xref: /linux/fs/btrfs/disk-io.c (revision fcb06702f023a0e7b1e6ebf9746f34b610ca0508)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 
49 static struct extent_io_ops btree_extent_io_ops;
50 static void end_workqueue_fn(struct btrfs_work *work);
51 static void free_fs_root(struct btrfs_root *root);
52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
53 				    int read_only);
54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 				      struct btrfs_root *root);
58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 					struct extent_io_tree *dirty_pages,
62 					int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 				       struct extent_io_tree *pinned_extents);
65 
66 /*
67  * end_io_wq structs are used to do processing in task context when an IO is
68  * complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	int error;
77 	int metadata;
78 	struct list_head list;
79 	struct btrfs_work work;
80 };
81 
82 /*
83  * async submit bios are used to offload expensive checksumming
84  * onto the worker threads.  They checksum file and metadata bios
85  * just before they are sent down the IO stack.
86  */
87 struct async_submit_bio {
88 	struct inode *inode;
89 	struct bio *bio;
90 	struct list_head list;
91 	extent_submit_bio_hook_t *submit_bio_start;
92 	extent_submit_bio_hook_t *submit_bio_done;
93 	int rw;
94 	int mirror_num;
95 	unsigned long bio_flags;
96 	/*
97 	 * bio_offset is optional, can be used if the pages in the bio
98 	 * can't tell us where in the file the bio should go
99 	 */
100 	u64 bio_offset;
101 	struct btrfs_work work;
102 	int error;
103 };
104 
105 /*
106  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
107  * eb, the lockdep key is determined by the btrfs_root it belongs to and
108  * the level the eb occupies in the tree.
109  *
110  * Different roots are used for different purposes and may nest inside each
111  * other and they require separate keysets.  As lockdep keys should be
112  * static, assign keysets according to the purpose of the root as indicated
113  * by btrfs_root->objectid.  This ensures that all special purpose roots
114  * have separate keysets.
115  *
116  * Lock-nesting across peer nodes is always done with the immediate parent
117  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
118  * subclass to avoid triggering lockdep warning in such cases.
119  *
120  * The key is set by the readpage_end_io_hook after the buffer has passed
121  * csum validation but before the pages are unlocked.  It is also set by
122  * btrfs_init_new_buffer on freshly allocated blocks.
123  *
124  * We also add a check to make sure the highest level of the tree is the
125  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
126  * needs update as well.
127  */
128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
129 # if BTRFS_MAX_LEVEL != 8
130 #  error
131 # endif
132 
133 static struct btrfs_lockdep_keyset {
134 	u64			id;		/* root objectid */
135 	const char		*name_stem;	/* lock name stem */
136 	char			names[BTRFS_MAX_LEVEL + 1][20];
137 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
138 } btrfs_lockdep_keysets[] = {
139 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
140 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
141 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
142 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
143 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
144 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
145 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
146 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
147 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
148 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
149 	{ .id = 0,				.name_stem = "tree"	},
150 };
151 
152 void __init btrfs_init_lockdep(void)
153 {
154 	int i, j;
155 
156 	/* initialize lockdep class names */
157 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159 
160 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 			snprintf(ks->names[j], sizeof(ks->names[j]),
162 				 "btrfs-%s-%02d", ks->name_stem, j);
163 	}
164 }
165 
166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 				    int level)
168 {
169 	struct btrfs_lockdep_keyset *ks;
170 
171 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
172 
173 	/* find the matching keyset, id 0 is the default entry */
174 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 		if (ks->id == objectid)
176 			break;
177 
178 	lockdep_set_class_and_name(&eb->lock,
179 				   &ks->keys[level], ks->names[level]);
180 }
181 
182 #endif
183 
184 /*
185  * extents on the btree inode are pretty simple, there's one extent
186  * that covers the entire device
187  */
188 static struct extent_map *btree_get_extent(struct inode *inode,
189 		struct page *page, size_t pg_offset, u64 start, u64 len,
190 		int create)
191 {
192 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 	struct extent_map *em;
194 	int ret;
195 
196 	read_lock(&em_tree->lock);
197 	em = lookup_extent_mapping(em_tree, start, len);
198 	if (em) {
199 		em->bdev =
200 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
201 		read_unlock(&em_tree->lock);
202 		goto out;
203 	}
204 	read_unlock(&em_tree->lock);
205 
206 	em = alloc_extent_map();
207 	if (!em) {
208 		em = ERR_PTR(-ENOMEM);
209 		goto out;
210 	}
211 	em->start = 0;
212 	em->len = (u64)-1;
213 	em->block_len = (u64)-1;
214 	em->block_start = 0;
215 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
216 
217 	write_lock(&em_tree->lock);
218 	ret = add_extent_mapping(em_tree, em);
219 	if (ret == -EEXIST) {
220 		u64 failed_start = em->start;
221 		u64 failed_len = em->len;
222 
223 		free_extent_map(em);
224 		em = lookup_extent_mapping(em_tree, start, len);
225 		if (em) {
226 			ret = 0;
227 		} else {
228 			em = lookup_extent_mapping(em_tree, failed_start,
229 						   failed_len);
230 			ret = -EIO;
231 		}
232 	} else if (ret) {
233 		free_extent_map(em);
234 		em = NULL;
235 	}
236 	write_unlock(&em_tree->lock);
237 
238 	if (ret)
239 		em = ERR_PTR(ret);
240 out:
241 	return em;
242 }
243 
244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245 {
246 	return crc32c(seed, data, len);
247 }
248 
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251 	put_unaligned_le32(~crc, result);
252 }
253 
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 			   int verify)
260 {
261 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262 	char *result = NULL;
263 	unsigned long len;
264 	unsigned long cur_len;
265 	unsigned long offset = BTRFS_CSUM_SIZE;
266 	char *kaddr;
267 	unsigned long map_start;
268 	unsigned long map_len;
269 	int err;
270 	u32 crc = ~(u32)0;
271 	unsigned long inline_result;
272 
273 	len = buf->len - offset;
274 	while (len > 0) {
275 		err = map_private_extent_buffer(buf, offset, 32,
276 					&kaddr, &map_start, &map_len);
277 		if (err)
278 			return 1;
279 		cur_len = min(len, map_len - (offset - map_start));
280 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 				      crc, cur_len);
282 		len -= cur_len;
283 		offset += cur_len;
284 	}
285 	if (csum_size > sizeof(inline_result)) {
286 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 		if (!result)
288 			return 1;
289 	} else {
290 		result = (char *)&inline_result;
291 	}
292 
293 	btrfs_csum_final(crc, result);
294 
295 	if (verify) {
296 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297 			u32 val;
298 			u32 found = 0;
299 			memcpy(&found, result, csum_size);
300 
301 			read_extent_buffer(buf, &val, 0, csum_size);
302 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303 				       "failed on %llu wanted %X found %X "
304 				       "level %d\n",
305 				       root->fs_info->sb->s_id,
306 				       (unsigned long long)buf->start, val, found,
307 				       btrfs_header_level(buf));
308 			if (result != (char *)&inline_result)
309 				kfree(result);
310 			return 1;
311 		}
312 	} else {
313 		write_extent_buffer(buf, result, 0, csum_size);
314 	}
315 	if (result != (char *)&inline_result)
316 		kfree(result);
317 	return 0;
318 }
319 
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327 				 struct extent_buffer *eb, u64 parent_transid,
328 				 int atomic)
329 {
330 	struct extent_state *cached_state = NULL;
331 	int ret;
332 
333 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 		return 0;
335 
336 	if (atomic)
337 		return -EAGAIN;
338 
339 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340 			 0, &cached_state);
341 	if (extent_buffer_uptodate(eb) &&
342 	    btrfs_header_generation(eb) == parent_transid) {
343 		ret = 0;
344 		goto out;
345 	}
346 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347 		       "found %llu\n",
348 		       (unsigned long long)eb->start,
349 		       (unsigned long long)parent_transid,
350 		       (unsigned long long)btrfs_header_generation(eb));
351 	ret = 1;
352 	clear_extent_buffer_uptodate(eb);
353 out:
354 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 			     &cached_state, GFP_NOFS);
356 	return ret;
357 }
358 
359 /*
360  * helper to read a given tree block, doing retries as required when
361  * the checksums don't match and we have alternate mirrors to try.
362  */
363 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 					  struct extent_buffer *eb,
365 					  u64 start, u64 parent_transid)
366 {
367 	struct extent_io_tree *io_tree;
368 	int failed = 0;
369 	int ret;
370 	int num_copies = 0;
371 	int mirror_num = 0;
372 	int failed_mirror = 0;
373 
374 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
375 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 	while (1) {
377 		ret = read_extent_buffer_pages(io_tree, eb, start,
378 					       WAIT_COMPLETE,
379 					       btree_get_extent, mirror_num);
380 		if (!ret && !verify_parent_transid(io_tree, eb,
381 						   parent_transid, 0))
382 			break;
383 
384 		/*
385 		 * This buffer's crc is fine, but its contents are corrupted, so
386 		 * there is no reason to read the other copies, they won't be
387 		 * any less wrong.
388 		 */
389 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390 			break;
391 
392 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 					      eb->start, eb->len);
394 		if (num_copies == 1)
395 			break;
396 
397 		if (!failed_mirror) {
398 			failed = 1;
399 			failed_mirror = eb->read_mirror;
400 		}
401 
402 		mirror_num++;
403 		if (mirror_num == failed_mirror)
404 			mirror_num++;
405 
406 		if (mirror_num > num_copies)
407 			break;
408 	}
409 
410 	if (failed && !ret)
411 		repair_eb_io_failure(root, eb, failed_mirror);
412 
413 	return ret;
414 }
415 
416 /*
417  * checksum a dirty tree block before IO.  This has extra checks to make sure
418  * we only fill in the checksum field in the first page of a multi-page block
419  */
420 
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423 	struct extent_io_tree *tree;
424 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425 	u64 found_start;
426 	struct extent_buffer *eb;
427 
428 	tree = &BTRFS_I(page->mapping->host)->io_tree;
429 
430 	eb = (struct extent_buffer *)page->private;
431 	if (page != eb->pages[0])
432 		return 0;
433 	found_start = btrfs_header_bytenr(eb);
434 	if (found_start != start) {
435 		WARN_ON(1);
436 		return 0;
437 	}
438 	if (eb->pages[0] != page) {
439 		WARN_ON(1);
440 		return 0;
441 	}
442 	if (!PageUptodate(page)) {
443 		WARN_ON(1);
444 		return 0;
445 	}
446 	csum_tree_block(root, eb, 0);
447 	return 0;
448 }
449 
450 static int check_tree_block_fsid(struct btrfs_root *root,
451 				 struct extent_buffer *eb)
452 {
453 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 	u8 fsid[BTRFS_UUID_SIZE];
455 	int ret = 1;
456 
457 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 			   BTRFS_FSID_SIZE);
459 	while (fs_devices) {
460 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 			ret = 0;
462 			break;
463 		}
464 		fs_devices = fs_devices->seed;
465 	}
466 	return ret;
467 }
468 
469 #define CORRUPT(reason, eb, root, slot)				\
470 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
471 	       "root=%llu, slot=%d\n", reason,			\
472 	       (unsigned long long)btrfs_header_bytenr(eb),	\
473 	       (unsigned long long)root->objectid, slot)
474 
475 static noinline int check_leaf(struct btrfs_root *root,
476 			       struct extent_buffer *leaf)
477 {
478 	struct btrfs_key key;
479 	struct btrfs_key leaf_key;
480 	u32 nritems = btrfs_header_nritems(leaf);
481 	int slot;
482 
483 	if (nritems == 0)
484 		return 0;
485 
486 	/* Check the 0 item */
487 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 	    BTRFS_LEAF_DATA_SIZE(root)) {
489 		CORRUPT("invalid item offset size pair", leaf, root, 0);
490 		return -EIO;
491 	}
492 
493 	/*
494 	 * Check to make sure each items keys are in the correct order and their
495 	 * offsets make sense.  We only have to loop through nritems-1 because
496 	 * we check the current slot against the next slot, which verifies the
497 	 * next slot's offset+size makes sense and that the current's slot
498 	 * offset is correct.
499 	 */
500 	for (slot = 0; slot < nritems - 1; slot++) {
501 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503 
504 		/* Make sure the keys are in the right order */
505 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 			CORRUPT("bad key order", leaf, root, slot);
507 			return -EIO;
508 		}
509 
510 		/*
511 		 * Make sure the offset and ends are right, remember that the
512 		 * item data starts at the end of the leaf and grows towards the
513 		 * front.
514 		 */
515 		if (btrfs_item_offset_nr(leaf, slot) !=
516 			btrfs_item_end_nr(leaf, slot + 1)) {
517 			CORRUPT("slot offset bad", leaf, root, slot);
518 			return -EIO;
519 		}
520 
521 		/*
522 		 * Check to make sure that we don't point outside of the leaf,
523 		 * just incase all the items are consistent to eachother, but
524 		 * all point outside of the leaf.
525 		 */
526 		if (btrfs_item_end_nr(leaf, slot) >
527 		    BTRFS_LEAF_DATA_SIZE(root)) {
528 			CORRUPT("slot end outside of leaf", leaf, root, slot);
529 			return -EIO;
530 		}
531 	}
532 
533 	return 0;
534 }
535 
536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 				       struct page *page, int max_walk)
538 {
539 	struct extent_buffer *eb;
540 	u64 start = page_offset(page);
541 	u64 target = start;
542 	u64 min_start;
543 
544 	if (start < max_walk)
545 		min_start = 0;
546 	else
547 		min_start = start - max_walk;
548 
549 	while (start >= min_start) {
550 		eb = find_extent_buffer(tree, start, 0);
551 		if (eb) {
552 			/*
553 			 * we found an extent buffer and it contains our page
554 			 * horray!
555 			 */
556 			if (eb->start <= target &&
557 			    eb->start + eb->len > target)
558 				return eb;
559 
560 			/* we found an extent buffer that wasn't for us */
561 			free_extent_buffer(eb);
562 			return NULL;
563 		}
564 		if (start == 0)
565 			break;
566 		start -= PAGE_CACHE_SIZE;
567 	}
568 	return NULL;
569 }
570 
571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
572 			       struct extent_state *state, int mirror)
573 {
574 	struct extent_io_tree *tree;
575 	u64 found_start;
576 	int found_level;
577 	struct extent_buffer *eb;
578 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
579 	int ret = 0;
580 	int reads_done;
581 
582 	if (!page->private)
583 		goto out;
584 
585 	tree = &BTRFS_I(page->mapping->host)->io_tree;
586 	eb = (struct extent_buffer *)page->private;
587 
588 	/* the pending IO might have been the only thing that kept this buffer
589 	 * in memory.  Make sure we have a ref for all this other checks
590 	 */
591 	extent_buffer_get(eb);
592 
593 	reads_done = atomic_dec_and_test(&eb->io_pages);
594 	if (!reads_done)
595 		goto err;
596 
597 	eb->read_mirror = mirror;
598 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 		ret = -EIO;
600 		goto err;
601 	}
602 
603 	found_start = btrfs_header_bytenr(eb);
604 	if (found_start != eb->start) {
605 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
606 			       "%llu %llu\n",
607 			       (unsigned long long)found_start,
608 			       (unsigned long long)eb->start);
609 		ret = -EIO;
610 		goto err;
611 	}
612 	if (check_tree_block_fsid(root, eb)) {
613 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
614 			       (unsigned long long)eb->start);
615 		ret = -EIO;
616 		goto err;
617 	}
618 	found_level = btrfs_header_level(eb);
619 
620 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 				       eb, found_level);
622 
623 	ret = csum_tree_block(root, eb, 1);
624 	if (ret) {
625 		ret = -EIO;
626 		goto err;
627 	}
628 
629 	/*
630 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 	 * that we don't try and read the other copies of this block, just
632 	 * return -EIO.
633 	 */
634 	if (found_level == 0 && check_leaf(root, eb)) {
635 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 		ret = -EIO;
637 	}
638 
639 	if (!ret)
640 		set_extent_buffer_uptodate(eb);
641 err:
642 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 		btree_readahead_hook(root, eb, eb->start, ret);
645 	}
646 
647 	if (ret)
648 		clear_extent_buffer_uptodate(eb);
649 	free_extent_buffer(eb);
650 out:
651 	return ret;
652 }
653 
654 static int btree_io_failed_hook(struct page *page, int failed_mirror)
655 {
656 	struct extent_buffer *eb;
657 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658 
659 	eb = (struct extent_buffer *)page->private;
660 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
661 	eb->read_mirror = failed_mirror;
662 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
663 		btree_readahead_hook(root, eb, eb->start, -EIO);
664 	return -EIO;	/* we fixed nothing */
665 }
666 
667 static void end_workqueue_bio(struct bio *bio, int err)
668 {
669 	struct end_io_wq *end_io_wq = bio->bi_private;
670 	struct btrfs_fs_info *fs_info;
671 
672 	fs_info = end_io_wq->info;
673 	end_io_wq->error = err;
674 	end_io_wq->work.func = end_workqueue_fn;
675 	end_io_wq->work.flags = 0;
676 
677 	if (bio->bi_rw & REQ_WRITE) {
678 		if (end_io_wq->metadata == 1)
679 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 					   &end_io_wq->work);
681 		else if (end_io_wq->metadata == 2)
682 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 					   &end_io_wq->work);
684 		else
685 			btrfs_queue_worker(&fs_info->endio_write_workers,
686 					   &end_io_wq->work);
687 	} else {
688 		if (end_io_wq->metadata)
689 			btrfs_queue_worker(&fs_info->endio_meta_workers,
690 					   &end_io_wq->work);
691 		else
692 			btrfs_queue_worker(&fs_info->endio_workers,
693 					   &end_io_wq->work);
694 	}
695 }
696 
697 /*
698  * For the metadata arg you want
699  *
700  * 0 - if data
701  * 1 - if normal metadta
702  * 2 - if writing to the free space cache area
703  */
704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 			int metadata)
706 {
707 	struct end_io_wq *end_io_wq;
708 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 	if (!end_io_wq)
710 		return -ENOMEM;
711 
712 	end_io_wq->private = bio->bi_private;
713 	end_io_wq->end_io = bio->bi_end_io;
714 	end_io_wq->info = info;
715 	end_io_wq->error = 0;
716 	end_io_wq->bio = bio;
717 	end_io_wq->metadata = metadata;
718 
719 	bio->bi_private = end_io_wq;
720 	bio->bi_end_io = end_workqueue_bio;
721 	return 0;
722 }
723 
724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
725 {
726 	unsigned long limit = min_t(unsigned long,
727 				    info->workers.max_workers,
728 				    info->fs_devices->open_devices);
729 	return 256 * limit;
730 }
731 
732 static void run_one_async_start(struct btrfs_work *work)
733 {
734 	struct async_submit_bio *async;
735 	int ret;
736 
737 	async = container_of(work, struct  async_submit_bio, work);
738 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 				      async->mirror_num, async->bio_flags,
740 				      async->bio_offset);
741 	if (ret)
742 		async->error = ret;
743 }
744 
745 static void run_one_async_done(struct btrfs_work *work)
746 {
747 	struct btrfs_fs_info *fs_info;
748 	struct async_submit_bio *async;
749 	int limit;
750 
751 	async = container_of(work, struct  async_submit_bio, work);
752 	fs_info = BTRFS_I(async->inode)->root->fs_info;
753 
754 	limit = btrfs_async_submit_limit(fs_info);
755 	limit = limit * 2 / 3;
756 
757 	atomic_dec(&fs_info->nr_async_submits);
758 
759 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 	    waitqueue_active(&fs_info->async_submit_wait))
761 		wake_up(&fs_info->async_submit_wait);
762 
763 	/* If an error occured we just want to clean up the bio and move on */
764 	if (async->error) {
765 		bio_endio(async->bio, async->error);
766 		return;
767 	}
768 
769 	async->submit_bio_done(async->inode, async->rw, async->bio,
770 			       async->mirror_num, async->bio_flags,
771 			       async->bio_offset);
772 }
773 
774 static void run_one_async_free(struct btrfs_work *work)
775 {
776 	struct async_submit_bio *async;
777 
778 	async = container_of(work, struct  async_submit_bio, work);
779 	kfree(async);
780 }
781 
782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 			int rw, struct bio *bio, int mirror_num,
784 			unsigned long bio_flags,
785 			u64 bio_offset,
786 			extent_submit_bio_hook_t *submit_bio_start,
787 			extent_submit_bio_hook_t *submit_bio_done)
788 {
789 	struct async_submit_bio *async;
790 
791 	async = kmalloc(sizeof(*async), GFP_NOFS);
792 	if (!async)
793 		return -ENOMEM;
794 
795 	async->inode = inode;
796 	async->rw = rw;
797 	async->bio = bio;
798 	async->mirror_num = mirror_num;
799 	async->submit_bio_start = submit_bio_start;
800 	async->submit_bio_done = submit_bio_done;
801 
802 	async->work.func = run_one_async_start;
803 	async->work.ordered_func = run_one_async_done;
804 	async->work.ordered_free = run_one_async_free;
805 
806 	async->work.flags = 0;
807 	async->bio_flags = bio_flags;
808 	async->bio_offset = bio_offset;
809 
810 	async->error = 0;
811 
812 	atomic_inc(&fs_info->nr_async_submits);
813 
814 	if (rw & REQ_SYNC)
815 		btrfs_set_work_high_prio(&async->work);
816 
817 	btrfs_queue_worker(&fs_info->workers, &async->work);
818 
819 	while (atomic_read(&fs_info->async_submit_draining) &&
820 	      atomic_read(&fs_info->nr_async_submits)) {
821 		wait_event(fs_info->async_submit_wait,
822 			   (atomic_read(&fs_info->nr_async_submits) == 0));
823 	}
824 
825 	return 0;
826 }
827 
828 static int btree_csum_one_bio(struct bio *bio)
829 {
830 	struct bio_vec *bvec = bio->bi_io_vec;
831 	int bio_index = 0;
832 	struct btrfs_root *root;
833 	int ret = 0;
834 
835 	WARN_ON(bio->bi_vcnt <= 0);
836 	while (bio_index < bio->bi_vcnt) {
837 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
838 		ret = csum_dirty_buffer(root, bvec->bv_page);
839 		if (ret)
840 			break;
841 		bio_index++;
842 		bvec++;
843 	}
844 	return ret;
845 }
846 
847 static int __btree_submit_bio_start(struct inode *inode, int rw,
848 				    struct bio *bio, int mirror_num,
849 				    unsigned long bio_flags,
850 				    u64 bio_offset)
851 {
852 	/*
853 	 * when we're called for a write, we're already in the async
854 	 * submission context.  Just jump into btrfs_map_bio
855 	 */
856 	return btree_csum_one_bio(bio);
857 }
858 
859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
860 				 int mirror_num, unsigned long bio_flags,
861 				 u64 bio_offset)
862 {
863 	/*
864 	 * when we're called for a write, we're already in the async
865 	 * submission context.  Just jump into btrfs_map_bio
866 	 */
867 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
868 }
869 
870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
871 				 int mirror_num, unsigned long bio_flags,
872 				 u64 bio_offset)
873 {
874 	int ret;
875 
876 	if (!(rw & REQ_WRITE)) {
877 
878 		/*
879 		 * called for a read, do the setup so that checksum validation
880 		 * can happen in the async kernel threads
881 		 */
882 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 					  bio, 1);
884 		if (ret)
885 			return ret;
886 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
887 				     mirror_num, 0);
888 	}
889 
890 	/*
891 	 * kthread helpers are used to submit writes so that checksumming
892 	 * can happen in parallel across all CPUs
893 	 */
894 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
895 				   inode, rw, bio, mirror_num, 0,
896 				   bio_offset,
897 				   __btree_submit_bio_start,
898 				   __btree_submit_bio_done);
899 }
900 
901 #ifdef CONFIG_MIGRATION
902 static int btree_migratepage(struct address_space *mapping,
903 			struct page *newpage, struct page *page,
904 			enum migrate_mode mode)
905 {
906 	/*
907 	 * we can't safely write a btree page from here,
908 	 * we haven't done the locking hook
909 	 */
910 	if (PageDirty(page))
911 		return -EAGAIN;
912 	/*
913 	 * Buffers may be managed in a filesystem specific way.
914 	 * We must have no buffers or drop them.
915 	 */
916 	if (page_has_private(page) &&
917 	    !try_to_release_page(page, GFP_KERNEL))
918 		return -EAGAIN;
919 	return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922 
923 
924 static int btree_writepages(struct address_space *mapping,
925 			    struct writeback_control *wbc)
926 {
927 	struct extent_io_tree *tree;
928 	tree = &BTRFS_I(mapping->host)->io_tree;
929 	if (wbc->sync_mode == WB_SYNC_NONE) {
930 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
931 		u64 num_dirty;
932 		unsigned long thresh = 32 * 1024 * 1024;
933 
934 		if (wbc->for_kupdate)
935 			return 0;
936 
937 		/* this is a bit racy, but that's ok */
938 		num_dirty = root->fs_info->dirty_metadata_bytes;
939 		if (num_dirty < thresh)
940 			return 0;
941 	}
942 	return btree_write_cache_pages(mapping, wbc);
943 }
944 
945 static int btree_readpage(struct file *file, struct page *page)
946 {
947 	struct extent_io_tree *tree;
948 	tree = &BTRFS_I(page->mapping->host)->io_tree;
949 	return extent_read_full_page(tree, page, btree_get_extent, 0);
950 }
951 
952 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
953 {
954 	if (PageWriteback(page) || PageDirty(page))
955 		return 0;
956 	/*
957 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 	 * slab allocation from alloc_extent_state down the callchain where
959 	 * it'd hit a BUG_ON as those flags are not allowed.
960 	 */
961 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
962 
963 	return try_release_extent_buffer(page, gfp_flags);
964 }
965 
966 static void btree_invalidatepage(struct page *page, unsigned long offset)
967 {
968 	struct extent_io_tree *tree;
969 	tree = &BTRFS_I(page->mapping->host)->io_tree;
970 	extent_invalidatepage(tree, page, offset);
971 	btree_releasepage(page, GFP_NOFS);
972 	if (PagePrivate(page)) {
973 		printk(KERN_WARNING "btrfs warning page private not zero "
974 		       "on page %llu\n", (unsigned long long)page_offset(page));
975 		ClearPagePrivate(page);
976 		set_page_private(page, 0);
977 		page_cache_release(page);
978 	}
979 }
980 
981 static int btree_set_page_dirty(struct page *page)
982 {
983 	struct extent_buffer *eb;
984 
985 	BUG_ON(!PagePrivate(page));
986 	eb = (struct extent_buffer *)page->private;
987 	BUG_ON(!eb);
988 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 	BUG_ON(!atomic_read(&eb->refs));
990 	btrfs_assert_tree_locked(eb);
991 	return __set_page_dirty_nobuffers(page);
992 }
993 
994 static const struct address_space_operations btree_aops = {
995 	.readpage	= btree_readpage,
996 	.writepages	= btree_writepages,
997 	.releasepage	= btree_releasepage,
998 	.invalidatepage = btree_invalidatepage,
999 #ifdef CONFIG_MIGRATION
1000 	.migratepage	= btree_migratepage,
1001 #endif
1002 	.set_page_dirty = btree_set_page_dirty,
1003 };
1004 
1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 			 u64 parent_transid)
1007 {
1008 	struct extent_buffer *buf = NULL;
1009 	struct inode *btree_inode = root->fs_info->btree_inode;
1010 	int ret = 0;
1011 
1012 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013 	if (!buf)
1014 		return 0;
1015 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017 	free_extent_buffer(buf);
1018 	return ret;
1019 }
1020 
1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 			 int mirror_num, struct extent_buffer **eb)
1023 {
1024 	struct extent_buffer *buf = NULL;
1025 	struct inode *btree_inode = root->fs_info->btree_inode;
1026 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 	int ret;
1028 
1029 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 	if (!buf)
1031 		return 0;
1032 
1033 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034 
1035 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 				       btree_get_extent, mirror_num);
1037 	if (ret) {
1038 		free_extent_buffer(buf);
1039 		return ret;
1040 	}
1041 
1042 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 		free_extent_buffer(buf);
1044 		return -EIO;
1045 	} else if (extent_buffer_uptodate(buf)) {
1046 		*eb = buf;
1047 	} else {
1048 		free_extent_buffer(buf);
1049 	}
1050 	return 0;
1051 }
1052 
1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 					    u64 bytenr, u32 blocksize)
1055 {
1056 	struct inode *btree_inode = root->fs_info->btree_inode;
1057 	struct extent_buffer *eb;
1058 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059 				bytenr, blocksize);
1060 	return eb;
1061 }
1062 
1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 						 u64 bytenr, u32 blocksize)
1065 {
1066 	struct inode *btree_inode = root->fs_info->btree_inode;
1067 	struct extent_buffer *eb;
1068 
1069 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070 				 bytenr, blocksize);
1071 	return eb;
1072 }
1073 
1074 
1075 int btrfs_write_tree_block(struct extent_buffer *buf)
1076 {
1077 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078 					buf->start + buf->len - 1);
1079 }
1080 
1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082 {
1083 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084 				       buf->start, buf->start + buf->len - 1);
1085 }
1086 
1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088 				      u32 blocksize, u64 parent_transid)
1089 {
1090 	struct extent_buffer *buf = NULL;
1091 	int ret;
1092 
1093 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 	if (!buf)
1095 		return NULL;
1096 
1097 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098 	return buf;
1099 
1100 }
1101 
1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 		      struct extent_buffer *buf)
1104 {
1105 	if (btrfs_header_generation(buf) ==
1106 	    root->fs_info->running_transaction->transid) {
1107 		btrfs_assert_tree_locked(buf);
1108 
1109 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 			spin_lock(&root->fs_info->delalloc_lock);
1111 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 				root->fs_info->dirty_metadata_bytes -= buf->len;
1113 			else {
1114 				spin_unlock(&root->fs_info->delalloc_lock);
1115 				btrfs_panic(root->fs_info, -EOVERFLOW,
1116 					  "Can't clear %lu bytes from "
1117 					  " dirty_mdatadata_bytes (%lu)",
1118 					  buf->len,
1119 					  root->fs_info->dirty_metadata_bytes);
1120 			}
1121 			spin_unlock(&root->fs_info->delalloc_lock);
1122 		}
1123 
1124 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 		btrfs_set_lock_blocking(buf);
1126 		clear_extent_buffer_dirty(buf);
1127 	}
1128 }
1129 
1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 			 u32 stripesize, struct btrfs_root *root,
1132 			 struct btrfs_fs_info *fs_info,
1133 			 u64 objectid)
1134 {
1135 	root->node = NULL;
1136 	root->commit_root = NULL;
1137 	root->sectorsize = sectorsize;
1138 	root->nodesize = nodesize;
1139 	root->leafsize = leafsize;
1140 	root->stripesize = stripesize;
1141 	root->ref_cows = 0;
1142 	root->track_dirty = 0;
1143 	root->in_radix = 0;
1144 	root->orphan_item_inserted = 0;
1145 	root->orphan_cleanup_state = 0;
1146 
1147 	root->objectid = objectid;
1148 	root->last_trans = 0;
1149 	root->highest_objectid = 0;
1150 	root->name = NULL;
1151 	root->inode_tree = RB_ROOT;
1152 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153 	root->block_rsv = NULL;
1154 	root->orphan_block_rsv = NULL;
1155 
1156 	INIT_LIST_HEAD(&root->dirty_list);
1157 	INIT_LIST_HEAD(&root->root_list);
1158 	spin_lock_init(&root->orphan_lock);
1159 	spin_lock_init(&root->inode_lock);
1160 	spin_lock_init(&root->accounting_lock);
1161 	mutex_init(&root->objectid_mutex);
1162 	mutex_init(&root->log_mutex);
1163 	init_waitqueue_head(&root->log_writer_wait);
1164 	init_waitqueue_head(&root->log_commit_wait[0]);
1165 	init_waitqueue_head(&root->log_commit_wait[1]);
1166 	atomic_set(&root->log_commit[0], 0);
1167 	atomic_set(&root->log_commit[1], 0);
1168 	atomic_set(&root->log_writers, 0);
1169 	atomic_set(&root->orphan_inodes, 0);
1170 	root->log_batch = 0;
1171 	root->log_transid = 0;
1172 	root->last_log_commit = 0;
1173 	extent_io_tree_init(&root->dirty_log_pages,
1174 			     fs_info->btree_inode->i_mapping);
1175 
1176 	memset(&root->root_key, 0, sizeof(root->root_key));
1177 	memset(&root->root_item, 0, sizeof(root->root_item));
1178 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180 	root->defrag_trans_start = fs_info->generation;
1181 	init_completion(&root->kobj_unregister);
1182 	root->defrag_running = 0;
1183 	root->root_key.objectid = objectid;
1184 	root->anon_dev = 0;
1185 }
1186 
1187 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 					    struct btrfs_fs_info *fs_info,
1189 					    u64 objectid,
1190 					    struct btrfs_root *root)
1191 {
1192 	int ret;
1193 	u32 blocksize;
1194 	u64 generation;
1195 
1196 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1197 		     tree_root->sectorsize, tree_root->stripesize,
1198 		     root, fs_info, objectid);
1199 	ret = btrfs_find_last_root(tree_root, objectid,
1200 				   &root->root_item, &root->root_key);
1201 	if (ret > 0)
1202 		return -ENOENT;
1203 	else if (ret < 0)
1204 		return ret;
1205 
1206 	generation = btrfs_root_generation(&root->root_item);
1207 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208 	root->commit_root = NULL;
1209 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210 				     blocksize, generation);
1211 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212 		free_extent_buffer(root->node);
1213 		root->node = NULL;
1214 		return -EIO;
1215 	}
1216 	root->commit_root = btrfs_root_node(root);
1217 	return 0;
1218 }
1219 
1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221 {
1222 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 	if (root)
1224 		root->fs_info = fs_info;
1225 	return root;
1226 }
1227 
1228 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229 					 struct btrfs_fs_info *fs_info)
1230 {
1231 	struct btrfs_root *root;
1232 	struct btrfs_root *tree_root = fs_info->tree_root;
1233 	struct extent_buffer *leaf;
1234 
1235 	root = btrfs_alloc_root(fs_info);
1236 	if (!root)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240 		     tree_root->sectorsize, tree_root->stripesize,
1241 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242 
1243 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1246 	/*
1247 	 * log trees do not get reference counted because they go away
1248 	 * before a real commit is actually done.  They do store pointers
1249 	 * to file data extents, and those reference counts still get
1250 	 * updated (along with back refs to the log tree).
1251 	 */
1252 	root->ref_cows = 0;
1253 
1254 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256 				      0, 0, 0);
1257 	if (IS_ERR(leaf)) {
1258 		kfree(root);
1259 		return ERR_CAST(leaf);
1260 	}
1261 
1262 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 	btrfs_set_header_bytenr(leaf, leaf->start);
1264 	btrfs_set_header_generation(leaf, trans->transid);
1265 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267 	root->node = leaf;
1268 
1269 	write_extent_buffer(root->node, root->fs_info->fsid,
1270 			    (unsigned long)btrfs_header_fsid(root->node),
1271 			    BTRFS_FSID_SIZE);
1272 	btrfs_mark_buffer_dirty(root->node);
1273 	btrfs_tree_unlock(root->node);
1274 	return root;
1275 }
1276 
1277 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278 			     struct btrfs_fs_info *fs_info)
1279 {
1280 	struct btrfs_root *log_root;
1281 
1282 	log_root = alloc_log_tree(trans, fs_info);
1283 	if (IS_ERR(log_root))
1284 		return PTR_ERR(log_root);
1285 	WARN_ON(fs_info->log_root_tree);
1286 	fs_info->log_root_tree = log_root;
1287 	return 0;
1288 }
1289 
1290 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291 		       struct btrfs_root *root)
1292 {
1293 	struct btrfs_root *log_root;
1294 	struct btrfs_inode_item *inode_item;
1295 
1296 	log_root = alloc_log_tree(trans, root->fs_info);
1297 	if (IS_ERR(log_root))
1298 		return PTR_ERR(log_root);
1299 
1300 	log_root->last_trans = trans->transid;
1301 	log_root->root_key.offset = root->root_key.objectid;
1302 
1303 	inode_item = &log_root->root_item.inode;
1304 	inode_item->generation = cpu_to_le64(1);
1305 	inode_item->size = cpu_to_le64(3);
1306 	inode_item->nlink = cpu_to_le32(1);
1307 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309 
1310 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311 
1312 	WARN_ON(root->log_root);
1313 	root->log_root = log_root;
1314 	root->log_transid = 0;
1315 	root->last_log_commit = 0;
1316 	return 0;
1317 }
1318 
1319 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320 					       struct btrfs_key *location)
1321 {
1322 	struct btrfs_root *root;
1323 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324 	struct btrfs_path *path;
1325 	struct extent_buffer *l;
1326 	u64 generation;
1327 	u32 blocksize;
1328 	int ret = 0;
1329 
1330 	root = btrfs_alloc_root(fs_info);
1331 	if (!root)
1332 		return ERR_PTR(-ENOMEM);
1333 	if (location->offset == (u64)-1) {
1334 		ret = find_and_setup_root(tree_root, fs_info,
1335 					  location->objectid, root);
1336 		if (ret) {
1337 			kfree(root);
1338 			return ERR_PTR(ret);
1339 		}
1340 		goto out;
1341 	}
1342 
1343 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344 		     tree_root->sectorsize, tree_root->stripesize,
1345 		     root, fs_info, location->objectid);
1346 
1347 	path = btrfs_alloc_path();
1348 	if (!path) {
1349 		kfree(root);
1350 		return ERR_PTR(-ENOMEM);
1351 	}
1352 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353 	if (ret == 0) {
1354 		l = path->nodes[0];
1355 		read_extent_buffer(l, &root->root_item,
1356 				btrfs_item_ptr_offset(l, path->slots[0]),
1357 				sizeof(root->root_item));
1358 		memcpy(&root->root_key, location, sizeof(*location));
1359 	}
1360 	btrfs_free_path(path);
1361 	if (ret) {
1362 		kfree(root);
1363 		if (ret > 0)
1364 			ret = -ENOENT;
1365 		return ERR_PTR(ret);
1366 	}
1367 
1368 	generation = btrfs_root_generation(&root->root_item);
1369 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371 				     blocksize, generation);
1372 	root->commit_root = btrfs_root_node(root);
1373 	BUG_ON(!root->node); /* -ENOMEM */
1374 out:
1375 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376 		root->ref_cows = 1;
1377 		btrfs_check_and_init_root_item(&root->root_item);
1378 	}
1379 
1380 	return root;
1381 }
1382 
1383 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384 					      struct btrfs_key *location)
1385 {
1386 	struct btrfs_root *root;
1387 	int ret;
1388 
1389 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390 		return fs_info->tree_root;
1391 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392 		return fs_info->extent_root;
1393 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394 		return fs_info->chunk_root;
1395 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396 		return fs_info->dev_root;
1397 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398 		return fs_info->csum_root;
1399 again:
1400 	spin_lock(&fs_info->fs_roots_radix_lock);
1401 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402 				 (unsigned long)location->objectid);
1403 	spin_unlock(&fs_info->fs_roots_radix_lock);
1404 	if (root)
1405 		return root;
1406 
1407 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1408 	if (IS_ERR(root))
1409 		return root;
1410 
1411 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 					GFP_NOFS);
1414 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415 		ret = -ENOMEM;
1416 		goto fail;
1417 	}
1418 
1419 	btrfs_init_free_ino_ctl(root);
1420 	mutex_init(&root->fs_commit_mutex);
1421 	spin_lock_init(&root->cache_lock);
1422 	init_waitqueue_head(&root->cache_wait);
1423 
1424 	ret = get_anon_bdev(&root->anon_dev);
1425 	if (ret)
1426 		goto fail;
1427 
1428 	if (btrfs_root_refs(&root->root_item) == 0) {
1429 		ret = -ENOENT;
1430 		goto fail;
1431 	}
1432 
1433 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434 	if (ret < 0)
1435 		goto fail;
1436 	if (ret == 0)
1437 		root->orphan_item_inserted = 1;
1438 
1439 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440 	if (ret)
1441 		goto fail;
1442 
1443 	spin_lock(&fs_info->fs_roots_radix_lock);
1444 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445 				(unsigned long)root->root_key.objectid,
1446 				root);
1447 	if (ret == 0)
1448 		root->in_radix = 1;
1449 
1450 	spin_unlock(&fs_info->fs_roots_radix_lock);
1451 	radix_tree_preload_end();
1452 	if (ret) {
1453 		if (ret == -EEXIST) {
1454 			free_fs_root(root);
1455 			goto again;
1456 		}
1457 		goto fail;
1458 	}
1459 
1460 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461 				    root->root_key.objectid);
1462 	WARN_ON(ret);
1463 	return root;
1464 fail:
1465 	free_fs_root(root);
1466 	return ERR_PTR(ret);
1467 }
1468 
1469 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470 {
1471 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 	int ret = 0;
1473 	struct btrfs_device *device;
1474 	struct backing_dev_info *bdi;
1475 
1476 	rcu_read_lock();
1477 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478 		if (!device->bdev)
1479 			continue;
1480 		bdi = blk_get_backing_dev_info(device->bdev);
1481 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482 			ret = 1;
1483 			break;
1484 		}
1485 	}
1486 	rcu_read_unlock();
1487 	return ret;
1488 }
1489 
1490 /*
1491  * If this fails, caller must call bdi_destroy() to get rid of the
1492  * bdi again.
1493  */
1494 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495 {
1496 	int err;
1497 
1498 	bdi->capabilities = BDI_CAP_MAP_COPY;
1499 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500 	if (err)
1501 		return err;
1502 
1503 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504 	bdi->congested_fn	= btrfs_congested_fn;
1505 	bdi->congested_data	= info;
1506 	return 0;
1507 }
1508 
1509 /*
1510  * called by the kthread helper functions to finally call the bio end_io
1511  * functions.  This is where read checksum verification actually happens
1512  */
1513 static void end_workqueue_fn(struct btrfs_work *work)
1514 {
1515 	struct bio *bio;
1516 	struct end_io_wq *end_io_wq;
1517 	struct btrfs_fs_info *fs_info;
1518 	int error;
1519 
1520 	end_io_wq = container_of(work, struct end_io_wq, work);
1521 	bio = end_io_wq->bio;
1522 	fs_info = end_io_wq->info;
1523 
1524 	error = end_io_wq->error;
1525 	bio->bi_private = end_io_wq->private;
1526 	bio->bi_end_io = end_io_wq->end_io;
1527 	kfree(end_io_wq);
1528 	bio_endio(bio, error);
1529 }
1530 
1531 static int cleaner_kthread(void *arg)
1532 {
1533 	struct btrfs_root *root = arg;
1534 
1535 	do {
1536 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537 
1538 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540 			btrfs_run_delayed_iputs(root);
1541 			btrfs_clean_old_snapshots(root);
1542 			mutex_unlock(&root->fs_info->cleaner_mutex);
1543 			btrfs_run_defrag_inodes(root->fs_info);
1544 		}
1545 
1546 		if (!try_to_freeze()) {
1547 			set_current_state(TASK_INTERRUPTIBLE);
1548 			if (!kthread_should_stop())
1549 				schedule();
1550 			__set_current_state(TASK_RUNNING);
1551 		}
1552 	} while (!kthread_should_stop());
1553 	return 0;
1554 }
1555 
1556 static int transaction_kthread(void *arg)
1557 {
1558 	struct btrfs_root *root = arg;
1559 	struct btrfs_trans_handle *trans;
1560 	struct btrfs_transaction *cur;
1561 	u64 transid;
1562 	unsigned long now;
1563 	unsigned long delay;
1564 	bool cannot_commit;
1565 
1566 	do {
1567 		cannot_commit = false;
1568 		delay = HZ * 30;
1569 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571 
1572 		spin_lock(&root->fs_info->trans_lock);
1573 		cur = root->fs_info->running_transaction;
1574 		if (!cur) {
1575 			spin_unlock(&root->fs_info->trans_lock);
1576 			goto sleep;
1577 		}
1578 
1579 		now = get_seconds();
1580 		if (!cur->blocked &&
1581 		    (now < cur->start_time || now - cur->start_time < 30)) {
1582 			spin_unlock(&root->fs_info->trans_lock);
1583 			delay = HZ * 5;
1584 			goto sleep;
1585 		}
1586 		transid = cur->transid;
1587 		spin_unlock(&root->fs_info->trans_lock);
1588 
1589 		/* If the file system is aborted, this will always fail. */
1590 		trans = btrfs_join_transaction(root);
1591 		if (IS_ERR(trans)) {
1592 			cannot_commit = true;
1593 			goto sleep;
1594 		}
1595 		if (transid == trans->transid) {
1596 			btrfs_commit_transaction(trans, root);
1597 		} else {
1598 			btrfs_end_transaction(trans, root);
1599 		}
1600 sleep:
1601 		wake_up_process(root->fs_info->cleaner_kthread);
1602 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603 
1604 		if (!try_to_freeze()) {
1605 			set_current_state(TASK_INTERRUPTIBLE);
1606 			if (!kthread_should_stop() &&
1607 			    (!btrfs_transaction_blocked(root->fs_info) ||
1608 			     cannot_commit))
1609 				schedule_timeout(delay);
1610 			__set_current_state(TASK_RUNNING);
1611 		}
1612 	} while (!kthread_should_stop());
1613 	return 0;
1614 }
1615 
1616 /*
1617  * this will find the highest generation in the array of
1618  * root backups.  The index of the highest array is returned,
1619  * or -1 if we can't find anything.
1620  *
1621  * We check to make sure the array is valid by comparing the
1622  * generation of the latest  root in the array with the generation
1623  * in the super block.  If they don't match we pitch it.
1624  */
1625 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626 {
1627 	u64 cur;
1628 	int newest_index = -1;
1629 	struct btrfs_root_backup *root_backup;
1630 	int i;
1631 
1632 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633 		root_backup = info->super_copy->super_roots + i;
1634 		cur = btrfs_backup_tree_root_gen(root_backup);
1635 		if (cur == newest_gen)
1636 			newest_index = i;
1637 	}
1638 
1639 	/* check to see if we actually wrapped around */
1640 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641 		root_backup = info->super_copy->super_roots;
1642 		cur = btrfs_backup_tree_root_gen(root_backup);
1643 		if (cur == newest_gen)
1644 			newest_index = 0;
1645 	}
1646 	return newest_index;
1647 }
1648 
1649 
1650 /*
1651  * find the oldest backup so we know where to store new entries
1652  * in the backup array.  This will set the backup_root_index
1653  * field in the fs_info struct
1654  */
1655 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656 				     u64 newest_gen)
1657 {
1658 	int newest_index = -1;
1659 
1660 	newest_index = find_newest_super_backup(info, newest_gen);
1661 	/* if there was garbage in there, just move along */
1662 	if (newest_index == -1) {
1663 		info->backup_root_index = 0;
1664 	} else {
1665 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 	}
1667 }
1668 
1669 /*
1670  * copy all the root pointers into the super backup array.
1671  * this will bump the backup pointer by one when it is
1672  * done
1673  */
1674 static void backup_super_roots(struct btrfs_fs_info *info)
1675 {
1676 	int next_backup;
1677 	struct btrfs_root_backup *root_backup;
1678 	int last_backup;
1679 
1680 	next_backup = info->backup_root_index;
1681 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682 		BTRFS_NUM_BACKUP_ROOTS;
1683 
1684 	/*
1685 	 * just overwrite the last backup if we're at the same generation
1686 	 * this happens only at umount
1687 	 */
1688 	root_backup = info->super_for_commit->super_roots + last_backup;
1689 	if (btrfs_backup_tree_root_gen(root_backup) ==
1690 	    btrfs_header_generation(info->tree_root->node))
1691 		next_backup = last_backup;
1692 
1693 	root_backup = info->super_for_commit->super_roots + next_backup;
1694 
1695 	/*
1696 	 * make sure all of our padding and empty slots get zero filled
1697 	 * regardless of which ones we use today
1698 	 */
1699 	memset(root_backup, 0, sizeof(*root_backup));
1700 
1701 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702 
1703 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704 	btrfs_set_backup_tree_root_gen(root_backup,
1705 			       btrfs_header_generation(info->tree_root->node));
1706 
1707 	btrfs_set_backup_tree_root_level(root_backup,
1708 			       btrfs_header_level(info->tree_root->node));
1709 
1710 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711 	btrfs_set_backup_chunk_root_gen(root_backup,
1712 			       btrfs_header_generation(info->chunk_root->node));
1713 	btrfs_set_backup_chunk_root_level(root_backup,
1714 			       btrfs_header_level(info->chunk_root->node));
1715 
1716 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717 	btrfs_set_backup_extent_root_gen(root_backup,
1718 			       btrfs_header_generation(info->extent_root->node));
1719 	btrfs_set_backup_extent_root_level(root_backup,
1720 			       btrfs_header_level(info->extent_root->node));
1721 
1722 	/*
1723 	 * we might commit during log recovery, which happens before we set
1724 	 * the fs_root.  Make sure it is valid before we fill it in.
1725 	 */
1726 	if (info->fs_root && info->fs_root->node) {
1727 		btrfs_set_backup_fs_root(root_backup,
1728 					 info->fs_root->node->start);
1729 		btrfs_set_backup_fs_root_gen(root_backup,
1730 			       btrfs_header_generation(info->fs_root->node));
1731 		btrfs_set_backup_fs_root_level(root_backup,
1732 			       btrfs_header_level(info->fs_root->node));
1733 	}
1734 
1735 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736 	btrfs_set_backup_dev_root_gen(root_backup,
1737 			       btrfs_header_generation(info->dev_root->node));
1738 	btrfs_set_backup_dev_root_level(root_backup,
1739 				       btrfs_header_level(info->dev_root->node));
1740 
1741 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742 	btrfs_set_backup_csum_root_gen(root_backup,
1743 			       btrfs_header_generation(info->csum_root->node));
1744 	btrfs_set_backup_csum_root_level(root_backup,
1745 			       btrfs_header_level(info->csum_root->node));
1746 
1747 	btrfs_set_backup_total_bytes(root_backup,
1748 			     btrfs_super_total_bytes(info->super_copy));
1749 	btrfs_set_backup_bytes_used(root_backup,
1750 			     btrfs_super_bytes_used(info->super_copy));
1751 	btrfs_set_backup_num_devices(root_backup,
1752 			     btrfs_super_num_devices(info->super_copy));
1753 
1754 	/*
1755 	 * if we don't copy this out to the super_copy, it won't get remembered
1756 	 * for the next commit
1757 	 */
1758 	memcpy(&info->super_copy->super_roots,
1759 	       &info->super_for_commit->super_roots,
1760 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761 }
1762 
1763 /*
1764  * this copies info out of the root backup array and back into
1765  * the in-memory super block.  It is meant to help iterate through
1766  * the array, so you send it the number of backups you've already
1767  * tried and the last backup index you used.
1768  *
1769  * this returns -1 when it has tried all the backups
1770  */
1771 static noinline int next_root_backup(struct btrfs_fs_info *info,
1772 				     struct btrfs_super_block *super,
1773 				     int *num_backups_tried, int *backup_index)
1774 {
1775 	struct btrfs_root_backup *root_backup;
1776 	int newest = *backup_index;
1777 
1778 	if (*num_backups_tried == 0) {
1779 		u64 gen = btrfs_super_generation(super);
1780 
1781 		newest = find_newest_super_backup(info, gen);
1782 		if (newest == -1)
1783 			return -1;
1784 
1785 		*backup_index = newest;
1786 		*num_backups_tried = 1;
1787 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788 		/* we've tried all the backups, all done */
1789 		return -1;
1790 	} else {
1791 		/* jump to the next oldest backup */
1792 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793 			BTRFS_NUM_BACKUP_ROOTS;
1794 		*backup_index = newest;
1795 		*num_backups_tried += 1;
1796 	}
1797 	root_backup = super->super_roots + newest;
1798 
1799 	btrfs_set_super_generation(super,
1800 				   btrfs_backup_tree_root_gen(root_backup));
1801 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802 	btrfs_set_super_root_level(super,
1803 				   btrfs_backup_tree_root_level(root_backup));
1804 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805 
1806 	/*
1807 	 * fixme: the total bytes and num_devices need to match or we should
1808 	 * need a fsck
1809 	 */
1810 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812 	return 0;
1813 }
1814 
1815 /* helper to cleanup tree roots */
1816 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817 {
1818 	free_extent_buffer(info->tree_root->node);
1819 	free_extent_buffer(info->tree_root->commit_root);
1820 	free_extent_buffer(info->dev_root->node);
1821 	free_extent_buffer(info->dev_root->commit_root);
1822 	free_extent_buffer(info->extent_root->node);
1823 	free_extent_buffer(info->extent_root->commit_root);
1824 	free_extent_buffer(info->csum_root->node);
1825 	free_extent_buffer(info->csum_root->commit_root);
1826 
1827 	info->tree_root->node = NULL;
1828 	info->tree_root->commit_root = NULL;
1829 	info->dev_root->node = NULL;
1830 	info->dev_root->commit_root = NULL;
1831 	info->extent_root->node = NULL;
1832 	info->extent_root->commit_root = NULL;
1833 	info->csum_root->node = NULL;
1834 	info->csum_root->commit_root = NULL;
1835 
1836 	if (chunk_root) {
1837 		free_extent_buffer(info->chunk_root->node);
1838 		free_extent_buffer(info->chunk_root->commit_root);
1839 		info->chunk_root->node = NULL;
1840 		info->chunk_root->commit_root = NULL;
1841 	}
1842 }
1843 
1844 
1845 int open_ctree(struct super_block *sb,
1846 	       struct btrfs_fs_devices *fs_devices,
1847 	       char *options)
1848 {
1849 	u32 sectorsize;
1850 	u32 nodesize;
1851 	u32 leafsize;
1852 	u32 blocksize;
1853 	u32 stripesize;
1854 	u64 generation;
1855 	u64 features;
1856 	struct btrfs_key location;
1857 	struct buffer_head *bh;
1858 	struct btrfs_super_block *disk_super;
1859 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860 	struct btrfs_root *tree_root;
1861 	struct btrfs_root *extent_root;
1862 	struct btrfs_root *csum_root;
1863 	struct btrfs_root *chunk_root;
1864 	struct btrfs_root *dev_root;
1865 	struct btrfs_root *log_tree_root;
1866 	int ret;
1867 	int err = -EINVAL;
1868 	int num_backups_tried = 0;
1869 	int backup_index = 0;
1870 
1871 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1876 
1877 	if (!tree_root || !extent_root || !csum_root ||
1878 	    !chunk_root || !dev_root) {
1879 		err = -ENOMEM;
1880 		goto fail;
1881 	}
1882 
1883 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1884 	if (ret) {
1885 		err = ret;
1886 		goto fail;
1887 	}
1888 
1889 	ret = setup_bdi(fs_info, &fs_info->bdi);
1890 	if (ret) {
1891 		err = ret;
1892 		goto fail_srcu;
1893 	}
1894 
1895 	fs_info->btree_inode = new_inode(sb);
1896 	if (!fs_info->btree_inode) {
1897 		err = -ENOMEM;
1898 		goto fail_bdi;
1899 	}
1900 
1901 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1902 
1903 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1904 	INIT_LIST_HEAD(&fs_info->trans_list);
1905 	INIT_LIST_HEAD(&fs_info->dead_roots);
1906 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907 	INIT_LIST_HEAD(&fs_info->hashers);
1908 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1910 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911 	spin_lock_init(&fs_info->delalloc_lock);
1912 	spin_lock_init(&fs_info->trans_lock);
1913 	spin_lock_init(&fs_info->ref_cache_lock);
1914 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1915 	spin_lock_init(&fs_info->delayed_iput_lock);
1916 	spin_lock_init(&fs_info->defrag_inodes_lock);
1917 	spin_lock_init(&fs_info->free_chunk_lock);
1918 	spin_lock_init(&fs_info->tree_mod_seq_lock);
1919 	rwlock_init(&fs_info->tree_mod_log_lock);
1920 	mutex_init(&fs_info->reloc_mutex);
1921 
1922 	init_completion(&fs_info->kobj_unregister);
1923 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924 	INIT_LIST_HEAD(&fs_info->space_info);
1925 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926 	btrfs_mapping_init(&fs_info->mapping_tree);
1927 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933 	atomic_set(&fs_info->nr_async_submits, 0);
1934 	atomic_set(&fs_info->async_delalloc_pages, 0);
1935 	atomic_set(&fs_info->async_submit_draining, 0);
1936 	atomic_set(&fs_info->nr_async_bios, 0);
1937 	atomic_set(&fs_info->defrag_running, 0);
1938 	atomic_set(&fs_info->tree_mod_seq, 0);
1939 	fs_info->sb = sb;
1940 	fs_info->max_inline = 8192 * 1024;
1941 	fs_info->metadata_ratio = 0;
1942 	fs_info->defrag_inodes = RB_ROOT;
1943 	fs_info->trans_no_join = 0;
1944 	fs_info->free_chunk_space = 0;
1945 	fs_info->tree_mod_log = RB_ROOT;
1946 
1947 	/* readahead state */
1948 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949 	spin_lock_init(&fs_info->reada_lock);
1950 
1951 	fs_info->thread_pool_size = min_t(unsigned long,
1952 					  num_online_cpus() + 2, 8);
1953 
1954 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1955 	spin_lock_init(&fs_info->ordered_extent_lock);
1956 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957 					GFP_NOFS);
1958 	if (!fs_info->delayed_root) {
1959 		err = -ENOMEM;
1960 		goto fail_iput;
1961 	}
1962 	btrfs_init_delayed_root(fs_info->delayed_root);
1963 
1964 	mutex_init(&fs_info->scrub_lock);
1965 	atomic_set(&fs_info->scrubs_running, 0);
1966 	atomic_set(&fs_info->scrub_pause_req, 0);
1967 	atomic_set(&fs_info->scrubs_paused, 0);
1968 	atomic_set(&fs_info->scrub_cancel_req, 0);
1969 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1970 	init_rwsem(&fs_info->scrub_super_lock);
1971 	fs_info->scrub_workers_refcnt = 0;
1972 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973 	fs_info->check_integrity_print_mask = 0;
1974 #endif
1975 
1976 	spin_lock_init(&fs_info->balance_lock);
1977 	mutex_init(&fs_info->balance_mutex);
1978 	atomic_set(&fs_info->balance_running, 0);
1979 	atomic_set(&fs_info->balance_pause_req, 0);
1980 	atomic_set(&fs_info->balance_cancel_req, 0);
1981 	fs_info->balance_ctl = NULL;
1982 	init_waitqueue_head(&fs_info->balance_wait_q);
1983 
1984 	sb->s_blocksize = 4096;
1985 	sb->s_blocksize_bits = blksize_bits(4096);
1986 	sb->s_bdi = &fs_info->bdi;
1987 
1988 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989 	set_nlink(fs_info->btree_inode, 1);
1990 	/*
1991 	 * we set the i_size on the btree inode to the max possible int.
1992 	 * the real end of the address space is determined by all of
1993 	 * the devices in the system
1994 	 */
1995 	fs_info->btree_inode->i_size = OFFSET_MAX;
1996 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998 
1999 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001 			     fs_info->btree_inode->i_mapping);
2002 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004 
2005 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006 
2007 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009 	       sizeof(struct btrfs_key));
2010 	set_bit(BTRFS_INODE_DUMMY,
2011 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012 	insert_inode_hash(fs_info->btree_inode);
2013 
2014 	spin_lock_init(&fs_info->block_group_cache_lock);
2015 	fs_info->block_group_cache_tree = RB_ROOT;
2016 
2017 	extent_io_tree_init(&fs_info->freed_extents[0],
2018 			     fs_info->btree_inode->i_mapping);
2019 	extent_io_tree_init(&fs_info->freed_extents[1],
2020 			     fs_info->btree_inode->i_mapping);
2021 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2022 	fs_info->do_barriers = 1;
2023 
2024 
2025 	mutex_init(&fs_info->ordered_operations_mutex);
2026 	mutex_init(&fs_info->tree_log_mutex);
2027 	mutex_init(&fs_info->chunk_mutex);
2028 	mutex_init(&fs_info->transaction_kthread_mutex);
2029 	mutex_init(&fs_info->cleaner_mutex);
2030 	mutex_init(&fs_info->volume_mutex);
2031 	init_rwsem(&fs_info->extent_commit_sem);
2032 	init_rwsem(&fs_info->cleanup_work_sem);
2033 	init_rwsem(&fs_info->subvol_sem);
2034 
2035 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037 
2038 	init_waitqueue_head(&fs_info->transaction_throttle);
2039 	init_waitqueue_head(&fs_info->transaction_wait);
2040 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041 	init_waitqueue_head(&fs_info->async_submit_wait);
2042 
2043 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2044 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2045 
2046 	invalidate_bdev(fs_devices->latest_bdev);
2047 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048 	if (!bh) {
2049 		err = -EINVAL;
2050 		goto fail_alloc;
2051 	}
2052 
2053 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055 	       sizeof(*fs_info->super_for_commit));
2056 	brelse(bh);
2057 
2058 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2059 
2060 	disk_super = fs_info->super_copy;
2061 	if (!btrfs_super_root(disk_super))
2062 		goto fail_alloc;
2063 
2064 	/* check FS state, whether FS is broken. */
2065 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2066 
2067 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068 	if (ret) {
2069 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070 		err = ret;
2071 		goto fail_alloc;
2072 	}
2073 
2074 	/*
2075 	 * run through our array of backup supers and setup
2076 	 * our ring pointer to the oldest one
2077 	 */
2078 	generation = btrfs_super_generation(disk_super);
2079 	find_oldest_super_backup(fs_info, generation);
2080 
2081 	/*
2082 	 * In the long term, we'll store the compression type in the super
2083 	 * block, and it'll be used for per file compression control.
2084 	 */
2085 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086 
2087 	ret = btrfs_parse_options(tree_root, options);
2088 	if (ret) {
2089 		err = ret;
2090 		goto fail_alloc;
2091 	}
2092 
2093 	features = btrfs_super_incompat_flags(disk_super) &
2094 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2095 	if (features) {
2096 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2097 		       "unsupported optional features (%Lx).\n",
2098 		       (unsigned long long)features);
2099 		err = -EINVAL;
2100 		goto fail_alloc;
2101 	}
2102 
2103 	if (btrfs_super_leafsize(disk_super) !=
2104 	    btrfs_super_nodesize(disk_super)) {
2105 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106 		       "blocksizes don't match.  node %d leaf %d\n",
2107 		       btrfs_super_nodesize(disk_super),
2108 		       btrfs_super_leafsize(disk_super));
2109 		err = -EINVAL;
2110 		goto fail_alloc;
2111 	}
2112 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114 		       "blocksize (%d) was too large\n",
2115 		       btrfs_super_leafsize(disk_super));
2116 		err = -EINVAL;
2117 		goto fail_alloc;
2118 	}
2119 
2120 	features = btrfs_super_incompat_flags(disk_super);
2121 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2124 
2125 	/*
2126 	 * flag our filesystem as having big metadata blocks if
2127 	 * they are bigger than the page size
2128 	 */
2129 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133 	}
2134 
2135 	nodesize = btrfs_super_nodesize(disk_super);
2136 	leafsize = btrfs_super_leafsize(disk_super);
2137 	sectorsize = btrfs_super_sectorsize(disk_super);
2138 	stripesize = btrfs_super_stripesize(disk_super);
2139 
2140 	/*
2141 	 * mixed block groups end up with duplicate but slightly offset
2142 	 * extent buffers for the same range.  It leads to corruptions
2143 	 */
2144 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145 	    (sectorsize != leafsize)) {
2146 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147 				"are not allowed for mixed block groups on %s\n",
2148 				sb->s_id);
2149 		goto fail_alloc;
2150 	}
2151 
2152 	btrfs_set_super_incompat_flags(disk_super, features);
2153 
2154 	features = btrfs_super_compat_ro_flags(disk_super) &
2155 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156 	if (!(sb->s_flags & MS_RDONLY) && features) {
2157 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158 		       "unsupported option features (%Lx).\n",
2159 		       (unsigned long long)features);
2160 		err = -EINVAL;
2161 		goto fail_alloc;
2162 	}
2163 
2164 	btrfs_init_workers(&fs_info->generic_worker,
2165 			   "genwork", 1, NULL);
2166 
2167 	btrfs_init_workers(&fs_info->workers, "worker",
2168 			   fs_info->thread_pool_size,
2169 			   &fs_info->generic_worker);
2170 
2171 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172 			   fs_info->thread_pool_size,
2173 			   &fs_info->generic_worker);
2174 
2175 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2176 			   min_t(u64, fs_devices->num_devices,
2177 			   fs_info->thread_pool_size),
2178 			   &fs_info->generic_worker);
2179 
2180 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2181 			   2, &fs_info->generic_worker);
2182 
2183 	/* a higher idle thresh on the submit workers makes it much more
2184 	 * likely that bios will be send down in a sane order to the
2185 	 * devices
2186 	 */
2187 	fs_info->submit_workers.idle_thresh = 64;
2188 
2189 	fs_info->workers.idle_thresh = 16;
2190 	fs_info->workers.ordered = 1;
2191 
2192 	fs_info->delalloc_workers.idle_thresh = 2;
2193 	fs_info->delalloc_workers.ordered = 1;
2194 
2195 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196 			   &fs_info->generic_worker);
2197 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2198 			   fs_info->thread_pool_size,
2199 			   &fs_info->generic_worker);
2200 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201 			   fs_info->thread_pool_size,
2202 			   &fs_info->generic_worker);
2203 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204 			   "endio-meta-write", fs_info->thread_pool_size,
2205 			   &fs_info->generic_worker);
2206 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207 			   fs_info->thread_pool_size,
2208 			   &fs_info->generic_worker);
2209 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210 			   1, &fs_info->generic_worker);
2211 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212 			   fs_info->thread_pool_size,
2213 			   &fs_info->generic_worker);
2214 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215 			   fs_info->thread_pool_size,
2216 			   &fs_info->generic_worker);
2217 
2218 	/*
2219 	 * endios are largely parallel and should have a very
2220 	 * low idle thresh
2221 	 */
2222 	fs_info->endio_workers.idle_thresh = 4;
2223 	fs_info->endio_meta_workers.idle_thresh = 4;
2224 
2225 	fs_info->endio_write_workers.idle_thresh = 2;
2226 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2227 	fs_info->readahead_workers.idle_thresh = 2;
2228 
2229 	/*
2230 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2231 	 * return -ENOMEM if any of these fail.
2232 	 */
2233 	ret = btrfs_start_workers(&fs_info->workers);
2234 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2235 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2236 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2239 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2245 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246 	if (ret) {
2247 		ret = -ENOMEM;
2248 		goto fail_sb_buffer;
2249 	}
2250 
2251 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254 
2255 	tree_root->nodesize = nodesize;
2256 	tree_root->leafsize = leafsize;
2257 	tree_root->sectorsize = sectorsize;
2258 	tree_root->stripesize = stripesize;
2259 
2260 	sb->s_blocksize = sectorsize;
2261 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2262 
2263 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264 		    sizeof(disk_super->magic))) {
2265 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266 		goto fail_sb_buffer;
2267 	}
2268 
2269 	if (sectorsize != PAGE_SIZE) {
2270 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272 		goto fail_sb_buffer;
2273 	}
2274 
2275 	mutex_lock(&fs_info->chunk_mutex);
2276 	ret = btrfs_read_sys_array(tree_root);
2277 	mutex_unlock(&fs_info->chunk_mutex);
2278 	if (ret) {
2279 		printk(KERN_WARNING "btrfs: failed to read the system "
2280 		       "array on %s\n", sb->s_id);
2281 		goto fail_sb_buffer;
2282 	}
2283 
2284 	blocksize = btrfs_level_size(tree_root,
2285 				     btrfs_super_chunk_root_level(disk_super));
2286 	generation = btrfs_super_chunk_root_generation(disk_super);
2287 
2288 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2289 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290 
2291 	chunk_root->node = read_tree_block(chunk_root,
2292 					   btrfs_super_chunk_root(disk_super),
2293 					   blocksize, generation);
2294 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2295 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297 		       sb->s_id);
2298 		goto fail_tree_roots;
2299 	}
2300 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2302 
2303 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305 	   BTRFS_UUID_SIZE);
2306 
2307 	ret = btrfs_read_chunk_tree(chunk_root);
2308 	if (ret) {
2309 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310 		       sb->s_id);
2311 		goto fail_tree_roots;
2312 	}
2313 
2314 	btrfs_close_extra_devices(fs_devices);
2315 
2316 	if (!fs_devices->latest_bdev) {
2317 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318 		       sb->s_id);
2319 		goto fail_tree_roots;
2320 	}
2321 
2322 retry_root_backup:
2323 	blocksize = btrfs_level_size(tree_root,
2324 				     btrfs_super_root_level(disk_super));
2325 	generation = btrfs_super_generation(disk_super);
2326 
2327 	tree_root->node = read_tree_block(tree_root,
2328 					  btrfs_super_root(disk_super),
2329 					  blocksize, generation);
2330 	if (!tree_root->node ||
2331 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333 		       sb->s_id);
2334 
2335 		goto recovery_tree_root;
2336 	}
2337 
2338 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339 	tree_root->commit_root = btrfs_root_node(tree_root);
2340 
2341 	ret = find_and_setup_root(tree_root, fs_info,
2342 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343 	if (ret)
2344 		goto recovery_tree_root;
2345 	extent_root->track_dirty = 1;
2346 
2347 	ret = find_and_setup_root(tree_root, fs_info,
2348 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2349 	if (ret)
2350 		goto recovery_tree_root;
2351 	dev_root->track_dirty = 1;
2352 
2353 	ret = find_and_setup_root(tree_root, fs_info,
2354 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355 	if (ret)
2356 		goto recovery_tree_root;
2357 	csum_root->track_dirty = 1;
2358 
2359 	fs_info->generation = generation;
2360 	fs_info->last_trans_committed = generation;
2361 
2362 	ret = btrfs_recover_balance(fs_info);
2363 	if (ret) {
2364 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365 		goto fail_block_groups;
2366 	}
2367 
2368 	ret = btrfs_init_dev_stats(fs_info);
2369 	if (ret) {
2370 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371 		       ret);
2372 		goto fail_block_groups;
2373 	}
2374 
2375 	ret = btrfs_init_space_info(fs_info);
2376 	if (ret) {
2377 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378 		goto fail_block_groups;
2379 	}
2380 
2381 	ret = btrfs_read_block_groups(extent_root);
2382 	if (ret) {
2383 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384 		goto fail_block_groups;
2385 	}
2386 
2387 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388 					       "btrfs-cleaner");
2389 	if (IS_ERR(fs_info->cleaner_kthread))
2390 		goto fail_block_groups;
2391 
2392 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393 						   tree_root,
2394 						   "btrfs-transaction");
2395 	if (IS_ERR(fs_info->transaction_kthread))
2396 		goto fail_cleaner;
2397 
2398 	if (!btrfs_test_opt(tree_root, SSD) &&
2399 	    !btrfs_test_opt(tree_root, NOSSD) &&
2400 	    !fs_info->fs_devices->rotating) {
2401 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402 		       "mode\n");
2403 		btrfs_set_opt(fs_info->mount_opt, SSD);
2404 	}
2405 
2406 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408 		ret = btrfsic_mount(tree_root, fs_devices,
2409 				    btrfs_test_opt(tree_root,
2410 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411 				    1 : 0,
2412 				    fs_info->check_integrity_print_mask);
2413 		if (ret)
2414 			printk(KERN_WARNING "btrfs: failed to initialize"
2415 			       " integrity check module %s\n", sb->s_id);
2416 	}
2417 #endif
2418 
2419 	/* do not make disk changes in broken FS */
2420 	if (btrfs_super_log_root(disk_super) != 0 &&
2421 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422 		u64 bytenr = btrfs_super_log_root(disk_super);
2423 
2424 		if (fs_devices->rw_devices == 0) {
2425 			printk(KERN_WARNING "Btrfs log replay required "
2426 			       "on RO media\n");
2427 			err = -EIO;
2428 			goto fail_trans_kthread;
2429 		}
2430 		blocksize =
2431 		     btrfs_level_size(tree_root,
2432 				      btrfs_super_log_root_level(disk_super));
2433 
2434 		log_tree_root = btrfs_alloc_root(fs_info);
2435 		if (!log_tree_root) {
2436 			err = -ENOMEM;
2437 			goto fail_trans_kthread;
2438 		}
2439 
2440 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2441 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442 
2443 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2444 						      blocksize,
2445 						      generation + 1);
2446 		/* returns with log_tree_root freed on success */
2447 		ret = btrfs_recover_log_trees(log_tree_root);
2448 		if (ret) {
2449 			btrfs_error(tree_root->fs_info, ret,
2450 				    "Failed to recover log tree");
2451 			free_extent_buffer(log_tree_root->node);
2452 			kfree(log_tree_root);
2453 			goto fail_trans_kthread;
2454 		}
2455 
2456 		if (sb->s_flags & MS_RDONLY) {
2457 			ret = btrfs_commit_super(tree_root);
2458 			if (ret)
2459 				goto fail_trans_kthread;
2460 		}
2461 	}
2462 
2463 	ret = btrfs_find_orphan_roots(tree_root);
2464 	if (ret)
2465 		goto fail_trans_kthread;
2466 
2467 	if (!(sb->s_flags & MS_RDONLY)) {
2468 		ret = btrfs_cleanup_fs_roots(fs_info);
2469 		if (ret) {
2470 			}
2471 
2472 		ret = btrfs_recover_relocation(tree_root);
2473 		if (ret < 0) {
2474 			printk(KERN_WARNING
2475 			       "btrfs: failed to recover relocation\n");
2476 			err = -EINVAL;
2477 			goto fail_trans_kthread;
2478 		}
2479 	}
2480 
2481 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2482 	location.type = BTRFS_ROOT_ITEM_KEY;
2483 	location.offset = (u64)-1;
2484 
2485 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486 	if (!fs_info->fs_root)
2487 		goto fail_trans_kthread;
2488 	if (IS_ERR(fs_info->fs_root)) {
2489 		err = PTR_ERR(fs_info->fs_root);
2490 		goto fail_trans_kthread;
2491 	}
2492 
2493 	if (sb->s_flags & MS_RDONLY)
2494 		return 0;
2495 
2496 	down_read(&fs_info->cleanup_work_sem);
2497 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499 		up_read(&fs_info->cleanup_work_sem);
2500 		close_ctree(tree_root);
2501 		return ret;
2502 	}
2503 	up_read(&fs_info->cleanup_work_sem);
2504 
2505 	ret = btrfs_resume_balance_async(fs_info);
2506 	if (ret) {
2507 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508 		close_ctree(tree_root);
2509 		return ret;
2510 	}
2511 
2512 	return 0;
2513 
2514 fail_trans_kthread:
2515 	kthread_stop(fs_info->transaction_kthread);
2516 fail_cleaner:
2517 	kthread_stop(fs_info->cleaner_kthread);
2518 
2519 	/*
2520 	 * make sure we're done with the btree inode before we stop our
2521 	 * kthreads
2522 	 */
2523 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2525 
2526 fail_block_groups:
2527 	btrfs_free_block_groups(fs_info);
2528 
2529 fail_tree_roots:
2530 	free_root_pointers(fs_info, 1);
2531 
2532 fail_sb_buffer:
2533 	btrfs_stop_workers(&fs_info->generic_worker);
2534 	btrfs_stop_workers(&fs_info->readahead_workers);
2535 	btrfs_stop_workers(&fs_info->fixup_workers);
2536 	btrfs_stop_workers(&fs_info->delalloc_workers);
2537 	btrfs_stop_workers(&fs_info->workers);
2538 	btrfs_stop_workers(&fs_info->endio_workers);
2539 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2540 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541 	btrfs_stop_workers(&fs_info->endio_write_workers);
2542 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543 	btrfs_stop_workers(&fs_info->submit_workers);
2544 	btrfs_stop_workers(&fs_info->delayed_workers);
2545 	btrfs_stop_workers(&fs_info->caching_workers);
2546 fail_alloc:
2547 fail_iput:
2548 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549 
2550 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551 	iput(fs_info->btree_inode);
2552 fail_bdi:
2553 	bdi_destroy(&fs_info->bdi);
2554 fail_srcu:
2555 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2556 fail:
2557 	btrfs_close_devices(fs_info->fs_devices);
2558 	return err;
2559 
2560 recovery_tree_root:
2561 	if (!btrfs_test_opt(tree_root, RECOVERY))
2562 		goto fail_tree_roots;
2563 
2564 	free_root_pointers(fs_info, 0);
2565 
2566 	/* don't use the log in recovery mode, it won't be valid */
2567 	btrfs_set_super_log_root(disk_super, 0);
2568 
2569 	/* we can't trust the free space cache either */
2570 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571 
2572 	ret = next_root_backup(fs_info, fs_info->super_copy,
2573 			       &num_backups_tried, &backup_index);
2574 	if (ret == -1)
2575 		goto fail_block_groups;
2576 	goto retry_root_backup;
2577 }
2578 
2579 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580 {
2581 	if (uptodate) {
2582 		set_buffer_uptodate(bh);
2583 	} else {
2584 		struct btrfs_device *device = (struct btrfs_device *)
2585 			bh->b_private;
2586 
2587 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588 					  "I/O error on %s\n",
2589 					  rcu_str_deref(device->name));
2590 		/* note, we dont' set_buffer_write_io_error because we have
2591 		 * our own ways of dealing with the IO errors
2592 		 */
2593 		clear_buffer_uptodate(bh);
2594 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2595 	}
2596 	unlock_buffer(bh);
2597 	put_bh(bh);
2598 }
2599 
2600 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601 {
2602 	struct buffer_head *bh;
2603 	struct buffer_head *latest = NULL;
2604 	struct btrfs_super_block *super;
2605 	int i;
2606 	u64 transid = 0;
2607 	u64 bytenr;
2608 
2609 	/* we would like to check all the supers, but that would make
2610 	 * a btrfs mount succeed after a mkfs from a different FS.
2611 	 * So, we need to add a special mount option to scan for
2612 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613 	 */
2614 	for (i = 0; i < 1; i++) {
2615 		bytenr = btrfs_sb_offset(i);
2616 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617 			break;
2618 		bh = __bread(bdev, bytenr / 4096, 4096);
2619 		if (!bh)
2620 			continue;
2621 
2622 		super = (struct btrfs_super_block *)bh->b_data;
2623 		if (btrfs_super_bytenr(super) != bytenr ||
2624 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625 			    sizeof(super->magic))) {
2626 			brelse(bh);
2627 			continue;
2628 		}
2629 
2630 		if (!latest || btrfs_super_generation(super) > transid) {
2631 			brelse(latest);
2632 			latest = bh;
2633 			transid = btrfs_super_generation(super);
2634 		} else {
2635 			brelse(bh);
2636 		}
2637 	}
2638 	return latest;
2639 }
2640 
2641 /*
2642  * this should be called twice, once with wait == 0 and
2643  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2644  * we write are pinned.
2645  *
2646  * They are released when wait == 1 is done.
2647  * max_mirrors must be the same for both runs, and it indicates how
2648  * many supers on this one device should be written.
2649  *
2650  * max_mirrors == 0 means to write them all.
2651  */
2652 static int write_dev_supers(struct btrfs_device *device,
2653 			    struct btrfs_super_block *sb,
2654 			    int do_barriers, int wait, int max_mirrors)
2655 {
2656 	struct buffer_head *bh;
2657 	int i;
2658 	int ret;
2659 	int errors = 0;
2660 	u32 crc;
2661 	u64 bytenr;
2662 
2663 	if (max_mirrors == 0)
2664 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665 
2666 	for (i = 0; i < max_mirrors; i++) {
2667 		bytenr = btrfs_sb_offset(i);
2668 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2669 			break;
2670 
2671 		if (wait) {
2672 			bh = __find_get_block(device->bdev, bytenr / 4096,
2673 					      BTRFS_SUPER_INFO_SIZE);
2674 			BUG_ON(!bh);
2675 			wait_on_buffer(bh);
2676 			if (!buffer_uptodate(bh))
2677 				errors++;
2678 
2679 			/* drop our reference */
2680 			brelse(bh);
2681 
2682 			/* drop the reference from the wait == 0 run */
2683 			brelse(bh);
2684 			continue;
2685 		} else {
2686 			btrfs_set_super_bytenr(sb, bytenr);
2687 
2688 			crc = ~(u32)0;
2689 			crc = btrfs_csum_data(NULL, (char *)sb +
2690 					      BTRFS_CSUM_SIZE, crc,
2691 					      BTRFS_SUPER_INFO_SIZE -
2692 					      BTRFS_CSUM_SIZE);
2693 			btrfs_csum_final(crc, sb->csum);
2694 
2695 			/*
2696 			 * one reference for us, and we leave it for the
2697 			 * caller
2698 			 */
2699 			bh = __getblk(device->bdev, bytenr / 4096,
2700 				      BTRFS_SUPER_INFO_SIZE);
2701 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702 
2703 			/* one reference for submit_bh */
2704 			get_bh(bh);
2705 
2706 			set_buffer_uptodate(bh);
2707 			lock_buffer(bh);
2708 			bh->b_end_io = btrfs_end_buffer_write_sync;
2709 			bh->b_private = device;
2710 		}
2711 
2712 		/*
2713 		 * we fua the first super.  The others we allow
2714 		 * to go down lazy.
2715 		 */
2716 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2717 		if (ret)
2718 			errors++;
2719 	}
2720 	return errors < i ? 0 : -1;
2721 }
2722 
2723 /*
2724  * endio for the write_dev_flush, this will wake anyone waiting
2725  * for the barrier when it is done
2726  */
2727 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728 {
2729 	if (err) {
2730 		if (err == -EOPNOTSUPP)
2731 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733 	}
2734 	if (bio->bi_private)
2735 		complete(bio->bi_private);
2736 	bio_put(bio);
2737 }
2738 
2739 /*
2740  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2741  * sent down.  With wait == 1, it waits for the previous flush.
2742  *
2743  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744  * capable
2745  */
2746 static int write_dev_flush(struct btrfs_device *device, int wait)
2747 {
2748 	struct bio *bio;
2749 	int ret = 0;
2750 
2751 	if (device->nobarriers)
2752 		return 0;
2753 
2754 	if (wait) {
2755 		bio = device->flush_bio;
2756 		if (!bio)
2757 			return 0;
2758 
2759 		wait_for_completion(&device->flush_wait);
2760 
2761 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763 				      rcu_str_deref(device->name));
2764 			device->nobarriers = 1;
2765 		}
2766 		if (!bio_flagged(bio, BIO_UPTODATE)) {
2767 			ret = -EIO;
2768 			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769 				btrfs_dev_stat_inc_and_print(device,
2770 					BTRFS_DEV_STAT_FLUSH_ERRS);
2771 		}
2772 
2773 		/* drop the reference from the wait == 0 run */
2774 		bio_put(bio);
2775 		device->flush_bio = NULL;
2776 
2777 		return ret;
2778 	}
2779 
2780 	/*
2781 	 * one reference for us, and we leave it for the
2782 	 * caller
2783 	 */
2784 	device->flush_bio = NULL;
2785 	bio = bio_alloc(GFP_NOFS, 0);
2786 	if (!bio)
2787 		return -ENOMEM;
2788 
2789 	bio->bi_end_io = btrfs_end_empty_barrier;
2790 	bio->bi_bdev = device->bdev;
2791 	init_completion(&device->flush_wait);
2792 	bio->bi_private = &device->flush_wait;
2793 	device->flush_bio = bio;
2794 
2795 	bio_get(bio);
2796 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2797 
2798 	return 0;
2799 }
2800 
2801 /*
2802  * send an empty flush down to each device in parallel,
2803  * then wait for them
2804  */
2805 static int barrier_all_devices(struct btrfs_fs_info *info)
2806 {
2807 	struct list_head *head;
2808 	struct btrfs_device *dev;
2809 	int errors = 0;
2810 	int ret;
2811 
2812 	/* send down all the barriers */
2813 	head = &info->fs_devices->devices;
2814 	list_for_each_entry_rcu(dev, head, dev_list) {
2815 		if (!dev->bdev) {
2816 			errors++;
2817 			continue;
2818 		}
2819 		if (!dev->in_fs_metadata || !dev->writeable)
2820 			continue;
2821 
2822 		ret = write_dev_flush(dev, 0);
2823 		if (ret)
2824 			errors++;
2825 	}
2826 
2827 	/* wait for all the barriers */
2828 	list_for_each_entry_rcu(dev, head, dev_list) {
2829 		if (!dev->bdev) {
2830 			errors++;
2831 			continue;
2832 		}
2833 		if (!dev->in_fs_metadata || !dev->writeable)
2834 			continue;
2835 
2836 		ret = write_dev_flush(dev, 1);
2837 		if (ret)
2838 			errors++;
2839 	}
2840 	if (errors)
2841 		return -EIO;
2842 	return 0;
2843 }
2844 
2845 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2846 {
2847 	struct list_head *head;
2848 	struct btrfs_device *dev;
2849 	struct btrfs_super_block *sb;
2850 	struct btrfs_dev_item *dev_item;
2851 	int ret;
2852 	int do_barriers;
2853 	int max_errors;
2854 	int total_errors = 0;
2855 	u64 flags;
2856 
2857 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859 	backup_super_roots(root->fs_info);
2860 
2861 	sb = root->fs_info->super_for_commit;
2862 	dev_item = &sb->dev_item;
2863 
2864 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865 	head = &root->fs_info->fs_devices->devices;
2866 
2867 	if (do_barriers)
2868 		barrier_all_devices(root->fs_info);
2869 
2870 	list_for_each_entry_rcu(dev, head, dev_list) {
2871 		if (!dev->bdev) {
2872 			total_errors++;
2873 			continue;
2874 		}
2875 		if (!dev->in_fs_metadata || !dev->writeable)
2876 			continue;
2877 
2878 		btrfs_set_stack_device_generation(dev_item, 0);
2879 		btrfs_set_stack_device_type(dev_item, dev->type);
2880 		btrfs_set_stack_device_id(dev_item, dev->devid);
2881 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2883 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2888 
2889 		flags = btrfs_super_flags(sb);
2890 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891 
2892 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2893 		if (ret)
2894 			total_errors++;
2895 	}
2896 	if (total_errors > max_errors) {
2897 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898 		       total_errors);
2899 
2900 		/* This shouldn't happen. FUA is masked off if unsupported */
2901 		BUG();
2902 	}
2903 
2904 	total_errors = 0;
2905 	list_for_each_entry_rcu(dev, head, dev_list) {
2906 		if (!dev->bdev)
2907 			continue;
2908 		if (!dev->in_fs_metadata || !dev->writeable)
2909 			continue;
2910 
2911 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912 		if (ret)
2913 			total_errors++;
2914 	}
2915 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916 	if (total_errors > max_errors) {
2917 		btrfs_error(root->fs_info, -EIO,
2918 			    "%d errors while writing supers", total_errors);
2919 		return -EIO;
2920 	}
2921 	return 0;
2922 }
2923 
2924 int write_ctree_super(struct btrfs_trans_handle *trans,
2925 		      struct btrfs_root *root, int max_mirrors)
2926 {
2927 	int ret;
2928 
2929 	ret = write_all_supers(root, max_mirrors);
2930 	return ret;
2931 }
2932 
2933 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934 {
2935 	spin_lock(&fs_info->fs_roots_radix_lock);
2936 	radix_tree_delete(&fs_info->fs_roots_radix,
2937 			  (unsigned long)root->root_key.objectid);
2938 	spin_unlock(&fs_info->fs_roots_radix_lock);
2939 
2940 	if (btrfs_root_refs(&root->root_item) == 0)
2941 		synchronize_srcu(&fs_info->subvol_srcu);
2942 
2943 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2944 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2945 	free_fs_root(root);
2946 }
2947 
2948 static void free_fs_root(struct btrfs_root *root)
2949 {
2950 	iput(root->cache_inode);
2951 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2952 	if (root->anon_dev)
2953 		free_anon_bdev(root->anon_dev);
2954 	free_extent_buffer(root->node);
2955 	free_extent_buffer(root->commit_root);
2956 	kfree(root->free_ino_ctl);
2957 	kfree(root->free_ino_pinned);
2958 	kfree(root->name);
2959 	kfree(root);
2960 }
2961 
2962 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963 {
2964 	int ret;
2965 	struct btrfs_root *gang[8];
2966 	int i;
2967 
2968 	while (!list_empty(&fs_info->dead_roots)) {
2969 		gang[0] = list_entry(fs_info->dead_roots.next,
2970 				     struct btrfs_root, root_list);
2971 		list_del(&gang[0]->root_list);
2972 
2973 		if (gang[0]->in_radix) {
2974 			btrfs_free_fs_root(fs_info, gang[0]);
2975 		} else {
2976 			free_extent_buffer(gang[0]->node);
2977 			free_extent_buffer(gang[0]->commit_root);
2978 			kfree(gang[0]);
2979 		}
2980 	}
2981 
2982 	while (1) {
2983 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984 					     (void **)gang, 0,
2985 					     ARRAY_SIZE(gang));
2986 		if (!ret)
2987 			break;
2988 		for (i = 0; i < ret; i++)
2989 			btrfs_free_fs_root(fs_info, gang[i]);
2990 	}
2991 }
2992 
2993 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994 {
2995 	u64 root_objectid = 0;
2996 	struct btrfs_root *gang[8];
2997 	int i;
2998 	int ret;
2999 
3000 	while (1) {
3001 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002 					     (void **)gang, root_objectid,
3003 					     ARRAY_SIZE(gang));
3004 		if (!ret)
3005 			break;
3006 
3007 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008 		for (i = 0; i < ret; i++) {
3009 			int err;
3010 
3011 			root_objectid = gang[i]->root_key.objectid;
3012 			err = btrfs_orphan_cleanup(gang[i]);
3013 			if (err)
3014 				return err;
3015 		}
3016 		root_objectid++;
3017 	}
3018 	return 0;
3019 }
3020 
3021 int btrfs_commit_super(struct btrfs_root *root)
3022 {
3023 	struct btrfs_trans_handle *trans;
3024 	int ret;
3025 
3026 	mutex_lock(&root->fs_info->cleaner_mutex);
3027 	btrfs_run_delayed_iputs(root);
3028 	btrfs_clean_old_snapshots(root);
3029 	mutex_unlock(&root->fs_info->cleaner_mutex);
3030 
3031 	/* wait until ongoing cleanup work done */
3032 	down_write(&root->fs_info->cleanup_work_sem);
3033 	up_write(&root->fs_info->cleanup_work_sem);
3034 
3035 	trans = btrfs_join_transaction(root);
3036 	if (IS_ERR(trans))
3037 		return PTR_ERR(trans);
3038 	ret = btrfs_commit_transaction(trans, root);
3039 	if (ret)
3040 		return ret;
3041 	/* run commit again to drop the original snapshot */
3042 	trans = btrfs_join_transaction(root);
3043 	if (IS_ERR(trans))
3044 		return PTR_ERR(trans);
3045 	ret = btrfs_commit_transaction(trans, root);
3046 	if (ret)
3047 		return ret;
3048 	ret = btrfs_write_and_wait_transaction(NULL, root);
3049 	if (ret) {
3050 		btrfs_error(root->fs_info, ret,
3051 			    "Failed to sync btree inode to disk.");
3052 		return ret;
3053 	}
3054 
3055 	ret = write_ctree_super(NULL, root, 0);
3056 	return ret;
3057 }
3058 
3059 int close_ctree(struct btrfs_root *root)
3060 {
3061 	struct btrfs_fs_info *fs_info = root->fs_info;
3062 	int ret;
3063 
3064 	fs_info->closing = 1;
3065 	smp_mb();
3066 
3067 	/* pause restriper - we want to resume on mount */
3068 	btrfs_pause_balance(root->fs_info);
3069 
3070 	btrfs_scrub_cancel(root);
3071 
3072 	/* wait for any defraggers to finish */
3073 	wait_event(fs_info->transaction_wait,
3074 		   (atomic_read(&fs_info->defrag_running) == 0));
3075 
3076 	/* clear out the rbtree of defraggable inodes */
3077 	btrfs_run_defrag_inodes(fs_info);
3078 
3079 	/*
3080 	 * Here come 2 situations when btrfs is broken to flip readonly:
3081 	 *
3082 	 * 1. when btrfs flips readonly somewhere else before
3083 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084 	 * and btrfs will skip to write sb directly to keep
3085 	 * ERROR state on disk.
3086 	 *
3087 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090 	 * btrfs will cleanup all FS resources first and write sb then.
3091 	 */
3092 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093 		ret = btrfs_commit_super(root);
3094 		if (ret)
3095 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096 	}
3097 
3098 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099 		ret = btrfs_error_commit_super(root);
3100 		if (ret)
3101 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3102 	}
3103 
3104 	btrfs_put_block_group_cache(fs_info);
3105 
3106 	kthread_stop(fs_info->transaction_kthread);
3107 	kthread_stop(fs_info->cleaner_kthread);
3108 
3109 	fs_info->closing = 2;
3110 	smp_mb();
3111 
3112 	if (fs_info->delalloc_bytes) {
3113 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114 		       (unsigned long long)fs_info->delalloc_bytes);
3115 	}
3116 	if (fs_info->total_ref_cache_size) {
3117 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118 		       (unsigned long long)fs_info->total_ref_cache_size);
3119 	}
3120 
3121 	free_extent_buffer(fs_info->extent_root->node);
3122 	free_extent_buffer(fs_info->extent_root->commit_root);
3123 	free_extent_buffer(fs_info->tree_root->node);
3124 	free_extent_buffer(fs_info->tree_root->commit_root);
3125 	free_extent_buffer(fs_info->chunk_root->node);
3126 	free_extent_buffer(fs_info->chunk_root->commit_root);
3127 	free_extent_buffer(fs_info->dev_root->node);
3128 	free_extent_buffer(fs_info->dev_root->commit_root);
3129 	free_extent_buffer(fs_info->csum_root->node);
3130 	free_extent_buffer(fs_info->csum_root->commit_root);
3131 
3132 	btrfs_free_block_groups(fs_info);
3133 
3134 	del_fs_roots(fs_info);
3135 
3136 	iput(fs_info->btree_inode);
3137 
3138 	btrfs_stop_workers(&fs_info->generic_worker);
3139 	btrfs_stop_workers(&fs_info->fixup_workers);
3140 	btrfs_stop_workers(&fs_info->delalloc_workers);
3141 	btrfs_stop_workers(&fs_info->workers);
3142 	btrfs_stop_workers(&fs_info->endio_workers);
3143 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3144 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145 	btrfs_stop_workers(&fs_info->endio_write_workers);
3146 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147 	btrfs_stop_workers(&fs_info->submit_workers);
3148 	btrfs_stop_workers(&fs_info->delayed_workers);
3149 	btrfs_stop_workers(&fs_info->caching_workers);
3150 	btrfs_stop_workers(&fs_info->readahead_workers);
3151 
3152 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154 		btrfsic_unmount(root, fs_info->fs_devices);
3155 #endif
3156 
3157 	btrfs_close_devices(fs_info->fs_devices);
3158 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159 
3160 	bdi_destroy(&fs_info->bdi);
3161 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3162 
3163 	return 0;
3164 }
3165 
3166 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167 			  int atomic)
3168 {
3169 	int ret;
3170 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3171 
3172 	ret = extent_buffer_uptodate(buf);
3173 	if (!ret)
3174 		return ret;
3175 
3176 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177 				    parent_transid, atomic);
3178 	if (ret == -EAGAIN)
3179 		return ret;
3180 	return !ret;
3181 }
3182 
3183 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184 {
3185 	return set_extent_buffer_uptodate(buf);
3186 }
3187 
3188 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189 {
3190 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191 	u64 transid = btrfs_header_generation(buf);
3192 	int was_dirty;
3193 
3194 	btrfs_assert_tree_locked(buf);
3195 	if (transid != root->fs_info->generation) {
3196 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197 		       "found %llu running %llu\n",
3198 			(unsigned long long)buf->start,
3199 			(unsigned long long)transid,
3200 			(unsigned long long)root->fs_info->generation);
3201 		WARN_ON(1);
3202 	}
3203 	was_dirty = set_extent_buffer_dirty(buf);
3204 	if (!was_dirty) {
3205 		spin_lock(&root->fs_info->delalloc_lock);
3206 		root->fs_info->dirty_metadata_bytes += buf->len;
3207 		spin_unlock(&root->fs_info->delalloc_lock);
3208 	}
3209 }
3210 
3211 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3212 {
3213 	/*
3214 	 * looks as though older kernels can get into trouble with
3215 	 * this code, they end up stuck in balance_dirty_pages forever
3216 	 */
3217 	u64 num_dirty;
3218 	unsigned long thresh = 32 * 1024 * 1024;
3219 
3220 	if (current->flags & PF_MEMALLOC)
3221 		return;
3222 
3223 	btrfs_balance_delayed_items(root);
3224 
3225 	num_dirty = root->fs_info->dirty_metadata_bytes;
3226 
3227 	if (num_dirty > thresh) {
3228 		balance_dirty_pages_ratelimited_nr(
3229 				   root->fs_info->btree_inode->i_mapping, 1);
3230 	}
3231 	return;
3232 }
3233 
3234 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3235 {
3236 	/*
3237 	 * looks as though older kernels can get into trouble with
3238 	 * this code, they end up stuck in balance_dirty_pages forever
3239 	 */
3240 	u64 num_dirty;
3241 	unsigned long thresh = 32 * 1024 * 1024;
3242 
3243 	if (current->flags & PF_MEMALLOC)
3244 		return;
3245 
3246 	num_dirty = root->fs_info->dirty_metadata_bytes;
3247 
3248 	if (num_dirty > thresh) {
3249 		balance_dirty_pages_ratelimited_nr(
3250 				   root->fs_info->btree_inode->i_mapping, 1);
3251 	}
3252 	return;
3253 }
3254 
3255 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256 {
3257 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259 }
3260 
3261 static int btree_lock_page_hook(struct page *page, void *data,
3262 				void (*flush_fn)(void *))
3263 {
3264 	struct inode *inode = page->mapping->host;
3265 	struct btrfs_root *root = BTRFS_I(inode)->root;
3266 	struct extent_buffer *eb;
3267 
3268 	/*
3269 	 * We culled this eb but the page is still hanging out on the mapping,
3270 	 * carry on.
3271 	 */
3272 	if (!PagePrivate(page))
3273 		goto out;
3274 
3275 	eb = (struct extent_buffer *)page->private;
3276 	if (!eb) {
3277 		WARN_ON(1);
3278 		goto out;
3279 	}
3280 	if (page != eb->pages[0])
3281 		goto out;
3282 
3283 	if (!btrfs_try_tree_write_lock(eb)) {
3284 		flush_fn(data);
3285 		btrfs_tree_lock(eb);
3286 	}
3287 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288 
3289 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290 		spin_lock(&root->fs_info->delalloc_lock);
3291 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292 			root->fs_info->dirty_metadata_bytes -= eb->len;
3293 		else
3294 			WARN_ON(1);
3295 		spin_unlock(&root->fs_info->delalloc_lock);
3296 	}
3297 
3298 	btrfs_tree_unlock(eb);
3299 out:
3300 	if (!trylock_page(page)) {
3301 		flush_fn(data);
3302 		lock_page(page);
3303 	}
3304 	return 0;
3305 }
3306 
3307 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308 			      int read_only)
3309 {
3310 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312 		return -EINVAL;
3313 	}
3314 
3315 	if (read_only)
3316 		return 0;
3317 
3318 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319 		printk(KERN_WARNING "warning: mount fs with errors, "
3320 		       "running btrfsck is recommended\n");
3321 	}
3322 
3323 	return 0;
3324 }
3325 
3326 int btrfs_error_commit_super(struct btrfs_root *root)
3327 {
3328 	int ret;
3329 
3330 	mutex_lock(&root->fs_info->cleaner_mutex);
3331 	btrfs_run_delayed_iputs(root);
3332 	mutex_unlock(&root->fs_info->cleaner_mutex);
3333 
3334 	down_write(&root->fs_info->cleanup_work_sem);
3335 	up_write(&root->fs_info->cleanup_work_sem);
3336 
3337 	/* cleanup FS via transaction */
3338 	btrfs_cleanup_transaction(root);
3339 
3340 	ret = write_ctree_super(NULL, root, 0);
3341 
3342 	return ret;
3343 }
3344 
3345 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346 {
3347 	struct btrfs_inode *btrfs_inode;
3348 	struct list_head splice;
3349 
3350 	INIT_LIST_HEAD(&splice);
3351 
3352 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3353 	spin_lock(&root->fs_info->ordered_extent_lock);
3354 
3355 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3356 	while (!list_empty(&splice)) {
3357 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358 					 ordered_operations);
3359 
3360 		list_del_init(&btrfs_inode->ordered_operations);
3361 
3362 		btrfs_invalidate_inodes(btrfs_inode->root);
3363 	}
3364 
3365 	spin_unlock(&root->fs_info->ordered_extent_lock);
3366 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3367 }
3368 
3369 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370 {
3371 	struct list_head splice;
3372 	struct btrfs_ordered_extent *ordered;
3373 	struct inode *inode;
3374 
3375 	INIT_LIST_HEAD(&splice);
3376 
3377 	spin_lock(&root->fs_info->ordered_extent_lock);
3378 
3379 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3380 	while (!list_empty(&splice)) {
3381 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382 				     root_extent_list);
3383 
3384 		list_del_init(&ordered->root_extent_list);
3385 		atomic_inc(&ordered->refs);
3386 
3387 		/* the inode may be getting freed (in sys_unlink path). */
3388 		inode = igrab(ordered->inode);
3389 
3390 		spin_unlock(&root->fs_info->ordered_extent_lock);
3391 		if (inode)
3392 			iput(inode);
3393 
3394 		atomic_set(&ordered->refs, 1);
3395 		btrfs_put_ordered_extent(ordered);
3396 
3397 		spin_lock(&root->fs_info->ordered_extent_lock);
3398 	}
3399 
3400 	spin_unlock(&root->fs_info->ordered_extent_lock);
3401 }
3402 
3403 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404 			       struct btrfs_root *root)
3405 {
3406 	struct rb_node *node;
3407 	struct btrfs_delayed_ref_root *delayed_refs;
3408 	struct btrfs_delayed_ref_node *ref;
3409 	int ret = 0;
3410 
3411 	delayed_refs = &trans->delayed_refs;
3412 
3413 	spin_lock(&delayed_refs->lock);
3414 	if (delayed_refs->num_entries == 0) {
3415 		spin_unlock(&delayed_refs->lock);
3416 		printk(KERN_INFO "delayed_refs has NO entry\n");
3417 		return ret;
3418 	}
3419 
3420 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3422 
3423 		atomic_set(&ref->refs, 1);
3424 		if (btrfs_delayed_ref_is_head(ref)) {
3425 			struct btrfs_delayed_ref_head *head;
3426 
3427 			head = btrfs_delayed_node_to_head(ref);
3428 			if (!mutex_trylock(&head->mutex)) {
3429 				atomic_inc(&ref->refs);
3430 				spin_unlock(&delayed_refs->lock);
3431 
3432 				/* Need to wait for the delayed ref to run */
3433 				mutex_lock(&head->mutex);
3434 				mutex_unlock(&head->mutex);
3435 				btrfs_put_delayed_ref(ref);
3436 
3437 				spin_lock(&delayed_refs->lock);
3438 				continue;
3439 			}
3440 
3441 			kfree(head->extent_op);
3442 			delayed_refs->num_heads--;
3443 			if (list_empty(&head->cluster))
3444 				delayed_refs->num_heads_ready--;
3445 			list_del_init(&head->cluster);
3446 		}
3447 		ref->in_tree = 0;
3448 		rb_erase(&ref->rb_node, &delayed_refs->root);
3449 		delayed_refs->num_entries--;
3450 
3451 		spin_unlock(&delayed_refs->lock);
3452 		btrfs_put_delayed_ref(ref);
3453 
3454 		cond_resched();
3455 		spin_lock(&delayed_refs->lock);
3456 	}
3457 
3458 	spin_unlock(&delayed_refs->lock);
3459 
3460 	return ret;
3461 }
3462 
3463 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464 {
3465 	struct btrfs_pending_snapshot *snapshot;
3466 	struct list_head splice;
3467 
3468 	INIT_LIST_HEAD(&splice);
3469 
3470 	list_splice_init(&t->pending_snapshots, &splice);
3471 
3472 	while (!list_empty(&splice)) {
3473 		snapshot = list_entry(splice.next,
3474 				      struct btrfs_pending_snapshot,
3475 				      list);
3476 
3477 		list_del_init(&snapshot->list);
3478 
3479 		kfree(snapshot);
3480 	}
3481 }
3482 
3483 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484 {
3485 	struct btrfs_inode *btrfs_inode;
3486 	struct list_head splice;
3487 
3488 	INIT_LIST_HEAD(&splice);
3489 
3490 	spin_lock(&root->fs_info->delalloc_lock);
3491 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492 
3493 	while (!list_empty(&splice)) {
3494 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495 				    delalloc_inodes);
3496 
3497 		list_del_init(&btrfs_inode->delalloc_inodes);
3498 
3499 		btrfs_invalidate_inodes(btrfs_inode->root);
3500 	}
3501 
3502 	spin_unlock(&root->fs_info->delalloc_lock);
3503 }
3504 
3505 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506 					struct extent_io_tree *dirty_pages,
3507 					int mark)
3508 {
3509 	int ret;
3510 	struct page *page;
3511 	struct inode *btree_inode = root->fs_info->btree_inode;
3512 	struct extent_buffer *eb;
3513 	u64 start = 0;
3514 	u64 end;
3515 	u64 offset;
3516 	unsigned long index;
3517 
3518 	while (1) {
3519 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520 					    mark);
3521 		if (ret)
3522 			break;
3523 
3524 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525 		while (start <= end) {
3526 			index = start >> PAGE_CACHE_SHIFT;
3527 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528 			page = find_get_page(btree_inode->i_mapping, index);
3529 			if (!page)
3530 				continue;
3531 			offset = page_offset(page);
3532 
3533 			spin_lock(&dirty_pages->buffer_lock);
3534 			eb = radix_tree_lookup(
3535 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536 					       offset >> PAGE_CACHE_SHIFT);
3537 			spin_unlock(&dirty_pages->buffer_lock);
3538 			if (eb)
3539 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540 							 &eb->bflags);
3541 			if (PageWriteback(page))
3542 				end_page_writeback(page);
3543 
3544 			lock_page(page);
3545 			if (PageDirty(page)) {
3546 				clear_page_dirty_for_io(page);
3547 				spin_lock_irq(&page->mapping->tree_lock);
3548 				radix_tree_tag_clear(&page->mapping->page_tree,
3549 							page_index(page),
3550 							PAGECACHE_TAG_DIRTY);
3551 				spin_unlock_irq(&page->mapping->tree_lock);
3552 			}
3553 
3554 			unlock_page(page);
3555 			page_cache_release(page);
3556 		}
3557 	}
3558 
3559 	return ret;
3560 }
3561 
3562 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563 				       struct extent_io_tree *pinned_extents)
3564 {
3565 	struct extent_io_tree *unpin;
3566 	u64 start;
3567 	u64 end;
3568 	int ret;
3569 	bool loop = true;
3570 
3571 	unpin = pinned_extents;
3572 again:
3573 	while (1) {
3574 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3575 					    EXTENT_DIRTY);
3576 		if (ret)
3577 			break;
3578 
3579 		/* opt_discard */
3580 		if (btrfs_test_opt(root, DISCARD))
3581 			ret = btrfs_error_discard_extent(root, start,
3582 							 end + 1 - start,
3583 							 NULL);
3584 
3585 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586 		btrfs_error_unpin_extent_range(root, start, end);
3587 		cond_resched();
3588 	}
3589 
3590 	if (loop) {
3591 		if (unpin == &root->fs_info->freed_extents[0])
3592 			unpin = &root->fs_info->freed_extents[1];
3593 		else
3594 			unpin = &root->fs_info->freed_extents[0];
3595 		loop = false;
3596 		goto again;
3597 	}
3598 
3599 	return 0;
3600 }
3601 
3602 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603 				   struct btrfs_root *root)
3604 {
3605 	btrfs_destroy_delayed_refs(cur_trans, root);
3606 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607 				cur_trans->dirty_pages.dirty_bytes);
3608 
3609 	/* FIXME: cleanup wait for commit */
3610 	cur_trans->in_commit = 1;
3611 	cur_trans->blocked = 1;
3612 	wake_up(&root->fs_info->transaction_blocked_wait);
3613 
3614 	cur_trans->blocked = 0;
3615 	wake_up(&root->fs_info->transaction_wait);
3616 
3617 	cur_trans->commit_done = 1;
3618 	wake_up(&cur_trans->commit_wait);
3619 
3620 	btrfs_destroy_delayed_inodes(root);
3621 	btrfs_assert_delayed_root_empty(root);
3622 
3623 	btrfs_destroy_pending_snapshots(cur_trans);
3624 
3625 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626 				     EXTENT_DIRTY);
3627 	btrfs_destroy_pinned_extent(root,
3628 				    root->fs_info->pinned_extents);
3629 
3630 	/*
3631 	memset(cur_trans, 0, sizeof(*cur_trans));
3632 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633 	*/
3634 }
3635 
3636 int btrfs_cleanup_transaction(struct btrfs_root *root)
3637 {
3638 	struct btrfs_transaction *t;
3639 	LIST_HEAD(list);
3640 
3641 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642 
3643 	spin_lock(&root->fs_info->trans_lock);
3644 	list_splice_init(&root->fs_info->trans_list, &list);
3645 	root->fs_info->trans_no_join = 1;
3646 	spin_unlock(&root->fs_info->trans_lock);
3647 
3648 	while (!list_empty(&list)) {
3649 		t = list_entry(list.next, struct btrfs_transaction, list);
3650 		if (!t)
3651 			break;
3652 
3653 		btrfs_destroy_ordered_operations(root);
3654 
3655 		btrfs_destroy_ordered_extents(root);
3656 
3657 		btrfs_destroy_delayed_refs(t, root);
3658 
3659 		btrfs_block_rsv_release(root,
3660 					&root->fs_info->trans_block_rsv,
3661 					t->dirty_pages.dirty_bytes);
3662 
3663 		/* FIXME: cleanup wait for commit */
3664 		t->in_commit = 1;
3665 		t->blocked = 1;
3666 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667 			wake_up(&root->fs_info->transaction_blocked_wait);
3668 
3669 		t->blocked = 0;
3670 		if (waitqueue_active(&root->fs_info->transaction_wait))
3671 			wake_up(&root->fs_info->transaction_wait);
3672 
3673 		t->commit_done = 1;
3674 		if (waitqueue_active(&t->commit_wait))
3675 			wake_up(&t->commit_wait);
3676 
3677 		btrfs_destroy_delayed_inodes(root);
3678 		btrfs_assert_delayed_root_empty(root);
3679 
3680 		btrfs_destroy_pending_snapshots(t);
3681 
3682 		btrfs_destroy_delalloc_inodes(root);
3683 
3684 		spin_lock(&root->fs_info->trans_lock);
3685 		root->fs_info->running_transaction = NULL;
3686 		spin_unlock(&root->fs_info->trans_lock);
3687 
3688 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689 					     EXTENT_DIRTY);
3690 
3691 		btrfs_destroy_pinned_extent(root,
3692 					    root->fs_info->pinned_extents);
3693 
3694 		atomic_set(&t->use_count, 0);
3695 		list_del_init(&t->list);
3696 		memset(t, 0, sizeof(*t));
3697 		kmem_cache_free(btrfs_transaction_cachep, t);
3698 	}
3699 
3700 	spin_lock(&root->fs_info->trans_lock);
3701 	root->fs_info->trans_no_join = 0;
3702 	spin_unlock(&root->fs_info->trans_lock);
3703 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3704 
3705 	return 0;
3706 }
3707 
3708 static struct extent_io_ops btree_extent_io_ops = {
3709 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3710 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3711 	.readpage_io_failed_hook = btree_io_failed_hook,
3712 	.submit_bio_hook = btree_submit_bio_hook,
3713 	/* note we're sharing with inode.c for the merge bio hook */
3714 	.merge_bio_hook = btrfs_merge_bio_hook,
3715 };
3716