xref: /linux/fs/btrfs/extent-tree.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 /*
64  * Control how reservations are dealt with.
65  *
66  * RESERVE_FREE - freeing a reservation.
67  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68  *   ENOSPC accounting
69  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70  *   bytes_may_use as the ENOSPC accounting is done elsewhere
71  */
72 enum {
73 	RESERVE_FREE = 0,
74 	RESERVE_ALLOC = 1,
75 	RESERVE_ALLOC_NO_ACCOUNT = 2,
76 };
77 
78 static int update_block_group(struct btrfs_trans_handle *trans,
79 			      struct btrfs_root *root, u64 bytenr,
80 			      u64 num_bytes, int alloc);
81 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 				struct btrfs_root *root,
83 				struct btrfs_delayed_ref_node *node, u64 parent,
84 				u64 root_objectid, u64 owner_objectid,
85 				u64 owner_offset, int refs_to_drop,
86 				struct btrfs_delayed_extent_op *extra_op);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 				    struct extent_buffer *leaf,
89 				    struct btrfs_extent_item *ei);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 				      struct btrfs_root *root,
92 				      u64 parent, u64 root_objectid,
93 				      u64 flags, u64 owner, u64 offset,
94 				      struct btrfs_key *ins, int ref_mod);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 				     struct btrfs_root *root,
97 				     u64 parent, u64 root_objectid,
98 				     u64 flags, struct btrfs_disk_key *key,
99 				     int level, struct btrfs_key *ins);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root *root,
337 				struct btrfs_block_group_cache *block_group)
338 {
339 	u64 start = block_group->key.objectid;
340 	u64 len = block_group->key.offset;
341 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
342 		root->nodesize : root->sectorsize;
343 	u64 step = chunk << 1;
344 
345 	while (len > chunk) {
346 		btrfs_remove_free_space(block_group, start, chunk);
347 		start += step;
348 		if (len < step)
349 			len = 0;
350 		else
351 			len -= step;
352 	}
353 }
354 #endif
355 
356 /*
357  * this is only called by cache_block_group, since we could have freed extents
358  * we need to check the pinned_extents for any extents that can't be used yet
359  * since their free space will be released as soon as the transaction commits.
360  */
361 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
362 		       struct btrfs_fs_info *info, u64 start, u64 end)
363 {
364 	u64 extent_start, extent_end, size, total_added = 0;
365 	int ret;
366 
367 	while (start < end) {
368 		ret = find_first_extent_bit(info->pinned_extents, start,
369 					    &extent_start, &extent_end,
370 					    EXTENT_DIRTY | EXTENT_UPTODATE,
371 					    NULL);
372 		if (ret)
373 			break;
374 
375 		if (extent_start <= start) {
376 			start = extent_end + 1;
377 		} else if (extent_start > start && extent_start < end) {
378 			size = extent_start - start;
379 			total_added += size;
380 			ret = btrfs_add_free_space(block_group, start,
381 						   size);
382 			BUG_ON(ret); /* -ENOMEM or logic error */
383 			start = extent_end + 1;
384 		} else {
385 			break;
386 		}
387 	}
388 
389 	if (start < end) {
390 		size = end - start;
391 		total_added += size;
392 		ret = btrfs_add_free_space(block_group, start, size);
393 		BUG_ON(ret); /* -ENOMEM or logic error */
394 	}
395 
396 	return total_added;
397 }
398 
399 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
400 {
401 	struct btrfs_block_group_cache *block_group;
402 	struct btrfs_fs_info *fs_info;
403 	struct btrfs_root *extent_root;
404 	struct btrfs_path *path;
405 	struct extent_buffer *leaf;
406 	struct btrfs_key key;
407 	u64 total_found = 0;
408 	u64 last = 0;
409 	u32 nritems;
410 	int ret;
411 	bool wakeup = true;
412 
413 	block_group = caching_ctl->block_group;
414 	fs_info = block_group->fs_info;
415 	extent_root = fs_info->extent_root;
416 
417 	path = btrfs_alloc_path();
418 	if (!path)
419 		return -ENOMEM;
420 
421 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
422 
423 #ifdef CONFIG_BTRFS_DEBUG
424 	/*
425 	 * If we're fragmenting we don't want to make anybody think we can
426 	 * allocate from this block group until we've had a chance to fragment
427 	 * the free space.
428 	 */
429 	if (btrfs_should_fragment_free_space(extent_root, block_group))
430 		wakeup = false;
431 #endif
432 	/*
433 	 * We don't want to deadlock with somebody trying to allocate a new
434 	 * extent for the extent root while also trying to search the extent
435 	 * root to add free space.  So we skip locking and search the commit
436 	 * root, since its read-only
437 	 */
438 	path->skip_locking = 1;
439 	path->search_commit_root = 1;
440 	path->reada = READA_FORWARD;
441 
442 	key.objectid = last;
443 	key.offset = 0;
444 	key.type = BTRFS_EXTENT_ITEM_KEY;
445 
446 next:
447 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
448 	if (ret < 0)
449 		goto out;
450 
451 	leaf = path->nodes[0];
452 	nritems = btrfs_header_nritems(leaf);
453 
454 	while (1) {
455 		if (btrfs_fs_closing(fs_info) > 1) {
456 			last = (u64)-1;
457 			break;
458 		}
459 
460 		if (path->slots[0] < nritems) {
461 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
462 		} else {
463 			ret = find_next_key(path, 0, &key);
464 			if (ret)
465 				break;
466 
467 			if (need_resched() ||
468 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
469 				if (wakeup)
470 					caching_ctl->progress = last;
471 				btrfs_release_path(path);
472 				up_read(&fs_info->commit_root_sem);
473 				mutex_unlock(&caching_ctl->mutex);
474 				cond_resched();
475 				mutex_lock(&caching_ctl->mutex);
476 				down_read(&fs_info->commit_root_sem);
477 				goto next;
478 			}
479 
480 			ret = btrfs_next_leaf(extent_root, path);
481 			if (ret < 0)
482 				goto out;
483 			if (ret)
484 				break;
485 			leaf = path->nodes[0];
486 			nritems = btrfs_header_nritems(leaf);
487 			continue;
488 		}
489 
490 		if (key.objectid < last) {
491 			key.objectid = last;
492 			key.offset = 0;
493 			key.type = BTRFS_EXTENT_ITEM_KEY;
494 
495 			if (wakeup)
496 				caching_ctl->progress = last;
497 			btrfs_release_path(path);
498 			goto next;
499 		}
500 
501 		if (key.objectid < block_group->key.objectid) {
502 			path->slots[0]++;
503 			continue;
504 		}
505 
506 		if (key.objectid >= block_group->key.objectid +
507 		    block_group->key.offset)
508 			break;
509 
510 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
511 		    key.type == BTRFS_METADATA_ITEM_KEY) {
512 			total_found += add_new_free_space(block_group,
513 							  fs_info, last,
514 							  key.objectid);
515 			if (key.type == BTRFS_METADATA_ITEM_KEY)
516 				last = key.objectid +
517 					fs_info->tree_root->nodesize;
518 			else
519 				last = key.objectid + key.offset;
520 
521 			if (total_found > CACHING_CTL_WAKE_UP) {
522 				total_found = 0;
523 				if (wakeup)
524 					wake_up(&caching_ctl->wait);
525 			}
526 		}
527 		path->slots[0]++;
528 	}
529 	ret = 0;
530 
531 	total_found += add_new_free_space(block_group, fs_info, last,
532 					  block_group->key.objectid +
533 					  block_group->key.offset);
534 	caching_ctl->progress = (u64)-1;
535 
536 out:
537 	btrfs_free_path(path);
538 	return ret;
539 }
540 
541 static noinline void caching_thread(struct btrfs_work *work)
542 {
543 	struct btrfs_block_group_cache *block_group;
544 	struct btrfs_fs_info *fs_info;
545 	struct btrfs_caching_control *caching_ctl;
546 	struct btrfs_root *extent_root;
547 	int ret;
548 
549 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
550 	block_group = caching_ctl->block_group;
551 	fs_info = block_group->fs_info;
552 	extent_root = fs_info->extent_root;
553 
554 	mutex_lock(&caching_ctl->mutex);
555 	down_read(&fs_info->commit_root_sem);
556 
557 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
558 		ret = load_free_space_tree(caching_ctl);
559 	else
560 		ret = load_extent_tree_free(caching_ctl);
561 
562 	spin_lock(&block_group->lock);
563 	block_group->caching_ctl = NULL;
564 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
565 	spin_unlock(&block_group->lock);
566 
567 #ifdef CONFIG_BTRFS_DEBUG
568 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
569 		u64 bytes_used;
570 
571 		spin_lock(&block_group->space_info->lock);
572 		spin_lock(&block_group->lock);
573 		bytes_used = block_group->key.offset -
574 			btrfs_block_group_used(&block_group->item);
575 		block_group->space_info->bytes_used += bytes_used >> 1;
576 		spin_unlock(&block_group->lock);
577 		spin_unlock(&block_group->space_info->lock);
578 		fragment_free_space(extent_root, block_group);
579 	}
580 #endif
581 
582 	caching_ctl->progress = (u64)-1;
583 
584 	up_read(&fs_info->commit_root_sem);
585 	free_excluded_extents(fs_info->extent_root, block_group);
586 	mutex_unlock(&caching_ctl->mutex);
587 
588 	wake_up(&caching_ctl->wait);
589 
590 	put_caching_control(caching_ctl);
591 	btrfs_put_block_group(block_group);
592 }
593 
594 static int cache_block_group(struct btrfs_block_group_cache *cache,
595 			     int load_cache_only)
596 {
597 	DEFINE_WAIT(wait);
598 	struct btrfs_fs_info *fs_info = cache->fs_info;
599 	struct btrfs_caching_control *caching_ctl;
600 	int ret = 0;
601 
602 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
603 	if (!caching_ctl)
604 		return -ENOMEM;
605 
606 	INIT_LIST_HEAD(&caching_ctl->list);
607 	mutex_init(&caching_ctl->mutex);
608 	init_waitqueue_head(&caching_ctl->wait);
609 	caching_ctl->block_group = cache;
610 	caching_ctl->progress = cache->key.objectid;
611 	atomic_set(&caching_ctl->count, 1);
612 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
613 			caching_thread, NULL, NULL);
614 
615 	spin_lock(&cache->lock);
616 	/*
617 	 * This should be a rare occasion, but this could happen I think in the
618 	 * case where one thread starts to load the space cache info, and then
619 	 * some other thread starts a transaction commit which tries to do an
620 	 * allocation while the other thread is still loading the space cache
621 	 * info.  The previous loop should have kept us from choosing this block
622 	 * group, but if we've moved to the state where we will wait on caching
623 	 * block groups we need to first check if we're doing a fast load here,
624 	 * so we can wait for it to finish, otherwise we could end up allocating
625 	 * from a block group who's cache gets evicted for one reason or
626 	 * another.
627 	 */
628 	while (cache->cached == BTRFS_CACHE_FAST) {
629 		struct btrfs_caching_control *ctl;
630 
631 		ctl = cache->caching_ctl;
632 		atomic_inc(&ctl->count);
633 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
634 		spin_unlock(&cache->lock);
635 
636 		schedule();
637 
638 		finish_wait(&ctl->wait, &wait);
639 		put_caching_control(ctl);
640 		spin_lock(&cache->lock);
641 	}
642 
643 	if (cache->cached != BTRFS_CACHE_NO) {
644 		spin_unlock(&cache->lock);
645 		kfree(caching_ctl);
646 		return 0;
647 	}
648 	WARN_ON(cache->caching_ctl);
649 	cache->caching_ctl = caching_ctl;
650 	cache->cached = BTRFS_CACHE_FAST;
651 	spin_unlock(&cache->lock);
652 
653 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
654 		mutex_lock(&caching_ctl->mutex);
655 		ret = load_free_space_cache(fs_info, cache);
656 
657 		spin_lock(&cache->lock);
658 		if (ret == 1) {
659 			cache->caching_ctl = NULL;
660 			cache->cached = BTRFS_CACHE_FINISHED;
661 			cache->last_byte_to_unpin = (u64)-1;
662 			caching_ctl->progress = (u64)-1;
663 		} else {
664 			if (load_cache_only) {
665 				cache->caching_ctl = NULL;
666 				cache->cached = BTRFS_CACHE_NO;
667 			} else {
668 				cache->cached = BTRFS_CACHE_STARTED;
669 				cache->has_caching_ctl = 1;
670 			}
671 		}
672 		spin_unlock(&cache->lock);
673 #ifdef CONFIG_BTRFS_DEBUG
674 		if (ret == 1 &&
675 		    btrfs_should_fragment_free_space(fs_info->extent_root,
676 						     cache)) {
677 			u64 bytes_used;
678 
679 			spin_lock(&cache->space_info->lock);
680 			spin_lock(&cache->lock);
681 			bytes_used = cache->key.offset -
682 				btrfs_block_group_used(&cache->item);
683 			cache->space_info->bytes_used += bytes_used >> 1;
684 			spin_unlock(&cache->lock);
685 			spin_unlock(&cache->space_info->lock);
686 			fragment_free_space(fs_info->extent_root, cache);
687 		}
688 #endif
689 		mutex_unlock(&caching_ctl->mutex);
690 
691 		wake_up(&caching_ctl->wait);
692 		if (ret == 1) {
693 			put_caching_control(caching_ctl);
694 			free_excluded_extents(fs_info->extent_root, cache);
695 			return 0;
696 		}
697 	} else {
698 		/*
699 		 * We're either using the free space tree or no caching at all.
700 		 * Set cached to the appropriate value and wakeup any waiters.
701 		 */
702 		spin_lock(&cache->lock);
703 		if (load_cache_only) {
704 			cache->caching_ctl = NULL;
705 			cache->cached = BTRFS_CACHE_NO;
706 		} else {
707 			cache->cached = BTRFS_CACHE_STARTED;
708 			cache->has_caching_ctl = 1;
709 		}
710 		spin_unlock(&cache->lock);
711 		wake_up(&caching_ctl->wait);
712 	}
713 
714 	if (load_cache_only) {
715 		put_caching_control(caching_ctl);
716 		return 0;
717 	}
718 
719 	down_write(&fs_info->commit_root_sem);
720 	atomic_inc(&caching_ctl->count);
721 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
722 	up_write(&fs_info->commit_root_sem);
723 
724 	btrfs_get_block_group(cache);
725 
726 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
727 
728 	return ret;
729 }
730 
731 /*
732  * return the block group that starts at or after bytenr
733  */
734 static struct btrfs_block_group_cache *
735 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
736 {
737 	struct btrfs_block_group_cache *cache;
738 
739 	cache = block_group_cache_tree_search(info, bytenr, 0);
740 
741 	return cache;
742 }
743 
744 /*
745  * return the block group that contains the given bytenr
746  */
747 struct btrfs_block_group_cache *btrfs_lookup_block_group(
748 						 struct btrfs_fs_info *info,
749 						 u64 bytenr)
750 {
751 	struct btrfs_block_group_cache *cache;
752 
753 	cache = block_group_cache_tree_search(info, bytenr, 1);
754 
755 	return cache;
756 }
757 
758 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
759 						  u64 flags)
760 {
761 	struct list_head *head = &info->space_info;
762 	struct btrfs_space_info *found;
763 
764 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
765 
766 	rcu_read_lock();
767 	list_for_each_entry_rcu(found, head, list) {
768 		if (found->flags & flags) {
769 			rcu_read_unlock();
770 			return found;
771 		}
772 	}
773 	rcu_read_unlock();
774 	return NULL;
775 }
776 
777 /*
778  * after adding space to the filesystem, we need to clear the full flags
779  * on all the space infos.
780  */
781 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
782 {
783 	struct list_head *head = &info->space_info;
784 	struct btrfs_space_info *found;
785 
786 	rcu_read_lock();
787 	list_for_each_entry_rcu(found, head, list)
788 		found->full = 0;
789 	rcu_read_unlock();
790 }
791 
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
794 {
795 	int ret;
796 	struct btrfs_key key;
797 	struct btrfs_path *path;
798 
799 	path = btrfs_alloc_path();
800 	if (!path)
801 		return -ENOMEM;
802 
803 	key.objectid = start;
804 	key.offset = len;
805 	key.type = BTRFS_EXTENT_ITEM_KEY;
806 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
807 				0, 0);
808 	btrfs_free_path(path);
809 	return ret;
810 }
811 
812 /*
813  * helper function to lookup reference count and flags of a tree block.
814  *
815  * the head node for delayed ref is used to store the sum of all the
816  * reference count modifications queued up in the rbtree. the head
817  * node may also store the extent flags to set. This way you can check
818  * to see what the reference count and extent flags would be if all of
819  * the delayed refs are not processed.
820  */
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
822 			     struct btrfs_root *root, u64 bytenr,
823 			     u64 offset, int metadata, u64 *refs, u64 *flags)
824 {
825 	struct btrfs_delayed_ref_head *head;
826 	struct btrfs_delayed_ref_root *delayed_refs;
827 	struct btrfs_path *path;
828 	struct btrfs_extent_item *ei;
829 	struct extent_buffer *leaf;
830 	struct btrfs_key key;
831 	u32 item_size;
832 	u64 num_refs;
833 	u64 extent_flags;
834 	int ret;
835 
836 	/*
837 	 * If we don't have skinny metadata, don't bother doing anything
838 	 * different
839 	 */
840 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
841 		offset = root->nodesize;
842 		metadata = 0;
843 	}
844 
845 	path = btrfs_alloc_path();
846 	if (!path)
847 		return -ENOMEM;
848 
849 	if (!trans) {
850 		path->skip_locking = 1;
851 		path->search_commit_root = 1;
852 	}
853 
854 search_again:
855 	key.objectid = bytenr;
856 	key.offset = offset;
857 	if (metadata)
858 		key.type = BTRFS_METADATA_ITEM_KEY;
859 	else
860 		key.type = BTRFS_EXTENT_ITEM_KEY;
861 
862 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
863 				&key, path, 0, 0);
864 	if (ret < 0)
865 		goto out_free;
866 
867 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
868 		if (path->slots[0]) {
869 			path->slots[0]--;
870 			btrfs_item_key_to_cpu(path->nodes[0], &key,
871 					      path->slots[0]);
872 			if (key.objectid == bytenr &&
873 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
874 			    key.offset == root->nodesize)
875 				ret = 0;
876 		}
877 	}
878 
879 	if (ret == 0) {
880 		leaf = path->nodes[0];
881 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
882 		if (item_size >= sizeof(*ei)) {
883 			ei = btrfs_item_ptr(leaf, path->slots[0],
884 					    struct btrfs_extent_item);
885 			num_refs = btrfs_extent_refs(leaf, ei);
886 			extent_flags = btrfs_extent_flags(leaf, ei);
887 		} else {
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 			struct btrfs_extent_item_v0 *ei0;
890 			BUG_ON(item_size != sizeof(*ei0));
891 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
892 					     struct btrfs_extent_item_v0);
893 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
894 			/* FIXME: this isn't correct for data */
895 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
896 #else
897 			BUG();
898 #endif
899 		}
900 		BUG_ON(num_refs == 0);
901 	} else {
902 		num_refs = 0;
903 		extent_flags = 0;
904 		ret = 0;
905 	}
906 
907 	if (!trans)
908 		goto out;
909 
910 	delayed_refs = &trans->transaction->delayed_refs;
911 	spin_lock(&delayed_refs->lock);
912 	head = btrfs_find_delayed_ref_head(trans, bytenr);
913 	if (head) {
914 		if (!mutex_trylock(&head->mutex)) {
915 			atomic_inc(&head->node.refs);
916 			spin_unlock(&delayed_refs->lock);
917 
918 			btrfs_release_path(path);
919 
920 			/*
921 			 * Mutex was contended, block until it's released and try
922 			 * again
923 			 */
924 			mutex_lock(&head->mutex);
925 			mutex_unlock(&head->mutex);
926 			btrfs_put_delayed_ref(&head->node);
927 			goto search_again;
928 		}
929 		spin_lock(&head->lock);
930 		if (head->extent_op && head->extent_op->update_flags)
931 			extent_flags |= head->extent_op->flags_to_set;
932 		else
933 			BUG_ON(num_refs == 0);
934 
935 		num_refs += head->node.ref_mod;
936 		spin_unlock(&head->lock);
937 		mutex_unlock(&head->mutex);
938 	}
939 	spin_unlock(&delayed_refs->lock);
940 out:
941 	WARN_ON(num_refs == 0);
942 	if (refs)
943 		*refs = num_refs;
944 	if (flags)
945 		*flags = extent_flags;
946 out_free:
947 	btrfs_free_path(path);
948 	return ret;
949 }
950 
951 /*
952  * Back reference rules.  Back refs have three main goals:
953  *
954  * 1) differentiate between all holders of references to an extent so that
955  *    when a reference is dropped we can make sure it was a valid reference
956  *    before freeing the extent.
957  *
958  * 2) Provide enough information to quickly find the holders of an extent
959  *    if we notice a given block is corrupted or bad.
960  *
961  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962  *    maintenance.  This is actually the same as #2, but with a slightly
963  *    different use case.
964  *
965  * There are two kinds of back refs. The implicit back refs is optimized
966  * for pointers in non-shared tree blocks. For a given pointer in a block,
967  * back refs of this kind provide information about the block's owner tree
968  * and the pointer's key. These information allow us to find the block by
969  * b-tree searching. The full back refs is for pointers in tree blocks not
970  * referenced by their owner trees. The location of tree block is recorded
971  * in the back refs. Actually the full back refs is generic, and can be
972  * used in all cases the implicit back refs is used. The major shortcoming
973  * of the full back refs is its overhead. Every time a tree block gets
974  * COWed, we have to update back refs entry for all pointers in it.
975  *
976  * For a newly allocated tree block, we use implicit back refs for
977  * pointers in it. This means most tree related operations only involve
978  * implicit back refs. For a tree block created in old transaction, the
979  * only way to drop a reference to it is COW it. So we can detect the
980  * event that tree block loses its owner tree's reference and do the
981  * back refs conversion.
982  *
983  * When a tree block is COWed through a tree, there are four cases:
984  *
985  * The reference count of the block is one and the tree is the block's
986  * owner tree. Nothing to do in this case.
987  *
988  * The reference count of the block is one and the tree is not the
989  * block's owner tree. In this case, full back refs is used for pointers
990  * in the block. Remove these full back refs, add implicit back refs for
991  * every pointers in the new block.
992  *
993  * The reference count of the block is greater than one and the tree is
994  * the block's owner tree. In this case, implicit back refs is used for
995  * pointers in the block. Add full back refs for every pointers in the
996  * block, increase lower level extents' reference counts. The original
997  * implicit back refs are entailed to the new block.
998  *
999  * The reference count of the block is greater than one and the tree is
1000  * not the block's owner tree. Add implicit back refs for every pointer in
1001  * the new block, increase lower level extents' reference count.
1002  *
1003  * Back Reference Key composing:
1004  *
1005  * The key objectid corresponds to the first byte in the extent,
1006  * The key type is used to differentiate between types of back refs.
1007  * There are different meanings of the key offset for different types
1008  * of back refs.
1009  *
1010  * File extents can be referenced by:
1011  *
1012  * - multiple snapshots, subvolumes, or different generations in one subvol
1013  * - different files inside a single subvolume
1014  * - different offsets inside a file (bookend extents in file.c)
1015  *
1016  * The extent ref structure for the implicit back refs has fields for:
1017  *
1018  * - Objectid of the subvolume root
1019  * - objectid of the file holding the reference
1020  * - original offset in the file
1021  * - how many bookend extents
1022  *
1023  * The key offset for the implicit back refs is hash of the first
1024  * three fields.
1025  *
1026  * The extent ref structure for the full back refs has field for:
1027  *
1028  * - number of pointers in the tree leaf
1029  *
1030  * The key offset for the implicit back refs is the first byte of
1031  * the tree leaf
1032  *
1033  * When a file extent is allocated, The implicit back refs is used.
1034  * the fields are filled in:
1035  *
1036  *     (root_key.objectid, inode objectid, offset in file, 1)
1037  *
1038  * When a file extent is removed file truncation, we find the
1039  * corresponding implicit back refs and check the following fields:
1040  *
1041  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1042  *
1043  * Btree extents can be referenced by:
1044  *
1045  * - Different subvolumes
1046  *
1047  * Both the implicit back refs and the full back refs for tree blocks
1048  * only consist of key. The key offset for the implicit back refs is
1049  * objectid of block's owner tree. The key offset for the full back refs
1050  * is the first byte of parent block.
1051  *
1052  * When implicit back refs is used, information about the lowest key and
1053  * level of the tree block are required. These information are stored in
1054  * tree block info structure.
1055  */
1056 
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059 				  struct btrfs_root *root,
1060 				  struct btrfs_path *path,
1061 				  u64 owner, u32 extra_size)
1062 {
1063 	struct btrfs_extent_item *item;
1064 	struct btrfs_extent_item_v0 *ei0;
1065 	struct btrfs_extent_ref_v0 *ref0;
1066 	struct btrfs_tree_block_info *bi;
1067 	struct extent_buffer *leaf;
1068 	struct btrfs_key key;
1069 	struct btrfs_key found_key;
1070 	u32 new_size = sizeof(*item);
1071 	u64 refs;
1072 	int ret;
1073 
1074 	leaf = path->nodes[0];
1075 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076 
1077 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079 			     struct btrfs_extent_item_v0);
1080 	refs = btrfs_extent_refs_v0(leaf, ei0);
1081 
1082 	if (owner == (u64)-1) {
1083 		while (1) {
1084 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085 				ret = btrfs_next_leaf(root, path);
1086 				if (ret < 0)
1087 					return ret;
1088 				BUG_ON(ret > 0); /* Corruption */
1089 				leaf = path->nodes[0];
1090 			}
1091 			btrfs_item_key_to_cpu(leaf, &found_key,
1092 					      path->slots[0]);
1093 			BUG_ON(key.objectid != found_key.objectid);
1094 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095 				path->slots[0]++;
1096 				continue;
1097 			}
1098 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099 					      struct btrfs_extent_ref_v0);
1100 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1101 			break;
1102 		}
1103 	}
1104 	btrfs_release_path(path);
1105 
1106 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107 		new_size += sizeof(*bi);
1108 
1109 	new_size -= sizeof(*ei0);
1110 	ret = btrfs_search_slot(trans, root, &key, path,
1111 				new_size + extra_size, 1);
1112 	if (ret < 0)
1113 		return ret;
1114 	BUG_ON(ret); /* Corruption */
1115 
1116 	btrfs_extend_item(root, path, new_size);
1117 
1118 	leaf = path->nodes[0];
1119 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120 	btrfs_set_extent_refs(leaf, item, refs);
1121 	/* FIXME: get real generation */
1122 	btrfs_set_extent_generation(leaf, item, 0);
1123 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124 		btrfs_set_extent_flags(leaf, item,
1125 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127 		bi = (struct btrfs_tree_block_info *)(item + 1);
1128 		/* FIXME: get first key of the block */
1129 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131 	} else {
1132 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133 	}
1134 	btrfs_mark_buffer_dirty(leaf);
1135 	return 0;
1136 }
1137 #endif
1138 
1139 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140 {
1141 	u32 high_crc = ~(u32)0;
1142 	u32 low_crc = ~(u32)0;
1143 	__le64 lenum;
1144 
1145 	lenum = cpu_to_le64(root_objectid);
1146 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147 	lenum = cpu_to_le64(owner);
1148 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149 	lenum = cpu_to_le64(offset);
1150 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151 
1152 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1153 }
1154 
1155 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156 				     struct btrfs_extent_data_ref *ref)
1157 {
1158 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159 				    btrfs_extent_data_ref_objectid(leaf, ref),
1160 				    btrfs_extent_data_ref_offset(leaf, ref));
1161 }
1162 
1163 static int match_extent_data_ref(struct extent_buffer *leaf,
1164 				 struct btrfs_extent_data_ref *ref,
1165 				 u64 root_objectid, u64 owner, u64 offset)
1166 {
1167 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170 		return 0;
1171 	return 1;
1172 }
1173 
1174 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175 					   struct btrfs_root *root,
1176 					   struct btrfs_path *path,
1177 					   u64 bytenr, u64 parent,
1178 					   u64 root_objectid,
1179 					   u64 owner, u64 offset)
1180 {
1181 	struct btrfs_key key;
1182 	struct btrfs_extent_data_ref *ref;
1183 	struct extent_buffer *leaf;
1184 	u32 nritems;
1185 	int ret;
1186 	int recow;
1187 	int err = -ENOENT;
1188 
1189 	key.objectid = bytenr;
1190 	if (parent) {
1191 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1192 		key.offset = parent;
1193 	} else {
1194 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195 		key.offset = hash_extent_data_ref(root_objectid,
1196 						  owner, offset);
1197 	}
1198 again:
1199 	recow = 0;
1200 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 	if (ret < 0) {
1202 		err = ret;
1203 		goto fail;
1204 	}
1205 
1206 	if (parent) {
1207 		if (!ret)
1208 			return 0;
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1211 		btrfs_release_path(path);
1212 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213 		if (ret < 0) {
1214 			err = ret;
1215 			goto fail;
1216 		}
1217 		if (!ret)
1218 			return 0;
1219 #endif
1220 		goto fail;
1221 	}
1222 
1223 	leaf = path->nodes[0];
1224 	nritems = btrfs_header_nritems(leaf);
1225 	while (1) {
1226 		if (path->slots[0] >= nritems) {
1227 			ret = btrfs_next_leaf(root, path);
1228 			if (ret < 0)
1229 				err = ret;
1230 			if (ret)
1231 				goto fail;
1232 
1233 			leaf = path->nodes[0];
1234 			nritems = btrfs_header_nritems(leaf);
1235 			recow = 1;
1236 		}
1237 
1238 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239 		if (key.objectid != bytenr ||
1240 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241 			goto fail;
1242 
1243 		ref = btrfs_item_ptr(leaf, path->slots[0],
1244 				     struct btrfs_extent_data_ref);
1245 
1246 		if (match_extent_data_ref(leaf, ref, root_objectid,
1247 					  owner, offset)) {
1248 			if (recow) {
1249 				btrfs_release_path(path);
1250 				goto again;
1251 			}
1252 			err = 0;
1253 			break;
1254 		}
1255 		path->slots[0]++;
1256 	}
1257 fail:
1258 	return err;
1259 }
1260 
1261 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   u64 bytenr, u64 parent,
1265 					   u64 root_objectid, u64 owner,
1266 					   u64 offset, int refs_to_add)
1267 {
1268 	struct btrfs_key key;
1269 	struct extent_buffer *leaf;
1270 	u32 size;
1271 	u32 num_refs;
1272 	int ret;
1273 
1274 	key.objectid = bytenr;
1275 	if (parent) {
1276 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1277 		key.offset = parent;
1278 		size = sizeof(struct btrfs_shared_data_ref);
1279 	} else {
1280 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281 		key.offset = hash_extent_data_ref(root_objectid,
1282 						  owner, offset);
1283 		size = sizeof(struct btrfs_extent_data_ref);
1284 	}
1285 
1286 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287 	if (ret && ret != -EEXIST)
1288 		goto fail;
1289 
1290 	leaf = path->nodes[0];
1291 	if (parent) {
1292 		struct btrfs_shared_data_ref *ref;
1293 		ref = btrfs_item_ptr(leaf, path->slots[0],
1294 				     struct btrfs_shared_data_ref);
1295 		if (ret == 0) {
1296 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297 		} else {
1298 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299 			num_refs += refs_to_add;
1300 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301 		}
1302 	} else {
1303 		struct btrfs_extent_data_ref *ref;
1304 		while (ret == -EEXIST) {
1305 			ref = btrfs_item_ptr(leaf, path->slots[0],
1306 					     struct btrfs_extent_data_ref);
1307 			if (match_extent_data_ref(leaf, ref, root_objectid,
1308 						  owner, offset))
1309 				break;
1310 			btrfs_release_path(path);
1311 			key.offset++;
1312 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1313 						      size);
1314 			if (ret && ret != -EEXIST)
1315 				goto fail;
1316 
1317 			leaf = path->nodes[0];
1318 		}
1319 		ref = btrfs_item_ptr(leaf, path->slots[0],
1320 				     struct btrfs_extent_data_ref);
1321 		if (ret == 0) {
1322 			btrfs_set_extent_data_ref_root(leaf, ref,
1323 						       root_objectid);
1324 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327 		} else {
1328 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329 			num_refs += refs_to_add;
1330 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331 		}
1332 	}
1333 	btrfs_mark_buffer_dirty(leaf);
1334 	ret = 0;
1335 fail:
1336 	btrfs_release_path(path);
1337 	return ret;
1338 }
1339 
1340 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341 					   struct btrfs_root *root,
1342 					   struct btrfs_path *path,
1343 					   int refs_to_drop, int *last_ref)
1344 {
1345 	struct btrfs_key key;
1346 	struct btrfs_extent_data_ref *ref1 = NULL;
1347 	struct btrfs_shared_data_ref *ref2 = NULL;
1348 	struct extent_buffer *leaf;
1349 	u32 num_refs = 0;
1350 	int ret = 0;
1351 
1352 	leaf = path->nodes[0];
1353 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354 
1355 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357 				      struct btrfs_extent_data_ref);
1358 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361 				      struct btrfs_shared_data_ref);
1362 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365 		struct btrfs_extent_ref_v0 *ref0;
1366 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367 				      struct btrfs_extent_ref_v0);
1368 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1369 #endif
1370 	} else {
1371 		BUG();
1372 	}
1373 
1374 	BUG_ON(num_refs < refs_to_drop);
1375 	num_refs -= refs_to_drop;
1376 
1377 	if (num_refs == 0) {
1378 		ret = btrfs_del_item(trans, root, path);
1379 		*last_ref = 1;
1380 	} else {
1381 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386 		else {
1387 			struct btrfs_extent_ref_v0 *ref0;
1388 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389 					struct btrfs_extent_ref_v0);
1390 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391 		}
1392 #endif
1393 		btrfs_mark_buffer_dirty(leaf);
1394 	}
1395 	return ret;
1396 }
1397 
1398 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399 					  struct btrfs_extent_inline_ref *iref)
1400 {
1401 	struct btrfs_key key;
1402 	struct extent_buffer *leaf;
1403 	struct btrfs_extent_data_ref *ref1;
1404 	struct btrfs_shared_data_ref *ref2;
1405 	u32 num_refs = 0;
1406 
1407 	leaf = path->nodes[0];
1408 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409 	if (iref) {
1410 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411 		    BTRFS_EXTENT_DATA_REF_KEY) {
1412 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414 		} else {
1415 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417 		}
1418 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420 				      struct btrfs_extent_data_ref);
1421 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424 				      struct btrfs_shared_data_ref);
1425 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428 		struct btrfs_extent_ref_v0 *ref0;
1429 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430 				      struct btrfs_extent_ref_v0);
1431 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1432 #endif
1433 	} else {
1434 		WARN_ON(1);
1435 	}
1436 	return num_refs;
1437 }
1438 
1439 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440 					  struct btrfs_root *root,
1441 					  struct btrfs_path *path,
1442 					  u64 bytenr, u64 parent,
1443 					  u64 root_objectid)
1444 {
1445 	struct btrfs_key key;
1446 	int ret;
1447 
1448 	key.objectid = bytenr;
1449 	if (parent) {
1450 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451 		key.offset = parent;
1452 	} else {
1453 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454 		key.offset = root_objectid;
1455 	}
1456 
1457 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458 	if (ret > 0)
1459 		ret = -ENOENT;
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 	if (ret == -ENOENT && parent) {
1462 		btrfs_release_path(path);
1463 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1464 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 		if (ret > 0)
1466 			ret = -ENOENT;
1467 	}
1468 #endif
1469 	return ret;
1470 }
1471 
1472 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473 					  struct btrfs_root *root,
1474 					  struct btrfs_path *path,
1475 					  u64 bytenr, u64 parent,
1476 					  u64 root_objectid)
1477 {
1478 	struct btrfs_key key;
1479 	int ret;
1480 
1481 	key.objectid = bytenr;
1482 	if (parent) {
1483 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484 		key.offset = parent;
1485 	} else {
1486 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487 		key.offset = root_objectid;
1488 	}
1489 
1490 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491 	btrfs_release_path(path);
1492 	return ret;
1493 }
1494 
1495 static inline int extent_ref_type(u64 parent, u64 owner)
1496 {
1497 	int type;
1498 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499 		if (parent > 0)
1500 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1501 		else
1502 			type = BTRFS_TREE_BLOCK_REF_KEY;
1503 	} else {
1504 		if (parent > 0)
1505 			type = BTRFS_SHARED_DATA_REF_KEY;
1506 		else
1507 			type = BTRFS_EXTENT_DATA_REF_KEY;
1508 	}
1509 	return type;
1510 }
1511 
1512 static int find_next_key(struct btrfs_path *path, int level,
1513 			 struct btrfs_key *key)
1514 
1515 {
1516 	for (; level < BTRFS_MAX_LEVEL; level++) {
1517 		if (!path->nodes[level])
1518 			break;
1519 		if (path->slots[level] + 1 >=
1520 		    btrfs_header_nritems(path->nodes[level]))
1521 			continue;
1522 		if (level == 0)
1523 			btrfs_item_key_to_cpu(path->nodes[level], key,
1524 					      path->slots[level] + 1);
1525 		else
1526 			btrfs_node_key_to_cpu(path->nodes[level], key,
1527 					      path->slots[level] + 1);
1528 		return 0;
1529 	}
1530 	return 1;
1531 }
1532 
1533 /*
1534  * look for inline back ref. if back ref is found, *ref_ret is set
1535  * to the address of inline back ref, and 0 is returned.
1536  *
1537  * if back ref isn't found, *ref_ret is set to the address where it
1538  * should be inserted, and -ENOENT is returned.
1539  *
1540  * if insert is true and there are too many inline back refs, the path
1541  * points to the extent item, and -EAGAIN is returned.
1542  *
1543  * NOTE: inline back refs are ordered in the same way that back ref
1544  *	 items in the tree are ordered.
1545  */
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548 				 struct btrfs_root *root,
1549 				 struct btrfs_path *path,
1550 				 struct btrfs_extent_inline_ref **ref_ret,
1551 				 u64 bytenr, u64 num_bytes,
1552 				 u64 parent, u64 root_objectid,
1553 				 u64 owner, u64 offset, int insert)
1554 {
1555 	struct btrfs_key key;
1556 	struct extent_buffer *leaf;
1557 	struct btrfs_extent_item *ei;
1558 	struct btrfs_extent_inline_ref *iref;
1559 	u64 flags;
1560 	u64 item_size;
1561 	unsigned long ptr;
1562 	unsigned long end;
1563 	int extra_size;
1564 	int type;
1565 	int want;
1566 	int ret;
1567 	int err = 0;
1568 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569 						 SKINNY_METADATA);
1570 
1571 	key.objectid = bytenr;
1572 	key.type = BTRFS_EXTENT_ITEM_KEY;
1573 	key.offset = num_bytes;
1574 
1575 	want = extent_ref_type(parent, owner);
1576 	if (insert) {
1577 		extra_size = btrfs_extent_inline_ref_size(want);
1578 		path->keep_locks = 1;
1579 	} else
1580 		extra_size = -1;
1581 
1582 	/*
1583 	 * Owner is our parent level, so we can just add one to get the level
1584 	 * for the block we are interested in.
1585 	 */
1586 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587 		key.type = BTRFS_METADATA_ITEM_KEY;
1588 		key.offset = owner;
1589 	}
1590 
1591 again:
1592 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593 	if (ret < 0) {
1594 		err = ret;
1595 		goto out;
1596 	}
1597 
1598 	/*
1599 	 * We may be a newly converted file system which still has the old fat
1600 	 * extent entries for metadata, so try and see if we have one of those.
1601 	 */
1602 	if (ret > 0 && skinny_metadata) {
1603 		skinny_metadata = false;
1604 		if (path->slots[0]) {
1605 			path->slots[0]--;
1606 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1607 					      path->slots[0]);
1608 			if (key.objectid == bytenr &&
1609 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1610 			    key.offset == num_bytes)
1611 				ret = 0;
1612 		}
1613 		if (ret) {
1614 			key.objectid = bytenr;
1615 			key.type = BTRFS_EXTENT_ITEM_KEY;
1616 			key.offset = num_bytes;
1617 			btrfs_release_path(path);
1618 			goto again;
1619 		}
1620 	}
1621 
1622 	if (ret && !insert) {
1623 		err = -ENOENT;
1624 		goto out;
1625 	} else if (WARN_ON(ret)) {
1626 		err = -EIO;
1627 		goto out;
1628 	}
1629 
1630 	leaf = path->nodes[0];
1631 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 	if (item_size < sizeof(*ei)) {
1634 		if (!insert) {
1635 			err = -ENOENT;
1636 			goto out;
1637 		}
1638 		ret = convert_extent_item_v0(trans, root, path, owner,
1639 					     extra_size);
1640 		if (ret < 0) {
1641 			err = ret;
1642 			goto out;
1643 		}
1644 		leaf = path->nodes[0];
1645 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646 	}
1647 #endif
1648 	BUG_ON(item_size < sizeof(*ei));
1649 
1650 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651 	flags = btrfs_extent_flags(leaf, ei);
1652 
1653 	ptr = (unsigned long)(ei + 1);
1654 	end = (unsigned long)ei + item_size;
1655 
1656 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657 		ptr += sizeof(struct btrfs_tree_block_info);
1658 		BUG_ON(ptr > end);
1659 	}
1660 
1661 	err = -ENOENT;
1662 	while (1) {
1663 		if (ptr >= end) {
1664 			WARN_ON(ptr > end);
1665 			break;
1666 		}
1667 		iref = (struct btrfs_extent_inline_ref *)ptr;
1668 		type = btrfs_extent_inline_ref_type(leaf, iref);
1669 		if (want < type)
1670 			break;
1671 		if (want > type) {
1672 			ptr += btrfs_extent_inline_ref_size(type);
1673 			continue;
1674 		}
1675 
1676 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677 			struct btrfs_extent_data_ref *dref;
1678 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679 			if (match_extent_data_ref(leaf, dref, root_objectid,
1680 						  owner, offset)) {
1681 				err = 0;
1682 				break;
1683 			}
1684 			if (hash_extent_data_ref_item(leaf, dref) <
1685 			    hash_extent_data_ref(root_objectid, owner, offset))
1686 				break;
1687 		} else {
1688 			u64 ref_offset;
1689 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690 			if (parent > 0) {
1691 				if (parent == ref_offset) {
1692 					err = 0;
1693 					break;
1694 				}
1695 				if (ref_offset < parent)
1696 					break;
1697 			} else {
1698 				if (root_objectid == ref_offset) {
1699 					err = 0;
1700 					break;
1701 				}
1702 				if (ref_offset < root_objectid)
1703 					break;
1704 			}
1705 		}
1706 		ptr += btrfs_extent_inline_ref_size(type);
1707 	}
1708 	if (err == -ENOENT && insert) {
1709 		if (item_size + extra_size >=
1710 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711 			err = -EAGAIN;
1712 			goto out;
1713 		}
1714 		/*
1715 		 * To add new inline back ref, we have to make sure
1716 		 * there is no corresponding back ref item.
1717 		 * For simplicity, we just do not add new inline back
1718 		 * ref if there is any kind of item for this block
1719 		 */
1720 		if (find_next_key(path, 0, &key) == 0 &&
1721 		    key.objectid == bytenr &&
1722 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723 			err = -EAGAIN;
1724 			goto out;
1725 		}
1726 	}
1727 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728 out:
1729 	if (insert) {
1730 		path->keep_locks = 0;
1731 		btrfs_unlock_up_safe(path, 1);
1732 	}
1733 	return err;
1734 }
1735 
1736 /*
1737  * helper to add new inline back ref
1738  */
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root *root,
1741 				 struct btrfs_path *path,
1742 				 struct btrfs_extent_inline_ref *iref,
1743 				 u64 parent, u64 root_objectid,
1744 				 u64 owner, u64 offset, int refs_to_add,
1745 				 struct btrfs_delayed_extent_op *extent_op)
1746 {
1747 	struct extent_buffer *leaf;
1748 	struct btrfs_extent_item *ei;
1749 	unsigned long ptr;
1750 	unsigned long end;
1751 	unsigned long item_offset;
1752 	u64 refs;
1753 	int size;
1754 	int type;
1755 
1756 	leaf = path->nodes[0];
1757 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758 	item_offset = (unsigned long)iref - (unsigned long)ei;
1759 
1760 	type = extent_ref_type(parent, owner);
1761 	size = btrfs_extent_inline_ref_size(type);
1762 
1763 	btrfs_extend_item(root, path, size);
1764 
1765 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766 	refs = btrfs_extent_refs(leaf, ei);
1767 	refs += refs_to_add;
1768 	btrfs_set_extent_refs(leaf, ei, refs);
1769 	if (extent_op)
1770 		__run_delayed_extent_op(extent_op, leaf, ei);
1771 
1772 	ptr = (unsigned long)ei + item_offset;
1773 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774 	if (ptr < end - size)
1775 		memmove_extent_buffer(leaf, ptr + size, ptr,
1776 				      end - size - ptr);
1777 
1778 	iref = (struct btrfs_extent_inline_ref *)ptr;
1779 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781 		struct btrfs_extent_data_ref *dref;
1782 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 		struct btrfs_shared_data_ref *sref;
1789 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794 	} else {
1795 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796 	}
1797 	btrfs_mark_buffer_dirty(leaf);
1798 }
1799 
1800 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801 				 struct btrfs_root *root,
1802 				 struct btrfs_path *path,
1803 				 struct btrfs_extent_inline_ref **ref_ret,
1804 				 u64 bytenr, u64 num_bytes, u64 parent,
1805 				 u64 root_objectid, u64 owner, u64 offset)
1806 {
1807 	int ret;
1808 
1809 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810 					   bytenr, num_bytes, parent,
1811 					   root_objectid, owner, offset, 0);
1812 	if (ret != -ENOENT)
1813 		return ret;
1814 
1815 	btrfs_release_path(path);
1816 	*ref_ret = NULL;
1817 
1818 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820 					    root_objectid);
1821 	} else {
1822 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823 					     root_objectid, owner, offset);
1824 	}
1825 	return ret;
1826 }
1827 
1828 /*
1829  * helper to update/remove inline back ref
1830  */
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root *root,
1833 				  struct btrfs_path *path,
1834 				  struct btrfs_extent_inline_ref *iref,
1835 				  int refs_to_mod,
1836 				  struct btrfs_delayed_extent_op *extent_op,
1837 				  int *last_ref)
1838 {
1839 	struct extent_buffer *leaf;
1840 	struct btrfs_extent_item *ei;
1841 	struct btrfs_extent_data_ref *dref = NULL;
1842 	struct btrfs_shared_data_ref *sref = NULL;
1843 	unsigned long ptr;
1844 	unsigned long end;
1845 	u32 item_size;
1846 	int size;
1847 	int type;
1848 	u64 refs;
1849 
1850 	leaf = path->nodes[0];
1851 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852 	refs = btrfs_extent_refs(leaf, ei);
1853 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854 	refs += refs_to_mod;
1855 	btrfs_set_extent_refs(leaf, ei, refs);
1856 	if (extent_op)
1857 		__run_delayed_extent_op(extent_op, leaf, ei);
1858 
1859 	type = btrfs_extent_inline_ref_type(leaf, iref);
1860 
1861 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863 		refs = btrfs_extent_data_ref_count(leaf, dref);
1864 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866 		refs = btrfs_shared_data_ref_count(leaf, sref);
1867 	} else {
1868 		refs = 1;
1869 		BUG_ON(refs_to_mod != -1);
1870 	}
1871 
1872 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873 	refs += refs_to_mod;
1874 
1875 	if (refs > 0) {
1876 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878 		else
1879 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880 	} else {
1881 		*last_ref = 1;
1882 		size =  btrfs_extent_inline_ref_size(type);
1883 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884 		ptr = (unsigned long)iref;
1885 		end = (unsigned long)ei + item_size;
1886 		if (ptr + size < end)
1887 			memmove_extent_buffer(leaf, ptr, ptr + size,
1888 					      end - ptr - size);
1889 		item_size -= size;
1890 		btrfs_truncate_item(root, path, item_size, 1);
1891 	}
1892 	btrfs_mark_buffer_dirty(leaf);
1893 }
1894 
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897 				 struct btrfs_root *root,
1898 				 struct btrfs_path *path,
1899 				 u64 bytenr, u64 num_bytes, u64 parent,
1900 				 u64 root_objectid, u64 owner,
1901 				 u64 offset, int refs_to_add,
1902 				 struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 	struct btrfs_extent_inline_ref *iref;
1905 	int ret;
1906 
1907 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908 					   bytenr, num_bytes, parent,
1909 					   root_objectid, owner, offset, 1);
1910 	if (ret == 0) {
1911 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912 		update_inline_extent_backref(root, path, iref,
1913 					     refs_to_add, extent_op, NULL);
1914 	} else if (ret == -ENOENT) {
1915 		setup_inline_extent_backref(root, path, iref, parent,
1916 					    root_objectid, owner, offset,
1917 					    refs_to_add, extent_op);
1918 		ret = 0;
1919 	}
1920 	return ret;
1921 }
1922 
1923 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924 				 struct btrfs_root *root,
1925 				 struct btrfs_path *path,
1926 				 u64 bytenr, u64 parent, u64 root_objectid,
1927 				 u64 owner, u64 offset, int refs_to_add)
1928 {
1929 	int ret;
1930 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931 		BUG_ON(refs_to_add != 1);
1932 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1933 					    parent, root_objectid);
1934 	} else {
1935 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1936 					     parent, root_objectid,
1937 					     owner, offset, refs_to_add);
1938 	}
1939 	return ret;
1940 }
1941 
1942 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943 				 struct btrfs_root *root,
1944 				 struct btrfs_path *path,
1945 				 struct btrfs_extent_inline_ref *iref,
1946 				 int refs_to_drop, int is_data, int *last_ref)
1947 {
1948 	int ret = 0;
1949 
1950 	BUG_ON(!is_data && refs_to_drop != 1);
1951 	if (iref) {
1952 		update_inline_extent_backref(root, path, iref,
1953 					     -refs_to_drop, NULL, last_ref);
1954 	} else if (is_data) {
1955 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956 					     last_ref);
1957 	} else {
1958 		*last_ref = 1;
1959 		ret = btrfs_del_item(trans, root, path);
1960 	}
1961 	return ret;
1962 }
1963 
1964 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966 			       u64 *discarded_bytes)
1967 {
1968 	int j, ret = 0;
1969 	u64 bytes_left, end;
1970 	u64 aligned_start = ALIGN(start, 1 << 9);
1971 
1972 	if (WARN_ON(start != aligned_start)) {
1973 		len -= aligned_start - start;
1974 		len = round_down(len, 1 << 9);
1975 		start = aligned_start;
1976 	}
1977 
1978 	*discarded_bytes = 0;
1979 
1980 	if (!len)
1981 		return 0;
1982 
1983 	end = start + len;
1984 	bytes_left = len;
1985 
1986 	/* Skip any superblocks on this device. */
1987 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988 		u64 sb_start = btrfs_sb_offset(j);
1989 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990 		u64 size = sb_start - start;
1991 
1992 		if (!in_range(sb_start, start, bytes_left) &&
1993 		    !in_range(sb_end, start, bytes_left) &&
1994 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995 			continue;
1996 
1997 		/*
1998 		 * Superblock spans beginning of range.  Adjust start and
1999 		 * try again.
2000 		 */
2001 		if (sb_start <= start) {
2002 			start += sb_end - start;
2003 			if (start > end) {
2004 				bytes_left = 0;
2005 				break;
2006 			}
2007 			bytes_left = end - start;
2008 			continue;
2009 		}
2010 
2011 		if (size) {
2012 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013 						   GFP_NOFS, 0);
2014 			if (!ret)
2015 				*discarded_bytes += size;
2016 			else if (ret != -EOPNOTSUPP)
2017 				return ret;
2018 		}
2019 
2020 		start = sb_end;
2021 		if (start > end) {
2022 			bytes_left = 0;
2023 			break;
2024 		}
2025 		bytes_left = end - start;
2026 	}
2027 
2028 	if (bytes_left) {
2029 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030 					   GFP_NOFS, 0);
2031 		if (!ret)
2032 			*discarded_bytes += bytes_left;
2033 	}
2034 	return ret;
2035 }
2036 
2037 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038 			 u64 num_bytes, u64 *actual_bytes)
2039 {
2040 	int ret;
2041 	u64 discarded_bytes = 0;
2042 	struct btrfs_bio *bbio = NULL;
2043 
2044 
2045 	/*
2046 	 * Avoid races with device replace and make sure our bbio has devices
2047 	 * associated to its stripes that don't go away while we are discarding.
2048 	 */
2049 	btrfs_bio_counter_inc_blocked(root->fs_info);
2050 	/* Tell the block device(s) that the sectors can be discarded */
2051 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2052 			      bytenr, &num_bytes, &bbio, 0);
2053 	/* Error condition is -ENOMEM */
2054 	if (!ret) {
2055 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2056 		int i;
2057 
2058 
2059 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2060 			u64 bytes;
2061 			if (!stripe->dev->can_discard)
2062 				continue;
2063 
2064 			ret = btrfs_issue_discard(stripe->dev->bdev,
2065 						  stripe->physical,
2066 						  stripe->length,
2067 						  &bytes);
2068 			if (!ret)
2069 				discarded_bytes += bytes;
2070 			else if (ret != -EOPNOTSUPP)
2071 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2072 
2073 			/*
2074 			 * Just in case we get back EOPNOTSUPP for some reason,
2075 			 * just ignore the return value so we don't screw up
2076 			 * people calling discard_extent.
2077 			 */
2078 			ret = 0;
2079 		}
2080 		btrfs_put_bbio(bbio);
2081 	}
2082 	btrfs_bio_counter_dec(root->fs_info);
2083 
2084 	if (actual_bytes)
2085 		*actual_bytes = discarded_bytes;
2086 
2087 
2088 	if (ret == -EOPNOTSUPP)
2089 		ret = 0;
2090 	return ret;
2091 }
2092 
2093 /* Can return -ENOMEM */
2094 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095 			 struct btrfs_root *root,
2096 			 u64 bytenr, u64 num_bytes, u64 parent,
2097 			 u64 root_objectid, u64 owner, u64 offset)
2098 {
2099 	int ret;
2100 	struct btrfs_fs_info *fs_info = root->fs_info;
2101 
2102 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104 
2105 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2106 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107 					num_bytes,
2108 					parent, root_objectid, (int)owner,
2109 					BTRFS_ADD_DELAYED_REF, NULL);
2110 	} else {
2111 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2112 					num_bytes, parent, root_objectid,
2113 					owner, offset, 0,
2114 					BTRFS_ADD_DELAYED_REF, NULL);
2115 	}
2116 	return ret;
2117 }
2118 
2119 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120 				  struct btrfs_root *root,
2121 				  struct btrfs_delayed_ref_node *node,
2122 				  u64 parent, u64 root_objectid,
2123 				  u64 owner, u64 offset, int refs_to_add,
2124 				  struct btrfs_delayed_extent_op *extent_op)
2125 {
2126 	struct btrfs_fs_info *fs_info = root->fs_info;
2127 	struct btrfs_path *path;
2128 	struct extent_buffer *leaf;
2129 	struct btrfs_extent_item *item;
2130 	struct btrfs_key key;
2131 	u64 bytenr = node->bytenr;
2132 	u64 num_bytes = node->num_bytes;
2133 	u64 refs;
2134 	int ret;
2135 
2136 	path = btrfs_alloc_path();
2137 	if (!path)
2138 		return -ENOMEM;
2139 
2140 	path->reada = READA_FORWARD;
2141 	path->leave_spinning = 1;
2142 	/* this will setup the path even if it fails to insert the back ref */
2143 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144 					   bytenr, num_bytes, parent,
2145 					   root_objectid, owner, offset,
2146 					   refs_to_add, extent_op);
2147 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2148 		goto out;
2149 
2150 	/*
2151 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2152 	 * inline extent ref, so just update the reference count and add a
2153 	 * normal backref.
2154 	 */
2155 	leaf = path->nodes[0];
2156 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2157 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158 	refs = btrfs_extent_refs(leaf, item);
2159 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160 	if (extent_op)
2161 		__run_delayed_extent_op(extent_op, leaf, item);
2162 
2163 	btrfs_mark_buffer_dirty(leaf);
2164 	btrfs_release_path(path);
2165 
2166 	path->reada = READA_FORWARD;
2167 	path->leave_spinning = 1;
2168 	/* now insert the actual backref */
2169 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2170 				    path, bytenr, parent, root_objectid,
2171 				    owner, offset, refs_to_add);
2172 	if (ret)
2173 		btrfs_abort_transaction(trans, root, ret);
2174 out:
2175 	btrfs_free_path(path);
2176 	return ret;
2177 }
2178 
2179 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180 				struct btrfs_root *root,
2181 				struct btrfs_delayed_ref_node *node,
2182 				struct btrfs_delayed_extent_op *extent_op,
2183 				int insert_reserved)
2184 {
2185 	int ret = 0;
2186 	struct btrfs_delayed_data_ref *ref;
2187 	struct btrfs_key ins;
2188 	u64 parent = 0;
2189 	u64 ref_root = 0;
2190 	u64 flags = 0;
2191 
2192 	ins.objectid = node->bytenr;
2193 	ins.offset = node->num_bytes;
2194 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2195 
2196 	ref = btrfs_delayed_node_to_data_ref(node);
2197 	trace_run_delayed_data_ref(node, ref, node->action);
2198 
2199 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200 		parent = ref->parent;
2201 	ref_root = ref->root;
2202 
2203 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2204 		if (extent_op)
2205 			flags |= extent_op->flags_to_set;
2206 		ret = alloc_reserved_file_extent(trans, root,
2207 						 parent, ref_root, flags,
2208 						 ref->objectid, ref->offset,
2209 						 &ins, node->ref_mod);
2210 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2211 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2212 					     ref_root, ref->objectid,
2213 					     ref->offset, node->ref_mod,
2214 					     extent_op);
2215 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2216 		ret = __btrfs_free_extent(trans, root, node, parent,
2217 					  ref_root, ref->objectid,
2218 					  ref->offset, node->ref_mod,
2219 					  extent_op);
2220 	} else {
2221 		BUG();
2222 	}
2223 	return ret;
2224 }
2225 
2226 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227 				    struct extent_buffer *leaf,
2228 				    struct btrfs_extent_item *ei)
2229 {
2230 	u64 flags = btrfs_extent_flags(leaf, ei);
2231 	if (extent_op->update_flags) {
2232 		flags |= extent_op->flags_to_set;
2233 		btrfs_set_extent_flags(leaf, ei, flags);
2234 	}
2235 
2236 	if (extent_op->update_key) {
2237 		struct btrfs_tree_block_info *bi;
2238 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2240 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241 	}
2242 }
2243 
2244 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245 				 struct btrfs_root *root,
2246 				 struct btrfs_delayed_ref_node *node,
2247 				 struct btrfs_delayed_extent_op *extent_op)
2248 {
2249 	struct btrfs_key key;
2250 	struct btrfs_path *path;
2251 	struct btrfs_extent_item *ei;
2252 	struct extent_buffer *leaf;
2253 	u32 item_size;
2254 	int ret;
2255 	int err = 0;
2256 	int metadata = !extent_op->is_data;
2257 
2258 	if (trans->aborted)
2259 		return 0;
2260 
2261 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262 		metadata = 0;
2263 
2264 	path = btrfs_alloc_path();
2265 	if (!path)
2266 		return -ENOMEM;
2267 
2268 	key.objectid = node->bytenr;
2269 
2270 	if (metadata) {
2271 		key.type = BTRFS_METADATA_ITEM_KEY;
2272 		key.offset = extent_op->level;
2273 	} else {
2274 		key.type = BTRFS_EXTENT_ITEM_KEY;
2275 		key.offset = node->num_bytes;
2276 	}
2277 
2278 again:
2279 	path->reada = READA_FORWARD;
2280 	path->leave_spinning = 1;
2281 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282 				path, 0, 1);
2283 	if (ret < 0) {
2284 		err = ret;
2285 		goto out;
2286 	}
2287 	if (ret > 0) {
2288 		if (metadata) {
2289 			if (path->slots[0] > 0) {
2290 				path->slots[0]--;
2291 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2292 						      path->slots[0]);
2293 				if (key.objectid == node->bytenr &&
2294 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2295 				    key.offset == node->num_bytes)
2296 					ret = 0;
2297 			}
2298 			if (ret > 0) {
2299 				btrfs_release_path(path);
2300 				metadata = 0;
2301 
2302 				key.objectid = node->bytenr;
2303 				key.offset = node->num_bytes;
2304 				key.type = BTRFS_EXTENT_ITEM_KEY;
2305 				goto again;
2306 			}
2307 		} else {
2308 			err = -EIO;
2309 			goto out;
2310 		}
2311 	}
2312 
2313 	leaf = path->nodes[0];
2314 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316 	if (item_size < sizeof(*ei)) {
2317 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318 					     path, (u64)-1, 0);
2319 		if (ret < 0) {
2320 			err = ret;
2321 			goto out;
2322 		}
2323 		leaf = path->nodes[0];
2324 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325 	}
2326 #endif
2327 	BUG_ON(item_size < sizeof(*ei));
2328 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329 	__run_delayed_extent_op(extent_op, leaf, ei);
2330 
2331 	btrfs_mark_buffer_dirty(leaf);
2332 out:
2333 	btrfs_free_path(path);
2334 	return err;
2335 }
2336 
2337 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338 				struct btrfs_root *root,
2339 				struct btrfs_delayed_ref_node *node,
2340 				struct btrfs_delayed_extent_op *extent_op,
2341 				int insert_reserved)
2342 {
2343 	int ret = 0;
2344 	struct btrfs_delayed_tree_ref *ref;
2345 	struct btrfs_key ins;
2346 	u64 parent = 0;
2347 	u64 ref_root = 0;
2348 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349 						 SKINNY_METADATA);
2350 
2351 	ref = btrfs_delayed_node_to_tree_ref(node);
2352 	trace_run_delayed_tree_ref(node, ref, node->action);
2353 
2354 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355 		parent = ref->parent;
2356 	ref_root = ref->root;
2357 
2358 	ins.objectid = node->bytenr;
2359 	if (skinny_metadata) {
2360 		ins.offset = ref->level;
2361 		ins.type = BTRFS_METADATA_ITEM_KEY;
2362 	} else {
2363 		ins.offset = node->num_bytes;
2364 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2365 	}
2366 
2367 	BUG_ON(node->ref_mod != 1);
2368 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2369 		BUG_ON(!extent_op || !extent_op->update_flags);
2370 		ret = alloc_reserved_tree_block(trans, root,
2371 						parent, ref_root,
2372 						extent_op->flags_to_set,
2373 						&extent_op->key,
2374 						ref->level, &ins);
2375 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2376 		ret = __btrfs_inc_extent_ref(trans, root, node,
2377 					     parent, ref_root,
2378 					     ref->level, 0, 1,
2379 					     extent_op);
2380 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2381 		ret = __btrfs_free_extent(trans, root, node,
2382 					  parent, ref_root,
2383 					  ref->level, 0, 1, extent_op);
2384 	} else {
2385 		BUG();
2386 	}
2387 	return ret;
2388 }
2389 
2390 /* helper function to actually process a single delayed ref entry */
2391 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392 			       struct btrfs_root *root,
2393 			       struct btrfs_delayed_ref_node *node,
2394 			       struct btrfs_delayed_extent_op *extent_op,
2395 			       int insert_reserved)
2396 {
2397 	int ret = 0;
2398 
2399 	if (trans->aborted) {
2400 		if (insert_reserved)
2401 			btrfs_pin_extent(root, node->bytenr,
2402 					 node->num_bytes, 1);
2403 		return 0;
2404 	}
2405 
2406 	if (btrfs_delayed_ref_is_head(node)) {
2407 		struct btrfs_delayed_ref_head *head;
2408 		/*
2409 		 * we've hit the end of the chain and we were supposed
2410 		 * to insert this extent into the tree.  But, it got
2411 		 * deleted before we ever needed to insert it, so all
2412 		 * we have to do is clean up the accounting
2413 		 */
2414 		BUG_ON(extent_op);
2415 		head = btrfs_delayed_node_to_head(node);
2416 		trace_run_delayed_ref_head(node, head, node->action);
2417 
2418 		if (insert_reserved) {
2419 			btrfs_pin_extent(root, node->bytenr,
2420 					 node->num_bytes, 1);
2421 			if (head->is_data) {
2422 				ret = btrfs_del_csums(trans, root,
2423 						      node->bytenr,
2424 						      node->num_bytes);
2425 			}
2426 		}
2427 
2428 		/* Also free its reserved qgroup space */
2429 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2430 					      head->qgroup_ref_root,
2431 					      head->qgroup_reserved);
2432 		return ret;
2433 	}
2434 
2435 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438 					   insert_reserved);
2439 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2442 					   insert_reserved);
2443 	else
2444 		BUG();
2445 	return ret;
2446 }
2447 
2448 static inline struct btrfs_delayed_ref_node *
2449 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450 {
2451 	struct btrfs_delayed_ref_node *ref;
2452 
2453 	if (list_empty(&head->ref_list))
2454 		return NULL;
2455 
2456 	/*
2457 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458 	 * This is to prevent a ref count from going down to zero, which deletes
2459 	 * the extent item from the extent tree, when there still are references
2460 	 * to add, which would fail because they would not find the extent item.
2461 	 */
2462 	list_for_each_entry(ref, &head->ref_list, list) {
2463 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2464 			return ref;
2465 	}
2466 
2467 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468 			  list);
2469 }
2470 
2471 /*
2472  * Returns 0 on success or if called with an already aborted transaction.
2473  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474  */
2475 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476 					     struct btrfs_root *root,
2477 					     unsigned long nr)
2478 {
2479 	struct btrfs_delayed_ref_root *delayed_refs;
2480 	struct btrfs_delayed_ref_node *ref;
2481 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2482 	struct btrfs_delayed_extent_op *extent_op;
2483 	struct btrfs_fs_info *fs_info = root->fs_info;
2484 	ktime_t start = ktime_get();
2485 	int ret;
2486 	unsigned long count = 0;
2487 	unsigned long actual_count = 0;
2488 	int must_insert_reserved = 0;
2489 
2490 	delayed_refs = &trans->transaction->delayed_refs;
2491 	while (1) {
2492 		if (!locked_ref) {
2493 			if (count >= nr)
2494 				break;
2495 
2496 			spin_lock(&delayed_refs->lock);
2497 			locked_ref = btrfs_select_ref_head(trans);
2498 			if (!locked_ref) {
2499 				spin_unlock(&delayed_refs->lock);
2500 				break;
2501 			}
2502 
2503 			/* grab the lock that says we are going to process
2504 			 * all the refs for this head */
2505 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2506 			spin_unlock(&delayed_refs->lock);
2507 			/*
2508 			 * we may have dropped the spin lock to get the head
2509 			 * mutex lock, and that might have given someone else
2510 			 * time to free the head.  If that's true, it has been
2511 			 * removed from our list and we can move on.
2512 			 */
2513 			if (ret == -EAGAIN) {
2514 				locked_ref = NULL;
2515 				count++;
2516 				continue;
2517 			}
2518 		}
2519 
2520 		/*
2521 		 * We need to try and merge add/drops of the same ref since we
2522 		 * can run into issues with relocate dropping the implicit ref
2523 		 * and then it being added back again before the drop can
2524 		 * finish.  If we merged anything we need to re-loop so we can
2525 		 * get a good ref.
2526 		 * Or we can get node references of the same type that weren't
2527 		 * merged when created due to bumps in the tree mod seq, and
2528 		 * we need to merge them to prevent adding an inline extent
2529 		 * backref before dropping it (triggering a BUG_ON at
2530 		 * insert_inline_extent_backref()).
2531 		 */
2532 		spin_lock(&locked_ref->lock);
2533 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534 					 locked_ref);
2535 
2536 		/*
2537 		 * locked_ref is the head node, so we have to go one
2538 		 * node back for any delayed ref updates
2539 		 */
2540 		ref = select_delayed_ref(locked_ref);
2541 
2542 		if (ref && ref->seq &&
2543 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2544 			spin_unlock(&locked_ref->lock);
2545 			btrfs_delayed_ref_unlock(locked_ref);
2546 			spin_lock(&delayed_refs->lock);
2547 			locked_ref->processing = 0;
2548 			delayed_refs->num_heads_ready++;
2549 			spin_unlock(&delayed_refs->lock);
2550 			locked_ref = NULL;
2551 			cond_resched();
2552 			count++;
2553 			continue;
2554 		}
2555 
2556 		/*
2557 		 * record the must insert reserved flag before we
2558 		 * drop the spin lock.
2559 		 */
2560 		must_insert_reserved = locked_ref->must_insert_reserved;
2561 		locked_ref->must_insert_reserved = 0;
2562 
2563 		extent_op = locked_ref->extent_op;
2564 		locked_ref->extent_op = NULL;
2565 
2566 		if (!ref) {
2567 
2568 
2569 			/* All delayed refs have been processed, Go ahead
2570 			 * and send the head node to run_one_delayed_ref,
2571 			 * so that any accounting fixes can happen
2572 			 */
2573 			ref = &locked_ref->node;
2574 
2575 			if (extent_op && must_insert_reserved) {
2576 				btrfs_free_delayed_extent_op(extent_op);
2577 				extent_op = NULL;
2578 			}
2579 
2580 			if (extent_op) {
2581 				spin_unlock(&locked_ref->lock);
2582 				ret = run_delayed_extent_op(trans, root,
2583 							    ref, extent_op);
2584 				btrfs_free_delayed_extent_op(extent_op);
2585 
2586 				if (ret) {
2587 					/*
2588 					 * Need to reset must_insert_reserved if
2589 					 * there was an error so the abort stuff
2590 					 * can cleanup the reserved space
2591 					 * properly.
2592 					 */
2593 					if (must_insert_reserved)
2594 						locked_ref->must_insert_reserved = 1;
2595 					locked_ref->processing = 0;
2596 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2597 					btrfs_delayed_ref_unlock(locked_ref);
2598 					return ret;
2599 				}
2600 				continue;
2601 			}
2602 
2603 			/*
2604 			 * Need to drop our head ref lock and re-acquire the
2605 			 * delayed ref lock and then re-check to make sure
2606 			 * nobody got added.
2607 			 */
2608 			spin_unlock(&locked_ref->lock);
2609 			spin_lock(&delayed_refs->lock);
2610 			spin_lock(&locked_ref->lock);
2611 			if (!list_empty(&locked_ref->ref_list) ||
2612 			    locked_ref->extent_op) {
2613 				spin_unlock(&locked_ref->lock);
2614 				spin_unlock(&delayed_refs->lock);
2615 				continue;
2616 			}
2617 			ref->in_tree = 0;
2618 			delayed_refs->num_heads--;
2619 			rb_erase(&locked_ref->href_node,
2620 				 &delayed_refs->href_root);
2621 			spin_unlock(&delayed_refs->lock);
2622 		} else {
2623 			actual_count++;
2624 			ref->in_tree = 0;
2625 			list_del(&ref->list);
2626 		}
2627 		atomic_dec(&delayed_refs->num_entries);
2628 
2629 		if (!btrfs_delayed_ref_is_head(ref)) {
2630 			/*
2631 			 * when we play the delayed ref, also correct the
2632 			 * ref_mod on head
2633 			 */
2634 			switch (ref->action) {
2635 			case BTRFS_ADD_DELAYED_REF:
2636 			case BTRFS_ADD_DELAYED_EXTENT:
2637 				locked_ref->node.ref_mod -= ref->ref_mod;
2638 				break;
2639 			case BTRFS_DROP_DELAYED_REF:
2640 				locked_ref->node.ref_mod += ref->ref_mod;
2641 				break;
2642 			default:
2643 				WARN_ON(1);
2644 			}
2645 		}
2646 		spin_unlock(&locked_ref->lock);
2647 
2648 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649 					  must_insert_reserved);
2650 
2651 		btrfs_free_delayed_extent_op(extent_op);
2652 		if (ret) {
2653 			locked_ref->processing = 0;
2654 			btrfs_delayed_ref_unlock(locked_ref);
2655 			btrfs_put_delayed_ref(ref);
2656 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2657 			return ret;
2658 		}
2659 
2660 		/*
2661 		 * If this node is a head, that means all the refs in this head
2662 		 * have been dealt with, and we will pick the next head to deal
2663 		 * with, so we must unlock the head and drop it from the cluster
2664 		 * list before we release it.
2665 		 */
2666 		if (btrfs_delayed_ref_is_head(ref)) {
2667 			if (locked_ref->is_data &&
2668 			    locked_ref->total_ref_mod < 0) {
2669 				spin_lock(&delayed_refs->lock);
2670 				delayed_refs->pending_csums -= ref->num_bytes;
2671 				spin_unlock(&delayed_refs->lock);
2672 			}
2673 			btrfs_delayed_ref_unlock(locked_ref);
2674 			locked_ref = NULL;
2675 		}
2676 		btrfs_put_delayed_ref(ref);
2677 		count++;
2678 		cond_resched();
2679 	}
2680 
2681 	/*
2682 	 * We don't want to include ref heads since we can have empty ref heads
2683 	 * and those will drastically skew our runtime down since we just do
2684 	 * accounting, no actual extent tree updates.
2685 	 */
2686 	if (actual_count > 0) {
2687 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688 		u64 avg;
2689 
2690 		/*
2691 		 * We weigh the current average higher than our current runtime
2692 		 * to avoid large swings in the average.
2693 		 */
2694 		spin_lock(&delayed_refs->lock);
2695 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2697 		spin_unlock(&delayed_refs->lock);
2698 	}
2699 	return 0;
2700 }
2701 
2702 #ifdef SCRAMBLE_DELAYED_REFS
2703 /*
2704  * Normally delayed refs get processed in ascending bytenr order. This
2705  * correlates in most cases to the order added. To expose dependencies on this
2706  * order, we start to process the tree in the middle instead of the beginning
2707  */
2708 static u64 find_middle(struct rb_root *root)
2709 {
2710 	struct rb_node *n = root->rb_node;
2711 	struct btrfs_delayed_ref_node *entry;
2712 	int alt = 1;
2713 	u64 middle;
2714 	u64 first = 0, last = 0;
2715 
2716 	n = rb_first(root);
2717 	if (n) {
2718 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719 		first = entry->bytenr;
2720 	}
2721 	n = rb_last(root);
2722 	if (n) {
2723 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724 		last = entry->bytenr;
2725 	}
2726 	n = root->rb_node;
2727 
2728 	while (n) {
2729 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730 		WARN_ON(!entry->in_tree);
2731 
2732 		middle = entry->bytenr;
2733 
2734 		if (alt)
2735 			n = n->rb_left;
2736 		else
2737 			n = n->rb_right;
2738 
2739 		alt = 1 - alt;
2740 	}
2741 	return middle;
2742 }
2743 #endif
2744 
2745 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746 {
2747 	u64 num_bytes;
2748 
2749 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750 			     sizeof(struct btrfs_extent_inline_ref));
2751 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753 
2754 	/*
2755 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2756 	 * closer to what we're really going to want to use.
2757 	 */
2758 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759 }
2760 
2761 /*
2762  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763  * would require to store the csums for that many bytes.
2764  */
2765 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2766 {
2767 	u64 csum_size;
2768 	u64 num_csums_per_leaf;
2769 	u64 num_csums;
2770 
2771 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772 	num_csums_per_leaf = div64_u64(csum_size,
2773 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2775 	num_csums += num_csums_per_leaf - 1;
2776 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777 	return num_csums;
2778 }
2779 
2780 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781 				       struct btrfs_root *root)
2782 {
2783 	struct btrfs_block_rsv *global_rsv;
2784 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787 	u64 num_bytes, num_dirty_bgs_bytes;
2788 	int ret = 0;
2789 
2790 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791 	num_heads = heads_to_leaves(root, num_heads);
2792 	if (num_heads > 1)
2793 		num_bytes += (num_heads - 1) * root->nodesize;
2794 	num_bytes <<= 1;
2795 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797 							     num_dirty_bgs);
2798 	global_rsv = &root->fs_info->global_block_rsv;
2799 
2800 	/*
2801 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2802 	 * wiggle room since running delayed refs can create more delayed refs.
2803 	 */
2804 	if (global_rsv->space_info->full) {
2805 		num_dirty_bgs_bytes <<= 1;
2806 		num_bytes <<= 1;
2807 	}
2808 
2809 	spin_lock(&global_rsv->lock);
2810 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2811 		ret = 1;
2812 	spin_unlock(&global_rsv->lock);
2813 	return ret;
2814 }
2815 
2816 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817 				       struct btrfs_root *root)
2818 {
2819 	struct btrfs_fs_info *fs_info = root->fs_info;
2820 	u64 num_entries =
2821 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2822 	u64 avg_runtime;
2823 	u64 val;
2824 
2825 	smp_mb();
2826 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2827 	val = num_entries * avg_runtime;
2828 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829 		return 1;
2830 	if (val >= NSEC_PER_SEC / 2)
2831 		return 2;
2832 
2833 	return btrfs_check_space_for_delayed_refs(trans, root);
2834 }
2835 
2836 struct async_delayed_refs {
2837 	struct btrfs_root *root;
2838 	int count;
2839 	int error;
2840 	int sync;
2841 	struct completion wait;
2842 	struct btrfs_work work;
2843 };
2844 
2845 static void delayed_ref_async_start(struct btrfs_work *work)
2846 {
2847 	struct async_delayed_refs *async;
2848 	struct btrfs_trans_handle *trans;
2849 	int ret;
2850 
2851 	async = container_of(work, struct async_delayed_refs, work);
2852 
2853 	trans = btrfs_join_transaction(async->root);
2854 	if (IS_ERR(trans)) {
2855 		async->error = PTR_ERR(trans);
2856 		goto done;
2857 	}
2858 
2859 	/*
2860 	 * trans->sync means that when we call end_transaction, we won't
2861 	 * wait on delayed refs
2862 	 */
2863 	trans->sync = true;
2864 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2865 	if (ret)
2866 		async->error = ret;
2867 
2868 	ret = btrfs_end_transaction(trans, async->root);
2869 	if (ret && !async->error)
2870 		async->error = ret;
2871 done:
2872 	if (async->sync)
2873 		complete(&async->wait);
2874 	else
2875 		kfree(async);
2876 }
2877 
2878 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2879 				 unsigned long count, int wait)
2880 {
2881 	struct async_delayed_refs *async;
2882 	int ret;
2883 
2884 	async = kmalloc(sizeof(*async), GFP_NOFS);
2885 	if (!async)
2886 		return -ENOMEM;
2887 
2888 	async->root = root->fs_info->tree_root;
2889 	async->count = count;
2890 	async->error = 0;
2891 	if (wait)
2892 		async->sync = 1;
2893 	else
2894 		async->sync = 0;
2895 	init_completion(&async->wait);
2896 
2897 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2898 			delayed_ref_async_start, NULL, NULL);
2899 
2900 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2901 
2902 	if (wait) {
2903 		wait_for_completion(&async->wait);
2904 		ret = async->error;
2905 		kfree(async);
2906 		return ret;
2907 	}
2908 	return 0;
2909 }
2910 
2911 /*
2912  * this starts processing the delayed reference count updates and
2913  * extent insertions we have queued up so far.  count can be
2914  * 0, which means to process everything in the tree at the start
2915  * of the run (but not newly added entries), or it can be some target
2916  * number you'd like to process.
2917  *
2918  * Returns 0 on success or if called with an aborted transaction
2919  * Returns <0 on error and aborts the transaction
2920  */
2921 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2922 			   struct btrfs_root *root, unsigned long count)
2923 {
2924 	struct rb_node *node;
2925 	struct btrfs_delayed_ref_root *delayed_refs;
2926 	struct btrfs_delayed_ref_head *head;
2927 	int ret;
2928 	int run_all = count == (unsigned long)-1;
2929 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2930 
2931 	/* We'll clean this up in btrfs_cleanup_transaction */
2932 	if (trans->aborted)
2933 		return 0;
2934 
2935 	if (root->fs_info->creating_free_space_tree)
2936 		return 0;
2937 
2938 	if (root == root->fs_info->extent_root)
2939 		root = root->fs_info->tree_root;
2940 
2941 	delayed_refs = &trans->transaction->delayed_refs;
2942 	if (count == 0)
2943 		count = atomic_read(&delayed_refs->num_entries) * 2;
2944 
2945 again:
2946 #ifdef SCRAMBLE_DELAYED_REFS
2947 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2948 #endif
2949 	trans->can_flush_pending_bgs = false;
2950 	ret = __btrfs_run_delayed_refs(trans, root, count);
2951 	if (ret < 0) {
2952 		btrfs_abort_transaction(trans, root, ret);
2953 		return ret;
2954 	}
2955 
2956 	if (run_all) {
2957 		if (!list_empty(&trans->new_bgs))
2958 			btrfs_create_pending_block_groups(trans, root);
2959 
2960 		spin_lock(&delayed_refs->lock);
2961 		node = rb_first(&delayed_refs->href_root);
2962 		if (!node) {
2963 			spin_unlock(&delayed_refs->lock);
2964 			goto out;
2965 		}
2966 		count = (unsigned long)-1;
2967 
2968 		while (node) {
2969 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2970 					href_node);
2971 			if (btrfs_delayed_ref_is_head(&head->node)) {
2972 				struct btrfs_delayed_ref_node *ref;
2973 
2974 				ref = &head->node;
2975 				atomic_inc(&ref->refs);
2976 
2977 				spin_unlock(&delayed_refs->lock);
2978 				/*
2979 				 * Mutex was contended, block until it's
2980 				 * released and try again
2981 				 */
2982 				mutex_lock(&head->mutex);
2983 				mutex_unlock(&head->mutex);
2984 
2985 				btrfs_put_delayed_ref(ref);
2986 				cond_resched();
2987 				goto again;
2988 			} else {
2989 				WARN_ON(1);
2990 			}
2991 			node = rb_next(node);
2992 		}
2993 		spin_unlock(&delayed_refs->lock);
2994 		cond_resched();
2995 		goto again;
2996 	}
2997 out:
2998 	assert_qgroups_uptodate(trans);
2999 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3000 	return 0;
3001 }
3002 
3003 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3004 				struct btrfs_root *root,
3005 				u64 bytenr, u64 num_bytes, u64 flags,
3006 				int level, int is_data)
3007 {
3008 	struct btrfs_delayed_extent_op *extent_op;
3009 	int ret;
3010 
3011 	extent_op = btrfs_alloc_delayed_extent_op();
3012 	if (!extent_op)
3013 		return -ENOMEM;
3014 
3015 	extent_op->flags_to_set = flags;
3016 	extent_op->update_flags = true;
3017 	extent_op->update_key = false;
3018 	extent_op->is_data = is_data ? true : false;
3019 	extent_op->level = level;
3020 
3021 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3022 					  num_bytes, extent_op);
3023 	if (ret)
3024 		btrfs_free_delayed_extent_op(extent_op);
3025 	return ret;
3026 }
3027 
3028 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3029 				      struct btrfs_root *root,
3030 				      struct btrfs_path *path,
3031 				      u64 objectid, u64 offset, u64 bytenr)
3032 {
3033 	struct btrfs_delayed_ref_head *head;
3034 	struct btrfs_delayed_ref_node *ref;
3035 	struct btrfs_delayed_data_ref *data_ref;
3036 	struct btrfs_delayed_ref_root *delayed_refs;
3037 	int ret = 0;
3038 
3039 	delayed_refs = &trans->transaction->delayed_refs;
3040 	spin_lock(&delayed_refs->lock);
3041 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3042 	if (!head) {
3043 		spin_unlock(&delayed_refs->lock);
3044 		return 0;
3045 	}
3046 
3047 	if (!mutex_trylock(&head->mutex)) {
3048 		atomic_inc(&head->node.refs);
3049 		spin_unlock(&delayed_refs->lock);
3050 
3051 		btrfs_release_path(path);
3052 
3053 		/*
3054 		 * Mutex was contended, block until it's released and let
3055 		 * caller try again
3056 		 */
3057 		mutex_lock(&head->mutex);
3058 		mutex_unlock(&head->mutex);
3059 		btrfs_put_delayed_ref(&head->node);
3060 		return -EAGAIN;
3061 	}
3062 	spin_unlock(&delayed_refs->lock);
3063 
3064 	spin_lock(&head->lock);
3065 	list_for_each_entry(ref, &head->ref_list, list) {
3066 		/* If it's a shared ref we know a cross reference exists */
3067 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3068 			ret = 1;
3069 			break;
3070 		}
3071 
3072 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3073 
3074 		/*
3075 		 * If our ref doesn't match the one we're currently looking at
3076 		 * then we have a cross reference.
3077 		 */
3078 		if (data_ref->root != root->root_key.objectid ||
3079 		    data_ref->objectid != objectid ||
3080 		    data_ref->offset != offset) {
3081 			ret = 1;
3082 			break;
3083 		}
3084 	}
3085 	spin_unlock(&head->lock);
3086 	mutex_unlock(&head->mutex);
3087 	return ret;
3088 }
3089 
3090 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3091 					struct btrfs_root *root,
3092 					struct btrfs_path *path,
3093 					u64 objectid, u64 offset, u64 bytenr)
3094 {
3095 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3096 	struct extent_buffer *leaf;
3097 	struct btrfs_extent_data_ref *ref;
3098 	struct btrfs_extent_inline_ref *iref;
3099 	struct btrfs_extent_item *ei;
3100 	struct btrfs_key key;
3101 	u32 item_size;
3102 	int ret;
3103 
3104 	key.objectid = bytenr;
3105 	key.offset = (u64)-1;
3106 	key.type = BTRFS_EXTENT_ITEM_KEY;
3107 
3108 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3109 	if (ret < 0)
3110 		goto out;
3111 	BUG_ON(ret == 0); /* Corruption */
3112 
3113 	ret = -ENOENT;
3114 	if (path->slots[0] == 0)
3115 		goto out;
3116 
3117 	path->slots[0]--;
3118 	leaf = path->nodes[0];
3119 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3120 
3121 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3122 		goto out;
3123 
3124 	ret = 1;
3125 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3126 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3127 	if (item_size < sizeof(*ei)) {
3128 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3129 		goto out;
3130 	}
3131 #endif
3132 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3133 
3134 	if (item_size != sizeof(*ei) +
3135 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3136 		goto out;
3137 
3138 	if (btrfs_extent_generation(leaf, ei) <=
3139 	    btrfs_root_last_snapshot(&root->root_item))
3140 		goto out;
3141 
3142 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3143 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3144 	    BTRFS_EXTENT_DATA_REF_KEY)
3145 		goto out;
3146 
3147 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3148 	if (btrfs_extent_refs(leaf, ei) !=
3149 	    btrfs_extent_data_ref_count(leaf, ref) ||
3150 	    btrfs_extent_data_ref_root(leaf, ref) !=
3151 	    root->root_key.objectid ||
3152 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3153 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3154 		goto out;
3155 
3156 	ret = 0;
3157 out:
3158 	return ret;
3159 }
3160 
3161 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3162 			  struct btrfs_root *root,
3163 			  u64 objectid, u64 offset, u64 bytenr)
3164 {
3165 	struct btrfs_path *path;
3166 	int ret;
3167 	int ret2;
3168 
3169 	path = btrfs_alloc_path();
3170 	if (!path)
3171 		return -ENOENT;
3172 
3173 	do {
3174 		ret = check_committed_ref(trans, root, path, objectid,
3175 					  offset, bytenr);
3176 		if (ret && ret != -ENOENT)
3177 			goto out;
3178 
3179 		ret2 = check_delayed_ref(trans, root, path, objectid,
3180 					 offset, bytenr);
3181 	} while (ret2 == -EAGAIN);
3182 
3183 	if (ret2 && ret2 != -ENOENT) {
3184 		ret = ret2;
3185 		goto out;
3186 	}
3187 
3188 	if (ret != -ENOENT || ret2 != -ENOENT)
3189 		ret = 0;
3190 out:
3191 	btrfs_free_path(path);
3192 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3193 		WARN_ON(ret > 0);
3194 	return ret;
3195 }
3196 
3197 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3198 			   struct btrfs_root *root,
3199 			   struct extent_buffer *buf,
3200 			   int full_backref, int inc)
3201 {
3202 	u64 bytenr;
3203 	u64 num_bytes;
3204 	u64 parent;
3205 	u64 ref_root;
3206 	u32 nritems;
3207 	struct btrfs_key key;
3208 	struct btrfs_file_extent_item *fi;
3209 	int i;
3210 	int level;
3211 	int ret = 0;
3212 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3213 			    u64, u64, u64, u64, u64, u64);
3214 
3215 
3216 	if (btrfs_test_is_dummy_root(root))
3217 		return 0;
3218 
3219 	ref_root = btrfs_header_owner(buf);
3220 	nritems = btrfs_header_nritems(buf);
3221 	level = btrfs_header_level(buf);
3222 
3223 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3224 		return 0;
3225 
3226 	if (inc)
3227 		process_func = btrfs_inc_extent_ref;
3228 	else
3229 		process_func = btrfs_free_extent;
3230 
3231 	if (full_backref)
3232 		parent = buf->start;
3233 	else
3234 		parent = 0;
3235 
3236 	for (i = 0; i < nritems; i++) {
3237 		if (level == 0) {
3238 			btrfs_item_key_to_cpu(buf, &key, i);
3239 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3240 				continue;
3241 			fi = btrfs_item_ptr(buf, i,
3242 					    struct btrfs_file_extent_item);
3243 			if (btrfs_file_extent_type(buf, fi) ==
3244 			    BTRFS_FILE_EXTENT_INLINE)
3245 				continue;
3246 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3247 			if (bytenr == 0)
3248 				continue;
3249 
3250 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3251 			key.offset -= btrfs_file_extent_offset(buf, fi);
3252 			ret = process_func(trans, root, bytenr, num_bytes,
3253 					   parent, ref_root, key.objectid,
3254 					   key.offset);
3255 			if (ret)
3256 				goto fail;
3257 		} else {
3258 			bytenr = btrfs_node_blockptr(buf, i);
3259 			num_bytes = root->nodesize;
3260 			ret = process_func(trans, root, bytenr, num_bytes,
3261 					   parent, ref_root, level - 1, 0);
3262 			if (ret)
3263 				goto fail;
3264 		}
3265 	}
3266 	return 0;
3267 fail:
3268 	return ret;
3269 }
3270 
3271 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3272 		  struct extent_buffer *buf, int full_backref)
3273 {
3274 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3275 }
3276 
3277 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3278 		  struct extent_buffer *buf, int full_backref)
3279 {
3280 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3281 }
3282 
3283 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3284 				 struct btrfs_root *root,
3285 				 struct btrfs_path *path,
3286 				 struct btrfs_block_group_cache *cache)
3287 {
3288 	int ret;
3289 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3290 	unsigned long bi;
3291 	struct extent_buffer *leaf;
3292 
3293 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3294 	if (ret) {
3295 		if (ret > 0)
3296 			ret = -ENOENT;
3297 		goto fail;
3298 	}
3299 
3300 	leaf = path->nodes[0];
3301 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3302 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3303 	btrfs_mark_buffer_dirty(leaf);
3304 fail:
3305 	btrfs_release_path(path);
3306 	return ret;
3307 
3308 }
3309 
3310 static struct btrfs_block_group_cache *
3311 next_block_group(struct btrfs_root *root,
3312 		 struct btrfs_block_group_cache *cache)
3313 {
3314 	struct rb_node *node;
3315 
3316 	spin_lock(&root->fs_info->block_group_cache_lock);
3317 
3318 	/* If our block group was removed, we need a full search. */
3319 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3320 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3321 
3322 		spin_unlock(&root->fs_info->block_group_cache_lock);
3323 		btrfs_put_block_group(cache);
3324 		cache = btrfs_lookup_first_block_group(root->fs_info,
3325 						       next_bytenr);
3326 		return cache;
3327 	}
3328 	node = rb_next(&cache->cache_node);
3329 	btrfs_put_block_group(cache);
3330 	if (node) {
3331 		cache = rb_entry(node, struct btrfs_block_group_cache,
3332 				 cache_node);
3333 		btrfs_get_block_group(cache);
3334 	} else
3335 		cache = NULL;
3336 	spin_unlock(&root->fs_info->block_group_cache_lock);
3337 	return cache;
3338 }
3339 
3340 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3341 			    struct btrfs_trans_handle *trans,
3342 			    struct btrfs_path *path)
3343 {
3344 	struct btrfs_root *root = block_group->fs_info->tree_root;
3345 	struct inode *inode = NULL;
3346 	u64 alloc_hint = 0;
3347 	int dcs = BTRFS_DC_ERROR;
3348 	u64 num_pages = 0;
3349 	int retries = 0;
3350 	int ret = 0;
3351 
3352 	/*
3353 	 * If this block group is smaller than 100 megs don't bother caching the
3354 	 * block group.
3355 	 */
3356 	if (block_group->key.offset < (100 * SZ_1M)) {
3357 		spin_lock(&block_group->lock);
3358 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3359 		spin_unlock(&block_group->lock);
3360 		return 0;
3361 	}
3362 
3363 	if (trans->aborted)
3364 		return 0;
3365 again:
3366 	inode = lookup_free_space_inode(root, block_group, path);
3367 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3368 		ret = PTR_ERR(inode);
3369 		btrfs_release_path(path);
3370 		goto out;
3371 	}
3372 
3373 	if (IS_ERR(inode)) {
3374 		BUG_ON(retries);
3375 		retries++;
3376 
3377 		if (block_group->ro)
3378 			goto out_free;
3379 
3380 		ret = create_free_space_inode(root, trans, block_group, path);
3381 		if (ret)
3382 			goto out_free;
3383 		goto again;
3384 	}
3385 
3386 	/* We've already setup this transaction, go ahead and exit */
3387 	if (block_group->cache_generation == trans->transid &&
3388 	    i_size_read(inode)) {
3389 		dcs = BTRFS_DC_SETUP;
3390 		goto out_put;
3391 	}
3392 
3393 	/*
3394 	 * We want to set the generation to 0, that way if anything goes wrong
3395 	 * from here on out we know not to trust this cache when we load up next
3396 	 * time.
3397 	 */
3398 	BTRFS_I(inode)->generation = 0;
3399 	ret = btrfs_update_inode(trans, root, inode);
3400 	if (ret) {
3401 		/*
3402 		 * So theoretically we could recover from this, simply set the
3403 		 * super cache generation to 0 so we know to invalidate the
3404 		 * cache, but then we'd have to keep track of the block groups
3405 		 * that fail this way so we know we _have_ to reset this cache
3406 		 * before the next commit or risk reading stale cache.  So to
3407 		 * limit our exposure to horrible edge cases lets just abort the
3408 		 * transaction, this only happens in really bad situations
3409 		 * anyway.
3410 		 */
3411 		btrfs_abort_transaction(trans, root, ret);
3412 		goto out_put;
3413 	}
3414 	WARN_ON(ret);
3415 
3416 	if (i_size_read(inode) > 0) {
3417 		ret = btrfs_check_trunc_cache_free_space(root,
3418 					&root->fs_info->global_block_rsv);
3419 		if (ret)
3420 			goto out_put;
3421 
3422 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3423 		if (ret)
3424 			goto out_put;
3425 	}
3426 
3427 	spin_lock(&block_group->lock);
3428 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3429 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3430 		/*
3431 		 * don't bother trying to write stuff out _if_
3432 		 * a) we're not cached,
3433 		 * b) we're with nospace_cache mount option.
3434 		 */
3435 		dcs = BTRFS_DC_WRITTEN;
3436 		spin_unlock(&block_group->lock);
3437 		goto out_put;
3438 	}
3439 	spin_unlock(&block_group->lock);
3440 
3441 	/*
3442 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3443 	 * skip doing the setup, we've already cleared the cache so we're safe.
3444 	 */
3445 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3446 		ret = -ENOSPC;
3447 		goto out_put;
3448 	}
3449 
3450 	/*
3451 	 * Try to preallocate enough space based on how big the block group is.
3452 	 * Keep in mind this has to include any pinned space which could end up
3453 	 * taking up quite a bit since it's not folded into the other space
3454 	 * cache.
3455 	 */
3456 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3457 	if (!num_pages)
3458 		num_pages = 1;
3459 
3460 	num_pages *= 16;
3461 	num_pages *= PAGE_SIZE;
3462 
3463 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3464 	if (ret)
3465 		goto out_put;
3466 
3467 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3468 					      num_pages, num_pages,
3469 					      &alloc_hint);
3470 	/*
3471 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3472 	 * of metadata or split extents when writing the cache out, which means
3473 	 * we can enospc if we are heavily fragmented in addition to just normal
3474 	 * out of space conditions.  So if we hit this just skip setting up any
3475 	 * other block groups for this transaction, maybe we'll unpin enough
3476 	 * space the next time around.
3477 	 */
3478 	if (!ret)
3479 		dcs = BTRFS_DC_SETUP;
3480 	else if (ret == -ENOSPC)
3481 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3482 	btrfs_free_reserved_data_space(inode, 0, num_pages);
3483 
3484 out_put:
3485 	iput(inode);
3486 out_free:
3487 	btrfs_release_path(path);
3488 out:
3489 	spin_lock(&block_group->lock);
3490 	if (!ret && dcs == BTRFS_DC_SETUP)
3491 		block_group->cache_generation = trans->transid;
3492 	block_group->disk_cache_state = dcs;
3493 	spin_unlock(&block_group->lock);
3494 
3495 	return ret;
3496 }
3497 
3498 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3499 			    struct btrfs_root *root)
3500 {
3501 	struct btrfs_block_group_cache *cache, *tmp;
3502 	struct btrfs_transaction *cur_trans = trans->transaction;
3503 	struct btrfs_path *path;
3504 
3505 	if (list_empty(&cur_trans->dirty_bgs) ||
3506 	    !btrfs_test_opt(root, SPACE_CACHE))
3507 		return 0;
3508 
3509 	path = btrfs_alloc_path();
3510 	if (!path)
3511 		return -ENOMEM;
3512 
3513 	/* Could add new block groups, use _safe just in case */
3514 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3515 				 dirty_list) {
3516 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3517 			cache_save_setup(cache, trans, path);
3518 	}
3519 
3520 	btrfs_free_path(path);
3521 	return 0;
3522 }
3523 
3524 /*
3525  * transaction commit does final block group cache writeback during a
3526  * critical section where nothing is allowed to change the FS.  This is
3527  * required in order for the cache to actually match the block group,
3528  * but can introduce a lot of latency into the commit.
3529  *
3530  * So, btrfs_start_dirty_block_groups is here to kick off block group
3531  * cache IO.  There's a chance we'll have to redo some of it if the
3532  * block group changes again during the commit, but it greatly reduces
3533  * the commit latency by getting rid of the easy block groups while
3534  * we're still allowing others to join the commit.
3535  */
3536 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3537 				   struct btrfs_root *root)
3538 {
3539 	struct btrfs_block_group_cache *cache;
3540 	struct btrfs_transaction *cur_trans = trans->transaction;
3541 	int ret = 0;
3542 	int should_put;
3543 	struct btrfs_path *path = NULL;
3544 	LIST_HEAD(dirty);
3545 	struct list_head *io = &cur_trans->io_bgs;
3546 	int num_started = 0;
3547 	int loops = 0;
3548 
3549 	spin_lock(&cur_trans->dirty_bgs_lock);
3550 	if (list_empty(&cur_trans->dirty_bgs)) {
3551 		spin_unlock(&cur_trans->dirty_bgs_lock);
3552 		return 0;
3553 	}
3554 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3555 	spin_unlock(&cur_trans->dirty_bgs_lock);
3556 
3557 again:
3558 	/*
3559 	 * make sure all the block groups on our dirty list actually
3560 	 * exist
3561 	 */
3562 	btrfs_create_pending_block_groups(trans, root);
3563 
3564 	if (!path) {
3565 		path = btrfs_alloc_path();
3566 		if (!path)
3567 			return -ENOMEM;
3568 	}
3569 
3570 	/*
3571 	 * cache_write_mutex is here only to save us from balance or automatic
3572 	 * removal of empty block groups deleting this block group while we are
3573 	 * writing out the cache
3574 	 */
3575 	mutex_lock(&trans->transaction->cache_write_mutex);
3576 	while (!list_empty(&dirty)) {
3577 		cache = list_first_entry(&dirty,
3578 					 struct btrfs_block_group_cache,
3579 					 dirty_list);
3580 		/*
3581 		 * this can happen if something re-dirties a block
3582 		 * group that is already under IO.  Just wait for it to
3583 		 * finish and then do it all again
3584 		 */
3585 		if (!list_empty(&cache->io_list)) {
3586 			list_del_init(&cache->io_list);
3587 			btrfs_wait_cache_io(root, trans, cache,
3588 					    &cache->io_ctl, path,
3589 					    cache->key.objectid);
3590 			btrfs_put_block_group(cache);
3591 		}
3592 
3593 
3594 		/*
3595 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3596 		 * if it should update the cache_state.  Don't delete
3597 		 * until after we wait.
3598 		 *
3599 		 * Since we're not running in the commit critical section
3600 		 * we need the dirty_bgs_lock to protect from update_block_group
3601 		 */
3602 		spin_lock(&cur_trans->dirty_bgs_lock);
3603 		list_del_init(&cache->dirty_list);
3604 		spin_unlock(&cur_trans->dirty_bgs_lock);
3605 
3606 		should_put = 1;
3607 
3608 		cache_save_setup(cache, trans, path);
3609 
3610 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3611 			cache->io_ctl.inode = NULL;
3612 			ret = btrfs_write_out_cache(root, trans, cache, path);
3613 			if (ret == 0 && cache->io_ctl.inode) {
3614 				num_started++;
3615 				should_put = 0;
3616 
3617 				/*
3618 				 * the cache_write_mutex is protecting
3619 				 * the io_list
3620 				 */
3621 				list_add_tail(&cache->io_list, io);
3622 			} else {
3623 				/*
3624 				 * if we failed to write the cache, the
3625 				 * generation will be bad and life goes on
3626 				 */
3627 				ret = 0;
3628 			}
3629 		}
3630 		if (!ret) {
3631 			ret = write_one_cache_group(trans, root, path, cache);
3632 			/*
3633 			 * Our block group might still be attached to the list
3634 			 * of new block groups in the transaction handle of some
3635 			 * other task (struct btrfs_trans_handle->new_bgs). This
3636 			 * means its block group item isn't yet in the extent
3637 			 * tree. If this happens ignore the error, as we will
3638 			 * try again later in the critical section of the
3639 			 * transaction commit.
3640 			 */
3641 			if (ret == -ENOENT) {
3642 				ret = 0;
3643 				spin_lock(&cur_trans->dirty_bgs_lock);
3644 				if (list_empty(&cache->dirty_list)) {
3645 					list_add_tail(&cache->dirty_list,
3646 						      &cur_trans->dirty_bgs);
3647 					btrfs_get_block_group(cache);
3648 				}
3649 				spin_unlock(&cur_trans->dirty_bgs_lock);
3650 			} else if (ret) {
3651 				btrfs_abort_transaction(trans, root, ret);
3652 			}
3653 		}
3654 
3655 		/* if its not on the io list, we need to put the block group */
3656 		if (should_put)
3657 			btrfs_put_block_group(cache);
3658 
3659 		if (ret)
3660 			break;
3661 
3662 		/*
3663 		 * Avoid blocking other tasks for too long. It might even save
3664 		 * us from writing caches for block groups that are going to be
3665 		 * removed.
3666 		 */
3667 		mutex_unlock(&trans->transaction->cache_write_mutex);
3668 		mutex_lock(&trans->transaction->cache_write_mutex);
3669 	}
3670 	mutex_unlock(&trans->transaction->cache_write_mutex);
3671 
3672 	/*
3673 	 * go through delayed refs for all the stuff we've just kicked off
3674 	 * and then loop back (just once)
3675 	 */
3676 	ret = btrfs_run_delayed_refs(trans, root, 0);
3677 	if (!ret && loops == 0) {
3678 		loops++;
3679 		spin_lock(&cur_trans->dirty_bgs_lock);
3680 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3681 		/*
3682 		 * dirty_bgs_lock protects us from concurrent block group
3683 		 * deletes too (not just cache_write_mutex).
3684 		 */
3685 		if (!list_empty(&dirty)) {
3686 			spin_unlock(&cur_trans->dirty_bgs_lock);
3687 			goto again;
3688 		}
3689 		spin_unlock(&cur_trans->dirty_bgs_lock);
3690 	}
3691 
3692 	btrfs_free_path(path);
3693 	return ret;
3694 }
3695 
3696 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3697 				   struct btrfs_root *root)
3698 {
3699 	struct btrfs_block_group_cache *cache;
3700 	struct btrfs_transaction *cur_trans = trans->transaction;
3701 	int ret = 0;
3702 	int should_put;
3703 	struct btrfs_path *path;
3704 	struct list_head *io = &cur_trans->io_bgs;
3705 	int num_started = 0;
3706 
3707 	path = btrfs_alloc_path();
3708 	if (!path)
3709 		return -ENOMEM;
3710 
3711 	/*
3712 	 * Even though we are in the critical section of the transaction commit,
3713 	 * we can still have concurrent tasks adding elements to this
3714 	 * transaction's list of dirty block groups. These tasks correspond to
3715 	 * endio free space workers started when writeback finishes for a
3716 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3717 	 * allocate new block groups as a result of COWing nodes of the root
3718 	 * tree when updating the free space inode. The writeback for the space
3719 	 * caches is triggered by an earlier call to
3720 	 * btrfs_start_dirty_block_groups() and iterations of the following
3721 	 * loop.
3722 	 * Also we want to do the cache_save_setup first and then run the
3723 	 * delayed refs to make sure we have the best chance at doing this all
3724 	 * in one shot.
3725 	 */
3726 	spin_lock(&cur_trans->dirty_bgs_lock);
3727 	while (!list_empty(&cur_trans->dirty_bgs)) {
3728 		cache = list_first_entry(&cur_trans->dirty_bgs,
3729 					 struct btrfs_block_group_cache,
3730 					 dirty_list);
3731 
3732 		/*
3733 		 * this can happen if cache_save_setup re-dirties a block
3734 		 * group that is already under IO.  Just wait for it to
3735 		 * finish and then do it all again
3736 		 */
3737 		if (!list_empty(&cache->io_list)) {
3738 			spin_unlock(&cur_trans->dirty_bgs_lock);
3739 			list_del_init(&cache->io_list);
3740 			btrfs_wait_cache_io(root, trans, cache,
3741 					    &cache->io_ctl, path,
3742 					    cache->key.objectid);
3743 			btrfs_put_block_group(cache);
3744 			spin_lock(&cur_trans->dirty_bgs_lock);
3745 		}
3746 
3747 		/*
3748 		 * don't remove from the dirty list until after we've waited
3749 		 * on any pending IO
3750 		 */
3751 		list_del_init(&cache->dirty_list);
3752 		spin_unlock(&cur_trans->dirty_bgs_lock);
3753 		should_put = 1;
3754 
3755 		cache_save_setup(cache, trans, path);
3756 
3757 		if (!ret)
3758 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3759 
3760 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3761 			cache->io_ctl.inode = NULL;
3762 			ret = btrfs_write_out_cache(root, trans, cache, path);
3763 			if (ret == 0 && cache->io_ctl.inode) {
3764 				num_started++;
3765 				should_put = 0;
3766 				list_add_tail(&cache->io_list, io);
3767 			} else {
3768 				/*
3769 				 * if we failed to write the cache, the
3770 				 * generation will be bad and life goes on
3771 				 */
3772 				ret = 0;
3773 			}
3774 		}
3775 		if (!ret) {
3776 			ret = write_one_cache_group(trans, root, path, cache);
3777 			/*
3778 			 * One of the free space endio workers might have
3779 			 * created a new block group while updating a free space
3780 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3781 			 * and hasn't released its transaction handle yet, in
3782 			 * which case the new block group is still attached to
3783 			 * its transaction handle and its creation has not
3784 			 * finished yet (no block group item in the extent tree
3785 			 * yet, etc). If this is the case, wait for all free
3786 			 * space endio workers to finish and retry. This is a
3787 			 * a very rare case so no need for a more efficient and
3788 			 * complex approach.
3789 			 */
3790 			if (ret == -ENOENT) {
3791 				wait_event(cur_trans->writer_wait,
3792 				   atomic_read(&cur_trans->num_writers) == 1);
3793 				ret = write_one_cache_group(trans, root, path,
3794 							    cache);
3795 			}
3796 			if (ret)
3797 				btrfs_abort_transaction(trans, root, ret);
3798 		}
3799 
3800 		/* if its not on the io list, we need to put the block group */
3801 		if (should_put)
3802 			btrfs_put_block_group(cache);
3803 		spin_lock(&cur_trans->dirty_bgs_lock);
3804 	}
3805 	spin_unlock(&cur_trans->dirty_bgs_lock);
3806 
3807 	while (!list_empty(io)) {
3808 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3809 					 io_list);
3810 		list_del_init(&cache->io_list);
3811 		btrfs_wait_cache_io(root, trans, cache,
3812 				    &cache->io_ctl, path, cache->key.objectid);
3813 		btrfs_put_block_group(cache);
3814 	}
3815 
3816 	btrfs_free_path(path);
3817 	return ret;
3818 }
3819 
3820 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3821 {
3822 	struct btrfs_block_group_cache *block_group;
3823 	int readonly = 0;
3824 
3825 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3826 	if (!block_group || block_group->ro)
3827 		readonly = 1;
3828 	if (block_group)
3829 		btrfs_put_block_group(block_group);
3830 	return readonly;
3831 }
3832 
3833 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3834 {
3835 	struct btrfs_block_group_cache *bg;
3836 	bool ret = true;
3837 
3838 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3839 	if (!bg)
3840 		return false;
3841 
3842 	spin_lock(&bg->lock);
3843 	if (bg->ro)
3844 		ret = false;
3845 	else
3846 		atomic_inc(&bg->nocow_writers);
3847 	spin_unlock(&bg->lock);
3848 
3849 	/* no put on block group, done by btrfs_dec_nocow_writers */
3850 	if (!ret)
3851 		btrfs_put_block_group(bg);
3852 
3853 	return ret;
3854 
3855 }
3856 
3857 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3858 {
3859 	struct btrfs_block_group_cache *bg;
3860 
3861 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3862 	ASSERT(bg);
3863 	if (atomic_dec_and_test(&bg->nocow_writers))
3864 		wake_up_atomic_t(&bg->nocow_writers);
3865 	/*
3866 	 * Once for our lookup and once for the lookup done by a previous call
3867 	 * to btrfs_inc_nocow_writers()
3868 	 */
3869 	btrfs_put_block_group(bg);
3870 	btrfs_put_block_group(bg);
3871 }
3872 
3873 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3874 {
3875 	schedule();
3876 	return 0;
3877 }
3878 
3879 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3880 {
3881 	wait_on_atomic_t(&bg->nocow_writers,
3882 			 btrfs_wait_nocow_writers_atomic_t,
3883 			 TASK_UNINTERRUPTIBLE);
3884 }
3885 
3886 static const char *alloc_name(u64 flags)
3887 {
3888 	switch (flags) {
3889 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3890 		return "mixed";
3891 	case BTRFS_BLOCK_GROUP_METADATA:
3892 		return "metadata";
3893 	case BTRFS_BLOCK_GROUP_DATA:
3894 		return "data";
3895 	case BTRFS_BLOCK_GROUP_SYSTEM:
3896 		return "system";
3897 	default:
3898 		WARN_ON(1);
3899 		return "invalid-combination";
3900 	};
3901 }
3902 
3903 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3904 			     u64 total_bytes, u64 bytes_used,
3905 			     struct btrfs_space_info **space_info)
3906 {
3907 	struct btrfs_space_info *found;
3908 	int i;
3909 	int factor;
3910 	int ret;
3911 
3912 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3913 		     BTRFS_BLOCK_GROUP_RAID10))
3914 		factor = 2;
3915 	else
3916 		factor = 1;
3917 
3918 	found = __find_space_info(info, flags);
3919 	if (found) {
3920 		spin_lock(&found->lock);
3921 		found->total_bytes += total_bytes;
3922 		found->disk_total += total_bytes * factor;
3923 		found->bytes_used += bytes_used;
3924 		found->disk_used += bytes_used * factor;
3925 		if (total_bytes > 0)
3926 			found->full = 0;
3927 		spin_unlock(&found->lock);
3928 		*space_info = found;
3929 		return 0;
3930 	}
3931 	found = kzalloc(sizeof(*found), GFP_NOFS);
3932 	if (!found)
3933 		return -ENOMEM;
3934 
3935 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3936 	if (ret) {
3937 		kfree(found);
3938 		return ret;
3939 	}
3940 
3941 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3942 		INIT_LIST_HEAD(&found->block_groups[i]);
3943 	init_rwsem(&found->groups_sem);
3944 	spin_lock_init(&found->lock);
3945 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3946 	found->total_bytes = total_bytes;
3947 	found->disk_total = total_bytes * factor;
3948 	found->bytes_used = bytes_used;
3949 	found->disk_used = bytes_used * factor;
3950 	found->bytes_pinned = 0;
3951 	found->bytes_reserved = 0;
3952 	found->bytes_readonly = 0;
3953 	found->bytes_may_use = 0;
3954 	found->full = 0;
3955 	found->max_extent_size = 0;
3956 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3957 	found->chunk_alloc = 0;
3958 	found->flush = 0;
3959 	init_waitqueue_head(&found->wait);
3960 	INIT_LIST_HEAD(&found->ro_bgs);
3961 
3962 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3963 				    info->space_info_kobj, "%s",
3964 				    alloc_name(found->flags));
3965 	if (ret) {
3966 		kfree(found);
3967 		return ret;
3968 	}
3969 
3970 	*space_info = found;
3971 	list_add_rcu(&found->list, &info->space_info);
3972 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3973 		info->data_sinfo = found;
3974 
3975 	return ret;
3976 }
3977 
3978 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3979 {
3980 	u64 extra_flags = chunk_to_extended(flags) &
3981 				BTRFS_EXTENDED_PROFILE_MASK;
3982 
3983 	write_seqlock(&fs_info->profiles_lock);
3984 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3985 		fs_info->avail_data_alloc_bits |= extra_flags;
3986 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3987 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3988 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3989 		fs_info->avail_system_alloc_bits |= extra_flags;
3990 	write_sequnlock(&fs_info->profiles_lock);
3991 }
3992 
3993 /*
3994  * returns target flags in extended format or 0 if restripe for this
3995  * chunk_type is not in progress
3996  *
3997  * should be called with either volume_mutex or balance_lock held
3998  */
3999 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4000 {
4001 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4002 	u64 target = 0;
4003 
4004 	if (!bctl)
4005 		return 0;
4006 
4007 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4008 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4009 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4010 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4011 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4012 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4013 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4014 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4015 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4016 	}
4017 
4018 	return target;
4019 }
4020 
4021 /*
4022  * @flags: available profiles in extended format (see ctree.h)
4023  *
4024  * Returns reduced profile in chunk format.  If profile changing is in
4025  * progress (either running or paused) picks the target profile (if it's
4026  * already available), otherwise falls back to plain reducing.
4027  */
4028 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4029 {
4030 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
4031 	u64 target;
4032 	u64 raid_type;
4033 	u64 allowed = 0;
4034 
4035 	/*
4036 	 * see if restripe for this chunk_type is in progress, if so
4037 	 * try to reduce to the target profile
4038 	 */
4039 	spin_lock(&root->fs_info->balance_lock);
4040 	target = get_restripe_target(root->fs_info, flags);
4041 	if (target) {
4042 		/* pick target profile only if it's already available */
4043 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4044 			spin_unlock(&root->fs_info->balance_lock);
4045 			return extended_to_chunk(target);
4046 		}
4047 	}
4048 	spin_unlock(&root->fs_info->balance_lock);
4049 
4050 	/* First, mask out the RAID levels which aren't possible */
4051 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4052 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4053 			allowed |= btrfs_raid_group[raid_type];
4054 	}
4055 	allowed &= flags;
4056 
4057 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4058 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4059 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4060 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4061 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4062 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4063 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4064 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4065 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4066 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4067 
4068 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4069 
4070 	return extended_to_chunk(flags | allowed);
4071 }
4072 
4073 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4074 {
4075 	unsigned seq;
4076 	u64 flags;
4077 
4078 	do {
4079 		flags = orig_flags;
4080 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4081 
4082 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4083 			flags |= root->fs_info->avail_data_alloc_bits;
4084 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4085 			flags |= root->fs_info->avail_system_alloc_bits;
4086 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4087 			flags |= root->fs_info->avail_metadata_alloc_bits;
4088 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4089 
4090 	return btrfs_reduce_alloc_profile(root, flags);
4091 }
4092 
4093 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4094 {
4095 	u64 flags;
4096 	u64 ret;
4097 
4098 	if (data)
4099 		flags = BTRFS_BLOCK_GROUP_DATA;
4100 	else if (root == root->fs_info->chunk_root)
4101 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4102 	else
4103 		flags = BTRFS_BLOCK_GROUP_METADATA;
4104 
4105 	ret = get_alloc_profile(root, flags);
4106 	return ret;
4107 }
4108 
4109 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4110 {
4111 	struct btrfs_space_info *data_sinfo;
4112 	struct btrfs_root *root = BTRFS_I(inode)->root;
4113 	struct btrfs_fs_info *fs_info = root->fs_info;
4114 	u64 used;
4115 	int ret = 0;
4116 	int need_commit = 2;
4117 	int have_pinned_space;
4118 
4119 	/* make sure bytes are sectorsize aligned */
4120 	bytes = ALIGN(bytes, root->sectorsize);
4121 
4122 	if (btrfs_is_free_space_inode(inode)) {
4123 		need_commit = 0;
4124 		ASSERT(current->journal_info);
4125 	}
4126 
4127 	data_sinfo = fs_info->data_sinfo;
4128 	if (!data_sinfo)
4129 		goto alloc;
4130 
4131 again:
4132 	/* make sure we have enough space to handle the data first */
4133 	spin_lock(&data_sinfo->lock);
4134 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4135 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4136 		data_sinfo->bytes_may_use;
4137 
4138 	if (used + bytes > data_sinfo->total_bytes) {
4139 		struct btrfs_trans_handle *trans;
4140 
4141 		/*
4142 		 * if we don't have enough free bytes in this space then we need
4143 		 * to alloc a new chunk.
4144 		 */
4145 		if (!data_sinfo->full) {
4146 			u64 alloc_target;
4147 
4148 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4149 			spin_unlock(&data_sinfo->lock);
4150 alloc:
4151 			alloc_target = btrfs_get_alloc_profile(root, 1);
4152 			/*
4153 			 * It is ugly that we don't call nolock join
4154 			 * transaction for the free space inode case here.
4155 			 * But it is safe because we only do the data space
4156 			 * reservation for the free space cache in the
4157 			 * transaction context, the common join transaction
4158 			 * just increase the counter of the current transaction
4159 			 * handler, doesn't try to acquire the trans_lock of
4160 			 * the fs.
4161 			 */
4162 			trans = btrfs_join_transaction(root);
4163 			if (IS_ERR(trans))
4164 				return PTR_ERR(trans);
4165 
4166 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4167 					     alloc_target,
4168 					     CHUNK_ALLOC_NO_FORCE);
4169 			btrfs_end_transaction(trans, root);
4170 			if (ret < 0) {
4171 				if (ret != -ENOSPC)
4172 					return ret;
4173 				else {
4174 					have_pinned_space = 1;
4175 					goto commit_trans;
4176 				}
4177 			}
4178 
4179 			if (!data_sinfo)
4180 				data_sinfo = fs_info->data_sinfo;
4181 
4182 			goto again;
4183 		}
4184 
4185 		/*
4186 		 * If we don't have enough pinned space to deal with this
4187 		 * allocation, and no removed chunk in current transaction,
4188 		 * don't bother committing the transaction.
4189 		 */
4190 		have_pinned_space = percpu_counter_compare(
4191 			&data_sinfo->total_bytes_pinned,
4192 			used + bytes - data_sinfo->total_bytes);
4193 		spin_unlock(&data_sinfo->lock);
4194 
4195 		/* commit the current transaction and try again */
4196 commit_trans:
4197 		if (need_commit &&
4198 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4199 			need_commit--;
4200 
4201 			if (need_commit > 0) {
4202 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4203 				btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4204 			}
4205 
4206 			trans = btrfs_join_transaction(root);
4207 			if (IS_ERR(trans))
4208 				return PTR_ERR(trans);
4209 			if (have_pinned_space >= 0 ||
4210 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4211 				     &trans->transaction->flags) ||
4212 			    need_commit > 0) {
4213 				ret = btrfs_commit_transaction(trans, root);
4214 				if (ret)
4215 					return ret;
4216 				/*
4217 				 * The cleaner kthread might still be doing iput
4218 				 * operations. Wait for it to finish so that
4219 				 * more space is released.
4220 				 */
4221 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4222 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4223 				goto again;
4224 			} else {
4225 				btrfs_end_transaction(trans, root);
4226 			}
4227 		}
4228 
4229 		trace_btrfs_space_reservation(root->fs_info,
4230 					      "space_info:enospc",
4231 					      data_sinfo->flags, bytes, 1);
4232 		return -ENOSPC;
4233 	}
4234 	data_sinfo->bytes_may_use += bytes;
4235 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4236 				      data_sinfo->flags, bytes, 1);
4237 	spin_unlock(&data_sinfo->lock);
4238 
4239 	return ret;
4240 }
4241 
4242 /*
4243  * New check_data_free_space() with ability for precious data reservation
4244  * Will replace old btrfs_check_data_free_space(), but for patch split,
4245  * add a new function first and then replace it.
4246  */
4247 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4248 {
4249 	struct btrfs_root *root = BTRFS_I(inode)->root;
4250 	int ret;
4251 
4252 	/* align the range */
4253 	len = round_up(start + len, root->sectorsize) -
4254 	      round_down(start, root->sectorsize);
4255 	start = round_down(start, root->sectorsize);
4256 
4257 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4258 	if (ret < 0)
4259 		return ret;
4260 
4261 	/*
4262 	 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4263 	 *
4264 	 * TODO: Find a good method to avoid reserve data space for NOCOW
4265 	 * range, but don't impact performance on quota disable case.
4266 	 */
4267 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4268 	return ret;
4269 }
4270 
4271 /*
4272  * Called if we need to clear a data reservation for this inode
4273  * Normally in a error case.
4274  *
4275  * This one will *NOT* use accurate qgroup reserved space API, just for case
4276  * which we can't sleep and is sure it won't affect qgroup reserved space.
4277  * Like clear_bit_hook().
4278  */
4279 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4280 					    u64 len)
4281 {
4282 	struct btrfs_root *root = BTRFS_I(inode)->root;
4283 	struct btrfs_space_info *data_sinfo;
4284 
4285 	/* Make sure the range is aligned to sectorsize */
4286 	len = round_up(start + len, root->sectorsize) -
4287 	      round_down(start, root->sectorsize);
4288 	start = round_down(start, root->sectorsize);
4289 
4290 	data_sinfo = root->fs_info->data_sinfo;
4291 	spin_lock(&data_sinfo->lock);
4292 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4293 		data_sinfo->bytes_may_use = 0;
4294 	else
4295 		data_sinfo->bytes_may_use -= len;
4296 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4297 				      data_sinfo->flags, len, 0);
4298 	spin_unlock(&data_sinfo->lock);
4299 }
4300 
4301 /*
4302  * Called if we need to clear a data reservation for this inode
4303  * Normally in a error case.
4304  *
4305  * This one will handle the per-inode data rsv map for accurate reserved
4306  * space framework.
4307  */
4308 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4309 {
4310 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4311 	btrfs_qgroup_free_data(inode, start, len);
4312 }
4313 
4314 static void force_metadata_allocation(struct btrfs_fs_info *info)
4315 {
4316 	struct list_head *head = &info->space_info;
4317 	struct btrfs_space_info *found;
4318 
4319 	rcu_read_lock();
4320 	list_for_each_entry_rcu(found, head, list) {
4321 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4322 			found->force_alloc = CHUNK_ALLOC_FORCE;
4323 	}
4324 	rcu_read_unlock();
4325 }
4326 
4327 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4328 {
4329 	return (global->size << 1);
4330 }
4331 
4332 static int should_alloc_chunk(struct btrfs_root *root,
4333 			      struct btrfs_space_info *sinfo, int force)
4334 {
4335 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4336 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4337 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4338 	u64 thresh;
4339 
4340 	if (force == CHUNK_ALLOC_FORCE)
4341 		return 1;
4342 
4343 	/*
4344 	 * We need to take into account the global rsv because for all intents
4345 	 * and purposes it's used space.  Don't worry about locking the
4346 	 * global_rsv, it doesn't change except when the transaction commits.
4347 	 */
4348 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4349 		num_allocated += calc_global_rsv_need_space(global_rsv);
4350 
4351 	/*
4352 	 * in limited mode, we want to have some free space up to
4353 	 * about 1% of the FS size.
4354 	 */
4355 	if (force == CHUNK_ALLOC_LIMITED) {
4356 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4357 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4358 
4359 		if (num_bytes - num_allocated < thresh)
4360 			return 1;
4361 	}
4362 
4363 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4364 		return 0;
4365 	return 1;
4366 }
4367 
4368 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4369 {
4370 	u64 num_dev;
4371 
4372 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4373 		    BTRFS_BLOCK_GROUP_RAID0 |
4374 		    BTRFS_BLOCK_GROUP_RAID5 |
4375 		    BTRFS_BLOCK_GROUP_RAID6))
4376 		num_dev = root->fs_info->fs_devices->rw_devices;
4377 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4378 		num_dev = 2;
4379 	else
4380 		num_dev = 1;	/* DUP or single */
4381 
4382 	return num_dev;
4383 }
4384 
4385 /*
4386  * If @is_allocation is true, reserve space in the system space info necessary
4387  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4388  * removing a chunk.
4389  */
4390 void check_system_chunk(struct btrfs_trans_handle *trans,
4391 			struct btrfs_root *root,
4392 			u64 type)
4393 {
4394 	struct btrfs_space_info *info;
4395 	u64 left;
4396 	u64 thresh;
4397 	int ret = 0;
4398 	u64 num_devs;
4399 
4400 	/*
4401 	 * Needed because we can end up allocating a system chunk and for an
4402 	 * atomic and race free space reservation in the chunk block reserve.
4403 	 */
4404 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4405 
4406 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4407 	spin_lock(&info->lock);
4408 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4409 		info->bytes_reserved - info->bytes_readonly -
4410 		info->bytes_may_use;
4411 	spin_unlock(&info->lock);
4412 
4413 	num_devs = get_profile_num_devs(root, type);
4414 
4415 	/* num_devs device items to update and 1 chunk item to add or remove */
4416 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4417 		btrfs_calc_trans_metadata_size(root, 1);
4418 
4419 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4420 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4421 			left, thresh, type);
4422 		dump_space_info(info, 0, 0);
4423 	}
4424 
4425 	if (left < thresh) {
4426 		u64 flags;
4427 
4428 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4429 		/*
4430 		 * Ignore failure to create system chunk. We might end up not
4431 		 * needing it, as we might not need to COW all nodes/leafs from
4432 		 * the paths we visit in the chunk tree (they were already COWed
4433 		 * or created in the current transaction for example).
4434 		 */
4435 		ret = btrfs_alloc_chunk(trans, root, flags);
4436 	}
4437 
4438 	if (!ret) {
4439 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4440 					  &root->fs_info->chunk_block_rsv,
4441 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4442 		if (!ret)
4443 			trans->chunk_bytes_reserved += thresh;
4444 	}
4445 }
4446 
4447 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4448 			  struct btrfs_root *extent_root, u64 flags, int force)
4449 {
4450 	struct btrfs_space_info *space_info;
4451 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4452 	int wait_for_alloc = 0;
4453 	int ret = 0;
4454 
4455 	/* Don't re-enter if we're already allocating a chunk */
4456 	if (trans->allocating_chunk)
4457 		return -ENOSPC;
4458 
4459 	space_info = __find_space_info(extent_root->fs_info, flags);
4460 	if (!space_info) {
4461 		ret = update_space_info(extent_root->fs_info, flags,
4462 					0, 0, &space_info);
4463 		BUG_ON(ret); /* -ENOMEM */
4464 	}
4465 	BUG_ON(!space_info); /* Logic error */
4466 
4467 again:
4468 	spin_lock(&space_info->lock);
4469 	if (force < space_info->force_alloc)
4470 		force = space_info->force_alloc;
4471 	if (space_info->full) {
4472 		if (should_alloc_chunk(extent_root, space_info, force))
4473 			ret = -ENOSPC;
4474 		else
4475 			ret = 0;
4476 		spin_unlock(&space_info->lock);
4477 		return ret;
4478 	}
4479 
4480 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4481 		spin_unlock(&space_info->lock);
4482 		return 0;
4483 	} else if (space_info->chunk_alloc) {
4484 		wait_for_alloc = 1;
4485 	} else {
4486 		space_info->chunk_alloc = 1;
4487 	}
4488 
4489 	spin_unlock(&space_info->lock);
4490 
4491 	mutex_lock(&fs_info->chunk_mutex);
4492 
4493 	/*
4494 	 * The chunk_mutex is held throughout the entirety of a chunk
4495 	 * allocation, so once we've acquired the chunk_mutex we know that the
4496 	 * other guy is done and we need to recheck and see if we should
4497 	 * allocate.
4498 	 */
4499 	if (wait_for_alloc) {
4500 		mutex_unlock(&fs_info->chunk_mutex);
4501 		wait_for_alloc = 0;
4502 		goto again;
4503 	}
4504 
4505 	trans->allocating_chunk = true;
4506 
4507 	/*
4508 	 * If we have mixed data/metadata chunks we want to make sure we keep
4509 	 * allocating mixed chunks instead of individual chunks.
4510 	 */
4511 	if (btrfs_mixed_space_info(space_info))
4512 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4513 
4514 	/*
4515 	 * if we're doing a data chunk, go ahead and make sure that
4516 	 * we keep a reasonable number of metadata chunks allocated in the
4517 	 * FS as well.
4518 	 */
4519 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4520 		fs_info->data_chunk_allocations++;
4521 		if (!(fs_info->data_chunk_allocations %
4522 		      fs_info->metadata_ratio))
4523 			force_metadata_allocation(fs_info);
4524 	}
4525 
4526 	/*
4527 	 * Check if we have enough space in SYSTEM chunk because we may need
4528 	 * to update devices.
4529 	 */
4530 	check_system_chunk(trans, extent_root, flags);
4531 
4532 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4533 	trans->allocating_chunk = false;
4534 
4535 	spin_lock(&space_info->lock);
4536 	if (ret < 0 && ret != -ENOSPC)
4537 		goto out;
4538 	if (ret)
4539 		space_info->full = 1;
4540 	else
4541 		ret = 1;
4542 
4543 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4544 out:
4545 	space_info->chunk_alloc = 0;
4546 	spin_unlock(&space_info->lock);
4547 	mutex_unlock(&fs_info->chunk_mutex);
4548 	/*
4549 	 * When we allocate a new chunk we reserve space in the chunk block
4550 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4551 	 * add new nodes/leafs to it if we end up needing to do it when
4552 	 * inserting the chunk item and updating device items as part of the
4553 	 * second phase of chunk allocation, performed by
4554 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4555 	 * large number of new block groups to create in our transaction
4556 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4557 	 * in extreme cases - like having a single transaction create many new
4558 	 * block groups when starting to write out the free space caches of all
4559 	 * the block groups that were made dirty during the lifetime of the
4560 	 * transaction.
4561 	 */
4562 	if (trans->can_flush_pending_bgs &&
4563 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4564 		btrfs_create_pending_block_groups(trans, trans->root);
4565 		btrfs_trans_release_chunk_metadata(trans);
4566 	}
4567 	return ret;
4568 }
4569 
4570 static int can_overcommit(struct btrfs_root *root,
4571 			  struct btrfs_space_info *space_info, u64 bytes,
4572 			  enum btrfs_reserve_flush_enum flush)
4573 {
4574 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4575 	u64 profile = btrfs_get_alloc_profile(root, 0);
4576 	u64 space_size;
4577 	u64 avail;
4578 	u64 used;
4579 
4580 	used = space_info->bytes_used + space_info->bytes_reserved +
4581 		space_info->bytes_pinned + space_info->bytes_readonly;
4582 
4583 	/*
4584 	 * We only want to allow over committing if we have lots of actual space
4585 	 * free, but if we don't have enough space to handle the global reserve
4586 	 * space then we could end up having a real enospc problem when trying
4587 	 * to allocate a chunk or some other such important allocation.
4588 	 */
4589 	spin_lock(&global_rsv->lock);
4590 	space_size = calc_global_rsv_need_space(global_rsv);
4591 	spin_unlock(&global_rsv->lock);
4592 	if (used + space_size >= space_info->total_bytes)
4593 		return 0;
4594 
4595 	used += space_info->bytes_may_use;
4596 
4597 	spin_lock(&root->fs_info->free_chunk_lock);
4598 	avail = root->fs_info->free_chunk_space;
4599 	spin_unlock(&root->fs_info->free_chunk_lock);
4600 
4601 	/*
4602 	 * If we have dup, raid1 or raid10 then only half of the free
4603 	 * space is actually useable.  For raid56, the space info used
4604 	 * doesn't include the parity drive, so we don't have to
4605 	 * change the math
4606 	 */
4607 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4608 		       BTRFS_BLOCK_GROUP_RAID1 |
4609 		       BTRFS_BLOCK_GROUP_RAID10))
4610 		avail >>= 1;
4611 
4612 	/*
4613 	 * If we aren't flushing all things, let us overcommit up to
4614 	 * 1/2th of the space. If we can flush, don't let us overcommit
4615 	 * too much, let it overcommit up to 1/8 of the space.
4616 	 */
4617 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4618 		avail >>= 3;
4619 	else
4620 		avail >>= 1;
4621 
4622 	if (used + bytes < space_info->total_bytes + avail)
4623 		return 1;
4624 	return 0;
4625 }
4626 
4627 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4628 					 unsigned long nr_pages, int nr_items)
4629 {
4630 	struct super_block *sb = root->fs_info->sb;
4631 
4632 	if (down_read_trylock(&sb->s_umount)) {
4633 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4634 		up_read(&sb->s_umount);
4635 	} else {
4636 		/*
4637 		 * We needn't worry the filesystem going from r/w to r/o though
4638 		 * we don't acquire ->s_umount mutex, because the filesystem
4639 		 * should guarantee the delalloc inodes list be empty after
4640 		 * the filesystem is readonly(all dirty pages are written to
4641 		 * the disk).
4642 		 */
4643 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4644 		if (!current->journal_info)
4645 			btrfs_wait_ordered_roots(root->fs_info, nr_items,
4646 						 0, (u64)-1);
4647 	}
4648 }
4649 
4650 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4651 {
4652 	u64 bytes;
4653 	int nr;
4654 
4655 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4656 	nr = (int)div64_u64(to_reclaim, bytes);
4657 	if (!nr)
4658 		nr = 1;
4659 	return nr;
4660 }
4661 
4662 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4663 
4664 /*
4665  * shrink metadata reservation for delalloc
4666  */
4667 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4668 			    bool wait_ordered)
4669 {
4670 	struct btrfs_block_rsv *block_rsv;
4671 	struct btrfs_space_info *space_info;
4672 	struct btrfs_trans_handle *trans;
4673 	u64 delalloc_bytes;
4674 	u64 max_reclaim;
4675 	long time_left;
4676 	unsigned long nr_pages;
4677 	int loops;
4678 	int items;
4679 	enum btrfs_reserve_flush_enum flush;
4680 
4681 	/* Calc the number of the pages we need flush for space reservation */
4682 	items = calc_reclaim_items_nr(root, to_reclaim);
4683 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4684 
4685 	trans = (struct btrfs_trans_handle *)current->journal_info;
4686 	block_rsv = &root->fs_info->delalloc_block_rsv;
4687 	space_info = block_rsv->space_info;
4688 
4689 	delalloc_bytes = percpu_counter_sum_positive(
4690 						&root->fs_info->delalloc_bytes);
4691 	if (delalloc_bytes == 0) {
4692 		if (trans)
4693 			return;
4694 		if (wait_ordered)
4695 			btrfs_wait_ordered_roots(root->fs_info, items,
4696 						 0, (u64)-1);
4697 		return;
4698 	}
4699 
4700 	loops = 0;
4701 	while (delalloc_bytes && loops < 3) {
4702 		max_reclaim = min(delalloc_bytes, to_reclaim);
4703 		nr_pages = max_reclaim >> PAGE_SHIFT;
4704 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4705 		/*
4706 		 * We need to wait for the async pages to actually start before
4707 		 * we do anything.
4708 		 */
4709 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4710 		if (!max_reclaim)
4711 			goto skip_async;
4712 
4713 		if (max_reclaim <= nr_pages)
4714 			max_reclaim = 0;
4715 		else
4716 			max_reclaim -= nr_pages;
4717 
4718 		wait_event(root->fs_info->async_submit_wait,
4719 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4720 			   (int)max_reclaim);
4721 skip_async:
4722 		if (!trans)
4723 			flush = BTRFS_RESERVE_FLUSH_ALL;
4724 		else
4725 			flush = BTRFS_RESERVE_NO_FLUSH;
4726 		spin_lock(&space_info->lock);
4727 		if (can_overcommit(root, space_info, orig, flush)) {
4728 			spin_unlock(&space_info->lock);
4729 			break;
4730 		}
4731 		spin_unlock(&space_info->lock);
4732 
4733 		loops++;
4734 		if (wait_ordered && !trans) {
4735 			btrfs_wait_ordered_roots(root->fs_info, items,
4736 						 0, (u64)-1);
4737 		} else {
4738 			time_left = schedule_timeout_killable(1);
4739 			if (time_left)
4740 				break;
4741 		}
4742 		delalloc_bytes = percpu_counter_sum_positive(
4743 						&root->fs_info->delalloc_bytes);
4744 	}
4745 }
4746 
4747 /**
4748  * maybe_commit_transaction - possibly commit the transaction if its ok to
4749  * @root - the root we're allocating for
4750  * @bytes - the number of bytes we want to reserve
4751  * @force - force the commit
4752  *
4753  * This will check to make sure that committing the transaction will actually
4754  * get us somewhere and then commit the transaction if it does.  Otherwise it
4755  * will return -ENOSPC.
4756  */
4757 static int may_commit_transaction(struct btrfs_root *root,
4758 				  struct btrfs_space_info *space_info,
4759 				  u64 bytes, int force)
4760 {
4761 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4762 	struct btrfs_trans_handle *trans;
4763 
4764 	trans = (struct btrfs_trans_handle *)current->journal_info;
4765 	if (trans)
4766 		return -EAGAIN;
4767 
4768 	if (force)
4769 		goto commit;
4770 
4771 	/* See if there is enough pinned space to make this reservation */
4772 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4773 				   bytes) >= 0)
4774 		goto commit;
4775 
4776 	/*
4777 	 * See if there is some space in the delayed insertion reservation for
4778 	 * this reservation.
4779 	 */
4780 	if (space_info != delayed_rsv->space_info)
4781 		return -ENOSPC;
4782 
4783 	spin_lock(&delayed_rsv->lock);
4784 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4785 				   bytes - delayed_rsv->size) >= 0) {
4786 		spin_unlock(&delayed_rsv->lock);
4787 		return -ENOSPC;
4788 	}
4789 	spin_unlock(&delayed_rsv->lock);
4790 
4791 commit:
4792 	trans = btrfs_join_transaction(root);
4793 	if (IS_ERR(trans))
4794 		return -ENOSPC;
4795 
4796 	return btrfs_commit_transaction(trans, root);
4797 }
4798 
4799 enum flush_state {
4800 	FLUSH_DELAYED_ITEMS_NR	=	1,
4801 	FLUSH_DELAYED_ITEMS	=	2,
4802 	FLUSH_DELALLOC		=	3,
4803 	FLUSH_DELALLOC_WAIT	=	4,
4804 	ALLOC_CHUNK		=	5,
4805 	COMMIT_TRANS		=	6,
4806 };
4807 
4808 static int flush_space(struct btrfs_root *root,
4809 		       struct btrfs_space_info *space_info, u64 num_bytes,
4810 		       u64 orig_bytes, int state)
4811 {
4812 	struct btrfs_trans_handle *trans;
4813 	int nr;
4814 	int ret = 0;
4815 
4816 	switch (state) {
4817 	case FLUSH_DELAYED_ITEMS_NR:
4818 	case FLUSH_DELAYED_ITEMS:
4819 		if (state == FLUSH_DELAYED_ITEMS_NR)
4820 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4821 		else
4822 			nr = -1;
4823 
4824 		trans = btrfs_join_transaction(root);
4825 		if (IS_ERR(trans)) {
4826 			ret = PTR_ERR(trans);
4827 			break;
4828 		}
4829 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4830 		btrfs_end_transaction(trans, root);
4831 		break;
4832 	case FLUSH_DELALLOC:
4833 	case FLUSH_DELALLOC_WAIT:
4834 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4835 				state == FLUSH_DELALLOC_WAIT);
4836 		break;
4837 	case ALLOC_CHUNK:
4838 		trans = btrfs_join_transaction(root);
4839 		if (IS_ERR(trans)) {
4840 			ret = PTR_ERR(trans);
4841 			break;
4842 		}
4843 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4844 				     btrfs_get_alloc_profile(root, 0),
4845 				     CHUNK_ALLOC_NO_FORCE);
4846 		btrfs_end_transaction(trans, root);
4847 		if (ret == -ENOSPC)
4848 			ret = 0;
4849 		break;
4850 	case COMMIT_TRANS:
4851 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4852 		break;
4853 	default:
4854 		ret = -ENOSPC;
4855 		break;
4856 	}
4857 
4858 	return ret;
4859 }
4860 
4861 static inline u64
4862 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4863 				 struct btrfs_space_info *space_info)
4864 {
4865 	u64 used;
4866 	u64 expected;
4867 	u64 to_reclaim;
4868 
4869 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4870 	spin_lock(&space_info->lock);
4871 	if (can_overcommit(root, space_info, to_reclaim,
4872 			   BTRFS_RESERVE_FLUSH_ALL)) {
4873 		to_reclaim = 0;
4874 		goto out;
4875 	}
4876 
4877 	used = space_info->bytes_used + space_info->bytes_reserved +
4878 	       space_info->bytes_pinned + space_info->bytes_readonly +
4879 	       space_info->bytes_may_use;
4880 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4881 		expected = div_factor_fine(space_info->total_bytes, 95);
4882 	else
4883 		expected = div_factor_fine(space_info->total_bytes, 90);
4884 
4885 	if (used > expected)
4886 		to_reclaim = used - expected;
4887 	else
4888 		to_reclaim = 0;
4889 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4890 				     space_info->bytes_reserved);
4891 out:
4892 	spin_unlock(&space_info->lock);
4893 
4894 	return to_reclaim;
4895 }
4896 
4897 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4898 					struct btrfs_fs_info *fs_info, u64 used)
4899 {
4900 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4901 
4902 	/* If we're just plain full then async reclaim just slows us down. */
4903 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4904 		return 0;
4905 
4906 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4907 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4908 }
4909 
4910 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4911 				       struct btrfs_fs_info *fs_info,
4912 				       int flush_state)
4913 {
4914 	u64 used;
4915 
4916 	spin_lock(&space_info->lock);
4917 	/*
4918 	 * We run out of space and have not got any free space via flush_space,
4919 	 * so don't bother doing async reclaim.
4920 	 */
4921 	if (flush_state > COMMIT_TRANS && space_info->full) {
4922 		spin_unlock(&space_info->lock);
4923 		return 0;
4924 	}
4925 
4926 	used = space_info->bytes_used + space_info->bytes_reserved +
4927 	       space_info->bytes_pinned + space_info->bytes_readonly +
4928 	       space_info->bytes_may_use;
4929 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4930 		spin_unlock(&space_info->lock);
4931 		return 1;
4932 	}
4933 	spin_unlock(&space_info->lock);
4934 
4935 	return 0;
4936 }
4937 
4938 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4939 {
4940 	struct btrfs_fs_info *fs_info;
4941 	struct btrfs_space_info *space_info;
4942 	u64 to_reclaim;
4943 	int flush_state;
4944 
4945 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4946 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4947 
4948 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4949 						      space_info);
4950 	if (!to_reclaim)
4951 		return;
4952 
4953 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4954 	do {
4955 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4956 			    to_reclaim, flush_state);
4957 		flush_state++;
4958 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4959 						 flush_state))
4960 			return;
4961 	} while (flush_state < COMMIT_TRANS);
4962 }
4963 
4964 void btrfs_init_async_reclaim_work(struct work_struct *work)
4965 {
4966 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4967 }
4968 
4969 /**
4970  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4971  * @root - the root we're allocating for
4972  * @block_rsv - the block_rsv we're allocating for
4973  * @orig_bytes - the number of bytes we want
4974  * @flush - whether or not we can flush to make our reservation
4975  *
4976  * This will reserve orig_bytes number of bytes from the space info associated
4977  * with the block_rsv.  If there is not enough space it will make an attempt to
4978  * flush out space to make room.  It will do this by flushing delalloc if
4979  * possible or committing the transaction.  If flush is 0 then no attempts to
4980  * regain reservations will be made and this will fail if there is not enough
4981  * space already.
4982  */
4983 static int reserve_metadata_bytes(struct btrfs_root *root,
4984 				  struct btrfs_block_rsv *block_rsv,
4985 				  u64 orig_bytes,
4986 				  enum btrfs_reserve_flush_enum flush)
4987 {
4988 	struct btrfs_space_info *space_info = block_rsv->space_info;
4989 	u64 used;
4990 	u64 num_bytes = orig_bytes;
4991 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4992 	int ret = 0;
4993 	bool flushing = false;
4994 
4995 again:
4996 	ret = 0;
4997 	spin_lock(&space_info->lock);
4998 	/*
4999 	 * We only want to wait if somebody other than us is flushing and we
5000 	 * are actually allowed to flush all things.
5001 	 */
5002 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5003 	       space_info->flush) {
5004 		spin_unlock(&space_info->lock);
5005 		/*
5006 		 * If we have a trans handle we can't wait because the flusher
5007 		 * may have to commit the transaction, which would mean we would
5008 		 * deadlock since we are waiting for the flusher to finish, but
5009 		 * hold the current transaction open.
5010 		 */
5011 		if (current->journal_info)
5012 			return -EAGAIN;
5013 		ret = wait_event_killable(space_info->wait, !space_info->flush);
5014 		/* Must have been killed, return */
5015 		if (ret)
5016 			return -EINTR;
5017 
5018 		spin_lock(&space_info->lock);
5019 	}
5020 
5021 	ret = -ENOSPC;
5022 	used = space_info->bytes_used + space_info->bytes_reserved +
5023 		space_info->bytes_pinned + space_info->bytes_readonly +
5024 		space_info->bytes_may_use;
5025 
5026 	/*
5027 	 * The idea here is that we've not already over-reserved the block group
5028 	 * then we can go ahead and save our reservation first and then start
5029 	 * flushing if we need to.  Otherwise if we've already overcommitted
5030 	 * lets start flushing stuff first and then come back and try to make
5031 	 * our reservation.
5032 	 */
5033 	if (used <= space_info->total_bytes) {
5034 		if (used + orig_bytes <= space_info->total_bytes) {
5035 			space_info->bytes_may_use += orig_bytes;
5036 			trace_btrfs_space_reservation(root->fs_info,
5037 				"space_info", space_info->flags, orig_bytes, 1);
5038 			ret = 0;
5039 		} else {
5040 			/*
5041 			 * Ok set num_bytes to orig_bytes since we aren't
5042 			 * overocmmitted, this way we only try and reclaim what
5043 			 * we need.
5044 			 */
5045 			num_bytes = orig_bytes;
5046 		}
5047 	} else {
5048 		/*
5049 		 * Ok we're over committed, set num_bytes to the overcommitted
5050 		 * amount plus the amount of bytes that we need for this
5051 		 * reservation.
5052 		 */
5053 		num_bytes = used - space_info->total_bytes +
5054 			(orig_bytes * 2);
5055 	}
5056 
5057 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5058 		space_info->bytes_may_use += orig_bytes;
5059 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5060 					      space_info->flags, orig_bytes,
5061 					      1);
5062 		ret = 0;
5063 	}
5064 
5065 	/*
5066 	 * Couldn't make our reservation, save our place so while we're trying
5067 	 * to reclaim space we can actually use it instead of somebody else
5068 	 * stealing it from us.
5069 	 *
5070 	 * We make the other tasks wait for the flush only when we can flush
5071 	 * all things.
5072 	 */
5073 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5074 		flushing = true;
5075 		space_info->flush = 1;
5076 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5077 		used += orig_bytes;
5078 		/*
5079 		 * We will do the space reservation dance during log replay,
5080 		 * which means we won't have fs_info->fs_root set, so don't do
5081 		 * the async reclaim as we will panic.
5082 		 */
5083 		if (!root->fs_info->log_root_recovering &&
5084 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
5085 		    !work_busy(&root->fs_info->async_reclaim_work))
5086 			queue_work(system_unbound_wq,
5087 				   &root->fs_info->async_reclaim_work);
5088 	}
5089 	spin_unlock(&space_info->lock);
5090 
5091 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5092 		goto out;
5093 
5094 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
5095 			  flush_state);
5096 	flush_state++;
5097 
5098 	/*
5099 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5100 	 * would happen. So skip delalloc flush.
5101 	 */
5102 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5103 	    (flush_state == FLUSH_DELALLOC ||
5104 	     flush_state == FLUSH_DELALLOC_WAIT))
5105 		flush_state = ALLOC_CHUNK;
5106 
5107 	if (!ret)
5108 		goto again;
5109 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5110 		 flush_state < COMMIT_TRANS)
5111 		goto again;
5112 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5113 		 flush_state <= COMMIT_TRANS)
5114 		goto again;
5115 
5116 out:
5117 	if (ret == -ENOSPC &&
5118 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5119 		struct btrfs_block_rsv *global_rsv =
5120 			&root->fs_info->global_block_rsv;
5121 
5122 		if (block_rsv != global_rsv &&
5123 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5124 			ret = 0;
5125 	}
5126 	if (ret == -ENOSPC)
5127 		trace_btrfs_space_reservation(root->fs_info,
5128 					      "space_info:enospc",
5129 					      space_info->flags, orig_bytes, 1);
5130 	if (flushing) {
5131 		spin_lock(&space_info->lock);
5132 		space_info->flush = 0;
5133 		wake_up_all(&space_info->wait);
5134 		spin_unlock(&space_info->lock);
5135 	}
5136 	return ret;
5137 }
5138 
5139 static struct btrfs_block_rsv *get_block_rsv(
5140 					const struct btrfs_trans_handle *trans,
5141 					const struct btrfs_root *root)
5142 {
5143 	struct btrfs_block_rsv *block_rsv = NULL;
5144 
5145 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5146 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5147 	     (root == root->fs_info->uuid_root))
5148 		block_rsv = trans->block_rsv;
5149 
5150 	if (!block_rsv)
5151 		block_rsv = root->block_rsv;
5152 
5153 	if (!block_rsv)
5154 		block_rsv = &root->fs_info->empty_block_rsv;
5155 
5156 	return block_rsv;
5157 }
5158 
5159 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5160 			       u64 num_bytes)
5161 {
5162 	int ret = -ENOSPC;
5163 	spin_lock(&block_rsv->lock);
5164 	if (block_rsv->reserved >= num_bytes) {
5165 		block_rsv->reserved -= num_bytes;
5166 		if (block_rsv->reserved < block_rsv->size)
5167 			block_rsv->full = 0;
5168 		ret = 0;
5169 	}
5170 	spin_unlock(&block_rsv->lock);
5171 	return ret;
5172 }
5173 
5174 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5175 				u64 num_bytes, int update_size)
5176 {
5177 	spin_lock(&block_rsv->lock);
5178 	block_rsv->reserved += num_bytes;
5179 	if (update_size)
5180 		block_rsv->size += num_bytes;
5181 	else if (block_rsv->reserved >= block_rsv->size)
5182 		block_rsv->full = 1;
5183 	spin_unlock(&block_rsv->lock);
5184 }
5185 
5186 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5187 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5188 			     int min_factor)
5189 {
5190 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5191 	u64 min_bytes;
5192 
5193 	if (global_rsv->space_info != dest->space_info)
5194 		return -ENOSPC;
5195 
5196 	spin_lock(&global_rsv->lock);
5197 	min_bytes = div_factor(global_rsv->size, min_factor);
5198 	if (global_rsv->reserved < min_bytes + num_bytes) {
5199 		spin_unlock(&global_rsv->lock);
5200 		return -ENOSPC;
5201 	}
5202 	global_rsv->reserved -= num_bytes;
5203 	if (global_rsv->reserved < global_rsv->size)
5204 		global_rsv->full = 0;
5205 	spin_unlock(&global_rsv->lock);
5206 
5207 	block_rsv_add_bytes(dest, num_bytes, 1);
5208 	return 0;
5209 }
5210 
5211 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5212 				    struct btrfs_block_rsv *block_rsv,
5213 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5214 {
5215 	struct btrfs_space_info *space_info = block_rsv->space_info;
5216 
5217 	spin_lock(&block_rsv->lock);
5218 	if (num_bytes == (u64)-1)
5219 		num_bytes = block_rsv->size;
5220 	block_rsv->size -= num_bytes;
5221 	if (block_rsv->reserved >= block_rsv->size) {
5222 		num_bytes = block_rsv->reserved - block_rsv->size;
5223 		block_rsv->reserved = block_rsv->size;
5224 		block_rsv->full = 1;
5225 	} else {
5226 		num_bytes = 0;
5227 	}
5228 	spin_unlock(&block_rsv->lock);
5229 
5230 	if (num_bytes > 0) {
5231 		if (dest) {
5232 			spin_lock(&dest->lock);
5233 			if (!dest->full) {
5234 				u64 bytes_to_add;
5235 
5236 				bytes_to_add = dest->size - dest->reserved;
5237 				bytes_to_add = min(num_bytes, bytes_to_add);
5238 				dest->reserved += bytes_to_add;
5239 				if (dest->reserved >= dest->size)
5240 					dest->full = 1;
5241 				num_bytes -= bytes_to_add;
5242 			}
5243 			spin_unlock(&dest->lock);
5244 		}
5245 		if (num_bytes) {
5246 			spin_lock(&space_info->lock);
5247 			space_info->bytes_may_use -= num_bytes;
5248 			trace_btrfs_space_reservation(fs_info, "space_info",
5249 					space_info->flags, num_bytes, 0);
5250 			spin_unlock(&space_info->lock);
5251 		}
5252 	}
5253 }
5254 
5255 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5256 				   struct btrfs_block_rsv *dst, u64 num_bytes)
5257 {
5258 	int ret;
5259 
5260 	ret = block_rsv_use_bytes(src, num_bytes);
5261 	if (ret)
5262 		return ret;
5263 
5264 	block_rsv_add_bytes(dst, num_bytes, 1);
5265 	return 0;
5266 }
5267 
5268 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5269 {
5270 	memset(rsv, 0, sizeof(*rsv));
5271 	spin_lock_init(&rsv->lock);
5272 	rsv->type = type;
5273 }
5274 
5275 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5276 					      unsigned short type)
5277 {
5278 	struct btrfs_block_rsv *block_rsv;
5279 	struct btrfs_fs_info *fs_info = root->fs_info;
5280 
5281 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5282 	if (!block_rsv)
5283 		return NULL;
5284 
5285 	btrfs_init_block_rsv(block_rsv, type);
5286 	block_rsv->space_info = __find_space_info(fs_info,
5287 						  BTRFS_BLOCK_GROUP_METADATA);
5288 	return block_rsv;
5289 }
5290 
5291 void btrfs_free_block_rsv(struct btrfs_root *root,
5292 			  struct btrfs_block_rsv *rsv)
5293 {
5294 	if (!rsv)
5295 		return;
5296 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5297 	kfree(rsv);
5298 }
5299 
5300 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5301 {
5302 	kfree(rsv);
5303 }
5304 
5305 int btrfs_block_rsv_add(struct btrfs_root *root,
5306 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5307 			enum btrfs_reserve_flush_enum flush)
5308 {
5309 	int ret;
5310 
5311 	if (num_bytes == 0)
5312 		return 0;
5313 
5314 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5315 	if (!ret) {
5316 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5317 		return 0;
5318 	}
5319 
5320 	return ret;
5321 }
5322 
5323 int btrfs_block_rsv_check(struct btrfs_root *root,
5324 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5325 {
5326 	u64 num_bytes = 0;
5327 	int ret = -ENOSPC;
5328 
5329 	if (!block_rsv)
5330 		return 0;
5331 
5332 	spin_lock(&block_rsv->lock);
5333 	num_bytes = div_factor(block_rsv->size, min_factor);
5334 	if (block_rsv->reserved >= num_bytes)
5335 		ret = 0;
5336 	spin_unlock(&block_rsv->lock);
5337 
5338 	return ret;
5339 }
5340 
5341 int btrfs_block_rsv_refill(struct btrfs_root *root,
5342 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5343 			   enum btrfs_reserve_flush_enum flush)
5344 {
5345 	u64 num_bytes = 0;
5346 	int ret = -ENOSPC;
5347 
5348 	if (!block_rsv)
5349 		return 0;
5350 
5351 	spin_lock(&block_rsv->lock);
5352 	num_bytes = min_reserved;
5353 	if (block_rsv->reserved >= num_bytes)
5354 		ret = 0;
5355 	else
5356 		num_bytes -= block_rsv->reserved;
5357 	spin_unlock(&block_rsv->lock);
5358 
5359 	if (!ret)
5360 		return 0;
5361 
5362 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5363 	if (!ret) {
5364 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5365 		return 0;
5366 	}
5367 
5368 	return ret;
5369 }
5370 
5371 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5372 			    struct btrfs_block_rsv *dst_rsv,
5373 			    u64 num_bytes)
5374 {
5375 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5376 }
5377 
5378 void btrfs_block_rsv_release(struct btrfs_root *root,
5379 			     struct btrfs_block_rsv *block_rsv,
5380 			     u64 num_bytes)
5381 {
5382 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5383 	if (global_rsv == block_rsv ||
5384 	    block_rsv->space_info != global_rsv->space_info)
5385 		global_rsv = NULL;
5386 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5387 				num_bytes);
5388 }
5389 
5390 /*
5391  * helper to calculate size of global block reservation.
5392  * the desired value is sum of space used by extent tree,
5393  * checksum tree and root tree
5394  */
5395 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5396 {
5397 	struct btrfs_space_info *sinfo;
5398 	u64 num_bytes;
5399 	u64 meta_used;
5400 	u64 data_used;
5401 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5402 
5403 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5404 	spin_lock(&sinfo->lock);
5405 	data_used = sinfo->bytes_used;
5406 	spin_unlock(&sinfo->lock);
5407 
5408 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5409 	spin_lock(&sinfo->lock);
5410 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5411 		data_used = 0;
5412 	meta_used = sinfo->bytes_used;
5413 	spin_unlock(&sinfo->lock);
5414 
5415 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5416 		    csum_size * 2;
5417 	num_bytes += div_u64(data_used + meta_used, 50);
5418 
5419 	if (num_bytes * 3 > meta_used)
5420 		num_bytes = div_u64(meta_used, 3);
5421 
5422 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5423 }
5424 
5425 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5426 {
5427 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5428 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5429 	u64 num_bytes;
5430 
5431 	num_bytes = calc_global_metadata_size(fs_info);
5432 
5433 	spin_lock(&sinfo->lock);
5434 	spin_lock(&block_rsv->lock);
5435 
5436 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5437 
5438 	if (block_rsv->reserved < block_rsv->size) {
5439 		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5440 			sinfo->bytes_reserved + sinfo->bytes_readonly +
5441 			sinfo->bytes_may_use;
5442 		if (sinfo->total_bytes > num_bytes) {
5443 			num_bytes = sinfo->total_bytes - num_bytes;
5444 			num_bytes = min(num_bytes,
5445 					block_rsv->size - block_rsv->reserved);
5446 			block_rsv->reserved += num_bytes;
5447 			sinfo->bytes_may_use += num_bytes;
5448 			trace_btrfs_space_reservation(fs_info, "space_info",
5449 						      sinfo->flags, num_bytes,
5450 						      1);
5451 		}
5452 	} else if (block_rsv->reserved > block_rsv->size) {
5453 		num_bytes = block_rsv->reserved - block_rsv->size;
5454 		sinfo->bytes_may_use -= num_bytes;
5455 		trace_btrfs_space_reservation(fs_info, "space_info",
5456 				      sinfo->flags, num_bytes, 0);
5457 		block_rsv->reserved = block_rsv->size;
5458 	}
5459 
5460 	if (block_rsv->reserved == block_rsv->size)
5461 		block_rsv->full = 1;
5462 	else
5463 		block_rsv->full = 0;
5464 
5465 	spin_unlock(&block_rsv->lock);
5466 	spin_unlock(&sinfo->lock);
5467 }
5468 
5469 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5470 {
5471 	struct btrfs_space_info *space_info;
5472 
5473 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5474 	fs_info->chunk_block_rsv.space_info = space_info;
5475 
5476 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5477 	fs_info->global_block_rsv.space_info = space_info;
5478 	fs_info->delalloc_block_rsv.space_info = space_info;
5479 	fs_info->trans_block_rsv.space_info = space_info;
5480 	fs_info->empty_block_rsv.space_info = space_info;
5481 	fs_info->delayed_block_rsv.space_info = space_info;
5482 
5483 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5484 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5485 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5486 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5487 	if (fs_info->quota_root)
5488 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5489 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5490 
5491 	update_global_block_rsv(fs_info);
5492 }
5493 
5494 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5495 {
5496 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5497 				(u64)-1);
5498 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5499 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5500 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5501 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5502 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5503 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5504 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5505 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5506 }
5507 
5508 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5509 				  struct btrfs_root *root)
5510 {
5511 	if (!trans->block_rsv)
5512 		return;
5513 
5514 	if (!trans->bytes_reserved)
5515 		return;
5516 
5517 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5518 				      trans->transid, trans->bytes_reserved, 0);
5519 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5520 	trans->bytes_reserved = 0;
5521 }
5522 
5523 /*
5524  * To be called after all the new block groups attached to the transaction
5525  * handle have been created (btrfs_create_pending_block_groups()).
5526  */
5527 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5528 {
5529 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5530 
5531 	if (!trans->chunk_bytes_reserved)
5532 		return;
5533 
5534 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5535 
5536 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5537 				trans->chunk_bytes_reserved);
5538 	trans->chunk_bytes_reserved = 0;
5539 }
5540 
5541 /* Can only return 0 or -ENOSPC */
5542 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5543 				  struct inode *inode)
5544 {
5545 	struct btrfs_root *root = BTRFS_I(inode)->root;
5546 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5547 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5548 
5549 	/*
5550 	 * We need to hold space in order to delete our orphan item once we've
5551 	 * added it, so this takes the reservation so we can release it later
5552 	 * when we are truly done with the orphan item.
5553 	 */
5554 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5555 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5556 				      btrfs_ino(inode), num_bytes, 1);
5557 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5558 }
5559 
5560 void btrfs_orphan_release_metadata(struct inode *inode)
5561 {
5562 	struct btrfs_root *root = BTRFS_I(inode)->root;
5563 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5564 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5565 				      btrfs_ino(inode), num_bytes, 0);
5566 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5567 }
5568 
5569 /*
5570  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5571  * root: the root of the parent directory
5572  * rsv: block reservation
5573  * items: the number of items that we need do reservation
5574  * qgroup_reserved: used to return the reserved size in qgroup
5575  *
5576  * This function is used to reserve the space for snapshot/subvolume
5577  * creation and deletion. Those operations are different with the
5578  * common file/directory operations, they change two fs/file trees
5579  * and root tree, the number of items that the qgroup reserves is
5580  * different with the free space reservation. So we can not use
5581  * the space reservation mechanism in start_transaction().
5582  */
5583 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5584 				     struct btrfs_block_rsv *rsv,
5585 				     int items,
5586 				     u64 *qgroup_reserved,
5587 				     bool use_global_rsv)
5588 {
5589 	u64 num_bytes;
5590 	int ret;
5591 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5592 
5593 	if (root->fs_info->quota_enabled) {
5594 		/* One for parent inode, two for dir entries */
5595 		num_bytes = 3 * root->nodesize;
5596 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5597 		if (ret)
5598 			return ret;
5599 	} else {
5600 		num_bytes = 0;
5601 	}
5602 
5603 	*qgroup_reserved = num_bytes;
5604 
5605 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5606 	rsv->space_info = __find_space_info(root->fs_info,
5607 					    BTRFS_BLOCK_GROUP_METADATA);
5608 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5609 				  BTRFS_RESERVE_FLUSH_ALL);
5610 
5611 	if (ret == -ENOSPC && use_global_rsv)
5612 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5613 
5614 	if (ret && *qgroup_reserved)
5615 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5616 
5617 	return ret;
5618 }
5619 
5620 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5621 				      struct btrfs_block_rsv *rsv,
5622 				      u64 qgroup_reserved)
5623 {
5624 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5625 }
5626 
5627 /**
5628  * drop_outstanding_extent - drop an outstanding extent
5629  * @inode: the inode we're dropping the extent for
5630  * @num_bytes: the number of bytes we're releasing.
5631  *
5632  * This is called when we are freeing up an outstanding extent, either called
5633  * after an error or after an extent is written.  This will return the number of
5634  * reserved extents that need to be freed.  This must be called with
5635  * BTRFS_I(inode)->lock held.
5636  */
5637 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5638 {
5639 	unsigned drop_inode_space = 0;
5640 	unsigned dropped_extents = 0;
5641 	unsigned num_extents = 0;
5642 
5643 	num_extents = (unsigned)div64_u64(num_bytes +
5644 					  BTRFS_MAX_EXTENT_SIZE - 1,
5645 					  BTRFS_MAX_EXTENT_SIZE);
5646 	ASSERT(num_extents);
5647 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5648 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5649 
5650 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5651 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5652 			       &BTRFS_I(inode)->runtime_flags))
5653 		drop_inode_space = 1;
5654 
5655 	/*
5656 	 * If we have more or the same amount of outstanding extents than we have
5657 	 * reserved then we need to leave the reserved extents count alone.
5658 	 */
5659 	if (BTRFS_I(inode)->outstanding_extents >=
5660 	    BTRFS_I(inode)->reserved_extents)
5661 		return drop_inode_space;
5662 
5663 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5664 		BTRFS_I(inode)->outstanding_extents;
5665 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5666 	return dropped_extents + drop_inode_space;
5667 }
5668 
5669 /**
5670  * calc_csum_metadata_size - return the amount of metadata space that must be
5671  *	reserved/freed for the given bytes.
5672  * @inode: the inode we're manipulating
5673  * @num_bytes: the number of bytes in question
5674  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5675  *
5676  * This adjusts the number of csum_bytes in the inode and then returns the
5677  * correct amount of metadata that must either be reserved or freed.  We
5678  * calculate how many checksums we can fit into one leaf and then divide the
5679  * number of bytes that will need to be checksumed by this value to figure out
5680  * how many checksums will be required.  If we are adding bytes then the number
5681  * may go up and we will return the number of additional bytes that must be
5682  * reserved.  If it is going down we will return the number of bytes that must
5683  * be freed.
5684  *
5685  * This must be called with BTRFS_I(inode)->lock held.
5686  */
5687 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5688 				   int reserve)
5689 {
5690 	struct btrfs_root *root = BTRFS_I(inode)->root;
5691 	u64 old_csums, num_csums;
5692 
5693 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5694 	    BTRFS_I(inode)->csum_bytes == 0)
5695 		return 0;
5696 
5697 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5698 	if (reserve)
5699 		BTRFS_I(inode)->csum_bytes += num_bytes;
5700 	else
5701 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5702 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5703 
5704 	/* No change, no need to reserve more */
5705 	if (old_csums == num_csums)
5706 		return 0;
5707 
5708 	if (reserve)
5709 		return btrfs_calc_trans_metadata_size(root,
5710 						      num_csums - old_csums);
5711 
5712 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5713 }
5714 
5715 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5716 {
5717 	struct btrfs_root *root = BTRFS_I(inode)->root;
5718 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5719 	u64 to_reserve = 0;
5720 	u64 csum_bytes;
5721 	unsigned nr_extents = 0;
5722 	int extra_reserve = 0;
5723 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5724 	int ret = 0;
5725 	bool delalloc_lock = true;
5726 	u64 to_free = 0;
5727 	unsigned dropped;
5728 
5729 	/* If we are a free space inode we need to not flush since we will be in
5730 	 * the middle of a transaction commit.  We also don't need the delalloc
5731 	 * mutex since we won't race with anybody.  We need this mostly to make
5732 	 * lockdep shut its filthy mouth.
5733 	 */
5734 	if (btrfs_is_free_space_inode(inode)) {
5735 		flush = BTRFS_RESERVE_NO_FLUSH;
5736 		delalloc_lock = false;
5737 	}
5738 
5739 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5740 	    btrfs_transaction_in_commit(root->fs_info))
5741 		schedule_timeout(1);
5742 
5743 	if (delalloc_lock)
5744 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5745 
5746 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5747 
5748 	spin_lock(&BTRFS_I(inode)->lock);
5749 	nr_extents = (unsigned)div64_u64(num_bytes +
5750 					 BTRFS_MAX_EXTENT_SIZE - 1,
5751 					 BTRFS_MAX_EXTENT_SIZE);
5752 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5753 	nr_extents = 0;
5754 
5755 	if (BTRFS_I(inode)->outstanding_extents >
5756 	    BTRFS_I(inode)->reserved_extents)
5757 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5758 			BTRFS_I(inode)->reserved_extents;
5759 
5760 	/*
5761 	 * Add an item to reserve for updating the inode when we complete the
5762 	 * delalloc io.
5763 	 */
5764 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5765 		      &BTRFS_I(inode)->runtime_flags)) {
5766 		nr_extents++;
5767 		extra_reserve = 1;
5768 	}
5769 
5770 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5771 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5772 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5773 	spin_unlock(&BTRFS_I(inode)->lock);
5774 
5775 	if (root->fs_info->quota_enabled) {
5776 		ret = btrfs_qgroup_reserve_meta(root,
5777 				nr_extents * root->nodesize);
5778 		if (ret)
5779 			goto out_fail;
5780 	}
5781 
5782 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5783 	if (unlikely(ret)) {
5784 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5785 		goto out_fail;
5786 	}
5787 
5788 	spin_lock(&BTRFS_I(inode)->lock);
5789 	if (extra_reserve) {
5790 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5791 			&BTRFS_I(inode)->runtime_flags);
5792 		nr_extents--;
5793 	}
5794 	BTRFS_I(inode)->reserved_extents += nr_extents;
5795 	spin_unlock(&BTRFS_I(inode)->lock);
5796 
5797 	if (delalloc_lock)
5798 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5799 
5800 	if (to_reserve)
5801 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5802 					      btrfs_ino(inode), to_reserve, 1);
5803 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5804 
5805 	return 0;
5806 
5807 out_fail:
5808 	spin_lock(&BTRFS_I(inode)->lock);
5809 	dropped = drop_outstanding_extent(inode, num_bytes);
5810 	/*
5811 	 * If the inodes csum_bytes is the same as the original
5812 	 * csum_bytes then we know we haven't raced with any free()ers
5813 	 * so we can just reduce our inodes csum bytes and carry on.
5814 	 */
5815 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5816 		calc_csum_metadata_size(inode, num_bytes, 0);
5817 	} else {
5818 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5819 		u64 bytes;
5820 
5821 		/*
5822 		 * This is tricky, but first we need to figure out how much we
5823 		 * freed from any free-ers that occurred during this
5824 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5825 		 * before we dropped our lock, and then call the free for the
5826 		 * number of bytes that were freed while we were trying our
5827 		 * reservation.
5828 		 */
5829 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5830 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5831 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5832 
5833 
5834 		/*
5835 		 * Now we need to see how much we would have freed had we not
5836 		 * been making this reservation and our ->csum_bytes were not
5837 		 * artificially inflated.
5838 		 */
5839 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5840 		bytes = csum_bytes - orig_csum_bytes;
5841 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5842 
5843 		/*
5844 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5845 		 * more than to_free then we would have freed more space had we
5846 		 * not had an artificially high ->csum_bytes, so we need to free
5847 		 * the remainder.  If bytes is the same or less then we don't
5848 		 * need to do anything, the other free-ers did the correct
5849 		 * thing.
5850 		 */
5851 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5852 		if (bytes > to_free)
5853 			to_free = bytes - to_free;
5854 		else
5855 			to_free = 0;
5856 	}
5857 	spin_unlock(&BTRFS_I(inode)->lock);
5858 	if (dropped)
5859 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5860 
5861 	if (to_free) {
5862 		btrfs_block_rsv_release(root, block_rsv, to_free);
5863 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5864 					      btrfs_ino(inode), to_free, 0);
5865 	}
5866 	if (delalloc_lock)
5867 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5868 	return ret;
5869 }
5870 
5871 /**
5872  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5873  * @inode: the inode to release the reservation for
5874  * @num_bytes: the number of bytes we're releasing
5875  *
5876  * This will release the metadata reservation for an inode.  This can be called
5877  * once we complete IO for a given set of bytes to release their metadata
5878  * reservations.
5879  */
5880 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5881 {
5882 	struct btrfs_root *root = BTRFS_I(inode)->root;
5883 	u64 to_free = 0;
5884 	unsigned dropped;
5885 
5886 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5887 	spin_lock(&BTRFS_I(inode)->lock);
5888 	dropped = drop_outstanding_extent(inode, num_bytes);
5889 
5890 	if (num_bytes)
5891 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5892 	spin_unlock(&BTRFS_I(inode)->lock);
5893 	if (dropped > 0)
5894 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5895 
5896 	if (btrfs_test_is_dummy_root(root))
5897 		return;
5898 
5899 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5900 				      btrfs_ino(inode), to_free, 0);
5901 
5902 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5903 				to_free);
5904 }
5905 
5906 /**
5907  * btrfs_delalloc_reserve_space - reserve data and metadata space for
5908  * delalloc
5909  * @inode: inode we're writing to
5910  * @start: start range we are writing to
5911  * @len: how long the range we are writing to
5912  *
5913  * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5914  *
5915  * This will do the following things
5916  *
5917  * o reserve space in data space info for num bytes
5918  *   and reserve precious corresponding qgroup space
5919  *   (Done in check_data_free_space)
5920  *
5921  * o reserve space for metadata space, based on the number of outstanding
5922  *   extents and how much csums will be needed
5923  *   also reserve metadata space in a per root over-reserve method.
5924  * o add to the inodes->delalloc_bytes
5925  * o add it to the fs_info's delalloc inodes list.
5926  *   (Above 3 all done in delalloc_reserve_metadata)
5927  *
5928  * Return 0 for success
5929  * Return <0 for error(-ENOSPC or -EQUOT)
5930  */
5931 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5932 {
5933 	int ret;
5934 
5935 	ret = btrfs_check_data_free_space(inode, start, len);
5936 	if (ret < 0)
5937 		return ret;
5938 	ret = btrfs_delalloc_reserve_metadata(inode, len);
5939 	if (ret < 0)
5940 		btrfs_free_reserved_data_space(inode, start, len);
5941 	return ret;
5942 }
5943 
5944 /**
5945  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5946  * @inode: inode we're releasing space for
5947  * @start: start position of the space already reserved
5948  * @len: the len of the space already reserved
5949  *
5950  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5951  * called in the case that we don't need the metadata AND data reservations
5952  * anymore.  So if there is an error or we insert an inline extent.
5953  *
5954  * This function will release the metadata space that was not used and will
5955  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5956  * list if there are no delalloc bytes left.
5957  * Also it will handle the qgroup reserved space.
5958  */
5959 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5960 {
5961 	btrfs_delalloc_release_metadata(inode, len);
5962 	btrfs_free_reserved_data_space(inode, start, len);
5963 }
5964 
5965 static int update_block_group(struct btrfs_trans_handle *trans,
5966 			      struct btrfs_root *root, u64 bytenr,
5967 			      u64 num_bytes, int alloc)
5968 {
5969 	struct btrfs_block_group_cache *cache = NULL;
5970 	struct btrfs_fs_info *info = root->fs_info;
5971 	u64 total = num_bytes;
5972 	u64 old_val;
5973 	u64 byte_in_group;
5974 	int factor;
5975 
5976 	/* block accounting for super block */
5977 	spin_lock(&info->delalloc_root_lock);
5978 	old_val = btrfs_super_bytes_used(info->super_copy);
5979 	if (alloc)
5980 		old_val += num_bytes;
5981 	else
5982 		old_val -= num_bytes;
5983 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5984 	spin_unlock(&info->delalloc_root_lock);
5985 
5986 	while (total) {
5987 		cache = btrfs_lookup_block_group(info, bytenr);
5988 		if (!cache)
5989 			return -ENOENT;
5990 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5991 				    BTRFS_BLOCK_GROUP_RAID1 |
5992 				    BTRFS_BLOCK_GROUP_RAID10))
5993 			factor = 2;
5994 		else
5995 			factor = 1;
5996 		/*
5997 		 * If this block group has free space cache written out, we
5998 		 * need to make sure to load it if we are removing space.  This
5999 		 * is because we need the unpinning stage to actually add the
6000 		 * space back to the block group, otherwise we will leak space.
6001 		 */
6002 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6003 			cache_block_group(cache, 1);
6004 
6005 		byte_in_group = bytenr - cache->key.objectid;
6006 		WARN_ON(byte_in_group > cache->key.offset);
6007 
6008 		spin_lock(&cache->space_info->lock);
6009 		spin_lock(&cache->lock);
6010 
6011 		if (btrfs_test_opt(root, SPACE_CACHE) &&
6012 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6013 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6014 
6015 		old_val = btrfs_block_group_used(&cache->item);
6016 		num_bytes = min(total, cache->key.offset - byte_in_group);
6017 		if (alloc) {
6018 			old_val += num_bytes;
6019 			btrfs_set_block_group_used(&cache->item, old_val);
6020 			cache->reserved -= num_bytes;
6021 			cache->space_info->bytes_reserved -= num_bytes;
6022 			cache->space_info->bytes_used += num_bytes;
6023 			cache->space_info->disk_used += num_bytes * factor;
6024 			spin_unlock(&cache->lock);
6025 			spin_unlock(&cache->space_info->lock);
6026 		} else {
6027 			old_val -= num_bytes;
6028 			btrfs_set_block_group_used(&cache->item, old_val);
6029 			cache->pinned += num_bytes;
6030 			cache->space_info->bytes_pinned += num_bytes;
6031 			cache->space_info->bytes_used -= num_bytes;
6032 			cache->space_info->disk_used -= num_bytes * factor;
6033 			spin_unlock(&cache->lock);
6034 			spin_unlock(&cache->space_info->lock);
6035 
6036 			set_extent_dirty(info->pinned_extents,
6037 					 bytenr, bytenr + num_bytes - 1,
6038 					 GFP_NOFS | __GFP_NOFAIL);
6039 		}
6040 
6041 		spin_lock(&trans->transaction->dirty_bgs_lock);
6042 		if (list_empty(&cache->dirty_list)) {
6043 			list_add_tail(&cache->dirty_list,
6044 				      &trans->transaction->dirty_bgs);
6045 				trans->transaction->num_dirty_bgs++;
6046 			btrfs_get_block_group(cache);
6047 		}
6048 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6049 
6050 		/*
6051 		 * No longer have used bytes in this block group, queue it for
6052 		 * deletion. We do this after adding the block group to the
6053 		 * dirty list to avoid races between cleaner kthread and space
6054 		 * cache writeout.
6055 		 */
6056 		if (!alloc && old_val == 0) {
6057 			spin_lock(&info->unused_bgs_lock);
6058 			if (list_empty(&cache->bg_list)) {
6059 				btrfs_get_block_group(cache);
6060 				list_add_tail(&cache->bg_list,
6061 					      &info->unused_bgs);
6062 			}
6063 			spin_unlock(&info->unused_bgs_lock);
6064 		}
6065 
6066 		btrfs_put_block_group(cache);
6067 		total -= num_bytes;
6068 		bytenr += num_bytes;
6069 	}
6070 	return 0;
6071 }
6072 
6073 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6074 {
6075 	struct btrfs_block_group_cache *cache;
6076 	u64 bytenr;
6077 
6078 	spin_lock(&root->fs_info->block_group_cache_lock);
6079 	bytenr = root->fs_info->first_logical_byte;
6080 	spin_unlock(&root->fs_info->block_group_cache_lock);
6081 
6082 	if (bytenr < (u64)-1)
6083 		return bytenr;
6084 
6085 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6086 	if (!cache)
6087 		return 0;
6088 
6089 	bytenr = cache->key.objectid;
6090 	btrfs_put_block_group(cache);
6091 
6092 	return bytenr;
6093 }
6094 
6095 static int pin_down_extent(struct btrfs_root *root,
6096 			   struct btrfs_block_group_cache *cache,
6097 			   u64 bytenr, u64 num_bytes, int reserved)
6098 {
6099 	spin_lock(&cache->space_info->lock);
6100 	spin_lock(&cache->lock);
6101 	cache->pinned += num_bytes;
6102 	cache->space_info->bytes_pinned += num_bytes;
6103 	if (reserved) {
6104 		cache->reserved -= num_bytes;
6105 		cache->space_info->bytes_reserved -= num_bytes;
6106 	}
6107 	spin_unlock(&cache->lock);
6108 	spin_unlock(&cache->space_info->lock);
6109 
6110 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6111 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6112 	if (reserved)
6113 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6114 	return 0;
6115 }
6116 
6117 /*
6118  * this function must be called within transaction
6119  */
6120 int btrfs_pin_extent(struct btrfs_root *root,
6121 		     u64 bytenr, u64 num_bytes, int reserved)
6122 {
6123 	struct btrfs_block_group_cache *cache;
6124 
6125 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6126 	BUG_ON(!cache); /* Logic error */
6127 
6128 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6129 
6130 	btrfs_put_block_group(cache);
6131 	return 0;
6132 }
6133 
6134 /*
6135  * this function must be called within transaction
6136  */
6137 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6138 				    u64 bytenr, u64 num_bytes)
6139 {
6140 	struct btrfs_block_group_cache *cache;
6141 	int ret;
6142 
6143 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6144 	if (!cache)
6145 		return -EINVAL;
6146 
6147 	/*
6148 	 * pull in the free space cache (if any) so that our pin
6149 	 * removes the free space from the cache.  We have load_only set
6150 	 * to one because the slow code to read in the free extents does check
6151 	 * the pinned extents.
6152 	 */
6153 	cache_block_group(cache, 1);
6154 
6155 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6156 
6157 	/* remove us from the free space cache (if we're there at all) */
6158 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6159 	btrfs_put_block_group(cache);
6160 	return ret;
6161 }
6162 
6163 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6164 {
6165 	int ret;
6166 	struct btrfs_block_group_cache *block_group;
6167 	struct btrfs_caching_control *caching_ctl;
6168 
6169 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6170 	if (!block_group)
6171 		return -EINVAL;
6172 
6173 	cache_block_group(block_group, 0);
6174 	caching_ctl = get_caching_control(block_group);
6175 
6176 	if (!caching_ctl) {
6177 		/* Logic error */
6178 		BUG_ON(!block_group_cache_done(block_group));
6179 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6180 	} else {
6181 		mutex_lock(&caching_ctl->mutex);
6182 
6183 		if (start >= caching_ctl->progress) {
6184 			ret = add_excluded_extent(root, start, num_bytes);
6185 		} else if (start + num_bytes <= caching_ctl->progress) {
6186 			ret = btrfs_remove_free_space(block_group,
6187 						      start, num_bytes);
6188 		} else {
6189 			num_bytes = caching_ctl->progress - start;
6190 			ret = btrfs_remove_free_space(block_group,
6191 						      start, num_bytes);
6192 			if (ret)
6193 				goto out_lock;
6194 
6195 			num_bytes = (start + num_bytes) -
6196 				caching_ctl->progress;
6197 			start = caching_ctl->progress;
6198 			ret = add_excluded_extent(root, start, num_bytes);
6199 		}
6200 out_lock:
6201 		mutex_unlock(&caching_ctl->mutex);
6202 		put_caching_control(caching_ctl);
6203 	}
6204 	btrfs_put_block_group(block_group);
6205 	return ret;
6206 }
6207 
6208 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6209 				 struct extent_buffer *eb)
6210 {
6211 	struct btrfs_file_extent_item *item;
6212 	struct btrfs_key key;
6213 	int found_type;
6214 	int i;
6215 
6216 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6217 		return 0;
6218 
6219 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6220 		btrfs_item_key_to_cpu(eb, &key, i);
6221 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6222 			continue;
6223 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6224 		found_type = btrfs_file_extent_type(eb, item);
6225 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6226 			continue;
6227 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6228 			continue;
6229 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6230 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6231 		__exclude_logged_extent(log, key.objectid, key.offset);
6232 	}
6233 
6234 	return 0;
6235 }
6236 
6237 static void
6238 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6239 {
6240 	atomic_inc(&bg->reservations);
6241 }
6242 
6243 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6244 					const u64 start)
6245 {
6246 	struct btrfs_block_group_cache *bg;
6247 
6248 	bg = btrfs_lookup_block_group(fs_info, start);
6249 	ASSERT(bg);
6250 	if (atomic_dec_and_test(&bg->reservations))
6251 		wake_up_atomic_t(&bg->reservations);
6252 	btrfs_put_block_group(bg);
6253 }
6254 
6255 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6256 {
6257 	schedule();
6258 	return 0;
6259 }
6260 
6261 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6262 {
6263 	struct btrfs_space_info *space_info = bg->space_info;
6264 
6265 	ASSERT(bg->ro);
6266 
6267 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6268 		return;
6269 
6270 	/*
6271 	 * Our block group is read only but before we set it to read only,
6272 	 * some task might have had allocated an extent from it already, but it
6273 	 * has not yet created a respective ordered extent (and added it to a
6274 	 * root's list of ordered extents).
6275 	 * Therefore wait for any task currently allocating extents, since the
6276 	 * block group's reservations counter is incremented while a read lock
6277 	 * on the groups' semaphore is held and decremented after releasing
6278 	 * the read access on that semaphore and creating the ordered extent.
6279 	 */
6280 	down_write(&space_info->groups_sem);
6281 	up_write(&space_info->groups_sem);
6282 
6283 	wait_on_atomic_t(&bg->reservations,
6284 			 btrfs_wait_bg_reservations_atomic_t,
6285 			 TASK_UNINTERRUPTIBLE);
6286 }
6287 
6288 /**
6289  * btrfs_update_reserved_bytes - update the block_group and space info counters
6290  * @cache:	The cache we are manipulating
6291  * @num_bytes:	The number of bytes in question
6292  * @reserve:	One of the reservation enums
6293  * @delalloc:   The blocks are allocated for the delalloc write
6294  *
6295  * This is called by the allocator when it reserves space, or by somebody who is
6296  * freeing space that was never actually used on disk.  For example if you
6297  * reserve some space for a new leaf in transaction A and before transaction A
6298  * commits you free that leaf, you call this with reserve set to 0 in order to
6299  * clear the reservation.
6300  *
6301  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6302  * ENOSPC accounting.  For data we handle the reservation through clearing the
6303  * delalloc bits in the io_tree.  We have to do this since we could end up
6304  * allocating less disk space for the amount of data we have reserved in the
6305  * case of compression.
6306  *
6307  * If this is a reservation and the block group has become read only we cannot
6308  * make the reservation and return -EAGAIN, otherwise this function always
6309  * succeeds.
6310  */
6311 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6312 				       u64 num_bytes, int reserve, int delalloc)
6313 {
6314 	struct btrfs_space_info *space_info = cache->space_info;
6315 	int ret = 0;
6316 
6317 	spin_lock(&space_info->lock);
6318 	spin_lock(&cache->lock);
6319 	if (reserve != RESERVE_FREE) {
6320 		if (cache->ro) {
6321 			ret = -EAGAIN;
6322 		} else {
6323 			cache->reserved += num_bytes;
6324 			space_info->bytes_reserved += num_bytes;
6325 			if (reserve == RESERVE_ALLOC) {
6326 				trace_btrfs_space_reservation(cache->fs_info,
6327 						"space_info", space_info->flags,
6328 						num_bytes, 0);
6329 				space_info->bytes_may_use -= num_bytes;
6330 			}
6331 
6332 			if (delalloc)
6333 				cache->delalloc_bytes += num_bytes;
6334 		}
6335 	} else {
6336 		if (cache->ro)
6337 			space_info->bytes_readonly += num_bytes;
6338 		cache->reserved -= num_bytes;
6339 		space_info->bytes_reserved -= num_bytes;
6340 
6341 		if (delalloc)
6342 			cache->delalloc_bytes -= num_bytes;
6343 	}
6344 	spin_unlock(&cache->lock);
6345 	spin_unlock(&space_info->lock);
6346 	return ret;
6347 }
6348 
6349 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6350 				struct btrfs_root *root)
6351 {
6352 	struct btrfs_fs_info *fs_info = root->fs_info;
6353 	struct btrfs_caching_control *next;
6354 	struct btrfs_caching_control *caching_ctl;
6355 	struct btrfs_block_group_cache *cache;
6356 
6357 	down_write(&fs_info->commit_root_sem);
6358 
6359 	list_for_each_entry_safe(caching_ctl, next,
6360 				 &fs_info->caching_block_groups, list) {
6361 		cache = caching_ctl->block_group;
6362 		if (block_group_cache_done(cache)) {
6363 			cache->last_byte_to_unpin = (u64)-1;
6364 			list_del_init(&caching_ctl->list);
6365 			put_caching_control(caching_ctl);
6366 		} else {
6367 			cache->last_byte_to_unpin = caching_ctl->progress;
6368 		}
6369 	}
6370 
6371 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6372 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6373 	else
6374 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6375 
6376 	up_write(&fs_info->commit_root_sem);
6377 
6378 	update_global_block_rsv(fs_info);
6379 }
6380 
6381 /*
6382  * Returns the free cluster for the given space info and sets empty_cluster to
6383  * what it should be based on the mount options.
6384  */
6385 static struct btrfs_free_cluster *
6386 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6387 		   u64 *empty_cluster)
6388 {
6389 	struct btrfs_free_cluster *ret = NULL;
6390 	bool ssd = btrfs_test_opt(root, SSD);
6391 
6392 	*empty_cluster = 0;
6393 	if (btrfs_mixed_space_info(space_info))
6394 		return ret;
6395 
6396 	if (ssd)
6397 		*empty_cluster = SZ_2M;
6398 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6399 		ret = &root->fs_info->meta_alloc_cluster;
6400 		if (!ssd)
6401 			*empty_cluster = SZ_64K;
6402 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6403 		ret = &root->fs_info->data_alloc_cluster;
6404 	}
6405 
6406 	return ret;
6407 }
6408 
6409 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6410 			      const bool return_free_space)
6411 {
6412 	struct btrfs_fs_info *fs_info = root->fs_info;
6413 	struct btrfs_block_group_cache *cache = NULL;
6414 	struct btrfs_space_info *space_info;
6415 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6416 	struct btrfs_free_cluster *cluster = NULL;
6417 	u64 len;
6418 	u64 total_unpinned = 0;
6419 	u64 empty_cluster = 0;
6420 	bool readonly;
6421 
6422 	while (start <= end) {
6423 		readonly = false;
6424 		if (!cache ||
6425 		    start >= cache->key.objectid + cache->key.offset) {
6426 			if (cache)
6427 				btrfs_put_block_group(cache);
6428 			total_unpinned = 0;
6429 			cache = btrfs_lookup_block_group(fs_info, start);
6430 			BUG_ON(!cache); /* Logic error */
6431 
6432 			cluster = fetch_cluster_info(root,
6433 						     cache->space_info,
6434 						     &empty_cluster);
6435 			empty_cluster <<= 1;
6436 		}
6437 
6438 		len = cache->key.objectid + cache->key.offset - start;
6439 		len = min(len, end + 1 - start);
6440 
6441 		if (start < cache->last_byte_to_unpin) {
6442 			len = min(len, cache->last_byte_to_unpin - start);
6443 			if (return_free_space)
6444 				btrfs_add_free_space(cache, start, len);
6445 		}
6446 
6447 		start += len;
6448 		total_unpinned += len;
6449 		space_info = cache->space_info;
6450 
6451 		/*
6452 		 * If this space cluster has been marked as fragmented and we've
6453 		 * unpinned enough in this block group to potentially allow a
6454 		 * cluster to be created inside of it go ahead and clear the
6455 		 * fragmented check.
6456 		 */
6457 		if (cluster && cluster->fragmented &&
6458 		    total_unpinned > empty_cluster) {
6459 			spin_lock(&cluster->lock);
6460 			cluster->fragmented = 0;
6461 			spin_unlock(&cluster->lock);
6462 		}
6463 
6464 		spin_lock(&space_info->lock);
6465 		spin_lock(&cache->lock);
6466 		cache->pinned -= len;
6467 		space_info->bytes_pinned -= len;
6468 		space_info->max_extent_size = 0;
6469 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6470 		if (cache->ro) {
6471 			space_info->bytes_readonly += len;
6472 			readonly = true;
6473 		}
6474 		spin_unlock(&cache->lock);
6475 		if (!readonly && global_rsv->space_info == space_info) {
6476 			spin_lock(&global_rsv->lock);
6477 			if (!global_rsv->full) {
6478 				len = min(len, global_rsv->size -
6479 					  global_rsv->reserved);
6480 				global_rsv->reserved += len;
6481 				space_info->bytes_may_use += len;
6482 				if (global_rsv->reserved >= global_rsv->size)
6483 					global_rsv->full = 1;
6484 			}
6485 			spin_unlock(&global_rsv->lock);
6486 		}
6487 		spin_unlock(&space_info->lock);
6488 	}
6489 
6490 	if (cache)
6491 		btrfs_put_block_group(cache);
6492 	return 0;
6493 }
6494 
6495 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6496 			       struct btrfs_root *root)
6497 {
6498 	struct btrfs_fs_info *fs_info = root->fs_info;
6499 	struct btrfs_block_group_cache *block_group, *tmp;
6500 	struct list_head *deleted_bgs;
6501 	struct extent_io_tree *unpin;
6502 	u64 start;
6503 	u64 end;
6504 	int ret;
6505 
6506 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6507 		unpin = &fs_info->freed_extents[1];
6508 	else
6509 		unpin = &fs_info->freed_extents[0];
6510 
6511 	while (!trans->aborted) {
6512 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6513 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6514 					    EXTENT_DIRTY, NULL);
6515 		if (ret) {
6516 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6517 			break;
6518 		}
6519 
6520 		if (btrfs_test_opt(root, DISCARD))
6521 			ret = btrfs_discard_extent(root, start,
6522 						   end + 1 - start, NULL);
6523 
6524 		clear_extent_dirty(unpin, start, end);
6525 		unpin_extent_range(root, start, end, true);
6526 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6527 		cond_resched();
6528 	}
6529 
6530 	/*
6531 	 * Transaction is finished.  We don't need the lock anymore.  We
6532 	 * do need to clean up the block groups in case of a transaction
6533 	 * abort.
6534 	 */
6535 	deleted_bgs = &trans->transaction->deleted_bgs;
6536 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6537 		u64 trimmed = 0;
6538 
6539 		ret = -EROFS;
6540 		if (!trans->aborted)
6541 			ret = btrfs_discard_extent(root,
6542 						   block_group->key.objectid,
6543 						   block_group->key.offset,
6544 						   &trimmed);
6545 
6546 		list_del_init(&block_group->bg_list);
6547 		btrfs_put_block_group_trimming(block_group);
6548 		btrfs_put_block_group(block_group);
6549 
6550 		if (ret) {
6551 			const char *errstr = btrfs_decode_error(ret);
6552 			btrfs_warn(fs_info,
6553 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6554 				   ret, errstr);
6555 		}
6556 	}
6557 
6558 	return 0;
6559 }
6560 
6561 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6562 			     u64 owner, u64 root_objectid)
6563 {
6564 	struct btrfs_space_info *space_info;
6565 	u64 flags;
6566 
6567 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6568 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6569 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6570 		else
6571 			flags = BTRFS_BLOCK_GROUP_METADATA;
6572 	} else {
6573 		flags = BTRFS_BLOCK_GROUP_DATA;
6574 	}
6575 
6576 	space_info = __find_space_info(fs_info, flags);
6577 	BUG_ON(!space_info); /* Logic bug */
6578 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6579 }
6580 
6581 
6582 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6583 				struct btrfs_root *root,
6584 				struct btrfs_delayed_ref_node *node, u64 parent,
6585 				u64 root_objectid, u64 owner_objectid,
6586 				u64 owner_offset, int refs_to_drop,
6587 				struct btrfs_delayed_extent_op *extent_op)
6588 {
6589 	struct btrfs_key key;
6590 	struct btrfs_path *path;
6591 	struct btrfs_fs_info *info = root->fs_info;
6592 	struct btrfs_root *extent_root = info->extent_root;
6593 	struct extent_buffer *leaf;
6594 	struct btrfs_extent_item *ei;
6595 	struct btrfs_extent_inline_ref *iref;
6596 	int ret;
6597 	int is_data;
6598 	int extent_slot = 0;
6599 	int found_extent = 0;
6600 	int num_to_del = 1;
6601 	u32 item_size;
6602 	u64 refs;
6603 	u64 bytenr = node->bytenr;
6604 	u64 num_bytes = node->num_bytes;
6605 	int last_ref = 0;
6606 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6607 						 SKINNY_METADATA);
6608 
6609 	path = btrfs_alloc_path();
6610 	if (!path)
6611 		return -ENOMEM;
6612 
6613 	path->reada = READA_FORWARD;
6614 	path->leave_spinning = 1;
6615 
6616 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6617 	BUG_ON(!is_data && refs_to_drop != 1);
6618 
6619 	if (is_data)
6620 		skinny_metadata = 0;
6621 
6622 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6623 				    bytenr, num_bytes, parent,
6624 				    root_objectid, owner_objectid,
6625 				    owner_offset);
6626 	if (ret == 0) {
6627 		extent_slot = path->slots[0];
6628 		while (extent_slot >= 0) {
6629 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6630 					      extent_slot);
6631 			if (key.objectid != bytenr)
6632 				break;
6633 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6634 			    key.offset == num_bytes) {
6635 				found_extent = 1;
6636 				break;
6637 			}
6638 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6639 			    key.offset == owner_objectid) {
6640 				found_extent = 1;
6641 				break;
6642 			}
6643 			if (path->slots[0] - extent_slot > 5)
6644 				break;
6645 			extent_slot--;
6646 		}
6647 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6648 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6649 		if (found_extent && item_size < sizeof(*ei))
6650 			found_extent = 0;
6651 #endif
6652 		if (!found_extent) {
6653 			BUG_ON(iref);
6654 			ret = remove_extent_backref(trans, extent_root, path,
6655 						    NULL, refs_to_drop,
6656 						    is_data, &last_ref);
6657 			if (ret) {
6658 				btrfs_abort_transaction(trans, extent_root, ret);
6659 				goto out;
6660 			}
6661 			btrfs_release_path(path);
6662 			path->leave_spinning = 1;
6663 
6664 			key.objectid = bytenr;
6665 			key.type = BTRFS_EXTENT_ITEM_KEY;
6666 			key.offset = num_bytes;
6667 
6668 			if (!is_data && skinny_metadata) {
6669 				key.type = BTRFS_METADATA_ITEM_KEY;
6670 				key.offset = owner_objectid;
6671 			}
6672 
6673 			ret = btrfs_search_slot(trans, extent_root,
6674 						&key, path, -1, 1);
6675 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6676 				/*
6677 				 * Couldn't find our skinny metadata item,
6678 				 * see if we have ye olde extent item.
6679 				 */
6680 				path->slots[0]--;
6681 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6682 						      path->slots[0]);
6683 				if (key.objectid == bytenr &&
6684 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6685 				    key.offset == num_bytes)
6686 					ret = 0;
6687 			}
6688 
6689 			if (ret > 0 && skinny_metadata) {
6690 				skinny_metadata = false;
6691 				key.objectid = bytenr;
6692 				key.type = BTRFS_EXTENT_ITEM_KEY;
6693 				key.offset = num_bytes;
6694 				btrfs_release_path(path);
6695 				ret = btrfs_search_slot(trans, extent_root,
6696 							&key, path, -1, 1);
6697 			}
6698 
6699 			if (ret) {
6700 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6701 					ret, bytenr);
6702 				if (ret > 0)
6703 					btrfs_print_leaf(extent_root,
6704 							 path->nodes[0]);
6705 			}
6706 			if (ret < 0) {
6707 				btrfs_abort_transaction(trans, extent_root, ret);
6708 				goto out;
6709 			}
6710 			extent_slot = path->slots[0];
6711 		}
6712 	} else if (WARN_ON(ret == -ENOENT)) {
6713 		btrfs_print_leaf(extent_root, path->nodes[0]);
6714 		btrfs_err(info,
6715 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6716 			bytenr, parent, root_objectid, owner_objectid,
6717 			owner_offset);
6718 		btrfs_abort_transaction(trans, extent_root, ret);
6719 		goto out;
6720 	} else {
6721 		btrfs_abort_transaction(trans, extent_root, ret);
6722 		goto out;
6723 	}
6724 
6725 	leaf = path->nodes[0];
6726 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6727 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6728 	if (item_size < sizeof(*ei)) {
6729 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6730 		ret = convert_extent_item_v0(trans, extent_root, path,
6731 					     owner_objectid, 0);
6732 		if (ret < 0) {
6733 			btrfs_abort_transaction(trans, extent_root, ret);
6734 			goto out;
6735 		}
6736 
6737 		btrfs_release_path(path);
6738 		path->leave_spinning = 1;
6739 
6740 		key.objectid = bytenr;
6741 		key.type = BTRFS_EXTENT_ITEM_KEY;
6742 		key.offset = num_bytes;
6743 
6744 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6745 					-1, 1);
6746 		if (ret) {
6747 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6748 				ret, bytenr);
6749 			btrfs_print_leaf(extent_root, path->nodes[0]);
6750 		}
6751 		if (ret < 0) {
6752 			btrfs_abort_transaction(trans, extent_root, ret);
6753 			goto out;
6754 		}
6755 
6756 		extent_slot = path->slots[0];
6757 		leaf = path->nodes[0];
6758 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6759 	}
6760 #endif
6761 	BUG_ON(item_size < sizeof(*ei));
6762 	ei = btrfs_item_ptr(leaf, extent_slot,
6763 			    struct btrfs_extent_item);
6764 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6765 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6766 		struct btrfs_tree_block_info *bi;
6767 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6768 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6769 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6770 	}
6771 
6772 	refs = btrfs_extent_refs(leaf, ei);
6773 	if (refs < refs_to_drop) {
6774 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6775 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6776 		ret = -EINVAL;
6777 		btrfs_abort_transaction(trans, extent_root, ret);
6778 		goto out;
6779 	}
6780 	refs -= refs_to_drop;
6781 
6782 	if (refs > 0) {
6783 		if (extent_op)
6784 			__run_delayed_extent_op(extent_op, leaf, ei);
6785 		/*
6786 		 * In the case of inline back ref, reference count will
6787 		 * be updated by remove_extent_backref
6788 		 */
6789 		if (iref) {
6790 			BUG_ON(!found_extent);
6791 		} else {
6792 			btrfs_set_extent_refs(leaf, ei, refs);
6793 			btrfs_mark_buffer_dirty(leaf);
6794 		}
6795 		if (found_extent) {
6796 			ret = remove_extent_backref(trans, extent_root, path,
6797 						    iref, refs_to_drop,
6798 						    is_data, &last_ref);
6799 			if (ret) {
6800 				btrfs_abort_transaction(trans, extent_root, ret);
6801 				goto out;
6802 			}
6803 		}
6804 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6805 				 root_objectid);
6806 	} else {
6807 		if (found_extent) {
6808 			BUG_ON(is_data && refs_to_drop !=
6809 			       extent_data_ref_count(path, iref));
6810 			if (iref) {
6811 				BUG_ON(path->slots[0] != extent_slot);
6812 			} else {
6813 				BUG_ON(path->slots[0] != extent_slot + 1);
6814 				path->slots[0] = extent_slot;
6815 				num_to_del = 2;
6816 			}
6817 		}
6818 
6819 		last_ref = 1;
6820 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6821 				      num_to_del);
6822 		if (ret) {
6823 			btrfs_abort_transaction(trans, extent_root, ret);
6824 			goto out;
6825 		}
6826 		btrfs_release_path(path);
6827 
6828 		if (is_data) {
6829 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6830 			if (ret) {
6831 				btrfs_abort_transaction(trans, extent_root, ret);
6832 				goto out;
6833 			}
6834 		}
6835 
6836 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6837 					     num_bytes);
6838 		if (ret) {
6839 			btrfs_abort_transaction(trans, extent_root, ret);
6840 			goto out;
6841 		}
6842 
6843 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6844 		if (ret) {
6845 			btrfs_abort_transaction(trans, extent_root, ret);
6846 			goto out;
6847 		}
6848 	}
6849 	btrfs_release_path(path);
6850 
6851 out:
6852 	btrfs_free_path(path);
6853 	return ret;
6854 }
6855 
6856 /*
6857  * when we free an block, it is possible (and likely) that we free the last
6858  * delayed ref for that extent as well.  This searches the delayed ref tree for
6859  * a given extent, and if there are no other delayed refs to be processed, it
6860  * removes it from the tree.
6861  */
6862 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6863 				      struct btrfs_root *root, u64 bytenr)
6864 {
6865 	struct btrfs_delayed_ref_head *head;
6866 	struct btrfs_delayed_ref_root *delayed_refs;
6867 	int ret = 0;
6868 
6869 	delayed_refs = &trans->transaction->delayed_refs;
6870 	spin_lock(&delayed_refs->lock);
6871 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6872 	if (!head)
6873 		goto out_delayed_unlock;
6874 
6875 	spin_lock(&head->lock);
6876 	if (!list_empty(&head->ref_list))
6877 		goto out;
6878 
6879 	if (head->extent_op) {
6880 		if (!head->must_insert_reserved)
6881 			goto out;
6882 		btrfs_free_delayed_extent_op(head->extent_op);
6883 		head->extent_op = NULL;
6884 	}
6885 
6886 	/*
6887 	 * waiting for the lock here would deadlock.  If someone else has it
6888 	 * locked they are already in the process of dropping it anyway
6889 	 */
6890 	if (!mutex_trylock(&head->mutex))
6891 		goto out;
6892 
6893 	/*
6894 	 * at this point we have a head with no other entries.  Go
6895 	 * ahead and process it.
6896 	 */
6897 	head->node.in_tree = 0;
6898 	rb_erase(&head->href_node, &delayed_refs->href_root);
6899 
6900 	atomic_dec(&delayed_refs->num_entries);
6901 
6902 	/*
6903 	 * we don't take a ref on the node because we're removing it from the
6904 	 * tree, so we just steal the ref the tree was holding.
6905 	 */
6906 	delayed_refs->num_heads--;
6907 	if (head->processing == 0)
6908 		delayed_refs->num_heads_ready--;
6909 	head->processing = 0;
6910 	spin_unlock(&head->lock);
6911 	spin_unlock(&delayed_refs->lock);
6912 
6913 	BUG_ON(head->extent_op);
6914 	if (head->must_insert_reserved)
6915 		ret = 1;
6916 
6917 	mutex_unlock(&head->mutex);
6918 	btrfs_put_delayed_ref(&head->node);
6919 	return ret;
6920 out:
6921 	spin_unlock(&head->lock);
6922 
6923 out_delayed_unlock:
6924 	spin_unlock(&delayed_refs->lock);
6925 	return 0;
6926 }
6927 
6928 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6929 			   struct btrfs_root *root,
6930 			   struct extent_buffer *buf,
6931 			   u64 parent, int last_ref)
6932 {
6933 	int pin = 1;
6934 	int ret;
6935 
6936 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6937 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6938 					buf->start, buf->len,
6939 					parent, root->root_key.objectid,
6940 					btrfs_header_level(buf),
6941 					BTRFS_DROP_DELAYED_REF, NULL);
6942 		BUG_ON(ret); /* -ENOMEM */
6943 	}
6944 
6945 	if (!last_ref)
6946 		return;
6947 
6948 	if (btrfs_header_generation(buf) == trans->transid) {
6949 		struct btrfs_block_group_cache *cache;
6950 
6951 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6952 			ret = check_ref_cleanup(trans, root, buf->start);
6953 			if (!ret)
6954 				goto out;
6955 		}
6956 
6957 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6958 
6959 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6960 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6961 			btrfs_put_block_group(cache);
6962 			goto out;
6963 		}
6964 
6965 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6966 
6967 		btrfs_add_free_space(cache, buf->start, buf->len);
6968 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6969 		btrfs_put_block_group(cache);
6970 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6971 		pin = 0;
6972 	}
6973 out:
6974 	if (pin)
6975 		add_pinned_bytes(root->fs_info, buf->len,
6976 				 btrfs_header_level(buf),
6977 				 root->root_key.objectid);
6978 
6979 	/*
6980 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6981 	 * anymore.
6982 	 */
6983 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6984 }
6985 
6986 /* Can return -ENOMEM */
6987 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6988 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6989 		      u64 owner, u64 offset)
6990 {
6991 	int ret;
6992 	struct btrfs_fs_info *fs_info = root->fs_info;
6993 
6994 	if (btrfs_test_is_dummy_root(root))
6995 		return 0;
6996 
6997 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6998 
6999 	/*
7000 	 * tree log blocks never actually go into the extent allocation
7001 	 * tree, just update pinning info and exit early.
7002 	 */
7003 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7004 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7005 		/* unlocks the pinned mutex */
7006 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
7007 		ret = 0;
7008 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7009 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7010 					num_bytes,
7011 					parent, root_objectid, (int)owner,
7012 					BTRFS_DROP_DELAYED_REF, NULL);
7013 	} else {
7014 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7015 						num_bytes,
7016 						parent, root_objectid, owner,
7017 						offset, 0,
7018 						BTRFS_DROP_DELAYED_REF, NULL);
7019 	}
7020 	return ret;
7021 }
7022 
7023 /*
7024  * when we wait for progress in the block group caching, its because
7025  * our allocation attempt failed at least once.  So, we must sleep
7026  * and let some progress happen before we try again.
7027  *
7028  * This function will sleep at least once waiting for new free space to
7029  * show up, and then it will check the block group free space numbers
7030  * for our min num_bytes.  Another option is to have it go ahead
7031  * and look in the rbtree for a free extent of a given size, but this
7032  * is a good start.
7033  *
7034  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7035  * any of the information in this block group.
7036  */
7037 static noinline void
7038 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7039 				u64 num_bytes)
7040 {
7041 	struct btrfs_caching_control *caching_ctl;
7042 
7043 	caching_ctl = get_caching_control(cache);
7044 	if (!caching_ctl)
7045 		return;
7046 
7047 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7048 		   (cache->free_space_ctl->free_space >= num_bytes));
7049 
7050 	put_caching_control(caching_ctl);
7051 }
7052 
7053 static noinline int
7054 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7055 {
7056 	struct btrfs_caching_control *caching_ctl;
7057 	int ret = 0;
7058 
7059 	caching_ctl = get_caching_control(cache);
7060 	if (!caching_ctl)
7061 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7062 
7063 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7064 	if (cache->cached == BTRFS_CACHE_ERROR)
7065 		ret = -EIO;
7066 	put_caching_control(caching_ctl);
7067 	return ret;
7068 }
7069 
7070 int __get_raid_index(u64 flags)
7071 {
7072 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7073 		return BTRFS_RAID_RAID10;
7074 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7075 		return BTRFS_RAID_RAID1;
7076 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7077 		return BTRFS_RAID_DUP;
7078 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7079 		return BTRFS_RAID_RAID0;
7080 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7081 		return BTRFS_RAID_RAID5;
7082 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7083 		return BTRFS_RAID_RAID6;
7084 
7085 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7086 }
7087 
7088 int get_block_group_index(struct btrfs_block_group_cache *cache)
7089 {
7090 	return __get_raid_index(cache->flags);
7091 }
7092 
7093 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7094 	[BTRFS_RAID_RAID10]	= "raid10",
7095 	[BTRFS_RAID_RAID1]	= "raid1",
7096 	[BTRFS_RAID_DUP]	= "dup",
7097 	[BTRFS_RAID_RAID0]	= "raid0",
7098 	[BTRFS_RAID_SINGLE]	= "single",
7099 	[BTRFS_RAID_RAID5]	= "raid5",
7100 	[BTRFS_RAID_RAID6]	= "raid6",
7101 };
7102 
7103 static const char *get_raid_name(enum btrfs_raid_types type)
7104 {
7105 	if (type >= BTRFS_NR_RAID_TYPES)
7106 		return NULL;
7107 
7108 	return btrfs_raid_type_names[type];
7109 }
7110 
7111 enum btrfs_loop_type {
7112 	LOOP_CACHING_NOWAIT = 0,
7113 	LOOP_CACHING_WAIT = 1,
7114 	LOOP_ALLOC_CHUNK = 2,
7115 	LOOP_NO_EMPTY_SIZE = 3,
7116 };
7117 
7118 static inline void
7119 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7120 		       int delalloc)
7121 {
7122 	if (delalloc)
7123 		down_read(&cache->data_rwsem);
7124 }
7125 
7126 static inline void
7127 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7128 		       int delalloc)
7129 {
7130 	btrfs_get_block_group(cache);
7131 	if (delalloc)
7132 		down_read(&cache->data_rwsem);
7133 }
7134 
7135 static struct btrfs_block_group_cache *
7136 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7137 		   struct btrfs_free_cluster *cluster,
7138 		   int delalloc)
7139 {
7140 	struct btrfs_block_group_cache *used_bg = NULL;
7141 
7142 	spin_lock(&cluster->refill_lock);
7143 	while (1) {
7144 		used_bg = cluster->block_group;
7145 		if (!used_bg)
7146 			return NULL;
7147 
7148 		if (used_bg == block_group)
7149 			return used_bg;
7150 
7151 		btrfs_get_block_group(used_bg);
7152 
7153 		if (!delalloc)
7154 			return used_bg;
7155 
7156 		if (down_read_trylock(&used_bg->data_rwsem))
7157 			return used_bg;
7158 
7159 		spin_unlock(&cluster->refill_lock);
7160 
7161 		down_read(&used_bg->data_rwsem);
7162 
7163 		spin_lock(&cluster->refill_lock);
7164 		if (used_bg == cluster->block_group)
7165 			return used_bg;
7166 
7167 		up_read(&used_bg->data_rwsem);
7168 		btrfs_put_block_group(used_bg);
7169 	}
7170 }
7171 
7172 static inline void
7173 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7174 			 int delalloc)
7175 {
7176 	if (delalloc)
7177 		up_read(&cache->data_rwsem);
7178 	btrfs_put_block_group(cache);
7179 }
7180 
7181 /*
7182  * walks the btree of allocated extents and find a hole of a given size.
7183  * The key ins is changed to record the hole:
7184  * ins->objectid == start position
7185  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7186  * ins->offset == the size of the hole.
7187  * Any available blocks before search_start are skipped.
7188  *
7189  * If there is no suitable free space, we will record the max size of
7190  * the free space extent currently.
7191  */
7192 static noinline int find_free_extent(struct btrfs_root *orig_root,
7193 				     u64 num_bytes, u64 empty_size,
7194 				     u64 hint_byte, struct btrfs_key *ins,
7195 				     u64 flags, int delalloc)
7196 {
7197 	int ret = 0;
7198 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7199 	struct btrfs_free_cluster *last_ptr = NULL;
7200 	struct btrfs_block_group_cache *block_group = NULL;
7201 	u64 search_start = 0;
7202 	u64 max_extent_size = 0;
7203 	u64 empty_cluster = 0;
7204 	struct btrfs_space_info *space_info;
7205 	int loop = 0;
7206 	int index = __get_raid_index(flags);
7207 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7208 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7209 	bool failed_cluster_refill = false;
7210 	bool failed_alloc = false;
7211 	bool use_cluster = true;
7212 	bool have_caching_bg = false;
7213 	bool orig_have_caching_bg = false;
7214 	bool full_search = false;
7215 
7216 	WARN_ON(num_bytes < root->sectorsize);
7217 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7218 	ins->objectid = 0;
7219 	ins->offset = 0;
7220 
7221 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7222 
7223 	space_info = __find_space_info(root->fs_info, flags);
7224 	if (!space_info) {
7225 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7226 		return -ENOSPC;
7227 	}
7228 
7229 	/*
7230 	 * If our free space is heavily fragmented we may not be able to make
7231 	 * big contiguous allocations, so instead of doing the expensive search
7232 	 * for free space, simply return ENOSPC with our max_extent_size so we
7233 	 * can go ahead and search for a more manageable chunk.
7234 	 *
7235 	 * If our max_extent_size is large enough for our allocation simply
7236 	 * disable clustering since we will likely not be able to find enough
7237 	 * space to create a cluster and induce latency trying.
7238 	 */
7239 	if (unlikely(space_info->max_extent_size)) {
7240 		spin_lock(&space_info->lock);
7241 		if (space_info->max_extent_size &&
7242 		    num_bytes > space_info->max_extent_size) {
7243 			ins->offset = space_info->max_extent_size;
7244 			spin_unlock(&space_info->lock);
7245 			return -ENOSPC;
7246 		} else if (space_info->max_extent_size) {
7247 			use_cluster = false;
7248 		}
7249 		spin_unlock(&space_info->lock);
7250 	}
7251 
7252 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7253 	if (last_ptr) {
7254 		spin_lock(&last_ptr->lock);
7255 		if (last_ptr->block_group)
7256 			hint_byte = last_ptr->window_start;
7257 		if (last_ptr->fragmented) {
7258 			/*
7259 			 * We still set window_start so we can keep track of the
7260 			 * last place we found an allocation to try and save
7261 			 * some time.
7262 			 */
7263 			hint_byte = last_ptr->window_start;
7264 			use_cluster = false;
7265 		}
7266 		spin_unlock(&last_ptr->lock);
7267 	}
7268 
7269 	search_start = max(search_start, first_logical_byte(root, 0));
7270 	search_start = max(search_start, hint_byte);
7271 	if (search_start == hint_byte) {
7272 		block_group = btrfs_lookup_block_group(root->fs_info,
7273 						       search_start);
7274 		/*
7275 		 * we don't want to use the block group if it doesn't match our
7276 		 * allocation bits, or if its not cached.
7277 		 *
7278 		 * However if we are re-searching with an ideal block group
7279 		 * picked out then we don't care that the block group is cached.
7280 		 */
7281 		if (block_group && block_group_bits(block_group, flags) &&
7282 		    block_group->cached != BTRFS_CACHE_NO) {
7283 			down_read(&space_info->groups_sem);
7284 			if (list_empty(&block_group->list) ||
7285 			    block_group->ro) {
7286 				/*
7287 				 * someone is removing this block group,
7288 				 * we can't jump into the have_block_group
7289 				 * target because our list pointers are not
7290 				 * valid
7291 				 */
7292 				btrfs_put_block_group(block_group);
7293 				up_read(&space_info->groups_sem);
7294 			} else {
7295 				index = get_block_group_index(block_group);
7296 				btrfs_lock_block_group(block_group, delalloc);
7297 				goto have_block_group;
7298 			}
7299 		} else if (block_group) {
7300 			btrfs_put_block_group(block_group);
7301 		}
7302 	}
7303 search:
7304 	have_caching_bg = false;
7305 	if (index == 0 || index == __get_raid_index(flags))
7306 		full_search = true;
7307 	down_read(&space_info->groups_sem);
7308 	list_for_each_entry(block_group, &space_info->block_groups[index],
7309 			    list) {
7310 		u64 offset;
7311 		int cached;
7312 
7313 		btrfs_grab_block_group(block_group, delalloc);
7314 		search_start = block_group->key.objectid;
7315 
7316 		/*
7317 		 * this can happen if we end up cycling through all the
7318 		 * raid types, but we want to make sure we only allocate
7319 		 * for the proper type.
7320 		 */
7321 		if (!block_group_bits(block_group, flags)) {
7322 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7323 				BTRFS_BLOCK_GROUP_RAID1 |
7324 				BTRFS_BLOCK_GROUP_RAID5 |
7325 				BTRFS_BLOCK_GROUP_RAID6 |
7326 				BTRFS_BLOCK_GROUP_RAID10;
7327 
7328 			/*
7329 			 * if they asked for extra copies and this block group
7330 			 * doesn't provide them, bail.  This does allow us to
7331 			 * fill raid0 from raid1.
7332 			 */
7333 			if ((flags & extra) && !(block_group->flags & extra))
7334 				goto loop;
7335 		}
7336 
7337 have_block_group:
7338 		cached = block_group_cache_done(block_group);
7339 		if (unlikely(!cached)) {
7340 			have_caching_bg = true;
7341 			ret = cache_block_group(block_group, 0);
7342 			BUG_ON(ret < 0);
7343 			ret = 0;
7344 		}
7345 
7346 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7347 			goto loop;
7348 		if (unlikely(block_group->ro))
7349 			goto loop;
7350 
7351 		/*
7352 		 * Ok we want to try and use the cluster allocator, so
7353 		 * lets look there
7354 		 */
7355 		if (last_ptr && use_cluster) {
7356 			struct btrfs_block_group_cache *used_block_group;
7357 			unsigned long aligned_cluster;
7358 			/*
7359 			 * the refill lock keeps out other
7360 			 * people trying to start a new cluster
7361 			 */
7362 			used_block_group = btrfs_lock_cluster(block_group,
7363 							      last_ptr,
7364 							      delalloc);
7365 			if (!used_block_group)
7366 				goto refill_cluster;
7367 
7368 			if (used_block_group != block_group &&
7369 			    (used_block_group->ro ||
7370 			     !block_group_bits(used_block_group, flags)))
7371 				goto release_cluster;
7372 
7373 			offset = btrfs_alloc_from_cluster(used_block_group,
7374 						last_ptr,
7375 						num_bytes,
7376 						used_block_group->key.objectid,
7377 						&max_extent_size);
7378 			if (offset) {
7379 				/* we have a block, we're done */
7380 				spin_unlock(&last_ptr->refill_lock);
7381 				trace_btrfs_reserve_extent_cluster(root,
7382 						used_block_group,
7383 						search_start, num_bytes);
7384 				if (used_block_group != block_group) {
7385 					btrfs_release_block_group(block_group,
7386 								  delalloc);
7387 					block_group = used_block_group;
7388 				}
7389 				goto checks;
7390 			}
7391 
7392 			WARN_ON(last_ptr->block_group != used_block_group);
7393 release_cluster:
7394 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7395 			 * set up a new clusters, so lets just skip it
7396 			 * and let the allocator find whatever block
7397 			 * it can find.  If we reach this point, we
7398 			 * will have tried the cluster allocator
7399 			 * plenty of times and not have found
7400 			 * anything, so we are likely way too
7401 			 * fragmented for the clustering stuff to find
7402 			 * anything.
7403 			 *
7404 			 * However, if the cluster is taken from the
7405 			 * current block group, release the cluster
7406 			 * first, so that we stand a better chance of
7407 			 * succeeding in the unclustered
7408 			 * allocation.  */
7409 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7410 			    used_block_group != block_group) {
7411 				spin_unlock(&last_ptr->refill_lock);
7412 				btrfs_release_block_group(used_block_group,
7413 							  delalloc);
7414 				goto unclustered_alloc;
7415 			}
7416 
7417 			/*
7418 			 * this cluster didn't work out, free it and
7419 			 * start over
7420 			 */
7421 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7422 
7423 			if (used_block_group != block_group)
7424 				btrfs_release_block_group(used_block_group,
7425 							  delalloc);
7426 refill_cluster:
7427 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7428 				spin_unlock(&last_ptr->refill_lock);
7429 				goto unclustered_alloc;
7430 			}
7431 
7432 			aligned_cluster = max_t(unsigned long,
7433 						empty_cluster + empty_size,
7434 					      block_group->full_stripe_len);
7435 
7436 			/* allocate a cluster in this block group */
7437 			ret = btrfs_find_space_cluster(root, block_group,
7438 						       last_ptr, search_start,
7439 						       num_bytes,
7440 						       aligned_cluster);
7441 			if (ret == 0) {
7442 				/*
7443 				 * now pull our allocation out of this
7444 				 * cluster
7445 				 */
7446 				offset = btrfs_alloc_from_cluster(block_group,
7447 							last_ptr,
7448 							num_bytes,
7449 							search_start,
7450 							&max_extent_size);
7451 				if (offset) {
7452 					/* we found one, proceed */
7453 					spin_unlock(&last_ptr->refill_lock);
7454 					trace_btrfs_reserve_extent_cluster(root,
7455 						block_group, search_start,
7456 						num_bytes);
7457 					goto checks;
7458 				}
7459 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7460 				   && !failed_cluster_refill) {
7461 				spin_unlock(&last_ptr->refill_lock);
7462 
7463 				failed_cluster_refill = true;
7464 				wait_block_group_cache_progress(block_group,
7465 				       num_bytes + empty_cluster + empty_size);
7466 				goto have_block_group;
7467 			}
7468 
7469 			/*
7470 			 * at this point we either didn't find a cluster
7471 			 * or we weren't able to allocate a block from our
7472 			 * cluster.  Free the cluster we've been trying
7473 			 * to use, and go to the next block group
7474 			 */
7475 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7476 			spin_unlock(&last_ptr->refill_lock);
7477 			goto loop;
7478 		}
7479 
7480 unclustered_alloc:
7481 		/*
7482 		 * We are doing an unclustered alloc, set the fragmented flag so
7483 		 * we don't bother trying to setup a cluster again until we get
7484 		 * more space.
7485 		 */
7486 		if (unlikely(last_ptr)) {
7487 			spin_lock(&last_ptr->lock);
7488 			last_ptr->fragmented = 1;
7489 			spin_unlock(&last_ptr->lock);
7490 		}
7491 		spin_lock(&block_group->free_space_ctl->tree_lock);
7492 		if (cached &&
7493 		    block_group->free_space_ctl->free_space <
7494 		    num_bytes + empty_cluster + empty_size) {
7495 			if (block_group->free_space_ctl->free_space >
7496 			    max_extent_size)
7497 				max_extent_size =
7498 					block_group->free_space_ctl->free_space;
7499 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7500 			goto loop;
7501 		}
7502 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7503 
7504 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7505 						    num_bytes, empty_size,
7506 						    &max_extent_size);
7507 		/*
7508 		 * If we didn't find a chunk, and we haven't failed on this
7509 		 * block group before, and this block group is in the middle of
7510 		 * caching and we are ok with waiting, then go ahead and wait
7511 		 * for progress to be made, and set failed_alloc to true.
7512 		 *
7513 		 * If failed_alloc is true then we've already waited on this
7514 		 * block group once and should move on to the next block group.
7515 		 */
7516 		if (!offset && !failed_alloc && !cached &&
7517 		    loop > LOOP_CACHING_NOWAIT) {
7518 			wait_block_group_cache_progress(block_group,
7519 						num_bytes + empty_size);
7520 			failed_alloc = true;
7521 			goto have_block_group;
7522 		} else if (!offset) {
7523 			goto loop;
7524 		}
7525 checks:
7526 		search_start = ALIGN(offset, root->stripesize);
7527 
7528 		/* move on to the next group */
7529 		if (search_start + num_bytes >
7530 		    block_group->key.objectid + block_group->key.offset) {
7531 			btrfs_add_free_space(block_group, offset, num_bytes);
7532 			goto loop;
7533 		}
7534 
7535 		if (offset < search_start)
7536 			btrfs_add_free_space(block_group, offset,
7537 					     search_start - offset);
7538 		BUG_ON(offset > search_start);
7539 
7540 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7541 						  alloc_type, delalloc);
7542 		if (ret == -EAGAIN) {
7543 			btrfs_add_free_space(block_group, offset, num_bytes);
7544 			goto loop;
7545 		}
7546 		btrfs_inc_block_group_reservations(block_group);
7547 
7548 		/* we are all good, lets return */
7549 		ins->objectid = search_start;
7550 		ins->offset = num_bytes;
7551 
7552 		trace_btrfs_reserve_extent(orig_root, block_group,
7553 					   search_start, num_bytes);
7554 		btrfs_release_block_group(block_group, delalloc);
7555 		break;
7556 loop:
7557 		failed_cluster_refill = false;
7558 		failed_alloc = false;
7559 		BUG_ON(index != get_block_group_index(block_group));
7560 		btrfs_release_block_group(block_group, delalloc);
7561 	}
7562 	up_read(&space_info->groups_sem);
7563 
7564 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7565 		&& !orig_have_caching_bg)
7566 		orig_have_caching_bg = true;
7567 
7568 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7569 		goto search;
7570 
7571 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7572 		goto search;
7573 
7574 	/*
7575 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7576 	 *			caching kthreads as we move along
7577 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7578 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7579 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7580 	 *			again
7581 	 */
7582 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7583 		index = 0;
7584 		if (loop == LOOP_CACHING_NOWAIT) {
7585 			/*
7586 			 * We want to skip the LOOP_CACHING_WAIT step if we
7587 			 * don't have any uncached bgs and we've already done a
7588 			 * full search through.
7589 			 */
7590 			if (orig_have_caching_bg || !full_search)
7591 				loop = LOOP_CACHING_WAIT;
7592 			else
7593 				loop = LOOP_ALLOC_CHUNK;
7594 		} else {
7595 			loop++;
7596 		}
7597 
7598 		if (loop == LOOP_ALLOC_CHUNK) {
7599 			struct btrfs_trans_handle *trans;
7600 			int exist = 0;
7601 
7602 			trans = current->journal_info;
7603 			if (trans)
7604 				exist = 1;
7605 			else
7606 				trans = btrfs_join_transaction(root);
7607 
7608 			if (IS_ERR(trans)) {
7609 				ret = PTR_ERR(trans);
7610 				goto out;
7611 			}
7612 
7613 			ret = do_chunk_alloc(trans, root, flags,
7614 					     CHUNK_ALLOC_FORCE);
7615 
7616 			/*
7617 			 * If we can't allocate a new chunk we've already looped
7618 			 * through at least once, move on to the NO_EMPTY_SIZE
7619 			 * case.
7620 			 */
7621 			if (ret == -ENOSPC)
7622 				loop = LOOP_NO_EMPTY_SIZE;
7623 
7624 			/*
7625 			 * Do not bail out on ENOSPC since we
7626 			 * can do more things.
7627 			 */
7628 			if (ret < 0 && ret != -ENOSPC)
7629 				btrfs_abort_transaction(trans,
7630 							root, ret);
7631 			else
7632 				ret = 0;
7633 			if (!exist)
7634 				btrfs_end_transaction(trans, root);
7635 			if (ret)
7636 				goto out;
7637 		}
7638 
7639 		if (loop == LOOP_NO_EMPTY_SIZE) {
7640 			/*
7641 			 * Don't loop again if we already have no empty_size and
7642 			 * no empty_cluster.
7643 			 */
7644 			if (empty_size == 0 &&
7645 			    empty_cluster == 0) {
7646 				ret = -ENOSPC;
7647 				goto out;
7648 			}
7649 			empty_size = 0;
7650 			empty_cluster = 0;
7651 		}
7652 
7653 		goto search;
7654 	} else if (!ins->objectid) {
7655 		ret = -ENOSPC;
7656 	} else if (ins->objectid) {
7657 		if (!use_cluster && last_ptr) {
7658 			spin_lock(&last_ptr->lock);
7659 			last_ptr->window_start = ins->objectid;
7660 			spin_unlock(&last_ptr->lock);
7661 		}
7662 		ret = 0;
7663 	}
7664 out:
7665 	if (ret == -ENOSPC) {
7666 		spin_lock(&space_info->lock);
7667 		space_info->max_extent_size = max_extent_size;
7668 		spin_unlock(&space_info->lock);
7669 		ins->offset = max_extent_size;
7670 	}
7671 	return ret;
7672 }
7673 
7674 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7675 			    int dump_block_groups)
7676 {
7677 	struct btrfs_block_group_cache *cache;
7678 	int index = 0;
7679 
7680 	spin_lock(&info->lock);
7681 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7682 	       info->flags,
7683 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7684 	       info->bytes_reserved - info->bytes_readonly,
7685 	       (info->full) ? "" : "not ");
7686 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7687 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7688 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7689 	       info->bytes_reserved, info->bytes_may_use,
7690 	       info->bytes_readonly);
7691 	spin_unlock(&info->lock);
7692 
7693 	if (!dump_block_groups)
7694 		return;
7695 
7696 	down_read(&info->groups_sem);
7697 again:
7698 	list_for_each_entry(cache, &info->block_groups[index], list) {
7699 		spin_lock(&cache->lock);
7700 		printk(KERN_INFO "BTRFS: "
7701 			   "block group %llu has %llu bytes, "
7702 			   "%llu used %llu pinned %llu reserved %s\n",
7703 		       cache->key.objectid, cache->key.offset,
7704 		       btrfs_block_group_used(&cache->item), cache->pinned,
7705 		       cache->reserved, cache->ro ? "[readonly]" : "");
7706 		btrfs_dump_free_space(cache, bytes);
7707 		spin_unlock(&cache->lock);
7708 	}
7709 	if (++index < BTRFS_NR_RAID_TYPES)
7710 		goto again;
7711 	up_read(&info->groups_sem);
7712 }
7713 
7714 int btrfs_reserve_extent(struct btrfs_root *root,
7715 			 u64 num_bytes, u64 min_alloc_size,
7716 			 u64 empty_size, u64 hint_byte,
7717 			 struct btrfs_key *ins, int is_data, int delalloc)
7718 {
7719 	bool final_tried = num_bytes == min_alloc_size;
7720 	u64 flags;
7721 	int ret;
7722 
7723 	flags = btrfs_get_alloc_profile(root, is_data);
7724 again:
7725 	WARN_ON(num_bytes < root->sectorsize);
7726 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7727 			       flags, delalloc);
7728 	if (!ret && !is_data) {
7729 		btrfs_dec_block_group_reservations(root->fs_info,
7730 						   ins->objectid);
7731 	} else if (ret == -ENOSPC) {
7732 		if (!final_tried && ins->offset) {
7733 			num_bytes = min(num_bytes >> 1, ins->offset);
7734 			num_bytes = round_down(num_bytes, root->sectorsize);
7735 			num_bytes = max(num_bytes, min_alloc_size);
7736 			if (num_bytes == min_alloc_size)
7737 				final_tried = true;
7738 			goto again;
7739 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7740 			struct btrfs_space_info *sinfo;
7741 
7742 			sinfo = __find_space_info(root->fs_info, flags);
7743 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7744 				flags, num_bytes);
7745 			if (sinfo)
7746 				dump_space_info(sinfo, num_bytes, 1);
7747 		}
7748 	}
7749 
7750 	return ret;
7751 }
7752 
7753 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7754 					u64 start, u64 len,
7755 					int pin, int delalloc)
7756 {
7757 	struct btrfs_block_group_cache *cache;
7758 	int ret = 0;
7759 
7760 	cache = btrfs_lookup_block_group(root->fs_info, start);
7761 	if (!cache) {
7762 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7763 			start);
7764 		return -ENOSPC;
7765 	}
7766 
7767 	if (pin)
7768 		pin_down_extent(root, cache, start, len, 1);
7769 	else {
7770 		if (btrfs_test_opt(root, DISCARD))
7771 			ret = btrfs_discard_extent(root, start, len, NULL);
7772 		btrfs_add_free_space(cache, start, len);
7773 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7774 	}
7775 
7776 	btrfs_put_block_group(cache);
7777 
7778 	trace_btrfs_reserved_extent_free(root, start, len);
7779 
7780 	return ret;
7781 }
7782 
7783 int btrfs_free_reserved_extent(struct btrfs_root *root,
7784 			       u64 start, u64 len, int delalloc)
7785 {
7786 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7787 }
7788 
7789 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7790 				       u64 start, u64 len)
7791 {
7792 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7793 }
7794 
7795 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7796 				      struct btrfs_root *root,
7797 				      u64 parent, u64 root_objectid,
7798 				      u64 flags, u64 owner, u64 offset,
7799 				      struct btrfs_key *ins, int ref_mod)
7800 {
7801 	int ret;
7802 	struct btrfs_fs_info *fs_info = root->fs_info;
7803 	struct btrfs_extent_item *extent_item;
7804 	struct btrfs_extent_inline_ref *iref;
7805 	struct btrfs_path *path;
7806 	struct extent_buffer *leaf;
7807 	int type;
7808 	u32 size;
7809 
7810 	if (parent > 0)
7811 		type = BTRFS_SHARED_DATA_REF_KEY;
7812 	else
7813 		type = BTRFS_EXTENT_DATA_REF_KEY;
7814 
7815 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7816 
7817 	path = btrfs_alloc_path();
7818 	if (!path)
7819 		return -ENOMEM;
7820 
7821 	path->leave_spinning = 1;
7822 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7823 				      ins, size);
7824 	if (ret) {
7825 		btrfs_free_path(path);
7826 		return ret;
7827 	}
7828 
7829 	leaf = path->nodes[0];
7830 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7831 				     struct btrfs_extent_item);
7832 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7833 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7834 	btrfs_set_extent_flags(leaf, extent_item,
7835 			       flags | BTRFS_EXTENT_FLAG_DATA);
7836 
7837 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7838 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7839 	if (parent > 0) {
7840 		struct btrfs_shared_data_ref *ref;
7841 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7842 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7843 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7844 	} else {
7845 		struct btrfs_extent_data_ref *ref;
7846 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7847 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7848 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7849 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7850 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7851 	}
7852 
7853 	btrfs_mark_buffer_dirty(path->nodes[0]);
7854 	btrfs_free_path(path);
7855 
7856 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7857 					  ins->offset);
7858 	if (ret)
7859 		return ret;
7860 
7861 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7862 	if (ret) { /* -ENOENT, logic error */
7863 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7864 			ins->objectid, ins->offset);
7865 		BUG();
7866 	}
7867 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7868 	return ret;
7869 }
7870 
7871 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7872 				     struct btrfs_root *root,
7873 				     u64 parent, u64 root_objectid,
7874 				     u64 flags, struct btrfs_disk_key *key,
7875 				     int level, struct btrfs_key *ins)
7876 {
7877 	int ret;
7878 	struct btrfs_fs_info *fs_info = root->fs_info;
7879 	struct btrfs_extent_item *extent_item;
7880 	struct btrfs_tree_block_info *block_info;
7881 	struct btrfs_extent_inline_ref *iref;
7882 	struct btrfs_path *path;
7883 	struct extent_buffer *leaf;
7884 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7885 	u64 num_bytes = ins->offset;
7886 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7887 						 SKINNY_METADATA);
7888 
7889 	if (!skinny_metadata)
7890 		size += sizeof(*block_info);
7891 
7892 	path = btrfs_alloc_path();
7893 	if (!path) {
7894 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7895 						   root->nodesize);
7896 		return -ENOMEM;
7897 	}
7898 
7899 	path->leave_spinning = 1;
7900 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7901 				      ins, size);
7902 	if (ret) {
7903 		btrfs_free_path(path);
7904 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7905 						   root->nodesize);
7906 		return ret;
7907 	}
7908 
7909 	leaf = path->nodes[0];
7910 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7911 				     struct btrfs_extent_item);
7912 	btrfs_set_extent_refs(leaf, extent_item, 1);
7913 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7914 	btrfs_set_extent_flags(leaf, extent_item,
7915 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7916 
7917 	if (skinny_metadata) {
7918 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7919 		num_bytes = root->nodesize;
7920 	} else {
7921 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7922 		btrfs_set_tree_block_key(leaf, block_info, key);
7923 		btrfs_set_tree_block_level(leaf, block_info, level);
7924 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7925 	}
7926 
7927 	if (parent > 0) {
7928 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7929 		btrfs_set_extent_inline_ref_type(leaf, iref,
7930 						 BTRFS_SHARED_BLOCK_REF_KEY);
7931 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7932 	} else {
7933 		btrfs_set_extent_inline_ref_type(leaf, iref,
7934 						 BTRFS_TREE_BLOCK_REF_KEY);
7935 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7936 	}
7937 
7938 	btrfs_mark_buffer_dirty(leaf);
7939 	btrfs_free_path(path);
7940 
7941 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7942 					  num_bytes);
7943 	if (ret)
7944 		return ret;
7945 
7946 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7947 				 1);
7948 	if (ret) { /* -ENOENT, logic error */
7949 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7950 			ins->objectid, ins->offset);
7951 		BUG();
7952 	}
7953 
7954 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7955 	return ret;
7956 }
7957 
7958 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7959 				     struct btrfs_root *root,
7960 				     u64 root_objectid, u64 owner,
7961 				     u64 offset, u64 ram_bytes,
7962 				     struct btrfs_key *ins)
7963 {
7964 	int ret;
7965 
7966 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7967 
7968 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7969 					 ins->offset, 0,
7970 					 root_objectid, owner, offset,
7971 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7972 					 NULL);
7973 	return ret;
7974 }
7975 
7976 /*
7977  * this is used by the tree logging recovery code.  It records that
7978  * an extent has been allocated and makes sure to clear the free
7979  * space cache bits as well
7980  */
7981 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7982 				   struct btrfs_root *root,
7983 				   u64 root_objectid, u64 owner, u64 offset,
7984 				   struct btrfs_key *ins)
7985 {
7986 	int ret;
7987 	struct btrfs_block_group_cache *block_group;
7988 
7989 	/*
7990 	 * Mixed block groups will exclude before processing the log so we only
7991 	 * need to do the exclude dance if this fs isn't mixed.
7992 	 */
7993 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7994 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7995 		if (ret)
7996 			return ret;
7997 	}
7998 
7999 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8000 	if (!block_group)
8001 		return -EINVAL;
8002 
8003 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8004 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
8005 	BUG_ON(ret); /* logic error */
8006 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8007 					 0, owner, offset, ins, 1);
8008 	btrfs_put_block_group(block_group);
8009 	return ret;
8010 }
8011 
8012 static struct extent_buffer *
8013 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8014 		      u64 bytenr, int level)
8015 {
8016 	struct extent_buffer *buf;
8017 
8018 	buf = btrfs_find_create_tree_block(root, bytenr);
8019 	if (!buf)
8020 		return ERR_PTR(-ENOMEM);
8021 	btrfs_set_header_generation(buf, trans->transid);
8022 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8023 	btrfs_tree_lock(buf);
8024 	clean_tree_block(trans, root->fs_info, buf);
8025 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8026 
8027 	btrfs_set_lock_blocking(buf);
8028 	set_extent_buffer_uptodate(buf);
8029 
8030 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8031 		buf->log_index = root->log_transid % 2;
8032 		/*
8033 		 * we allow two log transactions at a time, use different
8034 		 * EXENT bit to differentiate dirty pages.
8035 		 */
8036 		if (buf->log_index == 0)
8037 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8038 					buf->start + buf->len - 1, GFP_NOFS);
8039 		else
8040 			set_extent_new(&root->dirty_log_pages, buf->start,
8041 					buf->start + buf->len - 1);
8042 	} else {
8043 		buf->log_index = -1;
8044 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8045 			 buf->start + buf->len - 1, GFP_NOFS);
8046 	}
8047 	trans->blocks_used++;
8048 	/* this returns a buffer locked for blocking */
8049 	return buf;
8050 }
8051 
8052 static struct btrfs_block_rsv *
8053 use_block_rsv(struct btrfs_trans_handle *trans,
8054 	      struct btrfs_root *root, u32 blocksize)
8055 {
8056 	struct btrfs_block_rsv *block_rsv;
8057 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8058 	int ret;
8059 	bool global_updated = false;
8060 
8061 	block_rsv = get_block_rsv(trans, root);
8062 
8063 	if (unlikely(block_rsv->size == 0))
8064 		goto try_reserve;
8065 again:
8066 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8067 	if (!ret)
8068 		return block_rsv;
8069 
8070 	if (block_rsv->failfast)
8071 		return ERR_PTR(ret);
8072 
8073 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8074 		global_updated = true;
8075 		update_global_block_rsv(root->fs_info);
8076 		goto again;
8077 	}
8078 
8079 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8080 		static DEFINE_RATELIMIT_STATE(_rs,
8081 				DEFAULT_RATELIMIT_INTERVAL * 10,
8082 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8083 		if (__ratelimit(&_rs))
8084 			WARN(1, KERN_DEBUG
8085 				"BTRFS: block rsv returned %d\n", ret);
8086 	}
8087 try_reserve:
8088 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8089 				     BTRFS_RESERVE_NO_FLUSH);
8090 	if (!ret)
8091 		return block_rsv;
8092 	/*
8093 	 * If we couldn't reserve metadata bytes try and use some from
8094 	 * the global reserve if its space type is the same as the global
8095 	 * reservation.
8096 	 */
8097 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8098 	    block_rsv->space_info == global_rsv->space_info) {
8099 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8100 		if (!ret)
8101 			return global_rsv;
8102 	}
8103 	return ERR_PTR(ret);
8104 }
8105 
8106 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8107 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8108 {
8109 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8110 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8111 }
8112 
8113 /*
8114  * finds a free extent and does all the dirty work required for allocation
8115  * returns the tree buffer or an ERR_PTR on error.
8116  */
8117 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8118 					struct btrfs_root *root,
8119 					u64 parent, u64 root_objectid,
8120 					struct btrfs_disk_key *key, int level,
8121 					u64 hint, u64 empty_size)
8122 {
8123 	struct btrfs_key ins;
8124 	struct btrfs_block_rsv *block_rsv;
8125 	struct extent_buffer *buf;
8126 	struct btrfs_delayed_extent_op *extent_op;
8127 	u64 flags = 0;
8128 	int ret;
8129 	u32 blocksize = root->nodesize;
8130 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8131 						 SKINNY_METADATA);
8132 
8133 	if (btrfs_test_is_dummy_root(root)) {
8134 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8135 					    level);
8136 		if (!IS_ERR(buf))
8137 			root->alloc_bytenr += blocksize;
8138 		return buf;
8139 	}
8140 
8141 	block_rsv = use_block_rsv(trans, root, blocksize);
8142 	if (IS_ERR(block_rsv))
8143 		return ERR_CAST(block_rsv);
8144 
8145 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
8146 				   empty_size, hint, &ins, 0, 0);
8147 	if (ret)
8148 		goto out_unuse;
8149 
8150 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8151 	if (IS_ERR(buf)) {
8152 		ret = PTR_ERR(buf);
8153 		goto out_free_reserved;
8154 	}
8155 
8156 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8157 		if (parent == 0)
8158 			parent = ins.objectid;
8159 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8160 	} else
8161 		BUG_ON(parent > 0);
8162 
8163 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8164 		extent_op = btrfs_alloc_delayed_extent_op();
8165 		if (!extent_op) {
8166 			ret = -ENOMEM;
8167 			goto out_free_buf;
8168 		}
8169 		if (key)
8170 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8171 		else
8172 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8173 		extent_op->flags_to_set = flags;
8174 		extent_op->update_key = skinny_metadata ? false : true;
8175 		extent_op->update_flags = true;
8176 		extent_op->is_data = false;
8177 		extent_op->level = level;
8178 
8179 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8180 						 ins.objectid, ins.offset,
8181 						 parent, root_objectid, level,
8182 						 BTRFS_ADD_DELAYED_EXTENT,
8183 						 extent_op);
8184 		if (ret)
8185 			goto out_free_delayed;
8186 	}
8187 	return buf;
8188 
8189 out_free_delayed:
8190 	btrfs_free_delayed_extent_op(extent_op);
8191 out_free_buf:
8192 	free_extent_buffer(buf);
8193 out_free_reserved:
8194 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8195 out_unuse:
8196 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8197 	return ERR_PTR(ret);
8198 }
8199 
8200 struct walk_control {
8201 	u64 refs[BTRFS_MAX_LEVEL];
8202 	u64 flags[BTRFS_MAX_LEVEL];
8203 	struct btrfs_key update_progress;
8204 	int stage;
8205 	int level;
8206 	int shared_level;
8207 	int update_ref;
8208 	int keep_locks;
8209 	int reada_slot;
8210 	int reada_count;
8211 	int for_reloc;
8212 };
8213 
8214 #define DROP_REFERENCE	1
8215 #define UPDATE_BACKREF	2
8216 
8217 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8218 				     struct btrfs_root *root,
8219 				     struct walk_control *wc,
8220 				     struct btrfs_path *path)
8221 {
8222 	u64 bytenr;
8223 	u64 generation;
8224 	u64 refs;
8225 	u64 flags;
8226 	u32 nritems;
8227 	u32 blocksize;
8228 	struct btrfs_key key;
8229 	struct extent_buffer *eb;
8230 	int ret;
8231 	int slot;
8232 	int nread = 0;
8233 
8234 	if (path->slots[wc->level] < wc->reada_slot) {
8235 		wc->reada_count = wc->reada_count * 2 / 3;
8236 		wc->reada_count = max(wc->reada_count, 2);
8237 	} else {
8238 		wc->reada_count = wc->reada_count * 3 / 2;
8239 		wc->reada_count = min_t(int, wc->reada_count,
8240 					BTRFS_NODEPTRS_PER_BLOCK(root));
8241 	}
8242 
8243 	eb = path->nodes[wc->level];
8244 	nritems = btrfs_header_nritems(eb);
8245 	blocksize = root->nodesize;
8246 
8247 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8248 		if (nread >= wc->reada_count)
8249 			break;
8250 
8251 		cond_resched();
8252 		bytenr = btrfs_node_blockptr(eb, slot);
8253 		generation = btrfs_node_ptr_generation(eb, slot);
8254 
8255 		if (slot == path->slots[wc->level])
8256 			goto reada;
8257 
8258 		if (wc->stage == UPDATE_BACKREF &&
8259 		    generation <= root->root_key.offset)
8260 			continue;
8261 
8262 		/* We don't lock the tree block, it's OK to be racy here */
8263 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8264 					       wc->level - 1, 1, &refs,
8265 					       &flags);
8266 		/* We don't care about errors in readahead. */
8267 		if (ret < 0)
8268 			continue;
8269 		BUG_ON(refs == 0);
8270 
8271 		if (wc->stage == DROP_REFERENCE) {
8272 			if (refs == 1)
8273 				goto reada;
8274 
8275 			if (wc->level == 1 &&
8276 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8277 				continue;
8278 			if (!wc->update_ref ||
8279 			    generation <= root->root_key.offset)
8280 				continue;
8281 			btrfs_node_key_to_cpu(eb, &key, slot);
8282 			ret = btrfs_comp_cpu_keys(&key,
8283 						  &wc->update_progress);
8284 			if (ret < 0)
8285 				continue;
8286 		} else {
8287 			if (wc->level == 1 &&
8288 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8289 				continue;
8290 		}
8291 reada:
8292 		readahead_tree_block(root, bytenr);
8293 		nread++;
8294 	}
8295 	wc->reada_slot = slot;
8296 }
8297 
8298 /*
8299  * These may not be seen by the usual inc/dec ref code so we have to
8300  * add them here.
8301  */
8302 static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8303 				     struct btrfs_root *root, u64 bytenr,
8304 				     u64 num_bytes)
8305 {
8306 	struct btrfs_qgroup_extent_record *qrecord;
8307 	struct btrfs_delayed_ref_root *delayed_refs;
8308 
8309 	qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8310 	if (!qrecord)
8311 		return -ENOMEM;
8312 
8313 	qrecord->bytenr = bytenr;
8314 	qrecord->num_bytes = num_bytes;
8315 	qrecord->old_roots = NULL;
8316 
8317 	delayed_refs = &trans->transaction->delayed_refs;
8318 	spin_lock(&delayed_refs->lock);
8319 	if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8320 		kfree(qrecord);
8321 	spin_unlock(&delayed_refs->lock);
8322 
8323 	return 0;
8324 }
8325 
8326 static int account_leaf_items(struct btrfs_trans_handle *trans,
8327 			      struct btrfs_root *root,
8328 			      struct extent_buffer *eb)
8329 {
8330 	int nr = btrfs_header_nritems(eb);
8331 	int i, extent_type, ret;
8332 	struct btrfs_key key;
8333 	struct btrfs_file_extent_item *fi;
8334 	u64 bytenr, num_bytes;
8335 
8336 	/* We can be called directly from walk_up_proc() */
8337 	if (!root->fs_info->quota_enabled)
8338 		return 0;
8339 
8340 	for (i = 0; i < nr; i++) {
8341 		btrfs_item_key_to_cpu(eb, &key, i);
8342 
8343 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8344 			continue;
8345 
8346 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8347 		/* filter out non qgroup-accountable extents  */
8348 		extent_type = btrfs_file_extent_type(eb, fi);
8349 
8350 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8351 			continue;
8352 
8353 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8354 		if (!bytenr)
8355 			continue;
8356 
8357 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8358 
8359 		ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8360 		if (ret)
8361 			return ret;
8362 	}
8363 	return 0;
8364 }
8365 
8366 /*
8367  * Walk up the tree from the bottom, freeing leaves and any interior
8368  * nodes which have had all slots visited. If a node (leaf or
8369  * interior) is freed, the node above it will have it's slot
8370  * incremented. The root node will never be freed.
8371  *
8372  * At the end of this function, we should have a path which has all
8373  * slots incremented to the next position for a search. If we need to
8374  * read a new node it will be NULL and the node above it will have the
8375  * correct slot selected for a later read.
8376  *
8377  * If we increment the root nodes slot counter past the number of
8378  * elements, 1 is returned to signal completion of the search.
8379  */
8380 static int adjust_slots_upwards(struct btrfs_root *root,
8381 				struct btrfs_path *path, int root_level)
8382 {
8383 	int level = 0;
8384 	int nr, slot;
8385 	struct extent_buffer *eb;
8386 
8387 	if (root_level == 0)
8388 		return 1;
8389 
8390 	while (level <= root_level) {
8391 		eb = path->nodes[level];
8392 		nr = btrfs_header_nritems(eb);
8393 		path->slots[level]++;
8394 		slot = path->slots[level];
8395 		if (slot >= nr || level == 0) {
8396 			/*
8397 			 * Don't free the root -  we will detect this
8398 			 * condition after our loop and return a
8399 			 * positive value for caller to stop walking the tree.
8400 			 */
8401 			if (level != root_level) {
8402 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8403 				path->locks[level] = 0;
8404 
8405 				free_extent_buffer(eb);
8406 				path->nodes[level] = NULL;
8407 				path->slots[level] = 0;
8408 			}
8409 		} else {
8410 			/*
8411 			 * We have a valid slot to walk back down
8412 			 * from. Stop here so caller can process these
8413 			 * new nodes.
8414 			 */
8415 			break;
8416 		}
8417 
8418 		level++;
8419 	}
8420 
8421 	eb = path->nodes[root_level];
8422 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8423 		return 1;
8424 
8425 	return 0;
8426 }
8427 
8428 /*
8429  * root_eb is the subtree root and is locked before this function is called.
8430  */
8431 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8432 				  struct btrfs_root *root,
8433 				  struct extent_buffer *root_eb,
8434 				  u64 root_gen,
8435 				  int root_level)
8436 {
8437 	int ret = 0;
8438 	int level;
8439 	struct extent_buffer *eb = root_eb;
8440 	struct btrfs_path *path = NULL;
8441 
8442 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8443 	BUG_ON(root_eb == NULL);
8444 
8445 	if (!root->fs_info->quota_enabled)
8446 		return 0;
8447 
8448 	if (!extent_buffer_uptodate(root_eb)) {
8449 		ret = btrfs_read_buffer(root_eb, root_gen);
8450 		if (ret)
8451 			goto out;
8452 	}
8453 
8454 	if (root_level == 0) {
8455 		ret = account_leaf_items(trans, root, root_eb);
8456 		goto out;
8457 	}
8458 
8459 	path = btrfs_alloc_path();
8460 	if (!path)
8461 		return -ENOMEM;
8462 
8463 	/*
8464 	 * Walk down the tree.  Missing extent blocks are filled in as
8465 	 * we go. Metadata is accounted every time we read a new
8466 	 * extent block.
8467 	 *
8468 	 * When we reach a leaf, we account for file extent items in it,
8469 	 * walk back up the tree (adjusting slot pointers as we go)
8470 	 * and restart the search process.
8471 	 */
8472 	extent_buffer_get(root_eb); /* For path */
8473 	path->nodes[root_level] = root_eb;
8474 	path->slots[root_level] = 0;
8475 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8476 walk_down:
8477 	level = root_level;
8478 	while (level >= 0) {
8479 		if (path->nodes[level] == NULL) {
8480 			int parent_slot;
8481 			u64 child_gen;
8482 			u64 child_bytenr;
8483 
8484 			/* We need to get child blockptr/gen from
8485 			 * parent before we can read it. */
8486 			eb = path->nodes[level + 1];
8487 			parent_slot = path->slots[level + 1];
8488 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8489 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8490 
8491 			eb = read_tree_block(root, child_bytenr, child_gen);
8492 			if (IS_ERR(eb)) {
8493 				ret = PTR_ERR(eb);
8494 				goto out;
8495 			} else if (!extent_buffer_uptodate(eb)) {
8496 				free_extent_buffer(eb);
8497 				ret = -EIO;
8498 				goto out;
8499 			}
8500 
8501 			path->nodes[level] = eb;
8502 			path->slots[level] = 0;
8503 
8504 			btrfs_tree_read_lock(eb);
8505 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8506 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8507 
8508 			ret = record_one_subtree_extent(trans, root, child_bytenr,
8509 							root->nodesize);
8510 			if (ret)
8511 				goto out;
8512 		}
8513 
8514 		if (level == 0) {
8515 			ret = account_leaf_items(trans, root, path->nodes[level]);
8516 			if (ret)
8517 				goto out;
8518 
8519 			/* Nonzero return here means we completed our search */
8520 			ret = adjust_slots_upwards(root, path, root_level);
8521 			if (ret)
8522 				break;
8523 
8524 			/* Restart search with new slots */
8525 			goto walk_down;
8526 		}
8527 
8528 		level--;
8529 	}
8530 
8531 	ret = 0;
8532 out:
8533 	btrfs_free_path(path);
8534 
8535 	return ret;
8536 }
8537 
8538 /*
8539  * helper to process tree block while walking down the tree.
8540  *
8541  * when wc->stage == UPDATE_BACKREF, this function updates
8542  * back refs for pointers in the block.
8543  *
8544  * NOTE: return value 1 means we should stop walking down.
8545  */
8546 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8547 				   struct btrfs_root *root,
8548 				   struct btrfs_path *path,
8549 				   struct walk_control *wc, int lookup_info)
8550 {
8551 	int level = wc->level;
8552 	struct extent_buffer *eb = path->nodes[level];
8553 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8554 	int ret;
8555 
8556 	if (wc->stage == UPDATE_BACKREF &&
8557 	    btrfs_header_owner(eb) != root->root_key.objectid)
8558 		return 1;
8559 
8560 	/*
8561 	 * when reference count of tree block is 1, it won't increase
8562 	 * again. once full backref flag is set, we never clear it.
8563 	 */
8564 	if (lookup_info &&
8565 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8566 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8567 		BUG_ON(!path->locks[level]);
8568 		ret = btrfs_lookup_extent_info(trans, root,
8569 					       eb->start, level, 1,
8570 					       &wc->refs[level],
8571 					       &wc->flags[level]);
8572 		BUG_ON(ret == -ENOMEM);
8573 		if (ret)
8574 			return ret;
8575 		BUG_ON(wc->refs[level] == 0);
8576 	}
8577 
8578 	if (wc->stage == DROP_REFERENCE) {
8579 		if (wc->refs[level] > 1)
8580 			return 1;
8581 
8582 		if (path->locks[level] && !wc->keep_locks) {
8583 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8584 			path->locks[level] = 0;
8585 		}
8586 		return 0;
8587 	}
8588 
8589 	/* wc->stage == UPDATE_BACKREF */
8590 	if (!(wc->flags[level] & flag)) {
8591 		BUG_ON(!path->locks[level]);
8592 		ret = btrfs_inc_ref(trans, root, eb, 1);
8593 		BUG_ON(ret); /* -ENOMEM */
8594 		ret = btrfs_dec_ref(trans, root, eb, 0);
8595 		BUG_ON(ret); /* -ENOMEM */
8596 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8597 						  eb->len, flag,
8598 						  btrfs_header_level(eb), 0);
8599 		BUG_ON(ret); /* -ENOMEM */
8600 		wc->flags[level] |= flag;
8601 	}
8602 
8603 	/*
8604 	 * the block is shared by multiple trees, so it's not good to
8605 	 * keep the tree lock
8606 	 */
8607 	if (path->locks[level] && level > 0) {
8608 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8609 		path->locks[level] = 0;
8610 	}
8611 	return 0;
8612 }
8613 
8614 /*
8615  * helper to process tree block pointer.
8616  *
8617  * when wc->stage == DROP_REFERENCE, this function checks
8618  * reference count of the block pointed to. if the block
8619  * is shared and we need update back refs for the subtree
8620  * rooted at the block, this function changes wc->stage to
8621  * UPDATE_BACKREF. if the block is shared and there is no
8622  * need to update back, this function drops the reference
8623  * to the block.
8624  *
8625  * NOTE: return value 1 means we should stop walking down.
8626  */
8627 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8628 				 struct btrfs_root *root,
8629 				 struct btrfs_path *path,
8630 				 struct walk_control *wc, int *lookup_info)
8631 {
8632 	u64 bytenr;
8633 	u64 generation;
8634 	u64 parent;
8635 	u32 blocksize;
8636 	struct btrfs_key key;
8637 	struct extent_buffer *next;
8638 	int level = wc->level;
8639 	int reada = 0;
8640 	int ret = 0;
8641 	bool need_account = false;
8642 
8643 	generation = btrfs_node_ptr_generation(path->nodes[level],
8644 					       path->slots[level]);
8645 	/*
8646 	 * if the lower level block was created before the snapshot
8647 	 * was created, we know there is no need to update back refs
8648 	 * for the subtree
8649 	 */
8650 	if (wc->stage == UPDATE_BACKREF &&
8651 	    generation <= root->root_key.offset) {
8652 		*lookup_info = 1;
8653 		return 1;
8654 	}
8655 
8656 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8657 	blocksize = root->nodesize;
8658 
8659 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8660 	if (!next) {
8661 		next = btrfs_find_create_tree_block(root, bytenr);
8662 		if (!next)
8663 			return -ENOMEM;
8664 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8665 					       level - 1);
8666 		reada = 1;
8667 	}
8668 	btrfs_tree_lock(next);
8669 	btrfs_set_lock_blocking(next);
8670 
8671 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8672 				       &wc->refs[level - 1],
8673 				       &wc->flags[level - 1]);
8674 	if (ret < 0) {
8675 		btrfs_tree_unlock(next);
8676 		return ret;
8677 	}
8678 
8679 	if (unlikely(wc->refs[level - 1] == 0)) {
8680 		btrfs_err(root->fs_info, "Missing references.");
8681 		BUG();
8682 	}
8683 	*lookup_info = 0;
8684 
8685 	if (wc->stage == DROP_REFERENCE) {
8686 		if (wc->refs[level - 1] > 1) {
8687 			need_account = true;
8688 			if (level == 1 &&
8689 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8690 				goto skip;
8691 
8692 			if (!wc->update_ref ||
8693 			    generation <= root->root_key.offset)
8694 				goto skip;
8695 
8696 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8697 					      path->slots[level]);
8698 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8699 			if (ret < 0)
8700 				goto skip;
8701 
8702 			wc->stage = UPDATE_BACKREF;
8703 			wc->shared_level = level - 1;
8704 		}
8705 	} else {
8706 		if (level == 1 &&
8707 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8708 			goto skip;
8709 	}
8710 
8711 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8712 		btrfs_tree_unlock(next);
8713 		free_extent_buffer(next);
8714 		next = NULL;
8715 		*lookup_info = 1;
8716 	}
8717 
8718 	if (!next) {
8719 		if (reada && level == 1)
8720 			reada_walk_down(trans, root, wc, path);
8721 		next = read_tree_block(root, bytenr, generation);
8722 		if (IS_ERR(next)) {
8723 			return PTR_ERR(next);
8724 		} else if (!extent_buffer_uptodate(next)) {
8725 			free_extent_buffer(next);
8726 			return -EIO;
8727 		}
8728 		btrfs_tree_lock(next);
8729 		btrfs_set_lock_blocking(next);
8730 	}
8731 
8732 	level--;
8733 	BUG_ON(level != btrfs_header_level(next));
8734 	path->nodes[level] = next;
8735 	path->slots[level] = 0;
8736 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8737 	wc->level = level;
8738 	if (wc->level == 1)
8739 		wc->reada_slot = 0;
8740 	return 0;
8741 skip:
8742 	wc->refs[level - 1] = 0;
8743 	wc->flags[level - 1] = 0;
8744 	if (wc->stage == DROP_REFERENCE) {
8745 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8746 			parent = path->nodes[level]->start;
8747 		} else {
8748 			BUG_ON(root->root_key.objectid !=
8749 			       btrfs_header_owner(path->nodes[level]));
8750 			parent = 0;
8751 		}
8752 
8753 		if (need_account) {
8754 			ret = account_shared_subtree(trans, root, next,
8755 						     generation, level - 1);
8756 			if (ret) {
8757 				btrfs_err_rl(root->fs_info,
8758 					"Error "
8759 					"%d accounting shared subtree. Quota "
8760 					"is out of sync, rescan required.",
8761 					ret);
8762 			}
8763 		}
8764 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8765 				root->root_key.objectid, level - 1, 0);
8766 		BUG_ON(ret); /* -ENOMEM */
8767 	}
8768 	btrfs_tree_unlock(next);
8769 	free_extent_buffer(next);
8770 	*lookup_info = 1;
8771 	return 1;
8772 }
8773 
8774 /*
8775  * helper to process tree block while walking up the tree.
8776  *
8777  * when wc->stage == DROP_REFERENCE, this function drops
8778  * reference count on the block.
8779  *
8780  * when wc->stage == UPDATE_BACKREF, this function changes
8781  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8782  * to UPDATE_BACKREF previously while processing the block.
8783  *
8784  * NOTE: return value 1 means we should stop walking up.
8785  */
8786 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8787 				 struct btrfs_root *root,
8788 				 struct btrfs_path *path,
8789 				 struct walk_control *wc)
8790 {
8791 	int ret;
8792 	int level = wc->level;
8793 	struct extent_buffer *eb = path->nodes[level];
8794 	u64 parent = 0;
8795 
8796 	if (wc->stage == UPDATE_BACKREF) {
8797 		BUG_ON(wc->shared_level < level);
8798 		if (level < wc->shared_level)
8799 			goto out;
8800 
8801 		ret = find_next_key(path, level + 1, &wc->update_progress);
8802 		if (ret > 0)
8803 			wc->update_ref = 0;
8804 
8805 		wc->stage = DROP_REFERENCE;
8806 		wc->shared_level = -1;
8807 		path->slots[level] = 0;
8808 
8809 		/*
8810 		 * check reference count again if the block isn't locked.
8811 		 * we should start walking down the tree again if reference
8812 		 * count is one.
8813 		 */
8814 		if (!path->locks[level]) {
8815 			BUG_ON(level == 0);
8816 			btrfs_tree_lock(eb);
8817 			btrfs_set_lock_blocking(eb);
8818 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8819 
8820 			ret = btrfs_lookup_extent_info(trans, root,
8821 						       eb->start, level, 1,
8822 						       &wc->refs[level],
8823 						       &wc->flags[level]);
8824 			if (ret < 0) {
8825 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8826 				path->locks[level] = 0;
8827 				return ret;
8828 			}
8829 			BUG_ON(wc->refs[level] == 0);
8830 			if (wc->refs[level] == 1) {
8831 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8832 				path->locks[level] = 0;
8833 				return 1;
8834 			}
8835 		}
8836 	}
8837 
8838 	/* wc->stage == DROP_REFERENCE */
8839 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8840 
8841 	if (wc->refs[level] == 1) {
8842 		if (level == 0) {
8843 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8844 				ret = btrfs_dec_ref(trans, root, eb, 1);
8845 			else
8846 				ret = btrfs_dec_ref(trans, root, eb, 0);
8847 			BUG_ON(ret); /* -ENOMEM */
8848 			ret = account_leaf_items(trans, root, eb);
8849 			if (ret) {
8850 				btrfs_err_rl(root->fs_info,
8851 					"error "
8852 					"%d accounting leaf items. Quota "
8853 					"is out of sync, rescan required.",
8854 					ret);
8855 			}
8856 		}
8857 		/* make block locked assertion in clean_tree_block happy */
8858 		if (!path->locks[level] &&
8859 		    btrfs_header_generation(eb) == trans->transid) {
8860 			btrfs_tree_lock(eb);
8861 			btrfs_set_lock_blocking(eb);
8862 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8863 		}
8864 		clean_tree_block(trans, root->fs_info, eb);
8865 	}
8866 
8867 	if (eb == root->node) {
8868 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8869 			parent = eb->start;
8870 		else
8871 			BUG_ON(root->root_key.objectid !=
8872 			       btrfs_header_owner(eb));
8873 	} else {
8874 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8875 			parent = path->nodes[level + 1]->start;
8876 		else
8877 			BUG_ON(root->root_key.objectid !=
8878 			       btrfs_header_owner(path->nodes[level + 1]));
8879 	}
8880 
8881 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8882 out:
8883 	wc->refs[level] = 0;
8884 	wc->flags[level] = 0;
8885 	return 0;
8886 }
8887 
8888 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8889 				   struct btrfs_root *root,
8890 				   struct btrfs_path *path,
8891 				   struct walk_control *wc)
8892 {
8893 	int level = wc->level;
8894 	int lookup_info = 1;
8895 	int ret;
8896 
8897 	while (level >= 0) {
8898 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8899 		if (ret > 0)
8900 			break;
8901 
8902 		if (level == 0)
8903 			break;
8904 
8905 		if (path->slots[level] >=
8906 		    btrfs_header_nritems(path->nodes[level]))
8907 			break;
8908 
8909 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8910 		if (ret > 0) {
8911 			path->slots[level]++;
8912 			continue;
8913 		} else if (ret < 0)
8914 			return ret;
8915 		level = wc->level;
8916 	}
8917 	return 0;
8918 }
8919 
8920 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8921 				 struct btrfs_root *root,
8922 				 struct btrfs_path *path,
8923 				 struct walk_control *wc, int max_level)
8924 {
8925 	int level = wc->level;
8926 	int ret;
8927 
8928 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8929 	while (level < max_level && path->nodes[level]) {
8930 		wc->level = level;
8931 		if (path->slots[level] + 1 <
8932 		    btrfs_header_nritems(path->nodes[level])) {
8933 			path->slots[level]++;
8934 			return 0;
8935 		} else {
8936 			ret = walk_up_proc(trans, root, path, wc);
8937 			if (ret > 0)
8938 				return 0;
8939 
8940 			if (path->locks[level]) {
8941 				btrfs_tree_unlock_rw(path->nodes[level],
8942 						     path->locks[level]);
8943 				path->locks[level] = 0;
8944 			}
8945 			free_extent_buffer(path->nodes[level]);
8946 			path->nodes[level] = NULL;
8947 			level++;
8948 		}
8949 	}
8950 	return 1;
8951 }
8952 
8953 /*
8954  * drop a subvolume tree.
8955  *
8956  * this function traverses the tree freeing any blocks that only
8957  * referenced by the tree.
8958  *
8959  * when a shared tree block is found. this function decreases its
8960  * reference count by one. if update_ref is true, this function
8961  * also make sure backrefs for the shared block and all lower level
8962  * blocks are properly updated.
8963  *
8964  * If called with for_reloc == 0, may exit early with -EAGAIN
8965  */
8966 int btrfs_drop_snapshot(struct btrfs_root *root,
8967 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8968 			 int for_reloc)
8969 {
8970 	struct btrfs_path *path;
8971 	struct btrfs_trans_handle *trans;
8972 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8973 	struct btrfs_root_item *root_item = &root->root_item;
8974 	struct walk_control *wc;
8975 	struct btrfs_key key;
8976 	int err = 0;
8977 	int ret;
8978 	int level;
8979 	bool root_dropped = false;
8980 
8981 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8982 
8983 	path = btrfs_alloc_path();
8984 	if (!path) {
8985 		err = -ENOMEM;
8986 		goto out;
8987 	}
8988 
8989 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8990 	if (!wc) {
8991 		btrfs_free_path(path);
8992 		err = -ENOMEM;
8993 		goto out;
8994 	}
8995 
8996 	trans = btrfs_start_transaction(tree_root, 0);
8997 	if (IS_ERR(trans)) {
8998 		err = PTR_ERR(trans);
8999 		goto out_free;
9000 	}
9001 
9002 	if (block_rsv)
9003 		trans->block_rsv = block_rsv;
9004 
9005 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9006 		level = btrfs_header_level(root->node);
9007 		path->nodes[level] = btrfs_lock_root_node(root);
9008 		btrfs_set_lock_blocking(path->nodes[level]);
9009 		path->slots[level] = 0;
9010 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9011 		memset(&wc->update_progress, 0,
9012 		       sizeof(wc->update_progress));
9013 	} else {
9014 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9015 		memcpy(&wc->update_progress, &key,
9016 		       sizeof(wc->update_progress));
9017 
9018 		level = root_item->drop_level;
9019 		BUG_ON(level == 0);
9020 		path->lowest_level = level;
9021 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9022 		path->lowest_level = 0;
9023 		if (ret < 0) {
9024 			err = ret;
9025 			goto out_end_trans;
9026 		}
9027 		WARN_ON(ret > 0);
9028 
9029 		/*
9030 		 * unlock our path, this is safe because only this
9031 		 * function is allowed to delete this snapshot
9032 		 */
9033 		btrfs_unlock_up_safe(path, 0);
9034 
9035 		level = btrfs_header_level(root->node);
9036 		while (1) {
9037 			btrfs_tree_lock(path->nodes[level]);
9038 			btrfs_set_lock_blocking(path->nodes[level]);
9039 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9040 
9041 			ret = btrfs_lookup_extent_info(trans, root,
9042 						path->nodes[level]->start,
9043 						level, 1, &wc->refs[level],
9044 						&wc->flags[level]);
9045 			if (ret < 0) {
9046 				err = ret;
9047 				goto out_end_trans;
9048 			}
9049 			BUG_ON(wc->refs[level] == 0);
9050 
9051 			if (level == root_item->drop_level)
9052 				break;
9053 
9054 			btrfs_tree_unlock(path->nodes[level]);
9055 			path->locks[level] = 0;
9056 			WARN_ON(wc->refs[level] != 1);
9057 			level--;
9058 		}
9059 	}
9060 
9061 	wc->level = level;
9062 	wc->shared_level = -1;
9063 	wc->stage = DROP_REFERENCE;
9064 	wc->update_ref = update_ref;
9065 	wc->keep_locks = 0;
9066 	wc->for_reloc = for_reloc;
9067 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9068 
9069 	while (1) {
9070 
9071 		ret = walk_down_tree(trans, root, path, wc);
9072 		if (ret < 0) {
9073 			err = ret;
9074 			break;
9075 		}
9076 
9077 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9078 		if (ret < 0) {
9079 			err = ret;
9080 			break;
9081 		}
9082 
9083 		if (ret > 0) {
9084 			BUG_ON(wc->stage != DROP_REFERENCE);
9085 			break;
9086 		}
9087 
9088 		if (wc->stage == DROP_REFERENCE) {
9089 			level = wc->level;
9090 			btrfs_node_key(path->nodes[level],
9091 				       &root_item->drop_progress,
9092 				       path->slots[level]);
9093 			root_item->drop_level = level;
9094 		}
9095 
9096 		BUG_ON(wc->level == 0);
9097 		if (btrfs_should_end_transaction(trans, tree_root) ||
9098 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9099 			ret = btrfs_update_root(trans, tree_root,
9100 						&root->root_key,
9101 						root_item);
9102 			if (ret) {
9103 				btrfs_abort_transaction(trans, tree_root, ret);
9104 				err = ret;
9105 				goto out_end_trans;
9106 			}
9107 
9108 			btrfs_end_transaction_throttle(trans, tree_root);
9109 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9110 				pr_debug("BTRFS: drop snapshot early exit\n");
9111 				err = -EAGAIN;
9112 				goto out_free;
9113 			}
9114 
9115 			trans = btrfs_start_transaction(tree_root, 0);
9116 			if (IS_ERR(trans)) {
9117 				err = PTR_ERR(trans);
9118 				goto out_free;
9119 			}
9120 			if (block_rsv)
9121 				trans->block_rsv = block_rsv;
9122 		}
9123 	}
9124 	btrfs_release_path(path);
9125 	if (err)
9126 		goto out_end_trans;
9127 
9128 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9129 	if (ret) {
9130 		btrfs_abort_transaction(trans, tree_root, ret);
9131 		goto out_end_trans;
9132 	}
9133 
9134 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9135 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9136 				      NULL, NULL);
9137 		if (ret < 0) {
9138 			btrfs_abort_transaction(trans, tree_root, ret);
9139 			err = ret;
9140 			goto out_end_trans;
9141 		} else if (ret > 0) {
9142 			/* if we fail to delete the orphan item this time
9143 			 * around, it'll get picked up the next time.
9144 			 *
9145 			 * The most common failure here is just -ENOENT.
9146 			 */
9147 			btrfs_del_orphan_item(trans, tree_root,
9148 					      root->root_key.objectid);
9149 		}
9150 	}
9151 
9152 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9153 		btrfs_add_dropped_root(trans, root);
9154 	} else {
9155 		free_extent_buffer(root->node);
9156 		free_extent_buffer(root->commit_root);
9157 		btrfs_put_fs_root(root);
9158 	}
9159 	root_dropped = true;
9160 out_end_trans:
9161 	btrfs_end_transaction_throttle(trans, tree_root);
9162 out_free:
9163 	kfree(wc);
9164 	btrfs_free_path(path);
9165 out:
9166 	/*
9167 	 * So if we need to stop dropping the snapshot for whatever reason we
9168 	 * need to make sure to add it back to the dead root list so that we
9169 	 * keep trying to do the work later.  This also cleans up roots if we
9170 	 * don't have it in the radix (like when we recover after a power fail
9171 	 * or unmount) so we don't leak memory.
9172 	 */
9173 	if (!for_reloc && root_dropped == false)
9174 		btrfs_add_dead_root(root);
9175 	if (err && err != -EAGAIN)
9176 		btrfs_handle_fs_error(root->fs_info, err, NULL);
9177 	return err;
9178 }
9179 
9180 /*
9181  * drop subtree rooted at tree block 'node'.
9182  *
9183  * NOTE: this function will unlock and release tree block 'node'
9184  * only used by relocation code
9185  */
9186 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9187 			struct btrfs_root *root,
9188 			struct extent_buffer *node,
9189 			struct extent_buffer *parent)
9190 {
9191 	struct btrfs_path *path;
9192 	struct walk_control *wc;
9193 	int level;
9194 	int parent_level;
9195 	int ret = 0;
9196 	int wret;
9197 
9198 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9199 
9200 	path = btrfs_alloc_path();
9201 	if (!path)
9202 		return -ENOMEM;
9203 
9204 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9205 	if (!wc) {
9206 		btrfs_free_path(path);
9207 		return -ENOMEM;
9208 	}
9209 
9210 	btrfs_assert_tree_locked(parent);
9211 	parent_level = btrfs_header_level(parent);
9212 	extent_buffer_get(parent);
9213 	path->nodes[parent_level] = parent;
9214 	path->slots[parent_level] = btrfs_header_nritems(parent);
9215 
9216 	btrfs_assert_tree_locked(node);
9217 	level = btrfs_header_level(node);
9218 	path->nodes[level] = node;
9219 	path->slots[level] = 0;
9220 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9221 
9222 	wc->refs[parent_level] = 1;
9223 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9224 	wc->level = level;
9225 	wc->shared_level = -1;
9226 	wc->stage = DROP_REFERENCE;
9227 	wc->update_ref = 0;
9228 	wc->keep_locks = 1;
9229 	wc->for_reloc = 1;
9230 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9231 
9232 	while (1) {
9233 		wret = walk_down_tree(trans, root, path, wc);
9234 		if (wret < 0) {
9235 			ret = wret;
9236 			break;
9237 		}
9238 
9239 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9240 		if (wret < 0)
9241 			ret = wret;
9242 		if (wret != 0)
9243 			break;
9244 	}
9245 
9246 	kfree(wc);
9247 	btrfs_free_path(path);
9248 	return ret;
9249 }
9250 
9251 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9252 {
9253 	u64 num_devices;
9254 	u64 stripped;
9255 
9256 	/*
9257 	 * if restripe for this chunk_type is on pick target profile and
9258 	 * return, otherwise do the usual balance
9259 	 */
9260 	stripped = get_restripe_target(root->fs_info, flags);
9261 	if (stripped)
9262 		return extended_to_chunk(stripped);
9263 
9264 	num_devices = root->fs_info->fs_devices->rw_devices;
9265 
9266 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9267 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9268 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9269 
9270 	if (num_devices == 1) {
9271 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9272 		stripped = flags & ~stripped;
9273 
9274 		/* turn raid0 into single device chunks */
9275 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9276 			return stripped;
9277 
9278 		/* turn mirroring into duplication */
9279 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9280 			     BTRFS_BLOCK_GROUP_RAID10))
9281 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9282 	} else {
9283 		/* they already had raid on here, just return */
9284 		if (flags & stripped)
9285 			return flags;
9286 
9287 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9288 		stripped = flags & ~stripped;
9289 
9290 		/* switch duplicated blocks with raid1 */
9291 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9292 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9293 
9294 		/* this is drive concat, leave it alone */
9295 	}
9296 
9297 	return flags;
9298 }
9299 
9300 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9301 {
9302 	struct btrfs_space_info *sinfo = cache->space_info;
9303 	u64 num_bytes;
9304 	u64 min_allocable_bytes;
9305 	int ret = -ENOSPC;
9306 
9307 	/*
9308 	 * We need some metadata space and system metadata space for
9309 	 * allocating chunks in some corner cases until we force to set
9310 	 * it to be readonly.
9311 	 */
9312 	if ((sinfo->flags &
9313 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9314 	    !force)
9315 		min_allocable_bytes = SZ_1M;
9316 	else
9317 		min_allocable_bytes = 0;
9318 
9319 	spin_lock(&sinfo->lock);
9320 	spin_lock(&cache->lock);
9321 
9322 	if (cache->ro) {
9323 		cache->ro++;
9324 		ret = 0;
9325 		goto out;
9326 	}
9327 
9328 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9329 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9330 
9331 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9332 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9333 	    min_allocable_bytes <= sinfo->total_bytes) {
9334 		sinfo->bytes_readonly += num_bytes;
9335 		cache->ro++;
9336 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9337 		ret = 0;
9338 	}
9339 out:
9340 	spin_unlock(&cache->lock);
9341 	spin_unlock(&sinfo->lock);
9342 	return ret;
9343 }
9344 
9345 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9346 			     struct btrfs_block_group_cache *cache)
9347 
9348 {
9349 	struct btrfs_trans_handle *trans;
9350 	u64 alloc_flags;
9351 	int ret;
9352 
9353 again:
9354 	trans = btrfs_join_transaction(root);
9355 	if (IS_ERR(trans))
9356 		return PTR_ERR(trans);
9357 
9358 	/*
9359 	 * we're not allowed to set block groups readonly after the dirty
9360 	 * block groups cache has started writing.  If it already started,
9361 	 * back off and let this transaction commit
9362 	 */
9363 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9364 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9365 		u64 transid = trans->transid;
9366 
9367 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9368 		btrfs_end_transaction(trans, root);
9369 
9370 		ret = btrfs_wait_for_commit(root, transid);
9371 		if (ret)
9372 			return ret;
9373 		goto again;
9374 	}
9375 
9376 	/*
9377 	 * if we are changing raid levels, try to allocate a corresponding
9378 	 * block group with the new raid level.
9379 	 */
9380 	alloc_flags = update_block_group_flags(root, cache->flags);
9381 	if (alloc_flags != cache->flags) {
9382 		ret = do_chunk_alloc(trans, root, alloc_flags,
9383 				     CHUNK_ALLOC_FORCE);
9384 		/*
9385 		 * ENOSPC is allowed here, we may have enough space
9386 		 * already allocated at the new raid level to
9387 		 * carry on
9388 		 */
9389 		if (ret == -ENOSPC)
9390 			ret = 0;
9391 		if (ret < 0)
9392 			goto out;
9393 	}
9394 
9395 	ret = inc_block_group_ro(cache, 0);
9396 	if (!ret)
9397 		goto out;
9398 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9399 	ret = do_chunk_alloc(trans, root, alloc_flags,
9400 			     CHUNK_ALLOC_FORCE);
9401 	if (ret < 0)
9402 		goto out;
9403 	ret = inc_block_group_ro(cache, 0);
9404 out:
9405 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9406 		alloc_flags = update_block_group_flags(root, cache->flags);
9407 		lock_chunks(root->fs_info->chunk_root);
9408 		check_system_chunk(trans, root, alloc_flags);
9409 		unlock_chunks(root->fs_info->chunk_root);
9410 	}
9411 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9412 
9413 	btrfs_end_transaction(trans, root);
9414 	return ret;
9415 }
9416 
9417 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9418 			    struct btrfs_root *root, u64 type)
9419 {
9420 	u64 alloc_flags = get_alloc_profile(root, type);
9421 	return do_chunk_alloc(trans, root, alloc_flags,
9422 			      CHUNK_ALLOC_FORCE);
9423 }
9424 
9425 /*
9426  * helper to account the unused space of all the readonly block group in the
9427  * space_info. takes mirrors into account.
9428  */
9429 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9430 {
9431 	struct btrfs_block_group_cache *block_group;
9432 	u64 free_bytes = 0;
9433 	int factor;
9434 
9435 	/* It's df, we don't care if it's racy */
9436 	if (list_empty(&sinfo->ro_bgs))
9437 		return 0;
9438 
9439 	spin_lock(&sinfo->lock);
9440 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9441 		spin_lock(&block_group->lock);
9442 
9443 		if (!block_group->ro) {
9444 			spin_unlock(&block_group->lock);
9445 			continue;
9446 		}
9447 
9448 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9449 					  BTRFS_BLOCK_GROUP_RAID10 |
9450 					  BTRFS_BLOCK_GROUP_DUP))
9451 			factor = 2;
9452 		else
9453 			factor = 1;
9454 
9455 		free_bytes += (block_group->key.offset -
9456 			       btrfs_block_group_used(&block_group->item)) *
9457 			       factor;
9458 
9459 		spin_unlock(&block_group->lock);
9460 	}
9461 	spin_unlock(&sinfo->lock);
9462 
9463 	return free_bytes;
9464 }
9465 
9466 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9467 			      struct btrfs_block_group_cache *cache)
9468 {
9469 	struct btrfs_space_info *sinfo = cache->space_info;
9470 	u64 num_bytes;
9471 
9472 	BUG_ON(!cache->ro);
9473 
9474 	spin_lock(&sinfo->lock);
9475 	spin_lock(&cache->lock);
9476 	if (!--cache->ro) {
9477 		num_bytes = cache->key.offset - cache->reserved -
9478 			    cache->pinned - cache->bytes_super -
9479 			    btrfs_block_group_used(&cache->item);
9480 		sinfo->bytes_readonly -= num_bytes;
9481 		list_del_init(&cache->ro_list);
9482 	}
9483 	spin_unlock(&cache->lock);
9484 	spin_unlock(&sinfo->lock);
9485 }
9486 
9487 /*
9488  * checks to see if its even possible to relocate this block group.
9489  *
9490  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9491  * ok to go ahead and try.
9492  */
9493 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9494 {
9495 	struct btrfs_block_group_cache *block_group;
9496 	struct btrfs_space_info *space_info;
9497 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9498 	struct btrfs_device *device;
9499 	struct btrfs_trans_handle *trans;
9500 	u64 min_free;
9501 	u64 dev_min = 1;
9502 	u64 dev_nr = 0;
9503 	u64 target;
9504 	int debug;
9505 	int index;
9506 	int full = 0;
9507 	int ret = 0;
9508 
9509 	debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9510 
9511 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9512 
9513 	/* odd, couldn't find the block group, leave it alone */
9514 	if (!block_group) {
9515 		if (debug)
9516 			btrfs_warn(root->fs_info,
9517 				   "can't find block group for bytenr %llu",
9518 				   bytenr);
9519 		return -1;
9520 	}
9521 
9522 	min_free = btrfs_block_group_used(&block_group->item);
9523 
9524 	/* no bytes used, we're good */
9525 	if (!min_free)
9526 		goto out;
9527 
9528 	space_info = block_group->space_info;
9529 	spin_lock(&space_info->lock);
9530 
9531 	full = space_info->full;
9532 
9533 	/*
9534 	 * if this is the last block group we have in this space, we can't
9535 	 * relocate it unless we're able to allocate a new chunk below.
9536 	 *
9537 	 * Otherwise, we need to make sure we have room in the space to handle
9538 	 * all of the extents from this block group.  If we can, we're good
9539 	 */
9540 	if ((space_info->total_bytes != block_group->key.offset) &&
9541 	    (space_info->bytes_used + space_info->bytes_reserved +
9542 	     space_info->bytes_pinned + space_info->bytes_readonly +
9543 	     min_free < space_info->total_bytes)) {
9544 		spin_unlock(&space_info->lock);
9545 		goto out;
9546 	}
9547 	spin_unlock(&space_info->lock);
9548 
9549 	/*
9550 	 * ok we don't have enough space, but maybe we have free space on our
9551 	 * devices to allocate new chunks for relocation, so loop through our
9552 	 * alloc devices and guess if we have enough space.  if this block
9553 	 * group is going to be restriped, run checks against the target
9554 	 * profile instead of the current one.
9555 	 */
9556 	ret = -1;
9557 
9558 	/*
9559 	 * index:
9560 	 *      0: raid10
9561 	 *      1: raid1
9562 	 *      2: dup
9563 	 *      3: raid0
9564 	 *      4: single
9565 	 */
9566 	target = get_restripe_target(root->fs_info, block_group->flags);
9567 	if (target) {
9568 		index = __get_raid_index(extended_to_chunk(target));
9569 	} else {
9570 		/*
9571 		 * this is just a balance, so if we were marked as full
9572 		 * we know there is no space for a new chunk
9573 		 */
9574 		if (full) {
9575 			if (debug)
9576 				btrfs_warn(root->fs_info,
9577 					"no space to alloc new chunk for block group %llu",
9578 					block_group->key.objectid);
9579 			goto out;
9580 		}
9581 
9582 		index = get_block_group_index(block_group);
9583 	}
9584 
9585 	if (index == BTRFS_RAID_RAID10) {
9586 		dev_min = 4;
9587 		/* Divide by 2 */
9588 		min_free >>= 1;
9589 	} else if (index == BTRFS_RAID_RAID1) {
9590 		dev_min = 2;
9591 	} else if (index == BTRFS_RAID_DUP) {
9592 		/* Multiply by 2 */
9593 		min_free <<= 1;
9594 	} else if (index == BTRFS_RAID_RAID0) {
9595 		dev_min = fs_devices->rw_devices;
9596 		min_free = div64_u64(min_free, dev_min);
9597 	}
9598 
9599 	/* We need to do this so that we can look at pending chunks */
9600 	trans = btrfs_join_transaction(root);
9601 	if (IS_ERR(trans)) {
9602 		ret = PTR_ERR(trans);
9603 		goto out;
9604 	}
9605 
9606 	mutex_lock(&root->fs_info->chunk_mutex);
9607 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9608 		u64 dev_offset;
9609 
9610 		/*
9611 		 * check to make sure we can actually find a chunk with enough
9612 		 * space to fit our block group in.
9613 		 */
9614 		if (device->total_bytes > device->bytes_used + min_free &&
9615 		    !device->is_tgtdev_for_dev_replace) {
9616 			ret = find_free_dev_extent(trans, device, min_free,
9617 						   &dev_offset, NULL);
9618 			if (!ret)
9619 				dev_nr++;
9620 
9621 			if (dev_nr >= dev_min)
9622 				break;
9623 
9624 			ret = -1;
9625 		}
9626 	}
9627 	if (debug && ret == -1)
9628 		btrfs_warn(root->fs_info,
9629 			"no space to allocate a new chunk for block group %llu",
9630 			block_group->key.objectid);
9631 	mutex_unlock(&root->fs_info->chunk_mutex);
9632 	btrfs_end_transaction(trans, root);
9633 out:
9634 	btrfs_put_block_group(block_group);
9635 	return ret;
9636 }
9637 
9638 static int find_first_block_group(struct btrfs_root *root,
9639 		struct btrfs_path *path, struct btrfs_key *key)
9640 {
9641 	int ret = 0;
9642 	struct btrfs_key found_key;
9643 	struct extent_buffer *leaf;
9644 	int slot;
9645 
9646 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9647 	if (ret < 0)
9648 		goto out;
9649 
9650 	while (1) {
9651 		slot = path->slots[0];
9652 		leaf = path->nodes[0];
9653 		if (slot >= btrfs_header_nritems(leaf)) {
9654 			ret = btrfs_next_leaf(root, path);
9655 			if (ret == 0)
9656 				continue;
9657 			if (ret < 0)
9658 				goto out;
9659 			break;
9660 		}
9661 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9662 
9663 		if (found_key.objectid >= key->objectid &&
9664 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9665 			ret = 0;
9666 			goto out;
9667 		}
9668 		path->slots[0]++;
9669 	}
9670 out:
9671 	return ret;
9672 }
9673 
9674 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9675 {
9676 	struct btrfs_block_group_cache *block_group;
9677 	u64 last = 0;
9678 
9679 	while (1) {
9680 		struct inode *inode;
9681 
9682 		block_group = btrfs_lookup_first_block_group(info, last);
9683 		while (block_group) {
9684 			spin_lock(&block_group->lock);
9685 			if (block_group->iref)
9686 				break;
9687 			spin_unlock(&block_group->lock);
9688 			block_group = next_block_group(info->tree_root,
9689 						       block_group);
9690 		}
9691 		if (!block_group) {
9692 			if (last == 0)
9693 				break;
9694 			last = 0;
9695 			continue;
9696 		}
9697 
9698 		inode = block_group->inode;
9699 		block_group->iref = 0;
9700 		block_group->inode = NULL;
9701 		spin_unlock(&block_group->lock);
9702 		iput(inode);
9703 		last = block_group->key.objectid + block_group->key.offset;
9704 		btrfs_put_block_group(block_group);
9705 	}
9706 }
9707 
9708 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9709 {
9710 	struct btrfs_block_group_cache *block_group;
9711 	struct btrfs_space_info *space_info;
9712 	struct btrfs_caching_control *caching_ctl;
9713 	struct rb_node *n;
9714 
9715 	down_write(&info->commit_root_sem);
9716 	while (!list_empty(&info->caching_block_groups)) {
9717 		caching_ctl = list_entry(info->caching_block_groups.next,
9718 					 struct btrfs_caching_control, list);
9719 		list_del(&caching_ctl->list);
9720 		put_caching_control(caching_ctl);
9721 	}
9722 	up_write(&info->commit_root_sem);
9723 
9724 	spin_lock(&info->unused_bgs_lock);
9725 	while (!list_empty(&info->unused_bgs)) {
9726 		block_group = list_first_entry(&info->unused_bgs,
9727 					       struct btrfs_block_group_cache,
9728 					       bg_list);
9729 		list_del_init(&block_group->bg_list);
9730 		btrfs_put_block_group(block_group);
9731 	}
9732 	spin_unlock(&info->unused_bgs_lock);
9733 
9734 	spin_lock(&info->block_group_cache_lock);
9735 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9736 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9737 				       cache_node);
9738 		rb_erase(&block_group->cache_node,
9739 			 &info->block_group_cache_tree);
9740 		RB_CLEAR_NODE(&block_group->cache_node);
9741 		spin_unlock(&info->block_group_cache_lock);
9742 
9743 		down_write(&block_group->space_info->groups_sem);
9744 		list_del(&block_group->list);
9745 		up_write(&block_group->space_info->groups_sem);
9746 
9747 		if (block_group->cached == BTRFS_CACHE_STARTED)
9748 			wait_block_group_cache_done(block_group);
9749 
9750 		/*
9751 		 * We haven't cached this block group, which means we could
9752 		 * possibly have excluded extents on this block group.
9753 		 */
9754 		if (block_group->cached == BTRFS_CACHE_NO ||
9755 		    block_group->cached == BTRFS_CACHE_ERROR)
9756 			free_excluded_extents(info->extent_root, block_group);
9757 
9758 		btrfs_remove_free_space_cache(block_group);
9759 		btrfs_put_block_group(block_group);
9760 
9761 		spin_lock(&info->block_group_cache_lock);
9762 	}
9763 	spin_unlock(&info->block_group_cache_lock);
9764 
9765 	/* now that all the block groups are freed, go through and
9766 	 * free all the space_info structs.  This is only called during
9767 	 * the final stages of unmount, and so we know nobody is
9768 	 * using them.  We call synchronize_rcu() once before we start,
9769 	 * just to be on the safe side.
9770 	 */
9771 	synchronize_rcu();
9772 
9773 	release_global_block_rsv(info);
9774 
9775 	while (!list_empty(&info->space_info)) {
9776 		int i;
9777 
9778 		space_info = list_entry(info->space_info.next,
9779 					struct btrfs_space_info,
9780 					list);
9781 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9782 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9783 			    space_info->bytes_reserved > 0 ||
9784 			    space_info->bytes_may_use > 0)) {
9785 				dump_space_info(space_info, 0, 0);
9786 			}
9787 		}
9788 		list_del(&space_info->list);
9789 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9790 			struct kobject *kobj;
9791 			kobj = space_info->block_group_kobjs[i];
9792 			space_info->block_group_kobjs[i] = NULL;
9793 			if (kobj) {
9794 				kobject_del(kobj);
9795 				kobject_put(kobj);
9796 			}
9797 		}
9798 		kobject_del(&space_info->kobj);
9799 		kobject_put(&space_info->kobj);
9800 	}
9801 	return 0;
9802 }
9803 
9804 static void __link_block_group(struct btrfs_space_info *space_info,
9805 			       struct btrfs_block_group_cache *cache)
9806 {
9807 	int index = get_block_group_index(cache);
9808 	bool first = false;
9809 
9810 	down_write(&space_info->groups_sem);
9811 	if (list_empty(&space_info->block_groups[index]))
9812 		first = true;
9813 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9814 	up_write(&space_info->groups_sem);
9815 
9816 	if (first) {
9817 		struct raid_kobject *rkobj;
9818 		int ret;
9819 
9820 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9821 		if (!rkobj)
9822 			goto out_err;
9823 		rkobj->raid_type = index;
9824 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9825 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9826 				  "%s", get_raid_name(index));
9827 		if (ret) {
9828 			kobject_put(&rkobj->kobj);
9829 			goto out_err;
9830 		}
9831 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9832 	}
9833 
9834 	return;
9835 out_err:
9836 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9837 }
9838 
9839 static struct btrfs_block_group_cache *
9840 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9841 {
9842 	struct btrfs_block_group_cache *cache;
9843 
9844 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9845 	if (!cache)
9846 		return NULL;
9847 
9848 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9849 					GFP_NOFS);
9850 	if (!cache->free_space_ctl) {
9851 		kfree(cache);
9852 		return NULL;
9853 	}
9854 
9855 	cache->key.objectid = start;
9856 	cache->key.offset = size;
9857 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9858 
9859 	cache->sectorsize = root->sectorsize;
9860 	cache->fs_info = root->fs_info;
9861 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9862 					       &root->fs_info->mapping_tree,
9863 					       start);
9864 	set_free_space_tree_thresholds(cache);
9865 
9866 	atomic_set(&cache->count, 1);
9867 	spin_lock_init(&cache->lock);
9868 	init_rwsem(&cache->data_rwsem);
9869 	INIT_LIST_HEAD(&cache->list);
9870 	INIT_LIST_HEAD(&cache->cluster_list);
9871 	INIT_LIST_HEAD(&cache->bg_list);
9872 	INIT_LIST_HEAD(&cache->ro_list);
9873 	INIT_LIST_HEAD(&cache->dirty_list);
9874 	INIT_LIST_HEAD(&cache->io_list);
9875 	btrfs_init_free_space_ctl(cache);
9876 	atomic_set(&cache->trimming, 0);
9877 	mutex_init(&cache->free_space_lock);
9878 
9879 	return cache;
9880 }
9881 
9882 int btrfs_read_block_groups(struct btrfs_root *root)
9883 {
9884 	struct btrfs_path *path;
9885 	int ret;
9886 	struct btrfs_block_group_cache *cache;
9887 	struct btrfs_fs_info *info = root->fs_info;
9888 	struct btrfs_space_info *space_info;
9889 	struct btrfs_key key;
9890 	struct btrfs_key found_key;
9891 	struct extent_buffer *leaf;
9892 	int need_clear = 0;
9893 	u64 cache_gen;
9894 
9895 	root = info->extent_root;
9896 	key.objectid = 0;
9897 	key.offset = 0;
9898 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9899 	path = btrfs_alloc_path();
9900 	if (!path)
9901 		return -ENOMEM;
9902 	path->reada = READA_FORWARD;
9903 
9904 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9905 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9906 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9907 		need_clear = 1;
9908 	if (btrfs_test_opt(root, CLEAR_CACHE))
9909 		need_clear = 1;
9910 
9911 	while (1) {
9912 		ret = find_first_block_group(root, path, &key);
9913 		if (ret > 0)
9914 			break;
9915 		if (ret != 0)
9916 			goto error;
9917 
9918 		leaf = path->nodes[0];
9919 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9920 
9921 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9922 						       found_key.offset);
9923 		if (!cache) {
9924 			ret = -ENOMEM;
9925 			goto error;
9926 		}
9927 
9928 		if (need_clear) {
9929 			/*
9930 			 * When we mount with old space cache, we need to
9931 			 * set BTRFS_DC_CLEAR and set dirty flag.
9932 			 *
9933 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9934 			 *    truncate the old free space cache inode and
9935 			 *    setup a new one.
9936 			 * b) Setting 'dirty flag' makes sure that we flush
9937 			 *    the new space cache info onto disk.
9938 			 */
9939 			if (btrfs_test_opt(root, SPACE_CACHE))
9940 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9941 		}
9942 
9943 		read_extent_buffer(leaf, &cache->item,
9944 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9945 				   sizeof(cache->item));
9946 		cache->flags = btrfs_block_group_flags(&cache->item);
9947 
9948 		key.objectid = found_key.objectid + found_key.offset;
9949 		btrfs_release_path(path);
9950 
9951 		/*
9952 		 * We need to exclude the super stripes now so that the space
9953 		 * info has super bytes accounted for, otherwise we'll think
9954 		 * we have more space than we actually do.
9955 		 */
9956 		ret = exclude_super_stripes(root, cache);
9957 		if (ret) {
9958 			/*
9959 			 * We may have excluded something, so call this just in
9960 			 * case.
9961 			 */
9962 			free_excluded_extents(root, cache);
9963 			btrfs_put_block_group(cache);
9964 			goto error;
9965 		}
9966 
9967 		/*
9968 		 * check for two cases, either we are full, and therefore
9969 		 * don't need to bother with the caching work since we won't
9970 		 * find any space, or we are empty, and we can just add all
9971 		 * the space in and be done with it.  This saves us _alot_ of
9972 		 * time, particularly in the full case.
9973 		 */
9974 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9975 			cache->last_byte_to_unpin = (u64)-1;
9976 			cache->cached = BTRFS_CACHE_FINISHED;
9977 			free_excluded_extents(root, cache);
9978 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9979 			cache->last_byte_to_unpin = (u64)-1;
9980 			cache->cached = BTRFS_CACHE_FINISHED;
9981 			add_new_free_space(cache, root->fs_info,
9982 					   found_key.objectid,
9983 					   found_key.objectid +
9984 					   found_key.offset);
9985 			free_excluded_extents(root, cache);
9986 		}
9987 
9988 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9989 		if (ret) {
9990 			btrfs_remove_free_space_cache(cache);
9991 			btrfs_put_block_group(cache);
9992 			goto error;
9993 		}
9994 
9995 		ret = update_space_info(info, cache->flags, found_key.offset,
9996 					btrfs_block_group_used(&cache->item),
9997 					&space_info);
9998 		if (ret) {
9999 			btrfs_remove_free_space_cache(cache);
10000 			spin_lock(&info->block_group_cache_lock);
10001 			rb_erase(&cache->cache_node,
10002 				 &info->block_group_cache_tree);
10003 			RB_CLEAR_NODE(&cache->cache_node);
10004 			spin_unlock(&info->block_group_cache_lock);
10005 			btrfs_put_block_group(cache);
10006 			goto error;
10007 		}
10008 
10009 		cache->space_info = space_info;
10010 		spin_lock(&cache->space_info->lock);
10011 		cache->space_info->bytes_readonly += cache->bytes_super;
10012 		spin_unlock(&cache->space_info->lock);
10013 
10014 		__link_block_group(space_info, cache);
10015 
10016 		set_avail_alloc_bits(root->fs_info, cache->flags);
10017 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10018 			inc_block_group_ro(cache, 1);
10019 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10020 			spin_lock(&info->unused_bgs_lock);
10021 			/* Should always be true but just in case. */
10022 			if (list_empty(&cache->bg_list)) {
10023 				btrfs_get_block_group(cache);
10024 				list_add_tail(&cache->bg_list,
10025 					      &info->unused_bgs);
10026 			}
10027 			spin_unlock(&info->unused_bgs_lock);
10028 		}
10029 	}
10030 
10031 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10032 		if (!(get_alloc_profile(root, space_info->flags) &
10033 		      (BTRFS_BLOCK_GROUP_RAID10 |
10034 		       BTRFS_BLOCK_GROUP_RAID1 |
10035 		       BTRFS_BLOCK_GROUP_RAID5 |
10036 		       BTRFS_BLOCK_GROUP_RAID6 |
10037 		       BTRFS_BLOCK_GROUP_DUP)))
10038 			continue;
10039 		/*
10040 		 * avoid allocating from un-mirrored block group if there are
10041 		 * mirrored block groups.
10042 		 */
10043 		list_for_each_entry(cache,
10044 				&space_info->block_groups[BTRFS_RAID_RAID0],
10045 				list)
10046 			inc_block_group_ro(cache, 1);
10047 		list_for_each_entry(cache,
10048 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10049 				list)
10050 			inc_block_group_ro(cache, 1);
10051 	}
10052 
10053 	init_global_block_rsv(info);
10054 	ret = 0;
10055 error:
10056 	btrfs_free_path(path);
10057 	return ret;
10058 }
10059 
10060 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10061 				       struct btrfs_root *root)
10062 {
10063 	struct btrfs_block_group_cache *block_group, *tmp;
10064 	struct btrfs_root *extent_root = root->fs_info->extent_root;
10065 	struct btrfs_block_group_item item;
10066 	struct btrfs_key key;
10067 	int ret = 0;
10068 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10069 
10070 	trans->can_flush_pending_bgs = false;
10071 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10072 		if (ret)
10073 			goto next;
10074 
10075 		spin_lock(&block_group->lock);
10076 		memcpy(&item, &block_group->item, sizeof(item));
10077 		memcpy(&key, &block_group->key, sizeof(key));
10078 		spin_unlock(&block_group->lock);
10079 
10080 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10081 					sizeof(item));
10082 		if (ret)
10083 			btrfs_abort_transaction(trans, extent_root, ret);
10084 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
10085 					       key.objectid, key.offset);
10086 		if (ret)
10087 			btrfs_abort_transaction(trans, extent_root, ret);
10088 		add_block_group_free_space(trans, root->fs_info, block_group);
10089 		/* already aborted the transaction if it failed. */
10090 next:
10091 		list_del_init(&block_group->bg_list);
10092 	}
10093 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10094 }
10095 
10096 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10097 			   struct btrfs_root *root, u64 bytes_used,
10098 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10099 			   u64 size)
10100 {
10101 	int ret;
10102 	struct btrfs_root *extent_root;
10103 	struct btrfs_block_group_cache *cache;
10104 
10105 	extent_root = root->fs_info->extent_root;
10106 
10107 	btrfs_set_log_full_commit(root->fs_info, trans);
10108 
10109 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10110 	if (!cache)
10111 		return -ENOMEM;
10112 
10113 	btrfs_set_block_group_used(&cache->item, bytes_used);
10114 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10115 	btrfs_set_block_group_flags(&cache->item, type);
10116 
10117 	cache->flags = type;
10118 	cache->last_byte_to_unpin = (u64)-1;
10119 	cache->cached = BTRFS_CACHE_FINISHED;
10120 	cache->needs_free_space = 1;
10121 	ret = exclude_super_stripes(root, cache);
10122 	if (ret) {
10123 		/*
10124 		 * We may have excluded something, so call this just in
10125 		 * case.
10126 		 */
10127 		free_excluded_extents(root, cache);
10128 		btrfs_put_block_group(cache);
10129 		return ret;
10130 	}
10131 
10132 	add_new_free_space(cache, root->fs_info, chunk_offset,
10133 			   chunk_offset + size);
10134 
10135 	free_excluded_extents(root, cache);
10136 
10137 #ifdef CONFIG_BTRFS_DEBUG
10138 	if (btrfs_should_fragment_free_space(root, cache)) {
10139 		u64 new_bytes_used = size - bytes_used;
10140 
10141 		bytes_used += new_bytes_used >> 1;
10142 		fragment_free_space(root, cache);
10143 	}
10144 #endif
10145 	/*
10146 	 * Call to ensure the corresponding space_info object is created and
10147 	 * assigned to our block group, but don't update its counters just yet.
10148 	 * We want our bg to be added to the rbtree with its ->space_info set.
10149 	 */
10150 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10151 				&cache->space_info);
10152 	if (ret) {
10153 		btrfs_remove_free_space_cache(cache);
10154 		btrfs_put_block_group(cache);
10155 		return ret;
10156 	}
10157 
10158 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10159 	if (ret) {
10160 		btrfs_remove_free_space_cache(cache);
10161 		btrfs_put_block_group(cache);
10162 		return ret;
10163 	}
10164 
10165 	/*
10166 	 * Now that our block group has its ->space_info set and is inserted in
10167 	 * the rbtree, update the space info's counters.
10168 	 */
10169 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10170 				&cache->space_info);
10171 	if (ret) {
10172 		btrfs_remove_free_space_cache(cache);
10173 		spin_lock(&root->fs_info->block_group_cache_lock);
10174 		rb_erase(&cache->cache_node,
10175 			 &root->fs_info->block_group_cache_tree);
10176 		RB_CLEAR_NODE(&cache->cache_node);
10177 		spin_unlock(&root->fs_info->block_group_cache_lock);
10178 		btrfs_put_block_group(cache);
10179 		return ret;
10180 	}
10181 	update_global_block_rsv(root->fs_info);
10182 
10183 	spin_lock(&cache->space_info->lock);
10184 	cache->space_info->bytes_readonly += cache->bytes_super;
10185 	spin_unlock(&cache->space_info->lock);
10186 
10187 	__link_block_group(cache->space_info, cache);
10188 
10189 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10190 
10191 	set_avail_alloc_bits(extent_root->fs_info, type);
10192 
10193 	return 0;
10194 }
10195 
10196 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10197 {
10198 	u64 extra_flags = chunk_to_extended(flags) &
10199 				BTRFS_EXTENDED_PROFILE_MASK;
10200 
10201 	write_seqlock(&fs_info->profiles_lock);
10202 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10203 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10204 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10205 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10206 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10207 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10208 	write_sequnlock(&fs_info->profiles_lock);
10209 }
10210 
10211 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10212 			     struct btrfs_root *root, u64 group_start,
10213 			     struct extent_map *em)
10214 {
10215 	struct btrfs_path *path;
10216 	struct btrfs_block_group_cache *block_group;
10217 	struct btrfs_free_cluster *cluster;
10218 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10219 	struct btrfs_key key;
10220 	struct inode *inode;
10221 	struct kobject *kobj = NULL;
10222 	int ret;
10223 	int index;
10224 	int factor;
10225 	struct btrfs_caching_control *caching_ctl = NULL;
10226 	bool remove_em;
10227 
10228 	root = root->fs_info->extent_root;
10229 
10230 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10231 	BUG_ON(!block_group);
10232 	BUG_ON(!block_group->ro);
10233 
10234 	/*
10235 	 * Free the reserved super bytes from this block group before
10236 	 * remove it.
10237 	 */
10238 	free_excluded_extents(root, block_group);
10239 
10240 	memcpy(&key, &block_group->key, sizeof(key));
10241 	index = get_block_group_index(block_group);
10242 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10243 				  BTRFS_BLOCK_GROUP_RAID1 |
10244 				  BTRFS_BLOCK_GROUP_RAID10))
10245 		factor = 2;
10246 	else
10247 		factor = 1;
10248 
10249 	/* make sure this block group isn't part of an allocation cluster */
10250 	cluster = &root->fs_info->data_alloc_cluster;
10251 	spin_lock(&cluster->refill_lock);
10252 	btrfs_return_cluster_to_free_space(block_group, cluster);
10253 	spin_unlock(&cluster->refill_lock);
10254 
10255 	/*
10256 	 * make sure this block group isn't part of a metadata
10257 	 * allocation cluster
10258 	 */
10259 	cluster = &root->fs_info->meta_alloc_cluster;
10260 	spin_lock(&cluster->refill_lock);
10261 	btrfs_return_cluster_to_free_space(block_group, cluster);
10262 	spin_unlock(&cluster->refill_lock);
10263 
10264 	path = btrfs_alloc_path();
10265 	if (!path) {
10266 		ret = -ENOMEM;
10267 		goto out;
10268 	}
10269 
10270 	/*
10271 	 * get the inode first so any iput calls done for the io_list
10272 	 * aren't the final iput (no unlinks allowed now)
10273 	 */
10274 	inode = lookup_free_space_inode(tree_root, block_group, path);
10275 
10276 	mutex_lock(&trans->transaction->cache_write_mutex);
10277 	/*
10278 	 * make sure our free spache cache IO is done before remove the
10279 	 * free space inode
10280 	 */
10281 	spin_lock(&trans->transaction->dirty_bgs_lock);
10282 	if (!list_empty(&block_group->io_list)) {
10283 		list_del_init(&block_group->io_list);
10284 
10285 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10286 
10287 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10288 		btrfs_wait_cache_io(root, trans, block_group,
10289 				    &block_group->io_ctl, path,
10290 				    block_group->key.objectid);
10291 		btrfs_put_block_group(block_group);
10292 		spin_lock(&trans->transaction->dirty_bgs_lock);
10293 	}
10294 
10295 	if (!list_empty(&block_group->dirty_list)) {
10296 		list_del_init(&block_group->dirty_list);
10297 		btrfs_put_block_group(block_group);
10298 	}
10299 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10300 	mutex_unlock(&trans->transaction->cache_write_mutex);
10301 
10302 	if (!IS_ERR(inode)) {
10303 		ret = btrfs_orphan_add(trans, inode);
10304 		if (ret) {
10305 			btrfs_add_delayed_iput(inode);
10306 			goto out;
10307 		}
10308 		clear_nlink(inode);
10309 		/* One for the block groups ref */
10310 		spin_lock(&block_group->lock);
10311 		if (block_group->iref) {
10312 			block_group->iref = 0;
10313 			block_group->inode = NULL;
10314 			spin_unlock(&block_group->lock);
10315 			iput(inode);
10316 		} else {
10317 			spin_unlock(&block_group->lock);
10318 		}
10319 		/* One for our lookup ref */
10320 		btrfs_add_delayed_iput(inode);
10321 	}
10322 
10323 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10324 	key.offset = block_group->key.objectid;
10325 	key.type = 0;
10326 
10327 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10328 	if (ret < 0)
10329 		goto out;
10330 	if (ret > 0)
10331 		btrfs_release_path(path);
10332 	if (ret == 0) {
10333 		ret = btrfs_del_item(trans, tree_root, path);
10334 		if (ret)
10335 			goto out;
10336 		btrfs_release_path(path);
10337 	}
10338 
10339 	spin_lock(&root->fs_info->block_group_cache_lock);
10340 	rb_erase(&block_group->cache_node,
10341 		 &root->fs_info->block_group_cache_tree);
10342 	RB_CLEAR_NODE(&block_group->cache_node);
10343 
10344 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10345 		root->fs_info->first_logical_byte = (u64)-1;
10346 	spin_unlock(&root->fs_info->block_group_cache_lock);
10347 
10348 	down_write(&block_group->space_info->groups_sem);
10349 	/*
10350 	 * we must use list_del_init so people can check to see if they
10351 	 * are still on the list after taking the semaphore
10352 	 */
10353 	list_del_init(&block_group->list);
10354 	if (list_empty(&block_group->space_info->block_groups[index])) {
10355 		kobj = block_group->space_info->block_group_kobjs[index];
10356 		block_group->space_info->block_group_kobjs[index] = NULL;
10357 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10358 	}
10359 	up_write(&block_group->space_info->groups_sem);
10360 	if (kobj) {
10361 		kobject_del(kobj);
10362 		kobject_put(kobj);
10363 	}
10364 
10365 	if (block_group->has_caching_ctl)
10366 		caching_ctl = get_caching_control(block_group);
10367 	if (block_group->cached == BTRFS_CACHE_STARTED)
10368 		wait_block_group_cache_done(block_group);
10369 	if (block_group->has_caching_ctl) {
10370 		down_write(&root->fs_info->commit_root_sem);
10371 		if (!caching_ctl) {
10372 			struct btrfs_caching_control *ctl;
10373 
10374 			list_for_each_entry(ctl,
10375 				    &root->fs_info->caching_block_groups, list)
10376 				if (ctl->block_group == block_group) {
10377 					caching_ctl = ctl;
10378 					atomic_inc(&caching_ctl->count);
10379 					break;
10380 				}
10381 		}
10382 		if (caching_ctl)
10383 			list_del_init(&caching_ctl->list);
10384 		up_write(&root->fs_info->commit_root_sem);
10385 		if (caching_ctl) {
10386 			/* Once for the caching bgs list and once for us. */
10387 			put_caching_control(caching_ctl);
10388 			put_caching_control(caching_ctl);
10389 		}
10390 	}
10391 
10392 	spin_lock(&trans->transaction->dirty_bgs_lock);
10393 	if (!list_empty(&block_group->dirty_list)) {
10394 		WARN_ON(1);
10395 	}
10396 	if (!list_empty(&block_group->io_list)) {
10397 		WARN_ON(1);
10398 	}
10399 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10400 	btrfs_remove_free_space_cache(block_group);
10401 
10402 	spin_lock(&block_group->space_info->lock);
10403 	list_del_init(&block_group->ro_list);
10404 
10405 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10406 		WARN_ON(block_group->space_info->total_bytes
10407 			< block_group->key.offset);
10408 		WARN_ON(block_group->space_info->bytes_readonly
10409 			< block_group->key.offset);
10410 		WARN_ON(block_group->space_info->disk_total
10411 			< block_group->key.offset * factor);
10412 	}
10413 	block_group->space_info->total_bytes -= block_group->key.offset;
10414 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10415 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10416 
10417 	spin_unlock(&block_group->space_info->lock);
10418 
10419 	memcpy(&key, &block_group->key, sizeof(key));
10420 
10421 	lock_chunks(root);
10422 	if (!list_empty(&em->list)) {
10423 		/* We're in the transaction->pending_chunks list. */
10424 		free_extent_map(em);
10425 	}
10426 	spin_lock(&block_group->lock);
10427 	block_group->removed = 1;
10428 	/*
10429 	 * At this point trimming can't start on this block group, because we
10430 	 * removed the block group from the tree fs_info->block_group_cache_tree
10431 	 * so no one can't find it anymore and even if someone already got this
10432 	 * block group before we removed it from the rbtree, they have already
10433 	 * incremented block_group->trimming - if they didn't, they won't find
10434 	 * any free space entries because we already removed them all when we
10435 	 * called btrfs_remove_free_space_cache().
10436 	 *
10437 	 * And we must not remove the extent map from the fs_info->mapping_tree
10438 	 * to prevent the same logical address range and physical device space
10439 	 * ranges from being reused for a new block group. This is because our
10440 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10441 	 * completely transactionless, so while it is trimming a range the
10442 	 * currently running transaction might finish and a new one start,
10443 	 * allowing for new block groups to be created that can reuse the same
10444 	 * physical device locations unless we take this special care.
10445 	 *
10446 	 * There may also be an implicit trim operation if the file system
10447 	 * is mounted with -odiscard. The same protections must remain
10448 	 * in place until the extents have been discarded completely when
10449 	 * the transaction commit has completed.
10450 	 */
10451 	remove_em = (atomic_read(&block_group->trimming) == 0);
10452 	/*
10453 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10454 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10455 	 * before checking block_group->removed).
10456 	 */
10457 	if (!remove_em) {
10458 		/*
10459 		 * Our em might be in trans->transaction->pending_chunks which
10460 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10461 		 * and so is the fs_info->pinned_chunks list.
10462 		 *
10463 		 * So at this point we must be holding the chunk_mutex to avoid
10464 		 * any races with chunk allocation (more specifically at
10465 		 * volumes.c:contains_pending_extent()), to ensure it always
10466 		 * sees the em, either in the pending_chunks list or in the
10467 		 * pinned_chunks list.
10468 		 */
10469 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10470 	}
10471 	spin_unlock(&block_group->lock);
10472 
10473 	if (remove_em) {
10474 		struct extent_map_tree *em_tree;
10475 
10476 		em_tree = &root->fs_info->mapping_tree.map_tree;
10477 		write_lock(&em_tree->lock);
10478 		/*
10479 		 * The em might be in the pending_chunks list, so make sure the
10480 		 * chunk mutex is locked, since remove_extent_mapping() will
10481 		 * delete us from that list.
10482 		 */
10483 		remove_extent_mapping(em_tree, em);
10484 		write_unlock(&em_tree->lock);
10485 		/* once for the tree */
10486 		free_extent_map(em);
10487 	}
10488 
10489 	unlock_chunks(root);
10490 
10491 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10492 	if (ret)
10493 		goto out;
10494 
10495 	btrfs_put_block_group(block_group);
10496 	btrfs_put_block_group(block_group);
10497 
10498 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10499 	if (ret > 0)
10500 		ret = -EIO;
10501 	if (ret < 0)
10502 		goto out;
10503 
10504 	ret = btrfs_del_item(trans, root, path);
10505 out:
10506 	btrfs_free_path(path);
10507 	return ret;
10508 }
10509 
10510 struct btrfs_trans_handle *
10511 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10512 				     const u64 chunk_offset)
10513 {
10514 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10515 	struct extent_map *em;
10516 	struct map_lookup *map;
10517 	unsigned int num_items;
10518 
10519 	read_lock(&em_tree->lock);
10520 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10521 	read_unlock(&em_tree->lock);
10522 	ASSERT(em && em->start == chunk_offset);
10523 
10524 	/*
10525 	 * We need to reserve 3 + N units from the metadata space info in order
10526 	 * to remove a block group (done at btrfs_remove_chunk() and at
10527 	 * btrfs_remove_block_group()), which are used for:
10528 	 *
10529 	 * 1 unit for adding the free space inode's orphan (located in the tree
10530 	 * of tree roots).
10531 	 * 1 unit for deleting the block group item (located in the extent
10532 	 * tree).
10533 	 * 1 unit for deleting the free space item (located in tree of tree
10534 	 * roots).
10535 	 * N units for deleting N device extent items corresponding to each
10536 	 * stripe (located in the device tree).
10537 	 *
10538 	 * In order to remove a block group we also need to reserve units in the
10539 	 * system space info in order to update the chunk tree (update one or
10540 	 * more device items and remove one chunk item), but this is done at
10541 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10542 	 */
10543 	map = em->map_lookup;
10544 	num_items = 3 + map->num_stripes;
10545 	free_extent_map(em);
10546 
10547 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10548 							   num_items, 1);
10549 }
10550 
10551 /*
10552  * Process the unused_bgs list and remove any that don't have any allocated
10553  * space inside of them.
10554  */
10555 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10556 {
10557 	struct btrfs_block_group_cache *block_group;
10558 	struct btrfs_space_info *space_info;
10559 	struct btrfs_root *root = fs_info->extent_root;
10560 	struct btrfs_trans_handle *trans;
10561 	int ret = 0;
10562 
10563 	if (!fs_info->open)
10564 		return;
10565 
10566 	spin_lock(&fs_info->unused_bgs_lock);
10567 	while (!list_empty(&fs_info->unused_bgs)) {
10568 		u64 start, end;
10569 		int trimming;
10570 
10571 		block_group = list_first_entry(&fs_info->unused_bgs,
10572 					       struct btrfs_block_group_cache,
10573 					       bg_list);
10574 		list_del_init(&block_group->bg_list);
10575 
10576 		space_info = block_group->space_info;
10577 
10578 		if (ret || btrfs_mixed_space_info(space_info)) {
10579 			btrfs_put_block_group(block_group);
10580 			continue;
10581 		}
10582 		spin_unlock(&fs_info->unused_bgs_lock);
10583 
10584 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10585 
10586 		/* Don't want to race with allocators so take the groups_sem */
10587 		down_write(&space_info->groups_sem);
10588 		spin_lock(&block_group->lock);
10589 		if (block_group->reserved ||
10590 		    btrfs_block_group_used(&block_group->item) ||
10591 		    block_group->ro ||
10592 		    list_is_singular(&block_group->list)) {
10593 			/*
10594 			 * We want to bail if we made new allocations or have
10595 			 * outstanding allocations in this block group.  We do
10596 			 * the ro check in case balance is currently acting on
10597 			 * this block group.
10598 			 */
10599 			spin_unlock(&block_group->lock);
10600 			up_write(&space_info->groups_sem);
10601 			goto next;
10602 		}
10603 		spin_unlock(&block_group->lock);
10604 
10605 		/* We don't want to force the issue, only flip if it's ok. */
10606 		ret = inc_block_group_ro(block_group, 0);
10607 		up_write(&space_info->groups_sem);
10608 		if (ret < 0) {
10609 			ret = 0;
10610 			goto next;
10611 		}
10612 
10613 		/*
10614 		 * Want to do this before we do anything else so we can recover
10615 		 * properly if we fail to join the transaction.
10616 		 */
10617 		trans = btrfs_start_trans_remove_block_group(fs_info,
10618 						     block_group->key.objectid);
10619 		if (IS_ERR(trans)) {
10620 			btrfs_dec_block_group_ro(root, block_group);
10621 			ret = PTR_ERR(trans);
10622 			goto next;
10623 		}
10624 
10625 		/*
10626 		 * We could have pending pinned extents for this block group,
10627 		 * just delete them, we don't care about them anymore.
10628 		 */
10629 		start = block_group->key.objectid;
10630 		end = start + block_group->key.offset - 1;
10631 		/*
10632 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10633 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10634 		 * another task might be running finish_extent_commit() for the
10635 		 * previous transaction N - 1, and have seen a range belonging
10636 		 * to the block group in freed_extents[] before we were able to
10637 		 * clear the whole block group range from freed_extents[]. This
10638 		 * means that task can lookup for the block group after we
10639 		 * unpinned it from freed_extents[] and removed it, leading to
10640 		 * a BUG_ON() at btrfs_unpin_extent_range().
10641 		 */
10642 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10643 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10644 				  EXTENT_DIRTY);
10645 		if (ret) {
10646 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10647 			btrfs_dec_block_group_ro(root, block_group);
10648 			goto end_trans;
10649 		}
10650 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10651 				  EXTENT_DIRTY);
10652 		if (ret) {
10653 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10654 			btrfs_dec_block_group_ro(root, block_group);
10655 			goto end_trans;
10656 		}
10657 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10658 
10659 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10660 		spin_lock(&space_info->lock);
10661 		spin_lock(&block_group->lock);
10662 
10663 		space_info->bytes_pinned -= block_group->pinned;
10664 		space_info->bytes_readonly += block_group->pinned;
10665 		percpu_counter_add(&space_info->total_bytes_pinned,
10666 				   -block_group->pinned);
10667 		block_group->pinned = 0;
10668 
10669 		spin_unlock(&block_group->lock);
10670 		spin_unlock(&space_info->lock);
10671 
10672 		/* DISCARD can flip during remount */
10673 		trimming = btrfs_test_opt(root, DISCARD);
10674 
10675 		/* Implicit trim during transaction commit. */
10676 		if (trimming)
10677 			btrfs_get_block_group_trimming(block_group);
10678 
10679 		/*
10680 		 * Btrfs_remove_chunk will abort the transaction if things go
10681 		 * horribly wrong.
10682 		 */
10683 		ret = btrfs_remove_chunk(trans, root,
10684 					 block_group->key.objectid);
10685 
10686 		if (ret) {
10687 			if (trimming)
10688 				btrfs_put_block_group_trimming(block_group);
10689 			goto end_trans;
10690 		}
10691 
10692 		/*
10693 		 * If we're not mounted with -odiscard, we can just forget
10694 		 * about this block group. Otherwise we'll need to wait
10695 		 * until transaction commit to do the actual discard.
10696 		 */
10697 		if (trimming) {
10698 			spin_lock(&fs_info->unused_bgs_lock);
10699 			/*
10700 			 * A concurrent scrub might have added us to the list
10701 			 * fs_info->unused_bgs, so use a list_move operation
10702 			 * to add the block group to the deleted_bgs list.
10703 			 */
10704 			list_move(&block_group->bg_list,
10705 				  &trans->transaction->deleted_bgs);
10706 			spin_unlock(&fs_info->unused_bgs_lock);
10707 			btrfs_get_block_group(block_group);
10708 		}
10709 end_trans:
10710 		btrfs_end_transaction(trans, root);
10711 next:
10712 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10713 		btrfs_put_block_group(block_group);
10714 		spin_lock(&fs_info->unused_bgs_lock);
10715 	}
10716 	spin_unlock(&fs_info->unused_bgs_lock);
10717 }
10718 
10719 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10720 {
10721 	struct btrfs_space_info *space_info;
10722 	struct btrfs_super_block *disk_super;
10723 	u64 features;
10724 	u64 flags;
10725 	int mixed = 0;
10726 	int ret;
10727 
10728 	disk_super = fs_info->super_copy;
10729 	if (!btrfs_super_root(disk_super))
10730 		return -EINVAL;
10731 
10732 	features = btrfs_super_incompat_flags(disk_super);
10733 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10734 		mixed = 1;
10735 
10736 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10737 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10738 	if (ret)
10739 		goto out;
10740 
10741 	if (mixed) {
10742 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10743 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10744 	} else {
10745 		flags = BTRFS_BLOCK_GROUP_METADATA;
10746 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10747 		if (ret)
10748 			goto out;
10749 
10750 		flags = BTRFS_BLOCK_GROUP_DATA;
10751 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10752 	}
10753 out:
10754 	return ret;
10755 }
10756 
10757 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10758 {
10759 	return unpin_extent_range(root, start, end, false);
10760 }
10761 
10762 /*
10763  * It used to be that old block groups would be left around forever.
10764  * Iterating over them would be enough to trim unused space.  Since we
10765  * now automatically remove them, we also need to iterate over unallocated
10766  * space.
10767  *
10768  * We don't want a transaction for this since the discard may take a
10769  * substantial amount of time.  We don't require that a transaction be
10770  * running, but we do need to take a running transaction into account
10771  * to ensure that we're not discarding chunks that were released in
10772  * the current transaction.
10773  *
10774  * Holding the chunks lock will prevent other threads from allocating
10775  * or releasing chunks, but it won't prevent a running transaction
10776  * from committing and releasing the memory that the pending chunks
10777  * list head uses.  For that, we need to take a reference to the
10778  * transaction.
10779  */
10780 static int btrfs_trim_free_extents(struct btrfs_device *device,
10781 				   u64 minlen, u64 *trimmed)
10782 {
10783 	u64 start = 0, len = 0;
10784 	int ret;
10785 
10786 	*trimmed = 0;
10787 
10788 	/* Not writeable = nothing to do. */
10789 	if (!device->writeable)
10790 		return 0;
10791 
10792 	/* No free space = nothing to do. */
10793 	if (device->total_bytes <= device->bytes_used)
10794 		return 0;
10795 
10796 	ret = 0;
10797 
10798 	while (1) {
10799 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10800 		struct btrfs_transaction *trans;
10801 		u64 bytes;
10802 
10803 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10804 		if (ret)
10805 			return ret;
10806 
10807 		down_read(&fs_info->commit_root_sem);
10808 
10809 		spin_lock(&fs_info->trans_lock);
10810 		trans = fs_info->running_transaction;
10811 		if (trans)
10812 			atomic_inc(&trans->use_count);
10813 		spin_unlock(&fs_info->trans_lock);
10814 
10815 		ret = find_free_dev_extent_start(trans, device, minlen, start,
10816 						 &start, &len);
10817 		if (trans)
10818 			btrfs_put_transaction(trans);
10819 
10820 		if (ret) {
10821 			up_read(&fs_info->commit_root_sem);
10822 			mutex_unlock(&fs_info->chunk_mutex);
10823 			if (ret == -ENOSPC)
10824 				ret = 0;
10825 			break;
10826 		}
10827 
10828 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10829 		up_read(&fs_info->commit_root_sem);
10830 		mutex_unlock(&fs_info->chunk_mutex);
10831 
10832 		if (ret)
10833 			break;
10834 
10835 		start += len;
10836 		*trimmed += bytes;
10837 
10838 		if (fatal_signal_pending(current)) {
10839 			ret = -ERESTARTSYS;
10840 			break;
10841 		}
10842 
10843 		cond_resched();
10844 	}
10845 
10846 	return ret;
10847 }
10848 
10849 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10850 {
10851 	struct btrfs_fs_info *fs_info = root->fs_info;
10852 	struct btrfs_block_group_cache *cache = NULL;
10853 	struct btrfs_device *device;
10854 	struct list_head *devices;
10855 	u64 group_trimmed;
10856 	u64 start;
10857 	u64 end;
10858 	u64 trimmed = 0;
10859 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10860 	int ret = 0;
10861 
10862 	/*
10863 	 * try to trim all FS space, our block group may start from non-zero.
10864 	 */
10865 	if (range->len == total_bytes)
10866 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10867 	else
10868 		cache = btrfs_lookup_block_group(fs_info, range->start);
10869 
10870 	while (cache) {
10871 		if (cache->key.objectid >= (range->start + range->len)) {
10872 			btrfs_put_block_group(cache);
10873 			break;
10874 		}
10875 
10876 		start = max(range->start, cache->key.objectid);
10877 		end = min(range->start + range->len,
10878 				cache->key.objectid + cache->key.offset);
10879 
10880 		if (end - start >= range->minlen) {
10881 			if (!block_group_cache_done(cache)) {
10882 				ret = cache_block_group(cache, 0);
10883 				if (ret) {
10884 					btrfs_put_block_group(cache);
10885 					break;
10886 				}
10887 				ret = wait_block_group_cache_done(cache);
10888 				if (ret) {
10889 					btrfs_put_block_group(cache);
10890 					break;
10891 				}
10892 			}
10893 			ret = btrfs_trim_block_group(cache,
10894 						     &group_trimmed,
10895 						     start,
10896 						     end,
10897 						     range->minlen);
10898 
10899 			trimmed += group_trimmed;
10900 			if (ret) {
10901 				btrfs_put_block_group(cache);
10902 				break;
10903 			}
10904 		}
10905 
10906 		cache = next_block_group(fs_info->tree_root, cache);
10907 	}
10908 
10909 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10910 	devices = &root->fs_info->fs_devices->alloc_list;
10911 	list_for_each_entry(device, devices, dev_alloc_list) {
10912 		ret = btrfs_trim_free_extents(device, range->minlen,
10913 					      &group_trimmed);
10914 		if (ret)
10915 			break;
10916 
10917 		trimmed += group_trimmed;
10918 	}
10919 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10920 
10921 	range->len = trimmed;
10922 	return ret;
10923 }
10924 
10925 /*
10926  * btrfs_{start,end}_write_no_snapshoting() are similar to
10927  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10928  * data into the page cache through nocow before the subvolume is snapshoted,
10929  * but flush the data into disk after the snapshot creation, or to prevent
10930  * operations while snapshoting is ongoing and that cause the snapshot to be
10931  * inconsistent (writes followed by expanding truncates for example).
10932  */
10933 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10934 {
10935 	percpu_counter_dec(&root->subv_writers->counter);
10936 	/*
10937 	 * Make sure counter is updated before we wake up waiters.
10938 	 */
10939 	smp_mb();
10940 	if (waitqueue_active(&root->subv_writers->wait))
10941 		wake_up(&root->subv_writers->wait);
10942 }
10943 
10944 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10945 {
10946 	if (atomic_read(&root->will_be_snapshoted))
10947 		return 0;
10948 
10949 	percpu_counter_inc(&root->subv_writers->counter);
10950 	/*
10951 	 * Make sure counter is updated before we check for snapshot creation.
10952 	 */
10953 	smp_mb();
10954 	if (atomic_read(&root->will_be_snapshoted)) {
10955 		btrfs_end_write_no_snapshoting(root);
10956 		return 0;
10957 	}
10958 	return 1;
10959 }
10960 
10961 static int wait_snapshoting_atomic_t(atomic_t *a)
10962 {
10963 	schedule();
10964 	return 0;
10965 }
10966 
10967 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10968 {
10969 	while (true) {
10970 		int ret;
10971 
10972 		ret = btrfs_start_write_no_snapshoting(root);
10973 		if (ret)
10974 			break;
10975 		wait_on_atomic_t(&root->will_be_snapshoted,
10976 				 wait_snapshoting_atomic_t,
10977 				 TASK_UNINTERRUPTIBLE);
10978 	}
10979 }
10980