1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "check-integrity.h" 33 #include "rcu-string.h" 34 #include "dev-replace.h" 35 #include "raid56.h" 36 #include "sysfs.h" 37 #include "qgroup.h" 38 #include "compression.h" 39 #include "tree-checker.h" 40 #include "ref-verify.h" 41 #include "block-group.h" 42 #include "discard.h" 43 #include "space-info.h" 44 #include "zoned.h" 45 #include "subpage.h" 46 #include "fs.h" 47 #include "accessors.h" 48 #include "extent-tree.h" 49 #include "root-tree.h" 50 #include "defrag.h" 51 #include "uuid-tree.h" 52 #include "relocation.h" 53 #include "scrub.h" 54 #include "super.h" 55 56 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 57 BTRFS_HEADER_FLAG_RELOC |\ 58 BTRFS_SUPER_FLAG_ERROR |\ 59 BTRFS_SUPER_FLAG_SEEDING |\ 60 BTRFS_SUPER_FLAG_METADUMP |\ 61 BTRFS_SUPER_FLAG_METADUMP_V2) 62 63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 65 66 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 67 { 68 if (fs_info->csum_shash) 69 crypto_free_shash(fs_info->csum_shash); 70 } 71 72 /* 73 * Compute the csum of a btree block and store the result to provided buffer. 74 */ 75 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 76 { 77 struct btrfs_fs_info *fs_info = buf->fs_info; 78 const int num_pages = num_extent_pages(buf); 79 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 80 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 81 char *kaddr; 82 int i; 83 84 shash->tfm = fs_info->csum_shash; 85 crypto_shash_init(shash); 86 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start); 87 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 88 first_page_part - BTRFS_CSUM_SIZE); 89 90 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 91 kaddr = page_address(buf->pages[i]); 92 crypto_shash_update(shash, kaddr, PAGE_SIZE); 93 } 94 memset(result, 0, BTRFS_CSUM_SIZE); 95 crypto_shash_final(shash, result); 96 } 97 98 /* 99 * we can't consider a given block up to date unless the transid of the 100 * block matches the transid in the parent node's pointer. This is how we 101 * detect blocks that either didn't get written at all or got written 102 * in the wrong place. 103 */ 104 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 105 { 106 if (!extent_buffer_uptodate(eb)) 107 return 0; 108 109 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 110 return 1; 111 112 if (atomic) 113 return -EAGAIN; 114 115 if (!extent_buffer_uptodate(eb) || 116 btrfs_header_generation(eb) != parent_transid) { 117 btrfs_err_rl(eb->fs_info, 118 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 119 eb->start, eb->read_mirror, 120 parent_transid, btrfs_header_generation(eb)); 121 clear_extent_buffer_uptodate(eb); 122 return 0; 123 } 124 return 1; 125 } 126 127 static bool btrfs_supported_super_csum(u16 csum_type) 128 { 129 switch (csum_type) { 130 case BTRFS_CSUM_TYPE_CRC32: 131 case BTRFS_CSUM_TYPE_XXHASH: 132 case BTRFS_CSUM_TYPE_SHA256: 133 case BTRFS_CSUM_TYPE_BLAKE2: 134 return true; 135 default: 136 return false; 137 } 138 } 139 140 /* 141 * Return 0 if the superblock checksum type matches the checksum value of that 142 * algorithm. Pass the raw disk superblock data. 143 */ 144 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 145 const struct btrfs_super_block *disk_sb) 146 { 147 char result[BTRFS_CSUM_SIZE]; 148 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 149 150 shash->tfm = fs_info->csum_shash; 151 152 /* 153 * The super_block structure does not span the whole 154 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 155 * filled with zeros and is included in the checksum. 156 */ 157 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 158 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 159 160 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 161 return 1; 162 163 return 0; 164 } 165 166 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 167 int mirror_num) 168 { 169 struct btrfs_fs_info *fs_info = eb->fs_info; 170 int i, num_pages = num_extent_pages(eb); 171 int ret = 0; 172 173 if (sb_rdonly(fs_info->sb)) 174 return -EROFS; 175 176 for (i = 0; i < num_pages; i++) { 177 struct page *p = eb->pages[i]; 178 u64 start = max_t(u64, eb->start, page_offset(p)); 179 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE); 180 u32 len = end - start; 181 182 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 183 start, p, offset_in_page(start), mirror_num); 184 if (ret) 185 break; 186 } 187 188 return ret; 189 } 190 191 /* 192 * helper to read a given tree block, doing retries as required when 193 * the checksums don't match and we have alternate mirrors to try. 194 * 195 * @check: expected tree parentness check, see the comments of the 196 * structure for details. 197 */ 198 int btrfs_read_extent_buffer(struct extent_buffer *eb, 199 struct btrfs_tree_parent_check *check) 200 { 201 struct btrfs_fs_info *fs_info = eb->fs_info; 202 int failed = 0; 203 int ret; 204 int num_copies = 0; 205 int mirror_num = 0; 206 int failed_mirror = 0; 207 208 ASSERT(check); 209 210 while (1) { 211 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 212 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 213 if (!ret) 214 break; 215 216 num_copies = btrfs_num_copies(fs_info, 217 eb->start, eb->len); 218 if (num_copies == 1) 219 break; 220 221 if (!failed_mirror) { 222 failed = 1; 223 failed_mirror = eb->read_mirror; 224 } 225 226 mirror_num++; 227 if (mirror_num == failed_mirror) 228 mirror_num++; 229 230 if (mirror_num > num_copies) 231 break; 232 } 233 234 if (failed && !ret && failed_mirror) 235 btrfs_repair_eb_io_failure(eb, failed_mirror); 236 237 return ret; 238 } 239 240 /* 241 * Checksum a dirty tree block before IO. 242 */ 243 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 244 { 245 struct extent_buffer *eb = bbio->private; 246 struct btrfs_fs_info *fs_info = eb->fs_info; 247 u64 found_start = btrfs_header_bytenr(eb); 248 u8 result[BTRFS_CSUM_SIZE]; 249 int ret; 250 251 /* Btree blocks are always contiguous on disk. */ 252 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 253 return BLK_STS_IOERR; 254 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 255 return BLK_STS_IOERR; 256 257 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) { 258 WARN_ON_ONCE(found_start != 0); 259 return BLK_STS_OK; 260 } 261 262 if (WARN_ON_ONCE(found_start != eb->start)) 263 return BLK_STS_IOERR; 264 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start, 265 eb->len))) 266 return BLK_STS_IOERR; 267 268 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 269 offsetof(struct btrfs_header, fsid), 270 BTRFS_FSID_SIZE) == 0); 271 csum_tree_block(eb, result); 272 273 if (btrfs_header_level(eb)) 274 ret = btrfs_check_node(eb); 275 else 276 ret = btrfs_check_leaf(eb); 277 278 if (ret < 0) 279 goto error; 280 281 /* 282 * Also check the generation, the eb reached here must be newer than 283 * last committed. Or something seriously wrong happened. 284 */ 285 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) { 286 ret = -EUCLEAN; 287 btrfs_err(fs_info, 288 "block=%llu bad generation, have %llu expect > %llu", 289 eb->start, btrfs_header_generation(eb), 290 fs_info->last_trans_committed); 291 goto error; 292 } 293 write_extent_buffer(eb, result, 0, fs_info->csum_size); 294 return BLK_STS_OK; 295 296 error: 297 btrfs_print_tree(eb, 0); 298 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 299 eb->start); 300 /* 301 * Be noisy if this is an extent buffer from a log tree. We don't abort 302 * a transaction in case there's a bad log tree extent buffer, we just 303 * fallback to a transaction commit. Still we want to know when there is 304 * a bad log tree extent buffer, as that may signal a bug somewhere. 305 */ 306 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 307 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 308 return errno_to_blk_status(ret); 309 } 310 311 static bool check_tree_block_fsid(struct extent_buffer *eb) 312 { 313 struct btrfs_fs_info *fs_info = eb->fs_info; 314 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 315 u8 fsid[BTRFS_FSID_SIZE]; 316 317 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 318 BTRFS_FSID_SIZE); 319 320 /* 321 * alloc_fs_devices() copies the fsid into metadata_uuid if the 322 * metadata_uuid is unset in the superblock, including for a seed device. 323 * So, we can use fs_devices->metadata_uuid. 324 */ 325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 326 return false; 327 328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 330 return false; 331 332 return true; 333 } 334 335 /* Do basic extent buffer checks at read time */ 336 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 337 struct btrfs_tree_parent_check *check) 338 { 339 struct btrfs_fs_info *fs_info = eb->fs_info; 340 u64 found_start; 341 const u32 csum_size = fs_info->csum_size; 342 u8 found_level; 343 u8 result[BTRFS_CSUM_SIZE]; 344 const u8 *header_csum; 345 int ret = 0; 346 347 ASSERT(check); 348 349 found_start = btrfs_header_bytenr(eb); 350 if (found_start != eb->start) { 351 btrfs_err_rl(fs_info, 352 "bad tree block start, mirror %u want %llu have %llu", 353 eb->read_mirror, eb->start, found_start); 354 ret = -EIO; 355 goto out; 356 } 357 if (check_tree_block_fsid(eb)) { 358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 359 eb->start, eb->read_mirror); 360 ret = -EIO; 361 goto out; 362 } 363 found_level = btrfs_header_level(eb); 364 if (found_level >= BTRFS_MAX_LEVEL) { 365 btrfs_err(fs_info, 366 "bad tree block level, mirror %u level %d on logical %llu", 367 eb->read_mirror, btrfs_header_level(eb), eb->start); 368 ret = -EIO; 369 goto out; 370 } 371 372 csum_tree_block(eb, result); 373 header_csum = page_address(eb->pages[0]) + 374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum)); 375 376 if (memcmp(result, header_csum, csum_size) != 0) { 377 btrfs_warn_rl(fs_info, 378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 379 eb->start, eb->read_mirror, 380 CSUM_FMT_VALUE(csum_size, header_csum), 381 CSUM_FMT_VALUE(csum_size, result), 382 btrfs_header_level(eb)); 383 ret = -EUCLEAN; 384 goto out; 385 } 386 387 if (found_level != check->level) { 388 btrfs_err(fs_info, 389 "level verify failed on logical %llu mirror %u wanted %u found %u", 390 eb->start, eb->read_mirror, check->level, found_level); 391 ret = -EIO; 392 goto out; 393 } 394 if (unlikely(check->transid && 395 btrfs_header_generation(eb) != check->transid)) { 396 btrfs_err_rl(eb->fs_info, 397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 398 eb->start, eb->read_mirror, check->transid, 399 btrfs_header_generation(eb)); 400 ret = -EIO; 401 goto out; 402 } 403 if (check->has_first_key) { 404 struct btrfs_key *expect_key = &check->first_key; 405 struct btrfs_key found_key; 406 407 if (found_level) 408 btrfs_node_key_to_cpu(eb, &found_key, 0); 409 else 410 btrfs_item_key_to_cpu(eb, &found_key, 0); 411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 412 btrfs_err(fs_info, 413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 414 eb->start, check->transid, 415 expect_key->objectid, 416 expect_key->type, expect_key->offset, 417 found_key.objectid, found_key.type, 418 found_key.offset); 419 ret = -EUCLEAN; 420 goto out; 421 } 422 } 423 if (check->owner_root) { 424 ret = btrfs_check_eb_owner(eb, check->owner_root); 425 if (ret < 0) 426 goto out; 427 } 428 429 /* 430 * If this is a leaf block and it is corrupt, set the corrupt bit so 431 * that we don't try and read the other copies of this block, just 432 * return -EIO. 433 */ 434 if (found_level == 0 && btrfs_check_leaf(eb)) { 435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 436 ret = -EIO; 437 } 438 439 if (found_level > 0 && btrfs_check_node(eb)) 440 ret = -EIO; 441 442 if (ret) 443 btrfs_err(fs_info, 444 "read time tree block corruption detected on logical %llu mirror %u", 445 eb->start, eb->read_mirror); 446 out: 447 return ret; 448 } 449 450 #ifdef CONFIG_MIGRATION 451 static int btree_migrate_folio(struct address_space *mapping, 452 struct folio *dst, struct folio *src, enum migrate_mode mode) 453 { 454 /* 455 * we can't safely write a btree page from here, 456 * we haven't done the locking hook 457 */ 458 if (folio_test_dirty(src)) 459 return -EAGAIN; 460 /* 461 * Buffers may be managed in a filesystem specific way. 462 * We must have no buffers or drop them. 463 */ 464 if (folio_get_private(src) && 465 !filemap_release_folio(src, GFP_KERNEL)) 466 return -EAGAIN; 467 return migrate_folio(mapping, dst, src, mode); 468 } 469 #else 470 #define btree_migrate_folio NULL 471 #endif 472 473 static int btree_writepages(struct address_space *mapping, 474 struct writeback_control *wbc) 475 { 476 struct btrfs_fs_info *fs_info; 477 int ret; 478 479 if (wbc->sync_mode == WB_SYNC_NONE) { 480 481 if (wbc->for_kupdate) 482 return 0; 483 484 fs_info = BTRFS_I(mapping->host)->root->fs_info; 485 /* this is a bit racy, but that's ok */ 486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 487 BTRFS_DIRTY_METADATA_THRESH, 488 fs_info->dirty_metadata_batch); 489 if (ret < 0) 490 return 0; 491 } 492 return btree_write_cache_pages(mapping, wbc); 493 } 494 495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 496 { 497 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 498 return false; 499 500 return try_release_extent_buffer(&folio->page); 501 } 502 503 static void btree_invalidate_folio(struct folio *folio, size_t offset, 504 size_t length) 505 { 506 struct extent_io_tree *tree; 507 tree = &BTRFS_I(folio->mapping->host)->io_tree; 508 extent_invalidate_folio(tree, folio, offset); 509 btree_release_folio(folio, GFP_NOFS); 510 if (folio_get_private(folio)) { 511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info, 512 "folio private not zero on folio %llu", 513 (unsigned long long)folio_pos(folio)); 514 folio_detach_private(folio); 515 } 516 } 517 518 #ifdef DEBUG 519 static bool btree_dirty_folio(struct address_space *mapping, 520 struct folio *folio) 521 { 522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb); 523 struct btrfs_subpage_info *spi = fs_info->subpage_info; 524 struct btrfs_subpage *subpage; 525 struct extent_buffer *eb; 526 int cur_bit = 0; 527 u64 page_start = folio_pos(folio); 528 529 if (fs_info->sectorsize == PAGE_SIZE) { 530 eb = folio_get_private(folio); 531 BUG_ON(!eb); 532 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 533 BUG_ON(!atomic_read(&eb->refs)); 534 btrfs_assert_tree_write_locked(eb); 535 return filemap_dirty_folio(mapping, folio); 536 } 537 538 ASSERT(spi); 539 subpage = folio_get_private(folio); 540 541 for (cur_bit = spi->dirty_offset; 542 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 543 cur_bit++) { 544 unsigned long flags; 545 u64 cur; 546 547 spin_lock_irqsave(&subpage->lock, flags); 548 if (!test_bit(cur_bit, subpage->bitmaps)) { 549 spin_unlock_irqrestore(&subpage->lock, flags); 550 continue; 551 } 552 spin_unlock_irqrestore(&subpage->lock, flags); 553 cur = page_start + cur_bit * fs_info->sectorsize; 554 555 eb = find_extent_buffer(fs_info, cur); 556 ASSERT(eb); 557 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 558 ASSERT(atomic_read(&eb->refs)); 559 btrfs_assert_tree_write_locked(eb); 560 free_extent_buffer(eb); 561 562 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 563 } 564 return filemap_dirty_folio(mapping, folio); 565 } 566 #else 567 #define btree_dirty_folio filemap_dirty_folio 568 #endif 569 570 static const struct address_space_operations btree_aops = { 571 .writepages = btree_writepages, 572 .release_folio = btree_release_folio, 573 .invalidate_folio = btree_invalidate_folio, 574 .migrate_folio = btree_migrate_folio, 575 .dirty_folio = btree_dirty_folio, 576 }; 577 578 struct extent_buffer *btrfs_find_create_tree_block( 579 struct btrfs_fs_info *fs_info, 580 u64 bytenr, u64 owner_root, 581 int level) 582 { 583 if (btrfs_is_testing(fs_info)) 584 return alloc_test_extent_buffer(fs_info, bytenr); 585 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 586 } 587 588 /* 589 * Read tree block at logical address @bytenr and do variant basic but critical 590 * verification. 591 * 592 * @check: expected tree parentness check, see comments of the 593 * structure for details. 594 */ 595 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 596 struct btrfs_tree_parent_check *check) 597 { 598 struct extent_buffer *buf = NULL; 599 int ret; 600 601 ASSERT(check); 602 603 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 604 check->level); 605 if (IS_ERR(buf)) 606 return buf; 607 608 ret = btrfs_read_extent_buffer(buf, check); 609 if (ret) { 610 free_extent_buffer_stale(buf); 611 return ERR_PTR(ret); 612 } 613 if (btrfs_check_eb_owner(buf, check->owner_root)) { 614 free_extent_buffer_stale(buf); 615 return ERR_PTR(-EUCLEAN); 616 } 617 return buf; 618 619 } 620 621 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 622 u64 objectid) 623 { 624 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 625 626 memset(&root->root_key, 0, sizeof(root->root_key)); 627 memset(&root->root_item, 0, sizeof(root->root_item)); 628 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 629 root->fs_info = fs_info; 630 root->root_key.objectid = objectid; 631 root->node = NULL; 632 root->commit_root = NULL; 633 root->state = 0; 634 RB_CLEAR_NODE(&root->rb_node); 635 636 root->last_trans = 0; 637 root->free_objectid = 0; 638 root->nr_delalloc_inodes = 0; 639 root->nr_ordered_extents = 0; 640 root->inode_tree = RB_ROOT; 641 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 642 643 btrfs_init_root_block_rsv(root); 644 645 INIT_LIST_HEAD(&root->dirty_list); 646 INIT_LIST_HEAD(&root->root_list); 647 INIT_LIST_HEAD(&root->delalloc_inodes); 648 INIT_LIST_HEAD(&root->delalloc_root); 649 INIT_LIST_HEAD(&root->ordered_extents); 650 INIT_LIST_HEAD(&root->ordered_root); 651 INIT_LIST_HEAD(&root->reloc_dirty_list); 652 INIT_LIST_HEAD(&root->logged_list[0]); 653 INIT_LIST_HEAD(&root->logged_list[1]); 654 spin_lock_init(&root->inode_lock); 655 spin_lock_init(&root->delalloc_lock); 656 spin_lock_init(&root->ordered_extent_lock); 657 spin_lock_init(&root->accounting_lock); 658 spin_lock_init(&root->log_extents_lock[0]); 659 spin_lock_init(&root->log_extents_lock[1]); 660 spin_lock_init(&root->qgroup_meta_rsv_lock); 661 mutex_init(&root->objectid_mutex); 662 mutex_init(&root->log_mutex); 663 mutex_init(&root->ordered_extent_mutex); 664 mutex_init(&root->delalloc_mutex); 665 init_waitqueue_head(&root->qgroup_flush_wait); 666 init_waitqueue_head(&root->log_writer_wait); 667 init_waitqueue_head(&root->log_commit_wait[0]); 668 init_waitqueue_head(&root->log_commit_wait[1]); 669 INIT_LIST_HEAD(&root->log_ctxs[0]); 670 INIT_LIST_HEAD(&root->log_ctxs[1]); 671 atomic_set(&root->log_commit[0], 0); 672 atomic_set(&root->log_commit[1], 0); 673 atomic_set(&root->log_writers, 0); 674 atomic_set(&root->log_batch, 0); 675 refcount_set(&root->refs, 1); 676 atomic_set(&root->snapshot_force_cow, 0); 677 atomic_set(&root->nr_swapfiles, 0); 678 root->log_transid = 0; 679 root->log_transid_committed = -1; 680 root->last_log_commit = 0; 681 root->anon_dev = 0; 682 if (!dummy) { 683 extent_io_tree_init(fs_info, &root->dirty_log_pages, 684 IO_TREE_ROOT_DIRTY_LOG_PAGES); 685 extent_io_tree_init(fs_info, &root->log_csum_range, 686 IO_TREE_LOG_CSUM_RANGE); 687 } 688 689 spin_lock_init(&root->root_item_lock); 690 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 691 #ifdef CONFIG_BTRFS_DEBUG 692 INIT_LIST_HEAD(&root->leak_list); 693 spin_lock(&fs_info->fs_roots_radix_lock); 694 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 695 spin_unlock(&fs_info->fs_roots_radix_lock); 696 #endif 697 } 698 699 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 700 u64 objectid, gfp_t flags) 701 { 702 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 703 if (root) 704 __setup_root(root, fs_info, objectid); 705 return root; 706 } 707 708 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 709 /* Should only be used by the testing infrastructure */ 710 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 711 { 712 struct btrfs_root *root; 713 714 if (!fs_info) 715 return ERR_PTR(-EINVAL); 716 717 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 718 if (!root) 719 return ERR_PTR(-ENOMEM); 720 721 /* We don't use the stripesize in selftest, set it as sectorsize */ 722 root->alloc_bytenr = 0; 723 724 return root; 725 } 726 #endif 727 728 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 729 { 730 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 731 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 732 733 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 734 } 735 736 static int global_root_key_cmp(const void *k, const struct rb_node *node) 737 { 738 const struct btrfs_key *key = k; 739 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 740 741 return btrfs_comp_cpu_keys(key, &root->root_key); 742 } 743 744 int btrfs_global_root_insert(struct btrfs_root *root) 745 { 746 struct btrfs_fs_info *fs_info = root->fs_info; 747 struct rb_node *tmp; 748 int ret = 0; 749 750 write_lock(&fs_info->global_root_lock); 751 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 752 write_unlock(&fs_info->global_root_lock); 753 754 if (tmp) { 755 ret = -EEXIST; 756 btrfs_warn(fs_info, "global root %llu %llu already exists", 757 root->root_key.objectid, root->root_key.offset); 758 } 759 return ret; 760 } 761 762 void btrfs_global_root_delete(struct btrfs_root *root) 763 { 764 struct btrfs_fs_info *fs_info = root->fs_info; 765 766 write_lock(&fs_info->global_root_lock); 767 rb_erase(&root->rb_node, &fs_info->global_root_tree); 768 write_unlock(&fs_info->global_root_lock); 769 } 770 771 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 772 struct btrfs_key *key) 773 { 774 struct rb_node *node; 775 struct btrfs_root *root = NULL; 776 777 read_lock(&fs_info->global_root_lock); 778 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 779 if (node) 780 root = container_of(node, struct btrfs_root, rb_node); 781 read_unlock(&fs_info->global_root_lock); 782 783 return root; 784 } 785 786 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 787 { 788 struct btrfs_block_group *block_group; 789 u64 ret; 790 791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 792 return 0; 793 794 if (bytenr) 795 block_group = btrfs_lookup_block_group(fs_info, bytenr); 796 else 797 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 798 ASSERT(block_group); 799 if (!block_group) 800 return 0; 801 ret = block_group->global_root_id; 802 btrfs_put_block_group(block_group); 803 804 return ret; 805 } 806 807 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 808 { 809 struct btrfs_key key = { 810 .objectid = BTRFS_CSUM_TREE_OBJECTID, 811 .type = BTRFS_ROOT_ITEM_KEY, 812 .offset = btrfs_global_root_id(fs_info, bytenr), 813 }; 814 815 return btrfs_global_root(fs_info, &key); 816 } 817 818 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 819 { 820 struct btrfs_key key = { 821 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 822 .type = BTRFS_ROOT_ITEM_KEY, 823 .offset = btrfs_global_root_id(fs_info, bytenr), 824 }; 825 826 return btrfs_global_root(fs_info, &key); 827 } 828 829 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 830 { 831 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 832 return fs_info->block_group_root; 833 return btrfs_extent_root(fs_info, 0); 834 } 835 836 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 837 u64 objectid) 838 { 839 struct btrfs_fs_info *fs_info = trans->fs_info; 840 struct extent_buffer *leaf; 841 struct btrfs_root *tree_root = fs_info->tree_root; 842 struct btrfs_root *root; 843 struct btrfs_key key; 844 unsigned int nofs_flag; 845 int ret = 0; 846 847 /* 848 * We're holding a transaction handle, so use a NOFS memory allocation 849 * context to avoid deadlock if reclaim happens. 850 */ 851 nofs_flag = memalloc_nofs_save(); 852 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 853 memalloc_nofs_restore(nofs_flag); 854 if (!root) 855 return ERR_PTR(-ENOMEM); 856 857 root->root_key.objectid = objectid; 858 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 859 root->root_key.offset = 0; 860 861 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 862 BTRFS_NESTING_NORMAL); 863 if (IS_ERR(leaf)) { 864 ret = PTR_ERR(leaf); 865 leaf = NULL; 866 goto fail; 867 } 868 869 root->node = leaf; 870 btrfs_mark_buffer_dirty(leaf); 871 872 root->commit_root = btrfs_root_node(root); 873 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 874 875 btrfs_set_root_flags(&root->root_item, 0); 876 btrfs_set_root_limit(&root->root_item, 0); 877 btrfs_set_root_bytenr(&root->root_item, leaf->start); 878 btrfs_set_root_generation(&root->root_item, trans->transid); 879 btrfs_set_root_level(&root->root_item, 0); 880 btrfs_set_root_refs(&root->root_item, 1); 881 btrfs_set_root_used(&root->root_item, leaf->len); 882 btrfs_set_root_last_snapshot(&root->root_item, 0); 883 btrfs_set_root_dirid(&root->root_item, 0); 884 if (is_fstree(objectid)) 885 generate_random_guid(root->root_item.uuid); 886 else 887 export_guid(root->root_item.uuid, &guid_null); 888 btrfs_set_root_drop_level(&root->root_item, 0); 889 890 btrfs_tree_unlock(leaf); 891 892 key.objectid = objectid; 893 key.type = BTRFS_ROOT_ITEM_KEY; 894 key.offset = 0; 895 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 896 if (ret) 897 goto fail; 898 899 return root; 900 901 fail: 902 btrfs_put_root(root); 903 904 return ERR_PTR(ret); 905 } 906 907 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 908 struct btrfs_fs_info *fs_info) 909 { 910 struct btrfs_root *root; 911 912 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 913 if (!root) 914 return ERR_PTR(-ENOMEM); 915 916 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 917 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 918 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 919 920 return root; 921 } 922 923 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 924 struct btrfs_root *root) 925 { 926 struct extent_buffer *leaf; 927 928 /* 929 * DON'T set SHAREABLE bit for log trees. 930 * 931 * Log trees are not exposed to user space thus can't be snapshotted, 932 * and they go away before a real commit is actually done. 933 * 934 * They do store pointers to file data extents, and those reference 935 * counts still get updated (along with back refs to the log tree). 936 */ 937 938 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 939 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); 940 if (IS_ERR(leaf)) 941 return PTR_ERR(leaf); 942 943 root->node = leaf; 944 945 btrfs_mark_buffer_dirty(root->node); 946 btrfs_tree_unlock(root->node); 947 948 return 0; 949 } 950 951 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 952 struct btrfs_fs_info *fs_info) 953 { 954 struct btrfs_root *log_root; 955 956 log_root = alloc_log_tree(trans, fs_info); 957 if (IS_ERR(log_root)) 958 return PTR_ERR(log_root); 959 960 if (!btrfs_is_zoned(fs_info)) { 961 int ret = btrfs_alloc_log_tree_node(trans, log_root); 962 963 if (ret) { 964 btrfs_put_root(log_root); 965 return ret; 966 } 967 } 968 969 WARN_ON(fs_info->log_root_tree); 970 fs_info->log_root_tree = log_root; 971 return 0; 972 } 973 974 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 975 struct btrfs_root *root) 976 { 977 struct btrfs_fs_info *fs_info = root->fs_info; 978 struct btrfs_root *log_root; 979 struct btrfs_inode_item *inode_item; 980 int ret; 981 982 log_root = alloc_log_tree(trans, fs_info); 983 if (IS_ERR(log_root)) 984 return PTR_ERR(log_root); 985 986 ret = btrfs_alloc_log_tree_node(trans, log_root); 987 if (ret) { 988 btrfs_put_root(log_root); 989 return ret; 990 } 991 992 log_root->last_trans = trans->transid; 993 log_root->root_key.offset = root->root_key.objectid; 994 995 inode_item = &log_root->root_item.inode; 996 btrfs_set_stack_inode_generation(inode_item, 1); 997 btrfs_set_stack_inode_size(inode_item, 3); 998 btrfs_set_stack_inode_nlink(inode_item, 1); 999 btrfs_set_stack_inode_nbytes(inode_item, 1000 fs_info->nodesize); 1001 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1002 1003 btrfs_set_root_node(&log_root->root_item, log_root->node); 1004 1005 WARN_ON(root->log_root); 1006 root->log_root = log_root; 1007 root->log_transid = 0; 1008 root->log_transid_committed = -1; 1009 root->last_log_commit = 0; 1010 return 0; 1011 } 1012 1013 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1014 struct btrfs_path *path, 1015 struct btrfs_key *key) 1016 { 1017 struct btrfs_root *root; 1018 struct btrfs_tree_parent_check check = { 0 }; 1019 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1020 u64 generation; 1021 int ret; 1022 int level; 1023 1024 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1025 if (!root) 1026 return ERR_PTR(-ENOMEM); 1027 1028 ret = btrfs_find_root(tree_root, key, path, 1029 &root->root_item, &root->root_key); 1030 if (ret) { 1031 if (ret > 0) 1032 ret = -ENOENT; 1033 goto fail; 1034 } 1035 1036 generation = btrfs_root_generation(&root->root_item); 1037 level = btrfs_root_level(&root->root_item); 1038 check.level = level; 1039 check.transid = generation; 1040 check.owner_root = key->objectid; 1041 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1042 &check); 1043 if (IS_ERR(root->node)) { 1044 ret = PTR_ERR(root->node); 1045 root->node = NULL; 1046 goto fail; 1047 } 1048 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1049 ret = -EIO; 1050 goto fail; 1051 } 1052 1053 /* 1054 * For real fs, and not log/reloc trees, root owner must 1055 * match its root node owner 1056 */ 1057 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1058 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1059 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1060 root->root_key.objectid != btrfs_header_owner(root->node)) { 1061 btrfs_crit(fs_info, 1062 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1063 root->root_key.objectid, root->node->start, 1064 btrfs_header_owner(root->node), 1065 root->root_key.objectid); 1066 ret = -EUCLEAN; 1067 goto fail; 1068 } 1069 root->commit_root = btrfs_root_node(root); 1070 return root; 1071 fail: 1072 btrfs_put_root(root); 1073 return ERR_PTR(ret); 1074 } 1075 1076 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1077 struct btrfs_key *key) 1078 { 1079 struct btrfs_root *root; 1080 struct btrfs_path *path; 1081 1082 path = btrfs_alloc_path(); 1083 if (!path) 1084 return ERR_PTR(-ENOMEM); 1085 root = read_tree_root_path(tree_root, path, key); 1086 btrfs_free_path(path); 1087 1088 return root; 1089 } 1090 1091 /* 1092 * Initialize subvolume root in-memory structure 1093 * 1094 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1095 */ 1096 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1097 { 1098 int ret; 1099 1100 btrfs_drew_lock_init(&root->snapshot_lock); 1101 1102 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1103 !btrfs_is_data_reloc_root(root) && 1104 is_fstree(root->root_key.objectid)) { 1105 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1106 btrfs_check_and_init_root_item(&root->root_item); 1107 } 1108 1109 /* 1110 * Don't assign anonymous block device to roots that are not exposed to 1111 * userspace, the id pool is limited to 1M 1112 */ 1113 if (is_fstree(root->root_key.objectid) && 1114 btrfs_root_refs(&root->root_item) > 0) { 1115 if (!anon_dev) { 1116 ret = get_anon_bdev(&root->anon_dev); 1117 if (ret) 1118 goto fail; 1119 } else { 1120 root->anon_dev = anon_dev; 1121 } 1122 } 1123 1124 mutex_lock(&root->objectid_mutex); 1125 ret = btrfs_init_root_free_objectid(root); 1126 if (ret) { 1127 mutex_unlock(&root->objectid_mutex); 1128 goto fail; 1129 } 1130 1131 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1132 1133 mutex_unlock(&root->objectid_mutex); 1134 1135 return 0; 1136 fail: 1137 /* The caller is responsible to call btrfs_free_fs_root */ 1138 return ret; 1139 } 1140 1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1142 u64 root_id) 1143 { 1144 struct btrfs_root *root; 1145 1146 spin_lock(&fs_info->fs_roots_radix_lock); 1147 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1148 (unsigned long)root_id); 1149 root = btrfs_grab_root(root); 1150 spin_unlock(&fs_info->fs_roots_radix_lock); 1151 return root; 1152 } 1153 1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1155 u64 objectid) 1156 { 1157 struct btrfs_key key = { 1158 .objectid = objectid, 1159 .type = BTRFS_ROOT_ITEM_KEY, 1160 .offset = 0, 1161 }; 1162 1163 switch (objectid) { 1164 case BTRFS_ROOT_TREE_OBJECTID: 1165 return btrfs_grab_root(fs_info->tree_root); 1166 case BTRFS_EXTENT_TREE_OBJECTID: 1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1168 case BTRFS_CHUNK_TREE_OBJECTID: 1169 return btrfs_grab_root(fs_info->chunk_root); 1170 case BTRFS_DEV_TREE_OBJECTID: 1171 return btrfs_grab_root(fs_info->dev_root); 1172 case BTRFS_CSUM_TREE_OBJECTID: 1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1174 case BTRFS_QUOTA_TREE_OBJECTID: 1175 return btrfs_grab_root(fs_info->quota_root); 1176 case BTRFS_UUID_TREE_OBJECTID: 1177 return btrfs_grab_root(fs_info->uuid_root); 1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1179 return btrfs_grab_root(fs_info->block_group_root); 1180 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1182 default: 1183 return NULL; 1184 } 1185 } 1186 1187 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1188 struct btrfs_root *root) 1189 { 1190 int ret; 1191 1192 ret = radix_tree_preload(GFP_NOFS); 1193 if (ret) 1194 return ret; 1195 1196 spin_lock(&fs_info->fs_roots_radix_lock); 1197 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1198 (unsigned long)root->root_key.objectid, 1199 root); 1200 if (ret == 0) { 1201 btrfs_grab_root(root); 1202 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1203 } 1204 spin_unlock(&fs_info->fs_roots_radix_lock); 1205 radix_tree_preload_end(); 1206 1207 return ret; 1208 } 1209 1210 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1211 { 1212 #ifdef CONFIG_BTRFS_DEBUG 1213 struct btrfs_root *root; 1214 1215 while (!list_empty(&fs_info->allocated_roots)) { 1216 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1217 1218 root = list_first_entry(&fs_info->allocated_roots, 1219 struct btrfs_root, leak_list); 1220 btrfs_err(fs_info, "leaked root %s refcount %d", 1221 btrfs_root_name(&root->root_key, buf), 1222 refcount_read(&root->refs)); 1223 while (refcount_read(&root->refs) > 1) 1224 btrfs_put_root(root); 1225 btrfs_put_root(root); 1226 } 1227 #endif 1228 } 1229 1230 static void free_global_roots(struct btrfs_fs_info *fs_info) 1231 { 1232 struct btrfs_root *root; 1233 struct rb_node *node; 1234 1235 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1236 root = rb_entry(node, struct btrfs_root, rb_node); 1237 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1238 btrfs_put_root(root); 1239 } 1240 } 1241 1242 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1243 { 1244 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1245 percpu_counter_destroy(&fs_info->delalloc_bytes); 1246 percpu_counter_destroy(&fs_info->ordered_bytes); 1247 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1248 btrfs_free_csum_hash(fs_info); 1249 btrfs_free_stripe_hash_table(fs_info); 1250 btrfs_free_ref_cache(fs_info); 1251 kfree(fs_info->balance_ctl); 1252 kfree(fs_info->delayed_root); 1253 free_global_roots(fs_info); 1254 btrfs_put_root(fs_info->tree_root); 1255 btrfs_put_root(fs_info->chunk_root); 1256 btrfs_put_root(fs_info->dev_root); 1257 btrfs_put_root(fs_info->quota_root); 1258 btrfs_put_root(fs_info->uuid_root); 1259 btrfs_put_root(fs_info->fs_root); 1260 btrfs_put_root(fs_info->data_reloc_root); 1261 btrfs_put_root(fs_info->block_group_root); 1262 btrfs_check_leaked_roots(fs_info); 1263 btrfs_extent_buffer_leak_debug_check(fs_info); 1264 kfree(fs_info->super_copy); 1265 kfree(fs_info->super_for_commit); 1266 kfree(fs_info->subpage_info); 1267 kvfree(fs_info); 1268 } 1269 1270 1271 /* 1272 * Get an in-memory reference of a root structure. 1273 * 1274 * For essential trees like root/extent tree, we grab it from fs_info directly. 1275 * For subvolume trees, we check the cached filesystem roots first. If not 1276 * found, then read it from disk and add it to cached fs roots. 1277 * 1278 * Caller should release the root by calling btrfs_put_root() after the usage. 1279 * 1280 * NOTE: Reloc and log trees can't be read by this function as they share the 1281 * same root objectid. 1282 * 1283 * @objectid: root id 1284 * @anon_dev: preallocated anonymous block device number for new roots, 1285 * pass 0 for new allocation. 1286 * @check_ref: whether to check root item references, If true, return -ENOENT 1287 * for orphan roots 1288 */ 1289 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1290 u64 objectid, dev_t anon_dev, 1291 bool check_ref) 1292 { 1293 struct btrfs_root *root; 1294 struct btrfs_path *path; 1295 struct btrfs_key key; 1296 int ret; 1297 1298 root = btrfs_get_global_root(fs_info, objectid); 1299 if (root) 1300 return root; 1301 1302 /* 1303 * If we're called for non-subvolume trees, and above function didn't 1304 * find one, do not try to read it from disk. 1305 * 1306 * This is namely for free-space-tree and quota tree, which can change 1307 * at runtime and should only be grabbed from fs_info. 1308 */ 1309 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1310 return ERR_PTR(-ENOENT); 1311 again: 1312 root = btrfs_lookup_fs_root(fs_info, objectid); 1313 if (root) { 1314 /* Shouldn't get preallocated anon_dev for cached roots */ 1315 ASSERT(!anon_dev); 1316 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1317 btrfs_put_root(root); 1318 return ERR_PTR(-ENOENT); 1319 } 1320 return root; 1321 } 1322 1323 key.objectid = objectid; 1324 key.type = BTRFS_ROOT_ITEM_KEY; 1325 key.offset = (u64)-1; 1326 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1327 if (IS_ERR(root)) 1328 return root; 1329 1330 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1331 ret = -ENOENT; 1332 goto fail; 1333 } 1334 1335 ret = btrfs_init_fs_root(root, anon_dev); 1336 if (ret) 1337 goto fail; 1338 1339 path = btrfs_alloc_path(); 1340 if (!path) { 1341 ret = -ENOMEM; 1342 goto fail; 1343 } 1344 key.objectid = BTRFS_ORPHAN_OBJECTID; 1345 key.type = BTRFS_ORPHAN_ITEM_KEY; 1346 key.offset = objectid; 1347 1348 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1349 btrfs_free_path(path); 1350 if (ret < 0) 1351 goto fail; 1352 if (ret == 0) 1353 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1354 1355 ret = btrfs_insert_fs_root(fs_info, root); 1356 if (ret) { 1357 if (ret == -EEXIST) { 1358 btrfs_put_root(root); 1359 goto again; 1360 } 1361 goto fail; 1362 } 1363 return root; 1364 fail: 1365 /* 1366 * If our caller provided us an anonymous device, then it's his 1367 * responsibility to free it in case we fail. So we have to set our 1368 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1369 * and once again by our caller. 1370 */ 1371 if (anon_dev) 1372 root->anon_dev = 0; 1373 btrfs_put_root(root); 1374 return ERR_PTR(ret); 1375 } 1376 1377 /* 1378 * Get in-memory reference of a root structure 1379 * 1380 * @objectid: tree objectid 1381 * @check_ref: if set, verify that the tree exists and the item has at least 1382 * one reference 1383 */ 1384 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1385 u64 objectid, bool check_ref) 1386 { 1387 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref); 1388 } 1389 1390 /* 1391 * Get in-memory reference of a root structure, created as new, optionally pass 1392 * the anonymous block device id 1393 * 1394 * @objectid: tree objectid 1395 * @anon_dev: if zero, allocate a new anonymous block device or use the 1396 * parameter value 1397 */ 1398 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1399 u64 objectid, dev_t anon_dev) 1400 { 1401 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1402 } 1403 1404 /* 1405 * btrfs_get_fs_root_commit_root - return a root for the given objectid 1406 * @fs_info: the fs_info 1407 * @objectid: the objectid we need to lookup 1408 * 1409 * This is exclusively used for backref walking, and exists specifically because 1410 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1411 * creation time, which means we may have to read the tree_root in order to look 1412 * up a fs root that is not in memory. If the root is not in memory we will 1413 * read the tree root commit root and look up the fs root from there. This is a 1414 * temporary root, it will not be inserted into the radix tree as it doesn't 1415 * have the most uptodate information, it'll simply be discarded once the 1416 * backref code is finished using the root. 1417 */ 1418 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1419 struct btrfs_path *path, 1420 u64 objectid) 1421 { 1422 struct btrfs_root *root; 1423 struct btrfs_key key; 1424 1425 ASSERT(path->search_commit_root && path->skip_locking); 1426 1427 /* 1428 * This can return -ENOENT if we ask for a root that doesn't exist, but 1429 * since this is called via the backref walking code we won't be looking 1430 * up a root that doesn't exist, unless there's corruption. So if root 1431 * != NULL just return it. 1432 */ 1433 root = btrfs_get_global_root(fs_info, objectid); 1434 if (root) 1435 return root; 1436 1437 root = btrfs_lookup_fs_root(fs_info, objectid); 1438 if (root) 1439 return root; 1440 1441 key.objectid = objectid; 1442 key.type = BTRFS_ROOT_ITEM_KEY; 1443 key.offset = (u64)-1; 1444 root = read_tree_root_path(fs_info->tree_root, path, &key); 1445 btrfs_release_path(path); 1446 1447 return root; 1448 } 1449 1450 static int cleaner_kthread(void *arg) 1451 { 1452 struct btrfs_fs_info *fs_info = arg; 1453 int again; 1454 1455 while (1) { 1456 again = 0; 1457 1458 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1459 1460 /* Make the cleaner go to sleep early. */ 1461 if (btrfs_need_cleaner_sleep(fs_info)) 1462 goto sleep; 1463 1464 /* 1465 * Do not do anything if we might cause open_ctree() to block 1466 * before we have finished mounting the filesystem. 1467 */ 1468 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1469 goto sleep; 1470 1471 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1472 goto sleep; 1473 1474 /* 1475 * Avoid the problem that we change the status of the fs 1476 * during the above check and trylock. 1477 */ 1478 if (btrfs_need_cleaner_sleep(fs_info)) { 1479 mutex_unlock(&fs_info->cleaner_mutex); 1480 goto sleep; 1481 } 1482 1483 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1484 btrfs_sysfs_feature_update(fs_info); 1485 1486 btrfs_run_delayed_iputs(fs_info); 1487 1488 again = btrfs_clean_one_deleted_snapshot(fs_info); 1489 mutex_unlock(&fs_info->cleaner_mutex); 1490 1491 /* 1492 * The defragger has dealt with the R/O remount and umount, 1493 * needn't do anything special here. 1494 */ 1495 btrfs_run_defrag_inodes(fs_info); 1496 1497 /* 1498 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1499 * with relocation (btrfs_relocate_chunk) and relocation 1500 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1501 * after acquiring fs_info->reclaim_bgs_lock. So we 1502 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1503 * unused block groups. 1504 */ 1505 btrfs_delete_unused_bgs(fs_info); 1506 1507 /* 1508 * Reclaim block groups in the reclaim_bgs list after we deleted 1509 * all unused block_groups. This possibly gives us some more free 1510 * space. 1511 */ 1512 btrfs_reclaim_bgs(fs_info); 1513 sleep: 1514 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1515 if (kthread_should_park()) 1516 kthread_parkme(); 1517 if (kthread_should_stop()) 1518 return 0; 1519 if (!again) { 1520 set_current_state(TASK_INTERRUPTIBLE); 1521 schedule(); 1522 __set_current_state(TASK_RUNNING); 1523 } 1524 } 1525 } 1526 1527 static int transaction_kthread(void *arg) 1528 { 1529 struct btrfs_root *root = arg; 1530 struct btrfs_fs_info *fs_info = root->fs_info; 1531 struct btrfs_trans_handle *trans; 1532 struct btrfs_transaction *cur; 1533 u64 transid; 1534 time64_t delta; 1535 unsigned long delay; 1536 bool cannot_commit; 1537 1538 do { 1539 cannot_commit = false; 1540 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1541 mutex_lock(&fs_info->transaction_kthread_mutex); 1542 1543 spin_lock(&fs_info->trans_lock); 1544 cur = fs_info->running_transaction; 1545 if (!cur) { 1546 spin_unlock(&fs_info->trans_lock); 1547 goto sleep; 1548 } 1549 1550 delta = ktime_get_seconds() - cur->start_time; 1551 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1552 cur->state < TRANS_STATE_COMMIT_PREP && 1553 delta < fs_info->commit_interval) { 1554 spin_unlock(&fs_info->trans_lock); 1555 delay -= msecs_to_jiffies((delta - 1) * 1000); 1556 delay = min(delay, 1557 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1558 goto sleep; 1559 } 1560 transid = cur->transid; 1561 spin_unlock(&fs_info->trans_lock); 1562 1563 /* If the file system is aborted, this will always fail. */ 1564 trans = btrfs_attach_transaction(root); 1565 if (IS_ERR(trans)) { 1566 if (PTR_ERR(trans) != -ENOENT) 1567 cannot_commit = true; 1568 goto sleep; 1569 } 1570 if (transid == trans->transid) { 1571 btrfs_commit_transaction(trans); 1572 } else { 1573 btrfs_end_transaction(trans); 1574 } 1575 sleep: 1576 wake_up_process(fs_info->cleaner_kthread); 1577 mutex_unlock(&fs_info->transaction_kthread_mutex); 1578 1579 if (BTRFS_FS_ERROR(fs_info)) 1580 btrfs_cleanup_transaction(fs_info); 1581 if (!kthread_should_stop() && 1582 (!btrfs_transaction_blocked(fs_info) || 1583 cannot_commit)) 1584 schedule_timeout_interruptible(delay); 1585 } while (!kthread_should_stop()); 1586 return 0; 1587 } 1588 1589 /* 1590 * This will find the highest generation in the array of root backups. The 1591 * index of the highest array is returned, or -EINVAL if we can't find 1592 * anything. 1593 * 1594 * We check to make sure the array is valid by comparing the 1595 * generation of the latest root in the array with the generation 1596 * in the super block. If they don't match we pitch it. 1597 */ 1598 static int find_newest_super_backup(struct btrfs_fs_info *info) 1599 { 1600 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1601 u64 cur; 1602 struct btrfs_root_backup *root_backup; 1603 int i; 1604 1605 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1606 root_backup = info->super_copy->super_roots + i; 1607 cur = btrfs_backup_tree_root_gen(root_backup); 1608 if (cur == newest_gen) 1609 return i; 1610 } 1611 1612 return -EINVAL; 1613 } 1614 1615 /* 1616 * copy all the root pointers into the super backup array. 1617 * this will bump the backup pointer by one when it is 1618 * done 1619 */ 1620 static void backup_super_roots(struct btrfs_fs_info *info) 1621 { 1622 const int next_backup = info->backup_root_index; 1623 struct btrfs_root_backup *root_backup; 1624 1625 root_backup = info->super_for_commit->super_roots + next_backup; 1626 1627 /* 1628 * make sure all of our padding and empty slots get zero filled 1629 * regardless of which ones we use today 1630 */ 1631 memset(root_backup, 0, sizeof(*root_backup)); 1632 1633 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1634 1635 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1636 btrfs_set_backup_tree_root_gen(root_backup, 1637 btrfs_header_generation(info->tree_root->node)); 1638 1639 btrfs_set_backup_tree_root_level(root_backup, 1640 btrfs_header_level(info->tree_root->node)); 1641 1642 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1643 btrfs_set_backup_chunk_root_gen(root_backup, 1644 btrfs_header_generation(info->chunk_root->node)); 1645 btrfs_set_backup_chunk_root_level(root_backup, 1646 btrfs_header_level(info->chunk_root->node)); 1647 1648 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1649 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1650 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1651 1652 btrfs_set_backup_extent_root(root_backup, 1653 extent_root->node->start); 1654 btrfs_set_backup_extent_root_gen(root_backup, 1655 btrfs_header_generation(extent_root->node)); 1656 btrfs_set_backup_extent_root_level(root_backup, 1657 btrfs_header_level(extent_root->node)); 1658 1659 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1660 btrfs_set_backup_csum_root_gen(root_backup, 1661 btrfs_header_generation(csum_root->node)); 1662 btrfs_set_backup_csum_root_level(root_backup, 1663 btrfs_header_level(csum_root->node)); 1664 } 1665 1666 /* 1667 * we might commit during log recovery, which happens before we set 1668 * the fs_root. Make sure it is valid before we fill it in. 1669 */ 1670 if (info->fs_root && info->fs_root->node) { 1671 btrfs_set_backup_fs_root(root_backup, 1672 info->fs_root->node->start); 1673 btrfs_set_backup_fs_root_gen(root_backup, 1674 btrfs_header_generation(info->fs_root->node)); 1675 btrfs_set_backup_fs_root_level(root_backup, 1676 btrfs_header_level(info->fs_root->node)); 1677 } 1678 1679 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1680 btrfs_set_backup_dev_root_gen(root_backup, 1681 btrfs_header_generation(info->dev_root->node)); 1682 btrfs_set_backup_dev_root_level(root_backup, 1683 btrfs_header_level(info->dev_root->node)); 1684 1685 btrfs_set_backup_total_bytes(root_backup, 1686 btrfs_super_total_bytes(info->super_copy)); 1687 btrfs_set_backup_bytes_used(root_backup, 1688 btrfs_super_bytes_used(info->super_copy)); 1689 btrfs_set_backup_num_devices(root_backup, 1690 btrfs_super_num_devices(info->super_copy)); 1691 1692 /* 1693 * if we don't copy this out to the super_copy, it won't get remembered 1694 * for the next commit 1695 */ 1696 memcpy(&info->super_copy->super_roots, 1697 &info->super_for_commit->super_roots, 1698 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1699 } 1700 1701 /* 1702 * read_backup_root - Reads a backup root based on the passed priority. Prio 0 1703 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1704 * 1705 * fs_info - filesystem whose backup roots need to be read 1706 * priority - priority of backup root required 1707 * 1708 * Returns backup root index on success and -EINVAL otherwise. 1709 */ 1710 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1711 { 1712 int backup_index = find_newest_super_backup(fs_info); 1713 struct btrfs_super_block *super = fs_info->super_copy; 1714 struct btrfs_root_backup *root_backup; 1715 1716 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1717 if (priority == 0) 1718 return backup_index; 1719 1720 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1721 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1722 } else { 1723 return -EINVAL; 1724 } 1725 1726 root_backup = super->super_roots + backup_index; 1727 1728 btrfs_set_super_generation(super, 1729 btrfs_backup_tree_root_gen(root_backup)); 1730 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1731 btrfs_set_super_root_level(super, 1732 btrfs_backup_tree_root_level(root_backup)); 1733 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1734 1735 /* 1736 * Fixme: the total bytes and num_devices need to match or we should 1737 * need a fsck 1738 */ 1739 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1740 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1741 1742 return backup_index; 1743 } 1744 1745 /* helper to cleanup workers */ 1746 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1747 { 1748 btrfs_destroy_workqueue(fs_info->fixup_workers); 1749 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1750 btrfs_destroy_workqueue(fs_info->workers); 1751 if (fs_info->endio_workers) 1752 destroy_workqueue(fs_info->endio_workers); 1753 if (fs_info->rmw_workers) 1754 destroy_workqueue(fs_info->rmw_workers); 1755 if (fs_info->compressed_write_workers) 1756 destroy_workqueue(fs_info->compressed_write_workers); 1757 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1758 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1759 btrfs_destroy_workqueue(fs_info->delayed_workers); 1760 btrfs_destroy_workqueue(fs_info->caching_workers); 1761 btrfs_destroy_workqueue(fs_info->flush_workers); 1762 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1763 if (fs_info->discard_ctl.discard_workers) 1764 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1765 /* 1766 * Now that all other work queues are destroyed, we can safely destroy 1767 * the queues used for metadata I/O, since tasks from those other work 1768 * queues can do metadata I/O operations. 1769 */ 1770 if (fs_info->endio_meta_workers) 1771 destroy_workqueue(fs_info->endio_meta_workers); 1772 } 1773 1774 static void free_root_extent_buffers(struct btrfs_root *root) 1775 { 1776 if (root) { 1777 free_extent_buffer(root->node); 1778 free_extent_buffer(root->commit_root); 1779 root->node = NULL; 1780 root->commit_root = NULL; 1781 } 1782 } 1783 1784 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1785 { 1786 struct btrfs_root *root, *tmp; 1787 1788 rbtree_postorder_for_each_entry_safe(root, tmp, 1789 &fs_info->global_root_tree, 1790 rb_node) 1791 free_root_extent_buffers(root); 1792 } 1793 1794 /* helper to cleanup tree roots */ 1795 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1796 { 1797 free_root_extent_buffers(info->tree_root); 1798 1799 free_global_root_pointers(info); 1800 free_root_extent_buffers(info->dev_root); 1801 free_root_extent_buffers(info->quota_root); 1802 free_root_extent_buffers(info->uuid_root); 1803 free_root_extent_buffers(info->fs_root); 1804 free_root_extent_buffers(info->data_reloc_root); 1805 free_root_extent_buffers(info->block_group_root); 1806 if (free_chunk_root) 1807 free_root_extent_buffers(info->chunk_root); 1808 } 1809 1810 void btrfs_put_root(struct btrfs_root *root) 1811 { 1812 if (!root) 1813 return; 1814 1815 if (refcount_dec_and_test(&root->refs)) { 1816 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1817 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1818 if (root->anon_dev) 1819 free_anon_bdev(root->anon_dev); 1820 free_root_extent_buffers(root); 1821 #ifdef CONFIG_BTRFS_DEBUG 1822 spin_lock(&root->fs_info->fs_roots_radix_lock); 1823 list_del_init(&root->leak_list); 1824 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1825 #endif 1826 kfree(root); 1827 } 1828 } 1829 1830 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1831 { 1832 int ret; 1833 struct btrfs_root *gang[8]; 1834 int i; 1835 1836 while (!list_empty(&fs_info->dead_roots)) { 1837 gang[0] = list_entry(fs_info->dead_roots.next, 1838 struct btrfs_root, root_list); 1839 list_del(&gang[0]->root_list); 1840 1841 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1842 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1843 btrfs_put_root(gang[0]); 1844 } 1845 1846 while (1) { 1847 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1848 (void **)gang, 0, 1849 ARRAY_SIZE(gang)); 1850 if (!ret) 1851 break; 1852 for (i = 0; i < ret; i++) 1853 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1854 } 1855 } 1856 1857 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1858 { 1859 mutex_init(&fs_info->scrub_lock); 1860 atomic_set(&fs_info->scrubs_running, 0); 1861 atomic_set(&fs_info->scrub_pause_req, 0); 1862 atomic_set(&fs_info->scrubs_paused, 0); 1863 atomic_set(&fs_info->scrub_cancel_req, 0); 1864 init_waitqueue_head(&fs_info->scrub_pause_wait); 1865 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1866 } 1867 1868 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1869 { 1870 spin_lock_init(&fs_info->balance_lock); 1871 mutex_init(&fs_info->balance_mutex); 1872 atomic_set(&fs_info->balance_pause_req, 0); 1873 atomic_set(&fs_info->balance_cancel_req, 0); 1874 fs_info->balance_ctl = NULL; 1875 init_waitqueue_head(&fs_info->balance_wait_q); 1876 atomic_set(&fs_info->reloc_cancel_req, 0); 1877 } 1878 1879 static int btrfs_init_btree_inode(struct super_block *sb) 1880 { 1881 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1882 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1883 fs_info->tree_root); 1884 struct inode *inode; 1885 1886 inode = new_inode(sb); 1887 if (!inode) 1888 return -ENOMEM; 1889 1890 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1891 set_nlink(inode, 1); 1892 /* 1893 * we set the i_size on the btree inode to the max possible int. 1894 * the real end of the address space is determined by all of 1895 * the devices in the system 1896 */ 1897 inode->i_size = OFFSET_MAX; 1898 inode->i_mapping->a_ops = &btree_aops; 1899 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1900 1901 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1902 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1903 IO_TREE_BTREE_INODE_IO); 1904 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1905 1906 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1907 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1908 BTRFS_I(inode)->location.type = 0; 1909 BTRFS_I(inode)->location.offset = 0; 1910 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1911 __insert_inode_hash(inode, hash); 1912 fs_info->btree_inode = inode; 1913 1914 return 0; 1915 } 1916 1917 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1918 { 1919 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1920 init_rwsem(&fs_info->dev_replace.rwsem); 1921 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1922 } 1923 1924 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1925 { 1926 spin_lock_init(&fs_info->qgroup_lock); 1927 mutex_init(&fs_info->qgroup_ioctl_lock); 1928 fs_info->qgroup_tree = RB_ROOT; 1929 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1930 fs_info->qgroup_seq = 1; 1931 fs_info->qgroup_ulist = NULL; 1932 fs_info->qgroup_rescan_running = false; 1933 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1934 mutex_init(&fs_info->qgroup_rescan_lock); 1935 } 1936 1937 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1938 { 1939 u32 max_active = fs_info->thread_pool_size; 1940 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1941 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1942 1943 fs_info->workers = 1944 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1945 1946 fs_info->delalloc_workers = 1947 btrfs_alloc_workqueue(fs_info, "delalloc", 1948 flags, max_active, 2); 1949 1950 fs_info->flush_workers = 1951 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1952 flags, max_active, 0); 1953 1954 fs_info->caching_workers = 1955 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1956 1957 fs_info->fixup_workers = 1958 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1959 1960 fs_info->endio_workers = 1961 alloc_workqueue("btrfs-endio", flags, max_active); 1962 fs_info->endio_meta_workers = 1963 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1964 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1965 fs_info->endio_write_workers = 1966 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1967 max_active, 2); 1968 fs_info->compressed_write_workers = 1969 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1970 fs_info->endio_freespace_worker = 1971 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 1972 max_active, 0); 1973 fs_info->delayed_workers = 1974 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 1975 max_active, 0); 1976 fs_info->qgroup_rescan_workers = 1977 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 1978 ordered_flags); 1979 fs_info->discard_ctl.discard_workers = 1980 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 1981 1982 if (!(fs_info->workers && 1983 fs_info->delalloc_workers && fs_info->flush_workers && 1984 fs_info->endio_workers && fs_info->endio_meta_workers && 1985 fs_info->compressed_write_workers && 1986 fs_info->endio_write_workers && 1987 fs_info->endio_freespace_worker && fs_info->rmw_workers && 1988 fs_info->caching_workers && fs_info->fixup_workers && 1989 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 1990 fs_info->discard_ctl.discard_workers)) { 1991 return -ENOMEM; 1992 } 1993 1994 return 0; 1995 } 1996 1997 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 1998 { 1999 struct crypto_shash *csum_shash; 2000 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2001 2002 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2003 2004 if (IS_ERR(csum_shash)) { 2005 btrfs_err(fs_info, "error allocating %s hash for checksum", 2006 csum_driver); 2007 return PTR_ERR(csum_shash); 2008 } 2009 2010 fs_info->csum_shash = csum_shash; 2011 2012 /* 2013 * Check if the checksum implementation is a fast accelerated one. 2014 * As-is this is a bit of a hack and should be replaced once the csum 2015 * implementations provide that information themselves. 2016 */ 2017 switch (csum_type) { 2018 case BTRFS_CSUM_TYPE_CRC32: 2019 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2020 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2021 break; 2022 case BTRFS_CSUM_TYPE_XXHASH: 2023 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2024 break; 2025 default: 2026 break; 2027 } 2028 2029 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2030 btrfs_super_csum_name(csum_type), 2031 crypto_shash_driver_name(csum_shash)); 2032 return 0; 2033 } 2034 2035 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2036 struct btrfs_fs_devices *fs_devices) 2037 { 2038 int ret; 2039 struct btrfs_tree_parent_check check = { 0 }; 2040 struct btrfs_root *log_tree_root; 2041 struct btrfs_super_block *disk_super = fs_info->super_copy; 2042 u64 bytenr = btrfs_super_log_root(disk_super); 2043 int level = btrfs_super_log_root_level(disk_super); 2044 2045 if (fs_devices->rw_devices == 0) { 2046 btrfs_warn(fs_info, "log replay required on RO media"); 2047 return -EIO; 2048 } 2049 2050 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2051 GFP_KERNEL); 2052 if (!log_tree_root) 2053 return -ENOMEM; 2054 2055 check.level = level; 2056 check.transid = fs_info->generation + 1; 2057 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2058 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2059 if (IS_ERR(log_tree_root->node)) { 2060 btrfs_warn(fs_info, "failed to read log tree"); 2061 ret = PTR_ERR(log_tree_root->node); 2062 log_tree_root->node = NULL; 2063 btrfs_put_root(log_tree_root); 2064 return ret; 2065 } 2066 if (!extent_buffer_uptodate(log_tree_root->node)) { 2067 btrfs_err(fs_info, "failed to read log tree"); 2068 btrfs_put_root(log_tree_root); 2069 return -EIO; 2070 } 2071 2072 /* returns with log_tree_root freed on success */ 2073 ret = btrfs_recover_log_trees(log_tree_root); 2074 if (ret) { 2075 btrfs_handle_fs_error(fs_info, ret, 2076 "Failed to recover log tree"); 2077 btrfs_put_root(log_tree_root); 2078 return ret; 2079 } 2080 2081 if (sb_rdonly(fs_info->sb)) { 2082 ret = btrfs_commit_super(fs_info); 2083 if (ret) 2084 return ret; 2085 } 2086 2087 return 0; 2088 } 2089 2090 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2091 struct btrfs_path *path, u64 objectid, 2092 const char *name) 2093 { 2094 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2095 struct btrfs_root *root; 2096 u64 max_global_id = 0; 2097 int ret; 2098 struct btrfs_key key = { 2099 .objectid = objectid, 2100 .type = BTRFS_ROOT_ITEM_KEY, 2101 .offset = 0, 2102 }; 2103 bool found = false; 2104 2105 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2106 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2107 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2108 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2109 return 0; 2110 } 2111 2112 while (1) { 2113 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2114 if (ret < 0) 2115 break; 2116 2117 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2118 ret = btrfs_next_leaf(tree_root, path); 2119 if (ret) { 2120 if (ret > 0) 2121 ret = 0; 2122 break; 2123 } 2124 } 2125 ret = 0; 2126 2127 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2128 if (key.objectid != objectid) 2129 break; 2130 btrfs_release_path(path); 2131 2132 /* 2133 * Just worry about this for extent tree, it'll be the same for 2134 * everybody. 2135 */ 2136 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2137 max_global_id = max(max_global_id, key.offset); 2138 2139 found = true; 2140 root = read_tree_root_path(tree_root, path, &key); 2141 if (IS_ERR(root)) { 2142 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2143 ret = PTR_ERR(root); 2144 break; 2145 } 2146 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2147 ret = btrfs_global_root_insert(root); 2148 if (ret) { 2149 btrfs_put_root(root); 2150 break; 2151 } 2152 key.offset++; 2153 } 2154 btrfs_release_path(path); 2155 2156 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2157 fs_info->nr_global_roots = max_global_id + 1; 2158 2159 if (!found || ret) { 2160 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2161 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2162 2163 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2164 ret = ret ? ret : -ENOENT; 2165 else 2166 ret = 0; 2167 btrfs_err(fs_info, "failed to load root %s", name); 2168 } 2169 return ret; 2170 } 2171 2172 static int load_global_roots(struct btrfs_root *tree_root) 2173 { 2174 struct btrfs_path *path; 2175 int ret = 0; 2176 2177 path = btrfs_alloc_path(); 2178 if (!path) 2179 return -ENOMEM; 2180 2181 ret = load_global_roots_objectid(tree_root, path, 2182 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2183 if (ret) 2184 goto out; 2185 ret = load_global_roots_objectid(tree_root, path, 2186 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2187 if (ret) 2188 goto out; 2189 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2190 goto out; 2191 ret = load_global_roots_objectid(tree_root, path, 2192 BTRFS_FREE_SPACE_TREE_OBJECTID, 2193 "free space"); 2194 out: 2195 btrfs_free_path(path); 2196 return ret; 2197 } 2198 2199 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2200 { 2201 struct btrfs_root *tree_root = fs_info->tree_root; 2202 struct btrfs_root *root; 2203 struct btrfs_key location; 2204 int ret; 2205 2206 BUG_ON(!fs_info->tree_root); 2207 2208 ret = load_global_roots(tree_root); 2209 if (ret) 2210 return ret; 2211 2212 location.type = BTRFS_ROOT_ITEM_KEY; 2213 location.offset = 0; 2214 2215 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2216 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2217 root = btrfs_read_tree_root(tree_root, &location); 2218 if (IS_ERR(root)) { 2219 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2220 ret = PTR_ERR(root); 2221 goto out; 2222 } 2223 } else { 2224 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2225 fs_info->block_group_root = root; 2226 } 2227 } 2228 2229 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2230 root = btrfs_read_tree_root(tree_root, &location); 2231 if (IS_ERR(root)) { 2232 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2233 ret = PTR_ERR(root); 2234 goto out; 2235 } 2236 } else { 2237 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2238 fs_info->dev_root = root; 2239 } 2240 /* Initialize fs_info for all devices in any case */ 2241 ret = btrfs_init_devices_late(fs_info); 2242 if (ret) 2243 goto out; 2244 2245 /* 2246 * This tree can share blocks with some other fs tree during relocation 2247 * and we need a proper setup by btrfs_get_fs_root 2248 */ 2249 root = btrfs_get_fs_root(tree_root->fs_info, 2250 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2251 if (IS_ERR(root)) { 2252 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2253 ret = PTR_ERR(root); 2254 goto out; 2255 } 2256 } else { 2257 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2258 fs_info->data_reloc_root = root; 2259 } 2260 2261 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2262 root = btrfs_read_tree_root(tree_root, &location); 2263 if (!IS_ERR(root)) { 2264 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2265 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2266 fs_info->quota_root = root; 2267 } 2268 2269 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2270 root = btrfs_read_tree_root(tree_root, &location); 2271 if (IS_ERR(root)) { 2272 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2273 ret = PTR_ERR(root); 2274 if (ret != -ENOENT) 2275 goto out; 2276 } 2277 } else { 2278 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2279 fs_info->uuid_root = root; 2280 } 2281 2282 return 0; 2283 out: 2284 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2285 location.objectid, ret); 2286 return ret; 2287 } 2288 2289 /* 2290 * Real super block validation 2291 * NOTE: super csum type and incompat features will not be checked here. 2292 * 2293 * @sb: super block to check 2294 * @mirror_num: the super block number to check its bytenr: 2295 * 0 the primary (1st) sb 2296 * 1, 2 2nd and 3rd backup copy 2297 * -1 skip bytenr check 2298 */ 2299 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2300 struct btrfs_super_block *sb, int mirror_num) 2301 { 2302 u64 nodesize = btrfs_super_nodesize(sb); 2303 u64 sectorsize = btrfs_super_sectorsize(sb); 2304 int ret = 0; 2305 2306 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2307 btrfs_err(fs_info, "no valid FS found"); 2308 ret = -EINVAL; 2309 } 2310 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2311 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2312 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2313 ret = -EINVAL; 2314 } 2315 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2316 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2317 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2318 ret = -EINVAL; 2319 } 2320 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2321 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2322 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2323 ret = -EINVAL; 2324 } 2325 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2326 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2327 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2328 ret = -EINVAL; 2329 } 2330 2331 /* 2332 * Check sectorsize and nodesize first, other check will need it. 2333 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2334 */ 2335 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2336 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2337 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2338 ret = -EINVAL; 2339 } 2340 2341 /* 2342 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2343 * 2344 * We can support 16K sectorsize with 64K page size without problem, 2345 * but such sectorsize/pagesize combination doesn't make much sense. 2346 * 4K will be our future standard, PAGE_SIZE is supported from the very 2347 * beginning. 2348 */ 2349 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2350 btrfs_err(fs_info, 2351 "sectorsize %llu not yet supported for page size %lu", 2352 sectorsize, PAGE_SIZE); 2353 ret = -EINVAL; 2354 } 2355 2356 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2357 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2358 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2359 ret = -EINVAL; 2360 } 2361 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2362 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2363 le32_to_cpu(sb->__unused_leafsize), nodesize); 2364 ret = -EINVAL; 2365 } 2366 2367 /* Root alignment check */ 2368 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2369 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2370 btrfs_super_root(sb)); 2371 ret = -EINVAL; 2372 } 2373 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2374 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2375 btrfs_super_chunk_root(sb)); 2376 ret = -EINVAL; 2377 } 2378 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2379 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2380 btrfs_super_log_root(sb)); 2381 ret = -EINVAL; 2382 } 2383 2384 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2385 btrfs_err(fs_info, 2386 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2387 sb->fsid, fs_info->fs_devices->fsid); 2388 ret = -EINVAL; 2389 } 2390 2391 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2392 BTRFS_FSID_SIZE) != 0) { 2393 btrfs_err(fs_info, 2394 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2395 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2396 ret = -EINVAL; 2397 } 2398 2399 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2400 BTRFS_FSID_SIZE) != 0) { 2401 btrfs_err(fs_info, 2402 "dev_item UUID does not match metadata fsid: %pU != %pU", 2403 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2404 ret = -EINVAL; 2405 } 2406 2407 /* 2408 * Artificial requirement for block-group-tree to force newer features 2409 * (free-space-tree, no-holes) so the test matrix is smaller. 2410 */ 2411 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2412 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2413 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2414 btrfs_err(fs_info, 2415 "block-group-tree feature requires fres-space-tree and no-holes"); 2416 ret = -EINVAL; 2417 } 2418 2419 /* 2420 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2421 * done later 2422 */ 2423 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2424 btrfs_err(fs_info, "bytes_used is too small %llu", 2425 btrfs_super_bytes_used(sb)); 2426 ret = -EINVAL; 2427 } 2428 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2429 btrfs_err(fs_info, "invalid stripesize %u", 2430 btrfs_super_stripesize(sb)); 2431 ret = -EINVAL; 2432 } 2433 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2434 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2435 btrfs_super_num_devices(sb)); 2436 if (btrfs_super_num_devices(sb) == 0) { 2437 btrfs_err(fs_info, "number of devices is 0"); 2438 ret = -EINVAL; 2439 } 2440 2441 if (mirror_num >= 0 && 2442 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2443 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2444 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2445 ret = -EINVAL; 2446 } 2447 2448 /* 2449 * Obvious sys_chunk_array corruptions, it must hold at least one key 2450 * and one chunk 2451 */ 2452 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2453 btrfs_err(fs_info, "system chunk array too big %u > %u", 2454 btrfs_super_sys_array_size(sb), 2455 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2456 ret = -EINVAL; 2457 } 2458 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2459 + sizeof(struct btrfs_chunk)) { 2460 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2461 btrfs_super_sys_array_size(sb), 2462 sizeof(struct btrfs_disk_key) 2463 + sizeof(struct btrfs_chunk)); 2464 ret = -EINVAL; 2465 } 2466 2467 /* 2468 * The generation is a global counter, we'll trust it more than the others 2469 * but it's still possible that it's the one that's wrong. 2470 */ 2471 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2472 btrfs_warn(fs_info, 2473 "suspicious: generation < chunk_root_generation: %llu < %llu", 2474 btrfs_super_generation(sb), 2475 btrfs_super_chunk_root_generation(sb)); 2476 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2477 && btrfs_super_cache_generation(sb) != (u64)-1) 2478 btrfs_warn(fs_info, 2479 "suspicious: generation < cache_generation: %llu < %llu", 2480 btrfs_super_generation(sb), 2481 btrfs_super_cache_generation(sb)); 2482 2483 return ret; 2484 } 2485 2486 /* 2487 * Validation of super block at mount time. 2488 * Some checks already done early at mount time, like csum type and incompat 2489 * flags will be skipped. 2490 */ 2491 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2492 { 2493 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2494 } 2495 2496 /* 2497 * Validation of super block at write time. 2498 * Some checks like bytenr check will be skipped as their values will be 2499 * overwritten soon. 2500 * Extra checks like csum type and incompat flags will be done here. 2501 */ 2502 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2503 struct btrfs_super_block *sb) 2504 { 2505 int ret; 2506 2507 ret = btrfs_validate_super(fs_info, sb, -1); 2508 if (ret < 0) 2509 goto out; 2510 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2511 ret = -EUCLEAN; 2512 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2513 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2514 goto out; 2515 } 2516 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2517 ret = -EUCLEAN; 2518 btrfs_err(fs_info, 2519 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2520 btrfs_super_incompat_flags(sb), 2521 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2522 goto out; 2523 } 2524 out: 2525 if (ret < 0) 2526 btrfs_err(fs_info, 2527 "super block corruption detected before writing it to disk"); 2528 return ret; 2529 } 2530 2531 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2532 { 2533 struct btrfs_tree_parent_check check = { 2534 .level = level, 2535 .transid = gen, 2536 .owner_root = root->root_key.objectid 2537 }; 2538 int ret = 0; 2539 2540 root->node = read_tree_block(root->fs_info, bytenr, &check); 2541 if (IS_ERR(root->node)) { 2542 ret = PTR_ERR(root->node); 2543 root->node = NULL; 2544 return ret; 2545 } 2546 if (!extent_buffer_uptodate(root->node)) { 2547 free_extent_buffer(root->node); 2548 root->node = NULL; 2549 return -EIO; 2550 } 2551 2552 btrfs_set_root_node(&root->root_item, root->node); 2553 root->commit_root = btrfs_root_node(root); 2554 btrfs_set_root_refs(&root->root_item, 1); 2555 return ret; 2556 } 2557 2558 static int load_important_roots(struct btrfs_fs_info *fs_info) 2559 { 2560 struct btrfs_super_block *sb = fs_info->super_copy; 2561 u64 gen, bytenr; 2562 int level, ret; 2563 2564 bytenr = btrfs_super_root(sb); 2565 gen = btrfs_super_generation(sb); 2566 level = btrfs_super_root_level(sb); 2567 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2568 if (ret) { 2569 btrfs_warn(fs_info, "couldn't read tree root"); 2570 return ret; 2571 } 2572 return 0; 2573 } 2574 2575 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2576 { 2577 int backup_index = find_newest_super_backup(fs_info); 2578 struct btrfs_super_block *sb = fs_info->super_copy; 2579 struct btrfs_root *tree_root = fs_info->tree_root; 2580 bool handle_error = false; 2581 int ret = 0; 2582 int i; 2583 2584 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2585 if (handle_error) { 2586 if (!IS_ERR(tree_root->node)) 2587 free_extent_buffer(tree_root->node); 2588 tree_root->node = NULL; 2589 2590 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2591 break; 2592 2593 free_root_pointers(fs_info, 0); 2594 2595 /* 2596 * Don't use the log in recovery mode, it won't be 2597 * valid 2598 */ 2599 btrfs_set_super_log_root(sb, 0); 2600 2601 /* We can't trust the free space cache either */ 2602 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2603 2604 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2605 ret = read_backup_root(fs_info, i); 2606 backup_index = ret; 2607 if (ret < 0) 2608 return ret; 2609 } 2610 2611 ret = load_important_roots(fs_info); 2612 if (ret) { 2613 handle_error = true; 2614 continue; 2615 } 2616 2617 /* 2618 * No need to hold btrfs_root::objectid_mutex since the fs 2619 * hasn't been fully initialised and we are the only user 2620 */ 2621 ret = btrfs_init_root_free_objectid(tree_root); 2622 if (ret < 0) { 2623 handle_error = true; 2624 continue; 2625 } 2626 2627 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2628 2629 ret = btrfs_read_roots(fs_info); 2630 if (ret < 0) { 2631 handle_error = true; 2632 continue; 2633 } 2634 2635 /* All successful */ 2636 fs_info->generation = btrfs_header_generation(tree_root->node); 2637 fs_info->last_trans_committed = fs_info->generation; 2638 fs_info->last_reloc_trans = 0; 2639 2640 /* Always begin writing backup roots after the one being used */ 2641 if (backup_index < 0) { 2642 fs_info->backup_root_index = 0; 2643 } else { 2644 fs_info->backup_root_index = backup_index + 1; 2645 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2646 } 2647 break; 2648 } 2649 2650 return ret; 2651 } 2652 2653 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2654 { 2655 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2656 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2657 INIT_LIST_HEAD(&fs_info->trans_list); 2658 INIT_LIST_HEAD(&fs_info->dead_roots); 2659 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2660 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2661 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2662 spin_lock_init(&fs_info->delalloc_root_lock); 2663 spin_lock_init(&fs_info->trans_lock); 2664 spin_lock_init(&fs_info->fs_roots_radix_lock); 2665 spin_lock_init(&fs_info->delayed_iput_lock); 2666 spin_lock_init(&fs_info->defrag_inodes_lock); 2667 spin_lock_init(&fs_info->super_lock); 2668 spin_lock_init(&fs_info->buffer_lock); 2669 spin_lock_init(&fs_info->unused_bgs_lock); 2670 spin_lock_init(&fs_info->treelog_bg_lock); 2671 spin_lock_init(&fs_info->zone_active_bgs_lock); 2672 spin_lock_init(&fs_info->relocation_bg_lock); 2673 rwlock_init(&fs_info->tree_mod_log_lock); 2674 rwlock_init(&fs_info->global_root_lock); 2675 mutex_init(&fs_info->unused_bg_unpin_mutex); 2676 mutex_init(&fs_info->reclaim_bgs_lock); 2677 mutex_init(&fs_info->reloc_mutex); 2678 mutex_init(&fs_info->delalloc_root_mutex); 2679 mutex_init(&fs_info->zoned_meta_io_lock); 2680 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2681 seqlock_init(&fs_info->profiles_lock); 2682 2683 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2684 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2685 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2686 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2687 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2688 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2689 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2690 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2691 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2692 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2693 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2694 BTRFS_LOCKDEP_TRANS_COMPLETED); 2695 2696 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2697 INIT_LIST_HEAD(&fs_info->space_info); 2698 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2699 INIT_LIST_HEAD(&fs_info->unused_bgs); 2700 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2701 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2702 #ifdef CONFIG_BTRFS_DEBUG 2703 INIT_LIST_HEAD(&fs_info->allocated_roots); 2704 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2705 spin_lock_init(&fs_info->eb_leak_lock); 2706 #endif 2707 extent_map_tree_init(&fs_info->mapping_tree); 2708 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2709 BTRFS_BLOCK_RSV_GLOBAL); 2710 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2711 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2712 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2713 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2714 BTRFS_BLOCK_RSV_DELOPS); 2715 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2716 BTRFS_BLOCK_RSV_DELREFS); 2717 2718 atomic_set(&fs_info->async_delalloc_pages, 0); 2719 atomic_set(&fs_info->defrag_running, 0); 2720 atomic_set(&fs_info->nr_delayed_iputs, 0); 2721 atomic64_set(&fs_info->tree_mod_seq, 0); 2722 fs_info->global_root_tree = RB_ROOT; 2723 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2724 fs_info->metadata_ratio = 0; 2725 fs_info->defrag_inodes = RB_ROOT; 2726 atomic64_set(&fs_info->free_chunk_space, 0); 2727 fs_info->tree_mod_log = RB_ROOT; 2728 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2729 btrfs_init_ref_verify(fs_info); 2730 2731 fs_info->thread_pool_size = min_t(unsigned long, 2732 num_online_cpus() + 2, 8); 2733 2734 INIT_LIST_HEAD(&fs_info->ordered_roots); 2735 spin_lock_init(&fs_info->ordered_root_lock); 2736 2737 btrfs_init_scrub(fs_info); 2738 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2739 fs_info->check_integrity_print_mask = 0; 2740 #endif 2741 btrfs_init_balance(fs_info); 2742 btrfs_init_async_reclaim_work(fs_info); 2743 2744 rwlock_init(&fs_info->block_group_cache_lock); 2745 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2746 2747 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2748 IO_TREE_FS_EXCLUDED_EXTENTS); 2749 2750 mutex_init(&fs_info->ordered_operations_mutex); 2751 mutex_init(&fs_info->tree_log_mutex); 2752 mutex_init(&fs_info->chunk_mutex); 2753 mutex_init(&fs_info->transaction_kthread_mutex); 2754 mutex_init(&fs_info->cleaner_mutex); 2755 mutex_init(&fs_info->ro_block_group_mutex); 2756 init_rwsem(&fs_info->commit_root_sem); 2757 init_rwsem(&fs_info->cleanup_work_sem); 2758 init_rwsem(&fs_info->subvol_sem); 2759 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2760 2761 btrfs_init_dev_replace_locks(fs_info); 2762 btrfs_init_qgroup(fs_info); 2763 btrfs_discard_init(fs_info); 2764 2765 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2766 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2767 2768 init_waitqueue_head(&fs_info->transaction_throttle); 2769 init_waitqueue_head(&fs_info->transaction_wait); 2770 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2771 init_waitqueue_head(&fs_info->async_submit_wait); 2772 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2773 2774 /* Usable values until the real ones are cached from the superblock */ 2775 fs_info->nodesize = 4096; 2776 fs_info->sectorsize = 4096; 2777 fs_info->sectorsize_bits = ilog2(4096); 2778 fs_info->stripesize = 4096; 2779 2780 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2781 2782 spin_lock_init(&fs_info->swapfile_pins_lock); 2783 fs_info->swapfile_pins = RB_ROOT; 2784 2785 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2786 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2787 } 2788 2789 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2790 { 2791 int ret; 2792 2793 fs_info->sb = sb; 2794 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2795 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2796 2797 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2798 if (ret) 2799 return ret; 2800 2801 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2802 if (ret) 2803 return ret; 2804 2805 fs_info->dirty_metadata_batch = PAGE_SIZE * 2806 (1 + ilog2(nr_cpu_ids)); 2807 2808 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2809 if (ret) 2810 return ret; 2811 2812 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2813 GFP_KERNEL); 2814 if (ret) 2815 return ret; 2816 2817 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2818 GFP_KERNEL); 2819 if (!fs_info->delayed_root) 2820 return -ENOMEM; 2821 btrfs_init_delayed_root(fs_info->delayed_root); 2822 2823 if (sb_rdonly(sb)) 2824 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2825 2826 return btrfs_alloc_stripe_hash_table(fs_info); 2827 } 2828 2829 static int btrfs_uuid_rescan_kthread(void *data) 2830 { 2831 struct btrfs_fs_info *fs_info = data; 2832 int ret; 2833 2834 /* 2835 * 1st step is to iterate through the existing UUID tree and 2836 * to delete all entries that contain outdated data. 2837 * 2nd step is to add all missing entries to the UUID tree. 2838 */ 2839 ret = btrfs_uuid_tree_iterate(fs_info); 2840 if (ret < 0) { 2841 if (ret != -EINTR) 2842 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2843 ret); 2844 up(&fs_info->uuid_tree_rescan_sem); 2845 return ret; 2846 } 2847 return btrfs_uuid_scan_kthread(data); 2848 } 2849 2850 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2851 { 2852 struct task_struct *task; 2853 2854 down(&fs_info->uuid_tree_rescan_sem); 2855 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2856 if (IS_ERR(task)) { 2857 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2858 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2859 up(&fs_info->uuid_tree_rescan_sem); 2860 return PTR_ERR(task); 2861 } 2862 2863 return 0; 2864 } 2865 2866 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2867 { 2868 u64 root_objectid = 0; 2869 struct btrfs_root *gang[8]; 2870 int i = 0; 2871 int err = 0; 2872 unsigned int ret = 0; 2873 2874 while (1) { 2875 spin_lock(&fs_info->fs_roots_radix_lock); 2876 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2877 (void **)gang, root_objectid, 2878 ARRAY_SIZE(gang)); 2879 if (!ret) { 2880 spin_unlock(&fs_info->fs_roots_radix_lock); 2881 break; 2882 } 2883 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2884 2885 for (i = 0; i < ret; i++) { 2886 /* Avoid to grab roots in dead_roots. */ 2887 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2888 gang[i] = NULL; 2889 continue; 2890 } 2891 /* Grab all the search result for later use. */ 2892 gang[i] = btrfs_grab_root(gang[i]); 2893 } 2894 spin_unlock(&fs_info->fs_roots_radix_lock); 2895 2896 for (i = 0; i < ret; i++) { 2897 if (!gang[i]) 2898 continue; 2899 root_objectid = gang[i]->root_key.objectid; 2900 err = btrfs_orphan_cleanup(gang[i]); 2901 if (err) 2902 goto out; 2903 btrfs_put_root(gang[i]); 2904 } 2905 root_objectid++; 2906 } 2907 out: 2908 /* Release the uncleaned roots due to error. */ 2909 for (; i < ret; i++) { 2910 if (gang[i]) 2911 btrfs_put_root(gang[i]); 2912 } 2913 return err; 2914 } 2915 2916 /* 2917 * Some options only have meaning at mount time and shouldn't persist across 2918 * remounts, or be displayed. Clear these at the end of mount and remount 2919 * code paths. 2920 */ 2921 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info) 2922 { 2923 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 2924 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE); 2925 } 2926 2927 /* 2928 * Mounting logic specific to read-write file systems. Shared by open_ctree 2929 * and btrfs_remount when remounting from read-only to read-write. 2930 */ 2931 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2932 { 2933 int ret; 2934 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2935 bool rebuild_free_space_tree = false; 2936 2937 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2938 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2939 rebuild_free_space_tree = true; 2940 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2941 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2942 btrfs_warn(fs_info, "free space tree is invalid"); 2943 rebuild_free_space_tree = true; 2944 } 2945 2946 if (rebuild_free_space_tree) { 2947 btrfs_info(fs_info, "rebuilding free space tree"); 2948 ret = btrfs_rebuild_free_space_tree(fs_info); 2949 if (ret) { 2950 btrfs_warn(fs_info, 2951 "failed to rebuild free space tree: %d", ret); 2952 goto out; 2953 } 2954 } 2955 2956 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2957 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 2958 btrfs_info(fs_info, "disabling free space tree"); 2959 ret = btrfs_delete_free_space_tree(fs_info); 2960 if (ret) { 2961 btrfs_warn(fs_info, 2962 "failed to disable free space tree: %d", ret); 2963 goto out; 2964 } 2965 } 2966 2967 /* 2968 * btrfs_find_orphan_roots() is responsible for finding all the dead 2969 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 2970 * them into the fs_info->fs_roots_radix tree. This must be done before 2971 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 2972 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 2973 * item before the root's tree is deleted - this means that if we unmount 2974 * or crash before the deletion completes, on the next mount we will not 2975 * delete what remains of the tree because the orphan item does not 2976 * exists anymore, which is what tells us we have a pending deletion. 2977 */ 2978 ret = btrfs_find_orphan_roots(fs_info); 2979 if (ret) 2980 goto out; 2981 2982 ret = btrfs_cleanup_fs_roots(fs_info); 2983 if (ret) 2984 goto out; 2985 2986 down_read(&fs_info->cleanup_work_sem); 2987 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2988 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2989 up_read(&fs_info->cleanup_work_sem); 2990 goto out; 2991 } 2992 up_read(&fs_info->cleanup_work_sem); 2993 2994 mutex_lock(&fs_info->cleaner_mutex); 2995 ret = btrfs_recover_relocation(fs_info); 2996 mutex_unlock(&fs_info->cleaner_mutex); 2997 if (ret < 0) { 2998 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 2999 goto out; 3000 } 3001 3002 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3003 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3004 btrfs_info(fs_info, "creating free space tree"); 3005 ret = btrfs_create_free_space_tree(fs_info); 3006 if (ret) { 3007 btrfs_warn(fs_info, 3008 "failed to create free space tree: %d", ret); 3009 goto out; 3010 } 3011 } 3012 3013 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3014 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3015 if (ret) 3016 goto out; 3017 } 3018 3019 ret = btrfs_resume_balance_async(fs_info); 3020 if (ret) 3021 goto out; 3022 3023 ret = btrfs_resume_dev_replace_async(fs_info); 3024 if (ret) { 3025 btrfs_warn(fs_info, "failed to resume dev_replace"); 3026 goto out; 3027 } 3028 3029 btrfs_qgroup_rescan_resume(fs_info); 3030 3031 if (!fs_info->uuid_root) { 3032 btrfs_info(fs_info, "creating UUID tree"); 3033 ret = btrfs_create_uuid_tree(fs_info); 3034 if (ret) { 3035 btrfs_warn(fs_info, 3036 "failed to create the UUID tree %d", ret); 3037 goto out; 3038 } 3039 } 3040 3041 out: 3042 return ret; 3043 } 3044 3045 /* 3046 * Do various sanity and dependency checks of different features. 3047 * 3048 * @is_rw_mount: If the mount is read-write. 3049 * 3050 * This is the place for less strict checks (like for subpage or artificial 3051 * feature dependencies). 3052 * 3053 * For strict checks or possible corruption detection, see 3054 * btrfs_validate_super(). 3055 * 3056 * This should be called after btrfs_parse_options(), as some mount options 3057 * (space cache related) can modify on-disk format like free space tree and 3058 * screw up certain feature dependencies. 3059 */ 3060 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3061 { 3062 struct btrfs_super_block *disk_super = fs_info->super_copy; 3063 u64 incompat = btrfs_super_incompat_flags(disk_super); 3064 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3065 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3066 3067 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3068 btrfs_err(fs_info, 3069 "cannot mount because of unknown incompat features (0x%llx)", 3070 incompat); 3071 return -EINVAL; 3072 } 3073 3074 /* Runtime limitation for mixed block groups. */ 3075 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3076 (fs_info->sectorsize != fs_info->nodesize)) { 3077 btrfs_err(fs_info, 3078 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3079 fs_info->nodesize, fs_info->sectorsize); 3080 return -EINVAL; 3081 } 3082 3083 /* Mixed backref is an always-enabled feature. */ 3084 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3085 3086 /* Set compression related flags just in case. */ 3087 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3088 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3089 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3090 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3091 3092 /* 3093 * An ancient flag, which should really be marked deprecated. 3094 * Such runtime limitation doesn't really need a incompat flag. 3095 */ 3096 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3097 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3098 3099 if (compat_ro_unsupp && is_rw_mount) { 3100 btrfs_err(fs_info, 3101 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3102 compat_ro); 3103 return -EINVAL; 3104 } 3105 3106 /* 3107 * We have unsupported RO compat features, although RO mounted, we 3108 * should not cause any metadata writes, including log replay. 3109 * Or we could screw up whatever the new feature requires. 3110 */ 3111 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3112 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3113 btrfs_err(fs_info, 3114 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3115 compat_ro); 3116 return -EINVAL; 3117 } 3118 3119 /* 3120 * Artificial limitations for block group tree, to force 3121 * block-group-tree to rely on no-holes and free-space-tree. 3122 */ 3123 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3124 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3125 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3126 btrfs_err(fs_info, 3127 "block-group-tree feature requires no-holes and free-space-tree features"); 3128 return -EINVAL; 3129 } 3130 3131 /* 3132 * Subpage runtime limitation on v1 cache. 3133 * 3134 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3135 * we're already defaulting to v2 cache, no need to bother v1 as it's 3136 * going to be deprecated anyway. 3137 */ 3138 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3139 btrfs_warn(fs_info, 3140 "v1 space cache is not supported for page size %lu with sectorsize %u", 3141 PAGE_SIZE, fs_info->sectorsize); 3142 return -EINVAL; 3143 } 3144 3145 /* This can be called by remount, we need to protect the super block. */ 3146 spin_lock(&fs_info->super_lock); 3147 btrfs_set_super_incompat_flags(disk_super, incompat); 3148 spin_unlock(&fs_info->super_lock); 3149 3150 return 0; 3151 } 3152 3153 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3154 char *options) 3155 { 3156 u32 sectorsize; 3157 u32 nodesize; 3158 u32 stripesize; 3159 u64 generation; 3160 u64 features; 3161 u16 csum_type; 3162 struct btrfs_super_block *disk_super; 3163 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3164 struct btrfs_root *tree_root; 3165 struct btrfs_root *chunk_root; 3166 int ret; 3167 int level; 3168 3169 ret = init_mount_fs_info(fs_info, sb); 3170 if (ret) 3171 goto fail; 3172 3173 /* These need to be init'ed before we start creating inodes and such. */ 3174 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3175 GFP_KERNEL); 3176 fs_info->tree_root = tree_root; 3177 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3178 GFP_KERNEL); 3179 fs_info->chunk_root = chunk_root; 3180 if (!tree_root || !chunk_root) { 3181 ret = -ENOMEM; 3182 goto fail; 3183 } 3184 3185 ret = btrfs_init_btree_inode(sb); 3186 if (ret) 3187 goto fail; 3188 3189 invalidate_bdev(fs_devices->latest_dev->bdev); 3190 3191 /* 3192 * Read super block and check the signature bytes only 3193 */ 3194 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3195 if (IS_ERR(disk_super)) { 3196 ret = PTR_ERR(disk_super); 3197 goto fail_alloc; 3198 } 3199 3200 /* 3201 * Verify the type first, if that or the checksum value are 3202 * corrupted, we'll find out 3203 */ 3204 csum_type = btrfs_super_csum_type(disk_super); 3205 if (!btrfs_supported_super_csum(csum_type)) { 3206 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3207 csum_type); 3208 ret = -EINVAL; 3209 btrfs_release_disk_super(disk_super); 3210 goto fail_alloc; 3211 } 3212 3213 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3214 3215 ret = btrfs_init_csum_hash(fs_info, csum_type); 3216 if (ret) { 3217 btrfs_release_disk_super(disk_super); 3218 goto fail_alloc; 3219 } 3220 3221 /* 3222 * We want to check superblock checksum, the type is stored inside. 3223 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3224 */ 3225 if (btrfs_check_super_csum(fs_info, disk_super)) { 3226 btrfs_err(fs_info, "superblock checksum mismatch"); 3227 ret = -EINVAL; 3228 btrfs_release_disk_super(disk_super); 3229 goto fail_alloc; 3230 } 3231 3232 /* 3233 * super_copy is zeroed at allocation time and we never touch the 3234 * following bytes up to INFO_SIZE, the checksum is calculated from 3235 * the whole block of INFO_SIZE 3236 */ 3237 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3238 btrfs_release_disk_super(disk_super); 3239 3240 disk_super = fs_info->super_copy; 3241 3242 3243 features = btrfs_super_flags(disk_super); 3244 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) { 3245 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2; 3246 btrfs_set_super_flags(disk_super, features); 3247 btrfs_info(fs_info, 3248 "found metadata UUID change in progress flag, clearing"); 3249 } 3250 3251 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3252 sizeof(*fs_info->super_for_commit)); 3253 3254 ret = btrfs_validate_mount_super(fs_info); 3255 if (ret) { 3256 btrfs_err(fs_info, "superblock contains fatal errors"); 3257 ret = -EINVAL; 3258 goto fail_alloc; 3259 } 3260 3261 if (!btrfs_super_root(disk_super)) { 3262 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3263 ret = -EINVAL; 3264 goto fail_alloc; 3265 } 3266 3267 /* check FS state, whether FS is broken. */ 3268 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3269 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3270 3271 /* 3272 * In the long term, we'll store the compression type in the super 3273 * block, and it'll be used for per file compression control. 3274 */ 3275 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 3276 3277 3278 /* Set up fs_info before parsing mount options */ 3279 nodesize = btrfs_super_nodesize(disk_super); 3280 sectorsize = btrfs_super_sectorsize(disk_super); 3281 stripesize = sectorsize; 3282 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3283 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3284 3285 fs_info->nodesize = nodesize; 3286 fs_info->sectorsize = sectorsize; 3287 fs_info->sectorsize_bits = ilog2(sectorsize); 3288 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3289 fs_info->stripesize = stripesize; 3290 3291 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 3292 if (ret) 3293 goto fail_alloc; 3294 3295 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3296 if (ret < 0) 3297 goto fail_alloc; 3298 3299 if (sectorsize < PAGE_SIZE) { 3300 struct btrfs_subpage_info *subpage_info; 3301 3302 /* 3303 * V1 space cache has some hardcoded PAGE_SIZE usage, and is 3304 * going to be deprecated. 3305 * 3306 * Force to use v2 cache for subpage case. 3307 */ 3308 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 3309 btrfs_set_and_info(fs_info, FREE_SPACE_TREE, 3310 "forcing free space tree for sector size %u with page size %lu", 3311 sectorsize, PAGE_SIZE); 3312 3313 btrfs_warn(fs_info, 3314 "read-write for sector size %u with page size %lu is experimental", 3315 sectorsize, PAGE_SIZE); 3316 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3317 if (!subpage_info) { 3318 ret = -ENOMEM; 3319 goto fail_alloc; 3320 } 3321 btrfs_init_subpage_info(subpage_info, sectorsize); 3322 fs_info->subpage_info = subpage_info; 3323 } 3324 3325 ret = btrfs_init_workqueues(fs_info); 3326 if (ret) 3327 goto fail_sb_buffer; 3328 3329 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3330 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3331 3332 sb->s_blocksize = sectorsize; 3333 sb->s_blocksize_bits = blksize_bits(sectorsize); 3334 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3335 3336 mutex_lock(&fs_info->chunk_mutex); 3337 ret = btrfs_read_sys_array(fs_info); 3338 mutex_unlock(&fs_info->chunk_mutex); 3339 if (ret) { 3340 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3341 goto fail_sb_buffer; 3342 } 3343 3344 generation = btrfs_super_chunk_root_generation(disk_super); 3345 level = btrfs_super_chunk_root_level(disk_super); 3346 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3347 generation, level); 3348 if (ret) { 3349 btrfs_err(fs_info, "failed to read chunk root"); 3350 goto fail_tree_roots; 3351 } 3352 3353 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3354 offsetof(struct btrfs_header, chunk_tree_uuid), 3355 BTRFS_UUID_SIZE); 3356 3357 ret = btrfs_read_chunk_tree(fs_info); 3358 if (ret) { 3359 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3360 goto fail_tree_roots; 3361 } 3362 3363 /* 3364 * At this point we know all the devices that make this filesystem, 3365 * including the seed devices but we don't know yet if the replace 3366 * target is required. So free devices that are not part of this 3367 * filesystem but skip the replace target device which is checked 3368 * below in btrfs_init_dev_replace(). 3369 */ 3370 btrfs_free_extra_devids(fs_devices); 3371 if (!fs_devices->latest_dev->bdev) { 3372 btrfs_err(fs_info, "failed to read devices"); 3373 ret = -EIO; 3374 goto fail_tree_roots; 3375 } 3376 3377 ret = init_tree_roots(fs_info); 3378 if (ret) 3379 goto fail_tree_roots; 3380 3381 /* 3382 * Get zone type information of zoned block devices. This will also 3383 * handle emulation of a zoned filesystem if a regular device has the 3384 * zoned incompat feature flag set. 3385 */ 3386 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3387 if (ret) { 3388 btrfs_err(fs_info, 3389 "zoned: failed to read device zone info: %d", ret); 3390 goto fail_block_groups; 3391 } 3392 3393 /* 3394 * If we have a uuid root and we're not being told to rescan we need to 3395 * check the generation here so we can set the 3396 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3397 * transaction during a balance or the log replay without updating the 3398 * uuid generation, and then if we crash we would rescan the uuid tree, 3399 * even though it was perfectly fine. 3400 */ 3401 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3402 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3403 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3404 3405 ret = btrfs_verify_dev_extents(fs_info); 3406 if (ret) { 3407 btrfs_err(fs_info, 3408 "failed to verify dev extents against chunks: %d", 3409 ret); 3410 goto fail_block_groups; 3411 } 3412 ret = btrfs_recover_balance(fs_info); 3413 if (ret) { 3414 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3415 goto fail_block_groups; 3416 } 3417 3418 ret = btrfs_init_dev_stats(fs_info); 3419 if (ret) { 3420 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3421 goto fail_block_groups; 3422 } 3423 3424 ret = btrfs_init_dev_replace(fs_info); 3425 if (ret) { 3426 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3427 goto fail_block_groups; 3428 } 3429 3430 ret = btrfs_check_zoned_mode(fs_info); 3431 if (ret) { 3432 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3433 ret); 3434 goto fail_block_groups; 3435 } 3436 3437 ret = btrfs_sysfs_add_fsid(fs_devices); 3438 if (ret) { 3439 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3440 ret); 3441 goto fail_block_groups; 3442 } 3443 3444 ret = btrfs_sysfs_add_mounted(fs_info); 3445 if (ret) { 3446 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3447 goto fail_fsdev_sysfs; 3448 } 3449 3450 ret = btrfs_init_space_info(fs_info); 3451 if (ret) { 3452 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3453 goto fail_sysfs; 3454 } 3455 3456 ret = btrfs_read_block_groups(fs_info); 3457 if (ret) { 3458 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3459 goto fail_sysfs; 3460 } 3461 3462 btrfs_free_zone_cache(fs_info); 3463 3464 btrfs_check_active_zone_reservation(fs_info); 3465 3466 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3467 !btrfs_check_rw_degradable(fs_info, NULL)) { 3468 btrfs_warn(fs_info, 3469 "writable mount is not allowed due to too many missing devices"); 3470 ret = -EINVAL; 3471 goto fail_sysfs; 3472 } 3473 3474 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3475 "btrfs-cleaner"); 3476 if (IS_ERR(fs_info->cleaner_kthread)) { 3477 ret = PTR_ERR(fs_info->cleaner_kthread); 3478 goto fail_sysfs; 3479 } 3480 3481 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3482 tree_root, 3483 "btrfs-transaction"); 3484 if (IS_ERR(fs_info->transaction_kthread)) { 3485 ret = PTR_ERR(fs_info->transaction_kthread); 3486 goto fail_cleaner; 3487 } 3488 3489 if (!btrfs_test_opt(fs_info, NOSSD) && 3490 !fs_info->fs_devices->rotating) { 3491 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations"); 3492 } 3493 3494 /* 3495 * For devices supporting discard turn on discard=async automatically, 3496 * unless it's already set or disabled. This could be turned off by 3497 * nodiscard for the same mount. 3498 * 3499 * The zoned mode piggy backs on the discard functionality for 3500 * resetting a zone. There is no reason to delay the zone reset as it is 3501 * fast enough. So, do not enable async discard for zoned mode. 3502 */ 3503 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) || 3504 btrfs_test_opt(fs_info, DISCARD_ASYNC) || 3505 btrfs_test_opt(fs_info, NODISCARD)) && 3506 fs_info->fs_devices->discardable && 3507 !btrfs_is_zoned(fs_info)) { 3508 btrfs_set_and_info(fs_info, DISCARD_ASYNC, 3509 "auto enabling async discard"); 3510 } 3511 3512 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3513 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3514 ret = btrfsic_mount(fs_info, fs_devices, 3515 btrfs_test_opt(fs_info, 3516 CHECK_INTEGRITY_DATA) ? 1 : 0, 3517 fs_info->check_integrity_print_mask); 3518 if (ret) 3519 btrfs_warn(fs_info, 3520 "failed to initialize integrity check module: %d", 3521 ret); 3522 } 3523 #endif 3524 ret = btrfs_read_qgroup_config(fs_info); 3525 if (ret) 3526 goto fail_trans_kthread; 3527 3528 if (btrfs_build_ref_tree(fs_info)) 3529 btrfs_err(fs_info, "couldn't build ref tree"); 3530 3531 /* do not make disk changes in broken FS or nologreplay is given */ 3532 if (btrfs_super_log_root(disk_super) != 0 && 3533 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3534 btrfs_info(fs_info, "start tree-log replay"); 3535 ret = btrfs_replay_log(fs_info, fs_devices); 3536 if (ret) 3537 goto fail_qgroup; 3538 } 3539 3540 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3541 if (IS_ERR(fs_info->fs_root)) { 3542 ret = PTR_ERR(fs_info->fs_root); 3543 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3544 fs_info->fs_root = NULL; 3545 goto fail_qgroup; 3546 } 3547 3548 if (sb_rdonly(sb)) 3549 goto clear_oneshot; 3550 3551 ret = btrfs_start_pre_rw_mount(fs_info); 3552 if (ret) { 3553 close_ctree(fs_info); 3554 return ret; 3555 } 3556 btrfs_discard_resume(fs_info); 3557 3558 if (fs_info->uuid_root && 3559 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3560 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3561 btrfs_info(fs_info, "checking UUID tree"); 3562 ret = btrfs_check_uuid_tree(fs_info); 3563 if (ret) { 3564 btrfs_warn(fs_info, 3565 "failed to check the UUID tree: %d", ret); 3566 close_ctree(fs_info); 3567 return ret; 3568 } 3569 } 3570 3571 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3572 3573 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3574 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3575 wake_up_process(fs_info->cleaner_kthread); 3576 3577 clear_oneshot: 3578 btrfs_clear_oneshot_options(fs_info); 3579 return 0; 3580 3581 fail_qgroup: 3582 btrfs_free_qgroup_config(fs_info); 3583 fail_trans_kthread: 3584 kthread_stop(fs_info->transaction_kthread); 3585 btrfs_cleanup_transaction(fs_info); 3586 btrfs_free_fs_roots(fs_info); 3587 fail_cleaner: 3588 kthread_stop(fs_info->cleaner_kthread); 3589 3590 /* 3591 * make sure we're done with the btree inode before we stop our 3592 * kthreads 3593 */ 3594 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3595 3596 fail_sysfs: 3597 btrfs_sysfs_remove_mounted(fs_info); 3598 3599 fail_fsdev_sysfs: 3600 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3601 3602 fail_block_groups: 3603 btrfs_put_block_group_cache(fs_info); 3604 3605 fail_tree_roots: 3606 if (fs_info->data_reloc_root) 3607 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3608 free_root_pointers(fs_info, true); 3609 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3610 3611 fail_sb_buffer: 3612 btrfs_stop_all_workers(fs_info); 3613 btrfs_free_block_groups(fs_info); 3614 fail_alloc: 3615 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3616 3617 iput(fs_info->btree_inode); 3618 fail: 3619 btrfs_close_devices(fs_info->fs_devices); 3620 ASSERT(ret < 0); 3621 return ret; 3622 } 3623 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3624 3625 static void btrfs_end_super_write(struct bio *bio) 3626 { 3627 struct btrfs_device *device = bio->bi_private; 3628 struct bio_vec *bvec; 3629 struct bvec_iter_all iter_all; 3630 struct page *page; 3631 3632 bio_for_each_segment_all(bvec, bio, iter_all) { 3633 page = bvec->bv_page; 3634 3635 if (bio->bi_status) { 3636 btrfs_warn_rl_in_rcu(device->fs_info, 3637 "lost page write due to IO error on %s (%d)", 3638 btrfs_dev_name(device), 3639 blk_status_to_errno(bio->bi_status)); 3640 ClearPageUptodate(page); 3641 SetPageError(page); 3642 btrfs_dev_stat_inc_and_print(device, 3643 BTRFS_DEV_STAT_WRITE_ERRS); 3644 } else { 3645 SetPageUptodate(page); 3646 } 3647 3648 put_page(page); 3649 unlock_page(page); 3650 } 3651 3652 bio_put(bio); 3653 } 3654 3655 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3656 int copy_num, bool drop_cache) 3657 { 3658 struct btrfs_super_block *super; 3659 struct page *page; 3660 u64 bytenr, bytenr_orig; 3661 struct address_space *mapping = bdev->bd_inode->i_mapping; 3662 int ret; 3663 3664 bytenr_orig = btrfs_sb_offset(copy_num); 3665 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3666 if (ret == -ENOENT) 3667 return ERR_PTR(-EINVAL); 3668 else if (ret) 3669 return ERR_PTR(ret); 3670 3671 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3672 return ERR_PTR(-EINVAL); 3673 3674 if (drop_cache) { 3675 /* This should only be called with the primary sb. */ 3676 ASSERT(copy_num == 0); 3677 3678 /* 3679 * Drop the page of the primary superblock, so later read will 3680 * always read from the device. 3681 */ 3682 invalidate_inode_pages2_range(mapping, 3683 bytenr >> PAGE_SHIFT, 3684 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3685 } 3686 3687 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3688 if (IS_ERR(page)) 3689 return ERR_CAST(page); 3690 3691 super = page_address(page); 3692 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3693 btrfs_release_disk_super(super); 3694 return ERR_PTR(-ENODATA); 3695 } 3696 3697 if (btrfs_super_bytenr(super) != bytenr_orig) { 3698 btrfs_release_disk_super(super); 3699 return ERR_PTR(-EINVAL); 3700 } 3701 3702 return super; 3703 } 3704 3705 3706 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3707 { 3708 struct btrfs_super_block *super, *latest = NULL; 3709 int i; 3710 u64 transid = 0; 3711 3712 /* we would like to check all the supers, but that would make 3713 * a btrfs mount succeed after a mkfs from a different FS. 3714 * So, we need to add a special mount option to scan for 3715 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3716 */ 3717 for (i = 0; i < 1; i++) { 3718 super = btrfs_read_dev_one_super(bdev, i, false); 3719 if (IS_ERR(super)) 3720 continue; 3721 3722 if (!latest || btrfs_super_generation(super) > transid) { 3723 if (latest) 3724 btrfs_release_disk_super(super); 3725 3726 latest = super; 3727 transid = btrfs_super_generation(super); 3728 } 3729 } 3730 3731 return super; 3732 } 3733 3734 /* 3735 * Write superblock @sb to the @device. Do not wait for completion, all the 3736 * pages we use for writing are locked. 3737 * 3738 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3739 * the expected device size at commit time. Note that max_mirrors must be 3740 * same for write and wait phases. 3741 * 3742 * Return number of errors when page is not found or submission fails. 3743 */ 3744 static int write_dev_supers(struct btrfs_device *device, 3745 struct btrfs_super_block *sb, int max_mirrors) 3746 { 3747 struct btrfs_fs_info *fs_info = device->fs_info; 3748 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3749 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3750 int i; 3751 int errors = 0; 3752 int ret; 3753 u64 bytenr, bytenr_orig; 3754 3755 if (max_mirrors == 0) 3756 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3757 3758 shash->tfm = fs_info->csum_shash; 3759 3760 for (i = 0; i < max_mirrors; i++) { 3761 struct page *page; 3762 struct bio *bio; 3763 struct btrfs_super_block *disk_super; 3764 3765 bytenr_orig = btrfs_sb_offset(i); 3766 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3767 if (ret == -ENOENT) { 3768 continue; 3769 } else if (ret < 0) { 3770 btrfs_err(device->fs_info, 3771 "couldn't get super block location for mirror %d", 3772 i); 3773 errors++; 3774 continue; 3775 } 3776 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3777 device->commit_total_bytes) 3778 break; 3779 3780 btrfs_set_super_bytenr(sb, bytenr_orig); 3781 3782 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3783 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3784 sb->csum); 3785 3786 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3787 GFP_NOFS); 3788 if (!page) { 3789 btrfs_err(device->fs_info, 3790 "couldn't get super block page for bytenr %llu", 3791 bytenr); 3792 errors++; 3793 continue; 3794 } 3795 3796 /* Bump the refcount for wait_dev_supers() */ 3797 get_page(page); 3798 3799 disk_super = page_address(page); 3800 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3801 3802 /* 3803 * Directly use bios here instead of relying on the page cache 3804 * to do I/O, so we don't lose the ability to do integrity 3805 * checking. 3806 */ 3807 bio = bio_alloc(device->bdev, 1, 3808 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3809 GFP_NOFS); 3810 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3811 bio->bi_private = device; 3812 bio->bi_end_io = btrfs_end_super_write; 3813 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3814 offset_in_page(bytenr)); 3815 3816 /* 3817 * We FUA only the first super block. The others we allow to 3818 * go down lazy and there's a short window where the on-disk 3819 * copies might still contain the older version. 3820 */ 3821 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3822 bio->bi_opf |= REQ_FUA; 3823 3824 btrfsic_check_bio(bio); 3825 submit_bio(bio); 3826 3827 if (btrfs_advance_sb_log(device, i)) 3828 errors++; 3829 } 3830 return errors < i ? 0 : -1; 3831 } 3832 3833 /* 3834 * Wait for write completion of superblocks done by write_dev_supers, 3835 * @max_mirrors same for write and wait phases. 3836 * 3837 * Return number of errors when page is not found or not marked up to 3838 * date. 3839 */ 3840 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3841 { 3842 int i; 3843 int errors = 0; 3844 bool primary_failed = false; 3845 int ret; 3846 u64 bytenr; 3847 3848 if (max_mirrors == 0) 3849 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3850 3851 for (i = 0; i < max_mirrors; i++) { 3852 struct page *page; 3853 3854 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3855 if (ret == -ENOENT) { 3856 break; 3857 } else if (ret < 0) { 3858 errors++; 3859 if (i == 0) 3860 primary_failed = true; 3861 continue; 3862 } 3863 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3864 device->commit_total_bytes) 3865 break; 3866 3867 page = find_get_page(device->bdev->bd_inode->i_mapping, 3868 bytenr >> PAGE_SHIFT); 3869 if (!page) { 3870 errors++; 3871 if (i == 0) 3872 primary_failed = true; 3873 continue; 3874 } 3875 /* Page is submitted locked and unlocked once the IO completes */ 3876 wait_on_page_locked(page); 3877 if (PageError(page)) { 3878 errors++; 3879 if (i == 0) 3880 primary_failed = true; 3881 } 3882 3883 /* Drop our reference */ 3884 put_page(page); 3885 3886 /* Drop the reference from the writing run */ 3887 put_page(page); 3888 } 3889 3890 /* log error, force error return */ 3891 if (primary_failed) { 3892 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3893 device->devid); 3894 return -1; 3895 } 3896 3897 return errors < i ? 0 : -1; 3898 } 3899 3900 /* 3901 * endio for the write_dev_flush, this will wake anyone waiting 3902 * for the barrier when it is done 3903 */ 3904 static void btrfs_end_empty_barrier(struct bio *bio) 3905 { 3906 bio_uninit(bio); 3907 complete(bio->bi_private); 3908 } 3909 3910 /* 3911 * Submit a flush request to the device if it supports it. Error handling is 3912 * done in the waiting counterpart. 3913 */ 3914 static void write_dev_flush(struct btrfs_device *device) 3915 { 3916 struct bio *bio = &device->flush_bio; 3917 3918 device->last_flush_error = BLK_STS_OK; 3919 3920 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3921 /* 3922 * When a disk has write caching disabled, we skip submission of a bio 3923 * with flush and sync requests before writing the superblock, since 3924 * it's not needed. However when the integrity checker is enabled, this 3925 * results in reports that there are metadata blocks referred by a 3926 * superblock that were not properly flushed. So don't skip the bio 3927 * submission only when the integrity checker is enabled for the sake 3928 * of simplicity, since this is a debug tool and not meant for use in 3929 * non-debug builds. 3930 */ 3931 if (!bdev_write_cache(device->bdev)) 3932 return; 3933 #endif 3934 3935 bio_init(bio, device->bdev, NULL, 0, 3936 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3937 bio->bi_end_io = btrfs_end_empty_barrier; 3938 init_completion(&device->flush_wait); 3939 bio->bi_private = &device->flush_wait; 3940 3941 btrfsic_check_bio(bio); 3942 submit_bio(bio); 3943 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3944 } 3945 3946 /* 3947 * If the flush bio has been submitted by write_dev_flush, wait for it. 3948 * Return true for any error, and false otherwise. 3949 */ 3950 static bool wait_dev_flush(struct btrfs_device *device) 3951 { 3952 struct bio *bio = &device->flush_bio; 3953 3954 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3955 return false; 3956 3957 wait_for_completion_io(&device->flush_wait); 3958 3959 if (bio->bi_status) { 3960 device->last_flush_error = bio->bi_status; 3961 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3962 return true; 3963 } 3964 3965 return false; 3966 } 3967 3968 /* 3969 * send an empty flush down to each device in parallel, 3970 * then wait for them 3971 */ 3972 static int barrier_all_devices(struct btrfs_fs_info *info) 3973 { 3974 struct list_head *head; 3975 struct btrfs_device *dev; 3976 int errors_wait = 0; 3977 3978 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3979 /* send down all the barriers */ 3980 head = &info->fs_devices->devices; 3981 list_for_each_entry(dev, head, dev_list) { 3982 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3983 continue; 3984 if (!dev->bdev) 3985 continue; 3986 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3987 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3988 continue; 3989 3990 write_dev_flush(dev); 3991 } 3992 3993 /* wait for all the barriers */ 3994 list_for_each_entry(dev, head, dev_list) { 3995 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3996 continue; 3997 if (!dev->bdev) { 3998 errors_wait++; 3999 continue; 4000 } 4001 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4002 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4003 continue; 4004 4005 if (wait_dev_flush(dev)) 4006 errors_wait++; 4007 } 4008 4009 /* 4010 * Checks last_flush_error of disks in order to determine the device 4011 * state. 4012 */ 4013 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 4014 return -EIO; 4015 4016 return 0; 4017 } 4018 4019 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 4020 { 4021 int raid_type; 4022 int min_tolerated = INT_MAX; 4023 4024 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 4025 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4026 min_tolerated = min_t(int, min_tolerated, 4027 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4028 tolerated_failures); 4029 4030 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4031 if (raid_type == BTRFS_RAID_SINGLE) 4032 continue; 4033 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4034 continue; 4035 min_tolerated = min_t(int, min_tolerated, 4036 btrfs_raid_array[raid_type]. 4037 tolerated_failures); 4038 } 4039 4040 if (min_tolerated == INT_MAX) { 4041 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4042 min_tolerated = 0; 4043 } 4044 4045 return min_tolerated; 4046 } 4047 4048 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4049 { 4050 struct list_head *head; 4051 struct btrfs_device *dev; 4052 struct btrfs_super_block *sb; 4053 struct btrfs_dev_item *dev_item; 4054 int ret; 4055 int do_barriers; 4056 int max_errors; 4057 int total_errors = 0; 4058 u64 flags; 4059 4060 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4061 4062 /* 4063 * max_mirrors == 0 indicates we're from commit_transaction, 4064 * not from fsync where the tree roots in fs_info have not 4065 * been consistent on disk. 4066 */ 4067 if (max_mirrors == 0) 4068 backup_super_roots(fs_info); 4069 4070 sb = fs_info->super_for_commit; 4071 dev_item = &sb->dev_item; 4072 4073 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4074 head = &fs_info->fs_devices->devices; 4075 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4076 4077 if (do_barriers) { 4078 ret = barrier_all_devices(fs_info); 4079 if (ret) { 4080 mutex_unlock( 4081 &fs_info->fs_devices->device_list_mutex); 4082 btrfs_handle_fs_error(fs_info, ret, 4083 "errors while submitting device barriers."); 4084 return ret; 4085 } 4086 } 4087 4088 list_for_each_entry(dev, head, dev_list) { 4089 if (!dev->bdev) { 4090 total_errors++; 4091 continue; 4092 } 4093 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4094 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4095 continue; 4096 4097 btrfs_set_stack_device_generation(dev_item, 0); 4098 btrfs_set_stack_device_type(dev_item, dev->type); 4099 btrfs_set_stack_device_id(dev_item, dev->devid); 4100 btrfs_set_stack_device_total_bytes(dev_item, 4101 dev->commit_total_bytes); 4102 btrfs_set_stack_device_bytes_used(dev_item, 4103 dev->commit_bytes_used); 4104 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4105 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4106 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4107 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4108 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4109 BTRFS_FSID_SIZE); 4110 4111 flags = btrfs_super_flags(sb); 4112 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4113 4114 ret = btrfs_validate_write_super(fs_info, sb); 4115 if (ret < 0) { 4116 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4117 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4118 "unexpected superblock corruption detected"); 4119 return -EUCLEAN; 4120 } 4121 4122 ret = write_dev_supers(dev, sb, max_mirrors); 4123 if (ret) 4124 total_errors++; 4125 } 4126 if (total_errors > max_errors) { 4127 btrfs_err(fs_info, "%d errors while writing supers", 4128 total_errors); 4129 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4130 4131 /* FUA is masked off if unsupported and can't be the reason */ 4132 btrfs_handle_fs_error(fs_info, -EIO, 4133 "%d errors while writing supers", 4134 total_errors); 4135 return -EIO; 4136 } 4137 4138 total_errors = 0; 4139 list_for_each_entry(dev, head, dev_list) { 4140 if (!dev->bdev) 4141 continue; 4142 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4143 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4144 continue; 4145 4146 ret = wait_dev_supers(dev, max_mirrors); 4147 if (ret) 4148 total_errors++; 4149 } 4150 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4151 if (total_errors > max_errors) { 4152 btrfs_handle_fs_error(fs_info, -EIO, 4153 "%d errors while writing supers", 4154 total_errors); 4155 return -EIO; 4156 } 4157 return 0; 4158 } 4159 4160 /* Drop a fs root from the radix tree and free it. */ 4161 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4162 struct btrfs_root *root) 4163 { 4164 bool drop_ref = false; 4165 4166 spin_lock(&fs_info->fs_roots_radix_lock); 4167 radix_tree_delete(&fs_info->fs_roots_radix, 4168 (unsigned long)root->root_key.objectid); 4169 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4170 drop_ref = true; 4171 spin_unlock(&fs_info->fs_roots_radix_lock); 4172 4173 if (BTRFS_FS_ERROR(fs_info)) { 4174 ASSERT(root->log_root == NULL); 4175 if (root->reloc_root) { 4176 btrfs_put_root(root->reloc_root); 4177 root->reloc_root = NULL; 4178 } 4179 } 4180 4181 if (drop_ref) 4182 btrfs_put_root(root); 4183 } 4184 4185 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4186 { 4187 struct btrfs_root *root = fs_info->tree_root; 4188 struct btrfs_trans_handle *trans; 4189 4190 mutex_lock(&fs_info->cleaner_mutex); 4191 btrfs_run_delayed_iputs(fs_info); 4192 mutex_unlock(&fs_info->cleaner_mutex); 4193 wake_up_process(fs_info->cleaner_kthread); 4194 4195 /* wait until ongoing cleanup work done */ 4196 down_write(&fs_info->cleanup_work_sem); 4197 up_write(&fs_info->cleanup_work_sem); 4198 4199 trans = btrfs_join_transaction(root); 4200 if (IS_ERR(trans)) 4201 return PTR_ERR(trans); 4202 return btrfs_commit_transaction(trans); 4203 } 4204 4205 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4206 { 4207 struct btrfs_transaction *trans; 4208 struct btrfs_transaction *tmp; 4209 bool found = false; 4210 4211 if (list_empty(&fs_info->trans_list)) 4212 return; 4213 4214 /* 4215 * This function is only called at the very end of close_ctree(), 4216 * thus no other running transaction, no need to take trans_lock. 4217 */ 4218 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4219 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4220 struct extent_state *cached = NULL; 4221 u64 dirty_bytes = 0; 4222 u64 cur = 0; 4223 u64 found_start; 4224 u64 found_end; 4225 4226 found = true; 4227 while (find_first_extent_bit(&trans->dirty_pages, cur, 4228 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4229 dirty_bytes += found_end + 1 - found_start; 4230 cur = found_end + 1; 4231 } 4232 btrfs_warn(fs_info, 4233 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4234 trans->transid, dirty_bytes); 4235 btrfs_cleanup_one_transaction(trans, fs_info); 4236 4237 if (trans == fs_info->running_transaction) 4238 fs_info->running_transaction = NULL; 4239 list_del_init(&trans->list); 4240 4241 btrfs_put_transaction(trans); 4242 trace_btrfs_transaction_commit(fs_info); 4243 } 4244 ASSERT(!found); 4245 } 4246 4247 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4248 { 4249 int ret; 4250 4251 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4252 4253 /* 4254 * If we had UNFINISHED_DROPS we could still be processing them, so 4255 * clear that bit and wake up relocation so it can stop. 4256 * We must do this before stopping the block group reclaim task, because 4257 * at btrfs_relocate_block_group() we wait for this bit, and after the 4258 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4259 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4260 * return 1. 4261 */ 4262 btrfs_wake_unfinished_drop(fs_info); 4263 4264 /* 4265 * We may have the reclaim task running and relocating a data block group, 4266 * in which case it may create delayed iputs. So stop it before we park 4267 * the cleaner kthread otherwise we can get new delayed iputs after 4268 * parking the cleaner, and that can make the async reclaim task to hang 4269 * if it's waiting for delayed iputs to complete, since the cleaner is 4270 * parked and can not run delayed iputs - this will make us hang when 4271 * trying to stop the async reclaim task. 4272 */ 4273 cancel_work_sync(&fs_info->reclaim_bgs_work); 4274 /* 4275 * We don't want the cleaner to start new transactions, add more delayed 4276 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4277 * because that frees the task_struct, and the transaction kthread might 4278 * still try to wake up the cleaner. 4279 */ 4280 kthread_park(fs_info->cleaner_kthread); 4281 4282 /* wait for the qgroup rescan worker to stop */ 4283 btrfs_qgroup_wait_for_completion(fs_info, false); 4284 4285 /* wait for the uuid_scan task to finish */ 4286 down(&fs_info->uuid_tree_rescan_sem); 4287 /* avoid complains from lockdep et al., set sem back to initial state */ 4288 up(&fs_info->uuid_tree_rescan_sem); 4289 4290 /* pause restriper - we want to resume on mount */ 4291 btrfs_pause_balance(fs_info); 4292 4293 btrfs_dev_replace_suspend_for_unmount(fs_info); 4294 4295 btrfs_scrub_cancel(fs_info); 4296 4297 /* wait for any defraggers to finish */ 4298 wait_event(fs_info->transaction_wait, 4299 (atomic_read(&fs_info->defrag_running) == 0)); 4300 4301 /* clear out the rbtree of defraggable inodes */ 4302 btrfs_cleanup_defrag_inodes(fs_info); 4303 4304 /* 4305 * After we parked the cleaner kthread, ordered extents may have 4306 * completed and created new delayed iputs. If one of the async reclaim 4307 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4308 * can hang forever trying to stop it, because if a delayed iput is 4309 * added after it ran btrfs_run_delayed_iputs() and before it called 4310 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4311 * no one else to run iputs. 4312 * 4313 * So wait for all ongoing ordered extents to complete and then run 4314 * delayed iputs. This works because once we reach this point no one 4315 * can either create new ordered extents nor create delayed iputs 4316 * through some other means. 4317 * 4318 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4319 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4320 * but the delayed iput for the respective inode is made only when doing 4321 * the final btrfs_put_ordered_extent() (which must happen at 4322 * btrfs_finish_ordered_io() when we are unmounting). 4323 */ 4324 btrfs_flush_workqueue(fs_info->endio_write_workers); 4325 /* Ordered extents for free space inodes. */ 4326 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4327 btrfs_run_delayed_iputs(fs_info); 4328 4329 cancel_work_sync(&fs_info->async_reclaim_work); 4330 cancel_work_sync(&fs_info->async_data_reclaim_work); 4331 cancel_work_sync(&fs_info->preempt_reclaim_work); 4332 4333 /* Cancel or finish ongoing discard work */ 4334 btrfs_discard_cleanup(fs_info); 4335 4336 if (!sb_rdonly(fs_info->sb)) { 4337 /* 4338 * The cleaner kthread is stopped, so do one final pass over 4339 * unused block groups. 4340 */ 4341 btrfs_delete_unused_bgs(fs_info); 4342 4343 /* 4344 * There might be existing delayed inode workers still running 4345 * and holding an empty delayed inode item. We must wait for 4346 * them to complete first because they can create a transaction. 4347 * This happens when someone calls btrfs_balance_delayed_items() 4348 * and then a transaction commit runs the same delayed nodes 4349 * before any delayed worker has done something with the nodes. 4350 * We must wait for any worker here and not at transaction 4351 * commit time since that could cause a deadlock. 4352 * This is a very rare case. 4353 */ 4354 btrfs_flush_workqueue(fs_info->delayed_workers); 4355 4356 ret = btrfs_commit_super(fs_info); 4357 if (ret) 4358 btrfs_err(fs_info, "commit super ret %d", ret); 4359 } 4360 4361 if (BTRFS_FS_ERROR(fs_info)) 4362 btrfs_error_commit_super(fs_info); 4363 4364 kthread_stop(fs_info->transaction_kthread); 4365 kthread_stop(fs_info->cleaner_kthread); 4366 4367 ASSERT(list_empty(&fs_info->delayed_iputs)); 4368 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4369 4370 if (btrfs_check_quota_leak(fs_info)) { 4371 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4372 btrfs_err(fs_info, "qgroup reserved space leaked"); 4373 } 4374 4375 btrfs_free_qgroup_config(fs_info); 4376 ASSERT(list_empty(&fs_info->delalloc_roots)); 4377 4378 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4379 btrfs_info(fs_info, "at unmount delalloc count %lld", 4380 percpu_counter_sum(&fs_info->delalloc_bytes)); 4381 } 4382 4383 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4384 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4385 percpu_counter_sum(&fs_info->ordered_bytes)); 4386 4387 btrfs_sysfs_remove_mounted(fs_info); 4388 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4389 4390 btrfs_put_block_group_cache(fs_info); 4391 4392 /* 4393 * we must make sure there is not any read request to 4394 * submit after we stopping all workers. 4395 */ 4396 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4397 btrfs_stop_all_workers(fs_info); 4398 4399 /* We shouldn't have any transaction open at this point */ 4400 warn_about_uncommitted_trans(fs_info); 4401 4402 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4403 free_root_pointers(fs_info, true); 4404 btrfs_free_fs_roots(fs_info); 4405 4406 /* 4407 * We must free the block groups after dropping the fs_roots as we could 4408 * have had an IO error and have left over tree log blocks that aren't 4409 * cleaned up until the fs roots are freed. This makes the block group 4410 * accounting appear to be wrong because there's pending reserved bytes, 4411 * so make sure we do the block group cleanup afterwards. 4412 */ 4413 btrfs_free_block_groups(fs_info); 4414 4415 iput(fs_info->btree_inode); 4416 4417 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4418 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4419 btrfsic_unmount(fs_info->fs_devices); 4420 #endif 4421 4422 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4423 btrfs_close_devices(fs_info->fs_devices); 4424 } 4425 4426 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4427 { 4428 struct btrfs_fs_info *fs_info = buf->fs_info; 4429 u64 transid = btrfs_header_generation(buf); 4430 4431 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4432 /* 4433 * This is a fast path so only do this check if we have sanity tests 4434 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4435 * outside of the sanity tests. 4436 */ 4437 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4438 return; 4439 #endif 4440 btrfs_assert_tree_write_locked(buf); 4441 if (transid != fs_info->generation) 4442 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4443 buf->start, transid, fs_info->generation); 4444 set_extent_buffer_dirty(buf); 4445 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4446 /* 4447 * btrfs_check_leaf() won't check item data if we don't have WRITTEN 4448 * set, so this will only validate the basic structure of the items. 4449 */ 4450 if (btrfs_header_level(buf) == 0 && btrfs_check_leaf(buf)) { 4451 btrfs_print_leaf(buf); 4452 ASSERT(0); 4453 } 4454 #endif 4455 } 4456 4457 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4458 int flush_delayed) 4459 { 4460 /* 4461 * looks as though older kernels can get into trouble with 4462 * this code, they end up stuck in balance_dirty_pages forever 4463 */ 4464 int ret; 4465 4466 if (current->flags & PF_MEMALLOC) 4467 return; 4468 4469 if (flush_delayed) 4470 btrfs_balance_delayed_items(fs_info); 4471 4472 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4473 BTRFS_DIRTY_METADATA_THRESH, 4474 fs_info->dirty_metadata_batch); 4475 if (ret > 0) { 4476 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4477 } 4478 } 4479 4480 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4481 { 4482 __btrfs_btree_balance_dirty(fs_info, 1); 4483 } 4484 4485 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4486 { 4487 __btrfs_btree_balance_dirty(fs_info, 0); 4488 } 4489 4490 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4491 { 4492 /* cleanup FS via transaction */ 4493 btrfs_cleanup_transaction(fs_info); 4494 4495 mutex_lock(&fs_info->cleaner_mutex); 4496 btrfs_run_delayed_iputs(fs_info); 4497 mutex_unlock(&fs_info->cleaner_mutex); 4498 4499 down_write(&fs_info->cleanup_work_sem); 4500 up_write(&fs_info->cleanup_work_sem); 4501 } 4502 4503 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4504 { 4505 struct btrfs_root *gang[8]; 4506 u64 root_objectid = 0; 4507 int ret; 4508 4509 spin_lock(&fs_info->fs_roots_radix_lock); 4510 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4511 (void **)gang, root_objectid, 4512 ARRAY_SIZE(gang))) != 0) { 4513 int i; 4514 4515 for (i = 0; i < ret; i++) 4516 gang[i] = btrfs_grab_root(gang[i]); 4517 spin_unlock(&fs_info->fs_roots_radix_lock); 4518 4519 for (i = 0; i < ret; i++) { 4520 if (!gang[i]) 4521 continue; 4522 root_objectid = gang[i]->root_key.objectid; 4523 btrfs_free_log(NULL, gang[i]); 4524 btrfs_put_root(gang[i]); 4525 } 4526 root_objectid++; 4527 spin_lock(&fs_info->fs_roots_radix_lock); 4528 } 4529 spin_unlock(&fs_info->fs_roots_radix_lock); 4530 btrfs_free_log_root_tree(NULL, fs_info); 4531 } 4532 4533 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4534 { 4535 struct btrfs_ordered_extent *ordered; 4536 4537 spin_lock(&root->ordered_extent_lock); 4538 /* 4539 * This will just short circuit the ordered completion stuff which will 4540 * make sure the ordered extent gets properly cleaned up. 4541 */ 4542 list_for_each_entry(ordered, &root->ordered_extents, 4543 root_extent_list) 4544 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4545 spin_unlock(&root->ordered_extent_lock); 4546 } 4547 4548 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4549 { 4550 struct btrfs_root *root; 4551 LIST_HEAD(splice); 4552 4553 spin_lock(&fs_info->ordered_root_lock); 4554 list_splice_init(&fs_info->ordered_roots, &splice); 4555 while (!list_empty(&splice)) { 4556 root = list_first_entry(&splice, struct btrfs_root, 4557 ordered_root); 4558 list_move_tail(&root->ordered_root, 4559 &fs_info->ordered_roots); 4560 4561 spin_unlock(&fs_info->ordered_root_lock); 4562 btrfs_destroy_ordered_extents(root); 4563 4564 cond_resched(); 4565 spin_lock(&fs_info->ordered_root_lock); 4566 } 4567 spin_unlock(&fs_info->ordered_root_lock); 4568 4569 /* 4570 * We need this here because if we've been flipped read-only we won't 4571 * get sync() from the umount, so we need to make sure any ordered 4572 * extents that haven't had their dirty pages IO start writeout yet 4573 * actually get run and error out properly. 4574 */ 4575 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4576 } 4577 4578 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4579 struct btrfs_fs_info *fs_info) 4580 { 4581 struct rb_node *node; 4582 struct btrfs_delayed_ref_root *delayed_refs; 4583 struct btrfs_delayed_ref_node *ref; 4584 4585 delayed_refs = &trans->delayed_refs; 4586 4587 spin_lock(&delayed_refs->lock); 4588 if (atomic_read(&delayed_refs->num_entries) == 0) { 4589 spin_unlock(&delayed_refs->lock); 4590 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4591 return; 4592 } 4593 4594 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4595 struct btrfs_delayed_ref_head *head; 4596 struct rb_node *n; 4597 bool pin_bytes = false; 4598 4599 head = rb_entry(node, struct btrfs_delayed_ref_head, 4600 href_node); 4601 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4602 continue; 4603 4604 spin_lock(&head->lock); 4605 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4606 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4607 ref_node); 4608 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4609 RB_CLEAR_NODE(&ref->ref_node); 4610 if (!list_empty(&ref->add_list)) 4611 list_del(&ref->add_list); 4612 atomic_dec(&delayed_refs->num_entries); 4613 btrfs_put_delayed_ref(ref); 4614 } 4615 if (head->must_insert_reserved) 4616 pin_bytes = true; 4617 btrfs_free_delayed_extent_op(head->extent_op); 4618 btrfs_delete_ref_head(delayed_refs, head); 4619 spin_unlock(&head->lock); 4620 spin_unlock(&delayed_refs->lock); 4621 mutex_unlock(&head->mutex); 4622 4623 if (pin_bytes) { 4624 struct btrfs_block_group *cache; 4625 4626 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4627 BUG_ON(!cache); 4628 4629 spin_lock(&cache->space_info->lock); 4630 spin_lock(&cache->lock); 4631 cache->pinned += head->num_bytes; 4632 btrfs_space_info_update_bytes_pinned(fs_info, 4633 cache->space_info, head->num_bytes); 4634 cache->reserved -= head->num_bytes; 4635 cache->space_info->bytes_reserved -= head->num_bytes; 4636 spin_unlock(&cache->lock); 4637 spin_unlock(&cache->space_info->lock); 4638 4639 btrfs_put_block_group(cache); 4640 4641 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4642 head->bytenr + head->num_bytes - 1); 4643 } 4644 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4645 btrfs_put_delayed_ref_head(head); 4646 cond_resched(); 4647 spin_lock(&delayed_refs->lock); 4648 } 4649 btrfs_qgroup_destroy_extent_records(trans); 4650 4651 spin_unlock(&delayed_refs->lock); 4652 } 4653 4654 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4655 { 4656 struct btrfs_inode *btrfs_inode; 4657 LIST_HEAD(splice); 4658 4659 spin_lock(&root->delalloc_lock); 4660 list_splice_init(&root->delalloc_inodes, &splice); 4661 4662 while (!list_empty(&splice)) { 4663 struct inode *inode = NULL; 4664 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4665 delalloc_inodes); 4666 __btrfs_del_delalloc_inode(root, btrfs_inode); 4667 spin_unlock(&root->delalloc_lock); 4668 4669 /* 4670 * Make sure we get a live inode and that it'll not disappear 4671 * meanwhile. 4672 */ 4673 inode = igrab(&btrfs_inode->vfs_inode); 4674 if (inode) { 4675 unsigned int nofs_flag; 4676 4677 nofs_flag = memalloc_nofs_save(); 4678 invalidate_inode_pages2(inode->i_mapping); 4679 memalloc_nofs_restore(nofs_flag); 4680 iput(inode); 4681 } 4682 spin_lock(&root->delalloc_lock); 4683 } 4684 spin_unlock(&root->delalloc_lock); 4685 } 4686 4687 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4688 { 4689 struct btrfs_root *root; 4690 LIST_HEAD(splice); 4691 4692 spin_lock(&fs_info->delalloc_root_lock); 4693 list_splice_init(&fs_info->delalloc_roots, &splice); 4694 while (!list_empty(&splice)) { 4695 root = list_first_entry(&splice, struct btrfs_root, 4696 delalloc_root); 4697 root = btrfs_grab_root(root); 4698 BUG_ON(!root); 4699 spin_unlock(&fs_info->delalloc_root_lock); 4700 4701 btrfs_destroy_delalloc_inodes(root); 4702 btrfs_put_root(root); 4703 4704 spin_lock(&fs_info->delalloc_root_lock); 4705 } 4706 spin_unlock(&fs_info->delalloc_root_lock); 4707 } 4708 4709 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4710 struct extent_io_tree *dirty_pages, 4711 int mark) 4712 { 4713 struct extent_buffer *eb; 4714 u64 start = 0; 4715 u64 end; 4716 4717 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4718 mark, NULL)) { 4719 clear_extent_bits(dirty_pages, start, end, mark); 4720 while (start <= end) { 4721 eb = find_extent_buffer(fs_info, start); 4722 start += fs_info->nodesize; 4723 if (!eb) 4724 continue; 4725 4726 btrfs_tree_lock(eb); 4727 wait_on_extent_buffer_writeback(eb); 4728 btrfs_clear_buffer_dirty(NULL, eb); 4729 btrfs_tree_unlock(eb); 4730 4731 free_extent_buffer_stale(eb); 4732 } 4733 } 4734 } 4735 4736 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4737 struct extent_io_tree *unpin) 4738 { 4739 u64 start; 4740 u64 end; 4741 4742 while (1) { 4743 struct extent_state *cached_state = NULL; 4744 4745 /* 4746 * The btrfs_finish_extent_commit() may get the same range as 4747 * ours between find_first_extent_bit and clear_extent_dirty. 4748 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4749 * the same extent range. 4750 */ 4751 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4752 if (!find_first_extent_bit(unpin, 0, &start, &end, 4753 EXTENT_DIRTY, &cached_state)) { 4754 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4755 break; 4756 } 4757 4758 clear_extent_dirty(unpin, start, end, &cached_state); 4759 free_extent_state(cached_state); 4760 btrfs_error_unpin_extent_range(fs_info, start, end); 4761 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4762 cond_resched(); 4763 } 4764 } 4765 4766 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4767 { 4768 struct inode *inode; 4769 4770 inode = cache->io_ctl.inode; 4771 if (inode) { 4772 unsigned int nofs_flag; 4773 4774 nofs_flag = memalloc_nofs_save(); 4775 invalidate_inode_pages2(inode->i_mapping); 4776 memalloc_nofs_restore(nofs_flag); 4777 4778 BTRFS_I(inode)->generation = 0; 4779 cache->io_ctl.inode = NULL; 4780 iput(inode); 4781 } 4782 ASSERT(cache->io_ctl.pages == NULL); 4783 btrfs_put_block_group(cache); 4784 } 4785 4786 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4787 struct btrfs_fs_info *fs_info) 4788 { 4789 struct btrfs_block_group *cache; 4790 4791 spin_lock(&cur_trans->dirty_bgs_lock); 4792 while (!list_empty(&cur_trans->dirty_bgs)) { 4793 cache = list_first_entry(&cur_trans->dirty_bgs, 4794 struct btrfs_block_group, 4795 dirty_list); 4796 4797 if (!list_empty(&cache->io_list)) { 4798 spin_unlock(&cur_trans->dirty_bgs_lock); 4799 list_del_init(&cache->io_list); 4800 btrfs_cleanup_bg_io(cache); 4801 spin_lock(&cur_trans->dirty_bgs_lock); 4802 } 4803 4804 list_del_init(&cache->dirty_list); 4805 spin_lock(&cache->lock); 4806 cache->disk_cache_state = BTRFS_DC_ERROR; 4807 spin_unlock(&cache->lock); 4808 4809 spin_unlock(&cur_trans->dirty_bgs_lock); 4810 btrfs_put_block_group(cache); 4811 btrfs_delayed_refs_rsv_release(fs_info, 1); 4812 spin_lock(&cur_trans->dirty_bgs_lock); 4813 } 4814 spin_unlock(&cur_trans->dirty_bgs_lock); 4815 4816 /* 4817 * Refer to the definition of io_bgs member for details why it's safe 4818 * to use it without any locking 4819 */ 4820 while (!list_empty(&cur_trans->io_bgs)) { 4821 cache = list_first_entry(&cur_trans->io_bgs, 4822 struct btrfs_block_group, 4823 io_list); 4824 4825 list_del_init(&cache->io_list); 4826 spin_lock(&cache->lock); 4827 cache->disk_cache_state = BTRFS_DC_ERROR; 4828 spin_unlock(&cache->lock); 4829 btrfs_cleanup_bg_io(cache); 4830 } 4831 } 4832 4833 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4834 struct btrfs_fs_info *fs_info) 4835 { 4836 struct btrfs_device *dev, *tmp; 4837 4838 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4839 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4840 ASSERT(list_empty(&cur_trans->io_bgs)); 4841 4842 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4843 post_commit_list) { 4844 list_del_init(&dev->post_commit_list); 4845 } 4846 4847 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4848 4849 cur_trans->state = TRANS_STATE_COMMIT_START; 4850 wake_up(&fs_info->transaction_blocked_wait); 4851 4852 cur_trans->state = TRANS_STATE_UNBLOCKED; 4853 wake_up(&fs_info->transaction_wait); 4854 4855 btrfs_destroy_delayed_inodes(fs_info); 4856 4857 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4858 EXTENT_DIRTY); 4859 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4860 4861 cur_trans->state =TRANS_STATE_COMPLETED; 4862 wake_up(&cur_trans->commit_wait); 4863 } 4864 4865 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4866 { 4867 struct btrfs_transaction *t; 4868 4869 mutex_lock(&fs_info->transaction_kthread_mutex); 4870 4871 spin_lock(&fs_info->trans_lock); 4872 while (!list_empty(&fs_info->trans_list)) { 4873 t = list_first_entry(&fs_info->trans_list, 4874 struct btrfs_transaction, list); 4875 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4876 refcount_inc(&t->use_count); 4877 spin_unlock(&fs_info->trans_lock); 4878 btrfs_wait_for_commit(fs_info, t->transid); 4879 btrfs_put_transaction(t); 4880 spin_lock(&fs_info->trans_lock); 4881 continue; 4882 } 4883 if (t == fs_info->running_transaction) { 4884 t->state = TRANS_STATE_COMMIT_DOING; 4885 spin_unlock(&fs_info->trans_lock); 4886 /* 4887 * We wait for 0 num_writers since we don't hold a trans 4888 * handle open currently for this transaction. 4889 */ 4890 wait_event(t->writer_wait, 4891 atomic_read(&t->num_writers) == 0); 4892 } else { 4893 spin_unlock(&fs_info->trans_lock); 4894 } 4895 btrfs_cleanup_one_transaction(t, fs_info); 4896 4897 spin_lock(&fs_info->trans_lock); 4898 if (t == fs_info->running_transaction) 4899 fs_info->running_transaction = NULL; 4900 list_del_init(&t->list); 4901 spin_unlock(&fs_info->trans_lock); 4902 4903 btrfs_put_transaction(t); 4904 trace_btrfs_transaction_commit(fs_info); 4905 spin_lock(&fs_info->trans_lock); 4906 } 4907 spin_unlock(&fs_info->trans_lock); 4908 btrfs_destroy_all_ordered_extents(fs_info); 4909 btrfs_destroy_delayed_inodes(fs_info); 4910 btrfs_assert_delayed_root_empty(fs_info); 4911 btrfs_destroy_all_delalloc_inodes(fs_info); 4912 btrfs_drop_all_logs(fs_info); 4913 mutex_unlock(&fs_info->transaction_kthread_mutex); 4914 4915 return 0; 4916 } 4917 4918 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4919 { 4920 struct btrfs_path *path; 4921 int ret; 4922 struct extent_buffer *l; 4923 struct btrfs_key search_key; 4924 struct btrfs_key found_key; 4925 int slot; 4926 4927 path = btrfs_alloc_path(); 4928 if (!path) 4929 return -ENOMEM; 4930 4931 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4932 search_key.type = -1; 4933 search_key.offset = (u64)-1; 4934 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4935 if (ret < 0) 4936 goto error; 4937 BUG_ON(ret == 0); /* Corruption */ 4938 if (path->slots[0] > 0) { 4939 slot = path->slots[0] - 1; 4940 l = path->nodes[0]; 4941 btrfs_item_key_to_cpu(l, &found_key, slot); 4942 root->free_objectid = max_t(u64, found_key.objectid + 1, 4943 BTRFS_FIRST_FREE_OBJECTID); 4944 } else { 4945 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4946 } 4947 ret = 0; 4948 error: 4949 btrfs_free_path(path); 4950 return ret; 4951 } 4952 4953 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4954 { 4955 int ret; 4956 mutex_lock(&root->objectid_mutex); 4957 4958 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4959 btrfs_warn(root->fs_info, 4960 "the objectid of root %llu reaches its highest value", 4961 root->root_key.objectid); 4962 ret = -ENOSPC; 4963 goto out; 4964 } 4965 4966 *objectid = root->free_objectid++; 4967 ret = 0; 4968 out: 4969 mutex_unlock(&root->objectid_mutex); 4970 return ret; 4971 } 4972