1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "discard.h" 34 #include "zoned.h" 35 #include "dev-replace.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "root-tree.h" 39 #include "file-item.h" 40 #include "orphan.h" 41 #include "tree-checker.h" 42 #include "raid-stripe-tree.h" 43 44 #undef SCRAMBLE_DELAYED_REFS 45 46 47 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 48 struct btrfs_delayed_ref_head *href, 49 const struct btrfs_delayed_ref_node *node, 50 struct btrfs_delayed_extent_op *extra_op); 51 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 52 struct extent_buffer *leaf, 53 struct btrfs_extent_item *ei); 54 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 55 u64 parent, u64 root_objectid, 56 u64 flags, u64 owner, u64 offset, 57 struct btrfs_key *ins, int ref_mod, u64 oref_root); 58 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 59 const struct btrfs_delayed_ref_node *node, 60 struct btrfs_delayed_extent_op *extent_op); 61 static int find_next_key(const struct btrfs_path *path, int level, 62 struct btrfs_key *key); 63 64 static int block_group_bits(const struct btrfs_block_group *cache, u64 bits) 65 { 66 return (cache->flags & bits) == bits; 67 } 68 69 /* simple helper to search for an existing data extent at a given offset */ 70 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 71 { 72 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 73 struct btrfs_key key; 74 BTRFS_PATH_AUTO_FREE(path); 75 76 path = btrfs_alloc_path(); 77 if (!path) 78 return -ENOMEM; 79 80 key.objectid = start; 81 key.type = BTRFS_EXTENT_ITEM_KEY; 82 key.offset = len; 83 return btrfs_search_slot(NULL, root, &key, path, 0, 0); 84 } 85 86 /* 87 * helper function to lookup reference count and flags of a tree block. 88 * 89 * the head node for delayed ref is used to store the sum of all the 90 * reference count modifications queued up in the rbtree. the head 91 * node may also store the extent flags to set. This way you can check 92 * to see what the reference count and extent flags would be if all of 93 * the delayed refs are not processed. 94 */ 95 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 96 struct btrfs_fs_info *fs_info, u64 bytenr, 97 u64 offset, int metadata, u64 *refs, u64 *flags, 98 u64 *owning_root) 99 { 100 struct btrfs_root *extent_root; 101 struct btrfs_delayed_ref_head *head; 102 struct btrfs_delayed_ref_root *delayed_refs; 103 BTRFS_PATH_AUTO_FREE(path); 104 struct btrfs_key key; 105 u64 num_refs; 106 u64 extent_flags; 107 u64 owner = 0; 108 int ret; 109 110 /* 111 * If we don't have skinny metadata, don't bother doing anything 112 * different 113 */ 114 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 115 offset = fs_info->nodesize; 116 metadata = 0; 117 } 118 119 path = btrfs_alloc_path(); 120 if (!path) 121 return -ENOMEM; 122 123 search_again: 124 key.objectid = bytenr; 125 if (metadata) 126 key.type = BTRFS_METADATA_ITEM_KEY; 127 else 128 key.type = BTRFS_EXTENT_ITEM_KEY; 129 key.offset = offset; 130 131 extent_root = btrfs_extent_root(fs_info, bytenr); 132 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 133 if (ret < 0) 134 return ret; 135 136 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) { 137 if (path->slots[0]) { 138 path->slots[0]--; 139 btrfs_item_key_to_cpu(path->nodes[0], &key, 140 path->slots[0]); 141 if (key.objectid == bytenr && 142 key.type == BTRFS_EXTENT_ITEM_KEY && 143 key.offset == fs_info->nodesize) 144 ret = 0; 145 } 146 } 147 148 if (ret == 0) { 149 struct extent_buffer *leaf = path->nodes[0]; 150 struct btrfs_extent_item *ei; 151 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 152 153 if (unlikely(item_size < sizeof(*ei))) { 154 ret = -EUCLEAN; 155 btrfs_err(fs_info, 156 "unexpected extent item size, has %u expect >= %zu", 157 item_size, sizeof(*ei)); 158 btrfs_abort_transaction(trans, ret); 159 return ret; 160 } 161 162 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 163 num_refs = btrfs_extent_refs(leaf, ei); 164 if (unlikely(num_refs == 0)) { 165 ret = -EUCLEAN; 166 btrfs_err(fs_info, 167 "unexpected zero reference count for extent item (%llu %u %llu)", 168 key.objectid, key.type, key.offset); 169 btrfs_abort_transaction(trans, ret); 170 return ret; 171 } 172 extent_flags = btrfs_extent_flags(leaf, ei); 173 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]); 174 } else { 175 num_refs = 0; 176 extent_flags = 0; 177 ret = 0; 178 } 179 180 delayed_refs = &trans->transaction->delayed_refs; 181 spin_lock(&delayed_refs->lock); 182 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 183 if (head) { 184 if (!mutex_trylock(&head->mutex)) { 185 refcount_inc(&head->refs); 186 spin_unlock(&delayed_refs->lock); 187 188 btrfs_release_path(path); 189 190 /* 191 * Mutex was contended, block until it's released and try 192 * again 193 */ 194 mutex_lock(&head->mutex); 195 mutex_unlock(&head->mutex); 196 btrfs_put_delayed_ref_head(head); 197 goto search_again; 198 } 199 spin_lock(&head->lock); 200 if (head->extent_op && head->extent_op->update_flags) 201 extent_flags |= head->extent_op->flags_to_set; 202 203 num_refs += head->ref_mod; 204 spin_unlock(&head->lock); 205 mutex_unlock(&head->mutex); 206 } 207 spin_unlock(&delayed_refs->lock); 208 209 WARN_ON(num_refs == 0); 210 if (refs) 211 *refs = num_refs; 212 if (flags) 213 *flags = extent_flags; 214 if (owning_root) 215 *owning_root = owner; 216 217 return ret; 218 } 219 220 /* 221 * Back reference rules. Back refs have three main goals: 222 * 223 * 1) differentiate between all holders of references to an extent so that 224 * when a reference is dropped we can make sure it was a valid reference 225 * before freeing the extent. 226 * 227 * 2) Provide enough information to quickly find the holders of an extent 228 * if we notice a given block is corrupted or bad. 229 * 230 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 231 * maintenance. This is actually the same as #2, but with a slightly 232 * different use case. 233 * 234 * There are two kinds of back refs. The implicit back refs is optimized 235 * for pointers in non-shared tree blocks. For a given pointer in a block, 236 * back refs of this kind provide information about the block's owner tree 237 * and the pointer's key. These information allow us to find the block by 238 * b-tree searching. The full back refs is for pointers in tree blocks not 239 * referenced by their owner trees. The location of tree block is recorded 240 * in the back refs. Actually the full back refs is generic, and can be 241 * used in all cases the implicit back refs is used. The major shortcoming 242 * of the full back refs is its overhead. Every time a tree block gets 243 * COWed, we have to update back refs entry for all pointers in it. 244 * 245 * For a newly allocated tree block, we use implicit back refs for 246 * pointers in it. This means most tree related operations only involve 247 * implicit back refs. For a tree block created in old transaction, the 248 * only way to drop a reference to it is COW it. So we can detect the 249 * event that tree block loses its owner tree's reference and do the 250 * back refs conversion. 251 * 252 * When a tree block is COWed through a tree, there are four cases: 253 * 254 * The reference count of the block is one and the tree is the block's 255 * owner tree. Nothing to do in this case. 256 * 257 * The reference count of the block is one and the tree is not the 258 * block's owner tree. In this case, full back refs is used for pointers 259 * in the block. Remove these full back refs, add implicit back refs for 260 * every pointers in the new block. 261 * 262 * The reference count of the block is greater than one and the tree is 263 * the block's owner tree. In this case, implicit back refs is used for 264 * pointers in the block. Add full back refs for every pointers in the 265 * block, increase lower level extents' reference counts. The original 266 * implicit back refs are entailed to the new block. 267 * 268 * The reference count of the block is greater than one and the tree is 269 * not the block's owner tree. Add implicit back refs for every pointer in 270 * the new block, increase lower level extents' reference count. 271 * 272 * Back Reference Key composing: 273 * 274 * The key objectid corresponds to the first byte in the extent, 275 * The key type is used to differentiate between types of back refs. 276 * There are different meanings of the key offset for different types 277 * of back refs. 278 * 279 * File extents can be referenced by: 280 * 281 * - multiple snapshots, subvolumes, or different generations in one subvol 282 * - different files inside a single subvolume 283 * - different offsets inside a file (bookend extents in file.c) 284 * 285 * The extent ref structure for the implicit back refs has fields for: 286 * 287 * - Objectid of the subvolume root 288 * - objectid of the file holding the reference 289 * - original offset in the file 290 * - how many bookend extents 291 * 292 * The key offset for the implicit back refs is hash of the first 293 * three fields. 294 * 295 * The extent ref structure for the full back refs has field for: 296 * 297 * - number of pointers in the tree leaf 298 * 299 * The key offset for the implicit back refs is the first byte of 300 * the tree leaf 301 * 302 * When a file extent is allocated, The implicit back refs is used. 303 * the fields are filled in: 304 * 305 * (root_key.objectid, inode objectid, offset in file, 1) 306 * 307 * When a file extent is removed file truncation, we find the 308 * corresponding implicit back refs and check the following fields: 309 * 310 * (btrfs_header_owner(leaf), inode objectid, offset in file) 311 * 312 * Btree extents can be referenced by: 313 * 314 * - Different subvolumes 315 * 316 * Both the implicit back refs and the full back refs for tree blocks 317 * only consist of key. The key offset for the implicit back refs is 318 * objectid of block's owner tree. The key offset for the full back refs 319 * is the first byte of parent block. 320 * 321 * When implicit back refs is used, information about the lowest key and 322 * level of the tree block are required. These information are stored in 323 * tree block info structure. 324 */ 325 326 /* 327 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 328 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried, 329 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 330 */ 331 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 332 const struct btrfs_extent_inline_ref *iref, 333 enum btrfs_inline_ref_type is_data) 334 { 335 struct btrfs_fs_info *fs_info = eb->fs_info; 336 int type = btrfs_extent_inline_ref_type(eb, iref); 337 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 338 339 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 340 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 341 return type; 342 } 343 344 if (type == BTRFS_TREE_BLOCK_REF_KEY || 345 type == BTRFS_SHARED_BLOCK_REF_KEY || 346 type == BTRFS_SHARED_DATA_REF_KEY || 347 type == BTRFS_EXTENT_DATA_REF_KEY) { 348 if (is_data == BTRFS_REF_TYPE_BLOCK) { 349 if (type == BTRFS_TREE_BLOCK_REF_KEY) 350 return type; 351 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 352 ASSERT(fs_info); 353 /* 354 * Every shared one has parent tree block, 355 * which must be aligned to sector size. 356 */ 357 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 358 return type; 359 } 360 } else if (is_data == BTRFS_REF_TYPE_DATA) { 361 if (type == BTRFS_EXTENT_DATA_REF_KEY) 362 return type; 363 if (type == BTRFS_SHARED_DATA_REF_KEY) { 364 ASSERT(fs_info); 365 /* 366 * Every shared one has parent tree block, 367 * which must be aligned to sector size. 368 */ 369 if (offset && 370 IS_ALIGNED(offset, fs_info->sectorsize)) 371 return type; 372 } 373 } else { 374 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 375 return type; 376 } 377 } 378 379 WARN_ON(1); 380 btrfs_print_leaf(eb); 381 btrfs_err(fs_info, 382 "eb %llu iref 0x%lx invalid extent inline ref type %d", 383 eb->start, (unsigned long)iref, type); 384 385 return BTRFS_REF_TYPE_INVALID; 386 } 387 388 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 389 { 390 u32 high_crc = ~(u32)0; 391 u32 low_crc = ~(u32)0; 392 __le64 lenum; 393 394 lenum = cpu_to_le64(root_objectid); 395 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 396 lenum = cpu_to_le64(owner); 397 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 398 lenum = cpu_to_le64(offset); 399 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 400 401 return ((u64)high_crc << 31) ^ (u64)low_crc; 402 } 403 404 static u64 hash_extent_data_ref_item(const struct extent_buffer *leaf, 405 const struct btrfs_extent_data_ref *ref) 406 { 407 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 408 btrfs_extent_data_ref_objectid(leaf, ref), 409 btrfs_extent_data_ref_offset(leaf, ref)); 410 } 411 412 static bool match_extent_data_ref(const struct extent_buffer *leaf, 413 const struct btrfs_extent_data_ref *ref, 414 u64 root_objectid, u64 owner, u64 offset) 415 { 416 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 417 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 418 btrfs_extent_data_ref_offset(leaf, ref) != offset) 419 return false; 420 return true; 421 } 422 423 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 424 struct btrfs_path *path, 425 u64 bytenr, u64 parent, 426 u64 root_objectid, 427 u64 owner, u64 offset) 428 { 429 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 430 struct btrfs_key key; 431 struct btrfs_extent_data_ref *ref; 432 struct extent_buffer *leaf; 433 u32 nritems; 434 int recow; 435 int ret; 436 437 key.objectid = bytenr; 438 if (parent) { 439 key.type = BTRFS_SHARED_DATA_REF_KEY; 440 key.offset = parent; 441 } else { 442 key.type = BTRFS_EXTENT_DATA_REF_KEY; 443 key.offset = hash_extent_data_ref(root_objectid, 444 owner, offset); 445 } 446 again: 447 recow = 0; 448 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 449 if (ret < 0) 450 return ret; 451 452 if (parent) { 453 if (ret) 454 return -ENOENT; 455 return 0; 456 } 457 458 ret = -ENOENT; 459 leaf = path->nodes[0]; 460 nritems = btrfs_header_nritems(leaf); 461 while (1) { 462 if (path->slots[0] >= nritems) { 463 ret = btrfs_next_leaf(root, path); 464 if (ret) { 465 if (ret > 0) 466 return -ENOENT; 467 return ret; 468 } 469 470 leaf = path->nodes[0]; 471 nritems = btrfs_header_nritems(leaf); 472 recow = 1; 473 } 474 475 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 476 if (key.objectid != bytenr || 477 key.type != BTRFS_EXTENT_DATA_REF_KEY) 478 goto fail; 479 480 ref = btrfs_item_ptr(leaf, path->slots[0], 481 struct btrfs_extent_data_ref); 482 483 if (match_extent_data_ref(leaf, ref, root_objectid, 484 owner, offset)) { 485 if (recow) { 486 btrfs_release_path(path); 487 goto again; 488 } 489 ret = 0; 490 break; 491 } 492 path->slots[0]++; 493 } 494 fail: 495 return ret; 496 } 497 498 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 499 struct btrfs_path *path, 500 const struct btrfs_delayed_ref_node *node, 501 u64 bytenr) 502 { 503 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 504 struct btrfs_key key; 505 struct extent_buffer *leaf; 506 u64 owner = btrfs_delayed_ref_owner(node); 507 u64 offset = btrfs_delayed_ref_offset(node); 508 u32 size; 509 u32 num_refs; 510 int ret; 511 512 key.objectid = bytenr; 513 if (node->parent) { 514 key.type = BTRFS_SHARED_DATA_REF_KEY; 515 key.offset = node->parent; 516 size = sizeof(struct btrfs_shared_data_ref); 517 } else { 518 key.type = BTRFS_EXTENT_DATA_REF_KEY; 519 key.offset = hash_extent_data_ref(node->ref_root, owner, offset); 520 size = sizeof(struct btrfs_extent_data_ref); 521 } 522 523 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 524 if (ret && ret != -EEXIST) 525 goto fail; 526 527 leaf = path->nodes[0]; 528 if (node->parent) { 529 struct btrfs_shared_data_ref *ref; 530 ref = btrfs_item_ptr(leaf, path->slots[0], 531 struct btrfs_shared_data_ref); 532 if (ret == 0) { 533 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); 534 } else { 535 num_refs = btrfs_shared_data_ref_count(leaf, ref); 536 num_refs += node->ref_mod; 537 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 538 } 539 } else { 540 struct btrfs_extent_data_ref *ref; 541 while (ret == -EEXIST) { 542 ref = btrfs_item_ptr(leaf, path->slots[0], 543 struct btrfs_extent_data_ref); 544 if (match_extent_data_ref(leaf, ref, node->ref_root, 545 owner, offset)) 546 break; 547 btrfs_release_path(path); 548 key.offset++; 549 ret = btrfs_insert_empty_item(trans, root, path, &key, 550 size); 551 if (ret && ret != -EEXIST) 552 goto fail; 553 554 leaf = path->nodes[0]; 555 } 556 ref = btrfs_item_ptr(leaf, path->slots[0], 557 struct btrfs_extent_data_ref); 558 if (ret == 0) { 559 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); 560 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 561 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 562 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); 563 } else { 564 num_refs = btrfs_extent_data_ref_count(leaf, ref); 565 num_refs += node->ref_mod; 566 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 567 } 568 } 569 ret = 0; 570 fail: 571 btrfs_release_path(path); 572 return ret; 573 } 574 575 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 576 struct btrfs_root *root, 577 struct btrfs_path *path, 578 int refs_to_drop) 579 { 580 struct btrfs_key key; 581 struct btrfs_extent_data_ref *ref1 = NULL; 582 struct btrfs_shared_data_ref *ref2 = NULL; 583 struct extent_buffer *leaf; 584 u32 num_refs = 0; 585 int ret = 0; 586 587 leaf = path->nodes[0]; 588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 589 590 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 591 ref1 = btrfs_item_ptr(leaf, path->slots[0], 592 struct btrfs_extent_data_ref); 593 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 594 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 595 ref2 = btrfs_item_ptr(leaf, path->slots[0], 596 struct btrfs_shared_data_ref); 597 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 598 } else { 599 btrfs_err(trans->fs_info, 600 "unrecognized backref key (%llu %u %llu)", 601 key.objectid, key.type, key.offset); 602 btrfs_abort_transaction(trans, -EUCLEAN); 603 return -EUCLEAN; 604 } 605 606 BUG_ON(num_refs < refs_to_drop); 607 num_refs -= refs_to_drop; 608 609 if (num_refs == 0) { 610 ret = btrfs_del_item(trans, root, path); 611 } else { 612 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 613 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 614 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 615 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 616 } 617 return ret; 618 } 619 620 static noinline u32 extent_data_ref_count(const struct btrfs_path *path, 621 const struct btrfs_extent_inline_ref *iref) 622 { 623 struct btrfs_key key; 624 struct extent_buffer *leaf; 625 const struct btrfs_extent_data_ref *ref1; 626 const struct btrfs_shared_data_ref *ref2; 627 u32 num_refs = 0; 628 int type; 629 630 leaf = path->nodes[0]; 631 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 632 633 if (iref) { 634 /* 635 * If type is invalid, we should have bailed out earlier than 636 * this call. 637 */ 638 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 639 ASSERT(type != BTRFS_REF_TYPE_INVALID); 640 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 641 ref1 = (const struct btrfs_extent_data_ref *)(&iref->offset); 642 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 643 } else { 644 ref2 = (const struct btrfs_shared_data_ref *)(iref + 1); 645 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 646 } 647 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 648 ref1 = btrfs_item_ptr(leaf, path->slots[0], 649 struct btrfs_extent_data_ref); 650 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 651 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 652 ref2 = btrfs_item_ptr(leaf, path->slots[0], 653 struct btrfs_shared_data_ref); 654 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 655 } else { 656 WARN_ON(1); 657 } 658 return num_refs; 659 } 660 661 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 662 struct btrfs_path *path, 663 u64 bytenr, u64 parent, 664 u64 root_objectid) 665 { 666 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 667 struct btrfs_key key; 668 int ret; 669 670 key.objectid = bytenr; 671 if (parent) { 672 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 673 key.offset = parent; 674 } else { 675 key.type = BTRFS_TREE_BLOCK_REF_KEY; 676 key.offset = root_objectid; 677 } 678 679 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 680 if (ret > 0) 681 ret = -ENOENT; 682 return ret; 683 } 684 685 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 686 struct btrfs_path *path, 687 const struct btrfs_delayed_ref_node *node, 688 u64 bytenr) 689 { 690 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 691 struct btrfs_key key; 692 int ret; 693 694 key.objectid = bytenr; 695 if (node->parent) { 696 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 697 key.offset = node->parent; 698 } else { 699 key.type = BTRFS_TREE_BLOCK_REF_KEY; 700 key.offset = node->ref_root; 701 } 702 703 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 704 btrfs_release_path(path); 705 return ret; 706 } 707 708 static inline int extent_ref_type(u64 parent, u64 owner) 709 { 710 int type; 711 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 712 if (parent > 0) 713 type = BTRFS_SHARED_BLOCK_REF_KEY; 714 else 715 type = BTRFS_TREE_BLOCK_REF_KEY; 716 } else { 717 if (parent > 0) 718 type = BTRFS_SHARED_DATA_REF_KEY; 719 else 720 type = BTRFS_EXTENT_DATA_REF_KEY; 721 } 722 return type; 723 } 724 725 static int find_next_key(const struct btrfs_path *path, int level, 726 struct btrfs_key *key) 727 728 { 729 for (; level < BTRFS_MAX_LEVEL; level++) { 730 if (!path->nodes[level]) 731 break; 732 if (path->slots[level] + 1 >= 733 btrfs_header_nritems(path->nodes[level])) 734 continue; 735 if (level == 0) 736 btrfs_item_key_to_cpu(path->nodes[level], key, 737 path->slots[level] + 1); 738 else 739 btrfs_node_key_to_cpu(path->nodes[level], key, 740 path->slots[level] + 1); 741 return 0; 742 } 743 return 1; 744 } 745 746 /* 747 * look for inline back ref. if back ref is found, *ref_ret is set 748 * to the address of inline back ref, and 0 is returned. 749 * 750 * if back ref isn't found, *ref_ret is set to the address where it 751 * should be inserted, and -ENOENT is returned. 752 * 753 * if insert is true and there are too many inline back refs, the path 754 * points to the extent item, and -EAGAIN is returned. 755 * 756 * NOTE: inline back refs are ordered in the same way that back ref 757 * items in the tree are ordered. 758 */ 759 static noinline_for_stack 760 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 761 struct btrfs_path *path, 762 struct btrfs_extent_inline_ref **ref_ret, 763 u64 bytenr, u64 num_bytes, 764 u64 parent, u64 root_objectid, 765 u64 owner, u64 offset, int insert) 766 { 767 struct btrfs_fs_info *fs_info = trans->fs_info; 768 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 769 struct btrfs_key key; 770 struct extent_buffer *leaf; 771 struct btrfs_extent_item *ei; 772 struct btrfs_extent_inline_ref *iref; 773 u64 flags; 774 u64 item_size; 775 unsigned long ptr; 776 unsigned long end; 777 int extra_size; 778 int type; 779 int want; 780 int ret; 781 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 782 int needed; 783 784 key.objectid = bytenr; 785 key.type = BTRFS_EXTENT_ITEM_KEY; 786 key.offset = num_bytes; 787 788 want = extent_ref_type(parent, owner); 789 if (insert) { 790 extra_size = btrfs_extent_inline_ref_size(want); 791 path->search_for_extension = 1; 792 } else 793 extra_size = -1; 794 795 /* 796 * Owner is our level, so we can just add one to get the level for the 797 * block we are interested in. 798 */ 799 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 800 key.type = BTRFS_METADATA_ITEM_KEY; 801 key.offset = owner; 802 } 803 804 again: 805 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 806 if (ret < 0) 807 goto out; 808 809 /* 810 * We may be a newly converted file system which still has the old fat 811 * extent entries for metadata, so try and see if we have one of those. 812 */ 813 if (ret > 0 && skinny_metadata) { 814 skinny_metadata = false; 815 if (path->slots[0]) { 816 path->slots[0]--; 817 btrfs_item_key_to_cpu(path->nodes[0], &key, 818 path->slots[0]); 819 if (key.objectid == bytenr && 820 key.type == BTRFS_EXTENT_ITEM_KEY && 821 key.offset == num_bytes) 822 ret = 0; 823 } 824 if (ret) { 825 key.objectid = bytenr; 826 key.type = BTRFS_EXTENT_ITEM_KEY; 827 key.offset = num_bytes; 828 btrfs_release_path(path); 829 goto again; 830 } 831 } 832 833 if (ret && !insert) { 834 ret = -ENOENT; 835 goto out; 836 } else if (WARN_ON(ret)) { 837 btrfs_print_leaf(path->nodes[0]); 838 btrfs_err(fs_info, 839 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 840 bytenr, num_bytes, parent, root_objectid, owner, 841 offset); 842 ret = -EUCLEAN; 843 goto out; 844 } 845 846 leaf = path->nodes[0]; 847 item_size = btrfs_item_size(leaf, path->slots[0]); 848 if (unlikely(item_size < sizeof(*ei))) { 849 ret = -EUCLEAN; 850 btrfs_err(fs_info, 851 "unexpected extent item size, has %llu expect >= %zu", 852 item_size, sizeof(*ei)); 853 btrfs_abort_transaction(trans, ret); 854 goto out; 855 } 856 857 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 858 flags = btrfs_extent_flags(leaf, ei); 859 860 ptr = (unsigned long)(ei + 1); 861 end = (unsigned long)ei + item_size; 862 863 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 864 ptr += sizeof(struct btrfs_tree_block_info); 865 BUG_ON(ptr > end); 866 } 867 868 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 869 needed = BTRFS_REF_TYPE_DATA; 870 else 871 needed = BTRFS_REF_TYPE_BLOCK; 872 873 ret = -ENOENT; 874 while (ptr < end) { 875 iref = (struct btrfs_extent_inline_ref *)ptr; 876 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 877 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 878 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 879 ptr += btrfs_extent_inline_ref_size(type); 880 continue; 881 } 882 if (type == BTRFS_REF_TYPE_INVALID) { 883 ret = -EUCLEAN; 884 goto out; 885 } 886 887 if (want < type) 888 break; 889 if (want > type) { 890 ptr += btrfs_extent_inline_ref_size(type); 891 continue; 892 } 893 894 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 895 struct btrfs_extent_data_ref *dref; 896 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 897 if (match_extent_data_ref(leaf, dref, root_objectid, 898 owner, offset)) { 899 ret = 0; 900 break; 901 } 902 if (hash_extent_data_ref_item(leaf, dref) < 903 hash_extent_data_ref(root_objectid, owner, offset)) 904 break; 905 } else { 906 u64 ref_offset; 907 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 908 if (parent > 0) { 909 if (parent == ref_offset) { 910 ret = 0; 911 break; 912 } 913 if (ref_offset < parent) 914 break; 915 } else { 916 if (root_objectid == ref_offset) { 917 ret = 0; 918 break; 919 } 920 if (ref_offset < root_objectid) 921 break; 922 } 923 } 924 ptr += btrfs_extent_inline_ref_size(type); 925 } 926 927 if (unlikely(ptr > end)) { 928 ret = -EUCLEAN; 929 btrfs_print_leaf(path->nodes[0]); 930 btrfs_crit(fs_info, 931 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 932 path->slots[0], root_objectid, owner, offset, parent); 933 goto out; 934 } 935 936 if (ret == -ENOENT && insert) { 937 if (item_size + extra_size >= 938 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 939 ret = -EAGAIN; 940 goto out; 941 } 942 943 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) { 944 struct btrfs_key tmp_key; 945 946 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1); 947 if (tmp_key.objectid == bytenr && 948 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 949 ret = -EAGAIN; 950 goto out; 951 } 952 goto out_no_entry; 953 } 954 955 if (!path->keep_locks) { 956 btrfs_release_path(path); 957 path->keep_locks = 1; 958 goto again; 959 } 960 961 /* 962 * To add new inline back ref, we have to make sure 963 * there is no corresponding back ref item. 964 * For simplicity, we just do not add new inline back 965 * ref if there is any kind of item for this block 966 */ 967 if (find_next_key(path, 0, &key) == 0 && 968 key.objectid == bytenr && 969 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 970 ret = -EAGAIN; 971 goto out; 972 } 973 } 974 out_no_entry: 975 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 976 out: 977 if (path->keep_locks) { 978 path->keep_locks = 0; 979 btrfs_unlock_up_safe(path, 1); 980 } 981 if (insert) 982 path->search_for_extension = 0; 983 return ret; 984 } 985 986 /* 987 * helper to add new inline back ref 988 */ 989 static noinline_for_stack 990 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 991 struct btrfs_path *path, 992 struct btrfs_extent_inline_ref *iref, 993 u64 parent, u64 root_objectid, 994 u64 owner, u64 offset, int refs_to_add, 995 struct btrfs_delayed_extent_op *extent_op) 996 { 997 struct extent_buffer *leaf; 998 struct btrfs_extent_item *ei; 999 unsigned long ptr; 1000 unsigned long end; 1001 unsigned long item_offset; 1002 u64 refs; 1003 int size; 1004 int type; 1005 1006 leaf = path->nodes[0]; 1007 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1008 item_offset = (unsigned long)iref - (unsigned long)ei; 1009 1010 type = extent_ref_type(parent, owner); 1011 size = btrfs_extent_inline_ref_size(type); 1012 1013 btrfs_extend_item(trans, path, size); 1014 1015 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1016 refs = btrfs_extent_refs(leaf, ei); 1017 refs += refs_to_add; 1018 btrfs_set_extent_refs(leaf, ei, refs); 1019 if (extent_op) 1020 __run_delayed_extent_op(extent_op, leaf, ei); 1021 1022 ptr = (unsigned long)ei + item_offset; 1023 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1024 if (ptr < end - size) 1025 memmove_extent_buffer(leaf, ptr + size, ptr, 1026 end - size - ptr); 1027 1028 iref = (struct btrfs_extent_inline_ref *)ptr; 1029 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1030 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1031 struct btrfs_extent_data_ref *dref; 1032 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1033 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1034 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1035 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1036 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1037 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1038 struct btrfs_shared_data_ref *sref; 1039 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1040 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1041 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1042 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1043 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1044 } else { 1045 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1046 } 1047 } 1048 1049 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1050 struct btrfs_path *path, 1051 struct btrfs_extent_inline_ref **ref_ret, 1052 u64 bytenr, u64 num_bytes, u64 parent, 1053 u64 root_objectid, u64 owner, u64 offset) 1054 { 1055 int ret; 1056 1057 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1058 num_bytes, parent, root_objectid, 1059 owner, offset, 0); 1060 if (ret != -ENOENT) 1061 return ret; 1062 1063 btrfs_release_path(path); 1064 *ref_ret = NULL; 1065 1066 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1067 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1068 root_objectid); 1069 } else { 1070 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1071 root_objectid, owner, offset); 1072 } 1073 return ret; 1074 } 1075 1076 /* 1077 * helper to update/remove inline back ref 1078 */ 1079 static noinline_for_stack int update_inline_extent_backref( 1080 struct btrfs_trans_handle *trans, 1081 struct btrfs_path *path, 1082 struct btrfs_extent_inline_ref *iref, 1083 int refs_to_mod, 1084 struct btrfs_delayed_extent_op *extent_op) 1085 { 1086 struct extent_buffer *leaf = path->nodes[0]; 1087 struct btrfs_fs_info *fs_info = leaf->fs_info; 1088 struct btrfs_extent_item *ei; 1089 struct btrfs_extent_data_ref *dref = NULL; 1090 struct btrfs_shared_data_ref *sref = NULL; 1091 unsigned long ptr; 1092 unsigned long end; 1093 u32 item_size; 1094 int size; 1095 int type; 1096 u64 refs; 1097 1098 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1099 refs = btrfs_extent_refs(leaf, ei); 1100 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1101 struct btrfs_key key; 1102 u32 extent_size; 1103 1104 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1105 if (key.type == BTRFS_METADATA_ITEM_KEY) 1106 extent_size = fs_info->nodesize; 1107 else 1108 extent_size = key.offset; 1109 btrfs_print_leaf(leaf); 1110 btrfs_err(fs_info, 1111 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1112 key.objectid, extent_size, refs_to_mod, refs); 1113 return -EUCLEAN; 1114 } 1115 refs += refs_to_mod; 1116 btrfs_set_extent_refs(leaf, ei, refs); 1117 if (extent_op) 1118 __run_delayed_extent_op(extent_op, leaf, ei); 1119 1120 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1121 /* 1122 * Function btrfs_get_extent_inline_ref_type() has already printed 1123 * error messages. 1124 */ 1125 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1126 return -EUCLEAN; 1127 1128 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1129 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1130 refs = btrfs_extent_data_ref_count(leaf, dref); 1131 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1132 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1133 refs = btrfs_shared_data_ref_count(leaf, sref); 1134 } else { 1135 refs = 1; 1136 /* 1137 * For tree blocks we can only drop one ref for it, and tree 1138 * blocks should not have refs > 1. 1139 * 1140 * Furthermore if we're inserting a new inline backref, we 1141 * won't reach this path either. That would be 1142 * setup_inline_extent_backref(). 1143 */ 1144 if (unlikely(refs_to_mod != -1)) { 1145 struct btrfs_key key; 1146 1147 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1148 1149 btrfs_print_leaf(leaf); 1150 btrfs_err(fs_info, 1151 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1152 key.objectid, refs_to_mod); 1153 return -EUCLEAN; 1154 } 1155 } 1156 1157 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1158 struct btrfs_key key; 1159 u32 extent_size; 1160 1161 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1162 if (key.type == BTRFS_METADATA_ITEM_KEY) 1163 extent_size = fs_info->nodesize; 1164 else 1165 extent_size = key.offset; 1166 btrfs_print_leaf(leaf); 1167 btrfs_err(fs_info, 1168 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1169 (unsigned long)iref, key.objectid, extent_size, 1170 refs_to_mod, refs); 1171 return -EUCLEAN; 1172 } 1173 refs += refs_to_mod; 1174 1175 if (refs > 0) { 1176 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1177 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1178 else 1179 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1180 } else { 1181 size = btrfs_extent_inline_ref_size(type); 1182 item_size = btrfs_item_size(leaf, path->slots[0]); 1183 ptr = (unsigned long)iref; 1184 end = (unsigned long)ei + item_size; 1185 if (ptr + size < end) 1186 memmove_extent_buffer(leaf, ptr, ptr + size, 1187 end - ptr - size); 1188 item_size -= size; 1189 btrfs_truncate_item(trans, path, item_size, 1); 1190 } 1191 return 0; 1192 } 1193 1194 static noinline_for_stack 1195 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1196 struct btrfs_path *path, 1197 u64 bytenr, u64 num_bytes, u64 parent, 1198 u64 root_objectid, u64 owner, 1199 u64 offset, int refs_to_add, 1200 struct btrfs_delayed_extent_op *extent_op) 1201 { 1202 struct btrfs_extent_inline_ref *iref; 1203 int ret; 1204 1205 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1206 num_bytes, parent, root_objectid, 1207 owner, offset, 1); 1208 if (ret == 0) { 1209 /* 1210 * We're adding refs to a tree block we already own, this 1211 * should not happen at all. 1212 */ 1213 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1214 btrfs_print_leaf(path->nodes[0]); 1215 btrfs_crit(trans->fs_info, 1216 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1217 bytenr, num_bytes, root_objectid, path->slots[0]); 1218 return -EUCLEAN; 1219 } 1220 ret = update_inline_extent_backref(trans, path, iref, 1221 refs_to_add, extent_op); 1222 } else if (ret == -ENOENT) { 1223 setup_inline_extent_backref(trans, path, iref, parent, 1224 root_objectid, owner, offset, 1225 refs_to_add, extent_op); 1226 ret = 0; 1227 } 1228 return ret; 1229 } 1230 1231 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1232 struct btrfs_root *root, 1233 struct btrfs_path *path, 1234 struct btrfs_extent_inline_ref *iref, 1235 int refs_to_drop, int is_data) 1236 { 1237 int ret = 0; 1238 1239 BUG_ON(!is_data && refs_to_drop != 1); 1240 if (iref) 1241 ret = update_inline_extent_backref(trans, path, iref, 1242 -refs_to_drop, NULL); 1243 else if (is_data) 1244 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1245 else 1246 ret = btrfs_del_item(trans, root, path); 1247 return ret; 1248 } 1249 1250 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1251 u64 *discarded_bytes) 1252 { 1253 int j, ret = 0; 1254 u64 bytes_left, end; 1255 u64 aligned_start = ALIGN(start, SECTOR_SIZE); 1256 1257 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1258 if (start != aligned_start) { 1259 len -= aligned_start - start; 1260 len = round_down(len, SECTOR_SIZE); 1261 start = aligned_start; 1262 } 1263 1264 *discarded_bytes = 0; 1265 1266 if (!len) 1267 return 0; 1268 1269 end = start + len; 1270 bytes_left = len; 1271 1272 /* Skip any superblocks on this device. */ 1273 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1274 u64 sb_start = btrfs_sb_offset(j); 1275 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1276 u64 size = sb_start - start; 1277 1278 if (!in_range(sb_start, start, bytes_left) && 1279 !in_range(sb_end, start, bytes_left) && 1280 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1281 continue; 1282 1283 /* 1284 * Superblock spans beginning of range. Adjust start and 1285 * try again. 1286 */ 1287 if (sb_start <= start) { 1288 start += sb_end - start; 1289 if (start > end) { 1290 bytes_left = 0; 1291 break; 1292 } 1293 bytes_left = end - start; 1294 continue; 1295 } 1296 1297 if (size) { 1298 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1299 size >> SECTOR_SHIFT, 1300 GFP_NOFS); 1301 if (!ret) 1302 *discarded_bytes += size; 1303 else if (ret != -EOPNOTSUPP) 1304 return ret; 1305 } 1306 1307 start = sb_end; 1308 if (start > end) { 1309 bytes_left = 0; 1310 break; 1311 } 1312 bytes_left = end - start; 1313 } 1314 1315 while (bytes_left) { 1316 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left); 1317 1318 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1319 bytes_to_discard >> SECTOR_SHIFT, 1320 GFP_NOFS); 1321 1322 if (ret) { 1323 if (ret != -EOPNOTSUPP) 1324 break; 1325 continue; 1326 } 1327 1328 start += bytes_to_discard; 1329 bytes_left -= bytes_to_discard; 1330 *discarded_bytes += bytes_to_discard; 1331 1332 if (btrfs_trim_interrupted()) { 1333 ret = -ERESTARTSYS; 1334 break; 1335 } 1336 } 1337 1338 return ret; 1339 } 1340 1341 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1342 { 1343 struct btrfs_device *dev = stripe->dev; 1344 struct btrfs_fs_info *fs_info = dev->fs_info; 1345 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1346 u64 phys = stripe->physical; 1347 u64 len = stripe->length; 1348 u64 discarded = 0; 1349 int ret = 0; 1350 1351 /* Zone reset on a zoned filesystem */ 1352 if (btrfs_can_zone_reset(dev, phys, len)) { 1353 u64 src_disc; 1354 1355 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1356 if (ret) 1357 goto out; 1358 1359 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1360 dev != dev_replace->srcdev) 1361 goto out; 1362 1363 src_disc = discarded; 1364 1365 /* Send to replace target as well */ 1366 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1367 &discarded); 1368 discarded += src_disc; 1369 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1370 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1371 } else { 1372 ret = 0; 1373 *bytes = 0; 1374 } 1375 1376 out: 1377 *bytes = discarded; 1378 return ret; 1379 } 1380 1381 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1382 u64 num_bytes, u64 *actual_bytes) 1383 { 1384 int ret = 0; 1385 u64 discarded_bytes = 0; 1386 u64 end = bytenr + num_bytes; 1387 u64 cur = bytenr; 1388 1389 /* 1390 * Avoid races with device replace and make sure the devices in the 1391 * stripes don't go away while we are discarding. 1392 */ 1393 btrfs_bio_counter_inc_blocked(fs_info); 1394 while (cur < end) { 1395 struct btrfs_discard_stripe *stripes; 1396 unsigned int num_stripes; 1397 int i; 1398 1399 num_bytes = end - cur; 1400 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1401 if (IS_ERR(stripes)) { 1402 ret = PTR_ERR(stripes); 1403 if (ret == -EOPNOTSUPP) 1404 ret = 0; 1405 break; 1406 } 1407 1408 for (i = 0; i < num_stripes; i++) { 1409 struct btrfs_discard_stripe *stripe = stripes + i; 1410 u64 bytes; 1411 1412 if (!stripe->dev->bdev) { 1413 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1414 continue; 1415 } 1416 1417 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1418 &stripe->dev->dev_state)) 1419 continue; 1420 1421 ret = do_discard_extent(stripe, &bytes); 1422 if (ret) { 1423 /* 1424 * Keep going if discard is not supported by the 1425 * device. 1426 */ 1427 if (ret != -EOPNOTSUPP) 1428 break; 1429 ret = 0; 1430 } else { 1431 discarded_bytes += bytes; 1432 } 1433 } 1434 kfree(stripes); 1435 if (ret) 1436 break; 1437 cur += num_bytes; 1438 } 1439 btrfs_bio_counter_dec(fs_info); 1440 if (actual_bytes) 1441 *actual_bytes = discarded_bytes; 1442 return ret; 1443 } 1444 1445 /* Can return -ENOMEM */ 1446 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1447 struct btrfs_ref *generic_ref) 1448 { 1449 struct btrfs_fs_info *fs_info = trans->fs_info; 1450 int ret; 1451 1452 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1453 generic_ref->action); 1454 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1455 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); 1456 1457 if (generic_ref->type == BTRFS_REF_METADATA) 1458 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1459 else 1460 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1461 1462 btrfs_ref_tree_mod(fs_info, generic_ref); 1463 1464 return ret; 1465 } 1466 1467 /* 1468 * Insert backreference for a given extent. 1469 * 1470 * The counterpart is in __btrfs_free_extent(), with examples and more details 1471 * how it works. 1472 * 1473 * @trans: Handle of transaction 1474 * 1475 * @node: The delayed ref node used to get the bytenr/length for 1476 * extent whose references are incremented. 1477 * 1478 * @extent_op Pointer to a structure, holding information necessary when 1479 * updating a tree block's flags 1480 * 1481 */ 1482 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1483 const struct btrfs_delayed_ref_node *node, 1484 struct btrfs_delayed_extent_op *extent_op) 1485 { 1486 BTRFS_PATH_AUTO_FREE(path); 1487 struct extent_buffer *leaf; 1488 struct btrfs_extent_item *item; 1489 struct btrfs_key key; 1490 u64 bytenr = node->bytenr; 1491 u64 num_bytes = node->num_bytes; 1492 u64 owner = btrfs_delayed_ref_owner(node); 1493 u64 offset = btrfs_delayed_ref_offset(node); 1494 u64 refs; 1495 int refs_to_add = node->ref_mod; 1496 int ret; 1497 1498 path = btrfs_alloc_path(); 1499 if (!path) 1500 return -ENOMEM; 1501 1502 /* this will setup the path even if it fails to insert the back ref */ 1503 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1504 node->parent, node->ref_root, owner, 1505 offset, refs_to_add, extent_op); 1506 if ((ret < 0 && ret != -EAGAIN) || !ret) 1507 return ret; 1508 1509 /* 1510 * Ok we had -EAGAIN which means we didn't have space to insert and 1511 * inline extent ref, so just update the reference count and add a 1512 * normal backref. 1513 */ 1514 leaf = path->nodes[0]; 1515 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1516 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1517 refs = btrfs_extent_refs(leaf, item); 1518 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1519 if (extent_op) 1520 __run_delayed_extent_op(extent_op, leaf, item); 1521 1522 btrfs_release_path(path); 1523 1524 /* now insert the actual backref */ 1525 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1526 ret = insert_tree_block_ref(trans, path, node, bytenr); 1527 if (ret) 1528 btrfs_abort_transaction(trans, ret); 1529 } else { 1530 ret = insert_extent_data_ref(trans, path, node, bytenr); 1531 if (ret) 1532 btrfs_abort_transaction(trans, ret); 1533 } 1534 1535 return ret; 1536 } 1537 1538 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1539 const struct btrfs_delayed_ref_head *href) 1540 { 1541 u64 root = href->owning_root; 1542 1543 /* 1544 * Don't check must_insert_reserved, as this is called from contexts 1545 * where it has already been unset. 1546 */ 1547 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1548 !href->is_data || !btrfs_is_fstree(root)) 1549 return; 1550 1551 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1552 BTRFS_QGROUP_RSV_DATA); 1553 } 1554 1555 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1556 struct btrfs_delayed_ref_head *href, 1557 const struct btrfs_delayed_ref_node *node, 1558 struct btrfs_delayed_extent_op *extent_op, 1559 bool insert_reserved) 1560 { 1561 int ret = 0; 1562 u64 parent = 0; 1563 u64 flags = 0; 1564 1565 trace_run_delayed_data_ref(trans->fs_info, node); 1566 1567 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1568 parent = node->parent; 1569 1570 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1571 struct btrfs_key key; 1572 struct btrfs_squota_delta delta = { 1573 .root = href->owning_root, 1574 .num_bytes = node->num_bytes, 1575 .is_data = true, 1576 .is_inc = true, 1577 .generation = trans->transid, 1578 }; 1579 u64 owner = btrfs_delayed_ref_owner(node); 1580 u64 offset = btrfs_delayed_ref_offset(node); 1581 1582 if (extent_op) 1583 flags |= extent_op->flags_to_set; 1584 1585 key.objectid = node->bytenr; 1586 key.type = BTRFS_EXTENT_ITEM_KEY; 1587 key.offset = node->num_bytes; 1588 1589 ret = alloc_reserved_file_extent(trans, parent, node->ref_root, 1590 flags, owner, offset, &key, 1591 node->ref_mod, 1592 href->owning_root); 1593 free_head_ref_squota_rsv(trans->fs_info, href); 1594 if (!ret) 1595 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1596 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1597 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1598 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1599 ret = __btrfs_free_extent(trans, href, node, extent_op); 1600 } else { 1601 BUG(); 1602 } 1603 return ret; 1604 } 1605 1606 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1607 struct extent_buffer *leaf, 1608 struct btrfs_extent_item *ei) 1609 { 1610 u64 flags = btrfs_extent_flags(leaf, ei); 1611 if (extent_op->update_flags) { 1612 flags |= extent_op->flags_to_set; 1613 btrfs_set_extent_flags(leaf, ei, flags); 1614 } 1615 1616 if (extent_op->update_key) { 1617 struct btrfs_tree_block_info *bi; 1618 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1619 bi = (struct btrfs_tree_block_info *)(ei + 1); 1620 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1621 } 1622 } 1623 1624 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1625 const struct btrfs_delayed_ref_head *head, 1626 struct btrfs_delayed_extent_op *extent_op) 1627 { 1628 struct btrfs_fs_info *fs_info = trans->fs_info; 1629 struct btrfs_root *root; 1630 struct btrfs_key key; 1631 BTRFS_PATH_AUTO_FREE(path); 1632 struct btrfs_extent_item *ei; 1633 struct extent_buffer *leaf; 1634 u32 item_size; 1635 int ret; 1636 int metadata = 1; 1637 1638 if (TRANS_ABORTED(trans)) 1639 return 0; 1640 1641 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1642 metadata = 0; 1643 1644 path = btrfs_alloc_path(); 1645 if (!path) 1646 return -ENOMEM; 1647 1648 key.objectid = head->bytenr; 1649 1650 if (metadata) { 1651 key.type = BTRFS_METADATA_ITEM_KEY; 1652 key.offset = head->level; 1653 } else { 1654 key.type = BTRFS_EXTENT_ITEM_KEY; 1655 key.offset = head->num_bytes; 1656 } 1657 1658 root = btrfs_extent_root(fs_info, key.objectid); 1659 again: 1660 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1661 if (ret < 0) { 1662 return ret; 1663 } else if (ret > 0) { 1664 if (metadata) { 1665 if (path->slots[0] > 0) { 1666 path->slots[0]--; 1667 btrfs_item_key_to_cpu(path->nodes[0], &key, 1668 path->slots[0]); 1669 if (key.objectid == head->bytenr && 1670 key.type == BTRFS_EXTENT_ITEM_KEY && 1671 key.offset == head->num_bytes) 1672 ret = 0; 1673 } 1674 if (ret > 0) { 1675 btrfs_release_path(path); 1676 metadata = 0; 1677 1678 key.objectid = head->bytenr; 1679 key.type = BTRFS_EXTENT_ITEM_KEY; 1680 key.offset = head->num_bytes; 1681 goto again; 1682 } 1683 } else { 1684 ret = -EUCLEAN; 1685 btrfs_err(fs_info, 1686 "missing extent item for extent %llu num_bytes %llu level %d", 1687 head->bytenr, head->num_bytes, head->level); 1688 return ret; 1689 } 1690 } 1691 1692 leaf = path->nodes[0]; 1693 item_size = btrfs_item_size(leaf, path->slots[0]); 1694 1695 if (unlikely(item_size < sizeof(*ei))) { 1696 ret = -EUCLEAN; 1697 btrfs_err(fs_info, 1698 "unexpected extent item size, has %u expect >= %zu", 1699 item_size, sizeof(*ei)); 1700 btrfs_abort_transaction(trans, ret); 1701 return ret; 1702 } 1703 1704 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1705 __run_delayed_extent_op(extent_op, leaf, ei); 1706 1707 return ret; 1708 } 1709 1710 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1711 struct btrfs_delayed_ref_head *href, 1712 const struct btrfs_delayed_ref_node *node, 1713 struct btrfs_delayed_extent_op *extent_op, 1714 bool insert_reserved) 1715 { 1716 int ret = 0; 1717 struct btrfs_fs_info *fs_info = trans->fs_info; 1718 u64 parent = 0; 1719 u64 ref_root = 0; 1720 1721 trace_run_delayed_tree_ref(trans->fs_info, node); 1722 1723 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1724 parent = node->parent; 1725 ref_root = node->ref_root; 1726 1727 if (unlikely(node->ref_mod != 1)) { 1728 btrfs_err(trans->fs_info, 1729 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1730 node->bytenr, node->ref_mod, node->action, ref_root, 1731 parent); 1732 return -EUCLEAN; 1733 } 1734 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1735 struct btrfs_squota_delta delta = { 1736 .root = href->owning_root, 1737 .num_bytes = fs_info->nodesize, 1738 .is_data = false, 1739 .is_inc = true, 1740 .generation = trans->transid, 1741 }; 1742 1743 ret = alloc_reserved_tree_block(trans, node, extent_op); 1744 if (!ret) 1745 btrfs_record_squota_delta(fs_info, &delta); 1746 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1747 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1748 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1749 ret = __btrfs_free_extent(trans, href, node, extent_op); 1750 } else { 1751 BUG(); 1752 } 1753 return ret; 1754 } 1755 1756 /* helper function to actually process a single delayed ref entry */ 1757 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1758 struct btrfs_delayed_ref_head *href, 1759 const struct btrfs_delayed_ref_node *node, 1760 struct btrfs_delayed_extent_op *extent_op, 1761 bool insert_reserved) 1762 { 1763 int ret = 0; 1764 1765 if (TRANS_ABORTED(trans)) { 1766 if (insert_reserved) { 1767 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1768 free_head_ref_squota_rsv(trans->fs_info, href); 1769 } 1770 return 0; 1771 } 1772 1773 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1774 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1775 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1776 insert_reserved); 1777 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1778 node->type == BTRFS_SHARED_DATA_REF_KEY) 1779 ret = run_delayed_data_ref(trans, href, node, extent_op, 1780 insert_reserved); 1781 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1782 ret = 0; 1783 else 1784 BUG(); 1785 if (ret && insert_reserved) 1786 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1); 1787 if (ret < 0) 1788 btrfs_err(trans->fs_info, 1789 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1790 node->bytenr, node->num_bytes, node->type, 1791 node->action, node->ref_mod, ret); 1792 return ret; 1793 } 1794 1795 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1796 struct btrfs_delayed_ref_head *head) 1797 { 1798 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1799 1800 if (!extent_op) 1801 return NULL; 1802 1803 if (head->must_insert_reserved) { 1804 head->extent_op = NULL; 1805 btrfs_free_delayed_extent_op(extent_op); 1806 return NULL; 1807 } 1808 return extent_op; 1809 } 1810 1811 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1812 struct btrfs_delayed_ref_head *head) 1813 { 1814 struct btrfs_delayed_extent_op *extent_op; 1815 int ret; 1816 1817 extent_op = cleanup_extent_op(head); 1818 if (!extent_op) 1819 return 0; 1820 head->extent_op = NULL; 1821 spin_unlock(&head->lock); 1822 ret = run_delayed_extent_op(trans, head, extent_op); 1823 btrfs_free_delayed_extent_op(extent_op); 1824 return ret ? ret : 1; 1825 } 1826 1827 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1828 struct btrfs_delayed_ref_root *delayed_refs, 1829 struct btrfs_delayed_ref_head *head) 1830 { 1831 u64 ret = 0; 1832 1833 /* 1834 * We had csum deletions accounted for in our delayed refs rsv, we need 1835 * to drop the csum leaves for this update from our delayed_refs_rsv. 1836 */ 1837 if (head->total_ref_mod < 0 && head->is_data) { 1838 int nr_csums; 1839 1840 spin_lock(&delayed_refs->lock); 1841 delayed_refs->pending_csums -= head->num_bytes; 1842 spin_unlock(&delayed_refs->lock); 1843 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1844 1845 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1846 1847 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1848 } 1849 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1850 if (head->must_insert_reserved) 1851 free_head_ref_squota_rsv(fs_info, head); 1852 1853 return ret; 1854 } 1855 1856 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1857 struct btrfs_delayed_ref_head *head, 1858 u64 *bytes_released) 1859 { 1860 1861 struct btrfs_fs_info *fs_info = trans->fs_info; 1862 struct btrfs_delayed_ref_root *delayed_refs; 1863 int ret; 1864 1865 delayed_refs = &trans->transaction->delayed_refs; 1866 1867 ret = run_and_cleanup_extent_op(trans, head); 1868 if (ret < 0) { 1869 btrfs_unselect_ref_head(delayed_refs, head); 1870 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1871 return ret; 1872 } else if (ret) { 1873 return ret; 1874 } 1875 1876 /* 1877 * Need to drop our head ref lock and re-acquire the delayed ref lock 1878 * and then re-check to make sure nobody got added. 1879 */ 1880 spin_unlock(&head->lock); 1881 spin_lock(&delayed_refs->lock); 1882 spin_lock(&head->lock); 1883 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1884 spin_unlock(&head->lock); 1885 spin_unlock(&delayed_refs->lock); 1886 return 1; 1887 } 1888 btrfs_delete_ref_head(fs_info, delayed_refs, head); 1889 spin_unlock(&head->lock); 1890 spin_unlock(&delayed_refs->lock); 1891 1892 if (head->must_insert_reserved) { 1893 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1); 1894 if (head->is_data) { 1895 struct btrfs_root *csum_root; 1896 1897 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1898 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1899 head->num_bytes); 1900 } 1901 } 1902 1903 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1904 1905 trace_run_delayed_ref_head(fs_info, head, 0); 1906 btrfs_delayed_ref_unlock(head); 1907 btrfs_put_delayed_ref_head(head); 1908 return ret; 1909 } 1910 1911 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1912 struct btrfs_delayed_ref_head *locked_ref, 1913 u64 *bytes_released) 1914 { 1915 struct btrfs_fs_info *fs_info = trans->fs_info; 1916 struct btrfs_delayed_ref_root *delayed_refs; 1917 struct btrfs_delayed_extent_op *extent_op; 1918 struct btrfs_delayed_ref_node *ref; 1919 bool must_insert_reserved; 1920 int ret; 1921 1922 delayed_refs = &trans->transaction->delayed_refs; 1923 1924 lockdep_assert_held(&locked_ref->mutex); 1925 lockdep_assert_held(&locked_ref->lock); 1926 1927 while ((ref = btrfs_select_delayed_ref(locked_ref))) { 1928 if (ref->seq && 1929 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1930 spin_unlock(&locked_ref->lock); 1931 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1932 return -EAGAIN; 1933 } 1934 1935 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1936 RB_CLEAR_NODE(&ref->ref_node); 1937 if (!list_empty(&ref->add_list)) 1938 list_del(&ref->add_list); 1939 /* 1940 * When we play the delayed ref, also correct the ref_mod on 1941 * head 1942 */ 1943 switch (ref->action) { 1944 case BTRFS_ADD_DELAYED_REF: 1945 case BTRFS_ADD_DELAYED_EXTENT: 1946 locked_ref->ref_mod -= ref->ref_mod; 1947 break; 1948 case BTRFS_DROP_DELAYED_REF: 1949 locked_ref->ref_mod += ref->ref_mod; 1950 break; 1951 default: 1952 WARN_ON(1); 1953 } 1954 1955 /* 1956 * Record the must_insert_reserved flag before we drop the 1957 * spin lock. 1958 */ 1959 must_insert_reserved = locked_ref->must_insert_reserved; 1960 /* 1961 * Unsetting this on the head ref relinquishes ownership of 1962 * the rsv_bytes, so it is critical that every possible code 1963 * path from here forward frees all reserves including qgroup 1964 * reserve. 1965 */ 1966 locked_ref->must_insert_reserved = false; 1967 1968 extent_op = locked_ref->extent_op; 1969 locked_ref->extent_op = NULL; 1970 spin_unlock(&locked_ref->lock); 1971 1972 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 1973 must_insert_reserved); 1974 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 1975 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 1976 1977 btrfs_free_delayed_extent_op(extent_op); 1978 if (ret) { 1979 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1980 btrfs_put_delayed_ref(ref); 1981 return ret; 1982 } 1983 1984 btrfs_put_delayed_ref(ref); 1985 cond_resched(); 1986 1987 spin_lock(&locked_ref->lock); 1988 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 1989 } 1990 1991 return 0; 1992 } 1993 1994 /* 1995 * Returns 0 on success or if called with an already aborted transaction. 1996 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1997 */ 1998 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 1999 u64 min_bytes) 2000 { 2001 struct btrfs_fs_info *fs_info = trans->fs_info; 2002 struct btrfs_delayed_ref_root *delayed_refs; 2003 struct btrfs_delayed_ref_head *locked_ref = NULL; 2004 int ret; 2005 unsigned long count = 0; 2006 unsigned long max_count = 0; 2007 u64 bytes_processed = 0; 2008 2009 delayed_refs = &trans->transaction->delayed_refs; 2010 if (min_bytes == 0) { 2011 /* 2012 * We may be subject to a harmless race if some task is 2013 * concurrently adding or removing a delayed ref, so silence 2014 * KCSAN and similar tools. 2015 */ 2016 max_count = data_race(delayed_refs->num_heads_ready); 2017 min_bytes = U64_MAX; 2018 } 2019 2020 do { 2021 if (!locked_ref) { 2022 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs); 2023 if (IS_ERR_OR_NULL(locked_ref)) { 2024 if (PTR_ERR(locked_ref) == -EAGAIN) { 2025 continue; 2026 } else { 2027 break; 2028 } 2029 } 2030 count++; 2031 } 2032 /* 2033 * We need to try and merge add/drops of the same ref since we 2034 * can run into issues with relocate dropping the implicit ref 2035 * and then it being added back again before the drop can 2036 * finish. If we merged anything we need to re-loop so we can 2037 * get a good ref. 2038 * Or we can get node references of the same type that weren't 2039 * merged when created due to bumps in the tree mod seq, and 2040 * we need to merge them to prevent adding an inline extent 2041 * backref before dropping it (triggering a BUG_ON at 2042 * insert_inline_extent_backref()). 2043 */ 2044 spin_lock(&locked_ref->lock); 2045 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2046 2047 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2048 if (ret < 0 && ret != -EAGAIN) { 2049 /* 2050 * Error, btrfs_run_delayed_refs_for_head already 2051 * unlocked everything so just bail out 2052 */ 2053 return ret; 2054 } else if (!ret) { 2055 /* 2056 * Success, perform the usual cleanup of a processed 2057 * head 2058 */ 2059 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2060 if (ret > 0 ) { 2061 /* We dropped our lock, we need to loop. */ 2062 ret = 0; 2063 continue; 2064 } else if (ret) { 2065 return ret; 2066 } 2067 } 2068 2069 /* 2070 * Either success case or btrfs_run_delayed_refs_for_head 2071 * returned -EAGAIN, meaning we need to select another head 2072 */ 2073 2074 locked_ref = NULL; 2075 cond_resched(); 2076 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2077 (max_count > 0 && count < max_count) || 2078 locked_ref); 2079 2080 return 0; 2081 } 2082 2083 #ifdef SCRAMBLE_DELAYED_REFS 2084 /* 2085 * Normally delayed refs get processed in ascending bytenr order. This 2086 * correlates in most cases to the order added. To expose dependencies on this 2087 * order, we start to process the tree in the middle instead of the beginning 2088 */ 2089 static u64 find_middle(struct rb_root *root) 2090 { 2091 struct rb_node *n = root->rb_node; 2092 struct btrfs_delayed_ref_node *entry; 2093 int alt = 1; 2094 u64 middle; 2095 u64 first = 0, last = 0; 2096 2097 n = rb_first(root); 2098 if (n) { 2099 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2100 first = entry->bytenr; 2101 } 2102 n = rb_last(root); 2103 if (n) { 2104 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2105 last = entry->bytenr; 2106 } 2107 n = root->rb_node; 2108 2109 while (n) { 2110 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2111 WARN_ON(!entry->in_tree); 2112 2113 middle = entry->bytenr; 2114 2115 if (alt) 2116 n = n->rb_left; 2117 else 2118 n = n->rb_right; 2119 2120 alt = 1 - alt; 2121 } 2122 return middle; 2123 } 2124 #endif 2125 2126 /* 2127 * Start processing the delayed reference count updates and extent insertions 2128 * we have queued up so far. 2129 * 2130 * @trans: Transaction handle. 2131 * @min_bytes: How many bytes of delayed references to process. After this 2132 * many bytes we stop processing delayed references if there are 2133 * any more. If 0 it means to run all existing delayed references, 2134 * but not new ones added after running all existing ones. 2135 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2136 * plus any new ones that are added. 2137 * 2138 * Returns 0 on success or if called with an aborted transaction 2139 * Returns <0 on error and aborts the transaction 2140 */ 2141 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2142 { 2143 struct btrfs_fs_info *fs_info = trans->fs_info; 2144 struct btrfs_delayed_ref_root *delayed_refs; 2145 int ret; 2146 2147 /* We'll clean this up in btrfs_cleanup_transaction */ 2148 if (TRANS_ABORTED(trans)) 2149 return 0; 2150 2151 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2152 return 0; 2153 2154 delayed_refs = &trans->transaction->delayed_refs; 2155 again: 2156 #ifdef SCRAMBLE_DELAYED_REFS 2157 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2158 #endif 2159 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2160 if (ret < 0) { 2161 btrfs_abort_transaction(trans, ret); 2162 return ret; 2163 } 2164 2165 if (min_bytes == U64_MAX) { 2166 btrfs_create_pending_block_groups(trans); 2167 2168 spin_lock(&delayed_refs->lock); 2169 if (xa_empty(&delayed_refs->head_refs)) { 2170 spin_unlock(&delayed_refs->lock); 2171 return 0; 2172 } 2173 spin_unlock(&delayed_refs->lock); 2174 2175 cond_resched(); 2176 goto again; 2177 } 2178 2179 return 0; 2180 } 2181 2182 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2183 struct extent_buffer *eb, u64 flags) 2184 { 2185 struct btrfs_delayed_extent_op *extent_op; 2186 int ret; 2187 2188 extent_op = btrfs_alloc_delayed_extent_op(); 2189 if (!extent_op) 2190 return -ENOMEM; 2191 2192 extent_op->flags_to_set = flags; 2193 extent_op->update_flags = true; 2194 extent_op->update_key = false; 2195 2196 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, 2197 btrfs_header_level(eb), extent_op); 2198 if (ret) 2199 btrfs_free_delayed_extent_op(extent_op); 2200 return ret; 2201 } 2202 2203 static noinline int check_delayed_ref(struct btrfs_inode *inode, 2204 struct btrfs_path *path, 2205 u64 offset, u64 bytenr) 2206 { 2207 struct btrfs_root *root = inode->root; 2208 struct btrfs_delayed_ref_head *head; 2209 struct btrfs_delayed_ref_node *ref; 2210 struct btrfs_delayed_ref_root *delayed_refs; 2211 struct btrfs_transaction *cur_trans; 2212 struct rb_node *node; 2213 int ret = 0; 2214 2215 spin_lock(&root->fs_info->trans_lock); 2216 cur_trans = root->fs_info->running_transaction; 2217 if (cur_trans) 2218 refcount_inc(&cur_trans->use_count); 2219 spin_unlock(&root->fs_info->trans_lock); 2220 if (!cur_trans) 2221 return 0; 2222 2223 delayed_refs = &cur_trans->delayed_refs; 2224 spin_lock(&delayed_refs->lock); 2225 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 2226 if (!head) { 2227 spin_unlock(&delayed_refs->lock); 2228 btrfs_put_transaction(cur_trans); 2229 return 0; 2230 } 2231 2232 if (!mutex_trylock(&head->mutex)) { 2233 if (path->nowait) { 2234 spin_unlock(&delayed_refs->lock); 2235 btrfs_put_transaction(cur_trans); 2236 return -EAGAIN; 2237 } 2238 2239 refcount_inc(&head->refs); 2240 spin_unlock(&delayed_refs->lock); 2241 2242 btrfs_release_path(path); 2243 2244 /* 2245 * Mutex was contended, block until it's released and let 2246 * caller try again 2247 */ 2248 mutex_lock(&head->mutex); 2249 mutex_unlock(&head->mutex); 2250 btrfs_put_delayed_ref_head(head); 2251 btrfs_put_transaction(cur_trans); 2252 return -EAGAIN; 2253 } 2254 spin_unlock(&delayed_refs->lock); 2255 2256 spin_lock(&head->lock); 2257 /* 2258 * XXX: We should replace this with a proper search function in the 2259 * future. 2260 */ 2261 for (node = rb_first_cached(&head->ref_tree); node; 2262 node = rb_next(node)) { 2263 u64 ref_owner; 2264 u64 ref_offset; 2265 2266 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2267 /* If it's a shared ref we know a cross reference exists */ 2268 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2269 ret = 1; 2270 break; 2271 } 2272 2273 ref_owner = btrfs_delayed_ref_owner(ref); 2274 ref_offset = btrfs_delayed_ref_offset(ref); 2275 2276 /* 2277 * If our ref doesn't match the one we're currently looking at 2278 * then we have a cross reference. 2279 */ 2280 if (ref->ref_root != btrfs_root_id(root) || 2281 ref_owner != btrfs_ino(inode) || ref_offset != offset) { 2282 ret = 1; 2283 break; 2284 } 2285 } 2286 spin_unlock(&head->lock); 2287 mutex_unlock(&head->mutex); 2288 btrfs_put_transaction(cur_trans); 2289 return ret; 2290 } 2291 2292 /* 2293 * Check if there are references for a data extent other than the one belonging 2294 * to the given inode and offset. 2295 * 2296 * @inode: The only inode we expect to find associated with the data extent. 2297 * @path: A path to use for searching the extent tree. 2298 * @offset: The only offset we expect to find associated with the data extent. 2299 * @bytenr: The logical address of the data extent. 2300 * 2301 * When the extent does not have any other references other than the one we 2302 * expect to find, we always return a value of 0 with the path having a locked 2303 * leaf that contains the extent's extent item - this is necessary to ensure 2304 * we don't race with a task running delayed references, and our caller must 2305 * have such a path when calling check_delayed_ref() - it must lock a delayed 2306 * ref head while holding the leaf locked. In case the extent item is not found 2307 * in the extent tree, we return -ENOENT with the path having the leaf (locked) 2308 * where the extent item should be, in order to prevent races with another task 2309 * running delayed references, so that we don't miss any reference when calling 2310 * check_delayed_ref(). 2311 * 2312 * Note: this may return false positives, and this is because we want to be 2313 * quick here as we're called in write paths (when flushing delalloc and 2314 * in the direct IO write path). For example we can have an extent with 2315 * a single reference but that reference is not inlined, or we may have 2316 * many references in the extent tree but we also have delayed references 2317 * that cancel all the reference except the one for our inode and offset, 2318 * but it would be expensive to do such checks and complex due to all 2319 * locking to avoid races between the checks and flushing delayed refs, 2320 * plus non-inline references may be located on leaves other than the one 2321 * that contains the extent item in the extent tree. The important thing 2322 * here is to not return false negatives and that the false positives are 2323 * not very common. 2324 * 2325 * Returns: 0 if there are no cross references and with the path having a locked 2326 * leaf from the extent tree that contains the extent's extent item. 2327 * 2328 * 1 if there are cross references (false positives can happen). 2329 * 2330 * < 0 in case of an error. In case of -ENOENT the leaf in the extent 2331 * tree where the extent item should be located at is read locked and 2332 * accessible in the given path. 2333 */ 2334 static noinline int check_committed_ref(struct btrfs_inode *inode, 2335 struct btrfs_path *path, 2336 u64 offset, u64 bytenr) 2337 { 2338 struct btrfs_root *root = inode->root; 2339 struct btrfs_fs_info *fs_info = root->fs_info; 2340 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2341 struct extent_buffer *leaf; 2342 struct btrfs_extent_data_ref *ref; 2343 struct btrfs_extent_inline_ref *iref; 2344 struct btrfs_extent_item *ei; 2345 struct btrfs_key key; 2346 u32 item_size; 2347 u32 expected_size; 2348 int type; 2349 int ret; 2350 2351 key.objectid = bytenr; 2352 key.type = BTRFS_EXTENT_ITEM_KEY; 2353 key.offset = (u64)-1; 2354 2355 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2356 if (ret < 0) 2357 return ret; 2358 if (ret == 0) { 2359 /* 2360 * Key with offset -1 found, there would have to exist an extent 2361 * item with such offset, but this is out of the valid range. 2362 */ 2363 return -EUCLEAN; 2364 } 2365 2366 if (path->slots[0] == 0) 2367 return -ENOENT; 2368 2369 path->slots[0]--; 2370 leaf = path->nodes[0]; 2371 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2372 2373 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2374 return -ENOENT; 2375 2376 item_size = btrfs_item_size(leaf, path->slots[0]); 2377 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2378 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2379 2380 /* No inline refs; we need to bail before checking for owner ref. */ 2381 if (item_size == sizeof(*ei)) 2382 return 1; 2383 2384 /* Check for an owner ref; skip over it to the real inline refs. */ 2385 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2386 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2387 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2388 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2389 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2390 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2391 } 2392 2393 /* If extent item has more than 1 inline ref then it's shared */ 2394 if (item_size != expected_size) 2395 return 1; 2396 2397 /* If this extent has SHARED_DATA_REF then it's shared */ 2398 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2399 return 1; 2400 2401 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2402 if (btrfs_extent_refs(leaf, ei) != 2403 btrfs_extent_data_ref_count(leaf, ref) || 2404 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || 2405 btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) || 2406 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2407 return 1; 2408 2409 return 0; 2410 } 2411 2412 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset, 2413 u64 bytenr, struct btrfs_path *path) 2414 { 2415 int ret; 2416 2417 do { 2418 ret = check_committed_ref(inode, path, offset, bytenr); 2419 if (ret && ret != -ENOENT) 2420 goto out; 2421 2422 /* 2423 * The path must have a locked leaf from the extent tree where 2424 * the extent item for our extent is located, in case it exists, 2425 * or where it should be located in case it doesn't exist yet 2426 * because it's new and its delayed ref was not yet flushed. 2427 * We need to lock the delayed ref head at check_delayed_ref(), 2428 * if one exists, while holding the leaf locked in order to not 2429 * race with delayed ref flushing, missing references and 2430 * incorrectly reporting that the extent is not shared. 2431 */ 2432 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) { 2433 struct extent_buffer *leaf = path->nodes[0]; 2434 2435 ASSERT(leaf != NULL); 2436 btrfs_assert_tree_read_locked(leaf); 2437 2438 if (ret != -ENOENT) { 2439 struct btrfs_key key; 2440 2441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2442 ASSERT(key.objectid == bytenr); 2443 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY); 2444 } 2445 } 2446 2447 ret = check_delayed_ref(inode, path, offset, bytenr); 2448 } while (ret == -EAGAIN && !path->nowait); 2449 2450 out: 2451 btrfs_release_path(path); 2452 if (btrfs_is_data_reloc_root(inode->root)) 2453 WARN_ON(ret > 0); 2454 return ret; 2455 } 2456 2457 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2458 struct btrfs_root *root, 2459 struct extent_buffer *buf, 2460 int full_backref, int inc) 2461 { 2462 struct btrfs_fs_info *fs_info = root->fs_info; 2463 u64 parent; 2464 u64 ref_root; 2465 u32 nritems; 2466 struct btrfs_key key; 2467 struct btrfs_file_extent_item *fi; 2468 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2469 int i; 2470 int action; 2471 int level; 2472 int ret = 0; 2473 2474 if (btrfs_is_testing(fs_info)) 2475 return 0; 2476 2477 ref_root = btrfs_header_owner(buf); 2478 nritems = btrfs_header_nritems(buf); 2479 level = btrfs_header_level(buf); 2480 2481 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2482 return 0; 2483 2484 if (full_backref) 2485 parent = buf->start; 2486 else 2487 parent = 0; 2488 if (inc) 2489 action = BTRFS_ADD_DELAYED_REF; 2490 else 2491 action = BTRFS_DROP_DELAYED_REF; 2492 2493 for (i = 0; i < nritems; i++) { 2494 struct btrfs_ref ref = { 2495 .action = action, 2496 .parent = parent, 2497 .ref_root = ref_root, 2498 }; 2499 2500 if (level == 0) { 2501 btrfs_item_key_to_cpu(buf, &key, i); 2502 if (key.type != BTRFS_EXTENT_DATA_KEY) 2503 continue; 2504 fi = btrfs_item_ptr(buf, i, 2505 struct btrfs_file_extent_item); 2506 if (btrfs_file_extent_type(buf, fi) == 2507 BTRFS_FILE_EXTENT_INLINE) 2508 continue; 2509 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2510 if (ref.bytenr == 0) 2511 continue; 2512 2513 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2514 ref.owning_root = ref_root; 2515 2516 key.offset -= btrfs_file_extent_offset(buf, fi); 2517 btrfs_init_data_ref(&ref, key.objectid, key.offset, 2518 btrfs_root_id(root), for_reloc); 2519 if (inc) 2520 ret = btrfs_inc_extent_ref(trans, &ref); 2521 else 2522 ret = btrfs_free_extent(trans, &ref); 2523 if (ret) 2524 goto fail; 2525 } else { 2526 /* We don't know the owning_root, leave as 0. */ 2527 ref.bytenr = btrfs_node_blockptr(buf, i); 2528 ref.num_bytes = fs_info->nodesize; 2529 2530 btrfs_init_tree_ref(&ref, level - 1, 2531 btrfs_root_id(root), for_reloc); 2532 if (inc) 2533 ret = btrfs_inc_extent_ref(trans, &ref); 2534 else 2535 ret = btrfs_free_extent(trans, &ref); 2536 if (ret) 2537 goto fail; 2538 } 2539 } 2540 return 0; 2541 fail: 2542 return ret; 2543 } 2544 2545 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2546 struct extent_buffer *buf, int full_backref) 2547 { 2548 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 2549 } 2550 2551 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2552 struct extent_buffer *buf, int full_backref) 2553 { 2554 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 2555 } 2556 2557 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2558 { 2559 struct btrfs_fs_info *fs_info = root->fs_info; 2560 u64 flags; 2561 u64 ret; 2562 2563 if (data) 2564 flags = BTRFS_BLOCK_GROUP_DATA; 2565 else if (root == fs_info->chunk_root) 2566 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2567 else 2568 flags = BTRFS_BLOCK_GROUP_METADATA; 2569 2570 ret = btrfs_get_alloc_profile(fs_info, flags); 2571 return ret; 2572 } 2573 2574 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2575 { 2576 struct rb_node *leftmost; 2577 u64 bytenr = 0; 2578 2579 read_lock(&fs_info->block_group_cache_lock); 2580 /* Get the block group with the lowest logical start address. */ 2581 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2582 if (leftmost) { 2583 struct btrfs_block_group *bg; 2584 2585 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2586 bytenr = bg->start; 2587 } 2588 read_unlock(&fs_info->block_group_cache_lock); 2589 2590 return bytenr; 2591 } 2592 2593 static int pin_down_extent(struct btrfs_trans_handle *trans, 2594 struct btrfs_block_group *cache, 2595 u64 bytenr, u64 num_bytes, int reserved) 2596 { 2597 spin_lock(&cache->space_info->lock); 2598 spin_lock(&cache->lock); 2599 cache->pinned += num_bytes; 2600 btrfs_space_info_update_bytes_pinned(cache->space_info, num_bytes); 2601 if (reserved) { 2602 cache->reserved -= num_bytes; 2603 cache->space_info->bytes_reserved -= num_bytes; 2604 } 2605 spin_unlock(&cache->lock); 2606 spin_unlock(&cache->space_info->lock); 2607 2608 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2609 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2610 return 0; 2611 } 2612 2613 int btrfs_pin_extent(struct btrfs_trans_handle *trans, 2614 u64 bytenr, u64 num_bytes, int reserved) 2615 { 2616 struct btrfs_block_group *cache; 2617 2618 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2619 BUG_ON(!cache); /* Logic error */ 2620 2621 pin_down_extent(trans, cache, bytenr, num_bytes, reserved); 2622 2623 btrfs_put_block_group(cache); 2624 return 0; 2625 } 2626 2627 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2628 const struct extent_buffer *eb) 2629 { 2630 struct btrfs_block_group *cache; 2631 int ret; 2632 2633 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2634 if (!cache) 2635 return -EINVAL; 2636 2637 /* 2638 * Fully cache the free space first so that our pin removes the free space 2639 * from the cache. 2640 */ 2641 ret = btrfs_cache_block_group(cache, true); 2642 if (ret) 2643 goto out; 2644 2645 pin_down_extent(trans, cache, eb->start, eb->len, 0); 2646 2647 /* remove us from the free space cache (if we're there at all) */ 2648 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2649 out: 2650 btrfs_put_block_group(cache); 2651 return ret; 2652 } 2653 2654 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2655 u64 start, u64 num_bytes) 2656 { 2657 int ret; 2658 struct btrfs_block_group *block_group; 2659 2660 block_group = btrfs_lookup_block_group(fs_info, start); 2661 if (!block_group) 2662 return -EINVAL; 2663 2664 ret = btrfs_cache_block_group(block_group, true); 2665 if (ret) 2666 goto out; 2667 2668 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2669 out: 2670 btrfs_put_block_group(block_group); 2671 return ret; 2672 } 2673 2674 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2675 { 2676 struct btrfs_fs_info *fs_info = eb->fs_info; 2677 struct btrfs_file_extent_item *item; 2678 struct btrfs_key key; 2679 int found_type; 2680 int i; 2681 int ret = 0; 2682 2683 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2684 return 0; 2685 2686 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2687 btrfs_item_key_to_cpu(eb, &key, i); 2688 if (key.type != BTRFS_EXTENT_DATA_KEY) 2689 continue; 2690 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2691 found_type = btrfs_file_extent_type(eb, item); 2692 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2693 continue; 2694 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2695 continue; 2696 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2697 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2698 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2699 if (ret) 2700 break; 2701 } 2702 2703 return ret; 2704 } 2705 2706 static void 2707 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2708 { 2709 atomic_inc(&bg->reservations); 2710 } 2711 2712 /* 2713 * Returns the free cluster for the given space info and sets empty_cluster to 2714 * what it should be based on the mount options. 2715 */ 2716 static struct btrfs_free_cluster * 2717 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2718 struct btrfs_space_info *space_info, u64 *empty_cluster) 2719 { 2720 struct btrfs_free_cluster *ret = NULL; 2721 2722 *empty_cluster = 0; 2723 if (btrfs_mixed_space_info(space_info)) 2724 return ret; 2725 2726 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2727 ret = &fs_info->meta_alloc_cluster; 2728 if (btrfs_test_opt(fs_info, SSD)) 2729 *empty_cluster = SZ_2M; 2730 else 2731 *empty_cluster = SZ_64K; 2732 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2733 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2734 *empty_cluster = SZ_2M; 2735 ret = &fs_info->data_alloc_cluster; 2736 } 2737 2738 return ret; 2739 } 2740 2741 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2742 u64 start, u64 end, 2743 const bool return_free_space) 2744 { 2745 struct btrfs_block_group *cache = NULL; 2746 struct btrfs_space_info *space_info; 2747 struct btrfs_free_cluster *cluster = NULL; 2748 u64 total_unpinned = 0; 2749 u64 empty_cluster = 0; 2750 bool readonly; 2751 int ret = 0; 2752 2753 while (start <= end) { 2754 u64 len; 2755 2756 readonly = false; 2757 if (!cache || 2758 start >= cache->start + cache->length) { 2759 if (cache) 2760 btrfs_put_block_group(cache); 2761 total_unpinned = 0; 2762 cache = btrfs_lookup_block_group(fs_info, start); 2763 if (cache == NULL) { 2764 /* Logic error, something removed the block group. */ 2765 ret = -EUCLEAN; 2766 goto out; 2767 } 2768 2769 cluster = fetch_cluster_info(fs_info, 2770 cache->space_info, 2771 &empty_cluster); 2772 empty_cluster <<= 1; 2773 } 2774 2775 len = cache->start + cache->length - start; 2776 len = min(len, end + 1 - start); 2777 2778 if (return_free_space) 2779 btrfs_add_free_space(cache, start, len); 2780 2781 start += len; 2782 total_unpinned += len; 2783 space_info = cache->space_info; 2784 2785 /* 2786 * If this space cluster has been marked as fragmented and we've 2787 * unpinned enough in this block group to potentially allow a 2788 * cluster to be created inside of it go ahead and clear the 2789 * fragmented check. 2790 */ 2791 if (cluster && cluster->fragmented && 2792 total_unpinned > empty_cluster) { 2793 spin_lock(&cluster->lock); 2794 cluster->fragmented = 0; 2795 spin_unlock(&cluster->lock); 2796 } 2797 2798 spin_lock(&space_info->lock); 2799 spin_lock(&cache->lock); 2800 cache->pinned -= len; 2801 btrfs_space_info_update_bytes_pinned(space_info, -len); 2802 space_info->max_extent_size = 0; 2803 if (cache->ro) { 2804 space_info->bytes_readonly += len; 2805 readonly = true; 2806 } else if (btrfs_is_zoned(fs_info)) { 2807 /* Need reset before reusing in a zoned block group */ 2808 btrfs_space_info_update_bytes_zone_unusable(space_info, len); 2809 readonly = true; 2810 } 2811 spin_unlock(&cache->lock); 2812 if (!readonly && return_free_space) 2813 btrfs_return_free_space(space_info, len); 2814 spin_unlock(&space_info->lock); 2815 } 2816 2817 if (cache) 2818 btrfs_put_block_group(cache); 2819 out: 2820 return ret; 2821 } 2822 2823 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2824 { 2825 struct btrfs_fs_info *fs_info = trans->fs_info; 2826 struct btrfs_block_group *block_group, *tmp; 2827 struct list_head *deleted_bgs; 2828 struct extent_io_tree *unpin = &trans->transaction->pinned_extents; 2829 struct extent_state *cached_state = NULL; 2830 u64 start; 2831 u64 end; 2832 int unpin_error = 0; 2833 int ret; 2834 2835 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2836 btrfs_find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state); 2837 2838 while (!TRANS_ABORTED(trans) && cached_state) { 2839 struct extent_state *next_state; 2840 2841 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2842 ret = btrfs_discard_extent(fs_info, start, 2843 end + 1 - start, NULL); 2844 2845 next_state = btrfs_next_extent_state(unpin, cached_state); 2846 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 2847 ret = unpin_extent_range(fs_info, start, end, true); 2848 /* 2849 * If we get an error unpinning an extent range, store the first 2850 * error to return later after trying to unpin all ranges and do 2851 * the sync discards. Our caller will abort the transaction 2852 * (which already wrote new superblocks) and on the next mount 2853 * the space will be available as it was pinned by in-memory 2854 * only structures in this phase. 2855 */ 2856 if (ret) { 2857 btrfs_err_rl(fs_info, 2858 "failed to unpin extent range [%llu, %llu] when committing transaction %llu: %s (%d)", 2859 start, end, trans->transid, 2860 btrfs_decode_error(ret), ret); 2861 if (!unpin_error) 2862 unpin_error = ret; 2863 } 2864 2865 btrfs_free_extent_state(cached_state); 2866 2867 if (need_resched()) { 2868 btrfs_free_extent_state(next_state); 2869 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2870 cond_resched(); 2871 cached_state = NULL; 2872 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2873 btrfs_find_first_extent_bit(unpin, 0, &start, &end, 2874 EXTENT_DIRTY, &cached_state); 2875 } else { 2876 cached_state = next_state; 2877 if (cached_state) { 2878 start = cached_state->start; 2879 end = cached_state->end; 2880 } 2881 } 2882 } 2883 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2884 btrfs_free_extent_state(cached_state); 2885 2886 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2887 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2888 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2889 } 2890 2891 /* 2892 * Transaction is finished. We don't need the lock anymore. We 2893 * do need to clean up the block groups in case of a transaction 2894 * abort. 2895 */ 2896 deleted_bgs = &trans->transaction->deleted_bgs; 2897 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2898 ret = -EROFS; 2899 if (!TRANS_ABORTED(trans)) 2900 ret = btrfs_discard_extent(fs_info, block_group->start, 2901 block_group->length, NULL); 2902 2903 /* 2904 * Not strictly necessary to lock, as the block_group should be 2905 * read-only from btrfs_delete_unused_bgs(). 2906 */ 2907 ASSERT(block_group->ro); 2908 spin_lock(&fs_info->unused_bgs_lock); 2909 list_del_init(&block_group->bg_list); 2910 spin_unlock(&fs_info->unused_bgs_lock); 2911 2912 btrfs_unfreeze_block_group(block_group); 2913 btrfs_put_block_group(block_group); 2914 2915 if (ret) { 2916 const char *errstr = btrfs_decode_error(ret); 2917 btrfs_warn(fs_info, 2918 "discard failed while removing blockgroup: errno=%d %s", 2919 ret, errstr); 2920 } 2921 } 2922 2923 return unpin_error; 2924 } 2925 2926 /* 2927 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2928 * 2929 * @fs_info: the btrfs_fs_info for this mount 2930 * @leaf: a leaf in the extent tree containing the extent item 2931 * @slot: the slot in the leaf where the extent item is found 2932 * 2933 * Returns the objectid of the root that originally allocated the extent item 2934 * if the inline owner ref is expected and present, otherwise 0. 2935 * 2936 * If an extent item has an owner ref item, it will be the first inline ref 2937 * item. Therefore the logic is to check whether there are any inline ref 2938 * items, then check the type of the first one. 2939 */ 2940 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2941 struct extent_buffer *leaf, int slot) 2942 { 2943 struct btrfs_extent_item *ei; 2944 struct btrfs_extent_inline_ref *iref; 2945 struct btrfs_extent_owner_ref *oref; 2946 unsigned long ptr; 2947 unsigned long end; 2948 int type; 2949 2950 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2951 return 0; 2952 2953 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2954 ptr = (unsigned long)(ei + 1); 2955 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2956 2957 /* No inline ref items of any kind, can't check type. */ 2958 if (ptr == end) 2959 return 0; 2960 2961 iref = (struct btrfs_extent_inline_ref *)ptr; 2962 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2963 2964 /* We found an owner ref, get the root out of it. */ 2965 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2966 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2967 return btrfs_extent_owner_ref_root_id(leaf, oref); 2968 } 2969 2970 /* We have inline refs, but not an owner ref. */ 2971 return 0; 2972 } 2973 2974 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2975 u64 bytenr, struct btrfs_squota_delta *delta) 2976 { 2977 int ret; 2978 u64 num_bytes = delta->num_bytes; 2979 2980 if (delta->is_data) { 2981 struct btrfs_root *csum_root; 2982 2983 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2984 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2985 if (ret) { 2986 btrfs_abort_transaction(trans, ret); 2987 return ret; 2988 } 2989 2990 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2991 if (ret) { 2992 btrfs_abort_transaction(trans, ret); 2993 return ret; 2994 } 2995 } 2996 2997 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2998 if (ret) { 2999 btrfs_abort_transaction(trans, ret); 3000 return ret; 3001 } 3002 3003 ret = btrfs_add_to_free_space_tree(trans, bytenr, num_bytes); 3004 if (ret) { 3005 btrfs_abort_transaction(trans, ret); 3006 return ret; 3007 } 3008 3009 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3010 if (ret) 3011 btrfs_abort_transaction(trans, ret); 3012 3013 return ret; 3014 } 3015 3016 #define abort_and_dump(trans, path, fmt, args...) \ 3017 ({ \ 3018 btrfs_abort_transaction(trans, -EUCLEAN); \ 3019 btrfs_print_leaf(path->nodes[0]); \ 3020 btrfs_crit(trans->fs_info, fmt, ##args); \ 3021 }) 3022 3023 /* 3024 * Drop one or more refs of @node. 3025 * 3026 * 1. Locate the extent refs. 3027 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3028 * Locate it, then reduce the refs number or remove the ref line completely. 3029 * 3030 * 2. Update the refs count in EXTENT/METADATA_ITEM 3031 * 3032 * Inline backref case: 3033 * 3034 * in extent tree we have: 3035 * 3036 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3037 * refs 2 gen 6 flags DATA 3038 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3039 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3040 * 3041 * This function gets called with: 3042 * 3043 * node->bytenr = 13631488 3044 * node->num_bytes = 1048576 3045 * root_objectid = FS_TREE 3046 * owner_objectid = 257 3047 * owner_offset = 0 3048 * refs_to_drop = 1 3049 * 3050 * Then we should get some like: 3051 * 3052 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3053 * refs 1 gen 6 flags DATA 3054 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3055 * 3056 * Keyed backref case: 3057 * 3058 * in extent tree we have: 3059 * 3060 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3061 * refs 754 gen 6 flags DATA 3062 * [...] 3063 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3064 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3065 * 3066 * This function get called with: 3067 * 3068 * node->bytenr = 13631488 3069 * node->num_bytes = 1048576 3070 * root_objectid = FS_TREE 3071 * owner_objectid = 866 3072 * owner_offset = 0 3073 * refs_to_drop = 1 3074 * 3075 * Then we should get some like: 3076 * 3077 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3078 * refs 753 gen 6 flags DATA 3079 * 3080 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3081 */ 3082 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3083 struct btrfs_delayed_ref_head *href, 3084 const struct btrfs_delayed_ref_node *node, 3085 struct btrfs_delayed_extent_op *extent_op) 3086 { 3087 struct btrfs_fs_info *info = trans->fs_info; 3088 struct btrfs_key key; 3089 struct btrfs_path *path; 3090 struct btrfs_root *extent_root; 3091 struct extent_buffer *leaf; 3092 struct btrfs_extent_item *ei; 3093 struct btrfs_extent_inline_ref *iref; 3094 int ret; 3095 int is_data; 3096 int extent_slot = 0; 3097 int found_extent = 0; 3098 int num_to_del = 1; 3099 int refs_to_drop = node->ref_mod; 3100 u32 item_size; 3101 u64 refs; 3102 u64 bytenr = node->bytenr; 3103 u64 num_bytes = node->num_bytes; 3104 u64 owner_objectid = btrfs_delayed_ref_owner(node); 3105 u64 owner_offset = btrfs_delayed_ref_offset(node); 3106 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3107 u64 delayed_ref_root = href->owning_root; 3108 3109 extent_root = btrfs_extent_root(info, bytenr); 3110 ASSERT(extent_root); 3111 3112 path = btrfs_alloc_path(); 3113 if (!path) 3114 return -ENOMEM; 3115 3116 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3117 3118 if (!is_data && refs_to_drop != 1) { 3119 btrfs_crit(info, 3120 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3121 node->bytenr, refs_to_drop); 3122 ret = -EINVAL; 3123 btrfs_abort_transaction(trans, ret); 3124 goto out; 3125 } 3126 3127 if (is_data) 3128 skinny_metadata = false; 3129 3130 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3131 node->parent, node->ref_root, owner_objectid, 3132 owner_offset); 3133 if (ret == 0) { 3134 /* 3135 * Either the inline backref or the SHARED_DATA_REF/ 3136 * SHARED_BLOCK_REF is found 3137 * 3138 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3139 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3140 */ 3141 extent_slot = path->slots[0]; 3142 while (extent_slot >= 0) { 3143 btrfs_item_key_to_cpu(path->nodes[0], &key, 3144 extent_slot); 3145 if (key.objectid != bytenr) 3146 break; 3147 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3148 key.offset == num_bytes) { 3149 found_extent = 1; 3150 break; 3151 } 3152 if (key.type == BTRFS_METADATA_ITEM_KEY && 3153 key.offset == owner_objectid) { 3154 found_extent = 1; 3155 break; 3156 } 3157 3158 /* Quick path didn't find the EXTENT/METADATA_ITEM */ 3159 if (path->slots[0] - extent_slot > 5) 3160 break; 3161 extent_slot--; 3162 } 3163 3164 if (!found_extent) { 3165 if (iref) { 3166 abort_and_dump(trans, path, 3167 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3168 path->slots[0]); 3169 ret = -EUCLEAN; 3170 goto out; 3171 } 3172 /* Must be SHARED_* item, remove the backref first */ 3173 ret = remove_extent_backref(trans, extent_root, path, 3174 NULL, refs_to_drop, is_data); 3175 if (ret) { 3176 btrfs_abort_transaction(trans, ret); 3177 goto out; 3178 } 3179 btrfs_release_path(path); 3180 3181 /* Slow path to locate EXTENT/METADATA_ITEM */ 3182 key.objectid = bytenr; 3183 key.type = BTRFS_EXTENT_ITEM_KEY; 3184 key.offset = num_bytes; 3185 3186 if (!is_data && skinny_metadata) { 3187 key.type = BTRFS_METADATA_ITEM_KEY; 3188 key.offset = owner_objectid; 3189 } 3190 3191 ret = btrfs_search_slot(trans, extent_root, 3192 &key, path, -1, 1); 3193 if (ret > 0 && skinny_metadata && path->slots[0]) { 3194 /* 3195 * Couldn't find our skinny metadata item, 3196 * see if we have ye olde extent item. 3197 */ 3198 path->slots[0]--; 3199 btrfs_item_key_to_cpu(path->nodes[0], &key, 3200 path->slots[0]); 3201 if (key.objectid == bytenr && 3202 key.type == BTRFS_EXTENT_ITEM_KEY && 3203 key.offset == num_bytes) 3204 ret = 0; 3205 } 3206 3207 if (ret > 0 && skinny_metadata) { 3208 skinny_metadata = false; 3209 key.objectid = bytenr; 3210 key.type = BTRFS_EXTENT_ITEM_KEY; 3211 key.offset = num_bytes; 3212 btrfs_release_path(path); 3213 ret = btrfs_search_slot(trans, extent_root, 3214 &key, path, -1, 1); 3215 } 3216 3217 if (ret) { 3218 if (ret > 0) 3219 btrfs_print_leaf(path->nodes[0]); 3220 btrfs_err(info, 3221 "umm, got %d back from search, was looking for %llu, slot %d", 3222 ret, bytenr, path->slots[0]); 3223 } 3224 if (ret < 0) { 3225 btrfs_abort_transaction(trans, ret); 3226 goto out; 3227 } 3228 extent_slot = path->slots[0]; 3229 } 3230 } else if (WARN_ON(ret == -ENOENT)) { 3231 abort_and_dump(trans, path, 3232 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3233 bytenr, node->parent, node->ref_root, owner_objectid, 3234 owner_offset, path->slots[0]); 3235 goto out; 3236 } else { 3237 btrfs_abort_transaction(trans, ret); 3238 goto out; 3239 } 3240 3241 leaf = path->nodes[0]; 3242 item_size = btrfs_item_size(leaf, extent_slot); 3243 if (unlikely(item_size < sizeof(*ei))) { 3244 ret = -EUCLEAN; 3245 btrfs_err(trans->fs_info, 3246 "unexpected extent item size, has %u expect >= %zu", 3247 item_size, sizeof(*ei)); 3248 btrfs_abort_transaction(trans, ret); 3249 goto out; 3250 } 3251 ei = btrfs_item_ptr(leaf, extent_slot, 3252 struct btrfs_extent_item); 3253 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3254 key.type == BTRFS_EXTENT_ITEM_KEY) { 3255 struct btrfs_tree_block_info *bi; 3256 3257 if (item_size < sizeof(*ei) + sizeof(*bi)) { 3258 abort_and_dump(trans, path, 3259 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3260 key.objectid, key.type, key.offset, 3261 path->slots[0], owner_objectid, item_size, 3262 sizeof(*ei) + sizeof(*bi)); 3263 ret = -EUCLEAN; 3264 goto out; 3265 } 3266 bi = (struct btrfs_tree_block_info *)(ei + 1); 3267 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3268 } 3269 3270 refs = btrfs_extent_refs(leaf, ei); 3271 if (refs < refs_to_drop) { 3272 abort_and_dump(trans, path, 3273 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3274 refs_to_drop, refs, bytenr, path->slots[0]); 3275 ret = -EUCLEAN; 3276 goto out; 3277 } 3278 refs -= refs_to_drop; 3279 3280 if (refs > 0) { 3281 if (extent_op) 3282 __run_delayed_extent_op(extent_op, leaf, ei); 3283 /* 3284 * In the case of inline back ref, reference count will 3285 * be updated by remove_extent_backref 3286 */ 3287 if (iref) { 3288 if (!found_extent) { 3289 abort_and_dump(trans, path, 3290 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3291 path->slots[0]); 3292 ret = -EUCLEAN; 3293 goto out; 3294 } 3295 } else { 3296 btrfs_set_extent_refs(leaf, ei, refs); 3297 } 3298 if (found_extent) { 3299 ret = remove_extent_backref(trans, extent_root, path, 3300 iref, refs_to_drop, is_data); 3301 if (ret) { 3302 btrfs_abort_transaction(trans, ret); 3303 goto out; 3304 } 3305 } 3306 } else { 3307 struct btrfs_squota_delta delta = { 3308 .root = delayed_ref_root, 3309 .num_bytes = num_bytes, 3310 .is_data = is_data, 3311 .is_inc = false, 3312 .generation = btrfs_extent_generation(leaf, ei), 3313 }; 3314 3315 /* In this branch refs == 1 */ 3316 if (found_extent) { 3317 if (is_data && refs_to_drop != 3318 extent_data_ref_count(path, iref)) { 3319 abort_and_dump(trans, path, 3320 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3321 extent_data_ref_count(path, iref), 3322 refs_to_drop, path->slots[0]); 3323 ret = -EUCLEAN; 3324 goto out; 3325 } 3326 if (iref) { 3327 if (path->slots[0] != extent_slot) { 3328 abort_and_dump(trans, path, 3329 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref", 3330 key.objectid, key.type, 3331 key.offset, path->slots[0]); 3332 ret = -EUCLEAN; 3333 goto out; 3334 } 3335 } else { 3336 /* 3337 * No inline ref, we must be at SHARED_* item, 3338 * And it's single ref, it must be: 3339 * | extent_slot ||extent_slot + 1| 3340 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3341 */ 3342 if (path->slots[0] != extent_slot + 1) { 3343 abort_and_dump(trans, path, 3344 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3345 path->slots[0]); 3346 ret = -EUCLEAN; 3347 goto out; 3348 } 3349 path->slots[0] = extent_slot; 3350 num_to_del = 2; 3351 } 3352 } 3353 /* 3354 * We can't infer the data owner from the delayed ref, so we need 3355 * to try to get it from the owning ref item. 3356 * 3357 * If it is not present, then that extent was not written under 3358 * simple quotas mode, so we don't need to account for its deletion. 3359 */ 3360 if (is_data) 3361 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3362 leaf, extent_slot); 3363 3364 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3365 num_to_del); 3366 if (ret) { 3367 btrfs_abort_transaction(trans, ret); 3368 goto out; 3369 } 3370 btrfs_release_path(path); 3371 3372 ret = do_free_extent_accounting(trans, bytenr, &delta); 3373 } 3374 btrfs_release_path(path); 3375 3376 out: 3377 btrfs_free_path(path); 3378 return ret; 3379 } 3380 3381 /* 3382 * when we free an block, it is possible (and likely) that we free the last 3383 * delayed ref for that extent as well. This searches the delayed ref tree for 3384 * a given extent, and if there are no other delayed refs to be processed, it 3385 * removes it from the tree. 3386 */ 3387 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3388 u64 bytenr) 3389 { 3390 struct btrfs_fs_info *fs_info = trans->fs_info; 3391 struct btrfs_delayed_ref_head *head; 3392 struct btrfs_delayed_ref_root *delayed_refs; 3393 int ret = 0; 3394 3395 delayed_refs = &trans->transaction->delayed_refs; 3396 spin_lock(&delayed_refs->lock); 3397 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 3398 if (!head) 3399 goto out_delayed_unlock; 3400 3401 spin_lock(&head->lock); 3402 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3403 goto out; 3404 3405 if (cleanup_extent_op(head) != NULL) 3406 goto out; 3407 3408 /* 3409 * waiting for the lock here would deadlock. If someone else has it 3410 * locked they are already in the process of dropping it anyway 3411 */ 3412 if (!mutex_trylock(&head->mutex)) 3413 goto out; 3414 3415 btrfs_delete_ref_head(fs_info, delayed_refs, head); 3416 head->processing = false; 3417 3418 spin_unlock(&head->lock); 3419 spin_unlock(&delayed_refs->lock); 3420 3421 BUG_ON(head->extent_op); 3422 if (head->must_insert_reserved) 3423 ret = 1; 3424 3425 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 3426 mutex_unlock(&head->mutex); 3427 btrfs_put_delayed_ref_head(head); 3428 return ret; 3429 out: 3430 spin_unlock(&head->lock); 3431 3432 out_delayed_unlock: 3433 spin_unlock(&delayed_refs->lock); 3434 return 0; 3435 } 3436 3437 int btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3438 u64 root_id, 3439 struct extent_buffer *buf, 3440 u64 parent, int last_ref) 3441 { 3442 struct btrfs_fs_info *fs_info = trans->fs_info; 3443 struct btrfs_block_group *bg; 3444 int ret; 3445 3446 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3447 struct btrfs_ref generic_ref = { 3448 .action = BTRFS_DROP_DELAYED_REF, 3449 .bytenr = buf->start, 3450 .num_bytes = buf->len, 3451 .parent = parent, 3452 .owning_root = btrfs_header_owner(buf), 3453 .ref_root = root_id, 3454 }; 3455 3456 /* 3457 * Assert that the extent buffer is not cleared due to 3458 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer 3459 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for 3460 * detail. 3461 */ 3462 ASSERT(btrfs_header_bytenr(buf) != 0); 3463 3464 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); 3465 btrfs_ref_tree_mod(fs_info, &generic_ref); 3466 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3467 if (ret < 0) 3468 return ret; 3469 } 3470 3471 if (!last_ref) 3472 return 0; 3473 3474 if (btrfs_header_generation(buf) != trans->transid) 3475 goto out; 3476 3477 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3478 ret = check_ref_cleanup(trans, buf->start); 3479 if (!ret) 3480 goto out; 3481 } 3482 3483 bg = btrfs_lookup_block_group(fs_info, buf->start); 3484 3485 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3486 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3487 btrfs_put_block_group(bg); 3488 goto out; 3489 } 3490 3491 /* 3492 * If there are tree mod log users we may have recorded mod log 3493 * operations for this node. If we re-allocate this node we 3494 * could replay operations on this node that happened when it 3495 * existed in a completely different root. For example if it 3496 * was part of root A, then was reallocated to root B, and we 3497 * are doing a btrfs_old_search_slot(root b), we could replay 3498 * operations that happened when the block was part of root A, 3499 * giving us an inconsistent view of the btree. 3500 * 3501 * We are safe from races here because at this point no other 3502 * node or root points to this extent buffer, so if after this 3503 * check a new tree mod log user joins we will not have an 3504 * existing log of operations on this node that we have to 3505 * contend with. 3506 */ 3507 3508 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3509 || btrfs_is_zoned(fs_info)) { 3510 pin_down_extent(trans, bg, buf->start, buf->len, 1); 3511 btrfs_put_block_group(bg); 3512 goto out; 3513 } 3514 3515 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3516 3517 btrfs_add_free_space(bg, buf->start, buf->len); 3518 btrfs_free_reserved_bytes(bg, buf->len, false); 3519 btrfs_put_block_group(bg); 3520 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3521 3522 out: 3523 return 0; 3524 } 3525 3526 /* Can return -ENOMEM */ 3527 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3528 { 3529 struct btrfs_fs_info *fs_info = trans->fs_info; 3530 int ret; 3531 3532 if (btrfs_is_testing(fs_info)) 3533 return 0; 3534 3535 /* 3536 * tree log blocks never actually go into the extent allocation 3537 * tree, just update pinning info and exit early. 3538 */ 3539 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { 3540 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes, 1); 3541 ret = 0; 3542 } else if (ref->type == BTRFS_REF_METADATA) { 3543 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3544 } else { 3545 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3546 } 3547 3548 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) 3549 btrfs_ref_tree_mod(fs_info, ref); 3550 3551 return ret; 3552 } 3553 3554 enum btrfs_loop_type { 3555 /* 3556 * Start caching block groups but do not wait for progress or for them 3557 * to be done. 3558 */ 3559 LOOP_CACHING_NOWAIT, 3560 3561 /* 3562 * Wait for the block group free_space >= the space we're waiting for if 3563 * the block group isn't cached. 3564 */ 3565 LOOP_CACHING_WAIT, 3566 3567 /* 3568 * Allow allocations to happen from block groups that do not yet have a 3569 * size classification. 3570 */ 3571 LOOP_UNSET_SIZE_CLASS, 3572 3573 /* 3574 * Allocate a chunk and then retry the allocation. 3575 */ 3576 LOOP_ALLOC_CHUNK, 3577 3578 /* 3579 * Ignore the size class restrictions for this allocation. 3580 */ 3581 LOOP_WRONG_SIZE_CLASS, 3582 3583 /* 3584 * Ignore the empty size, only try to allocate the number of bytes 3585 * needed for this allocation. 3586 */ 3587 LOOP_NO_EMPTY_SIZE, 3588 }; 3589 3590 static inline void 3591 btrfs_lock_block_group(struct btrfs_block_group *cache, 3592 int delalloc) 3593 { 3594 if (delalloc) 3595 down_read(&cache->data_rwsem); 3596 } 3597 3598 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3599 int delalloc) 3600 { 3601 btrfs_get_block_group(cache); 3602 if (delalloc) 3603 down_read(&cache->data_rwsem); 3604 } 3605 3606 static struct btrfs_block_group *btrfs_lock_cluster( 3607 struct btrfs_block_group *block_group, 3608 struct btrfs_free_cluster *cluster, 3609 int delalloc) 3610 __acquires(&cluster->refill_lock) 3611 { 3612 struct btrfs_block_group *used_bg = NULL; 3613 3614 spin_lock(&cluster->refill_lock); 3615 while (1) { 3616 used_bg = cluster->block_group; 3617 if (!used_bg) 3618 return NULL; 3619 3620 if (used_bg == block_group) 3621 return used_bg; 3622 3623 btrfs_get_block_group(used_bg); 3624 3625 if (!delalloc) 3626 return used_bg; 3627 3628 if (down_read_trylock(&used_bg->data_rwsem)) 3629 return used_bg; 3630 3631 spin_unlock(&cluster->refill_lock); 3632 3633 /* We should only have one-level nested. */ 3634 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3635 3636 spin_lock(&cluster->refill_lock); 3637 if (used_bg == cluster->block_group) 3638 return used_bg; 3639 3640 up_read(&used_bg->data_rwsem); 3641 btrfs_put_block_group(used_bg); 3642 } 3643 } 3644 3645 static inline void 3646 btrfs_release_block_group(struct btrfs_block_group *cache, 3647 int delalloc) 3648 { 3649 if (delalloc) 3650 up_read(&cache->data_rwsem); 3651 btrfs_put_block_group(cache); 3652 } 3653 3654 static bool find_free_extent_check_size_class(const struct find_free_extent_ctl *ffe_ctl, 3655 const struct btrfs_block_group *bg) 3656 { 3657 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 3658 return true; 3659 if (!btrfs_block_group_should_use_size_class(bg)) 3660 return true; 3661 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 3662 return true; 3663 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 3664 bg->size_class == BTRFS_BG_SZ_NONE) 3665 return true; 3666 return ffe_ctl->size_class == bg->size_class; 3667 } 3668 3669 /* 3670 * Helper function for find_free_extent(). 3671 * 3672 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3673 * Return >0 to inform caller that we find nothing 3674 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3675 */ 3676 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3677 struct find_free_extent_ctl *ffe_ctl, 3678 struct btrfs_block_group **cluster_bg_ret) 3679 { 3680 struct btrfs_block_group *cluster_bg; 3681 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3682 u64 aligned_cluster; 3683 u64 offset; 3684 int ret; 3685 3686 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3687 if (!cluster_bg) 3688 goto refill_cluster; 3689 if (cluster_bg != bg && (cluster_bg->ro || 3690 !block_group_bits(cluster_bg, ffe_ctl->flags) || 3691 !find_free_extent_check_size_class(ffe_ctl, cluster_bg))) 3692 goto release_cluster; 3693 3694 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3695 ffe_ctl->num_bytes, cluster_bg->start, 3696 &ffe_ctl->max_extent_size); 3697 if (offset) { 3698 /* We have a block, we're done */ 3699 spin_unlock(&last_ptr->refill_lock); 3700 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3701 *cluster_bg_ret = cluster_bg; 3702 ffe_ctl->found_offset = offset; 3703 return 0; 3704 } 3705 WARN_ON(last_ptr->block_group != cluster_bg); 3706 3707 release_cluster: 3708 /* 3709 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3710 * lets just skip it and let the allocator find whatever block it can 3711 * find. If we reach this point, we will have tried the cluster 3712 * allocator plenty of times and not have found anything, so we are 3713 * likely way too fragmented for the clustering stuff to find anything. 3714 * 3715 * However, if the cluster is taken from the current block group, 3716 * release the cluster first, so that we stand a better chance of 3717 * succeeding in the unclustered allocation. 3718 */ 3719 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3720 spin_unlock(&last_ptr->refill_lock); 3721 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3722 return -ENOENT; 3723 } 3724 3725 /* This cluster didn't work out, free it and start over */ 3726 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3727 3728 if (cluster_bg != bg) 3729 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3730 3731 refill_cluster: 3732 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3733 spin_unlock(&last_ptr->refill_lock); 3734 return -ENOENT; 3735 } 3736 3737 aligned_cluster = max_t(u64, 3738 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3739 bg->full_stripe_len); 3740 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3741 ffe_ctl->num_bytes, aligned_cluster); 3742 if (ret == 0) { 3743 /* Now pull our allocation out of this cluster */ 3744 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3745 ffe_ctl->num_bytes, ffe_ctl->search_start, 3746 &ffe_ctl->max_extent_size); 3747 if (offset) { 3748 /* We found one, proceed */ 3749 spin_unlock(&last_ptr->refill_lock); 3750 ffe_ctl->found_offset = offset; 3751 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3752 return 0; 3753 } 3754 } 3755 /* 3756 * At this point we either didn't find a cluster or we weren't able to 3757 * allocate a block from our cluster. Free the cluster we've been 3758 * trying to use, and go to the next block group. 3759 */ 3760 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3761 spin_unlock(&last_ptr->refill_lock); 3762 return 1; 3763 } 3764 3765 /* 3766 * Return >0 to inform caller that we find nothing 3767 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3768 */ 3769 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3770 struct find_free_extent_ctl *ffe_ctl) 3771 { 3772 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3773 u64 offset; 3774 3775 /* 3776 * We are doing an unclustered allocation, set the fragmented flag so 3777 * we don't bother trying to setup a cluster again until we get more 3778 * space. 3779 */ 3780 if (unlikely(last_ptr)) { 3781 spin_lock(&last_ptr->lock); 3782 last_ptr->fragmented = 1; 3783 spin_unlock(&last_ptr->lock); 3784 } 3785 if (ffe_ctl->cached) { 3786 struct btrfs_free_space_ctl *free_space_ctl; 3787 3788 free_space_ctl = bg->free_space_ctl; 3789 spin_lock(&free_space_ctl->tree_lock); 3790 if (free_space_ctl->free_space < 3791 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3792 ffe_ctl->empty_size) { 3793 ffe_ctl->total_free_space = max_t(u64, 3794 ffe_ctl->total_free_space, 3795 free_space_ctl->free_space); 3796 spin_unlock(&free_space_ctl->tree_lock); 3797 return 1; 3798 } 3799 spin_unlock(&free_space_ctl->tree_lock); 3800 } 3801 3802 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3803 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3804 &ffe_ctl->max_extent_size); 3805 if (!offset) 3806 return 1; 3807 ffe_ctl->found_offset = offset; 3808 return 0; 3809 } 3810 3811 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3812 struct find_free_extent_ctl *ffe_ctl, 3813 struct btrfs_block_group **bg_ret) 3814 { 3815 int ret; 3816 3817 /* We want to try and use the cluster allocator, so lets look there */ 3818 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3819 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3820 if (ret >= 0) 3821 return ret; 3822 /* ret == -ENOENT case falls through */ 3823 } 3824 3825 return find_free_extent_unclustered(block_group, ffe_ctl); 3826 } 3827 3828 /* 3829 * Tree-log block group locking 3830 * ============================ 3831 * 3832 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3833 * indicates the starting address of a block group, which is reserved only 3834 * for tree-log metadata. 3835 * 3836 * Lock nesting 3837 * ============ 3838 * 3839 * space_info::lock 3840 * block_group::lock 3841 * fs_info::treelog_bg_lock 3842 */ 3843 3844 /* 3845 * Simple allocator for sequential-only block group. It only allows sequential 3846 * allocation. No need to play with trees. This function also reserves the 3847 * bytes as in btrfs_add_reserved_bytes. 3848 */ 3849 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3850 struct find_free_extent_ctl *ffe_ctl, 3851 struct btrfs_block_group **bg_ret) 3852 { 3853 struct btrfs_fs_info *fs_info = block_group->fs_info; 3854 struct btrfs_space_info *space_info = block_group->space_info; 3855 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3856 u64 start = block_group->start; 3857 u64 num_bytes = ffe_ctl->num_bytes; 3858 u64 avail; 3859 u64 bytenr = block_group->start; 3860 u64 log_bytenr; 3861 u64 data_reloc_bytenr; 3862 int ret = 0; 3863 bool skip = false; 3864 3865 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3866 3867 /* 3868 * Do not allow non-tree-log blocks in the dedicated tree-log block 3869 * group, and vice versa. 3870 */ 3871 spin_lock(&fs_info->treelog_bg_lock); 3872 log_bytenr = fs_info->treelog_bg; 3873 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3874 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3875 skip = true; 3876 spin_unlock(&fs_info->treelog_bg_lock); 3877 if (skip) 3878 return 1; 3879 3880 /* 3881 * Do not allow non-relocation blocks in the dedicated relocation block 3882 * group, and vice versa. 3883 */ 3884 spin_lock(&fs_info->relocation_bg_lock); 3885 data_reloc_bytenr = fs_info->data_reloc_bg; 3886 if (data_reloc_bytenr && 3887 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3888 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3889 skip = true; 3890 spin_unlock(&fs_info->relocation_bg_lock); 3891 if (skip) 3892 return 1; 3893 3894 /* Check RO and no space case before trying to activate it */ 3895 spin_lock(&block_group->lock); 3896 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3897 ret = 1; 3898 /* 3899 * May need to clear fs_info->{treelog,data_reloc}_bg. 3900 * Return the error after taking the locks. 3901 */ 3902 } 3903 spin_unlock(&block_group->lock); 3904 3905 /* Metadata block group is activated at write time. */ 3906 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3907 !btrfs_zone_activate(block_group)) { 3908 ret = 1; 3909 /* 3910 * May need to clear fs_info->{treelog,data_reloc}_bg. 3911 * Return the error after taking the locks. 3912 */ 3913 } 3914 3915 spin_lock(&space_info->lock); 3916 spin_lock(&block_group->lock); 3917 spin_lock(&fs_info->treelog_bg_lock); 3918 spin_lock(&fs_info->relocation_bg_lock); 3919 3920 if (ret) 3921 goto out; 3922 3923 ASSERT(!ffe_ctl->for_treelog || 3924 block_group->start == fs_info->treelog_bg || 3925 fs_info->treelog_bg == 0); 3926 ASSERT(!ffe_ctl->for_data_reloc || 3927 block_group->start == fs_info->data_reloc_bg || 3928 fs_info->data_reloc_bg == 0); 3929 3930 if (block_group->ro || 3931 (!ffe_ctl->for_data_reloc && 3932 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3933 ret = 1; 3934 goto out; 3935 } 3936 3937 /* 3938 * Do not allow currently using block group to be tree-log dedicated 3939 * block group. 3940 */ 3941 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3942 (block_group->used || block_group->reserved)) { 3943 ret = 1; 3944 goto out; 3945 } 3946 3947 /* 3948 * Do not allow currently used block group to be the data relocation 3949 * dedicated block group. 3950 */ 3951 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3952 (block_group->used || block_group->reserved)) { 3953 ret = 1; 3954 goto out; 3955 } 3956 3957 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3958 avail = block_group->zone_capacity - block_group->alloc_offset; 3959 if (avail < num_bytes) { 3960 if (ffe_ctl->max_extent_size < avail) { 3961 /* 3962 * With sequential allocator, free space is always 3963 * contiguous 3964 */ 3965 ffe_ctl->max_extent_size = avail; 3966 ffe_ctl->total_free_space = avail; 3967 } 3968 ret = 1; 3969 goto out; 3970 } 3971 3972 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3973 fs_info->treelog_bg = block_group->start; 3974 3975 if (ffe_ctl->for_data_reloc) { 3976 if (!fs_info->data_reloc_bg) 3977 fs_info->data_reloc_bg = block_group->start; 3978 /* 3979 * Do not allow allocations from this block group, unless it is 3980 * for data relocation. Compared to increasing the ->ro, setting 3981 * the ->zoned_data_reloc_ongoing flag still allows nocow 3982 * writers to come in. See btrfs_inc_nocow_writers(). 3983 * 3984 * We need to disable an allocation to avoid an allocation of 3985 * regular (non-relocation data) extent. With mix of relocation 3986 * extents and regular extents, we can dispatch WRITE commands 3987 * (for relocation extents) and ZONE APPEND commands (for 3988 * regular extents) at the same time to the same zone, which 3989 * easily break the write pointer. 3990 * 3991 * Also, this flag avoids this block group to be zone finished. 3992 */ 3993 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3994 } 3995 3996 ffe_ctl->found_offset = start + block_group->alloc_offset; 3997 block_group->alloc_offset += num_bytes; 3998 spin_lock(&ctl->tree_lock); 3999 ctl->free_space -= num_bytes; 4000 spin_unlock(&ctl->tree_lock); 4001 4002 /* 4003 * We do not check if found_offset is aligned to stripesize. The 4004 * address is anyway rewritten when using zone append writing. 4005 */ 4006 4007 ffe_ctl->search_start = ffe_ctl->found_offset; 4008 4009 out: 4010 if (ret && ffe_ctl->for_treelog) 4011 fs_info->treelog_bg = 0; 4012 if (ret && ffe_ctl->for_data_reloc) 4013 fs_info->data_reloc_bg = 0; 4014 spin_unlock(&fs_info->relocation_bg_lock); 4015 spin_unlock(&fs_info->treelog_bg_lock); 4016 spin_unlock(&block_group->lock); 4017 spin_unlock(&space_info->lock); 4018 return ret; 4019 } 4020 4021 static int do_allocation(struct btrfs_block_group *block_group, 4022 struct find_free_extent_ctl *ffe_ctl, 4023 struct btrfs_block_group **bg_ret) 4024 { 4025 switch (ffe_ctl->policy) { 4026 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4027 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 4028 case BTRFS_EXTENT_ALLOC_ZONED: 4029 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 4030 default: 4031 BUG(); 4032 } 4033 } 4034 4035 static void release_block_group(struct btrfs_block_group *block_group, 4036 struct find_free_extent_ctl *ffe_ctl, 4037 int delalloc) 4038 { 4039 switch (ffe_ctl->policy) { 4040 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4041 ffe_ctl->retry_uncached = false; 4042 break; 4043 case BTRFS_EXTENT_ALLOC_ZONED: 4044 /* Nothing to do */ 4045 break; 4046 default: 4047 BUG(); 4048 } 4049 4050 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4051 ffe_ctl->index); 4052 btrfs_release_block_group(block_group, delalloc); 4053 } 4054 4055 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4056 struct btrfs_key *ins) 4057 { 4058 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4059 4060 if (!ffe_ctl->use_cluster && last_ptr) { 4061 spin_lock(&last_ptr->lock); 4062 last_ptr->window_start = ins->objectid; 4063 spin_unlock(&last_ptr->lock); 4064 } 4065 } 4066 4067 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4068 struct btrfs_key *ins) 4069 { 4070 switch (ffe_ctl->policy) { 4071 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4072 found_extent_clustered(ffe_ctl, ins); 4073 break; 4074 case BTRFS_EXTENT_ALLOC_ZONED: 4075 /* Nothing to do */ 4076 break; 4077 default: 4078 BUG(); 4079 } 4080 } 4081 4082 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4083 struct find_free_extent_ctl *ffe_ctl) 4084 { 4085 /* Block group's activeness is not a requirement for METADATA block groups. */ 4086 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4087 return 0; 4088 4089 /* If we can activate new zone, just allocate a chunk and use it */ 4090 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4091 return 0; 4092 4093 /* 4094 * We already reached the max active zones. Try to finish one block 4095 * group to make a room for a new block group. This is only possible 4096 * for a data block group because btrfs_zone_finish() may need to wait 4097 * for a running transaction which can cause a deadlock for metadata 4098 * allocation. 4099 */ 4100 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4101 int ret = btrfs_zone_finish_one_bg(fs_info); 4102 4103 if (ret == 1) 4104 return 0; 4105 else if (ret < 0) 4106 return ret; 4107 } 4108 4109 /* 4110 * If we have enough free space left in an already active block group 4111 * and we can't activate any other zone now, do not allow allocating a 4112 * new chunk and let find_free_extent() retry with a smaller size. 4113 */ 4114 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4115 return -ENOSPC; 4116 4117 /* 4118 * Even min_alloc_size is not left in any block groups. Since we cannot 4119 * activate a new block group, allocating it may not help. Let's tell a 4120 * caller to try again and hope it progress something by writing some 4121 * parts of the region. That is only possible for data block groups, 4122 * where a part of the region can be written. 4123 */ 4124 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4125 return -EAGAIN; 4126 4127 /* 4128 * We cannot activate a new block group and no enough space left in any 4129 * block groups. So, allocating a new block group may not help. But, 4130 * there is nothing to do anyway, so let's go with it. 4131 */ 4132 return 0; 4133 } 4134 4135 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4136 struct find_free_extent_ctl *ffe_ctl) 4137 { 4138 switch (ffe_ctl->policy) { 4139 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4140 return 0; 4141 case BTRFS_EXTENT_ALLOC_ZONED: 4142 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4143 default: 4144 BUG(); 4145 } 4146 } 4147 4148 /* 4149 * Return >0 means caller needs to re-search for free extent 4150 * Return 0 means we have the needed free extent. 4151 * Return <0 means we failed to locate any free extent. 4152 */ 4153 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4154 struct btrfs_key *ins, 4155 struct find_free_extent_ctl *ffe_ctl, 4156 struct btrfs_space_info *space_info, 4157 bool full_search) 4158 { 4159 struct btrfs_root *root = fs_info->chunk_root; 4160 int ret; 4161 4162 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4163 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4164 ffe_ctl->orig_have_caching_bg = true; 4165 4166 if (ins->objectid) { 4167 found_extent(ffe_ctl, ins); 4168 return 0; 4169 } 4170 4171 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4172 return 1; 4173 4174 ffe_ctl->index++; 4175 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4176 return 1; 4177 4178 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4179 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4180 ffe_ctl->index = 0; 4181 /* 4182 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4183 * any uncached bgs and we've already done a full search 4184 * through. 4185 */ 4186 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4187 (!ffe_ctl->orig_have_caching_bg && full_search)) 4188 ffe_ctl->loop++; 4189 ffe_ctl->loop++; 4190 4191 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4192 struct btrfs_trans_handle *trans; 4193 int exist = 0; 4194 4195 /* Check if allocation policy allows to create a new chunk */ 4196 ret = can_allocate_chunk(fs_info, ffe_ctl); 4197 if (ret) 4198 return ret; 4199 4200 trans = current->journal_info; 4201 if (trans) 4202 exist = 1; 4203 else 4204 trans = btrfs_join_transaction(root); 4205 4206 if (IS_ERR(trans)) { 4207 ret = PTR_ERR(trans); 4208 return ret; 4209 } 4210 4211 ret = btrfs_chunk_alloc(trans, space_info, ffe_ctl->flags, 4212 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4213 4214 /* Do not bail out on ENOSPC since we can do more. */ 4215 if (ret == -ENOSPC) { 4216 ret = 0; 4217 ffe_ctl->loop++; 4218 } 4219 else if (ret < 0) 4220 btrfs_abort_transaction(trans, ret); 4221 else 4222 ret = 0; 4223 if (!exist) 4224 btrfs_end_transaction(trans); 4225 if (ret) 4226 return ret; 4227 } 4228 4229 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4230 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4231 return -ENOSPC; 4232 4233 /* 4234 * Don't loop again if we already have no empty_size and 4235 * no empty_cluster. 4236 */ 4237 if (ffe_ctl->empty_size == 0 && 4238 ffe_ctl->empty_cluster == 0) 4239 return -ENOSPC; 4240 ffe_ctl->empty_size = 0; 4241 ffe_ctl->empty_cluster = 0; 4242 } 4243 return 1; 4244 } 4245 return -ENOSPC; 4246 } 4247 4248 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4249 struct find_free_extent_ctl *ffe_ctl, 4250 struct btrfs_space_info *space_info, 4251 struct btrfs_key *ins) 4252 { 4253 /* 4254 * If our free space is heavily fragmented we may not be able to make 4255 * big contiguous allocations, so instead of doing the expensive search 4256 * for free space, simply return ENOSPC with our max_extent_size so we 4257 * can go ahead and search for a more manageable chunk. 4258 * 4259 * If our max_extent_size is large enough for our allocation simply 4260 * disable clustering since we will likely not be able to find enough 4261 * space to create a cluster and induce latency trying. 4262 */ 4263 if (space_info->max_extent_size) { 4264 spin_lock(&space_info->lock); 4265 if (space_info->max_extent_size && 4266 ffe_ctl->num_bytes > space_info->max_extent_size) { 4267 ins->offset = space_info->max_extent_size; 4268 spin_unlock(&space_info->lock); 4269 return -ENOSPC; 4270 } else if (space_info->max_extent_size) { 4271 ffe_ctl->use_cluster = false; 4272 } 4273 spin_unlock(&space_info->lock); 4274 } 4275 4276 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4277 &ffe_ctl->empty_cluster); 4278 if (ffe_ctl->last_ptr) { 4279 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4280 4281 spin_lock(&last_ptr->lock); 4282 if (last_ptr->block_group) 4283 ffe_ctl->hint_byte = last_ptr->window_start; 4284 if (last_ptr->fragmented) { 4285 /* 4286 * We still set window_start so we can keep track of the 4287 * last place we found an allocation to try and save 4288 * some time. 4289 */ 4290 ffe_ctl->hint_byte = last_ptr->window_start; 4291 ffe_ctl->use_cluster = false; 4292 } 4293 spin_unlock(&last_ptr->lock); 4294 } 4295 4296 return 0; 4297 } 4298 4299 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4300 struct find_free_extent_ctl *ffe_ctl) 4301 { 4302 if (ffe_ctl->for_treelog) { 4303 spin_lock(&fs_info->treelog_bg_lock); 4304 if (fs_info->treelog_bg) 4305 ffe_ctl->hint_byte = fs_info->treelog_bg; 4306 spin_unlock(&fs_info->treelog_bg_lock); 4307 } else if (ffe_ctl->for_data_reloc) { 4308 spin_lock(&fs_info->relocation_bg_lock); 4309 if (fs_info->data_reloc_bg) 4310 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4311 spin_unlock(&fs_info->relocation_bg_lock); 4312 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4313 struct btrfs_block_group *block_group; 4314 4315 spin_lock(&fs_info->zone_active_bgs_lock); 4316 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4317 /* 4318 * No lock is OK here because avail is monotinically 4319 * decreasing, and this is just a hint. 4320 */ 4321 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4322 4323 if (block_group_bits(block_group, ffe_ctl->flags) && 4324 avail >= ffe_ctl->num_bytes) { 4325 ffe_ctl->hint_byte = block_group->start; 4326 break; 4327 } 4328 } 4329 spin_unlock(&fs_info->zone_active_bgs_lock); 4330 } 4331 4332 return 0; 4333 } 4334 4335 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4336 struct find_free_extent_ctl *ffe_ctl, 4337 struct btrfs_space_info *space_info, 4338 struct btrfs_key *ins) 4339 { 4340 switch (ffe_ctl->policy) { 4341 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4342 return prepare_allocation_clustered(fs_info, ffe_ctl, 4343 space_info, ins); 4344 case BTRFS_EXTENT_ALLOC_ZONED: 4345 return prepare_allocation_zoned(fs_info, ffe_ctl); 4346 default: 4347 BUG(); 4348 } 4349 } 4350 4351 /* 4352 * walks the btree of allocated extents and find a hole of a given size. 4353 * The key ins is changed to record the hole: 4354 * ins->objectid == start position 4355 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4356 * ins->offset == the size of the hole. 4357 * Any available blocks before search_start are skipped. 4358 * 4359 * If there is no suitable free space, we will record the max size of 4360 * the free space extent currently. 4361 * 4362 * The overall logic and call chain: 4363 * 4364 * find_free_extent() 4365 * |- Iterate through all block groups 4366 * | |- Get a valid block group 4367 * | |- Try to do clustered allocation in that block group 4368 * | |- Try to do unclustered allocation in that block group 4369 * | |- Check if the result is valid 4370 * | | |- If valid, then exit 4371 * | |- Jump to next block group 4372 * | 4373 * |- Push harder to find free extents 4374 * |- If not found, re-iterate all block groups 4375 */ 4376 static noinline int find_free_extent(struct btrfs_root *root, 4377 struct btrfs_key *ins, 4378 struct find_free_extent_ctl *ffe_ctl) 4379 { 4380 struct btrfs_fs_info *fs_info = root->fs_info; 4381 int ret = 0; 4382 int cache_block_group_error = 0; 4383 struct btrfs_block_group *block_group = NULL; 4384 struct btrfs_space_info *space_info; 4385 bool full_search = false; 4386 4387 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4388 4389 ffe_ctl->search_start = 0; 4390 /* For clustered allocation */ 4391 ffe_ctl->empty_cluster = 0; 4392 ffe_ctl->last_ptr = NULL; 4393 ffe_ctl->use_cluster = true; 4394 ffe_ctl->have_caching_bg = false; 4395 ffe_ctl->orig_have_caching_bg = false; 4396 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4397 ffe_ctl->loop = 0; 4398 ffe_ctl->retry_uncached = false; 4399 ffe_ctl->cached = 0; 4400 ffe_ctl->max_extent_size = 0; 4401 ffe_ctl->total_free_space = 0; 4402 ffe_ctl->found_offset = 0; 4403 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4404 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4405 4406 if (btrfs_is_zoned(fs_info)) 4407 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4408 4409 ins->type = BTRFS_EXTENT_ITEM_KEY; 4410 ins->objectid = 0; 4411 ins->offset = 0; 4412 4413 trace_btrfs_find_free_extent(root, ffe_ctl); 4414 4415 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4416 if (btrfs_is_zoned(fs_info) && space_info) { 4417 /* Use dedicated sub-space_info for dedicated block group users. */ 4418 if (ffe_ctl->for_data_reloc) { 4419 space_info = space_info->sub_group[0]; 4420 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC); 4421 } else if (ffe_ctl->for_treelog) { 4422 space_info = space_info->sub_group[0]; 4423 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_TREELOG); 4424 } 4425 } 4426 if (!space_info) { 4427 btrfs_err(fs_info, "no space info for %llu, tree-log %d, relocation %d", 4428 ffe_ctl->flags, ffe_ctl->for_treelog, ffe_ctl->for_data_reloc); 4429 return -ENOSPC; 4430 } 4431 4432 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4433 if (ret < 0) 4434 return ret; 4435 4436 ffe_ctl->search_start = max(ffe_ctl->search_start, 4437 first_logical_byte(fs_info)); 4438 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4439 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4440 block_group = btrfs_lookup_block_group(fs_info, 4441 ffe_ctl->search_start); 4442 /* 4443 * we don't want to use the block group if it doesn't match our 4444 * allocation bits, or if its not cached. 4445 * 4446 * However if we are re-searching with an ideal block group 4447 * picked out then we don't care that the block group is cached. 4448 */ 4449 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4450 block_group->space_info == space_info && 4451 block_group->cached != BTRFS_CACHE_NO) { 4452 down_read(&space_info->groups_sem); 4453 if (list_empty(&block_group->list) || 4454 block_group->ro) { 4455 /* 4456 * someone is removing this block group, 4457 * we can't jump into the have_block_group 4458 * target because our list pointers are not 4459 * valid 4460 */ 4461 btrfs_put_block_group(block_group); 4462 up_read(&space_info->groups_sem); 4463 } else { 4464 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4465 block_group->flags); 4466 btrfs_lock_block_group(block_group, 4467 ffe_ctl->delalloc); 4468 ffe_ctl->hinted = true; 4469 goto have_block_group; 4470 } 4471 } else if (block_group) { 4472 btrfs_put_block_group(block_group); 4473 } 4474 } 4475 search: 4476 trace_btrfs_find_free_extent_search_loop(root, ffe_ctl); 4477 ffe_ctl->have_caching_bg = false; 4478 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4479 ffe_ctl->index == 0) 4480 full_search = true; 4481 down_read(&space_info->groups_sem); 4482 list_for_each_entry(block_group, 4483 &space_info->block_groups[ffe_ctl->index], list) { 4484 struct btrfs_block_group *bg_ret; 4485 4486 ffe_ctl->hinted = false; 4487 /* If the block group is read-only, we can skip it entirely. */ 4488 if (unlikely(block_group->ro)) { 4489 if (ffe_ctl->for_treelog) 4490 btrfs_clear_treelog_bg(block_group); 4491 if (ffe_ctl->for_data_reloc) 4492 btrfs_clear_data_reloc_bg(block_group); 4493 continue; 4494 } 4495 4496 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4497 ffe_ctl->search_start = block_group->start; 4498 4499 /* 4500 * this can happen if we end up cycling through all the 4501 * raid types, but we want to make sure we only allocate 4502 * for the proper type. 4503 */ 4504 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4505 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4506 BTRFS_BLOCK_GROUP_RAID1_MASK | 4507 BTRFS_BLOCK_GROUP_RAID56_MASK | 4508 BTRFS_BLOCK_GROUP_RAID10; 4509 4510 /* 4511 * if they asked for extra copies and this block group 4512 * doesn't provide them, bail. This does allow us to 4513 * fill raid0 from raid1. 4514 */ 4515 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4516 goto loop; 4517 4518 /* 4519 * This block group has different flags than we want. 4520 * It's possible that we have MIXED_GROUP flag but no 4521 * block group is mixed. Just skip such block group. 4522 */ 4523 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4524 continue; 4525 } 4526 4527 have_block_group: 4528 trace_btrfs_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4529 ffe_ctl->cached = btrfs_block_group_done(block_group); 4530 if (unlikely(!ffe_ctl->cached)) { 4531 ffe_ctl->have_caching_bg = true; 4532 ret = btrfs_cache_block_group(block_group, false); 4533 4534 /* 4535 * If we get ENOMEM here or something else we want to 4536 * try other block groups, because it may not be fatal. 4537 * However if we can't find anything else we need to 4538 * save our return here so that we return the actual 4539 * error that caused problems, not ENOSPC. 4540 */ 4541 if (ret < 0) { 4542 if (!cache_block_group_error) 4543 cache_block_group_error = ret; 4544 ret = 0; 4545 goto loop; 4546 } 4547 ret = 0; 4548 } 4549 4550 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4551 if (!cache_block_group_error) 4552 cache_block_group_error = -EIO; 4553 goto loop; 4554 } 4555 4556 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4557 goto loop; 4558 4559 bg_ret = NULL; 4560 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4561 if (ret > 0) 4562 goto loop; 4563 4564 if (bg_ret && bg_ret != block_group) { 4565 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4566 block_group = bg_ret; 4567 } 4568 4569 /* Checks */ 4570 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4571 fs_info->stripesize); 4572 4573 /* move on to the next group */ 4574 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4575 block_group->start + block_group->length) { 4576 btrfs_add_free_space_unused(block_group, 4577 ffe_ctl->found_offset, 4578 ffe_ctl->num_bytes); 4579 goto loop; 4580 } 4581 4582 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4583 btrfs_add_free_space_unused(block_group, 4584 ffe_ctl->found_offset, 4585 ffe_ctl->search_start - ffe_ctl->found_offset); 4586 4587 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4588 ffe_ctl->num_bytes, 4589 ffe_ctl->delalloc, 4590 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4591 if (ret == -EAGAIN) { 4592 btrfs_add_free_space_unused(block_group, 4593 ffe_ctl->found_offset, 4594 ffe_ctl->num_bytes); 4595 goto loop; 4596 } 4597 btrfs_inc_block_group_reservations(block_group); 4598 4599 /* we are all good, lets return */ 4600 ins->objectid = ffe_ctl->search_start; 4601 ins->offset = ffe_ctl->num_bytes; 4602 4603 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4604 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4605 break; 4606 loop: 4607 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4608 !ffe_ctl->retry_uncached) { 4609 ffe_ctl->retry_uncached = true; 4610 btrfs_wait_block_group_cache_progress(block_group, 4611 ffe_ctl->num_bytes + 4612 ffe_ctl->empty_cluster + 4613 ffe_ctl->empty_size); 4614 goto have_block_group; 4615 } 4616 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4617 cond_resched(); 4618 } 4619 up_read(&space_info->groups_sem); 4620 4621 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, space_info, 4622 full_search); 4623 if (ret > 0) 4624 goto search; 4625 4626 if (ret == -ENOSPC && !cache_block_group_error) { 4627 /* 4628 * Use ffe_ctl->total_free_space as fallback if we can't find 4629 * any contiguous hole. 4630 */ 4631 if (!ffe_ctl->max_extent_size) 4632 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4633 spin_lock(&space_info->lock); 4634 space_info->max_extent_size = ffe_ctl->max_extent_size; 4635 spin_unlock(&space_info->lock); 4636 ins->offset = ffe_ctl->max_extent_size; 4637 } else if (ret == -ENOSPC) { 4638 ret = cache_block_group_error; 4639 } 4640 return ret; 4641 } 4642 4643 /* 4644 * Entry point to the extent allocator. Tries to find a hole that is at least 4645 * as big as @num_bytes. 4646 * 4647 * @root - The root that will contain this extent 4648 * 4649 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4650 * is used for accounting purposes. This value differs 4651 * from @num_bytes only in the case of compressed extents. 4652 * 4653 * @num_bytes - Number of bytes to allocate on-disk. 4654 * 4655 * @min_alloc_size - Indicates the minimum amount of space that the 4656 * allocator should try to satisfy. In some cases 4657 * @num_bytes may be larger than what is required and if 4658 * the filesystem is fragmented then allocation fails. 4659 * However, the presence of @min_alloc_size gives a 4660 * chance to try and satisfy the smaller allocation. 4661 * 4662 * @empty_size - A hint that you plan on doing more COW. This is the 4663 * size in bytes the allocator should try to find free 4664 * next to the block it returns. This is just a hint and 4665 * may be ignored by the allocator. 4666 * 4667 * @hint_byte - Hint to the allocator to start searching above the byte 4668 * address passed. It might be ignored. 4669 * 4670 * @ins - This key is modified to record the found hole. It will 4671 * have the following values: 4672 * ins->objectid == start position 4673 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4674 * ins->offset == the size of the hole. 4675 * 4676 * @is_data - Boolean flag indicating whether an extent is 4677 * allocated for data (true) or metadata (false) 4678 * 4679 * @delalloc - Boolean flag indicating whether this allocation is for 4680 * delalloc or not. If 'true' data_rwsem of block groups 4681 * is going to be acquired. 4682 * 4683 * 4684 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4685 * case -ENOSPC is returned then @ins->offset will contain the size of the 4686 * largest available hole the allocator managed to find. 4687 */ 4688 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4689 u64 num_bytes, u64 min_alloc_size, 4690 u64 empty_size, u64 hint_byte, 4691 struct btrfs_key *ins, int is_data, int delalloc) 4692 { 4693 struct btrfs_fs_info *fs_info = root->fs_info; 4694 struct find_free_extent_ctl ffe_ctl = {}; 4695 bool final_tried = num_bytes == min_alloc_size; 4696 u64 flags; 4697 int ret; 4698 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 4699 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4700 4701 flags = get_alloc_profile_by_root(root, is_data); 4702 again: 4703 WARN_ON(num_bytes < fs_info->sectorsize); 4704 4705 ffe_ctl.ram_bytes = ram_bytes; 4706 ffe_ctl.num_bytes = num_bytes; 4707 ffe_ctl.min_alloc_size = min_alloc_size; 4708 ffe_ctl.empty_size = empty_size; 4709 ffe_ctl.flags = flags; 4710 ffe_ctl.delalloc = delalloc; 4711 ffe_ctl.hint_byte = hint_byte; 4712 ffe_ctl.for_treelog = for_treelog; 4713 ffe_ctl.for_data_reloc = for_data_reloc; 4714 4715 ret = find_free_extent(root, ins, &ffe_ctl); 4716 if (!ret && !is_data) { 4717 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4718 } else if (ret == -ENOSPC) { 4719 if (!final_tried && ins->offset) { 4720 num_bytes = min(num_bytes >> 1, ins->offset); 4721 num_bytes = round_down(num_bytes, 4722 fs_info->sectorsize); 4723 num_bytes = max(num_bytes, min_alloc_size); 4724 ram_bytes = num_bytes; 4725 if (num_bytes == min_alloc_size) 4726 final_tried = true; 4727 goto again; 4728 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4729 struct btrfs_space_info *sinfo; 4730 4731 sinfo = btrfs_find_space_info(fs_info, flags); 4732 btrfs_err(fs_info, 4733 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4734 flags, num_bytes, for_treelog, for_data_reloc); 4735 if (sinfo) 4736 btrfs_dump_space_info(fs_info, sinfo, 4737 num_bytes, 1); 4738 } 4739 } 4740 4741 return ret; 4742 } 4743 4744 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len, 4745 bool is_delalloc) 4746 { 4747 struct btrfs_block_group *cache; 4748 4749 cache = btrfs_lookup_block_group(fs_info, start); 4750 if (!cache) { 4751 btrfs_err(fs_info, "Unable to find block group for %llu", 4752 start); 4753 return -ENOSPC; 4754 } 4755 4756 btrfs_add_free_space(cache, start, len); 4757 btrfs_free_reserved_bytes(cache, len, is_delalloc); 4758 trace_btrfs_reserved_extent_free(fs_info, start, len); 4759 4760 btrfs_put_block_group(cache); 4761 return 0; 4762 } 4763 4764 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4765 const struct extent_buffer *eb) 4766 { 4767 struct btrfs_block_group *cache; 4768 int ret = 0; 4769 4770 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4771 if (!cache) { 4772 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4773 eb->start); 4774 return -ENOSPC; 4775 } 4776 4777 ret = pin_down_extent(trans, cache, eb->start, eb->len, 1); 4778 btrfs_put_block_group(cache); 4779 return ret; 4780 } 4781 4782 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4783 u64 num_bytes) 4784 { 4785 struct btrfs_fs_info *fs_info = trans->fs_info; 4786 int ret; 4787 4788 ret = btrfs_remove_from_free_space_tree(trans, bytenr, num_bytes); 4789 if (ret) 4790 return ret; 4791 4792 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4793 if (ret) { 4794 ASSERT(!ret); 4795 btrfs_err(fs_info, "update block group failed for %llu %llu", 4796 bytenr, num_bytes); 4797 return ret; 4798 } 4799 4800 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4801 return 0; 4802 } 4803 4804 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4805 u64 parent, u64 root_objectid, 4806 u64 flags, u64 owner, u64 offset, 4807 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4808 { 4809 struct btrfs_fs_info *fs_info = trans->fs_info; 4810 struct btrfs_root *extent_root; 4811 int ret; 4812 struct btrfs_extent_item *extent_item; 4813 struct btrfs_extent_owner_ref *oref; 4814 struct btrfs_extent_inline_ref *iref; 4815 struct btrfs_path *path; 4816 struct extent_buffer *leaf; 4817 int type; 4818 u32 size; 4819 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4820 4821 if (parent > 0) 4822 type = BTRFS_SHARED_DATA_REF_KEY; 4823 else 4824 type = BTRFS_EXTENT_DATA_REF_KEY; 4825 4826 size = sizeof(*extent_item); 4827 if (simple_quota) 4828 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4829 size += btrfs_extent_inline_ref_size(type); 4830 4831 path = btrfs_alloc_path(); 4832 if (!path) 4833 return -ENOMEM; 4834 4835 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4836 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4837 if (ret) { 4838 btrfs_free_path(path); 4839 return ret; 4840 } 4841 4842 leaf = path->nodes[0]; 4843 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4844 struct btrfs_extent_item); 4845 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4846 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4847 btrfs_set_extent_flags(leaf, extent_item, 4848 flags | BTRFS_EXTENT_FLAG_DATA); 4849 4850 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4851 if (simple_quota) { 4852 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4853 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4854 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4855 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4856 } 4857 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4858 4859 if (parent > 0) { 4860 struct btrfs_shared_data_ref *ref; 4861 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4862 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4863 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4864 } else { 4865 struct btrfs_extent_data_ref *ref; 4866 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4867 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4868 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4869 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4870 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4871 } 4872 4873 btrfs_free_path(path); 4874 4875 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4876 } 4877 4878 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4879 const struct btrfs_delayed_ref_node *node, 4880 struct btrfs_delayed_extent_op *extent_op) 4881 { 4882 struct btrfs_fs_info *fs_info = trans->fs_info; 4883 struct btrfs_root *extent_root; 4884 int ret; 4885 struct btrfs_extent_item *extent_item; 4886 struct btrfs_key extent_key; 4887 struct btrfs_tree_block_info *block_info; 4888 struct btrfs_extent_inline_ref *iref; 4889 struct btrfs_path *path; 4890 struct extent_buffer *leaf; 4891 u32 size = sizeof(*extent_item) + sizeof(*iref); 4892 const u64 flags = (extent_op ? extent_op->flags_to_set : 0); 4893 /* The owner of a tree block is the level. */ 4894 int level = btrfs_delayed_ref_owner(node); 4895 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4896 4897 extent_key.objectid = node->bytenr; 4898 if (skinny_metadata) { 4899 /* The owner of a tree block is the level. */ 4900 extent_key.offset = level; 4901 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4902 } else { 4903 extent_key.offset = node->num_bytes; 4904 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4905 size += sizeof(*block_info); 4906 } 4907 4908 path = btrfs_alloc_path(); 4909 if (!path) 4910 return -ENOMEM; 4911 4912 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4913 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4914 size); 4915 if (ret) { 4916 btrfs_free_path(path); 4917 return ret; 4918 } 4919 4920 leaf = path->nodes[0]; 4921 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4922 struct btrfs_extent_item); 4923 btrfs_set_extent_refs(leaf, extent_item, 1); 4924 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4925 btrfs_set_extent_flags(leaf, extent_item, 4926 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4927 4928 if (skinny_metadata) { 4929 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4930 } else { 4931 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4932 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4933 btrfs_set_tree_block_level(leaf, block_info, level); 4934 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4935 } 4936 4937 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4938 btrfs_set_extent_inline_ref_type(leaf, iref, 4939 BTRFS_SHARED_BLOCK_REF_KEY); 4940 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); 4941 } else { 4942 btrfs_set_extent_inline_ref_type(leaf, iref, 4943 BTRFS_TREE_BLOCK_REF_KEY); 4944 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); 4945 } 4946 4947 btrfs_free_path(path); 4948 4949 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4950 } 4951 4952 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4953 struct btrfs_root *root, u64 owner, 4954 u64 offset, u64 ram_bytes, 4955 struct btrfs_key *ins) 4956 { 4957 struct btrfs_ref generic_ref = { 4958 .action = BTRFS_ADD_DELAYED_EXTENT, 4959 .bytenr = ins->objectid, 4960 .num_bytes = ins->offset, 4961 .owning_root = btrfs_root_id(root), 4962 .ref_root = btrfs_root_id(root), 4963 }; 4964 4965 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); 4966 4967 if (btrfs_is_data_reloc_root(root) && btrfs_is_fstree(root->relocation_src_root)) 4968 generic_ref.owning_root = root->relocation_src_root; 4969 4970 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); 4971 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4972 4973 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4974 } 4975 4976 /* 4977 * this is used by the tree logging recovery code. It records that 4978 * an extent has been allocated and makes sure to clear the free 4979 * space cache bits as well 4980 */ 4981 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4982 u64 root_objectid, u64 owner, u64 offset, 4983 struct btrfs_key *ins) 4984 { 4985 struct btrfs_fs_info *fs_info = trans->fs_info; 4986 int ret; 4987 struct btrfs_block_group *block_group; 4988 struct btrfs_space_info *space_info; 4989 const struct btrfs_squota_delta delta = { 4990 .root = root_objectid, 4991 .num_bytes = ins->offset, 4992 .generation = trans->transid, 4993 .is_data = true, 4994 .is_inc = true, 4995 }; 4996 4997 /* 4998 * Mixed block groups will exclude before processing the log so we only 4999 * need to do the exclude dance if this fs isn't mixed. 5000 */ 5001 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 5002 ret = __exclude_logged_extent(fs_info, ins->objectid, 5003 ins->offset); 5004 if (ret) 5005 return ret; 5006 } 5007 5008 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 5009 if (!block_group) 5010 return -EINVAL; 5011 5012 space_info = block_group->space_info; 5013 spin_lock(&space_info->lock); 5014 spin_lock(&block_group->lock); 5015 space_info->bytes_reserved += ins->offset; 5016 block_group->reserved += ins->offset; 5017 spin_unlock(&block_group->lock); 5018 spin_unlock(&space_info->lock); 5019 5020 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 5021 offset, ins, 1, root_objectid); 5022 if (ret) 5023 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1); 5024 ret = btrfs_record_squota_delta(fs_info, &delta); 5025 btrfs_put_block_group(block_group); 5026 return ret; 5027 } 5028 5029 #ifdef CONFIG_BTRFS_DEBUG 5030 /* 5031 * Extra safety check in case the extent tree is corrupted and extent allocator 5032 * chooses to use a tree block which is already used and locked. 5033 */ 5034 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5035 { 5036 if (eb->lock_owner == current->pid) { 5037 btrfs_err_rl(eb->fs_info, 5038 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5039 eb->start, btrfs_header_owner(eb), current->pid); 5040 return true; 5041 } 5042 return false; 5043 } 5044 #else 5045 static bool check_eb_lock_owner(struct extent_buffer *eb) 5046 { 5047 return false; 5048 } 5049 #endif 5050 5051 static struct extent_buffer * 5052 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5053 u64 bytenr, int level, u64 owner, 5054 enum btrfs_lock_nesting nest) 5055 { 5056 struct btrfs_fs_info *fs_info = root->fs_info; 5057 struct extent_buffer *buf; 5058 u64 lockdep_owner = owner; 5059 5060 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5061 if (IS_ERR(buf)) 5062 return buf; 5063 5064 if (check_eb_lock_owner(buf)) { 5065 free_extent_buffer(buf); 5066 return ERR_PTR(-EUCLEAN); 5067 } 5068 5069 /* 5070 * The reloc trees are just snapshots, so we need them to appear to be 5071 * just like any other fs tree WRT lockdep. 5072 * 5073 * The exception however is in replace_path() in relocation, where we 5074 * hold the lock on the original fs root and then search for the reloc 5075 * root. At that point we need to make sure any reloc root buffers are 5076 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5077 * lockdep happy. 5078 */ 5079 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5080 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5081 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5082 5083 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5084 btrfs_set_header_generation(buf, trans->transid); 5085 5086 /* 5087 * This needs to stay, because we could allocate a freed block from an 5088 * old tree into a new tree, so we need to make sure this new block is 5089 * set to the appropriate level and owner. 5090 */ 5091 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5092 5093 btrfs_tree_lock_nested(buf, nest); 5094 btrfs_clear_buffer_dirty(trans, buf); 5095 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5096 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5097 5098 set_extent_buffer_uptodate(buf); 5099 5100 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5101 btrfs_set_header_level(buf, level); 5102 btrfs_set_header_bytenr(buf, buf->start); 5103 btrfs_set_header_generation(buf, trans->transid); 5104 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5105 btrfs_set_header_owner(buf, owner); 5106 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5107 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5108 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 5109 buf->log_index = root->log_transid % 2; 5110 /* 5111 * we allow two log transactions at a time, use different 5112 * EXTENT bit to differentiate dirty pages. 5113 */ 5114 if (buf->log_index == 0) 5115 btrfs_set_extent_bit(&root->dirty_log_pages, buf->start, 5116 buf->start + buf->len - 1, 5117 EXTENT_DIRTY_LOG1, NULL); 5118 else 5119 btrfs_set_extent_bit(&root->dirty_log_pages, buf->start, 5120 buf->start + buf->len - 1, 5121 EXTENT_DIRTY_LOG2, NULL); 5122 } else { 5123 buf->log_index = -1; 5124 btrfs_set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5125 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5126 } 5127 /* this returns a buffer locked for blocking */ 5128 return buf; 5129 } 5130 5131 /* 5132 * finds a free extent and does all the dirty work required for allocation 5133 * returns the tree buffer or an ERR_PTR on error. 5134 */ 5135 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5136 struct btrfs_root *root, 5137 u64 parent, u64 root_objectid, 5138 const struct btrfs_disk_key *key, 5139 int level, u64 hint, 5140 u64 empty_size, 5141 u64 reloc_src_root, 5142 enum btrfs_lock_nesting nest) 5143 { 5144 struct btrfs_fs_info *fs_info = root->fs_info; 5145 struct btrfs_key ins; 5146 struct btrfs_block_rsv *block_rsv; 5147 struct extent_buffer *buf; 5148 u64 flags = 0; 5149 int ret; 5150 u32 blocksize = fs_info->nodesize; 5151 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5152 u64 owning_root; 5153 5154 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5155 if (btrfs_is_testing(fs_info)) { 5156 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5157 level, root_objectid, nest); 5158 if (!IS_ERR(buf)) 5159 root->alloc_bytenr += blocksize; 5160 return buf; 5161 } 5162 #endif 5163 5164 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5165 if (IS_ERR(block_rsv)) 5166 return ERR_CAST(block_rsv); 5167 5168 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5169 empty_size, hint, &ins, 0, 0); 5170 if (ret) 5171 goto out_unuse; 5172 5173 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5174 root_objectid, nest); 5175 if (IS_ERR(buf)) { 5176 ret = PTR_ERR(buf); 5177 goto out_free_reserved; 5178 } 5179 owning_root = btrfs_header_owner(buf); 5180 5181 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5182 if (parent == 0) 5183 parent = ins.objectid; 5184 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5185 owning_root = reloc_src_root; 5186 } else 5187 BUG_ON(parent > 0); 5188 5189 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5190 struct btrfs_delayed_extent_op *extent_op; 5191 struct btrfs_ref generic_ref = { 5192 .action = BTRFS_ADD_DELAYED_EXTENT, 5193 .bytenr = ins.objectid, 5194 .num_bytes = ins.offset, 5195 .parent = parent, 5196 .owning_root = owning_root, 5197 .ref_root = root_objectid, 5198 }; 5199 5200 if (!skinny_metadata || flags != 0) { 5201 extent_op = btrfs_alloc_delayed_extent_op(); 5202 if (!extent_op) { 5203 ret = -ENOMEM; 5204 goto out_free_buf; 5205 } 5206 if (key) 5207 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5208 else 5209 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5210 extent_op->flags_to_set = flags; 5211 extent_op->update_key = (skinny_metadata ? false : true); 5212 extent_op->update_flags = (flags != 0); 5213 } else { 5214 extent_op = NULL; 5215 } 5216 5217 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); 5218 btrfs_ref_tree_mod(fs_info, &generic_ref); 5219 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5220 if (ret) { 5221 btrfs_free_delayed_extent_op(extent_op); 5222 goto out_free_buf; 5223 } 5224 } 5225 return buf; 5226 5227 out_free_buf: 5228 btrfs_tree_unlock(buf); 5229 free_extent_buffer(buf); 5230 out_free_reserved: 5231 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, false); 5232 out_unuse: 5233 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5234 return ERR_PTR(ret); 5235 } 5236 5237 struct walk_control { 5238 u64 refs[BTRFS_MAX_LEVEL]; 5239 u64 flags[BTRFS_MAX_LEVEL]; 5240 struct btrfs_key update_progress; 5241 struct btrfs_key drop_progress; 5242 int drop_level; 5243 int stage; 5244 int level; 5245 int shared_level; 5246 int update_ref; 5247 int keep_locks; 5248 int reada_slot; 5249 int reada_count; 5250 int restarted; 5251 /* Indicate that extent info needs to be looked up when walking the tree. */ 5252 int lookup_info; 5253 }; 5254 5255 /* 5256 * This is our normal stage. We are traversing blocks the current snapshot owns 5257 * and we are dropping any of our references to any children we are able to, and 5258 * then freeing the block once we've processed all of the children. 5259 */ 5260 #define DROP_REFERENCE 1 5261 5262 /* 5263 * We enter this stage when we have to walk into a child block (meaning we can't 5264 * simply drop our reference to it from our current parent node) and there are 5265 * more than one reference on it. If we are the owner of any of the children 5266 * blocks from the current parent node then we have to do the FULL_BACKREF dance 5267 * on them in order to drop our normal ref and add the shared ref. 5268 */ 5269 #define UPDATE_BACKREF 2 5270 5271 /* 5272 * Decide if we need to walk down into this node to adjust the references. 5273 * 5274 * @root: the root we are currently deleting 5275 * @wc: the walk control for this deletion 5276 * @eb: the parent eb that we're currently visiting 5277 * @refs: the number of refs for wc->level - 1 5278 * @flags: the flags for wc->level - 1 5279 * @slot: the slot in the eb that we're currently checking 5280 * 5281 * This is meant to be called when we're evaluating if a node we point to at 5282 * wc->level should be read and walked into, or if we can simply delete our 5283 * reference to it. We return true if we should walk into the node, false if we 5284 * can skip it. 5285 * 5286 * We have assertions in here to make sure this is called correctly. We assume 5287 * that sanity checking on the blocks read to this point has been done, so any 5288 * corrupted file systems must have been caught before calling this function. 5289 */ 5290 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc, 5291 struct extent_buffer *eb, u64 flags, int slot) 5292 { 5293 struct btrfs_key key; 5294 u64 generation; 5295 int level = wc->level; 5296 5297 ASSERT(level > 0); 5298 ASSERT(wc->refs[level - 1] > 0); 5299 5300 /* 5301 * The update backref stage we only want to skip if we already have 5302 * FULL_BACKREF set, otherwise we need to read. 5303 */ 5304 if (wc->stage == UPDATE_BACKREF) { 5305 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5306 return false; 5307 return true; 5308 } 5309 5310 /* 5311 * We're the last ref on this block, we must walk into it and process 5312 * any refs it's pointing at. 5313 */ 5314 if (wc->refs[level - 1] == 1) 5315 return true; 5316 5317 /* 5318 * If we're already FULL_BACKREF then we know we can just drop our 5319 * current reference. 5320 */ 5321 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5322 return false; 5323 5324 /* 5325 * This block is older than our creation generation, we can drop our 5326 * reference to it. 5327 */ 5328 generation = btrfs_node_ptr_generation(eb, slot); 5329 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root)) 5330 return false; 5331 5332 /* 5333 * This block was processed from a previous snapshot deletion run, we 5334 * can skip it. 5335 */ 5336 btrfs_node_key_to_cpu(eb, &key, slot); 5337 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0) 5338 return false; 5339 5340 /* All other cases we need to wander into the node. */ 5341 return true; 5342 } 5343 5344 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5345 struct btrfs_root *root, 5346 struct walk_control *wc, 5347 struct btrfs_path *path) 5348 { 5349 struct btrfs_fs_info *fs_info = root->fs_info; 5350 u64 bytenr; 5351 u64 generation; 5352 u64 refs; 5353 u64 flags; 5354 u32 nritems; 5355 struct extent_buffer *eb; 5356 int ret; 5357 int slot; 5358 int nread = 0; 5359 5360 if (path->slots[wc->level] < wc->reada_slot) { 5361 wc->reada_count = wc->reada_count * 2 / 3; 5362 wc->reada_count = max(wc->reada_count, 2); 5363 } else { 5364 wc->reada_count = wc->reada_count * 3 / 2; 5365 wc->reada_count = min_t(int, wc->reada_count, 5366 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5367 } 5368 5369 eb = path->nodes[wc->level]; 5370 nritems = btrfs_header_nritems(eb); 5371 5372 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5373 if (nread >= wc->reada_count) 5374 break; 5375 5376 cond_resched(); 5377 bytenr = btrfs_node_blockptr(eb, slot); 5378 generation = btrfs_node_ptr_generation(eb, slot); 5379 5380 if (slot == path->slots[wc->level]) 5381 goto reada; 5382 5383 if (wc->stage == UPDATE_BACKREF && 5384 generation <= btrfs_root_origin_generation(root)) 5385 continue; 5386 5387 /* We don't lock the tree block, it's OK to be racy here */ 5388 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5389 wc->level - 1, 1, &refs, 5390 &flags, NULL); 5391 /* We don't care about errors in readahead. */ 5392 if (ret < 0) 5393 continue; 5394 5395 /* 5396 * This could be racey, it's conceivable that we raced and end 5397 * up with a bogus refs count, if that's the case just skip, if 5398 * we are actually corrupt we will notice when we look up 5399 * everything again with our locks. 5400 */ 5401 if (refs == 0) 5402 continue; 5403 5404 /* If we don't need to visit this node don't reada. */ 5405 if (!visit_node_for_delete(root, wc, eb, flags, slot)) 5406 continue; 5407 reada: 5408 btrfs_readahead_node_child(eb, slot); 5409 nread++; 5410 } 5411 wc->reada_slot = slot; 5412 } 5413 5414 /* 5415 * helper to process tree block while walking down the tree. 5416 * 5417 * when wc->stage == UPDATE_BACKREF, this function updates 5418 * back refs for pointers in the block. 5419 * 5420 * NOTE: return value 1 means we should stop walking down. 5421 */ 5422 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5423 struct btrfs_root *root, 5424 struct btrfs_path *path, 5425 struct walk_control *wc) 5426 { 5427 struct btrfs_fs_info *fs_info = root->fs_info; 5428 int level = wc->level; 5429 struct extent_buffer *eb = path->nodes[level]; 5430 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5431 int ret; 5432 5433 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) 5434 return 1; 5435 5436 /* 5437 * when reference count of tree block is 1, it won't increase 5438 * again. once full backref flag is set, we never clear it. 5439 */ 5440 if (wc->lookup_info && 5441 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5442 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5443 ASSERT(path->locks[level]); 5444 ret = btrfs_lookup_extent_info(trans, fs_info, 5445 eb->start, level, 1, 5446 &wc->refs[level], 5447 &wc->flags[level], 5448 NULL); 5449 if (ret) 5450 return ret; 5451 if (unlikely(wc->refs[level] == 0)) { 5452 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5453 eb->start); 5454 return -EUCLEAN; 5455 } 5456 } 5457 5458 if (wc->stage == DROP_REFERENCE) { 5459 if (wc->refs[level] > 1) 5460 return 1; 5461 5462 if (path->locks[level] && !wc->keep_locks) { 5463 btrfs_tree_unlock_rw(eb, path->locks[level]); 5464 path->locks[level] = 0; 5465 } 5466 return 0; 5467 } 5468 5469 /* wc->stage == UPDATE_BACKREF */ 5470 if (!(wc->flags[level] & flag)) { 5471 ASSERT(path->locks[level]); 5472 ret = btrfs_inc_ref(trans, root, eb, 1); 5473 if (ret) { 5474 btrfs_abort_transaction(trans, ret); 5475 return ret; 5476 } 5477 ret = btrfs_dec_ref(trans, root, eb, 0); 5478 if (ret) { 5479 btrfs_abort_transaction(trans, ret); 5480 return ret; 5481 } 5482 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5483 if (ret) { 5484 btrfs_abort_transaction(trans, ret); 5485 return ret; 5486 } 5487 wc->flags[level] |= flag; 5488 } 5489 5490 /* 5491 * the block is shared by multiple trees, so it's not good to 5492 * keep the tree lock 5493 */ 5494 if (path->locks[level] && level > 0) { 5495 btrfs_tree_unlock_rw(eb, path->locks[level]); 5496 path->locks[level] = 0; 5497 } 5498 return 0; 5499 } 5500 5501 /* 5502 * This is used to verify a ref exists for this root to deal with a bug where we 5503 * would have a drop_progress key that hadn't been updated properly. 5504 */ 5505 static int check_ref_exists(struct btrfs_trans_handle *trans, 5506 struct btrfs_root *root, u64 bytenr, u64 parent, 5507 int level) 5508 { 5509 struct btrfs_delayed_ref_root *delayed_refs; 5510 struct btrfs_delayed_ref_head *head; 5511 BTRFS_PATH_AUTO_FREE(path); 5512 struct btrfs_extent_inline_ref *iref; 5513 int ret; 5514 bool exists = false; 5515 5516 path = btrfs_alloc_path(); 5517 if (!path) 5518 return -ENOMEM; 5519 again: 5520 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5521 root->fs_info->nodesize, parent, 5522 btrfs_root_id(root), level, 0); 5523 if (ret != -ENOENT) { 5524 /* 5525 * If we get 0 then we found our reference, return 1, else 5526 * return the error if it's not -ENOENT; 5527 */ 5528 return (ret < 0 ) ? ret : 1; 5529 } 5530 5531 /* 5532 * We could have a delayed ref with this reference, so look it up while 5533 * we're holding the path open to make sure we don't race with the 5534 * delayed ref running. 5535 */ 5536 delayed_refs = &trans->transaction->delayed_refs; 5537 spin_lock(&delayed_refs->lock); 5538 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 5539 if (!head) 5540 goto out; 5541 if (!mutex_trylock(&head->mutex)) { 5542 /* 5543 * We're contended, means that the delayed ref is running, get a 5544 * reference and wait for the ref head to be complete and then 5545 * try again. 5546 */ 5547 refcount_inc(&head->refs); 5548 spin_unlock(&delayed_refs->lock); 5549 5550 btrfs_release_path(path); 5551 5552 mutex_lock(&head->mutex); 5553 mutex_unlock(&head->mutex); 5554 btrfs_put_delayed_ref_head(head); 5555 goto again; 5556 } 5557 5558 exists = btrfs_find_delayed_tree_ref(head, btrfs_root_id(root), parent); 5559 mutex_unlock(&head->mutex); 5560 out: 5561 spin_unlock(&delayed_refs->lock); 5562 return exists ? 1 : 0; 5563 } 5564 5565 /* 5566 * We may not have an uptodate block, so if we are going to walk down into this 5567 * block we need to drop the lock, read it off of the disk, re-lock it and 5568 * return to continue dropping the snapshot. 5569 */ 5570 static int check_next_block_uptodate(struct btrfs_trans_handle *trans, 5571 struct btrfs_root *root, 5572 struct btrfs_path *path, 5573 struct walk_control *wc, 5574 struct extent_buffer *next) 5575 { 5576 struct btrfs_tree_parent_check check = { 0 }; 5577 u64 generation; 5578 int level = wc->level; 5579 int ret; 5580 5581 btrfs_assert_tree_write_locked(next); 5582 5583 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); 5584 5585 if (btrfs_buffer_uptodate(next, generation, 0)) 5586 return 0; 5587 5588 check.level = level - 1; 5589 check.transid = generation; 5590 check.owner_root = btrfs_root_id(root); 5591 check.has_first_key = true; 5592 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); 5593 5594 btrfs_tree_unlock(next); 5595 if (level == 1) 5596 reada_walk_down(trans, root, wc, path); 5597 ret = btrfs_read_extent_buffer(next, &check); 5598 if (ret) { 5599 free_extent_buffer(next); 5600 return ret; 5601 } 5602 btrfs_tree_lock(next); 5603 wc->lookup_info = 1; 5604 return 0; 5605 } 5606 5607 /* 5608 * If we determine that we don't have to visit wc->level - 1 then we need to 5609 * determine if we can drop our reference. 5610 * 5611 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs. 5612 * 5613 * If we are DROP_REFERENCE this will figure out if we need to drop our current 5614 * reference, skipping it if we dropped it from a previous incompleted drop, or 5615 * dropping it if we still have a reference to it. 5616 */ 5617 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5618 struct btrfs_path *path, struct walk_control *wc, 5619 struct extent_buffer *next, u64 owner_root) 5620 { 5621 struct btrfs_ref ref = { 5622 .action = BTRFS_DROP_DELAYED_REF, 5623 .bytenr = next->start, 5624 .num_bytes = root->fs_info->nodesize, 5625 .owning_root = owner_root, 5626 .ref_root = btrfs_root_id(root), 5627 }; 5628 int level = wc->level; 5629 int ret; 5630 5631 /* We are UPDATE_BACKREF, we're not dropping anything. */ 5632 if (wc->stage == UPDATE_BACKREF) 5633 return 0; 5634 5635 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5636 ref.parent = path->nodes[level]->start; 5637 } else { 5638 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level])); 5639 if (btrfs_root_id(root) != btrfs_header_owner(path->nodes[level])) { 5640 btrfs_err(root->fs_info, "mismatched block owner"); 5641 return -EIO; 5642 } 5643 } 5644 5645 /* 5646 * If we had a drop_progress we need to verify the refs are set as 5647 * expected. If we find our ref then we know that from here on out 5648 * everything should be correct, and we can clear the 5649 * ->restarted flag. 5650 */ 5651 if (wc->restarted) { 5652 ret = check_ref_exists(trans, root, next->start, ref.parent, 5653 level - 1); 5654 if (ret <= 0) 5655 return ret; 5656 ret = 0; 5657 wc->restarted = 0; 5658 } 5659 5660 /* 5661 * Reloc tree doesn't contribute to qgroup numbers, and we have already 5662 * accounted them at merge time (replace_path), thus we could skip 5663 * expensive subtree trace here. 5664 */ 5665 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 5666 wc->refs[level - 1] > 1) { 5667 u64 generation = btrfs_node_ptr_generation(path->nodes[level], 5668 path->slots[level]); 5669 5670 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); 5671 if (ret) { 5672 btrfs_err_rl(root->fs_info, 5673 "error %d accounting shared subtree, quota is out of sync, rescan required", 5674 ret); 5675 } 5676 } 5677 5678 /* 5679 * We need to update the next key in our walk control so we can update 5680 * the drop_progress key accordingly. We don't care if find_next_key 5681 * doesn't find a key because that means we're at the end and are going 5682 * to clean up now. 5683 */ 5684 wc->drop_level = level; 5685 find_next_key(path, level, &wc->drop_progress); 5686 5687 btrfs_init_tree_ref(&ref, level - 1, 0, false); 5688 return btrfs_free_extent(trans, &ref); 5689 } 5690 5691 /* 5692 * helper to process tree block pointer. 5693 * 5694 * when wc->stage == DROP_REFERENCE, this function checks 5695 * reference count of the block pointed to. if the block 5696 * is shared and we need update back refs for the subtree 5697 * rooted at the block, this function changes wc->stage to 5698 * UPDATE_BACKREF. if the block is shared and there is no 5699 * need to update back, this function drops the reference 5700 * to the block. 5701 * 5702 * NOTE: return value 1 means we should stop walking down. 5703 */ 5704 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5705 struct btrfs_root *root, 5706 struct btrfs_path *path, 5707 struct walk_control *wc) 5708 { 5709 struct btrfs_fs_info *fs_info = root->fs_info; 5710 u64 bytenr; 5711 u64 generation; 5712 u64 owner_root = 0; 5713 struct extent_buffer *next; 5714 int level = wc->level; 5715 int ret = 0; 5716 5717 generation = btrfs_node_ptr_generation(path->nodes[level], 5718 path->slots[level]); 5719 /* 5720 * if the lower level block was created before the snapshot 5721 * was created, we know there is no need to update back refs 5722 * for the subtree 5723 */ 5724 if (wc->stage == UPDATE_BACKREF && 5725 generation <= btrfs_root_origin_generation(root)) { 5726 wc->lookup_info = 1; 5727 return 1; 5728 } 5729 5730 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5731 5732 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root), 5733 level - 1); 5734 if (IS_ERR(next)) 5735 return PTR_ERR(next); 5736 5737 btrfs_tree_lock(next); 5738 5739 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5740 &wc->refs[level - 1], 5741 &wc->flags[level - 1], 5742 &owner_root); 5743 if (ret < 0) 5744 goto out_unlock; 5745 5746 if (unlikely(wc->refs[level - 1] == 0)) { 5747 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5748 bytenr); 5749 ret = -EUCLEAN; 5750 goto out_unlock; 5751 } 5752 wc->lookup_info = 0; 5753 5754 /* If we don't have to walk into this node skip it. */ 5755 if (!visit_node_for_delete(root, wc, path->nodes[level], 5756 wc->flags[level - 1], path->slots[level])) 5757 goto skip; 5758 5759 /* 5760 * We have to walk down into this node, and if we're currently at the 5761 * DROP_REFERNCE stage and this block is shared then we need to switch 5762 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF. 5763 */ 5764 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) { 5765 wc->stage = UPDATE_BACKREF; 5766 wc->shared_level = level - 1; 5767 } 5768 5769 ret = check_next_block_uptodate(trans, root, path, wc, next); 5770 if (ret) 5771 return ret; 5772 5773 level--; 5774 ASSERT(level == btrfs_header_level(next)); 5775 if (level != btrfs_header_level(next)) { 5776 btrfs_err(root->fs_info, "mismatched level"); 5777 ret = -EIO; 5778 goto out_unlock; 5779 } 5780 path->nodes[level] = next; 5781 path->slots[level] = 0; 5782 path->locks[level] = BTRFS_WRITE_LOCK; 5783 wc->level = level; 5784 if (wc->level == 1) 5785 wc->reada_slot = 0; 5786 return 0; 5787 skip: 5788 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root); 5789 if (ret) 5790 goto out_unlock; 5791 wc->refs[level - 1] = 0; 5792 wc->flags[level - 1] = 0; 5793 wc->lookup_info = 1; 5794 ret = 1; 5795 5796 out_unlock: 5797 btrfs_tree_unlock(next); 5798 free_extent_buffer(next); 5799 5800 return ret; 5801 } 5802 5803 /* 5804 * helper to process tree block while walking up the tree. 5805 * 5806 * when wc->stage == DROP_REFERENCE, this function drops 5807 * reference count on the block. 5808 * 5809 * when wc->stage == UPDATE_BACKREF, this function changes 5810 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5811 * to UPDATE_BACKREF previously while processing the block. 5812 * 5813 * NOTE: return value 1 means we should stop walking up. 5814 */ 5815 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5816 struct btrfs_root *root, 5817 struct btrfs_path *path, 5818 struct walk_control *wc) 5819 { 5820 struct btrfs_fs_info *fs_info = root->fs_info; 5821 int ret = 0; 5822 int level = wc->level; 5823 struct extent_buffer *eb = path->nodes[level]; 5824 u64 parent = 0; 5825 5826 if (wc->stage == UPDATE_BACKREF) { 5827 ASSERT(wc->shared_level >= level); 5828 if (level < wc->shared_level) 5829 goto out; 5830 5831 ret = find_next_key(path, level + 1, &wc->update_progress); 5832 if (ret > 0) 5833 wc->update_ref = 0; 5834 5835 wc->stage = DROP_REFERENCE; 5836 wc->shared_level = -1; 5837 path->slots[level] = 0; 5838 5839 /* 5840 * check reference count again if the block isn't locked. 5841 * we should start walking down the tree again if reference 5842 * count is one. 5843 */ 5844 if (!path->locks[level]) { 5845 ASSERT(level > 0); 5846 btrfs_tree_lock(eb); 5847 path->locks[level] = BTRFS_WRITE_LOCK; 5848 5849 ret = btrfs_lookup_extent_info(trans, fs_info, 5850 eb->start, level, 1, 5851 &wc->refs[level], 5852 &wc->flags[level], 5853 NULL); 5854 if (ret < 0) { 5855 btrfs_tree_unlock_rw(eb, path->locks[level]); 5856 path->locks[level] = 0; 5857 return ret; 5858 } 5859 if (unlikely(wc->refs[level] == 0)) { 5860 btrfs_tree_unlock_rw(eb, path->locks[level]); 5861 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5862 eb->start); 5863 return -EUCLEAN; 5864 } 5865 if (wc->refs[level] == 1) { 5866 btrfs_tree_unlock_rw(eb, path->locks[level]); 5867 path->locks[level] = 0; 5868 return 1; 5869 } 5870 } 5871 } 5872 5873 /* wc->stage == DROP_REFERENCE */ 5874 ASSERT(path->locks[level] || wc->refs[level] == 1); 5875 5876 if (wc->refs[level] == 1) { 5877 if (level == 0) { 5878 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5879 ret = btrfs_dec_ref(trans, root, eb, 1); 5880 if (ret) { 5881 btrfs_abort_transaction(trans, ret); 5882 return ret; 5883 } 5884 } else { 5885 ret = btrfs_dec_ref(trans, root, eb, 0); 5886 if (ret) { 5887 btrfs_abort_transaction(trans, ret); 5888 return ret; 5889 } 5890 } 5891 if (btrfs_is_fstree(btrfs_root_id(root))) { 5892 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5893 if (ret) { 5894 btrfs_err_rl(fs_info, 5895 "error %d accounting leaf items, quota is out of sync, rescan required", 5896 ret); 5897 } 5898 } 5899 } 5900 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5901 if (!path->locks[level]) { 5902 btrfs_tree_lock(eb); 5903 path->locks[level] = BTRFS_WRITE_LOCK; 5904 } 5905 btrfs_clear_buffer_dirty(trans, eb); 5906 } 5907 5908 if (eb == root->node) { 5909 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5910 parent = eb->start; 5911 else if (btrfs_root_id(root) != btrfs_header_owner(eb)) 5912 goto owner_mismatch; 5913 } else { 5914 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5915 parent = path->nodes[level + 1]->start; 5916 else if (btrfs_root_id(root) != 5917 btrfs_header_owner(path->nodes[level + 1])) 5918 goto owner_mismatch; 5919 } 5920 5921 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5922 wc->refs[level] == 1); 5923 if (ret < 0) 5924 btrfs_abort_transaction(trans, ret); 5925 out: 5926 wc->refs[level] = 0; 5927 wc->flags[level] = 0; 5928 return ret; 5929 5930 owner_mismatch: 5931 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5932 btrfs_header_owner(eb), btrfs_root_id(root)); 5933 return -EUCLEAN; 5934 } 5935 5936 /* 5937 * walk_down_tree consists of two steps. 5938 * 5939 * walk_down_proc(). Look up the reference count and reference of our current 5940 * wc->level. At this point path->nodes[wc->level] should be populated and 5941 * uptodate, and in most cases should already be locked. If we are in 5942 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and 5943 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set 5944 * FULL_BACKREF on this node if it's not already set, and then do the 5945 * FULL_BACKREF conversion dance, which is to drop the root reference and add 5946 * the shared reference to all of this nodes children. 5947 * 5948 * do_walk_down(). This is where we actually start iterating on the children of 5949 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping 5950 * our reference to the children that return false from visit_node_for_delete(), 5951 * which has various conditions where we know we can just drop our reference 5952 * without visiting the node. For UPDATE_BACKREF we will skip any children that 5953 * visit_node_for_delete() returns false for, only walking down when necessary. 5954 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of 5955 * snapshot deletion. 5956 */ 5957 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5958 struct btrfs_root *root, 5959 struct btrfs_path *path, 5960 struct walk_control *wc) 5961 { 5962 int level = wc->level; 5963 int ret = 0; 5964 5965 wc->lookup_info = 1; 5966 while (level >= 0) { 5967 ret = walk_down_proc(trans, root, path, wc); 5968 if (ret) 5969 break; 5970 5971 if (level == 0) 5972 break; 5973 5974 if (path->slots[level] >= 5975 btrfs_header_nritems(path->nodes[level])) 5976 break; 5977 5978 ret = do_walk_down(trans, root, path, wc); 5979 if (ret > 0) { 5980 path->slots[level]++; 5981 continue; 5982 } else if (ret < 0) 5983 break; 5984 level = wc->level; 5985 } 5986 return (ret == 1) ? 0 : ret; 5987 } 5988 5989 /* 5990 * walk_up_tree() is responsible for making sure we visit every slot on our 5991 * current node, and if we're at the end of that node then we call 5992 * walk_up_proc() on our current node which will do one of a few things based on 5993 * our stage. 5994 * 5995 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level 5996 * then we need to walk back up the tree, and then going back down into the 5997 * other slots via walk_down_tree to update any other children from our original 5998 * wc->shared_level. Once we're at or above our wc->shared_level we can switch 5999 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on. 6000 * 6001 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block. 6002 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents 6003 * in our current leaf. After that we call btrfs_free_tree_block() on the 6004 * current node and walk up to the next node to walk down the next slot. 6005 */ 6006 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6007 struct btrfs_root *root, 6008 struct btrfs_path *path, 6009 struct walk_control *wc, int max_level) 6010 { 6011 int level = wc->level; 6012 int ret; 6013 6014 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6015 while (level < max_level && path->nodes[level]) { 6016 wc->level = level; 6017 if (path->slots[level] + 1 < 6018 btrfs_header_nritems(path->nodes[level])) { 6019 path->slots[level]++; 6020 return 0; 6021 } else { 6022 ret = walk_up_proc(trans, root, path, wc); 6023 if (ret > 0) 6024 return 0; 6025 if (ret < 0) 6026 return ret; 6027 6028 if (path->locks[level]) { 6029 btrfs_tree_unlock_rw(path->nodes[level], 6030 path->locks[level]); 6031 path->locks[level] = 0; 6032 } 6033 free_extent_buffer(path->nodes[level]); 6034 path->nodes[level] = NULL; 6035 level++; 6036 } 6037 } 6038 return 1; 6039 } 6040 6041 /* 6042 * drop a subvolume tree. 6043 * 6044 * this function traverses the tree freeing any blocks that only 6045 * referenced by the tree. 6046 * 6047 * when a shared tree block is found. this function decreases its 6048 * reference count by one. if update_ref is true, this function 6049 * also make sure backrefs for the shared block and all lower level 6050 * blocks are properly updated. 6051 * 6052 * If called with for_reloc == 0, may exit early with -EAGAIN 6053 */ 6054 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc) 6055 { 6056 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); 6057 struct btrfs_fs_info *fs_info = root->fs_info; 6058 struct btrfs_path *path; 6059 struct btrfs_trans_handle *trans; 6060 struct btrfs_root *tree_root = fs_info->tree_root; 6061 struct btrfs_root_item *root_item = &root->root_item; 6062 struct walk_control *wc; 6063 struct btrfs_key key; 6064 const u64 rootid = btrfs_root_id(root); 6065 int ret = 0; 6066 int level; 6067 bool root_dropped = false; 6068 bool unfinished_drop = false; 6069 6070 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); 6071 6072 path = btrfs_alloc_path(); 6073 if (!path) { 6074 ret = -ENOMEM; 6075 goto out; 6076 } 6077 6078 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6079 if (!wc) { 6080 btrfs_free_path(path); 6081 ret = -ENOMEM; 6082 goto out; 6083 } 6084 6085 /* 6086 * Use join to avoid potential EINTR from transaction start. See 6087 * wait_reserve_ticket and the whole reservation callchain. 6088 */ 6089 if (for_reloc) 6090 trans = btrfs_join_transaction(tree_root); 6091 else 6092 trans = btrfs_start_transaction(tree_root, 0); 6093 if (IS_ERR(trans)) { 6094 ret = PTR_ERR(trans); 6095 goto out_free; 6096 } 6097 6098 ret = btrfs_run_delayed_items(trans); 6099 if (ret) 6100 goto out_end_trans; 6101 6102 /* 6103 * This will help us catch people modifying the fs tree while we're 6104 * dropping it. It is unsafe to mess with the fs tree while it's being 6105 * dropped as we unlock the root node and parent nodes as we walk down 6106 * the tree, assuming nothing will change. If something does change 6107 * then we'll have stale information and drop references to blocks we've 6108 * already dropped. 6109 */ 6110 set_bit(BTRFS_ROOT_DELETING, &root->state); 6111 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 6112 6113 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6114 level = btrfs_header_level(root->node); 6115 path->nodes[level] = btrfs_lock_root_node(root); 6116 path->slots[level] = 0; 6117 path->locks[level] = BTRFS_WRITE_LOCK; 6118 memset(&wc->update_progress, 0, 6119 sizeof(wc->update_progress)); 6120 } else { 6121 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6122 memcpy(&wc->update_progress, &key, 6123 sizeof(wc->update_progress)); 6124 6125 level = btrfs_root_drop_level(root_item); 6126 BUG_ON(level == 0); 6127 path->lowest_level = level; 6128 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6129 path->lowest_level = 0; 6130 if (ret < 0) 6131 goto out_end_trans; 6132 6133 WARN_ON(ret > 0); 6134 ret = 0; 6135 6136 /* 6137 * unlock our path, this is safe because only this 6138 * function is allowed to delete this snapshot 6139 */ 6140 btrfs_unlock_up_safe(path, 0); 6141 6142 level = btrfs_header_level(root->node); 6143 while (1) { 6144 btrfs_tree_lock(path->nodes[level]); 6145 path->locks[level] = BTRFS_WRITE_LOCK; 6146 6147 /* 6148 * btrfs_lookup_extent_info() returns 0 for success, 6149 * or < 0 for error. 6150 */ 6151 ret = btrfs_lookup_extent_info(trans, fs_info, 6152 path->nodes[level]->start, 6153 level, 1, &wc->refs[level], 6154 &wc->flags[level], NULL); 6155 if (ret < 0) 6156 goto out_end_trans; 6157 6158 BUG_ON(wc->refs[level] == 0); 6159 6160 if (level == btrfs_root_drop_level(root_item)) 6161 break; 6162 6163 btrfs_tree_unlock(path->nodes[level]); 6164 path->locks[level] = 0; 6165 WARN_ON(wc->refs[level] != 1); 6166 level--; 6167 } 6168 } 6169 6170 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 6171 wc->level = level; 6172 wc->shared_level = -1; 6173 wc->stage = DROP_REFERENCE; 6174 wc->update_ref = update_ref; 6175 wc->keep_locks = 0; 6176 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6177 6178 while (1) { 6179 6180 ret = walk_down_tree(trans, root, path, wc); 6181 if (ret < 0) { 6182 btrfs_abort_transaction(trans, ret); 6183 break; 6184 } 6185 6186 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6187 if (ret < 0) { 6188 btrfs_abort_transaction(trans, ret); 6189 break; 6190 } 6191 6192 if (ret > 0) { 6193 BUG_ON(wc->stage != DROP_REFERENCE); 6194 ret = 0; 6195 break; 6196 } 6197 6198 if (wc->stage == DROP_REFERENCE) { 6199 wc->drop_level = wc->level; 6200 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 6201 &wc->drop_progress, 6202 path->slots[wc->drop_level]); 6203 } 6204 btrfs_cpu_key_to_disk(&root_item->drop_progress, 6205 &wc->drop_progress); 6206 btrfs_set_root_drop_level(root_item, wc->drop_level); 6207 6208 BUG_ON(wc->level == 0); 6209 if (btrfs_should_end_transaction(trans) || 6210 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 6211 ret = btrfs_update_root(trans, tree_root, 6212 &root->root_key, 6213 root_item); 6214 if (ret) { 6215 btrfs_abort_transaction(trans, ret); 6216 goto out_end_trans; 6217 } 6218 6219 if (!is_reloc_root) 6220 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6221 6222 btrfs_end_transaction_throttle(trans); 6223 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6224 btrfs_debug(fs_info, 6225 "drop snapshot early exit"); 6226 ret = -EAGAIN; 6227 goto out_free; 6228 } 6229 6230 /* 6231 * Use join to avoid potential EINTR from transaction 6232 * start. See wait_reserve_ticket and the whole 6233 * reservation callchain. 6234 */ 6235 if (for_reloc) 6236 trans = btrfs_join_transaction(tree_root); 6237 else 6238 trans = btrfs_start_transaction(tree_root, 0); 6239 if (IS_ERR(trans)) { 6240 ret = PTR_ERR(trans); 6241 goto out_free; 6242 } 6243 } 6244 } 6245 btrfs_release_path(path); 6246 if (ret) 6247 goto out_end_trans; 6248 6249 ret = btrfs_del_root(trans, &root->root_key); 6250 if (ret) { 6251 btrfs_abort_transaction(trans, ret); 6252 goto out_end_trans; 6253 } 6254 6255 if (!is_reloc_root) { 6256 ret = btrfs_find_root(tree_root, &root->root_key, path, 6257 NULL, NULL); 6258 if (ret < 0) { 6259 btrfs_abort_transaction(trans, ret); 6260 goto out_end_trans; 6261 } else if (ret > 0) { 6262 ret = 0; 6263 /* 6264 * If we fail to delete the orphan item this time 6265 * around, it'll get picked up the next time. 6266 * 6267 * The most common failure here is just -ENOENT. 6268 */ 6269 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); 6270 } 6271 } 6272 6273 /* 6274 * This subvolume is going to be completely dropped, and won't be 6275 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6276 * commit transaction time. So free it here manually. 6277 */ 6278 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6279 btrfs_qgroup_free_meta_all_pertrans(root); 6280 6281 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6282 btrfs_add_dropped_root(trans, root); 6283 else 6284 btrfs_put_root(root); 6285 root_dropped = true; 6286 out_end_trans: 6287 if (!is_reloc_root) 6288 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6289 6290 btrfs_end_transaction_throttle(trans); 6291 out_free: 6292 kfree(wc); 6293 btrfs_free_path(path); 6294 out: 6295 if (!ret && root_dropped) { 6296 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid); 6297 if (ret < 0) 6298 btrfs_warn_rl(fs_info, 6299 "failed to cleanup qgroup 0/%llu: %d", 6300 rootid, ret); 6301 ret = 0; 6302 } 6303 /* 6304 * We were an unfinished drop root, check to see if there are any 6305 * pending, and if not clear and wake up any waiters. 6306 */ 6307 if (!ret && unfinished_drop) 6308 btrfs_maybe_wake_unfinished_drop(fs_info); 6309 6310 /* 6311 * So if we need to stop dropping the snapshot for whatever reason we 6312 * need to make sure to add it back to the dead root list so that we 6313 * keep trying to do the work later. This also cleans up roots if we 6314 * don't have it in the radix (like when we recover after a power fail 6315 * or unmount) so we don't leak memory. 6316 */ 6317 if (!for_reloc && !root_dropped) 6318 btrfs_add_dead_root(root); 6319 return ret; 6320 } 6321 6322 /* 6323 * drop subtree rooted at tree block 'node'. 6324 * 6325 * NOTE: this function will unlock and release tree block 'node' 6326 * only used by relocation code 6327 */ 6328 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6329 struct btrfs_root *root, 6330 struct extent_buffer *node, 6331 struct extent_buffer *parent) 6332 { 6333 struct btrfs_fs_info *fs_info = root->fs_info; 6334 BTRFS_PATH_AUTO_FREE(path); 6335 struct walk_control *wc; 6336 int level; 6337 int parent_level; 6338 int ret = 0; 6339 6340 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 6341 6342 path = btrfs_alloc_path(); 6343 if (!path) 6344 return -ENOMEM; 6345 6346 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6347 if (!wc) 6348 return -ENOMEM; 6349 6350 btrfs_assert_tree_write_locked(parent); 6351 parent_level = btrfs_header_level(parent); 6352 refcount_inc(&parent->refs); 6353 path->nodes[parent_level] = parent; 6354 path->slots[parent_level] = btrfs_header_nritems(parent); 6355 6356 btrfs_assert_tree_write_locked(node); 6357 level = btrfs_header_level(node); 6358 path->nodes[level] = node; 6359 path->slots[level] = 0; 6360 path->locks[level] = BTRFS_WRITE_LOCK; 6361 6362 wc->refs[parent_level] = 1; 6363 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6364 wc->level = level; 6365 wc->shared_level = -1; 6366 wc->stage = DROP_REFERENCE; 6367 wc->update_ref = 0; 6368 wc->keep_locks = 1; 6369 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6370 6371 while (1) { 6372 ret = walk_down_tree(trans, root, path, wc); 6373 if (ret < 0) 6374 break; 6375 6376 ret = walk_up_tree(trans, root, path, wc, parent_level); 6377 if (ret) { 6378 if (ret > 0) 6379 ret = 0; 6380 break; 6381 } 6382 } 6383 6384 kfree(wc); 6385 return ret; 6386 } 6387 6388 /* 6389 * Unpin the extent range in an error context and don't add the space back. 6390 * Errors are not propagated further. 6391 */ 6392 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) 6393 { 6394 unpin_extent_range(fs_info, start, end, false); 6395 } 6396 6397 /* 6398 * It used to be that old block groups would be left around forever. 6399 * Iterating over them would be enough to trim unused space. Since we 6400 * now automatically remove them, we also need to iterate over unallocated 6401 * space. 6402 * 6403 * We don't want a transaction for this since the discard may take a 6404 * substantial amount of time. We don't require that a transaction be 6405 * running, but we do need to take a running transaction into account 6406 * to ensure that we're not discarding chunks that were released or 6407 * allocated in the current transaction. 6408 * 6409 * Holding the chunks lock will prevent other threads from allocating 6410 * or releasing chunks, but it won't prevent a running transaction 6411 * from committing and releasing the memory that the pending chunks 6412 * list head uses. For that, we need to take a reference to the 6413 * transaction and hold the commit root sem. We only need to hold 6414 * it while performing the free space search since we have already 6415 * held back allocations. 6416 */ 6417 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6418 { 6419 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6420 int ret; 6421 6422 *trimmed = 0; 6423 6424 /* Discard not supported = nothing to do. */ 6425 if (!bdev_max_discard_sectors(device->bdev)) 6426 return 0; 6427 6428 /* Not writable = nothing to do. */ 6429 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6430 return 0; 6431 6432 /* No free space = nothing to do. */ 6433 if (device->total_bytes <= device->bytes_used) 6434 return 0; 6435 6436 ret = 0; 6437 6438 while (1) { 6439 struct btrfs_fs_info *fs_info = device->fs_info; 6440 u64 bytes; 6441 6442 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6443 if (ret) 6444 break; 6445 6446 btrfs_find_first_clear_extent_bit(&device->alloc_state, start, 6447 &start, &end, 6448 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6449 6450 /* Check if there are any CHUNK_* bits left */ 6451 if (start > device->total_bytes) { 6452 DEBUG_WARN(); 6453 btrfs_warn(fs_info, 6454 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6455 start, end - start + 1, 6456 btrfs_dev_name(device), 6457 device->total_bytes); 6458 mutex_unlock(&fs_info->chunk_mutex); 6459 ret = 0; 6460 break; 6461 } 6462 6463 /* Ensure we skip the reserved space on each device. */ 6464 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6465 6466 /* 6467 * If find_first_clear_extent_bit find a range that spans the 6468 * end of the device it will set end to -1, in this case it's up 6469 * to the caller to trim the value to the size of the device. 6470 */ 6471 end = min(end, device->total_bytes - 1); 6472 6473 len = end - start + 1; 6474 6475 /* We didn't find any extents */ 6476 if (!len) { 6477 mutex_unlock(&fs_info->chunk_mutex); 6478 ret = 0; 6479 break; 6480 } 6481 6482 ret = btrfs_issue_discard(device->bdev, start, len, 6483 &bytes); 6484 if (!ret) 6485 btrfs_set_extent_bit(&device->alloc_state, start, 6486 start + bytes - 1, CHUNK_TRIMMED, NULL); 6487 mutex_unlock(&fs_info->chunk_mutex); 6488 6489 if (ret) 6490 break; 6491 6492 start += len; 6493 *trimmed += bytes; 6494 6495 if (btrfs_trim_interrupted()) { 6496 ret = -ERESTARTSYS; 6497 break; 6498 } 6499 6500 cond_resched(); 6501 } 6502 6503 return ret; 6504 } 6505 6506 /* 6507 * Trim the whole filesystem by: 6508 * 1) trimming the free space in each block group 6509 * 2) trimming the unallocated space on each device 6510 * 6511 * This will also continue trimming even if a block group or device encounters 6512 * an error. The return value will be the last error, or 0 if nothing bad 6513 * happens. 6514 */ 6515 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6516 { 6517 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6518 struct btrfs_block_group *cache = NULL; 6519 struct btrfs_device *device; 6520 u64 group_trimmed; 6521 u64 range_end = U64_MAX; 6522 u64 start; 6523 u64 end; 6524 u64 trimmed = 0; 6525 u64 bg_failed = 0; 6526 u64 dev_failed = 0; 6527 int bg_ret = 0; 6528 int dev_ret = 0; 6529 int ret = 0; 6530 6531 if (range->start == U64_MAX) 6532 return -EINVAL; 6533 6534 /* 6535 * Check range overflow if range->len is set. 6536 * The default range->len is U64_MAX. 6537 */ 6538 if (range->len != U64_MAX && 6539 check_add_overflow(range->start, range->len, &range_end)) 6540 return -EINVAL; 6541 6542 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6543 for (; cache; cache = btrfs_next_block_group(cache)) { 6544 if (cache->start >= range_end) { 6545 btrfs_put_block_group(cache); 6546 break; 6547 } 6548 6549 start = max(range->start, cache->start); 6550 end = min(range_end, cache->start + cache->length); 6551 6552 if (end - start >= range->minlen) { 6553 if (!btrfs_block_group_done(cache)) { 6554 ret = btrfs_cache_block_group(cache, true); 6555 if (ret) { 6556 bg_failed++; 6557 bg_ret = ret; 6558 continue; 6559 } 6560 } 6561 ret = btrfs_trim_block_group(cache, 6562 &group_trimmed, 6563 start, 6564 end, 6565 range->minlen); 6566 6567 trimmed += group_trimmed; 6568 if (ret) { 6569 bg_failed++; 6570 bg_ret = ret; 6571 continue; 6572 } 6573 } 6574 } 6575 6576 if (bg_failed) 6577 btrfs_warn(fs_info, 6578 "failed to trim %llu block group(s), last error %d", 6579 bg_failed, bg_ret); 6580 6581 mutex_lock(&fs_devices->device_list_mutex); 6582 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6583 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6584 continue; 6585 6586 ret = btrfs_trim_free_extents(device, &group_trimmed); 6587 6588 trimmed += group_trimmed; 6589 if (ret) { 6590 dev_failed++; 6591 dev_ret = ret; 6592 break; 6593 } 6594 } 6595 mutex_unlock(&fs_devices->device_list_mutex); 6596 6597 if (dev_failed) 6598 btrfs_warn(fs_info, 6599 "failed to trim %llu device(s), last error %d", 6600 dev_failed, dev_ret); 6601 range->len = trimmed; 6602 if (bg_ret) 6603 return bg_ret; 6604 return dev_ret; 6605 } 6606