1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/signal.h> 8 #include <linux/pagemap.h> 9 #include <linux/writeback.h> 10 #include <linux/blkdev.h> 11 #include <linux/sort.h> 12 #include <linux/rcupdate.h> 13 #include <linux/kthread.h> 14 #include <linux/slab.h> 15 #include <linux/ratelimit.h> 16 #include <linux/percpu_counter.h> 17 #include <linux/lockdep.h> 18 #include <linux/crc32c.h> 19 #include "ctree.h" 20 #include "extent-tree.h" 21 #include "transaction.h" 22 #include "disk-io.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "locking.h" 27 #include "free-space-cache.h" 28 #include "free-space-tree.h" 29 #include "qgroup.h" 30 #include "ref-verify.h" 31 #include "space-info.h" 32 #include "block-rsv.h" 33 #include "discard.h" 34 #include "zoned.h" 35 #include "dev-replace.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "root-tree.h" 39 #include "file-item.h" 40 #include "orphan.h" 41 #include "tree-checker.h" 42 #include "raid-stripe-tree.h" 43 #include "delayed-inode.h" 44 45 #undef SCRAMBLE_DELAYED_REFS 46 47 48 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 49 struct btrfs_delayed_ref_head *href, 50 const struct btrfs_delayed_ref_node *node, 51 struct btrfs_delayed_extent_op *extra_op); 52 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 53 struct extent_buffer *leaf, 54 struct btrfs_extent_item *ei); 55 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 56 u64 parent, u64 root_objectid, 57 u64 flags, u64 owner, u64 offset, 58 struct btrfs_key *ins, int ref_mod, u64 oref_root); 59 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 60 const struct btrfs_delayed_ref_node *node, 61 struct btrfs_delayed_extent_op *extent_op); 62 static int find_next_key(const struct btrfs_path *path, int level, 63 struct btrfs_key *key); 64 65 static int block_group_bits(const struct btrfs_block_group *cache, u64 bits) 66 { 67 return (cache->flags & bits) == bits; 68 } 69 70 /* simple helper to search for an existing data extent at a given offset */ 71 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) 72 { 73 struct btrfs_root *root = btrfs_extent_root(fs_info, start); 74 struct btrfs_key key; 75 BTRFS_PATH_AUTO_FREE(path); 76 77 path = btrfs_alloc_path(); 78 if (!path) 79 return -ENOMEM; 80 81 key.objectid = start; 82 key.type = BTRFS_EXTENT_ITEM_KEY; 83 key.offset = len; 84 return btrfs_search_slot(NULL, root, &key, path, 0, 0); 85 } 86 87 /* 88 * helper function to lookup reference count and flags of a tree block. 89 * 90 * the head node for delayed ref is used to store the sum of all the 91 * reference count modifications queued up in the rbtree. the head 92 * node may also store the extent flags to set. This way you can check 93 * to see what the reference count and extent flags would be if all of 94 * the delayed refs are not processed. 95 */ 96 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 97 struct btrfs_fs_info *fs_info, u64 bytenr, 98 u64 offset, int metadata, u64 *refs, u64 *flags, 99 u64 *owning_root) 100 { 101 struct btrfs_root *extent_root; 102 struct btrfs_delayed_ref_head *head; 103 struct btrfs_delayed_ref_root *delayed_refs; 104 BTRFS_PATH_AUTO_FREE(path); 105 struct btrfs_key key; 106 u64 num_refs; 107 u64 extent_flags; 108 u64 owner = 0; 109 int ret; 110 111 /* 112 * If we don't have skinny metadata, don't bother doing anything 113 * different 114 */ 115 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { 116 offset = fs_info->nodesize; 117 metadata = 0; 118 } 119 120 path = btrfs_alloc_path(); 121 if (!path) 122 return -ENOMEM; 123 124 search_again: 125 key.objectid = bytenr; 126 if (metadata) 127 key.type = BTRFS_METADATA_ITEM_KEY; 128 else 129 key.type = BTRFS_EXTENT_ITEM_KEY; 130 key.offset = offset; 131 132 extent_root = btrfs_extent_root(fs_info, bytenr); 133 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 134 if (ret < 0) 135 return ret; 136 137 if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) { 138 if (path->slots[0]) { 139 path->slots[0]--; 140 btrfs_item_key_to_cpu(path->nodes[0], &key, 141 path->slots[0]); 142 if (key.objectid == bytenr && 143 key.type == BTRFS_EXTENT_ITEM_KEY && 144 key.offset == fs_info->nodesize) 145 ret = 0; 146 } 147 } 148 149 if (ret == 0) { 150 struct extent_buffer *leaf = path->nodes[0]; 151 struct btrfs_extent_item *ei; 152 const u32 item_size = btrfs_item_size(leaf, path->slots[0]); 153 154 if (unlikely(item_size < sizeof(*ei))) { 155 ret = -EUCLEAN; 156 btrfs_err(fs_info, 157 "unexpected extent item size, has %u expect >= %zu", 158 item_size, sizeof(*ei)); 159 btrfs_abort_transaction(trans, ret); 160 return ret; 161 } 162 163 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 164 num_refs = btrfs_extent_refs(leaf, ei); 165 if (unlikely(num_refs == 0)) { 166 ret = -EUCLEAN; 167 btrfs_err(fs_info, 168 "unexpected zero reference count for extent item " BTRFS_KEY_FMT, 169 BTRFS_KEY_FMT_VALUE(&key)); 170 btrfs_abort_transaction(trans, ret); 171 return ret; 172 } 173 extent_flags = btrfs_extent_flags(leaf, ei); 174 owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]); 175 } else { 176 num_refs = 0; 177 extent_flags = 0; 178 ret = 0; 179 } 180 181 delayed_refs = &trans->transaction->delayed_refs; 182 spin_lock(&delayed_refs->lock); 183 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 184 if (head) { 185 if (!mutex_trylock(&head->mutex)) { 186 refcount_inc(&head->refs); 187 spin_unlock(&delayed_refs->lock); 188 189 btrfs_release_path(path); 190 191 /* 192 * Mutex was contended, block until it's released and try 193 * again 194 */ 195 mutex_lock(&head->mutex); 196 mutex_unlock(&head->mutex); 197 btrfs_put_delayed_ref_head(head); 198 goto search_again; 199 } 200 spin_lock(&head->lock); 201 if (head->extent_op && head->extent_op->update_flags) 202 extent_flags |= head->extent_op->flags_to_set; 203 204 num_refs += head->ref_mod; 205 spin_unlock(&head->lock); 206 mutex_unlock(&head->mutex); 207 } 208 spin_unlock(&delayed_refs->lock); 209 210 WARN_ON(num_refs == 0); 211 if (refs) 212 *refs = num_refs; 213 if (flags) 214 *flags = extent_flags; 215 if (owning_root) 216 *owning_root = owner; 217 218 return ret; 219 } 220 221 /* 222 * Back reference rules. Back refs have three main goals: 223 * 224 * 1) differentiate between all holders of references to an extent so that 225 * when a reference is dropped we can make sure it was a valid reference 226 * before freeing the extent. 227 * 228 * 2) Provide enough information to quickly find the holders of an extent 229 * if we notice a given block is corrupted or bad. 230 * 231 * 3) Make it easy to migrate blocks for FS shrinking or storage pool 232 * maintenance. This is actually the same as #2, but with a slightly 233 * different use case. 234 * 235 * There are two kinds of back refs. The implicit back refs is optimized 236 * for pointers in non-shared tree blocks. For a given pointer in a block, 237 * back refs of this kind provide information about the block's owner tree 238 * and the pointer's key. These information allow us to find the block by 239 * b-tree searching. The full back refs is for pointers in tree blocks not 240 * referenced by their owner trees. The location of tree block is recorded 241 * in the back refs. Actually the full back refs is generic, and can be 242 * used in all cases the implicit back refs is used. The major shortcoming 243 * of the full back refs is its overhead. Every time a tree block gets 244 * COWed, we have to update back refs entry for all pointers in it. 245 * 246 * For a newly allocated tree block, we use implicit back refs for 247 * pointers in it. This means most tree related operations only involve 248 * implicit back refs. For a tree block created in old transaction, the 249 * only way to drop a reference to it is COW it. So we can detect the 250 * event that tree block loses its owner tree's reference and do the 251 * back refs conversion. 252 * 253 * When a tree block is COWed through a tree, there are four cases: 254 * 255 * The reference count of the block is one and the tree is the block's 256 * owner tree. Nothing to do in this case. 257 * 258 * The reference count of the block is one and the tree is not the 259 * block's owner tree. In this case, full back refs is used for pointers 260 * in the block. Remove these full back refs, add implicit back refs for 261 * every pointers in the new block. 262 * 263 * The reference count of the block is greater than one and the tree is 264 * the block's owner tree. In this case, implicit back refs is used for 265 * pointers in the block. Add full back refs for every pointers in the 266 * block, increase lower level extents' reference counts. The original 267 * implicit back refs are entailed to the new block. 268 * 269 * The reference count of the block is greater than one and the tree is 270 * not the block's owner tree. Add implicit back refs for every pointer in 271 * the new block, increase lower level extents' reference count. 272 * 273 * Back Reference Key composing: 274 * 275 * The key objectid corresponds to the first byte in the extent, 276 * The key type is used to differentiate between types of back refs. 277 * There are different meanings of the key offset for different types 278 * of back refs. 279 * 280 * File extents can be referenced by: 281 * 282 * - multiple snapshots, subvolumes, or different generations in one subvol 283 * - different files inside a single subvolume 284 * - different offsets inside a file (bookend extents in file.c) 285 * 286 * The extent ref structure for the implicit back refs has fields for: 287 * 288 * - Objectid of the subvolume root 289 * - objectid of the file holding the reference 290 * - original offset in the file 291 * - how many bookend extents 292 * 293 * The key offset for the implicit back refs is hash of the first 294 * three fields. 295 * 296 * The extent ref structure for the full back refs has field for: 297 * 298 * - number of pointers in the tree leaf 299 * 300 * The key offset for the implicit back refs is the first byte of 301 * the tree leaf 302 * 303 * When a file extent is allocated, The implicit back refs is used. 304 * the fields are filled in: 305 * 306 * (root_key.objectid, inode objectid, offset in file, 1) 307 * 308 * When a file extent is removed file truncation, we find the 309 * corresponding implicit back refs and check the following fields: 310 * 311 * (btrfs_header_owner(leaf), inode objectid, offset in file) 312 * 313 * Btree extents can be referenced by: 314 * 315 * - Different subvolumes 316 * 317 * Both the implicit back refs and the full back refs for tree blocks 318 * only consist of key. The key offset for the implicit back refs is 319 * objectid of block's owner tree. The key offset for the full back refs 320 * is the first byte of parent block. 321 * 322 * When implicit back refs is used, information about the lowest key and 323 * level of the tree block are required. These information are stored in 324 * tree block info structure. 325 */ 326 327 /* 328 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, 329 * is_data == BTRFS_REF_TYPE_DATA, data type is required, 330 * is_data == BTRFS_REF_TYPE_ANY, either type is OK. 331 */ 332 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 333 const struct btrfs_extent_inline_ref *iref, 334 enum btrfs_inline_ref_type is_data) 335 { 336 struct btrfs_fs_info *fs_info = eb->fs_info; 337 int type = btrfs_extent_inline_ref_type(eb, iref); 338 u64 offset = btrfs_extent_inline_ref_offset(eb, iref); 339 340 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 341 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 342 return type; 343 } 344 345 if (type == BTRFS_TREE_BLOCK_REF_KEY || 346 type == BTRFS_SHARED_BLOCK_REF_KEY || 347 type == BTRFS_SHARED_DATA_REF_KEY || 348 type == BTRFS_EXTENT_DATA_REF_KEY) { 349 if (is_data == BTRFS_REF_TYPE_BLOCK) { 350 if (type == BTRFS_TREE_BLOCK_REF_KEY) 351 return type; 352 if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 353 ASSERT(fs_info); 354 /* 355 * Every shared one has parent tree block, 356 * which must be aligned to sector size. 357 */ 358 if (offset && IS_ALIGNED(offset, fs_info->sectorsize)) 359 return type; 360 } 361 } else if (is_data == BTRFS_REF_TYPE_DATA) { 362 if (type == BTRFS_EXTENT_DATA_REF_KEY) 363 return type; 364 if (type == BTRFS_SHARED_DATA_REF_KEY) { 365 ASSERT(fs_info); 366 /* 367 * Every shared one has parent tree block, 368 * which must be aligned to sector size. 369 */ 370 if (offset && 371 IS_ALIGNED(offset, fs_info->sectorsize)) 372 return type; 373 } 374 } else { 375 ASSERT(is_data == BTRFS_REF_TYPE_ANY); 376 return type; 377 } 378 } 379 380 WARN_ON(1); 381 btrfs_print_leaf(eb); 382 btrfs_err(fs_info, 383 "eb %llu iref 0x%lx invalid extent inline ref type %d", 384 eb->start, (unsigned long)iref, type); 385 386 return BTRFS_REF_TYPE_INVALID; 387 } 388 389 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) 390 { 391 u32 high_crc = ~(u32)0; 392 u32 low_crc = ~(u32)0; 393 __le64 lenum; 394 395 lenum = cpu_to_le64(root_objectid); 396 high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); 397 lenum = cpu_to_le64(owner); 398 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 399 lenum = cpu_to_le64(offset); 400 low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); 401 402 return ((u64)high_crc << 31) ^ (u64)low_crc; 403 } 404 405 static u64 hash_extent_data_ref_item(const struct extent_buffer *leaf, 406 const struct btrfs_extent_data_ref *ref) 407 { 408 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), 409 btrfs_extent_data_ref_objectid(leaf, ref), 410 btrfs_extent_data_ref_offset(leaf, ref)); 411 } 412 413 static bool match_extent_data_ref(const struct extent_buffer *leaf, 414 const struct btrfs_extent_data_ref *ref, 415 u64 root_objectid, u64 owner, u64 offset) 416 { 417 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || 418 btrfs_extent_data_ref_objectid(leaf, ref) != owner || 419 btrfs_extent_data_ref_offset(leaf, ref) != offset) 420 return false; 421 return true; 422 } 423 424 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, 425 struct btrfs_path *path, 426 u64 bytenr, u64 parent, 427 u64 root_objectid, 428 u64 owner, u64 offset) 429 { 430 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 431 struct btrfs_key key; 432 struct btrfs_extent_data_ref *ref; 433 struct extent_buffer *leaf; 434 u32 nritems; 435 int recow; 436 int ret; 437 438 key.objectid = bytenr; 439 if (parent) { 440 key.type = BTRFS_SHARED_DATA_REF_KEY; 441 key.offset = parent; 442 } else { 443 key.type = BTRFS_EXTENT_DATA_REF_KEY; 444 key.offset = hash_extent_data_ref(root_objectid, 445 owner, offset); 446 } 447 again: 448 recow = 0; 449 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 450 if (ret < 0) 451 return ret; 452 453 if (parent) { 454 if (ret) 455 return -ENOENT; 456 return 0; 457 } 458 459 ret = -ENOENT; 460 leaf = path->nodes[0]; 461 nritems = btrfs_header_nritems(leaf); 462 while (1) { 463 if (path->slots[0] >= nritems) { 464 ret = btrfs_next_leaf(root, path); 465 if (ret) { 466 if (ret > 0) 467 return -ENOENT; 468 return ret; 469 } 470 471 leaf = path->nodes[0]; 472 nritems = btrfs_header_nritems(leaf); 473 recow = 1; 474 } 475 476 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 477 if (key.objectid != bytenr || 478 key.type != BTRFS_EXTENT_DATA_REF_KEY) 479 goto fail; 480 481 ref = btrfs_item_ptr(leaf, path->slots[0], 482 struct btrfs_extent_data_ref); 483 484 if (match_extent_data_ref(leaf, ref, root_objectid, 485 owner, offset)) { 486 if (recow) { 487 btrfs_release_path(path); 488 goto again; 489 } 490 ret = 0; 491 break; 492 } 493 path->slots[0]++; 494 } 495 fail: 496 return ret; 497 } 498 499 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, 500 struct btrfs_path *path, 501 const struct btrfs_delayed_ref_node *node, 502 u64 bytenr) 503 { 504 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 505 struct btrfs_key key; 506 struct extent_buffer *leaf; 507 u64 owner = btrfs_delayed_ref_owner(node); 508 u64 offset = btrfs_delayed_ref_offset(node); 509 u32 size; 510 u32 num_refs; 511 int ret; 512 513 key.objectid = bytenr; 514 if (node->parent) { 515 key.type = BTRFS_SHARED_DATA_REF_KEY; 516 key.offset = node->parent; 517 size = sizeof(struct btrfs_shared_data_ref); 518 } else { 519 key.type = BTRFS_EXTENT_DATA_REF_KEY; 520 key.offset = hash_extent_data_ref(node->ref_root, owner, offset); 521 size = sizeof(struct btrfs_extent_data_ref); 522 } 523 524 ret = btrfs_insert_empty_item(trans, root, path, &key, size); 525 if (ret && ret != -EEXIST) 526 goto fail; 527 528 leaf = path->nodes[0]; 529 if (node->parent) { 530 struct btrfs_shared_data_ref *ref; 531 ref = btrfs_item_ptr(leaf, path->slots[0], 532 struct btrfs_shared_data_ref); 533 if (ret == 0) { 534 btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod); 535 } else { 536 num_refs = btrfs_shared_data_ref_count(leaf, ref); 537 num_refs += node->ref_mod; 538 btrfs_set_shared_data_ref_count(leaf, ref, num_refs); 539 } 540 } else { 541 struct btrfs_extent_data_ref *ref; 542 while (ret == -EEXIST) { 543 ref = btrfs_item_ptr(leaf, path->slots[0], 544 struct btrfs_extent_data_ref); 545 if (match_extent_data_ref(leaf, ref, node->ref_root, 546 owner, offset)) 547 break; 548 btrfs_release_path(path); 549 key.offset++; 550 ret = btrfs_insert_empty_item(trans, root, path, &key, 551 size); 552 if (ret && ret != -EEXIST) 553 goto fail; 554 555 leaf = path->nodes[0]; 556 } 557 ref = btrfs_item_ptr(leaf, path->slots[0], 558 struct btrfs_extent_data_ref); 559 if (ret == 0) { 560 btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root); 561 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 562 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 563 btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod); 564 } else { 565 num_refs = btrfs_extent_data_ref_count(leaf, ref); 566 num_refs += node->ref_mod; 567 btrfs_set_extent_data_ref_count(leaf, ref, num_refs); 568 } 569 } 570 ret = 0; 571 fail: 572 btrfs_release_path(path); 573 return ret; 574 } 575 576 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, 577 struct btrfs_root *root, 578 struct btrfs_path *path, 579 int refs_to_drop) 580 { 581 struct btrfs_key key; 582 struct btrfs_extent_data_ref *ref1 = NULL; 583 struct btrfs_shared_data_ref *ref2 = NULL; 584 struct extent_buffer *leaf; 585 u32 num_refs = 0; 586 int ret = 0; 587 588 leaf = path->nodes[0]; 589 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 590 591 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 592 ref1 = btrfs_item_ptr(leaf, path->slots[0], 593 struct btrfs_extent_data_ref); 594 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 595 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 596 ref2 = btrfs_item_ptr(leaf, path->slots[0], 597 struct btrfs_shared_data_ref); 598 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 599 } else { 600 btrfs_err(trans->fs_info, 601 "unrecognized backref key " BTRFS_KEY_FMT, 602 BTRFS_KEY_FMT_VALUE(&key)); 603 btrfs_abort_transaction(trans, -EUCLEAN); 604 return -EUCLEAN; 605 } 606 607 BUG_ON(num_refs < refs_to_drop); 608 num_refs -= refs_to_drop; 609 610 if (num_refs == 0) { 611 ret = btrfs_del_item(trans, root, path); 612 } else { 613 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) 614 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); 615 else if (key.type == BTRFS_SHARED_DATA_REF_KEY) 616 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); 617 } 618 return ret; 619 } 620 621 static noinline u32 extent_data_ref_count(const struct btrfs_path *path, 622 const struct btrfs_extent_inline_ref *iref) 623 { 624 struct btrfs_key key; 625 struct extent_buffer *leaf; 626 const struct btrfs_extent_data_ref *ref1; 627 const struct btrfs_shared_data_ref *ref2; 628 u32 num_refs = 0; 629 int type; 630 631 leaf = path->nodes[0]; 632 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 633 634 if (iref) { 635 /* 636 * If type is invalid, we should have bailed out earlier than 637 * this call. 638 */ 639 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 640 ASSERT(type != BTRFS_REF_TYPE_INVALID); 641 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 642 ref1 = (const struct btrfs_extent_data_ref *)(&iref->offset); 643 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 644 } else { 645 ref2 = (const struct btrfs_shared_data_ref *)(iref + 1); 646 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 647 } 648 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 649 ref1 = btrfs_item_ptr(leaf, path->slots[0], 650 struct btrfs_extent_data_ref); 651 num_refs = btrfs_extent_data_ref_count(leaf, ref1); 652 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 653 ref2 = btrfs_item_ptr(leaf, path->slots[0], 654 struct btrfs_shared_data_ref); 655 num_refs = btrfs_shared_data_ref_count(leaf, ref2); 656 } else { 657 WARN_ON(1); 658 } 659 return num_refs; 660 } 661 662 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, 663 struct btrfs_path *path, 664 u64 bytenr, u64 parent, 665 u64 root_objectid) 666 { 667 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 668 struct btrfs_key key; 669 int ret; 670 671 key.objectid = bytenr; 672 if (parent) { 673 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 674 key.offset = parent; 675 } else { 676 key.type = BTRFS_TREE_BLOCK_REF_KEY; 677 key.offset = root_objectid; 678 } 679 680 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 681 if (ret > 0) 682 ret = -ENOENT; 683 return ret; 684 } 685 686 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, 687 struct btrfs_path *path, 688 const struct btrfs_delayed_ref_node *node, 689 u64 bytenr) 690 { 691 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr); 692 struct btrfs_key key; 693 int ret; 694 695 key.objectid = bytenr; 696 if (node->parent) { 697 key.type = BTRFS_SHARED_BLOCK_REF_KEY; 698 key.offset = node->parent; 699 } else { 700 key.type = BTRFS_TREE_BLOCK_REF_KEY; 701 key.offset = node->ref_root; 702 } 703 704 ret = btrfs_insert_empty_item(trans, root, path, &key, 0); 705 btrfs_release_path(path); 706 return ret; 707 } 708 709 static inline int extent_ref_type(u64 parent, u64 owner) 710 { 711 int type; 712 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 713 if (parent > 0) 714 type = BTRFS_SHARED_BLOCK_REF_KEY; 715 else 716 type = BTRFS_TREE_BLOCK_REF_KEY; 717 } else { 718 if (parent > 0) 719 type = BTRFS_SHARED_DATA_REF_KEY; 720 else 721 type = BTRFS_EXTENT_DATA_REF_KEY; 722 } 723 return type; 724 } 725 726 static int find_next_key(const struct btrfs_path *path, int level, 727 struct btrfs_key *key) 728 729 { 730 for (; level < BTRFS_MAX_LEVEL; level++) { 731 if (!path->nodes[level]) 732 break; 733 if (path->slots[level] + 1 >= 734 btrfs_header_nritems(path->nodes[level])) 735 continue; 736 if (level == 0) 737 btrfs_item_key_to_cpu(path->nodes[level], key, 738 path->slots[level] + 1); 739 else 740 btrfs_node_key_to_cpu(path->nodes[level], key, 741 path->slots[level] + 1); 742 return 0; 743 } 744 return 1; 745 } 746 747 /* 748 * look for inline back ref. if back ref is found, *ref_ret is set 749 * to the address of inline back ref, and 0 is returned. 750 * 751 * if back ref isn't found, *ref_ret is set to the address where it 752 * should be inserted, and -ENOENT is returned. 753 * 754 * if insert is true and there are too many inline back refs, the path 755 * points to the extent item, and -EAGAIN is returned. 756 * 757 * NOTE: inline back refs are ordered in the same way that back ref 758 * items in the tree are ordered. 759 */ 760 static noinline_for_stack 761 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, 762 struct btrfs_path *path, 763 struct btrfs_extent_inline_ref **ref_ret, 764 u64 bytenr, u64 num_bytes, 765 u64 parent, u64 root_objectid, 766 u64 owner, u64 offset, int insert) 767 { 768 struct btrfs_fs_info *fs_info = trans->fs_info; 769 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr); 770 struct btrfs_key key; 771 struct extent_buffer *leaf; 772 struct btrfs_extent_item *ei; 773 struct btrfs_extent_inline_ref *iref; 774 u64 flags; 775 u64 item_size; 776 unsigned long ptr; 777 unsigned long end; 778 int extra_size; 779 int type; 780 int want; 781 int ret; 782 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 783 int needed; 784 785 key.objectid = bytenr; 786 key.type = BTRFS_EXTENT_ITEM_KEY; 787 key.offset = num_bytes; 788 789 want = extent_ref_type(parent, owner); 790 if (insert) { 791 extra_size = btrfs_extent_inline_ref_size(want); 792 path->search_for_extension = true; 793 } else 794 extra_size = -1; 795 796 /* 797 * Owner is our level, so we can just add one to get the level for the 798 * block we are interested in. 799 */ 800 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { 801 key.type = BTRFS_METADATA_ITEM_KEY; 802 key.offset = owner; 803 } 804 805 again: 806 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); 807 if (ret < 0) 808 goto out; 809 810 /* 811 * We may be a newly converted file system which still has the old fat 812 * extent entries for metadata, so try and see if we have one of those. 813 */ 814 if (ret > 0 && skinny_metadata) { 815 skinny_metadata = false; 816 if (path->slots[0]) { 817 path->slots[0]--; 818 btrfs_item_key_to_cpu(path->nodes[0], &key, 819 path->slots[0]); 820 if (key.objectid == bytenr && 821 key.type == BTRFS_EXTENT_ITEM_KEY && 822 key.offset == num_bytes) 823 ret = 0; 824 } 825 if (ret) { 826 key.objectid = bytenr; 827 key.type = BTRFS_EXTENT_ITEM_KEY; 828 key.offset = num_bytes; 829 btrfs_release_path(path); 830 goto again; 831 } 832 } 833 834 if (ret && !insert) { 835 ret = -ENOENT; 836 goto out; 837 } else if (WARN_ON(ret)) { 838 btrfs_print_leaf(path->nodes[0]); 839 btrfs_err(fs_info, 840 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu", 841 bytenr, num_bytes, parent, root_objectid, owner, 842 offset); 843 ret = -EUCLEAN; 844 goto out; 845 } 846 847 leaf = path->nodes[0]; 848 item_size = btrfs_item_size(leaf, path->slots[0]); 849 if (unlikely(item_size < sizeof(*ei))) { 850 ret = -EUCLEAN; 851 btrfs_err(fs_info, 852 "unexpected extent item size, has %llu expect >= %zu", 853 item_size, sizeof(*ei)); 854 btrfs_abort_transaction(trans, ret); 855 goto out; 856 } 857 858 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 859 flags = btrfs_extent_flags(leaf, ei); 860 861 ptr = (unsigned long)(ei + 1); 862 end = (unsigned long)ei + item_size; 863 864 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { 865 ptr += sizeof(struct btrfs_tree_block_info); 866 BUG_ON(ptr > end); 867 } 868 869 if (owner >= BTRFS_FIRST_FREE_OBJECTID) 870 needed = BTRFS_REF_TYPE_DATA; 871 else 872 needed = BTRFS_REF_TYPE_BLOCK; 873 874 ret = -ENOENT; 875 while (ptr < end) { 876 iref = (struct btrfs_extent_inline_ref *)ptr; 877 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); 878 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 879 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)); 880 ptr += btrfs_extent_inline_ref_size(type); 881 continue; 882 } 883 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) { 884 ret = -EUCLEAN; 885 goto out; 886 } 887 888 if (want < type) 889 break; 890 if (want > type) { 891 ptr += btrfs_extent_inline_ref_size(type); 892 continue; 893 } 894 895 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 896 struct btrfs_extent_data_ref *dref; 897 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 898 if (match_extent_data_ref(leaf, dref, root_objectid, 899 owner, offset)) { 900 ret = 0; 901 break; 902 } 903 if (hash_extent_data_ref_item(leaf, dref) < 904 hash_extent_data_ref(root_objectid, owner, offset)) 905 break; 906 } else { 907 u64 ref_offset; 908 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); 909 if (parent > 0) { 910 if (parent == ref_offset) { 911 ret = 0; 912 break; 913 } 914 if (ref_offset < parent) 915 break; 916 } else { 917 if (root_objectid == ref_offset) { 918 ret = 0; 919 break; 920 } 921 if (ref_offset < root_objectid) 922 break; 923 } 924 } 925 ptr += btrfs_extent_inline_ref_size(type); 926 } 927 928 if (unlikely(ptr > end)) { 929 ret = -EUCLEAN; 930 btrfs_print_leaf(path->nodes[0]); 931 btrfs_crit(fs_info, 932 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu", 933 path->slots[0], root_objectid, owner, offset, parent); 934 goto out; 935 } 936 937 if (ret == -ENOENT && insert) { 938 if (item_size + extra_size >= 939 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { 940 ret = -EAGAIN; 941 goto out; 942 } 943 944 if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) { 945 struct btrfs_key tmp_key; 946 947 btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1); 948 if (tmp_key.objectid == bytenr && 949 tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 950 ret = -EAGAIN; 951 goto out; 952 } 953 goto out_no_entry; 954 } 955 956 if (!path->keep_locks) { 957 btrfs_release_path(path); 958 path->keep_locks = true; 959 goto again; 960 } 961 962 /* 963 * To add new inline back ref, we have to make sure 964 * there is no corresponding back ref item. 965 * For simplicity, we just do not add new inline back 966 * ref if there is any kind of item for this block 967 */ 968 if (find_next_key(path, 0, &key) == 0 && 969 key.objectid == bytenr && 970 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { 971 ret = -EAGAIN; 972 goto out; 973 } 974 } 975 out_no_entry: 976 *ref_ret = (struct btrfs_extent_inline_ref *)ptr; 977 out: 978 if (path->keep_locks) { 979 path->keep_locks = false; 980 btrfs_unlock_up_safe(path, 1); 981 } 982 if (insert) 983 path->search_for_extension = false; 984 return ret; 985 } 986 987 /* 988 * helper to add new inline back ref 989 */ 990 static noinline_for_stack 991 void setup_inline_extent_backref(struct btrfs_trans_handle *trans, 992 struct btrfs_path *path, 993 struct btrfs_extent_inline_ref *iref, 994 u64 parent, u64 root_objectid, 995 u64 owner, u64 offset, int refs_to_add, 996 struct btrfs_delayed_extent_op *extent_op) 997 { 998 struct extent_buffer *leaf; 999 struct btrfs_extent_item *ei; 1000 unsigned long ptr; 1001 unsigned long end; 1002 unsigned long item_offset; 1003 u64 refs; 1004 int size; 1005 int type; 1006 1007 leaf = path->nodes[0]; 1008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1009 item_offset = (unsigned long)iref - (unsigned long)ei; 1010 1011 type = extent_ref_type(parent, owner); 1012 size = btrfs_extent_inline_ref_size(type); 1013 1014 btrfs_extend_item(trans, path, size); 1015 1016 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1017 refs = btrfs_extent_refs(leaf, ei); 1018 refs += refs_to_add; 1019 btrfs_set_extent_refs(leaf, ei, refs); 1020 if (extent_op) 1021 __run_delayed_extent_op(extent_op, leaf, ei); 1022 1023 ptr = (unsigned long)ei + item_offset; 1024 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]); 1025 if (ptr < end - size) 1026 memmove_extent_buffer(leaf, ptr + size, ptr, 1027 end - size - ptr); 1028 1029 iref = (struct btrfs_extent_inline_ref *)ptr; 1030 btrfs_set_extent_inline_ref_type(leaf, iref, type); 1031 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1032 struct btrfs_extent_data_ref *dref; 1033 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1034 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); 1035 btrfs_set_extent_data_ref_objectid(leaf, dref, owner); 1036 btrfs_set_extent_data_ref_offset(leaf, dref, offset); 1037 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); 1038 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1039 struct btrfs_shared_data_ref *sref; 1040 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1041 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); 1042 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1043 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { 1044 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 1045 } else { 1046 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); 1047 } 1048 } 1049 1050 static int lookup_extent_backref(struct btrfs_trans_handle *trans, 1051 struct btrfs_path *path, 1052 struct btrfs_extent_inline_ref **ref_ret, 1053 u64 bytenr, u64 num_bytes, u64 parent, 1054 u64 root_objectid, u64 owner, u64 offset) 1055 { 1056 int ret; 1057 1058 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, 1059 num_bytes, parent, root_objectid, 1060 owner, offset, 0); 1061 if (ret != -ENOENT) 1062 return ret; 1063 1064 btrfs_release_path(path); 1065 *ref_ret = NULL; 1066 1067 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1068 ret = lookup_tree_block_ref(trans, path, bytenr, parent, 1069 root_objectid); 1070 } else { 1071 ret = lookup_extent_data_ref(trans, path, bytenr, parent, 1072 root_objectid, owner, offset); 1073 } 1074 return ret; 1075 } 1076 1077 /* 1078 * helper to update/remove inline back ref 1079 */ 1080 static noinline_for_stack int update_inline_extent_backref( 1081 struct btrfs_trans_handle *trans, 1082 struct btrfs_path *path, 1083 struct btrfs_extent_inline_ref *iref, 1084 int refs_to_mod, 1085 struct btrfs_delayed_extent_op *extent_op) 1086 { 1087 struct extent_buffer *leaf = path->nodes[0]; 1088 struct btrfs_fs_info *fs_info = leaf->fs_info; 1089 struct btrfs_extent_item *ei; 1090 struct btrfs_extent_data_ref *dref = NULL; 1091 struct btrfs_shared_data_ref *sref = NULL; 1092 unsigned long ptr; 1093 unsigned long end; 1094 u32 item_size; 1095 int size; 1096 int type; 1097 u64 refs; 1098 1099 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1100 refs = btrfs_extent_refs(leaf, ei); 1101 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) { 1102 struct btrfs_key key; 1103 u32 extent_size; 1104 1105 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1106 if (key.type == BTRFS_METADATA_ITEM_KEY) 1107 extent_size = fs_info->nodesize; 1108 else 1109 extent_size = key.offset; 1110 btrfs_print_leaf(leaf); 1111 btrfs_err(fs_info, 1112 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu", 1113 key.objectid, extent_size, refs_to_mod, refs); 1114 return -EUCLEAN; 1115 } 1116 refs += refs_to_mod; 1117 btrfs_set_extent_refs(leaf, ei, refs); 1118 if (extent_op) 1119 __run_delayed_extent_op(extent_op, leaf, ei); 1120 1121 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 1122 /* 1123 * Function btrfs_get_extent_inline_ref_type() has already printed 1124 * error messages. 1125 */ 1126 if (unlikely(type == BTRFS_REF_TYPE_INVALID)) 1127 return -EUCLEAN; 1128 1129 if (type == BTRFS_EXTENT_DATA_REF_KEY) { 1130 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1131 refs = btrfs_extent_data_ref_count(leaf, dref); 1132 } else if (type == BTRFS_SHARED_DATA_REF_KEY) { 1133 sref = (struct btrfs_shared_data_ref *)(iref + 1); 1134 refs = btrfs_shared_data_ref_count(leaf, sref); 1135 } else { 1136 refs = 1; 1137 /* 1138 * For tree blocks we can only drop one ref for it, and tree 1139 * blocks should not have refs > 1. 1140 * 1141 * Furthermore if we're inserting a new inline backref, we 1142 * won't reach this path either. That would be 1143 * setup_inline_extent_backref(). 1144 */ 1145 if (unlikely(refs_to_mod != -1)) { 1146 struct btrfs_key key; 1147 1148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1149 1150 btrfs_print_leaf(leaf); 1151 btrfs_err(fs_info, 1152 "invalid refs_to_mod for tree block %llu, has %d expect -1", 1153 key.objectid, refs_to_mod); 1154 return -EUCLEAN; 1155 } 1156 } 1157 1158 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) { 1159 struct btrfs_key key; 1160 u32 extent_size; 1161 1162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1163 if (key.type == BTRFS_METADATA_ITEM_KEY) 1164 extent_size = fs_info->nodesize; 1165 else 1166 extent_size = key.offset; 1167 btrfs_print_leaf(leaf); 1168 btrfs_err(fs_info, 1169 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu", 1170 (unsigned long)iref, key.objectid, extent_size, 1171 refs_to_mod, refs); 1172 return -EUCLEAN; 1173 } 1174 refs += refs_to_mod; 1175 1176 if (refs > 0) { 1177 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1178 btrfs_set_extent_data_ref_count(leaf, dref, refs); 1179 else 1180 btrfs_set_shared_data_ref_count(leaf, sref, refs); 1181 } else { 1182 size = btrfs_extent_inline_ref_size(type); 1183 item_size = btrfs_item_size(leaf, path->slots[0]); 1184 ptr = (unsigned long)iref; 1185 end = (unsigned long)ei + item_size; 1186 if (ptr + size < end) 1187 memmove_extent_buffer(leaf, ptr, ptr + size, 1188 end - ptr - size); 1189 item_size -= size; 1190 btrfs_truncate_item(trans, path, item_size, 1); 1191 } 1192 return 0; 1193 } 1194 1195 static noinline_for_stack 1196 int insert_inline_extent_backref(struct btrfs_trans_handle *trans, 1197 struct btrfs_path *path, 1198 u64 bytenr, u64 num_bytes, u64 parent, 1199 u64 root_objectid, u64 owner, 1200 u64 offset, int refs_to_add, 1201 struct btrfs_delayed_extent_op *extent_op) 1202 { 1203 struct btrfs_extent_inline_ref *iref; 1204 int ret; 1205 1206 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, 1207 num_bytes, parent, root_objectid, 1208 owner, offset, 1); 1209 if (ret == 0) { 1210 /* 1211 * We're adding refs to a tree block we already own, this 1212 * should not happen at all. 1213 */ 1214 if (unlikely(owner < BTRFS_FIRST_FREE_OBJECTID)) { 1215 btrfs_print_leaf(path->nodes[0]); 1216 btrfs_crit(trans->fs_info, 1217 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u", 1218 bytenr, num_bytes, root_objectid, path->slots[0]); 1219 return -EUCLEAN; 1220 } 1221 ret = update_inline_extent_backref(trans, path, iref, 1222 refs_to_add, extent_op); 1223 } else if (ret == -ENOENT) { 1224 setup_inline_extent_backref(trans, path, iref, parent, 1225 root_objectid, owner, offset, 1226 refs_to_add, extent_op); 1227 ret = 0; 1228 } 1229 return ret; 1230 } 1231 1232 static int remove_extent_backref(struct btrfs_trans_handle *trans, 1233 struct btrfs_root *root, 1234 struct btrfs_path *path, 1235 struct btrfs_extent_inline_ref *iref, 1236 int refs_to_drop, int is_data) 1237 { 1238 int ret = 0; 1239 1240 BUG_ON(!is_data && refs_to_drop != 1); 1241 if (iref) 1242 ret = update_inline_extent_backref(trans, path, iref, 1243 -refs_to_drop, NULL); 1244 else if (is_data) 1245 ret = remove_extent_data_ref(trans, root, path, refs_to_drop); 1246 else 1247 ret = btrfs_del_item(trans, root, path); 1248 return ret; 1249 } 1250 1251 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, 1252 u64 *discarded_bytes) 1253 { 1254 int j, ret = 0; 1255 u64 bytes_left, end; 1256 u64 aligned_start = ALIGN(start, SECTOR_SIZE); 1257 1258 /* Adjust the range to be aligned to 512B sectors if necessary. */ 1259 if (start != aligned_start) { 1260 len -= aligned_start - start; 1261 len = round_down(len, SECTOR_SIZE); 1262 start = aligned_start; 1263 } 1264 1265 *discarded_bytes = 0; 1266 1267 if (!len) 1268 return 0; 1269 1270 end = start + len; 1271 bytes_left = len; 1272 1273 /* Skip any superblocks on this device. */ 1274 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { 1275 u64 sb_start = btrfs_sb_offset(j); 1276 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; 1277 u64 size = sb_start - start; 1278 1279 if (!in_range(sb_start, start, bytes_left) && 1280 !in_range(sb_end, start, bytes_left) && 1281 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) 1282 continue; 1283 1284 /* 1285 * Superblock spans beginning of range. Adjust start and 1286 * try again. 1287 */ 1288 if (sb_start <= start) { 1289 start += sb_end - start; 1290 if (start > end) { 1291 bytes_left = 0; 1292 break; 1293 } 1294 bytes_left = end - start; 1295 continue; 1296 } 1297 1298 if (size) { 1299 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1300 size >> SECTOR_SHIFT, 1301 GFP_NOFS); 1302 if (!ret) 1303 *discarded_bytes += size; 1304 else if (ret != -EOPNOTSUPP) 1305 return ret; 1306 } 1307 1308 start = sb_end; 1309 if (start > end) { 1310 bytes_left = 0; 1311 break; 1312 } 1313 bytes_left = end - start; 1314 } 1315 1316 while (bytes_left) { 1317 u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left); 1318 1319 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT, 1320 bytes_to_discard >> SECTOR_SHIFT, 1321 GFP_NOFS); 1322 1323 if (ret) { 1324 if (ret != -EOPNOTSUPP) 1325 break; 1326 continue; 1327 } 1328 1329 start += bytes_to_discard; 1330 bytes_left -= bytes_to_discard; 1331 *discarded_bytes += bytes_to_discard; 1332 1333 if (btrfs_trim_interrupted()) { 1334 ret = -ERESTARTSYS; 1335 break; 1336 } 1337 } 1338 1339 return ret; 1340 } 1341 1342 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes) 1343 { 1344 struct btrfs_device *dev = stripe->dev; 1345 struct btrfs_fs_info *fs_info = dev->fs_info; 1346 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1347 u64 phys = stripe->physical; 1348 u64 len = stripe->length; 1349 u64 discarded = 0; 1350 int ret = 0; 1351 1352 /* Zone reset on a zoned filesystem */ 1353 if (btrfs_can_zone_reset(dev, phys, len)) { 1354 u64 src_disc; 1355 1356 ret = btrfs_reset_device_zone(dev, phys, len, &discarded); 1357 if (ret) 1358 goto out; 1359 1360 if (!btrfs_dev_replace_is_ongoing(dev_replace) || 1361 dev != dev_replace->srcdev) 1362 goto out; 1363 1364 src_disc = discarded; 1365 1366 /* Send to replace target as well */ 1367 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len, 1368 &discarded); 1369 discarded += src_disc; 1370 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) { 1371 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded); 1372 } else { 1373 ret = 0; 1374 *bytes = 0; 1375 } 1376 1377 out: 1378 *bytes = discarded; 1379 return ret; 1380 } 1381 1382 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 1383 u64 num_bytes, u64 *actual_bytes) 1384 { 1385 int ret = 0; 1386 u64 discarded_bytes = 0; 1387 u64 end = bytenr + num_bytes; 1388 u64 cur = bytenr; 1389 1390 /* 1391 * Avoid races with device replace and make sure the devices in the 1392 * stripes don't go away while we are discarding. 1393 */ 1394 btrfs_bio_counter_inc_blocked(fs_info); 1395 while (cur < end) { 1396 struct btrfs_discard_stripe *stripes; 1397 unsigned int num_stripes; 1398 int i; 1399 1400 num_bytes = end - cur; 1401 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes); 1402 if (IS_ERR(stripes)) { 1403 ret = PTR_ERR(stripes); 1404 if (ret == -EOPNOTSUPP) 1405 ret = 0; 1406 break; 1407 } 1408 1409 for (i = 0; i < num_stripes; i++) { 1410 struct btrfs_discard_stripe *stripe = stripes + i; 1411 u64 bytes; 1412 1413 if (!stripe->dev->bdev) { 1414 ASSERT(btrfs_test_opt(fs_info, DEGRADED)); 1415 continue; 1416 } 1417 1418 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 1419 &stripe->dev->dev_state)) 1420 continue; 1421 1422 ret = do_discard_extent(stripe, &bytes); 1423 if (ret) { 1424 /* 1425 * Keep going if discard is not supported by the 1426 * device. 1427 */ 1428 if (ret != -EOPNOTSUPP) 1429 break; 1430 ret = 0; 1431 } else { 1432 discarded_bytes += bytes; 1433 } 1434 } 1435 kfree(stripes); 1436 if (ret) 1437 break; 1438 cur += num_bytes; 1439 } 1440 btrfs_bio_counter_dec(fs_info); 1441 if (actual_bytes) 1442 *actual_bytes = discarded_bytes; 1443 return ret; 1444 } 1445 1446 /* Can return -ENOMEM */ 1447 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1448 struct btrfs_ref *generic_ref) 1449 { 1450 struct btrfs_fs_info *fs_info = trans->fs_info; 1451 int ret; 1452 1453 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET && 1454 generic_ref->action); 1455 BUG_ON(generic_ref->type == BTRFS_REF_METADATA && 1456 generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID); 1457 1458 if (generic_ref->type == BTRFS_REF_METADATA) 1459 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL); 1460 else 1461 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0); 1462 1463 btrfs_ref_tree_mod(fs_info, generic_ref); 1464 1465 return ret; 1466 } 1467 1468 /* 1469 * Insert backreference for a given extent. 1470 * 1471 * The counterpart is in __btrfs_free_extent(), with examples and more details 1472 * how it works. 1473 * 1474 * @trans: Handle of transaction 1475 * 1476 * @node: The delayed ref node used to get the bytenr/length for 1477 * extent whose references are incremented. 1478 * 1479 * @extent_op Pointer to a structure, holding information necessary when 1480 * updating a tree block's flags 1481 * 1482 */ 1483 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 1484 const struct btrfs_delayed_ref_node *node, 1485 struct btrfs_delayed_extent_op *extent_op) 1486 { 1487 BTRFS_PATH_AUTO_FREE(path); 1488 struct extent_buffer *leaf; 1489 struct btrfs_extent_item *item; 1490 struct btrfs_key key; 1491 u64 bytenr = node->bytenr; 1492 u64 num_bytes = node->num_bytes; 1493 u64 owner = btrfs_delayed_ref_owner(node); 1494 u64 offset = btrfs_delayed_ref_offset(node); 1495 u64 refs; 1496 int refs_to_add = node->ref_mod; 1497 int ret; 1498 1499 path = btrfs_alloc_path(); 1500 if (!path) 1501 return -ENOMEM; 1502 1503 /* this will setup the path even if it fails to insert the back ref */ 1504 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, 1505 node->parent, node->ref_root, owner, 1506 offset, refs_to_add, extent_op); 1507 if ((ret < 0 && ret != -EAGAIN) || !ret) 1508 return ret; 1509 1510 /* 1511 * Ok we had -EAGAIN which means we didn't have space to insert and 1512 * inline extent ref, so just update the reference count and add a 1513 * normal backref. 1514 */ 1515 leaf = path->nodes[0]; 1516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1517 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1518 refs = btrfs_extent_refs(leaf, item); 1519 btrfs_set_extent_refs(leaf, item, refs + refs_to_add); 1520 if (extent_op) 1521 __run_delayed_extent_op(extent_op, leaf, item); 1522 1523 btrfs_release_path(path); 1524 1525 /* now insert the actual backref */ 1526 if (owner < BTRFS_FIRST_FREE_OBJECTID) { 1527 ret = insert_tree_block_ref(trans, path, node, bytenr); 1528 if (ret) 1529 btrfs_abort_transaction(trans, ret); 1530 } else { 1531 ret = insert_extent_data_ref(trans, path, node, bytenr); 1532 if (ret) 1533 btrfs_abort_transaction(trans, ret); 1534 } 1535 1536 return ret; 1537 } 1538 1539 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info, 1540 const struct btrfs_delayed_ref_head *href) 1541 { 1542 u64 root = href->owning_root; 1543 1544 /* 1545 * Don't check must_insert_reserved, as this is called from contexts 1546 * where it has already been unset. 1547 */ 1548 if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE || 1549 !href->is_data || !btrfs_is_fstree(root)) 1550 return; 1551 1552 btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes, 1553 BTRFS_QGROUP_RSV_DATA); 1554 } 1555 1556 static int run_delayed_data_ref(struct btrfs_trans_handle *trans, 1557 struct btrfs_delayed_ref_head *href, 1558 const struct btrfs_delayed_ref_node *node, 1559 struct btrfs_delayed_extent_op *extent_op, 1560 bool insert_reserved) 1561 { 1562 int ret = 0; 1563 u64 parent = 0; 1564 u64 flags = 0; 1565 1566 trace_run_delayed_data_ref(trans->fs_info, node); 1567 1568 if (node->type == BTRFS_SHARED_DATA_REF_KEY) 1569 parent = node->parent; 1570 1571 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1572 struct btrfs_key key; 1573 struct btrfs_squota_delta delta = { 1574 .root = href->owning_root, 1575 .num_bytes = node->num_bytes, 1576 .is_data = true, 1577 .is_inc = true, 1578 .generation = trans->transid, 1579 }; 1580 u64 owner = btrfs_delayed_ref_owner(node); 1581 u64 offset = btrfs_delayed_ref_offset(node); 1582 1583 if (extent_op) 1584 flags |= extent_op->flags_to_set; 1585 1586 key.objectid = node->bytenr; 1587 key.type = BTRFS_EXTENT_ITEM_KEY; 1588 key.offset = node->num_bytes; 1589 1590 ret = alloc_reserved_file_extent(trans, parent, node->ref_root, 1591 flags, owner, offset, &key, 1592 node->ref_mod, 1593 href->owning_root); 1594 free_head_ref_squota_rsv(trans->fs_info, href); 1595 if (!ret) 1596 ret = btrfs_record_squota_delta(trans->fs_info, &delta); 1597 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1598 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1599 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1600 ret = __btrfs_free_extent(trans, href, node, extent_op); 1601 } else { 1602 BUG(); 1603 } 1604 return ret; 1605 } 1606 1607 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, 1608 struct extent_buffer *leaf, 1609 struct btrfs_extent_item *ei) 1610 { 1611 u64 flags = btrfs_extent_flags(leaf, ei); 1612 if (extent_op->update_flags) { 1613 flags |= extent_op->flags_to_set; 1614 btrfs_set_extent_flags(leaf, ei, flags); 1615 } 1616 1617 if (extent_op->update_key) { 1618 struct btrfs_tree_block_info *bi; 1619 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); 1620 bi = (struct btrfs_tree_block_info *)(ei + 1); 1621 btrfs_set_tree_block_key(leaf, bi, &extent_op->key); 1622 } 1623 } 1624 1625 static int run_delayed_extent_op(struct btrfs_trans_handle *trans, 1626 const struct btrfs_delayed_ref_head *head, 1627 struct btrfs_delayed_extent_op *extent_op) 1628 { 1629 struct btrfs_fs_info *fs_info = trans->fs_info; 1630 struct btrfs_root *root; 1631 struct btrfs_key key; 1632 BTRFS_PATH_AUTO_FREE(path); 1633 struct btrfs_extent_item *ei; 1634 struct extent_buffer *leaf; 1635 u32 item_size; 1636 int ret; 1637 int metadata = 1; 1638 1639 if (TRANS_ABORTED(trans)) 1640 return 0; 1641 1642 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1643 metadata = 0; 1644 1645 path = btrfs_alloc_path(); 1646 if (!path) 1647 return -ENOMEM; 1648 1649 key.objectid = head->bytenr; 1650 1651 if (metadata) { 1652 key.type = BTRFS_METADATA_ITEM_KEY; 1653 key.offset = head->level; 1654 } else { 1655 key.type = BTRFS_EXTENT_ITEM_KEY; 1656 key.offset = head->num_bytes; 1657 } 1658 1659 root = btrfs_extent_root(fs_info, key.objectid); 1660 again: 1661 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 1662 if (ret < 0) { 1663 return ret; 1664 } else if (ret > 0) { 1665 if (metadata) { 1666 if (path->slots[0] > 0) { 1667 path->slots[0]--; 1668 btrfs_item_key_to_cpu(path->nodes[0], &key, 1669 path->slots[0]); 1670 if (key.objectid == head->bytenr && 1671 key.type == BTRFS_EXTENT_ITEM_KEY && 1672 key.offset == head->num_bytes) 1673 ret = 0; 1674 } 1675 if (ret > 0) { 1676 btrfs_release_path(path); 1677 metadata = 0; 1678 1679 key.objectid = head->bytenr; 1680 key.type = BTRFS_EXTENT_ITEM_KEY; 1681 key.offset = head->num_bytes; 1682 goto again; 1683 } 1684 } else { 1685 ret = -EUCLEAN; 1686 btrfs_err(fs_info, 1687 "missing extent item for extent %llu num_bytes %llu level %d", 1688 head->bytenr, head->num_bytes, head->level); 1689 return ret; 1690 } 1691 } 1692 1693 leaf = path->nodes[0]; 1694 item_size = btrfs_item_size(leaf, path->slots[0]); 1695 1696 if (unlikely(item_size < sizeof(*ei))) { 1697 ret = -EUCLEAN; 1698 btrfs_err(fs_info, 1699 "unexpected extent item size, has %u expect >= %zu", 1700 item_size, sizeof(*ei)); 1701 btrfs_abort_transaction(trans, ret); 1702 return ret; 1703 } 1704 1705 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 1706 __run_delayed_extent_op(extent_op, leaf, ei); 1707 1708 return ret; 1709 } 1710 1711 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, 1712 struct btrfs_delayed_ref_head *href, 1713 const struct btrfs_delayed_ref_node *node, 1714 struct btrfs_delayed_extent_op *extent_op, 1715 bool insert_reserved) 1716 { 1717 int ret = 0; 1718 struct btrfs_fs_info *fs_info = trans->fs_info; 1719 u64 parent = 0; 1720 u64 ref_root = 0; 1721 1722 trace_run_delayed_tree_ref(trans->fs_info, node); 1723 1724 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1725 parent = node->parent; 1726 ref_root = node->ref_root; 1727 1728 if (unlikely(node->ref_mod != 1)) { 1729 btrfs_err(trans->fs_info, 1730 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu", 1731 node->bytenr, node->ref_mod, node->action, ref_root, 1732 parent); 1733 return -EUCLEAN; 1734 } 1735 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { 1736 struct btrfs_squota_delta delta = { 1737 .root = href->owning_root, 1738 .num_bytes = fs_info->nodesize, 1739 .is_data = false, 1740 .is_inc = true, 1741 .generation = trans->transid, 1742 }; 1743 1744 ret = alloc_reserved_tree_block(trans, node, extent_op); 1745 if (!ret) 1746 btrfs_record_squota_delta(fs_info, &delta); 1747 } else if (node->action == BTRFS_ADD_DELAYED_REF) { 1748 ret = __btrfs_inc_extent_ref(trans, node, extent_op); 1749 } else if (node->action == BTRFS_DROP_DELAYED_REF) { 1750 ret = __btrfs_free_extent(trans, href, node, extent_op); 1751 } else { 1752 BUG(); 1753 } 1754 return ret; 1755 } 1756 1757 /* helper function to actually process a single delayed ref entry */ 1758 static int run_one_delayed_ref(struct btrfs_trans_handle *trans, 1759 struct btrfs_delayed_ref_head *href, 1760 const struct btrfs_delayed_ref_node *node, 1761 struct btrfs_delayed_extent_op *extent_op, 1762 bool insert_reserved) 1763 { 1764 int ret = 0; 1765 1766 if (TRANS_ABORTED(trans)) { 1767 if (insert_reserved) { 1768 btrfs_pin_extent(trans, node->bytenr, node->num_bytes); 1769 free_head_ref_squota_rsv(trans->fs_info, href); 1770 } 1771 return 0; 1772 } 1773 1774 if (node->type == BTRFS_TREE_BLOCK_REF_KEY || 1775 node->type == BTRFS_SHARED_BLOCK_REF_KEY) 1776 ret = run_delayed_tree_ref(trans, href, node, extent_op, 1777 insert_reserved); 1778 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || 1779 node->type == BTRFS_SHARED_DATA_REF_KEY) 1780 ret = run_delayed_data_ref(trans, href, node, extent_op, 1781 insert_reserved); 1782 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY) 1783 ret = 0; 1784 else 1785 BUG(); 1786 if (ret && insert_reserved) 1787 btrfs_pin_extent(trans, node->bytenr, node->num_bytes); 1788 if (ret < 0) 1789 btrfs_err(trans->fs_info, 1790 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d", 1791 node->bytenr, node->num_bytes, node->type, 1792 node->action, node->ref_mod, ret); 1793 return ret; 1794 } 1795 1796 static struct btrfs_delayed_extent_op *cleanup_extent_op( 1797 struct btrfs_delayed_ref_head *head) 1798 { 1799 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 1800 1801 if (!extent_op) 1802 return NULL; 1803 1804 if (head->must_insert_reserved) { 1805 head->extent_op = NULL; 1806 btrfs_free_delayed_extent_op(extent_op); 1807 return NULL; 1808 } 1809 return extent_op; 1810 } 1811 1812 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans, 1813 struct btrfs_delayed_ref_head *head) 1814 { 1815 struct btrfs_delayed_extent_op *extent_op; 1816 int ret; 1817 1818 extent_op = cleanup_extent_op(head); 1819 if (!extent_op) 1820 return 0; 1821 head->extent_op = NULL; 1822 spin_unlock(&head->lock); 1823 ret = run_delayed_extent_op(trans, head, extent_op); 1824 btrfs_free_delayed_extent_op(extent_op); 1825 return ret ? ret : 1; 1826 } 1827 1828 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 1829 struct btrfs_delayed_ref_root *delayed_refs, 1830 struct btrfs_delayed_ref_head *head) 1831 { 1832 u64 ret = 0; 1833 1834 /* 1835 * We had csum deletions accounted for in our delayed refs rsv, we need 1836 * to drop the csum leaves for this update from our delayed_refs_rsv. 1837 */ 1838 if (head->total_ref_mod < 0 && head->is_data) { 1839 int nr_csums; 1840 1841 spin_lock(&delayed_refs->lock); 1842 delayed_refs->pending_csums -= head->num_bytes; 1843 spin_unlock(&delayed_refs->lock); 1844 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes); 1845 1846 btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums); 1847 1848 ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums); 1849 } 1850 /* must_insert_reserved can be set only if we didn't run the head ref. */ 1851 if (head->must_insert_reserved) 1852 free_head_ref_squota_rsv(fs_info, head); 1853 1854 return ret; 1855 } 1856 1857 static int cleanup_ref_head(struct btrfs_trans_handle *trans, 1858 struct btrfs_delayed_ref_head *head, 1859 u64 *bytes_released) 1860 { 1861 1862 struct btrfs_fs_info *fs_info = trans->fs_info; 1863 struct btrfs_delayed_ref_root *delayed_refs; 1864 int ret; 1865 1866 delayed_refs = &trans->transaction->delayed_refs; 1867 1868 ret = run_and_cleanup_extent_op(trans, head); 1869 if (ret < 0) { 1870 btrfs_unselect_ref_head(delayed_refs, head); 1871 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); 1872 return ret; 1873 } else if (ret) { 1874 return ret; 1875 } 1876 1877 /* 1878 * Need to drop our head ref lock and re-acquire the delayed ref lock 1879 * and then re-check to make sure nobody got added. 1880 */ 1881 spin_unlock(&head->lock); 1882 spin_lock(&delayed_refs->lock); 1883 spin_lock(&head->lock); 1884 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) { 1885 spin_unlock(&head->lock); 1886 spin_unlock(&delayed_refs->lock); 1887 return 1; 1888 } 1889 btrfs_delete_ref_head(fs_info, delayed_refs, head); 1890 spin_unlock(&head->lock); 1891 spin_unlock(&delayed_refs->lock); 1892 1893 if (head->must_insert_reserved) { 1894 btrfs_pin_extent(trans, head->bytenr, head->num_bytes); 1895 if (head->is_data) { 1896 struct btrfs_root *csum_root; 1897 1898 csum_root = btrfs_csum_root(fs_info, head->bytenr); 1899 ret = btrfs_del_csums(trans, csum_root, head->bytenr, 1900 head->num_bytes); 1901 } 1902 } 1903 1904 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 1905 1906 trace_run_delayed_ref_head(fs_info, head, 0); 1907 btrfs_delayed_ref_unlock(head); 1908 btrfs_put_delayed_ref_head(head); 1909 return ret; 1910 } 1911 1912 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans, 1913 struct btrfs_delayed_ref_head *locked_ref, 1914 u64 *bytes_released) 1915 { 1916 struct btrfs_fs_info *fs_info = trans->fs_info; 1917 struct btrfs_delayed_ref_root *delayed_refs; 1918 struct btrfs_delayed_extent_op *extent_op; 1919 struct btrfs_delayed_ref_node *ref; 1920 bool must_insert_reserved; 1921 int ret; 1922 1923 delayed_refs = &trans->transaction->delayed_refs; 1924 1925 lockdep_assert_held(&locked_ref->mutex); 1926 lockdep_assert_held(&locked_ref->lock); 1927 1928 while ((ref = btrfs_select_delayed_ref(locked_ref))) { 1929 if (ref->seq && 1930 btrfs_check_delayed_seq(fs_info, ref->seq)) { 1931 spin_unlock(&locked_ref->lock); 1932 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1933 return -EAGAIN; 1934 } 1935 1936 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree); 1937 RB_CLEAR_NODE(&ref->ref_node); 1938 if (!list_empty(&ref->add_list)) 1939 list_del(&ref->add_list); 1940 /* 1941 * When we play the delayed ref, also correct the ref_mod on 1942 * head 1943 */ 1944 switch (ref->action) { 1945 case BTRFS_ADD_DELAYED_REF: 1946 case BTRFS_ADD_DELAYED_EXTENT: 1947 locked_ref->ref_mod -= ref->ref_mod; 1948 break; 1949 case BTRFS_DROP_DELAYED_REF: 1950 locked_ref->ref_mod += ref->ref_mod; 1951 break; 1952 default: 1953 WARN_ON(1); 1954 } 1955 1956 /* 1957 * Record the must_insert_reserved flag before we drop the 1958 * spin lock. 1959 */ 1960 must_insert_reserved = locked_ref->must_insert_reserved; 1961 /* 1962 * Unsetting this on the head ref relinquishes ownership of 1963 * the rsv_bytes, so it is critical that every possible code 1964 * path from here forward frees all reserves including qgroup 1965 * reserve. 1966 */ 1967 locked_ref->must_insert_reserved = false; 1968 1969 extent_op = locked_ref->extent_op; 1970 locked_ref->extent_op = NULL; 1971 spin_unlock(&locked_ref->lock); 1972 1973 ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op, 1974 must_insert_reserved); 1975 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 1976 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1); 1977 1978 btrfs_free_delayed_extent_op(extent_op); 1979 if (ret) { 1980 btrfs_unselect_ref_head(delayed_refs, locked_ref); 1981 btrfs_put_delayed_ref(ref); 1982 return ret; 1983 } 1984 1985 btrfs_put_delayed_ref(ref); 1986 cond_resched(); 1987 1988 spin_lock(&locked_ref->lock); 1989 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 1990 } 1991 1992 return 0; 1993 } 1994 1995 /* 1996 * Returns 0 on success or if called with an already aborted transaction. 1997 * Returns -ENOMEM or -EIO on failure and will abort the transaction. 1998 */ 1999 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2000 u64 min_bytes) 2001 { 2002 struct btrfs_fs_info *fs_info = trans->fs_info; 2003 struct btrfs_delayed_ref_root *delayed_refs; 2004 struct btrfs_delayed_ref_head *locked_ref = NULL; 2005 int ret; 2006 unsigned long count = 0; 2007 unsigned long max_count = 0; 2008 u64 bytes_processed = 0; 2009 2010 delayed_refs = &trans->transaction->delayed_refs; 2011 if (min_bytes == 0) { 2012 /* 2013 * We may be subject to a harmless race if some task is 2014 * concurrently adding or removing a delayed ref, so silence 2015 * KCSAN and similar tools. 2016 */ 2017 max_count = data_race(delayed_refs->num_heads_ready); 2018 min_bytes = U64_MAX; 2019 } 2020 2021 do { 2022 if (!locked_ref) { 2023 locked_ref = btrfs_select_ref_head(fs_info, delayed_refs); 2024 if (IS_ERR_OR_NULL(locked_ref)) { 2025 if (PTR_ERR(locked_ref) == -EAGAIN) { 2026 continue; 2027 } else { 2028 break; 2029 } 2030 } 2031 count++; 2032 } 2033 /* 2034 * We need to try and merge add/drops of the same ref since we 2035 * can run into issues with relocate dropping the implicit ref 2036 * and then it being added back again before the drop can 2037 * finish. If we merged anything we need to re-loop so we can 2038 * get a good ref. 2039 * Or we can get node references of the same type that weren't 2040 * merged when created due to bumps in the tree mod seq, and 2041 * we need to merge them to prevent adding an inline extent 2042 * backref before dropping it (triggering a BUG_ON at 2043 * insert_inline_extent_backref()). 2044 */ 2045 spin_lock(&locked_ref->lock); 2046 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref); 2047 2048 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed); 2049 if (ret < 0 && ret != -EAGAIN) { 2050 /* 2051 * Error, btrfs_run_delayed_refs_for_head already 2052 * unlocked everything so just bail out 2053 */ 2054 return ret; 2055 } else if (!ret) { 2056 /* 2057 * Success, perform the usual cleanup of a processed 2058 * head 2059 */ 2060 ret = cleanup_ref_head(trans, locked_ref, &bytes_processed); 2061 if (ret > 0 ) { 2062 /* We dropped our lock, we need to loop. */ 2063 ret = 0; 2064 continue; 2065 } else if (ret) { 2066 return ret; 2067 } 2068 } 2069 2070 /* 2071 * Either success case or btrfs_run_delayed_refs_for_head 2072 * returned -EAGAIN, meaning we need to select another head 2073 */ 2074 2075 locked_ref = NULL; 2076 cond_resched(); 2077 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) || 2078 (max_count > 0 && count < max_count) || 2079 locked_ref); 2080 2081 return 0; 2082 } 2083 2084 #ifdef SCRAMBLE_DELAYED_REFS 2085 /* 2086 * Normally delayed refs get processed in ascending bytenr order. This 2087 * correlates in most cases to the order added. To expose dependencies on this 2088 * order, we start to process the tree in the middle instead of the beginning 2089 */ 2090 static u64 find_middle(struct rb_root *root) 2091 { 2092 struct rb_node *n = root->rb_node; 2093 struct btrfs_delayed_ref_node *entry; 2094 int alt = 1; 2095 u64 middle; 2096 u64 first = 0, last = 0; 2097 2098 n = rb_first(root); 2099 if (n) { 2100 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2101 first = entry->bytenr; 2102 } 2103 n = rb_last(root); 2104 if (n) { 2105 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2106 last = entry->bytenr; 2107 } 2108 n = root->rb_node; 2109 2110 while (n) { 2111 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); 2112 WARN_ON(!entry->in_tree); 2113 2114 middle = entry->bytenr; 2115 2116 if (alt) 2117 n = n->rb_left; 2118 else 2119 n = n->rb_right; 2120 2121 alt = 1 - alt; 2122 } 2123 return middle; 2124 } 2125 #endif 2126 2127 /* 2128 * Start processing the delayed reference count updates and extent insertions 2129 * we have queued up so far. 2130 * 2131 * @trans: Transaction handle. 2132 * @min_bytes: How many bytes of delayed references to process. After this 2133 * many bytes we stop processing delayed references if there are 2134 * any more. If 0 it means to run all existing delayed references, 2135 * but not new ones added after running all existing ones. 2136 * Use (u64)-1 (U64_MAX) to run all existing delayed references 2137 * plus any new ones that are added. 2138 * 2139 * Returns 0 on success or if called with an aborted transaction 2140 * Returns <0 on error and aborts the transaction 2141 */ 2142 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes) 2143 { 2144 struct btrfs_fs_info *fs_info = trans->fs_info; 2145 struct btrfs_delayed_ref_root *delayed_refs; 2146 int ret; 2147 2148 /* We'll clean this up in btrfs_cleanup_transaction */ 2149 if (TRANS_ABORTED(trans)) 2150 return 0; 2151 2152 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) 2153 return 0; 2154 2155 delayed_refs = &trans->transaction->delayed_refs; 2156 again: 2157 #ifdef SCRAMBLE_DELAYED_REFS 2158 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); 2159 #endif 2160 ret = __btrfs_run_delayed_refs(trans, min_bytes); 2161 if (unlikely(ret < 0)) { 2162 btrfs_abort_transaction(trans, ret); 2163 return ret; 2164 } 2165 2166 if (min_bytes == U64_MAX) { 2167 btrfs_create_pending_block_groups(trans); 2168 2169 spin_lock(&delayed_refs->lock); 2170 if (xa_empty(&delayed_refs->head_refs)) { 2171 spin_unlock(&delayed_refs->lock); 2172 return 0; 2173 } 2174 spin_unlock(&delayed_refs->lock); 2175 2176 cond_resched(); 2177 goto again; 2178 } 2179 2180 return 0; 2181 } 2182 2183 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2184 struct extent_buffer *eb, u64 flags) 2185 { 2186 struct btrfs_delayed_extent_op *extent_op; 2187 int ret; 2188 2189 extent_op = btrfs_alloc_delayed_extent_op(); 2190 if (!extent_op) 2191 return -ENOMEM; 2192 2193 extent_op->flags_to_set = flags; 2194 extent_op->update_flags = true; 2195 extent_op->update_key = false; 2196 2197 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, 2198 btrfs_header_level(eb), extent_op); 2199 if (ret) 2200 btrfs_free_delayed_extent_op(extent_op); 2201 return ret; 2202 } 2203 2204 static noinline int check_delayed_ref(struct btrfs_inode *inode, 2205 struct btrfs_path *path, 2206 u64 offset, u64 bytenr) 2207 { 2208 struct btrfs_root *root = inode->root; 2209 struct btrfs_delayed_ref_head *head; 2210 struct btrfs_delayed_ref_node *ref; 2211 struct btrfs_delayed_ref_root *delayed_refs; 2212 struct btrfs_transaction *cur_trans; 2213 struct rb_node *node; 2214 int ret = 0; 2215 2216 spin_lock(&root->fs_info->trans_lock); 2217 cur_trans = root->fs_info->running_transaction; 2218 if (cur_trans) 2219 refcount_inc(&cur_trans->use_count); 2220 spin_unlock(&root->fs_info->trans_lock); 2221 if (!cur_trans) 2222 return 0; 2223 2224 delayed_refs = &cur_trans->delayed_refs; 2225 spin_lock(&delayed_refs->lock); 2226 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 2227 if (!head) { 2228 spin_unlock(&delayed_refs->lock); 2229 btrfs_put_transaction(cur_trans); 2230 return 0; 2231 } 2232 2233 if (!mutex_trylock(&head->mutex)) { 2234 if (path->nowait) { 2235 spin_unlock(&delayed_refs->lock); 2236 btrfs_put_transaction(cur_trans); 2237 return -EAGAIN; 2238 } 2239 2240 refcount_inc(&head->refs); 2241 spin_unlock(&delayed_refs->lock); 2242 2243 btrfs_release_path(path); 2244 2245 /* 2246 * Mutex was contended, block until it's released and let 2247 * caller try again 2248 */ 2249 mutex_lock(&head->mutex); 2250 mutex_unlock(&head->mutex); 2251 btrfs_put_delayed_ref_head(head); 2252 btrfs_put_transaction(cur_trans); 2253 return -EAGAIN; 2254 } 2255 spin_unlock(&delayed_refs->lock); 2256 2257 spin_lock(&head->lock); 2258 /* 2259 * XXX: We should replace this with a proper search function in the 2260 * future. 2261 */ 2262 for (node = rb_first_cached(&head->ref_tree); node; 2263 node = rb_next(node)) { 2264 u64 ref_owner; 2265 u64 ref_offset; 2266 2267 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); 2268 /* If it's a shared ref we know a cross reference exists */ 2269 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { 2270 ret = 1; 2271 break; 2272 } 2273 2274 ref_owner = btrfs_delayed_ref_owner(ref); 2275 ref_offset = btrfs_delayed_ref_offset(ref); 2276 2277 /* 2278 * If our ref doesn't match the one we're currently looking at 2279 * then we have a cross reference. 2280 */ 2281 if (ref->ref_root != btrfs_root_id(root) || 2282 ref_owner != btrfs_ino(inode) || ref_offset != offset) { 2283 ret = 1; 2284 break; 2285 } 2286 } 2287 spin_unlock(&head->lock); 2288 mutex_unlock(&head->mutex); 2289 btrfs_put_transaction(cur_trans); 2290 return ret; 2291 } 2292 2293 /* 2294 * Check if there are references for a data extent other than the one belonging 2295 * to the given inode and offset. 2296 * 2297 * @inode: The only inode we expect to find associated with the data extent. 2298 * @path: A path to use for searching the extent tree. 2299 * @offset: The only offset we expect to find associated with the data extent. 2300 * @bytenr: The logical address of the data extent. 2301 * 2302 * When the extent does not have any other references other than the one we 2303 * expect to find, we always return a value of 0 with the path having a locked 2304 * leaf that contains the extent's extent item - this is necessary to ensure 2305 * we don't race with a task running delayed references, and our caller must 2306 * have such a path when calling check_delayed_ref() - it must lock a delayed 2307 * ref head while holding the leaf locked. In case the extent item is not found 2308 * in the extent tree, we return -ENOENT with the path having the leaf (locked) 2309 * where the extent item should be, in order to prevent races with another task 2310 * running delayed references, so that we don't miss any reference when calling 2311 * check_delayed_ref(). 2312 * 2313 * Note: this may return false positives, and this is because we want to be 2314 * quick here as we're called in write paths (when flushing delalloc and 2315 * in the direct IO write path). For example we can have an extent with 2316 * a single reference but that reference is not inlined, or we may have 2317 * many references in the extent tree but we also have delayed references 2318 * that cancel all the reference except the one for our inode and offset, 2319 * but it would be expensive to do such checks and complex due to all 2320 * locking to avoid races between the checks and flushing delayed refs, 2321 * plus non-inline references may be located on leaves other than the one 2322 * that contains the extent item in the extent tree. The important thing 2323 * here is to not return false negatives and that the false positives are 2324 * not very common. 2325 * 2326 * Returns: 0 if there are no cross references and with the path having a locked 2327 * leaf from the extent tree that contains the extent's extent item. 2328 * 2329 * 1 if there are cross references (false positives can happen). 2330 * 2331 * < 0 in case of an error. In case of -ENOENT the leaf in the extent 2332 * tree where the extent item should be located at is read locked and 2333 * accessible in the given path. 2334 */ 2335 static noinline int check_committed_ref(struct btrfs_inode *inode, 2336 struct btrfs_path *path, 2337 u64 offset, u64 bytenr) 2338 { 2339 struct btrfs_root *root = inode->root; 2340 struct btrfs_fs_info *fs_info = root->fs_info; 2341 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2342 struct extent_buffer *leaf; 2343 struct btrfs_extent_data_ref *ref; 2344 struct btrfs_extent_inline_ref *iref; 2345 struct btrfs_extent_item *ei; 2346 struct btrfs_key key; 2347 u32 item_size; 2348 u32 expected_size; 2349 int type; 2350 int ret; 2351 2352 key.objectid = bytenr; 2353 key.type = BTRFS_EXTENT_ITEM_KEY; 2354 key.offset = (u64)-1; 2355 2356 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2357 if (ret < 0) 2358 return ret; 2359 if (unlikely(ret == 0)) { 2360 /* 2361 * Key with offset -1 found, there would have to exist an extent 2362 * item with such offset, but this is out of the valid range. 2363 */ 2364 return -EUCLEAN; 2365 } 2366 2367 if (path->slots[0] == 0) 2368 return -ENOENT; 2369 2370 path->slots[0]--; 2371 leaf = path->nodes[0]; 2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2373 2374 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) 2375 return -ENOENT; 2376 2377 item_size = btrfs_item_size(leaf, path->slots[0]); 2378 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); 2379 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY); 2380 2381 /* No inline refs; we need to bail before checking for owner ref. */ 2382 if (item_size == sizeof(*ei)) 2383 return 1; 2384 2385 /* Check for an owner ref; skip over it to the real inline refs. */ 2386 iref = (struct btrfs_extent_inline_ref *)(ei + 1); 2387 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2388 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) { 2389 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 2390 iref = (struct btrfs_extent_inline_ref *)(iref + 1); 2391 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); 2392 } 2393 2394 /* If extent item has more than 1 inline ref then it's shared */ 2395 if (item_size != expected_size) 2396 return 1; 2397 2398 /* If this extent has SHARED_DATA_REF then it's shared */ 2399 if (type != BTRFS_EXTENT_DATA_REF_KEY) 2400 return 1; 2401 2402 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 2403 if (btrfs_extent_refs(leaf, ei) != 2404 btrfs_extent_data_ref_count(leaf, ref) || 2405 btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) || 2406 btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) || 2407 btrfs_extent_data_ref_offset(leaf, ref) != offset) 2408 return 1; 2409 2410 return 0; 2411 } 2412 2413 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset, 2414 u64 bytenr, struct btrfs_path *path) 2415 { 2416 int ret; 2417 2418 do { 2419 ret = check_committed_ref(inode, path, offset, bytenr); 2420 if (ret && ret != -ENOENT) 2421 goto out; 2422 2423 /* 2424 * The path must have a locked leaf from the extent tree where 2425 * the extent item for our extent is located, in case it exists, 2426 * or where it should be located in case it doesn't exist yet 2427 * because it's new and its delayed ref was not yet flushed. 2428 * We need to lock the delayed ref head at check_delayed_ref(), 2429 * if one exists, while holding the leaf locked in order to not 2430 * race with delayed ref flushing, missing references and 2431 * incorrectly reporting that the extent is not shared. 2432 */ 2433 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) { 2434 struct extent_buffer *leaf = path->nodes[0]; 2435 2436 ASSERT(leaf != NULL); 2437 btrfs_assert_tree_read_locked(leaf); 2438 2439 if (ret != -ENOENT) { 2440 struct btrfs_key key; 2441 2442 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2443 ASSERT(key.objectid == bytenr); 2444 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY); 2445 } 2446 } 2447 2448 ret = check_delayed_ref(inode, path, offset, bytenr); 2449 } while (ret == -EAGAIN && !path->nowait); 2450 2451 out: 2452 btrfs_release_path(path); 2453 if (btrfs_is_data_reloc_root(inode->root)) 2454 WARN_ON(ret > 0); 2455 return ret; 2456 } 2457 2458 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, 2459 struct btrfs_root *root, 2460 struct extent_buffer *buf, 2461 bool full_backref, bool inc) 2462 { 2463 struct btrfs_fs_info *fs_info = root->fs_info; 2464 u64 parent; 2465 u64 ref_root; 2466 u32 nritems; 2467 struct btrfs_key key; 2468 struct btrfs_file_extent_item *fi; 2469 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC); 2470 int i; 2471 int action; 2472 int level; 2473 int ret = 0; 2474 2475 if (btrfs_is_testing(fs_info)) 2476 return 0; 2477 2478 ref_root = btrfs_header_owner(buf); 2479 nritems = btrfs_header_nritems(buf); 2480 level = btrfs_header_level(buf); 2481 2482 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0) 2483 return 0; 2484 2485 if (full_backref) 2486 parent = buf->start; 2487 else 2488 parent = 0; 2489 if (inc) 2490 action = BTRFS_ADD_DELAYED_REF; 2491 else 2492 action = BTRFS_DROP_DELAYED_REF; 2493 2494 for (i = 0; i < nritems; i++) { 2495 struct btrfs_ref ref = { 2496 .action = action, 2497 .parent = parent, 2498 .ref_root = ref_root, 2499 }; 2500 2501 if (level == 0) { 2502 btrfs_item_key_to_cpu(buf, &key, i); 2503 if (key.type != BTRFS_EXTENT_DATA_KEY) 2504 continue; 2505 fi = btrfs_item_ptr(buf, i, 2506 struct btrfs_file_extent_item); 2507 if (btrfs_file_extent_type(buf, fi) == 2508 BTRFS_FILE_EXTENT_INLINE) 2509 continue; 2510 ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi); 2511 if (ref.bytenr == 0) 2512 continue; 2513 2514 ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); 2515 ref.owning_root = ref_root; 2516 2517 key.offset -= btrfs_file_extent_offset(buf, fi); 2518 btrfs_init_data_ref(&ref, key.objectid, key.offset, 2519 btrfs_root_id(root), for_reloc); 2520 if (inc) 2521 ret = btrfs_inc_extent_ref(trans, &ref); 2522 else 2523 ret = btrfs_free_extent(trans, &ref); 2524 if (ret) 2525 goto fail; 2526 } else { 2527 /* We don't know the owning_root, leave as 0. */ 2528 ref.bytenr = btrfs_node_blockptr(buf, i); 2529 ref.num_bytes = fs_info->nodesize; 2530 2531 btrfs_init_tree_ref(&ref, level - 1, 2532 btrfs_root_id(root), for_reloc); 2533 if (inc) 2534 ret = btrfs_inc_extent_ref(trans, &ref); 2535 else 2536 ret = btrfs_free_extent(trans, &ref); 2537 if (ret) 2538 goto fail; 2539 } 2540 } 2541 return 0; 2542 fail: 2543 return ret; 2544 } 2545 2546 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2547 struct extent_buffer *buf, bool full_backref) 2548 { 2549 return __btrfs_mod_ref(trans, root, buf, full_backref, true); 2550 } 2551 2552 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2553 struct extent_buffer *buf, bool full_backref) 2554 { 2555 return __btrfs_mod_ref(trans, root, buf, full_backref, false); 2556 } 2557 2558 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) 2559 { 2560 struct btrfs_fs_info *fs_info = root->fs_info; 2561 u64 flags; 2562 u64 ret; 2563 2564 if (data) 2565 flags = BTRFS_BLOCK_GROUP_DATA; 2566 else if (root == fs_info->chunk_root) 2567 flags = BTRFS_BLOCK_GROUP_SYSTEM; 2568 else 2569 flags = BTRFS_BLOCK_GROUP_METADATA; 2570 2571 ret = btrfs_get_alloc_profile(fs_info, flags); 2572 return ret; 2573 } 2574 2575 static u64 first_logical_byte(struct btrfs_fs_info *fs_info) 2576 { 2577 struct rb_node *leftmost; 2578 u64 bytenr = 0; 2579 2580 read_lock(&fs_info->block_group_cache_lock); 2581 /* Get the block group with the lowest logical start address. */ 2582 leftmost = rb_first_cached(&fs_info->block_group_cache_tree); 2583 if (leftmost) { 2584 struct btrfs_block_group *bg; 2585 2586 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node); 2587 bytenr = bg->start; 2588 } 2589 read_unlock(&fs_info->block_group_cache_lock); 2590 2591 return bytenr; 2592 } 2593 2594 static int pin_down_extent(struct btrfs_trans_handle *trans, 2595 struct btrfs_block_group *bg, 2596 u64 bytenr, u64 num_bytes, bool reserved) 2597 { 2598 struct btrfs_space_info *space_info = bg->space_info; 2599 const u64 reserved_bytes = (reserved ? num_bytes : 0); 2600 2601 spin_lock(&space_info->lock); 2602 spin_lock(&bg->lock); 2603 bg->pinned += num_bytes; 2604 bg->reserved -= reserved_bytes; 2605 spin_unlock(&bg->lock); 2606 space_info->bytes_reserved -= reserved_bytes; 2607 btrfs_space_info_update_bytes_pinned(space_info, num_bytes); 2608 spin_unlock(&space_info->lock); 2609 2610 btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr, 2611 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL); 2612 return 0; 2613 } 2614 2615 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes) 2616 { 2617 struct btrfs_block_group *cache; 2618 2619 cache = btrfs_lookup_block_group(trans->fs_info, bytenr); 2620 BUG_ON(!cache); /* Logic error */ 2621 2622 pin_down_extent(trans, cache, bytenr, num_bytes, true); 2623 2624 btrfs_put_block_group(cache); 2625 return 0; 2626 } 2627 2628 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2629 const struct extent_buffer *eb) 2630 { 2631 struct btrfs_block_group *cache; 2632 int ret; 2633 2634 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 2635 if (!cache) 2636 return -EINVAL; 2637 2638 /* 2639 * Fully cache the free space first so that our pin removes the free space 2640 * from the cache. 2641 */ 2642 ret = btrfs_cache_block_group(cache, true); 2643 if (ret) 2644 goto out; 2645 2646 pin_down_extent(trans, cache, eb->start, eb->len, false); 2647 2648 /* remove us from the free space cache (if we're there at all) */ 2649 ret = btrfs_remove_free_space(cache, eb->start, eb->len); 2650 out: 2651 btrfs_put_block_group(cache); 2652 return ret; 2653 } 2654 2655 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, 2656 u64 start, u64 num_bytes) 2657 { 2658 int ret; 2659 struct btrfs_block_group *block_group; 2660 2661 block_group = btrfs_lookup_block_group(fs_info, start); 2662 if (!block_group) 2663 return -EINVAL; 2664 2665 ret = btrfs_cache_block_group(block_group, true); 2666 if (ret) 2667 goto out; 2668 2669 ret = btrfs_remove_free_space(block_group, start, num_bytes); 2670 out: 2671 btrfs_put_block_group(block_group); 2672 return ret; 2673 } 2674 2675 int btrfs_exclude_logged_extents(struct extent_buffer *eb) 2676 { 2677 struct btrfs_fs_info *fs_info = eb->fs_info; 2678 struct btrfs_file_extent_item *item; 2679 struct btrfs_key key; 2680 int found_type; 2681 int i; 2682 int ret = 0; 2683 2684 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) 2685 return 0; 2686 2687 for (i = 0; i < btrfs_header_nritems(eb); i++) { 2688 btrfs_item_key_to_cpu(eb, &key, i); 2689 if (key.type != BTRFS_EXTENT_DATA_KEY) 2690 continue; 2691 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); 2692 found_type = btrfs_file_extent_type(eb, item); 2693 if (found_type == BTRFS_FILE_EXTENT_INLINE) 2694 continue; 2695 if (btrfs_file_extent_disk_bytenr(eb, item) == 0) 2696 continue; 2697 key.objectid = btrfs_file_extent_disk_bytenr(eb, item); 2698 key.offset = btrfs_file_extent_disk_num_bytes(eb, item); 2699 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); 2700 if (ret) 2701 break; 2702 } 2703 2704 return ret; 2705 } 2706 2707 static void 2708 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg) 2709 { 2710 atomic_inc(&bg->reservations); 2711 } 2712 2713 /* 2714 * Returns the free cluster for the given space info and sets empty_cluster to 2715 * what it should be based on the mount options. 2716 */ 2717 static struct btrfs_free_cluster * 2718 fetch_cluster_info(struct btrfs_fs_info *fs_info, 2719 struct btrfs_space_info *space_info, u64 *empty_cluster) 2720 { 2721 struct btrfs_free_cluster *ret = NULL; 2722 2723 *empty_cluster = 0; 2724 if (btrfs_mixed_space_info(space_info)) 2725 return ret; 2726 2727 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { 2728 ret = &fs_info->meta_alloc_cluster; 2729 if (btrfs_test_opt(fs_info, SSD)) 2730 *empty_cluster = SZ_2M; 2731 else 2732 *empty_cluster = SZ_64K; 2733 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && 2734 btrfs_test_opt(fs_info, SSD_SPREAD)) { 2735 *empty_cluster = SZ_2M; 2736 ret = &fs_info->data_alloc_cluster; 2737 } 2738 2739 return ret; 2740 } 2741 2742 static int unpin_extent_range(struct btrfs_fs_info *fs_info, 2743 u64 start, u64 end, 2744 const bool return_free_space) 2745 { 2746 struct btrfs_block_group *cache = NULL; 2747 struct btrfs_space_info *space_info; 2748 struct btrfs_free_cluster *cluster = NULL; 2749 u64 total_unpinned = 0; 2750 u64 empty_cluster = 0; 2751 2752 while (start <= end) { 2753 u64 len; 2754 bool readonly; 2755 2756 if (!cache || 2757 start >= cache->start + cache->length) { 2758 if (cache) 2759 btrfs_put_block_group(cache); 2760 total_unpinned = 0; 2761 cache = btrfs_lookup_block_group(fs_info, start); 2762 if (unlikely(cache == NULL)) { 2763 /* Logic error, something removed the block group. */ 2764 return -EUCLEAN; 2765 } 2766 2767 cluster = fetch_cluster_info(fs_info, 2768 cache->space_info, 2769 &empty_cluster); 2770 empty_cluster <<= 1; 2771 } 2772 2773 len = cache->start + cache->length - start; 2774 len = min(len, end + 1 - start); 2775 2776 if (return_free_space) 2777 btrfs_add_free_space(cache, start, len); 2778 2779 start += len; 2780 total_unpinned += len; 2781 space_info = cache->space_info; 2782 2783 /* 2784 * If this space cluster has been marked as fragmented and we've 2785 * unpinned enough in this block group to potentially allow a 2786 * cluster to be created inside of it go ahead and clear the 2787 * fragmented check. 2788 */ 2789 if (cluster && cluster->fragmented && 2790 total_unpinned > empty_cluster) { 2791 spin_lock(&cluster->lock); 2792 cluster->fragmented = 0; 2793 spin_unlock(&cluster->lock); 2794 } 2795 2796 spin_lock(&space_info->lock); 2797 spin_lock(&cache->lock); 2798 readonly = cache->ro; 2799 cache->pinned -= len; 2800 spin_unlock(&cache->lock); 2801 2802 btrfs_space_info_update_bytes_pinned(space_info, -len); 2803 space_info->max_extent_size = 0; 2804 2805 if (readonly) { 2806 space_info->bytes_readonly += len; 2807 } else if (btrfs_is_zoned(fs_info)) { 2808 /* Need reset before reusing in a zoned block group */ 2809 btrfs_space_info_update_bytes_zone_unusable(space_info, len); 2810 } else if (return_free_space) { 2811 btrfs_return_free_space(space_info, len); 2812 } 2813 spin_unlock(&space_info->lock); 2814 } 2815 2816 if (cache) 2817 btrfs_put_block_group(cache); 2818 2819 return 0; 2820 } 2821 2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) 2823 { 2824 struct btrfs_fs_info *fs_info = trans->fs_info; 2825 struct btrfs_block_group *block_group, *tmp; 2826 struct list_head *deleted_bgs; 2827 struct extent_io_tree *unpin = &trans->transaction->pinned_extents; 2828 struct extent_state *cached_state = NULL; 2829 u64 start; 2830 u64 end; 2831 int unpin_error = 0; 2832 int ret; 2833 2834 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2835 btrfs_find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state); 2836 2837 while (!TRANS_ABORTED(trans) && cached_state) { 2838 struct extent_state *next_state; 2839 2840 if (btrfs_test_opt(fs_info, DISCARD_SYNC)) 2841 ret = btrfs_discard_extent(fs_info, start, 2842 end + 1 - start, NULL); 2843 2844 next_state = btrfs_next_extent_state(unpin, cached_state); 2845 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 2846 ret = unpin_extent_range(fs_info, start, end, true); 2847 /* 2848 * If we get an error unpinning an extent range, store the first 2849 * error to return later after trying to unpin all ranges and do 2850 * the sync discards. Our caller will abort the transaction 2851 * (which already wrote new superblocks) and on the next mount 2852 * the space will be available as it was pinned by in-memory 2853 * only structures in this phase. 2854 */ 2855 if (ret) { 2856 btrfs_err_rl(fs_info, 2857 "failed to unpin extent range [%llu, %llu] when committing transaction %llu: %s (%d)", 2858 start, end, trans->transid, 2859 btrfs_decode_error(ret), ret); 2860 if (!unpin_error) 2861 unpin_error = ret; 2862 } 2863 2864 btrfs_free_extent_state(cached_state); 2865 2866 if (need_resched()) { 2867 btrfs_free_extent_state(next_state); 2868 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2869 cond_resched(); 2870 cached_state = NULL; 2871 mutex_lock(&fs_info->unused_bg_unpin_mutex); 2872 btrfs_find_first_extent_bit(unpin, 0, &start, &end, 2873 EXTENT_DIRTY, &cached_state); 2874 } else { 2875 cached_state = next_state; 2876 if (cached_state) { 2877 start = cached_state->start; 2878 end = cached_state->end; 2879 } 2880 } 2881 } 2882 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 2883 btrfs_free_extent_state(cached_state); 2884 2885 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) { 2886 btrfs_discard_calc_delay(&fs_info->discard_ctl); 2887 btrfs_discard_schedule_work(&fs_info->discard_ctl, true); 2888 } 2889 2890 /* 2891 * Transaction is finished. We don't need the lock anymore. We 2892 * do need to clean up the block groups in case of a transaction 2893 * abort. 2894 */ 2895 deleted_bgs = &trans->transaction->deleted_bgs; 2896 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { 2897 ret = -EROFS; 2898 if (!TRANS_ABORTED(trans)) 2899 ret = btrfs_discard_extent(fs_info, block_group->start, 2900 block_group->length, NULL); 2901 2902 /* 2903 * Not strictly necessary to lock, as the block_group should be 2904 * read-only from btrfs_delete_unused_bgs(). 2905 */ 2906 ASSERT(block_group->ro); 2907 spin_lock(&fs_info->unused_bgs_lock); 2908 list_del_init(&block_group->bg_list); 2909 spin_unlock(&fs_info->unused_bgs_lock); 2910 2911 btrfs_unfreeze_block_group(block_group); 2912 btrfs_put_block_group(block_group); 2913 2914 if (ret) { 2915 const char *errstr = btrfs_decode_error(ret); 2916 btrfs_warn(fs_info, 2917 "discard failed while removing blockgroup: errno=%d %s", 2918 ret, errstr); 2919 } 2920 } 2921 2922 return unpin_error; 2923 } 2924 2925 /* 2926 * Parse an extent item's inline extents looking for a simple quotas owner ref. 2927 * 2928 * @fs_info: the btrfs_fs_info for this mount 2929 * @leaf: a leaf in the extent tree containing the extent item 2930 * @slot: the slot in the leaf where the extent item is found 2931 * 2932 * Returns the objectid of the root that originally allocated the extent item 2933 * if the inline owner ref is expected and present, otherwise 0. 2934 * 2935 * If an extent item has an owner ref item, it will be the first inline ref 2936 * item. Therefore the logic is to check whether there are any inline ref 2937 * items, then check the type of the first one. 2938 */ 2939 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info, 2940 struct extent_buffer *leaf, int slot) 2941 { 2942 struct btrfs_extent_item *ei; 2943 struct btrfs_extent_inline_ref *iref; 2944 struct btrfs_extent_owner_ref *oref; 2945 unsigned long ptr; 2946 unsigned long end; 2947 int type; 2948 2949 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA)) 2950 return 0; 2951 2952 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 2953 ptr = (unsigned long)(ei + 1); 2954 end = (unsigned long)ei + btrfs_item_size(leaf, slot); 2955 2956 /* No inline ref items of any kind, can't check type. */ 2957 if (ptr == end) 2958 return 0; 2959 2960 iref = (struct btrfs_extent_inline_ref *)ptr; 2961 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); 2962 2963 /* We found an owner ref, get the root out of it. */ 2964 if (type == BTRFS_EXTENT_OWNER_REF_KEY) { 2965 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 2966 return btrfs_extent_owner_ref_root_id(leaf, oref); 2967 } 2968 2969 /* We have inline refs, but not an owner ref. */ 2970 return 0; 2971 } 2972 2973 static int do_free_extent_accounting(struct btrfs_trans_handle *trans, 2974 u64 bytenr, struct btrfs_squota_delta *delta) 2975 { 2976 int ret; 2977 u64 num_bytes = delta->num_bytes; 2978 2979 if (delta->is_data) { 2980 struct btrfs_root *csum_root; 2981 2982 csum_root = btrfs_csum_root(trans->fs_info, bytenr); 2983 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes); 2984 if (unlikely(ret)) { 2985 btrfs_abort_transaction(trans, ret); 2986 return ret; 2987 } 2988 2989 ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes); 2990 if (unlikely(ret)) { 2991 btrfs_abort_transaction(trans, ret); 2992 return ret; 2993 } 2994 } 2995 2996 ret = btrfs_record_squota_delta(trans->fs_info, delta); 2997 if (unlikely(ret)) { 2998 btrfs_abort_transaction(trans, ret); 2999 return ret; 3000 } 3001 3002 ret = btrfs_add_to_free_space_tree(trans, bytenr, num_bytes); 3003 if (unlikely(ret)) { 3004 btrfs_abort_transaction(trans, ret); 3005 return ret; 3006 } 3007 3008 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false); 3009 if (ret) 3010 btrfs_abort_transaction(trans, ret); 3011 3012 return ret; 3013 } 3014 3015 #define abort_and_dump(trans, path, fmt, args...) \ 3016 ({ \ 3017 btrfs_abort_transaction(trans, -EUCLEAN); \ 3018 btrfs_print_leaf(path->nodes[0]); \ 3019 btrfs_crit(trans->fs_info, fmt, ##args); \ 3020 }) 3021 3022 /* 3023 * Drop one or more refs of @node. 3024 * 3025 * 1. Locate the extent refs. 3026 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item. 3027 * Locate it, then reduce the refs number or remove the ref line completely. 3028 * 3029 * 2. Update the refs count in EXTENT/METADATA_ITEM 3030 * 3031 * Inline backref case: 3032 * 3033 * in extent tree we have: 3034 * 3035 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3036 * refs 2 gen 6 flags DATA 3037 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3038 * extent data backref root FS_TREE objectid 257 offset 0 count 1 3039 * 3040 * This function gets called with: 3041 * 3042 * node->bytenr = 13631488 3043 * node->num_bytes = 1048576 3044 * root_objectid = FS_TREE 3045 * owner_objectid = 257 3046 * owner_offset = 0 3047 * refs_to_drop = 1 3048 * 3049 * Then we should get some like: 3050 * 3051 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82 3052 * refs 1 gen 6 flags DATA 3053 * extent data backref root FS_TREE objectid 258 offset 0 count 1 3054 * 3055 * Keyed backref case: 3056 * 3057 * in extent tree we have: 3058 * 3059 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3060 * refs 754 gen 6 flags DATA 3061 * [...] 3062 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28 3063 * extent data backref root FS_TREE objectid 866 offset 0 count 1 3064 * 3065 * This function get called with: 3066 * 3067 * node->bytenr = 13631488 3068 * node->num_bytes = 1048576 3069 * root_objectid = FS_TREE 3070 * owner_objectid = 866 3071 * owner_offset = 0 3072 * refs_to_drop = 1 3073 * 3074 * Then we should get some like: 3075 * 3076 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24 3077 * refs 753 gen 6 flags DATA 3078 * 3079 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed. 3080 */ 3081 static int __btrfs_free_extent(struct btrfs_trans_handle *trans, 3082 struct btrfs_delayed_ref_head *href, 3083 const struct btrfs_delayed_ref_node *node, 3084 struct btrfs_delayed_extent_op *extent_op) 3085 { 3086 struct btrfs_fs_info *info = trans->fs_info; 3087 struct btrfs_key key; 3088 BTRFS_PATH_AUTO_FREE(path); 3089 struct btrfs_root *extent_root; 3090 struct extent_buffer *leaf; 3091 struct btrfs_extent_item *ei; 3092 struct btrfs_extent_inline_ref *iref; 3093 int ret; 3094 int is_data; 3095 int extent_slot = 0; 3096 int found_extent = 0; 3097 int num_to_del = 1; 3098 int refs_to_drop = node->ref_mod; 3099 u32 item_size; 3100 u64 refs; 3101 u64 bytenr = node->bytenr; 3102 u64 num_bytes = node->num_bytes; 3103 u64 owner_objectid = btrfs_delayed_ref_owner(node); 3104 u64 owner_offset = btrfs_delayed_ref_offset(node); 3105 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); 3106 u64 delayed_ref_root = href->owning_root; 3107 3108 extent_root = btrfs_extent_root(info, bytenr); 3109 ASSERT(extent_root); 3110 3111 path = btrfs_alloc_path(); 3112 if (!path) 3113 return -ENOMEM; 3114 3115 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; 3116 3117 if (unlikely(!is_data && refs_to_drop != 1)) { 3118 btrfs_crit(info, 3119 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u", 3120 node->bytenr, refs_to_drop); 3121 ret = -EINVAL; 3122 btrfs_abort_transaction(trans, ret); 3123 return ret; 3124 } 3125 3126 if (is_data) 3127 skinny_metadata = false; 3128 3129 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, 3130 node->parent, node->ref_root, owner_objectid, 3131 owner_offset); 3132 if (ret == 0) { 3133 /* 3134 * Either the inline backref or the SHARED_DATA_REF/ 3135 * SHARED_BLOCK_REF is found 3136 * 3137 * Here is a quick path to locate EXTENT/METADATA_ITEM. 3138 * It's possible the EXTENT/METADATA_ITEM is near current slot. 3139 */ 3140 extent_slot = path->slots[0]; 3141 while (extent_slot >= 0) { 3142 btrfs_item_key_to_cpu(path->nodes[0], &key, 3143 extent_slot); 3144 if (key.objectid != bytenr) 3145 break; 3146 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3147 key.offset == num_bytes) { 3148 found_extent = 1; 3149 break; 3150 } 3151 if (key.type == BTRFS_METADATA_ITEM_KEY && 3152 key.offset == owner_objectid) { 3153 found_extent = 1; 3154 break; 3155 } 3156 3157 /* Quick path didn't find the EXTENT/METADATA_ITEM */ 3158 if (path->slots[0] - extent_slot > 5) 3159 break; 3160 extent_slot--; 3161 } 3162 3163 if (!found_extent) { 3164 if (unlikely(iref)) { 3165 abort_and_dump(trans, path, 3166 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref", 3167 path->slots[0]); 3168 return -EUCLEAN; 3169 } 3170 /* Must be SHARED_* item, remove the backref first */ 3171 ret = remove_extent_backref(trans, extent_root, path, 3172 NULL, refs_to_drop, is_data); 3173 if (unlikely(ret)) { 3174 btrfs_abort_transaction(trans, ret); 3175 return ret; 3176 } 3177 btrfs_release_path(path); 3178 3179 /* Slow path to locate EXTENT/METADATA_ITEM */ 3180 key.objectid = bytenr; 3181 key.type = BTRFS_EXTENT_ITEM_KEY; 3182 key.offset = num_bytes; 3183 3184 if (!is_data && skinny_metadata) { 3185 key.type = BTRFS_METADATA_ITEM_KEY; 3186 key.offset = owner_objectid; 3187 } 3188 3189 ret = btrfs_search_slot(trans, extent_root, 3190 &key, path, -1, 1); 3191 if (ret > 0 && skinny_metadata && path->slots[0]) { 3192 /* 3193 * Couldn't find our skinny metadata item, 3194 * see if we have ye olde extent item. 3195 */ 3196 path->slots[0]--; 3197 btrfs_item_key_to_cpu(path->nodes[0], &key, 3198 path->slots[0]); 3199 if (key.objectid == bytenr && 3200 key.type == BTRFS_EXTENT_ITEM_KEY && 3201 key.offset == num_bytes) 3202 ret = 0; 3203 } 3204 3205 if (ret > 0 && skinny_metadata) { 3206 skinny_metadata = false; 3207 key.objectid = bytenr; 3208 key.type = BTRFS_EXTENT_ITEM_KEY; 3209 key.offset = num_bytes; 3210 btrfs_release_path(path); 3211 ret = btrfs_search_slot(trans, extent_root, 3212 &key, path, -1, 1); 3213 } 3214 3215 if (ret) { 3216 if (ret > 0) 3217 btrfs_print_leaf(path->nodes[0]); 3218 btrfs_err(info, 3219 "umm, got %d back from search, was looking for %llu, slot %d", 3220 ret, bytenr, path->slots[0]); 3221 } 3222 if (unlikely(ret < 0)) { 3223 btrfs_abort_transaction(trans, ret); 3224 return ret; 3225 } 3226 extent_slot = path->slots[0]; 3227 } 3228 } else if (WARN_ON(ret == -ENOENT)) { 3229 abort_and_dump(trans, path, 3230 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d", 3231 bytenr, node->parent, node->ref_root, owner_objectid, 3232 owner_offset, path->slots[0]); 3233 return ret; 3234 } else { 3235 btrfs_abort_transaction(trans, ret); 3236 return ret; 3237 } 3238 3239 leaf = path->nodes[0]; 3240 item_size = btrfs_item_size(leaf, extent_slot); 3241 if (unlikely(item_size < sizeof(*ei))) { 3242 ret = -EUCLEAN; 3243 btrfs_err(trans->fs_info, 3244 "unexpected extent item size, has %u expect >= %zu", 3245 item_size, sizeof(*ei)); 3246 btrfs_abort_transaction(trans, ret); 3247 return ret; 3248 } 3249 ei = btrfs_item_ptr(leaf, extent_slot, 3250 struct btrfs_extent_item); 3251 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && 3252 key.type == BTRFS_EXTENT_ITEM_KEY) { 3253 struct btrfs_tree_block_info *bi; 3254 3255 if (unlikely(item_size < sizeof(*ei) + sizeof(*bi))) { 3256 abort_and_dump(trans, path, 3257 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu", 3258 key.objectid, key.type, key.offset, 3259 path->slots[0], owner_objectid, item_size, 3260 sizeof(*ei) + sizeof(*bi)); 3261 return -EUCLEAN; 3262 } 3263 bi = (struct btrfs_tree_block_info *)(ei + 1); 3264 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); 3265 } 3266 3267 refs = btrfs_extent_refs(leaf, ei); 3268 if (unlikely(refs < refs_to_drop)) { 3269 abort_and_dump(trans, path, 3270 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u", 3271 refs_to_drop, refs, bytenr, path->slots[0]); 3272 return -EUCLEAN; 3273 } 3274 refs -= refs_to_drop; 3275 3276 if (refs > 0) { 3277 if (extent_op) 3278 __run_delayed_extent_op(extent_op, leaf, ei); 3279 /* 3280 * In the case of inline back ref, reference count will 3281 * be updated by remove_extent_backref 3282 */ 3283 if (iref) { 3284 if (unlikely(!found_extent)) { 3285 abort_and_dump(trans, path, 3286 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u", 3287 path->slots[0]); 3288 return -EUCLEAN; 3289 } 3290 } else { 3291 btrfs_set_extent_refs(leaf, ei, refs); 3292 } 3293 if (found_extent) { 3294 ret = remove_extent_backref(trans, extent_root, path, 3295 iref, refs_to_drop, is_data); 3296 if (unlikely(ret)) { 3297 btrfs_abort_transaction(trans, ret); 3298 return ret; 3299 } 3300 } 3301 } else { 3302 struct btrfs_squota_delta delta = { 3303 .root = delayed_ref_root, 3304 .num_bytes = num_bytes, 3305 .is_data = is_data, 3306 .is_inc = false, 3307 .generation = btrfs_extent_generation(leaf, ei), 3308 }; 3309 3310 /* In this branch refs == 1 */ 3311 if (found_extent) { 3312 if (unlikely(is_data && refs_to_drop != 3313 extent_data_ref_count(path, iref))) { 3314 abort_and_dump(trans, path, 3315 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u", 3316 extent_data_ref_count(path, iref), 3317 refs_to_drop, path->slots[0]); 3318 return -EUCLEAN; 3319 } 3320 if (iref) { 3321 if (unlikely(path->slots[0] != extent_slot)) { 3322 abort_and_dump(trans, path, 3323 "invalid iref, extent item key " BTRFS_KEY_FMT " slot %u doesn't have wanted iref", 3324 BTRFS_KEY_FMT_VALUE(&key), 3325 path->slots[0]); 3326 return -EUCLEAN; 3327 } 3328 } else { 3329 /* 3330 * No inline ref, we must be at SHARED_* item, 3331 * And it's single ref, it must be: 3332 * | extent_slot ||extent_slot + 1| 3333 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ] 3334 */ 3335 if (unlikely(path->slots[0] != extent_slot + 1)) { 3336 abort_and_dump(trans, path, 3337 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM", 3338 path->slots[0]); 3339 return -EUCLEAN; 3340 } 3341 path->slots[0] = extent_slot; 3342 num_to_del = 2; 3343 } 3344 } 3345 /* 3346 * We can't infer the data owner from the delayed ref, so we need 3347 * to try to get it from the owning ref item. 3348 * 3349 * If it is not present, then that extent was not written under 3350 * simple quotas mode, so we don't need to account for its deletion. 3351 */ 3352 if (is_data) 3353 delta.root = btrfs_get_extent_owner_root(trans->fs_info, 3354 leaf, extent_slot); 3355 3356 ret = btrfs_del_items(trans, extent_root, path, path->slots[0], 3357 num_to_del); 3358 if (unlikely(ret)) { 3359 btrfs_abort_transaction(trans, ret); 3360 return ret; 3361 } 3362 btrfs_release_path(path); 3363 3364 ret = do_free_extent_accounting(trans, bytenr, &delta); 3365 } 3366 btrfs_release_path(path); 3367 3368 return ret; 3369 } 3370 3371 /* 3372 * when we free an block, it is possible (and likely) that we free the last 3373 * delayed ref for that extent as well. This searches the delayed ref tree for 3374 * a given extent, and if there are no other delayed refs to be processed, it 3375 * removes it from the tree. 3376 */ 3377 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, 3378 u64 bytenr) 3379 { 3380 struct btrfs_fs_info *fs_info = trans->fs_info; 3381 struct btrfs_delayed_ref_head *head; 3382 struct btrfs_delayed_ref_root *delayed_refs; 3383 int ret = 0; 3384 3385 delayed_refs = &trans->transaction->delayed_refs; 3386 spin_lock(&delayed_refs->lock); 3387 head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr); 3388 if (!head) 3389 goto out_delayed_unlock; 3390 3391 spin_lock(&head->lock); 3392 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root)) 3393 goto out; 3394 3395 if (cleanup_extent_op(head) != NULL) 3396 goto out; 3397 3398 /* 3399 * waiting for the lock here would deadlock. If someone else has it 3400 * locked they are already in the process of dropping it anyway 3401 */ 3402 if (!mutex_trylock(&head->mutex)) 3403 goto out; 3404 3405 btrfs_delete_ref_head(fs_info, delayed_refs, head); 3406 head->processing = false; 3407 3408 spin_unlock(&head->lock); 3409 spin_unlock(&delayed_refs->lock); 3410 3411 BUG_ON(head->extent_op); 3412 if (head->must_insert_reserved) 3413 ret = 1; 3414 3415 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 3416 mutex_unlock(&head->mutex); 3417 btrfs_put_delayed_ref_head(head); 3418 return ret; 3419 out: 3420 spin_unlock(&head->lock); 3421 3422 out_delayed_unlock: 3423 spin_unlock(&delayed_refs->lock); 3424 return 0; 3425 } 3426 3427 int btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3428 u64 root_id, 3429 struct extent_buffer *buf, 3430 u64 parent, int last_ref) 3431 { 3432 struct btrfs_fs_info *fs_info = trans->fs_info; 3433 struct btrfs_block_group *bg; 3434 int ret; 3435 3436 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3437 struct btrfs_ref generic_ref = { 3438 .action = BTRFS_DROP_DELAYED_REF, 3439 .bytenr = buf->start, 3440 .num_bytes = buf->len, 3441 .parent = parent, 3442 .owning_root = btrfs_header_owner(buf), 3443 .ref_root = root_id, 3444 }; 3445 3446 /* 3447 * Assert that the extent buffer is not cleared due to 3448 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer 3449 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for 3450 * detail. 3451 */ 3452 ASSERT(btrfs_header_bytenr(buf) != 0); 3453 3454 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false); 3455 btrfs_ref_tree_mod(fs_info, &generic_ref); 3456 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL); 3457 if (ret < 0) 3458 return ret; 3459 } 3460 3461 if (!last_ref) 3462 return 0; 3463 3464 if (btrfs_header_generation(buf) != trans->transid) 3465 goto out; 3466 3467 if (root_id != BTRFS_TREE_LOG_OBJECTID) { 3468 ret = check_ref_cleanup(trans, buf->start); 3469 if (!ret) 3470 goto out; 3471 } 3472 3473 bg = btrfs_lookup_block_group(fs_info, buf->start); 3474 3475 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 3476 pin_down_extent(trans, bg, buf->start, buf->len, true); 3477 btrfs_put_block_group(bg); 3478 goto out; 3479 } 3480 3481 /* 3482 * If there are tree mod log users we may have recorded mod log 3483 * operations for this node. If we re-allocate this node we 3484 * could replay operations on this node that happened when it 3485 * existed in a completely different root. For example if it 3486 * was part of root A, then was reallocated to root B, and we 3487 * are doing a btrfs_old_search_slot(root b), we could replay 3488 * operations that happened when the block was part of root A, 3489 * giving us an inconsistent view of the btree. 3490 * 3491 * We are safe from races here because at this point no other 3492 * node or root points to this extent buffer, so if after this 3493 * check a new tree mod log user joins we will not have an 3494 * existing log of operations on this node that we have to 3495 * contend with. 3496 */ 3497 3498 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags) 3499 || btrfs_is_zoned(fs_info)) { 3500 pin_down_extent(trans, bg, buf->start, buf->len, true); 3501 btrfs_put_block_group(bg); 3502 goto out; 3503 } 3504 3505 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); 3506 3507 btrfs_add_free_space(bg, buf->start, buf->len); 3508 btrfs_free_reserved_bytes(bg, buf->len, false); 3509 btrfs_put_block_group(bg); 3510 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); 3511 3512 out: 3513 return 0; 3514 } 3515 3516 /* Can return -ENOMEM */ 3517 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref) 3518 { 3519 struct btrfs_fs_info *fs_info = trans->fs_info; 3520 int ret; 3521 3522 if (btrfs_is_testing(fs_info)) 3523 return 0; 3524 3525 /* 3526 * tree log blocks never actually go into the extent allocation 3527 * tree, just update pinning info and exit early. 3528 */ 3529 if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) { 3530 btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes); 3531 ret = 0; 3532 } else if (ref->type == BTRFS_REF_METADATA) { 3533 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL); 3534 } else { 3535 ret = btrfs_add_delayed_data_ref(trans, ref, 0); 3536 } 3537 3538 if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID) 3539 btrfs_ref_tree_mod(fs_info, ref); 3540 3541 return ret; 3542 } 3543 3544 enum btrfs_loop_type { 3545 /* 3546 * Start caching block groups but do not wait for progress or for them 3547 * to be done. 3548 */ 3549 LOOP_CACHING_NOWAIT, 3550 3551 /* 3552 * Wait for the block group free_space >= the space we're waiting for if 3553 * the block group isn't cached. 3554 */ 3555 LOOP_CACHING_WAIT, 3556 3557 /* 3558 * Allow allocations to happen from block groups that do not yet have a 3559 * size classification. 3560 */ 3561 LOOP_UNSET_SIZE_CLASS, 3562 3563 /* 3564 * Allocate a chunk and then retry the allocation. 3565 */ 3566 LOOP_ALLOC_CHUNK, 3567 3568 /* 3569 * Ignore the size class restrictions for this allocation. 3570 */ 3571 LOOP_WRONG_SIZE_CLASS, 3572 3573 /* 3574 * Ignore the empty size, only try to allocate the number of bytes 3575 * needed for this allocation. 3576 */ 3577 LOOP_NO_EMPTY_SIZE, 3578 }; 3579 3580 static inline void 3581 btrfs_lock_block_group(struct btrfs_block_group *cache, bool delalloc) 3582 { 3583 if (delalloc) 3584 down_read(&cache->data_rwsem); 3585 } 3586 3587 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache, 3588 bool delalloc) 3589 { 3590 btrfs_get_block_group(cache); 3591 if (delalloc) 3592 down_read(&cache->data_rwsem); 3593 } 3594 3595 static struct btrfs_block_group *btrfs_lock_cluster( 3596 struct btrfs_block_group *block_group, 3597 struct btrfs_free_cluster *cluster, 3598 bool delalloc) 3599 __acquires(&cluster->refill_lock) 3600 { 3601 struct btrfs_block_group *used_bg = NULL; 3602 3603 spin_lock(&cluster->refill_lock); 3604 while (1) { 3605 used_bg = cluster->block_group; 3606 if (!used_bg) 3607 return NULL; 3608 3609 if (used_bg == block_group) 3610 return used_bg; 3611 3612 btrfs_get_block_group(used_bg); 3613 3614 if (!delalloc) 3615 return used_bg; 3616 3617 if (down_read_trylock(&used_bg->data_rwsem)) 3618 return used_bg; 3619 3620 spin_unlock(&cluster->refill_lock); 3621 3622 /* We should only have one-level nested. */ 3623 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); 3624 3625 spin_lock(&cluster->refill_lock); 3626 if (used_bg == cluster->block_group) 3627 return used_bg; 3628 3629 up_read(&used_bg->data_rwsem); 3630 btrfs_put_block_group(used_bg); 3631 } 3632 } 3633 3634 static inline void 3635 btrfs_release_block_group(struct btrfs_block_group *cache, bool delalloc) 3636 { 3637 if (delalloc) 3638 up_read(&cache->data_rwsem); 3639 btrfs_put_block_group(cache); 3640 } 3641 3642 static bool find_free_extent_check_size_class(const struct find_free_extent_ctl *ffe_ctl, 3643 const struct btrfs_block_group *bg) 3644 { 3645 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED) 3646 return true; 3647 if (!btrfs_block_group_should_use_size_class(bg)) 3648 return true; 3649 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS) 3650 return true; 3651 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS && 3652 bg->size_class == BTRFS_BG_SZ_NONE) 3653 return true; 3654 return ffe_ctl->size_class == bg->size_class; 3655 } 3656 3657 /* 3658 * Helper function for find_free_extent(). 3659 * 3660 * Return -ENOENT to inform caller that we need fallback to unclustered mode. 3661 * Return >0 to inform caller that we find nothing 3662 * Return 0 means we have found a location and set ffe_ctl->found_offset. 3663 */ 3664 static int find_free_extent_clustered(struct btrfs_block_group *bg, 3665 struct find_free_extent_ctl *ffe_ctl, 3666 struct btrfs_block_group **cluster_bg_ret) 3667 { 3668 struct btrfs_block_group *cluster_bg; 3669 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3670 u64 aligned_cluster; 3671 u64 offset; 3672 int ret; 3673 3674 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc); 3675 if (!cluster_bg) 3676 goto refill_cluster; 3677 if (cluster_bg != bg && (cluster_bg->ro || 3678 !block_group_bits(cluster_bg, ffe_ctl->flags) || 3679 !find_free_extent_check_size_class(ffe_ctl, cluster_bg))) 3680 goto release_cluster; 3681 3682 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr, 3683 ffe_ctl->num_bytes, cluster_bg->start, 3684 &ffe_ctl->max_extent_size); 3685 if (offset) { 3686 /* We have a block, we're done */ 3687 spin_unlock(&last_ptr->refill_lock); 3688 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl); 3689 *cluster_bg_ret = cluster_bg; 3690 ffe_ctl->found_offset = offset; 3691 return 0; 3692 } 3693 WARN_ON(last_ptr->block_group != cluster_bg); 3694 3695 release_cluster: 3696 /* 3697 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so 3698 * lets just skip it and let the allocator find whatever block it can 3699 * find. If we reach this point, we will have tried the cluster 3700 * allocator plenty of times and not have found anything, so we are 3701 * likely way too fragmented for the clustering stuff to find anything. 3702 * 3703 * However, if the cluster is taken from the current block group, 3704 * release the cluster first, so that we stand a better chance of 3705 * succeeding in the unclustered allocation. 3706 */ 3707 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) { 3708 spin_unlock(&last_ptr->refill_lock); 3709 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3710 return -ENOENT; 3711 } 3712 3713 /* This cluster didn't work out, free it and start over */ 3714 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3715 3716 if (cluster_bg != bg) 3717 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc); 3718 3719 refill_cluster: 3720 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) { 3721 spin_unlock(&last_ptr->refill_lock); 3722 return -ENOENT; 3723 } 3724 3725 aligned_cluster = max_t(u64, 3726 ffe_ctl->empty_cluster + ffe_ctl->empty_size, 3727 bg->full_stripe_len); 3728 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start, 3729 ffe_ctl->num_bytes, aligned_cluster); 3730 if (ret == 0) { 3731 /* Now pull our allocation out of this cluster */ 3732 offset = btrfs_alloc_from_cluster(bg, last_ptr, 3733 ffe_ctl->num_bytes, ffe_ctl->search_start, 3734 &ffe_ctl->max_extent_size); 3735 if (offset) { 3736 /* We found one, proceed */ 3737 spin_unlock(&last_ptr->refill_lock); 3738 ffe_ctl->found_offset = offset; 3739 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl); 3740 return 0; 3741 } 3742 } 3743 /* 3744 * At this point we either didn't find a cluster or we weren't able to 3745 * allocate a block from our cluster. Free the cluster we've been 3746 * trying to use, and go to the next block group. 3747 */ 3748 btrfs_return_cluster_to_free_space(NULL, last_ptr); 3749 spin_unlock(&last_ptr->refill_lock); 3750 return 1; 3751 } 3752 3753 /* 3754 * Return >0 to inform caller that we find nothing 3755 * Return 0 when we found an free extent and set ffe_ctrl->found_offset 3756 */ 3757 static int find_free_extent_unclustered(struct btrfs_block_group *bg, 3758 struct find_free_extent_ctl *ffe_ctl) 3759 { 3760 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 3761 u64 offset; 3762 3763 /* 3764 * We are doing an unclustered allocation, set the fragmented flag so 3765 * we don't bother trying to setup a cluster again until we get more 3766 * space. 3767 */ 3768 if (unlikely(last_ptr)) { 3769 spin_lock(&last_ptr->lock); 3770 last_ptr->fragmented = 1; 3771 spin_unlock(&last_ptr->lock); 3772 } 3773 if (ffe_ctl->cached) { 3774 struct btrfs_free_space_ctl *free_space_ctl; 3775 3776 free_space_ctl = bg->free_space_ctl; 3777 spin_lock(&free_space_ctl->tree_lock); 3778 if (free_space_ctl->free_space < 3779 ffe_ctl->num_bytes + ffe_ctl->empty_cluster + 3780 ffe_ctl->empty_size) { 3781 ffe_ctl->total_free_space = max_t(u64, 3782 ffe_ctl->total_free_space, 3783 free_space_ctl->free_space); 3784 spin_unlock(&free_space_ctl->tree_lock); 3785 return 1; 3786 } 3787 spin_unlock(&free_space_ctl->tree_lock); 3788 } 3789 3790 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start, 3791 ffe_ctl->num_bytes, ffe_ctl->empty_size, 3792 &ffe_ctl->max_extent_size); 3793 if (!offset) 3794 return 1; 3795 ffe_ctl->found_offset = offset; 3796 return 0; 3797 } 3798 3799 static int do_allocation_clustered(struct btrfs_block_group *block_group, 3800 struct find_free_extent_ctl *ffe_ctl, 3801 struct btrfs_block_group **bg_ret) 3802 { 3803 int ret; 3804 3805 /* We want to try and use the cluster allocator, so lets look there */ 3806 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) { 3807 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret); 3808 if (ret >= 0) 3809 return ret; 3810 /* ret == -ENOENT case falls through */ 3811 } 3812 3813 return find_free_extent_unclustered(block_group, ffe_ctl); 3814 } 3815 3816 /* 3817 * Tree-log block group locking 3818 * ============================ 3819 * 3820 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which 3821 * indicates the starting address of a block group, which is reserved only 3822 * for tree-log metadata. 3823 * 3824 * Lock nesting 3825 * ============ 3826 * 3827 * space_info::lock 3828 * block_group::lock 3829 * fs_info::treelog_bg_lock 3830 */ 3831 3832 /* 3833 * Simple allocator for sequential-only block group. It only allows sequential 3834 * allocation. No need to play with trees. This function also reserves the 3835 * bytes as in btrfs_add_reserved_bytes. 3836 */ 3837 static int do_allocation_zoned(struct btrfs_block_group *block_group, 3838 struct find_free_extent_ctl *ffe_ctl, 3839 struct btrfs_block_group **bg_ret) 3840 { 3841 struct btrfs_fs_info *fs_info = block_group->fs_info; 3842 struct btrfs_space_info *space_info = block_group->space_info; 3843 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl; 3844 u64 start = block_group->start; 3845 u64 num_bytes = ffe_ctl->num_bytes; 3846 u64 avail; 3847 u64 bytenr = block_group->start; 3848 u64 log_bytenr; 3849 u64 data_reloc_bytenr; 3850 int ret = 0; 3851 bool skip = false; 3852 3853 ASSERT(btrfs_is_zoned(block_group->fs_info)); 3854 3855 /* 3856 * Do not allow non-tree-log blocks in the dedicated tree-log block 3857 * group, and vice versa. 3858 */ 3859 spin_lock(&fs_info->treelog_bg_lock); 3860 log_bytenr = fs_info->treelog_bg; 3861 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) || 3862 (!ffe_ctl->for_treelog && bytenr == log_bytenr))) 3863 skip = true; 3864 spin_unlock(&fs_info->treelog_bg_lock); 3865 if (skip) 3866 return 1; 3867 3868 /* 3869 * Do not allow non-relocation blocks in the dedicated relocation block 3870 * group, and vice versa. 3871 */ 3872 spin_lock(&fs_info->relocation_bg_lock); 3873 data_reloc_bytenr = fs_info->data_reloc_bg; 3874 if (data_reloc_bytenr && 3875 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) || 3876 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr))) 3877 skip = true; 3878 spin_unlock(&fs_info->relocation_bg_lock); 3879 if (skip) 3880 return 1; 3881 3882 /* Check RO and no space case before trying to activate it */ 3883 spin_lock(&block_group->lock); 3884 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) { 3885 ret = 1; 3886 /* 3887 * May need to clear fs_info->{treelog,data_reloc}_bg. 3888 * Return the error after taking the locks. 3889 */ 3890 } 3891 spin_unlock(&block_group->lock); 3892 3893 /* Metadata block group is activated at write time. */ 3894 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) && 3895 !btrfs_zone_activate(block_group)) { 3896 ret = 1; 3897 /* 3898 * May need to clear fs_info->{treelog,data_reloc}_bg. 3899 * Return the error after taking the locks. 3900 */ 3901 } 3902 3903 spin_lock(&space_info->lock); 3904 spin_lock(&block_group->lock); 3905 spin_lock(&fs_info->treelog_bg_lock); 3906 spin_lock(&fs_info->relocation_bg_lock); 3907 3908 if (ret) 3909 goto out; 3910 3911 ASSERT(!ffe_ctl->for_treelog || 3912 block_group->start == fs_info->treelog_bg || 3913 fs_info->treelog_bg == 0); 3914 ASSERT(!ffe_ctl->for_data_reloc || 3915 block_group->start == fs_info->data_reloc_bg || 3916 fs_info->data_reloc_bg == 0); 3917 3918 if (block_group->ro || 3919 (!ffe_ctl->for_data_reloc && 3920 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) { 3921 ret = 1; 3922 goto out; 3923 } 3924 3925 /* 3926 * Do not allow currently using block group to be tree-log dedicated 3927 * block group. 3928 */ 3929 if (ffe_ctl->for_treelog && !fs_info->treelog_bg && 3930 (block_group->used || block_group->reserved)) { 3931 ret = 1; 3932 goto out; 3933 } 3934 3935 /* 3936 * Do not allow currently used block group to be the data relocation 3937 * dedicated block group. 3938 */ 3939 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg && 3940 (block_group->used || block_group->reserved)) { 3941 ret = 1; 3942 goto out; 3943 } 3944 3945 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity); 3946 avail = block_group->zone_capacity - block_group->alloc_offset; 3947 if (avail < num_bytes) { 3948 if (ffe_ctl->max_extent_size < avail) { 3949 /* 3950 * With sequential allocator, free space is always 3951 * contiguous 3952 */ 3953 ffe_ctl->max_extent_size = avail; 3954 ffe_ctl->total_free_space = avail; 3955 } 3956 ret = 1; 3957 goto out; 3958 } 3959 3960 if (ffe_ctl->for_treelog && !fs_info->treelog_bg) 3961 fs_info->treelog_bg = block_group->start; 3962 3963 if (ffe_ctl->for_data_reloc) { 3964 if (!fs_info->data_reloc_bg) 3965 fs_info->data_reloc_bg = block_group->start; 3966 /* 3967 * Do not allow allocations from this block group, unless it is 3968 * for data relocation. Compared to increasing the ->ro, setting 3969 * the ->zoned_data_reloc_ongoing flag still allows nocow 3970 * writers to come in. See btrfs_inc_nocow_writers(). 3971 * 3972 * We need to disable an allocation to avoid an allocation of 3973 * regular (non-relocation data) extent. With mix of relocation 3974 * extents and regular extents, we can dispatch WRITE commands 3975 * (for relocation extents) and ZONE APPEND commands (for 3976 * regular extents) at the same time to the same zone, which 3977 * easily break the write pointer. 3978 * 3979 * Also, this flag avoids this block group to be zone finished. 3980 */ 3981 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags); 3982 } 3983 3984 ffe_ctl->found_offset = start + block_group->alloc_offset; 3985 block_group->alloc_offset += num_bytes; 3986 spin_lock(&ctl->tree_lock); 3987 ctl->free_space -= num_bytes; 3988 spin_unlock(&ctl->tree_lock); 3989 3990 /* 3991 * We do not check if found_offset is aligned to stripesize. The 3992 * address is anyway rewritten when using zone append writing. 3993 */ 3994 3995 ffe_ctl->search_start = ffe_ctl->found_offset; 3996 3997 out: 3998 if (ret && ffe_ctl->for_treelog) 3999 fs_info->treelog_bg = 0; 4000 if (ret && ffe_ctl->for_data_reloc) 4001 fs_info->data_reloc_bg = 0; 4002 spin_unlock(&fs_info->relocation_bg_lock); 4003 spin_unlock(&fs_info->treelog_bg_lock); 4004 spin_unlock(&block_group->lock); 4005 spin_unlock(&space_info->lock); 4006 return ret; 4007 } 4008 4009 static int do_allocation(struct btrfs_block_group *block_group, 4010 struct find_free_extent_ctl *ffe_ctl, 4011 struct btrfs_block_group **bg_ret) 4012 { 4013 switch (ffe_ctl->policy) { 4014 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4015 return do_allocation_clustered(block_group, ffe_ctl, bg_ret); 4016 case BTRFS_EXTENT_ALLOC_ZONED: 4017 return do_allocation_zoned(block_group, ffe_ctl, bg_ret); 4018 default: 4019 BUG(); 4020 } 4021 } 4022 4023 static void release_block_group(struct btrfs_block_group *block_group, 4024 struct find_free_extent_ctl *ffe_ctl, 4025 bool delalloc) 4026 { 4027 switch (ffe_ctl->policy) { 4028 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4029 ffe_ctl->retry_uncached = false; 4030 break; 4031 case BTRFS_EXTENT_ALLOC_ZONED: 4032 /* Nothing to do */ 4033 break; 4034 default: 4035 BUG(); 4036 } 4037 4038 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != 4039 ffe_ctl->index); 4040 btrfs_release_block_group(block_group, delalloc); 4041 } 4042 4043 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl, 4044 struct btrfs_key *ins) 4045 { 4046 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4047 4048 if (!ffe_ctl->use_cluster && last_ptr) { 4049 spin_lock(&last_ptr->lock); 4050 last_ptr->window_start = ins->objectid; 4051 spin_unlock(&last_ptr->lock); 4052 } 4053 } 4054 4055 static void found_extent(struct find_free_extent_ctl *ffe_ctl, 4056 struct btrfs_key *ins) 4057 { 4058 switch (ffe_ctl->policy) { 4059 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4060 found_extent_clustered(ffe_ctl, ins); 4061 break; 4062 case BTRFS_EXTENT_ALLOC_ZONED: 4063 /* Nothing to do */ 4064 break; 4065 default: 4066 BUG(); 4067 } 4068 } 4069 4070 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info, 4071 struct find_free_extent_ctl *ffe_ctl) 4072 { 4073 /* Block group's activeness is not a requirement for METADATA block groups. */ 4074 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)) 4075 return 0; 4076 4077 /* If we can activate new zone, just allocate a chunk and use it */ 4078 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags)) 4079 return 0; 4080 4081 /* 4082 * We already reached the max active zones. Try to finish one block 4083 * group to make a room for a new block group. This is only possible 4084 * for a data block group because btrfs_zone_finish() may need to wait 4085 * for a running transaction which can cause a deadlock for metadata 4086 * allocation. 4087 */ 4088 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4089 int ret = btrfs_zone_finish_one_bg(fs_info); 4090 4091 if (ret == 1) 4092 return 0; 4093 else if (ret < 0) 4094 return ret; 4095 } 4096 4097 /* 4098 * If we have enough free space left in an already active block group 4099 * and we can't activate any other zone now, do not allow allocating a 4100 * new chunk and let find_free_extent() retry with a smaller size. 4101 */ 4102 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size) 4103 return -ENOSPC; 4104 4105 /* 4106 * Even min_alloc_size is not left in any block groups. Since we cannot 4107 * activate a new block group, allocating it may not help. Let's tell a 4108 * caller to try again and hope it progress something by writing some 4109 * parts of the region. That is only possible for data block groups, 4110 * where a part of the region can be written. 4111 */ 4112 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) 4113 return -EAGAIN; 4114 4115 /* 4116 * We cannot activate a new block group and no enough space left in any 4117 * block groups. So, allocating a new block group may not help. But, 4118 * there is nothing to do anyway, so let's go with it. 4119 */ 4120 return 0; 4121 } 4122 4123 static int can_allocate_chunk(struct btrfs_fs_info *fs_info, 4124 struct find_free_extent_ctl *ffe_ctl) 4125 { 4126 switch (ffe_ctl->policy) { 4127 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4128 return 0; 4129 case BTRFS_EXTENT_ALLOC_ZONED: 4130 return can_allocate_chunk_zoned(fs_info, ffe_ctl); 4131 default: 4132 BUG(); 4133 } 4134 } 4135 4136 /* 4137 * Return >0 means caller needs to re-search for free extent 4138 * Return 0 means we have the needed free extent. 4139 * Return <0 means we failed to locate any free extent. 4140 */ 4141 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info, 4142 struct btrfs_key *ins, 4143 struct find_free_extent_ctl *ffe_ctl, 4144 struct btrfs_space_info *space_info, 4145 bool full_search) 4146 { 4147 struct btrfs_root *root = fs_info->chunk_root; 4148 int ret; 4149 4150 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) && 4151 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg) 4152 ffe_ctl->orig_have_caching_bg = true; 4153 4154 if (ins->objectid) { 4155 found_extent(ffe_ctl, ins); 4156 return 0; 4157 } 4158 4159 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg) 4160 return 1; 4161 4162 ffe_ctl->index++; 4163 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES) 4164 return 1; 4165 4166 /* See the comments for btrfs_loop_type for an explanation of the phases. */ 4167 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) { 4168 ffe_ctl->index = 0; 4169 /* 4170 * We want to skip the LOOP_CACHING_WAIT step if we don't have 4171 * any uncached bgs and we've already done a full search 4172 * through. 4173 */ 4174 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT && 4175 (!ffe_ctl->orig_have_caching_bg && full_search)) 4176 ffe_ctl->loop++; 4177 ffe_ctl->loop++; 4178 4179 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) { 4180 struct btrfs_trans_handle *trans; 4181 int exist = 0; 4182 4183 /* Check if allocation policy allows to create a new chunk */ 4184 ret = can_allocate_chunk(fs_info, ffe_ctl); 4185 if (ret) 4186 return ret; 4187 4188 trans = current->journal_info; 4189 if (trans) 4190 exist = 1; 4191 else 4192 trans = btrfs_join_transaction(root); 4193 4194 if (IS_ERR(trans)) { 4195 ret = PTR_ERR(trans); 4196 return ret; 4197 } 4198 4199 ret = btrfs_chunk_alloc(trans, space_info, ffe_ctl->flags, 4200 CHUNK_ALLOC_FORCE_FOR_EXTENT); 4201 4202 /* Do not bail out on ENOSPC since we can do more. */ 4203 if (ret == -ENOSPC) { 4204 ret = 0; 4205 ffe_ctl->loop++; 4206 } 4207 else if (ret < 0) 4208 btrfs_abort_transaction(trans, ret); 4209 else 4210 ret = 0; 4211 if (!exist) 4212 btrfs_end_transaction(trans); 4213 if (ret) 4214 return ret; 4215 } 4216 4217 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) { 4218 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED) 4219 return -ENOSPC; 4220 4221 /* 4222 * Don't loop again if we already have no empty_size and 4223 * no empty_cluster. 4224 */ 4225 if (ffe_ctl->empty_size == 0 && 4226 ffe_ctl->empty_cluster == 0) 4227 return -ENOSPC; 4228 ffe_ctl->empty_size = 0; 4229 ffe_ctl->empty_cluster = 0; 4230 } 4231 return 1; 4232 } 4233 return -ENOSPC; 4234 } 4235 4236 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info, 4237 struct find_free_extent_ctl *ffe_ctl, 4238 struct btrfs_space_info *space_info, 4239 struct btrfs_key *ins) 4240 { 4241 /* 4242 * If our free space is heavily fragmented we may not be able to make 4243 * big contiguous allocations, so instead of doing the expensive search 4244 * for free space, simply return ENOSPC with our max_extent_size so we 4245 * can go ahead and search for a more manageable chunk. 4246 * 4247 * If our max_extent_size is large enough for our allocation simply 4248 * disable clustering since we will likely not be able to find enough 4249 * space to create a cluster and induce latency trying. 4250 */ 4251 if (space_info->max_extent_size) { 4252 spin_lock(&space_info->lock); 4253 if (space_info->max_extent_size && 4254 ffe_ctl->num_bytes > space_info->max_extent_size) { 4255 ins->offset = space_info->max_extent_size; 4256 spin_unlock(&space_info->lock); 4257 return -ENOSPC; 4258 } else if (space_info->max_extent_size) { 4259 ffe_ctl->use_cluster = false; 4260 } 4261 spin_unlock(&space_info->lock); 4262 } 4263 4264 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info, 4265 &ffe_ctl->empty_cluster); 4266 if (ffe_ctl->last_ptr) { 4267 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr; 4268 4269 spin_lock(&last_ptr->lock); 4270 if (last_ptr->block_group) 4271 ffe_ctl->hint_byte = last_ptr->window_start; 4272 if (last_ptr->fragmented) { 4273 /* 4274 * We still set window_start so we can keep track of the 4275 * last place we found an allocation to try and save 4276 * some time. 4277 */ 4278 ffe_ctl->hint_byte = last_ptr->window_start; 4279 ffe_ctl->use_cluster = false; 4280 } 4281 spin_unlock(&last_ptr->lock); 4282 } 4283 4284 return 0; 4285 } 4286 4287 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info, 4288 struct find_free_extent_ctl *ffe_ctl, 4289 struct btrfs_space_info *space_info) 4290 { 4291 if (ffe_ctl->for_treelog) { 4292 spin_lock(&fs_info->treelog_bg_lock); 4293 if (fs_info->treelog_bg) 4294 ffe_ctl->hint_byte = fs_info->treelog_bg; 4295 spin_unlock(&fs_info->treelog_bg_lock); 4296 } else if (ffe_ctl->for_data_reloc) { 4297 spin_lock(&fs_info->relocation_bg_lock); 4298 if (fs_info->data_reloc_bg) 4299 ffe_ctl->hint_byte = fs_info->data_reloc_bg; 4300 spin_unlock(&fs_info->relocation_bg_lock); 4301 } else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) { 4302 struct btrfs_block_group *block_group; 4303 4304 spin_lock(&fs_info->zone_active_bgs_lock); 4305 list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) { 4306 /* 4307 * No lock is OK here because avail is monotonically 4308 * decreasing, and this is just a hint. 4309 */ 4310 u64 avail = block_group->zone_capacity - block_group->alloc_offset; 4311 4312 if (block_group_bits(block_group, ffe_ctl->flags) && 4313 block_group->space_info == space_info && 4314 avail >= ffe_ctl->num_bytes) { 4315 ffe_ctl->hint_byte = block_group->start; 4316 break; 4317 } 4318 } 4319 spin_unlock(&fs_info->zone_active_bgs_lock); 4320 } 4321 4322 return 0; 4323 } 4324 4325 static int prepare_allocation(struct btrfs_fs_info *fs_info, 4326 struct find_free_extent_ctl *ffe_ctl, 4327 struct btrfs_space_info *space_info, 4328 struct btrfs_key *ins) 4329 { 4330 switch (ffe_ctl->policy) { 4331 case BTRFS_EXTENT_ALLOC_CLUSTERED: 4332 return prepare_allocation_clustered(fs_info, ffe_ctl, 4333 space_info, ins); 4334 case BTRFS_EXTENT_ALLOC_ZONED: 4335 return prepare_allocation_zoned(fs_info, ffe_ctl, space_info); 4336 default: 4337 BUG(); 4338 } 4339 } 4340 4341 /* 4342 * walks the btree of allocated extents and find a hole of a given size. 4343 * The key ins is changed to record the hole: 4344 * ins->objectid == start position 4345 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4346 * ins->offset == the size of the hole. 4347 * Any available blocks before search_start are skipped. 4348 * 4349 * If there is no suitable free space, we will record the max size of 4350 * the free space extent currently. 4351 * 4352 * The overall logic and call chain: 4353 * 4354 * find_free_extent() 4355 * |- Iterate through all block groups 4356 * | |- Get a valid block group 4357 * | |- Try to do clustered allocation in that block group 4358 * | |- Try to do unclustered allocation in that block group 4359 * | |- Check if the result is valid 4360 * | | |- If valid, then exit 4361 * | |- Jump to next block group 4362 * | 4363 * |- Push harder to find free extents 4364 * |- If not found, re-iterate all block groups 4365 */ 4366 static noinline int find_free_extent(struct btrfs_root *root, 4367 struct btrfs_key *ins, 4368 struct find_free_extent_ctl *ffe_ctl) 4369 { 4370 struct btrfs_fs_info *fs_info = root->fs_info; 4371 int ret = 0; 4372 int cache_block_group_error = 0; 4373 struct btrfs_block_group *block_group = NULL; 4374 struct btrfs_space_info *space_info; 4375 bool full_search = false; 4376 4377 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize); 4378 4379 ffe_ctl->search_start = 0; 4380 /* For clustered allocation */ 4381 ffe_ctl->empty_cluster = 0; 4382 ffe_ctl->last_ptr = NULL; 4383 ffe_ctl->use_cluster = true; 4384 ffe_ctl->have_caching_bg = false; 4385 ffe_ctl->orig_have_caching_bg = false; 4386 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags); 4387 ffe_ctl->loop = 0; 4388 ffe_ctl->retry_uncached = false; 4389 ffe_ctl->cached = 0; 4390 ffe_ctl->max_extent_size = 0; 4391 ffe_ctl->total_free_space = 0; 4392 ffe_ctl->found_offset = 0; 4393 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED; 4394 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes); 4395 4396 if (btrfs_is_zoned(fs_info)) 4397 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED; 4398 4399 ins->type = BTRFS_EXTENT_ITEM_KEY; 4400 ins->objectid = 0; 4401 ins->offset = 0; 4402 4403 trace_btrfs_find_free_extent(root, ffe_ctl); 4404 4405 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags); 4406 if (btrfs_is_zoned(fs_info) && space_info) { 4407 /* Use dedicated sub-space_info for dedicated block group users. */ 4408 if (ffe_ctl->for_data_reloc) { 4409 space_info = space_info->sub_group[0]; 4410 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC); 4411 } else if (ffe_ctl->for_treelog) { 4412 space_info = space_info->sub_group[0]; 4413 ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_TREELOG); 4414 } 4415 } 4416 if (!space_info) { 4417 btrfs_err(fs_info, "no space info for %llu, tree-log %d, relocation %d", 4418 ffe_ctl->flags, ffe_ctl->for_treelog, ffe_ctl->for_data_reloc); 4419 return -ENOSPC; 4420 } 4421 4422 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins); 4423 if (ret < 0) 4424 return ret; 4425 4426 ffe_ctl->search_start = max(ffe_ctl->search_start, 4427 first_logical_byte(fs_info)); 4428 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte); 4429 if (ffe_ctl->search_start == ffe_ctl->hint_byte) { 4430 block_group = btrfs_lookup_block_group(fs_info, 4431 ffe_ctl->search_start); 4432 /* 4433 * we don't want to use the block group if it doesn't match our 4434 * allocation bits, or if its not cached. 4435 * 4436 * However if we are re-searching with an ideal block group 4437 * picked out then we don't care that the block group is cached. 4438 */ 4439 if (block_group && block_group_bits(block_group, ffe_ctl->flags) && 4440 block_group->space_info == space_info && 4441 block_group->cached != BTRFS_CACHE_NO) { 4442 down_read(&space_info->groups_sem); 4443 if (list_empty(&block_group->list) || 4444 block_group->ro) { 4445 /* 4446 * someone is removing this block group, 4447 * we can't jump into the have_block_group 4448 * target because our list pointers are not 4449 * valid 4450 */ 4451 btrfs_put_block_group(block_group); 4452 up_read(&space_info->groups_sem); 4453 } else { 4454 ffe_ctl->index = btrfs_bg_flags_to_raid_index( 4455 block_group->flags); 4456 btrfs_lock_block_group(block_group, 4457 ffe_ctl->delalloc); 4458 ffe_ctl->hinted = true; 4459 goto have_block_group; 4460 } 4461 } else if (block_group) { 4462 btrfs_put_block_group(block_group); 4463 } 4464 } 4465 search: 4466 trace_btrfs_find_free_extent_search_loop(root, ffe_ctl); 4467 ffe_ctl->have_caching_bg = false; 4468 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) || 4469 ffe_ctl->index == 0) 4470 full_search = true; 4471 down_read(&space_info->groups_sem); 4472 list_for_each_entry(block_group, 4473 &space_info->block_groups[ffe_ctl->index], list) { 4474 struct btrfs_block_group *bg_ret; 4475 4476 ffe_ctl->hinted = false; 4477 /* If the block group is read-only, we can skip it entirely. */ 4478 if (unlikely(block_group->ro)) { 4479 if (ffe_ctl->for_treelog) 4480 btrfs_clear_treelog_bg(block_group); 4481 if (ffe_ctl->for_data_reloc) 4482 btrfs_clear_data_reloc_bg(block_group); 4483 continue; 4484 } 4485 4486 btrfs_grab_block_group(block_group, ffe_ctl->delalloc); 4487 ffe_ctl->search_start = block_group->start; 4488 4489 /* 4490 * this can happen if we end up cycling through all the 4491 * raid types, but we want to make sure we only allocate 4492 * for the proper type. 4493 */ 4494 if (!block_group_bits(block_group, ffe_ctl->flags)) { 4495 u64 extra = BTRFS_BLOCK_GROUP_DUP | 4496 BTRFS_BLOCK_GROUP_RAID1_MASK | 4497 BTRFS_BLOCK_GROUP_RAID56_MASK | 4498 BTRFS_BLOCK_GROUP_RAID10; 4499 4500 /* 4501 * if they asked for extra copies and this block group 4502 * doesn't provide them, bail. This does allow us to 4503 * fill raid0 from raid1. 4504 */ 4505 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra)) 4506 goto loop; 4507 4508 /* 4509 * This block group has different flags than we want. 4510 * It's possible that we have MIXED_GROUP flag but no 4511 * block group is mixed. Just skip such block group. 4512 */ 4513 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4514 continue; 4515 } 4516 4517 have_block_group: 4518 trace_btrfs_find_free_extent_have_block_group(root, ffe_ctl, block_group); 4519 ffe_ctl->cached = btrfs_block_group_done(block_group); 4520 if (unlikely(!ffe_ctl->cached)) { 4521 ffe_ctl->have_caching_bg = true; 4522 ret = btrfs_cache_block_group(block_group, false); 4523 4524 /* 4525 * If we get ENOMEM here or something else we want to 4526 * try other block groups, because it may not be fatal. 4527 * However if we can't find anything else we need to 4528 * save our return here so that we return the actual 4529 * error that caused problems, not ENOSPC. 4530 */ 4531 if (ret < 0) { 4532 if (!cache_block_group_error) 4533 cache_block_group_error = ret; 4534 ret = 0; 4535 goto loop; 4536 } 4537 ret = 0; 4538 } 4539 4540 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) { 4541 if (!cache_block_group_error) 4542 cache_block_group_error = -EIO; 4543 goto loop; 4544 } 4545 4546 if (!find_free_extent_check_size_class(ffe_ctl, block_group)) 4547 goto loop; 4548 4549 bg_ret = NULL; 4550 ret = do_allocation(block_group, ffe_ctl, &bg_ret); 4551 if (ret > 0) 4552 goto loop; 4553 4554 if (bg_ret && bg_ret != block_group) { 4555 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4556 block_group = bg_ret; 4557 } 4558 4559 /* Checks */ 4560 ffe_ctl->search_start = round_up(ffe_ctl->found_offset, 4561 fs_info->stripesize); 4562 4563 /* move on to the next group */ 4564 if (ffe_ctl->search_start + ffe_ctl->num_bytes > 4565 block_group->start + block_group->length) { 4566 btrfs_add_free_space_unused(block_group, 4567 ffe_ctl->found_offset, 4568 ffe_ctl->num_bytes); 4569 goto loop; 4570 } 4571 4572 if (ffe_ctl->found_offset < ffe_ctl->search_start) 4573 btrfs_add_free_space_unused(block_group, 4574 ffe_ctl->found_offset, 4575 ffe_ctl->search_start - ffe_ctl->found_offset); 4576 4577 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes, 4578 ffe_ctl->num_bytes, 4579 ffe_ctl->delalloc, 4580 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS); 4581 if (ret == -EAGAIN) { 4582 btrfs_add_free_space_unused(block_group, 4583 ffe_ctl->found_offset, 4584 ffe_ctl->num_bytes); 4585 goto loop; 4586 } 4587 btrfs_inc_block_group_reservations(block_group); 4588 4589 /* we are all good, lets return */ 4590 ins->objectid = ffe_ctl->search_start; 4591 ins->offset = ffe_ctl->num_bytes; 4592 4593 trace_btrfs_reserve_extent(block_group, ffe_ctl); 4594 btrfs_release_block_group(block_group, ffe_ctl->delalloc); 4595 break; 4596 loop: 4597 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT && 4598 !ffe_ctl->retry_uncached) { 4599 ffe_ctl->retry_uncached = true; 4600 btrfs_wait_block_group_cache_progress(block_group, 4601 ffe_ctl->num_bytes + 4602 ffe_ctl->empty_cluster + 4603 ffe_ctl->empty_size); 4604 goto have_block_group; 4605 } 4606 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc); 4607 cond_resched(); 4608 } 4609 up_read(&space_info->groups_sem); 4610 4611 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, space_info, 4612 full_search); 4613 if (ret > 0) 4614 goto search; 4615 4616 if (ret == -ENOSPC && !cache_block_group_error) { 4617 /* 4618 * Use ffe_ctl->total_free_space as fallback if we can't find 4619 * any contiguous hole. 4620 */ 4621 if (!ffe_ctl->max_extent_size) 4622 ffe_ctl->max_extent_size = ffe_ctl->total_free_space; 4623 spin_lock(&space_info->lock); 4624 space_info->max_extent_size = ffe_ctl->max_extent_size; 4625 spin_unlock(&space_info->lock); 4626 ins->offset = ffe_ctl->max_extent_size; 4627 } else if (ret == -ENOSPC) { 4628 ret = cache_block_group_error; 4629 } 4630 return ret; 4631 } 4632 4633 /* 4634 * Entry point to the extent allocator. Tries to find a hole that is at least 4635 * as big as @num_bytes. 4636 * 4637 * @root - The root that will contain this extent 4638 * 4639 * @ram_bytes - The amount of space in ram that @num_bytes take. This 4640 * is used for accounting purposes. This value differs 4641 * from @num_bytes only in the case of compressed extents. 4642 * 4643 * @num_bytes - Number of bytes to allocate on-disk. 4644 * 4645 * @min_alloc_size - Indicates the minimum amount of space that the 4646 * allocator should try to satisfy. In some cases 4647 * @num_bytes may be larger than what is required and if 4648 * the filesystem is fragmented then allocation fails. 4649 * However, the presence of @min_alloc_size gives a 4650 * chance to try and satisfy the smaller allocation. 4651 * 4652 * @empty_size - A hint that you plan on doing more COW. This is the 4653 * size in bytes the allocator should try to find free 4654 * next to the block it returns. This is just a hint and 4655 * may be ignored by the allocator. 4656 * 4657 * @hint_byte - Hint to the allocator to start searching above the byte 4658 * address passed. It might be ignored. 4659 * 4660 * @ins - This key is modified to record the found hole. It will 4661 * have the following values: 4662 * ins->objectid == start position 4663 * ins->flags = BTRFS_EXTENT_ITEM_KEY 4664 * ins->offset == the size of the hole. 4665 * 4666 * @is_data - Boolean flag indicating whether an extent is 4667 * allocated for data (true) or metadata (false) 4668 * 4669 * @delalloc - Boolean flag indicating whether this allocation is for 4670 * delalloc or not. If 'true' data_rwsem of block groups 4671 * is going to be acquired. 4672 * 4673 * 4674 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In 4675 * case -ENOSPC is returned then @ins->offset will contain the size of the 4676 * largest available hole the allocator managed to find. 4677 */ 4678 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, 4679 u64 num_bytes, u64 min_alloc_size, 4680 u64 empty_size, u64 hint_byte, 4681 struct btrfs_key *ins, bool is_data, bool delalloc) 4682 { 4683 struct btrfs_fs_info *fs_info = root->fs_info; 4684 struct find_free_extent_ctl ffe_ctl = {}; 4685 bool final_tried = num_bytes == min_alloc_size; 4686 u64 flags; 4687 int ret; 4688 bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID); 4689 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data); 4690 4691 flags = get_alloc_profile_by_root(root, is_data); 4692 again: 4693 WARN_ON(num_bytes < fs_info->sectorsize); 4694 4695 ffe_ctl.ram_bytes = ram_bytes; 4696 ffe_ctl.num_bytes = num_bytes; 4697 ffe_ctl.min_alloc_size = min_alloc_size; 4698 ffe_ctl.empty_size = empty_size; 4699 ffe_ctl.flags = flags; 4700 ffe_ctl.delalloc = delalloc; 4701 ffe_ctl.hint_byte = hint_byte; 4702 ffe_ctl.for_treelog = for_treelog; 4703 ffe_ctl.for_data_reloc = for_data_reloc; 4704 4705 ret = find_free_extent(root, ins, &ffe_ctl); 4706 if (!ret && !is_data) { 4707 btrfs_dec_block_group_reservations(fs_info, ins->objectid); 4708 } else if (ret == -ENOSPC) { 4709 if (!final_tried && ins->offset) { 4710 num_bytes = min(num_bytes >> 1, ins->offset); 4711 num_bytes = round_down(num_bytes, 4712 fs_info->sectorsize); 4713 num_bytes = max(num_bytes, min_alloc_size); 4714 ram_bytes = num_bytes; 4715 if (num_bytes == min_alloc_size) 4716 final_tried = true; 4717 goto again; 4718 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 4719 struct btrfs_space_info *sinfo; 4720 4721 sinfo = btrfs_find_space_info(fs_info, flags); 4722 btrfs_err(fs_info, 4723 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d", 4724 flags, num_bytes, for_treelog, for_data_reloc); 4725 if (sinfo) 4726 btrfs_dump_space_info(sinfo, num_bytes, 1); 4727 } 4728 } 4729 4730 return ret; 4731 } 4732 4733 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len, 4734 bool is_delalloc) 4735 { 4736 struct btrfs_block_group *cache; 4737 4738 cache = btrfs_lookup_block_group(fs_info, start); 4739 if (!cache) { 4740 btrfs_err(fs_info, "Unable to find block group for %llu", 4741 start); 4742 return -ENOSPC; 4743 } 4744 4745 btrfs_add_free_space(cache, start, len); 4746 btrfs_free_reserved_bytes(cache, len, is_delalloc); 4747 trace_btrfs_reserved_extent_free(fs_info, start, len); 4748 4749 btrfs_put_block_group(cache); 4750 return 0; 4751 } 4752 4753 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, 4754 const struct extent_buffer *eb) 4755 { 4756 struct btrfs_block_group *cache; 4757 int ret = 0; 4758 4759 cache = btrfs_lookup_block_group(trans->fs_info, eb->start); 4760 if (!cache) { 4761 btrfs_err(trans->fs_info, "unable to find block group for %llu", 4762 eb->start); 4763 return -ENOSPC; 4764 } 4765 4766 ret = pin_down_extent(trans, cache, eb->start, eb->len, true); 4767 btrfs_put_block_group(cache); 4768 return ret; 4769 } 4770 4771 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr, 4772 u64 num_bytes) 4773 { 4774 struct btrfs_fs_info *fs_info = trans->fs_info; 4775 int ret; 4776 4777 ret = btrfs_remove_from_free_space_tree(trans, bytenr, num_bytes); 4778 if (ret) 4779 return ret; 4780 4781 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true); 4782 if (ret) { 4783 ASSERT(!ret); 4784 btrfs_err(fs_info, "update block group failed for %llu %llu", 4785 bytenr, num_bytes); 4786 return ret; 4787 } 4788 4789 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes); 4790 return 0; 4791 } 4792 4793 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4794 u64 parent, u64 root_objectid, 4795 u64 flags, u64 owner, u64 offset, 4796 struct btrfs_key *ins, int ref_mod, u64 oref_root) 4797 { 4798 struct btrfs_fs_info *fs_info = trans->fs_info; 4799 struct btrfs_root *extent_root; 4800 int ret; 4801 struct btrfs_extent_item *extent_item; 4802 struct btrfs_extent_owner_ref *oref; 4803 struct btrfs_extent_inline_ref *iref; 4804 struct btrfs_path *path; 4805 struct extent_buffer *leaf; 4806 int type; 4807 u32 size; 4808 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE); 4809 4810 if (parent > 0) 4811 type = BTRFS_SHARED_DATA_REF_KEY; 4812 else 4813 type = BTRFS_EXTENT_DATA_REF_KEY; 4814 4815 size = sizeof(*extent_item); 4816 if (simple_quota) 4817 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY); 4818 size += btrfs_extent_inline_ref_size(type); 4819 4820 path = btrfs_alloc_path(); 4821 if (!path) 4822 return -ENOMEM; 4823 4824 extent_root = btrfs_extent_root(fs_info, ins->objectid); 4825 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size); 4826 if (ret) { 4827 btrfs_free_path(path); 4828 return ret; 4829 } 4830 4831 leaf = path->nodes[0]; 4832 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4833 struct btrfs_extent_item); 4834 btrfs_set_extent_refs(leaf, extent_item, ref_mod); 4835 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4836 btrfs_set_extent_flags(leaf, extent_item, 4837 flags | BTRFS_EXTENT_FLAG_DATA); 4838 4839 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4840 if (simple_quota) { 4841 btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY); 4842 oref = (struct btrfs_extent_owner_ref *)(&iref->offset); 4843 btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root); 4844 iref = (struct btrfs_extent_inline_ref *)(oref + 1); 4845 } 4846 btrfs_set_extent_inline_ref_type(leaf, iref, type); 4847 4848 if (parent > 0) { 4849 struct btrfs_shared_data_ref *ref; 4850 ref = (struct btrfs_shared_data_ref *)(iref + 1); 4851 btrfs_set_extent_inline_ref_offset(leaf, iref, parent); 4852 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); 4853 } else { 4854 struct btrfs_extent_data_ref *ref; 4855 ref = (struct btrfs_extent_data_ref *)(&iref->offset); 4856 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); 4857 btrfs_set_extent_data_ref_objectid(leaf, ref, owner); 4858 btrfs_set_extent_data_ref_offset(leaf, ref, offset); 4859 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); 4860 } 4861 4862 btrfs_free_path(path); 4863 4864 return alloc_reserved_extent(trans, ins->objectid, ins->offset); 4865 } 4866 4867 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, 4868 const struct btrfs_delayed_ref_node *node, 4869 struct btrfs_delayed_extent_op *extent_op) 4870 { 4871 struct btrfs_fs_info *fs_info = trans->fs_info; 4872 struct btrfs_root *extent_root; 4873 int ret; 4874 struct btrfs_extent_item *extent_item; 4875 struct btrfs_key extent_key; 4876 struct btrfs_tree_block_info *block_info; 4877 struct btrfs_extent_inline_ref *iref; 4878 struct btrfs_path *path; 4879 struct extent_buffer *leaf; 4880 u32 size = sizeof(*extent_item) + sizeof(*iref); 4881 const u64 flags = (extent_op ? extent_op->flags_to_set : 0); 4882 /* The owner of a tree block is the level. */ 4883 int level = btrfs_delayed_ref_owner(node); 4884 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 4885 4886 extent_key.objectid = node->bytenr; 4887 if (skinny_metadata) { 4888 /* The owner of a tree block is the level. */ 4889 extent_key.offset = level; 4890 extent_key.type = BTRFS_METADATA_ITEM_KEY; 4891 } else { 4892 extent_key.offset = node->num_bytes; 4893 extent_key.type = BTRFS_EXTENT_ITEM_KEY; 4894 size += sizeof(*block_info); 4895 } 4896 4897 path = btrfs_alloc_path(); 4898 if (!path) 4899 return -ENOMEM; 4900 4901 extent_root = btrfs_extent_root(fs_info, extent_key.objectid); 4902 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key, 4903 size); 4904 if (ret) { 4905 btrfs_free_path(path); 4906 return ret; 4907 } 4908 4909 leaf = path->nodes[0]; 4910 extent_item = btrfs_item_ptr(leaf, path->slots[0], 4911 struct btrfs_extent_item); 4912 btrfs_set_extent_refs(leaf, extent_item, 1); 4913 btrfs_set_extent_generation(leaf, extent_item, trans->transid); 4914 btrfs_set_extent_flags(leaf, extent_item, 4915 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); 4916 4917 if (skinny_metadata) { 4918 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); 4919 } else { 4920 block_info = (struct btrfs_tree_block_info *)(extent_item + 1); 4921 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); 4922 btrfs_set_tree_block_level(leaf, block_info, level); 4923 iref = (struct btrfs_extent_inline_ref *)(block_info + 1); 4924 } 4925 4926 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { 4927 btrfs_set_extent_inline_ref_type(leaf, iref, 4928 BTRFS_SHARED_BLOCK_REF_KEY); 4929 btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent); 4930 } else { 4931 btrfs_set_extent_inline_ref_type(leaf, iref, 4932 BTRFS_TREE_BLOCK_REF_KEY); 4933 btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root); 4934 } 4935 4936 btrfs_free_path(path); 4937 4938 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize); 4939 } 4940 4941 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 4942 struct btrfs_root *root, u64 owner, 4943 u64 offset, u64 ram_bytes, 4944 struct btrfs_key *ins) 4945 { 4946 struct btrfs_ref generic_ref = { 4947 .action = BTRFS_ADD_DELAYED_EXTENT, 4948 .bytenr = ins->objectid, 4949 .num_bytes = ins->offset, 4950 .owning_root = btrfs_root_id(root), 4951 .ref_root = btrfs_root_id(root), 4952 }; 4953 4954 ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID); 4955 4956 if (btrfs_is_data_reloc_root(root) && btrfs_is_fstree(root->relocation_src_root)) 4957 generic_ref.owning_root = root->relocation_src_root; 4958 4959 btrfs_init_data_ref(&generic_ref, owner, offset, 0, false); 4960 btrfs_ref_tree_mod(root->fs_info, &generic_ref); 4961 4962 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes); 4963 } 4964 4965 /* 4966 * this is used by the tree logging recovery code. It records that 4967 * an extent has been allocated and makes sure to clear the free 4968 * space cache bits as well 4969 */ 4970 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 4971 u64 root_objectid, u64 owner, u64 offset, 4972 struct btrfs_key *ins) 4973 { 4974 struct btrfs_fs_info *fs_info = trans->fs_info; 4975 int ret; 4976 struct btrfs_block_group *block_group; 4977 struct btrfs_space_info *space_info; 4978 const struct btrfs_squota_delta delta = { 4979 .root = root_objectid, 4980 .num_bytes = ins->offset, 4981 .generation = trans->transid, 4982 .is_data = true, 4983 .is_inc = true, 4984 }; 4985 4986 /* 4987 * Mixed block groups will exclude before processing the log so we only 4988 * need to do the exclude dance if this fs isn't mixed. 4989 */ 4990 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 4991 ret = __exclude_logged_extent(fs_info, ins->objectid, 4992 ins->offset); 4993 if (ret) 4994 return ret; 4995 } 4996 4997 block_group = btrfs_lookup_block_group(fs_info, ins->objectid); 4998 if (!block_group) 4999 return -EINVAL; 5000 5001 space_info = block_group->space_info; 5002 spin_lock(&space_info->lock); 5003 spin_lock(&block_group->lock); 5004 space_info->bytes_reserved += ins->offset; 5005 block_group->reserved += ins->offset; 5006 spin_unlock(&block_group->lock); 5007 spin_unlock(&space_info->lock); 5008 5009 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, 5010 offset, ins, 1, root_objectid); 5011 if (ret) 5012 btrfs_pin_extent(trans, ins->objectid, ins->offset); 5013 ret = btrfs_record_squota_delta(fs_info, &delta); 5014 btrfs_put_block_group(block_group); 5015 return ret; 5016 } 5017 5018 #ifdef CONFIG_BTRFS_DEBUG 5019 /* 5020 * Extra safety check in case the extent tree is corrupted and extent allocator 5021 * chooses to use a tree block which is already used and locked. 5022 */ 5023 static bool check_eb_lock_owner(const struct extent_buffer *eb) 5024 { 5025 if (eb->lock_owner == current->pid) { 5026 btrfs_err_rl(eb->fs_info, 5027 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", 5028 eb->start, btrfs_header_owner(eb), current->pid); 5029 return true; 5030 } 5031 return false; 5032 } 5033 #else 5034 static bool check_eb_lock_owner(struct extent_buffer *eb) 5035 { 5036 return false; 5037 } 5038 #endif 5039 5040 static struct extent_buffer * 5041 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5042 u64 bytenr, int level, u64 owner, 5043 enum btrfs_lock_nesting nest) 5044 { 5045 struct btrfs_fs_info *fs_info = root->fs_info; 5046 struct extent_buffer *buf; 5047 u64 lockdep_owner = owner; 5048 5049 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level); 5050 if (IS_ERR(buf)) 5051 return buf; 5052 5053 if (unlikely(check_eb_lock_owner(buf))) { 5054 free_extent_buffer(buf); 5055 return ERR_PTR(-EUCLEAN); 5056 } 5057 5058 /* 5059 * The reloc trees are just snapshots, so we need them to appear to be 5060 * just like any other fs tree WRT lockdep. 5061 * 5062 * The exception however is in replace_path() in relocation, where we 5063 * hold the lock on the original fs root and then search for the reloc 5064 * root. At that point we need to make sure any reloc root buffers are 5065 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make 5066 * lockdep happy. 5067 */ 5068 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID && 5069 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state)) 5070 lockdep_owner = BTRFS_FS_TREE_OBJECTID; 5071 5072 /* btrfs_clear_buffer_dirty() accesses generation field. */ 5073 btrfs_set_header_generation(buf, trans->transid); 5074 5075 /* 5076 * This needs to stay, because we could allocate a freed block from an 5077 * old tree into a new tree, so we need to make sure this new block is 5078 * set to the appropriate level and owner. 5079 */ 5080 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level); 5081 5082 btrfs_tree_lock_nested(buf, nest); 5083 btrfs_clear_buffer_dirty(trans, buf); 5084 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); 5085 clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags); 5086 5087 set_extent_buffer_uptodate(buf); 5088 5089 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); 5090 btrfs_set_header_level(buf, level); 5091 btrfs_set_header_bytenr(buf, buf->start); 5092 btrfs_set_header_generation(buf, trans->transid); 5093 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); 5094 btrfs_set_header_owner(buf, owner); 5095 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid); 5096 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); 5097 if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) { 5098 buf->log_index = root->log_transid % 2; 5099 /* 5100 * we allow two log transactions at a time, use different 5101 * EXTENT bit to differentiate dirty pages. 5102 */ 5103 if (buf->log_index == 0) 5104 btrfs_set_extent_bit(&root->dirty_log_pages, buf->start, 5105 buf->start + buf->len - 1, 5106 EXTENT_DIRTY_LOG1, NULL); 5107 else 5108 btrfs_set_extent_bit(&root->dirty_log_pages, buf->start, 5109 buf->start + buf->len - 1, 5110 EXTENT_DIRTY_LOG2, NULL); 5111 } else { 5112 buf->log_index = -1; 5113 btrfs_set_extent_bit(&trans->transaction->dirty_pages, buf->start, 5114 buf->start + buf->len - 1, EXTENT_DIRTY, NULL); 5115 } 5116 /* this returns a buffer locked for blocking */ 5117 return buf; 5118 } 5119 5120 /* 5121 * finds a free extent and does all the dirty work required for allocation 5122 * returns the tree buffer or an ERR_PTR on error. 5123 */ 5124 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 5125 struct btrfs_root *root, 5126 u64 parent, u64 root_objectid, 5127 const struct btrfs_disk_key *key, 5128 int level, u64 hint, 5129 u64 empty_size, 5130 u64 reloc_src_root, 5131 enum btrfs_lock_nesting nest) 5132 { 5133 struct btrfs_fs_info *fs_info = root->fs_info; 5134 struct btrfs_key ins; 5135 struct btrfs_block_rsv *block_rsv; 5136 struct extent_buffer *buf; 5137 u64 flags = 0; 5138 int ret; 5139 u32 blocksize = fs_info->nodesize; 5140 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 5141 u64 owning_root; 5142 5143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 5144 if (btrfs_is_testing(fs_info)) { 5145 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, 5146 level, root_objectid, nest); 5147 if (!IS_ERR(buf)) 5148 root->alloc_bytenr += blocksize; 5149 return buf; 5150 } 5151 #endif 5152 5153 block_rsv = btrfs_use_block_rsv(trans, root, blocksize); 5154 if (IS_ERR(block_rsv)) 5155 return ERR_CAST(block_rsv); 5156 5157 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, 5158 empty_size, hint, &ins, false, false); 5159 if (ret) 5160 goto out_unuse; 5161 5162 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, 5163 root_objectid, nest); 5164 if (IS_ERR(buf)) { 5165 ret = PTR_ERR(buf); 5166 goto out_free_reserved; 5167 } 5168 owning_root = btrfs_header_owner(buf); 5169 5170 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { 5171 if (parent == 0) 5172 parent = ins.objectid; 5173 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 5174 owning_root = reloc_src_root; 5175 } else 5176 BUG_ON(parent > 0); 5177 5178 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { 5179 struct btrfs_delayed_extent_op *extent_op; 5180 struct btrfs_ref generic_ref = { 5181 .action = BTRFS_ADD_DELAYED_EXTENT, 5182 .bytenr = ins.objectid, 5183 .num_bytes = ins.offset, 5184 .parent = parent, 5185 .owning_root = owning_root, 5186 .ref_root = root_objectid, 5187 }; 5188 5189 if (!skinny_metadata || flags != 0) { 5190 extent_op = btrfs_alloc_delayed_extent_op(); 5191 if (!extent_op) { 5192 ret = -ENOMEM; 5193 goto out_free_buf; 5194 } 5195 if (key) 5196 memcpy(&extent_op->key, key, sizeof(extent_op->key)); 5197 else 5198 memset(&extent_op->key, 0, sizeof(extent_op->key)); 5199 extent_op->flags_to_set = flags; 5200 extent_op->update_key = (skinny_metadata ? false : true); 5201 extent_op->update_flags = (flags != 0); 5202 } else { 5203 extent_op = NULL; 5204 } 5205 5206 btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false); 5207 btrfs_ref_tree_mod(fs_info, &generic_ref); 5208 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op); 5209 if (ret) { 5210 btrfs_free_delayed_extent_op(extent_op); 5211 goto out_free_buf; 5212 } 5213 } 5214 return buf; 5215 5216 out_free_buf: 5217 btrfs_tree_unlock(buf); 5218 free_extent_buffer(buf); 5219 out_free_reserved: 5220 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, false); 5221 out_unuse: 5222 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize); 5223 return ERR_PTR(ret); 5224 } 5225 5226 struct walk_control { 5227 u64 refs[BTRFS_MAX_LEVEL]; 5228 u64 flags[BTRFS_MAX_LEVEL]; 5229 struct btrfs_key update_progress; 5230 struct btrfs_key drop_progress; 5231 int drop_level; 5232 int stage; 5233 int level; 5234 int shared_level; 5235 int update_ref; 5236 int keep_locks; 5237 int reada_slot; 5238 int reada_count; 5239 int restarted; 5240 /* Indicate that extent info needs to be looked up when walking the tree. */ 5241 int lookup_info; 5242 }; 5243 5244 /* 5245 * This is our normal stage. We are traversing blocks the current snapshot owns 5246 * and we are dropping any of our references to any children we are able to, and 5247 * then freeing the block once we've processed all of the children. 5248 */ 5249 #define DROP_REFERENCE 1 5250 5251 /* 5252 * We enter this stage when we have to walk into a child block (meaning we can't 5253 * simply drop our reference to it from our current parent node) and there are 5254 * more than one reference on it. If we are the owner of any of the children 5255 * blocks from the current parent node then we have to do the FULL_BACKREF dance 5256 * on them in order to drop our normal ref and add the shared ref. 5257 */ 5258 #define UPDATE_BACKREF 2 5259 5260 /* 5261 * Decide if we need to walk down into this node to adjust the references. 5262 * 5263 * @root: the root we are currently deleting 5264 * @wc: the walk control for this deletion 5265 * @eb: the parent eb that we're currently visiting 5266 * @refs: the number of refs for wc->level - 1 5267 * @flags: the flags for wc->level - 1 5268 * @slot: the slot in the eb that we're currently checking 5269 * 5270 * This is meant to be called when we're evaluating if a node we point to at 5271 * wc->level should be read and walked into, or if we can simply delete our 5272 * reference to it. We return true if we should walk into the node, false if we 5273 * can skip it. 5274 * 5275 * We have assertions in here to make sure this is called correctly. We assume 5276 * that sanity checking on the blocks read to this point has been done, so any 5277 * corrupted file systems must have been caught before calling this function. 5278 */ 5279 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc, 5280 struct extent_buffer *eb, u64 flags, int slot) 5281 { 5282 struct btrfs_key key; 5283 u64 generation; 5284 int level = wc->level; 5285 5286 ASSERT(level > 0); 5287 ASSERT(wc->refs[level - 1] > 0); 5288 5289 /* 5290 * The update backref stage we only want to skip if we already have 5291 * FULL_BACKREF set, otherwise we need to read. 5292 */ 5293 if (wc->stage == UPDATE_BACKREF) { 5294 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5295 return false; 5296 return true; 5297 } 5298 5299 /* 5300 * We're the last ref on this block, we must walk into it and process 5301 * any refs it's pointing at. 5302 */ 5303 if (wc->refs[level - 1] == 1) 5304 return true; 5305 5306 /* 5307 * If we're already FULL_BACKREF then we know we can just drop our 5308 * current reference. 5309 */ 5310 if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5311 return false; 5312 5313 /* 5314 * This block is older than our creation generation, we can drop our 5315 * reference to it. 5316 */ 5317 generation = btrfs_node_ptr_generation(eb, slot); 5318 if (!wc->update_ref || generation <= btrfs_root_origin_generation(root)) 5319 return false; 5320 5321 /* 5322 * This block was processed from a previous snapshot deletion run, we 5323 * can skip it. 5324 */ 5325 btrfs_node_key_to_cpu(eb, &key, slot); 5326 if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0) 5327 return false; 5328 5329 /* All other cases we need to wander into the node. */ 5330 return true; 5331 } 5332 5333 static noinline void reada_walk_down(struct btrfs_trans_handle *trans, 5334 struct btrfs_root *root, 5335 struct walk_control *wc, 5336 struct btrfs_path *path) 5337 { 5338 struct btrfs_fs_info *fs_info = root->fs_info; 5339 u64 bytenr; 5340 u64 generation; 5341 u64 refs; 5342 u64 flags; 5343 u32 nritems; 5344 struct extent_buffer *eb; 5345 int ret; 5346 int slot; 5347 int nread = 0; 5348 5349 if (path->slots[wc->level] < wc->reada_slot) { 5350 wc->reada_count = wc->reada_count * 2 / 3; 5351 wc->reada_count = max(wc->reada_count, 2); 5352 } else { 5353 wc->reada_count = wc->reada_count * 3 / 2; 5354 wc->reada_count = min_t(int, wc->reada_count, 5355 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 5356 } 5357 5358 eb = path->nodes[wc->level]; 5359 nritems = btrfs_header_nritems(eb); 5360 5361 for (slot = path->slots[wc->level]; slot < nritems; slot++) { 5362 if (nread >= wc->reada_count) 5363 break; 5364 5365 cond_resched(); 5366 bytenr = btrfs_node_blockptr(eb, slot); 5367 generation = btrfs_node_ptr_generation(eb, slot); 5368 5369 if (slot == path->slots[wc->level]) 5370 goto reada; 5371 5372 if (wc->stage == UPDATE_BACKREF && 5373 generation <= btrfs_root_origin_generation(root)) 5374 continue; 5375 5376 /* We don't lock the tree block, it's OK to be racy here */ 5377 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, 5378 wc->level - 1, 1, &refs, 5379 &flags, NULL); 5380 /* We don't care about errors in readahead. */ 5381 if (ret < 0) 5382 continue; 5383 5384 /* 5385 * This could be racey, it's conceivable that we raced and end 5386 * up with a bogus refs count, if that's the case just skip, if 5387 * we are actually corrupt we will notice when we look up 5388 * everything again with our locks. 5389 */ 5390 if (refs == 0) 5391 continue; 5392 5393 /* If we don't need to visit this node don't reada. */ 5394 if (!visit_node_for_delete(root, wc, eb, flags, slot)) 5395 continue; 5396 reada: 5397 btrfs_readahead_node_child(eb, slot); 5398 nread++; 5399 } 5400 wc->reada_slot = slot; 5401 } 5402 5403 /* 5404 * helper to process tree block while walking down the tree. 5405 * 5406 * when wc->stage == UPDATE_BACKREF, this function updates 5407 * back refs for pointers in the block. 5408 * 5409 * NOTE: return value 1 means we should stop walking down. 5410 */ 5411 static noinline int walk_down_proc(struct btrfs_trans_handle *trans, 5412 struct btrfs_root *root, 5413 struct btrfs_path *path, 5414 struct walk_control *wc) 5415 { 5416 struct btrfs_fs_info *fs_info = root->fs_info; 5417 int level = wc->level; 5418 struct extent_buffer *eb = path->nodes[level]; 5419 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; 5420 int ret; 5421 5422 if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root)) 5423 return 1; 5424 5425 /* 5426 * when reference count of tree block is 1, it won't increase 5427 * again. once full backref flag is set, we never clear it. 5428 */ 5429 if (wc->lookup_info && 5430 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || 5431 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { 5432 ASSERT(path->locks[level]); 5433 ret = btrfs_lookup_extent_info(trans, fs_info, 5434 eb->start, level, 1, 5435 &wc->refs[level], 5436 &wc->flags[level], 5437 NULL); 5438 if (ret) 5439 return ret; 5440 if (unlikely(wc->refs[level] == 0)) { 5441 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5442 eb->start); 5443 return -EUCLEAN; 5444 } 5445 } 5446 5447 if (wc->stage == DROP_REFERENCE) { 5448 if (wc->refs[level] > 1) 5449 return 1; 5450 5451 if (path->locks[level] && !wc->keep_locks) { 5452 btrfs_tree_unlock_rw(eb, path->locks[level]); 5453 path->locks[level] = 0; 5454 } 5455 return 0; 5456 } 5457 5458 /* wc->stage == UPDATE_BACKREF */ 5459 if (!(wc->flags[level] & flag)) { 5460 ASSERT(path->locks[level]); 5461 ret = btrfs_inc_ref(trans, root, eb, 1); 5462 if (unlikely(ret)) { 5463 btrfs_abort_transaction(trans, ret); 5464 return ret; 5465 } 5466 ret = btrfs_dec_ref(trans, root, eb, 0); 5467 if (unlikely(ret)) { 5468 btrfs_abort_transaction(trans, ret); 5469 return ret; 5470 } 5471 ret = btrfs_set_disk_extent_flags(trans, eb, flag); 5472 if (unlikely(ret)) { 5473 btrfs_abort_transaction(trans, ret); 5474 return ret; 5475 } 5476 wc->flags[level] |= flag; 5477 } 5478 5479 /* 5480 * the block is shared by multiple trees, so it's not good to 5481 * keep the tree lock 5482 */ 5483 if (path->locks[level] && level > 0) { 5484 btrfs_tree_unlock_rw(eb, path->locks[level]); 5485 path->locks[level] = 0; 5486 } 5487 return 0; 5488 } 5489 5490 /* 5491 * This is used to verify a ref exists for this root to deal with a bug where we 5492 * would have a drop_progress key that hadn't been updated properly. 5493 */ 5494 static int check_ref_exists(struct btrfs_trans_handle *trans, 5495 struct btrfs_root *root, u64 bytenr, u64 parent, 5496 int level) 5497 { 5498 struct btrfs_delayed_ref_root *delayed_refs; 5499 struct btrfs_delayed_ref_head *head; 5500 BTRFS_PATH_AUTO_FREE(path); 5501 struct btrfs_extent_inline_ref *iref; 5502 int ret; 5503 bool exists = false; 5504 5505 path = btrfs_alloc_path(); 5506 if (!path) 5507 return -ENOMEM; 5508 again: 5509 ret = lookup_extent_backref(trans, path, &iref, bytenr, 5510 root->fs_info->nodesize, parent, 5511 btrfs_root_id(root), level, 0); 5512 if (ret != -ENOENT) { 5513 /* 5514 * If we get 0 then we found our reference, return 1, else 5515 * return the error if it's not -ENOENT; 5516 */ 5517 return (ret < 0 ) ? ret : 1; 5518 } 5519 5520 /* 5521 * We could have a delayed ref with this reference, so look it up while 5522 * we're holding the path open to make sure we don't race with the 5523 * delayed ref running. 5524 */ 5525 delayed_refs = &trans->transaction->delayed_refs; 5526 spin_lock(&delayed_refs->lock); 5527 head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr); 5528 if (!head) 5529 goto out; 5530 if (!mutex_trylock(&head->mutex)) { 5531 /* 5532 * We're contended, means that the delayed ref is running, get a 5533 * reference and wait for the ref head to be complete and then 5534 * try again. 5535 */ 5536 refcount_inc(&head->refs); 5537 spin_unlock(&delayed_refs->lock); 5538 5539 btrfs_release_path(path); 5540 5541 mutex_lock(&head->mutex); 5542 mutex_unlock(&head->mutex); 5543 btrfs_put_delayed_ref_head(head); 5544 goto again; 5545 } 5546 5547 exists = btrfs_find_delayed_tree_ref(head, btrfs_root_id(root), parent); 5548 mutex_unlock(&head->mutex); 5549 out: 5550 spin_unlock(&delayed_refs->lock); 5551 return exists ? 1 : 0; 5552 } 5553 5554 /* 5555 * We may not have an uptodate block, so if we are going to walk down into this 5556 * block we need to drop the lock, read it off of the disk, re-lock it and 5557 * return to continue dropping the snapshot. 5558 */ 5559 static int check_next_block_uptodate(struct btrfs_trans_handle *trans, 5560 struct btrfs_root *root, 5561 struct btrfs_path *path, 5562 struct walk_control *wc, 5563 struct extent_buffer *next) 5564 { 5565 struct btrfs_tree_parent_check check = { 0 }; 5566 u64 generation; 5567 int level = wc->level; 5568 int ret; 5569 5570 btrfs_assert_tree_write_locked(next); 5571 5572 generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]); 5573 5574 if (btrfs_buffer_uptodate(next, generation, false)) 5575 return 0; 5576 5577 check.level = level - 1; 5578 check.transid = generation; 5579 check.owner_root = btrfs_root_id(root); 5580 check.has_first_key = true; 5581 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]); 5582 5583 btrfs_tree_unlock(next); 5584 if (level == 1) 5585 reada_walk_down(trans, root, wc, path); 5586 ret = btrfs_read_extent_buffer(next, &check); 5587 if (ret) { 5588 free_extent_buffer(next); 5589 return ret; 5590 } 5591 btrfs_tree_lock(next); 5592 wc->lookup_info = 1; 5593 return 0; 5594 } 5595 5596 /* 5597 * If we determine that we don't have to visit wc->level - 1 then we need to 5598 * determine if we can drop our reference. 5599 * 5600 * If we are UPDATE_BACKREF then we will not, we need to update our backrefs. 5601 * 5602 * If we are DROP_REFERENCE this will figure out if we need to drop our current 5603 * reference, skipping it if we dropped it from a previous uncompleted drop, or 5604 * dropping it if we still have a reference to it. 5605 */ 5606 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5607 struct btrfs_path *path, struct walk_control *wc, 5608 struct extent_buffer *next, u64 owner_root) 5609 { 5610 struct btrfs_ref ref = { 5611 .action = BTRFS_DROP_DELAYED_REF, 5612 .bytenr = next->start, 5613 .num_bytes = root->fs_info->nodesize, 5614 .owning_root = owner_root, 5615 .ref_root = btrfs_root_id(root), 5616 }; 5617 int level = wc->level; 5618 int ret; 5619 5620 /* We are UPDATE_BACKREF, we're not dropping anything. */ 5621 if (wc->stage == UPDATE_BACKREF) 5622 return 0; 5623 5624 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5625 ref.parent = path->nodes[level]->start; 5626 } else { 5627 ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level])); 5628 if (unlikely(btrfs_root_id(root) != btrfs_header_owner(path->nodes[level]))) { 5629 btrfs_err(root->fs_info, "mismatched block owner"); 5630 return -EIO; 5631 } 5632 } 5633 5634 /* 5635 * If we had a drop_progress we need to verify the refs are set as 5636 * expected. If we find our ref then we know that from here on out 5637 * everything should be correct, and we can clear the 5638 * ->restarted flag. 5639 */ 5640 if (wc->restarted) { 5641 ret = check_ref_exists(trans, root, next->start, ref.parent, 5642 level - 1); 5643 if (ret <= 0) 5644 return ret; 5645 ret = 0; 5646 wc->restarted = 0; 5647 } 5648 5649 /* 5650 * Reloc tree doesn't contribute to qgroup numbers, and we have already 5651 * accounted them at merge time (replace_path), thus we could skip 5652 * expensive subtree trace here. 5653 */ 5654 if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 5655 wc->refs[level - 1] > 1) { 5656 u64 generation = btrfs_node_ptr_generation(path->nodes[level], 5657 path->slots[level]); 5658 5659 ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1); 5660 if (ret) { 5661 btrfs_err_rl(root->fs_info, 5662 "error %d accounting shared subtree, quota is out of sync, rescan required", 5663 ret); 5664 } 5665 } 5666 5667 /* 5668 * We need to update the next key in our walk control so we can update 5669 * the drop_progress key accordingly. We don't care if find_next_key 5670 * doesn't find a key because that means we're at the end and are going 5671 * to clean up now. 5672 */ 5673 wc->drop_level = level; 5674 find_next_key(path, level, &wc->drop_progress); 5675 5676 btrfs_init_tree_ref(&ref, level - 1, 0, false); 5677 return btrfs_free_extent(trans, &ref); 5678 } 5679 5680 /* 5681 * helper to process tree block pointer. 5682 * 5683 * when wc->stage == DROP_REFERENCE, this function checks 5684 * reference count of the block pointed to. if the block 5685 * is shared and we need update back refs for the subtree 5686 * rooted at the block, this function changes wc->stage to 5687 * UPDATE_BACKREF. if the block is shared and there is no 5688 * need to update back, this function drops the reference 5689 * to the block. 5690 * 5691 * NOTE: return value 1 means we should stop walking down. 5692 */ 5693 static noinline int do_walk_down(struct btrfs_trans_handle *trans, 5694 struct btrfs_root *root, 5695 struct btrfs_path *path, 5696 struct walk_control *wc) 5697 { 5698 struct btrfs_fs_info *fs_info = root->fs_info; 5699 u64 bytenr; 5700 u64 generation; 5701 u64 owner_root = 0; 5702 struct extent_buffer *next; 5703 int level = wc->level; 5704 int ret = 0; 5705 5706 generation = btrfs_node_ptr_generation(path->nodes[level], 5707 path->slots[level]); 5708 /* 5709 * if the lower level block was created before the snapshot 5710 * was created, we know there is no need to update back refs 5711 * for the subtree 5712 */ 5713 if (wc->stage == UPDATE_BACKREF && 5714 generation <= btrfs_root_origin_generation(root)) { 5715 wc->lookup_info = 1; 5716 return 1; 5717 } 5718 5719 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); 5720 5721 next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root), 5722 level - 1); 5723 if (IS_ERR(next)) 5724 return PTR_ERR(next); 5725 5726 btrfs_tree_lock(next); 5727 5728 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, 5729 &wc->refs[level - 1], 5730 &wc->flags[level - 1], 5731 &owner_root); 5732 if (ret < 0) 5733 goto out_unlock; 5734 5735 if (unlikely(wc->refs[level - 1] == 0)) { 5736 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5737 bytenr); 5738 ret = -EUCLEAN; 5739 goto out_unlock; 5740 } 5741 wc->lookup_info = 0; 5742 5743 /* If we don't have to walk into this node skip it. */ 5744 if (!visit_node_for_delete(root, wc, path->nodes[level], 5745 wc->flags[level - 1], path->slots[level])) 5746 goto skip; 5747 5748 /* 5749 * We have to walk down into this node, and if we're currently at the 5750 * DROP_REFERENCE stage and this block is shared then we need to switch 5751 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF. 5752 */ 5753 if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) { 5754 wc->stage = UPDATE_BACKREF; 5755 wc->shared_level = level - 1; 5756 } 5757 5758 ret = check_next_block_uptodate(trans, root, path, wc, next); 5759 if (ret) 5760 return ret; 5761 5762 level--; 5763 ASSERT(level == btrfs_header_level(next)); 5764 if (unlikely(level != btrfs_header_level(next))) { 5765 btrfs_err(root->fs_info, "mismatched level"); 5766 ret = -EIO; 5767 goto out_unlock; 5768 } 5769 path->nodes[level] = next; 5770 path->slots[level] = 0; 5771 path->locks[level] = BTRFS_WRITE_LOCK; 5772 wc->level = level; 5773 if (wc->level == 1) 5774 wc->reada_slot = 0; 5775 return 0; 5776 skip: 5777 ret = maybe_drop_reference(trans, root, path, wc, next, owner_root); 5778 if (ret) 5779 goto out_unlock; 5780 wc->refs[level - 1] = 0; 5781 wc->flags[level - 1] = 0; 5782 wc->lookup_info = 1; 5783 ret = 1; 5784 5785 out_unlock: 5786 btrfs_tree_unlock(next); 5787 free_extent_buffer(next); 5788 5789 return ret; 5790 } 5791 5792 /* 5793 * helper to process tree block while walking up the tree. 5794 * 5795 * when wc->stage == DROP_REFERENCE, this function drops 5796 * reference count on the block. 5797 * 5798 * when wc->stage == UPDATE_BACKREF, this function changes 5799 * wc->stage back to DROP_REFERENCE if we changed wc->stage 5800 * to UPDATE_BACKREF previously while processing the block. 5801 * 5802 * NOTE: return value 1 means we should stop walking up. 5803 */ 5804 static noinline int walk_up_proc(struct btrfs_trans_handle *trans, 5805 struct btrfs_root *root, 5806 struct btrfs_path *path, 5807 struct walk_control *wc) 5808 { 5809 struct btrfs_fs_info *fs_info = root->fs_info; 5810 int ret = 0; 5811 int level = wc->level; 5812 struct extent_buffer *eb = path->nodes[level]; 5813 u64 parent = 0; 5814 5815 if (wc->stage == UPDATE_BACKREF) { 5816 ASSERT(wc->shared_level >= level); 5817 if (level < wc->shared_level) 5818 goto out; 5819 5820 ret = find_next_key(path, level + 1, &wc->update_progress); 5821 if (ret > 0) 5822 wc->update_ref = 0; 5823 5824 wc->stage = DROP_REFERENCE; 5825 wc->shared_level = -1; 5826 path->slots[level] = 0; 5827 5828 /* 5829 * check reference count again if the block isn't locked. 5830 * we should start walking down the tree again if reference 5831 * count is one. 5832 */ 5833 if (!path->locks[level]) { 5834 ASSERT(level > 0); 5835 btrfs_tree_lock(eb); 5836 path->locks[level] = BTRFS_WRITE_LOCK; 5837 5838 ret = btrfs_lookup_extent_info(trans, fs_info, 5839 eb->start, level, 1, 5840 &wc->refs[level], 5841 &wc->flags[level], 5842 NULL); 5843 if (ret < 0) { 5844 btrfs_tree_unlock_rw(eb, path->locks[level]); 5845 path->locks[level] = 0; 5846 return ret; 5847 } 5848 if (unlikely(wc->refs[level] == 0)) { 5849 btrfs_tree_unlock_rw(eb, path->locks[level]); 5850 btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0", 5851 eb->start); 5852 return -EUCLEAN; 5853 } 5854 if (wc->refs[level] == 1) { 5855 btrfs_tree_unlock_rw(eb, path->locks[level]); 5856 path->locks[level] = 0; 5857 return 1; 5858 } 5859 } 5860 } 5861 5862 /* wc->stage == DROP_REFERENCE */ 5863 ASSERT(path->locks[level] || wc->refs[level] == 1); 5864 5865 if (wc->refs[level] == 1) { 5866 if (level == 0) { 5867 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 5868 ret = btrfs_dec_ref(trans, root, eb, 1); 5869 if (ret) { 5870 btrfs_abort_transaction(trans, ret); 5871 return ret; 5872 } 5873 } else { 5874 ret = btrfs_dec_ref(trans, root, eb, 0); 5875 if (unlikely(ret)) { 5876 btrfs_abort_transaction(trans, ret); 5877 return ret; 5878 } 5879 } 5880 if (btrfs_is_fstree(btrfs_root_id(root))) { 5881 ret = btrfs_qgroup_trace_leaf_items(trans, eb); 5882 if (ret) { 5883 btrfs_err_rl(fs_info, 5884 "error %d accounting leaf items, quota is out of sync, rescan required", 5885 ret); 5886 } 5887 } 5888 } 5889 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */ 5890 if (!path->locks[level]) { 5891 btrfs_tree_lock(eb); 5892 path->locks[level] = BTRFS_WRITE_LOCK; 5893 } 5894 btrfs_clear_buffer_dirty(trans, eb); 5895 } 5896 5897 if (eb == root->node) { 5898 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5899 parent = eb->start; 5900 else if (unlikely(btrfs_root_id(root) != btrfs_header_owner(eb))) 5901 goto owner_mismatch; 5902 } else { 5903 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) 5904 parent = path->nodes[level + 1]->start; 5905 else if (unlikely(btrfs_root_id(root) != 5906 btrfs_header_owner(path->nodes[level + 1]))) 5907 goto owner_mismatch; 5908 } 5909 5910 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent, 5911 wc->refs[level] == 1); 5912 if (ret < 0) 5913 btrfs_abort_transaction(trans, ret); 5914 out: 5915 wc->refs[level] = 0; 5916 wc->flags[level] = 0; 5917 return ret; 5918 5919 owner_mismatch: 5920 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", 5921 btrfs_header_owner(eb), btrfs_root_id(root)); 5922 return -EUCLEAN; 5923 } 5924 5925 /* 5926 * walk_down_tree consists of two steps. 5927 * 5928 * walk_down_proc(). Look up the reference count and reference of our current 5929 * wc->level. At this point path->nodes[wc->level] should be populated and 5930 * uptodate, and in most cases should already be locked. If we are in 5931 * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and 5932 * we can walk back up the tree. If we are UPDATE_BACKREF we have to set 5933 * FULL_BACKREF on this node if it's not already set, and then do the 5934 * FULL_BACKREF conversion dance, which is to drop the root reference and add 5935 * the shared reference to all of this nodes children. 5936 * 5937 * do_walk_down(). This is where we actually start iterating on the children of 5938 * our current path->nodes[wc->level]. For DROP_REFERENCE that means dropping 5939 * our reference to the children that return false from visit_node_for_delete(), 5940 * which has various conditions where we know we can just drop our reference 5941 * without visiting the node. For UPDATE_BACKREF we will skip any children that 5942 * visit_node_for_delete() returns false for, only walking down when necessary. 5943 * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of 5944 * snapshot deletion. 5945 */ 5946 static noinline int walk_down_tree(struct btrfs_trans_handle *trans, 5947 struct btrfs_root *root, 5948 struct btrfs_path *path, 5949 struct walk_control *wc) 5950 { 5951 int level = wc->level; 5952 int ret = 0; 5953 5954 wc->lookup_info = 1; 5955 while (level >= 0) { 5956 ret = walk_down_proc(trans, root, path, wc); 5957 if (ret) 5958 break; 5959 5960 if (level == 0) 5961 break; 5962 5963 if (path->slots[level] >= 5964 btrfs_header_nritems(path->nodes[level])) 5965 break; 5966 5967 ret = do_walk_down(trans, root, path, wc); 5968 if (ret > 0) { 5969 path->slots[level]++; 5970 continue; 5971 } else if (ret < 0) 5972 break; 5973 level = wc->level; 5974 } 5975 return (ret == 1) ? 0 : ret; 5976 } 5977 5978 /* 5979 * walk_up_tree() is responsible for making sure we visit every slot on our 5980 * current node, and if we're at the end of that node then we call 5981 * walk_up_proc() on our current node which will do one of a few things based on 5982 * our stage. 5983 * 5984 * UPDATE_BACKREF. If we wc->level is currently less than our wc->shared_level 5985 * then we need to walk back up the tree, and then going back down into the 5986 * other slots via walk_down_tree to update any other children from our original 5987 * wc->shared_level. Once we're at or above our wc->shared_level we can switch 5988 * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on. 5989 * 5990 * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block. 5991 * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents 5992 * in our current leaf. After that we call btrfs_free_tree_block() on the 5993 * current node and walk up to the next node to walk down the next slot. 5994 */ 5995 static noinline int walk_up_tree(struct btrfs_trans_handle *trans, 5996 struct btrfs_root *root, 5997 struct btrfs_path *path, 5998 struct walk_control *wc, int max_level) 5999 { 6000 int level = wc->level; 6001 int ret; 6002 6003 path->slots[level] = btrfs_header_nritems(path->nodes[level]); 6004 while (level < max_level && path->nodes[level]) { 6005 wc->level = level; 6006 if (path->slots[level] + 1 < 6007 btrfs_header_nritems(path->nodes[level])) { 6008 path->slots[level]++; 6009 return 0; 6010 } else { 6011 ret = walk_up_proc(trans, root, path, wc); 6012 if (ret > 0) 6013 return 0; 6014 if (ret < 0) 6015 return ret; 6016 6017 if (path->locks[level]) { 6018 btrfs_tree_unlock_rw(path->nodes[level], 6019 path->locks[level]); 6020 path->locks[level] = 0; 6021 } 6022 free_extent_buffer(path->nodes[level]); 6023 path->nodes[level] = NULL; 6024 level++; 6025 } 6026 } 6027 return 1; 6028 } 6029 6030 /* 6031 * drop a subvolume tree. 6032 * 6033 * this function traverses the tree freeing any blocks that only 6034 * referenced by the tree. 6035 * 6036 * when a shared tree block is found. this function decreases its 6037 * reference count by one. if update_ref is true, this function 6038 * also make sure backrefs for the shared block and all lower level 6039 * blocks are properly updated. 6040 * 6041 * If called with for_reloc set, may exit early with -EAGAIN 6042 */ 6043 int btrfs_drop_snapshot(struct btrfs_root *root, bool update_ref, bool for_reloc) 6044 { 6045 const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID); 6046 struct btrfs_fs_info *fs_info = root->fs_info; 6047 struct btrfs_path *path; 6048 struct btrfs_trans_handle *trans; 6049 struct btrfs_root *tree_root = fs_info->tree_root; 6050 struct btrfs_root_item *root_item = &root->root_item; 6051 struct walk_control AUTO_KFREE(wc); 6052 struct btrfs_key key; 6053 const u64 rootid = btrfs_root_id(root); 6054 int ret = 0; 6055 int level; 6056 bool root_dropped = false; 6057 bool unfinished_drop = false; 6058 6059 btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root)); 6060 6061 path = btrfs_alloc_path(); 6062 if (!path) { 6063 ret = -ENOMEM; 6064 goto out; 6065 } 6066 6067 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6068 if (!wc) { 6069 ret = -ENOMEM; 6070 goto out_free; 6071 } 6072 6073 /* 6074 * Use join to avoid potential EINTR from transaction start. See 6075 * wait_reserve_ticket and the whole reservation callchain. 6076 */ 6077 if (for_reloc) 6078 trans = btrfs_join_transaction(tree_root); 6079 else 6080 trans = btrfs_start_transaction(tree_root, 0); 6081 if (IS_ERR(trans)) { 6082 ret = PTR_ERR(trans); 6083 goto out_free; 6084 } 6085 6086 ret = btrfs_run_delayed_items(trans); 6087 if (ret) 6088 goto out_end_trans; 6089 6090 /* 6091 * This will help us catch people modifying the fs tree while we're 6092 * dropping it. It is unsafe to mess with the fs tree while it's being 6093 * dropped as we unlock the root node and parent nodes as we walk down 6094 * the tree, assuming nothing will change. If something does change 6095 * then we'll have stale information and drop references to blocks we've 6096 * already dropped. 6097 */ 6098 set_bit(BTRFS_ROOT_DELETING, &root->state); 6099 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state); 6100 6101 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 6102 level = btrfs_header_level(root->node); 6103 path->nodes[level] = btrfs_lock_root_node(root); 6104 path->slots[level] = 0; 6105 path->locks[level] = BTRFS_WRITE_LOCK; 6106 memset(&wc->update_progress, 0, 6107 sizeof(wc->update_progress)); 6108 } else { 6109 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 6110 memcpy(&wc->update_progress, &key, 6111 sizeof(wc->update_progress)); 6112 6113 level = btrfs_root_drop_level(root_item); 6114 BUG_ON(level == 0); 6115 path->lowest_level = level; 6116 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6117 path->lowest_level = 0; 6118 if (ret < 0) 6119 goto out_end_trans; 6120 6121 WARN_ON(ret > 0); 6122 ret = 0; 6123 6124 /* 6125 * unlock our path, this is safe because only this 6126 * function is allowed to delete this snapshot 6127 */ 6128 btrfs_unlock_up_safe(path, 0); 6129 6130 level = btrfs_header_level(root->node); 6131 while (1) { 6132 btrfs_tree_lock(path->nodes[level]); 6133 path->locks[level] = BTRFS_WRITE_LOCK; 6134 6135 /* 6136 * btrfs_lookup_extent_info() returns 0 for success, 6137 * or < 0 for error. 6138 */ 6139 ret = btrfs_lookup_extent_info(trans, fs_info, 6140 path->nodes[level]->start, 6141 level, 1, &wc->refs[level], 6142 &wc->flags[level], NULL); 6143 if (ret < 0) 6144 goto out_end_trans; 6145 6146 BUG_ON(wc->refs[level] == 0); 6147 6148 if (level == btrfs_root_drop_level(root_item)) 6149 break; 6150 6151 btrfs_tree_unlock(path->nodes[level]); 6152 path->locks[level] = 0; 6153 WARN_ON(wc->refs[level] != 1); 6154 level--; 6155 } 6156 } 6157 6158 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state); 6159 wc->level = level; 6160 wc->shared_level = -1; 6161 wc->stage = DROP_REFERENCE; 6162 wc->update_ref = update_ref; 6163 wc->keep_locks = 0; 6164 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6165 6166 while (1) { 6167 6168 ret = walk_down_tree(trans, root, path, wc); 6169 if (unlikely(ret < 0)) { 6170 btrfs_abort_transaction(trans, ret); 6171 break; 6172 } 6173 6174 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); 6175 if (unlikely(ret < 0)) { 6176 btrfs_abort_transaction(trans, ret); 6177 break; 6178 } 6179 6180 if (ret > 0) { 6181 BUG_ON(wc->stage != DROP_REFERENCE); 6182 ret = 0; 6183 break; 6184 } 6185 6186 if (wc->stage == DROP_REFERENCE) { 6187 wc->drop_level = wc->level; 6188 btrfs_node_key_to_cpu(path->nodes[wc->drop_level], 6189 &wc->drop_progress, 6190 path->slots[wc->drop_level]); 6191 } 6192 btrfs_cpu_key_to_disk(&root_item->drop_progress, 6193 &wc->drop_progress); 6194 btrfs_set_root_drop_level(root_item, wc->drop_level); 6195 6196 BUG_ON(wc->level == 0); 6197 if (btrfs_should_end_transaction(trans) || 6198 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { 6199 ret = btrfs_update_root(trans, tree_root, 6200 &root->root_key, 6201 root_item); 6202 if (unlikely(ret)) { 6203 btrfs_abort_transaction(trans, ret); 6204 goto out_end_trans; 6205 } 6206 6207 if (!is_reloc_root) 6208 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6209 6210 btrfs_end_transaction_throttle(trans); 6211 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { 6212 btrfs_debug(fs_info, 6213 "drop snapshot early exit"); 6214 ret = -EAGAIN; 6215 goto out_free; 6216 } 6217 6218 /* 6219 * Use join to avoid potential EINTR from transaction 6220 * start. See wait_reserve_ticket and the whole 6221 * reservation callchain. 6222 */ 6223 if (for_reloc) 6224 trans = btrfs_join_transaction(tree_root); 6225 else 6226 trans = btrfs_start_transaction(tree_root, 0); 6227 if (IS_ERR(trans)) { 6228 ret = PTR_ERR(trans); 6229 goto out_free; 6230 } 6231 } 6232 } 6233 btrfs_release_path(path); 6234 if (ret) 6235 goto out_end_trans; 6236 6237 ret = btrfs_del_root(trans, &root->root_key); 6238 if (unlikely(ret)) { 6239 btrfs_abort_transaction(trans, ret); 6240 goto out_end_trans; 6241 } 6242 6243 if (!is_reloc_root) { 6244 ret = btrfs_find_root(tree_root, &root->root_key, path, 6245 NULL, NULL); 6246 if (unlikely(ret < 0)) { 6247 btrfs_abort_transaction(trans, ret); 6248 goto out_end_trans; 6249 } else if (ret > 0) { 6250 ret = 0; 6251 /* 6252 * If we fail to delete the orphan item this time 6253 * around, it'll get picked up the next time. 6254 * 6255 * The most common failure here is just -ENOENT. 6256 */ 6257 btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root)); 6258 } 6259 } 6260 6261 /* 6262 * This subvolume is going to be completely dropped, and won't be 6263 * recorded as dirty roots, thus pertrans meta rsv will not be freed at 6264 * commit transaction time. So free it here manually. 6265 */ 6266 btrfs_qgroup_convert_reserved_meta(root, INT_MAX); 6267 btrfs_qgroup_free_meta_all_pertrans(root); 6268 6269 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 6270 btrfs_add_dropped_root(trans, root); 6271 else 6272 btrfs_put_root(root); 6273 root_dropped = true; 6274 out_end_trans: 6275 if (!is_reloc_root) 6276 btrfs_set_last_root_drop_gen(fs_info, trans->transid); 6277 6278 btrfs_end_transaction_throttle(trans); 6279 out_free: 6280 btrfs_free_path(path); 6281 out: 6282 if (!ret && root_dropped) { 6283 ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid); 6284 if (ret < 0) 6285 btrfs_warn_rl(fs_info, 6286 "failed to cleanup qgroup 0/%llu: %d", 6287 rootid, ret); 6288 ret = 0; 6289 } 6290 /* 6291 * We were an unfinished drop root, check to see if there are any 6292 * pending, and if not clear and wake up any waiters. 6293 */ 6294 if (!ret && unfinished_drop) 6295 btrfs_maybe_wake_unfinished_drop(fs_info); 6296 6297 /* 6298 * So if we need to stop dropping the snapshot for whatever reason we 6299 * need to make sure to add it back to the dead root list so that we 6300 * keep trying to do the work later. This also cleans up roots if we 6301 * don't have it in the radix (like when we recover after a power fail 6302 * or unmount) so we don't leak memory. 6303 */ 6304 if (!for_reloc && !root_dropped) 6305 btrfs_add_dead_root(root); 6306 return ret; 6307 } 6308 6309 /* 6310 * drop subtree rooted at tree block 'node'. 6311 * 6312 * NOTE: this function will unlock and release tree block 'node' 6313 * only used by relocation code 6314 */ 6315 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 6316 struct btrfs_root *root, 6317 struct extent_buffer *node, 6318 struct extent_buffer *parent) 6319 { 6320 struct btrfs_fs_info *fs_info = root->fs_info; 6321 BTRFS_PATH_AUTO_FREE(path); 6322 struct walk_control AUTO_KFREE(wc); 6323 int level; 6324 int parent_level; 6325 int ret = 0; 6326 6327 BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID); 6328 6329 path = btrfs_alloc_path(); 6330 if (!path) 6331 return -ENOMEM; 6332 6333 wc = kzalloc(sizeof(*wc), GFP_NOFS); 6334 if (!wc) 6335 return -ENOMEM; 6336 6337 btrfs_assert_tree_write_locked(parent); 6338 parent_level = btrfs_header_level(parent); 6339 refcount_inc(&parent->refs); 6340 path->nodes[parent_level] = parent; 6341 path->slots[parent_level] = btrfs_header_nritems(parent); 6342 6343 btrfs_assert_tree_write_locked(node); 6344 level = btrfs_header_level(node); 6345 path->nodes[level] = node; 6346 path->slots[level] = 0; 6347 path->locks[level] = BTRFS_WRITE_LOCK; 6348 6349 wc->refs[parent_level] = 1; 6350 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; 6351 wc->level = level; 6352 wc->shared_level = -1; 6353 wc->stage = DROP_REFERENCE; 6354 wc->update_ref = 0; 6355 wc->keep_locks = 1; 6356 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); 6357 6358 while (1) { 6359 ret = walk_down_tree(trans, root, path, wc); 6360 if (ret < 0) 6361 return ret; 6362 6363 ret = walk_up_tree(trans, root, path, wc, parent_level); 6364 if (ret) { 6365 if (ret < 0) 6366 return ret; 6367 break; 6368 } 6369 } 6370 6371 return 0; 6372 } 6373 6374 /* 6375 * Unpin the extent range in an error context and don't add the space back. 6376 * Errors are not propagated further. 6377 */ 6378 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end) 6379 { 6380 unpin_extent_range(fs_info, start, end, false); 6381 } 6382 6383 /* 6384 * It used to be that old block groups would be left around forever. 6385 * Iterating over them would be enough to trim unused space. Since we 6386 * now automatically remove them, we also need to iterate over unallocated 6387 * space. 6388 * 6389 * We don't want a transaction for this since the discard may take a 6390 * substantial amount of time. We don't require that a transaction be 6391 * running, but we do need to take a running transaction into account 6392 * to ensure that we're not discarding chunks that were released or 6393 * allocated in the current transaction. 6394 * 6395 * Holding the chunks lock will prevent other threads from allocating 6396 * or releasing chunks, but it won't prevent a running transaction 6397 * from committing and releasing the memory that the pending chunks 6398 * list head uses. For that, we need to take a reference to the 6399 * transaction and hold the commit root sem. We only need to hold 6400 * it while performing the free space search since we have already 6401 * held back allocations. 6402 */ 6403 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed) 6404 { 6405 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0; 6406 int ret; 6407 6408 *trimmed = 0; 6409 6410 /* Discard not supported = nothing to do. */ 6411 if (!bdev_max_discard_sectors(device->bdev)) 6412 return 0; 6413 6414 /* Not writable = nothing to do. */ 6415 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 6416 return 0; 6417 6418 /* No free space = nothing to do. */ 6419 if (device->total_bytes <= device->bytes_used) 6420 return 0; 6421 6422 ret = 0; 6423 6424 while (1) { 6425 struct btrfs_fs_info *fs_info = device->fs_info; 6426 u64 bytes; 6427 6428 ret = mutex_lock_interruptible(&fs_info->chunk_mutex); 6429 if (ret) 6430 break; 6431 6432 btrfs_find_first_clear_extent_bit(&device->alloc_state, start, 6433 &start, &end, 6434 CHUNK_TRIMMED | CHUNK_ALLOCATED); 6435 6436 /* Check if there are any CHUNK_* bits left */ 6437 if (start > device->total_bytes) { 6438 DEBUG_WARN(); 6439 btrfs_warn(fs_info, 6440 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu", 6441 start, end - start + 1, 6442 btrfs_dev_name(device), 6443 device->total_bytes); 6444 mutex_unlock(&fs_info->chunk_mutex); 6445 ret = 0; 6446 break; 6447 } 6448 6449 /* Ensure we skip the reserved space on each device. */ 6450 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 6451 6452 /* 6453 * If find_first_clear_extent_bit find a range that spans the 6454 * end of the device it will set end to -1, in this case it's up 6455 * to the caller to trim the value to the size of the device. 6456 */ 6457 end = min(end, device->total_bytes - 1); 6458 6459 len = end - start + 1; 6460 6461 /* We didn't find any extents */ 6462 if (!len) { 6463 mutex_unlock(&fs_info->chunk_mutex); 6464 ret = 0; 6465 break; 6466 } 6467 6468 ret = btrfs_issue_discard(device->bdev, start, len, 6469 &bytes); 6470 if (!ret) 6471 btrfs_set_extent_bit(&device->alloc_state, start, 6472 start + bytes - 1, CHUNK_TRIMMED, NULL); 6473 mutex_unlock(&fs_info->chunk_mutex); 6474 6475 if (ret) 6476 break; 6477 6478 start += len; 6479 *trimmed += bytes; 6480 6481 if (btrfs_trim_interrupted()) { 6482 ret = -ERESTARTSYS; 6483 break; 6484 } 6485 6486 cond_resched(); 6487 } 6488 6489 return ret; 6490 } 6491 6492 /* 6493 * Trim the whole filesystem by: 6494 * 1) trimming the free space in each block group 6495 * 2) trimming the unallocated space on each device 6496 * 6497 * This will also continue trimming even if a block group or device encounters 6498 * an error. The return value will be the last error, or 0 if nothing bad 6499 * happens. 6500 */ 6501 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) 6502 { 6503 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6504 struct btrfs_block_group *cache = NULL; 6505 struct btrfs_device *device; 6506 u64 group_trimmed; 6507 u64 range_end = U64_MAX; 6508 u64 start; 6509 u64 end; 6510 u64 trimmed = 0; 6511 u64 bg_failed = 0; 6512 u64 dev_failed = 0; 6513 int bg_ret = 0; 6514 int dev_ret = 0; 6515 int ret = 0; 6516 6517 if (range->start == U64_MAX) 6518 return -EINVAL; 6519 6520 /* 6521 * Check range overflow if range->len is set. 6522 * The default range->len is U64_MAX. 6523 */ 6524 if (range->len != U64_MAX && 6525 check_add_overflow(range->start, range->len, &range_end)) 6526 return -EINVAL; 6527 6528 cache = btrfs_lookup_first_block_group(fs_info, range->start); 6529 for (; cache; cache = btrfs_next_block_group(cache)) { 6530 if (cache->start >= range_end) { 6531 btrfs_put_block_group(cache); 6532 break; 6533 } 6534 6535 start = max(range->start, cache->start); 6536 end = min(range_end, cache->start + cache->length); 6537 6538 if (end - start >= range->minlen) { 6539 if (!btrfs_block_group_done(cache)) { 6540 ret = btrfs_cache_block_group(cache, true); 6541 if (ret) { 6542 bg_failed++; 6543 bg_ret = ret; 6544 continue; 6545 } 6546 } 6547 ret = btrfs_trim_block_group(cache, 6548 &group_trimmed, 6549 start, 6550 end, 6551 range->minlen); 6552 6553 trimmed += group_trimmed; 6554 if (ret) { 6555 bg_failed++; 6556 bg_ret = ret; 6557 continue; 6558 } 6559 } 6560 } 6561 6562 if (bg_failed) 6563 btrfs_warn(fs_info, 6564 "failed to trim %llu block group(s), last error %d", 6565 bg_failed, bg_ret); 6566 6567 mutex_lock(&fs_devices->device_list_mutex); 6568 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6569 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 6570 continue; 6571 6572 ret = btrfs_trim_free_extents(device, &group_trimmed); 6573 6574 trimmed += group_trimmed; 6575 if (ret) { 6576 dev_failed++; 6577 dev_ret = ret; 6578 break; 6579 } 6580 } 6581 mutex_unlock(&fs_devices->device_list_mutex); 6582 6583 if (dev_failed) 6584 btrfs_warn(fs_info, 6585 "failed to trim %llu device(s), last error %d", 6586 dev_failed, dev_ret); 6587 range->len = trimmed; 6588 if (bg_ret) 6589 return bg_ret; 6590 return dev_ret; 6591 } 6592