xref: /linux/fs/btrfs/extent-tree.c (revision 7696286034ac72cf9b46499be1715ac62fd302c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "qgroup.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "discard.h"
34 #include "zoned.h"
35 #include "dev-replace.h"
36 #include "fs.h"
37 #include "accessors.h"
38 #include "root-tree.h"
39 #include "file-item.h"
40 #include "orphan.h"
41 #include "tree-checker.h"
42 #include "raid-stripe-tree.h"
43 #include "delayed-inode.h"
44 
45 #undef SCRAMBLE_DELAYED_REFS
46 
47 
48 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
49 			       struct btrfs_delayed_ref_head *href,
50 			       const struct btrfs_delayed_ref_node *node,
51 			       struct btrfs_delayed_extent_op *extra_op);
52 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
53 				    struct extent_buffer *leaf,
54 				    struct btrfs_extent_item *ei);
55 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
56 				      u64 parent, u64 root_objectid,
57 				      u64 flags, u64 owner, u64 offset,
58 				      struct btrfs_key *ins, int ref_mod, u64 oref_root);
59 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
60 				     const struct btrfs_delayed_ref_node *node,
61 				     struct btrfs_delayed_extent_op *extent_op);
62 static int find_next_key(const struct btrfs_path *path, int level,
63 			 struct btrfs_key *key);
64 
65 static int block_group_bits(const struct btrfs_block_group *cache, u64 bits)
66 {
67 	return (cache->flags & bits) == bits;
68 }
69 
70 /* simple helper to search for an existing data extent at a given offset */
71 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
72 {
73 	struct btrfs_root *root = btrfs_extent_root(fs_info, start);
74 	struct btrfs_key key;
75 	BTRFS_PATH_AUTO_FREE(path);
76 
77 	path = btrfs_alloc_path();
78 	if (!path)
79 		return -ENOMEM;
80 
81 	key.objectid = start;
82 	key.type = BTRFS_EXTENT_ITEM_KEY;
83 	key.offset = len;
84 	return btrfs_search_slot(NULL, root, &key, path, 0, 0);
85 }
86 
87 /*
88  * helper function to lookup reference count and flags of a tree block.
89  *
90  * the head node for delayed ref is used to store the sum of all the
91  * reference count modifications queued up in the rbtree. the head
92  * node may also store the extent flags to set. This way you can check
93  * to see what the reference count and extent flags would be if all of
94  * the delayed refs are not processed.
95  */
96 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
97 			     struct btrfs_fs_info *fs_info, u64 bytenr,
98 			     u64 offset, int metadata, u64 *refs, u64 *flags,
99 			     u64 *owning_root)
100 {
101 	struct btrfs_root *extent_root;
102 	struct btrfs_delayed_ref_head *head;
103 	struct btrfs_delayed_ref_root *delayed_refs;
104 	BTRFS_PATH_AUTO_FREE(path);
105 	struct btrfs_key key;
106 	u64 num_refs;
107 	u64 extent_flags;
108 	u64 owner = 0;
109 	int ret;
110 
111 	/*
112 	 * If we don't have skinny metadata, don't bother doing anything
113 	 * different
114 	 */
115 	if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
116 		offset = fs_info->nodesize;
117 		metadata = 0;
118 	}
119 
120 	path = btrfs_alloc_path();
121 	if (!path)
122 		return -ENOMEM;
123 
124 search_again:
125 	key.objectid = bytenr;
126 	if (metadata)
127 		key.type = BTRFS_METADATA_ITEM_KEY;
128 	else
129 		key.type = BTRFS_EXTENT_ITEM_KEY;
130 	key.offset = offset;
131 
132 	extent_root = btrfs_extent_root(fs_info, bytenr);
133 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
134 	if (ret < 0)
135 		return ret;
136 
137 	if (ret > 0 && key.type == BTRFS_METADATA_ITEM_KEY) {
138 		if (path->slots[0]) {
139 			path->slots[0]--;
140 			btrfs_item_key_to_cpu(path->nodes[0], &key,
141 					      path->slots[0]);
142 			if (key.objectid == bytenr &&
143 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
144 			    key.offset == fs_info->nodesize)
145 				ret = 0;
146 		}
147 	}
148 
149 	if (ret == 0) {
150 		struct extent_buffer *leaf = path->nodes[0];
151 		struct btrfs_extent_item *ei;
152 		const u32 item_size = btrfs_item_size(leaf, path->slots[0]);
153 
154 		if (unlikely(item_size < sizeof(*ei))) {
155 			ret = -EUCLEAN;
156 			btrfs_err(fs_info,
157 			"unexpected extent item size, has %u expect >= %zu",
158 				  item_size, sizeof(*ei));
159 			btrfs_abort_transaction(trans, ret);
160 			return ret;
161 		}
162 
163 		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
164 		num_refs = btrfs_extent_refs(leaf, ei);
165 		if (unlikely(num_refs == 0)) {
166 			ret = -EUCLEAN;
167 			btrfs_err(fs_info,
168 		"unexpected zero reference count for extent item " BTRFS_KEY_FMT,
169 				  BTRFS_KEY_FMT_VALUE(&key));
170 			btrfs_abort_transaction(trans, ret);
171 			return ret;
172 		}
173 		extent_flags = btrfs_extent_flags(leaf, ei);
174 		owner = btrfs_get_extent_owner_root(fs_info, leaf, path->slots[0]);
175 	} else {
176 		num_refs = 0;
177 		extent_flags = 0;
178 		ret = 0;
179 	}
180 
181 	delayed_refs = &trans->transaction->delayed_refs;
182 	spin_lock(&delayed_refs->lock);
183 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
184 	if (head) {
185 		if (!mutex_trylock(&head->mutex)) {
186 			refcount_inc(&head->refs);
187 			spin_unlock(&delayed_refs->lock);
188 
189 			btrfs_release_path(path);
190 
191 			/*
192 			 * Mutex was contended, block until it's released and try
193 			 * again
194 			 */
195 			mutex_lock(&head->mutex);
196 			mutex_unlock(&head->mutex);
197 			btrfs_put_delayed_ref_head(head);
198 			goto search_again;
199 		}
200 		spin_lock(&head->lock);
201 		if (head->extent_op && head->extent_op->update_flags)
202 			extent_flags |= head->extent_op->flags_to_set;
203 
204 		num_refs += head->ref_mod;
205 		spin_unlock(&head->lock);
206 		mutex_unlock(&head->mutex);
207 	}
208 	spin_unlock(&delayed_refs->lock);
209 
210 	WARN_ON(num_refs == 0);
211 	if (refs)
212 		*refs = num_refs;
213 	if (flags)
214 		*flags = extent_flags;
215 	if (owning_root)
216 		*owning_root = owner;
217 
218 	return ret;
219 }
220 
221 /*
222  * Back reference rules.  Back refs have three main goals:
223  *
224  * 1) differentiate between all holders of references to an extent so that
225  *    when a reference is dropped we can make sure it was a valid reference
226  *    before freeing the extent.
227  *
228  * 2) Provide enough information to quickly find the holders of an extent
229  *    if we notice a given block is corrupted or bad.
230  *
231  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
232  *    maintenance.  This is actually the same as #2, but with a slightly
233  *    different use case.
234  *
235  * There are two kinds of back refs. The implicit back refs is optimized
236  * for pointers in non-shared tree blocks. For a given pointer in a block,
237  * back refs of this kind provide information about the block's owner tree
238  * and the pointer's key. These information allow us to find the block by
239  * b-tree searching. The full back refs is for pointers in tree blocks not
240  * referenced by their owner trees. The location of tree block is recorded
241  * in the back refs. Actually the full back refs is generic, and can be
242  * used in all cases the implicit back refs is used. The major shortcoming
243  * of the full back refs is its overhead. Every time a tree block gets
244  * COWed, we have to update back refs entry for all pointers in it.
245  *
246  * For a newly allocated tree block, we use implicit back refs for
247  * pointers in it. This means most tree related operations only involve
248  * implicit back refs. For a tree block created in old transaction, the
249  * only way to drop a reference to it is COW it. So we can detect the
250  * event that tree block loses its owner tree's reference and do the
251  * back refs conversion.
252  *
253  * When a tree block is COWed through a tree, there are four cases:
254  *
255  * The reference count of the block is one and the tree is the block's
256  * owner tree. Nothing to do in this case.
257  *
258  * The reference count of the block is one and the tree is not the
259  * block's owner tree. In this case, full back refs is used for pointers
260  * in the block. Remove these full back refs, add implicit back refs for
261  * every pointers in the new block.
262  *
263  * The reference count of the block is greater than one and the tree is
264  * the block's owner tree. In this case, implicit back refs is used for
265  * pointers in the block. Add full back refs for every pointers in the
266  * block, increase lower level extents' reference counts. The original
267  * implicit back refs are entailed to the new block.
268  *
269  * The reference count of the block is greater than one and the tree is
270  * not the block's owner tree. Add implicit back refs for every pointer in
271  * the new block, increase lower level extents' reference count.
272  *
273  * Back Reference Key composing:
274  *
275  * The key objectid corresponds to the first byte in the extent,
276  * The key type is used to differentiate between types of back refs.
277  * There are different meanings of the key offset for different types
278  * of back refs.
279  *
280  * File extents can be referenced by:
281  *
282  * - multiple snapshots, subvolumes, or different generations in one subvol
283  * - different files inside a single subvolume
284  * - different offsets inside a file (bookend extents in file.c)
285  *
286  * The extent ref structure for the implicit back refs has fields for:
287  *
288  * - Objectid of the subvolume root
289  * - objectid of the file holding the reference
290  * - original offset in the file
291  * - how many bookend extents
292  *
293  * The key offset for the implicit back refs is hash of the first
294  * three fields.
295  *
296  * The extent ref structure for the full back refs has field for:
297  *
298  * - number of pointers in the tree leaf
299  *
300  * The key offset for the implicit back refs is the first byte of
301  * the tree leaf
302  *
303  * When a file extent is allocated, The implicit back refs is used.
304  * the fields are filled in:
305  *
306  *     (root_key.objectid, inode objectid, offset in file, 1)
307  *
308  * When a file extent is removed file truncation, we find the
309  * corresponding implicit back refs and check the following fields:
310  *
311  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
312  *
313  * Btree extents can be referenced by:
314  *
315  * - Different subvolumes
316  *
317  * Both the implicit back refs and the full back refs for tree blocks
318  * only consist of key. The key offset for the implicit back refs is
319  * objectid of block's owner tree. The key offset for the full back refs
320  * is the first byte of parent block.
321  *
322  * When implicit back refs is used, information about the lowest key and
323  * level of the tree block are required. These information are stored in
324  * tree block info structure.
325  */
326 
327 /*
328  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
329  * is_data == BTRFS_REF_TYPE_DATA, data type is required,
330  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
331  */
332 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
333 				     const struct btrfs_extent_inline_ref *iref,
334 				     enum btrfs_inline_ref_type is_data)
335 {
336 	struct btrfs_fs_info *fs_info = eb->fs_info;
337 	int type = btrfs_extent_inline_ref_type(eb, iref);
338 	u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
339 
340 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
341 		ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
342 		return type;
343 	}
344 
345 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
346 	    type == BTRFS_SHARED_BLOCK_REF_KEY ||
347 	    type == BTRFS_SHARED_DATA_REF_KEY ||
348 	    type == BTRFS_EXTENT_DATA_REF_KEY) {
349 		if (is_data == BTRFS_REF_TYPE_BLOCK) {
350 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
351 				return type;
352 			if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
353 				ASSERT(fs_info);
354 				/*
355 				 * Every shared one has parent tree block,
356 				 * which must be aligned to sector size.
357 				 */
358 				if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
359 					return type;
360 			}
361 		} else if (is_data == BTRFS_REF_TYPE_DATA) {
362 			if (type == BTRFS_EXTENT_DATA_REF_KEY)
363 				return type;
364 			if (type == BTRFS_SHARED_DATA_REF_KEY) {
365 				ASSERT(fs_info);
366 				/*
367 				 * Every shared one has parent tree block,
368 				 * which must be aligned to sector size.
369 				 */
370 				if (offset &&
371 				    IS_ALIGNED(offset, fs_info->sectorsize))
372 					return type;
373 			}
374 		} else {
375 			ASSERT(is_data == BTRFS_REF_TYPE_ANY);
376 			return type;
377 		}
378 	}
379 
380 	WARN_ON(1);
381 	btrfs_print_leaf(eb);
382 	btrfs_err(fs_info,
383 		  "eb %llu iref 0x%lx invalid extent inline ref type %d",
384 		  eb->start, (unsigned long)iref, type);
385 
386 	return BTRFS_REF_TYPE_INVALID;
387 }
388 
389 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
390 {
391 	u32 high_crc = ~(u32)0;
392 	u32 low_crc = ~(u32)0;
393 	__le64 lenum;
394 
395 	lenum = cpu_to_le64(root_objectid);
396 	high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
397 	lenum = cpu_to_le64(owner);
398 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
399 	lenum = cpu_to_le64(offset);
400 	low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
401 
402 	return ((u64)high_crc << 31) ^ (u64)low_crc;
403 }
404 
405 static u64 hash_extent_data_ref_item(const struct extent_buffer *leaf,
406 				     const struct btrfs_extent_data_ref *ref)
407 {
408 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
409 				    btrfs_extent_data_ref_objectid(leaf, ref),
410 				    btrfs_extent_data_ref_offset(leaf, ref));
411 }
412 
413 static bool match_extent_data_ref(const struct extent_buffer *leaf,
414 				  const struct btrfs_extent_data_ref *ref,
415 				  u64 root_objectid, u64 owner, u64 offset)
416 {
417 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
418 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
419 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
420 		return false;
421 	return true;
422 }
423 
424 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
425 					   struct btrfs_path *path,
426 					   u64 bytenr, u64 parent,
427 					   u64 root_objectid,
428 					   u64 owner, u64 offset)
429 {
430 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
431 	struct btrfs_key key;
432 	struct btrfs_extent_data_ref *ref;
433 	struct extent_buffer *leaf;
434 	u32 nritems;
435 	int recow;
436 	int ret;
437 
438 	key.objectid = bytenr;
439 	if (parent) {
440 		key.type = BTRFS_SHARED_DATA_REF_KEY;
441 		key.offset = parent;
442 	} else {
443 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
444 		key.offset = hash_extent_data_ref(root_objectid,
445 						  owner, offset);
446 	}
447 again:
448 	recow = 0;
449 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
450 	if (ret < 0)
451 		return ret;
452 
453 	if (parent) {
454 		if (ret)
455 			return -ENOENT;
456 		return 0;
457 	}
458 
459 	ret = -ENOENT;
460 	leaf = path->nodes[0];
461 	nritems = btrfs_header_nritems(leaf);
462 	while (1) {
463 		if (path->slots[0] >= nritems) {
464 			ret = btrfs_next_leaf(root, path);
465 			if (ret) {
466 				if (ret > 0)
467 					return -ENOENT;
468 				return ret;
469 			}
470 
471 			leaf = path->nodes[0];
472 			nritems = btrfs_header_nritems(leaf);
473 			recow = 1;
474 		}
475 
476 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
477 		if (key.objectid != bytenr ||
478 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
479 			goto fail;
480 
481 		ref = btrfs_item_ptr(leaf, path->slots[0],
482 				     struct btrfs_extent_data_ref);
483 
484 		if (match_extent_data_ref(leaf, ref, root_objectid,
485 					  owner, offset)) {
486 			if (recow) {
487 				btrfs_release_path(path);
488 				goto again;
489 			}
490 			ret = 0;
491 			break;
492 		}
493 		path->slots[0]++;
494 	}
495 fail:
496 	return ret;
497 }
498 
499 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
500 					   struct btrfs_path *path,
501 					   const struct btrfs_delayed_ref_node *node,
502 					   u64 bytenr)
503 {
504 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
505 	struct btrfs_key key;
506 	struct extent_buffer *leaf;
507 	u64 owner = btrfs_delayed_ref_owner(node);
508 	u64 offset = btrfs_delayed_ref_offset(node);
509 	u32 size;
510 	u32 num_refs;
511 	int ret;
512 
513 	key.objectid = bytenr;
514 	if (node->parent) {
515 		key.type = BTRFS_SHARED_DATA_REF_KEY;
516 		key.offset = node->parent;
517 		size = sizeof(struct btrfs_shared_data_ref);
518 	} else {
519 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
520 		key.offset = hash_extent_data_ref(node->ref_root, owner, offset);
521 		size = sizeof(struct btrfs_extent_data_ref);
522 	}
523 
524 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
525 	if (ret && ret != -EEXIST)
526 		goto fail;
527 
528 	leaf = path->nodes[0];
529 	if (node->parent) {
530 		struct btrfs_shared_data_ref *ref;
531 		ref = btrfs_item_ptr(leaf, path->slots[0],
532 				     struct btrfs_shared_data_ref);
533 		if (ret == 0) {
534 			btrfs_set_shared_data_ref_count(leaf, ref, node->ref_mod);
535 		} else {
536 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
537 			num_refs += node->ref_mod;
538 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
539 		}
540 	} else {
541 		struct btrfs_extent_data_ref *ref;
542 		while (ret == -EEXIST) {
543 			ref = btrfs_item_ptr(leaf, path->slots[0],
544 					     struct btrfs_extent_data_ref);
545 			if (match_extent_data_ref(leaf, ref, node->ref_root,
546 						  owner, offset))
547 				break;
548 			btrfs_release_path(path);
549 			key.offset++;
550 			ret = btrfs_insert_empty_item(trans, root, path, &key,
551 						      size);
552 			if (ret && ret != -EEXIST)
553 				goto fail;
554 
555 			leaf = path->nodes[0];
556 		}
557 		ref = btrfs_item_ptr(leaf, path->slots[0],
558 				     struct btrfs_extent_data_ref);
559 		if (ret == 0) {
560 			btrfs_set_extent_data_ref_root(leaf, ref, node->ref_root);
561 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
562 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
563 			btrfs_set_extent_data_ref_count(leaf, ref, node->ref_mod);
564 		} else {
565 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
566 			num_refs += node->ref_mod;
567 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
568 		}
569 	}
570 	ret = 0;
571 fail:
572 	btrfs_release_path(path);
573 	return ret;
574 }
575 
576 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
577 					   struct btrfs_root *root,
578 					   struct btrfs_path *path,
579 					   int refs_to_drop)
580 {
581 	struct btrfs_key key;
582 	struct btrfs_extent_data_ref *ref1 = NULL;
583 	struct btrfs_shared_data_ref *ref2 = NULL;
584 	struct extent_buffer *leaf;
585 	u32 num_refs = 0;
586 	int ret = 0;
587 
588 	leaf = path->nodes[0];
589 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
590 
591 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
592 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
593 				      struct btrfs_extent_data_ref);
594 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
595 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
596 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
597 				      struct btrfs_shared_data_ref);
598 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
599 	} else {
600 		btrfs_err(trans->fs_info,
601 			  "unrecognized backref key " BTRFS_KEY_FMT,
602 			  BTRFS_KEY_FMT_VALUE(&key));
603 		btrfs_abort_transaction(trans, -EUCLEAN);
604 		return -EUCLEAN;
605 	}
606 
607 	BUG_ON(num_refs < refs_to_drop);
608 	num_refs -= refs_to_drop;
609 
610 	if (num_refs == 0) {
611 		ret = btrfs_del_item(trans, root, path);
612 	} else {
613 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
614 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
615 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
616 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
617 	}
618 	return ret;
619 }
620 
621 static noinline u32 extent_data_ref_count(const struct btrfs_path *path,
622 					  const struct btrfs_extent_inline_ref *iref)
623 {
624 	struct btrfs_key key;
625 	struct extent_buffer *leaf;
626 	const struct btrfs_extent_data_ref *ref1;
627 	const struct btrfs_shared_data_ref *ref2;
628 	u32 num_refs = 0;
629 	int type;
630 
631 	leaf = path->nodes[0];
632 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
633 
634 	if (iref) {
635 		/*
636 		 * If type is invalid, we should have bailed out earlier than
637 		 * this call.
638 		 */
639 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
640 		ASSERT(type != BTRFS_REF_TYPE_INVALID);
641 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
642 			ref1 = (const struct btrfs_extent_data_ref *)(&iref->offset);
643 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
644 		} else {
645 			ref2 = (const struct btrfs_shared_data_ref *)(iref + 1);
646 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
647 		}
648 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
649 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
650 				      struct btrfs_extent_data_ref);
651 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
652 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
653 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
654 				      struct btrfs_shared_data_ref);
655 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
656 	} else {
657 		WARN_ON(1);
658 	}
659 	return num_refs;
660 }
661 
662 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
663 					  struct btrfs_path *path,
664 					  u64 bytenr, u64 parent,
665 					  u64 root_objectid)
666 {
667 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
668 	struct btrfs_key key;
669 	int ret;
670 
671 	key.objectid = bytenr;
672 	if (parent) {
673 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
674 		key.offset = parent;
675 	} else {
676 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
677 		key.offset = root_objectid;
678 	}
679 
680 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
681 	if (ret > 0)
682 		ret = -ENOENT;
683 	return ret;
684 }
685 
686 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
687 					  struct btrfs_path *path,
688 					  const struct btrfs_delayed_ref_node *node,
689 					  u64 bytenr)
690 {
691 	struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
692 	struct btrfs_key key;
693 	int ret;
694 
695 	key.objectid = bytenr;
696 	if (node->parent) {
697 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
698 		key.offset = node->parent;
699 	} else {
700 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
701 		key.offset = node->ref_root;
702 	}
703 
704 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
705 	btrfs_release_path(path);
706 	return ret;
707 }
708 
709 static inline int extent_ref_type(u64 parent, u64 owner)
710 {
711 	int type;
712 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
713 		if (parent > 0)
714 			type = BTRFS_SHARED_BLOCK_REF_KEY;
715 		else
716 			type = BTRFS_TREE_BLOCK_REF_KEY;
717 	} else {
718 		if (parent > 0)
719 			type = BTRFS_SHARED_DATA_REF_KEY;
720 		else
721 			type = BTRFS_EXTENT_DATA_REF_KEY;
722 	}
723 	return type;
724 }
725 
726 static int find_next_key(const struct btrfs_path *path, int level,
727 			 struct btrfs_key *key)
728 
729 {
730 	for (; level < BTRFS_MAX_LEVEL; level++) {
731 		if (!path->nodes[level])
732 			break;
733 		if (path->slots[level] + 1 >=
734 		    btrfs_header_nritems(path->nodes[level]))
735 			continue;
736 		if (level == 0)
737 			btrfs_item_key_to_cpu(path->nodes[level], key,
738 					      path->slots[level] + 1);
739 		else
740 			btrfs_node_key_to_cpu(path->nodes[level], key,
741 					      path->slots[level] + 1);
742 		return 0;
743 	}
744 	return 1;
745 }
746 
747 /*
748  * look for inline back ref. if back ref is found, *ref_ret is set
749  * to the address of inline back ref, and 0 is returned.
750  *
751  * if back ref isn't found, *ref_ret is set to the address where it
752  * should be inserted, and -ENOENT is returned.
753  *
754  * if insert is true and there are too many inline back refs, the path
755  * points to the extent item, and -EAGAIN is returned.
756  *
757  * NOTE: inline back refs are ordered in the same way that back ref
758  *	 items in the tree are ordered.
759  */
760 static noinline_for_stack
761 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
762 				 struct btrfs_path *path,
763 				 struct btrfs_extent_inline_ref **ref_ret,
764 				 u64 bytenr, u64 num_bytes,
765 				 u64 parent, u64 root_objectid,
766 				 u64 owner, u64 offset, int insert)
767 {
768 	struct btrfs_fs_info *fs_info = trans->fs_info;
769 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
770 	struct btrfs_key key;
771 	struct extent_buffer *leaf;
772 	struct btrfs_extent_item *ei;
773 	struct btrfs_extent_inline_ref *iref;
774 	u64 flags;
775 	u64 item_size;
776 	unsigned long ptr;
777 	unsigned long end;
778 	int extra_size;
779 	int type;
780 	int want;
781 	int ret;
782 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
783 	int needed;
784 
785 	key.objectid = bytenr;
786 	key.type = BTRFS_EXTENT_ITEM_KEY;
787 	key.offset = num_bytes;
788 
789 	want = extent_ref_type(parent, owner);
790 	if (insert) {
791 		extra_size = btrfs_extent_inline_ref_size(want);
792 		path->search_for_extension = true;
793 	} else
794 		extra_size = -1;
795 
796 	/*
797 	 * Owner is our level, so we can just add one to get the level for the
798 	 * block we are interested in.
799 	 */
800 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
801 		key.type = BTRFS_METADATA_ITEM_KEY;
802 		key.offset = owner;
803 	}
804 
805 again:
806 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
807 	if (ret < 0)
808 		goto out;
809 
810 	/*
811 	 * We may be a newly converted file system which still has the old fat
812 	 * extent entries for metadata, so try and see if we have one of those.
813 	 */
814 	if (ret > 0 && skinny_metadata) {
815 		skinny_metadata = false;
816 		if (path->slots[0]) {
817 			path->slots[0]--;
818 			btrfs_item_key_to_cpu(path->nodes[0], &key,
819 					      path->slots[0]);
820 			if (key.objectid == bytenr &&
821 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
822 			    key.offset == num_bytes)
823 				ret = 0;
824 		}
825 		if (ret) {
826 			key.objectid = bytenr;
827 			key.type = BTRFS_EXTENT_ITEM_KEY;
828 			key.offset = num_bytes;
829 			btrfs_release_path(path);
830 			goto again;
831 		}
832 	}
833 
834 	if (ret && !insert) {
835 		ret = -ENOENT;
836 		goto out;
837 	} else if (WARN_ON(ret)) {
838 		btrfs_print_leaf(path->nodes[0]);
839 		btrfs_err(fs_info,
840 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
841 			  bytenr, num_bytes, parent, root_objectid, owner,
842 			  offset);
843 		ret = -EUCLEAN;
844 		goto out;
845 	}
846 
847 	leaf = path->nodes[0];
848 	item_size = btrfs_item_size(leaf, path->slots[0]);
849 	if (unlikely(item_size < sizeof(*ei))) {
850 		ret = -EUCLEAN;
851 		btrfs_err(fs_info,
852 			  "unexpected extent item size, has %llu expect >= %zu",
853 			  item_size, sizeof(*ei));
854 		btrfs_abort_transaction(trans, ret);
855 		goto out;
856 	}
857 
858 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
859 	flags = btrfs_extent_flags(leaf, ei);
860 
861 	ptr = (unsigned long)(ei + 1);
862 	end = (unsigned long)ei + item_size;
863 
864 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
865 		ptr += sizeof(struct btrfs_tree_block_info);
866 		BUG_ON(ptr > end);
867 	}
868 
869 	if (owner >= BTRFS_FIRST_FREE_OBJECTID)
870 		needed = BTRFS_REF_TYPE_DATA;
871 	else
872 		needed = BTRFS_REF_TYPE_BLOCK;
873 
874 	ret = -ENOENT;
875 	while (ptr < end) {
876 		iref = (struct btrfs_extent_inline_ref *)ptr;
877 		type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
878 		if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
879 			ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
880 			ptr += btrfs_extent_inline_ref_size(type);
881 			continue;
882 		}
883 		if (unlikely(type == BTRFS_REF_TYPE_INVALID)) {
884 			ret = -EUCLEAN;
885 			goto out;
886 		}
887 
888 		if (want < type)
889 			break;
890 		if (want > type) {
891 			ptr += btrfs_extent_inline_ref_size(type);
892 			continue;
893 		}
894 
895 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
896 			struct btrfs_extent_data_ref *dref;
897 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
898 			if (match_extent_data_ref(leaf, dref, root_objectid,
899 						  owner, offset)) {
900 				ret = 0;
901 				break;
902 			}
903 			if (hash_extent_data_ref_item(leaf, dref) <
904 			    hash_extent_data_ref(root_objectid, owner, offset))
905 				break;
906 		} else {
907 			u64 ref_offset;
908 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
909 			if (parent > 0) {
910 				if (parent == ref_offset) {
911 					ret = 0;
912 					break;
913 				}
914 				if (ref_offset < parent)
915 					break;
916 			} else {
917 				if (root_objectid == ref_offset) {
918 					ret = 0;
919 					break;
920 				}
921 				if (ref_offset < root_objectid)
922 					break;
923 			}
924 		}
925 		ptr += btrfs_extent_inline_ref_size(type);
926 	}
927 
928 	if (unlikely(ptr > end)) {
929 		ret = -EUCLEAN;
930 		btrfs_print_leaf(path->nodes[0]);
931 		btrfs_crit(fs_info,
932 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
933 			   path->slots[0], root_objectid, owner, offset, parent);
934 		goto out;
935 	}
936 
937 	if (ret == -ENOENT && insert) {
938 		if (item_size + extra_size >=
939 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
940 			ret = -EAGAIN;
941 			goto out;
942 		}
943 
944 		if (path->slots[0] + 1 < btrfs_header_nritems(path->nodes[0])) {
945 			struct btrfs_key tmp_key;
946 
947 			btrfs_item_key_to_cpu(path->nodes[0], &tmp_key, path->slots[0] + 1);
948 			if (tmp_key.objectid == bytenr &&
949 			    tmp_key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
950 				ret = -EAGAIN;
951 				goto out;
952 			}
953 			goto out_no_entry;
954 		}
955 
956 		if (!path->keep_locks) {
957 			btrfs_release_path(path);
958 			path->keep_locks = true;
959 			goto again;
960 		}
961 
962 		/*
963 		 * To add new inline back ref, we have to make sure
964 		 * there is no corresponding back ref item.
965 		 * For simplicity, we just do not add new inline back
966 		 * ref if there is any kind of item for this block
967 		 */
968 		if (find_next_key(path, 0, &key) == 0 &&
969 		    key.objectid == bytenr &&
970 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
971 			ret = -EAGAIN;
972 			goto out;
973 		}
974 	}
975 out_no_entry:
976 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
977 out:
978 	if (path->keep_locks) {
979 		path->keep_locks = false;
980 		btrfs_unlock_up_safe(path, 1);
981 	}
982 	if (insert)
983 		path->search_for_extension = false;
984 	return ret;
985 }
986 
987 /*
988  * helper to add new inline back ref
989  */
990 static noinline_for_stack
991 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
992 				 struct btrfs_path *path,
993 				 struct btrfs_extent_inline_ref *iref,
994 				 u64 parent, u64 root_objectid,
995 				 u64 owner, u64 offset, int refs_to_add,
996 				 struct btrfs_delayed_extent_op *extent_op)
997 {
998 	struct extent_buffer *leaf;
999 	struct btrfs_extent_item *ei;
1000 	unsigned long ptr;
1001 	unsigned long end;
1002 	unsigned long item_offset;
1003 	u64 refs;
1004 	int size;
1005 	int type;
1006 
1007 	leaf = path->nodes[0];
1008 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1009 	item_offset = (unsigned long)iref - (unsigned long)ei;
1010 
1011 	type = extent_ref_type(parent, owner);
1012 	size = btrfs_extent_inline_ref_size(type);
1013 
1014 	btrfs_extend_item(trans, path, size);
1015 
1016 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1017 	refs = btrfs_extent_refs(leaf, ei);
1018 	refs += refs_to_add;
1019 	btrfs_set_extent_refs(leaf, ei, refs);
1020 	if (extent_op)
1021 		__run_delayed_extent_op(extent_op, leaf, ei);
1022 
1023 	ptr = (unsigned long)ei + item_offset;
1024 	end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1025 	if (ptr < end - size)
1026 		memmove_extent_buffer(leaf, ptr + size, ptr,
1027 				      end - size - ptr);
1028 
1029 	iref = (struct btrfs_extent_inline_ref *)ptr;
1030 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1031 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1032 		struct btrfs_extent_data_ref *dref;
1033 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1034 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1035 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1036 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1037 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1038 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1039 		struct btrfs_shared_data_ref *sref;
1040 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1041 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1042 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1043 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1044 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1045 	} else {
1046 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1047 	}
1048 }
1049 
1050 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1051 				 struct btrfs_path *path,
1052 				 struct btrfs_extent_inline_ref **ref_ret,
1053 				 u64 bytenr, u64 num_bytes, u64 parent,
1054 				 u64 root_objectid, u64 owner, u64 offset)
1055 {
1056 	int ret;
1057 
1058 	ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1059 					   num_bytes, parent, root_objectid,
1060 					   owner, offset, 0);
1061 	if (ret != -ENOENT)
1062 		return ret;
1063 
1064 	btrfs_release_path(path);
1065 	*ref_ret = NULL;
1066 
1067 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1068 		ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1069 					    root_objectid);
1070 	} else {
1071 		ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1072 					     root_objectid, owner, offset);
1073 	}
1074 	return ret;
1075 }
1076 
1077 /*
1078  * helper to update/remove inline back ref
1079  */
1080 static noinline_for_stack int update_inline_extent_backref(
1081 				  struct btrfs_trans_handle *trans,
1082 				  struct btrfs_path *path,
1083 				  struct btrfs_extent_inline_ref *iref,
1084 				  int refs_to_mod,
1085 				  struct btrfs_delayed_extent_op *extent_op)
1086 {
1087 	struct extent_buffer *leaf = path->nodes[0];
1088 	struct btrfs_fs_info *fs_info = leaf->fs_info;
1089 	struct btrfs_extent_item *ei;
1090 	struct btrfs_extent_data_ref *dref = NULL;
1091 	struct btrfs_shared_data_ref *sref = NULL;
1092 	unsigned long ptr;
1093 	unsigned long end;
1094 	u32 item_size;
1095 	int size;
1096 	int type;
1097 	u64 refs;
1098 
1099 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1100 	refs = btrfs_extent_refs(leaf, ei);
1101 	if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1102 		struct btrfs_key key;
1103 		u32 extent_size;
1104 
1105 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1106 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1107 			extent_size = fs_info->nodesize;
1108 		else
1109 			extent_size = key.offset;
1110 		btrfs_print_leaf(leaf);
1111 		btrfs_err(fs_info,
1112 	"invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1113 			  key.objectid, extent_size, refs_to_mod, refs);
1114 		return -EUCLEAN;
1115 	}
1116 	refs += refs_to_mod;
1117 	btrfs_set_extent_refs(leaf, ei, refs);
1118 	if (extent_op)
1119 		__run_delayed_extent_op(extent_op, leaf, ei);
1120 
1121 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1122 	/*
1123 	 * Function btrfs_get_extent_inline_ref_type() has already printed
1124 	 * error messages.
1125 	 */
1126 	if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1127 		return -EUCLEAN;
1128 
1129 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1130 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1131 		refs = btrfs_extent_data_ref_count(leaf, dref);
1132 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1133 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1134 		refs = btrfs_shared_data_ref_count(leaf, sref);
1135 	} else {
1136 		refs = 1;
1137 		/*
1138 		 * For tree blocks we can only drop one ref for it, and tree
1139 		 * blocks should not have refs > 1.
1140 		 *
1141 		 * Furthermore if we're inserting a new inline backref, we
1142 		 * won't reach this path either. That would be
1143 		 * setup_inline_extent_backref().
1144 		 */
1145 		if (unlikely(refs_to_mod != -1)) {
1146 			struct btrfs_key key;
1147 
1148 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1149 
1150 			btrfs_print_leaf(leaf);
1151 			btrfs_err(fs_info,
1152 			"invalid refs_to_mod for tree block %llu, has %d expect -1",
1153 				  key.objectid, refs_to_mod);
1154 			return -EUCLEAN;
1155 		}
1156 	}
1157 
1158 	if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1159 		struct btrfs_key key;
1160 		u32 extent_size;
1161 
1162 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1163 		if (key.type == BTRFS_METADATA_ITEM_KEY)
1164 			extent_size = fs_info->nodesize;
1165 		else
1166 			extent_size = key.offset;
1167 		btrfs_print_leaf(leaf);
1168 		btrfs_err(fs_info,
1169 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1170 			  (unsigned long)iref, key.objectid, extent_size,
1171 			  refs_to_mod, refs);
1172 		return -EUCLEAN;
1173 	}
1174 	refs += refs_to_mod;
1175 
1176 	if (refs > 0) {
1177 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1178 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1179 		else
1180 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1181 	} else {
1182 		size =  btrfs_extent_inline_ref_size(type);
1183 		item_size = btrfs_item_size(leaf, path->slots[0]);
1184 		ptr = (unsigned long)iref;
1185 		end = (unsigned long)ei + item_size;
1186 		if (ptr + size < end)
1187 			memmove_extent_buffer(leaf, ptr, ptr + size,
1188 					      end - ptr - size);
1189 		item_size -= size;
1190 		btrfs_truncate_item(trans, path, item_size, 1);
1191 	}
1192 	return 0;
1193 }
1194 
1195 static noinline_for_stack
1196 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1197 				 struct btrfs_path *path,
1198 				 u64 bytenr, u64 num_bytes, u64 parent,
1199 				 u64 root_objectid, u64 owner,
1200 				 u64 offset, int refs_to_add,
1201 				 struct btrfs_delayed_extent_op *extent_op)
1202 {
1203 	struct btrfs_extent_inline_ref *iref;
1204 	int ret;
1205 
1206 	ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1207 					   num_bytes, parent, root_objectid,
1208 					   owner, offset, 1);
1209 	if (ret == 0) {
1210 		/*
1211 		 * We're adding refs to a tree block we already own, this
1212 		 * should not happen at all.
1213 		 */
1214 		if (unlikely(owner < BTRFS_FIRST_FREE_OBJECTID)) {
1215 			btrfs_print_leaf(path->nodes[0]);
1216 			btrfs_crit(trans->fs_info,
1217 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1218 				   bytenr, num_bytes, root_objectid, path->slots[0]);
1219 			return -EUCLEAN;
1220 		}
1221 		ret = update_inline_extent_backref(trans, path, iref,
1222 						   refs_to_add, extent_op);
1223 	} else if (ret == -ENOENT) {
1224 		setup_inline_extent_backref(trans, path, iref, parent,
1225 					    root_objectid, owner, offset,
1226 					    refs_to_add, extent_op);
1227 		ret = 0;
1228 	}
1229 	return ret;
1230 }
1231 
1232 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1233 				 struct btrfs_root *root,
1234 				 struct btrfs_path *path,
1235 				 struct btrfs_extent_inline_ref *iref,
1236 				 int refs_to_drop, int is_data)
1237 {
1238 	int ret = 0;
1239 
1240 	BUG_ON(!is_data && refs_to_drop != 1);
1241 	if (iref)
1242 		ret = update_inline_extent_backref(trans, path, iref,
1243 						   -refs_to_drop, NULL);
1244 	else if (is_data)
1245 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1246 	else
1247 		ret = btrfs_del_item(trans, root, path);
1248 	return ret;
1249 }
1250 
1251 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1252 			       u64 *discarded_bytes)
1253 {
1254 	int j, ret = 0;
1255 	u64 bytes_left, end;
1256 	u64 aligned_start = ALIGN(start, SECTOR_SIZE);
1257 
1258 	/* Adjust the range to be aligned to 512B sectors if necessary. */
1259 	if (start != aligned_start) {
1260 		len -= aligned_start - start;
1261 		len = round_down(len, SECTOR_SIZE);
1262 		start = aligned_start;
1263 	}
1264 
1265 	*discarded_bytes = 0;
1266 
1267 	if (!len)
1268 		return 0;
1269 
1270 	end = start + len;
1271 	bytes_left = len;
1272 
1273 	/* Skip any superblocks on this device. */
1274 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1275 		u64 sb_start = btrfs_sb_offset(j);
1276 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1277 		u64 size = sb_start - start;
1278 
1279 		if (!in_range(sb_start, start, bytes_left) &&
1280 		    !in_range(sb_end, start, bytes_left) &&
1281 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1282 			continue;
1283 
1284 		/*
1285 		 * Superblock spans beginning of range.  Adjust start and
1286 		 * try again.
1287 		 */
1288 		if (sb_start <= start) {
1289 			start += sb_end - start;
1290 			if (start > end) {
1291 				bytes_left = 0;
1292 				break;
1293 			}
1294 			bytes_left = end - start;
1295 			continue;
1296 		}
1297 
1298 		if (size) {
1299 			ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1300 						   size >> SECTOR_SHIFT,
1301 						   GFP_NOFS);
1302 			if (!ret)
1303 				*discarded_bytes += size;
1304 			else if (ret != -EOPNOTSUPP)
1305 				return ret;
1306 		}
1307 
1308 		start = sb_end;
1309 		if (start > end) {
1310 			bytes_left = 0;
1311 			break;
1312 		}
1313 		bytes_left = end - start;
1314 	}
1315 
1316 	while (bytes_left) {
1317 		u64 bytes_to_discard = min(BTRFS_MAX_DISCARD_CHUNK_SIZE, bytes_left);
1318 
1319 		ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1320 					   bytes_to_discard >> SECTOR_SHIFT,
1321 					   GFP_NOFS);
1322 
1323 		if (ret) {
1324 			if (ret != -EOPNOTSUPP)
1325 				break;
1326 			continue;
1327 		}
1328 
1329 		start += bytes_to_discard;
1330 		bytes_left -= bytes_to_discard;
1331 		*discarded_bytes += bytes_to_discard;
1332 
1333 		if (btrfs_trim_interrupted()) {
1334 			ret = -ERESTARTSYS;
1335 			break;
1336 		}
1337 	}
1338 
1339 	return ret;
1340 }
1341 
1342 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1343 {
1344 	struct btrfs_device *dev = stripe->dev;
1345 	struct btrfs_fs_info *fs_info = dev->fs_info;
1346 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1347 	u64 phys = stripe->physical;
1348 	u64 len = stripe->length;
1349 	u64 discarded = 0;
1350 	int ret = 0;
1351 
1352 	/* Zone reset on a zoned filesystem */
1353 	if (btrfs_can_zone_reset(dev, phys, len)) {
1354 		u64 src_disc;
1355 
1356 		ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1357 		if (ret)
1358 			goto out;
1359 
1360 		if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1361 		    dev != dev_replace->srcdev)
1362 			goto out;
1363 
1364 		src_disc = discarded;
1365 
1366 		/* Send to replace target as well */
1367 		ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1368 					      &discarded);
1369 		discarded += src_disc;
1370 	} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1371 		ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1372 	} else {
1373 		ret = 0;
1374 		*bytes = 0;
1375 	}
1376 
1377 out:
1378 	*bytes = discarded;
1379 	return ret;
1380 }
1381 
1382 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1383 			 u64 num_bytes, u64 *actual_bytes)
1384 {
1385 	int ret = 0;
1386 	u64 discarded_bytes = 0;
1387 	u64 end = bytenr + num_bytes;
1388 	u64 cur = bytenr;
1389 
1390 	/*
1391 	 * Avoid races with device replace and make sure the devices in the
1392 	 * stripes don't go away while we are discarding.
1393 	 */
1394 	btrfs_bio_counter_inc_blocked(fs_info);
1395 	while (cur < end) {
1396 		struct btrfs_discard_stripe *stripes;
1397 		unsigned int num_stripes;
1398 		int i;
1399 
1400 		num_bytes = end - cur;
1401 		stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1402 		if (IS_ERR(stripes)) {
1403 			ret = PTR_ERR(stripes);
1404 			if (ret == -EOPNOTSUPP)
1405 				ret = 0;
1406 			break;
1407 		}
1408 
1409 		for (i = 0; i < num_stripes; i++) {
1410 			struct btrfs_discard_stripe *stripe = stripes + i;
1411 			u64 bytes;
1412 
1413 			if (!stripe->dev->bdev) {
1414 				ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1415 				continue;
1416 			}
1417 
1418 			if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1419 					&stripe->dev->dev_state))
1420 				continue;
1421 
1422 			ret = do_discard_extent(stripe, &bytes);
1423 			if (ret) {
1424 				/*
1425 				 * Keep going if discard is not supported by the
1426 				 * device.
1427 				 */
1428 				if (ret != -EOPNOTSUPP)
1429 					break;
1430 				ret = 0;
1431 			} else {
1432 				discarded_bytes += bytes;
1433 			}
1434 		}
1435 		kfree(stripes);
1436 		if (ret)
1437 			break;
1438 		cur += num_bytes;
1439 	}
1440 	btrfs_bio_counter_dec(fs_info);
1441 	if (actual_bytes)
1442 		*actual_bytes = discarded_bytes;
1443 	return ret;
1444 }
1445 
1446 /* Can return -ENOMEM */
1447 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1448 			 struct btrfs_ref *generic_ref)
1449 {
1450 	struct btrfs_fs_info *fs_info = trans->fs_info;
1451 	int ret;
1452 
1453 	ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1454 	       generic_ref->action);
1455 	BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1456 	       generic_ref->ref_root == BTRFS_TREE_LOG_OBJECTID);
1457 
1458 	if (generic_ref->type == BTRFS_REF_METADATA)
1459 		ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1460 	else
1461 		ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1462 
1463 	btrfs_ref_tree_mod(fs_info, generic_ref);
1464 
1465 	return ret;
1466 }
1467 
1468 /*
1469  * Insert backreference for a given extent.
1470  *
1471  * The counterpart is in __btrfs_free_extent(), with examples and more details
1472  * how it works.
1473  *
1474  * @trans:	    Handle of transaction
1475  *
1476  * @node:	    The delayed ref node used to get the bytenr/length for
1477  *		    extent whose references are incremented.
1478  *
1479  * @extent_op       Pointer to a structure, holding information necessary when
1480  *                  updating a tree block's flags
1481  *
1482  */
1483 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1484 				  const struct btrfs_delayed_ref_node *node,
1485 				  struct btrfs_delayed_extent_op *extent_op)
1486 {
1487 	BTRFS_PATH_AUTO_FREE(path);
1488 	struct extent_buffer *leaf;
1489 	struct btrfs_extent_item *item;
1490 	struct btrfs_key key;
1491 	u64 bytenr = node->bytenr;
1492 	u64 num_bytes = node->num_bytes;
1493 	u64 owner = btrfs_delayed_ref_owner(node);
1494 	u64 offset = btrfs_delayed_ref_offset(node);
1495 	u64 refs;
1496 	int refs_to_add = node->ref_mod;
1497 	int ret;
1498 
1499 	path = btrfs_alloc_path();
1500 	if (!path)
1501 		return -ENOMEM;
1502 
1503 	/* this will setup the path even if it fails to insert the back ref */
1504 	ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1505 					   node->parent, node->ref_root, owner,
1506 					   offset, refs_to_add, extent_op);
1507 	if ((ret < 0 && ret != -EAGAIN) || !ret)
1508 		return ret;
1509 
1510 	/*
1511 	 * Ok we had -EAGAIN which means we didn't have space to insert and
1512 	 * inline extent ref, so just update the reference count and add a
1513 	 * normal backref.
1514 	 */
1515 	leaf = path->nodes[0];
1516 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1517 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1518 	refs = btrfs_extent_refs(leaf, item);
1519 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1520 	if (extent_op)
1521 		__run_delayed_extent_op(extent_op, leaf, item);
1522 
1523 	btrfs_release_path(path);
1524 
1525 	/* now insert the actual backref */
1526 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1527 		ret = insert_tree_block_ref(trans, path, node, bytenr);
1528 		if (ret)
1529 			btrfs_abort_transaction(trans, ret);
1530 	} else {
1531 		ret = insert_extent_data_ref(trans, path, node, bytenr);
1532 		if (ret)
1533 			btrfs_abort_transaction(trans, ret);
1534 	}
1535 
1536 	return ret;
1537 }
1538 
1539 static void free_head_ref_squota_rsv(struct btrfs_fs_info *fs_info,
1540 				     const struct btrfs_delayed_ref_head *href)
1541 {
1542 	u64 root = href->owning_root;
1543 
1544 	/*
1545 	 * Don't check must_insert_reserved, as this is called from contexts
1546 	 * where it has already been unset.
1547 	 */
1548 	if (btrfs_qgroup_mode(fs_info) != BTRFS_QGROUP_MODE_SIMPLE ||
1549 	    !href->is_data || !btrfs_is_fstree(root))
1550 		return;
1551 
1552 	btrfs_qgroup_free_refroot(fs_info, root, href->reserved_bytes,
1553 				  BTRFS_QGROUP_RSV_DATA);
1554 }
1555 
1556 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1557 				struct btrfs_delayed_ref_head *href,
1558 				const struct btrfs_delayed_ref_node *node,
1559 				struct btrfs_delayed_extent_op *extent_op,
1560 				bool insert_reserved)
1561 {
1562 	int ret = 0;
1563 	u64 parent = 0;
1564 	u64 flags = 0;
1565 
1566 	trace_run_delayed_data_ref(trans->fs_info, node);
1567 
1568 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1569 		parent = node->parent;
1570 
1571 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1572 		struct btrfs_key key;
1573 		struct btrfs_squota_delta delta = {
1574 			.root = href->owning_root,
1575 			.num_bytes = node->num_bytes,
1576 			.is_data = true,
1577 			.is_inc	= true,
1578 			.generation = trans->transid,
1579 		};
1580 		u64 owner = btrfs_delayed_ref_owner(node);
1581 		u64 offset = btrfs_delayed_ref_offset(node);
1582 
1583 		if (extent_op)
1584 			flags |= extent_op->flags_to_set;
1585 
1586 		key.objectid = node->bytenr;
1587 		key.type = BTRFS_EXTENT_ITEM_KEY;
1588 		key.offset = node->num_bytes;
1589 
1590 		ret = alloc_reserved_file_extent(trans, parent, node->ref_root,
1591 						 flags, owner, offset, &key,
1592 						 node->ref_mod,
1593 						 href->owning_root);
1594 		free_head_ref_squota_rsv(trans->fs_info, href);
1595 		if (!ret)
1596 			ret = btrfs_record_squota_delta(trans->fs_info, &delta);
1597 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1598 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1599 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1600 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1601 	} else {
1602 		BUG();
1603 	}
1604 	return ret;
1605 }
1606 
1607 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1608 				    struct extent_buffer *leaf,
1609 				    struct btrfs_extent_item *ei)
1610 {
1611 	u64 flags = btrfs_extent_flags(leaf, ei);
1612 	if (extent_op->update_flags) {
1613 		flags |= extent_op->flags_to_set;
1614 		btrfs_set_extent_flags(leaf, ei, flags);
1615 	}
1616 
1617 	if (extent_op->update_key) {
1618 		struct btrfs_tree_block_info *bi;
1619 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1620 		bi = (struct btrfs_tree_block_info *)(ei + 1);
1621 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1622 	}
1623 }
1624 
1625 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1626 				 const struct btrfs_delayed_ref_head *head,
1627 				 struct btrfs_delayed_extent_op *extent_op)
1628 {
1629 	struct btrfs_fs_info *fs_info = trans->fs_info;
1630 	struct btrfs_root *root;
1631 	struct btrfs_key key;
1632 	BTRFS_PATH_AUTO_FREE(path);
1633 	struct btrfs_extent_item *ei;
1634 	struct extent_buffer *leaf;
1635 	u32 item_size;
1636 	int ret;
1637 	int metadata = 1;
1638 
1639 	if (TRANS_ABORTED(trans))
1640 		return 0;
1641 
1642 	if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1643 		metadata = 0;
1644 
1645 	path = btrfs_alloc_path();
1646 	if (!path)
1647 		return -ENOMEM;
1648 
1649 	key.objectid = head->bytenr;
1650 
1651 	if (metadata) {
1652 		key.type = BTRFS_METADATA_ITEM_KEY;
1653 		key.offset = head->level;
1654 	} else {
1655 		key.type = BTRFS_EXTENT_ITEM_KEY;
1656 		key.offset = head->num_bytes;
1657 	}
1658 
1659 	root = btrfs_extent_root(fs_info, key.objectid);
1660 again:
1661 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1662 	if (ret < 0) {
1663 		return ret;
1664 	} else if (ret > 0) {
1665 		if (metadata) {
1666 			if (path->slots[0] > 0) {
1667 				path->slots[0]--;
1668 				btrfs_item_key_to_cpu(path->nodes[0], &key,
1669 						      path->slots[0]);
1670 				if (key.objectid == head->bytenr &&
1671 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
1672 				    key.offset == head->num_bytes)
1673 					ret = 0;
1674 			}
1675 			if (ret > 0) {
1676 				btrfs_release_path(path);
1677 				metadata = 0;
1678 
1679 				key.objectid = head->bytenr;
1680 				key.type = BTRFS_EXTENT_ITEM_KEY;
1681 				key.offset = head->num_bytes;
1682 				goto again;
1683 			}
1684 		} else {
1685 			ret = -EUCLEAN;
1686 			btrfs_err(fs_info,
1687 		  "missing extent item for extent %llu num_bytes %llu level %d",
1688 				  head->bytenr, head->num_bytes, head->level);
1689 			return ret;
1690 		}
1691 	}
1692 
1693 	leaf = path->nodes[0];
1694 	item_size = btrfs_item_size(leaf, path->slots[0]);
1695 
1696 	if (unlikely(item_size < sizeof(*ei))) {
1697 		ret = -EUCLEAN;
1698 		btrfs_err(fs_info,
1699 			  "unexpected extent item size, has %u expect >= %zu",
1700 			  item_size, sizeof(*ei));
1701 		btrfs_abort_transaction(trans, ret);
1702 		return ret;
1703 	}
1704 
1705 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1706 	__run_delayed_extent_op(extent_op, leaf, ei);
1707 
1708 	return ret;
1709 }
1710 
1711 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1712 				struct btrfs_delayed_ref_head *href,
1713 				const struct btrfs_delayed_ref_node *node,
1714 				struct btrfs_delayed_extent_op *extent_op,
1715 				bool insert_reserved)
1716 {
1717 	int ret = 0;
1718 	struct btrfs_fs_info *fs_info = trans->fs_info;
1719 	u64 parent = 0;
1720 	u64 ref_root = 0;
1721 
1722 	trace_run_delayed_tree_ref(trans->fs_info, node);
1723 
1724 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1725 		parent = node->parent;
1726 	ref_root = node->ref_root;
1727 
1728 	if (unlikely(node->ref_mod != 1)) {
1729 		btrfs_err(trans->fs_info,
1730 	"btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1731 			  node->bytenr, node->ref_mod, node->action, ref_root,
1732 			  parent);
1733 		return -EUCLEAN;
1734 	}
1735 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1736 		struct btrfs_squota_delta delta = {
1737 			.root = href->owning_root,
1738 			.num_bytes = fs_info->nodesize,
1739 			.is_data = false,
1740 			.is_inc = true,
1741 			.generation = trans->transid,
1742 		};
1743 
1744 		ret = alloc_reserved_tree_block(trans, node, extent_op);
1745 		if (!ret)
1746 			btrfs_record_squota_delta(fs_info, &delta);
1747 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
1748 		ret = __btrfs_inc_extent_ref(trans, node, extent_op);
1749 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
1750 		ret = __btrfs_free_extent(trans, href, node, extent_op);
1751 	} else {
1752 		BUG();
1753 	}
1754 	return ret;
1755 }
1756 
1757 /* helper function to actually process a single delayed ref entry */
1758 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1759 			       struct btrfs_delayed_ref_head *href,
1760 			       const struct btrfs_delayed_ref_node *node,
1761 			       struct btrfs_delayed_extent_op *extent_op,
1762 			       bool insert_reserved)
1763 {
1764 	int ret = 0;
1765 
1766 	if (TRANS_ABORTED(trans)) {
1767 		if (insert_reserved) {
1768 			btrfs_pin_extent(trans, node->bytenr, node->num_bytes);
1769 			free_head_ref_squota_rsv(trans->fs_info, href);
1770 		}
1771 		return 0;
1772 	}
1773 
1774 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1775 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1776 		ret = run_delayed_tree_ref(trans, href, node, extent_op,
1777 					   insert_reserved);
1778 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1779 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
1780 		ret = run_delayed_data_ref(trans, href, node, extent_op,
1781 					   insert_reserved);
1782 	else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1783 		ret = 0;
1784 	else
1785 		BUG();
1786 	if (ret && insert_reserved)
1787 		btrfs_pin_extent(trans, node->bytenr, node->num_bytes);
1788 	if (ret < 0)
1789 		btrfs_err(trans->fs_info,
1790 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1791 			  node->bytenr, node->num_bytes, node->type,
1792 			  node->action, node->ref_mod, ret);
1793 	return ret;
1794 }
1795 
1796 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1797 				struct btrfs_delayed_ref_head *head)
1798 {
1799 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1800 
1801 	if (!extent_op)
1802 		return NULL;
1803 
1804 	if (head->must_insert_reserved) {
1805 		head->extent_op = NULL;
1806 		btrfs_free_delayed_extent_op(extent_op);
1807 		return NULL;
1808 	}
1809 	return extent_op;
1810 }
1811 
1812 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1813 				     struct btrfs_delayed_ref_head *head)
1814 {
1815 	struct btrfs_delayed_extent_op *extent_op;
1816 	int ret;
1817 
1818 	extent_op = cleanup_extent_op(head);
1819 	if (!extent_op)
1820 		return 0;
1821 	head->extent_op = NULL;
1822 	spin_unlock(&head->lock);
1823 	ret = run_delayed_extent_op(trans, head, extent_op);
1824 	btrfs_free_delayed_extent_op(extent_op);
1825 	return ret ? ret : 1;
1826 }
1827 
1828 u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1829 				  struct btrfs_delayed_ref_root *delayed_refs,
1830 				  struct btrfs_delayed_ref_head *head)
1831 {
1832 	u64 ret = 0;
1833 
1834 	/*
1835 	 * We had csum deletions accounted for in our delayed refs rsv, we need
1836 	 * to drop the csum leaves for this update from our delayed_refs_rsv.
1837 	 */
1838 	if (head->total_ref_mod < 0 && head->is_data) {
1839 		int nr_csums;
1840 
1841 		spin_lock(&delayed_refs->lock);
1842 		delayed_refs->pending_csums -= head->num_bytes;
1843 		spin_unlock(&delayed_refs->lock);
1844 		nr_csums = btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1845 
1846 		btrfs_delayed_refs_rsv_release(fs_info, 0, nr_csums);
1847 
1848 		ret = btrfs_calc_delayed_ref_csum_bytes(fs_info, nr_csums);
1849 	}
1850 	/* must_insert_reserved can be set only if we didn't run the head ref. */
1851 	if (head->must_insert_reserved)
1852 		free_head_ref_squota_rsv(fs_info, head);
1853 
1854 	return ret;
1855 }
1856 
1857 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1858 			    struct btrfs_delayed_ref_head *head,
1859 			    u64 *bytes_released)
1860 {
1861 
1862 	struct btrfs_fs_info *fs_info = trans->fs_info;
1863 	struct btrfs_delayed_ref_root *delayed_refs;
1864 	int ret;
1865 
1866 	delayed_refs = &trans->transaction->delayed_refs;
1867 
1868 	ret = run_and_cleanup_extent_op(trans, head);
1869 	if (ret < 0) {
1870 		btrfs_unselect_ref_head(delayed_refs, head);
1871 		btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1872 		return ret;
1873 	} else if (ret) {
1874 		return ret;
1875 	}
1876 
1877 	/*
1878 	 * Need to drop our head ref lock and re-acquire the delayed ref lock
1879 	 * and then re-check to make sure nobody got added.
1880 	 */
1881 	spin_unlock(&head->lock);
1882 	spin_lock(&delayed_refs->lock);
1883 	spin_lock(&head->lock);
1884 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1885 		spin_unlock(&head->lock);
1886 		spin_unlock(&delayed_refs->lock);
1887 		return 1;
1888 	}
1889 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
1890 	spin_unlock(&head->lock);
1891 	spin_unlock(&delayed_refs->lock);
1892 
1893 	if (head->must_insert_reserved) {
1894 		btrfs_pin_extent(trans, head->bytenr, head->num_bytes);
1895 		if (head->is_data) {
1896 			struct btrfs_root *csum_root;
1897 
1898 			csum_root = btrfs_csum_root(fs_info, head->bytenr);
1899 			ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1900 					      head->num_bytes);
1901 		}
1902 	}
1903 
1904 	*bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1905 
1906 	trace_run_delayed_ref_head(fs_info, head, 0);
1907 	btrfs_delayed_ref_unlock(head);
1908 	btrfs_put_delayed_ref_head(head);
1909 	return ret;
1910 }
1911 
1912 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1913 					   struct btrfs_delayed_ref_head *locked_ref,
1914 					   u64 *bytes_released)
1915 {
1916 	struct btrfs_fs_info *fs_info = trans->fs_info;
1917 	struct btrfs_delayed_ref_root *delayed_refs;
1918 	struct btrfs_delayed_extent_op *extent_op;
1919 	struct btrfs_delayed_ref_node *ref;
1920 	bool must_insert_reserved;
1921 	int ret;
1922 
1923 	delayed_refs = &trans->transaction->delayed_refs;
1924 
1925 	lockdep_assert_held(&locked_ref->mutex);
1926 	lockdep_assert_held(&locked_ref->lock);
1927 
1928 	while ((ref = btrfs_select_delayed_ref(locked_ref))) {
1929 		if (ref->seq &&
1930 		    btrfs_check_delayed_seq(fs_info, ref->seq)) {
1931 			spin_unlock(&locked_ref->lock);
1932 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1933 			return -EAGAIN;
1934 		}
1935 
1936 		rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1937 		RB_CLEAR_NODE(&ref->ref_node);
1938 		if (!list_empty(&ref->add_list))
1939 			list_del(&ref->add_list);
1940 		/*
1941 		 * When we play the delayed ref, also correct the ref_mod on
1942 		 * head
1943 		 */
1944 		switch (ref->action) {
1945 		case BTRFS_ADD_DELAYED_REF:
1946 		case BTRFS_ADD_DELAYED_EXTENT:
1947 			locked_ref->ref_mod -= ref->ref_mod;
1948 			break;
1949 		case BTRFS_DROP_DELAYED_REF:
1950 			locked_ref->ref_mod += ref->ref_mod;
1951 			break;
1952 		default:
1953 			WARN_ON(1);
1954 		}
1955 
1956 		/*
1957 		 * Record the must_insert_reserved flag before we drop the
1958 		 * spin lock.
1959 		 */
1960 		must_insert_reserved = locked_ref->must_insert_reserved;
1961 		/*
1962 		 * Unsetting this on the head ref relinquishes ownership of
1963 		 * the rsv_bytes, so it is critical that every possible code
1964 		 * path from here forward frees all reserves including qgroup
1965 		 * reserve.
1966 		 */
1967 		locked_ref->must_insert_reserved = false;
1968 
1969 		extent_op = locked_ref->extent_op;
1970 		locked_ref->extent_op = NULL;
1971 		spin_unlock(&locked_ref->lock);
1972 
1973 		ret = run_one_delayed_ref(trans, locked_ref, ref, extent_op,
1974 					  must_insert_reserved);
1975 		btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
1976 		*bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, 1);
1977 
1978 		btrfs_free_delayed_extent_op(extent_op);
1979 		if (ret) {
1980 			btrfs_unselect_ref_head(delayed_refs, locked_ref);
1981 			btrfs_put_delayed_ref(ref);
1982 			return ret;
1983 		}
1984 
1985 		btrfs_put_delayed_ref(ref);
1986 		cond_resched();
1987 
1988 		spin_lock(&locked_ref->lock);
1989 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
1990 	}
1991 
1992 	return 0;
1993 }
1994 
1995 /*
1996  * Returns 0 on success or if called with an already aborted transaction.
1997  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1998  */
1999 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2000 					     u64 min_bytes)
2001 {
2002 	struct btrfs_fs_info *fs_info = trans->fs_info;
2003 	struct btrfs_delayed_ref_root *delayed_refs;
2004 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2005 	int ret;
2006 	unsigned long count = 0;
2007 	unsigned long max_count = 0;
2008 	u64 bytes_processed = 0;
2009 
2010 	delayed_refs = &trans->transaction->delayed_refs;
2011 	if (min_bytes == 0) {
2012 		/*
2013 		 * We may be subject to a harmless race if some task is
2014 		 * concurrently adding or removing a delayed ref, so silence
2015 		 * KCSAN and similar tools.
2016 		 */
2017 		max_count = data_race(delayed_refs->num_heads_ready);
2018 		min_bytes = U64_MAX;
2019 	}
2020 
2021 	do {
2022 		if (!locked_ref) {
2023 			locked_ref = btrfs_select_ref_head(fs_info, delayed_refs);
2024 			if (IS_ERR_OR_NULL(locked_ref)) {
2025 				if (PTR_ERR(locked_ref) == -EAGAIN) {
2026 					continue;
2027 				} else {
2028 					break;
2029 				}
2030 			}
2031 			count++;
2032 		}
2033 		/*
2034 		 * We need to try and merge add/drops of the same ref since we
2035 		 * can run into issues with relocate dropping the implicit ref
2036 		 * and then it being added back again before the drop can
2037 		 * finish.  If we merged anything we need to re-loop so we can
2038 		 * get a good ref.
2039 		 * Or we can get node references of the same type that weren't
2040 		 * merged when created due to bumps in the tree mod seq, and
2041 		 * we need to merge them to prevent adding an inline extent
2042 		 * backref before dropping it (triggering a BUG_ON at
2043 		 * insert_inline_extent_backref()).
2044 		 */
2045 		spin_lock(&locked_ref->lock);
2046 		btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2047 
2048 		ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, &bytes_processed);
2049 		if (ret < 0 && ret != -EAGAIN) {
2050 			/*
2051 			 * Error, btrfs_run_delayed_refs_for_head already
2052 			 * unlocked everything so just bail out
2053 			 */
2054 			return ret;
2055 		} else if (!ret) {
2056 			/*
2057 			 * Success, perform the usual cleanup of a processed
2058 			 * head
2059 			 */
2060 			ret = cleanup_ref_head(trans, locked_ref, &bytes_processed);
2061 			if (ret > 0 ) {
2062 				/* We dropped our lock, we need to loop. */
2063 				ret = 0;
2064 				continue;
2065 			} else if (ret) {
2066 				return ret;
2067 			}
2068 		}
2069 
2070 		/*
2071 		 * Either success case or btrfs_run_delayed_refs_for_head
2072 		 * returned -EAGAIN, meaning we need to select another head
2073 		 */
2074 
2075 		locked_ref = NULL;
2076 		cond_resched();
2077 	} while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2078 		 (max_count > 0 && count < max_count) ||
2079 		 locked_ref);
2080 
2081 	return 0;
2082 }
2083 
2084 #ifdef SCRAMBLE_DELAYED_REFS
2085 /*
2086  * Normally delayed refs get processed in ascending bytenr order. This
2087  * correlates in most cases to the order added. To expose dependencies on this
2088  * order, we start to process the tree in the middle instead of the beginning
2089  */
2090 static u64 find_middle(struct rb_root *root)
2091 {
2092 	struct rb_node *n = root->rb_node;
2093 	struct btrfs_delayed_ref_node *entry;
2094 	int alt = 1;
2095 	u64 middle;
2096 	u64 first = 0, last = 0;
2097 
2098 	n = rb_first(root);
2099 	if (n) {
2100 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2101 		first = entry->bytenr;
2102 	}
2103 	n = rb_last(root);
2104 	if (n) {
2105 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2106 		last = entry->bytenr;
2107 	}
2108 	n = root->rb_node;
2109 
2110 	while (n) {
2111 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2112 		WARN_ON(!entry->in_tree);
2113 
2114 		middle = entry->bytenr;
2115 
2116 		if (alt)
2117 			n = n->rb_left;
2118 		else
2119 			n = n->rb_right;
2120 
2121 		alt = 1 - alt;
2122 	}
2123 	return middle;
2124 }
2125 #endif
2126 
2127 /*
2128  * Start processing the delayed reference count updates and extent insertions
2129  * we have queued up so far.
2130  *
2131  * @trans:	Transaction handle.
2132  * @min_bytes:	How many bytes of delayed references to process. After this
2133  *		many bytes we stop processing delayed references if there are
2134  *		any more. If 0 it means to run all existing delayed references,
2135  *		but not new ones added after running all existing ones.
2136  *		Use (u64)-1 (U64_MAX) to run all existing delayed references
2137  *		plus any new ones that are added.
2138  *
2139  * Returns 0 on success or if called with an aborted transaction
2140  * Returns <0 on error and aborts the transaction
2141  */
2142 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2143 {
2144 	struct btrfs_fs_info *fs_info = trans->fs_info;
2145 	struct btrfs_delayed_ref_root *delayed_refs;
2146 	int ret;
2147 
2148 	/* We'll clean this up in btrfs_cleanup_transaction */
2149 	if (TRANS_ABORTED(trans))
2150 		return 0;
2151 
2152 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2153 		return 0;
2154 
2155 	delayed_refs = &trans->transaction->delayed_refs;
2156 again:
2157 #ifdef SCRAMBLE_DELAYED_REFS
2158 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2159 #endif
2160 	ret = __btrfs_run_delayed_refs(trans, min_bytes);
2161 	if (unlikely(ret < 0)) {
2162 		btrfs_abort_transaction(trans, ret);
2163 		return ret;
2164 	}
2165 
2166 	if (min_bytes == U64_MAX) {
2167 		btrfs_create_pending_block_groups(trans);
2168 
2169 		spin_lock(&delayed_refs->lock);
2170 		if (xa_empty(&delayed_refs->head_refs)) {
2171 			spin_unlock(&delayed_refs->lock);
2172 			return 0;
2173 		}
2174 		spin_unlock(&delayed_refs->lock);
2175 
2176 		cond_resched();
2177 		goto again;
2178 	}
2179 
2180 	return 0;
2181 }
2182 
2183 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2184 				struct extent_buffer *eb, u64 flags)
2185 {
2186 	struct btrfs_delayed_extent_op *extent_op;
2187 	int ret;
2188 
2189 	extent_op = btrfs_alloc_delayed_extent_op();
2190 	if (!extent_op)
2191 		return -ENOMEM;
2192 
2193 	extent_op->flags_to_set = flags;
2194 	extent_op->update_flags = true;
2195 	extent_op->update_key = false;
2196 
2197 	ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len,
2198 					  btrfs_header_level(eb), extent_op);
2199 	if (ret)
2200 		btrfs_free_delayed_extent_op(extent_op);
2201 	return ret;
2202 }
2203 
2204 static noinline int check_delayed_ref(struct btrfs_inode *inode,
2205 				      struct btrfs_path *path,
2206 				      u64 offset, u64 bytenr)
2207 {
2208 	struct btrfs_root *root = inode->root;
2209 	struct btrfs_delayed_ref_head *head;
2210 	struct btrfs_delayed_ref_node *ref;
2211 	struct btrfs_delayed_ref_root *delayed_refs;
2212 	struct btrfs_transaction *cur_trans;
2213 	struct rb_node *node;
2214 	int ret = 0;
2215 
2216 	spin_lock(&root->fs_info->trans_lock);
2217 	cur_trans = root->fs_info->running_transaction;
2218 	if (cur_trans)
2219 		refcount_inc(&cur_trans->use_count);
2220 	spin_unlock(&root->fs_info->trans_lock);
2221 	if (!cur_trans)
2222 		return 0;
2223 
2224 	delayed_refs = &cur_trans->delayed_refs;
2225 	spin_lock(&delayed_refs->lock);
2226 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
2227 	if (!head) {
2228 		spin_unlock(&delayed_refs->lock);
2229 		btrfs_put_transaction(cur_trans);
2230 		return 0;
2231 	}
2232 
2233 	if (!mutex_trylock(&head->mutex)) {
2234 		if (path->nowait) {
2235 			spin_unlock(&delayed_refs->lock);
2236 			btrfs_put_transaction(cur_trans);
2237 			return -EAGAIN;
2238 		}
2239 
2240 		refcount_inc(&head->refs);
2241 		spin_unlock(&delayed_refs->lock);
2242 
2243 		btrfs_release_path(path);
2244 
2245 		/*
2246 		 * Mutex was contended, block until it's released and let
2247 		 * caller try again
2248 		 */
2249 		mutex_lock(&head->mutex);
2250 		mutex_unlock(&head->mutex);
2251 		btrfs_put_delayed_ref_head(head);
2252 		btrfs_put_transaction(cur_trans);
2253 		return -EAGAIN;
2254 	}
2255 	spin_unlock(&delayed_refs->lock);
2256 
2257 	spin_lock(&head->lock);
2258 	/*
2259 	 * XXX: We should replace this with a proper search function in the
2260 	 * future.
2261 	 */
2262 	for (node = rb_first_cached(&head->ref_tree); node;
2263 	     node = rb_next(node)) {
2264 		u64 ref_owner;
2265 		u64 ref_offset;
2266 
2267 		ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2268 		/* If it's a shared ref we know a cross reference exists */
2269 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2270 			ret = 1;
2271 			break;
2272 		}
2273 
2274 		ref_owner = btrfs_delayed_ref_owner(ref);
2275 		ref_offset = btrfs_delayed_ref_offset(ref);
2276 
2277 		/*
2278 		 * If our ref doesn't match the one we're currently looking at
2279 		 * then we have a cross reference.
2280 		 */
2281 		if (ref->ref_root != btrfs_root_id(root) ||
2282 		    ref_owner != btrfs_ino(inode) || ref_offset != offset) {
2283 			ret = 1;
2284 			break;
2285 		}
2286 	}
2287 	spin_unlock(&head->lock);
2288 	mutex_unlock(&head->mutex);
2289 	btrfs_put_transaction(cur_trans);
2290 	return ret;
2291 }
2292 
2293 /*
2294  * Check if there are references for a data extent other than the one belonging
2295  * to the given inode and offset.
2296  *
2297  * @inode:     The only inode we expect to find associated with the data extent.
2298  * @path:      A path to use for searching the extent tree.
2299  * @offset:    The only offset we expect to find associated with the data extent.
2300  * @bytenr:    The logical address of the data extent.
2301  *
2302  * When the extent does not have any other references other than the one we
2303  * expect to find, we always return a value of 0 with the path having a locked
2304  * leaf that contains the extent's extent item - this is necessary to ensure
2305  * we don't race with a task running delayed references, and our caller must
2306  * have such a path when calling check_delayed_ref() - it must lock a delayed
2307  * ref head while holding the leaf locked. In case the extent item is not found
2308  * in the extent tree, we return -ENOENT with the path having the leaf (locked)
2309  * where the extent item should be, in order to prevent races with another task
2310  * running delayed references, so that we don't miss any reference when calling
2311  * check_delayed_ref().
2312  *
2313  * Note: this may return false positives, and this is because we want to be
2314  *       quick here as we're called in write paths (when flushing delalloc and
2315  *       in the direct IO write path). For example we can have an extent with
2316  *       a single reference but that reference is not inlined, or we may have
2317  *       many references in the extent tree but we also have delayed references
2318  *       that cancel all the reference except the one for our inode and offset,
2319  *       but it would be expensive to do such checks and complex due to all
2320  *       locking to avoid races between the checks and flushing delayed refs,
2321  *       plus non-inline references may be located on leaves other than the one
2322  *       that contains the extent item in the extent tree. The important thing
2323  *       here is to not return false negatives and that the false positives are
2324  *       not very common.
2325  *
2326  * Returns: 0 if there are no cross references and with the path having a locked
2327  *          leaf from the extent tree that contains the extent's extent item.
2328  *
2329  *          1 if there are cross references (false positives can happen).
2330  *
2331  *          < 0 in case of an error. In case of -ENOENT the leaf in the extent
2332  *          tree where the extent item should be located at is read locked and
2333  *          accessible in the given path.
2334  */
2335 static noinline int check_committed_ref(struct btrfs_inode *inode,
2336 					struct btrfs_path *path,
2337 					u64 offset, u64 bytenr)
2338 {
2339 	struct btrfs_root *root = inode->root;
2340 	struct btrfs_fs_info *fs_info = root->fs_info;
2341 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2342 	struct extent_buffer *leaf;
2343 	struct btrfs_extent_data_ref *ref;
2344 	struct btrfs_extent_inline_ref *iref;
2345 	struct btrfs_extent_item *ei;
2346 	struct btrfs_key key;
2347 	u32 item_size;
2348 	u32 expected_size;
2349 	int type;
2350 	int ret;
2351 
2352 	key.objectid = bytenr;
2353 	key.type = BTRFS_EXTENT_ITEM_KEY;
2354 	key.offset = (u64)-1;
2355 
2356 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2357 	if (ret < 0)
2358 		return ret;
2359 	if (unlikely(ret == 0)) {
2360 		/*
2361 		 * Key with offset -1 found, there would have to exist an extent
2362 		 * item with such offset, but this is out of the valid range.
2363 		 */
2364 		return -EUCLEAN;
2365 	}
2366 
2367 	if (path->slots[0] == 0)
2368 		return -ENOENT;
2369 
2370 	path->slots[0]--;
2371 	leaf = path->nodes[0];
2372 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 
2374 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2375 		return -ENOENT;
2376 
2377 	item_size = btrfs_item_size(leaf, path->slots[0]);
2378 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2379 	expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2380 
2381 	/* No inline refs; we need to bail before checking for owner ref. */
2382 	if (item_size == sizeof(*ei))
2383 		return 1;
2384 
2385 	/* Check for an owner ref; skip over it to the real inline refs. */
2386 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2387 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2388 	if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2389 		expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2390 		iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2391 		type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2392 	}
2393 
2394 	/* If extent item has more than 1 inline ref then it's shared */
2395 	if (item_size != expected_size)
2396 		return 1;
2397 
2398 	/* If this extent has SHARED_DATA_REF then it's shared */
2399 	if (type != BTRFS_EXTENT_DATA_REF_KEY)
2400 		return 1;
2401 
2402 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2403 	if (btrfs_extent_refs(leaf, ei) !=
2404 	    btrfs_extent_data_ref_count(leaf, ref) ||
2405 	    btrfs_extent_data_ref_root(leaf, ref) != btrfs_root_id(root) ||
2406 	    btrfs_extent_data_ref_objectid(leaf, ref) != btrfs_ino(inode) ||
2407 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
2408 		return 1;
2409 
2410 	return 0;
2411 }
2412 
2413 int btrfs_cross_ref_exist(struct btrfs_inode *inode, u64 offset,
2414 			  u64 bytenr, struct btrfs_path *path)
2415 {
2416 	int ret;
2417 
2418 	do {
2419 		ret = check_committed_ref(inode, path, offset, bytenr);
2420 		if (ret && ret != -ENOENT)
2421 			goto out;
2422 
2423 		/*
2424 		 * The path must have a locked leaf from the extent tree where
2425 		 * the extent item for our extent is located, in case it exists,
2426 		 * or where it should be located in case it doesn't exist yet
2427 		 * because it's new and its delayed ref was not yet flushed.
2428 		 * We need to lock the delayed ref head at check_delayed_ref(),
2429 		 * if one exists, while holding the leaf locked in order to not
2430 		 * race with delayed ref flushing, missing references and
2431 		 * incorrectly reporting that the extent is not shared.
2432 		 */
2433 		if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
2434 			struct extent_buffer *leaf = path->nodes[0];
2435 
2436 			ASSERT(leaf != NULL);
2437 			btrfs_assert_tree_read_locked(leaf);
2438 
2439 			if (ret != -ENOENT) {
2440 				struct btrfs_key key;
2441 
2442 				btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2443 				ASSERT(key.objectid == bytenr);
2444 				ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY);
2445 			}
2446 		}
2447 
2448 		ret = check_delayed_ref(inode, path, offset, bytenr);
2449 	} while (ret == -EAGAIN && !path->nowait);
2450 
2451 out:
2452 	btrfs_release_path(path);
2453 	if (btrfs_is_data_reloc_root(inode->root))
2454 		WARN_ON(ret > 0);
2455 	return ret;
2456 }
2457 
2458 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2459 			   struct btrfs_root *root,
2460 			   struct extent_buffer *buf,
2461 			   bool full_backref, bool inc)
2462 {
2463 	struct btrfs_fs_info *fs_info = root->fs_info;
2464 	u64 parent;
2465 	u64 ref_root;
2466 	u32 nritems;
2467 	struct btrfs_key key;
2468 	struct btrfs_file_extent_item *fi;
2469 	bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2470 	int i;
2471 	int action;
2472 	int level;
2473 	int ret = 0;
2474 
2475 	if (btrfs_is_testing(fs_info))
2476 		return 0;
2477 
2478 	ref_root = btrfs_header_owner(buf);
2479 	nritems = btrfs_header_nritems(buf);
2480 	level = btrfs_header_level(buf);
2481 
2482 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2483 		return 0;
2484 
2485 	if (full_backref)
2486 		parent = buf->start;
2487 	else
2488 		parent = 0;
2489 	if (inc)
2490 		action = BTRFS_ADD_DELAYED_REF;
2491 	else
2492 		action = BTRFS_DROP_DELAYED_REF;
2493 
2494 	for (i = 0; i < nritems; i++) {
2495 		struct btrfs_ref ref = {
2496 			.action = action,
2497 			.parent = parent,
2498 			.ref_root = ref_root,
2499 		};
2500 
2501 		if (level == 0) {
2502 			btrfs_item_key_to_cpu(buf, &key, i);
2503 			if (key.type != BTRFS_EXTENT_DATA_KEY)
2504 				continue;
2505 			fi = btrfs_item_ptr(buf, i,
2506 					    struct btrfs_file_extent_item);
2507 			if (btrfs_file_extent_type(buf, fi) ==
2508 			    BTRFS_FILE_EXTENT_INLINE)
2509 				continue;
2510 			ref.bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2511 			if (ref.bytenr == 0)
2512 				continue;
2513 
2514 			ref.num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2515 			ref.owning_root = ref_root;
2516 
2517 			key.offset -= btrfs_file_extent_offset(buf, fi);
2518 			btrfs_init_data_ref(&ref, key.objectid, key.offset,
2519 					    btrfs_root_id(root), for_reloc);
2520 			if (inc)
2521 				ret = btrfs_inc_extent_ref(trans, &ref);
2522 			else
2523 				ret = btrfs_free_extent(trans, &ref);
2524 			if (ret)
2525 				goto fail;
2526 		} else {
2527 			/* We don't know the owning_root, leave as 0. */
2528 			ref.bytenr = btrfs_node_blockptr(buf, i);
2529 			ref.num_bytes = fs_info->nodesize;
2530 
2531 			btrfs_init_tree_ref(&ref, level - 1,
2532 					    btrfs_root_id(root), for_reloc);
2533 			if (inc)
2534 				ret = btrfs_inc_extent_ref(trans, &ref);
2535 			else
2536 				ret = btrfs_free_extent(trans, &ref);
2537 			if (ret)
2538 				goto fail;
2539 		}
2540 	}
2541 	return 0;
2542 fail:
2543 	return ret;
2544 }
2545 
2546 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2547 		  struct extent_buffer *buf, bool full_backref)
2548 {
2549 	return __btrfs_mod_ref(trans, root, buf, full_backref, true);
2550 }
2551 
2552 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2553 		  struct extent_buffer *buf, bool full_backref)
2554 {
2555 	return __btrfs_mod_ref(trans, root, buf, full_backref, false);
2556 }
2557 
2558 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2559 {
2560 	struct btrfs_fs_info *fs_info = root->fs_info;
2561 	u64 flags;
2562 	u64 ret;
2563 
2564 	if (data)
2565 		flags = BTRFS_BLOCK_GROUP_DATA;
2566 	else if (root == fs_info->chunk_root)
2567 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
2568 	else
2569 		flags = BTRFS_BLOCK_GROUP_METADATA;
2570 
2571 	ret = btrfs_get_alloc_profile(fs_info, flags);
2572 	return ret;
2573 }
2574 
2575 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2576 {
2577 	struct rb_node *leftmost;
2578 	u64 bytenr = 0;
2579 
2580 	read_lock(&fs_info->block_group_cache_lock);
2581 	/* Get the block group with the lowest logical start address. */
2582 	leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2583 	if (leftmost) {
2584 		struct btrfs_block_group *bg;
2585 
2586 		bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2587 		bytenr = bg->start;
2588 	}
2589 	read_unlock(&fs_info->block_group_cache_lock);
2590 
2591 	return bytenr;
2592 }
2593 
2594 static int pin_down_extent(struct btrfs_trans_handle *trans,
2595 			   struct btrfs_block_group *bg,
2596 			   u64 bytenr, u64 num_bytes, bool reserved)
2597 {
2598 	struct btrfs_space_info *space_info = bg->space_info;
2599 	const u64 reserved_bytes = (reserved ? num_bytes : 0);
2600 
2601 	spin_lock(&space_info->lock);
2602 	spin_lock(&bg->lock);
2603 	bg->pinned += num_bytes;
2604 	bg->reserved -= reserved_bytes;
2605 	spin_unlock(&bg->lock);
2606 	space_info->bytes_reserved -= reserved_bytes;
2607 	btrfs_space_info_update_bytes_pinned(space_info, num_bytes);
2608 	spin_unlock(&space_info->lock);
2609 
2610 	btrfs_set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2611 			     bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2612 	return 0;
2613 }
2614 
2615 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes)
2616 {
2617 	struct btrfs_block_group *cache;
2618 
2619 	cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2620 	BUG_ON(!cache); /* Logic error */
2621 
2622 	pin_down_extent(trans, cache, bytenr, num_bytes, true);
2623 
2624 	btrfs_put_block_group(cache);
2625 	return 0;
2626 }
2627 
2628 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2629 				    const struct extent_buffer *eb)
2630 {
2631 	struct btrfs_block_group *cache;
2632 	int ret;
2633 
2634 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
2635 	if (!cache)
2636 		return -EINVAL;
2637 
2638 	/*
2639 	 * Fully cache the free space first so that our pin removes the free space
2640 	 * from the cache.
2641 	 */
2642 	ret = btrfs_cache_block_group(cache, true);
2643 	if (ret)
2644 		goto out;
2645 
2646 	pin_down_extent(trans, cache, eb->start, eb->len, false);
2647 
2648 	/* remove us from the free space cache (if we're there at all) */
2649 	ret = btrfs_remove_free_space(cache, eb->start, eb->len);
2650 out:
2651 	btrfs_put_block_group(cache);
2652 	return ret;
2653 }
2654 
2655 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2656 				   u64 start, u64 num_bytes)
2657 {
2658 	int ret;
2659 	struct btrfs_block_group *block_group;
2660 
2661 	block_group = btrfs_lookup_block_group(fs_info, start);
2662 	if (!block_group)
2663 		return -EINVAL;
2664 
2665 	ret = btrfs_cache_block_group(block_group, true);
2666 	if (ret)
2667 		goto out;
2668 
2669 	ret = btrfs_remove_free_space(block_group, start, num_bytes);
2670 out:
2671 	btrfs_put_block_group(block_group);
2672 	return ret;
2673 }
2674 
2675 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2676 {
2677 	struct btrfs_fs_info *fs_info = eb->fs_info;
2678 	struct btrfs_file_extent_item *item;
2679 	struct btrfs_key key;
2680 	int found_type;
2681 	int i;
2682 	int ret = 0;
2683 
2684 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2685 		return 0;
2686 
2687 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
2688 		btrfs_item_key_to_cpu(eb, &key, i);
2689 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2690 			continue;
2691 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2692 		found_type = btrfs_file_extent_type(eb, item);
2693 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
2694 			continue;
2695 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2696 			continue;
2697 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2698 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2699 		ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2700 		if (ret)
2701 			break;
2702 	}
2703 
2704 	return ret;
2705 }
2706 
2707 static void
2708 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2709 {
2710 	atomic_inc(&bg->reservations);
2711 }
2712 
2713 /*
2714  * Returns the free cluster for the given space info and sets empty_cluster to
2715  * what it should be based on the mount options.
2716  */
2717 static struct btrfs_free_cluster *
2718 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2719 		   struct btrfs_space_info *space_info, u64 *empty_cluster)
2720 {
2721 	struct btrfs_free_cluster *ret = NULL;
2722 
2723 	*empty_cluster = 0;
2724 	if (btrfs_mixed_space_info(space_info))
2725 		return ret;
2726 
2727 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2728 		ret = &fs_info->meta_alloc_cluster;
2729 		if (btrfs_test_opt(fs_info, SSD))
2730 			*empty_cluster = SZ_2M;
2731 		else
2732 			*empty_cluster = SZ_64K;
2733 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2734 		   btrfs_test_opt(fs_info, SSD_SPREAD)) {
2735 		*empty_cluster = SZ_2M;
2736 		ret = &fs_info->data_alloc_cluster;
2737 	}
2738 
2739 	return ret;
2740 }
2741 
2742 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2743 			      u64 start, u64 end,
2744 			      const bool return_free_space)
2745 {
2746 	struct btrfs_block_group *cache = NULL;
2747 	struct btrfs_space_info *space_info;
2748 	struct btrfs_free_cluster *cluster = NULL;
2749 	u64 total_unpinned = 0;
2750 	u64 empty_cluster = 0;
2751 
2752 	while (start <= end) {
2753 		u64 len;
2754 		bool readonly;
2755 
2756 		if (!cache ||
2757 		    start >= cache->start + cache->length) {
2758 			if (cache)
2759 				btrfs_put_block_group(cache);
2760 			total_unpinned = 0;
2761 			cache = btrfs_lookup_block_group(fs_info, start);
2762 			if (unlikely(cache == NULL)) {
2763 				/* Logic error, something removed the block group. */
2764 				return -EUCLEAN;
2765 			}
2766 
2767 			cluster = fetch_cluster_info(fs_info,
2768 						     cache->space_info,
2769 						     &empty_cluster);
2770 			empty_cluster <<= 1;
2771 		}
2772 
2773 		len = cache->start + cache->length - start;
2774 		len = min(len, end + 1 - start);
2775 
2776 		if (return_free_space)
2777 			btrfs_add_free_space(cache, start, len);
2778 
2779 		start += len;
2780 		total_unpinned += len;
2781 		space_info = cache->space_info;
2782 
2783 		/*
2784 		 * If this space cluster has been marked as fragmented and we've
2785 		 * unpinned enough in this block group to potentially allow a
2786 		 * cluster to be created inside of it go ahead and clear the
2787 		 * fragmented check.
2788 		 */
2789 		if (cluster && cluster->fragmented &&
2790 		    total_unpinned > empty_cluster) {
2791 			spin_lock(&cluster->lock);
2792 			cluster->fragmented = 0;
2793 			spin_unlock(&cluster->lock);
2794 		}
2795 
2796 		spin_lock(&space_info->lock);
2797 		spin_lock(&cache->lock);
2798 		readonly = cache->ro;
2799 		cache->pinned -= len;
2800 		spin_unlock(&cache->lock);
2801 
2802 		btrfs_space_info_update_bytes_pinned(space_info, -len);
2803 		space_info->max_extent_size = 0;
2804 
2805 		if (readonly) {
2806 			space_info->bytes_readonly += len;
2807 		} else if (btrfs_is_zoned(fs_info)) {
2808 			/* Need reset before reusing in a zoned block group */
2809 			btrfs_space_info_update_bytes_zone_unusable(space_info, len);
2810 		} else if (return_free_space) {
2811 			btrfs_return_free_space(space_info, len);
2812 		}
2813 		spin_unlock(&space_info->lock);
2814 	}
2815 
2816 	if (cache)
2817 		btrfs_put_block_group(cache);
2818 
2819 	return 0;
2820 }
2821 
2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2823 {
2824 	struct btrfs_fs_info *fs_info = trans->fs_info;
2825 	struct btrfs_block_group *block_group, *tmp;
2826 	struct list_head *deleted_bgs;
2827 	struct extent_io_tree *unpin = &trans->transaction->pinned_extents;
2828 	struct extent_state *cached_state = NULL;
2829 	u64 start;
2830 	u64 end;
2831 	int unpin_error = 0;
2832 	int ret;
2833 
2834 	mutex_lock(&fs_info->unused_bg_unpin_mutex);
2835 	btrfs_find_first_extent_bit(unpin, 0, &start, &end, EXTENT_DIRTY, &cached_state);
2836 
2837 	while (!TRANS_ABORTED(trans) && cached_state) {
2838 		struct extent_state *next_state;
2839 
2840 		if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2841 			ret = btrfs_discard_extent(fs_info, start,
2842 						   end + 1 - start, NULL);
2843 
2844 		next_state = btrfs_next_extent_state(unpin, cached_state);
2845 		btrfs_clear_extent_dirty(unpin, start, end, &cached_state);
2846 		ret = unpin_extent_range(fs_info, start, end, true);
2847 		/*
2848 		 * If we get an error unpinning an extent range, store the first
2849 		 * error to return later after trying to unpin all ranges and do
2850 		 * the sync discards. Our caller will abort the transaction
2851 		 * (which already wrote new superblocks) and on the next mount
2852 		 * the space will be available as it was pinned by in-memory
2853 		 * only structures in this phase.
2854 		 */
2855 		if (ret) {
2856 			btrfs_err_rl(fs_info,
2857 "failed to unpin extent range [%llu, %llu] when committing transaction %llu: %s (%d)",
2858 				     start, end, trans->transid,
2859 				     btrfs_decode_error(ret), ret);
2860 			if (!unpin_error)
2861 				unpin_error = ret;
2862 		}
2863 
2864 		btrfs_free_extent_state(cached_state);
2865 
2866 		if (need_resched()) {
2867 			btrfs_free_extent_state(next_state);
2868 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2869 			cond_resched();
2870 			cached_state = NULL;
2871 			mutex_lock(&fs_info->unused_bg_unpin_mutex);
2872 			btrfs_find_first_extent_bit(unpin, 0, &start, &end,
2873 						    EXTENT_DIRTY, &cached_state);
2874 		} else {
2875 			cached_state = next_state;
2876 			if (cached_state) {
2877 				start = cached_state->start;
2878 				end = cached_state->end;
2879 			}
2880 		}
2881 	}
2882 	mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2883 	btrfs_free_extent_state(cached_state);
2884 
2885 	if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2886 		btrfs_discard_calc_delay(&fs_info->discard_ctl);
2887 		btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2888 	}
2889 
2890 	/*
2891 	 * Transaction is finished.  We don't need the lock anymore.  We
2892 	 * do need to clean up the block groups in case of a transaction
2893 	 * abort.
2894 	 */
2895 	deleted_bgs = &trans->transaction->deleted_bgs;
2896 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2897 		ret = -EROFS;
2898 		if (!TRANS_ABORTED(trans))
2899 			ret = btrfs_discard_extent(fs_info, block_group->start,
2900 						   block_group->length, NULL);
2901 
2902 		/*
2903 		 * Not strictly necessary to lock, as the block_group should be
2904 		 * read-only from btrfs_delete_unused_bgs().
2905 		 */
2906 		ASSERT(block_group->ro);
2907 		spin_lock(&fs_info->unused_bgs_lock);
2908 		list_del_init(&block_group->bg_list);
2909 		spin_unlock(&fs_info->unused_bgs_lock);
2910 
2911 		btrfs_unfreeze_block_group(block_group);
2912 		btrfs_put_block_group(block_group);
2913 
2914 		if (ret) {
2915 			const char *errstr = btrfs_decode_error(ret);
2916 			btrfs_warn(fs_info,
2917 			   "discard failed while removing blockgroup: errno=%d %s",
2918 				   ret, errstr);
2919 		}
2920 	}
2921 
2922 	return unpin_error;
2923 }
2924 
2925 /*
2926  * Parse an extent item's inline extents looking for a simple quotas owner ref.
2927  *
2928  * @fs_info:	the btrfs_fs_info for this mount
2929  * @leaf:	a leaf in the extent tree containing the extent item
2930  * @slot:	the slot in the leaf where the extent item is found
2931  *
2932  * Returns the objectid of the root that originally allocated the extent item
2933  * if the inline owner ref is expected and present, otherwise 0.
2934  *
2935  * If an extent item has an owner ref item, it will be the first inline ref
2936  * item. Therefore the logic is to check whether there are any inline ref
2937  * items, then check the type of the first one.
2938  */
2939 u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2940 				struct extent_buffer *leaf, int slot)
2941 {
2942 	struct btrfs_extent_item *ei;
2943 	struct btrfs_extent_inline_ref *iref;
2944 	struct btrfs_extent_owner_ref *oref;
2945 	unsigned long ptr;
2946 	unsigned long end;
2947 	int type;
2948 
2949 	if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2950 		return 0;
2951 
2952 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2953 	ptr = (unsigned long)(ei + 1);
2954 	end = (unsigned long)ei + btrfs_item_size(leaf, slot);
2955 
2956 	/* No inline ref items of any kind, can't check type. */
2957 	if (ptr == end)
2958 		return 0;
2959 
2960 	iref = (struct btrfs_extent_inline_ref *)ptr;
2961 	type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
2962 
2963 	/* We found an owner ref, get the root out of it. */
2964 	if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2965 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2966 		return btrfs_extent_owner_ref_root_id(leaf, oref);
2967 	}
2968 
2969 	/* We have inline refs, but not an owner ref. */
2970 	return 0;
2971 }
2972 
2973 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2974 				     u64 bytenr, struct btrfs_squota_delta *delta)
2975 {
2976 	int ret;
2977 	u64 num_bytes = delta->num_bytes;
2978 
2979 	if (delta->is_data) {
2980 		struct btrfs_root *csum_root;
2981 
2982 		csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2983 		ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2984 		if (unlikely(ret)) {
2985 			btrfs_abort_transaction(trans, ret);
2986 			return ret;
2987 		}
2988 
2989 		ret = btrfs_delete_raid_extent(trans, bytenr, num_bytes);
2990 		if (unlikely(ret)) {
2991 			btrfs_abort_transaction(trans, ret);
2992 			return ret;
2993 		}
2994 	}
2995 
2996 	ret = btrfs_record_squota_delta(trans->fs_info, delta);
2997 	if (unlikely(ret)) {
2998 		btrfs_abort_transaction(trans, ret);
2999 		return ret;
3000 	}
3001 
3002 	ret = btrfs_add_to_free_space_tree(trans, bytenr, num_bytes);
3003 	if (unlikely(ret)) {
3004 		btrfs_abort_transaction(trans, ret);
3005 		return ret;
3006 	}
3007 
3008 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
3009 	if (ret)
3010 		btrfs_abort_transaction(trans, ret);
3011 
3012 	return ret;
3013 }
3014 
3015 #define abort_and_dump(trans, path, fmt, args...)	\
3016 ({							\
3017 	btrfs_abort_transaction(trans, -EUCLEAN);	\
3018 	btrfs_print_leaf(path->nodes[0]);		\
3019 	btrfs_crit(trans->fs_info, fmt, ##args);	\
3020 })
3021 
3022 /*
3023  * Drop one or more refs of @node.
3024  *
3025  * 1. Locate the extent refs.
3026  *    It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3027  *    Locate it, then reduce the refs number or remove the ref line completely.
3028  *
3029  * 2. Update the refs count in EXTENT/METADATA_ITEM
3030  *
3031  * Inline backref case:
3032  *
3033  * in extent tree we have:
3034  *
3035  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3036  *		refs 2 gen 6 flags DATA
3037  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3038  *		extent data backref root FS_TREE objectid 257 offset 0 count 1
3039  *
3040  * This function gets called with:
3041  *
3042  *    node->bytenr = 13631488
3043  *    node->num_bytes = 1048576
3044  *    root_objectid = FS_TREE
3045  *    owner_objectid = 257
3046  *    owner_offset = 0
3047  *    refs_to_drop = 1
3048  *
3049  * Then we should get some like:
3050  *
3051  * 	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3052  *		refs 1 gen 6 flags DATA
3053  *		extent data backref root FS_TREE objectid 258 offset 0 count 1
3054  *
3055  * Keyed backref case:
3056  *
3057  * in extent tree we have:
3058  *
3059  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3060  *		refs 754 gen 6 flags DATA
3061  *	[...]
3062  *	item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3063  *		extent data backref root FS_TREE objectid 866 offset 0 count 1
3064  *
3065  * This function get called with:
3066  *
3067  *    node->bytenr = 13631488
3068  *    node->num_bytes = 1048576
3069  *    root_objectid = FS_TREE
3070  *    owner_objectid = 866
3071  *    owner_offset = 0
3072  *    refs_to_drop = 1
3073  *
3074  * Then we should get some like:
3075  *
3076  *	item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3077  *		refs 753 gen 6 flags DATA
3078  *
3079  * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3080  */
3081 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3082 			       struct btrfs_delayed_ref_head *href,
3083 			       const struct btrfs_delayed_ref_node *node,
3084 			       struct btrfs_delayed_extent_op *extent_op)
3085 {
3086 	struct btrfs_fs_info *info = trans->fs_info;
3087 	struct btrfs_key key;
3088 	BTRFS_PATH_AUTO_FREE(path);
3089 	struct btrfs_root *extent_root;
3090 	struct extent_buffer *leaf;
3091 	struct btrfs_extent_item *ei;
3092 	struct btrfs_extent_inline_ref *iref;
3093 	int ret;
3094 	int is_data;
3095 	int extent_slot = 0;
3096 	int found_extent = 0;
3097 	int num_to_del = 1;
3098 	int refs_to_drop = node->ref_mod;
3099 	u32 item_size;
3100 	u64 refs;
3101 	u64 bytenr = node->bytenr;
3102 	u64 num_bytes = node->num_bytes;
3103 	u64 owner_objectid = btrfs_delayed_ref_owner(node);
3104 	u64 owner_offset = btrfs_delayed_ref_offset(node);
3105 	bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3106 	u64 delayed_ref_root = href->owning_root;
3107 
3108 	extent_root = btrfs_extent_root(info, bytenr);
3109 	ASSERT(extent_root);
3110 
3111 	path = btrfs_alloc_path();
3112 	if (!path)
3113 		return -ENOMEM;
3114 
3115 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3116 
3117 	if (unlikely(!is_data && refs_to_drop != 1)) {
3118 		btrfs_crit(info,
3119 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3120 			   node->bytenr, refs_to_drop);
3121 		ret = -EINVAL;
3122 		btrfs_abort_transaction(trans, ret);
3123 		return ret;
3124 	}
3125 
3126 	if (is_data)
3127 		skinny_metadata = false;
3128 
3129 	ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
3130 				    node->parent, node->ref_root, owner_objectid,
3131 				    owner_offset);
3132 	if (ret == 0) {
3133 		/*
3134 		 * Either the inline backref or the SHARED_DATA_REF/
3135 		 * SHARED_BLOCK_REF is found
3136 		 *
3137 		 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3138 		 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3139 		 */
3140 		extent_slot = path->slots[0];
3141 		while (extent_slot >= 0) {
3142 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3143 					      extent_slot);
3144 			if (key.objectid != bytenr)
3145 				break;
3146 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3147 			    key.offset == num_bytes) {
3148 				found_extent = 1;
3149 				break;
3150 			}
3151 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
3152 			    key.offset == owner_objectid) {
3153 				found_extent = 1;
3154 				break;
3155 			}
3156 
3157 			/* Quick path didn't find the EXTENT/METADATA_ITEM */
3158 			if (path->slots[0] - extent_slot > 5)
3159 				break;
3160 			extent_slot--;
3161 		}
3162 
3163 		if (!found_extent) {
3164 			if (unlikely(iref)) {
3165 				abort_and_dump(trans, path,
3166 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3167 					   path->slots[0]);
3168 				return -EUCLEAN;
3169 			}
3170 			/* Must be SHARED_* item, remove the backref first */
3171 			ret = remove_extent_backref(trans, extent_root, path,
3172 						    NULL, refs_to_drop, is_data);
3173 			if (unlikely(ret)) {
3174 				btrfs_abort_transaction(trans, ret);
3175 				return ret;
3176 			}
3177 			btrfs_release_path(path);
3178 
3179 			/* Slow path to locate EXTENT/METADATA_ITEM */
3180 			key.objectid = bytenr;
3181 			key.type = BTRFS_EXTENT_ITEM_KEY;
3182 			key.offset = num_bytes;
3183 
3184 			if (!is_data && skinny_metadata) {
3185 				key.type = BTRFS_METADATA_ITEM_KEY;
3186 				key.offset = owner_objectid;
3187 			}
3188 
3189 			ret = btrfs_search_slot(trans, extent_root,
3190 						&key, path, -1, 1);
3191 			if (ret > 0 && skinny_metadata && path->slots[0]) {
3192 				/*
3193 				 * Couldn't find our skinny metadata item,
3194 				 * see if we have ye olde extent item.
3195 				 */
3196 				path->slots[0]--;
3197 				btrfs_item_key_to_cpu(path->nodes[0], &key,
3198 						      path->slots[0]);
3199 				if (key.objectid == bytenr &&
3200 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
3201 				    key.offset == num_bytes)
3202 					ret = 0;
3203 			}
3204 
3205 			if (ret > 0 && skinny_metadata) {
3206 				skinny_metadata = false;
3207 				key.objectid = bytenr;
3208 				key.type = BTRFS_EXTENT_ITEM_KEY;
3209 				key.offset = num_bytes;
3210 				btrfs_release_path(path);
3211 				ret = btrfs_search_slot(trans, extent_root,
3212 							&key, path, -1, 1);
3213 			}
3214 
3215 			if (ret) {
3216 				if (ret > 0)
3217 					btrfs_print_leaf(path->nodes[0]);
3218 				btrfs_err(info,
3219 			"umm, got %d back from search, was looking for %llu, slot %d",
3220 					  ret, bytenr, path->slots[0]);
3221 			}
3222 			if (unlikely(ret < 0)) {
3223 				btrfs_abort_transaction(trans, ret);
3224 				return ret;
3225 			}
3226 			extent_slot = path->slots[0];
3227 		}
3228 	} else if (WARN_ON(ret == -ENOENT)) {
3229 		abort_and_dump(trans, path,
3230 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3231 			       bytenr, node->parent, node->ref_root, owner_objectid,
3232 			       owner_offset, path->slots[0]);
3233 		return ret;
3234 	} else {
3235 		btrfs_abort_transaction(trans, ret);
3236 		return ret;
3237 	}
3238 
3239 	leaf = path->nodes[0];
3240 	item_size = btrfs_item_size(leaf, extent_slot);
3241 	if (unlikely(item_size < sizeof(*ei))) {
3242 		ret = -EUCLEAN;
3243 		btrfs_err(trans->fs_info,
3244 			  "unexpected extent item size, has %u expect >= %zu",
3245 			  item_size, sizeof(*ei));
3246 		btrfs_abort_transaction(trans, ret);
3247 		return ret;
3248 	}
3249 	ei = btrfs_item_ptr(leaf, extent_slot,
3250 			    struct btrfs_extent_item);
3251 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3252 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
3253 		struct btrfs_tree_block_info *bi;
3254 
3255 		if (unlikely(item_size < sizeof(*ei) + sizeof(*bi))) {
3256 			abort_and_dump(trans, path,
3257 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3258 				       key.objectid, key.type, key.offset,
3259 				       path->slots[0], owner_objectid, item_size,
3260 				       sizeof(*ei) + sizeof(*bi));
3261 			return -EUCLEAN;
3262 		}
3263 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3264 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3265 	}
3266 
3267 	refs = btrfs_extent_refs(leaf, ei);
3268 	if (unlikely(refs < refs_to_drop)) {
3269 		abort_and_dump(trans, path,
3270 		"trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3271 			       refs_to_drop, refs, bytenr, path->slots[0]);
3272 		return -EUCLEAN;
3273 	}
3274 	refs -= refs_to_drop;
3275 
3276 	if (refs > 0) {
3277 		if (extent_op)
3278 			__run_delayed_extent_op(extent_op, leaf, ei);
3279 		/*
3280 		 * In the case of inline back ref, reference count will
3281 		 * be updated by remove_extent_backref
3282 		 */
3283 		if (iref) {
3284 			if (unlikely(!found_extent)) {
3285 				abort_and_dump(trans, path,
3286 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3287 					       path->slots[0]);
3288 				return -EUCLEAN;
3289 			}
3290 		} else {
3291 			btrfs_set_extent_refs(leaf, ei, refs);
3292 		}
3293 		if (found_extent) {
3294 			ret = remove_extent_backref(trans, extent_root, path,
3295 						    iref, refs_to_drop, is_data);
3296 			if (unlikely(ret)) {
3297 				btrfs_abort_transaction(trans, ret);
3298 				return ret;
3299 			}
3300 		}
3301 	} else {
3302 		struct btrfs_squota_delta delta = {
3303 			.root = delayed_ref_root,
3304 			.num_bytes = num_bytes,
3305 			.is_data = is_data,
3306 			.is_inc = false,
3307 			.generation = btrfs_extent_generation(leaf, ei),
3308 		};
3309 
3310 		/* In this branch refs == 1 */
3311 		if (found_extent) {
3312 			if (unlikely(is_data && refs_to_drop !=
3313 				     extent_data_ref_count(path, iref))) {
3314 				abort_and_dump(trans, path,
3315 		"invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3316 					       extent_data_ref_count(path, iref),
3317 					       refs_to_drop, path->slots[0]);
3318 				return -EUCLEAN;
3319 			}
3320 			if (iref) {
3321 				if (unlikely(path->slots[0] != extent_slot)) {
3322 					abort_and_dump(trans, path,
3323 "invalid iref, extent item key " BTRFS_KEY_FMT " slot %u doesn't have wanted iref",
3324 						       BTRFS_KEY_FMT_VALUE(&key),
3325 						       path->slots[0]);
3326 					return -EUCLEAN;
3327 				}
3328 			} else {
3329 				/*
3330 				 * No inline ref, we must be at SHARED_* item,
3331 				 * And it's single ref, it must be:
3332 				 * |	extent_slot	  ||extent_slot + 1|
3333 				 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3334 				 */
3335 				if (unlikely(path->slots[0] != extent_slot + 1)) {
3336 					abort_and_dump(trans, path,
3337 	"invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3338 						       path->slots[0]);
3339 					return -EUCLEAN;
3340 				}
3341 				path->slots[0] = extent_slot;
3342 				num_to_del = 2;
3343 			}
3344 		}
3345 		/*
3346 		 * We can't infer the data owner from the delayed ref, so we need
3347 		 * to try to get it from the owning ref item.
3348 		 *
3349 		 * If it is not present, then that extent was not written under
3350 		 * simple quotas mode, so we don't need to account for its deletion.
3351 		 */
3352 		if (is_data)
3353 			delta.root = btrfs_get_extent_owner_root(trans->fs_info,
3354 								 leaf, extent_slot);
3355 
3356 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3357 				      num_to_del);
3358 		if (unlikely(ret)) {
3359 			btrfs_abort_transaction(trans, ret);
3360 			return ret;
3361 		}
3362 		btrfs_release_path(path);
3363 
3364 		ret = do_free_extent_accounting(trans, bytenr, &delta);
3365 	}
3366 	btrfs_release_path(path);
3367 
3368 	return ret;
3369 }
3370 
3371 /*
3372  * when we free an block, it is possible (and likely) that we free the last
3373  * delayed ref for that extent as well.  This searches the delayed ref tree for
3374  * a given extent, and if there are no other delayed refs to be processed, it
3375  * removes it from the tree.
3376  */
3377 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3378 				      u64 bytenr)
3379 {
3380 	struct btrfs_fs_info *fs_info = trans->fs_info;
3381 	struct btrfs_delayed_ref_head *head;
3382 	struct btrfs_delayed_ref_root *delayed_refs;
3383 	int ret = 0;
3384 
3385 	delayed_refs = &trans->transaction->delayed_refs;
3386 	spin_lock(&delayed_refs->lock);
3387 	head = btrfs_find_delayed_ref_head(fs_info, delayed_refs, bytenr);
3388 	if (!head)
3389 		goto out_delayed_unlock;
3390 
3391 	spin_lock(&head->lock);
3392 	if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3393 		goto out;
3394 
3395 	if (cleanup_extent_op(head) != NULL)
3396 		goto out;
3397 
3398 	/*
3399 	 * waiting for the lock here would deadlock.  If someone else has it
3400 	 * locked they are already in the process of dropping it anyway
3401 	 */
3402 	if (!mutex_trylock(&head->mutex))
3403 		goto out;
3404 
3405 	btrfs_delete_ref_head(fs_info, delayed_refs, head);
3406 	head->processing = false;
3407 
3408 	spin_unlock(&head->lock);
3409 	spin_unlock(&delayed_refs->lock);
3410 
3411 	BUG_ON(head->extent_op);
3412 	if (head->must_insert_reserved)
3413 		ret = 1;
3414 
3415 	btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
3416 	mutex_unlock(&head->mutex);
3417 	btrfs_put_delayed_ref_head(head);
3418 	return ret;
3419 out:
3420 	spin_unlock(&head->lock);
3421 
3422 out_delayed_unlock:
3423 	spin_unlock(&delayed_refs->lock);
3424 	return 0;
3425 }
3426 
3427 int btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3428 			  u64 root_id,
3429 			  struct extent_buffer *buf,
3430 			  u64 parent, int last_ref)
3431 {
3432 	struct btrfs_fs_info *fs_info = trans->fs_info;
3433 	struct btrfs_block_group *bg;
3434 	int ret;
3435 
3436 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3437 		struct btrfs_ref generic_ref = {
3438 			.action = BTRFS_DROP_DELAYED_REF,
3439 			.bytenr = buf->start,
3440 			.num_bytes = buf->len,
3441 			.parent = parent,
3442 			.owning_root = btrfs_header_owner(buf),
3443 			.ref_root = root_id,
3444 		};
3445 
3446 		/*
3447 		 * Assert that the extent buffer is not cleared due to
3448 		 * EXTENT_BUFFER_ZONED_ZEROOUT. Please refer
3449 		 * btrfs_clear_buffer_dirty() and btree_csum_one_bio() for
3450 		 * detail.
3451 		 */
3452 		ASSERT(btrfs_header_bytenr(buf) != 0);
3453 
3454 		btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf), 0, false);
3455 		btrfs_ref_tree_mod(fs_info, &generic_ref);
3456 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3457 		if (ret < 0)
3458 			return ret;
3459 	}
3460 
3461 	if (!last_ref)
3462 		return 0;
3463 
3464 	if (btrfs_header_generation(buf) != trans->transid)
3465 		goto out;
3466 
3467 	if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3468 		ret = check_ref_cleanup(trans, buf->start);
3469 		if (!ret)
3470 			goto out;
3471 	}
3472 
3473 	bg = btrfs_lookup_block_group(fs_info, buf->start);
3474 
3475 	if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3476 		pin_down_extent(trans, bg, buf->start, buf->len, true);
3477 		btrfs_put_block_group(bg);
3478 		goto out;
3479 	}
3480 
3481 	/*
3482 	 * If there are tree mod log users we may have recorded mod log
3483 	 * operations for this node.  If we re-allocate this node we
3484 	 * could replay operations on this node that happened when it
3485 	 * existed in a completely different root.  For example if it
3486 	 * was part of root A, then was reallocated to root B, and we
3487 	 * are doing a btrfs_old_search_slot(root b), we could replay
3488 	 * operations that happened when the block was part of root A,
3489 	 * giving us an inconsistent view of the btree.
3490 	 *
3491 	 * We are safe from races here because at this point no other
3492 	 * node or root points to this extent buffer, so if after this
3493 	 * check a new tree mod log user joins we will not have an
3494 	 * existing log of operations on this node that we have to
3495 	 * contend with.
3496 	 */
3497 
3498 	if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)
3499 		     || btrfs_is_zoned(fs_info)) {
3500 		pin_down_extent(trans, bg, buf->start, buf->len, true);
3501 		btrfs_put_block_group(bg);
3502 		goto out;
3503 	}
3504 
3505 	WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3506 
3507 	btrfs_add_free_space(bg, buf->start, buf->len);
3508 	btrfs_free_reserved_bytes(bg, buf->len, false);
3509 	btrfs_put_block_group(bg);
3510 	trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3511 
3512 out:
3513 	return 0;
3514 }
3515 
3516 /* Can return -ENOMEM */
3517 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3518 {
3519 	struct btrfs_fs_info *fs_info = trans->fs_info;
3520 	int ret;
3521 
3522 	if (btrfs_is_testing(fs_info))
3523 		return 0;
3524 
3525 	/*
3526 	 * tree log blocks never actually go into the extent allocation
3527 	 * tree, just update pinning info and exit early.
3528 	 */
3529 	if (ref->ref_root == BTRFS_TREE_LOG_OBJECTID) {
3530 		btrfs_pin_extent(trans, ref->bytenr, ref->num_bytes);
3531 		ret = 0;
3532 	} else if (ref->type == BTRFS_REF_METADATA) {
3533 		ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3534 	} else {
3535 		ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3536 	}
3537 
3538 	if (ref->ref_root != BTRFS_TREE_LOG_OBJECTID)
3539 		btrfs_ref_tree_mod(fs_info, ref);
3540 
3541 	return ret;
3542 }
3543 
3544 enum btrfs_loop_type {
3545 	/*
3546 	 * Start caching block groups but do not wait for progress or for them
3547 	 * to be done.
3548 	 */
3549 	LOOP_CACHING_NOWAIT,
3550 
3551 	/*
3552 	 * Wait for the block group free_space >= the space we're waiting for if
3553 	 * the block group isn't cached.
3554 	 */
3555 	LOOP_CACHING_WAIT,
3556 
3557 	/*
3558 	 * Allow allocations to happen from block groups that do not yet have a
3559 	 * size classification.
3560 	 */
3561 	LOOP_UNSET_SIZE_CLASS,
3562 
3563 	/*
3564 	 * Allocate a chunk and then retry the allocation.
3565 	 */
3566 	LOOP_ALLOC_CHUNK,
3567 
3568 	/*
3569 	 * Ignore the size class restrictions for this allocation.
3570 	 */
3571 	LOOP_WRONG_SIZE_CLASS,
3572 
3573 	/*
3574 	 * Ignore the empty size, only try to allocate the number of bytes
3575 	 * needed for this allocation.
3576 	 */
3577 	LOOP_NO_EMPTY_SIZE,
3578 };
3579 
3580 static inline void
3581 btrfs_lock_block_group(struct btrfs_block_group *cache, bool delalloc)
3582 {
3583 	if (delalloc)
3584 		down_read(&cache->data_rwsem);
3585 }
3586 
3587 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3588 					  bool delalloc)
3589 {
3590 	btrfs_get_block_group(cache);
3591 	if (delalloc)
3592 		down_read(&cache->data_rwsem);
3593 }
3594 
3595 static struct btrfs_block_group *btrfs_lock_cluster(
3596 		   struct btrfs_block_group *block_group,
3597 		   struct btrfs_free_cluster *cluster,
3598 		   bool delalloc)
3599 	__acquires(&cluster->refill_lock)
3600 {
3601 	struct btrfs_block_group *used_bg = NULL;
3602 
3603 	spin_lock(&cluster->refill_lock);
3604 	while (1) {
3605 		used_bg = cluster->block_group;
3606 		if (!used_bg)
3607 			return NULL;
3608 
3609 		if (used_bg == block_group)
3610 			return used_bg;
3611 
3612 		btrfs_get_block_group(used_bg);
3613 
3614 		if (!delalloc)
3615 			return used_bg;
3616 
3617 		if (down_read_trylock(&used_bg->data_rwsem))
3618 			return used_bg;
3619 
3620 		spin_unlock(&cluster->refill_lock);
3621 
3622 		/* We should only have one-level nested. */
3623 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3624 
3625 		spin_lock(&cluster->refill_lock);
3626 		if (used_bg == cluster->block_group)
3627 			return used_bg;
3628 
3629 		up_read(&used_bg->data_rwsem);
3630 		btrfs_put_block_group(used_bg);
3631 	}
3632 }
3633 
3634 static inline void
3635 btrfs_release_block_group(struct btrfs_block_group *cache, bool delalloc)
3636 {
3637 	if (delalloc)
3638 		up_read(&cache->data_rwsem);
3639 	btrfs_put_block_group(cache);
3640 }
3641 
3642 static bool find_free_extent_check_size_class(const struct find_free_extent_ctl *ffe_ctl,
3643 					      const struct btrfs_block_group *bg)
3644 {
3645 	if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
3646 		return true;
3647 	if (!btrfs_block_group_should_use_size_class(bg))
3648 		return true;
3649 	if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
3650 		return true;
3651 	if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
3652 	    bg->size_class == BTRFS_BG_SZ_NONE)
3653 		return true;
3654 	return ffe_ctl->size_class == bg->size_class;
3655 }
3656 
3657 /*
3658  * Helper function for find_free_extent().
3659  *
3660  * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3661  * Return >0 to inform caller that we find nothing
3662  * Return 0 means we have found a location and set ffe_ctl->found_offset.
3663  */
3664 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3665 				      struct find_free_extent_ctl *ffe_ctl,
3666 				      struct btrfs_block_group **cluster_bg_ret)
3667 {
3668 	struct btrfs_block_group *cluster_bg;
3669 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3670 	u64 aligned_cluster;
3671 	u64 offset;
3672 	int ret;
3673 
3674 	cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3675 	if (!cluster_bg)
3676 		goto refill_cluster;
3677 	if (cluster_bg != bg && (cluster_bg->ro ||
3678 	    !block_group_bits(cluster_bg, ffe_ctl->flags) ||
3679 	    !find_free_extent_check_size_class(ffe_ctl, cluster_bg)))
3680 		goto release_cluster;
3681 
3682 	offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3683 			ffe_ctl->num_bytes, cluster_bg->start,
3684 			&ffe_ctl->max_extent_size);
3685 	if (offset) {
3686 		/* We have a block, we're done */
3687 		spin_unlock(&last_ptr->refill_lock);
3688 		trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3689 		*cluster_bg_ret = cluster_bg;
3690 		ffe_ctl->found_offset = offset;
3691 		return 0;
3692 	}
3693 	WARN_ON(last_ptr->block_group != cluster_bg);
3694 
3695 release_cluster:
3696 	/*
3697 	 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3698 	 * lets just skip it and let the allocator find whatever block it can
3699 	 * find. If we reach this point, we will have tried the cluster
3700 	 * allocator plenty of times and not have found anything, so we are
3701 	 * likely way too fragmented for the clustering stuff to find anything.
3702 	 *
3703 	 * However, if the cluster is taken from the current block group,
3704 	 * release the cluster first, so that we stand a better chance of
3705 	 * succeeding in the unclustered allocation.
3706 	 */
3707 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3708 		spin_unlock(&last_ptr->refill_lock);
3709 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3710 		return -ENOENT;
3711 	}
3712 
3713 	/* This cluster didn't work out, free it and start over */
3714 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3715 
3716 	if (cluster_bg != bg)
3717 		btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3718 
3719 refill_cluster:
3720 	if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3721 		spin_unlock(&last_ptr->refill_lock);
3722 		return -ENOENT;
3723 	}
3724 
3725 	aligned_cluster = max_t(u64,
3726 			ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3727 			bg->full_stripe_len);
3728 	ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3729 			ffe_ctl->num_bytes, aligned_cluster);
3730 	if (ret == 0) {
3731 		/* Now pull our allocation out of this cluster */
3732 		offset = btrfs_alloc_from_cluster(bg, last_ptr,
3733 				ffe_ctl->num_bytes, ffe_ctl->search_start,
3734 				&ffe_ctl->max_extent_size);
3735 		if (offset) {
3736 			/* We found one, proceed */
3737 			spin_unlock(&last_ptr->refill_lock);
3738 			ffe_ctl->found_offset = offset;
3739 			trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3740 			return 0;
3741 		}
3742 	}
3743 	/*
3744 	 * At this point we either didn't find a cluster or we weren't able to
3745 	 * allocate a block from our cluster.  Free the cluster we've been
3746 	 * trying to use, and go to the next block group.
3747 	 */
3748 	btrfs_return_cluster_to_free_space(NULL, last_ptr);
3749 	spin_unlock(&last_ptr->refill_lock);
3750 	return 1;
3751 }
3752 
3753 /*
3754  * Return >0 to inform caller that we find nothing
3755  * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3756  */
3757 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3758 					struct find_free_extent_ctl *ffe_ctl)
3759 {
3760 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3761 	u64 offset;
3762 
3763 	/*
3764 	 * We are doing an unclustered allocation, set the fragmented flag so
3765 	 * we don't bother trying to setup a cluster again until we get more
3766 	 * space.
3767 	 */
3768 	if (unlikely(last_ptr)) {
3769 		spin_lock(&last_ptr->lock);
3770 		last_ptr->fragmented = 1;
3771 		spin_unlock(&last_ptr->lock);
3772 	}
3773 	if (ffe_ctl->cached) {
3774 		struct btrfs_free_space_ctl *free_space_ctl;
3775 
3776 		free_space_ctl = bg->free_space_ctl;
3777 		spin_lock(&free_space_ctl->tree_lock);
3778 		if (free_space_ctl->free_space <
3779 		    ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3780 		    ffe_ctl->empty_size) {
3781 			ffe_ctl->total_free_space = max_t(u64,
3782 					ffe_ctl->total_free_space,
3783 					free_space_ctl->free_space);
3784 			spin_unlock(&free_space_ctl->tree_lock);
3785 			return 1;
3786 		}
3787 		spin_unlock(&free_space_ctl->tree_lock);
3788 	}
3789 
3790 	offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3791 			ffe_ctl->num_bytes, ffe_ctl->empty_size,
3792 			&ffe_ctl->max_extent_size);
3793 	if (!offset)
3794 		return 1;
3795 	ffe_ctl->found_offset = offset;
3796 	return 0;
3797 }
3798 
3799 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3800 				   struct find_free_extent_ctl *ffe_ctl,
3801 				   struct btrfs_block_group **bg_ret)
3802 {
3803 	int ret;
3804 
3805 	/* We want to try and use the cluster allocator, so lets look there */
3806 	if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3807 		ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3808 		if (ret >= 0)
3809 			return ret;
3810 		/* ret == -ENOENT case falls through */
3811 	}
3812 
3813 	return find_free_extent_unclustered(block_group, ffe_ctl);
3814 }
3815 
3816 /*
3817  * Tree-log block group locking
3818  * ============================
3819  *
3820  * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3821  * indicates the starting address of a block group, which is reserved only
3822  * for tree-log metadata.
3823  *
3824  * Lock nesting
3825  * ============
3826  *
3827  * space_info::lock
3828  *   block_group::lock
3829  *     fs_info::treelog_bg_lock
3830  */
3831 
3832 /*
3833  * Simple allocator for sequential-only block group. It only allows sequential
3834  * allocation. No need to play with trees. This function also reserves the
3835  * bytes as in btrfs_add_reserved_bytes.
3836  */
3837 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3838 			       struct find_free_extent_ctl *ffe_ctl,
3839 			       struct btrfs_block_group **bg_ret)
3840 {
3841 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3842 	struct btrfs_space_info *space_info = block_group->space_info;
3843 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3844 	u64 start = block_group->start;
3845 	u64 num_bytes = ffe_ctl->num_bytes;
3846 	u64 avail;
3847 	u64 bytenr = block_group->start;
3848 	u64 log_bytenr;
3849 	u64 data_reloc_bytenr;
3850 	int ret = 0;
3851 	bool skip = false;
3852 
3853 	ASSERT(btrfs_is_zoned(block_group->fs_info));
3854 
3855 	/*
3856 	 * Do not allow non-tree-log blocks in the dedicated tree-log block
3857 	 * group, and vice versa.
3858 	 */
3859 	spin_lock(&fs_info->treelog_bg_lock);
3860 	log_bytenr = fs_info->treelog_bg;
3861 	if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3862 			   (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3863 		skip = true;
3864 	spin_unlock(&fs_info->treelog_bg_lock);
3865 	if (skip)
3866 		return 1;
3867 
3868 	/*
3869 	 * Do not allow non-relocation blocks in the dedicated relocation block
3870 	 * group, and vice versa.
3871 	 */
3872 	spin_lock(&fs_info->relocation_bg_lock);
3873 	data_reloc_bytenr = fs_info->data_reloc_bg;
3874 	if (data_reloc_bytenr &&
3875 	    ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3876 	     (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3877 		skip = true;
3878 	spin_unlock(&fs_info->relocation_bg_lock);
3879 	if (skip)
3880 		return 1;
3881 
3882 	/* Check RO and no space case before trying to activate it */
3883 	spin_lock(&block_group->lock);
3884 	if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3885 		ret = 1;
3886 		/*
3887 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3888 		 * Return the error after taking the locks.
3889 		 */
3890 	}
3891 	spin_unlock(&block_group->lock);
3892 
3893 	/* Metadata block group is activated at write time. */
3894 	if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3895 	    !btrfs_zone_activate(block_group)) {
3896 		ret = 1;
3897 		/*
3898 		 * May need to clear fs_info->{treelog,data_reloc}_bg.
3899 		 * Return the error after taking the locks.
3900 		 */
3901 	}
3902 
3903 	spin_lock(&space_info->lock);
3904 	spin_lock(&block_group->lock);
3905 	spin_lock(&fs_info->treelog_bg_lock);
3906 	spin_lock(&fs_info->relocation_bg_lock);
3907 
3908 	if (ret)
3909 		goto out;
3910 
3911 	ASSERT(!ffe_ctl->for_treelog ||
3912 	       block_group->start == fs_info->treelog_bg ||
3913 	       fs_info->treelog_bg == 0);
3914 	ASSERT(!ffe_ctl->for_data_reloc ||
3915 	       block_group->start == fs_info->data_reloc_bg ||
3916 	       fs_info->data_reloc_bg == 0);
3917 
3918 	if (block_group->ro ||
3919 	    (!ffe_ctl->for_data_reloc &&
3920 	     test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3921 		ret = 1;
3922 		goto out;
3923 	}
3924 
3925 	/*
3926 	 * Do not allow currently using block group to be tree-log dedicated
3927 	 * block group.
3928 	 */
3929 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3930 	    (block_group->used || block_group->reserved)) {
3931 		ret = 1;
3932 		goto out;
3933 	}
3934 
3935 	/*
3936 	 * Do not allow currently used block group to be the data relocation
3937 	 * dedicated block group.
3938 	 */
3939 	if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3940 	    (block_group->used || block_group->reserved)) {
3941 		ret = 1;
3942 		goto out;
3943 	}
3944 
3945 	WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3946 	avail = block_group->zone_capacity - block_group->alloc_offset;
3947 	if (avail < num_bytes) {
3948 		if (ffe_ctl->max_extent_size < avail) {
3949 			/*
3950 			 * With sequential allocator, free space is always
3951 			 * contiguous
3952 			 */
3953 			ffe_ctl->max_extent_size = avail;
3954 			ffe_ctl->total_free_space = avail;
3955 		}
3956 		ret = 1;
3957 		goto out;
3958 	}
3959 
3960 	if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3961 		fs_info->treelog_bg = block_group->start;
3962 
3963 	if (ffe_ctl->for_data_reloc) {
3964 		if (!fs_info->data_reloc_bg)
3965 			fs_info->data_reloc_bg = block_group->start;
3966 		/*
3967 		 * Do not allow allocations from this block group, unless it is
3968 		 * for data relocation. Compared to increasing the ->ro, setting
3969 		 * the ->zoned_data_reloc_ongoing flag still allows nocow
3970 		 * writers to come in. See btrfs_inc_nocow_writers().
3971 		 *
3972 		 * We need to disable an allocation to avoid an allocation of
3973 		 * regular (non-relocation data) extent. With mix of relocation
3974 		 * extents and regular extents, we can dispatch WRITE commands
3975 		 * (for relocation extents) and ZONE APPEND commands (for
3976 		 * regular extents) at the same time to the same zone, which
3977 		 * easily break the write pointer.
3978 		 *
3979 		 * Also, this flag avoids this block group to be zone finished.
3980 		 */
3981 		set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3982 	}
3983 
3984 	ffe_ctl->found_offset = start + block_group->alloc_offset;
3985 	block_group->alloc_offset += num_bytes;
3986 	spin_lock(&ctl->tree_lock);
3987 	ctl->free_space -= num_bytes;
3988 	spin_unlock(&ctl->tree_lock);
3989 
3990 	/*
3991 	 * We do not check if found_offset is aligned to stripesize. The
3992 	 * address is anyway rewritten when using zone append writing.
3993 	 */
3994 
3995 	ffe_ctl->search_start = ffe_ctl->found_offset;
3996 
3997 out:
3998 	if (ret && ffe_ctl->for_treelog)
3999 		fs_info->treelog_bg = 0;
4000 	if (ret && ffe_ctl->for_data_reloc)
4001 		fs_info->data_reloc_bg = 0;
4002 	spin_unlock(&fs_info->relocation_bg_lock);
4003 	spin_unlock(&fs_info->treelog_bg_lock);
4004 	spin_unlock(&block_group->lock);
4005 	spin_unlock(&space_info->lock);
4006 	return ret;
4007 }
4008 
4009 static int do_allocation(struct btrfs_block_group *block_group,
4010 			 struct find_free_extent_ctl *ffe_ctl,
4011 			 struct btrfs_block_group **bg_ret)
4012 {
4013 	switch (ffe_ctl->policy) {
4014 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4015 		return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
4016 	case BTRFS_EXTENT_ALLOC_ZONED:
4017 		return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
4018 	default:
4019 		BUG();
4020 	}
4021 }
4022 
4023 static void release_block_group(struct btrfs_block_group *block_group,
4024 				struct find_free_extent_ctl *ffe_ctl,
4025 				bool delalloc)
4026 {
4027 	switch (ffe_ctl->policy) {
4028 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4029 		ffe_ctl->retry_uncached = false;
4030 		break;
4031 	case BTRFS_EXTENT_ALLOC_ZONED:
4032 		/* Nothing to do */
4033 		break;
4034 	default:
4035 		BUG();
4036 	}
4037 
4038 	BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4039 	       ffe_ctl->index);
4040 	btrfs_release_block_group(block_group, delalloc);
4041 }
4042 
4043 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4044 				   struct btrfs_key *ins)
4045 {
4046 	struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4047 
4048 	if (!ffe_ctl->use_cluster && last_ptr) {
4049 		spin_lock(&last_ptr->lock);
4050 		last_ptr->window_start = ins->objectid;
4051 		spin_unlock(&last_ptr->lock);
4052 	}
4053 }
4054 
4055 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4056 			 struct btrfs_key *ins)
4057 {
4058 	switch (ffe_ctl->policy) {
4059 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4060 		found_extent_clustered(ffe_ctl, ins);
4061 		break;
4062 	case BTRFS_EXTENT_ALLOC_ZONED:
4063 		/* Nothing to do */
4064 		break;
4065 	default:
4066 		BUG();
4067 	}
4068 }
4069 
4070 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4071 				    struct find_free_extent_ctl *ffe_ctl)
4072 {
4073 	/* Block group's activeness is not a requirement for METADATA block groups. */
4074 	if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4075 		return 0;
4076 
4077 	/* If we can activate new zone, just allocate a chunk and use it */
4078 	if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
4079 		return 0;
4080 
4081 	/*
4082 	 * We already reached the max active zones. Try to finish one block
4083 	 * group to make a room for a new block group. This is only possible
4084 	 * for a data block group because btrfs_zone_finish() may need to wait
4085 	 * for a running transaction which can cause a deadlock for metadata
4086 	 * allocation.
4087 	 */
4088 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4089 		int ret = btrfs_zone_finish_one_bg(fs_info);
4090 
4091 		if (ret == 1)
4092 			return 0;
4093 		else if (ret < 0)
4094 			return ret;
4095 	}
4096 
4097 	/*
4098 	 * If we have enough free space left in an already active block group
4099 	 * and we can't activate any other zone now, do not allow allocating a
4100 	 * new chunk and let find_free_extent() retry with a smaller size.
4101 	 */
4102 	if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4103 		return -ENOSPC;
4104 
4105 	/*
4106 	 * Even min_alloc_size is not left in any block groups. Since we cannot
4107 	 * activate a new block group, allocating it may not help. Let's tell a
4108 	 * caller to try again and hope it progress something by writing some
4109 	 * parts of the region. That is only possible for data block groups,
4110 	 * where a part of the region can be written.
4111 	 */
4112 	if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4113 		return -EAGAIN;
4114 
4115 	/*
4116 	 * We cannot activate a new block group and no enough space left in any
4117 	 * block groups. So, allocating a new block group may not help. But,
4118 	 * there is nothing to do anyway, so let's go with it.
4119 	 */
4120 	return 0;
4121 }
4122 
4123 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4124 			      struct find_free_extent_ctl *ffe_ctl)
4125 {
4126 	switch (ffe_ctl->policy) {
4127 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4128 		return 0;
4129 	case BTRFS_EXTENT_ALLOC_ZONED:
4130 		return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4131 	default:
4132 		BUG();
4133 	}
4134 }
4135 
4136 /*
4137  * Return >0 means caller needs to re-search for free extent
4138  * Return 0 means we have the needed free extent.
4139  * Return <0 means we failed to locate any free extent.
4140  */
4141 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4142 					struct btrfs_key *ins,
4143 					struct find_free_extent_ctl *ffe_ctl,
4144 					struct btrfs_space_info *space_info,
4145 					bool full_search)
4146 {
4147 	struct btrfs_root *root = fs_info->chunk_root;
4148 	int ret;
4149 
4150 	if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4151 	    ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4152 		ffe_ctl->orig_have_caching_bg = true;
4153 
4154 	if (ins->objectid) {
4155 		found_extent(ffe_ctl, ins);
4156 		return 0;
4157 	}
4158 
4159 	if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4160 		return 1;
4161 
4162 	ffe_ctl->index++;
4163 	if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4164 		return 1;
4165 
4166 	/* See the comments for btrfs_loop_type for an explanation of the phases. */
4167 	if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4168 		ffe_ctl->index = 0;
4169 		/*
4170 		 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4171 		 * any uncached bgs and we've already done a full search
4172 		 * through.
4173 		 */
4174 		if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4175 		    (!ffe_ctl->orig_have_caching_bg && full_search))
4176 			ffe_ctl->loop++;
4177 		ffe_ctl->loop++;
4178 
4179 		if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4180 			struct btrfs_trans_handle *trans;
4181 			int exist = 0;
4182 
4183 			/* Check if allocation policy allows to create a new chunk */
4184 			ret = can_allocate_chunk(fs_info, ffe_ctl);
4185 			if (ret)
4186 				return ret;
4187 
4188 			trans = current->journal_info;
4189 			if (trans)
4190 				exist = 1;
4191 			else
4192 				trans = btrfs_join_transaction(root);
4193 
4194 			if (IS_ERR(trans)) {
4195 				ret = PTR_ERR(trans);
4196 				return ret;
4197 			}
4198 
4199 			ret = btrfs_chunk_alloc(trans, space_info, ffe_ctl->flags,
4200 						CHUNK_ALLOC_FORCE_FOR_EXTENT);
4201 
4202 			/* Do not bail out on ENOSPC since we can do more. */
4203 			if (ret == -ENOSPC) {
4204 				ret = 0;
4205 				ffe_ctl->loop++;
4206 			}
4207 			else if (ret < 0)
4208 				btrfs_abort_transaction(trans, ret);
4209 			else
4210 				ret = 0;
4211 			if (!exist)
4212 				btrfs_end_transaction(trans);
4213 			if (ret)
4214 				return ret;
4215 		}
4216 
4217 		if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4218 			if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4219 				return -ENOSPC;
4220 
4221 			/*
4222 			 * Don't loop again if we already have no empty_size and
4223 			 * no empty_cluster.
4224 			 */
4225 			if (ffe_ctl->empty_size == 0 &&
4226 			    ffe_ctl->empty_cluster == 0)
4227 				return -ENOSPC;
4228 			ffe_ctl->empty_size = 0;
4229 			ffe_ctl->empty_cluster = 0;
4230 		}
4231 		return 1;
4232 	}
4233 	return -ENOSPC;
4234 }
4235 
4236 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4237 					struct find_free_extent_ctl *ffe_ctl,
4238 					struct btrfs_space_info *space_info,
4239 					struct btrfs_key *ins)
4240 {
4241 	/*
4242 	 * If our free space is heavily fragmented we may not be able to make
4243 	 * big contiguous allocations, so instead of doing the expensive search
4244 	 * for free space, simply return ENOSPC with our max_extent_size so we
4245 	 * can go ahead and search for a more manageable chunk.
4246 	 *
4247 	 * If our max_extent_size is large enough for our allocation simply
4248 	 * disable clustering since we will likely not be able to find enough
4249 	 * space to create a cluster and induce latency trying.
4250 	 */
4251 	if (space_info->max_extent_size) {
4252 		spin_lock(&space_info->lock);
4253 		if (space_info->max_extent_size &&
4254 		    ffe_ctl->num_bytes > space_info->max_extent_size) {
4255 			ins->offset = space_info->max_extent_size;
4256 			spin_unlock(&space_info->lock);
4257 			return -ENOSPC;
4258 		} else if (space_info->max_extent_size) {
4259 			ffe_ctl->use_cluster = false;
4260 		}
4261 		spin_unlock(&space_info->lock);
4262 	}
4263 
4264 	ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4265 					       &ffe_ctl->empty_cluster);
4266 	if (ffe_ctl->last_ptr) {
4267 		struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4268 
4269 		spin_lock(&last_ptr->lock);
4270 		if (last_ptr->block_group)
4271 			ffe_ctl->hint_byte = last_ptr->window_start;
4272 		if (last_ptr->fragmented) {
4273 			/*
4274 			 * We still set window_start so we can keep track of the
4275 			 * last place we found an allocation to try and save
4276 			 * some time.
4277 			 */
4278 			ffe_ctl->hint_byte = last_ptr->window_start;
4279 			ffe_ctl->use_cluster = false;
4280 		}
4281 		spin_unlock(&last_ptr->lock);
4282 	}
4283 
4284 	return 0;
4285 }
4286 
4287 static int prepare_allocation_zoned(struct btrfs_fs_info *fs_info,
4288 				    struct find_free_extent_ctl *ffe_ctl,
4289 				    struct btrfs_space_info *space_info)
4290 {
4291 	if (ffe_ctl->for_treelog) {
4292 		spin_lock(&fs_info->treelog_bg_lock);
4293 		if (fs_info->treelog_bg)
4294 			ffe_ctl->hint_byte = fs_info->treelog_bg;
4295 		spin_unlock(&fs_info->treelog_bg_lock);
4296 	} else if (ffe_ctl->for_data_reloc) {
4297 		spin_lock(&fs_info->relocation_bg_lock);
4298 		if (fs_info->data_reloc_bg)
4299 			ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4300 		spin_unlock(&fs_info->relocation_bg_lock);
4301 	} else if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4302 		struct btrfs_block_group *block_group;
4303 
4304 		spin_lock(&fs_info->zone_active_bgs_lock);
4305 		list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
4306 			/*
4307 			 * No lock is OK here because avail is monotonically
4308 			 * decreasing, and this is just a hint.
4309 			 */
4310 			u64 avail = block_group->zone_capacity - block_group->alloc_offset;
4311 
4312 			if (block_group_bits(block_group, ffe_ctl->flags) &&
4313 			    block_group->space_info == space_info &&
4314 			    avail >= ffe_ctl->num_bytes) {
4315 				ffe_ctl->hint_byte = block_group->start;
4316 				break;
4317 			}
4318 		}
4319 		spin_unlock(&fs_info->zone_active_bgs_lock);
4320 	}
4321 
4322 	return 0;
4323 }
4324 
4325 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4326 			      struct find_free_extent_ctl *ffe_ctl,
4327 			      struct btrfs_space_info *space_info,
4328 			      struct btrfs_key *ins)
4329 {
4330 	switch (ffe_ctl->policy) {
4331 	case BTRFS_EXTENT_ALLOC_CLUSTERED:
4332 		return prepare_allocation_clustered(fs_info, ffe_ctl,
4333 						    space_info, ins);
4334 	case BTRFS_EXTENT_ALLOC_ZONED:
4335 		return prepare_allocation_zoned(fs_info, ffe_ctl, space_info);
4336 	default:
4337 		BUG();
4338 	}
4339 }
4340 
4341 /*
4342  * walks the btree of allocated extents and find a hole of a given size.
4343  * The key ins is changed to record the hole:
4344  * ins->objectid == start position
4345  * ins->flags = BTRFS_EXTENT_ITEM_KEY
4346  * ins->offset == the size of the hole.
4347  * Any available blocks before search_start are skipped.
4348  *
4349  * If there is no suitable free space, we will record the max size of
4350  * the free space extent currently.
4351  *
4352  * The overall logic and call chain:
4353  *
4354  * find_free_extent()
4355  * |- Iterate through all block groups
4356  * |  |- Get a valid block group
4357  * |  |- Try to do clustered allocation in that block group
4358  * |  |- Try to do unclustered allocation in that block group
4359  * |  |- Check if the result is valid
4360  * |  |  |- If valid, then exit
4361  * |  |- Jump to next block group
4362  * |
4363  * |- Push harder to find free extents
4364  *    |- If not found, re-iterate all block groups
4365  */
4366 static noinline int find_free_extent(struct btrfs_root *root,
4367 				     struct btrfs_key *ins,
4368 				     struct find_free_extent_ctl *ffe_ctl)
4369 {
4370 	struct btrfs_fs_info *fs_info = root->fs_info;
4371 	int ret = 0;
4372 	int cache_block_group_error = 0;
4373 	struct btrfs_block_group *block_group = NULL;
4374 	struct btrfs_space_info *space_info;
4375 	bool full_search = false;
4376 
4377 	WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4378 
4379 	ffe_ctl->search_start = 0;
4380 	/* For clustered allocation */
4381 	ffe_ctl->empty_cluster = 0;
4382 	ffe_ctl->last_ptr = NULL;
4383 	ffe_ctl->use_cluster = true;
4384 	ffe_ctl->have_caching_bg = false;
4385 	ffe_ctl->orig_have_caching_bg = false;
4386 	ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4387 	ffe_ctl->loop = 0;
4388 	ffe_ctl->retry_uncached = false;
4389 	ffe_ctl->cached = 0;
4390 	ffe_ctl->max_extent_size = 0;
4391 	ffe_ctl->total_free_space = 0;
4392 	ffe_ctl->found_offset = 0;
4393 	ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4394 	ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4395 
4396 	if (btrfs_is_zoned(fs_info))
4397 		ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4398 
4399 	ins->type = BTRFS_EXTENT_ITEM_KEY;
4400 	ins->objectid = 0;
4401 	ins->offset = 0;
4402 
4403 	trace_btrfs_find_free_extent(root, ffe_ctl);
4404 
4405 	space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4406 	if (btrfs_is_zoned(fs_info) && space_info) {
4407 		/* Use dedicated sub-space_info for dedicated block group users. */
4408 		if (ffe_ctl->for_data_reloc) {
4409 			space_info = space_info->sub_group[0];
4410 			ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_DATA_RELOC);
4411 		} else if (ffe_ctl->for_treelog) {
4412 			space_info = space_info->sub_group[0];
4413 			ASSERT(space_info->subgroup_id == BTRFS_SUB_GROUP_TREELOG);
4414 		}
4415 	}
4416 	if (!space_info) {
4417 		btrfs_err(fs_info, "no space info for %llu, tree-log %d, relocation %d",
4418 			  ffe_ctl->flags, ffe_ctl->for_treelog, ffe_ctl->for_data_reloc);
4419 		return -ENOSPC;
4420 	}
4421 
4422 	ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4423 	if (ret < 0)
4424 		return ret;
4425 
4426 	ffe_ctl->search_start = max(ffe_ctl->search_start,
4427 				    first_logical_byte(fs_info));
4428 	ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4429 	if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4430 		block_group = btrfs_lookup_block_group(fs_info,
4431 						       ffe_ctl->search_start);
4432 		/*
4433 		 * we don't want to use the block group if it doesn't match our
4434 		 * allocation bits, or if its not cached.
4435 		 *
4436 		 * However if we are re-searching with an ideal block group
4437 		 * picked out then we don't care that the block group is cached.
4438 		 */
4439 		if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4440 		    block_group->space_info == space_info &&
4441 		    block_group->cached != BTRFS_CACHE_NO) {
4442 			down_read(&space_info->groups_sem);
4443 			if (list_empty(&block_group->list) ||
4444 			    block_group->ro) {
4445 				/*
4446 				 * someone is removing this block group,
4447 				 * we can't jump into the have_block_group
4448 				 * target because our list pointers are not
4449 				 * valid
4450 				 */
4451 				btrfs_put_block_group(block_group);
4452 				up_read(&space_info->groups_sem);
4453 			} else {
4454 				ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4455 							block_group->flags);
4456 				btrfs_lock_block_group(block_group,
4457 						       ffe_ctl->delalloc);
4458 				ffe_ctl->hinted = true;
4459 				goto have_block_group;
4460 			}
4461 		} else if (block_group) {
4462 			btrfs_put_block_group(block_group);
4463 		}
4464 	}
4465 search:
4466 	trace_btrfs_find_free_extent_search_loop(root, ffe_ctl);
4467 	ffe_ctl->have_caching_bg = false;
4468 	if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4469 	    ffe_ctl->index == 0)
4470 		full_search = true;
4471 	down_read(&space_info->groups_sem);
4472 	list_for_each_entry(block_group,
4473 			    &space_info->block_groups[ffe_ctl->index], list) {
4474 		struct btrfs_block_group *bg_ret;
4475 
4476 		ffe_ctl->hinted = false;
4477 		/* If the block group is read-only, we can skip it entirely. */
4478 		if (unlikely(block_group->ro)) {
4479 			if (ffe_ctl->for_treelog)
4480 				btrfs_clear_treelog_bg(block_group);
4481 			if (ffe_ctl->for_data_reloc)
4482 				btrfs_clear_data_reloc_bg(block_group);
4483 			continue;
4484 		}
4485 
4486 		btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4487 		ffe_ctl->search_start = block_group->start;
4488 
4489 		/*
4490 		 * this can happen if we end up cycling through all the
4491 		 * raid types, but we want to make sure we only allocate
4492 		 * for the proper type.
4493 		 */
4494 		if (!block_group_bits(block_group, ffe_ctl->flags)) {
4495 			u64 extra = BTRFS_BLOCK_GROUP_DUP |
4496 				BTRFS_BLOCK_GROUP_RAID1_MASK |
4497 				BTRFS_BLOCK_GROUP_RAID56_MASK |
4498 				BTRFS_BLOCK_GROUP_RAID10;
4499 
4500 			/*
4501 			 * if they asked for extra copies and this block group
4502 			 * doesn't provide them, bail.  This does allow us to
4503 			 * fill raid0 from raid1.
4504 			 */
4505 			if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4506 				goto loop;
4507 
4508 			/*
4509 			 * This block group has different flags than we want.
4510 			 * It's possible that we have MIXED_GROUP flag but no
4511 			 * block group is mixed.  Just skip such block group.
4512 			 */
4513 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4514 			continue;
4515 		}
4516 
4517 have_block_group:
4518 		trace_btrfs_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4519 		ffe_ctl->cached = btrfs_block_group_done(block_group);
4520 		if (unlikely(!ffe_ctl->cached)) {
4521 			ffe_ctl->have_caching_bg = true;
4522 			ret = btrfs_cache_block_group(block_group, false);
4523 
4524 			/*
4525 			 * If we get ENOMEM here or something else we want to
4526 			 * try other block groups, because it may not be fatal.
4527 			 * However if we can't find anything else we need to
4528 			 * save our return here so that we return the actual
4529 			 * error that caused problems, not ENOSPC.
4530 			 */
4531 			if (ret < 0) {
4532 				if (!cache_block_group_error)
4533 					cache_block_group_error = ret;
4534 				ret = 0;
4535 				goto loop;
4536 			}
4537 			ret = 0;
4538 		}
4539 
4540 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4541 			if (!cache_block_group_error)
4542 				cache_block_group_error = -EIO;
4543 			goto loop;
4544 		}
4545 
4546 		if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4547 			goto loop;
4548 
4549 		bg_ret = NULL;
4550 		ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4551 		if (ret > 0)
4552 			goto loop;
4553 
4554 		if (bg_ret && bg_ret != block_group) {
4555 			btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4556 			block_group = bg_ret;
4557 		}
4558 
4559 		/* Checks */
4560 		ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4561 						 fs_info->stripesize);
4562 
4563 		/* move on to the next group */
4564 		if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4565 		    block_group->start + block_group->length) {
4566 			btrfs_add_free_space_unused(block_group,
4567 					    ffe_ctl->found_offset,
4568 					    ffe_ctl->num_bytes);
4569 			goto loop;
4570 		}
4571 
4572 		if (ffe_ctl->found_offset < ffe_ctl->search_start)
4573 			btrfs_add_free_space_unused(block_group,
4574 					ffe_ctl->found_offset,
4575 					ffe_ctl->search_start - ffe_ctl->found_offset);
4576 
4577 		ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4578 					       ffe_ctl->num_bytes,
4579 					       ffe_ctl->delalloc,
4580 					       ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4581 		if (ret == -EAGAIN) {
4582 			btrfs_add_free_space_unused(block_group,
4583 					ffe_ctl->found_offset,
4584 					ffe_ctl->num_bytes);
4585 			goto loop;
4586 		}
4587 		btrfs_inc_block_group_reservations(block_group);
4588 
4589 		/* we are all good, lets return */
4590 		ins->objectid = ffe_ctl->search_start;
4591 		ins->offset = ffe_ctl->num_bytes;
4592 
4593 		trace_btrfs_reserve_extent(block_group, ffe_ctl);
4594 		btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4595 		break;
4596 loop:
4597 		if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4598 		    !ffe_ctl->retry_uncached) {
4599 			ffe_ctl->retry_uncached = true;
4600 			btrfs_wait_block_group_cache_progress(block_group,
4601 						ffe_ctl->num_bytes +
4602 						ffe_ctl->empty_cluster +
4603 						ffe_ctl->empty_size);
4604 			goto have_block_group;
4605 		}
4606 		release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4607 		cond_resched();
4608 	}
4609 	up_read(&space_info->groups_sem);
4610 
4611 	ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, space_info,
4612 					   full_search);
4613 	if (ret > 0)
4614 		goto search;
4615 
4616 	if (ret == -ENOSPC && !cache_block_group_error) {
4617 		/*
4618 		 * Use ffe_ctl->total_free_space as fallback if we can't find
4619 		 * any contiguous hole.
4620 		 */
4621 		if (!ffe_ctl->max_extent_size)
4622 			ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4623 		spin_lock(&space_info->lock);
4624 		space_info->max_extent_size = ffe_ctl->max_extent_size;
4625 		spin_unlock(&space_info->lock);
4626 		ins->offset = ffe_ctl->max_extent_size;
4627 	} else if (ret == -ENOSPC) {
4628 		ret = cache_block_group_error;
4629 	}
4630 	return ret;
4631 }
4632 
4633 /*
4634  * Entry point to the extent allocator. Tries to find a hole that is at least
4635  * as big as @num_bytes.
4636  *
4637  * @root           -	The root that will contain this extent
4638  *
4639  * @ram_bytes      -	The amount of space in ram that @num_bytes take. This
4640  *			is used for accounting purposes. This value differs
4641  *			from @num_bytes only in the case of compressed extents.
4642  *
4643  * @num_bytes      -	Number of bytes to allocate on-disk.
4644  *
4645  * @min_alloc_size -	Indicates the minimum amount of space that the
4646  *			allocator should try to satisfy. In some cases
4647  *			@num_bytes may be larger than what is required and if
4648  *			the filesystem is fragmented then allocation fails.
4649  *			However, the presence of @min_alloc_size gives a
4650  *			chance to try and satisfy the smaller allocation.
4651  *
4652  * @empty_size     -	A hint that you plan on doing more COW. This is the
4653  *			size in bytes the allocator should try to find free
4654  *			next to the block it returns.  This is just a hint and
4655  *			may be ignored by the allocator.
4656  *
4657  * @hint_byte      -	Hint to the allocator to start searching above the byte
4658  *			address passed. It might be ignored.
4659  *
4660  * @ins            -	This key is modified to record the found hole. It will
4661  *			have the following values:
4662  *			ins->objectid == start position
4663  *			ins->flags = BTRFS_EXTENT_ITEM_KEY
4664  *			ins->offset == the size of the hole.
4665  *
4666  * @is_data        -	Boolean flag indicating whether an extent is
4667  *			allocated for data (true) or metadata (false)
4668  *
4669  * @delalloc       -	Boolean flag indicating whether this allocation is for
4670  *			delalloc or not. If 'true' data_rwsem of block groups
4671  *			is going to be acquired.
4672  *
4673  *
4674  * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4675  * case -ENOSPC is returned then @ins->offset will contain the size of the
4676  * largest available hole the allocator managed to find.
4677  */
4678 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4679 			 u64 num_bytes, u64 min_alloc_size,
4680 			 u64 empty_size, u64 hint_byte,
4681 			 struct btrfs_key *ins, bool is_data, bool delalloc)
4682 {
4683 	struct btrfs_fs_info *fs_info = root->fs_info;
4684 	struct find_free_extent_ctl ffe_ctl = {};
4685 	bool final_tried = num_bytes == min_alloc_size;
4686 	u64 flags;
4687 	int ret;
4688 	bool for_treelog = (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID);
4689 	bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4690 
4691 	flags = get_alloc_profile_by_root(root, is_data);
4692 again:
4693 	WARN_ON(num_bytes < fs_info->sectorsize);
4694 
4695 	ffe_ctl.ram_bytes = ram_bytes;
4696 	ffe_ctl.num_bytes = num_bytes;
4697 	ffe_ctl.min_alloc_size = min_alloc_size;
4698 	ffe_ctl.empty_size = empty_size;
4699 	ffe_ctl.flags = flags;
4700 	ffe_ctl.delalloc = delalloc;
4701 	ffe_ctl.hint_byte = hint_byte;
4702 	ffe_ctl.for_treelog = for_treelog;
4703 	ffe_ctl.for_data_reloc = for_data_reloc;
4704 
4705 	ret = find_free_extent(root, ins, &ffe_ctl);
4706 	if (!ret && !is_data) {
4707 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4708 	} else if (ret == -ENOSPC) {
4709 		if (!final_tried && ins->offset) {
4710 			num_bytes = min(num_bytes >> 1, ins->offset);
4711 			num_bytes = round_down(num_bytes,
4712 					       fs_info->sectorsize);
4713 			num_bytes = max(num_bytes, min_alloc_size);
4714 			ram_bytes = num_bytes;
4715 			if (num_bytes == min_alloc_size)
4716 				final_tried = true;
4717 			goto again;
4718 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4719 			struct btrfs_space_info *sinfo;
4720 
4721 			sinfo = btrfs_find_space_info(fs_info, flags);
4722 			btrfs_err(fs_info,
4723 	"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4724 				  flags, num_bytes, for_treelog, for_data_reloc);
4725 			if (sinfo)
4726 				btrfs_dump_space_info(sinfo, num_bytes, 1);
4727 		}
4728 	}
4729 
4730 	return ret;
4731 }
4732 
4733 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len,
4734 			       bool is_delalloc)
4735 {
4736 	struct btrfs_block_group *cache;
4737 
4738 	cache = btrfs_lookup_block_group(fs_info, start);
4739 	if (!cache) {
4740 		btrfs_err(fs_info, "Unable to find block group for %llu",
4741 			  start);
4742 		return -ENOSPC;
4743 	}
4744 
4745 	btrfs_add_free_space(cache, start, len);
4746 	btrfs_free_reserved_bytes(cache, len, is_delalloc);
4747 	trace_btrfs_reserved_extent_free(fs_info, start, len);
4748 
4749 	btrfs_put_block_group(cache);
4750 	return 0;
4751 }
4752 
4753 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4754 			      const struct extent_buffer *eb)
4755 {
4756 	struct btrfs_block_group *cache;
4757 	int ret = 0;
4758 
4759 	cache = btrfs_lookup_block_group(trans->fs_info, eb->start);
4760 	if (!cache) {
4761 		btrfs_err(trans->fs_info, "unable to find block group for %llu",
4762 			  eb->start);
4763 		return -ENOSPC;
4764 	}
4765 
4766 	ret = pin_down_extent(trans, cache, eb->start, eb->len, true);
4767 	btrfs_put_block_group(cache);
4768 	return ret;
4769 }
4770 
4771 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4772 				 u64 num_bytes)
4773 {
4774 	struct btrfs_fs_info *fs_info = trans->fs_info;
4775 	int ret;
4776 
4777 	ret = btrfs_remove_from_free_space_tree(trans, bytenr, num_bytes);
4778 	if (ret)
4779 		return ret;
4780 
4781 	ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4782 	if (ret) {
4783 		ASSERT(!ret);
4784 		btrfs_err(fs_info, "update block group failed for %llu %llu",
4785 			  bytenr, num_bytes);
4786 		return ret;
4787 	}
4788 
4789 	trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4790 	return 0;
4791 }
4792 
4793 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4794 				      u64 parent, u64 root_objectid,
4795 				      u64 flags, u64 owner, u64 offset,
4796 				      struct btrfs_key *ins, int ref_mod, u64 oref_root)
4797 {
4798 	struct btrfs_fs_info *fs_info = trans->fs_info;
4799 	struct btrfs_root *extent_root;
4800 	int ret;
4801 	struct btrfs_extent_item *extent_item;
4802 	struct btrfs_extent_owner_ref *oref;
4803 	struct btrfs_extent_inline_ref *iref;
4804 	struct btrfs_path *path;
4805 	struct extent_buffer *leaf;
4806 	int type;
4807 	u32 size;
4808 	const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4809 
4810 	if (parent > 0)
4811 		type = BTRFS_SHARED_DATA_REF_KEY;
4812 	else
4813 		type = BTRFS_EXTENT_DATA_REF_KEY;
4814 
4815 	size = sizeof(*extent_item);
4816 	if (simple_quota)
4817 		size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4818 	size += btrfs_extent_inline_ref_size(type);
4819 
4820 	path = btrfs_alloc_path();
4821 	if (!path)
4822 		return -ENOMEM;
4823 
4824 	extent_root = btrfs_extent_root(fs_info, ins->objectid);
4825 	ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4826 	if (ret) {
4827 		btrfs_free_path(path);
4828 		return ret;
4829 	}
4830 
4831 	leaf = path->nodes[0];
4832 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4833 				     struct btrfs_extent_item);
4834 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4835 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4836 	btrfs_set_extent_flags(leaf, extent_item,
4837 			       flags | BTRFS_EXTENT_FLAG_DATA);
4838 
4839 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4840 	if (simple_quota) {
4841 		btrfs_set_extent_inline_ref_type(leaf, iref, BTRFS_EXTENT_OWNER_REF_KEY);
4842 		oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4843 		btrfs_set_extent_owner_ref_root_id(leaf, oref, oref_root);
4844 		iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4845 	}
4846 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
4847 
4848 	if (parent > 0) {
4849 		struct btrfs_shared_data_ref *ref;
4850 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
4851 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4852 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4853 	} else {
4854 		struct btrfs_extent_data_ref *ref;
4855 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4856 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4857 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4858 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4859 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4860 	}
4861 
4862 	btrfs_free_path(path);
4863 
4864 	return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4865 }
4866 
4867 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4868 				     const struct btrfs_delayed_ref_node *node,
4869 				     struct btrfs_delayed_extent_op *extent_op)
4870 {
4871 	struct btrfs_fs_info *fs_info = trans->fs_info;
4872 	struct btrfs_root *extent_root;
4873 	int ret;
4874 	struct btrfs_extent_item *extent_item;
4875 	struct btrfs_key extent_key;
4876 	struct btrfs_tree_block_info *block_info;
4877 	struct btrfs_extent_inline_ref *iref;
4878 	struct btrfs_path *path;
4879 	struct extent_buffer *leaf;
4880 	u32 size = sizeof(*extent_item) + sizeof(*iref);
4881 	const u64 flags = (extent_op ? extent_op->flags_to_set : 0);
4882 	/* The owner of a tree block is the level. */
4883 	int level = btrfs_delayed_ref_owner(node);
4884 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4885 
4886 	extent_key.objectid = node->bytenr;
4887 	if (skinny_metadata) {
4888 		/* The owner of a tree block is the level. */
4889 		extent_key.offset = level;
4890 		extent_key.type = BTRFS_METADATA_ITEM_KEY;
4891 	} else {
4892 		extent_key.offset = node->num_bytes;
4893 		extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4894 		size += sizeof(*block_info);
4895 	}
4896 
4897 	path = btrfs_alloc_path();
4898 	if (!path)
4899 		return -ENOMEM;
4900 
4901 	extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4902 	ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4903 				      size);
4904 	if (ret) {
4905 		btrfs_free_path(path);
4906 		return ret;
4907 	}
4908 
4909 	leaf = path->nodes[0];
4910 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
4911 				     struct btrfs_extent_item);
4912 	btrfs_set_extent_refs(leaf, extent_item, 1);
4913 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4914 	btrfs_set_extent_flags(leaf, extent_item,
4915 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4916 
4917 	if (skinny_metadata) {
4918 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4919 	} else {
4920 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4921 		btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4922 		btrfs_set_tree_block_level(leaf, block_info, level);
4923 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4924 	}
4925 
4926 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4927 		btrfs_set_extent_inline_ref_type(leaf, iref,
4928 						 BTRFS_SHARED_BLOCK_REF_KEY);
4929 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->parent);
4930 	} else {
4931 		btrfs_set_extent_inline_ref_type(leaf, iref,
4932 						 BTRFS_TREE_BLOCK_REF_KEY);
4933 		btrfs_set_extent_inline_ref_offset(leaf, iref, node->ref_root);
4934 	}
4935 
4936 	btrfs_free_path(path);
4937 
4938 	return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4939 }
4940 
4941 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4942 				     struct btrfs_root *root, u64 owner,
4943 				     u64 offset, u64 ram_bytes,
4944 				     struct btrfs_key *ins)
4945 {
4946 	struct btrfs_ref generic_ref = {
4947 		.action = BTRFS_ADD_DELAYED_EXTENT,
4948 		.bytenr = ins->objectid,
4949 		.num_bytes = ins->offset,
4950 		.owning_root = btrfs_root_id(root),
4951 		.ref_root = btrfs_root_id(root),
4952 	};
4953 
4954 	ASSERT(generic_ref.ref_root != BTRFS_TREE_LOG_OBJECTID);
4955 
4956 	if (btrfs_is_data_reloc_root(root) && btrfs_is_fstree(root->relocation_src_root))
4957 		generic_ref.owning_root = root->relocation_src_root;
4958 
4959 	btrfs_init_data_ref(&generic_ref, owner, offset, 0, false);
4960 	btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4961 
4962 	return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4963 }
4964 
4965 /*
4966  * this is used by the tree logging recovery code.  It records that
4967  * an extent has been allocated and makes sure to clear the free
4968  * space cache bits as well
4969  */
4970 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4971 				   u64 root_objectid, u64 owner, u64 offset,
4972 				   struct btrfs_key *ins)
4973 {
4974 	struct btrfs_fs_info *fs_info = trans->fs_info;
4975 	int ret;
4976 	struct btrfs_block_group *block_group;
4977 	struct btrfs_space_info *space_info;
4978 	const struct btrfs_squota_delta delta = {
4979 		.root = root_objectid,
4980 		.num_bytes = ins->offset,
4981 		.generation = trans->transid,
4982 		.is_data = true,
4983 		.is_inc = true,
4984 	};
4985 
4986 	/*
4987 	 * Mixed block groups will exclude before processing the log so we only
4988 	 * need to do the exclude dance if this fs isn't mixed.
4989 	 */
4990 	if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4991 		ret = __exclude_logged_extent(fs_info, ins->objectid,
4992 					      ins->offset);
4993 		if (ret)
4994 			return ret;
4995 	}
4996 
4997 	block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4998 	if (!block_group)
4999 		return -EINVAL;
5000 
5001 	space_info = block_group->space_info;
5002 	spin_lock(&space_info->lock);
5003 	spin_lock(&block_group->lock);
5004 	space_info->bytes_reserved += ins->offset;
5005 	block_group->reserved += ins->offset;
5006 	spin_unlock(&block_group->lock);
5007 	spin_unlock(&space_info->lock);
5008 
5009 	ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
5010 					 offset, ins, 1, root_objectid);
5011 	if (ret)
5012 		btrfs_pin_extent(trans, ins->objectid, ins->offset);
5013 	ret = btrfs_record_squota_delta(fs_info, &delta);
5014 	btrfs_put_block_group(block_group);
5015 	return ret;
5016 }
5017 
5018 #ifdef CONFIG_BTRFS_DEBUG
5019 /*
5020  * Extra safety check in case the extent tree is corrupted and extent allocator
5021  * chooses to use a tree block which is already used and locked.
5022  */
5023 static bool check_eb_lock_owner(const struct extent_buffer *eb)
5024 {
5025 	if (eb->lock_owner == current->pid) {
5026 		btrfs_err_rl(eb->fs_info,
5027 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
5028 			     eb->start, btrfs_header_owner(eb), current->pid);
5029 		return true;
5030 	}
5031 	return false;
5032 }
5033 #else
5034 static bool check_eb_lock_owner(struct extent_buffer *eb)
5035 {
5036 	return false;
5037 }
5038 #endif
5039 
5040 static struct extent_buffer *
5041 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5042 		      u64 bytenr, int level, u64 owner,
5043 		      enum btrfs_lock_nesting nest)
5044 {
5045 	struct btrfs_fs_info *fs_info = root->fs_info;
5046 	struct extent_buffer *buf;
5047 	u64 lockdep_owner = owner;
5048 
5049 	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
5050 	if (IS_ERR(buf))
5051 		return buf;
5052 
5053 	if (unlikely(check_eb_lock_owner(buf))) {
5054 		free_extent_buffer(buf);
5055 		return ERR_PTR(-EUCLEAN);
5056 	}
5057 
5058 	/*
5059 	 * The reloc trees are just snapshots, so we need them to appear to be
5060 	 * just like any other fs tree WRT lockdep.
5061 	 *
5062 	 * The exception however is in replace_path() in relocation, where we
5063 	 * hold the lock on the original fs root and then search for the reloc
5064 	 * root.  At that point we need to make sure any reloc root buffers are
5065 	 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5066 	 * lockdep happy.
5067 	 */
5068 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5069 	    !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5070 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5071 
5072 	/* btrfs_clear_buffer_dirty() accesses generation field. */
5073 	btrfs_set_header_generation(buf, trans->transid);
5074 
5075 	/*
5076 	 * This needs to stay, because we could allocate a freed block from an
5077 	 * old tree into a new tree, so we need to make sure this new block is
5078 	 * set to the appropriate level and owner.
5079 	 */
5080 	btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
5081 
5082 	btrfs_tree_lock_nested(buf, nest);
5083 	btrfs_clear_buffer_dirty(trans, buf);
5084 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
5085 	clear_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &buf->bflags);
5086 
5087 	set_extent_buffer_uptodate(buf);
5088 
5089 	memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
5090 	btrfs_set_header_level(buf, level);
5091 	btrfs_set_header_bytenr(buf, buf->start);
5092 	btrfs_set_header_generation(buf, trans->transid);
5093 	btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
5094 	btrfs_set_header_owner(buf, owner);
5095 	write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
5096 	write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
5097 	if (btrfs_root_id(root) == BTRFS_TREE_LOG_OBJECTID) {
5098 		buf->log_index = root->log_transid % 2;
5099 		/*
5100 		 * we allow two log transactions at a time, use different
5101 		 * EXTENT bit to differentiate dirty pages.
5102 		 */
5103 		if (buf->log_index == 0)
5104 			btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5105 					     buf->start + buf->len - 1,
5106 					     EXTENT_DIRTY_LOG1, NULL);
5107 		else
5108 			btrfs_set_extent_bit(&root->dirty_log_pages, buf->start,
5109 					     buf->start + buf->len - 1,
5110 					     EXTENT_DIRTY_LOG2, NULL);
5111 	} else {
5112 		buf->log_index = -1;
5113 		btrfs_set_extent_bit(&trans->transaction->dirty_pages, buf->start,
5114 				     buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
5115 	}
5116 	/* this returns a buffer locked for blocking */
5117 	return buf;
5118 }
5119 
5120 /*
5121  * finds a free extent and does all the dirty work required for allocation
5122  * returns the tree buffer or an ERR_PTR on error.
5123  */
5124 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5125 					     struct btrfs_root *root,
5126 					     u64 parent, u64 root_objectid,
5127 					     const struct btrfs_disk_key *key,
5128 					     int level, u64 hint,
5129 					     u64 empty_size,
5130 					     u64 reloc_src_root,
5131 					     enum btrfs_lock_nesting nest)
5132 {
5133 	struct btrfs_fs_info *fs_info = root->fs_info;
5134 	struct btrfs_key ins;
5135 	struct btrfs_block_rsv *block_rsv;
5136 	struct extent_buffer *buf;
5137 	u64 flags = 0;
5138 	int ret;
5139 	u32 blocksize = fs_info->nodesize;
5140 	bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5141 	u64 owning_root;
5142 
5143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5144 	if (btrfs_is_testing(fs_info)) {
5145 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
5146 					    level, root_objectid, nest);
5147 		if (!IS_ERR(buf))
5148 			root->alloc_bytenr += blocksize;
5149 		return buf;
5150 	}
5151 #endif
5152 
5153 	block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5154 	if (IS_ERR(block_rsv))
5155 		return ERR_CAST(block_rsv);
5156 
5157 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
5158 				   empty_size, hint, &ins, false, false);
5159 	if (ret)
5160 		goto out_unuse;
5161 
5162 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
5163 				    root_objectid, nest);
5164 	if (IS_ERR(buf)) {
5165 		ret = PTR_ERR(buf);
5166 		goto out_free_reserved;
5167 	}
5168 	owning_root = btrfs_header_owner(buf);
5169 
5170 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5171 		if (parent == 0)
5172 			parent = ins.objectid;
5173 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5174 		owning_root = reloc_src_root;
5175 	} else
5176 		BUG_ON(parent > 0);
5177 
5178 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5179 		struct btrfs_delayed_extent_op *extent_op;
5180 		struct btrfs_ref generic_ref = {
5181 			.action = BTRFS_ADD_DELAYED_EXTENT,
5182 			.bytenr = ins.objectid,
5183 			.num_bytes = ins.offset,
5184 			.parent = parent,
5185 			.owning_root = owning_root,
5186 			.ref_root = root_objectid,
5187 		};
5188 
5189 		if (!skinny_metadata || flags != 0) {
5190 			extent_op = btrfs_alloc_delayed_extent_op();
5191 			if (!extent_op) {
5192 				ret = -ENOMEM;
5193 				goto out_free_buf;
5194 			}
5195 			if (key)
5196 				memcpy(&extent_op->key, key, sizeof(extent_op->key));
5197 			else
5198 				memset(&extent_op->key, 0, sizeof(extent_op->key));
5199 			extent_op->flags_to_set = flags;
5200 			extent_op->update_key = (skinny_metadata ? false : true);
5201 			extent_op->update_flags = (flags != 0);
5202 		} else {
5203 			extent_op = NULL;
5204 		}
5205 
5206 		btrfs_init_tree_ref(&generic_ref, level, btrfs_root_id(root), false);
5207 		btrfs_ref_tree_mod(fs_info, &generic_ref);
5208 		ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
5209 		if (ret) {
5210 			btrfs_free_delayed_extent_op(extent_op);
5211 			goto out_free_buf;
5212 		}
5213 	}
5214 	return buf;
5215 
5216 out_free_buf:
5217 	btrfs_tree_unlock(buf);
5218 	free_extent_buffer(buf);
5219 out_free_reserved:
5220 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, false);
5221 out_unuse:
5222 	btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5223 	return ERR_PTR(ret);
5224 }
5225 
5226 struct walk_control {
5227 	u64 refs[BTRFS_MAX_LEVEL];
5228 	u64 flags[BTRFS_MAX_LEVEL];
5229 	struct btrfs_key update_progress;
5230 	struct btrfs_key drop_progress;
5231 	int drop_level;
5232 	int stage;
5233 	int level;
5234 	int shared_level;
5235 	int update_ref;
5236 	int keep_locks;
5237 	int reada_slot;
5238 	int reada_count;
5239 	int restarted;
5240 	/* Indicate that extent info needs to be looked up when walking the tree. */
5241 	int lookup_info;
5242 };
5243 
5244 /*
5245  * This is our normal stage.  We are traversing blocks the current snapshot owns
5246  * and we are dropping any of our references to any children we are able to, and
5247  * then freeing the block once we've processed all of the children.
5248  */
5249 #define DROP_REFERENCE	1
5250 
5251 /*
5252  * We enter this stage when we have to walk into a child block (meaning we can't
5253  * simply drop our reference to it from our current parent node) and there are
5254  * more than one reference on it.  If we are the owner of any of the children
5255  * blocks from the current parent node then we have to do the FULL_BACKREF dance
5256  * on them in order to drop our normal ref and add the shared ref.
5257  */
5258 #define UPDATE_BACKREF	2
5259 
5260 /*
5261  * Decide if we need to walk down into this node to adjust the references.
5262  *
5263  * @root:	the root we are currently deleting
5264  * @wc:		the walk control for this deletion
5265  * @eb:		the parent eb that we're currently visiting
5266  * @refs:	the number of refs for wc->level - 1
5267  * @flags:	the flags for wc->level - 1
5268  * @slot:	the slot in the eb that we're currently checking
5269  *
5270  * This is meant to be called when we're evaluating if a node we point to at
5271  * wc->level should be read and walked into, or if we can simply delete our
5272  * reference to it.  We return true if we should walk into the node, false if we
5273  * can skip it.
5274  *
5275  * We have assertions in here to make sure this is called correctly.  We assume
5276  * that sanity checking on the blocks read to this point has been done, so any
5277  * corrupted file systems must have been caught before calling this function.
5278  */
5279 static bool visit_node_for_delete(struct btrfs_root *root, struct walk_control *wc,
5280 				  struct extent_buffer *eb, u64 flags, int slot)
5281 {
5282 	struct btrfs_key key;
5283 	u64 generation;
5284 	int level = wc->level;
5285 
5286 	ASSERT(level > 0);
5287 	ASSERT(wc->refs[level - 1] > 0);
5288 
5289 	/*
5290 	 * The update backref stage we only want to skip if we already have
5291 	 * FULL_BACKREF set, otherwise we need to read.
5292 	 */
5293 	if (wc->stage == UPDATE_BACKREF) {
5294 		if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5295 			return false;
5296 		return true;
5297 	}
5298 
5299 	/*
5300 	 * We're the last ref on this block, we must walk into it and process
5301 	 * any refs it's pointing at.
5302 	 */
5303 	if (wc->refs[level - 1] == 1)
5304 		return true;
5305 
5306 	/*
5307 	 * If we're already FULL_BACKREF then we know we can just drop our
5308 	 * current reference.
5309 	 */
5310 	if (level == 1 && flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5311 		return false;
5312 
5313 	/*
5314 	 * This block is older than our creation generation, we can drop our
5315 	 * reference to it.
5316 	 */
5317 	generation = btrfs_node_ptr_generation(eb, slot);
5318 	if (!wc->update_ref || generation <= btrfs_root_origin_generation(root))
5319 		return false;
5320 
5321 	/*
5322 	 * This block was processed from a previous snapshot deletion run, we
5323 	 * can skip it.
5324 	 */
5325 	btrfs_node_key_to_cpu(eb, &key, slot);
5326 	if (btrfs_comp_cpu_keys(&key, &wc->update_progress) < 0)
5327 		return false;
5328 
5329 	/* All other cases we need to wander into the node. */
5330 	return true;
5331 }
5332 
5333 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5334 				     struct btrfs_root *root,
5335 				     struct walk_control *wc,
5336 				     struct btrfs_path *path)
5337 {
5338 	struct btrfs_fs_info *fs_info = root->fs_info;
5339 	u64 bytenr;
5340 	u64 generation;
5341 	u64 refs;
5342 	u64 flags;
5343 	u32 nritems;
5344 	struct extent_buffer *eb;
5345 	int ret;
5346 	int slot;
5347 	int nread = 0;
5348 
5349 	if (path->slots[wc->level] < wc->reada_slot) {
5350 		wc->reada_count = wc->reada_count * 2 / 3;
5351 		wc->reada_count = max(wc->reada_count, 2);
5352 	} else {
5353 		wc->reada_count = wc->reada_count * 3 / 2;
5354 		wc->reada_count = min_t(int, wc->reada_count,
5355 					BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5356 	}
5357 
5358 	eb = path->nodes[wc->level];
5359 	nritems = btrfs_header_nritems(eb);
5360 
5361 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5362 		if (nread >= wc->reada_count)
5363 			break;
5364 
5365 		cond_resched();
5366 		bytenr = btrfs_node_blockptr(eb, slot);
5367 		generation = btrfs_node_ptr_generation(eb, slot);
5368 
5369 		if (slot == path->slots[wc->level])
5370 			goto reada;
5371 
5372 		if (wc->stage == UPDATE_BACKREF &&
5373 		    generation <= btrfs_root_origin_generation(root))
5374 			continue;
5375 
5376 		/* We don't lock the tree block, it's OK to be racy here */
5377 		ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5378 					       wc->level - 1, 1, &refs,
5379 					       &flags, NULL);
5380 		/* We don't care about errors in readahead. */
5381 		if (ret < 0)
5382 			continue;
5383 
5384 		/*
5385 		 * This could be racey, it's conceivable that we raced and end
5386 		 * up with a bogus refs count, if that's the case just skip, if
5387 		 * we are actually corrupt we will notice when we look up
5388 		 * everything again with our locks.
5389 		 */
5390 		if (refs == 0)
5391 			continue;
5392 
5393 		/* If we don't need to visit this node don't reada. */
5394 		if (!visit_node_for_delete(root, wc, eb, flags, slot))
5395 			continue;
5396 reada:
5397 		btrfs_readahead_node_child(eb, slot);
5398 		nread++;
5399 	}
5400 	wc->reada_slot = slot;
5401 }
5402 
5403 /*
5404  * helper to process tree block while walking down the tree.
5405  *
5406  * when wc->stage == UPDATE_BACKREF, this function updates
5407  * back refs for pointers in the block.
5408  *
5409  * NOTE: return value 1 means we should stop walking down.
5410  */
5411 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5412 				   struct btrfs_root *root,
5413 				   struct btrfs_path *path,
5414 				   struct walk_control *wc)
5415 {
5416 	struct btrfs_fs_info *fs_info = root->fs_info;
5417 	int level = wc->level;
5418 	struct extent_buffer *eb = path->nodes[level];
5419 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5420 	int ret;
5421 
5422 	if (wc->stage == UPDATE_BACKREF && btrfs_header_owner(eb) != btrfs_root_id(root))
5423 		return 1;
5424 
5425 	/*
5426 	 * when reference count of tree block is 1, it won't increase
5427 	 * again. once full backref flag is set, we never clear it.
5428 	 */
5429 	if (wc->lookup_info &&
5430 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5431 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5432 		ASSERT(path->locks[level]);
5433 		ret = btrfs_lookup_extent_info(trans, fs_info,
5434 					       eb->start, level, 1,
5435 					       &wc->refs[level],
5436 					       &wc->flags[level],
5437 					       NULL);
5438 		if (ret)
5439 			return ret;
5440 		if (unlikely(wc->refs[level] == 0)) {
5441 			btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5442 				  eb->start);
5443 			return -EUCLEAN;
5444 		}
5445 	}
5446 
5447 	if (wc->stage == DROP_REFERENCE) {
5448 		if (wc->refs[level] > 1)
5449 			return 1;
5450 
5451 		if (path->locks[level] && !wc->keep_locks) {
5452 			btrfs_tree_unlock_rw(eb, path->locks[level]);
5453 			path->locks[level] = 0;
5454 		}
5455 		return 0;
5456 	}
5457 
5458 	/* wc->stage == UPDATE_BACKREF */
5459 	if (!(wc->flags[level] & flag)) {
5460 		ASSERT(path->locks[level]);
5461 		ret = btrfs_inc_ref(trans, root, eb, 1);
5462 		if (unlikely(ret)) {
5463 			btrfs_abort_transaction(trans, ret);
5464 			return ret;
5465 		}
5466 		ret = btrfs_dec_ref(trans, root, eb, 0);
5467 		if (unlikely(ret)) {
5468 			btrfs_abort_transaction(trans, ret);
5469 			return ret;
5470 		}
5471 		ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5472 		if (unlikely(ret)) {
5473 			btrfs_abort_transaction(trans, ret);
5474 			return ret;
5475 		}
5476 		wc->flags[level] |= flag;
5477 	}
5478 
5479 	/*
5480 	 * the block is shared by multiple trees, so it's not good to
5481 	 * keep the tree lock
5482 	 */
5483 	if (path->locks[level] && level > 0) {
5484 		btrfs_tree_unlock_rw(eb, path->locks[level]);
5485 		path->locks[level] = 0;
5486 	}
5487 	return 0;
5488 }
5489 
5490 /*
5491  * This is used to verify a ref exists for this root to deal with a bug where we
5492  * would have a drop_progress key that hadn't been updated properly.
5493  */
5494 static int check_ref_exists(struct btrfs_trans_handle *trans,
5495 			    struct btrfs_root *root, u64 bytenr, u64 parent,
5496 			    int level)
5497 {
5498 	struct btrfs_delayed_ref_root *delayed_refs;
5499 	struct btrfs_delayed_ref_head *head;
5500 	BTRFS_PATH_AUTO_FREE(path);
5501 	struct btrfs_extent_inline_ref *iref;
5502 	int ret;
5503 	bool exists = false;
5504 
5505 	path = btrfs_alloc_path();
5506 	if (!path)
5507 		return -ENOMEM;
5508 again:
5509 	ret = lookup_extent_backref(trans, path, &iref, bytenr,
5510 				    root->fs_info->nodesize, parent,
5511 				    btrfs_root_id(root), level, 0);
5512 	if (ret != -ENOENT) {
5513 		/*
5514 		 * If we get 0 then we found our reference, return 1, else
5515 		 * return the error if it's not -ENOENT;
5516 		 */
5517 		return (ret < 0 ) ? ret : 1;
5518 	}
5519 
5520 	/*
5521 	 * We could have a delayed ref with this reference, so look it up while
5522 	 * we're holding the path open to make sure we don't race with the
5523 	 * delayed ref running.
5524 	 */
5525 	delayed_refs = &trans->transaction->delayed_refs;
5526 	spin_lock(&delayed_refs->lock);
5527 	head = btrfs_find_delayed_ref_head(root->fs_info, delayed_refs, bytenr);
5528 	if (!head)
5529 		goto out;
5530 	if (!mutex_trylock(&head->mutex)) {
5531 		/*
5532 		 * We're contended, means that the delayed ref is running, get a
5533 		 * reference and wait for the ref head to be complete and then
5534 		 * try again.
5535 		 */
5536 		refcount_inc(&head->refs);
5537 		spin_unlock(&delayed_refs->lock);
5538 
5539 		btrfs_release_path(path);
5540 
5541 		mutex_lock(&head->mutex);
5542 		mutex_unlock(&head->mutex);
5543 		btrfs_put_delayed_ref_head(head);
5544 		goto again;
5545 	}
5546 
5547 	exists = btrfs_find_delayed_tree_ref(head, btrfs_root_id(root), parent);
5548 	mutex_unlock(&head->mutex);
5549 out:
5550 	spin_unlock(&delayed_refs->lock);
5551 	return exists ? 1 : 0;
5552 }
5553 
5554 /*
5555  * We may not have an uptodate block, so if we are going to walk down into this
5556  * block we need to drop the lock, read it off of the disk, re-lock it and
5557  * return to continue dropping the snapshot.
5558  */
5559 static int check_next_block_uptodate(struct btrfs_trans_handle *trans,
5560 				     struct btrfs_root *root,
5561 				     struct btrfs_path *path,
5562 				     struct walk_control *wc,
5563 				     struct extent_buffer *next)
5564 {
5565 	struct btrfs_tree_parent_check check = { 0 };
5566 	u64 generation;
5567 	int level = wc->level;
5568 	int ret;
5569 
5570 	btrfs_assert_tree_write_locked(next);
5571 
5572 	generation = btrfs_node_ptr_generation(path->nodes[level], path->slots[level]);
5573 
5574 	if (btrfs_buffer_uptodate(next, generation, false))
5575 		return 0;
5576 
5577 	check.level = level - 1;
5578 	check.transid = generation;
5579 	check.owner_root = btrfs_root_id(root);
5580 	check.has_first_key = true;
5581 	btrfs_node_key_to_cpu(path->nodes[level], &check.first_key, path->slots[level]);
5582 
5583 	btrfs_tree_unlock(next);
5584 	if (level == 1)
5585 		reada_walk_down(trans, root, wc, path);
5586 	ret = btrfs_read_extent_buffer(next, &check);
5587 	if (ret) {
5588 		free_extent_buffer(next);
5589 		return ret;
5590 	}
5591 	btrfs_tree_lock(next);
5592 	wc->lookup_info = 1;
5593 	return 0;
5594 }
5595 
5596 /*
5597  * If we determine that we don't have to visit wc->level - 1 then we need to
5598  * determine if we can drop our reference.
5599  *
5600  * If we are UPDATE_BACKREF then we will not, we need to update our backrefs.
5601  *
5602  * If we are DROP_REFERENCE this will figure out if we need to drop our current
5603  * reference, skipping it if we dropped it from a previous uncompleted drop, or
5604  * dropping it if we still have a reference to it.
5605  */
5606 static int maybe_drop_reference(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5607 				struct btrfs_path *path, struct walk_control *wc,
5608 				struct extent_buffer *next, u64 owner_root)
5609 {
5610 	struct btrfs_ref ref = {
5611 		.action = BTRFS_DROP_DELAYED_REF,
5612 		.bytenr = next->start,
5613 		.num_bytes = root->fs_info->nodesize,
5614 		.owning_root = owner_root,
5615 		.ref_root = btrfs_root_id(root),
5616 	};
5617 	int level = wc->level;
5618 	int ret;
5619 
5620 	/* We are UPDATE_BACKREF, we're not dropping anything. */
5621 	if (wc->stage == UPDATE_BACKREF)
5622 		return 0;
5623 
5624 	if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5625 		ref.parent = path->nodes[level]->start;
5626 	} else {
5627 		ASSERT(btrfs_root_id(root) == btrfs_header_owner(path->nodes[level]));
5628 		if (unlikely(btrfs_root_id(root) != btrfs_header_owner(path->nodes[level]))) {
5629 			btrfs_err(root->fs_info, "mismatched block owner");
5630 			return -EIO;
5631 		}
5632 	}
5633 
5634 	/*
5635 	 * If we had a drop_progress we need to verify the refs are set as
5636 	 * expected.  If we find our ref then we know that from here on out
5637 	 * everything should be correct, and we can clear the
5638 	 * ->restarted flag.
5639 	 */
5640 	if (wc->restarted) {
5641 		ret = check_ref_exists(trans, root, next->start, ref.parent,
5642 				       level - 1);
5643 		if (ret <= 0)
5644 			return ret;
5645 		ret = 0;
5646 		wc->restarted = 0;
5647 	}
5648 
5649 	/*
5650 	 * Reloc tree doesn't contribute to qgroup numbers, and we have already
5651 	 * accounted them at merge time (replace_path), thus we could skip
5652 	 * expensive subtree trace here.
5653 	 */
5654 	if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
5655 	    wc->refs[level - 1] > 1) {
5656 		u64 generation = btrfs_node_ptr_generation(path->nodes[level],
5657 							   path->slots[level]);
5658 
5659 		ret = btrfs_qgroup_trace_subtree(trans, next, generation, level - 1);
5660 		if (ret) {
5661 			btrfs_err_rl(root->fs_info,
5662 "error %d accounting shared subtree, quota is out of sync, rescan required",
5663 				     ret);
5664 		}
5665 	}
5666 
5667 	/*
5668 	 * We need to update the next key in our walk control so we can update
5669 	 * the drop_progress key accordingly.  We don't care if find_next_key
5670 	 * doesn't find a key because that means we're at the end and are going
5671 	 * to clean up now.
5672 	 */
5673 	wc->drop_level = level;
5674 	find_next_key(path, level, &wc->drop_progress);
5675 
5676 	btrfs_init_tree_ref(&ref, level - 1, 0, false);
5677 	return btrfs_free_extent(trans, &ref);
5678 }
5679 
5680 /*
5681  * helper to process tree block pointer.
5682  *
5683  * when wc->stage == DROP_REFERENCE, this function checks
5684  * reference count of the block pointed to. if the block
5685  * is shared and we need update back refs for the subtree
5686  * rooted at the block, this function changes wc->stage to
5687  * UPDATE_BACKREF. if the block is shared and there is no
5688  * need to update back, this function drops the reference
5689  * to the block.
5690  *
5691  * NOTE: return value 1 means we should stop walking down.
5692  */
5693 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5694 				 struct btrfs_root *root,
5695 				 struct btrfs_path *path,
5696 				 struct walk_control *wc)
5697 {
5698 	struct btrfs_fs_info *fs_info = root->fs_info;
5699 	u64 bytenr;
5700 	u64 generation;
5701 	u64 owner_root = 0;
5702 	struct extent_buffer *next;
5703 	int level = wc->level;
5704 	int ret = 0;
5705 
5706 	generation = btrfs_node_ptr_generation(path->nodes[level],
5707 					       path->slots[level]);
5708 	/*
5709 	 * if the lower level block was created before the snapshot
5710 	 * was created, we know there is no need to update back refs
5711 	 * for the subtree
5712 	 */
5713 	if (wc->stage == UPDATE_BACKREF &&
5714 	    generation <= btrfs_root_origin_generation(root)) {
5715 		wc->lookup_info = 1;
5716 		return 1;
5717 	}
5718 
5719 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5720 
5721 	next = btrfs_find_create_tree_block(fs_info, bytenr, btrfs_root_id(root),
5722 					    level - 1);
5723 	if (IS_ERR(next))
5724 		return PTR_ERR(next);
5725 
5726 	btrfs_tree_lock(next);
5727 
5728 	ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5729 				       &wc->refs[level - 1],
5730 				       &wc->flags[level - 1],
5731 				       &owner_root);
5732 	if (ret < 0)
5733 		goto out_unlock;
5734 
5735 	if (unlikely(wc->refs[level - 1] == 0)) {
5736 		btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5737 			  bytenr);
5738 		ret = -EUCLEAN;
5739 		goto out_unlock;
5740 	}
5741 	wc->lookup_info = 0;
5742 
5743 	/* If we don't have to walk into this node skip it. */
5744 	if (!visit_node_for_delete(root, wc, path->nodes[level],
5745 				   wc->flags[level - 1], path->slots[level]))
5746 		goto skip;
5747 
5748 	/*
5749 	 * We have to walk down into this node, and if we're currently at the
5750 	 * DROP_REFERENCE stage and this block is shared then we need to switch
5751 	 * to the UPDATE_BACKREF stage in order to convert to FULL_BACKREF.
5752 	 */
5753 	if (wc->stage == DROP_REFERENCE && wc->refs[level - 1] > 1) {
5754 		wc->stage = UPDATE_BACKREF;
5755 		wc->shared_level = level - 1;
5756 	}
5757 
5758 	ret = check_next_block_uptodate(trans, root, path, wc, next);
5759 	if (ret)
5760 		return ret;
5761 
5762 	level--;
5763 	ASSERT(level == btrfs_header_level(next));
5764 	if (unlikely(level != btrfs_header_level(next))) {
5765 		btrfs_err(root->fs_info, "mismatched level");
5766 		ret = -EIO;
5767 		goto out_unlock;
5768 	}
5769 	path->nodes[level] = next;
5770 	path->slots[level] = 0;
5771 	path->locks[level] = BTRFS_WRITE_LOCK;
5772 	wc->level = level;
5773 	if (wc->level == 1)
5774 		wc->reada_slot = 0;
5775 	return 0;
5776 skip:
5777 	ret = maybe_drop_reference(trans, root, path, wc, next, owner_root);
5778 	if (ret)
5779 		goto out_unlock;
5780 	wc->refs[level - 1] = 0;
5781 	wc->flags[level - 1] = 0;
5782 	wc->lookup_info = 1;
5783 	ret = 1;
5784 
5785 out_unlock:
5786 	btrfs_tree_unlock(next);
5787 	free_extent_buffer(next);
5788 
5789 	return ret;
5790 }
5791 
5792 /*
5793  * helper to process tree block while walking up the tree.
5794  *
5795  * when wc->stage == DROP_REFERENCE, this function drops
5796  * reference count on the block.
5797  *
5798  * when wc->stage == UPDATE_BACKREF, this function changes
5799  * wc->stage back to DROP_REFERENCE if we changed wc->stage
5800  * to UPDATE_BACKREF previously while processing the block.
5801  *
5802  * NOTE: return value 1 means we should stop walking up.
5803  */
5804 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5805 				 struct btrfs_root *root,
5806 				 struct btrfs_path *path,
5807 				 struct walk_control *wc)
5808 {
5809 	struct btrfs_fs_info *fs_info = root->fs_info;
5810 	int ret = 0;
5811 	int level = wc->level;
5812 	struct extent_buffer *eb = path->nodes[level];
5813 	u64 parent = 0;
5814 
5815 	if (wc->stage == UPDATE_BACKREF) {
5816 		ASSERT(wc->shared_level >= level);
5817 		if (level < wc->shared_level)
5818 			goto out;
5819 
5820 		ret = find_next_key(path, level + 1, &wc->update_progress);
5821 		if (ret > 0)
5822 			wc->update_ref = 0;
5823 
5824 		wc->stage = DROP_REFERENCE;
5825 		wc->shared_level = -1;
5826 		path->slots[level] = 0;
5827 
5828 		/*
5829 		 * check reference count again if the block isn't locked.
5830 		 * we should start walking down the tree again if reference
5831 		 * count is one.
5832 		 */
5833 		if (!path->locks[level]) {
5834 			ASSERT(level > 0);
5835 			btrfs_tree_lock(eb);
5836 			path->locks[level] = BTRFS_WRITE_LOCK;
5837 
5838 			ret = btrfs_lookup_extent_info(trans, fs_info,
5839 						       eb->start, level, 1,
5840 						       &wc->refs[level],
5841 						       &wc->flags[level],
5842 						       NULL);
5843 			if (ret < 0) {
5844 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5845 				path->locks[level] = 0;
5846 				return ret;
5847 			}
5848 			if (unlikely(wc->refs[level] == 0)) {
5849 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5850 				btrfs_err(fs_info, "bytenr %llu has 0 references, expect > 0",
5851 					  eb->start);
5852 				return -EUCLEAN;
5853 			}
5854 			if (wc->refs[level] == 1) {
5855 				btrfs_tree_unlock_rw(eb, path->locks[level]);
5856 				path->locks[level] = 0;
5857 				return 1;
5858 			}
5859 		}
5860 	}
5861 
5862 	/* wc->stage == DROP_REFERENCE */
5863 	ASSERT(path->locks[level] || wc->refs[level] == 1);
5864 
5865 	if (wc->refs[level] == 1) {
5866 		if (level == 0) {
5867 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5868 				ret = btrfs_dec_ref(trans, root, eb, 1);
5869 				if (ret) {
5870 					btrfs_abort_transaction(trans, ret);
5871 					return ret;
5872 				}
5873 			} else {
5874 				ret = btrfs_dec_ref(trans, root, eb, 0);
5875 				if (unlikely(ret)) {
5876 					btrfs_abort_transaction(trans, ret);
5877 					return ret;
5878 				}
5879 			}
5880 			if (btrfs_is_fstree(btrfs_root_id(root))) {
5881 				ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5882 				if (ret) {
5883 					btrfs_err_rl(fs_info,
5884 	"error %d accounting leaf items, quota is out of sync, rescan required",
5885 					     ret);
5886 				}
5887 			}
5888 		}
5889 		/* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5890 		if (!path->locks[level]) {
5891 			btrfs_tree_lock(eb);
5892 			path->locks[level] = BTRFS_WRITE_LOCK;
5893 		}
5894 		btrfs_clear_buffer_dirty(trans, eb);
5895 	}
5896 
5897 	if (eb == root->node) {
5898 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5899 			parent = eb->start;
5900 		else if (unlikely(btrfs_root_id(root) != btrfs_header_owner(eb)))
5901 			goto owner_mismatch;
5902 	} else {
5903 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5904 			parent = path->nodes[level + 1]->start;
5905 		else if (unlikely(btrfs_root_id(root) !=
5906 				  btrfs_header_owner(path->nodes[level + 1])))
5907 			goto owner_mismatch;
5908 	}
5909 
5910 	ret = btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5911 				    wc->refs[level] == 1);
5912 	if (ret < 0)
5913 		btrfs_abort_transaction(trans, ret);
5914 out:
5915 	wc->refs[level] = 0;
5916 	wc->flags[level] = 0;
5917 	return ret;
5918 
5919 owner_mismatch:
5920 	btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5921 		     btrfs_header_owner(eb), btrfs_root_id(root));
5922 	return -EUCLEAN;
5923 }
5924 
5925 /*
5926  * walk_down_tree consists of two steps.
5927  *
5928  * walk_down_proc().  Look up the reference count and reference of our current
5929  * wc->level.  At this point path->nodes[wc->level] should be populated and
5930  * uptodate, and in most cases should already be locked.  If we are in
5931  * DROP_REFERENCE and our refcount is > 1 then we've entered a shared node and
5932  * we can walk back up the tree.  If we are UPDATE_BACKREF we have to set
5933  * FULL_BACKREF on this node if it's not already set, and then do the
5934  * FULL_BACKREF conversion dance, which is to drop the root reference and add
5935  * the shared reference to all of this nodes children.
5936  *
5937  * do_walk_down().  This is where we actually start iterating on the children of
5938  * our current path->nodes[wc->level].  For DROP_REFERENCE that means dropping
5939  * our reference to the children that return false from visit_node_for_delete(),
5940  * which has various conditions where we know we can just drop our reference
5941  * without visiting the node.  For UPDATE_BACKREF we will skip any children that
5942  * visit_node_for_delete() returns false for, only walking down when necessary.
5943  * The bulk of the work for UPDATE_BACKREF occurs in the walk_up_tree() part of
5944  * snapshot deletion.
5945  */
5946 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5947 				   struct btrfs_root *root,
5948 				   struct btrfs_path *path,
5949 				   struct walk_control *wc)
5950 {
5951 	int level = wc->level;
5952 	int ret = 0;
5953 
5954 	wc->lookup_info = 1;
5955 	while (level >= 0) {
5956 		ret = walk_down_proc(trans, root, path, wc);
5957 		if (ret)
5958 			break;
5959 
5960 		if (level == 0)
5961 			break;
5962 
5963 		if (path->slots[level] >=
5964 		    btrfs_header_nritems(path->nodes[level]))
5965 			break;
5966 
5967 		ret = do_walk_down(trans, root, path, wc);
5968 		if (ret > 0) {
5969 			path->slots[level]++;
5970 			continue;
5971 		} else if (ret < 0)
5972 			break;
5973 		level = wc->level;
5974 	}
5975 	return (ret == 1) ? 0 : ret;
5976 }
5977 
5978 /*
5979  * walk_up_tree() is responsible for making sure we visit every slot on our
5980  * current node, and if we're at the end of that node then we call
5981  * walk_up_proc() on our current node which will do one of a few things based on
5982  * our stage.
5983  *
5984  * UPDATE_BACKREF.  If we wc->level is currently less than our wc->shared_level
5985  * then we need to walk back up the tree, and then going back down into the
5986  * other slots via walk_down_tree to update any other children from our original
5987  * wc->shared_level.  Once we're at or above our wc->shared_level we can switch
5988  * back to DROP_REFERENCE, lookup the current nodes refs and flags, and carry on.
5989  *
5990  * DROP_REFERENCE. If our refs == 1 then we're going to free this tree block.
5991  * If we're level 0 then we need to btrfs_dec_ref() on all of the data extents
5992  * in our current leaf.  After that we call btrfs_free_tree_block() on the
5993  * current node and walk up to the next node to walk down the next slot.
5994  */
5995 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5996 				 struct btrfs_root *root,
5997 				 struct btrfs_path *path,
5998 				 struct walk_control *wc, int max_level)
5999 {
6000 	int level = wc->level;
6001 	int ret;
6002 
6003 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6004 	while (level < max_level && path->nodes[level]) {
6005 		wc->level = level;
6006 		if (path->slots[level] + 1 <
6007 		    btrfs_header_nritems(path->nodes[level])) {
6008 			path->slots[level]++;
6009 			return 0;
6010 		} else {
6011 			ret = walk_up_proc(trans, root, path, wc);
6012 			if (ret > 0)
6013 				return 0;
6014 			if (ret < 0)
6015 				return ret;
6016 
6017 			if (path->locks[level]) {
6018 				btrfs_tree_unlock_rw(path->nodes[level],
6019 						     path->locks[level]);
6020 				path->locks[level] = 0;
6021 			}
6022 			free_extent_buffer(path->nodes[level]);
6023 			path->nodes[level] = NULL;
6024 			level++;
6025 		}
6026 	}
6027 	return 1;
6028 }
6029 
6030 /*
6031  * drop a subvolume tree.
6032  *
6033  * this function traverses the tree freeing any blocks that only
6034  * referenced by the tree.
6035  *
6036  * when a shared tree block is found. this function decreases its
6037  * reference count by one. if update_ref is true, this function
6038  * also make sure backrefs for the shared block and all lower level
6039  * blocks are properly updated.
6040  *
6041  * If called with for_reloc set, may exit early with -EAGAIN
6042  */
6043 int btrfs_drop_snapshot(struct btrfs_root *root, bool update_ref, bool for_reloc)
6044 {
6045 	const bool is_reloc_root = (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID);
6046 	struct btrfs_fs_info *fs_info = root->fs_info;
6047 	struct btrfs_path *path;
6048 	struct btrfs_trans_handle *trans;
6049 	struct btrfs_root *tree_root = fs_info->tree_root;
6050 	struct btrfs_root_item *root_item = &root->root_item;
6051 	struct walk_control AUTO_KFREE(wc);
6052 	struct btrfs_key key;
6053 	const u64 rootid = btrfs_root_id(root);
6054 	int ret = 0;
6055 	int level;
6056 	bool root_dropped = false;
6057 	bool unfinished_drop = false;
6058 
6059 	btrfs_debug(fs_info, "Drop subvolume %llu", btrfs_root_id(root));
6060 
6061 	path = btrfs_alloc_path();
6062 	if (!path) {
6063 		ret = -ENOMEM;
6064 		goto out;
6065 	}
6066 
6067 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6068 	if (!wc) {
6069 		ret = -ENOMEM;
6070 		goto out_free;
6071 	}
6072 
6073 	/*
6074 	 * Use join to avoid potential EINTR from transaction start. See
6075 	 * wait_reserve_ticket and the whole reservation callchain.
6076 	 */
6077 	if (for_reloc)
6078 		trans = btrfs_join_transaction(tree_root);
6079 	else
6080 		trans = btrfs_start_transaction(tree_root, 0);
6081 	if (IS_ERR(trans)) {
6082 		ret = PTR_ERR(trans);
6083 		goto out_free;
6084 	}
6085 
6086 	ret = btrfs_run_delayed_items(trans);
6087 	if (ret)
6088 		goto out_end_trans;
6089 
6090 	/*
6091 	 * This will help us catch people modifying the fs tree while we're
6092 	 * dropping it.  It is unsafe to mess with the fs tree while it's being
6093 	 * dropped as we unlock the root node and parent nodes as we walk down
6094 	 * the tree, assuming nothing will change.  If something does change
6095 	 * then we'll have stale information and drop references to blocks we've
6096 	 * already dropped.
6097 	 */
6098 	set_bit(BTRFS_ROOT_DELETING, &root->state);
6099 	unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
6100 
6101 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6102 		level = btrfs_header_level(root->node);
6103 		path->nodes[level] = btrfs_lock_root_node(root);
6104 		path->slots[level] = 0;
6105 		path->locks[level] = BTRFS_WRITE_LOCK;
6106 		memset(&wc->update_progress, 0,
6107 		       sizeof(wc->update_progress));
6108 	} else {
6109 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6110 		memcpy(&wc->update_progress, &key,
6111 		       sizeof(wc->update_progress));
6112 
6113 		level = btrfs_root_drop_level(root_item);
6114 		BUG_ON(level == 0);
6115 		path->lowest_level = level;
6116 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6117 		path->lowest_level = 0;
6118 		if (ret < 0)
6119 			goto out_end_trans;
6120 
6121 		WARN_ON(ret > 0);
6122 		ret = 0;
6123 
6124 		/*
6125 		 * unlock our path, this is safe because only this
6126 		 * function is allowed to delete this snapshot
6127 		 */
6128 		btrfs_unlock_up_safe(path, 0);
6129 
6130 		level = btrfs_header_level(root->node);
6131 		while (1) {
6132 			btrfs_tree_lock(path->nodes[level]);
6133 			path->locks[level] = BTRFS_WRITE_LOCK;
6134 
6135 			/*
6136 			 * btrfs_lookup_extent_info() returns 0 for success,
6137 			 * or < 0 for error.
6138 			 */
6139 			ret = btrfs_lookup_extent_info(trans, fs_info,
6140 						path->nodes[level]->start,
6141 						level, 1, &wc->refs[level],
6142 						&wc->flags[level], NULL);
6143 			if (ret < 0)
6144 				goto out_end_trans;
6145 
6146 			BUG_ON(wc->refs[level] == 0);
6147 
6148 			if (level == btrfs_root_drop_level(root_item))
6149 				break;
6150 
6151 			btrfs_tree_unlock(path->nodes[level]);
6152 			path->locks[level] = 0;
6153 			WARN_ON(wc->refs[level] != 1);
6154 			level--;
6155 		}
6156 	}
6157 
6158 	wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
6159 	wc->level = level;
6160 	wc->shared_level = -1;
6161 	wc->stage = DROP_REFERENCE;
6162 	wc->update_ref = update_ref;
6163 	wc->keep_locks = 0;
6164 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6165 
6166 	while (1) {
6167 
6168 		ret = walk_down_tree(trans, root, path, wc);
6169 		if (unlikely(ret < 0)) {
6170 			btrfs_abort_transaction(trans, ret);
6171 			break;
6172 		}
6173 
6174 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6175 		if (unlikely(ret < 0)) {
6176 			btrfs_abort_transaction(trans, ret);
6177 			break;
6178 		}
6179 
6180 		if (ret > 0) {
6181 			BUG_ON(wc->stage != DROP_REFERENCE);
6182 			ret = 0;
6183 			break;
6184 		}
6185 
6186 		if (wc->stage == DROP_REFERENCE) {
6187 			wc->drop_level = wc->level;
6188 			btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
6189 					      &wc->drop_progress,
6190 					      path->slots[wc->drop_level]);
6191 		}
6192 		btrfs_cpu_key_to_disk(&root_item->drop_progress,
6193 				      &wc->drop_progress);
6194 		btrfs_set_root_drop_level(root_item, wc->drop_level);
6195 
6196 		BUG_ON(wc->level == 0);
6197 		if (btrfs_should_end_transaction(trans) ||
6198 		    (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
6199 			ret = btrfs_update_root(trans, tree_root,
6200 						&root->root_key,
6201 						root_item);
6202 			if (unlikely(ret)) {
6203 				btrfs_abort_transaction(trans, ret);
6204 				goto out_end_trans;
6205 			}
6206 
6207 			if (!is_reloc_root)
6208 				btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6209 
6210 			btrfs_end_transaction_throttle(trans);
6211 			if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
6212 				btrfs_debug(fs_info,
6213 					    "drop snapshot early exit");
6214 				ret = -EAGAIN;
6215 				goto out_free;
6216 			}
6217 
6218 		       /*
6219 			* Use join to avoid potential EINTR from transaction
6220 			* start. See wait_reserve_ticket and the whole
6221 			* reservation callchain.
6222 			*/
6223 			if (for_reloc)
6224 				trans = btrfs_join_transaction(tree_root);
6225 			else
6226 				trans = btrfs_start_transaction(tree_root, 0);
6227 			if (IS_ERR(trans)) {
6228 				ret = PTR_ERR(trans);
6229 				goto out_free;
6230 			}
6231 		}
6232 	}
6233 	btrfs_release_path(path);
6234 	if (ret)
6235 		goto out_end_trans;
6236 
6237 	ret = btrfs_del_root(trans, &root->root_key);
6238 	if (unlikely(ret)) {
6239 		btrfs_abort_transaction(trans, ret);
6240 		goto out_end_trans;
6241 	}
6242 
6243 	if (!is_reloc_root) {
6244 		ret = btrfs_find_root(tree_root, &root->root_key, path,
6245 				      NULL, NULL);
6246 		if (unlikely(ret < 0)) {
6247 			btrfs_abort_transaction(trans, ret);
6248 			goto out_end_trans;
6249 		} else if (ret > 0) {
6250 			ret = 0;
6251 			/*
6252 			 * If we fail to delete the orphan item this time
6253 			 * around, it'll get picked up the next time.
6254 			 *
6255 			 * The most common failure here is just -ENOENT.
6256 			 */
6257 			btrfs_del_orphan_item(trans, tree_root, btrfs_root_id(root));
6258 		}
6259 	}
6260 
6261 	/*
6262 	 * This subvolume is going to be completely dropped, and won't be
6263 	 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6264 	 * commit transaction time.  So free it here manually.
6265 	 */
6266 	btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6267 	btrfs_qgroup_free_meta_all_pertrans(root);
6268 
6269 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6270 		btrfs_add_dropped_root(trans, root);
6271 	else
6272 		btrfs_put_root(root);
6273 	root_dropped = true;
6274 out_end_trans:
6275 	if (!is_reloc_root)
6276 		btrfs_set_last_root_drop_gen(fs_info, trans->transid);
6277 
6278 	btrfs_end_transaction_throttle(trans);
6279 out_free:
6280 	btrfs_free_path(path);
6281 out:
6282 	if (!ret && root_dropped) {
6283 		ret = btrfs_qgroup_cleanup_dropped_subvolume(fs_info, rootid);
6284 		if (ret < 0)
6285 			btrfs_warn_rl(fs_info,
6286 				      "failed to cleanup qgroup 0/%llu: %d",
6287 				      rootid, ret);
6288 		ret = 0;
6289 	}
6290 	/*
6291 	 * We were an unfinished drop root, check to see if there are any
6292 	 * pending, and if not clear and wake up any waiters.
6293 	 */
6294 	if (!ret && unfinished_drop)
6295 		btrfs_maybe_wake_unfinished_drop(fs_info);
6296 
6297 	/*
6298 	 * So if we need to stop dropping the snapshot for whatever reason we
6299 	 * need to make sure to add it back to the dead root list so that we
6300 	 * keep trying to do the work later.  This also cleans up roots if we
6301 	 * don't have it in the radix (like when we recover after a power fail
6302 	 * or unmount) so we don't leak memory.
6303 	 */
6304 	if (!for_reloc && !root_dropped)
6305 		btrfs_add_dead_root(root);
6306 	return ret;
6307 }
6308 
6309 /*
6310  * drop subtree rooted at tree block 'node'.
6311  *
6312  * NOTE: this function will unlock and release tree block 'node'
6313  * only used by relocation code
6314  */
6315 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6316 			struct btrfs_root *root,
6317 			struct extent_buffer *node,
6318 			struct extent_buffer *parent)
6319 {
6320 	struct btrfs_fs_info *fs_info = root->fs_info;
6321 	BTRFS_PATH_AUTO_FREE(path);
6322 	struct walk_control AUTO_KFREE(wc);
6323 	int level;
6324 	int parent_level;
6325 	int ret = 0;
6326 
6327 	BUG_ON(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
6328 
6329 	path = btrfs_alloc_path();
6330 	if (!path)
6331 		return -ENOMEM;
6332 
6333 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
6334 	if (!wc)
6335 		return -ENOMEM;
6336 
6337 	btrfs_assert_tree_write_locked(parent);
6338 	parent_level = btrfs_header_level(parent);
6339 	refcount_inc(&parent->refs);
6340 	path->nodes[parent_level] = parent;
6341 	path->slots[parent_level] = btrfs_header_nritems(parent);
6342 
6343 	btrfs_assert_tree_write_locked(node);
6344 	level = btrfs_header_level(node);
6345 	path->nodes[level] = node;
6346 	path->slots[level] = 0;
6347 	path->locks[level] = BTRFS_WRITE_LOCK;
6348 
6349 	wc->refs[parent_level] = 1;
6350 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6351 	wc->level = level;
6352 	wc->shared_level = -1;
6353 	wc->stage = DROP_REFERENCE;
6354 	wc->update_ref = 0;
6355 	wc->keep_locks = 1;
6356 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
6357 
6358 	while (1) {
6359 		ret = walk_down_tree(trans, root, path, wc);
6360 		if (ret < 0)
6361 			return ret;
6362 
6363 		ret = walk_up_tree(trans, root, path, wc, parent_level);
6364 		if (ret) {
6365 			if (ret < 0)
6366 				return ret;
6367 			break;
6368 		}
6369 	}
6370 
6371 	return 0;
6372 }
6373 
6374 /*
6375  * Unpin the extent range in an error context and don't add the space back.
6376  * Errors are not propagated further.
6377  */
6378 void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end)
6379 {
6380 	unpin_extent_range(fs_info, start, end, false);
6381 }
6382 
6383 /*
6384  * It used to be that old block groups would be left around forever.
6385  * Iterating over them would be enough to trim unused space.  Since we
6386  * now automatically remove them, we also need to iterate over unallocated
6387  * space.
6388  *
6389  * We don't want a transaction for this since the discard may take a
6390  * substantial amount of time.  We don't require that a transaction be
6391  * running, but we do need to take a running transaction into account
6392  * to ensure that we're not discarding chunks that were released or
6393  * allocated in the current transaction.
6394  *
6395  * Holding the chunks lock will prevent other threads from allocating
6396  * or releasing chunks, but it won't prevent a running transaction
6397  * from committing and releasing the memory that the pending chunks
6398  * list head uses.  For that, we need to take a reference to the
6399  * transaction and hold the commit root sem.  We only need to hold
6400  * it while performing the free space search since we have already
6401  * held back allocations.
6402  */
6403 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6404 {
6405 	u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6406 	int ret;
6407 
6408 	*trimmed = 0;
6409 
6410 	/* Discard not supported = nothing to do. */
6411 	if (!bdev_max_discard_sectors(device->bdev))
6412 		return 0;
6413 
6414 	/* Not writable = nothing to do. */
6415 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6416 		return 0;
6417 
6418 	/* No free space = nothing to do. */
6419 	if (device->total_bytes <= device->bytes_used)
6420 		return 0;
6421 
6422 	ret = 0;
6423 
6424 	while (1) {
6425 		struct btrfs_fs_info *fs_info = device->fs_info;
6426 		u64 bytes;
6427 
6428 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6429 		if (ret)
6430 			break;
6431 
6432 		btrfs_find_first_clear_extent_bit(&device->alloc_state, start,
6433 						  &start, &end,
6434 						  CHUNK_TRIMMED | CHUNK_ALLOCATED);
6435 
6436 		/* Check if there are any CHUNK_* bits left */
6437 		if (start > device->total_bytes) {
6438 			DEBUG_WARN();
6439 			btrfs_warn(fs_info,
6440 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6441 					  start, end - start + 1,
6442 					  btrfs_dev_name(device),
6443 					  device->total_bytes);
6444 			mutex_unlock(&fs_info->chunk_mutex);
6445 			ret = 0;
6446 			break;
6447 		}
6448 
6449 		/* Ensure we skip the reserved space on each device. */
6450 		start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6451 
6452 		/*
6453 		 * If find_first_clear_extent_bit find a range that spans the
6454 		 * end of the device it will set end to -1, in this case it's up
6455 		 * to the caller to trim the value to the size of the device.
6456 		 */
6457 		end = min(end, device->total_bytes - 1);
6458 
6459 		len = end - start + 1;
6460 
6461 		/* We didn't find any extents */
6462 		if (!len) {
6463 			mutex_unlock(&fs_info->chunk_mutex);
6464 			ret = 0;
6465 			break;
6466 		}
6467 
6468 		ret = btrfs_issue_discard(device->bdev, start, len,
6469 					  &bytes);
6470 		if (!ret)
6471 			btrfs_set_extent_bit(&device->alloc_state, start,
6472 					     start + bytes - 1, CHUNK_TRIMMED, NULL);
6473 		mutex_unlock(&fs_info->chunk_mutex);
6474 
6475 		if (ret)
6476 			break;
6477 
6478 		start += len;
6479 		*trimmed += bytes;
6480 
6481 		if (btrfs_trim_interrupted()) {
6482 			ret = -ERESTARTSYS;
6483 			break;
6484 		}
6485 
6486 		cond_resched();
6487 	}
6488 
6489 	return ret;
6490 }
6491 
6492 /*
6493  * Trim the whole filesystem by:
6494  * 1) trimming the free space in each block group
6495  * 2) trimming the unallocated space on each device
6496  *
6497  * This will also continue trimming even if a block group or device encounters
6498  * an error.  The return value will be the last error, or 0 if nothing bad
6499  * happens.
6500  */
6501 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6502 {
6503 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6504 	struct btrfs_block_group *cache = NULL;
6505 	struct btrfs_device *device;
6506 	u64 group_trimmed;
6507 	u64 range_end = U64_MAX;
6508 	u64 start;
6509 	u64 end;
6510 	u64 trimmed = 0;
6511 	u64 bg_failed = 0;
6512 	u64 dev_failed = 0;
6513 	int bg_ret = 0;
6514 	int dev_ret = 0;
6515 	int ret = 0;
6516 
6517 	if (range->start == U64_MAX)
6518 		return -EINVAL;
6519 
6520 	/*
6521 	 * Check range overflow if range->len is set.
6522 	 * The default range->len is U64_MAX.
6523 	 */
6524 	if (range->len != U64_MAX &&
6525 	    check_add_overflow(range->start, range->len, &range_end))
6526 		return -EINVAL;
6527 
6528 	cache = btrfs_lookup_first_block_group(fs_info, range->start);
6529 	for (; cache; cache = btrfs_next_block_group(cache)) {
6530 		if (cache->start >= range_end) {
6531 			btrfs_put_block_group(cache);
6532 			break;
6533 		}
6534 
6535 		start = max(range->start, cache->start);
6536 		end = min(range_end, cache->start + cache->length);
6537 
6538 		if (end - start >= range->minlen) {
6539 			if (!btrfs_block_group_done(cache)) {
6540 				ret = btrfs_cache_block_group(cache, true);
6541 				if (ret) {
6542 					bg_failed++;
6543 					bg_ret = ret;
6544 					continue;
6545 				}
6546 			}
6547 			ret = btrfs_trim_block_group(cache,
6548 						     &group_trimmed,
6549 						     start,
6550 						     end,
6551 						     range->minlen);
6552 
6553 			trimmed += group_trimmed;
6554 			if (ret) {
6555 				bg_failed++;
6556 				bg_ret = ret;
6557 				continue;
6558 			}
6559 		}
6560 	}
6561 
6562 	if (bg_failed)
6563 		btrfs_warn(fs_info,
6564 			"failed to trim %llu block group(s), last error %d",
6565 			bg_failed, bg_ret);
6566 
6567 	mutex_lock(&fs_devices->device_list_mutex);
6568 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6569 		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6570 			continue;
6571 
6572 		ret = btrfs_trim_free_extents(device, &group_trimmed);
6573 
6574 		trimmed += group_trimmed;
6575 		if (ret) {
6576 			dev_failed++;
6577 			dev_ret = ret;
6578 			break;
6579 		}
6580 	}
6581 	mutex_unlock(&fs_devices->device_list_mutex);
6582 
6583 	if (dev_failed)
6584 		btrfs_warn(fs_info,
6585 			"failed to trim %llu device(s), last error %d",
6586 			dev_failed, dev_ret);
6587 	range->len = trimmed;
6588 	if (bg_ret)
6589 		return bg_ret;
6590 	return dev_ret;
6591 }
6592