1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/scatterlist.h> 9 #include <linux/swap.h> 10 #include <linux/radix-tree.h> 11 #include <linux/writeback.h> 12 #include <linux/buffer_head.h> 13 #include <linux/workqueue.h> 14 #include <linux/kthread.h> 15 #include <linux/slab.h> 16 #include <linux/migrate.h> 17 #include <linux/ratelimit.h> 18 #include <linux/uuid.h> 19 #include <linux/semaphore.h> 20 #include <linux/error-injection.h> 21 #include <linux/crc32c.h> 22 #include <asm/unaligned.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "btrfs_inode.h" 27 #include "volumes.h" 28 #include "print-tree.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "free-space-cache.h" 32 #include "free-space-tree.h" 33 #include "inode-map.h" 34 #include "check-integrity.h" 35 #include "rcu-string.h" 36 #include "dev-replace.h" 37 #include "raid56.h" 38 #include "sysfs.h" 39 #include "qgroup.h" 40 #include "compression.h" 41 #include "tree-checker.h" 42 #include "ref-verify.h" 43 44 #ifdef CONFIG_X86 45 #include <asm/cpufeature.h> 46 #endif 47 48 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 49 BTRFS_HEADER_FLAG_RELOC |\ 50 BTRFS_SUPER_FLAG_ERROR |\ 51 BTRFS_SUPER_FLAG_SEEDING |\ 52 BTRFS_SUPER_FLAG_METADUMP |\ 53 BTRFS_SUPER_FLAG_METADUMP_V2) 54 55 static const struct extent_io_ops btree_extent_io_ops; 56 static void end_workqueue_fn(struct btrfs_work *work); 57 static void free_fs_root(struct btrfs_root *root); 58 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 59 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 60 struct btrfs_fs_info *fs_info); 61 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 62 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 63 struct extent_io_tree *dirty_pages, 64 int mark); 65 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 66 struct extent_io_tree *pinned_extents); 67 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 68 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 69 70 /* 71 * btrfs_end_io_wq structs are used to do processing in task context when an IO 72 * is complete. This is used during reads to verify checksums, and it is used 73 * by writes to insert metadata for new file extents after IO is complete. 74 */ 75 struct btrfs_end_io_wq { 76 struct bio *bio; 77 bio_end_io_t *end_io; 78 void *private; 79 struct btrfs_fs_info *info; 80 blk_status_t status; 81 enum btrfs_wq_endio_type metadata; 82 struct btrfs_work work; 83 }; 84 85 static struct kmem_cache *btrfs_end_io_wq_cache; 86 87 int __init btrfs_end_io_wq_init(void) 88 { 89 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 90 sizeof(struct btrfs_end_io_wq), 91 0, 92 SLAB_MEM_SPREAD, 93 NULL); 94 if (!btrfs_end_io_wq_cache) 95 return -ENOMEM; 96 return 0; 97 } 98 99 void __cold btrfs_end_io_wq_exit(void) 100 { 101 kmem_cache_destroy(btrfs_end_io_wq_cache); 102 } 103 104 /* 105 * async submit bios are used to offload expensive checksumming 106 * onto the worker threads. They checksum file and metadata bios 107 * just before they are sent down the IO stack. 108 */ 109 struct async_submit_bio { 110 void *private_data; 111 struct btrfs_fs_info *fs_info; 112 struct bio *bio; 113 extent_submit_bio_start_t *submit_bio_start; 114 extent_submit_bio_done_t *submit_bio_done; 115 int mirror_num; 116 unsigned long bio_flags; 117 /* 118 * bio_offset is optional, can be used if the pages in the bio 119 * can't tell us where in the file the bio should go 120 */ 121 u64 bio_offset; 122 struct btrfs_work work; 123 blk_status_t status; 124 }; 125 126 /* 127 * Lockdep class keys for extent_buffer->lock's in this root. For a given 128 * eb, the lockdep key is determined by the btrfs_root it belongs to and 129 * the level the eb occupies in the tree. 130 * 131 * Different roots are used for different purposes and may nest inside each 132 * other and they require separate keysets. As lockdep keys should be 133 * static, assign keysets according to the purpose of the root as indicated 134 * by btrfs_root->objectid. This ensures that all special purpose roots 135 * have separate keysets. 136 * 137 * Lock-nesting across peer nodes is always done with the immediate parent 138 * node locked thus preventing deadlock. As lockdep doesn't know this, use 139 * subclass to avoid triggering lockdep warning in such cases. 140 * 141 * The key is set by the readpage_end_io_hook after the buffer has passed 142 * csum validation but before the pages are unlocked. It is also set by 143 * btrfs_init_new_buffer on freshly allocated blocks. 144 * 145 * We also add a check to make sure the highest level of the tree is the 146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 147 * needs update as well. 148 */ 149 #ifdef CONFIG_DEBUG_LOCK_ALLOC 150 # if BTRFS_MAX_LEVEL != 8 151 # error 152 # endif 153 154 static struct btrfs_lockdep_keyset { 155 u64 id; /* root objectid */ 156 const char *name_stem; /* lock name stem */ 157 char names[BTRFS_MAX_LEVEL + 1][20]; 158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 159 } btrfs_lockdep_keysets[] = { 160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 172 { .id = 0, .name_stem = "tree" }, 173 }; 174 175 void __init btrfs_init_lockdep(void) 176 { 177 int i, j; 178 179 /* initialize lockdep class names */ 180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 182 183 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 184 snprintf(ks->names[j], sizeof(ks->names[j]), 185 "btrfs-%s-%02d", ks->name_stem, j); 186 } 187 } 188 189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 190 int level) 191 { 192 struct btrfs_lockdep_keyset *ks; 193 194 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 195 196 /* find the matching keyset, id 0 is the default entry */ 197 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 198 if (ks->id == objectid) 199 break; 200 201 lockdep_set_class_and_name(&eb->lock, 202 &ks->keys[level], ks->names[level]); 203 } 204 205 #endif 206 207 /* 208 * extents on the btree inode are pretty simple, there's one extent 209 * that covers the entire device 210 */ 211 struct extent_map *btree_get_extent(struct btrfs_inode *inode, 212 struct page *page, size_t pg_offset, u64 start, u64 len, 213 int create) 214 { 215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 216 struct extent_map_tree *em_tree = &inode->extent_tree; 217 struct extent_map *em; 218 int ret; 219 220 read_lock(&em_tree->lock); 221 em = lookup_extent_mapping(em_tree, start, len); 222 if (em) { 223 em->bdev = fs_info->fs_devices->latest_bdev; 224 read_unlock(&em_tree->lock); 225 goto out; 226 } 227 read_unlock(&em_tree->lock); 228 229 em = alloc_extent_map(); 230 if (!em) { 231 em = ERR_PTR(-ENOMEM); 232 goto out; 233 } 234 em->start = 0; 235 em->len = (u64)-1; 236 em->block_len = (u64)-1; 237 em->block_start = 0; 238 em->bdev = fs_info->fs_devices->latest_bdev; 239 240 write_lock(&em_tree->lock); 241 ret = add_extent_mapping(em_tree, em, 0); 242 if (ret == -EEXIST) { 243 free_extent_map(em); 244 em = lookup_extent_mapping(em_tree, start, len); 245 if (!em) 246 em = ERR_PTR(-EIO); 247 } else if (ret) { 248 free_extent_map(em); 249 em = ERR_PTR(ret); 250 } 251 write_unlock(&em_tree->lock); 252 253 out: 254 return em; 255 } 256 257 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 258 { 259 return crc32c(seed, data, len); 260 } 261 262 void btrfs_csum_final(u32 crc, u8 *result) 263 { 264 put_unaligned_le32(~crc, result); 265 } 266 267 /* 268 * compute the csum for a btree block, and either verify it or write it 269 * into the csum field of the block. 270 */ 271 static int csum_tree_block(struct btrfs_fs_info *fs_info, 272 struct extent_buffer *buf, 273 int verify) 274 { 275 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 276 char result[BTRFS_CSUM_SIZE]; 277 unsigned long len; 278 unsigned long cur_len; 279 unsigned long offset = BTRFS_CSUM_SIZE; 280 char *kaddr; 281 unsigned long map_start; 282 unsigned long map_len; 283 int err; 284 u32 crc = ~(u32)0; 285 286 len = buf->len - offset; 287 while (len > 0) { 288 err = map_private_extent_buffer(buf, offset, 32, 289 &kaddr, &map_start, &map_len); 290 if (err) 291 return err; 292 cur_len = min(len, map_len - (offset - map_start)); 293 crc = btrfs_csum_data(kaddr + offset - map_start, 294 crc, cur_len); 295 len -= cur_len; 296 offset += cur_len; 297 } 298 memset(result, 0, BTRFS_CSUM_SIZE); 299 300 btrfs_csum_final(crc, result); 301 302 if (verify) { 303 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 304 u32 val; 305 u32 found = 0; 306 memcpy(&found, result, csum_size); 307 308 read_extent_buffer(buf, &val, 0, csum_size); 309 btrfs_warn_rl(fs_info, 310 "%s checksum verify failed on %llu wanted %X found %X level %d", 311 fs_info->sb->s_id, buf->start, 312 val, found, btrfs_header_level(buf)); 313 return -EUCLEAN; 314 } 315 } else { 316 write_extent_buffer(buf, result, 0, csum_size); 317 } 318 319 return 0; 320 } 321 322 /* 323 * we can't consider a given block up to date unless the transid of the 324 * block matches the transid in the parent node's pointer. This is how we 325 * detect blocks that either didn't get written at all or got written 326 * in the wrong place. 327 */ 328 static int verify_parent_transid(struct extent_io_tree *io_tree, 329 struct extent_buffer *eb, u64 parent_transid, 330 int atomic) 331 { 332 struct extent_state *cached_state = NULL; 333 int ret; 334 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 335 336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 337 return 0; 338 339 if (atomic) 340 return -EAGAIN; 341 342 if (need_lock) { 343 btrfs_tree_read_lock(eb); 344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 345 } 346 347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 348 &cached_state); 349 if (extent_buffer_uptodate(eb) && 350 btrfs_header_generation(eb) == parent_transid) { 351 ret = 0; 352 goto out; 353 } 354 btrfs_err_rl(eb->fs_info, 355 "parent transid verify failed on %llu wanted %llu found %llu", 356 eb->start, 357 parent_transid, btrfs_header_generation(eb)); 358 ret = 1; 359 360 /* 361 * Things reading via commit roots that don't have normal protection, 362 * like send, can have a really old block in cache that may point at a 363 * block that has been freed and re-allocated. So don't clear uptodate 364 * if we find an eb that is under IO (dirty/writeback) because we could 365 * end up reading in the stale data and then writing it back out and 366 * making everybody very sad. 367 */ 368 if (!extent_buffer_under_io(eb)) 369 clear_extent_buffer_uptodate(eb); 370 out: 371 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 372 &cached_state); 373 if (need_lock) 374 btrfs_tree_read_unlock_blocking(eb); 375 return ret; 376 } 377 378 /* 379 * Return 0 if the superblock checksum type matches the checksum value of that 380 * algorithm. Pass the raw disk superblock data. 381 */ 382 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 383 char *raw_disk_sb) 384 { 385 struct btrfs_super_block *disk_sb = 386 (struct btrfs_super_block *)raw_disk_sb; 387 u16 csum_type = btrfs_super_csum_type(disk_sb); 388 int ret = 0; 389 390 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 391 u32 crc = ~(u32)0; 392 char result[sizeof(crc)]; 393 394 /* 395 * The super_block structure does not span the whole 396 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 397 * is filled with zeros and is included in the checksum. 398 */ 399 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 400 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 401 btrfs_csum_final(crc, result); 402 403 if (memcmp(raw_disk_sb, result, sizeof(result))) 404 ret = 1; 405 } 406 407 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 408 btrfs_err(fs_info, "unsupported checksum algorithm %u", 409 csum_type); 410 ret = 1; 411 } 412 413 return ret; 414 } 415 416 static int verify_level_key(struct btrfs_fs_info *fs_info, 417 struct extent_buffer *eb, int level, 418 struct btrfs_key *first_key, u64 parent_transid) 419 { 420 int found_level; 421 struct btrfs_key found_key; 422 int ret; 423 424 found_level = btrfs_header_level(eb); 425 if (found_level != level) { 426 #ifdef CONFIG_BTRFS_DEBUG 427 WARN_ON(1); 428 btrfs_err(fs_info, 429 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u", 430 eb->start, level, found_level); 431 #endif 432 return -EIO; 433 } 434 435 if (!first_key) 436 return 0; 437 438 /* 439 * For live tree block (new tree blocks in current transaction), 440 * we need proper lock context to avoid race, which is impossible here. 441 * So we only checks tree blocks which is read from disk, whose 442 * generation <= fs_info->last_trans_committed. 443 */ 444 if (btrfs_header_generation(eb) > fs_info->last_trans_committed) 445 return 0; 446 if (found_level) 447 btrfs_node_key_to_cpu(eb, &found_key, 0); 448 else 449 btrfs_item_key_to_cpu(eb, &found_key, 0); 450 ret = btrfs_comp_cpu_keys(first_key, &found_key); 451 452 #ifdef CONFIG_BTRFS_DEBUG 453 if (ret) { 454 WARN_ON(1); 455 btrfs_err(fs_info, 456 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 457 eb->start, parent_transid, first_key->objectid, 458 first_key->type, first_key->offset, 459 found_key.objectid, found_key.type, 460 found_key.offset); 461 } 462 #endif 463 return ret; 464 } 465 466 /* 467 * helper to read a given tree block, doing retries as required when 468 * the checksums don't match and we have alternate mirrors to try. 469 * 470 * @parent_transid: expected transid, skip check if 0 471 * @level: expected level, mandatory check 472 * @first_key: expected key of first slot, skip check if NULL 473 */ 474 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 475 struct extent_buffer *eb, 476 u64 parent_transid, int level, 477 struct btrfs_key *first_key) 478 { 479 struct extent_io_tree *io_tree; 480 int failed = 0; 481 int ret; 482 int num_copies = 0; 483 int mirror_num = 0; 484 int failed_mirror = 0; 485 486 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 487 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 488 while (1) { 489 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 490 mirror_num); 491 if (!ret) { 492 if (verify_parent_transid(io_tree, eb, 493 parent_transid, 0)) 494 ret = -EIO; 495 else if (verify_level_key(fs_info, eb, level, 496 first_key, parent_transid)) 497 ret = -EUCLEAN; 498 else 499 break; 500 } 501 502 /* 503 * This buffer's crc is fine, but its contents are corrupted, so 504 * there is no reason to read the other copies, they won't be 505 * any less wrong. 506 */ 507 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags) || 508 ret == -EUCLEAN) 509 break; 510 511 num_copies = btrfs_num_copies(fs_info, 512 eb->start, eb->len); 513 if (num_copies == 1) 514 break; 515 516 if (!failed_mirror) { 517 failed = 1; 518 failed_mirror = eb->read_mirror; 519 } 520 521 mirror_num++; 522 if (mirror_num == failed_mirror) 523 mirror_num++; 524 525 if (mirror_num > num_copies) 526 break; 527 } 528 529 if (failed && !ret && failed_mirror) 530 repair_eb_io_failure(fs_info, eb, failed_mirror); 531 532 return ret; 533 } 534 535 /* 536 * checksum a dirty tree block before IO. This has extra checks to make sure 537 * we only fill in the checksum field in the first page of a multi-page block 538 */ 539 540 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 541 { 542 u64 start = page_offset(page); 543 u64 found_start; 544 struct extent_buffer *eb; 545 546 eb = (struct extent_buffer *)page->private; 547 if (page != eb->pages[0]) 548 return 0; 549 550 found_start = btrfs_header_bytenr(eb); 551 /* 552 * Please do not consolidate these warnings into a single if. 553 * It is useful to know what went wrong. 554 */ 555 if (WARN_ON(found_start != start)) 556 return -EUCLEAN; 557 if (WARN_ON(!PageUptodate(page))) 558 return -EUCLEAN; 559 560 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 561 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 562 563 return csum_tree_block(fs_info, eb, 0); 564 } 565 566 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 567 struct extent_buffer *eb) 568 { 569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 570 u8 fsid[BTRFS_FSID_SIZE]; 571 int ret = 1; 572 573 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 574 while (fs_devices) { 575 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 576 ret = 0; 577 break; 578 } 579 fs_devices = fs_devices->seed; 580 } 581 return ret; 582 } 583 584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 585 u64 phy_offset, struct page *page, 586 u64 start, u64 end, int mirror) 587 { 588 u64 found_start; 589 int found_level; 590 struct extent_buffer *eb; 591 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 592 struct btrfs_fs_info *fs_info = root->fs_info; 593 int ret = 0; 594 int reads_done; 595 596 if (!page->private) 597 goto out; 598 599 eb = (struct extent_buffer *)page->private; 600 601 /* the pending IO might have been the only thing that kept this buffer 602 * in memory. Make sure we have a ref for all this other checks 603 */ 604 extent_buffer_get(eb); 605 606 reads_done = atomic_dec_and_test(&eb->io_pages); 607 if (!reads_done) 608 goto err; 609 610 eb->read_mirror = mirror; 611 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 612 ret = -EIO; 613 goto err; 614 } 615 616 found_start = btrfs_header_bytenr(eb); 617 if (found_start != eb->start) { 618 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 619 found_start, eb->start); 620 ret = -EIO; 621 goto err; 622 } 623 if (check_tree_block_fsid(fs_info, eb)) { 624 btrfs_err_rl(fs_info, "bad fsid on block %llu", 625 eb->start); 626 ret = -EIO; 627 goto err; 628 } 629 found_level = btrfs_header_level(eb); 630 if (found_level >= BTRFS_MAX_LEVEL) { 631 btrfs_err(fs_info, "bad tree block level %d", 632 (int)btrfs_header_level(eb)); 633 ret = -EIO; 634 goto err; 635 } 636 637 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 638 eb, found_level); 639 640 ret = csum_tree_block(fs_info, eb, 1); 641 if (ret) 642 goto err; 643 644 /* 645 * If this is a leaf block and it is corrupt, set the corrupt bit so 646 * that we don't try and read the other copies of this block, just 647 * return -EIO. 648 */ 649 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) { 650 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 651 ret = -EIO; 652 } 653 654 if (found_level > 0 && btrfs_check_node(fs_info, eb)) 655 ret = -EIO; 656 657 if (!ret) 658 set_extent_buffer_uptodate(eb); 659 err: 660 if (reads_done && 661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 662 btree_readahead_hook(eb, ret); 663 664 if (ret) { 665 /* 666 * our io error hook is going to dec the io pages 667 * again, we have to make sure it has something 668 * to decrement 669 */ 670 atomic_inc(&eb->io_pages); 671 clear_extent_buffer_uptodate(eb); 672 } 673 free_extent_buffer(eb); 674 out: 675 return ret; 676 } 677 678 static int btree_io_failed_hook(struct page *page, int failed_mirror) 679 { 680 struct extent_buffer *eb; 681 682 eb = (struct extent_buffer *)page->private; 683 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 684 eb->read_mirror = failed_mirror; 685 atomic_dec(&eb->io_pages); 686 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 687 btree_readahead_hook(eb, -EIO); 688 return -EIO; /* we fixed nothing */ 689 } 690 691 static void end_workqueue_bio(struct bio *bio) 692 { 693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 694 struct btrfs_fs_info *fs_info; 695 struct btrfs_workqueue *wq; 696 btrfs_work_func_t func; 697 698 fs_info = end_io_wq->info; 699 end_io_wq->status = bio->bi_status; 700 701 if (bio_op(bio) == REQ_OP_WRITE) { 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 703 wq = fs_info->endio_meta_write_workers; 704 func = btrfs_endio_meta_write_helper; 705 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 706 wq = fs_info->endio_freespace_worker; 707 func = btrfs_freespace_write_helper; 708 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 709 wq = fs_info->endio_raid56_workers; 710 func = btrfs_endio_raid56_helper; 711 } else { 712 wq = fs_info->endio_write_workers; 713 func = btrfs_endio_write_helper; 714 } 715 } else { 716 if (unlikely(end_io_wq->metadata == 717 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 718 wq = fs_info->endio_repair_workers; 719 func = btrfs_endio_repair_helper; 720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 721 wq = fs_info->endio_raid56_workers; 722 func = btrfs_endio_raid56_helper; 723 } else if (end_io_wq->metadata) { 724 wq = fs_info->endio_meta_workers; 725 func = btrfs_endio_meta_helper; 726 } else { 727 wq = fs_info->endio_workers; 728 func = btrfs_endio_helper; 729 } 730 } 731 732 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 733 btrfs_queue_work(wq, &end_io_wq->work); 734 } 735 736 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 737 enum btrfs_wq_endio_type metadata) 738 { 739 struct btrfs_end_io_wq *end_io_wq; 740 741 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 742 if (!end_io_wq) 743 return BLK_STS_RESOURCE; 744 745 end_io_wq->private = bio->bi_private; 746 end_io_wq->end_io = bio->bi_end_io; 747 end_io_wq->info = info; 748 end_io_wq->status = 0; 749 end_io_wq->bio = bio; 750 end_io_wq->metadata = metadata; 751 752 bio->bi_private = end_io_wq; 753 bio->bi_end_io = end_workqueue_bio; 754 return 0; 755 } 756 757 static void run_one_async_start(struct btrfs_work *work) 758 { 759 struct async_submit_bio *async; 760 blk_status_t ret; 761 762 async = container_of(work, struct async_submit_bio, work); 763 ret = async->submit_bio_start(async->private_data, async->bio, 764 async->bio_offset); 765 if (ret) 766 async->status = ret; 767 } 768 769 static void run_one_async_done(struct btrfs_work *work) 770 { 771 struct async_submit_bio *async; 772 773 async = container_of(work, struct async_submit_bio, work); 774 775 /* If an error occurred we just want to clean up the bio and move on */ 776 if (async->status) { 777 async->bio->bi_status = async->status; 778 bio_endio(async->bio); 779 return; 780 } 781 782 async->submit_bio_done(async->private_data, async->bio, async->mirror_num); 783 } 784 785 static void run_one_async_free(struct btrfs_work *work) 786 { 787 struct async_submit_bio *async; 788 789 async = container_of(work, struct async_submit_bio, work); 790 kfree(async); 791 } 792 793 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 794 int mirror_num, unsigned long bio_flags, 795 u64 bio_offset, void *private_data, 796 extent_submit_bio_start_t *submit_bio_start, 797 extent_submit_bio_done_t *submit_bio_done) 798 { 799 struct async_submit_bio *async; 800 801 async = kmalloc(sizeof(*async), GFP_NOFS); 802 if (!async) 803 return BLK_STS_RESOURCE; 804 805 async->private_data = private_data; 806 async->fs_info = fs_info; 807 async->bio = bio; 808 async->mirror_num = mirror_num; 809 async->submit_bio_start = submit_bio_start; 810 async->submit_bio_done = submit_bio_done; 811 812 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 813 run_one_async_done, run_one_async_free); 814 815 async->bio_flags = bio_flags; 816 async->bio_offset = bio_offset; 817 818 async->status = 0; 819 820 if (op_is_sync(bio->bi_opf)) 821 btrfs_set_work_high_priority(&async->work); 822 823 btrfs_queue_work(fs_info->workers, &async->work); 824 return 0; 825 } 826 827 static blk_status_t btree_csum_one_bio(struct bio *bio) 828 { 829 struct bio_vec *bvec; 830 struct btrfs_root *root; 831 int i, ret = 0; 832 833 ASSERT(!bio_flagged(bio, BIO_CLONED)); 834 bio_for_each_segment_all(bvec, bio, i) { 835 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 836 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 837 if (ret) 838 break; 839 } 840 841 return errno_to_blk_status(ret); 842 } 843 844 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio, 845 u64 bio_offset) 846 { 847 /* 848 * when we're called for a write, we're already in the async 849 * submission context. Just jump into btrfs_map_bio 850 */ 851 return btree_csum_one_bio(bio); 852 } 853 854 static blk_status_t btree_submit_bio_done(void *private_data, struct bio *bio, 855 int mirror_num) 856 { 857 struct inode *inode = private_data; 858 blk_status_t ret; 859 860 /* 861 * when we're called for a write, we're already in the async 862 * submission context. Just jump into btrfs_map_bio 863 */ 864 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 865 if (ret) { 866 bio->bi_status = ret; 867 bio_endio(bio); 868 } 869 return ret; 870 } 871 872 static int check_async_write(struct btrfs_inode *bi) 873 { 874 if (atomic_read(&bi->sync_writers)) 875 return 0; 876 #ifdef CONFIG_X86 877 if (static_cpu_has(X86_FEATURE_XMM4_2)) 878 return 0; 879 #endif 880 return 1; 881 } 882 883 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, 884 int mirror_num, unsigned long bio_flags, 885 u64 bio_offset) 886 { 887 struct inode *inode = private_data; 888 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 889 int async = check_async_write(BTRFS_I(inode)); 890 blk_status_t ret; 891 892 if (bio_op(bio) != REQ_OP_WRITE) { 893 /* 894 * called for a read, do the setup so that checksum validation 895 * can happen in the async kernel threads 896 */ 897 ret = btrfs_bio_wq_end_io(fs_info, bio, 898 BTRFS_WQ_ENDIO_METADATA); 899 if (ret) 900 goto out_w_error; 901 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 902 } else if (!async) { 903 ret = btree_csum_one_bio(bio); 904 if (ret) 905 goto out_w_error; 906 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 907 } else { 908 /* 909 * kthread helpers are used to submit writes so that 910 * checksumming can happen in parallel across all CPUs 911 */ 912 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, 913 bio_offset, private_data, 914 btree_submit_bio_start, 915 btree_submit_bio_done); 916 } 917 918 if (ret) 919 goto out_w_error; 920 return 0; 921 922 out_w_error: 923 bio->bi_status = ret; 924 bio_endio(bio); 925 return ret; 926 } 927 928 #ifdef CONFIG_MIGRATION 929 static int btree_migratepage(struct address_space *mapping, 930 struct page *newpage, struct page *page, 931 enum migrate_mode mode) 932 { 933 /* 934 * we can't safely write a btree page from here, 935 * we haven't done the locking hook 936 */ 937 if (PageDirty(page)) 938 return -EAGAIN; 939 /* 940 * Buffers may be managed in a filesystem specific way. 941 * We must have no buffers or drop them. 942 */ 943 if (page_has_private(page) && 944 !try_to_release_page(page, GFP_KERNEL)) 945 return -EAGAIN; 946 return migrate_page(mapping, newpage, page, mode); 947 } 948 #endif 949 950 951 static int btree_writepages(struct address_space *mapping, 952 struct writeback_control *wbc) 953 { 954 struct btrfs_fs_info *fs_info; 955 int ret; 956 957 if (wbc->sync_mode == WB_SYNC_NONE) { 958 959 if (wbc->for_kupdate) 960 return 0; 961 962 fs_info = BTRFS_I(mapping->host)->root->fs_info; 963 /* this is a bit racy, but that's ok */ 964 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 965 BTRFS_DIRTY_METADATA_THRESH); 966 if (ret < 0) 967 return 0; 968 } 969 return btree_write_cache_pages(mapping, wbc); 970 } 971 972 static int btree_readpage(struct file *file, struct page *page) 973 { 974 struct extent_io_tree *tree; 975 tree = &BTRFS_I(page->mapping->host)->io_tree; 976 return extent_read_full_page(tree, page, btree_get_extent, 0); 977 } 978 979 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 980 { 981 if (PageWriteback(page) || PageDirty(page)) 982 return 0; 983 984 return try_release_extent_buffer(page); 985 } 986 987 static void btree_invalidatepage(struct page *page, unsigned int offset, 988 unsigned int length) 989 { 990 struct extent_io_tree *tree; 991 tree = &BTRFS_I(page->mapping->host)->io_tree; 992 extent_invalidatepage(tree, page, offset); 993 btree_releasepage(page, GFP_NOFS); 994 if (PagePrivate(page)) { 995 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 996 "page private not zero on page %llu", 997 (unsigned long long)page_offset(page)); 998 ClearPagePrivate(page); 999 set_page_private(page, 0); 1000 put_page(page); 1001 } 1002 } 1003 1004 static int btree_set_page_dirty(struct page *page) 1005 { 1006 #ifdef DEBUG 1007 struct extent_buffer *eb; 1008 1009 BUG_ON(!PagePrivate(page)); 1010 eb = (struct extent_buffer *)page->private; 1011 BUG_ON(!eb); 1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1013 BUG_ON(!atomic_read(&eb->refs)); 1014 btrfs_assert_tree_locked(eb); 1015 #endif 1016 return __set_page_dirty_nobuffers(page); 1017 } 1018 1019 static const struct address_space_operations btree_aops = { 1020 .readpage = btree_readpage, 1021 .writepages = btree_writepages, 1022 .releasepage = btree_releasepage, 1023 .invalidatepage = btree_invalidatepage, 1024 #ifdef CONFIG_MIGRATION 1025 .migratepage = btree_migratepage, 1026 #endif 1027 .set_page_dirty = btree_set_page_dirty, 1028 }; 1029 1030 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1031 { 1032 struct extent_buffer *buf = NULL; 1033 struct inode *btree_inode = fs_info->btree_inode; 1034 1035 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1036 if (IS_ERR(buf)) 1037 return; 1038 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1039 buf, WAIT_NONE, 0); 1040 free_extent_buffer(buf); 1041 } 1042 1043 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1044 int mirror_num, struct extent_buffer **eb) 1045 { 1046 struct extent_buffer *buf = NULL; 1047 struct inode *btree_inode = fs_info->btree_inode; 1048 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1049 int ret; 1050 1051 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1052 if (IS_ERR(buf)) 1053 return 0; 1054 1055 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1056 1057 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1058 mirror_num); 1059 if (ret) { 1060 free_extent_buffer(buf); 1061 return ret; 1062 } 1063 1064 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1065 free_extent_buffer(buf); 1066 return -EIO; 1067 } else if (extent_buffer_uptodate(buf)) { 1068 *eb = buf; 1069 } else { 1070 free_extent_buffer(buf); 1071 } 1072 return 0; 1073 } 1074 1075 struct extent_buffer *btrfs_find_create_tree_block( 1076 struct btrfs_fs_info *fs_info, 1077 u64 bytenr) 1078 { 1079 if (btrfs_is_testing(fs_info)) 1080 return alloc_test_extent_buffer(fs_info, bytenr); 1081 return alloc_extent_buffer(fs_info, bytenr); 1082 } 1083 1084 1085 int btrfs_write_tree_block(struct extent_buffer *buf) 1086 { 1087 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1088 buf->start + buf->len - 1); 1089 } 1090 1091 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1092 { 1093 filemap_fdatawait_range(buf->pages[0]->mapping, 1094 buf->start, buf->start + buf->len - 1); 1095 } 1096 1097 /* 1098 * Read tree block at logical address @bytenr and do variant basic but critical 1099 * verification. 1100 * 1101 * @parent_transid: expected transid of this tree block, skip check if 0 1102 * @level: expected level, mandatory check 1103 * @first_key: expected key in slot 0, skip check if NULL 1104 */ 1105 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1106 u64 parent_transid, int level, 1107 struct btrfs_key *first_key) 1108 { 1109 struct extent_buffer *buf = NULL; 1110 int ret; 1111 1112 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1113 if (IS_ERR(buf)) 1114 return buf; 1115 1116 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 1117 level, first_key); 1118 if (ret) { 1119 free_extent_buffer(buf); 1120 return ERR_PTR(ret); 1121 } 1122 return buf; 1123 1124 } 1125 1126 void clean_tree_block(struct btrfs_fs_info *fs_info, 1127 struct extent_buffer *buf) 1128 { 1129 if (btrfs_header_generation(buf) == 1130 fs_info->running_transaction->transid) { 1131 btrfs_assert_tree_locked(buf); 1132 1133 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1134 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 1135 -buf->len, 1136 fs_info->dirty_metadata_batch); 1137 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1138 btrfs_set_lock_blocking(buf); 1139 clear_extent_buffer_dirty(buf); 1140 } 1141 } 1142 } 1143 1144 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1145 { 1146 struct btrfs_subvolume_writers *writers; 1147 int ret; 1148 1149 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1150 if (!writers) 1151 return ERR_PTR(-ENOMEM); 1152 1153 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS); 1154 if (ret < 0) { 1155 kfree(writers); 1156 return ERR_PTR(ret); 1157 } 1158 1159 init_waitqueue_head(&writers->wait); 1160 return writers; 1161 } 1162 1163 static void 1164 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1165 { 1166 percpu_counter_destroy(&writers->counter); 1167 kfree(writers); 1168 } 1169 1170 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1171 u64 objectid) 1172 { 1173 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1174 root->node = NULL; 1175 root->commit_root = NULL; 1176 root->state = 0; 1177 root->orphan_cleanup_state = 0; 1178 1179 root->objectid = objectid; 1180 root->last_trans = 0; 1181 root->highest_objectid = 0; 1182 root->nr_delalloc_inodes = 0; 1183 root->nr_ordered_extents = 0; 1184 root->name = NULL; 1185 root->inode_tree = RB_ROOT; 1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1187 root->block_rsv = NULL; 1188 1189 INIT_LIST_HEAD(&root->dirty_list); 1190 INIT_LIST_HEAD(&root->root_list); 1191 INIT_LIST_HEAD(&root->delalloc_inodes); 1192 INIT_LIST_HEAD(&root->delalloc_root); 1193 INIT_LIST_HEAD(&root->ordered_extents); 1194 INIT_LIST_HEAD(&root->ordered_root); 1195 INIT_LIST_HEAD(&root->logged_list[0]); 1196 INIT_LIST_HEAD(&root->logged_list[1]); 1197 spin_lock_init(&root->inode_lock); 1198 spin_lock_init(&root->delalloc_lock); 1199 spin_lock_init(&root->ordered_extent_lock); 1200 spin_lock_init(&root->accounting_lock); 1201 spin_lock_init(&root->log_extents_lock[0]); 1202 spin_lock_init(&root->log_extents_lock[1]); 1203 spin_lock_init(&root->qgroup_meta_rsv_lock); 1204 mutex_init(&root->objectid_mutex); 1205 mutex_init(&root->log_mutex); 1206 mutex_init(&root->ordered_extent_mutex); 1207 mutex_init(&root->delalloc_mutex); 1208 init_waitqueue_head(&root->log_writer_wait); 1209 init_waitqueue_head(&root->log_commit_wait[0]); 1210 init_waitqueue_head(&root->log_commit_wait[1]); 1211 INIT_LIST_HEAD(&root->log_ctxs[0]); 1212 INIT_LIST_HEAD(&root->log_ctxs[1]); 1213 atomic_set(&root->log_commit[0], 0); 1214 atomic_set(&root->log_commit[1], 0); 1215 atomic_set(&root->log_writers, 0); 1216 atomic_set(&root->log_batch, 0); 1217 refcount_set(&root->refs, 1); 1218 atomic_set(&root->will_be_snapshotted, 0); 1219 root->log_transid = 0; 1220 root->log_transid_committed = -1; 1221 root->last_log_commit = 0; 1222 if (!dummy) 1223 extent_io_tree_init(&root->dirty_log_pages, NULL); 1224 1225 memset(&root->root_key, 0, sizeof(root->root_key)); 1226 memset(&root->root_item, 0, sizeof(root->root_item)); 1227 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1228 if (!dummy) 1229 root->defrag_trans_start = fs_info->generation; 1230 else 1231 root->defrag_trans_start = 0; 1232 root->root_key.objectid = objectid; 1233 root->anon_dev = 0; 1234 1235 spin_lock_init(&root->root_item_lock); 1236 } 1237 1238 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1239 gfp_t flags) 1240 { 1241 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1242 if (root) 1243 root->fs_info = fs_info; 1244 return root; 1245 } 1246 1247 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1248 /* Should only be used by the testing infrastructure */ 1249 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1250 { 1251 struct btrfs_root *root; 1252 1253 if (!fs_info) 1254 return ERR_PTR(-EINVAL); 1255 1256 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1257 if (!root) 1258 return ERR_PTR(-ENOMEM); 1259 1260 /* We don't use the stripesize in selftest, set it as sectorsize */ 1261 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1262 root->alloc_bytenr = 0; 1263 1264 return root; 1265 } 1266 #endif 1267 1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1269 struct btrfs_fs_info *fs_info, 1270 u64 objectid) 1271 { 1272 struct extent_buffer *leaf; 1273 struct btrfs_root *tree_root = fs_info->tree_root; 1274 struct btrfs_root *root; 1275 struct btrfs_key key; 1276 int ret = 0; 1277 uuid_le uuid = NULL_UUID_LE; 1278 1279 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1280 if (!root) 1281 return ERR_PTR(-ENOMEM); 1282 1283 __setup_root(root, fs_info, objectid); 1284 root->root_key.objectid = objectid; 1285 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1286 root->root_key.offset = 0; 1287 1288 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1289 if (IS_ERR(leaf)) { 1290 ret = PTR_ERR(leaf); 1291 leaf = NULL; 1292 goto fail; 1293 } 1294 1295 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1296 btrfs_set_header_bytenr(leaf, leaf->start); 1297 btrfs_set_header_generation(leaf, trans->transid); 1298 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1299 btrfs_set_header_owner(leaf, objectid); 1300 root->node = leaf; 1301 1302 write_extent_buffer_fsid(leaf, fs_info->fsid); 1303 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1304 btrfs_mark_buffer_dirty(leaf); 1305 1306 root->commit_root = btrfs_root_node(root); 1307 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1308 1309 root->root_item.flags = 0; 1310 root->root_item.byte_limit = 0; 1311 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1312 btrfs_set_root_generation(&root->root_item, trans->transid); 1313 btrfs_set_root_level(&root->root_item, 0); 1314 btrfs_set_root_refs(&root->root_item, 1); 1315 btrfs_set_root_used(&root->root_item, leaf->len); 1316 btrfs_set_root_last_snapshot(&root->root_item, 0); 1317 btrfs_set_root_dirid(&root->root_item, 0); 1318 if (is_fstree(objectid)) 1319 uuid_le_gen(&uuid); 1320 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1321 root->root_item.drop_level = 0; 1322 1323 key.objectid = objectid; 1324 key.type = BTRFS_ROOT_ITEM_KEY; 1325 key.offset = 0; 1326 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1327 if (ret) 1328 goto fail; 1329 1330 btrfs_tree_unlock(leaf); 1331 1332 return root; 1333 1334 fail: 1335 if (leaf) { 1336 btrfs_tree_unlock(leaf); 1337 free_extent_buffer(root->commit_root); 1338 free_extent_buffer(leaf); 1339 } 1340 kfree(root); 1341 1342 return ERR_PTR(ret); 1343 } 1344 1345 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1346 struct btrfs_fs_info *fs_info) 1347 { 1348 struct btrfs_root *root; 1349 struct extent_buffer *leaf; 1350 1351 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1352 if (!root) 1353 return ERR_PTR(-ENOMEM); 1354 1355 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1356 1357 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1358 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1359 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1360 1361 /* 1362 * DON'T set REF_COWS for log trees 1363 * 1364 * log trees do not get reference counted because they go away 1365 * before a real commit is actually done. They do store pointers 1366 * to file data extents, and those reference counts still get 1367 * updated (along with back refs to the log tree). 1368 */ 1369 1370 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1371 NULL, 0, 0, 0); 1372 if (IS_ERR(leaf)) { 1373 kfree(root); 1374 return ERR_CAST(leaf); 1375 } 1376 1377 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1378 btrfs_set_header_bytenr(leaf, leaf->start); 1379 btrfs_set_header_generation(leaf, trans->transid); 1380 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1381 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1382 root->node = leaf; 1383 1384 write_extent_buffer_fsid(root->node, fs_info->fsid); 1385 btrfs_mark_buffer_dirty(root->node); 1386 btrfs_tree_unlock(root->node); 1387 return root; 1388 } 1389 1390 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1391 struct btrfs_fs_info *fs_info) 1392 { 1393 struct btrfs_root *log_root; 1394 1395 log_root = alloc_log_tree(trans, fs_info); 1396 if (IS_ERR(log_root)) 1397 return PTR_ERR(log_root); 1398 WARN_ON(fs_info->log_root_tree); 1399 fs_info->log_root_tree = log_root; 1400 return 0; 1401 } 1402 1403 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1404 struct btrfs_root *root) 1405 { 1406 struct btrfs_fs_info *fs_info = root->fs_info; 1407 struct btrfs_root *log_root; 1408 struct btrfs_inode_item *inode_item; 1409 1410 log_root = alloc_log_tree(trans, fs_info); 1411 if (IS_ERR(log_root)) 1412 return PTR_ERR(log_root); 1413 1414 log_root->last_trans = trans->transid; 1415 log_root->root_key.offset = root->root_key.objectid; 1416 1417 inode_item = &log_root->root_item.inode; 1418 btrfs_set_stack_inode_generation(inode_item, 1); 1419 btrfs_set_stack_inode_size(inode_item, 3); 1420 btrfs_set_stack_inode_nlink(inode_item, 1); 1421 btrfs_set_stack_inode_nbytes(inode_item, 1422 fs_info->nodesize); 1423 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1424 1425 btrfs_set_root_node(&log_root->root_item, log_root->node); 1426 1427 WARN_ON(root->log_root); 1428 root->log_root = log_root; 1429 root->log_transid = 0; 1430 root->log_transid_committed = -1; 1431 root->last_log_commit = 0; 1432 return 0; 1433 } 1434 1435 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1436 struct btrfs_key *key) 1437 { 1438 struct btrfs_root *root; 1439 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1440 struct btrfs_path *path; 1441 u64 generation; 1442 int ret; 1443 int level; 1444 1445 path = btrfs_alloc_path(); 1446 if (!path) 1447 return ERR_PTR(-ENOMEM); 1448 1449 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1450 if (!root) { 1451 ret = -ENOMEM; 1452 goto alloc_fail; 1453 } 1454 1455 __setup_root(root, fs_info, key->objectid); 1456 1457 ret = btrfs_find_root(tree_root, key, path, 1458 &root->root_item, &root->root_key); 1459 if (ret) { 1460 if (ret > 0) 1461 ret = -ENOENT; 1462 goto find_fail; 1463 } 1464 1465 generation = btrfs_root_generation(&root->root_item); 1466 level = btrfs_root_level(&root->root_item); 1467 root->node = read_tree_block(fs_info, 1468 btrfs_root_bytenr(&root->root_item), 1469 generation, level, NULL); 1470 if (IS_ERR(root->node)) { 1471 ret = PTR_ERR(root->node); 1472 goto find_fail; 1473 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1474 ret = -EIO; 1475 free_extent_buffer(root->node); 1476 goto find_fail; 1477 } 1478 root->commit_root = btrfs_root_node(root); 1479 out: 1480 btrfs_free_path(path); 1481 return root; 1482 1483 find_fail: 1484 kfree(root); 1485 alloc_fail: 1486 root = ERR_PTR(ret); 1487 goto out; 1488 } 1489 1490 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1491 struct btrfs_key *location) 1492 { 1493 struct btrfs_root *root; 1494 1495 root = btrfs_read_tree_root(tree_root, location); 1496 if (IS_ERR(root)) 1497 return root; 1498 1499 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1500 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1501 btrfs_check_and_init_root_item(&root->root_item); 1502 } 1503 1504 return root; 1505 } 1506 1507 int btrfs_init_fs_root(struct btrfs_root *root) 1508 { 1509 int ret; 1510 struct btrfs_subvolume_writers *writers; 1511 1512 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1513 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1514 GFP_NOFS); 1515 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1516 ret = -ENOMEM; 1517 goto fail; 1518 } 1519 1520 writers = btrfs_alloc_subvolume_writers(); 1521 if (IS_ERR(writers)) { 1522 ret = PTR_ERR(writers); 1523 goto fail; 1524 } 1525 root->subv_writers = writers; 1526 1527 btrfs_init_free_ino_ctl(root); 1528 spin_lock_init(&root->ino_cache_lock); 1529 init_waitqueue_head(&root->ino_cache_wait); 1530 1531 ret = get_anon_bdev(&root->anon_dev); 1532 if (ret) 1533 goto fail; 1534 1535 mutex_lock(&root->objectid_mutex); 1536 ret = btrfs_find_highest_objectid(root, 1537 &root->highest_objectid); 1538 if (ret) { 1539 mutex_unlock(&root->objectid_mutex); 1540 goto fail; 1541 } 1542 1543 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1544 1545 mutex_unlock(&root->objectid_mutex); 1546 1547 return 0; 1548 fail: 1549 /* the caller is responsible to call free_fs_root */ 1550 return ret; 1551 } 1552 1553 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1554 u64 root_id) 1555 { 1556 struct btrfs_root *root; 1557 1558 spin_lock(&fs_info->fs_roots_radix_lock); 1559 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1560 (unsigned long)root_id); 1561 spin_unlock(&fs_info->fs_roots_radix_lock); 1562 return root; 1563 } 1564 1565 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1566 struct btrfs_root *root) 1567 { 1568 int ret; 1569 1570 ret = radix_tree_preload(GFP_NOFS); 1571 if (ret) 1572 return ret; 1573 1574 spin_lock(&fs_info->fs_roots_radix_lock); 1575 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1576 (unsigned long)root->root_key.objectid, 1577 root); 1578 if (ret == 0) 1579 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1580 spin_unlock(&fs_info->fs_roots_radix_lock); 1581 radix_tree_preload_end(); 1582 1583 return ret; 1584 } 1585 1586 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1587 struct btrfs_key *location, 1588 bool check_ref) 1589 { 1590 struct btrfs_root *root; 1591 struct btrfs_path *path; 1592 struct btrfs_key key; 1593 int ret; 1594 1595 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1596 return fs_info->tree_root; 1597 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1598 return fs_info->extent_root; 1599 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1600 return fs_info->chunk_root; 1601 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1602 return fs_info->dev_root; 1603 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1604 return fs_info->csum_root; 1605 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1606 return fs_info->quota_root ? fs_info->quota_root : 1607 ERR_PTR(-ENOENT); 1608 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1609 return fs_info->uuid_root ? fs_info->uuid_root : 1610 ERR_PTR(-ENOENT); 1611 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1612 return fs_info->free_space_root ? fs_info->free_space_root : 1613 ERR_PTR(-ENOENT); 1614 again: 1615 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1616 if (root) { 1617 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1618 return ERR_PTR(-ENOENT); 1619 return root; 1620 } 1621 1622 root = btrfs_read_fs_root(fs_info->tree_root, location); 1623 if (IS_ERR(root)) 1624 return root; 1625 1626 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1627 ret = -ENOENT; 1628 goto fail; 1629 } 1630 1631 ret = btrfs_init_fs_root(root); 1632 if (ret) 1633 goto fail; 1634 1635 path = btrfs_alloc_path(); 1636 if (!path) { 1637 ret = -ENOMEM; 1638 goto fail; 1639 } 1640 key.objectid = BTRFS_ORPHAN_OBJECTID; 1641 key.type = BTRFS_ORPHAN_ITEM_KEY; 1642 key.offset = location->objectid; 1643 1644 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1645 btrfs_free_path(path); 1646 if (ret < 0) 1647 goto fail; 1648 if (ret == 0) 1649 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1650 1651 ret = btrfs_insert_fs_root(fs_info, root); 1652 if (ret) { 1653 if (ret == -EEXIST) { 1654 free_fs_root(root); 1655 goto again; 1656 } 1657 goto fail; 1658 } 1659 return root; 1660 fail: 1661 free_fs_root(root); 1662 return ERR_PTR(ret); 1663 } 1664 1665 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1666 { 1667 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1668 int ret = 0; 1669 struct btrfs_device *device; 1670 struct backing_dev_info *bdi; 1671 1672 rcu_read_lock(); 1673 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1674 if (!device->bdev) 1675 continue; 1676 bdi = device->bdev->bd_bdi; 1677 if (bdi_congested(bdi, bdi_bits)) { 1678 ret = 1; 1679 break; 1680 } 1681 } 1682 rcu_read_unlock(); 1683 return ret; 1684 } 1685 1686 /* 1687 * called by the kthread helper functions to finally call the bio end_io 1688 * functions. This is where read checksum verification actually happens 1689 */ 1690 static void end_workqueue_fn(struct btrfs_work *work) 1691 { 1692 struct bio *bio; 1693 struct btrfs_end_io_wq *end_io_wq; 1694 1695 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1696 bio = end_io_wq->bio; 1697 1698 bio->bi_status = end_io_wq->status; 1699 bio->bi_private = end_io_wq->private; 1700 bio->bi_end_io = end_io_wq->end_io; 1701 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1702 bio_endio(bio); 1703 } 1704 1705 static int cleaner_kthread(void *arg) 1706 { 1707 struct btrfs_root *root = arg; 1708 struct btrfs_fs_info *fs_info = root->fs_info; 1709 int again; 1710 struct btrfs_trans_handle *trans; 1711 1712 do { 1713 again = 0; 1714 1715 /* Make the cleaner go to sleep early. */ 1716 if (btrfs_need_cleaner_sleep(fs_info)) 1717 goto sleep; 1718 1719 /* 1720 * Do not do anything if we might cause open_ctree() to block 1721 * before we have finished mounting the filesystem. 1722 */ 1723 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1724 goto sleep; 1725 1726 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1727 goto sleep; 1728 1729 /* 1730 * Avoid the problem that we change the status of the fs 1731 * during the above check and trylock. 1732 */ 1733 if (btrfs_need_cleaner_sleep(fs_info)) { 1734 mutex_unlock(&fs_info->cleaner_mutex); 1735 goto sleep; 1736 } 1737 1738 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1739 btrfs_run_delayed_iputs(fs_info); 1740 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1741 1742 again = btrfs_clean_one_deleted_snapshot(root); 1743 mutex_unlock(&fs_info->cleaner_mutex); 1744 1745 /* 1746 * The defragger has dealt with the R/O remount and umount, 1747 * needn't do anything special here. 1748 */ 1749 btrfs_run_defrag_inodes(fs_info); 1750 1751 /* 1752 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1753 * with relocation (btrfs_relocate_chunk) and relocation 1754 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1755 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1756 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1757 * unused block groups. 1758 */ 1759 btrfs_delete_unused_bgs(fs_info); 1760 sleep: 1761 if (!again) { 1762 set_current_state(TASK_INTERRUPTIBLE); 1763 if (!kthread_should_stop()) 1764 schedule(); 1765 __set_current_state(TASK_RUNNING); 1766 } 1767 } while (!kthread_should_stop()); 1768 1769 /* 1770 * Transaction kthread is stopped before us and wakes us up. 1771 * However we might have started a new transaction and COWed some 1772 * tree blocks when deleting unused block groups for example. So 1773 * make sure we commit the transaction we started to have a clean 1774 * shutdown when evicting the btree inode - if it has dirty pages 1775 * when we do the final iput() on it, eviction will trigger a 1776 * writeback for it which will fail with null pointer dereferences 1777 * since work queues and other resources were already released and 1778 * destroyed by the time the iput/eviction/writeback is made. 1779 */ 1780 trans = btrfs_attach_transaction(root); 1781 if (IS_ERR(trans)) { 1782 if (PTR_ERR(trans) != -ENOENT) 1783 btrfs_err(fs_info, 1784 "cleaner transaction attach returned %ld", 1785 PTR_ERR(trans)); 1786 } else { 1787 int ret; 1788 1789 ret = btrfs_commit_transaction(trans); 1790 if (ret) 1791 btrfs_err(fs_info, 1792 "cleaner open transaction commit returned %d", 1793 ret); 1794 } 1795 1796 return 0; 1797 } 1798 1799 static int transaction_kthread(void *arg) 1800 { 1801 struct btrfs_root *root = arg; 1802 struct btrfs_fs_info *fs_info = root->fs_info; 1803 struct btrfs_trans_handle *trans; 1804 struct btrfs_transaction *cur; 1805 u64 transid; 1806 unsigned long now; 1807 unsigned long delay; 1808 bool cannot_commit; 1809 1810 do { 1811 cannot_commit = false; 1812 delay = HZ * fs_info->commit_interval; 1813 mutex_lock(&fs_info->transaction_kthread_mutex); 1814 1815 spin_lock(&fs_info->trans_lock); 1816 cur = fs_info->running_transaction; 1817 if (!cur) { 1818 spin_unlock(&fs_info->trans_lock); 1819 goto sleep; 1820 } 1821 1822 now = get_seconds(); 1823 if (cur->state < TRANS_STATE_BLOCKED && 1824 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) && 1825 (now < cur->start_time || 1826 now - cur->start_time < fs_info->commit_interval)) { 1827 spin_unlock(&fs_info->trans_lock); 1828 delay = HZ * 5; 1829 goto sleep; 1830 } 1831 transid = cur->transid; 1832 spin_unlock(&fs_info->trans_lock); 1833 1834 /* If the file system is aborted, this will always fail. */ 1835 trans = btrfs_attach_transaction(root); 1836 if (IS_ERR(trans)) { 1837 if (PTR_ERR(trans) != -ENOENT) 1838 cannot_commit = true; 1839 goto sleep; 1840 } 1841 if (transid == trans->transid) { 1842 btrfs_commit_transaction(trans); 1843 } else { 1844 btrfs_end_transaction(trans); 1845 } 1846 sleep: 1847 wake_up_process(fs_info->cleaner_kthread); 1848 mutex_unlock(&fs_info->transaction_kthread_mutex); 1849 1850 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1851 &fs_info->fs_state))) 1852 btrfs_cleanup_transaction(fs_info); 1853 if (!kthread_should_stop() && 1854 (!btrfs_transaction_blocked(fs_info) || 1855 cannot_commit)) 1856 schedule_timeout_interruptible(delay); 1857 } while (!kthread_should_stop()); 1858 return 0; 1859 } 1860 1861 /* 1862 * this will find the highest generation in the array of 1863 * root backups. The index of the highest array is returned, 1864 * or -1 if we can't find anything. 1865 * 1866 * We check to make sure the array is valid by comparing the 1867 * generation of the latest root in the array with the generation 1868 * in the super block. If they don't match we pitch it. 1869 */ 1870 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1871 { 1872 u64 cur; 1873 int newest_index = -1; 1874 struct btrfs_root_backup *root_backup; 1875 int i; 1876 1877 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1878 root_backup = info->super_copy->super_roots + i; 1879 cur = btrfs_backup_tree_root_gen(root_backup); 1880 if (cur == newest_gen) 1881 newest_index = i; 1882 } 1883 1884 /* check to see if we actually wrapped around */ 1885 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1886 root_backup = info->super_copy->super_roots; 1887 cur = btrfs_backup_tree_root_gen(root_backup); 1888 if (cur == newest_gen) 1889 newest_index = 0; 1890 } 1891 return newest_index; 1892 } 1893 1894 1895 /* 1896 * find the oldest backup so we know where to store new entries 1897 * in the backup array. This will set the backup_root_index 1898 * field in the fs_info struct 1899 */ 1900 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1901 u64 newest_gen) 1902 { 1903 int newest_index = -1; 1904 1905 newest_index = find_newest_super_backup(info, newest_gen); 1906 /* if there was garbage in there, just move along */ 1907 if (newest_index == -1) { 1908 info->backup_root_index = 0; 1909 } else { 1910 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1911 } 1912 } 1913 1914 /* 1915 * copy all the root pointers into the super backup array. 1916 * this will bump the backup pointer by one when it is 1917 * done 1918 */ 1919 static void backup_super_roots(struct btrfs_fs_info *info) 1920 { 1921 int next_backup; 1922 struct btrfs_root_backup *root_backup; 1923 int last_backup; 1924 1925 next_backup = info->backup_root_index; 1926 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1927 BTRFS_NUM_BACKUP_ROOTS; 1928 1929 /* 1930 * just overwrite the last backup if we're at the same generation 1931 * this happens only at umount 1932 */ 1933 root_backup = info->super_for_commit->super_roots + last_backup; 1934 if (btrfs_backup_tree_root_gen(root_backup) == 1935 btrfs_header_generation(info->tree_root->node)) 1936 next_backup = last_backup; 1937 1938 root_backup = info->super_for_commit->super_roots + next_backup; 1939 1940 /* 1941 * make sure all of our padding and empty slots get zero filled 1942 * regardless of which ones we use today 1943 */ 1944 memset(root_backup, 0, sizeof(*root_backup)); 1945 1946 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1947 1948 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1949 btrfs_set_backup_tree_root_gen(root_backup, 1950 btrfs_header_generation(info->tree_root->node)); 1951 1952 btrfs_set_backup_tree_root_level(root_backup, 1953 btrfs_header_level(info->tree_root->node)); 1954 1955 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1956 btrfs_set_backup_chunk_root_gen(root_backup, 1957 btrfs_header_generation(info->chunk_root->node)); 1958 btrfs_set_backup_chunk_root_level(root_backup, 1959 btrfs_header_level(info->chunk_root->node)); 1960 1961 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1962 btrfs_set_backup_extent_root_gen(root_backup, 1963 btrfs_header_generation(info->extent_root->node)); 1964 btrfs_set_backup_extent_root_level(root_backup, 1965 btrfs_header_level(info->extent_root->node)); 1966 1967 /* 1968 * we might commit during log recovery, which happens before we set 1969 * the fs_root. Make sure it is valid before we fill it in. 1970 */ 1971 if (info->fs_root && info->fs_root->node) { 1972 btrfs_set_backup_fs_root(root_backup, 1973 info->fs_root->node->start); 1974 btrfs_set_backup_fs_root_gen(root_backup, 1975 btrfs_header_generation(info->fs_root->node)); 1976 btrfs_set_backup_fs_root_level(root_backup, 1977 btrfs_header_level(info->fs_root->node)); 1978 } 1979 1980 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1981 btrfs_set_backup_dev_root_gen(root_backup, 1982 btrfs_header_generation(info->dev_root->node)); 1983 btrfs_set_backup_dev_root_level(root_backup, 1984 btrfs_header_level(info->dev_root->node)); 1985 1986 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1987 btrfs_set_backup_csum_root_gen(root_backup, 1988 btrfs_header_generation(info->csum_root->node)); 1989 btrfs_set_backup_csum_root_level(root_backup, 1990 btrfs_header_level(info->csum_root->node)); 1991 1992 btrfs_set_backup_total_bytes(root_backup, 1993 btrfs_super_total_bytes(info->super_copy)); 1994 btrfs_set_backup_bytes_used(root_backup, 1995 btrfs_super_bytes_used(info->super_copy)); 1996 btrfs_set_backup_num_devices(root_backup, 1997 btrfs_super_num_devices(info->super_copy)); 1998 1999 /* 2000 * if we don't copy this out to the super_copy, it won't get remembered 2001 * for the next commit 2002 */ 2003 memcpy(&info->super_copy->super_roots, 2004 &info->super_for_commit->super_roots, 2005 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2006 } 2007 2008 /* 2009 * this copies info out of the root backup array and back into 2010 * the in-memory super block. It is meant to help iterate through 2011 * the array, so you send it the number of backups you've already 2012 * tried and the last backup index you used. 2013 * 2014 * this returns -1 when it has tried all the backups 2015 */ 2016 static noinline int next_root_backup(struct btrfs_fs_info *info, 2017 struct btrfs_super_block *super, 2018 int *num_backups_tried, int *backup_index) 2019 { 2020 struct btrfs_root_backup *root_backup; 2021 int newest = *backup_index; 2022 2023 if (*num_backups_tried == 0) { 2024 u64 gen = btrfs_super_generation(super); 2025 2026 newest = find_newest_super_backup(info, gen); 2027 if (newest == -1) 2028 return -1; 2029 2030 *backup_index = newest; 2031 *num_backups_tried = 1; 2032 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2033 /* we've tried all the backups, all done */ 2034 return -1; 2035 } else { 2036 /* jump to the next oldest backup */ 2037 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2038 BTRFS_NUM_BACKUP_ROOTS; 2039 *backup_index = newest; 2040 *num_backups_tried += 1; 2041 } 2042 root_backup = super->super_roots + newest; 2043 2044 btrfs_set_super_generation(super, 2045 btrfs_backup_tree_root_gen(root_backup)); 2046 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2047 btrfs_set_super_root_level(super, 2048 btrfs_backup_tree_root_level(root_backup)); 2049 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2050 2051 /* 2052 * fixme: the total bytes and num_devices need to match or we should 2053 * need a fsck 2054 */ 2055 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2056 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2057 return 0; 2058 } 2059 2060 /* helper to cleanup workers */ 2061 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2062 { 2063 btrfs_destroy_workqueue(fs_info->fixup_workers); 2064 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2065 btrfs_destroy_workqueue(fs_info->workers); 2066 btrfs_destroy_workqueue(fs_info->endio_workers); 2067 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2068 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2069 btrfs_destroy_workqueue(fs_info->rmw_workers); 2070 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2071 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2072 btrfs_destroy_workqueue(fs_info->submit_workers); 2073 btrfs_destroy_workqueue(fs_info->delayed_workers); 2074 btrfs_destroy_workqueue(fs_info->caching_workers); 2075 btrfs_destroy_workqueue(fs_info->readahead_workers); 2076 btrfs_destroy_workqueue(fs_info->flush_workers); 2077 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2078 btrfs_destroy_workqueue(fs_info->extent_workers); 2079 /* 2080 * Now that all other work queues are destroyed, we can safely destroy 2081 * the queues used for metadata I/O, since tasks from those other work 2082 * queues can do metadata I/O operations. 2083 */ 2084 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2085 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2086 } 2087 2088 static void free_root_extent_buffers(struct btrfs_root *root) 2089 { 2090 if (root) { 2091 free_extent_buffer(root->node); 2092 free_extent_buffer(root->commit_root); 2093 root->node = NULL; 2094 root->commit_root = NULL; 2095 } 2096 } 2097 2098 /* helper to cleanup tree roots */ 2099 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2100 { 2101 free_root_extent_buffers(info->tree_root); 2102 2103 free_root_extent_buffers(info->dev_root); 2104 free_root_extent_buffers(info->extent_root); 2105 free_root_extent_buffers(info->csum_root); 2106 free_root_extent_buffers(info->quota_root); 2107 free_root_extent_buffers(info->uuid_root); 2108 if (chunk_root) 2109 free_root_extent_buffers(info->chunk_root); 2110 free_root_extent_buffers(info->free_space_root); 2111 } 2112 2113 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2114 { 2115 int ret; 2116 struct btrfs_root *gang[8]; 2117 int i; 2118 2119 while (!list_empty(&fs_info->dead_roots)) { 2120 gang[0] = list_entry(fs_info->dead_roots.next, 2121 struct btrfs_root, root_list); 2122 list_del(&gang[0]->root_list); 2123 2124 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2125 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2126 } else { 2127 free_extent_buffer(gang[0]->node); 2128 free_extent_buffer(gang[0]->commit_root); 2129 btrfs_put_fs_root(gang[0]); 2130 } 2131 } 2132 2133 while (1) { 2134 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2135 (void **)gang, 0, 2136 ARRAY_SIZE(gang)); 2137 if (!ret) 2138 break; 2139 for (i = 0; i < ret; i++) 2140 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2141 } 2142 2143 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2144 btrfs_free_log_root_tree(NULL, fs_info); 2145 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2146 } 2147 } 2148 2149 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2150 { 2151 mutex_init(&fs_info->scrub_lock); 2152 atomic_set(&fs_info->scrubs_running, 0); 2153 atomic_set(&fs_info->scrub_pause_req, 0); 2154 atomic_set(&fs_info->scrubs_paused, 0); 2155 atomic_set(&fs_info->scrub_cancel_req, 0); 2156 init_waitqueue_head(&fs_info->scrub_pause_wait); 2157 fs_info->scrub_workers_refcnt = 0; 2158 } 2159 2160 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2161 { 2162 spin_lock_init(&fs_info->balance_lock); 2163 mutex_init(&fs_info->balance_mutex); 2164 atomic_set(&fs_info->balance_pause_req, 0); 2165 atomic_set(&fs_info->balance_cancel_req, 0); 2166 fs_info->balance_ctl = NULL; 2167 init_waitqueue_head(&fs_info->balance_wait_q); 2168 } 2169 2170 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2171 { 2172 struct inode *inode = fs_info->btree_inode; 2173 2174 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2175 set_nlink(inode, 1); 2176 /* 2177 * we set the i_size on the btree inode to the max possible int. 2178 * the real end of the address space is determined by all of 2179 * the devices in the system 2180 */ 2181 inode->i_size = OFFSET_MAX; 2182 inode->i_mapping->a_ops = &btree_aops; 2183 2184 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2185 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); 2186 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2187 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2188 2189 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2190 2191 BTRFS_I(inode)->root = fs_info->tree_root; 2192 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2193 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2194 btrfs_insert_inode_hash(inode); 2195 } 2196 2197 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2198 { 2199 fs_info->dev_replace.lock_owner = 0; 2200 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2201 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2202 rwlock_init(&fs_info->dev_replace.lock); 2203 atomic_set(&fs_info->dev_replace.read_locks, 0); 2204 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2205 init_waitqueue_head(&fs_info->replace_wait); 2206 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2207 } 2208 2209 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2210 { 2211 spin_lock_init(&fs_info->qgroup_lock); 2212 mutex_init(&fs_info->qgroup_ioctl_lock); 2213 fs_info->qgroup_tree = RB_ROOT; 2214 fs_info->qgroup_op_tree = RB_ROOT; 2215 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2216 fs_info->qgroup_seq = 1; 2217 fs_info->qgroup_ulist = NULL; 2218 fs_info->qgroup_rescan_running = false; 2219 mutex_init(&fs_info->qgroup_rescan_lock); 2220 } 2221 2222 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2223 struct btrfs_fs_devices *fs_devices) 2224 { 2225 u32 max_active = fs_info->thread_pool_size; 2226 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2227 2228 fs_info->workers = 2229 btrfs_alloc_workqueue(fs_info, "worker", 2230 flags | WQ_HIGHPRI, max_active, 16); 2231 2232 fs_info->delalloc_workers = 2233 btrfs_alloc_workqueue(fs_info, "delalloc", 2234 flags, max_active, 2); 2235 2236 fs_info->flush_workers = 2237 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2238 flags, max_active, 0); 2239 2240 fs_info->caching_workers = 2241 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2242 2243 /* 2244 * a higher idle thresh on the submit workers makes it much more 2245 * likely that bios will be send down in a sane order to the 2246 * devices 2247 */ 2248 fs_info->submit_workers = 2249 btrfs_alloc_workqueue(fs_info, "submit", flags, 2250 min_t(u64, fs_devices->num_devices, 2251 max_active), 64); 2252 2253 fs_info->fixup_workers = 2254 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2255 2256 /* 2257 * endios are largely parallel and should have a very 2258 * low idle thresh 2259 */ 2260 fs_info->endio_workers = 2261 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2262 fs_info->endio_meta_workers = 2263 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2264 max_active, 4); 2265 fs_info->endio_meta_write_workers = 2266 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2267 max_active, 2); 2268 fs_info->endio_raid56_workers = 2269 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2270 max_active, 4); 2271 fs_info->endio_repair_workers = 2272 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2273 fs_info->rmw_workers = 2274 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2275 fs_info->endio_write_workers = 2276 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2277 max_active, 2); 2278 fs_info->endio_freespace_worker = 2279 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2280 max_active, 0); 2281 fs_info->delayed_workers = 2282 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2283 max_active, 0); 2284 fs_info->readahead_workers = 2285 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2286 max_active, 2); 2287 fs_info->qgroup_rescan_workers = 2288 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2289 fs_info->extent_workers = 2290 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2291 min_t(u64, fs_devices->num_devices, 2292 max_active), 8); 2293 2294 if (!(fs_info->workers && fs_info->delalloc_workers && 2295 fs_info->submit_workers && fs_info->flush_workers && 2296 fs_info->endio_workers && fs_info->endio_meta_workers && 2297 fs_info->endio_meta_write_workers && 2298 fs_info->endio_repair_workers && 2299 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2300 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2301 fs_info->caching_workers && fs_info->readahead_workers && 2302 fs_info->fixup_workers && fs_info->delayed_workers && 2303 fs_info->extent_workers && 2304 fs_info->qgroup_rescan_workers)) { 2305 return -ENOMEM; 2306 } 2307 2308 return 0; 2309 } 2310 2311 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2312 struct btrfs_fs_devices *fs_devices) 2313 { 2314 int ret; 2315 struct btrfs_root *log_tree_root; 2316 struct btrfs_super_block *disk_super = fs_info->super_copy; 2317 u64 bytenr = btrfs_super_log_root(disk_super); 2318 int level = btrfs_super_log_root_level(disk_super); 2319 2320 if (fs_devices->rw_devices == 0) { 2321 btrfs_warn(fs_info, "log replay required on RO media"); 2322 return -EIO; 2323 } 2324 2325 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2326 if (!log_tree_root) 2327 return -ENOMEM; 2328 2329 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2330 2331 log_tree_root->node = read_tree_block(fs_info, bytenr, 2332 fs_info->generation + 1, 2333 level, NULL); 2334 if (IS_ERR(log_tree_root->node)) { 2335 btrfs_warn(fs_info, "failed to read log tree"); 2336 ret = PTR_ERR(log_tree_root->node); 2337 kfree(log_tree_root); 2338 return ret; 2339 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2340 btrfs_err(fs_info, "failed to read log tree"); 2341 free_extent_buffer(log_tree_root->node); 2342 kfree(log_tree_root); 2343 return -EIO; 2344 } 2345 /* returns with log_tree_root freed on success */ 2346 ret = btrfs_recover_log_trees(log_tree_root); 2347 if (ret) { 2348 btrfs_handle_fs_error(fs_info, ret, 2349 "Failed to recover log tree"); 2350 free_extent_buffer(log_tree_root->node); 2351 kfree(log_tree_root); 2352 return ret; 2353 } 2354 2355 if (sb_rdonly(fs_info->sb)) { 2356 ret = btrfs_commit_super(fs_info); 2357 if (ret) 2358 return ret; 2359 } 2360 2361 return 0; 2362 } 2363 2364 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2365 { 2366 struct btrfs_root *tree_root = fs_info->tree_root; 2367 struct btrfs_root *root; 2368 struct btrfs_key location; 2369 int ret; 2370 2371 BUG_ON(!fs_info->tree_root); 2372 2373 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2374 location.type = BTRFS_ROOT_ITEM_KEY; 2375 location.offset = 0; 2376 2377 root = btrfs_read_tree_root(tree_root, &location); 2378 if (IS_ERR(root)) { 2379 ret = PTR_ERR(root); 2380 goto out; 2381 } 2382 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2383 fs_info->extent_root = root; 2384 2385 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2386 root = btrfs_read_tree_root(tree_root, &location); 2387 if (IS_ERR(root)) { 2388 ret = PTR_ERR(root); 2389 goto out; 2390 } 2391 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2392 fs_info->dev_root = root; 2393 btrfs_init_devices_late(fs_info); 2394 2395 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2396 root = btrfs_read_tree_root(tree_root, &location); 2397 if (IS_ERR(root)) { 2398 ret = PTR_ERR(root); 2399 goto out; 2400 } 2401 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2402 fs_info->csum_root = root; 2403 2404 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2405 root = btrfs_read_tree_root(tree_root, &location); 2406 if (!IS_ERR(root)) { 2407 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2408 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2409 fs_info->quota_root = root; 2410 } 2411 2412 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2413 root = btrfs_read_tree_root(tree_root, &location); 2414 if (IS_ERR(root)) { 2415 ret = PTR_ERR(root); 2416 if (ret != -ENOENT) 2417 goto out; 2418 } else { 2419 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2420 fs_info->uuid_root = root; 2421 } 2422 2423 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2424 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2425 root = btrfs_read_tree_root(tree_root, &location); 2426 if (IS_ERR(root)) { 2427 ret = PTR_ERR(root); 2428 goto out; 2429 } 2430 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2431 fs_info->free_space_root = root; 2432 } 2433 2434 return 0; 2435 out: 2436 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2437 location.objectid, ret); 2438 return ret; 2439 } 2440 2441 /* 2442 * Real super block validation 2443 * NOTE: super csum type and incompat features will not be checked here. 2444 * 2445 * @sb: super block to check 2446 * @mirror_num: the super block number to check its bytenr: 2447 * 0 the primary (1st) sb 2448 * 1, 2 2nd and 3rd backup copy 2449 * -1 skip bytenr check 2450 */ 2451 static int validate_super(struct btrfs_fs_info *fs_info, 2452 struct btrfs_super_block *sb, int mirror_num) 2453 { 2454 u64 nodesize = btrfs_super_nodesize(sb); 2455 u64 sectorsize = btrfs_super_sectorsize(sb); 2456 int ret = 0; 2457 2458 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2459 btrfs_err(fs_info, "no valid FS found"); 2460 ret = -EINVAL; 2461 } 2462 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2463 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2464 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2465 ret = -EINVAL; 2466 } 2467 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2468 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2469 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2470 ret = -EINVAL; 2471 } 2472 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2473 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2474 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2475 ret = -EINVAL; 2476 } 2477 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2478 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2479 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2480 ret = -EINVAL; 2481 } 2482 2483 /* 2484 * Check sectorsize and nodesize first, other check will need it. 2485 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2486 */ 2487 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2488 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2489 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2490 ret = -EINVAL; 2491 } 2492 /* Only PAGE SIZE is supported yet */ 2493 if (sectorsize != PAGE_SIZE) { 2494 btrfs_err(fs_info, 2495 "sectorsize %llu not supported yet, only support %lu", 2496 sectorsize, PAGE_SIZE); 2497 ret = -EINVAL; 2498 } 2499 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2500 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2501 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2502 ret = -EINVAL; 2503 } 2504 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2505 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2506 le32_to_cpu(sb->__unused_leafsize), nodesize); 2507 ret = -EINVAL; 2508 } 2509 2510 /* Root alignment check */ 2511 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2512 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2513 btrfs_super_root(sb)); 2514 ret = -EINVAL; 2515 } 2516 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2517 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2518 btrfs_super_chunk_root(sb)); 2519 ret = -EINVAL; 2520 } 2521 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2522 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2523 btrfs_super_log_root(sb)); 2524 ret = -EINVAL; 2525 } 2526 2527 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { 2528 btrfs_err(fs_info, 2529 "dev_item UUID does not match fsid: %pU != %pU", 2530 fs_info->fsid, sb->dev_item.fsid); 2531 ret = -EINVAL; 2532 } 2533 2534 /* 2535 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2536 * done later 2537 */ 2538 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2539 btrfs_err(fs_info, "bytes_used is too small %llu", 2540 btrfs_super_bytes_used(sb)); 2541 ret = -EINVAL; 2542 } 2543 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2544 btrfs_err(fs_info, "invalid stripesize %u", 2545 btrfs_super_stripesize(sb)); 2546 ret = -EINVAL; 2547 } 2548 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2549 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2550 btrfs_super_num_devices(sb)); 2551 if (btrfs_super_num_devices(sb) == 0) { 2552 btrfs_err(fs_info, "number of devices is 0"); 2553 ret = -EINVAL; 2554 } 2555 2556 if (mirror_num >= 0 && 2557 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2558 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2559 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2560 ret = -EINVAL; 2561 } 2562 2563 /* 2564 * Obvious sys_chunk_array corruptions, it must hold at least one key 2565 * and one chunk 2566 */ 2567 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2568 btrfs_err(fs_info, "system chunk array too big %u > %u", 2569 btrfs_super_sys_array_size(sb), 2570 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2571 ret = -EINVAL; 2572 } 2573 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2574 + sizeof(struct btrfs_chunk)) { 2575 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2576 btrfs_super_sys_array_size(sb), 2577 sizeof(struct btrfs_disk_key) 2578 + sizeof(struct btrfs_chunk)); 2579 ret = -EINVAL; 2580 } 2581 2582 /* 2583 * The generation is a global counter, we'll trust it more than the others 2584 * but it's still possible that it's the one that's wrong. 2585 */ 2586 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2587 btrfs_warn(fs_info, 2588 "suspicious: generation < chunk_root_generation: %llu < %llu", 2589 btrfs_super_generation(sb), 2590 btrfs_super_chunk_root_generation(sb)); 2591 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2592 && btrfs_super_cache_generation(sb) != (u64)-1) 2593 btrfs_warn(fs_info, 2594 "suspicious: generation < cache_generation: %llu < %llu", 2595 btrfs_super_generation(sb), 2596 btrfs_super_cache_generation(sb)); 2597 2598 return ret; 2599 } 2600 2601 /* 2602 * Validation of super block at mount time. 2603 * Some checks already done early at mount time, like csum type and incompat 2604 * flags will be skipped. 2605 */ 2606 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2607 { 2608 return validate_super(fs_info, fs_info->super_copy, 0); 2609 } 2610 2611 /* 2612 * Validation of super block at write time. 2613 * Some checks like bytenr check will be skipped as their values will be 2614 * overwritten soon. 2615 * Extra checks like csum type and incompat flags will be done here. 2616 */ 2617 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2618 struct btrfs_super_block *sb) 2619 { 2620 int ret; 2621 2622 ret = validate_super(fs_info, sb, -1); 2623 if (ret < 0) 2624 goto out; 2625 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) { 2626 ret = -EUCLEAN; 2627 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2628 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2629 goto out; 2630 } 2631 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2632 ret = -EUCLEAN; 2633 btrfs_err(fs_info, 2634 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2635 btrfs_super_incompat_flags(sb), 2636 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2637 goto out; 2638 } 2639 out: 2640 if (ret < 0) 2641 btrfs_err(fs_info, 2642 "super block corruption detected before writing it to disk"); 2643 return ret; 2644 } 2645 2646 int open_ctree(struct super_block *sb, 2647 struct btrfs_fs_devices *fs_devices, 2648 char *options) 2649 { 2650 u32 sectorsize; 2651 u32 nodesize; 2652 u32 stripesize; 2653 u64 generation; 2654 u64 features; 2655 struct btrfs_key location; 2656 struct buffer_head *bh; 2657 struct btrfs_super_block *disk_super; 2658 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2659 struct btrfs_root *tree_root; 2660 struct btrfs_root *chunk_root; 2661 int ret; 2662 int err = -EINVAL; 2663 int num_backups_tried = 0; 2664 int backup_index = 0; 2665 int clear_free_space_tree = 0; 2666 int level; 2667 2668 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2669 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2670 if (!tree_root || !chunk_root) { 2671 err = -ENOMEM; 2672 goto fail; 2673 } 2674 2675 ret = init_srcu_struct(&fs_info->subvol_srcu); 2676 if (ret) { 2677 err = ret; 2678 goto fail; 2679 } 2680 2681 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2682 if (ret) { 2683 err = ret; 2684 goto fail_srcu; 2685 } 2686 fs_info->dirty_metadata_batch = PAGE_SIZE * 2687 (1 + ilog2(nr_cpu_ids)); 2688 2689 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2690 if (ret) { 2691 err = ret; 2692 goto fail_dirty_metadata_bytes; 2693 } 2694 2695 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2696 if (ret) { 2697 err = ret; 2698 goto fail_delalloc_bytes; 2699 } 2700 2701 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2702 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2703 INIT_LIST_HEAD(&fs_info->trans_list); 2704 INIT_LIST_HEAD(&fs_info->dead_roots); 2705 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2706 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2707 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2708 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs); 2709 spin_lock_init(&fs_info->pending_raid_kobjs_lock); 2710 spin_lock_init(&fs_info->delalloc_root_lock); 2711 spin_lock_init(&fs_info->trans_lock); 2712 spin_lock_init(&fs_info->fs_roots_radix_lock); 2713 spin_lock_init(&fs_info->delayed_iput_lock); 2714 spin_lock_init(&fs_info->defrag_inodes_lock); 2715 spin_lock_init(&fs_info->tree_mod_seq_lock); 2716 spin_lock_init(&fs_info->super_lock); 2717 spin_lock_init(&fs_info->qgroup_op_lock); 2718 spin_lock_init(&fs_info->buffer_lock); 2719 spin_lock_init(&fs_info->unused_bgs_lock); 2720 rwlock_init(&fs_info->tree_mod_log_lock); 2721 mutex_init(&fs_info->unused_bg_unpin_mutex); 2722 mutex_init(&fs_info->delete_unused_bgs_mutex); 2723 mutex_init(&fs_info->reloc_mutex); 2724 mutex_init(&fs_info->delalloc_root_mutex); 2725 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2726 seqlock_init(&fs_info->profiles_lock); 2727 2728 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2729 INIT_LIST_HEAD(&fs_info->space_info); 2730 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2731 INIT_LIST_HEAD(&fs_info->unused_bgs); 2732 btrfs_mapping_init(&fs_info->mapping_tree); 2733 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2734 BTRFS_BLOCK_RSV_GLOBAL); 2735 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2736 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2737 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2738 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2739 BTRFS_BLOCK_RSV_DELOPS); 2740 atomic_set(&fs_info->async_delalloc_pages, 0); 2741 atomic_set(&fs_info->defrag_running, 0); 2742 atomic_set(&fs_info->qgroup_op_seq, 0); 2743 atomic_set(&fs_info->reada_works_cnt, 0); 2744 atomic64_set(&fs_info->tree_mod_seq, 0); 2745 fs_info->sb = sb; 2746 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2747 fs_info->metadata_ratio = 0; 2748 fs_info->defrag_inodes = RB_ROOT; 2749 atomic64_set(&fs_info->free_chunk_space, 0); 2750 fs_info->tree_mod_log = RB_ROOT; 2751 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2752 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2753 /* readahead state */ 2754 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2755 spin_lock_init(&fs_info->reada_lock); 2756 btrfs_init_ref_verify(fs_info); 2757 2758 fs_info->thread_pool_size = min_t(unsigned long, 2759 num_online_cpus() + 2, 8); 2760 2761 INIT_LIST_HEAD(&fs_info->ordered_roots); 2762 spin_lock_init(&fs_info->ordered_root_lock); 2763 2764 fs_info->btree_inode = new_inode(sb); 2765 if (!fs_info->btree_inode) { 2766 err = -ENOMEM; 2767 goto fail_bio_counter; 2768 } 2769 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2770 2771 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2772 GFP_KERNEL); 2773 if (!fs_info->delayed_root) { 2774 err = -ENOMEM; 2775 goto fail_iput; 2776 } 2777 btrfs_init_delayed_root(fs_info->delayed_root); 2778 2779 btrfs_init_scrub(fs_info); 2780 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2781 fs_info->check_integrity_print_mask = 0; 2782 #endif 2783 btrfs_init_balance(fs_info); 2784 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2785 2786 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2787 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2788 2789 btrfs_init_btree_inode(fs_info); 2790 2791 spin_lock_init(&fs_info->block_group_cache_lock); 2792 fs_info->block_group_cache_tree = RB_ROOT; 2793 fs_info->first_logical_byte = (u64)-1; 2794 2795 extent_io_tree_init(&fs_info->freed_extents[0], NULL); 2796 extent_io_tree_init(&fs_info->freed_extents[1], NULL); 2797 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2798 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2799 2800 mutex_init(&fs_info->ordered_operations_mutex); 2801 mutex_init(&fs_info->tree_log_mutex); 2802 mutex_init(&fs_info->chunk_mutex); 2803 mutex_init(&fs_info->transaction_kthread_mutex); 2804 mutex_init(&fs_info->cleaner_mutex); 2805 mutex_init(&fs_info->ro_block_group_mutex); 2806 init_rwsem(&fs_info->commit_root_sem); 2807 init_rwsem(&fs_info->cleanup_work_sem); 2808 init_rwsem(&fs_info->subvol_sem); 2809 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2810 2811 btrfs_init_dev_replace_locks(fs_info); 2812 btrfs_init_qgroup(fs_info); 2813 2814 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2815 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2816 2817 init_waitqueue_head(&fs_info->transaction_throttle); 2818 init_waitqueue_head(&fs_info->transaction_wait); 2819 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2820 init_waitqueue_head(&fs_info->async_submit_wait); 2821 2822 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2823 2824 /* Usable values until the real ones are cached from the superblock */ 2825 fs_info->nodesize = 4096; 2826 fs_info->sectorsize = 4096; 2827 fs_info->stripesize = 4096; 2828 2829 ret = btrfs_alloc_stripe_hash_table(fs_info); 2830 if (ret) { 2831 err = ret; 2832 goto fail_alloc; 2833 } 2834 2835 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2836 2837 invalidate_bdev(fs_devices->latest_bdev); 2838 2839 /* 2840 * Read super block and check the signature bytes only 2841 */ 2842 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2843 if (IS_ERR(bh)) { 2844 err = PTR_ERR(bh); 2845 goto fail_alloc; 2846 } 2847 2848 /* 2849 * We want to check superblock checksum, the type is stored inside. 2850 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2851 */ 2852 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2853 btrfs_err(fs_info, "superblock checksum mismatch"); 2854 err = -EINVAL; 2855 brelse(bh); 2856 goto fail_alloc; 2857 } 2858 2859 /* 2860 * super_copy is zeroed at allocation time and we never touch the 2861 * following bytes up to INFO_SIZE, the checksum is calculated from 2862 * the whole block of INFO_SIZE 2863 */ 2864 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2865 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2866 sizeof(*fs_info->super_for_commit)); 2867 brelse(bh); 2868 2869 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2870 2871 ret = btrfs_validate_mount_super(fs_info); 2872 if (ret) { 2873 btrfs_err(fs_info, "superblock contains fatal errors"); 2874 err = -EINVAL; 2875 goto fail_alloc; 2876 } 2877 2878 disk_super = fs_info->super_copy; 2879 if (!btrfs_super_root(disk_super)) 2880 goto fail_alloc; 2881 2882 /* check FS state, whether FS is broken. */ 2883 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2884 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2885 2886 /* 2887 * run through our array of backup supers and setup 2888 * our ring pointer to the oldest one 2889 */ 2890 generation = btrfs_super_generation(disk_super); 2891 find_oldest_super_backup(fs_info, generation); 2892 2893 /* 2894 * In the long term, we'll store the compression type in the super 2895 * block, and it'll be used for per file compression control. 2896 */ 2897 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2898 2899 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2900 if (ret) { 2901 err = ret; 2902 goto fail_alloc; 2903 } 2904 2905 features = btrfs_super_incompat_flags(disk_super) & 2906 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2907 if (features) { 2908 btrfs_err(fs_info, 2909 "cannot mount because of unsupported optional features (%llx)", 2910 features); 2911 err = -EINVAL; 2912 goto fail_alloc; 2913 } 2914 2915 features = btrfs_super_incompat_flags(disk_super); 2916 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2917 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2918 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2919 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 2920 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 2921 2922 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2923 btrfs_info(fs_info, "has skinny extents"); 2924 2925 /* 2926 * flag our filesystem as having big metadata blocks if 2927 * they are bigger than the page size 2928 */ 2929 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2930 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2931 btrfs_info(fs_info, 2932 "flagging fs with big metadata feature"); 2933 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2934 } 2935 2936 nodesize = btrfs_super_nodesize(disk_super); 2937 sectorsize = btrfs_super_sectorsize(disk_super); 2938 stripesize = sectorsize; 2939 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2940 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2941 2942 /* Cache block sizes */ 2943 fs_info->nodesize = nodesize; 2944 fs_info->sectorsize = sectorsize; 2945 fs_info->stripesize = stripesize; 2946 2947 /* 2948 * mixed block groups end up with duplicate but slightly offset 2949 * extent buffers for the same range. It leads to corruptions 2950 */ 2951 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2952 (sectorsize != nodesize)) { 2953 btrfs_err(fs_info, 2954 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2955 nodesize, sectorsize); 2956 goto fail_alloc; 2957 } 2958 2959 /* 2960 * Needn't use the lock because there is no other task which will 2961 * update the flag. 2962 */ 2963 btrfs_set_super_incompat_flags(disk_super, features); 2964 2965 features = btrfs_super_compat_ro_flags(disk_super) & 2966 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2967 if (!sb_rdonly(sb) && features) { 2968 btrfs_err(fs_info, 2969 "cannot mount read-write because of unsupported optional features (%llx)", 2970 features); 2971 err = -EINVAL; 2972 goto fail_alloc; 2973 } 2974 2975 ret = btrfs_init_workqueues(fs_info, fs_devices); 2976 if (ret) { 2977 err = ret; 2978 goto fail_sb_buffer; 2979 } 2980 2981 sb->s_bdi->congested_fn = btrfs_congested_fn; 2982 sb->s_bdi->congested_data = fs_info; 2983 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 2984 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE; 2985 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 2986 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 2987 2988 sb->s_blocksize = sectorsize; 2989 sb->s_blocksize_bits = blksize_bits(sectorsize); 2990 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE); 2991 2992 mutex_lock(&fs_info->chunk_mutex); 2993 ret = btrfs_read_sys_array(fs_info); 2994 mutex_unlock(&fs_info->chunk_mutex); 2995 if (ret) { 2996 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2997 goto fail_sb_buffer; 2998 } 2999 3000 generation = btrfs_super_chunk_root_generation(disk_super); 3001 level = btrfs_super_chunk_root_level(disk_super); 3002 3003 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 3004 3005 chunk_root->node = read_tree_block(fs_info, 3006 btrfs_super_chunk_root(disk_super), 3007 generation, level, NULL); 3008 if (IS_ERR(chunk_root->node) || 3009 !extent_buffer_uptodate(chunk_root->node)) { 3010 btrfs_err(fs_info, "failed to read chunk root"); 3011 if (!IS_ERR(chunk_root->node)) 3012 free_extent_buffer(chunk_root->node); 3013 chunk_root->node = NULL; 3014 goto fail_tree_roots; 3015 } 3016 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 3017 chunk_root->commit_root = btrfs_root_node(chunk_root); 3018 3019 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3020 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 3021 3022 ret = btrfs_read_chunk_tree(fs_info); 3023 if (ret) { 3024 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3025 goto fail_tree_roots; 3026 } 3027 3028 /* 3029 * Keep the devid that is marked to be the target device for the 3030 * device replace procedure 3031 */ 3032 btrfs_free_extra_devids(fs_devices, 0); 3033 3034 if (!fs_devices->latest_bdev) { 3035 btrfs_err(fs_info, "failed to read devices"); 3036 goto fail_tree_roots; 3037 } 3038 3039 retry_root_backup: 3040 generation = btrfs_super_generation(disk_super); 3041 level = btrfs_super_root_level(disk_super); 3042 3043 tree_root->node = read_tree_block(fs_info, 3044 btrfs_super_root(disk_super), 3045 generation, level, NULL); 3046 if (IS_ERR(tree_root->node) || 3047 !extent_buffer_uptodate(tree_root->node)) { 3048 btrfs_warn(fs_info, "failed to read tree root"); 3049 if (!IS_ERR(tree_root->node)) 3050 free_extent_buffer(tree_root->node); 3051 tree_root->node = NULL; 3052 goto recovery_tree_root; 3053 } 3054 3055 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 3056 tree_root->commit_root = btrfs_root_node(tree_root); 3057 btrfs_set_root_refs(&tree_root->root_item, 1); 3058 3059 mutex_lock(&tree_root->objectid_mutex); 3060 ret = btrfs_find_highest_objectid(tree_root, 3061 &tree_root->highest_objectid); 3062 if (ret) { 3063 mutex_unlock(&tree_root->objectid_mutex); 3064 goto recovery_tree_root; 3065 } 3066 3067 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 3068 3069 mutex_unlock(&tree_root->objectid_mutex); 3070 3071 ret = btrfs_read_roots(fs_info); 3072 if (ret) 3073 goto recovery_tree_root; 3074 3075 fs_info->generation = generation; 3076 fs_info->last_trans_committed = generation; 3077 3078 ret = btrfs_recover_balance(fs_info); 3079 if (ret) { 3080 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3081 goto fail_block_groups; 3082 } 3083 3084 ret = btrfs_init_dev_stats(fs_info); 3085 if (ret) { 3086 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3087 goto fail_block_groups; 3088 } 3089 3090 ret = btrfs_init_dev_replace(fs_info); 3091 if (ret) { 3092 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3093 goto fail_block_groups; 3094 } 3095 3096 btrfs_free_extra_devids(fs_devices, 1); 3097 3098 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3099 if (ret) { 3100 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3101 ret); 3102 goto fail_block_groups; 3103 } 3104 3105 ret = btrfs_sysfs_add_device(fs_devices); 3106 if (ret) { 3107 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3108 ret); 3109 goto fail_fsdev_sysfs; 3110 } 3111 3112 ret = btrfs_sysfs_add_mounted(fs_info); 3113 if (ret) { 3114 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3115 goto fail_fsdev_sysfs; 3116 } 3117 3118 ret = btrfs_init_space_info(fs_info); 3119 if (ret) { 3120 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3121 goto fail_sysfs; 3122 } 3123 3124 ret = btrfs_read_block_groups(fs_info); 3125 if (ret) { 3126 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3127 goto fail_sysfs; 3128 } 3129 3130 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) { 3131 btrfs_warn(fs_info, 3132 "writeable mount is not allowed due to too many missing devices"); 3133 goto fail_sysfs; 3134 } 3135 3136 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3137 "btrfs-cleaner"); 3138 if (IS_ERR(fs_info->cleaner_kthread)) 3139 goto fail_sysfs; 3140 3141 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3142 tree_root, 3143 "btrfs-transaction"); 3144 if (IS_ERR(fs_info->transaction_kthread)) 3145 goto fail_cleaner; 3146 3147 if (!btrfs_test_opt(fs_info, NOSSD) && 3148 !fs_info->fs_devices->rotating) { 3149 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3150 } 3151 3152 /* 3153 * Mount does not set all options immediately, we can do it now and do 3154 * not have to wait for transaction commit 3155 */ 3156 btrfs_apply_pending_changes(fs_info); 3157 3158 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3159 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3160 ret = btrfsic_mount(fs_info, fs_devices, 3161 btrfs_test_opt(fs_info, 3162 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3163 1 : 0, 3164 fs_info->check_integrity_print_mask); 3165 if (ret) 3166 btrfs_warn(fs_info, 3167 "failed to initialize integrity check module: %d", 3168 ret); 3169 } 3170 #endif 3171 ret = btrfs_read_qgroup_config(fs_info); 3172 if (ret) 3173 goto fail_trans_kthread; 3174 3175 if (btrfs_build_ref_tree(fs_info)) 3176 btrfs_err(fs_info, "couldn't build ref tree"); 3177 3178 /* do not make disk changes in broken FS or nologreplay is given */ 3179 if (btrfs_super_log_root(disk_super) != 0 && 3180 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3181 ret = btrfs_replay_log(fs_info, fs_devices); 3182 if (ret) { 3183 err = ret; 3184 goto fail_qgroup; 3185 } 3186 } 3187 3188 ret = btrfs_find_orphan_roots(fs_info); 3189 if (ret) 3190 goto fail_qgroup; 3191 3192 if (!sb_rdonly(sb)) { 3193 ret = btrfs_cleanup_fs_roots(fs_info); 3194 if (ret) 3195 goto fail_qgroup; 3196 3197 mutex_lock(&fs_info->cleaner_mutex); 3198 ret = btrfs_recover_relocation(tree_root); 3199 mutex_unlock(&fs_info->cleaner_mutex); 3200 if (ret < 0) { 3201 btrfs_warn(fs_info, "failed to recover relocation: %d", 3202 ret); 3203 err = -EINVAL; 3204 goto fail_qgroup; 3205 } 3206 } 3207 3208 location.objectid = BTRFS_FS_TREE_OBJECTID; 3209 location.type = BTRFS_ROOT_ITEM_KEY; 3210 location.offset = 0; 3211 3212 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3213 if (IS_ERR(fs_info->fs_root)) { 3214 err = PTR_ERR(fs_info->fs_root); 3215 btrfs_warn(fs_info, "failed to read fs tree: %d", err); 3216 goto fail_qgroup; 3217 } 3218 3219 if (sb_rdonly(sb)) 3220 return 0; 3221 3222 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3223 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3224 clear_free_space_tree = 1; 3225 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3226 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3227 btrfs_warn(fs_info, "free space tree is invalid"); 3228 clear_free_space_tree = 1; 3229 } 3230 3231 if (clear_free_space_tree) { 3232 btrfs_info(fs_info, "clearing free space tree"); 3233 ret = btrfs_clear_free_space_tree(fs_info); 3234 if (ret) { 3235 btrfs_warn(fs_info, 3236 "failed to clear free space tree: %d", ret); 3237 close_ctree(fs_info); 3238 return ret; 3239 } 3240 } 3241 3242 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3243 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3244 btrfs_info(fs_info, "creating free space tree"); 3245 ret = btrfs_create_free_space_tree(fs_info); 3246 if (ret) { 3247 btrfs_warn(fs_info, 3248 "failed to create free space tree: %d", ret); 3249 close_ctree(fs_info); 3250 return ret; 3251 } 3252 } 3253 3254 down_read(&fs_info->cleanup_work_sem); 3255 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3256 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3257 up_read(&fs_info->cleanup_work_sem); 3258 close_ctree(fs_info); 3259 return ret; 3260 } 3261 up_read(&fs_info->cleanup_work_sem); 3262 3263 ret = btrfs_resume_balance_async(fs_info); 3264 if (ret) { 3265 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3266 close_ctree(fs_info); 3267 return ret; 3268 } 3269 3270 ret = btrfs_resume_dev_replace_async(fs_info); 3271 if (ret) { 3272 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3273 close_ctree(fs_info); 3274 return ret; 3275 } 3276 3277 btrfs_qgroup_rescan_resume(fs_info); 3278 3279 if (!fs_info->uuid_root) { 3280 btrfs_info(fs_info, "creating UUID tree"); 3281 ret = btrfs_create_uuid_tree(fs_info); 3282 if (ret) { 3283 btrfs_warn(fs_info, 3284 "failed to create the UUID tree: %d", ret); 3285 close_ctree(fs_info); 3286 return ret; 3287 } 3288 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3289 fs_info->generation != 3290 btrfs_super_uuid_tree_generation(disk_super)) { 3291 btrfs_info(fs_info, "checking UUID tree"); 3292 ret = btrfs_check_uuid_tree(fs_info); 3293 if (ret) { 3294 btrfs_warn(fs_info, 3295 "failed to check the UUID tree: %d", ret); 3296 close_ctree(fs_info); 3297 return ret; 3298 } 3299 } else { 3300 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3301 } 3302 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3303 3304 /* 3305 * backuproot only affect mount behavior, and if open_ctree succeeded, 3306 * no need to keep the flag 3307 */ 3308 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3309 3310 return 0; 3311 3312 fail_qgroup: 3313 btrfs_free_qgroup_config(fs_info); 3314 fail_trans_kthread: 3315 kthread_stop(fs_info->transaction_kthread); 3316 btrfs_cleanup_transaction(fs_info); 3317 btrfs_free_fs_roots(fs_info); 3318 fail_cleaner: 3319 kthread_stop(fs_info->cleaner_kthread); 3320 3321 /* 3322 * make sure we're done with the btree inode before we stop our 3323 * kthreads 3324 */ 3325 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3326 3327 fail_sysfs: 3328 btrfs_sysfs_remove_mounted(fs_info); 3329 3330 fail_fsdev_sysfs: 3331 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3332 3333 fail_block_groups: 3334 btrfs_put_block_group_cache(fs_info); 3335 3336 fail_tree_roots: 3337 free_root_pointers(fs_info, 1); 3338 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3339 3340 fail_sb_buffer: 3341 btrfs_stop_all_workers(fs_info); 3342 btrfs_free_block_groups(fs_info); 3343 fail_alloc: 3344 fail_iput: 3345 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3346 3347 iput(fs_info->btree_inode); 3348 fail_bio_counter: 3349 percpu_counter_destroy(&fs_info->bio_counter); 3350 fail_delalloc_bytes: 3351 percpu_counter_destroy(&fs_info->delalloc_bytes); 3352 fail_dirty_metadata_bytes: 3353 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3354 fail_srcu: 3355 cleanup_srcu_struct(&fs_info->subvol_srcu); 3356 fail: 3357 btrfs_free_stripe_hash_table(fs_info); 3358 btrfs_close_devices(fs_info->fs_devices); 3359 return err; 3360 3361 recovery_tree_root: 3362 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3363 goto fail_tree_roots; 3364 3365 free_root_pointers(fs_info, 0); 3366 3367 /* don't use the log in recovery mode, it won't be valid */ 3368 btrfs_set_super_log_root(disk_super, 0); 3369 3370 /* we can't trust the free space cache either */ 3371 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3372 3373 ret = next_root_backup(fs_info, fs_info->super_copy, 3374 &num_backups_tried, &backup_index); 3375 if (ret == -1) 3376 goto fail_block_groups; 3377 goto retry_root_backup; 3378 } 3379 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3380 3381 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3382 { 3383 if (uptodate) { 3384 set_buffer_uptodate(bh); 3385 } else { 3386 struct btrfs_device *device = (struct btrfs_device *) 3387 bh->b_private; 3388 3389 btrfs_warn_rl_in_rcu(device->fs_info, 3390 "lost page write due to IO error on %s", 3391 rcu_str_deref(device->name)); 3392 /* note, we don't set_buffer_write_io_error because we have 3393 * our own ways of dealing with the IO errors 3394 */ 3395 clear_buffer_uptodate(bh); 3396 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3397 } 3398 unlock_buffer(bh); 3399 put_bh(bh); 3400 } 3401 3402 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3403 struct buffer_head **bh_ret) 3404 { 3405 struct buffer_head *bh; 3406 struct btrfs_super_block *super; 3407 u64 bytenr; 3408 3409 bytenr = btrfs_sb_offset(copy_num); 3410 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3411 return -EINVAL; 3412 3413 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE); 3414 /* 3415 * If we fail to read from the underlying devices, as of now 3416 * the best option we have is to mark it EIO. 3417 */ 3418 if (!bh) 3419 return -EIO; 3420 3421 super = (struct btrfs_super_block *)bh->b_data; 3422 if (btrfs_super_bytenr(super) != bytenr || 3423 btrfs_super_magic(super) != BTRFS_MAGIC) { 3424 brelse(bh); 3425 return -EINVAL; 3426 } 3427 3428 *bh_ret = bh; 3429 return 0; 3430 } 3431 3432 3433 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3434 { 3435 struct buffer_head *bh; 3436 struct buffer_head *latest = NULL; 3437 struct btrfs_super_block *super; 3438 int i; 3439 u64 transid = 0; 3440 int ret = -EINVAL; 3441 3442 /* we would like to check all the supers, but that would make 3443 * a btrfs mount succeed after a mkfs from a different FS. 3444 * So, we need to add a special mount option to scan for 3445 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3446 */ 3447 for (i = 0; i < 1; i++) { 3448 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3449 if (ret) 3450 continue; 3451 3452 super = (struct btrfs_super_block *)bh->b_data; 3453 3454 if (!latest || btrfs_super_generation(super) > transid) { 3455 brelse(latest); 3456 latest = bh; 3457 transid = btrfs_super_generation(super); 3458 } else { 3459 brelse(bh); 3460 } 3461 } 3462 3463 if (!latest) 3464 return ERR_PTR(ret); 3465 3466 return latest; 3467 } 3468 3469 /* 3470 * Write superblock @sb to the @device. Do not wait for completion, all the 3471 * buffer heads we write are pinned. 3472 * 3473 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3474 * the expected device size at commit time. Note that max_mirrors must be 3475 * same for write and wait phases. 3476 * 3477 * Return number of errors when buffer head is not found or submission fails. 3478 */ 3479 static int write_dev_supers(struct btrfs_device *device, 3480 struct btrfs_super_block *sb, int max_mirrors) 3481 { 3482 struct buffer_head *bh; 3483 int i; 3484 int ret; 3485 int errors = 0; 3486 u32 crc; 3487 u64 bytenr; 3488 int op_flags; 3489 3490 if (max_mirrors == 0) 3491 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3492 3493 for (i = 0; i < max_mirrors; i++) { 3494 bytenr = btrfs_sb_offset(i); 3495 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3496 device->commit_total_bytes) 3497 break; 3498 3499 btrfs_set_super_bytenr(sb, bytenr); 3500 3501 crc = ~(u32)0; 3502 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc, 3503 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 3504 btrfs_csum_final(crc, sb->csum); 3505 3506 /* One reference for us, and we leave it for the caller */ 3507 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, 3508 BTRFS_SUPER_INFO_SIZE); 3509 if (!bh) { 3510 btrfs_err(device->fs_info, 3511 "couldn't get super buffer head for bytenr %llu", 3512 bytenr); 3513 errors++; 3514 continue; 3515 } 3516 3517 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3518 3519 /* one reference for submit_bh */ 3520 get_bh(bh); 3521 3522 set_buffer_uptodate(bh); 3523 lock_buffer(bh); 3524 bh->b_end_io = btrfs_end_buffer_write_sync; 3525 bh->b_private = device; 3526 3527 /* 3528 * we fua the first super. The others we allow 3529 * to go down lazy. 3530 */ 3531 op_flags = REQ_SYNC | REQ_META | REQ_PRIO; 3532 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3533 op_flags |= REQ_FUA; 3534 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh); 3535 if (ret) 3536 errors++; 3537 } 3538 return errors < i ? 0 : -1; 3539 } 3540 3541 /* 3542 * Wait for write completion of superblocks done by write_dev_supers, 3543 * @max_mirrors same for write and wait phases. 3544 * 3545 * Return number of errors when buffer head is not found or not marked up to 3546 * date. 3547 */ 3548 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3549 { 3550 struct buffer_head *bh; 3551 int i; 3552 int errors = 0; 3553 bool primary_failed = false; 3554 u64 bytenr; 3555 3556 if (max_mirrors == 0) 3557 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3558 3559 for (i = 0; i < max_mirrors; i++) { 3560 bytenr = btrfs_sb_offset(i); 3561 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3562 device->commit_total_bytes) 3563 break; 3564 3565 bh = __find_get_block(device->bdev, 3566 bytenr / BTRFS_BDEV_BLOCKSIZE, 3567 BTRFS_SUPER_INFO_SIZE); 3568 if (!bh) { 3569 errors++; 3570 if (i == 0) 3571 primary_failed = true; 3572 continue; 3573 } 3574 wait_on_buffer(bh); 3575 if (!buffer_uptodate(bh)) { 3576 errors++; 3577 if (i == 0) 3578 primary_failed = true; 3579 } 3580 3581 /* drop our reference */ 3582 brelse(bh); 3583 3584 /* drop the reference from the writing run */ 3585 brelse(bh); 3586 } 3587 3588 /* log error, force error return */ 3589 if (primary_failed) { 3590 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3591 device->devid); 3592 return -1; 3593 } 3594 3595 return errors < i ? 0 : -1; 3596 } 3597 3598 /* 3599 * endio for the write_dev_flush, this will wake anyone waiting 3600 * for the barrier when it is done 3601 */ 3602 static void btrfs_end_empty_barrier(struct bio *bio) 3603 { 3604 complete(bio->bi_private); 3605 } 3606 3607 /* 3608 * Submit a flush request to the device if it supports it. Error handling is 3609 * done in the waiting counterpart. 3610 */ 3611 static void write_dev_flush(struct btrfs_device *device) 3612 { 3613 struct request_queue *q = bdev_get_queue(device->bdev); 3614 struct bio *bio = device->flush_bio; 3615 3616 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) 3617 return; 3618 3619 bio_reset(bio); 3620 bio->bi_end_io = btrfs_end_empty_barrier; 3621 bio_set_dev(bio, device->bdev); 3622 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 3623 init_completion(&device->flush_wait); 3624 bio->bi_private = &device->flush_wait; 3625 3626 btrfsic_submit_bio(bio); 3627 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3628 } 3629 3630 /* 3631 * If the flush bio has been submitted by write_dev_flush, wait for it. 3632 */ 3633 static blk_status_t wait_dev_flush(struct btrfs_device *device) 3634 { 3635 struct bio *bio = device->flush_bio; 3636 3637 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3638 return BLK_STS_OK; 3639 3640 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3641 wait_for_completion_io(&device->flush_wait); 3642 3643 return bio->bi_status; 3644 } 3645 3646 static int check_barrier_error(struct btrfs_fs_info *fs_info) 3647 { 3648 if (!btrfs_check_rw_degradable(fs_info, NULL)) 3649 return -EIO; 3650 return 0; 3651 } 3652 3653 /* 3654 * send an empty flush down to each device in parallel, 3655 * then wait for them 3656 */ 3657 static int barrier_all_devices(struct btrfs_fs_info *info) 3658 { 3659 struct list_head *head; 3660 struct btrfs_device *dev; 3661 int errors_wait = 0; 3662 blk_status_t ret; 3663 3664 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3665 /* send down all the barriers */ 3666 head = &info->fs_devices->devices; 3667 list_for_each_entry(dev, head, dev_list) { 3668 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3669 continue; 3670 if (!dev->bdev) 3671 continue; 3672 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3673 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3674 continue; 3675 3676 write_dev_flush(dev); 3677 dev->last_flush_error = BLK_STS_OK; 3678 } 3679 3680 /* wait for all the barriers */ 3681 list_for_each_entry(dev, head, dev_list) { 3682 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3683 continue; 3684 if (!dev->bdev) { 3685 errors_wait++; 3686 continue; 3687 } 3688 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3689 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3690 continue; 3691 3692 ret = wait_dev_flush(dev); 3693 if (ret) { 3694 dev->last_flush_error = ret; 3695 btrfs_dev_stat_inc_and_print(dev, 3696 BTRFS_DEV_STAT_FLUSH_ERRS); 3697 errors_wait++; 3698 } 3699 } 3700 3701 if (errors_wait) { 3702 /* 3703 * At some point we need the status of all disks 3704 * to arrive at the volume status. So error checking 3705 * is being pushed to a separate loop. 3706 */ 3707 return check_barrier_error(info); 3708 } 3709 return 0; 3710 } 3711 3712 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3713 { 3714 int raid_type; 3715 int min_tolerated = INT_MAX; 3716 3717 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3718 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3719 min_tolerated = min(min_tolerated, 3720 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3721 tolerated_failures); 3722 3723 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3724 if (raid_type == BTRFS_RAID_SINGLE) 3725 continue; 3726 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3727 continue; 3728 min_tolerated = min(min_tolerated, 3729 btrfs_raid_array[raid_type]. 3730 tolerated_failures); 3731 } 3732 3733 if (min_tolerated == INT_MAX) { 3734 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3735 min_tolerated = 0; 3736 } 3737 3738 return min_tolerated; 3739 } 3740 3741 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3742 { 3743 struct list_head *head; 3744 struct btrfs_device *dev; 3745 struct btrfs_super_block *sb; 3746 struct btrfs_dev_item *dev_item; 3747 int ret; 3748 int do_barriers; 3749 int max_errors; 3750 int total_errors = 0; 3751 u64 flags; 3752 3753 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3754 3755 /* 3756 * max_mirrors == 0 indicates we're from commit_transaction, 3757 * not from fsync where the tree roots in fs_info have not 3758 * been consistent on disk. 3759 */ 3760 if (max_mirrors == 0) 3761 backup_super_roots(fs_info); 3762 3763 sb = fs_info->super_for_commit; 3764 dev_item = &sb->dev_item; 3765 3766 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3767 head = &fs_info->fs_devices->devices; 3768 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3769 3770 if (do_barriers) { 3771 ret = barrier_all_devices(fs_info); 3772 if (ret) { 3773 mutex_unlock( 3774 &fs_info->fs_devices->device_list_mutex); 3775 btrfs_handle_fs_error(fs_info, ret, 3776 "errors while submitting device barriers."); 3777 return ret; 3778 } 3779 } 3780 3781 list_for_each_entry(dev, head, dev_list) { 3782 if (!dev->bdev) { 3783 total_errors++; 3784 continue; 3785 } 3786 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3787 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3788 continue; 3789 3790 btrfs_set_stack_device_generation(dev_item, 0); 3791 btrfs_set_stack_device_type(dev_item, dev->type); 3792 btrfs_set_stack_device_id(dev_item, dev->devid); 3793 btrfs_set_stack_device_total_bytes(dev_item, 3794 dev->commit_total_bytes); 3795 btrfs_set_stack_device_bytes_used(dev_item, 3796 dev->commit_bytes_used); 3797 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3798 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3799 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3800 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3801 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE); 3802 3803 flags = btrfs_super_flags(sb); 3804 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3805 3806 ret = btrfs_validate_write_super(fs_info, sb); 3807 if (ret < 0) { 3808 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3809 btrfs_handle_fs_error(fs_info, -EUCLEAN, 3810 "unexpected superblock corruption detected"); 3811 return -EUCLEAN; 3812 } 3813 3814 ret = write_dev_supers(dev, sb, max_mirrors); 3815 if (ret) 3816 total_errors++; 3817 } 3818 if (total_errors > max_errors) { 3819 btrfs_err(fs_info, "%d errors while writing supers", 3820 total_errors); 3821 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3822 3823 /* FUA is masked off if unsupported and can't be the reason */ 3824 btrfs_handle_fs_error(fs_info, -EIO, 3825 "%d errors while writing supers", 3826 total_errors); 3827 return -EIO; 3828 } 3829 3830 total_errors = 0; 3831 list_for_each_entry(dev, head, dev_list) { 3832 if (!dev->bdev) 3833 continue; 3834 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3835 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3836 continue; 3837 3838 ret = wait_dev_supers(dev, max_mirrors); 3839 if (ret) 3840 total_errors++; 3841 } 3842 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3843 if (total_errors > max_errors) { 3844 btrfs_handle_fs_error(fs_info, -EIO, 3845 "%d errors while writing supers", 3846 total_errors); 3847 return -EIO; 3848 } 3849 return 0; 3850 } 3851 3852 /* Drop a fs root from the radix tree and free it. */ 3853 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3854 struct btrfs_root *root) 3855 { 3856 spin_lock(&fs_info->fs_roots_radix_lock); 3857 radix_tree_delete(&fs_info->fs_roots_radix, 3858 (unsigned long)root->root_key.objectid); 3859 spin_unlock(&fs_info->fs_roots_radix_lock); 3860 3861 if (btrfs_root_refs(&root->root_item) == 0) 3862 synchronize_srcu(&fs_info->subvol_srcu); 3863 3864 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3865 btrfs_free_log(NULL, root); 3866 if (root->reloc_root) { 3867 free_extent_buffer(root->reloc_root->node); 3868 free_extent_buffer(root->reloc_root->commit_root); 3869 btrfs_put_fs_root(root->reloc_root); 3870 root->reloc_root = NULL; 3871 } 3872 } 3873 3874 if (root->free_ino_pinned) 3875 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3876 if (root->free_ino_ctl) 3877 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3878 free_fs_root(root); 3879 } 3880 3881 static void free_fs_root(struct btrfs_root *root) 3882 { 3883 iput(root->ino_cache_inode); 3884 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3885 if (root->anon_dev) 3886 free_anon_bdev(root->anon_dev); 3887 if (root->subv_writers) 3888 btrfs_free_subvolume_writers(root->subv_writers); 3889 free_extent_buffer(root->node); 3890 free_extent_buffer(root->commit_root); 3891 kfree(root->free_ino_ctl); 3892 kfree(root->free_ino_pinned); 3893 kfree(root->name); 3894 btrfs_put_fs_root(root); 3895 } 3896 3897 void btrfs_free_fs_root(struct btrfs_root *root) 3898 { 3899 free_fs_root(root); 3900 } 3901 3902 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3903 { 3904 u64 root_objectid = 0; 3905 struct btrfs_root *gang[8]; 3906 int i = 0; 3907 int err = 0; 3908 unsigned int ret = 0; 3909 int index; 3910 3911 while (1) { 3912 index = srcu_read_lock(&fs_info->subvol_srcu); 3913 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3914 (void **)gang, root_objectid, 3915 ARRAY_SIZE(gang)); 3916 if (!ret) { 3917 srcu_read_unlock(&fs_info->subvol_srcu, index); 3918 break; 3919 } 3920 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3921 3922 for (i = 0; i < ret; i++) { 3923 /* Avoid to grab roots in dead_roots */ 3924 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3925 gang[i] = NULL; 3926 continue; 3927 } 3928 /* grab all the search result for later use */ 3929 gang[i] = btrfs_grab_fs_root(gang[i]); 3930 } 3931 srcu_read_unlock(&fs_info->subvol_srcu, index); 3932 3933 for (i = 0; i < ret; i++) { 3934 if (!gang[i]) 3935 continue; 3936 root_objectid = gang[i]->root_key.objectid; 3937 err = btrfs_orphan_cleanup(gang[i]); 3938 if (err) 3939 break; 3940 btrfs_put_fs_root(gang[i]); 3941 } 3942 root_objectid++; 3943 } 3944 3945 /* release the uncleaned roots due to error */ 3946 for (; i < ret; i++) { 3947 if (gang[i]) 3948 btrfs_put_fs_root(gang[i]); 3949 } 3950 return err; 3951 } 3952 3953 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3954 { 3955 struct btrfs_root *root = fs_info->tree_root; 3956 struct btrfs_trans_handle *trans; 3957 3958 mutex_lock(&fs_info->cleaner_mutex); 3959 btrfs_run_delayed_iputs(fs_info); 3960 mutex_unlock(&fs_info->cleaner_mutex); 3961 wake_up_process(fs_info->cleaner_kthread); 3962 3963 /* wait until ongoing cleanup work done */ 3964 down_write(&fs_info->cleanup_work_sem); 3965 up_write(&fs_info->cleanup_work_sem); 3966 3967 trans = btrfs_join_transaction(root); 3968 if (IS_ERR(trans)) 3969 return PTR_ERR(trans); 3970 return btrfs_commit_transaction(trans); 3971 } 3972 3973 void close_ctree(struct btrfs_fs_info *fs_info) 3974 { 3975 int ret; 3976 3977 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3978 3979 /* wait for the qgroup rescan worker to stop */ 3980 btrfs_qgroup_wait_for_completion(fs_info, false); 3981 3982 /* wait for the uuid_scan task to finish */ 3983 down(&fs_info->uuid_tree_rescan_sem); 3984 /* avoid complains from lockdep et al., set sem back to initial state */ 3985 up(&fs_info->uuid_tree_rescan_sem); 3986 3987 /* pause restriper - we want to resume on mount */ 3988 btrfs_pause_balance(fs_info); 3989 3990 btrfs_dev_replace_suspend_for_unmount(fs_info); 3991 3992 btrfs_scrub_cancel(fs_info); 3993 3994 /* wait for any defraggers to finish */ 3995 wait_event(fs_info->transaction_wait, 3996 (atomic_read(&fs_info->defrag_running) == 0)); 3997 3998 /* clear out the rbtree of defraggable inodes */ 3999 btrfs_cleanup_defrag_inodes(fs_info); 4000 4001 cancel_work_sync(&fs_info->async_reclaim_work); 4002 4003 if (!sb_rdonly(fs_info->sb)) { 4004 /* 4005 * If the cleaner thread is stopped and there are 4006 * block groups queued for removal, the deletion will be 4007 * skipped when we quit the cleaner thread. 4008 */ 4009 btrfs_delete_unused_bgs(fs_info); 4010 4011 ret = btrfs_commit_super(fs_info); 4012 if (ret) 4013 btrfs_err(fs_info, "commit super ret %d", ret); 4014 } 4015 4016 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) || 4017 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) 4018 btrfs_error_commit_super(fs_info); 4019 4020 kthread_stop(fs_info->transaction_kthread); 4021 kthread_stop(fs_info->cleaner_kthread); 4022 4023 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4024 4025 btrfs_free_qgroup_config(fs_info); 4026 ASSERT(list_empty(&fs_info->delalloc_roots)); 4027 4028 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4029 btrfs_info(fs_info, "at unmount delalloc count %lld", 4030 percpu_counter_sum(&fs_info->delalloc_bytes)); 4031 } 4032 4033 btrfs_sysfs_remove_mounted(fs_info); 4034 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4035 4036 btrfs_free_fs_roots(fs_info); 4037 4038 btrfs_put_block_group_cache(fs_info); 4039 4040 /* 4041 * we must make sure there is not any read request to 4042 * submit after we stopping all workers. 4043 */ 4044 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4045 btrfs_stop_all_workers(fs_info); 4046 4047 btrfs_free_block_groups(fs_info); 4048 4049 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4050 free_root_pointers(fs_info, 1); 4051 4052 iput(fs_info->btree_inode); 4053 4054 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4055 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4056 btrfsic_unmount(fs_info->fs_devices); 4057 #endif 4058 4059 btrfs_close_devices(fs_info->fs_devices); 4060 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4061 4062 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4063 percpu_counter_destroy(&fs_info->delalloc_bytes); 4064 percpu_counter_destroy(&fs_info->bio_counter); 4065 cleanup_srcu_struct(&fs_info->subvol_srcu); 4066 4067 btrfs_free_stripe_hash_table(fs_info); 4068 btrfs_free_ref_cache(fs_info); 4069 4070 while (!list_empty(&fs_info->pinned_chunks)) { 4071 struct extent_map *em; 4072 4073 em = list_first_entry(&fs_info->pinned_chunks, 4074 struct extent_map, list); 4075 list_del_init(&em->list); 4076 free_extent_map(em); 4077 } 4078 } 4079 4080 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4081 int atomic) 4082 { 4083 int ret; 4084 struct inode *btree_inode = buf->pages[0]->mapping->host; 4085 4086 ret = extent_buffer_uptodate(buf); 4087 if (!ret) 4088 return ret; 4089 4090 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4091 parent_transid, atomic); 4092 if (ret == -EAGAIN) 4093 return ret; 4094 return !ret; 4095 } 4096 4097 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4098 { 4099 struct btrfs_fs_info *fs_info; 4100 struct btrfs_root *root; 4101 u64 transid = btrfs_header_generation(buf); 4102 int was_dirty; 4103 4104 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4105 /* 4106 * This is a fast path so only do this check if we have sanity tests 4107 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4108 * outside of the sanity tests. 4109 */ 4110 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4111 return; 4112 #endif 4113 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4114 fs_info = root->fs_info; 4115 btrfs_assert_tree_locked(buf); 4116 if (transid != fs_info->generation) 4117 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4118 buf->start, transid, fs_info->generation); 4119 was_dirty = set_extent_buffer_dirty(buf); 4120 if (!was_dirty) 4121 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, 4122 buf->len, 4123 fs_info->dirty_metadata_batch); 4124 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4125 /* 4126 * Since btrfs_mark_buffer_dirty() can be called with item pointer set 4127 * but item data not updated. 4128 * So here we should only check item pointers, not item data. 4129 */ 4130 if (btrfs_header_level(buf) == 0 && 4131 btrfs_check_leaf_relaxed(fs_info, buf)) { 4132 btrfs_print_leaf(buf); 4133 ASSERT(0); 4134 } 4135 #endif 4136 } 4137 4138 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4139 int flush_delayed) 4140 { 4141 /* 4142 * looks as though older kernels can get into trouble with 4143 * this code, they end up stuck in balance_dirty_pages forever 4144 */ 4145 int ret; 4146 4147 if (current->flags & PF_MEMALLOC) 4148 return; 4149 4150 if (flush_delayed) 4151 btrfs_balance_delayed_items(fs_info); 4152 4153 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4154 BTRFS_DIRTY_METADATA_THRESH); 4155 if (ret > 0) { 4156 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4157 } 4158 } 4159 4160 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4161 { 4162 __btrfs_btree_balance_dirty(fs_info, 1); 4163 } 4164 4165 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4166 { 4167 __btrfs_btree_balance_dirty(fs_info, 0); 4168 } 4169 4170 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level, 4171 struct btrfs_key *first_key) 4172 { 4173 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4174 struct btrfs_fs_info *fs_info = root->fs_info; 4175 4176 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid, 4177 level, first_key); 4178 } 4179 4180 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4181 { 4182 /* cleanup FS via transaction */ 4183 btrfs_cleanup_transaction(fs_info); 4184 4185 mutex_lock(&fs_info->cleaner_mutex); 4186 btrfs_run_delayed_iputs(fs_info); 4187 mutex_unlock(&fs_info->cleaner_mutex); 4188 4189 down_write(&fs_info->cleanup_work_sem); 4190 up_write(&fs_info->cleanup_work_sem); 4191 } 4192 4193 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4194 { 4195 struct btrfs_ordered_extent *ordered; 4196 4197 spin_lock(&root->ordered_extent_lock); 4198 /* 4199 * This will just short circuit the ordered completion stuff which will 4200 * make sure the ordered extent gets properly cleaned up. 4201 */ 4202 list_for_each_entry(ordered, &root->ordered_extents, 4203 root_extent_list) 4204 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4205 spin_unlock(&root->ordered_extent_lock); 4206 } 4207 4208 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4209 { 4210 struct btrfs_root *root; 4211 struct list_head splice; 4212 4213 INIT_LIST_HEAD(&splice); 4214 4215 spin_lock(&fs_info->ordered_root_lock); 4216 list_splice_init(&fs_info->ordered_roots, &splice); 4217 while (!list_empty(&splice)) { 4218 root = list_first_entry(&splice, struct btrfs_root, 4219 ordered_root); 4220 list_move_tail(&root->ordered_root, 4221 &fs_info->ordered_roots); 4222 4223 spin_unlock(&fs_info->ordered_root_lock); 4224 btrfs_destroy_ordered_extents(root); 4225 4226 cond_resched(); 4227 spin_lock(&fs_info->ordered_root_lock); 4228 } 4229 spin_unlock(&fs_info->ordered_root_lock); 4230 } 4231 4232 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4233 struct btrfs_fs_info *fs_info) 4234 { 4235 struct rb_node *node; 4236 struct btrfs_delayed_ref_root *delayed_refs; 4237 struct btrfs_delayed_ref_node *ref; 4238 int ret = 0; 4239 4240 delayed_refs = &trans->delayed_refs; 4241 4242 spin_lock(&delayed_refs->lock); 4243 if (atomic_read(&delayed_refs->num_entries) == 0) { 4244 spin_unlock(&delayed_refs->lock); 4245 btrfs_info(fs_info, "delayed_refs has NO entry"); 4246 return ret; 4247 } 4248 4249 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4250 struct btrfs_delayed_ref_head *head; 4251 struct rb_node *n; 4252 bool pin_bytes = false; 4253 4254 head = rb_entry(node, struct btrfs_delayed_ref_head, 4255 href_node); 4256 if (!mutex_trylock(&head->mutex)) { 4257 refcount_inc(&head->refs); 4258 spin_unlock(&delayed_refs->lock); 4259 4260 mutex_lock(&head->mutex); 4261 mutex_unlock(&head->mutex); 4262 btrfs_put_delayed_ref_head(head); 4263 spin_lock(&delayed_refs->lock); 4264 continue; 4265 } 4266 spin_lock(&head->lock); 4267 while ((n = rb_first(&head->ref_tree)) != NULL) { 4268 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4269 ref_node); 4270 ref->in_tree = 0; 4271 rb_erase(&ref->ref_node, &head->ref_tree); 4272 RB_CLEAR_NODE(&ref->ref_node); 4273 if (!list_empty(&ref->add_list)) 4274 list_del(&ref->add_list); 4275 atomic_dec(&delayed_refs->num_entries); 4276 btrfs_put_delayed_ref(ref); 4277 } 4278 if (head->must_insert_reserved) 4279 pin_bytes = true; 4280 btrfs_free_delayed_extent_op(head->extent_op); 4281 delayed_refs->num_heads--; 4282 if (head->processing == 0) 4283 delayed_refs->num_heads_ready--; 4284 atomic_dec(&delayed_refs->num_entries); 4285 rb_erase(&head->href_node, &delayed_refs->href_root); 4286 RB_CLEAR_NODE(&head->href_node); 4287 spin_unlock(&head->lock); 4288 spin_unlock(&delayed_refs->lock); 4289 mutex_unlock(&head->mutex); 4290 4291 if (pin_bytes) 4292 btrfs_pin_extent(fs_info, head->bytenr, 4293 head->num_bytes, 1); 4294 btrfs_put_delayed_ref_head(head); 4295 cond_resched(); 4296 spin_lock(&delayed_refs->lock); 4297 } 4298 4299 spin_unlock(&delayed_refs->lock); 4300 4301 return ret; 4302 } 4303 4304 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4305 { 4306 struct btrfs_inode *btrfs_inode; 4307 struct list_head splice; 4308 4309 INIT_LIST_HEAD(&splice); 4310 4311 spin_lock(&root->delalloc_lock); 4312 list_splice_init(&root->delalloc_inodes, &splice); 4313 4314 while (!list_empty(&splice)) { 4315 struct inode *inode = NULL; 4316 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4317 delalloc_inodes); 4318 __btrfs_del_delalloc_inode(root, btrfs_inode); 4319 spin_unlock(&root->delalloc_lock); 4320 4321 /* 4322 * Make sure we get a live inode and that it'll not disappear 4323 * meanwhile. 4324 */ 4325 inode = igrab(&btrfs_inode->vfs_inode); 4326 if (inode) { 4327 invalidate_inode_pages2(inode->i_mapping); 4328 iput(inode); 4329 } 4330 spin_lock(&root->delalloc_lock); 4331 } 4332 spin_unlock(&root->delalloc_lock); 4333 } 4334 4335 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4336 { 4337 struct btrfs_root *root; 4338 struct list_head splice; 4339 4340 INIT_LIST_HEAD(&splice); 4341 4342 spin_lock(&fs_info->delalloc_root_lock); 4343 list_splice_init(&fs_info->delalloc_roots, &splice); 4344 while (!list_empty(&splice)) { 4345 root = list_first_entry(&splice, struct btrfs_root, 4346 delalloc_root); 4347 root = btrfs_grab_fs_root(root); 4348 BUG_ON(!root); 4349 spin_unlock(&fs_info->delalloc_root_lock); 4350 4351 btrfs_destroy_delalloc_inodes(root); 4352 btrfs_put_fs_root(root); 4353 4354 spin_lock(&fs_info->delalloc_root_lock); 4355 } 4356 spin_unlock(&fs_info->delalloc_root_lock); 4357 } 4358 4359 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4360 struct extent_io_tree *dirty_pages, 4361 int mark) 4362 { 4363 int ret; 4364 struct extent_buffer *eb; 4365 u64 start = 0; 4366 u64 end; 4367 4368 while (1) { 4369 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4370 mark, NULL); 4371 if (ret) 4372 break; 4373 4374 clear_extent_bits(dirty_pages, start, end, mark); 4375 while (start <= end) { 4376 eb = find_extent_buffer(fs_info, start); 4377 start += fs_info->nodesize; 4378 if (!eb) 4379 continue; 4380 wait_on_extent_buffer_writeback(eb); 4381 4382 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4383 &eb->bflags)) 4384 clear_extent_buffer_dirty(eb); 4385 free_extent_buffer_stale(eb); 4386 } 4387 } 4388 4389 return ret; 4390 } 4391 4392 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4393 struct extent_io_tree *pinned_extents) 4394 { 4395 struct extent_io_tree *unpin; 4396 u64 start; 4397 u64 end; 4398 int ret; 4399 bool loop = true; 4400 4401 unpin = pinned_extents; 4402 again: 4403 while (1) { 4404 ret = find_first_extent_bit(unpin, 0, &start, &end, 4405 EXTENT_DIRTY, NULL); 4406 if (ret) 4407 break; 4408 4409 clear_extent_dirty(unpin, start, end); 4410 btrfs_error_unpin_extent_range(fs_info, start, end); 4411 cond_resched(); 4412 } 4413 4414 if (loop) { 4415 if (unpin == &fs_info->freed_extents[0]) 4416 unpin = &fs_info->freed_extents[1]; 4417 else 4418 unpin = &fs_info->freed_extents[0]; 4419 loop = false; 4420 goto again; 4421 } 4422 4423 return 0; 4424 } 4425 4426 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4427 { 4428 struct inode *inode; 4429 4430 inode = cache->io_ctl.inode; 4431 if (inode) { 4432 invalidate_inode_pages2(inode->i_mapping); 4433 BTRFS_I(inode)->generation = 0; 4434 cache->io_ctl.inode = NULL; 4435 iput(inode); 4436 } 4437 btrfs_put_block_group(cache); 4438 } 4439 4440 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4441 struct btrfs_fs_info *fs_info) 4442 { 4443 struct btrfs_block_group_cache *cache; 4444 4445 spin_lock(&cur_trans->dirty_bgs_lock); 4446 while (!list_empty(&cur_trans->dirty_bgs)) { 4447 cache = list_first_entry(&cur_trans->dirty_bgs, 4448 struct btrfs_block_group_cache, 4449 dirty_list); 4450 4451 if (!list_empty(&cache->io_list)) { 4452 spin_unlock(&cur_trans->dirty_bgs_lock); 4453 list_del_init(&cache->io_list); 4454 btrfs_cleanup_bg_io(cache); 4455 spin_lock(&cur_trans->dirty_bgs_lock); 4456 } 4457 4458 list_del_init(&cache->dirty_list); 4459 spin_lock(&cache->lock); 4460 cache->disk_cache_state = BTRFS_DC_ERROR; 4461 spin_unlock(&cache->lock); 4462 4463 spin_unlock(&cur_trans->dirty_bgs_lock); 4464 btrfs_put_block_group(cache); 4465 spin_lock(&cur_trans->dirty_bgs_lock); 4466 } 4467 spin_unlock(&cur_trans->dirty_bgs_lock); 4468 4469 /* 4470 * Refer to the definition of io_bgs member for details why it's safe 4471 * to use it without any locking 4472 */ 4473 while (!list_empty(&cur_trans->io_bgs)) { 4474 cache = list_first_entry(&cur_trans->io_bgs, 4475 struct btrfs_block_group_cache, 4476 io_list); 4477 4478 list_del_init(&cache->io_list); 4479 spin_lock(&cache->lock); 4480 cache->disk_cache_state = BTRFS_DC_ERROR; 4481 spin_unlock(&cache->lock); 4482 btrfs_cleanup_bg_io(cache); 4483 } 4484 } 4485 4486 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4487 struct btrfs_fs_info *fs_info) 4488 { 4489 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4490 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4491 ASSERT(list_empty(&cur_trans->io_bgs)); 4492 4493 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4494 4495 cur_trans->state = TRANS_STATE_COMMIT_START; 4496 wake_up(&fs_info->transaction_blocked_wait); 4497 4498 cur_trans->state = TRANS_STATE_UNBLOCKED; 4499 wake_up(&fs_info->transaction_wait); 4500 4501 btrfs_destroy_delayed_inodes(fs_info); 4502 btrfs_assert_delayed_root_empty(fs_info); 4503 4504 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4505 EXTENT_DIRTY); 4506 btrfs_destroy_pinned_extent(fs_info, 4507 fs_info->pinned_extents); 4508 4509 cur_trans->state =TRANS_STATE_COMPLETED; 4510 wake_up(&cur_trans->commit_wait); 4511 } 4512 4513 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4514 { 4515 struct btrfs_transaction *t; 4516 4517 mutex_lock(&fs_info->transaction_kthread_mutex); 4518 4519 spin_lock(&fs_info->trans_lock); 4520 while (!list_empty(&fs_info->trans_list)) { 4521 t = list_first_entry(&fs_info->trans_list, 4522 struct btrfs_transaction, list); 4523 if (t->state >= TRANS_STATE_COMMIT_START) { 4524 refcount_inc(&t->use_count); 4525 spin_unlock(&fs_info->trans_lock); 4526 btrfs_wait_for_commit(fs_info, t->transid); 4527 btrfs_put_transaction(t); 4528 spin_lock(&fs_info->trans_lock); 4529 continue; 4530 } 4531 if (t == fs_info->running_transaction) { 4532 t->state = TRANS_STATE_COMMIT_DOING; 4533 spin_unlock(&fs_info->trans_lock); 4534 /* 4535 * We wait for 0 num_writers since we don't hold a trans 4536 * handle open currently for this transaction. 4537 */ 4538 wait_event(t->writer_wait, 4539 atomic_read(&t->num_writers) == 0); 4540 } else { 4541 spin_unlock(&fs_info->trans_lock); 4542 } 4543 btrfs_cleanup_one_transaction(t, fs_info); 4544 4545 spin_lock(&fs_info->trans_lock); 4546 if (t == fs_info->running_transaction) 4547 fs_info->running_transaction = NULL; 4548 list_del_init(&t->list); 4549 spin_unlock(&fs_info->trans_lock); 4550 4551 btrfs_put_transaction(t); 4552 trace_btrfs_transaction_commit(fs_info->tree_root); 4553 spin_lock(&fs_info->trans_lock); 4554 } 4555 spin_unlock(&fs_info->trans_lock); 4556 btrfs_destroy_all_ordered_extents(fs_info); 4557 btrfs_destroy_delayed_inodes(fs_info); 4558 btrfs_assert_delayed_root_empty(fs_info); 4559 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4560 btrfs_destroy_all_delalloc_inodes(fs_info); 4561 mutex_unlock(&fs_info->transaction_kthread_mutex); 4562 4563 return 0; 4564 } 4565 4566 static struct btrfs_fs_info *btree_fs_info(void *private_data) 4567 { 4568 struct inode *inode = private_data; 4569 return btrfs_sb(inode->i_sb); 4570 } 4571 4572 static const struct extent_io_ops btree_extent_io_ops = { 4573 /* mandatory callbacks */ 4574 .submit_bio_hook = btree_submit_bio_hook, 4575 .readpage_end_io_hook = btree_readpage_end_io_hook, 4576 /* note we're sharing with inode.c for the merge bio hook */ 4577 .merge_bio_hook = btrfs_merge_bio_hook, 4578 .readpage_io_failed_hook = btree_io_failed_hook, 4579 .set_range_writeback = btrfs_set_range_writeback, 4580 .tree_fs_info = btree_fs_info, 4581 4582 /* optional callbacks */ 4583 }; 4584