1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 49 static struct extent_io_ops btree_extent_io_ops; 50 static void end_workqueue_fn(struct btrfs_work *work); 51 static void free_fs_root(struct btrfs_root *root); 52 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 53 int read_only); 54 static void btrfs_destroy_ordered_operations(struct btrfs_root *root); 55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 57 struct btrfs_root *root); 58 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 60 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 61 struct extent_io_tree *dirty_pages, 62 int mark); 63 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 64 struct extent_io_tree *pinned_extents); 65 66 /* 67 * end_io_wq structs are used to do processing in task context when an IO is 68 * complete. This is used during reads to verify checksums, and it is used 69 * by writes to insert metadata for new file extents after IO is complete. 70 */ 71 struct end_io_wq { 72 struct bio *bio; 73 bio_end_io_t *end_io; 74 void *private; 75 struct btrfs_fs_info *info; 76 int error; 77 int metadata; 78 struct list_head list; 79 struct btrfs_work work; 80 }; 81 82 /* 83 * async submit bios are used to offload expensive checksumming 84 * onto the worker threads. They checksum file and metadata bios 85 * just before they are sent down the IO stack. 86 */ 87 struct async_submit_bio { 88 struct inode *inode; 89 struct bio *bio; 90 struct list_head list; 91 extent_submit_bio_hook_t *submit_bio_start; 92 extent_submit_bio_hook_t *submit_bio_done; 93 int rw; 94 int mirror_num; 95 unsigned long bio_flags; 96 /* 97 * bio_offset is optional, can be used if the pages in the bio 98 * can't tell us where in the file the bio should go 99 */ 100 u64 bio_offset; 101 struct btrfs_work work; 102 int error; 103 }; 104 105 /* 106 * Lockdep class keys for extent_buffer->lock's in this root. For a given 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and 108 * the level the eb occupies in the tree. 109 * 110 * Different roots are used for different purposes and may nest inside each 111 * other and they require separate keysets. As lockdep keys should be 112 * static, assign keysets according to the purpose of the root as indicated 113 * by btrfs_root->objectid. This ensures that all special purpose roots 114 * have separate keysets. 115 * 116 * Lock-nesting across peer nodes is always done with the immediate parent 117 * node locked thus preventing deadlock. As lockdep doesn't know this, use 118 * subclass to avoid triggering lockdep warning in such cases. 119 * 120 * The key is set by the readpage_end_io_hook after the buffer has passed 121 * csum validation but before the pages are unlocked. It is also set by 122 * btrfs_init_new_buffer on freshly allocated blocks. 123 * 124 * We also add a check to make sure the highest level of the tree is the 125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 126 * needs update as well. 127 */ 128 #ifdef CONFIG_DEBUG_LOCK_ALLOC 129 # if BTRFS_MAX_LEVEL != 8 130 # error 131 # endif 132 133 static struct btrfs_lockdep_keyset { 134 u64 id; /* root objectid */ 135 const char *name_stem; /* lock name stem */ 136 char names[BTRFS_MAX_LEVEL + 1][20]; 137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 138 } btrfs_lockdep_keysets[] = { 139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 149 { .id = 0, .name_stem = "tree" }, 150 }; 151 152 void __init btrfs_init_lockdep(void) 153 { 154 int i, j; 155 156 /* initialize lockdep class names */ 157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 159 160 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 161 snprintf(ks->names[j], sizeof(ks->names[j]), 162 "btrfs-%s-%02d", ks->name_stem, j); 163 } 164 } 165 166 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 167 int level) 168 { 169 struct btrfs_lockdep_keyset *ks; 170 171 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 172 173 /* find the matching keyset, id 0 is the default entry */ 174 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 175 if (ks->id == objectid) 176 break; 177 178 lockdep_set_class_and_name(&eb->lock, 179 &ks->keys[level], ks->names[level]); 180 } 181 182 #endif 183 184 /* 185 * extents on the btree inode are pretty simple, there's one extent 186 * that covers the entire device 187 */ 188 static struct extent_map *btree_get_extent(struct inode *inode, 189 struct page *page, size_t pg_offset, u64 start, u64 len, 190 int create) 191 { 192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 193 struct extent_map *em; 194 int ret; 195 196 read_lock(&em_tree->lock); 197 em = lookup_extent_mapping(em_tree, start, len); 198 if (em) { 199 em->bdev = 200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 201 read_unlock(&em_tree->lock); 202 goto out; 203 } 204 read_unlock(&em_tree->lock); 205 206 em = alloc_extent_map(); 207 if (!em) { 208 em = ERR_PTR(-ENOMEM); 209 goto out; 210 } 211 em->start = 0; 212 em->len = (u64)-1; 213 em->block_len = (u64)-1; 214 em->block_start = 0; 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 216 217 write_lock(&em_tree->lock); 218 ret = add_extent_mapping(em_tree, em); 219 if (ret == -EEXIST) { 220 u64 failed_start = em->start; 221 u64 failed_len = em->len; 222 223 free_extent_map(em); 224 em = lookup_extent_mapping(em_tree, start, len); 225 if (em) { 226 ret = 0; 227 } else { 228 em = lookup_extent_mapping(em_tree, failed_start, 229 failed_len); 230 ret = -EIO; 231 } 232 } else if (ret) { 233 free_extent_map(em); 234 em = NULL; 235 } 236 write_unlock(&em_tree->lock); 237 238 if (ret) 239 em = ERR_PTR(ret); 240 out: 241 return em; 242 } 243 244 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 245 { 246 return crc32c(seed, data, len); 247 } 248 249 void btrfs_csum_final(u32 crc, char *result) 250 { 251 put_unaligned_le32(~crc, result); 252 } 253 254 /* 255 * compute the csum for a btree block, and either verify it or write it 256 * into the csum field of the block. 257 */ 258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 259 int verify) 260 { 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 262 char *result = NULL; 263 unsigned long len; 264 unsigned long cur_len; 265 unsigned long offset = BTRFS_CSUM_SIZE; 266 char *kaddr; 267 unsigned long map_start; 268 unsigned long map_len; 269 int err; 270 u32 crc = ~(u32)0; 271 unsigned long inline_result; 272 273 len = buf->len - offset; 274 while (len > 0) { 275 err = map_private_extent_buffer(buf, offset, 32, 276 &kaddr, &map_start, &map_len); 277 if (err) 278 return 1; 279 cur_len = min(len, map_len - (offset - map_start)); 280 crc = btrfs_csum_data(root, kaddr + offset - map_start, 281 crc, cur_len); 282 len -= cur_len; 283 offset += cur_len; 284 } 285 if (csum_size > sizeof(inline_result)) { 286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 287 if (!result) 288 return 1; 289 } else { 290 result = (char *)&inline_result; 291 } 292 293 btrfs_csum_final(crc, result); 294 295 if (verify) { 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 297 u32 val; 298 u32 found = 0; 299 memcpy(&found, result, csum_size); 300 301 read_extent_buffer(buf, &val, 0, csum_size); 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 303 "failed on %llu wanted %X found %X " 304 "level %d\n", 305 root->fs_info->sb->s_id, 306 (unsigned long long)buf->start, val, found, 307 btrfs_header_level(buf)); 308 if (result != (char *)&inline_result) 309 kfree(result); 310 return 1; 311 } 312 } else { 313 write_extent_buffer(buf, result, 0, csum_size); 314 } 315 if (result != (char *)&inline_result) 316 kfree(result); 317 return 0; 318 } 319 320 /* 321 * we can't consider a given block up to date unless the transid of the 322 * block matches the transid in the parent node's pointer. This is how we 323 * detect blocks that either didn't get written at all or got written 324 * in the wrong place. 325 */ 326 static int verify_parent_transid(struct extent_io_tree *io_tree, 327 struct extent_buffer *eb, u64 parent_transid, 328 int atomic) 329 { 330 struct extent_state *cached_state = NULL; 331 int ret; 332 333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 334 return 0; 335 336 if (atomic) 337 return -EAGAIN; 338 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 340 0, &cached_state); 341 if (extent_buffer_uptodate(eb) && 342 btrfs_header_generation(eb) == parent_transid) { 343 ret = 0; 344 goto out; 345 } 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 347 "found %llu\n", 348 (unsigned long long)eb->start, 349 (unsigned long long)parent_transid, 350 (unsigned long long)btrfs_header_generation(eb)); 351 ret = 1; 352 clear_extent_buffer_uptodate(eb); 353 out: 354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 355 &cached_state, GFP_NOFS); 356 return ret; 357 } 358 359 /* 360 * helper to read a given tree block, doing retries as required when 361 * the checksums don't match and we have alternate mirrors to try. 362 */ 363 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 364 struct extent_buffer *eb, 365 u64 start, u64 parent_transid) 366 { 367 struct extent_io_tree *io_tree; 368 int failed = 0; 369 int ret; 370 int num_copies = 0; 371 int mirror_num = 0; 372 int failed_mirror = 0; 373 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 376 while (1) { 377 ret = read_extent_buffer_pages(io_tree, eb, start, 378 WAIT_COMPLETE, 379 btree_get_extent, mirror_num); 380 if (!ret && !verify_parent_transid(io_tree, eb, 381 parent_transid, 0)) 382 break; 383 384 /* 385 * This buffer's crc is fine, but its contents are corrupted, so 386 * there is no reason to read the other copies, they won't be 387 * any less wrong. 388 */ 389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 390 break; 391 392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 393 eb->start, eb->len); 394 if (num_copies == 1) 395 break; 396 397 if (!failed_mirror) { 398 failed = 1; 399 failed_mirror = eb->read_mirror; 400 } 401 402 mirror_num++; 403 if (mirror_num == failed_mirror) 404 mirror_num++; 405 406 if (mirror_num > num_copies) 407 break; 408 } 409 410 if (failed && !ret) 411 repair_eb_io_failure(root, eb, failed_mirror); 412 413 return ret; 414 } 415 416 /* 417 * checksum a dirty tree block before IO. This has extra checks to make sure 418 * we only fill in the checksum field in the first page of a multi-page block 419 */ 420 421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 422 { 423 struct extent_io_tree *tree; 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 425 u64 found_start; 426 struct extent_buffer *eb; 427 428 tree = &BTRFS_I(page->mapping->host)->io_tree; 429 430 eb = (struct extent_buffer *)page->private; 431 if (page != eb->pages[0]) 432 return 0; 433 found_start = btrfs_header_bytenr(eb); 434 if (found_start != start) { 435 WARN_ON(1); 436 return 0; 437 } 438 if (eb->pages[0] != page) { 439 WARN_ON(1); 440 return 0; 441 } 442 if (!PageUptodate(page)) { 443 WARN_ON(1); 444 return 0; 445 } 446 csum_tree_block(root, eb, 0); 447 return 0; 448 } 449 450 static int check_tree_block_fsid(struct btrfs_root *root, 451 struct extent_buffer *eb) 452 { 453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 454 u8 fsid[BTRFS_UUID_SIZE]; 455 int ret = 1; 456 457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 458 BTRFS_FSID_SIZE); 459 while (fs_devices) { 460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 461 ret = 0; 462 break; 463 } 464 fs_devices = fs_devices->seed; 465 } 466 return ret; 467 } 468 469 #define CORRUPT(reason, eb, root, slot) \ 470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 471 "root=%llu, slot=%d\n", reason, \ 472 (unsigned long long)btrfs_header_bytenr(eb), \ 473 (unsigned long long)root->objectid, slot) 474 475 static noinline int check_leaf(struct btrfs_root *root, 476 struct extent_buffer *leaf) 477 { 478 struct btrfs_key key; 479 struct btrfs_key leaf_key; 480 u32 nritems = btrfs_header_nritems(leaf); 481 int slot; 482 483 if (nritems == 0) 484 return 0; 485 486 /* Check the 0 item */ 487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 488 BTRFS_LEAF_DATA_SIZE(root)) { 489 CORRUPT("invalid item offset size pair", leaf, root, 0); 490 return -EIO; 491 } 492 493 /* 494 * Check to make sure each items keys are in the correct order and their 495 * offsets make sense. We only have to loop through nritems-1 because 496 * we check the current slot against the next slot, which verifies the 497 * next slot's offset+size makes sense and that the current's slot 498 * offset is correct. 499 */ 500 for (slot = 0; slot < nritems - 1; slot++) { 501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 502 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 503 504 /* Make sure the keys are in the right order */ 505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 506 CORRUPT("bad key order", leaf, root, slot); 507 return -EIO; 508 } 509 510 /* 511 * Make sure the offset and ends are right, remember that the 512 * item data starts at the end of the leaf and grows towards the 513 * front. 514 */ 515 if (btrfs_item_offset_nr(leaf, slot) != 516 btrfs_item_end_nr(leaf, slot + 1)) { 517 CORRUPT("slot offset bad", leaf, root, slot); 518 return -EIO; 519 } 520 521 /* 522 * Check to make sure that we don't point outside of the leaf, 523 * just incase all the items are consistent to eachother, but 524 * all point outside of the leaf. 525 */ 526 if (btrfs_item_end_nr(leaf, slot) > 527 BTRFS_LEAF_DATA_SIZE(root)) { 528 CORRUPT("slot end outside of leaf", leaf, root, slot); 529 return -EIO; 530 } 531 } 532 533 return 0; 534 } 535 536 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 537 struct page *page, int max_walk) 538 { 539 struct extent_buffer *eb; 540 u64 start = page_offset(page); 541 u64 target = start; 542 u64 min_start; 543 544 if (start < max_walk) 545 min_start = 0; 546 else 547 min_start = start - max_walk; 548 549 while (start >= min_start) { 550 eb = find_extent_buffer(tree, start, 0); 551 if (eb) { 552 /* 553 * we found an extent buffer and it contains our page 554 * horray! 555 */ 556 if (eb->start <= target && 557 eb->start + eb->len > target) 558 return eb; 559 560 /* we found an extent buffer that wasn't for us */ 561 free_extent_buffer(eb); 562 return NULL; 563 } 564 if (start == 0) 565 break; 566 start -= PAGE_CACHE_SIZE; 567 } 568 return NULL; 569 } 570 571 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 572 struct extent_state *state, int mirror) 573 { 574 struct extent_io_tree *tree; 575 u64 found_start; 576 int found_level; 577 struct extent_buffer *eb; 578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 579 int ret = 0; 580 int reads_done; 581 582 if (!page->private) 583 goto out; 584 585 tree = &BTRFS_I(page->mapping->host)->io_tree; 586 eb = (struct extent_buffer *)page->private; 587 588 /* the pending IO might have been the only thing that kept this buffer 589 * in memory. Make sure we have a ref for all this other checks 590 */ 591 extent_buffer_get(eb); 592 593 reads_done = atomic_dec_and_test(&eb->io_pages); 594 if (!reads_done) 595 goto err; 596 597 eb->read_mirror = mirror; 598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 599 ret = -EIO; 600 goto err; 601 } 602 603 found_start = btrfs_header_bytenr(eb); 604 if (found_start != eb->start) { 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 606 "%llu %llu\n", 607 (unsigned long long)found_start, 608 (unsigned long long)eb->start); 609 ret = -EIO; 610 goto err; 611 } 612 if (check_tree_block_fsid(root, eb)) { 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 614 (unsigned long long)eb->start); 615 ret = -EIO; 616 goto err; 617 } 618 found_level = btrfs_header_level(eb); 619 620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 621 eb, found_level); 622 623 ret = csum_tree_block(root, eb, 1); 624 if (ret) { 625 ret = -EIO; 626 goto err; 627 } 628 629 /* 630 * If this is a leaf block and it is corrupt, set the corrupt bit so 631 * that we don't try and read the other copies of this block, just 632 * return -EIO. 633 */ 634 if (found_level == 0 && check_leaf(root, eb)) { 635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 636 ret = -EIO; 637 } 638 639 if (!ret) 640 set_extent_buffer_uptodate(eb); 641 err: 642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 644 btree_readahead_hook(root, eb, eb->start, ret); 645 } 646 647 if (ret) 648 clear_extent_buffer_uptodate(eb); 649 free_extent_buffer(eb); 650 out: 651 return ret; 652 } 653 654 static int btree_io_failed_hook(struct page *page, int failed_mirror) 655 { 656 struct extent_buffer *eb; 657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 658 659 eb = (struct extent_buffer *)page->private; 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 661 eb->read_mirror = failed_mirror; 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 663 btree_readahead_hook(root, eb, eb->start, -EIO); 664 return -EIO; /* we fixed nothing */ 665 } 666 667 static void end_workqueue_bio(struct bio *bio, int err) 668 { 669 struct end_io_wq *end_io_wq = bio->bi_private; 670 struct btrfs_fs_info *fs_info; 671 672 fs_info = end_io_wq->info; 673 end_io_wq->error = err; 674 end_io_wq->work.func = end_workqueue_fn; 675 end_io_wq->work.flags = 0; 676 677 if (bio->bi_rw & REQ_WRITE) { 678 if (end_io_wq->metadata == 1) 679 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 680 &end_io_wq->work); 681 else if (end_io_wq->metadata == 2) 682 btrfs_queue_worker(&fs_info->endio_freespace_worker, 683 &end_io_wq->work); 684 else 685 btrfs_queue_worker(&fs_info->endio_write_workers, 686 &end_io_wq->work); 687 } else { 688 if (end_io_wq->metadata) 689 btrfs_queue_worker(&fs_info->endio_meta_workers, 690 &end_io_wq->work); 691 else 692 btrfs_queue_worker(&fs_info->endio_workers, 693 &end_io_wq->work); 694 } 695 } 696 697 /* 698 * For the metadata arg you want 699 * 700 * 0 - if data 701 * 1 - if normal metadta 702 * 2 - if writing to the free space cache area 703 */ 704 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 705 int metadata) 706 { 707 struct end_io_wq *end_io_wq; 708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 709 if (!end_io_wq) 710 return -ENOMEM; 711 712 end_io_wq->private = bio->bi_private; 713 end_io_wq->end_io = bio->bi_end_io; 714 end_io_wq->info = info; 715 end_io_wq->error = 0; 716 end_io_wq->bio = bio; 717 end_io_wq->metadata = metadata; 718 719 bio->bi_private = end_io_wq; 720 bio->bi_end_io = end_workqueue_bio; 721 return 0; 722 } 723 724 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 725 { 726 unsigned long limit = min_t(unsigned long, 727 info->workers.max_workers, 728 info->fs_devices->open_devices); 729 return 256 * limit; 730 } 731 732 static void run_one_async_start(struct btrfs_work *work) 733 { 734 struct async_submit_bio *async; 735 int ret; 736 737 async = container_of(work, struct async_submit_bio, work); 738 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 739 async->mirror_num, async->bio_flags, 740 async->bio_offset); 741 if (ret) 742 async->error = ret; 743 } 744 745 static void run_one_async_done(struct btrfs_work *work) 746 { 747 struct btrfs_fs_info *fs_info; 748 struct async_submit_bio *async; 749 int limit; 750 751 async = container_of(work, struct async_submit_bio, work); 752 fs_info = BTRFS_I(async->inode)->root->fs_info; 753 754 limit = btrfs_async_submit_limit(fs_info); 755 limit = limit * 2 / 3; 756 757 atomic_dec(&fs_info->nr_async_submits); 758 759 if (atomic_read(&fs_info->nr_async_submits) < limit && 760 waitqueue_active(&fs_info->async_submit_wait)) 761 wake_up(&fs_info->async_submit_wait); 762 763 /* If an error occured we just want to clean up the bio and move on */ 764 if (async->error) { 765 bio_endio(async->bio, async->error); 766 return; 767 } 768 769 async->submit_bio_done(async->inode, async->rw, async->bio, 770 async->mirror_num, async->bio_flags, 771 async->bio_offset); 772 } 773 774 static void run_one_async_free(struct btrfs_work *work) 775 { 776 struct async_submit_bio *async; 777 778 async = container_of(work, struct async_submit_bio, work); 779 kfree(async); 780 } 781 782 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 783 int rw, struct bio *bio, int mirror_num, 784 unsigned long bio_flags, 785 u64 bio_offset, 786 extent_submit_bio_hook_t *submit_bio_start, 787 extent_submit_bio_hook_t *submit_bio_done) 788 { 789 struct async_submit_bio *async; 790 791 async = kmalloc(sizeof(*async), GFP_NOFS); 792 if (!async) 793 return -ENOMEM; 794 795 async->inode = inode; 796 async->rw = rw; 797 async->bio = bio; 798 async->mirror_num = mirror_num; 799 async->submit_bio_start = submit_bio_start; 800 async->submit_bio_done = submit_bio_done; 801 802 async->work.func = run_one_async_start; 803 async->work.ordered_func = run_one_async_done; 804 async->work.ordered_free = run_one_async_free; 805 806 async->work.flags = 0; 807 async->bio_flags = bio_flags; 808 async->bio_offset = bio_offset; 809 810 async->error = 0; 811 812 atomic_inc(&fs_info->nr_async_submits); 813 814 if (rw & REQ_SYNC) 815 btrfs_set_work_high_prio(&async->work); 816 817 btrfs_queue_worker(&fs_info->workers, &async->work); 818 819 while (atomic_read(&fs_info->async_submit_draining) && 820 atomic_read(&fs_info->nr_async_submits)) { 821 wait_event(fs_info->async_submit_wait, 822 (atomic_read(&fs_info->nr_async_submits) == 0)); 823 } 824 825 return 0; 826 } 827 828 static int btree_csum_one_bio(struct bio *bio) 829 { 830 struct bio_vec *bvec = bio->bi_io_vec; 831 int bio_index = 0; 832 struct btrfs_root *root; 833 int ret = 0; 834 835 WARN_ON(bio->bi_vcnt <= 0); 836 while (bio_index < bio->bi_vcnt) { 837 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 838 ret = csum_dirty_buffer(root, bvec->bv_page); 839 if (ret) 840 break; 841 bio_index++; 842 bvec++; 843 } 844 return ret; 845 } 846 847 static int __btree_submit_bio_start(struct inode *inode, int rw, 848 struct bio *bio, int mirror_num, 849 unsigned long bio_flags, 850 u64 bio_offset) 851 { 852 /* 853 * when we're called for a write, we're already in the async 854 * submission context. Just jump into btrfs_map_bio 855 */ 856 return btree_csum_one_bio(bio); 857 } 858 859 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 860 int mirror_num, unsigned long bio_flags, 861 u64 bio_offset) 862 { 863 /* 864 * when we're called for a write, we're already in the async 865 * submission context. Just jump into btrfs_map_bio 866 */ 867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 868 } 869 870 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 871 int mirror_num, unsigned long bio_flags, 872 u64 bio_offset) 873 { 874 int ret; 875 876 if (!(rw & REQ_WRITE)) { 877 878 /* 879 * called for a read, do the setup so that checksum validation 880 * can happen in the async kernel threads 881 */ 882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 883 bio, 1); 884 if (ret) 885 return ret; 886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 887 mirror_num, 0); 888 } 889 890 /* 891 * kthread helpers are used to submit writes so that checksumming 892 * can happen in parallel across all CPUs 893 */ 894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 895 inode, rw, bio, mirror_num, 0, 896 bio_offset, 897 __btree_submit_bio_start, 898 __btree_submit_bio_done); 899 } 900 901 #ifdef CONFIG_MIGRATION 902 static int btree_migratepage(struct address_space *mapping, 903 struct page *newpage, struct page *page, 904 enum migrate_mode mode) 905 { 906 /* 907 * we can't safely write a btree page from here, 908 * we haven't done the locking hook 909 */ 910 if (PageDirty(page)) 911 return -EAGAIN; 912 /* 913 * Buffers may be managed in a filesystem specific way. 914 * We must have no buffers or drop them. 915 */ 916 if (page_has_private(page) && 917 !try_to_release_page(page, GFP_KERNEL)) 918 return -EAGAIN; 919 return migrate_page(mapping, newpage, page, mode); 920 } 921 #endif 922 923 924 static int btree_writepages(struct address_space *mapping, 925 struct writeback_control *wbc) 926 { 927 struct extent_io_tree *tree; 928 tree = &BTRFS_I(mapping->host)->io_tree; 929 if (wbc->sync_mode == WB_SYNC_NONE) { 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 931 u64 num_dirty; 932 unsigned long thresh = 32 * 1024 * 1024; 933 934 if (wbc->for_kupdate) 935 return 0; 936 937 /* this is a bit racy, but that's ok */ 938 num_dirty = root->fs_info->dirty_metadata_bytes; 939 if (num_dirty < thresh) 940 return 0; 941 } 942 return btree_write_cache_pages(mapping, wbc); 943 } 944 945 static int btree_readpage(struct file *file, struct page *page) 946 { 947 struct extent_io_tree *tree; 948 tree = &BTRFS_I(page->mapping->host)->io_tree; 949 return extent_read_full_page(tree, page, btree_get_extent, 0); 950 } 951 952 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 953 { 954 if (PageWriteback(page) || PageDirty(page)) 955 return 0; 956 /* 957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 958 * slab allocation from alloc_extent_state down the callchain where 959 * it'd hit a BUG_ON as those flags are not allowed. 960 */ 961 gfp_flags &= ~GFP_SLAB_BUG_MASK; 962 963 return try_release_extent_buffer(page, gfp_flags); 964 } 965 966 static void btree_invalidatepage(struct page *page, unsigned long offset) 967 { 968 struct extent_io_tree *tree; 969 tree = &BTRFS_I(page->mapping->host)->io_tree; 970 extent_invalidatepage(tree, page, offset); 971 btree_releasepage(page, GFP_NOFS); 972 if (PagePrivate(page)) { 973 printk(KERN_WARNING "btrfs warning page private not zero " 974 "on page %llu\n", (unsigned long long)page_offset(page)); 975 ClearPagePrivate(page); 976 set_page_private(page, 0); 977 page_cache_release(page); 978 } 979 } 980 981 static int btree_set_page_dirty(struct page *page) 982 { 983 struct extent_buffer *eb; 984 985 BUG_ON(!PagePrivate(page)); 986 eb = (struct extent_buffer *)page->private; 987 BUG_ON(!eb); 988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 989 BUG_ON(!atomic_read(&eb->refs)); 990 btrfs_assert_tree_locked(eb); 991 return __set_page_dirty_nobuffers(page); 992 } 993 994 static const struct address_space_operations btree_aops = { 995 .readpage = btree_readpage, 996 .writepages = btree_writepages, 997 .releasepage = btree_releasepage, 998 .invalidatepage = btree_invalidatepage, 999 #ifdef CONFIG_MIGRATION 1000 .migratepage = btree_migratepage, 1001 #endif 1002 .set_page_dirty = btree_set_page_dirty, 1003 }; 1004 1005 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1006 u64 parent_transid) 1007 { 1008 struct extent_buffer *buf = NULL; 1009 struct inode *btree_inode = root->fs_info->btree_inode; 1010 int ret = 0; 1011 1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1013 if (!buf) 1014 return 0; 1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1016 buf, 0, WAIT_NONE, btree_get_extent, 0); 1017 free_extent_buffer(buf); 1018 return ret; 1019 } 1020 1021 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1022 int mirror_num, struct extent_buffer **eb) 1023 { 1024 struct extent_buffer *buf = NULL; 1025 struct inode *btree_inode = root->fs_info->btree_inode; 1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1027 int ret; 1028 1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1030 if (!buf) 1031 return 0; 1032 1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1034 1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1036 btree_get_extent, mirror_num); 1037 if (ret) { 1038 free_extent_buffer(buf); 1039 return ret; 1040 } 1041 1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1043 free_extent_buffer(buf); 1044 return -EIO; 1045 } else if (extent_buffer_uptodate(buf)) { 1046 *eb = buf; 1047 } else { 1048 free_extent_buffer(buf); 1049 } 1050 return 0; 1051 } 1052 1053 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1054 u64 bytenr, u32 blocksize) 1055 { 1056 struct inode *btree_inode = root->fs_info->btree_inode; 1057 struct extent_buffer *eb; 1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1059 bytenr, blocksize); 1060 return eb; 1061 } 1062 1063 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1064 u64 bytenr, u32 blocksize) 1065 { 1066 struct inode *btree_inode = root->fs_info->btree_inode; 1067 struct extent_buffer *eb; 1068 1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1070 bytenr, blocksize); 1071 return eb; 1072 } 1073 1074 1075 int btrfs_write_tree_block(struct extent_buffer *buf) 1076 { 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1078 buf->start + buf->len - 1); 1079 } 1080 1081 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1082 { 1083 return filemap_fdatawait_range(buf->pages[0]->mapping, 1084 buf->start, buf->start + buf->len - 1); 1085 } 1086 1087 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1088 u32 blocksize, u64 parent_transid) 1089 { 1090 struct extent_buffer *buf = NULL; 1091 int ret; 1092 1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1094 if (!buf) 1095 return NULL; 1096 1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1098 return buf; 1099 1100 } 1101 1102 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1103 struct extent_buffer *buf) 1104 { 1105 if (btrfs_header_generation(buf) == 1106 root->fs_info->running_transaction->transid) { 1107 btrfs_assert_tree_locked(buf); 1108 1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1110 spin_lock(&root->fs_info->delalloc_lock); 1111 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1112 root->fs_info->dirty_metadata_bytes -= buf->len; 1113 else { 1114 spin_unlock(&root->fs_info->delalloc_lock); 1115 btrfs_panic(root->fs_info, -EOVERFLOW, 1116 "Can't clear %lu bytes from " 1117 " dirty_mdatadata_bytes (%lu)", 1118 buf->len, 1119 root->fs_info->dirty_metadata_bytes); 1120 } 1121 spin_unlock(&root->fs_info->delalloc_lock); 1122 } 1123 1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1125 btrfs_set_lock_blocking(buf); 1126 clear_extent_buffer_dirty(buf); 1127 } 1128 } 1129 1130 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1131 u32 stripesize, struct btrfs_root *root, 1132 struct btrfs_fs_info *fs_info, 1133 u64 objectid) 1134 { 1135 root->node = NULL; 1136 root->commit_root = NULL; 1137 root->sectorsize = sectorsize; 1138 root->nodesize = nodesize; 1139 root->leafsize = leafsize; 1140 root->stripesize = stripesize; 1141 root->ref_cows = 0; 1142 root->track_dirty = 0; 1143 root->in_radix = 0; 1144 root->orphan_item_inserted = 0; 1145 root->orphan_cleanup_state = 0; 1146 1147 root->objectid = objectid; 1148 root->last_trans = 0; 1149 root->highest_objectid = 0; 1150 root->name = NULL; 1151 root->inode_tree = RB_ROOT; 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1153 root->block_rsv = NULL; 1154 root->orphan_block_rsv = NULL; 1155 1156 INIT_LIST_HEAD(&root->dirty_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 spin_lock_init(&root->orphan_lock); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->accounting_lock); 1161 mutex_init(&root->objectid_mutex); 1162 mutex_init(&root->log_mutex); 1163 init_waitqueue_head(&root->log_writer_wait); 1164 init_waitqueue_head(&root->log_commit_wait[0]); 1165 init_waitqueue_head(&root->log_commit_wait[1]); 1166 atomic_set(&root->log_commit[0], 0); 1167 atomic_set(&root->log_commit[1], 0); 1168 atomic_set(&root->log_writers, 0); 1169 atomic_set(&root->orphan_inodes, 0); 1170 root->log_batch = 0; 1171 root->log_transid = 0; 1172 root->last_log_commit = 0; 1173 extent_io_tree_init(&root->dirty_log_pages, 1174 fs_info->btree_inode->i_mapping); 1175 1176 memset(&root->root_key, 0, sizeof(root->root_key)); 1177 memset(&root->root_item, 0, sizeof(root->root_item)); 1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1180 root->defrag_trans_start = fs_info->generation; 1181 init_completion(&root->kobj_unregister); 1182 root->defrag_running = 0; 1183 root->root_key.objectid = objectid; 1184 root->anon_dev = 0; 1185 } 1186 1187 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1188 struct btrfs_fs_info *fs_info, 1189 u64 objectid, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 u32 blocksize; 1194 u64 generation; 1195 1196 __setup_root(tree_root->nodesize, tree_root->leafsize, 1197 tree_root->sectorsize, tree_root->stripesize, 1198 root, fs_info, objectid); 1199 ret = btrfs_find_last_root(tree_root, objectid, 1200 &root->root_item, &root->root_key); 1201 if (ret > 0) 1202 return -ENOENT; 1203 else if (ret < 0) 1204 return ret; 1205 1206 generation = btrfs_root_generation(&root->root_item); 1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1208 root->commit_root = NULL; 1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1210 blocksize, generation); 1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1212 free_extent_buffer(root->node); 1213 root->node = NULL; 1214 return -EIO; 1215 } 1216 root->commit_root = btrfs_root_node(root); 1217 return 0; 1218 } 1219 1220 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1221 { 1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1223 if (root) 1224 root->fs_info = fs_info; 1225 return root; 1226 } 1227 1228 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1229 struct btrfs_fs_info *fs_info) 1230 { 1231 struct btrfs_root *root; 1232 struct btrfs_root *tree_root = fs_info->tree_root; 1233 struct extent_buffer *leaf; 1234 1235 root = btrfs_alloc_root(fs_info); 1236 if (!root) 1237 return ERR_PTR(-ENOMEM); 1238 1239 __setup_root(tree_root->nodesize, tree_root->leafsize, 1240 tree_root->sectorsize, tree_root->stripesize, 1241 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1242 1243 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1245 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1246 /* 1247 * log trees do not get reference counted because they go away 1248 * before a real commit is actually done. They do store pointers 1249 * to file data extents, and those reference counts still get 1250 * updated (along with back refs to the log tree). 1251 */ 1252 root->ref_cows = 0; 1253 1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1255 BTRFS_TREE_LOG_OBJECTID, NULL, 1256 0, 0, 0); 1257 if (IS_ERR(leaf)) { 1258 kfree(root); 1259 return ERR_CAST(leaf); 1260 } 1261 1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1263 btrfs_set_header_bytenr(leaf, leaf->start); 1264 btrfs_set_header_generation(leaf, trans->transid); 1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1266 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1267 root->node = leaf; 1268 1269 write_extent_buffer(root->node, root->fs_info->fsid, 1270 (unsigned long)btrfs_header_fsid(root->node), 1271 BTRFS_FSID_SIZE); 1272 btrfs_mark_buffer_dirty(root->node); 1273 btrfs_tree_unlock(root->node); 1274 return root; 1275 } 1276 1277 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1278 struct btrfs_fs_info *fs_info) 1279 { 1280 struct btrfs_root *log_root; 1281 1282 log_root = alloc_log_tree(trans, fs_info); 1283 if (IS_ERR(log_root)) 1284 return PTR_ERR(log_root); 1285 WARN_ON(fs_info->log_root_tree); 1286 fs_info->log_root_tree = log_root; 1287 return 0; 1288 } 1289 1290 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1291 struct btrfs_root *root) 1292 { 1293 struct btrfs_root *log_root; 1294 struct btrfs_inode_item *inode_item; 1295 1296 log_root = alloc_log_tree(trans, root->fs_info); 1297 if (IS_ERR(log_root)) 1298 return PTR_ERR(log_root); 1299 1300 log_root->last_trans = trans->transid; 1301 log_root->root_key.offset = root->root_key.objectid; 1302 1303 inode_item = &log_root->root_item.inode; 1304 inode_item->generation = cpu_to_le64(1); 1305 inode_item->size = cpu_to_le64(3); 1306 inode_item->nlink = cpu_to_le32(1); 1307 inode_item->nbytes = cpu_to_le64(root->leafsize); 1308 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1309 1310 btrfs_set_root_node(&log_root->root_item, log_root->node); 1311 1312 WARN_ON(root->log_root); 1313 root->log_root = log_root; 1314 root->log_transid = 0; 1315 root->last_log_commit = 0; 1316 return 0; 1317 } 1318 1319 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1320 struct btrfs_key *location) 1321 { 1322 struct btrfs_root *root; 1323 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1324 struct btrfs_path *path; 1325 struct extent_buffer *l; 1326 u64 generation; 1327 u32 blocksize; 1328 int ret = 0; 1329 1330 root = btrfs_alloc_root(fs_info); 1331 if (!root) 1332 return ERR_PTR(-ENOMEM); 1333 if (location->offset == (u64)-1) { 1334 ret = find_and_setup_root(tree_root, fs_info, 1335 location->objectid, root); 1336 if (ret) { 1337 kfree(root); 1338 return ERR_PTR(ret); 1339 } 1340 goto out; 1341 } 1342 1343 __setup_root(tree_root->nodesize, tree_root->leafsize, 1344 tree_root->sectorsize, tree_root->stripesize, 1345 root, fs_info, location->objectid); 1346 1347 path = btrfs_alloc_path(); 1348 if (!path) { 1349 kfree(root); 1350 return ERR_PTR(-ENOMEM); 1351 } 1352 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1353 if (ret == 0) { 1354 l = path->nodes[0]; 1355 read_extent_buffer(l, &root->root_item, 1356 btrfs_item_ptr_offset(l, path->slots[0]), 1357 sizeof(root->root_item)); 1358 memcpy(&root->root_key, location, sizeof(*location)); 1359 } 1360 btrfs_free_path(path); 1361 if (ret) { 1362 kfree(root); 1363 if (ret > 0) 1364 ret = -ENOENT; 1365 return ERR_PTR(ret); 1366 } 1367 1368 generation = btrfs_root_generation(&root->root_item); 1369 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1370 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1371 blocksize, generation); 1372 root->commit_root = btrfs_root_node(root); 1373 BUG_ON(!root->node); /* -ENOMEM */ 1374 out: 1375 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1376 root->ref_cows = 1; 1377 btrfs_check_and_init_root_item(&root->root_item); 1378 } 1379 1380 return root; 1381 } 1382 1383 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1384 struct btrfs_key *location) 1385 { 1386 struct btrfs_root *root; 1387 int ret; 1388 1389 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1390 return fs_info->tree_root; 1391 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1392 return fs_info->extent_root; 1393 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1394 return fs_info->chunk_root; 1395 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1396 return fs_info->dev_root; 1397 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1398 return fs_info->csum_root; 1399 again: 1400 spin_lock(&fs_info->fs_roots_radix_lock); 1401 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1402 (unsigned long)location->objectid); 1403 spin_unlock(&fs_info->fs_roots_radix_lock); 1404 if (root) 1405 return root; 1406 1407 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1408 if (IS_ERR(root)) 1409 return root; 1410 1411 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1412 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1413 GFP_NOFS); 1414 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1415 ret = -ENOMEM; 1416 goto fail; 1417 } 1418 1419 btrfs_init_free_ino_ctl(root); 1420 mutex_init(&root->fs_commit_mutex); 1421 spin_lock_init(&root->cache_lock); 1422 init_waitqueue_head(&root->cache_wait); 1423 1424 ret = get_anon_bdev(&root->anon_dev); 1425 if (ret) 1426 goto fail; 1427 1428 if (btrfs_root_refs(&root->root_item) == 0) { 1429 ret = -ENOENT; 1430 goto fail; 1431 } 1432 1433 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1434 if (ret < 0) 1435 goto fail; 1436 if (ret == 0) 1437 root->orphan_item_inserted = 1; 1438 1439 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1440 if (ret) 1441 goto fail; 1442 1443 spin_lock(&fs_info->fs_roots_radix_lock); 1444 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1445 (unsigned long)root->root_key.objectid, 1446 root); 1447 if (ret == 0) 1448 root->in_radix = 1; 1449 1450 spin_unlock(&fs_info->fs_roots_radix_lock); 1451 radix_tree_preload_end(); 1452 if (ret) { 1453 if (ret == -EEXIST) { 1454 free_fs_root(root); 1455 goto again; 1456 } 1457 goto fail; 1458 } 1459 1460 ret = btrfs_find_dead_roots(fs_info->tree_root, 1461 root->root_key.objectid); 1462 WARN_ON(ret); 1463 return root; 1464 fail: 1465 free_fs_root(root); 1466 return ERR_PTR(ret); 1467 } 1468 1469 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1470 { 1471 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1472 int ret = 0; 1473 struct btrfs_device *device; 1474 struct backing_dev_info *bdi; 1475 1476 rcu_read_lock(); 1477 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1478 if (!device->bdev) 1479 continue; 1480 bdi = blk_get_backing_dev_info(device->bdev); 1481 if (bdi && bdi_congested(bdi, bdi_bits)) { 1482 ret = 1; 1483 break; 1484 } 1485 } 1486 rcu_read_unlock(); 1487 return ret; 1488 } 1489 1490 /* 1491 * If this fails, caller must call bdi_destroy() to get rid of the 1492 * bdi again. 1493 */ 1494 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1495 { 1496 int err; 1497 1498 bdi->capabilities = BDI_CAP_MAP_COPY; 1499 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1500 if (err) 1501 return err; 1502 1503 bdi->ra_pages = default_backing_dev_info.ra_pages; 1504 bdi->congested_fn = btrfs_congested_fn; 1505 bdi->congested_data = info; 1506 return 0; 1507 } 1508 1509 /* 1510 * called by the kthread helper functions to finally call the bio end_io 1511 * functions. This is where read checksum verification actually happens 1512 */ 1513 static void end_workqueue_fn(struct btrfs_work *work) 1514 { 1515 struct bio *bio; 1516 struct end_io_wq *end_io_wq; 1517 struct btrfs_fs_info *fs_info; 1518 int error; 1519 1520 end_io_wq = container_of(work, struct end_io_wq, work); 1521 bio = end_io_wq->bio; 1522 fs_info = end_io_wq->info; 1523 1524 error = end_io_wq->error; 1525 bio->bi_private = end_io_wq->private; 1526 bio->bi_end_io = end_io_wq->end_io; 1527 kfree(end_io_wq); 1528 bio_endio(bio, error); 1529 } 1530 1531 static int cleaner_kthread(void *arg) 1532 { 1533 struct btrfs_root *root = arg; 1534 1535 do { 1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1537 1538 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1539 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1540 btrfs_run_delayed_iputs(root); 1541 btrfs_clean_old_snapshots(root); 1542 mutex_unlock(&root->fs_info->cleaner_mutex); 1543 btrfs_run_defrag_inodes(root->fs_info); 1544 } 1545 1546 if (!try_to_freeze()) { 1547 set_current_state(TASK_INTERRUPTIBLE); 1548 if (!kthread_should_stop()) 1549 schedule(); 1550 __set_current_state(TASK_RUNNING); 1551 } 1552 } while (!kthread_should_stop()); 1553 return 0; 1554 } 1555 1556 static int transaction_kthread(void *arg) 1557 { 1558 struct btrfs_root *root = arg; 1559 struct btrfs_trans_handle *trans; 1560 struct btrfs_transaction *cur; 1561 u64 transid; 1562 unsigned long now; 1563 unsigned long delay; 1564 bool cannot_commit; 1565 1566 do { 1567 cannot_commit = false; 1568 delay = HZ * 30; 1569 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1570 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1571 1572 spin_lock(&root->fs_info->trans_lock); 1573 cur = root->fs_info->running_transaction; 1574 if (!cur) { 1575 spin_unlock(&root->fs_info->trans_lock); 1576 goto sleep; 1577 } 1578 1579 now = get_seconds(); 1580 if (!cur->blocked && 1581 (now < cur->start_time || now - cur->start_time < 30)) { 1582 spin_unlock(&root->fs_info->trans_lock); 1583 delay = HZ * 5; 1584 goto sleep; 1585 } 1586 transid = cur->transid; 1587 spin_unlock(&root->fs_info->trans_lock); 1588 1589 /* If the file system is aborted, this will always fail. */ 1590 trans = btrfs_join_transaction(root); 1591 if (IS_ERR(trans)) { 1592 cannot_commit = true; 1593 goto sleep; 1594 } 1595 if (transid == trans->transid) { 1596 btrfs_commit_transaction(trans, root); 1597 } else { 1598 btrfs_end_transaction(trans, root); 1599 } 1600 sleep: 1601 wake_up_process(root->fs_info->cleaner_kthread); 1602 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1603 1604 if (!try_to_freeze()) { 1605 set_current_state(TASK_INTERRUPTIBLE); 1606 if (!kthread_should_stop() && 1607 (!btrfs_transaction_blocked(root->fs_info) || 1608 cannot_commit)) 1609 schedule_timeout(delay); 1610 __set_current_state(TASK_RUNNING); 1611 } 1612 } while (!kthread_should_stop()); 1613 return 0; 1614 } 1615 1616 /* 1617 * this will find the highest generation in the array of 1618 * root backups. The index of the highest array is returned, 1619 * or -1 if we can't find anything. 1620 * 1621 * We check to make sure the array is valid by comparing the 1622 * generation of the latest root in the array with the generation 1623 * in the super block. If they don't match we pitch it. 1624 */ 1625 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1626 { 1627 u64 cur; 1628 int newest_index = -1; 1629 struct btrfs_root_backup *root_backup; 1630 int i; 1631 1632 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1633 root_backup = info->super_copy->super_roots + i; 1634 cur = btrfs_backup_tree_root_gen(root_backup); 1635 if (cur == newest_gen) 1636 newest_index = i; 1637 } 1638 1639 /* check to see if we actually wrapped around */ 1640 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1641 root_backup = info->super_copy->super_roots; 1642 cur = btrfs_backup_tree_root_gen(root_backup); 1643 if (cur == newest_gen) 1644 newest_index = 0; 1645 } 1646 return newest_index; 1647 } 1648 1649 1650 /* 1651 * find the oldest backup so we know where to store new entries 1652 * in the backup array. This will set the backup_root_index 1653 * field in the fs_info struct 1654 */ 1655 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1656 u64 newest_gen) 1657 { 1658 int newest_index = -1; 1659 1660 newest_index = find_newest_super_backup(info, newest_gen); 1661 /* if there was garbage in there, just move along */ 1662 if (newest_index == -1) { 1663 info->backup_root_index = 0; 1664 } else { 1665 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1666 } 1667 } 1668 1669 /* 1670 * copy all the root pointers into the super backup array. 1671 * this will bump the backup pointer by one when it is 1672 * done 1673 */ 1674 static void backup_super_roots(struct btrfs_fs_info *info) 1675 { 1676 int next_backup; 1677 struct btrfs_root_backup *root_backup; 1678 int last_backup; 1679 1680 next_backup = info->backup_root_index; 1681 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1682 BTRFS_NUM_BACKUP_ROOTS; 1683 1684 /* 1685 * just overwrite the last backup if we're at the same generation 1686 * this happens only at umount 1687 */ 1688 root_backup = info->super_for_commit->super_roots + last_backup; 1689 if (btrfs_backup_tree_root_gen(root_backup) == 1690 btrfs_header_generation(info->tree_root->node)) 1691 next_backup = last_backup; 1692 1693 root_backup = info->super_for_commit->super_roots + next_backup; 1694 1695 /* 1696 * make sure all of our padding and empty slots get zero filled 1697 * regardless of which ones we use today 1698 */ 1699 memset(root_backup, 0, sizeof(*root_backup)); 1700 1701 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1702 1703 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1704 btrfs_set_backup_tree_root_gen(root_backup, 1705 btrfs_header_generation(info->tree_root->node)); 1706 1707 btrfs_set_backup_tree_root_level(root_backup, 1708 btrfs_header_level(info->tree_root->node)); 1709 1710 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1711 btrfs_set_backup_chunk_root_gen(root_backup, 1712 btrfs_header_generation(info->chunk_root->node)); 1713 btrfs_set_backup_chunk_root_level(root_backup, 1714 btrfs_header_level(info->chunk_root->node)); 1715 1716 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1717 btrfs_set_backup_extent_root_gen(root_backup, 1718 btrfs_header_generation(info->extent_root->node)); 1719 btrfs_set_backup_extent_root_level(root_backup, 1720 btrfs_header_level(info->extent_root->node)); 1721 1722 /* 1723 * we might commit during log recovery, which happens before we set 1724 * the fs_root. Make sure it is valid before we fill it in. 1725 */ 1726 if (info->fs_root && info->fs_root->node) { 1727 btrfs_set_backup_fs_root(root_backup, 1728 info->fs_root->node->start); 1729 btrfs_set_backup_fs_root_gen(root_backup, 1730 btrfs_header_generation(info->fs_root->node)); 1731 btrfs_set_backup_fs_root_level(root_backup, 1732 btrfs_header_level(info->fs_root->node)); 1733 } 1734 1735 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1736 btrfs_set_backup_dev_root_gen(root_backup, 1737 btrfs_header_generation(info->dev_root->node)); 1738 btrfs_set_backup_dev_root_level(root_backup, 1739 btrfs_header_level(info->dev_root->node)); 1740 1741 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1742 btrfs_set_backup_csum_root_gen(root_backup, 1743 btrfs_header_generation(info->csum_root->node)); 1744 btrfs_set_backup_csum_root_level(root_backup, 1745 btrfs_header_level(info->csum_root->node)); 1746 1747 btrfs_set_backup_total_bytes(root_backup, 1748 btrfs_super_total_bytes(info->super_copy)); 1749 btrfs_set_backup_bytes_used(root_backup, 1750 btrfs_super_bytes_used(info->super_copy)); 1751 btrfs_set_backup_num_devices(root_backup, 1752 btrfs_super_num_devices(info->super_copy)); 1753 1754 /* 1755 * if we don't copy this out to the super_copy, it won't get remembered 1756 * for the next commit 1757 */ 1758 memcpy(&info->super_copy->super_roots, 1759 &info->super_for_commit->super_roots, 1760 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1761 } 1762 1763 /* 1764 * this copies info out of the root backup array and back into 1765 * the in-memory super block. It is meant to help iterate through 1766 * the array, so you send it the number of backups you've already 1767 * tried and the last backup index you used. 1768 * 1769 * this returns -1 when it has tried all the backups 1770 */ 1771 static noinline int next_root_backup(struct btrfs_fs_info *info, 1772 struct btrfs_super_block *super, 1773 int *num_backups_tried, int *backup_index) 1774 { 1775 struct btrfs_root_backup *root_backup; 1776 int newest = *backup_index; 1777 1778 if (*num_backups_tried == 0) { 1779 u64 gen = btrfs_super_generation(super); 1780 1781 newest = find_newest_super_backup(info, gen); 1782 if (newest == -1) 1783 return -1; 1784 1785 *backup_index = newest; 1786 *num_backups_tried = 1; 1787 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1788 /* we've tried all the backups, all done */ 1789 return -1; 1790 } else { 1791 /* jump to the next oldest backup */ 1792 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1793 BTRFS_NUM_BACKUP_ROOTS; 1794 *backup_index = newest; 1795 *num_backups_tried += 1; 1796 } 1797 root_backup = super->super_roots + newest; 1798 1799 btrfs_set_super_generation(super, 1800 btrfs_backup_tree_root_gen(root_backup)); 1801 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1802 btrfs_set_super_root_level(super, 1803 btrfs_backup_tree_root_level(root_backup)); 1804 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1805 1806 /* 1807 * fixme: the total bytes and num_devices need to match or we should 1808 * need a fsck 1809 */ 1810 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1811 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1812 return 0; 1813 } 1814 1815 /* helper to cleanup tree roots */ 1816 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1817 { 1818 free_extent_buffer(info->tree_root->node); 1819 free_extent_buffer(info->tree_root->commit_root); 1820 free_extent_buffer(info->dev_root->node); 1821 free_extent_buffer(info->dev_root->commit_root); 1822 free_extent_buffer(info->extent_root->node); 1823 free_extent_buffer(info->extent_root->commit_root); 1824 free_extent_buffer(info->csum_root->node); 1825 free_extent_buffer(info->csum_root->commit_root); 1826 1827 info->tree_root->node = NULL; 1828 info->tree_root->commit_root = NULL; 1829 info->dev_root->node = NULL; 1830 info->dev_root->commit_root = NULL; 1831 info->extent_root->node = NULL; 1832 info->extent_root->commit_root = NULL; 1833 info->csum_root->node = NULL; 1834 info->csum_root->commit_root = NULL; 1835 1836 if (chunk_root) { 1837 free_extent_buffer(info->chunk_root->node); 1838 free_extent_buffer(info->chunk_root->commit_root); 1839 info->chunk_root->node = NULL; 1840 info->chunk_root->commit_root = NULL; 1841 } 1842 } 1843 1844 1845 int open_ctree(struct super_block *sb, 1846 struct btrfs_fs_devices *fs_devices, 1847 char *options) 1848 { 1849 u32 sectorsize; 1850 u32 nodesize; 1851 u32 leafsize; 1852 u32 blocksize; 1853 u32 stripesize; 1854 u64 generation; 1855 u64 features; 1856 struct btrfs_key location; 1857 struct buffer_head *bh; 1858 struct btrfs_super_block *disk_super; 1859 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1860 struct btrfs_root *tree_root; 1861 struct btrfs_root *extent_root; 1862 struct btrfs_root *csum_root; 1863 struct btrfs_root *chunk_root; 1864 struct btrfs_root *dev_root; 1865 struct btrfs_root *log_tree_root; 1866 int ret; 1867 int err = -EINVAL; 1868 int num_backups_tried = 0; 1869 int backup_index = 0; 1870 1871 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 1872 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 1873 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 1874 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 1875 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 1876 1877 if (!tree_root || !extent_root || !csum_root || 1878 !chunk_root || !dev_root) { 1879 err = -ENOMEM; 1880 goto fail; 1881 } 1882 1883 ret = init_srcu_struct(&fs_info->subvol_srcu); 1884 if (ret) { 1885 err = ret; 1886 goto fail; 1887 } 1888 1889 ret = setup_bdi(fs_info, &fs_info->bdi); 1890 if (ret) { 1891 err = ret; 1892 goto fail_srcu; 1893 } 1894 1895 fs_info->btree_inode = new_inode(sb); 1896 if (!fs_info->btree_inode) { 1897 err = -ENOMEM; 1898 goto fail_bdi; 1899 } 1900 1901 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1902 1903 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1904 INIT_LIST_HEAD(&fs_info->trans_list); 1905 INIT_LIST_HEAD(&fs_info->dead_roots); 1906 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1907 INIT_LIST_HEAD(&fs_info->hashers); 1908 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1909 INIT_LIST_HEAD(&fs_info->ordered_operations); 1910 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1911 spin_lock_init(&fs_info->delalloc_lock); 1912 spin_lock_init(&fs_info->trans_lock); 1913 spin_lock_init(&fs_info->ref_cache_lock); 1914 spin_lock_init(&fs_info->fs_roots_radix_lock); 1915 spin_lock_init(&fs_info->delayed_iput_lock); 1916 spin_lock_init(&fs_info->defrag_inodes_lock); 1917 spin_lock_init(&fs_info->free_chunk_lock); 1918 spin_lock_init(&fs_info->tree_mod_seq_lock); 1919 rwlock_init(&fs_info->tree_mod_log_lock); 1920 mutex_init(&fs_info->reloc_mutex); 1921 1922 init_completion(&fs_info->kobj_unregister); 1923 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1924 INIT_LIST_HEAD(&fs_info->space_info); 1925 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 1926 btrfs_mapping_init(&fs_info->mapping_tree); 1927 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1928 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1929 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1930 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1931 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1932 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 1933 atomic_set(&fs_info->nr_async_submits, 0); 1934 atomic_set(&fs_info->async_delalloc_pages, 0); 1935 atomic_set(&fs_info->async_submit_draining, 0); 1936 atomic_set(&fs_info->nr_async_bios, 0); 1937 atomic_set(&fs_info->defrag_running, 0); 1938 atomic_set(&fs_info->tree_mod_seq, 0); 1939 fs_info->sb = sb; 1940 fs_info->max_inline = 8192 * 1024; 1941 fs_info->metadata_ratio = 0; 1942 fs_info->defrag_inodes = RB_ROOT; 1943 fs_info->trans_no_join = 0; 1944 fs_info->free_chunk_space = 0; 1945 fs_info->tree_mod_log = RB_ROOT; 1946 1947 /* readahead state */ 1948 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 1949 spin_lock_init(&fs_info->reada_lock); 1950 1951 fs_info->thread_pool_size = min_t(unsigned long, 1952 num_online_cpus() + 2, 8); 1953 1954 INIT_LIST_HEAD(&fs_info->ordered_extents); 1955 spin_lock_init(&fs_info->ordered_extent_lock); 1956 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 1957 GFP_NOFS); 1958 if (!fs_info->delayed_root) { 1959 err = -ENOMEM; 1960 goto fail_iput; 1961 } 1962 btrfs_init_delayed_root(fs_info->delayed_root); 1963 1964 mutex_init(&fs_info->scrub_lock); 1965 atomic_set(&fs_info->scrubs_running, 0); 1966 atomic_set(&fs_info->scrub_pause_req, 0); 1967 atomic_set(&fs_info->scrubs_paused, 0); 1968 atomic_set(&fs_info->scrub_cancel_req, 0); 1969 init_waitqueue_head(&fs_info->scrub_pause_wait); 1970 init_rwsem(&fs_info->scrub_super_lock); 1971 fs_info->scrub_workers_refcnt = 0; 1972 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1973 fs_info->check_integrity_print_mask = 0; 1974 #endif 1975 1976 spin_lock_init(&fs_info->balance_lock); 1977 mutex_init(&fs_info->balance_mutex); 1978 atomic_set(&fs_info->balance_running, 0); 1979 atomic_set(&fs_info->balance_pause_req, 0); 1980 atomic_set(&fs_info->balance_cancel_req, 0); 1981 fs_info->balance_ctl = NULL; 1982 init_waitqueue_head(&fs_info->balance_wait_q); 1983 1984 sb->s_blocksize = 4096; 1985 sb->s_blocksize_bits = blksize_bits(4096); 1986 sb->s_bdi = &fs_info->bdi; 1987 1988 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1989 set_nlink(fs_info->btree_inode, 1); 1990 /* 1991 * we set the i_size on the btree inode to the max possible int. 1992 * the real end of the address space is determined by all of 1993 * the devices in the system 1994 */ 1995 fs_info->btree_inode->i_size = OFFSET_MAX; 1996 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1997 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1998 1999 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2000 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2001 fs_info->btree_inode->i_mapping); 2002 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2003 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2004 2005 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2006 2007 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2008 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2009 sizeof(struct btrfs_key)); 2010 set_bit(BTRFS_INODE_DUMMY, 2011 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2012 insert_inode_hash(fs_info->btree_inode); 2013 2014 spin_lock_init(&fs_info->block_group_cache_lock); 2015 fs_info->block_group_cache_tree = RB_ROOT; 2016 2017 extent_io_tree_init(&fs_info->freed_extents[0], 2018 fs_info->btree_inode->i_mapping); 2019 extent_io_tree_init(&fs_info->freed_extents[1], 2020 fs_info->btree_inode->i_mapping); 2021 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2022 fs_info->do_barriers = 1; 2023 2024 2025 mutex_init(&fs_info->ordered_operations_mutex); 2026 mutex_init(&fs_info->tree_log_mutex); 2027 mutex_init(&fs_info->chunk_mutex); 2028 mutex_init(&fs_info->transaction_kthread_mutex); 2029 mutex_init(&fs_info->cleaner_mutex); 2030 mutex_init(&fs_info->volume_mutex); 2031 init_rwsem(&fs_info->extent_commit_sem); 2032 init_rwsem(&fs_info->cleanup_work_sem); 2033 init_rwsem(&fs_info->subvol_sem); 2034 2035 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2036 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2037 2038 init_waitqueue_head(&fs_info->transaction_throttle); 2039 init_waitqueue_head(&fs_info->transaction_wait); 2040 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2041 init_waitqueue_head(&fs_info->async_submit_wait); 2042 2043 __setup_root(4096, 4096, 4096, 4096, tree_root, 2044 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2045 2046 invalidate_bdev(fs_devices->latest_bdev); 2047 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2048 if (!bh) { 2049 err = -EINVAL; 2050 goto fail_alloc; 2051 } 2052 2053 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2054 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2055 sizeof(*fs_info->super_for_commit)); 2056 brelse(bh); 2057 2058 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2059 2060 disk_super = fs_info->super_copy; 2061 if (!btrfs_super_root(disk_super)) 2062 goto fail_alloc; 2063 2064 /* check FS state, whether FS is broken. */ 2065 fs_info->fs_state |= btrfs_super_flags(disk_super); 2066 2067 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2068 if (ret) { 2069 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2070 err = ret; 2071 goto fail_alloc; 2072 } 2073 2074 /* 2075 * run through our array of backup supers and setup 2076 * our ring pointer to the oldest one 2077 */ 2078 generation = btrfs_super_generation(disk_super); 2079 find_oldest_super_backup(fs_info, generation); 2080 2081 /* 2082 * In the long term, we'll store the compression type in the super 2083 * block, and it'll be used for per file compression control. 2084 */ 2085 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2086 2087 ret = btrfs_parse_options(tree_root, options); 2088 if (ret) { 2089 err = ret; 2090 goto fail_alloc; 2091 } 2092 2093 features = btrfs_super_incompat_flags(disk_super) & 2094 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2095 if (features) { 2096 printk(KERN_ERR "BTRFS: couldn't mount because of " 2097 "unsupported optional features (%Lx).\n", 2098 (unsigned long long)features); 2099 err = -EINVAL; 2100 goto fail_alloc; 2101 } 2102 2103 if (btrfs_super_leafsize(disk_super) != 2104 btrfs_super_nodesize(disk_super)) { 2105 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2106 "blocksizes don't match. node %d leaf %d\n", 2107 btrfs_super_nodesize(disk_super), 2108 btrfs_super_leafsize(disk_super)); 2109 err = -EINVAL; 2110 goto fail_alloc; 2111 } 2112 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2113 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2114 "blocksize (%d) was too large\n", 2115 btrfs_super_leafsize(disk_super)); 2116 err = -EINVAL; 2117 goto fail_alloc; 2118 } 2119 2120 features = btrfs_super_incompat_flags(disk_super); 2121 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2122 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2123 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2124 2125 /* 2126 * flag our filesystem as having big metadata blocks if 2127 * they are bigger than the page size 2128 */ 2129 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2130 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2131 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2132 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2133 } 2134 2135 nodesize = btrfs_super_nodesize(disk_super); 2136 leafsize = btrfs_super_leafsize(disk_super); 2137 sectorsize = btrfs_super_sectorsize(disk_super); 2138 stripesize = btrfs_super_stripesize(disk_super); 2139 2140 /* 2141 * mixed block groups end up with duplicate but slightly offset 2142 * extent buffers for the same range. It leads to corruptions 2143 */ 2144 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2145 (sectorsize != leafsize)) { 2146 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2147 "are not allowed for mixed block groups on %s\n", 2148 sb->s_id); 2149 goto fail_alloc; 2150 } 2151 2152 btrfs_set_super_incompat_flags(disk_super, features); 2153 2154 features = btrfs_super_compat_ro_flags(disk_super) & 2155 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2156 if (!(sb->s_flags & MS_RDONLY) && features) { 2157 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2158 "unsupported option features (%Lx).\n", 2159 (unsigned long long)features); 2160 err = -EINVAL; 2161 goto fail_alloc; 2162 } 2163 2164 btrfs_init_workers(&fs_info->generic_worker, 2165 "genwork", 1, NULL); 2166 2167 btrfs_init_workers(&fs_info->workers, "worker", 2168 fs_info->thread_pool_size, 2169 &fs_info->generic_worker); 2170 2171 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2172 fs_info->thread_pool_size, 2173 &fs_info->generic_worker); 2174 2175 btrfs_init_workers(&fs_info->submit_workers, "submit", 2176 min_t(u64, fs_devices->num_devices, 2177 fs_info->thread_pool_size), 2178 &fs_info->generic_worker); 2179 2180 btrfs_init_workers(&fs_info->caching_workers, "cache", 2181 2, &fs_info->generic_worker); 2182 2183 /* a higher idle thresh on the submit workers makes it much more 2184 * likely that bios will be send down in a sane order to the 2185 * devices 2186 */ 2187 fs_info->submit_workers.idle_thresh = 64; 2188 2189 fs_info->workers.idle_thresh = 16; 2190 fs_info->workers.ordered = 1; 2191 2192 fs_info->delalloc_workers.idle_thresh = 2; 2193 fs_info->delalloc_workers.ordered = 1; 2194 2195 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2196 &fs_info->generic_worker); 2197 btrfs_init_workers(&fs_info->endio_workers, "endio", 2198 fs_info->thread_pool_size, 2199 &fs_info->generic_worker); 2200 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2201 fs_info->thread_pool_size, 2202 &fs_info->generic_worker); 2203 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2204 "endio-meta-write", fs_info->thread_pool_size, 2205 &fs_info->generic_worker); 2206 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2207 fs_info->thread_pool_size, 2208 &fs_info->generic_worker); 2209 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2210 1, &fs_info->generic_worker); 2211 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2212 fs_info->thread_pool_size, 2213 &fs_info->generic_worker); 2214 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2215 fs_info->thread_pool_size, 2216 &fs_info->generic_worker); 2217 2218 /* 2219 * endios are largely parallel and should have a very 2220 * low idle thresh 2221 */ 2222 fs_info->endio_workers.idle_thresh = 4; 2223 fs_info->endio_meta_workers.idle_thresh = 4; 2224 2225 fs_info->endio_write_workers.idle_thresh = 2; 2226 fs_info->endio_meta_write_workers.idle_thresh = 2; 2227 fs_info->readahead_workers.idle_thresh = 2; 2228 2229 /* 2230 * btrfs_start_workers can really only fail because of ENOMEM so just 2231 * return -ENOMEM if any of these fail. 2232 */ 2233 ret = btrfs_start_workers(&fs_info->workers); 2234 ret |= btrfs_start_workers(&fs_info->generic_worker); 2235 ret |= btrfs_start_workers(&fs_info->submit_workers); 2236 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2237 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2238 ret |= btrfs_start_workers(&fs_info->endio_workers); 2239 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2240 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2241 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2242 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2243 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2244 ret |= btrfs_start_workers(&fs_info->caching_workers); 2245 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2246 if (ret) { 2247 ret = -ENOMEM; 2248 goto fail_sb_buffer; 2249 } 2250 2251 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2252 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2253 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2254 2255 tree_root->nodesize = nodesize; 2256 tree_root->leafsize = leafsize; 2257 tree_root->sectorsize = sectorsize; 2258 tree_root->stripesize = stripesize; 2259 2260 sb->s_blocksize = sectorsize; 2261 sb->s_blocksize_bits = blksize_bits(sectorsize); 2262 2263 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2264 sizeof(disk_super->magic))) { 2265 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2266 goto fail_sb_buffer; 2267 } 2268 2269 if (sectorsize != PAGE_SIZE) { 2270 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2271 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2272 goto fail_sb_buffer; 2273 } 2274 2275 mutex_lock(&fs_info->chunk_mutex); 2276 ret = btrfs_read_sys_array(tree_root); 2277 mutex_unlock(&fs_info->chunk_mutex); 2278 if (ret) { 2279 printk(KERN_WARNING "btrfs: failed to read the system " 2280 "array on %s\n", sb->s_id); 2281 goto fail_sb_buffer; 2282 } 2283 2284 blocksize = btrfs_level_size(tree_root, 2285 btrfs_super_chunk_root_level(disk_super)); 2286 generation = btrfs_super_chunk_root_generation(disk_super); 2287 2288 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2289 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2290 2291 chunk_root->node = read_tree_block(chunk_root, 2292 btrfs_super_chunk_root(disk_super), 2293 blocksize, generation); 2294 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2295 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2296 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2297 sb->s_id); 2298 goto fail_tree_roots; 2299 } 2300 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2301 chunk_root->commit_root = btrfs_root_node(chunk_root); 2302 2303 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2304 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2305 BTRFS_UUID_SIZE); 2306 2307 ret = btrfs_read_chunk_tree(chunk_root); 2308 if (ret) { 2309 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2310 sb->s_id); 2311 goto fail_tree_roots; 2312 } 2313 2314 btrfs_close_extra_devices(fs_devices); 2315 2316 if (!fs_devices->latest_bdev) { 2317 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2318 sb->s_id); 2319 goto fail_tree_roots; 2320 } 2321 2322 retry_root_backup: 2323 blocksize = btrfs_level_size(tree_root, 2324 btrfs_super_root_level(disk_super)); 2325 generation = btrfs_super_generation(disk_super); 2326 2327 tree_root->node = read_tree_block(tree_root, 2328 btrfs_super_root(disk_super), 2329 blocksize, generation); 2330 if (!tree_root->node || 2331 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2332 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2333 sb->s_id); 2334 2335 goto recovery_tree_root; 2336 } 2337 2338 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2339 tree_root->commit_root = btrfs_root_node(tree_root); 2340 2341 ret = find_and_setup_root(tree_root, fs_info, 2342 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2343 if (ret) 2344 goto recovery_tree_root; 2345 extent_root->track_dirty = 1; 2346 2347 ret = find_and_setup_root(tree_root, fs_info, 2348 BTRFS_DEV_TREE_OBJECTID, dev_root); 2349 if (ret) 2350 goto recovery_tree_root; 2351 dev_root->track_dirty = 1; 2352 2353 ret = find_and_setup_root(tree_root, fs_info, 2354 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2355 if (ret) 2356 goto recovery_tree_root; 2357 csum_root->track_dirty = 1; 2358 2359 fs_info->generation = generation; 2360 fs_info->last_trans_committed = generation; 2361 2362 ret = btrfs_recover_balance(fs_info); 2363 if (ret) { 2364 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2365 goto fail_block_groups; 2366 } 2367 2368 ret = btrfs_init_dev_stats(fs_info); 2369 if (ret) { 2370 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2371 ret); 2372 goto fail_block_groups; 2373 } 2374 2375 ret = btrfs_init_space_info(fs_info); 2376 if (ret) { 2377 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2378 goto fail_block_groups; 2379 } 2380 2381 ret = btrfs_read_block_groups(extent_root); 2382 if (ret) { 2383 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2384 goto fail_block_groups; 2385 } 2386 2387 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2388 "btrfs-cleaner"); 2389 if (IS_ERR(fs_info->cleaner_kthread)) 2390 goto fail_block_groups; 2391 2392 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2393 tree_root, 2394 "btrfs-transaction"); 2395 if (IS_ERR(fs_info->transaction_kthread)) 2396 goto fail_cleaner; 2397 2398 if (!btrfs_test_opt(tree_root, SSD) && 2399 !btrfs_test_opt(tree_root, NOSSD) && 2400 !fs_info->fs_devices->rotating) { 2401 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2402 "mode\n"); 2403 btrfs_set_opt(fs_info->mount_opt, SSD); 2404 } 2405 2406 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2407 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2408 ret = btrfsic_mount(tree_root, fs_devices, 2409 btrfs_test_opt(tree_root, 2410 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2411 1 : 0, 2412 fs_info->check_integrity_print_mask); 2413 if (ret) 2414 printk(KERN_WARNING "btrfs: failed to initialize" 2415 " integrity check module %s\n", sb->s_id); 2416 } 2417 #endif 2418 2419 /* do not make disk changes in broken FS */ 2420 if (btrfs_super_log_root(disk_super) != 0 && 2421 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2422 u64 bytenr = btrfs_super_log_root(disk_super); 2423 2424 if (fs_devices->rw_devices == 0) { 2425 printk(KERN_WARNING "Btrfs log replay required " 2426 "on RO media\n"); 2427 err = -EIO; 2428 goto fail_trans_kthread; 2429 } 2430 blocksize = 2431 btrfs_level_size(tree_root, 2432 btrfs_super_log_root_level(disk_super)); 2433 2434 log_tree_root = btrfs_alloc_root(fs_info); 2435 if (!log_tree_root) { 2436 err = -ENOMEM; 2437 goto fail_trans_kthread; 2438 } 2439 2440 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2441 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2442 2443 log_tree_root->node = read_tree_block(tree_root, bytenr, 2444 blocksize, 2445 generation + 1); 2446 /* returns with log_tree_root freed on success */ 2447 ret = btrfs_recover_log_trees(log_tree_root); 2448 if (ret) { 2449 btrfs_error(tree_root->fs_info, ret, 2450 "Failed to recover log tree"); 2451 free_extent_buffer(log_tree_root->node); 2452 kfree(log_tree_root); 2453 goto fail_trans_kthread; 2454 } 2455 2456 if (sb->s_flags & MS_RDONLY) { 2457 ret = btrfs_commit_super(tree_root); 2458 if (ret) 2459 goto fail_trans_kthread; 2460 } 2461 } 2462 2463 ret = btrfs_find_orphan_roots(tree_root); 2464 if (ret) 2465 goto fail_trans_kthread; 2466 2467 if (!(sb->s_flags & MS_RDONLY)) { 2468 ret = btrfs_cleanup_fs_roots(fs_info); 2469 if (ret) { 2470 } 2471 2472 ret = btrfs_recover_relocation(tree_root); 2473 if (ret < 0) { 2474 printk(KERN_WARNING 2475 "btrfs: failed to recover relocation\n"); 2476 err = -EINVAL; 2477 goto fail_trans_kthread; 2478 } 2479 } 2480 2481 location.objectid = BTRFS_FS_TREE_OBJECTID; 2482 location.type = BTRFS_ROOT_ITEM_KEY; 2483 location.offset = (u64)-1; 2484 2485 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2486 if (!fs_info->fs_root) 2487 goto fail_trans_kthread; 2488 if (IS_ERR(fs_info->fs_root)) { 2489 err = PTR_ERR(fs_info->fs_root); 2490 goto fail_trans_kthread; 2491 } 2492 2493 if (sb->s_flags & MS_RDONLY) 2494 return 0; 2495 2496 down_read(&fs_info->cleanup_work_sem); 2497 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2498 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2499 up_read(&fs_info->cleanup_work_sem); 2500 close_ctree(tree_root); 2501 return ret; 2502 } 2503 up_read(&fs_info->cleanup_work_sem); 2504 2505 ret = btrfs_resume_balance_async(fs_info); 2506 if (ret) { 2507 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2508 close_ctree(tree_root); 2509 return ret; 2510 } 2511 2512 return 0; 2513 2514 fail_trans_kthread: 2515 kthread_stop(fs_info->transaction_kthread); 2516 fail_cleaner: 2517 kthread_stop(fs_info->cleaner_kthread); 2518 2519 /* 2520 * make sure we're done with the btree inode before we stop our 2521 * kthreads 2522 */ 2523 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2524 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2525 2526 fail_block_groups: 2527 btrfs_free_block_groups(fs_info); 2528 2529 fail_tree_roots: 2530 free_root_pointers(fs_info, 1); 2531 2532 fail_sb_buffer: 2533 btrfs_stop_workers(&fs_info->generic_worker); 2534 btrfs_stop_workers(&fs_info->readahead_workers); 2535 btrfs_stop_workers(&fs_info->fixup_workers); 2536 btrfs_stop_workers(&fs_info->delalloc_workers); 2537 btrfs_stop_workers(&fs_info->workers); 2538 btrfs_stop_workers(&fs_info->endio_workers); 2539 btrfs_stop_workers(&fs_info->endio_meta_workers); 2540 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2541 btrfs_stop_workers(&fs_info->endio_write_workers); 2542 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2543 btrfs_stop_workers(&fs_info->submit_workers); 2544 btrfs_stop_workers(&fs_info->delayed_workers); 2545 btrfs_stop_workers(&fs_info->caching_workers); 2546 fail_alloc: 2547 fail_iput: 2548 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2549 2550 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2551 iput(fs_info->btree_inode); 2552 fail_bdi: 2553 bdi_destroy(&fs_info->bdi); 2554 fail_srcu: 2555 cleanup_srcu_struct(&fs_info->subvol_srcu); 2556 fail: 2557 btrfs_close_devices(fs_info->fs_devices); 2558 return err; 2559 2560 recovery_tree_root: 2561 if (!btrfs_test_opt(tree_root, RECOVERY)) 2562 goto fail_tree_roots; 2563 2564 free_root_pointers(fs_info, 0); 2565 2566 /* don't use the log in recovery mode, it won't be valid */ 2567 btrfs_set_super_log_root(disk_super, 0); 2568 2569 /* we can't trust the free space cache either */ 2570 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2571 2572 ret = next_root_backup(fs_info, fs_info->super_copy, 2573 &num_backups_tried, &backup_index); 2574 if (ret == -1) 2575 goto fail_block_groups; 2576 goto retry_root_backup; 2577 } 2578 2579 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2580 { 2581 if (uptodate) { 2582 set_buffer_uptodate(bh); 2583 } else { 2584 struct btrfs_device *device = (struct btrfs_device *) 2585 bh->b_private; 2586 2587 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2588 "I/O error on %s\n", 2589 rcu_str_deref(device->name)); 2590 /* note, we dont' set_buffer_write_io_error because we have 2591 * our own ways of dealing with the IO errors 2592 */ 2593 clear_buffer_uptodate(bh); 2594 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2595 } 2596 unlock_buffer(bh); 2597 put_bh(bh); 2598 } 2599 2600 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2601 { 2602 struct buffer_head *bh; 2603 struct buffer_head *latest = NULL; 2604 struct btrfs_super_block *super; 2605 int i; 2606 u64 transid = 0; 2607 u64 bytenr; 2608 2609 /* we would like to check all the supers, but that would make 2610 * a btrfs mount succeed after a mkfs from a different FS. 2611 * So, we need to add a special mount option to scan for 2612 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2613 */ 2614 for (i = 0; i < 1; i++) { 2615 bytenr = btrfs_sb_offset(i); 2616 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2617 break; 2618 bh = __bread(bdev, bytenr / 4096, 4096); 2619 if (!bh) 2620 continue; 2621 2622 super = (struct btrfs_super_block *)bh->b_data; 2623 if (btrfs_super_bytenr(super) != bytenr || 2624 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2625 sizeof(super->magic))) { 2626 brelse(bh); 2627 continue; 2628 } 2629 2630 if (!latest || btrfs_super_generation(super) > transid) { 2631 brelse(latest); 2632 latest = bh; 2633 transid = btrfs_super_generation(super); 2634 } else { 2635 brelse(bh); 2636 } 2637 } 2638 return latest; 2639 } 2640 2641 /* 2642 * this should be called twice, once with wait == 0 and 2643 * once with wait == 1. When wait == 0 is done, all the buffer heads 2644 * we write are pinned. 2645 * 2646 * They are released when wait == 1 is done. 2647 * max_mirrors must be the same for both runs, and it indicates how 2648 * many supers on this one device should be written. 2649 * 2650 * max_mirrors == 0 means to write them all. 2651 */ 2652 static int write_dev_supers(struct btrfs_device *device, 2653 struct btrfs_super_block *sb, 2654 int do_barriers, int wait, int max_mirrors) 2655 { 2656 struct buffer_head *bh; 2657 int i; 2658 int ret; 2659 int errors = 0; 2660 u32 crc; 2661 u64 bytenr; 2662 2663 if (max_mirrors == 0) 2664 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2665 2666 for (i = 0; i < max_mirrors; i++) { 2667 bytenr = btrfs_sb_offset(i); 2668 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2669 break; 2670 2671 if (wait) { 2672 bh = __find_get_block(device->bdev, bytenr / 4096, 2673 BTRFS_SUPER_INFO_SIZE); 2674 BUG_ON(!bh); 2675 wait_on_buffer(bh); 2676 if (!buffer_uptodate(bh)) 2677 errors++; 2678 2679 /* drop our reference */ 2680 brelse(bh); 2681 2682 /* drop the reference from the wait == 0 run */ 2683 brelse(bh); 2684 continue; 2685 } else { 2686 btrfs_set_super_bytenr(sb, bytenr); 2687 2688 crc = ~(u32)0; 2689 crc = btrfs_csum_data(NULL, (char *)sb + 2690 BTRFS_CSUM_SIZE, crc, 2691 BTRFS_SUPER_INFO_SIZE - 2692 BTRFS_CSUM_SIZE); 2693 btrfs_csum_final(crc, sb->csum); 2694 2695 /* 2696 * one reference for us, and we leave it for the 2697 * caller 2698 */ 2699 bh = __getblk(device->bdev, bytenr / 4096, 2700 BTRFS_SUPER_INFO_SIZE); 2701 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2702 2703 /* one reference for submit_bh */ 2704 get_bh(bh); 2705 2706 set_buffer_uptodate(bh); 2707 lock_buffer(bh); 2708 bh->b_end_io = btrfs_end_buffer_write_sync; 2709 bh->b_private = device; 2710 } 2711 2712 /* 2713 * we fua the first super. The others we allow 2714 * to go down lazy. 2715 */ 2716 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2717 if (ret) 2718 errors++; 2719 } 2720 return errors < i ? 0 : -1; 2721 } 2722 2723 /* 2724 * endio for the write_dev_flush, this will wake anyone waiting 2725 * for the barrier when it is done 2726 */ 2727 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2728 { 2729 if (err) { 2730 if (err == -EOPNOTSUPP) 2731 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2732 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2733 } 2734 if (bio->bi_private) 2735 complete(bio->bi_private); 2736 bio_put(bio); 2737 } 2738 2739 /* 2740 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2741 * sent down. With wait == 1, it waits for the previous flush. 2742 * 2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2744 * capable 2745 */ 2746 static int write_dev_flush(struct btrfs_device *device, int wait) 2747 { 2748 struct bio *bio; 2749 int ret = 0; 2750 2751 if (device->nobarriers) 2752 return 0; 2753 2754 if (wait) { 2755 bio = device->flush_bio; 2756 if (!bio) 2757 return 0; 2758 2759 wait_for_completion(&device->flush_wait); 2760 2761 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2762 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2763 rcu_str_deref(device->name)); 2764 device->nobarriers = 1; 2765 } 2766 if (!bio_flagged(bio, BIO_UPTODATE)) { 2767 ret = -EIO; 2768 if (!bio_flagged(bio, BIO_EOPNOTSUPP)) 2769 btrfs_dev_stat_inc_and_print(device, 2770 BTRFS_DEV_STAT_FLUSH_ERRS); 2771 } 2772 2773 /* drop the reference from the wait == 0 run */ 2774 bio_put(bio); 2775 device->flush_bio = NULL; 2776 2777 return ret; 2778 } 2779 2780 /* 2781 * one reference for us, and we leave it for the 2782 * caller 2783 */ 2784 device->flush_bio = NULL; 2785 bio = bio_alloc(GFP_NOFS, 0); 2786 if (!bio) 2787 return -ENOMEM; 2788 2789 bio->bi_end_io = btrfs_end_empty_barrier; 2790 bio->bi_bdev = device->bdev; 2791 init_completion(&device->flush_wait); 2792 bio->bi_private = &device->flush_wait; 2793 device->flush_bio = bio; 2794 2795 bio_get(bio); 2796 btrfsic_submit_bio(WRITE_FLUSH, bio); 2797 2798 return 0; 2799 } 2800 2801 /* 2802 * send an empty flush down to each device in parallel, 2803 * then wait for them 2804 */ 2805 static int barrier_all_devices(struct btrfs_fs_info *info) 2806 { 2807 struct list_head *head; 2808 struct btrfs_device *dev; 2809 int errors = 0; 2810 int ret; 2811 2812 /* send down all the barriers */ 2813 head = &info->fs_devices->devices; 2814 list_for_each_entry_rcu(dev, head, dev_list) { 2815 if (!dev->bdev) { 2816 errors++; 2817 continue; 2818 } 2819 if (!dev->in_fs_metadata || !dev->writeable) 2820 continue; 2821 2822 ret = write_dev_flush(dev, 0); 2823 if (ret) 2824 errors++; 2825 } 2826 2827 /* wait for all the barriers */ 2828 list_for_each_entry_rcu(dev, head, dev_list) { 2829 if (!dev->bdev) { 2830 errors++; 2831 continue; 2832 } 2833 if (!dev->in_fs_metadata || !dev->writeable) 2834 continue; 2835 2836 ret = write_dev_flush(dev, 1); 2837 if (ret) 2838 errors++; 2839 } 2840 if (errors) 2841 return -EIO; 2842 return 0; 2843 } 2844 2845 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2846 { 2847 struct list_head *head; 2848 struct btrfs_device *dev; 2849 struct btrfs_super_block *sb; 2850 struct btrfs_dev_item *dev_item; 2851 int ret; 2852 int do_barriers; 2853 int max_errors; 2854 int total_errors = 0; 2855 u64 flags; 2856 2857 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2858 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2859 backup_super_roots(root->fs_info); 2860 2861 sb = root->fs_info->super_for_commit; 2862 dev_item = &sb->dev_item; 2863 2864 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2865 head = &root->fs_info->fs_devices->devices; 2866 2867 if (do_barriers) 2868 barrier_all_devices(root->fs_info); 2869 2870 list_for_each_entry_rcu(dev, head, dev_list) { 2871 if (!dev->bdev) { 2872 total_errors++; 2873 continue; 2874 } 2875 if (!dev->in_fs_metadata || !dev->writeable) 2876 continue; 2877 2878 btrfs_set_stack_device_generation(dev_item, 0); 2879 btrfs_set_stack_device_type(dev_item, dev->type); 2880 btrfs_set_stack_device_id(dev_item, dev->devid); 2881 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2882 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2883 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2884 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2885 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2886 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2887 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2888 2889 flags = btrfs_super_flags(sb); 2890 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2891 2892 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2893 if (ret) 2894 total_errors++; 2895 } 2896 if (total_errors > max_errors) { 2897 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2898 total_errors); 2899 2900 /* This shouldn't happen. FUA is masked off if unsupported */ 2901 BUG(); 2902 } 2903 2904 total_errors = 0; 2905 list_for_each_entry_rcu(dev, head, dev_list) { 2906 if (!dev->bdev) 2907 continue; 2908 if (!dev->in_fs_metadata || !dev->writeable) 2909 continue; 2910 2911 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2912 if (ret) 2913 total_errors++; 2914 } 2915 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2916 if (total_errors > max_errors) { 2917 btrfs_error(root->fs_info, -EIO, 2918 "%d errors while writing supers", total_errors); 2919 return -EIO; 2920 } 2921 return 0; 2922 } 2923 2924 int write_ctree_super(struct btrfs_trans_handle *trans, 2925 struct btrfs_root *root, int max_mirrors) 2926 { 2927 int ret; 2928 2929 ret = write_all_supers(root, max_mirrors); 2930 return ret; 2931 } 2932 2933 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2934 { 2935 spin_lock(&fs_info->fs_roots_radix_lock); 2936 radix_tree_delete(&fs_info->fs_roots_radix, 2937 (unsigned long)root->root_key.objectid); 2938 spin_unlock(&fs_info->fs_roots_radix_lock); 2939 2940 if (btrfs_root_refs(&root->root_item) == 0) 2941 synchronize_srcu(&fs_info->subvol_srcu); 2942 2943 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2944 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2945 free_fs_root(root); 2946 } 2947 2948 static void free_fs_root(struct btrfs_root *root) 2949 { 2950 iput(root->cache_inode); 2951 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2952 if (root->anon_dev) 2953 free_anon_bdev(root->anon_dev); 2954 free_extent_buffer(root->node); 2955 free_extent_buffer(root->commit_root); 2956 kfree(root->free_ino_ctl); 2957 kfree(root->free_ino_pinned); 2958 kfree(root->name); 2959 kfree(root); 2960 } 2961 2962 static void del_fs_roots(struct btrfs_fs_info *fs_info) 2963 { 2964 int ret; 2965 struct btrfs_root *gang[8]; 2966 int i; 2967 2968 while (!list_empty(&fs_info->dead_roots)) { 2969 gang[0] = list_entry(fs_info->dead_roots.next, 2970 struct btrfs_root, root_list); 2971 list_del(&gang[0]->root_list); 2972 2973 if (gang[0]->in_radix) { 2974 btrfs_free_fs_root(fs_info, gang[0]); 2975 } else { 2976 free_extent_buffer(gang[0]->node); 2977 free_extent_buffer(gang[0]->commit_root); 2978 kfree(gang[0]); 2979 } 2980 } 2981 2982 while (1) { 2983 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2984 (void **)gang, 0, 2985 ARRAY_SIZE(gang)); 2986 if (!ret) 2987 break; 2988 for (i = 0; i < ret; i++) 2989 btrfs_free_fs_root(fs_info, gang[i]); 2990 } 2991 } 2992 2993 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2994 { 2995 u64 root_objectid = 0; 2996 struct btrfs_root *gang[8]; 2997 int i; 2998 int ret; 2999 3000 while (1) { 3001 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3002 (void **)gang, root_objectid, 3003 ARRAY_SIZE(gang)); 3004 if (!ret) 3005 break; 3006 3007 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3008 for (i = 0; i < ret; i++) { 3009 int err; 3010 3011 root_objectid = gang[i]->root_key.objectid; 3012 err = btrfs_orphan_cleanup(gang[i]); 3013 if (err) 3014 return err; 3015 } 3016 root_objectid++; 3017 } 3018 return 0; 3019 } 3020 3021 int btrfs_commit_super(struct btrfs_root *root) 3022 { 3023 struct btrfs_trans_handle *trans; 3024 int ret; 3025 3026 mutex_lock(&root->fs_info->cleaner_mutex); 3027 btrfs_run_delayed_iputs(root); 3028 btrfs_clean_old_snapshots(root); 3029 mutex_unlock(&root->fs_info->cleaner_mutex); 3030 3031 /* wait until ongoing cleanup work done */ 3032 down_write(&root->fs_info->cleanup_work_sem); 3033 up_write(&root->fs_info->cleanup_work_sem); 3034 3035 trans = btrfs_join_transaction(root); 3036 if (IS_ERR(trans)) 3037 return PTR_ERR(trans); 3038 ret = btrfs_commit_transaction(trans, root); 3039 if (ret) 3040 return ret; 3041 /* run commit again to drop the original snapshot */ 3042 trans = btrfs_join_transaction(root); 3043 if (IS_ERR(trans)) 3044 return PTR_ERR(trans); 3045 ret = btrfs_commit_transaction(trans, root); 3046 if (ret) 3047 return ret; 3048 ret = btrfs_write_and_wait_transaction(NULL, root); 3049 if (ret) { 3050 btrfs_error(root->fs_info, ret, 3051 "Failed to sync btree inode to disk."); 3052 return ret; 3053 } 3054 3055 ret = write_ctree_super(NULL, root, 0); 3056 return ret; 3057 } 3058 3059 int close_ctree(struct btrfs_root *root) 3060 { 3061 struct btrfs_fs_info *fs_info = root->fs_info; 3062 int ret; 3063 3064 fs_info->closing = 1; 3065 smp_mb(); 3066 3067 /* pause restriper - we want to resume on mount */ 3068 btrfs_pause_balance(root->fs_info); 3069 3070 btrfs_scrub_cancel(root); 3071 3072 /* wait for any defraggers to finish */ 3073 wait_event(fs_info->transaction_wait, 3074 (atomic_read(&fs_info->defrag_running) == 0)); 3075 3076 /* clear out the rbtree of defraggable inodes */ 3077 btrfs_run_defrag_inodes(fs_info); 3078 3079 /* 3080 * Here come 2 situations when btrfs is broken to flip readonly: 3081 * 3082 * 1. when btrfs flips readonly somewhere else before 3083 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 3084 * and btrfs will skip to write sb directly to keep 3085 * ERROR state on disk. 3086 * 3087 * 2. when btrfs flips readonly just in btrfs_commit_super, 3088 * and in such case, btrfs cannot write sb via btrfs_commit_super, 3089 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 3090 * btrfs will cleanup all FS resources first and write sb then. 3091 */ 3092 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3093 ret = btrfs_commit_super(root); 3094 if (ret) 3095 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3096 } 3097 3098 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3099 ret = btrfs_error_commit_super(root); 3100 if (ret) 3101 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3102 } 3103 3104 btrfs_put_block_group_cache(fs_info); 3105 3106 kthread_stop(fs_info->transaction_kthread); 3107 kthread_stop(fs_info->cleaner_kthread); 3108 3109 fs_info->closing = 2; 3110 smp_mb(); 3111 3112 if (fs_info->delalloc_bytes) { 3113 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 3114 (unsigned long long)fs_info->delalloc_bytes); 3115 } 3116 if (fs_info->total_ref_cache_size) { 3117 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 3118 (unsigned long long)fs_info->total_ref_cache_size); 3119 } 3120 3121 free_extent_buffer(fs_info->extent_root->node); 3122 free_extent_buffer(fs_info->extent_root->commit_root); 3123 free_extent_buffer(fs_info->tree_root->node); 3124 free_extent_buffer(fs_info->tree_root->commit_root); 3125 free_extent_buffer(fs_info->chunk_root->node); 3126 free_extent_buffer(fs_info->chunk_root->commit_root); 3127 free_extent_buffer(fs_info->dev_root->node); 3128 free_extent_buffer(fs_info->dev_root->commit_root); 3129 free_extent_buffer(fs_info->csum_root->node); 3130 free_extent_buffer(fs_info->csum_root->commit_root); 3131 3132 btrfs_free_block_groups(fs_info); 3133 3134 del_fs_roots(fs_info); 3135 3136 iput(fs_info->btree_inode); 3137 3138 btrfs_stop_workers(&fs_info->generic_worker); 3139 btrfs_stop_workers(&fs_info->fixup_workers); 3140 btrfs_stop_workers(&fs_info->delalloc_workers); 3141 btrfs_stop_workers(&fs_info->workers); 3142 btrfs_stop_workers(&fs_info->endio_workers); 3143 btrfs_stop_workers(&fs_info->endio_meta_workers); 3144 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3145 btrfs_stop_workers(&fs_info->endio_write_workers); 3146 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3147 btrfs_stop_workers(&fs_info->submit_workers); 3148 btrfs_stop_workers(&fs_info->delayed_workers); 3149 btrfs_stop_workers(&fs_info->caching_workers); 3150 btrfs_stop_workers(&fs_info->readahead_workers); 3151 3152 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3153 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3154 btrfsic_unmount(root, fs_info->fs_devices); 3155 #endif 3156 3157 btrfs_close_devices(fs_info->fs_devices); 3158 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3159 3160 bdi_destroy(&fs_info->bdi); 3161 cleanup_srcu_struct(&fs_info->subvol_srcu); 3162 3163 return 0; 3164 } 3165 3166 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3167 int atomic) 3168 { 3169 int ret; 3170 struct inode *btree_inode = buf->pages[0]->mapping->host; 3171 3172 ret = extent_buffer_uptodate(buf); 3173 if (!ret) 3174 return ret; 3175 3176 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3177 parent_transid, atomic); 3178 if (ret == -EAGAIN) 3179 return ret; 3180 return !ret; 3181 } 3182 3183 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3184 { 3185 return set_extent_buffer_uptodate(buf); 3186 } 3187 3188 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3189 { 3190 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3191 u64 transid = btrfs_header_generation(buf); 3192 int was_dirty; 3193 3194 btrfs_assert_tree_locked(buf); 3195 if (transid != root->fs_info->generation) { 3196 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 3197 "found %llu running %llu\n", 3198 (unsigned long long)buf->start, 3199 (unsigned long long)transid, 3200 (unsigned long long)root->fs_info->generation); 3201 WARN_ON(1); 3202 } 3203 was_dirty = set_extent_buffer_dirty(buf); 3204 if (!was_dirty) { 3205 spin_lock(&root->fs_info->delalloc_lock); 3206 root->fs_info->dirty_metadata_bytes += buf->len; 3207 spin_unlock(&root->fs_info->delalloc_lock); 3208 } 3209 } 3210 3211 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3212 { 3213 /* 3214 * looks as though older kernels can get into trouble with 3215 * this code, they end up stuck in balance_dirty_pages forever 3216 */ 3217 u64 num_dirty; 3218 unsigned long thresh = 32 * 1024 * 1024; 3219 3220 if (current->flags & PF_MEMALLOC) 3221 return; 3222 3223 btrfs_balance_delayed_items(root); 3224 3225 num_dirty = root->fs_info->dirty_metadata_bytes; 3226 3227 if (num_dirty > thresh) { 3228 balance_dirty_pages_ratelimited_nr( 3229 root->fs_info->btree_inode->i_mapping, 1); 3230 } 3231 return; 3232 } 3233 3234 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3235 { 3236 /* 3237 * looks as though older kernels can get into trouble with 3238 * this code, they end up stuck in balance_dirty_pages forever 3239 */ 3240 u64 num_dirty; 3241 unsigned long thresh = 32 * 1024 * 1024; 3242 3243 if (current->flags & PF_MEMALLOC) 3244 return; 3245 3246 num_dirty = root->fs_info->dirty_metadata_bytes; 3247 3248 if (num_dirty > thresh) { 3249 balance_dirty_pages_ratelimited_nr( 3250 root->fs_info->btree_inode->i_mapping, 1); 3251 } 3252 return; 3253 } 3254 3255 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3256 { 3257 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3258 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3259 } 3260 3261 static int btree_lock_page_hook(struct page *page, void *data, 3262 void (*flush_fn)(void *)) 3263 { 3264 struct inode *inode = page->mapping->host; 3265 struct btrfs_root *root = BTRFS_I(inode)->root; 3266 struct extent_buffer *eb; 3267 3268 /* 3269 * We culled this eb but the page is still hanging out on the mapping, 3270 * carry on. 3271 */ 3272 if (!PagePrivate(page)) 3273 goto out; 3274 3275 eb = (struct extent_buffer *)page->private; 3276 if (!eb) { 3277 WARN_ON(1); 3278 goto out; 3279 } 3280 if (page != eb->pages[0]) 3281 goto out; 3282 3283 if (!btrfs_try_tree_write_lock(eb)) { 3284 flush_fn(data); 3285 btrfs_tree_lock(eb); 3286 } 3287 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3288 3289 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3290 spin_lock(&root->fs_info->delalloc_lock); 3291 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3292 root->fs_info->dirty_metadata_bytes -= eb->len; 3293 else 3294 WARN_ON(1); 3295 spin_unlock(&root->fs_info->delalloc_lock); 3296 } 3297 3298 btrfs_tree_unlock(eb); 3299 out: 3300 if (!trylock_page(page)) { 3301 flush_fn(data); 3302 lock_page(page); 3303 } 3304 return 0; 3305 } 3306 3307 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3308 int read_only) 3309 { 3310 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3311 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3312 return -EINVAL; 3313 } 3314 3315 if (read_only) 3316 return 0; 3317 3318 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 3319 printk(KERN_WARNING "warning: mount fs with errors, " 3320 "running btrfsck is recommended\n"); 3321 } 3322 3323 return 0; 3324 } 3325 3326 int btrfs_error_commit_super(struct btrfs_root *root) 3327 { 3328 int ret; 3329 3330 mutex_lock(&root->fs_info->cleaner_mutex); 3331 btrfs_run_delayed_iputs(root); 3332 mutex_unlock(&root->fs_info->cleaner_mutex); 3333 3334 down_write(&root->fs_info->cleanup_work_sem); 3335 up_write(&root->fs_info->cleanup_work_sem); 3336 3337 /* cleanup FS via transaction */ 3338 btrfs_cleanup_transaction(root); 3339 3340 ret = write_ctree_super(NULL, root, 0); 3341 3342 return ret; 3343 } 3344 3345 static void btrfs_destroy_ordered_operations(struct btrfs_root *root) 3346 { 3347 struct btrfs_inode *btrfs_inode; 3348 struct list_head splice; 3349 3350 INIT_LIST_HEAD(&splice); 3351 3352 mutex_lock(&root->fs_info->ordered_operations_mutex); 3353 spin_lock(&root->fs_info->ordered_extent_lock); 3354 3355 list_splice_init(&root->fs_info->ordered_operations, &splice); 3356 while (!list_empty(&splice)) { 3357 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3358 ordered_operations); 3359 3360 list_del_init(&btrfs_inode->ordered_operations); 3361 3362 btrfs_invalidate_inodes(btrfs_inode->root); 3363 } 3364 3365 spin_unlock(&root->fs_info->ordered_extent_lock); 3366 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3367 } 3368 3369 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3370 { 3371 struct list_head splice; 3372 struct btrfs_ordered_extent *ordered; 3373 struct inode *inode; 3374 3375 INIT_LIST_HEAD(&splice); 3376 3377 spin_lock(&root->fs_info->ordered_extent_lock); 3378 3379 list_splice_init(&root->fs_info->ordered_extents, &splice); 3380 while (!list_empty(&splice)) { 3381 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3382 root_extent_list); 3383 3384 list_del_init(&ordered->root_extent_list); 3385 atomic_inc(&ordered->refs); 3386 3387 /* the inode may be getting freed (in sys_unlink path). */ 3388 inode = igrab(ordered->inode); 3389 3390 spin_unlock(&root->fs_info->ordered_extent_lock); 3391 if (inode) 3392 iput(inode); 3393 3394 atomic_set(&ordered->refs, 1); 3395 btrfs_put_ordered_extent(ordered); 3396 3397 spin_lock(&root->fs_info->ordered_extent_lock); 3398 } 3399 3400 spin_unlock(&root->fs_info->ordered_extent_lock); 3401 } 3402 3403 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3404 struct btrfs_root *root) 3405 { 3406 struct rb_node *node; 3407 struct btrfs_delayed_ref_root *delayed_refs; 3408 struct btrfs_delayed_ref_node *ref; 3409 int ret = 0; 3410 3411 delayed_refs = &trans->delayed_refs; 3412 3413 spin_lock(&delayed_refs->lock); 3414 if (delayed_refs->num_entries == 0) { 3415 spin_unlock(&delayed_refs->lock); 3416 printk(KERN_INFO "delayed_refs has NO entry\n"); 3417 return ret; 3418 } 3419 3420 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3421 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3422 3423 atomic_set(&ref->refs, 1); 3424 if (btrfs_delayed_ref_is_head(ref)) { 3425 struct btrfs_delayed_ref_head *head; 3426 3427 head = btrfs_delayed_node_to_head(ref); 3428 if (!mutex_trylock(&head->mutex)) { 3429 atomic_inc(&ref->refs); 3430 spin_unlock(&delayed_refs->lock); 3431 3432 /* Need to wait for the delayed ref to run */ 3433 mutex_lock(&head->mutex); 3434 mutex_unlock(&head->mutex); 3435 btrfs_put_delayed_ref(ref); 3436 3437 spin_lock(&delayed_refs->lock); 3438 continue; 3439 } 3440 3441 kfree(head->extent_op); 3442 delayed_refs->num_heads--; 3443 if (list_empty(&head->cluster)) 3444 delayed_refs->num_heads_ready--; 3445 list_del_init(&head->cluster); 3446 } 3447 ref->in_tree = 0; 3448 rb_erase(&ref->rb_node, &delayed_refs->root); 3449 delayed_refs->num_entries--; 3450 3451 spin_unlock(&delayed_refs->lock); 3452 btrfs_put_delayed_ref(ref); 3453 3454 cond_resched(); 3455 spin_lock(&delayed_refs->lock); 3456 } 3457 3458 spin_unlock(&delayed_refs->lock); 3459 3460 return ret; 3461 } 3462 3463 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3464 { 3465 struct btrfs_pending_snapshot *snapshot; 3466 struct list_head splice; 3467 3468 INIT_LIST_HEAD(&splice); 3469 3470 list_splice_init(&t->pending_snapshots, &splice); 3471 3472 while (!list_empty(&splice)) { 3473 snapshot = list_entry(splice.next, 3474 struct btrfs_pending_snapshot, 3475 list); 3476 3477 list_del_init(&snapshot->list); 3478 3479 kfree(snapshot); 3480 } 3481 } 3482 3483 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3484 { 3485 struct btrfs_inode *btrfs_inode; 3486 struct list_head splice; 3487 3488 INIT_LIST_HEAD(&splice); 3489 3490 spin_lock(&root->fs_info->delalloc_lock); 3491 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3492 3493 while (!list_empty(&splice)) { 3494 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3495 delalloc_inodes); 3496 3497 list_del_init(&btrfs_inode->delalloc_inodes); 3498 3499 btrfs_invalidate_inodes(btrfs_inode->root); 3500 } 3501 3502 spin_unlock(&root->fs_info->delalloc_lock); 3503 } 3504 3505 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3506 struct extent_io_tree *dirty_pages, 3507 int mark) 3508 { 3509 int ret; 3510 struct page *page; 3511 struct inode *btree_inode = root->fs_info->btree_inode; 3512 struct extent_buffer *eb; 3513 u64 start = 0; 3514 u64 end; 3515 u64 offset; 3516 unsigned long index; 3517 3518 while (1) { 3519 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3520 mark); 3521 if (ret) 3522 break; 3523 3524 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3525 while (start <= end) { 3526 index = start >> PAGE_CACHE_SHIFT; 3527 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3528 page = find_get_page(btree_inode->i_mapping, index); 3529 if (!page) 3530 continue; 3531 offset = page_offset(page); 3532 3533 spin_lock(&dirty_pages->buffer_lock); 3534 eb = radix_tree_lookup( 3535 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3536 offset >> PAGE_CACHE_SHIFT); 3537 spin_unlock(&dirty_pages->buffer_lock); 3538 if (eb) 3539 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3540 &eb->bflags); 3541 if (PageWriteback(page)) 3542 end_page_writeback(page); 3543 3544 lock_page(page); 3545 if (PageDirty(page)) { 3546 clear_page_dirty_for_io(page); 3547 spin_lock_irq(&page->mapping->tree_lock); 3548 radix_tree_tag_clear(&page->mapping->page_tree, 3549 page_index(page), 3550 PAGECACHE_TAG_DIRTY); 3551 spin_unlock_irq(&page->mapping->tree_lock); 3552 } 3553 3554 unlock_page(page); 3555 page_cache_release(page); 3556 } 3557 } 3558 3559 return ret; 3560 } 3561 3562 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3563 struct extent_io_tree *pinned_extents) 3564 { 3565 struct extent_io_tree *unpin; 3566 u64 start; 3567 u64 end; 3568 int ret; 3569 bool loop = true; 3570 3571 unpin = pinned_extents; 3572 again: 3573 while (1) { 3574 ret = find_first_extent_bit(unpin, 0, &start, &end, 3575 EXTENT_DIRTY); 3576 if (ret) 3577 break; 3578 3579 /* opt_discard */ 3580 if (btrfs_test_opt(root, DISCARD)) 3581 ret = btrfs_error_discard_extent(root, start, 3582 end + 1 - start, 3583 NULL); 3584 3585 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3586 btrfs_error_unpin_extent_range(root, start, end); 3587 cond_resched(); 3588 } 3589 3590 if (loop) { 3591 if (unpin == &root->fs_info->freed_extents[0]) 3592 unpin = &root->fs_info->freed_extents[1]; 3593 else 3594 unpin = &root->fs_info->freed_extents[0]; 3595 loop = false; 3596 goto again; 3597 } 3598 3599 return 0; 3600 } 3601 3602 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3603 struct btrfs_root *root) 3604 { 3605 btrfs_destroy_delayed_refs(cur_trans, root); 3606 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3607 cur_trans->dirty_pages.dirty_bytes); 3608 3609 /* FIXME: cleanup wait for commit */ 3610 cur_trans->in_commit = 1; 3611 cur_trans->blocked = 1; 3612 wake_up(&root->fs_info->transaction_blocked_wait); 3613 3614 cur_trans->blocked = 0; 3615 wake_up(&root->fs_info->transaction_wait); 3616 3617 cur_trans->commit_done = 1; 3618 wake_up(&cur_trans->commit_wait); 3619 3620 btrfs_destroy_delayed_inodes(root); 3621 btrfs_assert_delayed_root_empty(root); 3622 3623 btrfs_destroy_pending_snapshots(cur_trans); 3624 3625 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3626 EXTENT_DIRTY); 3627 btrfs_destroy_pinned_extent(root, 3628 root->fs_info->pinned_extents); 3629 3630 /* 3631 memset(cur_trans, 0, sizeof(*cur_trans)); 3632 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3633 */ 3634 } 3635 3636 int btrfs_cleanup_transaction(struct btrfs_root *root) 3637 { 3638 struct btrfs_transaction *t; 3639 LIST_HEAD(list); 3640 3641 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3642 3643 spin_lock(&root->fs_info->trans_lock); 3644 list_splice_init(&root->fs_info->trans_list, &list); 3645 root->fs_info->trans_no_join = 1; 3646 spin_unlock(&root->fs_info->trans_lock); 3647 3648 while (!list_empty(&list)) { 3649 t = list_entry(list.next, struct btrfs_transaction, list); 3650 if (!t) 3651 break; 3652 3653 btrfs_destroy_ordered_operations(root); 3654 3655 btrfs_destroy_ordered_extents(root); 3656 3657 btrfs_destroy_delayed_refs(t, root); 3658 3659 btrfs_block_rsv_release(root, 3660 &root->fs_info->trans_block_rsv, 3661 t->dirty_pages.dirty_bytes); 3662 3663 /* FIXME: cleanup wait for commit */ 3664 t->in_commit = 1; 3665 t->blocked = 1; 3666 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3667 wake_up(&root->fs_info->transaction_blocked_wait); 3668 3669 t->blocked = 0; 3670 if (waitqueue_active(&root->fs_info->transaction_wait)) 3671 wake_up(&root->fs_info->transaction_wait); 3672 3673 t->commit_done = 1; 3674 if (waitqueue_active(&t->commit_wait)) 3675 wake_up(&t->commit_wait); 3676 3677 btrfs_destroy_delayed_inodes(root); 3678 btrfs_assert_delayed_root_empty(root); 3679 3680 btrfs_destroy_pending_snapshots(t); 3681 3682 btrfs_destroy_delalloc_inodes(root); 3683 3684 spin_lock(&root->fs_info->trans_lock); 3685 root->fs_info->running_transaction = NULL; 3686 spin_unlock(&root->fs_info->trans_lock); 3687 3688 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3689 EXTENT_DIRTY); 3690 3691 btrfs_destroy_pinned_extent(root, 3692 root->fs_info->pinned_extents); 3693 3694 atomic_set(&t->use_count, 0); 3695 list_del_init(&t->list); 3696 memset(t, 0, sizeof(*t)); 3697 kmem_cache_free(btrfs_transaction_cachep, t); 3698 } 3699 3700 spin_lock(&root->fs_info->trans_lock); 3701 root->fs_info->trans_no_join = 0; 3702 spin_unlock(&root->fs_info->trans_lock); 3703 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3704 3705 return 0; 3706 } 3707 3708 static struct extent_io_ops btree_extent_io_ops = { 3709 .write_cache_pages_lock_hook = btree_lock_page_hook, 3710 .readpage_end_io_hook = btree_readpage_end_io_hook, 3711 .readpage_io_failed_hook = btree_io_failed_hook, 3712 .submit_bio_hook = btree_submit_bio_hook, 3713 /* note we're sharing with inode.c for the merge bio hook */ 3714 .merge_bio_hook = btrfs_merge_bio_hook, 3715 }; 3716