xref: /linux/fs/btrfs/extent-tree.c (revision 04eeb606a8383b306f4bc6991da8231b5f3924b0)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_root *root,
78 			      u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80 				struct btrfs_root *root,
81 				u64 bytenr, u64 num_bytes, u64 parent,
82 				u64 root_objectid, u64 owner_objectid,
83 				u64 owner_offset, int refs_to_drop,
84 				struct btrfs_delayed_extent_op *extra_op,
85 				int no_quota);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (cache->cached != BTRFS_CACHE_STARTED) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	/* We're loading it the fast way, so we don't have a caching_ctl. */
324 	if (!cache->caching_ctl) {
325 		spin_unlock(&cache->lock);
326 		return NULL;
327 	}
328 
329 	ctl = cache->caching_ctl;
330 	atomic_inc(&ctl->count);
331 	spin_unlock(&cache->lock);
332 	return ctl;
333 }
334 
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337 	if (atomic_dec_and_test(&ctl->count))
338 		kfree(ctl);
339 }
340 
341 /*
342  * this is only called by cache_block_group, since we could have freed extents
343  * we need to check the pinned_extents for any extents that can't be used yet
344  * since their free space will be released as soon as the transaction commits.
345  */
346 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
347 			      struct btrfs_fs_info *info, u64 start, u64 end)
348 {
349 	u64 extent_start, extent_end, size, total_added = 0;
350 	int ret;
351 
352 	while (start < end) {
353 		ret = find_first_extent_bit(info->pinned_extents, start,
354 					    &extent_start, &extent_end,
355 					    EXTENT_DIRTY | EXTENT_UPTODATE,
356 					    NULL);
357 		if (ret)
358 			break;
359 
360 		if (extent_start <= start) {
361 			start = extent_end + 1;
362 		} else if (extent_start > start && extent_start < end) {
363 			size = extent_start - start;
364 			total_added += size;
365 			ret = btrfs_add_free_space(block_group, start,
366 						   size);
367 			BUG_ON(ret); /* -ENOMEM or logic error */
368 			start = extent_end + 1;
369 		} else {
370 			break;
371 		}
372 	}
373 
374 	if (start < end) {
375 		size = end - start;
376 		total_added += size;
377 		ret = btrfs_add_free_space(block_group, start, size);
378 		BUG_ON(ret); /* -ENOMEM or logic error */
379 	}
380 
381 	return total_added;
382 }
383 
384 static noinline void caching_thread(struct btrfs_work *work)
385 {
386 	struct btrfs_block_group_cache *block_group;
387 	struct btrfs_fs_info *fs_info;
388 	struct btrfs_caching_control *caching_ctl;
389 	struct btrfs_root *extent_root;
390 	struct btrfs_path *path;
391 	struct extent_buffer *leaf;
392 	struct btrfs_key key;
393 	u64 total_found = 0;
394 	u64 last = 0;
395 	u32 nritems;
396 	int ret = -ENOMEM;
397 
398 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
399 	block_group = caching_ctl->block_group;
400 	fs_info = block_group->fs_info;
401 	extent_root = fs_info->extent_root;
402 
403 	path = btrfs_alloc_path();
404 	if (!path)
405 		goto out;
406 
407 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
408 
409 	/*
410 	 * We don't want to deadlock with somebody trying to allocate a new
411 	 * extent for the extent root while also trying to search the extent
412 	 * root to add free space.  So we skip locking and search the commit
413 	 * root, since its read-only
414 	 */
415 	path->skip_locking = 1;
416 	path->search_commit_root = 1;
417 	path->reada = 1;
418 
419 	key.objectid = last;
420 	key.offset = 0;
421 	key.type = BTRFS_EXTENT_ITEM_KEY;
422 again:
423 	mutex_lock(&caching_ctl->mutex);
424 	/* need to make sure the commit_root doesn't disappear */
425 	down_read(&fs_info->commit_root_sem);
426 
427 next:
428 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
429 	if (ret < 0)
430 		goto err;
431 
432 	leaf = path->nodes[0];
433 	nritems = btrfs_header_nritems(leaf);
434 
435 	while (1) {
436 		if (btrfs_fs_closing(fs_info) > 1) {
437 			last = (u64)-1;
438 			break;
439 		}
440 
441 		if (path->slots[0] < nritems) {
442 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
443 		} else {
444 			ret = find_next_key(path, 0, &key);
445 			if (ret)
446 				break;
447 
448 			if (need_resched() ||
449 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
450 				caching_ctl->progress = last;
451 				btrfs_release_path(path);
452 				up_read(&fs_info->commit_root_sem);
453 				mutex_unlock(&caching_ctl->mutex);
454 				cond_resched();
455 				goto again;
456 			}
457 
458 			ret = btrfs_next_leaf(extent_root, path);
459 			if (ret < 0)
460 				goto err;
461 			if (ret)
462 				break;
463 			leaf = path->nodes[0];
464 			nritems = btrfs_header_nritems(leaf);
465 			continue;
466 		}
467 
468 		if (key.objectid < last) {
469 			key.objectid = last;
470 			key.offset = 0;
471 			key.type = BTRFS_EXTENT_ITEM_KEY;
472 
473 			caching_ctl->progress = last;
474 			btrfs_release_path(path);
475 			goto next;
476 		}
477 
478 		if (key.objectid < block_group->key.objectid) {
479 			path->slots[0]++;
480 			continue;
481 		}
482 
483 		if (key.objectid >= block_group->key.objectid +
484 		    block_group->key.offset)
485 			break;
486 
487 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
488 		    key.type == BTRFS_METADATA_ITEM_KEY) {
489 			total_found += add_new_free_space(block_group,
490 							  fs_info, last,
491 							  key.objectid);
492 			if (key.type == BTRFS_METADATA_ITEM_KEY)
493 				last = key.objectid +
494 					fs_info->tree_root->nodesize;
495 			else
496 				last = key.objectid + key.offset;
497 
498 			if (total_found > (1024 * 1024 * 2)) {
499 				total_found = 0;
500 				wake_up(&caching_ctl->wait);
501 			}
502 		}
503 		path->slots[0]++;
504 	}
505 	ret = 0;
506 
507 	total_found += add_new_free_space(block_group, fs_info, last,
508 					  block_group->key.objectid +
509 					  block_group->key.offset);
510 	caching_ctl->progress = (u64)-1;
511 
512 	spin_lock(&block_group->lock);
513 	block_group->caching_ctl = NULL;
514 	block_group->cached = BTRFS_CACHE_FINISHED;
515 	spin_unlock(&block_group->lock);
516 
517 err:
518 	btrfs_free_path(path);
519 	up_read(&fs_info->commit_root_sem);
520 
521 	free_excluded_extents(extent_root, block_group);
522 
523 	mutex_unlock(&caching_ctl->mutex);
524 out:
525 	if (ret) {
526 		spin_lock(&block_group->lock);
527 		block_group->caching_ctl = NULL;
528 		block_group->cached = BTRFS_CACHE_ERROR;
529 		spin_unlock(&block_group->lock);
530 	}
531 	wake_up(&caching_ctl->wait);
532 
533 	put_caching_control(caching_ctl);
534 	btrfs_put_block_group(block_group);
535 }
536 
537 static int cache_block_group(struct btrfs_block_group_cache *cache,
538 			     int load_cache_only)
539 {
540 	DEFINE_WAIT(wait);
541 	struct btrfs_fs_info *fs_info = cache->fs_info;
542 	struct btrfs_caching_control *caching_ctl;
543 	int ret = 0;
544 
545 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
546 	if (!caching_ctl)
547 		return -ENOMEM;
548 
549 	INIT_LIST_HEAD(&caching_ctl->list);
550 	mutex_init(&caching_ctl->mutex);
551 	init_waitqueue_head(&caching_ctl->wait);
552 	caching_ctl->block_group = cache;
553 	caching_ctl->progress = cache->key.objectid;
554 	atomic_set(&caching_ctl->count, 1);
555 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
556 			caching_thread, NULL, NULL);
557 
558 	spin_lock(&cache->lock);
559 	/*
560 	 * This should be a rare occasion, but this could happen I think in the
561 	 * case where one thread starts to load the space cache info, and then
562 	 * some other thread starts a transaction commit which tries to do an
563 	 * allocation while the other thread is still loading the space cache
564 	 * info.  The previous loop should have kept us from choosing this block
565 	 * group, but if we've moved to the state where we will wait on caching
566 	 * block groups we need to first check if we're doing a fast load here,
567 	 * so we can wait for it to finish, otherwise we could end up allocating
568 	 * from a block group who's cache gets evicted for one reason or
569 	 * another.
570 	 */
571 	while (cache->cached == BTRFS_CACHE_FAST) {
572 		struct btrfs_caching_control *ctl;
573 
574 		ctl = cache->caching_ctl;
575 		atomic_inc(&ctl->count);
576 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
577 		spin_unlock(&cache->lock);
578 
579 		schedule();
580 
581 		finish_wait(&ctl->wait, &wait);
582 		put_caching_control(ctl);
583 		spin_lock(&cache->lock);
584 	}
585 
586 	if (cache->cached != BTRFS_CACHE_NO) {
587 		spin_unlock(&cache->lock);
588 		kfree(caching_ctl);
589 		return 0;
590 	}
591 	WARN_ON(cache->caching_ctl);
592 	cache->caching_ctl = caching_ctl;
593 	cache->cached = BTRFS_CACHE_FAST;
594 	spin_unlock(&cache->lock);
595 
596 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
597 		ret = load_free_space_cache(fs_info, cache);
598 
599 		spin_lock(&cache->lock);
600 		if (ret == 1) {
601 			cache->caching_ctl = NULL;
602 			cache->cached = BTRFS_CACHE_FINISHED;
603 			cache->last_byte_to_unpin = (u64)-1;
604 		} else {
605 			if (load_cache_only) {
606 				cache->caching_ctl = NULL;
607 				cache->cached = BTRFS_CACHE_NO;
608 			} else {
609 				cache->cached = BTRFS_CACHE_STARTED;
610 			}
611 		}
612 		spin_unlock(&cache->lock);
613 		wake_up(&caching_ctl->wait);
614 		if (ret == 1) {
615 			put_caching_control(caching_ctl);
616 			free_excluded_extents(fs_info->extent_root, cache);
617 			return 0;
618 		}
619 	} else {
620 		/*
621 		 * We are not going to do the fast caching, set cached to the
622 		 * appropriate value and wakeup any waiters.
623 		 */
624 		spin_lock(&cache->lock);
625 		if (load_cache_only) {
626 			cache->caching_ctl = NULL;
627 			cache->cached = BTRFS_CACHE_NO;
628 		} else {
629 			cache->cached = BTRFS_CACHE_STARTED;
630 		}
631 		spin_unlock(&cache->lock);
632 		wake_up(&caching_ctl->wait);
633 	}
634 
635 	if (load_cache_only) {
636 		put_caching_control(caching_ctl);
637 		return 0;
638 	}
639 
640 	down_write(&fs_info->commit_root_sem);
641 	atomic_inc(&caching_ctl->count);
642 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 	up_write(&fs_info->commit_root_sem);
644 
645 	btrfs_get_block_group(cache);
646 
647 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 
649 	return ret;
650 }
651 
652 /*
653  * return the block group that starts at or after bytenr
654  */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 	struct btrfs_block_group_cache *cache;
659 
660 	cache = block_group_cache_tree_search(info, bytenr, 0);
661 
662 	return cache;
663 }
664 
665 /*
666  * return the block group that contains the given bytenr
667  */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 						 struct btrfs_fs_info *info,
670 						 u64 bytenr)
671 {
672 	struct btrfs_block_group_cache *cache;
673 
674 	cache = block_group_cache_tree_search(info, bytenr, 1);
675 
676 	return cache;
677 }
678 
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 						  u64 flags)
681 {
682 	struct list_head *head = &info->space_info;
683 	struct btrfs_space_info *found;
684 
685 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 
687 	rcu_read_lock();
688 	list_for_each_entry_rcu(found, head, list) {
689 		if (found->flags & flags) {
690 			rcu_read_unlock();
691 			return found;
692 		}
693 	}
694 	rcu_read_unlock();
695 	return NULL;
696 }
697 
698 /*
699  * after adding space to the filesystem, we need to clear the full flags
700  * on all the space infos.
701  */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 	struct list_head *head = &info->space_info;
705 	struct btrfs_space_info *found;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(found, head, list)
709 		found->full = 0;
710 	rcu_read_unlock();
711 }
712 
713 /* simple helper to search for an existing extent at a given offset */
714 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 	int ret;
717 	struct btrfs_key key;
718 	struct btrfs_path *path;
719 
720 	path = btrfs_alloc_path();
721 	if (!path)
722 		return -ENOMEM;
723 
724 	key.objectid = start;
725 	key.offset = len;
726 	key.type = BTRFS_EXTENT_ITEM_KEY;
727 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 				0, 0);
729 	if (ret > 0) {
730 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
731 		if (key.objectid == start &&
732 		    key.type == BTRFS_METADATA_ITEM_KEY)
733 			ret = 0;
734 	}
735 	btrfs_free_path(path);
736 	return ret;
737 }
738 
739 /*
740  * helper function to lookup reference count and flags of a tree block.
741  *
742  * the head node for delayed ref is used to store the sum of all the
743  * reference count modifications queued up in the rbtree. the head
744  * node may also store the extent flags to set. This way you can check
745  * to see what the reference count and extent flags would be if all of
746  * the delayed refs are not processed.
747  */
748 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
749 			     struct btrfs_root *root, u64 bytenr,
750 			     u64 offset, int metadata, u64 *refs, u64 *flags)
751 {
752 	struct btrfs_delayed_ref_head *head;
753 	struct btrfs_delayed_ref_root *delayed_refs;
754 	struct btrfs_path *path;
755 	struct btrfs_extent_item *ei;
756 	struct extent_buffer *leaf;
757 	struct btrfs_key key;
758 	u32 item_size;
759 	u64 num_refs;
760 	u64 extent_flags;
761 	int ret;
762 
763 	/*
764 	 * If we don't have skinny metadata, don't bother doing anything
765 	 * different
766 	 */
767 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
768 		offset = root->nodesize;
769 		metadata = 0;
770 	}
771 
772 	path = btrfs_alloc_path();
773 	if (!path)
774 		return -ENOMEM;
775 
776 	if (!trans) {
777 		path->skip_locking = 1;
778 		path->search_commit_root = 1;
779 	}
780 
781 search_again:
782 	key.objectid = bytenr;
783 	key.offset = offset;
784 	if (metadata)
785 		key.type = BTRFS_METADATA_ITEM_KEY;
786 	else
787 		key.type = BTRFS_EXTENT_ITEM_KEY;
788 
789 again:
790 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
791 				&key, path, 0, 0);
792 	if (ret < 0)
793 		goto out_free;
794 
795 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
796 		if (path->slots[0]) {
797 			path->slots[0]--;
798 			btrfs_item_key_to_cpu(path->nodes[0], &key,
799 					      path->slots[0]);
800 			if (key.objectid == bytenr &&
801 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
802 			    key.offset == root->nodesize)
803 				ret = 0;
804 		}
805 		if (ret) {
806 			key.objectid = bytenr;
807 			key.type = BTRFS_EXTENT_ITEM_KEY;
808 			key.offset = root->nodesize;
809 			btrfs_release_path(path);
810 			goto again;
811 		}
812 	}
813 
814 	if (ret == 0) {
815 		leaf = path->nodes[0];
816 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
817 		if (item_size >= sizeof(*ei)) {
818 			ei = btrfs_item_ptr(leaf, path->slots[0],
819 					    struct btrfs_extent_item);
820 			num_refs = btrfs_extent_refs(leaf, ei);
821 			extent_flags = btrfs_extent_flags(leaf, ei);
822 		} else {
823 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
824 			struct btrfs_extent_item_v0 *ei0;
825 			BUG_ON(item_size != sizeof(*ei0));
826 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
827 					     struct btrfs_extent_item_v0);
828 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
829 			/* FIXME: this isn't correct for data */
830 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
831 #else
832 			BUG();
833 #endif
834 		}
835 		BUG_ON(num_refs == 0);
836 	} else {
837 		num_refs = 0;
838 		extent_flags = 0;
839 		ret = 0;
840 	}
841 
842 	if (!trans)
843 		goto out;
844 
845 	delayed_refs = &trans->transaction->delayed_refs;
846 	spin_lock(&delayed_refs->lock);
847 	head = btrfs_find_delayed_ref_head(trans, bytenr);
848 	if (head) {
849 		if (!mutex_trylock(&head->mutex)) {
850 			atomic_inc(&head->node.refs);
851 			spin_unlock(&delayed_refs->lock);
852 
853 			btrfs_release_path(path);
854 
855 			/*
856 			 * Mutex was contended, block until it's released and try
857 			 * again
858 			 */
859 			mutex_lock(&head->mutex);
860 			mutex_unlock(&head->mutex);
861 			btrfs_put_delayed_ref(&head->node);
862 			goto search_again;
863 		}
864 		spin_lock(&head->lock);
865 		if (head->extent_op && head->extent_op->update_flags)
866 			extent_flags |= head->extent_op->flags_to_set;
867 		else
868 			BUG_ON(num_refs == 0);
869 
870 		num_refs += head->node.ref_mod;
871 		spin_unlock(&head->lock);
872 		mutex_unlock(&head->mutex);
873 	}
874 	spin_unlock(&delayed_refs->lock);
875 out:
876 	WARN_ON(num_refs == 0);
877 	if (refs)
878 		*refs = num_refs;
879 	if (flags)
880 		*flags = extent_flags;
881 out_free:
882 	btrfs_free_path(path);
883 	return ret;
884 }
885 
886 /*
887  * Back reference rules.  Back refs have three main goals:
888  *
889  * 1) differentiate between all holders of references to an extent so that
890  *    when a reference is dropped we can make sure it was a valid reference
891  *    before freeing the extent.
892  *
893  * 2) Provide enough information to quickly find the holders of an extent
894  *    if we notice a given block is corrupted or bad.
895  *
896  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
897  *    maintenance.  This is actually the same as #2, but with a slightly
898  *    different use case.
899  *
900  * There are two kinds of back refs. The implicit back refs is optimized
901  * for pointers in non-shared tree blocks. For a given pointer in a block,
902  * back refs of this kind provide information about the block's owner tree
903  * and the pointer's key. These information allow us to find the block by
904  * b-tree searching. The full back refs is for pointers in tree blocks not
905  * referenced by their owner trees. The location of tree block is recorded
906  * in the back refs. Actually the full back refs is generic, and can be
907  * used in all cases the implicit back refs is used. The major shortcoming
908  * of the full back refs is its overhead. Every time a tree block gets
909  * COWed, we have to update back refs entry for all pointers in it.
910  *
911  * For a newly allocated tree block, we use implicit back refs for
912  * pointers in it. This means most tree related operations only involve
913  * implicit back refs. For a tree block created in old transaction, the
914  * only way to drop a reference to it is COW it. So we can detect the
915  * event that tree block loses its owner tree's reference and do the
916  * back refs conversion.
917  *
918  * When a tree block is COW'd through a tree, there are four cases:
919  *
920  * The reference count of the block is one and the tree is the block's
921  * owner tree. Nothing to do in this case.
922  *
923  * The reference count of the block is one and the tree is not the
924  * block's owner tree. In this case, full back refs is used for pointers
925  * in the block. Remove these full back refs, add implicit back refs for
926  * every pointers in the new block.
927  *
928  * The reference count of the block is greater than one and the tree is
929  * the block's owner tree. In this case, implicit back refs is used for
930  * pointers in the block. Add full back refs for every pointers in the
931  * block, increase lower level extents' reference counts. The original
932  * implicit back refs are entailed to the new block.
933  *
934  * The reference count of the block is greater than one and the tree is
935  * not the block's owner tree. Add implicit back refs for every pointer in
936  * the new block, increase lower level extents' reference count.
937  *
938  * Back Reference Key composing:
939  *
940  * The key objectid corresponds to the first byte in the extent,
941  * The key type is used to differentiate between types of back refs.
942  * There are different meanings of the key offset for different types
943  * of back refs.
944  *
945  * File extents can be referenced by:
946  *
947  * - multiple snapshots, subvolumes, or different generations in one subvol
948  * - different files inside a single subvolume
949  * - different offsets inside a file (bookend extents in file.c)
950  *
951  * The extent ref structure for the implicit back refs has fields for:
952  *
953  * - Objectid of the subvolume root
954  * - objectid of the file holding the reference
955  * - original offset in the file
956  * - how many bookend extents
957  *
958  * The key offset for the implicit back refs is hash of the first
959  * three fields.
960  *
961  * The extent ref structure for the full back refs has field for:
962  *
963  * - number of pointers in the tree leaf
964  *
965  * The key offset for the implicit back refs is the first byte of
966  * the tree leaf
967  *
968  * When a file extent is allocated, The implicit back refs is used.
969  * the fields are filled in:
970  *
971  *     (root_key.objectid, inode objectid, offset in file, 1)
972  *
973  * When a file extent is removed file truncation, we find the
974  * corresponding implicit back refs and check the following fields:
975  *
976  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
977  *
978  * Btree extents can be referenced by:
979  *
980  * - Different subvolumes
981  *
982  * Both the implicit back refs and the full back refs for tree blocks
983  * only consist of key. The key offset for the implicit back refs is
984  * objectid of block's owner tree. The key offset for the full back refs
985  * is the first byte of parent block.
986  *
987  * When implicit back refs is used, information about the lowest key and
988  * level of the tree block are required. These information are stored in
989  * tree block info structure.
990  */
991 
992 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
993 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
994 				  struct btrfs_root *root,
995 				  struct btrfs_path *path,
996 				  u64 owner, u32 extra_size)
997 {
998 	struct btrfs_extent_item *item;
999 	struct btrfs_extent_item_v0 *ei0;
1000 	struct btrfs_extent_ref_v0 *ref0;
1001 	struct btrfs_tree_block_info *bi;
1002 	struct extent_buffer *leaf;
1003 	struct btrfs_key key;
1004 	struct btrfs_key found_key;
1005 	u32 new_size = sizeof(*item);
1006 	u64 refs;
1007 	int ret;
1008 
1009 	leaf = path->nodes[0];
1010 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1011 
1012 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1013 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1014 			     struct btrfs_extent_item_v0);
1015 	refs = btrfs_extent_refs_v0(leaf, ei0);
1016 
1017 	if (owner == (u64)-1) {
1018 		while (1) {
1019 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1020 				ret = btrfs_next_leaf(root, path);
1021 				if (ret < 0)
1022 					return ret;
1023 				BUG_ON(ret > 0); /* Corruption */
1024 				leaf = path->nodes[0];
1025 			}
1026 			btrfs_item_key_to_cpu(leaf, &found_key,
1027 					      path->slots[0]);
1028 			BUG_ON(key.objectid != found_key.objectid);
1029 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1030 				path->slots[0]++;
1031 				continue;
1032 			}
1033 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1034 					      struct btrfs_extent_ref_v0);
1035 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1036 			break;
1037 		}
1038 	}
1039 	btrfs_release_path(path);
1040 
1041 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1042 		new_size += sizeof(*bi);
1043 
1044 	new_size -= sizeof(*ei0);
1045 	ret = btrfs_search_slot(trans, root, &key, path,
1046 				new_size + extra_size, 1);
1047 	if (ret < 0)
1048 		return ret;
1049 	BUG_ON(ret); /* Corruption */
1050 
1051 	btrfs_extend_item(root, path, new_size);
1052 
1053 	leaf = path->nodes[0];
1054 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1055 	btrfs_set_extent_refs(leaf, item, refs);
1056 	/* FIXME: get real generation */
1057 	btrfs_set_extent_generation(leaf, item, 0);
1058 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1059 		btrfs_set_extent_flags(leaf, item,
1060 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1061 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1062 		bi = (struct btrfs_tree_block_info *)(item + 1);
1063 		/* FIXME: get first key of the block */
1064 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1065 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1066 	} else {
1067 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1068 	}
1069 	btrfs_mark_buffer_dirty(leaf);
1070 	return 0;
1071 }
1072 #endif
1073 
1074 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1075 {
1076 	u32 high_crc = ~(u32)0;
1077 	u32 low_crc = ~(u32)0;
1078 	__le64 lenum;
1079 
1080 	lenum = cpu_to_le64(root_objectid);
1081 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1082 	lenum = cpu_to_le64(owner);
1083 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1084 	lenum = cpu_to_le64(offset);
1085 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1086 
1087 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1088 }
1089 
1090 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1091 				     struct btrfs_extent_data_ref *ref)
1092 {
1093 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1094 				    btrfs_extent_data_ref_objectid(leaf, ref),
1095 				    btrfs_extent_data_ref_offset(leaf, ref));
1096 }
1097 
1098 static int match_extent_data_ref(struct extent_buffer *leaf,
1099 				 struct btrfs_extent_data_ref *ref,
1100 				 u64 root_objectid, u64 owner, u64 offset)
1101 {
1102 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1103 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1104 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1105 		return 0;
1106 	return 1;
1107 }
1108 
1109 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1110 					   struct btrfs_root *root,
1111 					   struct btrfs_path *path,
1112 					   u64 bytenr, u64 parent,
1113 					   u64 root_objectid,
1114 					   u64 owner, u64 offset)
1115 {
1116 	struct btrfs_key key;
1117 	struct btrfs_extent_data_ref *ref;
1118 	struct extent_buffer *leaf;
1119 	u32 nritems;
1120 	int ret;
1121 	int recow;
1122 	int err = -ENOENT;
1123 
1124 	key.objectid = bytenr;
1125 	if (parent) {
1126 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1127 		key.offset = parent;
1128 	} else {
1129 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1130 		key.offset = hash_extent_data_ref(root_objectid,
1131 						  owner, offset);
1132 	}
1133 again:
1134 	recow = 0;
1135 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1136 	if (ret < 0) {
1137 		err = ret;
1138 		goto fail;
1139 	}
1140 
1141 	if (parent) {
1142 		if (!ret)
1143 			return 0;
1144 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1145 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1146 		btrfs_release_path(path);
1147 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1148 		if (ret < 0) {
1149 			err = ret;
1150 			goto fail;
1151 		}
1152 		if (!ret)
1153 			return 0;
1154 #endif
1155 		goto fail;
1156 	}
1157 
1158 	leaf = path->nodes[0];
1159 	nritems = btrfs_header_nritems(leaf);
1160 	while (1) {
1161 		if (path->slots[0] >= nritems) {
1162 			ret = btrfs_next_leaf(root, path);
1163 			if (ret < 0)
1164 				err = ret;
1165 			if (ret)
1166 				goto fail;
1167 
1168 			leaf = path->nodes[0];
1169 			nritems = btrfs_header_nritems(leaf);
1170 			recow = 1;
1171 		}
1172 
1173 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1174 		if (key.objectid != bytenr ||
1175 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1176 			goto fail;
1177 
1178 		ref = btrfs_item_ptr(leaf, path->slots[0],
1179 				     struct btrfs_extent_data_ref);
1180 
1181 		if (match_extent_data_ref(leaf, ref, root_objectid,
1182 					  owner, offset)) {
1183 			if (recow) {
1184 				btrfs_release_path(path);
1185 				goto again;
1186 			}
1187 			err = 0;
1188 			break;
1189 		}
1190 		path->slots[0]++;
1191 	}
1192 fail:
1193 	return err;
1194 }
1195 
1196 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1197 					   struct btrfs_root *root,
1198 					   struct btrfs_path *path,
1199 					   u64 bytenr, u64 parent,
1200 					   u64 root_objectid, u64 owner,
1201 					   u64 offset, int refs_to_add)
1202 {
1203 	struct btrfs_key key;
1204 	struct extent_buffer *leaf;
1205 	u32 size;
1206 	u32 num_refs;
1207 	int ret;
1208 
1209 	key.objectid = bytenr;
1210 	if (parent) {
1211 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1212 		key.offset = parent;
1213 		size = sizeof(struct btrfs_shared_data_ref);
1214 	} else {
1215 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1216 		key.offset = hash_extent_data_ref(root_objectid,
1217 						  owner, offset);
1218 		size = sizeof(struct btrfs_extent_data_ref);
1219 	}
1220 
1221 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1222 	if (ret && ret != -EEXIST)
1223 		goto fail;
1224 
1225 	leaf = path->nodes[0];
1226 	if (parent) {
1227 		struct btrfs_shared_data_ref *ref;
1228 		ref = btrfs_item_ptr(leaf, path->slots[0],
1229 				     struct btrfs_shared_data_ref);
1230 		if (ret == 0) {
1231 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1232 		} else {
1233 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1234 			num_refs += refs_to_add;
1235 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1236 		}
1237 	} else {
1238 		struct btrfs_extent_data_ref *ref;
1239 		while (ret == -EEXIST) {
1240 			ref = btrfs_item_ptr(leaf, path->slots[0],
1241 					     struct btrfs_extent_data_ref);
1242 			if (match_extent_data_ref(leaf, ref, root_objectid,
1243 						  owner, offset))
1244 				break;
1245 			btrfs_release_path(path);
1246 			key.offset++;
1247 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1248 						      size);
1249 			if (ret && ret != -EEXIST)
1250 				goto fail;
1251 
1252 			leaf = path->nodes[0];
1253 		}
1254 		ref = btrfs_item_ptr(leaf, path->slots[0],
1255 				     struct btrfs_extent_data_ref);
1256 		if (ret == 0) {
1257 			btrfs_set_extent_data_ref_root(leaf, ref,
1258 						       root_objectid);
1259 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1260 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1261 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1262 		} else {
1263 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1264 			num_refs += refs_to_add;
1265 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1266 		}
1267 	}
1268 	btrfs_mark_buffer_dirty(leaf);
1269 	ret = 0;
1270 fail:
1271 	btrfs_release_path(path);
1272 	return ret;
1273 }
1274 
1275 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1276 					   struct btrfs_root *root,
1277 					   struct btrfs_path *path,
1278 					   int refs_to_drop, int *last_ref)
1279 {
1280 	struct btrfs_key key;
1281 	struct btrfs_extent_data_ref *ref1 = NULL;
1282 	struct btrfs_shared_data_ref *ref2 = NULL;
1283 	struct extent_buffer *leaf;
1284 	u32 num_refs = 0;
1285 	int ret = 0;
1286 
1287 	leaf = path->nodes[0];
1288 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1289 
1290 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1291 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1292 				      struct btrfs_extent_data_ref);
1293 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1294 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1295 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1296 				      struct btrfs_shared_data_ref);
1297 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1298 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1299 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1300 		struct btrfs_extent_ref_v0 *ref0;
1301 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1302 				      struct btrfs_extent_ref_v0);
1303 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1304 #endif
1305 	} else {
1306 		BUG();
1307 	}
1308 
1309 	BUG_ON(num_refs < refs_to_drop);
1310 	num_refs -= refs_to_drop;
1311 
1312 	if (num_refs == 0) {
1313 		ret = btrfs_del_item(trans, root, path);
1314 		*last_ref = 1;
1315 	} else {
1316 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1317 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1318 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1319 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1320 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1321 		else {
1322 			struct btrfs_extent_ref_v0 *ref0;
1323 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1324 					struct btrfs_extent_ref_v0);
1325 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1326 		}
1327 #endif
1328 		btrfs_mark_buffer_dirty(leaf);
1329 	}
1330 	return ret;
1331 }
1332 
1333 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1334 					  struct btrfs_path *path,
1335 					  struct btrfs_extent_inline_ref *iref)
1336 {
1337 	struct btrfs_key key;
1338 	struct extent_buffer *leaf;
1339 	struct btrfs_extent_data_ref *ref1;
1340 	struct btrfs_shared_data_ref *ref2;
1341 	u32 num_refs = 0;
1342 
1343 	leaf = path->nodes[0];
1344 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1345 	if (iref) {
1346 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1347 		    BTRFS_EXTENT_DATA_REF_KEY) {
1348 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1349 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1350 		} else {
1351 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1352 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1353 		}
1354 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1355 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1356 				      struct btrfs_extent_data_ref);
1357 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1358 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1359 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1360 				      struct btrfs_shared_data_ref);
1361 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1362 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1363 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1364 		struct btrfs_extent_ref_v0 *ref0;
1365 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1366 				      struct btrfs_extent_ref_v0);
1367 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1368 #endif
1369 	} else {
1370 		WARN_ON(1);
1371 	}
1372 	return num_refs;
1373 }
1374 
1375 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1376 					  struct btrfs_root *root,
1377 					  struct btrfs_path *path,
1378 					  u64 bytenr, u64 parent,
1379 					  u64 root_objectid)
1380 {
1381 	struct btrfs_key key;
1382 	int ret;
1383 
1384 	key.objectid = bytenr;
1385 	if (parent) {
1386 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1387 		key.offset = parent;
1388 	} else {
1389 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1390 		key.offset = root_objectid;
1391 	}
1392 
1393 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1394 	if (ret > 0)
1395 		ret = -ENOENT;
1396 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1397 	if (ret == -ENOENT && parent) {
1398 		btrfs_release_path(path);
1399 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1400 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1401 		if (ret > 0)
1402 			ret = -ENOENT;
1403 	}
1404 #endif
1405 	return ret;
1406 }
1407 
1408 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1409 					  struct btrfs_root *root,
1410 					  struct btrfs_path *path,
1411 					  u64 bytenr, u64 parent,
1412 					  u64 root_objectid)
1413 {
1414 	struct btrfs_key key;
1415 	int ret;
1416 
1417 	key.objectid = bytenr;
1418 	if (parent) {
1419 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1420 		key.offset = parent;
1421 	} else {
1422 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1423 		key.offset = root_objectid;
1424 	}
1425 
1426 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1427 	btrfs_release_path(path);
1428 	return ret;
1429 }
1430 
1431 static inline int extent_ref_type(u64 parent, u64 owner)
1432 {
1433 	int type;
1434 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1435 		if (parent > 0)
1436 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1437 		else
1438 			type = BTRFS_TREE_BLOCK_REF_KEY;
1439 	} else {
1440 		if (parent > 0)
1441 			type = BTRFS_SHARED_DATA_REF_KEY;
1442 		else
1443 			type = BTRFS_EXTENT_DATA_REF_KEY;
1444 	}
1445 	return type;
1446 }
1447 
1448 static int find_next_key(struct btrfs_path *path, int level,
1449 			 struct btrfs_key *key)
1450 
1451 {
1452 	for (; level < BTRFS_MAX_LEVEL; level++) {
1453 		if (!path->nodes[level])
1454 			break;
1455 		if (path->slots[level] + 1 >=
1456 		    btrfs_header_nritems(path->nodes[level]))
1457 			continue;
1458 		if (level == 0)
1459 			btrfs_item_key_to_cpu(path->nodes[level], key,
1460 					      path->slots[level] + 1);
1461 		else
1462 			btrfs_node_key_to_cpu(path->nodes[level], key,
1463 					      path->slots[level] + 1);
1464 		return 0;
1465 	}
1466 	return 1;
1467 }
1468 
1469 /*
1470  * look for inline back ref. if back ref is found, *ref_ret is set
1471  * to the address of inline back ref, and 0 is returned.
1472  *
1473  * if back ref isn't found, *ref_ret is set to the address where it
1474  * should be inserted, and -ENOENT is returned.
1475  *
1476  * if insert is true and there are too many inline back refs, the path
1477  * points to the extent item, and -EAGAIN is returned.
1478  *
1479  * NOTE: inline back refs are ordered in the same way that back ref
1480  *	 items in the tree are ordered.
1481  */
1482 static noinline_for_stack
1483 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1484 				 struct btrfs_root *root,
1485 				 struct btrfs_path *path,
1486 				 struct btrfs_extent_inline_ref **ref_ret,
1487 				 u64 bytenr, u64 num_bytes,
1488 				 u64 parent, u64 root_objectid,
1489 				 u64 owner, u64 offset, int insert)
1490 {
1491 	struct btrfs_key key;
1492 	struct extent_buffer *leaf;
1493 	struct btrfs_extent_item *ei;
1494 	struct btrfs_extent_inline_ref *iref;
1495 	u64 flags;
1496 	u64 item_size;
1497 	unsigned long ptr;
1498 	unsigned long end;
1499 	int extra_size;
1500 	int type;
1501 	int want;
1502 	int ret;
1503 	int err = 0;
1504 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1505 						 SKINNY_METADATA);
1506 
1507 	key.objectid = bytenr;
1508 	key.type = BTRFS_EXTENT_ITEM_KEY;
1509 	key.offset = num_bytes;
1510 
1511 	want = extent_ref_type(parent, owner);
1512 	if (insert) {
1513 		extra_size = btrfs_extent_inline_ref_size(want);
1514 		path->keep_locks = 1;
1515 	} else
1516 		extra_size = -1;
1517 
1518 	/*
1519 	 * Owner is our parent level, so we can just add one to get the level
1520 	 * for the block we are interested in.
1521 	 */
1522 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1523 		key.type = BTRFS_METADATA_ITEM_KEY;
1524 		key.offset = owner;
1525 	}
1526 
1527 again:
1528 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1529 	if (ret < 0) {
1530 		err = ret;
1531 		goto out;
1532 	}
1533 
1534 	/*
1535 	 * We may be a newly converted file system which still has the old fat
1536 	 * extent entries for metadata, so try and see if we have one of those.
1537 	 */
1538 	if (ret > 0 && skinny_metadata) {
1539 		skinny_metadata = false;
1540 		if (path->slots[0]) {
1541 			path->slots[0]--;
1542 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1543 					      path->slots[0]);
1544 			if (key.objectid == bytenr &&
1545 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1546 			    key.offset == num_bytes)
1547 				ret = 0;
1548 		}
1549 		if (ret) {
1550 			key.objectid = bytenr;
1551 			key.type = BTRFS_EXTENT_ITEM_KEY;
1552 			key.offset = num_bytes;
1553 			btrfs_release_path(path);
1554 			goto again;
1555 		}
1556 	}
1557 
1558 	if (ret && !insert) {
1559 		err = -ENOENT;
1560 		goto out;
1561 	} else if (WARN_ON(ret)) {
1562 		err = -EIO;
1563 		goto out;
1564 	}
1565 
1566 	leaf = path->nodes[0];
1567 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1569 	if (item_size < sizeof(*ei)) {
1570 		if (!insert) {
1571 			err = -ENOENT;
1572 			goto out;
1573 		}
1574 		ret = convert_extent_item_v0(trans, root, path, owner,
1575 					     extra_size);
1576 		if (ret < 0) {
1577 			err = ret;
1578 			goto out;
1579 		}
1580 		leaf = path->nodes[0];
1581 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1582 	}
1583 #endif
1584 	BUG_ON(item_size < sizeof(*ei));
1585 
1586 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1587 	flags = btrfs_extent_flags(leaf, ei);
1588 
1589 	ptr = (unsigned long)(ei + 1);
1590 	end = (unsigned long)ei + item_size;
1591 
1592 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1593 		ptr += sizeof(struct btrfs_tree_block_info);
1594 		BUG_ON(ptr > end);
1595 	}
1596 
1597 	err = -ENOENT;
1598 	while (1) {
1599 		if (ptr >= end) {
1600 			WARN_ON(ptr > end);
1601 			break;
1602 		}
1603 		iref = (struct btrfs_extent_inline_ref *)ptr;
1604 		type = btrfs_extent_inline_ref_type(leaf, iref);
1605 		if (want < type)
1606 			break;
1607 		if (want > type) {
1608 			ptr += btrfs_extent_inline_ref_size(type);
1609 			continue;
1610 		}
1611 
1612 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1613 			struct btrfs_extent_data_ref *dref;
1614 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1615 			if (match_extent_data_ref(leaf, dref, root_objectid,
1616 						  owner, offset)) {
1617 				err = 0;
1618 				break;
1619 			}
1620 			if (hash_extent_data_ref_item(leaf, dref) <
1621 			    hash_extent_data_ref(root_objectid, owner, offset))
1622 				break;
1623 		} else {
1624 			u64 ref_offset;
1625 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1626 			if (parent > 0) {
1627 				if (parent == ref_offset) {
1628 					err = 0;
1629 					break;
1630 				}
1631 				if (ref_offset < parent)
1632 					break;
1633 			} else {
1634 				if (root_objectid == ref_offset) {
1635 					err = 0;
1636 					break;
1637 				}
1638 				if (ref_offset < root_objectid)
1639 					break;
1640 			}
1641 		}
1642 		ptr += btrfs_extent_inline_ref_size(type);
1643 	}
1644 	if (err == -ENOENT && insert) {
1645 		if (item_size + extra_size >=
1646 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1647 			err = -EAGAIN;
1648 			goto out;
1649 		}
1650 		/*
1651 		 * To add new inline back ref, we have to make sure
1652 		 * there is no corresponding back ref item.
1653 		 * For simplicity, we just do not add new inline back
1654 		 * ref if there is any kind of item for this block
1655 		 */
1656 		if (find_next_key(path, 0, &key) == 0 &&
1657 		    key.objectid == bytenr &&
1658 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1659 			err = -EAGAIN;
1660 			goto out;
1661 		}
1662 	}
1663 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1664 out:
1665 	if (insert) {
1666 		path->keep_locks = 0;
1667 		btrfs_unlock_up_safe(path, 1);
1668 	}
1669 	return err;
1670 }
1671 
1672 /*
1673  * helper to add new inline back ref
1674  */
1675 static noinline_for_stack
1676 void setup_inline_extent_backref(struct btrfs_root *root,
1677 				 struct btrfs_path *path,
1678 				 struct btrfs_extent_inline_ref *iref,
1679 				 u64 parent, u64 root_objectid,
1680 				 u64 owner, u64 offset, int refs_to_add,
1681 				 struct btrfs_delayed_extent_op *extent_op)
1682 {
1683 	struct extent_buffer *leaf;
1684 	struct btrfs_extent_item *ei;
1685 	unsigned long ptr;
1686 	unsigned long end;
1687 	unsigned long item_offset;
1688 	u64 refs;
1689 	int size;
1690 	int type;
1691 
1692 	leaf = path->nodes[0];
1693 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1694 	item_offset = (unsigned long)iref - (unsigned long)ei;
1695 
1696 	type = extent_ref_type(parent, owner);
1697 	size = btrfs_extent_inline_ref_size(type);
1698 
1699 	btrfs_extend_item(root, path, size);
1700 
1701 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 	refs = btrfs_extent_refs(leaf, ei);
1703 	refs += refs_to_add;
1704 	btrfs_set_extent_refs(leaf, ei, refs);
1705 	if (extent_op)
1706 		__run_delayed_extent_op(extent_op, leaf, ei);
1707 
1708 	ptr = (unsigned long)ei + item_offset;
1709 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1710 	if (ptr < end - size)
1711 		memmove_extent_buffer(leaf, ptr + size, ptr,
1712 				      end - size - ptr);
1713 
1714 	iref = (struct btrfs_extent_inline_ref *)ptr;
1715 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1716 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1717 		struct btrfs_extent_data_ref *dref;
1718 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1719 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1720 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1721 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1722 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1723 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 		struct btrfs_shared_data_ref *sref;
1725 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1726 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1727 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1728 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1729 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1730 	} else {
1731 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1732 	}
1733 	btrfs_mark_buffer_dirty(leaf);
1734 }
1735 
1736 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1737 				 struct btrfs_root *root,
1738 				 struct btrfs_path *path,
1739 				 struct btrfs_extent_inline_ref **ref_ret,
1740 				 u64 bytenr, u64 num_bytes, u64 parent,
1741 				 u64 root_objectid, u64 owner, u64 offset)
1742 {
1743 	int ret;
1744 
1745 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1746 					   bytenr, num_bytes, parent,
1747 					   root_objectid, owner, offset, 0);
1748 	if (ret != -ENOENT)
1749 		return ret;
1750 
1751 	btrfs_release_path(path);
1752 	*ref_ret = NULL;
1753 
1754 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1755 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1756 					    root_objectid);
1757 	} else {
1758 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1759 					     root_objectid, owner, offset);
1760 	}
1761 	return ret;
1762 }
1763 
1764 /*
1765  * helper to update/remove inline back ref
1766  */
1767 static noinline_for_stack
1768 void update_inline_extent_backref(struct btrfs_root *root,
1769 				  struct btrfs_path *path,
1770 				  struct btrfs_extent_inline_ref *iref,
1771 				  int refs_to_mod,
1772 				  struct btrfs_delayed_extent_op *extent_op,
1773 				  int *last_ref)
1774 {
1775 	struct extent_buffer *leaf;
1776 	struct btrfs_extent_item *ei;
1777 	struct btrfs_extent_data_ref *dref = NULL;
1778 	struct btrfs_shared_data_ref *sref = NULL;
1779 	unsigned long ptr;
1780 	unsigned long end;
1781 	u32 item_size;
1782 	int size;
1783 	int type;
1784 	u64 refs;
1785 
1786 	leaf = path->nodes[0];
1787 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1788 	refs = btrfs_extent_refs(leaf, ei);
1789 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1790 	refs += refs_to_mod;
1791 	btrfs_set_extent_refs(leaf, ei, refs);
1792 	if (extent_op)
1793 		__run_delayed_extent_op(extent_op, leaf, ei);
1794 
1795 	type = btrfs_extent_inline_ref_type(leaf, iref);
1796 
1797 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1798 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1799 		refs = btrfs_extent_data_ref_count(leaf, dref);
1800 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1801 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1802 		refs = btrfs_shared_data_ref_count(leaf, sref);
1803 	} else {
1804 		refs = 1;
1805 		BUG_ON(refs_to_mod != -1);
1806 	}
1807 
1808 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1809 	refs += refs_to_mod;
1810 
1811 	if (refs > 0) {
1812 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1813 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1814 		else
1815 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1816 	} else {
1817 		*last_ref = 1;
1818 		size =  btrfs_extent_inline_ref_size(type);
1819 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1820 		ptr = (unsigned long)iref;
1821 		end = (unsigned long)ei + item_size;
1822 		if (ptr + size < end)
1823 			memmove_extent_buffer(leaf, ptr, ptr + size,
1824 					      end - ptr - size);
1825 		item_size -= size;
1826 		btrfs_truncate_item(root, path, item_size, 1);
1827 	}
1828 	btrfs_mark_buffer_dirty(leaf);
1829 }
1830 
1831 static noinline_for_stack
1832 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1833 				 struct btrfs_root *root,
1834 				 struct btrfs_path *path,
1835 				 u64 bytenr, u64 num_bytes, u64 parent,
1836 				 u64 root_objectid, u64 owner,
1837 				 u64 offset, int refs_to_add,
1838 				 struct btrfs_delayed_extent_op *extent_op)
1839 {
1840 	struct btrfs_extent_inline_ref *iref;
1841 	int ret;
1842 
1843 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1844 					   bytenr, num_bytes, parent,
1845 					   root_objectid, owner, offset, 1);
1846 	if (ret == 0) {
1847 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1848 		update_inline_extent_backref(root, path, iref,
1849 					     refs_to_add, extent_op, NULL);
1850 	} else if (ret == -ENOENT) {
1851 		setup_inline_extent_backref(root, path, iref, parent,
1852 					    root_objectid, owner, offset,
1853 					    refs_to_add, extent_op);
1854 		ret = 0;
1855 	}
1856 	return ret;
1857 }
1858 
1859 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1860 				 struct btrfs_root *root,
1861 				 struct btrfs_path *path,
1862 				 u64 bytenr, u64 parent, u64 root_objectid,
1863 				 u64 owner, u64 offset, int refs_to_add)
1864 {
1865 	int ret;
1866 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1867 		BUG_ON(refs_to_add != 1);
1868 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1869 					    parent, root_objectid);
1870 	} else {
1871 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1872 					     parent, root_objectid,
1873 					     owner, offset, refs_to_add);
1874 	}
1875 	return ret;
1876 }
1877 
1878 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1879 				 struct btrfs_root *root,
1880 				 struct btrfs_path *path,
1881 				 struct btrfs_extent_inline_ref *iref,
1882 				 int refs_to_drop, int is_data, int *last_ref)
1883 {
1884 	int ret = 0;
1885 
1886 	BUG_ON(!is_data && refs_to_drop != 1);
1887 	if (iref) {
1888 		update_inline_extent_backref(root, path, iref,
1889 					     -refs_to_drop, NULL, last_ref);
1890 	} else if (is_data) {
1891 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1892 					     last_ref);
1893 	} else {
1894 		*last_ref = 1;
1895 		ret = btrfs_del_item(trans, root, path);
1896 	}
1897 	return ret;
1898 }
1899 
1900 static int btrfs_issue_discard(struct block_device *bdev,
1901 				u64 start, u64 len)
1902 {
1903 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1904 }
1905 
1906 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1907 				u64 num_bytes, u64 *actual_bytes)
1908 {
1909 	int ret;
1910 	u64 discarded_bytes = 0;
1911 	struct btrfs_bio *bbio = NULL;
1912 
1913 
1914 	/* Tell the block device(s) that the sectors can be discarded */
1915 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1916 			      bytenr, &num_bytes, &bbio, 0);
1917 	/* Error condition is -ENOMEM */
1918 	if (!ret) {
1919 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1920 		int i;
1921 
1922 
1923 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1924 			if (!stripe->dev->can_discard)
1925 				continue;
1926 
1927 			ret = btrfs_issue_discard(stripe->dev->bdev,
1928 						  stripe->physical,
1929 						  stripe->length);
1930 			if (!ret)
1931 				discarded_bytes += stripe->length;
1932 			else if (ret != -EOPNOTSUPP)
1933 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1934 
1935 			/*
1936 			 * Just in case we get back EOPNOTSUPP for some reason,
1937 			 * just ignore the return value so we don't screw up
1938 			 * people calling discard_extent.
1939 			 */
1940 			ret = 0;
1941 		}
1942 		kfree(bbio);
1943 	}
1944 
1945 	if (actual_bytes)
1946 		*actual_bytes = discarded_bytes;
1947 
1948 
1949 	if (ret == -EOPNOTSUPP)
1950 		ret = 0;
1951 	return ret;
1952 }
1953 
1954 /* Can return -ENOMEM */
1955 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1956 			 struct btrfs_root *root,
1957 			 u64 bytenr, u64 num_bytes, u64 parent,
1958 			 u64 root_objectid, u64 owner, u64 offset,
1959 			 int no_quota)
1960 {
1961 	int ret;
1962 	struct btrfs_fs_info *fs_info = root->fs_info;
1963 
1964 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1965 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1966 
1967 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1968 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1969 					num_bytes,
1970 					parent, root_objectid, (int)owner,
1971 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1972 	} else {
1973 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1974 					num_bytes,
1975 					parent, root_objectid, owner, offset,
1976 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1977 	}
1978 	return ret;
1979 }
1980 
1981 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1982 				  struct btrfs_root *root,
1983 				  u64 bytenr, u64 num_bytes,
1984 				  u64 parent, u64 root_objectid,
1985 				  u64 owner, u64 offset, int refs_to_add,
1986 				  int no_quota,
1987 				  struct btrfs_delayed_extent_op *extent_op)
1988 {
1989 	struct btrfs_fs_info *fs_info = root->fs_info;
1990 	struct btrfs_path *path;
1991 	struct extent_buffer *leaf;
1992 	struct btrfs_extent_item *item;
1993 	struct btrfs_key key;
1994 	u64 refs;
1995 	int ret;
1996 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
1997 
1998 	path = btrfs_alloc_path();
1999 	if (!path)
2000 		return -ENOMEM;
2001 
2002 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2003 		no_quota = 1;
2004 
2005 	path->reada = 1;
2006 	path->leave_spinning = 1;
2007 	/* this will setup the path even if it fails to insert the back ref */
2008 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2009 					   bytenr, num_bytes, parent,
2010 					   root_objectid, owner, offset,
2011 					   refs_to_add, extent_op);
2012 	if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
2013 		goto out;
2014 	/*
2015 	 * Ok we were able to insert an inline extent and it appears to be a new
2016 	 * reference, deal with the qgroup accounting.
2017 	 */
2018 	if (!ret && !no_quota) {
2019 		ASSERT(root->fs_info->quota_enabled);
2020 		leaf = path->nodes[0];
2021 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2022 		item = btrfs_item_ptr(leaf, path->slots[0],
2023 				      struct btrfs_extent_item);
2024 		if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2025 			type = BTRFS_QGROUP_OPER_ADD_SHARED;
2026 		btrfs_release_path(path);
2027 
2028 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2029 					      bytenr, num_bytes, type, 0);
2030 		goto out;
2031 	}
2032 
2033 	/*
2034 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2035 	 * inline extent ref, so just update the reference count and add a
2036 	 * normal backref.
2037 	 */
2038 	leaf = path->nodes[0];
2039 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2040 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2041 	refs = btrfs_extent_refs(leaf, item);
2042 	if (refs)
2043 		type = BTRFS_QGROUP_OPER_ADD_SHARED;
2044 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2045 	if (extent_op)
2046 		__run_delayed_extent_op(extent_op, leaf, item);
2047 
2048 	btrfs_mark_buffer_dirty(leaf);
2049 	btrfs_release_path(path);
2050 
2051 	if (!no_quota) {
2052 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2053 					      bytenr, num_bytes, type, 0);
2054 		if (ret)
2055 			goto out;
2056 	}
2057 
2058 	path->reada = 1;
2059 	path->leave_spinning = 1;
2060 	/* now insert the actual backref */
2061 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2062 				    path, bytenr, parent, root_objectid,
2063 				    owner, offset, refs_to_add);
2064 	if (ret)
2065 		btrfs_abort_transaction(trans, root, ret);
2066 out:
2067 	btrfs_free_path(path);
2068 	return ret;
2069 }
2070 
2071 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2072 				struct btrfs_root *root,
2073 				struct btrfs_delayed_ref_node *node,
2074 				struct btrfs_delayed_extent_op *extent_op,
2075 				int insert_reserved)
2076 {
2077 	int ret = 0;
2078 	struct btrfs_delayed_data_ref *ref;
2079 	struct btrfs_key ins;
2080 	u64 parent = 0;
2081 	u64 ref_root = 0;
2082 	u64 flags = 0;
2083 
2084 	ins.objectid = node->bytenr;
2085 	ins.offset = node->num_bytes;
2086 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2087 
2088 	ref = btrfs_delayed_node_to_data_ref(node);
2089 	trace_run_delayed_data_ref(node, ref, node->action);
2090 
2091 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2092 		parent = ref->parent;
2093 	ref_root = ref->root;
2094 
2095 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2096 		if (extent_op)
2097 			flags |= extent_op->flags_to_set;
2098 		ret = alloc_reserved_file_extent(trans, root,
2099 						 parent, ref_root, flags,
2100 						 ref->objectid, ref->offset,
2101 						 &ins, node->ref_mod);
2102 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2103 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2104 					     node->num_bytes, parent,
2105 					     ref_root, ref->objectid,
2106 					     ref->offset, node->ref_mod,
2107 					     node->no_quota, extent_op);
2108 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2109 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2110 					  node->num_bytes, parent,
2111 					  ref_root, ref->objectid,
2112 					  ref->offset, node->ref_mod,
2113 					  extent_op, node->no_quota);
2114 	} else {
2115 		BUG();
2116 	}
2117 	return ret;
2118 }
2119 
2120 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2121 				    struct extent_buffer *leaf,
2122 				    struct btrfs_extent_item *ei)
2123 {
2124 	u64 flags = btrfs_extent_flags(leaf, ei);
2125 	if (extent_op->update_flags) {
2126 		flags |= extent_op->flags_to_set;
2127 		btrfs_set_extent_flags(leaf, ei, flags);
2128 	}
2129 
2130 	if (extent_op->update_key) {
2131 		struct btrfs_tree_block_info *bi;
2132 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2133 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2134 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2135 	}
2136 }
2137 
2138 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2139 				 struct btrfs_root *root,
2140 				 struct btrfs_delayed_ref_node *node,
2141 				 struct btrfs_delayed_extent_op *extent_op)
2142 {
2143 	struct btrfs_key key;
2144 	struct btrfs_path *path;
2145 	struct btrfs_extent_item *ei;
2146 	struct extent_buffer *leaf;
2147 	u32 item_size;
2148 	int ret;
2149 	int err = 0;
2150 	int metadata = !extent_op->is_data;
2151 
2152 	if (trans->aborted)
2153 		return 0;
2154 
2155 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2156 		metadata = 0;
2157 
2158 	path = btrfs_alloc_path();
2159 	if (!path)
2160 		return -ENOMEM;
2161 
2162 	key.objectid = node->bytenr;
2163 
2164 	if (metadata) {
2165 		key.type = BTRFS_METADATA_ITEM_KEY;
2166 		key.offset = extent_op->level;
2167 	} else {
2168 		key.type = BTRFS_EXTENT_ITEM_KEY;
2169 		key.offset = node->num_bytes;
2170 	}
2171 
2172 again:
2173 	path->reada = 1;
2174 	path->leave_spinning = 1;
2175 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2176 				path, 0, 1);
2177 	if (ret < 0) {
2178 		err = ret;
2179 		goto out;
2180 	}
2181 	if (ret > 0) {
2182 		if (metadata) {
2183 			if (path->slots[0] > 0) {
2184 				path->slots[0]--;
2185 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2186 						      path->slots[0]);
2187 				if (key.objectid == node->bytenr &&
2188 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2189 				    key.offset == node->num_bytes)
2190 					ret = 0;
2191 			}
2192 			if (ret > 0) {
2193 				btrfs_release_path(path);
2194 				metadata = 0;
2195 
2196 				key.objectid = node->bytenr;
2197 				key.offset = node->num_bytes;
2198 				key.type = BTRFS_EXTENT_ITEM_KEY;
2199 				goto again;
2200 			}
2201 		} else {
2202 			err = -EIO;
2203 			goto out;
2204 		}
2205 	}
2206 
2207 	leaf = path->nodes[0];
2208 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2210 	if (item_size < sizeof(*ei)) {
2211 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2212 					     path, (u64)-1, 0);
2213 		if (ret < 0) {
2214 			err = ret;
2215 			goto out;
2216 		}
2217 		leaf = path->nodes[0];
2218 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2219 	}
2220 #endif
2221 	BUG_ON(item_size < sizeof(*ei));
2222 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2223 	__run_delayed_extent_op(extent_op, leaf, ei);
2224 
2225 	btrfs_mark_buffer_dirty(leaf);
2226 out:
2227 	btrfs_free_path(path);
2228 	return err;
2229 }
2230 
2231 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2232 				struct btrfs_root *root,
2233 				struct btrfs_delayed_ref_node *node,
2234 				struct btrfs_delayed_extent_op *extent_op,
2235 				int insert_reserved)
2236 {
2237 	int ret = 0;
2238 	struct btrfs_delayed_tree_ref *ref;
2239 	struct btrfs_key ins;
2240 	u64 parent = 0;
2241 	u64 ref_root = 0;
2242 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2243 						 SKINNY_METADATA);
2244 
2245 	ref = btrfs_delayed_node_to_tree_ref(node);
2246 	trace_run_delayed_tree_ref(node, ref, node->action);
2247 
2248 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2249 		parent = ref->parent;
2250 	ref_root = ref->root;
2251 
2252 	ins.objectid = node->bytenr;
2253 	if (skinny_metadata) {
2254 		ins.offset = ref->level;
2255 		ins.type = BTRFS_METADATA_ITEM_KEY;
2256 	} else {
2257 		ins.offset = node->num_bytes;
2258 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2259 	}
2260 
2261 	BUG_ON(node->ref_mod != 1);
2262 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2263 		BUG_ON(!extent_op || !extent_op->update_flags);
2264 		ret = alloc_reserved_tree_block(trans, root,
2265 						parent, ref_root,
2266 						extent_op->flags_to_set,
2267 						&extent_op->key,
2268 						ref->level, &ins,
2269 						node->no_quota);
2270 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2271 		ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2272 					     node->num_bytes, parent, ref_root,
2273 					     ref->level, 0, 1, node->no_quota,
2274 					     extent_op);
2275 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2276 		ret = __btrfs_free_extent(trans, root, node->bytenr,
2277 					  node->num_bytes, parent, ref_root,
2278 					  ref->level, 0, 1, extent_op,
2279 					  node->no_quota);
2280 	} else {
2281 		BUG();
2282 	}
2283 	return ret;
2284 }
2285 
2286 /* helper function to actually process a single delayed ref entry */
2287 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2288 			       struct btrfs_root *root,
2289 			       struct btrfs_delayed_ref_node *node,
2290 			       struct btrfs_delayed_extent_op *extent_op,
2291 			       int insert_reserved)
2292 {
2293 	int ret = 0;
2294 
2295 	if (trans->aborted) {
2296 		if (insert_reserved)
2297 			btrfs_pin_extent(root, node->bytenr,
2298 					 node->num_bytes, 1);
2299 		return 0;
2300 	}
2301 
2302 	if (btrfs_delayed_ref_is_head(node)) {
2303 		struct btrfs_delayed_ref_head *head;
2304 		/*
2305 		 * we've hit the end of the chain and we were supposed
2306 		 * to insert this extent into the tree.  But, it got
2307 		 * deleted before we ever needed to insert it, so all
2308 		 * we have to do is clean up the accounting
2309 		 */
2310 		BUG_ON(extent_op);
2311 		head = btrfs_delayed_node_to_head(node);
2312 		trace_run_delayed_ref_head(node, head, node->action);
2313 
2314 		if (insert_reserved) {
2315 			btrfs_pin_extent(root, node->bytenr,
2316 					 node->num_bytes, 1);
2317 			if (head->is_data) {
2318 				ret = btrfs_del_csums(trans, root,
2319 						      node->bytenr,
2320 						      node->num_bytes);
2321 			}
2322 		}
2323 		return ret;
2324 	}
2325 
2326 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2327 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2328 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2329 					   insert_reserved);
2330 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2331 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2332 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2333 					   insert_reserved);
2334 	else
2335 		BUG();
2336 	return ret;
2337 }
2338 
2339 static noinline struct btrfs_delayed_ref_node *
2340 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2341 {
2342 	struct rb_node *node;
2343 	struct btrfs_delayed_ref_node *ref, *last = NULL;;
2344 
2345 	/*
2346 	 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2347 	 * this prevents ref count from going down to zero when
2348 	 * there still are pending delayed ref.
2349 	 */
2350 	node = rb_first(&head->ref_root);
2351 	while (node) {
2352 		ref = rb_entry(node, struct btrfs_delayed_ref_node,
2353 				rb_node);
2354 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2355 			return ref;
2356 		else if (last == NULL)
2357 			last = ref;
2358 		node = rb_next(node);
2359 	}
2360 	return last;
2361 }
2362 
2363 /*
2364  * Returns 0 on success or if called with an already aborted transaction.
2365  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2366  */
2367 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2368 					     struct btrfs_root *root,
2369 					     unsigned long nr)
2370 {
2371 	struct btrfs_delayed_ref_root *delayed_refs;
2372 	struct btrfs_delayed_ref_node *ref;
2373 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2374 	struct btrfs_delayed_extent_op *extent_op;
2375 	struct btrfs_fs_info *fs_info = root->fs_info;
2376 	ktime_t start = ktime_get();
2377 	int ret;
2378 	unsigned long count = 0;
2379 	unsigned long actual_count = 0;
2380 	int must_insert_reserved = 0;
2381 
2382 	delayed_refs = &trans->transaction->delayed_refs;
2383 	while (1) {
2384 		if (!locked_ref) {
2385 			if (count >= nr)
2386 				break;
2387 
2388 			spin_lock(&delayed_refs->lock);
2389 			locked_ref = btrfs_select_ref_head(trans);
2390 			if (!locked_ref) {
2391 				spin_unlock(&delayed_refs->lock);
2392 				break;
2393 			}
2394 
2395 			/* grab the lock that says we are going to process
2396 			 * all the refs for this head */
2397 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2398 			spin_unlock(&delayed_refs->lock);
2399 			/*
2400 			 * we may have dropped the spin lock to get the head
2401 			 * mutex lock, and that might have given someone else
2402 			 * time to free the head.  If that's true, it has been
2403 			 * removed from our list and we can move on.
2404 			 */
2405 			if (ret == -EAGAIN) {
2406 				locked_ref = NULL;
2407 				count++;
2408 				continue;
2409 			}
2410 		}
2411 
2412 		/*
2413 		 * We need to try and merge add/drops of the same ref since we
2414 		 * can run into issues with relocate dropping the implicit ref
2415 		 * and then it being added back again before the drop can
2416 		 * finish.  If we merged anything we need to re-loop so we can
2417 		 * get a good ref.
2418 		 */
2419 		spin_lock(&locked_ref->lock);
2420 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2421 					 locked_ref);
2422 
2423 		/*
2424 		 * locked_ref is the head node, so we have to go one
2425 		 * node back for any delayed ref updates
2426 		 */
2427 		ref = select_delayed_ref(locked_ref);
2428 
2429 		if (ref && ref->seq &&
2430 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2431 			spin_unlock(&locked_ref->lock);
2432 			btrfs_delayed_ref_unlock(locked_ref);
2433 			spin_lock(&delayed_refs->lock);
2434 			locked_ref->processing = 0;
2435 			delayed_refs->num_heads_ready++;
2436 			spin_unlock(&delayed_refs->lock);
2437 			locked_ref = NULL;
2438 			cond_resched();
2439 			count++;
2440 			continue;
2441 		}
2442 
2443 		/*
2444 		 * record the must insert reserved flag before we
2445 		 * drop the spin lock.
2446 		 */
2447 		must_insert_reserved = locked_ref->must_insert_reserved;
2448 		locked_ref->must_insert_reserved = 0;
2449 
2450 		extent_op = locked_ref->extent_op;
2451 		locked_ref->extent_op = NULL;
2452 
2453 		if (!ref) {
2454 
2455 
2456 			/* All delayed refs have been processed, Go ahead
2457 			 * and send the head node to run_one_delayed_ref,
2458 			 * so that any accounting fixes can happen
2459 			 */
2460 			ref = &locked_ref->node;
2461 
2462 			if (extent_op && must_insert_reserved) {
2463 				btrfs_free_delayed_extent_op(extent_op);
2464 				extent_op = NULL;
2465 			}
2466 
2467 			if (extent_op) {
2468 				spin_unlock(&locked_ref->lock);
2469 				ret = run_delayed_extent_op(trans, root,
2470 							    ref, extent_op);
2471 				btrfs_free_delayed_extent_op(extent_op);
2472 
2473 				if (ret) {
2474 					/*
2475 					 * Need to reset must_insert_reserved if
2476 					 * there was an error so the abort stuff
2477 					 * can cleanup the reserved space
2478 					 * properly.
2479 					 */
2480 					if (must_insert_reserved)
2481 						locked_ref->must_insert_reserved = 1;
2482 					locked_ref->processing = 0;
2483 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2484 					btrfs_delayed_ref_unlock(locked_ref);
2485 					return ret;
2486 				}
2487 				continue;
2488 			}
2489 
2490 			/*
2491 			 * Need to drop our head ref lock and re-aqcuire the
2492 			 * delayed ref lock and then re-check to make sure
2493 			 * nobody got added.
2494 			 */
2495 			spin_unlock(&locked_ref->lock);
2496 			spin_lock(&delayed_refs->lock);
2497 			spin_lock(&locked_ref->lock);
2498 			if (rb_first(&locked_ref->ref_root) ||
2499 			    locked_ref->extent_op) {
2500 				spin_unlock(&locked_ref->lock);
2501 				spin_unlock(&delayed_refs->lock);
2502 				continue;
2503 			}
2504 			ref->in_tree = 0;
2505 			delayed_refs->num_heads--;
2506 			rb_erase(&locked_ref->href_node,
2507 				 &delayed_refs->href_root);
2508 			spin_unlock(&delayed_refs->lock);
2509 		} else {
2510 			actual_count++;
2511 			ref->in_tree = 0;
2512 			rb_erase(&ref->rb_node, &locked_ref->ref_root);
2513 		}
2514 		atomic_dec(&delayed_refs->num_entries);
2515 
2516 		if (!btrfs_delayed_ref_is_head(ref)) {
2517 			/*
2518 			 * when we play the delayed ref, also correct the
2519 			 * ref_mod on head
2520 			 */
2521 			switch (ref->action) {
2522 			case BTRFS_ADD_DELAYED_REF:
2523 			case BTRFS_ADD_DELAYED_EXTENT:
2524 				locked_ref->node.ref_mod -= ref->ref_mod;
2525 				break;
2526 			case BTRFS_DROP_DELAYED_REF:
2527 				locked_ref->node.ref_mod += ref->ref_mod;
2528 				break;
2529 			default:
2530 				WARN_ON(1);
2531 			}
2532 		}
2533 		spin_unlock(&locked_ref->lock);
2534 
2535 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2536 					  must_insert_reserved);
2537 
2538 		btrfs_free_delayed_extent_op(extent_op);
2539 		if (ret) {
2540 			locked_ref->processing = 0;
2541 			btrfs_delayed_ref_unlock(locked_ref);
2542 			btrfs_put_delayed_ref(ref);
2543 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2544 			return ret;
2545 		}
2546 
2547 		/*
2548 		 * If this node is a head, that means all the refs in this head
2549 		 * have been dealt with, and we will pick the next head to deal
2550 		 * with, so we must unlock the head and drop it from the cluster
2551 		 * list before we release it.
2552 		 */
2553 		if (btrfs_delayed_ref_is_head(ref)) {
2554 			btrfs_delayed_ref_unlock(locked_ref);
2555 			locked_ref = NULL;
2556 		}
2557 		btrfs_put_delayed_ref(ref);
2558 		count++;
2559 		cond_resched();
2560 	}
2561 
2562 	/*
2563 	 * We don't want to include ref heads since we can have empty ref heads
2564 	 * and those will drastically skew our runtime down since we just do
2565 	 * accounting, no actual extent tree updates.
2566 	 */
2567 	if (actual_count > 0) {
2568 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2569 		u64 avg;
2570 
2571 		/*
2572 		 * We weigh the current average higher than our current runtime
2573 		 * to avoid large swings in the average.
2574 		 */
2575 		spin_lock(&delayed_refs->lock);
2576 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2577 		avg = div64_u64(avg, 4);
2578 		fs_info->avg_delayed_ref_runtime = avg;
2579 		spin_unlock(&delayed_refs->lock);
2580 	}
2581 	return 0;
2582 }
2583 
2584 #ifdef SCRAMBLE_DELAYED_REFS
2585 /*
2586  * Normally delayed refs get processed in ascending bytenr order. This
2587  * correlates in most cases to the order added. To expose dependencies on this
2588  * order, we start to process the tree in the middle instead of the beginning
2589  */
2590 static u64 find_middle(struct rb_root *root)
2591 {
2592 	struct rb_node *n = root->rb_node;
2593 	struct btrfs_delayed_ref_node *entry;
2594 	int alt = 1;
2595 	u64 middle;
2596 	u64 first = 0, last = 0;
2597 
2598 	n = rb_first(root);
2599 	if (n) {
2600 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2601 		first = entry->bytenr;
2602 	}
2603 	n = rb_last(root);
2604 	if (n) {
2605 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2606 		last = entry->bytenr;
2607 	}
2608 	n = root->rb_node;
2609 
2610 	while (n) {
2611 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2612 		WARN_ON(!entry->in_tree);
2613 
2614 		middle = entry->bytenr;
2615 
2616 		if (alt)
2617 			n = n->rb_left;
2618 		else
2619 			n = n->rb_right;
2620 
2621 		alt = 1 - alt;
2622 	}
2623 	return middle;
2624 }
2625 #endif
2626 
2627 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2628 {
2629 	u64 num_bytes;
2630 
2631 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2632 			     sizeof(struct btrfs_extent_inline_ref));
2633 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2634 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2635 
2636 	/*
2637 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2638 	 * closer to what we're really going to want to ouse.
2639 	 */
2640 	return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2641 }
2642 
2643 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2644 				       struct btrfs_root *root)
2645 {
2646 	struct btrfs_block_rsv *global_rsv;
2647 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2648 	u64 num_bytes;
2649 	int ret = 0;
2650 
2651 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2652 	num_heads = heads_to_leaves(root, num_heads);
2653 	if (num_heads > 1)
2654 		num_bytes += (num_heads - 1) * root->nodesize;
2655 	num_bytes <<= 1;
2656 	global_rsv = &root->fs_info->global_block_rsv;
2657 
2658 	/*
2659 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2660 	 * wiggle room since running delayed refs can create more delayed refs.
2661 	 */
2662 	if (global_rsv->space_info->full)
2663 		num_bytes <<= 1;
2664 
2665 	spin_lock(&global_rsv->lock);
2666 	if (global_rsv->reserved <= num_bytes)
2667 		ret = 1;
2668 	spin_unlock(&global_rsv->lock);
2669 	return ret;
2670 }
2671 
2672 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2673 				       struct btrfs_root *root)
2674 {
2675 	struct btrfs_fs_info *fs_info = root->fs_info;
2676 	u64 num_entries =
2677 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2678 	u64 avg_runtime;
2679 	u64 val;
2680 
2681 	smp_mb();
2682 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2683 	val = num_entries * avg_runtime;
2684 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2685 		return 1;
2686 	if (val >= NSEC_PER_SEC / 2)
2687 		return 2;
2688 
2689 	return btrfs_check_space_for_delayed_refs(trans, root);
2690 }
2691 
2692 struct async_delayed_refs {
2693 	struct btrfs_root *root;
2694 	int count;
2695 	int error;
2696 	int sync;
2697 	struct completion wait;
2698 	struct btrfs_work work;
2699 };
2700 
2701 static void delayed_ref_async_start(struct btrfs_work *work)
2702 {
2703 	struct async_delayed_refs *async;
2704 	struct btrfs_trans_handle *trans;
2705 	int ret;
2706 
2707 	async = container_of(work, struct async_delayed_refs, work);
2708 
2709 	trans = btrfs_join_transaction(async->root);
2710 	if (IS_ERR(trans)) {
2711 		async->error = PTR_ERR(trans);
2712 		goto done;
2713 	}
2714 
2715 	/*
2716 	 * trans->sync means that when we call end_transaciton, we won't
2717 	 * wait on delayed refs
2718 	 */
2719 	trans->sync = true;
2720 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2721 	if (ret)
2722 		async->error = ret;
2723 
2724 	ret = btrfs_end_transaction(trans, async->root);
2725 	if (ret && !async->error)
2726 		async->error = ret;
2727 done:
2728 	if (async->sync)
2729 		complete(&async->wait);
2730 	else
2731 		kfree(async);
2732 }
2733 
2734 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2735 				 unsigned long count, int wait)
2736 {
2737 	struct async_delayed_refs *async;
2738 	int ret;
2739 
2740 	async = kmalloc(sizeof(*async), GFP_NOFS);
2741 	if (!async)
2742 		return -ENOMEM;
2743 
2744 	async->root = root->fs_info->tree_root;
2745 	async->count = count;
2746 	async->error = 0;
2747 	if (wait)
2748 		async->sync = 1;
2749 	else
2750 		async->sync = 0;
2751 	init_completion(&async->wait);
2752 
2753 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2754 			delayed_ref_async_start, NULL, NULL);
2755 
2756 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2757 
2758 	if (wait) {
2759 		wait_for_completion(&async->wait);
2760 		ret = async->error;
2761 		kfree(async);
2762 		return ret;
2763 	}
2764 	return 0;
2765 }
2766 
2767 /*
2768  * this starts processing the delayed reference count updates and
2769  * extent insertions we have queued up so far.  count can be
2770  * 0, which means to process everything in the tree at the start
2771  * of the run (but not newly added entries), or it can be some target
2772  * number you'd like to process.
2773  *
2774  * Returns 0 on success or if called with an aborted transaction
2775  * Returns <0 on error and aborts the transaction
2776  */
2777 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2778 			   struct btrfs_root *root, unsigned long count)
2779 {
2780 	struct rb_node *node;
2781 	struct btrfs_delayed_ref_root *delayed_refs;
2782 	struct btrfs_delayed_ref_head *head;
2783 	int ret;
2784 	int run_all = count == (unsigned long)-1;
2785 	int run_most = 0;
2786 
2787 	/* We'll clean this up in btrfs_cleanup_transaction */
2788 	if (trans->aborted)
2789 		return 0;
2790 
2791 	if (root == root->fs_info->extent_root)
2792 		root = root->fs_info->tree_root;
2793 
2794 	delayed_refs = &trans->transaction->delayed_refs;
2795 	if (count == 0) {
2796 		count = atomic_read(&delayed_refs->num_entries) * 2;
2797 		run_most = 1;
2798 	}
2799 
2800 again:
2801 #ifdef SCRAMBLE_DELAYED_REFS
2802 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2803 #endif
2804 	ret = __btrfs_run_delayed_refs(trans, root, count);
2805 	if (ret < 0) {
2806 		btrfs_abort_transaction(trans, root, ret);
2807 		return ret;
2808 	}
2809 
2810 	if (run_all) {
2811 		if (!list_empty(&trans->new_bgs))
2812 			btrfs_create_pending_block_groups(trans, root);
2813 
2814 		spin_lock(&delayed_refs->lock);
2815 		node = rb_first(&delayed_refs->href_root);
2816 		if (!node) {
2817 			spin_unlock(&delayed_refs->lock);
2818 			goto out;
2819 		}
2820 		count = (unsigned long)-1;
2821 
2822 		while (node) {
2823 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2824 					href_node);
2825 			if (btrfs_delayed_ref_is_head(&head->node)) {
2826 				struct btrfs_delayed_ref_node *ref;
2827 
2828 				ref = &head->node;
2829 				atomic_inc(&ref->refs);
2830 
2831 				spin_unlock(&delayed_refs->lock);
2832 				/*
2833 				 * Mutex was contended, block until it's
2834 				 * released and try again
2835 				 */
2836 				mutex_lock(&head->mutex);
2837 				mutex_unlock(&head->mutex);
2838 
2839 				btrfs_put_delayed_ref(ref);
2840 				cond_resched();
2841 				goto again;
2842 			} else {
2843 				WARN_ON(1);
2844 			}
2845 			node = rb_next(node);
2846 		}
2847 		spin_unlock(&delayed_refs->lock);
2848 		cond_resched();
2849 		goto again;
2850 	}
2851 out:
2852 	ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2853 	if (ret)
2854 		return ret;
2855 	assert_qgroups_uptodate(trans);
2856 	return 0;
2857 }
2858 
2859 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2860 				struct btrfs_root *root,
2861 				u64 bytenr, u64 num_bytes, u64 flags,
2862 				int level, int is_data)
2863 {
2864 	struct btrfs_delayed_extent_op *extent_op;
2865 	int ret;
2866 
2867 	extent_op = btrfs_alloc_delayed_extent_op();
2868 	if (!extent_op)
2869 		return -ENOMEM;
2870 
2871 	extent_op->flags_to_set = flags;
2872 	extent_op->update_flags = 1;
2873 	extent_op->update_key = 0;
2874 	extent_op->is_data = is_data ? 1 : 0;
2875 	extent_op->level = level;
2876 
2877 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2878 					  num_bytes, extent_op);
2879 	if (ret)
2880 		btrfs_free_delayed_extent_op(extent_op);
2881 	return ret;
2882 }
2883 
2884 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2885 				      struct btrfs_root *root,
2886 				      struct btrfs_path *path,
2887 				      u64 objectid, u64 offset, u64 bytenr)
2888 {
2889 	struct btrfs_delayed_ref_head *head;
2890 	struct btrfs_delayed_ref_node *ref;
2891 	struct btrfs_delayed_data_ref *data_ref;
2892 	struct btrfs_delayed_ref_root *delayed_refs;
2893 	struct rb_node *node;
2894 	int ret = 0;
2895 
2896 	delayed_refs = &trans->transaction->delayed_refs;
2897 	spin_lock(&delayed_refs->lock);
2898 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2899 	if (!head) {
2900 		spin_unlock(&delayed_refs->lock);
2901 		return 0;
2902 	}
2903 
2904 	if (!mutex_trylock(&head->mutex)) {
2905 		atomic_inc(&head->node.refs);
2906 		spin_unlock(&delayed_refs->lock);
2907 
2908 		btrfs_release_path(path);
2909 
2910 		/*
2911 		 * Mutex was contended, block until it's released and let
2912 		 * caller try again
2913 		 */
2914 		mutex_lock(&head->mutex);
2915 		mutex_unlock(&head->mutex);
2916 		btrfs_put_delayed_ref(&head->node);
2917 		return -EAGAIN;
2918 	}
2919 	spin_unlock(&delayed_refs->lock);
2920 
2921 	spin_lock(&head->lock);
2922 	node = rb_first(&head->ref_root);
2923 	while (node) {
2924 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2925 		node = rb_next(node);
2926 
2927 		/* If it's a shared ref we know a cross reference exists */
2928 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2929 			ret = 1;
2930 			break;
2931 		}
2932 
2933 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2934 
2935 		/*
2936 		 * If our ref doesn't match the one we're currently looking at
2937 		 * then we have a cross reference.
2938 		 */
2939 		if (data_ref->root != root->root_key.objectid ||
2940 		    data_ref->objectid != objectid ||
2941 		    data_ref->offset != offset) {
2942 			ret = 1;
2943 			break;
2944 		}
2945 	}
2946 	spin_unlock(&head->lock);
2947 	mutex_unlock(&head->mutex);
2948 	return ret;
2949 }
2950 
2951 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2952 					struct btrfs_root *root,
2953 					struct btrfs_path *path,
2954 					u64 objectid, u64 offset, u64 bytenr)
2955 {
2956 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2957 	struct extent_buffer *leaf;
2958 	struct btrfs_extent_data_ref *ref;
2959 	struct btrfs_extent_inline_ref *iref;
2960 	struct btrfs_extent_item *ei;
2961 	struct btrfs_key key;
2962 	u32 item_size;
2963 	int ret;
2964 
2965 	key.objectid = bytenr;
2966 	key.offset = (u64)-1;
2967 	key.type = BTRFS_EXTENT_ITEM_KEY;
2968 
2969 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2970 	if (ret < 0)
2971 		goto out;
2972 	BUG_ON(ret == 0); /* Corruption */
2973 
2974 	ret = -ENOENT;
2975 	if (path->slots[0] == 0)
2976 		goto out;
2977 
2978 	path->slots[0]--;
2979 	leaf = path->nodes[0];
2980 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2981 
2982 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2983 		goto out;
2984 
2985 	ret = 1;
2986 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2988 	if (item_size < sizeof(*ei)) {
2989 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2990 		goto out;
2991 	}
2992 #endif
2993 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2994 
2995 	if (item_size != sizeof(*ei) +
2996 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2997 		goto out;
2998 
2999 	if (btrfs_extent_generation(leaf, ei) <=
3000 	    btrfs_root_last_snapshot(&root->root_item))
3001 		goto out;
3002 
3003 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3004 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3005 	    BTRFS_EXTENT_DATA_REF_KEY)
3006 		goto out;
3007 
3008 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3009 	if (btrfs_extent_refs(leaf, ei) !=
3010 	    btrfs_extent_data_ref_count(leaf, ref) ||
3011 	    btrfs_extent_data_ref_root(leaf, ref) !=
3012 	    root->root_key.objectid ||
3013 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3014 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3015 		goto out;
3016 
3017 	ret = 0;
3018 out:
3019 	return ret;
3020 }
3021 
3022 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3023 			  struct btrfs_root *root,
3024 			  u64 objectid, u64 offset, u64 bytenr)
3025 {
3026 	struct btrfs_path *path;
3027 	int ret;
3028 	int ret2;
3029 
3030 	path = btrfs_alloc_path();
3031 	if (!path)
3032 		return -ENOENT;
3033 
3034 	do {
3035 		ret = check_committed_ref(trans, root, path, objectid,
3036 					  offset, bytenr);
3037 		if (ret && ret != -ENOENT)
3038 			goto out;
3039 
3040 		ret2 = check_delayed_ref(trans, root, path, objectid,
3041 					 offset, bytenr);
3042 	} while (ret2 == -EAGAIN);
3043 
3044 	if (ret2 && ret2 != -ENOENT) {
3045 		ret = ret2;
3046 		goto out;
3047 	}
3048 
3049 	if (ret != -ENOENT || ret2 != -ENOENT)
3050 		ret = 0;
3051 out:
3052 	btrfs_free_path(path);
3053 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3054 		WARN_ON(ret > 0);
3055 	return ret;
3056 }
3057 
3058 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3059 			   struct btrfs_root *root,
3060 			   struct extent_buffer *buf,
3061 			   int full_backref, int inc)
3062 {
3063 	u64 bytenr;
3064 	u64 num_bytes;
3065 	u64 parent;
3066 	u64 ref_root;
3067 	u32 nritems;
3068 	struct btrfs_key key;
3069 	struct btrfs_file_extent_item *fi;
3070 	int i;
3071 	int level;
3072 	int ret = 0;
3073 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3074 			    u64, u64, u64, u64, u64, u64, int);
3075 
3076 
3077 	if (btrfs_test_is_dummy_root(root))
3078 		return 0;
3079 
3080 	ref_root = btrfs_header_owner(buf);
3081 	nritems = btrfs_header_nritems(buf);
3082 	level = btrfs_header_level(buf);
3083 
3084 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3085 		return 0;
3086 
3087 	if (inc)
3088 		process_func = btrfs_inc_extent_ref;
3089 	else
3090 		process_func = btrfs_free_extent;
3091 
3092 	if (full_backref)
3093 		parent = buf->start;
3094 	else
3095 		parent = 0;
3096 
3097 	for (i = 0; i < nritems; i++) {
3098 		if (level == 0) {
3099 			btrfs_item_key_to_cpu(buf, &key, i);
3100 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3101 				continue;
3102 			fi = btrfs_item_ptr(buf, i,
3103 					    struct btrfs_file_extent_item);
3104 			if (btrfs_file_extent_type(buf, fi) ==
3105 			    BTRFS_FILE_EXTENT_INLINE)
3106 				continue;
3107 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3108 			if (bytenr == 0)
3109 				continue;
3110 
3111 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3112 			key.offset -= btrfs_file_extent_offset(buf, fi);
3113 			ret = process_func(trans, root, bytenr, num_bytes,
3114 					   parent, ref_root, key.objectid,
3115 					   key.offset, 1);
3116 			if (ret)
3117 				goto fail;
3118 		} else {
3119 			bytenr = btrfs_node_blockptr(buf, i);
3120 			num_bytes = root->nodesize;
3121 			ret = process_func(trans, root, bytenr, num_bytes,
3122 					   parent, ref_root, level - 1, 0,
3123 					   1);
3124 			if (ret)
3125 				goto fail;
3126 		}
3127 	}
3128 	return 0;
3129 fail:
3130 	return ret;
3131 }
3132 
3133 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3134 		  struct extent_buffer *buf, int full_backref)
3135 {
3136 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3137 }
3138 
3139 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3140 		  struct extent_buffer *buf, int full_backref)
3141 {
3142 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3143 }
3144 
3145 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3146 				 struct btrfs_root *root,
3147 				 struct btrfs_path *path,
3148 				 struct btrfs_block_group_cache *cache)
3149 {
3150 	int ret;
3151 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3152 	unsigned long bi;
3153 	struct extent_buffer *leaf;
3154 
3155 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3156 	if (ret < 0)
3157 		goto fail;
3158 	BUG_ON(ret); /* Corruption */
3159 
3160 	leaf = path->nodes[0];
3161 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3162 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3163 	btrfs_mark_buffer_dirty(leaf);
3164 	btrfs_release_path(path);
3165 fail:
3166 	if (ret) {
3167 		btrfs_abort_transaction(trans, root, ret);
3168 		return ret;
3169 	}
3170 	return 0;
3171 
3172 }
3173 
3174 static struct btrfs_block_group_cache *
3175 next_block_group(struct btrfs_root *root,
3176 		 struct btrfs_block_group_cache *cache)
3177 {
3178 	struct rb_node *node;
3179 	spin_lock(&root->fs_info->block_group_cache_lock);
3180 	node = rb_next(&cache->cache_node);
3181 	btrfs_put_block_group(cache);
3182 	if (node) {
3183 		cache = rb_entry(node, struct btrfs_block_group_cache,
3184 				 cache_node);
3185 		btrfs_get_block_group(cache);
3186 	} else
3187 		cache = NULL;
3188 	spin_unlock(&root->fs_info->block_group_cache_lock);
3189 	return cache;
3190 }
3191 
3192 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3193 			    struct btrfs_trans_handle *trans,
3194 			    struct btrfs_path *path)
3195 {
3196 	struct btrfs_root *root = block_group->fs_info->tree_root;
3197 	struct inode *inode = NULL;
3198 	u64 alloc_hint = 0;
3199 	int dcs = BTRFS_DC_ERROR;
3200 	int num_pages = 0;
3201 	int retries = 0;
3202 	int ret = 0;
3203 
3204 	/*
3205 	 * If this block group is smaller than 100 megs don't bother caching the
3206 	 * block group.
3207 	 */
3208 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3209 		spin_lock(&block_group->lock);
3210 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3211 		spin_unlock(&block_group->lock);
3212 		return 0;
3213 	}
3214 
3215 again:
3216 	inode = lookup_free_space_inode(root, block_group, path);
3217 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3218 		ret = PTR_ERR(inode);
3219 		btrfs_release_path(path);
3220 		goto out;
3221 	}
3222 
3223 	if (IS_ERR(inode)) {
3224 		BUG_ON(retries);
3225 		retries++;
3226 
3227 		if (block_group->ro)
3228 			goto out_free;
3229 
3230 		ret = create_free_space_inode(root, trans, block_group, path);
3231 		if (ret)
3232 			goto out_free;
3233 		goto again;
3234 	}
3235 
3236 	/* We've already setup this transaction, go ahead and exit */
3237 	if (block_group->cache_generation == trans->transid &&
3238 	    i_size_read(inode)) {
3239 		dcs = BTRFS_DC_SETUP;
3240 		goto out_put;
3241 	}
3242 
3243 	/*
3244 	 * We want to set the generation to 0, that way if anything goes wrong
3245 	 * from here on out we know not to trust this cache when we load up next
3246 	 * time.
3247 	 */
3248 	BTRFS_I(inode)->generation = 0;
3249 	ret = btrfs_update_inode(trans, root, inode);
3250 	WARN_ON(ret);
3251 
3252 	if (i_size_read(inode) > 0) {
3253 		ret = btrfs_check_trunc_cache_free_space(root,
3254 					&root->fs_info->global_block_rsv);
3255 		if (ret)
3256 			goto out_put;
3257 
3258 		ret = btrfs_truncate_free_space_cache(root, trans, inode);
3259 		if (ret)
3260 			goto out_put;
3261 	}
3262 
3263 	spin_lock(&block_group->lock);
3264 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3265 	    !btrfs_test_opt(root, SPACE_CACHE) ||
3266 	    block_group->delalloc_bytes) {
3267 		/*
3268 		 * don't bother trying to write stuff out _if_
3269 		 * a) we're not cached,
3270 		 * b) we're with nospace_cache mount option.
3271 		 */
3272 		dcs = BTRFS_DC_WRITTEN;
3273 		spin_unlock(&block_group->lock);
3274 		goto out_put;
3275 	}
3276 	spin_unlock(&block_group->lock);
3277 
3278 	/*
3279 	 * Try to preallocate enough space based on how big the block group is.
3280 	 * Keep in mind this has to include any pinned space which could end up
3281 	 * taking up quite a bit since it's not folded into the other space
3282 	 * cache.
3283 	 */
3284 	num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3285 	if (!num_pages)
3286 		num_pages = 1;
3287 
3288 	num_pages *= 16;
3289 	num_pages *= PAGE_CACHE_SIZE;
3290 
3291 	ret = btrfs_check_data_free_space(inode, num_pages);
3292 	if (ret)
3293 		goto out_put;
3294 
3295 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3296 					      num_pages, num_pages,
3297 					      &alloc_hint);
3298 	if (!ret)
3299 		dcs = BTRFS_DC_SETUP;
3300 	btrfs_free_reserved_data_space(inode, num_pages);
3301 
3302 out_put:
3303 	iput(inode);
3304 out_free:
3305 	btrfs_release_path(path);
3306 out:
3307 	spin_lock(&block_group->lock);
3308 	if (!ret && dcs == BTRFS_DC_SETUP)
3309 		block_group->cache_generation = trans->transid;
3310 	block_group->disk_cache_state = dcs;
3311 	spin_unlock(&block_group->lock);
3312 
3313 	return ret;
3314 }
3315 
3316 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3317 				   struct btrfs_root *root)
3318 {
3319 	struct btrfs_block_group_cache *cache;
3320 	int err = 0;
3321 	struct btrfs_path *path;
3322 	u64 last = 0;
3323 
3324 	path = btrfs_alloc_path();
3325 	if (!path)
3326 		return -ENOMEM;
3327 
3328 again:
3329 	while (1) {
3330 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3331 		while (cache) {
3332 			if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3333 				break;
3334 			cache = next_block_group(root, cache);
3335 		}
3336 		if (!cache) {
3337 			if (last == 0)
3338 				break;
3339 			last = 0;
3340 			continue;
3341 		}
3342 		err = cache_save_setup(cache, trans, path);
3343 		last = cache->key.objectid + cache->key.offset;
3344 		btrfs_put_block_group(cache);
3345 	}
3346 
3347 	while (1) {
3348 		if (last == 0) {
3349 			err = btrfs_run_delayed_refs(trans, root,
3350 						     (unsigned long)-1);
3351 			if (err) /* File system offline */
3352 				goto out;
3353 		}
3354 
3355 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3356 		while (cache) {
3357 			if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3358 				btrfs_put_block_group(cache);
3359 				goto again;
3360 			}
3361 
3362 			if (cache->dirty)
3363 				break;
3364 			cache = next_block_group(root, cache);
3365 		}
3366 		if (!cache) {
3367 			if (last == 0)
3368 				break;
3369 			last = 0;
3370 			continue;
3371 		}
3372 
3373 		if (cache->disk_cache_state == BTRFS_DC_SETUP)
3374 			cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3375 		cache->dirty = 0;
3376 		last = cache->key.objectid + cache->key.offset;
3377 
3378 		err = write_one_cache_group(trans, root, path, cache);
3379 		btrfs_put_block_group(cache);
3380 		if (err) /* File system offline */
3381 			goto out;
3382 	}
3383 
3384 	while (1) {
3385 		/*
3386 		 * I don't think this is needed since we're just marking our
3387 		 * preallocated extent as written, but just in case it can't
3388 		 * hurt.
3389 		 */
3390 		if (last == 0) {
3391 			err = btrfs_run_delayed_refs(trans, root,
3392 						     (unsigned long)-1);
3393 			if (err) /* File system offline */
3394 				goto out;
3395 		}
3396 
3397 		cache = btrfs_lookup_first_block_group(root->fs_info, last);
3398 		while (cache) {
3399 			/*
3400 			 * Really this shouldn't happen, but it could if we
3401 			 * couldn't write the entire preallocated extent and
3402 			 * splitting the extent resulted in a new block.
3403 			 */
3404 			if (cache->dirty) {
3405 				btrfs_put_block_group(cache);
3406 				goto again;
3407 			}
3408 			if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3409 				break;
3410 			cache = next_block_group(root, cache);
3411 		}
3412 		if (!cache) {
3413 			if (last == 0)
3414 				break;
3415 			last = 0;
3416 			continue;
3417 		}
3418 
3419 		err = btrfs_write_out_cache(root, trans, cache, path);
3420 
3421 		/*
3422 		 * If we didn't have an error then the cache state is still
3423 		 * NEED_WRITE, so we can set it to WRITTEN.
3424 		 */
3425 		if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3426 			cache->disk_cache_state = BTRFS_DC_WRITTEN;
3427 		last = cache->key.objectid + cache->key.offset;
3428 		btrfs_put_block_group(cache);
3429 	}
3430 out:
3431 
3432 	btrfs_free_path(path);
3433 	return err;
3434 }
3435 
3436 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3437 {
3438 	struct btrfs_block_group_cache *block_group;
3439 	int readonly = 0;
3440 
3441 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3442 	if (!block_group || block_group->ro)
3443 		readonly = 1;
3444 	if (block_group)
3445 		btrfs_put_block_group(block_group);
3446 	return readonly;
3447 }
3448 
3449 static const char *alloc_name(u64 flags)
3450 {
3451 	switch (flags) {
3452 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3453 		return "mixed";
3454 	case BTRFS_BLOCK_GROUP_METADATA:
3455 		return "metadata";
3456 	case BTRFS_BLOCK_GROUP_DATA:
3457 		return "data";
3458 	case BTRFS_BLOCK_GROUP_SYSTEM:
3459 		return "system";
3460 	default:
3461 		WARN_ON(1);
3462 		return "invalid-combination";
3463 	};
3464 }
3465 
3466 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3467 			     u64 total_bytes, u64 bytes_used,
3468 			     struct btrfs_space_info **space_info)
3469 {
3470 	struct btrfs_space_info *found;
3471 	int i;
3472 	int factor;
3473 	int ret;
3474 
3475 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3476 		     BTRFS_BLOCK_GROUP_RAID10))
3477 		factor = 2;
3478 	else
3479 		factor = 1;
3480 
3481 	found = __find_space_info(info, flags);
3482 	if (found) {
3483 		spin_lock(&found->lock);
3484 		found->total_bytes += total_bytes;
3485 		found->disk_total += total_bytes * factor;
3486 		found->bytes_used += bytes_used;
3487 		found->disk_used += bytes_used * factor;
3488 		found->full = 0;
3489 		spin_unlock(&found->lock);
3490 		*space_info = found;
3491 		return 0;
3492 	}
3493 	found = kzalloc(sizeof(*found), GFP_NOFS);
3494 	if (!found)
3495 		return -ENOMEM;
3496 
3497 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3498 	if (ret) {
3499 		kfree(found);
3500 		return ret;
3501 	}
3502 
3503 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3504 		INIT_LIST_HEAD(&found->block_groups[i]);
3505 	init_rwsem(&found->groups_sem);
3506 	spin_lock_init(&found->lock);
3507 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3508 	found->total_bytes = total_bytes;
3509 	found->disk_total = total_bytes * factor;
3510 	found->bytes_used = bytes_used;
3511 	found->disk_used = bytes_used * factor;
3512 	found->bytes_pinned = 0;
3513 	found->bytes_reserved = 0;
3514 	found->bytes_readonly = 0;
3515 	found->bytes_may_use = 0;
3516 	found->full = 0;
3517 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3518 	found->chunk_alloc = 0;
3519 	found->flush = 0;
3520 	init_waitqueue_head(&found->wait);
3521 
3522 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3523 				    info->space_info_kobj, "%s",
3524 				    alloc_name(found->flags));
3525 	if (ret) {
3526 		kfree(found);
3527 		return ret;
3528 	}
3529 
3530 	*space_info = found;
3531 	list_add_rcu(&found->list, &info->space_info);
3532 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3533 		info->data_sinfo = found;
3534 
3535 	return ret;
3536 }
3537 
3538 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3539 {
3540 	u64 extra_flags = chunk_to_extended(flags) &
3541 				BTRFS_EXTENDED_PROFILE_MASK;
3542 
3543 	write_seqlock(&fs_info->profiles_lock);
3544 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3545 		fs_info->avail_data_alloc_bits |= extra_flags;
3546 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3547 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3548 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3549 		fs_info->avail_system_alloc_bits |= extra_flags;
3550 	write_sequnlock(&fs_info->profiles_lock);
3551 }
3552 
3553 /*
3554  * returns target flags in extended format or 0 if restripe for this
3555  * chunk_type is not in progress
3556  *
3557  * should be called with either volume_mutex or balance_lock held
3558  */
3559 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3560 {
3561 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3562 	u64 target = 0;
3563 
3564 	if (!bctl)
3565 		return 0;
3566 
3567 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3568 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3569 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3570 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3571 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3572 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3573 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3574 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3575 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3576 	}
3577 
3578 	return target;
3579 }
3580 
3581 /*
3582  * @flags: available profiles in extended format (see ctree.h)
3583  *
3584  * Returns reduced profile in chunk format.  If profile changing is in
3585  * progress (either running or paused) picks the target profile (if it's
3586  * already available), otherwise falls back to plain reducing.
3587  */
3588 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3589 {
3590 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3591 	u64 target;
3592 	u64 tmp;
3593 
3594 	/*
3595 	 * see if restripe for this chunk_type is in progress, if so
3596 	 * try to reduce to the target profile
3597 	 */
3598 	spin_lock(&root->fs_info->balance_lock);
3599 	target = get_restripe_target(root->fs_info, flags);
3600 	if (target) {
3601 		/* pick target profile only if it's already available */
3602 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3603 			spin_unlock(&root->fs_info->balance_lock);
3604 			return extended_to_chunk(target);
3605 		}
3606 	}
3607 	spin_unlock(&root->fs_info->balance_lock);
3608 
3609 	/* First, mask out the RAID levels which aren't possible */
3610 	if (num_devices == 1)
3611 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3612 			   BTRFS_BLOCK_GROUP_RAID5);
3613 	if (num_devices < 3)
3614 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3615 	if (num_devices < 4)
3616 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3617 
3618 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3619 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3620 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3621 	flags &= ~tmp;
3622 
3623 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3624 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3625 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3626 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3627 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3628 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3629 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3630 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3631 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3632 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3633 
3634 	return extended_to_chunk(flags | tmp);
3635 }
3636 
3637 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3638 {
3639 	unsigned seq;
3640 	u64 flags;
3641 
3642 	do {
3643 		flags = orig_flags;
3644 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3645 
3646 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3647 			flags |= root->fs_info->avail_data_alloc_bits;
3648 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3649 			flags |= root->fs_info->avail_system_alloc_bits;
3650 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3651 			flags |= root->fs_info->avail_metadata_alloc_bits;
3652 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3653 
3654 	return btrfs_reduce_alloc_profile(root, flags);
3655 }
3656 
3657 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3658 {
3659 	u64 flags;
3660 	u64 ret;
3661 
3662 	if (data)
3663 		flags = BTRFS_BLOCK_GROUP_DATA;
3664 	else if (root == root->fs_info->chunk_root)
3665 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3666 	else
3667 		flags = BTRFS_BLOCK_GROUP_METADATA;
3668 
3669 	ret = get_alloc_profile(root, flags);
3670 	return ret;
3671 }
3672 
3673 /*
3674  * This will check the space that the inode allocates from to make sure we have
3675  * enough space for bytes.
3676  */
3677 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3678 {
3679 	struct btrfs_space_info *data_sinfo;
3680 	struct btrfs_root *root = BTRFS_I(inode)->root;
3681 	struct btrfs_fs_info *fs_info = root->fs_info;
3682 	u64 used;
3683 	int ret = 0, committed = 0, alloc_chunk = 1;
3684 
3685 	/* make sure bytes are sectorsize aligned */
3686 	bytes = ALIGN(bytes, root->sectorsize);
3687 
3688 	if (btrfs_is_free_space_inode(inode)) {
3689 		committed = 1;
3690 		ASSERT(current->journal_info);
3691 	}
3692 
3693 	data_sinfo = fs_info->data_sinfo;
3694 	if (!data_sinfo)
3695 		goto alloc;
3696 
3697 again:
3698 	/* make sure we have enough space to handle the data first */
3699 	spin_lock(&data_sinfo->lock);
3700 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3701 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3702 		data_sinfo->bytes_may_use;
3703 
3704 	if (used + bytes > data_sinfo->total_bytes) {
3705 		struct btrfs_trans_handle *trans;
3706 
3707 		/*
3708 		 * if we don't have enough free bytes in this space then we need
3709 		 * to alloc a new chunk.
3710 		 */
3711 		if (!data_sinfo->full && alloc_chunk) {
3712 			u64 alloc_target;
3713 
3714 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3715 			spin_unlock(&data_sinfo->lock);
3716 alloc:
3717 			alloc_target = btrfs_get_alloc_profile(root, 1);
3718 			/*
3719 			 * It is ugly that we don't call nolock join
3720 			 * transaction for the free space inode case here.
3721 			 * But it is safe because we only do the data space
3722 			 * reservation for the free space cache in the
3723 			 * transaction context, the common join transaction
3724 			 * just increase the counter of the current transaction
3725 			 * handler, doesn't try to acquire the trans_lock of
3726 			 * the fs.
3727 			 */
3728 			trans = btrfs_join_transaction(root);
3729 			if (IS_ERR(trans))
3730 				return PTR_ERR(trans);
3731 
3732 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3733 					     alloc_target,
3734 					     CHUNK_ALLOC_NO_FORCE);
3735 			btrfs_end_transaction(trans, root);
3736 			if (ret < 0) {
3737 				if (ret != -ENOSPC)
3738 					return ret;
3739 				else
3740 					goto commit_trans;
3741 			}
3742 
3743 			if (!data_sinfo)
3744 				data_sinfo = fs_info->data_sinfo;
3745 
3746 			goto again;
3747 		}
3748 
3749 		/*
3750 		 * If we don't have enough pinned space to deal with this
3751 		 * allocation don't bother committing the transaction.
3752 		 */
3753 		if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3754 					   bytes) < 0)
3755 			committed = 1;
3756 		spin_unlock(&data_sinfo->lock);
3757 
3758 		/* commit the current transaction and try again */
3759 commit_trans:
3760 		if (!committed &&
3761 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3762 			committed = 1;
3763 
3764 			trans = btrfs_join_transaction(root);
3765 			if (IS_ERR(trans))
3766 				return PTR_ERR(trans);
3767 			ret = btrfs_commit_transaction(trans, root);
3768 			if (ret)
3769 				return ret;
3770 			goto again;
3771 		}
3772 
3773 		trace_btrfs_space_reservation(root->fs_info,
3774 					      "space_info:enospc",
3775 					      data_sinfo->flags, bytes, 1);
3776 		return -ENOSPC;
3777 	}
3778 	data_sinfo->bytes_may_use += bytes;
3779 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3780 				      data_sinfo->flags, bytes, 1);
3781 	spin_unlock(&data_sinfo->lock);
3782 
3783 	return 0;
3784 }
3785 
3786 /*
3787  * Called if we need to clear a data reservation for this inode.
3788  */
3789 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3790 {
3791 	struct btrfs_root *root = BTRFS_I(inode)->root;
3792 	struct btrfs_space_info *data_sinfo;
3793 
3794 	/* make sure bytes are sectorsize aligned */
3795 	bytes = ALIGN(bytes, root->sectorsize);
3796 
3797 	data_sinfo = root->fs_info->data_sinfo;
3798 	spin_lock(&data_sinfo->lock);
3799 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3800 	data_sinfo->bytes_may_use -= bytes;
3801 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3802 				      data_sinfo->flags, bytes, 0);
3803 	spin_unlock(&data_sinfo->lock);
3804 }
3805 
3806 static void force_metadata_allocation(struct btrfs_fs_info *info)
3807 {
3808 	struct list_head *head = &info->space_info;
3809 	struct btrfs_space_info *found;
3810 
3811 	rcu_read_lock();
3812 	list_for_each_entry_rcu(found, head, list) {
3813 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3814 			found->force_alloc = CHUNK_ALLOC_FORCE;
3815 	}
3816 	rcu_read_unlock();
3817 }
3818 
3819 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3820 {
3821 	return (global->size << 1);
3822 }
3823 
3824 static int should_alloc_chunk(struct btrfs_root *root,
3825 			      struct btrfs_space_info *sinfo, int force)
3826 {
3827 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3828 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3829 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3830 	u64 thresh;
3831 
3832 	if (force == CHUNK_ALLOC_FORCE)
3833 		return 1;
3834 
3835 	/*
3836 	 * We need to take into account the global rsv because for all intents
3837 	 * and purposes it's used space.  Don't worry about locking the
3838 	 * global_rsv, it doesn't change except when the transaction commits.
3839 	 */
3840 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3841 		num_allocated += calc_global_rsv_need_space(global_rsv);
3842 
3843 	/*
3844 	 * in limited mode, we want to have some free space up to
3845 	 * about 1% of the FS size.
3846 	 */
3847 	if (force == CHUNK_ALLOC_LIMITED) {
3848 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3849 		thresh = max_t(u64, 64 * 1024 * 1024,
3850 			       div_factor_fine(thresh, 1));
3851 
3852 		if (num_bytes - num_allocated < thresh)
3853 			return 1;
3854 	}
3855 
3856 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3857 		return 0;
3858 	return 1;
3859 }
3860 
3861 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3862 {
3863 	u64 num_dev;
3864 
3865 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3866 		    BTRFS_BLOCK_GROUP_RAID0 |
3867 		    BTRFS_BLOCK_GROUP_RAID5 |
3868 		    BTRFS_BLOCK_GROUP_RAID6))
3869 		num_dev = root->fs_info->fs_devices->rw_devices;
3870 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
3871 		num_dev = 2;
3872 	else
3873 		num_dev = 1;	/* DUP or single */
3874 
3875 	/* metadata for updaing devices and chunk tree */
3876 	return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3877 }
3878 
3879 static void check_system_chunk(struct btrfs_trans_handle *trans,
3880 			       struct btrfs_root *root, u64 type)
3881 {
3882 	struct btrfs_space_info *info;
3883 	u64 left;
3884 	u64 thresh;
3885 
3886 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3887 	spin_lock(&info->lock);
3888 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3889 		info->bytes_reserved - info->bytes_readonly;
3890 	spin_unlock(&info->lock);
3891 
3892 	thresh = get_system_chunk_thresh(root, type);
3893 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3894 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3895 			left, thresh, type);
3896 		dump_space_info(info, 0, 0);
3897 	}
3898 
3899 	if (left < thresh) {
3900 		u64 flags;
3901 
3902 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3903 		btrfs_alloc_chunk(trans, root, flags);
3904 	}
3905 }
3906 
3907 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3908 			  struct btrfs_root *extent_root, u64 flags, int force)
3909 {
3910 	struct btrfs_space_info *space_info;
3911 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3912 	int wait_for_alloc = 0;
3913 	int ret = 0;
3914 
3915 	/* Don't re-enter if we're already allocating a chunk */
3916 	if (trans->allocating_chunk)
3917 		return -ENOSPC;
3918 
3919 	space_info = __find_space_info(extent_root->fs_info, flags);
3920 	if (!space_info) {
3921 		ret = update_space_info(extent_root->fs_info, flags,
3922 					0, 0, &space_info);
3923 		BUG_ON(ret); /* -ENOMEM */
3924 	}
3925 	BUG_ON(!space_info); /* Logic error */
3926 
3927 again:
3928 	spin_lock(&space_info->lock);
3929 	if (force < space_info->force_alloc)
3930 		force = space_info->force_alloc;
3931 	if (space_info->full) {
3932 		if (should_alloc_chunk(extent_root, space_info, force))
3933 			ret = -ENOSPC;
3934 		else
3935 			ret = 0;
3936 		spin_unlock(&space_info->lock);
3937 		return ret;
3938 	}
3939 
3940 	if (!should_alloc_chunk(extent_root, space_info, force)) {
3941 		spin_unlock(&space_info->lock);
3942 		return 0;
3943 	} else if (space_info->chunk_alloc) {
3944 		wait_for_alloc = 1;
3945 	} else {
3946 		space_info->chunk_alloc = 1;
3947 	}
3948 
3949 	spin_unlock(&space_info->lock);
3950 
3951 	mutex_lock(&fs_info->chunk_mutex);
3952 
3953 	/*
3954 	 * The chunk_mutex is held throughout the entirety of a chunk
3955 	 * allocation, so once we've acquired the chunk_mutex we know that the
3956 	 * other guy is done and we need to recheck and see if we should
3957 	 * allocate.
3958 	 */
3959 	if (wait_for_alloc) {
3960 		mutex_unlock(&fs_info->chunk_mutex);
3961 		wait_for_alloc = 0;
3962 		goto again;
3963 	}
3964 
3965 	trans->allocating_chunk = true;
3966 
3967 	/*
3968 	 * If we have mixed data/metadata chunks we want to make sure we keep
3969 	 * allocating mixed chunks instead of individual chunks.
3970 	 */
3971 	if (btrfs_mixed_space_info(space_info))
3972 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3973 
3974 	/*
3975 	 * if we're doing a data chunk, go ahead and make sure that
3976 	 * we keep a reasonable number of metadata chunks allocated in the
3977 	 * FS as well.
3978 	 */
3979 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3980 		fs_info->data_chunk_allocations++;
3981 		if (!(fs_info->data_chunk_allocations %
3982 		      fs_info->metadata_ratio))
3983 			force_metadata_allocation(fs_info);
3984 	}
3985 
3986 	/*
3987 	 * Check if we have enough space in SYSTEM chunk because we may need
3988 	 * to update devices.
3989 	 */
3990 	check_system_chunk(trans, extent_root, flags);
3991 
3992 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
3993 	trans->allocating_chunk = false;
3994 
3995 	spin_lock(&space_info->lock);
3996 	if (ret < 0 && ret != -ENOSPC)
3997 		goto out;
3998 	if (ret)
3999 		space_info->full = 1;
4000 	else
4001 		ret = 1;
4002 
4003 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4004 out:
4005 	space_info->chunk_alloc = 0;
4006 	spin_unlock(&space_info->lock);
4007 	mutex_unlock(&fs_info->chunk_mutex);
4008 	return ret;
4009 }
4010 
4011 static int can_overcommit(struct btrfs_root *root,
4012 			  struct btrfs_space_info *space_info, u64 bytes,
4013 			  enum btrfs_reserve_flush_enum flush)
4014 {
4015 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4016 	u64 profile = btrfs_get_alloc_profile(root, 0);
4017 	u64 space_size;
4018 	u64 avail;
4019 	u64 used;
4020 
4021 	used = space_info->bytes_used + space_info->bytes_reserved +
4022 		space_info->bytes_pinned + space_info->bytes_readonly;
4023 
4024 	/*
4025 	 * We only want to allow over committing if we have lots of actual space
4026 	 * free, but if we don't have enough space to handle the global reserve
4027 	 * space then we could end up having a real enospc problem when trying
4028 	 * to allocate a chunk or some other such important allocation.
4029 	 */
4030 	spin_lock(&global_rsv->lock);
4031 	space_size = calc_global_rsv_need_space(global_rsv);
4032 	spin_unlock(&global_rsv->lock);
4033 	if (used + space_size >= space_info->total_bytes)
4034 		return 0;
4035 
4036 	used += space_info->bytes_may_use;
4037 
4038 	spin_lock(&root->fs_info->free_chunk_lock);
4039 	avail = root->fs_info->free_chunk_space;
4040 	spin_unlock(&root->fs_info->free_chunk_lock);
4041 
4042 	/*
4043 	 * If we have dup, raid1 or raid10 then only half of the free
4044 	 * space is actually useable.  For raid56, the space info used
4045 	 * doesn't include the parity drive, so we don't have to
4046 	 * change the math
4047 	 */
4048 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4049 		       BTRFS_BLOCK_GROUP_RAID1 |
4050 		       BTRFS_BLOCK_GROUP_RAID10))
4051 		avail >>= 1;
4052 
4053 	/*
4054 	 * If we aren't flushing all things, let us overcommit up to
4055 	 * 1/2th of the space. If we can flush, don't let us overcommit
4056 	 * too much, let it overcommit up to 1/8 of the space.
4057 	 */
4058 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4059 		avail >>= 3;
4060 	else
4061 		avail >>= 1;
4062 
4063 	if (used + bytes < space_info->total_bytes + avail)
4064 		return 1;
4065 	return 0;
4066 }
4067 
4068 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4069 					 unsigned long nr_pages, int nr_items)
4070 {
4071 	struct super_block *sb = root->fs_info->sb;
4072 
4073 	if (down_read_trylock(&sb->s_umount)) {
4074 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4075 		up_read(&sb->s_umount);
4076 	} else {
4077 		/*
4078 		 * We needn't worry the filesystem going from r/w to r/o though
4079 		 * we don't acquire ->s_umount mutex, because the filesystem
4080 		 * should guarantee the delalloc inodes list be empty after
4081 		 * the filesystem is readonly(all dirty pages are written to
4082 		 * the disk).
4083 		 */
4084 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4085 		if (!current->journal_info)
4086 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4087 	}
4088 }
4089 
4090 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4091 {
4092 	u64 bytes;
4093 	int nr;
4094 
4095 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4096 	nr = (int)div64_u64(to_reclaim, bytes);
4097 	if (!nr)
4098 		nr = 1;
4099 	return nr;
4100 }
4101 
4102 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4103 
4104 /*
4105  * shrink metadata reservation for delalloc
4106  */
4107 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4108 			    bool wait_ordered)
4109 {
4110 	struct btrfs_block_rsv *block_rsv;
4111 	struct btrfs_space_info *space_info;
4112 	struct btrfs_trans_handle *trans;
4113 	u64 delalloc_bytes;
4114 	u64 max_reclaim;
4115 	long time_left;
4116 	unsigned long nr_pages;
4117 	int loops;
4118 	int items;
4119 	enum btrfs_reserve_flush_enum flush;
4120 
4121 	/* Calc the number of the pages we need flush for space reservation */
4122 	items = calc_reclaim_items_nr(root, to_reclaim);
4123 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4124 
4125 	trans = (struct btrfs_trans_handle *)current->journal_info;
4126 	block_rsv = &root->fs_info->delalloc_block_rsv;
4127 	space_info = block_rsv->space_info;
4128 
4129 	delalloc_bytes = percpu_counter_sum_positive(
4130 						&root->fs_info->delalloc_bytes);
4131 	if (delalloc_bytes == 0) {
4132 		if (trans)
4133 			return;
4134 		if (wait_ordered)
4135 			btrfs_wait_ordered_roots(root->fs_info, items);
4136 		return;
4137 	}
4138 
4139 	loops = 0;
4140 	while (delalloc_bytes && loops < 3) {
4141 		max_reclaim = min(delalloc_bytes, to_reclaim);
4142 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4143 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4144 		/*
4145 		 * We need to wait for the async pages to actually start before
4146 		 * we do anything.
4147 		 */
4148 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4149 		if (!max_reclaim)
4150 			goto skip_async;
4151 
4152 		if (max_reclaim <= nr_pages)
4153 			max_reclaim = 0;
4154 		else
4155 			max_reclaim -= nr_pages;
4156 
4157 		wait_event(root->fs_info->async_submit_wait,
4158 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4159 			   (int)max_reclaim);
4160 skip_async:
4161 		if (!trans)
4162 			flush = BTRFS_RESERVE_FLUSH_ALL;
4163 		else
4164 			flush = BTRFS_RESERVE_NO_FLUSH;
4165 		spin_lock(&space_info->lock);
4166 		if (can_overcommit(root, space_info, orig, flush)) {
4167 			spin_unlock(&space_info->lock);
4168 			break;
4169 		}
4170 		spin_unlock(&space_info->lock);
4171 
4172 		loops++;
4173 		if (wait_ordered && !trans) {
4174 			btrfs_wait_ordered_roots(root->fs_info, items);
4175 		} else {
4176 			time_left = schedule_timeout_killable(1);
4177 			if (time_left)
4178 				break;
4179 		}
4180 		delalloc_bytes = percpu_counter_sum_positive(
4181 						&root->fs_info->delalloc_bytes);
4182 	}
4183 }
4184 
4185 /**
4186  * maybe_commit_transaction - possibly commit the transaction if its ok to
4187  * @root - the root we're allocating for
4188  * @bytes - the number of bytes we want to reserve
4189  * @force - force the commit
4190  *
4191  * This will check to make sure that committing the transaction will actually
4192  * get us somewhere and then commit the transaction if it does.  Otherwise it
4193  * will return -ENOSPC.
4194  */
4195 static int may_commit_transaction(struct btrfs_root *root,
4196 				  struct btrfs_space_info *space_info,
4197 				  u64 bytes, int force)
4198 {
4199 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4200 	struct btrfs_trans_handle *trans;
4201 
4202 	trans = (struct btrfs_trans_handle *)current->journal_info;
4203 	if (trans)
4204 		return -EAGAIN;
4205 
4206 	if (force)
4207 		goto commit;
4208 
4209 	/* See if there is enough pinned space to make this reservation */
4210 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4211 				   bytes) >= 0)
4212 		goto commit;
4213 
4214 	/*
4215 	 * See if there is some space in the delayed insertion reservation for
4216 	 * this reservation.
4217 	 */
4218 	if (space_info != delayed_rsv->space_info)
4219 		return -ENOSPC;
4220 
4221 	spin_lock(&delayed_rsv->lock);
4222 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4223 				   bytes - delayed_rsv->size) >= 0) {
4224 		spin_unlock(&delayed_rsv->lock);
4225 		return -ENOSPC;
4226 	}
4227 	spin_unlock(&delayed_rsv->lock);
4228 
4229 commit:
4230 	trans = btrfs_join_transaction(root);
4231 	if (IS_ERR(trans))
4232 		return -ENOSPC;
4233 
4234 	return btrfs_commit_transaction(trans, root);
4235 }
4236 
4237 enum flush_state {
4238 	FLUSH_DELAYED_ITEMS_NR	=	1,
4239 	FLUSH_DELAYED_ITEMS	=	2,
4240 	FLUSH_DELALLOC		=	3,
4241 	FLUSH_DELALLOC_WAIT	=	4,
4242 	ALLOC_CHUNK		=	5,
4243 	COMMIT_TRANS		=	6,
4244 };
4245 
4246 static int flush_space(struct btrfs_root *root,
4247 		       struct btrfs_space_info *space_info, u64 num_bytes,
4248 		       u64 orig_bytes, int state)
4249 {
4250 	struct btrfs_trans_handle *trans;
4251 	int nr;
4252 	int ret = 0;
4253 
4254 	switch (state) {
4255 	case FLUSH_DELAYED_ITEMS_NR:
4256 	case FLUSH_DELAYED_ITEMS:
4257 		if (state == FLUSH_DELAYED_ITEMS_NR)
4258 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4259 		else
4260 			nr = -1;
4261 
4262 		trans = btrfs_join_transaction(root);
4263 		if (IS_ERR(trans)) {
4264 			ret = PTR_ERR(trans);
4265 			break;
4266 		}
4267 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4268 		btrfs_end_transaction(trans, root);
4269 		break;
4270 	case FLUSH_DELALLOC:
4271 	case FLUSH_DELALLOC_WAIT:
4272 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4273 				state == FLUSH_DELALLOC_WAIT);
4274 		break;
4275 	case ALLOC_CHUNK:
4276 		trans = btrfs_join_transaction(root);
4277 		if (IS_ERR(trans)) {
4278 			ret = PTR_ERR(trans);
4279 			break;
4280 		}
4281 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4282 				     btrfs_get_alloc_profile(root, 0),
4283 				     CHUNK_ALLOC_NO_FORCE);
4284 		btrfs_end_transaction(trans, root);
4285 		if (ret == -ENOSPC)
4286 			ret = 0;
4287 		break;
4288 	case COMMIT_TRANS:
4289 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4290 		break;
4291 	default:
4292 		ret = -ENOSPC;
4293 		break;
4294 	}
4295 
4296 	return ret;
4297 }
4298 
4299 static inline u64
4300 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4301 				 struct btrfs_space_info *space_info)
4302 {
4303 	u64 used;
4304 	u64 expected;
4305 	u64 to_reclaim;
4306 
4307 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4308 				16 * 1024 * 1024);
4309 	spin_lock(&space_info->lock);
4310 	if (can_overcommit(root, space_info, to_reclaim,
4311 			   BTRFS_RESERVE_FLUSH_ALL)) {
4312 		to_reclaim = 0;
4313 		goto out;
4314 	}
4315 
4316 	used = space_info->bytes_used + space_info->bytes_reserved +
4317 	       space_info->bytes_pinned + space_info->bytes_readonly +
4318 	       space_info->bytes_may_use;
4319 	if (can_overcommit(root, space_info, 1024 * 1024,
4320 			   BTRFS_RESERVE_FLUSH_ALL))
4321 		expected = div_factor_fine(space_info->total_bytes, 95);
4322 	else
4323 		expected = div_factor_fine(space_info->total_bytes, 90);
4324 
4325 	if (used > expected)
4326 		to_reclaim = used - expected;
4327 	else
4328 		to_reclaim = 0;
4329 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4330 				     space_info->bytes_reserved);
4331 out:
4332 	spin_unlock(&space_info->lock);
4333 
4334 	return to_reclaim;
4335 }
4336 
4337 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4338 					struct btrfs_fs_info *fs_info, u64 used)
4339 {
4340 	return (used >= div_factor_fine(space_info->total_bytes, 98) &&
4341 		!btrfs_fs_closing(fs_info) &&
4342 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4343 }
4344 
4345 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4346 				       struct btrfs_fs_info *fs_info,
4347 				       int flush_state)
4348 {
4349 	u64 used;
4350 
4351 	spin_lock(&space_info->lock);
4352 	/*
4353 	 * We run out of space and have not got any free space via flush_space,
4354 	 * so don't bother doing async reclaim.
4355 	 */
4356 	if (flush_state > COMMIT_TRANS && space_info->full) {
4357 		spin_unlock(&space_info->lock);
4358 		return 0;
4359 	}
4360 
4361 	used = space_info->bytes_used + space_info->bytes_reserved +
4362 	       space_info->bytes_pinned + space_info->bytes_readonly +
4363 	       space_info->bytes_may_use;
4364 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4365 		spin_unlock(&space_info->lock);
4366 		return 1;
4367 	}
4368 	spin_unlock(&space_info->lock);
4369 
4370 	return 0;
4371 }
4372 
4373 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4374 {
4375 	struct btrfs_fs_info *fs_info;
4376 	struct btrfs_space_info *space_info;
4377 	u64 to_reclaim;
4378 	int flush_state;
4379 
4380 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4381 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4382 
4383 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4384 						      space_info);
4385 	if (!to_reclaim)
4386 		return;
4387 
4388 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4389 	do {
4390 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4391 			    to_reclaim, flush_state);
4392 		flush_state++;
4393 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4394 						 flush_state))
4395 			return;
4396 	} while (flush_state <= COMMIT_TRANS);
4397 
4398 	if (btrfs_need_do_async_reclaim(space_info, fs_info, flush_state))
4399 		queue_work(system_unbound_wq, work);
4400 }
4401 
4402 void btrfs_init_async_reclaim_work(struct work_struct *work)
4403 {
4404 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4405 }
4406 
4407 /**
4408  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4409  * @root - the root we're allocating for
4410  * @block_rsv - the block_rsv we're allocating for
4411  * @orig_bytes - the number of bytes we want
4412  * @flush - whether or not we can flush to make our reservation
4413  *
4414  * This will reserve orgi_bytes number of bytes from the space info associated
4415  * with the block_rsv.  If there is not enough space it will make an attempt to
4416  * flush out space to make room.  It will do this by flushing delalloc if
4417  * possible or committing the transaction.  If flush is 0 then no attempts to
4418  * regain reservations will be made and this will fail if there is not enough
4419  * space already.
4420  */
4421 static int reserve_metadata_bytes(struct btrfs_root *root,
4422 				  struct btrfs_block_rsv *block_rsv,
4423 				  u64 orig_bytes,
4424 				  enum btrfs_reserve_flush_enum flush)
4425 {
4426 	struct btrfs_space_info *space_info = block_rsv->space_info;
4427 	u64 used;
4428 	u64 num_bytes = orig_bytes;
4429 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4430 	int ret = 0;
4431 	bool flushing = false;
4432 
4433 again:
4434 	ret = 0;
4435 	spin_lock(&space_info->lock);
4436 	/*
4437 	 * We only want to wait if somebody other than us is flushing and we
4438 	 * are actually allowed to flush all things.
4439 	 */
4440 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4441 	       space_info->flush) {
4442 		spin_unlock(&space_info->lock);
4443 		/*
4444 		 * If we have a trans handle we can't wait because the flusher
4445 		 * may have to commit the transaction, which would mean we would
4446 		 * deadlock since we are waiting for the flusher to finish, but
4447 		 * hold the current transaction open.
4448 		 */
4449 		if (current->journal_info)
4450 			return -EAGAIN;
4451 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4452 		/* Must have been killed, return */
4453 		if (ret)
4454 			return -EINTR;
4455 
4456 		spin_lock(&space_info->lock);
4457 	}
4458 
4459 	ret = -ENOSPC;
4460 	used = space_info->bytes_used + space_info->bytes_reserved +
4461 		space_info->bytes_pinned + space_info->bytes_readonly +
4462 		space_info->bytes_may_use;
4463 
4464 	/*
4465 	 * The idea here is that we've not already over-reserved the block group
4466 	 * then we can go ahead and save our reservation first and then start
4467 	 * flushing if we need to.  Otherwise if we've already overcommitted
4468 	 * lets start flushing stuff first and then come back and try to make
4469 	 * our reservation.
4470 	 */
4471 	if (used <= space_info->total_bytes) {
4472 		if (used + orig_bytes <= space_info->total_bytes) {
4473 			space_info->bytes_may_use += orig_bytes;
4474 			trace_btrfs_space_reservation(root->fs_info,
4475 				"space_info", space_info->flags, orig_bytes, 1);
4476 			ret = 0;
4477 		} else {
4478 			/*
4479 			 * Ok set num_bytes to orig_bytes since we aren't
4480 			 * overocmmitted, this way we only try and reclaim what
4481 			 * we need.
4482 			 */
4483 			num_bytes = orig_bytes;
4484 		}
4485 	} else {
4486 		/*
4487 		 * Ok we're over committed, set num_bytes to the overcommitted
4488 		 * amount plus the amount of bytes that we need for this
4489 		 * reservation.
4490 		 */
4491 		num_bytes = used - space_info->total_bytes +
4492 			(orig_bytes * 2);
4493 	}
4494 
4495 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4496 		space_info->bytes_may_use += orig_bytes;
4497 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4498 					      space_info->flags, orig_bytes,
4499 					      1);
4500 		ret = 0;
4501 	}
4502 
4503 	/*
4504 	 * Couldn't make our reservation, save our place so while we're trying
4505 	 * to reclaim space we can actually use it instead of somebody else
4506 	 * stealing it from us.
4507 	 *
4508 	 * We make the other tasks wait for the flush only when we can flush
4509 	 * all things.
4510 	 */
4511 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4512 		flushing = true;
4513 		space_info->flush = 1;
4514 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4515 		used += orig_bytes;
4516 		/*
4517 		 * We will do the space reservation dance during log replay,
4518 		 * which means we won't have fs_info->fs_root set, so don't do
4519 		 * the async reclaim as we will panic.
4520 		 */
4521 		if (!root->fs_info->log_root_recovering &&
4522 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4523 		    !work_busy(&root->fs_info->async_reclaim_work))
4524 			queue_work(system_unbound_wq,
4525 				   &root->fs_info->async_reclaim_work);
4526 	}
4527 	spin_unlock(&space_info->lock);
4528 
4529 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4530 		goto out;
4531 
4532 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4533 			  flush_state);
4534 	flush_state++;
4535 
4536 	/*
4537 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4538 	 * would happen. So skip delalloc flush.
4539 	 */
4540 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4541 	    (flush_state == FLUSH_DELALLOC ||
4542 	     flush_state == FLUSH_DELALLOC_WAIT))
4543 		flush_state = ALLOC_CHUNK;
4544 
4545 	if (!ret)
4546 		goto again;
4547 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4548 		 flush_state < COMMIT_TRANS)
4549 		goto again;
4550 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4551 		 flush_state <= COMMIT_TRANS)
4552 		goto again;
4553 
4554 out:
4555 	if (ret == -ENOSPC &&
4556 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4557 		struct btrfs_block_rsv *global_rsv =
4558 			&root->fs_info->global_block_rsv;
4559 
4560 		if (block_rsv != global_rsv &&
4561 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4562 			ret = 0;
4563 	}
4564 	if (ret == -ENOSPC)
4565 		trace_btrfs_space_reservation(root->fs_info,
4566 					      "space_info:enospc",
4567 					      space_info->flags, orig_bytes, 1);
4568 	if (flushing) {
4569 		spin_lock(&space_info->lock);
4570 		space_info->flush = 0;
4571 		wake_up_all(&space_info->wait);
4572 		spin_unlock(&space_info->lock);
4573 	}
4574 	return ret;
4575 }
4576 
4577 static struct btrfs_block_rsv *get_block_rsv(
4578 					const struct btrfs_trans_handle *trans,
4579 					const struct btrfs_root *root)
4580 {
4581 	struct btrfs_block_rsv *block_rsv = NULL;
4582 
4583 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4584 		block_rsv = trans->block_rsv;
4585 
4586 	if (root == root->fs_info->csum_root && trans->adding_csums)
4587 		block_rsv = trans->block_rsv;
4588 
4589 	if (root == root->fs_info->uuid_root)
4590 		block_rsv = trans->block_rsv;
4591 
4592 	if (!block_rsv)
4593 		block_rsv = root->block_rsv;
4594 
4595 	if (!block_rsv)
4596 		block_rsv = &root->fs_info->empty_block_rsv;
4597 
4598 	return block_rsv;
4599 }
4600 
4601 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4602 			       u64 num_bytes)
4603 {
4604 	int ret = -ENOSPC;
4605 	spin_lock(&block_rsv->lock);
4606 	if (block_rsv->reserved >= num_bytes) {
4607 		block_rsv->reserved -= num_bytes;
4608 		if (block_rsv->reserved < block_rsv->size)
4609 			block_rsv->full = 0;
4610 		ret = 0;
4611 	}
4612 	spin_unlock(&block_rsv->lock);
4613 	return ret;
4614 }
4615 
4616 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4617 				u64 num_bytes, int update_size)
4618 {
4619 	spin_lock(&block_rsv->lock);
4620 	block_rsv->reserved += num_bytes;
4621 	if (update_size)
4622 		block_rsv->size += num_bytes;
4623 	else if (block_rsv->reserved >= block_rsv->size)
4624 		block_rsv->full = 1;
4625 	spin_unlock(&block_rsv->lock);
4626 }
4627 
4628 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4629 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4630 			     int min_factor)
4631 {
4632 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4633 	u64 min_bytes;
4634 
4635 	if (global_rsv->space_info != dest->space_info)
4636 		return -ENOSPC;
4637 
4638 	spin_lock(&global_rsv->lock);
4639 	min_bytes = div_factor(global_rsv->size, min_factor);
4640 	if (global_rsv->reserved < min_bytes + num_bytes) {
4641 		spin_unlock(&global_rsv->lock);
4642 		return -ENOSPC;
4643 	}
4644 	global_rsv->reserved -= num_bytes;
4645 	if (global_rsv->reserved < global_rsv->size)
4646 		global_rsv->full = 0;
4647 	spin_unlock(&global_rsv->lock);
4648 
4649 	block_rsv_add_bytes(dest, num_bytes, 1);
4650 	return 0;
4651 }
4652 
4653 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4654 				    struct btrfs_block_rsv *block_rsv,
4655 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4656 {
4657 	struct btrfs_space_info *space_info = block_rsv->space_info;
4658 
4659 	spin_lock(&block_rsv->lock);
4660 	if (num_bytes == (u64)-1)
4661 		num_bytes = block_rsv->size;
4662 	block_rsv->size -= num_bytes;
4663 	if (block_rsv->reserved >= block_rsv->size) {
4664 		num_bytes = block_rsv->reserved - block_rsv->size;
4665 		block_rsv->reserved = block_rsv->size;
4666 		block_rsv->full = 1;
4667 	} else {
4668 		num_bytes = 0;
4669 	}
4670 	spin_unlock(&block_rsv->lock);
4671 
4672 	if (num_bytes > 0) {
4673 		if (dest) {
4674 			spin_lock(&dest->lock);
4675 			if (!dest->full) {
4676 				u64 bytes_to_add;
4677 
4678 				bytes_to_add = dest->size - dest->reserved;
4679 				bytes_to_add = min(num_bytes, bytes_to_add);
4680 				dest->reserved += bytes_to_add;
4681 				if (dest->reserved >= dest->size)
4682 					dest->full = 1;
4683 				num_bytes -= bytes_to_add;
4684 			}
4685 			spin_unlock(&dest->lock);
4686 		}
4687 		if (num_bytes) {
4688 			spin_lock(&space_info->lock);
4689 			space_info->bytes_may_use -= num_bytes;
4690 			trace_btrfs_space_reservation(fs_info, "space_info",
4691 					space_info->flags, num_bytes, 0);
4692 			spin_unlock(&space_info->lock);
4693 		}
4694 	}
4695 }
4696 
4697 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4698 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4699 {
4700 	int ret;
4701 
4702 	ret = block_rsv_use_bytes(src, num_bytes);
4703 	if (ret)
4704 		return ret;
4705 
4706 	block_rsv_add_bytes(dst, num_bytes, 1);
4707 	return 0;
4708 }
4709 
4710 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4711 {
4712 	memset(rsv, 0, sizeof(*rsv));
4713 	spin_lock_init(&rsv->lock);
4714 	rsv->type = type;
4715 }
4716 
4717 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4718 					      unsigned short type)
4719 {
4720 	struct btrfs_block_rsv *block_rsv;
4721 	struct btrfs_fs_info *fs_info = root->fs_info;
4722 
4723 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4724 	if (!block_rsv)
4725 		return NULL;
4726 
4727 	btrfs_init_block_rsv(block_rsv, type);
4728 	block_rsv->space_info = __find_space_info(fs_info,
4729 						  BTRFS_BLOCK_GROUP_METADATA);
4730 	return block_rsv;
4731 }
4732 
4733 void btrfs_free_block_rsv(struct btrfs_root *root,
4734 			  struct btrfs_block_rsv *rsv)
4735 {
4736 	if (!rsv)
4737 		return;
4738 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4739 	kfree(rsv);
4740 }
4741 
4742 int btrfs_block_rsv_add(struct btrfs_root *root,
4743 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4744 			enum btrfs_reserve_flush_enum flush)
4745 {
4746 	int ret;
4747 
4748 	if (num_bytes == 0)
4749 		return 0;
4750 
4751 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4752 	if (!ret) {
4753 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4754 		return 0;
4755 	}
4756 
4757 	return ret;
4758 }
4759 
4760 int btrfs_block_rsv_check(struct btrfs_root *root,
4761 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4762 {
4763 	u64 num_bytes = 0;
4764 	int ret = -ENOSPC;
4765 
4766 	if (!block_rsv)
4767 		return 0;
4768 
4769 	spin_lock(&block_rsv->lock);
4770 	num_bytes = div_factor(block_rsv->size, min_factor);
4771 	if (block_rsv->reserved >= num_bytes)
4772 		ret = 0;
4773 	spin_unlock(&block_rsv->lock);
4774 
4775 	return ret;
4776 }
4777 
4778 int btrfs_block_rsv_refill(struct btrfs_root *root,
4779 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4780 			   enum btrfs_reserve_flush_enum flush)
4781 {
4782 	u64 num_bytes = 0;
4783 	int ret = -ENOSPC;
4784 
4785 	if (!block_rsv)
4786 		return 0;
4787 
4788 	spin_lock(&block_rsv->lock);
4789 	num_bytes = min_reserved;
4790 	if (block_rsv->reserved >= num_bytes)
4791 		ret = 0;
4792 	else
4793 		num_bytes -= block_rsv->reserved;
4794 	spin_unlock(&block_rsv->lock);
4795 
4796 	if (!ret)
4797 		return 0;
4798 
4799 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4800 	if (!ret) {
4801 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
4802 		return 0;
4803 	}
4804 
4805 	return ret;
4806 }
4807 
4808 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4809 			    struct btrfs_block_rsv *dst_rsv,
4810 			    u64 num_bytes)
4811 {
4812 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4813 }
4814 
4815 void btrfs_block_rsv_release(struct btrfs_root *root,
4816 			     struct btrfs_block_rsv *block_rsv,
4817 			     u64 num_bytes)
4818 {
4819 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4820 	if (global_rsv == block_rsv ||
4821 	    block_rsv->space_info != global_rsv->space_info)
4822 		global_rsv = NULL;
4823 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4824 				num_bytes);
4825 }
4826 
4827 /*
4828  * helper to calculate size of global block reservation.
4829  * the desired value is sum of space used by extent tree,
4830  * checksum tree and root tree
4831  */
4832 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4833 {
4834 	struct btrfs_space_info *sinfo;
4835 	u64 num_bytes;
4836 	u64 meta_used;
4837 	u64 data_used;
4838 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4839 
4840 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4841 	spin_lock(&sinfo->lock);
4842 	data_used = sinfo->bytes_used;
4843 	spin_unlock(&sinfo->lock);
4844 
4845 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4846 	spin_lock(&sinfo->lock);
4847 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4848 		data_used = 0;
4849 	meta_used = sinfo->bytes_used;
4850 	spin_unlock(&sinfo->lock);
4851 
4852 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4853 		    csum_size * 2;
4854 	num_bytes += div64_u64(data_used + meta_used, 50);
4855 
4856 	if (num_bytes * 3 > meta_used)
4857 		num_bytes = div64_u64(meta_used, 3);
4858 
4859 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
4860 }
4861 
4862 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4863 {
4864 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4865 	struct btrfs_space_info *sinfo = block_rsv->space_info;
4866 	u64 num_bytes;
4867 
4868 	num_bytes = calc_global_metadata_size(fs_info);
4869 
4870 	spin_lock(&sinfo->lock);
4871 	spin_lock(&block_rsv->lock);
4872 
4873 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4874 
4875 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4876 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
4877 		    sinfo->bytes_may_use;
4878 
4879 	if (sinfo->total_bytes > num_bytes) {
4880 		num_bytes = sinfo->total_bytes - num_bytes;
4881 		block_rsv->reserved += num_bytes;
4882 		sinfo->bytes_may_use += num_bytes;
4883 		trace_btrfs_space_reservation(fs_info, "space_info",
4884 				      sinfo->flags, num_bytes, 1);
4885 	}
4886 
4887 	if (block_rsv->reserved >= block_rsv->size) {
4888 		num_bytes = block_rsv->reserved - block_rsv->size;
4889 		sinfo->bytes_may_use -= num_bytes;
4890 		trace_btrfs_space_reservation(fs_info, "space_info",
4891 				      sinfo->flags, num_bytes, 0);
4892 		block_rsv->reserved = block_rsv->size;
4893 		block_rsv->full = 1;
4894 	}
4895 
4896 	spin_unlock(&block_rsv->lock);
4897 	spin_unlock(&sinfo->lock);
4898 }
4899 
4900 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4901 {
4902 	struct btrfs_space_info *space_info;
4903 
4904 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4905 	fs_info->chunk_block_rsv.space_info = space_info;
4906 
4907 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4908 	fs_info->global_block_rsv.space_info = space_info;
4909 	fs_info->delalloc_block_rsv.space_info = space_info;
4910 	fs_info->trans_block_rsv.space_info = space_info;
4911 	fs_info->empty_block_rsv.space_info = space_info;
4912 	fs_info->delayed_block_rsv.space_info = space_info;
4913 
4914 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4915 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4916 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4917 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4918 	if (fs_info->quota_root)
4919 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4920 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4921 
4922 	update_global_block_rsv(fs_info);
4923 }
4924 
4925 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4926 {
4927 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4928 				(u64)-1);
4929 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4930 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4931 	WARN_ON(fs_info->trans_block_rsv.size > 0);
4932 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4933 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
4934 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4935 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
4936 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4937 }
4938 
4939 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4940 				  struct btrfs_root *root)
4941 {
4942 	if (!trans->block_rsv)
4943 		return;
4944 
4945 	if (!trans->bytes_reserved)
4946 		return;
4947 
4948 	trace_btrfs_space_reservation(root->fs_info, "transaction",
4949 				      trans->transid, trans->bytes_reserved, 0);
4950 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4951 	trans->bytes_reserved = 0;
4952 }
4953 
4954 /* Can only return 0 or -ENOSPC */
4955 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4956 				  struct inode *inode)
4957 {
4958 	struct btrfs_root *root = BTRFS_I(inode)->root;
4959 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4960 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4961 
4962 	/*
4963 	 * We need to hold space in order to delete our orphan item once we've
4964 	 * added it, so this takes the reservation so we can release it later
4965 	 * when we are truly done with the orphan item.
4966 	 */
4967 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4968 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4969 				      btrfs_ino(inode), num_bytes, 1);
4970 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4971 }
4972 
4973 void btrfs_orphan_release_metadata(struct inode *inode)
4974 {
4975 	struct btrfs_root *root = BTRFS_I(inode)->root;
4976 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4977 	trace_btrfs_space_reservation(root->fs_info, "orphan",
4978 				      btrfs_ino(inode), num_bytes, 0);
4979 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4980 }
4981 
4982 /*
4983  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4984  * root: the root of the parent directory
4985  * rsv: block reservation
4986  * items: the number of items that we need do reservation
4987  * qgroup_reserved: used to return the reserved size in qgroup
4988  *
4989  * This function is used to reserve the space for snapshot/subvolume
4990  * creation and deletion. Those operations are different with the
4991  * common file/directory operations, they change two fs/file trees
4992  * and root tree, the number of items that the qgroup reserves is
4993  * different with the free space reservation. So we can not use
4994  * the space reseravtion mechanism in start_transaction().
4995  */
4996 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4997 				     struct btrfs_block_rsv *rsv,
4998 				     int items,
4999 				     u64 *qgroup_reserved,
5000 				     bool use_global_rsv)
5001 {
5002 	u64 num_bytes;
5003 	int ret;
5004 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5005 
5006 	if (root->fs_info->quota_enabled) {
5007 		/* One for parent inode, two for dir entries */
5008 		num_bytes = 3 * root->nodesize;
5009 		ret = btrfs_qgroup_reserve(root, num_bytes);
5010 		if (ret)
5011 			return ret;
5012 	} else {
5013 		num_bytes = 0;
5014 	}
5015 
5016 	*qgroup_reserved = num_bytes;
5017 
5018 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5019 	rsv->space_info = __find_space_info(root->fs_info,
5020 					    BTRFS_BLOCK_GROUP_METADATA);
5021 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5022 				  BTRFS_RESERVE_FLUSH_ALL);
5023 
5024 	if (ret == -ENOSPC && use_global_rsv)
5025 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5026 
5027 	if (ret) {
5028 		if (*qgroup_reserved)
5029 			btrfs_qgroup_free(root, *qgroup_reserved);
5030 	}
5031 
5032 	return ret;
5033 }
5034 
5035 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5036 				      struct btrfs_block_rsv *rsv,
5037 				      u64 qgroup_reserved)
5038 {
5039 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5040 	if (qgroup_reserved)
5041 		btrfs_qgroup_free(root, qgroup_reserved);
5042 }
5043 
5044 /**
5045  * drop_outstanding_extent - drop an outstanding extent
5046  * @inode: the inode we're dropping the extent for
5047  *
5048  * This is called when we are freeing up an outstanding extent, either called
5049  * after an error or after an extent is written.  This will return the number of
5050  * reserved extents that need to be freed.  This must be called with
5051  * BTRFS_I(inode)->lock held.
5052  */
5053 static unsigned drop_outstanding_extent(struct inode *inode)
5054 {
5055 	unsigned drop_inode_space = 0;
5056 	unsigned dropped_extents = 0;
5057 
5058 	BUG_ON(!BTRFS_I(inode)->outstanding_extents);
5059 	BTRFS_I(inode)->outstanding_extents--;
5060 
5061 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5062 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5063 			       &BTRFS_I(inode)->runtime_flags))
5064 		drop_inode_space = 1;
5065 
5066 	/*
5067 	 * If we have more or the same amount of outsanding extents than we have
5068 	 * reserved then we need to leave the reserved extents count alone.
5069 	 */
5070 	if (BTRFS_I(inode)->outstanding_extents >=
5071 	    BTRFS_I(inode)->reserved_extents)
5072 		return drop_inode_space;
5073 
5074 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5075 		BTRFS_I(inode)->outstanding_extents;
5076 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5077 	return dropped_extents + drop_inode_space;
5078 }
5079 
5080 /**
5081  * calc_csum_metadata_size - return the amount of metada space that must be
5082  *	reserved/free'd for the given bytes.
5083  * @inode: the inode we're manipulating
5084  * @num_bytes: the number of bytes in question
5085  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5086  *
5087  * This adjusts the number of csum_bytes in the inode and then returns the
5088  * correct amount of metadata that must either be reserved or freed.  We
5089  * calculate how many checksums we can fit into one leaf and then divide the
5090  * number of bytes that will need to be checksumed by this value to figure out
5091  * how many checksums will be required.  If we are adding bytes then the number
5092  * may go up and we will return the number of additional bytes that must be
5093  * reserved.  If it is going down we will return the number of bytes that must
5094  * be freed.
5095  *
5096  * This must be called with BTRFS_I(inode)->lock held.
5097  */
5098 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5099 				   int reserve)
5100 {
5101 	struct btrfs_root *root = BTRFS_I(inode)->root;
5102 	u64 csum_size;
5103 	int num_csums_per_leaf;
5104 	int num_csums;
5105 	int old_csums;
5106 
5107 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5108 	    BTRFS_I(inode)->csum_bytes == 0)
5109 		return 0;
5110 
5111 	old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5112 	if (reserve)
5113 		BTRFS_I(inode)->csum_bytes += num_bytes;
5114 	else
5115 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5116 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
5117 	num_csums_per_leaf = (int)div64_u64(csum_size,
5118 					    sizeof(struct btrfs_csum_item) +
5119 					    sizeof(struct btrfs_disk_key));
5120 	num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
5121 	num_csums = num_csums + num_csums_per_leaf - 1;
5122 	num_csums = num_csums / num_csums_per_leaf;
5123 
5124 	old_csums = old_csums + num_csums_per_leaf - 1;
5125 	old_csums = old_csums / num_csums_per_leaf;
5126 
5127 	/* No change, no need to reserve more */
5128 	if (old_csums == num_csums)
5129 		return 0;
5130 
5131 	if (reserve)
5132 		return btrfs_calc_trans_metadata_size(root,
5133 						      num_csums - old_csums);
5134 
5135 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5136 }
5137 
5138 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5139 {
5140 	struct btrfs_root *root = BTRFS_I(inode)->root;
5141 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5142 	u64 to_reserve = 0;
5143 	u64 csum_bytes;
5144 	unsigned nr_extents = 0;
5145 	int extra_reserve = 0;
5146 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5147 	int ret = 0;
5148 	bool delalloc_lock = true;
5149 	u64 to_free = 0;
5150 	unsigned dropped;
5151 
5152 	/* If we are a free space inode we need to not flush since we will be in
5153 	 * the middle of a transaction commit.  We also don't need the delalloc
5154 	 * mutex since we won't race with anybody.  We need this mostly to make
5155 	 * lockdep shut its filthy mouth.
5156 	 */
5157 	if (btrfs_is_free_space_inode(inode)) {
5158 		flush = BTRFS_RESERVE_NO_FLUSH;
5159 		delalloc_lock = false;
5160 	}
5161 
5162 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5163 	    btrfs_transaction_in_commit(root->fs_info))
5164 		schedule_timeout(1);
5165 
5166 	if (delalloc_lock)
5167 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5168 
5169 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5170 
5171 	spin_lock(&BTRFS_I(inode)->lock);
5172 	BTRFS_I(inode)->outstanding_extents++;
5173 
5174 	if (BTRFS_I(inode)->outstanding_extents >
5175 	    BTRFS_I(inode)->reserved_extents)
5176 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5177 			BTRFS_I(inode)->reserved_extents;
5178 
5179 	/*
5180 	 * Add an item to reserve for updating the inode when we complete the
5181 	 * delalloc io.
5182 	 */
5183 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5184 		      &BTRFS_I(inode)->runtime_flags)) {
5185 		nr_extents++;
5186 		extra_reserve = 1;
5187 	}
5188 
5189 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5190 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5191 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5192 	spin_unlock(&BTRFS_I(inode)->lock);
5193 
5194 	if (root->fs_info->quota_enabled) {
5195 		ret = btrfs_qgroup_reserve(root, num_bytes +
5196 					   nr_extents * root->nodesize);
5197 		if (ret)
5198 			goto out_fail;
5199 	}
5200 
5201 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5202 	if (unlikely(ret)) {
5203 		if (root->fs_info->quota_enabled)
5204 			btrfs_qgroup_free(root, num_bytes +
5205 						nr_extents * root->nodesize);
5206 		goto out_fail;
5207 	}
5208 
5209 	spin_lock(&BTRFS_I(inode)->lock);
5210 	if (extra_reserve) {
5211 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5212 			&BTRFS_I(inode)->runtime_flags);
5213 		nr_extents--;
5214 	}
5215 	BTRFS_I(inode)->reserved_extents += nr_extents;
5216 	spin_unlock(&BTRFS_I(inode)->lock);
5217 
5218 	if (delalloc_lock)
5219 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5220 
5221 	if (to_reserve)
5222 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5223 					      btrfs_ino(inode), to_reserve, 1);
5224 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5225 
5226 	return 0;
5227 
5228 out_fail:
5229 	spin_lock(&BTRFS_I(inode)->lock);
5230 	dropped = drop_outstanding_extent(inode);
5231 	/*
5232 	 * If the inodes csum_bytes is the same as the original
5233 	 * csum_bytes then we know we haven't raced with any free()ers
5234 	 * so we can just reduce our inodes csum bytes and carry on.
5235 	 */
5236 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5237 		calc_csum_metadata_size(inode, num_bytes, 0);
5238 	} else {
5239 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5240 		u64 bytes;
5241 
5242 		/*
5243 		 * This is tricky, but first we need to figure out how much we
5244 		 * free'd from any free-ers that occured during this
5245 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5246 		 * before we dropped our lock, and then call the free for the
5247 		 * number of bytes that were freed while we were trying our
5248 		 * reservation.
5249 		 */
5250 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5251 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5252 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5253 
5254 
5255 		/*
5256 		 * Now we need to see how much we would have freed had we not
5257 		 * been making this reservation and our ->csum_bytes were not
5258 		 * artificially inflated.
5259 		 */
5260 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5261 		bytes = csum_bytes - orig_csum_bytes;
5262 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5263 
5264 		/*
5265 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5266 		 * more than to_free then we would have free'd more space had we
5267 		 * not had an artificially high ->csum_bytes, so we need to free
5268 		 * the remainder.  If bytes is the same or less then we don't
5269 		 * need to do anything, the other free-ers did the correct
5270 		 * thing.
5271 		 */
5272 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5273 		if (bytes > to_free)
5274 			to_free = bytes - to_free;
5275 		else
5276 			to_free = 0;
5277 	}
5278 	spin_unlock(&BTRFS_I(inode)->lock);
5279 	if (dropped)
5280 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5281 
5282 	if (to_free) {
5283 		btrfs_block_rsv_release(root, block_rsv, to_free);
5284 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5285 					      btrfs_ino(inode), to_free, 0);
5286 	}
5287 	if (delalloc_lock)
5288 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5289 	return ret;
5290 }
5291 
5292 /**
5293  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5294  * @inode: the inode to release the reservation for
5295  * @num_bytes: the number of bytes we're releasing
5296  *
5297  * This will release the metadata reservation for an inode.  This can be called
5298  * once we complete IO for a given set of bytes to release their metadata
5299  * reservations.
5300  */
5301 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5302 {
5303 	struct btrfs_root *root = BTRFS_I(inode)->root;
5304 	u64 to_free = 0;
5305 	unsigned dropped;
5306 
5307 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5308 	spin_lock(&BTRFS_I(inode)->lock);
5309 	dropped = drop_outstanding_extent(inode);
5310 
5311 	if (num_bytes)
5312 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5313 	spin_unlock(&BTRFS_I(inode)->lock);
5314 	if (dropped > 0)
5315 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5316 
5317 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5318 				      btrfs_ino(inode), to_free, 0);
5319 	if (root->fs_info->quota_enabled) {
5320 		btrfs_qgroup_free(root, num_bytes +
5321 					dropped * root->nodesize);
5322 	}
5323 
5324 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5325 				to_free);
5326 }
5327 
5328 /**
5329  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5330  * @inode: inode we're writing to
5331  * @num_bytes: the number of bytes we want to allocate
5332  *
5333  * This will do the following things
5334  *
5335  * o reserve space in the data space info for num_bytes
5336  * o reserve space in the metadata space info based on number of outstanding
5337  *   extents and how much csums will be needed
5338  * o add to the inodes ->delalloc_bytes
5339  * o add it to the fs_info's delalloc inodes list.
5340  *
5341  * This will return 0 for success and -ENOSPC if there is no space left.
5342  */
5343 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5344 {
5345 	int ret;
5346 
5347 	ret = btrfs_check_data_free_space(inode, num_bytes);
5348 	if (ret)
5349 		return ret;
5350 
5351 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5352 	if (ret) {
5353 		btrfs_free_reserved_data_space(inode, num_bytes);
5354 		return ret;
5355 	}
5356 
5357 	return 0;
5358 }
5359 
5360 /**
5361  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5362  * @inode: inode we're releasing space for
5363  * @num_bytes: the number of bytes we want to free up
5364  *
5365  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5366  * called in the case that we don't need the metadata AND data reservations
5367  * anymore.  So if there is an error or we insert an inline extent.
5368  *
5369  * This function will release the metadata space that was not used and will
5370  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5371  * list if there are no delalloc bytes left.
5372  */
5373 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5374 {
5375 	btrfs_delalloc_release_metadata(inode, num_bytes);
5376 	btrfs_free_reserved_data_space(inode, num_bytes);
5377 }
5378 
5379 static int update_block_group(struct btrfs_root *root,
5380 			      u64 bytenr, u64 num_bytes, int alloc)
5381 {
5382 	struct btrfs_block_group_cache *cache = NULL;
5383 	struct btrfs_fs_info *info = root->fs_info;
5384 	u64 total = num_bytes;
5385 	u64 old_val;
5386 	u64 byte_in_group;
5387 	int factor;
5388 
5389 	/* block accounting for super block */
5390 	spin_lock(&info->delalloc_root_lock);
5391 	old_val = btrfs_super_bytes_used(info->super_copy);
5392 	if (alloc)
5393 		old_val += num_bytes;
5394 	else
5395 		old_val -= num_bytes;
5396 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5397 	spin_unlock(&info->delalloc_root_lock);
5398 
5399 	while (total) {
5400 		cache = btrfs_lookup_block_group(info, bytenr);
5401 		if (!cache)
5402 			return -ENOENT;
5403 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5404 				    BTRFS_BLOCK_GROUP_RAID1 |
5405 				    BTRFS_BLOCK_GROUP_RAID10))
5406 			factor = 2;
5407 		else
5408 			factor = 1;
5409 		/*
5410 		 * If this block group has free space cache written out, we
5411 		 * need to make sure to load it if we are removing space.  This
5412 		 * is because we need the unpinning stage to actually add the
5413 		 * space back to the block group, otherwise we will leak space.
5414 		 */
5415 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5416 			cache_block_group(cache, 1);
5417 
5418 		byte_in_group = bytenr - cache->key.objectid;
5419 		WARN_ON(byte_in_group > cache->key.offset);
5420 
5421 		spin_lock(&cache->space_info->lock);
5422 		spin_lock(&cache->lock);
5423 
5424 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5425 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5426 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5427 
5428 		cache->dirty = 1;
5429 		old_val = btrfs_block_group_used(&cache->item);
5430 		num_bytes = min(total, cache->key.offset - byte_in_group);
5431 		if (alloc) {
5432 			old_val += num_bytes;
5433 			btrfs_set_block_group_used(&cache->item, old_val);
5434 			cache->reserved -= num_bytes;
5435 			cache->space_info->bytes_reserved -= num_bytes;
5436 			cache->space_info->bytes_used += num_bytes;
5437 			cache->space_info->disk_used += num_bytes * factor;
5438 			spin_unlock(&cache->lock);
5439 			spin_unlock(&cache->space_info->lock);
5440 		} else {
5441 			old_val -= num_bytes;
5442 
5443 			/*
5444 			 * No longer have used bytes in this block group, queue
5445 			 * it for deletion.
5446 			 */
5447 			if (old_val == 0) {
5448 				spin_lock(&info->unused_bgs_lock);
5449 				if (list_empty(&cache->bg_list)) {
5450 					btrfs_get_block_group(cache);
5451 					list_add_tail(&cache->bg_list,
5452 						      &info->unused_bgs);
5453 				}
5454 				spin_unlock(&info->unused_bgs_lock);
5455 			}
5456 			btrfs_set_block_group_used(&cache->item, old_val);
5457 			cache->pinned += num_bytes;
5458 			cache->space_info->bytes_pinned += num_bytes;
5459 			cache->space_info->bytes_used -= num_bytes;
5460 			cache->space_info->disk_used -= num_bytes * factor;
5461 			spin_unlock(&cache->lock);
5462 			spin_unlock(&cache->space_info->lock);
5463 
5464 			set_extent_dirty(info->pinned_extents,
5465 					 bytenr, bytenr + num_bytes - 1,
5466 					 GFP_NOFS | __GFP_NOFAIL);
5467 		}
5468 		btrfs_put_block_group(cache);
5469 		total -= num_bytes;
5470 		bytenr += num_bytes;
5471 	}
5472 	return 0;
5473 }
5474 
5475 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5476 {
5477 	struct btrfs_block_group_cache *cache;
5478 	u64 bytenr;
5479 
5480 	spin_lock(&root->fs_info->block_group_cache_lock);
5481 	bytenr = root->fs_info->first_logical_byte;
5482 	spin_unlock(&root->fs_info->block_group_cache_lock);
5483 
5484 	if (bytenr < (u64)-1)
5485 		return bytenr;
5486 
5487 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5488 	if (!cache)
5489 		return 0;
5490 
5491 	bytenr = cache->key.objectid;
5492 	btrfs_put_block_group(cache);
5493 
5494 	return bytenr;
5495 }
5496 
5497 static int pin_down_extent(struct btrfs_root *root,
5498 			   struct btrfs_block_group_cache *cache,
5499 			   u64 bytenr, u64 num_bytes, int reserved)
5500 {
5501 	spin_lock(&cache->space_info->lock);
5502 	spin_lock(&cache->lock);
5503 	cache->pinned += num_bytes;
5504 	cache->space_info->bytes_pinned += num_bytes;
5505 	if (reserved) {
5506 		cache->reserved -= num_bytes;
5507 		cache->space_info->bytes_reserved -= num_bytes;
5508 	}
5509 	spin_unlock(&cache->lock);
5510 	spin_unlock(&cache->space_info->lock);
5511 
5512 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5513 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5514 	if (reserved)
5515 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5516 	return 0;
5517 }
5518 
5519 /*
5520  * this function must be called within transaction
5521  */
5522 int btrfs_pin_extent(struct btrfs_root *root,
5523 		     u64 bytenr, u64 num_bytes, int reserved)
5524 {
5525 	struct btrfs_block_group_cache *cache;
5526 
5527 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5528 	BUG_ON(!cache); /* Logic error */
5529 
5530 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5531 
5532 	btrfs_put_block_group(cache);
5533 	return 0;
5534 }
5535 
5536 /*
5537  * this function must be called within transaction
5538  */
5539 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5540 				    u64 bytenr, u64 num_bytes)
5541 {
5542 	struct btrfs_block_group_cache *cache;
5543 	int ret;
5544 
5545 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5546 	if (!cache)
5547 		return -EINVAL;
5548 
5549 	/*
5550 	 * pull in the free space cache (if any) so that our pin
5551 	 * removes the free space from the cache.  We have load_only set
5552 	 * to one because the slow code to read in the free extents does check
5553 	 * the pinned extents.
5554 	 */
5555 	cache_block_group(cache, 1);
5556 
5557 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5558 
5559 	/* remove us from the free space cache (if we're there at all) */
5560 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5561 	btrfs_put_block_group(cache);
5562 	return ret;
5563 }
5564 
5565 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5566 {
5567 	int ret;
5568 	struct btrfs_block_group_cache *block_group;
5569 	struct btrfs_caching_control *caching_ctl;
5570 
5571 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5572 	if (!block_group)
5573 		return -EINVAL;
5574 
5575 	cache_block_group(block_group, 0);
5576 	caching_ctl = get_caching_control(block_group);
5577 
5578 	if (!caching_ctl) {
5579 		/* Logic error */
5580 		BUG_ON(!block_group_cache_done(block_group));
5581 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5582 	} else {
5583 		mutex_lock(&caching_ctl->mutex);
5584 
5585 		if (start >= caching_ctl->progress) {
5586 			ret = add_excluded_extent(root, start, num_bytes);
5587 		} else if (start + num_bytes <= caching_ctl->progress) {
5588 			ret = btrfs_remove_free_space(block_group,
5589 						      start, num_bytes);
5590 		} else {
5591 			num_bytes = caching_ctl->progress - start;
5592 			ret = btrfs_remove_free_space(block_group,
5593 						      start, num_bytes);
5594 			if (ret)
5595 				goto out_lock;
5596 
5597 			num_bytes = (start + num_bytes) -
5598 				caching_ctl->progress;
5599 			start = caching_ctl->progress;
5600 			ret = add_excluded_extent(root, start, num_bytes);
5601 		}
5602 out_lock:
5603 		mutex_unlock(&caching_ctl->mutex);
5604 		put_caching_control(caching_ctl);
5605 	}
5606 	btrfs_put_block_group(block_group);
5607 	return ret;
5608 }
5609 
5610 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5611 				 struct extent_buffer *eb)
5612 {
5613 	struct btrfs_file_extent_item *item;
5614 	struct btrfs_key key;
5615 	int found_type;
5616 	int i;
5617 
5618 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5619 		return 0;
5620 
5621 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5622 		btrfs_item_key_to_cpu(eb, &key, i);
5623 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5624 			continue;
5625 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5626 		found_type = btrfs_file_extent_type(eb, item);
5627 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5628 			continue;
5629 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5630 			continue;
5631 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5632 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5633 		__exclude_logged_extent(log, key.objectid, key.offset);
5634 	}
5635 
5636 	return 0;
5637 }
5638 
5639 /**
5640  * btrfs_update_reserved_bytes - update the block_group and space info counters
5641  * @cache:	The cache we are manipulating
5642  * @num_bytes:	The number of bytes in question
5643  * @reserve:	One of the reservation enums
5644  * @delalloc:   The blocks are allocated for the delalloc write
5645  *
5646  * This is called by the allocator when it reserves space, or by somebody who is
5647  * freeing space that was never actually used on disk.  For example if you
5648  * reserve some space for a new leaf in transaction A and before transaction A
5649  * commits you free that leaf, you call this with reserve set to 0 in order to
5650  * clear the reservation.
5651  *
5652  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5653  * ENOSPC accounting.  For data we handle the reservation through clearing the
5654  * delalloc bits in the io_tree.  We have to do this since we could end up
5655  * allocating less disk space for the amount of data we have reserved in the
5656  * case of compression.
5657  *
5658  * If this is a reservation and the block group has become read only we cannot
5659  * make the reservation and return -EAGAIN, otherwise this function always
5660  * succeeds.
5661  */
5662 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5663 				       u64 num_bytes, int reserve, int delalloc)
5664 {
5665 	struct btrfs_space_info *space_info = cache->space_info;
5666 	int ret = 0;
5667 
5668 	spin_lock(&space_info->lock);
5669 	spin_lock(&cache->lock);
5670 	if (reserve != RESERVE_FREE) {
5671 		if (cache->ro) {
5672 			ret = -EAGAIN;
5673 		} else {
5674 			cache->reserved += num_bytes;
5675 			space_info->bytes_reserved += num_bytes;
5676 			if (reserve == RESERVE_ALLOC) {
5677 				trace_btrfs_space_reservation(cache->fs_info,
5678 						"space_info", space_info->flags,
5679 						num_bytes, 0);
5680 				space_info->bytes_may_use -= num_bytes;
5681 			}
5682 
5683 			if (delalloc)
5684 				cache->delalloc_bytes += num_bytes;
5685 		}
5686 	} else {
5687 		if (cache->ro)
5688 			space_info->bytes_readonly += num_bytes;
5689 		cache->reserved -= num_bytes;
5690 		space_info->bytes_reserved -= num_bytes;
5691 
5692 		if (delalloc)
5693 			cache->delalloc_bytes -= num_bytes;
5694 	}
5695 	spin_unlock(&cache->lock);
5696 	spin_unlock(&space_info->lock);
5697 	return ret;
5698 }
5699 
5700 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5701 				struct btrfs_root *root)
5702 {
5703 	struct btrfs_fs_info *fs_info = root->fs_info;
5704 	struct btrfs_caching_control *next;
5705 	struct btrfs_caching_control *caching_ctl;
5706 	struct btrfs_block_group_cache *cache;
5707 
5708 	down_write(&fs_info->commit_root_sem);
5709 
5710 	list_for_each_entry_safe(caching_ctl, next,
5711 				 &fs_info->caching_block_groups, list) {
5712 		cache = caching_ctl->block_group;
5713 		if (block_group_cache_done(cache)) {
5714 			cache->last_byte_to_unpin = (u64)-1;
5715 			list_del_init(&caching_ctl->list);
5716 			put_caching_control(caching_ctl);
5717 		} else {
5718 			cache->last_byte_to_unpin = caching_ctl->progress;
5719 		}
5720 	}
5721 
5722 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5723 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5724 	else
5725 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5726 
5727 	up_write(&fs_info->commit_root_sem);
5728 
5729 	update_global_block_rsv(fs_info);
5730 }
5731 
5732 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5733 {
5734 	struct btrfs_fs_info *fs_info = root->fs_info;
5735 	struct btrfs_block_group_cache *cache = NULL;
5736 	struct btrfs_space_info *space_info;
5737 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5738 	u64 len;
5739 	bool readonly;
5740 
5741 	while (start <= end) {
5742 		readonly = false;
5743 		if (!cache ||
5744 		    start >= cache->key.objectid + cache->key.offset) {
5745 			if (cache)
5746 				btrfs_put_block_group(cache);
5747 			cache = btrfs_lookup_block_group(fs_info, start);
5748 			BUG_ON(!cache); /* Logic error */
5749 		}
5750 
5751 		len = cache->key.objectid + cache->key.offset - start;
5752 		len = min(len, end + 1 - start);
5753 
5754 		if (start < cache->last_byte_to_unpin) {
5755 			len = min(len, cache->last_byte_to_unpin - start);
5756 			btrfs_add_free_space(cache, start, len);
5757 		}
5758 
5759 		start += len;
5760 		space_info = cache->space_info;
5761 
5762 		spin_lock(&space_info->lock);
5763 		spin_lock(&cache->lock);
5764 		cache->pinned -= len;
5765 		space_info->bytes_pinned -= len;
5766 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
5767 		if (cache->ro) {
5768 			space_info->bytes_readonly += len;
5769 			readonly = true;
5770 		}
5771 		spin_unlock(&cache->lock);
5772 		if (!readonly && global_rsv->space_info == space_info) {
5773 			spin_lock(&global_rsv->lock);
5774 			if (!global_rsv->full) {
5775 				len = min(len, global_rsv->size -
5776 					  global_rsv->reserved);
5777 				global_rsv->reserved += len;
5778 				space_info->bytes_may_use += len;
5779 				if (global_rsv->reserved >= global_rsv->size)
5780 					global_rsv->full = 1;
5781 			}
5782 			spin_unlock(&global_rsv->lock);
5783 		}
5784 		spin_unlock(&space_info->lock);
5785 	}
5786 
5787 	if (cache)
5788 		btrfs_put_block_group(cache);
5789 	return 0;
5790 }
5791 
5792 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5793 			       struct btrfs_root *root)
5794 {
5795 	struct btrfs_fs_info *fs_info = root->fs_info;
5796 	struct extent_io_tree *unpin;
5797 	u64 start;
5798 	u64 end;
5799 	int ret;
5800 
5801 	if (trans->aborted)
5802 		return 0;
5803 
5804 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5805 		unpin = &fs_info->freed_extents[1];
5806 	else
5807 		unpin = &fs_info->freed_extents[0];
5808 
5809 	while (1) {
5810 		ret = find_first_extent_bit(unpin, 0, &start, &end,
5811 					    EXTENT_DIRTY, NULL);
5812 		if (ret)
5813 			break;
5814 
5815 		if (btrfs_test_opt(root, DISCARD))
5816 			ret = btrfs_discard_extent(root, start,
5817 						   end + 1 - start, NULL);
5818 
5819 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
5820 		unpin_extent_range(root, start, end);
5821 		cond_resched();
5822 	}
5823 
5824 	return 0;
5825 }
5826 
5827 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5828 			     u64 owner, u64 root_objectid)
5829 {
5830 	struct btrfs_space_info *space_info;
5831 	u64 flags;
5832 
5833 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5834 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5835 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
5836 		else
5837 			flags = BTRFS_BLOCK_GROUP_METADATA;
5838 	} else {
5839 		flags = BTRFS_BLOCK_GROUP_DATA;
5840 	}
5841 
5842 	space_info = __find_space_info(fs_info, flags);
5843 	BUG_ON(!space_info); /* Logic bug */
5844 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5845 }
5846 
5847 
5848 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5849 				struct btrfs_root *root,
5850 				u64 bytenr, u64 num_bytes, u64 parent,
5851 				u64 root_objectid, u64 owner_objectid,
5852 				u64 owner_offset, int refs_to_drop,
5853 				struct btrfs_delayed_extent_op *extent_op,
5854 				int no_quota)
5855 {
5856 	struct btrfs_key key;
5857 	struct btrfs_path *path;
5858 	struct btrfs_fs_info *info = root->fs_info;
5859 	struct btrfs_root *extent_root = info->extent_root;
5860 	struct extent_buffer *leaf;
5861 	struct btrfs_extent_item *ei;
5862 	struct btrfs_extent_inline_ref *iref;
5863 	int ret;
5864 	int is_data;
5865 	int extent_slot = 0;
5866 	int found_extent = 0;
5867 	int num_to_del = 1;
5868 	u32 item_size;
5869 	u64 refs;
5870 	int last_ref = 0;
5871 	enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
5872 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5873 						 SKINNY_METADATA);
5874 
5875 	if (!info->quota_enabled || !is_fstree(root_objectid))
5876 		no_quota = 1;
5877 
5878 	path = btrfs_alloc_path();
5879 	if (!path)
5880 		return -ENOMEM;
5881 
5882 	path->reada = 1;
5883 	path->leave_spinning = 1;
5884 
5885 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5886 	BUG_ON(!is_data && refs_to_drop != 1);
5887 
5888 	if (is_data)
5889 		skinny_metadata = 0;
5890 
5891 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
5892 				    bytenr, num_bytes, parent,
5893 				    root_objectid, owner_objectid,
5894 				    owner_offset);
5895 	if (ret == 0) {
5896 		extent_slot = path->slots[0];
5897 		while (extent_slot >= 0) {
5898 			btrfs_item_key_to_cpu(path->nodes[0], &key,
5899 					      extent_slot);
5900 			if (key.objectid != bytenr)
5901 				break;
5902 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5903 			    key.offset == num_bytes) {
5904 				found_extent = 1;
5905 				break;
5906 			}
5907 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
5908 			    key.offset == owner_objectid) {
5909 				found_extent = 1;
5910 				break;
5911 			}
5912 			if (path->slots[0] - extent_slot > 5)
5913 				break;
5914 			extent_slot--;
5915 		}
5916 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5917 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5918 		if (found_extent && item_size < sizeof(*ei))
5919 			found_extent = 0;
5920 #endif
5921 		if (!found_extent) {
5922 			BUG_ON(iref);
5923 			ret = remove_extent_backref(trans, extent_root, path,
5924 						    NULL, refs_to_drop,
5925 						    is_data, &last_ref);
5926 			if (ret) {
5927 				btrfs_abort_transaction(trans, extent_root, ret);
5928 				goto out;
5929 			}
5930 			btrfs_release_path(path);
5931 			path->leave_spinning = 1;
5932 
5933 			key.objectid = bytenr;
5934 			key.type = BTRFS_EXTENT_ITEM_KEY;
5935 			key.offset = num_bytes;
5936 
5937 			if (!is_data && skinny_metadata) {
5938 				key.type = BTRFS_METADATA_ITEM_KEY;
5939 				key.offset = owner_objectid;
5940 			}
5941 
5942 			ret = btrfs_search_slot(trans, extent_root,
5943 						&key, path, -1, 1);
5944 			if (ret > 0 && skinny_metadata && path->slots[0]) {
5945 				/*
5946 				 * Couldn't find our skinny metadata item,
5947 				 * see if we have ye olde extent item.
5948 				 */
5949 				path->slots[0]--;
5950 				btrfs_item_key_to_cpu(path->nodes[0], &key,
5951 						      path->slots[0]);
5952 				if (key.objectid == bytenr &&
5953 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
5954 				    key.offset == num_bytes)
5955 					ret = 0;
5956 			}
5957 
5958 			if (ret > 0 && skinny_metadata) {
5959 				skinny_metadata = false;
5960 				key.objectid = bytenr;
5961 				key.type = BTRFS_EXTENT_ITEM_KEY;
5962 				key.offset = num_bytes;
5963 				btrfs_release_path(path);
5964 				ret = btrfs_search_slot(trans, extent_root,
5965 							&key, path, -1, 1);
5966 			}
5967 
5968 			if (ret) {
5969 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5970 					ret, bytenr);
5971 				if (ret > 0)
5972 					btrfs_print_leaf(extent_root,
5973 							 path->nodes[0]);
5974 			}
5975 			if (ret < 0) {
5976 				btrfs_abort_transaction(trans, extent_root, ret);
5977 				goto out;
5978 			}
5979 			extent_slot = path->slots[0];
5980 		}
5981 	} else if (WARN_ON(ret == -ENOENT)) {
5982 		btrfs_print_leaf(extent_root, path->nodes[0]);
5983 		btrfs_err(info,
5984 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5985 			bytenr, parent, root_objectid, owner_objectid,
5986 			owner_offset);
5987 		btrfs_abort_transaction(trans, extent_root, ret);
5988 		goto out;
5989 	} else {
5990 		btrfs_abort_transaction(trans, extent_root, ret);
5991 		goto out;
5992 	}
5993 
5994 	leaf = path->nodes[0];
5995 	item_size = btrfs_item_size_nr(leaf, extent_slot);
5996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5997 	if (item_size < sizeof(*ei)) {
5998 		BUG_ON(found_extent || extent_slot != path->slots[0]);
5999 		ret = convert_extent_item_v0(trans, extent_root, path,
6000 					     owner_objectid, 0);
6001 		if (ret < 0) {
6002 			btrfs_abort_transaction(trans, extent_root, ret);
6003 			goto out;
6004 		}
6005 
6006 		btrfs_release_path(path);
6007 		path->leave_spinning = 1;
6008 
6009 		key.objectid = bytenr;
6010 		key.type = BTRFS_EXTENT_ITEM_KEY;
6011 		key.offset = num_bytes;
6012 
6013 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6014 					-1, 1);
6015 		if (ret) {
6016 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6017 				ret, bytenr);
6018 			btrfs_print_leaf(extent_root, path->nodes[0]);
6019 		}
6020 		if (ret < 0) {
6021 			btrfs_abort_transaction(trans, extent_root, ret);
6022 			goto out;
6023 		}
6024 
6025 		extent_slot = path->slots[0];
6026 		leaf = path->nodes[0];
6027 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6028 	}
6029 #endif
6030 	BUG_ON(item_size < sizeof(*ei));
6031 	ei = btrfs_item_ptr(leaf, extent_slot,
6032 			    struct btrfs_extent_item);
6033 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6034 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6035 		struct btrfs_tree_block_info *bi;
6036 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6037 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6038 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6039 	}
6040 
6041 	refs = btrfs_extent_refs(leaf, ei);
6042 	if (refs < refs_to_drop) {
6043 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6044 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6045 		ret = -EINVAL;
6046 		btrfs_abort_transaction(trans, extent_root, ret);
6047 		goto out;
6048 	}
6049 	refs -= refs_to_drop;
6050 
6051 	if (refs > 0) {
6052 		type = BTRFS_QGROUP_OPER_SUB_SHARED;
6053 		if (extent_op)
6054 			__run_delayed_extent_op(extent_op, leaf, ei);
6055 		/*
6056 		 * In the case of inline back ref, reference count will
6057 		 * be updated by remove_extent_backref
6058 		 */
6059 		if (iref) {
6060 			BUG_ON(!found_extent);
6061 		} else {
6062 			btrfs_set_extent_refs(leaf, ei, refs);
6063 			btrfs_mark_buffer_dirty(leaf);
6064 		}
6065 		if (found_extent) {
6066 			ret = remove_extent_backref(trans, extent_root, path,
6067 						    iref, refs_to_drop,
6068 						    is_data, &last_ref);
6069 			if (ret) {
6070 				btrfs_abort_transaction(trans, extent_root, ret);
6071 				goto out;
6072 			}
6073 		}
6074 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6075 				 root_objectid);
6076 	} else {
6077 		if (found_extent) {
6078 			BUG_ON(is_data && refs_to_drop !=
6079 			       extent_data_ref_count(root, path, iref));
6080 			if (iref) {
6081 				BUG_ON(path->slots[0] != extent_slot);
6082 			} else {
6083 				BUG_ON(path->slots[0] != extent_slot + 1);
6084 				path->slots[0] = extent_slot;
6085 				num_to_del = 2;
6086 			}
6087 		}
6088 
6089 		last_ref = 1;
6090 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6091 				      num_to_del);
6092 		if (ret) {
6093 			btrfs_abort_transaction(trans, extent_root, ret);
6094 			goto out;
6095 		}
6096 		btrfs_release_path(path);
6097 
6098 		if (is_data) {
6099 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6100 			if (ret) {
6101 				btrfs_abort_transaction(trans, extent_root, ret);
6102 				goto out;
6103 			}
6104 		}
6105 
6106 		ret = update_block_group(root, bytenr, num_bytes, 0);
6107 		if (ret) {
6108 			btrfs_abort_transaction(trans, extent_root, ret);
6109 			goto out;
6110 		}
6111 	}
6112 	btrfs_release_path(path);
6113 
6114 	/* Deal with the quota accounting */
6115 	if (!ret && last_ref && !no_quota) {
6116 		int mod_seq = 0;
6117 
6118 		if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6119 		    type == BTRFS_QGROUP_OPER_SUB_SHARED)
6120 			mod_seq = 1;
6121 
6122 		ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6123 					      bytenr, num_bytes, type,
6124 					      mod_seq);
6125 	}
6126 out:
6127 	btrfs_free_path(path);
6128 	return ret;
6129 }
6130 
6131 /*
6132  * when we free an block, it is possible (and likely) that we free the last
6133  * delayed ref for that extent as well.  This searches the delayed ref tree for
6134  * a given extent, and if there are no other delayed refs to be processed, it
6135  * removes it from the tree.
6136  */
6137 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6138 				      struct btrfs_root *root, u64 bytenr)
6139 {
6140 	struct btrfs_delayed_ref_head *head;
6141 	struct btrfs_delayed_ref_root *delayed_refs;
6142 	int ret = 0;
6143 
6144 	delayed_refs = &trans->transaction->delayed_refs;
6145 	spin_lock(&delayed_refs->lock);
6146 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6147 	if (!head)
6148 		goto out_delayed_unlock;
6149 
6150 	spin_lock(&head->lock);
6151 	if (rb_first(&head->ref_root))
6152 		goto out;
6153 
6154 	if (head->extent_op) {
6155 		if (!head->must_insert_reserved)
6156 			goto out;
6157 		btrfs_free_delayed_extent_op(head->extent_op);
6158 		head->extent_op = NULL;
6159 	}
6160 
6161 	/*
6162 	 * waiting for the lock here would deadlock.  If someone else has it
6163 	 * locked they are already in the process of dropping it anyway
6164 	 */
6165 	if (!mutex_trylock(&head->mutex))
6166 		goto out;
6167 
6168 	/*
6169 	 * at this point we have a head with no other entries.  Go
6170 	 * ahead and process it.
6171 	 */
6172 	head->node.in_tree = 0;
6173 	rb_erase(&head->href_node, &delayed_refs->href_root);
6174 
6175 	atomic_dec(&delayed_refs->num_entries);
6176 
6177 	/*
6178 	 * we don't take a ref on the node because we're removing it from the
6179 	 * tree, so we just steal the ref the tree was holding.
6180 	 */
6181 	delayed_refs->num_heads--;
6182 	if (head->processing == 0)
6183 		delayed_refs->num_heads_ready--;
6184 	head->processing = 0;
6185 	spin_unlock(&head->lock);
6186 	spin_unlock(&delayed_refs->lock);
6187 
6188 	BUG_ON(head->extent_op);
6189 	if (head->must_insert_reserved)
6190 		ret = 1;
6191 
6192 	mutex_unlock(&head->mutex);
6193 	btrfs_put_delayed_ref(&head->node);
6194 	return ret;
6195 out:
6196 	spin_unlock(&head->lock);
6197 
6198 out_delayed_unlock:
6199 	spin_unlock(&delayed_refs->lock);
6200 	return 0;
6201 }
6202 
6203 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6204 			   struct btrfs_root *root,
6205 			   struct extent_buffer *buf,
6206 			   u64 parent, int last_ref)
6207 {
6208 	struct btrfs_block_group_cache *cache = NULL;
6209 	int pin = 1;
6210 	int ret;
6211 
6212 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6213 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6214 					buf->start, buf->len,
6215 					parent, root->root_key.objectid,
6216 					btrfs_header_level(buf),
6217 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6218 		BUG_ON(ret); /* -ENOMEM */
6219 	}
6220 
6221 	if (!last_ref)
6222 		return;
6223 
6224 	cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6225 
6226 	if (btrfs_header_generation(buf) == trans->transid) {
6227 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6228 			ret = check_ref_cleanup(trans, root, buf->start);
6229 			if (!ret)
6230 				goto out;
6231 		}
6232 
6233 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6234 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6235 			goto out;
6236 		}
6237 
6238 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6239 
6240 		btrfs_add_free_space(cache, buf->start, buf->len);
6241 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6242 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6243 		pin = 0;
6244 	}
6245 out:
6246 	if (pin)
6247 		add_pinned_bytes(root->fs_info, buf->len,
6248 				 btrfs_header_level(buf),
6249 				 root->root_key.objectid);
6250 
6251 	/*
6252 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6253 	 * anymore.
6254 	 */
6255 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6256 	btrfs_put_block_group(cache);
6257 }
6258 
6259 /* Can return -ENOMEM */
6260 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6261 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6262 		      u64 owner, u64 offset, int no_quota)
6263 {
6264 	int ret;
6265 	struct btrfs_fs_info *fs_info = root->fs_info;
6266 
6267 	if (btrfs_test_is_dummy_root(root))
6268 		return 0;
6269 
6270 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6271 
6272 	/*
6273 	 * tree log blocks never actually go into the extent allocation
6274 	 * tree, just update pinning info and exit early.
6275 	 */
6276 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6277 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6278 		/* unlocks the pinned mutex */
6279 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6280 		ret = 0;
6281 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6282 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6283 					num_bytes,
6284 					parent, root_objectid, (int)owner,
6285 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6286 	} else {
6287 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6288 						num_bytes,
6289 						parent, root_objectid, owner,
6290 						offset, BTRFS_DROP_DELAYED_REF,
6291 						NULL, no_quota);
6292 	}
6293 	return ret;
6294 }
6295 
6296 /*
6297  * when we wait for progress in the block group caching, its because
6298  * our allocation attempt failed at least once.  So, we must sleep
6299  * and let some progress happen before we try again.
6300  *
6301  * This function will sleep at least once waiting for new free space to
6302  * show up, and then it will check the block group free space numbers
6303  * for our min num_bytes.  Another option is to have it go ahead
6304  * and look in the rbtree for a free extent of a given size, but this
6305  * is a good start.
6306  *
6307  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6308  * any of the information in this block group.
6309  */
6310 static noinline void
6311 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6312 				u64 num_bytes)
6313 {
6314 	struct btrfs_caching_control *caching_ctl;
6315 
6316 	caching_ctl = get_caching_control(cache);
6317 	if (!caching_ctl)
6318 		return;
6319 
6320 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6321 		   (cache->free_space_ctl->free_space >= num_bytes));
6322 
6323 	put_caching_control(caching_ctl);
6324 }
6325 
6326 static noinline int
6327 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6328 {
6329 	struct btrfs_caching_control *caching_ctl;
6330 	int ret = 0;
6331 
6332 	caching_ctl = get_caching_control(cache);
6333 	if (!caching_ctl)
6334 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6335 
6336 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6337 	if (cache->cached == BTRFS_CACHE_ERROR)
6338 		ret = -EIO;
6339 	put_caching_control(caching_ctl);
6340 	return ret;
6341 }
6342 
6343 int __get_raid_index(u64 flags)
6344 {
6345 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6346 		return BTRFS_RAID_RAID10;
6347 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6348 		return BTRFS_RAID_RAID1;
6349 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6350 		return BTRFS_RAID_DUP;
6351 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6352 		return BTRFS_RAID_RAID0;
6353 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6354 		return BTRFS_RAID_RAID5;
6355 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6356 		return BTRFS_RAID_RAID6;
6357 
6358 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6359 }
6360 
6361 int get_block_group_index(struct btrfs_block_group_cache *cache)
6362 {
6363 	return __get_raid_index(cache->flags);
6364 }
6365 
6366 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6367 	[BTRFS_RAID_RAID10]	= "raid10",
6368 	[BTRFS_RAID_RAID1]	= "raid1",
6369 	[BTRFS_RAID_DUP]	= "dup",
6370 	[BTRFS_RAID_RAID0]	= "raid0",
6371 	[BTRFS_RAID_SINGLE]	= "single",
6372 	[BTRFS_RAID_RAID5]	= "raid5",
6373 	[BTRFS_RAID_RAID6]	= "raid6",
6374 };
6375 
6376 static const char *get_raid_name(enum btrfs_raid_types type)
6377 {
6378 	if (type >= BTRFS_NR_RAID_TYPES)
6379 		return NULL;
6380 
6381 	return btrfs_raid_type_names[type];
6382 }
6383 
6384 enum btrfs_loop_type {
6385 	LOOP_CACHING_NOWAIT = 0,
6386 	LOOP_CACHING_WAIT = 1,
6387 	LOOP_ALLOC_CHUNK = 2,
6388 	LOOP_NO_EMPTY_SIZE = 3,
6389 };
6390 
6391 static inline void
6392 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6393 		       int delalloc)
6394 {
6395 	if (delalloc)
6396 		down_read(&cache->data_rwsem);
6397 }
6398 
6399 static inline void
6400 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6401 		       int delalloc)
6402 {
6403 	btrfs_get_block_group(cache);
6404 	if (delalloc)
6405 		down_read(&cache->data_rwsem);
6406 }
6407 
6408 static struct btrfs_block_group_cache *
6409 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6410 		   struct btrfs_free_cluster *cluster,
6411 		   int delalloc)
6412 {
6413 	struct btrfs_block_group_cache *used_bg;
6414 	bool locked = false;
6415 again:
6416 	spin_lock(&cluster->refill_lock);
6417 	if (locked) {
6418 		if (used_bg == cluster->block_group)
6419 			return used_bg;
6420 
6421 		up_read(&used_bg->data_rwsem);
6422 		btrfs_put_block_group(used_bg);
6423 	}
6424 
6425 	used_bg = cluster->block_group;
6426 	if (!used_bg)
6427 		return NULL;
6428 
6429 	if (used_bg == block_group)
6430 		return used_bg;
6431 
6432 	btrfs_get_block_group(used_bg);
6433 
6434 	if (!delalloc)
6435 		return used_bg;
6436 
6437 	if (down_read_trylock(&used_bg->data_rwsem))
6438 		return used_bg;
6439 
6440 	spin_unlock(&cluster->refill_lock);
6441 	down_read(&used_bg->data_rwsem);
6442 	locked = true;
6443 	goto again;
6444 }
6445 
6446 static inline void
6447 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6448 			 int delalloc)
6449 {
6450 	if (delalloc)
6451 		up_read(&cache->data_rwsem);
6452 	btrfs_put_block_group(cache);
6453 }
6454 
6455 /*
6456  * walks the btree of allocated extents and find a hole of a given size.
6457  * The key ins is changed to record the hole:
6458  * ins->objectid == start position
6459  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6460  * ins->offset == the size of the hole.
6461  * Any available blocks before search_start are skipped.
6462  *
6463  * If there is no suitable free space, we will record the max size of
6464  * the free space extent currently.
6465  */
6466 static noinline int find_free_extent(struct btrfs_root *orig_root,
6467 				     u64 num_bytes, u64 empty_size,
6468 				     u64 hint_byte, struct btrfs_key *ins,
6469 				     u64 flags, int delalloc)
6470 {
6471 	int ret = 0;
6472 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6473 	struct btrfs_free_cluster *last_ptr = NULL;
6474 	struct btrfs_block_group_cache *block_group = NULL;
6475 	u64 search_start = 0;
6476 	u64 max_extent_size = 0;
6477 	int empty_cluster = 2 * 1024 * 1024;
6478 	struct btrfs_space_info *space_info;
6479 	int loop = 0;
6480 	int index = __get_raid_index(flags);
6481 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6482 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6483 	bool failed_cluster_refill = false;
6484 	bool failed_alloc = false;
6485 	bool use_cluster = true;
6486 	bool have_caching_bg = false;
6487 
6488 	WARN_ON(num_bytes < root->sectorsize);
6489 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6490 	ins->objectid = 0;
6491 	ins->offset = 0;
6492 
6493 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6494 
6495 	space_info = __find_space_info(root->fs_info, flags);
6496 	if (!space_info) {
6497 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6498 		return -ENOSPC;
6499 	}
6500 
6501 	/*
6502 	 * If the space info is for both data and metadata it means we have a
6503 	 * small filesystem and we can't use the clustering stuff.
6504 	 */
6505 	if (btrfs_mixed_space_info(space_info))
6506 		use_cluster = false;
6507 
6508 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6509 		last_ptr = &root->fs_info->meta_alloc_cluster;
6510 		if (!btrfs_test_opt(root, SSD))
6511 			empty_cluster = 64 * 1024;
6512 	}
6513 
6514 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6515 	    btrfs_test_opt(root, SSD)) {
6516 		last_ptr = &root->fs_info->data_alloc_cluster;
6517 	}
6518 
6519 	if (last_ptr) {
6520 		spin_lock(&last_ptr->lock);
6521 		if (last_ptr->block_group)
6522 			hint_byte = last_ptr->window_start;
6523 		spin_unlock(&last_ptr->lock);
6524 	}
6525 
6526 	search_start = max(search_start, first_logical_byte(root, 0));
6527 	search_start = max(search_start, hint_byte);
6528 
6529 	if (!last_ptr)
6530 		empty_cluster = 0;
6531 
6532 	if (search_start == hint_byte) {
6533 		block_group = btrfs_lookup_block_group(root->fs_info,
6534 						       search_start);
6535 		/*
6536 		 * we don't want to use the block group if it doesn't match our
6537 		 * allocation bits, or if its not cached.
6538 		 *
6539 		 * However if we are re-searching with an ideal block group
6540 		 * picked out then we don't care that the block group is cached.
6541 		 */
6542 		if (block_group && block_group_bits(block_group, flags) &&
6543 		    block_group->cached != BTRFS_CACHE_NO) {
6544 			down_read(&space_info->groups_sem);
6545 			if (list_empty(&block_group->list) ||
6546 			    block_group->ro) {
6547 				/*
6548 				 * someone is removing this block group,
6549 				 * we can't jump into the have_block_group
6550 				 * target because our list pointers are not
6551 				 * valid
6552 				 */
6553 				btrfs_put_block_group(block_group);
6554 				up_read(&space_info->groups_sem);
6555 			} else {
6556 				index = get_block_group_index(block_group);
6557 				btrfs_lock_block_group(block_group, delalloc);
6558 				goto have_block_group;
6559 			}
6560 		} else if (block_group) {
6561 			btrfs_put_block_group(block_group);
6562 		}
6563 	}
6564 search:
6565 	have_caching_bg = false;
6566 	down_read(&space_info->groups_sem);
6567 	list_for_each_entry(block_group, &space_info->block_groups[index],
6568 			    list) {
6569 		u64 offset;
6570 		int cached;
6571 
6572 		btrfs_grab_block_group(block_group, delalloc);
6573 		search_start = block_group->key.objectid;
6574 
6575 		/*
6576 		 * this can happen if we end up cycling through all the
6577 		 * raid types, but we want to make sure we only allocate
6578 		 * for the proper type.
6579 		 */
6580 		if (!block_group_bits(block_group, flags)) {
6581 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6582 				BTRFS_BLOCK_GROUP_RAID1 |
6583 				BTRFS_BLOCK_GROUP_RAID5 |
6584 				BTRFS_BLOCK_GROUP_RAID6 |
6585 				BTRFS_BLOCK_GROUP_RAID10;
6586 
6587 			/*
6588 			 * if they asked for extra copies and this block group
6589 			 * doesn't provide them, bail.  This does allow us to
6590 			 * fill raid0 from raid1.
6591 			 */
6592 			if ((flags & extra) && !(block_group->flags & extra))
6593 				goto loop;
6594 		}
6595 
6596 have_block_group:
6597 		cached = block_group_cache_done(block_group);
6598 		if (unlikely(!cached)) {
6599 			ret = cache_block_group(block_group, 0);
6600 			BUG_ON(ret < 0);
6601 			ret = 0;
6602 		}
6603 
6604 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6605 			goto loop;
6606 		if (unlikely(block_group->ro))
6607 			goto loop;
6608 
6609 		/*
6610 		 * Ok we want to try and use the cluster allocator, so
6611 		 * lets look there
6612 		 */
6613 		if (last_ptr) {
6614 			struct btrfs_block_group_cache *used_block_group;
6615 			unsigned long aligned_cluster;
6616 			/*
6617 			 * the refill lock keeps out other
6618 			 * people trying to start a new cluster
6619 			 */
6620 			used_block_group = btrfs_lock_cluster(block_group,
6621 							      last_ptr,
6622 							      delalloc);
6623 			if (!used_block_group)
6624 				goto refill_cluster;
6625 
6626 			if (used_block_group != block_group &&
6627 			    (used_block_group->ro ||
6628 			     !block_group_bits(used_block_group, flags)))
6629 				goto release_cluster;
6630 
6631 			offset = btrfs_alloc_from_cluster(used_block_group,
6632 						last_ptr,
6633 						num_bytes,
6634 						used_block_group->key.objectid,
6635 						&max_extent_size);
6636 			if (offset) {
6637 				/* we have a block, we're done */
6638 				spin_unlock(&last_ptr->refill_lock);
6639 				trace_btrfs_reserve_extent_cluster(root,
6640 						used_block_group,
6641 						search_start, num_bytes);
6642 				if (used_block_group != block_group) {
6643 					btrfs_release_block_group(block_group,
6644 								  delalloc);
6645 					block_group = used_block_group;
6646 				}
6647 				goto checks;
6648 			}
6649 
6650 			WARN_ON(last_ptr->block_group != used_block_group);
6651 release_cluster:
6652 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6653 			 * set up a new clusters, so lets just skip it
6654 			 * and let the allocator find whatever block
6655 			 * it can find.  If we reach this point, we
6656 			 * will have tried the cluster allocator
6657 			 * plenty of times and not have found
6658 			 * anything, so we are likely way too
6659 			 * fragmented for the clustering stuff to find
6660 			 * anything.
6661 			 *
6662 			 * However, if the cluster is taken from the
6663 			 * current block group, release the cluster
6664 			 * first, so that we stand a better chance of
6665 			 * succeeding in the unclustered
6666 			 * allocation.  */
6667 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6668 			    used_block_group != block_group) {
6669 				spin_unlock(&last_ptr->refill_lock);
6670 				btrfs_release_block_group(used_block_group,
6671 							  delalloc);
6672 				goto unclustered_alloc;
6673 			}
6674 
6675 			/*
6676 			 * this cluster didn't work out, free it and
6677 			 * start over
6678 			 */
6679 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6680 
6681 			if (used_block_group != block_group)
6682 				btrfs_release_block_group(used_block_group,
6683 							  delalloc);
6684 refill_cluster:
6685 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6686 				spin_unlock(&last_ptr->refill_lock);
6687 				goto unclustered_alloc;
6688 			}
6689 
6690 			aligned_cluster = max_t(unsigned long,
6691 						empty_cluster + empty_size,
6692 					      block_group->full_stripe_len);
6693 
6694 			/* allocate a cluster in this block group */
6695 			ret = btrfs_find_space_cluster(root, block_group,
6696 						       last_ptr, search_start,
6697 						       num_bytes,
6698 						       aligned_cluster);
6699 			if (ret == 0) {
6700 				/*
6701 				 * now pull our allocation out of this
6702 				 * cluster
6703 				 */
6704 				offset = btrfs_alloc_from_cluster(block_group,
6705 							last_ptr,
6706 							num_bytes,
6707 							search_start,
6708 							&max_extent_size);
6709 				if (offset) {
6710 					/* we found one, proceed */
6711 					spin_unlock(&last_ptr->refill_lock);
6712 					trace_btrfs_reserve_extent_cluster(root,
6713 						block_group, search_start,
6714 						num_bytes);
6715 					goto checks;
6716 				}
6717 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6718 				   && !failed_cluster_refill) {
6719 				spin_unlock(&last_ptr->refill_lock);
6720 
6721 				failed_cluster_refill = true;
6722 				wait_block_group_cache_progress(block_group,
6723 				       num_bytes + empty_cluster + empty_size);
6724 				goto have_block_group;
6725 			}
6726 
6727 			/*
6728 			 * at this point we either didn't find a cluster
6729 			 * or we weren't able to allocate a block from our
6730 			 * cluster.  Free the cluster we've been trying
6731 			 * to use, and go to the next block group
6732 			 */
6733 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6734 			spin_unlock(&last_ptr->refill_lock);
6735 			goto loop;
6736 		}
6737 
6738 unclustered_alloc:
6739 		spin_lock(&block_group->free_space_ctl->tree_lock);
6740 		if (cached &&
6741 		    block_group->free_space_ctl->free_space <
6742 		    num_bytes + empty_cluster + empty_size) {
6743 			if (block_group->free_space_ctl->free_space >
6744 			    max_extent_size)
6745 				max_extent_size =
6746 					block_group->free_space_ctl->free_space;
6747 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6748 			goto loop;
6749 		}
6750 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6751 
6752 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6753 						    num_bytes, empty_size,
6754 						    &max_extent_size);
6755 		/*
6756 		 * If we didn't find a chunk, and we haven't failed on this
6757 		 * block group before, and this block group is in the middle of
6758 		 * caching and we are ok with waiting, then go ahead and wait
6759 		 * for progress to be made, and set failed_alloc to true.
6760 		 *
6761 		 * If failed_alloc is true then we've already waited on this
6762 		 * block group once and should move on to the next block group.
6763 		 */
6764 		if (!offset && !failed_alloc && !cached &&
6765 		    loop > LOOP_CACHING_NOWAIT) {
6766 			wait_block_group_cache_progress(block_group,
6767 						num_bytes + empty_size);
6768 			failed_alloc = true;
6769 			goto have_block_group;
6770 		} else if (!offset) {
6771 			if (!cached)
6772 				have_caching_bg = true;
6773 			goto loop;
6774 		}
6775 checks:
6776 		search_start = ALIGN(offset, root->stripesize);
6777 
6778 		/* move on to the next group */
6779 		if (search_start + num_bytes >
6780 		    block_group->key.objectid + block_group->key.offset) {
6781 			btrfs_add_free_space(block_group, offset, num_bytes);
6782 			goto loop;
6783 		}
6784 
6785 		if (offset < search_start)
6786 			btrfs_add_free_space(block_group, offset,
6787 					     search_start - offset);
6788 		BUG_ON(offset > search_start);
6789 
6790 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
6791 						  alloc_type, delalloc);
6792 		if (ret == -EAGAIN) {
6793 			btrfs_add_free_space(block_group, offset, num_bytes);
6794 			goto loop;
6795 		}
6796 
6797 		/* we are all good, lets return */
6798 		ins->objectid = search_start;
6799 		ins->offset = num_bytes;
6800 
6801 		trace_btrfs_reserve_extent(orig_root, block_group,
6802 					   search_start, num_bytes);
6803 		btrfs_release_block_group(block_group, delalloc);
6804 		break;
6805 loop:
6806 		failed_cluster_refill = false;
6807 		failed_alloc = false;
6808 		BUG_ON(index != get_block_group_index(block_group));
6809 		btrfs_release_block_group(block_group, delalloc);
6810 	}
6811 	up_read(&space_info->groups_sem);
6812 
6813 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6814 		goto search;
6815 
6816 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6817 		goto search;
6818 
6819 	/*
6820 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6821 	 *			caching kthreads as we move along
6822 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6823 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6824 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6825 	 *			again
6826 	 */
6827 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6828 		index = 0;
6829 		loop++;
6830 		if (loop == LOOP_ALLOC_CHUNK) {
6831 			struct btrfs_trans_handle *trans;
6832 			int exist = 0;
6833 
6834 			trans = current->journal_info;
6835 			if (trans)
6836 				exist = 1;
6837 			else
6838 				trans = btrfs_join_transaction(root);
6839 
6840 			if (IS_ERR(trans)) {
6841 				ret = PTR_ERR(trans);
6842 				goto out;
6843 			}
6844 
6845 			ret = do_chunk_alloc(trans, root, flags,
6846 					     CHUNK_ALLOC_FORCE);
6847 			/*
6848 			 * Do not bail out on ENOSPC since we
6849 			 * can do more things.
6850 			 */
6851 			if (ret < 0 && ret != -ENOSPC)
6852 				btrfs_abort_transaction(trans,
6853 							root, ret);
6854 			else
6855 				ret = 0;
6856 			if (!exist)
6857 				btrfs_end_transaction(trans, root);
6858 			if (ret)
6859 				goto out;
6860 		}
6861 
6862 		if (loop == LOOP_NO_EMPTY_SIZE) {
6863 			empty_size = 0;
6864 			empty_cluster = 0;
6865 		}
6866 
6867 		goto search;
6868 	} else if (!ins->objectid) {
6869 		ret = -ENOSPC;
6870 	} else if (ins->objectid) {
6871 		ret = 0;
6872 	}
6873 out:
6874 	if (ret == -ENOSPC)
6875 		ins->offset = max_extent_size;
6876 	return ret;
6877 }
6878 
6879 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6880 			    int dump_block_groups)
6881 {
6882 	struct btrfs_block_group_cache *cache;
6883 	int index = 0;
6884 
6885 	spin_lock(&info->lock);
6886 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
6887 	       info->flags,
6888 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
6889 	       info->bytes_reserved - info->bytes_readonly,
6890 	       (info->full) ? "" : "not ");
6891 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6892 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
6893 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
6894 	       info->bytes_reserved, info->bytes_may_use,
6895 	       info->bytes_readonly);
6896 	spin_unlock(&info->lock);
6897 
6898 	if (!dump_block_groups)
6899 		return;
6900 
6901 	down_read(&info->groups_sem);
6902 again:
6903 	list_for_each_entry(cache, &info->block_groups[index], list) {
6904 		spin_lock(&cache->lock);
6905 		printk(KERN_INFO "BTRFS: "
6906 			   "block group %llu has %llu bytes, "
6907 			   "%llu used %llu pinned %llu reserved %s\n",
6908 		       cache->key.objectid, cache->key.offset,
6909 		       btrfs_block_group_used(&cache->item), cache->pinned,
6910 		       cache->reserved, cache->ro ? "[readonly]" : "");
6911 		btrfs_dump_free_space(cache, bytes);
6912 		spin_unlock(&cache->lock);
6913 	}
6914 	if (++index < BTRFS_NR_RAID_TYPES)
6915 		goto again;
6916 	up_read(&info->groups_sem);
6917 }
6918 
6919 int btrfs_reserve_extent(struct btrfs_root *root,
6920 			 u64 num_bytes, u64 min_alloc_size,
6921 			 u64 empty_size, u64 hint_byte,
6922 			 struct btrfs_key *ins, int is_data, int delalloc)
6923 {
6924 	bool final_tried = false;
6925 	u64 flags;
6926 	int ret;
6927 
6928 	flags = btrfs_get_alloc_profile(root, is_data);
6929 again:
6930 	WARN_ON(num_bytes < root->sectorsize);
6931 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6932 			       flags, delalloc);
6933 
6934 	if (ret == -ENOSPC) {
6935 		if (!final_tried && ins->offset) {
6936 			num_bytes = min(num_bytes >> 1, ins->offset);
6937 			num_bytes = round_down(num_bytes, root->sectorsize);
6938 			num_bytes = max(num_bytes, min_alloc_size);
6939 			if (num_bytes == min_alloc_size)
6940 				final_tried = true;
6941 			goto again;
6942 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6943 			struct btrfs_space_info *sinfo;
6944 
6945 			sinfo = __find_space_info(root->fs_info, flags);
6946 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6947 				flags, num_bytes);
6948 			if (sinfo)
6949 				dump_space_info(sinfo, num_bytes, 1);
6950 		}
6951 	}
6952 
6953 	return ret;
6954 }
6955 
6956 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6957 					u64 start, u64 len,
6958 					int pin, int delalloc)
6959 {
6960 	struct btrfs_block_group_cache *cache;
6961 	int ret = 0;
6962 
6963 	cache = btrfs_lookup_block_group(root->fs_info, start);
6964 	if (!cache) {
6965 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
6966 			start);
6967 		return -ENOSPC;
6968 	}
6969 
6970 	if (btrfs_test_opt(root, DISCARD))
6971 		ret = btrfs_discard_extent(root, start, len, NULL);
6972 
6973 	if (pin)
6974 		pin_down_extent(root, cache, start, len, 1);
6975 	else {
6976 		btrfs_add_free_space(cache, start, len);
6977 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
6978 	}
6979 	btrfs_put_block_group(cache);
6980 
6981 	trace_btrfs_reserved_extent_free(root, start, len);
6982 
6983 	return ret;
6984 }
6985 
6986 int btrfs_free_reserved_extent(struct btrfs_root *root,
6987 			       u64 start, u64 len, int delalloc)
6988 {
6989 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
6990 }
6991 
6992 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6993 				       u64 start, u64 len)
6994 {
6995 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
6996 }
6997 
6998 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6999 				      struct btrfs_root *root,
7000 				      u64 parent, u64 root_objectid,
7001 				      u64 flags, u64 owner, u64 offset,
7002 				      struct btrfs_key *ins, int ref_mod)
7003 {
7004 	int ret;
7005 	struct btrfs_fs_info *fs_info = root->fs_info;
7006 	struct btrfs_extent_item *extent_item;
7007 	struct btrfs_extent_inline_ref *iref;
7008 	struct btrfs_path *path;
7009 	struct extent_buffer *leaf;
7010 	int type;
7011 	u32 size;
7012 
7013 	if (parent > 0)
7014 		type = BTRFS_SHARED_DATA_REF_KEY;
7015 	else
7016 		type = BTRFS_EXTENT_DATA_REF_KEY;
7017 
7018 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7019 
7020 	path = btrfs_alloc_path();
7021 	if (!path)
7022 		return -ENOMEM;
7023 
7024 	path->leave_spinning = 1;
7025 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7026 				      ins, size);
7027 	if (ret) {
7028 		btrfs_free_path(path);
7029 		return ret;
7030 	}
7031 
7032 	leaf = path->nodes[0];
7033 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7034 				     struct btrfs_extent_item);
7035 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7036 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7037 	btrfs_set_extent_flags(leaf, extent_item,
7038 			       flags | BTRFS_EXTENT_FLAG_DATA);
7039 
7040 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7041 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7042 	if (parent > 0) {
7043 		struct btrfs_shared_data_ref *ref;
7044 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7045 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7046 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7047 	} else {
7048 		struct btrfs_extent_data_ref *ref;
7049 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7050 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7051 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7052 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7053 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7054 	}
7055 
7056 	btrfs_mark_buffer_dirty(path->nodes[0]);
7057 	btrfs_free_path(path);
7058 
7059 	/* Always set parent to 0 here since its exclusive anyway. */
7060 	ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7061 				      ins->objectid, ins->offset,
7062 				      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7063 	if (ret)
7064 		return ret;
7065 
7066 	ret = update_block_group(root, ins->objectid, ins->offset, 1);
7067 	if (ret) { /* -ENOENT, logic error */
7068 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7069 			ins->objectid, ins->offset);
7070 		BUG();
7071 	}
7072 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7073 	return ret;
7074 }
7075 
7076 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7077 				     struct btrfs_root *root,
7078 				     u64 parent, u64 root_objectid,
7079 				     u64 flags, struct btrfs_disk_key *key,
7080 				     int level, struct btrfs_key *ins,
7081 				     int no_quota)
7082 {
7083 	int ret;
7084 	struct btrfs_fs_info *fs_info = root->fs_info;
7085 	struct btrfs_extent_item *extent_item;
7086 	struct btrfs_tree_block_info *block_info;
7087 	struct btrfs_extent_inline_ref *iref;
7088 	struct btrfs_path *path;
7089 	struct extent_buffer *leaf;
7090 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7091 	u64 num_bytes = ins->offset;
7092 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7093 						 SKINNY_METADATA);
7094 
7095 	if (!skinny_metadata)
7096 		size += sizeof(*block_info);
7097 
7098 	path = btrfs_alloc_path();
7099 	if (!path) {
7100 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7101 						   root->nodesize);
7102 		return -ENOMEM;
7103 	}
7104 
7105 	path->leave_spinning = 1;
7106 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7107 				      ins, size);
7108 	if (ret) {
7109 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7110 						   root->nodesize);
7111 		btrfs_free_path(path);
7112 		return ret;
7113 	}
7114 
7115 	leaf = path->nodes[0];
7116 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7117 				     struct btrfs_extent_item);
7118 	btrfs_set_extent_refs(leaf, extent_item, 1);
7119 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7120 	btrfs_set_extent_flags(leaf, extent_item,
7121 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7122 
7123 	if (skinny_metadata) {
7124 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7125 		num_bytes = root->nodesize;
7126 	} else {
7127 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7128 		btrfs_set_tree_block_key(leaf, block_info, key);
7129 		btrfs_set_tree_block_level(leaf, block_info, level);
7130 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7131 	}
7132 
7133 	if (parent > 0) {
7134 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7135 		btrfs_set_extent_inline_ref_type(leaf, iref,
7136 						 BTRFS_SHARED_BLOCK_REF_KEY);
7137 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7138 	} else {
7139 		btrfs_set_extent_inline_ref_type(leaf, iref,
7140 						 BTRFS_TREE_BLOCK_REF_KEY);
7141 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7142 	}
7143 
7144 	btrfs_mark_buffer_dirty(leaf);
7145 	btrfs_free_path(path);
7146 
7147 	if (!no_quota) {
7148 		ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7149 					      ins->objectid, num_bytes,
7150 					      BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7151 		if (ret)
7152 			return ret;
7153 	}
7154 
7155 	ret = update_block_group(root, ins->objectid, root->nodesize, 1);
7156 	if (ret) { /* -ENOENT, logic error */
7157 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7158 			ins->objectid, ins->offset);
7159 		BUG();
7160 	}
7161 
7162 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7163 	return ret;
7164 }
7165 
7166 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7167 				     struct btrfs_root *root,
7168 				     u64 root_objectid, u64 owner,
7169 				     u64 offset, struct btrfs_key *ins)
7170 {
7171 	int ret;
7172 
7173 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7174 
7175 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7176 					 ins->offset, 0,
7177 					 root_objectid, owner, offset,
7178 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7179 	return ret;
7180 }
7181 
7182 /*
7183  * this is used by the tree logging recovery code.  It records that
7184  * an extent has been allocated and makes sure to clear the free
7185  * space cache bits as well
7186  */
7187 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7188 				   struct btrfs_root *root,
7189 				   u64 root_objectid, u64 owner, u64 offset,
7190 				   struct btrfs_key *ins)
7191 {
7192 	int ret;
7193 	struct btrfs_block_group_cache *block_group;
7194 
7195 	/*
7196 	 * Mixed block groups will exclude before processing the log so we only
7197 	 * need to do the exlude dance if this fs isn't mixed.
7198 	 */
7199 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7200 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7201 		if (ret)
7202 			return ret;
7203 	}
7204 
7205 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7206 	if (!block_group)
7207 		return -EINVAL;
7208 
7209 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7210 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7211 	BUG_ON(ret); /* logic error */
7212 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7213 					 0, owner, offset, ins, 1);
7214 	btrfs_put_block_group(block_group);
7215 	return ret;
7216 }
7217 
7218 static struct extent_buffer *
7219 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7220 		      u64 bytenr, u32 blocksize, int level)
7221 {
7222 	struct extent_buffer *buf;
7223 
7224 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
7225 	if (!buf)
7226 		return ERR_PTR(-ENOMEM);
7227 	btrfs_set_header_generation(buf, trans->transid);
7228 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7229 	btrfs_tree_lock(buf);
7230 	clean_tree_block(trans, root, buf);
7231 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7232 
7233 	btrfs_set_lock_blocking(buf);
7234 	btrfs_set_buffer_uptodate(buf);
7235 
7236 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7237 		buf->log_index = root->log_transid % 2;
7238 		/*
7239 		 * we allow two log transactions at a time, use different
7240 		 * EXENT bit to differentiate dirty pages.
7241 		 */
7242 		if (buf->log_index == 0)
7243 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7244 					buf->start + buf->len - 1, GFP_NOFS);
7245 		else
7246 			set_extent_new(&root->dirty_log_pages, buf->start,
7247 					buf->start + buf->len - 1, GFP_NOFS);
7248 	} else {
7249 		buf->log_index = -1;
7250 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7251 			 buf->start + buf->len - 1, GFP_NOFS);
7252 	}
7253 	trans->blocks_used++;
7254 	/* this returns a buffer locked for blocking */
7255 	return buf;
7256 }
7257 
7258 static struct btrfs_block_rsv *
7259 use_block_rsv(struct btrfs_trans_handle *trans,
7260 	      struct btrfs_root *root, u32 blocksize)
7261 {
7262 	struct btrfs_block_rsv *block_rsv;
7263 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7264 	int ret;
7265 	bool global_updated = false;
7266 
7267 	block_rsv = get_block_rsv(trans, root);
7268 
7269 	if (unlikely(block_rsv->size == 0))
7270 		goto try_reserve;
7271 again:
7272 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7273 	if (!ret)
7274 		return block_rsv;
7275 
7276 	if (block_rsv->failfast)
7277 		return ERR_PTR(ret);
7278 
7279 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7280 		global_updated = true;
7281 		update_global_block_rsv(root->fs_info);
7282 		goto again;
7283 	}
7284 
7285 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7286 		static DEFINE_RATELIMIT_STATE(_rs,
7287 				DEFAULT_RATELIMIT_INTERVAL * 10,
7288 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7289 		if (__ratelimit(&_rs))
7290 			WARN(1, KERN_DEBUG
7291 				"BTRFS: block rsv returned %d\n", ret);
7292 	}
7293 try_reserve:
7294 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7295 				     BTRFS_RESERVE_NO_FLUSH);
7296 	if (!ret)
7297 		return block_rsv;
7298 	/*
7299 	 * If we couldn't reserve metadata bytes try and use some from
7300 	 * the global reserve if its space type is the same as the global
7301 	 * reservation.
7302 	 */
7303 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7304 	    block_rsv->space_info == global_rsv->space_info) {
7305 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7306 		if (!ret)
7307 			return global_rsv;
7308 	}
7309 	return ERR_PTR(ret);
7310 }
7311 
7312 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7313 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7314 {
7315 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7316 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7317 }
7318 
7319 /*
7320  * finds a free extent and does all the dirty work required for allocation
7321  * returns the key for the extent through ins, and a tree buffer for
7322  * the first block of the extent through buf.
7323  *
7324  * returns the tree buffer or NULL.
7325  */
7326 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7327 					struct btrfs_root *root,
7328 					u64 parent, u64 root_objectid,
7329 					struct btrfs_disk_key *key, int level,
7330 					u64 hint, u64 empty_size)
7331 {
7332 	struct btrfs_key ins;
7333 	struct btrfs_block_rsv *block_rsv;
7334 	struct extent_buffer *buf;
7335 	u64 flags = 0;
7336 	int ret;
7337 	u32 blocksize = root->nodesize;
7338 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7339 						 SKINNY_METADATA);
7340 
7341 	if (btrfs_test_is_dummy_root(root)) {
7342 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7343 					    blocksize, level);
7344 		if (!IS_ERR(buf))
7345 			root->alloc_bytenr += blocksize;
7346 		return buf;
7347 	}
7348 
7349 	block_rsv = use_block_rsv(trans, root, blocksize);
7350 	if (IS_ERR(block_rsv))
7351 		return ERR_CAST(block_rsv);
7352 
7353 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7354 				   empty_size, hint, &ins, 0, 0);
7355 	if (ret) {
7356 		unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7357 		return ERR_PTR(ret);
7358 	}
7359 
7360 	buf = btrfs_init_new_buffer(trans, root, ins.objectid,
7361 				    blocksize, level);
7362 	BUG_ON(IS_ERR(buf)); /* -ENOMEM */
7363 
7364 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7365 		if (parent == 0)
7366 			parent = ins.objectid;
7367 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7368 	} else
7369 		BUG_ON(parent > 0);
7370 
7371 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7372 		struct btrfs_delayed_extent_op *extent_op;
7373 		extent_op = btrfs_alloc_delayed_extent_op();
7374 		BUG_ON(!extent_op); /* -ENOMEM */
7375 		if (key)
7376 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7377 		else
7378 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7379 		extent_op->flags_to_set = flags;
7380 		if (skinny_metadata)
7381 			extent_op->update_key = 0;
7382 		else
7383 			extent_op->update_key = 1;
7384 		extent_op->update_flags = 1;
7385 		extent_op->is_data = 0;
7386 		extent_op->level = level;
7387 
7388 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7389 					ins.objectid,
7390 					ins.offset, parent, root_objectid,
7391 					level, BTRFS_ADD_DELAYED_EXTENT,
7392 					extent_op, 0);
7393 		BUG_ON(ret); /* -ENOMEM */
7394 	}
7395 	return buf;
7396 }
7397 
7398 struct walk_control {
7399 	u64 refs[BTRFS_MAX_LEVEL];
7400 	u64 flags[BTRFS_MAX_LEVEL];
7401 	struct btrfs_key update_progress;
7402 	int stage;
7403 	int level;
7404 	int shared_level;
7405 	int update_ref;
7406 	int keep_locks;
7407 	int reada_slot;
7408 	int reada_count;
7409 	int for_reloc;
7410 };
7411 
7412 #define DROP_REFERENCE	1
7413 #define UPDATE_BACKREF	2
7414 
7415 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7416 				     struct btrfs_root *root,
7417 				     struct walk_control *wc,
7418 				     struct btrfs_path *path)
7419 {
7420 	u64 bytenr;
7421 	u64 generation;
7422 	u64 refs;
7423 	u64 flags;
7424 	u32 nritems;
7425 	u32 blocksize;
7426 	struct btrfs_key key;
7427 	struct extent_buffer *eb;
7428 	int ret;
7429 	int slot;
7430 	int nread = 0;
7431 
7432 	if (path->slots[wc->level] < wc->reada_slot) {
7433 		wc->reada_count = wc->reada_count * 2 / 3;
7434 		wc->reada_count = max(wc->reada_count, 2);
7435 	} else {
7436 		wc->reada_count = wc->reada_count * 3 / 2;
7437 		wc->reada_count = min_t(int, wc->reada_count,
7438 					BTRFS_NODEPTRS_PER_BLOCK(root));
7439 	}
7440 
7441 	eb = path->nodes[wc->level];
7442 	nritems = btrfs_header_nritems(eb);
7443 	blocksize = root->nodesize;
7444 
7445 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7446 		if (nread >= wc->reada_count)
7447 			break;
7448 
7449 		cond_resched();
7450 		bytenr = btrfs_node_blockptr(eb, slot);
7451 		generation = btrfs_node_ptr_generation(eb, slot);
7452 
7453 		if (slot == path->slots[wc->level])
7454 			goto reada;
7455 
7456 		if (wc->stage == UPDATE_BACKREF &&
7457 		    generation <= root->root_key.offset)
7458 			continue;
7459 
7460 		/* We don't lock the tree block, it's OK to be racy here */
7461 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7462 					       wc->level - 1, 1, &refs,
7463 					       &flags);
7464 		/* We don't care about errors in readahead. */
7465 		if (ret < 0)
7466 			continue;
7467 		BUG_ON(refs == 0);
7468 
7469 		if (wc->stage == DROP_REFERENCE) {
7470 			if (refs == 1)
7471 				goto reada;
7472 
7473 			if (wc->level == 1 &&
7474 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7475 				continue;
7476 			if (!wc->update_ref ||
7477 			    generation <= root->root_key.offset)
7478 				continue;
7479 			btrfs_node_key_to_cpu(eb, &key, slot);
7480 			ret = btrfs_comp_cpu_keys(&key,
7481 						  &wc->update_progress);
7482 			if (ret < 0)
7483 				continue;
7484 		} else {
7485 			if (wc->level == 1 &&
7486 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7487 				continue;
7488 		}
7489 reada:
7490 		readahead_tree_block(root, bytenr, blocksize);
7491 		nread++;
7492 	}
7493 	wc->reada_slot = slot;
7494 }
7495 
7496 static int account_leaf_items(struct btrfs_trans_handle *trans,
7497 			      struct btrfs_root *root,
7498 			      struct extent_buffer *eb)
7499 {
7500 	int nr = btrfs_header_nritems(eb);
7501 	int i, extent_type, ret;
7502 	struct btrfs_key key;
7503 	struct btrfs_file_extent_item *fi;
7504 	u64 bytenr, num_bytes;
7505 
7506 	for (i = 0; i < nr; i++) {
7507 		btrfs_item_key_to_cpu(eb, &key, i);
7508 
7509 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7510 			continue;
7511 
7512 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7513 		/* filter out non qgroup-accountable extents  */
7514 		extent_type = btrfs_file_extent_type(eb, fi);
7515 
7516 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7517 			continue;
7518 
7519 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7520 		if (!bytenr)
7521 			continue;
7522 
7523 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7524 
7525 		ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7526 					      root->objectid,
7527 					      bytenr, num_bytes,
7528 					      BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7529 		if (ret)
7530 			return ret;
7531 	}
7532 	return 0;
7533 }
7534 
7535 /*
7536  * Walk up the tree from the bottom, freeing leaves and any interior
7537  * nodes which have had all slots visited. If a node (leaf or
7538  * interior) is freed, the node above it will have it's slot
7539  * incremented. The root node will never be freed.
7540  *
7541  * At the end of this function, we should have a path which has all
7542  * slots incremented to the next position for a search. If we need to
7543  * read a new node it will be NULL and the node above it will have the
7544  * correct slot selected for a later read.
7545  *
7546  * If we increment the root nodes slot counter past the number of
7547  * elements, 1 is returned to signal completion of the search.
7548  */
7549 static int adjust_slots_upwards(struct btrfs_root *root,
7550 				struct btrfs_path *path, int root_level)
7551 {
7552 	int level = 0;
7553 	int nr, slot;
7554 	struct extent_buffer *eb;
7555 
7556 	if (root_level == 0)
7557 		return 1;
7558 
7559 	while (level <= root_level) {
7560 		eb = path->nodes[level];
7561 		nr = btrfs_header_nritems(eb);
7562 		path->slots[level]++;
7563 		slot = path->slots[level];
7564 		if (slot >= nr || level == 0) {
7565 			/*
7566 			 * Don't free the root -  we will detect this
7567 			 * condition after our loop and return a
7568 			 * positive value for caller to stop walking the tree.
7569 			 */
7570 			if (level != root_level) {
7571 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7572 				path->locks[level] = 0;
7573 
7574 				free_extent_buffer(eb);
7575 				path->nodes[level] = NULL;
7576 				path->slots[level] = 0;
7577 			}
7578 		} else {
7579 			/*
7580 			 * We have a valid slot to walk back down
7581 			 * from. Stop here so caller can process these
7582 			 * new nodes.
7583 			 */
7584 			break;
7585 		}
7586 
7587 		level++;
7588 	}
7589 
7590 	eb = path->nodes[root_level];
7591 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7592 		return 1;
7593 
7594 	return 0;
7595 }
7596 
7597 /*
7598  * root_eb is the subtree root and is locked before this function is called.
7599  */
7600 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7601 				  struct btrfs_root *root,
7602 				  struct extent_buffer *root_eb,
7603 				  u64 root_gen,
7604 				  int root_level)
7605 {
7606 	int ret = 0;
7607 	int level;
7608 	struct extent_buffer *eb = root_eb;
7609 	struct btrfs_path *path = NULL;
7610 
7611 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7612 	BUG_ON(root_eb == NULL);
7613 
7614 	if (!root->fs_info->quota_enabled)
7615 		return 0;
7616 
7617 	if (!extent_buffer_uptodate(root_eb)) {
7618 		ret = btrfs_read_buffer(root_eb, root_gen);
7619 		if (ret)
7620 			goto out;
7621 	}
7622 
7623 	if (root_level == 0) {
7624 		ret = account_leaf_items(trans, root, root_eb);
7625 		goto out;
7626 	}
7627 
7628 	path = btrfs_alloc_path();
7629 	if (!path)
7630 		return -ENOMEM;
7631 
7632 	/*
7633 	 * Walk down the tree.  Missing extent blocks are filled in as
7634 	 * we go. Metadata is accounted every time we read a new
7635 	 * extent block.
7636 	 *
7637 	 * When we reach a leaf, we account for file extent items in it,
7638 	 * walk back up the tree (adjusting slot pointers as we go)
7639 	 * and restart the search process.
7640 	 */
7641 	extent_buffer_get(root_eb); /* For path */
7642 	path->nodes[root_level] = root_eb;
7643 	path->slots[root_level] = 0;
7644 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7645 walk_down:
7646 	level = root_level;
7647 	while (level >= 0) {
7648 		if (path->nodes[level] == NULL) {
7649 			int parent_slot;
7650 			u64 child_gen;
7651 			u64 child_bytenr;
7652 
7653 			/* We need to get child blockptr/gen from
7654 			 * parent before we can read it. */
7655 			eb = path->nodes[level + 1];
7656 			parent_slot = path->slots[level + 1];
7657 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7658 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7659 
7660 			eb = read_tree_block(root, child_bytenr, child_gen);
7661 			if (!eb || !extent_buffer_uptodate(eb)) {
7662 				ret = -EIO;
7663 				goto out;
7664 			}
7665 
7666 			path->nodes[level] = eb;
7667 			path->slots[level] = 0;
7668 
7669 			btrfs_tree_read_lock(eb);
7670 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7671 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7672 
7673 			ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7674 						root->objectid,
7675 						child_bytenr,
7676 						root->nodesize,
7677 						BTRFS_QGROUP_OPER_SUB_SUBTREE,
7678 						0);
7679 			if (ret)
7680 				goto out;
7681 
7682 		}
7683 
7684 		if (level == 0) {
7685 			ret = account_leaf_items(trans, root, path->nodes[level]);
7686 			if (ret)
7687 				goto out;
7688 
7689 			/* Nonzero return here means we completed our search */
7690 			ret = adjust_slots_upwards(root, path, root_level);
7691 			if (ret)
7692 				break;
7693 
7694 			/* Restart search with new slots */
7695 			goto walk_down;
7696 		}
7697 
7698 		level--;
7699 	}
7700 
7701 	ret = 0;
7702 out:
7703 	btrfs_free_path(path);
7704 
7705 	return ret;
7706 }
7707 
7708 /*
7709  * helper to process tree block while walking down the tree.
7710  *
7711  * when wc->stage == UPDATE_BACKREF, this function updates
7712  * back refs for pointers in the block.
7713  *
7714  * NOTE: return value 1 means we should stop walking down.
7715  */
7716 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7717 				   struct btrfs_root *root,
7718 				   struct btrfs_path *path,
7719 				   struct walk_control *wc, int lookup_info)
7720 {
7721 	int level = wc->level;
7722 	struct extent_buffer *eb = path->nodes[level];
7723 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7724 	int ret;
7725 
7726 	if (wc->stage == UPDATE_BACKREF &&
7727 	    btrfs_header_owner(eb) != root->root_key.objectid)
7728 		return 1;
7729 
7730 	/*
7731 	 * when reference count of tree block is 1, it won't increase
7732 	 * again. once full backref flag is set, we never clear it.
7733 	 */
7734 	if (lookup_info &&
7735 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7736 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7737 		BUG_ON(!path->locks[level]);
7738 		ret = btrfs_lookup_extent_info(trans, root,
7739 					       eb->start, level, 1,
7740 					       &wc->refs[level],
7741 					       &wc->flags[level]);
7742 		BUG_ON(ret == -ENOMEM);
7743 		if (ret)
7744 			return ret;
7745 		BUG_ON(wc->refs[level] == 0);
7746 	}
7747 
7748 	if (wc->stage == DROP_REFERENCE) {
7749 		if (wc->refs[level] > 1)
7750 			return 1;
7751 
7752 		if (path->locks[level] && !wc->keep_locks) {
7753 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7754 			path->locks[level] = 0;
7755 		}
7756 		return 0;
7757 	}
7758 
7759 	/* wc->stage == UPDATE_BACKREF */
7760 	if (!(wc->flags[level] & flag)) {
7761 		BUG_ON(!path->locks[level]);
7762 		ret = btrfs_inc_ref(trans, root, eb, 1);
7763 		BUG_ON(ret); /* -ENOMEM */
7764 		ret = btrfs_dec_ref(trans, root, eb, 0);
7765 		BUG_ON(ret); /* -ENOMEM */
7766 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7767 						  eb->len, flag,
7768 						  btrfs_header_level(eb), 0);
7769 		BUG_ON(ret); /* -ENOMEM */
7770 		wc->flags[level] |= flag;
7771 	}
7772 
7773 	/*
7774 	 * the block is shared by multiple trees, so it's not good to
7775 	 * keep the tree lock
7776 	 */
7777 	if (path->locks[level] && level > 0) {
7778 		btrfs_tree_unlock_rw(eb, path->locks[level]);
7779 		path->locks[level] = 0;
7780 	}
7781 	return 0;
7782 }
7783 
7784 /*
7785  * helper to process tree block pointer.
7786  *
7787  * when wc->stage == DROP_REFERENCE, this function checks
7788  * reference count of the block pointed to. if the block
7789  * is shared and we need update back refs for the subtree
7790  * rooted at the block, this function changes wc->stage to
7791  * UPDATE_BACKREF. if the block is shared and there is no
7792  * need to update back, this function drops the reference
7793  * to the block.
7794  *
7795  * NOTE: return value 1 means we should stop walking down.
7796  */
7797 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7798 				 struct btrfs_root *root,
7799 				 struct btrfs_path *path,
7800 				 struct walk_control *wc, int *lookup_info)
7801 {
7802 	u64 bytenr;
7803 	u64 generation;
7804 	u64 parent;
7805 	u32 blocksize;
7806 	struct btrfs_key key;
7807 	struct extent_buffer *next;
7808 	int level = wc->level;
7809 	int reada = 0;
7810 	int ret = 0;
7811 	bool need_account = false;
7812 
7813 	generation = btrfs_node_ptr_generation(path->nodes[level],
7814 					       path->slots[level]);
7815 	/*
7816 	 * if the lower level block was created before the snapshot
7817 	 * was created, we know there is no need to update back refs
7818 	 * for the subtree
7819 	 */
7820 	if (wc->stage == UPDATE_BACKREF &&
7821 	    generation <= root->root_key.offset) {
7822 		*lookup_info = 1;
7823 		return 1;
7824 	}
7825 
7826 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7827 	blocksize = root->nodesize;
7828 
7829 	next = btrfs_find_tree_block(root, bytenr);
7830 	if (!next) {
7831 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7832 		if (!next)
7833 			return -ENOMEM;
7834 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7835 					       level - 1);
7836 		reada = 1;
7837 	}
7838 	btrfs_tree_lock(next);
7839 	btrfs_set_lock_blocking(next);
7840 
7841 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7842 				       &wc->refs[level - 1],
7843 				       &wc->flags[level - 1]);
7844 	if (ret < 0) {
7845 		btrfs_tree_unlock(next);
7846 		return ret;
7847 	}
7848 
7849 	if (unlikely(wc->refs[level - 1] == 0)) {
7850 		btrfs_err(root->fs_info, "Missing references.");
7851 		BUG();
7852 	}
7853 	*lookup_info = 0;
7854 
7855 	if (wc->stage == DROP_REFERENCE) {
7856 		if (wc->refs[level - 1] > 1) {
7857 			need_account = true;
7858 			if (level == 1 &&
7859 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7860 				goto skip;
7861 
7862 			if (!wc->update_ref ||
7863 			    generation <= root->root_key.offset)
7864 				goto skip;
7865 
7866 			btrfs_node_key_to_cpu(path->nodes[level], &key,
7867 					      path->slots[level]);
7868 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7869 			if (ret < 0)
7870 				goto skip;
7871 
7872 			wc->stage = UPDATE_BACKREF;
7873 			wc->shared_level = level - 1;
7874 		}
7875 	} else {
7876 		if (level == 1 &&
7877 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7878 			goto skip;
7879 	}
7880 
7881 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
7882 		btrfs_tree_unlock(next);
7883 		free_extent_buffer(next);
7884 		next = NULL;
7885 		*lookup_info = 1;
7886 	}
7887 
7888 	if (!next) {
7889 		if (reada && level == 1)
7890 			reada_walk_down(trans, root, wc, path);
7891 		next = read_tree_block(root, bytenr, generation);
7892 		if (!next || !extent_buffer_uptodate(next)) {
7893 			free_extent_buffer(next);
7894 			return -EIO;
7895 		}
7896 		btrfs_tree_lock(next);
7897 		btrfs_set_lock_blocking(next);
7898 	}
7899 
7900 	level--;
7901 	BUG_ON(level != btrfs_header_level(next));
7902 	path->nodes[level] = next;
7903 	path->slots[level] = 0;
7904 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7905 	wc->level = level;
7906 	if (wc->level == 1)
7907 		wc->reada_slot = 0;
7908 	return 0;
7909 skip:
7910 	wc->refs[level - 1] = 0;
7911 	wc->flags[level - 1] = 0;
7912 	if (wc->stage == DROP_REFERENCE) {
7913 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7914 			parent = path->nodes[level]->start;
7915 		} else {
7916 			BUG_ON(root->root_key.objectid !=
7917 			       btrfs_header_owner(path->nodes[level]));
7918 			parent = 0;
7919 		}
7920 
7921 		if (need_account) {
7922 			ret = account_shared_subtree(trans, root, next,
7923 						     generation, level - 1);
7924 			if (ret) {
7925 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
7926 					"%d accounting shared subtree. Quota "
7927 					"is out of sync, rescan required.\n",
7928 					root->fs_info->sb->s_id, ret);
7929 			}
7930 		}
7931 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7932 				root->root_key.objectid, level - 1, 0, 0);
7933 		BUG_ON(ret); /* -ENOMEM */
7934 	}
7935 	btrfs_tree_unlock(next);
7936 	free_extent_buffer(next);
7937 	*lookup_info = 1;
7938 	return 1;
7939 }
7940 
7941 /*
7942  * helper to process tree block while walking up the tree.
7943  *
7944  * when wc->stage == DROP_REFERENCE, this function drops
7945  * reference count on the block.
7946  *
7947  * when wc->stage == UPDATE_BACKREF, this function changes
7948  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7949  * to UPDATE_BACKREF previously while processing the block.
7950  *
7951  * NOTE: return value 1 means we should stop walking up.
7952  */
7953 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7954 				 struct btrfs_root *root,
7955 				 struct btrfs_path *path,
7956 				 struct walk_control *wc)
7957 {
7958 	int ret;
7959 	int level = wc->level;
7960 	struct extent_buffer *eb = path->nodes[level];
7961 	u64 parent = 0;
7962 
7963 	if (wc->stage == UPDATE_BACKREF) {
7964 		BUG_ON(wc->shared_level < level);
7965 		if (level < wc->shared_level)
7966 			goto out;
7967 
7968 		ret = find_next_key(path, level + 1, &wc->update_progress);
7969 		if (ret > 0)
7970 			wc->update_ref = 0;
7971 
7972 		wc->stage = DROP_REFERENCE;
7973 		wc->shared_level = -1;
7974 		path->slots[level] = 0;
7975 
7976 		/*
7977 		 * check reference count again if the block isn't locked.
7978 		 * we should start walking down the tree again if reference
7979 		 * count is one.
7980 		 */
7981 		if (!path->locks[level]) {
7982 			BUG_ON(level == 0);
7983 			btrfs_tree_lock(eb);
7984 			btrfs_set_lock_blocking(eb);
7985 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7986 
7987 			ret = btrfs_lookup_extent_info(trans, root,
7988 						       eb->start, level, 1,
7989 						       &wc->refs[level],
7990 						       &wc->flags[level]);
7991 			if (ret < 0) {
7992 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7993 				path->locks[level] = 0;
7994 				return ret;
7995 			}
7996 			BUG_ON(wc->refs[level] == 0);
7997 			if (wc->refs[level] == 1) {
7998 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7999 				path->locks[level] = 0;
8000 				return 1;
8001 			}
8002 		}
8003 	}
8004 
8005 	/* wc->stage == DROP_REFERENCE */
8006 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8007 
8008 	if (wc->refs[level] == 1) {
8009 		if (level == 0) {
8010 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8011 				ret = btrfs_dec_ref(trans, root, eb, 1);
8012 			else
8013 				ret = btrfs_dec_ref(trans, root, eb, 0);
8014 			BUG_ON(ret); /* -ENOMEM */
8015 			ret = account_leaf_items(trans, root, eb);
8016 			if (ret) {
8017 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8018 					"%d accounting leaf items. Quota "
8019 					"is out of sync, rescan required.\n",
8020 					root->fs_info->sb->s_id, ret);
8021 			}
8022 		}
8023 		/* make block locked assertion in clean_tree_block happy */
8024 		if (!path->locks[level] &&
8025 		    btrfs_header_generation(eb) == trans->transid) {
8026 			btrfs_tree_lock(eb);
8027 			btrfs_set_lock_blocking(eb);
8028 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8029 		}
8030 		clean_tree_block(trans, root, eb);
8031 	}
8032 
8033 	if (eb == root->node) {
8034 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8035 			parent = eb->start;
8036 		else
8037 			BUG_ON(root->root_key.objectid !=
8038 			       btrfs_header_owner(eb));
8039 	} else {
8040 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8041 			parent = path->nodes[level + 1]->start;
8042 		else
8043 			BUG_ON(root->root_key.objectid !=
8044 			       btrfs_header_owner(path->nodes[level + 1]));
8045 	}
8046 
8047 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8048 out:
8049 	wc->refs[level] = 0;
8050 	wc->flags[level] = 0;
8051 	return 0;
8052 }
8053 
8054 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8055 				   struct btrfs_root *root,
8056 				   struct btrfs_path *path,
8057 				   struct walk_control *wc)
8058 {
8059 	int level = wc->level;
8060 	int lookup_info = 1;
8061 	int ret;
8062 
8063 	while (level >= 0) {
8064 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8065 		if (ret > 0)
8066 			break;
8067 
8068 		if (level == 0)
8069 			break;
8070 
8071 		if (path->slots[level] >=
8072 		    btrfs_header_nritems(path->nodes[level]))
8073 			break;
8074 
8075 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8076 		if (ret > 0) {
8077 			path->slots[level]++;
8078 			continue;
8079 		} else if (ret < 0)
8080 			return ret;
8081 		level = wc->level;
8082 	}
8083 	return 0;
8084 }
8085 
8086 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8087 				 struct btrfs_root *root,
8088 				 struct btrfs_path *path,
8089 				 struct walk_control *wc, int max_level)
8090 {
8091 	int level = wc->level;
8092 	int ret;
8093 
8094 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8095 	while (level < max_level && path->nodes[level]) {
8096 		wc->level = level;
8097 		if (path->slots[level] + 1 <
8098 		    btrfs_header_nritems(path->nodes[level])) {
8099 			path->slots[level]++;
8100 			return 0;
8101 		} else {
8102 			ret = walk_up_proc(trans, root, path, wc);
8103 			if (ret > 0)
8104 				return 0;
8105 
8106 			if (path->locks[level]) {
8107 				btrfs_tree_unlock_rw(path->nodes[level],
8108 						     path->locks[level]);
8109 				path->locks[level] = 0;
8110 			}
8111 			free_extent_buffer(path->nodes[level]);
8112 			path->nodes[level] = NULL;
8113 			level++;
8114 		}
8115 	}
8116 	return 1;
8117 }
8118 
8119 /*
8120  * drop a subvolume tree.
8121  *
8122  * this function traverses the tree freeing any blocks that only
8123  * referenced by the tree.
8124  *
8125  * when a shared tree block is found. this function decreases its
8126  * reference count by one. if update_ref is true, this function
8127  * also make sure backrefs for the shared block and all lower level
8128  * blocks are properly updated.
8129  *
8130  * If called with for_reloc == 0, may exit early with -EAGAIN
8131  */
8132 int btrfs_drop_snapshot(struct btrfs_root *root,
8133 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8134 			 int for_reloc)
8135 {
8136 	struct btrfs_path *path;
8137 	struct btrfs_trans_handle *trans;
8138 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8139 	struct btrfs_root_item *root_item = &root->root_item;
8140 	struct walk_control *wc;
8141 	struct btrfs_key key;
8142 	int err = 0;
8143 	int ret;
8144 	int level;
8145 	bool root_dropped = false;
8146 
8147 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8148 
8149 	path = btrfs_alloc_path();
8150 	if (!path) {
8151 		err = -ENOMEM;
8152 		goto out;
8153 	}
8154 
8155 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8156 	if (!wc) {
8157 		btrfs_free_path(path);
8158 		err = -ENOMEM;
8159 		goto out;
8160 	}
8161 
8162 	trans = btrfs_start_transaction(tree_root, 0);
8163 	if (IS_ERR(trans)) {
8164 		err = PTR_ERR(trans);
8165 		goto out_free;
8166 	}
8167 
8168 	if (block_rsv)
8169 		trans->block_rsv = block_rsv;
8170 
8171 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8172 		level = btrfs_header_level(root->node);
8173 		path->nodes[level] = btrfs_lock_root_node(root);
8174 		btrfs_set_lock_blocking(path->nodes[level]);
8175 		path->slots[level] = 0;
8176 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8177 		memset(&wc->update_progress, 0,
8178 		       sizeof(wc->update_progress));
8179 	} else {
8180 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8181 		memcpy(&wc->update_progress, &key,
8182 		       sizeof(wc->update_progress));
8183 
8184 		level = root_item->drop_level;
8185 		BUG_ON(level == 0);
8186 		path->lowest_level = level;
8187 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8188 		path->lowest_level = 0;
8189 		if (ret < 0) {
8190 			err = ret;
8191 			goto out_end_trans;
8192 		}
8193 		WARN_ON(ret > 0);
8194 
8195 		/*
8196 		 * unlock our path, this is safe because only this
8197 		 * function is allowed to delete this snapshot
8198 		 */
8199 		btrfs_unlock_up_safe(path, 0);
8200 
8201 		level = btrfs_header_level(root->node);
8202 		while (1) {
8203 			btrfs_tree_lock(path->nodes[level]);
8204 			btrfs_set_lock_blocking(path->nodes[level]);
8205 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8206 
8207 			ret = btrfs_lookup_extent_info(trans, root,
8208 						path->nodes[level]->start,
8209 						level, 1, &wc->refs[level],
8210 						&wc->flags[level]);
8211 			if (ret < 0) {
8212 				err = ret;
8213 				goto out_end_trans;
8214 			}
8215 			BUG_ON(wc->refs[level] == 0);
8216 
8217 			if (level == root_item->drop_level)
8218 				break;
8219 
8220 			btrfs_tree_unlock(path->nodes[level]);
8221 			path->locks[level] = 0;
8222 			WARN_ON(wc->refs[level] != 1);
8223 			level--;
8224 		}
8225 	}
8226 
8227 	wc->level = level;
8228 	wc->shared_level = -1;
8229 	wc->stage = DROP_REFERENCE;
8230 	wc->update_ref = update_ref;
8231 	wc->keep_locks = 0;
8232 	wc->for_reloc = for_reloc;
8233 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8234 
8235 	while (1) {
8236 
8237 		ret = walk_down_tree(trans, root, path, wc);
8238 		if (ret < 0) {
8239 			err = ret;
8240 			break;
8241 		}
8242 
8243 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8244 		if (ret < 0) {
8245 			err = ret;
8246 			break;
8247 		}
8248 
8249 		if (ret > 0) {
8250 			BUG_ON(wc->stage != DROP_REFERENCE);
8251 			break;
8252 		}
8253 
8254 		if (wc->stage == DROP_REFERENCE) {
8255 			level = wc->level;
8256 			btrfs_node_key(path->nodes[level],
8257 				       &root_item->drop_progress,
8258 				       path->slots[level]);
8259 			root_item->drop_level = level;
8260 		}
8261 
8262 		BUG_ON(wc->level == 0);
8263 		if (btrfs_should_end_transaction(trans, tree_root) ||
8264 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8265 			ret = btrfs_update_root(trans, tree_root,
8266 						&root->root_key,
8267 						root_item);
8268 			if (ret) {
8269 				btrfs_abort_transaction(trans, tree_root, ret);
8270 				err = ret;
8271 				goto out_end_trans;
8272 			}
8273 
8274 			/*
8275 			 * Qgroup update accounting is run from
8276 			 * delayed ref handling. This usually works
8277 			 * out because delayed refs are normally the
8278 			 * only way qgroup updates are added. However,
8279 			 * we may have added updates during our tree
8280 			 * walk so run qgroups here to make sure we
8281 			 * don't lose any updates.
8282 			 */
8283 			ret = btrfs_delayed_qgroup_accounting(trans,
8284 							      root->fs_info);
8285 			if (ret)
8286 				printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8287 						   "running qgroup updates "
8288 						   "during snapshot delete. "
8289 						   "Quota is out of sync, "
8290 						   "rescan required.\n", ret);
8291 
8292 			btrfs_end_transaction_throttle(trans, tree_root);
8293 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8294 				pr_debug("BTRFS: drop snapshot early exit\n");
8295 				err = -EAGAIN;
8296 				goto out_free;
8297 			}
8298 
8299 			trans = btrfs_start_transaction(tree_root, 0);
8300 			if (IS_ERR(trans)) {
8301 				err = PTR_ERR(trans);
8302 				goto out_free;
8303 			}
8304 			if (block_rsv)
8305 				trans->block_rsv = block_rsv;
8306 		}
8307 	}
8308 	btrfs_release_path(path);
8309 	if (err)
8310 		goto out_end_trans;
8311 
8312 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8313 	if (ret) {
8314 		btrfs_abort_transaction(trans, tree_root, ret);
8315 		goto out_end_trans;
8316 	}
8317 
8318 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8319 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8320 				      NULL, NULL);
8321 		if (ret < 0) {
8322 			btrfs_abort_transaction(trans, tree_root, ret);
8323 			err = ret;
8324 			goto out_end_trans;
8325 		} else if (ret > 0) {
8326 			/* if we fail to delete the orphan item this time
8327 			 * around, it'll get picked up the next time.
8328 			 *
8329 			 * The most common failure here is just -ENOENT.
8330 			 */
8331 			btrfs_del_orphan_item(trans, tree_root,
8332 					      root->root_key.objectid);
8333 		}
8334 	}
8335 
8336 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8337 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8338 	} else {
8339 		free_extent_buffer(root->node);
8340 		free_extent_buffer(root->commit_root);
8341 		btrfs_put_fs_root(root);
8342 	}
8343 	root_dropped = true;
8344 out_end_trans:
8345 	ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8346 	if (ret)
8347 		printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8348 				   "running qgroup updates "
8349 				   "during snapshot delete. "
8350 				   "Quota is out of sync, "
8351 				   "rescan required.\n", ret);
8352 
8353 	btrfs_end_transaction_throttle(trans, tree_root);
8354 out_free:
8355 	kfree(wc);
8356 	btrfs_free_path(path);
8357 out:
8358 	/*
8359 	 * So if we need to stop dropping the snapshot for whatever reason we
8360 	 * need to make sure to add it back to the dead root list so that we
8361 	 * keep trying to do the work later.  This also cleans up roots if we
8362 	 * don't have it in the radix (like when we recover after a power fail
8363 	 * or unmount) so we don't leak memory.
8364 	 */
8365 	if (!for_reloc && root_dropped == false)
8366 		btrfs_add_dead_root(root);
8367 	if (err && err != -EAGAIN)
8368 		btrfs_std_error(root->fs_info, err);
8369 	return err;
8370 }
8371 
8372 /*
8373  * drop subtree rooted at tree block 'node'.
8374  *
8375  * NOTE: this function will unlock and release tree block 'node'
8376  * only used by relocation code
8377  */
8378 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8379 			struct btrfs_root *root,
8380 			struct extent_buffer *node,
8381 			struct extent_buffer *parent)
8382 {
8383 	struct btrfs_path *path;
8384 	struct walk_control *wc;
8385 	int level;
8386 	int parent_level;
8387 	int ret = 0;
8388 	int wret;
8389 
8390 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8391 
8392 	path = btrfs_alloc_path();
8393 	if (!path)
8394 		return -ENOMEM;
8395 
8396 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8397 	if (!wc) {
8398 		btrfs_free_path(path);
8399 		return -ENOMEM;
8400 	}
8401 
8402 	btrfs_assert_tree_locked(parent);
8403 	parent_level = btrfs_header_level(parent);
8404 	extent_buffer_get(parent);
8405 	path->nodes[parent_level] = parent;
8406 	path->slots[parent_level] = btrfs_header_nritems(parent);
8407 
8408 	btrfs_assert_tree_locked(node);
8409 	level = btrfs_header_level(node);
8410 	path->nodes[level] = node;
8411 	path->slots[level] = 0;
8412 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8413 
8414 	wc->refs[parent_level] = 1;
8415 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8416 	wc->level = level;
8417 	wc->shared_level = -1;
8418 	wc->stage = DROP_REFERENCE;
8419 	wc->update_ref = 0;
8420 	wc->keep_locks = 1;
8421 	wc->for_reloc = 1;
8422 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8423 
8424 	while (1) {
8425 		wret = walk_down_tree(trans, root, path, wc);
8426 		if (wret < 0) {
8427 			ret = wret;
8428 			break;
8429 		}
8430 
8431 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8432 		if (wret < 0)
8433 			ret = wret;
8434 		if (wret != 0)
8435 			break;
8436 	}
8437 
8438 	kfree(wc);
8439 	btrfs_free_path(path);
8440 	return ret;
8441 }
8442 
8443 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8444 {
8445 	u64 num_devices;
8446 	u64 stripped;
8447 
8448 	/*
8449 	 * if restripe for this chunk_type is on pick target profile and
8450 	 * return, otherwise do the usual balance
8451 	 */
8452 	stripped = get_restripe_target(root->fs_info, flags);
8453 	if (stripped)
8454 		return extended_to_chunk(stripped);
8455 
8456 	num_devices = root->fs_info->fs_devices->rw_devices;
8457 
8458 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8459 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8460 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8461 
8462 	if (num_devices == 1) {
8463 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8464 		stripped = flags & ~stripped;
8465 
8466 		/* turn raid0 into single device chunks */
8467 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8468 			return stripped;
8469 
8470 		/* turn mirroring into duplication */
8471 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8472 			     BTRFS_BLOCK_GROUP_RAID10))
8473 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8474 	} else {
8475 		/* they already had raid on here, just return */
8476 		if (flags & stripped)
8477 			return flags;
8478 
8479 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8480 		stripped = flags & ~stripped;
8481 
8482 		/* switch duplicated blocks with raid1 */
8483 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8484 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8485 
8486 		/* this is drive concat, leave it alone */
8487 	}
8488 
8489 	return flags;
8490 }
8491 
8492 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8493 {
8494 	struct btrfs_space_info *sinfo = cache->space_info;
8495 	u64 num_bytes;
8496 	u64 min_allocable_bytes;
8497 	int ret = -ENOSPC;
8498 
8499 
8500 	/*
8501 	 * We need some metadata space and system metadata space for
8502 	 * allocating chunks in some corner cases until we force to set
8503 	 * it to be readonly.
8504 	 */
8505 	if ((sinfo->flags &
8506 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8507 	    !force)
8508 		min_allocable_bytes = 1 * 1024 * 1024;
8509 	else
8510 		min_allocable_bytes = 0;
8511 
8512 	spin_lock(&sinfo->lock);
8513 	spin_lock(&cache->lock);
8514 
8515 	if (cache->ro) {
8516 		ret = 0;
8517 		goto out;
8518 	}
8519 
8520 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8521 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8522 
8523 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8524 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8525 	    min_allocable_bytes <= sinfo->total_bytes) {
8526 		sinfo->bytes_readonly += num_bytes;
8527 		cache->ro = 1;
8528 		ret = 0;
8529 	}
8530 out:
8531 	spin_unlock(&cache->lock);
8532 	spin_unlock(&sinfo->lock);
8533 	return ret;
8534 }
8535 
8536 int btrfs_set_block_group_ro(struct btrfs_root *root,
8537 			     struct btrfs_block_group_cache *cache)
8538 
8539 {
8540 	struct btrfs_trans_handle *trans;
8541 	u64 alloc_flags;
8542 	int ret;
8543 
8544 	BUG_ON(cache->ro);
8545 
8546 	trans = btrfs_join_transaction(root);
8547 	if (IS_ERR(trans))
8548 		return PTR_ERR(trans);
8549 
8550 	alloc_flags = update_block_group_flags(root, cache->flags);
8551 	if (alloc_flags != cache->flags) {
8552 		ret = do_chunk_alloc(trans, root, alloc_flags,
8553 				     CHUNK_ALLOC_FORCE);
8554 		if (ret < 0)
8555 			goto out;
8556 	}
8557 
8558 	ret = set_block_group_ro(cache, 0);
8559 	if (!ret)
8560 		goto out;
8561 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8562 	ret = do_chunk_alloc(trans, root, alloc_flags,
8563 			     CHUNK_ALLOC_FORCE);
8564 	if (ret < 0)
8565 		goto out;
8566 	ret = set_block_group_ro(cache, 0);
8567 out:
8568 	btrfs_end_transaction(trans, root);
8569 	return ret;
8570 }
8571 
8572 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8573 			    struct btrfs_root *root, u64 type)
8574 {
8575 	u64 alloc_flags = get_alloc_profile(root, type);
8576 	return do_chunk_alloc(trans, root, alloc_flags,
8577 			      CHUNK_ALLOC_FORCE);
8578 }
8579 
8580 /*
8581  * helper to account the unused space of all the readonly block group in the
8582  * list. takes mirrors into account.
8583  */
8584 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
8585 {
8586 	struct btrfs_block_group_cache *block_group;
8587 	u64 free_bytes = 0;
8588 	int factor;
8589 
8590 	list_for_each_entry(block_group, groups_list, list) {
8591 		spin_lock(&block_group->lock);
8592 
8593 		if (!block_group->ro) {
8594 			spin_unlock(&block_group->lock);
8595 			continue;
8596 		}
8597 
8598 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8599 					  BTRFS_BLOCK_GROUP_RAID10 |
8600 					  BTRFS_BLOCK_GROUP_DUP))
8601 			factor = 2;
8602 		else
8603 			factor = 1;
8604 
8605 		free_bytes += (block_group->key.offset -
8606 			       btrfs_block_group_used(&block_group->item)) *
8607 			       factor;
8608 
8609 		spin_unlock(&block_group->lock);
8610 	}
8611 
8612 	return free_bytes;
8613 }
8614 
8615 /*
8616  * helper to account the unused space of all the readonly block group in the
8617  * space_info. takes mirrors into account.
8618  */
8619 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8620 {
8621 	int i;
8622 	u64 free_bytes = 0;
8623 
8624 	spin_lock(&sinfo->lock);
8625 
8626 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
8627 		if (!list_empty(&sinfo->block_groups[i]))
8628 			free_bytes += __btrfs_get_ro_block_group_free_space(
8629 						&sinfo->block_groups[i]);
8630 
8631 	spin_unlock(&sinfo->lock);
8632 
8633 	return free_bytes;
8634 }
8635 
8636 void btrfs_set_block_group_rw(struct btrfs_root *root,
8637 			      struct btrfs_block_group_cache *cache)
8638 {
8639 	struct btrfs_space_info *sinfo = cache->space_info;
8640 	u64 num_bytes;
8641 
8642 	BUG_ON(!cache->ro);
8643 
8644 	spin_lock(&sinfo->lock);
8645 	spin_lock(&cache->lock);
8646 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8647 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8648 	sinfo->bytes_readonly -= num_bytes;
8649 	cache->ro = 0;
8650 	spin_unlock(&cache->lock);
8651 	spin_unlock(&sinfo->lock);
8652 }
8653 
8654 /*
8655  * checks to see if its even possible to relocate this block group.
8656  *
8657  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8658  * ok to go ahead and try.
8659  */
8660 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8661 {
8662 	struct btrfs_block_group_cache *block_group;
8663 	struct btrfs_space_info *space_info;
8664 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8665 	struct btrfs_device *device;
8666 	struct btrfs_trans_handle *trans;
8667 	u64 min_free;
8668 	u64 dev_min = 1;
8669 	u64 dev_nr = 0;
8670 	u64 target;
8671 	int index;
8672 	int full = 0;
8673 	int ret = 0;
8674 
8675 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8676 
8677 	/* odd, couldn't find the block group, leave it alone */
8678 	if (!block_group)
8679 		return -1;
8680 
8681 	min_free = btrfs_block_group_used(&block_group->item);
8682 
8683 	/* no bytes used, we're good */
8684 	if (!min_free)
8685 		goto out;
8686 
8687 	space_info = block_group->space_info;
8688 	spin_lock(&space_info->lock);
8689 
8690 	full = space_info->full;
8691 
8692 	/*
8693 	 * if this is the last block group we have in this space, we can't
8694 	 * relocate it unless we're able to allocate a new chunk below.
8695 	 *
8696 	 * Otherwise, we need to make sure we have room in the space to handle
8697 	 * all of the extents from this block group.  If we can, we're good
8698 	 */
8699 	if ((space_info->total_bytes != block_group->key.offset) &&
8700 	    (space_info->bytes_used + space_info->bytes_reserved +
8701 	     space_info->bytes_pinned + space_info->bytes_readonly +
8702 	     min_free < space_info->total_bytes)) {
8703 		spin_unlock(&space_info->lock);
8704 		goto out;
8705 	}
8706 	spin_unlock(&space_info->lock);
8707 
8708 	/*
8709 	 * ok we don't have enough space, but maybe we have free space on our
8710 	 * devices to allocate new chunks for relocation, so loop through our
8711 	 * alloc devices and guess if we have enough space.  if this block
8712 	 * group is going to be restriped, run checks against the target
8713 	 * profile instead of the current one.
8714 	 */
8715 	ret = -1;
8716 
8717 	/*
8718 	 * index:
8719 	 *      0: raid10
8720 	 *      1: raid1
8721 	 *      2: dup
8722 	 *      3: raid0
8723 	 *      4: single
8724 	 */
8725 	target = get_restripe_target(root->fs_info, block_group->flags);
8726 	if (target) {
8727 		index = __get_raid_index(extended_to_chunk(target));
8728 	} else {
8729 		/*
8730 		 * this is just a balance, so if we were marked as full
8731 		 * we know there is no space for a new chunk
8732 		 */
8733 		if (full)
8734 			goto out;
8735 
8736 		index = get_block_group_index(block_group);
8737 	}
8738 
8739 	if (index == BTRFS_RAID_RAID10) {
8740 		dev_min = 4;
8741 		/* Divide by 2 */
8742 		min_free >>= 1;
8743 	} else if (index == BTRFS_RAID_RAID1) {
8744 		dev_min = 2;
8745 	} else if (index == BTRFS_RAID_DUP) {
8746 		/* Multiply by 2 */
8747 		min_free <<= 1;
8748 	} else if (index == BTRFS_RAID_RAID0) {
8749 		dev_min = fs_devices->rw_devices;
8750 		do_div(min_free, dev_min);
8751 	}
8752 
8753 	/* We need to do this so that we can look at pending chunks */
8754 	trans = btrfs_join_transaction(root);
8755 	if (IS_ERR(trans)) {
8756 		ret = PTR_ERR(trans);
8757 		goto out;
8758 	}
8759 
8760 	mutex_lock(&root->fs_info->chunk_mutex);
8761 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8762 		u64 dev_offset;
8763 
8764 		/*
8765 		 * check to make sure we can actually find a chunk with enough
8766 		 * space to fit our block group in.
8767 		 */
8768 		if (device->total_bytes > device->bytes_used + min_free &&
8769 		    !device->is_tgtdev_for_dev_replace) {
8770 			ret = find_free_dev_extent(trans, device, min_free,
8771 						   &dev_offset, NULL);
8772 			if (!ret)
8773 				dev_nr++;
8774 
8775 			if (dev_nr >= dev_min)
8776 				break;
8777 
8778 			ret = -1;
8779 		}
8780 	}
8781 	mutex_unlock(&root->fs_info->chunk_mutex);
8782 	btrfs_end_transaction(trans, root);
8783 out:
8784 	btrfs_put_block_group(block_group);
8785 	return ret;
8786 }
8787 
8788 static int find_first_block_group(struct btrfs_root *root,
8789 		struct btrfs_path *path, struct btrfs_key *key)
8790 {
8791 	int ret = 0;
8792 	struct btrfs_key found_key;
8793 	struct extent_buffer *leaf;
8794 	int slot;
8795 
8796 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8797 	if (ret < 0)
8798 		goto out;
8799 
8800 	while (1) {
8801 		slot = path->slots[0];
8802 		leaf = path->nodes[0];
8803 		if (slot >= btrfs_header_nritems(leaf)) {
8804 			ret = btrfs_next_leaf(root, path);
8805 			if (ret == 0)
8806 				continue;
8807 			if (ret < 0)
8808 				goto out;
8809 			break;
8810 		}
8811 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
8812 
8813 		if (found_key.objectid >= key->objectid &&
8814 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8815 			ret = 0;
8816 			goto out;
8817 		}
8818 		path->slots[0]++;
8819 	}
8820 out:
8821 	return ret;
8822 }
8823 
8824 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8825 {
8826 	struct btrfs_block_group_cache *block_group;
8827 	u64 last = 0;
8828 
8829 	while (1) {
8830 		struct inode *inode;
8831 
8832 		block_group = btrfs_lookup_first_block_group(info, last);
8833 		while (block_group) {
8834 			spin_lock(&block_group->lock);
8835 			if (block_group->iref)
8836 				break;
8837 			spin_unlock(&block_group->lock);
8838 			block_group = next_block_group(info->tree_root,
8839 						       block_group);
8840 		}
8841 		if (!block_group) {
8842 			if (last == 0)
8843 				break;
8844 			last = 0;
8845 			continue;
8846 		}
8847 
8848 		inode = block_group->inode;
8849 		block_group->iref = 0;
8850 		block_group->inode = NULL;
8851 		spin_unlock(&block_group->lock);
8852 		iput(inode);
8853 		last = block_group->key.objectid + block_group->key.offset;
8854 		btrfs_put_block_group(block_group);
8855 	}
8856 }
8857 
8858 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8859 {
8860 	struct btrfs_block_group_cache *block_group;
8861 	struct btrfs_space_info *space_info;
8862 	struct btrfs_caching_control *caching_ctl;
8863 	struct rb_node *n;
8864 
8865 	down_write(&info->commit_root_sem);
8866 	while (!list_empty(&info->caching_block_groups)) {
8867 		caching_ctl = list_entry(info->caching_block_groups.next,
8868 					 struct btrfs_caching_control, list);
8869 		list_del(&caching_ctl->list);
8870 		put_caching_control(caching_ctl);
8871 	}
8872 	up_write(&info->commit_root_sem);
8873 
8874 	spin_lock(&info->unused_bgs_lock);
8875 	while (!list_empty(&info->unused_bgs)) {
8876 		block_group = list_first_entry(&info->unused_bgs,
8877 					       struct btrfs_block_group_cache,
8878 					       bg_list);
8879 		list_del_init(&block_group->bg_list);
8880 		btrfs_put_block_group(block_group);
8881 	}
8882 	spin_unlock(&info->unused_bgs_lock);
8883 
8884 	spin_lock(&info->block_group_cache_lock);
8885 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8886 		block_group = rb_entry(n, struct btrfs_block_group_cache,
8887 				       cache_node);
8888 		rb_erase(&block_group->cache_node,
8889 			 &info->block_group_cache_tree);
8890 		spin_unlock(&info->block_group_cache_lock);
8891 
8892 		down_write(&block_group->space_info->groups_sem);
8893 		list_del(&block_group->list);
8894 		up_write(&block_group->space_info->groups_sem);
8895 
8896 		if (block_group->cached == BTRFS_CACHE_STARTED)
8897 			wait_block_group_cache_done(block_group);
8898 
8899 		/*
8900 		 * We haven't cached this block group, which means we could
8901 		 * possibly have excluded extents on this block group.
8902 		 */
8903 		if (block_group->cached == BTRFS_CACHE_NO ||
8904 		    block_group->cached == BTRFS_CACHE_ERROR)
8905 			free_excluded_extents(info->extent_root, block_group);
8906 
8907 		btrfs_remove_free_space_cache(block_group);
8908 		btrfs_put_block_group(block_group);
8909 
8910 		spin_lock(&info->block_group_cache_lock);
8911 	}
8912 	spin_unlock(&info->block_group_cache_lock);
8913 
8914 	/* now that all the block groups are freed, go through and
8915 	 * free all the space_info structs.  This is only called during
8916 	 * the final stages of unmount, and so we know nobody is
8917 	 * using them.  We call synchronize_rcu() once before we start,
8918 	 * just to be on the safe side.
8919 	 */
8920 	synchronize_rcu();
8921 
8922 	release_global_block_rsv(info);
8923 
8924 	while (!list_empty(&info->space_info)) {
8925 		int i;
8926 
8927 		space_info = list_entry(info->space_info.next,
8928 					struct btrfs_space_info,
8929 					list);
8930 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8931 			if (WARN_ON(space_info->bytes_pinned > 0 ||
8932 			    space_info->bytes_reserved > 0 ||
8933 			    space_info->bytes_may_use > 0)) {
8934 				dump_space_info(space_info, 0, 0);
8935 			}
8936 		}
8937 		list_del(&space_info->list);
8938 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
8939 			struct kobject *kobj;
8940 			kobj = space_info->block_group_kobjs[i];
8941 			space_info->block_group_kobjs[i] = NULL;
8942 			if (kobj) {
8943 				kobject_del(kobj);
8944 				kobject_put(kobj);
8945 			}
8946 		}
8947 		kobject_del(&space_info->kobj);
8948 		kobject_put(&space_info->kobj);
8949 	}
8950 	return 0;
8951 }
8952 
8953 static void __link_block_group(struct btrfs_space_info *space_info,
8954 			       struct btrfs_block_group_cache *cache)
8955 {
8956 	int index = get_block_group_index(cache);
8957 	bool first = false;
8958 
8959 	down_write(&space_info->groups_sem);
8960 	if (list_empty(&space_info->block_groups[index]))
8961 		first = true;
8962 	list_add_tail(&cache->list, &space_info->block_groups[index]);
8963 	up_write(&space_info->groups_sem);
8964 
8965 	if (first) {
8966 		struct raid_kobject *rkobj;
8967 		int ret;
8968 
8969 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
8970 		if (!rkobj)
8971 			goto out_err;
8972 		rkobj->raid_type = index;
8973 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
8974 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
8975 				  "%s", get_raid_name(index));
8976 		if (ret) {
8977 			kobject_put(&rkobj->kobj);
8978 			goto out_err;
8979 		}
8980 		space_info->block_group_kobjs[index] = &rkobj->kobj;
8981 	}
8982 
8983 	return;
8984 out_err:
8985 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8986 }
8987 
8988 static struct btrfs_block_group_cache *
8989 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
8990 {
8991 	struct btrfs_block_group_cache *cache;
8992 
8993 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
8994 	if (!cache)
8995 		return NULL;
8996 
8997 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8998 					GFP_NOFS);
8999 	if (!cache->free_space_ctl) {
9000 		kfree(cache);
9001 		return NULL;
9002 	}
9003 
9004 	cache->key.objectid = start;
9005 	cache->key.offset = size;
9006 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9007 
9008 	cache->sectorsize = root->sectorsize;
9009 	cache->fs_info = root->fs_info;
9010 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9011 					       &root->fs_info->mapping_tree,
9012 					       start);
9013 	atomic_set(&cache->count, 1);
9014 	spin_lock_init(&cache->lock);
9015 	init_rwsem(&cache->data_rwsem);
9016 	INIT_LIST_HEAD(&cache->list);
9017 	INIT_LIST_HEAD(&cache->cluster_list);
9018 	INIT_LIST_HEAD(&cache->bg_list);
9019 	btrfs_init_free_space_ctl(cache);
9020 
9021 	return cache;
9022 }
9023 
9024 int btrfs_read_block_groups(struct btrfs_root *root)
9025 {
9026 	struct btrfs_path *path;
9027 	int ret;
9028 	struct btrfs_block_group_cache *cache;
9029 	struct btrfs_fs_info *info = root->fs_info;
9030 	struct btrfs_space_info *space_info;
9031 	struct btrfs_key key;
9032 	struct btrfs_key found_key;
9033 	struct extent_buffer *leaf;
9034 	int need_clear = 0;
9035 	u64 cache_gen;
9036 
9037 	root = info->extent_root;
9038 	key.objectid = 0;
9039 	key.offset = 0;
9040 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9041 	path = btrfs_alloc_path();
9042 	if (!path)
9043 		return -ENOMEM;
9044 	path->reada = 1;
9045 
9046 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9047 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9048 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9049 		need_clear = 1;
9050 	if (btrfs_test_opt(root, CLEAR_CACHE))
9051 		need_clear = 1;
9052 
9053 	while (1) {
9054 		ret = find_first_block_group(root, path, &key);
9055 		if (ret > 0)
9056 			break;
9057 		if (ret != 0)
9058 			goto error;
9059 
9060 		leaf = path->nodes[0];
9061 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9062 
9063 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9064 						       found_key.offset);
9065 		if (!cache) {
9066 			ret = -ENOMEM;
9067 			goto error;
9068 		}
9069 
9070 		if (need_clear) {
9071 			/*
9072 			 * When we mount with old space cache, we need to
9073 			 * set BTRFS_DC_CLEAR and set dirty flag.
9074 			 *
9075 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9076 			 *    truncate the old free space cache inode and
9077 			 *    setup a new one.
9078 			 * b) Setting 'dirty flag' makes sure that we flush
9079 			 *    the new space cache info onto disk.
9080 			 */
9081 			cache->disk_cache_state = BTRFS_DC_CLEAR;
9082 			if (btrfs_test_opt(root, SPACE_CACHE))
9083 				cache->dirty = 1;
9084 		}
9085 
9086 		read_extent_buffer(leaf, &cache->item,
9087 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9088 				   sizeof(cache->item));
9089 		cache->flags = btrfs_block_group_flags(&cache->item);
9090 
9091 		key.objectid = found_key.objectid + found_key.offset;
9092 		btrfs_release_path(path);
9093 
9094 		/*
9095 		 * We need to exclude the super stripes now so that the space
9096 		 * info has super bytes accounted for, otherwise we'll think
9097 		 * we have more space than we actually do.
9098 		 */
9099 		ret = exclude_super_stripes(root, cache);
9100 		if (ret) {
9101 			/*
9102 			 * We may have excluded something, so call this just in
9103 			 * case.
9104 			 */
9105 			free_excluded_extents(root, cache);
9106 			btrfs_put_block_group(cache);
9107 			goto error;
9108 		}
9109 
9110 		/*
9111 		 * check for two cases, either we are full, and therefore
9112 		 * don't need to bother with the caching work since we won't
9113 		 * find any space, or we are empty, and we can just add all
9114 		 * the space in and be done with it.  This saves us _alot_ of
9115 		 * time, particularly in the full case.
9116 		 */
9117 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9118 			cache->last_byte_to_unpin = (u64)-1;
9119 			cache->cached = BTRFS_CACHE_FINISHED;
9120 			free_excluded_extents(root, cache);
9121 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9122 			cache->last_byte_to_unpin = (u64)-1;
9123 			cache->cached = BTRFS_CACHE_FINISHED;
9124 			add_new_free_space(cache, root->fs_info,
9125 					   found_key.objectid,
9126 					   found_key.objectid +
9127 					   found_key.offset);
9128 			free_excluded_extents(root, cache);
9129 		}
9130 
9131 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9132 		if (ret) {
9133 			btrfs_remove_free_space_cache(cache);
9134 			btrfs_put_block_group(cache);
9135 			goto error;
9136 		}
9137 
9138 		ret = update_space_info(info, cache->flags, found_key.offset,
9139 					btrfs_block_group_used(&cache->item),
9140 					&space_info);
9141 		if (ret) {
9142 			btrfs_remove_free_space_cache(cache);
9143 			spin_lock(&info->block_group_cache_lock);
9144 			rb_erase(&cache->cache_node,
9145 				 &info->block_group_cache_tree);
9146 			spin_unlock(&info->block_group_cache_lock);
9147 			btrfs_put_block_group(cache);
9148 			goto error;
9149 		}
9150 
9151 		cache->space_info = space_info;
9152 		spin_lock(&cache->space_info->lock);
9153 		cache->space_info->bytes_readonly += cache->bytes_super;
9154 		spin_unlock(&cache->space_info->lock);
9155 
9156 		__link_block_group(space_info, cache);
9157 
9158 		set_avail_alloc_bits(root->fs_info, cache->flags);
9159 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9160 			set_block_group_ro(cache, 1);
9161 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9162 			spin_lock(&info->unused_bgs_lock);
9163 			/* Should always be true but just in case. */
9164 			if (list_empty(&cache->bg_list)) {
9165 				btrfs_get_block_group(cache);
9166 				list_add_tail(&cache->bg_list,
9167 					      &info->unused_bgs);
9168 			}
9169 			spin_unlock(&info->unused_bgs_lock);
9170 		}
9171 	}
9172 
9173 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9174 		if (!(get_alloc_profile(root, space_info->flags) &
9175 		      (BTRFS_BLOCK_GROUP_RAID10 |
9176 		       BTRFS_BLOCK_GROUP_RAID1 |
9177 		       BTRFS_BLOCK_GROUP_RAID5 |
9178 		       BTRFS_BLOCK_GROUP_RAID6 |
9179 		       BTRFS_BLOCK_GROUP_DUP)))
9180 			continue;
9181 		/*
9182 		 * avoid allocating from un-mirrored block group if there are
9183 		 * mirrored block groups.
9184 		 */
9185 		list_for_each_entry(cache,
9186 				&space_info->block_groups[BTRFS_RAID_RAID0],
9187 				list)
9188 			set_block_group_ro(cache, 1);
9189 		list_for_each_entry(cache,
9190 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9191 				list)
9192 			set_block_group_ro(cache, 1);
9193 	}
9194 
9195 	init_global_block_rsv(info);
9196 	ret = 0;
9197 error:
9198 	btrfs_free_path(path);
9199 	return ret;
9200 }
9201 
9202 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9203 				       struct btrfs_root *root)
9204 {
9205 	struct btrfs_block_group_cache *block_group, *tmp;
9206 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9207 	struct btrfs_block_group_item item;
9208 	struct btrfs_key key;
9209 	int ret = 0;
9210 
9211 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9212 		list_del_init(&block_group->bg_list);
9213 		if (ret)
9214 			continue;
9215 
9216 		spin_lock(&block_group->lock);
9217 		memcpy(&item, &block_group->item, sizeof(item));
9218 		memcpy(&key, &block_group->key, sizeof(key));
9219 		spin_unlock(&block_group->lock);
9220 
9221 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9222 					sizeof(item));
9223 		if (ret)
9224 			btrfs_abort_transaction(trans, extent_root, ret);
9225 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9226 					       key.objectid, key.offset);
9227 		if (ret)
9228 			btrfs_abort_transaction(trans, extent_root, ret);
9229 	}
9230 }
9231 
9232 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9233 			   struct btrfs_root *root, u64 bytes_used,
9234 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9235 			   u64 size)
9236 {
9237 	int ret;
9238 	struct btrfs_root *extent_root;
9239 	struct btrfs_block_group_cache *cache;
9240 
9241 	extent_root = root->fs_info->extent_root;
9242 
9243 	btrfs_set_log_full_commit(root->fs_info, trans);
9244 
9245 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9246 	if (!cache)
9247 		return -ENOMEM;
9248 
9249 	btrfs_set_block_group_used(&cache->item, bytes_used);
9250 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9251 	btrfs_set_block_group_flags(&cache->item, type);
9252 
9253 	cache->flags = type;
9254 	cache->last_byte_to_unpin = (u64)-1;
9255 	cache->cached = BTRFS_CACHE_FINISHED;
9256 	ret = exclude_super_stripes(root, cache);
9257 	if (ret) {
9258 		/*
9259 		 * We may have excluded something, so call this just in
9260 		 * case.
9261 		 */
9262 		free_excluded_extents(root, cache);
9263 		btrfs_put_block_group(cache);
9264 		return ret;
9265 	}
9266 
9267 	add_new_free_space(cache, root->fs_info, chunk_offset,
9268 			   chunk_offset + size);
9269 
9270 	free_excluded_extents(root, cache);
9271 
9272 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9273 	if (ret) {
9274 		btrfs_remove_free_space_cache(cache);
9275 		btrfs_put_block_group(cache);
9276 		return ret;
9277 	}
9278 
9279 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9280 				&cache->space_info);
9281 	if (ret) {
9282 		btrfs_remove_free_space_cache(cache);
9283 		spin_lock(&root->fs_info->block_group_cache_lock);
9284 		rb_erase(&cache->cache_node,
9285 			 &root->fs_info->block_group_cache_tree);
9286 		spin_unlock(&root->fs_info->block_group_cache_lock);
9287 		btrfs_put_block_group(cache);
9288 		return ret;
9289 	}
9290 	update_global_block_rsv(root->fs_info);
9291 
9292 	spin_lock(&cache->space_info->lock);
9293 	cache->space_info->bytes_readonly += cache->bytes_super;
9294 	spin_unlock(&cache->space_info->lock);
9295 
9296 	__link_block_group(cache->space_info, cache);
9297 
9298 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9299 
9300 	set_avail_alloc_bits(extent_root->fs_info, type);
9301 
9302 	return 0;
9303 }
9304 
9305 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9306 {
9307 	u64 extra_flags = chunk_to_extended(flags) &
9308 				BTRFS_EXTENDED_PROFILE_MASK;
9309 
9310 	write_seqlock(&fs_info->profiles_lock);
9311 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9312 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9313 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9314 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9315 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9316 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9317 	write_sequnlock(&fs_info->profiles_lock);
9318 }
9319 
9320 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9321 			     struct btrfs_root *root, u64 group_start)
9322 {
9323 	struct btrfs_path *path;
9324 	struct btrfs_block_group_cache *block_group;
9325 	struct btrfs_free_cluster *cluster;
9326 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9327 	struct btrfs_key key;
9328 	struct inode *inode;
9329 	struct kobject *kobj = NULL;
9330 	int ret;
9331 	int index;
9332 	int factor;
9333 
9334 	root = root->fs_info->extent_root;
9335 
9336 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9337 	BUG_ON(!block_group);
9338 	BUG_ON(!block_group->ro);
9339 
9340 	/*
9341 	 * Free the reserved super bytes from this block group before
9342 	 * remove it.
9343 	 */
9344 	free_excluded_extents(root, block_group);
9345 
9346 	memcpy(&key, &block_group->key, sizeof(key));
9347 	index = get_block_group_index(block_group);
9348 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9349 				  BTRFS_BLOCK_GROUP_RAID1 |
9350 				  BTRFS_BLOCK_GROUP_RAID10))
9351 		factor = 2;
9352 	else
9353 		factor = 1;
9354 
9355 	/* make sure this block group isn't part of an allocation cluster */
9356 	cluster = &root->fs_info->data_alloc_cluster;
9357 	spin_lock(&cluster->refill_lock);
9358 	btrfs_return_cluster_to_free_space(block_group, cluster);
9359 	spin_unlock(&cluster->refill_lock);
9360 
9361 	/*
9362 	 * make sure this block group isn't part of a metadata
9363 	 * allocation cluster
9364 	 */
9365 	cluster = &root->fs_info->meta_alloc_cluster;
9366 	spin_lock(&cluster->refill_lock);
9367 	btrfs_return_cluster_to_free_space(block_group, cluster);
9368 	spin_unlock(&cluster->refill_lock);
9369 
9370 	path = btrfs_alloc_path();
9371 	if (!path) {
9372 		ret = -ENOMEM;
9373 		goto out;
9374 	}
9375 
9376 	inode = lookup_free_space_inode(tree_root, block_group, path);
9377 	if (!IS_ERR(inode)) {
9378 		ret = btrfs_orphan_add(trans, inode);
9379 		if (ret) {
9380 			btrfs_add_delayed_iput(inode);
9381 			goto out;
9382 		}
9383 		clear_nlink(inode);
9384 		/* One for the block groups ref */
9385 		spin_lock(&block_group->lock);
9386 		if (block_group->iref) {
9387 			block_group->iref = 0;
9388 			block_group->inode = NULL;
9389 			spin_unlock(&block_group->lock);
9390 			iput(inode);
9391 		} else {
9392 			spin_unlock(&block_group->lock);
9393 		}
9394 		/* One for our lookup ref */
9395 		btrfs_add_delayed_iput(inode);
9396 	}
9397 
9398 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9399 	key.offset = block_group->key.objectid;
9400 	key.type = 0;
9401 
9402 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9403 	if (ret < 0)
9404 		goto out;
9405 	if (ret > 0)
9406 		btrfs_release_path(path);
9407 	if (ret == 0) {
9408 		ret = btrfs_del_item(trans, tree_root, path);
9409 		if (ret)
9410 			goto out;
9411 		btrfs_release_path(path);
9412 	}
9413 
9414 	spin_lock(&root->fs_info->block_group_cache_lock);
9415 	rb_erase(&block_group->cache_node,
9416 		 &root->fs_info->block_group_cache_tree);
9417 
9418 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9419 		root->fs_info->first_logical_byte = (u64)-1;
9420 	spin_unlock(&root->fs_info->block_group_cache_lock);
9421 
9422 	down_write(&block_group->space_info->groups_sem);
9423 	/*
9424 	 * we must use list_del_init so people can check to see if they
9425 	 * are still on the list after taking the semaphore
9426 	 */
9427 	list_del_init(&block_group->list);
9428 	if (list_empty(&block_group->space_info->block_groups[index])) {
9429 		kobj = block_group->space_info->block_group_kobjs[index];
9430 		block_group->space_info->block_group_kobjs[index] = NULL;
9431 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9432 	}
9433 	up_write(&block_group->space_info->groups_sem);
9434 	if (kobj) {
9435 		kobject_del(kobj);
9436 		kobject_put(kobj);
9437 	}
9438 
9439 	if (block_group->cached == BTRFS_CACHE_STARTED)
9440 		wait_block_group_cache_done(block_group);
9441 
9442 	btrfs_remove_free_space_cache(block_group);
9443 
9444 	spin_lock(&block_group->space_info->lock);
9445 	block_group->space_info->total_bytes -= block_group->key.offset;
9446 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9447 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9448 	spin_unlock(&block_group->space_info->lock);
9449 
9450 	memcpy(&key, &block_group->key, sizeof(key));
9451 
9452 	btrfs_put_block_group(block_group);
9453 	btrfs_put_block_group(block_group);
9454 
9455 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9456 	if (ret > 0)
9457 		ret = -EIO;
9458 	if (ret < 0)
9459 		goto out;
9460 
9461 	ret = btrfs_del_item(trans, root, path);
9462 out:
9463 	btrfs_free_path(path);
9464 	return ret;
9465 }
9466 
9467 /*
9468  * Process the unused_bgs list and remove any that don't have any allocated
9469  * space inside of them.
9470  */
9471 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9472 {
9473 	struct btrfs_block_group_cache *block_group;
9474 	struct btrfs_space_info *space_info;
9475 	struct btrfs_root *root = fs_info->extent_root;
9476 	struct btrfs_trans_handle *trans;
9477 	int ret = 0;
9478 
9479 	if (!fs_info->open)
9480 		return;
9481 
9482 	spin_lock(&fs_info->unused_bgs_lock);
9483 	while (!list_empty(&fs_info->unused_bgs)) {
9484 		u64 start, end;
9485 
9486 		block_group = list_first_entry(&fs_info->unused_bgs,
9487 					       struct btrfs_block_group_cache,
9488 					       bg_list);
9489 		space_info = block_group->space_info;
9490 		list_del_init(&block_group->bg_list);
9491 		if (ret || btrfs_mixed_space_info(space_info)) {
9492 			btrfs_put_block_group(block_group);
9493 			continue;
9494 		}
9495 		spin_unlock(&fs_info->unused_bgs_lock);
9496 
9497 		/* Don't want to race with allocators so take the groups_sem */
9498 		down_write(&space_info->groups_sem);
9499 		spin_lock(&block_group->lock);
9500 		if (block_group->reserved ||
9501 		    btrfs_block_group_used(&block_group->item) ||
9502 		    block_group->ro) {
9503 			/*
9504 			 * We want to bail if we made new allocations or have
9505 			 * outstanding allocations in this block group.  We do
9506 			 * the ro check in case balance is currently acting on
9507 			 * this block group.
9508 			 */
9509 			spin_unlock(&block_group->lock);
9510 			up_write(&space_info->groups_sem);
9511 			goto next;
9512 		}
9513 		spin_unlock(&block_group->lock);
9514 
9515 		/* We don't want to force the issue, only flip if it's ok. */
9516 		ret = set_block_group_ro(block_group, 0);
9517 		up_write(&space_info->groups_sem);
9518 		if (ret < 0) {
9519 			ret = 0;
9520 			goto next;
9521 		}
9522 
9523 		/*
9524 		 * Want to do this before we do anything else so we can recover
9525 		 * properly if we fail to join the transaction.
9526 		 */
9527 		trans = btrfs_join_transaction(root);
9528 		if (IS_ERR(trans)) {
9529 			btrfs_set_block_group_rw(root, block_group);
9530 			ret = PTR_ERR(trans);
9531 			goto next;
9532 		}
9533 
9534 		/*
9535 		 * We could have pending pinned extents for this block group,
9536 		 * just delete them, we don't care about them anymore.
9537 		 */
9538 		start = block_group->key.objectid;
9539 		end = start + block_group->key.offset - 1;
9540 		clear_extent_bits(&fs_info->freed_extents[0], start, end,
9541 				  EXTENT_DIRTY, GFP_NOFS);
9542 		clear_extent_bits(&fs_info->freed_extents[1], start, end,
9543 				  EXTENT_DIRTY, GFP_NOFS);
9544 
9545 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9546 		block_group->pinned = 0;
9547 
9548 		/*
9549 		 * Btrfs_remove_chunk will abort the transaction if things go
9550 		 * horribly wrong.
9551 		 */
9552 		ret = btrfs_remove_chunk(trans, root,
9553 					 block_group->key.objectid);
9554 		btrfs_end_transaction(trans, root);
9555 next:
9556 		btrfs_put_block_group(block_group);
9557 		spin_lock(&fs_info->unused_bgs_lock);
9558 	}
9559 	spin_unlock(&fs_info->unused_bgs_lock);
9560 }
9561 
9562 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9563 {
9564 	struct btrfs_space_info *space_info;
9565 	struct btrfs_super_block *disk_super;
9566 	u64 features;
9567 	u64 flags;
9568 	int mixed = 0;
9569 	int ret;
9570 
9571 	disk_super = fs_info->super_copy;
9572 	if (!btrfs_super_root(disk_super))
9573 		return 1;
9574 
9575 	features = btrfs_super_incompat_flags(disk_super);
9576 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9577 		mixed = 1;
9578 
9579 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
9580 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9581 	if (ret)
9582 		goto out;
9583 
9584 	if (mixed) {
9585 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9586 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9587 	} else {
9588 		flags = BTRFS_BLOCK_GROUP_METADATA;
9589 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9590 		if (ret)
9591 			goto out;
9592 
9593 		flags = BTRFS_BLOCK_GROUP_DATA;
9594 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9595 	}
9596 out:
9597 	return ret;
9598 }
9599 
9600 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
9601 {
9602 	return unpin_extent_range(root, start, end);
9603 }
9604 
9605 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
9606 			       u64 num_bytes, u64 *actual_bytes)
9607 {
9608 	return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
9609 }
9610 
9611 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
9612 {
9613 	struct btrfs_fs_info *fs_info = root->fs_info;
9614 	struct btrfs_block_group_cache *cache = NULL;
9615 	u64 group_trimmed;
9616 	u64 start;
9617 	u64 end;
9618 	u64 trimmed = 0;
9619 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
9620 	int ret = 0;
9621 
9622 	/*
9623 	 * try to trim all FS space, our block group may start from non-zero.
9624 	 */
9625 	if (range->len == total_bytes)
9626 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
9627 	else
9628 		cache = btrfs_lookup_block_group(fs_info, range->start);
9629 
9630 	while (cache) {
9631 		if (cache->key.objectid >= (range->start + range->len)) {
9632 			btrfs_put_block_group(cache);
9633 			break;
9634 		}
9635 
9636 		start = max(range->start, cache->key.objectid);
9637 		end = min(range->start + range->len,
9638 				cache->key.objectid + cache->key.offset);
9639 
9640 		if (end - start >= range->minlen) {
9641 			if (!block_group_cache_done(cache)) {
9642 				ret = cache_block_group(cache, 0);
9643 				if (ret) {
9644 					btrfs_put_block_group(cache);
9645 					break;
9646 				}
9647 				ret = wait_block_group_cache_done(cache);
9648 				if (ret) {
9649 					btrfs_put_block_group(cache);
9650 					break;
9651 				}
9652 			}
9653 			ret = btrfs_trim_block_group(cache,
9654 						     &group_trimmed,
9655 						     start,
9656 						     end,
9657 						     range->minlen);
9658 
9659 			trimmed += group_trimmed;
9660 			if (ret) {
9661 				btrfs_put_block_group(cache);
9662 				break;
9663 			}
9664 		}
9665 
9666 		cache = next_block_group(fs_info->tree_root, cache);
9667 	}
9668 
9669 	range->len = trimmed;
9670 	return ret;
9671 }
9672 
9673 /*
9674  * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9675  * they are used to prevent the some tasks writing data into the page cache
9676  * by nocow before the subvolume is snapshoted, but flush the data into
9677  * the disk after the snapshot creation.
9678  */
9679 void btrfs_end_nocow_write(struct btrfs_root *root)
9680 {
9681 	percpu_counter_dec(&root->subv_writers->counter);
9682 	/*
9683 	 * Make sure counter is updated before we wake up
9684 	 * waiters.
9685 	 */
9686 	smp_mb();
9687 	if (waitqueue_active(&root->subv_writers->wait))
9688 		wake_up(&root->subv_writers->wait);
9689 }
9690 
9691 int btrfs_start_nocow_write(struct btrfs_root *root)
9692 {
9693 	if (atomic_read(&root->will_be_snapshoted))
9694 		return 0;
9695 
9696 	percpu_counter_inc(&root->subv_writers->counter);
9697 	/*
9698 	 * Make sure counter is updated before we check for snapshot creation.
9699 	 */
9700 	smp_mb();
9701 	if (atomic_read(&root->will_be_snapshoted)) {
9702 		btrfs_end_nocow_write(root);
9703 		return 0;
9704 	}
9705 	return 1;
9706 }
9707