xref: /linux/fs/btrfs/extent-tree.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "misc.h"
20 #include "tree-log.h"
21 #include "disk-io.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "locking.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
28 #include "sysfs.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
35 #include "discard.h"
36 
37 #undef SCRAMBLE_DELAYED_REFS
38 
39 
40 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
41 			       struct btrfs_delayed_ref_node *node, u64 parent,
42 			       u64 root_objectid, u64 owner_objectid,
43 			       u64 owner_offset, int refs_to_drop,
44 			       struct btrfs_delayed_extent_op *extra_op);
45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
46 				    struct extent_buffer *leaf,
47 				    struct btrfs_extent_item *ei);
48 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
49 				      u64 parent, u64 root_objectid,
50 				      u64 flags, u64 owner, u64 offset,
51 				      struct btrfs_key *ins, int ref_mod);
52 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
53 				     struct btrfs_delayed_ref_node *node,
54 				     struct btrfs_delayed_extent_op *extent_op);
55 static int find_next_key(struct btrfs_path *path, int level,
56 			 struct btrfs_key *key);
57 
58 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
59 {
60 	return (cache->flags & bits) == bits;
61 }
62 
63 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
64 			      u64 start, u64 num_bytes)
65 {
66 	u64 end = start + num_bytes - 1;
67 	set_extent_bits(&fs_info->freed_extents[0],
68 			start, end, EXTENT_UPTODATE);
69 	set_extent_bits(&fs_info->freed_extents[1],
70 			start, end, EXTENT_UPTODATE);
71 	return 0;
72 }
73 
74 void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
75 {
76 	struct btrfs_fs_info *fs_info = cache->fs_info;
77 	u64 start, end;
78 
79 	start = cache->start;
80 	end = start + cache->length - 1;
81 
82 	clear_extent_bits(&fs_info->freed_extents[0],
83 			  start, end, EXTENT_UPTODATE);
84 	clear_extent_bits(&fs_info->freed_extents[1],
85 			  start, end, EXTENT_UPTODATE);
86 }
87 
88 static u64 generic_ref_to_space_flags(struct btrfs_ref *ref)
89 {
90 	if (ref->type == BTRFS_REF_METADATA) {
91 		if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
92 			return BTRFS_BLOCK_GROUP_SYSTEM;
93 		else
94 			return BTRFS_BLOCK_GROUP_METADATA;
95 	}
96 	return BTRFS_BLOCK_GROUP_DATA;
97 }
98 
99 static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
100 			     struct btrfs_ref *ref)
101 {
102 	struct btrfs_space_info *space_info;
103 	u64 flags = generic_ref_to_space_flags(ref);
104 
105 	space_info = btrfs_find_space_info(fs_info, flags);
106 	ASSERT(space_info);
107 	percpu_counter_add_batch(&space_info->total_bytes_pinned, ref->len,
108 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
109 }
110 
111 static void sub_pinned_bytes(struct btrfs_fs_info *fs_info,
112 			     struct btrfs_ref *ref)
113 {
114 	struct btrfs_space_info *space_info;
115 	u64 flags = generic_ref_to_space_flags(ref);
116 
117 	space_info = btrfs_find_space_info(fs_info, flags);
118 	ASSERT(space_info);
119 	percpu_counter_add_batch(&space_info->total_bytes_pinned, -ref->len,
120 		    BTRFS_TOTAL_BYTES_PINNED_BATCH);
121 }
122 
123 /* simple helper to search for an existing data extent at a given offset */
124 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
125 {
126 	int ret;
127 	struct btrfs_key key;
128 	struct btrfs_path *path;
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	key.objectid = start;
135 	key.offset = len;
136 	key.type = BTRFS_EXTENT_ITEM_KEY;
137 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
138 	btrfs_free_path(path);
139 	return ret;
140 }
141 
142 /*
143  * helper function to lookup reference count and flags of a tree block.
144  *
145  * the head node for delayed ref is used to store the sum of all the
146  * reference count modifications queued up in the rbtree. the head
147  * node may also store the extent flags to set. This way you can check
148  * to see what the reference count and extent flags would be if all of
149  * the delayed refs are not processed.
150  */
151 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
152 			     struct btrfs_fs_info *fs_info, u64 bytenr,
153 			     u64 offset, int metadata, u64 *refs, u64 *flags)
154 {
155 	struct btrfs_delayed_ref_head *head;
156 	struct btrfs_delayed_ref_root *delayed_refs;
157 	struct btrfs_path *path;
158 	struct btrfs_extent_item *ei;
159 	struct extent_buffer *leaf;
160 	struct btrfs_key key;
161 	u32 item_size;
162 	u64 num_refs;
163 	u64 extent_flags;
164 	int ret;
165 
166 	/*
167 	 * If we don't have skinny metadata, don't bother doing anything
168 	 * different
169 	 */
170 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
171 		offset = fs_info->nodesize;
172 		metadata = 0;
173 	}
174 
175 	path = btrfs_alloc_path();
176 	if (!path)
177 		return -ENOMEM;
178 
179 	if (!trans) {
180 		path->skip_locking = 1;
181 		path->search_commit_root = 1;
182 	}
183 
184 search_again:
185 	key.objectid = bytenr;
186 	key.offset = offset;
187 	if (metadata)
188 		key.type = BTRFS_METADATA_ITEM_KEY;
189 	else
190 		key.type = BTRFS_EXTENT_ITEM_KEY;
191 
192 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
193 	if (ret < 0)
194 		goto out_free;
195 
196 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
197 		if (path->slots[0]) {
198 			path->slots[0]--;
199 			btrfs_item_key_to_cpu(path->nodes[0], &key,
200 					      path->slots[0]);
201 			if (key.objectid == bytenr &&
202 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
203 			    key.offset == fs_info->nodesize)
204 				ret = 0;
205 		}
206 	}
207 
208 	if (ret == 0) {
209 		leaf = path->nodes[0];
210 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
211 		if (item_size >= sizeof(*ei)) {
212 			ei = btrfs_item_ptr(leaf, path->slots[0],
213 					    struct btrfs_extent_item);
214 			num_refs = btrfs_extent_refs(leaf, ei);
215 			extent_flags = btrfs_extent_flags(leaf, ei);
216 		} else {
217 			ret = -EINVAL;
218 			btrfs_print_v0_err(fs_info);
219 			if (trans)
220 				btrfs_abort_transaction(trans, ret);
221 			else
222 				btrfs_handle_fs_error(fs_info, ret, NULL);
223 
224 			goto out_free;
225 		}
226 
227 		BUG_ON(num_refs == 0);
228 	} else {
229 		num_refs = 0;
230 		extent_flags = 0;
231 		ret = 0;
232 	}
233 
234 	if (!trans)
235 		goto out;
236 
237 	delayed_refs = &trans->transaction->delayed_refs;
238 	spin_lock(&delayed_refs->lock);
239 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
240 	if (head) {
241 		if (!mutex_trylock(&head->mutex)) {
242 			refcount_inc(&head->refs);
243 			spin_unlock(&delayed_refs->lock);
244 
245 			btrfs_release_path(path);
246 
247 			/*
248 			 * Mutex was contended, block until it's released and try
249 			 * again
250 			 */
251 			mutex_lock(&head->mutex);
252 			mutex_unlock(&head->mutex);
253 			btrfs_put_delayed_ref_head(head);
254 			goto search_again;
255 		}
256 		spin_lock(&head->lock);
257 		if (head->extent_op && head->extent_op->update_flags)
258 			extent_flags |= head->extent_op->flags_to_set;
259 		else
260 			BUG_ON(num_refs == 0);
261 
262 		num_refs += head->ref_mod;
263 		spin_unlock(&head->lock);
264 		mutex_unlock(&head->mutex);
265 	}
266 	spin_unlock(&delayed_refs->lock);
267 out:
268 	WARN_ON(num_refs == 0);
269 	if (refs)
270 		*refs = num_refs;
271 	if (flags)
272 		*flags = extent_flags;
273 out_free:
274 	btrfs_free_path(path);
275 	return ret;
276 }
277 
278 /*
279  * Back reference rules.  Back refs have three main goals:
280  *
281  * 1) differentiate between all holders of references to an extent so that
282  *    when a reference is dropped we can make sure it was a valid reference
283  *    before freeing the extent.
284  *
285  * 2) Provide enough information to quickly find the holders of an extent
286  *    if we notice a given block is corrupted or bad.
287  *
288  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
289  *    maintenance.  This is actually the same as #2, but with a slightly
290  *    different use case.
291  *
292  * There are two kinds of back refs. The implicit back refs is optimized
293  * for pointers in non-shared tree blocks. For a given pointer in a block,
294  * back refs of this kind provide information about the block's owner tree
295  * and the pointer's key. These information allow us to find the block by
296  * b-tree searching. The full back refs is for pointers in tree blocks not
297  * referenced by their owner trees. The location of tree block is recorded
298  * in the back refs. Actually the full back refs is generic, and can be
299  * used in all cases the implicit back refs is used. The major shortcoming
300  * of the full back refs is its overhead. Every time a tree block gets
301  * COWed, we have to update back refs entry for all pointers in it.
302  *
303  * For a newly allocated tree block, we use implicit back refs for
304  * pointers in it. This means most tree related operations only involve
305  * implicit back refs. For a tree block created in old transaction, the
306  * only way to drop a reference to it is COW it. So we can detect the
307  * event that tree block loses its owner tree's reference and do the
308  * back refs conversion.
309  *
310  * When a tree block is COWed through a tree, there are four cases:
311  *
312  * The reference count of the block is one and the tree is the block's
313  * owner tree. Nothing to do in this case.
314  *
315  * The reference count of the block is one and the tree is not the
316  * block's owner tree. In this case, full back refs is used for pointers
317  * in the block. Remove these full back refs, add implicit back refs for
318  * every pointers in the new block.
319  *
320  * The reference count of the block is greater than one and the tree is
321  * the block's owner tree. In this case, implicit back refs is used for
322  * pointers in the block. Add full back refs for every pointers in the
323  * block, increase lower level extents' reference counts. The original
324  * implicit back refs are entailed to the new block.
325  *
326  * The reference count of the block is greater than one and the tree is
327  * not the block's owner tree. Add implicit back refs for every pointer in
328  * the new block, increase lower level extents' reference count.
329  *
330  * Back Reference Key composing:
331  *
332  * The key objectid corresponds to the first byte in the extent,
333  * The key type is used to differentiate between types of back refs.
334  * There are different meanings of the key offset for different types
335  * of back refs.
336  *
337  * File extents can be referenced by:
338  *
339  * - multiple snapshots, subvolumes, or different generations in one subvol
340  * - different files inside a single subvolume
341  * - different offsets inside a file (bookend extents in file.c)
342  *
343  * The extent ref structure for the implicit back refs has fields for:
344  *
345  * - Objectid of the subvolume root
346  * - objectid of the file holding the reference
347  * - original offset in the file
348  * - how many bookend extents
349  *
350  * The key offset for the implicit back refs is hash of the first
351  * three fields.
352  *
353  * The extent ref structure for the full back refs has field for:
354  *
355  * - number of pointers in the tree leaf
356  *
357  * The key offset for the implicit back refs is the first byte of
358  * the tree leaf
359  *
360  * When a file extent is allocated, The implicit back refs is used.
361  * the fields are filled in:
362  *
363  *     (root_key.objectid, inode objectid, offset in file, 1)
364  *
365  * When a file extent is removed file truncation, we find the
366  * corresponding implicit back refs and check the following fields:
367  *
368  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
369  *
370  * Btree extents can be referenced by:
371  *
372  * - Different subvolumes
373  *
374  * Both the implicit back refs and the full back refs for tree blocks
375  * only consist of key. The key offset for the implicit back refs is
376  * objectid of block's owner tree. The key offset for the full back refs
377  * is the first byte of parent block.
378  *
379  * When implicit back refs is used, information about the lowest key and
380  * level of the tree block are required. These information are stored in
381  * tree block info structure.
382  */
383 
384 /*
385  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
386  * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
387  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
388  */
389 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
390 				     struct btrfs_extent_inline_ref *iref,
391 				     enum btrfs_inline_ref_type is_data)
392 {
393 	int type = btrfs_extent_inline_ref_type(eb, iref);
394 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
395 
396 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
397 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
398 	    type == BTRFS_SHARED_DATA_REF_KEY ||
399 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
400 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
401 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
402 				return type;
403 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
404 				ASSERT(eb->fs_info);
405 				/*
406 				 * Every shared one has parent tree
407 				 * block, which must be aligned to
408 				 * nodesize.
409 				 */
410 				if (offset &&
411 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
412 					return type;
413 			}
414 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
415 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
416 				return type;
417 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
418 				ASSERT(eb->fs_info);
419 				/*
420 				 * Every shared one has parent tree
421 				 * block, which must be aligned to
422 				 * nodesize.
423 				 */
424 				if (offset &&
425 				    IS_ALIGNED(offset, eb->fs_info->nodesize))
426 					return type;
427 			}
428 		} else {
429 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
430 			return type;
431 		}
432 	}
433 
434 	btrfs_print_leaf((struct extent_buffer *)eb);
435 	btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
436 		  eb->start, type);
437 	WARN_ON(1);
438 
439 	return BTRFS_REF_TYPE_INVALID;
440 }
441 
442 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
443 {
444 	u32 high_crc = ~(u32)0;
445 	u32 low_crc = ~(u32)0;
446 	__le64 lenum;
447 
448 	lenum = cpu_to_le64(root_objectid);
449 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
450 	lenum = cpu_to_le64(owner);
451 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
452 	lenum = cpu_to_le64(offset);
453 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
454 
455 	return ((u64)high_crc << 31) ^ (u64)low_crc;
456 }
457 
458 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
459 				     struct btrfs_extent_data_ref *ref)
460 {
461 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
462 				    btrfs_extent_data_ref_objectid(leaf, ref),
463 				    btrfs_extent_data_ref_offset(leaf, ref));
464 }
465 
466 static int match_extent_data_ref(struct extent_buffer *leaf,
467 				 struct btrfs_extent_data_ref *ref,
468 				 u64 root_objectid, u64 owner, u64 offset)
469 {
470 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
471 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
472 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
473 		return 0;
474 	return 1;
475 }
476 
477 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
478 					   struct btrfs_path *path,
479 					   u64 bytenr, u64 parent,
480 					   u64 root_objectid,
481 					   u64 owner, u64 offset)
482 {
483 	struct btrfs_root *root = trans->fs_info->extent_root;
484 	struct btrfs_key key;
485 	struct btrfs_extent_data_ref *ref;
486 	struct extent_buffer *leaf;
487 	u32 nritems;
488 	int ret;
489 	int recow;
490 	int err = -ENOENT;
491 
492 	key.objectid = bytenr;
493 	if (parent) {
494 		key.type = BTRFS_SHARED_DATA_REF_KEY;
495 		key.offset = parent;
496 	} else {
497 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
498 		key.offset = hash_extent_data_ref(root_objectid,
499 						  owner, offset);
500 	}
501 again:
502 	recow = 0;
503 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
504 	if (ret < 0) {
505 		err = ret;
506 		goto fail;
507 	}
508 
509 	if (parent) {
510 		if (!ret)
511 			return 0;
512 		goto fail;
513 	}
514 
515 	leaf = path->nodes[0];
516 	nritems = btrfs_header_nritems(leaf);
517 	while (1) {
518 		if (path->slots[0] >= nritems) {
519 			ret = btrfs_next_leaf(root, path);
520 			if (ret < 0)
521 				err = ret;
522 			if (ret)
523 				goto fail;
524 
525 			leaf = path->nodes[0];
526 			nritems = btrfs_header_nritems(leaf);
527 			recow = 1;
528 		}
529 
530 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
531 		if (key.objectid != bytenr ||
532 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
533 			goto fail;
534 
535 		ref = btrfs_item_ptr(leaf, path->slots[0],
536 				     struct btrfs_extent_data_ref);
537 
538 		if (match_extent_data_ref(leaf, ref, root_objectid,
539 					  owner, offset)) {
540 			if (recow) {
541 				btrfs_release_path(path);
542 				goto again;
543 			}
544 			err = 0;
545 			break;
546 		}
547 		path->slots[0]++;
548 	}
549 fail:
550 	return err;
551 }
552 
553 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
554 					   struct btrfs_path *path,
555 					   u64 bytenr, u64 parent,
556 					   u64 root_objectid, u64 owner,
557 					   u64 offset, int refs_to_add)
558 {
559 	struct btrfs_root *root = trans->fs_info->extent_root;
560 	struct btrfs_key key;
561 	struct extent_buffer *leaf;
562 	u32 size;
563 	u32 num_refs;
564 	int ret;
565 
566 	key.objectid = bytenr;
567 	if (parent) {
568 		key.type = BTRFS_SHARED_DATA_REF_KEY;
569 		key.offset = parent;
570 		size = sizeof(struct btrfs_shared_data_ref);
571 	} else {
572 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
573 		key.offset = hash_extent_data_ref(root_objectid,
574 						  owner, offset);
575 		size = sizeof(struct btrfs_extent_data_ref);
576 	}
577 
578 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
579 	if (ret && ret != -EEXIST)
580 		goto fail;
581 
582 	leaf = path->nodes[0];
583 	if (parent) {
584 		struct btrfs_shared_data_ref *ref;
585 		ref = btrfs_item_ptr(leaf, path->slots[0],
586 				     struct btrfs_shared_data_ref);
587 		if (ret == 0) {
588 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
589 		} else {
590 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
591 			num_refs += refs_to_add;
592 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
593 		}
594 	} else {
595 		struct btrfs_extent_data_ref *ref;
596 		while (ret == -EEXIST) {
597 			ref = btrfs_item_ptr(leaf, path->slots[0],
598 					     struct btrfs_extent_data_ref);
599 			if (match_extent_data_ref(leaf, ref, root_objectid,
600 						  owner, offset))
601 				break;
602 			btrfs_release_path(path);
603 			key.offset++;
604 			ret = btrfs_insert_empty_item(trans, root, path, &key,
605 						      size);
606 			if (ret && ret != -EEXIST)
607 				goto fail;
608 
609 			leaf = path->nodes[0];
610 		}
611 		ref = btrfs_item_ptr(leaf, path->slots[0],
612 				     struct btrfs_extent_data_ref);
613 		if (ret == 0) {
614 			btrfs_set_extent_data_ref_root(leaf, ref,
615 						       root_objectid);
616 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
617 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
618 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
619 		} else {
620 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
621 			num_refs += refs_to_add;
622 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
623 		}
624 	}
625 	btrfs_mark_buffer_dirty(leaf);
626 	ret = 0;
627 fail:
628 	btrfs_release_path(path);
629 	return ret;
630 }
631 
632 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
633 					   struct btrfs_path *path,
634 					   int refs_to_drop, int *last_ref)
635 {
636 	struct btrfs_key key;
637 	struct btrfs_extent_data_ref *ref1 = NULL;
638 	struct btrfs_shared_data_ref *ref2 = NULL;
639 	struct extent_buffer *leaf;
640 	u32 num_refs = 0;
641 	int ret = 0;
642 
643 	leaf = path->nodes[0];
644 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
645 
646 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
647 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
648 				      struct btrfs_extent_data_ref);
649 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
650 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
651 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
652 				      struct btrfs_shared_data_ref);
653 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
654 	} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
655 		btrfs_print_v0_err(trans->fs_info);
656 		btrfs_abort_transaction(trans, -EINVAL);
657 		return -EINVAL;
658 	} else {
659 		BUG();
660 	}
661 
662 	BUG_ON(num_refs < refs_to_drop);
663 	num_refs -= refs_to_drop;
664 
665 	if (num_refs == 0) {
666 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
667 		*last_ref = 1;
668 	} else {
669 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
670 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
671 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
672 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
673 		btrfs_mark_buffer_dirty(leaf);
674 	}
675 	return ret;
676 }
677 
678 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
679 					  struct btrfs_extent_inline_ref *iref)
680 {
681 	struct btrfs_key key;
682 	struct extent_buffer *leaf;
683 	struct btrfs_extent_data_ref *ref1;
684 	struct btrfs_shared_data_ref *ref2;
685 	u32 num_refs = 0;
686 	int type;
687 
688 	leaf = path->nodes[0];
689 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
690 
691 	BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
692 	if (iref) {
693 		/*
694 		 * If type is invalid, we should have bailed out earlier than
695 		 * this call.
696 		 */
697 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
698 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
699 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
700 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
701 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
702 		} else {
703 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
704 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
705 		}
706 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
707 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
708 				      struct btrfs_extent_data_ref);
709 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
710 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
711 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
712 				      struct btrfs_shared_data_ref);
713 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
714 	} else {
715 		WARN_ON(1);
716 	}
717 	return num_refs;
718 }
719 
720 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
721 					  struct btrfs_path *path,
722 					  u64 bytenr, u64 parent,
723 					  u64 root_objectid)
724 {
725 	struct btrfs_root *root = trans->fs_info->extent_root;
726 	struct btrfs_key key;
727 	int ret;
728 
729 	key.objectid = bytenr;
730 	if (parent) {
731 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
732 		key.offset = parent;
733 	} else {
734 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
735 		key.offset = root_objectid;
736 	}
737 
738 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
739 	if (ret > 0)
740 		ret = -ENOENT;
741 	return ret;
742 }
743 
744 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
745 					  struct btrfs_path *path,
746 					  u64 bytenr, u64 parent,
747 					  u64 root_objectid)
748 {
749 	struct btrfs_key key;
750 	int ret;
751 
752 	key.objectid = bytenr;
753 	if (parent) {
754 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
755 		key.offset = parent;
756 	} else {
757 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
758 		key.offset = root_objectid;
759 	}
760 
761 	ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
762 				      path, &key, 0);
763 	btrfs_release_path(path);
764 	return ret;
765 }
766 
767 static inline int extent_ref_type(u64 parent, u64 owner)
768 {
769 	int type;
770 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
771 		if (parent > 0)
772 			type = BTRFS_SHARED_BLOCK_REF_KEY;
773 		else
774 			type = BTRFS_TREE_BLOCK_REF_KEY;
775 	} else {
776 		if (parent > 0)
777 			type = BTRFS_SHARED_DATA_REF_KEY;
778 		else
779 			type = BTRFS_EXTENT_DATA_REF_KEY;
780 	}
781 	return type;
782 }
783 
784 static int find_next_key(struct btrfs_path *path, int level,
785 			 struct btrfs_key *key)
786 
787 {
788 	for (; level < BTRFS_MAX_LEVEL; level++) {
789 		if (!path->nodes[level])
790 			break;
791 		if (path->slots[level] + 1 >=
792 		    btrfs_header_nritems(path->nodes[level]))
793 			continue;
794 		if (level == 0)
795 			btrfs_item_key_to_cpu(path->nodes[level], key,
796 					      path->slots[level] + 1);
797 		else
798 			btrfs_node_key_to_cpu(path->nodes[level], key,
799 					      path->slots[level] + 1);
800 		return 0;
801 	}
802 	return 1;
803 }
804 
805 /*
806  * look for inline back ref. if back ref is found, *ref_ret is set
807  * to the address of inline back ref, and 0 is returned.
808  *
809  * if back ref isn't found, *ref_ret is set to the address where it
810  * should be inserted, and -ENOENT is returned.
811  *
812  * if insert is true and there are too many inline back refs, the path
813  * points to the extent item, and -EAGAIN is returned.
814  *
815  * NOTE: inline back refs are ordered in the same way that back ref
816  *	 items in the tree are ordered.
817  */
818 static noinline_for_stack
819 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
820 				 struct btrfs_path *path,
821 				 struct btrfs_extent_inline_ref **ref_ret,
822 				 u64 bytenr, u64 num_bytes,
823 				 u64 parent, u64 root_objectid,
824 				 u64 owner, u64 offset, int insert)
825 {
826 	struct btrfs_fs_info *fs_info = trans->fs_info;
827 	struct btrfs_root *root = fs_info->extent_root;
828 	struct btrfs_key key;
829 	struct extent_buffer *leaf;
830 	struct btrfs_extent_item *ei;
831 	struct btrfs_extent_inline_ref *iref;
832 	u64 flags;
833 	u64 item_size;
834 	unsigned long ptr;
835 	unsigned long end;
836 	int extra_size;
837 	int type;
838 	int want;
839 	int ret;
840 	int err = 0;
841 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
842 	int needed;
843 
844 	key.objectid = bytenr;
845 	key.type = BTRFS_EXTENT_ITEM_KEY;
846 	key.offset = num_bytes;
847 
848 	want = extent_ref_type(parent, owner);
849 	if (insert) {
850 		extra_size = btrfs_extent_inline_ref_size(want);
851 		path->keep_locks = 1;
852 	} else
853 		extra_size = -1;
854 
855 	/*
856 	 * Owner is our level, so we can just add one to get the level for the
857 	 * block we are interested in.
858 	 */
859 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
860 		key.type = BTRFS_METADATA_ITEM_KEY;
861 		key.offset = owner;
862 	}
863 
864 again:
865 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
866 	if (ret < 0) {
867 		err = ret;
868 		goto out;
869 	}
870 
871 	/*
872 	 * We may be a newly converted file system which still has the old fat
873 	 * extent entries for metadata, so try and see if we have one of those.
874 	 */
875 	if (ret > 0 && skinny_metadata) {
876 		skinny_metadata = false;
877 		if (path->slots[0]) {
878 			path->slots[0]--;
879 			btrfs_item_key_to_cpu(path->nodes[0], &key,
880 					      path->slots[0]);
881 			if (key.objectid == bytenr &&
882 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
883 			    key.offset == num_bytes)
884 				ret = 0;
885 		}
886 		if (ret) {
887 			key.objectid = bytenr;
888 			key.type = BTRFS_EXTENT_ITEM_KEY;
889 			key.offset = num_bytes;
890 			btrfs_release_path(path);
891 			goto again;
892 		}
893 	}
894 
895 	if (ret && !insert) {
896 		err = -ENOENT;
897 		goto out;
898 	} else if (WARN_ON(ret)) {
899 		err = -EIO;
900 		goto out;
901 	}
902 
903 	leaf = path->nodes[0];
904 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
905 	if (unlikely(item_size < sizeof(*ei))) {
906 		err = -EINVAL;
907 		btrfs_print_v0_err(fs_info);
908 		btrfs_abort_transaction(trans, err);
909 		goto out;
910 	}
911 
912 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
913 	flags = btrfs_extent_flags(leaf, ei);
914 
915 	ptr = (unsigned long)(ei + 1);
916 	end = (unsigned long)ei + item_size;
917 
918 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
919 		ptr += sizeof(struct btrfs_tree_block_info);
920 		BUG_ON(ptr > end);
921 	}
922 
923 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
924 		needed = BTRFS_REF_TYPE_DATA;
925 	else
926 		needed = BTRFS_REF_TYPE_BLOCK;
927 
928 	err = -ENOENT;
929 	while (1) {
930 		if (ptr >= end) {
931 			WARN_ON(ptr > end);
932 			break;
933 		}
934 		iref = (struct btrfs_extent_inline_ref *)ptr;
935 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
936 		if (type == BTRFS_REF_TYPE_INVALID) {
937 			err = -EUCLEAN;
938 			goto out;
939 		}
940 
941 		if (want < type)
942 			break;
943 		if (want > type) {
944 			ptr += btrfs_extent_inline_ref_size(type);
945 			continue;
946 		}
947 
948 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
949 			struct btrfs_extent_data_ref *dref;
950 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
951 			if (match_extent_data_ref(leaf, dref, root_objectid,
952 						  owner, offset)) {
953 				err = 0;
954 				break;
955 			}
956 			if (hash_extent_data_ref_item(leaf, dref) <
957 			    hash_extent_data_ref(root_objectid, owner, offset))
958 				break;
959 		} else {
960 			u64 ref_offset;
961 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
962 			if (parent > 0) {
963 				if (parent == ref_offset) {
964 					err = 0;
965 					break;
966 				}
967 				if (ref_offset < parent)
968 					break;
969 			} else {
970 				if (root_objectid == ref_offset) {
971 					err = 0;
972 					break;
973 				}
974 				if (ref_offset < root_objectid)
975 					break;
976 			}
977 		}
978 		ptr += btrfs_extent_inline_ref_size(type);
979 	}
980 	if (err == -ENOENT && insert) {
981 		if (item_size + extra_size >=
982 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
983 			err = -EAGAIN;
984 			goto out;
985 		}
986 		/*
987 		 * To add new inline back ref, we have to make sure
988 		 * there is no corresponding back ref item.
989 		 * For simplicity, we just do not add new inline back
990 		 * ref if there is any kind of item for this block
991 		 */
992 		if (find_next_key(path, 0, &key) == 0 &&
993 		    key.objectid == bytenr &&
994 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
995 			err = -EAGAIN;
996 			goto out;
997 		}
998 	}
999 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1000 out:
1001 	if (insert) {
1002 		path->keep_locks = 0;
1003 		btrfs_unlock_up_safe(path, 1);
1004 	}
1005 	return err;
1006 }
1007 
1008 /*
1009  * helper to add new inline back ref
1010  */
1011 static noinline_for_stack
1012 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1013 				 struct btrfs_path *path,
1014 				 struct btrfs_extent_inline_ref *iref,
1015 				 u64 parent, u64 root_objectid,
1016 				 u64 owner, u64 offset, int refs_to_add,
1017 				 struct btrfs_delayed_extent_op *extent_op)
1018 {
1019 	struct extent_buffer *leaf;
1020 	struct btrfs_extent_item *ei;
1021 	unsigned long ptr;
1022 	unsigned long end;
1023 	unsigned long item_offset;
1024 	u64 refs;
1025 	int size;
1026 	int type;
1027 
1028 	leaf = path->nodes[0];
1029 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1030 	item_offset = (unsigned long)iref - (unsigned long)ei;
1031 
1032 	type = extent_ref_type(parent, owner);
1033 	size = btrfs_extent_inline_ref_size(type);
1034 
1035 	btrfs_extend_item(path, size);
1036 
1037 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1038 	refs = btrfs_extent_refs(leaf, ei);
1039 	refs += refs_to_add;
1040 	btrfs_set_extent_refs(leaf, ei, refs);
1041 	if (extent_op)
1042 		__run_delayed_extent_op(extent_op, leaf, ei);
1043 
1044 	ptr = (unsigned long)ei + item_offset;
1045 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1046 	if (ptr < end - size)
1047 		memmove_extent_buffer(leaf, ptr + size, ptr,
1048 				      end - size - ptr);
1049 
1050 	iref = (struct btrfs_extent_inline_ref *)ptr;
1051 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1052 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1053 		struct btrfs_extent_data_ref *dref;
1054 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1055 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1056 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1057 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1058 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1059 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1060 		struct btrfs_shared_data_ref *sref;
1061 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1062 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1063 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1064 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1065 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1066 	} else {
1067 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1068 	}
1069 	btrfs_mark_buffer_dirty(leaf);
1070 }
1071 
1072 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1073 				 struct btrfs_path *path,
1074 				 struct btrfs_extent_inline_ref **ref_ret,
1075 				 u64 bytenr, u64 num_bytes, u64 parent,
1076 				 u64 root_objectid, u64 owner, u64 offset)
1077 {
1078 	int ret;
1079 
1080 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1081 					   num_bytes, parent, root_objectid,
1082 					   owner, offset, 0);
1083 	if (ret != -ENOENT)
1084 		return ret;
1085 
1086 	btrfs_release_path(path);
1087 	*ref_ret = NULL;
1088 
1089 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1090 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1091 					    root_objectid);
1092 	} else {
1093 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1094 					     root_objectid, owner, offset);
1095 	}
1096 	return ret;
1097 }
1098 
1099 /*
1100  * helper to update/remove inline back ref
1101  */
1102 static noinline_for_stack
1103 void update_inline_extent_backref(struct btrfs_path *path,
1104 				  struct btrfs_extent_inline_ref *iref,
1105 				  int refs_to_mod,
1106 				  struct btrfs_delayed_extent_op *extent_op,
1107 				  int *last_ref)
1108 {
1109 	struct extent_buffer *leaf = path->nodes[0];
1110 	struct btrfs_extent_item *ei;
1111 	struct btrfs_extent_data_ref *dref = NULL;
1112 	struct btrfs_shared_data_ref *sref = NULL;
1113 	unsigned long ptr;
1114 	unsigned long end;
1115 	u32 item_size;
1116 	int size;
1117 	int type;
1118 	u64 refs;
1119 
1120 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1121 	refs = btrfs_extent_refs(leaf, ei);
1122 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1123 	refs += refs_to_mod;
1124 	btrfs_set_extent_refs(leaf, ei, refs);
1125 	if (extent_op)
1126 		__run_delayed_extent_op(extent_op, leaf, ei);
1127 
1128 	/*
1129 	 * If type is invalid, we should have bailed out after
1130 	 * lookup_inline_extent_backref().
1131 	 */
1132 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1133 	ASSERT(type != BTRFS_REF_TYPE_INVALID);
1134 
1135 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1136 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1137 		refs = btrfs_extent_data_ref_count(leaf, dref);
1138 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1139 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1140 		refs = btrfs_shared_data_ref_count(leaf, sref);
1141 	} else {
1142 		refs = 1;
1143 		BUG_ON(refs_to_mod != -1);
1144 	}
1145 
1146 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1147 	refs += refs_to_mod;
1148 
1149 	if (refs > 0) {
1150 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1151 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1152 		else
1153 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1154 	} else {
1155 		*last_ref = 1;
1156 		size =  btrfs_extent_inline_ref_size(type);
1157 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1158 		ptr = (unsigned long)iref;
1159 		end = (unsigned long)ei + item_size;
1160 		if (ptr + size < end)
1161 			memmove_extent_buffer(leaf, ptr, ptr + size,
1162 					      end - ptr - size);
1163 		item_size -= size;
1164 		btrfs_truncate_item(path, item_size, 1);
1165 	}
1166 	btrfs_mark_buffer_dirty(leaf);
1167 }
1168 
1169 static noinline_for_stack
1170 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1171 				 struct btrfs_path *path,
1172 				 u64 bytenr, u64 num_bytes, u64 parent,
1173 				 u64 root_objectid, u64 owner,
1174 				 u64 offset, int refs_to_add,
1175 				 struct btrfs_delayed_extent_op *extent_op)
1176 {
1177 	struct btrfs_extent_inline_ref *iref;
1178 	int ret;
1179 
1180 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1181 					   num_bytes, parent, root_objectid,
1182 					   owner, offset, 1);
1183 	if (ret == 0) {
1184 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1185 		update_inline_extent_backref(path, iref, refs_to_add,
1186 					     extent_op, NULL);
1187 	} else if (ret == -ENOENT) {
1188 		setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1189 					    root_objectid, owner, offset,
1190 					    refs_to_add, extent_op);
1191 		ret = 0;
1192 	}
1193 	return ret;
1194 }
1195 
1196 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1197 				 struct btrfs_path *path,
1198 				 u64 bytenr, u64 parent, u64 root_objectid,
1199 				 u64 owner, u64 offset, int refs_to_add)
1200 {
1201 	int ret;
1202 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1203 		BUG_ON(refs_to_add != 1);
1204 		ret = insert_tree_block_ref(trans, path, bytenr, parent,
1205 					    root_objectid);
1206 	} else {
1207 		ret = insert_extent_data_ref(trans, path, bytenr, parent,
1208 					     root_objectid, owner, offset,
1209 					     refs_to_add);
1210 	}
1211 	return ret;
1212 }
1213 
1214 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1215 				 struct btrfs_path *path,
1216 				 struct btrfs_extent_inline_ref *iref,
1217 				 int refs_to_drop, int is_data, int *last_ref)
1218 {
1219 	int ret = 0;
1220 
1221 	BUG_ON(!is_data && refs_to_drop != 1);
1222 	if (iref) {
1223 		update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1224 					     last_ref);
1225 	} else if (is_data) {
1226 		ret = remove_extent_data_ref(trans, path, refs_to_drop,
1227 					     last_ref);
1228 	} else {
1229 		*last_ref = 1;
1230 		ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1231 	}
1232 	return ret;
1233 }
1234 
1235 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1236 			       u64 *discarded_bytes)
1237 {
1238 	int j, ret = 0;
1239 	u64 bytes_left, end;
1240 	u64 aligned_start = ALIGN(start, 1 << 9);
1241 
1242 	if (WARN_ON(start != aligned_start)) {
1243 		len -= aligned_start - start;
1244 		len = round_down(len, 1 << 9);
1245 		start = aligned_start;
1246 	}
1247 
1248 	*discarded_bytes = 0;
1249 
1250 	if (!len)
1251 		return 0;
1252 
1253 	end = start + len;
1254 	bytes_left = len;
1255 
1256 	/* Skip any superblocks on this device. */
1257 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1258 		u64 sb_start = btrfs_sb_offset(j);
1259 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1260 		u64 size = sb_start - start;
1261 
1262 		if (!in_range(sb_start, start, bytes_left) &&
1263 		    !in_range(sb_end, start, bytes_left) &&
1264 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1265 			continue;
1266 
1267 		/*
1268 		 * Superblock spans beginning of range.  Adjust start and
1269 		 * try again.
1270 		 */
1271 		if (sb_start <= start) {
1272 			start += sb_end - start;
1273 			if (start > end) {
1274 				bytes_left = 0;
1275 				break;
1276 			}
1277 			bytes_left = end - start;
1278 			continue;
1279 		}
1280 
1281 		if (size) {
1282 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1283 						   GFP_NOFS, 0);
1284 			if (!ret)
1285 				*discarded_bytes += size;
1286 			else if (ret != -EOPNOTSUPP)
1287 				return ret;
1288 		}
1289 
1290 		start = sb_end;
1291 		if (start > end) {
1292 			bytes_left = 0;
1293 			break;
1294 		}
1295 		bytes_left = end - start;
1296 	}
1297 
1298 	if (bytes_left) {
1299 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1300 					   GFP_NOFS, 0);
1301 		if (!ret)
1302 			*discarded_bytes += bytes_left;
1303 	}
1304 	return ret;
1305 }
1306 
1307 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1308 			 u64 num_bytes, u64 *actual_bytes)
1309 {
1310 	int ret = 0;
1311 	u64 discarded_bytes = 0;
1312 	u64 end = bytenr + num_bytes;
1313 	u64 cur = bytenr;
1314 	struct btrfs_bio *bbio = NULL;
1315 
1316 
1317 	/*
1318 	 * Avoid races with device replace and make sure our bbio has devices
1319 	 * associated to its stripes that don't go away while we are discarding.
1320 	 */
1321 	btrfs_bio_counter_inc_blocked(fs_info);
1322 	while (cur < end) {
1323 		struct btrfs_bio_stripe *stripe;
1324 		int i;
1325 
1326 		num_bytes = end - cur;
1327 		/* Tell the block device(s) that the sectors can be discarded */
1328 		ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, cur,
1329 				      &num_bytes, &bbio, 0);
1330 		/*
1331 		 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1332 		 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1333 		 * thus we can't continue anyway.
1334 		 */
1335 		if (ret < 0)
1336 			goto out;
1337 
1338 		stripe = bbio->stripes;
1339 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1340 			u64 bytes;
1341 			struct request_queue *req_q;
1342 
1343 			if (!stripe->dev->bdev) {
1344 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1345 				continue;
1346 			}
1347 			req_q = bdev_get_queue(stripe->dev->bdev);
1348 			if (!blk_queue_discard(req_q))
1349 				continue;
1350 
1351 			ret = btrfs_issue_discard(stripe->dev->bdev,
1352 						  stripe->physical,
1353 						  stripe->length,
1354 						  &bytes);
1355 			if (!ret) {
1356 				discarded_bytes += bytes;
1357 			} else if (ret != -EOPNOTSUPP) {
1358 				/*
1359 				 * Logic errors or -ENOMEM, or -EIO, but
1360 				 * unlikely to happen.
1361 				 *
1362 				 * And since there are two loops, explicitly
1363 				 * go to out to avoid confusion.
1364 				 */
1365 				btrfs_put_bbio(bbio);
1366 				goto out;
1367 			}
1368 
1369 			/*
1370 			 * Just in case we get back EOPNOTSUPP for some reason,
1371 			 * just ignore the return value so we don't screw up
1372 			 * people calling discard_extent.
1373 			 */
1374 			ret = 0;
1375 		}
1376 		btrfs_put_bbio(bbio);
1377 		cur += num_bytes;
1378 	}
1379 out:
1380 	btrfs_bio_counter_dec(fs_info);
1381 
1382 	if (actual_bytes)
1383 		*actual_bytes = discarded_bytes;
1384 
1385 
1386 	if (ret == -EOPNOTSUPP)
1387 		ret = 0;
1388 	return ret;
1389 }
1390 
1391 /* Can return -ENOMEM */
1392 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1393 			 struct btrfs_ref *generic_ref)
1394 {
1395 	struct btrfs_fs_info *fs_info = trans->fs_info;
1396 	int old_ref_mod, new_ref_mod;
1397 	int ret;
1398 
1399 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1400 	       generic_ref->action);
1401 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1402 	       generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
1403 
1404 	if (generic_ref->type == BTRFS_REF_METADATA)
1405 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
1406 				NULL, &old_ref_mod, &new_ref_mod);
1407 	else
1408 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
1409 						 &old_ref_mod, &new_ref_mod);
1410 
1411 	btrfs_ref_tree_mod(fs_info, generic_ref);
1412 
1413 	if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
1414 		sub_pinned_bytes(fs_info, generic_ref);
1415 
1416 	return ret;
1417 }
1418 
1419 /*
1420  * __btrfs_inc_extent_ref - insert backreference for a given extent
1421  *
1422  * @trans:	    Handle of transaction
1423  *
1424  * @node:	    The delayed ref node used to get the bytenr/length for
1425  *		    extent whose references are incremented.
1426  *
1427  * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1428  *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1429  *		    bytenr of the parent block. Since new extents are always
1430  *		    created with indirect references, this will only be the case
1431  *		    when relocating a shared extent. In that case, root_objectid
1432  *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1433  *		    be 0
1434  *
1435  * @root_objectid:  The id of the root where this modification has originated,
1436  *		    this can be either one of the well-known metadata trees or
1437  *		    the subvolume id which references this extent.
1438  *
1439  * @owner:	    For data extents it is the inode number of the owning file.
1440  *		    For metadata extents this parameter holds the level in the
1441  *		    tree of the extent.
1442  *
1443  * @offset:	    For metadata extents the offset is ignored and is currently
1444  *		    always passed as 0. For data extents it is the fileoffset
1445  *		    this extent belongs to.
1446  *
1447  * @refs_to_add     Number of references to add
1448  *
1449  * @extent_op       Pointer to a structure, holding information necessary when
1450  *                  updating a tree block's flags
1451  *
1452  */
1453 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1454 				  struct btrfs_delayed_ref_node *node,
1455 				  u64 parent, u64 root_objectid,
1456 				  u64 owner, u64 offset, int refs_to_add,
1457 				  struct btrfs_delayed_extent_op *extent_op)
1458 {
1459 	struct btrfs_path *path;
1460 	struct extent_buffer *leaf;
1461 	struct btrfs_extent_item *item;
1462 	struct btrfs_key key;
1463 	u64 bytenr = node->bytenr;
1464 	u64 num_bytes = node->num_bytes;
1465 	u64 refs;
1466 	int ret;
1467 
1468 	path = btrfs_alloc_path();
1469 	if (!path)
1470 		return -ENOMEM;
1471 
1472 	path->reada = READA_FORWARD;
1473 	path->leave_spinning = 1;
1474 	/* this will setup the path even if it fails to insert the back ref */
1475 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1476 					   parent, root_objectid, owner,
1477 					   offset, refs_to_add, extent_op);
1478 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1479 		goto out;
1480 
1481 	/*
1482 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1483 	 * inline extent ref, so just update the reference count and add a
1484 	 * normal backref.
1485 	 */
1486 	leaf = path->nodes[0];
1487 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1488 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1489 	refs = btrfs_extent_refs(leaf, item);
1490 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1491 	if (extent_op)
1492 		__run_delayed_extent_op(extent_op, leaf, item);
1493 
1494 	btrfs_mark_buffer_dirty(leaf);
1495 	btrfs_release_path(path);
1496 
1497 	path->reada = READA_FORWARD;
1498 	path->leave_spinning = 1;
1499 	/* now insert the actual backref */
1500 	ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
1501 				    owner, offset, refs_to_add);
1502 	if (ret)
1503 		btrfs_abort_transaction(trans, ret);
1504 out:
1505 	btrfs_free_path(path);
1506 	return ret;
1507 }
1508 
1509 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1510 				struct btrfs_delayed_ref_node *node,
1511 				struct btrfs_delayed_extent_op *extent_op,
1512 				int insert_reserved)
1513 {
1514 	int ret = 0;
1515 	struct btrfs_delayed_data_ref *ref;
1516 	struct btrfs_key ins;
1517 	u64 parent = 0;
1518 	u64 ref_root = 0;
1519 	u64 flags = 0;
1520 
1521 	ins.objectid = node->bytenr;
1522 	ins.offset = node->num_bytes;
1523 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1524 
1525 	ref = btrfs_delayed_node_to_data_ref(node);
1526 	trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1527 
1528 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1529 		parent = ref->parent;
1530 	ref_root = ref->root;
1531 
1532 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1533 		if (extent_op)
1534 			flags |= extent_op->flags_to_set;
1535 		ret = alloc_reserved_file_extent(trans, parent, ref_root,
1536 						 flags, ref->objectid,
1537 						 ref->offset, &ins,
1538 						 node->ref_mod);
1539 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1540 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1541 					     ref->objectid, ref->offset,
1542 					     node->ref_mod, extent_op);
1543 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1544 		ret = __btrfs_free_extent(trans, node, parent,
1545 					  ref_root, ref->objectid,
1546 					  ref->offset, node->ref_mod,
1547 					  extent_op);
1548 	} else {
1549 		BUG();
1550 	}
1551 	return ret;
1552 }
1553 
1554 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1555 				    struct extent_buffer *leaf,
1556 				    struct btrfs_extent_item *ei)
1557 {
1558 	u64 flags = btrfs_extent_flags(leaf, ei);
1559 	if (extent_op->update_flags) {
1560 		flags |= extent_op->flags_to_set;
1561 		btrfs_set_extent_flags(leaf, ei, flags);
1562 	}
1563 
1564 	if (extent_op->update_key) {
1565 		struct btrfs_tree_block_info *bi;
1566 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1567 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1568 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1569 	}
1570 }
1571 
1572 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1573 				 struct btrfs_delayed_ref_head *head,
1574 				 struct btrfs_delayed_extent_op *extent_op)
1575 {
1576 	struct btrfs_fs_info *fs_info = trans->fs_info;
1577 	struct btrfs_key key;
1578 	struct btrfs_path *path;
1579 	struct btrfs_extent_item *ei;
1580 	struct extent_buffer *leaf;
1581 	u32 item_size;
1582 	int ret;
1583 	int err = 0;
1584 	int metadata = !extent_op->is_data;
1585 
1586 	if (trans->aborted)
1587 		return 0;
1588 
1589 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1590 		metadata = 0;
1591 
1592 	path = btrfs_alloc_path();
1593 	if (!path)
1594 		return -ENOMEM;
1595 
1596 	key.objectid = head->bytenr;
1597 
1598 	if (metadata) {
1599 		key.type = BTRFS_METADATA_ITEM_KEY;
1600 		key.offset = extent_op->level;
1601 	} else {
1602 		key.type = BTRFS_EXTENT_ITEM_KEY;
1603 		key.offset = head->num_bytes;
1604 	}
1605 
1606 again:
1607 	path->reada = READA_FORWARD;
1608 	path->leave_spinning = 1;
1609 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
1610 	if (ret < 0) {
1611 		err = ret;
1612 		goto out;
1613 	}
1614 	if (ret > 0) {
1615 		if (metadata) {
1616 			if (path->slots[0] > 0) {
1617 				path->slots[0]--;
1618 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1619 						      path->slots[0]);
1620 				if (key.objectid == head->bytenr &&
1621 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1622 				    key.offset == head->num_bytes)
1623 					ret = 0;
1624 			}
1625 			if (ret > 0) {
1626 				btrfs_release_path(path);
1627 				metadata = 0;
1628 
1629 				key.objectid = head->bytenr;
1630 				key.offset = head->num_bytes;
1631 				key.type = BTRFS_EXTENT_ITEM_KEY;
1632 				goto again;
1633 			}
1634 		} else {
1635 			err = -EIO;
1636 			goto out;
1637 		}
1638 	}
1639 
1640 	leaf = path->nodes[0];
1641 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 
1643 	if (unlikely(item_size < sizeof(*ei))) {
1644 		err = -EINVAL;
1645 		btrfs_print_v0_err(fs_info);
1646 		btrfs_abort_transaction(trans, err);
1647 		goto out;
1648 	}
1649 
1650 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 	__run_delayed_extent_op(extent_op, leaf, ei);
1652 
1653 	btrfs_mark_buffer_dirty(leaf);
1654 out:
1655 	btrfs_free_path(path);
1656 	return err;
1657 }
1658 
1659 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1660 				struct btrfs_delayed_ref_node *node,
1661 				struct btrfs_delayed_extent_op *extent_op,
1662 				int insert_reserved)
1663 {
1664 	int ret = 0;
1665 	struct btrfs_delayed_tree_ref *ref;
1666 	u64 parent = 0;
1667 	u64 ref_root = 0;
1668 
1669 	ref = btrfs_delayed_node_to_tree_ref(node);
1670 	trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1671 
1672 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1673 		parent = ref->parent;
1674 	ref_root = ref->root;
1675 
1676 	if (node->ref_mod != 1) {
1677 		btrfs_err(trans->fs_info,
1678 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1679 			  node->bytenr, node->ref_mod, node->action, ref_root,
1680 			  parent);
1681 		return -EIO;
1682 	}
1683 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1684 		BUG_ON(!extent_op || !extent_op->update_flags);
1685 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1686 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1687 		ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1688 					     ref->level, 0, 1, extent_op);
1689 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1690 		ret = __btrfs_free_extent(trans, node, parent, ref_root,
1691 					  ref->level, 0, 1, extent_op);
1692 	} else {
1693 		BUG();
1694 	}
1695 	return ret;
1696 }
1697 
1698 /* helper function to actually process a single delayed ref entry */
1699 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1700 			       struct btrfs_delayed_ref_node *node,
1701 			       struct btrfs_delayed_extent_op *extent_op,
1702 			       int insert_reserved)
1703 {
1704 	int ret = 0;
1705 
1706 	if (trans->aborted) {
1707 		if (insert_reserved)
1708 			btrfs_pin_extent(trans->fs_info, node->bytenr,
1709 					 node->num_bytes, 1);
1710 		return 0;
1711 	}
1712 
1713 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1714 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1715 		ret = run_delayed_tree_ref(trans, node, extent_op,
1716 					   insert_reserved);
1717 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1718 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1719 		ret = run_delayed_data_ref(trans, node, extent_op,
1720 					   insert_reserved);
1721 	else
1722 		BUG();
1723 	if (ret && insert_reserved)
1724 		btrfs_pin_extent(trans->fs_info, node->bytenr,
1725 				 node->num_bytes, 1);
1726 	return ret;
1727 }
1728 
1729 static inline struct btrfs_delayed_ref_node *
1730 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1731 {
1732 	struct btrfs_delayed_ref_node *ref;
1733 
1734 	if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1735 		return NULL;
1736 
1737 	/*
1738 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1739 	 * This is to prevent a ref count from going down to zero, which deletes
1740 	 * the extent item from the extent tree, when there still are references
1741 	 * to add, which would fail because they would not find the extent item.
1742 	 */
1743 	if (!list_empty(&head->ref_add_list))
1744 		return list_first_entry(&head->ref_add_list,
1745 				struct btrfs_delayed_ref_node, add_list);
1746 
1747 	ref = rb_entry(rb_first_cached(&head->ref_tree),
1748 		       struct btrfs_delayed_ref_node, ref_node);
1749 	ASSERT(list_empty(&ref->add_list));
1750 	return ref;
1751 }
1752 
1753 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1754 				      struct btrfs_delayed_ref_head *head)
1755 {
1756 	spin_lock(&delayed_refs->lock);
1757 	head->processing = 0;
1758 	delayed_refs->num_heads_ready++;
1759 	spin_unlock(&delayed_refs->lock);
1760 	btrfs_delayed_ref_unlock(head);
1761 }
1762 
1763 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1764 				struct btrfs_delayed_ref_head *head)
1765 {
1766 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1767 
1768 	if (!extent_op)
1769 		return NULL;
1770 
1771 	if (head->must_insert_reserved) {
1772 		head->extent_op = NULL;
1773 		btrfs_free_delayed_extent_op(extent_op);
1774 		return NULL;
1775 	}
1776 	return extent_op;
1777 }
1778 
1779 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1780 				     struct btrfs_delayed_ref_head *head)
1781 {
1782 	struct btrfs_delayed_extent_op *extent_op;
1783 	int ret;
1784 
1785 	extent_op = cleanup_extent_op(head);
1786 	if (!extent_op)
1787 		return 0;
1788 	head->extent_op = NULL;
1789 	spin_unlock(&head->lock);
1790 	ret = run_delayed_extent_op(trans, head, extent_op);
1791 	btrfs_free_delayed_extent_op(extent_op);
1792 	return ret ? ret : 1;
1793 }
1794 
1795 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1796 				  struct btrfs_delayed_ref_root *delayed_refs,
1797 				  struct btrfs_delayed_ref_head *head)
1798 {
1799 	int nr_items = 1;	/* Dropping this ref head update. */
1800 
1801 	if (head->total_ref_mod < 0) {
1802 		struct btrfs_space_info *space_info;
1803 		u64 flags;
1804 
1805 		if (head->is_data)
1806 			flags = BTRFS_BLOCK_GROUP_DATA;
1807 		else if (head->is_system)
1808 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
1809 		else
1810 			flags = BTRFS_BLOCK_GROUP_METADATA;
1811 		space_info = btrfs_find_space_info(fs_info, flags);
1812 		ASSERT(space_info);
1813 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
1814 				   -head->num_bytes,
1815 				   BTRFS_TOTAL_BYTES_PINNED_BATCH);
1816 
1817 		/*
1818 		 * We had csum deletions accounted for in our delayed refs rsv,
1819 		 * we need to drop the csum leaves for this update from our
1820 		 * delayed_refs_rsv.
1821 		 */
1822 		if (head->is_data) {
1823 			spin_lock(&delayed_refs->lock);
1824 			delayed_refs->pending_csums -= head->num_bytes;
1825 			spin_unlock(&delayed_refs->lock);
1826 			nr_items += btrfs_csum_bytes_to_leaves(fs_info,
1827 				head->num_bytes);
1828 		}
1829 	}
1830 
1831 	btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1832 }
1833 
1834 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1835 			    struct btrfs_delayed_ref_head *head)
1836 {
1837 
1838 	struct btrfs_fs_info *fs_info = trans->fs_info;
1839 	struct btrfs_delayed_ref_root *delayed_refs;
1840 	int ret;
1841 
1842 	delayed_refs = &trans->transaction->delayed_refs;
1843 
1844 	ret = run_and_cleanup_extent_op(trans, head);
1845 	if (ret < 0) {
1846 		unselect_delayed_ref_head(delayed_refs, head);
1847 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1848 		return ret;
1849 	} else if (ret) {
1850 		return ret;
1851 	}
1852 
1853 	/*
1854 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1855 	 * and then re-check to make sure nobody got added.
1856 	 */
1857 	spin_unlock(&head->lock);
1858 	spin_lock(&delayed_refs->lock);
1859 	spin_lock(&head->lock);
1860 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1861 		spin_unlock(&head->lock);
1862 		spin_unlock(&delayed_refs->lock);
1863 		return 1;
1864 	}
1865 	btrfs_delete_ref_head(delayed_refs, head);
1866 	spin_unlock(&head->lock);
1867 	spin_unlock(&delayed_refs->lock);
1868 
1869 	if (head->must_insert_reserved) {
1870 		btrfs_pin_extent(fs_info, head->bytenr,
1871 				 head->num_bytes, 1);
1872 		if (head->is_data) {
1873 			ret = btrfs_del_csums(trans, fs_info->csum_root,
1874 					      head->bytenr, head->num_bytes);
1875 		}
1876 	}
1877 
1878 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1879 
1880 	trace_run_delayed_ref_head(fs_info, head, 0);
1881 	btrfs_delayed_ref_unlock(head);
1882 	btrfs_put_delayed_ref_head(head);
1883 	return 0;
1884 }
1885 
1886 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1887 					struct btrfs_trans_handle *trans)
1888 {
1889 	struct btrfs_delayed_ref_root *delayed_refs =
1890 		&trans->transaction->delayed_refs;
1891 	struct btrfs_delayed_ref_head *head = NULL;
1892 	int ret;
1893 
1894 	spin_lock(&delayed_refs->lock);
1895 	head = btrfs_select_ref_head(delayed_refs);
1896 	if (!head) {
1897 		spin_unlock(&delayed_refs->lock);
1898 		return head;
1899 	}
1900 
1901 	/*
1902 	 * Grab the lock that says we are going to process all the refs for
1903 	 * this head
1904 	 */
1905 	ret = btrfs_delayed_ref_lock(delayed_refs, head);
1906 	spin_unlock(&delayed_refs->lock);
1907 
1908 	/*
1909 	 * We may have dropped the spin lock to get the head mutex lock, and
1910 	 * that might have given someone else time to free the head.  If that's
1911 	 * true, it has been removed from our list and we can move on.
1912 	 */
1913 	if (ret == -EAGAIN)
1914 		head = ERR_PTR(-EAGAIN);
1915 
1916 	return head;
1917 }
1918 
1919 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1920 				    struct btrfs_delayed_ref_head *locked_ref,
1921 				    unsigned long *run_refs)
1922 {
1923 	struct btrfs_fs_info *fs_info = trans->fs_info;
1924 	struct btrfs_delayed_ref_root *delayed_refs;
1925 	struct btrfs_delayed_extent_op *extent_op;
1926 	struct btrfs_delayed_ref_node *ref;
1927 	int must_insert_reserved = 0;
1928 	int ret;
1929 
1930 	delayed_refs = &trans->transaction->delayed_refs;
1931 
1932 	lockdep_assert_held(&locked_ref->mutex);
1933 	lockdep_assert_held(&locked_ref->lock);
1934 
1935 	while ((ref = select_delayed_ref(locked_ref))) {
1936 		if (ref->seq &&
1937 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1938 			spin_unlock(&locked_ref->lock);
1939 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1940 			return -EAGAIN;
1941 		}
1942 
1943 		(*run_refs)++;
1944 		ref->in_tree = 0;
1945 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1946 		RB_CLEAR_NODE(&ref->ref_node);
1947 		if (!list_empty(&ref->add_list))
1948 			list_del(&ref->add_list);
1949 		/*
1950 		 * When we play the delayed ref, also correct the ref_mod on
1951 		 * head
1952 		 */
1953 		switch (ref->action) {
1954 		case BTRFS_ADD_DELAYED_REF:
1955 		case BTRFS_ADD_DELAYED_EXTENT:
1956 			locked_ref->ref_mod -= ref->ref_mod;
1957 			break;
1958 		case BTRFS_DROP_DELAYED_REF:
1959 			locked_ref->ref_mod += ref->ref_mod;
1960 			break;
1961 		default:
1962 			WARN_ON(1);
1963 		}
1964 		atomic_dec(&delayed_refs->num_entries);
1965 
1966 		/*
1967 		 * Record the must_insert_reserved flag before we drop the
1968 		 * spin lock.
1969 		 */
1970 		must_insert_reserved = locked_ref->must_insert_reserved;
1971 		locked_ref->must_insert_reserved = 0;
1972 
1973 		extent_op = locked_ref->extent_op;
1974 		locked_ref->extent_op = NULL;
1975 		spin_unlock(&locked_ref->lock);
1976 
1977 		ret = run_one_delayed_ref(trans, ref, extent_op,
1978 					  must_insert_reserved);
1979 
1980 		btrfs_free_delayed_extent_op(extent_op);
1981 		if (ret) {
1982 			unselect_delayed_ref_head(delayed_refs, locked_ref);
1983 			btrfs_put_delayed_ref(ref);
1984 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
1985 				    ret);
1986 			return ret;
1987 		}
1988 
1989 		btrfs_put_delayed_ref(ref);
1990 		cond_resched();
1991 
1992 		spin_lock(&locked_ref->lock);
1993 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 /*
2000  * Returns 0 on success or if called with an already aborted transaction.
2001  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2002  */
2003 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2004 					     unsigned long nr)
2005 {
2006 	struct btrfs_fs_info *fs_info = trans->fs_info;
2007 	struct btrfs_delayed_ref_root *delayed_refs;
2008 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2009 	ktime_t start = ktime_get();
2010 	int ret;
2011 	unsigned long count = 0;
2012 	unsigned long actual_count = 0;
2013 
2014 	delayed_refs = &trans->transaction->delayed_refs;
2015 	do {
2016 		if (!locked_ref) {
2017 			locked_ref = btrfs_obtain_ref_head(trans);
2018 			if (IS_ERR_OR_NULL(locked_ref)) {
2019 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2020 					continue;
2021 				} else {
2022 					break;
2023 				}
2024 			}
2025 			count++;
2026 		}
2027 		/*
2028 		 * We need to try and merge add/drops of the same ref since we
2029 		 * can run into issues with relocate dropping the implicit ref
2030 		 * and then it being added back again before the drop can
2031 		 * finish.  If we merged anything we need to re-loop so we can
2032 		 * get a good ref.
2033 		 * Or we can get node references of the same type that weren't
2034 		 * merged when created due to bumps in the tree mod seq, and
2035 		 * we need to merge them to prevent adding an inline extent
2036 		 * backref before dropping it (triggering a BUG_ON at
2037 		 * insert_inline_extent_backref()).
2038 		 */
2039 		spin_lock(&locked_ref->lock);
2040 		btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2041 
2042 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2043 						      &actual_count);
2044 		if (ret < 0 && ret != -EAGAIN) {
2045 			/*
2046 			 * Error, btrfs_run_delayed_refs_for_head already
2047 			 * unlocked everything so just bail out
2048 			 */
2049 			return ret;
2050 		} else if (!ret) {
2051 			/*
2052 			 * Success, perform the usual cleanup of a processed
2053 			 * head
2054 			 */
2055 			ret = cleanup_ref_head(trans, locked_ref);
2056 			if (ret > 0 ) {
2057 				/* We dropped our lock, we need to loop. */
2058 				ret = 0;
2059 				continue;
2060 			} else if (ret) {
2061 				return ret;
2062 			}
2063 		}
2064 
2065 		/*
2066 		 * Either success case or btrfs_run_delayed_refs_for_head
2067 		 * returned -EAGAIN, meaning we need to select another head
2068 		 */
2069 
2070 		locked_ref = NULL;
2071 		cond_resched();
2072 	} while ((nr != -1 && count < nr) || locked_ref);
2073 
2074 	/*
2075 	 * We don't want to include ref heads since we can have empty ref heads
2076 	 * and those will drastically skew our runtime down since we just do
2077 	 * accounting, no actual extent tree updates.
2078 	 */
2079 	if (actual_count > 0) {
2080 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2081 		u64 avg;
2082 
2083 		/*
2084 		 * We weigh the current average higher than our current runtime
2085 		 * to avoid large swings in the average.
2086 		 */
2087 		spin_lock(&delayed_refs->lock);
2088 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2089 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2090 		spin_unlock(&delayed_refs->lock);
2091 	}
2092 	return 0;
2093 }
2094 
2095 #ifdef SCRAMBLE_DELAYED_REFS
2096 /*
2097  * Normally delayed refs get processed in ascending bytenr order. This
2098  * correlates in most cases to the order added. To expose dependencies on this
2099  * order, we start to process the tree in the middle instead of the beginning
2100  */
2101 static u64 find_middle(struct rb_root *root)
2102 {
2103 	struct rb_node *n = root->rb_node;
2104 	struct btrfs_delayed_ref_node *entry;
2105 	int alt = 1;
2106 	u64 middle;
2107 	u64 first = 0, last = 0;
2108 
2109 	n = rb_first(root);
2110 	if (n) {
2111 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2112 		first = entry->bytenr;
2113 	}
2114 	n = rb_last(root);
2115 	if (n) {
2116 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2117 		last = entry->bytenr;
2118 	}
2119 	n = root->rb_node;
2120 
2121 	while (n) {
2122 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2123 		WARN_ON(!entry->in_tree);
2124 
2125 		middle = entry->bytenr;
2126 
2127 		if (alt)
2128 			n = n->rb_left;
2129 		else
2130 			n = n->rb_right;
2131 
2132 		alt = 1 - alt;
2133 	}
2134 	return middle;
2135 }
2136 #endif
2137 
2138 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2139 {
2140 	u64 num_bytes;
2141 
2142 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2143 			     sizeof(struct btrfs_extent_inline_ref));
2144 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2145 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2146 
2147 	/*
2148 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2149 	 * closer to what we're really going to want to use.
2150 	 */
2151 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2152 }
2153 
2154 /*
2155  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2156  * would require to store the csums for that many bytes.
2157  */
2158 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2159 {
2160 	u64 csum_size;
2161 	u64 num_csums_per_leaf;
2162 	u64 num_csums;
2163 
2164 	csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2165 	num_csums_per_leaf = div64_u64(csum_size,
2166 			(u64)btrfs_super_csum_size(fs_info->super_copy));
2167 	num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2168 	num_csums += num_csums_per_leaf - 1;
2169 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2170 	return num_csums;
2171 }
2172 
2173 /*
2174  * this starts processing the delayed reference count updates and
2175  * extent insertions we have queued up so far.  count can be
2176  * 0, which means to process everything in the tree at the start
2177  * of the run (but not newly added entries), or it can be some target
2178  * number you'd like to process.
2179  *
2180  * Returns 0 on success or if called with an aborted transaction
2181  * Returns <0 on error and aborts the transaction
2182  */
2183 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2184 			   unsigned long count)
2185 {
2186 	struct btrfs_fs_info *fs_info = trans->fs_info;
2187 	struct rb_node *node;
2188 	struct btrfs_delayed_ref_root *delayed_refs;
2189 	struct btrfs_delayed_ref_head *head;
2190 	int ret;
2191 	int run_all = count == (unsigned long)-1;
2192 
2193 	/* We'll clean this up in btrfs_cleanup_transaction */
2194 	if (trans->aborted)
2195 		return 0;
2196 
2197 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2198 		return 0;
2199 
2200 	delayed_refs = &trans->transaction->delayed_refs;
2201 	if (count == 0)
2202 		count = atomic_read(&delayed_refs->num_entries) * 2;
2203 
2204 again:
2205 #ifdef SCRAMBLE_DELAYED_REFS
2206 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2207 #endif
2208 	ret = __btrfs_run_delayed_refs(trans, count);
2209 	if (ret < 0) {
2210 		btrfs_abort_transaction(trans, ret);
2211 		return ret;
2212 	}
2213 
2214 	if (run_all) {
2215 		btrfs_create_pending_block_groups(trans);
2216 
2217 		spin_lock(&delayed_refs->lock);
2218 		node = rb_first_cached(&delayed_refs->href_root);
2219 		if (!node) {
2220 			spin_unlock(&delayed_refs->lock);
2221 			goto out;
2222 		}
2223 		head = rb_entry(node, struct btrfs_delayed_ref_head,
2224 				href_node);
2225 		refcount_inc(&head->refs);
2226 		spin_unlock(&delayed_refs->lock);
2227 
2228 		/* Mutex was contended, block until it's released and retry. */
2229 		mutex_lock(&head->mutex);
2230 		mutex_unlock(&head->mutex);
2231 
2232 		btrfs_put_delayed_ref_head(head);
2233 		cond_resched();
2234 		goto again;
2235 	}
2236 out:
2237 	return 0;
2238 }
2239 
2240 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2241 				u64 bytenr, u64 num_bytes, u64 flags,
2242 				int level, int is_data)
2243 {
2244 	struct btrfs_delayed_extent_op *extent_op;
2245 	int ret;
2246 
2247 	extent_op = btrfs_alloc_delayed_extent_op();
2248 	if (!extent_op)
2249 		return -ENOMEM;
2250 
2251 	extent_op->flags_to_set = flags;
2252 	extent_op->update_flags = true;
2253 	extent_op->update_key = false;
2254 	extent_op->is_data = is_data ? true : false;
2255 	extent_op->level = level;
2256 
2257 	ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2258 	if (ret)
2259 		btrfs_free_delayed_extent_op(extent_op);
2260 	return ret;
2261 }
2262 
2263 static noinline int check_delayed_ref(struct btrfs_root *root,
2264 				      struct btrfs_path *path,
2265 				      u64 objectid, u64 offset, u64 bytenr)
2266 {
2267 	struct btrfs_delayed_ref_head *head;
2268 	struct btrfs_delayed_ref_node *ref;
2269 	struct btrfs_delayed_data_ref *data_ref;
2270 	struct btrfs_delayed_ref_root *delayed_refs;
2271 	struct btrfs_transaction *cur_trans;
2272 	struct rb_node *node;
2273 	int ret = 0;
2274 
2275 	spin_lock(&root->fs_info->trans_lock);
2276 	cur_trans = root->fs_info->running_transaction;
2277 	if (cur_trans)
2278 		refcount_inc(&cur_trans->use_count);
2279 	spin_unlock(&root->fs_info->trans_lock);
2280 	if (!cur_trans)
2281 		return 0;
2282 
2283 	delayed_refs = &cur_trans->delayed_refs;
2284 	spin_lock(&delayed_refs->lock);
2285 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2286 	if (!head) {
2287 		spin_unlock(&delayed_refs->lock);
2288 		btrfs_put_transaction(cur_trans);
2289 		return 0;
2290 	}
2291 
2292 	if (!mutex_trylock(&head->mutex)) {
2293 		refcount_inc(&head->refs);
2294 		spin_unlock(&delayed_refs->lock);
2295 
2296 		btrfs_release_path(path);
2297 
2298 		/*
2299 		 * Mutex was contended, block until it's released and let
2300 		 * caller try again
2301 		 */
2302 		mutex_lock(&head->mutex);
2303 		mutex_unlock(&head->mutex);
2304 		btrfs_put_delayed_ref_head(head);
2305 		btrfs_put_transaction(cur_trans);
2306 		return -EAGAIN;
2307 	}
2308 	spin_unlock(&delayed_refs->lock);
2309 
2310 	spin_lock(&head->lock);
2311 	/*
2312 	 * XXX: We should replace this with a proper search function in the
2313 	 * future.
2314 	 */
2315 	for (node = rb_first_cached(&head->ref_tree); node;
2316 	     node = rb_next(node)) {
2317 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2318 		/* If it's a shared ref we know a cross reference exists */
2319 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2320 			ret = 1;
2321 			break;
2322 		}
2323 
2324 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2325 
2326 		/*
2327 		 * If our ref doesn't match the one we're currently looking at
2328 		 * then we have a cross reference.
2329 		 */
2330 		if (data_ref->root != root->root_key.objectid ||
2331 		    data_ref->objectid != objectid ||
2332 		    data_ref->offset != offset) {
2333 			ret = 1;
2334 			break;
2335 		}
2336 	}
2337 	spin_unlock(&head->lock);
2338 	mutex_unlock(&head->mutex);
2339 	btrfs_put_transaction(cur_trans);
2340 	return ret;
2341 }
2342 
2343 static noinline int check_committed_ref(struct btrfs_root *root,
2344 					struct btrfs_path *path,
2345 					u64 objectid, u64 offset, u64 bytenr)
2346 {
2347 	struct btrfs_fs_info *fs_info = root->fs_info;
2348 	struct btrfs_root *extent_root = fs_info->extent_root;
2349 	struct extent_buffer *leaf;
2350 	struct btrfs_extent_data_ref *ref;
2351 	struct btrfs_extent_inline_ref *iref;
2352 	struct btrfs_extent_item *ei;
2353 	struct btrfs_key key;
2354 	u32 item_size;
2355 	int type;
2356 	int ret;
2357 
2358 	key.objectid = bytenr;
2359 	key.offset = (u64)-1;
2360 	key.type = BTRFS_EXTENT_ITEM_KEY;
2361 
2362 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2363 	if (ret < 0)
2364 		goto out;
2365 	BUG_ON(ret == 0); /* Corruption */
2366 
2367 	ret = -ENOENT;
2368 	if (path->slots[0] == 0)
2369 		goto out;
2370 
2371 	path->slots[0]--;
2372 	leaf = path->nodes[0];
2373 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2374 
2375 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2376 		goto out;
2377 
2378 	ret = 1;
2379 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2380 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2381 
2382 	/* If extent item has more than 1 inline ref then it's shared */
2383 	if (item_size != sizeof(*ei) +
2384 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2385 		goto out;
2386 
2387 	/* If extent created before last snapshot => it's definitely shared */
2388 	if (btrfs_extent_generation(leaf, ei) <=
2389 	    btrfs_root_last_snapshot(&root->root_item))
2390 		goto out;
2391 
2392 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2393 
2394 	/* If this extent has SHARED_DATA_REF then it's shared */
2395 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2396 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2397 		goto out;
2398 
2399 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2400 	if (btrfs_extent_refs(leaf, ei) !=
2401 	    btrfs_extent_data_ref_count(leaf, ref) ||
2402 	    btrfs_extent_data_ref_root(leaf, ref) !=
2403 	    root->root_key.objectid ||
2404 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2405 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2406 		goto out;
2407 
2408 	ret = 0;
2409 out:
2410 	return ret;
2411 }
2412 
2413 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2414 			  u64 bytenr)
2415 {
2416 	struct btrfs_path *path;
2417 	int ret;
2418 
2419 	path = btrfs_alloc_path();
2420 	if (!path)
2421 		return -ENOMEM;
2422 
2423 	do {
2424 		ret = check_committed_ref(root, path, objectid,
2425 					  offset, bytenr);
2426 		if (ret && ret != -ENOENT)
2427 			goto out;
2428 
2429 		ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2430 	} while (ret == -EAGAIN);
2431 
2432 out:
2433 	btrfs_free_path(path);
2434 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2435 		WARN_ON(ret > 0);
2436 	return ret;
2437 }
2438 
2439 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2440 			   struct btrfs_root *root,
2441 			   struct extent_buffer *buf,
2442 			   int full_backref, int inc)
2443 {
2444 	struct btrfs_fs_info *fs_info = root->fs_info;
2445 	u64 bytenr;
2446 	u64 num_bytes;
2447 	u64 parent;
2448 	u64 ref_root;
2449 	u32 nritems;
2450 	struct btrfs_key key;
2451 	struct btrfs_file_extent_item *fi;
2452 	struct btrfs_ref generic_ref = { 0 };
2453 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2454 	int i;
2455 	int action;
2456 	int level;
2457 	int ret = 0;
2458 
2459 	if (btrfs_is_testing(fs_info))
2460 		return 0;
2461 
2462 	ref_root = btrfs_header_owner(buf);
2463 	nritems = btrfs_header_nritems(buf);
2464 	level = btrfs_header_level(buf);
2465 
2466 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
2467 		return 0;
2468 
2469 	if (full_backref)
2470 		parent = buf->start;
2471 	else
2472 		parent = 0;
2473 	if (inc)
2474 		action = BTRFS_ADD_DELAYED_REF;
2475 	else
2476 		action = BTRFS_DROP_DELAYED_REF;
2477 
2478 	for (i = 0; i < nritems; i++) {
2479 		if (level == 0) {
2480 			btrfs_item_key_to_cpu(buf, &key, i);
2481 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2482 				continue;
2483 			fi = btrfs_item_ptr(buf, i,
2484 					    struct btrfs_file_extent_item);
2485 			if (btrfs_file_extent_type(buf, fi) ==
2486 			    BTRFS_FILE_EXTENT_INLINE)
2487 				continue;
2488 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2489 			if (bytenr == 0)
2490 				continue;
2491 
2492 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2493 			key.offset -= btrfs_file_extent_offset(buf, fi);
2494 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2495 					       num_bytes, parent);
2496 			generic_ref.real_root = root->root_key.objectid;
2497 			btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2498 					    key.offset);
2499 			generic_ref.skip_qgroup = for_reloc;
2500 			if (inc)
2501 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2502 			else
2503 				ret = btrfs_free_extent(trans, &generic_ref);
2504 			if (ret)
2505 				goto fail;
2506 		} else {
2507 			bytenr = btrfs_node_blockptr(buf, i);
2508 			num_bytes = fs_info->nodesize;
2509 			btrfs_init_generic_ref(&generic_ref, action, bytenr,
2510 					       num_bytes, parent);
2511 			generic_ref.real_root = root->root_key.objectid;
2512 			btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
2513 			generic_ref.skip_qgroup = for_reloc;
2514 			if (inc)
2515 				ret = btrfs_inc_extent_ref(trans, &generic_ref);
2516 			else
2517 				ret = btrfs_free_extent(trans, &generic_ref);
2518 			if (ret)
2519 				goto fail;
2520 		}
2521 	}
2522 	return 0;
2523 fail:
2524 	return ret;
2525 }
2526 
2527 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2528 		  struct extent_buffer *buf, int full_backref)
2529 {
2530 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2531 }
2532 
2533 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2534 		  struct extent_buffer *buf, int full_backref)
2535 {
2536 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2537 }
2538 
2539 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
2540 {
2541 	struct btrfs_block_group *block_group;
2542 	int readonly = 0;
2543 
2544 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
2545 	if (!block_group || block_group->ro)
2546 		readonly = 1;
2547 	if (block_group)
2548 		btrfs_put_block_group(block_group);
2549 	return readonly;
2550 }
2551 
2552 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2553 {
2554 	struct btrfs_fs_info *fs_info = root->fs_info;
2555 	u64 flags;
2556 	u64 ret;
2557 
2558 	if (data)
2559 		flags = BTRFS_BLOCK_GROUP_DATA;
2560 	else if (root == fs_info->chunk_root)
2561 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2562 	else
2563 		flags = BTRFS_BLOCK_GROUP_METADATA;
2564 
2565 	ret = btrfs_get_alloc_profile(fs_info, flags);
2566 	return ret;
2567 }
2568 
2569 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
2570 {
2571 	struct btrfs_block_group *cache;
2572 	u64 bytenr;
2573 
2574 	spin_lock(&fs_info->block_group_cache_lock);
2575 	bytenr = fs_info->first_logical_byte;
2576 	spin_unlock(&fs_info->block_group_cache_lock);
2577 
2578 	if (bytenr < (u64)-1)
2579 		return bytenr;
2580 
2581 	cache = btrfs_lookup_first_block_group(fs_info, search_start);
2582 	if (!cache)
2583 		return 0;
2584 
2585 	bytenr = cache->start;
2586 	btrfs_put_block_group(cache);
2587 
2588 	return bytenr;
2589 }
2590 
2591 static int pin_down_extent(struct btrfs_block_group *cache,
2592 			   u64 bytenr, u64 num_bytes, int reserved)
2593 {
2594 	struct btrfs_fs_info *fs_info = cache->fs_info;
2595 
2596 	spin_lock(&cache->space_info->lock);
2597 	spin_lock(&cache->lock);
2598 	cache->pinned += num_bytes;
2599 	btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2600 					     num_bytes);
2601 	if (reserved) {
2602 		cache->reserved -= num_bytes;
2603 		cache->space_info->bytes_reserved -= num_bytes;
2604 	}
2605 	spin_unlock(&cache->lock);
2606 	spin_unlock(&cache->space_info->lock);
2607 
2608 	percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
2609 		    num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2610 	set_extent_dirty(fs_info->pinned_extents, bytenr,
2611 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
2612 	return 0;
2613 }
2614 
2615 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2616 		     u64 bytenr, u64 num_bytes, int reserved)
2617 {
2618 	struct btrfs_block_group *cache;
2619 
2620 	ASSERT(fs_info->running_transaction);
2621 
2622 	cache = btrfs_lookup_block_group(fs_info, bytenr);
2623 	BUG_ON(!cache); /* Logic error */
2624 
2625 	pin_down_extent(cache, bytenr, num_bytes, reserved);
2626 
2627 	btrfs_put_block_group(cache);
2628 	return 0;
2629 }
2630 
2631 /*
2632  * this function must be called within transaction
2633  */
2634 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2635 				    u64 bytenr, u64 num_bytes)
2636 {
2637 	struct btrfs_block_group *cache;
2638 	int ret;
2639 
2640 	cache = btrfs_lookup_block_group(fs_info, bytenr);
2641 	if (!cache)
2642 		return -EINVAL;
2643 
2644 	/*
2645 	 * pull in the free space cache (if any) so that our pin
2646 	 * removes the free space from the cache.  We have load_only set
2647 	 * to one because the slow code to read in the free extents does check
2648 	 * the pinned extents.
2649 	 */
2650 	btrfs_cache_block_group(cache, 1);
2651 
2652 	pin_down_extent(cache, bytenr, num_bytes, 0);
2653 
2654 	/* remove us from the free space cache (if we're there at all) */
2655 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2656 	btrfs_put_block_group(cache);
2657 	return ret;
2658 }
2659 
2660 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2661 				   u64 start, u64 num_bytes)
2662 {
2663 	int ret;
2664 	struct btrfs_block_group *block_group;
2665 	struct btrfs_caching_control *caching_ctl;
2666 
2667 	block_group = btrfs_lookup_block_group(fs_info, start);
2668 	if (!block_group)
2669 		return -EINVAL;
2670 
2671 	btrfs_cache_block_group(block_group, 0);
2672 	caching_ctl = btrfs_get_caching_control(block_group);
2673 
2674 	if (!caching_ctl) {
2675 		/* Logic error */
2676 		BUG_ON(!btrfs_block_group_done(block_group));
2677 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
2678 	} else {
2679 		mutex_lock(&caching_ctl->mutex);
2680 
2681 		if (start >= caching_ctl->progress) {
2682 			ret = btrfs_add_excluded_extent(fs_info, start,
2683 							num_bytes);
2684 		} else if (start + num_bytes <= caching_ctl->progress) {
2685 			ret = btrfs_remove_free_space(block_group,
2686 						      start, num_bytes);
2687 		} else {
2688 			num_bytes = caching_ctl->progress - start;
2689 			ret = btrfs_remove_free_space(block_group,
2690 						      start, num_bytes);
2691 			if (ret)
2692 				goto out_lock;
2693 
2694 			num_bytes = (start + num_bytes) -
2695 				caching_ctl->progress;
2696 			start = caching_ctl->progress;
2697 			ret = btrfs_add_excluded_extent(fs_info, start,
2698 							num_bytes);
2699 		}
2700 out_lock:
2701 		mutex_unlock(&caching_ctl->mutex);
2702 		btrfs_put_caching_control(caching_ctl);
2703 	}
2704 	btrfs_put_block_group(block_group);
2705 	return ret;
2706 }
2707 
2708 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2709 {
2710 	struct btrfs_fs_info *fs_info = eb->fs_info;
2711 	struct btrfs_file_extent_item *item;
2712 	struct btrfs_key key;
2713 	int found_type;
2714 	int i;
2715 	int ret = 0;
2716 
2717 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2718 		return 0;
2719 
2720 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2721 		btrfs_item_key_to_cpu(eb, &key, i);
2722 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2723 			continue;
2724 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2725 		found_type = btrfs_file_extent_type(eb, item);
2726 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2727 			continue;
2728 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2729 			continue;
2730 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2731 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2732 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2733 		if (ret)
2734 			break;
2735 	}
2736 
2737 	return ret;
2738 }
2739 
2740 static void
2741 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2742 {
2743 	atomic_inc(&bg->reservations);
2744 }
2745 
2746 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
2747 {
2748 	struct btrfs_caching_control *next;
2749 	struct btrfs_caching_control *caching_ctl;
2750 	struct btrfs_block_group *cache;
2751 
2752 	down_write(&fs_info->commit_root_sem);
2753 
2754 	list_for_each_entry_safe(caching_ctl, next,
2755 				 &fs_info->caching_block_groups, list) {
2756 		cache = caching_ctl->block_group;
2757 		if (btrfs_block_group_done(cache)) {
2758 			cache->last_byte_to_unpin = (u64)-1;
2759 			list_del_init(&caching_ctl->list);
2760 			btrfs_put_caching_control(caching_ctl);
2761 		} else {
2762 			cache->last_byte_to_unpin = caching_ctl->progress;
2763 		}
2764 	}
2765 
2766 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2767 		fs_info->pinned_extents = &fs_info->freed_extents[1];
2768 	else
2769 		fs_info->pinned_extents = &fs_info->freed_extents[0];
2770 
2771 	up_write(&fs_info->commit_root_sem);
2772 
2773 	btrfs_update_global_block_rsv(fs_info);
2774 }
2775 
2776 /*
2777  * Returns the free cluster for the given space info and sets empty_cluster to
2778  * what it should be based on the mount options.
2779  */
2780 static struct btrfs_free_cluster *
2781 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2782 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2783 {
2784 	struct btrfs_free_cluster *ret = NULL;
2785 
2786 	*empty_cluster = 0;
2787 	if (btrfs_mixed_space_info(space_info))
2788 		return ret;
2789 
2790 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2791 		ret = &fs_info->meta_alloc_cluster;
2792 		if (btrfs_test_opt(fs_info, SSD))
2793 			*empty_cluster = SZ_2M;
2794 		else
2795 			*empty_cluster = SZ_64K;
2796 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2797 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2798 		*empty_cluster = SZ_2M;
2799 		ret = &fs_info->data_alloc_cluster;
2800 	}
2801 
2802 	return ret;
2803 }
2804 
2805 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2806 			      u64 start, u64 end,
2807 			      const bool return_free_space)
2808 {
2809 	struct btrfs_block_group *cache = NULL;
2810 	struct btrfs_space_info *space_info;
2811 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2812 	struct btrfs_free_cluster *cluster = NULL;
2813 	u64 len;
2814 	u64 total_unpinned = 0;
2815 	u64 empty_cluster = 0;
2816 	bool readonly;
2817 
2818 	while (start <= end) {
2819 		readonly = false;
2820 		if (!cache ||
2821 		    start >= cache->start + cache->length) {
2822 			if (cache)
2823 				btrfs_put_block_group(cache);
2824 			total_unpinned = 0;
2825 			cache = btrfs_lookup_block_group(fs_info, start);
2826 			BUG_ON(!cache); /* Logic error */
2827 
2828 			cluster = fetch_cluster_info(fs_info,
2829 						     cache->space_info,
2830 						     &empty_cluster);
2831 			empty_cluster <<= 1;
2832 		}
2833 
2834 		len = cache->start + cache->length - start;
2835 		len = min(len, end + 1 - start);
2836 
2837 		if (start < cache->last_byte_to_unpin) {
2838 			len = min(len, cache->last_byte_to_unpin - start);
2839 			if (return_free_space)
2840 				btrfs_add_free_space(cache, start, len);
2841 		}
2842 
2843 		start += len;
2844 		total_unpinned += len;
2845 		space_info = cache->space_info;
2846 
2847 		/*
2848 		 * If this space cluster has been marked as fragmented and we've
2849 		 * unpinned enough in this block group to potentially allow a
2850 		 * cluster to be created inside of it go ahead and clear the
2851 		 * fragmented check.
2852 		 */
2853 		if (cluster && cluster->fragmented &&
2854 		    total_unpinned > empty_cluster) {
2855 			spin_lock(&cluster->lock);
2856 			cluster->fragmented = 0;
2857 			spin_unlock(&cluster->lock);
2858 		}
2859 
2860 		spin_lock(&space_info->lock);
2861 		spin_lock(&cache->lock);
2862 		cache->pinned -= len;
2863 		btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2864 		space_info->max_extent_size = 0;
2865 		percpu_counter_add_batch(&space_info->total_bytes_pinned,
2866 			    -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
2867 		if (cache->ro) {
2868 			space_info->bytes_readonly += len;
2869 			readonly = true;
2870 		}
2871 		spin_unlock(&cache->lock);
2872 		if (!readonly && return_free_space &&
2873 		    global_rsv->space_info == space_info) {
2874 			u64 to_add = len;
2875 
2876 			spin_lock(&global_rsv->lock);
2877 			if (!global_rsv->full) {
2878 				to_add = min(len, global_rsv->size -
2879 					     global_rsv->reserved);
2880 				global_rsv->reserved += to_add;
2881 				btrfs_space_info_update_bytes_may_use(fs_info,
2882 						space_info, to_add);
2883 				if (global_rsv->reserved >= global_rsv->size)
2884 					global_rsv->full = 1;
2885 				len -= to_add;
2886 			}
2887 			spin_unlock(&global_rsv->lock);
2888 			/* Add to any tickets we may have */
2889 			if (len)
2890 				btrfs_try_granting_tickets(fs_info,
2891 							   space_info);
2892 		}
2893 		spin_unlock(&space_info->lock);
2894 	}
2895 
2896 	if (cache)
2897 		btrfs_put_block_group(cache);
2898 	return 0;
2899 }
2900 
2901 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2902 {
2903 	struct btrfs_fs_info *fs_info = trans->fs_info;
2904 	struct btrfs_block_group *block_group, *tmp;
2905 	struct list_head *deleted_bgs;
2906 	struct extent_io_tree *unpin;
2907 	u64 start;
2908 	u64 end;
2909 	int ret;
2910 
2911 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
2912 		unpin = &fs_info->freed_extents[1];
2913 	else
2914 		unpin = &fs_info->freed_extents[0];
2915 
2916 	while (!trans->aborted) {
2917 		struct extent_state *cached_state = NULL;
2918 
2919 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
2920 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2921 					    EXTENT_DIRTY, &cached_state);
2922 		if (ret) {
2923 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2924 			break;
2925 		}
2926 
2927 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2928 			ret = btrfs_discard_extent(fs_info, start,
2929 						   end + 1 - start, NULL);
2930 
2931 		clear_extent_dirty(unpin, start, end, &cached_state);
2932 		unpin_extent_range(fs_info, start, end, true);
2933 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2934 		free_extent_state(cached_state);
2935 		cond_resched();
2936 	}
2937 
2938 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2939 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2940 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2941 	}
2942 
2943 	/*
2944 	 * Transaction is finished.  We don't need the lock anymore.  We
2945 	 * do need to clean up the block groups in case of a transaction
2946 	 * abort.
2947 	 */
2948 	deleted_bgs = &trans->transaction->deleted_bgs;
2949 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2950 		u64 trimmed = 0;
2951 
2952 		ret = -EROFS;
2953 		if (!trans->aborted)
2954 			ret = btrfs_discard_extent(fs_info,
2955 						   block_group->start,
2956 						   block_group->length,
2957 						   &trimmed);
2958 
2959 		list_del_init(&block_group->bg_list);
2960 		btrfs_put_block_group_trimming(block_group);
2961 		btrfs_put_block_group(block_group);
2962 
2963 		if (ret) {
2964 			const char *errstr = btrfs_decode_error(ret);
2965 			btrfs_warn(fs_info,
2966 			   "discard failed while removing blockgroup: errno=%d %s",
2967 				   ret, errstr);
2968 		}
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2975 			       struct btrfs_delayed_ref_node *node, u64 parent,
2976 			       u64 root_objectid, u64 owner_objectid,
2977 			       u64 owner_offset, int refs_to_drop,
2978 			       struct btrfs_delayed_extent_op *extent_op)
2979 {
2980 	struct btrfs_fs_info *info = trans->fs_info;
2981 	struct btrfs_key key;
2982 	struct btrfs_path *path;
2983 	struct btrfs_root *extent_root = info->extent_root;
2984 	struct extent_buffer *leaf;
2985 	struct btrfs_extent_item *ei;
2986 	struct btrfs_extent_inline_ref *iref;
2987 	int ret;
2988 	int is_data;
2989 	int extent_slot = 0;
2990 	int found_extent = 0;
2991 	int num_to_del = 1;
2992 	u32 item_size;
2993 	u64 refs;
2994 	u64 bytenr = node->bytenr;
2995 	u64 num_bytes = node->num_bytes;
2996 	int last_ref = 0;
2997 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2998 
2999 	path = btrfs_alloc_path();
3000 	if (!path)
3001 		return -ENOMEM;
3002 
3003 	path->reada = READA_FORWARD;
3004 	path->leave_spinning = 1;
3005 
3006 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3007 	BUG_ON(!is_data && refs_to_drop != 1);
3008 
3009 	if (is_data)
3010 		skinny_metadata = false;
3011 
3012 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3013 				    parent, root_objectid, owner_objectid,
3014 				    owner_offset);
3015 	if (ret == 0) {
3016 		extent_slot = path->slots[0];
3017 		while (extent_slot >= 0) {
3018 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3019 					      extent_slot);
3020 			if (key.objectid != bytenr)
3021 				break;
3022 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3023 			    key.offset == num_bytes) {
3024 				found_extent = 1;
3025 				break;
3026 			}
3027 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3028 			    key.offset == owner_objectid) {
3029 				found_extent = 1;
3030 				break;
3031 			}
3032 			if (path->slots[0] - extent_slot > 5)
3033 				break;
3034 			extent_slot--;
3035 		}
3036 
3037 		if (!found_extent) {
3038 			BUG_ON(iref);
3039 			ret = remove_extent_backref(trans, path, NULL,
3040 						    refs_to_drop,
3041 						    is_data, &last_ref);
3042 			if (ret) {
3043 				btrfs_abort_transaction(trans, ret);
3044 				goto out;
3045 			}
3046 			btrfs_release_path(path);
3047 			path->leave_spinning = 1;
3048 
3049 			key.objectid = bytenr;
3050 			key.type = BTRFS_EXTENT_ITEM_KEY;
3051 			key.offset = num_bytes;
3052 
3053 			if (!is_data && skinny_metadata) {
3054 				key.type = BTRFS_METADATA_ITEM_KEY;
3055 				key.offset = owner_objectid;
3056 			}
3057 
3058 			ret = btrfs_search_slot(trans, extent_root,
3059 						&key, path, -1, 1);
3060 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3061 				/*
3062 				 * Couldn't find our skinny metadata item,
3063 				 * see if we have ye olde extent item.
3064 				 */
3065 				path->slots[0]--;
3066 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3067 						      path->slots[0]);
3068 				if (key.objectid == bytenr &&
3069 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3070 				    key.offset == num_bytes)
3071 					ret = 0;
3072 			}
3073 
3074 			if (ret > 0 && skinny_metadata) {
3075 				skinny_metadata = false;
3076 				key.objectid = bytenr;
3077 				key.type = BTRFS_EXTENT_ITEM_KEY;
3078 				key.offset = num_bytes;
3079 				btrfs_release_path(path);
3080 				ret = btrfs_search_slot(trans, extent_root,
3081 							&key, path, -1, 1);
3082 			}
3083 
3084 			if (ret) {
3085 				btrfs_err(info,
3086 					  "umm, got %d back from search, was looking for %llu",
3087 					  ret, bytenr);
3088 				if (ret > 0)
3089 					btrfs_print_leaf(path->nodes[0]);
3090 			}
3091 			if (ret < 0) {
3092 				btrfs_abort_transaction(trans, ret);
3093 				goto out;
3094 			}
3095 			extent_slot = path->slots[0];
3096 		}
3097 	} else if (WARN_ON(ret == -ENOENT)) {
3098 		btrfs_print_leaf(path->nodes[0]);
3099 		btrfs_err(info,
3100 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
3101 			bytenr, parent, root_objectid, owner_objectid,
3102 			owner_offset);
3103 		btrfs_abort_transaction(trans, ret);
3104 		goto out;
3105 	} else {
3106 		btrfs_abort_transaction(trans, ret);
3107 		goto out;
3108 	}
3109 
3110 	leaf = path->nodes[0];
3111 	item_size = btrfs_item_size_nr(leaf, extent_slot);
3112 	if (unlikely(item_size < sizeof(*ei))) {
3113 		ret = -EINVAL;
3114 		btrfs_print_v0_err(info);
3115 		btrfs_abort_transaction(trans, ret);
3116 		goto out;
3117 	}
3118 	ei = btrfs_item_ptr(leaf, extent_slot,
3119 			    struct btrfs_extent_item);
3120 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3121 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3122 		struct btrfs_tree_block_info *bi;
3123 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
3124 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3125 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3126 	}
3127 
3128 	refs = btrfs_extent_refs(leaf, ei);
3129 	if (refs < refs_to_drop) {
3130 		btrfs_err(info,
3131 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3132 			  refs_to_drop, refs, bytenr);
3133 		ret = -EINVAL;
3134 		btrfs_abort_transaction(trans, ret);
3135 		goto out;
3136 	}
3137 	refs -= refs_to_drop;
3138 
3139 	if (refs > 0) {
3140 		if (extent_op)
3141 			__run_delayed_extent_op(extent_op, leaf, ei);
3142 		/*
3143 		 * In the case of inline back ref, reference count will
3144 		 * be updated by remove_extent_backref
3145 		 */
3146 		if (iref) {
3147 			BUG_ON(!found_extent);
3148 		} else {
3149 			btrfs_set_extent_refs(leaf, ei, refs);
3150 			btrfs_mark_buffer_dirty(leaf);
3151 		}
3152 		if (found_extent) {
3153 			ret = remove_extent_backref(trans, path, iref,
3154 						    refs_to_drop, is_data,
3155 						    &last_ref);
3156 			if (ret) {
3157 				btrfs_abort_transaction(trans, ret);
3158 				goto out;
3159 			}
3160 		}
3161 	} else {
3162 		if (found_extent) {
3163 			BUG_ON(is_data && refs_to_drop !=
3164 			       extent_data_ref_count(path, iref));
3165 			if (iref) {
3166 				BUG_ON(path->slots[0] != extent_slot);
3167 			} else {
3168 				BUG_ON(path->slots[0] != extent_slot + 1);
3169 				path->slots[0] = extent_slot;
3170 				num_to_del = 2;
3171 			}
3172 		}
3173 
3174 		last_ref = 1;
3175 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3176 				      num_to_del);
3177 		if (ret) {
3178 			btrfs_abort_transaction(trans, ret);
3179 			goto out;
3180 		}
3181 		btrfs_release_path(path);
3182 
3183 		if (is_data) {
3184 			ret = btrfs_del_csums(trans, info->csum_root, bytenr,
3185 					      num_bytes);
3186 			if (ret) {
3187 				btrfs_abort_transaction(trans, ret);
3188 				goto out;
3189 			}
3190 		}
3191 
3192 		ret = add_to_free_space_tree(trans, bytenr, num_bytes);
3193 		if (ret) {
3194 			btrfs_abort_transaction(trans, ret);
3195 			goto out;
3196 		}
3197 
3198 		ret = btrfs_update_block_group(trans, bytenr, num_bytes, 0);
3199 		if (ret) {
3200 			btrfs_abort_transaction(trans, ret);
3201 			goto out;
3202 		}
3203 	}
3204 	btrfs_release_path(path);
3205 
3206 out:
3207 	btrfs_free_path(path);
3208 	return ret;
3209 }
3210 
3211 /*
3212  * when we free an block, it is possible (and likely) that we free the last
3213  * delayed ref for that extent as well.  This searches the delayed ref tree for
3214  * a given extent, and if there are no other delayed refs to be processed, it
3215  * removes it from the tree.
3216  */
3217 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3218 				      u64 bytenr)
3219 {
3220 	struct btrfs_delayed_ref_head *head;
3221 	struct btrfs_delayed_ref_root *delayed_refs;
3222 	int ret = 0;
3223 
3224 	delayed_refs = &trans->transaction->delayed_refs;
3225 	spin_lock(&delayed_refs->lock);
3226 	head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3227 	if (!head)
3228 		goto out_delayed_unlock;
3229 
3230 	spin_lock(&head->lock);
3231 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3232 		goto out;
3233 
3234 	if (cleanup_extent_op(head) != NULL)
3235 		goto out;
3236 
3237 	/*
3238 	 * waiting for the lock here would deadlock.  If someone else has it
3239 	 * locked they are already in the process of dropping it anyway
3240 	 */
3241 	if (!mutex_trylock(&head->mutex))
3242 		goto out;
3243 
3244 	btrfs_delete_ref_head(delayed_refs, head);
3245 	head->processing = 0;
3246 
3247 	spin_unlock(&head->lock);
3248 	spin_unlock(&delayed_refs->lock);
3249 
3250 	BUG_ON(head->extent_op);
3251 	if (head->must_insert_reserved)
3252 		ret = 1;
3253 
3254 	btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3255 	mutex_unlock(&head->mutex);
3256 	btrfs_put_delayed_ref_head(head);
3257 	return ret;
3258 out:
3259 	spin_unlock(&head->lock);
3260 
3261 out_delayed_unlock:
3262 	spin_unlock(&delayed_refs->lock);
3263 	return 0;
3264 }
3265 
3266 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3267 			   struct btrfs_root *root,
3268 			   struct extent_buffer *buf,
3269 			   u64 parent, int last_ref)
3270 {
3271 	struct btrfs_fs_info *fs_info = root->fs_info;
3272 	struct btrfs_ref generic_ref = { 0 };
3273 	int pin = 1;
3274 	int ret;
3275 
3276 	btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3277 			       buf->start, buf->len, parent);
3278 	btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3279 			    root->root_key.objectid);
3280 
3281 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3282 		int old_ref_mod, new_ref_mod;
3283 
3284 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3285 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
3286 						 &old_ref_mod, &new_ref_mod);
3287 		BUG_ON(ret); /* -ENOMEM */
3288 		pin = old_ref_mod >= 0 && new_ref_mod < 0;
3289 	}
3290 
3291 	if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3292 		struct btrfs_block_group *cache;
3293 
3294 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
3295 			ret = check_ref_cleanup(trans, buf->start);
3296 			if (!ret)
3297 				goto out;
3298 		}
3299 
3300 		pin = 0;
3301 		cache = btrfs_lookup_block_group(fs_info, buf->start);
3302 
3303 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3304 			pin_down_extent(cache, buf->start, buf->len, 1);
3305 			btrfs_put_block_group(cache);
3306 			goto out;
3307 		}
3308 
3309 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3310 
3311 		btrfs_add_free_space(cache, buf->start, buf->len);
3312 		btrfs_free_reserved_bytes(cache, buf->len, 0);
3313 		btrfs_put_block_group(cache);
3314 		trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3315 	}
3316 out:
3317 	if (pin)
3318 		add_pinned_bytes(fs_info, &generic_ref);
3319 
3320 	if (last_ref) {
3321 		/*
3322 		 * Deleting the buffer, clear the corrupt flag since it doesn't
3323 		 * matter anymore.
3324 		 */
3325 		clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3326 	}
3327 }
3328 
3329 /* Can return -ENOMEM */
3330 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3331 {
3332 	struct btrfs_fs_info *fs_info = trans->fs_info;
3333 	int old_ref_mod, new_ref_mod;
3334 	int ret;
3335 
3336 	if (btrfs_is_testing(fs_info))
3337 		return 0;
3338 
3339 	/*
3340 	 * tree log blocks never actually go into the extent allocation
3341 	 * tree, just update pinning info and exit early.
3342 	 */
3343 	if ((ref->type == BTRFS_REF_METADATA &&
3344 	     ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3345 	    (ref->type == BTRFS_REF_DATA &&
3346 	     ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3347 		/* unlocks the pinned mutex */
3348 		btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
3349 		old_ref_mod = new_ref_mod = 0;
3350 		ret = 0;
3351 	} else if (ref->type == BTRFS_REF_METADATA) {
3352 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
3353 						 &old_ref_mod, &new_ref_mod);
3354 	} else {
3355 		ret = btrfs_add_delayed_data_ref(trans, ref, 0,
3356 						 &old_ref_mod, &new_ref_mod);
3357 	}
3358 
3359 	if (!((ref->type == BTRFS_REF_METADATA &&
3360 	       ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
3361 	      (ref->type == BTRFS_REF_DATA &&
3362 	       ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3363 		btrfs_ref_tree_mod(fs_info, ref);
3364 
3365 	if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
3366 		add_pinned_bytes(fs_info, ref);
3367 
3368 	return ret;
3369 }
3370 
3371 enum btrfs_loop_type {
3372 	LOOP_CACHING_NOWAIT,
3373 	LOOP_CACHING_WAIT,
3374 	LOOP_ALLOC_CHUNK,
3375 	LOOP_NO_EMPTY_SIZE,
3376 };
3377 
3378 static inline void
3379 btrfs_lock_block_group(struct btrfs_block_group *cache,
3380 		       int delalloc)
3381 {
3382 	if (delalloc)
3383 		down_read(&cache->data_rwsem);
3384 }
3385 
3386 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3387 		       int delalloc)
3388 {
3389 	btrfs_get_block_group(cache);
3390 	if (delalloc)
3391 		down_read(&cache->data_rwsem);
3392 }
3393 
3394 static struct btrfs_block_group *btrfs_lock_cluster(
3395 		   struct btrfs_block_group *block_group,
3396 		   struct btrfs_free_cluster *cluster,
3397 		   int delalloc)
3398 {
3399 	struct btrfs_block_group *used_bg = NULL;
3400 
3401 	spin_lock(&cluster->refill_lock);
3402 	while (1) {
3403 		used_bg = cluster->block_group;
3404 		if (!used_bg)
3405 			return NULL;
3406 
3407 		if (used_bg == block_group)
3408 			return used_bg;
3409 
3410 		btrfs_get_block_group(used_bg);
3411 
3412 		if (!delalloc)
3413 			return used_bg;
3414 
3415 		if (down_read_trylock(&used_bg->data_rwsem))
3416 			return used_bg;
3417 
3418 		spin_unlock(&cluster->refill_lock);
3419 
3420 		/* We should only have one-level nested. */
3421 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3422 
3423 		spin_lock(&cluster->refill_lock);
3424 		if (used_bg == cluster->block_group)
3425 			return used_bg;
3426 
3427 		up_read(&used_bg->data_rwsem);
3428 		btrfs_put_block_group(used_bg);
3429 	}
3430 }
3431 
3432 static inline void
3433 btrfs_release_block_group(struct btrfs_block_group *cache,
3434 			 int delalloc)
3435 {
3436 	if (delalloc)
3437 		up_read(&cache->data_rwsem);
3438 	btrfs_put_block_group(cache);
3439 }
3440 
3441 /*
3442  * Structure used internally for find_free_extent() function.  Wraps needed
3443  * parameters.
3444  */
3445 struct find_free_extent_ctl {
3446 	/* Basic allocation info */
3447 	u64 num_bytes;
3448 	u64 empty_size;
3449 	u64 flags;
3450 	int delalloc;
3451 
3452 	/* Where to start the search inside the bg */
3453 	u64 search_start;
3454 
3455 	/* For clustered allocation */
3456 	u64 empty_cluster;
3457 
3458 	bool have_caching_bg;
3459 	bool orig_have_caching_bg;
3460 
3461 	/* RAID index, converted from flags */
3462 	int index;
3463 
3464 	/*
3465 	 * Current loop number, check find_free_extent_update_loop() for details
3466 	 */
3467 	int loop;
3468 
3469 	/*
3470 	 * Whether we're refilling a cluster, if true we need to re-search
3471 	 * current block group but don't try to refill the cluster again.
3472 	 */
3473 	bool retry_clustered;
3474 
3475 	/*
3476 	 * Whether we're updating free space cache, if true we need to re-search
3477 	 * current block group but don't try updating free space cache again.
3478 	 */
3479 	bool retry_unclustered;
3480 
3481 	/* If current block group is cached */
3482 	int cached;
3483 
3484 	/* Max contiguous hole found */
3485 	u64 max_extent_size;
3486 
3487 	/* Total free space from free space cache, not always contiguous */
3488 	u64 total_free_space;
3489 
3490 	/* Found result */
3491 	u64 found_offset;
3492 };
3493 
3494 
3495 /*
3496  * Helper function for find_free_extent().
3497  *
3498  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3499  * Return -EAGAIN to inform caller that we need to re-search this block group
3500  * Return >0 to inform caller that we find nothing
3501  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3502  */
3503 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3504 		struct btrfs_free_cluster *last_ptr,
3505 		struct find_free_extent_ctl *ffe_ctl,
3506 		struct btrfs_block_group **cluster_bg_ret)
3507 {
3508 	struct btrfs_block_group *cluster_bg;
3509 	u64 aligned_cluster;
3510 	u64 offset;
3511 	int ret;
3512 
3513 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3514 	if (!cluster_bg)
3515 		goto refill_cluster;
3516 	if (cluster_bg != bg && (cluster_bg->ro ||
3517 	    !block_group_bits(cluster_bg, ffe_ctl->flags)))
3518 		goto release_cluster;
3519 
3520 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3521 			ffe_ctl->num_bytes, cluster_bg->start,
3522 			&ffe_ctl->max_extent_size);
3523 	if (offset) {
3524 		/* We have a block, we're done */
3525 		spin_unlock(&last_ptr->refill_lock);
3526 		trace_btrfs_reserve_extent_cluster(cluster_bg,
3527 				ffe_ctl->search_start, ffe_ctl->num_bytes);
3528 		*cluster_bg_ret = cluster_bg;
3529 		ffe_ctl->found_offset = offset;
3530 		return 0;
3531 	}
3532 	WARN_ON(last_ptr->block_group != cluster_bg);
3533 
3534 release_cluster:
3535 	/*
3536 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3537 	 * lets just skip it and let the allocator find whatever block it can
3538 	 * find. If we reach this point, we will have tried the cluster
3539 	 * allocator plenty of times and not have found anything, so we are
3540 	 * likely way too fragmented for the clustering stuff to find anything.
3541 	 *
3542 	 * However, if the cluster is taken from the current block group,
3543 	 * release the cluster first, so that we stand a better chance of
3544 	 * succeeding in the unclustered allocation.
3545 	 */
3546 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3547 		spin_unlock(&last_ptr->refill_lock);
3548 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3549 		return -ENOENT;
3550 	}
3551 
3552 	/* This cluster didn't work out, free it and start over */
3553 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3554 
3555 	if (cluster_bg != bg)
3556 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3557 
3558 refill_cluster:
3559 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3560 		spin_unlock(&last_ptr->refill_lock);
3561 		return -ENOENT;
3562 	}
3563 
3564 	aligned_cluster = max_t(u64,
3565 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3566 			bg->full_stripe_len);
3567 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3568 			ffe_ctl->num_bytes, aligned_cluster);
3569 	if (ret == 0) {
3570 		/* Now pull our allocation out of this cluster */
3571 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3572 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3573 				&ffe_ctl->max_extent_size);
3574 		if (offset) {
3575 			/* We found one, proceed */
3576 			spin_unlock(&last_ptr->refill_lock);
3577 			trace_btrfs_reserve_extent_cluster(bg,
3578 					ffe_ctl->search_start,
3579 					ffe_ctl->num_bytes);
3580 			ffe_ctl->found_offset = offset;
3581 			return 0;
3582 		}
3583 	} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
3584 		   !ffe_ctl->retry_clustered) {
3585 		spin_unlock(&last_ptr->refill_lock);
3586 
3587 		ffe_ctl->retry_clustered = true;
3588 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3589 				ffe_ctl->empty_cluster + ffe_ctl->empty_size);
3590 		return -EAGAIN;
3591 	}
3592 	/*
3593 	 * At this point we either didn't find a cluster or we weren't able to
3594 	 * allocate a block from our cluster.  Free the cluster we've been
3595 	 * trying to use, and go to the next block group.
3596 	 */
3597 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3598 	spin_unlock(&last_ptr->refill_lock);
3599 	return 1;
3600 }
3601 
3602 /*
3603  * Return >0 to inform caller that we find nothing
3604  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3605  * Return -EAGAIN to inform caller that we need to re-search this block group
3606  */
3607 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3608 		struct btrfs_free_cluster *last_ptr,
3609 		struct find_free_extent_ctl *ffe_ctl)
3610 {
3611 	u64 offset;
3612 
3613 	/*
3614 	 * We are doing an unclustered allocation, set the fragmented flag so
3615 	 * we don't bother trying to setup a cluster again until we get more
3616 	 * space.
3617 	 */
3618 	if (unlikely(last_ptr)) {
3619 		spin_lock(&last_ptr->lock);
3620 		last_ptr->fragmented = 1;
3621 		spin_unlock(&last_ptr->lock);
3622 	}
3623 	if (ffe_ctl->cached) {
3624 		struct btrfs_free_space_ctl *free_space_ctl;
3625 
3626 		free_space_ctl = bg->free_space_ctl;
3627 		spin_lock(&free_space_ctl->tree_lock);
3628 		if (free_space_ctl->free_space <
3629 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3630 		    ffe_ctl->empty_size) {
3631 			ffe_ctl->total_free_space = max_t(u64,
3632 					ffe_ctl->total_free_space,
3633 					free_space_ctl->free_space);
3634 			spin_unlock(&free_space_ctl->tree_lock);
3635 			return 1;
3636 		}
3637 		spin_unlock(&free_space_ctl->tree_lock);
3638 	}
3639 
3640 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3641 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3642 			&ffe_ctl->max_extent_size);
3643 
3644 	/*
3645 	 * If we didn't find a chunk, and we haven't failed on this block group
3646 	 * before, and this block group is in the middle of caching and we are
3647 	 * ok with waiting, then go ahead and wait for progress to be made, and
3648 	 * set @retry_unclustered to true.
3649 	 *
3650 	 * If @retry_unclustered is true then we've already waited on this
3651 	 * block group once and should move on to the next block group.
3652 	 */
3653 	if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
3654 	    ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
3655 		btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
3656 						      ffe_ctl->empty_size);
3657 		ffe_ctl->retry_unclustered = true;
3658 		return -EAGAIN;
3659 	} else if (!offset) {
3660 		return 1;
3661 	}
3662 	ffe_ctl->found_offset = offset;
3663 	return 0;
3664 }
3665 
3666 /*
3667  * Return >0 means caller needs to re-search for free extent
3668  * Return 0 means we have the needed free extent.
3669  * Return <0 means we failed to locate any free extent.
3670  */
3671 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3672 					struct btrfs_free_cluster *last_ptr,
3673 					struct btrfs_key *ins,
3674 					struct find_free_extent_ctl *ffe_ctl,
3675 					int full_search, bool use_cluster)
3676 {
3677 	struct btrfs_root *root = fs_info->extent_root;
3678 	int ret;
3679 
3680 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3681 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3682 		ffe_ctl->orig_have_caching_bg = true;
3683 
3684 	if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
3685 	    ffe_ctl->have_caching_bg)
3686 		return 1;
3687 
3688 	if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
3689 		return 1;
3690 
3691 	if (ins->objectid) {
3692 		if (!use_cluster && last_ptr) {
3693 			spin_lock(&last_ptr->lock);
3694 			last_ptr->window_start = ins->objectid;
3695 			spin_unlock(&last_ptr->lock);
3696 		}
3697 		return 0;
3698 	}
3699 
3700 	/*
3701 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3702 	 *			caching kthreads as we move along
3703 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3704 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3705 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3706 	 *		       again
3707 	 */
3708 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
3709 		ffe_ctl->index = 0;
3710 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
3711 			/*
3712 			 * We want to skip the LOOP_CACHING_WAIT step if we
3713 			 * don't have any uncached bgs and we've already done a
3714 			 * full search through.
3715 			 */
3716 			if (ffe_ctl->orig_have_caching_bg || !full_search)
3717 				ffe_ctl->loop = LOOP_CACHING_WAIT;
3718 			else
3719 				ffe_ctl->loop = LOOP_ALLOC_CHUNK;
3720 		} else {
3721 			ffe_ctl->loop++;
3722 		}
3723 
3724 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
3725 			struct btrfs_trans_handle *trans;
3726 			int exist = 0;
3727 
3728 			trans = current->journal_info;
3729 			if (trans)
3730 				exist = 1;
3731 			else
3732 				trans = btrfs_join_transaction(root);
3733 
3734 			if (IS_ERR(trans)) {
3735 				ret = PTR_ERR(trans);
3736 				return ret;
3737 			}
3738 
3739 			ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
3740 						CHUNK_ALLOC_FORCE);
3741 
3742 			/*
3743 			 * If we can't allocate a new chunk we've already looped
3744 			 * through at least once, move on to the NO_EMPTY_SIZE
3745 			 * case.
3746 			 */
3747 			if (ret == -ENOSPC)
3748 				ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
3749 
3750 			/* Do not bail out on ENOSPC since we can do more. */
3751 			if (ret < 0 && ret != -ENOSPC)
3752 				btrfs_abort_transaction(trans, ret);
3753 			else
3754 				ret = 0;
3755 			if (!exist)
3756 				btrfs_end_transaction(trans);
3757 			if (ret)
3758 				return ret;
3759 		}
3760 
3761 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
3762 			/*
3763 			 * Don't loop again if we already have no empty_size and
3764 			 * no empty_cluster.
3765 			 */
3766 			if (ffe_ctl->empty_size == 0 &&
3767 			    ffe_ctl->empty_cluster == 0)
3768 				return -ENOSPC;
3769 			ffe_ctl->empty_size = 0;
3770 			ffe_ctl->empty_cluster = 0;
3771 		}
3772 		return 1;
3773 	}
3774 	return -ENOSPC;
3775 }
3776 
3777 /*
3778  * walks the btree of allocated extents and find a hole of a given size.
3779  * The key ins is changed to record the hole:
3780  * ins->objectid == start position
3781  * ins->flags = BTRFS_EXTENT_ITEM_KEY
3782  * ins->offset == the size of the hole.
3783  * Any available blocks before search_start are skipped.
3784  *
3785  * If there is no suitable free space, we will record the max size of
3786  * the free space extent currently.
3787  *
3788  * The overall logic and call chain:
3789  *
3790  * find_free_extent()
3791  * |- Iterate through all block groups
3792  * |  |- Get a valid block group
3793  * |  |- Try to do clustered allocation in that block group
3794  * |  |- Try to do unclustered allocation in that block group
3795  * |  |- Check if the result is valid
3796  * |  |  |- If valid, then exit
3797  * |  |- Jump to next block group
3798  * |
3799  * |- Push harder to find free extents
3800  *    |- If not found, re-iterate all block groups
3801  */
3802 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
3803 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
3804 				u64 hint_byte, struct btrfs_key *ins,
3805 				u64 flags, int delalloc)
3806 {
3807 	int ret = 0;
3808 	int cache_block_group_error = 0;
3809 	struct btrfs_free_cluster *last_ptr = NULL;
3810 	struct btrfs_block_group *block_group = NULL;
3811 	struct find_free_extent_ctl ffe_ctl = {0};
3812 	struct btrfs_space_info *space_info;
3813 	bool use_cluster = true;
3814 	bool full_search = false;
3815 
3816 	WARN_ON(num_bytes < fs_info->sectorsize);
3817 
3818 	ffe_ctl.num_bytes = num_bytes;
3819 	ffe_ctl.empty_size = empty_size;
3820 	ffe_ctl.flags = flags;
3821 	ffe_ctl.search_start = 0;
3822 	ffe_ctl.retry_clustered = false;
3823 	ffe_ctl.retry_unclustered = false;
3824 	ffe_ctl.delalloc = delalloc;
3825 	ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
3826 	ffe_ctl.have_caching_bg = false;
3827 	ffe_ctl.orig_have_caching_bg = false;
3828 	ffe_ctl.found_offset = 0;
3829 
3830 	ins->type = BTRFS_EXTENT_ITEM_KEY;
3831 	ins->objectid = 0;
3832 	ins->offset = 0;
3833 
3834 	trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3835 
3836 	space_info = btrfs_find_space_info(fs_info, flags);
3837 	if (!space_info) {
3838 		btrfs_err(fs_info, "No space info for %llu", flags);
3839 		return -ENOSPC;
3840 	}
3841 
3842 	/*
3843 	 * If our free space is heavily fragmented we may not be able to make
3844 	 * big contiguous allocations, so instead of doing the expensive search
3845 	 * for free space, simply return ENOSPC with our max_extent_size so we
3846 	 * can go ahead and search for a more manageable chunk.
3847 	 *
3848 	 * If our max_extent_size is large enough for our allocation simply
3849 	 * disable clustering since we will likely not be able to find enough
3850 	 * space to create a cluster and induce latency trying.
3851 	 */
3852 	if (unlikely(space_info->max_extent_size)) {
3853 		spin_lock(&space_info->lock);
3854 		if (space_info->max_extent_size &&
3855 		    num_bytes > space_info->max_extent_size) {
3856 			ins->offset = space_info->max_extent_size;
3857 			spin_unlock(&space_info->lock);
3858 			return -ENOSPC;
3859 		} else if (space_info->max_extent_size) {
3860 			use_cluster = false;
3861 		}
3862 		spin_unlock(&space_info->lock);
3863 	}
3864 
3865 	last_ptr = fetch_cluster_info(fs_info, space_info,
3866 				      &ffe_ctl.empty_cluster);
3867 	if (last_ptr) {
3868 		spin_lock(&last_ptr->lock);
3869 		if (last_ptr->block_group)
3870 			hint_byte = last_ptr->window_start;
3871 		if (last_ptr->fragmented) {
3872 			/*
3873 			 * We still set window_start so we can keep track of the
3874 			 * last place we found an allocation to try and save
3875 			 * some time.
3876 			 */
3877 			hint_byte = last_ptr->window_start;
3878 			use_cluster = false;
3879 		}
3880 		spin_unlock(&last_ptr->lock);
3881 	}
3882 
3883 	ffe_ctl.search_start = max(ffe_ctl.search_start,
3884 				   first_logical_byte(fs_info, 0));
3885 	ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
3886 	if (ffe_ctl.search_start == hint_byte) {
3887 		block_group = btrfs_lookup_block_group(fs_info,
3888 						       ffe_ctl.search_start);
3889 		/*
3890 		 * we don't want to use the block group if it doesn't match our
3891 		 * allocation bits, or if its not cached.
3892 		 *
3893 		 * However if we are re-searching with an ideal block group
3894 		 * picked out then we don't care that the block group is cached.
3895 		 */
3896 		if (block_group && block_group_bits(block_group, flags) &&
3897 		    block_group->cached != BTRFS_CACHE_NO) {
3898 			down_read(&space_info->groups_sem);
3899 			if (list_empty(&block_group->list) ||
3900 			    block_group->ro) {
3901 				/*
3902 				 * someone is removing this block group,
3903 				 * we can't jump into the have_block_group
3904 				 * target because our list pointers are not
3905 				 * valid
3906 				 */
3907 				btrfs_put_block_group(block_group);
3908 				up_read(&space_info->groups_sem);
3909 			} else {
3910 				ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3911 						block_group->flags);
3912 				btrfs_lock_block_group(block_group, delalloc);
3913 				goto have_block_group;
3914 			}
3915 		} else if (block_group) {
3916 			btrfs_put_block_group(block_group);
3917 		}
3918 	}
3919 search:
3920 	ffe_ctl.have_caching_bg = false;
3921 	if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
3922 	    ffe_ctl.index == 0)
3923 		full_search = true;
3924 	down_read(&space_info->groups_sem);
3925 	list_for_each_entry(block_group,
3926 			    &space_info->block_groups[ffe_ctl.index], list) {
3927 		/* If the block group is read-only, we can skip it entirely. */
3928 		if (unlikely(block_group->ro))
3929 			continue;
3930 
3931 		btrfs_grab_block_group(block_group, delalloc);
3932 		ffe_ctl.search_start = block_group->start;
3933 
3934 		/*
3935 		 * this can happen if we end up cycling through all the
3936 		 * raid types, but we want to make sure we only allocate
3937 		 * for the proper type.
3938 		 */
3939 		if (!block_group_bits(block_group, flags)) {
3940 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
3941 				BTRFS_BLOCK_GROUP_RAID1_MASK |
3942 				BTRFS_BLOCK_GROUP_RAID56_MASK |
3943 				BTRFS_BLOCK_GROUP_RAID10;
3944 
3945 			/*
3946 			 * if they asked for extra copies and this block group
3947 			 * doesn't provide them, bail.  This does allow us to
3948 			 * fill raid0 from raid1.
3949 			 */
3950 			if ((flags & extra) && !(block_group->flags & extra))
3951 				goto loop;
3952 
3953 			/*
3954 			 * This block group has different flags than we want.
3955 			 * It's possible that we have MIXED_GROUP flag but no
3956 			 * block group is mixed.  Just skip such block group.
3957 			 */
3958 			btrfs_release_block_group(block_group, delalloc);
3959 			continue;
3960 		}
3961 
3962 have_block_group:
3963 		ffe_ctl.cached = btrfs_block_group_done(block_group);
3964 		if (unlikely(!ffe_ctl.cached)) {
3965 			ffe_ctl.have_caching_bg = true;
3966 			ret = btrfs_cache_block_group(block_group, 0);
3967 
3968 			/*
3969 			 * If we get ENOMEM here or something else we want to
3970 			 * try other block groups, because it may not be fatal.
3971 			 * However if we can't find anything else we need to
3972 			 * save our return here so that we return the actual
3973 			 * error that caused problems, not ENOSPC.
3974 			 */
3975 			if (ret < 0) {
3976 				if (!cache_block_group_error)
3977 					cache_block_group_error = ret;
3978 				ret = 0;
3979 				goto loop;
3980 			}
3981 			ret = 0;
3982 		}
3983 
3984 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
3985 			goto loop;
3986 
3987 		/*
3988 		 * Ok we want to try and use the cluster allocator, so
3989 		 * lets look there
3990 		 */
3991 		if (last_ptr && use_cluster) {
3992 			struct btrfs_block_group *cluster_bg = NULL;
3993 
3994 			ret = find_free_extent_clustered(block_group, last_ptr,
3995 							 &ffe_ctl, &cluster_bg);
3996 
3997 			if (ret == 0) {
3998 				if (cluster_bg && cluster_bg != block_group) {
3999 					btrfs_release_block_group(block_group,
4000 								  delalloc);
4001 					block_group = cluster_bg;
4002 				}
4003 				goto checks;
4004 			} else if (ret == -EAGAIN) {
4005 				goto have_block_group;
4006 			} else if (ret > 0) {
4007 				goto loop;
4008 			}
4009 			/* ret == -ENOENT case falls through */
4010 		}
4011 
4012 		ret = find_free_extent_unclustered(block_group, last_ptr,
4013 						   &ffe_ctl);
4014 		if (ret == -EAGAIN)
4015 			goto have_block_group;
4016 		else if (ret > 0)
4017 			goto loop;
4018 		/* ret == 0 case falls through */
4019 checks:
4020 		ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
4021 					     fs_info->stripesize);
4022 
4023 		/* move on to the next group */
4024 		if (ffe_ctl.search_start + num_bytes >
4025 		    block_group->start + block_group->length) {
4026 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4027 					     num_bytes);
4028 			goto loop;
4029 		}
4030 
4031 		if (ffe_ctl.found_offset < ffe_ctl.search_start)
4032 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4033 				ffe_ctl.search_start - ffe_ctl.found_offset);
4034 
4035 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
4036 				num_bytes, delalloc);
4037 		if (ret == -EAGAIN) {
4038 			btrfs_add_free_space(block_group, ffe_ctl.found_offset,
4039 					     num_bytes);
4040 			goto loop;
4041 		}
4042 		btrfs_inc_block_group_reservations(block_group);
4043 
4044 		/* we are all good, lets return */
4045 		ins->objectid = ffe_ctl.search_start;
4046 		ins->offset = num_bytes;
4047 
4048 		trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
4049 					   num_bytes);
4050 		btrfs_release_block_group(block_group, delalloc);
4051 		break;
4052 loop:
4053 		ffe_ctl.retry_clustered = false;
4054 		ffe_ctl.retry_unclustered = false;
4055 		BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4056 		       ffe_ctl.index);
4057 		btrfs_release_block_group(block_group, delalloc);
4058 		cond_resched();
4059 	}
4060 	up_read(&space_info->groups_sem);
4061 
4062 	ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
4063 					   full_search, use_cluster);
4064 	if (ret > 0)
4065 		goto search;
4066 
4067 	if (ret == -ENOSPC && !cache_block_group_error) {
4068 		/*
4069 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4070 		 * any contiguous hole.
4071 		 */
4072 		if (!ffe_ctl.max_extent_size)
4073 			ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4074 		spin_lock(&space_info->lock);
4075 		space_info->max_extent_size = ffe_ctl.max_extent_size;
4076 		spin_unlock(&space_info->lock);
4077 		ins->offset = ffe_ctl.max_extent_size;
4078 	} else if (ret == -ENOSPC) {
4079 		ret = cache_block_group_error;
4080 	}
4081 	return ret;
4082 }
4083 
4084 /*
4085  * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4086  *			  hole that is at least as big as @num_bytes.
4087  *
4088  * @root           -	The root that will contain this extent
4089  *
4090  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4091  *			is used for accounting purposes. This value differs
4092  *			from @num_bytes only in the case of compressed extents.
4093  *
4094  * @num_bytes      -	Number of bytes to allocate on-disk.
4095  *
4096  * @min_alloc_size -	Indicates the minimum amount of space that the
4097  *			allocator should try to satisfy. In some cases
4098  *			@num_bytes may be larger than what is required and if
4099  *			the filesystem is fragmented then allocation fails.
4100  *			However, the presence of @min_alloc_size gives a
4101  *			chance to try and satisfy the smaller allocation.
4102  *
4103  * @empty_size     -	A hint that you plan on doing more COW. This is the
4104  *			size in bytes the allocator should try to find free
4105  *			next to the block it returns.  This is just a hint and
4106  *			may be ignored by the allocator.
4107  *
4108  * @hint_byte      -	Hint to the allocator to start searching above the byte
4109  *			address passed. It might be ignored.
4110  *
4111  * @ins            -	This key is modified to record the found hole. It will
4112  *			have the following values:
4113  *			ins->objectid == start position
4114  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4115  *			ins->offset == the size of the hole.
4116  *
4117  * @is_data        -	Boolean flag indicating whether an extent is
4118  *			allocated for data (true) or metadata (false)
4119  *
4120  * @delalloc       -	Boolean flag indicating whether this allocation is for
4121  *			delalloc or not. If 'true' data_rwsem of block groups
4122  *			is going to be acquired.
4123  *
4124  *
4125  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4126  * case -ENOSPC is returned then @ins->offset will contain the size of the
4127  * largest available hole the allocator managed to find.
4128  */
4129 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4130 			 u64 num_bytes, u64 min_alloc_size,
4131 			 u64 empty_size, u64 hint_byte,
4132 			 struct btrfs_key *ins, int is_data, int delalloc)
4133 {
4134 	struct btrfs_fs_info *fs_info = root->fs_info;
4135 	bool final_tried = num_bytes == min_alloc_size;
4136 	u64 flags;
4137 	int ret;
4138 
4139 	flags = get_alloc_profile_by_root(root, is_data);
4140 again:
4141 	WARN_ON(num_bytes < fs_info->sectorsize);
4142 	ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
4143 			       hint_byte, ins, flags, delalloc);
4144 	if (!ret && !is_data) {
4145 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4146 	} else if (ret == -ENOSPC) {
4147 		if (!final_tried && ins->offset) {
4148 			num_bytes = min(num_bytes >> 1, ins->offset);
4149 			num_bytes = round_down(num_bytes,
4150 					       fs_info->sectorsize);
4151 			num_bytes = max(num_bytes, min_alloc_size);
4152 			ram_bytes = num_bytes;
4153 			if (num_bytes == min_alloc_size)
4154 				final_tried = true;
4155 			goto again;
4156 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4157 			struct btrfs_space_info *sinfo;
4158 
4159 			sinfo = btrfs_find_space_info(fs_info, flags);
4160 			btrfs_err(fs_info,
4161 				  "allocation failed flags %llu, wanted %llu",
4162 				  flags, num_bytes);
4163 			if (sinfo)
4164 				btrfs_dump_space_info(fs_info, sinfo,
4165 						      num_bytes, 1);
4166 		}
4167 	}
4168 
4169 	return ret;
4170 }
4171 
4172 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4173 			       u64 start, u64 len, int delalloc)
4174 {
4175 	struct btrfs_block_group *cache;
4176 
4177 	cache = btrfs_lookup_block_group(fs_info, start);
4178 	if (!cache) {
4179 		btrfs_err(fs_info, "Unable to find block group for %llu",
4180 			  start);
4181 		return -ENOSPC;
4182 	}
4183 
4184 	btrfs_add_free_space(cache, start, len);
4185 	btrfs_free_reserved_bytes(cache, len, delalloc);
4186 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4187 
4188 	btrfs_put_block_group(cache);
4189 	return 0;
4190 }
4191 
4192 int btrfs_pin_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
4193 {
4194 	struct btrfs_block_group *cache;
4195 	int ret = 0;
4196 
4197 	cache = btrfs_lookup_block_group(fs_info, start);
4198 	if (!cache) {
4199 		btrfs_err(fs_info, "unable to find block group for %llu", start);
4200 		return -ENOSPC;
4201 	}
4202 
4203 	ret = pin_down_extent(cache, start, len, 1);
4204 	btrfs_put_block_group(cache);
4205 	return ret;
4206 }
4207 
4208 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4209 				      u64 parent, u64 root_objectid,
4210 				      u64 flags, u64 owner, u64 offset,
4211 				      struct btrfs_key *ins, int ref_mod)
4212 {
4213 	struct btrfs_fs_info *fs_info = trans->fs_info;
4214 	int ret;
4215 	struct btrfs_extent_item *extent_item;
4216 	struct btrfs_extent_inline_ref *iref;
4217 	struct btrfs_path *path;
4218 	struct extent_buffer *leaf;
4219 	int type;
4220 	u32 size;
4221 
4222 	if (parent > 0)
4223 		type = BTRFS_SHARED_DATA_REF_KEY;
4224 	else
4225 		type = BTRFS_EXTENT_DATA_REF_KEY;
4226 
4227 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4228 
4229 	path = btrfs_alloc_path();
4230 	if (!path)
4231 		return -ENOMEM;
4232 
4233 	path->leave_spinning = 1;
4234 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4235 				      ins, size);
4236 	if (ret) {
4237 		btrfs_free_path(path);
4238 		return ret;
4239 	}
4240 
4241 	leaf = path->nodes[0];
4242 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4243 				     struct btrfs_extent_item);
4244 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4245 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4246 	btrfs_set_extent_flags(leaf, extent_item,
4247 			       flags | BTRFS_EXTENT_FLAG_DATA);
4248 
4249 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4250 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4251 	if (parent > 0) {
4252 		struct btrfs_shared_data_ref *ref;
4253 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4254 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4255 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4256 	} else {
4257 		struct btrfs_extent_data_ref *ref;
4258 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4259 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4260 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4261 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4262 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4263 	}
4264 
4265 	btrfs_mark_buffer_dirty(path->nodes[0]);
4266 	btrfs_free_path(path);
4267 
4268 	ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
4269 	if (ret)
4270 		return ret;
4271 
4272 	ret = btrfs_update_block_group(trans, ins->objectid, ins->offset, 1);
4273 	if (ret) { /* -ENOENT, logic error */
4274 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4275 			ins->objectid, ins->offset);
4276 		BUG();
4277 	}
4278 	trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
4279 	return ret;
4280 }
4281 
4282 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4283 				     struct btrfs_delayed_ref_node *node,
4284 				     struct btrfs_delayed_extent_op *extent_op)
4285 {
4286 	struct btrfs_fs_info *fs_info = trans->fs_info;
4287 	int ret;
4288 	struct btrfs_extent_item *extent_item;
4289 	struct btrfs_key extent_key;
4290 	struct btrfs_tree_block_info *block_info;
4291 	struct btrfs_extent_inline_ref *iref;
4292 	struct btrfs_path *path;
4293 	struct extent_buffer *leaf;
4294 	struct btrfs_delayed_tree_ref *ref;
4295 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4296 	u64 num_bytes;
4297 	u64 flags = extent_op->flags_to_set;
4298 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4299 
4300 	ref = btrfs_delayed_node_to_tree_ref(node);
4301 
4302 	extent_key.objectid = node->bytenr;
4303 	if (skinny_metadata) {
4304 		extent_key.offset = ref->level;
4305 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4306 		num_bytes = fs_info->nodesize;
4307 	} else {
4308 		extent_key.offset = node->num_bytes;
4309 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4310 		size += sizeof(*block_info);
4311 		num_bytes = node->num_bytes;
4312 	}
4313 
4314 	path = btrfs_alloc_path();
4315 	if (!path)
4316 		return -ENOMEM;
4317 
4318 	path->leave_spinning = 1;
4319 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4320 				      &extent_key, size);
4321 	if (ret) {
4322 		btrfs_free_path(path);
4323 		return ret;
4324 	}
4325 
4326 	leaf = path->nodes[0];
4327 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4328 				     struct btrfs_extent_item);
4329 	btrfs_set_extent_refs(leaf, extent_item, 1);
4330 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4331 	btrfs_set_extent_flags(leaf, extent_item,
4332 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4333 
4334 	if (skinny_metadata) {
4335 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4336 	} else {
4337 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4338 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4339 		btrfs_set_tree_block_level(leaf, block_info, ref->level);
4340 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4341 	}
4342 
4343 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4344 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
4345 		btrfs_set_extent_inline_ref_type(leaf, iref,
4346 						 BTRFS_SHARED_BLOCK_REF_KEY);
4347 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4348 	} else {
4349 		btrfs_set_extent_inline_ref_type(leaf, iref,
4350 						 BTRFS_TREE_BLOCK_REF_KEY);
4351 		btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4352 	}
4353 
4354 	btrfs_mark_buffer_dirty(leaf);
4355 	btrfs_free_path(path);
4356 
4357 	ret = remove_from_free_space_tree(trans, extent_key.objectid,
4358 					  num_bytes);
4359 	if (ret)
4360 		return ret;
4361 
4362 	ret = btrfs_update_block_group(trans, extent_key.objectid,
4363 				       fs_info->nodesize, 1);
4364 	if (ret) { /* -ENOENT, logic error */
4365 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4366 			extent_key.objectid, extent_key.offset);
4367 		BUG();
4368 	}
4369 
4370 	trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
4371 					  fs_info->nodesize);
4372 	return ret;
4373 }
4374 
4375 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4376 				     struct btrfs_root *root, u64 owner,
4377 				     u64 offset, u64 ram_bytes,
4378 				     struct btrfs_key *ins)
4379 {
4380 	struct btrfs_ref generic_ref = { 0 };
4381 	int ret;
4382 
4383 	BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4384 
4385 	btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4386 			       ins->objectid, ins->offset, 0);
4387 	btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
4388 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4389 	ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
4390 					 ram_bytes, NULL, NULL);
4391 	return ret;
4392 }
4393 
4394 /*
4395  * this is used by the tree logging recovery code.  It records that
4396  * an extent has been allocated and makes sure to clear the free
4397  * space cache bits as well
4398  */
4399 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4400 				   u64 root_objectid, u64 owner, u64 offset,
4401 				   struct btrfs_key *ins)
4402 {
4403 	struct btrfs_fs_info *fs_info = trans->fs_info;
4404 	int ret;
4405 	struct btrfs_block_group *block_group;
4406 	struct btrfs_space_info *space_info;
4407 
4408 	/*
4409 	 * Mixed block groups will exclude before processing the log so we only
4410 	 * need to do the exclude dance if this fs isn't mixed.
4411 	 */
4412 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4413 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4414 					      ins->offset);
4415 		if (ret)
4416 			return ret;
4417 	}
4418 
4419 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4420 	if (!block_group)
4421 		return -EINVAL;
4422 
4423 	space_info = block_group->space_info;
4424 	spin_lock(&space_info->lock);
4425 	spin_lock(&block_group->lock);
4426 	space_info->bytes_reserved += ins->offset;
4427 	block_group->reserved += ins->offset;
4428 	spin_unlock(&block_group->lock);
4429 	spin_unlock(&space_info->lock);
4430 
4431 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4432 					 offset, ins, 1);
4433 	btrfs_put_block_group(block_group);
4434 	return ret;
4435 }
4436 
4437 static struct extent_buffer *
4438 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4439 		      u64 bytenr, int level, u64 owner)
4440 {
4441 	struct btrfs_fs_info *fs_info = root->fs_info;
4442 	struct extent_buffer *buf;
4443 
4444 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
4445 	if (IS_ERR(buf))
4446 		return buf;
4447 
4448 	/*
4449 	 * Extra safety check in case the extent tree is corrupted and extent
4450 	 * allocator chooses to use a tree block which is already used and
4451 	 * locked.
4452 	 */
4453 	if (buf->lock_owner == current->pid) {
4454 		btrfs_err_rl(fs_info,
4455 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4456 			buf->start, btrfs_header_owner(buf), current->pid);
4457 		free_extent_buffer(buf);
4458 		return ERR_PTR(-EUCLEAN);
4459 	}
4460 
4461 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
4462 	btrfs_tree_lock(buf);
4463 	btrfs_clean_tree_block(buf);
4464 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4465 
4466 	btrfs_set_lock_blocking_write(buf);
4467 	set_extent_buffer_uptodate(buf);
4468 
4469 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4470 	btrfs_set_header_level(buf, level);
4471 	btrfs_set_header_bytenr(buf, buf->start);
4472 	btrfs_set_header_generation(buf, trans->transid);
4473 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4474 	btrfs_set_header_owner(buf, owner);
4475 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4476 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4477 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4478 		buf->log_index = root->log_transid % 2;
4479 		/*
4480 		 * we allow two log transactions at a time, use different
4481 		 * EXTENT bit to differentiate dirty pages.
4482 		 */
4483 		if (buf->log_index == 0)
4484 			set_extent_dirty(&root->dirty_log_pages, buf->start,
4485 					buf->start + buf->len - 1, GFP_NOFS);
4486 		else
4487 			set_extent_new(&root->dirty_log_pages, buf->start,
4488 					buf->start + buf->len - 1);
4489 	} else {
4490 		buf->log_index = -1;
4491 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
4492 			 buf->start + buf->len - 1, GFP_NOFS);
4493 	}
4494 	trans->dirty = true;
4495 	/* this returns a buffer locked for blocking */
4496 	return buf;
4497 }
4498 
4499 /*
4500  * finds a free extent and does all the dirty work required for allocation
4501  * returns the tree buffer or an ERR_PTR on error.
4502  */
4503 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4504 					     struct btrfs_root *root,
4505 					     u64 parent, u64 root_objectid,
4506 					     const struct btrfs_disk_key *key,
4507 					     int level, u64 hint,
4508 					     u64 empty_size)
4509 {
4510 	struct btrfs_fs_info *fs_info = root->fs_info;
4511 	struct btrfs_key ins;
4512 	struct btrfs_block_rsv *block_rsv;
4513 	struct extent_buffer *buf;
4514 	struct btrfs_delayed_extent_op *extent_op;
4515 	struct btrfs_ref generic_ref = { 0 };
4516 	u64 flags = 0;
4517 	int ret;
4518 	u32 blocksize = fs_info->nodesize;
4519 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4520 
4521 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4522 	if (btrfs_is_testing(fs_info)) {
4523 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4524 					    level, root_objectid);
4525 		if (!IS_ERR(buf))
4526 			root->alloc_bytenr += blocksize;
4527 		return buf;
4528 	}
4529 #endif
4530 
4531 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4532 	if (IS_ERR(block_rsv))
4533 		return ERR_CAST(block_rsv);
4534 
4535 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4536 				   empty_size, hint, &ins, 0, 0);
4537 	if (ret)
4538 		goto out_unuse;
4539 
4540 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4541 				    root_objectid);
4542 	if (IS_ERR(buf)) {
4543 		ret = PTR_ERR(buf);
4544 		goto out_free_reserved;
4545 	}
4546 
4547 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4548 		if (parent == 0)
4549 			parent = ins.objectid;
4550 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4551 	} else
4552 		BUG_ON(parent > 0);
4553 
4554 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4555 		extent_op = btrfs_alloc_delayed_extent_op();
4556 		if (!extent_op) {
4557 			ret = -ENOMEM;
4558 			goto out_free_buf;
4559 		}
4560 		if (key)
4561 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
4562 		else
4563 			memset(&extent_op->key, 0, sizeof(extent_op->key));
4564 		extent_op->flags_to_set = flags;
4565 		extent_op->update_key = skinny_metadata ? false : true;
4566 		extent_op->update_flags = true;
4567 		extent_op->is_data = false;
4568 		extent_op->level = level;
4569 
4570 		btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4571 				       ins.objectid, ins.offset, parent);
4572 		generic_ref.real_root = root->root_key.objectid;
4573 		btrfs_init_tree_ref(&generic_ref, level, root_objectid);
4574 		btrfs_ref_tree_mod(fs_info, &generic_ref);
4575 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
4576 						 extent_op, NULL, NULL);
4577 		if (ret)
4578 			goto out_free_delayed;
4579 	}
4580 	return buf;
4581 
4582 out_free_delayed:
4583 	btrfs_free_delayed_extent_op(extent_op);
4584 out_free_buf:
4585 	free_extent_buffer(buf);
4586 out_free_reserved:
4587 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4588 out_unuse:
4589 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4590 	return ERR_PTR(ret);
4591 }
4592 
4593 struct walk_control {
4594 	u64 refs[BTRFS_MAX_LEVEL];
4595 	u64 flags[BTRFS_MAX_LEVEL];
4596 	struct btrfs_key update_progress;
4597 	struct btrfs_key drop_progress;
4598 	int drop_level;
4599 	int stage;
4600 	int level;
4601 	int shared_level;
4602 	int update_ref;
4603 	int keep_locks;
4604 	int reada_slot;
4605 	int reada_count;
4606 	int restarted;
4607 };
4608 
4609 #define DROP_REFERENCE	1
4610 #define UPDATE_BACKREF	2
4611 
4612 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
4613 				     struct btrfs_root *root,
4614 				     struct walk_control *wc,
4615 				     struct btrfs_path *path)
4616 {
4617 	struct btrfs_fs_info *fs_info = root->fs_info;
4618 	u64 bytenr;
4619 	u64 generation;
4620 	u64 refs;
4621 	u64 flags;
4622 	u32 nritems;
4623 	struct btrfs_key key;
4624 	struct extent_buffer *eb;
4625 	int ret;
4626 	int slot;
4627 	int nread = 0;
4628 
4629 	if (path->slots[wc->level] < wc->reada_slot) {
4630 		wc->reada_count = wc->reada_count * 2 / 3;
4631 		wc->reada_count = max(wc->reada_count, 2);
4632 	} else {
4633 		wc->reada_count = wc->reada_count * 3 / 2;
4634 		wc->reada_count = min_t(int, wc->reada_count,
4635 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
4636 	}
4637 
4638 	eb = path->nodes[wc->level];
4639 	nritems = btrfs_header_nritems(eb);
4640 
4641 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
4642 		if (nread >= wc->reada_count)
4643 			break;
4644 
4645 		cond_resched();
4646 		bytenr = btrfs_node_blockptr(eb, slot);
4647 		generation = btrfs_node_ptr_generation(eb, slot);
4648 
4649 		if (slot == path->slots[wc->level])
4650 			goto reada;
4651 
4652 		if (wc->stage == UPDATE_BACKREF &&
4653 		    generation <= root->root_key.offset)
4654 			continue;
4655 
4656 		/* We don't lock the tree block, it's OK to be racy here */
4657 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
4658 					       wc->level - 1, 1, &refs,
4659 					       &flags);
4660 		/* We don't care about errors in readahead. */
4661 		if (ret < 0)
4662 			continue;
4663 		BUG_ON(refs == 0);
4664 
4665 		if (wc->stage == DROP_REFERENCE) {
4666 			if (refs == 1)
4667 				goto reada;
4668 
4669 			if (wc->level == 1 &&
4670 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4671 				continue;
4672 			if (!wc->update_ref ||
4673 			    generation <= root->root_key.offset)
4674 				continue;
4675 			btrfs_node_key_to_cpu(eb, &key, slot);
4676 			ret = btrfs_comp_cpu_keys(&key,
4677 						  &wc->update_progress);
4678 			if (ret < 0)
4679 				continue;
4680 		} else {
4681 			if (wc->level == 1 &&
4682 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4683 				continue;
4684 		}
4685 reada:
4686 		readahead_tree_block(fs_info, bytenr);
4687 		nread++;
4688 	}
4689 	wc->reada_slot = slot;
4690 }
4691 
4692 /*
4693  * helper to process tree block while walking down the tree.
4694  *
4695  * when wc->stage == UPDATE_BACKREF, this function updates
4696  * back refs for pointers in the block.
4697  *
4698  * NOTE: return value 1 means we should stop walking down.
4699  */
4700 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
4701 				   struct btrfs_root *root,
4702 				   struct btrfs_path *path,
4703 				   struct walk_control *wc, int lookup_info)
4704 {
4705 	struct btrfs_fs_info *fs_info = root->fs_info;
4706 	int level = wc->level;
4707 	struct extent_buffer *eb = path->nodes[level];
4708 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
4709 	int ret;
4710 
4711 	if (wc->stage == UPDATE_BACKREF &&
4712 	    btrfs_header_owner(eb) != root->root_key.objectid)
4713 		return 1;
4714 
4715 	/*
4716 	 * when reference count of tree block is 1, it won't increase
4717 	 * again. once full backref flag is set, we never clear it.
4718 	 */
4719 	if (lookup_info &&
4720 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
4721 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
4722 		BUG_ON(!path->locks[level]);
4723 		ret = btrfs_lookup_extent_info(trans, fs_info,
4724 					       eb->start, level, 1,
4725 					       &wc->refs[level],
4726 					       &wc->flags[level]);
4727 		BUG_ON(ret == -ENOMEM);
4728 		if (ret)
4729 			return ret;
4730 		BUG_ON(wc->refs[level] == 0);
4731 	}
4732 
4733 	if (wc->stage == DROP_REFERENCE) {
4734 		if (wc->refs[level] > 1)
4735 			return 1;
4736 
4737 		if (path->locks[level] && !wc->keep_locks) {
4738 			btrfs_tree_unlock_rw(eb, path->locks[level]);
4739 			path->locks[level] = 0;
4740 		}
4741 		return 0;
4742 	}
4743 
4744 	/* wc->stage == UPDATE_BACKREF */
4745 	if (!(wc->flags[level] & flag)) {
4746 		BUG_ON(!path->locks[level]);
4747 		ret = btrfs_inc_ref(trans, root, eb, 1);
4748 		BUG_ON(ret); /* -ENOMEM */
4749 		ret = btrfs_dec_ref(trans, root, eb, 0);
4750 		BUG_ON(ret); /* -ENOMEM */
4751 		ret = btrfs_set_disk_extent_flags(trans, eb->start,
4752 						  eb->len, flag,
4753 						  btrfs_header_level(eb), 0);
4754 		BUG_ON(ret); /* -ENOMEM */
4755 		wc->flags[level] |= flag;
4756 	}
4757 
4758 	/*
4759 	 * the block is shared by multiple trees, so it's not good to
4760 	 * keep the tree lock
4761 	 */
4762 	if (path->locks[level] && level > 0) {
4763 		btrfs_tree_unlock_rw(eb, path->locks[level]);
4764 		path->locks[level] = 0;
4765 	}
4766 	return 0;
4767 }
4768 
4769 /*
4770  * This is used to verify a ref exists for this root to deal with a bug where we
4771  * would have a drop_progress key that hadn't been updated properly.
4772  */
4773 static int check_ref_exists(struct btrfs_trans_handle *trans,
4774 			    struct btrfs_root *root, u64 bytenr, u64 parent,
4775 			    int level)
4776 {
4777 	struct btrfs_path *path;
4778 	struct btrfs_extent_inline_ref *iref;
4779 	int ret;
4780 
4781 	path = btrfs_alloc_path();
4782 	if (!path)
4783 		return -ENOMEM;
4784 
4785 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
4786 				    root->fs_info->nodesize, parent,
4787 				    root->root_key.objectid, level, 0);
4788 	btrfs_free_path(path);
4789 	if (ret == -ENOENT)
4790 		return 0;
4791 	if (ret < 0)
4792 		return ret;
4793 	return 1;
4794 }
4795 
4796 /*
4797  * helper to process tree block pointer.
4798  *
4799  * when wc->stage == DROP_REFERENCE, this function checks
4800  * reference count of the block pointed to. if the block
4801  * is shared and we need update back refs for the subtree
4802  * rooted at the block, this function changes wc->stage to
4803  * UPDATE_BACKREF. if the block is shared and there is no
4804  * need to update back, this function drops the reference
4805  * to the block.
4806  *
4807  * NOTE: return value 1 means we should stop walking down.
4808  */
4809 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
4810 				 struct btrfs_root *root,
4811 				 struct btrfs_path *path,
4812 				 struct walk_control *wc, int *lookup_info)
4813 {
4814 	struct btrfs_fs_info *fs_info = root->fs_info;
4815 	u64 bytenr;
4816 	u64 generation;
4817 	u64 parent;
4818 	struct btrfs_key key;
4819 	struct btrfs_key first_key;
4820 	struct btrfs_ref ref = { 0 };
4821 	struct extent_buffer *next;
4822 	int level = wc->level;
4823 	int reada = 0;
4824 	int ret = 0;
4825 	bool need_account = false;
4826 
4827 	generation = btrfs_node_ptr_generation(path->nodes[level],
4828 					       path->slots[level]);
4829 	/*
4830 	 * if the lower level block was created before the snapshot
4831 	 * was created, we know there is no need to update back refs
4832 	 * for the subtree
4833 	 */
4834 	if (wc->stage == UPDATE_BACKREF &&
4835 	    generation <= root->root_key.offset) {
4836 		*lookup_info = 1;
4837 		return 1;
4838 	}
4839 
4840 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
4841 	btrfs_node_key_to_cpu(path->nodes[level], &first_key,
4842 			      path->slots[level]);
4843 
4844 	next = find_extent_buffer(fs_info, bytenr);
4845 	if (!next) {
4846 		next = btrfs_find_create_tree_block(fs_info, bytenr);
4847 		if (IS_ERR(next))
4848 			return PTR_ERR(next);
4849 
4850 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
4851 					       level - 1);
4852 		reada = 1;
4853 	}
4854 	btrfs_tree_lock(next);
4855 	btrfs_set_lock_blocking_write(next);
4856 
4857 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
4858 				       &wc->refs[level - 1],
4859 				       &wc->flags[level - 1]);
4860 	if (ret < 0)
4861 		goto out_unlock;
4862 
4863 	if (unlikely(wc->refs[level - 1] == 0)) {
4864 		btrfs_err(fs_info, "Missing references.");
4865 		ret = -EIO;
4866 		goto out_unlock;
4867 	}
4868 	*lookup_info = 0;
4869 
4870 	if (wc->stage == DROP_REFERENCE) {
4871 		if (wc->refs[level - 1] > 1) {
4872 			need_account = true;
4873 			if (level == 1 &&
4874 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4875 				goto skip;
4876 
4877 			if (!wc->update_ref ||
4878 			    generation <= root->root_key.offset)
4879 				goto skip;
4880 
4881 			btrfs_node_key_to_cpu(path->nodes[level], &key,
4882 					      path->slots[level]);
4883 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
4884 			if (ret < 0)
4885 				goto skip;
4886 
4887 			wc->stage = UPDATE_BACKREF;
4888 			wc->shared_level = level - 1;
4889 		}
4890 	} else {
4891 		if (level == 1 &&
4892 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
4893 			goto skip;
4894 	}
4895 
4896 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
4897 		btrfs_tree_unlock(next);
4898 		free_extent_buffer(next);
4899 		next = NULL;
4900 		*lookup_info = 1;
4901 	}
4902 
4903 	if (!next) {
4904 		if (reada && level == 1)
4905 			reada_walk_down(trans, root, wc, path);
4906 		next = read_tree_block(fs_info, bytenr, generation, level - 1,
4907 				       &first_key);
4908 		if (IS_ERR(next)) {
4909 			return PTR_ERR(next);
4910 		} else if (!extent_buffer_uptodate(next)) {
4911 			free_extent_buffer(next);
4912 			return -EIO;
4913 		}
4914 		btrfs_tree_lock(next);
4915 		btrfs_set_lock_blocking_write(next);
4916 	}
4917 
4918 	level--;
4919 	ASSERT(level == btrfs_header_level(next));
4920 	if (level != btrfs_header_level(next)) {
4921 		btrfs_err(root->fs_info, "mismatched level");
4922 		ret = -EIO;
4923 		goto out_unlock;
4924 	}
4925 	path->nodes[level] = next;
4926 	path->slots[level] = 0;
4927 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
4928 	wc->level = level;
4929 	if (wc->level == 1)
4930 		wc->reada_slot = 0;
4931 	return 0;
4932 skip:
4933 	wc->refs[level - 1] = 0;
4934 	wc->flags[level - 1] = 0;
4935 	if (wc->stage == DROP_REFERENCE) {
4936 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
4937 			parent = path->nodes[level]->start;
4938 		} else {
4939 			ASSERT(root->root_key.objectid ==
4940 			       btrfs_header_owner(path->nodes[level]));
4941 			if (root->root_key.objectid !=
4942 			    btrfs_header_owner(path->nodes[level])) {
4943 				btrfs_err(root->fs_info,
4944 						"mismatched block owner");
4945 				ret = -EIO;
4946 				goto out_unlock;
4947 			}
4948 			parent = 0;
4949 		}
4950 
4951 		/*
4952 		 * If we had a drop_progress we need to verify the refs are set
4953 		 * as expected.  If we find our ref then we know that from here
4954 		 * on out everything should be correct, and we can clear the
4955 		 * ->restarted flag.
4956 		 */
4957 		if (wc->restarted) {
4958 			ret = check_ref_exists(trans, root, bytenr, parent,
4959 					       level - 1);
4960 			if (ret < 0)
4961 				goto out_unlock;
4962 			if (ret == 0)
4963 				goto no_delete;
4964 			ret = 0;
4965 			wc->restarted = 0;
4966 		}
4967 
4968 		/*
4969 		 * Reloc tree doesn't contribute to qgroup numbers, and we have
4970 		 * already accounted them at merge time (replace_path),
4971 		 * thus we could skip expensive subtree trace here.
4972 		 */
4973 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
4974 		    need_account) {
4975 			ret = btrfs_qgroup_trace_subtree(trans, next,
4976 							 generation, level - 1);
4977 			if (ret) {
4978 				btrfs_err_rl(fs_info,
4979 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
4980 					     ret);
4981 			}
4982 		}
4983 
4984 		/*
4985 		 * We need to update the next key in our walk control so we can
4986 		 * update the drop_progress key accordingly.  We don't care if
4987 		 * find_next_key doesn't find a key because that means we're at
4988 		 * the end and are going to clean up now.
4989 		 */
4990 		wc->drop_level = level;
4991 		find_next_key(path, level, &wc->drop_progress);
4992 
4993 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
4994 				       fs_info->nodesize, parent);
4995 		btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
4996 		ret = btrfs_free_extent(trans, &ref);
4997 		if (ret)
4998 			goto out_unlock;
4999 	}
5000 no_delete:
5001 	*lookup_info = 1;
5002 	ret = 1;
5003 
5004 out_unlock:
5005 	btrfs_tree_unlock(next);
5006 	free_extent_buffer(next);
5007 
5008 	return ret;
5009 }
5010 
5011 /*
5012  * helper to process tree block while walking up the tree.
5013  *
5014  * when wc->stage == DROP_REFERENCE, this function drops
5015  * reference count on the block.
5016  *
5017  * when wc->stage == UPDATE_BACKREF, this function changes
5018  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5019  * to UPDATE_BACKREF previously while processing the block.
5020  *
5021  * NOTE: return value 1 means we should stop walking up.
5022  */
5023 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5024 				 struct btrfs_root *root,
5025 				 struct btrfs_path *path,
5026 				 struct walk_control *wc)
5027 {
5028 	struct btrfs_fs_info *fs_info = root->fs_info;
5029 	int ret;
5030 	int level = wc->level;
5031 	struct extent_buffer *eb = path->nodes[level];
5032 	u64 parent = 0;
5033 
5034 	if (wc->stage == UPDATE_BACKREF) {
5035 		BUG_ON(wc->shared_level < level);
5036 		if (level < wc->shared_level)
5037 			goto out;
5038 
5039 		ret = find_next_key(path, level + 1, &wc->update_progress);
5040 		if (ret > 0)
5041 			wc->update_ref = 0;
5042 
5043 		wc->stage = DROP_REFERENCE;
5044 		wc->shared_level = -1;
5045 		path->slots[level] = 0;
5046 
5047 		/*
5048 		 * check reference count again if the block isn't locked.
5049 		 * we should start walking down the tree again if reference
5050 		 * count is one.
5051 		 */
5052 		if (!path->locks[level]) {
5053 			BUG_ON(level == 0);
5054 			btrfs_tree_lock(eb);
5055 			btrfs_set_lock_blocking_write(eb);
5056 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5057 
5058 			ret = btrfs_lookup_extent_info(trans, fs_info,
5059 						       eb->start, level, 1,
5060 						       &wc->refs[level],
5061 						       &wc->flags[level]);
5062 			if (ret < 0) {
5063 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5064 				path->locks[level] = 0;
5065 				return ret;
5066 			}
5067 			BUG_ON(wc->refs[level] == 0);
5068 			if (wc->refs[level] == 1) {
5069 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5070 				path->locks[level] = 0;
5071 				return 1;
5072 			}
5073 		}
5074 	}
5075 
5076 	/* wc->stage == DROP_REFERENCE */
5077 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5078 
5079 	if (wc->refs[level] == 1) {
5080 		if (level == 0) {
5081 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5082 				ret = btrfs_dec_ref(trans, root, eb, 1);
5083 			else
5084 				ret = btrfs_dec_ref(trans, root, eb, 0);
5085 			BUG_ON(ret); /* -ENOMEM */
5086 			if (is_fstree(root->root_key.objectid)) {
5087 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5088 				if (ret) {
5089 					btrfs_err_rl(fs_info,
5090 	"error %d accounting leaf items, quota is out of sync, rescan required",
5091 					     ret);
5092 				}
5093 			}
5094 		}
5095 		/* make block locked assertion in btrfs_clean_tree_block happy */
5096 		if (!path->locks[level] &&
5097 		    btrfs_header_generation(eb) == trans->transid) {
5098 			btrfs_tree_lock(eb);
5099 			btrfs_set_lock_blocking_write(eb);
5100 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5101 		}
5102 		btrfs_clean_tree_block(eb);
5103 	}
5104 
5105 	if (eb == root->node) {
5106 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5107 			parent = eb->start;
5108 		else if (root->root_key.objectid != btrfs_header_owner(eb))
5109 			goto owner_mismatch;
5110 	} else {
5111 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5112 			parent = path->nodes[level + 1]->start;
5113 		else if (root->root_key.objectid !=
5114 			 btrfs_header_owner(path->nodes[level + 1]))
5115 			goto owner_mismatch;
5116 	}
5117 
5118 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
5119 out:
5120 	wc->refs[level] = 0;
5121 	wc->flags[level] = 0;
5122 	return 0;
5123 
5124 owner_mismatch:
5125 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5126 		     btrfs_header_owner(eb), root->root_key.objectid);
5127 	return -EUCLEAN;
5128 }
5129 
5130 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5131 				   struct btrfs_root *root,
5132 				   struct btrfs_path *path,
5133 				   struct walk_control *wc)
5134 {
5135 	int level = wc->level;
5136 	int lookup_info = 1;
5137 	int ret;
5138 
5139 	while (level >= 0) {
5140 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
5141 		if (ret > 0)
5142 			break;
5143 
5144 		if (level == 0)
5145 			break;
5146 
5147 		if (path->slots[level] >=
5148 		    btrfs_header_nritems(path->nodes[level]))
5149 			break;
5150 
5151 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
5152 		if (ret > 0) {
5153 			path->slots[level]++;
5154 			continue;
5155 		} else if (ret < 0)
5156 			return ret;
5157 		level = wc->level;
5158 	}
5159 	return 0;
5160 }
5161 
5162 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5163 				 struct btrfs_root *root,
5164 				 struct btrfs_path *path,
5165 				 struct walk_control *wc, int max_level)
5166 {
5167 	int level = wc->level;
5168 	int ret;
5169 
5170 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5171 	while (level < max_level && path->nodes[level]) {
5172 		wc->level = level;
5173 		if (path->slots[level] + 1 <
5174 		    btrfs_header_nritems(path->nodes[level])) {
5175 			path->slots[level]++;
5176 			return 0;
5177 		} else {
5178 			ret = walk_up_proc(trans, root, path, wc);
5179 			if (ret > 0)
5180 				return 0;
5181 			if (ret < 0)
5182 				return ret;
5183 
5184 			if (path->locks[level]) {
5185 				btrfs_tree_unlock_rw(path->nodes[level],
5186 						     path->locks[level]);
5187 				path->locks[level] = 0;
5188 			}
5189 			free_extent_buffer(path->nodes[level]);
5190 			path->nodes[level] = NULL;
5191 			level++;
5192 		}
5193 	}
5194 	return 1;
5195 }
5196 
5197 /*
5198  * drop a subvolume tree.
5199  *
5200  * this function traverses the tree freeing any blocks that only
5201  * referenced by the tree.
5202  *
5203  * when a shared tree block is found. this function decreases its
5204  * reference count by one. if update_ref is true, this function
5205  * also make sure backrefs for the shared block and all lower level
5206  * blocks are properly updated.
5207  *
5208  * If called with for_reloc == 0, may exit early with -EAGAIN
5209  */
5210 int btrfs_drop_snapshot(struct btrfs_root *root,
5211 			 struct btrfs_block_rsv *block_rsv, int update_ref,
5212 			 int for_reloc)
5213 {
5214 	struct btrfs_fs_info *fs_info = root->fs_info;
5215 	struct btrfs_path *path;
5216 	struct btrfs_trans_handle *trans;
5217 	struct btrfs_root *tree_root = fs_info->tree_root;
5218 	struct btrfs_root_item *root_item = &root->root_item;
5219 	struct walk_control *wc;
5220 	struct btrfs_key key;
5221 	int err = 0;
5222 	int ret;
5223 	int level;
5224 	bool root_dropped = false;
5225 
5226 	btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5227 
5228 	path = btrfs_alloc_path();
5229 	if (!path) {
5230 		err = -ENOMEM;
5231 		goto out;
5232 	}
5233 
5234 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5235 	if (!wc) {
5236 		btrfs_free_path(path);
5237 		err = -ENOMEM;
5238 		goto out;
5239 	}
5240 
5241 	trans = btrfs_start_transaction(tree_root, 0);
5242 	if (IS_ERR(trans)) {
5243 		err = PTR_ERR(trans);
5244 		goto out_free;
5245 	}
5246 
5247 	err = btrfs_run_delayed_items(trans);
5248 	if (err)
5249 		goto out_end_trans;
5250 
5251 	if (block_rsv)
5252 		trans->block_rsv = block_rsv;
5253 
5254 	/*
5255 	 * This will help us catch people modifying the fs tree while we're
5256 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
5257 	 * dropped as we unlock the root node and parent nodes as we walk down
5258 	 * the tree, assuming nothing will change.  If something does change
5259 	 * then we'll have stale information and drop references to blocks we've
5260 	 * already dropped.
5261 	 */
5262 	set_bit(BTRFS_ROOT_DELETING, &root->state);
5263 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5264 		level = btrfs_header_level(root->node);
5265 		path->nodes[level] = btrfs_lock_root_node(root);
5266 		btrfs_set_lock_blocking_write(path->nodes[level]);
5267 		path->slots[level] = 0;
5268 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5269 		memset(&wc->update_progress, 0,
5270 		       sizeof(wc->update_progress));
5271 	} else {
5272 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5273 		memcpy(&wc->update_progress, &key,
5274 		       sizeof(wc->update_progress));
5275 
5276 		level = root_item->drop_level;
5277 		BUG_ON(level == 0);
5278 		path->lowest_level = level;
5279 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5280 		path->lowest_level = 0;
5281 		if (ret < 0) {
5282 			err = ret;
5283 			goto out_end_trans;
5284 		}
5285 		WARN_ON(ret > 0);
5286 
5287 		/*
5288 		 * unlock our path, this is safe because only this
5289 		 * function is allowed to delete this snapshot
5290 		 */
5291 		btrfs_unlock_up_safe(path, 0);
5292 
5293 		level = btrfs_header_level(root->node);
5294 		while (1) {
5295 			btrfs_tree_lock(path->nodes[level]);
5296 			btrfs_set_lock_blocking_write(path->nodes[level]);
5297 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5298 
5299 			ret = btrfs_lookup_extent_info(trans, fs_info,
5300 						path->nodes[level]->start,
5301 						level, 1, &wc->refs[level],
5302 						&wc->flags[level]);
5303 			if (ret < 0) {
5304 				err = ret;
5305 				goto out_end_trans;
5306 			}
5307 			BUG_ON(wc->refs[level] == 0);
5308 
5309 			if (level == root_item->drop_level)
5310 				break;
5311 
5312 			btrfs_tree_unlock(path->nodes[level]);
5313 			path->locks[level] = 0;
5314 			WARN_ON(wc->refs[level] != 1);
5315 			level--;
5316 		}
5317 	}
5318 
5319 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5320 	wc->level = level;
5321 	wc->shared_level = -1;
5322 	wc->stage = DROP_REFERENCE;
5323 	wc->update_ref = update_ref;
5324 	wc->keep_locks = 0;
5325 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5326 
5327 	while (1) {
5328 
5329 		ret = walk_down_tree(trans, root, path, wc);
5330 		if (ret < 0) {
5331 			err = ret;
5332 			break;
5333 		}
5334 
5335 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5336 		if (ret < 0) {
5337 			err = ret;
5338 			break;
5339 		}
5340 
5341 		if (ret > 0) {
5342 			BUG_ON(wc->stage != DROP_REFERENCE);
5343 			break;
5344 		}
5345 
5346 		if (wc->stage == DROP_REFERENCE) {
5347 			wc->drop_level = wc->level;
5348 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5349 					      &wc->drop_progress,
5350 					      path->slots[wc->drop_level]);
5351 		}
5352 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
5353 				      &wc->drop_progress);
5354 		root_item->drop_level = wc->drop_level;
5355 
5356 		BUG_ON(wc->level == 0);
5357 		if (btrfs_should_end_transaction(trans) ||
5358 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5359 			ret = btrfs_update_root(trans, tree_root,
5360 						&root->root_key,
5361 						root_item);
5362 			if (ret) {
5363 				btrfs_abort_transaction(trans, ret);
5364 				err = ret;
5365 				goto out_end_trans;
5366 			}
5367 
5368 			btrfs_end_transaction_throttle(trans);
5369 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5370 				btrfs_debug(fs_info,
5371 					    "drop snapshot early exit");
5372 				err = -EAGAIN;
5373 				goto out_free;
5374 			}
5375 
5376 			trans = btrfs_start_transaction(tree_root, 0);
5377 			if (IS_ERR(trans)) {
5378 				err = PTR_ERR(trans);
5379 				goto out_free;
5380 			}
5381 			if (block_rsv)
5382 				trans->block_rsv = block_rsv;
5383 		}
5384 	}
5385 	btrfs_release_path(path);
5386 	if (err)
5387 		goto out_end_trans;
5388 
5389 	ret = btrfs_del_root(trans, &root->root_key);
5390 	if (ret) {
5391 		btrfs_abort_transaction(trans, ret);
5392 		err = ret;
5393 		goto out_end_trans;
5394 	}
5395 
5396 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
5397 		ret = btrfs_find_root(tree_root, &root->root_key, path,
5398 				      NULL, NULL);
5399 		if (ret < 0) {
5400 			btrfs_abort_transaction(trans, ret);
5401 			err = ret;
5402 			goto out_end_trans;
5403 		} else if (ret > 0) {
5404 			/* if we fail to delete the orphan item this time
5405 			 * around, it'll get picked up the next time.
5406 			 *
5407 			 * The most common failure here is just -ENOENT.
5408 			 */
5409 			btrfs_del_orphan_item(trans, tree_root,
5410 					      root->root_key.objectid);
5411 		}
5412 	}
5413 
5414 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
5415 		btrfs_add_dropped_root(trans, root);
5416 	} else {
5417 		free_extent_buffer(root->node);
5418 		free_extent_buffer(root->commit_root);
5419 		btrfs_put_fs_root(root);
5420 	}
5421 	root_dropped = true;
5422 out_end_trans:
5423 	btrfs_end_transaction_throttle(trans);
5424 out_free:
5425 	kfree(wc);
5426 	btrfs_free_path(path);
5427 out:
5428 	/*
5429 	 * So if we need to stop dropping the snapshot for whatever reason we
5430 	 * need to make sure to add it back to the dead root list so that we
5431 	 * keep trying to do the work later.  This also cleans up roots if we
5432 	 * don't have it in the radix (like when we recover after a power fail
5433 	 * or unmount) so we don't leak memory.
5434 	 */
5435 	if (!for_reloc && !root_dropped)
5436 		btrfs_add_dead_root(root);
5437 	if (err && err != -EAGAIN)
5438 		btrfs_handle_fs_error(fs_info, err, NULL);
5439 	return err;
5440 }
5441 
5442 /*
5443  * drop subtree rooted at tree block 'node'.
5444  *
5445  * NOTE: this function will unlock and release tree block 'node'
5446  * only used by relocation code
5447  */
5448 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5449 			struct btrfs_root *root,
5450 			struct extent_buffer *node,
5451 			struct extent_buffer *parent)
5452 {
5453 	struct btrfs_fs_info *fs_info = root->fs_info;
5454 	struct btrfs_path *path;
5455 	struct walk_control *wc;
5456 	int level;
5457 	int parent_level;
5458 	int ret = 0;
5459 	int wret;
5460 
5461 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5462 
5463 	path = btrfs_alloc_path();
5464 	if (!path)
5465 		return -ENOMEM;
5466 
5467 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
5468 	if (!wc) {
5469 		btrfs_free_path(path);
5470 		return -ENOMEM;
5471 	}
5472 
5473 	btrfs_assert_tree_locked(parent);
5474 	parent_level = btrfs_header_level(parent);
5475 	atomic_inc(&parent->refs);
5476 	path->nodes[parent_level] = parent;
5477 	path->slots[parent_level] = btrfs_header_nritems(parent);
5478 
5479 	btrfs_assert_tree_locked(node);
5480 	level = btrfs_header_level(node);
5481 	path->nodes[level] = node;
5482 	path->slots[level] = 0;
5483 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
5484 
5485 	wc->refs[parent_level] = 1;
5486 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5487 	wc->level = level;
5488 	wc->shared_level = -1;
5489 	wc->stage = DROP_REFERENCE;
5490 	wc->update_ref = 0;
5491 	wc->keep_locks = 1;
5492 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5493 
5494 	while (1) {
5495 		wret = walk_down_tree(trans, root, path, wc);
5496 		if (wret < 0) {
5497 			ret = wret;
5498 			break;
5499 		}
5500 
5501 		wret = walk_up_tree(trans, root, path, wc, parent_level);
5502 		if (wret < 0)
5503 			ret = wret;
5504 		if (wret != 0)
5505 			break;
5506 	}
5507 
5508 	kfree(wc);
5509 	btrfs_free_path(path);
5510 	return ret;
5511 }
5512 
5513 /*
5514  * helper to account the unused space of all the readonly block group in the
5515  * space_info. takes mirrors into account.
5516  */
5517 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
5518 {
5519 	struct btrfs_block_group *block_group;
5520 	u64 free_bytes = 0;
5521 	int factor;
5522 
5523 	/* It's df, we don't care if it's racy */
5524 	if (list_empty(&sinfo->ro_bgs))
5525 		return 0;
5526 
5527 	spin_lock(&sinfo->lock);
5528 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
5529 		spin_lock(&block_group->lock);
5530 
5531 		if (!block_group->ro) {
5532 			spin_unlock(&block_group->lock);
5533 			continue;
5534 		}
5535 
5536 		factor = btrfs_bg_type_to_factor(block_group->flags);
5537 		free_bytes += (block_group->length -
5538 			       block_group->used) * factor;
5539 
5540 		spin_unlock(&block_group->lock);
5541 	}
5542 	spin_unlock(&sinfo->lock);
5543 
5544 	return free_bytes;
5545 }
5546 
5547 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5548 				   u64 start, u64 end)
5549 {
5550 	return unpin_extent_range(fs_info, start, end, false);
5551 }
5552 
5553 /*
5554  * It used to be that old block groups would be left around forever.
5555  * Iterating over them would be enough to trim unused space.  Since we
5556  * now automatically remove them, we also need to iterate over unallocated
5557  * space.
5558  *
5559  * We don't want a transaction for this since the discard may take a
5560  * substantial amount of time.  We don't require that a transaction be
5561  * running, but we do need to take a running transaction into account
5562  * to ensure that we're not discarding chunks that were released or
5563  * allocated in the current transaction.
5564  *
5565  * Holding the chunks lock will prevent other threads from allocating
5566  * or releasing chunks, but it won't prevent a running transaction
5567  * from committing and releasing the memory that the pending chunks
5568  * list head uses.  For that, we need to take a reference to the
5569  * transaction and hold the commit root sem.  We only need to hold
5570  * it while performing the free space search since we have already
5571  * held back allocations.
5572  */
5573 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5574 {
5575 	u64 start = SZ_1M, len = 0, end = 0;
5576 	int ret;
5577 
5578 	*trimmed = 0;
5579 
5580 	/* Discard not supported = nothing to do. */
5581 	if (!blk_queue_discard(bdev_get_queue(device->bdev)))
5582 		return 0;
5583 
5584 	/* Not writable = nothing to do. */
5585 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5586 		return 0;
5587 
5588 	/* No free space = nothing to do. */
5589 	if (device->total_bytes <= device->bytes_used)
5590 		return 0;
5591 
5592 	ret = 0;
5593 
5594 	while (1) {
5595 		struct btrfs_fs_info *fs_info = device->fs_info;
5596 		u64 bytes;
5597 
5598 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5599 		if (ret)
5600 			break;
5601 
5602 		find_first_clear_extent_bit(&device->alloc_state, start,
5603 					    &start, &end,
5604 					    CHUNK_TRIMMED | CHUNK_ALLOCATED);
5605 
5606 		/* Ensure we skip the reserved area in the first 1M */
5607 		start = max_t(u64, start, SZ_1M);
5608 
5609 		/*
5610 		 * If find_first_clear_extent_bit find a range that spans the
5611 		 * end of the device it will set end to -1, in this case it's up
5612 		 * to the caller to trim the value to the size of the device.
5613 		 */
5614 		end = min(end, device->total_bytes - 1);
5615 
5616 		len = end - start + 1;
5617 
5618 		/* We didn't find any extents */
5619 		if (!len) {
5620 			mutex_unlock(&fs_info->chunk_mutex);
5621 			ret = 0;
5622 			break;
5623 		}
5624 
5625 		ret = btrfs_issue_discard(device->bdev, start, len,
5626 					  &bytes);
5627 		if (!ret)
5628 			set_extent_bits(&device->alloc_state, start,
5629 					start + bytes - 1,
5630 					CHUNK_TRIMMED);
5631 		mutex_unlock(&fs_info->chunk_mutex);
5632 
5633 		if (ret)
5634 			break;
5635 
5636 		start += len;
5637 		*trimmed += bytes;
5638 
5639 		if (fatal_signal_pending(current)) {
5640 			ret = -ERESTARTSYS;
5641 			break;
5642 		}
5643 
5644 		cond_resched();
5645 	}
5646 
5647 	return ret;
5648 }
5649 
5650 /*
5651  * Trim the whole filesystem by:
5652  * 1) trimming the free space in each block group
5653  * 2) trimming the unallocated space on each device
5654  *
5655  * This will also continue trimming even if a block group or device encounters
5656  * an error.  The return value will be the last error, or 0 if nothing bad
5657  * happens.
5658  */
5659 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
5660 {
5661 	struct btrfs_block_group *cache = NULL;
5662 	struct btrfs_device *device;
5663 	struct list_head *devices;
5664 	u64 group_trimmed;
5665 	u64 range_end = U64_MAX;
5666 	u64 start;
5667 	u64 end;
5668 	u64 trimmed = 0;
5669 	u64 bg_failed = 0;
5670 	u64 dev_failed = 0;
5671 	int bg_ret = 0;
5672 	int dev_ret = 0;
5673 	int ret = 0;
5674 
5675 	/*
5676 	 * Check range overflow if range->len is set.
5677 	 * The default range->len is U64_MAX.
5678 	 */
5679 	if (range->len != U64_MAX &&
5680 	    check_add_overflow(range->start, range->len, &range_end))
5681 		return -EINVAL;
5682 
5683 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
5684 	for (; cache; cache = btrfs_next_block_group(cache)) {
5685 		if (cache->start >= range_end) {
5686 			btrfs_put_block_group(cache);
5687 			break;
5688 		}
5689 
5690 		start = max(range->start, cache->start);
5691 		end = min(range_end, cache->start + cache->length);
5692 
5693 		if (end - start >= range->minlen) {
5694 			if (!btrfs_block_group_done(cache)) {
5695 				ret = btrfs_cache_block_group(cache, 0);
5696 				if (ret) {
5697 					bg_failed++;
5698 					bg_ret = ret;
5699 					continue;
5700 				}
5701 				ret = btrfs_wait_block_group_cache_done(cache);
5702 				if (ret) {
5703 					bg_failed++;
5704 					bg_ret = ret;
5705 					continue;
5706 				}
5707 			}
5708 			ret = btrfs_trim_block_group(cache,
5709 						     &group_trimmed,
5710 						     start,
5711 						     end,
5712 						     range->minlen);
5713 
5714 			trimmed += group_trimmed;
5715 			if (ret) {
5716 				bg_failed++;
5717 				bg_ret = ret;
5718 				continue;
5719 			}
5720 		}
5721 	}
5722 
5723 	if (bg_failed)
5724 		btrfs_warn(fs_info,
5725 			"failed to trim %llu block group(s), last error %d",
5726 			bg_failed, bg_ret);
5727 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
5728 	devices = &fs_info->fs_devices->devices;
5729 	list_for_each_entry(device, devices, dev_list) {
5730 		ret = btrfs_trim_free_extents(device, &group_trimmed);
5731 		if (ret) {
5732 			dev_failed++;
5733 			dev_ret = ret;
5734 			break;
5735 		}
5736 
5737 		trimmed += group_trimmed;
5738 	}
5739 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5740 
5741 	if (dev_failed)
5742 		btrfs_warn(fs_info,
5743 			"failed to trim %llu device(s), last error %d",
5744 			dev_failed, dev_ret);
5745 	range->len = trimmed;
5746 	if (bg_ret)
5747 		return bg_ret;
5748 	return dev_ret;
5749 }
5750 
5751 /*
5752  * btrfs_{start,end}_write_no_snapshotting() are similar to
5753  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
5754  * data into the page cache through nocow before the subvolume is snapshoted,
5755  * but flush the data into disk after the snapshot creation, or to prevent
5756  * operations while snapshotting is ongoing and that cause the snapshot to be
5757  * inconsistent (writes followed by expanding truncates for example).
5758  */
5759 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
5760 {
5761 	percpu_counter_dec(&root->subv_writers->counter);
5762 	cond_wake_up(&root->subv_writers->wait);
5763 }
5764 
5765 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
5766 {
5767 	if (atomic_read(&root->will_be_snapshotted))
5768 		return 0;
5769 
5770 	percpu_counter_inc(&root->subv_writers->counter);
5771 	/*
5772 	 * Make sure counter is updated before we check for snapshot creation.
5773 	 */
5774 	smp_mb();
5775 	if (atomic_read(&root->will_be_snapshotted)) {
5776 		btrfs_end_write_no_snapshotting(root);
5777 		return 0;
5778 	}
5779 	return 1;
5780 }
5781 
5782 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
5783 {
5784 	while (true) {
5785 		int ret;
5786 
5787 		ret = btrfs_start_write_no_snapshotting(root);
5788 		if (ret)
5789 			break;
5790 		wait_var_event(&root->will_be_snapshotted,
5791 			       !atomic_read(&root->will_be_snapshotted));
5792 	}
5793 }
5794