1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_root *root, 78 u64 bytenr, u64 num_bytes, int alloc); 79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 80 struct btrfs_root *root, 81 u64 bytenr, u64 num_bytes, u64 parent, 82 u64 root_objectid, u64 owner_objectid, 83 u64 owner_offset, int refs_to_drop, 84 struct btrfs_delayed_extent_op *extra_op, 85 int no_quota); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (cache->cached != BTRFS_CACHE_STARTED) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 /* We're loading it the fast way, so we don't have a caching_ctl. */ 324 if (!cache->caching_ctl) { 325 spin_unlock(&cache->lock); 326 return NULL; 327 } 328 329 ctl = cache->caching_ctl; 330 atomic_inc(&ctl->count); 331 spin_unlock(&cache->lock); 332 return ctl; 333 } 334 335 static void put_caching_control(struct btrfs_caching_control *ctl) 336 { 337 if (atomic_dec_and_test(&ctl->count)) 338 kfree(ctl); 339 } 340 341 /* 342 * this is only called by cache_block_group, since we could have freed extents 343 * we need to check the pinned_extents for any extents that can't be used yet 344 * since their free space will be released as soon as the transaction commits. 345 */ 346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 347 struct btrfs_fs_info *info, u64 start, u64 end) 348 { 349 u64 extent_start, extent_end, size, total_added = 0; 350 int ret; 351 352 while (start < end) { 353 ret = find_first_extent_bit(info->pinned_extents, start, 354 &extent_start, &extent_end, 355 EXTENT_DIRTY | EXTENT_UPTODATE, 356 NULL); 357 if (ret) 358 break; 359 360 if (extent_start <= start) { 361 start = extent_end + 1; 362 } else if (extent_start > start && extent_start < end) { 363 size = extent_start - start; 364 total_added += size; 365 ret = btrfs_add_free_space(block_group, start, 366 size); 367 BUG_ON(ret); /* -ENOMEM or logic error */ 368 start = extent_end + 1; 369 } else { 370 break; 371 } 372 } 373 374 if (start < end) { 375 size = end - start; 376 total_added += size; 377 ret = btrfs_add_free_space(block_group, start, size); 378 BUG_ON(ret); /* -ENOMEM or logic error */ 379 } 380 381 return total_added; 382 } 383 384 static noinline void caching_thread(struct btrfs_work *work) 385 { 386 struct btrfs_block_group_cache *block_group; 387 struct btrfs_fs_info *fs_info; 388 struct btrfs_caching_control *caching_ctl; 389 struct btrfs_root *extent_root; 390 struct btrfs_path *path; 391 struct extent_buffer *leaf; 392 struct btrfs_key key; 393 u64 total_found = 0; 394 u64 last = 0; 395 u32 nritems; 396 int ret = -ENOMEM; 397 398 caching_ctl = container_of(work, struct btrfs_caching_control, work); 399 block_group = caching_ctl->block_group; 400 fs_info = block_group->fs_info; 401 extent_root = fs_info->extent_root; 402 403 path = btrfs_alloc_path(); 404 if (!path) 405 goto out; 406 407 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 408 409 /* 410 * We don't want to deadlock with somebody trying to allocate a new 411 * extent for the extent root while also trying to search the extent 412 * root to add free space. So we skip locking and search the commit 413 * root, since its read-only 414 */ 415 path->skip_locking = 1; 416 path->search_commit_root = 1; 417 path->reada = 1; 418 419 key.objectid = last; 420 key.offset = 0; 421 key.type = BTRFS_EXTENT_ITEM_KEY; 422 again: 423 mutex_lock(&caching_ctl->mutex); 424 /* need to make sure the commit_root doesn't disappear */ 425 down_read(&fs_info->commit_root_sem); 426 427 next: 428 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 429 if (ret < 0) 430 goto err; 431 432 leaf = path->nodes[0]; 433 nritems = btrfs_header_nritems(leaf); 434 435 while (1) { 436 if (btrfs_fs_closing(fs_info) > 1) { 437 last = (u64)-1; 438 break; 439 } 440 441 if (path->slots[0] < nritems) { 442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 443 } else { 444 ret = find_next_key(path, 0, &key); 445 if (ret) 446 break; 447 448 if (need_resched() || 449 rwsem_is_contended(&fs_info->commit_root_sem)) { 450 caching_ctl->progress = last; 451 btrfs_release_path(path); 452 up_read(&fs_info->commit_root_sem); 453 mutex_unlock(&caching_ctl->mutex); 454 cond_resched(); 455 goto again; 456 } 457 458 ret = btrfs_next_leaf(extent_root, path); 459 if (ret < 0) 460 goto err; 461 if (ret) 462 break; 463 leaf = path->nodes[0]; 464 nritems = btrfs_header_nritems(leaf); 465 continue; 466 } 467 468 if (key.objectid < last) { 469 key.objectid = last; 470 key.offset = 0; 471 key.type = BTRFS_EXTENT_ITEM_KEY; 472 473 caching_ctl->progress = last; 474 btrfs_release_path(path); 475 goto next; 476 } 477 478 if (key.objectid < block_group->key.objectid) { 479 path->slots[0]++; 480 continue; 481 } 482 483 if (key.objectid >= block_group->key.objectid + 484 block_group->key.offset) 485 break; 486 487 if (key.type == BTRFS_EXTENT_ITEM_KEY || 488 key.type == BTRFS_METADATA_ITEM_KEY) { 489 total_found += add_new_free_space(block_group, 490 fs_info, last, 491 key.objectid); 492 if (key.type == BTRFS_METADATA_ITEM_KEY) 493 last = key.objectid + 494 fs_info->tree_root->nodesize; 495 else 496 last = key.objectid + key.offset; 497 498 if (total_found > (1024 * 1024 * 2)) { 499 total_found = 0; 500 wake_up(&caching_ctl->wait); 501 } 502 } 503 path->slots[0]++; 504 } 505 ret = 0; 506 507 total_found += add_new_free_space(block_group, fs_info, last, 508 block_group->key.objectid + 509 block_group->key.offset); 510 caching_ctl->progress = (u64)-1; 511 512 spin_lock(&block_group->lock); 513 block_group->caching_ctl = NULL; 514 block_group->cached = BTRFS_CACHE_FINISHED; 515 spin_unlock(&block_group->lock); 516 517 err: 518 btrfs_free_path(path); 519 up_read(&fs_info->commit_root_sem); 520 521 free_excluded_extents(extent_root, block_group); 522 523 mutex_unlock(&caching_ctl->mutex); 524 out: 525 if (ret) { 526 spin_lock(&block_group->lock); 527 block_group->caching_ctl = NULL; 528 block_group->cached = BTRFS_CACHE_ERROR; 529 spin_unlock(&block_group->lock); 530 } 531 wake_up(&caching_ctl->wait); 532 533 put_caching_control(caching_ctl); 534 btrfs_put_block_group(block_group); 535 } 536 537 static int cache_block_group(struct btrfs_block_group_cache *cache, 538 int load_cache_only) 539 { 540 DEFINE_WAIT(wait); 541 struct btrfs_fs_info *fs_info = cache->fs_info; 542 struct btrfs_caching_control *caching_ctl; 543 int ret = 0; 544 545 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 546 if (!caching_ctl) 547 return -ENOMEM; 548 549 INIT_LIST_HEAD(&caching_ctl->list); 550 mutex_init(&caching_ctl->mutex); 551 init_waitqueue_head(&caching_ctl->wait); 552 caching_ctl->block_group = cache; 553 caching_ctl->progress = cache->key.objectid; 554 atomic_set(&caching_ctl->count, 1); 555 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 556 caching_thread, NULL, NULL); 557 558 spin_lock(&cache->lock); 559 /* 560 * This should be a rare occasion, but this could happen I think in the 561 * case where one thread starts to load the space cache info, and then 562 * some other thread starts a transaction commit which tries to do an 563 * allocation while the other thread is still loading the space cache 564 * info. The previous loop should have kept us from choosing this block 565 * group, but if we've moved to the state where we will wait on caching 566 * block groups we need to first check if we're doing a fast load here, 567 * so we can wait for it to finish, otherwise we could end up allocating 568 * from a block group who's cache gets evicted for one reason or 569 * another. 570 */ 571 while (cache->cached == BTRFS_CACHE_FAST) { 572 struct btrfs_caching_control *ctl; 573 574 ctl = cache->caching_ctl; 575 atomic_inc(&ctl->count); 576 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 577 spin_unlock(&cache->lock); 578 579 schedule(); 580 581 finish_wait(&ctl->wait, &wait); 582 put_caching_control(ctl); 583 spin_lock(&cache->lock); 584 } 585 586 if (cache->cached != BTRFS_CACHE_NO) { 587 spin_unlock(&cache->lock); 588 kfree(caching_ctl); 589 return 0; 590 } 591 WARN_ON(cache->caching_ctl); 592 cache->caching_ctl = caching_ctl; 593 cache->cached = BTRFS_CACHE_FAST; 594 spin_unlock(&cache->lock); 595 596 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 597 ret = load_free_space_cache(fs_info, cache); 598 599 spin_lock(&cache->lock); 600 if (ret == 1) { 601 cache->caching_ctl = NULL; 602 cache->cached = BTRFS_CACHE_FINISHED; 603 cache->last_byte_to_unpin = (u64)-1; 604 } else { 605 if (load_cache_only) { 606 cache->caching_ctl = NULL; 607 cache->cached = BTRFS_CACHE_NO; 608 } else { 609 cache->cached = BTRFS_CACHE_STARTED; 610 } 611 } 612 spin_unlock(&cache->lock); 613 wake_up(&caching_ctl->wait); 614 if (ret == 1) { 615 put_caching_control(caching_ctl); 616 free_excluded_extents(fs_info->extent_root, cache); 617 return 0; 618 } 619 } else { 620 /* 621 * We are not going to do the fast caching, set cached to the 622 * appropriate value and wakeup any waiters. 623 */ 624 spin_lock(&cache->lock); 625 if (load_cache_only) { 626 cache->caching_ctl = NULL; 627 cache->cached = BTRFS_CACHE_NO; 628 } else { 629 cache->cached = BTRFS_CACHE_STARTED; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing extent at a given offset */ 714 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 if (ret > 0) { 730 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 731 if (key.objectid == start && 732 key.type == BTRFS_METADATA_ITEM_KEY) 733 ret = 0; 734 } 735 btrfs_free_path(path); 736 return ret; 737 } 738 739 /* 740 * helper function to lookup reference count and flags of a tree block. 741 * 742 * the head node for delayed ref is used to store the sum of all the 743 * reference count modifications queued up in the rbtree. the head 744 * node may also store the extent flags to set. This way you can check 745 * to see what the reference count and extent flags would be if all of 746 * the delayed refs are not processed. 747 */ 748 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 749 struct btrfs_root *root, u64 bytenr, 750 u64 offset, int metadata, u64 *refs, u64 *flags) 751 { 752 struct btrfs_delayed_ref_head *head; 753 struct btrfs_delayed_ref_root *delayed_refs; 754 struct btrfs_path *path; 755 struct btrfs_extent_item *ei; 756 struct extent_buffer *leaf; 757 struct btrfs_key key; 758 u32 item_size; 759 u64 num_refs; 760 u64 extent_flags; 761 int ret; 762 763 /* 764 * If we don't have skinny metadata, don't bother doing anything 765 * different 766 */ 767 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 768 offset = root->nodesize; 769 metadata = 0; 770 } 771 772 path = btrfs_alloc_path(); 773 if (!path) 774 return -ENOMEM; 775 776 if (!trans) { 777 path->skip_locking = 1; 778 path->search_commit_root = 1; 779 } 780 781 search_again: 782 key.objectid = bytenr; 783 key.offset = offset; 784 if (metadata) 785 key.type = BTRFS_METADATA_ITEM_KEY; 786 else 787 key.type = BTRFS_EXTENT_ITEM_KEY; 788 789 again: 790 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 791 &key, path, 0, 0); 792 if (ret < 0) 793 goto out_free; 794 795 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 796 if (path->slots[0]) { 797 path->slots[0]--; 798 btrfs_item_key_to_cpu(path->nodes[0], &key, 799 path->slots[0]); 800 if (key.objectid == bytenr && 801 key.type == BTRFS_EXTENT_ITEM_KEY && 802 key.offset == root->nodesize) 803 ret = 0; 804 } 805 if (ret) { 806 key.objectid = bytenr; 807 key.type = BTRFS_EXTENT_ITEM_KEY; 808 key.offset = root->nodesize; 809 btrfs_release_path(path); 810 goto again; 811 } 812 } 813 814 if (ret == 0) { 815 leaf = path->nodes[0]; 816 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 817 if (item_size >= sizeof(*ei)) { 818 ei = btrfs_item_ptr(leaf, path->slots[0], 819 struct btrfs_extent_item); 820 num_refs = btrfs_extent_refs(leaf, ei); 821 extent_flags = btrfs_extent_flags(leaf, ei); 822 } else { 823 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 824 struct btrfs_extent_item_v0 *ei0; 825 BUG_ON(item_size != sizeof(*ei0)); 826 ei0 = btrfs_item_ptr(leaf, path->slots[0], 827 struct btrfs_extent_item_v0); 828 num_refs = btrfs_extent_refs_v0(leaf, ei0); 829 /* FIXME: this isn't correct for data */ 830 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 831 #else 832 BUG(); 833 #endif 834 } 835 BUG_ON(num_refs == 0); 836 } else { 837 num_refs = 0; 838 extent_flags = 0; 839 ret = 0; 840 } 841 842 if (!trans) 843 goto out; 844 845 delayed_refs = &trans->transaction->delayed_refs; 846 spin_lock(&delayed_refs->lock); 847 head = btrfs_find_delayed_ref_head(trans, bytenr); 848 if (head) { 849 if (!mutex_trylock(&head->mutex)) { 850 atomic_inc(&head->node.refs); 851 spin_unlock(&delayed_refs->lock); 852 853 btrfs_release_path(path); 854 855 /* 856 * Mutex was contended, block until it's released and try 857 * again 858 */ 859 mutex_lock(&head->mutex); 860 mutex_unlock(&head->mutex); 861 btrfs_put_delayed_ref(&head->node); 862 goto search_again; 863 } 864 spin_lock(&head->lock); 865 if (head->extent_op && head->extent_op->update_flags) 866 extent_flags |= head->extent_op->flags_to_set; 867 else 868 BUG_ON(num_refs == 0); 869 870 num_refs += head->node.ref_mod; 871 spin_unlock(&head->lock); 872 mutex_unlock(&head->mutex); 873 } 874 spin_unlock(&delayed_refs->lock); 875 out: 876 WARN_ON(num_refs == 0); 877 if (refs) 878 *refs = num_refs; 879 if (flags) 880 *flags = extent_flags; 881 out_free: 882 btrfs_free_path(path); 883 return ret; 884 } 885 886 /* 887 * Back reference rules. Back refs have three main goals: 888 * 889 * 1) differentiate between all holders of references to an extent so that 890 * when a reference is dropped we can make sure it was a valid reference 891 * before freeing the extent. 892 * 893 * 2) Provide enough information to quickly find the holders of an extent 894 * if we notice a given block is corrupted or bad. 895 * 896 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 897 * maintenance. This is actually the same as #2, but with a slightly 898 * different use case. 899 * 900 * There are two kinds of back refs. The implicit back refs is optimized 901 * for pointers in non-shared tree blocks. For a given pointer in a block, 902 * back refs of this kind provide information about the block's owner tree 903 * and the pointer's key. These information allow us to find the block by 904 * b-tree searching. The full back refs is for pointers in tree blocks not 905 * referenced by their owner trees. The location of tree block is recorded 906 * in the back refs. Actually the full back refs is generic, and can be 907 * used in all cases the implicit back refs is used. The major shortcoming 908 * of the full back refs is its overhead. Every time a tree block gets 909 * COWed, we have to update back refs entry for all pointers in it. 910 * 911 * For a newly allocated tree block, we use implicit back refs for 912 * pointers in it. This means most tree related operations only involve 913 * implicit back refs. For a tree block created in old transaction, the 914 * only way to drop a reference to it is COW it. So we can detect the 915 * event that tree block loses its owner tree's reference and do the 916 * back refs conversion. 917 * 918 * When a tree block is COW'd through a tree, there are four cases: 919 * 920 * The reference count of the block is one and the tree is the block's 921 * owner tree. Nothing to do in this case. 922 * 923 * The reference count of the block is one and the tree is not the 924 * block's owner tree. In this case, full back refs is used for pointers 925 * in the block. Remove these full back refs, add implicit back refs for 926 * every pointers in the new block. 927 * 928 * The reference count of the block is greater than one and the tree is 929 * the block's owner tree. In this case, implicit back refs is used for 930 * pointers in the block. Add full back refs for every pointers in the 931 * block, increase lower level extents' reference counts. The original 932 * implicit back refs are entailed to the new block. 933 * 934 * The reference count of the block is greater than one and the tree is 935 * not the block's owner tree. Add implicit back refs for every pointer in 936 * the new block, increase lower level extents' reference count. 937 * 938 * Back Reference Key composing: 939 * 940 * The key objectid corresponds to the first byte in the extent, 941 * The key type is used to differentiate between types of back refs. 942 * There are different meanings of the key offset for different types 943 * of back refs. 944 * 945 * File extents can be referenced by: 946 * 947 * - multiple snapshots, subvolumes, or different generations in one subvol 948 * - different files inside a single subvolume 949 * - different offsets inside a file (bookend extents in file.c) 950 * 951 * The extent ref structure for the implicit back refs has fields for: 952 * 953 * - Objectid of the subvolume root 954 * - objectid of the file holding the reference 955 * - original offset in the file 956 * - how many bookend extents 957 * 958 * The key offset for the implicit back refs is hash of the first 959 * three fields. 960 * 961 * The extent ref structure for the full back refs has field for: 962 * 963 * - number of pointers in the tree leaf 964 * 965 * The key offset for the implicit back refs is the first byte of 966 * the tree leaf 967 * 968 * When a file extent is allocated, The implicit back refs is used. 969 * the fields are filled in: 970 * 971 * (root_key.objectid, inode objectid, offset in file, 1) 972 * 973 * When a file extent is removed file truncation, we find the 974 * corresponding implicit back refs and check the following fields: 975 * 976 * (btrfs_header_owner(leaf), inode objectid, offset in file) 977 * 978 * Btree extents can be referenced by: 979 * 980 * - Different subvolumes 981 * 982 * Both the implicit back refs and the full back refs for tree blocks 983 * only consist of key. The key offset for the implicit back refs is 984 * objectid of block's owner tree. The key offset for the full back refs 985 * is the first byte of parent block. 986 * 987 * When implicit back refs is used, information about the lowest key and 988 * level of the tree block are required. These information are stored in 989 * tree block info structure. 990 */ 991 992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 993 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 994 struct btrfs_root *root, 995 struct btrfs_path *path, 996 u64 owner, u32 extra_size) 997 { 998 struct btrfs_extent_item *item; 999 struct btrfs_extent_item_v0 *ei0; 1000 struct btrfs_extent_ref_v0 *ref0; 1001 struct btrfs_tree_block_info *bi; 1002 struct extent_buffer *leaf; 1003 struct btrfs_key key; 1004 struct btrfs_key found_key; 1005 u32 new_size = sizeof(*item); 1006 u64 refs; 1007 int ret; 1008 1009 leaf = path->nodes[0]; 1010 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 1011 1012 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1013 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1014 struct btrfs_extent_item_v0); 1015 refs = btrfs_extent_refs_v0(leaf, ei0); 1016 1017 if (owner == (u64)-1) { 1018 while (1) { 1019 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1020 ret = btrfs_next_leaf(root, path); 1021 if (ret < 0) 1022 return ret; 1023 BUG_ON(ret > 0); /* Corruption */ 1024 leaf = path->nodes[0]; 1025 } 1026 btrfs_item_key_to_cpu(leaf, &found_key, 1027 path->slots[0]); 1028 BUG_ON(key.objectid != found_key.objectid); 1029 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1030 path->slots[0]++; 1031 continue; 1032 } 1033 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1034 struct btrfs_extent_ref_v0); 1035 owner = btrfs_ref_objectid_v0(leaf, ref0); 1036 break; 1037 } 1038 } 1039 btrfs_release_path(path); 1040 1041 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1042 new_size += sizeof(*bi); 1043 1044 new_size -= sizeof(*ei0); 1045 ret = btrfs_search_slot(trans, root, &key, path, 1046 new_size + extra_size, 1); 1047 if (ret < 0) 1048 return ret; 1049 BUG_ON(ret); /* Corruption */ 1050 1051 btrfs_extend_item(root, path, new_size); 1052 1053 leaf = path->nodes[0]; 1054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1055 btrfs_set_extent_refs(leaf, item, refs); 1056 /* FIXME: get real generation */ 1057 btrfs_set_extent_generation(leaf, item, 0); 1058 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1059 btrfs_set_extent_flags(leaf, item, 1060 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1061 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1062 bi = (struct btrfs_tree_block_info *)(item + 1); 1063 /* FIXME: get first key of the block */ 1064 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1065 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1066 } else { 1067 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1068 } 1069 btrfs_mark_buffer_dirty(leaf); 1070 return 0; 1071 } 1072 #endif 1073 1074 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1075 { 1076 u32 high_crc = ~(u32)0; 1077 u32 low_crc = ~(u32)0; 1078 __le64 lenum; 1079 1080 lenum = cpu_to_le64(root_objectid); 1081 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1082 lenum = cpu_to_le64(owner); 1083 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1084 lenum = cpu_to_le64(offset); 1085 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1086 1087 return ((u64)high_crc << 31) ^ (u64)low_crc; 1088 } 1089 1090 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1091 struct btrfs_extent_data_ref *ref) 1092 { 1093 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1094 btrfs_extent_data_ref_objectid(leaf, ref), 1095 btrfs_extent_data_ref_offset(leaf, ref)); 1096 } 1097 1098 static int match_extent_data_ref(struct extent_buffer *leaf, 1099 struct btrfs_extent_data_ref *ref, 1100 u64 root_objectid, u64 owner, u64 offset) 1101 { 1102 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1103 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1104 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1105 return 0; 1106 return 1; 1107 } 1108 1109 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1110 struct btrfs_root *root, 1111 struct btrfs_path *path, 1112 u64 bytenr, u64 parent, 1113 u64 root_objectid, 1114 u64 owner, u64 offset) 1115 { 1116 struct btrfs_key key; 1117 struct btrfs_extent_data_ref *ref; 1118 struct extent_buffer *leaf; 1119 u32 nritems; 1120 int ret; 1121 int recow; 1122 int err = -ENOENT; 1123 1124 key.objectid = bytenr; 1125 if (parent) { 1126 key.type = BTRFS_SHARED_DATA_REF_KEY; 1127 key.offset = parent; 1128 } else { 1129 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1130 key.offset = hash_extent_data_ref(root_objectid, 1131 owner, offset); 1132 } 1133 again: 1134 recow = 0; 1135 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1136 if (ret < 0) { 1137 err = ret; 1138 goto fail; 1139 } 1140 1141 if (parent) { 1142 if (!ret) 1143 return 0; 1144 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1145 key.type = BTRFS_EXTENT_REF_V0_KEY; 1146 btrfs_release_path(path); 1147 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1148 if (ret < 0) { 1149 err = ret; 1150 goto fail; 1151 } 1152 if (!ret) 1153 return 0; 1154 #endif 1155 goto fail; 1156 } 1157 1158 leaf = path->nodes[0]; 1159 nritems = btrfs_header_nritems(leaf); 1160 while (1) { 1161 if (path->slots[0] >= nritems) { 1162 ret = btrfs_next_leaf(root, path); 1163 if (ret < 0) 1164 err = ret; 1165 if (ret) 1166 goto fail; 1167 1168 leaf = path->nodes[0]; 1169 nritems = btrfs_header_nritems(leaf); 1170 recow = 1; 1171 } 1172 1173 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1174 if (key.objectid != bytenr || 1175 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1176 goto fail; 1177 1178 ref = btrfs_item_ptr(leaf, path->slots[0], 1179 struct btrfs_extent_data_ref); 1180 1181 if (match_extent_data_ref(leaf, ref, root_objectid, 1182 owner, offset)) { 1183 if (recow) { 1184 btrfs_release_path(path); 1185 goto again; 1186 } 1187 err = 0; 1188 break; 1189 } 1190 path->slots[0]++; 1191 } 1192 fail: 1193 return err; 1194 } 1195 1196 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1197 struct btrfs_root *root, 1198 struct btrfs_path *path, 1199 u64 bytenr, u64 parent, 1200 u64 root_objectid, u64 owner, 1201 u64 offset, int refs_to_add) 1202 { 1203 struct btrfs_key key; 1204 struct extent_buffer *leaf; 1205 u32 size; 1206 u32 num_refs; 1207 int ret; 1208 1209 key.objectid = bytenr; 1210 if (parent) { 1211 key.type = BTRFS_SHARED_DATA_REF_KEY; 1212 key.offset = parent; 1213 size = sizeof(struct btrfs_shared_data_ref); 1214 } else { 1215 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1216 key.offset = hash_extent_data_ref(root_objectid, 1217 owner, offset); 1218 size = sizeof(struct btrfs_extent_data_ref); 1219 } 1220 1221 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1222 if (ret && ret != -EEXIST) 1223 goto fail; 1224 1225 leaf = path->nodes[0]; 1226 if (parent) { 1227 struct btrfs_shared_data_ref *ref; 1228 ref = btrfs_item_ptr(leaf, path->slots[0], 1229 struct btrfs_shared_data_ref); 1230 if (ret == 0) { 1231 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1232 } else { 1233 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1234 num_refs += refs_to_add; 1235 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1236 } 1237 } else { 1238 struct btrfs_extent_data_ref *ref; 1239 while (ret == -EEXIST) { 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (match_extent_data_ref(leaf, ref, root_objectid, 1243 owner, offset)) 1244 break; 1245 btrfs_release_path(path); 1246 key.offset++; 1247 ret = btrfs_insert_empty_item(trans, root, path, &key, 1248 size); 1249 if (ret && ret != -EEXIST) 1250 goto fail; 1251 1252 leaf = path->nodes[0]; 1253 } 1254 ref = btrfs_item_ptr(leaf, path->slots[0], 1255 struct btrfs_extent_data_ref); 1256 if (ret == 0) { 1257 btrfs_set_extent_data_ref_root(leaf, ref, 1258 root_objectid); 1259 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1260 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1261 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1262 } else { 1263 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1264 num_refs += refs_to_add; 1265 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1266 } 1267 } 1268 btrfs_mark_buffer_dirty(leaf); 1269 ret = 0; 1270 fail: 1271 btrfs_release_path(path); 1272 return ret; 1273 } 1274 1275 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1276 struct btrfs_root *root, 1277 struct btrfs_path *path, 1278 int refs_to_drop, int *last_ref) 1279 { 1280 struct btrfs_key key; 1281 struct btrfs_extent_data_ref *ref1 = NULL; 1282 struct btrfs_shared_data_ref *ref2 = NULL; 1283 struct extent_buffer *leaf; 1284 u32 num_refs = 0; 1285 int ret = 0; 1286 1287 leaf = path->nodes[0]; 1288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1289 1290 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1291 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1292 struct btrfs_extent_data_ref); 1293 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1294 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1295 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1296 struct btrfs_shared_data_ref); 1297 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1299 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1300 struct btrfs_extent_ref_v0 *ref0; 1301 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1302 struct btrfs_extent_ref_v0); 1303 num_refs = btrfs_ref_count_v0(leaf, ref0); 1304 #endif 1305 } else { 1306 BUG(); 1307 } 1308 1309 BUG_ON(num_refs < refs_to_drop); 1310 num_refs -= refs_to_drop; 1311 1312 if (num_refs == 0) { 1313 ret = btrfs_del_item(trans, root, path); 1314 *last_ref = 1; 1315 } else { 1316 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1317 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1318 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1319 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1320 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1321 else { 1322 struct btrfs_extent_ref_v0 *ref0; 1323 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1324 struct btrfs_extent_ref_v0); 1325 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1326 } 1327 #endif 1328 btrfs_mark_buffer_dirty(leaf); 1329 } 1330 return ret; 1331 } 1332 1333 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1334 struct btrfs_path *path, 1335 struct btrfs_extent_inline_ref *iref) 1336 { 1337 struct btrfs_key key; 1338 struct extent_buffer *leaf; 1339 struct btrfs_extent_data_ref *ref1; 1340 struct btrfs_shared_data_ref *ref2; 1341 u32 num_refs = 0; 1342 1343 leaf = path->nodes[0]; 1344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1345 if (iref) { 1346 if (btrfs_extent_inline_ref_type(leaf, iref) == 1347 BTRFS_EXTENT_DATA_REF_KEY) { 1348 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1349 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1350 } else { 1351 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1352 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1353 } 1354 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1355 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1356 struct btrfs_extent_data_ref); 1357 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1358 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1359 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1360 struct btrfs_shared_data_ref); 1361 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1362 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1363 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1364 struct btrfs_extent_ref_v0 *ref0; 1365 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1366 struct btrfs_extent_ref_v0); 1367 num_refs = btrfs_ref_count_v0(leaf, ref0); 1368 #endif 1369 } else { 1370 WARN_ON(1); 1371 } 1372 return num_refs; 1373 } 1374 1375 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1376 struct btrfs_root *root, 1377 struct btrfs_path *path, 1378 u64 bytenr, u64 parent, 1379 u64 root_objectid) 1380 { 1381 struct btrfs_key key; 1382 int ret; 1383 1384 key.objectid = bytenr; 1385 if (parent) { 1386 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1387 key.offset = parent; 1388 } else { 1389 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1390 key.offset = root_objectid; 1391 } 1392 1393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1394 if (ret > 0) 1395 ret = -ENOENT; 1396 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1397 if (ret == -ENOENT && parent) { 1398 btrfs_release_path(path); 1399 key.type = BTRFS_EXTENT_REF_V0_KEY; 1400 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1401 if (ret > 0) 1402 ret = -ENOENT; 1403 } 1404 #endif 1405 return ret; 1406 } 1407 1408 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1409 struct btrfs_root *root, 1410 struct btrfs_path *path, 1411 u64 bytenr, u64 parent, 1412 u64 root_objectid) 1413 { 1414 struct btrfs_key key; 1415 int ret; 1416 1417 key.objectid = bytenr; 1418 if (parent) { 1419 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1420 key.offset = parent; 1421 } else { 1422 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1423 key.offset = root_objectid; 1424 } 1425 1426 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1427 btrfs_release_path(path); 1428 return ret; 1429 } 1430 1431 static inline int extent_ref_type(u64 parent, u64 owner) 1432 { 1433 int type; 1434 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1435 if (parent > 0) 1436 type = BTRFS_SHARED_BLOCK_REF_KEY; 1437 else 1438 type = BTRFS_TREE_BLOCK_REF_KEY; 1439 } else { 1440 if (parent > 0) 1441 type = BTRFS_SHARED_DATA_REF_KEY; 1442 else 1443 type = BTRFS_EXTENT_DATA_REF_KEY; 1444 } 1445 return type; 1446 } 1447 1448 static int find_next_key(struct btrfs_path *path, int level, 1449 struct btrfs_key *key) 1450 1451 { 1452 for (; level < BTRFS_MAX_LEVEL; level++) { 1453 if (!path->nodes[level]) 1454 break; 1455 if (path->slots[level] + 1 >= 1456 btrfs_header_nritems(path->nodes[level])) 1457 continue; 1458 if (level == 0) 1459 btrfs_item_key_to_cpu(path->nodes[level], key, 1460 path->slots[level] + 1); 1461 else 1462 btrfs_node_key_to_cpu(path->nodes[level], key, 1463 path->slots[level] + 1); 1464 return 0; 1465 } 1466 return 1; 1467 } 1468 1469 /* 1470 * look for inline back ref. if back ref is found, *ref_ret is set 1471 * to the address of inline back ref, and 0 is returned. 1472 * 1473 * if back ref isn't found, *ref_ret is set to the address where it 1474 * should be inserted, and -ENOENT is returned. 1475 * 1476 * if insert is true and there are too many inline back refs, the path 1477 * points to the extent item, and -EAGAIN is returned. 1478 * 1479 * NOTE: inline back refs are ordered in the same way that back ref 1480 * items in the tree are ordered. 1481 */ 1482 static noinline_for_stack 1483 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1484 struct btrfs_root *root, 1485 struct btrfs_path *path, 1486 struct btrfs_extent_inline_ref **ref_ret, 1487 u64 bytenr, u64 num_bytes, 1488 u64 parent, u64 root_objectid, 1489 u64 owner, u64 offset, int insert) 1490 { 1491 struct btrfs_key key; 1492 struct extent_buffer *leaf; 1493 struct btrfs_extent_item *ei; 1494 struct btrfs_extent_inline_ref *iref; 1495 u64 flags; 1496 u64 item_size; 1497 unsigned long ptr; 1498 unsigned long end; 1499 int extra_size; 1500 int type; 1501 int want; 1502 int ret; 1503 int err = 0; 1504 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1505 SKINNY_METADATA); 1506 1507 key.objectid = bytenr; 1508 key.type = BTRFS_EXTENT_ITEM_KEY; 1509 key.offset = num_bytes; 1510 1511 want = extent_ref_type(parent, owner); 1512 if (insert) { 1513 extra_size = btrfs_extent_inline_ref_size(want); 1514 path->keep_locks = 1; 1515 } else 1516 extra_size = -1; 1517 1518 /* 1519 * Owner is our parent level, so we can just add one to get the level 1520 * for the block we are interested in. 1521 */ 1522 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1523 key.type = BTRFS_METADATA_ITEM_KEY; 1524 key.offset = owner; 1525 } 1526 1527 again: 1528 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1529 if (ret < 0) { 1530 err = ret; 1531 goto out; 1532 } 1533 1534 /* 1535 * We may be a newly converted file system which still has the old fat 1536 * extent entries for metadata, so try and see if we have one of those. 1537 */ 1538 if (ret > 0 && skinny_metadata) { 1539 skinny_metadata = false; 1540 if (path->slots[0]) { 1541 path->slots[0]--; 1542 btrfs_item_key_to_cpu(path->nodes[0], &key, 1543 path->slots[0]); 1544 if (key.objectid == bytenr && 1545 key.type == BTRFS_EXTENT_ITEM_KEY && 1546 key.offset == num_bytes) 1547 ret = 0; 1548 } 1549 if (ret) { 1550 key.objectid = bytenr; 1551 key.type = BTRFS_EXTENT_ITEM_KEY; 1552 key.offset = num_bytes; 1553 btrfs_release_path(path); 1554 goto again; 1555 } 1556 } 1557 1558 if (ret && !insert) { 1559 err = -ENOENT; 1560 goto out; 1561 } else if (WARN_ON(ret)) { 1562 err = -EIO; 1563 goto out; 1564 } 1565 1566 leaf = path->nodes[0]; 1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1568 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1569 if (item_size < sizeof(*ei)) { 1570 if (!insert) { 1571 err = -ENOENT; 1572 goto out; 1573 } 1574 ret = convert_extent_item_v0(trans, root, path, owner, 1575 extra_size); 1576 if (ret < 0) { 1577 err = ret; 1578 goto out; 1579 } 1580 leaf = path->nodes[0]; 1581 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1582 } 1583 #endif 1584 BUG_ON(item_size < sizeof(*ei)); 1585 1586 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1587 flags = btrfs_extent_flags(leaf, ei); 1588 1589 ptr = (unsigned long)(ei + 1); 1590 end = (unsigned long)ei + item_size; 1591 1592 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1593 ptr += sizeof(struct btrfs_tree_block_info); 1594 BUG_ON(ptr > end); 1595 } 1596 1597 err = -ENOENT; 1598 while (1) { 1599 if (ptr >= end) { 1600 WARN_ON(ptr > end); 1601 break; 1602 } 1603 iref = (struct btrfs_extent_inline_ref *)ptr; 1604 type = btrfs_extent_inline_ref_type(leaf, iref); 1605 if (want < type) 1606 break; 1607 if (want > type) { 1608 ptr += btrfs_extent_inline_ref_size(type); 1609 continue; 1610 } 1611 1612 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1613 struct btrfs_extent_data_ref *dref; 1614 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1615 if (match_extent_data_ref(leaf, dref, root_objectid, 1616 owner, offset)) { 1617 err = 0; 1618 break; 1619 } 1620 if (hash_extent_data_ref_item(leaf, dref) < 1621 hash_extent_data_ref(root_objectid, owner, offset)) 1622 break; 1623 } else { 1624 u64 ref_offset; 1625 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1626 if (parent > 0) { 1627 if (parent == ref_offset) { 1628 err = 0; 1629 break; 1630 } 1631 if (ref_offset < parent) 1632 break; 1633 } else { 1634 if (root_objectid == ref_offset) { 1635 err = 0; 1636 break; 1637 } 1638 if (ref_offset < root_objectid) 1639 break; 1640 } 1641 } 1642 ptr += btrfs_extent_inline_ref_size(type); 1643 } 1644 if (err == -ENOENT && insert) { 1645 if (item_size + extra_size >= 1646 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1647 err = -EAGAIN; 1648 goto out; 1649 } 1650 /* 1651 * To add new inline back ref, we have to make sure 1652 * there is no corresponding back ref item. 1653 * For simplicity, we just do not add new inline back 1654 * ref if there is any kind of item for this block 1655 */ 1656 if (find_next_key(path, 0, &key) == 0 && 1657 key.objectid == bytenr && 1658 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1659 err = -EAGAIN; 1660 goto out; 1661 } 1662 } 1663 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1664 out: 1665 if (insert) { 1666 path->keep_locks = 0; 1667 btrfs_unlock_up_safe(path, 1); 1668 } 1669 return err; 1670 } 1671 1672 /* 1673 * helper to add new inline back ref 1674 */ 1675 static noinline_for_stack 1676 void setup_inline_extent_backref(struct btrfs_root *root, 1677 struct btrfs_path *path, 1678 struct btrfs_extent_inline_ref *iref, 1679 u64 parent, u64 root_objectid, 1680 u64 owner, u64 offset, int refs_to_add, 1681 struct btrfs_delayed_extent_op *extent_op) 1682 { 1683 struct extent_buffer *leaf; 1684 struct btrfs_extent_item *ei; 1685 unsigned long ptr; 1686 unsigned long end; 1687 unsigned long item_offset; 1688 u64 refs; 1689 int size; 1690 int type; 1691 1692 leaf = path->nodes[0]; 1693 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1694 item_offset = (unsigned long)iref - (unsigned long)ei; 1695 1696 type = extent_ref_type(parent, owner); 1697 size = btrfs_extent_inline_ref_size(type); 1698 1699 btrfs_extend_item(root, path, size); 1700 1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1702 refs = btrfs_extent_refs(leaf, ei); 1703 refs += refs_to_add; 1704 btrfs_set_extent_refs(leaf, ei, refs); 1705 if (extent_op) 1706 __run_delayed_extent_op(extent_op, leaf, ei); 1707 1708 ptr = (unsigned long)ei + item_offset; 1709 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1710 if (ptr < end - size) 1711 memmove_extent_buffer(leaf, ptr + size, ptr, 1712 end - size - ptr); 1713 1714 iref = (struct btrfs_extent_inline_ref *)ptr; 1715 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1716 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1717 struct btrfs_extent_data_ref *dref; 1718 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1719 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1720 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1721 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1722 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1724 struct btrfs_shared_data_ref *sref; 1725 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1726 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1727 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1728 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1729 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1730 } else { 1731 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1732 } 1733 btrfs_mark_buffer_dirty(leaf); 1734 } 1735 1736 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1737 struct btrfs_root *root, 1738 struct btrfs_path *path, 1739 struct btrfs_extent_inline_ref **ref_ret, 1740 u64 bytenr, u64 num_bytes, u64 parent, 1741 u64 root_objectid, u64 owner, u64 offset) 1742 { 1743 int ret; 1744 1745 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1746 bytenr, num_bytes, parent, 1747 root_objectid, owner, offset, 0); 1748 if (ret != -ENOENT) 1749 return ret; 1750 1751 btrfs_release_path(path); 1752 *ref_ret = NULL; 1753 1754 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1755 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1756 root_objectid); 1757 } else { 1758 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1759 root_objectid, owner, offset); 1760 } 1761 return ret; 1762 } 1763 1764 /* 1765 * helper to update/remove inline back ref 1766 */ 1767 static noinline_for_stack 1768 void update_inline_extent_backref(struct btrfs_root *root, 1769 struct btrfs_path *path, 1770 struct btrfs_extent_inline_ref *iref, 1771 int refs_to_mod, 1772 struct btrfs_delayed_extent_op *extent_op, 1773 int *last_ref) 1774 { 1775 struct extent_buffer *leaf; 1776 struct btrfs_extent_item *ei; 1777 struct btrfs_extent_data_ref *dref = NULL; 1778 struct btrfs_shared_data_ref *sref = NULL; 1779 unsigned long ptr; 1780 unsigned long end; 1781 u32 item_size; 1782 int size; 1783 int type; 1784 u64 refs; 1785 1786 leaf = path->nodes[0]; 1787 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1788 refs = btrfs_extent_refs(leaf, ei); 1789 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1790 refs += refs_to_mod; 1791 btrfs_set_extent_refs(leaf, ei, refs); 1792 if (extent_op) 1793 __run_delayed_extent_op(extent_op, leaf, ei); 1794 1795 type = btrfs_extent_inline_ref_type(leaf, iref); 1796 1797 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1798 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1799 refs = btrfs_extent_data_ref_count(leaf, dref); 1800 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1801 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1802 refs = btrfs_shared_data_ref_count(leaf, sref); 1803 } else { 1804 refs = 1; 1805 BUG_ON(refs_to_mod != -1); 1806 } 1807 1808 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1809 refs += refs_to_mod; 1810 1811 if (refs > 0) { 1812 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1813 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1814 else 1815 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1816 } else { 1817 *last_ref = 1; 1818 size = btrfs_extent_inline_ref_size(type); 1819 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1820 ptr = (unsigned long)iref; 1821 end = (unsigned long)ei + item_size; 1822 if (ptr + size < end) 1823 memmove_extent_buffer(leaf, ptr, ptr + size, 1824 end - ptr - size); 1825 item_size -= size; 1826 btrfs_truncate_item(root, path, item_size, 1); 1827 } 1828 btrfs_mark_buffer_dirty(leaf); 1829 } 1830 1831 static noinline_for_stack 1832 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1833 struct btrfs_root *root, 1834 struct btrfs_path *path, 1835 u64 bytenr, u64 num_bytes, u64 parent, 1836 u64 root_objectid, u64 owner, 1837 u64 offset, int refs_to_add, 1838 struct btrfs_delayed_extent_op *extent_op) 1839 { 1840 struct btrfs_extent_inline_ref *iref; 1841 int ret; 1842 1843 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1844 bytenr, num_bytes, parent, 1845 root_objectid, owner, offset, 1); 1846 if (ret == 0) { 1847 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1848 update_inline_extent_backref(root, path, iref, 1849 refs_to_add, extent_op, NULL); 1850 } else if (ret == -ENOENT) { 1851 setup_inline_extent_backref(root, path, iref, parent, 1852 root_objectid, owner, offset, 1853 refs_to_add, extent_op); 1854 ret = 0; 1855 } 1856 return ret; 1857 } 1858 1859 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1860 struct btrfs_root *root, 1861 struct btrfs_path *path, 1862 u64 bytenr, u64 parent, u64 root_objectid, 1863 u64 owner, u64 offset, int refs_to_add) 1864 { 1865 int ret; 1866 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1867 BUG_ON(refs_to_add != 1); 1868 ret = insert_tree_block_ref(trans, root, path, bytenr, 1869 parent, root_objectid); 1870 } else { 1871 ret = insert_extent_data_ref(trans, root, path, bytenr, 1872 parent, root_objectid, 1873 owner, offset, refs_to_add); 1874 } 1875 return ret; 1876 } 1877 1878 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1879 struct btrfs_root *root, 1880 struct btrfs_path *path, 1881 struct btrfs_extent_inline_ref *iref, 1882 int refs_to_drop, int is_data, int *last_ref) 1883 { 1884 int ret = 0; 1885 1886 BUG_ON(!is_data && refs_to_drop != 1); 1887 if (iref) { 1888 update_inline_extent_backref(root, path, iref, 1889 -refs_to_drop, NULL, last_ref); 1890 } else if (is_data) { 1891 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1892 last_ref); 1893 } else { 1894 *last_ref = 1; 1895 ret = btrfs_del_item(trans, root, path); 1896 } 1897 return ret; 1898 } 1899 1900 static int btrfs_issue_discard(struct block_device *bdev, 1901 u64 start, u64 len) 1902 { 1903 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1904 } 1905 1906 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1907 u64 num_bytes, u64 *actual_bytes) 1908 { 1909 int ret; 1910 u64 discarded_bytes = 0; 1911 struct btrfs_bio *bbio = NULL; 1912 1913 1914 /* Tell the block device(s) that the sectors can be discarded */ 1915 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1916 bytenr, &num_bytes, &bbio, 0); 1917 /* Error condition is -ENOMEM */ 1918 if (!ret) { 1919 struct btrfs_bio_stripe *stripe = bbio->stripes; 1920 int i; 1921 1922 1923 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1924 if (!stripe->dev->can_discard) 1925 continue; 1926 1927 ret = btrfs_issue_discard(stripe->dev->bdev, 1928 stripe->physical, 1929 stripe->length); 1930 if (!ret) 1931 discarded_bytes += stripe->length; 1932 else if (ret != -EOPNOTSUPP) 1933 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1934 1935 /* 1936 * Just in case we get back EOPNOTSUPP for some reason, 1937 * just ignore the return value so we don't screw up 1938 * people calling discard_extent. 1939 */ 1940 ret = 0; 1941 } 1942 kfree(bbio); 1943 } 1944 1945 if (actual_bytes) 1946 *actual_bytes = discarded_bytes; 1947 1948 1949 if (ret == -EOPNOTSUPP) 1950 ret = 0; 1951 return ret; 1952 } 1953 1954 /* Can return -ENOMEM */ 1955 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1956 struct btrfs_root *root, 1957 u64 bytenr, u64 num_bytes, u64 parent, 1958 u64 root_objectid, u64 owner, u64 offset, 1959 int no_quota) 1960 { 1961 int ret; 1962 struct btrfs_fs_info *fs_info = root->fs_info; 1963 1964 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1965 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1966 1967 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1968 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1969 num_bytes, 1970 parent, root_objectid, (int)owner, 1971 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1972 } else { 1973 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1974 num_bytes, 1975 parent, root_objectid, owner, offset, 1976 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1977 } 1978 return ret; 1979 } 1980 1981 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1982 struct btrfs_root *root, 1983 u64 bytenr, u64 num_bytes, 1984 u64 parent, u64 root_objectid, 1985 u64 owner, u64 offset, int refs_to_add, 1986 int no_quota, 1987 struct btrfs_delayed_extent_op *extent_op) 1988 { 1989 struct btrfs_fs_info *fs_info = root->fs_info; 1990 struct btrfs_path *path; 1991 struct extent_buffer *leaf; 1992 struct btrfs_extent_item *item; 1993 struct btrfs_key key; 1994 u64 refs; 1995 int ret; 1996 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL; 1997 1998 path = btrfs_alloc_path(); 1999 if (!path) 2000 return -ENOMEM; 2001 2002 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 2003 no_quota = 1; 2004 2005 path->reada = 1; 2006 path->leave_spinning = 1; 2007 /* this will setup the path even if it fails to insert the back ref */ 2008 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 2009 bytenr, num_bytes, parent, 2010 root_objectid, owner, offset, 2011 refs_to_add, extent_op); 2012 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota)) 2013 goto out; 2014 /* 2015 * Ok we were able to insert an inline extent and it appears to be a new 2016 * reference, deal with the qgroup accounting. 2017 */ 2018 if (!ret && !no_quota) { 2019 ASSERT(root->fs_info->quota_enabled); 2020 leaf = path->nodes[0]; 2021 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2022 item = btrfs_item_ptr(leaf, path->slots[0], 2023 struct btrfs_extent_item); 2024 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add) 2025 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2026 btrfs_release_path(path); 2027 2028 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2029 bytenr, num_bytes, type, 0); 2030 goto out; 2031 } 2032 2033 /* 2034 * Ok we had -EAGAIN which means we didn't have space to insert and 2035 * inline extent ref, so just update the reference count and add a 2036 * normal backref. 2037 */ 2038 leaf = path->nodes[0]; 2039 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2041 refs = btrfs_extent_refs(leaf, item); 2042 if (refs) 2043 type = BTRFS_QGROUP_OPER_ADD_SHARED; 2044 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2045 if (extent_op) 2046 __run_delayed_extent_op(extent_op, leaf, item); 2047 2048 btrfs_mark_buffer_dirty(leaf); 2049 btrfs_release_path(path); 2050 2051 if (!no_quota) { 2052 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 2053 bytenr, num_bytes, type, 0); 2054 if (ret) 2055 goto out; 2056 } 2057 2058 path->reada = 1; 2059 path->leave_spinning = 1; 2060 /* now insert the actual backref */ 2061 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2062 path, bytenr, parent, root_objectid, 2063 owner, offset, refs_to_add); 2064 if (ret) 2065 btrfs_abort_transaction(trans, root, ret); 2066 out: 2067 btrfs_free_path(path); 2068 return ret; 2069 } 2070 2071 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2072 struct btrfs_root *root, 2073 struct btrfs_delayed_ref_node *node, 2074 struct btrfs_delayed_extent_op *extent_op, 2075 int insert_reserved) 2076 { 2077 int ret = 0; 2078 struct btrfs_delayed_data_ref *ref; 2079 struct btrfs_key ins; 2080 u64 parent = 0; 2081 u64 ref_root = 0; 2082 u64 flags = 0; 2083 2084 ins.objectid = node->bytenr; 2085 ins.offset = node->num_bytes; 2086 ins.type = BTRFS_EXTENT_ITEM_KEY; 2087 2088 ref = btrfs_delayed_node_to_data_ref(node); 2089 trace_run_delayed_data_ref(node, ref, node->action); 2090 2091 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2092 parent = ref->parent; 2093 ref_root = ref->root; 2094 2095 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2096 if (extent_op) 2097 flags |= extent_op->flags_to_set; 2098 ret = alloc_reserved_file_extent(trans, root, 2099 parent, ref_root, flags, 2100 ref->objectid, ref->offset, 2101 &ins, node->ref_mod); 2102 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2103 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2104 node->num_bytes, parent, 2105 ref_root, ref->objectid, 2106 ref->offset, node->ref_mod, 2107 node->no_quota, extent_op); 2108 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2109 ret = __btrfs_free_extent(trans, root, node->bytenr, 2110 node->num_bytes, parent, 2111 ref_root, ref->objectid, 2112 ref->offset, node->ref_mod, 2113 extent_op, node->no_quota); 2114 } else { 2115 BUG(); 2116 } 2117 return ret; 2118 } 2119 2120 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2121 struct extent_buffer *leaf, 2122 struct btrfs_extent_item *ei) 2123 { 2124 u64 flags = btrfs_extent_flags(leaf, ei); 2125 if (extent_op->update_flags) { 2126 flags |= extent_op->flags_to_set; 2127 btrfs_set_extent_flags(leaf, ei, flags); 2128 } 2129 2130 if (extent_op->update_key) { 2131 struct btrfs_tree_block_info *bi; 2132 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2133 bi = (struct btrfs_tree_block_info *)(ei + 1); 2134 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2135 } 2136 } 2137 2138 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2139 struct btrfs_root *root, 2140 struct btrfs_delayed_ref_node *node, 2141 struct btrfs_delayed_extent_op *extent_op) 2142 { 2143 struct btrfs_key key; 2144 struct btrfs_path *path; 2145 struct btrfs_extent_item *ei; 2146 struct extent_buffer *leaf; 2147 u32 item_size; 2148 int ret; 2149 int err = 0; 2150 int metadata = !extent_op->is_data; 2151 2152 if (trans->aborted) 2153 return 0; 2154 2155 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2156 metadata = 0; 2157 2158 path = btrfs_alloc_path(); 2159 if (!path) 2160 return -ENOMEM; 2161 2162 key.objectid = node->bytenr; 2163 2164 if (metadata) { 2165 key.type = BTRFS_METADATA_ITEM_KEY; 2166 key.offset = extent_op->level; 2167 } else { 2168 key.type = BTRFS_EXTENT_ITEM_KEY; 2169 key.offset = node->num_bytes; 2170 } 2171 2172 again: 2173 path->reada = 1; 2174 path->leave_spinning = 1; 2175 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2176 path, 0, 1); 2177 if (ret < 0) { 2178 err = ret; 2179 goto out; 2180 } 2181 if (ret > 0) { 2182 if (metadata) { 2183 if (path->slots[0] > 0) { 2184 path->slots[0]--; 2185 btrfs_item_key_to_cpu(path->nodes[0], &key, 2186 path->slots[0]); 2187 if (key.objectid == node->bytenr && 2188 key.type == BTRFS_EXTENT_ITEM_KEY && 2189 key.offset == node->num_bytes) 2190 ret = 0; 2191 } 2192 if (ret > 0) { 2193 btrfs_release_path(path); 2194 metadata = 0; 2195 2196 key.objectid = node->bytenr; 2197 key.offset = node->num_bytes; 2198 key.type = BTRFS_EXTENT_ITEM_KEY; 2199 goto again; 2200 } 2201 } else { 2202 err = -EIO; 2203 goto out; 2204 } 2205 } 2206 2207 leaf = path->nodes[0]; 2208 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2210 if (item_size < sizeof(*ei)) { 2211 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2212 path, (u64)-1, 0); 2213 if (ret < 0) { 2214 err = ret; 2215 goto out; 2216 } 2217 leaf = path->nodes[0]; 2218 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2219 } 2220 #endif 2221 BUG_ON(item_size < sizeof(*ei)); 2222 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2223 __run_delayed_extent_op(extent_op, leaf, ei); 2224 2225 btrfs_mark_buffer_dirty(leaf); 2226 out: 2227 btrfs_free_path(path); 2228 return err; 2229 } 2230 2231 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2232 struct btrfs_root *root, 2233 struct btrfs_delayed_ref_node *node, 2234 struct btrfs_delayed_extent_op *extent_op, 2235 int insert_reserved) 2236 { 2237 int ret = 0; 2238 struct btrfs_delayed_tree_ref *ref; 2239 struct btrfs_key ins; 2240 u64 parent = 0; 2241 u64 ref_root = 0; 2242 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2243 SKINNY_METADATA); 2244 2245 ref = btrfs_delayed_node_to_tree_ref(node); 2246 trace_run_delayed_tree_ref(node, ref, node->action); 2247 2248 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2249 parent = ref->parent; 2250 ref_root = ref->root; 2251 2252 ins.objectid = node->bytenr; 2253 if (skinny_metadata) { 2254 ins.offset = ref->level; 2255 ins.type = BTRFS_METADATA_ITEM_KEY; 2256 } else { 2257 ins.offset = node->num_bytes; 2258 ins.type = BTRFS_EXTENT_ITEM_KEY; 2259 } 2260 2261 BUG_ON(node->ref_mod != 1); 2262 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2263 BUG_ON(!extent_op || !extent_op->update_flags); 2264 ret = alloc_reserved_tree_block(trans, root, 2265 parent, ref_root, 2266 extent_op->flags_to_set, 2267 &extent_op->key, 2268 ref->level, &ins, 2269 node->no_quota); 2270 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2271 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr, 2272 node->num_bytes, parent, ref_root, 2273 ref->level, 0, 1, node->no_quota, 2274 extent_op); 2275 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2276 ret = __btrfs_free_extent(trans, root, node->bytenr, 2277 node->num_bytes, parent, ref_root, 2278 ref->level, 0, 1, extent_op, 2279 node->no_quota); 2280 } else { 2281 BUG(); 2282 } 2283 return ret; 2284 } 2285 2286 /* helper function to actually process a single delayed ref entry */ 2287 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2288 struct btrfs_root *root, 2289 struct btrfs_delayed_ref_node *node, 2290 struct btrfs_delayed_extent_op *extent_op, 2291 int insert_reserved) 2292 { 2293 int ret = 0; 2294 2295 if (trans->aborted) { 2296 if (insert_reserved) 2297 btrfs_pin_extent(root, node->bytenr, 2298 node->num_bytes, 1); 2299 return 0; 2300 } 2301 2302 if (btrfs_delayed_ref_is_head(node)) { 2303 struct btrfs_delayed_ref_head *head; 2304 /* 2305 * we've hit the end of the chain and we were supposed 2306 * to insert this extent into the tree. But, it got 2307 * deleted before we ever needed to insert it, so all 2308 * we have to do is clean up the accounting 2309 */ 2310 BUG_ON(extent_op); 2311 head = btrfs_delayed_node_to_head(node); 2312 trace_run_delayed_ref_head(node, head, node->action); 2313 2314 if (insert_reserved) { 2315 btrfs_pin_extent(root, node->bytenr, 2316 node->num_bytes, 1); 2317 if (head->is_data) { 2318 ret = btrfs_del_csums(trans, root, 2319 node->bytenr, 2320 node->num_bytes); 2321 } 2322 } 2323 return ret; 2324 } 2325 2326 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2327 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2328 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2329 insert_reserved); 2330 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2331 node->type == BTRFS_SHARED_DATA_REF_KEY) 2332 ret = run_delayed_data_ref(trans, root, node, extent_op, 2333 insert_reserved); 2334 else 2335 BUG(); 2336 return ret; 2337 } 2338 2339 static noinline struct btrfs_delayed_ref_node * 2340 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2341 { 2342 struct rb_node *node; 2343 struct btrfs_delayed_ref_node *ref, *last = NULL;; 2344 2345 /* 2346 * select delayed ref of type BTRFS_ADD_DELAYED_REF first. 2347 * this prevents ref count from going down to zero when 2348 * there still are pending delayed ref. 2349 */ 2350 node = rb_first(&head->ref_root); 2351 while (node) { 2352 ref = rb_entry(node, struct btrfs_delayed_ref_node, 2353 rb_node); 2354 if (ref->action == BTRFS_ADD_DELAYED_REF) 2355 return ref; 2356 else if (last == NULL) 2357 last = ref; 2358 node = rb_next(node); 2359 } 2360 return last; 2361 } 2362 2363 /* 2364 * Returns 0 on success or if called with an already aborted transaction. 2365 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2366 */ 2367 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2368 struct btrfs_root *root, 2369 unsigned long nr) 2370 { 2371 struct btrfs_delayed_ref_root *delayed_refs; 2372 struct btrfs_delayed_ref_node *ref; 2373 struct btrfs_delayed_ref_head *locked_ref = NULL; 2374 struct btrfs_delayed_extent_op *extent_op; 2375 struct btrfs_fs_info *fs_info = root->fs_info; 2376 ktime_t start = ktime_get(); 2377 int ret; 2378 unsigned long count = 0; 2379 unsigned long actual_count = 0; 2380 int must_insert_reserved = 0; 2381 2382 delayed_refs = &trans->transaction->delayed_refs; 2383 while (1) { 2384 if (!locked_ref) { 2385 if (count >= nr) 2386 break; 2387 2388 spin_lock(&delayed_refs->lock); 2389 locked_ref = btrfs_select_ref_head(trans); 2390 if (!locked_ref) { 2391 spin_unlock(&delayed_refs->lock); 2392 break; 2393 } 2394 2395 /* grab the lock that says we are going to process 2396 * all the refs for this head */ 2397 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2398 spin_unlock(&delayed_refs->lock); 2399 /* 2400 * we may have dropped the spin lock to get the head 2401 * mutex lock, and that might have given someone else 2402 * time to free the head. If that's true, it has been 2403 * removed from our list and we can move on. 2404 */ 2405 if (ret == -EAGAIN) { 2406 locked_ref = NULL; 2407 count++; 2408 continue; 2409 } 2410 } 2411 2412 /* 2413 * We need to try and merge add/drops of the same ref since we 2414 * can run into issues with relocate dropping the implicit ref 2415 * and then it being added back again before the drop can 2416 * finish. If we merged anything we need to re-loop so we can 2417 * get a good ref. 2418 */ 2419 spin_lock(&locked_ref->lock); 2420 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs, 2421 locked_ref); 2422 2423 /* 2424 * locked_ref is the head node, so we have to go one 2425 * node back for any delayed ref updates 2426 */ 2427 ref = select_delayed_ref(locked_ref); 2428 2429 if (ref && ref->seq && 2430 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2431 spin_unlock(&locked_ref->lock); 2432 btrfs_delayed_ref_unlock(locked_ref); 2433 spin_lock(&delayed_refs->lock); 2434 locked_ref->processing = 0; 2435 delayed_refs->num_heads_ready++; 2436 spin_unlock(&delayed_refs->lock); 2437 locked_ref = NULL; 2438 cond_resched(); 2439 count++; 2440 continue; 2441 } 2442 2443 /* 2444 * record the must insert reserved flag before we 2445 * drop the spin lock. 2446 */ 2447 must_insert_reserved = locked_ref->must_insert_reserved; 2448 locked_ref->must_insert_reserved = 0; 2449 2450 extent_op = locked_ref->extent_op; 2451 locked_ref->extent_op = NULL; 2452 2453 if (!ref) { 2454 2455 2456 /* All delayed refs have been processed, Go ahead 2457 * and send the head node to run_one_delayed_ref, 2458 * so that any accounting fixes can happen 2459 */ 2460 ref = &locked_ref->node; 2461 2462 if (extent_op && must_insert_reserved) { 2463 btrfs_free_delayed_extent_op(extent_op); 2464 extent_op = NULL; 2465 } 2466 2467 if (extent_op) { 2468 spin_unlock(&locked_ref->lock); 2469 ret = run_delayed_extent_op(trans, root, 2470 ref, extent_op); 2471 btrfs_free_delayed_extent_op(extent_op); 2472 2473 if (ret) { 2474 /* 2475 * Need to reset must_insert_reserved if 2476 * there was an error so the abort stuff 2477 * can cleanup the reserved space 2478 * properly. 2479 */ 2480 if (must_insert_reserved) 2481 locked_ref->must_insert_reserved = 1; 2482 locked_ref->processing = 0; 2483 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2484 btrfs_delayed_ref_unlock(locked_ref); 2485 return ret; 2486 } 2487 continue; 2488 } 2489 2490 /* 2491 * Need to drop our head ref lock and re-aqcuire the 2492 * delayed ref lock and then re-check to make sure 2493 * nobody got added. 2494 */ 2495 spin_unlock(&locked_ref->lock); 2496 spin_lock(&delayed_refs->lock); 2497 spin_lock(&locked_ref->lock); 2498 if (rb_first(&locked_ref->ref_root) || 2499 locked_ref->extent_op) { 2500 spin_unlock(&locked_ref->lock); 2501 spin_unlock(&delayed_refs->lock); 2502 continue; 2503 } 2504 ref->in_tree = 0; 2505 delayed_refs->num_heads--; 2506 rb_erase(&locked_ref->href_node, 2507 &delayed_refs->href_root); 2508 spin_unlock(&delayed_refs->lock); 2509 } else { 2510 actual_count++; 2511 ref->in_tree = 0; 2512 rb_erase(&ref->rb_node, &locked_ref->ref_root); 2513 } 2514 atomic_dec(&delayed_refs->num_entries); 2515 2516 if (!btrfs_delayed_ref_is_head(ref)) { 2517 /* 2518 * when we play the delayed ref, also correct the 2519 * ref_mod on head 2520 */ 2521 switch (ref->action) { 2522 case BTRFS_ADD_DELAYED_REF: 2523 case BTRFS_ADD_DELAYED_EXTENT: 2524 locked_ref->node.ref_mod -= ref->ref_mod; 2525 break; 2526 case BTRFS_DROP_DELAYED_REF: 2527 locked_ref->node.ref_mod += ref->ref_mod; 2528 break; 2529 default: 2530 WARN_ON(1); 2531 } 2532 } 2533 spin_unlock(&locked_ref->lock); 2534 2535 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2536 must_insert_reserved); 2537 2538 btrfs_free_delayed_extent_op(extent_op); 2539 if (ret) { 2540 locked_ref->processing = 0; 2541 btrfs_delayed_ref_unlock(locked_ref); 2542 btrfs_put_delayed_ref(ref); 2543 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2544 return ret; 2545 } 2546 2547 /* 2548 * If this node is a head, that means all the refs in this head 2549 * have been dealt with, and we will pick the next head to deal 2550 * with, so we must unlock the head and drop it from the cluster 2551 * list before we release it. 2552 */ 2553 if (btrfs_delayed_ref_is_head(ref)) { 2554 btrfs_delayed_ref_unlock(locked_ref); 2555 locked_ref = NULL; 2556 } 2557 btrfs_put_delayed_ref(ref); 2558 count++; 2559 cond_resched(); 2560 } 2561 2562 /* 2563 * We don't want to include ref heads since we can have empty ref heads 2564 * and those will drastically skew our runtime down since we just do 2565 * accounting, no actual extent tree updates. 2566 */ 2567 if (actual_count > 0) { 2568 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2569 u64 avg; 2570 2571 /* 2572 * We weigh the current average higher than our current runtime 2573 * to avoid large swings in the average. 2574 */ 2575 spin_lock(&delayed_refs->lock); 2576 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2577 avg = div64_u64(avg, 4); 2578 fs_info->avg_delayed_ref_runtime = avg; 2579 spin_unlock(&delayed_refs->lock); 2580 } 2581 return 0; 2582 } 2583 2584 #ifdef SCRAMBLE_DELAYED_REFS 2585 /* 2586 * Normally delayed refs get processed in ascending bytenr order. This 2587 * correlates in most cases to the order added. To expose dependencies on this 2588 * order, we start to process the tree in the middle instead of the beginning 2589 */ 2590 static u64 find_middle(struct rb_root *root) 2591 { 2592 struct rb_node *n = root->rb_node; 2593 struct btrfs_delayed_ref_node *entry; 2594 int alt = 1; 2595 u64 middle; 2596 u64 first = 0, last = 0; 2597 2598 n = rb_first(root); 2599 if (n) { 2600 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2601 first = entry->bytenr; 2602 } 2603 n = rb_last(root); 2604 if (n) { 2605 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2606 last = entry->bytenr; 2607 } 2608 n = root->rb_node; 2609 2610 while (n) { 2611 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2612 WARN_ON(!entry->in_tree); 2613 2614 middle = entry->bytenr; 2615 2616 if (alt) 2617 n = n->rb_left; 2618 else 2619 n = n->rb_right; 2620 2621 alt = 1 - alt; 2622 } 2623 return middle; 2624 } 2625 #endif 2626 2627 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2628 { 2629 u64 num_bytes; 2630 2631 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2632 sizeof(struct btrfs_extent_inline_ref)); 2633 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2634 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2635 2636 /* 2637 * We don't ever fill up leaves all the way so multiply by 2 just to be 2638 * closer to what we're really going to want to ouse. 2639 */ 2640 return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2641 } 2642 2643 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2644 struct btrfs_root *root) 2645 { 2646 struct btrfs_block_rsv *global_rsv; 2647 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2648 u64 num_bytes; 2649 int ret = 0; 2650 2651 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2652 num_heads = heads_to_leaves(root, num_heads); 2653 if (num_heads > 1) 2654 num_bytes += (num_heads - 1) * root->nodesize; 2655 num_bytes <<= 1; 2656 global_rsv = &root->fs_info->global_block_rsv; 2657 2658 /* 2659 * If we can't allocate any more chunks lets make sure we have _lots_ of 2660 * wiggle room since running delayed refs can create more delayed refs. 2661 */ 2662 if (global_rsv->space_info->full) 2663 num_bytes <<= 1; 2664 2665 spin_lock(&global_rsv->lock); 2666 if (global_rsv->reserved <= num_bytes) 2667 ret = 1; 2668 spin_unlock(&global_rsv->lock); 2669 return ret; 2670 } 2671 2672 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2673 struct btrfs_root *root) 2674 { 2675 struct btrfs_fs_info *fs_info = root->fs_info; 2676 u64 num_entries = 2677 atomic_read(&trans->transaction->delayed_refs.num_entries); 2678 u64 avg_runtime; 2679 u64 val; 2680 2681 smp_mb(); 2682 avg_runtime = fs_info->avg_delayed_ref_runtime; 2683 val = num_entries * avg_runtime; 2684 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2685 return 1; 2686 if (val >= NSEC_PER_SEC / 2) 2687 return 2; 2688 2689 return btrfs_check_space_for_delayed_refs(trans, root); 2690 } 2691 2692 struct async_delayed_refs { 2693 struct btrfs_root *root; 2694 int count; 2695 int error; 2696 int sync; 2697 struct completion wait; 2698 struct btrfs_work work; 2699 }; 2700 2701 static void delayed_ref_async_start(struct btrfs_work *work) 2702 { 2703 struct async_delayed_refs *async; 2704 struct btrfs_trans_handle *trans; 2705 int ret; 2706 2707 async = container_of(work, struct async_delayed_refs, work); 2708 2709 trans = btrfs_join_transaction(async->root); 2710 if (IS_ERR(trans)) { 2711 async->error = PTR_ERR(trans); 2712 goto done; 2713 } 2714 2715 /* 2716 * trans->sync means that when we call end_transaciton, we won't 2717 * wait on delayed refs 2718 */ 2719 trans->sync = true; 2720 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2721 if (ret) 2722 async->error = ret; 2723 2724 ret = btrfs_end_transaction(trans, async->root); 2725 if (ret && !async->error) 2726 async->error = ret; 2727 done: 2728 if (async->sync) 2729 complete(&async->wait); 2730 else 2731 kfree(async); 2732 } 2733 2734 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2735 unsigned long count, int wait) 2736 { 2737 struct async_delayed_refs *async; 2738 int ret; 2739 2740 async = kmalloc(sizeof(*async), GFP_NOFS); 2741 if (!async) 2742 return -ENOMEM; 2743 2744 async->root = root->fs_info->tree_root; 2745 async->count = count; 2746 async->error = 0; 2747 if (wait) 2748 async->sync = 1; 2749 else 2750 async->sync = 0; 2751 init_completion(&async->wait); 2752 2753 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2754 delayed_ref_async_start, NULL, NULL); 2755 2756 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2757 2758 if (wait) { 2759 wait_for_completion(&async->wait); 2760 ret = async->error; 2761 kfree(async); 2762 return ret; 2763 } 2764 return 0; 2765 } 2766 2767 /* 2768 * this starts processing the delayed reference count updates and 2769 * extent insertions we have queued up so far. count can be 2770 * 0, which means to process everything in the tree at the start 2771 * of the run (but not newly added entries), or it can be some target 2772 * number you'd like to process. 2773 * 2774 * Returns 0 on success or if called with an aborted transaction 2775 * Returns <0 on error and aborts the transaction 2776 */ 2777 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2778 struct btrfs_root *root, unsigned long count) 2779 { 2780 struct rb_node *node; 2781 struct btrfs_delayed_ref_root *delayed_refs; 2782 struct btrfs_delayed_ref_head *head; 2783 int ret; 2784 int run_all = count == (unsigned long)-1; 2785 int run_most = 0; 2786 2787 /* We'll clean this up in btrfs_cleanup_transaction */ 2788 if (trans->aborted) 2789 return 0; 2790 2791 if (root == root->fs_info->extent_root) 2792 root = root->fs_info->tree_root; 2793 2794 delayed_refs = &trans->transaction->delayed_refs; 2795 if (count == 0) { 2796 count = atomic_read(&delayed_refs->num_entries) * 2; 2797 run_most = 1; 2798 } 2799 2800 again: 2801 #ifdef SCRAMBLE_DELAYED_REFS 2802 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2803 #endif 2804 ret = __btrfs_run_delayed_refs(trans, root, count); 2805 if (ret < 0) { 2806 btrfs_abort_transaction(trans, root, ret); 2807 return ret; 2808 } 2809 2810 if (run_all) { 2811 if (!list_empty(&trans->new_bgs)) 2812 btrfs_create_pending_block_groups(trans, root); 2813 2814 spin_lock(&delayed_refs->lock); 2815 node = rb_first(&delayed_refs->href_root); 2816 if (!node) { 2817 spin_unlock(&delayed_refs->lock); 2818 goto out; 2819 } 2820 count = (unsigned long)-1; 2821 2822 while (node) { 2823 head = rb_entry(node, struct btrfs_delayed_ref_head, 2824 href_node); 2825 if (btrfs_delayed_ref_is_head(&head->node)) { 2826 struct btrfs_delayed_ref_node *ref; 2827 2828 ref = &head->node; 2829 atomic_inc(&ref->refs); 2830 2831 spin_unlock(&delayed_refs->lock); 2832 /* 2833 * Mutex was contended, block until it's 2834 * released and try again 2835 */ 2836 mutex_lock(&head->mutex); 2837 mutex_unlock(&head->mutex); 2838 2839 btrfs_put_delayed_ref(ref); 2840 cond_resched(); 2841 goto again; 2842 } else { 2843 WARN_ON(1); 2844 } 2845 node = rb_next(node); 2846 } 2847 spin_unlock(&delayed_refs->lock); 2848 cond_resched(); 2849 goto again; 2850 } 2851 out: 2852 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info); 2853 if (ret) 2854 return ret; 2855 assert_qgroups_uptodate(trans); 2856 return 0; 2857 } 2858 2859 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2860 struct btrfs_root *root, 2861 u64 bytenr, u64 num_bytes, u64 flags, 2862 int level, int is_data) 2863 { 2864 struct btrfs_delayed_extent_op *extent_op; 2865 int ret; 2866 2867 extent_op = btrfs_alloc_delayed_extent_op(); 2868 if (!extent_op) 2869 return -ENOMEM; 2870 2871 extent_op->flags_to_set = flags; 2872 extent_op->update_flags = 1; 2873 extent_op->update_key = 0; 2874 extent_op->is_data = is_data ? 1 : 0; 2875 extent_op->level = level; 2876 2877 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2878 num_bytes, extent_op); 2879 if (ret) 2880 btrfs_free_delayed_extent_op(extent_op); 2881 return ret; 2882 } 2883 2884 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2885 struct btrfs_root *root, 2886 struct btrfs_path *path, 2887 u64 objectid, u64 offset, u64 bytenr) 2888 { 2889 struct btrfs_delayed_ref_head *head; 2890 struct btrfs_delayed_ref_node *ref; 2891 struct btrfs_delayed_data_ref *data_ref; 2892 struct btrfs_delayed_ref_root *delayed_refs; 2893 struct rb_node *node; 2894 int ret = 0; 2895 2896 delayed_refs = &trans->transaction->delayed_refs; 2897 spin_lock(&delayed_refs->lock); 2898 head = btrfs_find_delayed_ref_head(trans, bytenr); 2899 if (!head) { 2900 spin_unlock(&delayed_refs->lock); 2901 return 0; 2902 } 2903 2904 if (!mutex_trylock(&head->mutex)) { 2905 atomic_inc(&head->node.refs); 2906 spin_unlock(&delayed_refs->lock); 2907 2908 btrfs_release_path(path); 2909 2910 /* 2911 * Mutex was contended, block until it's released and let 2912 * caller try again 2913 */ 2914 mutex_lock(&head->mutex); 2915 mutex_unlock(&head->mutex); 2916 btrfs_put_delayed_ref(&head->node); 2917 return -EAGAIN; 2918 } 2919 spin_unlock(&delayed_refs->lock); 2920 2921 spin_lock(&head->lock); 2922 node = rb_first(&head->ref_root); 2923 while (node) { 2924 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2925 node = rb_next(node); 2926 2927 /* If it's a shared ref we know a cross reference exists */ 2928 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2929 ret = 1; 2930 break; 2931 } 2932 2933 data_ref = btrfs_delayed_node_to_data_ref(ref); 2934 2935 /* 2936 * If our ref doesn't match the one we're currently looking at 2937 * then we have a cross reference. 2938 */ 2939 if (data_ref->root != root->root_key.objectid || 2940 data_ref->objectid != objectid || 2941 data_ref->offset != offset) { 2942 ret = 1; 2943 break; 2944 } 2945 } 2946 spin_unlock(&head->lock); 2947 mutex_unlock(&head->mutex); 2948 return ret; 2949 } 2950 2951 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2952 struct btrfs_root *root, 2953 struct btrfs_path *path, 2954 u64 objectid, u64 offset, u64 bytenr) 2955 { 2956 struct btrfs_root *extent_root = root->fs_info->extent_root; 2957 struct extent_buffer *leaf; 2958 struct btrfs_extent_data_ref *ref; 2959 struct btrfs_extent_inline_ref *iref; 2960 struct btrfs_extent_item *ei; 2961 struct btrfs_key key; 2962 u32 item_size; 2963 int ret; 2964 2965 key.objectid = bytenr; 2966 key.offset = (u64)-1; 2967 key.type = BTRFS_EXTENT_ITEM_KEY; 2968 2969 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2970 if (ret < 0) 2971 goto out; 2972 BUG_ON(ret == 0); /* Corruption */ 2973 2974 ret = -ENOENT; 2975 if (path->slots[0] == 0) 2976 goto out; 2977 2978 path->slots[0]--; 2979 leaf = path->nodes[0]; 2980 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2981 2982 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2983 goto out; 2984 2985 ret = 1; 2986 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2988 if (item_size < sizeof(*ei)) { 2989 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2990 goto out; 2991 } 2992 #endif 2993 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2994 2995 if (item_size != sizeof(*ei) + 2996 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2997 goto out; 2998 2999 if (btrfs_extent_generation(leaf, ei) <= 3000 btrfs_root_last_snapshot(&root->root_item)) 3001 goto out; 3002 3003 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 3004 if (btrfs_extent_inline_ref_type(leaf, iref) != 3005 BTRFS_EXTENT_DATA_REF_KEY) 3006 goto out; 3007 3008 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 3009 if (btrfs_extent_refs(leaf, ei) != 3010 btrfs_extent_data_ref_count(leaf, ref) || 3011 btrfs_extent_data_ref_root(leaf, ref) != 3012 root->root_key.objectid || 3013 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 3014 btrfs_extent_data_ref_offset(leaf, ref) != offset) 3015 goto out; 3016 3017 ret = 0; 3018 out: 3019 return ret; 3020 } 3021 3022 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3023 struct btrfs_root *root, 3024 u64 objectid, u64 offset, u64 bytenr) 3025 { 3026 struct btrfs_path *path; 3027 int ret; 3028 int ret2; 3029 3030 path = btrfs_alloc_path(); 3031 if (!path) 3032 return -ENOENT; 3033 3034 do { 3035 ret = check_committed_ref(trans, root, path, objectid, 3036 offset, bytenr); 3037 if (ret && ret != -ENOENT) 3038 goto out; 3039 3040 ret2 = check_delayed_ref(trans, root, path, objectid, 3041 offset, bytenr); 3042 } while (ret2 == -EAGAIN); 3043 3044 if (ret2 && ret2 != -ENOENT) { 3045 ret = ret2; 3046 goto out; 3047 } 3048 3049 if (ret != -ENOENT || ret2 != -ENOENT) 3050 ret = 0; 3051 out: 3052 btrfs_free_path(path); 3053 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3054 WARN_ON(ret > 0); 3055 return ret; 3056 } 3057 3058 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3059 struct btrfs_root *root, 3060 struct extent_buffer *buf, 3061 int full_backref, int inc) 3062 { 3063 u64 bytenr; 3064 u64 num_bytes; 3065 u64 parent; 3066 u64 ref_root; 3067 u32 nritems; 3068 struct btrfs_key key; 3069 struct btrfs_file_extent_item *fi; 3070 int i; 3071 int level; 3072 int ret = 0; 3073 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3074 u64, u64, u64, u64, u64, u64, int); 3075 3076 3077 if (btrfs_test_is_dummy_root(root)) 3078 return 0; 3079 3080 ref_root = btrfs_header_owner(buf); 3081 nritems = btrfs_header_nritems(buf); 3082 level = btrfs_header_level(buf); 3083 3084 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3085 return 0; 3086 3087 if (inc) 3088 process_func = btrfs_inc_extent_ref; 3089 else 3090 process_func = btrfs_free_extent; 3091 3092 if (full_backref) 3093 parent = buf->start; 3094 else 3095 parent = 0; 3096 3097 for (i = 0; i < nritems; i++) { 3098 if (level == 0) { 3099 btrfs_item_key_to_cpu(buf, &key, i); 3100 if (key.type != BTRFS_EXTENT_DATA_KEY) 3101 continue; 3102 fi = btrfs_item_ptr(buf, i, 3103 struct btrfs_file_extent_item); 3104 if (btrfs_file_extent_type(buf, fi) == 3105 BTRFS_FILE_EXTENT_INLINE) 3106 continue; 3107 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3108 if (bytenr == 0) 3109 continue; 3110 3111 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3112 key.offset -= btrfs_file_extent_offset(buf, fi); 3113 ret = process_func(trans, root, bytenr, num_bytes, 3114 parent, ref_root, key.objectid, 3115 key.offset, 1); 3116 if (ret) 3117 goto fail; 3118 } else { 3119 bytenr = btrfs_node_blockptr(buf, i); 3120 num_bytes = root->nodesize; 3121 ret = process_func(trans, root, bytenr, num_bytes, 3122 parent, ref_root, level - 1, 0, 3123 1); 3124 if (ret) 3125 goto fail; 3126 } 3127 } 3128 return 0; 3129 fail: 3130 return ret; 3131 } 3132 3133 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3134 struct extent_buffer *buf, int full_backref) 3135 { 3136 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3137 } 3138 3139 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3140 struct extent_buffer *buf, int full_backref) 3141 { 3142 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3143 } 3144 3145 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3146 struct btrfs_root *root, 3147 struct btrfs_path *path, 3148 struct btrfs_block_group_cache *cache) 3149 { 3150 int ret; 3151 struct btrfs_root *extent_root = root->fs_info->extent_root; 3152 unsigned long bi; 3153 struct extent_buffer *leaf; 3154 3155 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3156 if (ret < 0) 3157 goto fail; 3158 BUG_ON(ret); /* Corruption */ 3159 3160 leaf = path->nodes[0]; 3161 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3162 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3163 btrfs_mark_buffer_dirty(leaf); 3164 btrfs_release_path(path); 3165 fail: 3166 if (ret) { 3167 btrfs_abort_transaction(trans, root, ret); 3168 return ret; 3169 } 3170 return 0; 3171 3172 } 3173 3174 static struct btrfs_block_group_cache * 3175 next_block_group(struct btrfs_root *root, 3176 struct btrfs_block_group_cache *cache) 3177 { 3178 struct rb_node *node; 3179 spin_lock(&root->fs_info->block_group_cache_lock); 3180 node = rb_next(&cache->cache_node); 3181 btrfs_put_block_group(cache); 3182 if (node) { 3183 cache = rb_entry(node, struct btrfs_block_group_cache, 3184 cache_node); 3185 btrfs_get_block_group(cache); 3186 } else 3187 cache = NULL; 3188 spin_unlock(&root->fs_info->block_group_cache_lock); 3189 return cache; 3190 } 3191 3192 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3193 struct btrfs_trans_handle *trans, 3194 struct btrfs_path *path) 3195 { 3196 struct btrfs_root *root = block_group->fs_info->tree_root; 3197 struct inode *inode = NULL; 3198 u64 alloc_hint = 0; 3199 int dcs = BTRFS_DC_ERROR; 3200 int num_pages = 0; 3201 int retries = 0; 3202 int ret = 0; 3203 3204 /* 3205 * If this block group is smaller than 100 megs don't bother caching the 3206 * block group. 3207 */ 3208 if (block_group->key.offset < (100 * 1024 * 1024)) { 3209 spin_lock(&block_group->lock); 3210 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3211 spin_unlock(&block_group->lock); 3212 return 0; 3213 } 3214 3215 again: 3216 inode = lookup_free_space_inode(root, block_group, path); 3217 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3218 ret = PTR_ERR(inode); 3219 btrfs_release_path(path); 3220 goto out; 3221 } 3222 3223 if (IS_ERR(inode)) { 3224 BUG_ON(retries); 3225 retries++; 3226 3227 if (block_group->ro) 3228 goto out_free; 3229 3230 ret = create_free_space_inode(root, trans, block_group, path); 3231 if (ret) 3232 goto out_free; 3233 goto again; 3234 } 3235 3236 /* We've already setup this transaction, go ahead and exit */ 3237 if (block_group->cache_generation == trans->transid && 3238 i_size_read(inode)) { 3239 dcs = BTRFS_DC_SETUP; 3240 goto out_put; 3241 } 3242 3243 /* 3244 * We want to set the generation to 0, that way if anything goes wrong 3245 * from here on out we know not to trust this cache when we load up next 3246 * time. 3247 */ 3248 BTRFS_I(inode)->generation = 0; 3249 ret = btrfs_update_inode(trans, root, inode); 3250 WARN_ON(ret); 3251 3252 if (i_size_read(inode) > 0) { 3253 ret = btrfs_check_trunc_cache_free_space(root, 3254 &root->fs_info->global_block_rsv); 3255 if (ret) 3256 goto out_put; 3257 3258 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3259 if (ret) 3260 goto out_put; 3261 } 3262 3263 spin_lock(&block_group->lock); 3264 if (block_group->cached != BTRFS_CACHE_FINISHED || 3265 !btrfs_test_opt(root, SPACE_CACHE) || 3266 block_group->delalloc_bytes) { 3267 /* 3268 * don't bother trying to write stuff out _if_ 3269 * a) we're not cached, 3270 * b) we're with nospace_cache mount option. 3271 */ 3272 dcs = BTRFS_DC_WRITTEN; 3273 spin_unlock(&block_group->lock); 3274 goto out_put; 3275 } 3276 spin_unlock(&block_group->lock); 3277 3278 /* 3279 * Try to preallocate enough space based on how big the block group is. 3280 * Keep in mind this has to include any pinned space which could end up 3281 * taking up quite a bit since it's not folded into the other space 3282 * cache. 3283 */ 3284 num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024); 3285 if (!num_pages) 3286 num_pages = 1; 3287 3288 num_pages *= 16; 3289 num_pages *= PAGE_CACHE_SIZE; 3290 3291 ret = btrfs_check_data_free_space(inode, num_pages); 3292 if (ret) 3293 goto out_put; 3294 3295 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3296 num_pages, num_pages, 3297 &alloc_hint); 3298 if (!ret) 3299 dcs = BTRFS_DC_SETUP; 3300 btrfs_free_reserved_data_space(inode, num_pages); 3301 3302 out_put: 3303 iput(inode); 3304 out_free: 3305 btrfs_release_path(path); 3306 out: 3307 spin_lock(&block_group->lock); 3308 if (!ret && dcs == BTRFS_DC_SETUP) 3309 block_group->cache_generation = trans->transid; 3310 block_group->disk_cache_state = dcs; 3311 spin_unlock(&block_group->lock); 3312 3313 return ret; 3314 } 3315 3316 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3317 struct btrfs_root *root) 3318 { 3319 struct btrfs_block_group_cache *cache; 3320 int err = 0; 3321 struct btrfs_path *path; 3322 u64 last = 0; 3323 3324 path = btrfs_alloc_path(); 3325 if (!path) 3326 return -ENOMEM; 3327 3328 again: 3329 while (1) { 3330 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3331 while (cache) { 3332 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3333 break; 3334 cache = next_block_group(root, cache); 3335 } 3336 if (!cache) { 3337 if (last == 0) 3338 break; 3339 last = 0; 3340 continue; 3341 } 3342 err = cache_save_setup(cache, trans, path); 3343 last = cache->key.objectid + cache->key.offset; 3344 btrfs_put_block_group(cache); 3345 } 3346 3347 while (1) { 3348 if (last == 0) { 3349 err = btrfs_run_delayed_refs(trans, root, 3350 (unsigned long)-1); 3351 if (err) /* File system offline */ 3352 goto out; 3353 } 3354 3355 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3356 while (cache) { 3357 if (cache->disk_cache_state == BTRFS_DC_CLEAR) { 3358 btrfs_put_block_group(cache); 3359 goto again; 3360 } 3361 3362 if (cache->dirty) 3363 break; 3364 cache = next_block_group(root, cache); 3365 } 3366 if (!cache) { 3367 if (last == 0) 3368 break; 3369 last = 0; 3370 continue; 3371 } 3372 3373 if (cache->disk_cache_state == BTRFS_DC_SETUP) 3374 cache->disk_cache_state = BTRFS_DC_NEED_WRITE; 3375 cache->dirty = 0; 3376 last = cache->key.objectid + cache->key.offset; 3377 3378 err = write_one_cache_group(trans, root, path, cache); 3379 btrfs_put_block_group(cache); 3380 if (err) /* File system offline */ 3381 goto out; 3382 } 3383 3384 while (1) { 3385 /* 3386 * I don't think this is needed since we're just marking our 3387 * preallocated extent as written, but just in case it can't 3388 * hurt. 3389 */ 3390 if (last == 0) { 3391 err = btrfs_run_delayed_refs(trans, root, 3392 (unsigned long)-1); 3393 if (err) /* File system offline */ 3394 goto out; 3395 } 3396 3397 cache = btrfs_lookup_first_block_group(root->fs_info, last); 3398 while (cache) { 3399 /* 3400 * Really this shouldn't happen, but it could if we 3401 * couldn't write the entire preallocated extent and 3402 * splitting the extent resulted in a new block. 3403 */ 3404 if (cache->dirty) { 3405 btrfs_put_block_group(cache); 3406 goto again; 3407 } 3408 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3409 break; 3410 cache = next_block_group(root, cache); 3411 } 3412 if (!cache) { 3413 if (last == 0) 3414 break; 3415 last = 0; 3416 continue; 3417 } 3418 3419 err = btrfs_write_out_cache(root, trans, cache, path); 3420 3421 /* 3422 * If we didn't have an error then the cache state is still 3423 * NEED_WRITE, so we can set it to WRITTEN. 3424 */ 3425 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE) 3426 cache->disk_cache_state = BTRFS_DC_WRITTEN; 3427 last = cache->key.objectid + cache->key.offset; 3428 btrfs_put_block_group(cache); 3429 } 3430 out: 3431 3432 btrfs_free_path(path); 3433 return err; 3434 } 3435 3436 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3437 { 3438 struct btrfs_block_group_cache *block_group; 3439 int readonly = 0; 3440 3441 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3442 if (!block_group || block_group->ro) 3443 readonly = 1; 3444 if (block_group) 3445 btrfs_put_block_group(block_group); 3446 return readonly; 3447 } 3448 3449 static const char *alloc_name(u64 flags) 3450 { 3451 switch (flags) { 3452 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3453 return "mixed"; 3454 case BTRFS_BLOCK_GROUP_METADATA: 3455 return "metadata"; 3456 case BTRFS_BLOCK_GROUP_DATA: 3457 return "data"; 3458 case BTRFS_BLOCK_GROUP_SYSTEM: 3459 return "system"; 3460 default: 3461 WARN_ON(1); 3462 return "invalid-combination"; 3463 }; 3464 } 3465 3466 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3467 u64 total_bytes, u64 bytes_used, 3468 struct btrfs_space_info **space_info) 3469 { 3470 struct btrfs_space_info *found; 3471 int i; 3472 int factor; 3473 int ret; 3474 3475 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3476 BTRFS_BLOCK_GROUP_RAID10)) 3477 factor = 2; 3478 else 3479 factor = 1; 3480 3481 found = __find_space_info(info, flags); 3482 if (found) { 3483 spin_lock(&found->lock); 3484 found->total_bytes += total_bytes; 3485 found->disk_total += total_bytes * factor; 3486 found->bytes_used += bytes_used; 3487 found->disk_used += bytes_used * factor; 3488 found->full = 0; 3489 spin_unlock(&found->lock); 3490 *space_info = found; 3491 return 0; 3492 } 3493 found = kzalloc(sizeof(*found), GFP_NOFS); 3494 if (!found) 3495 return -ENOMEM; 3496 3497 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3498 if (ret) { 3499 kfree(found); 3500 return ret; 3501 } 3502 3503 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3504 INIT_LIST_HEAD(&found->block_groups[i]); 3505 init_rwsem(&found->groups_sem); 3506 spin_lock_init(&found->lock); 3507 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3508 found->total_bytes = total_bytes; 3509 found->disk_total = total_bytes * factor; 3510 found->bytes_used = bytes_used; 3511 found->disk_used = bytes_used * factor; 3512 found->bytes_pinned = 0; 3513 found->bytes_reserved = 0; 3514 found->bytes_readonly = 0; 3515 found->bytes_may_use = 0; 3516 found->full = 0; 3517 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3518 found->chunk_alloc = 0; 3519 found->flush = 0; 3520 init_waitqueue_head(&found->wait); 3521 3522 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3523 info->space_info_kobj, "%s", 3524 alloc_name(found->flags)); 3525 if (ret) { 3526 kfree(found); 3527 return ret; 3528 } 3529 3530 *space_info = found; 3531 list_add_rcu(&found->list, &info->space_info); 3532 if (flags & BTRFS_BLOCK_GROUP_DATA) 3533 info->data_sinfo = found; 3534 3535 return ret; 3536 } 3537 3538 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3539 { 3540 u64 extra_flags = chunk_to_extended(flags) & 3541 BTRFS_EXTENDED_PROFILE_MASK; 3542 3543 write_seqlock(&fs_info->profiles_lock); 3544 if (flags & BTRFS_BLOCK_GROUP_DATA) 3545 fs_info->avail_data_alloc_bits |= extra_flags; 3546 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3547 fs_info->avail_metadata_alloc_bits |= extra_flags; 3548 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3549 fs_info->avail_system_alloc_bits |= extra_flags; 3550 write_sequnlock(&fs_info->profiles_lock); 3551 } 3552 3553 /* 3554 * returns target flags in extended format or 0 if restripe for this 3555 * chunk_type is not in progress 3556 * 3557 * should be called with either volume_mutex or balance_lock held 3558 */ 3559 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3560 { 3561 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3562 u64 target = 0; 3563 3564 if (!bctl) 3565 return 0; 3566 3567 if (flags & BTRFS_BLOCK_GROUP_DATA && 3568 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3569 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3570 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3571 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3572 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3573 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3574 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3575 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3576 } 3577 3578 return target; 3579 } 3580 3581 /* 3582 * @flags: available profiles in extended format (see ctree.h) 3583 * 3584 * Returns reduced profile in chunk format. If profile changing is in 3585 * progress (either running or paused) picks the target profile (if it's 3586 * already available), otherwise falls back to plain reducing. 3587 */ 3588 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3589 { 3590 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3591 u64 target; 3592 u64 tmp; 3593 3594 /* 3595 * see if restripe for this chunk_type is in progress, if so 3596 * try to reduce to the target profile 3597 */ 3598 spin_lock(&root->fs_info->balance_lock); 3599 target = get_restripe_target(root->fs_info, flags); 3600 if (target) { 3601 /* pick target profile only if it's already available */ 3602 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3603 spin_unlock(&root->fs_info->balance_lock); 3604 return extended_to_chunk(target); 3605 } 3606 } 3607 spin_unlock(&root->fs_info->balance_lock); 3608 3609 /* First, mask out the RAID levels which aren't possible */ 3610 if (num_devices == 1) 3611 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3612 BTRFS_BLOCK_GROUP_RAID5); 3613 if (num_devices < 3) 3614 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3615 if (num_devices < 4) 3616 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3617 3618 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3619 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3620 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3621 flags &= ~tmp; 3622 3623 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3624 tmp = BTRFS_BLOCK_GROUP_RAID6; 3625 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3626 tmp = BTRFS_BLOCK_GROUP_RAID5; 3627 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3628 tmp = BTRFS_BLOCK_GROUP_RAID10; 3629 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3630 tmp = BTRFS_BLOCK_GROUP_RAID1; 3631 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3632 tmp = BTRFS_BLOCK_GROUP_RAID0; 3633 3634 return extended_to_chunk(flags | tmp); 3635 } 3636 3637 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3638 { 3639 unsigned seq; 3640 u64 flags; 3641 3642 do { 3643 flags = orig_flags; 3644 seq = read_seqbegin(&root->fs_info->profiles_lock); 3645 3646 if (flags & BTRFS_BLOCK_GROUP_DATA) 3647 flags |= root->fs_info->avail_data_alloc_bits; 3648 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3649 flags |= root->fs_info->avail_system_alloc_bits; 3650 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3651 flags |= root->fs_info->avail_metadata_alloc_bits; 3652 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3653 3654 return btrfs_reduce_alloc_profile(root, flags); 3655 } 3656 3657 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3658 { 3659 u64 flags; 3660 u64 ret; 3661 3662 if (data) 3663 flags = BTRFS_BLOCK_GROUP_DATA; 3664 else if (root == root->fs_info->chunk_root) 3665 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3666 else 3667 flags = BTRFS_BLOCK_GROUP_METADATA; 3668 3669 ret = get_alloc_profile(root, flags); 3670 return ret; 3671 } 3672 3673 /* 3674 * This will check the space that the inode allocates from to make sure we have 3675 * enough space for bytes. 3676 */ 3677 int btrfs_check_data_free_space(struct inode *inode, u64 bytes) 3678 { 3679 struct btrfs_space_info *data_sinfo; 3680 struct btrfs_root *root = BTRFS_I(inode)->root; 3681 struct btrfs_fs_info *fs_info = root->fs_info; 3682 u64 used; 3683 int ret = 0, committed = 0, alloc_chunk = 1; 3684 3685 /* make sure bytes are sectorsize aligned */ 3686 bytes = ALIGN(bytes, root->sectorsize); 3687 3688 if (btrfs_is_free_space_inode(inode)) { 3689 committed = 1; 3690 ASSERT(current->journal_info); 3691 } 3692 3693 data_sinfo = fs_info->data_sinfo; 3694 if (!data_sinfo) 3695 goto alloc; 3696 3697 again: 3698 /* make sure we have enough space to handle the data first */ 3699 spin_lock(&data_sinfo->lock); 3700 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3701 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3702 data_sinfo->bytes_may_use; 3703 3704 if (used + bytes > data_sinfo->total_bytes) { 3705 struct btrfs_trans_handle *trans; 3706 3707 /* 3708 * if we don't have enough free bytes in this space then we need 3709 * to alloc a new chunk. 3710 */ 3711 if (!data_sinfo->full && alloc_chunk) { 3712 u64 alloc_target; 3713 3714 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3715 spin_unlock(&data_sinfo->lock); 3716 alloc: 3717 alloc_target = btrfs_get_alloc_profile(root, 1); 3718 /* 3719 * It is ugly that we don't call nolock join 3720 * transaction for the free space inode case here. 3721 * But it is safe because we only do the data space 3722 * reservation for the free space cache in the 3723 * transaction context, the common join transaction 3724 * just increase the counter of the current transaction 3725 * handler, doesn't try to acquire the trans_lock of 3726 * the fs. 3727 */ 3728 trans = btrfs_join_transaction(root); 3729 if (IS_ERR(trans)) 3730 return PTR_ERR(trans); 3731 3732 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3733 alloc_target, 3734 CHUNK_ALLOC_NO_FORCE); 3735 btrfs_end_transaction(trans, root); 3736 if (ret < 0) { 3737 if (ret != -ENOSPC) 3738 return ret; 3739 else 3740 goto commit_trans; 3741 } 3742 3743 if (!data_sinfo) 3744 data_sinfo = fs_info->data_sinfo; 3745 3746 goto again; 3747 } 3748 3749 /* 3750 * If we don't have enough pinned space to deal with this 3751 * allocation don't bother committing the transaction. 3752 */ 3753 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned, 3754 bytes) < 0) 3755 committed = 1; 3756 spin_unlock(&data_sinfo->lock); 3757 3758 /* commit the current transaction and try again */ 3759 commit_trans: 3760 if (!committed && 3761 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3762 committed = 1; 3763 3764 trans = btrfs_join_transaction(root); 3765 if (IS_ERR(trans)) 3766 return PTR_ERR(trans); 3767 ret = btrfs_commit_transaction(trans, root); 3768 if (ret) 3769 return ret; 3770 goto again; 3771 } 3772 3773 trace_btrfs_space_reservation(root->fs_info, 3774 "space_info:enospc", 3775 data_sinfo->flags, bytes, 1); 3776 return -ENOSPC; 3777 } 3778 data_sinfo->bytes_may_use += bytes; 3779 trace_btrfs_space_reservation(root->fs_info, "space_info", 3780 data_sinfo->flags, bytes, 1); 3781 spin_unlock(&data_sinfo->lock); 3782 3783 return 0; 3784 } 3785 3786 /* 3787 * Called if we need to clear a data reservation for this inode. 3788 */ 3789 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3790 { 3791 struct btrfs_root *root = BTRFS_I(inode)->root; 3792 struct btrfs_space_info *data_sinfo; 3793 3794 /* make sure bytes are sectorsize aligned */ 3795 bytes = ALIGN(bytes, root->sectorsize); 3796 3797 data_sinfo = root->fs_info->data_sinfo; 3798 spin_lock(&data_sinfo->lock); 3799 WARN_ON(data_sinfo->bytes_may_use < bytes); 3800 data_sinfo->bytes_may_use -= bytes; 3801 trace_btrfs_space_reservation(root->fs_info, "space_info", 3802 data_sinfo->flags, bytes, 0); 3803 spin_unlock(&data_sinfo->lock); 3804 } 3805 3806 static void force_metadata_allocation(struct btrfs_fs_info *info) 3807 { 3808 struct list_head *head = &info->space_info; 3809 struct btrfs_space_info *found; 3810 3811 rcu_read_lock(); 3812 list_for_each_entry_rcu(found, head, list) { 3813 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3814 found->force_alloc = CHUNK_ALLOC_FORCE; 3815 } 3816 rcu_read_unlock(); 3817 } 3818 3819 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3820 { 3821 return (global->size << 1); 3822 } 3823 3824 static int should_alloc_chunk(struct btrfs_root *root, 3825 struct btrfs_space_info *sinfo, int force) 3826 { 3827 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 3828 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 3829 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 3830 u64 thresh; 3831 3832 if (force == CHUNK_ALLOC_FORCE) 3833 return 1; 3834 3835 /* 3836 * We need to take into account the global rsv because for all intents 3837 * and purposes it's used space. Don't worry about locking the 3838 * global_rsv, it doesn't change except when the transaction commits. 3839 */ 3840 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 3841 num_allocated += calc_global_rsv_need_space(global_rsv); 3842 3843 /* 3844 * in limited mode, we want to have some free space up to 3845 * about 1% of the FS size. 3846 */ 3847 if (force == CHUNK_ALLOC_LIMITED) { 3848 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 3849 thresh = max_t(u64, 64 * 1024 * 1024, 3850 div_factor_fine(thresh, 1)); 3851 3852 if (num_bytes - num_allocated < thresh) 3853 return 1; 3854 } 3855 3856 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 3857 return 0; 3858 return 1; 3859 } 3860 3861 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type) 3862 { 3863 u64 num_dev; 3864 3865 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 3866 BTRFS_BLOCK_GROUP_RAID0 | 3867 BTRFS_BLOCK_GROUP_RAID5 | 3868 BTRFS_BLOCK_GROUP_RAID6)) 3869 num_dev = root->fs_info->fs_devices->rw_devices; 3870 else if (type & BTRFS_BLOCK_GROUP_RAID1) 3871 num_dev = 2; 3872 else 3873 num_dev = 1; /* DUP or single */ 3874 3875 /* metadata for updaing devices and chunk tree */ 3876 return btrfs_calc_trans_metadata_size(root, num_dev + 1); 3877 } 3878 3879 static void check_system_chunk(struct btrfs_trans_handle *trans, 3880 struct btrfs_root *root, u64 type) 3881 { 3882 struct btrfs_space_info *info; 3883 u64 left; 3884 u64 thresh; 3885 3886 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 3887 spin_lock(&info->lock); 3888 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 3889 info->bytes_reserved - info->bytes_readonly; 3890 spin_unlock(&info->lock); 3891 3892 thresh = get_system_chunk_thresh(root, type); 3893 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 3894 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 3895 left, thresh, type); 3896 dump_space_info(info, 0, 0); 3897 } 3898 3899 if (left < thresh) { 3900 u64 flags; 3901 3902 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 3903 btrfs_alloc_chunk(trans, root, flags); 3904 } 3905 } 3906 3907 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 3908 struct btrfs_root *extent_root, u64 flags, int force) 3909 { 3910 struct btrfs_space_info *space_info; 3911 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3912 int wait_for_alloc = 0; 3913 int ret = 0; 3914 3915 /* Don't re-enter if we're already allocating a chunk */ 3916 if (trans->allocating_chunk) 3917 return -ENOSPC; 3918 3919 space_info = __find_space_info(extent_root->fs_info, flags); 3920 if (!space_info) { 3921 ret = update_space_info(extent_root->fs_info, flags, 3922 0, 0, &space_info); 3923 BUG_ON(ret); /* -ENOMEM */ 3924 } 3925 BUG_ON(!space_info); /* Logic error */ 3926 3927 again: 3928 spin_lock(&space_info->lock); 3929 if (force < space_info->force_alloc) 3930 force = space_info->force_alloc; 3931 if (space_info->full) { 3932 if (should_alloc_chunk(extent_root, space_info, force)) 3933 ret = -ENOSPC; 3934 else 3935 ret = 0; 3936 spin_unlock(&space_info->lock); 3937 return ret; 3938 } 3939 3940 if (!should_alloc_chunk(extent_root, space_info, force)) { 3941 spin_unlock(&space_info->lock); 3942 return 0; 3943 } else if (space_info->chunk_alloc) { 3944 wait_for_alloc = 1; 3945 } else { 3946 space_info->chunk_alloc = 1; 3947 } 3948 3949 spin_unlock(&space_info->lock); 3950 3951 mutex_lock(&fs_info->chunk_mutex); 3952 3953 /* 3954 * The chunk_mutex is held throughout the entirety of a chunk 3955 * allocation, so once we've acquired the chunk_mutex we know that the 3956 * other guy is done and we need to recheck and see if we should 3957 * allocate. 3958 */ 3959 if (wait_for_alloc) { 3960 mutex_unlock(&fs_info->chunk_mutex); 3961 wait_for_alloc = 0; 3962 goto again; 3963 } 3964 3965 trans->allocating_chunk = true; 3966 3967 /* 3968 * If we have mixed data/metadata chunks we want to make sure we keep 3969 * allocating mixed chunks instead of individual chunks. 3970 */ 3971 if (btrfs_mixed_space_info(space_info)) 3972 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 3973 3974 /* 3975 * if we're doing a data chunk, go ahead and make sure that 3976 * we keep a reasonable number of metadata chunks allocated in the 3977 * FS as well. 3978 */ 3979 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 3980 fs_info->data_chunk_allocations++; 3981 if (!(fs_info->data_chunk_allocations % 3982 fs_info->metadata_ratio)) 3983 force_metadata_allocation(fs_info); 3984 } 3985 3986 /* 3987 * Check if we have enough space in SYSTEM chunk because we may need 3988 * to update devices. 3989 */ 3990 check_system_chunk(trans, extent_root, flags); 3991 3992 ret = btrfs_alloc_chunk(trans, extent_root, flags); 3993 trans->allocating_chunk = false; 3994 3995 spin_lock(&space_info->lock); 3996 if (ret < 0 && ret != -ENOSPC) 3997 goto out; 3998 if (ret) 3999 space_info->full = 1; 4000 else 4001 ret = 1; 4002 4003 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4004 out: 4005 space_info->chunk_alloc = 0; 4006 spin_unlock(&space_info->lock); 4007 mutex_unlock(&fs_info->chunk_mutex); 4008 return ret; 4009 } 4010 4011 static int can_overcommit(struct btrfs_root *root, 4012 struct btrfs_space_info *space_info, u64 bytes, 4013 enum btrfs_reserve_flush_enum flush) 4014 { 4015 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4016 u64 profile = btrfs_get_alloc_profile(root, 0); 4017 u64 space_size; 4018 u64 avail; 4019 u64 used; 4020 4021 used = space_info->bytes_used + space_info->bytes_reserved + 4022 space_info->bytes_pinned + space_info->bytes_readonly; 4023 4024 /* 4025 * We only want to allow over committing if we have lots of actual space 4026 * free, but if we don't have enough space to handle the global reserve 4027 * space then we could end up having a real enospc problem when trying 4028 * to allocate a chunk or some other such important allocation. 4029 */ 4030 spin_lock(&global_rsv->lock); 4031 space_size = calc_global_rsv_need_space(global_rsv); 4032 spin_unlock(&global_rsv->lock); 4033 if (used + space_size >= space_info->total_bytes) 4034 return 0; 4035 4036 used += space_info->bytes_may_use; 4037 4038 spin_lock(&root->fs_info->free_chunk_lock); 4039 avail = root->fs_info->free_chunk_space; 4040 spin_unlock(&root->fs_info->free_chunk_lock); 4041 4042 /* 4043 * If we have dup, raid1 or raid10 then only half of the free 4044 * space is actually useable. For raid56, the space info used 4045 * doesn't include the parity drive, so we don't have to 4046 * change the math 4047 */ 4048 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4049 BTRFS_BLOCK_GROUP_RAID1 | 4050 BTRFS_BLOCK_GROUP_RAID10)) 4051 avail >>= 1; 4052 4053 /* 4054 * If we aren't flushing all things, let us overcommit up to 4055 * 1/2th of the space. If we can flush, don't let us overcommit 4056 * too much, let it overcommit up to 1/8 of the space. 4057 */ 4058 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4059 avail >>= 3; 4060 else 4061 avail >>= 1; 4062 4063 if (used + bytes < space_info->total_bytes + avail) 4064 return 1; 4065 return 0; 4066 } 4067 4068 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4069 unsigned long nr_pages, int nr_items) 4070 { 4071 struct super_block *sb = root->fs_info->sb; 4072 4073 if (down_read_trylock(&sb->s_umount)) { 4074 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4075 up_read(&sb->s_umount); 4076 } else { 4077 /* 4078 * We needn't worry the filesystem going from r/w to r/o though 4079 * we don't acquire ->s_umount mutex, because the filesystem 4080 * should guarantee the delalloc inodes list be empty after 4081 * the filesystem is readonly(all dirty pages are written to 4082 * the disk). 4083 */ 4084 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4085 if (!current->journal_info) 4086 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4087 } 4088 } 4089 4090 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4091 { 4092 u64 bytes; 4093 int nr; 4094 4095 bytes = btrfs_calc_trans_metadata_size(root, 1); 4096 nr = (int)div64_u64(to_reclaim, bytes); 4097 if (!nr) 4098 nr = 1; 4099 return nr; 4100 } 4101 4102 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4103 4104 /* 4105 * shrink metadata reservation for delalloc 4106 */ 4107 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4108 bool wait_ordered) 4109 { 4110 struct btrfs_block_rsv *block_rsv; 4111 struct btrfs_space_info *space_info; 4112 struct btrfs_trans_handle *trans; 4113 u64 delalloc_bytes; 4114 u64 max_reclaim; 4115 long time_left; 4116 unsigned long nr_pages; 4117 int loops; 4118 int items; 4119 enum btrfs_reserve_flush_enum flush; 4120 4121 /* Calc the number of the pages we need flush for space reservation */ 4122 items = calc_reclaim_items_nr(root, to_reclaim); 4123 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4124 4125 trans = (struct btrfs_trans_handle *)current->journal_info; 4126 block_rsv = &root->fs_info->delalloc_block_rsv; 4127 space_info = block_rsv->space_info; 4128 4129 delalloc_bytes = percpu_counter_sum_positive( 4130 &root->fs_info->delalloc_bytes); 4131 if (delalloc_bytes == 0) { 4132 if (trans) 4133 return; 4134 if (wait_ordered) 4135 btrfs_wait_ordered_roots(root->fs_info, items); 4136 return; 4137 } 4138 4139 loops = 0; 4140 while (delalloc_bytes && loops < 3) { 4141 max_reclaim = min(delalloc_bytes, to_reclaim); 4142 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4143 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4144 /* 4145 * We need to wait for the async pages to actually start before 4146 * we do anything. 4147 */ 4148 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4149 if (!max_reclaim) 4150 goto skip_async; 4151 4152 if (max_reclaim <= nr_pages) 4153 max_reclaim = 0; 4154 else 4155 max_reclaim -= nr_pages; 4156 4157 wait_event(root->fs_info->async_submit_wait, 4158 atomic_read(&root->fs_info->async_delalloc_pages) <= 4159 (int)max_reclaim); 4160 skip_async: 4161 if (!trans) 4162 flush = BTRFS_RESERVE_FLUSH_ALL; 4163 else 4164 flush = BTRFS_RESERVE_NO_FLUSH; 4165 spin_lock(&space_info->lock); 4166 if (can_overcommit(root, space_info, orig, flush)) { 4167 spin_unlock(&space_info->lock); 4168 break; 4169 } 4170 spin_unlock(&space_info->lock); 4171 4172 loops++; 4173 if (wait_ordered && !trans) { 4174 btrfs_wait_ordered_roots(root->fs_info, items); 4175 } else { 4176 time_left = schedule_timeout_killable(1); 4177 if (time_left) 4178 break; 4179 } 4180 delalloc_bytes = percpu_counter_sum_positive( 4181 &root->fs_info->delalloc_bytes); 4182 } 4183 } 4184 4185 /** 4186 * maybe_commit_transaction - possibly commit the transaction if its ok to 4187 * @root - the root we're allocating for 4188 * @bytes - the number of bytes we want to reserve 4189 * @force - force the commit 4190 * 4191 * This will check to make sure that committing the transaction will actually 4192 * get us somewhere and then commit the transaction if it does. Otherwise it 4193 * will return -ENOSPC. 4194 */ 4195 static int may_commit_transaction(struct btrfs_root *root, 4196 struct btrfs_space_info *space_info, 4197 u64 bytes, int force) 4198 { 4199 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4200 struct btrfs_trans_handle *trans; 4201 4202 trans = (struct btrfs_trans_handle *)current->journal_info; 4203 if (trans) 4204 return -EAGAIN; 4205 4206 if (force) 4207 goto commit; 4208 4209 /* See if there is enough pinned space to make this reservation */ 4210 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4211 bytes) >= 0) 4212 goto commit; 4213 4214 /* 4215 * See if there is some space in the delayed insertion reservation for 4216 * this reservation. 4217 */ 4218 if (space_info != delayed_rsv->space_info) 4219 return -ENOSPC; 4220 4221 spin_lock(&delayed_rsv->lock); 4222 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4223 bytes - delayed_rsv->size) >= 0) { 4224 spin_unlock(&delayed_rsv->lock); 4225 return -ENOSPC; 4226 } 4227 spin_unlock(&delayed_rsv->lock); 4228 4229 commit: 4230 trans = btrfs_join_transaction(root); 4231 if (IS_ERR(trans)) 4232 return -ENOSPC; 4233 4234 return btrfs_commit_transaction(trans, root); 4235 } 4236 4237 enum flush_state { 4238 FLUSH_DELAYED_ITEMS_NR = 1, 4239 FLUSH_DELAYED_ITEMS = 2, 4240 FLUSH_DELALLOC = 3, 4241 FLUSH_DELALLOC_WAIT = 4, 4242 ALLOC_CHUNK = 5, 4243 COMMIT_TRANS = 6, 4244 }; 4245 4246 static int flush_space(struct btrfs_root *root, 4247 struct btrfs_space_info *space_info, u64 num_bytes, 4248 u64 orig_bytes, int state) 4249 { 4250 struct btrfs_trans_handle *trans; 4251 int nr; 4252 int ret = 0; 4253 4254 switch (state) { 4255 case FLUSH_DELAYED_ITEMS_NR: 4256 case FLUSH_DELAYED_ITEMS: 4257 if (state == FLUSH_DELAYED_ITEMS_NR) 4258 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4259 else 4260 nr = -1; 4261 4262 trans = btrfs_join_transaction(root); 4263 if (IS_ERR(trans)) { 4264 ret = PTR_ERR(trans); 4265 break; 4266 } 4267 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4268 btrfs_end_transaction(trans, root); 4269 break; 4270 case FLUSH_DELALLOC: 4271 case FLUSH_DELALLOC_WAIT: 4272 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4273 state == FLUSH_DELALLOC_WAIT); 4274 break; 4275 case ALLOC_CHUNK: 4276 trans = btrfs_join_transaction(root); 4277 if (IS_ERR(trans)) { 4278 ret = PTR_ERR(trans); 4279 break; 4280 } 4281 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4282 btrfs_get_alloc_profile(root, 0), 4283 CHUNK_ALLOC_NO_FORCE); 4284 btrfs_end_transaction(trans, root); 4285 if (ret == -ENOSPC) 4286 ret = 0; 4287 break; 4288 case COMMIT_TRANS: 4289 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4290 break; 4291 default: 4292 ret = -ENOSPC; 4293 break; 4294 } 4295 4296 return ret; 4297 } 4298 4299 static inline u64 4300 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4301 struct btrfs_space_info *space_info) 4302 { 4303 u64 used; 4304 u64 expected; 4305 u64 to_reclaim; 4306 4307 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4308 16 * 1024 * 1024); 4309 spin_lock(&space_info->lock); 4310 if (can_overcommit(root, space_info, to_reclaim, 4311 BTRFS_RESERVE_FLUSH_ALL)) { 4312 to_reclaim = 0; 4313 goto out; 4314 } 4315 4316 used = space_info->bytes_used + space_info->bytes_reserved + 4317 space_info->bytes_pinned + space_info->bytes_readonly + 4318 space_info->bytes_may_use; 4319 if (can_overcommit(root, space_info, 1024 * 1024, 4320 BTRFS_RESERVE_FLUSH_ALL)) 4321 expected = div_factor_fine(space_info->total_bytes, 95); 4322 else 4323 expected = div_factor_fine(space_info->total_bytes, 90); 4324 4325 if (used > expected) 4326 to_reclaim = used - expected; 4327 else 4328 to_reclaim = 0; 4329 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4330 space_info->bytes_reserved); 4331 out: 4332 spin_unlock(&space_info->lock); 4333 4334 return to_reclaim; 4335 } 4336 4337 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4338 struct btrfs_fs_info *fs_info, u64 used) 4339 { 4340 return (used >= div_factor_fine(space_info->total_bytes, 98) && 4341 !btrfs_fs_closing(fs_info) && 4342 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4343 } 4344 4345 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4346 struct btrfs_fs_info *fs_info, 4347 int flush_state) 4348 { 4349 u64 used; 4350 4351 spin_lock(&space_info->lock); 4352 /* 4353 * We run out of space and have not got any free space via flush_space, 4354 * so don't bother doing async reclaim. 4355 */ 4356 if (flush_state > COMMIT_TRANS && space_info->full) { 4357 spin_unlock(&space_info->lock); 4358 return 0; 4359 } 4360 4361 used = space_info->bytes_used + space_info->bytes_reserved + 4362 space_info->bytes_pinned + space_info->bytes_readonly + 4363 space_info->bytes_may_use; 4364 if (need_do_async_reclaim(space_info, fs_info, used)) { 4365 spin_unlock(&space_info->lock); 4366 return 1; 4367 } 4368 spin_unlock(&space_info->lock); 4369 4370 return 0; 4371 } 4372 4373 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4374 { 4375 struct btrfs_fs_info *fs_info; 4376 struct btrfs_space_info *space_info; 4377 u64 to_reclaim; 4378 int flush_state; 4379 4380 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4381 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4382 4383 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4384 space_info); 4385 if (!to_reclaim) 4386 return; 4387 4388 flush_state = FLUSH_DELAYED_ITEMS_NR; 4389 do { 4390 flush_space(fs_info->fs_root, space_info, to_reclaim, 4391 to_reclaim, flush_state); 4392 flush_state++; 4393 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4394 flush_state)) 4395 return; 4396 } while (flush_state <= COMMIT_TRANS); 4397 4398 if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state)) 4399 queue_work(system_unbound_wq, work); 4400 } 4401 4402 void btrfs_init_async_reclaim_work(struct work_struct *work) 4403 { 4404 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4405 } 4406 4407 /** 4408 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4409 * @root - the root we're allocating for 4410 * @block_rsv - the block_rsv we're allocating for 4411 * @orig_bytes - the number of bytes we want 4412 * @flush - whether or not we can flush to make our reservation 4413 * 4414 * This will reserve orgi_bytes number of bytes from the space info associated 4415 * with the block_rsv. If there is not enough space it will make an attempt to 4416 * flush out space to make room. It will do this by flushing delalloc if 4417 * possible or committing the transaction. If flush is 0 then no attempts to 4418 * regain reservations will be made and this will fail if there is not enough 4419 * space already. 4420 */ 4421 static int reserve_metadata_bytes(struct btrfs_root *root, 4422 struct btrfs_block_rsv *block_rsv, 4423 u64 orig_bytes, 4424 enum btrfs_reserve_flush_enum flush) 4425 { 4426 struct btrfs_space_info *space_info = block_rsv->space_info; 4427 u64 used; 4428 u64 num_bytes = orig_bytes; 4429 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4430 int ret = 0; 4431 bool flushing = false; 4432 4433 again: 4434 ret = 0; 4435 spin_lock(&space_info->lock); 4436 /* 4437 * We only want to wait if somebody other than us is flushing and we 4438 * are actually allowed to flush all things. 4439 */ 4440 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4441 space_info->flush) { 4442 spin_unlock(&space_info->lock); 4443 /* 4444 * If we have a trans handle we can't wait because the flusher 4445 * may have to commit the transaction, which would mean we would 4446 * deadlock since we are waiting for the flusher to finish, but 4447 * hold the current transaction open. 4448 */ 4449 if (current->journal_info) 4450 return -EAGAIN; 4451 ret = wait_event_killable(space_info->wait, !space_info->flush); 4452 /* Must have been killed, return */ 4453 if (ret) 4454 return -EINTR; 4455 4456 spin_lock(&space_info->lock); 4457 } 4458 4459 ret = -ENOSPC; 4460 used = space_info->bytes_used + space_info->bytes_reserved + 4461 space_info->bytes_pinned + space_info->bytes_readonly + 4462 space_info->bytes_may_use; 4463 4464 /* 4465 * The idea here is that we've not already over-reserved the block group 4466 * then we can go ahead and save our reservation first and then start 4467 * flushing if we need to. Otherwise if we've already overcommitted 4468 * lets start flushing stuff first and then come back and try to make 4469 * our reservation. 4470 */ 4471 if (used <= space_info->total_bytes) { 4472 if (used + orig_bytes <= space_info->total_bytes) { 4473 space_info->bytes_may_use += orig_bytes; 4474 trace_btrfs_space_reservation(root->fs_info, 4475 "space_info", space_info->flags, orig_bytes, 1); 4476 ret = 0; 4477 } else { 4478 /* 4479 * Ok set num_bytes to orig_bytes since we aren't 4480 * overocmmitted, this way we only try and reclaim what 4481 * we need. 4482 */ 4483 num_bytes = orig_bytes; 4484 } 4485 } else { 4486 /* 4487 * Ok we're over committed, set num_bytes to the overcommitted 4488 * amount plus the amount of bytes that we need for this 4489 * reservation. 4490 */ 4491 num_bytes = used - space_info->total_bytes + 4492 (orig_bytes * 2); 4493 } 4494 4495 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4496 space_info->bytes_may_use += orig_bytes; 4497 trace_btrfs_space_reservation(root->fs_info, "space_info", 4498 space_info->flags, orig_bytes, 4499 1); 4500 ret = 0; 4501 } 4502 4503 /* 4504 * Couldn't make our reservation, save our place so while we're trying 4505 * to reclaim space we can actually use it instead of somebody else 4506 * stealing it from us. 4507 * 4508 * We make the other tasks wait for the flush only when we can flush 4509 * all things. 4510 */ 4511 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4512 flushing = true; 4513 space_info->flush = 1; 4514 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4515 used += orig_bytes; 4516 /* 4517 * We will do the space reservation dance during log replay, 4518 * which means we won't have fs_info->fs_root set, so don't do 4519 * the async reclaim as we will panic. 4520 */ 4521 if (!root->fs_info->log_root_recovering && 4522 need_do_async_reclaim(space_info, root->fs_info, used) && 4523 !work_busy(&root->fs_info->async_reclaim_work)) 4524 queue_work(system_unbound_wq, 4525 &root->fs_info->async_reclaim_work); 4526 } 4527 spin_unlock(&space_info->lock); 4528 4529 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4530 goto out; 4531 4532 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4533 flush_state); 4534 flush_state++; 4535 4536 /* 4537 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4538 * would happen. So skip delalloc flush. 4539 */ 4540 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4541 (flush_state == FLUSH_DELALLOC || 4542 flush_state == FLUSH_DELALLOC_WAIT)) 4543 flush_state = ALLOC_CHUNK; 4544 4545 if (!ret) 4546 goto again; 4547 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4548 flush_state < COMMIT_TRANS) 4549 goto again; 4550 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4551 flush_state <= COMMIT_TRANS) 4552 goto again; 4553 4554 out: 4555 if (ret == -ENOSPC && 4556 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4557 struct btrfs_block_rsv *global_rsv = 4558 &root->fs_info->global_block_rsv; 4559 4560 if (block_rsv != global_rsv && 4561 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4562 ret = 0; 4563 } 4564 if (ret == -ENOSPC) 4565 trace_btrfs_space_reservation(root->fs_info, 4566 "space_info:enospc", 4567 space_info->flags, orig_bytes, 1); 4568 if (flushing) { 4569 spin_lock(&space_info->lock); 4570 space_info->flush = 0; 4571 wake_up_all(&space_info->wait); 4572 spin_unlock(&space_info->lock); 4573 } 4574 return ret; 4575 } 4576 4577 static struct btrfs_block_rsv *get_block_rsv( 4578 const struct btrfs_trans_handle *trans, 4579 const struct btrfs_root *root) 4580 { 4581 struct btrfs_block_rsv *block_rsv = NULL; 4582 4583 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4584 block_rsv = trans->block_rsv; 4585 4586 if (root == root->fs_info->csum_root && trans->adding_csums) 4587 block_rsv = trans->block_rsv; 4588 4589 if (root == root->fs_info->uuid_root) 4590 block_rsv = trans->block_rsv; 4591 4592 if (!block_rsv) 4593 block_rsv = root->block_rsv; 4594 4595 if (!block_rsv) 4596 block_rsv = &root->fs_info->empty_block_rsv; 4597 4598 return block_rsv; 4599 } 4600 4601 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4602 u64 num_bytes) 4603 { 4604 int ret = -ENOSPC; 4605 spin_lock(&block_rsv->lock); 4606 if (block_rsv->reserved >= num_bytes) { 4607 block_rsv->reserved -= num_bytes; 4608 if (block_rsv->reserved < block_rsv->size) 4609 block_rsv->full = 0; 4610 ret = 0; 4611 } 4612 spin_unlock(&block_rsv->lock); 4613 return ret; 4614 } 4615 4616 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4617 u64 num_bytes, int update_size) 4618 { 4619 spin_lock(&block_rsv->lock); 4620 block_rsv->reserved += num_bytes; 4621 if (update_size) 4622 block_rsv->size += num_bytes; 4623 else if (block_rsv->reserved >= block_rsv->size) 4624 block_rsv->full = 1; 4625 spin_unlock(&block_rsv->lock); 4626 } 4627 4628 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4629 struct btrfs_block_rsv *dest, u64 num_bytes, 4630 int min_factor) 4631 { 4632 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4633 u64 min_bytes; 4634 4635 if (global_rsv->space_info != dest->space_info) 4636 return -ENOSPC; 4637 4638 spin_lock(&global_rsv->lock); 4639 min_bytes = div_factor(global_rsv->size, min_factor); 4640 if (global_rsv->reserved < min_bytes + num_bytes) { 4641 spin_unlock(&global_rsv->lock); 4642 return -ENOSPC; 4643 } 4644 global_rsv->reserved -= num_bytes; 4645 if (global_rsv->reserved < global_rsv->size) 4646 global_rsv->full = 0; 4647 spin_unlock(&global_rsv->lock); 4648 4649 block_rsv_add_bytes(dest, num_bytes, 1); 4650 return 0; 4651 } 4652 4653 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4654 struct btrfs_block_rsv *block_rsv, 4655 struct btrfs_block_rsv *dest, u64 num_bytes) 4656 { 4657 struct btrfs_space_info *space_info = block_rsv->space_info; 4658 4659 spin_lock(&block_rsv->lock); 4660 if (num_bytes == (u64)-1) 4661 num_bytes = block_rsv->size; 4662 block_rsv->size -= num_bytes; 4663 if (block_rsv->reserved >= block_rsv->size) { 4664 num_bytes = block_rsv->reserved - block_rsv->size; 4665 block_rsv->reserved = block_rsv->size; 4666 block_rsv->full = 1; 4667 } else { 4668 num_bytes = 0; 4669 } 4670 spin_unlock(&block_rsv->lock); 4671 4672 if (num_bytes > 0) { 4673 if (dest) { 4674 spin_lock(&dest->lock); 4675 if (!dest->full) { 4676 u64 bytes_to_add; 4677 4678 bytes_to_add = dest->size - dest->reserved; 4679 bytes_to_add = min(num_bytes, bytes_to_add); 4680 dest->reserved += bytes_to_add; 4681 if (dest->reserved >= dest->size) 4682 dest->full = 1; 4683 num_bytes -= bytes_to_add; 4684 } 4685 spin_unlock(&dest->lock); 4686 } 4687 if (num_bytes) { 4688 spin_lock(&space_info->lock); 4689 space_info->bytes_may_use -= num_bytes; 4690 trace_btrfs_space_reservation(fs_info, "space_info", 4691 space_info->flags, num_bytes, 0); 4692 spin_unlock(&space_info->lock); 4693 } 4694 } 4695 } 4696 4697 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4698 struct btrfs_block_rsv *dst, u64 num_bytes) 4699 { 4700 int ret; 4701 4702 ret = block_rsv_use_bytes(src, num_bytes); 4703 if (ret) 4704 return ret; 4705 4706 block_rsv_add_bytes(dst, num_bytes, 1); 4707 return 0; 4708 } 4709 4710 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4711 { 4712 memset(rsv, 0, sizeof(*rsv)); 4713 spin_lock_init(&rsv->lock); 4714 rsv->type = type; 4715 } 4716 4717 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4718 unsigned short type) 4719 { 4720 struct btrfs_block_rsv *block_rsv; 4721 struct btrfs_fs_info *fs_info = root->fs_info; 4722 4723 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4724 if (!block_rsv) 4725 return NULL; 4726 4727 btrfs_init_block_rsv(block_rsv, type); 4728 block_rsv->space_info = __find_space_info(fs_info, 4729 BTRFS_BLOCK_GROUP_METADATA); 4730 return block_rsv; 4731 } 4732 4733 void btrfs_free_block_rsv(struct btrfs_root *root, 4734 struct btrfs_block_rsv *rsv) 4735 { 4736 if (!rsv) 4737 return; 4738 btrfs_block_rsv_release(root, rsv, (u64)-1); 4739 kfree(rsv); 4740 } 4741 4742 int btrfs_block_rsv_add(struct btrfs_root *root, 4743 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4744 enum btrfs_reserve_flush_enum flush) 4745 { 4746 int ret; 4747 4748 if (num_bytes == 0) 4749 return 0; 4750 4751 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4752 if (!ret) { 4753 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4754 return 0; 4755 } 4756 4757 return ret; 4758 } 4759 4760 int btrfs_block_rsv_check(struct btrfs_root *root, 4761 struct btrfs_block_rsv *block_rsv, int min_factor) 4762 { 4763 u64 num_bytes = 0; 4764 int ret = -ENOSPC; 4765 4766 if (!block_rsv) 4767 return 0; 4768 4769 spin_lock(&block_rsv->lock); 4770 num_bytes = div_factor(block_rsv->size, min_factor); 4771 if (block_rsv->reserved >= num_bytes) 4772 ret = 0; 4773 spin_unlock(&block_rsv->lock); 4774 4775 return ret; 4776 } 4777 4778 int btrfs_block_rsv_refill(struct btrfs_root *root, 4779 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4780 enum btrfs_reserve_flush_enum flush) 4781 { 4782 u64 num_bytes = 0; 4783 int ret = -ENOSPC; 4784 4785 if (!block_rsv) 4786 return 0; 4787 4788 spin_lock(&block_rsv->lock); 4789 num_bytes = min_reserved; 4790 if (block_rsv->reserved >= num_bytes) 4791 ret = 0; 4792 else 4793 num_bytes -= block_rsv->reserved; 4794 spin_unlock(&block_rsv->lock); 4795 4796 if (!ret) 4797 return 0; 4798 4799 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4800 if (!ret) { 4801 block_rsv_add_bytes(block_rsv, num_bytes, 0); 4802 return 0; 4803 } 4804 4805 return ret; 4806 } 4807 4808 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 4809 struct btrfs_block_rsv *dst_rsv, 4810 u64 num_bytes) 4811 { 4812 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4813 } 4814 4815 void btrfs_block_rsv_release(struct btrfs_root *root, 4816 struct btrfs_block_rsv *block_rsv, 4817 u64 num_bytes) 4818 { 4819 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4820 if (global_rsv == block_rsv || 4821 block_rsv->space_info != global_rsv->space_info) 4822 global_rsv = NULL; 4823 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 4824 num_bytes); 4825 } 4826 4827 /* 4828 * helper to calculate size of global block reservation. 4829 * the desired value is sum of space used by extent tree, 4830 * checksum tree and root tree 4831 */ 4832 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 4833 { 4834 struct btrfs_space_info *sinfo; 4835 u64 num_bytes; 4836 u64 meta_used; 4837 u64 data_used; 4838 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 4839 4840 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 4841 spin_lock(&sinfo->lock); 4842 data_used = sinfo->bytes_used; 4843 spin_unlock(&sinfo->lock); 4844 4845 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4846 spin_lock(&sinfo->lock); 4847 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 4848 data_used = 0; 4849 meta_used = sinfo->bytes_used; 4850 spin_unlock(&sinfo->lock); 4851 4852 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 4853 csum_size * 2; 4854 num_bytes += div64_u64(data_used + meta_used, 50); 4855 4856 if (num_bytes * 3 > meta_used) 4857 num_bytes = div64_u64(meta_used, 3); 4858 4859 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 4860 } 4861 4862 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 4863 { 4864 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4865 struct btrfs_space_info *sinfo = block_rsv->space_info; 4866 u64 num_bytes; 4867 4868 num_bytes = calc_global_metadata_size(fs_info); 4869 4870 spin_lock(&sinfo->lock); 4871 spin_lock(&block_rsv->lock); 4872 4873 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 4874 4875 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 4876 sinfo->bytes_reserved + sinfo->bytes_readonly + 4877 sinfo->bytes_may_use; 4878 4879 if (sinfo->total_bytes > num_bytes) { 4880 num_bytes = sinfo->total_bytes - num_bytes; 4881 block_rsv->reserved += num_bytes; 4882 sinfo->bytes_may_use += num_bytes; 4883 trace_btrfs_space_reservation(fs_info, "space_info", 4884 sinfo->flags, num_bytes, 1); 4885 } 4886 4887 if (block_rsv->reserved >= block_rsv->size) { 4888 num_bytes = block_rsv->reserved - block_rsv->size; 4889 sinfo->bytes_may_use -= num_bytes; 4890 trace_btrfs_space_reservation(fs_info, "space_info", 4891 sinfo->flags, num_bytes, 0); 4892 block_rsv->reserved = block_rsv->size; 4893 block_rsv->full = 1; 4894 } 4895 4896 spin_unlock(&block_rsv->lock); 4897 spin_unlock(&sinfo->lock); 4898 } 4899 4900 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 4901 { 4902 struct btrfs_space_info *space_info; 4903 4904 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4905 fs_info->chunk_block_rsv.space_info = space_info; 4906 4907 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4908 fs_info->global_block_rsv.space_info = space_info; 4909 fs_info->delalloc_block_rsv.space_info = space_info; 4910 fs_info->trans_block_rsv.space_info = space_info; 4911 fs_info->empty_block_rsv.space_info = space_info; 4912 fs_info->delayed_block_rsv.space_info = space_info; 4913 4914 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 4915 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 4916 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 4917 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 4918 if (fs_info->quota_root) 4919 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 4920 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 4921 4922 update_global_block_rsv(fs_info); 4923 } 4924 4925 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 4926 { 4927 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 4928 (u64)-1); 4929 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 4930 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 4931 WARN_ON(fs_info->trans_block_rsv.size > 0); 4932 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 4933 WARN_ON(fs_info->chunk_block_rsv.size > 0); 4934 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 4935 WARN_ON(fs_info->delayed_block_rsv.size > 0); 4936 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 4937 } 4938 4939 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 4940 struct btrfs_root *root) 4941 { 4942 if (!trans->block_rsv) 4943 return; 4944 4945 if (!trans->bytes_reserved) 4946 return; 4947 4948 trace_btrfs_space_reservation(root->fs_info, "transaction", 4949 trans->transid, trans->bytes_reserved, 0); 4950 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 4951 trans->bytes_reserved = 0; 4952 } 4953 4954 /* Can only return 0 or -ENOSPC */ 4955 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 4956 struct inode *inode) 4957 { 4958 struct btrfs_root *root = BTRFS_I(inode)->root; 4959 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 4960 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 4961 4962 /* 4963 * We need to hold space in order to delete our orphan item once we've 4964 * added it, so this takes the reservation so we can release it later 4965 * when we are truly done with the orphan item. 4966 */ 4967 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4968 trace_btrfs_space_reservation(root->fs_info, "orphan", 4969 btrfs_ino(inode), num_bytes, 1); 4970 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 4971 } 4972 4973 void btrfs_orphan_release_metadata(struct inode *inode) 4974 { 4975 struct btrfs_root *root = BTRFS_I(inode)->root; 4976 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 4977 trace_btrfs_space_reservation(root->fs_info, "orphan", 4978 btrfs_ino(inode), num_bytes, 0); 4979 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 4980 } 4981 4982 /* 4983 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 4984 * root: the root of the parent directory 4985 * rsv: block reservation 4986 * items: the number of items that we need do reservation 4987 * qgroup_reserved: used to return the reserved size in qgroup 4988 * 4989 * This function is used to reserve the space for snapshot/subvolume 4990 * creation and deletion. Those operations are different with the 4991 * common file/directory operations, they change two fs/file trees 4992 * and root tree, the number of items that the qgroup reserves is 4993 * different with the free space reservation. So we can not use 4994 * the space reseravtion mechanism in start_transaction(). 4995 */ 4996 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 4997 struct btrfs_block_rsv *rsv, 4998 int items, 4999 u64 *qgroup_reserved, 5000 bool use_global_rsv) 5001 { 5002 u64 num_bytes; 5003 int ret; 5004 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5005 5006 if (root->fs_info->quota_enabled) { 5007 /* One for parent inode, two for dir entries */ 5008 num_bytes = 3 * root->nodesize; 5009 ret = btrfs_qgroup_reserve(root, num_bytes); 5010 if (ret) 5011 return ret; 5012 } else { 5013 num_bytes = 0; 5014 } 5015 5016 *qgroup_reserved = num_bytes; 5017 5018 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5019 rsv->space_info = __find_space_info(root->fs_info, 5020 BTRFS_BLOCK_GROUP_METADATA); 5021 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5022 BTRFS_RESERVE_FLUSH_ALL); 5023 5024 if (ret == -ENOSPC && use_global_rsv) 5025 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5026 5027 if (ret) { 5028 if (*qgroup_reserved) 5029 btrfs_qgroup_free(root, *qgroup_reserved); 5030 } 5031 5032 return ret; 5033 } 5034 5035 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5036 struct btrfs_block_rsv *rsv, 5037 u64 qgroup_reserved) 5038 { 5039 btrfs_block_rsv_release(root, rsv, (u64)-1); 5040 if (qgroup_reserved) 5041 btrfs_qgroup_free(root, qgroup_reserved); 5042 } 5043 5044 /** 5045 * drop_outstanding_extent - drop an outstanding extent 5046 * @inode: the inode we're dropping the extent for 5047 * 5048 * This is called when we are freeing up an outstanding extent, either called 5049 * after an error or after an extent is written. This will return the number of 5050 * reserved extents that need to be freed. This must be called with 5051 * BTRFS_I(inode)->lock held. 5052 */ 5053 static unsigned drop_outstanding_extent(struct inode *inode) 5054 { 5055 unsigned drop_inode_space = 0; 5056 unsigned dropped_extents = 0; 5057 5058 BUG_ON(!BTRFS_I(inode)->outstanding_extents); 5059 BTRFS_I(inode)->outstanding_extents--; 5060 5061 if (BTRFS_I(inode)->outstanding_extents == 0 && 5062 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5063 &BTRFS_I(inode)->runtime_flags)) 5064 drop_inode_space = 1; 5065 5066 /* 5067 * If we have more or the same amount of outsanding extents than we have 5068 * reserved then we need to leave the reserved extents count alone. 5069 */ 5070 if (BTRFS_I(inode)->outstanding_extents >= 5071 BTRFS_I(inode)->reserved_extents) 5072 return drop_inode_space; 5073 5074 dropped_extents = BTRFS_I(inode)->reserved_extents - 5075 BTRFS_I(inode)->outstanding_extents; 5076 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5077 return dropped_extents + drop_inode_space; 5078 } 5079 5080 /** 5081 * calc_csum_metadata_size - return the amount of metada space that must be 5082 * reserved/free'd for the given bytes. 5083 * @inode: the inode we're manipulating 5084 * @num_bytes: the number of bytes in question 5085 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5086 * 5087 * This adjusts the number of csum_bytes in the inode and then returns the 5088 * correct amount of metadata that must either be reserved or freed. We 5089 * calculate how many checksums we can fit into one leaf and then divide the 5090 * number of bytes that will need to be checksumed by this value to figure out 5091 * how many checksums will be required. If we are adding bytes then the number 5092 * may go up and we will return the number of additional bytes that must be 5093 * reserved. If it is going down we will return the number of bytes that must 5094 * be freed. 5095 * 5096 * This must be called with BTRFS_I(inode)->lock held. 5097 */ 5098 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5099 int reserve) 5100 { 5101 struct btrfs_root *root = BTRFS_I(inode)->root; 5102 u64 csum_size; 5103 int num_csums_per_leaf; 5104 int num_csums; 5105 int old_csums; 5106 5107 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5108 BTRFS_I(inode)->csum_bytes == 0) 5109 return 0; 5110 5111 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 5112 if (reserve) 5113 BTRFS_I(inode)->csum_bytes += num_bytes; 5114 else 5115 BTRFS_I(inode)->csum_bytes -= num_bytes; 5116 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 5117 num_csums_per_leaf = (int)div64_u64(csum_size, 5118 sizeof(struct btrfs_csum_item) + 5119 sizeof(struct btrfs_disk_key)); 5120 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize); 5121 num_csums = num_csums + num_csums_per_leaf - 1; 5122 num_csums = num_csums / num_csums_per_leaf; 5123 5124 old_csums = old_csums + num_csums_per_leaf - 1; 5125 old_csums = old_csums / num_csums_per_leaf; 5126 5127 /* No change, no need to reserve more */ 5128 if (old_csums == num_csums) 5129 return 0; 5130 5131 if (reserve) 5132 return btrfs_calc_trans_metadata_size(root, 5133 num_csums - old_csums); 5134 5135 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5136 } 5137 5138 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5139 { 5140 struct btrfs_root *root = BTRFS_I(inode)->root; 5141 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5142 u64 to_reserve = 0; 5143 u64 csum_bytes; 5144 unsigned nr_extents = 0; 5145 int extra_reserve = 0; 5146 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5147 int ret = 0; 5148 bool delalloc_lock = true; 5149 u64 to_free = 0; 5150 unsigned dropped; 5151 5152 /* If we are a free space inode we need to not flush since we will be in 5153 * the middle of a transaction commit. We also don't need the delalloc 5154 * mutex since we won't race with anybody. We need this mostly to make 5155 * lockdep shut its filthy mouth. 5156 */ 5157 if (btrfs_is_free_space_inode(inode)) { 5158 flush = BTRFS_RESERVE_NO_FLUSH; 5159 delalloc_lock = false; 5160 } 5161 5162 if (flush != BTRFS_RESERVE_NO_FLUSH && 5163 btrfs_transaction_in_commit(root->fs_info)) 5164 schedule_timeout(1); 5165 5166 if (delalloc_lock) 5167 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5168 5169 num_bytes = ALIGN(num_bytes, root->sectorsize); 5170 5171 spin_lock(&BTRFS_I(inode)->lock); 5172 BTRFS_I(inode)->outstanding_extents++; 5173 5174 if (BTRFS_I(inode)->outstanding_extents > 5175 BTRFS_I(inode)->reserved_extents) 5176 nr_extents = BTRFS_I(inode)->outstanding_extents - 5177 BTRFS_I(inode)->reserved_extents; 5178 5179 /* 5180 * Add an item to reserve for updating the inode when we complete the 5181 * delalloc io. 5182 */ 5183 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5184 &BTRFS_I(inode)->runtime_flags)) { 5185 nr_extents++; 5186 extra_reserve = 1; 5187 } 5188 5189 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5190 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5191 csum_bytes = BTRFS_I(inode)->csum_bytes; 5192 spin_unlock(&BTRFS_I(inode)->lock); 5193 5194 if (root->fs_info->quota_enabled) { 5195 ret = btrfs_qgroup_reserve(root, num_bytes + 5196 nr_extents * root->nodesize); 5197 if (ret) 5198 goto out_fail; 5199 } 5200 5201 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5202 if (unlikely(ret)) { 5203 if (root->fs_info->quota_enabled) 5204 btrfs_qgroup_free(root, num_bytes + 5205 nr_extents * root->nodesize); 5206 goto out_fail; 5207 } 5208 5209 spin_lock(&BTRFS_I(inode)->lock); 5210 if (extra_reserve) { 5211 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5212 &BTRFS_I(inode)->runtime_flags); 5213 nr_extents--; 5214 } 5215 BTRFS_I(inode)->reserved_extents += nr_extents; 5216 spin_unlock(&BTRFS_I(inode)->lock); 5217 5218 if (delalloc_lock) 5219 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5220 5221 if (to_reserve) 5222 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5223 btrfs_ino(inode), to_reserve, 1); 5224 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5225 5226 return 0; 5227 5228 out_fail: 5229 spin_lock(&BTRFS_I(inode)->lock); 5230 dropped = drop_outstanding_extent(inode); 5231 /* 5232 * If the inodes csum_bytes is the same as the original 5233 * csum_bytes then we know we haven't raced with any free()ers 5234 * so we can just reduce our inodes csum bytes and carry on. 5235 */ 5236 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5237 calc_csum_metadata_size(inode, num_bytes, 0); 5238 } else { 5239 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5240 u64 bytes; 5241 5242 /* 5243 * This is tricky, but first we need to figure out how much we 5244 * free'd from any free-ers that occured during this 5245 * reservation, so we reset ->csum_bytes to the csum_bytes 5246 * before we dropped our lock, and then call the free for the 5247 * number of bytes that were freed while we were trying our 5248 * reservation. 5249 */ 5250 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5251 BTRFS_I(inode)->csum_bytes = csum_bytes; 5252 to_free = calc_csum_metadata_size(inode, bytes, 0); 5253 5254 5255 /* 5256 * Now we need to see how much we would have freed had we not 5257 * been making this reservation and our ->csum_bytes were not 5258 * artificially inflated. 5259 */ 5260 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5261 bytes = csum_bytes - orig_csum_bytes; 5262 bytes = calc_csum_metadata_size(inode, bytes, 0); 5263 5264 /* 5265 * Now reset ->csum_bytes to what it should be. If bytes is 5266 * more than to_free then we would have free'd more space had we 5267 * not had an artificially high ->csum_bytes, so we need to free 5268 * the remainder. If bytes is the same or less then we don't 5269 * need to do anything, the other free-ers did the correct 5270 * thing. 5271 */ 5272 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5273 if (bytes > to_free) 5274 to_free = bytes - to_free; 5275 else 5276 to_free = 0; 5277 } 5278 spin_unlock(&BTRFS_I(inode)->lock); 5279 if (dropped) 5280 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5281 5282 if (to_free) { 5283 btrfs_block_rsv_release(root, block_rsv, to_free); 5284 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5285 btrfs_ino(inode), to_free, 0); 5286 } 5287 if (delalloc_lock) 5288 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5289 return ret; 5290 } 5291 5292 /** 5293 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5294 * @inode: the inode to release the reservation for 5295 * @num_bytes: the number of bytes we're releasing 5296 * 5297 * This will release the metadata reservation for an inode. This can be called 5298 * once we complete IO for a given set of bytes to release their metadata 5299 * reservations. 5300 */ 5301 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5302 { 5303 struct btrfs_root *root = BTRFS_I(inode)->root; 5304 u64 to_free = 0; 5305 unsigned dropped; 5306 5307 num_bytes = ALIGN(num_bytes, root->sectorsize); 5308 spin_lock(&BTRFS_I(inode)->lock); 5309 dropped = drop_outstanding_extent(inode); 5310 5311 if (num_bytes) 5312 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5313 spin_unlock(&BTRFS_I(inode)->lock); 5314 if (dropped > 0) 5315 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5316 5317 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5318 btrfs_ino(inode), to_free, 0); 5319 if (root->fs_info->quota_enabled) { 5320 btrfs_qgroup_free(root, num_bytes + 5321 dropped * root->nodesize); 5322 } 5323 5324 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5325 to_free); 5326 } 5327 5328 /** 5329 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5330 * @inode: inode we're writing to 5331 * @num_bytes: the number of bytes we want to allocate 5332 * 5333 * This will do the following things 5334 * 5335 * o reserve space in the data space info for num_bytes 5336 * o reserve space in the metadata space info based on number of outstanding 5337 * extents and how much csums will be needed 5338 * o add to the inodes ->delalloc_bytes 5339 * o add it to the fs_info's delalloc inodes list. 5340 * 5341 * This will return 0 for success and -ENOSPC if there is no space left. 5342 */ 5343 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5344 { 5345 int ret; 5346 5347 ret = btrfs_check_data_free_space(inode, num_bytes); 5348 if (ret) 5349 return ret; 5350 5351 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5352 if (ret) { 5353 btrfs_free_reserved_data_space(inode, num_bytes); 5354 return ret; 5355 } 5356 5357 return 0; 5358 } 5359 5360 /** 5361 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5362 * @inode: inode we're releasing space for 5363 * @num_bytes: the number of bytes we want to free up 5364 * 5365 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5366 * called in the case that we don't need the metadata AND data reservations 5367 * anymore. So if there is an error or we insert an inline extent. 5368 * 5369 * This function will release the metadata space that was not used and will 5370 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5371 * list if there are no delalloc bytes left. 5372 */ 5373 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5374 { 5375 btrfs_delalloc_release_metadata(inode, num_bytes); 5376 btrfs_free_reserved_data_space(inode, num_bytes); 5377 } 5378 5379 static int update_block_group(struct btrfs_root *root, 5380 u64 bytenr, u64 num_bytes, int alloc) 5381 { 5382 struct btrfs_block_group_cache *cache = NULL; 5383 struct btrfs_fs_info *info = root->fs_info; 5384 u64 total = num_bytes; 5385 u64 old_val; 5386 u64 byte_in_group; 5387 int factor; 5388 5389 /* block accounting for super block */ 5390 spin_lock(&info->delalloc_root_lock); 5391 old_val = btrfs_super_bytes_used(info->super_copy); 5392 if (alloc) 5393 old_val += num_bytes; 5394 else 5395 old_val -= num_bytes; 5396 btrfs_set_super_bytes_used(info->super_copy, old_val); 5397 spin_unlock(&info->delalloc_root_lock); 5398 5399 while (total) { 5400 cache = btrfs_lookup_block_group(info, bytenr); 5401 if (!cache) 5402 return -ENOENT; 5403 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5404 BTRFS_BLOCK_GROUP_RAID1 | 5405 BTRFS_BLOCK_GROUP_RAID10)) 5406 factor = 2; 5407 else 5408 factor = 1; 5409 /* 5410 * If this block group has free space cache written out, we 5411 * need to make sure to load it if we are removing space. This 5412 * is because we need the unpinning stage to actually add the 5413 * space back to the block group, otherwise we will leak space. 5414 */ 5415 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5416 cache_block_group(cache, 1); 5417 5418 byte_in_group = bytenr - cache->key.objectid; 5419 WARN_ON(byte_in_group > cache->key.offset); 5420 5421 spin_lock(&cache->space_info->lock); 5422 spin_lock(&cache->lock); 5423 5424 if (btrfs_test_opt(root, SPACE_CACHE) && 5425 cache->disk_cache_state < BTRFS_DC_CLEAR) 5426 cache->disk_cache_state = BTRFS_DC_CLEAR; 5427 5428 cache->dirty = 1; 5429 old_val = btrfs_block_group_used(&cache->item); 5430 num_bytes = min(total, cache->key.offset - byte_in_group); 5431 if (alloc) { 5432 old_val += num_bytes; 5433 btrfs_set_block_group_used(&cache->item, old_val); 5434 cache->reserved -= num_bytes; 5435 cache->space_info->bytes_reserved -= num_bytes; 5436 cache->space_info->bytes_used += num_bytes; 5437 cache->space_info->disk_used += num_bytes * factor; 5438 spin_unlock(&cache->lock); 5439 spin_unlock(&cache->space_info->lock); 5440 } else { 5441 old_val -= num_bytes; 5442 5443 /* 5444 * No longer have used bytes in this block group, queue 5445 * it for deletion. 5446 */ 5447 if (old_val == 0) { 5448 spin_lock(&info->unused_bgs_lock); 5449 if (list_empty(&cache->bg_list)) { 5450 btrfs_get_block_group(cache); 5451 list_add_tail(&cache->bg_list, 5452 &info->unused_bgs); 5453 } 5454 spin_unlock(&info->unused_bgs_lock); 5455 } 5456 btrfs_set_block_group_used(&cache->item, old_val); 5457 cache->pinned += num_bytes; 5458 cache->space_info->bytes_pinned += num_bytes; 5459 cache->space_info->bytes_used -= num_bytes; 5460 cache->space_info->disk_used -= num_bytes * factor; 5461 spin_unlock(&cache->lock); 5462 spin_unlock(&cache->space_info->lock); 5463 5464 set_extent_dirty(info->pinned_extents, 5465 bytenr, bytenr + num_bytes - 1, 5466 GFP_NOFS | __GFP_NOFAIL); 5467 } 5468 btrfs_put_block_group(cache); 5469 total -= num_bytes; 5470 bytenr += num_bytes; 5471 } 5472 return 0; 5473 } 5474 5475 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5476 { 5477 struct btrfs_block_group_cache *cache; 5478 u64 bytenr; 5479 5480 spin_lock(&root->fs_info->block_group_cache_lock); 5481 bytenr = root->fs_info->first_logical_byte; 5482 spin_unlock(&root->fs_info->block_group_cache_lock); 5483 5484 if (bytenr < (u64)-1) 5485 return bytenr; 5486 5487 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5488 if (!cache) 5489 return 0; 5490 5491 bytenr = cache->key.objectid; 5492 btrfs_put_block_group(cache); 5493 5494 return bytenr; 5495 } 5496 5497 static int pin_down_extent(struct btrfs_root *root, 5498 struct btrfs_block_group_cache *cache, 5499 u64 bytenr, u64 num_bytes, int reserved) 5500 { 5501 spin_lock(&cache->space_info->lock); 5502 spin_lock(&cache->lock); 5503 cache->pinned += num_bytes; 5504 cache->space_info->bytes_pinned += num_bytes; 5505 if (reserved) { 5506 cache->reserved -= num_bytes; 5507 cache->space_info->bytes_reserved -= num_bytes; 5508 } 5509 spin_unlock(&cache->lock); 5510 spin_unlock(&cache->space_info->lock); 5511 5512 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5513 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5514 if (reserved) 5515 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5516 return 0; 5517 } 5518 5519 /* 5520 * this function must be called within transaction 5521 */ 5522 int btrfs_pin_extent(struct btrfs_root *root, 5523 u64 bytenr, u64 num_bytes, int reserved) 5524 { 5525 struct btrfs_block_group_cache *cache; 5526 5527 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5528 BUG_ON(!cache); /* Logic error */ 5529 5530 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5531 5532 btrfs_put_block_group(cache); 5533 return 0; 5534 } 5535 5536 /* 5537 * this function must be called within transaction 5538 */ 5539 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5540 u64 bytenr, u64 num_bytes) 5541 { 5542 struct btrfs_block_group_cache *cache; 5543 int ret; 5544 5545 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5546 if (!cache) 5547 return -EINVAL; 5548 5549 /* 5550 * pull in the free space cache (if any) so that our pin 5551 * removes the free space from the cache. We have load_only set 5552 * to one because the slow code to read in the free extents does check 5553 * the pinned extents. 5554 */ 5555 cache_block_group(cache, 1); 5556 5557 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5558 5559 /* remove us from the free space cache (if we're there at all) */ 5560 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5561 btrfs_put_block_group(cache); 5562 return ret; 5563 } 5564 5565 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5566 { 5567 int ret; 5568 struct btrfs_block_group_cache *block_group; 5569 struct btrfs_caching_control *caching_ctl; 5570 5571 block_group = btrfs_lookup_block_group(root->fs_info, start); 5572 if (!block_group) 5573 return -EINVAL; 5574 5575 cache_block_group(block_group, 0); 5576 caching_ctl = get_caching_control(block_group); 5577 5578 if (!caching_ctl) { 5579 /* Logic error */ 5580 BUG_ON(!block_group_cache_done(block_group)); 5581 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5582 } else { 5583 mutex_lock(&caching_ctl->mutex); 5584 5585 if (start >= caching_ctl->progress) { 5586 ret = add_excluded_extent(root, start, num_bytes); 5587 } else if (start + num_bytes <= caching_ctl->progress) { 5588 ret = btrfs_remove_free_space(block_group, 5589 start, num_bytes); 5590 } else { 5591 num_bytes = caching_ctl->progress - start; 5592 ret = btrfs_remove_free_space(block_group, 5593 start, num_bytes); 5594 if (ret) 5595 goto out_lock; 5596 5597 num_bytes = (start + num_bytes) - 5598 caching_ctl->progress; 5599 start = caching_ctl->progress; 5600 ret = add_excluded_extent(root, start, num_bytes); 5601 } 5602 out_lock: 5603 mutex_unlock(&caching_ctl->mutex); 5604 put_caching_control(caching_ctl); 5605 } 5606 btrfs_put_block_group(block_group); 5607 return ret; 5608 } 5609 5610 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5611 struct extent_buffer *eb) 5612 { 5613 struct btrfs_file_extent_item *item; 5614 struct btrfs_key key; 5615 int found_type; 5616 int i; 5617 5618 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5619 return 0; 5620 5621 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5622 btrfs_item_key_to_cpu(eb, &key, i); 5623 if (key.type != BTRFS_EXTENT_DATA_KEY) 5624 continue; 5625 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5626 found_type = btrfs_file_extent_type(eb, item); 5627 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5628 continue; 5629 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5630 continue; 5631 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5632 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5633 __exclude_logged_extent(log, key.objectid, key.offset); 5634 } 5635 5636 return 0; 5637 } 5638 5639 /** 5640 * btrfs_update_reserved_bytes - update the block_group and space info counters 5641 * @cache: The cache we are manipulating 5642 * @num_bytes: The number of bytes in question 5643 * @reserve: One of the reservation enums 5644 * @delalloc: The blocks are allocated for the delalloc write 5645 * 5646 * This is called by the allocator when it reserves space, or by somebody who is 5647 * freeing space that was never actually used on disk. For example if you 5648 * reserve some space for a new leaf in transaction A and before transaction A 5649 * commits you free that leaf, you call this with reserve set to 0 in order to 5650 * clear the reservation. 5651 * 5652 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5653 * ENOSPC accounting. For data we handle the reservation through clearing the 5654 * delalloc bits in the io_tree. We have to do this since we could end up 5655 * allocating less disk space for the amount of data we have reserved in the 5656 * case of compression. 5657 * 5658 * If this is a reservation and the block group has become read only we cannot 5659 * make the reservation and return -EAGAIN, otherwise this function always 5660 * succeeds. 5661 */ 5662 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5663 u64 num_bytes, int reserve, int delalloc) 5664 { 5665 struct btrfs_space_info *space_info = cache->space_info; 5666 int ret = 0; 5667 5668 spin_lock(&space_info->lock); 5669 spin_lock(&cache->lock); 5670 if (reserve != RESERVE_FREE) { 5671 if (cache->ro) { 5672 ret = -EAGAIN; 5673 } else { 5674 cache->reserved += num_bytes; 5675 space_info->bytes_reserved += num_bytes; 5676 if (reserve == RESERVE_ALLOC) { 5677 trace_btrfs_space_reservation(cache->fs_info, 5678 "space_info", space_info->flags, 5679 num_bytes, 0); 5680 space_info->bytes_may_use -= num_bytes; 5681 } 5682 5683 if (delalloc) 5684 cache->delalloc_bytes += num_bytes; 5685 } 5686 } else { 5687 if (cache->ro) 5688 space_info->bytes_readonly += num_bytes; 5689 cache->reserved -= num_bytes; 5690 space_info->bytes_reserved -= num_bytes; 5691 5692 if (delalloc) 5693 cache->delalloc_bytes -= num_bytes; 5694 } 5695 spin_unlock(&cache->lock); 5696 spin_unlock(&space_info->lock); 5697 return ret; 5698 } 5699 5700 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5701 struct btrfs_root *root) 5702 { 5703 struct btrfs_fs_info *fs_info = root->fs_info; 5704 struct btrfs_caching_control *next; 5705 struct btrfs_caching_control *caching_ctl; 5706 struct btrfs_block_group_cache *cache; 5707 5708 down_write(&fs_info->commit_root_sem); 5709 5710 list_for_each_entry_safe(caching_ctl, next, 5711 &fs_info->caching_block_groups, list) { 5712 cache = caching_ctl->block_group; 5713 if (block_group_cache_done(cache)) { 5714 cache->last_byte_to_unpin = (u64)-1; 5715 list_del_init(&caching_ctl->list); 5716 put_caching_control(caching_ctl); 5717 } else { 5718 cache->last_byte_to_unpin = caching_ctl->progress; 5719 } 5720 } 5721 5722 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5723 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5724 else 5725 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5726 5727 up_write(&fs_info->commit_root_sem); 5728 5729 update_global_block_rsv(fs_info); 5730 } 5731 5732 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 5733 { 5734 struct btrfs_fs_info *fs_info = root->fs_info; 5735 struct btrfs_block_group_cache *cache = NULL; 5736 struct btrfs_space_info *space_info; 5737 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5738 u64 len; 5739 bool readonly; 5740 5741 while (start <= end) { 5742 readonly = false; 5743 if (!cache || 5744 start >= cache->key.objectid + cache->key.offset) { 5745 if (cache) 5746 btrfs_put_block_group(cache); 5747 cache = btrfs_lookup_block_group(fs_info, start); 5748 BUG_ON(!cache); /* Logic error */ 5749 } 5750 5751 len = cache->key.objectid + cache->key.offset - start; 5752 len = min(len, end + 1 - start); 5753 5754 if (start < cache->last_byte_to_unpin) { 5755 len = min(len, cache->last_byte_to_unpin - start); 5756 btrfs_add_free_space(cache, start, len); 5757 } 5758 5759 start += len; 5760 space_info = cache->space_info; 5761 5762 spin_lock(&space_info->lock); 5763 spin_lock(&cache->lock); 5764 cache->pinned -= len; 5765 space_info->bytes_pinned -= len; 5766 percpu_counter_add(&space_info->total_bytes_pinned, -len); 5767 if (cache->ro) { 5768 space_info->bytes_readonly += len; 5769 readonly = true; 5770 } 5771 spin_unlock(&cache->lock); 5772 if (!readonly && global_rsv->space_info == space_info) { 5773 spin_lock(&global_rsv->lock); 5774 if (!global_rsv->full) { 5775 len = min(len, global_rsv->size - 5776 global_rsv->reserved); 5777 global_rsv->reserved += len; 5778 space_info->bytes_may_use += len; 5779 if (global_rsv->reserved >= global_rsv->size) 5780 global_rsv->full = 1; 5781 } 5782 spin_unlock(&global_rsv->lock); 5783 } 5784 spin_unlock(&space_info->lock); 5785 } 5786 5787 if (cache) 5788 btrfs_put_block_group(cache); 5789 return 0; 5790 } 5791 5792 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 5793 struct btrfs_root *root) 5794 { 5795 struct btrfs_fs_info *fs_info = root->fs_info; 5796 struct extent_io_tree *unpin; 5797 u64 start; 5798 u64 end; 5799 int ret; 5800 5801 if (trans->aborted) 5802 return 0; 5803 5804 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5805 unpin = &fs_info->freed_extents[1]; 5806 else 5807 unpin = &fs_info->freed_extents[0]; 5808 5809 while (1) { 5810 ret = find_first_extent_bit(unpin, 0, &start, &end, 5811 EXTENT_DIRTY, NULL); 5812 if (ret) 5813 break; 5814 5815 if (btrfs_test_opt(root, DISCARD)) 5816 ret = btrfs_discard_extent(root, start, 5817 end + 1 - start, NULL); 5818 5819 clear_extent_dirty(unpin, start, end, GFP_NOFS); 5820 unpin_extent_range(root, start, end); 5821 cond_resched(); 5822 } 5823 5824 return 0; 5825 } 5826 5827 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 5828 u64 owner, u64 root_objectid) 5829 { 5830 struct btrfs_space_info *space_info; 5831 u64 flags; 5832 5833 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 5834 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 5835 flags = BTRFS_BLOCK_GROUP_SYSTEM; 5836 else 5837 flags = BTRFS_BLOCK_GROUP_METADATA; 5838 } else { 5839 flags = BTRFS_BLOCK_GROUP_DATA; 5840 } 5841 5842 space_info = __find_space_info(fs_info, flags); 5843 BUG_ON(!space_info); /* Logic bug */ 5844 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 5845 } 5846 5847 5848 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 5849 struct btrfs_root *root, 5850 u64 bytenr, u64 num_bytes, u64 parent, 5851 u64 root_objectid, u64 owner_objectid, 5852 u64 owner_offset, int refs_to_drop, 5853 struct btrfs_delayed_extent_op *extent_op, 5854 int no_quota) 5855 { 5856 struct btrfs_key key; 5857 struct btrfs_path *path; 5858 struct btrfs_fs_info *info = root->fs_info; 5859 struct btrfs_root *extent_root = info->extent_root; 5860 struct extent_buffer *leaf; 5861 struct btrfs_extent_item *ei; 5862 struct btrfs_extent_inline_ref *iref; 5863 int ret; 5864 int is_data; 5865 int extent_slot = 0; 5866 int found_extent = 0; 5867 int num_to_del = 1; 5868 u32 item_size; 5869 u64 refs; 5870 int last_ref = 0; 5871 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL; 5872 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 5873 SKINNY_METADATA); 5874 5875 if (!info->quota_enabled || !is_fstree(root_objectid)) 5876 no_quota = 1; 5877 5878 path = btrfs_alloc_path(); 5879 if (!path) 5880 return -ENOMEM; 5881 5882 path->reada = 1; 5883 path->leave_spinning = 1; 5884 5885 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 5886 BUG_ON(!is_data && refs_to_drop != 1); 5887 5888 if (is_data) 5889 skinny_metadata = 0; 5890 5891 ret = lookup_extent_backref(trans, extent_root, path, &iref, 5892 bytenr, num_bytes, parent, 5893 root_objectid, owner_objectid, 5894 owner_offset); 5895 if (ret == 0) { 5896 extent_slot = path->slots[0]; 5897 while (extent_slot >= 0) { 5898 btrfs_item_key_to_cpu(path->nodes[0], &key, 5899 extent_slot); 5900 if (key.objectid != bytenr) 5901 break; 5902 if (key.type == BTRFS_EXTENT_ITEM_KEY && 5903 key.offset == num_bytes) { 5904 found_extent = 1; 5905 break; 5906 } 5907 if (key.type == BTRFS_METADATA_ITEM_KEY && 5908 key.offset == owner_objectid) { 5909 found_extent = 1; 5910 break; 5911 } 5912 if (path->slots[0] - extent_slot > 5) 5913 break; 5914 extent_slot--; 5915 } 5916 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5917 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 5918 if (found_extent && item_size < sizeof(*ei)) 5919 found_extent = 0; 5920 #endif 5921 if (!found_extent) { 5922 BUG_ON(iref); 5923 ret = remove_extent_backref(trans, extent_root, path, 5924 NULL, refs_to_drop, 5925 is_data, &last_ref); 5926 if (ret) { 5927 btrfs_abort_transaction(trans, extent_root, ret); 5928 goto out; 5929 } 5930 btrfs_release_path(path); 5931 path->leave_spinning = 1; 5932 5933 key.objectid = bytenr; 5934 key.type = BTRFS_EXTENT_ITEM_KEY; 5935 key.offset = num_bytes; 5936 5937 if (!is_data && skinny_metadata) { 5938 key.type = BTRFS_METADATA_ITEM_KEY; 5939 key.offset = owner_objectid; 5940 } 5941 5942 ret = btrfs_search_slot(trans, extent_root, 5943 &key, path, -1, 1); 5944 if (ret > 0 && skinny_metadata && path->slots[0]) { 5945 /* 5946 * Couldn't find our skinny metadata item, 5947 * see if we have ye olde extent item. 5948 */ 5949 path->slots[0]--; 5950 btrfs_item_key_to_cpu(path->nodes[0], &key, 5951 path->slots[0]); 5952 if (key.objectid == bytenr && 5953 key.type == BTRFS_EXTENT_ITEM_KEY && 5954 key.offset == num_bytes) 5955 ret = 0; 5956 } 5957 5958 if (ret > 0 && skinny_metadata) { 5959 skinny_metadata = false; 5960 key.objectid = bytenr; 5961 key.type = BTRFS_EXTENT_ITEM_KEY; 5962 key.offset = num_bytes; 5963 btrfs_release_path(path); 5964 ret = btrfs_search_slot(trans, extent_root, 5965 &key, path, -1, 1); 5966 } 5967 5968 if (ret) { 5969 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 5970 ret, bytenr); 5971 if (ret > 0) 5972 btrfs_print_leaf(extent_root, 5973 path->nodes[0]); 5974 } 5975 if (ret < 0) { 5976 btrfs_abort_transaction(trans, extent_root, ret); 5977 goto out; 5978 } 5979 extent_slot = path->slots[0]; 5980 } 5981 } else if (WARN_ON(ret == -ENOENT)) { 5982 btrfs_print_leaf(extent_root, path->nodes[0]); 5983 btrfs_err(info, 5984 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 5985 bytenr, parent, root_objectid, owner_objectid, 5986 owner_offset); 5987 btrfs_abort_transaction(trans, extent_root, ret); 5988 goto out; 5989 } else { 5990 btrfs_abort_transaction(trans, extent_root, ret); 5991 goto out; 5992 } 5993 5994 leaf = path->nodes[0]; 5995 item_size = btrfs_item_size_nr(leaf, extent_slot); 5996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 5997 if (item_size < sizeof(*ei)) { 5998 BUG_ON(found_extent || extent_slot != path->slots[0]); 5999 ret = convert_extent_item_v0(trans, extent_root, path, 6000 owner_objectid, 0); 6001 if (ret < 0) { 6002 btrfs_abort_transaction(trans, extent_root, ret); 6003 goto out; 6004 } 6005 6006 btrfs_release_path(path); 6007 path->leave_spinning = 1; 6008 6009 key.objectid = bytenr; 6010 key.type = BTRFS_EXTENT_ITEM_KEY; 6011 key.offset = num_bytes; 6012 6013 ret = btrfs_search_slot(trans, extent_root, &key, path, 6014 -1, 1); 6015 if (ret) { 6016 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6017 ret, bytenr); 6018 btrfs_print_leaf(extent_root, path->nodes[0]); 6019 } 6020 if (ret < 0) { 6021 btrfs_abort_transaction(trans, extent_root, ret); 6022 goto out; 6023 } 6024 6025 extent_slot = path->slots[0]; 6026 leaf = path->nodes[0]; 6027 item_size = btrfs_item_size_nr(leaf, extent_slot); 6028 } 6029 #endif 6030 BUG_ON(item_size < sizeof(*ei)); 6031 ei = btrfs_item_ptr(leaf, extent_slot, 6032 struct btrfs_extent_item); 6033 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6034 key.type == BTRFS_EXTENT_ITEM_KEY) { 6035 struct btrfs_tree_block_info *bi; 6036 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6037 bi = (struct btrfs_tree_block_info *)(ei + 1); 6038 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6039 } 6040 6041 refs = btrfs_extent_refs(leaf, ei); 6042 if (refs < refs_to_drop) { 6043 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6044 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6045 ret = -EINVAL; 6046 btrfs_abort_transaction(trans, extent_root, ret); 6047 goto out; 6048 } 6049 refs -= refs_to_drop; 6050 6051 if (refs > 0) { 6052 type = BTRFS_QGROUP_OPER_SUB_SHARED; 6053 if (extent_op) 6054 __run_delayed_extent_op(extent_op, leaf, ei); 6055 /* 6056 * In the case of inline back ref, reference count will 6057 * be updated by remove_extent_backref 6058 */ 6059 if (iref) { 6060 BUG_ON(!found_extent); 6061 } else { 6062 btrfs_set_extent_refs(leaf, ei, refs); 6063 btrfs_mark_buffer_dirty(leaf); 6064 } 6065 if (found_extent) { 6066 ret = remove_extent_backref(trans, extent_root, path, 6067 iref, refs_to_drop, 6068 is_data, &last_ref); 6069 if (ret) { 6070 btrfs_abort_transaction(trans, extent_root, ret); 6071 goto out; 6072 } 6073 } 6074 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6075 root_objectid); 6076 } else { 6077 if (found_extent) { 6078 BUG_ON(is_data && refs_to_drop != 6079 extent_data_ref_count(root, path, iref)); 6080 if (iref) { 6081 BUG_ON(path->slots[0] != extent_slot); 6082 } else { 6083 BUG_ON(path->slots[0] != extent_slot + 1); 6084 path->slots[0] = extent_slot; 6085 num_to_del = 2; 6086 } 6087 } 6088 6089 last_ref = 1; 6090 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6091 num_to_del); 6092 if (ret) { 6093 btrfs_abort_transaction(trans, extent_root, ret); 6094 goto out; 6095 } 6096 btrfs_release_path(path); 6097 6098 if (is_data) { 6099 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6100 if (ret) { 6101 btrfs_abort_transaction(trans, extent_root, ret); 6102 goto out; 6103 } 6104 } 6105 6106 ret = update_block_group(root, bytenr, num_bytes, 0); 6107 if (ret) { 6108 btrfs_abort_transaction(trans, extent_root, ret); 6109 goto out; 6110 } 6111 } 6112 btrfs_release_path(path); 6113 6114 /* Deal with the quota accounting */ 6115 if (!ret && last_ref && !no_quota) { 6116 int mod_seq = 0; 6117 6118 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID && 6119 type == BTRFS_QGROUP_OPER_SUB_SHARED) 6120 mod_seq = 1; 6121 6122 ret = btrfs_qgroup_record_ref(trans, info, root_objectid, 6123 bytenr, num_bytes, type, 6124 mod_seq); 6125 } 6126 out: 6127 btrfs_free_path(path); 6128 return ret; 6129 } 6130 6131 /* 6132 * when we free an block, it is possible (and likely) that we free the last 6133 * delayed ref for that extent as well. This searches the delayed ref tree for 6134 * a given extent, and if there are no other delayed refs to be processed, it 6135 * removes it from the tree. 6136 */ 6137 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6138 struct btrfs_root *root, u64 bytenr) 6139 { 6140 struct btrfs_delayed_ref_head *head; 6141 struct btrfs_delayed_ref_root *delayed_refs; 6142 int ret = 0; 6143 6144 delayed_refs = &trans->transaction->delayed_refs; 6145 spin_lock(&delayed_refs->lock); 6146 head = btrfs_find_delayed_ref_head(trans, bytenr); 6147 if (!head) 6148 goto out_delayed_unlock; 6149 6150 spin_lock(&head->lock); 6151 if (rb_first(&head->ref_root)) 6152 goto out; 6153 6154 if (head->extent_op) { 6155 if (!head->must_insert_reserved) 6156 goto out; 6157 btrfs_free_delayed_extent_op(head->extent_op); 6158 head->extent_op = NULL; 6159 } 6160 6161 /* 6162 * waiting for the lock here would deadlock. If someone else has it 6163 * locked they are already in the process of dropping it anyway 6164 */ 6165 if (!mutex_trylock(&head->mutex)) 6166 goto out; 6167 6168 /* 6169 * at this point we have a head with no other entries. Go 6170 * ahead and process it. 6171 */ 6172 head->node.in_tree = 0; 6173 rb_erase(&head->href_node, &delayed_refs->href_root); 6174 6175 atomic_dec(&delayed_refs->num_entries); 6176 6177 /* 6178 * we don't take a ref on the node because we're removing it from the 6179 * tree, so we just steal the ref the tree was holding. 6180 */ 6181 delayed_refs->num_heads--; 6182 if (head->processing == 0) 6183 delayed_refs->num_heads_ready--; 6184 head->processing = 0; 6185 spin_unlock(&head->lock); 6186 spin_unlock(&delayed_refs->lock); 6187 6188 BUG_ON(head->extent_op); 6189 if (head->must_insert_reserved) 6190 ret = 1; 6191 6192 mutex_unlock(&head->mutex); 6193 btrfs_put_delayed_ref(&head->node); 6194 return ret; 6195 out: 6196 spin_unlock(&head->lock); 6197 6198 out_delayed_unlock: 6199 spin_unlock(&delayed_refs->lock); 6200 return 0; 6201 } 6202 6203 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6204 struct btrfs_root *root, 6205 struct extent_buffer *buf, 6206 u64 parent, int last_ref) 6207 { 6208 struct btrfs_block_group_cache *cache = NULL; 6209 int pin = 1; 6210 int ret; 6211 6212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6213 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6214 buf->start, buf->len, 6215 parent, root->root_key.objectid, 6216 btrfs_header_level(buf), 6217 BTRFS_DROP_DELAYED_REF, NULL, 0); 6218 BUG_ON(ret); /* -ENOMEM */ 6219 } 6220 6221 if (!last_ref) 6222 return; 6223 6224 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6225 6226 if (btrfs_header_generation(buf) == trans->transid) { 6227 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6228 ret = check_ref_cleanup(trans, root, buf->start); 6229 if (!ret) 6230 goto out; 6231 } 6232 6233 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6234 pin_down_extent(root, cache, buf->start, buf->len, 1); 6235 goto out; 6236 } 6237 6238 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6239 6240 btrfs_add_free_space(cache, buf->start, buf->len); 6241 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6242 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6243 pin = 0; 6244 } 6245 out: 6246 if (pin) 6247 add_pinned_bytes(root->fs_info, buf->len, 6248 btrfs_header_level(buf), 6249 root->root_key.objectid); 6250 6251 /* 6252 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6253 * anymore. 6254 */ 6255 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6256 btrfs_put_block_group(cache); 6257 } 6258 6259 /* Can return -ENOMEM */ 6260 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6261 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6262 u64 owner, u64 offset, int no_quota) 6263 { 6264 int ret; 6265 struct btrfs_fs_info *fs_info = root->fs_info; 6266 6267 if (btrfs_test_is_dummy_root(root)) 6268 return 0; 6269 6270 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6271 6272 /* 6273 * tree log blocks never actually go into the extent allocation 6274 * tree, just update pinning info and exit early. 6275 */ 6276 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6277 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6278 /* unlocks the pinned mutex */ 6279 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6280 ret = 0; 6281 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6282 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6283 num_bytes, 6284 parent, root_objectid, (int)owner, 6285 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6286 } else { 6287 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6288 num_bytes, 6289 parent, root_objectid, owner, 6290 offset, BTRFS_DROP_DELAYED_REF, 6291 NULL, no_quota); 6292 } 6293 return ret; 6294 } 6295 6296 /* 6297 * when we wait for progress in the block group caching, its because 6298 * our allocation attempt failed at least once. So, we must sleep 6299 * and let some progress happen before we try again. 6300 * 6301 * This function will sleep at least once waiting for new free space to 6302 * show up, and then it will check the block group free space numbers 6303 * for our min num_bytes. Another option is to have it go ahead 6304 * and look in the rbtree for a free extent of a given size, but this 6305 * is a good start. 6306 * 6307 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6308 * any of the information in this block group. 6309 */ 6310 static noinline void 6311 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6312 u64 num_bytes) 6313 { 6314 struct btrfs_caching_control *caching_ctl; 6315 6316 caching_ctl = get_caching_control(cache); 6317 if (!caching_ctl) 6318 return; 6319 6320 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6321 (cache->free_space_ctl->free_space >= num_bytes)); 6322 6323 put_caching_control(caching_ctl); 6324 } 6325 6326 static noinline int 6327 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6328 { 6329 struct btrfs_caching_control *caching_ctl; 6330 int ret = 0; 6331 6332 caching_ctl = get_caching_control(cache); 6333 if (!caching_ctl) 6334 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6335 6336 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6337 if (cache->cached == BTRFS_CACHE_ERROR) 6338 ret = -EIO; 6339 put_caching_control(caching_ctl); 6340 return ret; 6341 } 6342 6343 int __get_raid_index(u64 flags) 6344 { 6345 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6346 return BTRFS_RAID_RAID10; 6347 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6348 return BTRFS_RAID_RAID1; 6349 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6350 return BTRFS_RAID_DUP; 6351 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6352 return BTRFS_RAID_RAID0; 6353 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6354 return BTRFS_RAID_RAID5; 6355 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6356 return BTRFS_RAID_RAID6; 6357 6358 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6359 } 6360 6361 int get_block_group_index(struct btrfs_block_group_cache *cache) 6362 { 6363 return __get_raid_index(cache->flags); 6364 } 6365 6366 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6367 [BTRFS_RAID_RAID10] = "raid10", 6368 [BTRFS_RAID_RAID1] = "raid1", 6369 [BTRFS_RAID_DUP] = "dup", 6370 [BTRFS_RAID_RAID0] = "raid0", 6371 [BTRFS_RAID_SINGLE] = "single", 6372 [BTRFS_RAID_RAID5] = "raid5", 6373 [BTRFS_RAID_RAID6] = "raid6", 6374 }; 6375 6376 static const char *get_raid_name(enum btrfs_raid_types type) 6377 { 6378 if (type >= BTRFS_NR_RAID_TYPES) 6379 return NULL; 6380 6381 return btrfs_raid_type_names[type]; 6382 } 6383 6384 enum btrfs_loop_type { 6385 LOOP_CACHING_NOWAIT = 0, 6386 LOOP_CACHING_WAIT = 1, 6387 LOOP_ALLOC_CHUNK = 2, 6388 LOOP_NO_EMPTY_SIZE = 3, 6389 }; 6390 6391 static inline void 6392 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6393 int delalloc) 6394 { 6395 if (delalloc) 6396 down_read(&cache->data_rwsem); 6397 } 6398 6399 static inline void 6400 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6401 int delalloc) 6402 { 6403 btrfs_get_block_group(cache); 6404 if (delalloc) 6405 down_read(&cache->data_rwsem); 6406 } 6407 6408 static struct btrfs_block_group_cache * 6409 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6410 struct btrfs_free_cluster *cluster, 6411 int delalloc) 6412 { 6413 struct btrfs_block_group_cache *used_bg; 6414 bool locked = false; 6415 again: 6416 spin_lock(&cluster->refill_lock); 6417 if (locked) { 6418 if (used_bg == cluster->block_group) 6419 return used_bg; 6420 6421 up_read(&used_bg->data_rwsem); 6422 btrfs_put_block_group(used_bg); 6423 } 6424 6425 used_bg = cluster->block_group; 6426 if (!used_bg) 6427 return NULL; 6428 6429 if (used_bg == block_group) 6430 return used_bg; 6431 6432 btrfs_get_block_group(used_bg); 6433 6434 if (!delalloc) 6435 return used_bg; 6436 6437 if (down_read_trylock(&used_bg->data_rwsem)) 6438 return used_bg; 6439 6440 spin_unlock(&cluster->refill_lock); 6441 down_read(&used_bg->data_rwsem); 6442 locked = true; 6443 goto again; 6444 } 6445 6446 static inline void 6447 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6448 int delalloc) 6449 { 6450 if (delalloc) 6451 up_read(&cache->data_rwsem); 6452 btrfs_put_block_group(cache); 6453 } 6454 6455 /* 6456 * walks the btree of allocated extents and find a hole of a given size. 6457 * The key ins is changed to record the hole: 6458 * ins->objectid == start position 6459 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6460 * ins->offset == the size of the hole. 6461 * Any available blocks before search_start are skipped. 6462 * 6463 * If there is no suitable free space, we will record the max size of 6464 * the free space extent currently. 6465 */ 6466 static noinline int find_free_extent(struct btrfs_root *orig_root, 6467 u64 num_bytes, u64 empty_size, 6468 u64 hint_byte, struct btrfs_key *ins, 6469 u64 flags, int delalloc) 6470 { 6471 int ret = 0; 6472 struct btrfs_root *root = orig_root->fs_info->extent_root; 6473 struct btrfs_free_cluster *last_ptr = NULL; 6474 struct btrfs_block_group_cache *block_group = NULL; 6475 u64 search_start = 0; 6476 u64 max_extent_size = 0; 6477 int empty_cluster = 2 * 1024 * 1024; 6478 struct btrfs_space_info *space_info; 6479 int loop = 0; 6480 int index = __get_raid_index(flags); 6481 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6482 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6483 bool failed_cluster_refill = false; 6484 bool failed_alloc = false; 6485 bool use_cluster = true; 6486 bool have_caching_bg = false; 6487 6488 WARN_ON(num_bytes < root->sectorsize); 6489 ins->type = BTRFS_EXTENT_ITEM_KEY; 6490 ins->objectid = 0; 6491 ins->offset = 0; 6492 6493 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6494 6495 space_info = __find_space_info(root->fs_info, flags); 6496 if (!space_info) { 6497 btrfs_err(root->fs_info, "No space info for %llu", flags); 6498 return -ENOSPC; 6499 } 6500 6501 /* 6502 * If the space info is for both data and metadata it means we have a 6503 * small filesystem and we can't use the clustering stuff. 6504 */ 6505 if (btrfs_mixed_space_info(space_info)) 6506 use_cluster = false; 6507 6508 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6509 last_ptr = &root->fs_info->meta_alloc_cluster; 6510 if (!btrfs_test_opt(root, SSD)) 6511 empty_cluster = 64 * 1024; 6512 } 6513 6514 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6515 btrfs_test_opt(root, SSD)) { 6516 last_ptr = &root->fs_info->data_alloc_cluster; 6517 } 6518 6519 if (last_ptr) { 6520 spin_lock(&last_ptr->lock); 6521 if (last_ptr->block_group) 6522 hint_byte = last_ptr->window_start; 6523 spin_unlock(&last_ptr->lock); 6524 } 6525 6526 search_start = max(search_start, first_logical_byte(root, 0)); 6527 search_start = max(search_start, hint_byte); 6528 6529 if (!last_ptr) 6530 empty_cluster = 0; 6531 6532 if (search_start == hint_byte) { 6533 block_group = btrfs_lookup_block_group(root->fs_info, 6534 search_start); 6535 /* 6536 * we don't want to use the block group if it doesn't match our 6537 * allocation bits, or if its not cached. 6538 * 6539 * However if we are re-searching with an ideal block group 6540 * picked out then we don't care that the block group is cached. 6541 */ 6542 if (block_group && block_group_bits(block_group, flags) && 6543 block_group->cached != BTRFS_CACHE_NO) { 6544 down_read(&space_info->groups_sem); 6545 if (list_empty(&block_group->list) || 6546 block_group->ro) { 6547 /* 6548 * someone is removing this block group, 6549 * we can't jump into the have_block_group 6550 * target because our list pointers are not 6551 * valid 6552 */ 6553 btrfs_put_block_group(block_group); 6554 up_read(&space_info->groups_sem); 6555 } else { 6556 index = get_block_group_index(block_group); 6557 btrfs_lock_block_group(block_group, delalloc); 6558 goto have_block_group; 6559 } 6560 } else if (block_group) { 6561 btrfs_put_block_group(block_group); 6562 } 6563 } 6564 search: 6565 have_caching_bg = false; 6566 down_read(&space_info->groups_sem); 6567 list_for_each_entry(block_group, &space_info->block_groups[index], 6568 list) { 6569 u64 offset; 6570 int cached; 6571 6572 btrfs_grab_block_group(block_group, delalloc); 6573 search_start = block_group->key.objectid; 6574 6575 /* 6576 * this can happen if we end up cycling through all the 6577 * raid types, but we want to make sure we only allocate 6578 * for the proper type. 6579 */ 6580 if (!block_group_bits(block_group, flags)) { 6581 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6582 BTRFS_BLOCK_GROUP_RAID1 | 6583 BTRFS_BLOCK_GROUP_RAID5 | 6584 BTRFS_BLOCK_GROUP_RAID6 | 6585 BTRFS_BLOCK_GROUP_RAID10; 6586 6587 /* 6588 * if they asked for extra copies and this block group 6589 * doesn't provide them, bail. This does allow us to 6590 * fill raid0 from raid1. 6591 */ 6592 if ((flags & extra) && !(block_group->flags & extra)) 6593 goto loop; 6594 } 6595 6596 have_block_group: 6597 cached = block_group_cache_done(block_group); 6598 if (unlikely(!cached)) { 6599 ret = cache_block_group(block_group, 0); 6600 BUG_ON(ret < 0); 6601 ret = 0; 6602 } 6603 6604 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6605 goto loop; 6606 if (unlikely(block_group->ro)) 6607 goto loop; 6608 6609 /* 6610 * Ok we want to try and use the cluster allocator, so 6611 * lets look there 6612 */ 6613 if (last_ptr) { 6614 struct btrfs_block_group_cache *used_block_group; 6615 unsigned long aligned_cluster; 6616 /* 6617 * the refill lock keeps out other 6618 * people trying to start a new cluster 6619 */ 6620 used_block_group = btrfs_lock_cluster(block_group, 6621 last_ptr, 6622 delalloc); 6623 if (!used_block_group) 6624 goto refill_cluster; 6625 6626 if (used_block_group != block_group && 6627 (used_block_group->ro || 6628 !block_group_bits(used_block_group, flags))) 6629 goto release_cluster; 6630 6631 offset = btrfs_alloc_from_cluster(used_block_group, 6632 last_ptr, 6633 num_bytes, 6634 used_block_group->key.objectid, 6635 &max_extent_size); 6636 if (offset) { 6637 /* we have a block, we're done */ 6638 spin_unlock(&last_ptr->refill_lock); 6639 trace_btrfs_reserve_extent_cluster(root, 6640 used_block_group, 6641 search_start, num_bytes); 6642 if (used_block_group != block_group) { 6643 btrfs_release_block_group(block_group, 6644 delalloc); 6645 block_group = used_block_group; 6646 } 6647 goto checks; 6648 } 6649 6650 WARN_ON(last_ptr->block_group != used_block_group); 6651 release_cluster: 6652 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6653 * set up a new clusters, so lets just skip it 6654 * and let the allocator find whatever block 6655 * it can find. If we reach this point, we 6656 * will have tried the cluster allocator 6657 * plenty of times and not have found 6658 * anything, so we are likely way too 6659 * fragmented for the clustering stuff to find 6660 * anything. 6661 * 6662 * However, if the cluster is taken from the 6663 * current block group, release the cluster 6664 * first, so that we stand a better chance of 6665 * succeeding in the unclustered 6666 * allocation. */ 6667 if (loop >= LOOP_NO_EMPTY_SIZE && 6668 used_block_group != block_group) { 6669 spin_unlock(&last_ptr->refill_lock); 6670 btrfs_release_block_group(used_block_group, 6671 delalloc); 6672 goto unclustered_alloc; 6673 } 6674 6675 /* 6676 * this cluster didn't work out, free it and 6677 * start over 6678 */ 6679 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6680 6681 if (used_block_group != block_group) 6682 btrfs_release_block_group(used_block_group, 6683 delalloc); 6684 refill_cluster: 6685 if (loop >= LOOP_NO_EMPTY_SIZE) { 6686 spin_unlock(&last_ptr->refill_lock); 6687 goto unclustered_alloc; 6688 } 6689 6690 aligned_cluster = max_t(unsigned long, 6691 empty_cluster + empty_size, 6692 block_group->full_stripe_len); 6693 6694 /* allocate a cluster in this block group */ 6695 ret = btrfs_find_space_cluster(root, block_group, 6696 last_ptr, search_start, 6697 num_bytes, 6698 aligned_cluster); 6699 if (ret == 0) { 6700 /* 6701 * now pull our allocation out of this 6702 * cluster 6703 */ 6704 offset = btrfs_alloc_from_cluster(block_group, 6705 last_ptr, 6706 num_bytes, 6707 search_start, 6708 &max_extent_size); 6709 if (offset) { 6710 /* we found one, proceed */ 6711 spin_unlock(&last_ptr->refill_lock); 6712 trace_btrfs_reserve_extent_cluster(root, 6713 block_group, search_start, 6714 num_bytes); 6715 goto checks; 6716 } 6717 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6718 && !failed_cluster_refill) { 6719 spin_unlock(&last_ptr->refill_lock); 6720 6721 failed_cluster_refill = true; 6722 wait_block_group_cache_progress(block_group, 6723 num_bytes + empty_cluster + empty_size); 6724 goto have_block_group; 6725 } 6726 6727 /* 6728 * at this point we either didn't find a cluster 6729 * or we weren't able to allocate a block from our 6730 * cluster. Free the cluster we've been trying 6731 * to use, and go to the next block group 6732 */ 6733 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6734 spin_unlock(&last_ptr->refill_lock); 6735 goto loop; 6736 } 6737 6738 unclustered_alloc: 6739 spin_lock(&block_group->free_space_ctl->tree_lock); 6740 if (cached && 6741 block_group->free_space_ctl->free_space < 6742 num_bytes + empty_cluster + empty_size) { 6743 if (block_group->free_space_ctl->free_space > 6744 max_extent_size) 6745 max_extent_size = 6746 block_group->free_space_ctl->free_space; 6747 spin_unlock(&block_group->free_space_ctl->tree_lock); 6748 goto loop; 6749 } 6750 spin_unlock(&block_group->free_space_ctl->tree_lock); 6751 6752 offset = btrfs_find_space_for_alloc(block_group, search_start, 6753 num_bytes, empty_size, 6754 &max_extent_size); 6755 /* 6756 * If we didn't find a chunk, and we haven't failed on this 6757 * block group before, and this block group is in the middle of 6758 * caching and we are ok with waiting, then go ahead and wait 6759 * for progress to be made, and set failed_alloc to true. 6760 * 6761 * If failed_alloc is true then we've already waited on this 6762 * block group once and should move on to the next block group. 6763 */ 6764 if (!offset && !failed_alloc && !cached && 6765 loop > LOOP_CACHING_NOWAIT) { 6766 wait_block_group_cache_progress(block_group, 6767 num_bytes + empty_size); 6768 failed_alloc = true; 6769 goto have_block_group; 6770 } else if (!offset) { 6771 if (!cached) 6772 have_caching_bg = true; 6773 goto loop; 6774 } 6775 checks: 6776 search_start = ALIGN(offset, root->stripesize); 6777 6778 /* move on to the next group */ 6779 if (search_start + num_bytes > 6780 block_group->key.objectid + block_group->key.offset) { 6781 btrfs_add_free_space(block_group, offset, num_bytes); 6782 goto loop; 6783 } 6784 6785 if (offset < search_start) 6786 btrfs_add_free_space(block_group, offset, 6787 search_start - offset); 6788 BUG_ON(offset > search_start); 6789 6790 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 6791 alloc_type, delalloc); 6792 if (ret == -EAGAIN) { 6793 btrfs_add_free_space(block_group, offset, num_bytes); 6794 goto loop; 6795 } 6796 6797 /* we are all good, lets return */ 6798 ins->objectid = search_start; 6799 ins->offset = num_bytes; 6800 6801 trace_btrfs_reserve_extent(orig_root, block_group, 6802 search_start, num_bytes); 6803 btrfs_release_block_group(block_group, delalloc); 6804 break; 6805 loop: 6806 failed_cluster_refill = false; 6807 failed_alloc = false; 6808 BUG_ON(index != get_block_group_index(block_group)); 6809 btrfs_release_block_group(block_group, delalloc); 6810 } 6811 up_read(&space_info->groups_sem); 6812 6813 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 6814 goto search; 6815 6816 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 6817 goto search; 6818 6819 /* 6820 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 6821 * caching kthreads as we move along 6822 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 6823 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 6824 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 6825 * again 6826 */ 6827 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 6828 index = 0; 6829 loop++; 6830 if (loop == LOOP_ALLOC_CHUNK) { 6831 struct btrfs_trans_handle *trans; 6832 int exist = 0; 6833 6834 trans = current->journal_info; 6835 if (trans) 6836 exist = 1; 6837 else 6838 trans = btrfs_join_transaction(root); 6839 6840 if (IS_ERR(trans)) { 6841 ret = PTR_ERR(trans); 6842 goto out; 6843 } 6844 6845 ret = do_chunk_alloc(trans, root, flags, 6846 CHUNK_ALLOC_FORCE); 6847 /* 6848 * Do not bail out on ENOSPC since we 6849 * can do more things. 6850 */ 6851 if (ret < 0 && ret != -ENOSPC) 6852 btrfs_abort_transaction(trans, 6853 root, ret); 6854 else 6855 ret = 0; 6856 if (!exist) 6857 btrfs_end_transaction(trans, root); 6858 if (ret) 6859 goto out; 6860 } 6861 6862 if (loop == LOOP_NO_EMPTY_SIZE) { 6863 empty_size = 0; 6864 empty_cluster = 0; 6865 } 6866 6867 goto search; 6868 } else if (!ins->objectid) { 6869 ret = -ENOSPC; 6870 } else if (ins->objectid) { 6871 ret = 0; 6872 } 6873 out: 6874 if (ret == -ENOSPC) 6875 ins->offset = max_extent_size; 6876 return ret; 6877 } 6878 6879 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 6880 int dump_block_groups) 6881 { 6882 struct btrfs_block_group_cache *cache; 6883 int index = 0; 6884 6885 spin_lock(&info->lock); 6886 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 6887 info->flags, 6888 info->total_bytes - info->bytes_used - info->bytes_pinned - 6889 info->bytes_reserved - info->bytes_readonly, 6890 (info->full) ? "" : "not "); 6891 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 6892 "reserved=%llu, may_use=%llu, readonly=%llu\n", 6893 info->total_bytes, info->bytes_used, info->bytes_pinned, 6894 info->bytes_reserved, info->bytes_may_use, 6895 info->bytes_readonly); 6896 spin_unlock(&info->lock); 6897 6898 if (!dump_block_groups) 6899 return; 6900 6901 down_read(&info->groups_sem); 6902 again: 6903 list_for_each_entry(cache, &info->block_groups[index], list) { 6904 spin_lock(&cache->lock); 6905 printk(KERN_INFO "BTRFS: " 6906 "block group %llu has %llu bytes, " 6907 "%llu used %llu pinned %llu reserved %s\n", 6908 cache->key.objectid, cache->key.offset, 6909 btrfs_block_group_used(&cache->item), cache->pinned, 6910 cache->reserved, cache->ro ? "[readonly]" : ""); 6911 btrfs_dump_free_space(cache, bytes); 6912 spin_unlock(&cache->lock); 6913 } 6914 if (++index < BTRFS_NR_RAID_TYPES) 6915 goto again; 6916 up_read(&info->groups_sem); 6917 } 6918 6919 int btrfs_reserve_extent(struct btrfs_root *root, 6920 u64 num_bytes, u64 min_alloc_size, 6921 u64 empty_size, u64 hint_byte, 6922 struct btrfs_key *ins, int is_data, int delalloc) 6923 { 6924 bool final_tried = false; 6925 u64 flags; 6926 int ret; 6927 6928 flags = btrfs_get_alloc_profile(root, is_data); 6929 again: 6930 WARN_ON(num_bytes < root->sectorsize); 6931 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 6932 flags, delalloc); 6933 6934 if (ret == -ENOSPC) { 6935 if (!final_tried && ins->offset) { 6936 num_bytes = min(num_bytes >> 1, ins->offset); 6937 num_bytes = round_down(num_bytes, root->sectorsize); 6938 num_bytes = max(num_bytes, min_alloc_size); 6939 if (num_bytes == min_alloc_size) 6940 final_tried = true; 6941 goto again; 6942 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 6943 struct btrfs_space_info *sinfo; 6944 6945 sinfo = __find_space_info(root->fs_info, flags); 6946 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 6947 flags, num_bytes); 6948 if (sinfo) 6949 dump_space_info(sinfo, num_bytes, 1); 6950 } 6951 } 6952 6953 return ret; 6954 } 6955 6956 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 6957 u64 start, u64 len, 6958 int pin, int delalloc) 6959 { 6960 struct btrfs_block_group_cache *cache; 6961 int ret = 0; 6962 6963 cache = btrfs_lookup_block_group(root->fs_info, start); 6964 if (!cache) { 6965 btrfs_err(root->fs_info, "Unable to find block group for %llu", 6966 start); 6967 return -ENOSPC; 6968 } 6969 6970 if (btrfs_test_opt(root, DISCARD)) 6971 ret = btrfs_discard_extent(root, start, len, NULL); 6972 6973 if (pin) 6974 pin_down_extent(root, cache, start, len, 1); 6975 else { 6976 btrfs_add_free_space(cache, start, len); 6977 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 6978 } 6979 btrfs_put_block_group(cache); 6980 6981 trace_btrfs_reserved_extent_free(root, start, len); 6982 6983 return ret; 6984 } 6985 6986 int btrfs_free_reserved_extent(struct btrfs_root *root, 6987 u64 start, u64 len, int delalloc) 6988 { 6989 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 6990 } 6991 6992 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 6993 u64 start, u64 len) 6994 { 6995 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 6996 } 6997 6998 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 6999 struct btrfs_root *root, 7000 u64 parent, u64 root_objectid, 7001 u64 flags, u64 owner, u64 offset, 7002 struct btrfs_key *ins, int ref_mod) 7003 { 7004 int ret; 7005 struct btrfs_fs_info *fs_info = root->fs_info; 7006 struct btrfs_extent_item *extent_item; 7007 struct btrfs_extent_inline_ref *iref; 7008 struct btrfs_path *path; 7009 struct extent_buffer *leaf; 7010 int type; 7011 u32 size; 7012 7013 if (parent > 0) 7014 type = BTRFS_SHARED_DATA_REF_KEY; 7015 else 7016 type = BTRFS_EXTENT_DATA_REF_KEY; 7017 7018 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7019 7020 path = btrfs_alloc_path(); 7021 if (!path) 7022 return -ENOMEM; 7023 7024 path->leave_spinning = 1; 7025 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7026 ins, size); 7027 if (ret) { 7028 btrfs_free_path(path); 7029 return ret; 7030 } 7031 7032 leaf = path->nodes[0]; 7033 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7034 struct btrfs_extent_item); 7035 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7036 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7037 btrfs_set_extent_flags(leaf, extent_item, 7038 flags | BTRFS_EXTENT_FLAG_DATA); 7039 7040 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7041 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7042 if (parent > 0) { 7043 struct btrfs_shared_data_ref *ref; 7044 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7045 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7046 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7047 } else { 7048 struct btrfs_extent_data_ref *ref; 7049 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7050 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7051 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7052 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7053 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7054 } 7055 7056 btrfs_mark_buffer_dirty(path->nodes[0]); 7057 btrfs_free_path(path); 7058 7059 /* Always set parent to 0 here since its exclusive anyway. */ 7060 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7061 ins->objectid, ins->offset, 7062 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7063 if (ret) 7064 return ret; 7065 7066 ret = update_block_group(root, ins->objectid, ins->offset, 1); 7067 if (ret) { /* -ENOENT, logic error */ 7068 btrfs_err(fs_info, "update block group failed for %llu %llu", 7069 ins->objectid, ins->offset); 7070 BUG(); 7071 } 7072 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7073 return ret; 7074 } 7075 7076 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7077 struct btrfs_root *root, 7078 u64 parent, u64 root_objectid, 7079 u64 flags, struct btrfs_disk_key *key, 7080 int level, struct btrfs_key *ins, 7081 int no_quota) 7082 { 7083 int ret; 7084 struct btrfs_fs_info *fs_info = root->fs_info; 7085 struct btrfs_extent_item *extent_item; 7086 struct btrfs_tree_block_info *block_info; 7087 struct btrfs_extent_inline_ref *iref; 7088 struct btrfs_path *path; 7089 struct extent_buffer *leaf; 7090 u32 size = sizeof(*extent_item) + sizeof(*iref); 7091 u64 num_bytes = ins->offset; 7092 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7093 SKINNY_METADATA); 7094 7095 if (!skinny_metadata) 7096 size += sizeof(*block_info); 7097 7098 path = btrfs_alloc_path(); 7099 if (!path) { 7100 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7101 root->nodesize); 7102 return -ENOMEM; 7103 } 7104 7105 path->leave_spinning = 1; 7106 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7107 ins, size); 7108 if (ret) { 7109 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7110 root->nodesize); 7111 btrfs_free_path(path); 7112 return ret; 7113 } 7114 7115 leaf = path->nodes[0]; 7116 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7117 struct btrfs_extent_item); 7118 btrfs_set_extent_refs(leaf, extent_item, 1); 7119 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7120 btrfs_set_extent_flags(leaf, extent_item, 7121 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7122 7123 if (skinny_metadata) { 7124 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7125 num_bytes = root->nodesize; 7126 } else { 7127 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7128 btrfs_set_tree_block_key(leaf, block_info, key); 7129 btrfs_set_tree_block_level(leaf, block_info, level); 7130 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7131 } 7132 7133 if (parent > 0) { 7134 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7135 btrfs_set_extent_inline_ref_type(leaf, iref, 7136 BTRFS_SHARED_BLOCK_REF_KEY); 7137 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7138 } else { 7139 btrfs_set_extent_inline_ref_type(leaf, iref, 7140 BTRFS_TREE_BLOCK_REF_KEY); 7141 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7142 } 7143 7144 btrfs_mark_buffer_dirty(leaf); 7145 btrfs_free_path(path); 7146 7147 if (!no_quota) { 7148 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid, 7149 ins->objectid, num_bytes, 7150 BTRFS_QGROUP_OPER_ADD_EXCL, 0); 7151 if (ret) 7152 return ret; 7153 } 7154 7155 ret = update_block_group(root, ins->objectid, root->nodesize, 1); 7156 if (ret) { /* -ENOENT, logic error */ 7157 btrfs_err(fs_info, "update block group failed for %llu %llu", 7158 ins->objectid, ins->offset); 7159 BUG(); 7160 } 7161 7162 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7163 return ret; 7164 } 7165 7166 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7167 struct btrfs_root *root, 7168 u64 root_objectid, u64 owner, 7169 u64 offset, struct btrfs_key *ins) 7170 { 7171 int ret; 7172 7173 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7174 7175 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7176 ins->offset, 0, 7177 root_objectid, owner, offset, 7178 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7179 return ret; 7180 } 7181 7182 /* 7183 * this is used by the tree logging recovery code. It records that 7184 * an extent has been allocated and makes sure to clear the free 7185 * space cache bits as well 7186 */ 7187 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7188 struct btrfs_root *root, 7189 u64 root_objectid, u64 owner, u64 offset, 7190 struct btrfs_key *ins) 7191 { 7192 int ret; 7193 struct btrfs_block_group_cache *block_group; 7194 7195 /* 7196 * Mixed block groups will exclude before processing the log so we only 7197 * need to do the exlude dance if this fs isn't mixed. 7198 */ 7199 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7200 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7201 if (ret) 7202 return ret; 7203 } 7204 7205 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7206 if (!block_group) 7207 return -EINVAL; 7208 7209 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7210 RESERVE_ALLOC_NO_ACCOUNT, 0); 7211 BUG_ON(ret); /* logic error */ 7212 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7213 0, owner, offset, ins, 1); 7214 btrfs_put_block_group(block_group); 7215 return ret; 7216 } 7217 7218 static struct extent_buffer * 7219 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7220 u64 bytenr, u32 blocksize, int level) 7221 { 7222 struct extent_buffer *buf; 7223 7224 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 7225 if (!buf) 7226 return ERR_PTR(-ENOMEM); 7227 btrfs_set_header_generation(buf, trans->transid); 7228 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7229 btrfs_tree_lock(buf); 7230 clean_tree_block(trans, root, buf); 7231 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7232 7233 btrfs_set_lock_blocking(buf); 7234 btrfs_set_buffer_uptodate(buf); 7235 7236 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7237 buf->log_index = root->log_transid % 2; 7238 /* 7239 * we allow two log transactions at a time, use different 7240 * EXENT bit to differentiate dirty pages. 7241 */ 7242 if (buf->log_index == 0) 7243 set_extent_dirty(&root->dirty_log_pages, buf->start, 7244 buf->start + buf->len - 1, GFP_NOFS); 7245 else 7246 set_extent_new(&root->dirty_log_pages, buf->start, 7247 buf->start + buf->len - 1, GFP_NOFS); 7248 } else { 7249 buf->log_index = -1; 7250 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7251 buf->start + buf->len - 1, GFP_NOFS); 7252 } 7253 trans->blocks_used++; 7254 /* this returns a buffer locked for blocking */ 7255 return buf; 7256 } 7257 7258 static struct btrfs_block_rsv * 7259 use_block_rsv(struct btrfs_trans_handle *trans, 7260 struct btrfs_root *root, u32 blocksize) 7261 { 7262 struct btrfs_block_rsv *block_rsv; 7263 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7264 int ret; 7265 bool global_updated = false; 7266 7267 block_rsv = get_block_rsv(trans, root); 7268 7269 if (unlikely(block_rsv->size == 0)) 7270 goto try_reserve; 7271 again: 7272 ret = block_rsv_use_bytes(block_rsv, blocksize); 7273 if (!ret) 7274 return block_rsv; 7275 7276 if (block_rsv->failfast) 7277 return ERR_PTR(ret); 7278 7279 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7280 global_updated = true; 7281 update_global_block_rsv(root->fs_info); 7282 goto again; 7283 } 7284 7285 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7286 static DEFINE_RATELIMIT_STATE(_rs, 7287 DEFAULT_RATELIMIT_INTERVAL * 10, 7288 /*DEFAULT_RATELIMIT_BURST*/ 1); 7289 if (__ratelimit(&_rs)) 7290 WARN(1, KERN_DEBUG 7291 "BTRFS: block rsv returned %d\n", ret); 7292 } 7293 try_reserve: 7294 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7295 BTRFS_RESERVE_NO_FLUSH); 7296 if (!ret) 7297 return block_rsv; 7298 /* 7299 * If we couldn't reserve metadata bytes try and use some from 7300 * the global reserve if its space type is the same as the global 7301 * reservation. 7302 */ 7303 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7304 block_rsv->space_info == global_rsv->space_info) { 7305 ret = block_rsv_use_bytes(global_rsv, blocksize); 7306 if (!ret) 7307 return global_rsv; 7308 } 7309 return ERR_PTR(ret); 7310 } 7311 7312 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7313 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7314 { 7315 block_rsv_add_bytes(block_rsv, blocksize, 0); 7316 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7317 } 7318 7319 /* 7320 * finds a free extent and does all the dirty work required for allocation 7321 * returns the key for the extent through ins, and a tree buffer for 7322 * the first block of the extent through buf. 7323 * 7324 * returns the tree buffer or NULL. 7325 */ 7326 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7327 struct btrfs_root *root, 7328 u64 parent, u64 root_objectid, 7329 struct btrfs_disk_key *key, int level, 7330 u64 hint, u64 empty_size) 7331 { 7332 struct btrfs_key ins; 7333 struct btrfs_block_rsv *block_rsv; 7334 struct extent_buffer *buf; 7335 u64 flags = 0; 7336 int ret; 7337 u32 blocksize = root->nodesize; 7338 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7339 SKINNY_METADATA); 7340 7341 if (btrfs_test_is_dummy_root(root)) { 7342 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7343 blocksize, level); 7344 if (!IS_ERR(buf)) 7345 root->alloc_bytenr += blocksize; 7346 return buf; 7347 } 7348 7349 block_rsv = use_block_rsv(trans, root, blocksize); 7350 if (IS_ERR(block_rsv)) 7351 return ERR_CAST(block_rsv); 7352 7353 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7354 empty_size, hint, &ins, 0, 0); 7355 if (ret) { 7356 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7357 return ERR_PTR(ret); 7358 } 7359 7360 buf = btrfs_init_new_buffer(trans, root, ins.objectid, 7361 blocksize, level); 7362 BUG_ON(IS_ERR(buf)); /* -ENOMEM */ 7363 7364 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7365 if (parent == 0) 7366 parent = ins.objectid; 7367 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7368 } else 7369 BUG_ON(parent > 0); 7370 7371 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7372 struct btrfs_delayed_extent_op *extent_op; 7373 extent_op = btrfs_alloc_delayed_extent_op(); 7374 BUG_ON(!extent_op); /* -ENOMEM */ 7375 if (key) 7376 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7377 else 7378 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7379 extent_op->flags_to_set = flags; 7380 if (skinny_metadata) 7381 extent_op->update_key = 0; 7382 else 7383 extent_op->update_key = 1; 7384 extent_op->update_flags = 1; 7385 extent_op->is_data = 0; 7386 extent_op->level = level; 7387 7388 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7389 ins.objectid, 7390 ins.offset, parent, root_objectid, 7391 level, BTRFS_ADD_DELAYED_EXTENT, 7392 extent_op, 0); 7393 BUG_ON(ret); /* -ENOMEM */ 7394 } 7395 return buf; 7396 } 7397 7398 struct walk_control { 7399 u64 refs[BTRFS_MAX_LEVEL]; 7400 u64 flags[BTRFS_MAX_LEVEL]; 7401 struct btrfs_key update_progress; 7402 int stage; 7403 int level; 7404 int shared_level; 7405 int update_ref; 7406 int keep_locks; 7407 int reada_slot; 7408 int reada_count; 7409 int for_reloc; 7410 }; 7411 7412 #define DROP_REFERENCE 1 7413 #define UPDATE_BACKREF 2 7414 7415 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7416 struct btrfs_root *root, 7417 struct walk_control *wc, 7418 struct btrfs_path *path) 7419 { 7420 u64 bytenr; 7421 u64 generation; 7422 u64 refs; 7423 u64 flags; 7424 u32 nritems; 7425 u32 blocksize; 7426 struct btrfs_key key; 7427 struct extent_buffer *eb; 7428 int ret; 7429 int slot; 7430 int nread = 0; 7431 7432 if (path->slots[wc->level] < wc->reada_slot) { 7433 wc->reada_count = wc->reada_count * 2 / 3; 7434 wc->reada_count = max(wc->reada_count, 2); 7435 } else { 7436 wc->reada_count = wc->reada_count * 3 / 2; 7437 wc->reada_count = min_t(int, wc->reada_count, 7438 BTRFS_NODEPTRS_PER_BLOCK(root)); 7439 } 7440 7441 eb = path->nodes[wc->level]; 7442 nritems = btrfs_header_nritems(eb); 7443 blocksize = root->nodesize; 7444 7445 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7446 if (nread >= wc->reada_count) 7447 break; 7448 7449 cond_resched(); 7450 bytenr = btrfs_node_blockptr(eb, slot); 7451 generation = btrfs_node_ptr_generation(eb, slot); 7452 7453 if (slot == path->slots[wc->level]) 7454 goto reada; 7455 7456 if (wc->stage == UPDATE_BACKREF && 7457 generation <= root->root_key.offset) 7458 continue; 7459 7460 /* We don't lock the tree block, it's OK to be racy here */ 7461 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7462 wc->level - 1, 1, &refs, 7463 &flags); 7464 /* We don't care about errors in readahead. */ 7465 if (ret < 0) 7466 continue; 7467 BUG_ON(refs == 0); 7468 7469 if (wc->stage == DROP_REFERENCE) { 7470 if (refs == 1) 7471 goto reada; 7472 7473 if (wc->level == 1 && 7474 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7475 continue; 7476 if (!wc->update_ref || 7477 generation <= root->root_key.offset) 7478 continue; 7479 btrfs_node_key_to_cpu(eb, &key, slot); 7480 ret = btrfs_comp_cpu_keys(&key, 7481 &wc->update_progress); 7482 if (ret < 0) 7483 continue; 7484 } else { 7485 if (wc->level == 1 && 7486 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7487 continue; 7488 } 7489 reada: 7490 readahead_tree_block(root, bytenr, blocksize); 7491 nread++; 7492 } 7493 wc->reada_slot = slot; 7494 } 7495 7496 static int account_leaf_items(struct btrfs_trans_handle *trans, 7497 struct btrfs_root *root, 7498 struct extent_buffer *eb) 7499 { 7500 int nr = btrfs_header_nritems(eb); 7501 int i, extent_type, ret; 7502 struct btrfs_key key; 7503 struct btrfs_file_extent_item *fi; 7504 u64 bytenr, num_bytes; 7505 7506 for (i = 0; i < nr; i++) { 7507 btrfs_item_key_to_cpu(eb, &key, i); 7508 7509 if (key.type != BTRFS_EXTENT_DATA_KEY) 7510 continue; 7511 7512 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7513 /* filter out non qgroup-accountable extents */ 7514 extent_type = btrfs_file_extent_type(eb, fi); 7515 7516 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7517 continue; 7518 7519 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7520 if (!bytenr) 7521 continue; 7522 7523 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7524 7525 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7526 root->objectid, 7527 bytenr, num_bytes, 7528 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0); 7529 if (ret) 7530 return ret; 7531 } 7532 return 0; 7533 } 7534 7535 /* 7536 * Walk up the tree from the bottom, freeing leaves and any interior 7537 * nodes which have had all slots visited. If a node (leaf or 7538 * interior) is freed, the node above it will have it's slot 7539 * incremented. The root node will never be freed. 7540 * 7541 * At the end of this function, we should have a path which has all 7542 * slots incremented to the next position for a search. If we need to 7543 * read a new node it will be NULL and the node above it will have the 7544 * correct slot selected for a later read. 7545 * 7546 * If we increment the root nodes slot counter past the number of 7547 * elements, 1 is returned to signal completion of the search. 7548 */ 7549 static int adjust_slots_upwards(struct btrfs_root *root, 7550 struct btrfs_path *path, int root_level) 7551 { 7552 int level = 0; 7553 int nr, slot; 7554 struct extent_buffer *eb; 7555 7556 if (root_level == 0) 7557 return 1; 7558 7559 while (level <= root_level) { 7560 eb = path->nodes[level]; 7561 nr = btrfs_header_nritems(eb); 7562 path->slots[level]++; 7563 slot = path->slots[level]; 7564 if (slot >= nr || level == 0) { 7565 /* 7566 * Don't free the root - we will detect this 7567 * condition after our loop and return a 7568 * positive value for caller to stop walking the tree. 7569 */ 7570 if (level != root_level) { 7571 btrfs_tree_unlock_rw(eb, path->locks[level]); 7572 path->locks[level] = 0; 7573 7574 free_extent_buffer(eb); 7575 path->nodes[level] = NULL; 7576 path->slots[level] = 0; 7577 } 7578 } else { 7579 /* 7580 * We have a valid slot to walk back down 7581 * from. Stop here so caller can process these 7582 * new nodes. 7583 */ 7584 break; 7585 } 7586 7587 level++; 7588 } 7589 7590 eb = path->nodes[root_level]; 7591 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7592 return 1; 7593 7594 return 0; 7595 } 7596 7597 /* 7598 * root_eb is the subtree root and is locked before this function is called. 7599 */ 7600 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7601 struct btrfs_root *root, 7602 struct extent_buffer *root_eb, 7603 u64 root_gen, 7604 int root_level) 7605 { 7606 int ret = 0; 7607 int level; 7608 struct extent_buffer *eb = root_eb; 7609 struct btrfs_path *path = NULL; 7610 7611 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7612 BUG_ON(root_eb == NULL); 7613 7614 if (!root->fs_info->quota_enabled) 7615 return 0; 7616 7617 if (!extent_buffer_uptodate(root_eb)) { 7618 ret = btrfs_read_buffer(root_eb, root_gen); 7619 if (ret) 7620 goto out; 7621 } 7622 7623 if (root_level == 0) { 7624 ret = account_leaf_items(trans, root, root_eb); 7625 goto out; 7626 } 7627 7628 path = btrfs_alloc_path(); 7629 if (!path) 7630 return -ENOMEM; 7631 7632 /* 7633 * Walk down the tree. Missing extent blocks are filled in as 7634 * we go. Metadata is accounted every time we read a new 7635 * extent block. 7636 * 7637 * When we reach a leaf, we account for file extent items in it, 7638 * walk back up the tree (adjusting slot pointers as we go) 7639 * and restart the search process. 7640 */ 7641 extent_buffer_get(root_eb); /* For path */ 7642 path->nodes[root_level] = root_eb; 7643 path->slots[root_level] = 0; 7644 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7645 walk_down: 7646 level = root_level; 7647 while (level >= 0) { 7648 if (path->nodes[level] == NULL) { 7649 int parent_slot; 7650 u64 child_gen; 7651 u64 child_bytenr; 7652 7653 /* We need to get child blockptr/gen from 7654 * parent before we can read it. */ 7655 eb = path->nodes[level + 1]; 7656 parent_slot = path->slots[level + 1]; 7657 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7658 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7659 7660 eb = read_tree_block(root, child_bytenr, child_gen); 7661 if (!eb || !extent_buffer_uptodate(eb)) { 7662 ret = -EIO; 7663 goto out; 7664 } 7665 7666 path->nodes[level] = eb; 7667 path->slots[level] = 0; 7668 7669 btrfs_tree_read_lock(eb); 7670 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7671 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7672 7673 ret = btrfs_qgroup_record_ref(trans, root->fs_info, 7674 root->objectid, 7675 child_bytenr, 7676 root->nodesize, 7677 BTRFS_QGROUP_OPER_SUB_SUBTREE, 7678 0); 7679 if (ret) 7680 goto out; 7681 7682 } 7683 7684 if (level == 0) { 7685 ret = account_leaf_items(trans, root, path->nodes[level]); 7686 if (ret) 7687 goto out; 7688 7689 /* Nonzero return here means we completed our search */ 7690 ret = adjust_slots_upwards(root, path, root_level); 7691 if (ret) 7692 break; 7693 7694 /* Restart search with new slots */ 7695 goto walk_down; 7696 } 7697 7698 level--; 7699 } 7700 7701 ret = 0; 7702 out: 7703 btrfs_free_path(path); 7704 7705 return ret; 7706 } 7707 7708 /* 7709 * helper to process tree block while walking down the tree. 7710 * 7711 * when wc->stage == UPDATE_BACKREF, this function updates 7712 * back refs for pointers in the block. 7713 * 7714 * NOTE: return value 1 means we should stop walking down. 7715 */ 7716 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7717 struct btrfs_root *root, 7718 struct btrfs_path *path, 7719 struct walk_control *wc, int lookup_info) 7720 { 7721 int level = wc->level; 7722 struct extent_buffer *eb = path->nodes[level]; 7723 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7724 int ret; 7725 7726 if (wc->stage == UPDATE_BACKREF && 7727 btrfs_header_owner(eb) != root->root_key.objectid) 7728 return 1; 7729 7730 /* 7731 * when reference count of tree block is 1, it won't increase 7732 * again. once full backref flag is set, we never clear it. 7733 */ 7734 if (lookup_info && 7735 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7736 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7737 BUG_ON(!path->locks[level]); 7738 ret = btrfs_lookup_extent_info(trans, root, 7739 eb->start, level, 1, 7740 &wc->refs[level], 7741 &wc->flags[level]); 7742 BUG_ON(ret == -ENOMEM); 7743 if (ret) 7744 return ret; 7745 BUG_ON(wc->refs[level] == 0); 7746 } 7747 7748 if (wc->stage == DROP_REFERENCE) { 7749 if (wc->refs[level] > 1) 7750 return 1; 7751 7752 if (path->locks[level] && !wc->keep_locks) { 7753 btrfs_tree_unlock_rw(eb, path->locks[level]); 7754 path->locks[level] = 0; 7755 } 7756 return 0; 7757 } 7758 7759 /* wc->stage == UPDATE_BACKREF */ 7760 if (!(wc->flags[level] & flag)) { 7761 BUG_ON(!path->locks[level]); 7762 ret = btrfs_inc_ref(trans, root, eb, 1); 7763 BUG_ON(ret); /* -ENOMEM */ 7764 ret = btrfs_dec_ref(trans, root, eb, 0); 7765 BUG_ON(ret); /* -ENOMEM */ 7766 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7767 eb->len, flag, 7768 btrfs_header_level(eb), 0); 7769 BUG_ON(ret); /* -ENOMEM */ 7770 wc->flags[level] |= flag; 7771 } 7772 7773 /* 7774 * the block is shared by multiple trees, so it's not good to 7775 * keep the tree lock 7776 */ 7777 if (path->locks[level] && level > 0) { 7778 btrfs_tree_unlock_rw(eb, path->locks[level]); 7779 path->locks[level] = 0; 7780 } 7781 return 0; 7782 } 7783 7784 /* 7785 * helper to process tree block pointer. 7786 * 7787 * when wc->stage == DROP_REFERENCE, this function checks 7788 * reference count of the block pointed to. if the block 7789 * is shared and we need update back refs for the subtree 7790 * rooted at the block, this function changes wc->stage to 7791 * UPDATE_BACKREF. if the block is shared and there is no 7792 * need to update back, this function drops the reference 7793 * to the block. 7794 * 7795 * NOTE: return value 1 means we should stop walking down. 7796 */ 7797 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 7798 struct btrfs_root *root, 7799 struct btrfs_path *path, 7800 struct walk_control *wc, int *lookup_info) 7801 { 7802 u64 bytenr; 7803 u64 generation; 7804 u64 parent; 7805 u32 blocksize; 7806 struct btrfs_key key; 7807 struct extent_buffer *next; 7808 int level = wc->level; 7809 int reada = 0; 7810 int ret = 0; 7811 bool need_account = false; 7812 7813 generation = btrfs_node_ptr_generation(path->nodes[level], 7814 path->slots[level]); 7815 /* 7816 * if the lower level block was created before the snapshot 7817 * was created, we know there is no need to update back refs 7818 * for the subtree 7819 */ 7820 if (wc->stage == UPDATE_BACKREF && 7821 generation <= root->root_key.offset) { 7822 *lookup_info = 1; 7823 return 1; 7824 } 7825 7826 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 7827 blocksize = root->nodesize; 7828 7829 next = btrfs_find_tree_block(root, bytenr); 7830 if (!next) { 7831 next = btrfs_find_create_tree_block(root, bytenr, blocksize); 7832 if (!next) 7833 return -ENOMEM; 7834 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 7835 level - 1); 7836 reada = 1; 7837 } 7838 btrfs_tree_lock(next); 7839 btrfs_set_lock_blocking(next); 7840 7841 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 7842 &wc->refs[level - 1], 7843 &wc->flags[level - 1]); 7844 if (ret < 0) { 7845 btrfs_tree_unlock(next); 7846 return ret; 7847 } 7848 7849 if (unlikely(wc->refs[level - 1] == 0)) { 7850 btrfs_err(root->fs_info, "Missing references."); 7851 BUG(); 7852 } 7853 *lookup_info = 0; 7854 7855 if (wc->stage == DROP_REFERENCE) { 7856 if (wc->refs[level - 1] > 1) { 7857 need_account = true; 7858 if (level == 1 && 7859 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7860 goto skip; 7861 7862 if (!wc->update_ref || 7863 generation <= root->root_key.offset) 7864 goto skip; 7865 7866 btrfs_node_key_to_cpu(path->nodes[level], &key, 7867 path->slots[level]); 7868 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 7869 if (ret < 0) 7870 goto skip; 7871 7872 wc->stage = UPDATE_BACKREF; 7873 wc->shared_level = level - 1; 7874 } 7875 } else { 7876 if (level == 1 && 7877 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7878 goto skip; 7879 } 7880 7881 if (!btrfs_buffer_uptodate(next, generation, 0)) { 7882 btrfs_tree_unlock(next); 7883 free_extent_buffer(next); 7884 next = NULL; 7885 *lookup_info = 1; 7886 } 7887 7888 if (!next) { 7889 if (reada && level == 1) 7890 reada_walk_down(trans, root, wc, path); 7891 next = read_tree_block(root, bytenr, generation); 7892 if (!next || !extent_buffer_uptodate(next)) { 7893 free_extent_buffer(next); 7894 return -EIO; 7895 } 7896 btrfs_tree_lock(next); 7897 btrfs_set_lock_blocking(next); 7898 } 7899 7900 level--; 7901 BUG_ON(level != btrfs_header_level(next)); 7902 path->nodes[level] = next; 7903 path->slots[level] = 0; 7904 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7905 wc->level = level; 7906 if (wc->level == 1) 7907 wc->reada_slot = 0; 7908 return 0; 7909 skip: 7910 wc->refs[level - 1] = 0; 7911 wc->flags[level - 1] = 0; 7912 if (wc->stage == DROP_REFERENCE) { 7913 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 7914 parent = path->nodes[level]->start; 7915 } else { 7916 BUG_ON(root->root_key.objectid != 7917 btrfs_header_owner(path->nodes[level])); 7918 parent = 0; 7919 } 7920 7921 if (need_account) { 7922 ret = account_shared_subtree(trans, root, next, 7923 generation, level - 1); 7924 if (ret) { 7925 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 7926 "%d accounting shared subtree. Quota " 7927 "is out of sync, rescan required.\n", 7928 root->fs_info->sb->s_id, ret); 7929 } 7930 } 7931 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 7932 root->root_key.objectid, level - 1, 0, 0); 7933 BUG_ON(ret); /* -ENOMEM */ 7934 } 7935 btrfs_tree_unlock(next); 7936 free_extent_buffer(next); 7937 *lookup_info = 1; 7938 return 1; 7939 } 7940 7941 /* 7942 * helper to process tree block while walking up the tree. 7943 * 7944 * when wc->stage == DROP_REFERENCE, this function drops 7945 * reference count on the block. 7946 * 7947 * when wc->stage == UPDATE_BACKREF, this function changes 7948 * wc->stage back to DROP_REFERENCE if we changed wc->stage 7949 * to UPDATE_BACKREF previously while processing the block. 7950 * 7951 * NOTE: return value 1 means we should stop walking up. 7952 */ 7953 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 7954 struct btrfs_root *root, 7955 struct btrfs_path *path, 7956 struct walk_control *wc) 7957 { 7958 int ret; 7959 int level = wc->level; 7960 struct extent_buffer *eb = path->nodes[level]; 7961 u64 parent = 0; 7962 7963 if (wc->stage == UPDATE_BACKREF) { 7964 BUG_ON(wc->shared_level < level); 7965 if (level < wc->shared_level) 7966 goto out; 7967 7968 ret = find_next_key(path, level + 1, &wc->update_progress); 7969 if (ret > 0) 7970 wc->update_ref = 0; 7971 7972 wc->stage = DROP_REFERENCE; 7973 wc->shared_level = -1; 7974 path->slots[level] = 0; 7975 7976 /* 7977 * check reference count again if the block isn't locked. 7978 * we should start walking down the tree again if reference 7979 * count is one. 7980 */ 7981 if (!path->locks[level]) { 7982 BUG_ON(level == 0); 7983 btrfs_tree_lock(eb); 7984 btrfs_set_lock_blocking(eb); 7985 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 7986 7987 ret = btrfs_lookup_extent_info(trans, root, 7988 eb->start, level, 1, 7989 &wc->refs[level], 7990 &wc->flags[level]); 7991 if (ret < 0) { 7992 btrfs_tree_unlock_rw(eb, path->locks[level]); 7993 path->locks[level] = 0; 7994 return ret; 7995 } 7996 BUG_ON(wc->refs[level] == 0); 7997 if (wc->refs[level] == 1) { 7998 btrfs_tree_unlock_rw(eb, path->locks[level]); 7999 path->locks[level] = 0; 8000 return 1; 8001 } 8002 } 8003 } 8004 8005 /* wc->stage == DROP_REFERENCE */ 8006 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8007 8008 if (wc->refs[level] == 1) { 8009 if (level == 0) { 8010 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8011 ret = btrfs_dec_ref(trans, root, eb, 1); 8012 else 8013 ret = btrfs_dec_ref(trans, root, eb, 0); 8014 BUG_ON(ret); /* -ENOMEM */ 8015 ret = account_leaf_items(trans, root, eb); 8016 if (ret) { 8017 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8018 "%d accounting leaf items. Quota " 8019 "is out of sync, rescan required.\n", 8020 root->fs_info->sb->s_id, ret); 8021 } 8022 } 8023 /* make block locked assertion in clean_tree_block happy */ 8024 if (!path->locks[level] && 8025 btrfs_header_generation(eb) == trans->transid) { 8026 btrfs_tree_lock(eb); 8027 btrfs_set_lock_blocking(eb); 8028 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8029 } 8030 clean_tree_block(trans, root, eb); 8031 } 8032 8033 if (eb == root->node) { 8034 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8035 parent = eb->start; 8036 else 8037 BUG_ON(root->root_key.objectid != 8038 btrfs_header_owner(eb)); 8039 } else { 8040 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8041 parent = path->nodes[level + 1]->start; 8042 else 8043 BUG_ON(root->root_key.objectid != 8044 btrfs_header_owner(path->nodes[level + 1])); 8045 } 8046 8047 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8048 out: 8049 wc->refs[level] = 0; 8050 wc->flags[level] = 0; 8051 return 0; 8052 } 8053 8054 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8055 struct btrfs_root *root, 8056 struct btrfs_path *path, 8057 struct walk_control *wc) 8058 { 8059 int level = wc->level; 8060 int lookup_info = 1; 8061 int ret; 8062 8063 while (level >= 0) { 8064 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8065 if (ret > 0) 8066 break; 8067 8068 if (level == 0) 8069 break; 8070 8071 if (path->slots[level] >= 8072 btrfs_header_nritems(path->nodes[level])) 8073 break; 8074 8075 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8076 if (ret > 0) { 8077 path->slots[level]++; 8078 continue; 8079 } else if (ret < 0) 8080 return ret; 8081 level = wc->level; 8082 } 8083 return 0; 8084 } 8085 8086 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8087 struct btrfs_root *root, 8088 struct btrfs_path *path, 8089 struct walk_control *wc, int max_level) 8090 { 8091 int level = wc->level; 8092 int ret; 8093 8094 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8095 while (level < max_level && path->nodes[level]) { 8096 wc->level = level; 8097 if (path->slots[level] + 1 < 8098 btrfs_header_nritems(path->nodes[level])) { 8099 path->slots[level]++; 8100 return 0; 8101 } else { 8102 ret = walk_up_proc(trans, root, path, wc); 8103 if (ret > 0) 8104 return 0; 8105 8106 if (path->locks[level]) { 8107 btrfs_tree_unlock_rw(path->nodes[level], 8108 path->locks[level]); 8109 path->locks[level] = 0; 8110 } 8111 free_extent_buffer(path->nodes[level]); 8112 path->nodes[level] = NULL; 8113 level++; 8114 } 8115 } 8116 return 1; 8117 } 8118 8119 /* 8120 * drop a subvolume tree. 8121 * 8122 * this function traverses the tree freeing any blocks that only 8123 * referenced by the tree. 8124 * 8125 * when a shared tree block is found. this function decreases its 8126 * reference count by one. if update_ref is true, this function 8127 * also make sure backrefs for the shared block and all lower level 8128 * blocks are properly updated. 8129 * 8130 * If called with for_reloc == 0, may exit early with -EAGAIN 8131 */ 8132 int btrfs_drop_snapshot(struct btrfs_root *root, 8133 struct btrfs_block_rsv *block_rsv, int update_ref, 8134 int for_reloc) 8135 { 8136 struct btrfs_path *path; 8137 struct btrfs_trans_handle *trans; 8138 struct btrfs_root *tree_root = root->fs_info->tree_root; 8139 struct btrfs_root_item *root_item = &root->root_item; 8140 struct walk_control *wc; 8141 struct btrfs_key key; 8142 int err = 0; 8143 int ret; 8144 int level; 8145 bool root_dropped = false; 8146 8147 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8148 8149 path = btrfs_alloc_path(); 8150 if (!path) { 8151 err = -ENOMEM; 8152 goto out; 8153 } 8154 8155 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8156 if (!wc) { 8157 btrfs_free_path(path); 8158 err = -ENOMEM; 8159 goto out; 8160 } 8161 8162 trans = btrfs_start_transaction(tree_root, 0); 8163 if (IS_ERR(trans)) { 8164 err = PTR_ERR(trans); 8165 goto out_free; 8166 } 8167 8168 if (block_rsv) 8169 trans->block_rsv = block_rsv; 8170 8171 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8172 level = btrfs_header_level(root->node); 8173 path->nodes[level] = btrfs_lock_root_node(root); 8174 btrfs_set_lock_blocking(path->nodes[level]); 8175 path->slots[level] = 0; 8176 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8177 memset(&wc->update_progress, 0, 8178 sizeof(wc->update_progress)); 8179 } else { 8180 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8181 memcpy(&wc->update_progress, &key, 8182 sizeof(wc->update_progress)); 8183 8184 level = root_item->drop_level; 8185 BUG_ON(level == 0); 8186 path->lowest_level = level; 8187 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8188 path->lowest_level = 0; 8189 if (ret < 0) { 8190 err = ret; 8191 goto out_end_trans; 8192 } 8193 WARN_ON(ret > 0); 8194 8195 /* 8196 * unlock our path, this is safe because only this 8197 * function is allowed to delete this snapshot 8198 */ 8199 btrfs_unlock_up_safe(path, 0); 8200 8201 level = btrfs_header_level(root->node); 8202 while (1) { 8203 btrfs_tree_lock(path->nodes[level]); 8204 btrfs_set_lock_blocking(path->nodes[level]); 8205 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8206 8207 ret = btrfs_lookup_extent_info(trans, root, 8208 path->nodes[level]->start, 8209 level, 1, &wc->refs[level], 8210 &wc->flags[level]); 8211 if (ret < 0) { 8212 err = ret; 8213 goto out_end_trans; 8214 } 8215 BUG_ON(wc->refs[level] == 0); 8216 8217 if (level == root_item->drop_level) 8218 break; 8219 8220 btrfs_tree_unlock(path->nodes[level]); 8221 path->locks[level] = 0; 8222 WARN_ON(wc->refs[level] != 1); 8223 level--; 8224 } 8225 } 8226 8227 wc->level = level; 8228 wc->shared_level = -1; 8229 wc->stage = DROP_REFERENCE; 8230 wc->update_ref = update_ref; 8231 wc->keep_locks = 0; 8232 wc->for_reloc = for_reloc; 8233 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8234 8235 while (1) { 8236 8237 ret = walk_down_tree(trans, root, path, wc); 8238 if (ret < 0) { 8239 err = ret; 8240 break; 8241 } 8242 8243 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8244 if (ret < 0) { 8245 err = ret; 8246 break; 8247 } 8248 8249 if (ret > 0) { 8250 BUG_ON(wc->stage != DROP_REFERENCE); 8251 break; 8252 } 8253 8254 if (wc->stage == DROP_REFERENCE) { 8255 level = wc->level; 8256 btrfs_node_key(path->nodes[level], 8257 &root_item->drop_progress, 8258 path->slots[level]); 8259 root_item->drop_level = level; 8260 } 8261 8262 BUG_ON(wc->level == 0); 8263 if (btrfs_should_end_transaction(trans, tree_root) || 8264 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8265 ret = btrfs_update_root(trans, tree_root, 8266 &root->root_key, 8267 root_item); 8268 if (ret) { 8269 btrfs_abort_transaction(trans, tree_root, ret); 8270 err = ret; 8271 goto out_end_trans; 8272 } 8273 8274 /* 8275 * Qgroup update accounting is run from 8276 * delayed ref handling. This usually works 8277 * out because delayed refs are normally the 8278 * only way qgroup updates are added. However, 8279 * we may have added updates during our tree 8280 * walk so run qgroups here to make sure we 8281 * don't lose any updates. 8282 */ 8283 ret = btrfs_delayed_qgroup_accounting(trans, 8284 root->fs_info); 8285 if (ret) 8286 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8287 "running qgroup updates " 8288 "during snapshot delete. " 8289 "Quota is out of sync, " 8290 "rescan required.\n", ret); 8291 8292 btrfs_end_transaction_throttle(trans, tree_root); 8293 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8294 pr_debug("BTRFS: drop snapshot early exit\n"); 8295 err = -EAGAIN; 8296 goto out_free; 8297 } 8298 8299 trans = btrfs_start_transaction(tree_root, 0); 8300 if (IS_ERR(trans)) { 8301 err = PTR_ERR(trans); 8302 goto out_free; 8303 } 8304 if (block_rsv) 8305 trans->block_rsv = block_rsv; 8306 } 8307 } 8308 btrfs_release_path(path); 8309 if (err) 8310 goto out_end_trans; 8311 8312 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8313 if (ret) { 8314 btrfs_abort_transaction(trans, tree_root, ret); 8315 goto out_end_trans; 8316 } 8317 8318 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8319 ret = btrfs_find_root(tree_root, &root->root_key, path, 8320 NULL, NULL); 8321 if (ret < 0) { 8322 btrfs_abort_transaction(trans, tree_root, ret); 8323 err = ret; 8324 goto out_end_trans; 8325 } else if (ret > 0) { 8326 /* if we fail to delete the orphan item this time 8327 * around, it'll get picked up the next time. 8328 * 8329 * The most common failure here is just -ENOENT. 8330 */ 8331 btrfs_del_orphan_item(trans, tree_root, 8332 root->root_key.objectid); 8333 } 8334 } 8335 8336 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8337 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8338 } else { 8339 free_extent_buffer(root->node); 8340 free_extent_buffer(root->commit_root); 8341 btrfs_put_fs_root(root); 8342 } 8343 root_dropped = true; 8344 out_end_trans: 8345 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info); 8346 if (ret) 8347 printk_ratelimited(KERN_ERR "BTRFS: Failure %d " 8348 "running qgroup updates " 8349 "during snapshot delete. " 8350 "Quota is out of sync, " 8351 "rescan required.\n", ret); 8352 8353 btrfs_end_transaction_throttle(trans, tree_root); 8354 out_free: 8355 kfree(wc); 8356 btrfs_free_path(path); 8357 out: 8358 /* 8359 * So if we need to stop dropping the snapshot for whatever reason we 8360 * need to make sure to add it back to the dead root list so that we 8361 * keep trying to do the work later. This also cleans up roots if we 8362 * don't have it in the radix (like when we recover after a power fail 8363 * or unmount) so we don't leak memory. 8364 */ 8365 if (!for_reloc && root_dropped == false) 8366 btrfs_add_dead_root(root); 8367 if (err && err != -EAGAIN) 8368 btrfs_std_error(root->fs_info, err); 8369 return err; 8370 } 8371 8372 /* 8373 * drop subtree rooted at tree block 'node'. 8374 * 8375 * NOTE: this function will unlock and release tree block 'node' 8376 * only used by relocation code 8377 */ 8378 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8379 struct btrfs_root *root, 8380 struct extent_buffer *node, 8381 struct extent_buffer *parent) 8382 { 8383 struct btrfs_path *path; 8384 struct walk_control *wc; 8385 int level; 8386 int parent_level; 8387 int ret = 0; 8388 int wret; 8389 8390 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8391 8392 path = btrfs_alloc_path(); 8393 if (!path) 8394 return -ENOMEM; 8395 8396 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8397 if (!wc) { 8398 btrfs_free_path(path); 8399 return -ENOMEM; 8400 } 8401 8402 btrfs_assert_tree_locked(parent); 8403 parent_level = btrfs_header_level(parent); 8404 extent_buffer_get(parent); 8405 path->nodes[parent_level] = parent; 8406 path->slots[parent_level] = btrfs_header_nritems(parent); 8407 8408 btrfs_assert_tree_locked(node); 8409 level = btrfs_header_level(node); 8410 path->nodes[level] = node; 8411 path->slots[level] = 0; 8412 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8413 8414 wc->refs[parent_level] = 1; 8415 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8416 wc->level = level; 8417 wc->shared_level = -1; 8418 wc->stage = DROP_REFERENCE; 8419 wc->update_ref = 0; 8420 wc->keep_locks = 1; 8421 wc->for_reloc = 1; 8422 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8423 8424 while (1) { 8425 wret = walk_down_tree(trans, root, path, wc); 8426 if (wret < 0) { 8427 ret = wret; 8428 break; 8429 } 8430 8431 wret = walk_up_tree(trans, root, path, wc, parent_level); 8432 if (wret < 0) 8433 ret = wret; 8434 if (wret != 0) 8435 break; 8436 } 8437 8438 kfree(wc); 8439 btrfs_free_path(path); 8440 return ret; 8441 } 8442 8443 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8444 { 8445 u64 num_devices; 8446 u64 stripped; 8447 8448 /* 8449 * if restripe for this chunk_type is on pick target profile and 8450 * return, otherwise do the usual balance 8451 */ 8452 stripped = get_restripe_target(root->fs_info, flags); 8453 if (stripped) 8454 return extended_to_chunk(stripped); 8455 8456 num_devices = root->fs_info->fs_devices->rw_devices; 8457 8458 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8459 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8460 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8461 8462 if (num_devices == 1) { 8463 stripped |= BTRFS_BLOCK_GROUP_DUP; 8464 stripped = flags & ~stripped; 8465 8466 /* turn raid0 into single device chunks */ 8467 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8468 return stripped; 8469 8470 /* turn mirroring into duplication */ 8471 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8472 BTRFS_BLOCK_GROUP_RAID10)) 8473 return stripped | BTRFS_BLOCK_GROUP_DUP; 8474 } else { 8475 /* they already had raid on here, just return */ 8476 if (flags & stripped) 8477 return flags; 8478 8479 stripped |= BTRFS_BLOCK_GROUP_DUP; 8480 stripped = flags & ~stripped; 8481 8482 /* switch duplicated blocks with raid1 */ 8483 if (flags & BTRFS_BLOCK_GROUP_DUP) 8484 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8485 8486 /* this is drive concat, leave it alone */ 8487 } 8488 8489 return flags; 8490 } 8491 8492 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8493 { 8494 struct btrfs_space_info *sinfo = cache->space_info; 8495 u64 num_bytes; 8496 u64 min_allocable_bytes; 8497 int ret = -ENOSPC; 8498 8499 8500 /* 8501 * We need some metadata space and system metadata space for 8502 * allocating chunks in some corner cases until we force to set 8503 * it to be readonly. 8504 */ 8505 if ((sinfo->flags & 8506 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8507 !force) 8508 min_allocable_bytes = 1 * 1024 * 1024; 8509 else 8510 min_allocable_bytes = 0; 8511 8512 spin_lock(&sinfo->lock); 8513 spin_lock(&cache->lock); 8514 8515 if (cache->ro) { 8516 ret = 0; 8517 goto out; 8518 } 8519 8520 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8521 cache->bytes_super - btrfs_block_group_used(&cache->item); 8522 8523 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8524 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8525 min_allocable_bytes <= sinfo->total_bytes) { 8526 sinfo->bytes_readonly += num_bytes; 8527 cache->ro = 1; 8528 ret = 0; 8529 } 8530 out: 8531 spin_unlock(&cache->lock); 8532 spin_unlock(&sinfo->lock); 8533 return ret; 8534 } 8535 8536 int btrfs_set_block_group_ro(struct btrfs_root *root, 8537 struct btrfs_block_group_cache *cache) 8538 8539 { 8540 struct btrfs_trans_handle *trans; 8541 u64 alloc_flags; 8542 int ret; 8543 8544 BUG_ON(cache->ro); 8545 8546 trans = btrfs_join_transaction(root); 8547 if (IS_ERR(trans)) 8548 return PTR_ERR(trans); 8549 8550 alloc_flags = update_block_group_flags(root, cache->flags); 8551 if (alloc_flags != cache->flags) { 8552 ret = do_chunk_alloc(trans, root, alloc_flags, 8553 CHUNK_ALLOC_FORCE); 8554 if (ret < 0) 8555 goto out; 8556 } 8557 8558 ret = set_block_group_ro(cache, 0); 8559 if (!ret) 8560 goto out; 8561 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8562 ret = do_chunk_alloc(trans, root, alloc_flags, 8563 CHUNK_ALLOC_FORCE); 8564 if (ret < 0) 8565 goto out; 8566 ret = set_block_group_ro(cache, 0); 8567 out: 8568 btrfs_end_transaction(trans, root); 8569 return ret; 8570 } 8571 8572 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8573 struct btrfs_root *root, u64 type) 8574 { 8575 u64 alloc_flags = get_alloc_profile(root, type); 8576 return do_chunk_alloc(trans, root, alloc_flags, 8577 CHUNK_ALLOC_FORCE); 8578 } 8579 8580 /* 8581 * helper to account the unused space of all the readonly block group in the 8582 * list. takes mirrors into account. 8583 */ 8584 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list) 8585 { 8586 struct btrfs_block_group_cache *block_group; 8587 u64 free_bytes = 0; 8588 int factor; 8589 8590 list_for_each_entry(block_group, groups_list, list) { 8591 spin_lock(&block_group->lock); 8592 8593 if (!block_group->ro) { 8594 spin_unlock(&block_group->lock); 8595 continue; 8596 } 8597 8598 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8599 BTRFS_BLOCK_GROUP_RAID10 | 8600 BTRFS_BLOCK_GROUP_DUP)) 8601 factor = 2; 8602 else 8603 factor = 1; 8604 8605 free_bytes += (block_group->key.offset - 8606 btrfs_block_group_used(&block_group->item)) * 8607 factor; 8608 8609 spin_unlock(&block_group->lock); 8610 } 8611 8612 return free_bytes; 8613 } 8614 8615 /* 8616 * helper to account the unused space of all the readonly block group in the 8617 * space_info. takes mirrors into account. 8618 */ 8619 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8620 { 8621 int i; 8622 u64 free_bytes = 0; 8623 8624 spin_lock(&sinfo->lock); 8625 8626 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 8627 if (!list_empty(&sinfo->block_groups[i])) 8628 free_bytes += __btrfs_get_ro_block_group_free_space( 8629 &sinfo->block_groups[i]); 8630 8631 spin_unlock(&sinfo->lock); 8632 8633 return free_bytes; 8634 } 8635 8636 void btrfs_set_block_group_rw(struct btrfs_root *root, 8637 struct btrfs_block_group_cache *cache) 8638 { 8639 struct btrfs_space_info *sinfo = cache->space_info; 8640 u64 num_bytes; 8641 8642 BUG_ON(!cache->ro); 8643 8644 spin_lock(&sinfo->lock); 8645 spin_lock(&cache->lock); 8646 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8647 cache->bytes_super - btrfs_block_group_used(&cache->item); 8648 sinfo->bytes_readonly -= num_bytes; 8649 cache->ro = 0; 8650 spin_unlock(&cache->lock); 8651 spin_unlock(&sinfo->lock); 8652 } 8653 8654 /* 8655 * checks to see if its even possible to relocate this block group. 8656 * 8657 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8658 * ok to go ahead and try. 8659 */ 8660 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8661 { 8662 struct btrfs_block_group_cache *block_group; 8663 struct btrfs_space_info *space_info; 8664 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8665 struct btrfs_device *device; 8666 struct btrfs_trans_handle *trans; 8667 u64 min_free; 8668 u64 dev_min = 1; 8669 u64 dev_nr = 0; 8670 u64 target; 8671 int index; 8672 int full = 0; 8673 int ret = 0; 8674 8675 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8676 8677 /* odd, couldn't find the block group, leave it alone */ 8678 if (!block_group) 8679 return -1; 8680 8681 min_free = btrfs_block_group_used(&block_group->item); 8682 8683 /* no bytes used, we're good */ 8684 if (!min_free) 8685 goto out; 8686 8687 space_info = block_group->space_info; 8688 spin_lock(&space_info->lock); 8689 8690 full = space_info->full; 8691 8692 /* 8693 * if this is the last block group we have in this space, we can't 8694 * relocate it unless we're able to allocate a new chunk below. 8695 * 8696 * Otherwise, we need to make sure we have room in the space to handle 8697 * all of the extents from this block group. If we can, we're good 8698 */ 8699 if ((space_info->total_bytes != block_group->key.offset) && 8700 (space_info->bytes_used + space_info->bytes_reserved + 8701 space_info->bytes_pinned + space_info->bytes_readonly + 8702 min_free < space_info->total_bytes)) { 8703 spin_unlock(&space_info->lock); 8704 goto out; 8705 } 8706 spin_unlock(&space_info->lock); 8707 8708 /* 8709 * ok we don't have enough space, but maybe we have free space on our 8710 * devices to allocate new chunks for relocation, so loop through our 8711 * alloc devices and guess if we have enough space. if this block 8712 * group is going to be restriped, run checks against the target 8713 * profile instead of the current one. 8714 */ 8715 ret = -1; 8716 8717 /* 8718 * index: 8719 * 0: raid10 8720 * 1: raid1 8721 * 2: dup 8722 * 3: raid0 8723 * 4: single 8724 */ 8725 target = get_restripe_target(root->fs_info, block_group->flags); 8726 if (target) { 8727 index = __get_raid_index(extended_to_chunk(target)); 8728 } else { 8729 /* 8730 * this is just a balance, so if we were marked as full 8731 * we know there is no space for a new chunk 8732 */ 8733 if (full) 8734 goto out; 8735 8736 index = get_block_group_index(block_group); 8737 } 8738 8739 if (index == BTRFS_RAID_RAID10) { 8740 dev_min = 4; 8741 /* Divide by 2 */ 8742 min_free >>= 1; 8743 } else if (index == BTRFS_RAID_RAID1) { 8744 dev_min = 2; 8745 } else if (index == BTRFS_RAID_DUP) { 8746 /* Multiply by 2 */ 8747 min_free <<= 1; 8748 } else if (index == BTRFS_RAID_RAID0) { 8749 dev_min = fs_devices->rw_devices; 8750 do_div(min_free, dev_min); 8751 } 8752 8753 /* We need to do this so that we can look at pending chunks */ 8754 trans = btrfs_join_transaction(root); 8755 if (IS_ERR(trans)) { 8756 ret = PTR_ERR(trans); 8757 goto out; 8758 } 8759 8760 mutex_lock(&root->fs_info->chunk_mutex); 8761 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8762 u64 dev_offset; 8763 8764 /* 8765 * check to make sure we can actually find a chunk with enough 8766 * space to fit our block group in. 8767 */ 8768 if (device->total_bytes > device->bytes_used + min_free && 8769 !device->is_tgtdev_for_dev_replace) { 8770 ret = find_free_dev_extent(trans, device, min_free, 8771 &dev_offset, NULL); 8772 if (!ret) 8773 dev_nr++; 8774 8775 if (dev_nr >= dev_min) 8776 break; 8777 8778 ret = -1; 8779 } 8780 } 8781 mutex_unlock(&root->fs_info->chunk_mutex); 8782 btrfs_end_transaction(trans, root); 8783 out: 8784 btrfs_put_block_group(block_group); 8785 return ret; 8786 } 8787 8788 static int find_first_block_group(struct btrfs_root *root, 8789 struct btrfs_path *path, struct btrfs_key *key) 8790 { 8791 int ret = 0; 8792 struct btrfs_key found_key; 8793 struct extent_buffer *leaf; 8794 int slot; 8795 8796 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 8797 if (ret < 0) 8798 goto out; 8799 8800 while (1) { 8801 slot = path->slots[0]; 8802 leaf = path->nodes[0]; 8803 if (slot >= btrfs_header_nritems(leaf)) { 8804 ret = btrfs_next_leaf(root, path); 8805 if (ret == 0) 8806 continue; 8807 if (ret < 0) 8808 goto out; 8809 break; 8810 } 8811 btrfs_item_key_to_cpu(leaf, &found_key, slot); 8812 8813 if (found_key.objectid >= key->objectid && 8814 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 8815 ret = 0; 8816 goto out; 8817 } 8818 path->slots[0]++; 8819 } 8820 out: 8821 return ret; 8822 } 8823 8824 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 8825 { 8826 struct btrfs_block_group_cache *block_group; 8827 u64 last = 0; 8828 8829 while (1) { 8830 struct inode *inode; 8831 8832 block_group = btrfs_lookup_first_block_group(info, last); 8833 while (block_group) { 8834 spin_lock(&block_group->lock); 8835 if (block_group->iref) 8836 break; 8837 spin_unlock(&block_group->lock); 8838 block_group = next_block_group(info->tree_root, 8839 block_group); 8840 } 8841 if (!block_group) { 8842 if (last == 0) 8843 break; 8844 last = 0; 8845 continue; 8846 } 8847 8848 inode = block_group->inode; 8849 block_group->iref = 0; 8850 block_group->inode = NULL; 8851 spin_unlock(&block_group->lock); 8852 iput(inode); 8853 last = block_group->key.objectid + block_group->key.offset; 8854 btrfs_put_block_group(block_group); 8855 } 8856 } 8857 8858 int btrfs_free_block_groups(struct btrfs_fs_info *info) 8859 { 8860 struct btrfs_block_group_cache *block_group; 8861 struct btrfs_space_info *space_info; 8862 struct btrfs_caching_control *caching_ctl; 8863 struct rb_node *n; 8864 8865 down_write(&info->commit_root_sem); 8866 while (!list_empty(&info->caching_block_groups)) { 8867 caching_ctl = list_entry(info->caching_block_groups.next, 8868 struct btrfs_caching_control, list); 8869 list_del(&caching_ctl->list); 8870 put_caching_control(caching_ctl); 8871 } 8872 up_write(&info->commit_root_sem); 8873 8874 spin_lock(&info->unused_bgs_lock); 8875 while (!list_empty(&info->unused_bgs)) { 8876 block_group = list_first_entry(&info->unused_bgs, 8877 struct btrfs_block_group_cache, 8878 bg_list); 8879 list_del_init(&block_group->bg_list); 8880 btrfs_put_block_group(block_group); 8881 } 8882 spin_unlock(&info->unused_bgs_lock); 8883 8884 spin_lock(&info->block_group_cache_lock); 8885 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 8886 block_group = rb_entry(n, struct btrfs_block_group_cache, 8887 cache_node); 8888 rb_erase(&block_group->cache_node, 8889 &info->block_group_cache_tree); 8890 spin_unlock(&info->block_group_cache_lock); 8891 8892 down_write(&block_group->space_info->groups_sem); 8893 list_del(&block_group->list); 8894 up_write(&block_group->space_info->groups_sem); 8895 8896 if (block_group->cached == BTRFS_CACHE_STARTED) 8897 wait_block_group_cache_done(block_group); 8898 8899 /* 8900 * We haven't cached this block group, which means we could 8901 * possibly have excluded extents on this block group. 8902 */ 8903 if (block_group->cached == BTRFS_CACHE_NO || 8904 block_group->cached == BTRFS_CACHE_ERROR) 8905 free_excluded_extents(info->extent_root, block_group); 8906 8907 btrfs_remove_free_space_cache(block_group); 8908 btrfs_put_block_group(block_group); 8909 8910 spin_lock(&info->block_group_cache_lock); 8911 } 8912 spin_unlock(&info->block_group_cache_lock); 8913 8914 /* now that all the block groups are freed, go through and 8915 * free all the space_info structs. This is only called during 8916 * the final stages of unmount, and so we know nobody is 8917 * using them. We call synchronize_rcu() once before we start, 8918 * just to be on the safe side. 8919 */ 8920 synchronize_rcu(); 8921 8922 release_global_block_rsv(info); 8923 8924 while (!list_empty(&info->space_info)) { 8925 int i; 8926 8927 space_info = list_entry(info->space_info.next, 8928 struct btrfs_space_info, 8929 list); 8930 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 8931 if (WARN_ON(space_info->bytes_pinned > 0 || 8932 space_info->bytes_reserved > 0 || 8933 space_info->bytes_may_use > 0)) { 8934 dump_space_info(space_info, 0, 0); 8935 } 8936 } 8937 list_del(&space_info->list); 8938 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 8939 struct kobject *kobj; 8940 kobj = space_info->block_group_kobjs[i]; 8941 space_info->block_group_kobjs[i] = NULL; 8942 if (kobj) { 8943 kobject_del(kobj); 8944 kobject_put(kobj); 8945 } 8946 } 8947 kobject_del(&space_info->kobj); 8948 kobject_put(&space_info->kobj); 8949 } 8950 return 0; 8951 } 8952 8953 static void __link_block_group(struct btrfs_space_info *space_info, 8954 struct btrfs_block_group_cache *cache) 8955 { 8956 int index = get_block_group_index(cache); 8957 bool first = false; 8958 8959 down_write(&space_info->groups_sem); 8960 if (list_empty(&space_info->block_groups[index])) 8961 first = true; 8962 list_add_tail(&cache->list, &space_info->block_groups[index]); 8963 up_write(&space_info->groups_sem); 8964 8965 if (first) { 8966 struct raid_kobject *rkobj; 8967 int ret; 8968 8969 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 8970 if (!rkobj) 8971 goto out_err; 8972 rkobj->raid_type = index; 8973 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 8974 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 8975 "%s", get_raid_name(index)); 8976 if (ret) { 8977 kobject_put(&rkobj->kobj); 8978 goto out_err; 8979 } 8980 space_info->block_group_kobjs[index] = &rkobj->kobj; 8981 } 8982 8983 return; 8984 out_err: 8985 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 8986 } 8987 8988 static struct btrfs_block_group_cache * 8989 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 8990 { 8991 struct btrfs_block_group_cache *cache; 8992 8993 cache = kzalloc(sizeof(*cache), GFP_NOFS); 8994 if (!cache) 8995 return NULL; 8996 8997 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 8998 GFP_NOFS); 8999 if (!cache->free_space_ctl) { 9000 kfree(cache); 9001 return NULL; 9002 } 9003 9004 cache->key.objectid = start; 9005 cache->key.offset = size; 9006 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9007 9008 cache->sectorsize = root->sectorsize; 9009 cache->fs_info = root->fs_info; 9010 cache->full_stripe_len = btrfs_full_stripe_len(root, 9011 &root->fs_info->mapping_tree, 9012 start); 9013 atomic_set(&cache->count, 1); 9014 spin_lock_init(&cache->lock); 9015 init_rwsem(&cache->data_rwsem); 9016 INIT_LIST_HEAD(&cache->list); 9017 INIT_LIST_HEAD(&cache->cluster_list); 9018 INIT_LIST_HEAD(&cache->bg_list); 9019 btrfs_init_free_space_ctl(cache); 9020 9021 return cache; 9022 } 9023 9024 int btrfs_read_block_groups(struct btrfs_root *root) 9025 { 9026 struct btrfs_path *path; 9027 int ret; 9028 struct btrfs_block_group_cache *cache; 9029 struct btrfs_fs_info *info = root->fs_info; 9030 struct btrfs_space_info *space_info; 9031 struct btrfs_key key; 9032 struct btrfs_key found_key; 9033 struct extent_buffer *leaf; 9034 int need_clear = 0; 9035 u64 cache_gen; 9036 9037 root = info->extent_root; 9038 key.objectid = 0; 9039 key.offset = 0; 9040 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9041 path = btrfs_alloc_path(); 9042 if (!path) 9043 return -ENOMEM; 9044 path->reada = 1; 9045 9046 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9047 if (btrfs_test_opt(root, SPACE_CACHE) && 9048 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9049 need_clear = 1; 9050 if (btrfs_test_opt(root, CLEAR_CACHE)) 9051 need_clear = 1; 9052 9053 while (1) { 9054 ret = find_first_block_group(root, path, &key); 9055 if (ret > 0) 9056 break; 9057 if (ret != 0) 9058 goto error; 9059 9060 leaf = path->nodes[0]; 9061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9062 9063 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9064 found_key.offset); 9065 if (!cache) { 9066 ret = -ENOMEM; 9067 goto error; 9068 } 9069 9070 if (need_clear) { 9071 /* 9072 * When we mount with old space cache, we need to 9073 * set BTRFS_DC_CLEAR and set dirty flag. 9074 * 9075 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9076 * truncate the old free space cache inode and 9077 * setup a new one. 9078 * b) Setting 'dirty flag' makes sure that we flush 9079 * the new space cache info onto disk. 9080 */ 9081 cache->disk_cache_state = BTRFS_DC_CLEAR; 9082 if (btrfs_test_opt(root, SPACE_CACHE)) 9083 cache->dirty = 1; 9084 } 9085 9086 read_extent_buffer(leaf, &cache->item, 9087 btrfs_item_ptr_offset(leaf, path->slots[0]), 9088 sizeof(cache->item)); 9089 cache->flags = btrfs_block_group_flags(&cache->item); 9090 9091 key.objectid = found_key.objectid + found_key.offset; 9092 btrfs_release_path(path); 9093 9094 /* 9095 * We need to exclude the super stripes now so that the space 9096 * info has super bytes accounted for, otherwise we'll think 9097 * we have more space than we actually do. 9098 */ 9099 ret = exclude_super_stripes(root, cache); 9100 if (ret) { 9101 /* 9102 * We may have excluded something, so call this just in 9103 * case. 9104 */ 9105 free_excluded_extents(root, cache); 9106 btrfs_put_block_group(cache); 9107 goto error; 9108 } 9109 9110 /* 9111 * check for two cases, either we are full, and therefore 9112 * don't need to bother with the caching work since we won't 9113 * find any space, or we are empty, and we can just add all 9114 * the space in and be done with it. This saves us _alot_ of 9115 * time, particularly in the full case. 9116 */ 9117 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9118 cache->last_byte_to_unpin = (u64)-1; 9119 cache->cached = BTRFS_CACHE_FINISHED; 9120 free_excluded_extents(root, cache); 9121 } else if (btrfs_block_group_used(&cache->item) == 0) { 9122 cache->last_byte_to_unpin = (u64)-1; 9123 cache->cached = BTRFS_CACHE_FINISHED; 9124 add_new_free_space(cache, root->fs_info, 9125 found_key.objectid, 9126 found_key.objectid + 9127 found_key.offset); 9128 free_excluded_extents(root, cache); 9129 } 9130 9131 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9132 if (ret) { 9133 btrfs_remove_free_space_cache(cache); 9134 btrfs_put_block_group(cache); 9135 goto error; 9136 } 9137 9138 ret = update_space_info(info, cache->flags, found_key.offset, 9139 btrfs_block_group_used(&cache->item), 9140 &space_info); 9141 if (ret) { 9142 btrfs_remove_free_space_cache(cache); 9143 spin_lock(&info->block_group_cache_lock); 9144 rb_erase(&cache->cache_node, 9145 &info->block_group_cache_tree); 9146 spin_unlock(&info->block_group_cache_lock); 9147 btrfs_put_block_group(cache); 9148 goto error; 9149 } 9150 9151 cache->space_info = space_info; 9152 spin_lock(&cache->space_info->lock); 9153 cache->space_info->bytes_readonly += cache->bytes_super; 9154 spin_unlock(&cache->space_info->lock); 9155 9156 __link_block_group(space_info, cache); 9157 9158 set_avail_alloc_bits(root->fs_info, cache->flags); 9159 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9160 set_block_group_ro(cache, 1); 9161 } else if (btrfs_block_group_used(&cache->item) == 0) { 9162 spin_lock(&info->unused_bgs_lock); 9163 /* Should always be true but just in case. */ 9164 if (list_empty(&cache->bg_list)) { 9165 btrfs_get_block_group(cache); 9166 list_add_tail(&cache->bg_list, 9167 &info->unused_bgs); 9168 } 9169 spin_unlock(&info->unused_bgs_lock); 9170 } 9171 } 9172 9173 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9174 if (!(get_alloc_profile(root, space_info->flags) & 9175 (BTRFS_BLOCK_GROUP_RAID10 | 9176 BTRFS_BLOCK_GROUP_RAID1 | 9177 BTRFS_BLOCK_GROUP_RAID5 | 9178 BTRFS_BLOCK_GROUP_RAID6 | 9179 BTRFS_BLOCK_GROUP_DUP))) 9180 continue; 9181 /* 9182 * avoid allocating from un-mirrored block group if there are 9183 * mirrored block groups. 9184 */ 9185 list_for_each_entry(cache, 9186 &space_info->block_groups[BTRFS_RAID_RAID0], 9187 list) 9188 set_block_group_ro(cache, 1); 9189 list_for_each_entry(cache, 9190 &space_info->block_groups[BTRFS_RAID_SINGLE], 9191 list) 9192 set_block_group_ro(cache, 1); 9193 } 9194 9195 init_global_block_rsv(info); 9196 ret = 0; 9197 error: 9198 btrfs_free_path(path); 9199 return ret; 9200 } 9201 9202 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9203 struct btrfs_root *root) 9204 { 9205 struct btrfs_block_group_cache *block_group, *tmp; 9206 struct btrfs_root *extent_root = root->fs_info->extent_root; 9207 struct btrfs_block_group_item item; 9208 struct btrfs_key key; 9209 int ret = 0; 9210 9211 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9212 list_del_init(&block_group->bg_list); 9213 if (ret) 9214 continue; 9215 9216 spin_lock(&block_group->lock); 9217 memcpy(&item, &block_group->item, sizeof(item)); 9218 memcpy(&key, &block_group->key, sizeof(key)); 9219 spin_unlock(&block_group->lock); 9220 9221 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9222 sizeof(item)); 9223 if (ret) 9224 btrfs_abort_transaction(trans, extent_root, ret); 9225 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9226 key.objectid, key.offset); 9227 if (ret) 9228 btrfs_abort_transaction(trans, extent_root, ret); 9229 } 9230 } 9231 9232 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9233 struct btrfs_root *root, u64 bytes_used, 9234 u64 type, u64 chunk_objectid, u64 chunk_offset, 9235 u64 size) 9236 { 9237 int ret; 9238 struct btrfs_root *extent_root; 9239 struct btrfs_block_group_cache *cache; 9240 9241 extent_root = root->fs_info->extent_root; 9242 9243 btrfs_set_log_full_commit(root->fs_info, trans); 9244 9245 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9246 if (!cache) 9247 return -ENOMEM; 9248 9249 btrfs_set_block_group_used(&cache->item, bytes_used); 9250 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9251 btrfs_set_block_group_flags(&cache->item, type); 9252 9253 cache->flags = type; 9254 cache->last_byte_to_unpin = (u64)-1; 9255 cache->cached = BTRFS_CACHE_FINISHED; 9256 ret = exclude_super_stripes(root, cache); 9257 if (ret) { 9258 /* 9259 * We may have excluded something, so call this just in 9260 * case. 9261 */ 9262 free_excluded_extents(root, cache); 9263 btrfs_put_block_group(cache); 9264 return ret; 9265 } 9266 9267 add_new_free_space(cache, root->fs_info, chunk_offset, 9268 chunk_offset + size); 9269 9270 free_excluded_extents(root, cache); 9271 9272 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9273 if (ret) { 9274 btrfs_remove_free_space_cache(cache); 9275 btrfs_put_block_group(cache); 9276 return ret; 9277 } 9278 9279 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9280 &cache->space_info); 9281 if (ret) { 9282 btrfs_remove_free_space_cache(cache); 9283 spin_lock(&root->fs_info->block_group_cache_lock); 9284 rb_erase(&cache->cache_node, 9285 &root->fs_info->block_group_cache_tree); 9286 spin_unlock(&root->fs_info->block_group_cache_lock); 9287 btrfs_put_block_group(cache); 9288 return ret; 9289 } 9290 update_global_block_rsv(root->fs_info); 9291 9292 spin_lock(&cache->space_info->lock); 9293 cache->space_info->bytes_readonly += cache->bytes_super; 9294 spin_unlock(&cache->space_info->lock); 9295 9296 __link_block_group(cache->space_info, cache); 9297 9298 list_add_tail(&cache->bg_list, &trans->new_bgs); 9299 9300 set_avail_alloc_bits(extent_root->fs_info, type); 9301 9302 return 0; 9303 } 9304 9305 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9306 { 9307 u64 extra_flags = chunk_to_extended(flags) & 9308 BTRFS_EXTENDED_PROFILE_MASK; 9309 9310 write_seqlock(&fs_info->profiles_lock); 9311 if (flags & BTRFS_BLOCK_GROUP_DATA) 9312 fs_info->avail_data_alloc_bits &= ~extra_flags; 9313 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9314 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9315 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9316 fs_info->avail_system_alloc_bits &= ~extra_flags; 9317 write_sequnlock(&fs_info->profiles_lock); 9318 } 9319 9320 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9321 struct btrfs_root *root, u64 group_start) 9322 { 9323 struct btrfs_path *path; 9324 struct btrfs_block_group_cache *block_group; 9325 struct btrfs_free_cluster *cluster; 9326 struct btrfs_root *tree_root = root->fs_info->tree_root; 9327 struct btrfs_key key; 9328 struct inode *inode; 9329 struct kobject *kobj = NULL; 9330 int ret; 9331 int index; 9332 int factor; 9333 9334 root = root->fs_info->extent_root; 9335 9336 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9337 BUG_ON(!block_group); 9338 BUG_ON(!block_group->ro); 9339 9340 /* 9341 * Free the reserved super bytes from this block group before 9342 * remove it. 9343 */ 9344 free_excluded_extents(root, block_group); 9345 9346 memcpy(&key, &block_group->key, sizeof(key)); 9347 index = get_block_group_index(block_group); 9348 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9349 BTRFS_BLOCK_GROUP_RAID1 | 9350 BTRFS_BLOCK_GROUP_RAID10)) 9351 factor = 2; 9352 else 9353 factor = 1; 9354 9355 /* make sure this block group isn't part of an allocation cluster */ 9356 cluster = &root->fs_info->data_alloc_cluster; 9357 spin_lock(&cluster->refill_lock); 9358 btrfs_return_cluster_to_free_space(block_group, cluster); 9359 spin_unlock(&cluster->refill_lock); 9360 9361 /* 9362 * make sure this block group isn't part of a metadata 9363 * allocation cluster 9364 */ 9365 cluster = &root->fs_info->meta_alloc_cluster; 9366 spin_lock(&cluster->refill_lock); 9367 btrfs_return_cluster_to_free_space(block_group, cluster); 9368 spin_unlock(&cluster->refill_lock); 9369 9370 path = btrfs_alloc_path(); 9371 if (!path) { 9372 ret = -ENOMEM; 9373 goto out; 9374 } 9375 9376 inode = lookup_free_space_inode(tree_root, block_group, path); 9377 if (!IS_ERR(inode)) { 9378 ret = btrfs_orphan_add(trans, inode); 9379 if (ret) { 9380 btrfs_add_delayed_iput(inode); 9381 goto out; 9382 } 9383 clear_nlink(inode); 9384 /* One for the block groups ref */ 9385 spin_lock(&block_group->lock); 9386 if (block_group->iref) { 9387 block_group->iref = 0; 9388 block_group->inode = NULL; 9389 spin_unlock(&block_group->lock); 9390 iput(inode); 9391 } else { 9392 spin_unlock(&block_group->lock); 9393 } 9394 /* One for our lookup ref */ 9395 btrfs_add_delayed_iput(inode); 9396 } 9397 9398 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9399 key.offset = block_group->key.objectid; 9400 key.type = 0; 9401 9402 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9403 if (ret < 0) 9404 goto out; 9405 if (ret > 0) 9406 btrfs_release_path(path); 9407 if (ret == 0) { 9408 ret = btrfs_del_item(trans, tree_root, path); 9409 if (ret) 9410 goto out; 9411 btrfs_release_path(path); 9412 } 9413 9414 spin_lock(&root->fs_info->block_group_cache_lock); 9415 rb_erase(&block_group->cache_node, 9416 &root->fs_info->block_group_cache_tree); 9417 9418 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9419 root->fs_info->first_logical_byte = (u64)-1; 9420 spin_unlock(&root->fs_info->block_group_cache_lock); 9421 9422 down_write(&block_group->space_info->groups_sem); 9423 /* 9424 * we must use list_del_init so people can check to see if they 9425 * are still on the list after taking the semaphore 9426 */ 9427 list_del_init(&block_group->list); 9428 if (list_empty(&block_group->space_info->block_groups[index])) { 9429 kobj = block_group->space_info->block_group_kobjs[index]; 9430 block_group->space_info->block_group_kobjs[index] = NULL; 9431 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9432 } 9433 up_write(&block_group->space_info->groups_sem); 9434 if (kobj) { 9435 kobject_del(kobj); 9436 kobject_put(kobj); 9437 } 9438 9439 if (block_group->cached == BTRFS_CACHE_STARTED) 9440 wait_block_group_cache_done(block_group); 9441 9442 btrfs_remove_free_space_cache(block_group); 9443 9444 spin_lock(&block_group->space_info->lock); 9445 block_group->space_info->total_bytes -= block_group->key.offset; 9446 block_group->space_info->bytes_readonly -= block_group->key.offset; 9447 block_group->space_info->disk_total -= block_group->key.offset * factor; 9448 spin_unlock(&block_group->space_info->lock); 9449 9450 memcpy(&key, &block_group->key, sizeof(key)); 9451 9452 btrfs_put_block_group(block_group); 9453 btrfs_put_block_group(block_group); 9454 9455 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9456 if (ret > 0) 9457 ret = -EIO; 9458 if (ret < 0) 9459 goto out; 9460 9461 ret = btrfs_del_item(trans, root, path); 9462 out: 9463 btrfs_free_path(path); 9464 return ret; 9465 } 9466 9467 /* 9468 * Process the unused_bgs list and remove any that don't have any allocated 9469 * space inside of them. 9470 */ 9471 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9472 { 9473 struct btrfs_block_group_cache *block_group; 9474 struct btrfs_space_info *space_info; 9475 struct btrfs_root *root = fs_info->extent_root; 9476 struct btrfs_trans_handle *trans; 9477 int ret = 0; 9478 9479 if (!fs_info->open) 9480 return; 9481 9482 spin_lock(&fs_info->unused_bgs_lock); 9483 while (!list_empty(&fs_info->unused_bgs)) { 9484 u64 start, end; 9485 9486 block_group = list_first_entry(&fs_info->unused_bgs, 9487 struct btrfs_block_group_cache, 9488 bg_list); 9489 space_info = block_group->space_info; 9490 list_del_init(&block_group->bg_list); 9491 if (ret || btrfs_mixed_space_info(space_info)) { 9492 btrfs_put_block_group(block_group); 9493 continue; 9494 } 9495 spin_unlock(&fs_info->unused_bgs_lock); 9496 9497 /* Don't want to race with allocators so take the groups_sem */ 9498 down_write(&space_info->groups_sem); 9499 spin_lock(&block_group->lock); 9500 if (block_group->reserved || 9501 btrfs_block_group_used(&block_group->item) || 9502 block_group->ro) { 9503 /* 9504 * We want to bail if we made new allocations or have 9505 * outstanding allocations in this block group. We do 9506 * the ro check in case balance is currently acting on 9507 * this block group. 9508 */ 9509 spin_unlock(&block_group->lock); 9510 up_write(&space_info->groups_sem); 9511 goto next; 9512 } 9513 spin_unlock(&block_group->lock); 9514 9515 /* We don't want to force the issue, only flip if it's ok. */ 9516 ret = set_block_group_ro(block_group, 0); 9517 up_write(&space_info->groups_sem); 9518 if (ret < 0) { 9519 ret = 0; 9520 goto next; 9521 } 9522 9523 /* 9524 * Want to do this before we do anything else so we can recover 9525 * properly if we fail to join the transaction. 9526 */ 9527 trans = btrfs_join_transaction(root); 9528 if (IS_ERR(trans)) { 9529 btrfs_set_block_group_rw(root, block_group); 9530 ret = PTR_ERR(trans); 9531 goto next; 9532 } 9533 9534 /* 9535 * We could have pending pinned extents for this block group, 9536 * just delete them, we don't care about them anymore. 9537 */ 9538 start = block_group->key.objectid; 9539 end = start + block_group->key.offset - 1; 9540 clear_extent_bits(&fs_info->freed_extents[0], start, end, 9541 EXTENT_DIRTY, GFP_NOFS); 9542 clear_extent_bits(&fs_info->freed_extents[1], start, end, 9543 EXTENT_DIRTY, GFP_NOFS); 9544 9545 /* Reset pinned so btrfs_put_block_group doesn't complain */ 9546 block_group->pinned = 0; 9547 9548 /* 9549 * Btrfs_remove_chunk will abort the transaction if things go 9550 * horribly wrong. 9551 */ 9552 ret = btrfs_remove_chunk(trans, root, 9553 block_group->key.objectid); 9554 btrfs_end_transaction(trans, root); 9555 next: 9556 btrfs_put_block_group(block_group); 9557 spin_lock(&fs_info->unused_bgs_lock); 9558 } 9559 spin_unlock(&fs_info->unused_bgs_lock); 9560 } 9561 9562 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 9563 { 9564 struct btrfs_space_info *space_info; 9565 struct btrfs_super_block *disk_super; 9566 u64 features; 9567 u64 flags; 9568 int mixed = 0; 9569 int ret; 9570 9571 disk_super = fs_info->super_copy; 9572 if (!btrfs_super_root(disk_super)) 9573 return 1; 9574 9575 features = btrfs_super_incompat_flags(disk_super); 9576 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 9577 mixed = 1; 9578 9579 flags = BTRFS_BLOCK_GROUP_SYSTEM; 9580 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9581 if (ret) 9582 goto out; 9583 9584 if (mixed) { 9585 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 9586 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9587 } else { 9588 flags = BTRFS_BLOCK_GROUP_METADATA; 9589 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9590 if (ret) 9591 goto out; 9592 9593 flags = BTRFS_BLOCK_GROUP_DATA; 9594 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 9595 } 9596 out: 9597 return ret; 9598 } 9599 9600 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 9601 { 9602 return unpin_extent_range(root, start, end); 9603 } 9604 9605 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 9606 u64 num_bytes, u64 *actual_bytes) 9607 { 9608 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes); 9609 } 9610 9611 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 9612 { 9613 struct btrfs_fs_info *fs_info = root->fs_info; 9614 struct btrfs_block_group_cache *cache = NULL; 9615 u64 group_trimmed; 9616 u64 start; 9617 u64 end; 9618 u64 trimmed = 0; 9619 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 9620 int ret = 0; 9621 9622 /* 9623 * try to trim all FS space, our block group may start from non-zero. 9624 */ 9625 if (range->len == total_bytes) 9626 cache = btrfs_lookup_first_block_group(fs_info, range->start); 9627 else 9628 cache = btrfs_lookup_block_group(fs_info, range->start); 9629 9630 while (cache) { 9631 if (cache->key.objectid >= (range->start + range->len)) { 9632 btrfs_put_block_group(cache); 9633 break; 9634 } 9635 9636 start = max(range->start, cache->key.objectid); 9637 end = min(range->start + range->len, 9638 cache->key.objectid + cache->key.offset); 9639 9640 if (end - start >= range->minlen) { 9641 if (!block_group_cache_done(cache)) { 9642 ret = cache_block_group(cache, 0); 9643 if (ret) { 9644 btrfs_put_block_group(cache); 9645 break; 9646 } 9647 ret = wait_block_group_cache_done(cache); 9648 if (ret) { 9649 btrfs_put_block_group(cache); 9650 break; 9651 } 9652 } 9653 ret = btrfs_trim_block_group(cache, 9654 &group_trimmed, 9655 start, 9656 end, 9657 range->minlen); 9658 9659 trimmed += group_trimmed; 9660 if (ret) { 9661 btrfs_put_block_group(cache); 9662 break; 9663 } 9664 } 9665 9666 cache = next_block_group(fs_info->tree_root, cache); 9667 } 9668 9669 range->len = trimmed; 9670 return ret; 9671 } 9672 9673 /* 9674 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(), 9675 * they are used to prevent the some tasks writing data into the page cache 9676 * by nocow before the subvolume is snapshoted, but flush the data into 9677 * the disk after the snapshot creation. 9678 */ 9679 void btrfs_end_nocow_write(struct btrfs_root *root) 9680 { 9681 percpu_counter_dec(&root->subv_writers->counter); 9682 /* 9683 * Make sure counter is updated before we wake up 9684 * waiters. 9685 */ 9686 smp_mb(); 9687 if (waitqueue_active(&root->subv_writers->wait)) 9688 wake_up(&root->subv_writers->wait); 9689 } 9690 9691 int btrfs_start_nocow_write(struct btrfs_root *root) 9692 { 9693 if (atomic_read(&root->will_be_snapshoted)) 9694 return 0; 9695 9696 percpu_counter_inc(&root->subv_writers->counter); 9697 /* 9698 * Make sure counter is updated before we check for snapshot creation. 9699 */ 9700 smp_mb(); 9701 if (atomic_read(&root->will_be_snapshoted)) { 9702 btrfs_end_nocow_write(root); 9703 return 0; 9704 } 9705 return 1; 9706 } 9707