xref: /linux/fs/btrfs/extent-tree.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include "compat.h"
28 #include "hash.h"
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "transaction.h"
33 #include "volumes.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 
37 /*
38  * control flags for do_chunk_alloc's force field
39  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40  * if we really need one.
41  *
42  * CHUNK_ALLOC_LIMITED means to only try and allocate one
43  * if we have very few chunks already allocated.  This is
44  * used as part of the clustering code to help make sure
45  * we have a good pool of storage to cluster in, without
46  * filling the FS with empty chunks
47  *
48  * CHUNK_ALLOC_FORCE means it must try to allocate one
49  *
50  */
51 enum {
52 	CHUNK_ALLOC_NO_FORCE = 0,
53 	CHUNK_ALLOC_LIMITED = 1,
54 	CHUNK_ALLOC_FORCE = 2,
55 };
56 
57 /*
58  * Control how reservations are dealt with.
59  *
60  * RESERVE_FREE - freeing a reservation.
61  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
62  *   ENOSPC accounting
63  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64  *   bytes_may_use as the ENOSPC accounting is done elsewhere
65  */
66 enum {
67 	RESERVE_FREE = 0,
68 	RESERVE_ALLOC = 1,
69 	RESERVE_ALLOC_NO_ACCOUNT = 2,
70 };
71 
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 			      struct btrfs_root *root,
74 			      u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 				struct btrfs_root *root,
77 				u64 bytenr, u64 num_bytes, u64 parent,
78 				u64 root_objectid, u64 owner_objectid,
79 				u64 owner_offset, int refs_to_drop,
80 				struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 				    struct extent_buffer *leaf,
83 				    struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 				      struct btrfs_root *root,
86 				      u64 parent, u64 root_objectid,
87 				      u64 flags, u64 owner, u64 offset,
88 				      struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 				     struct btrfs_root *root,
91 				     u64 parent, u64 root_objectid,
92 				     u64 flags, struct btrfs_disk_key *key,
93 				     int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 			  struct btrfs_root *extent_root, u64 alloc_bytes,
96 			  u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 			 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 			    int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 				       u64 num_bytes, int reserve);
103 
104 static noinline int
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
106 {
107 	smp_mb();
108 	return cache->cached == BTRFS_CACHE_FINISHED;
109 }
110 
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112 {
113 	return (cache->flags & bits) == bits;
114 }
115 
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
117 {
118 	atomic_inc(&cache->count);
119 }
120 
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122 {
123 	if (atomic_dec_and_test(&cache->count)) {
124 		WARN_ON(cache->pinned > 0);
125 		WARN_ON(cache->reserved > 0);
126 		kfree(cache->free_space_ctl);
127 		kfree(cache);
128 	}
129 }
130 
131 /*
132  * this adds the block group to the fs_info rb tree for the block group
133  * cache
134  */
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 				struct btrfs_block_group_cache *block_group)
137 {
138 	struct rb_node **p;
139 	struct rb_node *parent = NULL;
140 	struct btrfs_block_group_cache *cache;
141 
142 	spin_lock(&info->block_group_cache_lock);
143 	p = &info->block_group_cache_tree.rb_node;
144 
145 	while (*p) {
146 		parent = *p;
147 		cache = rb_entry(parent, struct btrfs_block_group_cache,
148 				 cache_node);
149 		if (block_group->key.objectid < cache->key.objectid) {
150 			p = &(*p)->rb_left;
151 		} else if (block_group->key.objectid > cache->key.objectid) {
152 			p = &(*p)->rb_right;
153 		} else {
154 			spin_unlock(&info->block_group_cache_lock);
155 			return -EEXIST;
156 		}
157 	}
158 
159 	rb_link_node(&block_group->cache_node, parent, p);
160 	rb_insert_color(&block_group->cache_node,
161 			&info->block_group_cache_tree);
162 	spin_unlock(&info->block_group_cache_lock);
163 
164 	return 0;
165 }
166 
167 /*
168  * This will return the block group at or after bytenr if contains is 0, else
169  * it will return the block group that contains the bytenr
170  */
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
173 			      int contains)
174 {
175 	struct btrfs_block_group_cache *cache, *ret = NULL;
176 	struct rb_node *n;
177 	u64 end, start;
178 
179 	spin_lock(&info->block_group_cache_lock);
180 	n = info->block_group_cache_tree.rb_node;
181 
182 	while (n) {
183 		cache = rb_entry(n, struct btrfs_block_group_cache,
184 				 cache_node);
185 		end = cache->key.objectid + cache->key.offset - 1;
186 		start = cache->key.objectid;
187 
188 		if (bytenr < start) {
189 			if (!contains && (!ret || start < ret->key.objectid))
190 				ret = cache;
191 			n = n->rb_left;
192 		} else if (bytenr > start) {
193 			if (contains && bytenr <= end) {
194 				ret = cache;
195 				break;
196 			}
197 			n = n->rb_right;
198 		} else {
199 			ret = cache;
200 			break;
201 		}
202 	}
203 	if (ret)
204 		btrfs_get_block_group(ret);
205 	spin_unlock(&info->block_group_cache_lock);
206 
207 	return ret;
208 }
209 
210 static int add_excluded_extent(struct btrfs_root *root,
211 			       u64 start, u64 num_bytes)
212 {
213 	u64 end = start + num_bytes - 1;
214 	set_extent_bits(&root->fs_info->freed_extents[0],
215 			start, end, EXTENT_UPTODATE, GFP_NOFS);
216 	set_extent_bits(&root->fs_info->freed_extents[1],
217 			start, end, EXTENT_UPTODATE, GFP_NOFS);
218 	return 0;
219 }
220 
221 static void free_excluded_extents(struct btrfs_root *root,
222 				  struct btrfs_block_group_cache *cache)
223 {
224 	u64 start, end;
225 
226 	start = cache->key.objectid;
227 	end = start + cache->key.offset - 1;
228 
229 	clear_extent_bits(&root->fs_info->freed_extents[0],
230 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
231 	clear_extent_bits(&root->fs_info->freed_extents[1],
232 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
233 }
234 
235 static int exclude_super_stripes(struct btrfs_root *root,
236 				 struct btrfs_block_group_cache *cache)
237 {
238 	u64 bytenr;
239 	u64 *logical;
240 	int stripe_len;
241 	int i, nr, ret;
242 
243 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 		cache->bytes_super += stripe_len;
246 		ret = add_excluded_extent(root, cache->key.objectid,
247 					  stripe_len);
248 		BUG_ON(ret);
249 	}
250 
251 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 		bytenr = btrfs_sb_offset(i);
253 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 				       cache->key.objectid, bytenr,
255 				       0, &logical, &nr, &stripe_len);
256 		BUG_ON(ret);
257 
258 		while (nr--) {
259 			cache->bytes_super += stripe_len;
260 			ret = add_excluded_extent(root, logical[nr],
261 						  stripe_len);
262 			BUG_ON(ret);
263 		}
264 
265 		kfree(logical);
266 	}
267 	return 0;
268 }
269 
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
272 {
273 	struct btrfs_caching_control *ctl;
274 
275 	spin_lock(&cache->lock);
276 	if (cache->cached != BTRFS_CACHE_STARTED) {
277 		spin_unlock(&cache->lock);
278 		return NULL;
279 	}
280 
281 	/* We're loading it the fast way, so we don't have a caching_ctl. */
282 	if (!cache->caching_ctl) {
283 		spin_unlock(&cache->lock);
284 		return NULL;
285 	}
286 
287 	ctl = cache->caching_ctl;
288 	atomic_inc(&ctl->count);
289 	spin_unlock(&cache->lock);
290 	return ctl;
291 }
292 
293 static void put_caching_control(struct btrfs_caching_control *ctl)
294 {
295 	if (atomic_dec_and_test(&ctl->count))
296 		kfree(ctl);
297 }
298 
299 /*
300  * this is only called by cache_block_group, since we could have freed extents
301  * we need to check the pinned_extents for any extents that can't be used yet
302  * since their free space will be released as soon as the transaction commits.
303  */
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 			      struct btrfs_fs_info *info, u64 start, u64 end)
306 {
307 	u64 extent_start, extent_end, size, total_added = 0;
308 	int ret;
309 
310 	while (start < end) {
311 		ret = find_first_extent_bit(info->pinned_extents, start,
312 					    &extent_start, &extent_end,
313 					    EXTENT_DIRTY | EXTENT_UPTODATE);
314 		if (ret)
315 			break;
316 
317 		if (extent_start <= start) {
318 			start = extent_end + 1;
319 		} else if (extent_start > start && extent_start < end) {
320 			size = extent_start - start;
321 			total_added += size;
322 			ret = btrfs_add_free_space(block_group, start,
323 						   size);
324 			BUG_ON(ret);
325 			start = extent_end + 1;
326 		} else {
327 			break;
328 		}
329 	}
330 
331 	if (start < end) {
332 		size = end - start;
333 		total_added += size;
334 		ret = btrfs_add_free_space(block_group, start, size);
335 		BUG_ON(ret);
336 	}
337 
338 	return total_added;
339 }
340 
341 static noinline void caching_thread(struct btrfs_work *work)
342 {
343 	struct btrfs_block_group_cache *block_group;
344 	struct btrfs_fs_info *fs_info;
345 	struct btrfs_caching_control *caching_ctl;
346 	struct btrfs_root *extent_root;
347 	struct btrfs_path *path;
348 	struct extent_buffer *leaf;
349 	struct btrfs_key key;
350 	u64 total_found = 0;
351 	u64 last = 0;
352 	u32 nritems;
353 	int ret = 0;
354 
355 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 	block_group = caching_ctl->block_group;
357 	fs_info = block_group->fs_info;
358 	extent_root = fs_info->extent_root;
359 
360 	path = btrfs_alloc_path();
361 	if (!path)
362 		goto out;
363 
364 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
365 
366 	/*
367 	 * We don't want to deadlock with somebody trying to allocate a new
368 	 * extent for the extent root while also trying to search the extent
369 	 * root to add free space.  So we skip locking and search the commit
370 	 * root, since its read-only
371 	 */
372 	path->skip_locking = 1;
373 	path->search_commit_root = 1;
374 	path->reada = 1;
375 
376 	key.objectid = last;
377 	key.offset = 0;
378 	key.type = BTRFS_EXTENT_ITEM_KEY;
379 again:
380 	mutex_lock(&caching_ctl->mutex);
381 	/* need to make sure the commit_root doesn't disappear */
382 	down_read(&fs_info->extent_commit_sem);
383 
384 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
385 	if (ret < 0)
386 		goto err;
387 
388 	leaf = path->nodes[0];
389 	nritems = btrfs_header_nritems(leaf);
390 
391 	while (1) {
392 		if (btrfs_fs_closing(fs_info) > 1) {
393 			last = (u64)-1;
394 			break;
395 		}
396 
397 		if (path->slots[0] < nritems) {
398 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
399 		} else {
400 			ret = find_next_key(path, 0, &key);
401 			if (ret)
402 				break;
403 
404 			if (need_resched() ||
405 			    btrfs_next_leaf(extent_root, path)) {
406 				caching_ctl->progress = last;
407 				btrfs_release_path(path);
408 				up_read(&fs_info->extent_commit_sem);
409 				mutex_unlock(&caching_ctl->mutex);
410 				cond_resched();
411 				goto again;
412 			}
413 			leaf = path->nodes[0];
414 			nritems = btrfs_header_nritems(leaf);
415 			continue;
416 		}
417 
418 		if (key.objectid < block_group->key.objectid) {
419 			path->slots[0]++;
420 			continue;
421 		}
422 
423 		if (key.objectid >= block_group->key.objectid +
424 		    block_group->key.offset)
425 			break;
426 
427 		if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 			total_found += add_new_free_space(block_group,
429 							  fs_info, last,
430 							  key.objectid);
431 			last = key.objectid + key.offset;
432 
433 			if (total_found > (1024 * 1024 * 2)) {
434 				total_found = 0;
435 				wake_up(&caching_ctl->wait);
436 			}
437 		}
438 		path->slots[0]++;
439 	}
440 	ret = 0;
441 
442 	total_found += add_new_free_space(block_group, fs_info, last,
443 					  block_group->key.objectid +
444 					  block_group->key.offset);
445 	caching_ctl->progress = (u64)-1;
446 
447 	spin_lock(&block_group->lock);
448 	block_group->caching_ctl = NULL;
449 	block_group->cached = BTRFS_CACHE_FINISHED;
450 	spin_unlock(&block_group->lock);
451 
452 err:
453 	btrfs_free_path(path);
454 	up_read(&fs_info->extent_commit_sem);
455 
456 	free_excluded_extents(extent_root, block_group);
457 
458 	mutex_unlock(&caching_ctl->mutex);
459 out:
460 	wake_up(&caching_ctl->wait);
461 
462 	put_caching_control(caching_ctl);
463 	btrfs_put_block_group(block_group);
464 }
465 
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 			     struct btrfs_trans_handle *trans,
468 			     struct btrfs_root *root,
469 			     int load_cache_only)
470 {
471 	DEFINE_WAIT(wait);
472 	struct btrfs_fs_info *fs_info = cache->fs_info;
473 	struct btrfs_caching_control *caching_ctl;
474 	int ret = 0;
475 
476 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
477 	BUG_ON(!caching_ctl);
478 
479 	INIT_LIST_HEAD(&caching_ctl->list);
480 	mutex_init(&caching_ctl->mutex);
481 	init_waitqueue_head(&caching_ctl->wait);
482 	caching_ctl->block_group = cache;
483 	caching_ctl->progress = cache->key.objectid;
484 	atomic_set(&caching_ctl->count, 1);
485 	caching_ctl->work.func = caching_thread;
486 
487 	spin_lock(&cache->lock);
488 	/*
489 	 * This should be a rare occasion, but this could happen I think in the
490 	 * case where one thread starts to load the space cache info, and then
491 	 * some other thread starts a transaction commit which tries to do an
492 	 * allocation while the other thread is still loading the space cache
493 	 * info.  The previous loop should have kept us from choosing this block
494 	 * group, but if we've moved to the state where we will wait on caching
495 	 * block groups we need to first check if we're doing a fast load here,
496 	 * so we can wait for it to finish, otherwise we could end up allocating
497 	 * from a block group who's cache gets evicted for one reason or
498 	 * another.
499 	 */
500 	while (cache->cached == BTRFS_CACHE_FAST) {
501 		struct btrfs_caching_control *ctl;
502 
503 		ctl = cache->caching_ctl;
504 		atomic_inc(&ctl->count);
505 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
506 		spin_unlock(&cache->lock);
507 
508 		schedule();
509 
510 		finish_wait(&ctl->wait, &wait);
511 		put_caching_control(ctl);
512 		spin_lock(&cache->lock);
513 	}
514 
515 	if (cache->cached != BTRFS_CACHE_NO) {
516 		spin_unlock(&cache->lock);
517 		kfree(caching_ctl);
518 		return 0;
519 	}
520 	WARN_ON(cache->caching_ctl);
521 	cache->caching_ctl = caching_ctl;
522 	cache->cached = BTRFS_CACHE_FAST;
523 	spin_unlock(&cache->lock);
524 
525 	/*
526 	 * We can't do the read from on-disk cache during a commit since we need
527 	 * to have the normal tree locking.  Also if we are currently trying to
528 	 * allocate blocks for the tree root we can't do the fast caching since
529 	 * we likely hold important locks.
530 	 */
531 	if (trans && (!trans->transaction->in_commit) &&
532 	    (root && root != root->fs_info->tree_root) &&
533 	    btrfs_test_opt(root, SPACE_CACHE)) {
534 		ret = load_free_space_cache(fs_info, cache);
535 
536 		spin_lock(&cache->lock);
537 		if (ret == 1) {
538 			cache->caching_ctl = NULL;
539 			cache->cached = BTRFS_CACHE_FINISHED;
540 			cache->last_byte_to_unpin = (u64)-1;
541 		} else {
542 			if (load_cache_only) {
543 				cache->caching_ctl = NULL;
544 				cache->cached = BTRFS_CACHE_NO;
545 			} else {
546 				cache->cached = BTRFS_CACHE_STARTED;
547 			}
548 		}
549 		spin_unlock(&cache->lock);
550 		wake_up(&caching_ctl->wait);
551 		if (ret == 1) {
552 			put_caching_control(caching_ctl);
553 			free_excluded_extents(fs_info->extent_root, cache);
554 			return 0;
555 		}
556 	} else {
557 		/*
558 		 * We are not going to do the fast caching, set cached to the
559 		 * appropriate value and wakeup any waiters.
560 		 */
561 		spin_lock(&cache->lock);
562 		if (load_cache_only) {
563 			cache->caching_ctl = NULL;
564 			cache->cached = BTRFS_CACHE_NO;
565 		} else {
566 			cache->cached = BTRFS_CACHE_STARTED;
567 		}
568 		spin_unlock(&cache->lock);
569 		wake_up(&caching_ctl->wait);
570 	}
571 
572 	if (load_cache_only) {
573 		put_caching_control(caching_ctl);
574 		return 0;
575 	}
576 
577 	down_write(&fs_info->extent_commit_sem);
578 	atomic_inc(&caching_ctl->count);
579 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
580 	up_write(&fs_info->extent_commit_sem);
581 
582 	btrfs_get_block_group(cache);
583 
584 	btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
585 
586 	return ret;
587 }
588 
589 /*
590  * return the block group that starts at or after bytenr
591  */
592 static struct btrfs_block_group_cache *
593 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 {
595 	struct btrfs_block_group_cache *cache;
596 
597 	cache = block_group_cache_tree_search(info, bytenr, 0);
598 
599 	return cache;
600 }
601 
602 /*
603  * return the block group that contains the given bytenr
604  */
605 struct btrfs_block_group_cache *btrfs_lookup_block_group(
606 						 struct btrfs_fs_info *info,
607 						 u64 bytenr)
608 {
609 	struct btrfs_block_group_cache *cache;
610 
611 	cache = block_group_cache_tree_search(info, bytenr, 1);
612 
613 	return cache;
614 }
615 
616 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
617 						  u64 flags)
618 {
619 	struct list_head *head = &info->space_info;
620 	struct btrfs_space_info *found;
621 
622 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
623 
624 	rcu_read_lock();
625 	list_for_each_entry_rcu(found, head, list) {
626 		if (found->flags & flags) {
627 			rcu_read_unlock();
628 			return found;
629 		}
630 	}
631 	rcu_read_unlock();
632 	return NULL;
633 }
634 
635 /*
636  * after adding space to the filesystem, we need to clear the full flags
637  * on all the space infos.
638  */
639 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 {
641 	struct list_head *head = &info->space_info;
642 	struct btrfs_space_info *found;
643 
644 	rcu_read_lock();
645 	list_for_each_entry_rcu(found, head, list)
646 		found->full = 0;
647 	rcu_read_unlock();
648 }
649 
650 static u64 div_factor(u64 num, int factor)
651 {
652 	if (factor == 10)
653 		return num;
654 	num *= factor;
655 	do_div(num, 10);
656 	return num;
657 }
658 
659 static u64 div_factor_fine(u64 num, int factor)
660 {
661 	if (factor == 100)
662 		return num;
663 	num *= factor;
664 	do_div(num, 100);
665 	return num;
666 }
667 
668 u64 btrfs_find_block_group(struct btrfs_root *root,
669 			   u64 search_start, u64 search_hint, int owner)
670 {
671 	struct btrfs_block_group_cache *cache;
672 	u64 used;
673 	u64 last = max(search_hint, search_start);
674 	u64 group_start = 0;
675 	int full_search = 0;
676 	int factor = 9;
677 	int wrapped = 0;
678 again:
679 	while (1) {
680 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
681 		if (!cache)
682 			break;
683 
684 		spin_lock(&cache->lock);
685 		last = cache->key.objectid + cache->key.offset;
686 		used = btrfs_block_group_used(&cache->item);
687 
688 		if ((full_search || !cache->ro) &&
689 		    block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
690 			if (used + cache->pinned + cache->reserved <
691 			    div_factor(cache->key.offset, factor)) {
692 				group_start = cache->key.objectid;
693 				spin_unlock(&cache->lock);
694 				btrfs_put_block_group(cache);
695 				goto found;
696 			}
697 		}
698 		spin_unlock(&cache->lock);
699 		btrfs_put_block_group(cache);
700 		cond_resched();
701 	}
702 	if (!wrapped) {
703 		last = search_start;
704 		wrapped = 1;
705 		goto again;
706 	}
707 	if (!full_search && factor < 10) {
708 		last = search_start;
709 		full_search = 1;
710 		factor = 10;
711 		goto again;
712 	}
713 found:
714 	return group_start;
715 }
716 
717 /* simple helper to search for an existing extent at a given offset */
718 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
719 {
720 	int ret;
721 	struct btrfs_key key;
722 	struct btrfs_path *path;
723 
724 	path = btrfs_alloc_path();
725 	if (!path)
726 		return -ENOMEM;
727 
728 	key.objectid = start;
729 	key.offset = len;
730 	btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
731 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 				0, 0);
733 	btrfs_free_path(path);
734 	return ret;
735 }
736 
737 /*
738  * helper function to lookup reference count and flags of extent.
739  *
740  * the head node for delayed ref is used to store the sum of all the
741  * reference count modifications queued up in the rbtree. the head
742  * node may also store the extent flags to set. This way you can check
743  * to see what the reference count and extent flags would be if all of
744  * the delayed refs are not processed.
745  */
746 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
747 			     struct btrfs_root *root, u64 bytenr,
748 			     u64 num_bytes, u64 *refs, u64 *flags)
749 {
750 	struct btrfs_delayed_ref_head *head;
751 	struct btrfs_delayed_ref_root *delayed_refs;
752 	struct btrfs_path *path;
753 	struct btrfs_extent_item *ei;
754 	struct extent_buffer *leaf;
755 	struct btrfs_key key;
756 	u32 item_size;
757 	u64 num_refs;
758 	u64 extent_flags;
759 	int ret;
760 
761 	path = btrfs_alloc_path();
762 	if (!path)
763 		return -ENOMEM;
764 
765 	key.objectid = bytenr;
766 	key.type = BTRFS_EXTENT_ITEM_KEY;
767 	key.offset = num_bytes;
768 	if (!trans) {
769 		path->skip_locking = 1;
770 		path->search_commit_root = 1;
771 	}
772 again:
773 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
774 				&key, path, 0, 0);
775 	if (ret < 0)
776 		goto out_free;
777 
778 	if (ret == 0) {
779 		leaf = path->nodes[0];
780 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
781 		if (item_size >= sizeof(*ei)) {
782 			ei = btrfs_item_ptr(leaf, path->slots[0],
783 					    struct btrfs_extent_item);
784 			num_refs = btrfs_extent_refs(leaf, ei);
785 			extent_flags = btrfs_extent_flags(leaf, ei);
786 		} else {
787 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
788 			struct btrfs_extent_item_v0 *ei0;
789 			BUG_ON(item_size != sizeof(*ei0));
790 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
791 					     struct btrfs_extent_item_v0);
792 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
793 			/* FIXME: this isn't correct for data */
794 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
795 #else
796 			BUG();
797 #endif
798 		}
799 		BUG_ON(num_refs == 0);
800 	} else {
801 		num_refs = 0;
802 		extent_flags = 0;
803 		ret = 0;
804 	}
805 
806 	if (!trans)
807 		goto out;
808 
809 	delayed_refs = &trans->transaction->delayed_refs;
810 	spin_lock(&delayed_refs->lock);
811 	head = btrfs_find_delayed_ref_head(trans, bytenr);
812 	if (head) {
813 		if (!mutex_trylock(&head->mutex)) {
814 			atomic_inc(&head->node.refs);
815 			spin_unlock(&delayed_refs->lock);
816 
817 			btrfs_release_path(path);
818 
819 			/*
820 			 * Mutex was contended, block until it's released and try
821 			 * again
822 			 */
823 			mutex_lock(&head->mutex);
824 			mutex_unlock(&head->mutex);
825 			btrfs_put_delayed_ref(&head->node);
826 			goto again;
827 		}
828 		if (head->extent_op && head->extent_op->update_flags)
829 			extent_flags |= head->extent_op->flags_to_set;
830 		else
831 			BUG_ON(num_refs == 0);
832 
833 		num_refs += head->node.ref_mod;
834 		mutex_unlock(&head->mutex);
835 	}
836 	spin_unlock(&delayed_refs->lock);
837 out:
838 	WARN_ON(num_refs == 0);
839 	if (refs)
840 		*refs = num_refs;
841 	if (flags)
842 		*flags = extent_flags;
843 out_free:
844 	btrfs_free_path(path);
845 	return ret;
846 }
847 
848 /*
849  * Back reference rules.  Back refs have three main goals:
850  *
851  * 1) differentiate between all holders of references to an extent so that
852  *    when a reference is dropped we can make sure it was a valid reference
853  *    before freeing the extent.
854  *
855  * 2) Provide enough information to quickly find the holders of an extent
856  *    if we notice a given block is corrupted or bad.
857  *
858  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
859  *    maintenance.  This is actually the same as #2, but with a slightly
860  *    different use case.
861  *
862  * There are two kinds of back refs. The implicit back refs is optimized
863  * for pointers in non-shared tree blocks. For a given pointer in a block,
864  * back refs of this kind provide information about the block's owner tree
865  * and the pointer's key. These information allow us to find the block by
866  * b-tree searching. The full back refs is for pointers in tree blocks not
867  * referenced by their owner trees. The location of tree block is recorded
868  * in the back refs. Actually the full back refs is generic, and can be
869  * used in all cases the implicit back refs is used. The major shortcoming
870  * of the full back refs is its overhead. Every time a tree block gets
871  * COWed, we have to update back refs entry for all pointers in it.
872  *
873  * For a newly allocated tree block, we use implicit back refs for
874  * pointers in it. This means most tree related operations only involve
875  * implicit back refs. For a tree block created in old transaction, the
876  * only way to drop a reference to it is COW it. So we can detect the
877  * event that tree block loses its owner tree's reference and do the
878  * back refs conversion.
879  *
880  * When a tree block is COW'd through a tree, there are four cases:
881  *
882  * The reference count of the block is one and the tree is the block's
883  * owner tree. Nothing to do in this case.
884  *
885  * The reference count of the block is one and the tree is not the
886  * block's owner tree. In this case, full back refs is used for pointers
887  * in the block. Remove these full back refs, add implicit back refs for
888  * every pointers in the new block.
889  *
890  * The reference count of the block is greater than one and the tree is
891  * the block's owner tree. In this case, implicit back refs is used for
892  * pointers in the block. Add full back refs for every pointers in the
893  * block, increase lower level extents' reference counts. The original
894  * implicit back refs are entailed to the new block.
895  *
896  * The reference count of the block is greater than one and the tree is
897  * not the block's owner tree. Add implicit back refs for every pointer in
898  * the new block, increase lower level extents' reference count.
899  *
900  * Back Reference Key composing:
901  *
902  * The key objectid corresponds to the first byte in the extent,
903  * The key type is used to differentiate between types of back refs.
904  * There are different meanings of the key offset for different types
905  * of back refs.
906  *
907  * File extents can be referenced by:
908  *
909  * - multiple snapshots, subvolumes, or different generations in one subvol
910  * - different files inside a single subvolume
911  * - different offsets inside a file (bookend extents in file.c)
912  *
913  * The extent ref structure for the implicit back refs has fields for:
914  *
915  * - Objectid of the subvolume root
916  * - objectid of the file holding the reference
917  * - original offset in the file
918  * - how many bookend extents
919  *
920  * The key offset for the implicit back refs is hash of the first
921  * three fields.
922  *
923  * The extent ref structure for the full back refs has field for:
924  *
925  * - number of pointers in the tree leaf
926  *
927  * The key offset for the implicit back refs is the first byte of
928  * the tree leaf
929  *
930  * When a file extent is allocated, The implicit back refs is used.
931  * the fields are filled in:
932  *
933  *     (root_key.objectid, inode objectid, offset in file, 1)
934  *
935  * When a file extent is removed file truncation, we find the
936  * corresponding implicit back refs and check the following fields:
937  *
938  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
939  *
940  * Btree extents can be referenced by:
941  *
942  * - Different subvolumes
943  *
944  * Both the implicit back refs and the full back refs for tree blocks
945  * only consist of key. The key offset for the implicit back refs is
946  * objectid of block's owner tree. The key offset for the full back refs
947  * is the first byte of parent block.
948  *
949  * When implicit back refs is used, information about the lowest key and
950  * level of the tree block are required. These information are stored in
951  * tree block info structure.
952  */
953 
954 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
955 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
956 				  struct btrfs_root *root,
957 				  struct btrfs_path *path,
958 				  u64 owner, u32 extra_size)
959 {
960 	struct btrfs_extent_item *item;
961 	struct btrfs_extent_item_v0 *ei0;
962 	struct btrfs_extent_ref_v0 *ref0;
963 	struct btrfs_tree_block_info *bi;
964 	struct extent_buffer *leaf;
965 	struct btrfs_key key;
966 	struct btrfs_key found_key;
967 	u32 new_size = sizeof(*item);
968 	u64 refs;
969 	int ret;
970 
971 	leaf = path->nodes[0];
972 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973 
974 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
975 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
976 			     struct btrfs_extent_item_v0);
977 	refs = btrfs_extent_refs_v0(leaf, ei0);
978 
979 	if (owner == (u64)-1) {
980 		while (1) {
981 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
982 				ret = btrfs_next_leaf(root, path);
983 				if (ret < 0)
984 					return ret;
985 				BUG_ON(ret > 0);
986 				leaf = path->nodes[0];
987 			}
988 			btrfs_item_key_to_cpu(leaf, &found_key,
989 					      path->slots[0]);
990 			BUG_ON(key.objectid != found_key.objectid);
991 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
992 				path->slots[0]++;
993 				continue;
994 			}
995 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
996 					      struct btrfs_extent_ref_v0);
997 			owner = btrfs_ref_objectid_v0(leaf, ref0);
998 			break;
999 		}
1000 	}
1001 	btrfs_release_path(path);
1002 
1003 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1004 		new_size += sizeof(*bi);
1005 
1006 	new_size -= sizeof(*ei0);
1007 	ret = btrfs_search_slot(trans, root, &key, path,
1008 				new_size + extra_size, 1);
1009 	if (ret < 0)
1010 		return ret;
1011 	BUG_ON(ret);
1012 
1013 	ret = btrfs_extend_item(trans, root, path, new_size);
1014 
1015 	leaf = path->nodes[0];
1016 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 	btrfs_set_extent_refs(leaf, item, refs);
1018 	/* FIXME: get real generation */
1019 	btrfs_set_extent_generation(leaf, item, 0);
1020 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1021 		btrfs_set_extent_flags(leaf, item,
1022 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1023 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1024 		bi = (struct btrfs_tree_block_info *)(item + 1);
1025 		/* FIXME: get first key of the block */
1026 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1027 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 	} else {
1029 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 	}
1031 	btrfs_mark_buffer_dirty(leaf);
1032 	return 0;
1033 }
1034 #endif
1035 
1036 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 {
1038 	u32 high_crc = ~(u32)0;
1039 	u32 low_crc = ~(u32)0;
1040 	__le64 lenum;
1041 
1042 	lenum = cpu_to_le64(root_objectid);
1043 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1044 	lenum = cpu_to_le64(owner);
1045 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1046 	lenum = cpu_to_le64(offset);
1047 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048 
1049 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1050 }
1051 
1052 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1053 				     struct btrfs_extent_data_ref *ref)
1054 {
1055 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1056 				    btrfs_extent_data_ref_objectid(leaf, ref),
1057 				    btrfs_extent_data_ref_offset(leaf, ref));
1058 }
1059 
1060 static int match_extent_data_ref(struct extent_buffer *leaf,
1061 				 struct btrfs_extent_data_ref *ref,
1062 				 u64 root_objectid, u64 owner, u64 offset)
1063 {
1064 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1065 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1066 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1067 		return 0;
1068 	return 1;
1069 }
1070 
1071 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1072 					   struct btrfs_root *root,
1073 					   struct btrfs_path *path,
1074 					   u64 bytenr, u64 parent,
1075 					   u64 root_objectid,
1076 					   u64 owner, u64 offset)
1077 {
1078 	struct btrfs_key key;
1079 	struct btrfs_extent_data_ref *ref;
1080 	struct extent_buffer *leaf;
1081 	u32 nritems;
1082 	int ret;
1083 	int recow;
1084 	int err = -ENOENT;
1085 
1086 	key.objectid = bytenr;
1087 	if (parent) {
1088 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1089 		key.offset = parent;
1090 	} else {
1091 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1092 		key.offset = hash_extent_data_ref(root_objectid,
1093 						  owner, offset);
1094 	}
1095 again:
1096 	recow = 0;
1097 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 	if (ret < 0) {
1099 		err = ret;
1100 		goto fail;
1101 	}
1102 
1103 	if (parent) {
1104 		if (!ret)
1105 			return 0;
1106 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1107 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1108 		btrfs_release_path(path);
1109 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1110 		if (ret < 0) {
1111 			err = ret;
1112 			goto fail;
1113 		}
1114 		if (!ret)
1115 			return 0;
1116 #endif
1117 		goto fail;
1118 	}
1119 
1120 	leaf = path->nodes[0];
1121 	nritems = btrfs_header_nritems(leaf);
1122 	while (1) {
1123 		if (path->slots[0] >= nritems) {
1124 			ret = btrfs_next_leaf(root, path);
1125 			if (ret < 0)
1126 				err = ret;
1127 			if (ret)
1128 				goto fail;
1129 
1130 			leaf = path->nodes[0];
1131 			nritems = btrfs_header_nritems(leaf);
1132 			recow = 1;
1133 		}
1134 
1135 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136 		if (key.objectid != bytenr ||
1137 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1138 			goto fail;
1139 
1140 		ref = btrfs_item_ptr(leaf, path->slots[0],
1141 				     struct btrfs_extent_data_ref);
1142 
1143 		if (match_extent_data_ref(leaf, ref, root_objectid,
1144 					  owner, offset)) {
1145 			if (recow) {
1146 				btrfs_release_path(path);
1147 				goto again;
1148 			}
1149 			err = 0;
1150 			break;
1151 		}
1152 		path->slots[0]++;
1153 	}
1154 fail:
1155 	return err;
1156 }
1157 
1158 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1159 					   struct btrfs_root *root,
1160 					   struct btrfs_path *path,
1161 					   u64 bytenr, u64 parent,
1162 					   u64 root_objectid, u64 owner,
1163 					   u64 offset, int refs_to_add)
1164 {
1165 	struct btrfs_key key;
1166 	struct extent_buffer *leaf;
1167 	u32 size;
1168 	u32 num_refs;
1169 	int ret;
1170 
1171 	key.objectid = bytenr;
1172 	if (parent) {
1173 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1174 		key.offset = parent;
1175 		size = sizeof(struct btrfs_shared_data_ref);
1176 	} else {
1177 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1178 		key.offset = hash_extent_data_ref(root_objectid,
1179 						  owner, offset);
1180 		size = sizeof(struct btrfs_extent_data_ref);
1181 	}
1182 
1183 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1184 	if (ret && ret != -EEXIST)
1185 		goto fail;
1186 
1187 	leaf = path->nodes[0];
1188 	if (parent) {
1189 		struct btrfs_shared_data_ref *ref;
1190 		ref = btrfs_item_ptr(leaf, path->slots[0],
1191 				     struct btrfs_shared_data_ref);
1192 		if (ret == 0) {
1193 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 		} else {
1195 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1196 			num_refs += refs_to_add;
1197 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1198 		}
1199 	} else {
1200 		struct btrfs_extent_data_ref *ref;
1201 		while (ret == -EEXIST) {
1202 			ref = btrfs_item_ptr(leaf, path->slots[0],
1203 					     struct btrfs_extent_data_ref);
1204 			if (match_extent_data_ref(leaf, ref, root_objectid,
1205 						  owner, offset))
1206 				break;
1207 			btrfs_release_path(path);
1208 			key.offset++;
1209 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 						      size);
1211 			if (ret && ret != -EEXIST)
1212 				goto fail;
1213 
1214 			leaf = path->nodes[0];
1215 		}
1216 		ref = btrfs_item_ptr(leaf, path->slots[0],
1217 				     struct btrfs_extent_data_ref);
1218 		if (ret == 0) {
1219 			btrfs_set_extent_data_ref_root(leaf, ref,
1220 						       root_objectid);
1221 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1222 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1223 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 		} else {
1225 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1226 			num_refs += refs_to_add;
1227 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1228 		}
1229 	}
1230 	btrfs_mark_buffer_dirty(leaf);
1231 	ret = 0;
1232 fail:
1233 	btrfs_release_path(path);
1234 	return ret;
1235 }
1236 
1237 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1238 					   struct btrfs_root *root,
1239 					   struct btrfs_path *path,
1240 					   int refs_to_drop)
1241 {
1242 	struct btrfs_key key;
1243 	struct btrfs_extent_data_ref *ref1 = NULL;
1244 	struct btrfs_shared_data_ref *ref2 = NULL;
1245 	struct extent_buffer *leaf;
1246 	u32 num_refs = 0;
1247 	int ret = 0;
1248 
1249 	leaf = path->nodes[0];
1250 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251 
1252 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1253 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1254 				      struct btrfs_extent_data_ref);
1255 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1256 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1257 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1258 				      struct btrfs_shared_data_ref);
1259 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1260 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1261 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1262 		struct btrfs_extent_ref_v0 *ref0;
1263 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1264 				      struct btrfs_extent_ref_v0);
1265 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1266 #endif
1267 	} else {
1268 		BUG();
1269 	}
1270 
1271 	BUG_ON(num_refs < refs_to_drop);
1272 	num_refs -= refs_to_drop;
1273 
1274 	if (num_refs == 0) {
1275 		ret = btrfs_del_item(trans, root, path);
1276 	} else {
1277 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1278 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1279 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1280 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1281 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 		else {
1283 			struct btrfs_extent_ref_v0 *ref0;
1284 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1285 					struct btrfs_extent_ref_v0);
1286 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1287 		}
1288 #endif
1289 		btrfs_mark_buffer_dirty(leaf);
1290 	}
1291 	return ret;
1292 }
1293 
1294 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1295 					  struct btrfs_path *path,
1296 					  struct btrfs_extent_inline_ref *iref)
1297 {
1298 	struct btrfs_key key;
1299 	struct extent_buffer *leaf;
1300 	struct btrfs_extent_data_ref *ref1;
1301 	struct btrfs_shared_data_ref *ref2;
1302 	u32 num_refs = 0;
1303 
1304 	leaf = path->nodes[0];
1305 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 	if (iref) {
1307 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1308 		    BTRFS_EXTENT_DATA_REF_KEY) {
1309 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1310 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 		} else {
1312 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1313 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 		}
1315 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1316 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1317 				      struct btrfs_extent_data_ref);
1318 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1319 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1320 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1321 				      struct btrfs_shared_data_ref);
1322 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1323 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1324 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1325 		struct btrfs_extent_ref_v0 *ref0;
1326 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1327 				      struct btrfs_extent_ref_v0);
1328 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1329 #endif
1330 	} else {
1331 		WARN_ON(1);
1332 	}
1333 	return num_refs;
1334 }
1335 
1336 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1337 					  struct btrfs_root *root,
1338 					  struct btrfs_path *path,
1339 					  u64 bytenr, u64 parent,
1340 					  u64 root_objectid)
1341 {
1342 	struct btrfs_key key;
1343 	int ret;
1344 
1345 	key.objectid = bytenr;
1346 	if (parent) {
1347 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1348 		key.offset = parent;
1349 	} else {
1350 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1351 		key.offset = root_objectid;
1352 	}
1353 
1354 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1355 	if (ret > 0)
1356 		ret = -ENOENT;
1357 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1358 	if (ret == -ENOENT && parent) {
1359 		btrfs_release_path(path);
1360 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1361 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1362 		if (ret > 0)
1363 			ret = -ENOENT;
1364 	}
1365 #endif
1366 	return ret;
1367 }
1368 
1369 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1370 					  struct btrfs_root *root,
1371 					  struct btrfs_path *path,
1372 					  u64 bytenr, u64 parent,
1373 					  u64 root_objectid)
1374 {
1375 	struct btrfs_key key;
1376 	int ret;
1377 
1378 	key.objectid = bytenr;
1379 	if (parent) {
1380 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381 		key.offset = parent;
1382 	} else {
1383 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384 		key.offset = root_objectid;
1385 	}
1386 
1387 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1388 	btrfs_release_path(path);
1389 	return ret;
1390 }
1391 
1392 static inline int extent_ref_type(u64 parent, u64 owner)
1393 {
1394 	int type;
1395 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 		if (parent > 0)
1397 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 		else
1399 			type = BTRFS_TREE_BLOCK_REF_KEY;
1400 	} else {
1401 		if (parent > 0)
1402 			type = BTRFS_SHARED_DATA_REF_KEY;
1403 		else
1404 			type = BTRFS_EXTENT_DATA_REF_KEY;
1405 	}
1406 	return type;
1407 }
1408 
1409 static int find_next_key(struct btrfs_path *path, int level,
1410 			 struct btrfs_key *key)
1411 
1412 {
1413 	for (; level < BTRFS_MAX_LEVEL; level++) {
1414 		if (!path->nodes[level])
1415 			break;
1416 		if (path->slots[level] + 1 >=
1417 		    btrfs_header_nritems(path->nodes[level]))
1418 			continue;
1419 		if (level == 0)
1420 			btrfs_item_key_to_cpu(path->nodes[level], key,
1421 					      path->slots[level] + 1);
1422 		else
1423 			btrfs_node_key_to_cpu(path->nodes[level], key,
1424 					      path->slots[level] + 1);
1425 		return 0;
1426 	}
1427 	return 1;
1428 }
1429 
1430 /*
1431  * look for inline back ref. if back ref is found, *ref_ret is set
1432  * to the address of inline back ref, and 0 is returned.
1433  *
1434  * if back ref isn't found, *ref_ret is set to the address where it
1435  * should be inserted, and -ENOENT is returned.
1436  *
1437  * if insert is true and there are too many inline back refs, the path
1438  * points to the extent item, and -EAGAIN is returned.
1439  *
1440  * NOTE: inline back refs are ordered in the same way that back ref
1441  *	 items in the tree are ordered.
1442  */
1443 static noinline_for_stack
1444 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1445 				 struct btrfs_root *root,
1446 				 struct btrfs_path *path,
1447 				 struct btrfs_extent_inline_ref **ref_ret,
1448 				 u64 bytenr, u64 num_bytes,
1449 				 u64 parent, u64 root_objectid,
1450 				 u64 owner, u64 offset, int insert)
1451 {
1452 	struct btrfs_key key;
1453 	struct extent_buffer *leaf;
1454 	struct btrfs_extent_item *ei;
1455 	struct btrfs_extent_inline_ref *iref;
1456 	u64 flags;
1457 	u64 item_size;
1458 	unsigned long ptr;
1459 	unsigned long end;
1460 	int extra_size;
1461 	int type;
1462 	int want;
1463 	int ret;
1464 	int err = 0;
1465 
1466 	key.objectid = bytenr;
1467 	key.type = BTRFS_EXTENT_ITEM_KEY;
1468 	key.offset = num_bytes;
1469 
1470 	want = extent_ref_type(parent, owner);
1471 	if (insert) {
1472 		extra_size = btrfs_extent_inline_ref_size(want);
1473 		path->keep_locks = 1;
1474 	} else
1475 		extra_size = -1;
1476 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1477 	if (ret < 0) {
1478 		err = ret;
1479 		goto out;
1480 	}
1481 	BUG_ON(ret);
1482 
1483 	leaf = path->nodes[0];
1484 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1486 	if (item_size < sizeof(*ei)) {
1487 		if (!insert) {
1488 			err = -ENOENT;
1489 			goto out;
1490 		}
1491 		ret = convert_extent_item_v0(trans, root, path, owner,
1492 					     extra_size);
1493 		if (ret < 0) {
1494 			err = ret;
1495 			goto out;
1496 		}
1497 		leaf = path->nodes[0];
1498 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1499 	}
1500 #endif
1501 	BUG_ON(item_size < sizeof(*ei));
1502 
1503 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1504 	flags = btrfs_extent_flags(leaf, ei);
1505 
1506 	ptr = (unsigned long)(ei + 1);
1507 	end = (unsigned long)ei + item_size;
1508 
1509 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1510 		ptr += sizeof(struct btrfs_tree_block_info);
1511 		BUG_ON(ptr > end);
1512 	} else {
1513 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1514 	}
1515 
1516 	err = -ENOENT;
1517 	while (1) {
1518 		if (ptr >= end) {
1519 			WARN_ON(ptr > end);
1520 			break;
1521 		}
1522 		iref = (struct btrfs_extent_inline_ref *)ptr;
1523 		type = btrfs_extent_inline_ref_type(leaf, iref);
1524 		if (want < type)
1525 			break;
1526 		if (want > type) {
1527 			ptr += btrfs_extent_inline_ref_size(type);
1528 			continue;
1529 		}
1530 
1531 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1532 			struct btrfs_extent_data_ref *dref;
1533 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1534 			if (match_extent_data_ref(leaf, dref, root_objectid,
1535 						  owner, offset)) {
1536 				err = 0;
1537 				break;
1538 			}
1539 			if (hash_extent_data_ref_item(leaf, dref) <
1540 			    hash_extent_data_ref(root_objectid, owner, offset))
1541 				break;
1542 		} else {
1543 			u64 ref_offset;
1544 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1545 			if (parent > 0) {
1546 				if (parent == ref_offset) {
1547 					err = 0;
1548 					break;
1549 				}
1550 				if (ref_offset < parent)
1551 					break;
1552 			} else {
1553 				if (root_objectid == ref_offset) {
1554 					err = 0;
1555 					break;
1556 				}
1557 				if (ref_offset < root_objectid)
1558 					break;
1559 			}
1560 		}
1561 		ptr += btrfs_extent_inline_ref_size(type);
1562 	}
1563 	if (err == -ENOENT && insert) {
1564 		if (item_size + extra_size >=
1565 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1566 			err = -EAGAIN;
1567 			goto out;
1568 		}
1569 		/*
1570 		 * To add new inline back ref, we have to make sure
1571 		 * there is no corresponding back ref item.
1572 		 * For simplicity, we just do not add new inline back
1573 		 * ref if there is any kind of item for this block
1574 		 */
1575 		if (find_next_key(path, 0, &key) == 0 &&
1576 		    key.objectid == bytenr &&
1577 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1578 			err = -EAGAIN;
1579 			goto out;
1580 		}
1581 	}
1582 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1583 out:
1584 	if (insert) {
1585 		path->keep_locks = 0;
1586 		btrfs_unlock_up_safe(path, 1);
1587 	}
1588 	return err;
1589 }
1590 
1591 /*
1592  * helper to add new inline back ref
1593  */
1594 static noinline_for_stack
1595 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1596 				struct btrfs_root *root,
1597 				struct btrfs_path *path,
1598 				struct btrfs_extent_inline_ref *iref,
1599 				u64 parent, u64 root_objectid,
1600 				u64 owner, u64 offset, int refs_to_add,
1601 				struct btrfs_delayed_extent_op *extent_op)
1602 {
1603 	struct extent_buffer *leaf;
1604 	struct btrfs_extent_item *ei;
1605 	unsigned long ptr;
1606 	unsigned long end;
1607 	unsigned long item_offset;
1608 	u64 refs;
1609 	int size;
1610 	int type;
1611 	int ret;
1612 
1613 	leaf = path->nodes[0];
1614 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1615 	item_offset = (unsigned long)iref - (unsigned long)ei;
1616 
1617 	type = extent_ref_type(parent, owner);
1618 	size = btrfs_extent_inline_ref_size(type);
1619 
1620 	ret = btrfs_extend_item(trans, root, path, size);
1621 
1622 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1623 	refs = btrfs_extent_refs(leaf, ei);
1624 	refs += refs_to_add;
1625 	btrfs_set_extent_refs(leaf, ei, refs);
1626 	if (extent_op)
1627 		__run_delayed_extent_op(extent_op, leaf, ei);
1628 
1629 	ptr = (unsigned long)ei + item_offset;
1630 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1631 	if (ptr < end - size)
1632 		memmove_extent_buffer(leaf, ptr + size, ptr,
1633 				      end - size - ptr);
1634 
1635 	iref = (struct btrfs_extent_inline_ref *)ptr;
1636 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1637 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1638 		struct btrfs_extent_data_ref *dref;
1639 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1640 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1641 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1642 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1643 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1644 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1645 		struct btrfs_shared_data_ref *sref;
1646 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1647 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1648 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1649 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1650 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 	} else {
1652 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1653 	}
1654 	btrfs_mark_buffer_dirty(leaf);
1655 	return 0;
1656 }
1657 
1658 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1659 				 struct btrfs_root *root,
1660 				 struct btrfs_path *path,
1661 				 struct btrfs_extent_inline_ref **ref_ret,
1662 				 u64 bytenr, u64 num_bytes, u64 parent,
1663 				 u64 root_objectid, u64 owner, u64 offset)
1664 {
1665 	int ret;
1666 
1667 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1668 					   bytenr, num_bytes, parent,
1669 					   root_objectid, owner, offset, 0);
1670 	if (ret != -ENOENT)
1671 		return ret;
1672 
1673 	btrfs_release_path(path);
1674 	*ref_ret = NULL;
1675 
1676 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1677 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1678 					    root_objectid);
1679 	} else {
1680 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1681 					     root_objectid, owner, offset);
1682 	}
1683 	return ret;
1684 }
1685 
1686 /*
1687  * helper to update/remove inline back ref
1688  */
1689 static noinline_for_stack
1690 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1691 				 struct btrfs_root *root,
1692 				 struct btrfs_path *path,
1693 				 struct btrfs_extent_inline_ref *iref,
1694 				 int refs_to_mod,
1695 				 struct btrfs_delayed_extent_op *extent_op)
1696 {
1697 	struct extent_buffer *leaf;
1698 	struct btrfs_extent_item *ei;
1699 	struct btrfs_extent_data_ref *dref = NULL;
1700 	struct btrfs_shared_data_ref *sref = NULL;
1701 	unsigned long ptr;
1702 	unsigned long end;
1703 	u32 item_size;
1704 	int size;
1705 	int type;
1706 	int ret;
1707 	u64 refs;
1708 
1709 	leaf = path->nodes[0];
1710 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 	refs = btrfs_extent_refs(leaf, ei);
1712 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 	refs += refs_to_mod;
1714 	btrfs_set_extent_refs(leaf, ei, refs);
1715 	if (extent_op)
1716 		__run_delayed_extent_op(extent_op, leaf, ei);
1717 
1718 	type = btrfs_extent_inline_ref_type(leaf, iref);
1719 
1720 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 		refs = btrfs_extent_data_ref_count(leaf, dref);
1723 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 		refs = btrfs_shared_data_ref_count(leaf, sref);
1726 	} else {
1727 		refs = 1;
1728 		BUG_ON(refs_to_mod != -1);
1729 	}
1730 
1731 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 	refs += refs_to_mod;
1733 
1734 	if (refs > 0) {
1735 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1737 		else
1738 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1739 	} else {
1740 		size =  btrfs_extent_inline_ref_size(type);
1741 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 		ptr = (unsigned long)iref;
1743 		end = (unsigned long)ei + item_size;
1744 		if (ptr + size < end)
1745 			memmove_extent_buffer(leaf, ptr, ptr + size,
1746 					      end - ptr - size);
1747 		item_size -= size;
1748 		ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1749 	}
1750 	btrfs_mark_buffer_dirty(leaf);
1751 	return 0;
1752 }
1753 
1754 static noinline_for_stack
1755 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1756 				 struct btrfs_root *root,
1757 				 struct btrfs_path *path,
1758 				 u64 bytenr, u64 num_bytes, u64 parent,
1759 				 u64 root_objectid, u64 owner,
1760 				 u64 offset, int refs_to_add,
1761 				 struct btrfs_delayed_extent_op *extent_op)
1762 {
1763 	struct btrfs_extent_inline_ref *iref;
1764 	int ret;
1765 
1766 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1767 					   bytenr, num_bytes, parent,
1768 					   root_objectid, owner, offset, 1);
1769 	if (ret == 0) {
1770 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1771 		ret = update_inline_extent_backref(trans, root, path, iref,
1772 						   refs_to_add, extent_op);
1773 	} else if (ret == -ENOENT) {
1774 		ret = setup_inline_extent_backref(trans, root, path, iref,
1775 						  parent, root_objectid,
1776 						  owner, offset, refs_to_add,
1777 						  extent_op);
1778 	}
1779 	return ret;
1780 }
1781 
1782 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1783 				 struct btrfs_root *root,
1784 				 struct btrfs_path *path,
1785 				 u64 bytenr, u64 parent, u64 root_objectid,
1786 				 u64 owner, u64 offset, int refs_to_add)
1787 {
1788 	int ret;
1789 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1790 		BUG_ON(refs_to_add != 1);
1791 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1792 					    parent, root_objectid);
1793 	} else {
1794 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1795 					     parent, root_objectid,
1796 					     owner, offset, refs_to_add);
1797 	}
1798 	return ret;
1799 }
1800 
1801 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1802 				 struct btrfs_root *root,
1803 				 struct btrfs_path *path,
1804 				 struct btrfs_extent_inline_ref *iref,
1805 				 int refs_to_drop, int is_data)
1806 {
1807 	int ret;
1808 
1809 	BUG_ON(!is_data && refs_to_drop != 1);
1810 	if (iref) {
1811 		ret = update_inline_extent_backref(trans, root, path, iref,
1812 						   -refs_to_drop, NULL);
1813 	} else if (is_data) {
1814 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 	} else {
1816 		ret = btrfs_del_item(trans, root, path);
1817 	}
1818 	return ret;
1819 }
1820 
1821 static int btrfs_issue_discard(struct block_device *bdev,
1822 				u64 start, u64 len)
1823 {
1824 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1825 }
1826 
1827 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1828 				u64 num_bytes, u64 *actual_bytes)
1829 {
1830 	int ret;
1831 	u64 discarded_bytes = 0;
1832 	struct btrfs_bio *bbio = NULL;
1833 
1834 
1835 	/* Tell the block device(s) that the sectors can be discarded */
1836 	ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1837 			      bytenr, &num_bytes, &bbio, 0);
1838 	if (!ret) {
1839 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1840 		int i;
1841 
1842 
1843 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 			if (!stripe->dev->can_discard)
1845 				continue;
1846 
1847 			ret = btrfs_issue_discard(stripe->dev->bdev,
1848 						  stripe->physical,
1849 						  stripe->length);
1850 			if (!ret)
1851 				discarded_bytes += stripe->length;
1852 			else if (ret != -EOPNOTSUPP)
1853 				break;
1854 
1855 			/*
1856 			 * Just in case we get back EOPNOTSUPP for some reason,
1857 			 * just ignore the return value so we don't screw up
1858 			 * people calling discard_extent.
1859 			 */
1860 			ret = 0;
1861 		}
1862 		kfree(bbio);
1863 	}
1864 
1865 	if (actual_bytes)
1866 		*actual_bytes = discarded_bytes;
1867 
1868 
1869 	return ret;
1870 }
1871 
1872 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1873 			 struct btrfs_root *root,
1874 			 u64 bytenr, u64 num_bytes, u64 parent,
1875 			 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1876 {
1877 	int ret;
1878 	struct btrfs_fs_info *fs_info = root->fs_info;
1879 
1880 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1881 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1882 
1883 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1884 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1885 					num_bytes,
1886 					parent, root_objectid, (int)owner,
1887 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1888 	} else {
1889 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1890 					num_bytes,
1891 					parent, root_objectid, owner, offset,
1892 					BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1893 	}
1894 	return ret;
1895 }
1896 
1897 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1898 				  struct btrfs_root *root,
1899 				  u64 bytenr, u64 num_bytes,
1900 				  u64 parent, u64 root_objectid,
1901 				  u64 owner, u64 offset, int refs_to_add,
1902 				  struct btrfs_delayed_extent_op *extent_op)
1903 {
1904 	struct btrfs_path *path;
1905 	struct extent_buffer *leaf;
1906 	struct btrfs_extent_item *item;
1907 	u64 refs;
1908 	int ret;
1909 	int err = 0;
1910 
1911 	path = btrfs_alloc_path();
1912 	if (!path)
1913 		return -ENOMEM;
1914 
1915 	path->reada = 1;
1916 	path->leave_spinning = 1;
1917 	/* this will setup the path even if it fails to insert the back ref */
1918 	ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1919 					   path, bytenr, num_bytes, parent,
1920 					   root_objectid, owner, offset,
1921 					   refs_to_add, extent_op);
1922 	if (ret == 0)
1923 		goto out;
1924 
1925 	if (ret != -EAGAIN) {
1926 		err = ret;
1927 		goto out;
1928 	}
1929 
1930 	leaf = path->nodes[0];
1931 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1932 	refs = btrfs_extent_refs(leaf, item);
1933 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1934 	if (extent_op)
1935 		__run_delayed_extent_op(extent_op, leaf, item);
1936 
1937 	btrfs_mark_buffer_dirty(leaf);
1938 	btrfs_release_path(path);
1939 
1940 	path->reada = 1;
1941 	path->leave_spinning = 1;
1942 
1943 	/* now insert the actual backref */
1944 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
1945 				    path, bytenr, parent, root_objectid,
1946 				    owner, offset, refs_to_add);
1947 	BUG_ON(ret);
1948 out:
1949 	btrfs_free_path(path);
1950 	return err;
1951 }
1952 
1953 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1954 				struct btrfs_root *root,
1955 				struct btrfs_delayed_ref_node *node,
1956 				struct btrfs_delayed_extent_op *extent_op,
1957 				int insert_reserved)
1958 {
1959 	int ret = 0;
1960 	struct btrfs_delayed_data_ref *ref;
1961 	struct btrfs_key ins;
1962 	u64 parent = 0;
1963 	u64 ref_root = 0;
1964 	u64 flags = 0;
1965 
1966 	ins.objectid = node->bytenr;
1967 	ins.offset = node->num_bytes;
1968 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1969 
1970 	ref = btrfs_delayed_node_to_data_ref(node);
1971 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1972 		parent = ref->parent;
1973 	else
1974 		ref_root = ref->root;
1975 
1976 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1977 		if (extent_op) {
1978 			BUG_ON(extent_op->update_key);
1979 			flags |= extent_op->flags_to_set;
1980 		}
1981 		ret = alloc_reserved_file_extent(trans, root,
1982 						 parent, ref_root, flags,
1983 						 ref->objectid, ref->offset,
1984 						 &ins, node->ref_mod);
1985 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1986 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1987 					     node->num_bytes, parent,
1988 					     ref_root, ref->objectid,
1989 					     ref->offset, node->ref_mod,
1990 					     extent_op);
1991 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1992 		ret = __btrfs_free_extent(trans, root, node->bytenr,
1993 					  node->num_bytes, parent,
1994 					  ref_root, ref->objectid,
1995 					  ref->offset, node->ref_mod,
1996 					  extent_op);
1997 	} else {
1998 		BUG();
1999 	}
2000 	return ret;
2001 }
2002 
2003 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2004 				    struct extent_buffer *leaf,
2005 				    struct btrfs_extent_item *ei)
2006 {
2007 	u64 flags = btrfs_extent_flags(leaf, ei);
2008 	if (extent_op->update_flags) {
2009 		flags |= extent_op->flags_to_set;
2010 		btrfs_set_extent_flags(leaf, ei, flags);
2011 	}
2012 
2013 	if (extent_op->update_key) {
2014 		struct btrfs_tree_block_info *bi;
2015 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2016 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2017 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2018 	}
2019 }
2020 
2021 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2022 				 struct btrfs_root *root,
2023 				 struct btrfs_delayed_ref_node *node,
2024 				 struct btrfs_delayed_extent_op *extent_op)
2025 {
2026 	struct btrfs_key key;
2027 	struct btrfs_path *path;
2028 	struct btrfs_extent_item *ei;
2029 	struct extent_buffer *leaf;
2030 	u32 item_size;
2031 	int ret;
2032 	int err = 0;
2033 
2034 	path = btrfs_alloc_path();
2035 	if (!path)
2036 		return -ENOMEM;
2037 
2038 	key.objectid = node->bytenr;
2039 	key.type = BTRFS_EXTENT_ITEM_KEY;
2040 	key.offset = node->num_bytes;
2041 
2042 	path->reada = 1;
2043 	path->leave_spinning = 1;
2044 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2045 				path, 0, 1);
2046 	if (ret < 0) {
2047 		err = ret;
2048 		goto out;
2049 	}
2050 	if (ret > 0) {
2051 		err = -EIO;
2052 		goto out;
2053 	}
2054 
2055 	leaf = path->nodes[0];
2056 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2058 	if (item_size < sizeof(*ei)) {
2059 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2060 					     path, (u64)-1, 0);
2061 		if (ret < 0) {
2062 			err = ret;
2063 			goto out;
2064 		}
2065 		leaf = path->nodes[0];
2066 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2067 	}
2068 #endif
2069 	BUG_ON(item_size < sizeof(*ei));
2070 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2071 	__run_delayed_extent_op(extent_op, leaf, ei);
2072 
2073 	btrfs_mark_buffer_dirty(leaf);
2074 out:
2075 	btrfs_free_path(path);
2076 	return err;
2077 }
2078 
2079 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2080 				struct btrfs_root *root,
2081 				struct btrfs_delayed_ref_node *node,
2082 				struct btrfs_delayed_extent_op *extent_op,
2083 				int insert_reserved)
2084 {
2085 	int ret = 0;
2086 	struct btrfs_delayed_tree_ref *ref;
2087 	struct btrfs_key ins;
2088 	u64 parent = 0;
2089 	u64 ref_root = 0;
2090 
2091 	ins.objectid = node->bytenr;
2092 	ins.offset = node->num_bytes;
2093 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2094 
2095 	ref = btrfs_delayed_node_to_tree_ref(node);
2096 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2097 		parent = ref->parent;
2098 	else
2099 		ref_root = ref->root;
2100 
2101 	BUG_ON(node->ref_mod != 1);
2102 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2103 		BUG_ON(!extent_op || !extent_op->update_flags ||
2104 		       !extent_op->update_key);
2105 		ret = alloc_reserved_tree_block(trans, root,
2106 						parent, ref_root,
2107 						extent_op->flags_to_set,
2108 						&extent_op->key,
2109 						ref->level, &ins);
2110 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2111 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2112 					     node->num_bytes, parent, ref_root,
2113 					     ref->level, 0, 1, extent_op);
2114 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2115 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2116 					  node->num_bytes, parent, ref_root,
2117 					  ref->level, 0, 1, extent_op);
2118 	} else {
2119 		BUG();
2120 	}
2121 	return ret;
2122 }
2123 
2124 /* helper function to actually process a single delayed ref entry */
2125 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2126 			       struct btrfs_root *root,
2127 			       struct btrfs_delayed_ref_node *node,
2128 			       struct btrfs_delayed_extent_op *extent_op,
2129 			       int insert_reserved)
2130 {
2131 	int ret;
2132 	if (btrfs_delayed_ref_is_head(node)) {
2133 		struct btrfs_delayed_ref_head *head;
2134 		/*
2135 		 * we've hit the end of the chain and we were supposed
2136 		 * to insert this extent into the tree.  But, it got
2137 		 * deleted before we ever needed to insert it, so all
2138 		 * we have to do is clean up the accounting
2139 		 */
2140 		BUG_ON(extent_op);
2141 		head = btrfs_delayed_node_to_head(node);
2142 		if (insert_reserved) {
2143 			btrfs_pin_extent(root, node->bytenr,
2144 					 node->num_bytes, 1);
2145 			if (head->is_data) {
2146 				ret = btrfs_del_csums(trans, root,
2147 						      node->bytenr,
2148 						      node->num_bytes);
2149 				BUG_ON(ret);
2150 			}
2151 		}
2152 		mutex_unlock(&head->mutex);
2153 		return 0;
2154 	}
2155 
2156 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2157 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2158 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2159 					   insert_reserved);
2160 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2161 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2162 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2163 					   insert_reserved);
2164 	else
2165 		BUG();
2166 	return ret;
2167 }
2168 
2169 static noinline struct btrfs_delayed_ref_node *
2170 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2171 {
2172 	struct rb_node *node;
2173 	struct btrfs_delayed_ref_node *ref;
2174 	int action = BTRFS_ADD_DELAYED_REF;
2175 again:
2176 	/*
2177 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2178 	 * this prevents ref count from going down to zero when
2179 	 * there still are pending delayed ref.
2180 	 */
2181 	node = rb_prev(&head->node.rb_node);
2182 	while (1) {
2183 		if (!node)
2184 			break;
2185 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2186 				rb_node);
2187 		if (ref->bytenr != head->node.bytenr)
2188 			break;
2189 		if (ref->action == action)
2190 			return ref;
2191 		node = rb_prev(node);
2192 	}
2193 	if (action == BTRFS_ADD_DELAYED_REF) {
2194 		action = BTRFS_DROP_DELAYED_REF;
2195 		goto again;
2196 	}
2197 	return NULL;
2198 }
2199 
2200 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2201 				       struct btrfs_root *root,
2202 				       struct list_head *cluster)
2203 {
2204 	struct btrfs_delayed_ref_root *delayed_refs;
2205 	struct btrfs_delayed_ref_node *ref;
2206 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2207 	struct btrfs_delayed_extent_op *extent_op;
2208 	int ret;
2209 	int count = 0;
2210 	int must_insert_reserved = 0;
2211 
2212 	delayed_refs = &trans->transaction->delayed_refs;
2213 	while (1) {
2214 		if (!locked_ref) {
2215 			/* pick a new head ref from the cluster list */
2216 			if (list_empty(cluster))
2217 				break;
2218 
2219 			locked_ref = list_entry(cluster->next,
2220 				     struct btrfs_delayed_ref_head, cluster);
2221 
2222 			/* grab the lock that says we are going to process
2223 			 * all the refs for this head */
2224 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2225 
2226 			/*
2227 			 * we may have dropped the spin lock to get the head
2228 			 * mutex lock, and that might have given someone else
2229 			 * time to free the head.  If that's true, it has been
2230 			 * removed from our list and we can move on.
2231 			 */
2232 			if (ret == -EAGAIN) {
2233 				locked_ref = NULL;
2234 				count++;
2235 				continue;
2236 			}
2237 		}
2238 
2239 		/*
2240 		 * locked_ref is the head node, so we have to go one
2241 		 * node back for any delayed ref updates
2242 		 */
2243 		ref = select_delayed_ref(locked_ref);
2244 
2245 		if (ref && ref->seq &&
2246 		    btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2247 			/*
2248 			 * there are still refs with lower seq numbers in the
2249 			 * process of being added. Don't run this ref yet.
2250 			 */
2251 			list_del_init(&locked_ref->cluster);
2252 			mutex_unlock(&locked_ref->mutex);
2253 			locked_ref = NULL;
2254 			delayed_refs->num_heads_ready++;
2255 			spin_unlock(&delayed_refs->lock);
2256 			cond_resched();
2257 			spin_lock(&delayed_refs->lock);
2258 			continue;
2259 		}
2260 
2261 		/*
2262 		 * record the must insert reserved flag before we
2263 		 * drop the spin lock.
2264 		 */
2265 		must_insert_reserved = locked_ref->must_insert_reserved;
2266 		locked_ref->must_insert_reserved = 0;
2267 
2268 		extent_op = locked_ref->extent_op;
2269 		locked_ref->extent_op = NULL;
2270 
2271 		if (!ref) {
2272 			/* All delayed refs have been processed, Go ahead
2273 			 * and send the head node to run_one_delayed_ref,
2274 			 * so that any accounting fixes can happen
2275 			 */
2276 			ref = &locked_ref->node;
2277 
2278 			if (extent_op && must_insert_reserved) {
2279 				kfree(extent_op);
2280 				extent_op = NULL;
2281 			}
2282 
2283 			if (extent_op) {
2284 				spin_unlock(&delayed_refs->lock);
2285 
2286 				ret = run_delayed_extent_op(trans, root,
2287 							    ref, extent_op);
2288 				BUG_ON(ret);
2289 				kfree(extent_op);
2290 
2291 				goto next;
2292 			}
2293 
2294 			list_del_init(&locked_ref->cluster);
2295 			locked_ref = NULL;
2296 		}
2297 
2298 		ref->in_tree = 0;
2299 		rb_erase(&ref->rb_node, &delayed_refs->root);
2300 		delayed_refs->num_entries--;
2301 		/*
2302 		 * we modified num_entries, but as we're currently running
2303 		 * delayed refs, skip
2304 		 *     wake_up(&delayed_refs->seq_wait);
2305 		 * here.
2306 		 */
2307 		spin_unlock(&delayed_refs->lock);
2308 
2309 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2310 					  must_insert_reserved);
2311 		BUG_ON(ret);
2312 
2313 		btrfs_put_delayed_ref(ref);
2314 		kfree(extent_op);
2315 		count++;
2316 next:
2317 		do_chunk_alloc(trans, root->fs_info->extent_root,
2318 			       2 * 1024 * 1024,
2319 			       btrfs_get_alloc_profile(root, 0),
2320 			       CHUNK_ALLOC_NO_FORCE);
2321 		cond_resched();
2322 		spin_lock(&delayed_refs->lock);
2323 	}
2324 	return count;
2325 }
2326 
2327 
2328 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2329 			unsigned long num_refs)
2330 {
2331 	struct list_head *first_seq = delayed_refs->seq_head.next;
2332 
2333 	spin_unlock(&delayed_refs->lock);
2334 	pr_debug("waiting for more refs (num %ld, first %p)\n",
2335 		 num_refs, first_seq);
2336 	wait_event(delayed_refs->seq_wait,
2337 		   num_refs != delayed_refs->num_entries ||
2338 		   delayed_refs->seq_head.next != first_seq);
2339 	pr_debug("done waiting for more refs (num %ld, first %p)\n",
2340 		 delayed_refs->num_entries, delayed_refs->seq_head.next);
2341 	spin_lock(&delayed_refs->lock);
2342 }
2343 
2344 /*
2345  * this starts processing the delayed reference count updates and
2346  * extent insertions we have queued up so far.  count can be
2347  * 0, which means to process everything in the tree at the start
2348  * of the run (but not newly added entries), or it can be some target
2349  * number you'd like to process.
2350  */
2351 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2352 			   struct btrfs_root *root, unsigned long count)
2353 {
2354 	struct rb_node *node;
2355 	struct btrfs_delayed_ref_root *delayed_refs;
2356 	struct btrfs_delayed_ref_node *ref;
2357 	struct list_head cluster;
2358 	int ret;
2359 	u64 delayed_start;
2360 	int run_all = count == (unsigned long)-1;
2361 	int run_most = 0;
2362 	unsigned long num_refs = 0;
2363 	int consider_waiting;
2364 
2365 	if (root == root->fs_info->extent_root)
2366 		root = root->fs_info->tree_root;
2367 
2368 	do_chunk_alloc(trans, root->fs_info->extent_root,
2369 		       2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2370 		       CHUNK_ALLOC_NO_FORCE);
2371 
2372 	delayed_refs = &trans->transaction->delayed_refs;
2373 	INIT_LIST_HEAD(&cluster);
2374 again:
2375 	consider_waiting = 0;
2376 	spin_lock(&delayed_refs->lock);
2377 	if (count == 0) {
2378 		count = delayed_refs->num_entries * 2;
2379 		run_most = 1;
2380 	}
2381 	while (1) {
2382 		if (!(run_all || run_most) &&
2383 		    delayed_refs->num_heads_ready < 64)
2384 			break;
2385 
2386 		/*
2387 		 * go find something we can process in the rbtree.  We start at
2388 		 * the beginning of the tree, and then build a cluster
2389 		 * of refs to process starting at the first one we are able to
2390 		 * lock
2391 		 */
2392 		delayed_start = delayed_refs->run_delayed_start;
2393 		ret = btrfs_find_ref_cluster(trans, &cluster,
2394 					     delayed_refs->run_delayed_start);
2395 		if (ret)
2396 			break;
2397 
2398 		if (delayed_start >= delayed_refs->run_delayed_start) {
2399 			if (consider_waiting == 0) {
2400 				/*
2401 				 * btrfs_find_ref_cluster looped. let's do one
2402 				 * more cycle. if we don't run any delayed ref
2403 				 * during that cycle (because we can't because
2404 				 * all of them are blocked) and if the number of
2405 				 * refs doesn't change, we avoid busy waiting.
2406 				 */
2407 				consider_waiting = 1;
2408 				num_refs = delayed_refs->num_entries;
2409 			} else {
2410 				wait_for_more_refs(delayed_refs, num_refs);
2411 				/*
2412 				 * after waiting, things have changed. we
2413 				 * dropped the lock and someone else might have
2414 				 * run some refs, built new clusters and so on.
2415 				 * therefore, we restart staleness detection.
2416 				 */
2417 				consider_waiting = 0;
2418 			}
2419 		}
2420 
2421 		ret = run_clustered_refs(trans, root, &cluster);
2422 		BUG_ON(ret < 0);
2423 
2424 		count -= min_t(unsigned long, ret, count);
2425 
2426 		if (count == 0)
2427 			break;
2428 
2429 		if (ret || delayed_refs->run_delayed_start == 0) {
2430 			/* refs were run, let's reset staleness detection */
2431 			consider_waiting = 0;
2432 		}
2433 	}
2434 
2435 	if (run_all) {
2436 		node = rb_first(&delayed_refs->root);
2437 		if (!node)
2438 			goto out;
2439 		count = (unsigned long)-1;
2440 
2441 		while (node) {
2442 			ref = rb_entry(node, struct btrfs_delayed_ref_node,
2443 				       rb_node);
2444 			if (btrfs_delayed_ref_is_head(ref)) {
2445 				struct btrfs_delayed_ref_head *head;
2446 
2447 				head = btrfs_delayed_node_to_head(ref);
2448 				atomic_inc(&ref->refs);
2449 
2450 				spin_unlock(&delayed_refs->lock);
2451 				/*
2452 				 * Mutex was contended, block until it's
2453 				 * released and try again
2454 				 */
2455 				mutex_lock(&head->mutex);
2456 				mutex_unlock(&head->mutex);
2457 
2458 				btrfs_put_delayed_ref(ref);
2459 				cond_resched();
2460 				goto again;
2461 			}
2462 			node = rb_next(node);
2463 		}
2464 		spin_unlock(&delayed_refs->lock);
2465 		schedule_timeout(1);
2466 		goto again;
2467 	}
2468 out:
2469 	spin_unlock(&delayed_refs->lock);
2470 	return 0;
2471 }
2472 
2473 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2474 				struct btrfs_root *root,
2475 				u64 bytenr, u64 num_bytes, u64 flags,
2476 				int is_data)
2477 {
2478 	struct btrfs_delayed_extent_op *extent_op;
2479 	int ret;
2480 
2481 	extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2482 	if (!extent_op)
2483 		return -ENOMEM;
2484 
2485 	extent_op->flags_to_set = flags;
2486 	extent_op->update_flags = 1;
2487 	extent_op->update_key = 0;
2488 	extent_op->is_data = is_data ? 1 : 0;
2489 
2490 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2491 					  num_bytes, extent_op);
2492 	if (ret)
2493 		kfree(extent_op);
2494 	return ret;
2495 }
2496 
2497 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2498 				      struct btrfs_root *root,
2499 				      struct btrfs_path *path,
2500 				      u64 objectid, u64 offset, u64 bytenr)
2501 {
2502 	struct btrfs_delayed_ref_head *head;
2503 	struct btrfs_delayed_ref_node *ref;
2504 	struct btrfs_delayed_data_ref *data_ref;
2505 	struct btrfs_delayed_ref_root *delayed_refs;
2506 	struct rb_node *node;
2507 	int ret = 0;
2508 
2509 	ret = -ENOENT;
2510 	delayed_refs = &trans->transaction->delayed_refs;
2511 	spin_lock(&delayed_refs->lock);
2512 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2513 	if (!head)
2514 		goto out;
2515 
2516 	if (!mutex_trylock(&head->mutex)) {
2517 		atomic_inc(&head->node.refs);
2518 		spin_unlock(&delayed_refs->lock);
2519 
2520 		btrfs_release_path(path);
2521 
2522 		/*
2523 		 * Mutex was contended, block until it's released and let
2524 		 * caller try again
2525 		 */
2526 		mutex_lock(&head->mutex);
2527 		mutex_unlock(&head->mutex);
2528 		btrfs_put_delayed_ref(&head->node);
2529 		return -EAGAIN;
2530 	}
2531 
2532 	node = rb_prev(&head->node.rb_node);
2533 	if (!node)
2534 		goto out_unlock;
2535 
2536 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2537 
2538 	if (ref->bytenr != bytenr)
2539 		goto out_unlock;
2540 
2541 	ret = 1;
2542 	if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2543 		goto out_unlock;
2544 
2545 	data_ref = btrfs_delayed_node_to_data_ref(ref);
2546 
2547 	node = rb_prev(node);
2548 	if (node) {
2549 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2550 		if (ref->bytenr == bytenr)
2551 			goto out_unlock;
2552 	}
2553 
2554 	if (data_ref->root != root->root_key.objectid ||
2555 	    data_ref->objectid != objectid || data_ref->offset != offset)
2556 		goto out_unlock;
2557 
2558 	ret = 0;
2559 out_unlock:
2560 	mutex_unlock(&head->mutex);
2561 out:
2562 	spin_unlock(&delayed_refs->lock);
2563 	return ret;
2564 }
2565 
2566 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2567 					struct btrfs_root *root,
2568 					struct btrfs_path *path,
2569 					u64 objectid, u64 offset, u64 bytenr)
2570 {
2571 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2572 	struct extent_buffer *leaf;
2573 	struct btrfs_extent_data_ref *ref;
2574 	struct btrfs_extent_inline_ref *iref;
2575 	struct btrfs_extent_item *ei;
2576 	struct btrfs_key key;
2577 	u32 item_size;
2578 	int ret;
2579 
2580 	key.objectid = bytenr;
2581 	key.offset = (u64)-1;
2582 	key.type = BTRFS_EXTENT_ITEM_KEY;
2583 
2584 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2585 	if (ret < 0)
2586 		goto out;
2587 	BUG_ON(ret == 0);
2588 
2589 	ret = -ENOENT;
2590 	if (path->slots[0] == 0)
2591 		goto out;
2592 
2593 	path->slots[0]--;
2594 	leaf = path->nodes[0];
2595 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2596 
2597 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2598 		goto out;
2599 
2600 	ret = 1;
2601 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2603 	if (item_size < sizeof(*ei)) {
2604 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2605 		goto out;
2606 	}
2607 #endif
2608 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2609 
2610 	if (item_size != sizeof(*ei) +
2611 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2612 		goto out;
2613 
2614 	if (btrfs_extent_generation(leaf, ei) <=
2615 	    btrfs_root_last_snapshot(&root->root_item))
2616 		goto out;
2617 
2618 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2619 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2620 	    BTRFS_EXTENT_DATA_REF_KEY)
2621 		goto out;
2622 
2623 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2624 	if (btrfs_extent_refs(leaf, ei) !=
2625 	    btrfs_extent_data_ref_count(leaf, ref) ||
2626 	    btrfs_extent_data_ref_root(leaf, ref) !=
2627 	    root->root_key.objectid ||
2628 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2629 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2630 		goto out;
2631 
2632 	ret = 0;
2633 out:
2634 	return ret;
2635 }
2636 
2637 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2638 			  struct btrfs_root *root,
2639 			  u64 objectid, u64 offset, u64 bytenr)
2640 {
2641 	struct btrfs_path *path;
2642 	int ret;
2643 	int ret2;
2644 
2645 	path = btrfs_alloc_path();
2646 	if (!path)
2647 		return -ENOENT;
2648 
2649 	do {
2650 		ret = check_committed_ref(trans, root, path, objectid,
2651 					  offset, bytenr);
2652 		if (ret && ret != -ENOENT)
2653 			goto out;
2654 
2655 		ret2 = check_delayed_ref(trans, root, path, objectid,
2656 					 offset, bytenr);
2657 	} while (ret2 == -EAGAIN);
2658 
2659 	if (ret2 && ret2 != -ENOENT) {
2660 		ret = ret2;
2661 		goto out;
2662 	}
2663 
2664 	if (ret != -ENOENT || ret2 != -ENOENT)
2665 		ret = 0;
2666 out:
2667 	btrfs_free_path(path);
2668 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2669 		WARN_ON(ret > 0);
2670 	return ret;
2671 }
2672 
2673 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2674 			   struct btrfs_root *root,
2675 			   struct extent_buffer *buf,
2676 			   int full_backref, int inc, int for_cow)
2677 {
2678 	u64 bytenr;
2679 	u64 num_bytes;
2680 	u64 parent;
2681 	u64 ref_root;
2682 	u32 nritems;
2683 	struct btrfs_key key;
2684 	struct btrfs_file_extent_item *fi;
2685 	int i;
2686 	int level;
2687 	int ret = 0;
2688 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2689 			    u64, u64, u64, u64, u64, u64, int);
2690 
2691 	ref_root = btrfs_header_owner(buf);
2692 	nritems = btrfs_header_nritems(buf);
2693 	level = btrfs_header_level(buf);
2694 
2695 	if (!root->ref_cows && level == 0)
2696 		return 0;
2697 
2698 	if (inc)
2699 		process_func = btrfs_inc_extent_ref;
2700 	else
2701 		process_func = btrfs_free_extent;
2702 
2703 	if (full_backref)
2704 		parent = buf->start;
2705 	else
2706 		parent = 0;
2707 
2708 	for (i = 0; i < nritems; i++) {
2709 		if (level == 0) {
2710 			btrfs_item_key_to_cpu(buf, &key, i);
2711 			if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2712 				continue;
2713 			fi = btrfs_item_ptr(buf, i,
2714 					    struct btrfs_file_extent_item);
2715 			if (btrfs_file_extent_type(buf, fi) ==
2716 			    BTRFS_FILE_EXTENT_INLINE)
2717 				continue;
2718 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2719 			if (bytenr == 0)
2720 				continue;
2721 
2722 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2723 			key.offset -= btrfs_file_extent_offset(buf, fi);
2724 			ret = process_func(trans, root, bytenr, num_bytes,
2725 					   parent, ref_root, key.objectid,
2726 					   key.offset, for_cow);
2727 			if (ret)
2728 				goto fail;
2729 		} else {
2730 			bytenr = btrfs_node_blockptr(buf, i);
2731 			num_bytes = btrfs_level_size(root, level - 1);
2732 			ret = process_func(trans, root, bytenr, num_bytes,
2733 					   parent, ref_root, level - 1, 0,
2734 					   for_cow);
2735 			if (ret)
2736 				goto fail;
2737 		}
2738 	}
2739 	return 0;
2740 fail:
2741 	BUG();
2742 	return ret;
2743 }
2744 
2745 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2746 		  struct extent_buffer *buf, int full_backref, int for_cow)
2747 {
2748 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2749 }
2750 
2751 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2752 		  struct extent_buffer *buf, int full_backref, int for_cow)
2753 {
2754 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2755 }
2756 
2757 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2758 				 struct btrfs_root *root,
2759 				 struct btrfs_path *path,
2760 				 struct btrfs_block_group_cache *cache)
2761 {
2762 	int ret;
2763 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2764 	unsigned long bi;
2765 	struct extent_buffer *leaf;
2766 
2767 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2768 	if (ret < 0)
2769 		goto fail;
2770 	BUG_ON(ret);
2771 
2772 	leaf = path->nodes[0];
2773 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2774 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2775 	btrfs_mark_buffer_dirty(leaf);
2776 	btrfs_release_path(path);
2777 fail:
2778 	if (ret)
2779 		return ret;
2780 	return 0;
2781 
2782 }
2783 
2784 static struct btrfs_block_group_cache *
2785 next_block_group(struct btrfs_root *root,
2786 		 struct btrfs_block_group_cache *cache)
2787 {
2788 	struct rb_node *node;
2789 	spin_lock(&root->fs_info->block_group_cache_lock);
2790 	node = rb_next(&cache->cache_node);
2791 	btrfs_put_block_group(cache);
2792 	if (node) {
2793 		cache = rb_entry(node, struct btrfs_block_group_cache,
2794 				 cache_node);
2795 		btrfs_get_block_group(cache);
2796 	} else
2797 		cache = NULL;
2798 	spin_unlock(&root->fs_info->block_group_cache_lock);
2799 	return cache;
2800 }
2801 
2802 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2803 			    struct btrfs_trans_handle *trans,
2804 			    struct btrfs_path *path)
2805 {
2806 	struct btrfs_root *root = block_group->fs_info->tree_root;
2807 	struct inode *inode = NULL;
2808 	u64 alloc_hint = 0;
2809 	int dcs = BTRFS_DC_ERROR;
2810 	int num_pages = 0;
2811 	int retries = 0;
2812 	int ret = 0;
2813 
2814 	/*
2815 	 * If this block group is smaller than 100 megs don't bother caching the
2816 	 * block group.
2817 	 */
2818 	if (block_group->key.offset < (100 * 1024 * 1024)) {
2819 		spin_lock(&block_group->lock);
2820 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2821 		spin_unlock(&block_group->lock);
2822 		return 0;
2823 	}
2824 
2825 again:
2826 	inode = lookup_free_space_inode(root, block_group, path);
2827 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2828 		ret = PTR_ERR(inode);
2829 		btrfs_release_path(path);
2830 		goto out;
2831 	}
2832 
2833 	if (IS_ERR(inode)) {
2834 		BUG_ON(retries);
2835 		retries++;
2836 
2837 		if (block_group->ro)
2838 			goto out_free;
2839 
2840 		ret = create_free_space_inode(root, trans, block_group, path);
2841 		if (ret)
2842 			goto out_free;
2843 		goto again;
2844 	}
2845 
2846 	/* We've already setup this transaction, go ahead and exit */
2847 	if (block_group->cache_generation == trans->transid &&
2848 	    i_size_read(inode)) {
2849 		dcs = BTRFS_DC_SETUP;
2850 		goto out_put;
2851 	}
2852 
2853 	/*
2854 	 * We want to set the generation to 0, that way if anything goes wrong
2855 	 * from here on out we know not to trust this cache when we load up next
2856 	 * time.
2857 	 */
2858 	BTRFS_I(inode)->generation = 0;
2859 	ret = btrfs_update_inode(trans, root, inode);
2860 	WARN_ON(ret);
2861 
2862 	if (i_size_read(inode) > 0) {
2863 		ret = btrfs_truncate_free_space_cache(root, trans, path,
2864 						      inode);
2865 		if (ret)
2866 			goto out_put;
2867 	}
2868 
2869 	spin_lock(&block_group->lock);
2870 	if (block_group->cached != BTRFS_CACHE_FINISHED) {
2871 		/* We're not cached, don't bother trying to write stuff out */
2872 		dcs = BTRFS_DC_WRITTEN;
2873 		spin_unlock(&block_group->lock);
2874 		goto out_put;
2875 	}
2876 	spin_unlock(&block_group->lock);
2877 
2878 	num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2879 	if (!num_pages)
2880 		num_pages = 1;
2881 
2882 	/*
2883 	 * Just to make absolutely sure we have enough space, we're going to
2884 	 * preallocate 12 pages worth of space for each block group.  In
2885 	 * practice we ought to use at most 8, but we need extra space so we can
2886 	 * add our header and have a terminator between the extents and the
2887 	 * bitmaps.
2888 	 */
2889 	num_pages *= 16;
2890 	num_pages *= PAGE_CACHE_SIZE;
2891 
2892 	ret = btrfs_check_data_free_space(inode, num_pages);
2893 	if (ret)
2894 		goto out_put;
2895 
2896 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2897 					      num_pages, num_pages,
2898 					      &alloc_hint);
2899 	if (!ret)
2900 		dcs = BTRFS_DC_SETUP;
2901 	btrfs_free_reserved_data_space(inode, num_pages);
2902 
2903 out_put:
2904 	iput(inode);
2905 out_free:
2906 	btrfs_release_path(path);
2907 out:
2908 	spin_lock(&block_group->lock);
2909 	if (!ret && dcs == BTRFS_DC_SETUP)
2910 		block_group->cache_generation = trans->transid;
2911 	block_group->disk_cache_state = dcs;
2912 	spin_unlock(&block_group->lock);
2913 
2914 	return ret;
2915 }
2916 
2917 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2918 				   struct btrfs_root *root)
2919 {
2920 	struct btrfs_block_group_cache *cache;
2921 	int err = 0;
2922 	struct btrfs_path *path;
2923 	u64 last = 0;
2924 
2925 	path = btrfs_alloc_path();
2926 	if (!path)
2927 		return -ENOMEM;
2928 
2929 again:
2930 	while (1) {
2931 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2932 		while (cache) {
2933 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2934 				break;
2935 			cache = next_block_group(root, cache);
2936 		}
2937 		if (!cache) {
2938 			if (last == 0)
2939 				break;
2940 			last = 0;
2941 			continue;
2942 		}
2943 		err = cache_save_setup(cache, trans, path);
2944 		last = cache->key.objectid + cache->key.offset;
2945 		btrfs_put_block_group(cache);
2946 	}
2947 
2948 	while (1) {
2949 		if (last == 0) {
2950 			err = btrfs_run_delayed_refs(trans, root,
2951 						     (unsigned long)-1);
2952 			BUG_ON(err);
2953 		}
2954 
2955 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2956 		while (cache) {
2957 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2958 				btrfs_put_block_group(cache);
2959 				goto again;
2960 			}
2961 
2962 			if (cache->dirty)
2963 				break;
2964 			cache = next_block_group(root, cache);
2965 		}
2966 		if (!cache) {
2967 			if (last == 0)
2968 				break;
2969 			last = 0;
2970 			continue;
2971 		}
2972 
2973 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
2974 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2975 		cache->dirty = 0;
2976 		last = cache->key.objectid + cache->key.offset;
2977 
2978 		err = write_one_cache_group(trans, root, path, cache);
2979 		BUG_ON(err);
2980 		btrfs_put_block_group(cache);
2981 	}
2982 
2983 	while (1) {
2984 		/*
2985 		 * I don't think this is needed since we're just marking our
2986 		 * preallocated extent as written, but just in case it can't
2987 		 * hurt.
2988 		 */
2989 		if (last == 0) {
2990 			err = btrfs_run_delayed_refs(trans, root,
2991 						     (unsigned long)-1);
2992 			BUG_ON(err);
2993 		}
2994 
2995 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
2996 		while (cache) {
2997 			/*
2998 			 * Really this shouldn't happen, but it could if we
2999 			 * couldn't write the entire preallocated extent and
3000 			 * splitting the extent resulted in a new block.
3001 			 */
3002 			if (cache->dirty) {
3003 				btrfs_put_block_group(cache);
3004 				goto again;
3005 			}
3006 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3007 				break;
3008 			cache = next_block_group(root, cache);
3009 		}
3010 		if (!cache) {
3011 			if (last == 0)
3012 				break;
3013 			last = 0;
3014 			continue;
3015 		}
3016 
3017 		btrfs_write_out_cache(root, trans, cache, path);
3018 
3019 		/*
3020 		 * If we didn't have an error then the cache state is still
3021 		 * NEED_WRITE, so we can set it to WRITTEN.
3022 		 */
3023 		if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3024 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3025 		last = cache->key.objectid + cache->key.offset;
3026 		btrfs_put_block_group(cache);
3027 	}
3028 
3029 	btrfs_free_path(path);
3030 	return 0;
3031 }
3032 
3033 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3034 {
3035 	struct btrfs_block_group_cache *block_group;
3036 	int readonly = 0;
3037 
3038 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3039 	if (!block_group || block_group->ro)
3040 		readonly = 1;
3041 	if (block_group)
3042 		btrfs_put_block_group(block_group);
3043 	return readonly;
3044 }
3045 
3046 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3047 			     u64 total_bytes, u64 bytes_used,
3048 			     struct btrfs_space_info **space_info)
3049 {
3050 	struct btrfs_space_info *found;
3051 	int i;
3052 	int factor;
3053 
3054 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3055 		     BTRFS_BLOCK_GROUP_RAID10))
3056 		factor = 2;
3057 	else
3058 		factor = 1;
3059 
3060 	found = __find_space_info(info, flags);
3061 	if (found) {
3062 		spin_lock(&found->lock);
3063 		found->total_bytes += total_bytes;
3064 		found->disk_total += total_bytes * factor;
3065 		found->bytes_used += bytes_used;
3066 		found->disk_used += bytes_used * factor;
3067 		found->full = 0;
3068 		spin_unlock(&found->lock);
3069 		*space_info = found;
3070 		return 0;
3071 	}
3072 	found = kzalloc(sizeof(*found), GFP_NOFS);
3073 	if (!found)
3074 		return -ENOMEM;
3075 
3076 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3077 		INIT_LIST_HEAD(&found->block_groups[i]);
3078 	init_rwsem(&found->groups_sem);
3079 	spin_lock_init(&found->lock);
3080 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3081 	found->total_bytes = total_bytes;
3082 	found->disk_total = total_bytes * factor;
3083 	found->bytes_used = bytes_used;
3084 	found->disk_used = bytes_used * factor;
3085 	found->bytes_pinned = 0;
3086 	found->bytes_reserved = 0;
3087 	found->bytes_readonly = 0;
3088 	found->bytes_may_use = 0;
3089 	found->full = 0;
3090 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3091 	found->chunk_alloc = 0;
3092 	found->flush = 0;
3093 	init_waitqueue_head(&found->wait);
3094 	*space_info = found;
3095 	list_add_rcu(&found->list, &info->space_info);
3096 	return 0;
3097 }
3098 
3099 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3100 {
3101 	u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3102 
3103 	/* chunk -> extended profile */
3104 	if (extra_flags == 0)
3105 		extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3106 
3107 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3108 		fs_info->avail_data_alloc_bits |= extra_flags;
3109 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3110 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3111 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3112 		fs_info->avail_system_alloc_bits |= extra_flags;
3113 }
3114 
3115 /*
3116  * @flags: available profiles in extended format (see ctree.h)
3117  *
3118  * Returns reduced profile in chunk format.  If profile changing is in
3119  * progress (either running or paused) picks the target profile (if it's
3120  * already available), otherwise falls back to plain reducing.
3121  */
3122 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3123 {
3124 	/*
3125 	 * we add in the count of missing devices because we want
3126 	 * to make sure that any RAID levels on a degraded FS
3127 	 * continue to be honored.
3128 	 */
3129 	u64 num_devices = root->fs_info->fs_devices->rw_devices +
3130 		root->fs_info->fs_devices->missing_devices;
3131 
3132 	/* pick restriper's target profile if it's available */
3133 	spin_lock(&root->fs_info->balance_lock);
3134 	if (root->fs_info->balance_ctl) {
3135 		struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3136 		u64 tgt = 0;
3137 
3138 		if ((flags & BTRFS_BLOCK_GROUP_DATA) &&
3139 		    (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3140 		    (flags & bctl->data.target)) {
3141 			tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3142 		} else if ((flags & BTRFS_BLOCK_GROUP_SYSTEM) &&
3143 			   (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3144 			   (flags & bctl->sys.target)) {
3145 			tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3146 		} else if ((flags & BTRFS_BLOCK_GROUP_METADATA) &&
3147 			   (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3148 			   (flags & bctl->meta.target)) {
3149 			tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3150 		}
3151 
3152 		if (tgt) {
3153 			spin_unlock(&root->fs_info->balance_lock);
3154 			flags = tgt;
3155 			goto out;
3156 		}
3157 	}
3158 	spin_unlock(&root->fs_info->balance_lock);
3159 
3160 	if (num_devices == 1)
3161 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3162 	if (num_devices < 4)
3163 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3164 
3165 	if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3166 	    (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3167 		      BTRFS_BLOCK_GROUP_RAID10))) {
3168 		flags &= ~BTRFS_BLOCK_GROUP_DUP;
3169 	}
3170 
3171 	if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3172 	    (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3173 		flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3174 	}
3175 
3176 	if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3177 	    ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3178 	     (flags & BTRFS_BLOCK_GROUP_RAID10) |
3179 	     (flags & BTRFS_BLOCK_GROUP_DUP))) {
3180 		flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3181 	}
3182 
3183 out:
3184 	/* extended -> chunk profile */
3185 	flags &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3186 	return flags;
3187 }
3188 
3189 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3190 {
3191 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3192 		flags |= root->fs_info->avail_data_alloc_bits;
3193 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3194 		flags |= root->fs_info->avail_system_alloc_bits;
3195 	else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3196 		flags |= root->fs_info->avail_metadata_alloc_bits;
3197 
3198 	return btrfs_reduce_alloc_profile(root, flags);
3199 }
3200 
3201 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3202 {
3203 	u64 flags;
3204 
3205 	if (data)
3206 		flags = BTRFS_BLOCK_GROUP_DATA;
3207 	else if (root == root->fs_info->chunk_root)
3208 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3209 	else
3210 		flags = BTRFS_BLOCK_GROUP_METADATA;
3211 
3212 	return get_alloc_profile(root, flags);
3213 }
3214 
3215 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3216 {
3217 	BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3218 						       BTRFS_BLOCK_GROUP_DATA);
3219 }
3220 
3221 /*
3222  * This will check the space that the inode allocates from to make sure we have
3223  * enough space for bytes.
3224  */
3225 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3226 {
3227 	struct btrfs_space_info *data_sinfo;
3228 	struct btrfs_root *root = BTRFS_I(inode)->root;
3229 	u64 used;
3230 	int ret = 0, committed = 0, alloc_chunk = 1;
3231 
3232 	/* make sure bytes are sectorsize aligned */
3233 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3234 
3235 	if (root == root->fs_info->tree_root ||
3236 	    BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3237 		alloc_chunk = 0;
3238 		committed = 1;
3239 	}
3240 
3241 	data_sinfo = BTRFS_I(inode)->space_info;
3242 	if (!data_sinfo)
3243 		goto alloc;
3244 
3245 again:
3246 	/* make sure we have enough space to handle the data first */
3247 	spin_lock(&data_sinfo->lock);
3248 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3249 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3250 		data_sinfo->bytes_may_use;
3251 
3252 	if (used + bytes > data_sinfo->total_bytes) {
3253 		struct btrfs_trans_handle *trans;
3254 
3255 		/*
3256 		 * if we don't have enough free bytes in this space then we need
3257 		 * to alloc a new chunk.
3258 		 */
3259 		if (!data_sinfo->full && alloc_chunk) {
3260 			u64 alloc_target;
3261 
3262 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3263 			spin_unlock(&data_sinfo->lock);
3264 alloc:
3265 			alloc_target = btrfs_get_alloc_profile(root, 1);
3266 			trans = btrfs_join_transaction(root);
3267 			if (IS_ERR(trans))
3268 				return PTR_ERR(trans);
3269 
3270 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3271 					     bytes + 2 * 1024 * 1024,
3272 					     alloc_target,
3273 					     CHUNK_ALLOC_NO_FORCE);
3274 			btrfs_end_transaction(trans, root);
3275 			if (ret < 0) {
3276 				if (ret != -ENOSPC)
3277 					return ret;
3278 				else
3279 					goto commit_trans;
3280 			}
3281 
3282 			if (!data_sinfo) {
3283 				btrfs_set_inode_space_info(root, inode);
3284 				data_sinfo = BTRFS_I(inode)->space_info;
3285 			}
3286 			goto again;
3287 		}
3288 
3289 		/*
3290 		 * If we have less pinned bytes than we want to allocate then
3291 		 * don't bother committing the transaction, it won't help us.
3292 		 */
3293 		if (data_sinfo->bytes_pinned < bytes)
3294 			committed = 1;
3295 		spin_unlock(&data_sinfo->lock);
3296 
3297 		/* commit the current transaction and try again */
3298 commit_trans:
3299 		if (!committed &&
3300 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3301 			committed = 1;
3302 			trans = btrfs_join_transaction(root);
3303 			if (IS_ERR(trans))
3304 				return PTR_ERR(trans);
3305 			ret = btrfs_commit_transaction(trans, root);
3306 			if (ret)
3307 				return ret;
3308 			goto again;
3309 		}
3310 
3311 		return -ENOSPC;
3312 	}
3313 	data_sinfo->bytes_may_use += bytes;
3314 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3315 				      (u64)data_sinfo, bytes, 1);
3316 	spin_unlock(&data_sinfo->lock);
3317 
3318 	return 0;
3319 }
3320 
3321 /*
3322  * Called if we need to clear a data reservation for this inode.
3323  */
3324 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3325 {
3326 	struct btrfs_root *root = BTRFS_I(inode)->root;
3327 	struct btrfs_space_info *data_sinfo;
3328 
3329 	/* make sure bytes are sectorsize aligned */
3330 	bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3331 
3332 	data_sinfo = BTRFS_I(inode)->space_info;
3333 	spin_lock(&data_sinfo->lock);
3334 	data_sinfo->bytes_may_use -= bytes;
3335 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3336 				      (u64)data_sinfo, bytes, 0);
3337 	spin_unlock(&data_sinfo->lock);
3338 }
3339 
3340 static void force_metadata_allocation(struct btrfs_fs_info *info)
3341 {
3342 	struct list_head *head = &info->space_info;
3343 	struct btrfs_space_info *found;
3344 
3345 	rcu_read_lock();
3346 	list_for_each_entry_rcu(found, head, list) {
3347 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3348 			found->force_alloc = CHUNK_ALLOC_FORCE;
3349 	}
3350 	rcu_read_unlock();
3351 }
3352 
3353 static int should_alloc_chunk(struct btrfs_root *root,
3354 			      struct btrfs_space_info *sinfo, u64 alloc_bytes,
3355 			      int force)
3356 {
3357 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3358 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3359 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3360 	u64 thresh;
3361 
3362 	if (force == CHUNK_ALLOC_FORCE)
3363 		return 1;
3364 
3365 	/*
3366 	 * We need to take into account the global rsv because for all intents
3367 	 * and purposes it's used space.  Don't worry about locking the
3368 	 * global_rsv, it doesn't change except when the transaction commits.
3369 	 */
3370 	num_allocated += global_rsv->size;
3371 
3372 	/*
3373 	 * in limited mode, we want to have some free space up to
3374 	 * about 1% of the FS size.
3375 	 */
3376 	if (force == CHUNK_ALLOC_LIMITED) {
3377 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3378 		thresh = max_t(u64, 64 * 1024 * 1024,
3379 			       div_factor_fine(thresh, 1));
3380 
3381 		if (num_bytes - num_allocated < thresh)
3382 			return 1;
3383 	}
3384 	thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3385 
3386 	/* 256MB or 2% of the FS */
3387 	thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3388 	/* system chunks need a much small threshold */
3389 	if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3390 		thresh = 32 * 1024 * 1024;
3391 
3392 	if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3393 		return 0;
3394 	return 1;
3395 }
3396 
3397 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3398 			  struct btrfs_root *extent_root, u64 alloc_bytes,
3399 			  u64 flags, int force)
3400 {
3401 	struct btrfs_space_info *space_info;
3402 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3403 	int wait_for_alloc = 0;
3404 	int ret = 0;
3405 
3406 	BUG_ON(!profile_is_valid(flags, 0));
3407 
3408 	space_info = __find_space_info(extent_root->fs_info, flags);
3409 	if (!space_info) {
3410 		ret = update_space_info(extent_root->fs_info, flags,
3411 					0, 0, &space_info);
3412 		BUG_ON(ret);
3413 	}
3414 	BUG_ON(!space_info);
3415 
3416 again:
3417 	spin_lock(&space_info->lock);
3418 	if (force < space_info->force_alloc)
3419 		force = space_info->force_alloc;
3420 	if (space_info->full) {
3421 		spin_unlock(&space_info->lock);
3422 		return 0;
3423 	}
3424 
3425 	if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3426 		spin_unlock(&space_info->lock);
3427 		return 0;
3428 	} else if (space_info->chunk_alloc) {
3429 		wait_for_alloc = 1;
3430 	} else {
3431 		space_info->chunk_alloc = 1;
3432 	}
3433 
3434 	spin_unlock(&space_info->lock);
3435 
3436 	mutex_lock(&fs_info->chunk_mutex);
3437 
3438 	/*
3439 	 * The chunk_mutex is held throughout the entirety of a chunk
3440 	 * allocation, so once we've acquired the chunk_mutex we know that the
3441 	 * other guy is done and we need to recheck and see if we should
3442 	 * allocate.
3443 	 */
3444 	if (wait_for_alloc) {
3445 		mutex_unlock(&fs_info->chunk_mutex);
3446 		wait_for_alloc = 0;
3447 		goto again;
3448 	}
3449 
3450 	/*
3451 	 * If we have mixed data/metadata chunks we want to make sure we keep
3452 	 * allocating mixed chunks instead of individual chunks.
3453 	 */
3454 	if (btrfs_mixed_space_info(space_info))
3455 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3456 
3457 	/*
3458 	 * if we're doing a data chunk, go ahead and make sure that
3459 	 * we keep a reasonable number of metadata chunks allocated in the
3460 	 * FS as well.
3461 	 */
3462 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3463 		fs_info->data_chunk_allocations++;
3464 		if (!(fs_info->data_chunk_allocations %
3465 		      fs_info->metadata_ratio))
3466 			force_metadata_allocation(fs_info);
3467 	}
3468 
3469 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3470 	if (ret < 0 && ret != -ENOSPC)
3471 		goto out;
3472 
3473 	spin_lock(&space_info->lock);
3474 	if (ret)
3475 		space_info->full = 1;
3476 	else
3477 		ret = 1;
3478 
3479 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3480 	space_info->chunk_alloc = 0;
3481 	spin_unlock(&space_info->lock);
3482 out:
3483 	mutex_unlock(&extent_root->fs_info->chunk_mutex);
3484 	return ret;
3485 }
3486 
3487 /*
3488  * shrink metadata reservation for delalloc
3489  */
3490 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3491 			   bool wait_ordered)
3492 {
3493 	struct btrfs_block_rsv *block_rsv;
3494 	struct btrfs_space_info *space_info;
3495 	struct btrfs_trans_handle *trans;
3496 	u64 reserved;
3497 	u64 max_reclaim;
3498 	u64 reclaimed = 0;
3499 	long time_left;
3500 	unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3501 	int loops = 0;
3502 	unsigned long progress;
3503 
3504 	trans = (struct btrfs_trans_handle *)current->journal_info;
3505 	block_rsv = &root->fs_info->delalloc_block_rsv;
3506 	space_info = block_rsv->space_info;
3507 
3508 	smp_mb();
3509 	reserved = space_info->bytes_may_use;
3510 	progress = space_info->reservation_progress;
3511 
3512 	if (reserved == 0)
3513 		return 0;
3514 
3515 	smp_mb();
3516 	if (root->fs_info->delalloc_bytes == 0) {
3517 		if (trans)
3518 			return 0;
3519 		btrfs_wait_ordered_extents(root, 0, 0);
3520 		return 0;
3521 	}
3522 
3523 	max_reclaim = min(reserved, to_reclaim);
3524 	nr_pages = max_t(unsigned long, nr_pages,
3525 			 max_reclaim >> PAGE_CACHE_SHIFT);
3526 	while (loops < 1024) {
3527 		/* have the flusher threads jump in and do some IO */
3528 		smp_mb();
3529 		nr_pages = min_t(unsigned long, nr_pages,
3530 		       root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3531 		writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3532 						WB_REASON_FS_FREE_SPACE);
3533 
3534 		spin_lock(&space_info->lock);
3535 		if (reserved > space_info->bytes_may_use)
3536 			reclaimed += reserved - space_info->bytes_may_use;
3537 		reserved = space_info->bytes_may_use;
3538 		spin_unlock(&space_info->lock);
3539 
3540 		loops++;
3541 
3542 		if (reserved == 0 || reclaimed >= max_reclaim)
3543 			break;
3544 
3545 		if (trans && trans->transaction->blocked)
3546 			return -EAGAIN;
3547 
3548 		if (wait_ordered && !trans) {
3549 			btrfs_wait_ordered_extents(root, 0, 0);
3550 		} else {
3551 			time_left = schedule_timeout_interruptible(1);
3552 
3553 			/* We were interrupted, exit */
3554 			if (time_left)
3555 				break;
3556 		}
3557 
3558 		/* we've kicked the IO a few times, if anything has been freed,
3559 		 * exit.  There is no sense in looping here for a long time
3560 		 * when we really need to commit the transaction, or there are
3561 		 * just too many writers without enough free space
3562 		 */
3563 
3564 		if (loops > 3) {
3565 			smp_mb();
3566 			if (progress != space_info->reservation_progress)
3567 				break;
3568 		}
3569 
3570 	}
3571 
3572 	return reclaimed >= to_reclaim;
3573 }
3574 
3575 /**
3576  * maybe_commit_transaction - possibly commit the transaction if its ok to
3577  * @root - the root we're allocating for
3578  * @bytes - the number of bytes we want to reserve
3579  * @force - force the commit
3580  *
3581  * This will check to make sure that committing the transaction will actually
3582  * get us somewhere and then commit the transaction if it does.  Otherwise it
3583  * will return -ENOSPC.
3584  */
3585 static int may_commit_transaction(struct btrfs_root *root,
3586 				  struct btrfs_space_info *space_info,
3587 				  u64 bytes, int force)
3588 {
3589 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3590 	struct btrfs_trans_handle *trans;
3591 
3592 	trans = (struct btrfs_trans_handle *)current->journal_info;
3593 	if (trans)
3594 		return -EAGAIN;
3595 
3596 	if (force)
3597 		goto commit;
3598 
3599 	/* See if there is enough pinned space to make this reservation */
3600 	spin_lock(&space_info->lock);
3601 	if (space_info->bytes_pinned >= bytes) {
3602 		spin_unlock(&space_info->lock);
3603 		goto commit;
3604 	}
3605 	spin_unlock(&space_info->lock);
3606 
3607 	/*
3608 	 * See if there is some space in the delayed insertion reservation for
3609 	 * this reservation.
3610 	 */
3611 	if (space_info != delayed_rsv->space_info)
3612 		return -ENOSPC;
3613 
3614 	spin_lock(&delayed_rsv->lock);
3615 	if (delayed_rsv->size < bytes) {
3616 		spin_unlock(&delayed_rsv->lock);
3617 		return -ENOSPC;
3618 	}
3619 	spin_unlock(&delayed_rsv->lock);
3620 
3621 commit:
3622 	trans = btrfs_join_transaction(root);
3623 	if (IS_ERR(trans))
3624 		return -ENOSPC;
3625 
3626 	return btrfs_commit_transaction(trans, root);
3627 }
3628 
3629 /**
3630  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3631  * @root - the root we're allocating for
3632  * @block_rsv - the block_rsv we're allocating for
3633  * @orig_bytes - the number of bytes we want
3634  * @flush - wether or not we can flush to make our reservation
3635  *
3636  * This will reserve orgi_bytes number of bytes from the space info associated
3637  * with the block_rsv.  If there is not enough space it will make an attempt to
3638  * flush out space to make room.  It will do this by flushing delalloc if
3639  * possible or committing the transaction.  If flush is 0 then no attempts to
3640  * regain reservations will be made and this will fail if there is not enough
3641  * space already.
3642  */
3643 static int reserve_metadata_bytes(struct btrfs_root *root,
3644 				  struct btrfs_block_rsv *block_rsv,
3645 				  u64 orig_bytes, int flush)
3646 {
3647 	struct btrfs_space_info *space_info = block_rsv->space_info;
3648 	u64 used;
3649 	u64 num_bytes = orig_bytes;
3650 	int retries = 0;
3651 	int ret = 0;
3652 	bool committed = false;
3653 	bool flushing = false;
3654 	bool wait_ordered = false;
3655 
3656 again:
3657 	ret = 0;
3658 	spin_lock(&space_info->lock);
3659 	/*
3660 	 * We only want to wait if somebody other than us is flushing and we are
3661 	 * actually alloed to flush.
3662 	 */
3663 	while (flush && !flushing && space_info->flush) {
3664 		spin_unlock(&space_info->lock);
3665 		/*
3666 		 * If we have a trans handle we can't wait because the flusher
3667 		 * may have to commit the transaction, which would mean we would
3668 		 * deadlock since we are waiting for the flusher to finish, but
3669 		 * hold the current transaction open.
3670 		 */
3671 		if (current->journal_info)
3672 			return -EAGAIN;
3673 		ret = wait_event_interruptible(space_info->wait,
3674 					       !space_info->flush);
3675 		/* Must have been interrupted, return */
3676 		if (ret)
3677 			return -EINTR;
3678 
3679 		spin_lock(&space_info->lock);
3680 	}
3681 
3682 	ret = -ENOSPC;
3683 	used = space_info->bytes_used + space_info->bytes_reserved +
3684 		space_info->bytes_pinned + space_info->bytes_readonly +
3685 		space_info->bytes_may_use;
3686 
3687 	/*
3688 	 * The idea here is that we've not already over-reserved the block group
3689 	 * then we can go ahead and save our reservation first and then start
3690 	 * flushing if we need to.  Otherwise if we've already overcommitted
3691 	 * lets start flushing stuff first and then come back and try to make
3692 	 * our reservation.
3693 	 */
3694 	if (used <= space_info->total_bytes) {
3695 		if (used + orig_bytes <= space_info->total_bytes) {
3696 			space_info->bytes_may_use += orig_bytes;
3697 			trace_btrfs_space_reservation(root->fs_info,
3698 						      "space_info",
3699 						      (u64)space_info,
3700 						      orig_bytes, 1);
3701 			ret = 0;
3702 		} else {
3703 			/*
3704 			 * Ok set num_bytes to orig_bytes since we aren't
3705 			 * overocmmitted, this way we only try and reclaim what
3706 			 * we need.
3707 			 */
3708 			num_bytes = orig_bytes;
3709 		}
3710 	} else {
3711 		/*
3712 		 * Ok we're over committed, set num_bytes to the overcommitted
3713 		 * amount plus the amount of bytes that we need for this
3714 		 * reservation.
3715 		 */
3716 		wait_ordered = true;
3717 		num_bytes = used - space_info->total_bytes +
3718 			(orig_bytes * (retries + 1));
3719 	}
3720 
3721 	if (ret) {
3722 		u64 profile = btrfs_get_alloc_profile(root, 0);
3723 		u64 avail;
3724 
3725 		/*
3726 		 * If we have a lot of space that's pinned, don't bother doing
3727 		 * the overcommit dance yet and just commit the transaction.
3728 		 */
3729 		avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3730 		do_div(avail, 10);
3731 		if (space_info->bytes_pinned >= avail && flush && !committed) {
3732 			space_info->flush = 1;
3733 			flushing = true;
3734 			spin_unlock(&space_info->lock);
3735 			ret = may_commit_transaction(root, space_info,
3736 						     orig_bytes, 1);
3737 			if (ret)
3738 				goto out;
3739 			committed = true;
3740 			goto again;
3741 		}
3742 
3743 		spin_lock(&root->fs_info->free_chunk_lock);
3744 		avail = root->fs_info->free_chunk_space;
3745 
3746 		/*
3747 		 * If we have dup, raid1 or raid10 then only half of the free
3748 		 * space is actually useable.
3749 		 */
3750 		if (profile & (BTRFS_BLOCK_GROUP_DUP |
3751 			       BTRFS_BLOCK_GROUP_RAID1 |
3752 			       BTRFS_BLOCK_GROUP_RAID10))
3753 			avail >>= 1;
3754 
3755 		/*
3756 		 * If we aren't flushing don't let us overcommit too much, say
3757 		 * 1/8th of the space.  If we can flush, let it overcommit up to
3758 		 * 1/2 of the space.
3759 		 */
3760 		if (flush)
3761 			avail >>= 3;
3762 		else
3763 			avail >>= 1;
3764 		 spin_unlock(&root->fs_info->free_chunk_lock);
3765 
3766 		if (used + num_bytes < space_info->total_bytes + avail) {
3767 			space_info->bytes_may_use += orig_bytes;
3768 			trace_btrfs_space_reservation(root->fs_info,
3769 						      "space_info",
3770 						      (u64)space_info,
3771 						      orig_bytes, 1);
3772 			ret = 0;
3773 		} else {
3774 			wait_ordered = true;
3775 		}
3776 	}
3777 
3778 	/*
3779 	 * Couldn't make our reservation, save our place so while we're trying
3780 	 * to reclaim space we can actually use it instead of somebody else
3781 	 * stealing it from us.
3782 	 */
3783 	if (ret && flush) {
3784 		flushing = true;
3785 		space_info->flush = 1;
3786 	}
3787 
3788 	spin_unlock(&space_info->lock);
3789 
3790 	if (!ret || !flush)
3791 		goto out;
3792 
3793 	/*
3794 	 * We do synchronous shrinking since we don't actually unreserve
3795 	 * metadata until after the IO is completed.
3796 	 */
3797 	ret = shrink_delalloc(root, num_bytes, wait_ordered);
3798 	if (ret < 0)
3799 		goto out;
3800 
3801 	ret = 0;
3802 
3803 	/*
3804 	 * So if we were overcommitted it's possible that somebody else flushed
3805 	 * out enough space and we simply didn't have enough space to reclaim,
3806 	 * so go back around and try again.
3807 	 */
3808 	if (retries < 2) {
3809 		wait_ordered = true;
3810 		retries++;
3811 		goto again;
3812 	}
3813 
3814 	ret = -ENOSPC;
3815 	if (committed)
3816 		goto out;
3817 
3818 	ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3819 	if (!ret) {
3820 		committed = true;
3821 		goto again;
3822 	}
3823 
3824 out:
3825 	if (flushing) {
3826 		spin_lock(&space_info->lock);
3827 		space_info->flush = 0;
3828 		wake_up_all(&space_info->wait);
3829 		spin_unlock(&space_info->lock);
3830 	}
3831 	return ret;
3832 }
3833 
3834 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3835 					     struct btrfs_root *root)
3836 {
3837 	struct btrfs_block_rsv *block_rsv = NULL;
3838 
3839 	if (root->ref_cows || root == root->fs_info->csum_root)
3840 		block_rsv = trans->block_rsv;
3841 
3842 	if (!block_rsv)
3843 		block_rsv = root->block_rsv;
3844 
3845 	if (!block_rsv)
3846 		block_rsv = &root->fs_info->empty_block_rsv;
3847 
3848 	return block_rsv;
3849 }
3850 
3851 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3852 			       u64 num_bytes)
3853 {
3854 	int ret = -ENOSPC;
3855 	spin_lock(&block_rsv->lock);
3856 	if (block_rsv->reserved >= num_bytes) {
3857 		block_rsv->reserved -= num_bytes;
3858 		if (block_rsv->reserved < block_rsv->size)
3859 			block_rsv->full = 0;
3860 		ret = 0;
3861 	}
3862 	spin_unlock(&block_rsv->lock);
3863 	return ret;
3864 }
3865 
3866 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3867 				u64 num_bytes, int update_size)
3868 {
3869 	spin_lock(&block_rsv->lock);
3870 	block_rsv->reserved += num_bytes;
3871 	if (update_size)
3872 		block_rsv->size += num_bytes;
3873 	else if (block_rsv->reserved >= block_rsv->size)
3874 		block_rsv->full = 1;
3875 	spin_unlock(&block_rsv->lock);
3876 }
3877 
3878 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3879 				    struct btrfs_block_rsv *block_rsv,
3880 				    struct btrfs_block_rsv *dest, u64 num_bytes)
3881 {
3882 	struct btrfs_space_info *space_info = block_rsv->space_info;
3883 
3884 	spin_lock(&block_rsv->lock);
3885 	if (num_bytes == (u64)-1)
3886 		num_bytes = block_rsv->size;
3887 	block_rsv->size -= num_bytes;
3888 	if (block_rsv->reserved >= block_rsv->size) {
3889 		num_bytes = block_rsv->reserved - block_rsv->size;
3890 		block_rsv->reserved = block_rsv->size;
3891 		block_rsv->full = 1;
3892 	} else {
3893 		num_bytes = 0;
3894 	}
3895 	spin_unlock(&block_rsv->lock);
3896 
3897 	if (num_bytes > 0) {
3898 		if (dest) {
3899 			spin_lock(&dest->lock);
3900 			if (!dest->full) {
3901 				u64 bytes_to_add;
3902 
3903 				bytes_to_add = dest->size - dest->reserved;
3904 				bytes_to_add = min(num_bytes, bytes_to_add);
3905 				dest->reserved += bytes_to_add;
3906 				if (dest->reserved >= dest->size)
3907 					dest->full = 1;
3908 				num_bytes -= bytes_to_add;
3909 			}
3910 			spin_unlock(&dest->lock);
3911 		}
3912 		if (num_bytes) {
3913 			spin_lock(&space_info->lock);
3914 			space_info->bytes_may_use -= num_bytes;
3915 			trace_btrfs_space_reservation(fs_info, "space_info",
3916 						      (u64)space_info,
3917 						      num_bytes, 0);
3918 			space_info->reservation_progress++;
3919 			spin_unlock(&space_info->lock);
3920 		}
3921 	}
3922 }
3923 
3924 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3925 				   struct btrfs_block_rsv *dst, u64 num_bytes)
3926 {
3927 	int ret;
3928 
3929 	ret = block_rsv_use_bytes(src, num_bytes);
3930 	if (ret)
3931 		return ret;
3932 
3933 	block_rsv_add_bytes(dst, num_bytes, 1);
3934 	return 0;
3935 }
3936 
3937 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3938 {
3939 	memset(rsv, 0, sizeof(*rsv));
3940 	spin_lock_init(&rsv->lock);
3941 }
3942 
3943 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3944 {
3945 	struct btrfs_block_rsv *block_rsv;
3946 	struct btrfs_fs_info *fs_info = root->fs_info;
3947 
3948 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3949 	if (!block_rsv)
3950 		return NULL;
3951 
3952 	btrfs_init_block_rsv(block_rsv);
3953 	block_rsv->space_info = __find_space_info(fs_info,
3954 						  BTRFS_BLOCK_GROUP_METADATA);
3955 	return block_rsv;
3956 }
3957 
3958 void btrfs_free_block_rsv(struct btrfs_root *root,
3959 			  struct btrfs_block_rsv *rsv)
3960 {
3961 	btrfs_block_rsv_release(root, rsv, (u64)-1);
3962 	kfree(rsv);
3963 }
3964 
3965 static inline int __block_rsv_add(struct btrfs_root *root,
3966 				  struct btrfs_block_rsv *block_rsv,
3967 				  u64 num_bytes, int flush)
3968 {
3969 	int ret;
3970 
3971 	if (num_bytes == 0)
3972 		return 0;
3973 
3974 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
3975 	if (!ret) {
3976 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
3977 		return 0;
3978 	}
3979 
3980 	return ret;
3981 }
3982 
3983 int btrfs_block_rsv_add(struct btrfs_root *root,
3984 			struct btrfs_block_rsv *block_rsv,
3985 			u64 num_bytes)
3986 {
3987 	return __block_rsv_add(root, block_rsv, num_bytes, 1);
3988 }
3989 
3990 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
3991 				struct btrfs_block_rsv *block_rsv,
3992 				u64 num_bytes)
3993 {
3994 	return __block_rsv_add(root, block_rsv, num_bytes, 0);
3995 }
3996 
3997 int btrfs_block_rsv_check(struct btrfs_root *root,
3998 			  struct btrfs_block_rsv *block_rsv, int min_factor)
3999 {
4000 	u64 num_bytes = 0;
4001 	int ret = -ENOSPC;
4002 
4003 	if (!block_rsv)
4004 		return 0;
4005 
4006 	spin_lock(&block_rsv->lock);
4007 	num_bytes = div_factor(block_rsv->size, min_factor);
4008 	if (block_rsv->reserved >= num_bytes)
4009 		ret = 0;
4010 	spin_unlock(&block_rsv->lock);
4011 
4012 	return ret;
4013 }
4014 
4015 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4016 					   struct btrfs_block_rsv *block_rsv,
4017 					   u64 min_reserved, int flush)
4018 {
4019 	u64 num_bytes = 0;
4020 	int ret = -ENOSPC;
4021 
4022 	if (!block_rsv)
4023 		return 0;
4024 
4025 	spin_lock(&block_rsv->lock);
4026 	num_bytes = min_reserved;
4027 	if (block_rsv->reserved >= num_bytes)
4028 		ret = 0;
4029 	else
4030 		num_bytes -= block_rsv->reserved;
4031 	spin_unlock(&block_rsv->lock);
4032 
4033 	if (!ret)
4034 		return 0;
4035 
4036 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4037 	if (!ret) {
4038 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4039 		return 0;
4040 	}
4041 
4042 	return ret;
4043 }
4044 
4045 int btrfs_block_rsv_refill(struct btrfs_root *root,
4046 			   struct btrfs_block_rsv *block_rsv,
4047 			   u64 min_reserved)
4048 {
4049 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4050 }
4051 
4052 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4053 				   struct btrfs_block_rsv *block_rsv,
4054 				   u64 min_reserved)
4055 {
4056 	return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4057 }
4058 
4059 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4060 			    struct btrfs_block_rsv *dst_rsv,
4061 			    u64 num_bytes)
4062 {
4063 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4064 }
4065 
4066 void btrfs_block_rsv_release(struct btrfs_root *root,
4067 			     struct btrfs_block_rsv *block_rsv,
4068 			     u64 num_bytes)
4069 {
4070 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4071 	if (global_rsv->full || global_rsv == block_rsv ||
4072 	    block_rsv->space_info != global_rsv->space_info)
4073 		global_rsv = NULL;
4074 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4075 				num_bytes);
4076 }
4077 
4078 /*
4079  * helper to calculate size of global block reservation.
4080  * the desired value is sum of space used by extent tree,
4081  * checksum tree and root tree
4082  */
4083 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4084 {
4085 	struct btrfs_space_info *sinfo;
4086 	u64 num_bytes;
4087 	u64 meta_used;
4088 	u64 data_used;
4089 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4090 
4091 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4092 	spin_lock(&sinfo->lock);
4093 	data_used = sinfo->bytes_used;
4094 	spin_unlock(&sinfo->lock);
4095 
4096 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4097 	spin_lock(&sinfo->lock);
4098 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4099 		data_used = 0;
4100 	meta_used = sinfo->bytes_used;
4101 	spin_unlock(&sinfo->lock);
4102 
4103 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4104 		    csum_size * 2;
4105 	num_bytes += div64_u64(data_used + meta_used, 50);
4106 
4107 	if (num_bytes * 3 > meta_used)
4108 		num_bytes = div64_u64(meta_used, 3);
4109 
4110 	return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4111 }
4112 
4113 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4114 {
4115 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4116 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4117 	u64 num_bytes;
4118 
4119 	num_bytes = calc_global_metadata_size(fs_info);
4120 
4121 	spin_lock(&block_rsv->lock);
4122 	spin_lock(&sinfo->lock);
4123 
4124 	block_rsv->size = num_bytes;
4125 
4126 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4127 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4128 		    sinfo->bytes_may_use;
4129 
4130 	if (sinfo->total_bytes > num_bytes) {
4131 		num_bytes = sinfo->total_bytes - num_bytes;
4132 		block_rsv->reserved += num_bytes;
4133 		sinfo->bytes_may_use += num_bytes;
4134 		trace_btrfs_space_reservation(fs_info, "space_info",
4135 					      (u64)sinfo, num_bytes, 1);
4136 	}
4137 
4138 	if (block_rsv->reserved >= block_rsv->size) {
4139 		num_bytes = block_rsv->reserved - block_rsv->size;
4140 		sinfo->bytes_may_use -= num_bytes;
4141 		trace_btrfs_space_reservation(fs_info, "space_info",
4142 					      (u64)sinfo, num_bytes, 0);
4143 		sinfo->reservation_progress++;
4144 		block_rsv->reserved = block_rsv->size;
4145 		block_rsv->full = 1;
4146 	}
4147 
4148 	spin_unlock(&sinfo->lock);
4149 	spin_unlock(&block_rsv->lock);
4150 }
4151 
4152 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4153 {
4154 	struct btrfs_space_info *space_info;
4155 
4156 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4157 	fs_info->chunk_block_rsv.space_info = space_info;
4158 
4159 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4160 	fs_info->global_block_rsv.space_info = space_info;
4161 	fs_info->delalloc_block_rsv.space_info = space_info;
4162 	fs_info->trans_block_rsv.space_info = space_info;
4163 	fs_info->empty_block_rsv.space_info = space_info;
4164 	fs_info->delayed_block_rsv.space_info = space_info;
4165 
4166 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4167 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4168 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4169 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4170 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4171 
4172 	update_global_block_rsv(fs_info);
4173 }
4174 
4175 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4176 {
4177 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4178 				(u64)-1);
4179 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4180 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4181 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4182 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4183 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4184 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4185 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4186 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4187 }
4188 
4189 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4190 				  struct btrfs_root *root)
4191 {
4192 	if (!trans->bytes_reserved)
4193 		return;
4194 
4195 	trace_btrfs_space_reservation(root->fs_info, "transaction", (u64)trans,
4196 				      trans->bytes_reserved, 0);
4197 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4198 	trans->bytes_reserved = 0;
4199 }
4200 
4201 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4202 				  struct inode *inode)
4203 {
4204 	struct btrfs_root *root = BTRFS_I(inode)->root;
4205 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4206 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4207 
4208 	/*
4209 	 * We need to hold space in order to delete our orphan item once we've
4210 	 * added it, so this takes the reservation so we can release it later
4211 	 * when we are truly done with the orphan item.
4212 	 */
4213 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4214 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4215 				      btrfs_ino(inode), num_bytes, 1);
4216 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4217 }
4218 
4219 void btrfs_orphan_release_metadata(struct inode *inode)
4220 {
4221 	struct btrfs_root *root = BTRFS_I(inode)->root;
4222 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4223 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4224 				      btrfs_ino(inode), num_bytes, 0);
4225 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4226 }
4227 
4228 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4229 				struct btrfs_pending_snapshot *pending)
4230 {
4231 	struct btrfs_root *root = pending->root;
4232 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4233 	struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4234 	/*
4235 	 * two for root back/forward refs, two for directory entries
4236 	 * and one for root of the snapshot.
4237 	 */
4238 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4239 	dst_rsv->space_info = src_rsv->space_info;
4240 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4241 }
4242 
4243 /**
4244  * drop_outstanding_extent - drop an outstanding extent
4245  * @inode: the inode we're dropping the extent for
4246  *
4247  * This is called when we are freeing up an outstanding extent, either called
4248  * after an error or after an extent is written.  This will return the number of
4249  * reserved extents that need to be freed.  This must be called with
4250  * BTRFS_I(inode)->lock held.
4251  */
4252 static unsigned drop_outstanding_extent(struct inode *inode)
4253 {
4254 	unsigned drop_inode_space = 0;
4255 	unsigned dropped_extents = 0;
4256 
4257 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4258 	BTRFS_I(inode)->outstanding_extents--;
4259 
4260 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
4261 	    BTRFS_I(inode)->delalloc_meta_reserved) {
4262 		drop_inode_space = 1;
4263 		BTRFS_I(inode)->delalloc_meta_reserved = 0;
4264 	}
4265 
4266 	/*
4267 	 * If we have more or the same amount of outsanding extents than we have
4268 	 * reserved then we need to leave the reserved extents count alone.
4269 	 */
4270 	if (BTRFS_I(inode)->outstanding_extents >=
4271 	    BTRFS_I(inode)->reserved_extents)
4272 		return drop_inode_space;
4273 
4274 	dropped_extents = BTRFS_I(inode)->reserved_extents -
4275 		BTRFS_I(inode)->outstanding_extents;
4276 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
4277 	return dropped_extents + drop_inode_space;
4278 }
4279 
4280 /**
4281  * calc_csum_metadata_size - return the amount of metada space that must be
4282  *	reserved/free'd for the given bytes.
4283  * @inode: the inode we're manipulating
4284  * @num_bytes: the number of bytes in question
4285  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4286  *
4287  * This adjusts the number of csum_bytes in the inode and then returns the
4288  * correct amount of metadata that must either be reserved or freed.  We
4289  * calculate how many checksums we can fit into one leaf and then divide the
4290  * number of bytes that will need to be checksumed by this value to figure out
4291  * how many checksums will be required.  If we are adding bytes then the number
4292  * may go up and we will return the number of additional bytes that must be
4293  * reserved.  If it is going down we will return the number of bytes that must
4294  * be freed.
4295  *
4296  * This must be called with BTRFS_I(inode)->lock held.
4297  */
4298 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4299 				   int reserve)
4300 {
4301 	struct btrfs_root *root = BTRFS_I(inode)->root;
4302 	u64 csum_size;
4303 	int num_csums_per_leaf;
4304 	int num_csums;
4305 	int old_csums;
4306 
4307 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4308 	    BTRFS_I(inode)->csum_bytes == 0)
4309 		return 0;
4310 
4311 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4312 	if (reserve)
4313 		BTRFS_I(inode)->csum_bytes += num_bytes;
4314 	else
4315 		BTRFS_I(inode)->csum_bytes -= num_bytes;
4316 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4317 	num_csums_per_leaf = (int)div64_u64(csum_size,
4318 					    sizeof(struct btrfs_csum_item) +
4319 					    sizeof(struct btrfs_disk_key));
4320 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4321 	num_csums = num_csums + num_csums_per_leaf - 1;
4322 	num_csums = num_csums / num_csums_per_leaf;
4323 
4324 	old_csums = old_csums + num_csums_per_leaf - 1;
4325 	old_csums = old_csums / num_csums_per_leaf;
4326 
4327 	/* No change, no need to reserve more */
4328 	if (old_csums == num_csums)
4329 		return 0;
4330 
4331 	if (reserve)
4332 		return btrfs_calc_trans_metadata_size(root,
4333 						      num_csums - old_csums);
4334 
4335 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4336 }
4337 
4338 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4339 {
4340 	struct btrfs_root *root = BTRFS_I(inode)->root;
4341 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4342 	u64 to_reserve = 0;
4343 	u64 csum_bytes;
4344 	unsigned nr_extents = 0;
4345 	int extra_reserve = 0;
4346 	int flush = 1;
4347 	int ret;
4348 
4349 	/* Need to be holding the i_mutex here if we aren't free space cache */
4350 	if (btrfs_is_free_space_inode(root, inode))
4351 		flush = 0;
4352 
4353 	if (flush && btrfs_transaction_in_commit(root->fs_info))
4354 		schedule_timeout(1);
4355 
4356 	mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4357 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4358 
4359 	spin_lock(&BTRFS_I(inode)->lock);
4360 	BTRFS_I(inode)->outstanding_extents++;
4361 
4362 	if (BTRFS_I(inode)->outstanding_extents >
4363 	    BTRFS_I(inode)->reserved_extents)
4364 		nr_extents = BTRFS_I(inode)->outstanding_extents -
4365 			BTRFS_I(inode)->reserved_extents;
4366 
4367 	/*
4368 	 * Add an item to reserve for updating the inode when we complete the
4369 	 * delalloc io.
4370 	 */
4371 	if (!BTRFS_I(inode)->delalloc_meta_reserved) {
4372 		nr_extents++;
4373 		extra_reserve = 1;
4374 	}
4375 
4376 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4377 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4378 	csum_bytes = BTRFS_I(inode)->csum_bytes;
4379 	spin_unlock(&BTRFS_I(inode)->lock);
4380 
4381 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4382 	if (ret) {
4383 		u64 to_free = 0;
4384 		unsigned dropped;
4385 
4386 		spin_lock(&BTRFS_I(inode)->lock);
4387 		dropped = drop_outstanding_extent(inode);
4388 		/*
4389 		 * If the inodes csum_bytes is the same as the original
4390 		 * csum_bytes then we know we haven't raced with any free()ers
4391 		 * so we can just reduce our inodes csum bytes and carry on.
4392 		 * Otherwise we have to do the normal free thing to account for
4393 		 * the case that the free side didn't free up its reserve
4394 		 * because of this outstanding reservation.
4395 		 */
4396 		if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4397 			calc_csum_metadata_size(inode, num_bytes, 0);
4398 		else
4399 			to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4400 		spin_unlock(&BTRFS_I(inode)->lock);
4401 		if (dropped)
4402 			to_free += btrfs_calc_trans_metadata_size(root, dropped);
4403 
4404 		if (to_free) {
4405 			btrfs_block_rsv_release(root, block_rsv, to_free);
4406 			trace_btrfs_space_reservation(root->fs_info,
4407 						      "delalloc",
4408 						      btrfs_ino(inode),
4409 						      to_free, 0);
4410 		}
4411 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4412 		return ret;
4413 	}
4414 
4415 	spin_lock(&BTRFS_I(inode)->lock);
4416 	if (extra_reserve) {
4417 		BTRFS_I(inode)->delalloc_meta_reserved = 1;
4418 		nr_extents--;
4419 	}
4420 	BTRFS_I(inode)->reserved_extents += nr_extents;
4421 	spin_unlock(&BTRFS_I(inode)->lock);
4422 	mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4423 
4424 	if (to_reserve)
4425 		trace_btrfs_space_reservation(root->fs_info,"delalloc",
4426 					      btrfs_ino(inode), to_reserve, 1);
4427 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
4428 
4429 	return 0;
4430 }
4431 
4432 /**
4433  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4434  * @inode: the inode to release the reservation for
4435  * @num_bytes: the number of bytes we're releasing
4436  *
4437  * This will release the metadata reservation for an inode.  This can be called
4438  * once we complete IO for a given set of bytes to release their metadata
4439  * reservations.
4440  */
4441 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4442 {
4443 	struct btrfs_root *root = BTRFS_I(inode)->root;
4444 	u64 to_free = 0;
4445 	unsigned dropped;
4446 
4447 	num_bytes = ALIGN(num_bytes, root->sectorsize);
4448 	spin_lock(&BTRFS_I(inode)->lock);
4449 	dropped = drop_outstanding_extent(inode);
4450 
4451 	to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4452 	spin_unlock(&BTRFS_I(inode)->lock);
4453 	if (dropped > 0)
4454 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
4455 
4456 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
4457 				      btrfs_ino(inode), to_free, 0);
4458 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4459 				to_free);
4460 }
4461 
4462 /**
4463  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4464  * @inode: inode we're writing to
4465  * @num_bytes: the number of bytes we want to allocate
4466  *
4467  * This will do the following things
4468  *
4469  * o reserve space in the data space info for num_bytes
4470  * o reserve space in the metadata space info based on number of outstanding
4471  *   extents and how much csums will be needed
4472  * o add to the inodes ->delalloc_bytes
4473  * o add it to the fs_info's delalloc inodes list.
4474  *
4475  * This will return 0 for success and -ENOSPC if there is no space left.
4476  */
4477 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4478 {
4479 	int ret;
4480 
4481 	ret = btrfs_check_data_free_space(inode, num_bytes);
4482 	if (ret)
4483 		return ret;
4484 
4485 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4486 	if (ret) {
4487 		btrfs_free_reserved_data_space(inode, num_bytes);
4488 		return ret;
4489 	}
4490 
4491 	return 0;
4492 }
4493 
4494 /**
4495  * btrfs_delalloc_release_space - release data and metadata space for delalloc
4496  * @inode: inode we're releasing space for
4497  * @num_bytes: the number of bytes we want to free up
4498  *
4499  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
4500  * called in the case that we don't need the metadata AND data reservations
4501  * anymore.  So if there is an error or we insert an inline extent.
4502  *
4503  * This function will release the metadata space that was not used and will
4504  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4505  * list if there are no delalloc bytes left.
4506  */
4507 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4508 {
4509 	btrfs_delalloc_release_metadata(inode, num_bytes);
4510 	btrfs_free_reserved_data_space(inode, num_bytes);
4511 }
4512 
4513 static int update_block_group(struct btrfs_trans_handle *trans,
4514 			      struct btrfs_root *root,
4515 			      u64 bytenr, u64 num_bytes, int alloc)
4516 {
4517 	struct btrfs_block_group_cache *cache = NULL;
4518 	struct btrfs_fs_info *info = root->fs_info;
4519 	u64 total = num_bytes;
4520 	u64 old_val;
4521 	u64 byte_in_group;
4522 	int factor;
4523 
4524 	/* block accounting for super block */
4525 	spin_lock(&info->delalloc_lock);
4526 	old_val = btrfs_super_bytes_used(info->super_copy);
4527 	if (alloc)
4528 		old_val += num_bytes;
4529 	else
4530 		old_val -= num_bytes;
4531 	btrfs_set_super_bytes_used(info->super_copy, old_val);
4532 	spin_unlock(&info->delalloc_lock);
4533 
4534 	while (total) {
4535 		cache = btrfs_lookup_block_group(info, bytenr);
4536 		if (!cache)
4537 			return -1;
4538 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4539 				    BTRFS_BLOCK_GROUP_RAID1 |
4540 				    BTRFS_BLOCK_GROUP_RAID10))
4541 			factor = 2;
4542 		else
4543 			factor = 1;
4544 		/*
4545 		 * If this block group has free space cache written out, we
4546 		 * need to make sure to load it if we are removing space.  This
4547 		 * is because we need the unpinning stage to actually add the
4548 		 * space back to the block group, otherwise we will leak space.
4549 		 */
4550 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
4551 			cache_block_group(cache, trans, NULL, 1);
4552 
4553 		byte_in_group = bytenr - cache->key.objectid;
4554 		WARN_ON(byte_in_group > cache->key.offset);
4555 
4556 		spin_lock(&cache->space_info->lock);
4557 		spin_lock(&cache->lock);
4558 
4559 		if (btrfs_test_opt(root, SPACE_CACHE) &&
4560 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
4561 			cache->disk_cache_state = BTRFS_DC_CLEAR;
4562 
4563 		cache->dirty = 1;
4564 		old_val = btrfs_block_group_used(&cache->item);
4565 		num_bytes = min(total, cache->key.offset - byte_in_group);
4566 		if (alloc) {
4567 			old_val += num_bytes;
4568 			btrfs_set_block_group_used(&cache->item, old_val);
4569 			cache->reserved -= num_bytes;
4570 			cache->space_info->bytes_reserved -= num_bytes;
4571 			cache->space_info->bytes_used += num_bytes;
4572 			cache->space_info->disk_used += num_bytes * factor;
4573 			spin_unlock(&cache->lock);
4574 			spin_unlock(&cache->space_info->lock);
4575 		} else {
4576 			old_val -= num_bytes;
4577 			btrfs_set_block_group_used(&cache->item, old_val);
4578 			cache->pinned += num_bytes;
4579 			cache->space_info->bytes_pinned += num_bytes;
4580 			cache->space_info->bytes_used -= num_bytes;
4581 			cache->space_info->disk_used -= num_bytes * factor;
4582 			spin_unlock(&cache->lock);
4583 			spin_unlock(&cache->space_info->lock);
4584 
4585 			set_extent_dirty(info->pinned_extents,
4586 					 bytenr, bytenr + num_bytes - 1,
4587 					 GFP_NOFS | __GFP_NOFAIL);
4588 		}
4589 		btrfs_put_block_group(cache);
4590 		total -= num_bytes;
4591 		bytenr += num_bytes;
4592 	}
4593 	return 0;
4594 }
4595 
4596 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4597 {
4598 	struct btrfs_block_group_cache *cache;
4599 	u64 bytenr;
4600 
4601 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4602 	if (!cache)
4603 		return 0;
4604 
4605 	bytenr = cache->key.objectid;
4606 	btrfs_put_block_group(cache);
4607 
4608 	return bytenr;
4609 }
4610 
4611 static int pin_down_extent(struct btrfs_root *root,
4612 			   struct btrfs_block_group_cache *cache,
4613 			   u64 bytenr, u64 num_bytes, int reserved)
4614 {
4615 	spin_lock(&cache->space_info->lock);
4616 	spin_lock(&cache->lock);
4617 	cache->pinned += num_bytes;
4618 	cache->space_info->bytes_pinned += num_bytes;
4619 	if (reserved) {
4620 		cache->reserved -= num_bytes;
4621 		cache->space_info->bytes_reserved -= num_bytes;
4622 	}
4623 	spin_unlock(&cache->lock);
4624 	spin_unlock(&cache->space_info->lock);
4625 
4626 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4627 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4628 	return 0;
4629 }
4630 
4631 /*
4632  * this function must be called within transaction
4633  */
4634 int btrfs_pin_extent(struct btrfs_root *root,
4635 		     u64 bytenr, u64 num_bytes, int reserved)
4636 {
4637 	struct btrfs_block_group_cache *cache;
4638 
4639 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4640 	BUG_ON(!cache);
4641 
4642 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4643 
4644 	btrfs_put_block_group(cache);
4645 	return 0;
4646 }
4647 
4648 /*
4649  * this function must be called within transaction
4650  */
4651 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4652 				    struct btrfs_root *root,
4653 				    u64 bytenr, u64 num_bytes)
4654 {
4655 	struct btrfs_block_group_cache *cache;
4656 
4657 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4658 	BUG_ON(!cache);
4659 
4660 	/*
4661 	 * pull in the free space cache (if any) so that our pin
4662 	 * removes the free space from the cache.  We have load_only set
4663 	 * to one because the slow code to read in the free extents does check
4664 	 * the pinned extents.
4665 	 */
4666 	cache_block_group(cache, trans, root, 1);
4667 
4668 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
4669 
4670 	/* remove us from the free space cache (if we're there at all) */
4671 	btrfs_remove_free_space(cache, bytenr, num_bytes);
4672 	btrfs_put_block_group(cache);
4673 	return 0;
4674 }
4675 
4676 /**
4677  * btrfs_update_reserved_bytes - update the block_group and space info counters
4678  * @cache:	The cache we are manipulating
4679  * @num_bytes:	The number of bytes in question
4680  * @reserve:	One of the reservation enums
4681  *
4682  * This is called by the allocator when it reserves space, or by somebody who is
4683  * freeing space that was never actually used on disk.  For example if you
4684  * reserve some space for a new leaf in transaction A and before transaction A
4685  * commits you free that leaf, you call this with reserve set to 0 in order to
4686  * clear the reservation.
4687  *
4688  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4689  * ENOSPC accounting.  For data we handle the reservation through clearing the
4690  * delalloc bits in the io_tree.  We have to do this since we could end up
4691  * allocating less disk space for the amount of data we have reserved in the
4692  * case of compression.
4693  *
4694  * If this is a reservation and the block group has become read only we cannot
4695  * make the reservation and return -EAGAIN, otherwise this function always
4696  * succeeds.
4697  */
4698 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4699 				       u64 num_bytes, int reserve)
4700 {
4701 	struct btrfs_space_info *space_info = cache->space_info;
4702 	int ret = 0;
4703 	spin_lock(&space_info->lock);
4704 	spin_lock(&cache->lock);
4705 	if (reserve != RESERVE_FREE) {
4706 		if (cache->ro) {
4707 			ret = -EAGAIN;
4708 		} else {
4709 			cache->reserved += num_bytes;
4710 			space_info->bytes_reserved += num_bytes;
4711 			if (reserve == RESERVE_ALLOC) {
4712 				trace_btrfs_space_reservation(cache->fs_info,
4713 							      "space_info",
4714 							      (u64)space_info,
4715 							      num_bytes, 0);
4716 				space_info->bytes_may_use -= num_bytes;
4717 			}
4718 		}
4719 	} else {
4720 		if (cache->ro)
4721 			space_info->bytes_readonly += num_bytes;
4722 		cache->reserved -= num_bytes;
4723 		space_info->bytes_reserved -= num_bytes;
4724 		space_info->reservation_progress++;
4725 	}
4726 	spin_unlock(&cache->lock);
4727 	spin_unlock(&space_info->lock);
4728 	return ret;
4729 }
4730 
4731 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4732 				struct btrfs_root *root)
4733 {
4734 	struct btrfs_fs_info *fs_info = root->fs_info;
4735 	struct btrfs_caching_control *next;
4736 	struct btrfs_caching_control *caching_ctl;
4737 	struct btrfs_block_group_cache *cache;
4738 
4739 	down_write(&fs_info->extent_commit_sem);
4740 
4741 	list_for_each_entry_safe(caching_ctl, next,
4742 				 &fs_info->caching_block_groups, list) {
4743 		cache = caching_ctl->block_group;
4744 		if (block_group_cache_done(cache)) {
4745 			cache->last_byte_to_unpin = (u64)-1;
4746 			list_del_init(&caching_ctl->list);
4747 			put_caching_control(caching_ctl);
4748 		} else {
4749 			cache->last_byte_to_unpin = caching_ctl->progress;
4750 		}
4751 	}
4752 
4753 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4754 		fs_info->pinned_extents = &fs_info->freed_extents[1];
4755 	else
4756 		fs_info->pinned_extents = &fs_info->freed_extents[0];
4757 
4758 	up_write(&fs_info->extent_commit_sem);
4759 
4760 	update_global_block_rsv(fs_info);
4761 	return 0;
4762 }
4763 
4764 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4765 {
4766 	struct btrfs_fs_info *fs_info = root->fs_info;
4767 	struct btrfs_block_group_cache *cache = NULL;
4768 	u64 len;
4769 
4770 	while (start <= end) {
4771 		if (!cache ||
4772 		    start >= cache->key.objectid + cache->key.offset) {
4773 			if (cache)
4774 				btrfs_put_block_group(cache);
4775 			cache = btrfs_lookup_block_group(fs_info, start);
4776 			BUG_ON(!cache);
4777 		}
4778 
4779 		len = cache->key.objectid + cache->key.offset - start;
4780 		len = min(len, end + 1 - start);
4781 
4782 		if (start < cache->last_byte_to_unpin) {
4783 			len = min(len, cache->last_byte_to_unpin - start);
4784 			btrfs_add_free_space(cache, start, len);
4785 		}
4786 
4787 		start += len;
4788 
4789 		spin_lock(&cache->space_info->lock);
4790 		spin_lock(&cache->lock);
4791 		cache->pinned -= len;
4792 		cache->space_info->bytes_pinned -= len;
4793 		if (cache->ro)
4794 			cache->space_info->bytes_readonly += len;
4795 		spin_unlock(&cache->lock);
4796 		spin_unlock(&cache->space_info->lock);
4797 	}
4798 
4799 	if (cache)
4800 		btrfs_put_block_group(cache);
4801 	return 0;
4802 }
4803 
4804 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4805 			       struct btrfs_root *root)
4806 {
4807 	struct btrfs_fs_info *fs_info = root->fs_info;
4808 	struct extent_io_tree *unpin;
4809 	u64 start;
4810 	u64 end;
4811 	int ret;
4812 
4813 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4814 		unpin = &fs_info->freed_extents[1];
4815 	else
4816 		unpin = &fs_info->freed_extents[0];
4817 
4818 	while (1) {
4819 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4820 					    EXTENT_DIRTY);
4821 		if (ret)
4822 			break;
4823 
4824 		if (btrfs_test_opt(root, DISCARD))
4825 			ret = btrfs_discard_extent(root, start,
4826 						   end + 1 - start, NULL);
4827 
4828 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4829 		unpin_extent_range(root, start, end);
4830 		cond_resched();
4831 	}
4832 
4833 	return 0;
4834 }
4835 
4836 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4837 				struct btrfs_root *root,
4838 				u64 bytenr, u64 num_bytes, u64 parent,
4839 				u64 root_objectid, u64 owner_objectid,
4840 				u64 owner_offset, int refs_to_drop,
4841 				struct btrfs_delayed_extent_op *extent_op)
4842 {
4843 	struct btrfs_key key;
4844 	struct btrfs_path *path;
4845 	struct btrfs_fs_info *info = root->fs_info;
4846 	struct btrfs_root *extent_root = info->extent_root;
4847 	struct extent_buffer *leaf;
4848 	struct btrfs_extent_item *ei;
4849 	struct btrfs_extent_inline_ref *iref;
4850 	int ret;
4851 	int is_data;
4852 	int extent_slot = 0;
4853 	int found_extent = 0;
4854 	int num_to_del = 1;
4855 	u32 item_size;
4856 	u64 refs;
4857 
4858 	path = btrfs_alloc_path();
4859 	if (!path)
4860 		return -ENOMEM;
4861 
4862 	path->reada = 1;
4863 	path->leave_spinning = 1;
4864 
4865 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4866 	BUG_ON(!is_data && refs_to_drop != 1);
4867 
4868 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
4869 				    bytenr, num_bytes, parent,
4870 				    root_objectid, owner_objectid,
4871 				    owner_offset);
4872 	if (ret == 0) {
4873 		extent_slot = path->slots[0];
4874 		while (extent_slot >= 0) {
4875 			btrfs_item_key_to_cpu(path->nodes[0], &key,
4876 					      extent_slot);
4877 			if (key.objectid != bytenr)
4878 				break;
4879 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4880 			    key.offset == num_bytes) {
4881 				found_extent = 1;
4882 				break;
4883 			}
4884 			if (path->slots[0] - extent_slot > 5)
4885 				break;
4886 			extent_slot--;
4887 		}
4888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4889 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4890 		if (found_extent && item_size < sizeof(*ei))
4891 			found_extent = 0;
4892 #endif
4893 		if (!found_extent) {
4894 			BUG_ON(iref);
4895 			ret = remove_extent_backref(trans, extent_root, path,
4896 						    NULL, refs_to_drop,
4897 						    is_data);
4898 			BUG_ON(ret);
4899 			btrfs_release_path(path);
4900 			path->leave_spinning = 1;
4901 
4902 			key.objectid = bytenr;
4903 			key.type = BTRFS_EXTENT_ITEM_KEY;
4904 			key.offset = num_bytes;
4905 
4906 			ret = btrfs_search_slot(trans, extent_root,
4907 						&key, path, -1, 1);
4908 			if (ret) {
4909 				printk(KERN_ERR "umm, got %d back from search"
4910 				       ", was looking for %llu\n", ret,
4911 				       (unsigned long long)bytenr);
4912 				if (ret > 0)
4913 					btrfs_print_leaf(extent_root,
4914 							 path->nodes[0]);
4915 			}
4916 			BUG_ON(ret);
4917 			extent_slot = path->slots[0];
4918 		}
4919 	} else {
4920 		btrfs_print_leaf(extent_root, path->nodes[0]);
4921 		WARN_ON(1);
4922 		printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4923 		       "parent %llu root %llu  owner %llu offset %llu\n",
4924 		       (unsigned long long)bytenr,
4925 		       (unsigned long long)parent,
4926 		       (unsigned long long)root_objectid,
4927 		       (unsigned long long)owner_objectid,
4928 		       (unsigned long long)owner_offset);
4929 	}
4930 
4931 	leaf = path->nodes[0];
4932 	item_size = btrfs_item_size_nr(leaf, extent_slot);
4933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4934 	if (item_size < sizeof(*ei)) {
4935 		BUG_ON(found_extent || extent_slot != path->slots[0]);
4936 		ret = convert_extent_item_v0(trans, extent_root, path,
4937 					     owner_objectid, 0);
4938 		BUG_ON(ret < 0);
4939 
4940 		btrfs_release_path(path);
4941 		path->leave_spinning = 1;
4942 
4943 		key.objectid = bytenr;
4944 		key.type = BTRFS_EXTENT_ITEM_KEY;
4945 		key.offset = num_bytes;
4946 
4947 		ret = btrfs_search_slot(trans, extent_root, &key, path,
4948 					-1, 1);
4949 		if (ret) {
4950 			printk(KERN_ERR "umm, got %d back from search"
4951 			       ", was looking for %llu\n", ret,
4952 			       (unsigned long long)bytenr);
4953 			btrfs_print_leaf(extent_root, path->nodes[0]);
4954 		}
4955 		BUG_ON(ret);
4956 		extent_slot = path->slots[0];
4957 		leaf = path->nodes[0];
4958 		item_size = btrfs_item_size_nr(leaf, extent_slot);
4959 	}
4960 #endif
4961 	BUG_ON(item_size < sizeof(*ei));
4962 	ei = btrfs_item_ptr(leaf, extent_slot,
4963 			    struct btrfs_extent_item);
4964 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4965 		struct btrfs_tree_block_info *bi;
4966 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4967 		bi = (struct btrfs_tree_block_info *)(ei + 1);
4968 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4969 	}
4970 
4971 	refs = btrfs_extent_refs(leaf, ei);
4972 	BUG_ON(refs < refs_to_drop);
4973 	refs -= refs_to_drop;
4974 
4975 	if (refs > 0) {
4976 		if (extent_op)
4977 			__run_delayed_extent_op(extent_op, leaf, ei);
4978 		/*
4979 		 * In the case of inline back ref, reference count will
4980 		 * be updated by remove_extent_backref
4981 		 */
4982 		if (iref) {
4983 			BUG_ON(!found_extent);
4984 		} else {
4985 			btrfs_set_extent_refs(leaf, ei, refs);
4986 			btrfs_mark_buffer_dirty(leaf);
4987 		}
4988 		if (found_extent) {
4989 			ret = remove_extent_backref(trans, extent_root, path,
4990 						    iref, refs_to_drop,
4991 						    is_data);
4992 			BUG_ON(ret);
4993 		}
4994 	} else {
4995 		if (found_extent) {
4996 			BUG_ON(is_data && refs_to_drop !=
4997 			       extent_data_ref_count(root, path, iref));
4998 			if (iref) {
4999 				BUG_ON(path->slots[0] != extent_slot);
5000 			} else {
5001 				BUG_ON(path->slots[0] != extent_slot + 1);
5002 				path->slots[0] = extent_slot;
5003 				num_to_del = 2;
5004 			}
5005 		}
5006 
5007 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5008 				      num_to_del);
5009 		BUG_ON(ret);
5010 		btrfs_release_path(path);
5011 
5012 		if (is_data) {
5013 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5014 			BUG_ON(ret);
5015 		} else {
5016 			invalidate_mapping_pages(info->btree_inode->i_mapping,
5017 			     bytenr >> PAGE_CACHE_SHIFT,
5018 			     (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
5019 		}
5020 
5021 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5022 		BUG_ON(ret);
5023 	}
5024 	btrfs_free_path(path);
5025 	return ret;
5026 }
5027 
5028 /*
5029  * when we free an block, it is possible (and likely) that we free the last
5030  * delayed ref for that extent as well.  This searches the delayed ref tree for
5031  * a given extent, and if there are no other delayed refs to be processed, it
5032  * removes it from the tree.
5033  */
5034 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5035 				      struct btrfs_root *root, u64 bytenr)
5036 {
5037 	struct btrfs_delayed_ref_head *head;
5038 	struct btrfs_delayed_ref_root *delayed_refs;
5039 	struct btrfs_delayed_ref_node *ref;
5040 	struct rb_node *node;
5041 	int ret = 0;
5042 
5043 	delayed_refs = &trans->transaction->delayed_refs;
5044 	spin_lock(&delayed_refs->lock);
5045 	head = btrfs_find_delayed_ref_head(trans, bytenr);
5046 	if (!head)
5047 		goto out;
5048 
5049 	node = rb_prev(&head->node.rb_node);
5050 	if (!node)
5051 		goto out;
5052 
5053 	ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5054 
5055 	/* there are still entries for this ref, we can't drop it */
5056 	if (ref->bytenr == bytenr)
5057 		goto out;
5058 
5059 	if (head->extent_op) {
5060 		if (!head->must_insert_reserved)
5061 			goto out;
5062 		kfree(head->extent_op);
5063 		head->extent_op = NULL;
5064 	}
5065 
5066 	/*
5067 	 * waiting for the lock here would deadlock.  If someone else has it
5068 	 * locked they are already in the process of dropping it anyway
5069 	 */
5070 	if (!mutex_trylock(&head->mutex))
5071 		goto out;
5072 
5073 	/*
5074 	 * at this point we have a head with no other entries.  Go
5075 	 * ahead and process it.
5076 	 */
5077 	head->node.in_tree = 0;
5078 	rb_erase(&head->node.rb_node, &delayed_refs->root);
5079 
5080 	delayed_refs->num_entries--;
5081 	if (waitqueue_active(&delayed_refs->seq_wait))
5082 		wake_up(&delayed_refs->seq_wait);
5083 
5084 	/*
5085 	 * we don't take a ref on the node because we're removing it from the
5086 	 * tree, so we just steal the ref the tree was holding.
5087 	 */
5088 	delayed_refs->num_heads--;
5089 	if (list_empty(&head->cluster))
5090 		delayed_refs->num_heads_ready--;
5091 
5092 	list_del_init(&head->cluster);
5093 	spin_unlock(&delayed_refs->lock);
5094 
5095 	BUG_ON(head->extent_op);
5096 	if (head->must_insert_reserved)
5097 		ret = 1;
5098 
5099 	mutex_unlock(&head->mutex);
5100 	btrfs_put_delayed_ref(&head->node);
5101 	return ret;
5102 out:
5103 	spin_unlock(&delayed_refs->lock);
5104 	return 0;
5105 }
5106 
5107 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5108 			   struct btrfs_root *root,
5109 			   struct extent_buffer *buf,
5110 			   u64 parent, int last_ref, int for_cow)
5111 {
5112 	struct btrfs_block_group_cache *cache = NULL;
5113 	int ret;
5114 
5115 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5116 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5117 					buf->start, buf->len,
5118 					parent, root->root_key.objectid,
5119 					btrfs_header_level(buf),
5120 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5121 		BUG_ON(ret);
5122 	}
5123 
5124 	if (!last_ref)
5125 		return;
5126 
5127 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5128 
5129 	if (btrfs_header_generation(buf) == trans->transid) {
5130 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5131 			ret = check_ref_cleanup(trans, root, buf->start);
5132 			if (!ret)
5133 				goto out;
5134 		}
5135 
5136 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5137 			pin_down_extent(root, cache, buf->start, buf->len, 1);
5138 			goto out;
5139 		}
5140 
5141 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5142 
5143 		btrfs_add_free_space(cache, buf->start, buf->len);
5144 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5145 	}
5146 out:
5147 	/*
5148 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5149 	 * anymore.
5150 	 */
5151 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5152 	btrfs_put_block_group(cache);
5153 }
5154 
5155 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5156 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5157 		      u64 owner, u64 offset, int for_cow)
5158 {
5159 	int ret;
5160 	struct btrfs_fs_info *fs_info = root->fs_info;
5161 
5162 	/*
5163 	 * tree log blocks never actually go into the extent allocation
5164 	 * tree, just update pinning info and exit early.
5165 	 */
5166 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5167 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5168 		/* unlocks the pinned mutex */
5169 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
5170 		ret = 0;
5171 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5172 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5173 					num_bytes,
5174 					parent, root_objectid, (int)owner,
5175 					BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5176 		BUG_ON(ret);
5177 	} else {
5178 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5179 						num_bytes,
5180 						parent, root_objectid, owner,
5181 						offset, BTRFS_DROP_DELAYED_REF,
5182 						NULL, for_cow);
5183 		BUG_ON(ret);
5184 	}
5185 	return ret;
5186 }
5187 
5188 static u64 stripe_align(struct btrfs_root *root, u64 val)
5189 {
5190 	u64 mask = ((u64)root->stripesize - 1);
5191 	u64 ret = (val + mask) & ~mask;
5192 	return ret;
5193 }
5194 
5195 /*
5196  * when we wait for progress in the block group caching, its because
5197  * our allocation attempt failed at least once.  So, we must sleep
5198  * and let some progress happen before we try again.
5199  *
5200  * This function will sleep at least once waiting for new free space to
5201  * show up, and then it will check the block group free space numbers
5202  * for our min num_bytes.  Another option is to have it go ahead
5203  * and look in the rbtree for a free extent of a given size, but this
5204  * is a good start.
5205  */
5206 static noinline int
5207 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5208 				u64 num_bytes)
5209 {
5210 	struct btrfs_caching_control *caching_ctl;
5211 	DEFINE_WAIT(wait);
5212 
5213 	caching_ctl = get_caching_control(cache);
5214 	if (!caching_ctl)
5215 		return 0;
5216 
5217 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5218 		   (cache->free_space_ctl->free_space >= num_bytes));
5219 
5220 	put_caching_control(caching_ctl);
5221 	return 0;
5222 }
5223 
5224 static noinline int
5225 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5226 {
5227 	struct btrfs_caching_control *caching_ctl;
5228 	DEFINE_WAIT(wait);
5229 
5230 	caching_ctl = get_caching_control(cache);
5231 	if (!caching_ctl)
5232 		return 0;
5233 
5234 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
5235 
5236 	put_caching_control(caching_ctl);
5237 	return 0;
5238 }
5239 
5240 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5241 {
5242 	int index;
5243 	if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
5244 		index = 0;
5245 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
5246 		index = 1;
5247 	else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
5248 		index = 2;
5249 	else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
5250 		index = 3;
5251 	else
5252 		index = 4;
5253 	return index;
5254 }
5255 
5256 enum btrfs_loop_type {
5257 	LOOP_FIND_IDEAL = 0,
5258 	LOOP_CACHING_NOWAIT = 1,
5259 	LOOP_CACHING_WAIT = 2,
5260 	LOOP_ALLOC_CHUNK = 3,
5261 	LOOP_NO_EMPTY_SIZE = 4,
5262 };
5263 
5264 /*
5265  * walks the btree of allocated extents and find a hole of a given size.
5266  * The key ins is changed to record the hole:
5267  * ins->objectid == block start
5268  * ins->flags = BTRFS_EXTENT_ITEM_KEY
5269  * ins->offset == number of blocks
5270  * Any available blocks before search_start are skipped.
5271  */
5272 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5273 				     struct btrfs_root *orig_root,
5274 				     u64 num_bytes, u64 empty_size,
5275 				     u64 search_start, u64 search_end,
5276 				     u64 hint_byte, struct btrfs_key *ins,
5277 				     u64 data)
5278 {
5279 	int ret = 0;
5280 	struct btrfs_root *root = orig_root->fs_info->extent_root;
5281 	struct btrfs_free_cluster *last_ptr = NULL;
5282 	struct btrfs_block_group_cache *block_group = NULL;
5283 	struct btrfs_block_group_cache *used_block_group;
5284 	int empty_cluster = 2 * 1024 * 1024;
5285 	int allowed_chunk_alloc = 0;
5286 	int done_chunk_alloc = 0;
5287 	struct btrfs_space_info *space_info;
5288 	int loop = 0;
5289 	int index = 0;
5290 	int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5291 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5292 	bool found_uncached_bg = false;
5293 	bool failed_cluster_refill = false;
5294 	bool failed_alloc = false;
5295 	bool use_cluster = true;
5296 	bool have_caching_bg = false;
5297 	u64 ideal_cache_percent = 0;
5298 	u64 ideal_cache_offset = 0;
5299 
5300 	WARN_ON(num_bytes < root->sectorsize);
5301 	btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5302 	ins->objectid = 0;
5303 	ins->offset = 0;
5304 
5305 	trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5306 
5307 	space_info = __find_space_info(root->fs_info, data);
5308 	if (!space_info) {
5309 		printk(KERN_ERR "No space info for %llu\n", data);
5310 		return -ENOSPC;
5311 	}
5312 
5313 	/*
5314 	 * If the space info is for both data and metadata it means we have a
5315 	 * small filesystem and we can't use the clustering stuff.
5316 	 */
5317 	if (btrfs_mixed_space_info(space_info))
5318 		use_cluster = false;
5319 
5320 	if (orig_root->ref_cows || empty_size)
5321 		allowed_chunk_alloc = 1;
5322 
5323 	if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5324 		last_ptr = &root->fs_info->meta_alloc_cluster;
5325 		if (!btrfs_test_opt(root, SSD))
5326 			empty_cluster = 64 * 1024;
5327 	}
5328 
5329 	if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5330 	    btrfs_test_opt(root, SSD)) {
5331 		last_ptr = &root->fs_info->data_alloc_cluster;
5332 	}
5333 
5334 	if (last_ptr) {
5335 		spin_lock(&last_ptr->lock);
5336 		if (last_ptr->block_group)
5337 			hint_byte = last_ptr->window_start;
5338 		spin_unlock(&last_ptr->lock);
5339 	}
5340 
5341 	search_start = max(search_start, first_logical_byte(root, 0));
5342 	search_start = max(search_start, hint_byte);
5343 
5344 	if (!last_ptr)
5345 		empty_cluster = 0;
5346 
5347 	if (search_start == hint_byte) {
5348 ideal_cache:
5349 		block_group = btrfs_lookup_block_group(root->fs_info,
5350 						       search_start);
5351 		used_block_group = block_group;
5352 		/*
5353 		 * we don't want to use the block group if it doesn't match our
5354 		 * allocation bits, or if its not cached.
5355 		 *
5356 		 * However if we are re-searching with an ideal block group
5357 		 * picked out then we don't care that the block group is cached.
5358 		 */
5359 		if (block_group && block_group_bits(block_group, data) &&
5360 		    (block_group->cached != BTRFS_CACHE_NO ||
5361 		     search_start == ideal_cache_offset)) {
5362 			down_read(&space_info->groups_sem);
5363 			if (list_empty(&block_group->list) ||
5364 			    block_group->ro) {
5365 				/*
5366 				 * someone is removing this block group,
5367 				 * we can't jump into the have_block_group
5368 				 * target because our list pointers are not
5369 				 * valid
5370 				 */
5371 				btrfs_put_block_group(block_group);
5372 				up_read(&space_info->groups_sem);
5373 			} else {
5374 				index = get_block_group_index(block_group);
5375 				goto have_block_group;
5376 			}
5377 		} else if (block_group) {
5378 			btrfs_put_block_group(block_group);
5379 		}
5380 	}
5381 search:
5382 	have_caching_bg = false;
5383 	down_read(&space_info->groups_sem);
5384 	list_for_each_entry(block_group, &space_info->block_groups[index],
5385 			    list) {
5386 		u64 offset;
5387 		int cached;
5388 
5389 		used_block_group = block_group;
5390 		btrfs_get_block_group(block_group);
5391 		search_start = block_group->key.objectid;
5392 
5393 		/*
5394 		 * this can happen if we end up cycling through all the
5395 		 * raid types, but we want to make sure we only allocate
5396 		 * for the proper type.
5397 		 */
5398 		if (!block_group_bits(block_group, data)) {
5399 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
5400 				BTRFS_BLOCK_GROUP_RAID1 |
5401 				BTRFS_BLOCK_GROUP_RAID10;
5402 
5403 			/*
5404 			 * if they asked for extra copies and this block group
5405 			 * doesn't provide them, bail.  This does allow us to
5406 			 * fill raid0 from raid1.
5407 			 */
5408 			if ((data & extra) && !(block_group->flags & extra))
5409 				goto loop;
5410 		}
5411 
5412 have_block_group:
5413 		cached = block_group_cache_done(block_group);
5414 		if (unlikely(!cached)) {
5415 			u64 free_percent;
5416 
5417 			found_uncached_bg = true;
5418 			ret = cache_block_group(block_group, trans,
5419 						orig_root, 1);
5420 			if (block_group->cached == BTRFS_CACHE_FINISHED)
5421 				goto alloc;
5422 
5423 			free_percent = btrfs_block_group_used(&block_group->item);
5424 			free_percent *= 100;
5425 			free_percent = div64_u64(free_percent,
5426 						 block_group->key.offset);
5427 			free_percent = 100 - free_percent;
5428 			if (free_percent > ideal_cache_percent &&
5429 			    likely(!block_group->ro)) {
5430 				ideal_cache_offset = block_group->key.objectid;
5431 				ideal_cache_percent = free_percent;
5432 			}
5433 
5434 			/*
5435 			 * The caching workers are limited to 2 threads, so we
5436 			 * can queue as much work as we care to.
5437 			 */
5438 			if (loop > LOOP_FIND_IDEAL) {
5439 				ret = cache_block_group(block_group, trans,
5440 							orig_root, 0);
5441 				BUG_ON(ret);
5442 			}
5443 
5444 			/*
5445 			 * If loop is set for cached only, try the next block
5446 			 * group.
5447 			 */
5448 			if (loop == LOOP_FIND_IDEAL)
5449 				goto loop;
5450 		}
5451 
5452 alloc:
5453 		if (unlikely(block_group->ro))
5454 			goto loop;
5455 
5456 		/*
5457 		 * Ok we want to try and use the cluster allocator, so
5458 		 * lets look there
5459 		 */
5460 		if (last_ptr) {
5461 			/*
5462 			 * the refill lock keeps out other
5463 			 * people trying to start a new cluster
5464 			 */
5465 			spin_lock(&last_ptr->refill_lock);
5466 			used_block_group = last_ptr->block_group;
5467 			if (used_block_group != block_group &&
5468 			    (!used_block_group ||
5469 			     used_block_group->ro ||
5470 			     !block_group_bits(used_block_group, data))) {
5471 				used_block_group = block_group;
5472 				goto refill_cluster;
5473 			}
5474 
5475 			if (used_block_group != block_group)
5476 				btrfs_get_block_group(used_block_group);
5477 
5478 			offset = btrfs_alloc_from_cluster(used_block_group,
5479 			  last_ptr, num_bytes, used_block_group->key.objectid);
5480 			if (offset) {
5481 				/* we have a block, we're done */
5482 				spin_unlock(&last_ptr->refill_lock);
5483 				trace_btrfs_reserve_extent_cluster(root,
5484 					block_group, search_start, num_bytes);
5485 				goto checks;
5486 			}
5487 
5488 			WARN_ON(last_ptr->block_group != used_block_group);
5489 			if (used_block_group != block_group) {
5490 				btrfs_put_block_group(used_block_group);
5491 				used_block_group = block_group;
5492 			}
5493 refill_cluster:
5494 			BUG_ON(used_block_group != block_group);
5495 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
5496 			 * set up a new clusters, so lets just skip it
5497 			 * and let the allocator find whatever block
5498 			 * it can find.  If we reach this point, we
5499 			 * will have tried the cluster allocator
5500 			 * plenty of times and not have found
5501 			 * anything, so we are likely way too
5502 			 * fragmented for the clustering stuff to find
5503 			 * anything.
5504 			 *
5505 			 * However, if the cluster is taken from the
5506 			 * current block group, release the cluster
5507 			 * first, so that we stand a better chance of
5508 			 * succeeding in the unclustered
5509 			 * allocation.  */
5510 			if (loop >= LOOP_NO_EMPTY_SIZE &&
5511 			    last_ptr->block_group != block_group) {
5512 				spin_unlock(&last_ptr->refill_lock);
5513 				goto unclustered_alloc;
5514 			}
5515 
5516 			/*
5517 			 * this cluster didn't work out, free it and
5518 			 * start over
5519 			 */
5520 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5521 
5522 			if (loop >= LOOP_NO_EMPTY_SIZE) {
5523 				spin_unlock(&last_ptr->refill_lock);
5524 				goto unclustered_alloc;
5525 			}
5526 
5527 			/* allocate a cluster in this block group */
5528 			ret = btrfs_find_space_cluster(trans, root,
5529 					       block_group, last_ptr,
5530 					       search_start, num_bytes,
5531 					       empty_cluster + empty_size);
5532 			if (ret == 0) {
5533 				/*
5534 				 * now pull our allocation out of this
5535 				 * cluster
5536 				 */
5537 				offset = btrfs_alloc_from_cluster(block_group,
5538 						  last_ptr, num_bytes,
5539 						  search_start);
5540 				if (offset) {
5541 					/* we found one, proceed */
5542 					spin_unlock(&last_ptr->refill_lock);
5543 					trace_btrfs_reserve_extent_cluster(root,
5544 						block_group, search_start,
5545 						num_bytes);
5546 					goto checks;
5547 				}
5548 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
5549 				   && !failed_cluster_refill) {
5550 				spin_unlock(&last_ptr->refill_lock);
5551 
5552 				failed_cluster_refill = true;
5553 				wait_block_group_cache_progress(block_group,
5554 				       num_bytes + empty_cluster + empty_size);
5555 				goto have_block_group;
5556 			}
5557 
5558 			/*
5559 			 * at this point we either didn't find a cluster
5560 			 * or we weren't able to allocate a block from our
5561 			 * cluster.  Free the cluster we've been trying
5562 			 * to use, and go to the next block group
5563 			 */
5564 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
5565 			spin_unlock(&last_ptr->refill_lock);
5566 			goto loop;
5567 		}
5568 
5569 unclustered_alloc:
5570 		spin_lock(&block_group->free_space_ctl->tree_lock);
5571 		if (cached &&
5572 		    block_group->free_space_ctl->free_space <
5573 		    num_bytes + empty_cluster + empty_size) {
5574 			spin_unlock(&block_group->free_space_ctl->tree_lock);
5575 			goto loop;
5576 		}
5577 		spin_unlock(&block_group->free_space_ctl->tree_lock);
5578 
5579 		offset = btrfs_find_space_for_alloc(block_group, search_start,
5580 						    num_bytes, empty_size);
5581 		/*
5582 		 * If we didn't find a chunk, and we haven't failed on this
5583 		 * block group before, and this block group is in the middle of
5584 		 * caching and we are ok with waiting, then go ahead and wait
5585 		 * for progress to be made, and set failed_alloc to true.
5586 		 *
5587 		 * If failed_alloc is true then we've already waited on this
5588 		 * block group once and should move on to the next block group.
5589 		 */
5590 		if (!offset && !failed_alloc && !cached &&
5591 		    loop > LOOP_CACHING_NOWAIT) {
5592 			wait_block_group_cache_progress(block_group,
5593 						num_bytes + empty_size);
5594 			failed_alloc = true;
5595 			goto have_block_group;
5596 		} else if (!offset) {
5597 			if (!cached)
5598 				have_caching_bg = true;
5599 			goto loop;
5600 		}
5601 checks:
5602 		search_start = stripe_align(root, offset);
5603 		/* move on to the next group */
5604 		if (search_start + num_bytes >= search_end) {
5605 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5606 			goto loop;
5607 		}
5608 
5609 		/* move on to the next group */
5610 		if (search_start + num_bytes >
5611 		    used_block_group->key.objectid + used_block_group->key.offset) {
5612 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5613 			goto loop;
5614 		}
5615 
5616 		if (offset < search_start)
5617 			btrfs_add_free_space(used_block_group, offset,
5618 					     search_start - offset);
5619 		BUG_ON(offset > search_start);
5620 
5621 		ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5622 						  alloc_type);
5623 		if (ret == -EAGAIN) {
5624 			btrfs_add_free_space(used_block_group, offset, num_bytes);
5625 			goto loop;
5626 		}
5627 
5628 		/* we are all good, lets return */
5629 		ins->objectid = search_start;
5630 		ins->offset = num_bytes;
5631 
5632 		trace_btrfs_reserve_extent(orig_root, block_group,
5633 					   search_start, num_bytes);
5634 		if (offset < search_start)
5635 			btrfs_add_free_space(used_block_group, offset,
5636 					     search_start - offset);
5637 		BUG_ON(offset > search_start);
5638 		if (used_block_group != block_group)
5639 			btrfs_put_block_group(used_block_group);
5640 		btrfs_put_block_group(block_group);
5641 		break;
5642 loop:
5643 		failed_cluster_refill = false;
5644 		failed_alloc = false;
5645 		BUG_ON(index != get_block_group_index(block_group));
5646 		if (used_block_group != block_group)
5647 			btrfs_put_block_group(used_block_group);
5648 		btrfs_put_block_group(block_group);
5649 	}
5650 	up_read(&space_info->groups_sem);
5651 
5652 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5653 		goto search;
5654 
5655 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5656 		goto search;
5657 
5658 	/* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5659 	 *			for them to make caching progress.  Also
5660 	 *			determine the best possible bg to cache
5661 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5662 	 *			caching kthreads as we move along
5663 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5664 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5665 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5666 	 *			again
5667 	 */
5668 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5669 		index = 0;
5670 		if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5671 			found_uncached_bg = false;
5672 			loop++;
5673 			if (!ideal_cache_percent)
5674 				goto search;
5675 
5676 			/*
5677 			 * 1 of the following 2 things have happened so far
5678 			 *
5679 			 * 1) We found an ideal block group for caching that
5680 			 * is mostly full and will cache quickly, so we might
5681 			 * as well wait for it.
5682 			 *
5683 			 * 2) We searched for cached only and we didn't find
5684 			 * anything, and we didn't start any caching kthreads
5685 			 * either, so chances are we will loop through and
5686 			 * start a couple caching kthreads, and then come back
5687 			 * around and just wait for them.  This will be slower
5688 			 * because we will have 2 caching kthreads reading at
5689 			 * the same time when we could have just started one
5690 			 * and waited for it to get far enough to give us an
5691 			 * allocation, so go ahead and go to the wait caching
5692 			 * loop.
5693 			 */
5694 			loop = LOOP_CACHING_WAIT;
5695 			search_start = ideal_cache_offset;
5696 			ideal_cache_percent = 0;
5697 			goto ideal_cache;
5698 		} else if (loop == LOOP_FIND_IDEAL) {
5699 			/*
5700 			 * Didn't find a uncached bg, wait on anything we find
5701 			 * next.
5702 			 */
5703 			loop = LOOP_CACHING_WAIT;
5704 			goto search;
5705 		}
5706 
5707 		loop++;
5708 
5709 		if (loop == LOOP_ALLOC_CHUNK) {
5710 		       if (allowed_chunk_alloc) {
5711 				ret = do_chunk_alloc(trans, root, num_bytes +
5712 						     2 * 1024 * 1024, data,
5713 						     CHUNK_ALLOC_LIMITED);
5714 				allowed_chunk_alloc = 0;
5715 				if (ret == 1)
5716 					done_chunk_alloc = 1;
5717 			} else if (!done_chunk_alloc &&
5718 				   space_info->force_alloc ==
5719 				   CHUNK_ALLOC_NO_FORCE) {
5720 				space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5721 			}
5722 
5723 		       /*
5724 			* We didn't allocate a chunk, go ahead and drop the
5725 			* empty size and loop again.
5726 			*/
5727 		       if (!done_chunk_alloc)
5728 			       loop = LOOP_NO_EMPTY_SIZE;
5729 		}
5730 
5731 		if (loop == LOOP_NO_EMPTY_SIZE) {
5732 			empty_size = 0;
5733 			empty_cluster = 0;
5734 		}
5735 
5736 		goto search;
5737 	} else if (!ins->objectid) {
5738 		ret = -ENOSPC;
5739 	} else if (ins->objectid) {
5740 		ret = 0;
5741 	}
5742 
5743 	return ret;
5744 }
5745 
5746 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5747 			    int dump_block_groups)
5748 {
5749 	struct btrfs_block_group_cache *cache;
5750 	int index = 0;
5751 
5752 	spin_lock(&info->lock);
5753 	printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5754 	       (unsigned long long)info->flags,
5755 	       (unsigned long long)(info->total_bytes - info->bytes_used -
5756 				    info->bytes_pinned - info->bytes_reserved -
5757 				    info->bytes_readonly),
5758 	       (info->full) ? "" : "not ");
5759 	printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5760 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
5761 	       (unsigned long long)info->total_bytes,
5762 	       (unsigned long long)info->bytes_used,
5763 	       (unsigned long long)info->bytes_pinned,
5764 	       (unsigned long long)info->bytes_reserved,
5765 	       (unsigned long long)info->bytes_may_use,
5766 	       (unsigned long long)info->bytes_readonly);
5767 	spin_unlock(&info->lock);
5768 
5769 	if (!dump_block_groups)
5770 		return;
5771 
5772 	down_read(&info->groups_sem);
5773 again:
5774 	list_for_each_entry(cache, &info->block_groups[index], list) {
5775 		spin_lock(&cache->lock);
5776 		printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5777 		       "%llu pinned %llu reserved\n",
5778 		       (unsigned long long)cache->key.objectid,
5779 		       (unsigned long long)cache->key.offset,
5780 		       (unsigned long long)btrfs_block_group_used(&cache->item),
5781 		       (unsigned long long)cache->pinned,
5782 		       (unsigned long long)cache->reserved);
5783 		btrfs_dump_free_space(cache, bytes);
5784 		spin_unlock(&cache->lock);
5785 	}
5786 	if (++index < BTRFS_NR_RAID_TYPES)
5787 		goto again;
5788 	up_read(&info->groups_sem);
5789 }
5790 
5791 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5792 			 struct btrfs_root *root,
5793 			 u64 num_bytes, u64 min_alloc_size,
5794 			 u64 empty_size, u64 hint_byte,
5795 			 u64 search_end, struct btrfs_key *ins,
5796 			 u64 data)
5797 {
5798 	bool final_tried = false;
5799 	int ret;
5800 	u64 search_start = 0;
5801 
5802 	data = btrfs_get_alloc_profile(root, data);
5803 again:
5804 	/*
5805 	 * the only place that sets empty_size is btrfs_realloc_node, which
5806 	 * is not called recursively on allocations
5807 	 */
5808 	if (empty_size || root->ref_cows)
5809 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5810 				     num_bytes + 2 * 1024 * 1024, data,
5811 				     CHUNK_ALLOC_NO_FORCE);
5812 
5813 	WARN_ON(num_bytes < root->sectorsize);
5814 	ret = find_free_extent(trans, root, num_bytes, empty_size,
5815 			       search_start, search_end, hint_byte,
5816 			       ins, data);
5817 
5818 	if (ret == -ENOSPC) {
5819 		if (!final_tried) {
5820 			num_bytes = num_bytes >> 1;
5821 			num_bytes = num_bytes & ~(root->sectorsize - 1);
5822 			num_bytes = max(num_bytes, min_alloc_size);
5823 			do_chunk_alloc(trans, root->fs_info->extent_root,
5824 				       num_bytes, data, CHUNK_ALLOC_FORCE);
5825 			if (num_bytes == min_alloc_size)
5826 				final_tried = true;
5827 			goto again;
5828 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5829 			struct btrfs_space_info *sinfo;
5830 
5831 			sinfo = __find_space_info(root->fs_info, data);
5832 			printk(KERN_ERR "btrfs allocation failed flags %llu, "
5833 			       "wanted %llu\n", (unsigned long long)data,
5834 			       (unsigned long long)num_bytes);
5835 			dump_space_info(sinfo, num_bytes, 1);
5836 		}
5837 	}
5838 
5839 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5840 
5841 	return ret;
5842 }
5843 
5844 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5845 					u64 start, u64 len, int pin)
5846 {
5847 	struct btrfs_block_group_cache *cache;
5848 	int ret = 0;
5849 
5850 	cache = btrfs_lookup_block_group(root->fs_info, start);
5851 	if (!cache) {
5852 		printk(KERN_ERR "Unable to find block group for %llu\n",
5853 		       (unsigned long long)start);
5854 		return -ENOSPC;
5855 	}
5856 
5857 	if (btrfs_test_opt(root, DISCARD))
5858 		ret = btrfs_discard_extent(root, start, len, NULL);
5859 
5860 	if (pin)
5861 		pin_down_extent(root, cache, start, len, 1);
5862 	else {
5863 		btrfs_add_free_space(cache, start, len);
5864 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5865 	}
5866 	btrfs_put_block_group(cache);
5867 
5868 	trace_btrfs_reserved_extent_free(root, start, len);
5869 
5870 	return ret;
5871 }
5872 
5873 int btrfs_free_reserved_extent(struct btrfs_root *root,
5874 					u64 start, u64 len)
5875 {
5876 	return __btrfs_free_reserved_extent(root, start, len, 0);
5877 }
5878 
5879 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5880 				       u64 start, u64 len)
5881 {
5882 	return __btrfs_free_reserved_extent(root, start, len, 1);
5883 }
5884 
5885 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5886 				      struct btrfs_root *root,
5887 				      u64 parent, u64 root_objectid,
5888 				      u64 flags, u64 owner, u64 offset,
5889 				      struct btrfs_key *ins, int ref_mod)
5890 {
5891 	int ret;
5892 	struct btrfs_fs_info *fs_info = root->fs_info;
5893 	struct btrfs_extent_item *extent_item;
5894 	struct btrfs_extent_inline_ref *iref;
5895 	struct btrfs_path *path;
5896 	struct extent_buffer *leaf;
5897 	int type;
5898 	u32 size;
5899 
5900 	if (parent > 0)
5901 		type = BTRFS_SHARED_DATA_REF_KEY;
5902 	else
5903 		type = BTRFS_EXTENT_DATA_REF_KEY;
5904 
5905 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5906 
5907 	path = btrfs_alloc_path();
5908 	if (!path)
5909 		return -ENOMEM;
5910 
5911 	path->leave_spinning = 1;
5912 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5913 				      ins, size);
5914 	BUG_ON(ret);
5915 
5916 	leaf = path->nodes[0];
5917 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5918 				     struct btrfs_extent_item);
5919 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5920 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5921 	btrfs_set_extent_flags(leaf, extent_item,
5922 			       flags | BTRFS_EXTENT_FLAG_DATA);
5923 
5924 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5925 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
5926 	if (parent > 0) {
5927 		struct btrfs_shared_data_ref *ref;
5928 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
5929 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5930 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5931 	} else {
5932 		struct btrfs_extent_data_ref *ref;
5933 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5934 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5935 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5936 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5937 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5938 	}
5939 
5940 	btrfs_mark_buffer_dirty(path->nodes[0]);
5941 	btrfs_free_path(path);
5942 
5943 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5944 	if (ret) {
5945 		printk(KERN_ERR "btrfs update block group failed for %llu "
5946 		       "%llu\n", (unsigned long long)ins->objectid,
5947 		       (unsigned long long)ins->offset);
5948 		BUG();
5949 	}
5950 	return ret;
5951 }
5952 
5953 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5954 				     struct btrfs_root *root,
5955 				     u64 parent, u64 root_objectid,
5956 				     u64 flags, struct btrfs_disk_key *key,
5957 				     int level, struct btrfs_key *ins)
5958 {
5959 	int ret;
5960 	struct btrfs_fs_info *fs_info = root->fs_info;
5961 	struct btrfs_extent_item *extent_item;
5962 	struct btrfs_tree_block_info *block_info;
5963 	struct btrfs_extent_inline_ref *iref;
5964 	struct btrfs_path *path;
5965 	struct extent_buffer *leaf;
5966 	u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5967 
5968 	path = btrfs_alloc_path();
5969 	if (!path)
5970 		return -ENOMEM;
5971 
5972 	path->leave_spinning = 1;
5973 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5974 				      ins, size);
5975 	BUG_ON(ret);
5976 
5977 	leaf = path->nodes[0];
5978 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
5979 				     struct btrfs_extent_item);
5980 	btrfs_set_extent_refs(leaf, extent_item, 1);
5981 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5982 	btrfs_set_extent_flags(leaf, extent_item,
5983 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5984 	block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5985 
5986 	btrfs_set_tree_block_key(leaf, block_info, key);
5987 	btrfs_set_tree_block_level(leaf, block_info, level);
5988 
5989 	iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5990 	if (parent > 0) {
5991 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5992 		btrfs_set_extent_inline_ref_type(leaf, iref,
5993 						 BTRFS_SHARED_BLOCK_REF_KEY);
5994 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5995 	} else {
5996 		btrfs_set_extent_inline_ref_type(leaf, iref,
5997 						 BTRFS_TREE_BLOCK_REF_KEY);
5998 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5999 	}
6000 
6001 	btrfs_mark_buffer_dirty(leaf);
6002 	btrfs_free_path(path);
6003 
6004 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6005 	if (ret) {
6006 		printk(KERN_ERR "btrfs update block group failed for %llu "
6007 		       "%llu\n", (unsigned long long)ins->objectid,
6008 		       (unsigned long long)ins->offset);
6009 		BUG();
6010 	}
6011 	return ret;
6012 }
6013 
6014 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6015 				     struct btrfs_root *root,
6016 				     u64 root_objectid, u64 owner,
6017 				     u64 offset, struct btrfs_key *ins)
6018 {
6019 	int ret;
6020 
6021 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6022 
6023 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6024 					 ins->offset, 0,
6025 					 root_objectid, owner, offset,
6026 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6027 	return ret;
6028 }
6029 
6030 /*
6031  * this is used by the tree logging recovery code.  It records that
6032  * an extent has been allocated and makes sure to clear the free
6033  * space cache bits as well
6034  */
6035 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6036 				   struct btrfs_root *root,
6037 				   u64 root_objectid, u64 owner, u64 offset,
6038 				   struct btrfs_key *ins)
6039 {
6040 	int ret;
6041 	struct btrfs_block_group_cache *block_group;
6042 	struct btrfs_caching_control *caching_ctl;
6043 	u64 start = ins->objectid;
6044 	u64 num_bytes = ins->offset;
6045 
6046 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6047 	cache_block_group(block_group, trans, NULL, 0);
6048 	caching_ctl = get_caching_control(block_group);
6049 
6050 	if (!caching_ctl) {
6051 		BUG_ON(!block_group_cache_done(block_group));
6052 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6053 		BUG_ON(ret);
6054 	} else {
6055 		mutex_lock(&caching_ctl->mutex);
6056 
6057 		if (start >= caching_ctl->progress) {
6058 			ret = add_excluded_extent(root, start, num_bytes);
6059 			BUG_ON(ret);
6060 		} else if (start + num_bytes <= caching_ctl->progress) {
6061 			ret = btrfs_remove_free_space(block_group,
6062 						      start, num_bytes);
6063 			BUG_ON(ret);
6064 		} else {
6065 			num_bytes = caching_ctl->progress - start;
6066 			ret = btrfs_remove_free_space(block_group,
6067 						      start, num_bytes);
6068 			BUG_ON(ret);
6069 
6070 			start = caching_ctl->progress;
6071 			num_bytes = ins->objectid + ins->offset -
6072 				    caching_ctl->progress;
6073 			ret = add_excluded_extent(root, start, num_bytes);
6074 			BUG_ON(ret);
6075 		}
6076 
6077 		mutex_unlock(&caching_ctl->mutex);
6078 		put_caching_control(caching_ctl);
6079 	}
6080 
6081 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6082 					  RESERVE_ALLOC_NO_ACCOUNT);
6083 	BUG_ON(ret);
6084 	btrfs_put_block_group(block_group);
6085 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6086 					 0, owner, offset, ins, 1);
6087 	return ret;
6088 }
6089 
6090 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6091 					    struct btrfs_root *root,
6092 					    u64 bytenr, u32 blocksize,
6093 					    int level)
6094 {
6095 	struct extent_buffer *buf;
6096 
6097 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6098 	if (!buf)
6099 		return ERR_PTR(-ENOMEM);
6100 	btrfs_set_header_generation(buf, trans->transid);
6101 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6102 	btrfs_tree_lock(buf);
6103 	clean_tree_block(trans, root, buf);
6104 
6105 	btrfs_set_lock_blocking(buf);
6106 	btrfs_set_buffer_uptodate(buf);
6107 
6108 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6109 		/*
6110 		 * we allow two log transactions at a time, use different
6111 		 * EXENT bit to differentiate dirty pages.
6112 		 */
6113 		if (root->log_transid % 2 == 0)
6114 			set_extent_dirty(&root->dirty_log_pages, buf->start,
6115 					buf->start + buf->len - 1, GFP_NOFS);
6116 		else
6117 			set_extent_new(&root->dirty_log_pages, buf->start,
6118 					buf->start + buf->len - 1, GFP_NOFS);
6119 	} else {
6120 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6121 			 buf->start + buf->len - 1, GFP_NOFS);
6122 	}
6123 	trans->blocks_used++;
6124 	/* this returns a buffer locked for blocking */
6125 	return buf;
6126 }
6127 
6128 static struct btrfs_block_rsv *
6129 use_block_rsv(struct btrfs_trans_handle *trans,
6130 	      struct btrfs_root *root, u32 blocksize)
6131 {
6132 	struct btrfs_block_rsv *block_rsv;
6133 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6134 	int ret;
6135 
6136 	block_rsv = get_block_rsv(trans, root);
6137 
6138 	if (block_rsv->size == 0) {
6139 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6140 		/*
6141 		 * If we couldn't reserve metadata bytes try and use some from
6142 		 * the global reserve.
6143 		 */
6144 		if (ret && block_rsv != global_rsv) {
6145 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6146 			if (!ret)
6147 				return global_rsv;
6148 			return ERR_PTR(ret);
6149 		} else if (ret) {
6150 			return ERR_PTR(ret);
6151 		}
6152 		return block_rsv;
6153 	}
6154 
6155 	ret = block_rsv_use_bytes(block_rsv, blocksize);
6156 	if (!ret)
6157 		return block_rsv;
6158 	if (ret) {
6159 		static DEFINE_RATELIMIT_STATE(_rs,
6160 				DEFAULT_RATELIMIT_INTERVAL,
6161 				/*DEFAULT_RATELIMIT_BURST*/ 2);
6162 		if (__ratelimit(&_rs)) {
6163 			printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6164 			WARN_ON(1);
6165 		}
6166 		ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6167 		if (!ret) {
6168 			return block_rsv;
6169 		} else if (ret && block_rsv != global_rsv) {
6170 			ret = block_rsv_use_bytes(global_rsv, blocksize);
6171 			if (!ret)
6172 				return global_rsv;
6173 		}
6174 	}
6175 
6176 	return ERR_PTR(-ENOSPC);
6177 }
6178 
6179 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6180 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
6181 {
6182 	block_rsv_add_bytes(block_rsv, blocksize, 0);
6183 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6184 }
6185 
6186 /*
6187  * finds a free extent and does all the dirty work required for allocation
6188  * returns the key for the extent through ins, and a tree buffer for
6189  * the first block of the extent through buf.
6190  *
6191  * returns the tree buffer or NULL.
6192  */
6193 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6194 					struct btrfs_root *root, u32 blocksize,
6195 					u64 parent, u64 root_objectid,
6196 					struct btrfs_disk_key *key, int level,
6197 					u64 hint, u64 empty_size, int for_cow)
6198 {
6199 	struct btrfs_key ins;
6200 	struct btrfs_block_rsv *block_rsv;
6201 	struct extent_buffer *buf;
6202 	u64 flags = 0;
6203 	int ret;
6204 
6205 
6206 	block_rsv = use_block_rsv(trans, root, blocksize);
6207 	if (IS_ERR(block_rsv))
6208 		return ERR_CAST(block_rsv);
6209 
6210 	ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6211 				   empty_size, hint, (u64)-1, &ins, 0);
6212 	if (ret) {
6213 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6214 		return ERR_PTR(ret);
6215 	}
6216 
6217 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6218 				    blocksize, level);
6219 	BUG_ON(IS_ERR(buf));
6220 
6221 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6222 		if (parent == 0)
6223 			parent = ins.objectid;
6224 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6225 	} else
6226 		BUG_ON(parent > 0);
6227 
6228 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6229 		struct btrfs_delayed_extent_op *extent_op;
6230 		extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6231 		BUG_ON(!extent_op);
6232 		if (key)
6233 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
6234 		else
6235 			memset(&extent_op->key, 0, sizeof(extent_op->key));
6236 		extent_op->flags_to_set = flags;
6237 		extent_op->update_key = 1;
6238 		extent_op->update_flags = 1;
6239 		extent_op->is_data = 0;
6240 
6241 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6242 					ins.objectid,
6243 					ins.offset, parent, root_objectid,
6244 					level, BTRFS_ADD_DELAYED_EXTENT,
6245 					extent_op, for_cow);
6246 		BUG_ON(ret);
6247 	}
6248 	return buf;
6249 }
6250 
6251 struct walk_control {
6252 	u64 refs[BTRFS_MAX_LEVEL];
6253 	u64 flags[BTRFS_MAX_LEVEL];
6254 	struct btrfs_key update_progress;
6255 	int stage;
6256 	int level;
6257 	int shared_level;
6258 	int update_ref;
6259 	int keep_locks;
6260 	int reada_slot;
6261 	int reada_count;
6262 	int for_reloc;
6263 };
6264 
6265 #define DROP_REFERENCE	1
6266 #define UPDATE_BACKREF	2
6267 
6268 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6269 				     struct btrfs_root *root,
6270 				     struct walk_control *wc,
6271 				     struct btrfs_path *path)
6272 {
6273 	u64 bytenr;
6274 	u64 generation;
6275 	u64 refs;
6276 	u64 flags;
6277 	u32 nritems;
6278 	u32 blocksize;
6279 	struct btrfs_key key;
6280 	struct extent_buffer *eb;
6281 	int ret;
6282 	int slot;
6283 	int nread = 0;
6284 
6285 	if (path->slots[wc->level] < wc->reada_slot) {
6286 		wc->reada_count = wc->reada_count * 2 / 3;
6287 		wc->reada_count = max(wc->reada_count, 2);
6288 	} else {
6289 		wc->reada_count = wc->reada_count * 3 / 2;
6290 		wc->reada_count = min_t(int, wc->reada_count,
6291 					BTRFS_NODEPTRS_PER_BLOCK(root));
6292 	}
6293 
6294 	eb = path->nodes[wc->level];
6295 	nritems = btrfs_header_nritems(eb);
6296 	blocksize = btrfs_level_size(root, wc->level - 1);
6297 
6298 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6299 		if (nread >= wc->reada_count)
6300 			break;
6301 
6302 		cond_resched();
6303 		bytenr = btrfs_node_blockptr(eb, slot);
6304 		generation = btrfs_node_ptr_generation(eb, slot);
6305 
6306 		if (slot == path->slots[wc->level])
6307 			goto reada;
6308 
6309 		if (wc->stage == UPDATE_BACKREF &&
6310 		    generation <= root->root_key.offset)
6311 			continue;
6312 
6313 		/* We don't lock the tree block, it's OK to be racy here */
6314 		ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6315 					       &refs, &flags);
6316 		BUG_ON(ret);
6317 		BUG_ON(refs == 0);
6318 
6319 		if (wc->stage == DROP_REFERENCE) {
6320 			if (refs == 1)
6321 				goto reada;
6322 
6323 			if (wc->level == 1 &&
6324 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6325 				continue;
6326 			if (!wc->update_ref ||
6327 			    generation <= root->root_key.offset)
6328 				continue;
6329 			btrfs_node_key_to_cpu(eb, &key, slot);
6330 			ret = btrfs_comp_cpu_keys(&key,
6331 						  &wc->update_progress);
6332 			if (ret < 0)
6333 				continue;
6334 		} else {
6335 			if (wc->level == 1 &&
6336 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6337 				continue;
6338 		}
6339 reada:
6340 		ret = readahead_tree_block(root, bytenr, blocksize,
6341 					   generation);
6342 		if (ret)
6343 			break;
6344 		nread++;
6345 	}
6346 	wc->reada_slot = slot;
6347 }
6348 
6349 /*
6350  * hepler to process tree block while walking down the tree.
6351  *
6352  * when wc->stage == UPDATE_BACKREF, this function updates
6353  * back refs for pointers in the block.
6354  *
6355  * NOTE: return value 1 means we should stop walking down.
6356  */
6357 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6358 				   struct btrfs_root *root,
6359 				   struct btrfs_path *path,
6360 				   struct walk_control *wc, int lookup_info)
6361 {
6362 	int level = wc->level;
6363 	struct extent_buffer *eb = path->nodes[level];
6364 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6365 	int ret;
6366 
6367 	if (wc->stage == UPDATE_BACKREF &&
6368 	    btrfs_header_owner(eb) != root->root_key.objectid)
6369 		return 1;
6370 
6371 	/*
6372 	 * when reference count of tree block is 1, it won't increase
6373 	 * again. once full backref flag is set, we never clear it.
6374 	 */
6375 	if (lookup_info &&
6376 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6377 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6378 		BUG_ON(!path->locks[level]);
6379 		ret = btrfs_lookup_extent_info(trans, root,
6380 					       eb->start, eb->len,
6381 					       &wc->refs[level],
6382 					       &wc->flags[level]);
6383 		BUG_ON(ret);
6384 		BUG_ON(wc->refs[level] == 0);
6385 	}
6386 
6387 	if (wc->stage == DROP_REFERENCE) {
6388 		if (wc->refs[level] > 1)
6389 			return 1;
6390 
6391 		if (path->locks[level] && !wc->keep_locks) {
6392 			btrfs_tree_unlock_rw(eb, path->locks[level]);
6393 			path->locks[level] = 0;
6394 		}
6395 		return 0;
6396 	}
6397 
6398 	/* wc->stage == UPDATE_BACKREF */
6399 	if (!(wc->flags[level] & flag)) {
6400 		BUG_ON(!path->locks[level]);
6401 		ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6402 		BUG_ON(ret);
6403 		ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6404 		BUG_ON(ret);
6405 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6406 						  eb->len, flag, 0);
6407 		BUG_ON(ret);
6408 		wc->flags[level] |= flag;
6409 	}
6410 
6411 	/*
6412 	 * the block is shared by multiple trees, so it's not good to
6413 	 * keep the tree lock
6414 	 */
6415 	if (path->locks[level] && level > 0) {
6416 		btrfs_tree_unlock_rw(eb, path->locks[level]);
6417 		path->locks[level] = 0;
6418 	}
6419 	return 0;
6420 }
6421 
6422 /*
6423  * hepler to process tree block pointer.
6424  *
6425  * when wc->stage == DROP_REFERENCE, this function checks
6426  * reference count of the block pointed to. if the block
6427  * is shared and we need update back refs for the subtree
6428  * rooted at the block, this function changes wc->stage to
6429  * UPDATE_BACKREF. if the block is shared and there is no
6430  * need to update back, this function drops the reference
6431  * to the block.
6432  *
6433  * NOTE: return value 1 means we should stop walking down.
6434  */
6435 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6436 				 struct btrfs_root *root,
6437 				 struct btrfs_path *path,
6438 				 struct walk_control *wc, int *lookup_info)
6439 {
6440 	u64 bytenr;
6441 	u64 generation;
6442 	u64 parent;
6443 	u32 blocksize;
6444 	struct btrfs_key key;
6445 	struct extent_buffer *next;
6446 	int level = wc->level;
6447 	int reada = 0;
6448 	int ret = 0;
6449 
6450 	generation = btrfs_node_ptr_generation(path->nodes[level],
6451 					       path->slots[level]);
6452 	/*
6453 	 * if the lower level block was created before the snapshot
6454 	 * was created, we know there is no need to update back refs
6455 	 * for the subtree
6456 	 */
6457 	if (wc->stage == UPDATE_BACKREF &&
6458 	    generation <= root->root_key.offset) {
6459 		*lookup_info = 1;
6460 		return 1;
6461 	}
6462 
6463 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6464 	blocksize = btrfs_level_size(root, level - 1);
6465 
6466 	next = btrfs_find_tree_block(root, bytenr, blocksize);
6467 	if (!next) {
6468 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6469 		if (!next)
6470 			return -ENOMEM;
6471 		reada = 1;
6472 	}
6473 	btrfs_tree_lock(next);
6474 	btrfs_set_lock_blocking(next);
6475 
6476 	ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6477 				       &wc->refs[level - 1],
6478 				       &wc->flags[level - 1]);
6479 	BUG_ON(ret);
6480 	BUG_ON(wc->refs[level - 1] == 0);
6481 	*lookup_info = 0;
6482 
6483 	if (wc->stage == DROP_REFERENCE) {
6484 		if (wc->refs[level - 1] > 1) {
6485 			if (level == 1 &&
6486 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6487 				goto skip;
6488 
6489 			if (!wc->update_ref ||
6490 			    generation <= root->root_key.offset)
6491 				goto skip;
6492 
6493 			btrfs_node_key_to_cpu(path->nodes[level], &key,
6494 					      path->slots[level]);
6495 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6496 			if (ret < 0)
6497 				goto skip;
6498 
6499 			wc->stage = UPDATE_BACKREF;
6500 			wc->shared_level = level - 1;
6501 		}
6502 	} else {
6503 		if (level == 1 &&
6504 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6505 			goto skip;
6506 	}
6507 
6508 	if (!btrfs_buffer_uptodate(next, generation)) {
6509 		btrfs_tree_unlock(next);
6510 		free_extent_buffer(next);
6511 		next = NULL;
6512 		*lookup_info = 1;
6513 	}
6514 
6515 	if (!next) {
6516 		if (reada && level == 1)
6517 			reada_walk_down(trans, root, wc, path);
6518 		next = read_tree_block(root, bytenr, blocksize, generation);
6519 		if (!next)
6520 			return -EIO;
6521 		btrfs_tree_lock(next);
6522 		btrfs_set_lock_blocking(next);
6523 	}
6524 
6525 	level--;
6526 	BUG_ON(level != btrfs_header_level(next));
6527 	path->nodes[level] = next;
6528 	path->slots[level] = 0;
6529 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6530 	wc->level = level;
6531 	if (wc->level == 1)
6532 		wc->reada_slot = 0;
6533 	return 0;
6534 skip:
6535 	wc->refs[level - 1] = 0;
6536 	wc->flags[level - 1] = 0;
6537 	if (wc->stage == DROP_REFERENCE) {
6538 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6539 			parent = path->nodes[level]->start;
6540 		} else {
6541 			BUG_ON(root->root_key.objectid !=
6542 			       btrfs_header_owner(path->nodes[level]));
6543 			parent = 0;
6544 		}
6545 
6546 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6547 				root->root_key.objectid, level - 1, 0, 0);
6548 		BUG_ON(ret);
6549 	}
6550 	btrfs_tree_unlock(next);
6551 	free_extent_buffer(next);
6552 	*lookup_info = 1;
6553 	return 1;
6554 }
6555 
6556 /*
6557  * hepler to process tree block while walking up the tree.
6558  *
6559  * when wc->stage == DROP_REFERENCE, this function drops
6560  * reference count on the block.
6561  *
6562  * when wc->stage == UPDATE_BACKREF, this function changes
6563  * wc->stage back to DROP_REFERENCE if we changed wc->stage
6564  * to UPDATE_BACKREF previously while processing the block.
6565  *
6566  * NOTE: return value 1 means we should stop walking up.
6567  */
6568 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6569 				 struct btrfs_root *root,
6570 				 struct btrfs_path *path,
6571 				 struct walk_control *wc)
6572 {
6573 	int ret;
6574 	int level = wc->level;
6575 	struct extent_buffer *eb = path->nodes[level];
6576 	u64 parent = 0;
6577 
6578 	if (wc->stage == UPDATE_BACKREF) {
6579 		BUG_ON(wc->shared_level < level);
6580 		if (level < wc->shared_level)
6581 			goto out;
6582 
6583 		ret = find_next_key(path, level + 1, &wc->update_progress);
6584 		if (ret > 0)
6585 			wc->update_ref = 0;
6586 
6587 		wc->stage = DROP_REFERENCE;
6588 		wc->shared_level = -1;
6589 		path->slots[level] = 0;
6590 
6591 		/*
6592 		 * check reference count again if the block isn't locked.
6593 		 * we should start walking down the tree again if reference
6594 		 * count is one.
6595 		 */
6596 		if (!path->locks[level]) {
6597 			BUG_ON(level == 0);
6598 			btrfs_tree_lock(eb);
6599 			btrfs_set_lock_blocking(eb);
6600 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6601 
6602 			ret = btrfs_lookup_extent_info(trans, root,
6603 						       eb->start, eb->len,
6604 						       &wc->refs[level],
6605 						       &wc->flags[level]);
6606 			BUG_ON(ret);
6607 			BUG_ON(wc->refs[level] == 0);
6608 			if (wc->refs[level] == 1) {
6609 				btrfs_tree_unlock_rw(eb, path->locks[level]);
6610 				return 1;
6611 			}
6612 		}
6613 	}
6614 
6615 	/* wc->stage == DROP_REFERENCE */
6616 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6617 
6618 	if (wc->refs[level] == 1) {
6619 		if (level == 0) {
6620 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6621 				ret = btrfs_dec_ref(trans, root, eb, 1,
6622 						    wc->for_reloc);
6623 			else
6624 				ret = btrfs_dec_ref(trans, root, eb, 0,
6625 						    wc->for_reloc);
6626 			BUG_ON(ret);
6627 		}
6628 		/* make block locked assertion in clean_tree_block happy */
6629 		if (!path->locks[level] &&
6630 		    btrfs_header_generation(eb) == trans->transid) {
6631 			btrfs_tree_lock(eb);
6632 			btrfs_set_lock_blocking(eb);
6633 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6634 		}
6635 		clean_tree_block(trans, root, eb);
6636 	}
6637 
6638 	if (eb == root->node) {
6639 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6640 			parent = eb->start;
6641 		else
6642 			BUG_ON(root->root_key.objectid !=
6643 			       btrfs_header_owner(eb));
6644 	} else {
6645 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6646 			parent = path->nodes[level + 1]->start;
6647 		else
6648 			BUG_ON(root->root_key.objectid !=
6649 			       btrfs_header_owner(path->nodes[level + 1]));
6650 	}
6651 
6652 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1, 0);
6653 out:
6654 	wc->refs[level] = 0;
6655 	wc->flags[level] = 0;
6656 	return 0;
6657 }
6658 
6659 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6660 				   struct btrfs_root *root,
6661 				   struct btrfs_path *path,
6662 				   struct walk_control *wc)
6663 {
6664 	int level = wc->level;
6665 	int lookup_info = 1;
6666 	int ret;
6667 
6668 	while (level >= 0) {
6669 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
6670 		if (ret > 0)
6671 			break;
6672 
6673 		if (level == 0)
6674 			break;
6675 
6676 		if (path->slots[level] >=
6677 		    btrfs_header_nritems(path->nodes[level]))
6678 			break;
6679 
6680 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
6681 		if (ret > 0) {
6682 			path->slots[level]++;
6683 			continue;
6684 		} else if (ret < 0)
6685 			return ret;
6686 		level = wc->level;
6687 	}
6688 	return 0;
6689 }
6690 
6691 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6692 				 struct btrfs_root *root,
6693 				 struct btrfs_path *path,
6694 				 struct walk_control *wc, int max_level)
6695 {
6696 	int level = wc->level;
6697 	int ret;
6698 
6699 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6700 	while (level < max_level && path->nodes[level]) {
6701 		wc->level = level;
6702 		if (path->slots[level] + 1 <
6703 		    btrfs_header_nritems(path->nodes[level])) {
6704 			path->slots[level]++;
6705 			return 0;
6706 		} else {
6707 			ret = walk_up_proc(trans, root, path, wc);
6708 			if (ret > 0)
6709 				return 0;
6710 
6711 			if (path->locks[level]) {
6712 				btrfs_tree_unlock_rw(path->nodes[level],
6713 						     path->locks[level]);
6714 				path->locks[level] = 0;
6715 			}
6716 			free_extent_buffer(path->nodes[level]);
6717 			path->nodes[level] = NULL;
6718 			level++;
6719 		}
6720 	}
6721 	return 1;
6722 }
6723 
6724 /*
6725  * drop a subvolume tree.
6726  *
6727  * this function traverses the tree freeing any blocks that only
6728  * referenced by the tree.
6729  *
6730  * when a shared tree block is found. this function decreases its
6731  * reference count by one. if update_ref is true, this function
6732  * also make sure backrefs for the shared block and all lower level
6733  * blocks are properly updated.
6734  */
6735 void btrfs_drop_snapshot(struct btrfs_root *root,
6736 			 struct btrfs_block_rsv *block_rsv, int update_ref,
6737 			 int for_reloc)
6738 {
6739 	struct btrfs_path *path;
6740 	struct btrfs_trans_handle *trans;
6741 	struct btrfs_root *tree_root = root->fs_info->tree_root;
6742 	struct btrfs_root_item *root_item = &root->root_item;
6743 	struct walk_control *wc;
6744 	struct btrfs_key key;
6745 	int err = 0;
6746 	int ret;
6747 	int level;
6748 
6749 	path = btrfs_alloc_path();
6750 	if (!path) {
6751 		err = -ENOMEM;
6752 		goto out;
6753 	}
6754 
6755 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6756 	if (!wc) {
6757 		btrfs_free_path(path);
6758 		err = -ENOMEM;
6759 		goto out;
6760 	}
6761 
6762 	trans = btrfs_start_transaction(tree_root, 0);
6763 	BUG_ON(IS_ERR(trans));
6764 
6765 	if (block_rsv)
6766 		trans->block_rsv = block_rsv;
6767 
6768 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6769 		level = btrfs_header_level(root->node);
6770 		path->nodes[level] = btrfs_lock_root_node(root);
6771 		btrfs_set_lock_blocking(path->nodes[level]);
6772 		path->slots[level] = 0;
6773 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6774 		memset(&wc->update_progress, 0,
6775 		       sizeof(wc->update_progress));
6776 	} else {
6777 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6778 		memcpy(&wc->update_progress, &key,
6779 		       sizeof(wc->update_progress));
6780 
6781 		level = root_item->drop_level;
6782 		BUG_ON(level == 0);
6783 		path->lowest_level = level;
6784 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6785 		path->lowest_level = 0;
6786 		if (ret < 0) {
6787 			err = ret;
6788 			goto out_free;
6789 		}
6790 		WARN_ON(ret > 0);
6791 
6792 		/*
6793 		 * unlock our path, this is safe because only this
6794 		 * function is allowed to delete this snapshot
6795 		 */
6796 		btrfs_unlock_up_safe(path, 0);
6797 
6798 		level = btrfs_header_level(root->node);
6799 		while (1) {
6800 			btrfs_tree_lock(path->nodes[level]);
6801 			btrfs_set_lock_blocking(path->nodes[level]);
6802 
6803 			ret = btrfs_lookup_extent_info(trans, root,
6804 						path->nodes[level]->start,
6805 						path->nodes[level]->len,
6806 						&wc->refs[level],
6807 						&wc->flags[level]);
6808 			BUG_ON(ret);
6809 			BUG_ON(wc->refs[level] == 0);
6810 
6811 			if (level == root_item->drop_level)
6812 				break;
6813 
6814 			btrfs_tree_unlock(path->nodes[level]);
6815 			WARN_ON(wc->refs[level] != 1);
6816 			level--;
6817 		}
6818 	}
6819 
6820 	wc->level = level;
6821 	wc->shared_level = -1;
6822 	wc->stage = DROP_REFERENCE;
6823 	wc->update_ref = update_ref;
6824 	wc->keep_locks = 0;
6825 	wc->for_reloc = for_reloc;
6826 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6827 
6828 	while (1) {
6829 		ret = walk_down_tree(trans, root, path, wc);
6830 		if (ret < 0) {
6831 			err = ret;
6832 			break;
6833 		}
6834 
6835 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6836 		if (ret < 0) {
6837 			err = ret;
6838 			break;
6839 		}
6840 
6841 		if (ret > 0) {
6842 			BUG_ON(wc->stage != DROP_REFERENCE);
6843 			break;
6844 		}
6845 
6846 		if (wc->stage == DROP_REFERENCE) {
6847 			level = wc->level;
6848 			btrfs_node_key(path->nodes[level],
6849 				       &root_item->drop_progress,
6850 				       path->slots[level]);
6851 			root_item->drop_level = level;
6852 		}
6853 
6854 		BUG_ON(wc->level == 0);
6855 		if (btrfs_should_end_transaction(trans, tree_root)) {
6856 			ret = btrfs_update_root(trans, tree_root,
6857 						&root->root_key,
6858 						root_item);
6859 			BUG_ON(ret);
6860 
6861 			btrfs_end_transaction_throttle(trans, tree_root);
6862 			trans = btrfs_start_transaction(tree_root, 0);
6863 			BUG_ON(IS_ERR(trans));
6864 			if (block_rsv)
6865 				trans->block_rsv = block_rsv;
6866 		}
6867 	}
6868 	btrfs_release_path(path);
6869 	BUG_ON(err);
6870 
6871 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
6872 	BUG_ON(ret);
6873 
6874 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6875 		ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6876 					   NULL, NULL);
6877 		BUG_ON(ret < 0);
6878 		if (ret > 0) {
6879 			/* if we fail to delete the orphan item this time
6880 			 * around, it'll get picked up the next time.
6881 			 *
6882 			 * The most common failure here is just -ENOENT.
6883 			 */
6884 			btrfs_del_orphan_item(trans, tree_root,
6885 					      root->root_key.objectid);
6886 		}
6887 	}
6888 
6889 	if (root->in_radix) {
6890 		btrfs_free_fs_root(tree_root->fs_info, root);
6891 	} else {
6892 		free_extent_buffer(root->node);
6893 		free_extent_buffer(root->commit_root);
6894 		kfree(root);
6895 	}
6896 out_free:
6897 	btrfs_end_transaction_throttle(trans, tree_root);
6898 	kfree(wc);
6899 	btrfs_free_path(path);
6900 out:
6901 	if (err)
6902 		btrfs_std_error(root->fs_info, err);
6903 	return;
6904 }
6905 
6906 /*
6907  * drop subtree rooted at tree block 'node'.
6908  *
6909  * NOTE: this function will unlock and release tree block 'node'
6910  * only used by relocation code
6911  */
6912 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6913 			struct btrfs_root *root,
6914 			struct extent_buffer *node,
6915 			struct extent_buffer *parent)
6916 {
6917 	struct btrfs_path *path;
6918 	struct walk_control *wc;
6919 	int level;
6920 	int parent_level;
6921 	int ret = 0;
6922 	int wret;
6923 
6924 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6925 
6926 	path = btrfs_alloc_path();
6927 	if (!path)
6928 		return -ENOMEM;
6929 
6930 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6931 	if (!wc) {
6932 		btrfs_free_path(path);
6933 		return -ENOMEM;
6934 	}
6935 
6936 	btrfs_assert_tree_locked(parent);
6937 	parent_level = btrfs_header_level(parent);
6938 	extent_buffer_get(parent);
6939 	path->nodes[parent_level] = parent;
6940 	path->slots[parent_level] = btrfs_header_nritems(parent);
6941 
6942 	btrfs_assert_tree_locked(node);
6943 	level = btrfs_header_level(node);
6944 	path->nodes[level] = node;
6945 	path->slots[level] = 0;
6946 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6947 
6948 	wc->refs[parent_level] = 1;
6949 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6950 	wc->level = level;
6951 	wc->shared_level = -1;
6952 	wc->stage = DROP_REFERENCE;
6953 	wc->update_ref = 0;
6954 	wc->keep_locks = 1;
6955 	wc->for_reloc = 1;
6956 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6957 
6958 	while (1) {
6959 		wret = walk_down_tree(trans, root, path, wc);
6960 		if (wret < 0) {
6961 			ret = wret;
6962 			break;
6963 		}
6964 
6965 		wret = walk_up_tree(trans, root, path, wc, parent_level);
6966 		if (wret < 0)
6967 			ret = wret;
6968 		if (wret != 0)
6969 			break;
6970 	}
6971 
6972 	kfree(wc);
6973 	btrfs_free_path(path);
6974 	return ret;
6975 }
6976 
6977 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6978 {
6979 	u64 num_devices;
6980 	u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6981 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6982 
6983 	if (root->fs_info->balance_ctl) {
6984 		struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
6985 		u64 tgt = 0;
6986 
6987 		/* pick restriper's target profile and return */
6988 		if (flags & BTRFS_BLOCK_GROUP_DATA &&
6989 		    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6990 			tgt = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
6991 		} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
6992 			   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6993 			tgt = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
6994 		} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
6995 			   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
6996 			tgt = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
6997 		}
6998 
6999 		if (tgt) {
7000 			/* extended -> chunk profile */
7001 			tgt &= ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7002 			return tgt;
7003 		}
7004 	}
7005 
7006 	/*
7007 	 * we add in the count of missing devices because we want
7008 	 * to make sure that any RAID levels on a degraded FS
7009 	 * continue to be honored.
7010 	 */
7011 	num_devices = root->fs_info->fs_devices->rw_devices +
7012 		root->fs_info->fs_devices->missing_devices;
7013 
7014 	if (num_devices == 1) {
7015 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7016 		stripped = flags & ~stripped;
7017 
7018 		/* turn raid0 into single device chunks */
7019 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
7020 			return stripped;
7021 
7022 		/* turn mirroring into duplication */
7023 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7024 			     BTRFS_BLOCK_GROUP_RAID10))
7025 			return stripped | BTRFS_BLOCK_GROUP_DUP;
7026 		return flags;
7027 	} else {
7028 		/* they already had raid on here, just return */
7029 		if (flags & stripped)
7030 			return flags;
7031 
7032 		stripped |= BTRFS_BLOCK_GROUP_DUP;
7033 		stripped = flags & ~stripped;
7034 
7035 		/* switch duplicated blocks with raid1 */
7036 		if (flags & BTRFS_BLOCK_GROUP_DUP)
7037 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
7038 
7039 		/* turn single device chunks into raid0 */
7040 		return stripped | BTRFS_BLOCK_GROUP_RAID0;
7041 	}
7042 	return flags;
7043 }
7044 
7045 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7046 {
7047 	struct btrfs_space_info *sinfo = cache->space_info;
7048 	u64 num_bytes;
7049 	u64 min_allocable_bytes;
7050 	int ret = -ENOSPC;
7051 
7052 
7053 	/*
7054 	 * We need some metadata space and system metadata space for
7055 	 * allocating chunks in some corner cases until we force to set
7056 	 * it to be readonly.
7057 	 */
7058 	if ((sinfo->flags &
7059 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7060 	    !force)
7061 		min_allocable_bytes = 1 * 1024 * 1024;
7062 	else
7063 		min_allocable_bytes = 0;
7064 
7065 	spin_lock(&sinfo->lock);
7066 	spin_lock(&cache->lock);
7067 
7068 	if (cache->ro) {
7069 		ret = 0;
7070 		goto out;
7071 	}
7072 
7073 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7074 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7075 
7076 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7077 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7078 	    min_allocable_bytes <= sinfo->total_bytes) {
7079 		sinfo->bytes_readonly += num_bytes;
7080 		cache->ro = 1;
7081 		ret = 0;
7082 	}
7083 out:
7084 	spin_unlock(&cache->lock);
7085 	spin_unlock(&sinfo->lock);
7086 	return ret;
7087 }
7088 
7089 int btrfs_set_block_group_ro(struct btrfs_root *root,
7090 			     struct btrfs_block_group_cache *cache)
7091 
7092 {
7093 	struct btrfs_trans_handle *trans;
7094 	u64 alloc_flags;
7095 	int ret;
7096 
7097 	BUG_ON(cache->ro);
7098 
7099 	trans = btrfs_join_transaction(root);
7100 	BUG_ON(IS_ERR(trans));
7101 
7102 	alloc_flags = update_block_group_flags(root, cache->flags);
7103 	if (alloc_flags != cache->flags)
7104 		do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7105 			       CHUNK_ALLOC_FORCE);
7106 
7107 	ret = set_block_group_ro(cache, 0);
7108 	if (!ret)
7109 		goto out;
7110 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7111 	ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7112 			     CHUNK_ALLOC_FORCE);
7113 	if (ret < 0)
7114 		goto out;
7115 	ret = set_block_group_ro(cache, 0);
7116 out:
7117 	btrfs_end_transaction(trans, root);
7118 	return ret;
7119 }
7120 
7121 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7122 			    struct btrfs_root *root, u64 type)
7123 {
7124 	u64 alloc_flags = get_alloc_profile(root, type);
7125 	return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7126 			      CHUNK_ALLOC_FORCE);
7127 }
7128 
7129 /*
7130  * helper to account the unused space of all the readonly block group in the
7131  * list. takes mirrors into account.
7132  */
7133 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7134 {
7135 	struct btrfs_block_group_cache *block_group;
7136 	u64 free_bytes = 0;
7137 	int factor;
7138 
7139 	list_for_each_entry(block_group, groups_list, list) {
7140 		spin_lock(&block_group->lock);
7141 
7142 		if (!block_group->ro) {
7143 			spin_unlock(&block_group->lock);
7144 			continue;
7145 		}
7146 
7147 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7148 					  BTRFS_BLOCK_GROUP_RAID10 |
7149 					  BTRFS_BLOCK_GROUP_DUP))
7150 			factor = 2;
7151 		else
7152 			factor = 1;
7153 
7154 		free_bytes += (block_group->key.offset -
7155 			       btrfs_block_group_used(&block_group->item)) *
7156 			       factor;
7157 
7158 		spin_unlock(&block_group->lock);
7159 	}
7160 
7161 	return free_bytes;
7162 }
7163 
7164 /*
7165  * helper to account the unused space of all the readonly block group in the
7166  * space_info. takes mirrors into account.
7167  */
7168 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7169 {
7170 	int i;
7171 	u64 free_bytes = 0;
7172 
7173 	spin_lock(&sinfo->lock);
7174 
7175 	for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7176 		if (!list_empty(&sinfo->block_groups[i]))
7177 			free_bytes += __btrfs_get_ro_block_group_free_space(
7178 						&sinfo->block_groups[i]);
7179 
7180 	spin_unlock(&sinfo->lock);
7181 
7182 	return free_bytes;
7183 }
7184 
7185 int btrfs_set_block_group_rw(struct btrfs_root *root,
7186 			      struct btrfs_block_group_cache *cache)
7187 {
7188 	struct btrfs_space_info *sinfo = cache->space_info;
7189 	u64 num_bytes;
7190 
7191 	BUG_ON(!cache->ro);
7192 
7193 	spin_lock(&sinfo->lock);
7194 	spin_lock(&cache->lock);
7195 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7196 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
7197 	sinfo->bytes_readonly -= num_bytes;
7198 	cache->ro = 0;
7199 	spin_unlock(&cache->lock);
7200 	spin_unlock(&sinfo->lock);
7201 	return 0;
7202 }
7203 
7204 /*
7205  * checks to see if its even possible to relocate this block group.
7206  *
7207  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7208  * ok to go ahead and try.
7209  */
7210 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7211 {
7212 	struct btrfs_block_group_cache *block_group;
7213 	struct btrfs_space_info *space_info;
7214 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7215 	struct btrfs_device *device;
7216 	u64 min_free;
7217 	u64 dev_min = 1;
7218 	u64 dev_nr = 0;
7219 	int index;
7220 	int full = 0;
7221 	int ret = 0;
7222 
7223 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7224 
7225 	/* odd, couldn't find the block group, leave it alone */
7226 	if (!block_group)
7227 		return -1;
7228 
7229 	min_free = btrfs_block_group_used(&block_group->item);
7230 
7231 	/* no bytes used, we're good */
7232 	if (!min_free)
7233 		goto out;
7234 
7235 	space_info = block_group->space_info;
7236 	spin_lock(&space_info->lock);
7237 
7238 	full = space_info->full;
7239 
7240 	/*
7241 	 * if this is the last block group we have in this space, we can't
7242 	 * relocate it unless we're able to allocate a new chunk below.
7243 	 *
7244 	 * Otherwise, we need to make sure we have room in the space to handle
7245 	 * all of the extents from this block group.  If we can, we're good
7246 	 */
7247 	if ((space_info->total_bytes != block_group->key.offset) &&
7248 	    (space_info->bytes_used + space_info->bytes_reserved +
7249 	     space_info->bytes_pinned + space_info->bytes_readonly +
7250 	     min_free < space_info->total_bytes)) {
7251 		spin_unlock(&space_info->lock);
7252 		goto out;
7253 	}
7254 	spin_unlock(&space_info->lock);
7255 
7256 	/*
7257 	 * ok we don't have enough space, but maybe we have free space on our
7258 	 * devices to allocate new chunks for relocation, so loop through our
7259 	 * alloc devices and guess if we have enough space.  However, if we
7260 	 * were marked as full, then we know there aren't enough chunks, and we
7261 	 * can just return.
7262 	 */
7263 	ret = -1;
7264 	if (full)
7265 		goto out;
7266 
7267 	/*
7268 	 * index:
7269 	 *      0: raid10
7270 	 *      1: raid1
7271 	 *      2: dup
7272 	 *      3: raid0
7273 	 *      4: single
7274 	 */
7275 	index = get_block_group_index(block_group);
7276 	if (index == 0) {
7277 		dev_min = 4;
7278 		/* Divide by 2 */
7279 		min_free >>= 1;
7280 	} else if (index == 1) {
7281 		dev_min = 2;
7282 	} else if (index == 2) {
7283 		/* Multiply by 2 */
7284 		min_free <<= 1;
7285 	} else if (index == 3) {
7286 		dev_min = fs_devices->rw_devices;
7287 		do_div(min_free, dev_min);
7288 	}
7289 
7290 	mutex_lock(&root->fs_info->chunk_mutex);
7291 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7292 		u64 dev_offset;
7293 
7294 		/*
7295 		 * check to make sure we can actually find a chunk with enough
7296 		 * space to fit our block group in.
7297 		 */
7298 		if (device->total_bytes > device->bytes_used + min_free) {
7299 			ret = find_free_dev_extent(device, min_free,
7300 						   &dev_offset, NULL);
7301 			if (!ret)
7302 				dev_nr++;
7303 
7304 			if (dev_nr >= dev_min)
7305 				break;
7306 
7307 			ret = -1;
7308 		}
7309 	}
7310 	mutex_unlock(&root->fs_info->chunk_mutex);
7311 out:
7312 	btrfs_put_block_group(block_group);
7313 	return ret;
7314 }
7315 
7316 static int find_first_block_group(struct btrfs_root *root,
7317 		struct btrfs_path *path, struct btrfs_key *key)
7318 {
7319 	int ret = 0;
7320 	struct btrfs_key found_key;
7321 	struct extent_buffer *leaf;
7322 	int slot;
7323 
7324 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7325 	if (ret < 0)
7326 		goto out;
7327 
7328 	while (1) {
7329 		slot = path->slots[0];
7330 		leaf = path->nodes[0];
7331 		if (slot >= btrfs_header_nritems(leaf)) {
7332 			ret = btrfs_next_leaf(root, path);
7333 			if (ret == 0)
7334 				continue;
7335 			if (ret < 0)
7336 				goto out;
7337 			break;
7338 		}
7339 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
7340 
7341 		if (found_key.objectid >= key->objectid &&
7342 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7343 			ret = 0;
7344 			goto out;
7345 		}
7346 		path->slots[0]++;
7347 	}
7348 out:
7349 	return ret;
7350 }
7351 
7352 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7353 {
7354 	struct btrfs_block_group_cache *block_group;
7355 	u64 last = 0;
7356 
7357 	while (1) {
7358 		struct inode *inode;
7359 
7360 		block_group = btrfs_lookup_first_block_group(info, last);
7361 		while (block_group) {
7362 			spin_lock(&block_group->lock);
7363 			if (block_group->iref)
7364 				break;
7365 			spin_unlock(&block_group->lock);
7366 			block_group = next_block_group(info->tree_root,
7367 						       block_group);
7368 		}
7369 		if (!block_group) {
7370 			if (last == 0)
7371 				break;
7372 			last = 0;
7373 			continue;
7374 		}
7375 
7376 		inode = block_group->inode;
7377 		block_group->iref = 0;
7378 		block_group->inode = NULL;
7379 		spin_unlock(&block_group->lock);
7380 		iput(inode);
7381 		last = block_group->key.objectid + block_group->key.offset;
7382 		btrfs_put_block_group(block_group);
7383 	}
7384 }
7385 
7386 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7387 {
7388 	struct btrfs_block_group_cache *block_group;
7389 	struct btrfs_space_info *space_info;
7390 	struct btrfs_caching_control *caching_ctl;
7391 	struct rb_node *n;
7392 
7393 	down_write(&info->extent_commit_sem);
7394 	while (!list_empty(&info->caching_block_groups)) {
7395 		caching_ctl = list_entry(info->caching_block_groups.next,
7396 					 struct btrfs_caching_control, list);
7397 		list_del(&caching_ctl->list);
7398 		put_caching_control(caching_ctl);
7399 	}
7400 	up_write(&info->extent_commit_sem);
7401 
7402 	spin_lock(&info->block_group_cache_lock);
7403 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7404 		block_group = rb_entry(n, struct btrfs_block_group_cache,
7405 				       cache_node);
7406 		rb_erase(&block_group->cache_node,
7407 			 &info->block_group_cache_tree);
7408 		spin_unlock(&info->block_group_cache_lock);
7409 
7410 		down_write(&block_group->space_info->groups_sem);
7411 		list_del(&block_group->list);
7412 		up_write(&block_group->space_info->groups_sem);
7413 
7414 		if (block_group->cached == BTRFS_CACHE_STARTED)
7415 			wait_block_group_cache_done(block_group);
7416 
7417 		/*
7418 		 * We haven't cached this block group, which means we could
7419 		 * possibly have excluded extents on this block group.
7420 		 */
7421 		if (block_group->cached == BTRFS_CACHE_NO)
7422 			free_excluded_extents(info->extent_root, block_group);
7423 
7424 		btrfs_remove_free_space_cache(block_group);
7425 		btrfs_put_block_group(block_group);
7426 
7427 		spin_lock(&info->block_group_cache_lock);
7428 	}
7429 	spin_unlock(&info->block_group_cache_lock);
7430 
7431 	/* now that all the block groups are freed, go through and
7432 	 * free all the space_info structs.  This is only called during
7433 	 * the final stages of unmount, and so we know nobody is
7434 	 * using them.  We call synchronize_rcu() once before we start,
7435 	 * just to be on the safe side.
7436 	 */
7437 	synchronize_rcu();
7438 
7439 	release_global_block_rsv(info);
7440 
7441 	while(!list_empty(&info->space_info)) {
7442 		space_info = list_entry(info->space_info.next,
7443 					struct btrfs_space_info,
7444 					list);
7445 		if (space_info->bytes_pinned > 0 ||
7446 		    space_info->bytes_reserved > 0 ||
7447 		    space_info->bytes_may_use > 0) {
7448 			WARN_ON(1);
7449 			dump_space_info(space_info, 0, 0);
7450 		}
7451 		list_del(&space_info->list);
7452 		kfree(space_info);
7453 	}
7454 	return 0;
7455 }
7456 
7457 static void __link_block_group(struct btrfs_space_info *space_info,
7458 			       struct btrfs_block_group_cache *cache)
7459 {
7460 	int index = get_block_group_index(cache);
7461 
7462 	down_write(&space_info->groups_sem);
7463 	list_add_tail(&cache->list, &space_info->block_groups[index]);
7464 	up_write(&space_info->groups_sem);
7465 }
7466 
7467 int btrfs_read_block_groups(struct btrfs_root *root)
7468 {
7469 	struct btrfs_path *path;
7470 	int ret;
7471 	struct btrfs_block_group_cache *cache;
7472 	struct btrfs_fs_info *info = root->fs_info;
7473 	struct btrfs_space_info *space_info;
7474 	struct btrfs_key key;
7475 	struct btrfs_key found_key;
7476 	struct extent_buffer *leaf;
7477 	int need_clear = 0;
7478 	u64 cache_gen;
7479 
7480 	root = info->extent_root;
7481 	key.objectid = 0;
7482 	key.offset = 0;
7483 	btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7484 	path = btrfs_alloc_path();
7485 	if (!path)
7486 		return -ENOMEM;
7487 	path->reada = 1;
7488 
7489 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7490 	if (btrfs_test_opt(root, SPACE_CACHE) &&
7491 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7492 		need_clear = 1;
7493 	if (btrfs_test_opt(root, CLEAR_CACHE))
7494 		need_clear = 1;
7495 
7496 	while (1) {
7497 		ret = find_first_block_group(root, path, &key);
7498 		if (ret > 0)
7499 			break;
7500 		if (ret != 0)
7501 			goto error;
7502 		leaf = path->nodes[0];
7503 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7504 		cache = kzalloc(sizeof(*cache), GFP_NOFS);
7505 		if (!cache) {
7506 			ret = -ENOMEM;
7507 			goto error;
7508 		}
7509 		cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7510 						GFP_NOFS);
7511 		if (!cache->free_space_ctl) {
7512 			kfree(cache);
7513 			ret = -ENOMEM;
7514 			goto error;
7515 		}
7516 
7517 		atomic_set(&cache->count, 1);
7518 		spin_lock_init(&cache->lock);
7519 		cache->fs_info = info;
7520 		INIT_LIST_HEAD(&cache->list);
7521 		INIT_LIST_HEAD(&cache->cluster_list);
7522 
7523 		if (need_clear)
7524 			cache->disk_cache_state = BTRFS_DC_CLEAR;
7525 
7526 		read_extent_buffer(leaf, &cache->item,
7527 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
7528 				   sizeof(cache->item));
7529 		memcpy(&cache->key, &found_key, sizeof(found_key));
7530 
7531 		key.objectid = found_key.objectid + found_key.offset;
7532 		btrfs_release_path(path);
7533 		cache->flags = btrfs_block_group_flags(&cache->item);
7534 		cache->sectorsize = root->sectorsize;
7535 
7536 		btrfs_init_free_space_ctl(cache);
7537 
7538 		/*
7539 		 * We need to exclude the super stripes now so that the space
7540 		 * info has super bytes accounted for, otherwise we'll think
7541 		 * we have more space than we actually do.
7542 		 */
7543 		exclude_super_stripes(root, cache);
7544 
7545 		/*
7546 		 * check for two cases, either we are full, and therefore
7547 		 * don't need to bother with the caching work since we won't
7548 		 * find any space, or we are empty, and we can just add all
7549 		 * the space in and be done with it.  This saves us _alot_ of
7550 		 * time, particularly in the full case.
7551 		 */
7552 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7553 			cache->last_byte_to_unpin = (u64)-1;
7554 			cache->cached = BTRFS_CACHE_FINISHED;
7555 			free_excluded_extents(root, cache);
7556 		} else if (btrfs_block_group_used(&cache->item) == 0) {
7557 			cache->last_byte_to_unpin = (u64)-1;
7558 			cache->cached = BTRFS_CACHE_FINISHED;
7559 			add_new_free_space(cache, root->fs_info,
7560 					   found_key.objectid,
7561 					   found_key.objectid +
7562 					   found_key.offset);
7563 			free_excluded_extents(root, cache);
7564 		}
7565 
7566 		ret = update_space_info(info, cache->flags, found_key.offset,
7567 					btrfs_block_group_used(&cache->item),
7568 					&space_info);
7569 		BUG_ON(ret);
7570 		cache->space_info = space_info;
7571 		spin_lock(&cache->space_info->lock);
7572 		cache->space_info->bytes_readonly += cache->bytes_super;
7573 		spin_unlock(&cache->space_info->lock);
7574 
7575 		__link_block_group(space_info, cache);
7576 
7577 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
7578 		BUG_ON(ret);
7579 
7580 		set_avail_alloc_bits(root->fs_info, cache->flags);
7581 		if (btrfs_chunk_readonly(root, cache->key.objectid))
7582 			set_block_group_ro(cache, 1);
7583 	}
7584 
7585 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7586 		if (!(get_alloc_profile(root, space_info->flags) &
7587 		      (BTRFS_BLOCK_GROUP_RAID10 |
7588 		       BTRFS_BLOCK_GROUP_RAID1 |
7589 		       BTRFS_BLOCK_GROUP_DUP)))
7590 			continue;
7591 		/*
7592 		 * avoid allocating from un-mirrored block group if there are
7593 		 * mirrored block groups.
7594 		 */
7595 		list_for_each_entry(cache, &space_info->block_groups[3], list)
7596 			set_block_group_ro(cache, 1);
7597 		list_for_each_entry(cache, &space_info->block_groups[4], list)
7598 			set_block_group_ro(cache, 1);
7599 	}
7600 
7601 	init_global_block_rsv(info);
7602 	ret = 0;
7603 error:
7604 	btrfs_free_path(path);
7605 	return ret;
7606 }
7607 
7608 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7609 			   struct btrfs_root *root, u64 bytes_used,
7610 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
7611 			   u64 size)
7612 {
7613 	int ret;
7614 	struct btrfs_root *extent_root;
7615 	struct btrfs_block_group_cache *cache;
7616 
7617 	extent_root = root->fs_info->extent_root;
7618 
7619 	root->fs_info->last_trans_log_full_commit = trans->transid;
7620 
7621 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
7622 	if (!cache)
7623 		return -ENOMEM;
7624 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7625 					GFP_NOFS);
7626 	if (!cache->free_space_ctl) {
7627 		kfree(cache);
7628 		return -ENOMEM;
7629 	}
7630 
7631 	cache->key.objectid = chunk_offset;
7632 	cache->key.offset = size;
7633 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7634 	cache->sectorsize = root->sectorsize;
7635 	cache->fs_info = root->fs_info;
7636 
7637 	atomic_set(&cache->count, 1);
7638 	spin_lock_init(&cache->lock);
7639 	INIT_LIST_HEAD(&cache->list);
7640 	INIT_LIST_HEAD(&cache->cluster_list);
7641 
7642 	btrfs_init_free_space_ctl(cache);
7643 
7644 	btrfs_set_block_group_used(&cache->item, bytes_used);
7645 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7646 	cache->flags = type;
7647 	btrfs_set_block_group_flags(&cache->item, type);
7648 
7649 	cache->last_byte_to_unpin = (u64)-1;
7650 	cache->cached = BTRFS_CACHE_FINISHED;
7651 	exclude_super_stripes(root, cache);
7652 
7653 	add_new_free_space(cache, root->fs_info, chunk_offset,
7654 			   chunk_offset + size);
7655 
7656 	free_excluded_extents(root, cache);
7657 
7658 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7659 				&cache->space_info);
7660 	BUG_ON(ret);
7661 	update_global_block_rsv(root->fs_info);
7662 
7663 	spin_lock(&cache->space_info->lock);
7664 	cache->space_info->bytes_readonly += cache->bytes_super;
7665 	spin_unlock(&cache->space_info->lock);
7666 
7667 	__link_block_group(cache->space_info, cache);
7668 
7669 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
7670 	BUG_ON(ret);
7671 
7672 	ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7673 				sizeof(cache->item));
7674 	BUG_ON(ret);
7675 
7676 	set_avail_alloc_bits(extent_root->fs_info, type);
7677 
7678 	return 0;
7679 }
7680 
7681 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7682 {
7683 	u64 extra_flags = flags & BTRFS_BLOCK_GROUP_PROFILE_MASK;
7684 
7685 	/* chunk -> extended profile */
7686 	if (extra_flags == 0)
7687 		extra_flags = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
7688 
7689 	if (flags & BTRFS_BLOCK_GROUP_DATA)
7690 		fs_info->avail_data_alloc_bits &= ~extra_flags;
7691 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
7692 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7693 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7694 		fs_info->avail_system_alloc_bits &= ~extra_flags;
7695 }
7696 
7697 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7698 			     struct btrfs_root *root, u64 group_start)
7699 {
7700 	struct btrfs_path *path;
7701 	struct btrfs_block_group_cache *block_group;
7702 	struct btrfs_free_cluster *cluster;
7703 	struct btrfs_root *tree_root = root->fs_info->tree_root;
7704 	struct btrfs_key key;
7705 	struct inode *inode;
7706 	int ret;
7707 	int index;
7708 	int factor;
7709 
7710 	root = root->fs_info->extent_root;
7711 
7712 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7713 	BUG_ON(!block_group);
7714 	BUG_ON(!block_group->ro);
7715 
7716 	/*
7717 	 * Free the reserved super bytes from this block group before
7718 	 * remove it.
7719 	 */
7720 	free_excluded_extents(root, block_group);
7721 
7722 	memcpy(&key, &block_group->key, sizeof(key));
7723 	index = get_block_group_index(block_group);
7724 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7725 				  BTRFS_BLOCK_GROUP_RAID1 |
7726 				  BTRFS_BLOCK_GROUP_RAID10))
7727 		factor = 2;
7728 	else
7729 		factor = 1;
7730 
7731 	/* make sure this block group isn't part of an allocation cluster */
7732 	cluster = &root->fs_info->data_alloc_cluster;
7733 	spin_lock(&cluster->refill_lock);
7734 	btrfs_return_cluster_to_free_space(block_group, cluster);
7735 	spin_unlock(&cluster->refill_lock);
7736 
7737 	/*
7738 	 * make sure this block group isn't part of a metadata
7739 	 * allocation cluster
7740 	 */
7741 	cluster = &root->fs_info->meta_alloc_cluster;
7742 	spin_lock(&cluster->refill_lock);
7743 	btrfs_return_cluster_to_free_space(block_group, cluster);
7744 	spin_unlock(&cluster->refill_lock);
7745 
7746 	path = btrfs_alloc_path();
7747 	if (!path) {
7748 		ret = -ENOMEM;
7749 		goto out;
7750 	}
7751 
7752 	inode = lookup_free_space_inode(tree_root, block_group, path);
7753 	if (!IS_ERR(inode)) {
7754 		ret = btrfs_orphan_add(trans, inode);
7755 		BUG_ON(ret);
7756 		clear_nlink(inode);
7757 		/* One for the block groups ref */
7758 		spin_lock(&block_group->lock);
7759 		if (block_group->iref) {
7760 			block_group->iref = 0;
7761 			block_group->inode = NULL;
7762 			spin_unlock(&block_group->lock);
7763 			iput(inode);
7764 		} else {
7765 			spin_unlock(&block_group->lock);
7766 		}
7767 		/* One for our lookup ref */
7768 		btrfs_add_delayed_iput(inode);
7769 	}
7770 
7771 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7772 	key.offset = block_group->key.objectid;
7773 	key.type = 0;
7774 
7775 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7776 	if (ret < 0)
7777 		goto out;
7778 	if (ret > 0)
7779 		btrfs_release_path(path);
7780 	if (ret == 0) {
7781 		ret = btrfs_del_item(trans, tree_root, path);
7782 		if (ret)
7783 			goto out;
7784 		btrfs_release_path(path);
7785 	}
7786 
7787 	spin_lock(&root->fs_info->block_group_cache_lock);
7788 	rb_erase(&block_group->cache_node,
7789 		 &root->fs_info->block_group_cache_tree);
7790 	spin_unlock(&root->fs_info->block_group_cache_lock);
7791 
7792 	down_write(&block_group->space_info->groups_sem);
7793 	/*
7794 	 * we must use list_del_init so people can check to see if they
7795 	 * are still on the list after taking the semaphore
7796 	 */
7797 	list_del_init(&block_group->list);
7798 	if (list_empty(&block_group->space_info->block_groups[index]))
7799 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
7800 	up_write(&block_group->space_info->groups_sem);
7801 
7802 	if (block_group->cached == BTRFS_CACHE_STARTED)
7803 		wait_block_group_cache_done(block_group);
7804 
7805 	btrfs_remove_free_space_cache(block_group);
7806 
7807 	spin_lock(&block_group->space_info->lock);
7808 	block_group->space_info->total_bytes -= block_group->key.offset;
7809 	block_group->space_info->bytes_readonly -= block_group->key.offset;
7810 	block_group->space_info->disk_total -= block_group->key.offset * factor;
7811 	spin_unlock(&block_group->space_info->lock);
7812 
7813 	memcpy(&key, &block_group->key, sizeof(key));
7814 
7815 	btrfs_clear_space_info_full(root->fs_info);
7816 
7817 	btrfs_put_block_group(block_group);
7818 	btrfs_put_block_group(block_group);
7819 
7820 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7821 	if (ret > 0)
7822 		ret = -EIO;
7823 	if (ret < 0)
7824 		goto out;
7825 
7826 	ret = btrfs_del_item(trans, root, path);
7827 out:
7828 	btrfs_free_path(path);
7829 	return ret;
7830 }
7831 
7832 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7833 {
7834 	struct btrfs_space_info *space_info;
7835 	struct btrfs_super_block *disk_super;
7836 	u64 features;
7837 	u64 flags;
7838 	int mixed = 0;
7839 	int ret;
7840 
7841 	disk_super = fs_info->super_copy;
7842 	if (!btrfs_super_root(disk_super))
7843 		return 1;
7844 
7845 	features = btrfs_super_incompat_flags(disk_super);
7846 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7847 		mixed = 1;
7848 
7849 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
7850 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7851 	if (ret)
7852 		goto out;
7853 
7854 	if (mixed) {
7855 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7856 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7857 	} else {
7858 		flags = BTRFS_BLOCK_GROUP_METADATA;
7859 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7860 		if (ret)
7861 			goto out;
7862 
7863 		flags = BTRFS_BLOCK_GROUP_DATA;
7864 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7865 	}
7866 out:
7867 	return ret;
7868 }
7869 
7870 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7871 {
7872 	return unpin_extent_range(root, start, end);
7873 }
7874 
7875 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7876 			       u64 num_bytes, u64 *actual_bytes)
7877 {
7878 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7879 }
7880 
7881 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7882 {
7883 	struct btrfs_fs_info *fs_info = root->fs_info;
7884 	struct btrfs_block_group_cache *cache = NULL;
7885 	u64 group_trimmed;
7886 	u64 start;
7887 	u64 end;
7888 	u64 trimmed = 0;
7889 	int ret = 0;
7890 
7891 	cache = btrfs_lookup_block_group(fs_info, range->start);
7892 
7893 	while (cache) {
7894 		if (cache->key.objectid >= (range->start + range->len)) {
7895 			btrfs_put_block_group(cache);
7896 			break;
7897 		}
7898 
7899 		start = max(range->start, cache->key.objectid);
7900 		end = min(range->start + range->len,
7901 				cache->key.objectid + cache->key.offset);
7902 
7903 		if (end - start >= range->minlen) {
7904 			if (!block_group_cache_done(cache)) {
7905 				ret = cache_block_group(cache, NULL, root, 0);
7906 				if (!ret)
7907 					wait_block_group_cache_done(cache);
7908 			}
7909 			ret = btrfs_trim_block_group(cache,
7910 						     &group_trimmed,
7911 						     start,
7912 						     end,
7913 						     range->minlen);
7914 
7915 			trimmed += group_trimmed;
7916 			if (ret) {
7917 				btrfs_put_block_group(cache);
7918 				break;
7919 			}
7920 		}
7921 
7922 		cache = next_block_group(fs_info->tree_root, cache);
7923 	}
7924 
7925 	range->len = trimmed;
7926 	return ret;
7927 }
7928