1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int ret = 0; 186 187 if (sb_rdonly(fs_info->sb)) 188 return -EROFS; 189 190 for (int i = 0; i < num_extent_folios(eb); i++) { 191 struct folio *folio = eb->folios[i]; 192 u64 start = max_t(u64, eb->start, folio_pos(folio)); 193 u64 end = min_t(u64, eb->start + eb->len, 194 folio_pos(folio) + eb->folio_size); 195 u32 len = end - start; 196 phys_addr_t paddr = PFN_PHYS(folio_pfn(folio)) + 197 offset_in_folio(folio, start); 198 199 ret = btrfs_repair_io_failure(fs_info, 0, start, len, start, 200 paddr, mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 const struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 ret = read_extent_buffer_pages(eb, mirror_num, check); 229 if (!ret) 230 break; 231 232 num_copies = btrfs_num_copies(fs_info, 233 eb->start, eb->len); 234 if (num_copies == 1) 235 break; 236 237 if (!failed_mirror) { 238 failed = 1; 239 failed_mirror = eb->read_mirror; 240 } 241 242 mirror_num++; 243 if (mirror_num == failed_mirror) 244 mirror_num++; 245 246 if (mirror_num > num_copies) 247 break; 248 } 249 250 if (failed && !ret && failed_mirror) 251 btrfs_repair_eb_io_failure(eb, failed_mirror); 252 253 return ret; 254 } 255 256 /* 257 * Checksum a dirty tree block before IO. 258 */ 259 int btree_csum_one_bio(struct btrfs_bio *bbio) 260 { 261 struct extent_buffer *eb = bbio->private; 262 struct btrfs_fs_info *fs_info = eb->fs_info; 263 u64 found_start = btrfs_header_bytenr(eb); 264 u64 last_trans; 265 u8 result[BTRFS_CSUM_SIZE]; 266 int ret; 267 268 /* Btree blocks are always contiguous on disk. */ 269 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 270 return -EIO; 271 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 272 return -EIO; 273 274 /* 275 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 276 * checksum it but zero-out its content. This is done to preserve 277 * ordering of I/O without unnecessarily writing out data. 278 */ 279 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 280 memzero_extent_buffer(eb, 0, eb->len); 281 return 0; 282 } 283 284 if (WARN_ON_ONCE(found_start != eb->start)) 285 return -EIO; 286 if (WARN_ON(!btrfs_meta_folio_test_uptodate(eb->folios[0], eb))) 287 return -EIO; 288 289 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 290 offsetof(struct btrfs_header, fsid), 291 BTRFS_FSID_SIZE) == 0); 292 csum_tree_block(eb, result); 293 294 if (btrfs_header_level(eb)) 295 ret = btrfs_check_node(eb); 296 else 297 ret = btrfs_check_leaf(eb); 298 299 if (ret < 0) 300 goto error; 301 302 /* 303 * Also check the generation, the eb reached here must be newer than 304 * last committed. Or something seriously wrong happened. 305 */ 306 last_trans = btrfs_get_last_trans_committed(fs_info); 307 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 308 ret = -EUCLEAN; 309 btrfs_err(fs_info, 310 "block=%llu bad generation, have %llu expect > %llu", 311 eb->start, btrfs_header_generation(eb), last_trans); 312 goto error; 313 } 314 write_extent_buffer(eb, result, 0, fs_info->csum_size); 315 return 0; 316 317 error: 318 btrfs_print_tree(eb, 0); 319 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 320 eb->start); 321 /* 322 * Be noisy if this is an extent buffer from a log tree. We don't abort 323 * a transaction in case there's a bad log tree extent buffer, we just 324 * fallback to a transaction commit. Still we want to know when there is 325 * a bad log tree extent buffer, as that may signal a bug somewhere. 326 */ 327 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 328 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 329 return ret; 330 } 331 332 static bool check_tree_block_fsid(struct extent_buffer *eb) 333 { 334 struct btrfs_fs_info *fs_info = eb->fs_info; 335 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 336 u8 fsid[BTRFS_FSID_SIZE]; 337 338 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 339 BTRFS_FSID_SIZE); 340 341 /* 342 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 343 * This is then overwritten by metadata_uuid if it is present in the 344 * device_list_add(). The same true for a seed device as well. So use of 345 * fs_devices::metadata_uuid is appropriate here. 346 */ 347 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 348 return false; 349 350 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 351 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 352 return false; 353 354 return true; 355 } 356 357 /* Do basic extent buffer checks at read time */ 358 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 359 const struct btrfs_tree_parent_check *check) 360 { 361 struct btrfs_fs_info *fs_info = eb->fs_info; 362 u64 found_start; 363 const u32 csum_size = fs_info->csum_size; 364 u8 found_level; 365 u8 result[BTRFS_CSUM_SIZE]; 366 const u8 *header_csum; 367 int ret = 0; 368 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 369 370 ASSERT(check); 371 372 found_start = btrfs_header_bytenr(eb); 373 if (found_start != eb->start) { 374 btrfs_err_rl(fs_info, 375 "bad tree block start, mirror %u want %llu have %llu", 376 eb->read_mirror, eb->start, found_start); 377 ret = -EIO; 378 goto out; 379 } 380 if (check_tree_block_fsid(eb)) { 381 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 382 eb->start, eb->read_mirror); 383 ret = -EIO; 384 goto out; 385 } 386 found_level = btrfs_header_level(eb); 387 if (found_level >= BTRFS_MAX_LEVEL) { 388 btrfs_err(fs_info, 389 "bad tree block level, mirror %u level %d on logical %llu", 390 eb->read_mirror, btrfs_header_level(eb), eb->start); 391 ret = -EIO; 392 goto out; 393 } 394 395 csum_tree_block(eb, result); 396 header_csum = folio_address(eb->folios[0]) + 397 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 398 399 if (memcmp(result, header_csum, csum_size) != 0) { 400 btrfs_warn_rl(fs_info, 401 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 402 eb->start, eb->read_mirror, 403 CSUM_FMT_VALUE(csum_size, header_csum), 404 CSUM_FMT_VALUE(csum_size, result), 405 btrfs_header_level(eb), 406 ignore_csum ? ", ignored" : ""); 407 if (!ignore_csum) { 408 ret = -EUCLEAN; 409 goto out; 410 } 411 } 412 413 if (found_level != check->level) { 414 btrfs_err(fs_info, 415 "level verify failed on logical %llu mirror %u wanted %u found %u", 416 eb->start, eb->read_mirror, check->level, found_level); 417 ret = -EIO; 418 goto out; 419 } 420 if (unlikely(check->transid && 421 btrfs_header_generation(eb) != check->transid)) { 422 btrfs_err_rl(eb->fs_info, 423 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 424 eb->start, eb->read_mirror, check->transid, 425 btrfs_header_generation(eb)); 426 ret = -EIO; 427 goto out; 428 } 429 if (check->has_first_key) { 430 const struct btrfs_key *expect_key = &check->first_key; 431 struct btrfs_key found_key; 432 433 if (found_level) 434 btrfs_node_key_to_cpu(eb, &found_key, 0); 435 else 436 btrfs_item_key_to_cpu(eb, &found_key, 0); 437 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 438 btrfs_err(fs_info, 439 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 440 eb->start, check->transid, 441 expect_key->objectid, 442 expect_key->type, expect_key->offset, 443 found_key.objectid, found_key.type, 444 found_key.offset); 445 ret = -EUCLEAN; 446 goto out; 447 } 448 } 449 if (check->owner_root) { 450 ret = btrfs_check_eb_owner(eb, check->owner_root); 451 if (ret < 0) 452 goto out; 453 } 454 455 /* If this is a leaf block and it is corrupt, just return -EIO. */ 456 if (found_level == 0 && btrfs_check_leaf(eb)) 457 ret = -EIO; 458 459 if (found_level > 0 && btrfs_check_node(eb)) 460 ret = -EIO; 461 462 if (ret) 463 btrfs_err(fs_info, 464 "read time tree block corruption detected on logical %llu mirror %u", 465 eb->start, eb->read_mirror); 466 out: 467 return ret; 468 } 469 470 #ifdef CONFIG_MIGRATION 471 static int btree_migrate_folio(struct address_space *mapping, 472 struct folio *dst, struct folio *src, enum migrate_mode mode) 473 { 474 /* 475 * we can't safely write a btree page from here, 476 * we haven't done the locking hook 477 */ 478 if (folio_test_dirty(src)) 479 return -EAGAIN; 480 /* 481 * Buffers may be managed in a filesystem specific way. 482 * We must have no buffers or drop them. 483 */ 484 if (folio_get_private(src) && 485 !filemap_release_folio(src, GFP_KERNEL)) 486 return -EAGAIN; 487 return migrate_folio(mapping, dst, src, mode); 488 } 489 #else 490 #define btree_migrate_folio NULL 491 #endif 492 493 static int btree_writepages(struct address_space *mapping, 494 struct writeback_control *wbc) 495 { 496 int ret; 497 498 if (wbc->sync_mode == WB_SYNC_NONE) { 499 struct btrfs_fs_info *fs_info; 500 501 if (wbc->for_kupdate) 502 return 0; 503 504 fs_info = inode_to_fs_info(mapping->host); 505 /* this is a bit racy, but that's ok */ 506 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 507 BTRFS_DIRTY_METADATA_THRESH, 508 fs_info->dirty_metadata_batch); 509 if (ret < 0) 510 return 0; 511 } 512 return btree_write_cache_pages(mapping, wbc); 513 } 514 515 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 516 { 517 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 518 return false; 519 520 return try_release_extent_buffer(folio); 521 } 522 523 static void btree_invalidate_folio(struct folio *folio, size_t offset, 524 size_t length) 525 { 526 struct extent_io_tree *tree; 527 528 tree = &folio_to_inode(folio)->io_tree; 529 extent_invalidate_folio(tree, folio, offset); 530 btree_release_folio(folio, GFP_NOFS); 531 if (folio_get_private(folio)) { 532 btrfs_warn(folio_to_fs_info(folio), 533 "folio private not zero on folio %llu", 534 (unsigned long long)folio_pos(folio)); 535 folio_detach_private(folio); 536 } 537 } 538 539 #ifdef DEBUG 540 static bool btree_dirty_folio(struct address_space *mapping, 541 struct folio *folio) 542 { 543 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 544 struct btrfs_subpage_info *spi = fs_info->subpage_info; 545 struct btrfs_subpage *subpage; 546 struct extent_buffer *eb; 547 int cur_bit = 0; 548 u64 page_start = folio_pos(folio); 549 550 if (fs_info->sectorsize == PAGE_SIZE) { 551 eb = folio_get_private(folio); 552 BUG_ON(!eb); 553 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 554 BUG_ON(!atomic_read(&eb->refs)); 555 btrfs_assert_tree_write_locked(eb); 556 return filemap_dirty_folio(mapping, folio); 557 } 558 559 ASSERT(spi); 560 subpage = folio_get_private(folio); 561 562 for (cur_bit = spi->dirty_offset; 563 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 564 cur_bit++) { 565 unsigned long flags; 566 u64 cur; 567 568 spin_lock_irqsave(&subpage->lock, flags); 569 if (!test_bit(cur_bit, subpage->bitmaps)) { 570 spin_unlock_irqrestore(&subpage->lock, flags); 571 continue; 572 } 573 spin_unlock_irqrestore(&subpage->lock, flags); 574 cur = page_start + cur_bit * fs_info->sectorsize; 575 576 eb = find_extent_buffer(fs_info, cur); 577 ASSERT(eb); 578 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 579 ASSERT(atomic_read(&eb->refs)); 580 btrfs_assert_tree_write_locked(eb); 581 free_extent_buffer(eb); 582 583 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 584 } 585 return filemap_dirty_folio(mapping, folio); 586 } 587 #else 588 #define btree_dirty_folio filemap_dirty_folio 589 #endif 590 591 static const struct address_space_operations btree_aops = { 592 .writepages = btree_writepages, 593 .release_folio = btree_release_folio, 594 .invalidate_folio = btree_invalidate_folio, 595 .migrate_folio = btree_migrate_folio, 596 .dirty_folio = btree_dirty_folio, 597 }; 598 599 struct extent_buffer *btrfs_find_create_tree_block( 600 struct btrfs_fs_info *fs_info, 601 u64 bytenr, u64 owner_root, 602 int level) 603 { 604 if (btrfs_is_testing(fs_info)) 605 return alloc_test_extent_buffer(fs_info, bytenr); 606 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 607 } 608 609 /* 610 * Read tree block at logical address @bytenr and do variant basic but critical 611 * verification. 612 * 613 * @check: expected tree parentness check, see comments of the 614 * structure for details. 615 */ 616 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 617 struct btrfs_tree_parent_check *check) 618 { 619 struct extent_buffer *buf = NULL; 620 int ret; 621 622 ASSERT(check); 623 624 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 625 check->level); 626 if (IS_ERR(buf)) 627 return buf; 628 629 ret = btrfs_read_extent_buffer(buf, check); 630 if (ret) { 631 free_extent_buffer_stale(buf); 632 return ERR_PTR(ret); 633 } 634 return buf; 635 636 } 637 638 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 639 u64 objectid, gfp_t flags) 640 { 641 struct btrfs_root *root; 642 bool dummy = btrfs_is_testing(fs_info); 643 644 root = kzalloc(sizeof(*root), flags); 645 if (!root) 646 return NULL; 647 648 memset(&root->root_key, 0, sizeof(root->root_key)); 649 memset(&root->root_item, 0, sizeof(root->root_item)); 650 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 651 root->fs_info = fs_info; 652 root->root_key.objectid = objectid; 653 root->node = NULL; 654 root->commit_root = NULL; 655 root->state = 0; 656 RB_CLEAR_NODE(&root->rb_node); 657 658 btrfs_set_root_last_trans(root, 0); 659 root->free_objectid = 0; 660 root->nr_delalloc_inodes = 0; 661 root->nr_ordered_extents = 0; 662 xa_init(&root->inodes); 663 xa_init(&root->delayed_nodes); 664 665 btrfs_init_root_block_rsv(root); 666 667 INIT_LIST_HEAD(&root->dirty_list); 668 INIT_LIST_HEAD(&root->root_list); 669 INIT_LIST_HEAD(&root->delalloc_inodes); 670 INIT_LIST_HEAD(&root->delalloc_root); 671 INIT_LIST_HEAD(&root->ordered_extents); 672 INIT_LIST_HEAD(&root->ordered_root); 673 INIT_LIST_HEAD(&root->reloc_dirty_list); 674 spin_lock_init(&root->delalloc_lock); 675 spin_lock_init(&root->ordered_extent_lock); 676 spin_lock_init(&root->accounting_lock); 677 spin_lock_init(&root->qgroup_meta_rsv_lock); 678 mutex_init(&root->objectid_mutex); 679 mutex_init(&root->log_mutex); 680 mutex_init(&root->ordered_extent_mutex); 681 mutex_init(&root->delalloc_mutex); 682 init_waitqueue_head(&root->qgroup_flush_wait); 683 init_waitqueue_head(&root->log_writer_wait); 684 init_waitqueue_head(&root->log_commit_wait[0]); 685 init_waitqueue_head(&root->log_commit_wait[1]); 686 INIT_LIST_HEAD(&root->log_ctxs[0]); 687 INIT_LIST_HEAD(&root->log_ctxs[1]); 688 atomic_set(&root->log_commit[0], 0); 689 atomic_set(&root->log_commit[1], 0); 690 atomic_set(&root->log_writers, 0); 691 atomic_set(&root->log_batch, 0); 692 refcount_set(&root->refs, 1); 693 atomic_set(&root->snapshot_force_cow, 0); 694 atomic_set(&root->nr_swapfiles, 0); 695 btrfs_set_root_log_transid(root, 0); 696 root->log_transid_committed = -1; 697 btrfs_set_root_last_log_commit(root, 0); 698 root->anon_dev = 0; 699 if (!dummy) { 700 btrfs_extent_io_tree_init(fs_info, &root->dirty_log_pages, 701 IO_TREE_ROOT_DIRTY_LOG_PAGES); 702 btrfs_extent_io_tree_init(fs_info, &root->log_csum_range, 703 IO_TREE_LOG_CSUM_RANGE); 704 } 705 706 spin_lock_init(&root->root_item_lock); 707 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 708 #ifdef CONFIG_BTRFS_DEBUG 709 INIT_LIST_HEAD(&root->leak_list); 710 spin_lock(&fs_info->fs_roots_radix_lock); 711 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 712 spin_unlock(&fs_info->fs_roots_radix_lock); 713 #endif 714 715 return root; 716 } 717 718 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 719 /* Should only be used by the testing infrastructure */ 720 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 721 { 722 struct btrfs_root *root; 723 724 if (!fs_info) 725 return ERR_PTR(-EINVAL); 726 727 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 728 if (!root) 729 return ERR_PTR(-ENOMEM); 730 731 /* We don't use the stripesize in selftest, set it as sectorsize */ 732 root->alloc_bytenr = 0; 733 734 return root; 735 } 736 #endif 737 738 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 739 { 740 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 741 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 742 743 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 744 } 745 746 static int global_root_key_cmp(const void *k, const struct rb_node *node) 747 { 748 const struct btrfs_key *key = k; 749 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 750 751 return btrfs_comp_cpu_keys(key, &root->root_key); 752 } 753 754 int btrfs_global_root_insert(struct btrfs_root *root) 755 { 756 struct btrfs_fs_info *fs_info = root->fs_info; 757 struct rb_node *tmp; 758 int ret = 0; 759 760 write_lock(&fs_info->global_root_lock); 761 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 762 write_unlock(&fs_info->global_root_lock); 763 764 if (tmp) { 765 ret = -EEXIST; 766 btrfs_warn(fs_info, "global root %llu %llu already exists", 767 btrfs_root_id(root), root->root_key.offset); 768 } 769 return ret; 770 } 771 772 void btrfs_global_root_delete(struct btrfs_root *root) 773 { 774 struct btrfs_fs_info *fs_info = root->fs_info; 775 776 write_lock(&fs_info->global_root_lock); 777 rb_erase(&root->rb_node, &fs_info->global_root_tree); 778 write_unlock(&fs_info->global_root_lock); 779 } 780 781 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 782 struct btrfs_key *key) 783 { 784 struct rb_node *node; 785 struct btrfs_root *root = NULL; 786 787 read_lock(&fs_info->global_root_lock); 788 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 789 if (node) 790 root = container_of(node, struct btrfs_root, rb_node); 791 read_unlock(&fs_info->global_root_lock); 792 793 return root; 794 } 795 796 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 797 { 798 struct btrfs_block_group *block_group; 799 u64 ret; 800 801 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 802 return 0; 803 804 if (bytenr) 805 block_group = btrfs_lookup_block_group(fs_info, bytenr); 806 else 807 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 808 ASSERT(block_group); 809 if (!block_group) 810 return 0; 811 ret = block_group->global_root_id; 812 btrfs_put_block_group(block_group); 813 814 return ret; 815 } 816 817 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 818 { 819 struct btrfs_key key = { 820 .objectid = BTRFS_CSUM_TREE_OBJECTID, 821 .type = BTRFS_ROOT_ITEM_KEY, 822 .offset = btrfs_global_root_id(fs_info, bytenr), 823 }; 824 825 return btrfs_global_root(fs_info, &key); 826 } 827 828 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 829 { 830 struct btrfs_key key = { 831 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 832 .type = BTRFS_ROOT_ITEM_KEY, 833 .offset = btrfs_global_root_id(fs_info, bytenr), 834 }; 835 836 return btrfs_global_root(fs_info, &key); 837 } 838 839 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 840 u64 objectid) 841 { 842 struct btrfs_fs_info *fs_info = trans->fs_info; 843 struct extent_buffer *leaf; 844 struct btrfs_root *tree_root = fs_info->tree_root; 845 struct btrfs_root *root; 846 struct btrfs_key key; 847 unsigned int nofs_flag; 848 int ret = 0; 849 850 /* 851 * We're holding a transaction handle, so use a NOFS memory allocation 852 * context to avoid deadlock if reclaim happens. 853 */ 854 nofs_flag = memalloc_nofs_save(); 855 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 856 memalloc_nofs_restore(nofs_flag); 857 if (!root) 858 return ERR_PTR(-ENOMEM); 859 860 root->root_key.objectid = objectid; 861 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 862 root->root_key.offset = 0; 863 864 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 865 0, BTRFS_NESTING_NORMAL); 866 if (IS_ERR(leaf)) { 867 ret = PTR_ERR(leaf); 868 leaf = NULL; 869 goto fail; 870 } 871 872 root->node = leaf; 873 btrfs_mark_buffer_dirty(trans, leaf); 874 875 root->commit_root = btrfs_root_node(root); 876 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 877 878 btrfs_set_root_flags(&root->root_item, 0); 879 btrfs_set_root_limit(&root->root_item, 0); 880 btrfs_set_root_bytenr(&root->root_item, leaf->start); 881 btrfs_set_root_generation(&root->root_item, trans->transid); 882 btrfs_set_root_level(&root->root_item, 0); 883 btrfs_set_root_refs(&root->root_item, 1); 884 btrfs_set_root_used(&root->root_item, leaf->len); 885 btrfs_set_root_last_snapshot(&root->root_item, 0); 886 btrfs_set_root_dirid(&root->root_item, 0); 887 if (is_fstree(objectid)) 888 generate_random_guid(root->root_item.uuid); 889 else 890 export_guid(root->root_item.uuid, &guid_null); 891 btrfs_set_root_drop_level(&root->root_item, 0); 892 893 btrfs_tree_unlock(leaf); 894 895 key.objectid = objectid; 896 key.type = BTRFS_ROOT_ITEM_KEY; 897 key.offset = 0; 898 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 899 if (ret) 900 goto fail; 901 902 return root; 903 904 fail: 905 btrfs_put_root(root); 906 907 return ERR_PTR(ret); 908 } 909 910 static struct btrfs_root *alloc_log_tree(struct btrfs_fs_info *fs_info) 911 { 912 struct btrfs_root *root; 913 914 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 915 if (!root) 916 return ERR_PTR(-ENOMEM); 917 918 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 919 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 920 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 921 922 return root; 923 } 924 925 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 926 struct btrfs_root *root) 927 { 928 struct extent_buffer *leaf; 929 930 /* 931 * DON'T set SHAREABLE bit for log trees. 932 * 933 * Log trees are not exposed to user space thus can't be snapshotted, 934 * and they go away before a real commit is actually done. 935 * 936 * They do store pointers to file data extents, and those reference 937 * counts still get updated (along with back refs to the log tree). 938 */ 939 940 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 941 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 942 if (IS_ERR(leaf)) 943 return PTR_ERR(leaf); 944 945 root->node = leaf; 946 947 btrfs_mark_buffer_dirty(trans, root->node); 948 btrfs_tree_unlock(root->node); 949 950 return 0; 951 } 952 953 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 954 struct btrfs_fs_info *fs_info) 955 { 956 struct btrfs_root *log_root; 957 958 log_root = alloc_log_tree(fs_info); 959 if (IS_ERR(log_root)) 960 return PTR_ERR(log_root); 961 962 if (!btrfs_is_zoned(fs_info)) { 963 int ret = btrfs_alloc_log_tree_node(trans, log_root); 964 965 if (ret) { 966 btrfs_put_root(log_root); 967 return ret; 968 } 969 } 970 971 WARN_ON(fs_info->log_root_tree); 972 fs_info->log_root_tree = log_root; 973 return 0; 974 } 975 976 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 977 struct btrfs_root *root) 978 { 979 struct btrfs_fs_info *fs_info = root->fs_info; 980 struct btrfs_root *log_root; 981 struct btrfs_inode_item *inode_item; 982 int ret; 983 984 log_root = alloc_log_tree(fs_info); 985 if (IS_ERR(log_root)) 986 return PTR_ERR(log_root); 987 988 ret = btrfs_alloc_log_tree_node(trans, log_root); 989 if (ret) { 990 btrfs_put_root(log_root); 991 return ret; 992 } 993 994 btrfs_set_root_last_trans(log_root, trans->transid); 995 log_root->root_key.offset = btrfs_root_id(root); 996 997 inode_item = &log_root->root_item.inode; 998 btrfs_set_stack_inode_generation(inode_item, 1); 999 btrfs_set_stack_inode_size(inode_item, 3); 1000 btrfs_set_stack_inode_nlink(inode_item, 1); 1001 btrfs_set_stack_inode_nbytes(inode_item, 1002 fs_info->nodesize); 1003 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1004 1005 btrfs_set_root_node(&log_root->root_item, log_root->node); 1006 1007 WARN_ON(root->log_root); 1008 root->log_root = log_root; 1009 btrfs_set_root_log_transid(root, 0); 1010 root->log_transid_committed = -1; 1011 btrfs_set_root_last_log_commit(root, 0); 1012 return 0; 1013 } 1014 1015 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1016 struct btrfs_path *path, 1017 const struct btrfs_key *key) 1018 { 1019 struct btrfs_root *root; 1020 struct btrfs_tree_parent_check check = { 0 }; 1021 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1022 u64 generation; 1023 int ret; 1024 int level; 1025 1026 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1027 if (!root) 1028 return ERR_PTR(-ENOMEM); 1029 1030 ret = btrfs_find_root(tree_root, key, path, 1031 &root->root_item, &root->root_key); 1032 if (ret) { 1033 if (ret > 0) 1034 ret = -ENOENT; 1035 goto fail; 1036 } 1037 1038 generation = btrfs_root_generation(&root->root_item); 1039 level = btrfs_root_level(&root->root_item); 1040 check.level = level; 1041 check.transid = generation; 1042 check.owner_root = key->objectid; 1043 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1044 &check); 1045 if (IS_ERR(root->node)) { 1046 ret = PTR_ERR(root->node); 1047 root->node = NULL; 1048 goto fail; 1049 } 1050 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1051 ret = -EIO; 1052 goto fail; 1053 } 1054 1055 /* 1056 * For real fs, and not log/reloc trees, root owner must 1057 * match its root node owner 1058 */ 1059 if (!btrfs_is_testing(fs_info) && 1060 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1061 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1062 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1063 btrfs_crit(fs_info, 1064 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1065 btrfs_root_id(root), root->node->start, 1066 btrfs_header_owner(root->node), 1067 btrfs_root_id(root)); 1068 ret = -EUCLEAN; 1069 goto fail; 1070 } 1071 root->commit_root = btrfs_root_node(root); 1072 return root; 1073 fail: 1074 btrfs_put_root(root); 1075 return ERR_PTR(ret); 1076 } 1077 1078 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1079 const struct btrfs_key *key) 1080 { 1081 struct btrfs_root *root; 1082 BTRFS_PATH_AUTO_FREE(path); 1083 1084 path = btrfs_alloc_path(); 1085 if (!path) 1086 return ERR_PTR(-ENOMEM); 1087 root = read_tree_root_path(tree_root, path, key); 1088 1089 return root; 1090 } 1091 1092 /* 1093 * Initialize subvolume root in-memory structure. 1094 * 1095 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1096 * 1097 * In case of failure the caller is responsible to call btrfs_free_fs_root() 1098 */ 1099 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1100 { 1101 int ret; 1102 1103 btrfs_drew_lock_init(&root->snapshot_lock); 1104 1105 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1106 !btrfs_is_data_reloc_root(root) && 1107 is_fstree(btrfs_root_id(root))) { 1108 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1109 btrfs_check_and_init_root_item(&root->root_item); 1110 } 1111 1112 /* 1113 * Don't assign anonymous block device to roots that are not exposed to 1114 * userspace, the id pool is limited to 1M 1115 */ 1116 if (is_fstree(btrfs_root_id(root)) && 1117 btrfs_root_refs(&root->root_item) > 0) { 1118 if (!anon_dev) { 1119 ret = get_anon_bdev(&root->anon_dev); 1120 if (ret) 1121 return ret; 1122 } else { 1123 root->anon_dev = anon_dev; 1124 } 1125 } 1126 1127 mutex_lock(&root->objectid_mutex); 1128 ret = btrfs_init_root_free_objectid(root); 1129 if (ret) { 1130 mutex_unlock(&root->objectid_mutex); 1131 return ret; 1132 } 1133 1134 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1135 1136 mutex_unlock(&root->objectid_mutex); 1137 1138 return 0; 1139 } 1140 1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1142 u64 root_id) 1143 { 1144 struct btrfs_root *root; 1145 1146 spin_lock(&fs_info->fs_roots_radix_lock); 1147 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1148 (unsigned long)root_id); 1149 root = btrfs_grab_root(root); 1150 spin_unlock(&fs_info->fs_roots_radix_lock); 1151 return root; 1152 } 1153 1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1155 u64 objectid) 1156 { 1157 struct btrfs_key key = { 1158 .objectid = objectid, 1159 .type = BTRFS_ROOT_ITEM_KEY, 1160 .offset = 0, 1161 }; 1162 1163 switch (objectid) { 1164 case BTRFS_ROOT_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->tree_root); 1166 case BTRFS_EXTENT_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_CHUNK_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->chunk_root); 1170 case BTRFS_DEV_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->dev_root); 1172 case BTRFS_CSUM_TREE_OBJECTID: 1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1174 case BTRFS_QUOTA_TREE_OBJECTID: 1175 return btrfs_grab_root(fs_info->quota_root); 1176 case BTRFS_UUID_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->uuid_root); 1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->block_group_root); 1180 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1182 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1183 return btrfs_grab_root(fs_info->stripe_root); 1184 default: 1185 return NULL; 1186 } 1187 } 1188 1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 1194 ret = radix_tree_preload(GFP_NOFS); 1195 if (ret) 1196 return ret; 1197 1198 spin_lock(&fs_info->fs_roots_radix_lock); 1199 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1200 (unsigned long)btrfs_root_id(root), 1201 root); 1202 if (ret == 0) { 1203 btrfs_grab_root(root); 1204 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1205 } 1206 spin_unlock(&fs_info->fs_roots_radix_lock); 1207 radix_tree_preload_end(); 1208 1209 return ret; 1210 } 1211 1212 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1213 { 1214 #ifdef CONFIG_BTRFS_DEBUG 1215 struct btrfs_root *root; 1216 1217 while (!list_empty(&fs_info->allocated_roots)) { 1218 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1219 1220 root = list_first_entry(&fs_info->allocated_roots, 1221 struct btrfs_root, leak_list); 1222 btrfs_err(fs_info, "leaked root %s refcount %d", 1223 btrfs_root_name(&root->root_key, buf), 1224 refcount_read(&root->refs)); 1225 WARN_ON_ONCE(1); 1226 while (refcount_read(&root->refs) > 1) 1227 btrfs_put_root(root); 1228 btrfs_put_root(root); 1229 } 1230 #endif 1231 } 1232 1233 static void free_global_roots(struct btrfs_fs_info *fs_info) 1234 { 1235 struct btrfs_root *root; 1236 struct rb_node *node; 1237 1238 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1239 root = rb_entry(node, struct btrfs_root, rb_node); 1240 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1241 btrfs_put_root(root); 1242 } 1243 } 1244 1245 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1246 { 1247 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1248 1249 percpu_counter_destroy(&fs_info->stats_read_blocks); 1250 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1251 percpu_counter_destroy(&fs_info->delalloc_bytes); 1252 percpu_counter_destroy(&fs_info->ordered_bytes); 1253 if (percpu_counter_initialized(em_counter)) 1254 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1255 percpu_counter_destroy(em_counter); 1256 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1257 btrfs_free_csum_hash(fs_info); 1258 btrfs_free_stripe_hash_table(fs_info); 1259 btrfs_free_ref_cache(fs_info); 1260 kfree(fs_info->balance_ctl); 1261 kfree(fs_info->delayed_root); 1262 free_global_roots(fs_info); 1263 btrfs_put_root(fs_info->tree_root); 1264 btrfs_put_root(fs_info->chunk_root); 1265 btrfs_put_root(fs_info->dev_root); 1266 btrfs_put_root(fs_info->quota_root); 1267 btrfs_put_root(fs_info->uuid_root); 1268 btrfs_put_root(fs_info->fs_root); 1269 btrfs_put_root(fs_info->data_reloc_root); 1270 btrfs_put_root(fs_info->block_group_root); 1271 btrfs_put_root(fs_info->stripe_root); 1272 btrfs_check_leaked_roots(fs_info); 1273 btrfs_extent_buffer_leak_debug_check(fs_info); 1274 kfree(fs_info->super_copy); 1275 kfree(fs_info->super_for_commit); 1276 kvfree(fs_info); 1277 } 1278 1279 1280 /* 1281 * Get an in-memory reference of a root structure. 1282 * 1283 * For essential trees like root/extent tree, we grab it from fs_info directly. 1284 * For subvolume trees, we check the cached filesystem roots first. If not 1285 * found, then read it from disk and add it to cached fs roots. 1286 * 1287 * Caller should release the root by calling btrfs_put_root() after the usage. 1288 * 1289 * NOTE: Reloc and log trees can't be read by this function as they share the 1290 * same root objectid. 1291 * 1292 * @objectid: root id 1293 * @anon_dev: preallocated anonymous block device number for new roots, 1294 * pass NULL for a new allocation. 1295 * @check_ref: whether to check root item references, If true, return -ENOENT 1296 * for orphan roots 1297 */ 1298 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1299 u64 objectid, dev_t *anon_dev, 1300 bool check_ref) 1301 { 1302 struct btrfs_root *root; 1303 struct btrfs_path *path; 1304 struct btrfs_key key; 1305 int ret; 1306 1307 root = btrfs_get_global_root(fs_info, objectid); 1308 if (root) 1309 return root; 1310 1311 /* 1312 * If we're called for non-subvolume trees, and above function didn't 1313 * find one, do not try to read it from disk. 1314 * 1315 * This is namely for free-space-tree and quota tree, which can change 1316 * at runtime and should only be grabbed from fs_info. 1317 */ 1318 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1319 return ERR_PTR(-ENOENT); 1320 again: 1321 root = btrfs_lookup_fs_root(fs_info, objectid); 1322 if (root) { 1323 /* 1324 * Some other caller may have read out the newly inserted 1325 * subvolume already (for things like backref walk etc). Not 1326 * that common but still possible. In that case, we just need 1327 * to free the anon_dev. 1328 */ 1329 if (unlikely(anon_dev && *anon_dev)) { 1330 free_anon_bdev(*anon_dev); 1331 *anon_dev = 0; 1332 } 1333 1334 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1335 btrfs_put_root(root); 1336 return ERR_PTR(-ENOENT); 1337 } 1338 return root; 1339 } 1340 1341 key.objectid = objectid; 1342 key.type = BTRFS_ROOT_ITEM_KEY; 1343 key.offset = (u64)-1; 1344 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1345 if (IS_ERR(root)) 1346 return root; 1347 1348 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1349 ret = -ENOENT; 1350 goto fail; 1351 } 1352 1353 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1354 if (ret) 1355 goto fail; 1356 1357 path = btrfs_alloc_path(); 1358 if (!path) { 1359 ret = -ENOMEM; 1360 goto fail; 1361 } 1362 key.objectid = BTRFS_ORPHAN_OBJECTID; 1363 key.type = BTRFS_ORPHAN_ITEM_KEY; 1364 key.offset = objectid; 1365 1366 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1367 btrfs_free_path(path); 1368 if (ret < 0) 1369 goto fail; 1370 if (ret == 0) 1371 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1372 1373 ret = btrfs_insert_fs_root(fs_info, root); 1374 if (ret) { 1375 if (ret == -EEXIST) { 1376 btrfs_put_root(root); 1377 goto again; 1378 } 1379 goto fail; 1380 } 1381 return root; 1382 fail: 1383 /* 1384 * If our caller provided us an anonymous device, then it's his 1385 * responsibility to free it in case we fail. So we have to set our 1386 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1387 * and once again by our caller. 1388 */ 1389 if (anon_dev && *anon_dev) 1390 root->anon_dev = 0; 1391 btrfs_put_root(root); 1392 return ERR_PTR(ret); 1393 } 1394 1395 /* 1396 * Get in-memory reference of a root structure 1397 * 1398 * @objectid: tree objectid 1399 * @check_ref: if set, verify that the tree exists and the item has at least 1400 * one reference 1401 */ 1402 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1403 u64 objectid, bool check_ref) 1404 { 1405 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1406 } 1407 1408 /* 1409 * Get in-memory reference of a root structure, created as new, optionally pass 1410 * the anonymous block device id 1411 * 1412 * @objectid: tree objectid 1413 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1414 * parameter value if not NULL 1415 */ 1416 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1417 u64 objectid, dev_t *anon_dev) 1418 { 1419 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1420 } 1421 1422 /* 1423 * Return a root for the given objectid. 1424 * 1425 * @fs_info: the fs_info 1426 * @objectid: the objectid we need to lookup 1427 * 1428 * This is exclusively used for backref walking, and exists specifically because 1429 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1430 * creation time, which means we may have to read the tree_root in order to look 1431 * up a fs root that is not in memory. If the root is not in memory we will 1432 * read the tree root commit root and look up the fs root from there. This is a 1433 * temporary root, it will not be inserted into the radix tree as it doesn't 1434 * have the most uptodate information, it'll simply be discarded once the 1435 * backref code is finished using the root. 1436 */ 1437 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1438 struct btrfs_path *path, 1439 u64 objectid) 1440 { 1441 struct btrfs_root *root; 1442 struct btrfs_key key; 1443 1444 ASSERT(path->search_commit_root && path->skip_locking); 1445 1446 /* 1447 * This can return -ENOENT if we ask for a root that doesn't exist, but 1448 * since this is called via the backref walking code we won't be looking 1449 * up a root that doesn't exist, unless there's corruption. So if root 1450 * != NULL just return it. 1451 */ 1452 root = btrfs_get_global_root(fs_info, objectid); 1453 if (root) 1454 return root; 1455 1456 root = btrfs_lookup_fs_root(fs_info, objectid); 1457 if (root) 1458 return root; 1459 1460 key.objectid = objectid; 1461 key.type = BTRFS_ROOT_ITEM_KEY; 1462 key.offset = (u64)-1; 1463 root = read_tree_root_path(fs_info->tree_root, path, &key); 1464 btrfs_release_path(path); 1465 1466 return root; 1467 } 1468 1469 static int cleaner_kthread(void *arg) 1470 { 1471 struct btrfs_fs_info *fs_info = arg; 1472 int again; 1473 1474 while (1) { 1475 again = 0; 1476 1477 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1478 1479 /* Make the cleaner go to sleep early. */ 1480 if (btrfs_need_cleaner_sleep(fs_info)) 1481 goto sleep; 1482 1483 /* 1484 * Do not do anything if we might cause open_ctree() to block 1485 * before we have finished mounting the filesystem. 1486 */ 1487 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1488 goto sleep; 1489 1490 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1491 goto sleep; 1492 1493 /* 1494 * Avoid the problem that we change the status of the fs 1495 * during the above check and trylock. 1496 */ 1497 if (btrfs_need_cleaner_sleep(fs_info)) { 1498 mutex_unlock(&fs_info->cleaner_mutex); 1499 goto sleep; 1500 } 1501 1502 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1503 btrfs_sysfs_feature_update(fs_info); 1504 1505 btrfs_run_delayed_iputs(fs_info); 1506 1507 again = btrfs_clean_one_deleted_snapshot(fs_info); 1508 mutex_unlock(&fs_info->cleaner_mutex); 1509 1510 /* 1511 * The defragger has dealt with the R/O remount and umount, 1512 * needn't do anything special here. 1513 */ 1514 btrfs_run_defrag_inodes(fs_info); 1515 1516 /* 1517 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1518 * with relocation (btrfs_relocate_chunk) and relocation 1519 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1520 * after acquiring fs_info->reclaim_bgs_lock. So we 1521 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1522 * unused block groups. 1523 */ 1524 btrfs_delete_unused_bgs(fs_info); 1525 1526 /* 1527 * Reclaim block groups in the reclaim_bgs list after we deleted 1528 * all unused block_groups. This possibly gives us some more free 1529 * space. 1530 */ 1531 btrfs_reclaim_bgs(fs_info); 1532 sleep: 1533 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1534 if (kthread_should_park()) 1535 kthread_parkme(); 1536 if (kthread_should_stop()) 1537 return 0; 1538 if (!again) { 1539 set_current_state(TASK_INTERRUPTIBLE); 1540 schedule(); 1541 __set_current_state(TASK_RUNNING); 1542 } 1543 } 1544 } 1545 1546 static int transaction_kthread(void *arg) 1547 { 1548 struct btrfs_root *root = arg; 1549 struct btrfs_fs_info *fs_info = root->fs_info; 1550 struct btrfs_trans_handle *trans; 1551 struct btrfs_transaction *cur; 1552 u64 transid; 1553 time64_t delta; 1554 unsigned long delay; 1555 bool cannot_commit; 1556 1557 do { 1558 cannot_commit = false; 1559 delay = secs_to_jiffies(fs_info->commit_interval); 1560 mutex_lock(&fs_info->transaction_kthread_mutex); 1561 1562 spin_lock(&fs_info->trans_lock); 1563 cur = fs_info->running_transaction; 1564 if (!cur) { 1565 spin_unlock(&fs_info->trans_lock); 1566 goto sleep; 1567 } 1568 1569 delta = ktime_get_seconds() - cur->start_time; 1570 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1571 cur->state < TRANS_STATE_COMMIT_PREP && 1572 delta < fs_info->commit_interval) { 1573 spin_unlock(&fs_info->trans_lock); 1574 delay -= secs_to_jiffies(delta - 1); 1575 delay = min(delay, 1576 secs_to_jiffies(fs_info->commit_interval)); 1577 goto sleep; 1578 } 1579 transid = cur->transid; 1580 spin_unlock(&fs_info->trans_lock); 1581 1582 /* If the file system is aborted, this will always fail. */ 1583 trans = btrfs_attach_transaction(root); 1584 if (IS_ERR(trans)) { 1585 if (PTR_ERR(trans) != -ENOENT) 1586 cannot_commit = true; 1587 goto sleep; 1588 } 1589 if (transid == trans->transid) { 1590 btrfs_commit_transaction(trans); 1591 } else { 1592 btrfs_end_transaction(trans); 1593 } 1594 sleep: 1595 wake_up_process(fs_info->cleaner_kthread); 1596 mutex_unlock(&fs_info->transaction_kthread_mutex); 1597 1598 if (BTRFS_FS_ERROR(fs_info)) 1599 btrfs_cleanup_transaction(fs_info); 1600 if (!kthread_should_stop() && 1601 (!btrfs_transaction_blocked(fs_info) || 1602 cannot_commit)) 1603 schedule_timeout_interruptible(delay); 1604 } while (!kthread_should_stop()); 1605 return 0; 1606 } 1607 1608 /* 1609 * This will find the highest generation in the array of root backups. The 1610 * index of the highest array is returned, or -EINVAL if we can't find 1611 * anything. 1612 * 1613 * We check to make sure the array is valid by comparing the 1614 * generation of the latest root in the array with the generation 1615 * in the super block. If they don't match we pitch it. 1616 */ 1617 static int find_newest_super_backup(struct btrfs_fs_info *info) 1618 { 1619 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1620 u64 cur; 1621 struct btrfs_root_backup *root_backup; 1622 int i; 1623 1624 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1625 root_backup = info->super_copy->super_roots + i; 1626 cur = btrfs_backup_tree_root_gen(root_backup); 1627 if (cur == newest_gen) 1628 return i; 1629 } 1630 1631 return -EINVAL; 1632 } 1633 1634 /* 1635 * copy all the root pointers into the super backup array. 1636 * this will bump the backup pointer by one when it is 1637 * done 1638 */ 1639 static void backup_super_roots(struct btrfs_fs_info *info) 1640 { 1641 const int next_backup = info->backup_root_index; 1642 struct btrfs_root_backup *root_backup; 1643 1644 root_backup = info->super_for_commit->super_roots + next_backup; 1645 1646 /* 1647 * make sure all of our padding and empty slots get zero filled 1648 * regardless of which ones we use today 1649 */ 1650 memset(root_backup, 0, sizeof(*root_backup)); 1651 1652 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1653 1654 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1655 btrfs_set_backup_tree_root_gen(root_backup, 1656 btrfs_header_generation(info->tree_root->node)); 1657 1658 btrfs_set_backup_tree_root_level(root_backup, 1659 btrfs_header_level(info->tree_root->node)); 1660 1661 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1662 btrfs_set_backup_chunk_root_gen(root_backup, 1663 btrfs_header_generation(info->chunk_root->node)); 1664 btrfs_set_backup_chunk_root_level(root_backup, 1665 btrfs_header_level(info->chunk_root->node)); 1666 1667 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1668 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1669 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1670 1671 btrfs_set_backup_extent_root(root_backup, 1672 extent_root->node->start); 1673 btrfs_set_backup_extent_root_gen(root_backup, 1674 btrfs_header_generation(extent_root->node)); 1675 btrfs_set_backup_extent_root_level(root_backup, 1676 btrfs_header_level(extent_root->node)); 1677 1678 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1679 btrfs_set_backup_csum_root_gen(root_backup, 1680 btrfs_header_generation(csum_root->node)); 1681 btrfs_set_backup_csum_root_level(root_backup, 1682 btrfs_header_level(csum_root->node)); 1683 } 1684 1685 /* 1686 * we might commit during log recovery, which happens before we set 1687 * the fs_root. Make sure it is valid before we fill it in. 1688 */ 1689 if (info->fs_root && info->fs_root->node) { 1690 btrfs_set_backup_fs_root(root_backup, 1691 info->fs_root->node->start); 1692 btrfs_set_backup_fs_root_gen(root_backup, 1693 btrfs_header_generation(info->fs_root->node)); 1694 btrfs_set_backup_fs_root_level(root_backup, 1695 btrfs_header_level(info->fs_root->node)); 1696 } 1697 1698 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1699 btrfs_set_backup_dev_root_gen(root_backup, 1700 btrfs_header_generation(info->dev_root->node)); 1701 btrfs_set_backup_dev_root_level(root_backup, 1702 btrfs_header_level(info->dev_root->node)); 1703 1704 btrfs_set_backup_total_bytes(root_backup, 1705 btrfs_super_total_bytes(info->super_copy)); 1706 btrfs_set_backup_bytes_used(root_backup, 1707 btrfs_super_bytes_used(info->super_copy)); 1708 btrfs_set_backup_num_devices(root_backup, 1709 btrfs_super_num_devices(info->super_copy)); 1710 1711 /* 1712 * if we don't copy this out to the super_copy, it won't get remembered 1713 * for the next commit 1714 */ 1715 memcpy(&info->super_copy->super_roots, 1716 &info->super_for_commit->super_roots, 1717 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1718 } 1719 1720 /* 1721 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1722 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1723 * 1724 * @fs_info: filesystem whose backup roots need to be read 1725 * @priority: priority of backup root required 1726 * 1727 * Returns backup root index on success and -EINVAL otherwise. 1728 */ 1729 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1730 { 1731 int backup_index = find_newest_super_backup(fs_info); 1732 struct btrfs_super_block *super = fs_info->super_copy; 1733 struct btrfs_root_backup *root_backup; 1734 1735 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1736 if (priority == 0) 1737 return backup_index; 1738 1739 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1740 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1741 } else { 1742 return -EINVAL; 1743 } 1744 1745 root_backup = super->super_roots + backup_index; 1746 1747 btrfs_set_super_generation(super, 1748 btrfs_backup_tree_root_gen(root_backup)); 1749 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1750 btrfs_set_super_root_level(super, 1751 btrfs_backup_tree_root_level(root_backup)); 1752 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1753 1754 /* 1755 * Fixme: the total bytes and num_devices need to match or we should 1756 * need a fsck 1757 */ 1758 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1759 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1760 1761 return backup_index; 1762 } 1763 1764 /* helper to cleanup workers */ 1765 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1766 { 1767 btrfs_destroy_workqueue(fs_info->fixup_workers); 1768 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1769 btrfs_destroy_workqueue(fs_info->workers); 1770 if (fs_info->endio_workers) 1771 destroy_workqueue(fs_info->endio_workers); 1772 if (fs_info->rmw_workers) 1773 destroy_workqueue(fs_info->rmw_workers); 1774 if (fs_info->compressed_write_workers) 1775 destroy_workqueue(fs_info->compressed_write_workers); 1776 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1777 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1778 btrfs_destroy_workqueue(fs_info->delayed_workers); 1779 btrfs_destroy_workqueue(fs_info->caching_workers); 1780 btrfs_destroy_workqueue(fs_info->flush_workers); 1781 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1782 if (fs_info->discard_ctl.discard_workers) 1783 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1784 /* 1785 * Now that all other work queues are destroyed, we can safely destroy 1786 * the queues used for metadata I/O, since tasks from those other work 1787 * queues can do metadata I/O operations. 1788 */ 1789 if (fs_info->endio_meta_workers) 1790 destroy_workqueue(fs_info->endio_meta_workers); 1791 } 1792 1793 static void free_root_extent_buffers(struct btrfs_root *root) 1794 { 1795 if (root) { 1796 free_extent_buffer(root->node); 1797 free_extent_buffer(root->commit_root); 1798 root->node = NULL; 1799 root->commit_root = NULL; 1800 } 1801 } 1802 1803 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1804 { 1805 struct btrfs_root *root, *tmp; 1806 1807 rbtree_postorder_for_each_entry_safe(root, tmp, 1808 &fs_info->global_root_tree, 1809 rb_node) 1810 free_root_extent_buffers(root); 1811 } 1812 1813 /* helper to cleanup tree roots */ 1814 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1815 { 1816 free_root_extent_buffers(info->tree_root); 1817 1818 free_global_root_pointers(info); 1819 free_root_extent_buffers(info->dev_root); 1820 free_root_extent_buffers(info->quota_root); 1821 free_root_extent_buffers(info->uuid_root); 1822 free_root_extent_buffers(info->fs_root); 1823 free_root_extent_buffers(info->data_reloc_root); 1824 free_root_extent_buffers(info->block_group_root); 1825 free_root_extent_buffers(info->stripe_root); 1826 if (free_chunk_root) 1827 free_root_extent_buffers(info->chunk_root); 1828 } 1829 1830 void btrfs_put_root(struct btrfs_root *root) 1831 { 1832 if (!root) 1833 return; 1834 1835 if (refcount_dec_and_test(&root->refs)) { 1836 if (WARN_ON(!xa_empty(&root->inodes))) 1837 xa_destroy(&root->inodes); 1838 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1839 if (root->anon_dev) 1840 free_anon_bdev(root->anon_dev); 1841 free_root_extent_buffers(root); 1842 #ifdef CONFIG_BTRFS_DEBUG 1843 spin_lock(&root->fs_info->fs_roots_radix_lock); 1844 list_del_init(&root->leak_list); 1845 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1846 #endif 1847 kfree(root); 1848 } 1849 } 1850 1851 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1852 { 1853 int ret; 1854 struct btrfs_root *gang[8]; 1855 int i; 1856 1857 while (!list_empty(&fs_info->dead_roots)) { 1858 gang[0] = list_first_entry(&fs_info->dead_roots, 1859 struct btrfs_root, root_list); 1860 list_del(&gang[0]->root_list); 1861 1862 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1863 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1864 btrfs_put_root(gang[0]); 1865 } 1866 1867 while (1) { 1868 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1869 (void **)gang, 0, 1870 ARRAY_SIZE(gang)); 1871 if (!ret) 1872 break; 1873 for (i = 0; i < ret; i++) 1874 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1875 } 1876 } 1877 1878 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1879 { 1880 mutex_init(&fs_info->scrub_lock); 1881 atomic_set(&fs_info->scrubs_running, 0); 1882 atomic_set(&fs_info->scrub_pause_req, 0); 1883 atomic_set(&fs_info->scrubs_paused, 0); 1884 atomic_set(&fs_info->scrub_cancel_req, 0); 1885 init_waitqueue_head(&fs_info->scrub_pause_wait); 1886 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1887 } 1888 1889 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1890 { 1891 spin_lock_init(&fs_info->balance_lock); 1892 mutex_init(&fs_info->balance_mutex); 1893 atomic_set(&fs_info->balance_pause_req, 0); 1894 atomic_set(&fs_info->balance_cancel_req, 0); 1895 fs_info->balance_ctl = NULL; 1896 init_waitqueue_head(&fs_info->balance_wait_q); 1897 atomic_set(&fs_info->reloc_cancel_req, 0); 1898 } 1899 1900 static int btrfs_init_btree_inode(struct super_block *sb) 1901 { 1902 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1903 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1904 fs_info->tree_root); 1905 struct inode *inode; 1906 1907 inode = new_inode(sb); 1908 if (!inode) 1909 return -ENOMEM; 1910 1911 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1912 set_nlink(inode, 1); 1913 /* 1914 * we set the i_size on the btree inode to the max possible int. 1915 * the real end of the address space is determined by all of 1916 * the devices in the system 1917 */ 1918 inode->i_size = OFFSET_MAX; 1919 inode->i_mapping->a_ops = &btree_aops; 1920 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1921 1922 btrfs_extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1923 IO_TREE_BTREE_INODE_IO); 1924 btrfs_extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1925 1926 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1927 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1928 __insert_inode_hash(inode, hash); 1929 fs_info->btree_inode = inode; 1930 1931 return 0; 1932 } 1933 1934 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1935 { 1936 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1937 init_rwsem(&fs_info->dev_replace.rwsem); 1938 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1939 } 1940 1941 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1942 { 1943 spin_lock_init(&fs_info->qgroup_lock); 1944 mutex_init(&fs_info->qgroup_ioctl_lock); 1945 fs_info->qgroup_tree = RB_ROOT; 1946 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1947 fs_info->qgroup_seq = 1; 1948 fs_info->qgroup_ulist = NULL; 1949 fs_info->qgroup_rescan_running = false; 1950 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1951 mutex_init(&fs_info->qgroup_rescan_lock); 1952 } 1953 1954 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1955 { 1956 u32 max_active = fs_info->thread_pool_size; 1957 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1958 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1959 1960 fs_info->workers = 1961 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1962 1963 fs_info->delalloc_workers = 1964 btrfs_alloc_workqueue(fs_info, "delalloc", 1965 flags, max_active, 2); 1966 1967 fs_info->flush_workers = 1968 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1969 flags, max_active, 0); 1970 1971 fs_info->caching_workers = 1972 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1973 1974 fs_info->fixup_workers = 1975 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1976 1977 fs_info->endio_workers = 1978 alloc_workqueue("btrfs-endio", flags, max_active); 1979 fs_info->endio_meta_workers = 1980 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1981 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1982 fs_info->endio_write_workers = 1983 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1984 max_active, 2); 1985 fs_info->compressed_write_workers = 1986 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1987 fs_info->endio_freespace_worker = 1988 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1989 max_active, 0); 1990 fs_info->delayed_workers = 1991 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1992 max_active, 0); 1993 fs_info->qgroup_rescan_workers = 1994 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1995 ordered_flags); 1996 fs_info->discard_ctl.discard_workers = 1997 alloc_ordered_workqueue("btrfs-discard", WQ_FREEZABLE); 1998 1999 if (!(fs_info->workers && 2000 fs_info->delalloc_workers && fs_info->flush_workers && 2001 fs_info->endio_workers && fs_info->endio_meta_workers && 2002 fs_info->compressed_write_workers && 2003 fs_info->endio_write_workers && 2004 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2005 fs_info->caching_workers && fs_info->fixup_workers && 2006 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2007 fs_info->discard_ctl.discard_workers)) { 2008 return -ENOMEM; 2009 } 2010 2011 return 0; 2012 } 2013 2014 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2015 { 2016 struct crypto_shash *csum_shash; 2017 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2018 2019 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2020 2021 if (IS_ERR(csum_shash)) { 2022 btrfs_err(fs_info, "error allocating %s hash for checksum", 2023 csum_driver); 2024 return PTR_ERR(csum_shash); 2025 } 2026 2027 fs_info->csum_shash = csum_shash; 2028 2029 /* 2030 * Check if the checksum implementation is a fast accelerated one. 2031 * As-is this is a bit of a hack and should be replaced once the csum 2032 * implementations provide that information themselves. 2033 */ 2034 switch (csum_type) { 2035 case BTRFS_CSUM_TYPE_CRC32: 2036 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2037 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2038 break; 2039 case BTRFS_CSUM_TYPE_XXHASH: 2040 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2041 break; 2042 default: 2043 break; 2044 } 2045 2046 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2047 btrfs_super_csum_name(csum_type), 2048 crypto_shash_driver_name(csum_shash)); 2049 return 0; 2050 } 2051 2052 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2053 struct btrfs_fs_devices *fs_devices) 2054 { 2055 int ret; 2056 struct btrfs_tree_parent_check check = { 0 }; 2057 struct btrfs_root *log_tree_root; 2058 struct btrfs_super_block *disk_super = fs_info->super_copy; 2059 u64 bytenr = btrfs_super_log_root(disk_super); 2060 int level = btrfs_super_log_root_level(disk_super); 2061 2062 if (fs_devices->rw_devices == 0) { 2063 btrfs_warn(fs_info, "log replay required on RO media"); 2064 return -EIO; 2065 } 2066 2067 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2068 GFP_KERNEL); 2069 if (!log_tree_root) 2070 return -ENOMEM; 2071 2072 check.level = level; 2073 check.transid = fs_info->generation + 1; 2074 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2075 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2076 if (IS_ERR(log_tree_root->node)) { 2077 btrfs_warn(fs_info, "failed to read log tree"); 2078 ret = PTR_ERR(log_tree_root->node); 2079 log_tree_root->node = NULL; 2080 btrfs_put_root(log_tree_root); 2081 return ret; 2082 } 2083 if (!extent_buffer_uptodate(log_tree_root->node)) { 2084 btrfs_err(fs_info, "failed to read log tree"); 2085 btrfs_put_root(log_tree_root); 2086 return -EIO; 2087 } 2088 2089 /* returns with log_tree_root freed on success */ 2090 ret = btrfs_recover_log_trees(log_tree_root); 2091 if (ret) { 2092 btrfs_handle_fs_error(fs_info, ret, 2093 "Failed to recover log tree"); 2094 btrfs_put_root(log_tree_root); 2095 return ret; 2096 } 2097 2098 if (sb_rdonly(fs_info->sb)) { 2099 ret = btrfs_commit_super(fs_info); 2100 if (ret) 2101 return ret; 2102 } 2103 2104 return 0; 2105 } 2106 2107 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2108 struct btrfs_path *path, u64 objectid, 2109 const char *name) 2110 { 2111 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2112 struct btrfs_root *root; 2113 u64 max_global_id = 0; 2114 int ret; 2115 struct btrfs_key key = { 2116 .objectid = objectid, 2117 .type = BTRFS_ROOT_ITEM_KEY, 2118 .offset = 0, 2119 }; 2120 bool found = false; 2121 2122 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2123 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2124 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2125 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2126 return 0; 2127 } 2128 2129 while (1) { 2130 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2131 if (ret < 0) 2132 break; 2133 2134 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2135 ret = btrfs_next_leaf(tree_root, path); 2136 if (ret) { 2137 if (ret > 0) 2138 ret = 0; 2139 break; 2140 } 2141 } 2142 ret = 0; 2143 2144 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2145 if (key.objectid != objectid) 2146 break; 2147 btrfs_release_path(path); 2148 2149 /* 2150 * Just worry about this for extent tree, it'll be the same for 2151 * everybody. 2152 */ 2153 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2154 max_global_id = max(max_global_id, key.offset); 2155 2156 found = true; 2157 root = read_tree_root_path(tree_root, path, &key); 2158 if (IS_ERR(root)) { 2159 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2160 ret = PTR_ERR(root); 2161 break; 2162 } 2163 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2164 ret = btrfs_global_root_insert(root); 2165 if (ret) { 2166 btrfs_put_root(root); 2167 break; 2168 } 2169 key.offset++; 2170 } 2171 btrfs_release_path(path); 2172 2173 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2174 fs_info->nr_global_roots = max_global_id + 1; 2175 2176 if (!found || ret) { 2177 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2178 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2179 2180 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2181 ret = ret ? ret : -ENOENT; 2182 else 2183 ret = 0; 2184 btrfs_err(fs_info, "failed to load root %s", name); 2185 } 2186 return ret; 2187 } 2188 2189 static int load_global_roots(struct btrfs_root *tree_root) 2190 { 2191 BTRFS_PATH_AUTO_FREE(path); 2192 int ret; 2193 2194 path = btrfs_alloc_path(); 2195 if (!path) 2196 return -ENOMEM; 2197 2198 ret = load_global_roots_objectid(tree_root, path, 2199 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2200 if (ret) 2201 return ret; 2202 ret = load_global_roots_objectid(tree_root, path, 2203 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2204 if (ret) 2205 return ret; 2206 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2207 return ret; 2208 ret = load_global_roots_objectid(tree_root, path, 2209 BTRFS_FREE_SPACE_TREE_OBJECTID, 2210 "free space"); 2211 2212 return ret; 2213 } 2214 2215 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2216 { 2217 struct btrfs_root *tree_root = fs_info->tree_root; 2218 struct btrfs_root *root; 2219 struct btrfs_key location; 2220 int ret; 2221 2222 ASSERT(fs_info->tree_root); 2223 2224 ret = load_global_roots(tree_root); 2225 if (ret) 2226 return ret; 2227 2228 location.type = BTRFS_ROOT_ITEM_KEY; 2229 location.offset = 0; 2230 2231 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2232 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2233 root = btrfs_read_tree_root(tree_root, &location); 2234 if (IS_ERR(root)) { 2235 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2236 ret = PTR_ERR(root); 2237 goto out; 2238 } 2239 } else { 2240 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2241 fs_info->block_group_root = root; 2242 } 2243 } 2244 2245 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2246 root = btrfs_read_tree_root(tree_root, &location); 2247 if (IS_ERR(root)) { 2248 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2249 ret = PTR_ERR(root); 2250 goto out; 2251 } 2252 } else { 2253 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2254 fs_info->dev_root = root; 2255 } 2256 /* Initialize fs_info for all devices in any case */ 2257 ret = btrfs_init_devices_late(fs_info); 2258 if (ret) 2259 goto out; 2260 2261 /* 2262 * This tree can share blocks with some other fs tree during relocation 2263 * and we need a proper setup by btrfs_get_fs_root 2264 */ 2265 root = btrfs_get_fs_root(tree_root->fs_info, 2266 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2267 if (IS_ERR(root)) { 2268 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2269 ret = PTR_ERR(root); 2270 goto out; 2271 } 2272 } else { 2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2274 fs_info->data_reloc_root = root; 2275 } 2276 2277 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2278 root = btrfs_read_tree_root(tree_root, &location); 2279 if (!IS_ERR(root)) { 2280 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2281 fs_info->quota_root = root; 2282 } 2283 2284 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2285 root = btrfs_read_tree_root(tree_root, &location); 2286 if (IS_ERR(root)) { 2287 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2288 ret = PTR_ERR(root); 2289 if (ret != -ENOENT) 2290 goto out; 2291 } 2292 } else { 2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2294 fs_info->uuid_root = root; 2295 } 2296 2297 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2298 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2299 root = btrfs_read_tree_root(tree_root, &location); 2300 if (IS_ERR(root)) { 2301 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2302 ret = PTR_ERR(root); 2303 goto out; 2304 } 2305 } else { 2306 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2307 fs_info->stripe_root = root; 2308 } 2309 } 2310 2311 return 0; 2312 out: 2313 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2314 location.objectid, ret); 2315 return ret; 2316 } 2317 2318 static int validate_sys_chunk_array(const struct btrfs_fs_info *fs_info, 2319 const struct btrfs_super_block *sb) 2320 { 2321 unsigned int cur = 0; /* Offset inside the sys chunk array */ 2322 /* 2323 * At sb read time, fs_info is not fully initialized. Thus we have 2324 * to use super block sectorsize, which should have been validated. 2325 */ 2326 const u32 sectorsize = btrfs_super_sectorsize(sb); 2327 u32 sys_array_size = btrfs_super_sys_array_size(sb); 2328 2329 if (sys_array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2330 btrfs_err(fs_info, "system chunk array too big %u > %u", 2331 sys_array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2332 return -EUCLEAN; 2333 } 2334 2335 while (cur < sys_array_size) { 2336 struct btrfs_disk_key *disk_key; 2337 struct btrfs_chunk *chunk; 2338 struct btrfs_key key; 2339 u64 type; 2340 u16 num_stripes; 2341 u32 len; 2342 int ret; 2343 2344 disk_key = (struct btrfs_disk_key *)(sb->sys_chunk_array + cur); 2345 len = sizeof(*disk_key); 2346 2347 if (cur + len > sys_array_size) 2348 goto short_read; 2349 cur += len; 2350 2351 btrfs_disk_key_to_cpu(&key, disk_key); 2352 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 2353 btrfs_err(fs_info, 2354 "unexpected item type %u in sys_array at offset %u", 2355 key.type, cur); 2356 return -EUCLEAN; 2357 } 2358 chunk = (struct btrfs_chunk *)(sb->sys_chunk_array + cur); 2359 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2360 if (cur + btrfs_chunk_item_size(num_stripes) > sys_array_size) 2361 goto short_read; 2362 type = btrfs_stack_chunk_type(chunk); 2363 if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) { 2364 btrfs_err(fs_info, 2365 "invalid chunk type %llu in sys_array at offset %u", 2366 type, cur); 2367 return -EUCLEAN; 2368 } 2369 ret = btrfs_check_chunk_valid(fs_info, NULL, chunk, key.offset, 2370 sectorsize); 2371 if (ret < 0) 2372 return ret; 2373 cur += btrfs_chunk_item_size(num_stripes); 2374 } 2375 return 0; 2376 short_read: 2377 btrfs_err(fs_info, 2378 "super block sys chunk array short read, cur=%u sys_array_size=%u", 2379 cur, sys_array_size); 2380 return -EUCLEAN; 2381 } 2382 2383 /* 2384 * Real super block validation 2385 * NOTE: super csum type and incompat features will not be checked here. 2386 * 2387 * @sb: super block to check 2388 * @mirror_num: the super block number to check its bytenr: 2389 * 0 the primary (1st) sb 2390 * 1, 2 2nd and 3rd backup copy 2391 * -1 skip bytenr check 2392 */ 2393 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2394 const struct btrfs_super_block *sb, int mirror_num) 2395 { 2396 u64 nodesize = btrfs_super_nodesize(sb); 2397 u64 sectorsize = btrfs_super_sectorsize(sb); 2398 int ret = 0; 2399 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2400 2401 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2402 btrfs_err(fs_info, "no valid FS found"); 2403 ret = -EINVAL; 2404 } 2405 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2406 if (!ignore_flags) { 2407 btrfs_err(fs_info, 2408 "unrecognized or unsupported super flag 0x%llx", 2409 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2410 ret = -EINVAL; 2411 } else { 2412 btrfs_info(fs_info, 2413 "unrecognized or unsupported super flags: 0x%llx, ignored", 2414 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2415 } 2416 } 2417 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2418 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2419 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2420 ret = -EINVAL; 2421 } 2422 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2423 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2424 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2425 ret = -EINVAL; 2426 } 2427 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2428 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2429 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2430 ret = -EINVAL; 2431 } 2432 2433 /* 2434 * Check sectorsize and nodesize first, other check will need it. 2435 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2436 */ 2437 if (!is_power_of_2(sectorsize) || sectorsize < BTRFS_MIN_BLOCKSIZE || 2438 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2439 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2440 ret = -EINVAL; 2441 } 2442 2443 /* 2444 * We only support at most 3 sectorsizes: 4K, PAGE_SIZE, MIN_BLOCKSIZE. 2445 * 2446 * For 4K page sized systems with non-debug builds, all 3 matches (4K). 2447 * For 4K page sized systems with debug builds, there are two block sizes 2448 * supported. (4K and 2K) 2449 * 2450 * We can support 16K sectorsize with 64K page size without problem, 2451 * but such sectorsize/pagesize combination doesn't make much sense. 2452 * 4K will be our future standard, PAGE_SIZE is supported from the very 2453 * beginning. 2454 */ 2455 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && 2456 sectorsize != PAGE_SIZE && 2457 sectorsize != BTRFS_MIN_BLOCKSIZE)) { 2458 btrfs_err(fs_info, 2459 "sectorsize %llu not yet supported for page size %lu", 2460 sectorsize, PAGE_SIZE); 2461 ret = -EINVAL; 2462 } 2463 2464 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2465 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2466 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2467 ret = -EINVAL; 2468 } 2469 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2470 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2471 le32_to_cpu(sb->__unused_leafsize), nodesize); 2472 ret = -EINVAL; 2473 } 2474 2475 /* Root alignment check */ 2476 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2477 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2478 btrfs_super_root(sb)); 2479 ret = -EINVAL; 2480 } 2481 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2482 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2483 btrfs_super_chunk_root(sb)); 2484 ret = -EINVAL; 2485 } 2486 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2487 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2488 btrfs_super_log_root(sb)); 2489 ret = -EINVAL; 2490 } 2491 2492 if (!fs_info->fs_devices->temp_fsid && 2493 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2494 btrfs_err(fs_info, 2495 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2496 sb->fsid, fs_info->fs_devices->fsid); 2497 ret = -EINVAL; 2498 } 2499 2500 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2501 BTRFS_FSID_SIZE) != 0) { 2502 btrfs_err(fs_info, 2503 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2504 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2505 ret = -EINVAL; 2506 } 2507 2508 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2509 BTRFS_FSID_SIZE) != 0) { 2510 btrfs_err(fs_info, 2511 "dev_item UUID does not match metadata fsid: %pU != %pU", 2512 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2513 ret = -EINVAL; 2514 } 2515 2516 /* 2517 * Artificial requirement for block-group-tree to force newer features 2518 * (free-space-tree, no-holes) so the test matrix is smaller. 2519 */ 2520 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2521 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2522 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2523 btrfs_err(fs_info, 2524 "block-group-tree feature requires free-space-tree and no-holes"); 2525 ret = -EINVAL; 2526 } 2527 2528 /* 2529 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2530 * done later 2531 */ 2532 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2533 btrfs_err(fs_info, "bytes_used is too small %llu", 2534 btrfs_super_bytes_used(sb)); 2535 ret = -EINVAL; 2536 } 2537 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2538 btrfs_err(fs_info, "invalid stripesize %u", 2539 btrfs_super_stripesize(sb)); 2540 ret = -EINVAL; 2541 } 2542 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2543 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2544 btrfs_super_num_devices(sb)); 2545 if (btrfs_super_num_devices(sb) == 0) { 2546 btrfs_err(fs_info, "number of devices is 0"); 2547 ret = -EINVAL; 2548 } 2549 2550 if (mirror_num >= 0 && 2551 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2552 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2553 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2554 ret = -EINVAL; 2555 } 2556 2557 if (ret) 2558 return ret; 2559 2560 ret = validate_sys_chunk_array(fs_info, sb); 2561 2562 /* 2563 * Obvious sys_chunk_array corruptions, it must hold at least one key 2564 * and one chunk 2565 */ 2566 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2567 btrfs_err(fs_info, "system chunk array too big %u > %u", 2568 btrfs_super_sys_array_size(sb), 2569 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2570 ret = -EINVAL; 2571 } 2572 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2573 + sizeof(struct btrfs_chunk)) { 2574 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2575 btrfs_super_sys_array_size(sb), 2576 sizeof(struct btrfs_disk_key) 2577 + sizeof(struct btrfs_chunk)); 2578 ret = -EINVAL; 2579 } 2580 2581 /* 2582 * The generation is a global counter, we'll trust it more than the others 2583 * but it's still possible that it's the one that's wrong. 2584 */ 2585 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2586 btrfs_warn(fs_info, 2587 "suspicious: generation < chunk_root_generation: %llu < %llu", 2588 btrfs_super_generation(sb), 2589 btrfs_super_chunk_root_generation(sb)); 2590 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2591 && btrfs_super_cache_generation(sb) != (u64)-1) 2592 btrfs_warn(fs_info, 2593 "suspicious: generation < cache_generation: %llu < %llu", 2594 btrfs_super_generation(sb), 2595 btrfs_super_cache_generation(sb)); 2596 2597 return ret; 2598 } 2599 2600 /* 2601 * Validation of super block at mount time. 2602 * Some checks already done early at mount time, like csum type and incompat 2603 * flags will be skipped. 2604 */ 2605 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2606 { 2607 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2608 } 2609 2610 /* 2611 * Validation of super block at write time. 2612 * Some checks like bytenr check will be skipped as their values will be 2613 * overwritten soon. 2614 * Extra checks like csum type and incompat flags will be done here. 2615 */ 2616 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2617 struct btrfs_super_block *sb) 2618 { 2619 int ret; 2620 2621 ret = btrfs_validate_super(fs_info, sb, -1); 2622 if (ret < 0) 2623 goto out; 2624 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2625 ret = -EUCLEAN; 2626 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2627 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2628 goto out; 2629 } 2630 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2631 ret = -EUCLEAN; 2632 btrfs_err(fs_info, 2633 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2634 btrfs_super_incompat_flags(sb), 2635 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2636 goto out; 2637 } 2638 out: 2639 if (ret < 0) 2640 btrfs_err(fs_info, 2641 "super block corruption detected before writing it to disk"); 2642 return ret; 2643 } 2644 2645 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2646 { 2647 struct btrfs_tree_parent_check check = { 2648 .level = level, 2649 .transid = gen, 2650 .owner_root = btrfs_root_id(root) 2651 }; 2652 int ret = 0; 2653 2654 root->node = read_tree_block(root->fs_info, bytenr, &check); 2655 if (IS_ERR(root->node)) { 2656 ret = PTR_ERR(root->node); 2657 root->node = NULL; 2658 return ret; 2659 } 2660 if (!extent_buffer_uptodate(root->node)) { 2661 free_extent_buffer(root->node); 2662 root->node = NULL; 2663 return -EIO; 2664 } 2665 2666 btrfs_set_root_node(&root->root_item, root->node); 2667 root->commit_root = btrfs_root_node(root); 2668 btrfs_set_root_refs(&root->root_item, 1); 2669 return ret; 2670 } 2671 2672 static int load_important_roots(struct btrfs_fs_info *fs_info) 2673 { 2674 struct btrfs_super_block *sb = fs_info->super_copy; 2675 u64 gen, bytenr; 2676 int level, ret; 2677 2678 bytenr = btrfs_super_root(sb); 2679 gen = btrfs_super_generation(sb); 2680 level = btrfs_super_root_level(sb); 2681 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2682 if (ret) { 2683 btrfs_warn(fs_info, "couldn't read tree root"); 2684 return ret; 2685 } 2686 return 0; 2687 } 2688 2689 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2690 { 2691 int backup_index = find_newest_super_backup(fs_info); 2692 struct btrfs_super_block *sb = fs_info->super_copy; 2693 struct btrfs_root *tree_root = fs_info->tree_root; 2694 bool handle_error = false; 2695 int ret = 0; 2696 int i; 2697 2698 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2699 if (handle_error) { 2700 if (!IS_ERR(tree_root->node)) 2701 free_extent_buffer(tree_root->node); 2702 tree_root->node = NULL; 2703 2704 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2705 break; 2706 2707 free_root_pointers(fs_info, 0); 2708 2709 /* 2710 * Don't use the log in recovery mode, it won't be 2711 * valid 2712 */ 2713 btrfs_set_super_log_root(sb, 0); 2714 2715 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2716 ret = read_backup_root(fs_info, i); 2717 backup_index = ret; 2718 if (ret < 0) 2719 return ret; 2720 } 2721 2722 ret = load_important_roots(fs_info); 2723 if (ret) { 2724 handle_error = true; 2725 continue; 2726 } 2727 2728 /* 2729 * No need to hold btrfs_root::objectid_mutex since the fs 2730 * hasn't been fully initialised and we are the only user 2731 */ 2732 ret = btrfs_init_root_free_objectid(tree_root); 2733 if (ret < 0) { 2734 handle_error = true; 2735 continue; 2736 } 2737 2738 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2739 2740 ret = btrfs_read_roots(fs_info); 2741 if (ret < 0) { 2742 handle_error = true; 2743 continue; 2744 } 2745 2746 /* All successful */ 2747 fs_info->generation = btrfs_header_generation(tree_root->node); 2748 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2749 fs_info->last_reloc_trans = 0; 2750 2751 /* Always begin writing backup roots after the one being used */ 2752 if (backup_index < 0) { 2753 fs_info->backup_root_index = 0; 2754 } else { 2755 fs_info->backup_root_index = backup_index + 1; 2756 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2757 } 2758 break; 2759 } 2760 2761 return ret; 2762 } 2763 2764 /* 2765 * Lockdep gets confused between our buffer_tree which requires IRQ locking because 2766 * we modify marks in the IRQ context, and our delayed inode xarray which doesn't 2767 * have these requirements. Use a class key so lockdep doesn't get them mixed up. 2768 */ 2769 static struct lock_class_key buffer_xa_class; 2770 2771 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2772 { 2773 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2774 2775 /* Use the same flags as mapping->i_pages. */ 2776 xa_init_flags(&fs_info->buffer_tree, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 2777 lockdep_set_class(&fs_info->buffer_tree.xa_lock, &buffer_xa_class); 2778 2779 INIT_LIST_HEAD(&fs_info->trans_list); 2780 INIT_LIST_HEAD(&fs_info->dead_roots); 2781 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2782 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2783 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2784 spin_lock_init(&fs_info->delalloc_root_lock); 2785 spin_lock_init(&fs_info->trans_lock); 2786 spin_lock_init(&fs_info->fs_roots_radix_lock); 2787 spin_lock_init(&fs_info->delayed_iput_lock); 2788 spin_lock_init(&fs_info->defrag_inodes_lock); 2789 spin_lock_init(&fs_info->super_lock); 2790 spin_lock_init(&fs_info->unused_bgs_lock); 2791 spin_lock_init(&fs_info->treelog_bg_lock); 2792 spin_lock_init(&fs_info->zone_active_bgs_lock); 2793 spin_lock_init(&fs_info->relocation_bg_lock); 2794 rwlock_init(&fs_info->tree_mod_log_lock); 2795 rwlock_init(&fs_info->global_root_lock); 2796 mutex_init(&fs_info->unused_bg_unpin_mutex); 2797 mutex_init(&fs_info->reclaim_bgs_lock); 2798 mutex_init(&fs_info->reloc_mutex); 2799 mutex_init(&fs_info->delalloc_root_mutex); 2800 mutex_init(&fs_info->zoned_meta_io_lock); 2801 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2802 seqlock_init(&fs_info->profiles_lock); 2803 2804 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2805 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2806 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2807 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2808 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2809 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2810 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2811 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2812 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2813 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2814 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2815 BTRFS_LOCKDEP_TRANS_COMPLETED); 2816 2817 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2818 INIT_LIST_HEAD(&fs_info->space_info); 2819 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2820 INIT_LIST_HEAD(&fs_info->unused_bgs); 2821 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2822 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2823 #ifdef CONFIG_BTRFS_DEBUG 2824 INIT_LIST_HEAD(&fs_info->allocated_roots); 2825 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2826 spin_lock_init(&fs_info->eb_leak_lock); 2827 #endif 2828 fs_info->mapping_tree = RB_ROOT_CACHED; 2829 rwlock_init(&fs_info->mapping_tree_lock); 2830 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2831 BTRFS_BLOCK_RSV_GLOBAL); 2832 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2833 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2834 btrfs_init_block_rsv(&fs_info->treelog_rsv, BTRFS_BLOCK_RSV_TREELOG); 2835 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2836 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2837 BTRFS_BLOCK_RSV_DELOPS); 2838 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2839 BTRFS_BLOCK_RSV_DELREFS); 2840 2841 atomic_set(&fs_info->async_delalloc_pages, 0); 2842 atomic_set(&fs_info->defrag_running, 0); 2843 atomic_set(&fs_info->nr_delayed_iputs, 0); 2844 atomic64_set(&fs_info->tree_mod_seq, 0); 2845 fs_info->global_root_tree = RB_ROOT; 2846 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2847 fs_info->metadata_ratio = 0; 2848 fs_info->defrag_inodes = RB_ROOT; 2849 atomic64_set(&fs_info->free_chunk_space, 0); 2850 fs_info->tree_mod_log = RB_ROOT; 2851 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2852 btrfs_init_ref_verify(fs_info); 2853 2854 fs_info->thread_pool_size = min_t(unsigned long, 2855 num_online_cpus() + 2, 8); 2856 2857 INIT_LIST_HEAD(&fs_info->ordered_roots); 2858 spin_lock_init(&fs_info->ordered_root_lock); 2859 2860 btrfs_init_scrub(fs_info); 2861 btrfs_init_balance(fs_info); 2862 btrfs_init_async_reclaim_work(fs_info); 2863 btrfs_init_extent_map_shrinker_work(fs_info); 2864 2865 rwlock_init(&fs_info->block_group_cache_lock); 2866 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2867 2868 btrfs_extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2869 IO_TREE_FS_EXCLUDED_EXTENTS); 2870 2871 mutex_init(&fs_info->ordered_operations_mutex); 2872 mutex_init(&fs_info->tree_log_mutex); 2873 mutex_init(&fs_info->chunk_mutex); 2874 mutex_init(&fs_info->transaction_kthread_mutex); 2875 mutex_init(&fs_info->cleaner_mutex); 2876 mutex_init(&fs_info->ro_block_group_mutex); 2877 init_rwsem(&fs_info->commit_root_sem); 2878 init_rwsem(&fs_info->cleanup_work_sem); 2879 init_rwsem(&fs_info->subvol_sem); 2880 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2881 2882 btrfs_init_dev_replace_locks(fs_info); 2883 btrfs_init_qgroup(fs_info); 2884 btrfs_discard_init(fs_info); 2885 2886 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2887 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2888 2889 init_waitqueue_head(&fs_info->transaction_throttle); 2890 init_waitqueue_head(&fs_info->transaction_wait); 2891 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2892 init_waitqueue_head(&fs_info->async_submit_wait); 2893 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2894 2895 /* Usable values until the real ones are cached from the superblock */ 2896 fs_info->nodesize = 4096; 2897 fs_info->sectorsize = 4096; 2898 fs_info->sectorsize_bits = ilog2(4096); 2899 fs_info->stripesize = 4096; 2900 2901 /* Default compress algorithm when user does -o compress */ 2902 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2903 2904 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2905 2906 spin_lock_init(&fs_info->swapfile_pins_lock); 2907 fs_info->swapfile_pins = RB_ROOT; 2908 2909 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2910 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2911 } 2912 2913 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2914 { 2915 int ret; 2916 2917 fs_info->sb = sb; 2918 /* Temporary fixed values for block size until we read the superblock. */ 2919 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2920 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2921 2922 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2923 if (ret) 2924 return ret; 2925 2926 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2927 if (ret) 2928 return ret; 2929 2930 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2931 if (ret) 2932 return ret; 2933 2934 ret = percpu_counter_init(&fs_info->stats_read_blocks, 0, GFP_KERNEL); 2935 if (ret) 2936 return ret; 2937 2938 fs_info->dirty_metadata_batch = PAGE_SIZE * 2939 (1 + ilog2(nr_cpu_ids)); 2940 2941 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2942 if (ret) 2943 return ret; 2944 2945 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2946 GFP_KERNEL); 2947 if (ret) 2948 return ret; 2949 2950 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2951 GFP_KERNEL); 2952 if (!fs_info->delayed_root) 2953 return -ENOMEM; 2954 btrfs_init_delayed_root(fs_info->delayed_root); 2955 2956 if (sb_rdonly(sb)) 2957 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2958 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2959 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2960 2961 return btrfs_alloc_stripe_hash_table(fs_info); 2962 } 2963 2964 static int btrfs_uuid_rescan_kthread(void *data) 2965 { 2966 struct btrfs_fs_info *fs_info = data; 2967 int ret; 2968 2969 /* 2970 * 1st step is to iterate through the existing UUID tree and 2971 * to delete all entries that contain outdated data. 2972 * 2nd step is to add all missing entries to the UUID tree. 2973 */ 2974 ret = btrfs_uuid_tree_iterate(fs_info); 2975 if (ret < 0) { 2976 if (ret != -EINTR) 2977 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2978 ret); 2979 up(&fs_info->uuid_tree_rescan_sem); 2980 return ret; 2981 } 2982 return btrfs_uuid_scan_kthread(data); 2983 } 2984 2985 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2986 { 2987 struct task_struct *task; 2988 2989 down(&fs_info->uuid_tree_rescan_sem); 2990 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2991 if (IS_ERR(task)) { 2992 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2993 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2994 up(&fs_info->uuid_tree_rescan_sem); 2995 return PTR_ERR(task); 2996 } 2997 2998 return 0; 2999 } 3000 3001 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3002 { 3003 u64 root_objectid = 0; 3004 struct btrfs_root *gang[8]; 3005 int ret = 0; 3006 3007 while (1) { 3008 unsigned int found; 3009 3010 spin_lock(&fs_info->fs_roots_radix_lock); 3011 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3012 (void **)gang, root_objectid, 3013 ARRAY_SIZE(gang)); 3014 if (!found) { 3015 spin_unlock(&fs_info->fs_roots_radix_lock); 3016 break; 3017 } 3018 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 3019 3020 for (int i = 0; i < found; i++) { 3021 /* Avoid to grab roots in dead_roots. */ 3022 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3023 gang[i] = NULL; 3024 continue; 3025 } 3026 /* Grab all the search result for later use. */ 3027 gang[i] = btrfs_grab_root(gang[i]); 3028 } 3029 spin_unlock(&fs_info->fs_roots_radix_lock); 3030 3031 for (int i = 0; i < found; i++) { 3032 if (!gang[i]) 3033 continue; 3034 root_objectid = btrfs_root_id(gang[i]); 3035 /* 3036 * Continue to release the remaining roots after the first 3037 * error without cleanup and preserve the first error 3038 * for the return. 3039 */ 3040 if (!ret) 3041 ret = btrfs_orphan_cleanup(gang[i]); 3042 btrfs_put_root(gang[i]); 3043 } 3044 if (ret) 3045 break; 3046 3047 root_objectid++; 3048 } 3049 return ret; 3050 } 3051 3052 /* 3053 * Mounting logic specific to read-write file systems. Shared by open_ctree 3054 * and btrfs_remount when remounting from read-only to read-write. 3055 */ 3056 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 3057 { 3058 int ret; 3059 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 3060 bool rebuild_free_space_tree = false; 3061 3062 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3063 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3064 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 3065 btrfs_warn(fs_info, 3066 "'clear_cache' option is ignored with extent tree v2"); 3067 else 3068 rebuild_free_space_tree = true; 3069 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3070 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3071 btrfs_warn(fs_info, "free space tree is invalid"); 3072 rebuild_free_space_tree = true; 3073 } 3074 3075 if (rebuild_free_space_tree) { 3076 btrfs_info(fs_info, "rebuilding free space tree"); 3077 ret = btrfs_rebuild_free_space_tree(fs_info); 3078 if (ret) { 3079 btrfs_warn(fs_info, 3080 "failed to rebuild free space tree: %d", ret); 3081 goto out; 3082 } 3083 } 3084 3085 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3086 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3087 btrfs_info(fs_info, "disabling free space tree"); 3088 ret = btrfs_delete_free_space_tree(fs_info); 3089 if (ret) { 3090 btrfs_warn(fs_info, 3091 "failed to disable free space tree: %d", ret); 3092 goto out; 3093 } 3094 } 3095 3096 /* 3097 * btrfs_find_orphan_roots() is responsible for finding all the dead 3098 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3099 * them into the fs_info->fs_roots_radix tree. This must be done before 3100 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3101 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3102 * item before the root's tree is deleted - this means that if we unmount 3103 * or crash before the deletion completes, on the next mount we will not 3104 * delete what remains of the tree because the orphan item does not 3105 * exists anymore, which is what tells us we have a pending deletion. 3106 */ 3107 ret = btrfs_find_orphan_roots(fs_info); 3108 if (ret) 3109 goto out; 3110 3111 ret = btrfs_cleanup_fs_roots(fs_info); 3112 if (ret) 3113 goto out; 3114 3115 down_read(&fs_info->cleanup_work_sem); 3116 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3117 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3118 up_read(&fs_info->cleanup_work_sem); 3119 goto out; 3120 } 3121 up_read(&fs_info->cleanup_work_sem); 3122 3123 mutex_lock(&fs_info->cleaner_mutex); 3124 ret = btrfs_recover_relocation(fs_info); 3125 mutex_unlock(&fs_info->cleaner_mutex); 3126 if (ret < 0) { 3127 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3128 goto out; 3129 } 3130 3131 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3132 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3133 btrfs_info(fs_info, "creating free space tree"); 3134 ret = btrfs_create_free_space_tree(fs_info); 3135 if (ret) { 3136 btrfs_warn(fs_info, 3137 "failed to create free space tree: %d", ret); 3138 goto out; 3139 } 3140 } 3141 3142 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3143 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3144 if (ret) 3145 goto out; 3146 } 3147 3148 ret = btrfs_resume_balance_async(fs_info); 3149 if (ret) 3150 goto out; 3151 3152 ret = btrfs_resume_dev_replace_async(fs_info); 3153 if (ret) { 3154 btrfs_warn(fs_info, "failed to resume dev_replace"); 3155 goto out; 3156 } 3157 3158 btrfs_qgroup_rescan_resume(fs_info); 3159 3160 if (!fs_info->uuid_root) { 3161 btrfs_info(fs_info, "creating UUID tree"); 3162 ret = btrfs_create_uuid_tree(fs_info); 3163 if (ret) { 3164 btrfs_warn(fs_info, 3165 "failed to create the UUID tree %d", ret); 3166 goto out; 3167 } 3168 } 3169 3170 out: 3171 return ret; 3172 } 3173 3174 /* 3175 * Do various sanity and dependency checks of different features. 3176 * 3177 * @is_rw_mount: If the mount is read-write. 3178 * 3179 * This is the place for less strict checks (like for subpage or artificial 3180 * feature dependencies). 3181 * 3182 * For strict checks or possible corruption detection, see 3183 * btrfs_validate_super(). 3184 * 3185 * This should be called after btrfs_parse_options(), as some mount options 3186 * (space cache related) can modify on-disk format like free space tree and 3187 * screw up certain feature dependencies. 3188 */ 3189 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3190 { 3191 struct btrfs_super_block *disk_super = fs_info->super_copy; 3192 u64 incompat = btrfs_super_incompat_flags(disk_super); 3193 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3194 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3195 3196 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3197 btrfs_err(fs_info, 3198 "cannot mount because of unknown incompat features (0x%llx)", 3199 incompat); 3200 return -EINVAL; 3201 } 3202 3203 /* Runtime limitation for mixed block groups. */ 3204 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3205 (fs_info->sectorsize != fs_info->nodesize)) { 3206 btrfs_err(fs_info, 3207 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3208 fs_info->nodesize, fs_info->sectorsize); 3209 return -EINVAL; 3210 } 3211 3212 /* Mixed backref is an always-enabled feature. */ 3213 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3214 3215 /* Set compression related flags just in case. */ 3216 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3217 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3218 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3219 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3220 3221 /* 3222 * An ancient flag, which should really be marked deprecated. 3223 * Such runtime limitation doesn't really need a incompat flag. 3224 */ 3225 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3226 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3227 3228 if (compat_ro_unsupp && is_rw_mount) { 3229 btrfs_err(fs_info, 3230 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3231 compat_ro); 3232 return -EINVAL; 3233 } 3234 3235 /* 3236 * We have unsupported RO compat features, although RO mounted, we 3237 * should not cause any metadata writes, including log replay. 3238 * Or we could screw up whatever the new feature requires. 3239 */ 3240 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3241 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3242 btrfs_err(fs_info, 3243 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3244 compat_ro); 3245 return -EINVAL; 3246 } 3247 3248 /* 3249 * Artificial limitations for block group tree, to force 3250 * block-group-tree to rely on no-holes and free-space-tree. 3251 */ 3252 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3253 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3254 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3255 btrfs_err(fs_info, 3256 "block-group-tree feature requires no-holes and free-space-tree features"); 3257 return -EINVAL; 3258 } 3259 3260 /* 3261 * Subpage runtime limitation on v1 cache. 3262 * 3263 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3264 * we're already defaulting to v2 cache, no need to bother v1 as it's 3265 * going to be deprecated anyway. 3266 */ 3267 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3268 btrfs_warn(fs_info, 3269 "v1 space cache is not supported for page size %lu with sectorsize %u", 3270 PAGE_SIZE, fs_info->sectorsize); 3271 return -EINVAL; 3272 } 3273 3274 /* This can be called by remount, we need to protect the super block. */ 3275 spin_lock(&fs_info->super_lock); 3276 btrfs_set_super_incompat_flags(disk_super, incompat); 3277 spin_unlock(&fs_info->super_lock); 3278 3279 return 0; 3280 } 3281 3282 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices) 3283 { 3284 u32 sectorsize; 3285 u32 nodesize; 3286 u32 stripesize; 3287 u64 generation; 3288 u16 csum_type; 3289 struct btrfs_super_block *disk_super; 3290 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3291 struct btrfs_root *tree_root; 3292 struct btrfs_root *chunk_root; 3293 int ret; 3294 int level; 3295 3296 ret = init_mount_fs_info(fs_info, sb); 3297 if (ret) 3298 goto fail; 3299 3300 /* These need to be init'ed before we start creating inodes and such. */ 3301 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3302 GFP_KERNEL); 3303 fs_info->tree_root = tree_root; 3304 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3305 GFP_KERNEL); 3306 fs_info->chunk_root = chunk_root; 3307 if (!tree_root || !chunk_root) { 3308 ret = -ENOMEM; 3309 goto fail; 3310 } 3311 3312 ret = btrfs_init_btree_inode(sb); 3313 if (ret) 3314 goto fail; 3315 3316 invalidate_bdev(fs_devices->latest_dev->bdev); 3317 3318 /* 3319 * Read super block and check the signature bytes only 3320 */ 3321 disk_super = btrfs_read_disk_super(fs_devices->latest_dev->bdev, 0, false); 3322 if (IS_ERR(disk_super)) { 3323 ret = PTR_ERR(disk_super); 3324 goto fail_alloc; 3325 } 3326 3327 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3328 /* 3329 * Verify the type first, if that or the checksum value are 3330 * corrupted, we'll find out 3331 */ 3332 csum_type = btrfs_super_csum_type(disk_super); 3333 if (!btrfs_supported_super_csum(csum_type)) { 3334 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3335 csum_type); 3336 ret = -EINVAL; 3337 btrfs_release_disk_super(disk_super); 3338 goto fail_alloc; 3339 } 3340 3341 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3342 3343 ret = btrfs_init_csum_hash(fs_info, csum_type); 3344 if (ret) { 3345 btrfs_release_disk_super(disk_super); 3346 goto fail_alloc; 3347 } 3348 3349 /* 3350 * We want to check superblock checksum, the type is stored inside. 3351 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3352 */ 3353 if (btrfs_check_super_csum(fs_info, disk_super)) { 3354 btrfs_err(fs_info, "superblock checksum mismatch"); 3355 ret = -EINVAL; 3356 btrfs_release_disk_super(disk_super); 3357 goto fail_alloc; 3358 } 3359 3360 /* 3361 * super_copy is zeroed at allocation time and we never touch the 3362 * following bytes up to INFO_SIZE, the checksum is calculated from 3363 * the whole block of INFO_SIZE 3364 */ 3365 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3366 btrfs_release_disk_super(disk_super); 3367 3368 disk_super = fs_info->super_copy; 3369 3370 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3371 sizeof(*fs_info->super_for_commit)); 3372 3373 ret = btrfs_validate_mount_super(fs_info); 3374 if (ret) { 3375 btrfs_err(fs_info, "superblock contains fatal errors"); 3376 ret = -EINVAL; 3377 goto fail_alloc; 3378 } 3379 3380 if (!btrfs_super_root(disk_super)) { 3381 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3382 ret = -EINVAL; 3383 goto fail_alloc; 3384 } 3385 3386 /* check FS state, whether FS is broken. */ 3387 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3388 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3389 3390 /* Set up fs_info before parsing mount options */ 3391 nodesize = btrfs_super_nodesize(disk_super); 3392 sectorsize = btrfs_super_sectorsize(disk_super); 3393 stripesize = sectorsize; 3394 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3395 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3396 3397 fs_info->nodesize = nodesize; 3398 fs_info->sectorsize = sectorsize; 3399 fs_info->sectorsize_bits = ilog2(sectorsize); 3400 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3401 fs_info->stripesize = stripesize; 3402 fs_info->fs_devices->fs_info = fs_info; 3403 3404 /* 3405 * Handle the space caching options appropriately now that we have the 3406 * super block loaded and validated. 3407 */ 3408 btrfs_set_free_space_cache_settings(fs_info); 3409 3410 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3411 ret = -EINVAL; 3412 goto fail_alloc; 3413 } 3414 3415 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3416 if (ret < 0) 3417 goto fail_alloc; 3418 3419 /* 3420 * At this point our mount options are validated, if we set ->max_inline 3421 * to something non-standard make sure we truncate it to sectorsize. 3422 */ 3423 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3424 3425 ret = btrfs_init_workqueues(fs_info); 3426 if (ret) 3427 goto fail_sb_buffer; 3428 3429 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3430 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3431 3432 /* Update the values for the current filesystem. */ 3433 sb->s_blocksize = sectorsize; 3434 sb->s_blocksize_bits = blksize_bits(sectorsize); 3435 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3436 3437 mutex_lock(&fs_info->chunk_mutex); 3438 ret = btrfs_read_sys_array(fs_info); 3439 mutex_unlock(&fs_info->chunk_mutex); 3440 if (ret) { 3441 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3442 goto fail_sb_buffer; 3443 } 3444 3445 generation = btrfs_super_chunk_root_generation(disk_super); 3446 level = btrfs_super_chunk_root_level(disk_super); 3447 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3448 generation, level); 3449 if (ret) { 3450 btrfs_err(fs_info, "failed to read chunk root"); 3451 goto fail_tree_roots; 3452 } 3453 3454 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3455 offsetof(struct btrfs_header, chunk_tree_uuid), 3456 BTRFS_UUID_SIZE); 3457 3458 ret = btrfs_read_chunk_tree(fs_info); 3459 if (ret) { 3460 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3461 goto fail_tree_roots; 3462 } 3463 3464 /* 3465 * At this point we know all the devices that make this filesystem, 3466 * including the seed devices but we don't know yet if the replace 3467 * target is required. So free devices that are not part of this 3468 * filesystem but skip the replace target device which is checked 3469 * below in btrfs_init_dev_replace(). 3470 */ 3471 btrfs_free_extra_devids(fs_devices); 3472 if (!fs_devices->latest_dev->bdev) { 3473 btrfs_err(fs_info, "failed to read devices"); 3474 ret = -EIO; 3475 goto fail_tree_roots; 3476 } 3477 3478 ret = init_tree_roots(fs_info); 3479 if (ret) 3480 goto fail_tree_roots; 3481 3482 /* 3483 * Get zone type information of zoned block devices. This will also 3484 * handle emulation of a zoned filesystem if a regular device has the 3485 * zoned incompat feature flag set. 3486 */ 3487 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3488 if (ret) { 3489 btrfs_err(fs_info, 3490 "zoned: failed to read device zone info: %d", ret); 3491 goto fail_block_groups; 3492 } 3493 3494 /* 3495 * If we have a uuid root and we're not being told to rescan we need to 3496 * check the generation here so we can set the 3497 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3498 * transaction during a balance or the log replay without updating the 3499 * uuid generation, and then if we crash we would rescan the uuid tree, 3500 * even though it was perfectly fine. 3501 */ 3502 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3503 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3504 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3505 3506 ret = btrfs_verify_dev_extents(fs_info); 3507 if (ret) { 3508 btrfs_err(fs_info, 3509 "failed to verify dev extents against chunks: %d", 3510 ret); 3511 goto fail_block_groups; 3512 } 3513 ret = btrfs_recover_balance(fs_info); 3514 if (ret) { 3515 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3516 goto fail_block_groups; 3517 } 3518 3519 ret = btrfs_init_dev_stats(fs_info); 3520 if (ret) { 3521 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3522 goto fail_block_groups; 3523 } 3524 3525 ret = btrfs_init_dev_replace(fs_info); 3526 if (ret) { 3527 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3528 goto fail_block_groups; 3529 } 3530 3531 ret = btrfs_check_zoned_mode(fs_info); 3532 if (ret) { 3533 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3534 ret); 3535 goto fail_block_groups; 3536 } 3537 3538 ret = btrfs_sysfs_add_fsid(fs_devices); 3539 if (ret) { 3540 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3541 ret); 3542 goto fail_block_groups; 3543 } 3544 3545 ret = btrfs_sysfs_add_mounted(fs_info); 3546 if (ret) { 3547 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3548 goto fail_fsdev_sysfs; 3549 } 3550 3551 ret = btrfs_init_space_info(fs_info); 3552 if (ret) { 3553 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3554 goto fail_sysfs; 3555 } 3556 3557 ret = btrfs_read_block_groups(fs_info); 3558 if (ret) { 3559 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3560 goto fail_sysfs; 3561 } 3562 3563 btrfs_free_zone_cache(fs_info); 3564 3565 btrfs_check_active_zone_reservation(fs_info); 3566 3567 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3568 !btrfs_check_rw_degradable(fs_info, NULL)) { 3569 btrfs_warn(fs_info, 3570 "writable mount is not allowed due to too many missing devices"); 3571 ret = -EINVAL; 3572 goto fail_sysfs; 3573 } 3574 3575 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3576 "btrfs-cleaner"); 3577 if (IS_ERR(fs_info->cleaner_kthread)) { 3578 ret = PTR_ERR(fs_info->cleaner_kthread); 3579 goto fail_sysfs; 3580 } 3581 3582 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3583 tree_root, 3584 "btrfs-transaction"); 3585 if (IS_ERR(fs_info->transaction_kthread)) { 3586 ret = PTR_ERR(fs_info->transaction_kthread); 3587 goto fail_cleaner; 3588 } 3589 3590 ret = btrfs_read_qgroup_config(fs_info); 3591 if (ret) 3592 goto fail_trans_kthread; 3593 3594 if (btrfs_build_ref_tree(fs_info)) 3595 btrfs_err(fs_info, "couldn't build ref tree"); 3596 3597 /* do not make disk changes in broken FS or nologreplay is given */ 3598 if (btrfs_super_log_root(disk_super) != 0 && 3599 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3600 btrfs_info(fs_info, "start tree-log replay"); 3601 ret = btrfs_replay_log(fs_info, fs_devices); 3602 if (ret) 3603 goto fail_qgroup; 3604 } 3605 3606 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3607 if (IS_ERR(fs_info->fs_root)) { 3608 ret = PTR_ERR(fs_info->fs_root); 3609 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3610 fs_info->fs_root = NULL; 3611 goto fail_qgroup; 3612 } 3613 3614 if (sb_rdonly(sb)) 3615 return 0; 3616 3617 ret = btrfs_start_pre_rw_mount(fs_info); 3618 if (ret) { 3619 close_ctree(fs_info); 3620 return ret; 3621 } 3622 btrfs_discard_resume(fs_info); 3623 3624 if (fs_info->uuid_root && 3625 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3626 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3627 btrfs_info(fs_info, "checking UUID tree"); 3628 ret = btrfs_check_uuid_tree(fs_info); 3629 if (ret) { 3630 btrfs_warn(fs_info, 3631 "failed to check the UUID tree: %d", ret); 3632 close_ctree(fs_info); 3633 return ret; 3634 } 3635 } 3636 3637 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3638 3639 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3640 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3641 wake_up_process(fs_info->cleaner_kthread); 3642 3643 return 0; 3644 3645 fail_qgroup: 3646 btrfs_free_qgroup_config(fs_info); 3647 fail_trans_kthread: 3648 kthread_stop(fs_info->transaction_kthread); 3649 btrfs_cleanup_transaction(fs_info); 3650 btrfs_free_fs_roots(fs_info); 3651 fail_cleaner: 3652 kthread_stop(fs_info->cleaner_kthread); 3653 3654 /* 3655 * make sure we're done with the btree inode before we stop our 3656 * kthreads 3657 */ 3658 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3659 3660 fail_sysfs: 3661 btrfs_sysfs_remove_mounted(fs_info); 3662 3663 fail_fsdev_sysfs: 3664 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3665 3666 fail_block_groups: 3667 btrfs_put_block_group_cache(fs_info); 3668 3669 fail_tree_roots: 3670 if (fs_info->data_reloc_root) 3671 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3672 free_root_pointers(fs_info, true); 3673 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3674 3675 fail_sb_buffer: 3676 btrfs_stop_all_workers(fs_info); 3677 btrfs_free_block_groups(fs_info); 3678 fail_alloc: 3679 btrfs_mapping_tree_free(fs_info); 3680 3681 iput(fs_info->btree_inode); 3682 fail: 3683 btrfs_close_devices(fs_info->fs_devices); 3684 ASSERT(ret < 0); 3685 return ret; 3686 } 3687 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3688 3689 static void btrfs_end_super_write(struct bio *bio) 3690 { 3691 struct btrfs_device *device = bio->bi_private; 3692 struct folio_iter fi; 3693 3694 bio_for_each_folio_all(fi, bio) { 3695 if (bio->bi_status) { 3696 btrfs_warn_rl_in_rcu(device->fs_info, 3697 "lost super block write due to IO error on %s (%d)", 3698 btrfs_dev_name(device), 3699 blk_status_to_errno(bio->bi_status)); 3700 btrfs_dev_stat_inc_and_print(device, 3701 BTRFS_DEV_STAT_WRITE_ERRS); 3702 /* Ensure failure if the primary sb fails. */ 3703 if (bio->bi_opf & REQ_FUA) 3704 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3705 &device->sb_write_errors); 3706 else 3707 atomic_inc(&device->sb_write_errors); 3708 } 3709 folio_unlock(fi.folio); 3710 folio_put(fi.folio); 3711 } 3712 3713 bio_put(bio); 3714 } 3715 3716 /* 3717 * Write superblock @sb to the @device. Do not wait for completion, all the 3718 * folios we use for writing are locked. 3719 * 3720 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3721 * the expected device size at commit time. Note that max_mirrors must be 3722 * same for write and wait phases. 3723 * 3724 * Return number of errors when folio is not found or submission fails. 3725 */ 3726 static int write_dev_supers(struct btrfs_device *device, 3727 struct btrfs_super_block *sb, int max_mirrors) 3728 { 3729 struct btrfs_fs_info *fs_info = device->fs_info; 3730 struct address_space *mapping = device->bdev->bd_mapping; 3731 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3732 int i; 3733 int ret; 3734 u64 bytenr, bytenr_orig; 3735 3736 atomic_set(&device->sb_write_errors, 0); 3737 3738 if (max_mirrors == 0) 3739 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3740 3741 shash->tfm = fs_info->csum_shash; 3742 3743 for (i = 0; i < max_mirrors; i++) { 3744 struct folio *folio; 3745 struct bio *bio; 3746 struct btrfs_super_block *disk_super; 3747 size_t offset; 3748 3749 bytenr_orig = btrfs_sb_offset(i); 3750 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3751 if (ret == -ENOENT) { 3752 continue; 3753 } else if (ret < 0) { 3754 btrfs_err(device->fs_info, 3755 "couldn't get super block location for mirror %d error %d", 3756 i, ret); 3757 atomic_inc(&device->sb_write_errors); 3758 continue; 3759 } 3760 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3761 device->commit_total_bytes) 3762 break; 3763 3764 btrfs_set_super_bytenr(sb, bytenr_orig); 3765 3766 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3767 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3768 sb->csum); 3769 3770 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3771 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3772 GFP_NOFS); 3773 if (IS_ERR(folio)) { 3774 btrfs_err(device->fs_info, 3775 "couldn't get super block page for bytenr %llu error %ld", 3776 bytenr, PTR_ERR(folio)); 3777 atomic_inc(&device->sb_write_errors); 3778 continue; 3779 } 3780 3781 offset = offset_in_folio(folio, bytenr); 3782 disk_super = folio_address(folio) + offset; 3783 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3784 3785 /* 3786 * Directly use bios here instead of relying on the page cache 3787 * to do I/O, so we don't lose the ability to do integrity 3788 * checking. 3789 */ 3790 bio = bio_alloc(device->bdev, 1, 3791 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3792 GFP_NOFS); 3793 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3794 bio->bi_private = device; 3795 bio->bi_end_io = btrfs_end_super_write; 3796 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3797 3798 /* 3799 * We FUA only the first super block. The others we allow to 3800 * go down lazy and there's a short window where the on-disk 3801 * copies might still contain the older version. 3802 */ 3803 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3804 bio->bi_opf |= REQ_FUA; 3805 submit_bio(bio); 3806 3807 if (btrfs_advance_sb_log(device, i)) 3808 atomic_inc(&device->sb_write_errors); 3809 } 3810 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3811 } 3812 3813 /* 3814 * Wait for write completion of superblocks done by write_dev_supers, 3815 * @max_mirrors same for write and wait phases. 3816 * 3817 * Return -1 if primary super block write failed or when there were no super block 3818 * copies written. Otherwise 0. 3819 */ 3820 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3821 { 3822 int i; 3823 int errors = 0; 3824 bool primary_failed = false; 3825 int ret; 3826 u64 bytenr; 3827 3828 if (max_mirrors == 0) 3829 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3830 3831 for (i = 0; i < max_mirrors; i++) { 3832 struct folio *folio; 3833 3834 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3835 if (ret == -ENOENT) { 3836 break; 3837 } else if (ret < 0) { 3838 errors++; 3839 if (i == 0) 3840 primary_failed = true; 3841 continue; 3842 } 3843 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3844 device->commit_total_bytes) 3845 break; 3846 3847 folio = filemap_get_folio(device->bdev->bd_mapping, 3848 bytenr >> PAGE_SHIFT); 3849 /* If the folio has been removed, then we know it completed. */ 3850 if (IS_ERR(folio)) 3851 continue; 3852 3853 /* Folio will be unlocked once the write completes. */ 3854 folio_wait_locked(folio); 3855 folio_put(folio); 3856 } 3857 3858 errors += atomic_read(&device->sb_write_errors); 3859 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3860 primary_failed = true; 3861 if (primary_failed) { 3862 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3863 device->devid); 3864 return -1; 3865 } 3866 3867 return errors < i ? 0 : -1; 3868 } 3869 3870 /* 3871 * endio for the write_dev_flush, this will wake anyone waiting 3872 * for the barrier when it is done 3873 */ 3874 static void btrfs_end_empty_barrier(struct bio *bio) 3875 { 3876 bio_uninit(bio); 3877 complete(bio->bi_private); 3878 } 3879 3880 /* 3881 * Submit a flush request to the device if it supports it. Error handling is 3882 * done in the waiting counterpart. 3883 */ 3884 static void write_dev_flush(struct btrfs_device *device) 3885 { 3886 struct bio *bio = &device->flush_bio; 3887 3888 device->last_flush_error = BLK_STS_OK; 3889 3890 bio_init(bio, device->bdev, NULL, 0, 3891 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3892 bio->bi_end_io = btrfs_end_empty_barrier; 3893 init_completion(&device->flush_wait); 3894 bio->bi_private = &device->flush_wait; 3895 submit_bio(bio); 3896 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3897 } 3898 3899 /* 3900 * If the flush bio has been submitted by write_dev_flush, wait for it. 3901 * Return true for any error, and false otherwise. 3902 */ 3903 static bool wait_dev_flush(struct btrfs_device *device) 3904 { 3905 struct bio *bio = &device->flush_bio; 3906 3907 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3908 return false; 3909 3910 wait_for_completion_io(&device->flush_wait); 3911 3912 if (bio->bi_status) { 3913 device->last_flush_error = bio->bi_status; 3914 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3915 return true; 3916 } 3917 3918 return false; 3919 } 3920 3921 /* 3922 * send an empty flush down to each device in parallel, 3923 * then wait for them 3924 */ 3925 static int barrier_all_devices(struct btrfs_fs_info *info) 3926 { 3927 struct list_head *head; 3928 struct btrfs_device *dev; 3929 int errors_wait = 0; 3930 3931 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3932 /* send down all the barriers */ 3933 head = &info->fs_devices->devices; 3934 list_for_each_entry(dev, head, dev_list) { 3935 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3936 continue; 3937 if (!dev->bdev) 3938 continue; 3939 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3940 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3941 continue; 3942 3943 write_dev_flush(dev); 3944 } 3945 3946 /* wait for all the barriers */ 3947 list_for_each_entry(dev, head, dev_list) { 3948 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3949 continue; 3950 if (!dev->bdev) { 3951 errors_wait++; 3952 continue; 3953 } 3954 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3955 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3956 continue; 3957 3958 if (wait_dev_flush(dev)) 3959 errors_wait++; 3960 } 3961 3962 /* 3963 * Checks last_flush_error of disks in order to determine the device 3964 * state. 3965 */ 3966 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3967 return -EIO; 3968 3969 return 0; 3970 } 3971 3972 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3973 { 3974 int raid_type; 3975 int min_tolerated = INT_MAX; 3976 3977 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3978 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3979 min_tolerated = min_t(int, min_tolerated, 3980 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3981 tolerated_failures); 3982 3983 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3984 if (raid_type == BTRFS_RAID_SINGLE) 3985 continue; 3986 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3987 continue; 3988 min_tolerated = min_t(int, min_tolerated, 3989 btrfs_raid_array[raid_type]. 3990 tolerated_failures); 3991 } 3992 3993 if (min_tolerated == INT_MAX) { 3994 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3995 min_tolerated = 0; 3996 } 3997 3998 return min_tolerated; 3999 } 4000 4001 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4002 { 4003 struct list_head *head; 4004 struct btrfs_device *dev; 4005 struct btrfs_super_block *sb; 4006 struct btrfs_dev_item *dev_item; 4007 int ret; 4008 int do_barriers; 4009 int max_errors; 4010 int total_errors = 0; 4011 u64 flags; 4012 4013 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4014 4015 /* 4016 * max_mirrors == 0 indicates we're from commit_transaction, 4017 * not from fsync where the tree roots in fs_info have not 4018 * been consistent on disk. 4019 */ 4020 if (max_mirrors == 0) 4021 backup_super_roots(fs_info); 4022 4023 sb = fs_info->super_for_commit; 4024 dev_item = &sb->dev_item; 4025 4026 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4027 head = &fs_info->fs_devices->devices; 4028 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4029 4030 if (do_barriers) { 4031 ret = barrier_all_devices(fs_info); 4032 if (ret) { 4033 mutex_unlock( 4034 &fs_info->fs_devices->device_list_mutex); 4035 btrfs_handle_fs_error(fs_info, ret, 4036 "errors while submitting device barriers."); 4037 return ret; 4038 } 4039 } 4040 4041 list_for_each_entry(dev, head, dev_list) { 4042 if (!dev->bdev) { 4043 total_errors++; 4044 continue; 4045 } 4046 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4047 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4048 continue; 4049 4050 btrfs_set_stack_device_generation(dev_item, 0); 4051 btrfs_set_stack_device_type(dev_item, dev->type); 4052 btrfs_set_stack_device_id(dev_item, dev->devid); 4053 btrfs_set_stack_device_total_bytes(dev_item, 4054 dev->commit_total_bytes); 4055 btrfs_set_stack_device_bytes_used(dev_item, 4056 dev->commit_bytes_used); 4057 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4058 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4059 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4060 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4061 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4062 BTRFS_FSID_SIZE); 4063 4064 flags = btrfs_super_flags(sb); 4065 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4066 4067 ret = btrfs_validate_write_super(fs_info, sb); 4068 if (ret < 0) { 4069 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4070 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4071 "unexpected superblock corruption detected"); 4072 return -EUCLEAN; 4073 } 4074 4075 ret = write_dev_supers(dev, sb, max_mirrors); 4076 if (ret) 4077 total_errors++; 4078 } 4079 if (total_errors > max_errors) { 4080 btrfs_err(fs_info, "%d errors while writing supers", 4081 total_errors); 4082 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4083 4084 /* FUA is masked off if unsupported and can't be the reason */ 4085 btrfs_handle_fs_error(fs_info, -EIO, 4086 "%d errors while writing supers", 4087 total_errors); 4088 return -EIO; 4089 } 4090 4091 total_errors = 0; 4092 list_for_each_entry(dev, head, dev_list) { 4093 if (!dev->bdev) 4094 continue; 4095 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4096 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4097 continue; 4098 4099 ret = wait_dev_supers(dev, max_mirrors); 4100 if (ret) 4101 total_errors++; 4102 } 4103 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4104 if (total_errors > max_errors) { 4105 btrfs_handle_fs_error(fs_info, -EIO, 4106 "%d errors while writing supers", 4107 total_errors); 4108 return -EIO; 4109 } 4110 return 0; 4111 } 4112 4113 /* Drop a fs root from the radix tree and free it. */ 4114 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4115 struct btrfs_root *root) 4116 { 4117 bool drop_ref = false; 4118 4119 spin_lock(&fs_info->fs_roots_radix_lock); 4120 radix_tree_delete(&fs_info->fs_roots_radix, 4121 (unsigned long)btrfs_root_id(root)); 4122 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4123 drop_ref = true; 4124 spin_unlock(&fs_info->fs_roots_radix_lock); 4125 4126 if (BTRFS_FS_ERROR(fs_info)) { 4127 ASSERT(root->log_root == NULL); 4128 if (root->reloc_root) { 4129 btrfs_put_root(root->reloc_root); 4130 root->reloc_root = NULL; 4131 } 4132 } 4133 4134 if (drop_ref) 4135 btrfs_put_root(root); 4136 } 4137 4138 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4139 { 4140 mutex_lock(&fs_info->cleaner_mutex); 4141 btrfs_run_delayed_iputs(fs_info); 4142 mutex_unlock(&fs_info->cleaner_mutex); 4143 wake_up_process(fs_info->cleaner_kthread); 4144 4145 /* wait until ongoing cleanup work done */ 4146 down_write(&fs_info->cleanup_work_sem); 4147 up_write(&fs_info->cleanup_work_sem); 4148 4149 return btrfs_commit_current_transaction(fs_info->tree_root); 4150 } 4151 4152 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4153 { 4154 struct btrfs_transaction *trans; 4155 struct btrfs_transaction *tmp; 4156 bool found = false; 4157 4158 /* 4159 * This function is only called at the very end of close_ctree(), 4160 * thus no other running transaction, no need to take trans_lock. 4161 */ 4162 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4163 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4164 struct extent_state *cached = NULL; 4165 u64 dirty_bytes = 0; 4166 u64 cur = 0; 4167 u64 found_start; 4168 u64 found_end; 4169 4170 found = true; 4171 while (btrfs_find_first_extent_bit(&trans->dirty_pages, cur, 4172 &found_start, &found_end, 4173 EXTENT_DIRTY, &cached)) { 4174 dirty_bytes += found_end + 1 - found_start; 4175 cur = found_end + 1; 4176 } 4177 btrfs_warn(fs_info, 4178 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4179 trans->transid, dirty_bytes); 4180 btrfs_cleanup_one_transaction(trans); 4181 4182 if (trans == fs_info->running_transaction) 4183 fs_info->running_transaction = NULL; 4184 list_del_init(&trans->list); 4185 4186 btrfs_put_transaction(trans); 4187 trace_btrfs_transaction_commit(fs_info); 4188 } 4189 ASSERT(!found); 4190 } 4191 4192 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4193 { 4194 int ret; 4195 4196 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4197 4198 /* 4199 * If we had UNFINISHED_DROPS we could still be processing them, so 4200 * clear that bit and wake up relocation so it can stop. 4201 * We must do this before stopping the block group reclaim task, because 4202 * at btrfs_relocate_block_group() we wait for this bit, and after the 4203 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4204 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4205 * return 1. 4206 */ 4207 btrfs_wake_unfinished_drop(fs_info); 4208 4209 /* 4210 * We may have the reclaim task running and relocating a data block group, 4211 * in which case it may create delayed iputs. So stop it before we park 4212 * the cleaner kthread otherwise we can get new delayed iputs after 4213 * parking the cleaner, and that can make the async reclaim task to hang 4214 * if it's waiting for delayed iputs to complete, since the cleaner is 4215 * parked and can not run delayed iputs - this will make us hang when 4216 * trying to stop the async reclaim task. 4217 */ 4218 cancel_work_sync(&fs_info->reclaim_bgs_work); 4219 /* 4220 * We don't want the cleaner to start new transactions, add more delayed 4221 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4222 * because that frees the task_struct, and the transaction kthread might 4223 * still try to wake up the cleaner. 4224 */ 4225 kthread_park(fs_info->cleaner_kthread); 4226 4227 /* wait for the qgroup rescan worker to stop */ 4228 btrfs_qgroup_wait_for_completion(fs_info, false); 4229 4230 /* wait for the uuid_scan task to finish */ 4231 down(&fs_info->uuid_tree_rescan_sem); 4232 /* avoid complains from lockdep et al., set sem back to initial state */ 4233 up(&fs_info->uuid_tree_rescan_sem); 4234 4235 /* pause restriper - we want to resume on mount */ 4236 btrfs_pause_balance(fs_info); 4237 4238 btrfs_dev_replace_suspend_for_unmount(fs_info); 4239 4240 btrfs_scrub_cancel(fs_info); 4241 4242 /* wait for any defraggers to finish */ 4243 wait_event(fs_info->transaction_wait, 4244 (atomic_read(&fs_info->defrag_running) == 0)); 4245 4246 /* clear out the rbtree of defraggable inodes */ 4247 btrfs_cleanup_defrag_inodes(fs_info); 4248 4249 /* 4250 * Handle the error fs first, as it will flush and wait for all ordered 4251 * extents. This will generate delayed iputs, thus we want to handle 4252 * it first. 4253 */ 4254 if (unlikely(BTRFS_FS_ERROR(fs_info))) 4255 btrfs_error_commit_super(fs_info); 4256 4257 /* 4258 * Wait for any fixup workers to complete. 4259 * If we don't wait for them here and they are still running by the time 4260 * we call kthread_stop() against the cleaner kthread further below, we 4261 * get an use-after-free on the cleaner because the fixup worker adds an 4262 * inode to the list of delayed iputs and then attempts to wakeup the 4263 * cleaner kthread, which was already stopped and destroyed. We parked 4264 * already the cleaner, but below we run all pending delayed iputs. 4265 */ 4266 btrfs_flush_workqueue(fs_info->fixup_workers); 4267 /* 4268 * Similar case here, we have to wait for delalloc workers before we 4269 * proceed below and stop the cleaner kthread, otherwise we trigger a 4270 * use-after-tree on the cleaner kthread task_struct when a delalloc 4271 * worker running submit_compressed_extents() adds a delayed iput, which 4272 * does a wake up on the cleaner kthread, which was already freed below 4273 * when we call kthread_stop(). 4274 */ 4275 btrfs_flush_workqueue(fs_info->delalloc_workers); 4276 4277 /* 4278 * We can have ordered extents getting their last reference dropped from 4279 * the fs_info->workers queue because for async writes for data bios we 4280 * queue a work for that queue, at btrfs_wq_submit_bio(), that runs 4281 * run_one_async_done() which calls btrfs_bio_end_io() in case the bio 4282 * has an error, and that later function can do the final 4283 * btrfs_put_ordered_extent() on the ordered extent attached to the bio, 4284 * which adds a delayed iput for the inode. So we must flush the queue 4285 * so that we don't have delayed iputs after committing the current 4286 * transaction below and stopping the cleaner and transaction kthreads. 4287 */ 4288 btrfs_flush_workqueue(fs_info->workers); 4289 4290 /* 4291 * When finishing a compressed write bio we schedule a work queue item 4292 * to finish an ordered extent - btrfs_finish_compressed_write_work() 4293 * calls btrfs_finish_ordered_extent() which in turns does a call to 4294 * btrfs_queue_ordered_fn(), and that queues the ordered extent 4295 * completion either in the endio_write_workers work queue or in the 4296 * fs_info->endio_freespace_worker work queue. We flush those queues 4297 * below, so before we flush them we must flush this queue for the 4298 * workers of compressed writes. 4299 */ 4300 flush_workqueue(fs_info->compressed_write_workers); 4301 4302 /* 4303 * After we parked the cleaner kthread, ordered extents may have 4304 * completed and created new delayed iputs. If one of the async reclaim 4305 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4306 * can hang forever trying to stop it, because if a delayed iput is 4307 * added after it ran btrfs_run_delayed_iputs() and before it called 4308 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4309 * no one else to run iputs. 4310 * 4311 * So wait for all ongoing ordered extents to complete and then run 4312 * delayed iputs. This works because once we reach this point no one 4313 * can either create new ordered extents nor create delayed iputs 4314 * through some other means. 4315 * 4316 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4317 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4318 * but the delayed iput for the respective inode is made only when doing 4319 * the final btrfs_put_ordered_extent() (which must happen at 4320 * btrfs_finish_ordered_io() when we are unmounting). 4321 */ 4322 btrfs_flush_workqueue(fs_info->endio_write_workers); 4323 /* Ordered extents for free space inodes. */ 4324 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4325 btrfs_run_delayed_iputs(fs_info); 4326 /* There should be no more workload to generate new delayed iputs. */ 4327 set_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state); 4328 4329 cancel_work_sync(&fs_info->async_reclaim_work); 4330 cancel_work_sync(&fs_info->async_data_reclaim_work); 4331 cancel_work_sync(&fs_info->preempt_reclaim_work); 4332 cancel_work_sync(&fs_info->em_shrinker_work); 4333 4334 /* Cancel or finish ongoing discard work */ 4335 btrfs_discard_cleanup(fs_info); 4336 4337 if (!sb_rdonly(fs_info->sb)) { 4338 /* 4339 * The cleaner kthread is stopped, so do one final pass over 4340 * unused block groups. 4341 */ 4342 btrfs_delete_unused_bgs(fs_info); 4343 4344 /* 4345 * There might be existing delayed inode workers still running 4346 * and holding an empty delayed inode item. We must wait for 4347 * them to complete first because they can create a transaction. 4348 * This happens when someone calls btrfs_balance_delayed_items() 4349 * and then a transaction commit runs the same delayed nodes 4350 * before any delayed worker has done something with the nodes. 4351 * We must wait for any worker here and not at transaction 4352 * commit time since that could cause a deadlock. 4353 * This is a very rare case. 4354 */ 4355 btrfs_flush_workqueue(fs_info->delayed_workers); 4356 4357 ret = btrfs_commit_super(fs_info); 4358 if (ret) 4359 btrfs_err(fs_info, "commit super ret %d", ret); 4360 } 4361 4362 kthread_stop(fs_info->transaction_kthread); 4363 kthread_stop(fs_info->cleaner_kthread); 4364 4365 ASSERT(list_empty(&fs_info->delayed_iputs)); 4366 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4367 4368 if (btrfs_check_quota_leak(fs_info)) { 4369 DEBUG_WARN("qgroup reserved space leaked"); 4370 btrfs_err(fs_info, "qgroup reserved space leaked"); 4371 } 4372 4373 btrfs_free_qgroup_config(fs_info); 4374 ASSERT(list_empty(&fs_info->delalloc_roots)); 4375 4376 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4377 btrfs_info(fs_info, "at unmount delalloc count %lld", 4378 percpu_counter_sum(&fs_info->delalloc_bytes)); 4379 } 4380 4381 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4382 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4383 percpu_counter_sum(&fs_info->ordered_bytes)); 4384 4385 btrfs_sysfs_remove_mounted(fs_info); 4386 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4387 4388 btrfs_put_block_group_cache(fs_info); 4389 4390 /* 4391 * we must make sure there is not any read request to 4392 * submit after we stopping all workers. 4393 */ 4394 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4395 btrfs_stop_all_workers(fs_info); 4396 4397 /* We shouldn't have any transaction open at this point */ 4398 warn_about_uncommitted_trans(fs_info); 4399 4400 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4401 free_root_pointers(fs_info, true); 4402 btrfs_free_fs_roots(fs_info); 4403 4404 /* 4405 * We must free the block groups after dropping the fs_roots as we could 4406 * have had an IO error and have left over tree log blocks that aren't 4407 * cleaned up until the fs roots are freed. This makes the block group 4408 * accounting appear to be wrong because there's pending reserved bytes, 4409 * so make sure we do the block group cleanup afterwards. 4410 */ 4411 btrfs_free_block_groups(fs_info); 4412 4413 iput(fs_info->btree_inode); 4414 4415 btrfs_mapping_tree_free(fs_info); 4416 btrfs_close_devices(fs_info->fs_devices); 4417 } 4418 4419 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4420 struct extent_buffer *buf) 4421 { 4422 struct btrfs_fs_info *fs_info = buf->fs_info; 4423 u64 transid = btrfs_header_generation(buf); 4424 4425 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4426 /* 4427 * This is a fast path so only do this check if we have sanity tests 4428 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4429 * outside of the sanity tests. 4430 */ 4431 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4432 return; 4433 #endif 4434 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4435 ASSERT(trans->transid == fs_info->generation); 4436 btrfs_assert_tree_write_locked(buf); 4437 if (unlikely(transid != fs_info->generation)) { 4438 btrfs_abort_transaction(trans, -EUCLEAN); 4439 btrfs_crit(fs_info, 4440 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4441 buf->start, transid, fs_info->generation); 4442 } 4443 set_extent_buffer_dirty(buf); 4444 } 4445 4446 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4447 int flush_delayed) 4448 { 4449 /* 4450 * looks as though older kernels can get into trouble with 4451 * this code, they end up stuck in balance_dirty_pages forever 4452 */ 4453 int ret; 4454 4455 if (current->flags & PF_MEMALLOC) 4456 return; 4457 4458 if (flush_delayed) 4459 btrfs_balance_delayed_items(fs_info); 4460 4461 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4462 BTRFS_DIRTY_METADATA_THRESH, 4463 fs_info->dirty_metadata_batch); 4464 if (ret > 0) { 4465 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4466 } 4467 } 4468 4469 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4470 { 4471 __btrfs_btree_balance_dirty(fs_info, 1); 4472 } 4473 4474 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4475 { 4476 __btrfs_btree_balance_dirty(fs_info, 0); 4477 } 4478 4479 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4480 { 4481 /* cleanup FS via transaction */ 4482 btrfs_cleanup_transaction(fs_info); 4483 4484 down_write(&fs_info->cleanup_work_sem); 4485 up_write(&fs_info->cleanup_work_sem); 4486 } 4487 4488 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4489 { 4490 struct btrfs_root *gang[8]; 4491 u64 root_objectid = 0; 4492 int ret; 4493 4494 spin_lock(&fs_info->fs_roots_radix_lock); 4495 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4496 (void **)gang, root_objectid, 4497 ARRAY_SIZE(gang))) != 0) { 4498 int i; 4499 4500 for (i = 0; i < ret; i++) 4501 gang[i] = btrfs_grab_root(gang[i]); 4502 spin_unlock(&fs_info->fs_roots_radix_lock); 4503 4504 for (i = 0; i < ret; i++) { 4505 if (!gang[i]) 4506 continue; 4507 root_objectid = btrfs_root_id(gang[i]); 4508 btrfs_free_log(NULL, gang[i]); 4509 btrfs_put_root(gang[i]); 4510 } 4511 root_objectid++; 4512 spin_lock(&fs_info->fs_roots_radix_lock); 4513 } 4514 spin_unlock(&fs_info->fs_roots_radix_lock); 4515 btrfs_free_log_root_tree(NULL, fs_info); 4516 } 4517 4518 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4519 { 4520 struct btrfs_ordered_extent *ordered; 4521 4522 spin_lock(&root->ordered_extent_lock); 4523 /* 4524 * This will just short circuit the ordered completion stuff which will 4525 * make sure the ordered extent gets properly cleaned up. 4526 */ 4527 list_for_each_entry(ordered, &root->ordered_extents, 4528 root_extent_list) 4529 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4530 spin_unlock(&root->ordered_extent_lock); 4531 } 4532 4533 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4534 { 4535 struct btrfs_root *root; 4536 LIST_HEAD(splice); 4537 4538 spin_lock(&fs_info->ordered_root_lock); 4539 list_splice_init(&fs_info->ordered_roots, &splice); 4540 while (!list_empty(&splice)) { 4541 root = list_first_entry(&splice, struct btrfs_root, 4542 ordered_root); 4543 list_move_tail(&root->ordered_root, 4544 &fs_info->ordered_roots); 4545 4546 spin_unlock(&fs_info->ordered_root_lock); 4547 btrfs_destroy_ordered_extents(root); 4548 4549 cond_resched(); 4550 spin_lock(&fs_info->ordered_root_lock); 4551 } 4552 spin_unlock(&fs_info->ordered_root_lock); 4553 4554 /* 4555 * We need this here because if we've been flipped read-only we won't 4556 * get sync() from the umount, so we need to make sure any ordered 4557 * extents that haven't had their dirty pages IO start writeout yet 4558 * actually get run and error out properly. 4559 */ 4560 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4561 } 4562 4563 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4564 { 4565 struct btrfs_inode *btrfs_inode; 4566 LIST_HEAD(splice); 4567 4568 spin_lock(&root->delalloc_lock); 4569 list_splice_init(&root->delalloc_inodes, &splice); 4570 4571 while (!list_empty(&splice)) { 4572 struct inode *inode = NULL; 4573 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4574 delalloc_inodes); 4575 btrfs_del_delalloc_inode(btrfs_inode); 4576 spin_unlock(&root->delalloc_lock); 4577 4578 /* 4579 * Make sure we get a live inode and that it'll not disappear 4580 * meanwhile. 4581 */ 4582 inode = igrab(&btrfs_inode->vfs_inode); 4583 if (inode) { 4584 unsigned int nofs_flag; 4585 4586 nofs_flag = memalloc_nofs_save(); 4587 invalidate_inode_pages2(inode->i_mapping); 4588 memalloc_nofs_restore(nofs_flag); 4589 iput(inode); 4590 } 4591 spin_lock(&root->delalloc_lock); 4592 } 4593 spin_unlock(&root->delalloc_lock); 4594 } 4595 4596 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4597 { 4598 struct btrfs_root *root; 4599 LIST_HEAD(splice); 4600 4601 spin_lock(&fs_info->delalloc_root_lock); 4602 list_splice_init(&fs_info->delalloc_roots, &splice); 4603 while (!list_empty(&splice)) { 4604 root = list_first_entry(&splice, struct btrfs_root, 4605 delalloc_root); 4606 root = btrfs_grab_root(root); 4607 BUG_ON(!root); 4608 spin_unlock(&fs_info->delalloc_root_lock); 4609 4610 btrfs_destroy_delalloc_inodes(root); 4611 btrfs_put_root(root); 4612 4613 spin_lock(&fs_info->delalloc_root_lock); 4614 } 4615 spin_unlock(&fs_info->delalloc_root_lock); 4616 } 4617 4618 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4619 struct extent_io_tree *dirty_pages, 4620 int mark) 4621 { 4622 struct extent_buffer *eb; 4623 u64 start = 0; 4624 u64 end; 4625 4626 while (btrfs_find_first_extent_bit(dirty_pages, start, &start, &end, 4627 mark, NULL)) { 4628 btrfs_clear_extent_bits(dirty_pages, start, end, mark); 4629 while (start <= end) { 4630 eb = find_extent_buffer(fs_info, start); 4631 start += fs_info->nodesize; 4632 if (!eb) 4633 continue; 4634 4635 btrfs_tree_lock(eb); 4636 wait_on_extent_buffer_writeback(eb); 4637 btrfs_clear_buffer_dirty(NULL, eb); 4638 btrfs_tree_unlock(eb); 4639 4640 free_extent_buffer_stale(eb); 4641 } 4642 } 4643 } 4644 4645 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4646 struct extent_io_tree *unpin) 4647 { 4648 u64 start; 4649 u64 end; 4650 4651 while (1) { 4652 struct extent_state *cached_state = NULL; 4653 4654 /* 4655 * The btrfs_finish_extent_commit() may get the same range as 4656 * ours between find_first_extent_bit and clear_extent_dirty. 4657 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4658 * the same extent range. 4659 */ 4660 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4661 if (!btrfs_find_first_extent_bit(unpin, 0, &start, &end, 4662 EXTENT_DIRTY, &cached_state)) { 4663 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4664 break; 4665 } 4666 4667 btrfs_clear_extent_dirty(unpin, start, end, &cached_state); 4668 btrfs_free_extent_state(cached_state); 4669 btrfs_error_unpin_extent_range(fs_info, start, end); 4670 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4671 cond_resched(); 4672 } 4673 } 4674 4675 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4676 { 4677 struct inode *inode; 4678 4679 inode = cache->io_ctl.inode; 4680 if (inode) { 4681 unsigned int nofs_flag; 4682 4683 nofs_flag = memalloc_nofs_save(); 4684 invalidate_inode_pages2(inode->i_mapping); 4685 memalloc_nofs_restore(nofs_flag); 4686 4687 BTRFS_I(inode)->generation = 0; 4688 cache->io_ctl.inode = NULL; 4689 iput(inode); 4690 } 4691 ASSERT(cache->io_ctl.pages == NULL); 4692 btrfs_put_block_group(cache); 4693 } 4694 4695 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4696 struct btrfs_fs_info *fs_info) 4697 { 4698 struct btrfs_block_group *cache; 4699 4700 spin_lock(&cur_trans->dirty_bgs_lock); 4701 while (!list_empty(&cur_trans->dirty_bgs)) { 4702 cache = list_first_entry(&cur_trans->dirty_bgs, 4703 struct btrfs_block_group, 4704 dirty_list); 4705 4706 if (!list_empty(&cache->io_list)) { 4707 spin_unlock(&cur_trans->dirty_bgs_lock); 4708 list_del_init(&cache->io_list); 4709 btrfs_cleanup_bg_io(cache); 4710 spin_lock(&cur_trans->dirty_bgs_lock); 4711 } 4712 4713 list_del_init(&cache->dirty_list); 4714 spin_lock(&cache->lock); 4715 cache->disk_cache_state = BTRFS_DC_ERROR; 4716 spin_unlock(&cache->lock); 4717 4718 spin_unlock(&cur_trans->dirty_bgs_lock); 4719 btrfs_put_block_group(cache); 4720 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4721 spin_lock(&cur_trans->dirty_bgs_lock); 4722 } 4723 spin_unlock(&cur_trans->dirty_bgs_lock); 4724 4725 /* 4726 * Refer to the definition of io_bgs member for details why it's safe 4727 * to use it without any locking 4728 */ 4729 while (!list_empty(&cur_trans->io_bgs)) { 4730 cache = list_first_entry(&cur_trans->io_bgs, 4731 struct btrfs_block_group, 4732 io_list); 4733 4734 list_del_init(&cache->io_list); 4735 spin_lock(&cache->lock); 4736 cache->disk_cache_state = BTRFS_DC_ERROR; 4737 spin_unlock(&cache->lock); 4738 btrfs_cleanup_bg_io(cache); 4739 } 4740 } 4741 4742 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4743 { 4744 struct btrfs_root *gang[8]; 4745 int i; 4746 int ret; 4747 4748 spin_lock(&fs_info->fs_roots_radix_lock); 4749 while (1) { 4750 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4751 (void **)gang, 0, 4752 ARRAY_SIZE(gang), 4753 BTRFS_ROOT_TRANS_TAG); 4754 if (ret == 0) 4755 break; 4756 for (i = 0; i < ret; i++) { 4757 struct btrfs_root *root = gang[i]; 4758 4759 btrfs_qgroup_free_meta_all_pertrans(root); 4760 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4761 (unsigned long)btrfs_root_id(root), 4762 BTRFS_ROOT_TRANS_TAG); 4763 } 4764 } 4765 spin_unlock(&fs_info->fs_roots_radix_lock); 4766 } 4767 4768 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans) 4769 { 4770 struct btrfs_fs_info *fs_info = cur_trans->fs_info; 4771 struct btrfs_device *dev, *tmp; 4772 4773 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4774 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4775 ASSERT(list_empty(&cur_trans->io_bgs)); 4776 4777 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4778 post_commit_list) { 4779 list_del_init(&dev->post_commit_list); 4780 } 4781 4782 btrfs_destroy_delayed_refs(cur_trans); 4783 4784 cur_trans->state = TRANS_STATE_COMMIT_START; 4785 wake_up(&fs_info->transaction_blocked_wait); 4786 4787 cur_trans->state = TRANS_STATE_UNBLOCKED; 4788 wake_up(&fs_info->transaction_wait); 4789 4790 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4791 EXTENT_DIRTY); 4792 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4793 4794 cur_trans->state =TRANS_STATE_COMPLETED; 4795 wake_up(&cur_trans->commit_wait); 4796 } 4797 4798 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4799 { 4800 struct btrfs_transaction *t; 4801 4802 mutex_lock(&fs_info->transaction_kthread_mutex); 4803 4804 spin_lock(&fs_info->trans_lock); 4805 while (!list_empty(&fs_info->trans_list)) { 4806 t = list_first_entry(&fs_info->trans_list, 4807 struct btrfs_transaction, list); 4808 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4809 refcount_inc(&t->use_count); 4810 spin_unlock(&fs_info->trans_lock); 4811 btrfs_wait_for_commit(fs_info, t->transid); 4812 btrfs_put_transaction(t); 4813 spin_lock(&fs_info->trans_lock); 4814 continue; 4815 } 4816 if (t == fs_info->running_transaction) { 4817 t->state = TRANS_STATE_COMMIT_DOING; 4818 spin_unlock(&fs_info->trans_lock); 4819 /* 4820 * We wait for 0 num_writers since we don't hold a trans 4821 * handle open currently for this transaction. 4822 */ 4823 wait_event(t->writer_wait, 4824 atomic_read(&t->num_writers) == 0); 4825 } else { 4826 spin_unlock(&fs_info->trans_lock); 4827 } 4828 btrfs_cleanup_one_transaction(t); 4829 4830 spin_lock(&fs_info->trans_lock); 4831 if (t == fs_info->running_transaction) 4832 fs_info->running_transaction = NULL; 4833 list_del_init(&t->list); 4834 spin_unlock(&fs_info->trans_lock); 4835 4836 btrfs_put_transaction(t); 4837 trace_btrfs_transaction_commit(fs_info); 4838 spin_lock(&fs_info->trans_lock); 4839 } 4840 spin_unlock(&fs_info->trans_lock); 4841 btrfs_destroy_all_ordered_extents(fs_info); 4842 btrfs_destroy_delayed_inodes(fs_info); 4843 btrfs_assert_delayed_root_empty(fs_info); 4844 btrfs_destroy_all_delalloc_inodes(fs_info); 4845 btrfs_drop_all_logs(fs_info); 4846 btrfs_free_all_qgroup_pertrans(fs_info); 4847 mutex_unlock(&fs_info->transaction_kthread_mutex); 4848 4849 return 0; 4850 } 4851 4852 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4853 { 4854 BTRFS_PATH_AUTO_FREE(path); 4855 int ret; 4856 struct extent_buffer *l; 4857 struct btrfs_key search_key; 4858 struct btrfs_key found_key; 4859 int slot; 4860 4861 path = btrfs_alloc_path(); 4862 if (!path) 4863 return -ENOMEM; 4864 4865 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4866 search_key.type = -1; 4867 search_key.offset = (u64)-1; 4868 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4869 if (ret < 0) 4870 return ret; 4871 if (ret == 0) { 4872 /* 4873 * Key with offset -1 found, there would have to exist a root 4874 * with such id, but this is out of valid range. 4875 */ 4876 return -EUCLEAN; 4877 } 4878 if (path->slots[0] > 0) { 4879 slot = path->slots[0] - 1; 4880 l = path->nodes[0]; 4881 btrfs_item_key_to_cpu(l, &found_key, slot); 4882 root->free_objectid = max_t(u64, found_key.objectid + 1, 4883 BTRFS_FIRST_FREE_OBJECTID); 4884 } else { 4885 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4886 } 4887 4888 return 0; 4889 } 4890 4891 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4892 { 4893 int ret; 4894 mutex_lock(&root->objectid_mutex); 4895 4896 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4897 btrfs_warn(root->fs_info, 4898 "the objectid of root %llu reaches its highest value", 4899 btrfs_root_id(root)); 4900 ret = -ENOSPC; 4901 goto out; 4902 } 4903 4904 *objectid = root->free_objectid++; 4905 ret = 0; 4906 out: 4907 mutex_unlock(&root->objectid_mutex); 4908 return ret; 4909 } 4910