1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include "compat.h" 28 #include "hash.h" 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "transaction.h" 33 #include "volumes.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 37 /* 38 * control flags for do_chunk_alloc's force field 39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 40 * if we really need one. 41 * 42 * CHUNK_ALLOC_LIMITED means to only try and allocate one 43 * if we have very few chunks already allocated. This is 44 * used as part of the clustering code to help make sure 45 * we have a good pool of storage to cluster in, without 46 * filling the FS with empty chunks 47 * 48 * CHUNK_ALLOC_FORCE means it must try to allocate one 49 * 50 */ 51 enum { 52 CHUNK_ALLOC_NO_FORCE = 0, 53 CHUNK_ALLOC_LIMITED = 1, 54 CHUNK_ALLOC_FORCE = 2, 55 }; 56 57 /* 58 * Control how reservations are dealt with. 59 * 60 * RESERVE_FREE - freeing a reservation. 61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 62 * ENOSPC accounting 63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 64 * bytes_may_use as the ENOSPC accounting is done elsewhere 65 */ 66 enum { 67 RESERVE_FREE = 0, 68 RESERVE_ALLOC = 1, 69 RESERVE_ALLOC_NO_ACCOUNT = 2, 70 }; 71 72 static int update_block_group(struct btrfs_trans_handle *trans, 73 struct btrfs_root *root, 74 u64 bytenr, u64 num_bytes, int alloc); 75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 76 struct btrfs_root *root, 77 u64 bytenr, u64 num_bytes, u64 parent, 78 u64 root_objectid, u64 owner_objectid, 79 u64 owner_offset, int refs_to_drop, 80 struct btrfs_delayed_extent_op *extra_op); 81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 82 struct extent_buffer *leaf, 83 struct btrfs_extent_item *ei); 84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 85 struct btrfs_root *root, 86 u64 parent, u64 root_objectid, 87 u64 flags, u64 owner, u64 offset, 88 struct btrfs_key *ins, int ref_mod); 89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, struct btrfs_disk_key *key, 93 int level, struct btrfs_key *ins); 94 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 95 struct btrfs_root *extent_root, u64 alloc_bytes, 96 u64 flags, int force); 97 static int find_next_key(struct btrfs_path *path, int level, 98 struct btrfs_key *key); 99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 100 int dump_block_groups); 101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 102 u64 num_bytes, int reserve); 103 104 static noinline int 105 block_group_cache_done(struct btrfs_block_group_cache *cache) 106 { 107 smp_mb(); 108 return cache->cached == BTRFS_CACHE_FINISHED; 109 } 110 111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 112 { 113 return (cache->flags & bits) == bits; 114 } 115 116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 117 { 118 atomic_inc(&cache->count); 119 } 120 121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 122 { 123 if (atomic_dec_and_test(&cache->count)) { 124 WARN_ON(cache->pinned > 0); 125 WARN_ON(cache->reserved > 0); 126 kfree(cache->free_space_ctl); 127 kfree(cache); 128 } 129 } 130 131 /* 132 * this adds the block group to the fs_info rb tree for the block group 133 * cache 134 */ 135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 136 struct btrfs_block_group_cache *block_group) 137 { 138 struct rb_node **p; 139 struct rb_node *parent = NULL; 140 struct btrfs_block_group_cache *cache; 141 142 spin_lock(&info->block_group_cache_lock); 143 p = &info->block_group_cache_tree.rb_node; 144 145 while (*p) { 146 parent = *p; 147 cache = rb_entry(parent, struct btrfs_block_group_cache, 148 cache_node); 149 if (block_group->key.objectid < cache->key.objectid) { 150 p = &(*p)->rb_left; 151 } else if (block_group->key.objectid > cache->key.objectid) { 152 p = &(*p)->rb_right; 153 } else { 154 spin_unlock(&info->block_group_cache_lock); 155 return -EEXIST; 156 } 157 } 158 159 rb_link_node(&block_group->cache_node, parent, p); 160 rb_insert_color(&block_group->cache_node, 161 &info->block_group_cache_tree); 162 spin_unlock(&info->block_group_cache_lock); 163 164 return 0; 165 } 166 167 /* 168 * This will return the block group at or after bytenr if contains is 0, else 169 * it will return the block group that contains the bytenr 170 */ 171 static struct btrfs_block_group_cache * 172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 173 int contains) 174 { 175 struct btrfs_block_group_cache *cache, *ret = NULL; 176 struct rb_node *n; 177 u64 end, start; 178 179 spin_lock(&info->block_group_cache_lock); 180 n = info->block_group_cache_tree.rb_node; 181 182 while (n) { 183 cache = rb_entry(n, struct btrfs_block_group_cache, 184 cache_node); 185 end = cache->key.objectid + cache->key.offset - 1; 186 start = cache->key.objectid; 187 188 if (bytenr < start) { 189 if (!contains && (!ret || start < ret->key.objectid)) 190 ret = cache; 191 n = n->rb_left; 192 } else if (bytenr > start) { 193 if (contains && bytenr <= end) { 194 ret = cache; 195 break; 196 } 197 n = n->rb_right; 198 } else { 199 ret = cache; 200 break; 201 } 202 } 203 if (ret) 204 btrfs_get_block_group(ret); 205 spin_unlock(&info->block_group_cache_lock); 206 207 return ret; 208 } 209 210 static int add_excluded_extent(struct btrfs_root *root, 211 u64 start, u64 num_bytes) 212 { 213 u64 end = start + num_bytes - 1; 214 set_extent_bits(&root->fs_info->freed_extents[0], 215 start, end, EXTENT_UPTODATE, GFP_NOFS); 216 set_extent_bits(&root->fs_info->freed_extents[1], 217 start, end, EXTENT_UPTODATE, GFP_NOFS); 218 return 0; 219 } 220 221 static void free_excluded_extents(struct btrfs_root *root, 222 struct btrfs_block_group_cache *cache) 223 { 224 u64 start, end; 225 226 start = cache->key.objectid; 227 end = start + cache->key.offset - 1; 228 229 clear_extent_bits(&root->fs_info->freed_extents[0], 230 start, end, EXTENT_UPTODATE, GFP_NOFS); 231 clear_extent_bits(&root->fs_info->freed_extents[1], 232 start, end, EXTENT_UPTODATE, GFP_NOFS); 233 } 234 235 static int exclude_super_stripes(struct btrfs_root *root, 236 struct btrfs_block_group_cache *cache) 237 { 238 u64 bytenr; 239 u64 *logical; 240 int stripe_len; 241 int i, nr, ret; 242 243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 245 cache->bytes_super += stripe_len; 246 ret = add_excluded_extent(root, cache->key.objectid, 247 stripe_len); 248 BUG_ON(ret); 249 } 250 251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 252 bytenr = btrfs_sb_offset(i); 253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 254 cache->key.objectid, bytenr, 255 0, &logical, &nr, &stripe_len); 256 BUG_ON(ret); 257 258 while (nr--) { 259 cache->bytes_super += stripe_len; 260 ret = add_excluded_extent(root, logical[nr], 261 stripe_len); 262 BUG_ON(ret); 263 } 264 265 kfree(logical); 266 } 267 return 0; 268 } 269 270 static struct btrfs_caching_control * 271 get_caching_control(struct btrfs_block_group_cache *cache) 272 { 273 struct btrfs_caching_control *ctl; 274 275 spin_lock(&cache->lock); 276 if (cache->cached != BTRFS_CACHE_STARTED) { 277 spin_unlock(&cache->lock); 278 return NULL; 279 } 280 281 /* We're loading it the fast way, so we don't have a caching_ctl. */ 282 if (!cache->caching_ctl) { 283 spin_unlock(&cache->lock); 284 return NULL; 285 } 286 287 ctl = cache->caching_ctl; 288 atomic_inc(&ctl->count); 289 spin_unlock(&cache->lock); 290 return ctl; 291 } 292 293 static void put_caching_control(struct btrfs_caching_control *ctl) 294 { 295 if (atomic_dec_and_test(&ctl->count)) 296 kfree(ctl); 297 } 298 299 /* 300 * this is only called by cache_block_group, since we could have freed extents 301 * we need to check the pinned_extents for any extents that can't be used yet 302 * since their free space will be released as soon as the transaction commits. 303 */ 304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 305 struct btrfs_fs_info *info, u64 start, u64 end) 306 { 307 u64 extent_start, extent_end, size, total_added = 0; 308 int ret; 309 310 while (start < end) { 311 ret = find_first_extent_bit(info->pinned_extents, start, 312 &extent_start, &extent_end, 313 EXTENT_DIRTY | EXTENT_UPTODATE); 314 if (ret) 315 break; 316 317 if (extent_start <= start) { 318 start = extent_end + 1; 319 } else if (extent_start > start && extent_start < end) { 320 size = extent_start - start; 321 total_added += size; 322 ret = btrfs_add_free_space(block_group, start, 323 size); 324 BUG_ON(ret); 325 start = extent_end + 1; 326 } else { 327 break; 328 } 329 } 330 331 if (start < end) { 332 size = end - start; 333 total_added += size; 334 ret = btrfs_add_free_space(block_group, start, size); 335 BUG_ON(ret); 336 } 337 338 return total_added; 339 } 340 341 static noinline void caching_thread(struct btrfs_work *work) 342 { 343 struct btrfs_block_group_cache *block_group; 344 struct btrfs_fs_info *fs_info; 345 struct btrfs_caching_control *caching_ctl; 346 struct btrfs_root *extent_root; 347 struct btrfs_path *path; 348 struct extent_buffer *leaf; 349 struct btrfs_key key; 350 u64 total_found = 0; 351 u64 last = 0; 352 u32 nritems; 353 int ret = 0; 354 355 caching_ctl = container_of(work, struct btrfs_caching_control, work); 356 block_group = caching_ctl->block_group; 357 fs_info = block_group->fs_info; 358 extent_root = fs_info->extent_root; 359 360 path = btrfs_alloc_path(); 361 if (!path) 362 goto out; 363 364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 365 366 /* 367 * We don't want to deadlock with somebody trying to allocate a new 368 * extent for the extent root while also trying to search the extent 369 * root to add free space. So we skip locking and search the commit 370 * root, since its read-only 371 */ 372 path->skip_locking = 1; 373 path->search_commit_root = 1; 374 path->reada = 1; 375 376 key.objectid = last; 377 key.offset = 0; 378 key.type = BTRFS_EXTENT_ITEM_KEY; 379 again: 380 mutex_lock(&caching_ctl->mutex); 381 /* need to make sure the commit_root doesn't disappear */ 382 down_read(&fs_info->extent_commit_sem); 383 384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 385 if (ret < 0) 386 goto err; 387 388 leaf = path->nodes[0]; 389 nritems = btrfs_header_nritems(leaf); 390 391 while (1) { 392 if (btrfs_fs_closing(fs_info) > 1) { 393 last = (u64)-1; 394 break; 395 } 396 397 if (path->slots[0] < nritems) { 398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 399 } else { 400 ret = find_next_key(path, 0, &key); 401 if (ret) 402 break; 403 404 if (need_resched() || 405 btrfs_next_leaf(extent_root, path)) { 406 caching_ctl->progress = last; 407 btrfs_release_path(path); 408 up_read(&fs_info->extent_commit_sem); 409 mutex_unlock(&caching_ctl->mutex); 410 cond_resched(); 411 goto again; 412 } 413 leaf = path->nodes[0]; 414 nritems = btrfs_header_nritems(leaf); 415 continue; 416 } 417 418 if (key.objectid < block_group->key.objectid) { 419 path->slots[0]++; 420 continue; 421 } 422 423 if (key.objectid >= block_group->key.objectid + 424 block_group->key.offset) 425 break; 426 427 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 428 total_found += add_new_free_space(block_group, 429 fs_info, last, 430 key.objectid); 431 last = key.objectid + key.offset; 432 433 if (total_found > (1024 * 1024 * 2)) { 434 total_found = 0; 435 wake_up(&caching_ctl->wait); 436 } 437 } 438 path->slots[0]++; 439 } 440 ret = 0; 441 442 total_found += add_new_free_space(block_group, fs_info, last, 443 block_group->key.objectid + 444 block_group->key.offset); 445 caching_ctl->progress = (u64)-1; 446 447 spin_lock(&block_group->lock); 448 block_group->caching_ctl = NULL; 449 block_group->cached = BTRFS_CACHE_FINISHED; 450 spin_unlock(&block_group->lock); 451 452 err: 453 btrfs_free_path(path); 454 up_read(&fs_info->extent_commit_sem); 455 456 free_excluded_extents(extent_root, block_group); 457 458 mutex_unlock(&caching_ctl->mutex); 459 out: 460 wake_up(&caching_ctl->wait); 461 462 put_caching_control(caching_ctl); 463 btrfs_put_block_group(block_group); 464 } 465 466 static int cache_block_group(struct btrfs_block_group_cache *cache, 467 struct btrfs_trans_handle *trans, 468 struct btrfs_root *root, 469 int load_cache_only) 470 { 471 DEFINE_WAIT(wait); 472 struct btrfs_fs_info *fs_info = cache->fs_info; 473 struct btrfs_caching_control *caching_ctl; 474 int ret = 0; 475 476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 477 BUG_ON(!caching_ctl); 478 479 INIT_LIST_HEAD(&caching_ctl->list); 480 mutex_init(&caching_ctl->mutex); 481 init_waitqueue_head(&caching_ctl->wait); 482 caching_ctl->block_group = cache; 483 caching_ctl->progress = cache->key.objectid; 484 atomic_set(&caching_ctl->count, 1); 485 caching_ctl->work.func = caching_thread; 486 487 spin_lock(&cache->lock); 488 /* 489 * This should be a rare occasion, but this could happen I think in the 490 * case where one thread starts to load the space cache info, and then 491 * some other thread starts a transaction commit which tries to do an 492 * allocation while the other thread is still loading the space cache 493 * info. The previous loop should have kept us from choosing this block 494 * group, but if we've moved to the state where we will wait on caching 495 * block groups we need to first check if we're doing a fast load here, 496 * so we can wait for it to finish, otherwise we could end up allocating 497 * from a block group who's cache gets evicted for one reason or 498 * another. 499 */ 500 while (cache->cached == BTRFS_CACHE_FAST) { 501 struct btrfs_caching_control *ctl; 502 503 ctl = cache->caching_ctl; 504 atomic_inc(&ctl->count); 505 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 506 spin_unlock(&cache->lock); 507 508 schedule(); 509 510 finish_wait(&ctl->wait, &wait); 511 put_caching_control(ctl); 512 spin_lock(&cache->lock); 513 } 514 515 if (cache->cached != BTRFS_CACHE_NO) { 516 spin_unlock(&cache->lock); 517 kfree(caching_ctl); 518 return 0; 519 } 520 WARN_ON(cache->caching_ctl); 521 cache->caching_ctl = caching_ctl; 522 cache->cached = BTRFS_CACHE_FAST; 523 spin_unlock(&cache->lock); 524 525 /* 526 * We can't do the read from on-disk cache during a commit since we need 527 * to have the normal tree locking. Also if we are currently trying to 528 * allocate blocks for the tree root we can't do the fast caching since 529 * we likely hold important locks. 530 */ 531 if (trans && (!trans->transaction->in_commit) && 532 (root && root != root->fs_info->tree_root) && 533 btrfs_test_opt(root, SPACE_CACHE)) { 534 ret = load_free_space_cache(fs_info, cache); 535 536 spin_lock(&cache->lock); 537 if (ret == 1) { 538 cache->caching_ctl = NULL; 539 cache->cached = BTRFS_CACHE_FINISHED; 540 cache->last_byte_to_unpin = (u64)-1; 541 } else { 542 if (load_cache_only) { 543 cache->caching_ctl = NULL; 544 cache->cached = BTRFS_CACHE_NO; 545 } else { 546 cache->cached = BTRFS_CACHE_STARTED; 547 } 548 } 549 spin_unlock(&cache->lock); 550 wake_up(&caching_ctl->wait); 551 if (ret == 1) { 552 put_caching_control(caching_ctl); 553 free_excluded_extents(fs_info->extent_root, cache); 554 return 0; 555 } 556 } else { 557 /* 558 * We are not going to do the fast caching, set cached to the 559 * appropriate value and wakeup any waiters. 560 */ 561 spin_lock(&cache->lock); 562 if (load_cache_only) { 563 cache->caching_ctl = NULL; 564 cache->cached = BTRFS_CACHE_NO; 565 } else { 566 cache->cached = BTRFS_CACHE_STARTED; 567 } 568 spin_unlock(&cache->lock); 569 wake_up(&caching_ctl->wait); 570 } 571 572 if (load_cache_only) { 573 put_caching_control(caching_ctl); 574 return 0; 575 } 576 577 down_write(&fs_info->extent_commit_sem); 578 atomic_inc(&caching_ctl->count); 579 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 580 up_write(&fs_info->extent_commit_sem); 581 582 btrfs_get_block_group(cache); 583 584 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work); 585 586 return ret; 587 } 588 589 /* 590 * return the block group that starts at or after bytenr 591 */ 592 static struct btrfs_block_group_cache * 593 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 594 { 595 struct btrfs_block_group_cache *cache; 596 597 cache = block_group_cache_tree_search(info, bytenr, 0); 598 599 return cache; 600 } 601 602 /* 603 * return the block group that contains the given bytenr 604 */ 605 struct btrfs_block_group_cache *btrfs_lookup_block_group( 606 struct btrfs_fs_info *info, 607 u64 bytenr) 608 { 609 struct btrfs_block_group_cache *cache; 610 611 cache = block_group_cache_tree_search(info, bytenr, 1); 612 613 return cache; 614 } 615 616 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 617 u64 flags) 618 { 619 struct list_head *head = &info->space_info; 620 struct btrfs_space_info *found; 621 622 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 623 624 rcu_read_lock(); 625 list_for_each_entry_rcu(found, head, list) { 626 if (found->flags & flags) { 627 rcu_read_unlock(); 628 return found; 629 } 630 } 631 rcu_read_unlock(); 632 return NULL; 633 } 634 635 /* 636 * after adding space to the filesystem, we need to clear the full flags 637 * on all the space infos. 638 */ 639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 640 { 641 struct list_head *head = &info->space_info; 642 struct btrfs_space_info *found; 643 644 rcu_read_lock(); 645 list_for_each_entry_rcu(found, head, list) 646 found->full = 0; 647 rcu_read_unlock(); 648 } 649 650 static u64 div_factor(u64 num, int factor) 651 { 652 if (factor == 10) 653 return num; 654 num *= factor; 655 do_div(num, 10); 656 return num; 657 } 658 659 static u64 div_factor_fine(u64 num, int factor) 660 { 661 if (factor == 100) 662 return num; 663 num *= factor; 664 do_div(num, 100); 665 return num; 666 } 667 668 u64 btrfs_find_block_group(struct btrfs_root *root, 669 u64 search_start, u64 search_hint, int owner) 670 { 671 struct btrfs_block_group_cache *cache; 672 u64 used; 673 u64 last = max(search_hint, search_start); 674 u64 group_start = 0; 675 int full_search = 0; 676 int factor = 9; 677 int wrapped = 0; 678 again: 679 while (1) { 680 cache = btrfs_lookup_first_block_group(root->fs_info, last); 681 if (!cache) 682 break; 683 684 spin_lock(&cache->lock); 685 last = cache->key.objectid + cache->key.offset; 686 used = btrfs_block_group_used(&cache->item); 687 688 if ((full_search || !cache->ro) && 689 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) { 690 if (used + cache->pinned + cache->reserved < 691 div_factor(cache->key.offset, factor)) { 692 group_start = cache->key.objectid; 693 spin_unlock(&cache->lock); 694 btrfs_put_block_group(cache); 695 goto found; 696 } 697 } 698 spin_unlock(&cache->lock); 699 btrfs_put_block_group(cache); 700 cond_resched(); 701 } 702 if (!wrapped) { 703 last = search_start; 704 wrapped = 1; 705 goto again; 706 } 707 if (!full_search && factor < 10) { 708 last = search_start; 709 full_search = 1; 710 factor = 10; 711 goto again; 712 } 713 found: 714 return group_start; 715 } 716 717 /* simple helper to search for an existing extent at a given offset */ 718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 719 { 720 int ret; 721 struct btrfs_key key; 722 struct btrfs_path *path; 723 724 path = btrfs_alloc_path(); 725 if (!path) 726 return -ENOMEM; 727 728 key.objectid = start; 729 key.offset = len; 730 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY); 731 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 732 0, 0); 733 btrfs_free_path(path); 734 return ret; 735 } 736 737 /* 738 * helper function to lookup reference count and flags of extent. 739 * 740 * the head node for delayed ref is used to store the sum of all the 741 * reference count modifications queued up in the rbtree. the head 742 * node may also store the extent flags to set. This way you can check 743 * to see what the reference count and extent flags would be if all of 744 * the delayed refs are not processed. 745 */ 746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 747 struct btrfs_root *root, u64 bytenr, 748 u64 num_bytes, u64 *refs, u64 *flags) 749 { 750 struct btrfs_delayed_ref_head *head; 751 struct btrfs_delayed_ref_root *delayed_refs; 752 struct btrfs_path *path; 753 struct btrfs_extent_item *ei; 754 struct extent_buffer *leaf; 755 struct btrfs_key key; 756 u32 item_size; 757 u64 num_refs; 758 u64 extent_flags; 759 int ret; 760 761 path = btrfs_alloc_path(); 762 if (!path) 763 return -ENOMEM; 764 765 key.objectid = bytenr; 766 key.type = BTRFS_EXTENT_ITEM_KEY; 767 key.offset = num_bytes; 768 if (!trans) { 769 path->skip_locking = 1; 770 path->search_commit_root = 1; 771 } 772 again: 773 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 774 &key, path, 0, 0); 775 if (ret < 0) 776 goto out_free; 777 778 if (ret == 0) { 779 leaf = path->nodes[0]; 780 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 781 if (item_size >= sizeof(*ei)) { 782 ei = btrfs_item_ptr(leaf, path->slots[0], 783 struct btrfs_extent_item); 784 num_refs = btrfs_extent_refs(leaf, ei); 785 extent_flags = btrfs_extent_flags(leaf, ei); 786 } else { 787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 788 struct btrfs_extent_item_v0 *ei0; 789 BUG_ON(item_size != sizeof(*ei0)); 790 ei0 = btrfs_item_ptr(leaf, path->slots[0], 791 struct btrfs_extent_item_v0); 792 num_refs = btrfs_extent_refs_v0(leaf, ei0); 793 /* FIXME: this isn't correct for data */ 794 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 795 #else 796 BUG(); 797 #endif 798 } 799 BUG_ON(num_refs == 0); 800 } else { 801 num_refs = 0; 802 extent_flags = 0; 803 ret = 0; 804 } 805 806 if (!trans) 807 goto out; 808 809 delayed_refs = &trans->transaction->delayed_refs; 810 spin_lock(&delayed_refs->lock); 811 head = btrfs_find_delayed_ref_head(trans, bytenr); 812 if (head) { 813 if (!mutex_trylock(&head->mutex)) { 814 atomic_inc(&head->node.refs); 815 spin_unlock(&delayed_refs->lock); 816 817 btrfs_release_path(path); 818 819 /* 820 * Mutex was contended, block until it's released and try 821 * again 822 */ 823 mutex_lock(&head->mutex); 824 mutex_unlock(&head->mutex); 825 btrfs_put_delayed_ref(&head->node); 826 goto again; 827 } 828 if (head->extent_op && head->extent_op->update_flags) 829 extent_flags |= head->extent_op->flags_to_set; 830 else 831 BUG_ON(num_refs == 0); 832 833 num_refs += head->node.ref_mod; 834 mutex_unlock(&head->mutex); 835 } 836 spin_unlock(&delayed_refs->lock); 837 out: 838 WARN_ON(num_refs == 0); 839 if (refs) 840 *refs = num_refs; 841 if (flags) 842 *flags = extent_flags; 843 out_free: 844 btrfs_free_path(path); 845 return ret; 846 } 847 848 /* 849 * Back reference rules. Back refs have three main goals: 850 * 851 * 1) differentiate between all holders of references to an extent so that 852 * when a reference is dropped we can make sure it was a valid reference 853 * before freeing the extent. 854 * 855 * 2) Provide enough information to quickly find the holders of an extent 856 * if we notice a given block is corrupted or bad. 857 * 858 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 859 * maintenance. This is actually the same as #2, but with a slightly 860 * different use case. 861 * 862 * There are two kinds of back refs. The implicit back refs is optimized 863 * for pointers in non-shared tree blocks. For a given pointer in a block, 864 * back refs of this kind provide information about the block's owner tree 865 * and the pointer's key. These information allow us to find the block by 866 * b-tree searching. The full back refs is for pointers in tree blocks not 867 * referenced by their owner trees. The location of tree block is recorded 868 * in the back refs. Actually the full back refs is generic, and can be 869 * used in all cases the implicit back refs is used. The major shortcoming 870 * of the full back refs is its overhead. Every time a tree block gets 871 * COWed, we have to update back refs entry for all pointers in it. 872 * 873 * For a newly allocated tree block, we use implicit back refs for 874 * pointers in it. This means most tree related operations only involve 875 * implicit back refs. For a tree block created in old transaction, the 876 * only way to drop a reference to it is COW it. So we can detect the 877 * event that tree block loses its owner tree's reference and do the 878 * back refs conversion. 879 * 880 * When a tree block is COW'd through a tree, there are four cases: 881 * 882 * The reference count of the block is one and the tree is the block's 883 * owner tree. Nothing to do in this case. 884 * 885 * The reference count of the block is one and the tree is not the 886 * block's owner tree. In this case, full back refs is used for pointers 887 * in the block. Remove these full back refs, add implicit back refs for 888 * every pointers in the new block. 889 * 890 * The reference count of the block is greater than one and the tree is 891 * the block's owner tree. In this case, implicit back refs is used for 892 * pointers in the block. Add full back refs for every pointers in the 893 * block, increase lower level extents' reference counts. The original 894 * implicit back refs are entailed to the new block. 895 * 896 * The reference count of the block is greater than one and the tree is 897 * not the block's owner tree. Add implicit back refs for every pointer in 898 * the new block, increase lower level extents' reference count. 899 * 900 * Back Reference Key composing: 901 * 902 * The key objectid corresponds to the first byte in the extent, 903 * The key type is used to differentiate between types of back refs. 904 * There are different meanings of the key offset for different types 905 * of back refs. 906 * 907 * File extents can be referenced by: 908 * 909 * - multiple snapshots, subvolumes, or different generations in one subvol 910 * - different files inside a single subvolume 911 * - different offsets inside a file (bookend extents in file.c) 912 * 913 * The extent ref structure for the implicit back refs has fields for: 914 * 915 * - Objectid of the subvolume root 916 * - objectid of the file holding the reference 917 * - original offset in the file 918 * - how many bookend extents 919 * 920 * The key offset for the implicit back refs is hash of the first 921 * three fields. 922 * 923 * The extent ref structure for the full back refs has field for: 924 * 925 * - number of pointers in the tree leaf 926 * 927 * The key offset for the implicit back refs is the first byte of 928 * the tree leaf 929 * 930 * When a file extent is allocated, The implicit back refs is used. 931 * the fields are filled in: 932 * 933 * (root_key.objectid, inode objectid, offset in file, 1) 934 * 935 * When a file extent is removed file truncation, we find the 936 * corresponding implicit back refs and check the following fields: 937 * 938 * (btrfs_header_owner(leaf), inode objectid, offset in file) 939 * 940 * Btree extents can be referenced by: 941 * 942 * - Different subvolumes 943 * 944 * Both the implicit back refs and the full back refs for tree blocks 945 * only consist of key. The key offset for the implicit back refs is 946 * objectid of block's owner tree. The key offset for the full back refs 947 * is the first byte of parent block. 948 * 949 * When implicit back refs is used, information about the lowest key and 950 * level of the tree block are required. These information are stored in 951 * tree block info structure. 952 */ 953 954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 956 struct btrfs_root *root, 957 struct btrfs_path *path, 958 u64 owner, u32 extra_size) 959 { 960 struct btrfs_extent_item *item; 961 struct btrfs_extent_item_v0 *ei0; 962 struct btrfs_extent_ref_v0 *ref0; 963 struct btrfs_tree_block_info *bi; 964 struct extent_buffer *leaf; 965 struct btrfs_key key; 966 struct btrfs_key found_key; 967 u32 new_size = sizeof(*item); 968 u64 refs; 969 int ret; 970 971 leaf = path->nodes[0]; 972 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 973 974 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 975 ei0 = btrfs_item_ptr(leaf, path->slots[0], 976 struct btrfs_extent_item_v0); 977 refs = btrfs_extent_refs_v0(leaf, ei0); 978 979 if (owner == (u64)-1) { 980 while (1) { 981 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 982 ret = btrfs_next_leaf(root, path); 983 if (ret < 0) 984 return ret; 985 BUG_ON(ret > 0); 986 leaf = path->nodes[0]; 987 } 988 btrfs_item_key_to_cpu(leaf, &found_key, 989 path->slots[0]); 990 BUG_ON(key.objectid != found_key.objectid); 991 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 992 path->slots[0]++; 993 continue; 994 } 995 ref0 = btrfs_item_ptr(leaf, path->slots[0], 996 struct btrfs_extent_ref_v0); 997 owner = btrfs_ref_objectid_v0(leaf, ref0); 998 break; 999 } 1000 } 1001 btrfs_release_path(path); 1002 1003 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1004 new_size += sizeof(*bi); 1005 1006 new_size -= sizeof(*ei0); 1007 ret = btrfs_search_slot(trans, root, &key, path, 1008 new_size + extra_size, 1); 1009 if (ret < 0) 1010 return ret; 1011 BUG_ON(ret); 1012 1013 ret = btrfs_extend_item(trans, root, path, new_size); 1014 1015 leaf = path->nodes[0]; 1016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1017 btrfs_set_extent_refs(leaf, item, refs); 1018 /* FIXME: get real generation */ 1019 btrfs_set_extent_generation(leaf, item, 0); 1020 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1021 btrfs_set_extent_flags(leaf, item, 1022 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1023 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1024 bi = (struct btrfs_tree_block_info *)(item + 1); 1025 /* FIXME: get first key of the block */ 1026 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1027 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1028 } else { 1029 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1030 } 1031 btrfs_mark_buffer_dirty(leaf); 1032 return 0; 1033 } 1034 #endif 1035 1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1037 { 1038 u32 high_crc = ~(u32)0; 1039 u32 low_crc = ~(u32)0; 1040 __le64 lenum; 1041 1042 lenum = cpu_to_le64(root_objectid); 1043 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 1044 lenum = cpu_to_le64(owner); 1045 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1046 lenum = cpu_to_le64(offset); 1047 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 1048 1049 return ((u64)high_crc << 31) ^ (u64)low_crc; 1050 } 1051 1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1053 struct btrfs_extent_data_ref *ref) 1054 { 1055 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1056 btrfs_extent_data_ref_objectid(leaf, ref), 1057 btrfs_extent_data_ref_offset(leaf, ref)); 1058 } 1059 1060 static int match_extent_data_ref(struct extent_buffer *leaf, 1061 struct btrfs_extent_data_ref *ref, 1062 u64 root_objectid, u64 owner, u64 offset) 1063 { 1064 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1065 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1066 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1067 return 0; 1068 return 1; 1069 } 1070 1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1072 struct btrfs_root *root, 1073 struct btrfs_path *path, 1074 u64 bytenr, u64 parent, 1075 u64 root_objectid, 1076 u64 owner, u64 offset) 1077 { 1078 struct btrfs_key key; 1079 struct btrfs_extent_data_ref *ref; 1080 struct extent_buffer *leaf; 1081 u32 nritems; 1082 int ret; 1083 int recow; 1084 int err = -ENOENT; 1085 1086 key.objectid = bytenr; 1087 if (parent) { 1088 key.type = BTRFS_SHARED_DATA_REF_KEY; 1089 key.offset = parent; 1090 } else { 1091 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1092 key.offset = hash_extent_data_ref(root_objectid, 1093 owner, offset); 1094 } 1095 again: 1096 recow = 0; 1097 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1098 if (ret < 0) { 1099 err = ret; 1100 goto fail; 1101 } 1102 1103 if (parent) { 1104 if (!ret) 1105 return 0; 1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1107 key.type = BTRFS_EXTENT_REF_V0_KEY; 1108 btrfs_release_path(path); 1109 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1110 if (ret < 0) { 1111 err = ret; 1112 goto fail; 1113 } 1114 if (!ret) 1115 return 0; 1116 #endif 1117 goto fail; 1118 } 1119 1120 leaf = path->nodes[0]; 1121 nritems = btrfs_header_nritems(leaf); 1122 while (1) { 1123 if (path->slots[0] >= nritems) { 1124 ret = btrfs_next_leaf(root, path); 1125 if (ret < 0) 1126 err = ret; 1127 if (ret) 1128 goto fail; 1129 1130 leaf = path->nodes[0]; 1131 nritems = btrfs_header_nritems(leaf); 1132 recow = 1; 1133 } 1134 1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1136 if (key.objectid != bytenr || 1137 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1138 goto fail; 1139 1140 ref = btrfs_item_ptr(leaf, path->slots[0], 1141 struct btrfs_extent_data_ref); 1142 1143 if (match_extent_data_ref(leaf, ref, root_objectid, 1144 owner, offset)) { 1145 if (recow) { 1146 btrfs_release_path(path); 1147 goto again; 1148 } 1149 err = 0; 1150 break; 1151 } 1152 path->slots[0]++; 1153 } 1154 fail: 1155 return err; 1156 } 1157 1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1159 struct btrfs_root *root, 1160 struct btrfs_path *path, 1161 u64 bytenr, u64 parent, 1162 u64 root_objectid, u64 owner, 1163 u64 offset, int refs_to_add) 1164 { 1165 struct btrfs_key key; 1166 struct extent_buffer *leaf; 1167 u32 size; 1168 u32 num_refs; 1169 int ret; 1170 1171 key.objectid = bytenr; 1172 if (parent) { 1173 key.type = BTRFS_SHARED_DATA_REF_KEY; 1174 key.offset = parent; 1175 size = sizeof(struct btrfs_shared_data_ref); 1176 } else { 1177 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1178 key.offset = hash_extent_data_ref(root_objectid, 1179 owner, offset); 1180 size = sizeof(struct btrfs_extent_data_ref); 1181 } 1182 1183 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1184 if (ret && ret != -EEXIST) 1185 goto fail; 1186 1187 leaf = path->nodes[0]; 1188 if (parent) { 1189 struct btrfs_shared_data_ref *ref; 1190 ref = btrfs_item_ptr(leaf, path->slots[0], 1191 struct btrfs_shared_data_ref); 1192 if (ret == 0) { 1193 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1194 } else { 1195 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1196 num_refs += refs_to_add; 1197 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1198 } 1199 } else { 1200 struct btrfs_extent_data_ref *ref; 1201 while (ret == -EEXIST) { 1202 ref = btrfs_item_ptr(leaf, path->slots[0], 1203 struct btrfs_extent_data_ref); 1204 if (match_extent_data_ref(leaf, ref, root_objectid, 1205 owner, offset)) 1206 break; 1207 btrfs_release_path(path); 1208 key.offset++; 1209 ret = btrfs_insert_empty_item(trans, root, path, &key, 1210 size); 1211 if (ret && ret != -EEXIST) 1212 goto fail; 1213 1214 leaf = path->nodes[0]; 1215 } 1216 ref = btrfs_item_ptr(leaf, path->slots[0], 1217 struct btrfs_extent_data_ref); 1218 if (ret == 0) { 1219 btrfs_set_extent_data_ref_root(leaf, ref, 1220 root_objectid); 1221 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1222 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1223 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1224 } else { 1225 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1226 num_refs += refs_to_add; 1227 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1228 } 1229 } 1230 btrfs_mark_buffer_dirty(leaf); 1231 ret = 0; 1232 fail: 1233 btrfs_release_path(path); 1234 return ret; 1235 } 1236 1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1238 struct btrfs_root *root, 1239 struct btrfs_path *path, 1240 int refs_to_drop) 1241 { 1242 struct btrfs_key key; 1243 struct btrfs_extent_data_ref *ref1 = NULL; 1244 struct btrfs_shared_data_ref *ref2 = NULL; 1245 struct extent_buffer *leaf; 1246 u32 num_refs = 0; 1247 int ret = 0; 1248 1249 leaf = path->nodes[0]; 1250 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1251 1252 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1253 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1254 struct btrfs_extent_data_ref); 1255 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1256 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1257 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1258 struct btrfs_shared_data_ref); 1259 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1261 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1262 struct btrfs_extent_ref_v0 *ref0; 1263 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1264 struct btrfs_extent_ref_v0); 1265 num_refs = btrfs_ref_count_v0(leaf, ref0); 1266 #endif 1267 } else { 1268 BUG(); 1269 } 1270 1271 BUG_ON(num_refs < refs_to_drop); 1272 num_refs -= refs_to_drop; 1273 1274 if (num_refs == 0) { 1275 ret = btrfs_del_item(trans, root, path); 1276 } else { 1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1278 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1279 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1280 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1282 else { 1283 struct btrfs_extent_ref_v0 *ref0; 1284 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1285 struct btrfs_extent_ref_v0); 1286 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1287 } 1288 #endif 1289 btrfs_mark_buffer_dirty(leaf); 1290 } 1291 return ret; 1292 } 1293 1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1295 struct btrfs_path *path, 1296 struct btrfs_extent_inline_ref *iref) 1297 { 1298 struct btrfs_key key; 1299 struct extent_buffer *leaf; 1300 struct btrfs_extent_data_ref *ref1; 1301 struct btrfs_shared_data_ref *ref2; 1302 u32 num_refs = 0; 1303 1304 leaf = path->nodes[0]; 1305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1306 if (iref) { 1307 if (btrfs_extent_inline_ref_type(leaf, iref) == 1308 BTRFS_EXTENT_DATA_REF_KEY) { 1309 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1310 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1311 } else { 1312 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1313 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1314 } 1315 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1316 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1317 struct btrfs_extent_data_ref); 1318 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1319 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1320 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1321 struct btrfs_shared_data_ref); 1322 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1324 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1325 struct btrfs_extent_ref_v0 *ref0; 1326 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1327 struct btrfs_extent_ref_v0); 1328 num_refs = btrfs_ref_count_v0(leaf, ref0); 1329 #endif 1330 } else { 1331 WARN_ON(1); 1332 } 1333 return num_refs; 1334 } 1335 1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1337 struct btrfs_root *root, 1338 struct btrfs_path *path, 1339 u64 bytenr, u64 parent, 1340 u64 root_objectid) 1341 { 1342 struct btrfs_key key; 1343 int ret; 1344 1345 key.objectid = bytenr; 1346 if (parent) { 1347 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1348 key.offset = parent; 1349 } else { 1350 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1351 key.offset = root_objectid; 1352 } 1353 1354 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1355 if (ret > 0) 1356 ret = -ENOENT; 1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1358 if (ret == -ENOENT && parent) { 1359 btrfs_release_path(path); 1360 key.type = BTRFS_EXTENT_REF_V0_KEY; 1361 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1362 if (ret > 0) 1363 ret = -ENOENT; 1364 } 1365 #endif 1366 return ret; 1367 } 1368 1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1370 struct btrfs_root *root, 1371 struct btrfs_path *path, 1372 u64 bytenr, u64 parent, 1373 u64 root_objectid) 1374 { 1375 struct btrfs_key key; 1376 int ret; 1377 1378 key.objectid = bytenr; 1379 if (parent) { 1380 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1381 key.offset = parent; 1382 } else { 1383 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1384 key.offset = root_objectid; 1385 } 1386 1387 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1388 btrfs_release_path(path); 1389 return ret; 1390 } 1391 1392 static inline int extent_ref_type(u64 parent, u64 owner) 1393 { 1394 int type; 1395 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1396 if (parent > 0) 1397 type = BTRFS_SHARED_BLOCK_REF_KEY; 1398 else 1399 type = BTRFS_TREE_BLOCK_REF_KEY; 1400 } else { 1401 if (parent > 0) 1402 type = BTRFS_SHARED_DATA_REF_KEY; 1403 else 1404 type = BTRFS_EXTENT_DATA_REF_KEY; 1405 } 1406 return type; 1407 } 1408 1409 static int find_next_key(struct btrfs_path *path, int level, 1410 struct btrfs_key *key) 1411 1412 { 1413 for (; level < BTRFS_MAX_LEVEL; level++) { 1414 if (!path->nodes[level]) 1415 break; 1416 if (path->slots[level] + 1 >= 1417 btrfs_header_nritems(path->nodes[level])) 1418 continue; 1419 if (level == 0) 1420 btrfs_item_key_to_cpu(path->nodes[level], key, 1421 path->slots[level] + 1); 1422 else 1423 btrfs_node_key_to_cpu(path->nodes[level], key, 1424 path->slots[level] + 1); 1425 return 0; 1426 } 1427 return 1; 1428 } 1429 1430 /* 1431 * look for inline back ref. if back ref is found, *ref_ret is set 1432 * to the address of inline back ref, and 0 is returned. 1433 * 1434 * if back ref isn't found, *ref_ret is set to the address where it 1435 * should be inserted, and -ENOENT is returned. 1436 * 1437 * if insert is true and there are too many inline back refs, the path 1438 * points to the extent item, and -EAGAIN is returned. 1439 * 1440 * NOTE: inline back refs are ordered in the same way that back ref 1441 * items in the tree are ordered. 1442 */ 1443 static noinline_for_stack 1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1445 struct btrfs_root *root, 1446 struct btrfs_path *path, 1447 struct btrfs_extent_inline_ref **ref_ret, 1448 u64 bytenr, u64 num_bytes, 1449 u64 parent, u64 root_objectid, 1450 u64 owner, u64 offset, int insert) 1451 { 1452 struct btrfs_key key; 1453 struct extent_buffer *leaf; 1454 struct btrfs_extent_item *ei; 1455 struct btrfs_extent_inline_ref *iref; 1456 u64 flags; 1457 u64 item_size; 1458 unsigned long ptr; 1459 unsigned long end; 1460 int extra_size; 1461 int type; 1462 int want; 1463 int ret; 1464 int err = 0; 1465 1466 key.objectid = bytenr; 1467 key.type = BTRFS_EXTENT_ITEM_KEY; 1468 key.offset = num_bytes; 1469 1470 want = extent_ref_type(parent, owner); 1471 if (insert) { 1472 extra_size = btrfs_extent_inline_ref_size(want); 1473 path->keep_locks = 1; 1474 } else 1475 extra_size = -1; 1476 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1477 if (ret < 0) { 1478 err = ret; 1479 goto out; 1480 } 1481 BUG_ON(ret); 1482 1483 leaf = path->nodes[0]; 1484 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1486 if (item_size < sizeof(*ei)) { 1487 if (!insert) { 1488 err = -ENOENT; 1489 goto out; 1490 } 1491 ret = convert_extent_item_v0(trans, root, path, owner, 1492 extra_size); 1493 if (ret < 0) { 1494 err = ret; 1495 goto out; 1496 } 1497 leaf = path->nodes[0]; 1498 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1499 } 1500 #endif 1501 BUG_ON(item_size < sizeof(*ei)); 1502 1503 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1504 flags = btrfs_extent_flags(leaf, ei); 1505 1506 ptr = (unsigned long)(ei + 1); 1507 end = (unsigned long)ei + item_size; 1508 1509 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1510 ptr += sizeof(struct btrfs_tree_block_info); 1511 BUG_ON(ptr > end); 1512 } else { 1513 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1514 } 1515 1516 err = -ENOENT; 1517 while (1) { 1518 if (ptr >= end) { 1519 WARN_ON(ptr > end); 1520 break; 1521 } 1522 iref = (struct btrfs_extent_inline_ref *)ptr; 1523 type = btrfs_extent_inline_ref_type(leaf, iref); 1524 if (want < type) 1525 break; 1526 if (want > type) { 1527 ptr += btrfs_extent_inline_ref_size(type); 1528 continue; 1529 } 1530 1531 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1532 struct btrfs_extent_data_ref *dref; 1533 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1534 if (match_extent_data_ref(leaf, dref, root_objectid, 1535 owner, offset)) { 1536 err = 0; 1537 break; 1538 } 1539 if (hash_extent_data_ref_item(leaf, dref) < 1540 hash_extent_data_ref(root_objectid, owner, offset)) 1541 break; 1542 } else { 1543 u64 ref_offset; 1544 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1545 if (parent > 0) { 1546 if (parent == ref_offset) { 1547 err = 0; 1548 break; 1549 } 1550 if (ref_offset < parent) 1551 break; 1552 } else { 1553 if (root_objectid == ref_offset) { 1554 err = 0; 1555 break; 1556 } 1557 if (ref_offset < root_objectid) 1558 break; 1559 } 1560 } 1561 ptr += btrfs_extent_inline_ref_size(type); 1562 } 1563 if (err == -ENOENT && insert) { 1564 if (item_size + extra_size >= 1565 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1566 err = -EAGAIN; 1567 goto out; 1568 } 1569 /* 1570 * To add new inline back ref, we have to make sure 1571 * there is no corresponding back ref item. 1572 * For simplicity, we just do not add new inline back 1573 * ref if there is any kind of item for this block 1574 */ 1575 if (find_next_key(path, 0, &key) == 0 && 1576 key.objectid == bytenr && 1577 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1578 err = -EAGAIN; 1579 goto out; 1580 } 1581 } 1582 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1583 out: 1584 if (insert) { 1585 path->keep_locks = 0; 1586 btrfs_unlock_up_safe(path, 1); 1587 } 1588 return err; 1589 } 1590 1591 /* 1592 * helper to add new inline back ref 1593 */ 1594 static noinline_for_stack 1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans, 1596 struct btrfs_root *root, 1597 struct btrfs_path *path, 1598 struct btrfs_extent_inline_ref *iref, 1599 u64 parent, u64 root_objectid, 1600 u64 owner, u64 offset, int refs_to_add, 1601 struct btrfs_delayed_extent_op *extent_op) 1602 { 1603 struct extent_buffer *leaf; 1604 struct btrfs_extent_item *ei; 1605 unsigned long ptr; 1606 unsigned long end; 1607 unsigned long item_offset; 1608 u64 refs; 1609 int size; 1610 int type; 1611 int ret; 1612 1613 leaf = path->nodes[0]; 1614 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1615 item_offset = (unsigned long)iref - (unsigned long)ei; 1616 1617 type = extent_ref_type(parent, owner); 1618 size = btrfs_extent_inline_ref_size(type); 1619 1620 ret = btrfs_extend_item(trans, root, path, size); 1621 1622 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1623 refs = btrfs_extent_refs(leaf, ei); 1624 refs += refs_to_add; 1625 btrfs_set_extent_refs(leaf, ei, refs); 1626 if (extent_op) 1627 __run_delayed_extent_op(extent_op, leaf, ei); 1628 1629 ptr = (unsigned long)ei + item_offset; 1630 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1631 if (ptr < end - size) 1632 memmove_extent_buffer(leaf, ptr + size, ptr, 1633 end - size - ptr); 1634 1635 iref = (struct btrfs_extent_inline_ref *)ptr; 1636 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1637 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1638 struct btrfs_extent_data_ref *dref; 1639 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1640 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1641 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1642 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1643 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1644 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1645 struct btrfs_shared_data_ref *sref; 1646 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1647 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1648 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1649 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1651 } else { 1652 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1653 } 1654 btrfs_mark_buffer_dirty(leaf); 1655 return 0; 1656 } 1657 1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1659 struct btrfs_root *root, 1660 struct btrfs_path *path, 1661 struct btrfs_extent_inline_ref **ref_ret, 1662 u64 bytenr, u64 num_bytes, u64 parent, 1663 u64 root_objectid, u64 owner, u64 offset) 1664 { 1665 int ret; 1666 1667 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1668 bytenr, num_bytes, parent, 1669 root_objectid, owner, offset, 0); 1670 if (ret != -ENOENT) 1671 return ret; 1672 1673 btrfs_release_path(path); 1674 *ref_ret = NULL; 1675 1676 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1677 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1678 root_objectid); 1679 } else { 1680 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1681 root_objectid, owner, offset); 1682 } 1683 return ret; 1684 } 1685 1686 /* 1687 * helper to update/remove inline back ref 1688 */ 1689 static noinline_for_stack 1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans, 1691 struct btrfs_root *root, 1692 struct btrfs_path *path, 1693 struct btrfs_extent_inline_ref *iref, 1694 int refs_to_mod, 1695 struct btrfs_delayed_extent_op *extent_op) 1696 { 1697 struct extent_buffer *leaf; 1698 struct btrfs_extent_item *ei; 1699 struct btrfs_extent_data_ref *dref = NULL; 1700 struct btrfs_shared_data_ref *sref = NULL; 1701 unsigned long ptr; 1702 unsigned long end; 1703 u32 item_size; 1704 int size; 1705 int type; 1706 int ret; 1707 u64 refs; 1708 1709 leaf = path->nodes[0]; 1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1711 refs = btrfs_extent_refs(leaf, ei); 1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1713 refs += refs_to_mod; 1714 btrfs_set_extent_refs(leaf, ei, refs); 1715 if (extent_op) 1716 __run_delayed_extent_op(extent_op, leaf, ei); 1717 1718 type = btrfs_extent_inline_ref_type(leaf, iref); 1719 1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1722 refs = btrfs_extent_data_ref_count(leaf, dref); 1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1724 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1725 refs = btrfs_shared_data_ref_count(leaf, sref); 1726 } else { 1727 refs = 1; 1728 BUG_ON(refs_to_mod != -1); 1729 } 1730 1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1732 refs += refs_to_mod; 1733 1734 if (refs > 0) { 1735 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1736 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1737 else 1738 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1739 } else { 1740 size = btrfs_extent_inline_ref_size(type); 1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1742 ptr = (unsigned long)iref; 1743 end = (unsigned long)ei + item_size; 1744 if (ptr + size < end) 1745 memmove_extent_buffer(leaf, ptr, ptr + size, 1746 end - ptr - size); 1747 item_size -= size; 1748 ret = btrfs_truncate_item(trans, root, path, item_size, 1); 1749 } 1750 btrfs_mark_buffer_dirty(leaf); 1751 return 0; 1752 } 1753 1754 static noinline_for_stack 1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1756 struct btrfs_root *root, 1757 struct btrfs_path *path, 1758 u64 bytenr, u64 num_bytes, u64 parent, 1759 u64 root_objectid, u64 owner, 1760 u64 offset, int refs_to_add, 1761 struct btrfs_delayed_extent_op *extent_op) 1762 { 1763 struct btrfs_extent_inline_ref *iref; 1764 int ret; 1765 1766 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1767 bytenr, num_bytes, parent, 1768 root_objectid, owner, offset, 1); 1769 if (ret == 0) { 1770 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1771 ret = update_inline_extent_backref(trans, root, path, iref, 1772 refs_to_add, extent_op); 1773 } else if (ret == -ENOENT) { 1774 ret = setup_inline_extent_backref(trans, root, path, iref, 1775 parent, root_objectid, 1776 owner, offset, refs_to_add, 1777 extent_op); 1778 } 1779 return ret; 1780 } 1781 1782 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1783 struct btrfs_root *root, 1784 struct btrfs_path *path, 1785 u64 bytenr, u64 parent, u64 root_objectid, 1786 u64 owner, u64 offset, int refs_to_add) 1787 { 1788 int ret; 1789 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1790 BUG_ON(refs_to_add != 1); 1791 ret = insert_tree_block_ref(trans, root, path, bytenr, 1792 parent, root_objectid); 1793 } else { 1794 ret = insert_extent_data_ref(trans, root, path, bytenr, 1795 parent, root_objectid, 1796 owner, offset, refs_to_add); 1797 } 1798 return ret; 1799 } 1800 1801 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1802 struct btrfs_root *root, 1803 struct btrfs_path *path, 1804 struct btrfs_extent_inline_ref *iref, 1805 int refs_to_drop, int is_data) 1806 { 1807 int ret; 1808 1809 BUG_ON(!is_data && refs_to_drop != 1); 1810 if (iref) { 1811 ret = update_inline_extent_backref(trans, root, path, iref, 1812 -refs_to_drop, NULL); 1813 } else if (is_data) { 1814 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1815 } else { 1816 ret = btrfs_del_item(trans, root, path); 1817 } 1818 return ret; 1819 } 1820 1821 static int btrfs_issue_discard(struct block_device *bdev, 1822 u64 start, u64 len) 1823 { 1824 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1825 } 1826 1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1828 u64 num_bytes, u64 *actual_bytes) 1829 { 1830 int ret; 1831 u64 discarded_bytes = 0; 1832 struct btrfs_bio *bbio = NULL; 1833 1834 1835 /* Tell the block device(s) that the sectors can be discarded */ 1836 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD, 1837 bytenr, &num_bytes, &bbio, 0); 1838 if (!ret) { 1839 struct btrfs_bio_stripe *stripe = bbio->stripes; 1840 int i; 1841 1842 1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1844 if (!stripe->dev->can_discard) 1845 continue; 1846 1847 ret = btrfs_issue_discard(stripe->dev->bdev, 1848 stripe->physical, 1849 stripe->length); 1850 if (!ret) 1851 discarded_bytes += stripe->length; 1852 else if (ret != -EOPNOTSUPP) 1853 break; 1854 1855 /* 1856 * Just in case we get back EOPNOTSUPP for some reason, 1857 * just ignore the return value so we don't screw up 1858 * people calling discard_extent. 1859 */ 1860 ret = 0; 1861 } 1862 kfree(bbio); 1863 } 1864 1865 if (actual_bytes) 1866 *actual_bytes = discarded_bytes; 1867 1868 1869 return ret; 1870 } 1871 1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1873 struct btrfs_root *root, 1874 u64 bytenr, u64 num_bytes, u64 parent, 1875 u64 root_objectid, u64 owner, u64 offset, int for_cow) 1876 { 1877 int ret; 1878 struct btrfs_fs_info *fs_info = root->fs_info; 1879 1880 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1881 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1882 1883 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1884 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1885 num_bytes, 1886 parent, root_objectid, (int)owner, 1887 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1888 } else { 1889 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1890 num_bytes, 1891 parent, root_objectid, owner, offset, 1892 BTRFS_ADD_DELAYED_REF, NULL, for_cow); 1893 } 1894 return ret; 1895 } 1896 1897 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1898 struct btrfs_root *root, 1899 u64 bytenr, u64 num_bytes, 1900 u64 parent, u64 root_objectid, 1901 u64 owner, u64 offset, int refs_to_add, 1902 struct btrfs_delayed_extent_op *extent_op) 1903 { 1904 struct btrfs_path *path; 1905 struct extent_buffer *leaf; 1906 struct btrfs_extent_item *item; 1907 u64 refs; 1908 int ret; 1909 int err = 0; 1910 1911 path = btrfs_alloc_path(); 1912 if (!path) 1913 return -ENOMEM; 1914 1915 path->reada = 1; 1916 path->leave_spinning = 1; 1917 /* this will setup the path even if it fails to insert the back ref */ 1918 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root, 1919 path, bytenr, num_bytes, parent, 1920 root_objectid, owner, offset, 1921 refs_to_add, extent_op); 1922 if (ret == 0) 1923 goto out; 1924 1925 if (ret != -EAGAIN) { 1926 err = ret; 1927 goto out; 1928 } 1929 1930 leaf = path->nodes[0]; 1931 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1932 refs = btrfs_extent_refs(leaf, item); 1933 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1934 if (extent_op) 1935 __run_delayed_extent_op(extent_op, leaf, item); 1936 1937 btrfs_mark_buffer_dirty(leaf); 1938 btrfs_release_path(path); 1939 1940 path->reada = 1; 1941 path->leave_spinning = 1; 1942 1943 /* now insert the actual backref */ 1944 ret = insert_extent_backref(trans, root->fs_info->extent_root, 1945 path, bytenr, parent, root_objectid, 1946 owner, offset, refs_to_add); 1947 BUG_ON(ret); 1948 out: 1949 btrfs_free_path(path); 1950 return err; 1951 } 1952 1953 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1954 struct btrfs_root *root, 1955 struct btrfs_delayed_ref_node *node, 1956 struct btrfs_delayed_extent_op *extent_op, 1957 int insert_reserved) 1958 { 1959 int ret = 0; 1960 struct btrfs_delayed_data_ref *ref; 1961 struct btrfs_key ins; 1962 u64 parent = 0; 1963 u64 ref_root = 0; 1964 u64 flags = 0; 1965 1966 ins.objectid = node->bytenr; 1967 ins.offset = node->num_bytes; 1968 ins.type = BTRFS_EXTENT_ITEM_KEY; 1969 1970 ref = btrfs_delayed_node_to_data_ref(node); 1971 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1972 parent = ref->parent; 1973 else 1974 ref_root = ref->root; 1975 1976 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1977 if (extent_op) { 1978 BUG_ON(extent_op->update_key); 1979 flags |= extent_op->flags_to_set; 1980 } 1981 ret = alloc_reserved_file_extent(trans, root, 1982 parent, ref_root, flags, 1983 ref->objectid, ref->offset, 1984 &ins, node->ref_mod); 1985 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1986 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 1987 node->num_bytes, parent, 1988 ref_root, ref->objectid, 1989 ref->offset, node->ref_mod, 1990 extent_op); 1991 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1992 ret = __btrfs_free_extent(trans, root, node->bytenr, 1993 node->num_bytes, parent, 1994 ref_root, ref->objectid, 1995 ref->offset, node->ref_mod, 1996 extent_op); 1997 } else { 1998 BUG(); 1999 } 2000 return ret; 2001 } 2002 2003 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2004 struct extent_buffer *leaf, 2005 struct btrfs_extent_item *ei) 2006 { 2007 u64 flags = btrfs_extent_flags(leaf, ei); 2008 if (extent_op->update_flags) { 2009 flags |= extent_op->flags_to_set; 2010 btrfs_set_extent_flags(leaf, ei, flags); 2011 } 2012 2013 if (extent_op->update_key) { 2014 struct btrfs_tree_block_info *bi; 2015 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2016 bi = (struct btrfs_tree_block_info *)(ei + 1); 2017 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2018 } 2019 } 2020 2021 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2022 struct btrfs_root *root, 2023 struct btrfs_delayed_ref_node *node, 2024 struct btrfs_delayed_extent_op *extent_op) 2025 { 2026 struct btrfs_key key; 2027 struct btrfs_path *path; 2028 struct btrfs_extent_item *ei; 2029 struct extent_buffer *leaf; 2030 u32 item_size; 2031 int ret; 2032 int err = 0; 2033 2034 path = btrfs_alloc_path(); 2035 if (!path) 2036 return -ENOMEM; 2037 2038 key.objectid = node->bytenr; 2039 key.type = BTRFS_EXTENT_ITEM_KEY; 2040 key.offset = node->num_bytes; 2041 2042 path->reada = 1; 2043 path->leave_spinning = 1; 2044 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2045 path, 0, 1); 2046 if (ret < 0) { 2047 err = ret; 2048 goto out; 2049 } 2050 if (ret > 0) { 2051 err = -EIO; 2052 goto out; 2053 } 2054 2055 leaf = path->nodes[0]; 2056 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2058 if (item_size < sizeof(*ei)) { 2059 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2060 path, (u64)-1, 0); 2061 if (ret < 0) { 2062 err = ret; 2063 goto out; 2064 } 2065 leaf = path->nodes[0]; 2066 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2067 } 2068 #endif 2069 BUG_ON(item_size < sizeof(*ei)); 2070 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2071 __run_delayed_extent_op(extent_op, leaf, ei); 2072 2073 btrfs_mark_buffer_dirty(leaf); 2074 out: 2075 btrfs_free_path(path); 2076 return err; 2077 } 2078 2079 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2080 struct btrfs_root *root, 2081 struct btrfs_delayed_ref_node *node, 2082 struct btrfs_delayed_extent_op *extent_op, 2083 int insert_reserved) 2084 { 2085 int ret = 0; 2086 struct btrfs_delayed_tree_ref *ref; 2087 struct btrfs_key ins; 2088 u64 parent = 0; 2089 u64 ref_root = 0; 2090 2091 ins.objectid = node->bytenr; 2092 ins.offset = node->num_bytes; 2093 ins.type = BTRFS_EXTENT_ITEM_KEY; 2094 2095 ref = btrfs_delayed_node_to_tree_ref(node); 2096 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2097 parent = ref->parent; 2098 else 2099 ref_root = ref->root; 2100 2101 BUG_ON(node->ref_mod != 1); 2102 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2103 BUG_ON(!extent_op || !extent_op->update_flags || 2104 !extent_op->update_key); 2105 ret = alloc_reserved_tree_block(trans, root, 2106 parent, ref_root, 2107 extent_op->flags_to_set, 2108 &extent_op->key, 2109 ref->level, &ins); 2110 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2111 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2112 node->num_bytes, parent, ref_root, 2113 ref->level, 0, 1, extent_op); 2114 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2115 ret = __btrfs_free_extent(trans, root, node->bytenr, 2116 node->num_bytes, parent, ref_root, 2117 ref->level, 0, 1, extent_op); 2118 } else { 2119 BUG(); 2120 } 2121 return ret; 2122 } 2123 2124 /* helper function to actually process a single delayed ref entry */ 2125 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2126 struct btrfs_root *root, 2127 struct btrfs_delayed_ref_node *node, 2128 struct btrfs_delayed_extent_op *extent_op, 2129 int insert_reserved) 2130 { 2131 int ret; 2132 if (btrfs_delayed_ref_is_head(node)) { 2133 struct btrfs_delayed_ref_head *head; 2134 /* 2135 * we've hit the end of the chain and we were supposed 2136 * to insert this extent into the tree. But, it got 2137 * deleted before we ever needed to insert it, so all 2138 * we have to do is clean up the accounting 2139 */ 2140 BUG_ON(extent_op); 2141 head = btrfs_delayed_node_to_head(node); 2142 if (insert_reserved) { 2143 btrfs_pin_extent(root, node->bytenr, 2144 node->num_bytes, 1); 2145 if (head->is_data) { 2146 ret = btrfs_del_csums(trans, root, 2147 node->bytenr, 2148 node->num_bytes); 2149 BUG_ON(ret); 2150 } 2151 } 2152 mutex_unlock(&head->mutex); 2153 return 0; 2154 } 2155 2156 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2157 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2158 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2159 insert_reserved); 2160 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2161 node->type == BTRFS_SHARED_DATA_REF_KEY) 2162 ret = run_delayed_data_ref(trans, root, node, extent_op, 2163 insert_reserved); 2164 else 2165 BUG(); 2166 return ret; 2167 } 2168 2169 static noinline struct btrfs_delayed_ref_node * 2170 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2171 { 2172 struct rb_node *node; 2173 struct btrfs_delayed_ref_node *ref; 2174 int action = BTRFS_ADD_DELAYED_REF; 2175 again: 2176 /* 2177 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2178 * this prevents ref count from going down to zero when 2179 * there still are pending delayed ref. 2180 */ 2181 node = rb_prev(&head->node.rb_node); 2182 while (1) { 2183 if (!node) 2184 break; 2185 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2186 rb_node); 2187 if (ref->bytenr != head->node.bytenr) 2188 break; 2189 if (ref->action == action) 2190 return ref; 2191 node = rb_prev(node); 2192 } 2193 if (action == BTRFS_ADD_DELAYED_REF) { 2194 action = BTRFS_DROP_DELAYED_REF; 2195 goto again; 2196 } 2197 return NULL; 2198 } 2199 2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans, 2201 struct btrfs_root *root, 2202 struct list_head *cluster) 2203 { 2204 struct btrfs_delayed_ref_root *delayed_refs; 2205 struct btrfs_delayed_ref_node *ref; 2206 struct btrfs_delayed_ref_head *locked_ref = NULL; 2207 struct btrfs_delayed_extent_op *extent_op; 2208 int ret; 2209 int count = 0; 2210 int must_insert_reserved = 0; 2211 2212 delayed_refs = &trans->transaction->delayed_refs; 2213 while (1) { 2214 if (!locked_ref) { 2215 /* pick a new head ref from the cluster list */ 2216 if (list_empty(cluster)) 2217 break; 2218 2219 locked_ref = list_entry(cluster->next, 2220 struct btrfs_delayed_ref_head, cluster); 2221 2222 /* grab the lock that says we are going to process 2223 * all the refs for this head */ 2224 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2225 2226 /* 2227 * we may have dropped the spin lock to get the head 2228 * mutex lock, and that might have given someone else 2229 * time to free the head. If that's true, it has been 2230 * removed from our list and we can move on. 2231 */ 2232 if (ret == -EAGAIN) { 2233 locked_ref = NULL; 2234 count++; 2235 continue; 2236 } 2237 } 2238 2239 /* 2240 * locked_ref is the head node, so we have to go one 2241 * node back for any delayed ref updates 2242 */ 2243 ref = select_delayed_ref(locked_ref); 2244 2245 if (ref && ref->seq && 2246 btrfs_check_delayed_seq(delayed_refs, ref->seq)) { 2247 /* 2248 * there are still refs with lower seq numbers in the 2249 * process of being added. Don't run this ref yet. 2250 */ 2251 list_del_init(&locked_ref->cluster); 2252 mutex_unlock(&locked_ref->mutex); 2253 locked_ref = NULL; 2254 delayed_refs->num_heads_ready++; 2255 spin_unlock(&delayed_refs->lock); 2256 cond_resched(); 2257 spin_lock(&delayed_refs->lock); 2258 continue; 2259 } 2260 2261 /* 2262 * record the must insert reserved flag before we 2263 * drop the spin lock. 2264 */ 2265 must_insert_reserved = locked_ref->must_insert_reserved; 2266 locked_ref->must_insert_reserved = 0; 2267 2268 extent_op = locked_ref->extent_op; 2269 locked_ref->extent_op = NULL; 2270 2271 if (!ref) { 2272 /* All delayed refs have been processed, Go ahead 2273 * and send the head node to run_one_delayed_ref, 2274 * so that any accounting fixes can happen 2275 */ 2276 ref = &locked_ref->node; 2277 2278 if (extent_op && must_insert_reserved) { 2279 kfree(extent_op); 2280 extent_op = NULL; 2281 } 2282 2283 if (extent_op) { 2284 spin_unlock(&delayed_refs->lock); 2285 2286 ret = run_delayed_extent_op(trans, root, 2287 ref, extent_op); 2288 BUG_ON(ret); 2289 kfree(extent_op); 2290 2291 goto next; 2292 } 2293 2294 list_del_init(&locked_ref->cluster); 2295 locked_ref = NULL; 2296 } 2297 2298 ref->in_tree = 0; 2299 rb_erase(&ref->rb_node, &delayed_refs->root); 2300 delayed_refs->num_entries--; 2301 /* 2302 * we modified num_entries, but as we're currently running 2303 * delayed refs, skip 2304 * wake_up(&delayed_refs->seq_wait); 2305 * here. 2306 */ 2307 spin_unlock(&delayed_refs->lock); 2308 2309 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2310 must_insert_reserved); 2311 BUG_ON(ret); 2312 2313 btrfs_put_delayed_ref(ref); 2314 kfree(extent_op); 2315 count++; 2316 next: 2317 do_chunk_alloc(trans, root->fs_info->extent_root, 2318 2 * 1024 * 1024, 2319 btrfs_get_alloc_profile(root, 0), 2320 CHUNK_ALLOC_NO_FORCE); 2321 cond_resched(); 2322 spin_lock(&delayed_refs->lock); 2323 } 2324 return count; 2325 } 2326 2327 2328 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs, 2329 unsigned long num_refs) 2330 { 2331 struct list_head *first_seq = delayed_refs->seq_head.next; 2332 2333 spin_unlock(&delayed_refs->lock); 2334 pr_debug("waiting for more refs (num %ld, first %p)\n", 2335 num_refs, first_seq); 2336 wait_event(delayed_refs->seq_wait, 2337 num_refs != delayed_refs->num_entries || 2338 delayed_refs->seq_head.next != first_seq); 2339 pr_debug("done waiting for more refs (num %ld, first %p)\n", 2340 delayed_refs->num_entries, delayed_refs->seq_head.next); 2341 spin_lock(&delayed_refs->lock); 2342 } 2343 2344 /* 2345 * this starts processing the delayed reference count updates and 2346 * extent insertions we have queued up so far. count can be 2347 * 0, which means to process everything in the tree at the start 2348 * of the run (but not newly added entries), or it can be some target 2349 * number you'd like to process. 2350 */ 2351 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2352 struct btrfs_root *root, unsigned long count) 2353 { 2354 struct rb_node *node; 2355 struct btrfs_delayed_ref_root *delayed_refs; 2356 struct btrfs_delayed_ref_node *ref; 2357 struct list_head cluster; 2358 int ret; 2359 u64 delayed_start; 2360 int run_all = count == (unsigned long)-1; 2361 int run_most = 0; 2362 unsigned long num_refs = 0; 2363 int consider_waiting; 2364 2365 if (root == root->fs_info->extent_root) 2366 root = root->fs_info->tree_root; 2367 2368 do_chunk_alloc(trans, root->fs_info->extent_root, 2369 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0), 2370 CHUNK_ALLOC_NO_FORCE); 2371 2372 delayed_refs = &trans->transaction->delayed_refs; 2373 INIT_LIST_HEAD(&cluster); 2374 again: 2375 consider_waiting = 0; 2376 spin_lock(&delayed_refs->lock); 2377 if (count == 0) { 2378 count = delayed_refs->num_entries * 2; 2379 run_most = 1; 2380 } 2381 while (1) { 2382 if (!(run_all || run_most) && 2383 delayed_refs->num_heads_ready < 64) 2384 break; 2385 2386 /* 2387 * go find something we can process in the rbtree. We start at 2388 * the beginning of the tree, and then build a cluster 2389 * of refs to process starting at the first one we are able to 2390 * lock 2391 */ 2392 delayed_start = delayed_refs->run_delayed_start; 2393 ret = btrfs_find_ref_cluster(trans, &cluster, 2394 delayed_refs->run_delayed_start); 2395 if (ret) 2396 break; 2397 2398 if (delayed_start >= delayed_refs->run_delayed_start) { 2399 if (consider_waiting == 0) { 2400 /* 2401 * btrfs_find_ref_cluster looped. let's do one 2402 * more cycle. if we don't run any delayed ref 2403 * during that cycle (because we can't because 2404 * all of them are blocked) and if the number of 2405 * refs doesn't change, we avoid busy waiting. 2406 */ 2407 consider_waiting = 1; 2408 num_refs = delayed_refs->num_entries; 2409 } else { 2410 wait_for_more_refs(delayed_refs, num_refs); 2411 /* 2412 * after waiting, things have changed. we 2413 * dropped the lock and someone else might have 2414 * run some refs, built new clusters and so on. 2415 * therefore, we restart staleness detection. 2416 */ 2417 consider_waiting = 0; 2418 } 2419 } 2420 2421 ret = run_clustered_refs(trans, root, &cluster); 2422 BUG_ON(ret < 0); 2423 2424 count -= min_t(unsigned long, ret, count); 2425 2426 if (count == 0) 2427 break; 2428 2429 if (ret || delayed_refs->run_delayed_start == 0) { 2430 /* refs were run, let's reset staleness detection */ 2431 consider_waiting = 0; 2432 } 2433 } 2434 2435 if (run_all) { 2436 node = rb_first(&delayed_refs->root); 2437 if (!node) 2438 goto out; 2439 count = (unsigned long)-1; 2440 2441 while (node) { 2442 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2443 rb_node); 2444 if (btrfs_delayed_ref_is_head(ref)) { 2445 struct btrfs_delayed_ref_head *head; 2446 2447 head = btrfs_delayed_node_to_head(ref); 2448 atomic_inc(&ref->refs); 2449 2450 spin_unlock(&delayed_refs->lock); 2451 /* 2452 * Mutex was contended, block until it's 2453 * released and try again 2454 */ 2455 mutex_lock(&head->mutex); 2456 mutex_unlock(&head->mutex); 2457 2458 btrfs_put_delayed_ref(ref); 2459 cond_resched(); 2460 goto again; 2461 } 2462 node = rb_next(node); 2463 } 2464 spin_unlock(&delayed_refs->lock); 2465 schedule_timeout(1); 2466 goto again; 2467 } 2468 out: 2469 spin_unlock(&delayed_refs->lock); 2470 return 0; 2471 } 2472 2473 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2474 struct btrfs_root *root, 2475 u64 bytenr, u64 num_bytes, u64 flags, 2476 int is_data) 2477 { 2478 struct btrfs_delayed_extent_op *extent_op; 2479 int ret; 2480 2481 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 2482 if (!extent_op) 2483 return -ENOMEM; 2484 2485 extent_op->flags_to_set = flags; 2486 extent_op->update_flags = 1; 2487 extent_op->update_key = 0; 2488 extent_op->is_data = is_data ? 1 : 0; 2489 2490 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2491 num_bytes, extent_op); 2492 if (ret) 2493 kfree(extent_op); 2494 return ret; 2495 } 2496 2497 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2498 struct btrfs_root *root, 2499 struct btrfs_path *path, 2500 u64 objectid, u64 offset, u64 bytenr) 2501 { 2502 struct btrfs_delayed_ref_head *head; 2503 struct btrfs_delayed_ref_node *ref; 2504 struct btrfs_delayed_data_ref *data_ref; 2505 struct btrfs_delayed_ref_root *delayed_refs; 2506 struct rb_node *node; 2507 int ret = 0; 2508 2509 ret = -ENOENT; 2510 delayed_refs = &trans->transaction->delayed_refs; 2511 spin_lock(&delayed_refs->lock); 2512 head = btrfs_find_delayed_ref_head(trans, bytenr); 2513 if (!head) 2514 goto out; 2515 2516 if (!mutex_trylock(&head->mutex)) { 2517 atomic_inc(&head->node.refs); 2518 spin_unlock(&delayed_refs->lock); 2519 2520 btrfs_release_path(path); 2521 2522 /* 2523 * Mutex was contended, block until it's released and let 2524 * caller try again 2525 */ 2526 mutex_lock(&head->mutex); 2527 mutex_unlock(&head->mutex); 2528 btrfs_put_delayed_ref(&head->node); 2529 return -EAGAIN; 2530 } 2531 2532 node = rb_prev(&head->node.rb_node); 2533 if (!node) 2534 goto out_unlock; 2535 2536 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2537 2538 if (ref->bytenr != bytenr) 2539 goto out_unlock; 2540 2541 ret = 1; 2542 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) 2543 goto out_unlock; 2544 2545 data_ref = btrfs_delayed_node_to_data_ref(ref); 2546 2547 node = rb_prev(node); 2548 if (node) { 2549 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2550 if (ref->bytenr == bytenr) 2551 goto out_unlock; 2552 } 2553 2554 if (data_ref->root != root->root_key.objectid || 2555 data_ref->objectid != objectid || data_ref->offset != offset) 2556 goto out_unlock; 2557 2558 ret = 0; 2559 out_unlock: 2560 mutex_unlock(&head->mutex); 2561 out: 2562 spin_unlock(&delayed_refs->lock); 2563 return ret; 2564 } 2565 2566 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2567 struct btrfs_root *root, 2568 struct btrfs_path *path, 2569 u64 objectid, u64 offset, u64 bytenr) 2570 { 2571 struct btrfs_root *extent_root = root->fs_info->extent_root; 2572 struct extent_buffer *leaf; 2573 struct btrfs_extent_data_ref *ref; 2574 struct btrfs_extent_inline_ref *iref; 2575 struct btrfs_extent_item *ei; 2576 struct btrfs_key key; 2577 u32 item_size; 2578 int ret; 2579 2580 key.objectid = bytenr; 2581 key.offset = (u64)-1; 2582 key.type = BTRFS_EXTENT_ITEM_KEY; 2583 2584 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2585 if (ret < 0) 2586 goto out; 2587 BUG_ON(ret == 0); 2588 2589 ret = -ENOENT; 2590 if (path->slots[0] == 0) 2591 goto out; 2592 2593 path->slots[0]--; 2594 leaf = path->nodes[0]; 2595 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2596 2597 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2598 goto out; 2599 2600 ret = 1; 2601 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2603 if (item_size < sizeof(*ei)) { 2604 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2605 goto out; 2606 } 2607 #endif 2608 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2609 2610 if (item_size != sizeof(*ei) + 2611 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2612 goto out; 2613 2614 if (btrfs_extent_generation(leaf, ei) <= 2615 btrfs_root_last_snapshot(&root->root_item)) 2616 goto out; 2617 2618 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2619 if (btrfs_extent_inline_ref_type(leaf, iref) != 2620 BTRFS_EXTENT_DATA_REF_KEY) 2621 goto out; 2622 2623 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2624 if (btrfs_extent_refs(leaf, ei) != 2625 btrfs_extent_data_ref_count(leaf, ref) || 2626 btrfs_extent_data_ref_root(leaf, ref) != 2627 root->root_key.objectid || 2628 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2629 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2630 goto out; 2631 2632 ret = 0; 2633 out: 2634 return ret; 2635 } 2636 2637 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2638 struct btrfs_root *root, 2639 u64 objectid, u64 offset, u64 bytenr) 2640 { 2641 struct btrfs_path *path; 2642 int ret; 2643 int ret2; 2644 2645 path = btrfs_alloc_path(); 2646 if (!path) 2647 return -ENOENT; 2648 2649 do { 2650 ret = check_committed_ref(trans, root, path, objectid, 2651 offset, bytenr); 2652 if (ret && ret != -ENOENT) 2653 goto out; 2654 2655 ret2 = check_delayed_ref(trans, root, path, objectid, 2656 offset, bytenr); 2657 } while (ret2 == -EAGAIN); 2658 2659 if (ret2 && ret2 != -ENOENT) { 2660 ret = ret2; 2661 goto out; 2662 } 2663 2664 if (ret != -ENOENT || ret2 != -ENOENT) 2665 ret = 0; 2666 out: 2667 btrfs_free_path(path); 2668 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2669 WARN_ON(ret > 0); 2670 return ret; 2671 } 2672 2673 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2674 struct btrfs_root *root, 2675 struct extent_buffer *buf, 2676 int full_backref, int inc, int for_cow) 2677 { 2678 u64 bytenr; 2679 u64 num_bytes; 2680 u64 parent; 2681 u64 ref_root; 2682 u32 nritems; 2683 struct btrfs_key key; 2684 struct btrfs_file_extent_item *fi; 2685 int i; 2686 int level; 2687 int ret = 0; 2688 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 2689 u64, u64, u64, u64, u64, u64, int); 2690 2691 ref_root = btrfs_header_owner(buf); 2692 nritems = btrfs_header_nritems(buf); 2693 level = btrfs_header_level(buf); 2694 2695 if (!root->ref_cows && level == 0) 2696 return 0; 2697 2698 if (inc) 2699 process_func = btrfs_inc_extent_ref; 2700 else 2701 process_func = btrfs_free_extent; 2702 2703 if (full_backref) 2704 parent = buf->start; 2705 else 2706 parent = 0; 2707 2708 for (i = 0; i < nritems; i++) { 2709 if (level == 0) { 2710 btrfs_item_key_to_cpu(buf, &key, i); 2711 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY) 2712 continue; 2713 fi = btrfs_item_ptr(buf, i, 2714 struct btrfs_file_extent_item); 2715 if (btrfs_file_extent_type(buf, fi) == 2716 BTRFS_FILE_EXTENT_INLINE) 2717 continue; 2718 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2719 if (bytenr == 0) 2720 continue; 2721 2722 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2723 key.offset -= btrfs_file_extent_offset(buf, fi); 2724 ret = process_func(trans, root, bytenr, num_bytes, 2725 parent, ref_root, key.objectid, 2726 key.offset, for_cow); 2727 if (ret) 2728 goto fail; 2729 } else { 2730 bytenr = btrfs_node_blockptr(buf, i); 2731 num_bytes = btrfs_level_size(root, level - 1); 2732 ret = process_func(trans, root, bytenr, num_bytes, 2733 parent, ref_root, level - 1, 0, 2734 for_cow); 2735 if (ret) 2736 goto fail; 2737 } 2738 } 2739 return 0; 2740 fail: 2741 BUG(); 2742 return ret; 2743 } 2744 2745 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2746 struct extent_buffer *buf, int full_backref, int for_cow) 2747 { 2748 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow); 2749 } 2750 2751 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2752 struct extent_buffer *buf, int full_backref, int for_cow) 2753 { 2754 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow); 2755 } 2756 2757 static int write_one_cache_group(struct btrfs_trans_handle *trans, 2758 struct btrfs_root *root, 2759 struct btrfs_path *path, 2760 struct btrfs_block_group_cache *cache) 2761 { 2762 int ret; 2763 struct btrfs_root *extent_root = root->fs_info->extent_root; 2764 unsigned long bi; 2765 struct extent_buffer *leaf; 2766 2767 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 2768 if (ret < 0) 2769 goto fail; 2770 BUG_ON(ret); 2771 2772 leaf = path->nodes[0]; 2773 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 2774 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 2775 btrfs_mark_buffer_dirty(leaf); 2776 btrfs_release_path(path); 2777 fail: 2778 if (ret) 2779 return ret; 2780 return 0; 2781 2782 } 2783 2784 static struct btrfs_block_group_cache * 2785 next_block_group(struct btrfs_root *root, 2786 struct btrfs_block_group_cache *cache) 2787 { 2788 struct rb_node *node; 2789 spin_lock(&root->fs_info->block_group_cache_lock); 2790 node = rb_next(&cache->cache_node); 2791 btrfs_put_block_group(cache); 2792 if (node) { 2793 cache = rb_entry(node, struct btrfs_block_group_cache, 2794 cache_node); 2795 btrfs_get_block_group(cache); 2796 } else 2797 cache = NULL; 2798 spin_unlock(&root->fs_info->block_group_cache_lock); 2799 return cache; 2800 } 2801 2802 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 2803 struct btrfs_trans_handle *trans, 2804 struct btrfs_path *path) 2805 { 2806 struct btrfs_root *root = block_group->fs_info->tree_root; 2807 struct inode *inode = NULL; 2808 u64 alloc_hint = 0; 2809 int dcs = BTRFS_DC_ERROR; 2810 int num_pages = 0; 2811 int retries = 0; 2812 int ret = 0; 2813 2814 /* 2815 * If this block group is smaller than 100 megs don't bother caching the 2816 * block group. 2817 */ 2818 if (block_group->key.offset < (100 * 1024 * 1024)) { 2819 spin_lock(&block_group->lock); 2820 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 2821 spin_unlock(&block_group->lock); 2822 return 0; 2823 } 2824 2825 again: 2826 inode = lookup_free_space_inode(root, block_group, path); 2827 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 2828 ret = PTR_ERR(inode); 2829 btrfs_release_path(path); 2830 goto out; 2831 } 2832 2833 if (IS_ERR(inode)) { 2834 BUG_ON(retries); 2835 retries++; 2836 2837 if (block_group->ro) 2838 goto out_free; 2839 2840 ret = create_free_space_inode(root, trans, block_group, path); 2841 if (ret) 2842 goto out_free; 2843 goto again; 2844 } 2845 2846 /* We've already setup this transaction, go ahead and exit */ 2847 if (block_group->cache_generation == trans->transid && 2848 i_size_read(inode)) { 2849 dcs = BTRFS_DC_SETUP; 2850 goto out_put; 2851 } 2852 2853 /* 2854 * We want to set the generation to 0, that way if anything goes wrong 2855 * from here on out we know not to trust this cache when we load up next 2856 * time. 2857 */ 2858 BTRFS_I(inode)->generation = 0; 2859 ret = btrfs_update_inode(trans, root, inode); 2860 WARN_ON(ret); 2861 2862 if (i_size_read(inode) > 0) { 2863 ret = btrfs_truncate_free_space_cache(root, trans, path, 2864 inode); 2865 if (ret) 2866 goto out_put; 2867 } 2868 2869 spin_lock(&block_group->lock); 2870 if (block_group->cached != BTRFS_CACHE_FINISHED) { 2871 /* We're not cached, don't bother trying to write stuff out */ 2872 dcs = BTRFS_DC_WRITTEN; 2873 spin_unlock(&block_group->lock); 2874 goto out_put; 2875 } 2876 spin_unlock(&block_group->lock); 2877 2878 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024); 2879 if (!num_pages) 2880 num_pages = 1; 2881 2882 /* 2883 * Just to make absolutely sure we have enough space, we're going to 2884 * preallocate 12 pages worth of space for each block group. In 2885 * practice we ought to use at most 8, but we need extra space so we can 2886 * add our header and have a terminator between the extents and the 2887 * bitmaps. 2888 */ 2889 num_pages *= 16; 2890 num_pages *= PAGE_CACHE_SIZE; 2891 2892 ret = btrfs_check_data_free_space(inode, num_pages); 2893 if (ret) 2894 goto out_put; 2895 2896 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 2897 num_pages, num_pages, 2898 &alloc_hint); 2899 if (!ret) 2900 dcs = BTRFS_DC_SETUP; 2901 btrfs_free_reserved_data_space(inode, num_pages); 2902 2903 out_put: 2904 iput(inode); 2905 out_free: 2906 btrfs_release_path(path); 2907 out: 2908 spin_lock(&block_group->lock); 2909 if (!ret && dcs == BTRFS_DC_SETUP) 2910 block_group->cache_generation = trans->transid; 2911 block_group->disk_cache_state = dcs; 2912 spin_unlock(&block_group->lock); 2913 2914 return ret; 2915 } 2916 2917 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 2918 struct btrfs_root *root) 2919 { 2920 struct btrfs_block_group_cache *cache; 2921 int err = 0; 2922 struct btrfs_path *path; 2923 u64 last = 0; 2924 2925 path = btrfs_alloc_path(); 2926 if (!path) 2927 return -ENOMEM; 2928 2929 again: 2930 while (1) { 2931 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2932 while (cache) { 2933 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 2934 break; 2935 cache = next_block_group(root, cache); 2936 } 2937 if (!cache) { 2938 if (last == 0) 2939 break; 2940 last = 0; 2941 continue; 2942 } 2943 err = cache_save_setup(cache, trans, path); 2944 last = cache->key.objectid + cache->key.offset; 2945 btrfs_put_block_group(cache); 2946 } 2947 2948 while (1) { 2949 if (last == 0) { 2950 err = btrfs_run_delayed_refs(trans, root, 2951 (unsigned long)-1); 2952 BUG_ON(err); 2953 } 2954 2955 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2956 while (cache) { 2957 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 2958 btrfs_put_block_group(cache); 2959 goto again; 2960 } 2961 2962 if (cache->dirty) 2963 break; 2964 cache = next_block_group(root, cache); 2965 } 2966 if (!cache) { 2967 if (last == 0) 2968 break; 2969 last = 0; 2970 continue; 2971 } 2972 2973 if (cache->disk_cache_state == BTRFS_DC_SETUP) 2974 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 2975 cache->dirty = 0; 2976 last = cache->key.objectid + cache->key.offset; 2977 2978 err = write_one_cache_group(trans, root, path, cache); 2979 BUG_ON(err); 2980 btrfs_put_block_group(cache); 2981 } 2982 2983 while (1) { 2984 /* 2985 * I don't think this is needed since we're just marking our 2986 * preallocated extent as written, but just in case it can't 2987 * hurt. 2988 */ 2989 if (last == 0) { 2990 err = btrfs_run_delayed_refs(trans, root, 2991 (unsigned long)-1); 2992 BUG_ON(err); 2993 } 2994 2995 cache = btrfs_lookup_first_block_group(root->fs_info, last); 2996 while (cache) { 2997 /* 2998 * Really this shouldn't happen, but it could if we 2999 * couldn't write the entire preallocated extent and 3000 * splitting the extent resulted in a new block. 3001 */ 3002 if (cache->dirty) { 3003 btrfs_put_block_group(cache); 3004 goto again; 3005 } 3006 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3007 break; 3008 cache = next_block_group(root, cache); 3009 } 3010 if (!cache) { 3011 if (last == 0) 3012 break; 3013 last = 0; 3014 continue; 3015 } 3016 3017 btrfs_write_out_cache(root, trans, cache, path); 3018 3019 /* 3020 * If we didn't have an error then the cache state is still 3021 * NEED_WRITE, so we can set it to WRITTEN. 3022 */ 3023 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3024 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3025 last = cache->key.objectid + cache->key.offset; 3026 btrfs_put_block_group(cache); 3027 } 3028 3029 btrfs_free_path(path); 3030 return 0; 3031 } 3032 3033 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3034 { 3035 struct btrfs_block_group_cache *block_group; 3036 int readonly = 0; 3037 3038 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3039 if (!block_group || block_group->ro) 3040 readonly = 1; 3041 if (block_group) 3042 btrfs_put_block_group(block_group); 3043 return readonly; 3044 } 3045 3046 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3047 u64 total_bytes, u64 bytes_used, 3048 struct btrfs_space_info **space_info) 3049 { 3050 struct btrfs_space_info *found; 3051 int i; 3052 int factor; 3053 3054 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3055 BTRFS_BLOCK_GROUP_RAID10)) 3056 factor = 2; 3057 else 3058 factor = 1; 3059 3060 found = __find_space_info(info, flags); 3061 if (found) { 3062 spin_lock(&found->lock); 3063 found->total_bytes += total_bytes; 3064 found->disk_total += total_bytes * factor; 3065 found->bytes_used += bytes_used; 3066 found->disk_used += bytes_used * factor; 3067 found->full = 0; 3068 spin_unlock(&found->lock); 3069 *space_info = found; 3070 return 0; 3071 } 3072 found = kzalloc(sizeof(*found), GFP_NOFS); 3073 if (!found) 3074 return -ENOMEM; 3075 3076 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3077 INIT_LIST_HEAD(&found->block_groups[i]); 3078 init_rwsem(&found->groups_sem); 3079 spin_lock_init(&found->lock); 3080 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3081 found->total_bytes = total_bytes; 3082 found->disk_total = total_bytes * factor; 3083 found->bytes_used = bytes_used; 3084 found->disk_used = bytes_used * factor; 3085 found->bytes_pinned = 0; 3086 found->bytes_reserved = 0; 3087 found->bytes_readonly = 0; 3088 found->bytes_may_use = 0; 3089 found->full = 0; 3090 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3091 found->chunk_alloc = 0; 3092 found->flush = 0; 3093 init_waitqueue_head(&found->wait); 3094 *space_info = found; 3095 list_add_rcu(&found->list, &info->space_info); 3096 return 0; 3097 } 3098 3099 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3100 { 3101 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK; 3102 3103 /* chunk -> extended profile */ 3104 if (extra_flags == 0) 3105 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3106 3107 if (flags & BTRFS_BLOCK_GROUP_DATA) 3108 fs_info->avail_data_alloc_bits |= extra_flags; 3109 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3110 fs_info->avail_metadata_alloc_bits |= extra_flags; 3111 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3112 fs_info->avail_system_alloc_bits |= extra_flags; 3113 } 3114 3115 /* 3116 * @flags: available profiles in extended format (see ctree.h) 3117 * 3118 * Returns reduced profile in chunk format. If profile changing is in 3119 * progress (either running or paused) picks the target profile (if it's 3120 * already available), otherwise falls back to plain reducing. 3121 */ 3122 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3123 { 3124 /* 3125 * we add in the count of missing devices because we want 3126 * to make sure that any RAID levels on a degraded FS 3127 * continue to be honored. 3128 */ 3129 u64 num_devices = root->fs_info->fs_devices->rw_devices + 3130 root->fs_info->fs_devices->missing_devices; 3131 3132 /* pick restriper's target profile if it's available */ 3133 spin_lock(&root->fs_info->balance_lock); 3134 if (root->fs_info->balance_ctl) { 3135 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 3136 u64 tgt = 0; 3137 3138 if ((flags & BTRFS_BLOCK_GROUP_DATA) && 3139 (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3140 (flags & bctl->data.target)) { 3141 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3142 } else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) && 3143 (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3144 (flags & bctl->sys.target)) { 3145 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3146 } else if ((flags & BTRFS_BLOCK_GROUP_METADATA) && 3147 (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3148 (flags & bctl->meta.target)) { 3149 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3150 } 3151 3152 if (tgt) { 3153 spin_unlock(&root->fs_info->balance_lock); 3154 flags = tgt; 3155 goto out; 3156 } 3157 } 3158 spin_unlock(&root->fs_info->balance_lock); 3159 3160 if (num_devices == 1) 3161 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0); 3162 if (num_devices < 4) 3163 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3164 3165 if ((flags & BTRFS_BLOCK_GROUP_DUP) && 3166 (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3167 BTRFS_BLOCK_GROUP_RAID10))) { 3168 flags &= ~BTRFS_BLOCK_GROUP_DUP; 3169 } 3170 3171 if ((flags & BTRFS_BLOCK_GROUP_RAID1) && 3172 (flags & BTRFS_BLOCK_GROUP_RAID10)) { 3173 flags &= ~BTRFS_BLOCK_GROUP_RAID1; 3174 } 3175 3176 if ((flags & BTRFS_BLOCK_GROUP_RAID0) && 3177 ((flags & BTRFS_BLOCK_GROUP_RAID1) | 3178 (flags & BTRFS_BLOCK_GROUP_RAID10) | 3179 (flags & BTRFS_BLOCK_GROUP_DUP))) { 3180 flags &= ~BTRFS_BLOCK_GROUP_RAID0; 3181 } 3182 3183 out: 3184 /* extended -> chunk profile */ 3185 flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3186 return flags; 3187 } 3188 3189 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags) 3190 { 3191 if (flags & BTRFS_BLOCK_GROUP_DATA) 3192 flags |= root->fs_info->avail_data_alloc_bits; 3193 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3194 flags |= root->fs_info->avail_system_alloc_bits; 3195 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3196 flags |= root->fs_info->avail_metadata_alloc_bits; 3197 3198 return btrfs_reduce_alloc_profile(root, flags); 3199 } 3200 3201 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3202 { 3203 u64 flags; 3204 3205 if (data) 3206 flags = BTRFS_BLOCK_GROUP_DATA; 3207 else if (root == root->fs_info->chunk_root) 3208 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3209 else 3210 flags = BTRFS_BLOCK_GROUP_METADATA; 3211 3212 return get_alloc_profile(root, flags); 3213 } 3214 3215 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode) 3216 { 3217 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info, 3218 BTRFS_BLOCK_GROUP_DATA); 3219 } 3220 3221 /* 3222 * This will check the space that the inode allocates from to make sure we have 3223 * enough space for bytes. 3224 */ 3225 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3226 { 3227 struct btrfs_space_info *data_sinfo; 3228 struct btrfs_root *root = BTRFS_I(inode)->root; 3229 u64 used; 3230 int ret = 0, committed = 0, alloc_chunk = 1; 3231 3232 /* make sure bytes are sectorsize aligned */ 3233 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3234 3235 if (root == root->fs_info->tree_root || 3236 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) { 3237 alloc_chunk = 0; 3238 committed = 1; 3239 } 3240 3241 data_sinfo = BTRFS_I(inode)->space_info; 3242 if (!data_sinfo) 3243 goto alloc; 3244 3245 again: 3246 /* make sure we have enough space to handle the data first */ 3247 spin_lock(&data_sinfo->lock); 3248 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3249 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3250 data_sinfo->bytes_may_use; 3251 3252 if (used + bytes > data_sinfo->total_bytes) { 3253 struct btrfs_trans_handle *trans; 3254 3255 /* 3256 * if we don't have enough free bytes in this space then we need 3257 * to alloc a new chunk. 3258 */ 3259 if (!data_sinfo->full && alloc_chunk) { 3260 u64 alloc_target; 3261 3262 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3263 spin_unlock(&data_sinfo->lock); 3264 alloc: 3265 alloc_target = btrfs_get_alloc_profile(root, 1); 3266 trans = btrfs_join_transaction(root); 3267 if (IS_ERR(trans)) 3268 return PTR_ERR(trans); 3269 3270 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3271 bytes + 2 * 1024 * 1024, 3272 alloc_target, 3273 CHUNK_ALLOC_NO_FORCE); 3274 btrfs_end_transaction(trans, root); 3275 if (ret < 0) { 3276 if (ret != -ENOSPC) 3277 return ret; 3278 else 3279 goto commit_trans; 3280 } 3281 3282 if (!data_sinfo) { 3283 btrfs_set_inode_space_info(root, inode); 3284 data_sinfo = BTRFS_I(inode)->space_info; 3285 } 3286 goto again; 3287 } 3288 3289 /* 3290 * If we have less pinned bytes than we want to allocate then 3291 * don't bother committing the transaction, it won't help us. 3292 */ 3293 if (data_sinfo->bytes_pinned < bytes) 3294 committed = 1; 3295 spin_unlock(&data_sinfo->lock); 3296 3297 /* commit the current transaction and try again */ 3298 commit_trans: 3299 if (!committed && 3300 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3301 committed = 1; 3302 trans = btrfs_join_transaction(root); 3303 if (IS_ERR(trans)) 3304 return PTR_ERR(trans); 3305 ret = btrfs_commit_transaction(trans, root); 3306 if (ret) 3307 return ret; 3308 goto again; 3309 } 3310 3311 return -ENOSPC; 3312 } 3313 data_sinfo->bytes_may_use += bytes; 3314 trace_btrfs_space_reservation(root->fs_info, "space_info", 3315 (u64)data_sinfo, bytes, 1); 3316 spin_unlock(&data_sinfo->lock); 3317 3318 return 0; 3319 } 3320 3321 /* 3322 * Called if we need to clear a data reservation for this inode. 3323 */ 3324 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3325 { 3326 struct btrfs_root *root = BTRFS_I(inode)->root; 3327 struct btrfs_space_info *data_sinfo; 3328 3329 /* make sure bytes are sectorsize aligned */ 3330 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1); 3331 3332 data_sinfo = BTRFS_I(inode)->space_info; 3333 spin_lock(&data_sinfo->lock); 3334 data_sinfo->bytes_may_use -= bytes; 3335 trace_btrfs_space_reservation(root->fs_info, "space_info", 3336 (u64)data_sinfo, bytes, 0); 3337 spin_unlock(&data_sinfo->lock); 3338 } 3339 3340 static void force_metadata_allocation(struct btrfs_fs_info *info) 3341 { 3342 struct list_head *head = &info->space_info; 3343 struct btrfs_space_info *found; 3344 3345 rcu_read_lock(); 3346 list_for_each_entry_rcu(found, head, list) { 3347 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3348 found->force_alloc = CHUNK_ALLOC_FORCE; 3349 } 3350 rcu_read_unlock(); 3351 } 3352 3353 static int should_alloc_chunk(struct btrfs_root *root, 3354 struct btrfs_space_info *sinfo, u64 alloc_bytes, 3355 int force) 3356 { 3357 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3358 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3359 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3360 u64 thresh; 3361 3362 if (force == CHUNK_ALLOC_FORCE) 3363 return 1; 3364 3365 /* 3366 * We need to take into account the global rsv because for all intents 3367 * and purposes it's used space. Don't worry about locking the 3368 * global_rsv, it doesn't change except when the transaction commits. 3369 */ 3370 num_allocated += global_rsv->size; 3371 3372 /* 3373 * in limited mode, we want to have some free space up to 3374 * about 1% of the FS size. 3375 */ 3376 if (force == CHUNK_ALLOC_LIMITED) { 3377 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3378 thresh = max_t(u64, 64 * 1024 * 1024, 3379 div_factor_fine(thresh, 1)); 3380 3381 if (num_bytes - num_allocated < thresh) 3382 return 1; 3383 } 3384 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3385 3386 /* 256MB or 2% of the FS */ 3387 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2)); 3388 /* system chunks need a much small threshold */ 3389 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM) 3390 thresh = 32 * 1024 * 1024; 3391 3392 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8)) 3393 return 0; 3394 return 1; 3395 } 3396 3397 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3398 struct btrfs_root *extent_root, u64 alloc_bytes, 3399 u64 flags, int force) 3400 { 3401 struct btrfs_space_info *space_info; 3402 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3403 int wait_for_alloc = 0; 3404 int ret = 0; 3405 3406 BUG_ON(!profile_is_valid(flags, 0)); 3407 3408 space_info = __find_space_info(extent_root->fs_info, flags); 3409 if (!space_info) { 3410 ret = update_space_info(extent_root->fs_info, flags, 3411 0, 0, &space_info); 3412 BUG_ON(ret); 3413 } 3414 BUG_ON(!space_info); 3415 3416 again: 3417 spin_lock(&space_info->lock); 3418 if (force < space_info->force_alloc) 3419 force = space_info->force_alloc; 3420 if (space_info->full) { 3421 spin_unlock(&space_info->lock); 3422 return 0; 3423 } 3424 3425 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) { 3426 spin_unlock(&space_info->lock); 3427 return 0; 3428 } else if (space_info->chunk_alloc) { 3429 wait_for_alloc = 1; 3430 } else { 3431 space_info->chunk_alloc = 1; 3432 } 3433 3434 spin_unlock(&space_info->lock); 3435 3436 mutex_lock(&fs_info->chunk_mutex); 3437 3438 /* 3439 * The chunk_mutex is held throughout the entirety of a chunk 3440 * allocation, so once we've acquired the chunk_mutex we know that the 3441 * other guy is done and we need to recheck and see if we should 3442 * allocate. 3443 */ 3444 if (wait_for_alloc) { 3445 mutex_unlock(&fs_info->chunk_mutex); 3446 wait_for_alloc = 0; 3447 goto again; 3448 } 3449 3450 /* 3451 * If we have mixed data/metadata chunks we want to make sure we keep 3452 * allocating mixed chunks instead of individual chunks. 3453 */ 3454 if (btrfs_mixed_space_info(space_info)) 3455 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3456 3457 /* 3458 * if we're doing a data chunk, go ahead and make sure that 3459 * we keep a reasonable number of metadata chunks allocated in the 3460 * FS as well. 3461 */ 3462 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3463 fs_info->data_chunk_allocations++; 3464 if (!(fs_info->data_chunk_allocations % 3465 fs_info->metadata_ratio)) 3466 force_metadata_allocation(fs_info); 3467 } 3468 3469 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3470 if (ret < 0 && ret != -ENOSPC) 3471 goto out; 3472 3473 spin_lock(&space_info->lock); 3474 if (ret) 3475 space_info->full = 1; 3476 else 3477 ret = 1; 3478 3479 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 3480 space_info->chunk_alloc = 0; 3481 spin_unlock(&space_info->lock); 3482 out: 3483 mutex_unlock(&extent_root->fs_info->chunk_mutex); 3484 return ret; 3485 } 3486 3487 /* 3488 * shrink metadata reservation for delalloc 3489 */ 3490 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, 3491 bool wait_ordered) 3492 { 3493 struct btrfs_block_rsv *block_rsv; 3494 struct btrfs_space_info *space_info; 3495 struct btrfs_trans_handle *trans; 3496 u64 reserved; 3497 u64 max_reclaim; 3498 u64 reclaimed = 0; 3499 long time_left; 3500 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT; 3501 int loops = 0; 3502 unsigned long progress; 3503 3504 trans = (struct btrfs_trans_handle *)current->journal_info; 3505 block_rsv = &root->fs_info->delalloc_block_rsv; 3506 space_info = block_rsv->space_info; 3507 3508 smp_mb(); 3509 reserved = space_info->bytes_may_use; 3510 progress = space_info->reservation_progress; 3511 3512 if (reserved == 0) 3513 return 0; 3514 3515 smp_mb(); 3516 if (root->fs_info->delalloc_bytes == 0) { 3517 if (trans) 3518 return 0; 3519 btrfs_wait_ordered_extents(root, 0, 0); 3520 return 0; 3521 } 3522 3523 max_reclaim = min(reserved, to_reclaim); 3524 nr_pages = max_t(unsigned long, nr_pages, 3525 max_reclaim >> PAGE_CACHE_SHIFT); 3526 while (loops < 1024) { 3527 /* have the flusher threads jump in and do some IO */ 3528 smp_mb(); 3529 nr_pages = min_t(unsigned long, nr_pages, 3530 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT); 3531 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages, 3532 WB_REASON_FS_FREE_SPACE); 3533 3534 spin_lock(&space_info->lock); 3535 if (reserved > space_info->bytes_may_use) 3536 reclaimed += reserved - space_info->bytes_may_use; 3537 reserved = space_info->bytes_may_use; 3538 spin_unlock(&space_info->lock); 3539 3540 loops++; 3541 3542 if (reserved == 0 || reclaimed >= max_reclaim) 3543 break; 3544 3545 if (trans && trans->transaction->blocked) 3546 return -EAGAIN; 3547 3548 if (wait_ordered && !trans) { 3549 btrfs_wait_ordered_extents(root, 0, 0); 3550 } else { 3551 time_left = schedule_timeout_interruptible(1); 3552 3553 /* We were interrupted, exit */ 3554 if (time_left) 3555 break; 3556 } 3557 3558 /* we've kicked the IO a few times, if anything has been freed, 3559 * exit. There is no sense in looping here for a long time 3560 * when we really need to commit the transaction, or there are 3561 * just too many writers without enough free space 3562 */ 3563 3564 if (loops > 3) { 3565 smp_mb(); 3566 if (progress != space_info->reservation_progress) 3567 break; 3568 } 3569 3570 } 3571 3572 return reclaimed >= to_reclaim; 3573 } 3574 3575 /** 3576 * maybe_commit_transaction - possibly commit the transaction if its ok to 3577 * @root - the root we're allocating for 3578 * @bytes - the number of bytes we want to reserve 3579 * @force - force the commit 3580 * 3581 * This will check to make sure that committing the transaction will actually 3582 * get us somewhere and then commit the transaction if it does. Otherwise it 3583 * will return -ENOSPC. 3584 */ 3585 static int may_commit_transaction(struct btrfs_root *root, 3586 struct btrfs_space_info *space_info, 3587 u64 bytes, int force) 3588 { 3589 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 3590 struct btrfs_trans_handle *trans; 3591 3592 trans = (struct btrfs_trans_handle *)current->journal_info; 3593 if (trans) 3594 return -EAGAIN; 3595 3596 if (force) 3597 goto commit; 3598 3599 /* See if there is enough pinned space to make this reservation */ 3600 spin_lock(&space_info->lock); 3601 if (space_info->bytes_pinned >= bytes) { 3602 spin_unlock(&space_info->lock); 3603 goto commit; 3604 } 3605 spin_unlock(&space_info->lock); 3606 3607 /* 3608 * See if there is some space in the delayed insertion reservation for 3609 * this reservation. 3610 */ 3611 if (space_info != delayed_rsv->space_info) 3612 return -ENOSPC; 3613 3614 spin_lock(&delayed_rsv->lock); 3615 if (delayed_rsv->size < bytes) { 3616 spin_unlock(&delayed_rsv->lock); 3617 return -ENOSPC; 3618 } 3619 spin_unlock(&delayed_rsv->lock); 3620 3621 commit: 3622 trans = btrfs_join_transaction(root); 3623 if (IS_ERR(trans)) 3624 return -ENOSPC; 3625 3626 return btrfs_commit_transaction(trans, root); 3627 } 3628 3629 /** 3630 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 3631 * @root - the root we're allocating for 3632 * @block_rsv - the block_rsv we're allocating for 3633 * @orig_bytes - the number of bytes we want 3634 * @flush - wether or not we can flush to make our reservation 3635 * 3636 * This will reserve orgi_bytes number of bytes from the space info associated 3637 * with the block_rsv. If there is not enough space it will make an attempt to 3638 * flush out space to make room. It will do this by flushing delalloc if 3639 * possible or committing the transaction. If flush is 0 then no attempts to 3640 * regain reservations will be made and this will fail if there is not enough 3641 * space already. 3642 */ 3643 static int reserve_metadata_bytes(struct btrfs_root *root, 3644 struct btrfs_block_rsv *block_rsv, 3645 u64 orig_bytes, int flush) 3646 { 3647 struct btrfs_space_info *space_info = block_rsv->space_info; 3648 u64 used; 3649 u64 num_bytes = orig_bytes; 3650 int retries = 0; 3651 int ret = 0; 3652 bool committed = false; 3653 bool flushing = false; 3654 bool wait_ordered = false; 3655 3656 again: 3657 ret = 0; 3658 spin_lock(&space_info->lock); 3659 /* 3660 * We only want to wait if somebody other than us is flushing and we are 3661 * actually alloed to flush. 3662 */ 3663 while (flush && !flushing && space_info->flush) { 3664 spin_unlock(&space_info->lock); 3665 /* 3666 * If we have a trans handle we can't wait because the flusher 3667 * may have to commit the transaction, which would mean we would 3668 * deadlock since we are waiting for the flusher to finish, but 3669 * hold the current transaction open. 3670 */ 3671 if (current->journal_info) 3672 return -EAGAIN; 3673 ret = wait_event_interruptible(space_info->wait, 3674 !space_info->flush); 3675 /* Must have been interrupted, return */ 3676 if (ret) 3677 return -EINTR; 3678 3679 spin_lock(&space_info->lock); 3680 } 3681 3682 ret = -ENOSPC; 3683 used = space_info->bytes_used + space_info->bytes_reserved + 3684 space_info->bytes_pinned + space_info->bytes_readonly + 3685 space_info->bytes_may_use; 3686 3687 /* 3688 * The idea here is that we've not already over-reserved the block group 3689 * then we can go ahead and save our reservation first and then start 3690 * flushing if we need to. Otherwise if we've already overcommitted 3691 * lets start flushing stuff first and then come back and try to make 3692 * our reservation. 3693 */ 3694 if (used <= space_info->total_bytes) { 3695 if (used + orig_bytes <= space_info->total_bytes) { 3696 space_info->bytes_may_use += orig_bytes; 3697 trace_btrfs_space_reservation(root->fs_info, 3698 "space_info", 3699 (u64)space_info, 3700 orig_bytes, 1); 3701 ret = 0; 3702 } else { 3703 /* 3704 * Ok set num_bytes to orig_bytes since we aren't 3705 * overocmmitted, this way we only try and reclaim what 3706 * we need. 3707 */ 3708 num_bytes = orig_bytes; 3709 } 3710 } else { 3711 /* 3712 * Ok we're over committed, set num_bytes to the overcommitted 3713 * amount plus the amount of bytes that we need for this 3714 * reservation. 3715 */ 3716 wait_ordered = true; 3717 num_bytes = used - space_info->total_bytes + 3718 (orig_bytes * (retries + 1)); 3719 } 3720 3721 if (ret) { 3722 u64 profile = btrfs_get_alloc_profile(root, 0); 3723 u64 avail; 3724 3725 /* 3726 * If we have a lot of space that's pinned, don't bother doing 3727 * the overcommit dance yet and just commit the transaction. 3728 */ 3729 avail = (space_info->total_bytes - space_info->bytes_used) * 8; 3730 do_div(avail, 10); 3731 if (space_info->bytes_pinned >= avail && flush && !committed) { 3732 space_info->flush = 1; 3733 flushing = true; 3734 spin_unlock(&space_info->lock); 3735 ret = may_commit_transaction(root, space_info, 3736 orig_bytes, 1); 3737 if (ret) 3738 goto out; 3739 committed = true; 3740 goto again; 3741 } 3742 3743 spin_lock(&root->fs_info->free_chunk_lock); 3744 avail = root->fs_info->free_chunk_space; 3745 3746 /* 3747 * If we have dup, raid1 or raid10 then only half of the free 3748 * space is actually useable. 3749 */ 3750 if (profile & (BTRFS_BLOCK_GROUP_DUP | 3751 BTRFS_BLOCK_GROUP_RAID1 | 3752 BTRFS_BLOCK_GROUP_RAID10)) 3753 avail >>= 1; 3754 3755 /* 3756 * If we aren't flushing don't let us overcommit too much, say 3757 * 1/8th of the space. If we can flush, let it overcommit up to 3758 * 1/2 of the space. 3759 */ 3760 if (flush) 3761 avail >>= 3; 3762 else 3763 avail >>= 1; 3764 spin_unlock(&root->fs_info->free_chunk_lock); 3765 3766 if (used + num_bytes < space_info->total_bytes + avail) { 3767 space_info->bytes_may_use += orig_bytes; 3768 trace_btrfs_space_reservation(root->fs_info, 3769 "space_info", 3770 (u64)space_info, 3771 orig_bytes, 1); 3772 ret = 0; 3773 } else { 3774 wait_ordered = true; 3775 } 3776 } 3777 3778 /* 3779 * Couldn't make our reservation, save our place so while we're trying 3780 * to reclaim space we can actually use it instead of somebody else 3781 * stealing it from us. 3782 */ 3783 if (ret && flush) { 3784 flushing = true; 3785 space_info->flush = 1; 3786 } 3787 3788 spin_unlock(&space_info->lock); 3789 3790 if (!ret || !flush) 3791 goto out; 3792 3793 /* 3794 * We do synchronous shrinking since we don't actually unreserve 3795 * metadata until after the IO is completed. 3796 */ 3797 ret = shrink_delalloc(root, num_bytes, wait_ordered); 3798 if (ret < 0) 3799 goto out; 3800 3801 ret = 0; 3802 3803 /* 3804 * So if we were overcommitted it's possible that somebody else flushed 3805 * out enough space and we simply didn't have enough space to reclaim, 3806 * so go back around and try again. 3807 */ 3808 if (retries < 2) { 3809 wait_ordered = true; 3810 retries++; 3811 goto again; 3812 } 3813 3814 ret = -ENOSPC; 3815 if (committed) 3816 goto out; 3817 3818 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 3819 if (!ret) { 3820 committed = true; 3821 goto again; 3822 } 3823 3824 out: 3825 if (flushing) { 3826 spin_lock(&space_info->lock); 3827 space_info->flush = 0; 3828 wake_up_all(&space_info->wait); 3829 spin_unlock(&space_info->lock); 3830 } 3831 return ret; 3832 } 3833 3834 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans, 3835 struct btrfs_root *root) 3836 { 3837 struct btrfs_block_rsv *block_rsv = NULL; 3838 3839 if (root->ref_cows || root == root->fs_info->csum_root) 3840 block_rsv = trans->block_rsv; 3841 3842 if (!block_rsv) 3843 block_rsv = root->block_rsv; 3844 3845 if (!block_rsv) 3846 block_rsv = &root->fs_info->empty_block_rsv; 3847 3848 return block_rsv; 3849 } 3850 3851 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 3852 u64 num_bytes) 3853 { 3854 int ret = -ENOSPC; 3855 spin_lock(&block_rsv->lock); 3856 if (block_rsv->reserved >= num_bytes) { 3857 block_rsv->reserved -= num_bytes; 3858 if (block_rsv->reserved < block_rsv->size) 3859 block_rsv->full = 0; 3860 ret = 0; 3861 } 3862 spin_unlock(&block_rsv->lock); 3863 return ret; 3864 } 3865 3866 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 3867 u64 num_bytes, int update_size) 3868 { 3869 spin_lock(&block_rsv->lock); 3870 block_rsv->reserved += num_bytes; 3871 if (update_size) 3872 block_rsv->size += num_bytes; 3873 else if (block_rsv->reserved >= block_rsv->size) 3874 block_rsv->full = 1; 3875 spin_unlock(&block_rsv->lock); 3876 } 3877 3878 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 3879 struct btrfs_block_rsv *block_rsv, 3880 struct btrfs_block_rsv *dest, u64 num_bytes) 3881 { 3882 struct btrfs_space_info *space_info = block_rsv->space_info; 3883 3884 spin_lock(&block_rsv->lock); 3885 if (num_bytes == (u64)-1) 3886 num_bytes = block_rsv->size; 3887 block_rsv->size -= num_bytes; 3888 if (block_rsv->reserved >= block_rsv->size) { 3889 num_bytes = block_rsv->reserved - block_rsv->size; 3890 block_rsv->reserved = block_rsv->size; 3891 block_rsv->full = 1; 3892 } else { 3893 num_bytes = 0; 3894 } 3895 spin_unlock(&block_rsv->lock); 3896 3897 if (num_bytes > 0) { 3898 if (dest) { 3899 spin_lock(&dest->lock); 3900 if (!dest->full) { 3901 u64 bytes_to_add; 3902 3903 bytes_to_add = dest->size - dest->reserved; 3904 bytes_to_add = min(num_bytes, bytes_to_add); 3905 dest->reserved += bytes_to_add; 3906 if (dest->reserved >= dest->size) 3907 dest->full = 1; 3908 num_bytes -= bytes_to_add; 3909 } 3910 spin_unlock(&dest->lock); 3911 } 3912 if (num_bytes) { 3913 spin_lock(&space_info->lock); 3914 space_info->bytes_may_use -= num_bytes; 3915 trace_btrfs_space_reservation(fs_info, "space_info", 3916 (u64)space_info, 3917 num_bytes, 0); 3918 space_info->reservation_progress++; 3919 spin_unlock(&space_info->lock); 3920 } 3921 } 3922 } 3923 3924 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 3925 struct btrfs_block_rsv *dst, u64 num_bytes) 3926 { 3927 int ret; 3928 3929 ret = block_rsv_use_bytes(src, num_bytes); 3930 if (ret) 3931 return ret; 3932 3933 block_rsv_add_bytes(dst, num_bytes, 1); 3934 return 0; 3935 } 3936 3937 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv) 3938 { 3939 memset(rsv, 0, sizeof(*rsv)); 3940 spin_lock_init(&rsv->lock); 3941 } 3942 3943 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root) 3944 { 3945 struct btrfs_block_rsv *block_rsv; 3946 struct btrfs_fs_info *fs_info = root->fs_info; 3947 3948 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 3949 if (!block_rsv) 3950 return NULL; 3951 3952 btrfs_init_block_rsv(block_rsv); 3953 block_rsv->space_info = __find_space_info(fs_info, 3954 BTRFS_BLOCK_GROUP_METADATA); 3955 return block_rsv; 3956 } 3957 3958 void btrfs_free_block_rsv(struct btrfs_root *root, 3959 struct btrfs_block_rsv *rsv) 3960 { 3961 btrfs_block_rsv_release(root, rsv, (u64)-1); 3962 kfree(rsv); 3963 } 3964 3965 static inline int __block_rsv_add(struct btrfs_root *root, 3966 struct btrfs_block_rsv *block_rsv, 3967 u64 num_bytes, int flush) 3968 { 3969 int ret; 3970 3971 if (num_bytes == 0) 3972 return 0; 3973 3974 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 3975 if (!ret) { 3976 block_rsv_add_bytes(block_rsv, num_bytes, 1); 3977 return 0; 3978 } 3979 3980 return ret; 3981 } 3982 3983 int btrfs_block_rsv_add(struct btrfs_root *root, 3984 struct btrfs_block_rsv *block_rsv, 3985 u64 num_bytes) 3986 { 3987 return __block_rsv_add(root, block_rsv, num_bytes, 1); 3988 } 3989 3990 int btrfs_block_rsv_add_noflush(struct btrfs_root *root, 3991 struct btrfs_block_rsv *block_rsv, 3992 u64 num_bytes) 3993 { 3994 return __block_rsv_add(root, block_rsv, num_bytes, 0); 3995 } 3996 3997 int btrfs_block_rsv_check(struct btrfs_root *root, 3998 struct btrfs_block_rsv *block_rsv, int min_factor) 3999 { 4000 u64 num_bytes = 0; 4001 int ret = -ENOSPC; 4002 4003 if (!block_rsv) 4004 return 0; 4005 4006 spin_lock(&block_rsv->lock); 4007 num_bytes = div_factor(block_rsv->size, min_factor); 4008 if (block_rsv->reserved >= num_bytes) 4009 ret = 0; 4010 spin_unlock(&block_rsv->lock); 4011 4012 return ret; 4013 } 4014 4015 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root, 4016 struct btrfs_block_rsv *block_rsv, 4017 u64 min_reserved, int flush) 4018 { 4019 u64 num_bytes = 0; 4020 int ret = -ENOSPC; 4021 4022 if (!block_rsv) 4023 return 0; 4024 4025 spin_lock(&block_rsv->lock); 4026 num_bytes = min_reserved; 4027 if (block_rsv->reserved >= num_bytes) 4028 ret = 0; 4029 else 4030 num_bytes -= block_rsv->reserved; 4031 spin_unlock(&block_rsv->lock); 4032 4033 if (!ret) 4034 return 0; 4035 4036 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4037 if (!ret) { 4038 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4039 return 0; 4040 } 4041 4042 return ret; 4043 } 4044 4045 int btrfs_block_rsv_refill(struct btrfs_root *root, 4046 struct btrfs_block_rsv *block_rsv, 4047 u64 min_reserved) 4048 { 4049 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1); 4050 } 4051 4052 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root, 4053 struct btrfs_block_rsv *block_rsv, 4054 u64 min_reserved) 4055 { 4056 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0); 4057 } 4058 4059 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4060 struct btrfs_block_rsv *dst_rsv, 4061 u64 num_bytes) 4062 { 4063 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4064 } 4065 4066 void btrfs_block_rsv_release(struct btrfs_root *root, 4067 struct btrfs_block_rsv *block_rsv, 4068 u64 num_bytes) 4069 { 4070 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4071 if (global_rsv->full || global_rsv == block_rsv || 4072 block_rsv->space_info != global_rsv->space_info) 4073 global_rsv = NULL; 4074 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4075 num_bytes); 4076 } 4077 4078 /* 4079 * helper to calculate size of global block reservation. 4080 * the desired value is sum of space used by extent tree, 4081 * checksum tree and root tree 4082 */ 4083 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4084 { 4085 struct btrfs_space_info *sinfo; 4086 u64 num_bytes; 4087 u64 meta_used; 4088 u64 data_used; 4089 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4090 4091 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4092 spin_lock(&sinfo->lock); 4093 data_used = sinfo->bytes_used; 4094 spin_unlock(&sinfo->lock); 4095 4096 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4097 spin_lock(&sinfo->lock); 4098 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4099 data_used = 0; 4100 meta_used = sinfo->bytes_used; 4101 spin_unlock(&sinfo->lock); 4102 4103 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4104 csum_size * 2; 4105 num_bytes += div64_u64(data_used + meta_used, 50); 4106 4107 if (num_bytes * 3 > meta_used) 4108 num_bytes = div64_u64(meta_used, 3); 4109 4110 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10); 4111 } 4112 4113 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4114 { 4115 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4116 struct btrfs_space_info *sinfo = block_rsv->space_info; 4117 u64 num_bytes; 4118 4119 num_bytes = calc_global_metadata_size(fs_info); 4120 4121 spin_lock(&block_rsv->lock); 4122 spin_lock(&sinfo->lock); 4123 4124 block_rsv->size = num_bytes; 4125 4126 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4127 sinfo->bytes_reserved + sinfo->bytes_readonly + 4128 sinfo->bytes_may_use; 4129 4130 if (sinfo->total_bytes > num_bytes) { 4131 num_bytes = sinfo->total_bytes - num_bytes; 4132 block_rsv->reserved += num_bytes; 4133 sinfo->bytes_may_use += num_bytes; 4134 trace_btrfs_space_reservation(fs_info, "space_info", 4135 (u64)sinfo, num_bytes, 1); 4136 } 4137 4138 if (block_rsv->reserved >= block_rsv->size) { 4139 num_bytes = block_rsv->reserved - block_rsv->size; 4140 sinfo->bytes_may_use -= num_bytes; 4141 trace_btrfs_space_reservation(fs_info, "space_info", 4142 (u64)sinfo, num_bytes, 0); 4143 sinfo->reservation_progress++; 4144 block_rsv->reserved = block_rsv->size; 4145 block_rsv->full = 1; 4146 } 4147 4148 spin_unlock(&sinfo->lock); 4149 spin_unlock(&block_rsv->lock); 4150 } 4151 4152 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4153 { 4154 struct btrfs_space_info *space_info; 4155 4156 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4157 fs_info->chunk_block_rsv.space_info = space_info; 4158 4159 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4160 fs_info->global_block_rsv.space_info = space_info; 4161 fs_info->delalloc_block_rsv.space_info = space_info; 4162 fs_info->trans_block_rsv.space_info = space_info; 4163 fs_info->empty_block_rsv.space_info = space_info; 4164 fs_info->delayed_block_rsv.space_info = space_info; 4165 4166 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4167 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4168 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4169 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4170 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4171 4172 update_global_block_rsv(fs_info); 4173 } 4174 4175 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4176 { 4177 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4178 (u64)-1); 4179 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4180 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4181 WARN_ON(fs_info->trans_block_rsv.size > 0); 4182 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4183 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4184 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4185 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4186 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4187 } 4188 4189 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4190 struct btrfs_root *root) 4191 { 4192 if (!trans->bytes_reserved) 4193 return; 4194 4195 trace_btrfs_space_reservation(root->fs_info, "transaction", (u64)trans, 4196 trans->bytes_reserved, 0); 4197 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4198 trans->bytes_reserved = 0; 4199 } 4200 4201 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4202 struct inode *inode) 4203 { 4204 struct btrfs_root *root = BTRFS_I(inode)->root; 4205 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4206 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4207 4208 /* 4209 * We need to hold space in order to delete our orphan item once we've 4210 * added it, so this takes the reservation so we can release it later 4211 * when we are truly done with the orphan item. 4212 */ 4213 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4214 trace_btrfs_space_reservation(root->fs_info, "orphan", 4215 btrfs_ino(inode), num_bytes, 1); 4216 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4217 } 4218 4219 void btrfs_orphan_release_metadata(struct inode *inode) 4220 { 4221 struct btrfs_root *root = BTRFS_I(inode)->root; 4222 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4223 trace_btrfs_space_reservation(root->fs_info, "orphan", 4224 btrfs_ino(inode), num_bytes, 0); 4225 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4226 } 4227 4228 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans, 4229 struct btrfs_pending_snapshot *pending) 4230 { 4231 struct btrfs_root *root = pending->root; 4232 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4233 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv; 4234 /* 4235 * two for root back/forward refs, two for directory entries 4236 * and one for root of the snapshot. 4237 */ 4238 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5); 4239 dst_rsv->space_info = src_rsv->space_info; 4240 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4241 } 4242 4243 /** 4244 * drop_outstanding_extent - drop an outstanding extent 4245 * @inode: the inode we're dropping the extent for 4246 * 4247 * This is called when we are freeing up an outstanding extent, either called 4248 * after an error or after an extent is written. This will return the number of 4249 * reserved extents that need to be freed. This must be called with 4250 * BTRFS_I(inode)->lock held. 4251 */ 4252 static unsigned drop_outstanding_extent(struct inode *inode) 4253 { 4254 unsigned drop_inode_space = 0; 4255 unsigned dropped_extents = 0; 4256 4257 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 4258 BTRFS_I(inode)->outstanding_extents--; 4259 4260 if (BTRFS_I(inode)->outstanding_extents == 0 && 4261 BTRFS_I(inode)->delalloc_meta_reserved) { 4262 drop_inode_space = 1; 4263 BTRFS_I(inode)->delalloc_meta_reserved = 0; 4264 } 4265 4266 /* 4267 * If we have more or the same amount of outsanding extents than we have 4268 * reserved then we need to leave the reserved extents count alone. 4269 */ 4270 if (BTRFS_I(inode)->outstanding_extents >= 4271 BTRFS_I(inode)->reserved_extents) 4272 return drop_inode_space; 4273 4274 dropped_extents = BTRFS_I(inode)->reserved_extents - 4275 BTRFS_I(inode)->outstanding_extents; 4276 BTRFS_I(inode)->reserved_extents -= dropped_extents; 4277 return dropped_extents + drop_inode_space; 4278 } 4279 4280 /** 4281 * calc_csum_metadata_size - return the amount of metada space that must be 4282 * reserved/free'd for the given bytes. 4283 * @inode: the inode we're manipulating 4284 * @num_bytes: the number of bytes in question 4285 * @reserve: 1 if we are reserving space, 0 if we are freeing space 4286 * 4287 * This adjusts the number of csum_bytes in the inode and then returns the 4288 * correct amount of metadata that must either be reserved or freed. We 4289 * calculate how many checksums we can fit into one leaf and then divide the 4290 * number of bytes that will need to be checksumed by this value to figure out 4291 * how many checksums will be required. If we are adding bytes then the number 4292 * may go up and we will return the number of additional bytes that must be 4293 * reserved. If it is going down we will return the number of bytes that must 4294 * be freed. 4295 * 4296 * This must be called with BTRFS_I(inode)->lock held. 4297 */ 4298 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 4299 int reserve) 4300 { 4301 struct btrfs_root *root = BTRFS_I(inode)->root; 4302 u64 csum_size; 4303 int num_csums_per_leaf; 4304 int num_csums; 4305 int old_csums; 4306 4307 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 4308 BTRFS_I(inode)->csum_bytes == 0) 4309 return 0; 4310 4311 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4312 if (reserve) 4313 BTRFS_I(inode)->csum_bytes += num_bytes; 4314 else 4315 BTRFS_I(inode)->csum_bytes -= num_bytes; 4316 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 4317 num_csums_per_leaf = (int)div64_u64(csum_size, 4318 sizeof(struct btrfs_csum_item) + 4319 sizeof(struct btrfs_disk_key)); 4320 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 4321 num_csums = num_csums + num_csums_per_leaf - 1; 4322 num_csums = num_csums / num_csums_per_leaf; 4323 4324 old_csums = old_csums + num_csums_per_leaf - 1; 4325 old_csums = old_csums / num_csums_per_leaf; 4326 4327 /* No change, no need to reserve more */ 4328 if (old_csums == num_csums) 4329 return 0; 4330 4331 if (reserve) 4332 return btrfs_calc_trans_metadata_size(root, 4333 num_csums - old_csums); 4334 4335 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 4336 } 4337 4338 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 4339 { 4340 struct btrfs_root *root = BTRFS_I(inode)->root; 4341 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 4342 u64 to_reserve = 0; 4343 u64 csum_bytes; 4344 unsigned nr_extents = 0; 4345 int extra_reserve = 0; 4346 int flush = 1; 4347 int ret; 4348 4349 /* Need to be holding the i_mutex here if we aren't free space cache */ 4350 if (btrfs_is_free_space_inode(root, inode)) 4351 flush = 0; 4352 4353 if (flush && btrfs_transaction_in_commit(root->fs_info)) 4354 schedule_timeout(1); 4355 4356 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 4357 num_bytes = ALIGN(num_bytes, root->sectorsize); 4358 4359 spin_lock(&BTRFS_I(inode)->lock); 4360 BTRFS_I(inode)->outstanding_extents++; 4361 4362 if (BTRFS_I(inode)->outstanding_extents > 4363 BTRFS_I(inode)->reserved_extents) 4364 nr_extents = BTRFS_I(inode)->outstanding_extents - 4365 BTRFS_I(inode)->reserved_extents; 4366 4367 /* 4368 * Add an item to reserve for updating the inode when we complete the 4369 * delalloc io. 4370 */ 4371 if (!BTRFS_I(inode)->delalloc_meta_reserved) { 4372 nr_extents++; 4373 extra_reserve = 1; 4374 } 4375 4376 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 4377 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 4378 csum_bytes = BTRFS_I(inode)->csum_bytes; 4379 spin_unlock(&BTRFS_I(inode)->lock); 4380 4381 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 4382 if (ret) { 4383 u64 to_free = 0; 4384 unsigned dropped; 4385 4386 spin_lock(&BTRFS_I(inode)->lock); 4387 dropped = drop_outstanding_extent(inode); 4388 /* 4389 * If the inodes csum_bytes is the same as the original 4390 * csum_bytes then we know we haven't raced with any free()ers 4391 * so we can just reduce our inodes csum bytes and carry on. 4392 * Otherwise we have to do the normal free thing to account for 4393 * the case that the free side didn't free up its reserve 4394 * because of this outstanding reservation. 4395 */ 4396 if (BTRFS_I(inode)->csum_bytes == csum_bytes) 4397 calc_csum_metadata_size(inode, num_bytes, 0); 4398 else 4399 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4400 spin_unlock(&BTRFS_I(inode)->lock); 4401 if (dropped) 4402 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4403 4404 if (to_free) { 4405 btrfs_block_rsv_release(root, block_rsv, to_free); 4406 trace_btrfs_space_reservation(root->fs_info, 4407 "delalloc", 4408 btrfs_ino(inode), 4409 to_free, 0); 4410 } 4411 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4412 return ret; 4413 } 4414 4415 spin_lock(&BTRFS_I(inode)->lock); 4416 if (extra_reserve) { 4417 BTRFS_I(inode)->delalloc_meta_reserved = 1; 4418 nr_extents--; 4419 } 4420 BTRFS_I(inode)->reserved_extents += nr_extents; 4421 spin_unlock(&BTRFS_I(inode)->lock); 4422 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 4423 4424 if (to_reserve) 4425 trace_btrfs_space_reservation(root->fs_info,"delalloc", 4426 btrfs_ino(inode), to_reserve, 1); 4427 block_rsv_add_bytes(block_rsv, to_reserve, 1); 4428 4429 return 0; 4430 } 4431 4432 /** 4433 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 4434 * @inode: the inode to release the reservation for 4435 * @num_bytes: the number of bytes we're releasing 4436 * 4437 * This will release the metadata reservation for an inode. This can be called 4438 * once we complete IO for a given set of bytes to release their metadata 4439 * reservations. 4440 */ 4441 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 4442 { 4443 struct btrfs_root *root = BTRFS_I(inode)->root; 4444 u64 to_free = 0; 4445 unsigned dropped; 4446 4447 num_bytes = ALIGN(num_bytes, root->sectorsize); 4448 spin_lock(&BTRFS_I(inode)->lock); 4449 dropped = drop_outstanding_extent(inode); 4450 4451 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 4452 spin_unlock(&BTRFS_I(inode)->lock); 4453 if (dropped > 0) 4454 to_free += btrfs_calc_trans_metadata_size(root, dropped); 4455 4456 trace_btrfs_space_reservation(root->fs_info, "delalloc", 4457 btrfs_ino(inode), to_free, 0); 4458 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 4459 to_free); 4460 } 4461 4462 /** 4463 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 4464 * @inode: inode we're writing to 4465 * @num_bytes: the number of bytes we want to allocate 4466 * 4467 * This will do the following things 4468 * 4469 * o reserve space in the data space info for num_bytes 4470 * o reserve space in the metadata space info based on number of outstanding 4471 * extents and how much csums will be needed 4472 * o add to the inodes ->delalloc_bytes 4473 * o add it to the fs_info's delalloc inodes list. 4474 * 4475 * This will return 0 for success and -ENOSPC if there is no space left. 4476 */ 4477 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 4478 { 4479 int ret; 4480 4481 ret = btrfs_check_data_free_space(inode, num_bytes); 4482 if (ret) 4483 return ret; 4484 4485 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 4486 if (ret) { 4487 btrfs_free_reserved_data_space(inode, num_bytes); 4488 return ret; 4489 } 4490 4491 return 0; 4492 } 4493 4494 /** 4495 * btrfs_delalloc_release_space - release data and metadata space for delalloc 4496 * @inode: inode we're releasing space for 4497 * @num_bytes: the number of bytes we want to free up 4498 * 4499 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 4500 * called in the case that we don't need the metadata AND data reservations 4501 * anymore. So if there is an error or we insert an inline extent. 4502 * 4503 * This function will release the metadata space that was not used and will 4504 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 4505 * list if there are no delalloc bytes left. 4506 */ 4507 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 4508 { 4509 btrfs_delalloc_release_metadata(inode, num_bytes); 4510 btrfs_free_reserved_data_space(inode, num_bytes); 4511 } 4512 4513 static int update_block_group(struct btrfs_trans_handle *trans, 4514 struct btrfs_root *root, 4515 u64 bytenr, u64 num_bytes, int alloc) 4516 { 4517 struct btrfs_block_group_cache *cache = NULL; 4518 struct btrfs_fs_info *info = root->fs_info; 4519 u64 total = num_bytes; 4520 u64 old_val; 4521 u64 byte_in_group; 4522 int factor; 4523 4524 /* block accounting for super block */ 4525 spin_lock(&info->delalloc_lock); 4526 old_val = btrfs_super_bytes_used(info->super_copy); 4527 if (alloc) 4528 old_val += num_bytes; 4529 else 4530 old_val -= num_bytes; 4531 btrfs_set_super_bytes_used(info->super_copy, old_val); 4532 spin_unlock(&info->delalloc_lock); 4533 4534 while (total) { 4535 cache = btrfs_lookup_block_group(info, bytenr); 4536 if (!cache) 4537 return -1; 4538 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 4539 BTRFS_BLOCK_GROUP_RAID1 | 4540 BTRFS_BLOCK_GROUP_RAID10)) 4541 factor = 2; 4542 else 4543 factor = 1; 4544 /* 4545 * If this block group has free space cache written out, we 4546 * need to make sure to load it if we are removing space. This 4547 * is because we need the unpinning stage to actually add the 4548 * space back to the block group, otherwise we will leak space. 4549 */ 4550 if (!alloc && cache->cached == BTRFS_CACHE_NO) 4551 cache_block_group(cache, trans, NULL, 1); 4552 4553 byte_in_group = bytenr - cache->key.objectid; 4554 WARN_ON(byte_in_group > cache->key.offset); 4555 4556 spin_lock(&cache->space_info->lock); 4557 spin_lock(&cache->lock); 4558 4559 if (btrfs_test_opt(root, SPACE_CACHE) && 4560 cache->disk_cache_state < BTRFS_DC_CLEAR) 4561 cache->disk_cache_state = BTRFS_DC_CLEAR; 4562 4563 cache->dirty = 1; 4564 old_val = btrfs_block_group_used(&cache->item); 4565 num_bytes = min(total, cache->key.offset - byte_in_group); 4566 if (alloc) { 4567 old_val += num_bytes; 4568 btrfs_set_block_group_used(&cache->item, old_val); 4569 cache->reserved -= num_bytes; 4570 cache->space_info->bytes_reserved -= num_bytes; 4571 cache->space_info->bytes_used += num_bytes; 4572 cache->space_info->disk_used += num_bytes * factor; 4573 spin_unlock(&cache->lock); 4574 spin_unlock(&cache->space_info->lock); 4575 } else { 4576 old_val -= num_bytes; 4577 btrfs_set_block_group_used(&cache->item, old_val); 4578 cache->pinned += num_bytes; 4579 cache->space_info->bytes_pinned += num_bytes; 4580 cache->space_info->bytes_used -= num_bytes; 4581 cache->space_info->disk_used -= num_bytes * factor; 4582 spin_unlock(&cache->lock); 4583 spin_unlock(&cache->space_info->lock); 4584 4585 set_extent_dirty(info->pinned_extents, 4586 bytenr, bytenr + num_bytes - 1, 4587 GFP_NOFS | __GFP_NOFAIL); 4588 } 4589 btrfs_put_block_group(cache); 4590 total -= num_bytes; 4591 bytenr += num_bytes; 4592 } 4593 return 0; 4594 } 4595 4596 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 4597 { 4598 struct btrfs_block_group_cache *cache; 4599 u64 bytenr; 4600 4601 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 4602 if (!cache) 4603 return 0; 4604 4605 bytenr = cache->key.objectid; 4606 btrfs_put_block_group(cache); 4607 4608 return bytenr; 4609 } 4610 4611 static int pin_down_extent(struct btrfs_root *root, 4612 struct btrfs_block_group_cache *cache, 4613 u64 bytenr, u64 num_bytes, int reserved) 4614 { 4615 spin_lock(&cache->space_info->lock); 4616 spin_lock(&cache->lock); 4617 cache->pinned += num_bytes; 4618 cache->space_info->bytes_pinned += num_bytes; 4619 if (reserved) { 4620 cache->reserved -= num_bytes; 4621 cache->space_info->bytes_reserved -= num_bytes; 4622 } 4623 spin_unlock(&cache->lock); 4624 spin_unlock(&cache->space_info->lock); 4625 4626 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 4627 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 4628 return 0; 4629 } 4630 4631 /* 4632 * this function must be called within transaction 4633 */ 4634 int btrfs_pin_extent(struct btrfs_root *root, 4635 u64 bytenr, u64 num_bytes, int reserved) 4636 { 4637 struct btrfs_block_group_cache *cache; 4638 4639 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4640 BUG_ON(!cache); 4641 4642 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 4643 4644 btrfs_put_block_group(cache); 4645 return 0; 4646 } 4647 4648 /* 4649 * this function must be called within transaction 4650 */ 4651 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 4652 struct btrfs_root *root, 4653 u64 bytenr, u64 num_bytes) 4654 { 4655 struct btrfs_block_group_cache *cache; 4656 4657 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 4658 BUG_ON(!cache); 4659 4660 /* 4661 * pull in the free space cache (if any) so that our pin 4662 * removes the free space from the cache. We have load_only set 4663 * to one because the slow code to read in the free extents does check 4664 * the pinned extents. 4665 */ 4666 cache_block_group(cache, trans, root, 1); 4667 4668 pin_down_extent(root, cache, bytenr, num_bytes, 0); 4669 4670 /* remove us from the free space cache (if we're there at all) */ 4671 btrfs_remove_free_space(cache, bytenr, num_bytes); 4672 btrfs_put_block_group(cache); 4673 return 0; 4674 } 4675 4676 /** 4677 * btrfs_update_reserved_bytes - update the block_group and space info counters 4678 * @cache: The cache we are manipulating 4679 * @num_bytes: The number of bytes in question 4680 * @reserve: One of the reservation enums 4681 * 4682 * This is called by the allocator when it reserves space, or by somebody who is 4683 * freeing space that was never actually used on disk. For example if you 4684 * reserve some space for a new leaf in transaction A and before transaction A 4685 * commits you free that leaf, you call this with reserve set to 0 in order to 4686 * clear the reservation. 4687 * 4688 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 4689 * ENOSPC accounting. For data we handle the reservation through clearing the 4690 * delalloc bits in the io_tree. We have to do this since we could end up 4691 * allocating less disk space for the amount of data we have reserved in the 4692 * case of compression. 4693 * 4694 * If this is a reservation and the block group has become read only we cannot 4695 * make the reservation and return -EAGAIN, otherwise this function always 4696 * succeeds. 4697 */ 4698 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 4699 u64 num_bytes, int reserve) 4700 { 4701 struct btrfs_space_info *space_info = cache->space_info; 4702 int ret = 0; 4703 spin_lock(&space_info->lock); 4704 spin_lock(&cache->lock); 4705 if (reserve != RESERVE_FREE) { 4706 if (cache->ro) { 4707 ret = -EAGAIN; 4708 } else { 4709 cache->reserved += num_bytes; 4710 space_info->bytes_reserved += num_bytes; 4711 if (reserve == RESERVE_ALLOC) { 4712 trace_btrfs_space_reservation(cache->fs_info, 4713 "space_info", 4714 (u64)space_info, 4715 num_bytes, 0); 4716 space_info->bytes_may_use -= num_bytes; 4717 } 4718 } 4719 } else { 4720 if (cache->ro) 4721 space_info->bytes_readonly += num_bytes; 4722 cache->reserved -= num_bytes; 4723 space_info->bytes_reserved -= num_bytes; 4724 space_info->reservation_progress++; 4725 } 4726 spin_unlock(&cache->lock); 4727 spin_unlock(&space_info->lock); 4728 return ret; 4729 } 4730 4731 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 4732 struct btrfs_root *root) 4733 { 4734 struct btrfs_fs_info *fs_info = root->fs_info; 4735 struct btrfs_caching_control *next; 4736 struct btrfs_caching_control *caching_ctl; 4737 struct btrfs_block_group_cache *cache; 4738 4739 down_write(&fs_info->extent_commit_sem); 4740 4741 list_for_each_entry_safe(caching_ctl, next, 4742 &fs_info->caching_block_groups, list) { 4743 cache = caching_ctl->block_group; 4744 if (block_group_cache_done(cache)) { 4745 cache->last_byte_to_unpin = (u64)-1; 4746 list_del_init(&caching_ctl->list); 4747 put_caching_control(caching_ctl); 4748 } else { 4749 cache->last_byte_to_unpin = caching_ctl->progress; 4750 } 4751 } 4752 4753 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4754 fs_info->pinned_extents = &fs_info->freed_extents[1]; 4755 else 4756 fs_info->pinned_extents = &fs_info->freed_extents[0]; 4757 4758 up_write(&fs_info->extent_commit_sem); 4759 4760 update_global_block_rsv(fs_info); 4761 return 0; 4762 } 4763 4764 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 4765 { 4766 struct btrfs_fs_info *fs_info = root->fs_info; 4767 struct btrfs_block_group_cache *cache = NULL; 4768 u64 len; 4769 4770 while (start <= end) { 4771 if (!cache || 4772 start >= cache->key.objectid + cache->key.offset) { 4773 if (cache) 4774 btrfs_put_block_group(cache); 4775 cache = btrfs_lookup_block_group(fs_info, start); 4776 BUG_ON(!cache); 4777 } 4778 4779 len = cache->key.objectid + cache->key.offset - start; 4780 len = min(len, end + 1 - start); 4781 4782 if (start < cache->last_byte_to_unpin) { 4783 len = min(len, cache->last_byte_to_unpin - start); 4784 btrfs_add_free_space(cache, start, len); 4785 } 4786 4787 start += len; 4788 4789 spin_lock(&cache->space_info->lock); 4790 spin_lock(&cache->lock); 4791 cache->pinned -= len; 4792 cache->space_info->bytes_pinned -= len; 4793 if (cache->ro) 4794 cache->space_info->bytes_readonly += len; 4795 spin_unlock(&cache->lock); 4796 spin_unlock(&cache->space_info->lock); 4797 } 4798 4799 if (cache) 4800 btrfs_put_block_group(cache); 4801 return 0; 4802 } 4803 4804 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 4805 struct btrfs_root *root) 4806 { 4807 struct btrfs_fs_info *fs_info = root->fs_info; 4808 struct extent_io_tree *unpin; 4809 u64 start; 4810 u64 end; 4811 int ret; 4812 4813 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 4814 unpin = &fs_info->freed_extents[1]; 4815 else 4816 unpin = &fs_info->freed_extents[0]; 4817 4818 while (1) { 4819 ret = find_first_extent_bit(unpin, 0, &start, &end, 4820 EXTENT_DIRTY); 4821 if (ret) 4822 break; 4823 4824 if (btrfs_test_opt(root, DISCARD)) 4825 ret = btrfs_discard_extent(root, start, 4826 end + 1 - start, NULL); 4827 4828 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4829 unpin_extent_range(root, start, end); 4830 cond_resched(); 4831 } 4832 4833 return 0; 4834 } 4835 4836 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 4837 struct btrfs_root *root, 4838 u64 bytenr, u64 num_bytes, u64 parent, 4839 u64 root_objectid, u64 owner_objectid, 4840 u64 owner_offset, int refs_to_drop, 4841 struct btrfs_delayed_extent_op *extent_op) 4842 { 4843 struct btrfs_key key; 4844 struct btrfs_path *path; 4845 struct btrfs_fs_info *info = root->fs_info; 4846 struct btrfs_root *extent_root = info->extent_root; 4847 struct extent_buffer *leaf; 4848 struct btrfs_extent_item *ei; 4849 struct btrfs_extent_inline_ref *iref; 4850 int ret; 4851 int is_data; 4852 int extent_slot = 0; 4853 int found_extent = 0; 4854 int num_to_del = 1; 4855 u32 item_size; 4856 u64 refs; 4857 4858 path = btrfs_alloc_path(); 4859 if (!path) 4860 return -ENOMEM; 4861 4862 path->reada = 1; 4863 path->leave_spinning = 1; 4864 4865 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 4866 BUG_ON(!is_data && refs_to_drop != 1); 4867 4868 ret = lookup_extent_backref(trans, extent_root, path, &iref, 4869 bytenr, num_bytes, parent, 4870 root_objectid, owner_objectid, 4871 owner_offset); 4872 if (ret == 0) { 4873 extent_slot = path->slots[0]; 4874 while (extent_slot >= 0) { 4875 btrfs_item_key_to_cpu(path->nodes[0], &key, 4876 extent_slot); 4877 if (key.objectid != bytenr) 4878 break; 4879 if (key.type == BTRFS_EXTENT_ITEM_KEY && 4880 key.offset == num_bytes) { 4881 found_extent = 1; 4882 break; 4883 } 4884 if (path->slots[0] - extent_slot > 5) 4885 break; 4886 extent_slot--; 4887 } 4888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4889 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 4890 if (found_extent && item_size < sizeof(*ei)) 4891 found_extent = 0; 4892 #endif 4893 if (!found_extent) { 4894 BUG_ON(iref); 4895 ret = remove_extent_backref(trans, extent_root, path, 4896 NULL, refs_to_drop, 4897 is_data); 4898 BUG_ON(ret); 4899 btrfs_release_path(path); 4900 path->leave_spinning = 1; 4901 4902 key.objectid = bytenr; 4903 key.type = BTRFS_EXTENT_ITEM_KEY; 4904 key.offset = num_bytes; 4905 4906 ret = btrfs_search_slot(trans, extent_root, 4907 &key, path, -1, 1); 4908 if (ret) { 4909 printk(KERN_ERR "umm, got %d back from search" 4910 ", was looking for %llu\n", ret, 4911 (unsigned long long)bytenr); 4912 if (ret > 0) 4913 btrfs_print_leaf(extent_root, 4914 path->nodes[0]); 4915 } 4916 BUG_ON(ret); 4917 extent_slot = path->slots[0]; 4918 } 4919 } else { 4920 btrfs_print_leaf(extent_root, path->nodes[0]); 4921 WARN_ON(1); 4922 printk(KERN_ERR "btrfs unable to find ref byte nr %llu " 4923 "parent %llu root %llu owner %llu offset %llu\n", 4924 (unsigned long long)bytenr, 4925 (unsigned long long)parent, 4926 (unsigned long long)root_objectid, 4927 (unsigned long long)owner_objectid, 4928 (unsigned long long)owner_offset); 4929 } 4930 4931 leaf = path->nodes[0]; 4932 item_size = btrfs_item_size_nr(leaf, extent_slot); 4933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4934 if (item_size < sizeof(*ei)) { 4935 BUG_ON(found_extent || extent_slot != path->slots[0]); 4936 ret = convert_extent_item_v0(trans, extent_root, path, 4937 owner_objectid, 0); 4938 BUG_ON(ret < 0); 4939 4940 btrfs_release_path(path); 4941 path->leave_spinning = 1; 4942 4943 key.objectid = bytenr; 4944 key.type = BTRFS_EXTENT_ITEM_KEY; 4945 key.offset = num_bytes; 4946 4947 ret = btrfs_search_slot(trans, extent_root, &key, path, 4948 -1, 1); 4949 if (ret) { 4950 printk(KERN_ERR "umm, got %d back from search" 4951 ", was looking for %llu\n", ret, 4952 (unsigned long long)bytenr); 4953 btrfs_print_leaf(extent_root, path->nodes[0]); 4954 } 4955 BUG_ON(ret); 4956 extent_slot = path->slots[0]; 4957 leaf = path->nodes[0]; 4958 item_size = btrfs_item_size_nr(leaf, extent_slot); 4959 } 4960 #endif 4961 BUG_ON(item_size < sizeof(*ei)); 4962 ei = btrfs_item_ptr(leaf, extent_slot, 4963 struct btrfs_extent_item); 4964 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) { 4965 struct btrfs_tree_block_info *bi; 4966 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 4967 bi = (struct btrfs_tree_block_info *)(ei + 1); 4968 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 4969 } 4970 4971 refs = btrfs_extent_refs(leaf, ei); 4972 BUG_ON(refs < refs_to_drop); 4973 refs -= refs_to_drop; 4974 4975 if (refs > 0) { 4976 if (extent_op) 4977 __run_delayed_extent_op(extent_op, leaf, ei); 4978 /* 4979 * In the case of inline back ref, reference count will 4980 * be updated by remove_extent_backref 4981 */ 4982 if (iref) { 4983 BUG_ON(!found_extent); 4984 } else { 4985 btrfs_set_extent_refs(leaf, ei, refs); 4986 btrfs_mark_buffer_dirty(leaf); 4987 } 4988 if (found_extent) { 4989 ret = remove_extent_backref(trans, extent_root, path, 4990 iref, refs_to_drop, 4991 is_data); 4992 BUG_ON(ret); 4993 } 4994 } else { 4995 if (found_extent) { 4996 BUG_ON(is_data && refs_to_drop != 4997 extent_data_ref_count(root, path, iref)); 4998 if (iref) { 4999 BUG_ON(path->slots[0] != extent_slot); 5000 } else { 5001 BUG_ON(path->slots[0] != extent_slot + 1); 5002 path->slots[0] = extent_slot; 5003 num_to_del = 2; 5004 } 5005 } 5006 5007 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 5008 num_to_del); 5009 BUG_ON(ret); 5010 btrfs_release_path(path); 5011 5012 if (is_data) { 5013 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 5014 BUG_ON(ret); 5015 } else { 5016 invalidate_mapping_pages(info->btree_inode->i_mapping, 5017 bytenr >> PAGE_CACHE_SHIFT, 5018 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT); 5019 } 5020 5021 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 5022 BUG_ON(ret); 5023 } 5024 btrfs_free_path(path); 5025 return ret; 5026 } 5027 5028 /* 5029 * when we free an block, it is possible (and likely) that we free the last 5030 * delayed ref for that extent as well. This searches the delayed ref tree for 5031 * a given extent, and if there are no other delayed refs to be processed, it 5032 * removes it from the tree. 5033 */ 5034 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 5035 struct btrfs_root *root, u64 bytenr) 5036 { 5037 struct btrfs_delayed_ref_head *head; 5038 struct btrfs_delayed_ref_root *delayed_refs; 5039 struct btrfs_delayed_ref_node *ref; 5040 struct rb_node *node; 5041 int ret = 0; 5042 5043 delayed_refs = &trans->transaction->delayed_refs; 5044 spin_lock(&delayed_refs->lock); 5045 head = btrfs_find_delayed_ref_head(trans, bytenr); 5046 if (!head) 5047 goto out; 5048 5049 node = rb_prev(&head->node.rb_node); 5050 if (!node) 5051 goto out; 5052 5053 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 5054 5055 /* there are still entries for this ref, we can't drop it */ 5056 if (ref->bytenr == bytenr) 5057 goto out; 5058 5059 if (head->extent_op) { 5060 if (!head->must_insert_reserved) 5061 goto out; 5062 kfree(head->extent_op); 5063 head->extent_op = NULL; 5064 } 5065 5066 /* 5067 * waiting for the lock here would deadlock. If someone else has it 5068 * locked they are already in the process of dropping it anyway 5069 */ 5070 if (!mutex_trylock(&head->mutex)) 5071 goto out; 5072 5073 /* 5074 * at this point we have a head with no other entries. Go 5075 * ahead and process it. 5076 */ 5077 head->node.in_tree = 0; 5078 rb_erase(&head->node.rb_node, &delayed_refs->root); 5079 5080 delayed_refs->num_entries--; 5081 if (waitqueue_active(&delayed_refs->seq_wait)) 5082 wake_up(&delayed_refs->seq_wait); 5083 5084 /* 5085 * we don't take a ref on the node because we're removing it from the 5086 * tree, so we just steal the ref the tree was holding. 5087 */ 5088 delayed_refs->num_heads--; 5089 if (list_empty(&head->cluster)) 5090 delayed_refs->num_heads_ready--; 5091 5092 list_del_init(&head->cluster); 5093 spin_unlock(&delayed_refs->lock); 5094 5095 BUG_ON(head->extent_op); 5096 if (head->must_insert_reserved) 5097 ret = 1; 5098 5099 mutex_unlock(&head->mutex); 5100 btrfs_put_delayed_ref(&head->node); 5101 return ret; 5102 out: 5103 spin_unlock(&delayed_refs->lock); 5104 return 0; 5105 } 5106 5107 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 5108 struct btrfs_root *root, 5109 struct extent_buffer *buf, 5110 u64 parent, int last_ref, int for_cow) 5111 { 5112 struct btrfs_block_group_cache *cache = NULL; 5113 int ret; 5114 5115 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5116 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 5117 buf->start, buf->len, 5118 parent, root->root_key.objectid, 5119 btrfs_header_level(buf), 5120 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5121 BUG_ON(ret); 5122 } 5123 5124 if (!last_ref) 5125 return; 5126 5127 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 5128 5129 if (btrfs_header_generation(buf) == trans->transid) { 5130 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 5131 ret = check_ref_cleanup(trans, root, buf->start); 5132 if (!ret) 5133 goto out; 5134 } 5135 5136 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 5137 pin_down_extent(root, cache, buf->start, buf->len, 1); 5138 goto out; 5139 } 5140 5141 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 5142 5143 btrfs_add_free_space(cache, buf->start, buf->len); 5144 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE); 5145 } 5146 out: 5147 /* 5148 * Deleting the buffer, clear the corrupt flag since it doesn't matter 5149 * anymore. 5150 */ 5151 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 5152 btrfs_put_block_group(cache); 5153 } 5154 5155 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5156 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 5157 u64 owner, u64 offset, int for_cow) 5158 { 5159 int ret; 5160 struct btrfs_fs_info *fs_info = root->fs_info; 5161 5162 /* 5163 * tree log blocks never actually go into the extent allocation 5164 * tree, just update pinning info and exit early. 5165 */ 5166 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 5167 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 5168 /* unlocks the pinned mutex */ 5169 btrfs_pin_extent(root, bytenr, num_bytes, 1); 5170 ret = 0; 5171 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5172 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 5173 num_bytes, 5174 parent, root_objectid, (int)owner, 5175 BTRFS_DROP_DELAYED_REF, NULL, for_cow); 5176 BUG_ON(ret); 5177 } else { 5178 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 5179 num_bytes, 5180 parent, root_objectid, owner, 5181 offset, BTRFS_DROP_DELAYED_REF, 5182 NULL, for_cow); 5183 BUG_ON(ret); 5184 } 5185 return ret; 5186 } 5187 5188 static u64 stripe_align(struct btrfs_root *root, u64 val) 5189 { 5190 u64 mask = ((u64)root->stripesize - 1); 5191 u64 ret = (val + mask) & ~mask; 5192 return ret; 5193 } 5194 5195 /* 5196 * when we wait for progress in the block group caching, its because 5197 * our allocation attempt failed at least once. So, we must sleep 5198 * and let some progress happen before we try again. 5199 * 5200 * This function will sleep at least once waiting for new free space to 5201 * show up, and then it will check the block group free space numbers 5202 * for our min num_bytes. Another option is to have it go ahead 5203 * and look in the rbtree for a free extent of a given size, but this 5204 * is a good start. 5205 */ 5206 static noinline int 5207 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 5208 u64 num_bytes) 5209 { 5210 struct btrfs_caching_control *caching_ctl; 5211 DEFINE_WAIT(wait); 5212 5213 caching_ctl = get_caching_control(cache); 5214 if (!caching_ctl) 5215 return 0; 5216 5217 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 5218 (cache->free_space_ctl->free_space >= num_bytes)); 5219 5220 put_caching_control(caching_ctl); 5221 return 0; 5222 } 5223 5224 static noinline int 5225 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 5226 { 5227 struct btrfs_caching_control *caching_ctl; 5228 DEFINE_WAIT(wait); 5229 5230 caching_ctl = get_caching_control(cache); 5231 if (!caching_ctl) 5232 return 0; 5233 5234 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 5235 5236 put_caching_control(caching_ctl); 5237 return 0; 5238 } 5239 5240 static int get_block_group_index(struct btrfs_block_group_cache *cache) 5241 { 5242 int index; 5243 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10) 5244 index = 0; 5245 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1) 5246 index = 1; 5247 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP) 5248 index = 2; 5249 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0) 5250 index = 3; 5251 else 5252 index = 4; 5253 return index; 5254 } 5255 5256 enum btrfs_loop_type { 5257 LOOP_FIND_IDEAL = 0, 5258 LOOP_CACHING_NOWAIT = 1, 5259 LOOP_CACHING_WAIT = 2, 5260 LOOP_ALLOC_CHUNK = 3, 5261 LOOP_NO_EMPTY_SIZE = 4, 5262 }; 5263 5264 /* 5265 * walks the btree of allocated extents and find a hole of a given size. 5266 * The key ins is changed to record the hole: 5267 * ins->objectid == block start 5268 * ins->flags = BTRFS_EXTENT_ITEM_KEY 5269 * ins->offset == number of blocks 5270 * Any available blocks before search_start are skipped. 5271 */ 5272 static noinline int find_free_extent(struct btrfs_trans_handle *trans, 5273 struct btrfs_root *orig_root, 5274 u64 num_bytes, u64 empty_size, 5275 u64 search_start, u64 search_end, 5276 u64 hint_byte, struct btrfs_key *ins, 5277 u64 data) 5278 { 5279 int ret = 0; 5280 struct btrfs_root *root = orig_root->fs_info->extent_root; 5281 struct btrfs_free_cluster *last_ptr = NULL; 5282 struct btrfs_block_group_cache *block_group = NULL; 5283 struct btrfs_block_group_cache *used_block_group; 5284 int empty_cluster = 2 * 1024 * 1024; 5285 int allowed_chunk_alloc = 0; 5286 int done_chunk_alloc = 0; 5287 struct btrfs_space_info *space_info; 5288 int loop = 0; 5289 int index = 0; 5290 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ? 5291 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 5292 bool found_uncached_bg = false; 5293 bool failed_cluster_refill = false; 5294 bool failed_alloc = false; 5295 bool use_cluster = true; 5296 bool have_caching_bg = false; 5297 u64 ideal_cache_percent = 0; 5298 u64 ideal_cache_offset = 0; 5299 5300 WARN_ON(num_bytes < root->sectorsize); 5301 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY); 5302 ins->objectid = 0; 5303 ins->offset = 0; 5304 5305 trace_find_free_extent(orig_root, num_bytes, empty_size, data); 5306 5307 space_info = __find_space_info(root->fs_info, data); 5308 if (!space_info) { 5309 printk(KERN_ERR "No space info for %llu\n", data); 5310 return -ENOSPC; 5311 } 5312 5313 /* 5314 * If the space info is for both data and metadata it means we have a 5315 * small filesystem and we can't use the clustering stuff. 5316 */ 5317 if (btrfs_mixed_space_info(space_info)) 5318 use_cluster = false; 5319 5320 if (orig_root->ref_cows || empty_size) 5321 allowed_chunk_alloc = 1; 5322 5323 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 5324 last_ptr = &root->fs_info->meta_alloc_cluster; 5325 if (!btrfs_test_opt(root, SSD)) 5326 empty_cluster = 64 * 1024; 5327 } 5328 5329 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 5330 btrfs_test_opt(root, SSD)) { 5331 last_ptr = &root->fs_info->data_alloc_cluster; 5332 } 5333 5334 if (last_ptr) { 5335 spin_lock(&last_ptr->lock); 5336 if (last_ptr->block_group) 5337 hint_byte = last_ptr->window_start; 5338 spin_unlock(&last_ptr->lock); 5339 } 5340 5341 search_start = max(search_start, first_logical_byte(root, 0)); 5342 search_start = max(search_start, hint_byte); 5343 5344 if (!last_ptr) 5345 empty_cluster = 0; 5346 5347 if (search_start == hint_byte) { 5348 ideal_cache: 5349 block_group = btrfs_lookup_block_group(root->fs_info, 5350 search_start); 5351 used_block_group = block_group; 5352 /* 5353 * we don't want to use the block group if it doesn't match our 5354 * allocation bits, or if its not cached. 5355 * 5356 * However if we are re-searching with an ideal block group 5357 * picked out then we don't care that the block group is cached. 5358 */ 5359 if (block_group && block_group_bits(block_group, data) && 5360 (block_group->cached != BTRFS_CACHE_NO || 5361 search_start == ideal_cache_offset)) { 5362 down_read(&space_info->groups_sem); 5363 if (list_empty(&block_group->list) || 5364 block_group->ro) { 5365 /* 5366 * someone is removing this block group, 5367 * we can't jump into the have_block_group 5368 * target because our list pointers are not 5369 * valid 5370 */ 5371 btrfs_put_block_group(block_group); 5372 up_read(&space_info->groups_sem); 5373 } else { 5374 index = get_block_group_index(block_group); 5375 goto have_block_group; 5376 } 5377 } else if (block_group) { 5378 btrfs_put_block_group(block_group); 5379 } 5380 } 5381 search: 5382 have_caching_bg = false; 5383 down_read(&space_info->groups_sem); 5384 list_for_each_entry(block_group, &space_info->block_groups[index], 5385 list) { 5386 u64 offset; 5387 int cached; 5388 5389 used_block_group = block_group; 5390 btrfs_get_block_group(block_group); 5391 search_start = block_group->key.objectid; 5392 5393 /* 5394 * this can happen if we end up cycling through all the 5395 * raid types, but we want to make sure we only allocate 5396 * for the proper type. 5397 */ 5398 if (!block_group_bits(block_group, data)) { 5399 u64 extra = BTRFS_BLOCK_GROUP_DUP | 5400 BTRFS_BLOCK_GROUP_RAID1 | 5401 BTRFS_BLOCK_GROUP_RAID10; 5402 5403 /* 5404 * if they asked for extra copies and this block group 5405 * doesn't provide them, bail. This does allow us to 5406 * fill raid0 from raid1. 5407 */ 5408 if ((data & extra) && !(block_group->flags & extra)) 5409 goto loop; 5410 } 5411 5412 have_block_group: 5413 cached = block_group_cache_done(block_group); 5414 if (unlikely(!cached)) { 5415 u64 free_percent; 5416 5417 found_uncached_bg = true; 5418 ret = cache_block_group(block_group, trans, 5419 orig_root, 1); 5420 if (block_group->cached == BTRFS_CACHE_FINISHED) 5421 goto alloc; 5422 5423 free_percent = btrfs_block_group_used(&block_group->item); 5424 free_percent *= 100; 5425 free_percent = div64_u64(free_percent, 5426 block_group->key.offset); 5427 free_percent = 100 - free_percent; 5428 if (free_percent > ideal_cache_percent && 5429 likely(!block_group->ro)) { 5430 ideal_cache_offset = block_group->key.objectid; 5431 ideal_cache_percent = free_percent; 5432 } 5433 5434 /* 5435 * The caching workers are limited to 2 threads, so we 5436 * can queue as much work as we care to. 5437 */ 5438 if (loop > LOOP_FIND_IDEAL) { 5439 ret = cache_block_group(block_group, trans, 5440 orig_root, 0); 5441 BUG_ON(ret); 5442 } 5443 5444 /* 5445 * If loop is set for cached only, try the next block 5446 * group. 5447 */ 5448 if (loop == LOOP_FIND_IDEAL) 5449 goto loop; 5450 } 5451 5452 alloc: 5453 if (unlikely(block_group->ro)) 5454 goto loop; 5455 5456 /* 5457 * Ok we want to try and use the cluster allocator, so 5458 * lets look there 5459 */ 5460 if (last_ptr) { 5461 /* 5462 * the refill lock keeps out other 5463 * people trying to start a new cluster 5464 */ 5465 spin_lock(&last_ptr->refill_lock); 5466 used_block_group = last_ptr->block_group; 5467 if (used_block_group != block_group && 5468 (!used_block_group || 5469 used_block_group->ro || 5470 !block_group_bits(used_block_group, data))) { 5471 used_block_group = block_group; 5472 goto refill_cluster; 5473 } 5474 5475 if (used_block_group != block_group) 5476 btrfs_get_block_group(used_block_group); 5477 5478 offset = btrfs_alloc_from_cluster(used_block_group, 5479 last_ptr, num_bytes, used_block_group->key.objectid); 5480 if (offset) { 5481 /* we have a block, we're done */ 5482 spin_unlock(&last_ptr->refill_lock); 5483 trace_btrfs_reserve_extent_cluster(root, 5484 block_group, search_start, num_bytes); 5485 goto checks; 5486 } 5487 5488 WARN_ON(last_ptr->block_group != used_block_group); 5489 if (used_block_group != block_group) { 5490 btrfs_put_block_group(used_block_group); 5491 used_block_group = block_group; 5492 } 5493 refill_cluster: 5494 BUG_ON(used_block_group != block_group); 5495 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 5496 * set up a new clusters, so lets just skip it 5497 * and let the allocator find whatever block 5498 * it can find. If we reach this point, we 5499 * will have tried the cluster allocator 5500 * plenty of times and not have found 5501 * anything, so we are likely way too 5502 * fragmented for the clustering stuff to find 5503 * anything. 5504 * 5505 * However, if the cluster is taken from the 5506 * current block group, release the cluster 5507 * first, so that we stand a better chance of 5508 * succeeding in the unclustered 5509 * allocation. */ 5510 if (loop >= LOOP_NO_EMPTY_SIZE && 5511 last_ptr->block_group != block_group) { 5512 spin_unlock(&last_ptr->refill_lock); 5513 goto unclustered_alloc; 5514 } 5515 5516 /* 5517 * this cluster didn't work out, free it and 5518 * start over 5519 */ 5520 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5521 5522 if (loop >= LOOP_NO_EMPTY_SIZE) { 5523 spin_unlock(&last_ptr->refill_lock); 5524 goto unclustered_alloc; 5525 } 5526 5527 /* allocate a cluster in this block group */ 5528 ret = btrfs_find_space_cluster(trans, root, 5529 block_group, last_ptr, 5530 search_start, num_bytes, 5531 empty_cluster + empty_size); 5532 if (ret == 0) { 5533 /* 5534 * now pull our allocation out of this 5535 * cluster 5536 */ 5537 offset = btrfs_alloc_from_cluster(block_group, 5538 last_ptr, num_bytes, 5539 search_start); 5540 if (offset) { 5541 /* we found one, proceed */ 5542 spin_unlock(&last_ptr->refill_lock); 5543 trace_btrfs_reserve_extent_cluster(root, 5544 block_group, search_start, 5545 num_bytes); 5546 goto checks; 5547 } 5548 } else if (!cached && loop > LOOP_CACHING_NOWAIT 5549 && !failed_cluster_refill) { 5550 spin_unlock(&last_ptr->refill_lock); 5551 5552 failed_cluster_refill = true; 5553 wait_block_group_cache_progress(block_group, 5554 num_bytes + empty_cluster + empty_size); 5555 goto have_block_group; 5556 } 5557 5558 /* 5559 * at this point we either didn't find a cluster 5560 * or we weren't able to allocate a block from our 5561 * cluster. Free the cluster we've been trying 5562 * to use, and go to the next block group 5563 */ 5564 btrfs_return_cluster_to_free_space(NULL, last_ptr); 5565 spin_unlock(&last_ptr->refill_lock); 5566 goto loop; 5567 } 5568 5569 unclustered_alloc: 5570 spin_lock(&block_group->free_space_ctl->tree_lock); 5571 if (cached && 5572 block_group->free_space_ctl->free_space < 5573 num_bytes + empty_cluster + empty_size) { 5574 spin_unlock(&block_group->free_space_ctl->tree_lock); 5575 goto loop; 5576 } 5577 spin_unlock(&block_group->free_space_ctl->tree_lock); 5578 5579 offset = btrfs_find_space_for_alloc(block_group, search_start, 5580 num_bytes, empty_size); 5581 /* 5582 * If we didn't find a chunk, and we haven't failed on this 5583 * block group before, and this block group is in the middle of 5584 * caching and we are ok with waiting, then go ahead and wait 5585 * for progress to be made, and set failed_alloc to true. 5586 * 5587 * If failed_alloc is true then we've already waited on this 5588 * block group once and should move on to the next block group. 5589 */ 5590 if (!offset && !failed_alloc && !cached && 5591 loop > LOOP_CACHING_NOWAIT) { 5592 wait_block_group_cache_progress(block_group, 5593 num_bytes + empty_size); 5594 failed_alloc = true; 5595 goto have_block_group; 5596 } else if (!offset) { 5597 if (!cached) 5598 have_caching_bg = true; 5599 goto loop; 5600 } 5601 checks: 5602 search_start = stripe_align(root, offset); 5603 /* move on to the next group */ 5604 if (search_start + num_bytes >= search_end) { 5605 btrfs_add_free_space(used_block_group, offset, num_bytes); 5606 goto loop; 5607 } 5608 5609 /* move on to the next group */ 5610 if (search_start + num_bytes > 5611 used_block_group->key.objectid + used_block_group->key.offset) { 5612 btrfs_add_free_space(used_block_group, offset, num_bytes); 5613 goto loop; 5614 } 5615 5616 if (offset < search_start) 5617 btrfs_add_free_space(used_block_group, offset, 5618 search_start - offset); 5619 BUG_ON(offset > search_start); 5620 5621 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes, 5622 alloc_type); 5623 if (ret == -EAGAIN) { 5624 btrfs_add_free_space(used_block_group, offset, num_bytes); 5625 goto loop; 5626 } 5627 5628 /* we are all good, lets return */ 5629 ins->objectid = search_start; 5630 ins->offset = num_bytes; 5631 5632 trace_btrfs_reserve_extent(orig_root, block_group, 5633 search_start, num_bytes); 5634 if (offset < search_start) 5635 btrfs_add_free_space(used_block_group, offset, 5636 search_start - offset); 5637 BUG_ON(offset > search_start); 5638 if (used_block_group != block_group) 5639 btrfs_put_block_group(used_block_group); 5640 btrfs_put_block_group(block_group); 5641 break; 5642 loop: 5643 failed_cluster_refill = false; 5644 failed_alloc = false; 5645 BUG_ON(index != get_block_group_index(block_group)); 5646 if (used_block_group != block_group) 5647 btrfs_put_block_group(used_block_group); 5648 btrfs_put_block_group(block_group); 5649 } 5650 up_read(&space_info->groups_sem); 5651 5652 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 5653 goto search; 5654 5655 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 5656 goto search; 5657 5658 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for 5659 * for them to make caching progress. Also 5660 * determine the best possible bg to cache 5661 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 5662 * caching kthreads as we move along 5663 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 5664 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 5665 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 5666 * again 5667 */ 5668 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 5669 index = 0; 5670 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) { 5671 found_uncached_bg = false; 5672 loop++; 5673 if (!ideal_cache_percent) 5674 goto search; 5675 5676 /* 5677 * 1 of the following 2 things have happened so far 5678 * 5679 * 1) We found an ideal block group for caching that 5680 * is mostly full and will cache quickly, so we might 5681 * as well wait for it. 5682 * 5683 * 2) We searched for cached only and we didn't find 5684 * anything, and we didn't start any caching kthreads 5685 * either, so chances are we will loop through and 5686 * start a couple caching kthreads, and then come back 5687 * around and just wait for them. This will be slower 5688 * because we will have 2 caching kthreads reading at 5689 * the same time when we could have just started one 5690 * and waited for it to get far enough to give us an 5691 * allocation, so go ahead and go to the wait caching 5692 * loop. 5693 */ 5694 loop = LOOP_CACHING_WAIT; 5695 search_start = ideal_cache_offset; 5696 ideal_cache_percent = 0; 5697 goto ideal_cache; 5698 } else if (loop == LOOP_FIND_IDEAL) { 5699 /* 5700 * Didn't find a uncached bg, wait on anything we find 5701 * next. 5702 */ 5703 loop = LOOP_CACHING_WAIT; 5704 goto search; 5705 } 5706 5707 loop++; 5708 5709 if (loop == LOOP_ALLOC_CHUNK) { 5710 if (allowed_chunk_alloc) { 5711 ret = do_chunk_alloc(trans, root, num_bytes + 5712 2 * 1024 * 1024, data, 5713 CHUNK_ALLOC_LIMITED); 5714 allowed_chunk_alloc = 0; 5715 if (ret == 1) 5716 done_chunk_alloc = 1; 5717 } else if (!done_chunk_alloc && 5718 space_info->force_alloc == 5719 CHUNK_ALLOC_NO_FORCE) { 5720 space_info->force_alloc = CHUNK_ALLOC_LIMITED; 5721 } 5722 5723 /* 5724 * We didn't allocate a chunk, go ahead and drop the 5725 * empty size and loop again. 5726 */ 5727 if (!done_chunk_alloc) 5728 loop = LOOP_NO_EMPTY_SIZE; 5729 } 5730 5731 if (loop == LOOP_NO_EMPTY_SIZE) { 5732 empty_size = 0; 5733 empty_cluster = 0; 5734 } 5735 5736 goto search; 5737 } else if (!ins->objectid) { 5738 ret = -ENOSPC; 5739 } else if (ins->objectid) { 5740 ret = 0; 5741 } 5742 5743 return ret; 5744 } 5745 5746 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 5747 int dump_block_groups) 5748 { 5749 struct btrfs_block_group_cache *cache; 5750 int index = 0; 5751 5752 spin_lock(&info->lock); 5753 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n", 5754 (unsigned long long)info->flags, 5755 (unsigned long long)(info->total_bytes - info->bytes_used - 5756 info->bytes_pinned - info->bytes_reserved - 5757 info->bytes_readonly), 5758 (info->full) ? "" : "not "); 5759 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, " 5760 "reserved=%llu, may_use=%llu, readonly=%llu\n", 5761 (unsigned long long)info->total_bytes, 5762 (unsigned long long)info->bytes_used, 5763 (unsigned long long)info->bytes_pinned, 5764 (unsigned long long)info->bytes_reserved, 5765 (unsigned long long)info->bytes_may_use, 5766 (unsigned long long)info->bytes_readonly); 5767 spin_unlock(&info->lock); 5768 5769 if (!dump_block_groups) 5770 return; 5771 5772 down_read(&info->groups_sem); 5773 again: 5774 list_for_each_entry(cache, &info->block_groups[index], list) { 5775 spin_lock(&cache->lock); 5776 printk(KERN_INFO "block group %llu has %llu bytes, %llu used " 5777 "%llu pinned %llu reserved\n", 5778 (unsigned long long)cache->key.objectid, 5779 (unsigned long long)cache->key.offset, 5780 (unsigned long long)btrfs_block_group_used(&cache->item), 5781 (unsigned long long)cache->pinned, 5782 (unsigned long long)cache->reserved); 5783 btrfs_dump_free_space(cache, bytes); 5784 spin_unlock(&cache->lock); 5785 } 5786 if (++index < BTRFS_NR_RAID_TYPES) 5787 goto again; 5788 up_read(&info->groups_sem); 5789 } 5790 5791 int btrfs_reserve_extent(struct btrfs_trans_handle *trans, 5792 struct btrfs_root *root, 5793 u64 num_bytes, u64 min_alloc_size, 5794 u64 empty_size, u64 hint_byte, 5795 u64 search_end, struct btrfs_key *ins, 5796 u64 data) 5797 { 5798 bool final_tried = false; 5799 int ret; 5800 u64 search_start = 0; 5801 5802 data = btrfs_get_alloc_profile(root, data); 5803 again: 5804 /* 5805 * the only place that sets empty_size is btrfs_realloc_node, which 5806 * is not called recursively on allocations 5807 */ 5808 if (empty_size || root->ref_cows) 5809 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 5810 num_bytes + 2 * 1024 * 1024, data, 5811 CHUNK_ALLOC_NO_FORCE); 5812 5813 WARN_ON(num_bytes < root->sectorsize); 5814 ret = find_free_extent(trans, root, num_bytes, empty_size, 5815 search_start, search_end, hint_byte, 5816 ins, data); 5817 5818 if (ret == -ENOSPC) { 5819 if (!final_tried) { 5820 num_bytes = num_bytes >> 1; 5821 num_bytes = num_bytes & ~(root->sectorsize - 1); 5822 num_bytes = max(num_bytes, min_alloc_size); 5823 do_chunk_alloc(trans, root->fs_info->extent_root, 5824 num_bytes, data, CHUNK_ALLOC_FORCE); 5825 if (num_bytes == min_alloc_size) 5826 final_tried = true; 5827 goto again; 5828 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 5829 struct btrfs_space_info *sinfo; 5830 5831 sinfo = __find_space_info(root->fs_info, data); 5832 printk(KERN_ERR "btrfs allocation failed flags %llu, " 5833 "wanted %llu\n", (unsigned long long)data, 5834 (unsigned long long)num_bytes); 5835 dump_space_info(sinfo, num_bytes, 1); 5836 } 5837 } 5838 5839 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 5840 5841 return ret; 5842 } 5843 5844 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 5845 u64 start, u64 len, int pin) 5846 { 5847 struct btrfs_block_group_cache *cache; 5848 int ret = 0; 5849 5850 cache = btrfs_lookup_block_group(root->fs_info, start); 5851 if (!cache) { 5852 printk(KERN_ERR "Unable to find block group for %llu\n", 5853 (unsigned long long)start); 5854 return -ENOSPC; 5855 } 5856 5857 if (btrfs_test_opt(root, DISCARD)) 5858 ret = btrfs_discard_extent(root, start, len, NULL); 5859 5860 if (pin) 5861 pin_down_extent(root, cache, start, len, 1); 5862 else { 5863 btrfs_add_free_space(cache, start, len); 5864 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE); 5865 } 5866 btrfs_put_block_group(cache); 5867 5868 trace_btrfs_reserved_extent_free(root, start, len); 5869 5870 return ret; 5871 } 5872 5873 int btrfs_free_reserved_extent(struct btrfs_root *root, 5874 u64 start, u64 len) 5875 { 5876 return __btrfs_free_reserved_extent(root, start, len, 0); 5877 } 5878 5879 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 5880 u64 start, u64 len) 5881 { 5882 return __btrfs_free_reserved_extent(root, start, len, 1); 5883 } 5884 5885 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 5886 struct btrfs_root *root, 5887 u64 parent, u64 root_objectid, 5888 u64 flags, u64 owner, u64 offset, 5889 struct btrfs_key *ins, int ref_mod) 5890 { 5891 int ret; 5892 struct btrfs_fs_info *fs_info = root->fs_info; 5893 struct btrfs_extent_item *extent_item; 5894 struct btrfs_extent_inline_ref *iref; 5895 struct btrfs_path *path; 5896 struct extent_buffer *leaf; 5897 int type; 5898 u32 size; 5899 5900 if (parent > 0) 5901 type = BTRFS_SHARED_DATA_REF_KEY; 5902 else 5903 type = BTRFS_EXTENT_DATA_REF_KEY; 5904 5905 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 5906 5907 path = btrfs_alloc_path(); 5908 if (!path) 5909 return -ENOMEM; 5910 5911 path->leave_spinning = 1; 5912 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5913 ins, size); 5914 BUG_ON(ret); 5915 5916 leaf = path->nodes[0]; 5917 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5918 struct btrfs_extent_item); 5919 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 5920 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5921 btrfs_set_extent_flags(leaf, extent_item, 5922 flags | BTRFS_EXTENT_FLAG_DATA); 5923 5924 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 5925 btrfs_set_extent_inline_ref_type(leaf, iref, type); 5926 if (parent > 0) { 5927 struct btrfs_shared_data_ref *ref; 5928 ref = (struct btrfs_shared_data_ref *)(iref + 1); 5929 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5930 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 5931 } else { 5932 struct btrfs_extent_data_ref *ref; 5933 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 5934 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 5935 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 5936 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 5937 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 5938 } 5939 5940 btrfs_mark_buffer_dirty(path->nodes[0]); 5941 btrfs_free_path(path); 5942 5943 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 5944 if (ret) { 5945 printk(KERN_ERR "btrfs update block group failed for %llu " 5946 "%llu\n", (unsigned long long)ins->objectid, 5947 (unsigned long long)ins->offset); 5948 BUG(); 5949 } 5950 return ret; 5951 } 5952 5953 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 5954 struct btrfs_root *root, 5955 u64 parent, u64 root_objectid, 5956 u64 flags, struct btrfs_disk_key *key, 5957 int level, struct btrfs_key *ins) 5958 { 5959 int ret; 5960 struct btrfs_fs_info *fs_info = root->fs_info; 5961 struct btrfs_extent_item *extent_item; 5962 struct btrfs_tree_block_info *block_info; 5963 struct btrfs_extent_inline_ref *iref; 5964 struct btrfs_path *path; 5965 struct extent_buffer *leaf; 5966 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref); 5967 5968 path = btrfs_alloc_path(); 5969 if (!path) 5970 return -ENOMEM; 5971 5972 path->leave_spinning = 1; 5973 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 5974 ins, size); 5975 BUG_ON(ret); 5976 5977 leaf = path->nodes[0]; 5978 extent_item = btrfs_item_ptr(leaf, path->slots[0], 5979 struct btrfs_extent_item); 5980 btrfs_set_extent_refs(leaf, extent_item, 1); 5981 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 5982 btrfs_set_extent_flags(leaf, extent_item, 5983 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 5984 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 5985 5986 btrfs_set_tree_block_key(leaf, block_info, key); 5987 btrfs_set_tree_block_level(leaf, block_info, level); 5988 5989 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 5990 if (parent > 0) { 5991 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 5992 btrfs_set_extent_inline_ref_type(leaf, iref, 5993 BTRFS_SHARED_BLOCK_REF_KEY); 5994 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 5995 } else { 5996 btrfs_set_extent_inline_ref_type(leaf, iref, 5997 BTRFS_TREE_BLOCK_REF_KEY); 5998 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 5999 } 6000 6001 btrfs_mark_buffer_dirty(leaf); 6002 btrfs_free_path(path); 6003 6004 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 6005 if (ret) { 6006 printk(KERN_ERR "btrfs update block group failed for %llu " 6007 "%llu\n", (unsigned long long)ins->objectid, 6008 (unsigned long long)ins->offset); 6009 BUG(); 6010 } 6011 return ret; 6012 } 6013 6014 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6015 struct btrfs_root *root, 6016 u64 root_objectid, u64 owner, 6017 u64 offset, struct btrfs_key *ins) 6018 { 6019 int ret; 6020 6021 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 6022 6023 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 6024 ins->offset, 0, 6025 root_objectid, owner, offset, 6026 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 6027 return ret; 6028 } 6029 6030 /* 6031 * this is used by the tree logging recovery code. It records that 6032 * an extent has been allocated and makes sure to clear the free 6033 * space cache bits as well 6034 */ 6035 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 6036 struct btrfs_root *root, 6037 u64 root_objectid, u64 owner, u64 offset, 6038 struct btrfs_key *ins) 6039 { 6040 int ret; 6041 struct btrfs_block_group_cache *block_group; 6042 struct btrfs_caching_control *caching_ctl; 6043 u64 start = ins->objectid; 6044 u64 num_bytes = ins->offset; 6045 6046 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 6047 cache_block_group(block_group, trans, NULL, 0); 6048 caching_ctl = get_caching_control(block_group); 6049 6050 if (!caching_ctl) { 6051 BUG_ON(!block_group_cache_done(block_group)); 6052 ret = btrfs_remove_free_space(block_group, start, num_bytes); 6053 BUG_ON(ret); 6054 } else { 6055 mutex_lock(&caching_ctl->mutex); 6056 6057 if (start >= caching_ctl->progress) { 6058 ret = add_excluded_extent(root, start, num_bytes); 6059 BUG_ON(ret); 6060 } else if (start + num_bytes <= caching_ctl->progress) { 6061 ret = btrfs_remove_free_space(block_group, 6062 start, num_bytes); 6063 BUG_ON(ret); 6064 } else { 6065 num_bytes = caching_ctl->progress - start; 6066 ret = btrfs_remove_free_space(block_group, 6067 start, num_bytes); 6068 BUG_ON(ret); 6069 6070 start = caching_ctl->progress; 6071 num_bytes = ins->objectid + ins->offset - 6072 caching_ctl->progress; 6073 ret = add_excluded_extent(root, start, num_bytes); 6074 BUG_ON(ret); 6075 } 6076 6077 mutex_unlock(&caching_ctl->mutex); 6078 put_caching_control(caching_ctl); 6079 } 6080 6081 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 6082 RESERVE_ALLOC_NO_ACCOUNT); 6083 BUG_ON(ret); 6084 btrfs_put_block_group(block_group); 6085 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 6086 0, owner, offset, ins, 1); 6087 return ret; 6088 } 6089 6090 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, 6091 struct btrfs_root *root, 6092 u64 bytenr, u32 blocksize, 6093 int level) 6094 { 6095 struct extent_buffer *buf; 6096 6097 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 6098 if (!buf) 6099 return ERR_PTR(-ENOMEM); 6100 btrfs_set_header_generation(buf, trans->transid); 6101 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 6102 btrfs_tree_lock(buf); 6103 clean_tree_block(trans, root, buf); 6104 6105 btrfs_set_lock_blocking(buf); 6106 btrfs_set_buffer_uptodate(buf); 6107 6108 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 6109 /* 6110 * we allow two log transactions at a time, use different 6111 * EXENT bit to differentiate dirty pages. 6112 */ 6113 if (root->log_transid % 2 == 0) 6114 set_extent_dirty(&root->dirty_log_pages, buf->start, 6115 buf->start + buf->len - 1, GFP_NOFS); 6116 else 6117 set_extent_new(&root->dirty_log_pages, buf->start, 6118 buf->start + buf->len - 1, GFP_NOFS); 6119 } else { 6120 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 6121 buf->start + buf->len - 1, GFP_NOFS); 6122 } 6123 trans->blocks_used++; 6124 /* this returns a buffer locked for blocking */ 6125 return buf; 6126 } 6127 6128 static struct btrfs_block_rsv * 6129 use_block_rsv(struct btrfs_trans_handle *trans, 6130 struct btrfs_root *root, u32 blocksize) 6131 { 6132 struct btrfs_block_rsv *block_rsv; 6133 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 6134 int ret; 6135 6136 block_rsv = get_block_rsv(trans, root); 6137 6138 if (block_rsv->size == 0) { 6139 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6140 /* 6141 * If we couldn't reserve metadata bytes try and use some from 6142 * the global reserve. 6143 */ 6144 if (ret && block_rsv != global_rsv) { 6145 ret = block_rsv_use_bytes(global_rsv, blocksize); 6146 if (!ret) 6147 return global_rsv; 6148 return ERR_PTR(ret); 6149 } else if (ret) { 6150 return ERR_PTR(ret); 6151 } 6152 return block_rsv; 6153 } 6154 6155 ret = block_rsv_use_bytes(block_rsv, blocksize); 6156 if (!ret) 6157 return block_rsv; 6158 if (ret) { 6159 static DEFINE_RATELIMIT_STATE(_rs, 6160 DEFAULT_RATELIMIT_INTERVAL, 6161 /*DEFAULT_RATELIMIT_BURST*/ 2); 6162 if (__ratelimit(&_rs)) { 6163 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret); 6164 WARN_ON(1); 6165 } 6166 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0); 6167 if (!ret) { 6168 return block_rsv; 6169 } else if (ret && block_rsv != global_rsv) { 6170 ret = block_rsv_use_bytes(global_rsv, blocksize); 6171 if (!ret) 6172 return global_rsv; 6173 } 6174 } 6175 6176 return ERR_PTR(-ENOSPC); 6177 } 6178 6179 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 6180 struct btrfs_block_rsv *block_rsv, u32 blocksize) 6181 { 6182 block_rsv_add_bytes(block_rsv, blocksize, 0); 6183 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 6184 } 6185 6186 /* 6187 * finds a free extent and does all the dirty work required for allocation 6188 * returns the key for the extent through ins, and a tree buffer for 6189 * the first block of the extent through buf. 6190 * 6191 * returns the tree buffer or NULL. 6192 */ 6193 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 6194 struct btrfs_root *root, u32 blocksize, 6195 u64 parent, u64 root_objectid, 6196 struct btrfs_disk_key *key, int level, 6197 u64 hint, u64 empty_size, int for_cow) 6198 { 6199 struct btrfs_key ins; 6200 struct btrfs_block_rsv *block_rsv; 6201 struct extent_buffer *buf; 6202 u64 flags = 0; 6203 int ret; 6204 6205 6206 block_rsv = use_block_rsv(trans, root, blocksize); 6207 if (IS_ERR(block_rsv)) 6208 return ERR_CAST(block_rsv); 6209 6210 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize, 6211 empty_size, hint, (u64)-1, &ins, 0); 6212 if (ret) { 6213 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 6214 return ERR_PTR(ret); 6215 } 6216 6217 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 6218 blocksize, level); 6219 BUG_ON(IS_ERR(buf)); 6220 6221 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 6222 if (parent == 0) 6223 parent = ins.objectid; 6224 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 6225 } else 6226 BUG_ON(parent > 0); 6227 6228 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 6229 struct btrfs_delayed_extent_op *extent_op; 6230 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS); 6231 BUG_ON(!extent_op); 6232 if (key) 6233 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 6234 else 6235 memset(&extent_op->key, 0, sizeof(extent_op->key)); 6236 extent_op->flags_to_set = flags; 6237 extent_op->update_key = 1; 6238 extent_op->update_flags = 1; 6239 extent_op->is_data = 0; 6240 6241 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6242 ins.objectid, 6243 ins.offset, parent, root_objectid, 6244 level, BTRFS_ADD_DELAYED_EXTENT, 6245 extent_op, for_cow); 6246 BUG_ON(ret); 6247 } 6248 return buf; 6249 } 6250 6251 struct walk_control { 6252 u64 refs[BTRFS_MAX_LEVEL]; 6253 u64 flags[BTRFS_MAX_LEVEL]; 6254 struct btrfs_key update_progress; 6255 int stage; 6256 int level; 6257 int shared_level; 6258 int update_ref; 6259 int keep_locks; 6260 int reada_slot; 6261 int reada_count; 6262 int for_reloc; 6263 }; 6264 6265 #define DROP_REFERENCE 1 6266 #define UPDATE_BACKREF 2 6267 6268 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 6269 struct btrfs_root *root, 6270 struct walk_control *wc, 6271 struct btrfs_path *path) 6272 { 6273 u64 bytenr; 6274 u64 generation; 6275 u64 refs; 6276 u64 flags; 6277 u32 nritems; 6278 u32 blocksize; 6279 struct btrfs_key key; 6280 struct extent_buffer *eb; 6281 int ret; 6282 int slot; 6283 int nread = 0; 6284 6285 if (path->slots[wc->level] < wc->reada_slot) { 6286 wc->reada_count = wc->reada_count * 2 / 3; 6287 wc->reada_count = max(wc->reada_count, 2); 6288 } else { 6289 wc->reada_count = wc->reada_count * 3 / 2; 6290 wc->reada_count = min_t(int, wc->reada_count, 6291 BTRFS_NODEPTRS_PER_BLOCK(root)); 6292 } 6293 6294 eb = path->nodes[wc->level]; 6295 nritems = btrfs_header_nritems(eb); 6296 blocksize = btrfs_level_size(root, wc->level - 1); 6297 6298 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 6299 if (nread >= wc->reada_count) 6300 break; 6301 6302 cond_resched(); 6303 bytenr = btrfs_node_blockptr(eb, slot); 6304 generation = btrfs_node_ptr_generation(eb, slot); 6305 6306 if (slot == path->slots[wc->level]) 6307 goto reada; 6308 6309 if (wc->stage == UPDATE_BACKREF && 6310 generation <= root->root_key.offset) 6311 continue; 6312 6313 /* We don't lock the tree block, it's OK to be racy here */ 6314 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6315 &refs, &flags); 6316 BUG_ON(ret); 6317 BUG_ON(refs == 0); 6318 6319 if (wc->stage == DROP_REFERENCE) { 6320 if (refs == 1) 6321 goto reada; 6322 6323 if (wc->level == 1 && 6324 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6325 continue; 6326 if (!wc->update_ref || 6327 generation <= root->root_key.offset) 6328 continue; 6329 btrfs_node_key_to_cpu(eb, &key, slot); 6330 ret = btrfs_comp_cpu_keys(&key, 6331 &wc->update_progress); 6332 if (ret < 0) 6333 continue; 6334 } else { 6335 if (wc->level == 1 && 6336 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6337 continue; 6338 } 6339 reada: 6340 ret = readahead_tree_block(root, bytenr, blocksize, 6341 generation); 6342 if (ret) 6343 break; 6344 nread++; 6345 } 6346 wc->reada_slot = slot; 6347 } 6348 6349 /* 6350 * hepler to process tree block while walking down the tree. 6351 * 6352 * when wc->stage == UPDATE_BACKREF, this function updates 6353 * back refs for pointers in the block. 6354 * 6355 * NOTE: return value 1 means we should stop walking down. 6356 */ 6357 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 6358 struct btrfs_root *root, 6359 struct btrfs_path *path, 6360 struct walk_control *wc, int lookup_info) 6361 { 6362 int level = wc->level; 6363 struct extent_buffer *eb = path->nodes[level]; 6364 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6365 int ret; 6366 6367 if (wc->stage == UPDATE_BACKREF && 6368 btrfs_header_owner(eb) != root->root_key.objectid) 6369 return 1; 6370 6371 /* 6372 * when reference count of tree block is 1, it won't increase 6373 * again. once full backref flag is set, we never clear it. 6374 */ 6375 if (lookup_info && 6376 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 6377 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 6378 BUG_ON(!path->locks[level]); 6379 ret = btrfs_lookup_extent_info(trans, root, 6380 eb->start, eb->len, 6381 &wc->refs[level], 6382 &wc->flags[level]); 6383 BUG_ON(ret); 6384 BUG_ON(wc->refs[level] == 0); 6385 } 6386 6387 if (wc->stage == DROP_REFERENCE) { 6388 if (wc->refs[level] > 1) 6389 return 1; 6390 6391 if (path->locks[level] && !wc->keep_locks) { 6392 btrfs_tree_unlock_rw(eb, path->locks[level]); 6393 path->locks[level] = 0; 6394 } 6395 return 0; 6396 } 6397 6398 /* wc->stage == UPDATE_BACKREF */ 6399 if (!(wc->flags[level] & flag)) { 6400 BUG_ON(!path->locks[level]); 6401 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc); 6402 BUG_ON(ret); 6403 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc); 6404 BUG_ON(ret); 6405 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 6406 eb->len, flag, 0); 6407 BUG_ON(ret); 6408 wc->flags[level] |= flag; 6409 } 6410 6411 /* 6412 * the block is shared by multiple trees, so it's not good to 6413 * keep the tree lock 6414 */ 6415 if (path->locks[level] && level > 0) { 6416 btrfs_tree_unlock_rw(eb, path->locks[level]); 6417 path->locks[level] = 0; 6418 } 6419 return 0; 6420 } 6421 6422 /* 6423 * hepler to process tree block pointer. 6424 * 6425 * when wc->stage == DROP_REFERENCE, this function checks 6426 * reference count of the block pointed to. if the block 6427 * is shared and we need update back refs for the subtree 6428 * rooted at the block, this function changes wc->stage to 6429 * UPDATE_BACKREF. if the block is shared and there is no 6430 * need to update back, this function drops the reference 6431 * to the block. 6432 * 6433 * NOTE: return value 1 means we should stop walking down. 6434 */ 6435 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 6436 struct btrfs_root *root, 6437 struct btrfs_path *path, 6438 struct walk_control *wc, int *lookup_info) 6439 { 6440 u64 bytenr; 6441 u64 generation; 6442 u64 parent; 6443 u32 blocksize; 6444 struct btrfs_key key; 6445 struct extent_buffer *next; 6446 int level = wc->level; 6447 int reada = 0; 6448 int ret = 0; 6449 6450 generation = btrfs_node_ptr_generation(path->nodes[level], 6451 path->slots[level]); 6452 /* 6453 * if the lower level block was created before the snapshot 6454 * was created, we know there is no need to update back refs 6455 * for the subtree 6456 */ 6457 if (wc->stage == UPDATE_BACKREF && 6458 generation <= root->root_key.offset) { 6459 *lookup_info = 1; 6460 return 1; 6461 } 6462 6463 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 6464 blocksize = btrfs_level_size(root, level - 1); 6465 6466 next = btrfs_find_tree_block(root, bytenr, blocksize); 6467 if (!next) { 6468 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 6469 if (!next) 6470 return -ENOMEM; 6471 reada = 1; 6472 } 6473 btrfs_tree_lock(next); 6474 btrfs_set_lock_blocking(next); 6475 6476 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize, 6477 &wc->refs[level - 1], 6478 &wc->flags[level - 1]); 6479 BUG_ON(ret); 6480 BUG_ON(wc->refs[level - 1] == 0); 6481 *lookup_info = 0; 6482 6483 if (wc->stage == DROP_REFERENCE) { 6484 if (wc->refs[level - 1] > 1) { 6485 if (level == 1 && 6486 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6487 goto skip; 6488 6489 if (!wc->update_ref || 6490 generation <= root->root_key.offset) 6491 goto skip; 6492 6493 btrfs_node_key_to_cpu(path->nodes[level], &key, 6494 path->slots[level]); 6495 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 6496 if (ret < 0) 6497 goto skip; 6498 6499 wc->stage = UPDATE_BACKREF; 6500 wc->shared_level = level - 1; 6501 } 6502 } else { 6503 if (level == 1 && 6504 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 6505 goto skip; 6506 } 6507 6508 if (!btrfs_buffer_uptodate(next, generation)) { 6509 btrfs_tree_unlock(next); 6510 free_extent_buffer(next); 6511 next = NULL; 6512 *lookup_info = 1; 6513 } 6514 6515 if (!next) { 6516 if (reada && level == 1) 6517 reada_walk_down(trans, root, wc, path); 6518 next = read_tree_block(root, bytenr, blocksize, generation); 6519 if (!next) 6520 return -EIO; 6521 btrfs_tree_lock(next); 6522 btrfs_set_lock_blocking(next); 6523 } 6524 6525 level--; 6526 BUG_ON(level != btrfs_header_level(next)); 6527 path->nodes[level] = next; 6528 path->slots[level] = 0; 6529 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6530 wc->level = level; 6531 if (wc->level == 1) 6532 wc->reada_slot = 0; 6533 return 0; 6534 skip: 6535 wc->refs[level - 1] = 0; 6536 wc->flags[level - 1] = 0; 6537 if (wc->stage == DROP_REFERENCE) { 6538 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 6539 parent = path->nodes[level]->start; 6540 } else { 6541 BUG_ON(root->root_key.objectid != 6542 btrfs_header_owner(path->nodes[level])); 6543 parent = 0; 6544 } 6545 6546 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 6547 root->root_key.objectid, level - 1, 0, 0); 6548 BUG_ON(ret); 6549 } 6550 btrfs_tree_unlock(next); 6551 free_extent_buffer(next); 6552 *lookup_info = 1; 6553 return 1; 6554 } 6555 6556 /* 6557 * hepler to process tree block while walking up the tree. 6558 * 6559 * when wc->stage == DROP_REFERENCE, this function drops 6560 * reference count on the block. 6561 * 6562 * when wc->stage == UPDATE_BACKREF, this function changes 6563 * wc->stage back to DROP_REFERENCE if we changed wc->stage 6564 * to UPDATE_BACKREF previously while processing the block. 6565 * 6566 * NOTE: return value 1 means we should stop walking up. 6567 */ 6568 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 6569 struct btrfs_root *root, 6570 struct btrfs_path *path, 6571 struct walk_control *wc) 6572 { 6573 int ret; 6574 int level = wc->level; 6575 struct extent_buffer *eb = path->nodes[level]; 6576 u64 parent = 0; 6577 6578 if (wc->stage == UPDATE_BACKREF) { 6579 BUG_ON(wc->shared_level < level); 6580 if (level < wc->shared_level) 6581 goto out; 6582 6583 ret = find_next_key(path, level + 1, &wc->update_progress); 6584 if (ret > 0) 6585 wc->update_ref = 0; 6586 6587 wc->stage = DROP_REFERENCE; 6588 wc->shared_level = -1; 6589 path->slots[level] = 0; 6590 6591 /* 6592 * check reference count again if the block isn't locked. 6593 * we should start walking down the tree again if reference 6594 * count is one. 6595 */ 6596 if (!path->locks[level]) { 6597 BUG_ON(level == 0); 6598 btrfs_tree_lock(eb); 6599 btrfs_set_lock_blocking(eb); 6600 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6601 6602 ret = btrfs_lookup_extent_info(trans, root, 6603 eb->start, eb->len, 6604 &wc->refs[level], 6605 &wc->flags[level]); 6606 BUG_ON(ret); 6607 BUG_ON(wc->refs[level] == 0); 6608 if (wc->refs[level] == 1) { 6609 btrfs_tree_unlock_rw(eb, path->locks[level]); 6610 return 1; 6611 } 6612 } 6613 } 6614 6615 /* wc->stage == DROP_REFERENCE */ 6616 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 6617 6618 if (wc->refs[level] == 1) { 6619 if (level == 0) { 6620 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6621 ret = btrfs_dec_ref(trans, root, eb, 1, 6622 wc->for_reloc); 6623 else 6624 ret = btrfs_dec_ref(trans, root, eb, 0, 6625 wc->for_reloc); 6626 BUG_ON(ret); 6627 } 6628 /* make block locked assertion in clean_tree_block happy */ 6629 if (!path->locks[level] && 6630 btrfs_header_generation(eb) == trans->transid) { 6631 btrfs_tree_lock(eb); 6632 btrfs_set_lock_blocking(eb); 6633 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6634 } 6635 clean_tree_block(trans, root, eb); 6636 } 6637 6638 if (eb == root->node) { 6639 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6640 parent = eb->start; 6641 else 6642 BUG_ON(root->root_key.objectid != 6643 btrfs_header_owner(eb)); 6644 } else { 6645 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 6646 parent = path->nodes[level + 1]->start; 6647 else 6648 BUG_ON(root->root_key.objectid != 6649 btrfs_header_owner(path->nodes[level + 1])); 6650 } 6651 6652 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0); 6653 out: 6654 wc->refs[level] = 0; 6655 wc->flags[level] = 0; 6656 return 0; 6657 } 6658 6659 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 6660 struct btrfs_root *root, 6661 struct btrfs_path *path, 6662 struct walk_control *wc) 6663 { 6664 int level = wc->level; 6665 int lookup_info = 1; 6666 int ret; 6667 6668 while (level >= 0) { 6669 ret = walk_down_proc(trans, root, path, wc, lookup_info); 6670 if (ret > 0) 6671 break; 6672 6673 if (level == 0) 6674 break; 6675 6676 if (path->slots[level] >= 6677 btrfs_header_nritems(path->nodes[level])) 6678 break; 6679 6680 ret = do_walk_down(trans, root, path, wc, &lookup_info); 6681 if (ret > 0) { 6682 path->slots[level]++; 6683 continue; 6684 } else if (ret < 0) 6685 return ret; 6686 level = wc->level; 6687 } 6688 return 0; 6689 } 6690 6691 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 6692 struct btrfs_root *root, 6693 struct btrfs_path *path, 6694 struct walk_control *wc, int max_level) 6695 { 6696 int level = wc->level; 6697 int ret; 6698 6699 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6700 while (level < max_level && path->nodes[level]) { 6701 wc->level = level; 6702 if (path->slots[level] + 1 < 6703 btrfs_header_nritems(path->nodes[level])) { 6704 path->slots[level]++; 6705 return 0; 6706 } else { 6707 ret = walk_up_proc(trans, root, path, wc); 6708 if (ret > 0) 6709 return 0; 6710 6711 if (path->locks[level]) { 6712 btrfs_tree_unlock_rw(path->nodes[level], 6713 path->locks[level]); 6714 path->locks[level] = 0; 6715 } 6716 free_extent_buffer(path->nodes[level]); 6717 path->nodes[level] = NULL; 6718 level++; 6719 } 6720 } 6721 return 1; 6722 } 6723 6724 /* 6725 * drop a subvolume tree. 6726 * 6727 * this function traverses the tree freeing any blocks that only 6728 * referenced by the tree. 6729 * 6730 * when a shared tree block is found. this function decreases its 6731 * reference count by one. if update_ref is true, this function 6732 * also make sure backrefs for the shared block and all lower level 6733 * blocks are properly updated. 6734 */ 6735 void btrfs_drop_snapshot(struct btrfs_root *root, 6736 struct btrfs_block_rsv *block_rsv, int update_ref, 6737 int for_reloc) 6738 { 6739 struct btrfs_path *path; 6740 struct btrfs_trans_handle *trans; 6741 struct btrfs_root *tree_root = root->fs_info->tree_root; 6742 struct btrfs_root_item *root_item = &root->root_item; 6743 struct walk_control *wc; 6744 struct btrfs_key key; 6745 int err = 0; 6746 int ret; 6747 int level; 6748 6749 path = btrfs_alloc_path(); 6750 if (!path) { 6751 err = -ENOMEM; 6752 goto out; 6753 } 6754 6755 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6756 if (!wc) { 6757 btrfs_free_path(path); 6758 err = -ENOMEM; 6759 goto out; 6760 } 6761 6762 trans = btrfs_start_transaction(tree_root, 0); 6763 BUG_ON(IS_ERR(trans)); 6764 6765 if (block_rsv) 6766 trans->block_rsv = block_rsv; 6767 6768 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6769 level = btrfs_header_level(root->node); 6770 path->nodes[level] = btrfs_lock_root_node(root); 6771 btrfs_set_lock_blocking(path->nodes[level]); 6772 path->slots[level] = 0; 6773 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6774 memset(&wc->update_progress, 0, 6775 sizeof(wc->update_progress)); 6776 } else { 6777 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6778 memcpy(&wc->update_progress, &key, 6779 sizeof(wc->update_progress)); 6780 6781 level = root_item->drop_level; 6782 BUG_ON(level == 0); 6783 path->lowest_level = level; 6784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6785 path->lowest_level = 0; 6786 if (ret < 0) { 6787 err = ret; 6788 goto out_free; 6789 } 6790 WARN_ON(ret > 0); 6791 6792 /* 6793 * unlock our path, this is safe because only this 6794 * function is allowed to delete this snapshot 6795 */ 6796 btrfs_unlock_up_safe(path, 0); 6797 6798 level = btrfs_header_level(root->node); 6799 while (1) { 6800 btrfs_tree_lock(path->nodes[level]); 6801 btrfs_set_lock_blocking(path->nodes[level]); 6802 6803 ret = btrfs_lookup_extent_info(trans, root, 6804 path->nodes[level]->start, 6805 path->nodes[level]->len, 6806 &wc->refs[level], 6807 &wc->flags[level]); 6808 BUG_ON(ret); 6809 BUG_ON(wc->refs[level] == 0); 6810 6811 if (level == root_item->drop_level) 6812 break; 6813 6814 btrfs_tree_unlock(path->nodes[level]); 6815 WARN_ON(wc->refs[level] != 1); 6816 level--; 6817 } 6818 } 6819 6820 wc->level = level; 6821 wc->shared_level = -1; 6822 wc->stage = DROP_REFERENCE; 6823 wc->update_ref = update_ref; 6824 wc->keep_locks = 0; 6825 wc->for_reloc = for_reloc; 6826 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6827 6828 while (1) { 6829 ret = walk_down_tree(trans, root, path, wc); 6830 if (ret < 0) { 6831 err = ret; 6832 break; 6833 } 6834 6835 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6836 if (ret < 0) { 6837 err = ret; 6838 break; 6839 } 6840 6841 if (ret > 0) { 6842 BUG_ON(wc->stage != DROP_REFERENCE); 6843 break; 6844 } 6845 6846 if (wc->stage == DROP_REFERENCE) { 6847 level = wc->level; 6848 btrfs_node_key(path->nodes[level], 6849 &root_item->drop_progress, 6850 path->slots[level]); 6851 root_item->drop_level = level; 6852 } 6853 6854 BUG_ON(wc->level == 0); 6855 if (btrfs_should_end_transaction(trans, tree_root)) { 6856 ret = btrfs_update_root(trans, tree_root, 6857 &root->root_key, 6858 root_item); 6859 BUG_ON(ret); 6860 6861 btrfs_end_transaction_throttle(trans, tree_root); 6862 trans = btrfs_start_transaction(tree_root, 0); 6863 BUG_ON(IS_ERR(trans)); 6864 if (block_rsv) 6865 trans->block_rsv = block_rsv; 6866 } 6867 } 6868 btrfs_release_path(path); 6869 BUG_ON(err); 6870 6871 ret = btrfs_del_root(trans, tree_root, &root->root_key); 6872 BUG_ON(ret); 6873 6874 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 6875 ret = btrfs_find_last_root(tree_root, root->root_key.objectid, 6876 NULL, NULL); 6877 BUG_ON(ret < 0); 6878 if (ret > 0) { 6879 /* if we fail to delete the orphan item this time 6880 * around, it'll get picked up the next time. 6881 * 6882 * The most common failure here is just -ENOENT. 6883 */ 6884 btrfs_del_orphan_item(trans, tree_root, 6885 root->root_key.objectid); 6886 } 6887 } 6888 6889 if (root->in_radix) { 6890 btrfs_free_fs_root(tree_root->fs_info, root); 6891 } else { 6892 free_extent_buffer(root->node); 6893 free_extent_buffer(root->commit_root); 6894 kfree(root); 6895 } 6896 out_free: 6897 btrfs_end_transaction_throttle(trans, tree_root); 6898 kfree(wc); 6899 btrfs_free_path(path); 6900 out: 6901 if (err) 6902 btrfs_std_error(root->fs_info, err); 6903 return; 6904 } 6905 6906 /* 6907 * drop subtree rooted at tree block 'node'. 6908 * 6909 * NOTE: this function will unlock and release tree block 'node' 6910 * only used by relocation code 6911 */ 6912 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6913 struct btrfs_root *root, 6914 struct extent_buffer *node, 6915 struct extent_buffer *parent) 6916 { 6917 struct btrfs_path *path; 6918 struct walk_control *wc; 6919 int level; 6920 int parent_level; 6921 int ret = 0; 6922 int wret; 6923 6924 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 6925 6926 path = btrfs_alloc_path(); 6927 if (!path) 6928 return -ENOMEM; 6929 6930 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6931 if (!wc) { 6932 btrfs_free_path(path); 6933 return -ENOMEM; 6934 } 6935 6936 btrfs_assert_tree_locked(parent); 6937 parent_level = btrfs_header_level(parent); 6938 extent_buffer_get(parent); 6939 path->nodes[parent_level] = parent; 6940 path->slots[parent_level] = btrfs_header_nritems(parent); 6941 6942 btrfs_assert_tree_locked(node); 6943 level = btrfs_header_level(node); 6944 path->nodes[level] = node; 6945 path->slots[level] = 0; 6946 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 6947 6948 wc->refs[parent_level] = 1; 6949 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6950 wc->level = level; 6951 wc->shared_level = -1; 6952 wc->stage = DROP_REFERENCE; 6953 wc->update_ref = 0; 6954 wc->keep_locks = 1; 6955 wc->for_reloc = 1; 6956 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 6957 6958 while (1) { 6959 wret = walk_down_tree(trans, root, path, wc); 6960 if (wret < 0) { 6961 ret = wret; 6962 break; 6963 } 6964 6965 wret = walk_up_tree(trans, root, path, wc, parent_level); 6966 if (wret < 0) 6967 ret = wret; 6968 if (wret != 0) 6969 break; 6970 } 6971 6972 kfree(wc); 6973 btrfs_free_path(path); 6974 return ret; 6975 } 6976 6977 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 6978 { 6979 u64 num_devices; 6980 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 | 6981 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 6982 6983 if (root->fs_info->balance_ctl) { 6984 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 6985 u64 tgt = 0; 6986 6987 /* pick restriper's target profile and return */ 6988 if (flags & BTRFS_BLOCK_GROUP_DATA && 6989 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 6990 tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 6991 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 6992 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 6993 tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 6994 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 6995 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 6996 tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 6997 } 6998 6999 if (tgt) { 7000 /* extended -> chunk profile */ 7001 tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 7002 return tgt; 7003 } 7004 } 7005 7006 /* 7007 * we add in the count of missing devices because we want 7008 * to make sure that any RAID levels on a degraded FS 7009 * continue to be honored. 7010 */ 7011 num_devices = root->fs_info->fs_devices->rw_devices + 7012 root->fs_info->fs_devices->missing_devices; 7013 7014 if (num_devices == 1) { 7015 stripped |= BTRFS_BLOCK_GROUP_DUP; 7016 stripped = flags & ~stripped; 7017 7018 /* turn raid0 into single device chunks */ 7019 if (flags & BTRFS_BLOCK_GROUP_RAID0) 7020 return stripped; 7021 7022 /* turn mirroring into duplication */ 7023 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 7024 BTRFS_BLOCK_GROUP_RAID10)) 7025 return stripped | BTRFS_BLOCK_GROUP_DUP; 7026 return flags; 7027 } else { 7028 /* they already had raid on here, just return */ 7029 if (flags & stripped) 7030 return flags; 7031 7032 stripped |= BTRFS_BLOCK_GROUP_DUP; 7033 stripped = flags & ~stripped; 7034 7035 /* switch duplicated blocks with raid1 */ 7036 if (flags & BTRFS_BLOCK_GROUP_DUP) 7037 return stripped | BTRFS_BLOCK_GROUP_RAID1; 7038 7039 /* turn single device chunks into raid0 */ 7040 return stripped | BTRFS_BLOCK_GROUP_RAID0; 7041 } 7042 return flags; 7043 } 7044 7045 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 7046 { 7047 struct btrfs_space_info *sinfo = cache->space_info; 7048 u64 num_bytes; 7049 u64 min_allocable_bytes; 7050 int ret = -ENOSPC; 7051 7052 7053 /* 7054 * We need some metadata space and system metadata space for 7055 * allocating chunks in some corner cases until we force to set 7056 * it to be readonly. 7057 */ 7058 if ((sinfo->flags & 7059 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 7060 !force) 7061 min_allocable_bytes = 1 * 1024 * 1024; 7062 else 7063 min_allocable_bytes = 0; 7064 7065 spin_lock(&sinfo->lock); 7066 spin_lock(&cache->lock); 7067 7068 if (cache->ro) { 7069 ret = 0; 7070 goto out; 7071 } 7072 7073 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7074 cache->bytes_super - btrfs_block_group_used(&cache->item); 7075 7076 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 7077 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 7078 min_allocable_bytes <= sinfo->total_bytes) { 7079 sinfo->bytes_readonly += num_bytes; 7080 cache->ro = 1; 7081 ret = 0; 7082 } 7083 out: 7084 spin_unlock(&cache->lock); 7085 spin_unlock(&sinfo->lock); 7086 return ret; 7087 } 7088 7089 int btrfs_set_block_group_ro(struct btrfs_root *root, 7090 struct btrfs_block_group_cache *cache) 7091 7092 { 7093 struct btrfs_trans_handle *trans; 7094 u64 alloc_flags; 7095 int ret; 7096 7097 BUG_ON(cache->ro); 7098 7099 trans = btrfs_join_transaction(root); 7100 BUG_ON(IS_ERR(trans)); 7101 7102 alloc_flags = update_block_group_flags(root, cache->flags); 7103 if (alloc_flags != cache->flags) 7104 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7105 CHUNK_ALLOC_FORCE); 7106 7107 ret = set_block_group_ro(cache, 0); 7108 if (!ret) 7109 goto out; 7110 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 7111 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7112 CHUNK_ALLOC_FORCE); 7113 if (ret < 0) 7114 goto out; 7115 ret = set_block_group_ro(cache, 0); 7116 out: 7117 btrfs_end_transaction(trans, root); 7118 return ret; 7119 } 7120 7121 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 7122 struct btrfs_root *root, u64 type) 7123 { 7124 u64 alloc_flags = get_alloc_profile(root, type); 7125 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags, 7126 CHUNK_ALLOC_FORCE); 7127 } 7128 7129 /* 7130 * helper to account the unused space of all the readonly block group in the 7131 * list. takes mirrors into account. 7132 */ 7133 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 7134 { 7135 struct btrfs_block_group_cache *block_group; 7136 u64 free_bytes = 0; 7137 int factor; 7138 7139 list_for_each_entry(block_group, groups_list, list) { 7140 spin_lock(&block_group->lock); 7141 7142 if (!block_group->ro) { 7143 spin_unlock(&block_group->lock); 7144 continue; 7145 } 7146 7147 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 7148 BTRFS_BLOCK_GROUP_RAID10 | 7149 BTRFS_BLOCK_GROUP_DUP)) 7150 factor = 2; 7151 else 7152 factor = 1; 7153 7154 free_bytes += (block_group->key.offset - 7155 btrfs_block_group_used(&block_group->item)) * 7156 factor; 7157 7158 spin_unlock(&block_group->lock); 7159 } 7160 7161 return free_bytes; 7162 } 7163 7164 /* 7165 * helper to account the unused space of all the readonly block group in the 7166 * space_info. takes mirrors into account. 7167 */ 7168 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 7169 { 7170 int i; 7171 u64 free_bytes = 0; 7172 7173 spin_lock(&sinfo->lock); 7174 7175 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++) 7176 if (!list_empty(&sinfo->block_groups[i])) 7177 free_bytes += __btrfs_get_ro_block_group_free_space( 7178 &sinfo->block_groups[i]); 7179 7180 spin_unlock(&sinfo->lock); 7181 7182 return free_bytes; 7183 } 7184 7185 int btrfs_set_block_group_rw(struct btrfs_root *root, 7186 struct btrfs_block_group_cache *cache) 7187 { 7188 struct btrfs_space_info *sinfo = cache->space_info; 7189 u64 num_bytes; 7190 7191 BUG_ON(!cache->ro); 7192 7193 spin_lock(&sinfo->lock); 7194 spin_lock(&cache->lock); 7195 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 7196 cache->bytes_super - btrfs_block_group_used(&cache->item); 7197 sinfo->bytes_readonly -= num_bytes; 7198 cache->ro = 0; 7199 spin_unlock(&cache->lock); 7200 spin_unlock(&sinfo->lock); 7201 return 0; 7202 } 7203 7204 /* 7205 * checks to see if its even possible to relocate this block group. 7206 * 7207 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 7208 * ok to go ahead and try. 7209 */ 7210 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 7211 { 7212 struct btrfs_block_group_cache *block_group; 7213 struct btrfs_space_info *space_info; 7214 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 7215 struct btrfs_device *device; 7216 u64 min_free; 7217 u64 dev_min = 1; 7218 u64 dev_nr = 0; 7219 int index; 7220 int full = 0; 7221 int ret = 0; 7222 7223 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 7224 7225 /* odd, couldn't find the block group, leave it alone */ 7226 if (!block_group) 7227 return -1; 7228 7229 min_free = btrfs_block_group_used(&block_group->item); 7230 7231 /* no bytes used, we're good */ 7232 if (!min_free) 7233 goto out; 7234 7235 space_info = block_group->space_info; 7236 spin_lock(&space_info->lock); 7237 7238 full = space_info->full; 7239 7240 /* 7241 * if this is the last block group we have in this space, we can't 7242 * relocate it unless we're able to allocate a new chunk below. 7243 * 7244 * Otherwise, we need to make sure we have room in the space to handle 7245 * all of the extents from this block group. If we can, we're good 7246 */ 7247 if ((space_info->total_bytes != block_group->key.offset) && 7248 (space_info->bytes_used + space_info->bytes_reserved + 7249 space_info->bytes_pinned + space_info->bytes_readonly + 7250 min_free < space_info->total_bytes)) { 7251 spin_unlock(&space_info->lock); 7252 goto out; 7253 } 7254 spin_unlock(&space_info->lock); 7255 7256 /* 7257 * ok we don't have enough space, but maybe we have free space on our 7258 * devices to allocate new chunks for relocation, so loop through our 7259 * alloc devices and guess if we have enough space. However, if we 7260 * were marked as full, then we know there aren't enough chunks, and we 7261 * can just return. 7262 */ 7263 ret = -1; 7264 if (full) 7265 goto out; 7266 7267 /* 7268 * index: 7269 * 0: raid10 7270 * 1: raid1 7271 * 2: dup 7272 * 3: raid0 7273 * 4: single 7274 */ 7275 index = get_block_group_index(block_group); 7276 if (index == 0) { 7277 dev_min = 4; 7278 /* Divide by 2 */ 7279 min_free >>= 1; 7280 } else if (index == 1) { 7281 dev_min = 2; 7282 } else if (index == 2) { 7283 /* Multiply by 2 */ 7284 min_free <<= 1; 7285 } else if (index == 3) { 7286 dev_min = fs_devices->rw_devices; 7287 do_div(min_free, dev_min); 7288 } 7289 7290 mutex_lock(&root->fs_info->chunk_mutex); 7291 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 7292 u64 dev_offset; 7293 7294 /* 7295 * check to make sure we can actually find a chunk with enough 7296 * space to fit our block group in. 7297 */ 7298 if (device->total_bytes > device->bytes_used + min_free) { 7299 ret = find_free_dev_extent(device, min_free, 7300 &dev_offset, NULL); 7301 if (!ret) 7302 dev_nr++; 7303 7304 if (dev_nr >= dev_min) 7305 break; 7306 7307 ret = -1; 7308 } 7309 } 7310 mutex_unlock(&root->fs_info->chunk_mutex); 7311 out: 7312 btrfs_put_block_group(block_group); 7313 return ret; 7314 } 7315 7316 static int find_first_block_group(struct btrfs_root *root, 7317 struct btrfs_path *path, struct btrfs_key *key) 7318 { 7319 int ret = 0; 7320 struct btrfs_key found_key; 7321 struct extent_buffer *leaf; 7322 int slot; 7323 7324 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 7325 if (ret < 0) 7326 goto out; 7327 7328 while (1) { 7329 slot = path->slots[0]; 7330 leaf = path->nodes[0]; 7331 if (slot >= btrfs_header_nritems(leaf)) { 7332 ret = btrfs_next_leaf(root, path); 7333 if (ret == 0) 7334 continue; 7335 if (ret < 0) 7336 goto out; 7337 break; 7338 } 7339 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7340 7341 if (found_key.objectid >= key->objectid && 7342 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 7343 ret = 0; 7344 goto out; 7345 } 7346 path->slots[0]++; 7347 } 7348 out: 7349 return ret; 7350 } 7351 7352 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 7353 { 7354 struct btrfs_block_group_cache *block_group; 7355 u64 last = 0; 7356 7357 while (1) { 7358 struct inode *inode; 7359 7360 block_group = btrfs_lookup_first_block_group(info, last); 7361 while (block_group) { 7362 spin_lock(&block_group->lock); 7363 if (block_group->iref) 7364 break; 7365 spin_unlock(&block_group->lock); 7366 block_group = next_block_group(info->tree_root, 7367 block_group); 7368 } 7369 if (!block_group) { 7370 if (last == 0) 7371 break; 7372 last = 0; 7373 continue; 7374 } 7375 7376 inode = block_group->inode; 7377 block_group->iref = 0; 7378 block_group->inode = NULL; 7379 spin_unlock(&block_group->lock); 7380 iput(inode); 7381 last = block_group->key.objectid + block_group->key.offset; 7382 btrfs_put_block_group(block_group); 7383 } 7384 } 7385 7386 int btrfs_free_block_groups(struct btrfs_fs_info *info) 7387 { 7388 struct btrfs_block_group_cache *block_group; 7389 struct btrfs_space_info *space_info; 7390 struct btrfs_caching_control *caching_ctl; 7391 struct rb_node *n; 7392 7393 down_write(&info->extent_commit_sem); 7394 while (!list_empty(&info->caching_block_groups)) { 7395 caching_ctl = list_entry(info->caching_block_groups.next, 7396 struct btrfs_caching_control, list); 7397 list_del(&caching_ctl->list); 7398 put_caching_control(caching_ctl); 7399 } 7400 up_write(&info->extent_commit_sem); 7401 7402 spin_lock(&info->block_group_cache_lock); 7403 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 7404 block_group = rb_entry(n, struct btrfs_block_group_cache, 7405 cache_node); 7406 rb_erase(&block_group->cache_node, 7407 &info->block_group_cache_tree); 7408 spin_unlock(&info->block_group_cache_lock); 7409 7410 down_write(&block_group->space_info->groups_sem); 7411 list_del(&block_group->list); 7412 up_write(&block_group->space_info->groups_sem); 7413 7414 if (block_group->cached == BTRFS_CACHE_STARTED) 7415 wait_block_group_cache_done(block_group); 7416 7417 /* 7418 * We haven't cached this block group, which means we could 7419 * possibly have excluded extents on this block group. 7420 */ 7421 if (block_group->cached == BTRFS_CACHE_NO) 7422 free_excluded_extents(info->extent_root, block_group); 7423 7424 btrfs_remove_free_space_cache(block_group); 7425 btrfs_put_block_group(block_group); 7426 7427 spin_lock(&info->block_group_cache_lock); 7428 } 7429 spin_unlock(&info->block_group_cache_lock); 7430 7431 /* now that all the block groups are freed, go through and 7432 * free all the space_info structs. This is only called during 7433 * the final stages of unmount, and so we know nobody is 7434 * using them. We call synchronize_rcu() once before we start, 7435 * just to be on the safe side. 7436 */ 7437 synchronize_rcu(); 7438 7439 release_global_block_rsv(info); 7440 7441 while(!list_empty(&info->space_info)) { 7442 space_info = list_entry(info->space_info.next, 7443 struct btrfs_space_info, 7444 list); 7445 if (space_info->bytes_pinned > 0 || 7446 space_info->bytes_reserved > 0 || 7447 space_info->bytes_may_use > 0) { 7448 WARN_ON(1); 7449 dump_space_info(space_info, 0, 0); 7450 } 7451 list_del(&space_info->list); 7452 kfree(space_info); 7453 } 7454 return 0; 7455 } 7456 7457 static void __link_block_group(struct btrfs_space_info *space_info, 7458 struct btrfs_block_group_cache *cache) 7459 { 7460 int index = get_block_group_index(cache); 7461 7462 down_write(&space_info->groups_sem); 7463 list_add_tail(&cache->list, &space_info->block_groups[index]); 7464 up_write(&space_info->groups_sem); 7465 } 7466 7467 int btrfs_read_block_groups(struct btrfs_root *root) 7468 { 7469 struct btrfs_path *path; 7470 int ret; 7471 struct btrfs_block_group_cache *cache; 7472 struct btrfs_fs_info *info = root->fs_info; 7473 struct btrfs_space_info *space_info; 7474 struct btrfs_key key; 7475 struct btrfs_key found_key; 7476 struct extent_buffer *leaf; 7477 int need_clear = 0; 7478 u64 cache_gen; 7479 7480 root = info->extent_root; 7481 key.objectid = 0; 7482 key.offset = 0; 7483 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY); 7484 path = btrfs_alloc_path(); 7485 if (!path) 7486 return -ENOMEM; 7487 path->reada = 1; 7488 7489 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 7490 if (btrfs_test_opt(root, SPACE_CACHE) && 7491 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 7492 need_clear = 1; 7493 if (btrfs_test_opt(root, CLEAR_CACHE)) 7494 need_clear = 1; 7495 7496 while (1) { 7497 ret = find_first_block_group(root, path, &key); 7498 if (ret > 0) 7499 break; 7500 if (ret != 0) 7501 goto error; 7502 leaf = path->nodes[0]; 7503 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7504 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7505 if (!cache) { 7506 ret = -ENOMEM; 7507 goto error; 7508 } 7509 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7510 GFP_NOFS); 7511 if (!cache->free_space_ctl) { 7512 kfree(cache); 7513 ret = -ENOMEM; 7514 goto error; 7515 } 7516 7517 atomic_set(&cache->count, 1); 7518 spin_lock_init(&cache->lock); 7519 cache->fs_info = info; 7520 INIT_LIST_HEAD(&cache->list); 7521 INIT_LIST_HEAD(&cache->cluster_list); 7522 7523 if (need_clear) 7524 cache->disk_cache_state = BTRFS_DC_CLEAR; 7525 7526 read_extent_buffer(leaf, &cache->item, 7527 btrfs_item_ptr_offset(leaf, path->slots[0]), 7528 sizeof(cache->item)); 7529 memcpy(&cache->key, &found_key, sizeof(found_key)); 7530 7531 key.objectid = found_key.objectid + found_key.offset; 7532 btrfs_release_path(path); 7533 cache->flags = btrfs_block_group_flags(&cache->item); 7534 cache->sectorsize = root->sectorsize; 7535 7536 btrfs_init_free_space_ctl(cache); 7537 7538 /* 7539 * We need to exclude the super stripes now so that the space 7540 * info has super bytes accounted for, otherwise we'll think 7541 * we have more space than we actually do. 7542 */ 7543 exclude_super_stripes(root, cache); 7544 7545 /* 7546 * check for two cases, either we are full, and therefore 7547 * don't need to bother with the caching work since we won't 7548 * find any space, or we are empty, and we can just add all 7549 * the space in and be done with it. This saves us _alot_ of 7550 * time, particularly in the full case. 7551 */ 7552 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 7553 cache->last_byte_to_unpin = (u64)-1; 7554 cache->cached = BTRFS_CACHE_FINISHED; 7555 free_excluded_extents(root, cache); 7556 } else if (btrfs_block_group_used(&cache->item) == 0) { 7557 cache->last_byte_to_unpin = (u64)-1; 7558 cache->cached = BTRFS_CACHE_FINISHED; 7559 add_new_free_space(cache, root->fs_info, 7560 found_key.objectid, 7561 found_key.objectid + 7562 found_key.offset); 7563 free_excluded_extents(root, cache); 7564 } 7565 7566 ret = update_space_info(info, cache->flags, found_key.offset, 7567 btrfs_block_group_used(&cache->item), 7568 &space_info); 7569 BUG_ON(ret); 7570 cache->space_info = space_info; 7571 spin_lock(&cache->space_info->lock); 7572 cache->space_info->bytes_readonly += cache->bytes_super; 7573 spin_unlock(&cache->space_info->lock); 7574 7575 __link_block_group(space_info, cache); 7576 7577 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7578 BUG_ON(ret); 7579 7580 set_avail_alloc_bits(root->fs_info, cache->flags); 7581 if (btrfs_chunk_readonly(root, cache->key.objectid)) 7582 set_block_group_ro(cache, 1); 7583 } 7584 7585 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 7586 if (!(get_alloc_profile(root, space_info->flags) & 7587 (BTRFS_BLOCK_GROUP_RAID10 | 7588 BTRFS_BLOCK_GROUP_RAID1 | 7589 BTRFS_BLOCK_GROUP_DUP))) 7590 continue; 7591 /* 7592 * avoid allocating from un-mirrored block group if there are 7593 * mirrored block groups. 7594 */ 7595 list_for_each_entry(cache, &space_info->block_groups[3], list) 7596 set_block_group_ro(cache, 1); 7597 list_for_each_entry(cache, &space_info->block_groups[4], list) 7598 set_block_group_ro(cache, 1); 7599 } 7600 7601 init_global_block_rsv(info); 7602 ret = 0; 7603 error: 7604 btrfs_free_path(path); 7605 return ret; 7606 } 7607 7608 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 7609 struct btrfs_root *root, u64 bytes_used, 7610 u64 type, u64 chunk_objectid, u64 chunk_offset, 7611 u64 size) 7612 { 7613 int ret; 7614 struct btrfs_root *extent_root; 7615 struct btrfs_block_group_cache *cache; 7616 7617 extent_root = root->fs_info->extent_root; 7618 7619 root->fs_info->last_trans_log_full_commit = trans->transid; 7620 7621 cache = kzalloc(sizeof(*cache), GFP_NOFS); 7622 if (!cache) 7623 return -ENOMEM; 7624 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 7625 GFP_NOFS); 7626 if (!cache->free_space_ctl) { 7627 kfree(cache); 7628 return -ENOMEM; 7629 } 7630 7631 cache->key.objectid = chunk_offset; 7632 cache->key.offset = size; 7633 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 7634 cache->sectorsize = root->sectorsize; 7635 cache->fs_info = root->fs_info; 7636 7637 atomic_set(&cache->count, 1); 7638 spin_lock_init(&cache->lock); 7639 INIT_LIST_HEAD(&cache->list); 7640 INIT_LIST_HEAD(&cache->cluster_list); 7641 7642 btrfs_init_free_space_ctl(cache); 7643 7644 btrfs_set_block_group_used(&cache->item, bytes_used); 7645 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 7646 cache->flags = type; 7647 btrfs_set_block_group_flags(&cache->item, type); 7648 7649 cache->last_byte_to_unpin = (u64)-1; 7650 cache->cached = BTRFS_CACHE_FINISHED; 7651 exclude_super_stripes(root, cache); 7652 7653 add_new_free_space(cache, root->fs_info, chunk_offset, 7654 chunk_offset + size); 7655 7656 free_excluded_extents(root, cache); 7657 7658 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 7659 &cache->space_info); 7660 BUG_ON(ret); 7661 update_global_block_rsv(root->fs_info); 7662 7663 spin_lock(&cache->space_info->lock); 7664 cache->space_info->bytes_readonly += cache->bytes_super; 7665 spin_unlock(&cache->space_info->lock); 7666 7667 __link_block_group(cache->space_info, cache); 7668 7669 ret = btrfs_add_block_group_cache(root->fs_info, cache); 7670 BUG_ON(ret); 7671 7672 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item, 7673 sizeof(cache->item)); 7674 BUG_ON(ret); 7675 7676 set_avail_alloc_bits(extent_root->fs_info, type); 7677 7678 return 0; 7679 } 7680 7681 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 7682 { 7683 u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK; 7684 7685 /* chunk -> extended profile */ 7686 if (extra_flags == 0) 7687 extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 7688 7689 if (flags & BTRFS_BLOCK_GROUP_DATA) 7690 fs_info->avail_data_alloc_bits &= ~extra_flags; 7691 if (flags & BTRFS_BLOCK_GROUP_METADATA) 7692 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 7693 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 7694 fs_info->avail_system_alloc_bits &= ~extra_flags; 7695 } 7696 7697 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 7698 struct btrfs_root *root, u64 group_start) 7699 { 7700 struct btrfs_path *path; 7701 struct btrfs_block_group_cache *block_group; 7702 struct btrfs_free_cluster *cluster; 7703 struct btrfs_root *tree_root = root->fs_info->tree_root; 7704 struct btrfs_key key; 7705 struct inode *inode; 7706 int ret; 7707 int index; 7708 int factor; 7709 7710 root = root->fs_info->extent_root; 7711 7712 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 7713 BUG_ON(!block_group); 7714 BUG_ON(!block_group->ro); 7715 7716 /* 7717 * Free the reserved super bytes from this block group before 7718 * remove it. 7719 */ 7720 free_excluded_extents(root, block_group); 7721 7722 memcpy(&key, &block_group->key, sizeof(key)); 7723 index = get_block_group_index(block_group); 7724 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 7725 BTRFS_BLOCK_GROUP_RAID1 | 7726 BTRFS_BLOCK_GROUP_RAID10)) 7727 factor = 2; 7728 else 7729 factor = 1; 7730 7731 /* make sure this block group isn't part of an allocation cluster */ 7732 cluster = &root->fs_info->data_alloc_cluster; 7733 spin_lock(&cluster->refill_lock); 7734 btrfs_return_cluster_to_free_space(block_group, cluster); 7735 spin_unlock(&cluster->refill_lock); 7736 7737 /* 7738 * make sure this block group isn't part of a metadata 7739 * allocation cluster 7740 */ 7741 cluster = &root->fs_info->meta_alloc_cluster; 7742 spin_lock(&cluster->refill_lock); 7743 btrfs_return_cluster_to_free_space(block_group, cluster); 7744 spin_unlock(&cluster->refill_lock); 7745 7746 path = btrfs_alloc_path(); 7747 if (!path) { 7748 ret = -ENOMEM; 7749 goto out; 7750 } 7751 7752 inode = lookup_free_space_inode(tree_root, block_group, path); 7753 if (!IS_ERR(inode)) { 7754 ret = btrfs_orphan_add(trans, inode); 7755 BUG_ON(ret); 7756 clear_nlink(inode); 7757 /* One for the block groups ref */ 7758 spin_lock(&block_group->lock); 7759 if (block_group->iref) { 7760 block_group->iref = 0; 7761 block_group->inode = NULL; 7762 spin_unlock(&block_group->lock); 7763 iput(inode); 7764 } else { 7765 spin_unlock(&block_group->lock); 7766 } 7767 /* One for our lookup ref */ 7768 btrfs_add_delayed_iput(inode); 7769 } 7770 7771 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 7772 key.offset = block_group->key.objectid; 7773 key.type = 0; 7774 7775 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 7776 if (ret < 0) 7777 goto out; 7778 if (ret > 0) 7779 btrfs_release_path(path); 7780 if (ret == 0) { 7781 ret = btrfs_del_item(trans, tree_root, path); 7782 if (ret) 7783 goto out; 7784 btrfs_release_path(path); 7785 } 7786 7787 spin_lock(&root->fs_info->block_group_cache_lock); 7788 rb_erase(&block_group->cache_node, 7789 &root->fs_info->block_group_cache_tree); 7790 spin_unlock(&root->fs_info->block_group_cache_lock); 7791 7792 down_write(&block_group->space_info->groups_sem); 7793 /* 7794 * we must use list_del_init so people can check to see if they 7795 * are still on the list after taking the semaphore 7796 */ 7797 list_del_init(&block_group->list); 7798 if (list_empty(&block_group->space_info->block_groups[index])) 7799 clear_avail_alloc_bits(root->fs_info, block_group->flags); 7800 up_write(&block_group->space_info->groups_sem); 7801 7802 if (block_group->cached == BTRFS_CACHE_STARTED) 7803 wait_block_group_cache_done(block_group); 7804 7805 btrfs_remove_free_space_cache(block_group); 7806 7807 spin_lock(&block_group->space_info->lock); 7808 block_group->space_info->total_bytes -= block_group->key.offset; 7809 block_group->space_info->bytes_readonly -= block_group->key.offset; 7810 block_group->space_info->disk_total -= block_group->key.offset * factor; 7811 spin_unlock(&block_group->space_info->lock); 7812 7813 memcpy(&key, &block_group->key, sizeof(key)); 7814 7815 btrfs_clear_space_info_full(root->fs_info); 7816 7817 btrfs_put_block_group(block_group); 7818 btrfs_put_block_group(block_group); 7819 7820 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 7821 if (ret > 0) 7822 ret = -EIO; 7823 if (ret < 0) 7824 goto out; 7825 7826 ret = btrfs_del_item(trans, root, path); 7827 out: 7828 btrfs_free_path(path); 7829 return ret; 7830 } 7831 7832 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 7833 { 7834 struct btrfs_space_info *space_info; 7835 struct btrfs_super_block *disk_super; 7836 u64 features; 7837 u64 flags; 7838 int mixed = 0; 7839 int ret; 7840 7841 disk_super = fs_info->super_copy; 7842 if (!btrfs_super_root(disk_super)) 7843 return 1; 7844 7845 features = btrfs_super_incompat_flags(disk_super); 7846 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 7847 mixed = 1; 7848 7849 flags = BTRFS_BLOCK_GROUP_SYSTEM; 7850 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7851 if (ret) 7852 goto out; 7853 7854 if (mixed) { 7855 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 7856 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7857 } else { 7858 flags = BTRFS_BLOCK_GROUP_METADATA; 7859 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7860 if (ret) 7861 goto out; 7862 7863 flags = BTRFS_BLOCK_GROUP_DATA; 7864 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 7865 } 7866 out: 7867 return ret; 7868 } 7869 7870 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 7871 { 7872 return unpin_extent_range(root, start, end); 7873 } 7874 7875 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 7876 u64 num_bytes, u64 *actual_bytes) 7877 { 7878 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 7879 } 7880 7881 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 7882 { 7883 struct btrfs_fs_info *fs_info = root->fs_info; 7884 struct btrfs_block_group_cache *cache = NULL; 7885 u64 group_trimmed; 7886 u64 start; 7887 u64 end; 7888 u64 trimmed = 0; 7889 int ret = 0; 7890 7891 cache = btrfs_lookup_block_group(fs_info, range->start); 7892 7893 while (cache) { 7894 if (cache->key.objectid >= (range->start + range->len)) { 7895 btrfs_put_block_group(cache); 7896 break; 7897 } 7898 7899 start = max(range->start, cache->key.objectid); 7900 end = min(range->start + range->len, 7901 cache->key.objectid + cache->key.offset); 7902 7903 if (end - start >= range->minlen) { 7904 if (!block_group_cache_done(cache)) { 7905 ret = cache_block_group(cache, NULL, root, 0); 7906 if (!ret) 7907 wait_block_group_cache_done(cache); 7908 } 7909 ret = btrfs_trim_block_group(cache, 7910 &group_trimmed, 7911 start, 7912 end, 7913 range->minlen); 7914 7915 trimmed += group_trimmed; 7916 if (ret) { 7917 btrfs_put_block_group(cache); 7918 break; 7919 } 7920 } 7921 7922 cache = next_block_group(fs_info->tree_root, cache); 7923 } 7924 7925 range->len = trimmed; 7926 return ret; 7927 } 7928