xref: /linux/fs/btrfs/extent-tree.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "math.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 
40 #undef SCRAMBLE_DELAYED_REFS
41 
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57 	CHUNK_ALLOC_NO_FORCE = 0,
58 	CHUNK_ALLOC_LIMITED = 1,
59 	CHUNK_ALLOC_FORCE = 2,
60 };
61 
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72 	RESERVE_FREE = 0,
73 	RESERVE_ALLOC = 1,
74 	RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76 
77 static int update_block_group(struct btrfs_trans_handle *trans,
78 			      struct btrfs_root *root, u64 bytenr,
79 			      u64 num_bytes, int alloc);
80 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 				struct btrfs_root *root,
82 				struct btrfs_delayed_ref_node *node, u64 parent,
83 				u64 root_objectid, u64 owner_objectid,
84 				u64 owner_offset, int refs_to_drop,
85 				struct btrfs_delayed_extent_op *extra_op);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 				    struct extent_buffer *leaf,
88 				    struct btrfs_extent_item *ei);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 				      struct btrfs_root *root,
91 				      u64 parent, u64 root_objectid,
92 				      u64 flags, u64 owner, u64 offset,
93 				      struct btrfs_key *ins, int ref_mod);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 				     struct btrfs_root *root,
96 				     u64 parent, u64 root_objectid,
97 				     u64 flags, struct btrfs_disk_key *key,
98 				     int level, struct btrfs_key *ins,
99 				     int no_quota);
100 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
101 			  struct btrfs_root *extent_root, u64 flags,
102 			  int force);
103 static int find_next_key(struct btrfs_path *path, int level,
104 			 struct btrfs_key *key);
105 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 			    int dump_block_groups);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
108 				       u64 num_bytes, int reserve,
109 				       int delalloc);
110 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 			       u64 num_bytes);
112 int btrfs_pin_extent(struct btrfs_root *root,
113 		     u64 bytenr, u64 num_bytes, int reserved);
114 
115 static noinline int
116 block_group_cache_done(struct btrfs_block_group_cache *cache)
117 {
118 	smp_mb();
119 	return cache->cached == BTRFS_CACHE_FINISHED ||
120 		cache->cached == BTRFS_CACHE_ERROR;
121 }
122 
123 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124 {
125 	return (cache->flags & bits) == bits;
126 }
127 
128 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
129 {
130 	atomic_inc(&cache->count);
131 }
132 
133 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134 {
135 	if (atomic_dec_and_test(&cache->count)) {
136 		WARN_ON(cache->pinned > 0);
137 		WARN_ON(cache->reserved > 0);
138 		kfree(cache->free_space_ctl);
139 		kfree(cache);
140 	}
141 }
142 
143 /*
144  * this adds the block group to the fs_info rb tree for the block group
145  * cache
146  */
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
148 				struct btrfs_block_group_cache *block_group)
149 {
150 	struct rb_node **p;
151 	struct rb_node *parent = NULL;
152 	struct btrfs_block_group_cache *cache;
153 
154 	spin_lock(&info->block_group_cache_lock);
155 	p = &info->block_group_cache_tree.rb_node;
156 
157 	while (*p) {
158 		parent = *p;
159 		cache = rb_entry(parent, struct btrfs_block_group_cache,
160 				 cache_node);
161 		if (block_group->key.objectid < cache->key.objectid) {
162 			p = &(*p)->rb_left;
163 		} else if (block_group->key.objectid > cache->key.objectid) {
164 			p = &(*p)->rb_right;
165 		} else {
166 			spin_unlock(&info->block_group_cache_lock);
167 			return -EEXIST;
168 		}
169 	}
170 
171 	rb_link_node(&block_group->cache_node, parent, p);
172 	rb_insert_color(&block_group->cache_node,
173 			&info->block_group_cache_tree);
174 
175 	if (info->first_logical_byte > block_group->key.objectid)
176 		info->first_logical_byte = block_group->key.objectid;
177 
178 	spin_unlock(&info->block_group_cache_lock);
179 
180 	return 0;
181 }
182 
183 /*
184  * This will return the block group at or after bytenr if contains is 0, else
185  * it will return the block group that contains the bytenr
186  */
187 static struct btrfs_block_group_cache *
188 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 			      int contains)
190 {
191 	struct btrfs_block_group_cache *cache, *ret = NULL;
192 	struct rb_node *n;
193 	u64 end, start;
194 
195 	spin_lock(&info->block_group_cache_lock);
196 	n = info->block_group_cache_tree.rb_node;
197 
198 	while (n) {
199 		cache = rb_entry(n, struct btrfs_block_group_cache,
200 				 cache_node);
201 		end = cache->key.objectid + cache->key.offset - 1;
202 		start = cache->key.objectid;
203 
204 		if (bytenr < start) {
205 			if (!contains && (!ret || start < ret->key.objectid))
206 				ret = cache;
207 			n = n->rb_left;
208 		} else if (bytenr > start) {
209 			if (contains && bytenr <= end) {
210 				ret = cache;
211 				break;
212 			}
213 			n = n->rb_right;
214 		} else {
215 			ret = cache;
216 			break;
217 		}
218 	}
219 	if (ret) {
220 		btrfs_get_block_group(ret);
221 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 			info->first_logical_byte = ret->key.objectid;
223 	}
224 	spin_unlock(&info->block_group_cache_lock);
225 
226 	return ret;
227 }
228 
229 static int add_excluded_extent(struct btrfs_root *root,
230 			       u64 start, u64 num_bytes)
231 {
232 	u64 end = start + num_bytes - 1;
233 	set_extent_bits(&root->fs_info->freed_extents[0],
234 			start, end, EXTENT_UPTODATE, GFP_NOFS);
235 	set_extent_bits(&root->fs_info->freed_extents[1],
236 			start, end, EXTENT_UPTODATE, GFP_NOFS);
237 	return 0;
238 }
239 
240 static void free_excluded_extents(struct btrfs_root *root,
241 				  struct btrfs_block_group_cache *cache)
242 {
243 	u64 start, end;
244 
245 	start = cache->key.objectid;
246 	end = start + cache->key.offset - 1;
247 
248 	clear_extent_bits(&root->fs_info->freed_extents[0],
249 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
250 	clear_extent_bits(&root->fs_info->freed_extents[1],
251 			  start, end, EXTENT_UPTODATE, GFP_NOFS);
252 }
253 
254 static int exclude_super_stripes(struct btrfs_root *root,
255 				 struct btrfs_block_group_cache *cache)
256 {
257 	u64 bytenr;
258 	u64 *logical;
259 	int stripe_len;
260 	int i, nr, ret;
261 
262 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 		cache->bytes_super += stripe_len;
265 		ret = add_excluded_extent(root, cache->key.objectid,
266 					  stripe_len);
267 		if (ret)
268 			return ret;
269 	}
270 
271 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 		bytenr = btrfs_sb_offset(i);
273 		ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 				       cache->key.objectid, bytenr,
275 				       0, &logical, &nr, &stripe_len);
276 		if (ret)
277 			return ret;
278 
279 		while (nr--) {
280 			u64 start, len;
281 
282 			if (logical[nr] > cache->key.objectid +
283 			    cache->key.offset)
284 				continue;
285 
286 			if (logical[nr] + stripe_len <= cache->key.objectid)
287 				continue;
288 
289 			start = logical[nr];
290 			if (start < cache->key.objectid) {
291 				start = cache->key.objectid;
292 				len = (logical[nr] + stripe_len) - start;
293 			} else {
294 				len = min_t(u64, stripe_len,
295 					    cache->key.objectid +
296 					    cache->key.offset - start);
297 			}
298 
299 			cache->bytes_super += len;
300 			ret = add_excluded_extent(root, start, len);
301 			if (ret) {
302 				kfree(logical);
303 				return ret;
304 			}
305 		}
306 
307 		kfree(logical);
308 	}
309 	return 0;
310 }
311 
312 static struct btrfs_caching_control *
313 get_caching_control(struct btrfs_block_group_cache *cache)
314 {
315 	struct btrfs_caching_control *ctl;
316 
317 	spin_lock(&cache->lock);
318 	if (!cache->caching_ctl) {
319 		spin_unlock(&cache->lock);
320 		return NULL;
321 	}
322 
323 	ctl = cache->caching_ctl;
324 	atomic_inc(&ctl->count);
325 	spin_unlock(&cache->lock);
326 	return ctl;
327 }
328 
329 static void put_caching_control(struct btrfs_caching_control *ctl)
330 {
331 	if (atomic_dec_and_test(&ctl->count))
332 		kfree(ctl);
333 }
334 
335 /*
336  * this is only called by cache_block_group, since we could have freed extents
337  * we need to check the pinned_extents for any extents that can't be used yet
338  * since their free space will be released as soon as the transaction commits.
339  */
340 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
341 			      struct btrfs_fs_info *info, u64 start, u64 end)
342 {
343 	u64 extent_start, extent_end, size, total_added = 0;
344 	int ret;
345 
346 	while (start < end) {
347 		ret = find_first_extent_bit(info->pinned_extents, start,
348 					    &extent_start, &extent_end,
349 					    EXTENT_DIRTY | EXTENT_UPTODATE,
350 					    NULL);
351 		if (ret)
352 			break;
353 
354 		if (extent_start <= start) {
355 			start = extent_end + 1;
356 		} else if (extent_start > start && extent_start < end) {
357 			size = extent_start - start;
358 			total_added += size;
359 			ret = btrfs_add_free_space(block_group, start,
360 						   size);
361 			BUG_ON(ret); /* -ENOMEM or logic error */
362 			start = extent_end + 1;
363 		} else {
364 			break;
365 		}
366 	}
367 
368 	if (start < end) {
369 		size = end - start;
370 		total_added += size;
371 		ret = btrfs_add_free_space(block_group, start, size);
372 		BUG_ON(ret); /* -ENOMEM or logic error */
373 	}
374 
375 	return total_added;
376 }
377 
378 static noinline void caching_thread(struct btrfs_work *work)
379 {
380 	struct btrfs_block_group_cache *block_group;
381 	struct btrfs_fs_info *fs_info;
382 	struct btrfs_caching_control *caching_ctl;
383 	struct btrfs_root *extent_root;
384 	struct btrfs_path *path;
385 	struct extent_buffer *leaf;
386 	struct btrfs_key key;
387 	u64 total_found = 0;
388 	u64 last = 0;
389 	u32 nritems;
390 	int ret = -ENOMEM;
391 
392 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 	block_group = caching_ctl->block_group;
394 	fs_info = block_group->fs_info;
395 	extent_root = fs_info->extent_root;
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		goto out;
400 
401 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
402 
403 	/*
404 	 * We don't want to deadlock with somebody trying to allocate a new
405 	 * extent for the extent root while also trying to search the extent
406 	 * root to add free space.  So we skip locking and search the commit
407 	 * root, since its read-only
408 	 */
409 	path->skip_locking = 1;
410 	path->search_commit_root = 1;
411 	path->reada = 1;
412 
413 	key.objectid = last;
414 	key.offset = 0;
415 	key.type = BTRFS_EXTENT_ITEM_KEY;
416 again:
417 	mutex_lock(&caching_ctl->mutex);
418 	/* need to make sure the commit_root doesn't disappear */
419 	down_read(&fs_info->commit_root_sem);
420 
421 next:
422 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
423 	if (ret < 0)
424 		goto err;
425 
426 	leaf = path->nodes[0];
427 	nritems = btrfs_header_nritems(leaf);
428 
429 	while (1) {
430 		if (btrfs_fs_closing(fs_info) > 1) {
431 			last = (u64)-1;
432 			break;
433 		}
434 
435 		if (path->slots[0] < nritems) {
436 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 		} else {
438 			ret = find_next_key(path, 0, &key);
439 			if (ret)
440 				break;
441 
442 			if (need_resched() ||
443 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
444 				caching_ctl->progress = last;
445 				btrfs_release_path(path);
446 				up_read(&fs_info->commit_root_sem);
447 				mutex_unlock(&caching_ctl->mutex);
448 				cond_resched();
449 				goto again;
450 			}
451 
452 			ret = btrfs_next_leaf(extent_root, path);
453 			if (ret < 0)
454 				goto err;
455 			if (ret)
456 				break;
457 			leaf = path->nodes[0];
458 			nritems = btrfs_header_nritems(leaf);
459 			continue;
460 		}
461 
462 		if (key.objectid < last) {
463 			key.objectid = last;
464 			key.offset = 0;
465 			key.type = BTRFS_EXTENT_ITEM_KEY;
466 
467 			caching_ctl->progress = last;
468 			btrfs_release_path(path);
469 			goto next;
470 		}
471 
472 		if (key.objectid < block_group->key.objectid) {
473 			path->slots[0]++;
474 			continue;
475 		}
476 
477 		if (key.objectid >= block_group->key.objectid +
478 		    block_group->key.offset)
479 			break;
480 
481 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 		    key.type == BTRFS_METADATA_ITEM_KEY) {
483 			total_found += add_new_free_space(block_group,
484 							  fs_info, last,
485 							  key.objectid);
486 			if (key.type == BTRFS_METADATA_ITEM_KEY)
487 				last = key.objectid +
488 					fs_info->tree_root->nodesize;
489 			else
490 				last = key.objectid + key.offset;
491 
492 			if (total_found > (1024 * 1024 * 2)) {
493 				total_found = 0;
494 				wake_up(&caching_ctl->wait);
495 			}
496 		}
497 		path->slots[0]++;
498 	}
499 	ret = 0;
500 
501 	total_found += add_new_free_space(block_group, fs_info, last,
502 					  block_group->key.objectid +
503 					  block_group->key.offset);
504 	caching_ctl->progress = (u64)-1;
505 
506 	spin_lock(&block_group->lock);
507 	block_group->caching_ctl = NULL;
508 	block_group->cached = BTRFS_CACHE_FINISHED;
509 	spin_unlock(&block_group->lock);
510 
511 err:
512 	btrfs_free_path(path);
513 	up_read(&fs_info->commit_root_sem);
514 
515 	free_excluded_extents(extent_root, block_group);
516 
517 	mutex_unlock(&caching_ctl->mutex);
518 out:
519 	if (ret) {
520 		spin_lock(&block_group->lock);
521 		block_group->caching_ctl = NULL;
522 		block_group->cached = BTRFS_CACHE_ERROR;
523 		spin_unlock(&block_group->lock);
524 	}
525 	wake_up(&caching_ctl->wait);
526 
527 	put_caching_control(caching_ctl);
528 	btrfs_put_block_group(block_group);
529 }
530 
531 static int cache_block_group(struct btrfs_block_group_cache *cache,
532 			     int load_cache_only)
533 {
534 	DEFINE_WAIT(wait);
535 	struct btrfs_fs_info *fs_info = cache->fs_info;
536 	struct btrfs_caching_control *caching_ctl;
537 	int ret = 0;
538 
539 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
540 	if (!caching_ctl)
541 		return -ENOMEM;
542 
543 	INIT_LIST_HEAD(&caching_ctl->list);
544 	mutex_init(&caching_ctl->mutex);
545 	init_waitqueue_head(&caching_ctl->wait);
546 	caching_ctl->block_group = cache;
547 	caching_ctl->progress = cache->key.objectid;
548 	atomic_set(&caching_ctl->count, 1);
549 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 			caching_thread, NULL, NULL);
551 
552 	spin_lock(&cache->lock);
553 	/*
554 	 * This should be a rare occasion, but this could happen I think in the
555 	 * case where one thread starts to load the space cache info, and then
556 	 * some other thread starts a transaction commit which tries to do an
557 	 * allocation while the other thread is still loading the space cache
558 	 * info.  The previous loop should have kept us from choosing this block
559 	 * group, but if we've moved to the state where we will wait on caching
560 	 * block groups we need to first check if we're doing a fast load here,
561 	 * so we can wait for it to finish, otherwise we could end up allocating
562 	 * from a block group who's cache gets evicted for one reason or
563 	 * another.
564 	 */
565 	while (cache->cached == BTRFS_CACHE_FAST) {
566 		struct btrfs_caching_control *ctl;
567 
568 		ctl = cache->caching_ctl;
569 		atomic_inc(&ctl->count);
570 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 		spin_unlock(&cache->lock);
572 
573 		schedule();
574 
575 		finish_wait(&ctl->wait, &wait);
576 		put_caching_control(ctl);
577 		spin_lock(&cache->lock);
578 	}
579 
580 	if (cache->cached != BTRFS_CACHE_NO) {
581 		spin_unlock(&cache->lock);
582 		kfree(caching_ctl);
583 		return 0;
584 	}
585 	WARN_ON(cache->caching_ctl);
586 	cache->caching_ctl = caching_ctl;
587 	cache->cached = BTRFS_CACHE_FAST;
588 	spin_unlock(&cache->lock);
589 
590 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
591 		mutex_lock(&caching_ctl->mutex);
592 		ret = load_free_space_cache(fs_info, cache);
593 
594 		spin_lock(&cache->lock);
595 		if (ret == 1) {
596 			cache->caching_ctl = NULL;
597 			cache->cached = BTRFS_CACHE_FINISHED;
598 			cache->last_byte_to_unpin = (u64)-1;
599 			caching_ctl->progress = (u64)-1;
600 		} else {
601 			if (load_cache_only) {
602 				cache->caching_ctl = NULL;
603 				cache->cached = BTRFS_CACHE_NO;
604 			} else {
605 				cache->cached = BTRFS_CACHE_STARTED;
606 				cache->has_caching_ctl = 1;
607 			}
608 		}
609 		spin_unlock(&cache->lock);
610 		mutex_unlock(&caching_ctl->mutex);
611 
612 		wake_up(&caching_ctl->wait);
613 		if (ret == 1) {
614 			put_caching_control(caching_ctl);
615 			free_excluded_extents(fs_info->extent_root, cache);
616 			return 0;
617 		}
618 	} else {
619 		/*
620 		 * We are not going to do the fast caching, set cached to the
621 		 * appropriate value and wakeup any waiters.
622 		 */
623 		spin_lock(&cache->lock);
624 		if (load_cache_only) {
625 			cache->caching_ctl = NULL;
626 			cache->cached = BTRFS_CACHE_NO;
627 		} else {
628 			cache->cached = BTRFS_CACHE_STARTED;
629 			cache->has_caching_ctl = 1;
630 		}
631 		spin_unlock(&cache->lock);
632 		wake_up(&caching_ctl->wait);
633 	}
634 
635 	if (load_cache_only) {
636 		put_caching_control(caching_ctl);
637 		return 0;
638 	}
639 
640 	down_write(&fs_info->commit_root_sem);
641 	atomic_inc(&caching_ctl->count);
642 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
643 	up_write(&fs_info->commit_root_sem);
644 
645 	btrfs_get_block_group(cache);
646 
647 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
648 
649 	return ret;
650 }
651 
652 /*
653  * return the block group that starts at or after bytenr
654  */
655 static struct btrfs_block_group_cache *
656 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
657 {
658 	struct btrfs_block_group_cache *cache;
659 
660 	cache = block_group_cache_tree_search(info, bytenr, 0);
661 
662 	return cache;
663 }
664 
665 /*
666  * return the block group that contains the given bytenr
667  */
668 struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 						 struct btrfs_fs_info *info,
670 						 u64 bytenr)
671 {
672 	struct btrfs_block_group_cache *cache;
673 
674 	cache = block_group_cache_tree_search(info, bytenr, 1);
675 
676 	return cache;
677 }
678 
679 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 						  u64 flags)
681 {
682 	struct list_head *head = &info->space_info;
683 	struct btrfs_space_info *found;
684 
685 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
686 
687 	rcu_read_lock();
688 	list_for_each_entry_rcu(found, head, list) {
689 		if (found->flags & flags) {
690 			rcu_read_unlock();
691 			return found;
692 		}
693 	}
694 	rcu_read_unlock();
695 	return NULL;
696 }
697 
698 /*
699  * after adding space to the filesystem, we need to clear the full flags
700  * on all the space infos.
701  */
702 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703 {
704 	struct list_head *head = &info->space_info;
705 	struct btrfs_space_info *found;
706 
707 	rcu_read_lock();
708 	list_for_each_entry_rcu(found, head, list)
709 		found->full = 0;
710 	rcu_read_unlock();
711 }
712 
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
715 {
716 	int ret;
717 	struct btrfs_key key;
718 	struct btrfs_path *path;
719 
720 	path = btrfs_alloc_path();
721 	if (!path)
722 		return -ENOMEM;
723 
724 	key.objectid = start;
725 	key.offset = len;
726 	key.type = BTRFS_EXTENT_ITEM_KEY;
727 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 				0, 0);
729 	btrfs_free_path(path);
730 	return ret;
731 }
732 
733 /*
734  * helper function to lookup reference count and flags of a tree block.
735  *
736  * the head node for delayed ref is used to store the sum of all the
737  * reference count modifications queued up in the rbtree. the head
738  * node may also store the extent flags to set. This way you can check
739  * to see what the reference count and extent flags would be if all of
740  * the delayed refs are not processed.
741  */
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 			     struct btrfs_root *root, u64 bytenr,
744 			     u64 offset, int metadata, u64 *refs, u64 *flags)
745 {
746 	struct btrfs_delayed_ref_head *head;
747 	struct btrfs_delayed_ref_root *delayed_refs;
748 	struct btrfs_path *path;
749 	struct btrfs_extent_item *ei;
750 	struct extent_buffer *leaf;
751 	struct btrfs_key key;
752 	u32 item_size;
753 	u64 num_refs;
754 	u64 extent_flags;
755 	int ret;
756 
757 	/*
758 	 * If we don't have skinny metadata, don't bother doing anything
759 	 * different
760 	 */
761 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
762 		offset = root->nodesize;
763 		metadata = 0;
764 	}
765 
766 	path = btrfs_alloc_path();
767 	if (!path)
768 		return -ENOMEM;
769 
770 	if (!trans) {
771 		path->skip_locking = 1;
772 		path->search_commit_root = 1;
773 	}
774 
775 search_again:
776 	key.objectid = bytenr;
777 	key.offset = offset;
778 	if (metadata)
779 		key.type = BTRFS_METADATA_ITEM_KEY;
780 	else
781 		key.type = BTRFS_EXTENT_ITEM_KEY;
782 
783 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 				&key, path, 0, 0);
785 	if (ret < 0)
786 		goto out_free;
787 
788 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
789 		if (path->slots[0]) {
790 			path->slots[0]--;
791 			btrfs_item_key_to_cpu(path->nodes[0], &key,
792 					      path->slots[0]);
793 			if (key.objectid == bytenr &&
794 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
795 			    key.offset == root->nodesize)
796 				ret = 0;
797 		}
798 	}
799 
800 	if (ret == 0) {
801 		leaf = path->nodes[0];
802 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 		if (item_size >= sizeof(*ei)) {
804 			ei = btrfs_item_ptr(leaf, path->slots[0],
805 					    struct btrfs_extent_item);
806 			num_refs = btrfs_extent_refs(leaf, ei);
807 			extent_flags = btrfs_extent_flags(leaf, ei);
808 		} else {
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 			struct btrfs_extent_item_v0 *ei0;
811 			BUG_ON(item_size != sizeof(*ei0));
812 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 					     struct btrfs_extent_item_v0);
814 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 			/* FIXME: this isn't correct for data */
816 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817 #else
818 			BUG();
819 #endif
820 		}
821 		BUG_ON(num_refs == 0);
822 	} else {
823 		num_refs = 0;
824 		extent_flags = 0;
825 		ret = 0;
826 	}
827 
828 	if (!trans)
829 		goto out;
830 
831 	delayed_refs = &trans->transaction->delayed_refs;
832 	spin_lock(&delayed_refs->lock);
833 	head = btrfs_find_delayed_ref_head(trans, bytenr);
834 	if (head) {
835 		if (!mutex_trylock(&head->mutex)) {
836 			atomic_inc(&head->node.refs);
837 			spin_unlock(&delayed_refs->lock);
838 
839 			btrfs_release_path(path);
840 
841 			/*
842 			 * Mutex was contended, block until it's released and try
843 			 * again
844 			 */
845 			mutex_lock(&head->mutex);
846 			mutex_unlock(&head->mutex);
847 			btrfs_put_delayed_ref(&head->node);
848 			goto search_again;
849 		}
850 		spin_lock(&head->lock);
851 		if (head->extent_op && head->extent_op->update_flags)
852 			extent_flags |= head->extent_op->flags_to_set;
853 		else
854 			BUG_ON(num_refs == 0);
855 
856 		num_refs += head->node.ref_mod;
857 		spin_unlock(&head->lock);
858 		mutex_unlock(&head->mutex);
859 	}
860 	spin_unlock(&delayed_refs->lock);
861 out:
862 	WARN_ON(num_refs == 0);
863 	if (refs)
864 		*refs = num_refs;
865 	if (flags)
866 		*flags = extent_flags;
867 out_free:
868 	btrfs_free_path(path);
869 	return ret;
870 }
871 
872 /*
873  * Back reference rules.  Back refs have three main goals:
874  *
875  * 1) differentiate between all holders of references to an extent so that
876  *    when a reference is dropped we can make sure it was a valid reference
877  *    before freeing the extent.
878  *
879  * 2) Provide enough information to quickly find the holders of an extent
880  *    if we notice a given block is corrupted or bad.
881  *
882  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883  *    maintenance.  This is actually the same as #2, but with a slightly
884  *    different use case.
885  *
886  * There are two kinds of back refs. The implicit back refs is optimized
887  * for pointers in non-shared tree blocks. For a given pointer in a block,
888  * back refs of this kind provide information about the block's owner tree
889  * and the pointer's key. These information allow us to find the block by
890  * b-tree searching. The full back refs is for pointers in tree blocks not
891  * referenced by their owner trees. The location of tree block is recorded
892  * in the back refs. Actually the full back refs is generic, and can be
893  * used in all cases the implicit back refs is used. The major shortcoming
894  * of the full back refs is its overhead. Every time a tree block gets
895  * COWed, we have to update back refs entry for all pointers in it.
896  *
897  * For a newly allocated tree block, we use implicit back refs for
898  * pointers in it. This means most tree related operations only involve
899  * implicit back refs. For a tree block created in old transaction, the
900  * only way to drop a reference to it is COW it. So we can detect the
901  * event that tree block loses its owner tree's reference and do the
902  * back refs conversion.
903  *
904  * When a tree block is COW'd through a tree, there are four cases:
905  *
906  * The reference count of the block is one and the tree is the block's
907  * owner tree. Nothing to do in this case.
908  *
909  * The reference count of the block is one and the tree is not the
910  * block's owner tree. In this case, full back refs is used for pointers
911  * in the block. Remove these full back refs, add implicit back refs for
912  * every pointers in the new block.
913  *
914  * The reference count of the block is greater than one and the tree is
915  * the block's owner tree. In this case, implicit back refs is used for
916  * pointers in the block. Add full back refs for every pointers in the
917  * block, increase lower level extents' reference counts. The original
918  * implicit back refs are entailed to the new block.
919  *
920  * The reference count of the block is greater than one and the tree is
921  * not the block's owner tree. Add implicit back refs for every pointer in
922  * the new block, increase lower level extents' reference count.
923  *
924  * Back Reference Key composing:
925  *
926  * The key objectid corresponds to the first byte in the extent,
927  * The key type is used to differentiate between types of back refs.
928  * There are different meanings of the key offset for different types
929  * of back refs.
930  *
931  * File extents can be referenced by:
932  *
933  * - multiple snapshots, subvolumes, or different generations in one subvol
934  * - different files inside a single subvolume
935  * - different offsets inside a file (bookend extents in file.c)
936  *
937  * The extent ref structure for the implicit back refs has fields for:
938  *
939  * - Objectid of the subvolume root
940  * - objectid of the file holding the reference
941  * - original offset in the file
942  * - how many bookend extents
943  *
944  * The key offset for the implicit back refs is hash of the first
945  * three fields.
946  *
947  * The extent ref structure for the full back refs has field for:
948  *
949  * - number of pointers in the tree leaf
950  *
951  * The key offset for the implicit back refs is the first byte of
952  * the tree leaf
953  *
954  * When a file extent is allocated, The implicit back refs is used.
955  * the fields are filled in:
956  *
957  *     (root_key.objectid, inode objectid, offset in file, 1)
958  *
959  * When a file extent is removed file truncation, we find the
960  * corresponding implicit back refs and check the following fields:
961  *
962  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
963  *
964  * Btree extents can be referenced by:
965  *
966  * - Different subvolumes
967  *
968  * Both the implicit back refs and the full back refs for tree blocks
969  * only consist of key. The key offset for the implicit back refs is
970  * objectid of block's owner tree. The key offset for the full back refs
971  * is the first byte of parent block.
972  *
973  * When implicit back refs is used, information about the lowest key and
974  * level of the tree block are required. These information are stored in
975  * tree block info structure.
976  */
977 
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 				  struct btrfs_root *root,
981 				  struct btrfs_path *path,
982 				  u64 owner, u32 extra_size)
983 {
984 	struct btrfs_extent_item *item;
985 	struct btrfs_extent_item_v0 *ei0;
986 	struct btrfs_extent_ref_v0 *ref0;
987 	struct btrfs_tree_block_info *bi;
988 	struct extent_buffer *leaf;
989 	struct btrfs_key key;
990 	struct btrfs_key found_key;
991 	u32 new_size = sizeof(*item);
992 	u64 refs;
993 	int ret;
994 
995 	leaf = path->nodes[0];
996 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997 
998 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 			     struct btrfs_extent_item_v0);
1001 	refs = btrfs_extent_refs_v0(leaf, ei0);
1002 
1003 	if (owner == (u64)-1) {
1004 		while (1) {
1005 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 				ret = btrfs_next_leaf(root, path);
1007 				if (ret < 0)
1008 					return ret;
1009 				BUG_ON(ret > 0); /* Corruption */
1010 				leaf = path->nodes[0];
1011 			}
1012 			btrfs_item_key_to_cpu(leaf, &found_key,
1013 					      path->slots[0]);
1014 			BUG_ON(key.objectid != found_key.objectid);
1015 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 				path->slots[0]++;
1017 				continue;
1018 			}
1019 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 					      struct btrfs_extent_ref_v0);
1021 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 			break;
1023 		}
1024 	}
1025 	btrfs_release_path(path);
1026 
1027 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 		new_size += sizeof(*bi);
1029 
1030 	new_size -= sizeof(*ei0);
1031 	ret = btrfs_search_slot(trans, root, &key, path,
1032 				new_size + extra_size, 1);
1033 	if (ret < 0)
1034 		return ret;
1035 	BUG_ON(ret); /* Corruption */
1036 
1037 	btrfs_extend_item(root, path, new_size);
1038 
1039 	leaf = path->nodes[0];
1040 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 	btrfs_set_extent_refs(leaf, item, refs);
1042 	/* FIXME: get real generation */
1043 	btrfs_set_extent_generation(leaf, item, 0);
1044 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 		btrfs_set_extent_flags(leaf, item,
1046 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 		bi = (struct btrfs_tree_block_info *)(item + 1);
1049 		/* FIXME: get first key of the block */
1050 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 	} else {
1053 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 	}
1055 	btrfs_mark_buffer_dirty(leaf);
1056 	return 0;
1057 }
1058 #endif
1059 
1060 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061 {
1062 	u32 high_crc = ~(u32)0;
1063 	u32 low_crc = ~(u32)0;
1064 	__le64 lenum;
1065 
1066 	lenum = cpu_to_le64(root_objectid);
1067 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1068 	lenum = cpu_to_le64(owner);
1069 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1070 	lenum = cpu_to_le64(offset);
1071 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1072 
1073 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1074 }
1075 
1076 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 				     struct btrfs_extent_data_ref *ref)
1078 {
1079 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 				    btrfs_extent_data_ref_objectid(leaf, ref),
1081 				    btrfs_extent_data_ref_offset(leaf, ref));
1082 }
1083 
1084 static int match_extent_data_ref(struct extent_buffer *leaf,
1085 				 struct btrfs_extent_data_ref *ref,
1086 				 u64 root_objectid, u64 owner, u64 offset)
1087 {
1088 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 		return 0;
1092 	return 1;
1093 }
1094 
1095 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 					   struct btrfs_root *root,
1097 					   struct btrfs_path *path,
1098 					   u64 bytenr, u64 parent,
1099 					   u64 root_objectid,
1100 					   u64 owner, u64 offset)
1101 {
1102 	struct btrfs_key key;
1103 	struct btrfs_extent_data_ref *ref;
1104 	struct extent_buffer *leaf;
1105 	u32 nritems;
1106 	int ret;
1107 	int recow;
1108 	int err = -ENOENT;
1109 
1110 	key.objectid = bytenr;
1111 	if (parent) {
1112 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 		key.offset = parent;
1114 	} else {
1115 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 		key.offset = hash_extent_data_ref(root_objectid,
1117 						  owner, offset);
1118 	}
1119 again:
1120 	recow = 0;
1121 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 	if (ret < 0) {
1123 		err = ret;
1124 		goto fail;
1125 	}
1126 
1127 	if (parent) {
1128 		if (!ret)
1129 			return 0;
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1132 		btrfs_release_path(path);
1133 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 		if (ret < 0) {
1135 			err = ret;
1136 			goto fail;
1137 		}
1138 		if (!ret)
1139 			return 0;
1140 #endif
1141 		goto fail;
1142 	}
1143 
1144 	leaf = path->nodes[0];
1145 	nritems = btrfs_header_nritems(leaf);
1146 	while (1) {
1147 		if (path->slots[0] >= nritems) {
1148 			ret = btrfs_next_leaf(root, path);
1149 			if (ret < 0)
1150 				err = ret;
1151 			if (ret)
1152 				goto fail;
1153 
1154 			leaf = path->nodes[0];
1155 			nritems = btrfs_header_nritems(leaf);
1156 			recow = 1;
1157 		}
1158 
1159 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 		if (key.objectid != bytenr ||
1161 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 			goto fail;
1163 
1164 		ref = btrfs_item_ptr(leaf, path->slots[0],
1165 				     struct btrfs_extent_data_ref);
1166 
1167 		if (match_extent_data_ref(leaf, ref, root_objectid,
1168 					  owner, offset)) {
1169 			if (recow) {
1170 				btrfs_release_path(path);
1171 				goto again;
1172 			}
1173 			err = 0;
1174 			break;
1175 		}
1176 		path->slots[0]++;
1177 	}
1178 fail:
1179 	return err;
1180 }
1181 
1182 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 					   struct btrfs_root *root,
1184 					   struct btrfs_path *path,
1185 					   u64 bytenr, u64 parent,
1186 					   u64 root_objectid, u64 owner,
1187 					   u64 offset, int refs_to_add)
1188 {
1189 	struct btrfs_key key;
1190 	struct extent_buffer *leaf;
1191 	u32 size;
1192 	u32 num_refs;
1193 	int ret;
1194 
1195 	key.objectid = bytenr;
1196 	if (parent) {
1197 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 		key.offset = parent;
1199 		size = sizeof(struct btrfs_shared_data_ref);
1200 	} else {
1201 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 		key.offset = hash_extent_data_ref(root_objectid,
1203 						  owner, offset);
1204 		size = sizeof(struct btrfs_extent_data_ref);
1205 	}
1206 
1207 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 	if (ret && ret != -EEXIST)
1209 		goto fail;
1210 
1211 	leaf = path->nodes[0];
1212 	if (parent) {
1213 		struct btrfs_shared_data_ref *ref;
1214 		ref = btrfs_item_ptr(leaf, path->slots[0],
1215 				     struct btrfs_shared_data_ref);
1216 		if (ret == 0) {
1217 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 		} else {
1219 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 			num_refs += refs_to_add;
1221 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1222 		}
1223 	} else {
1224 		struct btrfs_extent_data_ref *ref;
1225 		while (ret == -EEXIST) {
1226 			ref = btrfs_item_ptr(leaf, path->slots[0],
1227 					     struct btrfs_extent_data_ref);
1228 			if (match_extent_data_ref(leaf, ref, root_objectid,
1229 						  owner, offset))
1230 				break;
1231 			btrfs_release_path(path);
1232 			key.offset++;
1233 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 						      size);
1235 			if (ret && ret != -EEXIST)
1236 				goto fail;
1237 
1238 			leaf = path->nodes[0];
1239 		}
1240 		ref = btrfs_item_ptr(leaf, path->slots[0],
1241 				     struct btrfs_extent_data_ref);
1242 		if (ret == 0) {
1243 			btrfs_set_extent_data_ref_root(leaf, ref,
1244 						       root_objectid);
1245 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 		} else {
1249 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 			num_refs += refs_to_add;
1251 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1252 		}
1253 	}
1254 	btrfs_mark_buffer_dirty(leaf);
1255 	ret = 0;
1256 fail:
1257 	btrfs_release_path(path);
1258 	return ret;
1259 }
1260 
1261 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 					   struct btrfs_root *root,
1263 					   struct btrfs_path *path,
1264 					   int refs_to_drop, int *last_ref)
1265 {
1266 	struct btrfs_key key;
1267 	struct btrfs_extent_data_ref *ref1 = NULL;
1268 	struct btrfs_shared_data_ref *ref2 = NULL;
1269 	struct extent_buffer *leaf;
1270 	u32 num_refs = 0;
1271 	int ret = 0;
1272 
1273 	leaf = path->nodes[0];
1274 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275 
1276 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 				      struct btrfs_extent_data_ref);
1279 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 				      struct btrfs_shared_data_ref);
1283 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 		struct btrfs_extent_ref_v0 *ref0;
1287 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 				      struct btrfs_extent_ref_v0);
1289 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1290 #endif
1291 	} else {
1292 		BUG();
1293 	}
1294 
1295 	BUG_ON(num_refs < refs_to_drop);
1296 	num_refs -= refs_to_drop;
1297 
1298 	if (num_refs == 0) {
1299 		ret = btrfs_del_item(trans, root, path);
1300 		*last_ref = 1;
1301 	} else {
1302 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 		else {
1308 			struct btrfs_extent_ref_v0 *ref0;
1309 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 					struct btrfs_extent_ref_v0);
1311 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 		}
1313 #endif
1314 		btrfs_mark_buffer_dirty(leaf);
1315 	}
1316 	return ret;
1317 }
1318 
1319 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 					  struct btrfs_path *path,
1321 					  struct btrfs_extent_inline_ref *iref)
1322 {
1323 	struct btrfs_key key;
1324 	struct extent_buffer *leaf;
1325 	struct btrfs_extent_data_ref *ref1;
1326 	struct btrfs_shared_data_ref *ref2;
1327 	u32 num_refs = 0;
1328 
1329 	leaf = path->nodes[0];
1330 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 	if (iref) {
1332 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 		    BTRFS_EXTENT_DATA_REF_KEY) {
1334 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 		} else {
1337 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 		}
1340 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 				      struct btrfs_extent_data_ref);
1343 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 				      struct btrfs_shared_data_ref);
1347 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 		struct btrfs_extent_ref_v0 *ref0;
1351 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 				      struct btrfs_extent_ref_v0);
1353 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1354 #endif
1355 	} else {
1356 		WARN_ON(1);
1357 	}
1358 	return num_refs;
1359 }
1360 
1361 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 					  struct btrfs_root *root,
1363 					  struct btrfs_path *path,
1364 					  u64 bytenr, u64 parent,
1365 					  u64 root_objectid)
1366 {
1367 	struct btrfs_key key;
1368 	int ret;
1369 
1370 	key.objectid = bytenr;
1371 	if (parent) {
1372 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 		key.offset = parent;
1374 	} else {
1375 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 		key.offset = root_objectid;
1377 	}
1378 
1379 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 	if (ret > 0)
1381 		ret = -ENOENT;
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 	if (ret == -ENOENT && parent) {
1384 		btrfs_release_path(path);
1385 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 		if (ret > 0)
1388 			ret = -ENOENT;
1389 	}
1390 #endif
1391 	return ret;
1392 }
1393 
1394 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 					  struct btrfs_root *root,
1396 					  struct btrfs_path *path,
1397 					  u64 bytenr, u64 parent,
1398 					  u64 root_objectid)
1399 {
1400 	struct btrfs_key key;
1401 	int ret;
1402 
1403 	key.objectid = bytenr;
1404 	if (parent) {
1405 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 		key.offset = parent;
1407 	} else {
1408 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 		key.offset = root_objectid;
1410 	}
1411 
1412 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1413 	btrfs_release_path(path);
1414 	return ret;
1415 }
1416 
1417 static inline int extent_ref_type(u64 parent, u64 owner)
1418 {
1419 	int type;
1420 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 		if (parent > 0)
1422 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 		else
1424 			type = BTRFS_TREE_BLOCK_REF_KEY;
1425 	} else {
1426 		if (parent > 0)
1427 			type = BTRFS_SHARED_DATA_REF_KEY;
1428 		else
1429 			type = BTRFS_EXTENT_DATA_REF_KEY;
1430 	}
1431 	return type;
1432 }
1433 
1434 static int find_next_key(struct btrfs_path *path, int level,
1435 			 struct btrfs_key *key)
1436 
1437 {
1438 	for (; level < BTRFS_MAX_LEVEL; level++) {
1439 		if (!path->nodes[level])
1440 			break;
1441 		if (path->slots[level] + 1 >=
1442 		    btrfs_header_nritems(path->nodes[level]))
1443 			continue;
1444 		if (level == 0)
1445 			btrfs_item_key_to_cpu(path->nodes[level], key,
1446 					      path->slots[level] + 1);
1447 		else
1448 			btrfs_node_key_to_cpu(path->nodes[level], key,
1449 					      path->slots[level] + 1);
1450 		return 0;
1451 	}
1452 	return 1;
1453 }
1454 
1455 /*
1456  * look for inline back ref. if back ref is found, *ref_ret is set
1457  * to the address of inline back ref, and 0 is returned.
1458  *
1459  * if back ref isn't found, *ref_ret is set to the address where it
1460  * should be inserted, and -ENOENT is returned.
1461  *
1462  * if insert is true and there are too many inline back refs, the path
1463  * points to the extent item, and -EAGAIN is returned.
1464  *
1465  * NOTE: inline back refs are ordered in the same way that back ref
1466  *	 items in the tree are ordered.
1467  */
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 				 struct btrfs_root *root,
1471 				 struct btrfs_path *path,
1472 				 struct btrfs_extent_inline_ref **ref_ret,
1473 				 u64 bytenr, u64 num_bytes,
1474 				 u64 parent, u64 root_objectid,
1475 				 u64 owner, u64 offset, int insert)
1476 {
1477 	struct btrfs_key key;
1478 	struct extent_buffer *leaf;
1479 	struct btrfs_extent_item *ei;
1480 	struct btrfs_extent_inline_ref *iref;
1481 	u64 flags;
1482 	u64 item_size;
1483 	unsigned long ptr;
1484 	unsigned long end;
1485 	int extra_size;
1486 	int type;
1487 	int want;
1488 	int ret;
1489 	int err = 0;
1490 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 						 SKINNY_METADATA);
1492 
1493 	key.objectid = bytenr;
1494 	key.type = BTRFS_EXTENT_ITEM_KEY;
1495 	key.offset = num_bytes;
1496 
1497 	want = extent_ref_type(parent, owner);
1498 	if (insert) {
1499 		extra_size = btrfs_extent_inline_ref_size(want);
1500 		path->keep_locks = 1;
1501 	} else
1502 		extra_size = -1;
1503 
1504 	/*
1505 	 * Owner is our parent level, so we can just add one to get the level
1506 	 * for the block we are interested in.
1507 	 */
1508 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 		key.type = BTRFS_METADATA_ITEM_KEY;
1510 		key.offset = owner;
1511 	}
1512 
1513 again:
1514 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1515 	if (ret < 0) {
1516 		err = ret;
1517 		goto out;
1518 	}
1519 
1520 	/*
1521 	 * We may be a newly converted file system which still has the old fat
1522 	 * extent entries for metadata, so try and see if we have one of those.
1523 	 */
1524 	if (ret > 0 && skinny_metadata) {
1525 		skinny_metadata = false;
1526 		if (path->slots[0]) {
1527 			path->slots[0]--;
1528 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 					      path->slots[0]);
1530 			if (key.objectid == bytenr &&
1531 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 			    key.offset == num_bytes)
1533 				ret = 0;
1534 		}
1535 		if (ret) {
1536 			key.objectid = bytenr;
1537 			key.type = BTRFS_EXTENT_ITEM_KEY;
1538 			key.offset = num_bytes;
1539 			btrfs_release_path(path);
1540 			goto again;
1541 		}
1542 	}
1543 
1544 	if (ret && !insert) {
1545 		err = -ENOENT;
1546 		goto out;
1547 	} else if (WARN_ON(ret)) {
1548 		err = -EIO;
1549 		goto out;
1550 	}
1551 
1552 	leaf = path->nodes[0];
1553 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 	if (item_size < sizeof(*ei)) {
1556 		if (!insert) {
1557 			err = -ENOENT;
1558 			goto out;
1559 		}
1560 		ret = convert_extent_item_v0(trans, root, path, owner,
1561 					     extra_size);
1562 		if (ret < 0) {
1563 			err = ret;
1564 			goto out;
1565 		}
1566 		leaf = path->nodes[0];
1567 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 	}
1569 #endif
1570 	BUG_ON(item_size < sizeof(*ei));
1571 
1572 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 	flags = btrfs_extent_flags(leaf, ei);
1574 
1575 	ptr = (unsigned long)(ei + 1);
1576 	end = (unsigned long)ei + item_size;
1577 
1578 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1579 		ptr += sizeof(struct btrfs_tree_block_info);
1580 		BUG_ON(ptr > end);
1581 	}
1582 
1583 	err = -ENOENT;
1584 	while (1) {
1585 		if (ptr >= end) {
1586 			WARN_ON(ptr > end);
1587 			break;
1588 		}
1589 		iref = (struct btrfs_extent_inline_ref *)ptr;
1590 		type = btrfs_extent_inline_ref_type(leaf, iref);
1591 		if (want < type)
1592 			break;
1593 		if (want > type) {
1594 			ptr += btrfs_extent_inline_ref_size(type);
1595 			continue;
1596 		}
1597 
1598 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 			struct btrfs_extent_data_ref *dref;
1600 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 			if (match_extent_data_ref(leaf, dref, root_objectid,
1602 						  owner, offset)) {
1603 				err = 0;
1604 				break;
1605 			}
1606 			if (hash_extent_data_ref_item(leaf, dref) <
1607 			    hash_extent_data_ref(root_objectid, owner, offset))
1608 				break;
1609 		} else {
1610 			u64 ref_offset;
1611 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 			if (parent > 0) {
1613 				if (parent == ref_offset) {
1614 					err = 0;
1615 					break;
1616 				}
1617 				if (ref_offset < parent)
1618 					break;
1619 			} else {
1620 				if (root_objectid == ref_offset) {
1621 					err = 0;
1622 					break;
1623 				}
1624 				if (ref_offset < root_objectid)
1625 					break;
1626 			}
1627 		}
1628 		ptr += btrfs_extent_inline_ref_size(type);
1629 	}
1630 	if (err == -ENOENT && insert) {
1631 		if (item_size + extra_size >=
1632 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 			err = -EAGAIN;
1634 			goto out;
1635 		}
1636 		/*
1637 		 * To add new inline back ref, we have to make sure
1638 		 * there is no corresponding back ref item.
1639 		 * For simplicity, we just do not add new inline back
1640 		 * ref if there is any kind of item for this block
1641 		 */
1642 		if (find_next_key(path, 0, &key) == 0 &&
1643 		    key.objectid == bytenr &&
1644 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1645 			err = -EAGAIN;
1646 			goto out;
1647 		}
1648 	}
1649 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650 out:
1651 	if (insert) {
1652 		path->keep_locks = 0;
1653 		btrfs_unlock_up_safe(path, 1);
1654 	}
1655 	return err;
1656 }
1657 
1658 /*
1659  * helper to add new inline back ref
1660  */
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root *root,
1663 				 struct btrfs_path *path,
1664 				 struct btrfs_extent_inline_ref *iref,
1665 				 u64 parent, u64 root_objectid,
1666 				 u64 owner, u64 offset, int refs_to_add,
1667 				 struct btrfs_delayed_extent_op *extent_op)
1668 {
1669 	struct extent_buffer *leaf;
1670 	struct btrfs_extent_item *ei;
1671 	unsigned long ptr;
1672 	unsigned long end;
1673 	unsigned long item_offset;
1674 	u64 refs;
1675 	int size;
1676 	int type;
1677 
1678 	leaf = path->nodes[0];
1679 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 	item_offset = (unsigned long)iref - (unsigned long)ei;
1681 
1682 	type = extent_ref_type(parent, owner);
1683 	size = btrfs_extent_inline_ref_size(type);
1684 
1685 	btrfs_extend_item(root, path, size);
1686 
1687 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 	refs = btrfs_extent_refs(leaf, ei);
1689 	refs += refs_to_add;
1690 	btrfs_set_extent_refs(leaf, ei, refs);
1691 	if (extent_op)
1692 		__run_delayed_extent_op(extent_op, leaf, ei);
1693 
1694 	ptr = (unsigned long)ei + item_offset;
1695 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 	if (ptr < end - size)
1697 		memmove_extent_buffer(leaf, ptr + size, ptr,
1698 				      end - size - ptr);
1699 
1700 	iref = (struct btrfs_extent_inline_ref *)ptr;
1701 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 		struct btrfs_extent_data_ref *dref;
1704 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 		struct btrfs_shared_data_ref *sref;
1711 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 	} else {
1717 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 	}
1719 	btrfs_mark_buffer_dirty(leaf);
1720 }
1721 
1722 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 				 struct btrfs_root *root,
1724 				 struct btrfs_path *path,
1725 				 struct btrfs_extent_inline_ref **ref_ret,
1726 				 u64 bytenr, u64 num_bytes, u64 parent,
1727 				 u64 root_objectid, u64 owner, u64 offset)
1728 {
1729 	int ret;
1730 
1731 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 					   bytenr, num_bytes, parent,
1733 					   root_objectid, owner, offset, 0);
1734 	if (ret != -ENOENT)
1735 		return ret;
1736 
1737 	btrfs_release_path(path);
1738 	*ref_ret = NULL;
1739 
1740 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 					    root_objectid);
1743 	} else {
1744 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 					     root_objectid, owner, offset);
1746 	}
1747 	return ret;
1748 }
1749 
1750 /*
1751  * helper to update/remove inline back ref
1752  */
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root *root,
1755 				  struct btrfs_path *path,
1756 				  struct btrfs_extent_inline_ref *iref,
1757 				  int refs_to_mod,
1758 				  struct btrfs_delayed_extent_op *extent_op,
1759 				  int *last_ref)
1760 {
1761 	struct extent_buffer *leaf;
1762 	struct btrfs_extent_item *ei;
1763 	struct btrfs_extent_data_ref *dref = NULL;
1764 	struct btrfs_shared_data_ref *sref = NULL;
1765 	unsigned long ptr;
1766 	unsigned long end;
1767 	u32 item_size;
1768 	int size;
1769 	int type;
1770 	u64 refs;
1771 
1772 	leaf = path->nodes[0];
1773 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 	refs = btrfs_extent_refs(leaf, ei);
1775 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 	refs += refs_to_mod;
1777 	btrfs_set_extent_refs(leaf, ei, refs);
1778 	if (extent_op)
1779 		__run_delayed_extent_op(extent_op, leaf, ei);
1780 
1781 	type = btrfs_extent_inline_ref_type(leaf, iref);
1782 
1783 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 		refs = btrfs_extent_data_ref_count(leaf, dref);
1786 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 		refs = btrfs_shared_data_ref_count(leaf, sref);
1789 	} else {
1790 		refs = 1;
1791 		BUG_ON(refs_to_mod != -1);
1792 	}
1793 
1794 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 	refs += refs_to_mod;
1796 
1797 	if (refs > 0) {
1798 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 		else
1801 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 	} else {
1803 		*last_ref = 1;
1804 		size =  btrfs_extent_inline_ref_size(type);
1805 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 		ptr = (unsigned long)iref;
1807 		end = (unsigned long)ei + item_size;
1808 		if (ptr + size < end)
1809 			memmove_extent_buffer(leaf, ptr, ptr + size,
1810 					      end - ptr - size);
1811 		item_size -= size;
1812 		btrfs_truncate_item(root, path, item_size, 1);
1813 	}
1814 	btrfs_mark_buffer_dirty(leaf);
1815 }
1816 
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 				 struct btrfs_root *root,
1820 				 struct btrfs_path *path,
1821 				 u64 bytenr, u64 num_bytes, u64 parent,
1822 				 u64 root_objectid, u64 owner,
1823 				 u64 offset, int refs_to_add,
1824 				 struct btrfs_delayed_extent_op *extent_op)
1825 {
1826 	struct btrfs_extent_inline_ref *iref;
1827 	int ret;
1828 
1829 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 					   bytenr, num_bytes, parent,
1831 					   root_objectid, owner, offset, 1);
1832 	if (ret == 0) {
1833 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1834 		update_inline_extent_backref(root, path, iref,
1835 					     refs_to_add, extent_op, NULL);
1836 	} else if (ret == -ENOENT) {
1837 		setup_inline_extent_backref(root, path, iref, parent,
1838 					    root_objectid, owner, offset,
1839 					    refs_to_add, extent_op);
1840 		ret = 0;
1841 	}
1842 	return ret;
1843 }
1844 
1845 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 				 struct btrfs_root *root,
1847 				 struct btrfs_path *path,
1848 				 u64 bytenr, u64 parent, u64 root_objectid,
1849 				 u64 owner, u64 offset, int refs_to_add)
1850 {
1851 	int ret;
1852 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 		BUG_ON(refs_to_add != 1);
1854 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 					    parent, root_objectid);
1856 	} else {
1857 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 					     parent, root_objectid,
1859 					     owner, offset, refs_to_add);
1860 	}
1861 	return ret;
1862 }
1863 
1864 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 				 struct btrfs_root *root,
1866 				 struct btrfs_path *path,
1867 				 struct btrfs_extent_inline_ref *iref,
1868 				 int refs_to_drop, int is_data, int *last_ref)
1869 {
1870 	int ret = 0;
1871 
1872 	BUG_ON(!is_data && refs_to_drop != 1);
1873 	if (iref) {
1874 		update_inline_extent_backref(root, path, iref,
1875 					     -refs_to_drop, NULL, last_ref);
1876 	} else if (is_data) {
1877 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 					     last_ref);
1879 	} else {
1880 		*last_ref = 1;
1881 		ret = btrfs_del_item(trans, root, path);
1882 	}
1883 	return ret;
1884 }
1885 
1886 static int btrfs_issue_discard(struct block_device *bdev,
1887 				u64 start, u64 len)
1888 {
1889 	return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1890 }
1891 
1892 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 			 u64 num_bytes, u64 *actual_bytes)
1894 {
1895 	int ret;
1896 	u64 discarded_bytes = 0;
1897 	struct btrfs_bio *bbio = NULL;
1898 
1899 
1900 	/* Tell the block device(s) that the sectors can be discarded */
1901 	ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1902 			      bytenr, &num_bytes, &bbio, 0);
1903 	/* Error condition is -ENOMEM */
1904 	if (!ret) {
1905 		struct btrfs_bio_stripe *stripe = bbio->stripes;
1906 		int i;
1907 
1908 
1909 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1910 			if (!stripe->dev->can_discard)
1911 				continue;
1912 
1913 			ret = btrfs_issue_discard(stripe->dev->bdev,
1914 						  stripe->physical,
1915 						  stripe->length);
1916 			if (!ret)
1917 				discarded_bytes += stripe->length;
1918 			else if (ret != -EOPNOTSUPP)
1919 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1920 
1921 			/*
1922 			 * Just in case we get back EOPNOTSUPP for some reason,
1923 			 * just ignore the return value so we don't screw up
1924 			 * people calling discard_extent.
1925 			 */
1926 			ret = 0;
1927 		}
1928 		btrfs_put_bbio(bbio);
1929 	}
1930 
1931 	if (actual_bytes)
1932 		*actual_bytes = discarded_bytes;
1933 
1934 
1935 	if (ret == -EOPNOTSUPP)
1936 		ret = 0;
1937 	return ret;
1938 }
1939 
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 			 struct btrfs_root *root,
1943 			 u64 bytenr, u64 num_bytes, u64 parent,
1944 			 u64 root_objectid, u64 owner, u64 offset,
1945 			 int no_quota)
1946 {
1947 	int ret;
1948 	struct btrfs_fs_info *fs_info = root->fs_info;
1949 
1950 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952 
1953 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1954 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 					num_bytes,
1956 					parent, root_objectid, (int)owner,
1957 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1958 	} else {
1959 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 					num_bytes,
1961 					parent, root_objectid, owner, offset,
1962 					BTRFS_ADD_DELAYED_REF, NULL, no_quota);
1963 	}
1964 	return ret;
1965 }
1966 
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 				  struct btrfs_root *root,
1969 				  struct btrfs_delayed_ref_node *node,
1970 				  u64 parent, u64 root_objectid,
1971 				  u64 owner, u64 offset, int refs_to_add,
1972 				  struct btrfs_delayed_extent_op *extent_op)
1973 {
1974 	struct btrfs_fs_info *fs_info = root->fs_info;
1975 	struct btrfs_path *path;
1976 	struct extent_buffer *leaf;
1977 	struct btrfs_extent_item *item;
1978 	struct btrfs_key key;
1979 	u64 bytenr = node->bytenr;
1980 	u64 num_bytes = node->num_bytes;
1981 	u64 refs;
1982 	int ret;
1983 	int no_quota = node->no_quota;
1984 
1985 	path = btrfs_alloc_path();
1986 	if (!path)
1987 		return -ENOMEM;
1988 
1989 	if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 		no_quota = 1;
1991 
1992 	path->reada = 1;
1993 	path->leave_spinning = 1;
1994 	/* this will setup the path even if it fails to insert the back ref */
1995 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 					   bytenr, num_bytes, parent,
1997 					   root_objectid, owner, offset,
1998 					   refs_to_add, extent_op);
1999 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2000 		goto out;
2001 
2002 	/*
2003 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2004 	 * inline extent ref, so just update the reference count and add a
2005 	 * normal backref.
2006 	 */
2007 	leaf = path->nodes[0];
2008 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2010 	refs = btrfs_extent_refs(leaf, item);
2011 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2012 	if (extent_op)
2013 		__run_delayed_extent_op(extent_op, leaf, item);
2014 
2015 	btrfs_mark_buffer_dirty(leaf);
2016 	btrfs_release_path(path);
2017 
2018 	path->reada = 1;
2019 	path->leave_spinning = 1;
2020 	/* now insert the actual backref */
2021 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2022 				    path, bytenr, parent, root_objectid,
2023 				    owner, offset, refs_to_add);
2024 	if (ret)
2025 		btrfs_abort_transaction(trans, root, ret);
2026 out:
2027 	btrfs_free_path(path);
2028 	return ret;
2029 }
2030 
2031 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2032 				struct btrfs_root *root,
2033 				struct btrfs_delayed_ref_node *node,
2034 				struct btrfs_delayed_extent_op *extent_op,
2035 				int insert_reserved)
2036 {
2037 	int ret = 0;
2038 	struct btrfs_delayed_data_ref *ref;
2039 	struct btrfs_key ins;
2040 	u64 parent = 0;
2041 	u64 ref_root = 0;
2042 	u64 flags = 0;
2043 
2044 	ins.objectid = node->bytenr;
2045 	ins.offset = node->num_bytes;
2046 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2047 
2048 	ref = btrfs_delayed_node_to_data_ref(node);
2049 	trace_run_delayed_data_ref(node, ref, node->action);
2050 
2051 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2052 		parent = ref->parent;
2053 	ref_root = ref->root;
2054 
2055 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2056 		if (extent_op)
2057 			flags |= extent_op->flags_to_set;
2058 		ret = alloc_reserved_file_extent(trans, root,
2059 						 parent, ref_root, flags,
2060 						 ref->objectid, ref->offset,
2061 						 &ins, node->ref_mod);
2062 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2063 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2064 					     ref_root, ref->objectid,
2065 					     ref->offset, node->ref_mod,
2066 					     extent_op);
2067 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2068 		ret = __btrfs_free_extent(trans, root, node, parent,
2069 					  ref_root, ref->objectid,
2070 					  ref->offset, node->ref_mod,
2071 					  extent_op);
2072 	} else {
2073 		BUG();
2074 	}
2075 	return ret;
2076 }
2077 
2078 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2079 				    struct extent_buffer *leaf,
2080 				    struct btrfs_extent_item *ei)
2081 {
2082 	u64 flags = btrfs_extent_flags(leaf, ei);
2083 	if (extent_op->update_flags) {
2084 		flags |= extent_op->flags_to_set;
2085 		btrfs_set_extent_flags(leaf, ei, flags);
2086 	}
2087 
2088 	if (extent_op->update_key) {
2089 		struct btrfs_tree_block_info *bi;
2090 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2091 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2092 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2093 	}
2094 }
2095 
2096 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2097 				 struct btrfs_root *root,
2098 				 struct btrfs_delayed_ref_node *node,
2099 				 struct btrfs_delayed_extent_op *extent_op)
2100 {
2101 	struct btrfs_key key;
2102 	struct btrfs_path *path;
2103 	struct btrfs_extent_item *ei;
2104 	struct extent_buffer *leaf;
2105 	u32 item_size;
2106 	int ret;
2107 	int err = 0;
2108 	int metadata = !extent_op->is_data;
2109 
2110 	if (trans->aborted)
2111 		return 0;
2112 
2113 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2114 		metadata = 0;
2115 
2116 	path = btrfs_alloc_path();
2117 	if (!path)
2118 		return -ENOMEM;
2119 
2120 	key.objectid = node->bytenr;
2121 
2122 	if (metadata) {
2123 		key.type = BTRFS_METADATA_ITEM_KEY;
2124 		key.offset = extent_op->level;
2125 	} else {
2126 		key.type = BTRFS_EXTENT_ITEM_KEY;
2127 		key.offset = node->num_bytes;
2128 	}
2129 
2130 again:
2131 	path->reada = 1;
2132 	path->leave_spinning = 1;
2133 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2134 				path, 0, 1);
2135 	if (ret < 0) {
2136 		err = ret;
2137 		goto out;
2138 	}
2139 	if (ret > 0) {
2140 		if (metadata) {
2141 			if (path->slots[0] > 0) {
2142 				path->slots[0]--;
2143 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2144 						      path->slots[0]);
2145 				if (key.objectid == node->bytenr &&
2146 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2147 				    key.offset == node->num_bytes)
2148 					ret = 0;
2149 			}
2150 			if (ret > 0) {
2151 				btrfs_release_path(path);
2152 				metadata = 0;
2153 
2154 				key.objectid = node->bytenr;
2155 				key.offset = node->num_bytes;
2156 				key.type = BTRFS_EXTENT_ITEM_KEY;
2157 				goto again;
2158 			}
2159 		} else {
2160 			err = -EIO;
2161 			goto out;
2162 		}
2163 	}
2164 
2165 	leaf = path->nodes[0];
2166 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2167 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2168 	if (item_size < sizeof(*ei)) {
2169 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2170 					     path, (u64)-1, 0);
2171 		if (ret < 0) {
2172 			err = ret;
2173 			goto out;
2174 		}
2175 		leaf = path->nodes[0];
2176 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2177 	}
2178 #endif
2179 	BUG_ON(item_size < sizeof(*ei));
2180 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2181 	__run_delayed_extent_op(extent_op, leaf, ei);
2182 
2183 	btrfs_mark_buffer_dirty(leaf);
2184 out:
2185 	btrfs_free_path(path);
2186 	return err;
2187 }
2188 
2189 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2190 				struct btrfs_root *root,
2191 				struct btrfs_delayed_ref_node *node,
2192 				struct btrfs_delayed_extent_op *extent_op,
2193 				int insert_reserved)
2194 {
2195 	int ret = 0;
2196 	struct btrfs_delayed_tree_ref *ref;
2197 	struct btrfs_key ins;
2198 	u64 parent = 0;
2199 	u64 ref_root = 0;
2200 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2201 						 SKINNY_METADATA);
2202 
2203 	ref = btrfs_delayed_node_to_tree_ref(node);
2204 	trace_run_delayed_tree_ref(node, ref, node->action);
2205 
2206 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2207 		parent = ref->parent;
2208 	ref_root = ref->root;
2209 
2210 	ins.objectid = node->bytenr;
2211 	if (skinny_metadata) {
2212 		ins.offset = ref->level;
2213 		ins.type = BTRFS_METADATA_ITEM_KEY;
2214 	} else {
2215 		ins.offset = node->num_bytes;
2216 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2217 	}
2218 
2219 	BUG_ON(node->ref_mod != 1);
2220 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2221 		BUG_ON(!extent_op || !extent_op->update_flags);
2222 		ret = alloc_reserved_tree_block(trans, root,
2223 						parent, ref_root,
2224 						extent_op->flags_to_set,
2225 						&extent_op->key,
2226 						ref->level, &ins,
2227 						node->no_quota);
2228 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2229 		ret = __btrfs_inc_extent_ref(trans, root, node,
2230 					     parent, ref_root,
2231 					     ref->level, 0, 1,
2232 					     extent_op);
2233 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2234 		ret = __btrfs_free_extent(trans, root, node,
2235 					  parent, ref_root,
2236 					  ref->level, 0, 1, extent_op);
2237 	} else {
2238 		BUG();
2239 	}
2240 	return ret;
2241 }
2242 
2243 /* helper function to actually process a single delayed ref entry */
2244 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2245 			       struct btrfs_root *root,
2246 			       struct btrfs_delayed_ref_node *node,
2247 			       struct btrfs_delayed_extent_op *extent_op,
2248 			       int insert_reserved)
2249 {
2250 	int ret = 0;
2251 
2252 	if (trans->aborted) {
2253 		if (insert_reserved)
2254 			btrfs_pin_extent(root, node->bytenr,
2255 					 node->num_bytes, 1);
2256 		return 0;
2257 	}
2258 
2259 	if (btrfs_delayed_ref_is_head(node)) {
2260 		struct btrfs_delayed_ref_head *head;
2261 		/*
2262 		 * we've hit the end of the chain and we were supposed
2263 		 * to insert this extent into the tree.  But, it got
2264 		 * deleted before we ever needed to insert it, so all
2265 		 * we have to do is clean up the accounting
2266 		 */
2267 		BUG_ON(extent_op);
2268 		head = btrfs_delayed_node_to_head(node);
2269 		trace_run_delayed_ref_head(node, head, node->action);
2270 
2271 		if (insert_reserved) {
2272 			btrfs_pin_extent(root, node->bytenr,
2273 					 node->num_bytes, 1);
2274 			if (head->is_data) {
2275 				ret = btrfs_del_csums(trans, root,
2276 						      node->bytenr,
2277 						      node->num_bytes);
2278 			}
2279 		}
2280 		return ret;
2281 	}
2282 
2283 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2284 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2285 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2286 					   insert_reserved);
2287 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2288 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2289 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2290 					   insert_reserved);
2291 	else
2292 		BUG();
2293 	return ret;
2294 }
2295 
2296 static inline struct btrfs_delayed_ref_node *
2297 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2298 {
2299 	if (list_empty(&head->ref_list))
2300 		return NULL;
2301 
2302 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2303 			  list);
2304 }
2305 
2306 /*
2307  * Returns 0 on success or if called with an already aborted transaction.
2308  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2309  */
2310 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2311 					     struct btrfs_root *root,
2312 					     unsigned long nr)
2313 {
2314 	struct btrfs_delayed_ref_root *delayed_refs;
2315 	struct btrfs_delayed_ref_node *ref;
2316 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2317 	struct btrfs_delayed_extent_op *extent_op;
2318 	struct btrfs_fs_info *fs_info = root->fs_info;
2319 	ktime_t start = ktime_get();
2320 	int ret;
2321 	unsigned long count = 0;
2322 	unsigned long actual_count = 0;
2323 	int must_insert_reserved = 0;
2324 
2325 	delayed_refs = &trans->transaction->delayed_refs;
2326 	while (1) {
2327 		if (!locked_ref) {
2328 			if (count >= nr)
2329 				break;
2330 
2331 			spin_lock(&delayed_refs->lock);
2332 			locked_ref = btrfs_select_ref_head(trans);
2333 			if (!locked_ref) {
2334 				spin_unlock(&delayed_refs->lock);
2335 				break;
2336 			}
2337 
2338 			/* grab the lock that says we are going to process
2339 			 * all the refs for this head */
2340 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2341 			spin_unlock(&delayed_refs->lock);
2342 			/*
2343 			 * we may have dropped the spin lock to get the head
2344 			 * mutex lock, and that might have given someone else
2345 			 * time to free the head.  If that's true, it has been
2346 			 * removed from our list and we can move on.
2347 			 */
2348 			if (ret == -EAGAIN) {
2349 				locked_ref = NULL;
2350 				count++;
2351 				continue;
2352 			}
2353 		}
2354 
2355 		spin_lock(&locked_ref->lock);
2356 
2357 		/*
2358 		 * locked_ref is the head node, so we have to go one
2359 		 * node back for any delayed ref updates
2360 		 */
2361 		ref = select_delayed_ref(locked_ref);
2362 
2363 		if (ref && ref->seq &&
2364 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2365 			spin_unlock(&locked_ref->lock);
2366 			btrfs_delayed_ref_unlock(locked_ref);
2367 			spin_lock(&delayed_refs->lock);
2368 			locked_ref->processing = 0;
2369 			delayed_refs->num_heads_ready++;
2370 			spin_unlock(&delayed_refs->lock);
2371 			locked_ref = NULL;
2372 			cond_resched();
2373 			count++;
2374 			continue;
2375 		}
2376 
2377 		/*
2378 		 * record the must insert reserved flag before we
2379 		 * drop the spin lock.
2380 		 */
2381 		must_insert_reserved = locked_ref->must_insert_reserved;
2382 		locked_ref->must_insert_reserved = 0;
2383 
2384 		extent_op = locked_ref->extent_op;
2385 		locked_ref->extent_op = NULL;
2386 
2387 		if (!ref) {
2388 
2389 
2390 			/* All delayed refs have been processed, Go ahead
2391 			 * and send the head node to run_one_delayed_ref,
2392 			 * so that any accounting fixes can happen
2393 			 */
2394 			ref = &locked_ref->node;
2395 
2396 			if (extent_op && must_insert_reserved) {
2397 				btrfs_free_delayed_extent_op(extent_op);
2398 				extent_op = NULL;
2399 			}
2400 
2401 			if (extent_op) {
2402 				spin_unlock(&locked_ref->lock);
2403 				ret = run_delayed_extent_op(trans, root,
2404 							    ref, extent_op);
2405 				btrfs_free_delayed_extent_op(extent_op);
2406 
2407 				if (ret) {
2408 					/*
2409 					 * Need to reset must_insert_reserved if
2410 					 * there was an error so the abort stuff
2411 					 * can cleanup the reserved space
2412 					 * properly.
2413 					 */
2414 					if (must_insert_reserved)
2415 						locked_ref->must_insert_reserved = 1;
2416 					locked_ref->processing = 0;
2417 					btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2418 					btrfs_delayed_ref_unlock(locked_ref);
2419 					return ret;
2420 				}
2421 				continue;
2422 			}
2423 
2424 			/*
2425 			 * Need to drop our head ref lock and re-aqcuire the
2426 			 * delayed ref lock and then re-check to make sure
2427 			 * nobody got added.
2428 			 */
2429 			spin_unlock(&locked_ref->lock);
2430 			spin_lock(&delayed_refs->lock);
2431 			spin_lock(&locked_ref->lock);
2432 			if (!list_empty(&locked_ref->ref_list) ||
2433 			    locked_ref->extent_op) {
2434 				spin_unlock(&locked_ref->lock);
2435 				spin_unlock(&delayed_refs->lock);
2436 				continue;
2437 			}
2438 			ref->in_tree = 0;
2439 			delayed_refs->num_heads--;
2440 			rb_erase(&locked_ref->href_node,
2441 				 &delayed_refs->href_root);
2442 			spin_unlock(&delayed_refs->lock);
2443 		} else {
2444 			actual_count++;
2445 			ref->in_tree = 0;
2446 			list_del(&ref->list);
2447 		}
2448 		atomic_dec(&delayed_refs->num_entries);
2449 
2450 		if (!btrfs_delayed_ref_is_head(ref)) {
2451 			/*
2452 			 * when we play the delayed ref, also correct the
2453 			 * ref_mod on head
2454 			 */
2455 			switch (ref->action) {
2456 			case BTRFS_ADD_DELAYED_REF:
2457 			case BTRFS_ADD_DELAYED_EXTENT:
2458 				locked_ref->node.ref_mod -= ref->ref_mod;
2459 				break;
2460 			case BTRFS_DROP_DELAYED_REF:
2461 				locked_ref->node.ref_mod += ref->ref_mod;
2462 				break;
2463 			default:
2464 				WARN_ON(1);
2465 			}
2466 		}
2467 		spin_unlock(&locked_ref->lock);
2468 
2469 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2470 					  must_insert_reserved);
2471 
2472 		btrfs_free_delayed_extent_op(extent_op);
2473 		if (ret) {
2474 			locked_ref->processing = 0;
2475 			btrfs_delayed_ref_unlock(locked_ref);
2476 			btrfs_put_delayed_ref(ref);
2477 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2478 			return ret;
2479 		}
2480 
2481 		/*
2482 		 * If this node is a head, that means all the refs in this head
2483 		 * have been dealt with, and we will pick the next head to deal
2484 		 * with, so we must unlock the head and drop it from the cluster
2485 		 * list before we release it.
2486 		 */
2487 		if (btrfs_delayed_ref_is_head(ref)) {
2488 			if (locked_ref->is_data &&
2489 			    locked_ref->total_ref_mod < 0) {
2490 				spin_lock(&delayed_refs->lock);
2491 				delayed_refs->pending_csums -= ref->num_bytes;
2492 				spin_unlock(&delayed_refs->lock);
2493 			}
2494 			btrfs_delayed_ref_unlock(locked_ref);
2495 			locked_ref = NULL;
2496 		}
2497 		btrfs_put_delayed_ref(ref);
2498 		count++;
2499 		cond_resched();
2500 	}
2501 
2502 	/*
2503 	 * We don't want to include ref heads since we can have empty ref heads
2504 	 * and those will drastically skew our runtime down since we just do
2505 	 * accounting, no actual extent tree updates.
2506 	 */
2507 	if (actual_count > 0) {
2508 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2509 		u64 avg;
2510 
2511 		/*
2512 		 * We weigh the current average higher than our current runtime
2513 		 * to avoid large swings in the average.
2514 		 */
2515 		spin_lock(&delayed_refs->lock);
2516 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2517 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2518 		spin_unlock(&delayed_refs->lock);
2519 	}
2520 	return 0;
2521 }
2522 
2523 #ifdef SCRAMBLE_DELAYED_REFS
2524 /*
2525  * Normally delayed refs get processed in ascending bytenr order. This
2526  * correlates in most cases to the order added. To expose dependencies on this
2527  * order, we start to process the tree in the middle instead of the beginning
2528  */
2529 static u64 find_middle(struct rb_root *root)
2530 {
2531 	struct rb_node *n = root->rb_node;
2532 	struct btrfs_delayed_ref_node *entry;
2533 	int alt = 1;
2534 	u64 middle;
2535 	u64 first = 0, last = 0;
2536 
2537 	n = rb_first(root);
2538 	if (n) {
2539 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2540 		first = entry->bytenr;
2541 	}
2542 	n = rb_last(root);
2543 	if (n) {
2544 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2545 		last = entry->bytenr;
2546 	}
2547 	n = root->rb_node;
2548 
2549 	while (n) {
2550 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2551 		WARN_ON(!entry->in_tree);
2552 
2553 		middle = entry->bytenr;
2554 
2555 		if (alt)
2556 			n = n->rb_left;
2557 		else
2558 			n = n->rb_right;
2559 
2560 		alt = 1 - alt;
2561 	}
2562 	return middle;
2563 }
2564 #endif
2565 
2566 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2567 {
2568 	u64 num_bytes;
2569 
2570 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2571 			     sizeof(struct btrfs_extent_inline_ref));
2572 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2573 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2574 
2575 	/*
2576 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2577 	 * closer to what we're really going to want to ouse.
2578 	 */
2579 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2580 }
2581 
2582 /*
2583  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2584  * would require to store the csums for that many bytes.
2585  */
2586 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2587 {
2588 	u64 csum_size;
2589 	u64 num_csums_per_leaf;
2590 	u64 num_csums;
2591 
2592 	csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2593 	num_csums_per_leaf = div64_u64(csum_size,
2594 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2595 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2596 	num_csums += num_csums_per_leaf - 1;
2597 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2598 	return num_csums;
2599 }
2600 
2601 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2602 				       struct btrfs_root *root)
2603 {
2604 	struct btrfs_block_rsv *global_rsv;
2605 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2606 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2607 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2608 	u64 num_bytes, num_dirty_bgs_bytes;
2609 	int ret = 0;
2610 
2611 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2612 	num_heads = heads_to_leaves(root, num_heads);
2613 	if (num_heads > 1)
2614 		num_bytes += (num_heads - 1) * root->nodesize;
2615 	num_bytes <<= 1;
2616 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2617 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2618 							     num_dirty_bgs);
2619 	global_rsv = &root->fs_info->global_block_rsv;
2620 
2621 	/*
2622 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2623 	 * wiggle room since running delayed refs can create more delayed refs.
2624 	 */
2625 	if (global_rsv->space_info->full) {
2626 		num_dirty_bgs_bytes <<= 1;
2627 		num_bytes <<= 1;
2628 	}
2629 
2630 	spin_lock(&global_rsv->lock);
2631 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2632 		ret = 1;
2633 	spin_unlock(&global_rsv->lock);
2634 	return ret;
2635 }
2636 
2637 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2638 				       struct btrfs_root *root)
2639 {
2640 	struct btrfs_fs_info *fs_info = root->fs_info;
2641 	u64 num_entries =
2642 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2643 	u64 avg_runtime;
2644 	u64 val;
2645 
2646 	smp_mb();
2647 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2648 	val = num_entries * avg_runtime;
2649 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2650 		return 1;
2651 	if (val >= NSEC_PER_SEC / 2)
2652 		return 2;
2653 
2654 	return btrfs_check_space_for_delayed_refs(trans, root);
2655 }
2656 
2657 struct async_delayed_refs {
2658 	struct btrfs_root *root;
2659 	int count;
2660 	int error;
2661 	int sync;
2662 	struct completion wait;
2663 	struct btrfs_work work;
2664 };
2665 
2666 static void delayed_ref_async_start(struct btrfs_work *work)
2667 {
2668 	struct async_delayed_refs *async;
2669 	struct btrfs_trans_handle *trans;
2670 	int ret;
2671 
2672 	async = container_of(work, struct async_delayed_refs, work);
2673 
2674 	trans = btrfs_join_transaction(async->root);
2675 	if (IS_ERR(trans)) {
2676 		async->error = PTR_ERR(trans);
2677 		goto done;
2678 	}
2679 
2680 	/*
2681 	 * trans->sync means that when we call end_transaciton, we won't
2682 	 * wait on delayed refs
2683 	 */
2684 	trans->sync = true;
2685 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2686 	if (ret)
2687 		async->error = ret;
2688 
2689 	ret = btrfs_end_transaction(trans, async->root);
2690 	if (ret && !async->error)
2691 		async->error = ret;
2692 done:
2693 	if (async->sync)
2694 		complete(&async->wait);
2695 	else
2696 		kfree(async);
2697 }
2698 
2699 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2700 				 unsigned long count, int wait)
2701 {
2702 	struct async_delayed_refs *async;
2703 	int ret;
2704 
2705 	async = kmalloc(sizeof(*async), GFP_NOFS);
2706 	if (!async)
2707 		return -ENOMEM;
2708 
2709 	async->root = root->fs_info->tree_root;
2710 	async->count = count;
2711 	async->error = 0;
2712 	if (wait)
2713 		async->sync = 1;
2714 	else
2715 		async->sync = 0;
2716 	init_completion(&async->wait);
2717 
2718 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2719 			delayed_ref_async_start, NULL, NULL);
2720 
2721 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2722 
2723 	if (wait) {
2724 		wait_for_completion(&async->wait);
2725 		ret = async->error;
2726 		kfree(async);
2727 		return ret;
2728 	}
2729 	return 0;
2730 }
2731 
2732 /*
2733  * this starts processing the delayed reference count updates and
2734  * extent insertions we have queued up so far.  count can be
2735  * 0, which means to process everything in the tree at the start
2736  * of the run (but not newly added entries), or it can be some target
2737  * number you'd like to process.
2738  *
2739  * Returns 0 on success or if called with an aborted transaction
2740  * Returns <0 on error and aborts the transaction
2741  */
2742 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2743 			   struct btrfs_root *root, unsigned long count)
2744 {
2745 	struct rb_node *node;
2746 	struct btrfs_delayed_ref_root *delayed_refs;
2747 	struct btrfs_delayed_ref_head *head;
2748 	int ret;
2749 	int run_all = count == (unsigned long)-1;
2750 
2751 	/* We'll clean this up in btrfs_cleanup_transaction */
2752 	if (trans->aborted)
2753 		return 0;
2754 
2755 	if (root == root->fs_info->extent_root)
2756 		root = root->fs_info->tree_root;
2757 
2758 	delayed_refs = &trans->transaction->delayed_refs;
2759 	if (count == 0)
2760 		count = atomic_read(&delayed_refs->num_entries) * 2;
2761 
2762 again:
2763 #ifdef SCRAMBLE_DELAYED_REFS
2764 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2765 #endif
2766 	ret = __btrfs_run_delayed_refs(trans, root, count);
2767 	if (ret < 0) {
2768 		btrfs_abort_transaction(trans, root, ret);
2769 		return ret;
2770 	}
2771 
2772 	if (run_all) {
2773 		if (!list_empty(&trans->new_bgs))
2774 			btrfs_create_pending_block_groups(trans, root);
2775 
2776 		spin_lock(&delayed_refs->lock);
2777 		node = rb_first(&delayed_refs->href_root);
2778 		if (!node) {
2779 			spin_unlock(&delayed_refs->lock);
2780 			goto out;
2781 		}
2782 		count = (unsigned long)-1;
2783 
2784 		while (node) {
2785 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2786 					href_node);
2787 			if (btrfs_delayed_ref_is_head(&head->node)) {
2788 				struct btrfs_delayed_ref_node *ref;
2789 
2790 				ref = &head->node;
2791 				atomic_inc(&ref->refs);
2792 
2793 				spin_unlock(&delayed_refs->lock);
2794 				/*
2795 				 * Mutex was contended, block until it's
2796 				 * released and try again
2797 				 */
2798 				mutex_lock(&head->mutex);
2799 				mutex_unlock(&head->mutex);
2800 
2801 				btrfs_put_delayed_ref(ref);
2802 				cond_resched();
2803 				goto again;
2804 			} else {
2805 				WARN_ON(1);
2806 			}
2807 			node = rb_next(node);
2808 		}
2809 		spin_unlock(&delayed_refs->lock);
2810 		cond_resched();
2811 		goto again;
2812 	}
2813 out:
2814 	assert_qgroups_uptodate(trans);
2815 	return 0;
2816 }
2817 
2818 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2819 				struct btrfs_root *root,
2820 				u64 bytenr, u64 num_bytes, u64 flags,
2821 				int level, int is_data)
2822 {
2823 	struct btrfs_delayed_extent_op *extent_op;
2824 	int ret;
2825 
2826 	extent_op = btrfs_alloc_delayed_extent_op();
2827 	if (!extent_op)
2828 		return -ENOMEM;
2829 
2830 	extent_op->flags_to_set = flags;
2831 	extent_op->update_flags = 1;
2832 	extent_op->update_key = 0;
2833 	extent_op->is_data = is_data ? 1 : 0;
2834 	extent_op->level = level;
2835 
2836 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2837 					  num_bytes, extent_op);
2838 	if (ret)
2839 		btrfs_free_delayed_extent_op(extent_op);
2840 	return ret;
2841 }
2842 
2843 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2844 				      struct btrfs_root *root,
2845 				      struct btrfs_path *path,
2846 				      u64 objectid, u64 offset, u64 bytenr)
2847 {
2848 	struct btrfs_delayed_ref_head *head;
2849 	struct btrfs_delayed_ref_node *ref;
2850 	struct btrfs_delayed_data_ref *data_ref;
2851 	struct btrfs_delayed_ref_root *delayed_refs;
2852 	int ret = 0;
2853 
2854 	delayed_refs = &trans->transaction->delayed_refs;
2855 	spin_lock(&delayed_refs->lock);
2856 	head = btrfs_find_delayed_ref_head(trans, bytenr);
2857 	if (!head) {
2858 		spin_unlock(&delayed_refs->lock);
2859 		return 0;
2860 	}
2861 
2862 	if (!mutex_trylock(&head->mutex)) {
2863 		atomic_inc(&head->node.refs);
2864 		spin_unlock(&delayed_refs->lock);
2865 
2866 		btrfs_release_path(path);
2867 
2868 		/*
2869 		 * Mutex was contended, block until it's released and let
2870 		 * caller try again
2871 		 */
2872 		mutex_lock(&head->mutex);
2873 		mutex_unlock(&head->mutex);
2874 		btrfs_put_delayed_ref(&head->node);
2875 		return -EAGAIN;
2876 	}
2877 	spin_unlock(&delayed_refs->lock);
2878 
2879 	spin_lock(&head->lock);
2880 	list_for_each_entry(ref, &head->ref_list, list) {
2881 		/* If it's a shared ref we know a cross reference exists */
2882 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2883 			ret = 1;
2884 			break;
2885 		}
2886 
2887 		data_ref = btrfs_delayed_node_to_data_ref(ref);
2888 
2889 		/*
2890 		 * If our ref doesn't match the one we're currently looking at
2891 		 * then we have a cross reference.
2892 		 */
2893 		if (data_ref->root != root->root_key.objectid ||
2894 		    data_ref->objectid != objectid ||
2895 		    data_ref->offset != offset) {
2896 			ret = 1;
2897 			break;
2898 		}
2899 	}
2900 	spin_unlock(&head->lock);
2901 	mutex_unlock(&head->mutex);
2902 	return ret;
2903 }
2904 
2905 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2906 					struct btrfs_root *root,
2907 					struct btrfs_path *path,
2908 					u64 objectid, u64 offset, u64 bytenr)
2909 {
2910 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2911 	struct extent_buffer *leaf;
2912 	struct btrfs_extent_data_ref *ref;
2913 	struct btrfs_extent_inline_ref *iref;
2914 	struct btrfs_extent_item *ei;
2915 	struct btrfs_key key;
2916 	u32 item_size;
2917 	int ret;
2918 
2919 	key.objectid = bytenr;
2920 	key.offset = (u64)-1;
2921 	key.type = BTRFS_EXTENT_ITEM_KEY;
2922 
2923 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2924 	if (ret < 0)
2925 		goto out;
2926 	BUG_ON(ret == 0); /* Corruption */
2927 
2928 	ret = -ENOENT;
2929 	if (path->slots[0] == 0)
2930 		goto out;
2931 
2932 	path->slots[0]--;
2933 	leaf = path->nodes[0];
2934 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2935 
2936 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2937 		goto out;
2938 
2939 	ret = 1;
2940 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2941 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2942 	if (item_size < sizeof(*ei)) {
2943 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2944 		goto out;
2945 	}
2946 #endif
2947 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2948 
2949 	if (item_size != sizeof(*ei) +
2950 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2951 		goto out;
2952 
2953 	if (btrfs_extent_generation(leaf, ei) <=
2954 	    btrfs_root_last_snapshot(&root->root_item))
2955 		goto out;
2956 
2957 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2958 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
2959 	    BTRFS_EXTENT_DATA_REF_KEY)
2960 		goto out;
2961 
2962 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2963 	if (btrfs_extent_refs(leaf, ei) !=
2964 	    btrfs_extent_data_ref_count(leaf, ref) ||
2965 	    btrfs_extent_data_ref_root(leaf, ref) !=
2966 	    root->root_key.objectid ||
2967 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2968 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2969 		goto out;
2970 
2971 	ret = 0;
2972 out:
2973 	return ret;
2974 }
2975 
2976 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2977 			  struct btrfs_root *root,
2978 			  u64 objectid, u64 offset, u64 bytenr)
2979 {
2980 	struct btrfs_path *path;
2981 	int ret;
2982 	int ret2;
2983 
2984 	path = btrfs_alloc_path();
2985 	if (!path)
2986 		return -ENOENT;
2987 
2988 	do {
2989 		ret = check_committed_ref(trans, root, path, objectid,
2990 					  offset, bytenr);
2991 		if (ret && ret != -ENOENT)
2992 			goto out;
2993 
2994 		ret2 = check_delayed_ref(trans, root, path, objectid,
2995 					 offset, bytenr);
2996 	} while (ret2 == -EAGAIN);
2997 
2998 	if (ret2 && ret2 != -ENOENT) {
2999 		ret = ret2;
3000 		goto out;
3001 	}
3002 
3003 	if (ret != -ENOENT || ret2 != -ENOENT)
3004 		ret = 0;
3005 out:
3006 	btrfs_free_path(path);
3007 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3008 		WARN_ON(ret > 0);
3009 	return ret;
3010 }
3011 
3012 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3013 			   struct btrfs_root *root,
3014 			   struct extent_buffer *buf,
3015 			   int full_backref, int inc)
3016 {
3017 	u64 bytenr;
3018 	u64 num_bytes;
3019 	u64 parent;
3020 	u64 ref_root;
3021 	u32 nritems;
3022 	struct btrfs_key key;
3023 	struct btrfs_file_extent_item *fi;
3024 	int i;
3025 	int level;
3026 	int ret = 0;
3027 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3028 			    u64, u64, u64, u64, u64, u64, int);
3029 
3030 
3031 	if (btrfs_test_is_dummy_root(root))
3032 		return 0;
3033 
3034 	ref_root = btrfs_header_owner(buf);
3035 	nritems = btrfs_header_nritems(buf);
3036 	level = btrfs_header_level(buf);
3037 
3038 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3039 		return 0;
3040 
3041 	if (inc)
3042 		process_func = btrfs_inc_extent_ref;
3043 	else
3044 		process_func = btrfs_free_extent;
3045 
3046 	if (full_backref)
3047 		parent = buf->start;
3048 	else
3049 		parent = 0;
3050 
3051 	for (i = 0; i < nritems; i++) {
3052 		if (level == 0) {
3053 			btrfs_item_key_to_cpu(buf, &key, i);
3054 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3055 				continue;
3056 			fi = btrfs_item_ptr(buf, i,
3057 					    struct btrfs_file_extent_item);
3058 			if (btrfs_file_extent_type(buf, fi) ==
3059 			    BTRFS_FILE_EXTENT_INLINE)
3060 				continue;
3061 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3062 			if (bytenr == 0)
3063 				continue;
3064 
3065 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3066 			key.offset -= btrfs_file_extent_offset(buf, fi);
3067 			ret = process_func(trans, root, bytenr, num_bytes,
3068 					   parent, ref_root, key.objectid,
3069 					   key.offset, 1);
3070 			if (ret)
3071 				goto fail;
3072 		} else {
3073 			bytenr = btrfs_node_blockptr(buf, i);
3074 			num_bytes = root->nodesize;
3075 			ret = process_func(trans, root, bytenr, num_bytes,
3076 					   parent, ref_root, level - 1, 0,
3077 					   1);
3078 			if (ret)
3079 				goto fail;
3080 		}
3081 	}
3082 	return 0;
3083 fail:
3084 	return ret;
3085 }
3086 
3087 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3088 		  struct extent_buffer *buf, int full_backref)
3089 {
3090 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3091 }
3092 
3093 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3094 		  struct extent_buffer *buf, int full_backref)
3095 {
3096 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3097 }
3098 
3099 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3100 				 struct btrfs_root *root,
3101 				 struct btrfs_path *path,
3102 				 struct btrfs_block_group_cache *cache)
3103 {
3104 	int ret;
3105 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3106 	unsigned long bi;
3107 	struct extent_buffer *leaf;
3108 
3109 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3110 	if (ret) {
3111 		if (ret > 0)
3112 			ret = -ENOENT;
3113 		goto fail;
3114 	}
3115 
3116 	leaf = path->nodes[0];
3117 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3118 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3119 	btrfs_mark_buffer_dirty(leaf);
3120 fail:
3121 	btrfs_release_path(path);
3122 	return ret;
3123 
3124 }
3125 
3126 static struct btrfs_block_group_cache *
3127 next_block_group(struct btrfs_root *root,
3128 		 struct btrfs_block_group_cache *cache)
3129 {
3130 	struct rb_node *node;
3131 
3132 	spin_lock(&root->fs_info->block_group_cache_lock);
3133 
3134 	/* If our block group was removed, we need a full search. */
3135 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3136 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3137 
3138 		spin_unlock(&root->fs_info->block_group_cache_lock);
3139 		btrfs_put_block_group(cache);
3140 		cache = btrfs_lookup_first_block_group(root->fs_info,
3141 						       next_bytenr);
3142 		return cache;
3143 	}
3144 	node = rb_next(&cache->cache_node);
3145 	btrfs_put_block_group(cache);
3146 	if (node) {
3147 		cache = rb_entry(node, struct btrfs_block_group_cache,
3148 				 cache_node);
3149 		btrfs_get_block_group(cache);
3150 	} else
3151 		cache = NULL;
3152 	spin_unlock(&root->fs_info->block_group_cache_lock);
3153 	return cache;
3154 }
3155 
3156 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3157 			    struct btrfs_trans_handle *trans,
3158 			    struct btrfs_path *path)
3159 {
3160 	struct btrfs_root *root = block_group->fs_info->tree_root;
3161 	struct inode *inode = NULL;
3162 	u64 alloc_hint = 0;
3163 	int dcs = BTRFS_DC_ERROR;
3164 	u64 num_pages = 0;
3165 	int retries = 0;
3166 	int ret = 0;
3167 
3168 	/*
3169 	 * If this block group is smaller than 100 megs don't bother caching the
3170 	 * block group.
3171 	 */
3172 	if (block_group->key.offset < (100 * 1024 * 1024)) {
3173 		spin_lock(&block_group->lock);
3174 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3175 		spin_unlock(&block_group->lock);
3176 		return 0;
3177 	}
3178 
3179 	if (trans->aborted)
3180 		return 0;
3181 again:
3182 	inode = lookup_free_space_inode(root, block_group, path);
3183 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3184 		ret = PTR_ERR(inode);
3185 		btrfs_release_path(path);
3186 		goto out;
3187 	}
3188 
3189 	if (IS_ERR(inode)) {
3190 		BUG_ON(retries);
3191 		retries++;
3192 
3193 		if (block_group->ro)
3194 			goto out_free;
3195 
3196 		ret = create_free_space_inode(root, trans, block_group, path);
3197 		if (ret)
3198 			goto out_free;
3199 		goto again;
3200 	}
3201 
3202 	/* We've already setup this transaction, go ahead and exit */
3203 	if (block_group->cache_generation == trans->transid &&
3204 	    i_size_read(inode)) {
3205 		dcs = BTRFS_DC_SETUP;
3206 		goto out_put;
3207 	}
3208 
3209 	/*
3210 	 * We want to set the generation to 0, that way if anything goes wrong
3211 	 * from here on out we know not to trust this cache when we load up next
3212 	 * time.
3213 	 */
3214 	BTRFS_I(inode)->generation = 0;
3215 	ret = btrfs_update_inode(trans, root, inode);
3216 	if (ret) {
3217 		/*
3218 		 * So theoretically we could recover from this, simply set the
3219 		 * super cache generation to 0 so we know to invalidate the
3220 		 * cache, but then we'd have to keep track of the block groups
3221 		 * that fail this way so we know we _have_ to reset this cache
3222 		 * before the next commit or risk reading stale cache.  So to
3223 		 * limit our exposure to horrible edge cases lets just abort the
3224 		 * transaction, this only happens in really bad situations
3225 		 * anyway.
3226 		 */
3227 		btrfs_abort_transaction(trans, root, ret);
3228 		goto out_put;
3229 	}
3230 	WARN_ON(ret);
3231 
3232 	if (i_size_read(inode) > 0) {
3233 		ret = btrfs_check_trunc_cache_free_space(root,
3234 					&root->fs_info->global_block_rsv);
3235 		if (ret)
3236 			goto out_put;
3237 
3238 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3239 		if (ret)
3240 			goto out_put;
3241 	}
3242 
3243 	spin_lock(&block_group->lock);
3244 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3245 	    !btrfs_test_opt(root, SPACE_CACHE)) {
3246 		/*
3247 		 * don't bother trying to write stuff out _if_
3248 		 * a) we're not cached,
3249 		 * b) we're with nospace_cache mount option.
3250 		 */
3251 		dcs = BTRFS_DC_WRITTEN;
3252 		spin_unlock(&block_group->lock);
3253 		goto out_put;
3254 	}
3255 	spin_unlock(&block_group->lock);
3256 
3257 	/*
3258 	 * Try to preallocate enough space based on how big the block group is.
3259 	 * Keep in mind this has to include any pinned space which could end up
3260 	 * taking up quite a bit since it's not folded into the other space
3261 	 * cache.
3262 	 */
3263 	num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
3264 	if (!num_pages)
3265 		num_pages = 1;
3266 
3267 	num_pages *= 16;
3268 	num_pages *= PAGE_CACHE_SIZE;
3269 
3270 	ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
3271 	if (ret)
3272 		goto out_put;
3273 
3274 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3275 					      num_pages, num_pages,
3276 					      &alloc_hint);
3277 	if (!ret)
3278 		dcs = BTRFS_DC_SETUP;
3279 	btrfs_free_reserved_data_space(inode, num_pages);
3280 
3281 out_put:
3282 	iput(inode);
3283 out_free:
3284 	btrfs_release_path(path);
3285 out:
3286 	spin_lock(&block_group->lock);
3287 	if (!ret && dcs == BTRFS_DC_SETUP)
3288 		block_group->cache_generation = trans->transid;
3289 	block_group->disk_cache_state = dcs;
3290 	spin_unlock(&block_group->lock);
3291 
3292 	return ret;
3293 }
3294 
3295 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3296 			    struct btrfs_root *root)
3297 {
3298 	struct btrfs_block_group_cache *cache, *tmp;
3299 	struct btrfs_transaction *cur_trans = trans->transaction;
3300 	struct btrfs_path *path;
3301 
3302 	if (list_empty(&cur_trans->dirty_bgs) ||
3303 	    !btrfs_test_opt(root, SPACE_CACHE))
3304 		return 0;
3305 
3306 	path = btrfs_alloc_path();
3307 	if (!path)
3308 		return -ENOMEM;
3309 
3310 	/* Could add new block groups, use _safe just in case */
3311 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3312 				 dirty_list) {
3313 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3314 			cache_save_setup(cache, trans, path);
3315 	}
3316 
3317 	btrfs_free_path(path);
3318 	return 0;
3319 }
3320 
3321 /*
3322  * transaction commit does final block group cache writeback during a
3323  * critical section where nothing is allowed to change the FS.  This is
3324  * required in order for the cache to actually match the block group,
3325  * but can introduce a lot of latency into the commit.
3326  *
3327  * So, btrfs_start_dirty_block_groups is here to kick off block group
3328  * cache IO.  There's a chance we'll have to redo some of it if the
3329  * block group changes again during the commit, but it greatly reduces
3330  * the commit latency by getting rid of the easy block groups while
3331  * we're still allowing others to join the commit.
3332  */
3333 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3334 				   struct btrfs_root *root)
3335 {
3336 	struct btrfs_block_group_cache *cache;
3337 	struct btrfs_transaction *cur_trans = trans->transaction;
3338 	int ret = 0;
3339 	int should_put;
3340 	struct btrfs_path *path = NULL;
3341 	LIST_HEAD(dirty);
3342 	struct list_head *io = &cur_trans->io_bgs;
3343 	int num_started = 0;
3344 	int loops = 0;
3345 
3346 	spin_lock(&cur_trans->dirty_bgs_lock);
3347 	if (list_empty(&cur_trans->dirty_bgs)) {
3348 		spin_unlock(&cur_trans->dirty_bgs_lock);
3349 		return 0;
3350 	}
3351 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3352 	spin_unlock(&cur_trans->dirty_bgs_lock);
3353 
3354 again:
3355 	/*
3356 	 * make sure all the block groups on our dirty list actually
3357 	 * exist
3358 	 */
3359 	btrfs_create_pending_block_groups(trans, root);
3360 
3361 	if (!path) {
3362 		path = btrfs_alloc_path();
3363 		if (!path)
3364 			return -ENOMEM;
3365 	}
3366 
3367 	/*
3368 	 * cache_write_mutex is here only to save us from balance or automatic
3369 	 * removal of empty block groups deleting this block group while we are
3370 	 * writing out the cache
3371 	 */
3372 	mutex_lock(&trans->transaction->cache_write_mutex);
3373 	while (!list_empty(&dirty)) {
3374 		cache = list_first_entry(&dirty,
3375 					 struct btrfs_block_group_cache,
3376 					 dirty_list);
3377 		/*
3378 		 * this can happen if something re-dirties a block
3379 		 * group that is already under IO.  Just wait for it to
3380 		 * finish and then do it all again
3381 		 */
3382 		if (!list_empty(&cache->io_list)) {
3383 			list_del_init(&cache->io_list);
3384 			btrfs_wait_cache_io(root, trans, cache,
3385 					    &cache->io_ctl, path,
3386 					    cache->key.objectid);
3387 			btrfs_put_block_group(cache);
3388 		}
3389 
3390 
3391 		/*
3392 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3393 		 * if it should update the cache_state.  Don't delete
3394 		 * until after we wait.
3395 		 *
3396 		 * Since we're not running in the commit critical section
3397 		 * we need the dirty_bgs_lock to protect from update_block_group
3398 		 */
3399 		spin_lock(&cur_trans->dirty_bgs_lock);
3400 		list_del_init(&cache->dirty_list);
3401 		spin_unlock(&cur_trans->dirty_bgs_lock);
3402 
3403 		should_put = 1;
3404 
3405 		cache_save_setup(cache, trans, path);
3406 
3407 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3408 			cache->io_ctl.inode = NULL;
3409 			ret = btrfs_write_out_cache(root, trans, cache, path);
3410 			if (ret == 0 && cache->io_ctl.inode) {
3411 				num_started++;
3412 				should_put = 0;
3413 
3414 				/*
3415 				 * the cache_write_mutex is protecting
3416 				 * the io_list
3417 				 */
3418 				list_add_tail(&cache->io_list, io);
3419 			} else {
3420 				/*
3421 				 * if we failed to write the cache, the
3422 				 * generation will be bad and life goes on
3423 				 */
3424 				ret = 0;
3425 			}
3426 		}
3427 		if (!ret) {
3428 			ret = write_one_cache_group(trans, root, path, cache);
3429 			/*
3430 			 * Our block group might still be attached to the list
3431 			 * of new block groups in the transaction handle of some
3432 			 * other task (struct btrfs_trans_handle->new_bgs). This
3433 			 * means its block group item isn't yet in the extent
3434 			 * tree. If this happens ignore the error, as we will
3435 			 * try again later in the critical section of the
3436 			 * transaction commit.
3437 			 */
3438 			if (ret == -ENOENT) {
3439 				ret = 0;
3440 				spin_lock(&cur_trans->dirty_bgs_lock);
3441 				if (list_empty(&cache->dirty_list)) {
3442 					list_add_tail(&cache->dirty_list,
3443 						      &cur_trans->dirty_bgs);
3444 					btrfs_get_block_group(cache);
3445 				}
3446 				spin_unlock(&cur_trans->dirty_bgs_lock);
3447 			} else if (ret) {
3448 				btrfs_abort_transaction(trans, root, ret);
3449 			}
3450 		}
3451 
3452 		/* if its not on the io list, we need to put the block group */
3453 		if (should_put)
3454 			btrfs_put_block_group(cache);
3455 
3456 		if (ret)
3457 			break;
3458 
3459 		/*
3460 		 * Avoid blocking other tasks for too long. It might even save
3461 		 * us from writing caches for block groups that are going to be
3462 		 * removed.
3463 		 */
3464 		mutex_unlock(&trans->transaction->cache_write_mutex);
3465 		mutex_lock(&trans->transaction->cache_write_mutex);
3466 	}
3467 	mutex_unlock(&trans->transaction->cache_write_mutex);
3468 
3469 	/*
3470 	 * go through delayed refs for all the stuff we've just kicked off
3471 	 * and then loop back (just once)
3472 	 */
3473 	ret = btrfs_run_delayed_refs(trans, root, 0);
3474 	if (!ret && loops == 0) {
3475 		loops++;
3476 		spin_lock(&cur_trans->dirty_bgs_lock);
3477 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3478 		/*
3479 		 * dirty_bgs_lock protects us from concurrent block group
3480 		 * deletes too (not just cache_write_mutex).
3481 		 */
3482 		if (!list_empty(&dirty)) {
3483 			spin_unlock(&cur_trans->dirty_bgs_lock);
3484 			goto again;
3485 		}
3486 		spin_unlock(&cur_trans->dirty_bgs_lock);
3487 	}
3488 
3489 	btrfs_free_path(path);
3490 	return ret;
3491 }
3492 
3493 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3494 				   struct btrfs_root *root)
3495 {
3496 	struct btrfs_block_group_cache *cache;
3497 	struct btrfs_transaction *cur_trans = trans->transaction;
3498 	int ret = 0;
3499 	int should_put;
3500 	struct btrfs_path *path;
3501 	struct list_head *io = &cur_trans->io_bgs;
3502 	int num_started = 0;
3503 
3504 	path = btrfs_alloc_path();
3505 	if (!path)
3506 		return -ENOMEM;
3507 
3508 	/*
3509 	 * We don't need the lock here since we are protected by the transaction
3510 	 * commit.  We want to do the cache_save_setup first and then run the
3511 	 * delayed refs to make sure we have the best chance at doing this all
3512 	 * in one shot.
3513 	 */
3514 	while (!list_empty(&cur_trans->dirty_bgs)) {
3515 		cache = list_first_entry(&cur_trans->dirty_bgs,
3516 					 struct btrfs_block_group_cache,
3517 					 dirty_list);
3518 
3519 		/*
3520 		 * this can happen if cache_save_setup re-dirties a block
3521 		 * group that is already under IO.  Just wait for it to
3522 		 * finish and then do it all again
3523 		 */
3524 		if (!list_empty(&cache->io_list)) {
3525 			list_del_init(&cache->io_list);
3526 			btrfs_wait_cache_io(root, trans, cache,
3527 					    &cache->io_ctl, path,
3528 					    cache->key.objectid);
3529 			btrfs_put_block_group(cache);
3530 		}
3531 
3532 		/*
3533 		 * don't remove from the dirty list until after we've waited
3534 		 * on any pending IO
3535 		 */
3536 		list_del_init(&cache->dirty_list);
3537 		should_put = 1;
3538 
3539 		cache_save_setup(cache, trans, path);
3540 
3541 		if (!ret)
3542 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3543 
3544 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3545 			cache->io_ctl.inode = NULL;
3546 			ret = btrfs_write_out_cache(root, trans, cache, path);
3547 			if (ret == 0 && cache->io_ctl.inode) {
3548 				num_started++;
3549 				should_put = 0;
3550 				list_add_tail(&cache->io_list, io);
3551 			} else {
3552 				/*
3553 				 * if we failed to write the cache, the
3554 				 * generation will be bad and life goes on
3555 				 */
3556 				ret = 0;
3557 			}
3558 		}
3559 		if (!ret) {
3560 			ret = write_one_cache_group(trans, root, path, cache);
3561 			if (ret)
3562 				btrfs_abort_transaction(trans, root, ret);
3563 		}
3564 
3565 		/* if its not on the io list, we need to put the block group */
3566 		if (should_put)
3567 			btrfs_put_block_group(cache);
3568 	}
3569 
3570 	while (!list_empty(io)) {
3571 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3572 					 io_list);
3573 		list_del_init(&cache->io_list);
3574 		btrfs_wait_cache_io(root, trans, cache,
3575 				    &cache->io_ctl, path, cache->key.objectid);
3576 		btrfs_put_block_group(cache);
3577 	}
3578 
3579 	btrfs_free_path(path);
3580 	return ret;
3581 }
3582 
3583 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3584 {
3585 	struct btrfs_block_group_cache *block_group;
3586 	int readonly = 0;
3587 
3588 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3589 	if (!block_group || block_group->ro)
3590 		readonly = 1;
3591 	if (block_group)
3592 		btrfs_put_block_group(block_group);
3593 	return readonly;
3594 }
3595 
3596 static const char *alloc_name(u64 flags)
3597 {
3598 	switch (flags) {
3599 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3600 		return "mixed";
3601 	case BTRFS_BLOCK_GROUP_METADATA:
3602 		return "metadata";
3603 	case BTRFS_BLOCK_GROUP_DATA:
3604 		return "data";
3605 	case BTRFS_BLOCK_GROUP_SYSTEM:
3606 		return "system";
3607 	default:
3608 		WARN_ON(1);
3609 		return "invalid-combination";
3610 	};
3611 }
3612 
3613 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3614 			     u64 total_bytes, u64 bytes_used,
3615 			     struct btrfs_space_info **space_info)
3616 {
3617 	struct btrfs_space_info *found;
3618 	int i;
3619 	int factor;
3620 	int ret;
3621 
3622 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3623 		     BTRFS_BLOCK_GROUP_RAID10))
3624 		factor = 2;
3625 	else
3626 		factor = 1;
3627 
3628 	found = __find_space_info(info, flags);
3629 	if (found) {
3630 		spin_lock(&found->lock);
3631 		found->total_bytes += total_bytes;
3632 		found->disk_total += total_bytes * factor;
3633 		found->bytes_used += bytes_used;
3634 		found->disk_used += bytes_used * factor;
3635 		if (total_bytes > 0)
3636 			found->full = 0;
3637 		spin_unlock(&found->lock);
3638 		*space_info = found;
3639 		return 0;
3640 	}
3641 	found = kzalloc(sizeof(*found), GFP_NOFS);
3642 	if (!found)
3643 		return -ENOMEM;
3644 
3645 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3646 	if (ret) {
3647 		kfree(found);
3648 		return ret;
3649 	}
3650 
3651 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3652 		INIT_LIST_HEAD(&found->block_groups[i]);
3653 	init_rwsem(&found->groups_sem);
3654 	spin_lock_init(&found->lock);
3655 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3656 	found->total_bytes = total_bytes;
3657 	found->disk_total = total_bytes * factor;
3658 	found->bytes_used = bytes_used;
3659 	found->disk_used = bytes_used * factor;
3660 	found->bytes_pinned = 0;
3661 	found->bytes_reserved = 0;
3662 	found->bytes_readonly = 0;
3663 	found->bytes_may_use = 0;
3664 	if (total_bytes > 0)
3665 		found->full = 0;
3666 	else
3667 		found->full = 1;
3668 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3669 	found->chunk_alloc = 0;
3670 	found->flush = 0;
3671 	init_waitqueue_head(&found->wait);
3672 	INIT_LIST_HEAD(&found->ro_bgs);
3673 
3674 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3675 				    info->space_info_kobj, "%s",
3676 				    alloc_name(found->flags));
3677 	if (ret) {
3678 		kfree(found);
3679 		return ret;
3680 	}
3681 
3682 	*space_info = found;
3683 	list_add_rcu(&found->list, &info->space_info);
3684 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3685 		info->data_sinfo = found;
3686 
3687 	return ret;
3688 }
3689 
3690 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3691 {
3692 	u64 extra_flags = chunk_to_extended(flags) &
3693 				BTRFS_EXTENDED_PROFILE_MASK;
3694 
3695 	write_seqlock(&fs_info->profiles_lock);
3696 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3697 		fs_info->avail_data_alloc_bits |= extra_flags;
3698 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
3699 		fs_info->avail_metadata_alloc_bits |= extra_flags;
3700 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3701 		fs_info->avail_system_alloc_bits |= extra_flags;
3702 	write_sequnlock(&fs_info->profiles_lock);
3703 }
3704 
3705 /*
3706  * returns target flags in extended format or 0 if restripe for this
3707  * chunk_type is not in progress
3708  *
3709  * should be called with either volume_mutex or balance_lock held
3710  */
3711 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3712 {
3713 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3714 	u64 target = 0;
3715 
3716 	if (!bctl)
3717 		return 0;
3718 
3719 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
3720 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3721 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3722 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3723 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3724 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3725 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3726 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3727 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3728 	}
3729 
3730 	return target;
3731 }
3732 
3733 /*
3734  * @flags: available profiles in extended format (see ctree.h)
3735  *
3736  * Returns reduced profile in chunk format.  If profile changing is in
3737  * progress (either running or paused) picks the target profile (if it's
3738  * already available), otherwise falls back to plain reducing.
3739  */
3740 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3741 {
3742 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
3743 	u64 target;
3744 	u64 tmp;
3745 
3746 	/*
3747 	 * see if restripe for this chunk_type is in progress, if so
3748 	 * try to reduce to the target profile
3749 	 */
3750 	spin_lock(&root->fs_info->balance_lock);
3751 	target = get_restripe_target(root->fs_info, flags);
3752 	if (target) {
3753 		/* pick target profile only if it's already available */
3754 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3755 			spin_unlock(&root->fs_info->balance_lock);
3756 			return extended_to_chunk(target);
3757 		}
3758 	}
3759 	spin_unlock(&root->fs_info->balance_lock);
3760 
3761 	/* First, mask out the RAID levels which aren't possible */
3762 	if (num_devices == 1)
3763 		flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3764 			   BTRFS_BLOCK_GROUP_RAID5);
3765 	if (num_devices < 3)
3766 		flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3767 	if (num_devices < 4)
3768 		flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3769 
3770 	tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3771 		       BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3772 		       BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3773 	flags &= ~tmp;
3774 
3775 	if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3776 		tmp = BTRFS_BLOCK_GROUP_RAID6;
3777 	else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3778 		tmp = BTRFS_BLOCK_GROUP_RAID5;
3779 	else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3780 		tmp = BTRFS_BLOCK_GROUP_RAID10;
3781 	else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3782 		tmp = BTRFS_BLOCK_GROUP_RAID1;
3783 	else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3784 		tmp = BTRFS_BLOCK_GROUP_RAID0;
3785 
3786 	return extended_to_chunk(flags | tmp);
3787 }
3788 
3789 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
3790 {
3791 	unsigned seq;
3792 	u64 flags;
3793 
3794 	do {
3795 		flags = orig_flags;
3796 		seq = read_seqbegin(&root->fs_info->profiles_lock);
3797 
3798 		if (flags & BTRFS_BLOCK_GROUP_DATA)
3799 			flags |= root->fs_info->avail_data_alloc_bits;
3800 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3801 			flags |= root->fs_info->avail_system_alloc_bits;
3802 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3803 			flags |= root->fs_info->avail_metadata_alloc_bits;
3804 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
3805 
3806 	return btrfs_reduce_alloc_profile(root, flags);
3807 }
3808 
3809 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3810 {
3811 	u64 flags;
3812 	u64 ret;
3813 
3814 	if (data)
3815 		flags = BTRFS_BLOCK_GROUP_DATA;
3816 	else if (root == root->fs_info->chunk_root)
3817 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
3818 	else
3819 		flags = BTRFS_BLOCK_GROUP_METADATA;
3820 
3821 	ret = get_alloc_profile(root, flags);
3822 	return ret;
3823 }
3824 
3825 /*
3826  * This will check the space that the inode allocates from to make sure we have
3827  * enough space for bytes.
3828  */
3829 int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
3830 {
3831 	struct btrfs_space_info *data_sinfo;
3832 	struct btrfs_root *root = BTRFS_I(inode)->root;
3833 	struct btrfs_fs_info *fs_info = root->fs_info;
3834 	u64 used;
3835 	int ret = 0;
3836 	int need_commit = 2;
3837 	int have_pinned_space;
3838 
3839 	/* make sure bytes are sectorsize aligned */
3840 	bytes = ALIGN(bytes, root->sectorsize);
3841 
3842 	if (btrfs_is_free_space_inode(inode)) {
3843 		need_commit = 0;
3844 		ASSERT(current->journal_info);
3845 	}
3846 
3847 	data_sinfo = fs_info->data_sinfo;
3848 	if (!data_sinfo)
3849 		goto alloc;
3850 
3851 again:
3852 	/* make sure we have enough space to handle the data first */
3853 	spin_lock(&data_sinfo->lock);
3854 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3855 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3856 		data_sinfo->bytes_may_use;
3857 
3858 	if (used + bytes > data_sinfo->total_bytes) {
3859 		struct btrfs_trans_handle *trans;
3860 
3861 		/*
3862 		 * if we don't have enough free bytes in this space then we need
3863 		 * to alloc a new chunk.
3864 		 */
3865 		if (!data_sinfo->full) {
3866 			u64 alloc_target;
3867 
3868 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3869 			spin_unlock(&data_sinfo->lock);
3870 alloc:
3871 			alloc_target = btrfs_get_alloc_profile(root, 1);
3872 			/*
3873 			 * It is ugly that we don't call nolock join
3874 			 * transaction for the free space inode case here.
3875 			 * But it is safe because we only do the data space
3876 			 * reservation for the free space cache in the
3877 			 * transaction context, the common join transaction
3878 			 * just increase the counter of the current transaction
3879 			 * handler, doesn't try to acquire the trans_lock of
3880 			 * the fs.
3881 			 */
3882 			trans = btrfs_join_transaction(root);
3883 			if (IS_ERR(trans))
3884 				return PTR_ERR(trans);
3885 
3886 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3887 					     alloc_target,
3888 					     CHUNK_ALLOC_NO_FORCE);
3889 			btrfs_end_transaction(trans, root);
3890 			if (ret < 0) {
3891 				if (ret != -ENOSPC)
3892 					return ret;
3893 				else {
3894 					have_pinned_space = 1;
3895 					goto commit_trans;
3896 				}
3897 			}
3898 
3899 			if (!data_sinfo)
3900 				data_sinfo = fs_info->data_sinfo;
3901 
3902 			goto again;
3903 		}
3904 
3905 		/*
3906 		 * If we don't have enough pinned space to deal with this
3907 		 * allocation, and no removed chunk in current transaction,
3908 		 * don't bother committing the transaction.
3909 		 */
3910 		have_pinned_space = percpu_counter_compare(
3911 			&data_sinfo->total_bytes_pinned,
3912 			used + bytes - data_sinfo->total_bytes);
3913 		spin_unlock(&data_sinfo->lock);
3914 
3915 		/* commit the current transaction and try again */
3916 commit_trans:
3917 		if (need_commit &&
3918 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
3919 			need_commit--;
3920 
3921 			if (need_commit > 0)
3922 				btrfs_wait_ordered_roots(fs_info, -1);
3923 
3924 			trans = btrfs_join_transaction(root);
3925 			if (IS_ERR(trans))
3926 				return PTR_ERR(trans);
3927 			if (have_pinned_space >= 0 ||
3928 			    trans->transaction->have_free_bgs ||
3929 			    need_commit > 0) {
3930 				ret = btrfs_commit_transaction(trans, root);
3931 				if (ret)
3932 					return ret;
3933 				/*
3934 				 * make sure that all running delayed iput are
3935 				 * done
3936 				 */
3937 				down_write(&root->fs_info->delayed_iput_sem);
3938 				up_write(&root->fs_info->delayed_iput_sem);
3939 				goto again;
3940 			} else {
3941 				btrfs_end_transaction(trans, root);
3942 			}
3943 		}
3944 
3945 		trace_btrfs_space_reservation(root->fs_info,
3946 					      "space_info:enospc",
3947 					      data_sinfo->flags, bytes, 1);
3948 		return -ENOSPC;
3949 	}
3950 	ret = btrfs_qgroup_reserve(root, write_bytes);
3951 	if (ret)
3952 		goto out;
3953 	data_sinfo->bytes_may_use += bytes;
3954 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3955 				      data_sinfo->flags, bytes, 1);
3956 out:
3957 	spin_unlock(&data_sinfo->lock);
3958 
3959 	return ret;
3960 }
3961 
3962 /*
3963  * Called if we need to clear a data reservation for this inode.
3964  */
3965 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3966 {
3967 	struct btrfs_root *root = BTRFS_I(inode)->root;
3968 	struct btrfs_space_info *data_sinfo;
3969 
3970 	/* make sure bytes are sectorsize aligned */
3971 	bytes = ALIGN(bytes, root->sectorsize);
3972 
3973 	data_sinfo = root->fs_info->data_sinfo;
3974 	spin_lock(&data_sinfo->lock);
3975 	WARN_ON(data_sinfo->bytes_may_use < bytes);
3976 	data_sinfo->bytes_may_use -= bytes;
3977 	trace_btrfs_space_reservation(root->fs_info, "space_info",
3978 				      data_sinfo->flags, bytes, 0);
3979 	spin_unlock(&data_sinfo->lock);
3980 }
3981 
3982 static void force_metadata_allocation(struct btrfs_fs_info *info)
3983 {
3984 	struct list_head *head = &info->space_info;
3985 	struct btrfs_space_info *found;
3986 
3987 	rcu_read_lock();
3988 	list_for_each_entry_rcu(found, head, list) {
3989 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3990 			found->force_alloc = CHUNK_ALLOC_FORCE;
3991 	}
3992 	rcu_read_unlock();
3993 }
3994 
3995 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3996 {
3997 	return (global->size << 1);
3998 }
3999 
4000 static int should_alloc_chunk(struct btrfs_root *root,
4001 			      struct btrfs_space_info *sinfo, int force)
4002 {
4003 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4004 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4005 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4006 	u64 thresh;
4007 
4008 	if (force == CHUNK_ALLOC_FORCE)
4009 		return 1;
4010 
4011 	/*
4012 	 * We need to take into account the global rsv because for all intents
4013 	 * and purposes it's used space.  Don't worry about locking the
4014 	 * global_rsv, it doesn't change except when the transaction commits.
4015 	 */
4016 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4017 		num_allocated += calc_global_rsv_need_space(global_rsv);
4018 
4019 	/*
4020 	 * in limited mode, we want to have some free space up to
4021 	 * about 1% of the FS size.
4022 	 */
4023 	if (force == CHUNK_ALLOC_LIMITED) {
4024 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4025 		thresh = max_t(u64, 64 * 1024 * 1024,
4026 			       div_factor_fine(thresh, 1));
4027 
4028 		if (num_bytes - num_allocated < thresh)
4029 			return 1;
4030 	}
4031 
4032 	if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
4033 		return 0;
4034 	return 1;
4035 }
4036 
4037 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4038 {
4039 	u64 num_dev;
4040 
4041 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4042 		    BTRFS_BLOCK_GROUP_RAID0 |
4043 		    BTRFS_BLOCK_GROUP_RAID5 |
4044 		    BTRFS_BLOCK_GROUP_RAID6))
4045 		num_dev = root->fs_info->fs_devices->rw_devices;
4046 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4047 		num_dev = 2;
4048 	else
4049 		num_dev = 1;	/* DUP or single */
4050 
4051 	return num_dev;
4052 }
4053 
4054 /*
4055  * If @is_allocation is true, reserve space in the system space info necessary
4056  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4057  * removing a chunk.
4058  */
4059 void check_system_chunk(struct btrfs_trans_handle *trans,
4060 			struct btrfs_root *root,
4061 			u64 type)
4062 {
4063 	struct btrfs_space_info *info;
4064 	u64 left;
4065 	u64 thresh;
4066 	int ret = 0;
4067 	u64 num_devs;
4068 
4069 	/*
4070 	 * Needed because we can end up allocating a system chunk and for an
4071 	 * atomic and race free space reservation in the chunk block reserve.
4072 	 */
4073 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4074 
4075 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4076 	spin_lock(&info->lock);
4077 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4078 		info->bytes_reserved - info->bytes_readonly -
4079 		info->bytes_may_use;
4080 	spin_unlock(&info->lock);
4081 
4082 	num_devs = get_profile_num_devs(root, type);
4083 
4084 	/* num_devs device items to update and 1 chunk item to add or remove */
4085 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4086 		btrfs_calc_trans_metadata_size(root, 1);
4087 
4088 	if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4089 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4090 			left, thresh, type);
4091 		dump_space_info(info, 0, 0);
4092 	}
4093 
4094 	if (left < thresh) {
4095 		u64 flags;
4096 
4097 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4098 		/*
4099 		 * Ignore failure to create system chunk. We might end up not
4100 		 * needing it, as we might not need to COW all nodes/leafs from
4101 		 * the paths we visit in the chunk tree (they were already COWed
4102 		 * or created in the current transaction for example).
4103 		 */
4104 		ret = btrfs_alloc_chunk(trans, root, flags);
4105 	}
4106 
4107 	if (!ret) {
4108 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4109 					  &root->fs_info->chunk_block_rsv,
4110 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4111 		if (!ret)
4112 			trans->chunk_bytes_reserved += thresh;
4113 	}
4114 }
4115 
4116 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4117 			  struct btrfs_root *extent_root, u64 flags, int force)
4118 {
4119 	struct btrfs_space_info *space_info;
4120 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4121 	int wait_for_alloc = 0;
4122 	int ret = 0;
4123 
4124 	/* Don't re-enter if we're already allocating a chunk */
4125 	if (trans->allocating_chunk)
4126 		return -ENOSPC;
4127 
4128 	space_info = __find_space_info(extent_root->fs_info, flags);
4129 	if (!space_info) {
4130 		ret = update_space_info(extent_root->fs_info, flags,
4131 					0, 0, &space_info);
4132 		BUG_ON(ret); /* -ENOMEM */
4133 	}
4134 	BUG_ON(!space_info); /* Logic error */
4135 
4136 again:
4137 	spin_lock(&space_info->lock);
4138 	if (force < space_info->force_alloc)
4139 		force = space_info->force_alloc;
4140 	if (space_info->full) {
4141 		if (should_alloc_chunk(extent_root, space_info, force))
4142 			ret = -ENOSPC;
4143 		else
4144 			ret = 0;
4145 		spin_unlock(&space_info->lock);
4146 		return ret;
4147 	}
4148 
4149 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4150 		spin_unlock(&space_info->lock);
4151 		return 0;
4152 	} else if (space_info->chunk_alloc) {
4153 		wait_for_alloc = 1;
4154 	} else {
4155 		space_info->chunk_alloc = 1;
4156 	}
4157 
4158 	spin_unlock(&space_info->lock);
4159 
4160 	mutex_lock(&fs_info->chunk_mutex);
4161 
4162 	/*
4163 	 * The chunk_mutex is held throughout the entirety of a chunk
4164 	 * allocation, so once we've acquired the chunk_mutex we know that the
4165 	 * other guy is done and we need to recheck and see if we should
4166 	 * allocate.
4167 	 */
4168 	if (wait_for_alloc) {
4169 		mutex_unlock(&fs_info->chunk_mutex);
4170 		wait_for_alloc = 0;
4171 		goto again;
4172 	}
4173 
4174 	trans->allocating_chunk = true;
4175 
4176 	/*
4177 	 * If we have mixed data/metadata chunks we want to make sure we keep
4178 	 * allocating mixed chunks instead of individual chunks.
4179 	 */
4180 	if (btrfs_mixed_space_info(space_info))
4181 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4182 
4183 	/*
4184 	 * if we're doing a data chunk, go ahead and make sure that
4185 	 * we keep a reasonable number of metadata chunks allocated in the
4186 	 * FS as well.
4187 	 */
4188 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4189 		fs_info->data_chunk_allocations++;
4190 		if (!(fs_info->data_chunk_allocations %
4191 		      fs_info->metadata_ratio))
4192 			force_metadata_allocation(fs_info);
4193 	}
4194 
4195 	/*
4196 	 * Check if we have enough space in SYSTEM chunk because we may need
4197 	 * to update devices.
4198 	 */
4199 	check_system_chunk(trans, extent_root, flags);
4200 
4201 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4202 	trans->allocating_chunk = false;
4203 
4204 	spin_lock(&space_info->lock);
4205 	if (ret < 0 && ret != -ENOSPC)
4206 		goto out;
4207 	if (ret)
4208 		space_info->full = 1;
4209 	else
4210 		ret = 1;
4211 
4212 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4213 out:
4214 	space_info->chunk_alloc = 0;
4215 	spin_unlock(&space_info->lock);
4216 	mutex_unlock(&fs_info->chunk_mutex);
4217 	return ret;
4218 }
4219 
4220 static int can_overcommit(struct btrfs_root *root,
4221 			  struct btrfs_space_info *space_info, u64 bytes,
4222 			  enum btrfs_reserve_flush_enum flush)
4223 {
4224 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4225 	u64 profile = btrfs_get_alloc_profile(root, 0);
4226 	u64 space_size;
4227 	u64 avail;
4228 	u64 used;
4229 
4230 	used = space_info->bytes_used + space_info->bytes_reserved +
4231 		space_info->bytes_pinned + space_info->bytes_readonly;
4232 
4233 	/*
4234 	 * We only want to allow over committing if we have lots of actual space
4235 	 * free, but if we don't have enough space to handle the global reserve
4236 	 * space then we could end up having a real enospc problem when trying
4237 	 * to allocate a chunk or some other such important allocation.
4238 	 */
4239 	spin_lock(&global_rsv->lock);
4240 	space_size = calc_global_rsv_need_space(global_rsv);
4241 	spin_unlock(&global_rsv->lock);
4242 	if (used + space_size >= space_info->total_bytes)
4243 		return 0;
4244 
4245 	used += space_info->bytes_may_use;
4246 
4247 	spin_lock(&root->fs_info->free_chunk_lock);
4248 	avail = root->fs_info->free_chunk_space;
4249 	spin_unlock(&root->fs_info->free_chunk_lock);
4250 
4251 	/*
4252 	 * If we have dup, raid1 or raid10 then only half of the free
4253 	 * space is actually useable.  For raid56, the space info used
4254 	 * doesn't include the parity drive, so we don't have to
4255 	 * change the math
4256 	 */
4257 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4258 		       BTRFS_BLOCK_GROUP_RAID1 |
4259 		       BTRFS_BLOCK_GROUP_RAID10))
4260 		avail >>= 1;
4261 
4262 	/*
4263 	 * If we aren't flushing all things, let us overcommit up to
4264 	 * 1/2th of the space. If we can flush, don't let us overcommit
4265 	 * too much, let it overcommit up to 1/8 of the space.
4266 	 */
4267 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4268 		avail >>= 3;
4269 	else
4270 		avail >>= 1;
4271 
4272 	if (used + bytes < space_info->total_bytes + avail)
4273 		return 1;
4274 	return 0;
4275 }
4276 
4277 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4278 					 unsigned long nr_pages, int nr_items)
4279 {
4280 	struct super_block *sb = root->fs_info->sb;
4281 
4282 	if (down_read_trylock(&sb->s_umount)) {
4283 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4284 		up_read(&sb->s_umount);
4285 	} else {
4286 		/*
4287 		 * We needn't worry the filesystem going from r/w to r/o though
4288 		 * we don't acquire ->s_umount mutex, because the filesystem
4289 		 * should guarantee the delalloc inodes list be empty after
4290 		 * the filesystem is readonly(all dirty pages are written to
4291 		 * the disk).
4292 		 */
4293 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4294 		if (!current->journal_info)
4295 			btrfs_wait_ordered_roots(root->fs_info, nr_items);
4296 	}
4297 }
4298 
4299 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4300 {
4301 	u64 bytes;
4302 	int nr;
4303 
4304 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4305 	nr = (int)div64_u64(to_reclaim, bytes);
4306 	if (!nr)
4307 		nr = 1;
4308 	return nr;
4309 }
4310 
4311 #define EXTENT_SIZE_PER_ITEM	(256 * 1024)
4312 
4313 /*
4314  * shrink metadata reservation for delalloc
4315  */
4316 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4317 			    bool wait_ordered)
4318 {
4319 	struct btrfs_block_rsv *block_rsv;
4320 	struct btrfs_space_info *space_info;
4321 	struct btrfs_trans_handle *trans;
4322 	u64 delalloc_bytes;
4323 	u64 max_reclaim;
4324 	long time_left;
4325 	unsigned long nr_pages;
4326 	int loops;
4327 	int items;
4328 	enum btrfs_reserve_flush_enum flush;
4329 
4330 	/* Calc the number of the pages we need flush for space reservation */
4331 	items = calc_reclaim_items_nr(root, to_reclaim);
4332 	to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4333 
4334 	trans = (struct btrfs_trans_handle *)current->journal_info;
4335 	block_rsv = &root->fs_info->delalloc_block_rsv;
4336 	space_info = block_rsv->space_info;
4337 
4338 	delalloc_bytes = percpu_counter_sum_positive(
4339 						&root->fs_info->delalloc_bytes);
4340 	if (delalloc_bytes == 0) {
4341 		if (trans)
4342 			return;
4343 		if (wait_ordered)
4344 			btrfs_wait_ordered_roots(root->fs_info, items);
4345 		return;
4346 	}
4347 
4348 	loops = 0;
4349 	while (delalloc_bytes && loops < 3) {
4350 		max_reclaim = min(delalloc_bytes, to_reclaim);
4351 		nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4352 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4353 		/*
4354 		 * We need to wait for the async pages to actually start before
4355 		 * we do anything.
4356 		 */
4357 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4358 		if (!max_reclaim)
4359 			goto skip_async;
4360 
4361 		if (max_reclaim <= nr_pages)
4362 			max_reclaim = 0;
4363 		else
4364 			max_reclaim -= nr_pages;
4365 
4366 		wait_event(root->fs_info->async_submit_wait,
4367 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4368 			   (int)max_reclaim);
4369 skip_async:
4370 		if (!trans)
4371 			flush = BTRFS_RESERVE_FLUSH_ALL;
4372 		else
4373 			flush = BTRFS_RESERVE_NO_FLUSH;
4374 		spin_lock(&space_info->lock);
4375 		if (can_overcommit(root, space_info, orig, flush)) {
4376 			spin_unlock(&space_info->lock);
4377 			break;
4378 		}
4379 		spin_unlock(&space_info->lock);
4380 
4381 		loops++;
4382 		if (wait_ordered && !trans) {
4383 			btrfs_wait_ordered_roots(root->fs_info, items);
4384 		} else {
4385 			time_left = schedule_timeout_killable(1);
4386 			if (time_left)
4387 				break;
4388 		}
4389 		delalloc_bytes = percpu_counter_sum_positive(
4390 						&root->fs_info->delalloc_bytes);
4391 	}
4392 }
4393 
4394 /**
4395  * maybe_commit_transaction - possibly commit the transaction if its ok to
4396  * @root - the root we're allocating for
4397  * @bytes - the number of bytes we want to reserve
4398  * @force - force the commit
4399  *
4400  * This will check to make sure that committing the transaction will actually
4401  * get us somewhere and then commit the transaction if it does.  Otherwise it
4402  * will return -ENOSPC.
4403  */
4404 static int may_commit_transaction(struct btrfs_root *root,
4405 				  struct btrfs_space_info *space_info,
4406 				  u64 bytes, int force)
4407 {
4408 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4409 	struct btrfs_trans_handle *trans;
4410 
4411 	trans = (struct btrfs_trans_handle *)current->journal_info;
4412 	if (trans)
4413 		return -EAGAIN;
4414 
4415 	if (force)
4416 		goto commit;
4417 
4418 	/* See if there is enough pinned space to make this reservation */
4419 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4420 				   bytes) >= 0)
4421 		goto commit;
4422 
4423 	/*
4424 	 * See if there is some space in the delayed insertion reservation for
4425 	 * this reservation.
4426 	 */
4427 	if (space_info != delayed_rsv->space_info)
4428 		return -ENOSPC;
4429 
4430 	spin_lock(&delayed_rsv->lock);
4431 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4432 				   bytes - delayed_rsv->size) >= 0) {
4433 		spin_unlock(&delayed_rsv->lock);
4434 		return -ENOSPC;
4435 	}
4436 	spin_unlock(&delayed_rsv->lock);
4437 
4438 commit:
4439 	trans = btrfs_join_transaction(root);
4440 	if (IS_ERR(trans))
4441 		return -ENOSPC;
4442 
4443 	return btrfs_commit_transaction(trans, root);
4444 }
4445 
4446 enum flush_state {
4447 	FLUSH_DELAYED_ITEMS_NR	=	1,
4448 	FLUSH_DELAYED_ITEMS	=	2,
4449 	FLUSH_DELALLOC		=	3,
4450 	FLUSH_DELALLOC_WAIT	=	4,
4451 	ALLOC_CHUNK		=	5,
4452 	COMMIT_TRANS		=	6,
4453 };
4454 
4455 static int flush_space(struct btrfs_root *root,
4456 		       struct btrfs_space_info *space_info, u64 num_bytes,
4457 		       u64 orig_bytes, int state)
4458 {
4459 	struct btrfs_trans_handle *trans;
4460 	int nr;
4461 	int ret = 0;
4462 
4463 	switch (state) {
4464 	case FLUSH_DELAYED_ITEMS_NR:
4465 	case FLUSH_DELAYED_ITEMS:
4466 		if (state == FLUSH_DELAYED_ITEMS_NR)
4467 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4468 		else
4469 			nr = -1;
4470 
4471 		trans = btrfs_join_transaction(root);
4472 		if (IS_ERR(trans)) {
4473 			ret = PTR_ERR(trans);
4474 			break;
4475 		}
4476 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4477 		btrfs_end_transaction(trans, root);
4478 		break;
4479 	case FLUSH_DELALLOC:
4480 	case FLUSH_DELALLOC_WAIT:
4481 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4482 				state == FLUSH_DELALLOC_WAIT);
4483 		break;
4484 	case ALLOC_CHUNK:
4485 		trans = btrfs_join_transaction(root);
4486 		if (IS_ERR(trans)) {
4487 			ret = PTR_ERR(trans);
4488 			break;
4489 		}
4490 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4491 				     btrfs_get_alloc_profile(root, 0),
4492 				     CHUNK_ALLOC_NO_FORCE);
4493 		btrfs_end_transaction(trans, root);
4494 		if (ret == -ENOSPC)
4495 			ret = 0;
4496 		break;
4497 	case COMMIT_TRANS:
4498 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4499 		break;
4500 	default:
4501 		ret = -ENOSPC;
4502 		break;
4503 	}
4504 
4505 	return ret;
4506 }
4507 
4508 static inline u64
4509 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4510 				 struct btrfs_space_info *space_info)
4511 {
4512 	u64 used;
4513 	u64 expected;
4514 	u64 to_reclaim;
4515 
4516 	to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4517 				16 * 1024 * 1024);
4518 	spin_lock(&space_info->lock);
4519 	if (can_overcommit(root, space_info, to_reclaim,
4520 			   BTRFS_RESERVE_FLUSH_ALL)) {
4521 		to_reclaim = 0;
4522 		goto out;
4523 	}
4524 
4525 	used = space_info->bytes_used + space_info->bytes_reserved +
4526 	       space_info->bytes_pinned + space_info->bytes_readonly +
4527 	       space_info->bytes_may_use;
4528 	if (can_overcommit(root, space_info, 1024 * 1024,
4529 			   BTRFS_RESERVE_FLUSH_ALL))
4530 		expected = div_factor_fine(space_info->total_bytes, 95);
4531 	else
4532 		expected = div_factor_fine(space_info->total_bytes, 90);
4533 
4534 	if (used > expected)
4535 		to_reclaim = used - expected;
4536 	else
4537 		to_reclaim = 0;
4538 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4539 				     space_info->bytes_reserved);
4540 out:
4541 	spin_unlock(&space_info->lock);
4542 
4543 	return to_reclaim;
4544 }
4545 
4546 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4547 					struct btrfs_fs_info *fs_info, u64 used)
4548 {
4549 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4550 
4551 	/* If we're just plain full then async reclaim just slows us down. */
4552 	if (space_info->bytes_used >= thresh)
4553 		return 0;
4554 
4555 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4556 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4557 }
4558 
4559 static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4560 				       struct btrfs_fs_info *fs_info,
4561 				       int flush_state)
4562 {
4563 	u64 used;
4564 
4565 	spin_lock(&space_info->lock);
4566 	/*
4567 	 * We run out of space and have not got any free space via flush_space,
4568 	 * so don't bother doing async reclaim.
4569 	 */
4570 	if (flush_state > COMMIT_TRANS && space_info->full) {
4571 		spin_unlock(&space_info->lock);
4572 		return 0;
4573 	}
4574 
4575 	used = space_info->bytes_used + space_info->bytes_reserved +
4576 	       space_info->bytes_pinned + space_info->bytes_readonly +
4577 	       space_info->bytes_may_use;
4578 	if (need_do_async_reclaim(space_info, fs_info, used)) {
4579 		spin_unlock(&space_info->lock);
4580 		return 1;
4581 	}
4582 	spin_unlock(&space_info->lock);
4583 
4584 	return 0;
4585 }
4586 
4587 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4588 {
4589 	struct btrfs_fs_info *fs_info;
4590 	struct btrfs_space_info *space_info;
4591 	u64 to_reclaim;
4592 	int flush_state;
4593 
4594 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4595 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4596 
4597 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4598 						      space_info);
4599 	if (!to_reclaim)
4600 		return;
4601 
4602 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4603 	do {
4604 		flush_space(fs_info->fs_root, space_info, to_reclaim,
4605 			    to_reclaim, flush_state);
4606 		flush_state++;
4607 		if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4608 						 flush_state))
4609 			return;
4610 	} while (flush_state < COMMIT_TRANS);
4611 }
4612 
4613 void btrfs_init_async_reclaim_work(struct work_struct *work)
4614 {
4615 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4616 }
4617 
4618 /**
4619  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4620  * @root - the root we're allocating for
4621  * @block_rsv - the block_rsv we're allocating for
4622  * @orig_bytes - the number of bytes we want
4623  * @flush - whether or not we can flush to make our reservation
4624  *
4625  * This will reserve orgi_bytes number of bytes from the space info associated
4626  * with the block_rsv.  If there is not enough space it will make an attempt to
4627  * flush out space to make room.  It will do this by flushing delalloc if
4628  * possible or committing the transaction.  If flush is 0 then no attempts to
4629  * regain reservations will be made and this will fail if there is not enough
4630  * space already.
4631  */
4632 static int reserve_metadata_bytes(struct btrfs_root *root,
4633 				  struct btrfs_block_rsv *block_rsv,
4634 				  u64 orig_bytes,
4635 				  enum btrfs_reserve_flush_enum flush)
4636 {
4637 	struct btrfs_space_info *space_info = block_rsv->space_info;
4638 	u64 used;
4639 	u64 num_bytes = orig_bytes;
4640 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
4641 	int ret = 0;
4642 	bool flushing = false;
4643 
4644 again:
4645 	ret = 0;
4646 	spin_lock(&space_info->lock);
4647 	/*
4648 	 * We only want to wait if somebody other than us is flushing and we
4649 	 * are actually allowed to flush all things.
4650 	 */
4651 	while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4652 	       space_info->flush) {
4653 		spin_unlock(&space_info->lock);
4654 		/*
4655 		 * If we have a trans handle we can't wait because the flusher
4656 		 * may have to commit the transaction, which would mean we would
4657 		 * deadlock since we are waiting for the flusher to finish, but
4658 		 * hold the current transaction open.
4659 		 */
4660 		if (current->journal_info)
4661 			return -EAGAIN;
4662 		ret = wait_event_killable(space_info->wait, !space_info->flush);
4663 		/* Must have been killed, return */
4664 		if (ret)
4665 			return -EINTR;
4666 
4667 		spin_lock(&space_info->lock);
4668 	}
4669 
4670 	ret = -ENOSPC;
4671 	used = space_info->bytes_used + space_info->bytes_reserved +
4672 		space_info->bytes_pinned + space_info->bytes_readonly +
4673 		space_info->bytes_may_use;
4674 
4675 	/*
4676 	 * The idea here is that we've not already over-reserved the block group
4677 	 * then we can go ahead and save our reservation first and then start
4678 	 * flushing if we need to.  Otherwise if we've already overcommitted
4679 	 * lets start flushing stuff first and then come back and try to make
4680 	 * our reservation.
4681 	 */
4682 	if (used <= space_info->total_bytes) {
4683 		if (used + orig_bytes <= space_info->total_bytes) {
4684 			space_info->bytes_may_use += orig_bytes;
4685 			trace_btrfs_space_reservation(root->fs_info,
4686 				"space_info", space_info->flags, orig_bytes, 1);
4687 			ret = 0;
4688 		} else {
4689 			/*
4690 			 * Ok set num_bytes to orig_bytes since we aren't
4691 			 * overocmmitted, this way we only try and reclaim what
4692 			 * we need.
4693 			 */
4694 			num_bytes = orig_bytes;
4695 		}
4696 	} else {
4697 		/*
4698 		 * Ok we're over committed, set num_bytes to the overcommitted
4699 		 * amount plus the amount of bytes that we need for this
4700 		 * reservation.
4701 		 */
4702 		num_bytes = used - space_info->total_bytes +
4703 			(orig_bytes * 2);
4704 	}
4705 
4706 	if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4707 		space_info->bytes_may_use += orig_bytes;
4708 		trace_btrfs_space_reservation(root->fs_info, "space_info",
4709 					      space_info->flags, orig_bytes,
4710 					      1);
4711 		ret = 0;
4712 	}
4713 
4714 	/*
4715 	 * Couldn't make our reservation, save our place so while we're trying
4716 	 * to reclaim space we can actually use it instead of somebody else
4717 	 * stealing it from us.
4718 	 *
4719 	 * We make the other tasks wait for the flush only when we can flush
4720 	 * all things.
4721 	 */
4722 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4723 		flushing = true;
4724 		space_info->flush = 1;
4725 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4726 		used += orig_bytes;
4727 		/*
4728 		 * We will do the space reservation dance during log replay,
4729 		 * which means we won't have fs_info->fs_root set, so don't do
4730 		 * the async reclaim as we will panic.
4731 		 */
4732 		if (!root->fs_info->log_root_recovering &&
4733 		    need_do_async_reclaim(space_info, root->fs_info, used) &&
4734 		    !work_busy(&root->fs_info->async_reclaim_work))
4735 			queue_work(system_unbound_wq,
4736 				   &root->fs_info->async_reclaim_work);
4737 	}
4738 	spin_unlock(&space_info->lock);
4739 
4740 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4741 		goto out;
4742 
4743 	ret = flush_space(root, space_info, num_bytes, orig_bytes,
4744 			  flush_state);
4745 	flush_state++;
4746 
4747 	/*
4748 	 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4749 	 * would happen. So skip delalloc flush.
4750 	 */
4751 	if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4752 	    (flush_state == FLUSH_DELALLOC ||
4753 	     flush_state == FLUSH_DELALLOC_WAIT))
4754 		flush_state = ALLOC_CHUNK;
4755 
4756 	if (!ret)
4757 		goto again;
4758 	else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4759 		 flush_state < COMMIT_TRANS)
4760 		goto again;
4761 	else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4762 		 flush_state <= COMMIT_TRANS)
4763 		goto again;
4764 
4765 out:
4766 	if (ret == -ENOSPC &&
4767 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4768 		struct btrfs_block_rsv *global_rsv =
4769 			&root->fs_info->global_block_rsv;
4770 
4771 		if (block_rsv != global_rsv &&
4772 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
4773 			ret = 0;
4774 	}
4775 	if (ret == -ENOSPC)
4776 		trace_btrfs_space_reservation(root->fs_info,
4777 					      "space_info:enospc",
4778 					      space_info->flags, orig_bytes, 1);
4779 	if (flushing) {
4780 		spin_lock(&space_info->lock);
4781 		space_info->flush = 0;
4782 		wake_up_all(&space_info->wait);
4783 		spin_unlock(&space_info->lock);
4784 	}
4785 	return ret;
4786 }
4787 
4788 static struct btrfs_block_rsv *get_block_rsv(
4789 					const struct btrfs_trans_handle *trans,
4790 					const struct btrfs_root *root)
4791 {
4792 	struct btrfs_block_rsv *block_rsv = NULL;
4793 
4794 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4795 		block_rsv = trans->block_rsv;
4796 
4797 	if (root == root->fs_info->csum_root && trans->adding_csums)
4798 		block_rsv = trans->block_rsv;
4799 
4800 	if (root == root->fs_info->uuid_root)
4801 		block_rsv = trans->block_rsv;
4802 
4803 	if (!block_rsv)
4804 		block_rsv = root->block_rsv;
4805 
4806 	if (!block_rsv)
4807 		block_rsv = &root->fs_info->empty_block_rsv;
4808 
4809 	return block_rsv;
4810 }
4811 
4812 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4813 			       u64 num_bytes)
4814 {
4815 	int ret = -ENOSPC;
4816 	spin_lock(&block_rsv->lock);
4817 	if (block_rsv->reserved >= num_bytes) {
4818 		block_rsv->reserved -= num_bytes;
4819 		if (block_rsv->reserved < block_rsv->size)
4820 			block_rsv->full = 0;
4821 		ret = 0;
4822 	}
4823 	spin_unlock(&block_rsv->lock);
4824 	return ret;
4825 }
4826 
4827 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4828 				u64 num_bytes, int update_size)
4829 {
4830 	spin_lock(&block_rsv->lock);
4831 	block_rsv->reserved += num_bytes;
4832 	if (update_size)
4833 		block_rsv->size += num_bytes;
4834 	else if (block_rsv->reserved >= block_rsv->size)
4835 		block_rsv->full = 1;
4836 	spin_unlock(&block_rsv->lock);
4837 }
4838 
4839 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4840 			     struct btrfs_block_rsv *dest, u64 num_bytes,
4841 			     int min_factor)
4842 {
4843 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4844 	u64 min_bytes;
4845 
4846 	if (global_rsv->space_info != dest->space_info)
4847 		return -ENOSPC;
4848 
4849 	spin_lock(&global_rsv->lock);
4850 	min_bytes = div_factor(global_rsv->size, min_factor);
4851 	if (global_rsv->reserved < min_bytes + num_bytes) {
4852 		spin_unlock(&global_rsv->lock);
4853 		return -ENOSPC;
4854 	}
4855 	global_rsv->reserved -= num_bytes;
4856 	if (global_rsv->reserved < global_rsv->size)
4857 		global_rsv->full = 0;
4858 	spin_unlock(&global_rsv->lock);
4859 
4860 	block_rsv_add_bytes(dest, num_bytes, 1);
4861 	return 0;
4862 }
4863 
4864 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4865 				    struct btrfs_block_rsv *block_rsv,
4866 				    struct btrfs_block_rsv *dest, u64 num_bytes)
4867 {
4868 	struct btrfs_space_info *space_info = block_rsv->space_info;
4869 
4870 	spin_lock(&block_rsv->lock);
4871 	if (num_bytes == (u64)-1)
4872 		num_bytes = block_rsv->size;
4873 	block_rsv->size -= num_bytes;
4874 	if (block_rsv->reserved >= block_rsv->size) {
4875 		num_bytes = block_rsv->reserved - block_rsv->size;
4876 		block_rsv->reserved = block_rsv->size;
4877 		block_rsv->full = 1;
4878 	} else {
4879 		num_bytes = 0;
4880 	}
4881 	spin_unlock(&block_rsv->lock);
4882 
4883 	if (num_bytes > 0) {
4884 		if (dest) {
4885 			spin_lock(&dest->lock);
4886 			if (!dest->full) {
4887 				u64 bytes_to_add;
4888 
4889 				bytes_to_add = dest->size - dest->reserved;
4890 				bytes_to_add = min(num_bytes, bytes_to_add);
4891 				dest->reserved += bytes_to_add;
4892 				if (dest->reserved >= dest->size)
4893 					dest->full = 1;
4894 				num_bytes -= bytes_to_add;
4895 			}
4896 			spin_unlock(&dest->lock);
4897 		}
4898 		if (num_bytes) {
4899 			spin_lock(&space_info->lock);
4900 			space_info->bytes_may_use -= num_bytes;
4901 			trace_btrfs_space_reservation(fs_info, "space_info",
4902 					space_info->flags, num_bytes, 0);
4903 			spin_unlock(&space_info->lock);
4904 		}
4905 	}
4906 }
4907 
4908 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4909 				   struct btrfs_block_rsv *dst, u64 num_bytes)
4910 {
4911 	int ret;
4912 
4913 	ret = block_rsv_use_bytes(src, num_bytes);
4914 	if (ret)
4915 		return ret;
4916 
4917 	block_rsv_add_bytes(dst, num_bytes, 1);
4918 	return 0;
4919 }
4920 
4921 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4922 {
4923 	memset(rsv, 0, sizeof(*rsv));
4924 	spin_lock_init(&rsv->lock);
4925 	rsv->type = type;
4926 }
4927 
4928 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4929 					      unsigned short type)
4930 {
4931 	struct btrfs_block_rsv *block_rsv;
4932 	struct btrfs_fs_info *fs_info = root->fs_info;
4933 
4934 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4935 	if (!block_rsv)
4936 		return NULL;
4937 
4938 	btrfs_init_block_rsv(block_rsv, type);
4939 	block_rsv->space_info = __find_space_info(fs_info,
4940 						  BTRFS_BLOCK_GROUP_METADATA);
4941 	return block_rsv;
4942 }
4943 
4944 void btrfs_free_block_rsv(struct btrfs_root *root,
4945 			  struct btrfs_block_rsv *rsv)
4946 {
4947 	if (!rsv)
4948 		return;
4949 	btrfs_block_rsv_release(root, rsv, (u64)-1);
4950 	kfree(rsv);
4951 }
4952 
4953 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4954 {
4955 	kfree(rsv);
4956 }
4957 
4958 int btrfs_block_rsv_add(struct btrfs_root *root,
4959 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4960 			enum btrfs_reserve_flush_enum flush)
4961 {
4962 	int ret;
4963 
4964 	if (num_bytes == 0)
4965 		return 0;
4966 
4967 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4968 	if (!ret) {
4969 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
4970 		return 0;
4971 	}
4972 
4973 	return ret;
4974 }
4975 
4976 int btrfs_block_rsv_check(struct btrfs_root *root,
4977 			  struct btrfs_block_rsv *block_rsv, int min_factor)
4978 {
4979 	u64 num_bytes = 0;
4980 	int ret = -ENOSPC;
4981 
4982 	if (!block_rsv)
4983 		return 0;
4984 
4985 	spin_lock(&block_rsv->lock);
4986 	num_bytes = div_factor(block_rsv->size, min_factor);
4987 	if (block_rsv->reserved >= num_bytes)
4988 		ret = 0;
4989 	spin_unlock(&block_rsv->lock);
4990 
4991 	return ret;
4992 }
4993 
4994 int btrfs_block_rsv_refill(struct btrfs_root *root,
4995 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4996 			   enum btrfs_reserve_flush_enum flush)
4997 {
4998 	u64 num_bytes = 0;
4999 	int ret = -ENOSPC;
5000 
5001 	if (!block_rsv)
5002 		return 0;
5003 
5004 	spin_lock(&block_rsv->lock);
5005 	num_bytes = min_reserved;
5006 	if (block_rsv->reserved >= num_bytes)
5007 		ret = 0;
5008 	else
5009 		num_bytes -= block_rsv->reserved;
5010 	spin_unlock(&block_rsv->lock);
5011 
5012 	if (!ret)
5013 		return 0;
5014 
5015 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5016 	if (!ret) {
5017 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5018 		return 0;
5019 	}
5020 
5021 	return ret;
5022 }
5023 
5024 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5025 			    struct btrfs_block_rsv *dst_rsv,
5026 			    u64 num_bytes)
5027 {
5028 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5029 }
5030 
5031 void btrfs_block_rsv_release(struct btrfs_root *root,
5032 			     struct btrfs_block_rsv *block_rsv,
5033 			     u64 num_bytes)
5034 {
5035 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5036 	if (global_rsv == block_rsv ||
5037 	    block_rsv->space_info != global_rsv->space_info)
5038 		global_rsv = NULL;
5039 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5040 				num_bytes);
5041 }
5042 
5043 /*
5044  * helper to calculate size of global block reservation.
5045  * the desired value is sum of space used by extent tree,
5046  * checksum tree and root tree
5047  */
5048 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5049 {
5050 	struct btrfs_space_info *sinfo;
5051 	u64 num_bytes;
5052 	u64 meta_used;
5053 	u64 data_used;
5054 	int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5055 
5056 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5057 	spin_lock(&sinfo->lock);
5058 	data_used = sinfo->bytes_used;
5059 	spin_unlock(&sinfo->lock);
5060 
5061 	sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5062 	spin_lock(&sinfo->lock);
5063 	if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5064 		data_used = 0;
5065 	meta_used = sinfo->bytes_used;
5066 	spin_unlock(&sinfo->lock);
5067 
5068 	num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5069 		    csum_size * 2;
5070 	num_bytes += div_u64(data_used + meta_used, 50);
5071 
5072 	if (num_bytes * 3 > meta_used)
5073 		num_bytes = div_u64(meta_used, 3);
5074 
5075 	return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5076 }
5077 
5078 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5079 {
5080 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5081 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5082 	u64 num_bytes;
5083 
5084 	num_bytes = calc_global_metadata_size(fs_info);
5085 
5086 	spin_lock(&sinfo->lock);
5087 	spin_lock(&block_rsv->lock);
5088 
5089 	block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
5090 
5091 	num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5092 		    sinfo->bytes_reserved + sinfo->bytes_readonly +
5093 		    sinfo->bytes_may_use;
5094 
5095 	if (sinfo->total_bytes > num_bytes) {
5096 		num_bytes = sinfo->total_bytes - num_bytes;
5097 		block_rsv->reserved += num_bytes;
5098 		sinfo->bytes_may_use += num_bytes;
5099 		trace_btrfs_space_reservation(fs_info, "space_info",
5100 				      sinfo->flags, num_bytes, 1);
5101 	}
5102 
5103 	if (block_rsv->reserved >= block_rsv->size) {
5104 		num_bytes = block_rsv->reserved - block_rsv->size;
5105 		sinfo->bytes_may_use -= num_bytes;
5106 		trace_btrfs_space_reservation(fs_info, "space_info",
5107 				      sinfo->flags, num_bytes, 0);
5108 		block_rsv->reserved = block_rsv->size;
5109 		block_rsv->full = 1;
5110 	}
5111 
5112 	spin_unlock(&block_rsv->lock);
5113 	spin_unlock(&sinfo->lock);
5114 }
5115 
5116 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5117 {
5118 	struct btrfs_space_info *space_info;
5119 
5120 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5121 	fs_info->chunk_block_rsv.space_info = space_info;
5122 
5123 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5124 	fs_info->global_block_rsv.space_info = space_info;
5125 	fs_info->delalloc_block_rsv.space_info = space_info;
5126 	fs_info->trans_block_rsv.space_info = space_info;
5127 	fs_info->empty_block_rsv.space_info = space_info;
5128 	fs_info->delayed_block_rsv.space_info = space_info;
5129 
5130 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5131 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5132 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5133 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5134 	if (fs_info->quota_root)
5135 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5136 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5137 
5138 	update_global_block_rsv(fs_info);
5139 }
5140 
5141 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5142 {
5143 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5144 				(u64)-1);
5145 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5146 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5147 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5148 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5149 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5150 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5151 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5152 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5153 }
5154 
5155 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5156 				  struct btrfs_root *root)
5157 {
5158 	if (!trans->block_rsv)
5159 		return;
5160 
5161 	if (!trans->bytes_reserved)
5162 		return;
5163 
5164 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5165 				      trans->transid, trans->bytes_reserved, 0);
5166 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5167 	trans->bytes_reserved = 0;
5168 }
5169 
5170 /*
5171  * To be called after all the new block groups attached to the transaction
5172  * handle have been created (btrfs_create_pending_block_groups()).
5173  */
5174 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5175 {
5176 	struct btrfs_fs_info *fs_info = trans->root->fs_info;
5177 
5178 	if (!trans->chunk_bytes_reserved)
5179 		return;
5180 
5181 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5182 
5183 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5184 				trans->chunk_bytes_reserved);
5185 	trans->chunk_bytes_reserved = 0;
5186 }
5187 
5188 /* Can only return 0 or -ENOSPC */
5189 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5190 				  struct inode *inode)
5191 {
5192 	struct btrfs_root *root = BTRFS_I(inode)->root;
5193 	struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5194 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5195 
5196 	/*
5197 	 * We need to hold space in order to delete our orphan item once we've
5198 	 * added it, so this takes the reservation so we can release it later
5199 	 * when we are truly done with the orphan item.
5200 	 */
5201 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5202 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5203 				      btrfs_ino(inode), num_bytes, 1);
5204 	return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5205 }
5206 
5207 void btrfs_orphan_release_metadata(struct inode *inode)
5208 {
5209 	struct btrfs_root *root = BTRFS_I(inode)->root;
5210 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5211 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5212 				      btrfs_ino(inode), num_bytes, 0);
5213 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5214 }
5215 
5216 /*
5217  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5218  * root: the root of the parent directory
5219  * rsv: block reservation
5220  * items: the number of items that we need do reservation
5221  * qgroup_reserved: used to return the reserved size in qgroup
5222  *
5223  * This function is used to reserve the space for snapshot/subvolume
5224  * creation and deletion. Those operations are different with the
5225  * common file/directory operations, they change two fs/file trees
5226  * and root tree, the number of items that the qgroup reserves is
5227  * different with the free space reservation. So we can not use
5228  * the space reseravtion mechanism in start_transaction().
5229  */
5230 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5231 				     struct btrfs_block_rsv *rsv,
5232 				     int items,
5233 				     u64 *qgroup_reserved,
5234 				     bool use_global_rsv)
5235 {
5236 	u64 num_bytes;
5237 	int ret;
5238 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5239 
5240 	if (root->fs_info->quota_enabled) {
5241 		/* One for parent inode, two for dir entries */
5242 		num_bytes = 3 * root->nodesize;
5243 		ret = btrfs_qgroup_reserve(root, num_bytes);
5244 		if (ret)
5245 			return ret;
5246 	} else {
5247 		num_bytes = 0;
5248 	}
5249 
5250 	*qgroup_reserved = num_bytes;
5251 
5252 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5253 	rsv->space_info = __find_space_info(root->fs_info,
5254 					    BTRFS_BLOCK_GROUP_METADATA);
5255 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5256 				  BTRFS_RESERVE_FLUSH_ALL);
5257 
5258 	if (ret == -ENOSPC && use_global_rsv)
5259 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5260 
5261 	if (ret) {
5262 		if (*qgroup_reserved)
5263 			btrfs_qgroup_free(root, *qgroup_reserved);
5264 	}
5265 
5266 	return ret;
5267 }
5268 
5269 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5270 				      struct btrfs_block_rsv *rsv,
5271 				      u64 qgroup_reserved)
5272 {
5273 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5274 }
5275 
5276 /**
5277  * drop_outstanding_extent - drop an outstanding extent
5278  * @inode: the inode we're dropping the extent for
5279  * @num_bytes: the number of bytes we're relaseing.
5280  *
5281  * This is called when we are freeing up an outstanding extent, either called
5282  * after an error or after an extent is written.  This will return the number of
5283  * reserved extents that need to be freed.  This must be called with
5284  * BTRFS_I(inode)->lock held.
5285  */
5286 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5287 {
5288 	unsigned drop_inode_space = 0;
5289 	unsigned dropped_extents = 0;
5290 	unsigned num_extents = 0;
5291 
5292 	num_extents = (unsigned)div64_u64(num_bytes +
5293 					  BTRFS_MAX_EXTENT_SIZE - 1,
5294 					  BTRFS_MAX_EXTENT_SIZE);
5295 	ASSERT(num_extents);
5296 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5297 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5298 
5299 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5300 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5301 			       &BTRFS_I(inode)->runtime_flags))
5302 		drop_inode_space = 1;
5303 
5304 	/*
5305 	 * If we have more or the same amount of outsanding extents than we have
5306 	 * reserved then we need to leave the reserved extents count alone.
5307 	 */
5308 	if (BTRFS_I(inode)->outstanding_extents >=
5309 	    BTRFS_I(inode)->reserved_extents)
5310 		return drop_inode_space;
5311 
5312 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5313 		BTRFS_I(inode)->outstanding_extents;
5314 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5315 	return dropped_extents + drop_inode_space;
5316 }
5317 
5318 /**
5319  * calc_csum_metadata_size - return the amount of metada space that must be
5320  *	reserved/free'd for the given bytes.
5321  * @inode: the inode we're manipulating
5322  * @num_bytes: the number of bytes in question
5323  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5324  *
5325  * This adjusts the number of csum_bytes in the inode and then returns the
5326  * correct amount of metadata that must either be reserved or freed.  We
5327  * calculate how many checksums we can fit into one leaf and then divide the
5328  * number of bytes that will need to be checksumed by this value to figure out
5329  * how many checksums will be required.  If we are adding bytes then the number
5330  * may go up and we will return the number of additional bytes that must be
5331  * reserved.  If it is going down we will return the number of bytes that must
5332  * be freed.
5333  *
5334  * This must be called with BTRFS_I(inode)->lock held.
5335  */
5336 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5337 				   int reserve)
5338 {
5339 	struct btrfs_root *root = BTRFS_I(inode)->root;
5340 	u64 old_csums, num_csums;
5341 
5342 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5343 	    BTRFS_I(inode)->csum_bytes == 0)
5344 		return 0;
5345 
5346 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5347 	if (reserve)
5348 		BTRFS_I(inode)->csum_bytes += num_bytes;
5349 	else
5350 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5351 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5352 
5353 	/* No change, no need to reserve more */
5354 	if (old_csums == num_csums)
5355 		return 0;
5356 
5357 	if (reserve)
5358 		return btrfs_calc_trans_metadata_size(root,
5359 						      num_csums - old_csums);
5360 
5361 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5362 }
5363 
5364 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5365 {
5366 	struct btrfs_root *root = BTRFS_I(inode)->root;
5367 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5368 	u64 to_reserve = 0;
5369 	u64 csum_bytes;
5370 	unsigned nr_extents = 0;
5371 	int extra_reserve = 0;
5372 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5373 	int ret = 0;
5374 	bool delalloc_lock = true;
5375 	u64 to_free = 0;
5376 	unsigned dropped;
5377 
5378 	/* If we are a free space inode we need to not flush since we will be in
5379 	 * the middle of a transaction commit.  We also don't need the delalloc
5380 	 * mutex since we won't race with anybody.  We need this mostly to make
5381 	 * lockdep shut its filthy mouth.
5382 	 */
5383 	if (btrfs_is_free_space_inode(inode)) {
5384 		flush = BTRFS_RESERVE_NO_FLUSH;
5385 		delalloc_lock = false;
5386 	}
5387 
5388 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5389 	    btrfs_transaction_in_commit(root->fs_info))
5390 		schedule_timeout(1);
5391 
5392 	if (delalloc_lock)
5393 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5394 
5395 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5396 
5397 	spin_lock(&BTRFS_I(inode)->lock);
5398 	nr_extents = (unsigned)div64_u64(num_bytes +
5399 					 BTRFS_MAX_EXTENT_SIZE - 1,
5400 					 BTRFS_MAX_EXTENT_SIZE);
5401 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5402 	nr_extents = 0;
5403 
5404 	if (BTRFS_I(inode)->outstanding_extents >
5405 	    BTRFS_I(inode)->reserved_extents)
5406 		nr_extents = BTRFS_I(inode)->outstanding_extents -
5407 			BTRFS_I(inode)->reserved_extents;
5408 
5409 	/*
5410 	 * Add an item to reserve for updating the inode when we complete the
5411 	 * delalloc io.
5412 	 */
5413 	if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5414 		      &BTRFS_I(inode)->runtime_flags)) {
5415 		nr_extents++;
5416 		extra_reserve = 1;
5417 	}
5418 
5419 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5420 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5421 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5422 	spin_unlock(&BTRFS_I(inode)->lock);
5423 
5424 	if (root->fs_info->quota_enabled) {
5425 		ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
5426 		if (ret)
5427 			goto out_fail;
5428 	}
5429 
5430 	ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5431 	if (unlikely(ret)) {
5432 		if (root->fs_info->quota_enabled)
5433 			btrfs_qgroup_free(root, nr_extents * root->nodesize);
5434 		goto out_fail;
5435 	}
5436 
5437 	spin_lock(&BTRFS_I(inode)->lock);
5438 	if (extra_reserve) {
5439 		set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5440 			&BTRFS_I(inode)->runtime_flags);
5441 		nr_extents--;
5442 	}
5443 	BTRFS_I(inode)->reserved_extents += nr_extents;
5444 	spin_unlock(&BTRFS_I(inode)->lock);
5445 
5446 	if (delalloc_lock)
5447 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5448 
5449 	if (to_reserve)
5450 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5451 					      btrfs_ino(inode), to_reserve, 1);
5452 	block_rsv_add_bytes(block_rsv, to_reserve, 1);
5453 
5454 	return 0;
5455 
5456 out_fail:
5457 	spin_lock(&BTRFS_I(inode)->lock);
5458 	dropped = drop_outstanding_extent(inode, num_bytes);
5459 	/*
5460 	 * If the inodes csum_bytes is the same as the original
5461 	 * csum_bytes then we know we haven't raced with any free()ers
5462 	 * so we can just reduce our inodes csum bytes and carry on.
5463 	 */
5464 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5465 		calc_csum_metadata_size(inode, num_bytes, 0);
5466 	} else {
5467 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5468 		u64 bytes;
5469 
5470 		/*
5471 		 * This is tricky, but first we need to figure out how much we
5472 		 * free'd from any free-ers that occured during this
5473 		 * reservation, so we reset ->csum_bytes to the csum_bytes
5474 		 * before we dropped our lock, and then call the free for the
5475 		 * number of bytes that were freed while we were trying our
5476 		 * reservation.
5477 		 */
5478 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5479 		BTRFS_I(inode)->csum_bytes = csum_bytes;
5480 		to_free = calc_csum_metadata_size(inode, bytes, 0);
5481 
5482 
5483 		/*
5484 		 * Now we need to see how much we would have freed had we not
5485 		 * been making this reservation and our ->csum_bytes were not
5486 		 * artificially inflated.
5487 		 */
5488 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5489 		bytes = csum_bytes - orig_csum_bytes;
5490 		bytes = calc_csum_metadata_size(inode, bytes, 0);
5491 
5492 		/*
5493 		 * Now reset ->csum_bytes to what it should be.  If bytes is
5494 		 * more than to_free then we would have free'd more space had we
5495 		 * not had an artificially high ->csum_bytes, so we need to free
5496 		 * the remainder.  If bytes is the same or less then we don't
5497 		 * need to do anything, the other free-ers did the correct
5498 		 * thing.
5499 		 */
5500 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5501 		if (bytes > to_free)
5502 			to_free = bytes - to_free;
5503 		else
5504 			to_free = 0;
5505 	}
5506 	spin_unlock(&BTRFS_I(inode)->lock);
5507 	if (dropped)
5508 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5509 
5510 	if (to_free) {
5511 		btrfs_block_rsv_release(root, block_rsv, to_free);
5512 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
5513 					      btrfs_ino(inode), to_free, 0);
5514 	}
5515 	if (delalloc_lock)
5516 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5517 	return ret;
5518 }
5519 
5520 /**
5521  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5522  * @inode: the inode to release the reservation for
5523  * @num_bytes: the number of bytes we're releasing
5524  *
5525  * This will release the metadata reservation for an inode.  This can be called
5526  * once we complete IO for a given set of bytes to release their metadata
5527  * reservations.
5528  */
5529 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5530 {
5531 	struct btrfs_root *root = BTRFS_I(inode)->root;
5532 	u64 to_free = 0;
5533 	unsigned dropped;
5534 
5535 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5536 	spin_lock(&BTRFS_I(inode)->lock);
5537 	dropped = drop_outstanding_extent(inode, num_bytes);
5538 
5539 	if (num_bytes)
5540 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5541 	spin_unlock(&BTRFS_I(inode)->lock);
5542 	if (dropped > 0)
5543 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
5544 
5545 	if (btrfs_test_is_dummy_root(root))
5546 		return;
5547 
5548 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
5549 				      btrfs_ino(inode), to_free, 0);
5550 
5551 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5552 				to_free);
5553 }
5554 
5555 /**
5556  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5557  * @inode: inode we're writing to
5558  * @num_bytes: the number of bytes we want to allocate
5559  *
5560  * This will do the following things
5561  *
5562  * o reserve space in the data space info for num_bytes
5563  * o reserve space in the metadata space info based on number of outstanding
5564  *   extents and how much csums will be needed
5565  * o add to the inodes ->delalloc_bytes
5566  * o add it to the fs_info's delalloc inodes list.
5567  *
5568  * This will return 0 for success and -ENOSPC if there is no space left.
5569  */
5570 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5571 {
5572 	int ret;
5573 
5574 	ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
5575 	if (ret)
5576 		return ret;
5577 
5578 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5579 	if (ret) {
5580 		btrfs_free_reserved_data_space(inode, num_bytes);
5581 		return ret;
5582 	}
5583 
5584 	return 0;
5585 }
5586 
5587 /**
5588  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5589  * @inode: inode we're releasing space for
5590  * @num_bytes: the number of bytes we want to free up
5591  *
5592  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5593  * called in the case that we don't need the metadata AND data reservations
5594  * anymore.  So if there is an error or we insert an inline extent.
5595  *
5596  * This function will release the metadata space that was not used and will
5597  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5598  * list if there are no delalloc bytes left.
5599  */
5600 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5601 {
5602 	btrfs_delalloc_release_metadata(inode, num_bytes);
5603 	btrfs_free_reserved_data_space(inode, num_bytes);
5604 }
5605 
5606 static int update_block_group(struct btrfs_trans_handle *trans,
5607 			      struct btrfs_root *root, u64 bytenr,
5608 			      u64 num_bytes, int alloc)
5609 {
5610 	struct btrfs_block_group_cache *cache = NULL;
5611 	struct btrfs_fs_info *info = root->fs_info;
5612 	u64 total = num_bytes;
5613 	u64 old_val;
5614 	u64 byte_in_group;
5615 	int factor;
5616 
5617 	/* block accounting for super block */
5618 	spin_lock(&info->delalloc_root_lock);
5619 	old_val = btrfs_super_bytes_used(info->super_copy);
5620 	if (alloc)
5621 		old_val += num_bytes;
5622 	else
5623 		old_val -= num_bytes;
5624 	btrfs_set_super_bytes_used(info->super_copy, old_val);
5625 	spin_unlock(&info->delalloc_root_lock);
5626 
5627 	while (total) {
5628 		cache = btrfs_lookup_block_group(info, bytenr);
5629 		if (!cache)
5630 			return -ENOENT;
5631 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5632 				    BTRFS_BLOCK_GROUP_RAID1 |
5633 				    BTRFS_BLOCK_GROUP_RAID10))
5634 			factor = 2;
5635 		else
5636 			factor = 1;
5637 		/*
5638 		 * If this block group has free space cache written out, we
5639 		 * need to make sure to load it if we are removing space.  This
5640 		 * is because we need the unpinning stage to actually add the
5641 		 * space back to the block group, otherwise we will leak space.
5642 		 */
5643 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
5644 			cache_block_group(cache, 1);
5645 
5646 		byte_in_group = bytenr - cache->key.objectid;
5647 		WARN_ON(byte_in_group > cache->key.offset);
5648 
5649 		spin_lock(&cache->space_info->lock);
5650 		spin_lock(&cache->lock);
5651 
5652 		if (btrfs_test_opt(root, SPACE_CACHE) &&
5653 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
5654 			cache->disk_cache_state = BTRFS_DC_CLEAR;
5655 
5656 		old_val = btrfs_block_group_used(&cache->item);
5657 		num_bytes = min(total, cache->key.offset - byte_in_group);
5658 		if (alloc) {
5659 			old_val += num_bytes;
5660 			btrfs_set_block_group_used(&cache->item, old_val);
5661 			cache->reserved -= num_bytes;
5662 			cache->space_info->bytes_reserved -= num_bytes;
5663 			cache->space_info->bytes_used += num_bytes;
5664 			cache->space_info->disk_used += num_bytes * factor;
5665 			spin_unlock(&cache->lock);
5666 			spin_unlock(&cache->space_info->lock);
5667 		} else {
5668 			old_val -= num_bytes;
5669 			btrfs_set_block_group_used(&cache->item, old_val);
5670 			cache->pinned += num_bytes;
5671 			cache->space_info->bytes_pinned += num_bytes;
5672 			cache->space_info->bytes_used -= num_bytes;
5673 			cache->space_info->disk_used -= num_bytes * factor;
5674 			spin_unlock(&cache->lock);
5675 			spin_unlock(&cache->space_info->lock);
5676 
5677 			set_extent_dirty(info->pinned_extents,
5678 					 bytenr, bytenr + num_bytes - 1,
5679 					 GFP_NOFS | __GFP_NOFAIL);
5680 			/*
5681 			 * No longer have used bytes in this block group, queue
5682 			 * it for deletion.
5683 			 */
5684 			if (old_val == 0) {
5685 				spin_lock(&info->unused_bgs_lock);
5686 				if (list_empty(&cache->bg_list)) {
5687 					btrfs_get_block_group(cache);
5688 					list_add_tail(&cache->bg_list,
5689 						      &info->unused_bgs);
5690 				}
5691 				spin_unlock(&info->unused_bgs_lock);
5692 			}
5693 		}
5694 
5695 		spin_lock(&trans->transaction->dirty_bgs_lock);
5696 		if (list_empty(&cache->dirty_list)) {
5697 			list_add_tail(&cache->dirty_list,
5698 				      &trans->transaction->dirty_bgs);
5699 				trans->transaction->num_dirty_bgs++;
5700 			btrfs_get_block_group(cache);
5701 		}
5702 		spin_unlock(&trans->transaction->dirty_bgs_lock);
5703 
5704 		btrfs_put_block_group(cache);
5705 		total -= num_bytes;
5706 		bytenr += num_bytes;
5707 	}
5708 	return 0;
5709 }
5710 
5711 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5712 {
5713 	struct btrfs_block_group_cache *cache;
5714 	u64 bytenr;
5715 
5716 	spin_lock(&root->fs_info->block_group_cache_lock);
5717 	bytenr = root->fs_info->first_logical_byte;
5718 	spin_unlock(&root->fs_info->block_group_cache_lock);
5719 
5720 	if (bytenr < (u64)-1)
5721 		return bytenr;
5722 
5723 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5724 	if (!cache)
5725 		return 0;
5726 
5727 	bytenr = cache->key.objectid;
5728 	btrfs_put_block_group(cache);
5729 
5730 	return bytenr;
5731 }
5732 
5733 static int pin_down_extent(struct btrfs_root *root,
5734 			   struct btrfs_block_group_cache *cache,
5735 			   u64 bytenr, u64 num_bytes, int reserved)
5736 {
5737 	spin_lock(&cache->space_info->lock);
5738 	spin_lock(&cache->lock);
5739 	cache->pinned += num_bytes;
5740 	cache->space_info->bytes_pinned += num_bytes;
5741 	if (reserved) {
5742 		cache->reserved -= num_bytes;
5743 		cache->space_info->bytes_reserved -= num_bytes;
5744 	}
5745 	spin_unlock(&cache->lock);
5746 	spin_unlock(&cache->space_info->lock);
5747 
5748 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5749 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5750 	if (reserved)
5751 		trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
5752 	return 0;
5753 }
5754 
5755 /*
5756  * this function must be called within transaction
5757  */
5758 int btrfs_pin_extent(struct btrfs_root *root,
5759 		     u64 bytenr, u64 num_bytes, int reserved)
5760 {
5761 	struct btrfs_block_group_cache *cache;
5762 
5763 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5764 	BUG_ON(!cache); /* Logic error */
5765 
5766 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5767 
5768 	btrfs_put_block_group(cache);
5769 	return 0;
5770 }
5771 
5772 /*
5773  * this function must be called within transaction
5774  */
5775 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5776 				    u64 bytenr, u64 num_bytes)
5777 {
5778 	struct btrfs_block_group_cache *cache;
5779 	int ret;
5780 
5781 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5782 	if (!cache)
5783 		return -EINVAL;
5784 
5785 	/*
5786 	 * pull in the free space cache (if any) so that our pin
5787 	 * removes the free space from the cache.  We have load_only set
5788 	 * to one because the slow code to read in the free extents does check
5789 	 * the pinned extents.
5790 	 */
5791 	cache_block_group(cache, 1);
5792 
5793 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
5794 
5795 	/* remove us from the free space cache (if we're there at all) */
5796 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5797 	btrfs_put_block_group(cache);
5798 	return ret;
5799 }
5800 
5801 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5802 {
5803 	int ret;
5804 	struct btrfs_block_group_cache *block_group;
5805 	struct btrfs_caching_control *caching_ctl;
5806 
5807 	block_group = btrfs_lookup_block_group(root->fs_info, start);
5808 	if (!block_group)
5809 		return -EINVAL;
5810 
5811 	cache_block_group(block_group, 0);
5812 	caching_ctl = get_caching_control(block_group);
5813 
5814 	if (!caching_ctl) {
5815 		/* Logic error */
5816 		BUG_ON(!block_group_cache_done(block_group));
5817 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
5818 	} else {
5819 		mutex_lock(&caching_ctl->mutex);
5820 
5821 		if (start >= caching_ctl->progress) {
5822 			ret = add_excluded_extent(root, start, num_bytes);
5823 		} else if (start + num_bytes <= caching_ctl->progress) {
5824 			ret = btrfs_remove_free_space(block_group,
5825 						      start, num_bytes);
5826 		} else {
5827 			num_bytes = caching_ctl->progress - start;
5828 			ret = btrfs_remove_free_space(block_group,
5829 						      start, num_bytes);
5830 			if (ret)
5831 				goto out_lock;
5832 
5833 			num_bytes = (start + num_bytes) -
5834 				caching_ctl->progress;
5835 			start = caching_ctl->progress;
5836 			ret = add_excluded_extent(root, start, num_bytes);
5837 		}
5838 out_lock:
5839 		mutex_unlock(&caching_ctl->mutex);
5840 		put_caching_control(caching_ctl);
5841 	}
5842 	btrfs_put_block_group(block_group);
5843 	return ret;
5844 }
5845 
5846 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5847 				 struct extent_buffer *eb)
5848 {
5849 	struct btrfs_file_extent_item *item;
5850 	struct btrfs_key key;
5851 	int found_type;
5852 	int i;
5853 
5854 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5855 		return 0;
5856 
5857 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
5858 		btrfs_item_key_to_cpu(eb, &key, i);
5859 		if (key.type != BTRFS_EXTENT_DATA_KEY)
5860 			continue;
5861 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5862 		found_type = btrfs_file_extent_type(eb, item);
5863 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
5864 			continue;
5865 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5866 			continue;
5867 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5868 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5869 		__exclude_logged_extent(log, key.objectid, key.offset);
5870 	}
5871 
5872 	return 0;
5873 }
5874 
5875 /**
5876  * btrfs_update_reserved_bytes - update the block_group and space info counters
5877  * @cache:	The cache we are manipulating
5878  * @num_bytes:	The number of bytes in question
5879  * @reserve:	One of the reservation enums
5880  * @delalloc:   The blocks are allocated for the delalloc write
5881  *
5882  * This is called by the allocator when it reserves space, or by somebody who is
5883  * freeing space that was never actually used on disk.  For example if you
5884  * reserve some space for a new leaf in transaction A and before transaction A
5885  * commits you free that leaf, you call this with reserve set to 0 in order to
5886  * clear the reservation.
5887  *
5888  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5889  * ENOSPC accounting.  For data we handle the reservation through clearing the
5890  * delalloc bits in the io_tree.  We have to do this since we could end up
5891  * allocating less disk space for the amount of data we have reserved in the
5892  * case of compression.
5893  *
5894  * If this is a reservation and the block group has become read only we cannot
5895  * make the reservation and return -EAGAIN, otherwise this function always
5896  * succeeds.
5897  */
5898 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5899 				       u64 num_bytes, int reserve, int delalloc)
5900 {
5901 	struct btrfs_space_info *space_info = cache->space_info;
5902 	int ret = 0;
5903 
5904 	spin_lock(&space_info->lock);
5905 	spin_lock(&cache->lock);
5906 	if (reserve != RESERVE_FREE) {
5907 		if (cache->ro) {
5908 			ret = -EAGAIN;
5909 		} else {
5910 			cache->reserved += num_bytes;
5911 			space_info->bytes_reserved += num_bytes;
5912 			if (reserve == RESERVE_ALLOC) {
5913 				trace_btrfs_space_reservation(cache->fs_info,
5914 						"space_info", space_info->flags,
5915 						num_bytes, 0);
5916 				space_info->bytes_may_use -= num_bytes;
5917 			}
5918 
5919 			if (delalloc)
5920 				cache->delalloc_bytes += num_bytes;
5921 		}
5922 	} else {
5923 		if (cache->ro)
5924 			space_info->bytes_readonly += num_bytes;
5925 		cache->reserved -= num_bytes;
5926 		space_info->bytes_reserved -= num_bytes;
5927 
5928 		if (delalloc)
5929 			cache->delalloc_bytes -= num_bytes;
5930 	}
5931 	spin_unlock(&cache->lock);
5932 	spin_unlock(&space_info->lock);
5933 	return ret;
5934 }
5935 
5936 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5937 				struct btrfs_root *root)
5938 {
5939 	struct btrfs_fs_info *fs_info = root->fs_info;
5940 	struct btrfs_caching_control *next;
5941 	struct btrfs_caching_control *caching_ctl;
5942 	struct btrfs_block_group_cache *cache;
5943 
5944 	down_write(&fs_info->commit_root_sem);
5945 
5946 	list_for_each_entry_safe(caching_ctl, next,
5947 				 &fs_info->caching_block_groups, list) {
5948 		cache = caching_ctl->block_group;
5949 		if (block_group_cache_done(cache)) {
5950 			cache->last_byte_to_unpin = (u64)-1;
5951 			list_del_init(&caching_ctl->list);
5952 			put_caching_control(caching_ctl);
5953 		} else {
5954 			cache->last_byte_to_unpin = caching_ctl->progress;
5955 		}
5956 	}
5957 
5958 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5959 		fs_info->pinned_extents = &fs_info->freed_extents[1];
5960 	else
5961 		fs_info->pinned_extents = &fs_info->freed_extents[0];
5962 
5963 	up_write(&fs_info->commit_root_sem);
5964 
5965 	update_global_block_rsv(fs_info);
5966 }
5967 
5968 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5969 			      const bool return_free_space)
5970 {
5971 	struct btrfs_fs_info *fs_info = root->fs_info;
5972 	struct btrfs_block_group_cache *cache = NULL;
5973 	struct btrfs_space_info *space_info;
5974 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5975 	u64 len;
5976 	bool readonly;
5977 
5978 	while (start <= end) {
5979 		readonly = false;
5980 		if (!cache ||
5981 		    start >= cache->key.objectid + cache->key.offset) {
5982 			if (cache)
5983 				btrfs_put_block_group(cache);
5984 			cache = btrfs_lookup_block_group(fs_info, start);
5985 			BUG_ON(!cache); /* Logic error */
5986 		}
5987 
5988 		len = cache->key.objectid + cache->key.offset - start;
5989 		len = min(len, end + 1 - start);
5990 
5991 		if (start < cache->last_byte_to_unpin) {
5992 			len = min(len, cache->last_byte_to_unpin - start);
5993 			if (return_free_space)
5994 				btrfs_add_free_space(cache, start, len);
5995 		}
5996 
5997 		start += len;
5998 		space_info = cache->space_info;
5999 
6000 		spin_lock(&space_info->lock);
6001 		spin_lock(&cache->lock);
6002 		cache->pinned -= len;
6003 		space_info->bytes_pinned -= len;
6004 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6005 		if (cache->ro) {
6006 			space_info->bytes_readonly += len;
6007 			readonly = true;
6008 		}
6009 		spin_unlock(&cache->lock);
6010 		if (!readonly && global_rsv->space_info == space_info) {
6011 			spin_lock(&global_rsv->lock);
6012 			if (!global_rsv->full) {
6013 				len = min(len, global_rsv->size -
6014 					  global_rsv->reserved);
6015 				global_rsv->reserved += len;
6016 				space_info->bytes_may_use += len;
6017 				if (global_rsv->reserved >= global_rsv->size)
6018 					global_rsv->full = 1;
6019 			}
6020 			spin_unlock(&global_rsv->lock);
6021 		}
6022 		spin_unlock(&space_info->lock);
6023 	}
6024 
6025 	if (cache)
6026 		btrfs_put_block_group(cache);
6027 	return 0;
6028 }
6029 
6030 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6031 			       struct btrfs_root *root)
6032 {
6033 	struct btrfs_fs_info *fs_info = root->fs_info;
6034 	struct extent_io_tree *unpin;
6035 	u64 start;
6036 	u64 end;
6037 	int ret;
6038 
6039 	if (trans->aborted)
6040 		return 0;
6041 
6042 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6043 		unpin = &fs_info->freed_extents[1];
6044 	else
6045 		unpin = &fs_info->freed_extents[0];
6046 
6047 	while (1) {
6048 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6049 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6050 					    EXTENT_DIRTY, NULL);
6051 		if (ret) {
6052 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6053 			break;
6054 		}
6055 
6056 		if (btrfs_test_opt(root, DISCARD))
6057 			ret = btrfs_discard_extent(root, start,
6058 						   end + 1 - start, NULL);
6059 
6060 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
6061 		unpin_extent_range(root, start, end, true);
6062 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6063 		cond_resched();
6064 	}
6065 
6066 	return 0;
6067 }
6068 
6069 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6070 			     u64 owner, u64 root_objectid)
6071 {
6072 	struct btrfs_space_info *space_info;
6073 	u64 flags;
6074 
6075 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6076 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6077 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6078 		else
6079 			flags = BTRFS_BLOCK_GROUP_METADATA;
6080 	} else {
6081 		flags = BTRFS_BLOCK_GROUP_DATA;
6082 	}
6083 
6084 	space_info = __find_space_info(fs_info, flags);
6085 	BUG_ON(!space_info); /* Logic bug */
6086 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6087 }
6088 
6089 
6090 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6091 				struct btrfs_root *root,
6092 				struct btrfs_delayed_ref_node *node, u64 parent,
6093 				u64 root_objectid, u64 owner_objectid,
6094 				u64 owner_offset, int refs_to_drop,
6095 				struct btrfs_delayed_extent_op *extent_op)
6096 {
6097 	struct btrfs_key key;
6098 	struct btrfs_path *path;
6099 	struct btrfs_fs_info *info = root->fs_info;
6100 	struct btrfs_root *extent_root = info->extent_root;
6101 	struct extent_buffer *leaf;
6102 	struct btrfs_extent_item *ei;
6103 	struct btrfs_extent_inline_ref *iref;
6104 	int ret;
6105 	int is_data;
6106 	int extent_slot = 0;
6107 	int found_extent = 0;
6108 	int num_to_del = 1;
6109 	int no_quota = node->no_quota;
6110 	u32 item_size;
6111 	u64 refs;
6112 	u64 bytenr = node->bytenr;
6113 	u64 num_bytes = node->num_bytes;
6114 	int last_ref = 0;
6115 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6116 						 SKINNY_METADATA);
6117 
6118 	if (!info->quota_enabled || !is_fstree(root_objectid))
6119 		no_quota = 1;
6120 
6121 	path = btrfs_alloc_path();
6122 	if (!path)
6123 		return -ENOMEM;
6124 
6125 	path->reada = 1;
6126 	path->leave_spinning = 1;
6127 
6128 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6129 	BUG_ON(!is_data && refs_to_drop != 1);
6130 
6131 	if (is_data)
6132 		skinny_metadata = 0;
6133 
6134 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6135 				    bytenr, num_bytes, parent,
6136 				    root_objectid, owner_objectid,
6137 				    owner_offset);
6138 	if (ret == 0) {
6139 		extent_slot = path->slots[0];
6140 		while (extent_slot >= 0) {
6141 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6142 					      extent_slot);
6143 			if (key.objectid != bytenr)
6144 				break;
6145 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6146 			    key.offset == num_bytes) {
6147 				found_extent = 1;
6148 				break;
6149 			}
6150 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6151 			    key.offset == owner_objectid) {
6152 				found_extent = 1;
6153 				break;
6154 			}
6155 			if (path->slots[0] - extent_slot > 5)
6156 				break;
6157 			extent_slot--;
6158 		}
6159 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6160 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6161 		if (found_extent && item_size < sizeof(*ei))
6162 			found_extent = 0;
6163 #endif
6164 		if (!found_extent) {
6165 			BUG_ON(iref);
6166 			ret = remove_extent_backref(trans, extent_root, path,
6167 						    NULL, refs_to_drop,
6168 						    is_data, &last_ref);
6169 			if (ret) {
6170 				btrfs_abort_transaction(trans, extent_root, ret);
6171 				goto out;
6172 			}
6173 			btrfs_release_path(path);
6174 			path->leave_spinning = 1;
6175 
6176 			key.objectid = bytenr;
6177 			key.type = BTRFS_EXTENT_ITEM_KEY;
6178 			key.offset = num_bytes;
6179 
6180 			if (!is_data && skinny_metadata) {
6181 				key.type = BTRFS_METADATA_ITEM_KEY;
6182 				key.offset = owner_objectid;
6183 			}
6184 
6185 			ret = btrfs_search_slot(trans, extent_root,
6186 						&key, path, -1, 1);
6187 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6188 				/*
6189 				 * Couldn't find our skinny metadata item,
6190 				 * see if we have ye olde extent item.
6191 				 */
6192 				path->slots[0]--;
6193 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6194 						      path->slots[0]);
6195 				if (key.objectid == bytenr &&
6196 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6197 				    key.offset == num_bytes)
6198 					ret = 0;
6199 			}
6200 
6201 			if (ret > 0 && skinny_metadata) {
6202 				skinny_metadata = false;
6203 				key.objectid = bytenr;
6204 				key.type = BTRFS_EXTENT_ITEM_KEY;
6205 				key.offset = num_bytes;
6206 				btrfs_release_path(path);
6207 				ret = btrfs_search_slot(trans, extent_root,
6208 							&key, path, -1, 1);
6209 			}
6210 
6211 			if (ret) {
6212 				btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6213 					ret, bytenr);
6214 				if (ret > 0)
6215 					btrfs_print_leaf(extent_root,
6216 							 path->nodes[0]);
6217 			}
6218 			if (ret < 0) {
6219 				btrfs_abort_transaction(trans, extent_root, ret);
6220 				goto out;
6221 			}
6222 			extent_slot = path->slots[0];
6223 		}
6224 	} else if (WARN_ON(ret == -ENOENT)) {
6225 		btrfs_print_leaf(extent_root, path->nodes[0]);
6226 		btrfs_err(info,
6227 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6228 			bytenr, parent, root_objectid, owner_objectid,
6229 			owner_offset);
6230 		btrfs_abort_transaction(trans, extent_root, ret);
6231 		goto out;
6232 	} else {
6233 		btrfs_abort_transaction(trans, extent_root, ret);
6234 		goto out;
6235 	}
6236 
6237 	leaf = path->nodes[0];
6238 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6239 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6240 	if (item_size < sizeof(*ei)) {
6241 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6242 		ret = convert_extent_item_v0(trans, extent_root, path,
6243 					     owner_objectid, 0);
6244 		if (ret < 0) {
6245 			btrfs_abort_transaction(trans, extent_root, ret);
6246 			goto out;
6247 		}
6248 
6249 		btrfs_release_path(path);
6250 		path->leave_spinning = 1;
6251 
6252 		key.objectid = bytenr;
6253 		key.type = BTRFS_EXTENT_ITEM_KEY;
6254 		key.offset = num_bytes;
6255 
6256 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6257 					-1, 1);
6258 		if (ret) {
6259 			btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6260 				ret, bytenr);
6261 			btrfs_print_leaf(extent_root, path->nodes[0]);
6262 		}
6263 		if (ret < 0) {
6264 			btrfs_abort_transaction(trans, extent_root, ret);
6265 			goto out;
6266 		}
6267 
6268 		extent_slot = path->slots[0];
6269 		leaf = path->nodes[0];
6270 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6271 	}
6272 #endif
6273 	BUG_ON(item_size < sizeof(*ei));
6274 	ei = btrfs_item_ptr(leaf, extent_slot,
6275 			    struct btrfs_extent_item);
6276 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6277 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
6278 		struct btrfs_tree_block_info *bi;
6279 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6280 		bi = (struct btrfs_tree_block_info *)(ei + 1);
6281 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6282 	}
6283 
6284 	refs = btrfs_extent_refs(leaf, ei);
6285 	if (refs < refs_to_drop) {
6286 		btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6287 			  "for bytenr %Lu", refs_to_drop, refs, bytenr);
6288 		ret = -EINVAL;
6289 		btrfs_abort_transaction(trans, extent_root, ret);
6290 		goto out;
6291 	}
6292 	refs -= refs_to_drop;
6293 
6294 	if (refs > 0) {
6295 		if (extent_op)
6296 			__run_delayed_extent_op(extent_op, leaf, ei);
6297 		/*
6298 		 * In the case of inline back ref, reference count will
6299 		 * be updated by remove_extent_backref
6300 		 */
6301 		if (iref) {
6302 			BUG_ON(!found_extent);
6303 		} else {
6304 			btrfs_set_extent_refs(leaf, ei, refs);
6305 			btrfs_mark_buffer_dirty(leaf);
6306 		}
6307 		if (found_extent) {
6308 			ret = remove_extent_backref(trans, extent_root, path,
6309 						    iref, refs_to_drop,
6310 						    is_data, &last_ref);
6311 			if (ret) {
6312 				btrfs_abort_transaction(trans, extent_root, ret);
6313 				goto out;
6314 			}
6315 		}
6316 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6317 				 root_objectid);
6318 	} else {
6319 		if (found_extent) {
6320 			BUG_ON(is_data && refs_to_drop !=
6321 			       extent_data_ref_count(root, path, iref));
6322 			if (iref) {
6323 				BUG_ON(path->slots[0] != extent_slot);
6324 			} else {
6325 				BUG_ON(path->slots[0] != extent_slot + 1);
6326 				path->slots[0] = extent_slot;
6327 				num_to_del = 2;
6328 			}
6329 		}
6330 
6331 		last_ref = 1;
6332 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6333 				      num_to_del);
6334 		if (ret) {
6335 			btrfs_abort_transaction(trans, extent_root, ret);
6336 			goto out;
6337 		}
6338 		btrfs_release_path(path);
6339 
6340 		if (is_data) {
6341 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6342 			if (ret) {
6343 				btrfs_abort_transaction(trans, extent_root, ret);
6344 				goto out;
6345 			}
6346 		}
6347 
6348 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6349 		if (ret) {
6350 			btrfs_abort_transaction(trans, extent_root, ret);
6351 			goto out;
6352 		}
6353 	}
6354 	btrfs_release_path(path);
6355 
6356 out:
6357 	btrfs_free_path(path);
6358 	return ret;
6359 }
6360 
6361 /*
6362  * when we free an block, it is possible (and likely) that we free the last
6363  * delayed ref for that extent as well.  This searches the delayed ref tree for
6364  * a given extent, and if there are no other delayed refs to be processed, it
6365  * removes it from the tree.
6366  */
6367 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6368 				      struct btrfs_root *root, u64 bytenr)
6369 {
6370 	struct btrfs_delayed_ref_head *head;
6371 	struct btrfs_delayed_ref_root *delayed_refs;
6372 	int ret = 0;
6373 
6374 	delayed_refs = &trans->transaction->delayed_refs;
6375 	spin_lock(&delayed_refs->lock);
6376 	head = btrfs_find_delayed_ref_head(trans, bytenr);
6377 	if (!head)
6378 		goto out_delayed_unlock;
6379 
6380 	spin_lock(&head->lock);
6381 	if (!list_empty(&head->ref_list))
6382 		goto out;
6383 
6384 	if (head->extent_op) {
6385 		if (!head->must_insert_reserved)
6386 			goto out;
6387 		btrfs_free_delayed_extent_op(head->extent_op);
6388 		head->extent_op = NULL;
6389 	}
6390 
6391 	/*
6392 	 * waiting for the lock here would deadlock.  If someone else has it
6393 	 * locked they are already in the process of dropping it anyway
6394 	 */
6395 	if (!mutex_trylock(&head->mutex))
6396 		goto out;
6397 
6398 	/*
6399 	 * at this point we have a head with no other entries.  Go
6400 	 * ahead and process it.
6401 	 */
6402 	head->node.in_tree = 0;
6403 	rb_erase(&head->href_node, &delayed_refs->href_root);
6404 
6405 	atomic_dec(&delayed_refs->num_entries);
6406 
6407 	/*
6408 	 * we don't take a ref on the node because we're removing it from the
6409 	 * tree, so we just steal the ref the tree was holding.
6410 	 */
6411 	delayed_refs->num_heads--;
6412 	if (head->processing == 0)
6413 		delayed_refs->num_heads_ready--;
6414 	head->processing = 0;
6415 	spin_unlock(&head->lock);
6416 	spin_unlock(&delayed_refs->lock);
6417 
6418 	BUG_ON(head->extent_op);
6419 	if (head->must_insert_reserved)
6420 		ret = 1;
6421 
6422 	mutex_unlock(&head->mutex);
6423 	btrfs_put_delayed_ref(&head->node);
6424 	return ret;
6425 out:
6426 	spin_unlock(&head->lock);
6427 
6428 out_delayed_unlock:
6429 	spin_unlock(&delayed_refs->lock);
6430 	return 0;
6431 }
6432 
6433 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6434 			   struct btrfs_root *root,
6435 			   struct extent_buffer *buf,
6436 			   u64 parent, int last_ref)
6437 {
6438 	int pin = 1;
6439 	int ret;
6440 
6441 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6442 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6443 					buf->start, buf->len,
6444 					parent, root->root_key.objectid,
6445 					btrfs_header_level(buf),
6446 					BTRFS_DROP_DELAYED_REF, NULL, 0);
6447 		BUG_ON(ret); /* -ENOMEM */
6448 	}
6449 
6450 	if (!last_ref)
6451 		return;
6452 
6453 	if (btrfs_header_generation(buf) == trans->transid) {
6454 		struct btrfs_block_group_cache *cache;
6455 
6456 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6457 			ret = check_ref_cleanup(trans, root, buf->start);
6458 			if (!ret)
6459 				goto out;
6460 		}
6461 
6462 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6463 
6464 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6465 			pin_down_extent(root, cache, buf->start, buf->len, 1);
6466 			btrfs_put_block_group(cache);
6467 			goto out;
6468 		}
6469 
6470 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6471 
6472 		btrfs_add_free_space(cache, buf->start, buf->len);
6473 		btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6474 		btrfs_put_block_group(cache);
6475 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6476 		pin = 0;
6477 	}
6478 out:
6479 	if (pin)
6480 		add_pinned_bytes(root->fs_info, buf->len,
6481 				 btrfs_header_level(buf),
6482 				 root->root_key.objectid);
6483 
6484 	/*
6485 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6486 	 * anymore.
6487 	 */
6488 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6489 }
6490 
6491 /* Can return -ENOMEM */
6492 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6493 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
6494 		      u64 owner, u64 offset, int no_quota)
6495 {
6496 	int ret;
6497 	struct btrfs_fs_info *fs_info = root->fs_info;
6498 
6499 	if (btrfs_test_is_dummy_root(root))
6500 		return 0;
6501 
6502 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6503 
6504 	/*
6505 	 * tree log blocks never actually go into the extent allocation
6506 	 * tree, just update pinning info and exit early.
6507 	 */
6508 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6509 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6510 		/* unlocks the pinned mutex */
6511 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
6512 		ret = 0;
6513 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6514 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6515 					num_bytes,
6516 					parent, root_objectid, (int)owner,
6517 					BTRFS_DROP_DELAYED_REF, NULL, no_quota);
6518 	} else {
6519 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6520 						num_bytes,
6521 						parent, root_objectid, owner,
6522 						offset, BTRFS_DROP_DELAYED_REF,
6523 						NULL, no_quota);
6524 	}
6525 	return ret;
6526 }
6527 
6528 /*
6529  * when we wait for progress in the block group caching, its because
6530  * our allocation attempt failed at least once.  So, we must sleep
6531  * and let some progress happen before we try again.
6532  *
6533  * This function will sleep at least once waiting for new free space to
6534  * show up, and then it will check the block group free space numbers
6535  * for our min num_bytes.  Another option is to have it go ahead
6536  * and look in the rbtree for a free extent of a given size, but this
6537  * is a good start.
6538  *
6539  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6540  * any of the information in this block group.
6541  */
6542 static noinline void
6543 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6544 				u64 num_bytes)
6545 {
6546 	struct btrfs_caching_control *caching_ctl;
6547 
6548 	caching_ctl = get_caching_control(cache);
6549 	if (!caching_ctl)
6550 		return;
6551 
6552 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6553 		   (cache->free_space_ctl->free_space >= num_bytes));
6554 
6555 	put_caching_control(caching_ctl);
6556 }
6557 
6558 static noinline int
6559 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6560 {
6561 	struct btrfs_caching_control *caching_ctl;
6562 	int ret = 0;
6563 
6564 	caching_ctl = get_caching_control(cache);
6565 	if (!caching_ctl)
6566 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6567 
6568 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
6569 	if (cache->cached == BTRFS_CACHE_ERROR)
6570 		ret = -EIO;
6571 	put_caching_control(caching_ctl);
6572 	return ret;
6573 }
6574 
6575 int __get_raid_index(u64 flags)
6576 {
6577 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
6578 		return BTRFS_RAID_RAID10;
6579 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6580 		return BTRFS_RAID_RAID1;
6581 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
6582 		return BTRFS_RAID_DUP;
6583 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6584 		return BTRFS_RAID_RAID0;
6585 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6586 		return BTRFS_RAID_RAID5;
6587 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6588 		return BTRFS_RAID_RAID6;
6589 
6590 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6591 }
6592 
6593 int get_block_group_index(struct btrfs_block_group_cache *cache)
6594 {
6595 	return __get_raid_index(cache->flags);
6596 }
6597 
6598 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6599 	[BTRFS_RAID_RAID10]	= "raid10",
6600 	[BTRFS_RAID_RAID1]	= "raid1",
6601 	[BTRFS_RAID_DUP]	= "dup",
6602 	[BTRFS_RAID_RAID0]	= "raid0",
6603 	[BTRFS_RAID_SINGLE]	= "single",
6604 	[BTRFS_RAID_RAID5]	= "raid5",
6605 	[BTRFS_RAID_RAID6]	= "raid6",
6606 };
6607 
6608 static const char *get_raid_name(enum btrfs_raid_types type)
6609 {
6610 	if (type >= BTRFS_NR_RAID_TYPES)
6611 		return NULL;
6612 
6613 	return btrfs_raid_type_names[type];
6614 }
6615 
6616 enum btrfs_loop_type {
6617 	LOOP_CACHING_NOWAIT = 0,
6618 	LOOP_CACHING_WAIT = 1,
6619 	LOOP_ALLOC_CHUNK = 2,
6620 	LOOP_NO_EMPTY_SIZE = 3,
6621 };
6622 
6623 static inline void
6624 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6625 		       int delalloc)
6626 {
6627 	if (delalloc)
6628 		down_read(&cache->data_rwsem);
6629 }
6630 
6631 static inline void
6632 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6633 		       int delalloc)
6634 {
6635 	btrfs_get_block_group(cache);
6636 	if (delalloc)
6637 		down_read(&cache->data_rwsem);
6638 }
6639 
6640 static struct btrfs_block_group_cache *
6641 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6642 		   struct btrfs_free_cluster *cluster,
6643 		   int delalloc)
6644 {
6645 	struct btrfs_block_group_cache *used_bg;
6646 	bool locked = false;
6647 again:
6648 	spin_lock(&cluster->refill_lock);
6649 	if (locked) {
6650 		if (used_bg == cluster->block_group)
6651 			return used_bg;
6652 
6653 		up_read(&used_bg->data_rwsem);
6654 		btrfs_put_block_group(used_bg);
6655 	}
6656 
6657 	used_bg = cluster->block_group;
6658 	if (!used_bg)
6659 		return NULL;
6660 
6661 	if (used_bg == block_group)
6662 		return used_bg;
6663 
6664 	btrfs_get_block_group(used_bg);
6665 
6666 	if (!delalloc)
6667 		return used_bg;
6668 
6669 	if (down_read_trylock(&used_bg->data_rwsem))
6670 		return used_bg;
6671 
6672 	spin_unlock(&cluster->refill_lock);
6673 	down_read(&used_bg->data_rwsem);
6674 	locked = true;
6675 	goto again;
6676 }
6677 
6678 static inline void
6679 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6680 			 int delalloc)
6681 {
6682 	if (delalloc)
6683 		up_read(&cache->data_rwsem);
6684 	btrfs_put_block_group(cache);
6685 }
6686 
6687 /*
6688  * walks the btree of allocated extents and find a hole of a given size.
6689  * The key ins is changed to record the hole:
6690  * ins->objectid == start position
6691  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6692  * ins->offset == the size of the hole.
6693  * Any available blocks before search_start are skipped.
6694  *
6695  * If there is no suitable free space, we will record the max size of
6696  * the free space extent currently.
6697  */
6698 static noinline int find_free_extent(struct btrfs_root *orig_root,
6699 				     u64 num_bytes, u64 empty_size,
6700 				     u64 hint_byte, struct btrfs_key *ins,
6701 				     u64 flags, int delalloc)
6702 {
6703 	int ret = 0;
6704 	struct btrfs_root *root = orig_root->fs_info->extent_root;
6705 	struct btrfs_free_cluster *last_ptr = NULL;
6706 	struct btrfs_block_group_cache *block_group = NULL;
6707 	u64 search_start = 0;
6708 	u64 max_extent_size = 0;
6709 	int empty_cluster = 2 * 1024 * 1024;
6710 	struct btrfs_space_info *space_info;
6711 	int loop = 0;
6712 	int index = __get_raid_index(flags);
6713 	int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6714 		RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6715 	bool failed_cluster_refill = false;
6716 	bool failed_alloc = false;
6717 	bool use_cluster = true;
6718 	bool have_caching_bg = false;
6719 
6720 	WARN_ON(num_bytes < root->sectorsize);
6721 	ins->type = BTRFS_EXTENT_ITEM_KEY;
6722 	ins->objectid = 0;
6723 	ins->offset = 0;
6724 
6725 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6726 
6727 	space_info = __find_space_info(root->fs_info, flags);
6728 	if (!space_info) {
6729 		btrfs_err(root->fs_info, "No space info for %llu", flags);
6730 		return -ENOSPC;
6731 	}
6732 
6733 	/*
6734 	 * If the space info is for both data and metadata it means we have a
6735 	 * small filesystem and we can't use the clustering stuff.
6736 	 */
6737 	if (btrfs_mixed_space_info(space_info))
6738 		use_cluster = false;
6739 
6740 	if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6741 		last_ptr = &root->fs_info->meta_alloc_cluster;
6742 		if (!btrfs_test_opt(root, SSD))
6743 			empty_cluster = 64 * 1024;
6744 	}
6745 
6746 	if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6747 	    btrfs_test_opt(root, SSD)) {
6748 		last_ptr = &root->fs_info->data_alloc_cluster;
6749 	}
6750 
6751 	if (last_ptr) {
6752 		spin_lock(&last_ptr->lock);
6753 		if (last_ptr->block_group)
6754 			hint_byte = last_ptr->window_start;
6755 		spin_unlock(&last_ptr->lock);
6756 	}
6757 
6758 	search_start = max(search_start, first_logical_byte(root, 0));
6759 	search_start = max(search_start, hint_byte);
6760 
6761 	if (!last_ptr)
6762 		empty_cluster = 0;
6763 
6764 	if (search_start == hint_byte) {
6765 		block_group = btrfs_lookup_block_group(root->fs_info,
6766 						       search_start);
6767 		/*
6768 		 * we don't want to use the block group if it doesn't match our
6769 		 * allocation bits, or if its not cached.
6770 		 *
6771 		 * However if we are re-searching with an ideal block group
6772 		 * picked out then we don't care that the block group is cached.
6773 		 */
6774 		if (block_group && block_group_bits(block_group, flags) &&
6775 		    block_group->cached != BTRFS_CACHE_NO) {
6776 			down_read(&space_info->groups_sem);
6777 			if (list_empty(&block_group->list) ||
6778 			    block_group->ro) {
6779 				/*
6780 				 * someone is removing this block group,
6781 				 * we can't jump into the have_block_group
6782 				 * target because our list pointers are not
6783 				 * valid
6784 				 */
6785 				btrfs_put_block_group(block_group);
6786 				up_read(&space_info->groups_sem);
6787 			} else {
6788 				index = get_block_group_index(block_group);
6789 				btrfs_lock_block_group(block_group, delalloc);
6790 				goto have_block_group;
6791 			}
6792 		} else if (block_group) {
6793 			btrfs_put_block_group(block_group);
6794 		}
6795 	}
6796 search:
6797 	have_caching_bg = false;
6798 	down_read(&space_info->groups_sem);
6799 	list_for_each_entry(block_group, &space_info->block_groups[index],
6800 			    list) {
6801 		u64 offset;
6802 		int cached;
6803 
6804 		btrfs_grab_block_group(block_group, delalloc);
6805 		search_start = block_group->key.objectid;
6806 
6807 		/*
6808 		 * this can happen if we end up cycling through all the
6809 		 * raid types, but we want to make sure we only allocate
6810 		 * for the proper type.
6811 		 */
6812 		if (!block_group_bits(block_group, flags)) {
6813 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
6814 				BTRFS_BLOCK_GROUP_RAID1 |
6815 				BTRFS_BLOCK_GROUP_RAID5 |
6816 				BTRFS_BLOCK_GROUP_RAID6 |
6817 				BTRFS_BLOCK_GROUP_RAID10;
6818 
6819 			/*
6820 			 * if they asked for extra copies and this block group
6821 			 * doesn't provide them, bail.  This does allow us to
6822 			 * fill raid0 from raid1.
6823 			 */
6824 			if ((flags & extra) && !(block_group->flags & extra))
6825 				goto loop;
6826 		}
6827 
6828 have_block_group:
6829 		cached = block_group_cache_done(block_group);
6830 		if (unlikely(!cached)) {
6831 			ret = cache_block_group(block_group, 0);
6832 			BUG_ON(ret < 0);
6833 			ret = 0;
6834 		}
6835 
6836 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6837 			goto loop;
6838 		if (unlikely(block_group->ro))
6839 			goto loop;
6840 
6841 		/*
6842 		 * Ok we want to try and use the cluster allocator, so
6843 		 * lets look there
6844 		 */
6845 		if (last_ptr) {
6846 			struct btrfs_block_group_cache *used_block_group;
6847 			unsigned long aligned_cluster;
6848 			/*
6849 			 * the refill lock keeps out other
6850 			 * people trying to start a new cluster
6851 			 */
6852 			used_block_group = btrfs_lock_cluster(block_group,
6853 							      last_ptr,
6854 							      delalloc);
6855 			if (!used_block_group)
6856 				goto refill_cluster;
6857 
6858 			if (used_block_group != block_group &&
6859 			    (used_block_group->ro ||
6860 			     !block_group_bits(used_block_group, flags)))
6861 				goto release_cluster;
6862 
6863 			offset = btrfs_alloc_from_cluster(used_block_group,
6864 						last_ptr,
6865 						num_bytes,
6866 						used_block_group->key.objectid,
6867 						&max_extent_size);
6868 			if (offset) {
6869 				/* we have a block, we're done */
6870 				spin_unlock(&last_ptr->refill_lock);
6871 				trace_btrfs_reserve_extent_cluster(root,
6872 						used_block_group,
6873 						search_start, num_bytes);
6874 				if (used_block_group != block_group) {
6875 					btrfs_release_block_group(block_group,
6876 								  delalloc);
6877 					block_group = used_block_group;
6878 				}
6879 				goto checks;
6880 			}
6881 
6882 			WARN_ON(last_ptr->block_group != used_block_group);
6883 release_cluster:
6884 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
6885 			 * set up a new clusters, so lets just skip it
6886 			 * and let the allocator find whatever block
6887 			 * it can find.  If we reach this point, we
6888 			 * will have tried the cluster allocator
6889 			 * plenty of times and not have found
6890 			 * anything, so we are likely way too
6891 			 * fragmented for the clustering stuff to find
6892 			 * anything.
6893 			 *
6894 			 * However, if the cluster is taken from the
6895 			 * current block group, release the cluster
6896 			 * first, so that we stand a better chance of
6897 			 * succeeding in the unclustered
6898 			 * allocation.  */
6899 			if (loop >= LOOP_NO_EMPTY_SIZE &&
6900 			    used_block_group != block_group) {
6901 				spin_unlock(&last_ptr->refill_lock);
6902 				btrfs_release_block_group(used_block_group,
6903 							  delalloc);
6904 				goto unclustered_alloc;
6905 			}
6906 
6907 			/*
6908 			 * this cluster didn't work out, free it and
6909 			 * start over
6910 			 */
6911 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6912 
6913 			if (used_block_group != block_group)
6914 				btrfs_release_block_group(used_block_group,
6915 							  delalloc);
6916 refill_cluster:
6917 			if (loop >= LOOP_NO_EMPTY_SIZE) {
6918 				spin_unlock(&last_ptr->refill_lock);
6919 				goto unclustered_alloc;
6920 			}
6921 
6922 			aligned_cluster = max_t(unsigned long,
6923 						empty_cluster + empty_size,
6924 					      block_group->full_stripe_len);
6925 
6926 			/* allocate a cluster in this block group */
6927 			ret = btrfs_find_space_cluster(root, block_group,
6928 						       last_ptr, search_start,
6929 						       num_bytes,
6930 						       aligned_cluster);
6931 			if (ret == 0) {
6932 				/*
6933 				 * now pull our allocation out of this
6934 				 * cluster
6935 				 */
6936 				offset = btrfs_alloc_from_cluster(block_group,
6937 							last_ptr,
6938 							num_bytes,
6939 							search_start,
6940 							&max_extent_size);
6941 				if (offset) {
6942 					/* we found one, proceed */
6943 					spin_unlock(&last_ptr->refill_lock);
6944 					trace_btrfs_reserve_extent_cluster(root,
6945 						block_group, search_start,
6946 						num_bytes);
6947 					goto checks;
6948 				}
6949 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
6950 				   && !failed_cluster_refill) {
6951 				spin_unlock(&last_ptr->refill_lock);
6952 
6953 				failed_cluster_refill = true;
6954 				wait_block_group_cache_progress(block_group,
6955 				       num_bytes + empty_cluster + empty_size);
6956 				goto have_block_group;
6957 			}
6958 
6959 			/*
6960 			 * at this point we either didn't find a cluster
6961 			 * or we weren't able to allocate a block from our
6962 			 * cluster.  Free the cluster we've been trying
6963 			 * to use, and go to the next block group
6964 			 */
6965 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
6966 			spin_unlock(&last_ptr->refill_lock);
6967 			goto loop;
6968 		}
6969 
6970 unclustered_alloc:
6971 		spin_lock(&block_group->free_space_ctl->tree_lock);
6972 		if (cached &&
6973 		    block_group->free_space_ctl->free_space <
6974 		    num_bytes + empty_cluster + empty_size) {
6975 			if (block_group->free_space_ctl->free_space >
6976 			    max_extent_size)
6977 				max_extent_size =
6978 					block_group->free_space_ctl->free_space;
6979 			spin_unlock(&block_group->free_space_ctl->tree_lock);
6980 			goto loop;
6981 		}
6982 		spin_unlock(&block_group->free_space_ctl->tree_lock);
6983 
6984 		offset = btrfs_find_space_for_alloc(block_group, search_start,
6985 						    num_bytes, empty_size,
6986 						    &max_extent_size);
6987 		/*
6988 		 * If we didn't find a chunk, and we haven't failed on this
6989 		 * block group before, and this block group is in the middle of
6990 		 * caching and we are ok with waiting, then go ahead and wait
6991 		 * for progress to be made, and set failed_alloc to true.
6992 		 *
6993 		 * If failed_alloc is true then we've already waited on this
6994 		 * block group once and should move on to the next block group.
6995 		 */
6996 		if (!offset && !failed_alloc && !cached &&
6997 		    loop > LOOP_CACHING_NOWAIT) {
6998 			wait_block_group_cache_progress(block_group,
6999 						num_bytes + empty_size);
7000 			failed_alloc = true;
7001 			goto have_block_group;
7002 		} else if (!offset) {
7003 			if (!cached)
7004 				have_caching_bg = true;
7005 			goto loop;
7006 		}
7007 checks:
7008 		search_start = ALIGN(offset, root->stripesize);
7009 
7010 		/* move on to the next group */
7011 		if (search_start + num_bytes >
7012 		    block_group->key.objectid + block_group->key.offset) {
7013 			btrfs_add_free_space(block_group, offset, num_bytes);
7014 			goto loop;
7015 		}
7016 
7017 		if (offset < search_start)
7018 			btrfs_add_free_space(block_group, offset,
7019 					     search_start - offset);
7020 		BUG_ON(offset > search_start);
7021 
7022 		ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7023 						  alloc_type, delalloc);
7024 		if (ret == -EAGAIN) {
7025 			btrfs_add_free_space(block_group, offset, num_bytes);
7026 			goto loop;
7027 		}
7028 
7029 		/* we are all good, lets return */
7030 		ins->objectid = search_start;
7031 		ins->offset = num_bytes;
7032 
7033 		trace_btrfs_reserve_extent(orig_root, block_group,
7034 					   search_start, num_bytes);
7035 		btrfs_release_block_group(block_group, delalloc);
7036 		break;
7037 loop:
7038 		failed_cluster_refill = false;
7039 		failed_alloc = false;
7040 		BUG_ON(index != get_block_group_index(block_group));
7041 		btrfs_release_block_group(block_group, delalloc);
7042 	}
7043 	up_read(&space_info->groups_sem);
7044 
7045 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7046 		goto search;
7047 
7048 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7049 		goto search;
7050 
7051 	/*
7052 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7053 	 *			caching kthreads as we move along
7054 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7055 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7056 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7057 	 *			again
7058 	 */
7059 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7060 		index = 0;
7061 		loop++;
7062 		if (loop == LOOP_ALLOC_CHUNK) {
7063 			struct btrfs_trans_handle *trans;
7064 			int exist = 0;
7065 
7066 			trans = current->journal_info;
7067 			if (trans)
7068 				exist = 1;
7069 			else
7070 				trans = btrfs_join_transaction(root);
7071 
7072 			if (IS_ERR(trans)) {
7073 				ret = PTR_ERR(trans);
7074 				goto out;
7075 			}
7076 
7077 			ret = do_chunk_alloc(trans, root, flags,
7078 					     CHUNK_ALLOC_FORCE);
7079 			/*
7080 			 * Do not bail out on ENOSPC since we
7081 			 * can do more things.
7082 			 */
7083 			if (ret < 0 && ret != -ENOSPC)
7084 				btrfs_abort_transaction(trans,
7085 							root, ret);
7086 			else
7087 				ret = 0;
7088 			if (!exist)
7089 				btrfs_end_transaction(trans, root);
7090 			if (ret)
7091 				goto out;
7092 		}
7093 
7094 		if (loop == LOOP_NO_EMPTY_SIZE) {
7095 			empty_size = 0;
7096 			empty_cluster = 0;
7097 		}
7098 
7099 		goto search;
7100 	} else if (!ins->objectid) {
7101 		ret = -ENOSPC;
7102 	} else if (ins->objectid) {
7103 		ret = 0;
7104 	}
7105 out:
7106 	if (ret == -ENOSPC)
7107 		ins->offset = max_extent_size;
7108 	return ret;
7109 }
7110 
7111 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7112 			    int dump_block_groups)
7113 {
7114 	struct btrfs_block_group_cache *cache;
7115 	int index = 0;
7116 
7117 	spin_lock(&info->lock);
7118 	printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7119 	       info->flags,
7120 	       info->total_bytes - info->bytes_used - info->bytes_pinned -
7121 	       info->bytes_reserved - info->bytes_readonly,
7122 	       (info->full) ? "" : "not ");
7123 	printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7124 	       "reserved=%llu, may_use=%llu, readonly=%llu\n",
7125 	       info->total_bytes, info->bytes_used, info->bytes_pinned,
7126 	       info->bytes_reserved, info->bytes_may_use,
7127 	       info->bytes_readonly);
7128 	spin_unlock(&info->lock);
7129 
7130 	if (!dump_block_groups)
7131 		return;
7132 
7133 	down_read(&info->groups_sem);
7134 again:
7135 	list_for_each_entry(cache, &info->block_groups[index], list) {
7136 		spin_lock(&cache->lock);
7137 		printk(KERN_INFO "BTRFS: "
7138 			   "block group %llu has %llu bytes, "
7139 			   "%llu used %llu pinned %llu reserved %s\n",
7140 		       cache->key.objectid, cache->key.offset,
7141 		       btrfs_block_group_used(&cache->item), cache->pinned,
7142 		       cache->reserved, cache->ro ? "[readonly]" : "");
7143 		btrfs_dump_free_space(cache, bytes);
7144 		spin_unlock(&cache->lock);
7145 	}
7146 	if (++index < BTRFS_NR_RAID_TYPES)
7147 		goto again;
7148 	up_read(&info->groups_sem);
7149 }
7150 
7151 int btrfs_reserve_extent(struct btrfs_root *root,
7152 			 u64 num_bytes, u64 min_alloc_size,
7153 			 u64 empty_size, u64 hint_byte,
7154 			 struct btrfs_key *ins, int is_data, int delalloc)
7155 {
7156 	bool final_tried = false;
7157 	u64 flags;
7158 	int ret;
7159 
7160 	flags = btrfs_get_alloc_profile(root, is_data);
7161 again:
7162 	WARN_ON(num_bytes < root->sectorsize);
7163 	ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7164 			       flags, delalloc);
7165 
7166 	if (ret == -ENOSPC) {
7167 		if (!final_tried && ins->offset) {
7168 			num_bytes = min(num_bytes >> 1, ins->offset);
7169 			num_bytes = round_down(num_bytes, root->sectorsize);
7170 			num_bytes = max(num_bytes, min_alloc_size);
7171 			if (num_bytes == min_alloc_size)
7172 				final_tried = true;
7173 			goto again;
7174 		} else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7175 			struct btrfs_space_info *sinfo;
7176 
7177 			sinfo = __find_space_info(root->fs_info, flags);
7178 			btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7179 				flags, num_bytes);
7180 			if (sinfo)
7181 				dump_space_info(sinfo, num_bytes, 1);
7182 		}
7183 	}
7184 
7185 	return ret;
7186 }
7187 
7188 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7189 					u64 start, u64 len,
7190 					int pin, int delalloc)
7191 {
7192 	struct btrfs_block_group_cache *cache;
7193 	int ret = 0;
7194 
7195 	cache = btrfs_lookup_block_group(root->fs_info, start);
7196 	if (!cache) {
7197 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
7198 			start);
7199 		return -ENOSPC;
7200 	}
7201 
7202 	if (pin)
7203 		pin_down_extent(root, cache, start, len, 1);
7204 	else {
7205 		if (btrfs_test_opt(root, DISCARD))
7206 			ret = btrfs_discard_extent(root, start, len, NULL);
7207 		btrfs_add_free_space(cache, start, len);
7208 		btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7209 	}
7210 
7211 	btrfs_put_block_group(cache);
7212 
7213 	trace_btrfs_reserved_extent_free(root, start, len);
7214 
7215 	return ret;
7216 }
7217 
7218 int btrfs_free_reserved_extent(struct btrfs_root *root,
7219 			       u64 start, u64 len, int delalloc)
7220 {
7221 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7222 }
7223 
7224 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7225 				       u64 start, u64 len)
7226 {
7227 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7228 }
7229 
7230 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7231 				      struct btrfs_root *root,
7232 				      u64 parent, u64 root_objectid,
7233 				      u64 flags, u64 owner, u64 offset,
7234 				      struct btrfs_key *ins, int ref_mod)
7235 {
7236 	int ret;
7237 	struct btrfs_fs_info *fs_info = root->fs_info;
7238 	struct btrfs_extent_item *extent_item;
7239 	struct btrfs_extent_inline_ref *iref;
7240 	struct btrfs_path *path;
7241 	struct extent_buffer *leaf;
7242 	int type;
7243 	u32 size;
7244 
7245 	if (parent > 0)
7246 		type = BTRFS_SHARED_DATA_REF_KEY;
7247 	else
7248 		type = BTRFS_EXTENT_DATA_REF_KEY;
7249 
7250 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7251 
7252 	path = btrfs_alloc_path();
7253 	if (!path)
7254 		return -ENOMEM;
7255 
7256 	path->leave_spinning = 1;
7257 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7258 				      ins, size);
7259 	if (ret) {
7260 		btrfs_free_path(path);
7261 		return ret;
7262 	}
7263 
7264 	leaf = path->nodes[0];
7265 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7266 				     struct btrfs_extent_item);
7267 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7268 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7269 	btrfs_set_extent_flags(leaf, extent_item,
7270 			       flags | BTRFS_EXTENT_FLAG_DATA);
7271 
7272 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7273 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
7274 	if (parent > 0) {
7275 		struct btrfs_shared_data_ref *ref;
7276 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
7277 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7278 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7279 	} else {
7280 		struct btrfs_extent_data_ref *ref;
7281 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7282 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7283 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7284 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7285 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7286 	}
7287 
7288 	btrfs_mark_buffer_dirty(path->nodes[0]);
7289 	btrfs_free_path(path);
7290 
7291 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7292 	if (ret) { /* -ENOENT, logic error */
7293 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7294 			ins->objectid, ins->offset);
7295 		BUG();
7296 	}
7297 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7298 	return ret;
7299 }
7300 
7301 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7302 				     struct btrfs_root *root,
7303 				     u64 parent, u64 root_objectid,
7304 				     u64 flags, struct btrfs_disk_key *key,
7305 				     int level, struct btrfs_key *ins,
7306 				     int no_quota)
7307 {
7308 	int ret;
7309 	struct btrfs_fs_info *fs_info = root->fs_info;
7310 	struct btrfs_extent_item *extent_item;
7311 	struct btrfs_tree_block_info *block_info;
7312 	struct btrfs_extent_inline_ref *iref;
7313 	struct btrfs_path *path;
7314 	struct extent_buffer *leaf;
7315 	u32 size = sizeof(*extent_item) + sizeof(*iref);
7316 	u64 num_bytes = ins->offset;
7317 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7318 						 SKINNY_METADATA);
7319 
7320 	if (!skinny_metadata)
7321 		size += sizeof(*block_info);
7322 
7323 	path = btrfs_alloc_path();
7324 	if (!path) {
7325 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7326 						   root->nodesize);
7327 		return -ENOMEM;
7328 	}
7329 
7330 	path->leave_spinning = 1;
7331 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7332 				      ins, size);
7333 	if (ret) {
7334 		btrfs_free_path(path);
7335 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7336 						   root->nodesize);
7337 		return ret;
7338 	}
7339 
7340 	leaf = path->nodes[0];
7341 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
7342 				     struct btrfs_extent_item);
7343 	btrfs_set_extent_refs(leaf, extent_item, 1);
7344 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7345 	btrfs_set_extent_flags(leaf, extent_item,
7346 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7347 
7348 	if (skinny_metadata) {
7349 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7350 		num_bytes = root->nodesize;
7351 	} else {
7352 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7353 		btrfs_set_tree_block_key(leaf, block_info, key);
7354 		btrfs_set_tree_block_level(leaf, block_info, level);
7355 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7356 	}
7357 
7358 	if (parent > 0) {
7359 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7360 		btrfs_set_extent_inline_ref_type(leaf, iref,
7361 						 BTRFS_SHARED_BLOCK_REF_KEY);
7362 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7363 	} else {
7364 		btrfs_set_extent_inline_ref_type(leaf, iref,
7365 						 BTRFS_TREE_BLOCK_REF_KEY);
7366 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7367 	}
7368 
7369 	btrfs_mark_buffer_dirty(leaf);
7370 	btrfs_free_path(path);
7371 
7372 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7373 				 1);
7374 	if (ret) { /* -ENOENT, logic error */
7375 		btrfs_err(fs_info, "update block group failed for %llu %llu",
7376 			ins->objectid, ins->offset);
7377 		BUG();
7378 	}
7379 
7380 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7381 	return ret;
7382 }
7383 
7384 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7385 				     struct btrfs_root *root,
7386 				     u64 root_objectid, u64 owner,
7387 				     u64 offset, struct btrfs_key *ins)
7388 {
7389 	int ret;
7390 
7391 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7392 
7393 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7394 					 ins->offset, 0,
7395 					 root_objectid, owner, offset,
7396 					 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
7397 	return ret;
7398 }
7399 
7400 /*
7401  * this is used by the tree logging recovery code.  It records that
7402  * an extent has been allocated and makes sure to clear the free
7403  * space cache bits as well
7404  */
7405 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7406 				   struct btrfs_root *root,
7407 				   u64 root_objectid, u64 owner, u64 offset,
7408 				   struct btrfs_key *ins)
7409 {
7410 	int ret;
7411 	struct btrfs_block_group_cache *block_group;
7412 
7413 	/*
7414 	 * Mixed block groups will exclude before processing the log so we only
7415 	 * need to do the exlude dance if this fs isn't mixed.
7416 	 */
7417 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7418 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
7419 		if (ret)
7420 			return ret;
7421 	}
7422 
7423 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7424 	if (!block_group)
7425 		return -EINVAL;
7426 
7427 	ret = btrfs_update_reserved_bytes(block_group, ins->offset,
7428 					  RESERVE_ALLOC_NO_ACCOUNT, 0);
7429 	BUG_ON(ret); /* logic error */
7430 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7431 					 0, owner, offset, ins, 1);
7432 	btrfs_put_block_group(block_group);
7433 	return ret;
7434 }
7435 
7436 static struct extent_buffer *
7437 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7438 		      u64 bytenr, int level)
7439 {
7440 	struct extent_buffer *buf;
7441 
7442 	buf = btrfs_find_create_tree_block(root, bytenr);
7443 	if (!buf)
7444 		return ERR_PTR(-ENOMEM);
7445 	btrfs_set_header_generation(buf, trans->transid);
7446 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
7447 	btrfs_tree_lock(buf);
7448 	clean_tree_block(trans, root->fs_info, buf);
7449 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
7450 
7451 	btrfs_set_lock_blocking(buf);
7452 	btrfs_set_buffer_uptodate(buf);
7453 
7454 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
7455 		buf->log_index = root->log_transid % 2;
7456 		/*
7457 		 * we allow two log transactions at a time, use different
7458 		 * EXENT bit to differentiate dirty pages.
7459 		 */
7460 		if (buf->log_index == 0)
7461 			set_extent_dirty(&root->dirty_log_pages, buf->start,
7462 					buf->start + buf->len - 1, GFP_NOFS);
7463 		else
7464 			set_extent_new(&root->dirty_log_pages, buf->start,
7465 					buf->start + buf->len - 1, GFP_NOFS);
7466 	} else {
7467 		buf->log_index = -1;
7468 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
7469 			 buf->start + buf->len - 1, GFP_NOFS);
7470 	}
7471 	trans->blocks_used++;
7472 	/* this returns a buffer locked for blocking */
7473 	return buf;
7474 }
7475 
7476 static struct btrfs_block_rsv *
7477 use_block_rsv(struct btrfs_trans_handle *trans,
7478 	      struct btrfs_root *root, u32 blocksize)
7479 {
7480 	struct btrfs_block_rsv *block_rsv;
7481 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
7482 	int ret;
7483 	bool global_updated = false;
7484 
7485 	block_rsv = get_block_rsv(trans, root);
7486 
7487 	if (unlikely(block_rsv->size == 0))
7488 		goto try_reserve;
7489 again:
7490 	ret = block_rsv_use_bytes(block_rsv, blocksize);
7491 	if (!ret)
7492 		return block_rsv;
7493 
7494 	if (block_rsv->failfast)
7495 		return ERR_PTR(ret);
7496 
7497 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7498 		global_updated = true;
7499 		update_global_block_rsv(root->fs_info);
7500 		goto again;
7501 	}
7502 
7503 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7504 		static DEFINE_RATELIMIT_STATE(_rs,
7505 				DEFAULT_RATELIMIT_INTERVAL * 10,
7506 				/*DEFAULT_RATELIMIT_BURST*/ 1);
7507 		if (__ratelimit(&_rs))
7508 			WARN(1, KERN_DEBUG
7509 				"BTRFS: block rsv returned %d\n", ret);
7510 	}
7511 try_reserve:
7512 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7513 				     BTRFS_RESERVE_NO_FLUSH);
7514 	if (!ret)
7515 		return block_rsv;
7516 	/*
7517 	 * If we couldn't reserve metadata bytes try and use some from
7518 	 * the global reserve if its space type is the same as the global
7519 	 * reservation.
7520 	 */
7521 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7522 	    block_rsv->space_info == global_rsv->space_info) {
7523 		ret = block_rsv_use_bytes(global_rsv, blocksize);
7524 		if (!ret)
7525 			return global_rsv;
7526 	}
7527 	return ERR_PTR(ret);
7528 }
7529 
7530 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7531 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
7532 {
7533 	block_rsv_add_bytes(block_rsv, blocksize, 0);
7534 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
7535 }
7536 
7537 /*
7538  * finds a free extent and does all the dirty work required for allocation
7539  * returns the key for the extent through ins, and a tree buffer for
7540  * the first block of the extent through buf.
7541  *
7542  * returns the tree buffer or an ERR_PTR on error.
7543  */
7544 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7545 					struct btrfs_root *root,
7546 					u64 parent, u64 root_objectid,
7547 					struct btrfs_disk_key *key, int level,
7548 					u64 hint, u64 empty_size)
7549 {
7550 	struct btrfs_key ins;
7551 	struct btrfs_block_rsv *block_rsv;
7552 	struct extent_buffer *buf;
7553 	struct btrfs_delayed_extent_op *extent_op;
7554 	u64 flags = 0;
7555 	int ret;
7556 	u32 blocksize = root->nodesize;
7557 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7558 						 SKINNY_METADATA);
7559 
7560 	if (btrfs_test_is_dummy_root(root)) {
7561 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
7562 					    level);
7563 		if (!IS_ERR(buf))
7564 			root->alloc_bytenr += blocksize;
7565 		return buf;
7566 	}
7567 
7568 	block_rsv = use_block_rsv(trans, root, blocksize);
7569 	if (IS_ERR(block_rsv))
7570 		return ERR_CAST(block_rsv);
7571 
7572 	ret = btrfs_reserve_extent(root, blocksize, blocksize,
7573 				   empty_size, hint, &ins, 0, 0);
7574 	if (ret)
7575 		goto out_unuse;
7576 
7577 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
7578 	if (IS_ERR(buf)) {
7579 		ret = PTR_ERR(buf);
7580 		goto out_free_reserved;
7581 	}
7582 
7583 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7584 		if (parent == 0)
7585 			parent = ins.objectid;
7586 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7587 	} else
7588 		BUG_ON(parent > 0);
7589 
7590 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7591 		extent_op = btrfs_alloc_delayed_extent_op();
7592 		if (!extent_op) {
7593 			ret = -ENOMEM;
7594 			goto out_free_buf;
7595 		}
7596 		if (key)
7597 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
7598 		else
7599 			memset(&extent_op->key, 0, sizeof(extent_op->key));
7600 		extent_op->flags_to_set = flags;
7601 		if (skinny_metadata)
7602 			extent_op->update_key = 0;
7603 		else
7604 			extent_op->update_key = 1;
7605 		extent_op->update_flags = 1;
7606 		extent_op->is_data = 0;
7607 		extent_op->level = level;
7608 
7609 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7610 						 ins.objectid, ins.offset,
7611 						 parent, root_objectid, level,
7612 						 BTRFS_ADD_DELAYED_EXTENT,
7613 						 extent_op, 0);
7614 		if (ret)
7615 			goto out_free_delayed;
7616 	}
7617 	return buf;
7618 
7619 out_free_delayed:
7620 	btrfs_free_delayed_extent_op(extent_op);
7621 out_free_buf:
7622 	free_extent_buffer(buf);
7623 out_free_reserved:
7624 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7625 out_unuse:
7626 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7627 	return ERR_PTR(ret);
7628 }
7629 
7630 struct walk_control {
7631 	u64 refs[BTRFS_MAX_LEVEL];
7632 	u64 flags[BTRFS_MAX_LEVEL];
7633 	struct btrfs_key update_progress;
7634 	int stage;
7635 	int level;
7636 	int shared_level;
7637 	int update_ref;
7638 	int keep_locks;
7639 	int reada_slot;
7640 	int reada_count;
7641 	int for_reloc;
7642 };
7643 
7644 #define DROP_REFERENCE	1
7645 #define UPDATE_BACKREF	2
7646 
7647 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7648 				     struct btrfs_root *root,
7649 				     struct walk_control *wc,
7650 				     struct btrfs_path *path)
7651 {
7652 	u64 bytenr;
7653 	u64 generation;
7654 	u64 refs;
7655 	u64 flags;
7656 	u32 nritems;
7657 	u32 blocksize;
7658 	struct btrfs_key key;
7659 	struct extent_buffer *eb;
7660 	int ret;
7661 	int slot;
7662 	int nread = 0;
7663 
7664 	if (path->slots[wc->level] < wc->reada_slot) {
7665 		wc->reada_count = wc->reada_count * 2 / 3;
7666 		wc->reada_count = max(wc->reada_count, 2);
7667 	} else {
7668 		wc->reada_count = wc->reada_count * 3 / 2;
7669 		wc->reada_count = min_t(int, wc->reada_count,
7670 					BTRFS_NODEPTRS_PER_BLOCK(root));
7671 	}
7672 
7673 	eb = path->nodes[wc->level];
7674 	nritems = btrfs_header_nritems(eb);
7675 	blocksize = root->nodesize;
7676 
7677 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7678 		if (nread >= wc->reada_count)
7679 			break;
7680 
7681 		cond_resched();
7682 		bytenr = btrfs_node_blockptr(eb, slot);
7683 		generation = btrfs_node_ptr_generation(eb, slot);
7684 
7685 		if (slot == path->slots[wc->level])
7686 			goto reada;
7687 
7688 		if (wc->stage == UPDATE_BACKREF &&
7689 		    generation <= root->root_key.offset)
7690 			continue;
7691 
7692 		/* We don't lock the tree block, it's OK to be racy here */
7693 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
7694 					       wc->level - 1, 1, &refs,
7695 					       &flags);
7696 		/* We don't care about errors in readahead. */
7697 		if (ret < 0)
7698 			continue;
7699 		BUG_ON(refs == 0);
7700 
7701 		if (wc->stage == DROP_REFERENCE) {
7702 			if (refs == 1)
7703 				goto reada;
7704 
7705 			if (wc->level == 1 &&
7706 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7707 				continue;
7708 			if (!wc->update_ref ||
7709 			    generation <= root->root_key.offset)
7710 				continue;
7711 			btrfs_node_key_to_cpu(eb, &key, slot);
7712 			ret = btrfs_comp_cpu_keys(&key,
7713 						  &wc->update_progress);
7714 			if (ret < 0)
7715 				continue;
7716 		} else {
7717 			if (wc->level == 1 &&
7718 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7719 				continue;
7720 		}
7721 reada:
7722 		readahead_tree_block(root, bytenr);
7723 		nread++;
7724 	}
7725 	wc->reada_slot = slot;
7726 }
7727 
7728 /*
7729  * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7730  * for later qgroup accounting.
7731  *
7732  * Current, this function does nothing.
7733  */
7734 static int account_leaf_items(struct btrfs_trans_handle *trans,
7735 			      struct btrfs_root *root,
7736 			      struct extent_buffer *eb)
7737 {
7738 	int nr = btrfs_header_nritems(eb);
7739 	int i, extent_type;
7740 	struct btrfs_key key;
7741 	struct btrfs_file_extent_item *fi;
7742 	u64 bytenr, num_bytes;
7743 
7744 	for (i = 0; i < nr; i++) {
7745 		btrfs_item_key_to_cpu(eb, &key, i);
7746 
7747 		if (key.type != BTRFS_EXTENT_DATA_KEY)
7748 			continue;
7749 
7750 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7751 		/* filter out non qgroup-accountable extents  */
7752 		extent_type = btrfs_file_extent_type(eb, fi);
7753 
7754 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7755 			continue;
7756 
7757 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7758 		if (!bytenr)
7759 			continue;
7760 
7761 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7762 	}
7763 	return 0;
7764 }
7765 
7766 /*
7767  * Walk up the tree from the bottom, freeing leaves and any interior
7768  * nodes which have had all slots visited. If a node (leaf or
7769  * interior) is freed, the node above it will have it's slot
7770  * incremented. The root node will never be freed.
7771  *
7772  * At the end of this function, we should have a path which has all
7773  * slots incremented to the next position for a search. If we need to
7774  * read a new node it will be NULL and the node above it will have the
7775  * correct slot selected for a later read.
7776  *
7777  * If we increment the root nodes slot counter past the number of
7778  * elements, 1 is returned to signal completion of the search.
7779  */
7780 static int adjust_slots_upwards(struct btrfs_root *root,
7781 				struct btrfs_path *path, int root_level)
7782 {
7783 	int level = 0;
7784 	int nr, slot;
7785 	struct extent_buffer *eb;
7786 
7787 	if (root_level == 0)
7788 		return 1;
7789 
7790 	while (level <= root_level) {
7791 		eb = path->nodes[level];
7792 		nr = btrfs_header_nritems(eb);
7793 		path->slots[level]++;
7794 		slot = path->slots[level];
7795 		if (slot >= nr || level == 0) {
7796 			/*
7797 			 * Don't free the root -  we will detect this
7798 			 * condition after our loop and return a
7799 			 * positive value for caller to stop walking the tree.
7800 			 */
7801 			if (level != root_level) {
7802 				btrfs_tree_unlock_rw(eb, path->locks[level]);
7803 				path->locks[level] = 0;
7804 
7805 				free_extent_buffer(eb);
7806 				path->nodes[level] = NULL;
7807 				path->slots[level] = 0;
7808 			}
7809 		} else {
7810 			/*
7811 			 * We have a valid slot to walk back down
7812 			 * from. Stop here so caller can process these
7813 			 * new nodes.
7814 			 */
7815 			break;
7816 		}
7817 
7818 		level++;
7819 	}
7820 
7821 	eb = path->nodes[root_level];
7822 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
7823 		return 1;
7824 
7825 	return 0;
7826 }
7827 
7828 /*
7829  * root_eb is the subtree root and is locked before this function is called.
7830  * TODO: Modify this function to mark all (including complete shared node)
7831  * to dirty_extent_root to allow it get accounted in qgroup.
7832  */
7833 static int account_shared_subtree(struct btrfs_trans_handle *trans,
7834 				  struct btrfs_root *root,
7835 				  struct extent_buffer *root_eb,
7836 				  u64 root_gen,
7837 				  int root_level)
7838 {
7839 	int ret = 0;
7840 	int level;
7841 	struct extent_buffer *eb = root_eb;
7842 	struct btrfs_path *path = NULL;
7843 
7844 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7845 	BUG_ON(root_eb == NULL);
7846 
7847 	if (!root->fs_info->quota_enabled)
7848 		return 0;
7849 
7850 	if (!extent_buffer_uptodate(root_eb)) {
7851 		ret = btrfs_read_buffer(root_eb, root_gen);
7852 		if (ret)
7853 			goto out;
7854 	}
7855 
7856 	if (root_level == 0) {
7857 		ret = account_leaf_items(trans, root, root_eb);
7858 		goto out;
7859 	}
7860 
7861 	path = btrfs_alloc_path();
7862 	if (!path)
7863 		return -ENOMEM;
7864 
7865 	/*
7866 	 * Walk down the tree.  Missing extent blocks are filled in as
7867 	 * we go. Metadata is accounted every time we read a new
7868 	 * extent block.
7869 	 *
7870 	 * When we reach a leaf, we account for file extent items in it,
7871 	 * walk back up the tree (adjusting slot pointers as we go)
7872 	 * and restart the search process.
7873 	 */
7874 	extent_buffer_get(root_eb); /* For path */
7875 	path->nodes[root_level] = root_eb;
7876 	path->slots[root_level] = 0;
7877 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7878 walk_down:
7879 	level = root_level;
7880 	while (level >= 0) {
7881 		if (path->nodes[level] == NULL) {
7882 			int parent_slot;
7883 			u64 child_gen;
7884 			u64 child_bytenr;
7885 
7886 			/* We need to get child blockptr/gen from
7887 			 * parent before we can read it. */
7888 			eb = path->nodes[level + 1];
7889 			parent_slot = path->slots[level + 1];
7890 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7891 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7892 
7893 			eb = read_tree_block(root, child_bytenr, child_gen);
7894 			if (IS_ERR(eb)) {
7895 				ret = PTR_ERR(eb);
7896 				goto out;
7897 			} else if (!extent_buffer_uptodate(eb)) {
7898 				free_extent_buffer(eb);
7899 				ret = -EIO;
7900 				goto out;
7901 			}
7902 
7903 			path->nodes[level] = eb;
7904 			path->slots[level] = 0;
7905 
7906 			btrfs_tree_read_lock(eb);
7907 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7908 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7909 		}
7910 
7911 		if (level == 0) {
7912 			ret = account_leaf_items(trans, root, path->nodes[level]);
7913 			if (ret)
7914 				goto out;
7915 
7916 			/* Nonzero return here means we completed our search */
7917 			ret = adjust_slots_upwards(root, path, root_level);
7918 			if (ret)
7919 				break;
7920 
7921 			/* Restart search with new slots */
7922 			goto walk_down;
7923 		}
7924 
7925 		level--;
7926 	}
7927 
7928 	ret = 0;
7929 out:
7930 	btrfs_free_path(path);
7931 
7932 	return ret;
7933 }
7934 
7935 /*
7936  * helper to process tree block while walking down the tree.
7937  *
7938  * when wc->stage == UPDATE_BACKREF, this function updates
7939  * back refs for pointers in the block.
7940  *
7941  * NOTE: return value 1 means we should stop walking down.
7942  */
7943 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7944 				   struct btrfs_root *root,
7945 				   struct btrfs_path *path,
7946 				   struct walk_control *wc, int lookup_info)
7947 {
7948 	int level = wc->level;
7949 	struct extent_buffer *eb = path->nodes[level];
7950 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7951 	int ret;
7952 
7953 	if (wc->stage == UPDATE_BACKREF &&
7954 	    btrfs_header_owner(eb) != root->root_key.objectid)
7955 		return 1;
7956 
7957 	/*
7958 	 * when reference count of tree block is 1, it won't increase
7959 	 * again. once full backref flag is set, we never clear it.
7960 	 */
7961 	if (lookup_info &&
7962 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7963 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7964 		BUG_ON(!path->locks[level]);
7965 		ret = btrfs_lookup_extent_info(trans, root,
7966 					       eb->start, level, 1,
7967 					       &wc->refs[level],
7968 					       &wc->flags[level]);
7969 		BUG_ON(ret == -ENOMEM);
7970 		if (ret)
7971 			return ret;
7972 		BUG_ON(wc->refs[level] == 0);
7973 	}
7974 
7975 	if (wc->stage == DROP_REFERENCE) {
7976 		if (wc->refs[level] > 1)
7977 			return 1;
7978 
7979 		if (path->locks[level] && !wc->keep_locks) {
7980 			btrfs_tree_unlock_rw(eb, path->locks[level]);
7981 			path->locks[level] = 0;
7982 		}
7983 		return 0;
7984 	}
7985 
7986 	/* wc->stage == UPDATE_BACKREF */
7987 	if (!(wc->flags[level] & flag)) {
7988 		BUG_ON(!path->locks[level]);
7989 		ret = btrfs_inc_ref(trans, root, eb, 1);
7990 		BUG_ON(ret); /* -ENOMEM */
7991 		ret = btrfs_dec_ref(trans, root, eb, 0);
7992 		BUG_ON(ret); /* -ENOMEM */
7993 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7994 						  eb->len, flag,
7995 						  btrfs_header_level(eb), 0);
7996 		BUG_ON(ret); /* -ENOMEM */
7997 		wc->flags[level] |= flag;
7998 	}
7999 
8000 	/*
8001 	 * the block is shared by multiple trees, so it's not good to
8002 	 * keep the tree lock
8003 	 */
8004 	if (path->locks[level] && level > 0) {
8005 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8006 		path->locks[level] = 0;
8007 	}
8008 	return 0;
8009 }
8010 
8011 /*
8012  * helper to process tree block pointer.
8013  *
8014  * when wc->stage == DROP_REFERENCE, this function checks
8015  * reference count of the block pointed to. if the block
8016  * is shared and we need update back refs for the subtree
8017  * rooted at the block, this function changes wc->stage to
8018  * UPDATE_BACKREF. if the block is shared and there is no
8019  * need to update back, this function drops the reference
8020  * to the block.
8021  *
8022  * NOTE: return value 1 means we should stop walking down.
8023  */
8024 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8025 				 struct btrfs_root *root,
8026 				 struct btrfs_path *path,
8027 				 struct walk_control *wc, int *lookup_info)
8028 {
8029 	u64 bytenr;
8030 	u64 generation;
8031 	u64 parent;
8032 	u32 blocksize;
8033 	struct btrfs_key key;
8034 	struct extent_buffer *next;
8035 	int level = wc->level;
8036 	int reada = 0;
8037 	int ret = 0;
8038 	bool need_account = false;
8039 
8040 	generation = btrfs_node_ptr_generation(path->nodes[level],
8041 					       path->slots[level]);
8042 	/*
8043 	 * if the lower level block was created before the snapshot
8044 	 * was created, we know there is no need to update back refs
8045 	 * for the subtree
8046 	 */
8047 	if (wc->stage == UPDATE_BACKREF &&
8048 	    generation <= root->root_key.offset) {
8049 		*lookup_info = 1;
8050 		return 1;
8051 	}
8052 
8053 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8054 	blocksize = root->nodesize;
8055 
8056 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8057 	if (!next) {
8058 		next = btrfs_find_create_tree_block(root, bytenr);
8059 		if (!next)
8060 			return -ENOMEM;
8061 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8062 					       level - 1);
8063 		reada = 1;
8064 	}
8065 	btrfs_tree_lock(next);
8066 	btrfs_set_lock_blocking(next);
8067 
8068 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8069 				       &wc->refs[level - 1],
8070 				       &wc->flags[level - 1]);
8071 	if (ret < 0) {
8072 		btrfs_tree_unlock(next);
8073 		return ret;
8074 	}
8075 
8076 	if (unlikely(wc->refs[level - 1] == 0)) {
8077 		btrfs_err(root->fs_info, "Missing references.");
8078 		BUG();
8079 	}
8080 	*lookup_info = 0;
8081 
8082 	if (wc->stage == DROP_REFERENCE) {
8083 		if (wc->refs[level - 1] > 1) {
8084 			need_account = true;
8085 			if (level == 1 &&
8086 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8087 				goto skip;
8088 
8089 			if (!wc->update_ref ||
8090 			    generation <= root->root_key.offset)
8091 				goto skip;
8092 
8093 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8094 					      path->slots[level]);
8095 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8096 			if (ret < 0)
8097 				goto skip;
8098 
8099 			wc->stage = UPDATE_BACKREF;
8100 			wc->shared_level = level - 1;
8101 		}
8102 	} else {
8103 		if (level == 1 &&
8104 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8105 			goto skip;
8106 	}
8107 
8108 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8109 		btrfs_tree_unlock(next);
8110 		free_extent_buffer(next);
8111 		next = NULL;
8112 		*lookup_info = 1;
8113 	}
8114 
8115 	if (!next) {
8116 		if (reada && level == 1)
8117 			reada_walk_down(trans, root, wc, path);
8118 		next = read_tree_block(root, bytenr, generation);
8119 		if (IS_ERR(next)) {
8120 			return PTR_ERR(next);
8121 		} else if (!extent_buffer_uptodate(next)) {
8122 			free_extent_buffer(next);
8123 			return -EIO;
8124 		}
8125 		btrfs_tree_lock(next);
8126 		btrfs_set_lock_blocking(next);
8127 	}
8128 
8129 	level--;
8130 	BUG_ON(level != btrfs_header_level(next));
8131 	path->nodes[level] = next;
8132 	path->slots[level] = 0;
8133 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8134 	wc->level = level;
8135 	if (wc->level == 1)
8136 		wc->reada_slot = 0;
8137 	return 0;
8138 skip:
8139 	wc->refs[level - 1] = 0;
8140 	wc->flags[level - 1] = 0;
8141 	if (wc->stage == DROP_REFERENCE) {
8142 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8143 			parent = path->nodes[level]->start;
8144 		} else {
8145 			BUG_ON(root->root_key.objectid !=
8146 			       btrfs_header_owner(path->nodes[level]));
8147 			parent = 0;
8148 		}
8149 
8150 		if (need_account) {
8151 			ret = account_shared_subtree(trans, root, next,
8152 						     generation, level - 1);
8153 			if (ret) {
8154 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8155 					"%d accounting shared subtree. Quota "
8156 					"is out of sync, rescan required.\n",
8157 					root->fs_info->sb->s_id, ret);
8158 			}
8159 		}
8160 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8161 				root->root_key.objectid, level - 1, 0, 0);
8162 		BUG_ON(ret); /* -ENOMEM */
8163 	}
8164 	btrfs_tree_unlock(next);
8165 	free_extent_buffer(next);
8166 	*lookup_info = 1;
8167 	return 1;
8168 }
8169 
8170 /*
8171  * helper to process tree block while walking up the tree.
8172  *
8173  * when wc->stage == DROP_REFERENCE, this function drops
8174  * reference count on the block.
8175  *
8176  * when wc->stage == UPDATE_BACKREF, this function changes
8177  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8178  * to UPDATE_BACKREF previously while processing the block.
8179  *
8180  * NOTE: return value 1 means we should stop walking up.
8181  */
8182 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8183 				 struct btrfs_root *root,
8184 				 struct btrfs_path *path,
8185 				 struct walk_control *wc)
8186 {
8187 	int ret;
8188 	int level = wc->level;
8189 	struct extent_buffer *eb = path->nodes[level];
8190 	u64 parent = 0;
8191 
8192 	if (wc->stage == UPDATE_BACKREF) {
8193 		BUG_ON(wc->shared_level < level);
8194 		if (level < wc->shared_level)
8195 			goto out;
8196 
8197 		ret = find_next_key(path, level + 1, &wc->update_progress);
8198 		if (ret > 0)
8199 			wc->update_ref = 0;
8200 
8201 		wc->stage = DROP_REFERENCE;
8202 		wc->shared_level = -1;
8203 		path->slots[level] = 0;
8204 
8205 		/*
8206 		 * check reference count again if the block isn't locked.
8207 		 * we should start walking down the tree again if reference
8208 		 * count is one.
8209 		 */
8210 		if (!path->locks[level]) {
8211 			BUG_ON(level == 0);
8212 			btrfs_tree_lock(eb);
8213 			btrfs_set_lock_blocking(eb);
8214 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8215 
8216 			ret = btrfs_lookup_extent_info(trans, root,
8217 						       eb->start, level, 1,
8218 						       &wc->refs[level],
8219 						       &wc->flags[level]);
8220 			if (ret < 0) {
8221 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8222 				path->locks[level] = 0;
8223 				return ret;
8224 			}
8225 			BUG_ON(wc->refs[level] == 0);
8226 			if (wc->refs[level] == 1) {
8227 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8228 				path->locks[level] = 0;
8229 				return 1;
8230 			}
8231 		}
8232 	}
8233 
8234 	/* wc->stage == DROP_REFERENCE */
8235 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8236 
8237 	if (wc->refs[level] == 1) {
8238 		if (level == 0) {
8239 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8240 				ret = btrfs_dec_ref(trans, root, eb, 1);
8241 			else
8242 				ret = btrfs_dec_ref(trans, root, eb, 0);
8243 			BUG_ON(ret); /* -ENOMEM */
8244 			ret = account_leaf_items(trans, root, eb);
8245 			if (ret) {
8246 				printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8247 					"%d accounting leaf items. Quota "
8248 					"is out of sync, rescan required.\n",
8249 					root->fs_info->sb->s_id, ret);
8250 			}
8251 		}
8252 		/* make block locked assertion in clean_tree_block happy */
8253 		if (!path->locks[level] &&
8254 		    btrfs_header_generation(eb) == trans->transid) {
8255 			btrfs_tree_lock(eb);
8256 			btrfs_set_lock_blocking(eb);
8257 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8258 		}
8259 		clean_tree_block(trans, root->fs_info, eb);
8260 	}
8261 
8262 	if (eb == root->node) {
8263 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8264 			parent = eb->start;
8265 		else
8266 			BUG_ON(root->root_key.objectid !=
8267 			       btrfs_header_owner(eb));
8268 	} else {
8269 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8270 			parent = path->nodes[level + 1]->start;
8271 		else
8272 			BUG_ON(root->root_key.objectid !=
8273 			       btrfs_header_owner(path->nodes[level + 1]));
8274 	}
8275 
8276 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8277 out:
8278 	wc->refs[level] = 0;
8279 	wc->flags[level] = 0;
8280 	return 0;
8281 }
8282 
8283 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8284 				   struct btrfs_root *root,
8285 				   struct btrfs_path *path,
8286 				   struct walk_control *wc)
8287 {
8288 	int level = wc->level;
8289 	int lookup_info = 1;
8290 	int ret;
8291 
8292 	while (level >= 0) {
8293 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
8294 		if (ret > 0)
8295 			break;
8296 
8297 		if (level == 0)
8298 			break;
8299 
8300 		if (path->slots[level] >=
8301 		    btrfs_header_nritems(path->nodes[level]))
8302 			break;
8303 
8304 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
8305 		if (ret > 0) {
8306 			path->slots[level]++;
8307 			continue;
8308 		} else if (ret < 0)
8309 			return ret;
8310 		level = wc->level;
8311 	}
8312 	return 0;
8313 }
8314 
8315 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8316 				 struct btrfs_root *root,
8317 				 struct btrfs_path *path,
8318 				 struct walk_control *wc, int max_level)
8319 {
8320 	int level = wc->level;
8321 	int ret;
8322 
8323 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8324 	while (level < max_level && path->nodes[level]) {
8325 		wc->level = level;
8326 		if (path->slots[level] + 1 <
8327 		    btrfs_header_nritems(path->nodes[level])) {
8328 			path->slots[level]++;
8329 			return 0;
8330 		} else {
8331 			ret = walk_up_proc(trans, root, path, wc);
8332 			if (ret > 0)
8333 				return 0;
8334 
8335 			if (path->locks[level]) {
8336 				btrfs_tree_unlock_rw(path->nodes[level],
8337 						     path->locks[level]);
8338 				path->locks[level] = 0;
8339 			}
8340 			free_extent_buffer(path->nodes[level]);
8341 			path->nodes[level] = NULL;
8342 			level++;
8343 		}
8344 	}
8345 	return 1;
8346 }
8347 
8348 /*
8349  * drop a subvolume tree.
8350  *
8351  * this function traverses the tree freeing any blocks that only
8352  * referenced by the tree.
8353  *
8354  * when a shared tree block is found. this function decreases its
8355  * reference count by one. if update_ref is true, this function
8356  * also make sure backrefs for the shared block and all lower level
8357  * blocks are properly updated.
8358  *
8359  * If called with for_reloc == 0, may exit early with -EAGAIN
8360  */
8361 int btrfs_drop_snapshot(struct btrfs_root *root,
8362 			 struct btrfs_block_rsv *block_rsv, int update_ref,
8363 			 int for_reloc)
8364 {
8365 	struct btrfs_path *path;
8366 	struct btrfs_trans_handle *trans;
8367 	struct btrfs_root *tree_root = root->fs_info->tree_root;
8368 	struct btrfs_root_item *root_item = &root->root_item;
8369 	struct walk_control *wc;
8370 	struct btrfs_key key;
8371 	int err = 0;
8372 	int ret;
8373 	int level;
8374 	bool root_dropped = false;
8375 
8376 	btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8377 
8378 	path = btrfs_alloc_path();
8379 	if (!path) {
8380 		err = -ENOMEM;
8381 		goto out;
8382 	}
8383 
8384 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8385 	if (!wc) {
8386 		btrfs_free_path(path);
8387 		err = -ENOMEM;
8388 		goto out;
8389 	}
8390 
8391 	trans = btrfs_start_transaction(tree_root, 0);
8392 	if (IS_ERR(trans)) {
8393 		err = PTR_ERR(trans);
8394 		goto out_free;
8395 	}
8396 
8397 	if (block_rsv)
8398 		trans->block_rsv = block_rsv;
8399 
8400 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
8401 		level = btrfs_header_level(root->node);
8402 		path->nodes[level] = btrfs_lock_root_node(root);
8403 		btrfs_set_lock_blocking(path->nodes[level]);
8404 		path->slots[level] = 0;
8405 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8406 		memset(&wc->update_progress, 0,
8407 		       sizeof(wc->update_progress));
8408 	} else {
8409 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
8410 		memcpy(&wc->update_progress, &key,
8411 		       sizeof(wc->update_progress));
8412 
8413 		level = root_item->drop_level;
8414 		BUG_ON(level == 0);
8415 		path->lowest_level = level;
8416 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8417 		path->lowest_level = 0;
8418 		if (ret < 0) {
8419 			err = ret;
8420 			goto out_end_trans;
8421 		}
8422 		WARN_ON(ret > 0);
8423 
8424 		/*
8425 		 * unlock our path, this is safe because only this
8426 		 * function is allowed to delete this snapshot
8427 		 */
8428 		btrfs_unlock_up_safe(path, 0);
8429 
8430 		level = btrfs_header_level(root->node);
8431 		while (1) {
8432 			btrfs_tree_lock(path->nodes[level]);
8433 			btrfs_set_lock_blocking(path->nodes[level]);
8434 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8435 
8436 			ret = btrfs_lookup_extent_info(trans, root,
8437 						path->nodes[level]->start,
8438 						level, 1, &wc->refs[level],
8439 						&wc->flags[level]);
8440 			if (ret < 0) {
8441 				err = ret;
8442 				goto out_end_trans;
8443 			}
8444 			BUG_ON(wc->refs[level] == 0);
8445 
8446 			if (level == root_item->drop_level)
8447 				break;
8448 
8449 			btrfs_tree_unlock(path->nodes[level]);
8450 			path->locks[level] = 0;
8451 			WARN_ON(wc->refs[level] != 1);
8452 			level--;
8453 		}
8454 	}
8455 
8456 	wc->level = level;
8457 	wc->shared_level = -1;
8458 	wc->stage = DROP_REFERENCE;
8459 	wc->update_ref = update_ref;
8460 	wc->keep_locks = 0;
8461 	wc->for_reloc = for_reloc;
8462 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8463 
8464 	while (1) {
8465 
8466 		ret = walk_down_tree(trans, root, path, wc);
8467 		if (ret < 0) {
8468 			err = ret;
8469 			break;
8470 		}
8471 
8472 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8473 		if (ret < 0) {
8474 			err = ret;
8475 			break;
8476 		}
8477 
8478 		if (ret > 0) {
8479 			BUG_ON(wc->stage != DROP_REFERENCE);
8480 			break;
8481 		}
8482 
8483 		if (wc->stage == DROP_REFERENCE) {
8484 			level = wc->level;
8485 			btrfs_node_key(path->nodes[level],
8486 				       &root_item->drop_progress,
8487 				       path->slots[level]);
8488 			root_item->drop_level = level;
8489 		}
8490 
8491 		BUG_ON(wc->level == 0);
8492 		if (btrfs_should_end_transaction(trans, tree_root) ||
8493 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
8494 			ret = btrfs_update_root(trans, tree_root,
8495 						&root->root_key,
8496 						root_item);
8497 			if (ret) {
8498 				btrfs_abort_transaction(trans, tree_root, ret);
8499 				err = ret;
8500 				goto out_end_trans;
8501 			}
8502 
8503 			btrfs_end_transaction_throttle(trans, tree_root);
8504 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
8505 				pr_debug("BTRFS: drop snapshot early exit\n");
8506 				err = -EAGAIN;
8507 				goto out_free;
8508 			}
8509 
8510 			trans = btrfs_start_transaction(tree_root, 0);
8511 			if (IS_ERR(trans)) {
8512 				err = PTR_ERR(trans);
8513 				goto out_free;
8514 			}
8515 			if (block_rsv)
8516 				trans->block_rsv = block_rsv;
8517 		}
8518 	}
8519 	btrfs_release_path(path);
8520 	if (err)
8521 		goto out_end_trans;
8522 
8523 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
8524 	if (ret) {
8525 		btrfs_abort_transaction(trans, tree_root, ret);
8526 		goto out_end_trans;
8527 	}
8528 
8529 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
8530 		ret = btrfs_find_root(tree_root, &root->root_key, path,
8531 				      NULL, NULL);
8532 		if (ret < 0) {
8533 			btrfs_abort_transaction(trans, tree_root, ret);
8534 			err = ret;
8535 			goto out_end_trans;
8536 		} else if (ret > 0) {
8537 			/* if we fail to delete the orphan item this time
8538 			 * around, it'll get picked up the next time.
8539 			 *
8540 			 * The most common failure here is just -ENOENT.
8541 			 */
8542 			btrfs_del_orphan_item(trans, tree_root,
8543 					      root->root_key.objectid);
8544 		}
8545 	}
8546 
8547 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
8548 		btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
8549 	} else {
8550 		free_extent_buffer(root->node);
8551 		free_extent_buffer(root->commit_root);
8552 		btrfs_put_fs_root(root);
8553 	}
8554 	root_dropped = true;
8555 out_end_trans:
8556 	btrfs_end_transaction_throttle(trans, tree_root);
8557 out_free:
8558 	kfree(wc);
8559 	btrfs_free_path(path);
8560 out:
8561 	/*
8562 	 * So if we need to stop dropping the snapshot for whatever reason we
8563 	 * need to make sure to add it back to the dead root list so that we
8564 	 * keep trying to do the work later.  This also cleans up roots if we
8565 	 * don't have it in the radix (like when we recover after a power fail
8566 	 * or unmount) so we don't leak memory.
8567 	 */
8568 	if (!for_reloc && root_dropped == false)
8569 		btrfs_add_dead_root(root);
8570 	if (err && err != -EAGAIN)
8571 		btrfs_std_error(root->fs_info, err);
8572 	return err;
8573 }
8574 
8575 /*
8576  * drop subtree rooted at tree block 'node'.
8577  *
8578  * NOTE: this function will unlock and release tree block 'node'
8579  * only used by relocation code
8580  */
8581 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8582 			struct btrfs_root *root,
8583 			struct extent_buffer *node,
8584 			struct extent_buffer *parent)
8585 {
8586 	struct btrfs_path *path;
8587 	struct walk_control *wc;
8588 	int level;
8589 	int parent_level;
8590 	int ret = 0;
8591 	int wret;
8592 
8593 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8594 
8595 	path = btrfs_alloc_path();
8596 	if (!path)
8597 		return -ENOMEM;
8598 
8599 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
8600 	if (!wc) {
8601 		btrfs_free_path(path);
8602 		return -ENOMEM;
8603 	}
8604 
8605 	btrfs_assert_tree_locked(parent);
8606 	parent_level = btrfs_header_level(parent);
8607 	extent_buffer_get(parent);
8608 	path->nodes[parent_level] = parent;
8609 	path->slots[parent_level] = btrfs_header_nritems(parent);
8610 
8611 	btrfs_assert_tree_locked(node);
8612 	level = btrfs_header_level(node);
8613 	path->nodes[level] = node;
8614 	path->slots[level] = 0;
8615 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8616 
8617 	wc->refs[parent_level] = 1;
8618 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8619 	wc->level = level;
8620 	wc->shared_level = -1;
8621 	wc->stage = DROP_REFERENCE;
8622 	wc->update_ref = 0;
8623 	wc->keep_locks = 1;
8624 	wc->for_reloc = 1;
8625 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
8626 
8627 	while (1) {
8628 		wret = walk_down_tree(trans, root, path, wc);
8629 		if (wret < 0) {
8630 			ret = wret;
8631 			break;
8632 		}
8633 
8634 		wret = walk_up_tree(trans, root, path, wc, parent_level);
8635 		if (wret < 0)
8636 			ret = wret;
8637 		if (wret != 0)
8638 			break;
8639 	}
8640 
8641 	kfree(wc);
8642 	btrfs_free_path(path);
8643 	return ret;
8644 }
8645 
8646 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8647 {
8648 	u64 num_devices;
8649 	u64 stripped;
8650 
8651 	/*
8652 	 * if restripe for this chunk_type is on pick target profile and
8653 	 * return, otherwise do the usual balance
8654 	 */
8655 	stripped = get_restripe_target(root->fs_info, flags);
8656 	if (stripped)
8657 		return extended_to_chunk(stripped);
8658 
8659 	num_devices = root->fs_info->fs_devices->rw_devices;
8660 
8661 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
8662 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
8663 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8664 
8665 	if (num_devices == 1) {
8666 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8667 		stripped = flags & ~stripped;
8668 
8669 		/* turn raid0 into single device chunks */
8670 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
8671 			return stripped;
8672 
8673 		/* turn mirroring into duplication */
8674 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8675 			     BTRFS_BLOCK_GROUP_RAID10))
8676 			return stripped | BTRFS_BLOCK_GROUP_DUP;
8677 	} else {
8678 		/* they already had raid on here, just return */
8679 		if (flags & stripped)
8680 			return flags;
8681 
8682 		stripped |= BTRFS_BLOCK_GROUP_DUP;
8683 		stripped = flags & ~stripped;
8684 
8685 		/* switch duplicated blocks with raid1 */
8686 		if (flags & BTRFS_BLOCK_GROUP_DUP)
8687 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
8688 
8689 		/* this is drive concat, leave it alone */
8690 	}
8691 
8692 	return flags;
8693 }
8694 
8695 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
8696 {
8697 	struct btrfs_space_info *sinfo = cache->space_info;
8698 	u64 num_bytes;
8699 	u64 min_allocable_bytes;
8700 	int ret = -ENOSPC;
8701 
8702 
8703 	/*
8704 	 * We need some metadata space and system metadata space for
8705 	 * allocating chunks in some corner cases until we force to set
8706 	 * it to be readonly.
8707 	 */
8708 	if ((sinfo->flags &
8709 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8710 	    !force)
8711 		min_allocable_bytes = 1 * 1024 * 1024;
8712 	else
8713 		min_allocable_bytes = 0;
8714 
8715 	spin_lock(&sinfo->lock);
8716 	spin_lock(&cache->lock);
8717 
8718 	if (cache->ro) {
8719 		ret = 0;
8720 		goto out;
8721 	}
8722 
8723 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8724 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8725 
8726 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
8727 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8728 	    min_allocable_bytes <= sinfo->total_bytes) {
8729 		sinfo->bytes_readonly += num_bytes;
8730 		cache->ro = 1;
8731 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
8732 		ret = 0;
8733 	}
8734 out:
8735 	spin_unlock(&cache->lock);
8736 	spin_unlock(&sinfo->lock);
8737 	return ret;
8738 }
8739 
8740 int btrfs_set_block_group_ro(struct btrfs_root *root,
8741 			     struct btrfs_block_group_cache *cache)
8742 
8743 {
8744 	struct btrfs_trans_handle *trans;
8745 	u64 alloc_flags;
8746 	int ret;
8747 
8748 	BUG_ON(cache->ro);
8749 
8750 again:
8751 	trans = btrfs_join_transaction(root);
8752 	if (IS_ERR(trans))
8753 		return PTR_ERR(trans);
8754 
8755 	/*
8756 	 * we're not allowed to set block groups readonly after the dirty
8757 	 * block groups cache has started writing.  If it already started,
8758 	 * back off and let this transaction commit
8759 	 */
8760 	mutex_lock(&root->fs_info->ro_block_group_mutex);
8761 	if (trans->transaction->dirty_bg_run) {
8762 		u64 transid = trans->transid;
8763 
8764 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
8765 		btrfs_end_transaction(trans, root);
8766 
8767 		ret = btrfs_wait_for_commit(root, transid);
8768 		if (ret)
8769 			return ret;
8770 		goto again;
8771 	}
8772 
8773 	/*
8774 	 * if we are changing raid levels, try to allocate a corresponding
8775 	 * block group with the new raid level.
8776 	 */
8777 	alloc_flags = update_block_group_flags(root, cache->flags);
8778 	if (alloc_flags != cache->flags) {
8779 		ret = do_chunk_alloc(trans, root, alloc_flags,
8780 				     CHUNK_ALLOC_FORCE);
8781 		/*
8782 		 * ENOSPC is allowed here, we may have enough space
8783 		 * already allocated at the new raid level to
8784 		 * carry on
8785 		 */
8786 		if (ret == -ENOSPC)
8787 			ret = 0;
8788 		if (ret < 0)
8789 			goto out;
8790 	}
8791 
8792 	ret = set_block_group_ro(cache, 0);
8793 	if (!ret)
8794 		goto out;
8795 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
8796 	ret = do_chunk_alloc(trans, root, alloc_flags,
8797 			     CHUNK_ALLOC_FORCE);
8798 	if (ret < 0)
8799 		goto out;
8800 	ret = set_block_group_ro(cache, 0);
8801 out:
8802 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8803 		alloc_flags = update_block_group_flags(root, cache->flags);
8804 		lock_chunks(root->fs_info->chunk_root);
8805 		check_system_chunk(trans, root, alloc_flags);
8806 		unlock_chunks(root->fs_info->chunk_root);
8807 	}
8808 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
8809 
8810 	btrfs_end_transaction(trans, root);
8811 	return ret;
8812 }
8813 
8814 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8815 			    struct btrfs_root *root, u64 type)
8816 {
8817 	u64 alloc_flags = get_alloc_profile(root, type);
8818 	return do_chunk_alloc(trans, root, alloc_flags,
8819 			      CHUNK_ALLOC_FORCE);
8820 }
8821 
8822 /*
8823  * helper to account the unused space of all the readonly block group in the
8824  * space_info. takes mirrors into account.
8825  */
8826 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
8827 {
8828 	struct btrfs_block_group_cache *block_group;
8829 	u64 free_bytes = 0;
8830 	int factor;
8831 
8832 	/* It's df, we don't care if it's racey */
8833 	if (list_empty(&sinfo->ro_bgs))
8834 		return 0;
8835 
8836 	spin_lock(&sinfo->lock);
8837 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
8838 		spin_lock(&block_group->lock);
8839 
8840 		if (!block_group->ro) {
8841 			spin_unlock(&block_group->lock);
8842 			continue;
8843 		}
8844 
8845 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8846 					  BTRFS_BLOCK_GROUP_RAID10 |
8847 					  BTRFS_BLOCK_GROUP_DUP))
8848 			factor = 2;
8849 		else
8850 			factor = 1;
8851 
8852 		free_bytes += (block_group->key.offset -
8853 			       btrfs_block_group_used(&block_group->item)) *
8854 			       factor;
8855 
8856 		spin_unlock(&block_group->lock);
8857 	}
8858 	spin_unlock(&sinfo->lock);
8859 
8860 	return free_bytes;
8861 }
8862 
8863 void btrfs_set_block_group_rw(struct btrfs_root *root,
8864 			      struct btrfs_block_group_cache *cache)
8865 {
8866 	struct btrfs_space_info *sinfo = cache->space_info;
8867 	u64 num_bytes;
8868 
8869 	BUG_ON(!cache->ro);
8870 
8871 	spin_lock(&sinfo->lock);
8872 	spin_lock(&cache->lock);
8873 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8874 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
8875 	sinfo->bytes_readonly -= num_bytes;
8876 	cache->ro = 0;
8877 	list_del_init(&cache->ro_list);
8878 	spin_unlock(&cache->lock);
8879 	spin_unlock(&sinfo->lock);
8880 }
8881 
8882 /*
8883  * checks to see if its even possible to relocate this block group.
8884  *
8885  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8886  * ok to go ahead and try.
8887  */
8888 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8889 {
8890 	struct btrfs_block_group_cache *block_group;
8891 	struct btrfs_space_info *space_info;
8892 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8893 	struct btrfs_device *device;
8894 	struct btrfs_trans_handle *trans;
8895 	u64 min_free;
8896 	u64 dev_min = 1;
8897 	u64 dev_nr = 0;
8898 	u64 target;
8899 	int index;
8900 	int full = 0;
8901 	int ret = 0;
8902 
8903 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8904 
8905 	/* odd, couldn't find the block group, leave it alone */
8906 	if (!block_group)
8907 		return -1;
8908 
8909 	min_free = btrfs_block_group_used(&block_group->item);
8910 
8911 	/* no bytes used, we're good */
8912 	if (!min_free)
8913 		goto out;
8914 
8915 	space_info = block_group->space_info;
8916 	spin_lock(&space_info->lock);
8917 
8918 	full = space_info->full;
8919 
8920 	/*
8921 	 * if this is the last block group we have in this space, we can't
8922 	 * relocate it unless we're able to allocate a new chunk below.
8923 	 *
8924 	 * Otherwise, we need to make sure we have room in the space to handle
8925 	 * all of the extents from this block group.  If we can, we're good
8926 	 */
8927 	if ((space_info->total_bytes != block_group->key.offset) &&
8928 	    (space_info->bytes_used + space_info->bytes_reserved +
8929 	     space_info->bytes_pinned + space_info->bytes_readonly +
8930 	     min_free < space_info->total_bytes)) {
8931 		spin_unlock(&space_info->lock);
8932 		goto out;
8933 	}
8934 	spin_unlock(&space_info->lock);
8935 
8936 	/*
8937 	 * ok we don't have enough space, but maybe we have free space on our
8938 	 * devices to allocate new chunks for relocation, so loop through our
8939 	 * alloc devices and guess if we have enough space.  if this block
8940 	 * group is going to be restriped, run checks against the target
8941 	 * profile instead of the current one.
8942 	 */
8943 	ret = -1;
8944 
8945 	/*
8946 	 * index:
8947 	 *      0: raid10
8948 	 *      1: raid1
8949 	 *      2: dup
8950 	 *      3: raid0
8951 	 *      4: single
8952 	 */
8953 	target = get_restripe_target(root->fs_info, block_group->flags);
8954 	if (target) {
8955 		index = __get_raid_index(extended_to_chunk(target));
8956 	} else {
8957 		/*
8958 		 * this is just a balance, so if we were marked as full
8959 		 * we know there is no space for a new chunk
8960 		 */
8961 		if (full)
8962 			goto out;
8963 
8964 		index = get_block_group_index(block_group);
8965 	}
8966 
8967 	if (index == BTRFS_RAID_RAID10) {
8968 		dev_min = 4;
8969 		/* Divide by 2 */
8970 		min_free >>= 1;
8971 	} else if (index == BTRFS_RAID_RAID1) {
8972 		dev_min = 2;
8973 	} else if (index == BTRFS_RAID_DUP) {
8974 		/* Multiply by 2 */
8975 		min_free <<= 1;
8976 	} else if (index == BTRFS_RAID_RAID0) {
8977 		dev_min = fs_devices->rw_devices;
8978 		min_free = div64_u64(min_free, dev_min);
8979 	}
8980 
8981 	/* We need to do this so that we can look at pending chunks */
8982 	trans = btrfs_join_transaction(root);
8983 	if (IS_ERR(trans)) {
8984 		ret = PTR_ERR(trans);
8985 		goto out;
8986 	}
8987 
8988 	mutex_lock(&root->fs_info->chunk_mutex);
8989 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8990 		u64 dev_offset;
8991 
8992 		/*
8993 		 * check to make sure we can actually find a chunk with enough
8994 		 * space to fit our block group in.
8995 		 */
8996 		if (device->total_bytes > device->bytes_used + min_free &&
8997 		    !device->is_tgtdev_for_dev_replace) {
8998 			ret = find_free_dev_extent(trans, device, min_free,
8999 						   &dev_offset, NULL);
9000 			if (!ret)
9001 				dev_nr++;
9002 
9003 			if (dev_nr >= dev_min)
9004 				break;
9005 
9006 			ret = -1;
9007 		}
9008 	}
9009 	mutex_unlock(&root->fs_info->chunk_mutex);
9010 	btrfs_end_transaction(trans, root);
9011 out:
9012 	btrfs_put_block_group(block_group);
9013 	return ret;
9014 }
9015 
9016 static int find_first_block_group(struct btrfs_root *root,
9017 		struct btrfs_path *path, struct btrfs_key *key)
9018 {
9019 	int ret = 0;
9020 	struct btrfs_key found_key;
9021 	struct extent_buffer *leaf;
9022 	int slot;
9023 
9024 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9025 	if (ret < 0)
9026 		goto out;
9027 
9028 	while (1) {
9029 		slot = path->slots[0];
9030 		leaf = path->nodes[0];
9031 		if (slot >= btrfs_header_nritems(leaf)) {
9032 			ret = btrfs_next_leaf(root, path);
9033 			if (ret == 0)
9034 				continue;
9035 			if (ret < 0)
9036 				goto out;
9037 			break;
9038 		}
9039 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9040 
9041 		if (found_key.objectid >= key->objectid &&
9042 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9043 			ret = 0;
9044 			goto out;
9045 		}
9046 		path->slots[0]++;
9047 	}
9048 out:
9049 	return ret;
9050 }
9051 
9052 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9053 {
9054 	struct btrfs_block_group_cache *block_group;
9055 	u64 last = 0;
9056 
9057 	while (1) {
9058 		struct inode *inode;
9059 
9060 		block_group = btrfs_lookup_first_block_group(info, last);
9061 		while (block_group) {
9062 			spin_lock(&block_group->lock);
9063 			if (block_group->iref)
9064 				break;
9065 			spin_unlock(&block_group->lock);
9066 			block_group = next_block_group(info->tree_root,
9067 						       block_group);
9068 		}
9069 		if (!block_group) {
9070 			if (last == 0)
9071 				break;
9072 			last = 0;
9073 			continue;
9074 		}
9075 
9076 		inode = block_group->inode;
9077 		block_group->iref = 0;
9078 		block_group->inode = NULL;
9079 		spin_unlock(&block_group->lock);
9080 		iput(inode);
9081 		last = block_group->key.objectid + block_group->key.offset;
9082 		btrfs_put_block_group(block_group);
9083 	}
9084 }
9085 
9086 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9087 {
9088 	struct btrfs_block_group_cache *block_group;
9089 	struct btrfs_space_info *space_info;
9090 	struct btrfs_caching_control *caching_ctl;
9091 	struct rb_node *n;
9092 
9093 	down_write(&info->commit_root_sem);
9094 	while (!list_empty(&info->caching_block_groups)) {
9095 		caching_ctl = list_entry(info->caching_block_groups.next,
9096 					 struct btrfs_caching_control, list);
9097 		list_del(&caching_ctl->list);
9098 		put_caching_control(caching_ctl);
9099 	}
9100 	up_write(&info->commit_root_sem);
9101 
9102 	spin_lock(&info->unused_bgs_lock);
9103 	while (!list_empty(&info->unused_bgs)) {
9104 		block_group = list_first_entry(&info->unused_bgs,
9105 					       struct btrfs_block_group_cache,
9106 					       bg_list);
9107 		list_del_init(&block_group->bg_list);
9108 		btrfs_put_block_group(block_group);
9109 	}
9110 	spin_unlock(&info->unused_bgs_lock);
9111 
9112 	spin_lock(&info->block_group_cache_lock);
9113 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9114 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9115 				       cache_node);
9116 		rb_erase(&block_group->cache_node,
9117 			 &info->block_group_cache_tree);
9118 		RB_CLEAR_NODE(&block_group->cache_node);
9119 		spin_unlock(&info->block_group_cache_lock);
9120 
9121 		down_write(&block_group->space_info->groups_sem);
9122 		list_del(&block_group->list);
9123 		up_write(&block_group->space_info->groups_sem);
9124 
9125 		if (block_group->cached == BTRFS_CACHE_STARTED)
9126 			wait_block_group_cache_done(block_group);
9127 
9128 		/*
9129 		 * We haven't cached this block group, which means we could
9130 		 * possibly have excluded extents on this block group.
9131 		 */
9132 		if (block_group->cached == BTRFS_CACHE_NO ||
9133 		    block_group->cached == BTRFS_CACHE_ERROR)
9134 			free_excluded_extents(info->extent_root, block_group);
9135 
9136 		btrfs_remove_free_space_cache(block_group);
9137 		btrfs_put_block_group(block_group);
9138 
9139 		spin_lock(&info->block_group_cache_lock);
9140 	}
9141 	spin_unlock(&info->block_group_cache_lock);
9142 
9143 	/* now that all the block groups are freed, go through and
9144 	 * free all the space_info structs.  This is only called during
9145 	 * the final stages of unmount, and so we know nobody is
9146 	 * using them.  We call synchronize_rcu() once before we start,
9147 	 * just to be on the safe side.
9148 	 */
9149 	synchronize_rcu();
9150 
9151 	release_global_block_rsv(info);
9152 
9153 	while (!list_empty(&info->space_info)) {
9154 		int i;
9155 
9156 		space_info = list_entry(info->space_info.next,
9157 					struct btrfs_space_info,
9158 					list);
9159 		if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9160 			if (WARN_ON(space_info->bytes_pinned > 0 ||
9161 			    space_info->bytes_reserved > 0 ||
9162 			    space_info->bytes_may_use > 0)) {
9163 				dump_space_info(space_info, 0, 0);
9164 			}
9165 		}
9166 		list_del(&space_info->list);
9167 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9168 			struct kobject *kobj;
9169 			kobj = space_info->block_group_kobjs[i];
9170 			space_info->block_group_kobjs[i] = NULL;
9171 			if (kobj) {
9172 				kobject_del(kobj);
9173 				kobject_put(kobj);
9174 			}
9175 		}
9176 		kobject_del(&space_info->kobj);
9177 		kobject_put(&space_info->kobj);
9178 	}
9179 	return 0;
9180 }
9181 
9182 static void __link_block_group(struct btrfs_space_info *space_info,
9183 			       struct btrfs_block_group_cache *cache)
9184 {
9185 	int index = get_block_group_index(cache);
9186 	bool first = false;
9187 
9188 	down_write(&space_info->groups_sem);
9189 	if (list_empty(&space_info->block_groups[index]))
9190 		first = true;
9191 	list_add_tail(&cache->list, &space_info->block_groups[index]);
9192 	up_write(&space_info->groups_sem);
9193 
9194 	if (first) {
9195 		struct raid_kobject *rkobj;
9196 		int ret;
9197 
9198 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9199 		if (!rkobj)
9200 			goto out_err;
9201 		rkobj->raid_type = index;
9202 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9203 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9204 				  "%s", get_raid_name(index));
9205 		if (ret) {
9206 			kobject_put(&rkobj->kobj);
9207 			goto out_err;
9208 		}
9209 		space_info->block_group_kobjs[index] = &rkobj->kobj;
9210 	}
9211 
9212 	return;
9213 out_err:
9214 	pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9215 }
9216 
9217 static struct btrfs_block_group_cache *
9218 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9219 {
9220 	struct btrfs_block_group_cache *cache;
9221 
9222 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
9223 	if (!cache)
9224 		return NULL;
9225 
9226 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9227 					GFP_NOFS);
9228 	if (!cache->free_space_ctl) {
9229 		kfree(cache);
9230 		return NULL;
9231 	}
9232 
9233 	cache->key.objectid = start;
9234 	cache->key.offset = size;
9235 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9236 
9237 	cache->sectorsize = root->sectorsize;
9238 	cache->fs_info = root->fs_info;
9239 	cache->full_stripe_len = btrfs_full_stripe_len(root,
9240 					       &root->fs_info->mapping_tree,
9241 					       start);
9242 	atomic_set(&cache->count, 1);
9243 	spin_lock_init(&cache->lock);
9244 	init_rwsem(&cache->data_rwsem);
9245 	INIT_LIST_HEAD(&cache->list);
9246 	INIT_LIST_HEAD(&cache->cluster_list);
9247 	INIT_LIST_HEAD(&cache->bg_list);
9248 	INIT_LIST_HEAD(&cache->ro_list);
9249 	INIT_LIST_HEAD(&cache->dirty_list);
9250 	INIT_LIST_HEAD(&cache->io_list);
9251 	btrfs_init_free_space_ctl(cache);
9252 	atomic_set(&cache->trimming, 0);
9253 
9254 	return cache;
9255 }
9256 
9257 int btrfs_read_block_groups(struct btrfs_root *root)
9258 {
9259 	struct btrfs_path *path;
9260 	int ret;
9261 	struct btrfs_block_group_cache *cache;
9262 	struct btrfs_fs_info *info = root->fs_info;
9263 	struct btrfs_space_info *space_info;
9264 	struct btrfs_key key;
9265 	struct btrfs_key found_key;
9266 	struct extent_buffer *leaf;
9267 	int need_clear = 0;
9268 	u64 cache_gen;
9269 
9270 	root = info->extent_root;
9271 	key.objectid = 0;
9272 	key.offset = 0;
9273 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9274 	path = btrfs_alloc_path();
9275 	if (!path)
9276 		return -ENOMEM;
9277 	path->reada = 1;
9278 
9279 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9280 	if (btrfs_test_opt(root, SPACE_CACHE) &&
9281 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9282 		need_clear = 1;
9283 	if (btrfs_test_opt(root, CLEAR_CACHE))
9284 		need_clear = 1;
9285 
9286 	while (1) {
9287 		ret = find_first_block_group(root, path, &key);
9288 		if (ret > 0)
9289 			break;
9290 		if (ret != 0)
9291 			goto error;
9292 
9293 		leaf = path->nodes[0];
9294 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9295 
9296 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
9297 						       found_key.offset);
9298 		if (!cache) {
9299 			ret = -ENOMEM;
9300 			goto error;
9301 		}
9302 
9303 		if (need_clear) {
9304 			/*
9305 			 * When we mount with old space cache, we need to
9306 			 * set BTRFS_DC_CLEAR and set dirty flag.
9307 			 *
9308 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9309 			 *    truncate the old free space cache inode and
9310 			 *    setup a new one.
9311 			 * b) Setting 'dirty flag' makes sure that we flush
9312 			 *    the new space cache info onto disk.
9313 			 */
9314 			if (btrfs_test_opt(root, SPACE_CACHE))
9315 				cache->disk_cache_state = BTRFS_DC_CLEAR;
9316 		}
9317 
9318 		read_extent_buffer(leaf, &cache->item,
9319 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
9320 				   sizeof(cache->item));
9321 		cache->flags = btrfs_block_group_flags(&cache->item);
9322 
9323 		key.objectid = found_key.objectid + found_key.offset;
9324 		btrfs_release_path(path);
9325 
9326 		/*
9327 		 * We need to exclude the super stripes now so that the space
9328 		 * info has super bytes accounted for, otherwise we'll think
9329 		 * we have more space than we actually do.
9330 		 */
9331 		ret = exclude_super_stripes(root, cache);
9332 		if (ret) {
9333 			/*
9334 			 * We may have excluded something, so call this just in
9335 			 * case.
9336 			 */
9337 			free_excluded_extents(root, cache);
9338 			btrfs_put_block_group(cache);
9339 			goto error;
9340 		}
9341 
9342 		/*
9343 		 * check for two cases, either we are full, and therefore
9344 		 * don't need to bother with the caching work since we won't
9345 		 * find any space, or we are empty, and we can just add all
9346 		 * the space in and be done with it.  This saves us _alot_ of
9347 		 * time, particularly in the full case.
9348 		 */
9349 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9350 			cache->last_byte_to_unpin = (u64)-1;
9351 			cache->cached = BTRFS_CACHE_FINISHED;
9352 			free_excluded_extents(root, cache);
9353 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9354 			cache->last_byte_to_unpin = (u64)-1;
9355 			cache->cached = BTRFS_CACHE_FINISHED;
9356 			add_new_free_space(cache, root->fs_info,
9357 					   found_key.objectid,
9358 					   found_key.objectid +
9359 					   found_key.offset);
9360 			free_excluded_extents(root, cache);
9361 		}
9362 
9363 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
9364 		if (ret) {
9365 			btrfs_remove_free_space_cache(cache);
9366 			btrfs_put_block_group(cache);
9367 			goto error;
9368 		}
9369 
9370 		ret = update_space_info(info, cache->flags, found_key.offset,
9371 					btrfs_block_group_used(&cache->item),
9372 					&space_info);
9373 		if (ret) {
9374 			btrfs_remove_free_space_cache(cache);
9375 			spin_lock(&info->block_group_cache_lock);
9376 			rb_erase(&cache->cache_node,
9377 				 &info->block_group_cache_tree);
9378 			RB_CLEAR_NODE(&cache->cache_node);
9379 			spin_unlock(&info->block_group_cache_lock);
9380 			btrfs_put_block_group(cache);
9381 			goto error;
9382 		}
9383 
9384 		cache->space_info = space_info;
9385 		spin_lock(&cache->space_info->lock);
9386 		cache->space_info->bytes_readonly += cache->bytes_super;
9387 		spin_unlock(&cache->space_info->lock);
9388 
9389 		__link_block_group(space_info, cache);
9390 
9391 		set_avail_alloc_bits(root->fs_info, cache->flags);
9392 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
9393 			set_block_group_ro(cache, 1);
9394 		} else if (btrfs_block_group_used(&cache->item) == 0) {
9395 			spin_lock(&info->unused_bgs_lock);
9396 			/* Should always be true but just in case. */
9397 			if (list_empty(&cache->bg_list)) {
9398 				btrfs_get_block_group(cache);
9399 				list_add_tail(&cache->bg_list,
9400 					      &info->unused_bgs);
9401 			}
9402 			spin_unlock(&info->unused_bgs_lock);
9403 		}
9404 	}
9405 
9406 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9407 		if (!(get_alloc_profile(root, space_info->flags) &
9408 		      (BTRFS_BLOCK_GROUP_RAID10 |
9409 		       BTRFS_BLOCK_GROUP_RAID1 |
9410 		       BTRFS_BLOCK_GROUP_RAID5 |
9411 		       BTRFS_BLOCK_GROUP_RAID6 |
9412 		       BTRFS_BLOCK_GROUP_DUP)))
9413 			continue;
9414 		/*
9415 		 * avoid allocating from un-mirrored block group if there are
9416 		 * mirrored block groups.
9417 		 */
9418 		list_for_each_entry(cache,
9419 				&space_info->block_groups[BTRFS_RAID_RAID0],
9420 				list)
9421 			set_block_group_ro(cache, 1);
9422 		list_for_each_entry(cache,
9423 				&space_info->block_groups[BTRFS_RAID_SINGLE],
9424 				list)
9425 			set_block_group_ro(cache, 1);
9426 	}
9427 
9428 	init_global_block_rsv(info);
9429 	ret = 0;
9430 error:
9431 	btrfs_free_path(path);
9432 	return ret;
9433 }
9434 
9435 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9436 				       struct btrfs_root *root)
9437 {
9438 	struct btrfs_block_group_cache *block_group, *tmp;
9439 	struct btrfs_root *extent_root = root->fs_info->extent_root;
9440 	struct btrfs_block_group_item item;
9441 	struct btrfs_key key;
9442 	int ret = 0;
9443 
9444 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9445 		if (ret)
9446 			goto next;
9447 
9448 		spin_lock(&block_group->lock);
9449 		memcpy(&item, &block_group->item, sizeof(item));
9450 		memcpy(&key, &block_group->key, sizeof(key));
9451 		spin_unlock(&block_group->lock);
9452 
9453 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
9454 					sizeof(item));
9455 		if (ret)
9456 			btrfs_abort_transaction(trans, extent_root, ret);
9457 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
9458 					       key.objectid, key.offset);
9459 		if (ret)
9460 			btrfs_abort_transaction(trans, extent_root, ret);
9461 next:
9462 		list_del_init(&block_group->bg_list);
9463 	}
9464 }
9465 
9466 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9467 			   struct btrfs_root *root, u64 bytes_used,
9468 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
9469 			   u64 size)
9470 {
9471 	int ret;
9472 	struct btrfs_root *extent_root;
9473 	struct btrfs_block_group_cache *cache;
9474 
9475 	extent_root = root->fs_info->extent_root;
9476 
9477 	btrfs_set_log_full_commit(root->fs_info, trans);
9478 
9479 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
9480 	if (!cache)
9481 		return -ENOMEM;
9482 
9483 	btrfs_set_block_group_used(&cache->item, bytes_used);
9484 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
9485 	btrfs_set_block_group_flags(&cache->item, type);
9486 
9487 	cache->flags = type;
9488 	cache->last_byte_to_unpin = (u64)-1;
9489 	cache->cached = BTRFS_CACHE_FINISHED;
9490 	ret = exclude_super_stripes(root, cache);
9491 	if (ret) {
9492 		/*
9493 		 * We may have excluded something, so call this just in
9494 		 * case.
9495 		 */
9496 		free_excluded_extents(root, cache);
9497 		btrfs_put_block_group(cache);
9498 		return ret;
9499 	}
9500 
9501 	add_new_free_space(cache, root->fs_info, chunk_offset,
9502 			   chunk_offset + size);
9503 
9504 	free_excluded_extents(root, cache);
9505 
9506 	/*
9507 	 * Call to ensure the corresponding space_info object is created and
9508 	 * assigned to our block group, but don't update its counters just yet.
9509 	 * We want our bg to be added to the rbtree with its ->space_info set.
9510 	 */
9511 	ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9512 				&cache->space_info);
9513 	if (ret) {
9514 		btrfs_remove_free_space_cache(cache);
9515 		btrfs_put_block_group(cache);
9516 		return ret;
9517 	}
9518 
9519 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
9520 	if (ret) {
9521 		btrfs_remove_free_space_cache(cache);
9522 		btrfs_put_block_group(cache);
9523 		return ret;
9524 	}
9525 
9526 	/*
9527 	 * Now that our block group has its ->space_info set and is inserted in
9528 	 * the rbtree, update the space info's counters.
9529 	 */
9530 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9531 				&cache->space_info);
9532 	if (ret) {
9533 		btrfs_remove_free_space_cache(cache);
9534 		spin_lock(&root->fs_info->block_group_cache_lock);
9535 		rb_erase(&cache->cache_node,
9536 			 &root->fs_info->block_group_cache_tree);
9537 		RB_CLEAR_NODE(&cache->cache_node);
9538 		spin_unlock(&root->fs_info->block_group_cache_lock);
9539 		btrfs_put_block_group(cache);
9540 		return ret;
9541 	}
9542 	update_global_block_rsv(root->fs_info);
9543 
9544 	spin_lock(&cache->space_info->lock);
9545 	cache->space_info->bytes_readonly += cache->bytes_super;
9546 	spin_unlock(&cache->space_info->lock);
9547 
9548 	__link_block_group(cache->space_info, cache);
9549 
9550 	list_add_tail(&cache->bg_list, &trans->new_bgs);
9551 
9552 	set_avail_alloc_bits(extent_root->fs_info, type);
9553 
9554 	return 0;
9555 }
9556 
9557 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9558 {
9559 	u64 extra_flags = chunk_to_extended(flags) &
9560 				BTRFS_EXTENDED_PROFILE_MASK;
9561 
9562 	write_seqlock(&fs_info->profiles_lock);
9563 	if (flags & BTRFS_BLOCK_GROUP_DATA)
9564 		fs_info->avail_data_alloc_bits &= ~extra_flags;
9565 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
9566 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9567 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9568 		fs_info->avail_system_alloc_bits &= ~extra_flags;
9569 	write_sequnlock(&fs_info->profiles_lock);
9570 }
9571 
9572 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
9573 			     struct btrfs_root *root, u64 group_start,
9574 			     struct extent_map *em)
9575 {
9576 	struct btrfs_path *path;
9577 	struct btrfs_block_group_cache *block_group;
9578 	struct btrfs_free_cluster *cluster;
9579 	struct btrfs_root *tree_root = root->fs_info->tree_root;
9580 	struct btrfs_key key;
9581 	struct inode *inode;
9582 	struct kobject *kobj = NULL;
9583 	int ret;
9584 	int index;
9585 	int factor;
9586 	struct btrfs_caching_control *caching_ctl = NULL;
9587 	bool remove_em;
9588 
9589 	root = root->fs_info->extent_root;
9590 
9591 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9592 	BUG_ON(!block_group);
9593 	BUG_ON(!block_group->ro);
9594 
9595 	/*
9596 	 * Free the reserved super bytes from this block group before
9597 	 * remove it.
9598 	 */
9599 	free_excluded_extents(root, block_group);
9600 
9601 	memcpy(&key, &block_group->key, sizeof(key));
9602 	index = get_block_group_index(block_group);
9603 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9604 				  BTRFS_BLOCK_GROUP_RAID1 |
9605 				  BTRFS_BLOCK_GROUP_RAID10))
9606 		factor = 2;
9607 	else
9608 		factor = 1;
9609 
9610 	/* make sure this block group isn't part of an allocation cluster */
9611 	cluster = &root->fs_info->data_alloc_cluster;
9612 	spin_lock(&cluster->refill_lock);
9613 	btrfs_return_cluster_to_free_space(block_group, cluster);
9614 	spin_unlock(&cluster->refill_lock);
9615 
9616 	/*
9617 	 * make sure this block group isn't part of a metadata
9618 	 * allocation cluster
9619 	 */
9620 	cluster = &root->fs_info->meta_alloc_cluster;
9621 	spin_lock(&cluster->refill_lock);
9622 	btrfs_return_cluster_to_free_space(block_group, cluster);
9623 	spin_unlock(&cluster->refill_lock);
9624 
9625 	path = btrfs_alloc_path();
9626 	if (!path) {
9627 		ret = -ENOMEM;
9628 		goto out;
9629 	}
9630 
9631 	/*
9632 	 * get the inode first so any iput calls done for the io_list
9633 	 * aren't the final iput (no unlinks allowed now)
9634 	 */
9635 	inode = lookup_free_space_inode(tree_root, block_group, path);
9636 
9637 	mutex_lock(&trans->transaction->cache_write_mutex);
9638 	/*
9639 	 * make sure our free spache cache IO is done before remove the
9640 	 * free space inode
9641 	 */
9642 	spin_lock(&trans->transaction->dirty_bgs_lock);
9643 	if (!list_empty(&block_group->io_list)) {
9644 		list_del_init(&block_group->io_list);
9645 
9646 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9647 
9648 		spin_unlock(&trans->transaction->dirty_bgs_lock);
9649 		btrfs_wait_cache_io(root, trans, block_group,
9650 				    &block_group->io_ctl, path,
9651 				    block_group->key.objectid);
9652 		btrfs_put_block_group(block_group);
9653 		spin_lock(&trans->transaction->dirty_bgs_lock);
9654 	}
9655 
9656 	if (!list_empty(&block_group->dirty_list)) {
9657 		list_del_init(&block_group->dirty_list);
9658 		btrfs_put_block_group(block_group);
9659 	}
9660 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9661 	mutex_unlock(&trans->transaction->cache_write_mutex);
9662 
9663 	if (!IS_ERR(inode)) {
9664 		ret = btrfs_orphan_add(trans, inode);
9665 		if (ret) {
9666 			btrfs_add_delayed_iput(inode);
9667 			goto out;
9668 		}
9669 		clear_nlink(inode);
9670 		/* One for the block groups ref */
9671 		spin_lock(&block_group->lock);
9672 		if (block_group->iref) {
9673 			block_group->iref = 0;
9674 			block_group->inode = NULL;
9675 			spin_unlock(&block_group->lock);
9676 			iput(inode);
9677 		} else {
9678 			spin_unlock(&block_group->lock);
9679 		}
9680 		/* One for our lookup ref */
9681 		btrfs_add_delayed_iput(inode);
9682 	}
9683 
9684 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9685 	key.offset = block_group->key.objectid;
9686 	key.type = 0;
9687 
9688 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9689 	if (ret < 0)
9690 		goto out;
9691 	if (ret > 0)
9692 		btrfs_release_path(path);
9693 	if (ret == 0) {
9694 		ret = btrfs_del_item(trans, tree_root, path);
9695 		if (ret)
9696 			goto out;
9697 		btrfs_release_path(path);
9698 	}
9699 
9700 	spin_lock(&root->fs_info->block_group_cache_lock);
9701 	rb_erase(&block_group->cache_node,
9702 		 &root->fs_info->block_group_cache_tree);
9703 	RB_CLEAR_NODE(&block_group->cache_node);
9704 
9705 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
9706 		root->fs_info->first_logical_byte = (u64)-1;
9707 	spin_unlock(&root->fs_info->block_group_cache_lock);
9708 
9709 	down_write(&block_group->space_info->groups_sem);
9710 	/*
9711 	 * we must use list_del_init so people can check to see if they
9712 	 * are still on the list after taking the semaphore
9713 	 */
9714 	list_del_init(&block_group->list);
9715 	if (list_empty(&block_group->space_info->block_groups[index])) {
9716 		kobj = block_group->space_info->block_group_kobjs[index];
9717 		block_group->space_info->block_group_kobjs[index] = NULL;
9718 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
9719 	}
9720 	up_write(&block_group->space_info->groups_sem);
9721 	if (kobj) {
9722 		kobject_del(kobj);
9723 		kobject_put(kobj);
9724 	}
9725 
9726 	if (block_group->has_caching_ctl)
9727 		caching_ctl = get_caching_control(block_group);
9728 	if (block_group->cached == BTRFS_CACHE_STARTED)
9729 		wait_block_group_cache_done(block_group);
9730 	if (block_group->has_caching_ctl) {
9731 		down_write(&root->fs_info->commit_root_sem);
9732 		if (!caching_ctl) {
9733 			struct btrfs_caching_control *ctl;
9734 
9735 			list_for_each_entry(ctl,
9736 				    &root->fs_info->caching_block_groups, list)
9737 				if (ctl->block_group == block_group) {
9738 					caching_ctl = ctl;
9739 					atomic_inc(&caching_ctl->count);
9740 					break;
9741 				}
9742 		}
9743 		if (caching_ctl)
9744 			list_del_init(&caching_ctl->list);
9745 		up_write(&root->fs_info->commit_root_sem);
9746 		if (caching_ctl) {
9747 			/* Once for the caching bgs list and once for us. */
9748 			put_caching_control(caching_ctl);
9749 			put_caching_control(caching_ctl);
9750 		}
9751 	}
9752 
9753 	spin_lock(&trans->transaction->dirty_bgs_lock);
9754 	if (!list_empty(&block_group->dirty_list)) {
9755 		WARN_ON(1);
9756 	}
9757 	if (!list_empty(&block_group->io_list)) {
9758 		WARN_ON(1);
9759 	}
9760 	spin_unlock(&trans->transaction->dirty_bgs_lock);
9761 	btrfs_remove_free_space_cache(block_group);
9762 
9763 	spin_lock(&block_group->space_info->lock);
9764 	list_del_init(&block_group->ro_list);
9765 
9766 	if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9767 		WARN_ON(block_group->space_info->total_bytes
9768 			< block_group->key.offset);
9769 		WARN_ON(block_group->space_info->bytes_readonly
9770 			< block_group->key.offset);
9771 		WARN_ON(block_group->space_info->disk_total
9772 			< block_group->key.offset * factor);
9773 	}
9774 	block_group->space_info->total_bytes -= block_group->key.offset;
9775 	block_group->space_info->bytes_readonly -= block_group->key.offset;
9776 	block_group->space_info->disk_total -= block_group->key.offset * factor;
9777 
9778 	spin_unlock(&block_group->space_info->lock);
9779 
9780 	memcpy(&key, &block_group->key, sizeof(key));
9781 
9782 	lock_chunks(root);
9783 	if (!list_empty(&em->list)) {
9784 		/* We're in the transaction->pending_chunks list. */
9785 		free_extent_map(em);
9786 	}
9787 	spin_lock(&block_group->lock);
9788 	block_group->removed = 1;
9789 	/*
9790 	 * At this point trimming can't start on this block group, because we
9791 	 * removed the block group from the tree fs_info->block_group_cache_tree
9792 	 * so no one can't find it anymore and even if someone already got this
9793 	 * block group before we removed it from the rbtree, they have already
9794 	 * incremented block_group->trimming - if they didn't, they won't find
9795 	 * any free space entries because we already removed them all when we
9796 	 * called btrfs_remove_free_space_cache().
9797 	 *
9798 	 * And we must not remove the extent map from the fs_info->mapping_tree
9799 	 * to prevent the same logical address range and physical device space
9800 	 * ranges from being reused for a new block group. This is because our
9801 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9802 	 * completely transactionless, so while it is trimming a range the
9803 	 * currently running transaction might finish and a new one start,
9804 	 * allowing for new block groups to be created that can reuse the same
9805 	 * physical device locations unless we take this special care.
9806 	 */
9807 	remove_em = (atomic_read(&block_group->trimming) == 0);
9808 	/*
9809 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
9810 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9811 	 * before checking block_group->removed).
9812 	 */
9813 	if (!remove_em) {
9814 		/*
9815 		 * Our em might be in trans->transaction->pending_chunks which
9816 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9817 		 * and so is the fs_info->pinned_chunks list.
9818 		 *
9819 		 * So at this point we must be holding the chunk_mutex to avoid
9820 		 * any races with chunk allocation (more specifically at
9821 		 * volumes.c:contains_pending_extent()), to ensure it always
9822 		 * sees the em, either in the pending_chunks list or in the
9823 		 * pinned_chunks list.
9824 		 */
9825 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9826 	}
9827 	spin_unlock(&block_group->lock);
9828 
9829 	if (remove_em) {
9830 		struct extent_map_tree *em_tree;
9831 
9832 		em_tree = &root->fs_info->mapping_tree.map_tree;
9833 		write_lock(&em_tree->lock);
9834 		/*
9835 		 * The em might be in the pending_chunks list, so make sure the
9836 		 * chunk mutex is locked, since remove_extent_mapping() will
9837 		 * delete us from that list.
9838 		 */
9839 		remove_extent_mapping(em_tree, em);
9840 		write_unlock(&em_tree->lock);
9841 		/* once for the tree */
9842 		free_extent_map(em);
9843 	}
9844 
9845 	unlock_chunks(root);
9846 
9847 	btrfs_put_block_group(block_group);
9848 	btrfs_put_block_group(block_group);
9849 
9850 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9851 	if (ret > 0)
9852 		ret = -EIO;
9853 	if (ret < 0)
9854 		goto out;
9855 
9856 	ret = btrfs_del_item(trans, root, path);
9857 out:
9858 	btrfs_free_path(path);
9859 	return ret;
9860 }
9861 
9862 /*
9863  * Process the unused_bgs list and remove any that don't have any allocated
9864  * space inside of them.
9865  */
9866 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9867 {
9868 	struct btrfs_block_group_cache *block_group;
9869 	struct btrfs_space_info *space_info;
9870 	struct btrfs_root *root = fs_info->extent_root;
9871 	struct btrfs_trans_handle *trans;
9872 	int ret = 0;
9873 
9874 	if (!fs_info->open)
9875 		return;
9876 
9877 	spin_lock(&fs_info->unused_bgs_lock);
9878 	while (!list_empty(&fs_info->unused_bgs)) {
9879 		u64 start, end;
9880 
9881 		block_group = list_first_entry(&fs_info->unused_bgs,
9882 					       struct btrfs_block_group_cache,
9883 					       bg_list);
9884 		space_info = block_group->space_info;
9885 		list_del_init(&block_group->bg_list);
9886 		if (ret || btrfs_mixed_space_info(space_info)) {
9887 			btrfs_put_block_group(block_group);
9888 			continue;
9889 		}
9890 		spin_unlock(&fs_info->unused_bgs_lock);
9891 
9892 		/* Don't want to race with allocators so take the groups_sem */
9893 		down_write(&space_info->groups_sem);
9894 		spin_lock(&block_group->lock);
9895 		if (block_group->reserved ||
9896 		    btrfs_block_group_used(&block_group->item) ||
9897 		    block_group->ro) {
9898 			/*
9899 			 * We want to bail if we made new allocations or have
9900 			 * outstanding allocations in this block group.  We do
9901 			 * the ro check in case balance is currently acting on
9902 			 * this block group.
9903 			 */
9904 			spin_unlock(&block_group->lock);
9905 			up_write(&space_info->groups_sem);
9906 			goto next;
9907 		}
9908 		spin_unlock(&block_group->lock);
9909 
9910 		/* We don't want to force the issue, only flip if it's ok. */
9911 		ret = set_block_group_ro(block_group, 0);
9912 		up_write(&space_info->groups_sem);
9913 		if (ret < 0) {
9914 			ret = 0;
9915 			goto next;
9916 		}
9917 
9918 		/*
9919 		 * Want to do this before we do anything else so we can recover
9920 		 * properly if we fail to join the transaction.
9921 		 */
9922 		/* 1 for btrfs_orphan_reserve_metadata() */
9923 		trans = btrfs_start_transaction(root, 1);
9924 		if (IS_ERR(trans)) {
9925 			btrfs_set_block_group_rw(root, block_group);
9926 			ret = PTR_ERR(trans);
9927 			goto next;
9928 		}
9929 
9930 		/*
9931 		 * We could have pending pinned extents for this block group,
9932 		 * just delete them, we don't care about them anymore.
9933 		 */
9934 		start = block_group->key.objectid;
9935 		end = start + block_group->key.offset - 1;
9936 		/*
9937 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9938 		 * btrfs_finish_extent_commit(). If we are at transaction N,
9939 		 * another task might be running finish_extent_commit() for the
9940 		 * previous transaction N - 1, and have seen a range belonging
9941 		 * to the block group in freed_extents[] before we were able to
9942 		 * clear the whole block group range from freed_extents[]. This
9943 		 * means that task can lookup for the block group after we
9944 		 * unpinned it from freed_extents[] and removed it, leading to
9945 		 * a BUG_ON() at btrfs_unpin_extent_range().
9946 		 */
9947 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
9948 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
9949 				  EXTENT_DIRTY, GFP_NOFS);
9950 		if (ret) {
9951 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9952 			btrfs_set_block_group_rw(root, block_group);
9953 			goto end_trans;
9954 		}
9955 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
9956 				  EXTENT_DIRTY, GFP_NOFS);
9957 		if (ret) {
9958 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9959 			btrfs_set_block_group_rw(root, block_group);
9960 			goto end_trans;
9961 		}
9962 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
9963 
9964 		/* Reset pinned so btrfs_put_block_group doesn't complain */
9965 		spin_lock(&space_info->lock);
9966 		spin_lock(&block_group->lock);
9967 
9968 		space_info->bytes_pinned -= block_group->pinned;
9969 		space_info->bytes_readonly += block_group->pinned;
9970 		percpu_counter_add(&space_info->total_bytes_pinned,
9971 				   -block_group->pinned);
9972 		block_group->pinned = 0;
9973 
9974 		spin_unlock(&block_group->lock);
9975 		spin_unlock(&space_info->lock);
9976 
9977 		/*
9978 		 * Btrfs_remove_chunk will abort the transaction if things go
9979 		 * horribly wrong.
9980 		 */
9981 		ret = btrfs_remove_chunk(trans, root,
9982 					 block_group->key.objectid);
9983 end_trans:
9984 		btrfs_end_transaction(trans, root);
9985 next:
9986 		btrfs_put_block_group(block_group);
9987 		spin_lock(&fs_info->unused_bgs_lock);
9988 	}
9989 	spin_unlock(&fs_info->unused_bgs_lock);
9990 }
9991 
9992 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9993 {
9994 	struct btrfs_space_info *space_info;
9995 	struct btrfs_super_block *disk_super;
9996 	u64 features;
9997 	u64 flags;
9998 	int mixed = 0;
9999 	int ret;
10000 
10001 	disk_super = fs_info->super_copy;
10002 	if (!btrfs_super_root(disk_super))
10003 		return 1;
10004 
10005 	features = btrfs_super_incompat_flags(disk_super);
10006 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10007 		mixed = 1;
10008 
10009 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
10010 	ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10011 	if (ret)
10012 		goto out;
10013 
10014 	if (mixed) {
10015 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10016 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10017 	} else {
10018 		flags = BTRFS_BLOCK_GROUP_METADATA;
10019 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10020 		if (ret)
10021 			goto out;
10022 
10023 		flags = BTRFS_BLOCK_GROUP_DATA;
10024 		ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10025 	}
10026 out:
10027 	return ret;
10028 }
10029 
10030 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10031 {
10032 	return unpin_extent_range(root, start, end, false);
10033 }
10034 
10035 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10036 {
10037 	struct btrfs_fs_info *fs_info = root->fs_info;
10038 	struct btrfs_block_group_cache *cache = NULL;
10039 	u64 group_trimmed;
10040 	u64 start;
10041 	u64 end;
10042 	u64 trimmed = 0;
10043 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10044 	int ret = 0;
10045 
10046 	/*
10047 	 * try to trim all FS space, our block group may start from non-zero.
10048 	 */
10049 	if (range->len == total_bytes)
10050 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
10051 	else
10052 		cache = btrfs_lookup_block_group(fs_info, range->start);
10053 
10054 	while (cache) {
10055 		if (cache->key.objectid >= (range->start + range->len)) {
10056 			btrfs_put_block_group(cache);
10057 			break;
10058 		}
10059 
10060 		start = max(range->start, cache->key.objectid);
10061 		end = min(range->start + range->len,
10062 				cache->key.objectid + cache->key.offset);
10063 
10064 		if (end - start >= range->minlen) {
10065 			if (!block_group_cache_done(cache)) {
10066 				ret = cache_block_group(cache, 0);
10067 				if (ret) {
10068 					btrfs_put_block_group(cache);
10069 					break;
10070 				}
10071 				ret = wait_block_group_cache_done(cache);
10072 				if (ret) {
10073 					btrfs_put_block_group(cache);
10074 					break;
10075 				}
10076 			}
10077 			ret = btrfs_trim_block_group(cache,
10078 						     &group_trimmed,
10079 						     start,
10080 						     end,
10081 						     range->minlen);
10082 
10083 			trimmed += group_trimmed;
10084 			if (ret) {
10085 				btrfs_put_block_group(cache);
10086 				break;
10087 			}
10088 		}
10089 
10090 		cache = next_block_group(fs_info->tree_root, cache);
10091 	}
10092 
10093 	range->len = trimmed;
10094 	return ret;
10095 }
10096 
10097 /*
10098  * btrfs_{start,end}_write_no_snapshoting() are similar to
10099  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10100  * data into the page cache through nocow before the subvolume is snapshoted,
10101  * but flush the data into disk after the snapshot creation, or to prevent
10102  * operations while snapshoting is ongoing and that cause the snapshot to be
10103  * inconsistent (writes followed by expanding truncates for example).
10104  */
10105 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10106 {
10107 	percpu_counter_dec(&root->subv_writers->counter);
10108 	/*
10109 	 * Make sure counter is updated before we wake up
10110 	 * waiters.
10111 	 */
10112 	smp_mb();
10113 	if (waitqueue_active(&root->subv_writers->wait))
10114 		wake_up(&root->subv_writers->wait);
10115 }
10116 
10117 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10118 {
10119 	if (atomic_read(&root->will_be_snapshoted))
10120 		return 0;
10121 
10122 	percpu_counter_inc(&root->subv_writers->counter);
10123 	/*
10124 	 * Make sure counter is updated before we check for snapshot creation.
10125 	 */
10126 	smp_mb();
10127 	if (atomic_read(&root->will_be_snapshoted)) {
10128 		btrfs_end_write_no_snapshoting(root);
10129 		return 0;
10130 	}
10131 	return 1;
10132 }
10133