1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/pagemap.h> 20 #include <linux/writeback.h> 21 #include <linux/blkdev.h> 22 #include <linux/sort.h> 23 #include <linux/rcupdate.h> 24 #include <linux/kthread.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/percpu_counter.h> 28 #include "hash.h" 29 #include "tree-log.h" 30 #include "disk-io.h" 31 #include "print-tree.h" 32 #include "volumes.h" 33 #include "raid56.h" 34 #include "locking.h" 35 #include "free-space-cache.h" 36 #include "math.h" 37 #include "sysfs.h" 38 #include "qgroup.h" 39 40 #undef SCRAMBLE_DELAYED_REFS 41 42 /* 43 * control flags for do_chunk_alloc's force field 44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk 45 * if we really need one. 46 * 47 * CHUNK_ALLOC_LIMITED means to only try and allocate one 48 * if we have very few chunks already allocated. This is 49 * used as part of the clustering code to help make sure 50 * we have a good pool of storage to cluster in, without 51 * filling the FS with empty chunks 52 * 53 * CHUNK_ALLOC_FORCE means it must try to allocate one 54 * 55 */ 56 enum { 57 CHUNK_ALLOC_NO_FORCE = 0, 58 CHUNK_ALLOC_LIMITED = 1, 59 CHUNK_ALLOC_FORCE = 2, 60 }; 61 62 /* 63 * Control how reservations are dealt with. 64 * 65 * RESERVE_FREE - freeing a reservation. 66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for 67 * ENOSPC accounting 68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update 69 * bytes_may_use as the ENOSPC accounting is done elsewhere 70 */ 71 enum { 72 RESERVE_FREE = 0, 73 RESERVE_ALLOC = 1, 74 RESERVE_ALLOC_NO_ACCOUNT = 2, 75 }; 76 77 static int update_block_group(struct btrfs_trans_handle *trans, 78 struct btrfs_root *root, u64 bytenr, 79 u64 num_bytes, int alloc); 80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 81 struct btrfs_root *root, 82 struct btrfs_delayed_ref_node *node, u64 parent, 83 u64 root_objectid, u64 owner_objectid, 84 u64 owner_offset, int refs_to_drop, 85 struct btrfs_delayed_extent_op *extra_op); 86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 87 struct extent_buffer *leaf, 88 struct btrfs_extent_item *ei); 89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 90 struct btrfs_root *root, 91 u64 parent, u64 root_objectid, 92 u64 flags, u64 owner, u64 offset, 93 struct btrfs_key *ins, int ref_mod); 94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 95 struct btrfs_root *root, 96 u64 parent, u64 root_objectid, 97 u64 flags, struct btrfs_disk_key *key, 98 int level, struct btrfs_key *ins, 99 int no_quota); 100 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 101 struct btrfs_root *extent_root, u64 flags, 102 int force); 103 static int find_next_key(struct btrfs_path *path, int level, 104 struct btrfs_key *key); 105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 106 int dump_block_groups); 107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 108 u64 num_bytes, int reserve, 109 int delalloc); 110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 111 u64 num_bytes); 112 int btrfs_pin_extent(struct btrfs_root *root, 113 u64 bytenr, u64 num_bytes, int reserved); 114 115 static noinline int 116 block_group_cache_done(struct btrfs_block_group_cache *cache) 117 { 118 smp_mb(); 119 return cache->cached == BTRFS_CACHE_FINISHED || 120 cache->cached == BTRFS_CACHE_ERROR; 121 } 122 123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) 124 { 125 return (cache->flags & bits) == bits; 126 } 127 128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache) 129 { 130 atomic_inc(&cache->count); 131 } 132 133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache) 134 { 135 if (atomic_dec_and_test(&cache->count)) { 136 WARN_ON(cache->pinned > 0); 137 WARN_ON(cache->reserved > 0); 138 kfree(cache->free_space_ctl); 139 kfree(cache); 140 } 141 } 142 143 /* 144 * this adds the block group to the fs_info rb tree for the block group 145 * cache 146 */ 147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, 148 struct btrfs_block_group_cache *block_group) 149 { 150 struct rb_node **p; 151 struct rb_node *parent = NULL; 152 struct btrfs_block_group_cache *cache; 153 154 spin_lock(&info->block_group_cache_lock); 155 p = &info->block_group_cache_tree.rb_node; 156 157 while (*p) { 158 parent = *p; 159 cache = rb_entry(parent, struct btrfs_block_group_cache, 160 cache_node); 161 if (block_group->key.objectid < cache->key.objectid) { 162 p = &(*p)->rb_left; 163 } else if (block_group->key.objectid > cache->key.objectid) { 164 p = &(*p)->rb_right; 165 } else { 166 spin_unlock(&info->block_group_cache_lock); 167 return -EEXIST; 168 } 169 } 170 171 rb_link_node(&block_group->cache_node, parent, p); 172 rb_insert_color(&block_group->cache_node, 173 &info->block_group_cache_tree); 174 175 if (info->first_logical_byte > block_group->key.objectid) 176 info->first_logical_byte = block_group->key.objectid; 177 178 spin_unlock(&info->block_group_cache_lock); 179 180 return 0; 181 } 182 183 /* 184 * This will return the block group at or after bytenr if contains is 0, else 185 * it will return the block group that contains the bytenr 186 */ 187 static struct btrfs_block_group_cache * 188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, 189 int contains) 190 { 191 struct btrfs_block_group_cache *cache, *ret = NULL; 192 struct rb_node *n; 193 u64 end, start; 194 195 spin_lock(&info->block_group_cache_lock); 196 n = info->block_group_cache_tree.rb_node; 197 198 while (n) { 199 cache = rb_entry(n, struct btrfs_block_group_cache, 200 cache_node); 201 end = cache->key.objectid + cache->key.offset - 1; 202 start = cache->key.objectid; 203 204 if (bytenr < start) { 205 if (!contains && (!ret || start < ret->key.objectid)) 206 ret = cache; 207 n = n->rb_left; 208 } else if (bytenr > start) { 209 if (contains && bytenr <= end) { 210 ret = cache; 211 break; 212 } 213 n = n->rb_right; 214 } else { 215 ret = cache; 216 break; 217 } 218 } 219 if (ret) { 220 btrfs_get_block_group(ret); 221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) 222 info->first_logical_byte = ret->key.objectid; 223 } 224 spin_unlock(&info->block_group_cache_lock); 225 226 return ret; 227 } 228 229 static int add_excluded_extent(struct btrfs_root *root, 230 u64 start, u64 num_bytes) 231 { 232 u64 end = start + num_bytes - 1; 233 set_extent_bits(&root->fs_info->freed_extents[0], 234 start, end, EXTENT_UPTODATE, GFP_NOFS); 235 set_extent_bits(&root->fs_info->freed_extents[1], 236 start, end, EXTENT_UPTODATE, GFP_NOFS); 237 return 0; 238 } 239 240 static void free_excluded_extents(struct btrfs_root *root, 241 struct btrfs_block_group_cache *cache) 242 { 243 u64 start, end; 244 245 start = cache->key.objectid; 246 end = start + cache->key.offset - 1; 247 248 clear_extent_bits(&root->fs_info->freed_extents[0], 249 start, end, EXTENT_UPTODATE, GFP_NOFS); 250 clear_extent_bits(&root->fs_info->freed_extents[1], 251 start, end, EXTENT_UPTODATE, GFP_NOFS); 252 } 253 254 static int exclude_super_stripes(struct btrfs_root *root, 255 struct btrfs_block_group_cache *cache) 256 { 257 u64 bytenr; 258 u64 *logical; 259 int stripe_len; 260 int i, nr, ret; 261 262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { 263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; 264 cache->bytes_super += stripe_len; 265 ret = add_excluded_extent(root, cache->key.objectid, 266 stripe_len); 267 if (ret) 268 return ret; 269 } 270 271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 272 bytenr = btrfs_sb_offset(i); 273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree, 274 cache->key.objectid, bytenr, 275 0, &logical, &nr, &stripe_len); 276 if (ret) 277 return ret; 278 279 while (nr--) { 280 u64 start, len; 281 282 if (logical[nr] > cache->key.objectid + 283 cache->key.offset) 284 continue; 285 286 if (logical[nr] + stripe_len <= cache->key.objectid) 287 continue; 288 289 start = logical[nr]; 290 if (start < cache->key.objectid) { 291 start = cache->key.objectid; 292 len = (logical[nr] + stripe_len) - start; 293 } else { 294 len = min_t(u64, stripe_len, 295 cache->key.objectid + 296 cache->key.offset - start); 297 } 298 299 cache->bytes_super += len; 300 ret = add_excluded_extent(root, start, len); 301 if (ret) { 302 kfree(logical); 303 return ret; 304 } 305 } 306 307 kfree(logical); 308 } 309 return 0; 310 } 311 312 static struct btrfs_caching_control * 313 get_caching_control(struct btrfs_block_group_cache *cache) 314 { 315 struct btrfs_caching_control *ctl; 316 317 spin_lock(&cache->lock); 318 if (!cache->caching_ctl) { 319 spin_unlock(&cache->lock); 320 return NULL; 321 } 322 323 ctl = cache->caching_ctl; 324 atomic_inc(&ctl->count); 325 spin_unlock(&cache->lock); 326 return ctl; 327 } 328 329 static void put_caching_control(struct btrfs_caching_control *ctl) 330 { 331 if (atomic_dec_and_test(&ctl->count)) 332 kfree(ctl); 333 } 334 335 /* 336 * this is only called by cache_block_group, since we could have freed extents 337 * we need to check the pinned_extents for any extents that can't be used yet 338 * since their free space will be released as soon as the transaction commits. 339 */ 340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group, 341 struct btrfs_fs_info *info, u64 start, u64 end) 342 { 343 u64 extent_start, extent_end, size, total_added = 0; 344 int ret; 345 346 while (start < end) { 347 ret = find_first_extent_bit(info->pinned_extents, start, 348 &extent_start, &extent_end, 349 EXTENT_DIRTY | EXTENT_UPTODATE, 350 NULL); 351 if (ret) 352 break; 353 354 if (extent_start <= start) { 355 start = extent_end + 1; 356 } else if (extent_start > start && extent_start < end) { 357 size = extent_start - start; 358 total_added += size; 359 ret = btrfs_add_free_space(block_group, start, 360 size); 361 BUG_ON(ret); /* -ENOMEM or logic error */ 362 start = extent_end + 1; 363 } else { 364 break; 365 } 366 } 367 368 if (start < end) { 369 size = end - start; 370 total_added += size; 371 ret = btrfs_add_free_space(block_group, start, size); 372 BUG_ON(ret); /* -ENOMEM or logic error */ 373 } 374 375 return total_added; 376 } 377 378 static noinline void caching_thread(struct btrfs_work *work) 379 { 380 struct btrfs_block_group_cache *block_group; 381 struct btrfs_fs_info *fs_info; 382 struct btrfs_caching_control *caching_ctl; 383 struct btrfs_root *extent_root; 384 struct btrfs_path *path; 385 struct extent_buffer *leaf; 386 struct btrfs_key key; 387 u64 total_found = 0; 388 u64 last = 0; 389 u32 nritems; 390 int ret = -ENOMEM; 391 392 caching_ctl = container_of(work, struct btrfs_caching_control, work); 393 block_group = caching_ctl->block_group; 394 fs_info = block_group->fs_info; 395 extent_root = fs_info->extent_root; 396 397 path = btrfs_alloc_path(); 398 if (!path) 399 goto out; 400 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); 402 403 /* 404 * We don't want to deadlock with somebody trying to allocate a new 405 * extent for the extent root while also trying to search the extent 406 * root to add free space. So we skip locking and search the commit 407 * root, since its read-only 408 */ 409 path->skip_locking = 1; 410 path->search_commit_root = 1; 411 path->reada = 1; 412 413 key.objectid = last; 414 key.offset = 0; 415 key.type = BTRFS_EXTENT_ITEM_KEY; 416 again: 417 mutex_lock(&caching_ctl->mutex); 418 /* need to make sure the commit_root doesn't disappear */ 419 down_read(&fs_info->commit_root_sem); 420 421 next: 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 423 if (ret < 0) 424 goto err; 425 426 leaf = path->nodes[0]; 427 nritems = btrfs_header_nritems(leaf); 428 429 while (1) { 430 if (btrfs_fs_closing(fs_info) > 1) { 431 last = (u64)-1; 432 break; 433 } 434 435 if (path->slots[0] < nritems) { 436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 437 } else { 438 ret = find_next_key(path, 0, &key); 439 if (ret) 440 break; 441 442 if (need_resched() || 443 rwsem_is_contended(&fs_info->commit_root_sem)) { 444 caching_ctl->progress = last; 445 btrfs_release_path(path); 446 up_read(&fs_info->commit_root_sem); 447 mutex_unlock(&caching_ctl->mutex); 448 cond_resched(); 449 goto again; 450 } 451 452 ret = btrfs_next_leaf(extent_root, path); 453 if (ret < 0) 454 goto err; 455 if (ret) 456 break; 457 leaf = path->nodes[0]; 458 nritems = btrfs_header_nritems(leaf); 459 continue; 460 } 461 462 if (key.objectid < last) { 463 key.objectid = last; 464 key.offset = 0; 465 key.type = BTRFS_EXTENT_ITEM_KEY; 466 467 caching_ctl->progress = last; 468 btrfs_release_path(path); 469 goto next; 470 } 471 472 if (key.objectid < block_group->key.objectid) { 473 path->slots[0]++; 474 continue; 475 } 476 477 if (key.objectid >= block_group->key.objectid + 478 block_group->key.offset) 479 break; 480 481 if (key.type == BTRFS_EXTENT_ITEM_KEY || 482 key.type == BTRFS_METADATA_ITEM_KEY) { 483 total_found += add_new_free_space(block_group, 484 fs_info, last, 485 key.objectid); 486 if (key.type == BTRFS_METADATA_ITEM_KEY) 487 last = key.objectid + 488 fs_info->tree_root->nodesize; 489 else 490 last = key.objectid + key.offset; 491 492 if (total_found > (1024 * 1024 * 2)) { 493 total_found = 0; 494 wake_up(&caching_ctl->wait); 495 } 496 } 497 path->slots[0]++; 498 } 499 ret = 0; 500 501 total_found += add_new_free_space(block_group, fs_info, last, 502 block_group->key.objectid + 503 block_group->key.offset); 504 caching_ctl->progress = (u64)-1; 505 506 spin_lock(&block_group->lock); 507 block_group->caching_ctl = NULL; 508 block_group->cached = BTRFS_CACHE_FINISHED; 509 spin_unlock(&block_group->lock); 510 511 err: 512 btrfs_free_path(path); 513 up_read(&fs_info->commit_root_sem); 514 515 free_excluded_extents(extent_root, block_group); 516 517 mutex_unlock(&caching_ctl->mutex); 518 out: 519 if (ret) { 520 spin_lock(&block_group->lock); 521 block_group->caching_ctl = NULL; 522 block_group->cached = BTRFS_CACHE_ERROR; 523 spin_unlock(&block_group->lock); 524 } 525 wake_up(&caching_ctl->wait); 526 527 put_caching_control(caching_ctl); 528 btrfs_put_block_group(block_group); 529 } 530 531 static int cache_block_group(struct btrfs_block_group_cache *cache, 532 int load_cache_only) 533 { 534 DEFINE_WAIT(wait); 535 struct btrfs_fs_info *fs_info = cache->fs_info; 536 struct btrfs_caching_control *caching_ctl; 537 int ret = 0; 538 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); 540 if (!caching_ctl) 541 return -ENOMEM; 542 543 INIT_LIST_HEAD(&caching_ctl->list); 544 mutex_init(&caching_ctl->mutex); 545 init_waitqueue_head(&caching_ctl->wait); 546 caching_ctl->block_group = cache; 547 caching_ctl->progress = cache->key.objectid; 548 atomic_set(&caching_ctl->count, 1); 549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, 550 caching_thread, NULL, NULL); 551 552 spin_lock(&cache->lock); 553 /* 554 * This should be a rare occasion, but this could happen I think in the 555 * case where one thread starts to load the space cache info, and then 556 * some other thread starts a transaction commit which tries to do an 557 * allocation while the other thread is still loading the space cache 558 * info. The previous loop should have kept us from choosing this block 559 * group, but if we've moved to the state where we will wait on caching 560 * block groups we need to first check if we're doing a fast load here, 561 * so we can wait for it to finish, otherwise we could end up allocating 562 * from a block group who's cache gets evicted for one reason or 563 * another. 564 */ 565 while (cache->cached == BTRFS_CACHE_FAST) { 566 struct btrfs_caching_control *ctl; 567 568 ctl = cache->caching_ctl; 569 atomic_inc(&ctl->count); 570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); 571 spin_unlock(&cache->lock); 572 573 schedule(); 574 575 finish_wait(&ctl->wait, &wait); 576 put_caching_control(ctl); 577 spin_lock(&cache->lock); 578 } 579 580 if (cache->cached != BTRFS_CACHE_NO) { 581 spin_unlock(&cache->lock); 582 kfree(caching_ctl); 583 return 0; 584 } 585 WARN_ON(cache->caching_ctl); 586 cache->caching_ctl = caching_ctl; 587 cache->cached = BTRFS_CACHE_FAST; 588 spin_unlock(&cache->lock); 589 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) { 591 mutex_lock(&caching_ctl->mutex); 592 ret = load_free_space_cache(fs_info, cache); 593 594 spin_lock(&cache->lock); 595 if (ret == 1) { 596 cache->caching_ctl = NULL; 597 cache->cached = BTRFS_CACHE_FINISHED; 598 cache->last_byte_to_unpin = (u64)-1; 599 caching_ctl->progress = (u64)-1; 600 } else { 601 if (load_cache_only) { 602 cache->caching_ctl = NULL; 603 cache->cached = BTRFS_CACHE_NO; 604 } else { 605 cache->cached = BTRFS_CACHE_STARTED; 606 cache->has_caching_ctl = 1; 607 } 608 } 609 spin_unlock(&cache->lock); 610 mutex_unlock(&caching_ctl->mutex); 611 612 wake_up(&caching_ctl->wait); 613 if (ret == 1) { 614 put_caching_control(caching_ctl); 615 free_excluded_extents(fs_info->extent_root, cache); 616 return 0; 617 } 618 } else { 619 /* 620 * We are not going to do the fast caching, set cached to the 621 * appropriate value and wakeup any waiters. 622 */ 623 spin_lock(&cache->lock); 624 if (load_cache_only) { 625 cache->caching_ctl = NULL; 626 cache->cached = BTRFS_CACHE_NO; 627 } else { 628 cache->cached = BTRFS_CACHE_STARTED; 629 cache->has_caching_ctl = 1; 630 } 631 spin_unlock(&cache->lock); 632 wake_up(&caching_ctl->wait); 633 } 634 635 if (load_cache_only) { 636 put_caching_control(caching_ctl); 637 return 0; 638 } 639 640 down_write(&fs_info->commit_root_sem); 641 atomic_inc(&caching_ctl->count); 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); 643 up_write(&fs_info->commit_root_sem); 644 645 btrfs_get_block_group(cache); 646 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); 648 649 return ret; 650 } 651 652 /* 653 * return the block group that starts at or after bytenr 654 */ 655 static struct btrfs_block_group_cache * 656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) 657 { 658 struct btrfs_block_group_cache *cache; 659 660 cache = block_group_cache_tree_search(info, bytenr, 0); 661 662 return cache; 663 } 664 665 /* 666 * return the block group that contains the given bytenr 667 */ 668 struct btrfs_block_group_cache *btrfs_lookup_block_group( 669 struct btrfs_fs_info *info, 670 u64 bytenr) 671 { 672 struct btrfs_block_group_cache *cache; 673 674 cache = block_group_cache_tree_search(info, bytenr, 1); 675 676 return cache; 677 } 678 679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, 680 u64 flags) 681 { 682 struct list_head *head = &info->space_info; 683 struct btrfs_space_info *found; 684 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; 686 687 rcu_read_lock(); 688 list_for_each_entry_rcu(found, head, list) { 689 if (found->flags & flags) { 690 rcu_read_unlock(); 691 return found; 692 } 693 } 694 rcu_read_unlock(); 695 return NULL; 696 } 697 698 /* 699 * after adding space to the filesystem, we need to clear the full flags 700 * on all the space infos. 701 */ 702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info) 703 { 704 struct list_head *head = &info->space_info; 705 struct btrfs_space_info *found; 706 707 rcu_read_lock(); 708 list_for_each_entry_rcu(found, head, list) 709 found->full = 0; 710 rcu_read_unlock(); 711 } 712 713 /* simple helper to search for an existing data extent at a given offset */ 714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len) 715 { 716 int ret; 717 struct btrfs_key key; 718 struct btrfs_path *path; 719 720 path = btrfs_alloc_path(); 721 if (!path) 722 return -ENOMEM; 723 724 key.objectid = start; 725 key.offset = len; 726 key.type = BTRFS_EXTENT_ITEM_KEY; 727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path, 728 0, 0); 729 btrfs_free_path(path); 730 return ret; 731 } 732 733 /* 734 * helper function to lookup reference count and flags of a tree block. 735 * 736 * the head node for delayed ref is used to store the sum of all the 737 * reference count modifications queued up in the rbtree. the head 738 * node may also store the extent flags to set. This way you can check 739 * to see what the reference count and extent flags would be if all of 740 * the delayed refs are not processed. 741 */ 742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 bytenr, 744 u64 offset, int metadata, u64 *refs, u64 *flags) 745 { 746 struct btrfs_delayed_ref_head *head; 747 struct btrfs_delayed_ref_root *delayed_refs; 748 struct btrfs_path *path; 749 struct btrfs_extent_item *ei; 750 struct extent_buffer *leaf; 751 struct btrfs_key key; 752 u32 item_size; 753 u64 num_refs; 754 u64 extent_flags; 755 int ret; 756 757 /* 758 * If we don't have skinny metadata, don't bother doing anything 759 * different 760 */ 761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) { 762 offset = root->nodesize; 763 metadata = 0; 764 } 765 766 path = btrfs_alloc_path(); 767 if (!path) 768 return -ENOMEM; 769 770 if (!trans) { 771 path->skip_locking = 1; 772 path->search_commit_root = 1; 773 } 774 775 search_again: 776 key.objectid = bytenr; 777 key.offset = offset; 778 if (metadata) 779 key.type = BTRFS_METADATA_ITEM_KEY; 780 else 781 key.type = BTRFS_EXTENT_ITEM_KEY; 782 783 ret = btrfs_search_slot(trans, root->fs_info->extent_root, 784 &key, path, 0, 0); 785 if (ret < 0) 786 goto out_free; 787 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { 789 if (path->slots[0]) { 790 path->slots[0]--; 791 btrfs_item_key_to_cpu(path->nodes[0], &key, 792 path->slots[0]); 793 if (key.objectid == bytenr && 794 key.type == BTRFS_EXTENT_ITEM_KEY && 795 key.offset == root->nodesize) 796 ret = 0; 797 } 798 } 799 800 if (ret == 0) { 801 leaf = path->nodes[0]; 802 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 803 if (item_size >= sizeof(*ei)) { 804 ei = btrfs_item_ptr(leaf, path->slots[0], 805 struct btrfs_extent_item); 806 num_refs = btrfs_extent_refs(leaf, ei); 807 extent_flags = btrfs_extent_flags(leaf, ei); 808 } else { 809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 810 struct btrfs_extent_item_v0 *ei0; 811 BUG_ON(item_size != sizeof(*ei0)); 812 ei0 = btrfs_item_ptr(leaf, path->slots[0], 813 struct btrfs_extent_item_v0); 814 num_refs = btrfs_extent_refs_v0(leaf, ei0); 815 /* FIXME: this isn't correct for data */ 816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 817 #else 818 BUG(); 819 #endif 820 } 821 BUG_ON(num_refs == 0); 822 } else { 823 num_refs = 0; 824 extent_flags = 0; 825 ret = 0; 826 } 827 828 if (!trans) 829 goto out; 830 831 delayed_refs = &trans->transaction->delayed_refs; 832 spin_lock(&delayed_refs->lock); 833 head = btrfs_find_delayed_ref_head(trans, bytenr); 834 if (head) { 835 if (!mutex_trylock(&head->mutex)) { 836 atomic_inc(&head->node.refs); 837 spin_unlock(&delayed_refs->lock); 838 839 btrfs_release_path(path); 840 841 /* 842 * Mutex was contended, block until it's released and try 843 * again 844 */ 845 mutex_lock(&head->mutex); 846 mutex_unlock(&head->mutex); 847 btrfs_put_delayed_ref(&head->node); 848 goto search_again; 849 } 850 spin_lock(&head->lock); 851 if (head->extent_op && head->extent_op->update_flags) 852 extent_flags |= head->extent_op->flags_to_set; 853 else 854 BUG_ON(num_refs == 0); 855 856 num_refs += head->node.ref_mod; 857 spin_unlock(&head->lock); 858 mutex_unlock(&head->mutex); 859 } 860 spin_unlock(&delayed_refs->lock); 861 out: 862 WARN_ON(num_refs == 0); 863 if (refs) 864 *refs = num_refs; 865 if (flags) 866 *flags = extent_flags; 867 out_free: 868 btrfs_free_path(path); 869 return ret; 870 } 871 872 /* 873 * Back reference rules. Back refs have three main goals: 874 * 875 * 1) differentiate between all holders of references to an extent so that 876 * when a reference is dropped we can make sure it was a valid reference 877 * before freeing the extent. 878 * 879 * 2) Provide enough information to quickly find the holders of an extent 880 * if we notice a given block is corrupted or bad. 881 * 882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 883 * maintenance. This is actually the same as #2, but with a slightly 884 * different use case. 885 * 886 * There are two kinds of back refs. The implicit back refs is optimized 887 * for pointers in non-shared tree blocks. For a given pointer in a block, 888 * back refs of this kind provide information about the block's owner tree 889 * and the pointer's key. These information allow us to find the block by 890 * b-tree searching. The full back refs is for pointers in tree blocks not 891 * referenced by their owner trees. The location of tree block is recorded 892 * in the back refs. Actually the full back refs is generic, and can be 893 * used in all cases the implicit back refs is used. The major shortcoming 894 * of the full back refs is its overhead. Every time a tree block gets 895 * COWed, we have to update back refs entry for all pointers in it. 896 * 897 * For a newly allocated tree block, we use implicit back refs for 898 * pointers in it. This means most tree related operations only involve 899 * implicit back refs. For a tree block created in old transaction, the 900 * only way to drop a reference to it is COW it. So we can detect the 901 * event that tree block loses its owner tree's reference and do the 902 * back refs conversion. 903 * 904 * When a tree block is COW'd through a tree, there are four cases: 905 * 906 * The reference count of the block is one and the tree is the block's 907 * owner tree. Nothing to do in this case. 908 * 909 * The reference count of the block is one and the tree is not the 910 * block's owner tree. In this case, full back refs is used for pointers 911 * in the block. Remove these full back refs, add implicit back refs for 912 * every pointers in the new block. 913 * 914 * The reference count of the block is greater than one and the tree is 915 * the block's owner tree. In this case, implicit back refs is used for 916 * pointers in the block. Add full back refs for every pointers in the 917 * block, increase lower level extents' reference counts. The original 918 * implicit back refs are entailed to the new block. 919 * 920 * The reference count of the block is greater than one and the tree is 921 * not the block's owner tree. Add implicit back refs for every pointer in 922 * the new block, increase lower level extents' reference count. 923 * 924 * Back Reference Key composing: 925 * 926 * The key objectid corresponds to the first byte in the extent, 927 * The key type is used to differentiate between types of back refs. 928 * There are different meanings of the key offset for different types 929 * of back refs. 930 * 931 * File extents can be referenced by: 932 * 933 * - multiple snapshots, subvolumes, or different generations in one subvol 934 * - different files inside a single subvolume 935 * - different offsets inside a file (bookend extents in file.c) 936 * 937 * The extent ref structure for the implicit back refs has fields for: 938 * 939 * - Objectid of the subvolume root 940 * - objectid of the file holding the reference 941 * - original offset in the file 942 * - how many bookend extents 943 * 944 * The key offset for the implicit back refs is hash of the first 945 * three fields. 946 * 947 * The extent ref structure for the full back refs has field for: 948 * 949 * - number of pointers in the tree leaf 950 * 951 * The key offset for the implicit back refs is the first byte of 952 * the tree leaf 953 * 954 * When a file extent is allocated, The implicit back refs is used. 955 * the fields are filled in: 956 * 957 * (root_key.objectid, inode objectid, offset in file, 1) 958 * 959 * When a file extent is removed file truncation, we find the 960 * corresponding implicit back refs and check the following fields: 961 * 962 * (btrfs_header_owner(leaf), inode objectid, offset in file) 963 * 964 * Btree extents can be referenced by: 965 * 966 * - Different subvolumes 967 * 968 * Both the implicit back refs and the full back refs for tree blocks 969 * only consist of key. The key offset for the implicit back refs is 970 * objectid of block's owner tree. The key offset for the full back refs 971 * is the first byte of parent block. 972 * 973 * When implicit back refs is used, information about the lowest key and 974 * level of the tree block are required. These information are stored in 975 * tree block info structure. 976 */ 977 978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans, 980 struct btrfs_root *root, 981 struct btrfs_path *path, 982 u64 owner, u32 extra_size) 983 { 984 struct btrfs_extent_item *item; 985 struct btrfs_extent_item_v0 *ei0; 986 struct btrfs_extent_ref_v0 *ref0; 987 struct btrfs_tree_block_info *bi; 988 struct extent_buffer *leaf; 989 struct btrfs_key key; 990 struct btrfs_key found_key; 991 u32 new_size = sizeof(*item); 992 u64 refs; 993 int ret; 994 995 leaf = path->nodes[0]; 996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0)); 997 998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 999 ei0 = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_extent_item_v0); 1001 refs = btrfs_extent_refs_v0(leaf, ei0); 1002 1003 if (owner == (u64)-1) { 1004 while (1) { 1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1006 ret = btrfs_next_leaf(root, path); 1007 if (ret < 0) 1008 return ret; 1009 BUG_ON(ret > 0); /* Corruption */ 1010 leaf = path->nodes[0]; 1011 } 1012 btrfs_item_key_to_cpu(leaf, &found_key, 1013 path->slots[0]); 1014 BUG_ON(key.objectid != found_key.objectid); 1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) { 1016 path->slots[0]++; 1017 continue; 1018 } 1019 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1020 struct btrfs_extent_ref_v0); 1021 owner = btrfs_ref_objectid_v0(leaf, ref0); 1022 break; 1023 } 1024 } 1025 btrfs_release_path(path); 1026 1027 if (owner < BTRFS_FIRST_FREE_OBJECTID) 1028 new_size += sizeof(*bi); 1029 1030 new_size -= sizeof(*ei0); 1031 ret = btrfs_search_slot(trans, root, &key, path, 1032 new_size + extra_size, 1); 1033 if (ret < 0) 1034 return ret; 1035 BUG_ON(ret); /* Corruption */ 1036 1037 btrfs_extend_item(root, path, new_size); 1038 1039 leaf = path->nodes[0]; 1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1041 btrfs_set_extent_refs(leaf, item, refs); 1042 /* FIXME: get real generation */ 1043 btrfs_set_extent_generation(leaf, item, 0); 1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1045 btrfs_set_extent_flags(leaf, item, 1046 BTRFS_EXTENT_FLAG_TREE_BLOCK | 1047 BTRFS_BLOCK_FLAG_FULL_BACKREF); 1048 bi = (struct btrfs_tree_block_info *)(item + 1); 1049 /* FIXME: get first key of the block */ 1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi)); 1051 btrfs_set_tree_block_level(leaf, bi, (int)owner); 1052 } else { 1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA); 1054 } 1055 btrfs_mark_buffer_dirty(leaf); 1056 return 0; 1057 } 1058 #endif 1059 1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 1061 { 1062 u32 high_crc = ~(u32)0; 1063 u32 low_crc = ~(u32)0; 1064 __le64 lenum; 1065 1066 lenum = cpu_to_le64(root_objectid); 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum)); 1068 lenum = cpu_to_le64(owner); 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1070 lenum = cpu_to_le64(offset); 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum)); 1072 1073 return ((u64)high_crc << 31) ^ (u64)low_crc; 1074 } 1075 1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, 1077 struct btrfs_extent_data_ref *ref) 1078 { 1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 1080 btrfs_extent_data_ref_objectid(leaf, ref), 1081 btrfs_extent_data_ref_offset(leaf, ref)); 1082 } 1083 1084 static int match_extent_data_ref(struct extent_buffer *leaf, 1085 struct btrfs_extent_data_ref *ref, 1086 u64 root_objectid, u64 owner, u64 offset) 1087 { 1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 1090 btrfs_extent_data_ref_offset(leaf, ref) != offset) 1091 return 0; 1092 return 1; 1093 } 1094 1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct btrfs_path *path, 1098 u64 bytenr, u64 parent, 1099 u64 root_objectid, 1100 u64 owner, u64 offset) 1101 { 1102 struct btrfs_key key; 1103 struct btrfs_extent_data_ref *ref; 1104 struct extent_buffer *leaf; 1105 u32 nritems; 1106 int ret; 1107 int recow; 1108 int err = -ENOENT; 1109 1110 key.objectid = bytenr; 1111 if (parent) { 1112 key.type = BTRFS_SHARED_DATA_REF_KEY; 1113 key.offset = parent; 1114 } else { 1115 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1116 key.offset = hash_extent_data_ref(root_objectid, 1117 owner, offset); 1118 } 1119 again: 1120 recow = 0; 1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1122 if (ret < 0) { 1123 err = ret; 1124 goto fail; 1125 } 1126 1127 if (parent) { 1128 if (!ret) 1129 return 0; 1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1131 key.type = BTRFS_EXTENT_REF_V0_KEY; 1132 btrfs_release_path(path); 1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1134 if (ret < 0) { 1135 err = ret; 1136 goto fail; 1137 } 1138 if (!ret) 1139 return 0; 1140 #endif 1141 goto fail; 1142 } 1143 1144 leaf = path->nodes[0]; 1145 nritems = btrfs_header_nritems(leaf); 1146 while (1) { 1147 if (path->slots[0] >= nritems) { 1148 ret = btrfs_next_leaf(root, path); 1149 if (ret < 0) 1150 err = ret; 1151 if (ret) 1152 goto fail; 1153 1154 leaf = path->nodes[0]; 1155 nritems = btrfs_header_nritems(leaf); 1156 recow = 1; 1157 } 1158 1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1160 if (key.objectid != bytenr || 1161 key.type != BTRFS_EXTENT_DATA_REF_KEY) 1162 goto fail; 1163 1164 ref = btrfs_item_ptr(leaf, path->slots[0], 1165 struct btrfs_extent_data_ref); 1166 1167 if (match_extent_data_ref(leaf, ref, root_objectid, 1168 owner, offset)) { 1169 if (recow) { 1170 btrfs_release_path(path); 1171 goto again; 1172 } 1173 err = 0; 1174 break; 1175 } 1176 path->slots[0]++; 1177 } 1178 fail: 1179 return err; 1180 } 1181 1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 1183 struct btrfs_root *root, 1184 struct btrfs_path *path, 1185 u64 bytenr, u64 parent, 1186 u64 root_objectid, u64 owner, 1187 u64 offset, int refs_to_add) 1188 { 1189 struct btrfs_key key; 1190 struct extent_buffer *leaf; 1191 u32 size; 1192 u32 num_refs; 1193 int ret; 1194 1195 key.objectid = bytenr; 1196 if (parent) { 1197 key.type = BTRFS_SHARED_DATA_REF_KEY; 1198 key.offset = parent; 1199 size = sizeof(struct btrfs_shared_data_ref); 1200 } else { 1201 key.type = BTRFS_EXTENT_DATA_REF_KEY; 1202 key.offset = hash_extent_data_ref(root_objectid, 1203 owner, offset); 1204 size = sizeof(struct btrfs_extent_data_ref); 1205 } 1206 1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 1208 if (ret && ret != -EEXIST) 1209 goto fail; 1210 1211 leaf = path->nodes[0]; 1212 if (parent) { 1213 struct btrfs_shared_data_ref *ref; 1214 ref = btrfs_item_ptr(leaf, path->slots[0], 1215 struct btrfs_shared_data_ref); 1216 if (ret == 0) { 1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); 1218 } else { 1219 num_refs = btrfs_shared_data_ref_count(leaf, ref); 1220 num_refs += refs_to_add; 1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 1222 } 1223 } else { 1224 struct btrfs_extent_data_ref *ref; 1225 while (ret == -EEXIST) { 1226 ref = btrfs_item_ptr(leaf, path->slots[0], 1227 struct btrfs_extent_data_ref); 1228 if (match_extent_data_ref(leaf, ref, root_objectid, 1229 owner, offset)) 1230 break; 1231 btrfs_release_path(path); 1232 key.offset++; 1233 ret = btrfs_insert_empty_item(trans, root, path, &key, 1234 size); 1235 if (ret && ret != -EEXIST) 1236 goto fail; 1237 1238 leaf = path->nodes[0]; 1239 } 1240 ref = btrfs_item_ptr(leaf, path->slots[0], 1241 struct btrfs_extent_data_ref); 1242 if (ret == 0) { 1243 btrfs_set_extent_data_ref_root(leaf, ref, 1244 root_objectid); 1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); 1248 } else { 1249 num_refs = btrfs_extent_data_ref_count(leaf, ref); 1250 num_refs += refs_to_add; 1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 1252 } 1253 } 1254 btrfs_mark_buffer_dirty(leaf); 1255 ret = 0; 1256 fail: 1257 btrfs_release_path(path); 1258 return ret; 1259 } 1260 1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 1262 struct btrfs_root *root, 1263 struct btrfs_path *path, 1264 int refs_to_drop, int *last_ref) 1265 { 1266 struct btrfs_key key; 1267 struct btrfs_extent_data_ref *ref1 = NULL; 1268 struct btrfs_shared_data_ref *ref2 = NULL; 1269 struct extent_buffer *leaf; 1270 u32 num_refs = 0; 1271 int ret = 0; 1272 1273 leaf = path->nodes[0]; 1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1275 1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1277 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1278 struct btrfs_extent_data_ref); 1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1281 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1282 struct btrfs_shared_data_ref); 1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1286 struct btrfs_extent_ref_v0 *ref0; 1287 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1288 struct btrfs_extent_ref_v0); 1289 num_refs = btrfs_ref_count_v0(leaf, ref0); 1290 #endif 1291 } else { 1292 BUG(); 1293 } 1294 1295 BUG_ON(num_refs < refs_to_drop); 1296 num_refs -= refs_to_drop; 1297 1298 if (num_refs == 0) { 1299 ret = btrfs_del_item(trans, root, path); 1300 *last_ref = 1; 1301 } else { 1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1307 else { 1308 struct btrfs_extent_ref_v0 *ref0; 1309 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1310 struct btrfs_extent_ref_v0); 1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs); 1312 } 1313 #endif 1314 btrfs_mark_buffer_dirty(leaf); 1315 } 1316 return ret; 1317 } 1318 1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root, 1320 struct btrfs_path *path, 1321 struct btrfs_extent_inline_ref *iref) 1322 { 1323 struct btrfs_key key; 1324 struct extent_buffer *leaf; 1325 struct btrfs_extent_data_ref *ref1; 1326 struct btrfs_shared_data_ref *ref2; 1327 u32 num_refs = 0; 1328 1329 leaf = path->nodes[0]; 1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1331 if (iref) { 1332 if (btrfs_extent_inline_ref_type(leaf, iref) == 1333 BTRFS_EXTENT_DATA_REF_KEY) { 1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); 1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1336 } else { 1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1); 1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1339 } 1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 1341 ref1 = btrfs_item_ptr(leaf, path->slots[0], 1342 struct btrfs_extent_data_ref); 1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 1345 ref2 = btrfs_item_ptr(leaf, path->slots[0], 1346 struct btrfs_shared_data_ref); 1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 1350 struct btrfs_extent_ref_v0 *ref0; 1351 ref0 = btrfs_item_ptr(leaf, path->slots[0], 1352 struct btrfs_extent_ref_v0); 1353 num_refs = btrfs_ref_count_v0(leaf, ref0); 1354 #endif 1355 } else { 1356 WARN_ON(1); 1357 } 1358 return num_refs; 1359 } 1360 1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 1362 struct btrfs_root *root, 1363 struct btrfs_path *path, 1364 u64 bytenr, u64 parent, 1365 u64 root_objectid) 1366 { 1367 struct btrfs_key key; 1368 int ret; 1369 1370 key.objectid = bytenr; 1371 if (parent) { 1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1373 key.offset = parent; 1374 } else { 1375 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1376 key.offset = root_objectid; 1377 } 1378 1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1380 if (ret > 0) 1381 ret = -ENOENT; 1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1383 if (ret == -ENOENT && parent) { 1384 btrfs_release_path(path); 1385 key.type = BTRFS_EXTENT_REF_V0_KEY; 1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1387 if (ret > 0) 1388 ret = -ENOENT; 1389 } 1390 #endif 1391 return ret; 1392 } 1393 1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 1395 struct btrfs_root *root, 1396 struct btrfs_path *path, 1397 u64 bytenr, u64 parent, 1398 u64 root_objectid) 1399 { 1400 struct btrfs_key key; 1401 int ret; 1402 1403 key.objectid = bytenr; 1404 if (parent) { 1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 1406 key.offset = parent; 1407 } else { 1408 key.type = BTRFS_TREE_BLOCK_REF_KEY; 1409 key.offset = root_objectid; 1410 } 1411 1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 1413 btrfs_release_path(path); 1414 return ret; 1415 } 1416 1417 static inline int extent_ref_type(u64 parent, u64 owner) 1418 { 1419 int type; 1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1421 if (parent > 0) 1422 type = BTRFS_SHARED_BLOCK_REF_KEY; 1423 else 1424 type = BTRFS_TREE_BLOCK_REF_KEY; 1425 } else { 1426 if (parent > 0) 1427 type = BTRFS_SHARED_DATA_REF_KEY; 1428 else 1429 type = BTRFS_EXTENT_DATA_REF_KEY; 1430 } 1431 return type; 1432 } 1433 1434 static int find_next_key(struct btrfs_path *path, int level, 1435 struct btrfs_key *key) 1436 1437 { 1438 for (; level < BTRFS_MAX_LEVEL; level++) { 1439 if (!path->nodes[level]) 1440 break; 1441 if (path->slots[level] + 1 >= 1442 btrfs_header_nritems(path->nodes[level])) 1443 continue; 1444 if (level == 0) 1445 btrfs_item_key_to_cpu(path->nodes[level], key, 1446 path->slots[level] + 1); 1447 else 1448 btrfs_node_key_to_cpu(path->nodes[level], key, 1449 path->slots[level] + 1); 1450 return 0; 1451 } 1452 return 1; 1453 } 1454 1455 /* 1456 * look for inline back ref. if back ref is found, *ref_ret is set 1457 * to the address of inline back ref, and 0 is returned. 1458 * 1459 * if back ref isn't found, *ref_ret is set to the address where it 1460 * should be inserted, and -ENOENT is returned. 1461 * 1462 * if insert is true and there are too many inline back refs, the path 1463 * points to the extent item, and -EAGAIN is returned. 1464 * 1465 * NOTE: inline back refs are ordered in the same way that back ref 1466 * items in the tree are ordered. 1467 */ 1468 static noinline_for_stack 1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 1470 struct btrfs_root *root, 1471 struct btrfs_path *path, 1472 struct btrfs_extent_inline_ref **ref_ret, 1473 u64 bytenr, u64 num_bytes, 1474 u64 parent, u64 root_objectid, 1475 u64 owner, u64 offset, int insert) 1476 { 1477 struct btrfs_key key; 1478 struct extent_buffer *leaf; 1479 struct btrfs_extent_item *ei; 1480 struct btrfs_extent_inline_ref *iref; 1481 u64 flags; 1482 u64 item_size; 1483 unsigned long ptr; 1484 unsigned long end; 1485 int extra_size; 1486 int type; 1487 int want; 1488 int ret; 1489 int err = 0; 1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 1491 SKINNY_METADATA); 1492 1493 key.objectid = bytenr; 1494 key.type = BTRFS_EXTENT_ITEM_KEY; 1495 key.offset = num_bytes; 1496 1497 want = extent_ref_type(parent, owner); 1498 if (insert) { 1499 extra_size = btrfs_extent_inline_ref_size(want); 1500 path->keep_locks = 1; 1501 } else 1502 extra_size = -1; 1503 1504 /* 1505 * Owner is our parent level, so we can just add one to get the level 1506 * for the block we are interested in. 1507 */ 1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 1509 key.type = BTRFS_METADATA_ITEM_KEY; 1510 key.offset = owner; 1511 } 1512 1513 again: 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 1515 if (ret < 0) { 1516 err = ret; 1517 goto out; 1518 } 1519 1520 /* 1521 * We may be a newly converted file system which still has the old fat 1522 * extent entries for metadata, so try and see if we have one of those. 1523 */ 1524 if (ret > 0 && skinny_metadata) { 1525 skinny_metadata = false; 1526 if (path->slots[0]) { 1527 path->slots[0]--; 1528 btrfs_item_key_to_cpu(path->nodes[0], &key, 1529 path->slots[0]); 1530 if (key.objectid == bytenr && 1531 key.type == BTRFS_EXTENT_ITEM_KEY && 1532 key.offset == num_bytes) 1533 ret = 0; 1534 } 1535 if (ret) { 1536 key.objectid = bytenr; 1537 key.type = BTRFS_EXTENT_ITEM_KEY; 1538 key.offset = num_bytes; 1539 btrfs_release_path(path); 1540 goto again; 1541 } 1542 } 1543 1544 if (ret && !insert) { 1545 err = -ENOENT; 1546 goto out; 1547 } else if (WARN_ON(ret)) { 1548 err = -EIO; 1549 goto out; 1550 } 1551 1552 leaf = path->nodes[0]; 1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1555 if (item_size < sizeof(*ei)) { 1556 if (!insert) { 1557 err = -ENOENT; 1558 goto out; 1559 } 1560 ret = convert_extent_item_v0(trans, root, path, owner, 1561 extra_size); 1562 if (ret < 0) { 1563 err = ret; 1564 goto out; 1565 } 1566 leaf = path->nodes[0]; 1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1568 } 1569 #endif 1570 BUG_ON(item_size < sizeof(*ei)); 1571 1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1573 flags = btrfs_extent_flags(leaf, ei); 1574 1575 ptr = (unsigned long)(ei + 1); 1576 end = (unsigned long)ei + item_size; 1577 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 1579 ptr += sizeof(struct btrfs_tree_block_info); 1580 BUG_ON(ptr > end); 1581 } 1582 1583 err = -ENOENT; 1584 while (1) { 1585 if (ptr >= end) { 1586 WARN_ON(ptr > end); 1587 break; 1588 } 1589 iref = (struct btrfs_extent_inline_ref *)ptr; 1590 type = btrfs_extent_inline_ref_type(leaf, iref); 1591 if (want < type) 1592 break; 1593 if (want > type) { 1594 ptr += btrfs_extent_inline_ref_size(type); 1595 continue; 1596 } 1597 1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1599 struct btrfs_extent_data_ref *dref; 1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1601 if (match_extent_data_ref(leaf, dref, root_objectid, 1602 owner, offset)) { 1603 err = 0; 1604 break; 1605 } 1606 if (hash_extent_data_ref_item(leaf, dref) < 1607 hash_extent_data_ref(root_objectid, owner, offset)) 1608 break; 1609 } else { 1610 u64 ref_offset; 1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 1612 if (parent > 0) { 1613 if (parent == ref_offset) { 1614 err = 0; 1615 break; 1616 } 1617 if (ref_offset < parent) 1618 break; 1619 } else { 1620 if (root_objectid == ref_offset) { 1621 err = 0; 1622 break; 1623 } 1624 if (ref_offset < root_objectid) 1625 break; 1626 } 1627 } 1628 ptr += btrfs_extent_inline_ref_size(type); 1629 } 1630 if (err == -ENOENT && insert) { 1631 if (item_size + extra_size >= 1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 1633 err = -EAGAIN; 1634 goto out; 1635 } 1636 /* 1637 * To add new inline back ref, we have to make sure 1638 * there is no corresponding back ref item. 1639 * For simplicity, we just do not add new inline back 1640 * ref if there is any kind of item for this block 1641 */ 1642 if (find_next_key(path, 0, &key) == 0 && 1643 key.objectid == bytenr && 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 1645 err = -EAGAIN; 1646 goto out; 1647 } 1648 } 1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 1650 out: 1651 if (insert) { 1652 path->keep_locks = 0; 1653 btrfs_unlock_up_safe(path, 1); 1654 } 1655 return err; 1656 } 1657 1658 /* 1659 * helper to add new inline back ref 1660 */ 1661 static noinline_for_stack 1662 void setup_inline_extent_backref(struct btrfs_root *root, 1663 struct btrfs_path *path, 1664 struct btrfs_extent_inline_ref *iref, 1665 u64 parent, u64 root_objectid, 1666 u64 owner, u64 offset, int refs_to_add, 1667 struct btrfs_delayed_extent_op *extent_op) 1668 { 1669 struct extent_buffer *leaf; 1670 struct btrfs_extent_item *ei; 1671 unsigned long ptr; 1672 unsigned long end; 1673 unsigned long item_offset; 1674 u64 refs; 1675 int size; 1676 int type; 1677 1678 leaf = path->nodes[0]; 1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1680 item_offset = (unsigned long)iref - (unsigned long)ei; 1681 1682 type = extent_ref_type(parent, owner); 1683 size = btrfs_extent_inline_ref_size(type); 1684 1685 btrfs_extend_item(root, path, size); 1686 1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1688 refs = btrfs_extent_refs(leaf, ei); 1689 refs += refs_to_add; 1690 btrfs_set_extent_refs(leaf, ei, refs); 1691 if (extent_op) 1692 __run_delayed_extent_op(extent_op, leaf, ei); 1693 1694 ptr = (unsigned long)ei + item_offset; 1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); 1696 if (ptr < end - size) 1697 memmove_extent_buffer(leaf, ptr + size, ptr, 1698 end - size - ptr); 1699 1700 iref = (struct btrfs_extent_inline_ref *)ptr; 1701 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1703 struct btrfs_extent_data_ref *dref; 1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1710 struct btrfs_shared_data_ref *sref; 1711 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1716 } else { 1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1718 } 1719 btrfs_mark_buffer_dirty(leaf); 1720 } 1721 1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1723 struct btrfs_root *root, 1724 struct btrfs_path *path, 1725 struct btrfs_extent_inline_ref **ref_ret, 1726 u64 bytenr, u64 num_bytes, u64 parent, 1727 u64 root_objectid, u64 owner, u64 offset) 1728 { 1729 int ret; 1730 1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret, 1732 bytenr, num_bytes, parent, 1733 root_objectid, owner, offset, 0); 1734 if (ret != -ENOENT) 1735 return ret; 1736 1737 btrfs_release_path(path); 1738 *ref_ret = NULL; 1739 1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent, 1742 root_objectid); 1743 } else { 1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent, 1745 root_objectid, owner, offset); 1746 } 1747 return ret; 1748 } 1749 1750 /* 1751 * helper to update/remove inline back ref 1752 */ 1753 static noinline_for_stack 1754 void update_inline_extent_backref(struct btrfs_root *root, 1755 struct btrfs_path *path, 1756 struct btrfs_extent_inline_ref *iref, 1757 int refs_to_mod, 1758 struct btrfs_delayed_extent_op *extent_op, 1759 int *last_ref) 1760 { 1761 struct extent_buffer *leaf; 1762 struct btrfs_extent_item *ei; 1763 struct btrfs_extent_data_ref *dref = NULL; 1764 struct btrfs_shared_data_ref *sref = NULL; 1765 unsigned long ptr; 1766 unsigned long end; 1767 u32 item_size; 1768 int size; 1769 int type; 1770 u64 refs; 1771 1772 leaf = path->nodes[0]; 1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1774 refs = btrfs_extent_refs(leaf, ei); 1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); 1776 refs += refs_to_mod; 1777 btrfs_set_extent_refs(leaf, ei, refs); 1778 if (extent_op) 1779 __run_delayed_extent_op(extent_op, leaf, ei); 1780 1781 type = btrfs_extent_inline_ref_type(leaf, iref); 1782 1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1785 refs = btrfs_extent_data_ref_count(leaf, dref); 1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1787 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1788 refs = btrfs_shared_data_ref_count(leaf, sref); 1789 } else { 1790 refs = 1; 1791 BUG_ON(refs_to_mod != -1); 1792 } 1793 1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); 1795 refs += refs_to_mod; 1796 1797 if (refs > 0) { 1798 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1799 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1800 else 1801 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1802 } else { 1803 *last_ref = 1; 1804 size = btrfs_extent_inline_ref_size(type); 1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1806 ptr = (unsigned long)iref; 1807 end = (unsigned long)ei + item_size; 1808 if (ptr + size < end) 1809 memmove_extent_buffer(leaf, ptr, ptr + size, 1810 end - ptr - size); 1811 item_size -= size; 1812 btrfs_truncate_item(root, path, item_size, 1); 1813 } 1814 btrfs_mark_buffer_dirty(leaf); 1815 } 1816 1817 static noinline_for_stack 1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1819 struct btrfs_root *root, 1820 struct btrfs_path *path, 1821 u64 bytenr, u64 num_bytes, u64 parent, 1822 u64 root_objectid, u64 owner, 1823 u64 offset, int refs_to_add, 1824 struct btrfs_delayed_extent_op *extent_op) 1825 { 1826 struct btrfs_extent_inline_ref *iref; 1827 int ret; 1828 1829 ret = lookup_inline_extent_backref(trans, root, path, &iref, 1830 bytenr, num_bytes, parent, 1831 root_objectid, owner, offset, 1); 1832 if (ret == 0) { 1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); 1834 update_inline_extent_backref(root, path, iref, 1835 refs_to_add, extent_op, NULL); 1836 } else if (ret == -ENOENT) { 1837 setup_inline_extent_backref(root, path, iref, parent, 1838 root_objectid, owner, offset, 1839 refs_to_add, extent_op); 1840 ret = 0; 1841 } 1842 return ret; 1843 } 1844 1845 static int insert_extent_backref(struct btrfs_trans_handle *trans, 1846 struct btrfs_root *root, 1847 struct btrfs_path *path, 1848 u64 bytenr, u64 parent, u64 root_objectid, 1849 u64 owner, u64 offset, int refs_to_add) 1850 { 1851 int ret; 1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1853 BUG_ON(refs_to_add != 1); 1854 ret = insert_tree_block_ref(trans, root, path, bytenr, 1855 parent, root_objectid); 1856 } else { 1857 ret = insert_extent_data_ref(trans, root, path, bytenr, 1858 parent, root_objectid, 1859 owner, offset, refs_to_add); 1860 } 1861 return ret; 1862 } 1863 1864 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1865 struct btrfs_root *root, 1866 struct btrfs_path *path, 1867 struct btrfs_extent_inline_ref *iref, 1868 int refs_to_drop, int is_data, int *last_ref) 1869 { 1870 int ret = 0; 1871 1872 BUG_ON(!is_data && refs_to_drop != 1); 1873 if (iref) { 1874 update_inline_extent_backref(root, path, iref, 1875 -refs_to_drop, NULL, last_ref); 1876 } else if (is_data) { 1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop, 1878 last_ref); 1879 } else { 1880 *last_ref = 1; 1881 ret = btrfs_del_item(trans, root, path); 1882 } 1883 return ret; 1884 } 1885 1886 static int btrfs_issue_discard(struct block_device *bdev, 1887 u64 start, u64 len) 1888 { 1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0); 1890 } 1891 1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr, 1893 u64 num_bytes, u64 *actual_bytes) 1894 { 1895 int ret; 1896 u64 discarded_bytes = 0; 1897 struct btrfs_bio *bbio = NULL; 1898 1899 1900 /* Tell the block device(s) that the sectors can be discarded */ 1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD, 1902 bytenr, &num_bytes, &bbio, 0); 1903 /* Error condition is -ENOMEM */ 1904 if (!ret) { 1905 struct btrfs_bio_stripe *stripe = bbio->stripes; 1906 int i; 1907 1908 1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) { 1910 if (!stripe->dev->can_discard) 1911 continue; 1912 1913 ret = btrfs_issue_discard(stripe->dev->bdev, 1914 stripe->physical, 1915 stripe->length); 1916 if (!ret) 1917 discarded_bytes += stripe->length; 1918 else if (ret != -EOPNOTSUPP) 1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ 1920 1921 /* 1922 * Just in case we get back EOPNOTSUPP for some reason, 1923 * just ignore the return value so we don't screw up 1924 * people calling discard_extent. 1925 */ 1926 ret = 0; 1927 } 1928 btrfs_put_bbio(bbio); 1929 } 1930 1931 if (actual_bytes) 1932 *actual_bytes = discarded_bytes; 1933 1934 1935 if (ret == -EOPNOTSUPP) 1936 ret = 0; 1937 return ret; 1938 } 1939 1940 /* Can return -ENOMEM */ 1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1942 struct btrfs_root *root, 1943 u64 bytenr, u64 num_bytes, u64 parent, 1944 u64 root_objectid, u64 owner, u64 offset, 1945 int no_quota) 1946 { 1947 int ret; 1948 struct btrfs_fs_info *fs_info = root->fs_info; 1949 1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && 1951 root_objectid == BTRFS_TREE_LOG_OBJECTID); 1952 1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 1955 num_bytes, 1956 parent, root_objectid, (int)owner, 1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1958 } else { 1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 1960 num_bytes, 1961 parent, root_objectid, owner, offset, 1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota); 1963 } 1964 return ret; 1965 } 1966 1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1968 struct btrfs_root *root, 1969 struct btrfs_delayed_ref_node *node, 1970 u64 parent, u64 root_objectid, 1971 u64 owner, u64 offset, int refs_to_add, 1972 struct btrfs_delayed_extent_op *extent_op) 1973 { 1974 struct btrfs_fs_info *fs_info = root->fs_info; 1975 struct btrfs_path *path; 1976 struct extent_buffer *leaf; 1977 struct btrfs_extent_item *item; 1978 struct btrfs_key key; 1979 u64 bytenr = node->bytenr; 1980 u64 num_bytes = node->num_bytes; 1981 u64 refs; 1982 int ret; 1983 int no_quota = node->no_quota; 1984 1985 path = btrfs_alloc_path(); 1986 if (!path) 1987 return -ENOMEM; 1988 1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled) 1990 no_quota = 1; 1991 1992 path->reada = 1; 1993 path->leave_spinning = 1; 1994 /* this will setup the path even if it fails to insert the back ref */ 1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path, 1996 bytenr, num_bytes, parent, 1997 root_objectid, owner, offset, 1998 refs_to_add, extent_op); 1999 if ((ret < 0 && ret != -EAGAIN) || !ret) 2000 goto out; 2001 2002 /* 2003 * Ok we had -EAGAIN which means we didn't have space to insert and 2004 * inline extent ref, so just update the reference count and add a 2005 * normal backref. 2006 */ 2007 leaf = path->nodes[0]; 2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2009 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2010 refs = btrfs_extent_refs(leaf, item); 2011 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 2012 if (extent_op) 2013 __run_delayed_extent_op(extent_op, leaf, item); 2014 2015 btrfs_mark_buffer_dirty(leaf); 2016 btrfs_release_path(path); 2017 2018 path->reada = 1; 2019 path->leave_spinning = 1; 2020 /* now insert the actual backref */ 2021 ret = insert_extent_backref(trans, root->fs_info->extent_root, 2022 path, bytenr, parent, root_objectid, 2023 owner, offset, refs_to_add); 2024 if (ret) 2025 btrfs_abort_transaction(trans, root, ret); 2026 out: 2027 btrfs_free_path(path); 2028 return ret; 2029 } 2030 2031 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 2032 struct btrfs_root *root, 2033 struct btrfs_delayed_ref_node *node, 2034 struct btrfs_delayed_extent_op *extent_op, 2035 int insert_reserved) 2036 { 2037 int ret = 0; 2038 struct btrfs_delayed_data_ref *ref; 2039 struct btrfs_key ins; 2040 u64 parent = 0; 2041 u64 ref_root = 0; 2042 u64 flags = 0; 2043 2044 ins.objectid = node->bytenr; 2045 ins.offset = node->num_bytes; 2046 ins.type = BTRFS_EXTENT_ITEM_KEY; 2047 2048 ref = btrfs_delayed_node_to_data_ref(node); 2049 trace_run_delayed_data_ref(node, ref, node->action); 2050 2051 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 2052 parent = ref->parent; 2053 ref_root = ref->root; 2054 2055 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2056 if (extent_op) 2057 flags |= extent_op->flags_to_set; 2058 ret = alloc_reserved_file_extent(trans, root, 2059 parent, ref_root, flags, 2060 ref->objectid, ref->offset, 2061 &ins, node->ref_mod); 2062 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2063 ret = __btrfs_inc_extent_ref(trans, root, node, parent, 2064 ref_root, ref->objectid, 2065 ref->offset, node->ref_mod, 2066 extent_op); 2067 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2068 ret = __btrfs_free_extent(trans, root, node, parent, 2069 ref_root, ref->objectid, 2070 ref->offset, node->ref_mod, 2071 extent_op); 2072 } else { 2073 BUG(); 2074 } 2075 return ret; 2076 } 2077 2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 2079 struct extent_buffer *leaf, 2080 struct btrfs_extent_item *ei) 2081 { 2082 u64 flags = btrfs_extent_flags(leaf, ei); 2083 if (extent_op->update_flags) { 2084 flags |= extent_op->flags_to_set; 2085 btrfs_set_extent_flags(leaf, ei, flags); 2086 } 2087 2088 if (extent_op->update_key) { 2089 struct btrfs_tree_block_info *bi; 2090 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 2091 bi = (struct btrfs_tree_block_info *)(ei + 1); 2092 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 2093 } 2094 } 2095 2096 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 2097 struct btrfs_root *root, 2098 struct btrfs_delayed_ref_node *node, 2099 struct btrfs_delayed_extent_op *extent_op) 2100 { 2101 struct btrfs_key key; 2102 struct btrfs_path *path; 2103 struct btrfs_extent_item *ei; 2104 struct extent_buffer *leaf; 2105 u32 item_size; 2106 int ret; 2107 int err = 0; 2108 int metadata = !extent_op->is_data; 2109 2110 if (trans->aborted) 2111 return 0; 2112 2113 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2114 metadata = 0; 2115 2116 path = btrfs_alloc_path(); 2117 if (!path) 2118 return -ENOMEM; 2119 2120 key.objectid = node->bytenr; 2121 2122 if (metadata) { 2123 key.type = BTRFS_METADATA_ITEM_KEY; 2124 key.offset = extent_op->level; 2125 } else { 2126 key.type = BTRFS_EXTENT_ITEM_KEY; 2127 key.offset = node->num_bytes; 2128 } 2129 2130 again: 2131 path->reada = 1; 2132 path->leave_spinning = 1; 2133 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, 2134 path, 0, 1); 2135 if (ret < 0) { 2136 err = ret; 2137 goto out; 2138 } 2139 if (ret > 0) { 2140 if (metadata) { 2141 if (path->slots[0] > 0) { 2142 path->slots[0]--; 2143 btrfs_item_key_to_cpu(path->nodes[0], &key, 2144 path->slots[0]); 2145 if (key.objectid == node->bytenr && 2146 key.type == BTRFS_EXTENT_ITEM_KEY && 2147 key.offset == node->num_bytes) 2148 ret = 0; 2149 } 2150 if (ret > 0) { 2151 btrfs_release_path(path); 2152 metadata = 0; 2153 2154 key.objectid = node->bytenr; 2155 key.offset = node->num_bytes; 2156 key.type = BTRFS_EXTENT_ITEM_KEY; 2157 goto again; 2158 } 2159 } else { 2160 err = -EIO; 2161 goto out; 2162 } 2163 } 2164 2165 leaf = path->nodes[0]; 2166 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2168 if (item_size < sizeof(*ei)) { 2169 ret = convert_extent_item_v0(trans, root->fs_info->extent_root, 2170 path, (u64)-1, 0); 2171 if (ret < 0) { 2172 err = ret; 2173 goto out; 2174 } 2175 leaf = path->nodes[0]; 2176 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2177 } 2178 #endif 2179 BUG_ON(item_size < sizeof(*ei)); 2180 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2181 __run_delayed_extent_op(extent_op, leaf, ei); 2182 2183 btrfs_mark_buffer_dirty(leaf); 2184 out: 2185 btrfs_free_path(path); 2186 return err; 2187 } 2188 2189 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 2190 struct btrfs_root *root, 2191 struct btrfs_delayed_ref_node *node, 2192 struct btrfs_delayed_extent_op *extent_op, 2193 int insert_reserved) 2194 { 2195 int ret = 0; 2196 struct btrfs_delayed_tree_ref *ref; 2197 struct btrfs_key ins; 2198 u64 parent = 0; 2199 u64 ref_root = 0; 2200 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 2201 SKINNY_METADATA); 2202 2203 ref = btrfs_delayed_node_to_tree_ref(node); 2204 trace_run_delayed_tree_ref(node, ref, node->action); 2205 2206 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2207 parent = ref->parent; 2208 ref_root = ref->root; 2209 2210 ins.objectid = node->bytenr; 2211 if (skinny_metadata) { 2212 ins.offset = ref->level; 2213 ins.type = BTRFS_METADATA_ITEM_KEY; 2214 } else { 2215 ins.offset = node->num_bytes; 2216 ins.type = BTRFS_EXTENT_ITEM_KEY; 2217 } 2218 2219 BUG_ON(node->ref_mod != 1); 2220 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 2221 BUG_ON(!extent_op || !extent_op->update_flags); 2222 ret = alloc_reserved_tree_block(trans, root, 2223 parent, ref_root, 2224 extent_op->flags_to_set, 2225 &extent_op->key, 2226 ref->level, &ins, 2227 node->no_quota); 2228 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 2229 ret = __btrfs_inc_extent_ref(trans, root, node, 2230 parent, ref_root, 2231 ref->level, 0, 1, 2232 extent_op); 2233 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 2234 ret = __btrfs_free_extent(trans, root, node, 2235 parent, ref_root, 2236 ref->level, 0, 1, extent_op); 2237 } else { 2238 BUG(); 2239 } 2240 return ret; 2241 } 2242 2243 /* helper function to actually process a single delayed ref entry */ 2244 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 2245 struct btrfs_root *root, 2246 struct btrfs_delayed_ref_node *node, 2247 struct btrfs_delayed_extent_op *extent_op, 2248 int insert_reserved) 2249 { 2250 int ret = 0; 2251 2252 if (trans->aborted) { 2253 if (insert_reserved) 2254 btrfs_pin_extent(root, node->bytenr, 2255 node->num_bytes, 1); 2256 return 0; 2257 } 2258 2259 if (btrfs_delayed_ref_is_head(node)) { 2260 struct btrfs_delayed_ref_head *head; 2261 /* 2262 * we've hit the end of the chain and we were supposed 2263 * to insert this extent into the tree. But, it got 2264 * deleted before we ever needed to insert it, so all 2265 * we have to do is clean up the accounting 2266 */ 2267 BUG_ON(extent_op); 2268 head = btrfs_delayed_node_to_head(node); 2269 trace_run_delayed_ref_head(node, head, node->action); 2270 2271 if (insert_reserved) { 2272 btrfs_pin_extent(root, node->bytenr, 2273 node->num_bytes, 1); 2274 if (head->is_data) { 2275 ret = btrfs_del_csums(trans, root, 2276 node->bytenr, 2277 node->num_bytes); 2278 } 2279 } 2280 return ret; 2281 } 2282 2283 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 2284 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 2285 ret = run_delayed_tree_ref(trans, root, node, extent_op, 2286 insert_reserved); 2287 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 2288 node->type == BTRFS_SHARED_DATA_REF_KEY) 2289 ret = run_delayed_data_ref(trans, root, node, extent_op, 2290 insert_reserved); 2291 else 2292 BUG(); 2293 return ret; 2294 } 2295 2296 static inline struct btrfs_delayed_ref_node * 2297 select_delayed_ref(struct btrfs_delayed_ref_head *head) 2298 { 2299 if (list_empty(&head->ref_list)) 2300 return NULL; 2301 2302 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node, 2303 list); 2304 } 2305 2306 /* 2307 * Returns 0 on success or if called with an already aborted transaction. 2308 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 2309 */ 2310 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2311 struct btrfs_root *root, 2312 unsigned long nr) 2313 { 2314 struct btrfs_delayed_ref_root *delayed_refs; 2315 struct btrfs_delayed_ref_node *ref; 2316 struct btrfs_delayed_ref_head *locked_ref = NULL; 2317 struct btrfs_delayed_extent_op *extent_op; 2318 struct btrfs_fs_info *fs_info = root->fs_info; 2319 ktime_t start = ktime_get(); 2320 int ret; 2321 unsigned long count = 0; 2322 unsigned long actual_count = 0; 2323 int must_insert_reserved = 0; 2324 2325 delayed_refs = &trans->transaction->delayed_refs; 2326 while (1) { 2327 if (!locked_ref) { 2328 if (count >= nr) 2329 break; 2330 2331 spin_lock(&delayed_refs->lock); 2332 locked_ref = btrfs_select_ref_head(trans); 2333 if (!locked_ref) { 2334 spin_unlock(&delayed_refs->lock); 2335 break; 2336 } 2337 2338 /* grab the lock that says we are going to process 2339 * all the refs for this head */ 2340 ret = btrfs_delayed_ref_lock(trans, locked_ref); 2341 spin_unlock(&delayed_refs->lock); 2342 /* 2343 * we may have dropped the spin lock to get the head 2344 * mutex lock, and that might have given someone else 2345 * time to free the head. If that's true, it has been 2346 * removed from our list and we can move on. 2347 */ 2348 if (ret == -EAGAIN) { 2349 locked_ref = NULL; 2350 count++; 2351 continue; 2352 } 2353 } 2354 2355 spin_lock(&locked_ref->lock); 2356 2357 /* 2358 * locked_ref is the head node, so we have to go one 2359 * node back for any delayed ref updates 2360 */ 2361 ref = select_delayed_ref(locked_ref); 2362 2363 if (ref && ref->seq && 2364 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) { 2365 spin_unlock(&locked_ref->lock); 2366 btrfs_delayed_ref_unlock(locked_ref); 2367 spin_lock(&delayed_refs->lock); 2368 locked_ref->processing = 0; 2369 delayed_refs->num_heads_ready++; 2370 spin_unlock(&delayed_refs->lock); 2371 locked_ref = NULL; 2372 cond_resched(); 2373 count++; 2374 continue; 2375 } 2376 2377 /* 2378 * record the must insert reserved flag before we 2379 * drop the spin lock. 2380 */ 2381 must_insert_reserved = locked_ref->must_insert_reserved; 2382 locked_ref->must_insert_reserved = 0; 2383 2384 extent_op = locked_ref->extent_op; 2385 locked_ref->extent_op = NULL; 2386 2387 if (!ref) { 2388 2389 2390 /* All delayed refs have been processed, Go ahead 2391 * and send the head node to run_one_delayed_ref, 2392 * so that any accounting fixes can happen 2393 */ 2394 ref = &locked_ref->node; 2395 2396 if (extent_op && must_insert_reserved) { 2397 btrfs_free_delayed_extent_op(extent_op); 2398 extent_op = NULL; 2399 } 2400 2401 if (extent_op) { 2402 spin_unlock(&locked_ref->lock); 2403 ret = run_delayed_extent_op(trans, root, 2404 ref, extent_op); 2405 btrfs_free_delayed_extent_op(extent_op); 2406 2407 if (ret) { 2408 /* 2409 * Need to reset must_insert_reserved if 2410 * there was an error so the abort stuff 2411 * can cleanup the reserved space 2412 * properly. 2413 */ 2414 if (must_insert_reserved) 2415 locked_ref->must_insert_reserved = 1; 2416 locked_ref->processing = 0; 2417 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 2418 btrfs_delayed_ref_unlock(locked_ref); 2419 return ret; 2420 } 2421 continue; 2422 } 2423 2424 /* 2425 * Need to drop our head ref lock and re-aqcuire the 2426 * delayed ref lock and then re-check to make sure 2427 * nobody got added. 2428 */ 2429 spin_unlock(&locked_ref->lock); 2430 spin_lock(&delayed_refs->lock); 2431 spin_lock(&locked_ref->lock); 2432 if (!list_empty(&locked_ref->ref_list) || 2433 locked_ref->extent_op) { 2434 spin_unlock(&locked_ref->lock); 2435 spin_unlock(&delayed_refs->lock); 2436 continue; 2437 } 2438 ref->in_tree = 0; 2439 delayed_refs->num_heads--; 2440 rb_erase(&locked_ref->href_node, 2441 &delayed_refs->href_root); 2442 spin_unlock(&delayed_refs->lock); 2443 } else { 2444 actual_count++; 2445 ref->in_tree = 0; 2446 list_del(&ref->list); 2447 } 2448 atomic_dec(&delayed_refs->num_entries); 2449 2450 if (!btrfs_delayed_ref_is_head(ref)) { 2451 /* 2452 * when we play the delayed ref, also correct the 2453 * ref_mod on head 2454 */ 2455 switch (ref->action) { 2456 case BTRFS_ADD_DELAYED_REF: 2457 case BTRFS_ADD_DELAYED_EXTENT: 2458 locked_ref->node.ref_mod -= ref->ref_mod; 2459 break; 2460 case BTRFS_DROP_DELAYED_REF: 2461 locked_ref->node.ref_mod += ref->ref_mod; 2462 break; 2463 default: 2464 WARN_ON(1); 2465 } 2466 } 2467 spin_unlock(&locked_ref->lock); 2468 2469 ret = run_one_delayed_ref(trans, root, ref, extent_op, 2470 must_insert_reserved); 2471 2472 btrfs_free_delayed_extent_op(extent_op); 2473 if (ret) { 2474 locked_ref->processing = 0; 2475 btrfs_delayed_ref_unlock(locked_ref); 2476 btrfs_put_delayed_ref(ref); 2477 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret); 2478 return ret; 2479 } 2480 2481 /* 2482 * If this node is a head, that means all the refs in this head 2483 * have been dealt with, and we will pick the next head to deal 2484 * with, so we must unlock the head and drop it from the cluster 2485 * list before we release it. 2486 */ 2487 if (btrfs_delayed_ref_is_head(ref)) { 2488 if (locked_ref->is_data && 2489 locked_ref->total_ref_mod < 0) { 2490 spin_lock(&delayed_refs->lock); 2491 delayed_refs->pending_csums -= ref->num_bytes; 2492 spin_unlock(&delayed_refs->lock); 2493 } 2494 btrfs_delayed_ref_unlock(locked_ref); 2495 locked_ref = NULL; 2496 } 2497 btrfs_put_delayed_ref(ref); 2498 count++; 2499 cond_resched(); 2500 } 2501 2502 /* 2503 * We don't want to include ref heads since we can have empty ref heads 2504 * and those will drastically skew our runtime down since we just do 2505 * accounting, no actual extent tree updates. 2506 */ 2507 if (actual_count > 0) { 2508 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); 2509 u64 avg; 2510 2511 /* 2512 * We weigh the current average higher than our current runtime 2513 * to avoid large swings in the average. 2514 */ 2515 spin_lock(&delayed_refs->lock); 2516 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; 2517 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */ 2518 spin_unlock(&delayed_refs->lock); 2519 } 2520 return 0; 2521 } 2522 2523 #ifdef SCRAMBLE_DELAYED_REFS 2524 /* 2525 * Normally delayed refs get processed in ascending bytenr order. This 2526 * correlates in most cases to the order added. To expose dependencies on this 2527 * order, we start to process the tree in the middle instead of the beginning 2528 */ 2529 static u64 find_middle(struct rb_root *root) 2530 { 2531 struct rb_node *n = root->rb_node; 2532 struct btrfs_delayed_ref_node *entry; 2533 int alt = 1; 2534 u64 middle; 2535 u64 first = 0, last = 0; 2536 2537 n = rb_first(root); 2538 if (n) { 2539 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2540 first = entry->bytenr; 2541 } 2542 n = rb_last(root); 2543 if (n) { 2544 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2545 last = entry->bytenr; 2546 } 2547 n = root->rb_node; 2548 2549 while (n) { 2550 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2551 WARN_ON(!entry->in_tree); 2552 2553 middle = entry->bytenr; 2554 2555 if (alt) 2556 n = n->rb_left; 2557 else 2558 n = n->rb_right; 2559 2560 alt = 1 - alt; 2561 } 2562 return middle; 2563 } 2564 #endif 2565 2566 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads) 2567 { 2568 u64 num_bytes; 2569 2570 num_bytes = heads * (sizeof(struct btrfs_extent_item) + 2571 sizeof(struct btrfs_extent_inline_ref)); 2572 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) 2573 num_bytes += heads * sizeof(struct btrfs_tree_block_info); 2574 2575 /* 2576 * We don't ever fill up leaves all the way so multiply by 2 just to be 2577 * closer to what we're really going to want to ouse. 2578 */ 2579 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root)); 2580 } 2581 2582 /* 2583 * Takes the number of bytes to be csumm'ed and figures out how many leaves it 2584 * would require to store the csums for that many bytes. 2585 */ 2586 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes) 2587 { 2588 u64 csum_size; 2589 u64 num_csums_per_leaf; 2590 u64 num_csums; 2591 2592 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item); 2593 num_csums_per_leaf = div64_u64(csum_size, 2594 (u64)btrfs_super_csum_size(root->fs_info->super_copy)); 2595 num_csums = div64_u64(csum_bytes, root->sectorsize); 2596 num_csums += num_csums_per_leaf - 1; 2597 num_csums = div64_u64(num_csums, num_csums_per_leaf); 2598 return num_csums; 2599 } 2600 2601 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 2602 struct btrfs_root *root) 2603 { 2604 struct btrfs_block_rsv *global_rsv; 2605 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; 2606 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; 2607 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs; 2608 u64 num_bytes, num_dirty_bgs_bytes; 2609 int ret = 0; 2610 2611 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 2612 num_heads = heads_to_leaves(root, num_heads); 2613 if (num_heads > 1) 2614 num_bytes += (num_heads - 1) * root->nodesize; 2615 num_bytes <<= 1; 2616 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize; 2617 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root, 2618 num_dirty_bgs); 2619 global_rsv = &root->fs_info->global_block_rsv; 2620 2621 /* 2622 * If we can't allocate any more chunks lets make sure we have _lots_ of 2623 * wiggle room since running delayed refs can create more delayed refs. 2624 */ 2625 if (global_rsv->space_info->full) { 2626 num_dirty_bgs_bytes <<= 1; 2627 num_bytes <<= 1; 2628 } 2629 2630 spin_lock(&global_rsv->lock); 2631 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) 2632 ret = 1; 2633 spin_unlock(&global_rsv->lock); 2634 return ret; 2635 } 2636 2637 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 2638 struct btrfs_root *root) 2639 { 2640 struct btrfs_fs_info *fs_info = root->fs_info; 2641 u64 num_entries = 2642 atomic_read(&trans->transaction->delayed_refs.num_entries); 2643 u64 avg_runtime; 2644 u64 val; 2645 2646 smp_mb(); 2647 avg_runtime = fs_info->avg_delayed_ref_runtime; 2648 val = num_entries * avg_runtime; 2649 if (num_entries * avg_runtime >= NSEC_PER_SEC) 2650 return 1; 2651 if (val >= NSEC_PER_SEC / 2) 2652 return 2; 2653 2654 return btrfs_check_space_for_delayed_refs(trans, root); 2655 } 2656 2657 struct async_delayed_refs { 2658 struct btrfs_root *root; 2659 int count; 2660 int error; 2661 int sync; 2662 struct completion wait; 2663 struct btrfs_work work; 2664 }; 2665 2666 static void delayed_ref_async_start(struct btrfs_work *work) 2667 { 2668 struct async_delayed_refs *async; 2669 struct btrfs_trans_handle *trans; 2670 int ret; 2671 2672 async = container_of(work, struct async_delayed_refs, work); 2673 2674 trans = btrfs_join_transaction(async->root); 2675 if (IS_ERR(trans)) { 2676 async->error = PTR_ERR(trans); 2677 goto done; 2678 } 2679 2680 /* 2681 * trans->sync means that when we call end_transaciton, we won't 2682 * wait on delayed refs 2683 */ 2684 trans->sync = true; 2685 ret = btrfs_run_delayed_refs(trans, async->root, async->count); 2686 if (ret) 2687 async->error = ret; 2688 2689 ret = btrfs_end_transaction(trans, async->root); 2690 if (ret && !async->error) 2691 async->error = ret; 2692 done: 2693 if (async->sync) 2694 complete(&async->wait); 2695 else 2696 kfree(async); 2697 } 2698 2699 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 2700 unsigned long count, int wait) 2701 { 2702 struct async_delayed_refs *async; 2703 int ret; 2704 2705 async = kmalloc(sizeof(*async), GFP_NOFS); 2706 if (!async) 2707 return -ENOMEM; 2708 2709 async->root = root->fs_info->tree_root; 2710 async->count = count; 2711 async->error = 0; 2712 if (wait) 2713 async->sync = 1; 2714 else 2715 async->sync = 0; 2716 init_completion(&async->wait); 2717 2718 btrfs_init_work(&async->work, btrfs_extent_refs_helper, 2719 delayed_ref_async_start, NULL, NULL); 2720 2721 btrfs_queue_work(root->fs_info->extent_workers, &async->work); 2722 2723 if (wait) { 2724 wait_for_completion(&async->wait); 2725 ret = async->error; 2726 kfree(async); 2727 return ret; 2728 } 2729 return 0; 2730 } 2731 2732 /* 2733 * this starts processing the delayed reference count updates and 2734 * extent insertions we have queued up so far. count can be 2735 * 0, which means to process everything in the tree at the start 2736 * of the run (but not newly added entries), or it can be some target 2737 * number you'd like to process. 2738 * 2739 * Returns 0 on success or if called with an aborted transaction 2740 * Returns <0 on error and aborts the transaction 2741 */ 2742 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2743 struct btrfs_root *root, unsigned long count) 2744 { 2745 struct rb_node *node; 2746 struct btrfs_delayed_ref_root *delayed_refs; 2747 struct btrfs_delayed_ref_head *head; 2748 int ret; 2749 int run_all = count == (unsigned long)-1; 2750 2751 /* We'll clean this up in btrfs_cleanup_transaction */ 2752 if (trans->aborted) 2753 return 0; 2754 2755 if (root == root->fs_info->extent_root) 2756 root = root->fs_info->tree_root; 2757 2758 delayed_refs = &trans->transaction->delayed_refs; 2759 if (count == 0) 2760 count = atomic_read(&delayed_refs->num_entries) * 2; 2761 2762 again: 2763 #ifdef SCRAMBLE_DELAYED_REFS 2764 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2765 #endif 2766 ret = __btrfs_run_delayed_refs(trans, root, count); 2767 if (ret < 0) { 2768 btrfs_abort_transaction(trans, root, ret); 2769 return ret; 2770 } 2771 2772 if (run_all) { 2773 if (!list_empty(&trans->new_bgs)) 2774 btrfs_create_pending_block_groups(trans, root); 2775 2776 spin_lock(&delayed_refs->lock); 2777 node = rb_first(&delayed_refs->href_root); 2778 if (!node) { 2779 spin_unlock(&delayed_refs->lock); 2780 goto out; 2781 } 2782 count = (unsigned long)-1; 2783 2784 while (node) { 2785 head = rb_entry(node, struct btrfs_delayed_ref_head, 2786 href_node); 2787 if (btrfs_delayed_ref_is_head(&head->node)) { 2788 struct btrfs_delayed_ref_node *ref; 2789 2790 ref = &head->node; 2791 atomic_inc(&ref->refs); 2792 2793 spin_unlock(&delayed_refs->lock); 2794 /* 2795 * Mutex was contended, block until it's 2796 * released and try again 2797 */ 2798 mutex_lock(&head->mutex); 2799 mutex_unlock(&head->mutex); 2800 2801 btrfs_put_delayed_ref(ref); 2802 cond_resched(); 2803 goto again; 2804 } else { 2805 WARN_ON(1); 2806 } 2807 node = rb_next(node); 2808 } 2809 spin_unlock(&delayed_refs->lock); 2810 cond_resched(); 2811 goto again; 2812 } 2813 out: 2814 assert_qgroups_uptodate(trans); 2815 return 0; 2816 } 2817 2818 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2819 struct btrfs_root *root, 2820 u64 bytenr, u64 num_bytes, u64 flags, 2821 int level, int is_data) 2822 { 2823 struct btrfs_delayed_extent_op *extent_op; 2824 int ret; 2825 2826 extent_op = btrfs_alloc_delayed_extent_op(); 2827 if (!extent_op) 2828 return -ENOMEM; 2829 2830 extent_op->flags_to_set = flags; 2831 extent_op->update_flags = 1; 2832 extent_op->update_key = 0; 2833 extent_op->is_data = is_data ? 1 : 0; 2834 extent_op->level = level; 2835 2836 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr, 2837 num_bytes, extent_op); 2838 if (ret) 2839 btrfs_free_delayed_extent_op(extent_op); 2840 return ret; 2841 } 2842 2843 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root, 2845 struct btrfs_path *path, 2846 u64 objectid, u64 offset, u64 bytenr) 2847 { 2848 struct btrfs_delayed_ref_head *head; 2849 struct btrfs_delayed_ref_node *ref; 2850 struct btrfs_delayed_data_ref *data_ref; 2851 struct btrfs_delayed_ref_root *delayed_refs; 2852 int ret = 0; 2853 2854 delayed_refs = &trans->transaction->delayed_refs; 2855 spin_lock(&delayed_refs->lock); 2856 head = btrfs_find_delayed_ref_head(trans, bytenr); 2857 if (!head) { 2858 spin_unlock(&delayed_refs->lock); 2859 return 0; 2860 } 2861 2862 if (!mutex_trylock(&head->mutex)) { 2863 atomic_inc(&head->node.refs); 2864 spin_unlock(&delayed_refs->lock); 2865 2866 btrfs_release_path(path); 2867 2868 /* 2869 * Mutex was contended, block until it's released and let 2870 * caller try again 2871 */ 2872 mutex_lock(&head->mutex); 2873 mutex_unlock(&head->mutex); 2874 btrfs_put_delayed_ref(&head->node); 2875 return -EAGAIN; 2876 } 2877 spin_unlock(&delayed_refs->lock); 2878 2879 spin_lock(&head->lock); 2880 list_for_each_entry(ref, &head->ref_list, list) { 2881 /* If it's a shared ref we know a cross reference exists */ 2882 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2883 ret = 1; 2884 break; 2885 } 2886 2887 data_ref = btrfs_delayed_node_to_data_ref(ref); 2888 2889 /* 2890 * If our ref doesn't match the one we're currently looking at 2891 * then we have a cross reference. 2892 */ 2893 if (data_ref->root != root->root_key.objectid || 2894 data_ref->objectid != objectid || 2895 data_ref->offset != offset) { 2896 ret = 1; 2897 break; 2898 } 2899 } 2900 spin_unlock(&head->lock); 2901 mutex_unlock(&head->mutex); 2902 return ret; 2903 } 2904 2905 static noinline int check_committed_ref(struct btrfs_trans_handle *trans, 2906 struct btrfs_root *root, 2907 struct btrfs_path *path, 2908 u64 objectid, u64 offset, u64 bytenr) 2909 { 2910 struct btrfs_root *extent_root = root->fs_info->extent_root; 2911 struct extent_buffer *leaf; 2912 struct btrfs_extent_data_ref *ref; 2913 struct btrfs_extent_inline_ref *iref; 2914 struct btrfs_extent_item *ei; 2915 struct btrfs_key key; 2916 u32 item_size; 2917 int ret; 2918 2919 key.objectid = bytenr; 2920 key.offset = (u64)-1; 2921 key.type = BTRFS_EXTENT_ITEM_KEY; 2922 2923 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2924 if (ret < 0) 2925 goto out; 2926 BUG_ON(ret == 0); /* Corruption */ 2927 2928 ret = -ENOENT; 2929 if (path->slots[0] == 0) 2930 goto out; 2931 2932 path->slots[0]--; 2933 leaf = path->nodes[0]; 2934 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2935 2936 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2937 goto out; 2938 2939 ret = 1; 2940 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 2941 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 2942 if (item_size < sizeof(*ei)) { 2943 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 2944 goto out; 2945 } 2946 #endif 2947 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2948 2949 if (item_size != sizeof(*ei) + 2950 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) 2951 goto out; 2952 2953 if (btrfs_extent_generation(leaf, ei) <= 2954 btrfs_root_last_snapshot(&root->root_item)) 2955 goto out; 2956 2957 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2958 if (btrfs_extent_inline_ref_type(leaf, iref) != 2959 BTRFS_EXTENT_DATA_REF_KEY) 2960 goto out; 2961 2962 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2963 if (btrfs_extent_refs(leaf, ei) != 2964 btrfs_extent_data_ref_count(leaf, ref) || 2965 btrfs_extent_data_ref_root(leaf, ref) != 2966 root->root_key.objectid || 2967 btrfs_extent_data_ref_objectid(leaf, ref) != objectid || 2968 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2969 goto out; 2970 2971 ret = 0; 2972 out: 2973 return ret; 2974 } 2975 2976 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 2977 struct btrfs_root *root, 2978 u64 objectid, u64 offset, u64 bytenr) 2979 { 2980 struct btrfs_path *path; 2981 int ret; 2982 int ret2; 2983 2984 path = btrfs_alloc_path(); 2985 if (!path) 2986 return -ENOENT; 2987 2988 do { 2989 ret = check_committed_ref(trans, root, path, objectid, 2990 offset, bytenr); 2991 if (ret && ret != -ENOENT) 2992 goto out; 2993 2994 ret2 = check_delayed_ref(trans, root, path, objectid, 2995 offset, bytenr); 2996 } while (ret2 == -EAGAIN); 2997 2998 if (ret2 && ret2 != -ENOENT) { 2999 ret = ret2; 3000 goto out; 3001 } 3002 3003 if (ret != -ENOENT || ret2 != -ENOENT) 3004 ret = 0; 3005 out: 3006 btrfs_free_path(path); 3007 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 3008 WARN_ON(ret > 0); 3009 return ret; 3010 } 3011 3012 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 3013 struct btrfs_root *root, 3014 struct extent_buffer *buf, 3015 int full_backref, int inc) 3016 { 3017 u64 bytenr; 3018 u64 num_bytes; 3019 u64 parent; 3020 u64 ref_root; 3021 u32 nritems; 3022 struct btrfs_key key; 3023 struct btrfs_file_extent_item *fi; 3024 int i; 3025 int level; 3026 int ret = 0; 3027 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *, 3028 u64, u64, u64, u64, u64, u64, int); 3029 3030 3031 if (btrfs_test_is_dummy_root(root)) 3032 return 0; 3033 3034 ref_root = btrfs_header_owner(buf); 3035 nritems = btrfs_header_nritems(buf); 3036 level = btrfs_header_level(buf); 3037 3038 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) 3039 return 0; 3040 3041 if (inc) 3042 process_func = btrfs_inc_extent_ref; 3043 else 3044 process_func = btrfs_free_extent; 3045 3046 if (full_backref) 3047 parent = buf->start; 3048 else 3049 parent = 0; 3050 3051 for (i = 0; i < nritems; i++) { 3052 if (level == 0) { 3053 btrfs_item_key_to_cpu(buf, &key, i); 3054 if (key.type != BTRFS_EXTENT_DATA_KEY) 3055 continue; 3056 fi = btrfs_item_ptr(buf, i, 3057 struct btrfs_file_extent_item); 3058 if (btrfs_file_extent_type(buf, fi) == 3059 BTRFS_FILE_EXTENT_INLINE) 3060 continue; 3061 bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 3062 if (bytenr == 0) 3063 continue; 3064 3065 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 3066 key.offset -= btrfs_file_extent_offset(buf, fi); 3067 ret = process_func(trans, root, bytenr, num_bytes, 3068 parent, ref_root, key.objectid, 3069 key.offset, 1); 3070 if (ret) 3071 goto fail; 3072 } else { 3073 bytenr = btrfs_node_blockptr(buf, i); 3074 num_bytes = root->nodesize; 3075 ret = process_func(trans, root, bytenr, num_bytes, 3076 parent, ref_root, level - 1, 0, 3077 1); 3078 if (ret) 3079 goto fail; 3080 } 3081 } 3082 return 0; 3083 fail: 3084 return ret; 3085 } 3086 3087 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3088 struct extent_buffer *buf, int full_backref) 3089 { 3090 return __btrfs_mod_ref(trans, root, buf, full_backref, 1); 3091 } 3092 3093 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3094 struct extent_buffer *buf, int full_backref) 3095 { 3096 return __btrfs_mod_ref(trans, root, buf, full_backref, 0); 3097 } 3098 3099 static int write_one_cache_group(struct btrfs_trans_handle *trans, 3100 struct btrfs_root *root, 3101 struct btrfs_path *path, 3102 struct btrfs_block_group_cache *cache) 3103 { 3104 int ret; 3105 struct btrfs_root *extent_root = root->fs_info->extent_root; 3106 unsigned long bi; 3107 struct extent_buffer *leaf; 3108 3109 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); 3110 if (ret) { 3111 if (ret > 0) 3112 ret = -ENOENT; 3113 goto fail; 3114 } 3115 3116 leaf = path->nodes[0]; 3117 bi = btrfs_item_ptr_offset(leaf, path->slots[0]); 3118 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); 3119 btrfs_mark_buffer_dirty(leaf); 3120 fail: 3121 btrfs_release_path(path); 3122 return ret; 3123 3124 } 3125 3126 static struct btrfs_block_group_cache * 3127 next_block_group(struct btrfs_root *root, 3128 struct btrfs_block_group_cache *cache) 3129 { 3130 struct rb_node *node; 3131 3132 spin_lock(&root->fs_info->block_group_cache_lock); 3133 3134 /* If our block group was removed, we need a full search. */ 3135 if (RB_EMPTY_NODE(&cache->cache_node)) { 3136 const u64 next_bytenr = cache->key.objectid + cache->key.offset; 3137 3138 spin_unlock(&root->fs_info->block_group_cache_lock); 3139 btrfs_put_block_group(cache); 3140 cache = btrfs_lookup_first_block_group(root->fs_info, 3141 next_bytenr); 3142 return cache; 3143 } 3144 node = rb_next(&cache->cache_node); 3145 btrfs_put_block_group(cache); 3146 if (node) { 3147 cache = rb_entry(node, struct btrfs_block_group_cache, 3148 cache_node); 3149 btrfs_get_block_group(cache); 3150 } else 3151 cache = NULL; 3152 spin_unlock(&root->fs_info->block_group_cache_lock); 3153 return cache; 3154 } 3155 3156 static int cache_save_setup(struct btrfs_block_group_cache *block_group, 3157 struct btrfs_trans_handle *trans, 3158 struct btrfs_path *path) 3159 { 3160 struct btrfs_root *root = block_group->fs_info->tree_root; 3161 struct inode *inode = NULL; 3162 u64 alloc_hint = 0; 3163 int dcs = BTRFS_DC_ERROR; 3164 u64 num_pages = 0; 3165 int retries = 0; 3166 int ret = 0; 3167 3168 /* 3169 * If this block group is smaller than 100 megs don't bother caching the 3170 * block group. 3171 */ 3172 if (block_group->key.offset < (100 * 1024 * 1024)) { 3173 spin_lock(&block_group->lock); 3174 block_group->disk_cache_state = BTRFS_DC_WRITTEN; 3175 spin_unlock(&block_group->lock); 3176 return 0; 3177 } 3178 3179 if (trans->aborted) 3180 return 0; 3181 again: 3182 inode = lookup_free_space_inode(root, block_group, path); 3183 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { 3184 ret = PTR_ERR(inode); 3185 btrfs_release_path(path); 3186 goto out; 3187 } 3188 3189 if (IS_ERR(inode)) { 3190 BUG_ON(retries); 3191 retries++; 3192 3193 if (block_group->ro) 3194 goto out_free; 3195 3196 ret = create_free_space_inode(root, trans, block_group, path); 3197 if (ret) 3198 goto out_free; 3199 goto again; 3200 } 3201 3202 /* We've already setup this transaction, go ahead and exit */ 3203 if (block_group->cache_generation == trans->transid && 3204 i_size_read(inode)) { 3205 dcs = BTRFS_DC_SETUP; 3206 goto out_put; 3207 } 3208 3209 /* 3210 * We want to set the generation to 0, that way if anything goes wrong 3211 * from here on out we know not to trust this cache when we load up next 3212 * time. 3213 */ 3214 BTRFS_I(inode)->generation = 0; 3215 ret = btrfs_update_inode(trans, root, inode); 3216 if (ret) { 3217 /* 3218 * So theoretically we could recover from this, simply set the 3219 * super cache generation to 0 so we know to invalidate the 3220 * cache, but then we'd have to keep track of the block groups 3221 * that fail this way so we know we _have_ to reset this cache 3222 * before the next commit or risk reading stale cache. So to 3223 * limit our exposure to horrible edge cases lets just abort the 3224 * transaction, this only happens in really bad situations 3225 * anyway. 3226 */ 3227 btrfs_abort_transaction(trans, root, ret); 3228 goto out_put; 3229 } 3230 WARN_ON(ret); 3231 3232 if (i_size_read(inode) > 0) { 3233 ret = btrfs_check_trunc_cache_free_space(root, 3234 &root->fs_info->global_block_rsv); 3235 if (ret) 3236 goto out_put; 3237 3238 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode); 3239 if (ret) 3240 goto out_put; 3241 } 3242 3243 spin_lock(&block_group->lock); 3244 if (block_group->cached != BTRFS_CACHE_FINISHED || 3245 !btrfs_test_opt(root, SPACE_CACHE)) { 3246 /* 3247 * don't bother trying to write stuff out _if_ 3248 * a) we're not cached, 3249 * b) we're with nospace_cache mount option. 3250 */ 3251 dcs = BTRFS_DC_WRITTEN; 3252 spin_unlock(&block_group->lock); 3253 goto out_put; 3254 } 3255 spin_unlock(&block_group->lock); 3256 3257 /* 3258 * Try to preallocate enough space based on how big the block group is. 3259 * Keep in mind this has to include any pinned space which could end up 3260 * taking up quite a bit since it's not folded into the other space 3261 * cache. 3262 */ 3263 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024); 3264 if (!num_pages) 3265 num_pages = 1; 3266 3267 num_pages *= 16; 3268 num_pages *= PAGE_CACHE_SIZE; 3269 3270 ret = btrfs_check_data_free_space(inode, num_pages, num_pages); 3271 if (ret) 3272 goto out_put; 3273 3274 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, 3275 num_pages, num_pages, 3276 &alloc_hint); 3277 if (!ret) 3278 dcs = BTRFS_DC_SETUP; 3279 btrfs_free_reserved_data_space(inode, num_pages); 3280 3281 out_put: 3282 iput(inode); 3283 out_free: 3284 btrfs_release_path(path); 3285 out: 3286 spin_lock(&block_group->lock); 3287 if (!ret && dcs == BTRFS_DC_SETUP) 3288 block_group->cache_generation = trans->transid; 3289 block_group->disk_cache_state = dcs; 3290 spin_unlock(&block_group->lock); 3291 3292 return ret; 3293 } 3294 3295 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, 3296 struct btrfs_root *root) 3297 { 3298 struct btrfs_block_group_cache *cache, *tmp; 3299 struct btrfs_transaction *cur_trans = trans->transaction; 3300 struct btrfs_path *path; 3301 3302 if (list_empty(&cur_trans->dirty_bgs) || 3303 !btrfs_test_opt(root, SPACE_CACHE)) 3304 return 0; 3305 3306 path = btrfs_alloc_path(); 3307 if (!path) 3308 return -ENOMEM; 3309 3310 /* Could add new block groups, use _safe just in case */ 3311 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, 3312 dirty_list) { 3313 if (cache->disk_cache_state == BTRFS_DC_CLEAR) 3314 cache_save_setup(cache, trans, path); 3315 } 3316 3317 btrfs_free_path(path); 3318 return 0; 3319 } 3320 3321 /* 3322 * transaction commit does final block group cache writeback during a 3323 * critical section where nothing is allowed to change the FS. This is 3324 * required in order for the cache to actually match the block group, 3325 * but can introduce a lot of latency into the commit. 3326 * 3327 * So, btrfs_start_dirty_block_groups is here to kick off block group 3328 * cache IO. There's a chance we'll have to redo some of it if the 3329 * block group changes again during the commit, but it greatly reduces 3330 * the commit latency by getting rid of the easy block groups while 3331 * we're still allowing others to join the commit. 3332 */ 3333 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans, 3334 struct btrfs_root *root) 3335 { 3336 struct btrfs_block_group_cache *cache; 3337 struct btrfs_transaction *cur_trans = trans->transaction; 3338 int ret = 0; 3339 int should_put; 3340 struct btrfs_path *path = NULL; 3341 LIST_HEAD(dirty); 3342 struct list_head *io = &cur_trans->io_bgs; 3343 int num_started = 0; 3344 int loops = 0; 3345 3346 spin_lock(&cur_trans->dirty_bgs_lock); 3347 if (list_empty(&cur_trans->dirty_bgs)) { 3348 spin_unlock(&cur_trans->dirty_bgs_lock); 3349 return 0; 3350 } 3351 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3352 spin_unlock(&cur_trans->dirty_bgs_lock); 3353 3354 again: 3355 /* 3356 * make sure all the block groups on our dirty list actually 3357 * exist 3358 */ 3359 btrfs_create_pending_block_groups(trans, root); 3360 3361 if (!path) { 3362 path = btrfs_alloc_path(); 3363 if (!path) 3364 return -ENOMEM; 3365 } 3366 3367 /* 3368 * cache_write_mutex is here only to save us from balance or automatic 3369 * removal of empty block groups deleting this block group while we are 3370 * writing out the cache 3371 */ 3372 mutex_lock(&trans->transaction->cache_write_mutex); 3373 while (!list_empty(&dirty)) { 3374 cache = list_first_entry(&dirty, 3375 struct btrfs_block_group_cache, 3376 dirty_list); 3377 /* 3378 * this can happen if something re-dirties a block 3379 * group that is already under IO. Just wait for it to 3380 * finish and then do it all again 3381 */ 3382 if (!list_empty(&cache->io_list)) { 3383 list_del_init(&cache->io_list); 3384 btrfs_wait_cache_io(root, trans, cache, 3385 &cache->io_ctl, path, 3386 cache->key.objectid); 3387 btrfs_put_block_group(cache); 3388 } 3389 3390 3391 /* 3392 * btrfs_wait_cache_io uses the cache->dirty_list to decide 3393 * if it should update the cache_state. Don't delete 3394 * until after we wait. 3395 * 3396 * Since we're not running in the commit critical section 3397 * we need the dirty_bgs_lock to protect from update_block_group 3398 */ 3399 spin_lock(&cur_trans->dirty_bgs_lock); 3400 list_del_init(&cache->dirty_list); 3401 spin_unlock(&cur_trans->dirty_bgs_lock); 3402 3403 should_put = 1; 3404 3405 cache_save_setup(cache, trans, path); 3406 3407 if (cache->disk_cache_state == BTRFS_DC_SETUP) { 3408 cache->io_ctl.inode = NULL; 3409 ret = btrfs_write_out_cache(root, trans, cache, path); 3410 if (ret == 0 && cache->io_ctl.inode) { 3411 num_started++; 3412 should_put = 0; 3413 3414 /* 3415 * the cache_write_mutex is protecting 3416 * the io_list 3417 */ 3418 list_add_tail(&cache->io_list, io); 3419 } else { 3420 /* 3421 * if we failed to write the cache, the 3422 * generation will be bad and life goes on 3423 */ 3424 ret = 0; 3425 } 3426 } 3427 if (!ret) { 3428 ret = write_one_cache_group(trans, root, path, cache); 3429 /* 3430 * Our block group might still be attached to the list 3431 * of new block groups in the transaction handle of some 3432 * other task (struct btrfs_trans_handle->new_bgs). This 3433 * means its block group item isn't yet in the extent 3434 * tree. If this happens ignore the error, as we will 3435 * try again later in the critical section of the 3436 * transaction commit. 3437 */ 3438 if (ret == -ENOENT) { 3439 ret = 0; 3440 spin_lock(&cur_trans->dirty_bgs_lock); 3441 if (list_empty(&cache->dirty_list)) { 3442 list_add_tail(&cache->dirty_list, 3443 &cur_trans->dirty_bgs); 3444 btrfs_get_block_group(cache); 3445 } 3446 spin_unlock(&cur_trans->dirty_bgs_lock); 3447 } else if (ret) { 3448 btrfs_abort_transaction(trans, root, ret); 3449 } 3450 } 3451 3452 /* if its not on the io list, we need to put the block group */ 3453 if (should_put) 3454 btrfs_put_block_group(cache); 3455 3456 if (ret) 3457 break; 3458 3459 /* 3460 * Avoid blocking other tasks for too long. It might even save 3461 * us from writing caches for block groups that are going to be 3462 * removed. 3463 */ 3464 mutex_unlock(&trans->transaction->cache_write_mutex); 3465 mutex_lock(&trans->transaction->cache_write_mutex); 3466 } 3467 mutex_unlock(&trans->transaction->cache_write_mutex); 3468 3469 /* 3470 * go through delayed refs for all the stuff we've just kicked off 3471 * and then loop back (just once) 3472 */ 3473 ret = btrfs_run_delayed_refs(trans, root, 0); 3474 if (!ret && loops == 0) { 3475 loops++; 3476 spin_lock(&cur_trans->dirty_bgs_lock); 3477 list_splice_init(&cur_trans->dirty_bgs, &dirty); 3478 /* 3479 * dirty_bgs_lock protects us from concurrent block group 3480 * deletes too (not just cache_write_mutex). 3481 */ 3482 if (!list_empty(&dirty)) { 3483 spin_unlock(&cur_trans->dirty_bgs_lock); 3484 goto again; 3485 } 3486 spin_unlock(&cur_trans->dirty_bgs_lock); 3487 } 3488 3489 btrfs_free_path(path); 3490 return ret; 3491 } 3492 3493 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3494 struct btrfs_root *root) 3495 { 3496 struct btrfs_block_group_cache *cache; 3497 struct btrfs_transaction *cur_trans = trans->transaction; 3498 int ret = 0; 3499 int should_put; 3500 struct btrfs_path *path; 3501 struct list_head *io = &cur_trans->io_bgs; 3502 int num_started = 0; 3503 3504 path = btrfs_alloc_path(); 3505 if (!path) 3506 return -ENOMEM; 3507 3508 /* 3509 * We don't need the lock here since we are protected by the transaction 3510 * commit. We want to do the cache_save_setup first and then run the 3511 * delayed refs to make sure we have the best chance at doing this all 3512 * in one shot. 3513 */ 3514 while (!list_empty(&cur_trans->dirty_bgs)) { 3515 cache = list_first_entry(&cur_trans->dirty_bgs, 3516 struct btrfs_block_group_cache, 3517 dirty_list); 3518 3519 /* 3520 * this can happen if cache_save_setup re-dirties a block 3521 * group that is already under IO. Just wait for it to 3522 * finish and then do it all again 3523 */ 3524 if (!list_empty(&cache->io_list)) { 3525 list_del_init(&cache->io_list); 3526 btrfs_wait_cache_io(root, trans, cache, 3527 &cache->io_ctl, path, 3528 cache->key.objectid); 3529 btrfs_put_block_group(cache); 3530 } 3531 3532 /* 3533 * don't remove from the dirty list until after we've waited 3534 * on any pending IO 3535 */ 3536 list_del_init(&cache->dirty_list); 3537 should_put = 1; 3538 3539 cache_save_setup(cache, trans, path); 3540 3541 if (!ret) 3542 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1); 3543 3544 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { 3545 cache->io_ctl.inode = NULL; 3546 ret = btrfs_write_out_cache(root, trans, cache, path); 3547 if (ret == 0 && cache->io_ctl.inode) { 3548 num_started++; 3549 should_put = 0; 3550 list_add_tail(&cache->io_list, io); 3551 } else { 3552 /* 3553 * if we failed to write the cache, the 3554 * generation will be bad and life goes on 3555 */ 3556 ret = 0; 3557 } 3558 } 3559 if (!ret) { 3560 ret = write_one_cache_group(trans, root, path, cache); 3561 if (ret) 3562 btrfs_abort_transaction(trans, root, ret); 3563 } 3564 3565 /* if its not on the io list, we need to put the block group */ 3566 if (should_put) 3567 btrfs_put_block_group(cache); 3568 } 3569 3570 while (!list_empty(io)) { 3571 cache = list_first_entry(io, struct btrfs_block_group_cache, 3572 io_list); 3573 list_del_init(&cache->io_list); 3574 btrfs_wait_cache_io(root, trans, cache, 3575 &cache->io_ctl, path, cache->key.objectid); 3576 btrfs_put_block_group(cache); 3577 } 3578 3579 btrfs_free_path(path); 3580 return ret; 3581 } 3582 3583 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr) 3584 { 3585 struct btrfs_block_group_cache *block_group; 3586 int readonly = 0; 3587 3588 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 3589 if (!block_group || block_group->ro) 3590 readonly = 1; 3591 if (block_group) 3592 btrfs_put_block_group(block_group); 3593 return readonly; 3594 } 3595 3596 static const char *alloc_name(u64 flags) 3597 { 3598 switch (flags) { 3599 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: 3600 return "mixed"; 3601 case BTRFS_BLOCK_GROUP_METADATA: 3602 return "metadata"; 3603 case BTRFS_BLOCK_GROUP_DATA: 3604 return "data"; 3605 case BTRFS_BLOCK_GROUP_SYSTEM: 3606 return "system"; 3607 default: 3608 WARN_ON(1); 3609 return "invalid-combination"; 3610 }; 3611 } 3612 3613 static int update_space_info(struct btrfs_fs_info *info, u64 flags, 3614 u64 total_bytes, u64 bytes_used, 3615 struct btrfs_space_info **space_info) 3616 { 3617 struct btrfs_space_info *found; 3618 int i; 3619 int factor; 3620 int ret; 3621 3622 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3623 BTRFS_BLOCK_GROUP_RAID10)) 3624 factor = 2; 3625 else 3626 factor = 1; 3627 3628 found = __find_space_info(info, flags); 3629 if (found) { 3630 spin_lock(&found->lock); 3631 found->total_bytes += total_bytes; 3632 found->disk_total += total_bytes * factor; 3633 found->bytes_used += bytes_used; 3634 found->disk_used += bytes_used * factor; 3635 if (total_bytes > 0) 3636 found->full = 0; 3637 spin_unlock(&found->lock); 3638 *space_info = found; 3639 return 0; 3640 } 3641 found = kzalloc(sizeof(*found), GFP_NOFS); 3642 if (!found) 3643 return -ENOMEM; 3644 3645 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL); 3646 if (ret) { 3647 kfree(found); 3648 return ret; 3649 } 3650 3651 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 3652 INIT_LIST_HEAD(&found->block_groups[i]); 3653 init_rwsem(&found->groups_sem); 3654 spin_lock_init(&found->lock); 3655 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; 3656 found->total_bytes = total_bytes; 3657 found->disk_total = total_bytes * factor; 3658 found->bytes_used = bytes_used; 3659 found->disk_used = bytes_used * factor; 3660 found->bytes_pinned = 0; 3661 found->bytes_reserved = 0; 3662 found->bytes_readonly = 0; 3663 found->bytes_may_use = 0; 3664 if (total_bytes > 0) 3665 found->full = 0; 3666 else 3667 found->full = 1; 3668 found->force_alloc = CHUNK_ALLOC_NO_FORCE; 3669 found->chunk_alloc = 0; 3670 found->flush = 0; 3671 init_waitqueue_head(&found->wait); 3672 INIT_LIST_HEAD(&found->ro_bgs); 3673 3674 ret = kobject_init_and_add(&found->kobj, &space_info_ktype, 3675 info->space_info_kobj, "%s", 3676 alloc_name(found->flags)); 3677 if (ret) { 3678 kfree(found); 3679 return ret; 3680 } 3681 3682 *space_info = found; 3683 list_add_rcu(&found->list, &info->space_info); 3684 if (flags & BTRFS_BLOCK_GROUP_DATA) 3685 info->data_sinfo = found; 3686 3687 return ret; 3688 } 3689 3690 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 3691 { 3692 u64 extra_flags = chunk_to_extended(flags) & 3693 BTRFS_EXTENDED_PROFILE_MASK; 3694 3695 write_seqlock(&fs_info->profiles_lock); 3696 if (flags & BTRFS_BLOCK_GROUP_DATA) 3697 fs_info->avail_data_alloc_bits |= extra_flags; 3698 if (flags & BTRFS_BLOCK_GROUP_METADATA) 3699 fs_info->avail_metadata_alloc_bits |= extra_flags; 3700 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3701 fs_info->avail_system_alloc_bits |= extra_flags; 3702 write_sequnlock(&fs_info->profiles_lock); 3703 } 3704 3705 /* 3706 * returns target flags in extended format or 0 if restripe for this 3707 * chunk_type is not in progress 3708 * 3709 * should be called with either volume_mutex or balance_lock held 3710 */ 3711 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) 3712 { 3713 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3714 u64 target = 0; 3715 3716 if (!bctl) 3717 return 0; 3718 3719 if (flags & BTRFS_BLOCK_GROUP_DATA && 3720 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3721 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; 3722 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && 3723 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3724 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; 3725 } else if (flags & BTRFS_BLOCK_GROUP_METADATA && 3726 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3727 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; 3728 } 3729 3730 return target; 3731 } 3732 3733 /* 3734 * @flags: available profiles in extended format (see ctree.h) 3735 * 3736 * Returns reduced profile in chunk format. If profile changing is in 3737 * progress (either running or paused) picks the target profile (if it's 3738 * already available), otherwise falls back to plain reducing. 3739 */ 3740 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags) 3741 { 3742 u64 num_devices = root->fs_info->fs_devices->rw_devices; 3743 u64 target; 3744 u64 tmp; 3745 3746 /* 3747 * see if restripe for this chunk_type is in progress, if so 3748 * try to reduce to the target profile 3749 */ 3750 spin_lock(&root->fs_info->balance_lock); 3751 target = get_restripe_target(root->fs_info, flags); 3752 if (target) { 3753 /* pick target profile only if it's already available */ 3754 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { 3755 spin_unlock(&root->fs_info->balance_lock); 3756 return extended_to_chunk(target); 3757 } 3758 } 3759 spin_unlock(&root->fs_info->balance_lock); 3760 3761 /* First, mask out the RAID levels which aren't possible */ 3762 if (num_devices == 1) 3763 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 | 3764 BTRFS_BLOCK_GROUP_RAID5); 3765 if (num_devices < 3) 3766 flags &= ~BTRFS_BLOCK_GROUP_RAID6; 3767 if (num_devices < 4) 3768 flags &= ~BTRFS_BLOCK_GROUP_RAID10; 3769 3770 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3771 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | 3772 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10); 3773 flags &= ~tmp; 3774 3775 if (tmp & BTRFS_BLOCK_GROUP_RAID6) 3776 tmp = BTRFS_BLOCK_GROUP_RAID6; 3777 else if (tmp & BTRFS_BLOCK_GROUP_RAID5) 3778 tmp = BTRFS_BLOCK_GROUP_RAID5; 3779 else if (tmp & BTRFS_BLOCK_GROUP_RAID10) 3780 tmp = BTRFS_BLOCK_GROUP_RAID10; 3781 else if (tmp & BTRFS_BLOCK_GROUP_RAID1) 3782 tmp = BTRFS_BLOCK_GROUP_RAID1; 3783 else if (tmp & BTRFS_BLOCK_GROUP_RAID0) 3784 tmp = BTRFS_BLOCK_GROUP_RAID0; 3785 3786 return extended_to_chunk(flags | tmp); 3787 } 3788 3789 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags) 3790 { 3791 unsigned seq; 3792 u64 flags; 3793 3794 do { 3795 flags = orig_flags; 3796 seq = read_seqbegin(&root->fs_info->profiles_lock); 3797 3798 if (flags & BTRFS_BLOCK_GROUP_DATA) 3799 flags |= root->fs_info->avail_data_alloc_bits; 3800 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 3801 flags |= root->fs_info->avail_system_alloc_bits; 3802 else if (flags & BTRFS_BLOCK_GROUP_METADATA) 3803 flags |= root->fs_info->avail_metadata_alloc_bits; 3804 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 3805 3806 return btrfs_reduce_alloc_profile(root, flags); 3807 } 3808 3809 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data) 3810 { 3811 u64 flags; 3812 u64 ret; 3813 3814 if (data) 3815 flags = BTRFS_BLOCK_GROUP_DATA; 3816 else if (root == root->fs_info->chunk_root) 3817 flags = BTRFS_BLOCK_GROUP_SYSTEM; 3818 else 3819 flags = BTRFS_BLOCK_GROUP_METADATA; 3820 3821 ret = get_alloc_profile(root, flags); 3822 return ret; 3823 } 3824 3825 /* 3826 * This will check the space that the inode allocates from to make sure we have 3827 * enough space for bytes. 3828 */ 3829 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes) 3830 { 3831 struct btrfs_space_info *data_sinfo; 3832 struct btrfs_root *root = BTRFS_I(inode)->root; 3833 struct btrfs_fs_info *fs_info = root->fs_info; 3834 u64 used; 3835 int ret = 0; 3836 int need_commit = 2; 3837 int have_pinned_space; 3838 3839 /* make sure bytes are sectorsize aligned */ 3840 bytes = ALIGN(bytes, root->sectorsize); 3841 3842 if (btrfs_is_free_space_inode(inode)) { 3843 need_commit = 0; 3844 ASSERT(current->journal_info); 3845 } 3846 3847 data_sinfo = fs_info->data_sinfo; 3848 if (!data_sinfo) 3849 goto alloc; 3850 3851 again: 3852 /* make sure we have enough space to handle the data first */ 3853 spin_lock(&data_sinfo->lock); 3854 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved + 3855 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly + 3856 data_sinfo->bytes_may_use; 3857 3858 if (used + bytes > data_sinfo->total_bytes) { 3859 struct btrfs_trans_handle *trans; 3860 3861 /* 3862 * if we don't have enough free bytes in this space then we need 3863 * to alloc a new chunk. 3864 */ 3865 if (!data_sinfo->full) { 3866 u64 alloc_target; 3867 3868 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; 3869 spin_unlock(&data_sinfo->lock); 3870 alloc: 3871 alloc_target = btrfs_get_alloc_profile(root, 1); 3872 /* 3873 * It is ugly that we don't call nolock join 3874 * transaction for the free space inode case here. 3875 * But it is safe because we only do the data space 3876 * reservation for the free space cache in the 3877 * transaction context, the common join transaction 3878 * just increase the counter of the current transaction 3879 * handler, doesn't try to acquire the trans_lock of 3880 * the fs. 3881 */ 3882 trans = btrfs_join_transaction(root); 3883 if (IS_ERR(trans)) 3884 return PTR_ERR(trans); 3885 3886 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 3887 alloc_target, 3888 CHUNK_ALLOC_NO_FORCE); 3889 btrfs_end_transaction(trans, root); 3890 if (ret < 0) { 3891 if (ret != -ENOSPC) 3892 return ret; 3893 else { 3894 have_pinned_space = 1; 3895 goto commit_trans; 3896 } 3897 } 3898 3899 if (!data_sinfo) 3900 data_sinfo = fs_info->data_sinfo; 3901 3902 goto again; 3903 } 3904 3905 /* 3906 * If we don't have enough pinned space to deal with this 3907 * allocation, and no removed chunk in current transaction, 3908 * don't bother committing the transaction. 3909 */ 3910 have_pinned_space = percpu_counter_compare( 3911 &data_sinfo->total_bytes_pinned, 3912 used + bytes - data_sinfo->total_bytes); 3913 spin_unlock(&data_sinfo->lock); 3914 3915 /* commit the current transaction and try again */ 3916 commit_trans: 3917 if (need_commit && 3918 !atomic_read(&root->fs_info->open_ioctl_trans)) { 3919 need_commit--; 3920 3921 if (need_commit > 0) 3922 btrfs_wait_ordered_roots(fs_info, -1); 3923 3924 trans = btrfs_join_transaction(root); 3925 if (IS_ERR(trans)) 3926 return PTR_ERR(trans); 3927 if (have_pinned_space >= 0 || 3928 trans->transaction->have_free_bgs || 3929 need_commit > 0) { 3930 ret = btrfs_commit_transaction(trans, root); 3931 if (ret) 3932 return ret; 3933 /* 3934 * make sure that all running delayed iput are 3935 * done 3936 */ 3937 down_write(&root->fs_info->delayed_iput_sem); 3938 up_write(&root->fs_info->delayed_iput_sem); 3939 goto again; 3940 } else { 3941 btrfs_end_transaction(trans, root); 3942 } 3943 } 3944 3945 trace_btrfs_space_reservation(root->fs_info, 3946 "space_info:enospc", 3947 data_sinfo->flags, bytes, 1); 3948 return -ENOSPC; 3949 } 3950 ret = btrfs_qgroup_reserve(root, write_bytes); 3951 if (ret) 3952 goto out; 3953 data_sinfo->bytes_may_use += bytes; 3954 trace_btrfs_space_reservation(root->fs_info, "space_info", 3955 data_sinfo->flags, bytes, 1); 3956 out: 3957 spin_unlock(&data_sinfo->lock); 3958 3959 return ret; 3960 } 3961 3962 /* 3963 * Called if we need to clear a data reservation for this inode. 3964 */ 3965 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes) 3966 { 3967 struct btrfs_root *root = BTRFS_I(inode)->root; 3968 struct btrfs_space_info *data_sinfo; 3969 3970 /* make sure bytes are sectorsize aligned */ 3971 bytes = ALIGN(bytes, root->sectorsize); 3972 3973 data_sinfo = root->fs_info->data_sinfo; 3974 spin_lock(&data_sinfo->lock); 3975 WARN_ON(data_sinfo->bytes_may_use < bytes); 3976 data_sinfo->bytes_may_use -= bytes; 3977 trace_btrfs_space_reservation(root->fs_info, "space_info", 3978 data_sinfo->flags, bytes, 0); 3979 spin_unlock(&data_sinfo->lock); 3980 } 3981 3982 static void force_metadata_allocation(struct btrfs_fs_info *info) 3983 { 3984 struct list_head *head = &info->space_info; 3985 struct btrfs_space_info *found; 3986 3987 rcu_read_lock(); 3988 list_for_each_entry_rcu(found, head, list) { 3989 if (found->flags & BTRFS_BLOCK_GROUP_METADATA) 3990 found->force_alloc = CHUNK_ALLOC_FORCE; 3991 } 3992 rcu_read_unlock(); 3993 } 3994 3995 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) 3996 { 3997 return (global->size << 1); 3998 } 3999 4000 static int should_alloc_chunk(struct btrfs_root *root, 4001 struct btrfs_space_info *sinfo, int force) 4002 { 4003 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4004 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly; 4005 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved; 4006 u64 thresh; 4007 4008 if (force == CHUNK_ALLOC_FORCE) 4009 return 1; 4010 4011 /* 4012 * We need to take into account the global rsv because for all intents 4013 * and purposes it's used space. Don't worry about locking the 4014 * global_rsv, it doesn't change except when the transaction commits. 4015 */ 4016 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) 4017 num_allocated += calc_global_rsv_need_space(global_rsv); 4018 4019 /* 4020 * in limited mode, we want to have some free space up to 4021 * about 1% of the FS size. 4022 */ 4023 if (force == CHUNK_ALLOC_LIMITED) { 4024 thresh = btrfs_super_total_bytes(root->fs_info->super_copy); 4025 thresh = max_t(u64, 64 * 1024 * 1024, 4026 div_factor_fine(thresh, 1)); 4027 4028 if (num_bytes - num_allocated < thresh) 4029 return 1; 4030 } 4031 4032 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8)) 4033 return 0; 4034 return 1; 4035 } 4036 4037 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type) 4038 { 4039 u64 num_dev; 4040 4041 if (type & (BTRFS_BLOCK_GROUP_RAID10 | 4042 BTRFS_BLOCK_GROUP_RAID0 | 4043 BTRFS_BLOCK_GROUP_RAID5 | 4044 BTRFS_BLOCK_GROUP_RAID6)) 4045 num_dev = root->fs_info->fs_devices->rw_devices; 4046 else if (type & BTRFS_BLOCK_GROUP_RAID1) 4047 num_dev = 2; 4048 else 4049 num_dev = 1; /* DUP or single */ 4050 4051 return num_dev; 4052 } 4053 4054 /* 4055 * If @is_allocation is true, reserve space in the system space info necessary 4056 * for allocating a chunk, otherwise if it's false, reserve space necessary for 4057 * removing a chunk. 4058 */ 4059 void check_system_chunk(struct btrfs_trans_handle *trans, 4060 struct btrfs_root *root, 4061 u64 type) 4062 { 4063 struct btrfs_space_info *info; 4064 u64 left; 4065 u64 thresh; 4066 int ret = 0; 4067 u64 num_devs; 4068 4069 /* 4070 * Needed because we can end up allocating a system chunk and for an 4071 * atomic and race free space reservation in the chunk block reserve. 4072 */ 4073 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex)); 4074 4075 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 4076 spin_lock(&info->lock); 4077 left = info->total_bytes - info->bytes_used - info->bytes_pinned - 4078 info->bytes_reserved - info->bytes_readonly - 4079 info->bytes_may_use; 4080 spin_unlock(&info->lock); 4081 4082 num_devs = get_profile_num_devs(root, type); 4083 4084 /* num_devs device items to update and 1 chunk item to add or remove */ 4085 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) + 4086 btrfs_calc_trans_metadata_size(root, 1); 4087 4088 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) { 4089 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu", 4090 left, thresh, type); 4091 dump_space_info(info, 0, 0); 4092 } 4093 4094 if (left < thresh) { 4095 u64 flags; 4096 4097 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0); 4098 /* 4099 * Ignore failure to create system chunk. We might end up not 4100 * needing it, as we might not need to COW all nodes/leafs from 4101 * the paths we visit in the chunk tree (they were already COWed 4102 * or created in the current transaction for example). 4103 */ 4104 ret = btrfs_alloc_chunk(trans, root, flags); 4105 } 4106 4107 if (!ret) { 4108 ret = btrfs_block_rsv_add(root->fs_info->chunk_root, 4109 &root->fs_info->chunk_block_rsv, 4110 thresh, BTRFS_RESERVE_NO_FLUSH); 4111 if (!ret) 4112 trans->chunk_bytes_reserved += thresh; 4113 } 4114 } 4115 4116 static int do_chunk_alloc(struct btrfs_trans_handle *trans, 4117 struct btrfs_root *extent_root, u64 flags, int force) 4118 { 4119 struct btrfs_space_info *space_info; 4120 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4121 int wait_for_alloc = 0; 4122 int ret = 0; 4123 4124 /* Don't re-enter if we're already allocating a chunk */ 4125 if (trans->allocating_chunk) 4126 return -ENOSPC; 4127 4128 space_info = __find_space_info(extent_root->fs_info, flags); 4129 if (!space_info) { 4130 ret = update_space_info(extent_root->fs_info, flags, 4131 0, 0, &space_info); 4132 BUG_ON(ret); /* -ENOMEM */ 4133 } 4134 BUG_ON(!space_info); /* Logic error */ 4135 4136 again: 4137 spin_lock(&space_info->lock); 4138 if (force < space_info->force_alloc) 4139 force = space_info->force_alloc; 4140 if (space_info->full) { 4141 if (should_alloc_chunk(extent_root, space_info, force)) 4142 ret = -ENOSPC; 4143 else 4144 ret = 0; 4145 spin_unlock(&space_info->lock); 4146 return ret; 4147 } 4148 4149 if (!should_alloc_chunk(extent_root, space_info, force)) { 4150 spin_unlock(&space_info->lock); 4151 return 0; 4152 } else if (space_info->chunk_alloc) { 4153 wait_for_alloc = 1; 4154 } else { 4155 space_info->chunk_alloc = 1; 4156 } 4157 4158 spin_unlock(&space_info->lock); 4159 4160 mutex_lock(&fs_info->chunk_mutex); 4161 4162 /* 4163 * The chunk_mutex is held throughout the entirety of a chunk 4164 * allocation, so once we've acquired the chunk_mutex we know that the 4165 * other guy is done and we need to recheck and see if we should 4166 * allocate. 4167 */ 4168 if (wait_for_alloc) { 4169 mutex_unlock(&fs_info->chunk_mutex); 4170 wait_for_alloc = 0; 4171 goto again; 4172 } 4173 4174 trans->allocating_chunk = true; 4175 4176 /* 4177 * If we have mixed data/metadata chunks we want to make sure we keep 4178 * allocating mixed chunks instead of individual chunks. 4179 */ 4180 if (btrfs_mixed_space_info(space_info)) 4181 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); 4182 4183 /* 4184 * if we're doing a data chunk, go ahead and make sure that 4185 * we keep a reasonable number of metadata chunks allocated in the 4186 * FS as well. 4187 */ 4188 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { 4189 fs_info->data_chunk_allocations++; 4190 if (!(fs_info->data_chunk_allocations % 4191 fs_info->metadata_ratio)) 4192 force_metadata_allocation(fs_info); 4193 } 4194 4195 /* 4196 * Check if we have enough space in SYSTEM chunk because we may need 4197 * to update devices. 4198 */ 4199 check_system_chunk(trans, extent_root, flags); 4200 4201 ret = btrfs_alloc_chunk(trans, extent_root, flags); 4202 trans->allocating_chunk = false; 4203 4204 spin_lock(&space_info->lock); 4205 if (ret < 0 && ret != -ENOSPC) 4206 goto out; 4207 if (ret) 4208 space_info->full = 1; 4209 else 4210 ret = 1; 4211 4212 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; 4213 out: 4214 space_info->chunk_alloc = 0; 4215 spin_unlock(&space_info->lock); 4216 mutex_unlock(&fs_info->chunk_mutex); 4217 return ret; 4218 } 4219 4220 static int can_overcommit(struct btrfs_root *root, 4221 struct btrfs_space_info *space_info, u64 bytes, 4222 enum btrfs_reserve_flush_enum flush) 4223 { 4224 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 4225 u64 profile = btrfs_get_alloc_profile(root, 0); 4226 u64 space_size; 4227 u64 avail; 4228 u64 used; 4229 4230 used = space_info->bytes_used + space_info->bytes_reserved + 4231 space_info->bytes_pinned + space_info->bytes_readonly; 4232 4233 /* 4234 * We only want to allow over committing if we have lots of actual space 4235 * free, but if we don't have enough space to handle the global reserve 4236 * space then we could end up having a real enospc problem when trying 4237 * to allocate a chunk or some other such important allocation. 4238 */ 4239 spin_lock(&global_rsv->lock); 4240 space_size = calc_global_rsv_need_space(global_rsv); 4241 spin_unlock(&global_rsv->lock); 4242 if (used + space_size >= space_info->total_bytes) 4243 return 0; 4244 4245 used += space_info->bytes_may_use; 4246 4247 spin_lock(&root->fs_info->free_chunk_lock); 4248 avail = root->fs_info->free_chunk_space; 4249 spin_unlock(&root->fs_info->free_chunk_lock); 4250 4251 /* 4252 * If we have dup, raid1 or raid10 then only half of the free 4253 * space is actually useable. For raid56, the space info used 4254 * doesn't include the parity drive, so we don't have to 4255 * change the math 4256 */ 4257 if (profile & (BTRFS_BLOCK_GROUP_DUP | 4258 BTRFS_BLOCK_GROUP_RAID1 | 4259 BTRFS_BLOCK_GROUP_RAID10)) 4260 avail >>= 1; 4261 4262 /* 4263 * If we aren't flushing all things, let us overcommit up to 4264 * 1/2th of the space. If we can flush, don't let us overcommit 4265 * too much, let it overcommit up to 1/8 of the space. 4266 */ 4267 if (flush == BTRFS_RESERVE_FLUSH_ALL) 4268 avail >>= 3; 4269 else 4270 avail >>= 1; 4271 4272 if (used + bytes < space_info->total_bytes + avail) 4273 return 1; 4274 return 0; 4275 } 4276 4277 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root, 4278 unsigned long nr_pages, int nr_items) 4279 { 4280 struct super_block *sb = root->fs_info->sb; 4281 4282 if (down_read_trylock(&sb->s_umount)) { 4283 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); 4284 up_read(&sb->s_umount); 4285 } else { 4286 /* 4287 * We needn't worry the filesystem going from r/w to r/o though 4288 * we don't acquire ->s_umount mutex, because the filesystem 4289 * should guarantee the delalloc inodes list be empty after 4290 * the filesystem is readonly(all dirty pages are written to 4291 * the disk). 4292 */ 4293 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items); 4294 if (!current->journal_info) 4295 btrfs_wait_ordered_roots(root->fs_info, nr_items); 4296 } 4297 } 4298 4299 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim) 4300 { 4301 u64 bytes; 4302 int nr; 4303 4304 bytes = btrfs_calc_trans_metadata_size(root, 1); 4305 nr = (int)div64_u64(to_reclaim, bytes); 4306 if (!nr) 4307 nr = 1; 4308 return nr; 4309 } 4310 4311 #define EXTENT_SIZE_PER_ITEM (256 * 1024) 4312 4313 /* 4314 * shrink metadata reservation for delalloc 4315 */ 4316 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig, 4317 bool wait_ordered) 4318 { 4319 struct btrfs_block_rsv *block_rsv; 4320 struct btrfs_space_info *space_info; 4321 struct btrfs_trans_handle *trans; 4322 u64 delalloc_bytes; 4323 u64 max_reclaim; 4324 long time_left; 4325 unsigned long nr_pages; 4326 int loops; 4327 int items; 4328 enum btrfs_reserve_flush_enum flush; 4329 4330 /* Calc the number of the pages we need flush for space reservation */ 4331 items = calc_reclaim_items_nr(root, to_reclaim); 4332 to_reclaim = items * EXTENT_SIZE_PER_ITEM; 4333 4334 trans = (struct btrfs_trans_handle *)current->journal_info; 4335 block_rsv = &root->fs_info->delalloc_block_rsv; 4336 space_info = block_rsv->space_info; 4337 4338 delalloc_bytes = percpu_counter_sum_positive( 4339 &root->fs_info->delalloc_bytes); 4340 if (delalloc_bytes == 0) { 4341 if (trans) 4342 return; 4343 if (wait_ordered) 4344 btrfs_wait_ordered_roots(root->fs_info, items); 4345 return; 4346 } 4347 4348 loops = 0; 4349 while (delalloc_bytes && loops < 3) { 4350 max_reclaim = min(delalloc_bytes, to_reclaim); 4351 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT; 4352 btrfs_writeback_inodes_sb_nr(root, nr_pages, items); 4353 /* 4354 * We need to wait for the async pages to actually start before 4355 * we do anything. 4356 */ 4357 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages); 4358 if (!max_reclaim) 4359 goto skip_async; 4360 4361 if (max_reclaim <= nr_pages) 4362 max_reclaim = 0; 4363 else 4364 max_reclaim -= nr_pages; 4365 4366 wait_event(root->fs_info->async_submit_wait, 4367 atomic_read(&root->fs_info->async_delalloc_pages) <= 4368 (int)max_reclaim); 4369 skip_async: 4370 if (!trans) 4371 flush = BTRFS_RESERVE_FLUSH_ALL; 4372 else 4373 flush = BTRFS_RESERVE_NO_FLUSH; 4374 spin_lock(&space_info->lock); 4375 if (can_overcommit(root, space_info, orig, flush)) { 4376 spin_unlock(&space_info->lock); 4377 break; 4378 } 4379 spin_unlock(&space_info->lock); 4380 4381 loops++; 4382 if (wait_ordered && !trans) { 4383 btrfs_wait_ordered_roots(root->fs_info, items); 4384 } else { 4385 time_left = schedule_timeout_killable(1); 4386 if (time_left) 4387 break; 4388 } 4389 delalloc_bytes = percpu_counter_sum_positive( 4390 &root->fs_info->delalloc_bytes); 4391 } 4392 } 4393 4394 /** 4395 * maybe_commit_transaction - possibly commit the transaction if its ok to 4396 * @root - the root we're allocating for 4397 * @bytes - the number of bytes we want to reserve 4398 * @force - force the commit 4399 * 4400 * This will check to make sure that committing the transaction will actually 4401 * get us somewhere and then commit the transaction if it does. Otherwise it 4402 * will return -ENOSPC. 4403 */ 4404 static int may_commit_transaction(struct btrfs_root *root, 4405 struct btrfs_space_info *space_info, 4406 u64 bytes, int force) 4407 { 4408 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv; 4409 struct btrfs_trans_handle *trans; 4410 4411 trans = (struct btrfs_trans_handle *)current->journal_info; 4412 if (trans) 4413 return -EAGAIN; 4414 4415 if (force) 4416 goto commit; 4417 4418 /* See if there is enough pinned space to make this reservation */ 4419 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4420 bytes) >= 0) 4421 goto commit; 4422 4423 /* 4424 * See if there is some space in the delayed insertion reservation for 4425 * this reservation. 4426 */ 4427 if (space_info != delayed_rsv->space_info) 4428 return -ENOSPC; 4429 4430 spin_lock(&delayed_rsv->lock); 4431 if (percpu_counter_compare(&space_info->total_bytes_pinned, 4432 bytes - delayed_rsv->size) >= 0) { 4433 spin_unlock(&delayed_rsv->lock); 4434 return -ENOSPC; 4435 } 4436 spin_unlock(&delayed_rsv->lock); 4437 4438 commit: 4439 trans = btrfs_join_transaction(root); 4440 if (IS_ERR(trans)) 4441 return -ENOSPC; 4442 4443 return btrfs_commit_transaction(trans, root); 4444 } 4445 4446 enum flush_state { 4447 FLUSH_DELAYED_ITEMS_NR = 1, 4448 FLUSH_DELAYED_ITEMS = 2, 4449 FLUSH_DELALLOC = 3, 4450 FLUSH_DELALLOC_WAIT = 4, 4451 ALLOC_CHUNK = 5, 4452 COMMIT_TRANS = 6, 4453 }; 4454 4455 static int flush_space(struct btrfs_root *root, 4456 struct btrfs_space_info *space_info, u64 num_bytes, 4457 u64 orig_bytes, int state) 4458 { 4459 struct btrfs_trans_handle *trans; 4460 int nr; 4461 int ret = 0; 4462 4463 switch (state) { 4464 case FLUSH_DELAYED_ITEMS_NR: 4465 case FLUSH_DELAYED_ITEMS: 4466 if (state == FLUSH_DELAYED_ITEMS_NR) 4467 nr = calc_reclaim_items_nr(root, num_bytes) * 2; 4468 else 4469 nr = -1; 4470 4471 trans = btrfs_join_transaction(root); 4472 if (IS_ERR(trans)) { 4473 ret = PTR_ERR(trans); 4474 break; 4475 } 4476 ret = btrfs_run_delayed_items_nr(trans, root, nr); 4477 btrfs_end_transaction(trans, root); 4478 break; 4479 case FLUSH_DELALLOC: 4480 case FLUSH_DELALLOC_WAIT: 4481 shrink_delalloc(root, num_bytes * 2, orig_bytes, 4482 state == FLUSH_DELALLOC_WAIT); 4483 break; 4484 case ALLOC_CHUNK: 4485 trans = btrfs_join_transaction(root); 4486 if (IS_ERR(trans)) { 4487 ret = PTR_ERR(trans); 4488 break; 4489 } 4490 ret = do_chunk_alloc(trans, root->fs_info->extent_root, 4491 btrfs_get_alloc_profile(root, 0), 4492 CHUNK_ALLOC_NO_FORCE); 4493 btrfs_end_transaction(trans, root); 4494 if (ret == -ENOSPC) 4495 ret = 0; 4496 break; 4497 case COMMIT_TRANS: 4498 ret = may_commit_transaction(root, space_info, orig_bytes, 0); 4499 break; 4500 default: 4501 ret = -ENOSPC; 4502 break; 4503 } 4504 4505 return ret; 4506 } 4507 4508 static inline u64 4509 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root, 4510 struct btrfs_space_info *space_info) 4511 { 4512 u64 used; 4513 u64 expected; 4514 u64 to_reclaim; 4515 4516 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024, 4517 16 * 1024 * 1024); 4518 spin_lock(&space_info->lock); 4519 if (can_overcommit(root, space_info, to_reclaim, 4520 BTRFS_RESERVE_FLUSH_ALL)) { 4521 to_reclaim = 0; 4522 goto out; 4523 } 4524 4525 used = space_info->bytes_used + space_info->bytes_reserved + 4526 space_info->bytes_pinned + space_info->bytes_readonly + 4527 space_info->bytes_may_use; 4528 if (can_overcommit(root, space_info, 1024 * 1024, 4529 BTRFS_RESERVE_FLUSH_ALL)) 4530 expected = div_factor_fine(space_info->total_bytes, 95); 4531 else 4532 expected = div_factor_fine(space_info->total_bytes, 90); 4533 4534 if (used > expected) 4535 to_reclaim = used - expected; 4536 else 4537 to_reclaim = 0; 4538 to_reclaim = min(to_reclaim, space_info->bytes_may_use + 4539 space_info->bytes_reserved); 4540 out: 4541 spin_unlock(&space_info->lock); 4542 4543 return to_reclaim; 4544 } 4545 4546 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info, 4547 struct btrfs_fs_info *fs_info, u64 used) 4548 { 4549 u64 thresh = div_factor_fine(space_info->total_bytes, 98); 4550 4551 /* If we're just plain full then async reclaim just slows us down. */ 4552 if (space_info->bytes_used >= thresh) 4553 return 0; 4554 4555 return (used >= thresh && !btrfs_fs_closing(fs_info) && 4556 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); 4557 } 4558 4559 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info, 4560 struct btrfs_fs_info *fs_info, 4561 int flush_state) 4562 { 4563 u64 used; 4564 4565 spin_lock(&space_info->lock); 4566 /* 4567 * We run out of space and have not got any free space via flush_space, 4568 * so don't bother doing async reclaim. 4569 */ 4570 if (flush_state > COMMIT_TRANS && space_info->full) { 4571 spin_unlock(&space_info->lock); 4572 return 0; 4573 } 4574 4575 used = space_info->bytes_used + space_info->bytes_reserved + 4576 space_info->bytes_pinned + space_info->bytes_readonly + 4577 space_info->bytes_may_use; 4578 if (need_do_async_reclaim(space_info, fs_info, used)) { 4579 spin_unlock(&space_info->lock); 4580 return 1; 4581 } 4582 spin_unlock(&space_info->lock); 4583 4584 return 0; 4585 } 4586 4587 static void btrfs_async_reclaim_metadata_space(struct work_struct *work) 4588 { 4589 struct btrfs_fs_info *fs_info; 4590 struct btrfs_space_info *space_info; 4591 u64 to_reclaim; 4592 int flush_state; 4593 4594 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); 4595 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 4596 4597 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root, 4598 space_info); 4599 if (!to_reclaim) 4600 return; 4601 4602 flush_state = FLUSH_DELAYED_ITEMS_NR; 4603 do { 4604 flush_space(fs_info->fs_root, space_info, to_reclaim, 4605 to_reclaim, flush_state); 4606 flush_state++; 4607 if (!btrfs_need_do_async_reclaim(space_info, fs_info, 4608 flush_state)) 4609 return; 4610 } while (flush_state < COMMIT_TRANS); 4611 } 4612 4613 void btrfs_init_async_reclaim_work(struct work_struct *work) 4614 { 4615 INIT_WORK(work, btrfs_async_reclaim_metadata_space); 4616 } 4617 4618 /** 4619 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space 4620 * @root - the root we're allocating for 4621 * @block_rsv - the block_rsv we're allocating for 4622 * @orig_bytes - the number of bytes we want 4623 * @flush - whether or not we can flush to make our reservation 4624 * 4625 * This will reserve orgi_bytes number of bytes from the space info associated 4626 * with the block_rsv. If there is not enough space it will make an attempt to 4627 * flush out space to make room. It will do this by flushing delalloc if 4628 * possible or committing the transaction. If flush is 0 then no attempts to 4629 * regain reservations will be made and this will fail if there is not enough 4630 * space already. 4631 */ 4632 static int reserve_metadata_bytes(struct btrfs_root *root, 4633 struct btrfs_block_rsv *block_rsv, 4634 u64 orig_bytes, 4635 enum btrfs_reserve_flush_enum flush) 4636 { 4637 struct btrfs_space_info *space_info = block_rsv->space_info; 4638 u64 used; 4639 u64 num_bytes = orig_bytes; 4640 int flush_state = FLUSH_DELAYED_ITEMS_NR; 4641 int ret = 0; 4642 bool flushing = false; 4643 4644 again: 4645 ret = 0; 4646 spin_lock(&space_info->lock); 4647 /* 4648 * We only want to wait if somebody other than us is flushing and we 4649 * are actually allowed to flush all things. 4650 */ 4651 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing && 4652 space_info->flush) { 4653 spin_unlock(&space_info->lock); 4654 /* 4655 * If we have a trans handle we can't wait because the flusher 4656 * may have to commit the transaction, which would mean we would 4657 * deadlock since we are waiting for the flusher to finish, but 4658 * hold the current transaction open. 4659 */ 4660 if (current->journal_info) 4661 return -EAGAIN; 4662 ret = wait_event_killable(space_info->wait, !space_info->flush); 4663 /* Must have been killed, return */ 4664 if (ret) 4665 return -EINTR; 4666 4667 spin_lock(&space_info->lock); 4668 } 4669 4670 ret = -ENOSPC; 4671 used = space_info->bytes_used + space_info->bytes_reserved + 4672 space_info->bytes_pinned + space_info->bytes_readonly + 4673 space_info->bytes_may_use; 4674 4675 /* 4676 * The idea here is that we've not already over-reserved the block group 4677 * then we can go ahead and save our reservation first and then start 4678 * flushing if we need to. Otherwise if we've already overcommitted 4679 * lets start flushing stuff first and then come back and try to make 4680 * our reservation. 4681 */ 4682 if (used <= space_info->total_bytes) { 4683 if (used + orig_bytes <= space_info->total_bytes) { 4684 space_info->bytes_may_use += orig_bytes; 4685 trace_btrfs_space_reservation(root->fs_info, 4686 "space_info", space_info->flags, orig_bytes, 1); 4687 ret = 0; 4688 } else { 4689 /* 4690 * Ok set num_bytes to orig_bytes since we aren't 4691 * overocmmitted, this way we only try and reclaim what 4692 * we need. 4693 */ 4694 num_bytes = orig_bytes; 4695 } 4696 } else { 4697 /* 4698 * Ok we're over committed, set num_bytes to the overcommitted 4699 * amount plus the amount of bytes that we need for this 4700 * reservation. 4701 */ 4702 num_bytes = used - space_info->total_bytes + 4703 (orig_bytes * 2); 4704 } 4705 4706 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) { 4707 space_info->bytes_may_use += orig_bytes; 4708 trace_btrfs_space_reservation(root->fs_info, "space_info", 4709 space_info->flags, orig_bytes, 4710 1); 4711 ret = 0; 4712 } 4713 4714 /* 4715 * Couldn't make our reservation, save our place so while we're trying 4716 * to reclaim space we can actually use it instead of somebody else 4717 * stealing it from us. 4718 * 4719 * We make the other tasks wait for the flush only when we can flush 4720 * all things. 4721 */ 4722 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { 4723 flushing = true; 4724 space_info->flush = 1; 4725 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 4726 used += orig_bytes; 4727 /* 4728 * We will do the space reservation dance during log replay, 4729 * which means we won't have fs_info->fs_root set, so don't do 4730 * the async reclaim as we will panic. 4731 */ 4732 if (!root->fs_info->log_root_recovering && 4733 need_do_async_reclaim(space_info, root->fs_info, used) && 4734 !work_busy(&root->fs_info->async_reclaim_work)) 4735 queue_work(system_unbound_wq, 4736 &root->fs_info->async_reclaim_work); 4737 } 4738 spin_unlock(&space_info->lock); 4739 4740 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) 4741 goto out; 4742 4743 ret = flush_space(root, space_info, num_bytes, orig_bytes, 4744 flush_state); 4745 flush_state++; 4746 4747 /* 4748 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock 4749 * would happen. So skip delalloc flush. 4750 */ 4751 if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4752 (flush_state == FLUSH_DELALLOC || 4753 flush_state == FLUSH_DELALLOC_WAIT)) 4754 flush_state = ALLOC_CHUNK; 4755 4756 if (!ret) 4757 goto again; 4758 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT && 4759 flush_state < COMMIT_TRANS) 4760 goto again; 4761 else if (flush == BTRFS_RESERVE_FLUSH_ALL && 4762 flush_state <= COMMIT_TRANS) 4763 goto again; 4764 4765 out: 4766 if (ret == -ENOSPC && 4767 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { 4768 struct btrfs_block_rsv *global_rsv = 4769 &root->fs_info->global_block_rsv; 4770 4771 if (block_rsv != global_rsv && 4772 !block_rsv_use_bytes(global_rsv, orig_bytes)) 4773 ret = 0; 4774 } 4775 if (ret == -ENOSPC) 4776 trace_btrfs_space_reservation(root->fs_info, 4777 "space_info:enospc", 4778 space_info->flags, orig_bytes, 1); 4779 if (flushing) { 4780 spin_lock(&space_info->lock); 4781 space_info->flush = 0; 4782 wake_up_all(&space_info->wait); 4783 spin_unlock(&space_info->lock); 4784 } 4785 return ret; 4786 } 4787 4788 static struct btrfs_block_rsv *get_block_rsv( 4789 const struct btrfs_trans_handle *trans, 4790 const struct btrfs_root *root) 4791 { 4792 struct btrfs_block_rsv *block_rsv = NULL; 4793 4794 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4795 block_rsv = trans->block_rsv; 4796 4797 if (root == root->fs_info->csum_root && trans->adding_csums) 4798 block_rsv = trans->block_rsv; 4799 4800 if (root == root->fs_info->uuid_root) 4801 block_rsv = trans->block_rsv; 4802 4803 if (!block_rsv) 4804 block_rsv = root->block_rsv; 4805 4806 if (!block_rsv) 4807 block_rsv = &root->fs_info->empty_block_rsv; 4808 4809 return block_rsv; 4810 } 4811 4812 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, 4813 u64 num_bytes) 4814 { 4815 int ret = -ENOSPC; 4816 spin_lock(&block_rsv->lock); 4817 if (block_rsv->reserved >= num_bytes) { 4818 block_rsv->reserved -= num_bytes; 4819 if (block_rsv->reserved < block_rsv->size) 4820 block_rsv->full = 0; 4821 ret = 0; 4822 } 4823 spin_unlock(&block_rsv->lock); 4824 return ret; 4825 } 4826 4827 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 4828 u64 num_bytes, int update_size) 4829 { 4830 spin_lock(&block_rsv->lock); 4831 block_rsv->reserved += num_bytes; 4832 if (update_size) 4833 block_rsv->size += num_bytes; 4834 else if (block_rsv->reserved >= block_rsv->size) 4835 block_rsv->full = 1; 4836 spin_unlock(&block_rsv->lock); 4837 } 4838 4839 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 4840 struct btrfs_block_rsv *dest, u64 num_bytes, 4841 int min_factor) 4842 { 4843 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 4844 u64 min_bytes; 4845 4846 if (global_rsv->space_info != dest->space_info) 4847 return -ENOSPC; 4848 4849 spin_lock(&global_rsv->lock); 4850 min_bytes = div_factor(global_rsv->size, min_factor); 4851 if (global_rsv->reserved < min_bytes + num_bytes) { 4852 spin_unlock(&global_rsv->lock); 4853 return -ENOSPC; 4854 } 4855 global_rsv->reserved -= num_bytes; 4856 if (global_rsv->reserved < global_rsv->size) 4857 global_rsv->full = 0; 4858 spin_unlock(&global_rsv->lock); 4859 4860 block_rsv_add_bytes(dest, num_bytes, 1); 4861 return 0; 4862 } 4863 4864 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 4865 struct btrfs_block_rsv *block_rsv, 4866 struct btrfs_block_rsv *dest, u64 num_bytes) 4867 { 4868 struct btrfs_space_info *space_info = block_rsv->space_info; 4869 4870 spin_lock(&block_rsv->lock); 4871 if (num_bytes == (u64)-1) 4872 num_bytes = block_rsv->size; 4873 block_rsv->size -= num_bytes; 4874 if (block_rsv->reserved >= block_rsv->size) { 4875 num_bytes = block_rsv->reserved - block_rsv->size; 4876 block_rsv->reserved = block_rsv->size; 4877 block_rsv->full = 1; 4878 } else { 4879 num_bytes = 0; 4880 } 4881 spin_unlock(&block_rsv->lock); 4882 4883 if (num_bytes > 0) { 4884 if (dest) { 4885 spin_lock(&dest->lock); 4886 if (!dest->full) { 4887 u64 bytes_to_add; 4888 4889 bytes_to_add = dest->size - dest->reserved; 4890 bytes_to_add = min(num_bytes, bytes_to_add); 4891 dest->reserved += bytes_to_add; 4892 if (dest->reserved >= dest->size) 4893 dest->full = 1; 4894 num_bytes -= bytes_to_add; 4895 } 4896 spin_unlock(&dest->lock); 4897 } 4898 if (num_bytes) { 4899 spin_lock(&space_info->lock); 4900 space_info->bytes_may_use -= num_bytes; 4901 trace_btrfs_space_reservation(fs_info, "space_info", 4902 space_info->flags, num_bytes, 0); 4903 spin_unlock(&space_info->lock); 4904 } 4905 } 4906 } 4907 4908 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src, 4909 struct btrfs_block_rsv *dst, u64 num_bytes) 4910 { 4911 int ret; 4912 4913 ret = block_rsv_use_bytes(src, num_bytes); 4914 if (ret) 4915 return ret; 4916 4917 block_rsv_add_bytes(dst, num_bytes, 1); 4918 return 0; 4919 } 4920 4921 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 4922 { 4923 memset(rsv, 0, sizeof(*rsv)); 4924 spin_lock_init(&rsv->lock); 4925 rsv->type = type; 4926 } 4927 4928 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 4929 unsigned short type) 4930 { 4931 struct btrfs_block_rsv *block_rsv; 4932 struct btrfs_fs_info *fs_info = root->fs_info; 4933 4934 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 4935 if (!block_rsv) 4936 return NULL; 4937 4938 btrfs_init_block_rsv(block_rsv, type); 4939 block_rsv->space_info = __find_space_info(fs_info, 4940 BTRFS_BLOCK_GROUP_METADATA); 4941 return block_rsv; 4942 } 4943 4944 void btrfs_free_block_rsv(struct btrfs_root *root, 4945 struct btrfs_block_rsv *rsv) 4946 { 4947 if (!rsv) 4948 return; 4949 btrfs_block_rsv_release(root, rsv, (u64)-1); 4950 kfree(rsv); 4951 } 4952 4953 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv) 4954 { 4955 kfree(rsv); 4956 } 4957 4958 int btrfs_block_rsv_add(struct btrfs_root *root, 4959 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 4960 enum btrfs_reserve_flush_enum flush) 4961 { 4962 int ret; 4963 4964 if (num_bytes == 0) 4965 return 0; 4966 4967 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 4968 if (!ret) { 4969 block_rsv_add_bytes(block_rsv, num_bytes, 1); 4970 return 0; 4971 } 4972 4973 return ret; 4974 } 4975 4976 int btrfs_block_rsv_check(struct btrfs_root *root, 4977 struct btrfs_block_rsv *block_rsv, int min_factor) 4978 { 4979 u64 num_bytes = 0; 4980 int ret = -ENOSPC; 4981 4982 if (!block_rsv) 4983 return 0; 4984 4985 spin_lock(&block_rsv->lock); 4986 num_bytes = div_factor(block_rsv->size, min_factor); 4987 if (block_rsv->reserved >= num_bytes) 4988 ret = 0; 4989 spin_unlock(&block_rsv->lock); 4990 4991 return ret; 4992 } 4993 4994 int btrfs_block_rsv_refill(struct btrfs_root *root, 4995 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 4996 enum btrfs_reserve_flush_enum flush) 4997 { 4998 u64 num_bytes = 0; 4999 int ret = -ENOSPC; 5000 5001 if (!block_rsv) 5002 return 0; 5003 5004 spin_lock(&block_rsv->lock); 5005 num_bytes = min_reserved; 5006 if (block_rsv->reserved >= num_bytes) 5007 ret = 0; 5008 else 5009 num_bytes -= block_rsv->reserved; 5010 spin_unlock(&block_rsv->lock); 5011 5012 if (!ret) 5013 return 0; 5014 5015 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 5016 if (!ret) { 5017 block_rsv_add_bytes(block_rsv, num_bytes, 0); 5018 return 0; 5019 } 5020 5021 return ret; 5022 } 5023 5024 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 5025 struct btrfs_block_rsv *dst_rsv, 5026 u64 num_bytes) 5027 { 5028 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5029 } 5030 5031 void btrfs_block_rsv_release(struct btrfs_root *root, 5032 struct btrfs_block_rsv *block_rsv, 5033 u64 num_bytes) 5034 { 5035 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5036 if (global_rsv == block_rsv || 5037 block_rsv->space_info != global_rsv->space_info) 5038 global_rsv = NULL; 5039 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv, 5040 num_bytes); 5041 } 5042 5043 /* 5044 * helper to calculate size of global block reservation. 5045 * the desired value is sum of space used by extent tree, 5046 * checksum tree and root tree 5047 */ 5048 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info) 5049 { 5050 struct btrfs_space_info *sinfo; 5051 u64 num_bytes; 5052 u64 meta_used; 5053 u64 data_used; 5054 int csum_size = btrfs_super_csum_size(fs_info->super_copy); 5055 5056 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA); 5057 spin_lock(&sinfo->lock); 5058 data_used = sinfo->bytes_used; 5059 spin_unlock(&sinfo->lock); 5060 5061 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5062 spin_lock(&sinfo->lock); 5063 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) 5064 data_used = 0; 5065 meta_used = sinfo->bytes_used; 5066 spin_unlock(&sinfo->lock); 5067 5068 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) * 5069 csum_size * 2; 5070 num_bytes += div_u64(data_used + meta_used, 50); 5071 5072 if (num_bytes * 3 > meta_used) 5073 num_bytes = div_u64(meta_used, 3); 5074 5075 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10); 5076 } 5077 5078 static void update_global_block_rsv(struct btrfs_fs_info *fs_info) 5079 { 5080 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 5081 struct btrfs_space_info *sinfo = block_rsv->space_info; 5082 u64 num_bytes; 5083 5084 num_bytes = calc_global_metadata_size(fs_info); 5085 5086 spin_lock(&sinfo->lock); 5087 spin_lock(&block_rsv->lock); 5088 5089 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024); 5090 5091 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned + 5092 sinfo->bytes_reserved + sinfo->bytes_readonly + 5093 sinfo->bytes_may_use; 5094 5095 if (sinfo->total_bytes > num_bytes) { 5096 num_bytes = sinfo->total_bytes - num_bytes; 5097 block_rsv->reserved += num_bytes; 5098 sinfo->bytes_may_use += num_bytes; 5099 trace_btrfs_space_reservation(fs_info, "space_info", 5100 sinfo->flags, num_bytes, 1); 5101 } 5102 5103 if (block_rsv->reserved >= block_rsv->size) { 5104 num_bytes = block_rsv->reserved - block_rsv->size; 5105 sinfo->bytes_may_use -= num_bytes; 5106 trace_btrfs_space_reservation(fs_info, "space_info", 5107 sinfo->flags, num_bytes, 0); 5108 block_rsv->reserved = block_rsv->size; 5109 block_rsv->full = 1; 5110 } 5111 5112 spin_unlock(&block_rsv->lock); 5113 spin_unlock(&sinfo->lock); 5114 } 5115 5116 static void init_global_block_rsv(struct btrfs_fs_info *fs_info) 5117 { 5118 struct btrfs_space_info *space_info; 5119 5120 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 5121 fs_info->chunk_block_rsv.space_info = space_info; 5122 5123 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 5124 fs_info->global_block_rsv.space_info = space_info; 5125 fs_info->delalloc_block_rsv.space_info = space_info; 5126 fs_info->trans_block_rsv.space_info = space_info; 5127 fs_info->empty_block_rsv.space_info = space_info; 5128 fs_info->delayed_block_rsv.space_info = space_info; 5129 5130 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; 5131 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; 5132 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 5133 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 5134 if (fs_info->quota_root) 5135 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 5136 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 5137 5138 update_global_block_rsv(fs_info); 5139 } 5140 5141 static void release_global_block_rsv(struct btrfs_fs_info *fs_info) 5142 { 5143 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, 5144 (u64)-1); 5145 WARN_ON(fs_info->delalloc_block_rsv.size > 0); 5146 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0); 5147 WARN_ON(fs_info->trans_block_rsv.size > 0); 5148 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 5149 WARN_ON(fs_info->chunk_block_rsv.size > 0); 5150 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 5151 WARN_ON(fs_info->delayed_block_rsv.size > 0); 5152 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 5153 } 5154 5155 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 5156 struct btrfs_root *root) 5157 { 5158 if (!trans->block_rsv) 5159 return; 5160 5161 if (!trans->bytes_reserved) 5162 return; 5163 5164 trace_btrfs_space_reservation(root->fs_info, "transaction", 5165 trans->transid, trans->bytes_reserved, 0); 5166 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved); 5167 trans->bytes_reserved = 0; 5168 } 5169 5170 /* 5171 * To be called after all the new block groups attached to the transaction 5172 * handle have been created (btrfs_create_pending_block_groups()). 5173 */ 5174 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 5175 { 5176 struct btrfs_fs_info *fs_info = trans->root->fs_info; 5177 5178 if (!trans->chunk_bytes_reserved) 5179 return; 5180 5181 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 5182 5183 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, 5184 trans->chunk_bytes_reserved); 5185 trans->chunk_bytes_reserved = 0; 5186 } 5187 5188 /* Can only return 0 or -ENOSPC */ 5189 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 5190 struct inode *inode) 5191 { 5192 struct btrfs_root *root = BTRFS_I(inode)->root; 5193 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root); 5194 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv; 5195 5196 /* 5197 * We need to hold space in order to delete our orphan item once we've 5198 * added it, so this takes the reservation so we can release it later 5199 * when we are truly done with the orphan item. 5200 */ 5201 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5202 trace_btrfs_space_reservation(root->fs_info, "orphan", 5203 btrfs_ino(inode), num_bytes, 1); 5204 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes); 5205 } 5206 5207 void btrfs_orphan_release_metadata(struct inode *inode) 5208 { 5209 struct btrfs_root *root = BTRFS_I(inode)->root; 5210 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 5211 trace_btrfs_space_reservation(root->fs_info, "orphan", 5212 btrfs_ino(inode), num_bytes, 0); 5213 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes); 5214 } 5215 5216 /* 5217 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation 5218 * root: the root of the parent directory 5219 * rsv: block reservation 5220 * items: the number of items that we need do reservation 5221 * qgroup_reserved: used to return the reserved size in qgroup 5222 * 5223 * This function is used to reserve the space for snapshot/subvolume 5224 * creation and deletion. Those operations are different with the 5225 * common file/directory operations, they change two fs/file trees 5226 * and root tree, the number of items that the qgroup reserves is 5227 * different with the free space reservation. So we can not use 5228 * the space reseravtion mechanism in start_transaction(). 5229 */ 5230 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 5231 struct btrfs_block_rsv *rsv, 5232 int items, 5233 u64 *qgroup_reserved, 5234 bool use_global_rsv) 5235 { 5236 u64 num_bytes; 5237 int ret; 5238 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 5239 5240 if (root->fs_info->quota_enabled) { 5241 /* One for parent inode, two for dir entries */ 5242 num_bytes = 3 * root->nodesize; 5243 ret = btrfs_qgroup_reserve(root, num_bytes); 5244 if (ret) 5245 return ret; 5246 } else { 5247 num_bytes = 0; 5248 } 5249 5250 *qgroup_reserved = num_bytes; 5251 5252 num_bytes = btrfs_calc_trans_metadata_size(root, items); 5253 rsv->space_info = __find_space_info(root->fs_info, 5254 BTRFS_BLOCK_GROUP_METADATA); 5255 ret = btrfs_block_rsv_add(root, rsv, num_bytes, 5256 BTRFS_RESERVE_FLUSH_ALL); 5257 5258 if (ret == -ENOSPC && use_global_rsv) 5259 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes); 5260 5261 if (ret) { 5262 if (*qgroup_reserved) 5263 btrfs_qgroup_free(root, *qgroup_reserved); 5264 } 5265 5266 return ret; 5267 } 5268 5269 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 5270 struct btrfs_block_rsv *rsv, 5271 u64 qgroup_reserved) 5272 { 5273 btrfs_block_rsv_release(root, rsv, (u64)-1); 5274 } 5275 5276 /** 5277 * drop_outstanding_extent - drop an outstanding extent 5278 * @inode: the inode we're dropping the extent for 5279 * @num_bytes: the number of bytes we're relaseing. 5280 * 5281 * This is called when we are freeing up an outstanding extent, either called 5282 * after an error or after an extent is written. This will return the number of 5283 * reserved extents that need to be freed. This must be called with 5284 * BTRFS_I(inode)->lock held. 5285 */ 5286 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes) 5287 { 5288 unsigned drop_inode_space = 0; 5289 unsigned dropped_extents = 0; 5290 unsigned num_extents = 0; 5291 5292 num_extents = (unsigned)div64_u64(num_bytes + 5293 BTRFS_MAX_EXTENT_SIZE - 1, 5294 BTRFS_MAX_EXTENT_SIZE); 5295 ASSERT(num_extents); 5296 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents); 5297 BTRFS_I(inode)->outstanding_extents -= num_extents; 5298 5299 if (BTRFS_I(inode)->outstanding_extents == 0 && 5300 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5301 &BTRFS_I(inode)->runtime_flags)) 5302 drop_inode_space = 1; 5303 5304 /* 5305 * If we have more or the same amount of outsanding extents than we have 5306 * reserved then we need to leave the reserved extents count alone. 5307 */ 5308 if (BTRFS_I(inode)->outstanding_extents >= 5309 BTRFS_I(inode)->reserved_extents) 5310 return drop_inode_space; 5311 5312 dropped_extents = BTRFS_I(inode)->reserved_extents - 5313 BTRFS_I(inode)->outstanding_extents; 5314 BTRFS_I(inode)->reserved_extents -= dropped_extents; 5315 return dropped_extents + drop_inode_space; 5316 } 5317 5318 /** 5319 * calc_csum_metadata_size - return the amount of metada space that must be 5320 * reserved/free'd for the given bytes. 5321 * @inode: the inode we're manipulating 5322 * @num_bytes: the number of bytes in question 5323 * @reserve: 1 if we are reserving space, 0 if we are freeing space 5324 * 5325 * This adjusts the number of csum_bytes in the inode and then returns the 5326 * correct amount of metadata that must either be reserved or freed. We 5327 * calculate how many checksums we can fit into one leaf and then divide the 5328 * number of bytes that will need to be checksumed by this value to figure out 5329 * how many checksums will be required. If we are adding bytes then the number 5330 * may go up and we will return the number of additional bytes that must be 5331 * reserved. If it is going down we will return the number of bytes that must 5332 * be freed. 5333 * 5334 * This must be called with BTRFS_I(inode)->lock held. 5335 */ 5336 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes, 5337 int reserve) 5338 { 5339 struct btrfs_root *root = BTRFS_I(inode)->root; 5340 u64 old_csums, num_csums; 5341 5342 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM && 5343 BTRFS_I(inode)->csum_bytes == 0) 5344 return 0; 5345 5346 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5347 if (reserve) 5348 BTRFS_I(inode)->csum_bytes += num_bytes; 5349 else 5350 BTRFS_I(inode)->csum_bytes -= num_bytes; 5351 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes); 5352 5353 /* No change, no need to reserve more */ 5354 if (old_csums == num_csums) 5355 return 0; 5356 5357 if (reserve) 5358 return btrfs_calc_trans_metadata_size(root, 5359 num_csums - old_csums); 5360 5361 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums); 5362 } 5363 5364 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes) 5365 { 5366 struct btrfs_root *root = BTRFS_I(inode)->root; 5367 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv; 5368 u64 to_reserve = 0; 5369 u64 csum_bytes; 5370 unsigned nr_extents = 0; 5371 int extra_reserve = 0; 5372 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 5373 int ret = 0; 5374 bool delalloc_lock = true; 5375 u64 to_free = 0; 5376 unsigned dropped; 5377 5378 /* If we are a free space inode we need to not flush since we will be in 5379 * the middle of a transaction commit. We also don't need the delalloc 5380 * mutex since we won't race with anybody. We need this mostly to make 5381 * lockdep shut its filthy mouth. 5382 */ 5383 if (btrfs_is_free_space_inode(inode)) { 5384 flush = BTRFS_RESERVE_NO_FLUSH; 5385 delalloc_lock = false; 5386 } 5387 5388 if (flush != BTRFS_RESERVE_NO_FLUSH && 5389 btrfs_transaction_in_commit(root->fs_info)) 5390 schedule_timeout(1); 5391 5392 if (delalloc_lock) 5393 mutex_lock(&BTRFS_I(inode)->delalloc_mutex); 5394 5395 num_bytes = ALIGN(num_bytes, root->sectorsize); 5396 5397 spin_lock(&BTRFS_I(inode)->lock); 5398 nr_extents = (unsigned)div64_u64(num_bytes + 5399 BTRFS_MAX_EXTENT_SIZE - 1, 5400 BTRFS_MAX_EXTENT_SIZE); 5401 BTRFS_I(inode)->outstanding_extents += nr_extents; 5402 nr_extents = 0; 5403 5404 if (BTRFS_I(inode)->outstanding_extents > 5405 BTRFS_I(inode)->reserved_extents) 5406 nr_extents = BTRFS_I(inode)->outstanding_extents - 5407 BTRFS_I(inode)->reserved_extents; 5408 5409 /* 5410 * Add an item to reserve for updating the inode when we complete the 5411 * delalloc io. 5412 */ 5413 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5414 &BTRFS_I(inode)->runtime_flags)) { 5415 nr_extents++; 5416 extra_reserve = 1; 5417 } 5418 5419 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents); 5420 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1); 5421 csum_bytes = BTRFS_I(inode)->csum_bytes; 5422 spin_unlock(&BTRFS_I(inode)->lock); 5423 5424 if (root->fs_info->quota_enabled) { 5425 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize); 5426 if (ret) 5427 goto out_fail; 5428 } 5429 5430 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush); 5431 if (unlikely(ret)) { 5432 if (root->fs_info->quota_enabled) 5433 btrfs_qgroup_free(root, nr_extents * root->nodesize); 5434 goto out_fail; 5435 } 5436 5437 spin_lock(&BTRFS_I(inode)->lock); 5438 if (extra_reserve) { 5439 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 5440 &BTRFS_I(inode)->runtime_flags); 5441 nr_extents--; 5442 } 5443 BTRFS_I(inode)->reserved_extents += nr_extents; 5444 spin_unlock(&BTRFS_I(inode)->lock); 5445 5446 if (delalloc_lock) 5447 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5448 5449 if (to_reserve) 5450 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5451 btrfs_ino(inode), to_reserve, 1); 5452 block_rsv_add_bytes(block_rsv, to_reserve, 1); 5453 5454 return 0; 5455 5456 out_fail: 5457 spin_lock(&BTRFS_I(inode)->lock); 5458 dropped = drop_outstanding_extent(inode, num_bytes); 5459 /* 5460 * If the inodes csum_bytes is the same as the original 5461 * csum_bytes then we know we haven't raced with any free()ers 5462 * so we can just reduce our inodes csum bytes and carry on. 5463 */ 5464 if (BTRFS_I(inode)->csum_bytes == csum_bytes) { 5465 calc_csum_metadata_size(inode, num_bytes, 0); 5466 } else { 5467 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes; 5468 u64 bytes; 5469 5470 /* 5471 * This is tricky, but first we need to figure out how much we 5472 * free'd from any free-ers that occured during this 5473 * reservation, so we reset ->csum_bytes to the csum_bytes 5474 * before we dropped our lock, and then call the free for the 5475 * number of bytes that were freed while we were trying our 5476 * reservation. 5477 */ 5478 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes; 5479 BTRFS_I(inode)->csum_bytes = csum_bytes; 5480 to_free = calc_csum_metadata_size(inode, bytes, 0); 5481 5482 5483 /* 5484 * Now we need to see how much we would have freed had we not 5485 * been making this reservation and our ->csum_bytes were not 5486 * artificially inflated. 5487 */ 5488 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes; 5489 bytes = csum_bytes - orig_csum_bytes; 5490 bytes = calc_csum_metadata_size(inode, bytes, 0); 5491 5492 /* 5493 * Now reset ->csum_bytes to what it should be. If bytes is 5494 * more than to_free then we would have free'd more space had we 5495 * not had an artificially high ->csum_bytes, so we need to free 5496 * the remainder. If bytes is the same or less then we don't 5497 * need to do anything, the other free-ers did the correct 5498 * thing. 5499 */ 5500 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes; 5501 if (bytes > to_free) 5502 to_free = bytes - to_free; 5503 else 5504 to_free = 0; 5505 } 5506 spin_unlock(&BTRFS_I(inode)->lock); 5507 if (dropped) 5508 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5509 5510 if (to_free) { 5511 btrfs_block_rsv_release(root, block_rsv, to_free); 5512 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5513 btrfs_ino(inode), to_free, 0); 5514 } 5515 if (delalloc_lock) 5516 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex); 5517 return ret; 5518 } 5519 5520 /** 5521 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode 5522 * @inode: the inode to release the reservation for 5523 * @num_bytes: the number of bytes we're releasing 5524 * 5525 * This will release the metadata reservation for an inode. This can be called 5526 * once we complete IO for a given set of bytes to release their metadata 5527 * reservations. 5528 */ 5529 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes) 5530 { 5531 struct btrfs_root *root = BTRFS_I(inode)->root; 5532 u64 to_free = 0; 5533 unsigned dropped; 5534 5535 num_bytes = ALIGN(num_bytes, root->sectorsize); 5536 spin_lock(&BTRFS_I(inode)->lock); 5537 dropped = drop_outstanding_extent(inode, num_bytes); 5538 5539 if (num_bytes) 5540 to_free = calc_csum_metadata_size(inode, num_bytes, 0); 5541 spin_unlock(&BTRFS_I(inode)->lock); 5542 if (dropped > 0) 5543 to_free += btrfs_calc_trans_metadata_size(root, dropped); 5544 5545 if (btrfs_test_is_dummy_root(root)) 5546 return; 5547 5548 trace_btrfs_space_reservation(root->fs_info, "delalloc", 5549 btrfs_ino(inode), to_free, 0); 5550 5551 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv, 5552 to_free); 5553 } 5554 5555 /** 5556 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc 5557 * @inode: inode we're writing to 5558 * @num_bytes: the number of bytes we want to allocate 5559 * 5560 * This will do the following things 5561 * 5562 * o reserve space in the data space info for num_bytes 5563 * o reserve space in the metadata space info based on number of outstanding 5564 * extents and how much csums will be needed 5565 * o add to the inodes ->delalloc_bytes 5566 * o add it to the fs_info's delalloc inodes list. 5567 * 5568 * This will return 0 for success and -ENOSPC if there is no space left. 5569 */ 5570 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes) 5571 { 5572 int ret; 5573 5574 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes); 5575 if (ret) 5576 return ret; 5577 5578 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes); 5579 if (ret) { 5580 btrfs_free_reserved_data_space(inode, num_bytes); 5581 return ret; 5582 } 5583 5584 return 0; 5585 } 5586 5587 /** 5588 * btrfs_delalloc_release_space - release data and metadata space for delalloc 5589 * @inode: inode we're releasing space for 5590 * @num_bytes: the number of bytes we want to free up 5591 * 5592 * This must be matched with a call to btrfs_delalloc_reserve_space. This is 5593 * called in the case that we don't need the metadata AND data reservations 5594 * anymore. So if there is an error or we insert an inline extent. 5595 * 5596 * This function will release the metadata space that was not used and will 5597 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 5598 * list if there are no delalloc bytes left. 5599 */ 5600 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes) 5601 { 5602 btrfs_delalloc_release_metadata(inode, num_bytes); 5603 btrfs_free_reserved_data_space(inode, num_bytes); 5604 } 5605 5606 static int update_block_group(struct btrfs_trans_handle *trans, 5607 struct btrfs_root *root, u64 bytenr, 5608 u64 num_bytes, int alloc) 5609 { 5610 struct btrfs_block_group_cache *cache = NULL; 5611 struct btrfs_fs_info *info = root->fs_info; 5612 u64 total = num_bytes; 5613 u64 old_val; 5614 u64 byte_in_group; 5615 int factor; 5616 5617 /* block accounting for super block */ 5618 spin_lock(&info->delalloc_root_lock); 5619 old_val = btrfs_super_bytes_used(info->super_copy); 5620 if (alloc) 5621 old_val += num_bytes; 5622 else 5623 old_val -= num_bytes; 5624 btrfs_set_super_bytes_used(info->super_copy, old_val); 5625 spin_unlock(&info->delalloc_root_lock); 5626 5627 while (total) { 5628 cache = btrfs_lookup_block_group(info, bytenr); 5629 if (!cache) 5630 return -ENOENT; 5631 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP | 5632 BTRFS_BLOCK_GROUP_RAID1 | 5633 BTRFS_BLOCK_GROUP_RAID10)) 5634 factor = 2; 5635 else 5636 factor = 1; 5637 /* 5638 * If this block group has free space cache written out, we 5639 * need to make sure to load it if we are removing space. This 5640 * is because we need the unpinning stage to actually add the 5641 * space back to the block group, otherwise we will leak space. 5642 */ 5643 if (!alloc && cache->cached == BTRFS_CACHE_NO) 5644 cache_block_group(cache, 1); 5645 5646 byte_in_group = bytenr - cache->key.objectid; 5647 WARN_ON(byte_in_group > cache->key.offset); 5648 5649 spin_lock(&cache->space_info->lock); 5650 spin_lock(&cache->lock); 5651 5652 if (btrfs_test_opt(root, SPACE_CACHE) && 5653 cache->disk_cache_state < BTRFS_DC_CLEAR) 5654 cache->disk_cache_state = BTRFS_DC_CLEAR; 5655 5656 old_val = btrfs_block_group_used(&cache->item); 5657 num_bytes = min(total, cache->key.offset - byte_in_group); 5658 if (alloc) { 5659 old_val += num_bytes; 5660 btrfs_set_block_group_used(&cache->item, old_val); 5661 cache->reserved -= num_bytes; 5662 cache->space_info->bytes_reserved -= num_bytes; 5663 cache->space_info->bytes_used += num_bytes; 5664 cache->space_info->disk_used += num_bytes * factor; 5665 spin_unlock(&cache->lock); 5666 spin_unlock(&cache->space_info->lock); 5667 } else { 5668 old_val -= num_bytes; 5669 btrfs_set_block_group_used(&cache->item, old_val); 5670 cache->pinned += num_bytes; 5671 cache->space_info->bytes_pinned += num_bytes; 5672 cache->space_info->bytes_used -= num_bytes; 5673 cache->space_info->disk_used -= num_bytes * factor; 5674 spin_unlock(&cache->lock); 5675 spin_unlock(&cache->space_info->lock); 5676 5677 set_extent_dirty(info->pinned_extents, 5678 bytenr, bytenr + num_bytes - 1, 5679 GFP_NOFS | __GFP_NOFAIL); 5680 /* 5681 * No longer have used bytes in this block group, queue 5682 * it for deletion. 5683 */ 5684 if (old_val == 0) { 5685 spin_lock(&info->unused_bgs_lock); 5686 if (list_empty(&cache->bg_list)) { 5687 btrfs_get_block_group(cache); 5688 list_add_tail(&cache->bg_list, 5689 &info->unused_bgs); 5690 } 5691 spin_unlock(&info->unused_bgs_lock); 5692 } 5693 } 5694 5695 spin_lock(&trans->transaction->dirty_bgs_lock); 5696 if (list_empty(&cache->dirty_list)) { 5697 list_add_tail(&cache->dirty_list, 5698 &trans->transaction->dirty_bgs); 5699 trans->transaction->num_dirty_bgs++; 5700 btrfs_get_block_group(cache); 5701 } 5702 spin_unlock(&trans->transaction->dirty_bgs_lock); 5703 5704 btrfs_put_block_group(cache); 5705 total -= num_bytes; 5706 bytenr += num_bytes; 5707 } 5708 return 0; 5709 } 5710 5711 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start) 5712 { 5713 struct btrfs_block_group_cache *cache; 5714 u64 bytenr; 5715 5716 spin_lock(&root->fs_info->block_group_cache_lock); 5717 bytenr = root->fs_info->first_logical_byte; 5718 spin_unlock(&root->fs_info->block_group_cache_lock); 5719 5720 if (bytenr < (u64)-1) 5721 return bytenr; 5722 5723 cache = btrfs_lookup_first_block_group(root->fs_info, search_start); 5724 if (!cache) 5725 return 0; 5726 5727 bytenr = cache->key.objectid; 5728 btrfs_put_block_group(cache); 5729 5730 return bytenr; 5731 } 5732 5733 static int pin_down_extent(struct btrfs_root *root, 5734 struct btrfs_block_group_cache *cache, 5735 u64 bytenr, u64 num_bytes, int reserved) 5736 { 5737 spin_lock(&cache->space_info->lock); 5738 spin_lock(&cache->lock); 5739 cache->pinned += num_bytes; 5740 cache->space_info->bytes_pinned += num_bytes; 5741 if (reserved) { 5742 cache->reserved -= num_bytes; 5743 cache->space_info->bytes_reserved -= num_bytes; 5744 } 5745 spin_unlock(&cache->lock); 5746 spin_unlock(&cache->space_info->lock); 5747 5748 set_extent_dirty(root->fs_info->pinned_extents, bytenr, 5749 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); 5750 if (reserved) 5751 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes); 5752 return 0; 5753 } 5754 5755 /* 5756 * this function must be called within transaction 5757 */ 5758 int btrfs_pin_extent(struct btrfs_root *root, 5759 u64 bytenr, u64 num_bytes, int reserved) 5760 { 5761 struct btrfs_block_group_cache *cache; 5762 5763 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5764 BUG_ON(!cache); /* Logic error */ 5765 5766 pin_down_extent(root, cache, bytenr, num_bytes, reserved); 5767 5768 btrfs_put_block_group(cache); 5769 return 0; 5770 } 5771 5772 /* 5773 * this function must be called within transaction 5774 */ 5775 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 5776 u64 bytenr, u64 num_bytes) 5777 { 5778 struct btrfs_block_group_cache *cache; 5779 int ret; 5780 5781 cache = btrfs_lookup_block_group(root->fs_info, bytenr); 5782 if (!cache) 5783 return -EINVAL; 5784 5785 /* 5786 * pull in the free space cache (if any) so that our pin 5787 * removes the free space from the cache. We have load_only set 5788 * to one because the slow code to read in the free extents does check 5789 * the pinned extents. 5790 */ 5791 cache_block_group(cache, 1); 5792 5793 pin_down_extent(root, cache, bytenr, num_bytes, 0); 5794 5795 /* remove us from the free space cache (if we're there at all) */ 5796 ret = btrfs_remove_free_space(cache, bytenr, num_bytes); 5797 btrfs_put_block_group(cache); 5798 return ret; 5799 } 5800 5801 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes) 5802 { 5803 int ret; 5804 struct btrfs_block_group_cache *block_group; 5805 struct btrfs_caching_control *caching_ctl; 5806 5807 block_group = btrfs_lookup_block_group(root->fs_info, start); 5808 if (!block_group) 5809 return -EINVAL; 5810 5811 cache_block_group(block_group, 0); 5812 caching_ctl = get_caching_control(block_group); 5813 5814 if (!caching_ctl) { 5815 /* Logic error */ 5816 BUG_ON(!block_group_cache_done(block_group)); 5817 ret = btrfs_remove_free_space(block_group, start, num_bytes); 5818 } else { 5819 mutex_lock(&caching_ctl->mutex); 5820 5821 if (start >= caching_ctl->progress) { 5822 ret = add_excluded_extent(root, start, num_bytes); 5823 } else if (start + num_bytes <= caching_ctl->progress) { 5824 ret = btrfs_remove_free_space(block_group, 5825 start, num_bytes); 5826 } else { 5827 num_bytes = caching_ctl->progress - start; 5828 ret = btrfs_remove_free_space(block_group, 5829 start, num_bytes); 5830 if (ret) 5831 goto out_lock; 5832 5833 num_bytes = (start + num_bytes) - 5834 caching_ctl->progress; 5835 start = caching_ctl->progress; 5836 ret = add_excluded_extent(root, start, num_bytes); 5837 } 5838 out_lock: 5839 mutex_unlock(&caching_ctl->mutex); 5840 put_caching_control(caching_ctl); 5841 } 5842 btrfs_put_block_group(block_group); 5843 return ret; 5844 } 5845 5846 int btrfs_exclude_logged_extents(struct btrfs_root *log, 5847 struct extent_buffer *eb) 5848 { 5849 struct btrfs_file_extent_item *item; 5850 struct btrfs_key key; 5851 int found_type; 5852 int i; 5853 5854 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) 5855 return 0; 5856 5857 for (i = 0; i < btrfs_header_nritems(eb); i++) { 5858 btrfs_item_key_to_cpu(eb, &key, i); 5859 if (key.type != BTRFS_EXTENT_DATA_KEY) 5860 continue; 5861 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 5862 found_type = btrfs_file_extent_type(eb, item); 5863 if (found_type == BTRFS_FILE_EXTENT_INLINE) 5864 continue; 5865 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 5866 continue; 5867 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 5868 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 5869 __exclude_logged_extent(log, key.objectid, key.offset); 5870 } 5871 5872 return 0; 5873 } 5874 5875 /** 5876 * btrfs_update_reserved_bytes - update the block_group and space info counters 5877 * @cache: The cache we are manipulating 5878 * @num_bytes: The number of bytes in question 5879 * @reserve: One of the reservation enums 5880 * @delalloc: The blocks are allocated for the delalloc write 5881 * 5882 * This is called by the allocator when it reserves space, or by somebody who is 5883 * freeing space that was never actually used on disk. For example if you 5884 * reserve some space for a new leaf in transaction A and before transaction A 5885 * commits you free that leaf, you call this with reserve set to 0 in order to 5886 * clear the reservation. 5887 * 5888 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper 5889 * ENOSPC accounting. For data we handle the reservation through clearing the 5890 * delalloc bits in the io_tree. We have to do this since we could end up 5891 * allocating less disk space for the amount of data we have reserved in the 5892 * case of compression. 5893 * 5894 * If this is a reservation and the block group has become read only we cannot 5895 * make the reservation and return -EAGAIN, otherwise this function always 5896 * succeeds. 5897 */ 5898 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache, 5899 u64 num_bytes, int reserve, int delalloc) 5900 { 5901 struct btrfs_space_info *space_info = cache->space_info; 5902 int ret = 0; 5903 5904 spin_lock(&space_info->lock); 5905 spin_lock(&cache->lock); 5906 if (reserve != RESERVE_FREE) { 5907 if (cache->ro) { 5908 ret = -EAGAIN; 5909 } else { 5910 cache->reserved += num_bytes; 5911 space_info->bytes_reserved += num_bytes; 5912 if (reserve == RESERVE_ALLOC) { 5913 trace_btrfs_space_reservation(cache->fs_info, 5914 "space_info", space_info->flags, 5915 num_bytes, 0); 5916 space_info->bytes_may_use -= num_bytes; 5917 } 5918 5919 if (delalloc) 5920 cache->delalloc_bytes += num_bytes; 5921 } 5922 } else { 5923 if (cache->ro) 5924 space_info->bytes_readonly += num_bytes; 5925 cache->reserved -= num_bytes; 5926 space_info->bytes_reserved -= num_bytes; 5927 5928 if (delalloc) 5929 cache->delalloc_bytes -= num_bytes; 5930 } 5931 spin_unlock(&cache->lock); 5932 spin_unlock(&space_info->lock); 5933 return ret; 5934 } 5935 5936 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 5937 struct btrfs_root *root) 5938 { 5939 struct btrfs_fs_info *fs_info = root->fs_info; 5940 struct btrfs_caching_control *next; 5941 struct btrfs_caching_control *caching_ctl; 5942 struct btrfs_block_group_cache *cache; 5943 5944 down_write(&fs_info->commit_root_sem); 5945 5946 list_for_each_entry_safe(caching_ctl, next, 5947 &fs_info->caching_block_groups, list) { 5948 cache = caching_ctl->block_group; 5949 if (block_group_cache_done(cache)) { 5950 cache->last_byte_to_unpin = (u64)-1; 5951 list_del_init(&caching_ctl->list); 5952 put_caching_control(caching_ctl); 5953 } else { 5954 cache->last_byte_to_unpin = caching_ctl->progress; 5955 } 5956 } 5957 5958 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 5959 fs_info->pinned_extents = &fs_info->freed_extents[1]; 5960 else 5961 fs_info->pinned_extents = &fs_info->freed_extents[0]; 5962 5963 up_write(&fs_info->commit_root_sem); 5964 5965 update_global_block_rsv(fs_info); 5966 } 5967 5968 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end, 5969 const bool return_free_space) 5970 { 5971 struct btrfs_fs_info *fs_info = root->fs_info; 5972 struct btrfs_block_group_cache *cache = NULL; 5973 struct btrfs_space_info *space_info; 5974 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5975 u64 len; 5976 bool readonly; 5977 5978 while (start <= end) { 5979 readonly = false; 5980 if (!cache || 5981 start >= cache->key.objectid + cache->key.offset) { 5982 if (cache) 5983 btrfs_put_block_group(cache); 5984 cache = btrfs_lookup_block_group(fs_info, start); 5985 BUG_ON(!cache); /* Logic error */ 5986 } 5987 5988 len = cache->key.objectid + cache->key.offset - start; 5989 len = min(len, end + 1 - start); 5990 5991 if (start < cache->last_byte_to_unpin) { 5992 len = min(len, cache->last_byte_to_unpin - start); 5993 if (return_free_space) 5994 btrfs_add_free_space(cache, start, len); 5995 } 5996 5997 start += len; 5998 space_info = cache->space_info; 5999 6000 spin_lock(&space_info->lock); 6001 spin_lock(&cache->lock); 6002 cache->pinned -= len; 6003 space_info->bytes_pinned -= len; 6004 percpu_counter_add(&space_info->total_bytes_pinned, -len); 6005 if (cache->ro) { 6006 space_info->bytes_readonly += len; 6007 readonly = true; 6008 } 6009 spin_unlock(&cache->lock); 6010 if (!readonly && global_rsv->space_info == space_info) { 6011 spin_lock(&global_rsv->lock); 6012 if (!global_rsv->full) { 6013 len = min(len, global_rsv->size - 6014 global_rsv->reserved); 6015 global_rsv->reserved += len; 6016 space_info->bytes_may_use += len; 6017 if (global_rsv->reserved >= global_rsv->size) 6018 global_rsv->full = 1; 6019 } 6020 spin_unlock(&global_rsv->lock); 6021 } 6022 spin_unlock(&space_info->lock); 6023 } 6024 6025 if (cache) 6026 btrfs_put_block_group(cache); 6027 return 0; 6028 } 6029 6030 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 6031 struct btrfs_root *root) 6032 { 6033 struct btrfs_fs_info *fs_info = root->fs_info; 6034 struct extent_io_tree *unpin; 6035 u64 start; 6036 u64 end; 6037 int ret; 6038 6039 if (trans->aborted) 6040 return 0; 6041 6042 if (fs_info->pinned_extents == &fs_info->freed_extents[0]) 6043 unpin = &fs_info->freed_extents[1]; 6044 else 6045 unpin = &fs_info->freed_extents[0]; 6046 6047 while (1) { 6048 mutex_lock(&fs_info->unused_bg_unpin_mutex); 6049 ret = find_first_extent_bit(unpin, 0, &start, &end, 6050 EXTENT_DIRTY, NULL); 6051 if (ret) { 6052 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6053 break; 6054 } 6055 6056 if (btrfs_test_opt(root, DISCARD)) 6057 ret = btrfs_discard_extent(root, start, 6058 end + 1 - start, NULL); 6059 6060 clear_extent_dirty(unpin, start, end, GFP_NOFS); 6061 unpin_extent_range(root, start, end, true); 6062 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 6063 cond_resched(); 6064 } 6065 6066 return 0; 6067 } 6068 6069 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes, 6070 u64 owner, u64 root_objectid) 6071 { 6072 struct btrfs_space_info *space_info; 6073 u64 flags; 6074 6075 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6076 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) 6077 flags = BTRFS_BLOCK_GROUP_SYSTEM; 6078 else 6079 flags = BTRFS_BLOCK_GROUP_METADATA; 6080 } else { 6081 flags = BTRFS_BLOCK_GROUP_DATA; 6082 } 6083 6084 space_info = __find_space_info(fs_info, flags); 6085 BUG_ON(!space_info); /* Logic bug */ 6086 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes); 6087 } 6088 6089 6090 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 6091 struct btrfs_root *root, 6092 struct btrfs_delayed_ref_node *node, u64 parent, 6093 u64 root_objectid, u64 owner_objectid, 6094 u64 owner_offset, int refs_to_drop, 6095 struct btrfs_delayed_extent_op *extent_op) 6096 { 6097 struct btrfs_key key; 6098 struct btrfs_path *path; 6099 struct btrfs_fs_info *info = root->fs_info; 6100 struct btrfs_root *extent_root = info->extent_root; 6101 struct extent_buffer *leaf; 6102 struct btrfs_extent_item *ei; 6103 struct btrfs_extent_inline_ref *iref; 6104 int ret; 6105 int is_data; 6106 int extent_slot = 0; 6107 int found_extent = 0; 6108 int num_to_del = 1; 6109 int no_quota = node->no_quota; 6110 u32 item_size; 6111 u64 refs; 6112 u64 bytenr = node->bytenr; 6113 u64 num_bytes = node->num_bytes; 6114 int last_ref = 0; 6115 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 6116 SKINNY_METADATA); 6117 6118 if (!info->quota_enabled || !is_fstree(root_objectid)) 6119 no_quota = 1; 6120 6121 path = btrfs_alloc_path(); 6122 if (!path) 6123 return -ENOMEM; 6124 6125 path->reada = 1; 6126 path->leave_spinning = 1; 6127 6128 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 6129 BUG_ON(!is_data && refs_to_drop != 1); 6130 6131 if (is_data) 6132 skinny_metadata = 0; 6133 6134 ret = lookup_extent_backref(trans, extent_root, path, &iref, 6135 bytenr, num_bytes, parent, 6136 root_objectid, owner_objectid, 6137 owner_offset); 6138 if (ret == 0) { 6139 extent_slot = path->slots[0]; 6140 while (extent_slot >= 0) { 6141 btrfs_item_key_to_cpu(path->nodes[0], &key, 6142 extent_slot); 6143 if (key.objectid != bytenr) 6144 break; 6145 if (key.type == BTRFS_EXTENT_ITEM_KEY && 6146 key.offset == num_bytes) { 6147 found_extent = 1; 6148 break; 6149 } 6150 if (key.type == BTRFS_METADATA_ITEM_KEY && 6151 key.offset == owner_objectid) { 6152 found_extent = 1; 6153 break; 6154 } 6155 if (path->slots[0] - extent_slot > 5) 6156 break; 6157 extent_slot--; 6158 } 6159 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6160 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot); 6161 if (found_extent && item_size < sizeof(*ei)) 6162 found_extent = 0; 6163 #endif 6164 if (!found_extent) { 6165 BUG_ON(iref); 6166 ret = remove_extent_backref(trans, extent_root, path, 6167 NULL, refs_to_drop, 6168 is_data, &last_ref); 6169 if (ret) { 6170 btrfs_abort_transaction(trans, extent_root, ret); 6171 goto out; 6172 } 6173 btrfs_release_path(path); 6174 path->leave_spinning = 1; 6175 6176 key.objectid = bytenr; 6177 key.type = BTRFS_EXTENT_ITEM_KEY; 6178 key.offset = num_bytes; 6179 6180 if (!is_data && skinny_metadata) { 6181 key.type = BTRFS_METADATA_ITEM_KEY; 6182 key.offset = owner_objectid; 6183 } 6184 6185 ret = btrfs_search_slot(trans, extent_root, 6186 &key, path, -1, 1); 6187 if (ret > 0 && skinny_metadata && path->slots[0]) { 6188 /* 6189 * Couldn't find our skinny metadata item, 6190 * see if we have ye olde extent item. 6191 */ 6192 path->slots[0]--; 6193 btrfs_item_key_to_cpu(path->nodes[0], &key, 6194 path->slots[0]); 6195 if (key.objectid == bytenr && 6196 key.type == BTRFS_EXTENT_ITEM_KEY && 6197 key.offset == num_bytes) 6198 ret = 0; 6199 } 6200 6201 if (ret > 0 && skinny_metadata) { 6202 skinny_metadata = false; 6203 key.objectid = bytenr; 6204 key.type = BTRFS_EXTENT_ITEM_KEY; 6205 key.offset = num_bytes; 6206 btrfs_release_path(path); 6207 ret = btrfs_search_slot(trans, extent_root, 6208 &key, path, -1, 1); 6209 } 6210 6211 if (ret) { 6212 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6213 ret, bytenr); 6214 if (ret > 0) 6215 btrfs_print_leaf(extent_root, 6216 path->nodes[0]); 6217 } 6218 if (ret < 0) { 6219 btrfs_abort_transaction(trans, extent_root, ret); 6220 goto out; 6221 } 6222 extent_slot = path->slots[0]; 6223 } 6224 } else if (WARN_ON(ret == -ENOENT)) { 6225 btrfs_print_leaf(extent_root, path->nodes[0]); 6226 btrfs_err(info, 6227 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu", 6228 bytenr, parent, root_objectid, owner_objectid, 6229 owner_offset); 6230 btrfs_abort_transaction(trans, extent_root, ret); 6231 goto out; 6232 } else { 6233 btrfs_abort_transaction(trans, extent_root, ret); 6234 goto out; 6235 } 6236 6237 leaf = path->nodes[0]; 6238 item_size = btrfs_item_size_nr(leaf, extent_slot); 6239 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 6240 if (item_size < sizeof(*ei)) { 6241 BUG_ON(found_extent || extent_slot != path->slots[0]); 6242 ret = convert_extent_item_v0(trans, extent_root, path, 6243 owner_objectid, 0); 6244 if (ret < 0) { 6245 btrfs_abort_transaction(trans, extent_root, ret); 6246 goto out; 6247 } 6248 6249 btrfs_release_path(path); 6250 path->leave_spinning = 1; 6251 6252 key.objectid = bytenr; 6253 key.type = BTRFS_EXTENT_ITEM_KEY; 6254 key.offset = num_bytes; 6255 6256 ret = btrfs_search_slot(trans, extent_root, &key, path, 6257 -1, 1); 6258 if (ret) { 6259 btrfs_err(info, "umm, got %d back from search, was looking for %llu", 6260 ret, bytenr); 6261 btrfs_print_leaf(extent_root, path->nodes[0]); 6262 } 6263 if (ret < 0) { 6264 btrfs_abort_transaction(trans, extent_root, ret); 6265 goto out; 6266 } 6267 6268 extent_slot = path->slots[0]; 6269 leaf = path->nodes[0]; 6270 item_size = btrfs_item_size_nr(leaf, extent_slot); 6271 } 6272 #endif 6273 BUG_ON(item_size < sizeof(*ei)); 6274 ei = btrfs_item_ptr(leaf, extent_slot, 6275 struct btrfs_extent_item); 6276 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 6277 key.type == BTRFS_EXTENT_ITEM_KEY) { 6278 struct btrfs_tree_block_info *bi; 6279 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); 6280 bi = (struct btrfs_tree_block_info *)(ei + 1); 6281 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 6282 } 6283 6284 refs = btrfs_extent_refs(leaf, ei); 6285 if (refs < refs_to_drop) { 6286 btrfs_err(info, "trying to drop %d refs but we only have %Lu " 6287 "for bytenr %Lu", refs_to_drop, refs, bytenr); 6288 ret = -EINVAL; 6289 btrfs_abort_transaction(trans, extent_root, ret); 6290 goto out; 6291 } 6292 refs -= refs_to_drop; 6293 6294 if (refs > 0) { 6295 if (extent_op) 6296 __run_delayed_extent_op(extent_op, leaf, ei); 6297 /* 6298 * In the case of inline back ref, reference count will 6299 * be updated by remove_extent_backref 6300 */ 6301 if (iref) { 6302 BUG_ON(!found_extent); 6303 } else { 6304 btrfs_set_extent_refs(leaf, ei, refs); 6305 btrfs_mark_buffer_dirty(leaf); 6306 } 6307 if (found_extent) { 6308 ret = remove_extent_backref(trans, extent_root, path, 6309 iref, refs_to_drop, 6310 is_data, &last_ref); 6311 if (ret) { 6312 btrfs_abort_transaction(trans, extent_root, ret); 6313 goto out; 6314 } 6315 } 6316 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid, 6317 root_objectid); 6318 } else { 6319 if (found_extent) { 6320 BUG_ON(is_data && refs_to_drop != 6321 extent_data_ref_count(root, path, iref)); 6322 if (iref) { 6323 BUG_ON(path->slots[0] != extent_slot); 6324 } else { 6325 BUG_ON(path->slots[0] != extent_slot + 1); 6326 path->slots[0] = extent_slot; 6327 num_to_del = 2; 6328 } 6329 } 6330 6331 last_ref = 1; 6332 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 6333 num_to_del); 6334 if (ret) { 6335 btrfs_abort_transaction(trans, extent_root, ret); 6336 goto out; 6337 } 6338 btrfs_release_path(path); 6339 6340 if (is_data) { 6341 ret = btrfs_del_csums(trans, root, bytenr, num_bytes); 6342 if (ret) { 6343 btrfs_abort_transaction(trans, extent_root, ret); 6344 goto out; 6345 } 6346 } 6347 6348 ret = update_block_group(trans, root, bytenr, num_bytes, 0); 6349 if (ret) { 6350 btrfs_abort_transaction(trans, extent_root, ret); 6351 goto out; 6352 } 6353 } 6354 btrfs_release_path(path); 6355 6356 out: 6357 btrfs_free_path(path); 6358 return ret; 6359 } 6360 6361 /* 6362 * when we free an block, it is possible (and likely) that we free the last 6363 * delayed ref for that extent as well. This searches the delayed ref tree for 6364 * a given extent, and if there are no other delayed refs to be processed, it 6365 * removes it from the tree. 6366 */ 6367 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 6368 struct btrfs_root *root, u64 bytenr) 6369 { 6370 struct btrfs_delayed_ref_head *head; 6371 struct btrfs_delayed_ref_root *delayed_refs; 6372 int ret = 0; 6373 6374 delayed_refs = &trans->transaction->delayed_refs; 6375 spin_lock(&delayed_refs->lock); 6376 head = btrfs_find_delayed_ref_head(trans, bytenr); 6377 if (!head) 6378 goto out_delayed_unlock; 6379 6380 spin_lock(&head->lock); 6381 if (!list_empty(&head->ref_list)) 6382 goto out; 6383 6384 if (head->extent_op) { 6385 if (!head->must_insert_reserved) 6386 goto out; 6387 btrfs_free_delayed_extent_op(head->extent_op); 6388 head->extent_op = NULL; 6389 } 6390 6391 /* 6392 * waiting for the lock here would deadlock. If someone else has it 6393 * locked they are already in the process of dropping it anyway 6394 */ 6395 if (!mutex_trylock(&head->mutex)) 6396 goto out; 6397 6398 /* 6399 * at this point we have a head with no other entries. Go 6400 * ahead and process it. 6401 */ 6402 head->node.in_tree = 0; 6403 rb_erase(&head->href_node, &delayed_refs->href_root); 6404 6405 atomic_dec(&delayed_refs->num_entries); 6406 6407 /* 6408 * we don't take a ref on the node because we're removing it from the 6409 * tree, so we just steal the ref the tree was holding. 6410 */ 6411 delayed_refs->num_heads--; 6412 if (head->processing == 0) 6413 delayed_refs->num_heads_ready--; 6414 head->processing = 0; 6415 spin_unlock(&head->lock); 6416 spin_unlock(&delayed_refs->lock); 6417 6418 BUG_ON(head->extent_op); 6419 if (head->must_insert_reserved) 6420 ret = 1; 6421 6422 mutex_unlock(&head->mutex); 6423 btrfs_put_delayed_ref(&head->node); 6424 return ret; 6425 out: 6426 spin_unlock(&head->lock); 6427 6428 out_delayed_unlock: 6429 spin_unlock(&delayed_refs->lock); 6430 return 0; 6431 } 6432 6433 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 6434 struct btrfs_root *root, 6435 struct extent_buffer *buf, 6436 u64 parent, int last_ref) 6437 { 6438 int pin = 1; 6439 int ret; 6440 6441 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6442 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 6443 buf->start, buf->len, 6444 parent, root->root_key.objectid, 6445 btrfs_header_level(buf), 6446 BTRFS_DROP_DELAYED_REF, NULL, 0); 6447 BUG_ON(ret); /* -ENOMEM */ 6448 } 6449 6450 if (!last_ref) 6451 return; 6452 6453 if (btrfs_header_generation(buf) == trans->transid) { 6454 struct btrfs_block_group_cache *cache; 6455 6456 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 6457 ret = check_ref_cleanup(trans, root, buf->start); 6458 if (!ret) 6459 goto out; 6460 } 6461 6462 cache = btrfs_lookup_block_group(root->fs_info, buf->start); 6463 6464 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 6465 pin_down_extent(root, cache, buf->start, buf->len, 1); 6466 btrfs_put_block_group(cache); 6467 goto out; 6468 } 6469 6470 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 6471 6472 btrfs_add_free_space(cache, buf->start, buf->len); 6473 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0); 6474 btrfs_put_block_group(cache); 6475 trace_btrfs_reserved_extent_free(root, buf->start, buf->len); 6476 pin = 0; 6477 } 6478 out: 6479 if (pin) 6480 add_pinned_bytes(root->fs_info, buf->len, 6481 btrfs_header_level(buf), 6482 root->root_key.objectid); 6483 6484 /* 6485 * Deleting the buffer, clear the corrupt flag since it doesn't matter 6486 * anymore. 6487 */ 6488 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); 6489 } 6490 6491 /* Can return -ENOMEM */ 6492 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, 6493 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 6494 u64 owner, u64 offset, int no_quota) 6495 { 6496 int ret; 6497 struct btrfs_fs_info *fs_info = root->fs_info; 6498 6499 if (btrfs_test_is_dummy_root(root)) 6500 return 0; 6501 6502 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid); 6503 6504 /* 6505 * tree log blocks never actually go into the extent allocation 6506 * tree, just update pinning info and exit early. 6507 */ 6508 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { 6509 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); 6510 /* unlocks the pinned mutex */ 6511 btrfs_pin_extent(root, bytenr, num_bytes, 1); 6512 ret = 0; 6513 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { 6514 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr, 6515 num_bytes, 6516 parent, root_objectid, (int)owner, 6517 BTRFS_DROP_DELAYED_REF, NULL, no_quota); 6518 } else { 6519 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr, 6520 num_bytes, 6521 parent, root_objectid, owner, 6522 offset, BTRFS_DROP_DELAYED_REF, 6523 NULL, no_quota); 6524 } 6525 return ret; 6526 } 6527 6528 /* 6529 * when we wait for progress in the block group caching, its because 6530 * our allocation attempt failed at least once. So, we must sleep 6531 * and let some progress happen before we try again. 6532 * 6533 * This function will sleep at least once waiting for new free space to 6534 * show up, and then it will check the block group free space numbers 6535 * for our min num_bytes. Another option is to have it go ahead 6536 * and look in the rbtree for a free extent of a given size, but this 6537 * is a good start. 6538 * 6539 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using 6540 * any of the information in this block group. 6541 */ 6542 static noinline void 6543 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, 6544 u64 num_bytes) 6545 { 6546 struct btrfs_caching_control *caching_ctl; 6547 6548 caching_ctl = get_caching_control(cache); 6549 if (!caching_ctl) 6550 return; 6551 6552 wait_event(caching_ctl->wait, block_group_cache_done(cache) || 6553 (cache->free_space_ctl->free_space >= num_bytes)); 6554 6555 put_caching_control(caching_ctl); 6556 } 6557 6558 static noinline int 6559 wait_block_group_cache_done(struct btrfs_block_group_cache *cache) 6560 { 6561 struct btrfs_caching_control *caching_ctl; 6562 int ret = 0; 6563 6564 caching_ctl = get_caching_control(cache); 6565 if (!caching_ctl) 6566 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; 6567 6568 wait_event(caching_ctl->wait, block_group_cache_done(cache)); 6569 if (cache->cached == BTRFS_CACHE_ERROR) 6570 ret = -EIO; 6571 put_caching_control(caching_ctl); 6572 return ret; 6573 } 6574 6575 int __get_raid_index(u64 flags) 6576 { 6577 if (flags & BTRFS_BLOCK_GROUP_RAID10) 6578 return BTRFS_RAID_RAID10; 6579 else if (flags & BTRFS_BLOCK_GROUP_RAID1) 6580 return BTRFS_RAID_RAID1; 6581 else if (flags & BTRFS_BLOCK_GROUP_DUP) 6582 return BTRFS_RAID_DUP; 6583 else if (flags & BTRFS_BLOCK_GROUP_RAID0) 6584 return BTRFS_RAID_RAID0; 6585 else if (flags & BTRFS_BLOCK_GROUP_RAID5) 6586 return BTRFS_RAID_RAID5; 6587 else if (flags & BTRFS_BLOCK_GROUP_RAID6) 6588 return BTRFS_RAID_RAID6; 6589 6590 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */ 6591 } 6592 6593 int get_block_group_index(struct btrfs_block_group_cache *cache) 6594 { 6595 return __get_raid_index(cache->flags); 6596 } 6597 6598 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = { 6599 [BTRFS_RAID_RAID10] = "raid10", 6600 [BTRFS_RAID_RAID1] = "raid1", 6601 [BTRFS_RAID_DUP] = "dup", 6602 [BTRFS_RAID_RAID0] = "raid0", 6603 [BTRFS_RAID_SINGLE] = "single", 6604 [BTRFS_RAID_RAID5] = "raid5", 6605 [BTRFS_RAID_RAID6] = "raid6", 6606 }; 6607 6608 static const char *get_raid_name(enum btrfs_raid_types type) 6609 { 6610 if (type >= BTRFS_NR_RAID_TYPES) 6611 return NULL; 6612 6613 return btrfs_raid_type_names[type]; 6614 } 6615 6616 enum btrfs_loop_type { 6617 LOOP_CACHING_NOWAIT = 0, 6618 LOOP_CACHING_WAIT = 1, 6619 LOOP_ALLOC_CHUNK = 2, 6620 LOOP_NO_EMPTY_SIZE = 3, 6621 }; 6622 6623 static inline void 6624 btrfs_lock_block_group(struct btrfs_block_group_cache *cache, 6625 int delalloc) 6626 { 6627 if (delalloc) 6628 down_read(&cache->data_rwsem); 6629 } 6630 6631 static inline void 6632 btrfs_grab_block_group(struct btrfs_block_group_cache *cache, 6633 int delalloc) 6634 { 6635 btrfs_get_block_group(cache); 6636 if (delalloc) 6637 down_read(&cache->data_rwsem); 6638 } 6639 6640 static struct btrfs_block_group_cache * 6641 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, 6642 struct btrfs_free_cluster *cluster, 6643 int delalloc) 6644 { 6645 struct btrfs_block_group_cache *used_bg; 6646 bool locked = false; 6647 again: 6648 spin_lock(&cluster->refill_lock); 6649 if (locked) { 6650 if (used_bg == cluster->block_group) 6651 return used_bg; 6652 6653 up_read(&used_bg->data_rwsem); 6654 btrfs_put_block_group(used_bg); 6655 } 6656 6657 used_bg = cluster->block_group; 6658 if (!used_bg) 6659 return NULL; 6660 6661 if (used_bg == block_group) 6662 return used_bg; 6663 6664 btrfs_get_block_group(used_bg); 6665 6666 if (!delalloc) 6667 return used_bg; 6668 6669 if (down_read_trylock(&used_bg->data_rwsem)) 6670 return used_bg; 6671 6672 spin_unlock(&cluster->refill_lock); 6673 down_read(&used_bg->data_rwsem); 6674 locked = true; 6675 goto again; 6676 } 6677 6678 static inline void 6679 btrfs_release_block_group(struct btrfs_block_group_cache *cache, 6680 int delalloc) 6681 { 6682 if (delalloc) 6683 up_read(&cache->data_rwsem); 6684 btrfs_put_block_group(cache); 6685 } 6686 6687 /* 6688 * walks the btree of allocated extents and find a hole of a given size. 6689 * The key ins is changed to record the hole: 6690 * ins->objectid == start position 6691 * ins->flags = BTRFS_EXTENT_ITEM_KEY 6692 * ins->offset == the size of the hole. 6693 * Any available blocks before search_start are skipped. 6694 * 6695 * If there is no suitable free space, we will record the max size of 6696 * the free space extent currently. 6697 */ 6698 static noinline int find_free_extent(struct btrfs_root *orig_root, 6699 u64 num_bytes, u64 empty_size, 6700 u64 hint_byte, struct btrfs_key *ins, 6701 u64 flags, int delalloc) 6702 { 6703 int ret = 0; 6704 struct btrfs_root *root = orig_root->fs_info->extent_root; 6705 struct btrfs_free_cluster *last_ptr = NULL; 6706 struct btrfs_block_group_cache *block_group = NULL; 6707 u64 search_start = 0; 6708 u64 max_extent_size = 0; 6709 int empty_cluster = 2 * 1024 * 1024; 6710 struct btrfs_space_info *space_info; 6711 int loop = 0; 6712 int index = __get_raid_index(flags); 6713 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ? 6714 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC; 6715 bool failed_cluster_refill = false; 6716 bool failed_alloc = false; 6717 bool use_cluster = true; 6718 bool have_caching_bg = false; 6719 6720 WARN_ON(num_bytes < root->sectorsize); 6721 ins->type = BTRFS_EXTENT_ITEM_KEY; 6722 ins->objectid = 0; 6723 ins->offset = 0; 6724 6725 trace_find_free_extent(orig_root, num_bytes, empty_size, flags); 6726 6727 space_info = __find_space_info(root->fs_info, flags); 6728 if (!space_info) { 6729 btrfs_err(root->fs_info, "No space info for %llu", flags); 6730 return -ENOSPC; 6731 } 6732 6733 /* 6734 * If the space info is for both data and metadata it means we have a 6735 * small filesystem and we can't use the clustering stuff. 6736 */ 6737 if (btrfs_mixed_space_info(space_info)) 6738 use_cluster = false; 6739 6740 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) { 6741 last_ptr = &root->fs_info->meta_alloc_cluster; 6742 if (!btrfs_test_opt(root, SSD)) 6743 empty_cluster = 64 * 1024; 6744 } 6745 6746 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster && 6747 btrfs_test_opt(root, SSD)) { 6748 last_ptr = &root->fs_info->data_alloc_cluster; 6749 } 6750 6751 if (last_ptr) { 6752 spin_lock(&last_ptr->lock); 6753 if (last_ptr->block_group) 6754 hint_byte = last_ptr->window_start; 6755 spin_unlock(&last_ptr->lock); 6756 } 6757 6758 search_start = max(search_start, first_logical_byte(root, 0)); 6759 search_start = max(search_start, hint_byte); 6760 6761 if (!last_ptr) 6762 empty_cluster = 0; 6763 6764 if (search_start == hint_byte) { 6765 block_group = btrfs_lookup_block_group(root->fs_info, 6766 search_start); 6767 /* 6768 * we don't want to use the block group if it doesn't match our 6769 * allocation bits, or if its not cached. 6770 * 6771 * However if we are re-searching with an ideal block group 6772 * picked out then we don't care that the block group is cached. 6773 */ 6774 if (block_group && block_group_bits(block_group, flags) && 6775 block_group->cached != BTRFS_CACHE_NO) { 6776 down_read(&space_info->groups_sem); 6777 if (list_empty(&block_group->list) || 6778 block_group->ro) { 6779 /* 6780 * someone is removing this block group, 6781 * we can't jump into the have_block_group 6782 * target because our list pointers are not 6783 * valid 6784 */ 6785 btrfs_put_block_group(block_group); 6786 up_read(&space_info->groups_sem); 6787 } else { 6788 index = get_block_group_index(block_group); 6789 btrfs_lock_block_group(block_group, delalloc); 6790 goto have_block_group; 6791 } 6792 } else if (block_group) { 6793 btrfs_put_block_group(block_group); 6794 } 6795 } 6796 search: 6797 have_caching_bg = false; 6798 down_read(&space_info->groups_sem); 6799 list_for_each_entry(block_group, &space_info->block_groups[index], 6800 list) { 6801 u64 offset; 6802 int cached; 6803 6804 btrfs_grab_block_group(block_group, delalloc); 6805 search_start = block_group->key.objectid; 6806 6807 /* 6808 * this can happen if we end up cycling through all the 6809 * raid types, but we want to make sure we only allocate 6810 * for the proper type. 6811 */ 6812 if (!block_group_bits(block_group, flags)) { 6813 u64 extra = BTRFS_BLOCK_GROUP_DUP | 6814 BTRFS_BLOCK_GROUP_RAID1 | 6815 BTRFS_BLOCK_GROUP_RAID5 | 6816 BTRFS_BLOCK_GROUP_RAID6 | 6817 BTRFS_BLOCK_GROUP_RAID10; 6818 6819 /* 6820 * if they asked for extra copies and this block group 6821 * doesn't provide them, bail. This does allow us to 6822 * fill raid0 from raid1. 6823 */ 6824 if ((flags & extra) && !(block_group->flags & extra)) 6825 goto loop; 6826 } 6827 6828 have_block_group: 6829 cached = block_group_cache_done(block_group); 6830 if (unlikely(!cached)) { 6831 ret = cache_block_group(block_group, 0); 6832 BUG_ON(ret < 0); 6833 ret = 0; 6834 } 6835 6836 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) 6837 goto loop; 6838 if (unlikely(block_group->ro)) 6839 goto loop; 6840 6841 /* 6842 * Ok we want to try and use the cluster allocator, so 6843 * lets look there 6844 */ 6845 if (last_ptr) { 6846 struct btrfs_block_group_cache *used_block_group; 6847 unsigned long aligned_cluster; 6848 /* 6849 * the refill lock keeps out other 6850 * people trying to start a new cluster 6851 */ 6852 used_block_group = btrfs_lock_cluster(block_group, 6853 last_ptr, 6854 delalloc); 6855 if (!used_block_group) 6856 goto refill_cluster; 6857 6858 if (used_block_group != block_group && 6859 (used_block_group->ro || 6860 !block_group_bits(used_block_group, flags))) 6861 goto release_cluster; 6862 6863 offset = btrfs_alloc_from_cluster(used_block_group, 6864 last_ptr, 6865 num_bytes, 6866 used_block_group->key.objectid, 6867 &max_extent_size); 6868 if (offset) { 6869 /* we have a block, we're done */ 6870 spin_unlock(&last_ptr->refill_lock); 6871 trace_btrfs_reserve_extent_cluster(root, 6872 used_block_group, 6873 search_start, num_bytes); 6874 if (used_block_group != block_group) { 6875 btrfs_release_block_group(block_group, 6876 delalloc); 6877 block_group = used_block_group; 6878 } 6879 goto checks; 6880 } 6881 6882 WARN_ON(last_ptr->block_group != used_block_group); 6883 release_cluster: 6884 /* If we are on LOOP_NO_EMPTY_SIZE, we can't 6885 * set up a new clusters, so lets just skip it 6886 * and let the allocator find whatever block 6887 * it can find. If we reach this point, we 6888 * will have tried the cluster allocator 6889 * plenty of times and not have found 6890 * anything, so we are likely way too 6891 * fragmented for the clustering stuff to find 6892 * anything. 6893 * 6894 * However, if the cluster is taken from the 6895 * current block group, release the cluster 6896 * first, so that we stand a better chance of 6897 * succeeding in the unclustered 6898 * allocation. */ 6899 if (loop >= LOOP_NO_EMPTY_SIZE && 6900 used_block_group != block_group) { 6901 spin_unlock(&last_ptr->refill_lock); 6902 btrfs_release_block_group(used_block_group, 6903 delalloc); 6904 goto unclustered_alloc; 6905 } 6906 6907 /* 6908 * this cluster didn't work out, free it and 6909 * start over 6910 */ 6911 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6912 6913 if (used_block_group != block_group) 6914 btrfs_release_block_group(used_block_group, 6915 delalloc); 6916 refill_cluster: 6917 if (loop >= LOOP_NO_EMPTY_SIZE) { 6918 spin_unlock(&last_ptr->refill_lock); 6919 goto unclustered_alloc; 6920 } 6921 6922 aligned_cluster = max_t(unsigned long, 6923 empty_cluster + empty_size, 6924 block_group->full_stripe_len); 6925 6926 /* allocate a cluster in this block group */ 6927 ret = btrfs_find_space_cluster(root, block_group, 6928 last_ptr, search_start, 6929 num_bytes, 6930 aligned_cluster); 6931 if (ret == 0) { 6932 /* 6933 * now pull our allocation out of this 6934 * cluster 6935 */ 6936 offset = btrfs_alloc_from_cluster(block_group, 6937 last_ptr, 6938 num_bytes, 6939 search_start, 6940 &max_extent_size); 6941 if (offset) { 6942 /* we found one, proceed */ 6943 spin_unlock(&last_ptr->refill_lock); 6944 trace_btrfs_reserve_extent_cluster(root, 6945 block_group, search_start, 6946 num_bytes); 6947 goto checks; 6948 } 6949 } else if (!cached && loop > LOOP_CACHING_NOWAIT 6950 && !failed_cluster_refill) { 6951 spin_unlock(&last_ptr->refill_lock); 6952 6953 failed_cluster_refill = true; 6954 wait_block_group_cache_progress(block_group, 6955 num_bytes + empty_cluster + empty_size); 6956 goto have_block_group; 6957 } 6958 6959 /* 6960 * at this point we either didn't find a cluster 6961 * or we weren't able to allocate a block from our 6962 * cluster. Free the cluster we've been trying 6963 * to use, and go to the next block group 6964 */ 6965 btrfs_return_cluster_to_free_space(NULL, last_ptr); 6966 spin_unlock(&last_ptr->refill_lock); 6967 goto loop; 6968 } 6969 6970 unclustered_alloc: 6971 spin_lock(&block_group->free_space_ctl->tree_lock); 6972 if (cached && 6973 block_group->free_space_ctl->free_space < 6974 num_bytes + empty_cluster + empty_size) { 6975 if (block_group->free_space_ctl->free_space > 6976 max_extent_size) 6977 max_extent_size = 6978 block_group->free_space_ctl->free_space; 6979 spin_unlock(&block_group->free_space_ctl->tree_lock); 6980 goto loop; 6981 } 6982 spin_unlock(&block_group->free_space_ctl->tree_lock); 6983 6984 offset = btrfs_find_space_for_alloc(block_group, search_start, 6985 num_bytes, empty_size, 6986 &max_extent_size); 6987 /* 6988 * If we didn't find a chunk, and we haven't failed on this 6989 * block group before, and this block group is in the middle of 6990 * caching and we are ok with waiting, then go ahead and wait 6991 * for progress to be made, and set failed_alloc to true. 6992 * 6993 * If failed_alloc is true then we've already waited on this 6994 * block group once and should move on to the next block group. 6995 */ 6996 if (!offset && !failed_alloc && !cached && 6997 loop > LOOP_CACHING_NOWAIT) { 6998 wait_block_group_cache_progress(block_group, 6999 num_bytes + empty_size); 7000 failed_alloc = true; 7001 goto have_block_group; 7002 } else if (!offset) { 7003 if (!cached) 7004 have_caching_bg = true; 7005 goto loop; 7006 } 7007 checks: 7008 search_start = ALIGN(offset, root->stripesize); 7009 7010 /* move on to the next group */ 7011 if (search_start + num_bytes > 7012 block_group->key.objectid + block_group->key.offset) { 7013 btrfs_add_free_space(block_group, offset, num_bytes); 7014 goto loop; 7015 } 7016 7017 if (offset < search_start) 7018 btrfs_add_free_space(block_group, offset, 7019 search_start - offset); 7020 BUG_ON(offset > search_start); 7021 7022 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 7023 alloc_type, delalloc); 7024 if (ret == -EAGAIN) { 7025 btrfs_add_free_space(block_group, offset, num_bytes); 7026 goto loop; 7027 } 7028 7029 /* we are all good, lets return */ 7030 ins->objectid = search_start; 7031 ins->offset = num_bytes; 7032 7033 trace_btrfs_reserve_extent(orig_root, block_group, 7034 search_start, num_bytes); 7035 btrfs_release_block_group(block_group, delalloc); 7036 break; 7037 loop: 7038 failed_cluster_refill = false; 7039 failed_alloc = false; 7040 BUG_ON(index != get_block_group_index(block_group)); 7041 btrfs_release_block_group(block_group, delalloc); 7042 } 7043 up_read(&space_info->groups_sem); 7044 7045 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) 7046 goto search; 7047 7048 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) 7049 goto search; 7050 7051 /* 7052 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking 7053 * caching kthreads as we move along 7054 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching 7055 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again 7056 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try 7057 * again 7058 */ 7059 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { 7060 index = 0; 7061 loop++; 7062 if (loop == LOOP_ALLOC_CHUNK) { 7063 struct btrfs_trans_handle *trans; 7064 int exist = 0; 7065 7066 trans = current->journal_info; 7067 if (trans) 7068 exist = 1; 7069 else 7070 trans = btrfs_join_transaction(root); 7071 7072 if (IS_ERR(trans)) { 7073 ret = PTR_ERR(trans); 7074 goto out; 7075 } 7076 7077 ret = do_chunk_alloc(trans, root, flags, 7078 CHUNK_ALLOC_FORCE); 7079 /* 7080 * Do not bail out on ENOSPC since we 7081 * can do more things. 7082 */ 7083 if (ret < 0 && ret != -ENOSPC) 7084 btrfs_abort_transaction(trans, 7085 root, ret); 7086 else 7087 ret = 0; 7088 if (!exist) 7089 btrfs_end_transaction(trans, root); 7090 if (ret) 7091 goto out; 7092 } 7093 7094 if (loop == LOOP_NO_EMPTY_SIZE) { 7095 empty_size = 0; 7096 empty_cluster = 0; 7097 } 7098 7099 goto search; 7100 } else if (!ins->objectid) { 7101 ret = -ENOSPC; 7102 } else if (ins->objectid) { 7103 ret = 0; 7104 } 7105 out: 7106 if (ret == -ENOSPC) 7107 ins->offset = max_extent_size; 7108 return ret; 7109 } 7110 7111 static void dump_space_info(struct btrfs_space_info *info, u64 bytes, 7112 int dump_block_groups) 7113 { 7114 struct btrfs_block_group_cache *cache; 7115 int index = 0; 7116 7117 spin_lock(&info->lock); 7118 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n", 7119 info->flags, 7120 info->total_bytes - info->bytes_used - info->bytes_pinned - 7121 info->bytes_reserved - info->bytes_readonly, 7122 (info->full) ? "" : "not "); 7123 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, " 7124 "reserved=%llu, may_use=%llu, readonly=%llu\n", 7125 info->total_bytes, info->bytes_used, info->bytes_pinned, 7126 info->bytes_reserved, info->bytes_may_use, 7127 info->bytes_readonly); 7128 spin_unlock(&info->lock); 7129 7130 if (!dump_block_groups) 7131 return; 7132 7133 down_read(&info->groups_sem); 7134 again: 7135 list_for_each_entry(cache, &info->block_groups[index], list) { 7136 spin_lock(&cache->lock); 7137 printk(KERN_INFO "BTRFS: " 7138 "block group %llu has %llu bytes, " 7139 "%llu used %llu pinned %llu reserved %s\n", 7140 cache->key.objectid, cache->key.offset, 7141 btrfs_block_group_used(&cache->item), cache->pinned, 7142 cache->reserved, cache->ro ? "[readonly]" : ""); 7143 btrfs_dump_free_space(cache, bytes); 7144 spin_unlock(&cache->lock); 7145 } 7146 if (++index < BTRFS_NR_RAID_TYPES) 7147 goto again; 7148 up_read(&info->groups_sem); 7149 } 7150 7151 int btrfs_reserve_extent(struct btrfs_root *root, 7152 u64 num_bytes, u64 min_alloc_size, 7153 u64 empty_size, u64 hint_byte, 7154 struct btrfs_key *ins, int is_data, int delalloc) 7155 { 7156 bool final_tried = false; 7157 u64 flags; 7158 int ret; 7159 7160 flags = btrfs_get_alloc_profile(root, is_data); 7161 again: 7162 WARN_ON(num_bytes < root->sectorsize); 7163 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins, 7164 flags, delalloc); 7165 7166 if (ret == -ENOSPC) { 7167 if (!final_tried && ins->offset) { 7168 num_bytes = min(num_bytes >> 1, ins->offset); 7169 num_bytes = round_down(num_bytes, root->sectorsize); 7170 num_bytes = max(num_bytes, min_alloc_size); 7171 if (num_bytes == min_alloc_size) 7172 final_tried = true; 7173 goto again; 7174 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7175 struct btrfs_space_info *sinfo; 7176 7177 sinfo = __find_space_info(root->fs_info, flags); 7178 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu", 7179 flags, num_bytes); 7180 if (sinfo) 7181 dump_space_info(sinfo, num_bytes, 1); 7182 } 7183 } 7184 7185 return ret; 7186 } 7187 7188 static int __btrfs_free_reserved_extent(struct btrfs_root *root, 7189 u64 start, u64 len, 7190 int pin, int delalloc) 7191 { 7192 struct btrfs_block_group_cache *cache; 7193 int ret = 0; 7194 7195 cache = btrfs_lookup_block_group(root->fs_info, start); 7196 if (!cache) { 7197 btrfs_err(root->fs_info, "Unable to find block group for %llu", 7198 start); 7199 return -ENOSPC; 7200 } 7201 7202 if (pin) 7203 pin_down_extent(root, cache, start, len, 1); 7204 else { 7205 if (btrfs_test_opt(root, DISCARD)) 7206 ret = btrfs_discard_extent(root, start, len, NULL); 7207 btrfs_add_free_space(cache, start, len); 7208 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc); 7209 } 7210 7211 btrfs_put_block_group(cache); 7212 7213 trace_btrfs_reserved_extent_free(root, start, len); 7214 7215 return ret; 7216 } 7217 7218 int btrfs_free_reserved_extent(struct btrfs_root *root, 7219 u64 start, u64 len, int delalloc) 7220 { 7221 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc); 7222 } 7223 7224 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 7225 u64 start, u64 len) 7226 { 7227 return __btrfs_free_reserved_extent(root, start, len, 1, 0); 7228 } 7229 7230 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7231 struct btrfs_root *root, 7232 u64 parent, u64 root_objectid, 7233 u64 flags, u64 owner, u64 offset, 7234 struct btrfs_key *ins, int ref_mod) 7235 { 7236 int ret; 7237 struct btrfs_fs_info *fs_info = root->fs_info; 7238 struct btrfs_extent_item *extent_item; 7239 struct btrfs_extent_inline_ref *iref; 7240 struct btrfs_path *path; 7241 struct extent_buffer *leaf; 7242 int type; 7243 u32 size; 7244 7245 if (parent > 0) 7246 type = BTRFS_SHARED_DATA_REF_KEY; 7247 else 7248 type = BTRFS_EXTENT_DATA_REF_KEY; 7249 7250 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); 7251 7252 path = btrfs_alloc_path(); 7253 if (!path) 7254 return -ENOMEM; 7255 7256 path->leave_spinning = 1; 7257 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7258 ins, size); 7259 if (ret) { 7260 btrfs_free_path(path); 7261 return ret; 7262 } 7263 7264 leaf = path->nodes[0]; 7265 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7266 struct btrfs_extent_item); 7267 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 7268 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7269 btrfs_set_extent_flags(leaf, extent_item, 7270 flags | BTRFS_EXTENT_FLAG_DATA); 7271 7272 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7273 btrfs_set_extent_inline_ref_type(leaf, iref, type); 7274 if (parent > 0) { 7275 struct btrfs_shared_data_ref *ref; 7276 ref = (struct btrfs_shared_data_ref *)(iref + 1); 7277 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7278 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 7279 } else { 7280 struct btrfs_extent_data_ref *ref; 7281 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 7282 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 7283 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 7284 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 7285 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 7286 } 7287 7288 btrfs_mark_buffer_dirty(path->nodes[0]); 7289 btrfs_free_path(path); 7290 7291 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1); 7292 if (ret) { /* -ENOENT, logic error */ 7293 btrfs_err(fs_info, "update block group failed for %llu %llu", 7294 ins->objectid, ins->offset); 7295 BUG(); 7296 } 7297 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset); 7298 return ret; 7299 } 7300 7301 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 7302 struct btrfs_root *root, 7303 u64 parent, u64 root_objectid, 7304 u64 flags, struct btrfs_disk_key *key, 7305 int level, struct btrfs_key *ins, 7306 int no_quota) 7307 { 7308 int ret; 7309 struct btrfs_fs_info *fs_info = root->fs_info; 7310 struct btrfs_extent_item *extent_item; 7311 struct btrfs_tree_block_info *block_info; 7312 struct btrfs_extent_inline_ref *iref; 7313 struct btrfs_path *path; 7314 struct extent_buffer *leaf; 7315 u32 size = sizeof(*extent_item) + sizeof(*iref); 7316 u64 num_bytes = ins->offset; 7317 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7318 SKINNY_METADATA); 7319 7320 if (!skinny_metadata) 7321 size += sizeof(*block_info); 7322 7323 path = btrfs_alloc_path(); 7324 if (!path) { 7325 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7326 root->nodesize); 7327 return -ENOMEM; 7328 } 7329 7330 path->leave_spinning = 1; 7331 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, 7332 ins, size); 7333 if (ret) { 7334 btrfs_free_path(path); 7335 btrfs_free_and_pin_reserved_extent(root, ins->objectid, 7336 root->nodesize); 7337 return ret; 7338 } 7339 7340 leaf = path->nodes[0]; 7341 extent_item = btrfs_item_ptr(leaf, path->slots[0], 7342 struct btrfs_extent_item); 7343 btrfs_set_extent_refs(leaf, extent_item, 1); 7344 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 7345 btrfs_set_extent_flags(leaf, extent_item, 7346 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 7347 7348 if (skinny_metadata) { 7349 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 7350 num_bytes = root->nodesize; 7351 } else { 7352 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 7353 btrfs_set_tree_block_key(leaf, block_info, key); 7354 btrfs_set_tree_block_level(leaf, block_info, level); 7355 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 7356 } 7357 7358 if (parent > 0) { 7359 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 7360 btrfs_set_extent_inline_ref_type(leaf, iref, 7361 BTRFS_SHARED_BLOCK_REF_KEY); 7362 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 7363 } else { 7364 btrfs_set_extent_inline_ref_type(leaf, iref, 7365 BTRFS_TREE_BLOCK_REF_KEY); 7366 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 7367 } 7368 7369 btrfs_mark_buffer_dirty(leaf); 7370 btrfs_free_path(path); 7371 7372 ret = update_block_group(trans, root, ins->objectid, root->nodesize, 7373 1); 7374 if (ret) { /* -ENOENT, logic error */ 7375 btrfs_err(fs_info, "update block group failed for %llu %llu", 7376 ins->objectid, ins->offset); 7377 BUG(); 7378 } 7379 7380 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize); 7381 return ret; 7382 } 7383 7384 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 7385 struct btrfs_root *root, 7386 u64 root_objectid, u64 owner, 7387 u64 offset, struct btrfs_key *ins) 7388 { 7389 int ret; 7390 7391 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID); 7392 7393 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid, 7394 ins->offset, 0, 7395 root_objectid, owner, offset, 7396 BTRFS_ADD_DELAYED_EXTENT, NULL, 0); 7397 return ret; 7398 } 7399 7400 /* 7401 * this is used by the tree logging recovery code. It records that 7402 * an extent has been allocated and makes sure to clear the free 7403 * space cache bits as well 7404 */ 7405 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 7406 struct btrfs_root *root, 7407 u64 root_objectid, u64 owner, u64 offset, 7408 struct btrfs_key *ins) 7409 { 7410 int ret; 7411 struct btrfs_block_group_cache *block_group; 7412 7413 /* 7414 * Mixed block groups will exclude before processing the log so we only 7415 * need to do the exlude dance if this fs isn't mixed. 7416 */ 7417 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) { 7418 ret = __exclude_logged_extent(root, ins->objectid, ins->offset); 7419 if (ret) 7420 return ret; 7421 } 7422 7423 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid); 7424 if (!block_group) 7425 return -EINVAL; 7426 7427 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 7428 RESERVE_ALLOC_NO_ACCOUNT, 0); 7429 BUG_ON(ret); /* logic error */ 7430 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid, 7431 0, owner, offset, ins, 1); 7432 btrfs_put_block_group(block_group); 7433 return ret; 7434 } 7435 7436 static struct extent_buffer * 7437 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 7438 u64 bytenr, int level) 7439 { 7440 struct extent_buffer *buf; 7441 7442 buf = btrfs_find_create_tree_block(root, bytenr); 7443 if (!buf) 7444 return ERR_PTR(-ENOMEM); 7445 btrfs_set_header_generation(buf, trans->transid); 7446 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); 7447 btrfs_tree_lock(buf); 7448 clean_tree_block(trans, root->fs_info, buf); 7449 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 7450 7451 btrfs_set_lock_blocking(buf); 7452 btrfs_set_buffer_uptodate(buf); 7453 7454 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 7455 buf->log_index = root->log_transid % 2; 7456 /* 7457 * we allow two log transactions at a time, use different 7458 * EXENT bit to differentiate dirty pages. 7459 */ 7460 if (buf->log_index == 0) 7461 set_extent_dirty(&root->dirty_log_pages, buf->start, 7462 buf->start + buf->len - 1, GFP_NOFS); 7463 else 7464 set_extent_new(&root->dirty_log_pages, buf->start, 7465 buf->start + buf->len - 1, GFP_NOFS); 7466 } else { 7467 buf->log_index = -1; 7468 set_extent_dirty(&trans->transaction->dirty_pages, buf->start, 7469 buf->start + buf->len - 1, GFP_NOFS); 7470 } 7471 trans->blocks_used++; 7472 /* this returns a buffer locked for blocking */ 7473 return buf; 7474 } 7475 7476 static struct btrfs_block_rsv * 7477 use_block_rsv(struct btrfs_trans_handle *trans, 7478 struct btrfs_root *root, u32 blocksize) 7479 { 7480 struct btrfs_block_rsv *block_rsv; 7481 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv; 7482 int ret; 7483 bool global_updated = false; 7484 7485 block_rsv = get_block_rsv(trans, root); 7486 7487 if (unlikely(block_rsv->size == 0)) 7488 goto try_reserve; 7489 again: 7490 ret = block_rsv_use_bytes(block_rsv, blocksize); 7491 if (!ret) 7492 return block_rsv; 7493 7494 if (block_rsv->failfast) 7495 return ERR_PTR(ret); 7496 7497 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 7498 global_updated = true; 7499 update_global_block_rsv(root->fs_info); 7500 goto again; 7501 } 7502 7503 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 7504 static DEFINE_RATELIMIT_STATE(_rs, 7505 DEFAULT_RATELIMIT_INTERVAL * 10, 7506 /*DEFAULT_RATELIMIT_BURST*/ 1); 7507 if (__ratelimit(&_rs)) 7508 WARN(1, KERN_DEBUG 7509 "BTRFS: block rsv returned %d\n", ret); 7510 } 7511 try_reserve: 7512 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 7513 BTRFS_RESERVE_NO_FLUSH); 7514 if (!ret) 7515 return block_rsv; 7516 /* 7517 * If we couldn't reserve metadata bytes try and use some from 7518 * the global reserve if its space type is the same as the global 7519 * reservation. 7520 */ 7521 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 7522 block_rsv->space_info == global_rsv->space_info) { 7523 ret = block_rsv_use_bytes(global_rsv, blocksize); 7524 if (!ret) 7525 return global_rsv; 7526 } 7527 return ERR_PTR(ret); 7528 } 7529 7530 static void unuse_block_rsv(struct btrfs_fs_info *fs_info, 7531 struct btrfs_block_rsv *block_rsv, u32 blocksize) 7532 { 7533 block_rsv_add_bytes(block_rsv, blocksize, 0); 7534 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0); 7535 } 7536 7537 /* 7538 * finds a free extent and does all the dirty work required for allocation 7539 * returns the key for the extent through ins, and a tree buffer for 7540 * the first block of the extent through buf. 7541 * 7542 * returns the tree buffer or an ERR_PTR on error. 7543 */ 7544 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 7545 struct btrfs_root *root, 7546 u64 parent, u64 root_objectid, 7547 struct btrfs_disk_key *key, int level, 7548 u64 hint, u64 empty_size) 7549 { 7550 struct btrfs_key ins; 7551 struct btrfs_block_rsv *block_rsv; 7552 struct extent_buffer *buf; 7553 struct btrfs_delayed_extent_op *extent_op; 7554 u64 flags = 0; 7555 int ret; 7556 u32 blocksize = root->nodesize; 7557 bool skinny_metadata = btrfs_fs_incompat(root->fs_info, 7558 SKINNY_METADATA); 7559 7560 if (btrfs_test_is_dummy_root(root)) { 7561 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 7562 level); 7563 if (!IS_ERR(buf)) 7564 root->alloc_bytenr += blocksize; 7565 return buf; 7566 } 7567 7568 block_rsv = use_block_rsv(trans, root, blocksize); 7569 if (IS_ERR(block_rsv)) 7570 return ERR_CAST(block_rsv); 7571 7572 ret = btrfs_reserve_extent(root, blocksize, blocksize, 7573 empty_size, hint, &ins, 0, 0); 7574 if (ret) 7575 goto out_unuse; 7576 7577 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level); 7578 if (IS_ERR(buf)) { 7579 ret = PTR_ERR(buf); 7580 goto out_free_reserved; 7581 } 7582 7583 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 7584 if (parent == 0) 7585 parent = ins.objectid; 7586 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 7587 } else 7588 BUG_ON(parent > 0); 7589 7590 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 7591 extent_op = btrfs_alloc_delayed_extent_op(); 7592 if (!extent_op) { 7593 ret = -ENOMEM; 7594 goto out_free_buf; 7595 } 7596 if (key) 7597 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 7598 else 7599 memset(&extent_op->key, 0, sizeof(extent_op->key)); 7600 extent_op->flags_to_set = flags; 7601 if (skinny_metadata) 7602 extent_op->update_key = 0; 7603 else 7604 extent_op->update_key = 1; 7605 extent_op->update_flags = 1; 7606 extent_op->is_data = 0; 7607 extent_op->level = level; 7608 7609 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans, 7610 ins.objectid, ins.offset, 7611 parent, root_objectid, level, 7612 BTRFS_ADD_DELAYED_EXTENT, 7613 extent_op, 0); 7614 if (ret) 7615 goto out_free_delayed; 7616 } 7617 return buf; 7618 7619 out_free_delayed: 7620 btrfs_free_delayed_extent_op(extent_op); 7621 out_free_buf: 7622 free_extent_buffer(buf); 7623 out_free_reserved: 7624 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0); 7625 out_unuse: 7626 unuse_block_rsv(root->fs_info, block_rsv, blocksize); 7627 return ERR_PTR(ret); 7628 } 7629 7630 struct walk_control { 7631 u64 refs[BTRFS_MAX_LEVEL]; 7632 u64 flags[BTRFS_MAX_LEVEL]; 7633 struct btrfs_key update_progress; 7634 int stage; 7635 int level; 7636 int shared_level; 7637 int update_ref; 7638 int keep_locks; 7639 int reada_slot; 7640 int reada_count; 7641 int for_reloc; 7642 }; 7643 7644 #define DROP_REFERENCE 1 7645 #define UPDATE_BACKREF 2 7646 7647 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 7648 struct btrfs_root *root, 7649 struct walk_control *wc, 7650 struct btrfs_path *path) 7651 { 7652 u64 bytenr; 7653 u64 generation; 7654 u64 refs; 7655 u64 flags; 7656 u32 nritems; 7657 u32 blocksize; 7658 struct btrfs_key key; 7659 struct extent_buffer *eb; 7660 int ret; 7661 int slot; 7662 int nread = 0; 7663 7664 if (path->slots[wc->level] < wc->reada_slot) { 7665 wc->reada_count = wc->reada_count * 2 / 3; 7666 wc->reada_count = max(wc->reada_count, 2); 7667 } else { 7668 wc->reada_count = wc->reada_count * 3 / 2; 7669 wc->reada_count = min_t(int, wc->reada_count, 7670 BTRFS_NODEPTRS_PER_BLOCK(root)); 7671 } 7672 7673 eb = path->nodes[wc->level]; 7674 nritems = btrfs_header_nritems(eb); 7675 blocksize = root->nodesize; 7676 7677 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 7678 if (nread >= wc->reada_count) 7679 break; 7680 7681 cond_resched(); 7682 bytenr = btrfs_node_blockptr(eb, slot); 7683 generation = btrfs_node_ptr_generation(eb, slot); 7684 7685 if (slot == path->slots[wc->level]) 7686 goto reada; 7687 7688 if (wc->stage == UPDATE_BACKREF && 7689 generation <= root->root_key.offset) 7690 continue; 7691 7692 /* We don't lock the tree block, it's OK to be racy here */ 7693 ret = btrfs_lookup_extent_info(trans, root, bytenr, 7694 wc->level - 1, 1, &refs, 7695 &flags); 7696 /* We don't care about errors in readahead. */ 7697 if (ret < 0) 7698 continue; 7699 BUG_ON(refs == 0); 7700 7701 if (wc->stage == DROP_REFERENCE) { 7702 if (refs == 1) 7703 goto reada; 7704 7705 if (wc->level == 1 && 7706 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7707 continue; 7708 if (!wc->update_ref || 7709 generation <= root->root_key.offset) 7710 continue; 7711 btrfs_node_key_to_cpu(eb, &key, slot); 7712 ret = btrfs_comp_cpu_keys(&key, 7713 &wc->update_progress); 7714 if (ret < 0) 7715 continue; 7716 } else { 7717 if (wc->level == 1 && 7718 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 7719 continue; 7720 } 7721 reada: 7722 readahead_tree_block(root, bytenr); 7723 nread++; 7724 } 7725 wc->reada_slot = slot; 7726 } 7727 7728 /* 7729 * TODO: Modify related function to add related node/leaf to dirty_extent_root, 7730 * for later qgroup accounting. 7731 * 7732 * Current, this function does nothing. 7733 */ 7734 static int account_leaf_items(struct btrfs_trans_handle *trans, 7735 struct btrfs_root *root, 7736 struct extent_buffer *eb) 7737 { 7738 int nr = btrfs_header_nritems(eb); 7739 int i, extent_type; 7740 struct btrfs_key key; 7741 struct btrfs_file_extent_item *fi; 7742 u64 bytenr, num_bytes; 7743 7744 for (i = 0; i < nr; i++) { 7745 btrfs_item_key_to_cpu(eb, &key, i); 7746 7747 if (key.type != BTRFS_EXTENT_DATA_KEY) 7748 continue; 7749 7750 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 7751 /* filter out non qgroup-accountable extents */ 7752 extent_type = btrfs_file_extent_type(eb, fi); 7753 7754 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 7755 continue; 7756 7757 bytenr = btrfs_file_extent_disk_bytenr(eb, fi); 7758 if (!bytenr) 7759 continue; 7760 7761 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi); 7762 } 7763 return 0; 7764 } 7765 7766 /* 7767 * Walk up the tree from the bottom, freeing leaves and any interior 7768 * nodes which have had all slots visited. If a node (leaf or 7769 * interior) is freed, the node above it will have it's slot 7770 * incremented. The root node will never be freed. 7771 * 7772 * At the end of this function, we should have a path which has all 7773 * slots incremented to the next position for a search. If we need to 7774 * read a new node it will be NULL and the node above it will have the 7775 * correct slot selected for a later read. 7776 * 7777 * If we increment the root nodes slot counter past the number of 7778 * elements, 1 is returned to signal completion of the search. 7779 */ 7780 static int adjust_slots_upwards(struct btrfs_root *root, 7781 struct btrfs_path *path, int root_level) 7782 { 7783 int level = 0; 7784 int nr, slot; 7785 struct extent_buffer *eb; 7786 7787 if (root_level == 0) 7788 return 1; 7789 7790 while (level <= root_level) { 7791 eb = path->nodes[level]; 7792 nr = btrfs_header_nritems(eb); 7793 path->slots[level]++; 7794 slot = path->slots[level]; 7795 if (slot >= nr || level == 0) { 7796 /* 7797 * Don't free the root - we will detect this 7798 * condition after our loop and return a 7799 * positive value for caller to stop walking the tree. 7800 */ 7801 if (level != root_level) { 7802 btrfs_tree_unlock_rw(eb, path->locks[level]); 7803 path->locks[level] = 0; 7804 7805 free_extent_buffer(eb); 7806 path->nodes[level] = NULL; 7807 path->slots[level] = 0; 7808 } 7809 } else { 7810 /* 7811 * We have a valid slot to walk back down 7812 * from. Stop here so caller can process these 7813 * new nodes. 7814 */ 7815 break; 7816 } 7817 7818 level++; 7819 } 7820 7821 eb = path->nodes[root_level]; 7822 if (path->slots[root_level] >= btrfs_header_nritems(eb)) 7823 return 1; 7824 7825 return 0; 7826 } 7827 7828 /* 7829 * root_eb is the subtree root and is locked before this function is called. 7830 * TODO: Modify this function to mark all (including complete shared node) 7831 * to dirty_extent_root to allow it get accounted in qgroup. 7832 */ 7833 static int account_shared_subtree(struct btrfs_trans_handle *trans, 7834 struct btrfs_root *root, 7835 struct extent_buffer *root_eb, 7836 u64 root_gen, 7837 int root_level) 7838 { 7839 int ret = 0; 7840 int level; 7841 struct extent_buffer *eb = root_eb; 7842 struct btrfs_path *path = NULL; 7843 7844 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL); 7845 BUG_ON(root_eb == NULL); 7846 7847 if (!root->fs_info->quota_enabled) 7848 return 0; 7849 7850 if (!extent_buffer_uptodate(root_eb)) { 7851 ret = btrfs_read_buffer(root_eb, root_gen); 7852 if (ret) 7853 goto out; 7854 } 7855 7856 if (root_level == 0) { 7857 ret = account_leaf_items(trans, root, root_eb); 7858 goto out; 7859 } 7860 7861 path = btrfs_alloc_path(); 7862 if (!path) 7863 return -ENOMEM; 7864 7865 /* 7866 * Walk down the tree. Missing extent blocks are filled in as 7867 * we go. Metadata is accounted every time we read a new 7868 * extent block. 7869 * 7870 * When we reach a leaf, we account for file extent items in it, 7871 * walk back up the tree (adjusting slot pointers as we go) 7872 * and restart the search process. 7873 */ 7874 extent_buffer_get(root_eb); /* For path */ 7875 path->nodes[root_level] = root_eb; 7876 path->slots[root_level] = 0; 7877 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */ 7878 walk_down: 7879 level = root_level; 7880 while (level >= 0) { 7881 if (path->nodes[level] == NULL) { 7882 int parent_slot; 7883 u64 child_gen; 7884 u64 child_bytenr; 7885 7886 /* We need to get child blockptr/gen from 7887 * parent before we can read it. */ 7888 eb = path->nodes[level + 1]; 7889 parent_slot = path->slots[level + 1]; 7890 child_bytenr = btrfs_node_blockptr(eb, parent_slot); 7891 child_gen = btrfs_node_ptr_generation(eb, parent_slot); 7892 7893 eb = read_tree_block(root, child_bytenr, child_gen); 7894 if (IS_ERR(eb)) { 7895 ret = PTR_ERR(eb); 7896 goto out; 7897 } else if (!extent_buffer_uptodate(eb)) { 7898 free_extent_buffer(eb); 7899 ret = -EIO; 7900 goto out; 7901 } 7902 7903 path->nodes[level] = eb; 7904 path->slots[level] = 0; 7905 7906 btrfs_tree_read_lock(eb); 7907 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 7908 path->locks[level] = BTRFS_READ_LOCK_BLOCKING; 7909 } 7910 7911 if (level == 0) { 7912 ret = account_leaf_items(trans, root, path->nodes[level]); 7913 if (ret) 7914 goto out; 7915 7916 /* Nonzero return here means we completed our search */ 7917 ret = adjust_slots_upwards(root, path, root_level); 7918 if (ret) 7919 break; 7920 7921 /* Restart search with new slots */ 7922 goto walk_down; 7923 } 7924 7925 level--; 7926 } 7927 7928 ret = 0; 7929 out: 7930 btrfs_free_path(path); 7931 7932 return ret; 7933 } 7934 7935 /* 7936 * helper to process tree block while walking down the tree. 7937 * 7938 * when wc->stage == UPDATE_BACKREF, this function updates 7939 * back refs for pointers in the block. 7940 * 7941 * NOTE: return value 1 means we should stop walking down. 7942 */ 7943 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 7944 struct btrfs_root *root, 7945 struct btrfs_path *path, 7946 struct walk_control *wc, int lookup_info) 7947 { 7948 int level = wc->level; 7949 struct extent_buffer *eb = path->nodes[level]; 7950 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 7951 int ret; 7952 7953 if (wc->stage == UPDATE_BACKREF && 7954 btrfs_header_owner(eb) != root->root_key.objectid) 7955 return 1; 7956 7957 /* 7958 * when reference count of tree block is 1, it won't increase 7959 * again. once full backref flag is set, we never clear it. 7960 */ 7961 if (lookup_info && 7962 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 7963 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 7964 BUG_ON(!path->locks[level]); 7965 ret = btrfs_lookup_extent_info(trans, root, 7966 eb->start, level, 1, 7967 &wc->refs[level], 7968 &wc->flags[level]); 7969 BUG_ON(ret == -ENOMEM); 7970 if (ret) 7971 return ret; 7972 BUG_ON(wc->refs[level] == 0); 7973 } 7974 7975 if (wc->stage == DROP_REFERENCE) { 7976 if (wc->refs[level] > 1) 7977 return 1; 7978 7979 if (path->locks[level] && !wc->keep_locks) { 7980 btrfs_tree_unlock_rw(eb, path->locks[level]); 7981 path->locks[level] = 0; 7982 } 7983 return 0; 7984 } 7985 7986 /* wc->stage == UPDATE_BACKREF */ 7987 if (!(wc->flags[level] & flag)) { 7988 BUG_ON(!path->locks[level]); 7989 ret = btrfs_inc_ref(trans, root, eb, 1); 7990 BUG_ON(ret); /* -ENOMEM */ 7991 ret = btrfs_dec_ref(trans, root, eb, 0); 7992 BUG_ON(ret); /* -ENOMEM */ 7993 ret = btrfs_set_disk_extent_flags(trans, root, eb->start, 7994 eb->len, flag, 7995 btrfs_header_level(eb), 0); 7996 BUG_ON(ret); /* -ENOMEM */ 7997 wc->flags[level] |= flag; 7998 } 7999 8000 /* 8001 * the block is shared by multiple trees, so it's not good to 8002 * keep the tree lock 8003 */ 8004 if (path->locks[level] && level > 0) { 8005 btrfs_tree_unlock_rw(eb, path->locks[level]); 8006 path->locks[level] = 0; 8007 } 8008 return 0; 8009 } 8010 8011 /* 8012 * helper to process tree block pointer. 8013 * 8014 * when wc->stage == DROP_REFERENCE, this function checks 8015 * reference count of the block pointed to. if the block 8016 * is shared and we need update back refs for the subtree 8017 * rooted at the block, this function changes wc->stage to 8018 * UPDATE_BACKREF. if the block is shared and there is no 8019 * need to update back, this function drops the reference 8020 * to the block. 8021 * 8022 * NOTE: return value 1 means we should stop walking down. 8023 */ 8024 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 8025 struct btrfs_root *root, 8026 struct btrfs_path *path, 8027 struct walk_control *wc, int *lookup_info) 8028 { 8029 u64 bytenr; 8030 u64 generation; 8031 u64 parent; 8032 u32 blocksize; 8033 struct btrfs_key key; 8034 struct extent_buffer *next; 8035 int level = wc->level; 8036 int reada = 0; 8037 int ret = 0; 8038 bool need_account = false; 8039 8040 generation = btrfs_node_ptr_generation(path->nodes[level], 8041 path->slots[level]); 8042 /* 8043 * if the lower level block was created before the snapshot 8044 * was created, we know there is no need to update back refs 8045 * for the subtree 8046 */ 8047 if (wc->stage == UPDATE_BACKREF && 8048 generation <= root->root_key.offset) { 8049 *lookup_info = 1; 8050 return 1; 8051 } 8052 8053 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 8054 blocksize = root->nodesize; 8055 8056 next = btrfs_find_tree_block(root->fs_info, bytenr); 8057 if (!next) { 8058 next = btrfs_find_create_tree_block(root, bytenr); 8059 if (!next) 8060 return -ENOMEM; 8061 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, 8062 level - 1); 8063 reada = 1; 8064 } 8065 btrfs_tree_lock(next); 8066 btrfs_set_lock_blocking(next); 8067 8068 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1, 8069 &wc->refs[level - 1], 8070 &wc->flags[level - 1]); 8071 if (ret < 0) { 8072 btrfs_tree_unlock(next); 8073 return ret; 8074 } 8075 8076 if (unlikely(wc->refs[level - 1] == 0)) { 8077 btrfs_err(root->fs_info, "Missing references."); 8078 BUG(); 8079 } 8080 *lookup_info = 0; 8081 8082 if (wc->stage == DROP_REFERENCE) { 8083 if (wc->refs[level - 1] > 1) { 8084 need_account = true; 8085 if (level == 1 && 8086 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8087 goto skip; 8088 8089 if (!wc->update_ref || 8090 generation <= root->root_key.offset) 8091 goto skip; 8092 8093 btrfs_node_key_to_cpu(path->nodes[level], &key, 8094 path->slots[level]); 8095 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); 8096 if (ret < 0) 8097 goto skip; 8098 8099 wc->stage = UPDATE_BACKREF; 8100 wc->shared_level = level - 1; 8101 } 8102 } else { 8103 if (level == 1 && 8104 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 8105 goto skip; 8106 } 8107 8108 if (!btrfs_buffer_uptodate(next, generation, 0)) { 8109 btrfs_tree_unlock(next); 8110 free_extent_buffer(next); 8111 next = NULL; 8112 *lookup_info = 1; 8113 } 8114 8115 if (!next) { 8116 if (reada && level == 1) 8117 reada_walk_down(trans, root, wc, path); 8118 next = read_tree_block(root, bytenr, generation); 8119 if (IS_ERR(next)) { 8120 return PTR_ERR(next); 8121 } else if (!extent_buffer_uptodate(next)) { 8122 free_extent_buffer(next); 8123 return -EIO; 8124 } 8125 btrfs_tree_lock(next); 8126 btrfs_set_lock_blocking(next); 8127 } 8128 8129 level--; 8130 BUG_ON(level != btrfs_header_level(next)); 8131 path->nodes[level] = next; 8132 path->slots[level] = 0; 8133 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8134 wc->level = level; 8135 if (wc->level == 1) 8136 wc->reada_slot = 0; 8137 return 0; 8138 skip: 8139 wc->refs[level - 1] = 0; 8140 wc->flags[level - 1] = 0; 8141 if (wc->stage == DROP_REFERENCE) { 8142 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 8143 parent = path->nodes[level]->start; 8144 } else { 8145 BUG_ON(root->root_key.objectid != 8146 btrfs_header_owner(path->nodes[level])); 8147 parent = 0; 8148 } 8149 8150 if (need_account) { 8151 ret = account_shared_subtree(trans, root, next, 8152 generation, level - 1); 8153 if (ret) { 8154 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8155 "%d accounting shared subtree. Quota " 8156 "is out of sync, rescan required.\n", 8157 root->fs_info->sb->s_id, ret); 8158 } 8159 } 8160 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent, 8161 root->root_key.objectid, level - 1, 0, 0); 8162 BUG_ON(ret); /* -ENOMEM */ 8163 } 8164 btrfs_tree_unlock(next); 8165 free_extent_buffer(next); 8166 *lookup_info = 1; 8167 return 1; 8168 } 8169 8170 /* 8171 * helper to process tree block while walking up the tree. 8172 * 8173 * when wc->stage == DROP_REFERENCE, this function drops 8174 * reference count on the block. 8175 * 8176 * when wc->stage == UPDATE_BACKREF, this function changes 8177 * wc->stage back to DROP_REFERENCE if we changed wc->stage 8178 * to UPDATE_BACKREF previously while processing the block. 8179 * 8180 * NOTE: return value 1 means we should stop walking up. 8181 */ 8182 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 8183 struct btrfs_root *root, 8184 struct btrfs_path *path, 8185 struct walk_control *wc) 8186 { 8187 int ret; 8188 int level = wc->level; 8189 struct extent_buffer *eb = path->nodes[level]; 8190 u64 parent = 0; 8191 8192 if (wc->stage == UPDATE_BACKREF) { 8193 BUG_ON(wc->shared_level < level); 8194 if (level < wc->shared_level) 8195 goto out; 8196 8197 ret = find_next_key(path, level + 1, &wc->update_progress); 8198 if (ret > 0) 8199 wc->update_ref = 0; 8200 8201 wc->stage = DROP_REFERENCE; 8202 wc->shared_level = -1; 8203 path->slots[level] = 0; 8204 8205 /* 8206 * check reference count again if the block isn't locked. 8207 * we should start walking down the tree again if reference 8208 * count is one. 8209 */ 8210 if (!path->locks[level]) { 8211 BUG_ON(level == 0); 8212 btrfs_tree_lock(eb); 8213 btrfs_set_lock_blocking(eb); 8214 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8215 8216 ret = btrfs_lookup_extent_info(trans, root, 8217 eb->start, level, 1, 8218 &wc->refs[level], 8219 &wc->flags[level]); 8220 if (ret < 0) { 8221 btrfs_tree_unlock_rw(eb, path->locks[level]); 8222 path->locks[level] = 0; 8223 return ret; 8224 } 8225 BUG_ON(wc->refs[level] == 0); 8226 if (wc->refs[level] == 1) { 8227 btrfs_tree_unlock_rw(eb, path->locks[level]); 8228 path->locks[level] = 0; 8229 return 1; 8230 } 8231 } 8232 } 8233 8234 /* wc->stage == DROP_REFERENCE */ 8235 BUG_ON(wc->refs[level] > 1 && !path->locks[level]); 8236 8237 if (wc->refs[level] == 1) { 8238 if (level == 0) { 8239 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8240 ret = btrfs_dec_ref(trans, root, eb, 1); 8241 else 8242 ret = btrfs_dec_ref(trans, root, eb, 0); 8243 BUG_ON(ret); /* -ENOMEM */ 8244 ret = account_leaf_items(trans, root, eb); 8245 if (ret) { 8246 printk_ratelimited(KERN_ERR "BTRFS: %s Error " 8247 "%d accounting leaf items. Quota " 8248 "is out of sync, rescan required.\n", 8249 root->fs_info->sb->s_id, ret); 8250 } 8251 } 8252 /* make block locked assertion in clean_tree_block happy */ 8253 if (!path->locks[level] && 8254 btrfs_header_generation(eb) == trans->transid) { 8255 btrfs_tree_lock(eb); 8256 btrfs_set_lock_blocking(eb); 8257 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8258 } 8259 clean_tree_block(trans, root->fs_info, eb); 8260 } 8261 8262 if (eb == root->node) { 8263 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8264 parent = eb->start; 8265 else 8266 BUG_ON(root->root_key.objectid != 8267 btrfs_header_owner(eb)); 8268 } else { 8269 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 8270 parent = path->nodes[level + 1]->start; 8271 else 8272 BUG_ON(root->root_key.objectid != 8273 btrfs_header_owner(path->nodes[level + 1])); 8274 } 8275 8276 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); 8277 out: 8278 wc->refs[level] = 0; 8279 wc->flags[level] = 0; 8280 return 0; 8281 } 8282 8283 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 8284 struct btrfs_root *root, 8285 struct btrfs_path *path, 8286 struct walk_control *wc) 8287 { 8288 int level = wc->level; 8289 int lookup_info = 1; 8290 int ret; 8291 8292 while (level >= 0) { 8293 ret = walk_down_proc(trans, root, path, wc, lookup_info); 8294 if (ret > 0) 8295 break; 8296 8297 if (level == 0) 8298 break; 8299 8300 if (path->slots[level] >= 8301 btrfs_header_nritems(path->nodes[level])) 8302 break; 8303 8304 ret = do_walk_down(trans, root, path, wc, &lookup_info); 8305 if (ret > 0) { 8306 path->slots[level]++; 8307 continue; 8308 } else if (ret < 0) 8309 return ret; 8310 level = wc->level; 8311 } 8312 return 0; 8313 } 8314 8315 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 8316 struct btrfs_root *root, 8317 struct btrfs_path *path, 8318 struct walk_control *wc, int max_level) 8319 { 8320 int level = wc->level; 8321 int ret; 8322 8323 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 8324 while (level < max_level && path->nodes[level]) { 8325 wc->level = level; 8326 if (path->slots[level] + 1 < 8327 btrfs_header_nritems(path->nodes[level])) { 8328 path->slots[level]++; 8329 return 0; 8330 } else { 8331 ret = walk_up_proc(trans, root, path, wc); 8332 if (ret > 0) 8333 return 0; 8334 8335 if (path->locks[level]) { 8336 btrfs_tree_unlock_rw(path->nodes[level], 8337 path->locks[level]); 8338 path->locks[level] = 0; 8339 } 8340 free_extent_buffer(path->nodes[level]); 8341 path->nodes[level] = NULL; 8342 level++; 8343 } 8344 } 8345 return 1; 8346 } 8347 8348 /* 8349 * drop a subvolume tree. 8350 * 8351 * this function traverses the tree freeing any blocks that only 8352 * referenced by the tree. 8353 * 8354 * when a shared tree block is found. this function decreases its 8355 * reference count by one. if update_ref is true, this function 8356 * also make sure backrefs for the shared block and all lower level 8357 * blocks are properly updated. 8358 * 8359 * If called with for_reloc == 0, may exit early with -EAGAIN 8360 */ 8361 int btrfs_drop_snapshot(struct btrfs_root *root, 8362 struct btrfs_block_rsv *block_rsv, int update_ref, 8363 int for_reloc) 8364 { 8365 struct btrfs_path *path; 8366 struct btrfs_trans_handle *trans; 8367 struct btrfs_root *tree_root = root->fs_info->tree_root; 8368 struct btrfs_root_item *root_item = &root->root_item; 8369 struct walk_control *wc; 8370 struct btrfs_key key; 8371 int err = 0; 8372 int ret; 8373 int level; 8374 bool root_dropped = false; 8375 8376 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid); 8377 8378 path = btrfs_alloc_path(); 8379 if (!path) { 8380 err = -ENOMEM; 8381 goto out; 8382 } 8383 8384 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8385 if (!wc) { 8386 btrfs_free_path(path); 8387 err = -ENOMEM; 8388 goto out; 8389 } 8390 8391 trans = btrfs_start_transaction(tree_root, 0); 8392 if (IS_ERR(trans)) { 8393 err = PTR_ERR(trans); 8394 goto out_free; 8395 } 8396 8397 if (block_rsv) 8398 trans->block_rsv = block_rsv; 8399 8400 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 8401 level = btrfs_header_level(root->node); 8402 path->nodes[level] = btrfs_lock_root_node(root); 8403 btrfs_set_lock_blocking(path->nodes[level]); 8404 path->slots[level] = 0; 8405 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8406 memset(&wc->update_progress, 0, 8407 sizeof(wc->update_progress)); 8408 } else { 8409 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 8410 memcpy(&wc->update_progress, &key, 8411 sizeof(wc->update_progress)); 8412 8413 level = root_item->drop_level; 8414 BUG_ON(level == 0); 8415 path->lowest_level = level; 8416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8417 path->lowest_level = 0; 8418 if (ret < 0) { 8419 err = ret; 8420 goto out_end_trans; 8421 } 8422 WARN_ON(ret > 0); 8423 8424 /* 8425 * unlock our path, this is safe because only this 8426 * function is allowed to delete this snapshot 8427 */ 8428 btrfs_unlock_up_safe(path, 0); 8429 8430 level = btrfs_header_level(root->node); 8431 while (1) { 8432 btrfs_tree_lock(path->nodes[level]); 8433 btrfs_set_lock_blocking(path->nodes[level]); 8434 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8435 8436 ret = btrfs_lookup_extent_info(trans, root, 8437 path->nodes[level]->start, 8438 level, 1, &wc->refs[level], 8439 &wc->flags[level]); 8440 if (ret < 0) { 8441 err = ret; 8442 goto out_end_trans; 8443 } 8444 BUG_ON(wc->refs[level] == 0); 8445 8446 if (level == root_item->drop_level) 8447 break; 8448 8449 btrfs_tree_unlock(path->nodes[level]); 8450 path->locks[level] = 0; 8451 WARN_ON(wc->refs[level] != 1); 8452 level--; 8453 } 8454 } 8455 8456 wc->level = level; 8457 wc->shared_level = -1; 8458 wc->stage = DROP_REFERENCE; 8459 wc->update_ref = update_ref; 8460 wc->keep_locks = 0; 8461 wc->for_reloc = for_reloc; 8462 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8463 8464 while (1) { 8465 8466 ret = walk_down_tree(trans, root, path, wc); 8467 if (ret < 0) { 8468 err = ret; 8469 break; 8470 } 8471 8472 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 8473 if (ret < 0) { 8474 err = ret; 8475 break; 8476 } 8477 8478 if (ret > 0) { 8479 BUG_ON(wc->stage != DROP_REFERENCE); 8480 break; 8481 } 8482 8483 if (wc->stage == DROP_REFERENCE) { 8484 level = wc->level; 8485 btrfs_node_key(path->nodes[level], 8486 &root_item->drop_progress, 8487 path->slots[level]); 8488 root_item->drop_level = level; 8489 } 8490 8491 BUG_ON(wc->level == 0); 8492 if (btrfs_should_end_transaction(trans, tree_root) || 8493 (!for_reloc && btrfs_need_cleaner_sleep(root))) { 8494 ret = btrfs_update_root(trans, tree_root, 8495 &root->root_key, 8496 root_item); 8497 if (ret) { 8498 btrfs_abort_transaction(trans, tree_root, ret); 8499 err = ret; 8500 goto out_end_trans; 8501 } 8502 8503 btrfs_end_transaction_throttle(trans, tree_root); 8504 if (!for_reloc && btrfs_need_cleaner_sleep(root)) { 8505 pr_debug("BTRFS: drop snapshot early exit\n"); 8506 err = -EAGAIN; 8507 goto out_free; 8508 } 8509 8510 trans = btrfs_start_transaction(tree_root, 0); 8511 if (IS_ERR(trans)) { 8512 err = PTR_ERR(trans); 8513 goto out_free; 8514 } 8515 if (block_rsv) 8516 trans->block_rsv = block_rsv; 8517 } 8518 } 8519 btrfs_release_path(path); 8520 if (err) 8521 goto out_end_trans; 8522 8523 ret = btrfs_del_root(trans, tree_root, &root->root_key); 8524 if (ret) { 8525 btrfs_abort_transaction(trans, tree_root, ret); 8526 goto out_end_trans; 8527 } 8528 8529 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 8530 ret = btrfs_find_root(tree_root, &root->root_key, path, 8531 NULL, NULL); 8532 if (ret < 0) { 8533 btrfs_abort_transaction(trans, tree_root, ret); 8534 err = ret; 8535 goto out_end_trans; 8536 } else if (ret > 0) { 8537 /* if we fail to delete the orphan item this time 8538 * around, it'll get picked up the next time. 8539 * 8540 * The most common failure here is just -ENOENT. 8541 */ 8542 btrfs_del_orphan_item(trans, tree_root, 8543 root->root_key.objectid); 8544 } 8545 } 8546 8547 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { 8548 btrfs_drop_and_free_fs_root(tree_root->fs_info, root); 8549 } else { 8550 free_extent_buffer(root->node); 8551 free_extent_buffer(root->commit_root); 8552 btrfs_put_fs_root(root); 8553 } 8554 root_dropped = true; 8555 out_end_trans: 8556 btrfs_end_transaction_throttle(trans, tree_root); 8557 out_free: 8558 kfree(wc); 8559 btrfs_free_path(path); 8560 out: 8561 /* 8562 * So if we need to stop dropping the snapshot for whatever reason we 8563 * need to make sure to add it back to the dead root list so that we 8564 * keep trying to do the work later. This also cleans up roots if we 8565 * don't have it in the radix (like when we recover after a power fail 8566 * or unmount) so we don't leak memory. 8567 */ 8568 if (!for_reloc && root_dropped == false) 8569 btrfs_add_dead_root(root); 8570 if (err && err != -EAGAIN) 8571 btrfs_std_error(root->fs_info, err); 8572 return err; 8573 } 8574 8575 /* 8576 * drop subtree rooted at tree block 'node'. 8577 * 8578 * NOTE: this function will unlock and release tree block 'node' 8579 * only used by relocation code 8580 */ 8581 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 8582 struct btrfs_root *root, 8583 struct extent_buffer *node, 8584 struct extent_buffer *parent) 8585 { 8586 struct btrfs_path *path; 8587 struct walk_control *wc; 8588 int level; 8589 int parent_level; 8590 int ret = 0; 8591 int wret; 8592 8593 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 8594 8595 path = btrfs_alloc_path(); 8596 if (!path) 8597 return -ENOMEM; 8598 8599 wc = kzalloc(sizeof(*wc), GFP_NOFS); 8600 if (!wc) { 8601 btrfs_free_path(path); 8602 return -ENOMEM; 8603 } 8604 8605 btrfs_assert_tree_locked(parent); 8606 parent_level = btrfs_header_level(parent); 8607 extent_buffer_get(parent); 8608 path->nodes[parent_level] = parent; 8609 path->slots[parent_level] = btrfs_header_nritems(parent); 8610 8611 btrfs_assert_tree_locked(node); 8612 level = btrfs_header_level(node); 8613 path->nodes[level] = node; 8614 path->slots[level] = 0; 8615 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 8616 8617 wc->refs[parent_level] = 1; 8618 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 8619 wc->level = level; 8620 wc->shared_level = -1; 8621 wc->stage = DROP_REFERENCE; 8622 wc->update_ref = 0; 8623 wc->keep_locks = 1; 8624 wc->for_reloc = 1; 8625 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root); 8626 8627 while (1) { 8628 wret = walk_down_tree(trans, root, path, wc); 8629 if (wret < 0) { 8630 ret = wret; 8631 break; 8632 } 8633 8634 wret = walk_up_tree(trans, root, path, wc, parent_level); 8635 if (wret < 0) 8636 ret = wret; 8637 if (wret != 0) 8638 break; 8639 } 8640 8641 kfree(wc); 8642 btrfs_free_path(path); 8643 return ret; 8644 } 8645 8646 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags) 8647 { 8648 u64 num_devices; 8649 u64 stripped; 8650 8651 /* 8652 * if restripe for this chunk_type is on pick target profile and 8653 * return, otherwise do the usual balance 8654 */ 8655 stripped = get_restripe_target(root->fs_info, flags); 8656 if (stripped) 8657 return extended_to_chunk(stripped); 8658 8659 num_devices = root->fs_info->fs_devices->rw_devices; 8660 8661 stripped = BTRFS_BLOCK_GROUP_RAID0 | 8662 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | 8663 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; 8664 8665 if (num_devices == 1) { 8666 stripped |= BTRFS_BLOCK_GROUP_DUP; 8667 stripped = flags & ~stripped; 8668 8669 /* turn raid0 into single device chunks */ 8670 if (flags & BTRFS_BLOCK_GROUP_RAID0) 8671 return stripped; 8672 8673 /* turn mirroring into duplication */ 8674 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 8675 BTRFS_BLOCK_GROUP_RAID10)) 8676 return stripped | BTRFS_BLOCK_GROUP_DUP; 8677 } else { 8678 /* they already had raid on here, just return */ 8679 if (flags & stripped) 8680 return flags; 8681 8682 stripped |= BTRFS_BLOCK_GROUP_DUP; 8683 stripped = flags & ~stripped; 8684 8685 /* switch duplicated blocks with raid1 */ 8686 if (flags & BTRFS_BLOCK_GROUP_DUP) 8687 return stripped | BTRFS_BLOCK_GROUP_RAID1; 8688 8689 /* this is drive concat, leave it alone */ 8690 } 8691 8692 return flags; 8693 } 8694 8695 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force) 8696 { 8697 struct btrfs_space_info *sinfo = cache->space_info; 8698 u64 num_bytes; 8699 u64 min_allocable_bytes; 8700 int ret = -ENOSPC; 8701 8702 8703 /* 8704 * We need some metadata space and system metadata space for 8705 * allocating chunks in some corner cases until we force to set 8706 * it to be readonly. 8707 */ 8708 if ((sinfo->flags & 8709 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && 8710 !force) 8711 min_allocable_bytes = 1 * 1024 * 1024; 8712 else 8713 min_allocable_bytes = 0; 8714 8715 spin_lock(&sinfo->lock); 8716 spin_lock(&cache->lock); 8717 8718 if (cache->ro) { 8719 ret = 0; 8720 goto out; 8721 } 8722 8723 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8724 cache->bytes_super - btrfs_block_group_used(&cache->item); 8725 8726 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned + 8727 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes + 8728 min_allocable_bytes <= sinfo->total_bytes) { 8729 sinfo->bytes_readonly += num_bytes; 8730 cache->ro = 1; 8731 list_add_tail(&cache->ro_list, &sinfo->ro_bgs); 8732 ret = 0; 8733 } 8734 out: 8735 spin_unlock(&cache->lock); 8736 spin_unlock(&sinfo->lock); 8737 return ret; 8738 } 8739 8740 int btrfs_set_block_group_ro(struct btrfs_root *root, 8741 struct btrfs_block_group_cache *cache) 8742 8743 { 8744 struct btrfs_trans_handle *trans; 8745 u64 alloc_flags; 8746 int ret; 8747 8748 BUG_ON(cache->ro); 8749 8750 again: 8751 trans = btrfs_join_transaction(root); 8752 if (IS_ERR(trans)) 8753 return PTR_ERR(trans); 8754 8755 /* 8756 * we're not allowed to set block groups readonly after the dirty 8757 * block groups cache has started writing. If it already started, 8758 * back off and let this transaction commit 8759 */ 8760 mutex_lock(&root->fs_info->ro_block_group_mutex); 8761 if (trans->transaction->dirty_bg_run) { 8762 u64 transid = trans->transid; 8763 8764 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8765 btrfs_end_transaction(trans, root); 8766 8767 ret = btrfs_wait_for_commit(root, transid); 8768 if (ret) 8769 return ret; 8770 goto again; 8771 } 8772 8773 /* 8774 * if we are changing raid levels, try to allocate a corresponding 8775 * block group with the new raid level. 8776 */ 8777 alloc_flags = update_block_group_flags(root, cache->flags); 8778 if (alloc_flags != cache->flags) { 8779 ret = do_chunk_alloc(trans, root, alloc_flags, 8780 CHUNK_ALLOC_FORCE); 8781 /* 8782 * ENOSPC is allowed here, we may have enough space 8783 * already allocated at the new raid level to 8784 * carry on 8785 */ 8786 if (ret == -ENOSPC) 8787 ret = 0; 8788 if (ret < 0) 8789 goto out; 8790 } 8791 8792 ret = set_block_group_ro(cache, 0); 8793 if (!ret) 8794 goto out; 8795 alloc_flags = get_alloc_profile(root, cache->space_info->flags); 8796 ret = do_chunk_alloc(trans, root, alloc_flags, 8797 CHUNK_ALLOC_FORCE); 8798 if (ret < 0) 8799 goto out; 8800 ret = set_block_group_ro(cache, 0); 8801 out: 8802 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { 8803 alloc_flags = update_block_group_flags(root, cache->flags); 8804 lock_chunks(root->fs_info->chunk_root); 8805 check_system_chunk(trans, root, alloc_flags); 8806 unlock_chunks(root->fs_info->chunk_root); 8807 } 8808 mutex_unlock(&root->fs_info->ro_block_group_mutex); 8809 8810 btrfs_end_transaction(trans, root); 8811 return ret; 8812 } 8813 8814 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 8815 struct btrfs_root *root, u64 type) 8816 { 8817 u64 alloc_flags = get_alloc_profile(root, type); 8818 return do_chunk_alloc(trans, root, alloc_flags, 8819 CHUNK_ALLOC_FORCE); 8820 } 8821 8822 /* 8823 * helper to account the unused space of all the readonly block group in the 8824 * space_info. takes mirrors into account. 8825 */ 8826 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) 8827 { 8828 struct btrfs_block_group_cache *block_group; 8829 u64 free_bytes = 0; 8830 int factor; 8831 8832 /* It's df, we don't care if it's racey */ 8833 if (list_empty(&sinfo->ro_bgs)) 8834 return 0; 8835 8836 spin_lock(&sinfo->lock); 8837 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { 8838 spin_lock(&block_group->lock); 8839 8840 if (!block_group->ro) { 8841 spin_unlock(&block_group->lock); 8842 continue; 8843 } 8844 8845 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 | 8846 BTRFS_BLOCK_GROUP_RAID10 | 8847 BTRFS_BLOCK_GROUP_DUP)) 8848 factor = 2; 8849 else 8850 factor = 1; 8851 8852 free_bytes += (block_group->key.offset - 8853 btrfs_block_group_used(&block_group->item)) * 8854 factor; 8855 8856 spin_unlock(&block_group->lock); 8857 } 8858 spin_unlock(&sinfo->lock); 8859 8860 return free_bytes; 8861 } 8862 8863 void btrfs_set_block_group_rw(struct btrfs_root *root, 8864 struct btrfs_block_group_cache *cache) 8865 { 8866 struct btrfs_space_info *sinfo = cache->space_info; 8867 u64 num_bytes; 8868 8869 BUG_ON(!cache->ro); 8870 8871 spin_lock(&sinfo->lock); 8872 spin_lock(&cache->lock); 8873 num_bytes = cache->key.offset - cache->reserved - cache->pinned - 8874 cache->bytes_super - btrfs_block_group_used(&cache->item); 8875 sinfo->bytes_readonly -= num_bytes; 8876 cache->ro = 0; 8877 list_del_init(&cache->ro_list); 8878 spin_unlock(&cache->lock); 8879 spin_unlock(&sinfo->lock); 8880 } 8881 8882 /* 8883 * checks to see if its even possible to relocate this block group. 8884 * 8885 * @return - -1 if it's not a good idea to relocate this block group, 0 if its 8886 * ok to go ahead and try. 8887 */ 8888 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr) 8889 { 8890 struct btrfs_block_group_cache *block_group; 8891 struct btrfs_space_info *space_info; 8892 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 8893 struct btrfs_device *device; 8894 struct btrfs_trans_handle *trans; 8895 u64 min_free; 8896 u64 dev_min = 1; 8897 u64 dev_nr = 0; 8898 u64 target; 8899 int index; 8900 int full = 0; 8901 int ret = 0; 8902 8903 block_group = btrfs_lookup_block_group(root->fs_info, bytenr); 8904 8905 /* odd, couldn't find the block group, leave it alone */ 8906 if (!block_group) 8907 return -1; 8908 8909 min_free = btrfs_block_group_used(&block_group->item); 8910 8911 /* no bytes used, we're good */ 8912 if (!min_free) 8913 goto out; 8914 8915 space_info = block_group->space_info; 8916 spin_lock(&space_info->lock); 8917 8918 full = space_info->full; 8919 8920 /* 8921 * if this is the last block group we have in this space, we can't 8922 * relocate it unless we're able to allocate a new chunk below. 8923 * 8924 * Otherwise, we need to make sure we have room in the space to handle 8925 * all of the extents from this block group. If we can, we're good 8926 */ 8927 if ((space_info->total_bytes != block_group->key.offset) && 8928 (space_info->bytes_used + space_info->bytes_reserved + 8929 space_info->bytes_pinned + space_info->bytes_readonly + 8930 min_free < space_info->total_bytes)) { 8931 spin_unlock(&space_info->lock); 8932 goto out; 8933 } 8934 spin_unlock(&space_info->lock); 8935 8936 /* 8937 * ok we don't have enough space, but maybe we have free space on our 8938 * devices to allocate new chunks for relocation, so loop through our 8939 * alloc devices and guess if we have enough space. if this block 8940 * group is going to be restriped, run checks against the target 8941 * profile instead of the current one. 8942 */ 8943 ret = -1; 8944 8945 /* 8946 * index: 8947 * 0: raid10 8948 * 1: raid1 8949 * 2: dup 8950 * 3: raid0 8951 * 4: single 8952 */ 8953 target = get_restripe_target(root->fs_info, block_group->flags); 8954 if (target) { 8955 index = __get_raid_index(extended_to_chunk(target)); 8956 } else { 8957 /* 8958 * this is just a balance, so if we were marked as full 8959 * we know there is no space for a new chunk 8960 */ 8961 if (full) 8962 goto out; 8963 8964 index = get_block_group_index(block_group); 8965 } 8966 8967 if (index == BTRFS_RAID_RAID10) { 8968 dev_min = 4; 8969 /* Divide by 2 */ 8970 min_free >>= 1; 8971 } else if (index == BTRFS_RAID_RAID1) { 8972 dev_min = 2; 8973 } else if (index == BTRFS_RAID_DUP) { 8974 /* Multiply by 2 */ 8975 min_free <<= 1; 8976 } else if (index == BTRFS_RAID_RAID0) { 8977 dev_min = fs_devices->rw_devices; 8978 min_free = div64_u64(min_free, dev_min); 8979 } 8980 8981 /* We need to do this so that we can look at pending chunks */ 8982 trans = btrfs_join_transaction(root); 8983 if (IS_ERR(trans)) { 8984 ret = PTR_ERR(trans); 8985 goto out; 8986 } 8987 8988 mutex_lock(&root->fs_info->chunk_mutex); 8989 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 8990 u64 dev_offset; 8991 8992 /* 8993 * check to make sure we can actually find a chunk with enough 8994 * space to fit our block group in. 8995 */ 8996 if (device->total_bytes > device->bytes_used + min_free && 8997 !device->is_tgtdev_for_dev_replace) { 8998 ret = find_free_dev_extent(trans, device, min_free, 8999 &dev_offset, NULL); 9000 if (!ret) 9001 dev_nr++; 9002 9003 if (dev_nr >= dev_min) 9004 break; 9005 9006 ret = -1; 9007 } 9008 } 9009 mutex_unlock(&root->fs_info->chunk_mutex); 9010 btrfs_end_transaction(trans, root); 9011 out: 9012 btrfs_put_block_group(block_group); 9013 return ret; 9014 } 9015 9016 static int find_first_block_group(struct btrfs_root *root, 9017 struct btrfs_path *path, struct btrfs_key *key) 9018 { 9019 int ret = 0; 9020 struct btrfs_key found_key; 9021 struct extent_buffer *leaf; 9022 int slot; 9023 9024 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 9025 if (ret < 0) 9026 goto out; 9027 9028 while (1) { 9029 slot = path->slots[0]; 9030 leaf = path->nodes[0]; 9031 if (slot >= btrfs_header_nritems(leaf)) { 9032 ret = btrfs_next_leaf(root, path); 9033 if (ret == 0) 9034 continue; 9035 if (ret < 0) 9036 goto out; 9037 break; 9038 } 9039 btrfs_item_key_to_cpu(leaf, &found_key, slot); 9040 9041 if (found_key.objectid >= key->objectid && 9042 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { 9043 ret = 0; 9044 goto out; 9045 } 9046 path->slots[0]++; 9047 } 9048 out: 9049 return ret; 9050 } 9051 9052 void btrfs_put_block_group_cache(struct btrfs_fs_info *info) 9053 { 9054 struct btrfs_block_group_cache *block_group; 9055 u64 last = 0; 9056 9057 while (1) { 9058 struct inode *inode; 9059 9060 block_group = btrfs_lookup_first_block_group(info, last); 9061 while (block_group) { 9062 spin_lock(&block_group->lock); 9063 if (block_group->iref) 9064 break; 9065 spin_unlock(&block_group->lock); 9066 block_group = next_block_group(info->tree_root, 9067 block_group); 9068 } 9069 if (!block_group) { 9070 if (last == 0) 9071 break; 9072 last = 0; 9073 continue; 9074 } 9075 9076 inode = block_group->inode; 9077 block_group->iref = 0; 9078 block_group->inode = NULL; 9079 spin_unlock(&block_group->lock); 9080 iput(inode); 9081 last = block_group->key.objectid + block_group->key.offset; 9082 btrfs_put_block_group(block_group); 9083 } 9084 } 9085 9086 int btrfs_free_block_groups(struct btrfs_fs_info *info) 9087 { 9088 struct btrfs_block_group_cache *block_group; 9089 struct btrfs_space_info *space_info; 9090 struct btrfs_caching_control *caching_ctl; 9091 struct rb_node *n; 9092 9093 down_write(&info->commit_root_sem); 9094 while (!list_empty(&info->caching_block_groups)) { 9095 caching_ctl = list_entry(info->caching_block_groups.next, 9096 struct btrfs_caching_control, list); 9097 list_del(&caching_ctl->list); 9098 put_caching_control(caching_ctl); 9099 } 9100 up_write(&info->commit_root_sem); 9101 9102 spin_lock(&info->unused_bgs_lock); 9103 while (!list_empty(&info->unused_bgs)) { 9104 block_group = list_first_entry(&info->unused_bgs, 9105 struct btrfs_block_group_cache, 9106 bg_list); 9107 list_del_init(&block_group->bg_list); 9108 btrfs_put_block_group(block_group); 9109 } 9110 spin_unlock(&info->unused_bgs_lock); 9111 9112 spin_lock(&info->block_group_cache_lock); 9113 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { 9114 block_group = rb_entry(n, struct btrfs_block_group_cache, 9115 cache_node); 9116 rb_erase(&block_group->cache_node, 9117 &info->block_group_cache_tree); 9118 RB_CLEAR_NODE(&block_group->cache_node); 9119 spin_unlock(&info->block_group_cache_lock); 9120 9121 down_write(&block_group->space_info->groups_sem); 9122 list_del(&block_group->list); 9123 up_write(&block_group->space_info->groups_sem); 9124 9125 if (block_group->cached == BTRFS_CACHE_STARTED) 9126 wait_block_group_cache_done(block_group); 9127 9128 /* 9129 * We haven't cached this block group, which means we could 9130 * possibly have excluded extents on this block group. 9131 */ 9132 if (block_group->cached == BTRFS_CACHE_NO || 9133 block_group->cached == BTRFS_CACHE_ERROR) 9134 free_excluded_extents(info->extent_root, block_group); 9135 9136 btrfs_remove_free_space_cache(block_group); 9137 btrfs_put_block_group(block_group); 9138 9139 spin_lock(&info->block_group_cache_lock); 9140 } 9141 spin_unlock(&info->block_group_cache_lock); 9142 9143 /* now that all the block groups are freed, go through and 9144 * free all the space_info structs. This is only called during 9145 * the final stages of unmount, and so we know nobody is 9146 * using them. We call synchronize_rcu() once before we start, 9147 * just to be on the safe side. 9148 */ 9149 synchronize_rcu(); 9150 9151 release_global_block_rsv(info); 9152 9153 while (!list_empty(&info->space_info)) { 9154 int i; 9155 9156 space_info = list_entry(info->space_info.next, 9157 struct btrfs_space_info, 9158 list); 9159 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) { 9160 if (WARN_ON(space_info->bytes_pinned > 0 || 9161 space_info->bytes_reserved > 0 || 9162 space_info->bytes_may_use > 0)) { 9163 dump_space_info(space_info, 0, 0); 9164 } 9165 } 9166 list_del(&space_info->list); 9167 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 9168 struct kobject *kobj; 9169 kobj = space_info->block_group_kobjs[i]; 9170 space_info->block_group_kobjs[i] = NULL; 9171 if (kobj) { 9172 kobject_del(kobj); 9173 kobject_put(kobj); 9174 } 9175 } 9176 kobject_del(&space_info->kobj); 9177 kobject_put(&space_info->kobj); 9178 } 9179 return 0; 9180 } 9181 9182 static void __link_block_group(struct btrfs_space_info *space_info, 9183 struct btrfs_block_group_cache *cache) 9184 { 9185 int index = get_block_group_index(cache); 9186 bool first = false; 9187 9188 down_write(&space_info->groups_sem); 9189 if (list_empty(&space_info->block_groups[index])) 9190 first = true; 9191 list_add_tail(&cache->list, &space_info->block_groups[index]); 9192 up_write(&space_info->groups_sem); 9193 9194 if (first) { 9195 struct raid_kobject *rkobj; 9196 int ret; 9197 9198 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); 9199 if (!rkobj) 9200 goto out_err; 9201 rkobj->raid_type = index; 9202 kobject_init(&rkobj->kobj, &btrfs_raid_ktype); 9203 ret = kobject_add(&rkobj->kobj, &space_info->kobj, 9204 "%s", get_raid_name(index)); 9205 if (ret) { 9206 kobject_put(&rkobj->kobj); 9207 goto out_err; 9208 } 9209 space_info->block_group_kobjs[index] = &rkobj->kobj; 9210 } 9211 9212 return; 9213 out_err: 9214 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n"); 9215 } 9216 9217 static struct btrfs_block_group_cache * 9218 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size) 9219 { 9220 struct btrfs_block_group_cache *cache; 9221 9222 cache = kzalloc(sizeof(*cache), GFP_NOFS); 9223 if (!cache) 9224 return NULL; 9225 9226 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), 9227 GFP_NOFS); 9228 if (!cache->free_space_ctl) { 9229 kfree(cache); 9230 return NULL; 9231 } 9232 9233 cache->key.objectid = start; 9234 cache->key.offset = size; 9235 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9236 9237 cache->sectorsize = root->sectorsize; 9238 cache->fs_info = root->fs_info; 9239 cache->full_stripe_len = btrfs_full_stripe_len(root, 9240 &root->fs_info->mapping_tree, 9241 start); 9242 atomic_set(&cache->count, 1); 9243 spin_lock_init(&cache->lock); 9244 init_rwsem(&cache->data_rwsem); 9245 INIT_LIST_HEAD(&cache->list); 9246 INIT_LIST_HEAD(&cache->cluster_list); 9247 INIT_LIST_HEAD(&cache->bg_list); 9248 INIT_LIST_HEAD(&cache->ro_list); 9249 INIT_LIST_HEAD(&cache->dirty_list); 9250 INIT_LIST_HEAD(&cache->io_list); 9251 btrfs_init_free_space_ctl(cache); 9252 atomic_set(&cache->trimming, 0); 9253 9254 return cache; 9255 } 9256 9257 int btrfs_read_block_groups(struct btrfs_root *root) 9258 { 9259 struct btrfs_path *path; 9260 int ret; 9261 struct btrfs_block_group_cache *cache; 9262 struct btrfs_fs_info *info = root->fs_info; 9263 struct btrfs_space_info *space_info; 9264 struct btrfs_key key; 9265 struct btrfs_key found_key; 9266 struct extent_buffer *leaf; 9267 int need_clear = 0; 9268 u64 cache_gen; 9269 9270 root = info->extent_root; 9271 key.objectid = 0; 9272 key.offset = 0; 9273 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; 9274 path = btrfs_alloc_path(); 9275 if (!path) 9276 return -ENOMEM; 9277 path->reada = 1; 9278 9279 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy); 9280 if (btrfs_test_opt(root, SPACE_CACHE) && 9281 btrfs_super_generation(root->fs_info->super_copy) != cache_gen) 9282 need_clear = 1; 9283 if (btrfs_test_opt(root, CLEAR_CACHE)) 9284 need_clear = 1; 9285 9286 while (1) { 9287 ret = find_first_block_group(root, path, &key); 9288 if (ret > 0) 9289 break; 9290 if (ret != 0) 9291 goto error; 9292 9293 leaf = path->nodes[0]; 9294 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 9295 9296 cache = btrfs_create_block_group_cache(root, found_key.objectid, 9297 found_key.offset); 9298 if (!cache) { 9299 ret = -ENOMEM; 9300 goto error; 9301 } 9302 9303 if (need_clear) { 9304 /* 9305 * When we mount with old space cache, we need to 9306 * set BTRFS_DC_CLEAR and set dirty flag. 9307 * 9308 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we 9309 * truncate the old free space cache inode and 9310 * setup a new one. 9311 * b) Setting 'dirty flag' makes sure that we flush 9312 * the new space cache info onto disk. 9313 */ 9314 if (btrfs_test_opt(root, SPACE_CACHE)) 9315 cache->disk_cache_state = BTRFS_DC_CLEAR; 9316 } 9317 9318 read_extent_buffer(leaf, &cache->item, 9319 btrfs_item_ptr_offset(leaf, path->slots[0]), 9320 sizeof(cache->item)); 9321 cache->flags = btrfs_block_group_flags(&cache->item); 9322 9323 key.objectid = found_key.objectid + found_key.offset; 9324 btrfs_release_path(path); 9325 9326 /* 9327 * We need to exclude the super stripes now so that the space 9328 * info has super bytes accounted for, otherwise we'll think 9329 * we have more space than we actually do. 9330 */ 9331 ret = exclude_super_stripes(root, cache); 9332 if (ret) { 9333 /* 9334 * We may have excluded something, so call this just in 9335 * case. 9336 */ 9337 free_excluded_extents(root, cache); 9338 btrfs_put_block_group(cache); 9339 goto error; 9340 } 9341 9342 /* 9343 * check for two cases, either we are full, and therefore 9344 * don't need to bother with the caching work since we won't 9345 * find any space, or we are empty, and we can just add all 9346 * the space in and be done with it. This saves us _alot_ of 9347 * time, particularly in the full case. 9348 */ 9349 if (found_key.offset == btrfs_block_group_used(&cache->item)) { 9350 cache->last_byte_to_unpin = (u64)-1; 9351 cache->cached = BTRFS_CACHE_FINISHED; 9352 free_excluded_extents(root, cache); 9353 } else if (btrfs_block_group_used(&cache->item) == 0) { 9354 cache->last_byte_to_unpin = (u64)-1; 9355 cache->cached = BTRFS_CACHE_FINISHED; 9356 add_new_free_space(cache, root->fs_info, 9357 found_key.objectid, 9358 found_key.objectid + 9359 found_key.offset); 9360 free_excluded_extents(root, cache); 9361 } 9362 9363 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9364 if (ret) { 9365 btrfs_remove_free_space_cache(cache); 9366 btrfs_put_block_group(cache); 9367 goto error; 9368 } 9369 9370 ret = update_space_info(info, cache->flags, found_key.offset, 9371 btrfs_block_group_used(&cache->item), 9372 &space_info); 9373 if (ret) { 9374 btrfs_remove_free_space_cache(cache); 9375 spin_lock(&info->block_group_cache_lock); 9376 rb_erase(&cache->cache_node, 9377 &info->block_group_cache_tree); 9378 RB_CLEAR_NODE(&cache->cache_node); 9379 spin_unlock(&info->block_group_cache_lock); 9380 btrfs_put_block_group(cache); 9381 goto error; 9382 } 9383 9384 cache->space_info = space_info; 9385 spin_lock(&cache->space_info->lock); 9386 cache->space_info->bytes_readonly += cache->bytes_super; 9387 spin_unlock(&cache->space_info->lock); 9388 9389 __link_block_group(space_info, cache); 9390 9391 set_avail_alloc_bits(root->fs_info, cache->flags); 9392 if (btrfs_chunk_readonly(root, cache->key.objectid)) { 9393 set_block_group_ro(cache, 1); 9394 } else if (btrfs_block_group_used(&cache->item) == 0) { 9395 spin_lock(&info->unused_bgs_lock); 9396 /* Should always be true but just in case. */ 9397 if (list_empty(&cache->bg_list)) { 9398 btrfs_get_block_group(cache); 9399 list_add_tail(&cache->bg_list, 9400 &info->unused_bgs); 9401 } 9402 spin_unlock(&info->unused_bgs_lock); 9403 } 9404 } 9405 9406 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) { 9407 if (!(get_alloc_profile(root, space_info->flags) & 9408 (BTRFS_BLOCK_GROUP_RAID10 | 9409 BTRFS_BLOCK_GROUP_RAID1 | 9410 BTRFS_BLOCK_GROUP_RAID5 | 9411 BTRFS_BLOCK_GROUP_RAID6 | 9412 BTRFS_BLOCK_GROUP_DUP))) 9413 continue; 9414 /* 9415 * avoid allocating from un-mirrored block group if there are 9416 * mirrored block groups. 9417 */ 9418 list_for_each_entry(cache, 9419 &space_info->block_groups[BTRFS_RAID_RAID0], 9420 list) 9421 set_block_group_ro(cache, 1); 9422 list_for_each_entry(cache, 9423 &space_info->block_groups[BTRFS_RAID_SINGLE], 9424 list) 9425 set_block_group_ro(cache, 1); 9426 } 9427 9428 init_global_block_rsv(info); 9429 ret = 0; 9430 error: 9431 btrfs_free_path(path); 9432 return ret; 9433 } 9434 9435 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 9436 struct btrfs_root *root) 9437 { 9438 struct btrfs_block_group_cache *block_group, *tmp; 9439 struct btrfs_root *extent_root = root->fs_info->extent_root; 9440 struct btrfs_block_group_item item; 9441 struct btrfs_key key; 9442 int ret = 0; 9443 9444 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 9445 if (ret) 9446 goto next; 9447 9448 spin_lock(&block_group->lock); 9449 memcpy(&item, &block_group->item, sizeof(item)); 9450 memcpy(&key, &block_group->key, sizeof(key)); 9451 spin_unlock(&block_group->lock); 9452 9453 ret = btrfs_insert_item(trans, extent_root, &key, &item, 9454 sizeof(item)); 9455 if (ret) 9456 btrfs_abort_transaction(trans, extent_root, ret); 9457 ret = btrfs_finish_chunk_alloc(trans, extent_root, 9458 key.objectid, key.offset); 9459 if (ret) 9460 btrfs_abort_transaction(trans, extent_root, ret); 9461 next: 9462 list_del_init(&block_group->bg_list); 9463 } 9464 } 9465 9466 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 9467 struct btrfs_root *root, u64 bytes_used, 9468 u64 type, u64 chunk_objectid, u64 chunk_offset, 9469 u64 size) 9470 { 9471 int ret; 9472 struct btrfs_root *extent_root; 9473 struct btrfs_block_group_cache *cache; 9474 9475 extent_root = root->fs_info->extent_root; 9476 9477 btrfs_set_log_full_commit(root->fs_info, trans); 9478 9479 cache = btrfs_create_block_group_cache(root, chunk_offset, size); 9480 if (!cache) 9481 return -ENOMEM; 9482 9483 btrfs_set_block_group_used(&cache->item, bytes_used); 9484 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid); 9485 btrfs_set_block_group_flags(&cache->item, type); 9486 9487 cache->flags = type; 9488 cache->last_byte_to_unpin = (u64)-1; 9489 cache->cached = BTRFS_CACHE_FINISHED; 9490 ret = exclude_super_stripes(root, cache); 9491 if (ret) { 9492 /* 9493 * We may have excluded something, so call this just in 9494 * case. 9495 */ 9496 free_excluded_extents(root, cache); 9497 btrfs_put_block_group(cache); 9498 return ret; 9499 } 9500 9501 add_new_free_space(cache, root->fs_info, chunk_offset, 9502 chunk_offset + size); 9503 9504 free_excluded_extents(root, cache); 9505 9506 /* 9507 * Call to ensure the corresponding space_info object is created and 9508 * assigned to our block group, but don't update its counters just yet. 9509 * We want our bg to be added to the rbtree with its ->space_info set. 9510 */ 9511 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 9512 &cache->space_info); 9513 if (ret) { 9514 btrfs_remove_free_space_cache(cache); 9515 btrfs_put_block_group(cache); 9516 return ret; 9517 } 9518 9519 ret = btrfs_add_block_group_cache(root->fs_info, cache); 9520 if (ret) { 9521 btrfs_remove_free_space_cache(cache); 9522 btrfs_put_block_group(cache); 9523 return ret; 9524 } 9525 9526 /* 9527 * Now that our block group has its ->space_info set and is inserted in 9528 * the rbtree, update the space info's counters. 9529 */ 9530 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used, 9531 &cache->space_info); 9532 if (ret) { 9533 btrfs_remove_free_space_cache(cache); 9534 spin_lock(&root->fs_info->block_group_cache_lock); 9535 rb_erase(&cache->cache_node, 9536 &root->fs_info->block_group_cache_tree); 9537 RB_CLEAR_NODE(&cache->cache_node); 9538 spin_unlock(&root->fs_info->block_group_cache_lock); 9539 btrfs_put_block_group(cache); 9540 return ret; 9541 } 9542 update_global_block_rsv(root->fs_info); 9543 9544 spin_lock(&cache->space_info->lock); 9545 cache->space_info->bytes_readonly += cache->bytes_super; 9546 spin_unlock(&cache->space_info->lock); 9547 9548 __link_block_group(cache->space_info, cache); 9549 9550 list_add_tail(&cache->bg_list, &trans->new_bgs); 9551 9552 set_avail_alloc_bits(extent_root->fs_info, type); 9553 9554 return 0; 9555 } 9556 9557 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) 9558 { 9559 u64 extra_flags = chunk_to_extended(flags) & 9560 BTRFS_EXTENDED_PROFILE_MASK; 9561 9562 write_seqlock(&fs_info->profiles_lock); 9563 if (flags & BTRFS_BLOCK_GROUP_DATA) 9564 fs_info->avail_data_alloc_bits &= ~extra_flags; 9565 if (flags & BTRFS_BLOCK_GROUP_METADATA) 9566 fs_info->avail_metadata_alloc_bits &= ~extra_flags; 9567 if (flags & BTRFS_BLOCK_GROUP_SYSTEM) 9568 fs_info->avail_system_alloc_bits &= ~extra_flags; 9569 write_sequnlock(&fs_info->profiles_lock); 9570 } 9571 9572 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 9573 struct btrfs_root *root, u64 group_start, 9574 struct extent_map *em) 9575 { 9576 struct btrfs_path *path; 9577 struct btrfs_block_group_cache *block_group; 9578 struct btrfs_free_cluster *cluster; 9579 struct btrfs_root *tree_root = root->fs_info->tree_root; 9580 struct btrfs_key key; 9581 struct inode *inode; 9582 struct kobject *kobj = NULL; 9583 int ret; 9584 int index; 9585 int factor; 9586 struct btrfs_caching_control *caching_ctl = NULL; 9587 bool remove_em; 9588 9589 root = root->fs_info->extent_root; 9590 9591 block_group = btrfs_lookup_block_group(root->fs_info, group_start); 9592 BUG_ON(!block_group); 9593 BUG_ON(!block_group->ro); 9594 9595 /* 9596 * Free the reserved super bytes from this block group before 9597 * remove it. 9598 */ 9599 free_excluded_extents(root, block_group); 9600 9601 memcpy(&key, &block_group->key, sizeof(key)); 9602 index = get_block_group_index(block_group); 9603 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP | 9604 BTRFS_BLOCK_GROUP_RAID1 | 9605 BTRFS_BLOCK_GROUP_RAID10)) 9606 factor = 2; 9607 else 9608 factor = 1; 9609 9610 /* make sure this block group isn't part of an allocation cluster */ 9611 cluster = &root->fs_info->data_alloc_cluster; 9612 spin_lock(&cluster->refill_lock); 9613 btrfs_return_cluster_to_free_space(block_group, cluster); 9614 spin_unlock(&cluster->refill_lock); 9615 9616 /* 9617 * make sure this block group isn't part of a metadata 9618 * allocation cluster 9619 */ 9620 cluster = &root->fs_info->meta_alloc_cluster; 9621 spin_lock(&cluster->refill_lock); 9622 btrfs_return_cluster_to_free_space(block_group, cluster); 9623 spin_unlock(&cluster->refill_lock); 9624 9625 path = btrfs_alloc_path(); 9626 if (!path) { 9627 ret = -ENOMEM; 9628 goto out; 9629 } 9630 9631 /* 9632 * get the inode first so any iput calls done for the io_list 9633 * aren't the final iput (no unlinks allowed now) 9634 */ 9635 inode = lookup_free_space_inode(tree_root, block_group, path); 9636 9637 mutex_lock(&trans->transaction->cache_write_mutex); 9638 /* 9639 * make sure our free spache cache IO is done before remove the 9640 * free space inode 9641 */ 9642 spin_lock(&trans->transaction->dirty_bgs_lock); 9643 if (!list_empty(&block_group->io_list)) { 9644 list_del_init(&block_group->io_list); 9645 9646 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); 9647 9648 spin_unlock(&trans->transaction->dirty_bgs_lock); 9649 btrfs_wait_cache_io(root, trans, block_group, 9650 &block_group->io_ctl, path, 9651 block_group->key.objectid); 9652 btrfs_put_block_group(block_group); 9653 spin_lock(&trans->transaction->dirty_bgs_lock); 9654 } 9655 9656 if (!list_empty(&block_group->dirty_list)) { 9657 list_del_init(&block_group->dirty_list); 9658 btrfs_put_block_group(block_group); 9659 } 9660 spin_unlock(&trans->transaction->dirty_bgs_lock); 9661 mutex_unlock(&trans->transaction->cache_write_mutex); 9662 9663 if (!IS_ERR(inode)) { 9664 ret = btrfs_orphan_add(trans, inode); 9665 if (ret) { 9666 btrfs_add_delayed_iput(inode); 9667 goto out; 9668 } 9669 clear_nlink(inode); 9670 /* One for the block groups ref */ 9671 spin_lock(&block_group->lock); 9672 if (block_group->iref) { 9673 block_group->iref = 0; 9674 block_group->inode = NULL; 9675 spin_unlock(&block_group->lock); 9676 iput(inode); 9677 } else { 9678 spin_unlock(&block_group->lock); 9679 } 9680 /* One for our lookup ref */ 9681 btrfs_add_delayed_iput(inode); 9682 } 9683 9684 key.objectid = BTRFS_FREE_SPACE_OBJECTID; 9685 key.offset = block_group->key.objectid; 9686 key.type = 0; 9687 9688 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); 9689 if (ret < 0) 9690 goto out; 9691 if (ret > 0) 9692 btrfs_release_path(path); 9693 if (ret == 0) { 9694 ret = btrfs_del_item(trans, tree_root, path); 9695 if (ret) 9696 goto out; 9697 btrfs_release_path(path); 9698 } 9699 9700 spin_lock(&root->fs_info->block_group_cache_lock); 9701 rb_erase(&block_group->cache_node, 9702 &root->fs_info->block_group_cache_tree); 9703 RB_CLEAR_NODE(&block_group->cache_node); 9704 9705 if (root->fs_info->first_logical_byte == block_group->key.objectid) 9706 root->fs_info->first_logical_byte = (u64)-1; 9707 spin_unlock(&root->fs_info->block_group_cache_lock); 9708 9709 down_write(&block_group->space_info->groups_sem); 9710 /* 9711 * we must use list_del_init so people can check to see if they 9712 * are still on the list after taking the semaphore 9713 */ 9714 list_del_init(&block_group->list); 9715 if (list_empty(&block_group->space_info->block_groups[index])) { 9716 kobj = block_group->space_info->block_group_kobjs[index]; 9717 block_group->space_info->block_group_kobjs[index] = NULL; 9718 clear_avail_alloc_bits(root->fs_info, block_group->flags); 9719 } 9720 up_write(&block_group->space_info->groups_sem); 9721 if (kobj) { 9722 kobject_del(kobj); 9723 kobject_put(kobj); 9724 } 9725 9726 if (block_group->has_caching_ctl) 9727 caching_ctl = get_caching_control(block_group); 9728 if (block_group->cached == BTRFS_CACHE_STARTED) 9729 wait_block_group_cache_done(block_group); 9730 if (block_group->has_caching_ctl) { 9731 down_write(&root->fs_info->commit_root_sem); 9732 if (!caching_ctl) { 9733 struct btrfs_caching_control *ctl; 9734 9735 list_for_each_entry(ctl, 9736 &root->fs_info->caching_block_groups, list) 9737 if (ctl->block_group == block_group) { 9738 caching_ctl = ctl; 9739 atomic_inc(&caching_ctl->count); 9740 break; 9741 } 9742 } 9743 if (caching_ctl) 9744 list_del_init(&caching_ctl->list); 9745 up_write(&root->fs_info->commit_root_sem); 9746 if (caching_ctl) { 9747 /* Once for the caching bgs list and once for us. */ 9748 put_caching_control(caching_ctl); 9749 put_caching_control(caching_ctl); 9750 } 9751 } 9752 9753 spin_lock(&trans->transaction->dirty_bgs_lock); 9754 if (!list_empty(&block_group->dirty_list)) { 9755 WARN_ON(1); 9756 } 9757 if (!list_empty(&block_group->io_list)) { 9758 WARN_ON(1); 9759 } 9760 spin_unlock(&trans->transaction->dirty_bgs_lock); 9761 btrfs_remove_free_space_cache(block_group); 9762 9763 spin_lock(&block_group->space_info->lock); 9764 list_del_init(&block_group->ro_list); 9765 9766 if (btrfs_test_opt(root, ENOSPC_DEBUG)) { 9767 WARN_ON(block_group->space_info->total_bytes 9768 < block_group->key.offset); 9769 WARN_ON(block_group->space_info->bytes_readonly 9770 < block_group->key.offset); 9771 WARN_ON(block_group->space_info->disk_total 9772 < block_group->key.offset * factor); 9773 } 9774 block_group->space_info->total_bytes -= block_group->key.offset; 9775 block_group->space_info->bytes_readonly -= block_group->key.offset; 9776 block_group->space_info->disk_total -= block_group->key.offset * factor; 9777 9778 spin_unlock(&block_group->space_info->lock); 9779 9780 memcpy(&key, &block_group->key, sizeof(key)); 9781 9782 lock_chunks(root); 9783 if (!list_empty(&em->list)) { 9784 /* We're in the transaction->pending_chunks list. */ 9785 free_extent_map(em); 9786 } 9787 spin_lock(&block_group->lock); 9788 block_group->removed = 1; 9789 /* 9790 * At this point trimming can't start on this block group, because we 9791 * removed the block group from the tree fs_info->block_group_cache_tree 9792 * so no one can't find it anymore and even if someone already got this 9793 * block group before we removed it from the rbtree, they have already 9794 * incremented block_group->trimming - if they didn't, they won't find 9795 * any free space entries because we already removed them all when we 9796 * called btrfs_remove_free_space_cache(). 9797 * 9798 * And we must not remove the extent map from the fs_info->mapping_tree 9799 * to prevent the same logical address range and physical device space 9800 * ranges from being reused for a new block group. This is because our 9801 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is 9802 * completely transactionless, so while it is trimming a range the 9803 * currently running transaction might finish and a new one start, 9804 * allowing for new block groups to be created that can reuse the same 9805 * physical device locations unless we take this special care. 9806 */ 9807 remove_em = (atomic_read(&block_group->trimming) == 0); 9808 /* 9809 * Make sure a trimmer task always sees the em in the pinned_chunks list 9810 * if it sees block_group->removed == 1 (needs to lock block_group->lock 9811 * before checking block_group->removed). 9812 */ 9813 if (!remove_em) { 9814 /* 9815 * Our em might be in trans->transaction->pending_chunks which 9816 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), 9817 * and so is the fs_info->pinned_chunks list. 9818 * 9819 * So at this point we must be holding the chunk_mutex to avoid 9820 * any races with chunk allocation (more specifically at 9821 * volumes.c:contains_pending_extent()), to ensure it always 9822 * sees the em, either in the pending_chunks list or in the 9823 * pinned_chunks list. 9824 */ 9825 list_move_tail(&em->list, &root->fs_info->pinned_chunks); 9826 } 9827 spin_unlock(&block_group->lock); 9828 9829 if (remove_em) { 9830 struct extent_map_tree *em_tree; 9831 9832 em_tree = &root->fs_info->mapping_tree.map_tree; 9833 write_lock(&em_tree->lock); 9834 /* 9835 * The em might be in the pending_chunks list, so make sure the 9836 * chunk mutex is locked, since remove_extent_mapping() will 9837 * delete us from that list. 9838 */ 9839 remove_extent_mapping(em_tree, em); 9840 write_unlock(&em_tree->lock); 9841 /* once for the tree */ 9842 free_extent_map(em); 9843 } 9844 9845 unlock_chunks(root); 9846 9847 btrfs_put_block_group(block_group); 9848 btrfs_put_block_group(block_group); 9849 9850 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 9851 if (ret > 0) 9852 ret = -EIO; 9853 if (ret < 0) 9854 goto out; 9855 9856 ret = btrfs_del_item(trans, root, path); 9857 out: 9858 btrfs_free_path(path); 9859 return ret; 9860 } 9861 9862 /* 9863 * Process the unused_bgs list and remove any that don't have any allocated 9864 * space inside of them. 9865 */ 9866 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) 9867 { 9868 struct btrfs_block_group_cache *block_group; 9869 struct btrfs_space_info *space_info; 9870 struct btrfs_root *root = fs_info->extent_root; 9871 struct btrfs_trans_handle *trans; 9872 int ret = 0; 9873 9874 if (!fs_info->open) 9875 return; 9876 9877 spin_lock(&fs_info->unused_bgs_lock); 9878 while (!list_empty(&fs_info->unused_bgs)) { 9879 u64 start, end; 9880 9881 block_group = list_first_entry(&fs_info->unused_bgs, 9882 struct btrfs_block_group_cache, 9883 bg_list); 9884 space_info = block_group->space_info; 9885 list_del_init(&block_group->bg_list); 9886 if (ret || btrfs_mixed_space_info(space_info)) { 9887 btrfs_put_block_group(block_group); 9888 continue; 9889 } 9890 spin_unlock(&fs_info->unused_bgs_lock); 9891 9892 /* Don't want to race with allocators so take the groups_sem */ 9893 down_write(&space_info->groups_sem); 9894 spin_lock(&block_group->lock); 9895 if (block_group->reserved || 9896 btrfs_block_group_used(&block_group->item) || 9897 block_group->ro) { 9898 /* 9899 * We want to bail if we made new allocations or have 9900 * outstanding allocations in this block group. We do 9901 * the ro check in case balance is currently acting on 9902 * this block group. 9903 */ 9904 spin_unlock(&block_group->lock); 9905 up_write(&space_info->groups_sem); 9906 goto next; 9907 } 9908 spin_unlock(&block_group->lock); 9909 9910 /* We don't want to force the issue, only flip if it's ok. */ 9911 ret = set_block_group_ro(block_group, 0); 9912 up_write(&space_info->groups_sem); 9913 if (ret < 0) { 9914 ret = 0; 9915 goto next; 9916 } 9917 9918 /* 9919 * Want to do this before we do anything else so we can recover 9920 * properly if we fail to join the transaction. 9921 */ 9922 /* 1 for btrfs_orphan_reserve_metadata() */ 9923 trans = btrfs_start_transaction(root, 1); 9924 if (IS_ERR(trans)) { 9925 btrfs_set_block_group_rw(root, block_group); 9926 ret = PTR_ERR(trans); 9927 goto next; 9928 } 9929 9930 /* 9931 * We could have pending pinned extents for this block group, 9932 * just delete them, we don't care about them anymore. 9933 */ 9934 start = block_group->key.objectid; 9935 end = start + block_group->key.offset - 1; 9936 /* 9937 * Hold the unused_bg_unpin_mutex lock to avoid racing with 9938 * btrfs_finish_extent_commit(). If we are at transaction N, 9939 * another task might be running finish_extent_commit() for the 9940 * previous transaction N - 1, and have seen a range belonging 9941 * to the block group in freed_extents[] before we were able to 9942 * clear the whole block group range from freed_extents[]. This 9943 * means that task can lookup for the block group after we 9944 * unpinned it from freed_extents[] and removed it, leading to 9945 * a BUG_ON() at btrfs_unpin_extent_range(). 9946 */ 9947 mutex_lock(&fs_info->unused_bg_unpin_mutex); 9948 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, 9949 EXTENT_DIRTY, GFP_NOFS); 9950 if (ret) { 9951 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9952 btrfs_set_block_group_rw(root, block_group); 9953 goto end_trans; 9954 } 9955 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, 9956 EXTENT_DIRTY, GFP_NOFS); 9957 if (ret) { 9958 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9959 btrfs_set_block_group_rw(root, block_group); 9960 goto end_trans; 9961 } 9962 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 9963 9964 /* Reset pinned so btrfs_put_block_group doesn't complain */ 9965 spin_lock(&space_info->lock); 9966 spin_lock(&block_group->lock); 9967 9968 space_info->bytes_pinned -= block_group->pinned; 9969 space_info->bytes_readonly += block_group->pinned; 9970 percpu_counter_add(&space_info->total_bytes_pinned, 9971 -block_group->pinned); 9972 block_group->pinned = 0; 9973 9974 spin_unlock(&block_group->lock); 9975 spin_unlock(&space_info->lock); 9976 9977 /* 9978 * Btrfs_remove_chunk will abort the transaction if things go 9979 * horribly wrong. 9980 */ 9981 ret = btrfs_remove_chunk(trans, root, 9982 block_group->key.objectid); 9983 end_trans: 9984 btrfs_end_transaction(trans, root); 9985 next: 9986 btrfs_put_block_group(block_group); 9987 spin_lock(&fs_info->unused_bgs_lock); 9988 } 9989 spin_unlock(&fs_info->unused_bgs_lock); 9990 } 9991 9992 int btrfs_init_space_info(struct btrfs_fs_info *fs_info) 9993 { 9994 struct btrfs_space_info *space_info; 9995 struct btrfs_super_block *disk_super; 9996 u64 features; 9997 u64 flags; 9998 int mixed = 0; 9999 int ret; 10000 10001 disk_super = fs_info->super_copy; 10002 if (!btrfs_super_root(disk_super)) 10003 return 1; 10004 10005 features = btrfs_super_incompat_flags(disk_super); 10006 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 10007 mixed = 1; 10008 10009 flags = BTRFS_BLOCK_GROUP_SYSTEM; 10010 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10011 if (ret) 10012 goto out; 10013 10014 if (mixed) { 10015 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; 10016 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10017 } else { 10018 flags = BTRFS_BLOCK_GROUP_METADATA; 10019 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10020 if (ret) 10021 goto out; 10022 10023 flags = BTRFS_BLOCK_GROUP_DATA; 10024 ret = update_space_info(fs_info, flags, 0, 0, &space_info); 10025 } 10026 out: 10027 return ret; 10028 } 10029 10030 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end) 10031 { 10032 return unpin_extent_range(root, start, end, false); 10033 } 10034 10035 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range) 10036 { 10037 struct btrfs_fs_info *fs_info = root->fs_info; 10038 struct btrfs_block_group_cache *cache = NULL; 10039 u64 group_trimmed; 10040 u64 start; 10041 u64 end; 10042 u64 trimmed = 0; 10043 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 10044 int ret = 0; 10045 10046 /* 10047 * try to trim all FS space, our block group may start from non-zero. 10048 */ 10049 if (range->len == total_bytes) 10050 cache = btrfs_lookup_first_block_group(fs_info, range->start); 10051 else 10052 cache = btrfs_lookup_block_group(fs_info, range->start); 10053 10054 while (cache) { 10055 if (cache->key.objectid >= (range->start + range->len)) { 10056 btrfs_put_block_group(cache); 10057 break; 10058 } 10059 10060 start = max(range->start, cache->key.objectid); 10061 end = min(range->start + range->len, 10062 cache->key.objectid + cache->key.offset); 10063 10064 if (end - start >= range->minlen) { 10065 if (!block_group_cache_done(cache)) { 10066 ret = cache_block_group(cache, 0); 10067 if (ret) { 10068 btrfs_put_block_group(cache); 10069 break; 10070 } 10071 ret = wait_block_group_cache_done(cache); 10072 if (ret) { 10073 btrfs_put_block_group(cache); 10074 break; 10075 } 10076 } 10077 ret = btrfs_trim_block_group(cache, 10078 &group_trimmed, 10079 start, 10080 end, 10081 range->minlen); 10082 10083 trimmed += group_trimmed; 10084 if (ret) { 10085 btrfs_put_block_group(cache); 10086 break; 10087 } 10088 } 10089 10090 cache = next_block_group(fs_info->tree_root, cache); 10091 } 10092 10093 range->len = trimmed; 10094 return ret; 10095 } 10096 10097 /* 10098 * btrfs_{start,end}_write_no_snapshoting() are similar to 10099 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing 10100 * data into the page cache through nocow before the subvolume is snapshoted, 10101 * but flush the data into disk after the snapshot creation, or to prevent 10102 * operations while snapshoting is ongoing and that cause the snapshot to be 10103 * inconsistent (writes followed by expanding truncates for example). 10104 */ 10105 void btrfs_end_write_no_snapshoting(struct btrfs_root *root) 10106 { 10107 percpu_counter_dec(&root->subv_writers->counter); 10108 /* 10109 * Make sure counter is updated before we wake up 10110 * waiters. 10111 */ 10112 smp_mb(); 10113 if (waitqueue_active(&root->subv_writers->wait)) 10114 wake_up(&root->subv_writers->wait); 10115 } 10116 10117 int btrfs_start_write_no_snapshoting(struct btrfs_root *root) 10118 { 10119 if (atomic_read(&root->will_be_snapshoted)) 10120 return 0; 10121 10122 percpu_counter_inc(&root->subv_writers->counter); 10123 /* 10124 * Make sure counter is updated before we check for snapshot creation. 10125 */ 10126 smp_mb(); 10127 if (atomic_read(&root->will_be_snapshoted)) { 10128 btrfs_end_write_no_snapshoting(root); 10129 return 0; 10130 } 10131 return 1; 10132 } 10133