 * the block is shared by multiple trees, so it's not good to 6583 * keep the tree lock 6584 */ 6585 if (path->locks[level] && level > 0) { 6586 btrfs_tree_unlock_rw(eb, path->locks[level]); 6587 path->locks[level] = 0; 6588 } 6589 return 0; 6590 } 6591 6592 /* 6593 * hepler to process tree block pointer. 6594 * 6595 * when wc->stage == DROP_REFERENCE, this function checks 6596 * reference count of the block pointed to. if the block 6597 * is shared and we need update back refs for the subtree 6598 * rooted at the block, this function changes wc->stage to 6599 * UPDATE_BACKREF. if the block is shared and there is no 6600 * need to update back, this function drops the reference 6601 * to the block. 6602 * 6603 * NOTE: return value 1 means we should stop walking down. 6604 */ 6605 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6606 struct btrfs_root *root, 6607 struct btrfs_path *path, 6608 struct walk_control *wc, int *lookup_info) 6609 { 6610 u64 bytenr; 6611 u64 generation; 6612 u64 parent; 6613 u32 blocksize; 6614 struct btrfs_key key; 6615 struct extent_buffer *next; 6616 int level = wc->level; 6617 int reada = 0; 6618 int ret = 0; 6619 6620 generation = btrfs_node_ptr_generation(path->nodes[level], 6621 path->slots[level]); 6622 /* 6623 * if the lower level block was created before the snapshot 6624 * was created, we know there is no need to update back refs 6625 * for the subtree 6626 */ 6627 if (wc->stage == UPDATE_BACKREF && 6628 generation <= root->root_key.offset) { 6629 *lookup_info = 1; 6630 return 1; 6631 } 6632 6633 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6634 blocksize = btrfs_level_size(root, level - 1); 6635 6636 next = btrfs_find_tree_block(root, bytenr, blocksize); 6637 if (!next) { 6638 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6639 if (!next) 6640 return -ENOMEM; 6641 reada = 1; 6642 } 6643 btrfs_tree_lock(next); 6644 btrfs_set_lock_blocking(next); 6645 6646 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6647 &wc->refs[level - 1], 6648 &wc->flags[level - 1]); 6649 if (ret < 0) { 6650 btrfs_tree_unlock(next); 6651 return ret; 6652 } 6653 6654 BUG_ON(wc->refs[level - 1] == 0); 6655 *lookup_info = 0; 6656 6657 if (wc->stage == DROP_REFERENCE) { 6658 if (wc->refs[level - 1] > 1) { 6659 if (level == 1 && 6660 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6661 goto skip; 6662 6663 if (!wc->update_ref || 6664 generation <= root->root_key.offset) 6665 goto skip; 6666 6667 btrfs_node_key_to_cpu(path->nodes[level], &key, 6668 path->slots[level]); 6669 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6670 if (ret < 0) 6671 goto skip; 6672 6673 wc->stage = UPDATE_BACKREF; 6674 wc->shared_level = level - 1; 6675 } 6676 } else { 6677 if (level == 1 && 6678 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6679 goto skip; 6680 } 6681 6682 if (!btrfs_buffer_uptodate(next, generation, 0)) { 6683 btrfs_tree_unlock(next); 6684 free_extent_buffer(next); 6685 next = NULL; 6686 *lookup_info = 1; 6687 } 6688 6689 if (!next) { 6690 if (reada && level == 1) 6691 reada_walk_down(trans, root, wc, path); 6692 next = read_tree_block(root, bytenr, blocksize, generation); 6693 if (!next) 6694 return -EIO; 6695 btrfs_tree_lock(next); 6696 btrfs_set_lock_blocking(next); 6697 } 6698 6699 level--; 6700 BUG_ON(level != btrfs_header_level(next)); 6701 path->nodes[level] = next; 6702 path->slots[level] = 0; 6703 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6704 wc->level = level; 6705 if (wc->level == 1) 6706 wc->reada_slot = 0; 6707 return 0; 6708 skip: 6709 wc->refs[level - 1] = 0; 6710 wc->flags[level - 1] = 0; 6711 if (wc->stage == DROP_REFERENCE) { 6712 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6713 parent = path->nodes[level]->start; 6714 } else { 6715 BUG_ON(root->root_key.objectid != 6716 btrfs_header_owner(path->nodes[level])); 6717 parent = 0; 6718 } 6719 6720 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6721 root->root_key.objectid, level - 1, 0, 0); 6722 BUG_ON(ret); /* -ENOMEM */ 6723 } 6724 btrfs_tree_unlock(next); 6725 free_extent_buffer(next); 6726 *lookup_info = 1; 6727 return 1; 6728 } 6729 6730 /* 6731 * hepler to process tree block while walking up the tree. 6732 * 6733 * when wc->stage == DROP_REFERENCE, this function drops 6734 * reference count on the block. 6735 * 6736 * when wc->stage == UPDATE_BACKREF, this function changes 6737 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6738 * to UPDATE_BACKREF previously while processing the block. 6739 * 6740 * NOTE: return value 1 means we should stop walking up. 6741 */ 6742 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6743 struct btrfs_root *root, 6744 struct btrfs_path *path, 6745 struct walk_control *wc) 6746 { 6747 int ret; 6748 int level = wc->level; 6749 struct extent_buffer *eb = path->nodes[level]; 6750 u64 parent = 0; 6751 6752 if (wc->stage == UPDATE_BACKREF) { 6753 BUG_ON(wc->shared_level < level); 6754 if (level < wc->shared_level) 6755 goto out; 6756 6757 ret = find_next_key(path, level + 1, &wc->update_progress); 6758 if (ret > 0) 6759 wc->update_ref = 0; 6760 6761 wc->stage = DROP_REFERENCE; 6762 wc->shared_level = -1; 6763 path->slots[level] = 0; 6764 6765 /* 6766 * check reference count again if the block isn't locked. 6767 * we should start walking down the tree again if reference 6768 * count is one. 6769 */ 6770 if (!path->locks[level]) { 6771 BUG_ON(level == 0); 6772 btrfs_tree_lock(eb); 6773 btrfs_set_lock_blocking(eb); 6774 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6775 6776 ret = btrfs_lookup_extent_info(trans, root, 6777 eb->start, eb->len, 6778 &wc->refs[level], 6779 &wc->flags[level]); 6780 if (ret < 0) { 6781 btrfs_tree_unlock_rw(eb, path->locks[level]); 6782 return ret; 6783 } 6784 BUG_ON(wc->refs[level] == 0); 6785 if (wc->refs[level] == 1) { 6786 btrfs_tree_unlock_rw(eb, path->locks[level]); 6787 return 1; 6788 } 6789 } 6790 } 6791 6792 /* wc->stage == DROP_REFERENCE */ 6793 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6794 6795 if (wc->refs[level] == 1) { 6796 if (level == 0) { 6797 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6798 ret = btrfs_dec_ref(trans, root, eb, 1, 6799 wc->for_reloc); 6800 else 6801 ret = btrfs_dec_ref(trans, root, eb, 0, 6802 wc->for_reloc); 6803 BUG_ON(ret); /* -ENOMEM */ 6804 } 6805 /* make block locked assertion in clean_tree_block happy */ 6806 if (!path->locks[level] && 6807 btrfs_header_generation(eb) == trans->transid) { 6808 btrfs_tree_lock(eb); 6809 btrfs_set_lock_blocking(eb); 6810 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6811 } 6812 clean_tree_block(trans, root, eb); 6813 } 6814 6815 if (eb == root->node) { 6816 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6817 parent = eb->start; 6818 else 6819 BUG_ON(root->root_key.objectid != 6820 btrfs_header_owner(eb)); 6821 } else { 6822 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6823 parent = path->nodes[level + 1]->start; 6824 else 6825 BUG_ON(root->root_key.objectid != 6826 btrfs_header_owner(path->nodes[level + 1])); 6827 } 6828 6829 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 6830 out: 6831 wc->refs[level] = 0; 6832 wc->flags[level] = 0; 6833 return 0; 6834 } 6835 6836 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6837 struct btrfs_root *root, 6838 struct btrfs_path *path, 6839 struct walk_control *wc) 6840 { 6841 int level = wc->level; 6842 int lookup_info = 1; 6843 int ret; 6844 6845 while (level >= 0) { 6846 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6847 if (ret > 0) 6848 break; 6849 6850 if (level == 0) 6851 break; 6852 6853 if (path->slots[level] >= 6854 btrfs_header_nritems(path->nodes[level])) 6855 break; 6856 6857 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6858 if (ret > 0) { 6859 path->slots[level]++; 6860 continue; 6861 } else if (ret < 0) 6862 return ret; 6863 level = wc->level; 6864 } 6865 return 0; 6866 } 6867 6868 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6869 struct btrfs_root *root, 6870 struct btrfs_path *path, 6871 struct walk_control *wc, int max_level) 6872 { 6873 int level = wc->level; 6874 int ret; 6875 6876 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6877 while (level < max_level && path->nodes[level]) { 6878 wc->level = level; 6879 if (path->slots[level] + 1 < 6880 btrfs_header_nritems(path->nodes[level])) { 6881 path->slots[level]++; 6882 return 0; 6883 } else { 6884 ret = walk_up_proc(trans, root, path, wc); 6885 if (ret > 0) 6886 return 0; 6887 6888 if (path->locks[level]) { 6889 btrfs_tree_unlock_rw(path->nodes[level], 6890 path->locks[level]); 6891 path->locks[level] = 0; 6892 } 6893 free_extent_buffer(path->nodes[level]); 6894 path->nodes[level] = NULL; 6895 level++; 6896 } 6897 } 6898 return 1; 6899 } 6900 6901 /* 6902 * drop a subvolume tree. 6903 * 6904 * this function traverses the tree freeing any blocks that only 6905 * referenced by the tree. 6906 * 6907 * when a shared tree block is found. this function decreases its 6908 * reference count by one. if update_ref is true, this function 6909 * also make sure backrefs for the shared block and all lower level 6910 * blocks are properly updated. 6911 */ 6912 int btrfs_drop_snapshot(struct btrfs_root *root, 6913 struct btrfs_block_rsv *block_rsv, int update_ref, 6914 int for_reloc) 6915 { 6916 struct btrfs_path *path; 6917 struct btrfs_trans_handle *trans; 6918 struct btrfs_root *tree_root = root->fs_info->tree_root; 6919 struct btrfs_root_item *root_item = &root->root_item; 6920 struct walk_control *wc; 6921 struct btrfs_key key; 6922 int err = 0; 6923 int ret; 6924 int level; 6925 6926 path = btrfs_alloc_path(); 6927 if (!path) { 6928 err = -ENOMEM; 6929 goto out; 6930 } 6931 6932 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6933 if (!wc) { 6934 btrfs_free_path(path); 6935 err = -ENOMEM; 6936 goto out; 6937 } 6938 6939 trans = btrfs_start_transaction(tree_root, 0); 6940 if (IS_ERR(trans)) { 6941 err = PTR_ERR(trans); 6942 goto out_free; 6943 } 6944 6945 if (block_rsv) 6946 trans->block_rsv = block_rsv; 6947 6948 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6949 level = btrfs_header_level(root->node); 6950 path->nodes[level] = btrfs_lock_root_node(root); 6951 btrfs_set_lock_blocking(path->nodes[level]); 6952 path->slots[level] = 0; 6953 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6954 memset(&wc->update_progress, 0, 6955 sizeof(wc->update_progress)); 6956 } else { 6957 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6958 memcpy(&wc->update_progress, &key, 6959 sizeof(wc->update_progress)); 6960 6961 level = root_item->drop_level; 6962 BUG_ON(level == 0); 6963 path->lowest_level = level; 6964 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6965 path->lowest_level = 0; 6966 if (ret < 0) { 6967 err = ret; 6968 goto out_end_trans; 6969 } 6970 WARN_ON(ret > 0); 6971 6972 /* 6973 * unlock our path, this is safe because only this 6974 * function is allowed to delete this snapshot 6975 */ 6976 btrfs_unlock_up_safe(path, 0); 6977 6978 level = btrfs_header_level(root->node); 6979 while (1) { 6980 btrfs_tree_lock(path->nodes[level]); 6981 btrfs_set_lock_blocking(path->nodes[level]); 6982 6983 ret = btrfs_lookup_extent_info(trans, root, 6984 path->nodes[level]->start, 6985 path->nodes[level]->len, 6986 &wc->refs[level], 6987 &wc->flags[level]); 6988 if (ret < 0) { 6989 err = ret; 6990 goto out_end_trans; 6991 } 6992 BUG_ON(wc->refs[level] == 0); 6993 6994 if (level == root_item->drop_level) 6995 break; 6996 6997 btrfs_tree_unlock(path->nodes[level]); 6998 WARN_ON(wc->refs[level] != 1); 6999 level--; 7000 } 7001 } 7002 7003 wc->level = level; 7004 wc->shared_level = -1; 7005 wc->stage = DROP_REFERENCE; 7006 wc->update_ref = update_ref; 7007 wc->keep_locks = 0; 7008 wc->for_reloc = for_reloc; 7009 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7010 7011 while (1) { 7012 ret = walk_down_tree(trans, root, path, wc); 7013 if (ret < 0) { 7014 err = ret; 7015 break; 7016 } 7017 7018 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 7019 if (ret < 0) { 7020 err = ret; 7021 break; 7022 } 7023 7024 if (ret > 0) { 7025 BUG_ON(wc->stage != DROP_REFERENCE); 7026 break; 7027 } 7028 7029 if (wc->stage == DROP_REFERENCE) { 7030 level = wc->level; 7031 btrfs_node_key(path->nodes[level], 7032 &root_item->drop_progress, 7033 path->slots[level]); 7034 root_item->drop_level = level; 7035 } 7036 7037 BUG_ON(wc->level == 0); 7038 if (btrfs_should_end_transaction(trans, tree_root)) { 7039 ret = btrfs_update_root(trans, tree_root, 7040 &root->root_key, 7041 root_item); 7042 if (ret) { 7043 btrfs_abort_transaction(trans, tree_root, ret); 7044 err = ret; 7045 goto out_end_trans; 7046 } 7047 7048 btrfs_end_transaction_throttle(trans, tree_root); 7049 trans = btrfs_start_transaction(tree_root, 0); 7050 if (IS_ERR(trans)) { 7051 err = PTR_ERR(trans); 7052 goto out_free; 7053 } 7054 if (block_rsv) 7055 trans->block_rsv = block_rsv; 7056 } 7057 } 7058 btrfs_release_path(path); 7059 if (err) 7060 goto out_end_trans; 7061 7062 ret = btrfs_del_root(trans, tree_root, &root->root_key); 7063 if (ret) { 7064 btrfs_abort_transaction(trans, tree_root, ret); 7065 goto out_end_trans; 7066 } 7067 7068 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 7069 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 7070 NULL, NULL); 7071 if (ret < 0) { 7072 btrfs_abort_transaction(trans, tree_root, ret); 7073 err = ret; 7074 goto out_end_trans; 7075 } else if (ret > 0) { 7076 /* if we fail to delete the orphan item this time 7077 * around, it'll get picked up the next time. 7078 * 7079 * The most common failure here is just -ENOENT. 7080 */ 7081 btrfs_del_orphan_item(trans, tree_root, 7082 root->root_key.objectid); 7083 } 7084 } 7085 7086 if (root->in_radix) { 7087 btrfs_free_fs_root(tree_root->fs_info, root); 7088 } else { 7089 free_extent_buffer(root->node); 7090 free_extent_buffer(root->commit_root); 7091 kfree(root); 7092 } 7093 out_end_trans: 7094 btrfs_end_transaction_throttle(trans, tree_root); 7095 out_free: 7096 kfree(wc); 7097 btrfs_free_path(path); 7098 out: 7099 if (err) 7100 btrfs_std_error(root->fs_info, err); 7101 return err; 7102 } 7103 7104 /* 7105 * drop subtree rooted at tree block 'node'. 7106 * 7107 * NOTE: this function will unlock and release tree block 'node' 7108 * only used by relocation code 7109 */ 7110 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 7111 struct btrfs_root *root, 7112 struct extent_buffer *node, 7113 struct extent_buffer *parent) 7114 { 7115 struct btrfs_path *path; 7116 struct walk_control *wc; 7117 int level; 7118 int parent_level; 7119 int ret = 0; 7120 int wret; 7121 7122 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 7123 7124 path = btrfs_alloc_path(); 7125 if (!path) 7126 return -ENOMEM; 7127 7128 wc = kzalloc(sizeof(*wc), GFP_NOFS); 7129 if (!wc) { 7130 btrfs_free_path(path); 7131 return -ENOMEM; 7132 } 7133 7134 btrfs_assert_tree_locked(parent); 7135 parent_level = btrfs_header_level(parent); 7136 extent_buffer_get(parent); 7137 path->nodes[parent_level] = parent; 7138 path->slots[parent_level] = btrfs_header_nritems(parent); 7139 7140 btrfs_assert_tree_locked(node); 7141 level = btrfs_header_level(node); 7142 path->nodes[level] = node; 7143 path->slots[level] = 0; 7144 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7145 7146 wc->refs[parent_level] = 1; 7147 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7148 wc->level = level; 7149 wc->shared_level = -1; 7150 wc->stage = DROP_REFERENCE; 7151 wc->update_ref = 0; 7152 wc->keep_locks = 1; 7153 wc->for_reloc = 1; 7154 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 7155 7156 while (1) { 7157 wret = walk_down_tree(trans, root, path, wc); 7158 if (wret < 0) { 7159 ret = wret; 7160 break; 7161 } 7162 7163 wret = walk_up_tree(trans, root, path, wc, parent_level); 7164 if (wret < 0) 7165 ret = wret; 7166 if (wret != 0) 7167 break; 7168 } 7169 7170 kfree(wc); 7171 btrfs_free_path(path); 7172 return ret; 7173 } 7174 7175 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 7176 { 7177 u64 num_devices; 7178 u64 stripped; 7179 7180 /* 7181 * if restripe for this chunk_type is on pick target profile and 7182 * return, otherwise do the usual balance 7183 */ 7184 stripped = get_restripe_target(root->fs_info, flags); 7185 if (stripped) 7186 return extended_to_chunk(stripped); 7187 7188 /* 7189 * we add in the count of missing devices because we want 7190 * to make sure that any RAID levels on a degraded FS 7191 * continue to be honored. 7192 */ 7193 num_devices = root->fs_info->fs_devices->rw_devices + 7194 root->fs_info->fs_devices->missing_devices; 7195 7196 stripped = BTRFS_BLOCK_GROUP_RAID0 | 7197 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 7198 7199 if (num_devices == 1) { 7200 stripped |= BTRFS_BLOCK_GROUP_DUP; 7201 stripped = flags & ~stripped; 7202 7203 /* turn raid0 into single device chunks */ 7204 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7205 return stripped; 7206 7207 /* turn mirroring into duplication */ 7208 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7209 BTRFS_BLOCK_GROUP_RAID10)) 7210 return stripped | BTRFS_BLOCK_GROUP_DUP; 7211 } else { 7212 /* they already had raid on here, just return */ 7213 if (flags & stripped) 7214 return flags; 7215 7216 stripped |= BTRFS_BLOCK_GROUP_DUP; 7217 stripped = flags & ~stripped; 7218 7219 /* switch duplicated blocks with raid1 */ 7220 if (flags & BTRFS_BLOCK_GROUP_DUP) 7221 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7222 7223 /* this is drive concat, leave it alone */ 7224 } 7225 7226 return flags; 7227 } 7228 7229 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7230 { 7231 struct btrfs_space_info *sinfo = cache->space_info; 7232 u64 num_bytes; 7233 u64 min_allocable_bytes; 7234 int ret = -ENOSPC; 7235 7236 7237 /* 7238 * We need some metadata space and system metadata space for 7239 * allocating chunks in some corner cases until we force to set 7240 * it to be readonly. 7241 */ 7242 if ((sinfo->flags & 7243 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7244 !force) 7245 min_allocable_bytes = 1 * 1024 * 1024; 7246 else 7247 min_allocable_bytes = 0; 7248 7249 spin_lock(&sinfo->lock); 7250 spin_lock(&cache->lock); 7251 7252 if (cache->ro) { 7253 ret = 0; 7254 goto out; 7255 } 7256 7257 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7258 cache->bytes_super - btrfs_block_group_used(&cache->item); 7259 7260 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7261 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7262 min_allocable_bytes <= sinfo->total_bytes) { 7263 sinfo->bytes_readonly += num_bytes; 7264 cache->ro = 1; 7265 ret = 0; 7266 } 7267 out: 7268 spin_unlock(&cache->lock); 7269 spin_unlock(&sinfo->lock); 7270 return ret; 7271 } 7272 7273 int btrfs_set_block_group_ro(struct btrfs_root *root, 7274 struct btrfs_block_group_cache *cache) 7275 7276 { 7277 struct btrfs_trans_handle *trans; 7278 u64 alloc_flags; 7279 int ret; 7280 7281 BUG_ON(cache->ro); 7282 7283 trans = btrfs_join_transaction(root); 7284 if (IS_ERR(trans)) 7285 return PTR_ERR(trans); 7286 7287 alloc_flags = update_block_group_flags(root, cache->flags); 7288 if (alloc_flags != cache->flags) { 7289 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7290 CHUNK_ALLOC_FORCE); 7291 if (ret < 0) 7292 goto out; 7293 } 7294 7295 ret = set_block_group_ro(cache, 0); 7296 if (!ret) 7297 goto out; 7298 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7299 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7300 CHUNK_ALLOC_FORCE); 7301 if (ret < 0) 7302 goto out; 7303 ret = set_block_group_ro(cache, 0); 7304 out: 7305 btrfs_end_transaction(trans, root); 7306 return ret; 7307 } 7308 7309 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7310 struct btrfs_root *root, u64 type) 7311 { 7312 u64 alloc_flags = get_alloc_profile(root, type); 7313 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7314 CHUNK_ALLOC_FORCE); 7315 } 7316 7317 /* 7318 * helper to account the unused space of all the readonly block group in the 7319 * list. takes mirrors into account. 7320 */ 7321 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7322 { 7323 struct btrfs_block_group_cache *block_group; 7324 u64 free_bytes = 0; 7325 int factor; 7326 7327 list_for_each_entry(block_group, groups_list, list) { 7328 spin_lock(&block_group->lock); 7329 7330 if (!block_group->ro) { 7331 spin_unlock(&block_group->lock); 7332 continue; 7333 } 7334 7335 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7336 BTRFS_BLOCK_GROUP_RAID10 | 7337 BTRFS_BLOCK_GROUP_DUP)) 7338 factor = 2; 7339 else 7340 factor = 1; 7341 7342 free_bytes += (block_group->key.offset - 7343 btrfs_block_group_used(&block_group->item)) * 7344 factor; 7345 7346 spin_unlock(&block_group->lock); 7347 } 7348 7349 return free_bytes; 7350 } 7351 7352 /* 7353 * helper to account the unused space of all the readonly block group in the 7354 * space_info. takes mirrors into account. 7355 */ 7356 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7357 { 7358 int i; 7359 u64 free_bytes = 0; 7360 7361 spin_lock(&sinfo->lock); 7362 7363 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7364 if (!list_empty(&sinfo->block_groups[i])) 7365 free_bytes += __btrfs_get_ro_block_group_free_space( 7366 &sinfo->block_groups[i]); 7367 7368 spin_unlock(&sinfo->lock); 7369 7370 return free_bytes; 7371 } 7372 7373 void btrfs_set_block_group_rw(struct btrfs_root *root, 7374 struct btrfs_block_group_cache *cache) 7375 { 7376 struct btrfs_space_info *sinfo = cache->space_info; 7377 u64 num_bytes; 7378 7379 BUG_ON(!cache->ro); 7380 7381 spin_lock(&sinfo->lock); 7382 spin_lock(&cache->lock); 7383 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7384 cache->bytes_super - btrfs_block_group_used(&cache->item); 7385 sinfo->bytes_readonly -= num_bytes; 7386 cache->ro = 0; 7387 spin_unlock(&cache->lock); 7388 spin_unlock(&sinfo->lock); 7389 } 7390 7391 /* 7392 * checks to see if its even possible to relocate this block group. 7393 * 7394 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7395 * ok to go ahead and try. 7396 */ 7397 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7398 { 7399 struct btrfs_block_group_cache *block_group; 7400 struct btrfs_space_info *space_info; 7401 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7402 struct btrfs_device *device; 7403 u64 min_free; 7404 u64 dev_min = 1; 7405 u64 dev_nr = 0; 7406 u64 target; 7407 int index; 7408 int full = 0; 7409 int ret = 0; 7410 7411 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7412 7413 /* odd, couldn't find the block group, leave it alone */ 7414 if (!block_group) 7415 return -1; 7416 7417 min_free = btrfs_block_group_used(&block_group->item); 7418 7419 /* no bytes used, we're good */ 7420 if (!min_free) 7421 goto out; 7422 7423 space_info = block_group->space_info; 7424 spin_lock(&space_info->lock); 7425 7426 full = space_info->full; 7427 7428 /* 7429 * if this is the last block group we have in this space, we can't 7430 * relocate it unless we're able to allocate a new chunk below. 7431 * 7432 * Otherwise, we need to make sure we have room in the space to handle 7433 * all of the extents from this block group. If we can, we're good 7434 */ 7435 if ((space_info->total_bytes != block_group->key.offset) && 7436 (space_info->bytes_used + space_info->bytes_reserved + 7437 space_info->bytes_pinned + space_info->bytes_readonly + 7438 min_free < space_info->total_bytes)) { 7439 spin_unlock(&space_info->lock); 7440 goto out; 7441 } 7442 spin_unlock(&space_info->lock); 7443 7444 /* 7445 * ok we don't have enough space, but maybe we have free space on our 7446 * devices to allocate new chunks for relocation, so loop through our 7447 * alloc devices and guess if we have enough space. if this block 7448 * group is going to be restriped, run checks against the target 7449 * profile instead of the current one. 7450 */ 7451 ret = -1; 7452 7453 /* 7454 * index: 7455 * 0: raid10 7456 * 1: raid1 7457 * 2: dup 7458 * 3: raid0 7459 * 4: single 7460 */ 7461 target = get_restripe_target(root->fs_info, block_group->flags); 7462 if (target) { 7463 index = __get_block_group_index(extended_to_chunk(target)); 7464 } else { 7465 /* 7466 * this is just a balance, so if we were marked as full 7467 * we know there is no space for a new chunk 7468 */ 7469 if (full) 7470 goto out; 7471 7472 index = get_block_group_index(block_group); 7473 } 7474 7475 if (index == 0) { 7476 dev_min = 4; 7477 /* Divide by 2 */ 7478 min_free >>= 1; 7479 } else if (index == 1) { 7480 dev_min = 2; 7481 } else if (index == 2) { 7482 /* Multiply by 2 */ 7483 min_free <<= 1; 7484 } else if (index == 3) { 7485 dev_min = fs_devices->rw_devices; 7486 do_div(min_free, dev_min); 7487 } 7488 7489 mutex_lock(&root->fs_info->chunk_mutex); 7490 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7491 u64 dev_offset; 7492 7493 /* 7494 * check to make sure we can actually find a chunk with enough 7495 * space to fit our block group in. 7496 */ 7497 if (device->total_bytes > device->bytes_used + min_free) { 7498 ret = find_free_dev_extent(device, min_free, 7499 &dev_offset, NULL); 7500 if (!ret) 7501 dev_nr++; 7502 7503 if (dev_nr >= dev_min) 7504 break; 7505 7506 ret = -1; 7507 } 7508 } 7509 mutex_unlock(&root->fs_info->chunk_mutex); 7510 out: 7511 btrfs_put_block_group(block_group); 7512 return ret; 7513 } 7514 7515 static int find_first_block_group(struct btrfs_root *root, 7516 struct btrfs_path *path, struct btrfs_key *key) 7517 { 7518 int ret = 0; 7519 struct btrfs_key found_key; 7520 struct extent_buffer *leaf; 7521 int slot; 7522 7523 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7524 if (ret < 0) 7525 goto out; 7526 7527 while (1) { 7528 slot = path->slots[0]; 7529 leaf = path->nodes[0]; 7530 if (slot >= btrfs_header_nritems(leaf)) { 7531 ret = btrfs_next_leaf(root, path); 7532 if (ret == 0) 7533 continue; 7534 if (ret < 0) 7535 goto out; 7536 break; 7537 } 7538 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7539 7540 if (found_key.objectid >= key->objectid && 7541 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7542 ret = 0; 7543 goto out; 7544 } 7545 path->slots[0]++; 7546 } 7547 out: 7548 return ret; 7549 } 7550 7551 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7552 { 7553 struct btrfs_block_group_cache *block_group; 7554 u64 last = 0; 7555 7556 while (1) { 7557 struct inode *inode; 7558 7559 block_group = btrfs_lookup_first_block_group(info, last); 7560 while (block_group) { 7561 spin_lock(&block_group->lock); 7562 if (block_group->iref) 7563 break; 7564 spin_unlock(&block_group->lock); 7565 block_group = next_block_group(info->tree_root, 7566 block_group); 7567 } 7568 if (!block_group) { 7569 if (last == 0) 7570 break; 7571 last = 0; 7572 continue; 7573 } 7574 7575 inode = block_group->inode; 7576 block_group->iref = 0; 7577 block_group->inode = NULL; 7578 spin_unlock(&block_group->lock); 7579 iput(inode); 7580 last = block_group->key.objectid + block_group->key.offset; 7581 btrfs_put_block_group(block_group); 7582 } 7583 } 7584 7585 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7586 { 7587 struct btrfs_block_group_cache *block_group; 7588 struct btrfs_space_info *space_info; 7589 struct btrfs_caching_control *caching_ctl; 7590 struct rb_node *n; 7591 7592 down_write(&info->extent_commit_sem); 7593 while (!list_empty(&info->caching_block_groups)) { 7594 caching_ctl = list_entry(info->caching_block_groups.next, 7595 struct btrfs_caching_control, list); 7596 list_del(&caching_ctl->list); 7597 put_caching_control(caching_ctl); 7598 } 7599 up_write(&info->extent_commit_sem); 7600 7601 spin_lock(&info->block_group_cache_lock); 7602 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7603 block_group = rb_entry(n, struct btrfs_block_group_cache, 7604 cache_node); 7605 rb_erase(&block_group->cache_node, 7606 &info->block_group_cache_tree); 7607 spin_unlock(&info->block_group_cache_lock); 7608 7609 down_write(&block_group->space_info->groups_sem); 7610 list_del(&block_group->list); 7611 up_write(&block_group->space_info->groups_sem); 7612 7613 if (block_group->cached == BTRFS_CACHE_STARTED) 7614 wait_block_group_cache_done(block_group); 7615 7616 /* 7617 * We haven't cached this block group, which means we could 7618 * possibly have excluded extents on this block group. 7619 */ 7620 if (block_group->cached == BTRFS_CACHE_NO) 7621 free_excluded_extents(info->extent_root, block_group); 7622 7623 btrfs_remove_free_space_cache(block_group); 7624 btrfs_put_block_group(block_group); 7625 7626 spin_lock(&info->block_group_cache_lock); 7627 } 7628 spin_unlock(&info->block_group_cache_lock); 7629 7630 /* now that all the block groups are freed, go through and 7631 * free all the space_info structs. This is only called during 7632 * the final stages of unmount, and so we know nobody is 7633 * using them. We call synchronize_rcu() once before we start, 7634 * just to be on the safe side. 7635 */ 7636 synchronize_rcu(); 7637 7638 release_global_block_rsv(info); 7639 7640 while(!list_empty(&info->space_info)) { 7641 space_info = list_entry(info->space_info.next, 7642 struct btrfs_space_info, 7643 list); 7644 if (space_info->bytes_pinned > 0 || 7645 space_info->bytes_reserved > 0 || 7646 space_info->bytes_may_use > 0) { 7647 WARN_ON(1); 7648 dump_space_info(space_info, 0, 0); 7649 } 7650 list_del(&space_info->list); 7651 kfree(space_info); 7652 } 7653 return 0; 7654 } 7655 7656 static void __link_block_group(struct btrfs_space_info *space_info, 7657 struct btrfs_block_group_cache *cache) 7658 { 7659 int index = get_block_group_index(cache); 7660 7661 down_write(&space_info->groups_sem); 7662 list_add_tail(&cache->list, &space_info->block_groups[index]); 7663 up_write(&space_info->groups_sem); 7664 } 7665 7666 int btrfs_read_block_groups(struct btrfs_root *root) 7667 { 7668 struct btrfs_path *path; 7669 int ret; 7670 struct btrfs_block_group_cache *cache; 7671 struct btrfs_fs_info *info = root->fs_info; 7672 struct btrfs_space_info *space_info; 7673 struct btrfs_key key; 7674 struct btrfs_key found_key; 7675 struct extent_buffer *leaf; 7676 int need_clear = 0; 7677 u64 cache_gen; 7678 7679 root = info->extent_root; 7680 key.objectid = 0; 7681 key.offset = 0; 7682 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7683 path = btrfs_alloc_path(); 7684 if (!path) 7685 return -ENOMEM; 7686 path->reada = 1; 7687 7688 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7689 if (btrfs_test_opt(root, SPACE_CACHE) && 7690 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7691 need_clear = 1; 7692 if (btrfs_test_opt(root, CLEAR_CACHE)) 7693 need_clear = 1; 7694 7695 while (1) { 7696 ret = find_first_block_group(root, path, &key); 7697 if (ret > 0) 7698 break; 7699 if (ret != 0) 7700 goto error; 7701 leaf = path->nodes[0]; 7702 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7703 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7704 if (!cache) { 7705 ret = -ENOMEM; 7706 goto error; 7707 } 7708 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7709 GFP_NOFS); 7710 if (!cache->free_space_ctl) { 7711 kfree(cache); 7712 ret = -ENOMEM; 7713 goto error; 7714 } 7715 7716 atomic_set(&cache->count, 1); 7717 spin_lock_init(&cache->lock); 7718 cache->fs_info = info; 7719 INIT_LIST_HEAD(&cache->list); 7720 INIT_LIST_HEAD(&cache->cluster_list); 7721 7722 if (need_clear) { 7723 /* 7724 * When we mount with old space cache, we need to 7725 * set BTRFS_DC_CLEAR and set dirty flag. 7726 * 7727 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 7728 * truncate the old free space cache inode and 7729 * setup a new one. 7730 * b) Setting 'dirty flag' makes sure that we flush 7731 * the new space cache info onto disk. 7732 */ 7733 cache->disk_cache_state = BTRFS_DC_CLEAR; 7734 if (btrfs_test_opt(root, SPACE_CACHE)) 7735 cache->dirty = 1; 7736 } 7737 7738 read_extent_buffer(leaf, &cache->item, 7739 btrfs_item_ptr_offset(leaf, path->slots[0]), 7740 sizeof(cache->item)); 7741 memcpy(&cache->key, &found_key, sizeof(found_key)); 7742 7743 key.objectid = found_key.objectid + found_key.offset; 7744 btrfs_release_path(path); 7745 cache->flags = btrfs_block_group_flags(&cache->item); 7746 cache->sectorsize = root->sectorsize; 7747 7748 btrfs_init_free_space_ctl(cache); 7749 7750 /* 7751 * We need to exclude the super stripes now so that the space 7752 * info has super bytes accounted for, otherwise we'll think 7753 * we have more space than we actually do. 7754 */ 7755 exclude_super_stripes(root, cache); 7756 7757 /* 7758 * check for two cases, either we are full, and therefore 7759 * don't need to bother with the caching work since we won't 7760 * find any space, or we are empty, and we can just add all 7761 * the space in and be done with it. This saves us _alot_ of 7762 * time, particularly in the full case. 7763 */ 7764 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7765 cache->last_byte_to_unpin = (u64)-1; 7766 cache->cached = BTRFS_CACHE_FINISHED; 7767 free_excluded_extents(root, cache); 7768 } else if (btrfs_block_group_used(&cache->item) == 0) { 7769 cache->last_byte_to_unpin = (u64)-1; 7770 cache->cached = BTRFS_CACHE_FINISHED; 7771 add_new_free_space(cache, root->fs_info, 7772 found_key.objectid, 7773 found_key.objectid + 7774 found_key.offset); 7775 free_excluded_extents(root, cache); 7776 } 7777 7778 ret = update_space_info(info, cache->flags, found_key.offset, 7779 btrfs_block_group_used(&cache->item), 7780 &space_info); 7781 BUG_ON(ret); /* -ENOMEM */ 7782 cache->space_info = space_info; 7783 spin_lock(&cache->space_info->lock); 7784 cache->space_info->bytes_readonly += cache->bytes_super; 7785 spin_unlock(&cache->space_info->lock); 7786 7787 __link_block_group(space_info, cache); 7788 7789 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7790 BUG_ON(ret); /* Logic error */ 7791 7792 set_avail_alloc_bits(root->fs_info, cache->flags); 7793 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7794 set_block_group_ro(cache, 1); 7795 } 7796 7797 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7798 if (!(get_alloc_profile(root, space_info->flags) & 7799 (BTRFS_BLOCK_GROUP_RAID10 | 7800 BTRFS_BLOCK_GROUP_RAID1 | 7801 BTRFS_BLOCK_GROUP_DUP))) 7802 continue; 7803 /* 7804 * avoid allocating from un-mirrored block group if there are 7805 * mirrored block groups. 7806 */ 7807 list_for_each_entry(cache, &space_info->block_groups[3], list) 7808 set_block_group_ro(cache, 1); 7809 list_for_each_entry(cache, &space_info->block_groups[4], list) 7810 set_block_group_ro(cache, 1); 7811 } 7812 7813 init_global_block_rsv(info); 7814 ret = 0; 7815 error: 7816 btrfs_free_path(path); 7817 return ret; 7818 } 7819 7820 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7821 struct btrfs_root *root, u64 bytes_used, 7822 u64 type, u64 chunk_objectid, u64 chunk_offset, 7823 u64 size) 7824 { 7825 int ret; 7826 struct btrfs_root *extent_root; 7827 struct btrfs_block_group_cache *cache; 7828 7829 extent_root = root->fs_info->extent_root; 7830 7831 root->fs_info->last_trans_log_full_commit = trans->transid; 7832 7833 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7834 if (!cache) 7835 return -ENOMEM; 7836 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7837 GFP_NOFS); 7838 if (!cache->free_space_ctl) { 7839 kfree(cache); 7840 return -ENOMEM; 7841 } 7842 7843 cache->key.objectid = chunk_offset; 7844 cache->key.offset = size; 7845 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7846 cache->sectorsize = root->sectorsize; 7847 cache->fs_info = root->fs_info; 7848 7849 atomic_set(&cache->count, 1); 7850 spin_lock_init(&cache->lock); 7851 INIT_LIST_HEAD(&cache->list); 7852 INIT_LIST_HEAD(&cache->cluster_list); 7853 7854 btrfs_init_free_space_ctl(cache); 7855 7856 btrfs_set_block_group_used(&cache->item, bytes_used); 7857 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7858 cache->flags = type; 7859 btrfs_set_block_group_flags(&cache->item, type); 7860 7861 cache->last_byte_to_unpin = (u64)-1; 7862 cache->cached = BTRFS_CACHE_FINISHED; 7863 exclude_super_stripes(root, cache); 7864 7865 add_new_free_space(cache, root->fs_info, chunk_offset, 7866 chunk_offset + size); 7867 7868 free_excluded_extents(root, cache); 7869 7870 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7871 &cache->space_info); 7872 BUG_ON(ret); /* -ENOMEM */ 7873 update_global_block_rsv(root->fs_info); 7874 7875 spin_lock(&cache->space_info->lock); 7876 cache->space_info->bytes_readonly += cache->bytes_super; 7877 spin_unlock(&cache->space_info->lock); 7878 7879 __link_block_group(cache->space_info, cache); 7880 7881 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7882 BUG_ON(ret); /* Logic error */ 7883 7884 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 7885 sizeof(cache->item)); 7886 if (ret) { 7887 btrfs_abort_transaction(trans, extent_root, ret); 7888 return ret; 7889 } 7890 7891 set_avail_alloc_bits(extent_root->fs_info, type); 7892 7893 return 0; 7894 } 7895 7896 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 7897 { 7898 u64 extra_flags = chunk_to_extended(flags) & 7899 BTRFS_EXTENDED_PROFILE_MASK; 7900 7901 if (flags & BTRFS_BLOCK_GROUP_DATA) 7902 fs_info->avail_data_alloc_bits &= ~extra_flags; 7903 if (flags & BTRFS_BLOCK_GROUP_METADATA) 7904 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 7905 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 7906 fs_info->avail_system_alloc_bits &= ~extra_flags; 7907 } 7908 7909 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7910 struct btrfs_root *root, u64 group_start) 7911 { 7912 struct btrfs_path *path; 7913 struct btrfs_block_group_cache *block_group; 7914 struct btrfs_free_cluster *cluster; 7915 struct btrfs_root *tree_root = root->fs_info->tree_root; 7916 struct btrfs_key key; 7917 struct inode *inode; 7918 int ret; 7919 int index; 7920 int factor; 7921 7922 root = root->fs_info->extent_root; 7923 7924 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7925 BUG_ON(!block_group); 7926 BUG_ON(!block_group->ro); 7927 7928 /* 7929 * Free the reserved super bytes from this block group before 7930 * remove it. 7931 */ 7932 free_excluded_extents(root, block_group); 7933 7934 memcpy(&key, &block_group->key, sizeof(key)); 7935 index = get_block_group_index(block_group); 7936 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7937 BTRFS_BLOCK_GROUP_RAID1 | 7938 BTRFS_BLOCK_GROUP_RAID10)) 7939 factor = 2; 7940 else 7941 factor = 1; 7942 7943 /* make sure this block group isn't part of an allocation cluster */ 7944 cluster = &root->fs_info->data_alloc_cluster; 7945 spin_lock(&cluster->refill_lock); 7946 btrfs_return_cluster_to_free_space(block_group, cluster); 7947 spin_unlock(&cluster->refill_lock); 7948 7949 /* 7950 * make sure this block group isn't part of a metadata 7951 * allocation cluster 7952 */ 7953 cluster = &root->fs_info->meta_alloc_cluster; 7954 spin_lock(&cluster->refill_lock); 7955 btrfs_return_cluster_to_free_space(block_group, cluster); 7956 spin_unlock(&cluster->refill_lock); 7957 7958 path = btrfs_alloc_path(); 7959 if (!path) { 7960 ret = -ENOMEM; 7961 goto out; 7962 } 7963 7964 inode = lookup_free_space_inode(tree_root, block_group, path); 7965 if (!IS_ERR(inode)) { 7966 ret = btrfs_orphan_add(trans, inode); 7967 if (ret) { 7968 btrfs_add_delayed_iput(inode); 7969 goto out; 7970 } 7971 clear_nlink(inode); 7972 /* One for the block groups ref */ 7973 spin_lock(&block_group->lock); 7974 if (block_group->iref) { 7975 block_group->iref = 0; 7976 block_group->inode = NULL; 7977 spin_unlock(&block_group->lock); 7978 iput(inode); 7979 } else { 7980 spin_unlock(&block_group->lock); 7981 } 7982 /* One for our lookup ref */ 7983 btrfs_add_delayed_iput(inode); 7984 } 7985 7986 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 7987 key.offset = block_group->key.objectid; 7988 key.type = 0; 7989 7990 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 7991 if (ret < 0) 7992 goto out; 7993 if (ret > 0) 7994 btrfs_release_path(path); 7995 if (ret == 0) { 7996 ret = btrfs_del_item(trans, tree_root, path); 7997 if (ret) 7998 goto out; 7999 btrfs_release_path(path); 8000 } 8001 8002 spin_lock(&root->fs_info->block_group_cache_lock); 8003 rb_erase(&block_group->cache_node, 8004 &root->fs_info->block_group_cache_tree); 8005 spin_unlock(&root->fs_info->block_group_cache_lock); 8006 8007 down_write(&block_group->space_info->groups_sem); 8008 /* 8009 * we must use list_del_init so people can check to see if they 8010 * are still on the list after taking the semaphore 8011 */ 8012 list_del_init(&block_group->list); 8013 if (list_empty(&block_group->space_info->block_groups[index])) 8014 clear_avail_alloc_bits(root->fs_info, block_group->flags); 8015 up_write(&block_group->space_info->groups_sem); 8016 8017 if (block_group->cached == BTRFS_CACHE_STARTED) 8018 wait_block_group_cache_done(block_group); 8019 8020 btrfs_remove_free_space_cache(block_group); 8021 8022 spin_lock(&block_group->space_info->lock); 8023 block_group->space_info->total_bytes -= block_group->key.offset; 8024 block_group->space_info->bytes_readonly -= block_group->key.offset; 8025 block_group->space_info->disk_total -= block_group->key.offset * factor; 8026 spin_unlock(&block_group->space_info->lock); 8027 8028 memcpy(&key, &block_group->key, sizeof(key)); 8029 8030 btrfs_clear_space_info_full(root->fs_info); 8031 8032 btrfs_put_block_group(block_group); 8033 btrfs_put_block_group(block_group); 8034 8035 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 8036 if (ret > 0) 8037 ret = -EIO; 8038 if (ret < 0) 8039 goto out; 8040 8041 ret = btrfs_del_item(trans, root, path); 8042 out: 8043 btrfs_free_path(path); 8044 return ret; 8045 } 8046 8047 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 8048 { 8049 struct btrfs_space_info *space_info; 8050 struct btrfs_super_block *disk_super; 8051 u64 features; 8052 u64 flags; 8053 int mixed = 0; 8054 int ret; 8055 8056 disk_super = fs_info->super_copy; 8057 if (!btrfs_super_root(disk_super)) 8058 return 1; 8059 8060 features = btrfs_super_incompat_flags(disk_super); 8061 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 8062 mixed = 1; 8063 8064 flags = BTRFS_BLOCK_GROUP_SYSTEM; 8065 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8066 if (ret) 8067 goto out; 8068 8069 if (mixed) { 8070 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 8071 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8072 } else { 8073 flags = BTRFS_BLOCK_GROUP_METADATA; 8074 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8075 if (ret) 8076 goto out; 8077 8078 flags = BTRFS_BLOCK_GROUP_DATA; 8079 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 8080 } 8081 out: 8082 return ret; 8083 } 8084 8085 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 8086 { 8087 return unpin_extent_range(root, start, end); 8088 } 8089 8090 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 8091 u64 num_bytes, u64 *actual_bytes) 8092 { 8093 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 8094 } 8095 8096 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 8097 { 8098 struct btrfs_fs_info *fs_info = root->fs_info; 8099 struct btrfs_block_group_cache *cache = NULL; 8100 u64 group_trimmed; 8101 u64 start; 8102 u64 end; 8103 u64 trimmed = 0; 8104 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 8105 int ret = 0; 8106 8107 /* 8108 * try to trim all FS space, our block group may start from non-zero. 8109 */ 8110 if (range->len == total_bytes) 8111 cache = btrfs_lookup_first_block_group(fs_info, range->start); 8112 else 8113 cache = btrfs_lookup_block_group(fs_info, range->start); 8114 8115 while (cache) { 8116 if (cache->key.objectid >= (range->start + range->len)) { 8117 btrfs_put_block_group(cache); 8118 break; 8119 } 8120 8121 start = max(range->start, cache->key.objectid); 8122 end = min(range->start + range->len, 8123 cache->key.objectid + cache->key.offset); 8124 8125 if (end - start >= range->minlen) { 8126 if (!block_group_cache_done(cache)) { 8127 ret = cache_block_group(cache, NULL, root, 0); 8128 if (!ret) 8129 wait_block_group_cache_done(cache); 8130 } 8131 ret = btrfs_trim_block_group(cache, 8132 &group_trimmed, 8133 start, 8134 end, 8135 range->minlen); 8136 8137 trimmed += group_trimmed; 8138 if (ret) { 8139 btrfs_put_block_group(cache); 8140 break; 8141 } 8142 } 8143 8144 cache = next_block_group(fs_info->tree_root, cache); 8145 } 8146 8147 range->len = trimmed; 8148 return ret; 8149 } 8150