1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 47 static struct extent_io_ops btree_extent_io_ops; 48 static void end_workqueue_fn(struct btrfs_work *work); 49 static void free_fs_root(struct btrfs_root *root); 50 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 51 int read_only); 52 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 53 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 54 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 55 struct btrfs_root *root); 56 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 57 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 58 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 59 struct extent_io_tree *dirty_pages, 60 int mark); 61 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 62 struct extent_io_tree *pinned_extents); 63 static int btrfs_cleanup_transaction(struct btrfs_root *root); 64 65 /* 66 * end_io_wq structs are used to do processing in task context when an IO is 67 * complete. This is used during reads to verify checksums, and it is used 68 * by writes to insert metadata for new file extents after IO is complete. 69 */ 70 struct end_io_wq { 71 struct bio *bio; 72 bio_end_io_t *end_io; 73 void *private; 74 struct btrfs_fs_info *info; 75 int error; 76 int metadata; 77 struct list_head list; 78 struct btrfs_work work; 79 }; 80 81 /* 82 * async submit bios are used to offload expensive checksumming 83 * onto the worker threads. They checksum file and metadata bios 84 * just before they are sent down the IO stack. 85 */ 86 struct async_submit_bio { 87 struct inode *inode; 88 struct bio *bio; 89 struct list_head list; 90 extent_submit_bio_hook_t *submit_bio_start; 91 extent_submit_bio_hook_t *submit_bio_done; 92 int rw; 93 int mirror_num; 94 unsigned long bio_flags; 95 /* 96 * bio_offset is optional, can be used if the pages in the bio 97 * can't tell us where in the file the bio should go 98 */ 99 u64 bio_offset; 100 struct btrfs_work work; 101 }; 102 103 /* 104 * Lockdep class keys for extent_buffer->lock's in this root. For a given 105 * eb, the lockdep key is determined by the btrfs_root it belongs to and 106 * the level the eb occupies in the tree. 107 * 108 * Different roots are used for different purposes and may nest inside each 109 * other and they require separate keysets. As lockdep keys should be 110 * static, assign keysets according to the purpose of the root as indicated 111 * by btrfs_root->objectid. This ensures that all special purpose roots 112 * have separate keysets. 113 * 114 * Lock-nesting across peer nodes is always done with the immediate parent 115 * node locked thus preventing deadlock. As lockdep doesn't know this, use 116 * subclass to avoid triggering lockdep warning in such cases. 117 * 118 * The key is set by the readpage_end_io_hook after the buffer has passed 119 * csum validation but before the pages are unlocked. It is also set by 120 * btrfs_init_new_buffer on freshly allocated blocks. 121 * 122 * We also add a check to make sure the highest level of the tree is the 123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 124 * needs update as well. 125 */ 126 #ifdef CONFIG_DEBUG_LOCK_ALLOC 127 # if BTRFS_MAX_LEVEL != 8 128 # error 129 # endif 130 131 static struct btrfs_lockdep_keyset { 132 u64 id; /* root objectid */ 133 const char *name_stem; /* lock name stem */ 134 char names[BTRFS_MAX_LEVEL + 1][20]; 135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 136 } btrfs_lockdep_keysets[] = { 137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 147 { .id = 0, .name_stem = "tree" }, 148 }; 149 150 void __init btrfs_init_lockdep(void) 151 { 152 int i, j; 153 154 /* initialize lockdep class names */ 155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 157 158 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 159 snprintf(ks->names[j], sizeof(ks->names[j]), 160 "btrfs-%s-%02d", ks->name_stem, j); 161 } 162 } 163 164 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 165 int level) 166 { 167 struct btrfs_lockdep_keyset *ks; 168 169 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 170 171 /* find the matching keyset, id 0 is the default entry */ 172 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 173 if (ks->id == objectid) 174 break; 175 176 lockdep_set_class_and_name(&eb->lock, 177 &ks->keys[level], ks->names[level]); 178 } 179 180 #endif 181 182 /* 183 * extents on the btree inode are pretty simple, there's one extent 184 * that covers the entire device 185 */ 186 static struct extent_map *btree_get_extent(struct inode *inode, 187 struct page *page, size_t pg_offset, u64 start, u64 len, 188 int create) 189 { 190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 191 struct extent_map *em; 192 int ret; 193 194 read_lock(&em_tree->lock); 195 em = lookup_extent_mapping(em_tree, start, len); 196 if (em) { 197 em->bdev = 198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 199 read_unlock(&em_tree->lock); 200 goto out; 201 } 202 read_unlock(&em_tree->lock); 203 204 em = alloc_extent_map(); 205 if (!em) { 206 em = ERR_PTR(-ENOMEM); 207 goto out; 208 } 209 em->start = 0; 210 em->len = (u64)-1; 211 em->block_len = (u64)-1; 212 em->block_start = 0; 213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 214 215 write_lock(&em_tree->lock); 216 ret = add_extent_mapping(em_tree, em); 217 if (ret == -EEXIST) { 218 u64 failed_start = em->start; 219 u64 failed_len = em->len; 220 221 free_extent_map(em); 222 em = lookup_extent_mapping(em_tree, start, len); 223 if (em) { 224 ret = 0; 225 } else { 226 em = lookup_extent_mapping(em_tree, failed_start, 227 failed_len); 228 ret = -EIO; 229 } 230 } else if (ret) { 231 free_extent_map(em); 232 em = NULL; 233 } 234 write_unlock(&em_tree->lock); 235 236 if (ret) 237 em = ERR_PTR(ret); 238 out: 239 return em; 240 } 241 242 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 243 { 244 return crc32c(seed, data, len); 245 } 246 247 void btrfs_csum_final(u32 crc, char *result) 248 { 249 put_unaligned_le32(~crc, result); 250 } 251 252 /* 253 * compute the csum for a btree block, and either verify it or write it 254 * into the csum field of the block. 255 */ 256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 257 int verify) 258 { 259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 260 char *result = NULL; 261 unsigned long len; 262 unsigned long cur_len; 263 unsigned long offset = BTRFS_CSUM_SIZE; 264 char *kaddr; 265 unsigned long map_start; 266 unsigned long map_len; 267 int err; 268 u32 crc = ~(u32)0; 269 unsigned long inline_result; 270 271 len = buf->len - offset; 272 while (len > 0) { 273 err = map_private_extent_buffer(buf, offset, 32, 274 &kaddr, &map_start, &map_len); 275 if (err) 276 return 1; 277 cur_len = min(len, map_len - (offset - map_start)); 278 crc = btrfs_csum_data(root, kaddr + offset - map_start, 279 crc, cur_len); 280 len -= cur_len; 281 offset += cur_len; 282 } 283 if (csum_size > sizeof(inline_result)) { 284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 285 if (!result) 286 return 1; 287 } else { 288 result = (char *)&inline_result; 289 } 290 291 btrfs_csum_final(crc, result); 292 293 if (verify) { 294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 295 u32 val; 296 u32 found = 0; 297 memcpy(&found, result, csum_size); 298 299 read_extent_buffer(buf, &val, 0, csum_size); 300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 301 "failed on %llu wanted %X found %X " 302 "level %d\n", 303 root->fs_info->sb->s_id, 304 (unsigned long long)buf->start, val, found, 305 btrfs_header_level(buf)); 306 if (result != (char *)&inline_result) 307 kfree(result); 308 return 1; 309 } 310 } else { 311 write_extent_buffer(buf, result, 0, csum_size); 312 } 313 if (result != (char *)&inline_result) 314 kfree(result); 315 return 0; 316 } 317 318 /* 319 * we can't consider a given block up to date unless the transid of the 320 * block matches the transid in the parent node's pointer. This is how we 321 * detect blocks that either didn't get written at all or got written 322 * in the wrong place. 323 */ 324 static int verify_parent_transid(struct extent_io_tree *io_tree, 325 struct extent_buffer *eb, u64 parent_transid) 326 { 327 struct extent_state *cached_state = NULL; 328 int ret; 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 334 0, &cached_state, GFP_NOFS); 335 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 336 btrfs_header_generation(eb) == parent_transid) { 337 ret = 0; 338 goto out; 339 } 340 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 341 "found %llu\n", 342 (unsigned long long)eb->start, 343 (unsigned long long)parent_transid, 344 (unsigned long long)btrfs_header_generation(eb)); 345 ret = 1; 346 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 347 out: 348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 349 &cached_state, GFP_NOFS); 350 return ret; 351 } 352 353 /* 354 * helper to read a given tree block, doing retries as required when 355 * the checksums don't match and we have alternate mirrors to try. 356 */ 357 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 358 struct extent_buffer *eb, 359 u64 start, u64 parent_transid) 360 { 361 struct extent_io_tree *io_tree; 362 int ret; 363 int num_copies = 0; 364 int mirror_num = 0; 365 366 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 367 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 368 while (1) { 369 ret = read_extent_buffer_pages(io_tree, eb, start, 370 WAIT_COMPLETE, 371 btree_get_extent, mirror_num); 372 if (!ret && 373 !verify_parent_transid(io_tree, eb, parent_transid)) 374 return ret; 375 376 /* 377 * This buffer's crc is fine, but its contents are corrupted, so 378 * there is no reason to read the other copies, they won't be 379 * any less wrong. 380 */ 381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 382 return ret; 383 384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 385 eb->start, eb->len); 386 if (num_copies == 1) 387 return ret; 388 389 mirror_num++; 390 if (mirror_num > num_copies) 391 return ret; 392 } 393 return -EIO; 394 } 395 396 /* 397 * checksum a dirty tree block before IO. This has extra checks to make sure 398 * we only fill in the checksum field in the first page of a multi-page block 399 */ 400 401 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 402 { 403 struct extent_io_tree *tree; 404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 405 u64 found_start; 406 unsigned long len; 407 struct extent_buffer *eb; 408 int ret; 409 410 tree = &BTRFS_I(page->mapping->host)->io_tree; 411 412 if (page->private == EXTENT_PAGE_PRIVATE) { 413 WARN_ON(1); 414 goto out; 415 } 416 if (!page->private) { 417 WARN_ON(1); 418 goto out; 419 } 420 len = page->private >> 2; 421 WARN_ON(len == 0); 422 423 eb = alloc_extent_buffer(tree, start, len, page); 424 if (eb == NULL) { 425 WARN_ON(1); 426 goto out; 427 } 428 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 429 btrfs_header_generation(eb)); 430 BUG_ON(ret); 431 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 432 433 found_start = btrfs_header_bytenr(eb); 434 if (found_start != start) { 435 WARN_ON(1); 436 goto err; 437 } 438 if (eb->first_page != page) { 439 WARN_ON(1); 440 goto err; 441 } 442 if (!PageUptodate(page)) { 443 WARN_ON(1); 444 goto err; 445 } 446 csum_tree_block(root, eb, 0); 447 err: 448 free_extent_buffer(eb); 449 out: 450 return 0; 451 } 452 453 static int check_tree_block_fsid(struct btrfs_root *root, 454 struct extent_buffer *eb) 455 { 456 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 457 u8 fsid[BTRFS_UUID_SIZE]; 458 int ret = 1; 459 460 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 461 BTRFS_FSID_SIZE); 462 while (fs_devices) { 463 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 464 ret = 0; 465 break; 466 } 467 fs_devices = fs_devices->seed; 468 } 469 return ret; 470 } 471 472 #define CORRUPT(reason, eb, root, slot) \ 473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 474 "root=%llu, slot=%d\n", reason, \ 475 (unsigned long long)btrfs_header_bytenr(eb), \ 476 (unsigned long long)root->objectid, slot) 477 478 static noinline int check_leaf(struct btrfs_root *root, 479 struct extent_buffer *leaf) 480 { 481 struct btrfs_key key; 482 struct btrfs_key leaf_key; 483 u32 nritems = btrfs_header_nritems(leaf); 484 int slot; 485 486 if (nritems == 0) 487 return 0; 488 489 /* Check the 0 item */ 490 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 491 BTRFS_LEAF_DATA_SIZE(root)) { 492 CORRUPT("invalid item offset size pair", leaf, root, 0); 493 return -EIO; 494 } 495 496 /* 497 * Check to make sure each items keys are in the correct order and their 498 * offsets make sense. We only have to loop through nritems-1 because 499 * we check the current slot against the next slot, which verifies the 500 * next slot's offset+size makes sense and that the current's slot 501 * offset is correct. 502 */ 503 for (slot = 0; slot < nritems - 1; slot++) { 504 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 505 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 506 507 /* Make sure the keys are in the right order */ 508 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 509 CORRUPT("bad key order", leaf, root, slot); 510 return -EIO; 511 } 512 513 /* 514 * Make sure the offset and ends are right, remember that the 515 * item data starts at the end of the leaf and grows towards the 516 * front. 517 */ 518 if (btrfs_item_offset_nr(leaf, slot) != 519 btrfs_item_end_nr(leaf, slot + 1)) { 520 CORRUPT("slot offset bad", leaf, root, slot); 521 return -EIO; 522 } 523 524 /* 525 * Check to make sure that we don't point outside of the leaf, 526 * just incase all the items are consistent to eachother, but 527 * all point outside of the leaf. 528 */ 529 if (btrfs_item_end_nr(leaf, slot) > 530 BTRFS_LEAF_DATA_SIZE(root)) { 531 CORRUPT("slot end outside of leaf", leaf, root, slot); 532 return -EIO; 533 } 534 } 535 536 return 0; 537 } 538 539 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 540 struct extent_state *state) 541 { 542 struct extent_io_tree *tree; 543 u64 found_start; 544 int found_level; 545 unsigned long len; 546 struct extent_buffer *eb; 547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 548 int ret = 0; 549 550 tree = &BTRFS_I(page->mapping->host)->io_tree; 551 if (page->private == EXTENT_PAGE_PRIVATE) 552 goto out; 553 if (!page->private) 554 goto out; 555 556 len = page->private >> 2; 557 WARN_ON(len == 0); 558 559 eb = alloc_extent_buffer(tree, start, len, page); 560 if (eb == NULL) { 561 ret = -EIO; 562 goto out; 563 } 564 565 found_start = btrfs_header_bytenr(eb); 566 if (found_start != start) { 567 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 568 "%llu %llu\n", 569 (unsigned long long)found_start, 570 (unsigned long long)eb->start); 571 ret = -EIO; 572 goto err; 573 } 574 if (eb->first_page != page) { 575 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 576 eb->first_page->index, page->index); 577 WARN_ON(1); 578 ret = -EIO; 579 goto err; 580 } 581 if (check_tree_block_fsid(root, eb)) { 582 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 583 (unsigned long long)eb->start); 584 ret = -EIO; 585 goto err; 586 } 587 found_level = btrfs_header_level(eb); 588 589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 590 eb, found_level); 591 592 ret = csum_tree_block(root, eb, 1); 593 if (ret) { 594 ret = -EIO; 595 goto err; 596 } 597 598 /* 599 * If this is a leaf block and it is corrupt, set the corrupt bit so 600 * that we don't try and read the other copies of this block, just 601 * return -EIO. 602 */ 603 if (found_level == 0 && check_leaf(root, eb)) { 604 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 605 ret = -EIO; 606 } 607 608 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 609 end = eb->start + end - 1; 610 err: 611 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 612 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 613 btree_readahead_hook(root, eb, eb->start, ret); 614 } 615 616 free_extent_buffer(eb); 617 out: 618 return ret; 619 } 620 621 static int btree_io_failed_hook(struct bio *failed_bio, 622 struct page *page, u64 start, u64 end, 623 u64 mirror_num, struct extent_state *state) 624 { 625 struct extent_io_tree *tree; 626 unsigned long len; 627 struct extent_buffer *eb; 628 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 629 630 tree = &BTRFS_I(page->mapping->host)->io_tree; 631 if (page->private == EXTENT_PAGE_PRIVATE) 632 goto out; 633 if (!page->private) 634 goto out; 635 636 len = page->private >> 2; 637 WARN_ON(len == 0); 638 639 eb = alloc_extent_buffer(tree, start, len, page); 640 if (eb == NULL) 641 goto out; 642 643 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 644 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 645 btree_readahead_hook(root, eb, eb->start, -EIO); 646 } 647 free_extent_buffer(eb); 648 649 out: 650 return -EIO; /* we fixed nothing */ 651 } 652 653 static void end_workqueue_bio(struct bio *bio, int err) 654 { 655 struct end_io_wq *end_io_wq = bio->bi_private; 656 struct btrfs_fs_info *fs_info; 657 658 fs_info = end_io_wq->info; 659 end_io_wq->error = err; 660 end_io_wq->work.func = end_workqueue_fn; 661 end_io_wq->work.flags = 0; 662 663 if (bio->bi_rw & REQ_WRITE) { 664 if (end_io_wq->metadata == 1) 665 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 666 &end_io_wq->work); 667 else if (end_io_wq->metadata == 2) 668 btrfs_queue_worker(&fs_info->endio_freespace_worker, 669 &end_io_wq->work); 670 else 671 btrfs_queue_worker(&fs_info->endio_write_workers, 672 &end_io_wq->work); 673 } else { 674 if (end_io_wq->metadata) 675 btrfs_queue_worker(&fs_info->endio_meta_workers, 676 &end_io_wq->work); 677 else 678 btrfs_queue_worker(&fs_info->endio_workers, 679 &end_io_wq->work); 680 } 681 } 682 683 /* 684 * For the metadata arg you want 685 * 686 * 0 - if data 687 * 1 - if normal metadta 688 * 2 - if writing to the free space cache area 689 */ 690 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 691 int metadata) 692 { 693 struct end_io_wq *end_io_wq; 694 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 695 if (!end_io_wq) 696 return -ENOMEM; 697 698 end_io_wq->private = bio->bi_private; 699 end_io_wq->end_io = bio->bi_end_io; 700 end_io_wq->info = info; 701 end_io_wq->error = 0; 702 end_io_wq->bio = bio; 703 end_io_wq->metadata = metadata; 704 705 bio->bi_private = end_io_wq; 706 bio->bi_end_io = end_workqueue_bio; 707 return 0; 708 } 709 710 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 711 { 712 unsigned long limit = min_t(unsigned long, 713 info->workers.max_workers, 714 info->fs_devices->open_devices); 715 return 256 * limit; 716 } 717 718 static void run_one_async_start(struct btrfs_work *work) 719 { 720 struct async_submit_bio *async; 721 722 async = container_of(work, struct async_submit_bio, work); 723 async->submit_bio_start(async->inode, async->rw, async->bio, 724 async->mirror_num, async->bio_flags, 725 async->bio_offset); 726 } 727 728 static void run_one_async_done(struct btrfs_work *work) 729 { 730 struct btrfs_fs_info *fs_info; 731 struct async_submit_bio *async; 732 int limit; 733 734 async = container_of(work, struct async_submit_bio, work); 735 fs_info = BTRFS_I(async->inode)->root->fs_info; 736 737 limit = btrfs_async_submit_limit(fs_info); 738 limit = limit * 2 / 3; 739 740 atomic_dec(&fs_info->nr_async_submits); 741 742 if (atomic_read(&fs_info->nr_async_submits) < limit && 743 waitqueue_active(&fs_info->async_submit_wait)) 744 wake_up(&fs_info->async_submit_wait); 745 746 async->submit_bio_done(async->inode, async->rw, async->bio, 747 async->mirror_num, async->bio_flags, 748 async->bio_offset); 749 } 750 751 static void run_one_async_free(struct btrfs_work *work) 752 { 753 struct async_submit_bio *async; 754 755 async = container_of(work, struct async_submit_bio, work); 756 kfree(async); 757 } 758 759 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 760 int rw, struct bio *bio, int mirror_num, 761 unsigned long bio_flags, 762 u64 bio_offset, 763 extent_submit_bio_hook_t *submit_bio_start, 764 extent_submit_bio_hook_t *submit_bio_done) 765 { 766 struct async_submit_bio *async; 767 768 async = kmalloc(sizeof(*async), GFP_NOFS); 769 if (!async) 770 return -ENOMEM; 771 772 async->inode = inode; 773 async->rw = rw; 774 async->bio = bio; 775 async->mirror_num = mirror_num; 776 async->submit_bio_start = submit_bio_start; 777 async->submit_bio_done = submit_bio_done; 778 779 async->work.func = run_one_async_start; 780 async->work.ordered_func = run_one_async_done; 781 async->work.ordered_free = run_one_async_free; 782 783 async->work.flags = 0; 784 async->bio_flags = bio_flags; 785 async->bio_offset = bio_offset; 786 787 atomic_inc(&fs_info->nr_async_submits); 788 789 if (rw & REQ_SYNC) 790 btrfs_set_work_high_prio(&async->work); 791 792 btrfs_queue_worker(&fs_info->workers, &async->work); 793 794 while (atomic_read(&fs_info->async_submit_draining) && 795 atomic_read(&fs_info->nr_async_submits)) { 796 wait_event(fs_info->async_submit_wait, 797 (atomic_read(&fs_info->nr_async_submits) == 0)); 798 } 799 800 return 0; 801 } 802 803 static int btree_csum_one_bio(struct bio *bio) 804 { 805 struct bio_vec *bvec = bio->bi_io_vec; 806 int bio_index = 0; 807 struct btrfs_root *root; 808 809 WARN_ON(bio->bi_vcnt <= 0); 810 while (bio_index < bio->bi_vcnt) { 811 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 812 csum_dirty_buffer(root, bvec->bv_page); 813 bio_index++; 814 bvec++; 815 } 816 return 0; 817 } 818 819 static int __btree_submit_bio_start(struct inode *inode, int rw, 820 struct bio *bio, int mirror_num, 821 unsigned long bio_flags, 822 u64 bio_offset) 823 { 824 /* 825 * when we're called for a write, we're already in the async 826 * submission context. Just jump into btrfs_map_bio 827 */ 828 btree_csum_one_bio(bio); 829 return 0; 830 } 831 832 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 833 int mirror_num, unsigned long bio_flags, 834 u64 bio_offset) 835 { 836 /* 837 * when we're called for a write, we're already in the async 838 * submission context. Just jump into btrfs_map_bio 839 */ 840 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 841 } 842 843 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 844 int mirror_num, unsigned long bio_flags, 845 u64 bio_offset) 846 { 847 int ret; 848 849 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 850 bio, 1); 851 BUG_ON(ret); 852 853 if (!(rw & REQ_WRITE)) { 854 /* 855 * called for a read, do the setup so that checksum validation 856 * can happen in the async kernel threads 857 */ 858 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 859 mirror_num, 0); 860 } 861 862 /* 863 * kthread helpers are used to submit writes so that checksumming 864 * can happen in parallel across all CPUs 865 */ 866 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 867 inode, rw, bio, mirror_num, 0, 868 bio_offset, 869 __btree_submit_bio_start, 870 __btree_submit_bio_done); 871 } 872 873 #ifdef CONFIG_MIGRATION 874 static int btree_migratepage(struct address_space *mapping, 875 struct page *newpage, struct page *page) 876 { 877 /* 878 * we can't safely write a btree page from here, 879 * we haven't done the locking hook 880 */ 881 if (PageDirty(page)) 882 return -EAGAIN; 883 /* 884 * Buffers may be managed in a filesystem specific way. 885 * We must have no buffers or drop them. 886 */ 887 if (page_has_private(page) && 888 !try_to_release_page(page, GFP_KERNEL)) 889 return -EAGAIN; 890 return migrate_page(mapping, newpage, page); 891 } 892 #endif 893 894 static int btree_writepage(struct page *page, struct writeback_control *wbc) 895 { 896 struct extent_io_tree *tree; 897 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 898 struct extent_buffer *eb; 899 int was_dirty; 900 901 tree = &BTRFS_I(page->mapping->host)->io_tree; 902 if (!(current->flags & PF_MEMALLOC)) { 903 return extent_write_full_page(tree, page, 904 btree_get_extent, wbc); 905 } 906 907 redirty_page_for_writepage(wbc, page); 908 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 909 WARN_ON(!eb); 910 911 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 912 if (!was_dirty) { 913 spin_lock(&root->fs_info->delalloc_lock); 914 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 915 spin_unlock(&root->fs_info->delalloc_lock); 916 } 917 free_extent_buffer(eb); 918 919 unlock_page(page); 920 return 0; 921 } 922 923 static int btree_writepages(struct address_space *mapping, 924 struct writeback_control *wbc) 925 { 926 struct extent_io_tree *tree; 927 tree = &BTRFS_I(mapping->host)->io_tree; 928 if (wbc->sync_mode == WB_SYNC_NONE) { 929 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 930 u64 num_dirty; 931 unsigned long thresh = 32 * 1024 * 1024; 932 933 if (wbc->for_kupdate) 934 return 0; 935 936 /* this is a bit racy, but that's ok */ 937 num_dirty = root->fs_info->dirty_metadata_bytes; 938 if (num_dirty < thresh) 939 return 0; 940 } 941 return extent_writepages(tree, mapping, btree_get_extent, wbc); 942 } 943 944 static int btree_readpage(struct file *file, struct page *page) 945 { 946 struct extent_io_tree *tree; 947 tree = &BTRFS_I(page->mapping->host)->io_tree; 948 return extent_read_full_page(tree, page, btree_get_extent, 0); 949 } 950 951 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 952 { 953 struct extent_io_tree *tree; 954 struct extent_map_tree *map; 955 int ret; 956 957 if (PageWriteback(page) || PageDirty(page)) 958 return 0; 959 960 tree = &BTRFS_I(page->mapping->host)->io_tree; 961 map = &BTRFS_I(page->mapping->host)->extent_tree; 962 963 ret = try_release_extent_state(map, tree, page, gfp_flags); 964 if (!ret) 965 return 0; 966 967 ret = try_release_extent_buffer(tree, page); 968 if (ret == 1) { 969 ClearPagePrivate(page); 970 set_page_private(page, 0); 971 page_cache_release(page); 972 } 973 974 return ret; 975 } 976 977 static void btree_invalidatepage(struct page *page, unsigned long offset) 978 { 979 struct extent_io_tree *tree; 980 tree = &BTRFS_I(page->mapping->host)->io_tree; 981 extent_invalidatepage(tree, page, offset); 982 btree_releasepage(page, GFP_NOFS); 983 if (PagePrivate(page)) { 984 printk(KERN_WARNING "btrfs warning page private not zero " 985 "on page %llu\n", (unsigned long long)page_offset(page)); 986 ClearPagePrivate(page); 987 set_page_private(page, 0); 988 page_cache_release(page); 989 } 990 } 991 992 static const struct address_space_operations btree_aops = { 993 .readpage = btree_readpage, 994 .writepage = btree_writepage, 995 .writepages = btree_writepages, 996 .releasepage = btree_releasepage, 997 .invalidatepage = btree_invalidatepage, 998 #ifdef CONFIG_MIGRATION 999 .migratepage = btree_migratepage, 1000 #endif 1001 }; 1002 1003 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1004 u64 parent_transid) 1005 { 1006 struct extent_buffer *buf = NULL; 1007 struct inode *btree_inode = root->fs_info->btree_inode; 1008 int ret = 0; 1009 1010 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1011 if (!buf) 1012 return 0; 1013 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1014 buf, 0, WAIT_NONE, btree_get_extent, 0); 1015 free_extent_buffer(buf); 1016 return ret; 1017 } 1018 1019 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1020 int mirror_num, struct extent_buffer **eb) 1021 { 1022 struct extent_buffer *buf = NULL; 1023 struct inode *btree_inode = root->fs_info->btree_inode; 1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1025 int ret; 1026 1027 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1028 if (!buf) 1029 return 0; 1030 1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1032 1033 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1034 btree_get_extent, mirror_num); 1035 if (ret) { 1036 free_extent_buffer(buf); 1037 return ret; 1038 } 1039 1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1041 free_extent_buffer(buf); 1042 return -EIO; 1043 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) { 1044 *eb = buf; 1045 } else { 1046 free_extent_buffer(buf); 1047 } 1048 return 0; 1049 } 1050 1051 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1052 u64 bytenr, u32 blocksize) 1053 { 1054 struct inode *btree_inode = root->fs_info->btree_inode; 1055 struct extent_buffer *eb; 1056 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1057 bytenr, blocksize); 1058 return eb; 1059 } 1060 1061 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1062 u64 bytenr, u32 blocksize) 1063 { 1064 struct inode *btree_inode = root->fs_info->btree_inode; 1065 struct extent_buffer *eb; 1066 1067 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1068 bytenr, blocksize, NULL); 1069 return eb; 1070 } 1071 1072 1073 int btrfs_write_tree_block(struct extent_buffer *buf) 1074 { 1075 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 1076 buf->start + buf->len - 1); 1077 } 1078 1079 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1080 { 1081 return filemap_fdatawait_range(buf->first_page->mapping, 1082 buf->start, buf->start + buf->len - 1); 1083 } 1084 1085 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1086 u32 blocksize, u64 parent_transid) 1087 { 1088 struct extent_buffer *buf = NULL; 1089 int ret; 1090 1091 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1092 if (!buf) 1093 return NULL; 1094 1095 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1096 1097 if (ret == 0) 1098 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 1099 return buf; 1100 1101 } 1102 1103 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1104 struct extent_buffer *buf) 1105 { 1106 struct inode *btree_inode = root->fs_info->btree_inode; 1107 if (btrfs_header_generation(buf) == 1108 root->fs_info->running_transaction->transid) { 1109 btrfs_assert_tree_locked(buf); 1110 1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1112 spin_lock(&root->fs_info->delalloc_lock); 1113 if (root->fs_info->dirty_metadata_bytes >= buf->len) 1114 root->fs_info->dirty_metadata_bytes -= buf->len; 1115 else 1116 WARN_ON(1); 1117 spin_unlock(&root->fs_info->delalloc_lock); 1118 } 1119 1120 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1121 btrfs_set_lock_blocking(buf); 1122 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 1123 buf); 1124 } 1125 return 0; 1126 } 1127 1128 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1129 u32 stripesize, struct btrfs_root *root, 1130 struct btrfs_fs_info *fs_info, 1131 u64 objectid) 1132 { 1133 root->node = NULL; 1134 root->commit_root = NULL; 1135 root->sectorsize = sectorsize; 1136 root->nodesize = nodesize; 1137 root->leafsize = leafsize; 1138 root->stripesize = stripesize; 1139 root->ref_cows = 0; 1140 root->track_dirty = 0; 1141 root->in_radix = 0; 1142 root->orphan_item_inserted = 0; 1143 root->orphan_cleanup_state = 0; 1144 1145 root->fs_info = fs_info; 1146 root->objectid = objectid; 1147 root->last_trans = 0; 1148 root->highest_objectid = 0; 1149 root->name = NULL; 1150 root->inode_tree = RB_ROOT; 1151 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1152 root->block_rsv = NULL; 1153 root->orphan_block_rsv = NULL; 1154 1155 INIT_LIST_HEAD(&root->dirty_list); 1156 INIT_LIST_HEAD(&root->orphan_list); 1157 INIT_LIST_HEAD(&root->root_list); 1158 spin_lock_init(&root->orphan_lock); 1159 spin_lock_init(&root->inode_lock); 1160 spin_lock_init(&root->accounting_lock); 1161 mutex_init(&root->objectid_mutex); 1162 mutex_init(&root->log_mutex); 1163 init_waitqueue_head(&root->log_writer_wait); 1164 init_waitqueue_head(&root->log_commit_wait[0]); 1165 init_waitqueue_head(&root->log_commit_wait[1]); 1166 atomic_set(&root->log_commit[0], 0); 1167 atomic_set(&root->log_commit[1], 0); 1168 atomic_set(&root->log_writers, 0); 1169 root->log_batch = 0; 1170 root->log_transid = 0; 1171 root->last_log_commit = 0; 1172 extent_io_tree_init(&root->dirty_log_pages, 1173 fs_info->btree_inode->i_mapping); 1174 1175 memset(&root->root_key, 0, sizeof(root->root_key)); 1176 memset(&root->root_item, 0, sizeof(root->root_item)); 1177 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1178 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1179 root->defrag_trans_start = fs_info->generation; 1180 init_completion(&root->kobj_unregister); 1181 root->defrag_running = 0; 1182 root->root_key.objectid = objectid; 1183 root->anon_dev = 0; 1184 return 0; 1185 } 1186 1187 static int find_and_setup_root(struct btrfs_root *tree_root, 1188 struct btrfs_fs_info *fs_info, 1189 u64 objectid, 1190 struct btrfs_root *root) 1191 { 1192 int ret; 1193 u32 blocksize; 1194 u64 generation; 1195 1196 __setup_root(tree_root->nodesize, tree_root->leafsize, 1197 tree_root->sectorsize, tree_root->stripesize, 1198 root, fs_info, objectid); 1199 ret = btrfs_find_last_root(tree_root, objectid, 1200 &root->root_item, &root->root_key); 1201 if (ret > 0) 1202 return -ENOENT; 1203 BUG_ON(ret); 1204 1205 generation = btrfs_root_generation(&root->root_item); 1206 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1207 root->commit_root = NULL; 1208 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1209 blocksize, generation); 1210 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1211 free_extent_buffer(root->node); 1212 root->node = NULL; 1213 return -EIO; 1214 } 1215 root->commit_root = btrfs_root_node(root); 1216 return 0; 1217 } 1218 1219 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1220 struct btrfs_fs_info *fs_info) 1221 { 1222 struct btrfs_root *root; 1223 struct btrfs_root *tree_root = fs_info->tree_root; 1224 struct extent_buffer *leaf; 1225 1226 root = kzalloc(sizeof(*root), GFP_NOFS); 1227 if (!root) 1228 return ERR_PTR(-ENOMEM); 1229 1230 __setup_root(tree_root->nodesize, tree_root->leafsize, 1231 tree_root->sectorsize, tree_root->stripesize, 1232 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1233 1234 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1235 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1236 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1237 /* 1238 * log trees do not get reference counted because they go away 1239 * before a real commit is actually done. They do store pointers 1240 * to file data extents, and those reference counts still get 1241 * updated (along with back refs to the log tree). 1242 */ 1243 root->ref_cows = 0; 1244 1245 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1246 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1247 if (IS_ERR(leaf)) { 1248 kfree(root); 1249 return ERR_CAST(leaf); 1250 } 1251 1252 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1253 btrfs_set_header_bytenr(leaf, leaf->start); 1254 btrfs_set_header_generation(leaf, trans->transid); 1255 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1256 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1257 root->node = leaf; 1258 1259 write_extent_buffer(root->node, root->fs_info->fsid, 1260 (unsigned long)btrfs_header_fsid(root->node), 1261 BTRFS_FSID_SIZE); 1262 btrfs_mark_buffer_dirty(root->node); 1263 btrfs_tree_unlock(root->node); 1264 return root; 1265 } 1266 1267 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1268 struct btrfs_fs_info *fs_info) 1269 { 1270 struct btrfs_root *log_root; 1271 1272 log_root = alloc_log_tree(trans, fs_info); 1273 if (IS_ERR(log_root)) 1274 return PTR_ERR(log_root); 1275 WARN_ON(fs_info->log_root_tree); 1276 fs_info->log_root_tree = log_root; 1277 return 0; 1278 } 1279 1280 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1281 struct btrfs_root *root) 1282 { 1283 struct btrfs_root *log_root; 1284 struct btrfs_inode_item *inode_item; 1285 1286 log_root = alloc_log_tree(trans, root->fs_info); 1287 if (IS_ERR(log_root)) 1288 return PTR_ERR(log_root); 1289 1290 log_root->last_trans = trans->transid; 1291 log_root->root_key.offset = root->root_key.objectid; 1292 1293 inode_item = &log_root->root_item.inode; 1294 inode_item->generation = cpu_to_le64(1); 1295 inode_item->size = cpu_to_le64(3); 1296 inode_item->nlink = cpu_to_le32(1); 1297 inode_item->nbytes = cpu_to_le64(root->leafsize); 1298 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1299 1300 btrfs_set_root_node(&log_root->root_item, log_root->node); 1301 1302 WARN_ON(root->log_root); 1303 root->log_root = log_root; 1304 root->log_transid = 0; 1305 root->last_log_commit = 0; 1306 return 0; 1307 } 1308 1309 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1310 struct btrfs_key *location) 1311 { 1312 struct btrfs_root *root; 1313 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1314 struct btrfs_path *path; 1315 struct extent_buffer *l; 1316 u64 generation; 1317 u32 blocksize; 1318 int ret = 0; 1319 1320 root = kzalloc(sizeof(*root), GFP_NOFS); 1321 if (!root) 1322 return ERR_PTR(-ENOMEM); 1323 if (location->offset == (u64)-1) { 1324 ret = find_and_setup_root(tree_root, fs_info, 1325 location->objectid, root); 1326 if (ret) { 1327 kfree(root); 1328 return ERR_PTR(ret); 1329 } 1330 goto out; 1331 } 1332 1333 __setup_root(tree_root->nodesize, tree_root->leafsize, 1334 tree_root->sectorsize, tree_root->stripesize, 1335 root, fs_info, location->objectid); 1336 1337 path = btrfs_alloc_path(); 1338 if (!path) { 1339 kfree(root); 1340 return ERR_PTR(-ENOMEM); 1341 } 1342 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1343 if (ret == 0) { 1344 l = path->nodes[0]; 1345 read_extent_buffer(l, &root->root_item, 1346 btrfs_item_ptr_offset(l, path->slots[0]), 1347 sizeof(root->root_item)); 1348 memcpy(&root->root_key, location, sizeof(*location)); 1349 } 1350 btrfs_free_path(path); 1351 if (ret) { 1352 kfree(root); 1353 if (ret > 0) 1354 ret = -ENOENT; 1355 return ERR_PTR(ret); 1356 } 1357 1358 generation = btrfs_root_generation(&root->root_item); 1359 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1360 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1361 blocksize, generation); 1362 root->commit_root = btrfs_root_node(root); 1363 BUG_ON(!root->node); 1364 out: 1365 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1366 root->ref_cows = 1; 1367 btrfs_check_and_init_root_item(&root->root_item); 1368 } 1369 1370 return root; 1371 } 1372 1373 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1374 struct btrfs_key *location) 1375 { 1376 struct btrfs_root *root; 1377 int ret; 1378 1379 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1380 return fs_info->tree_root; 1381 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1382 return fs_info->extent_root; 1383 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1384 return fs_info->chunk_root; 1385 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1386 return fs_info->dev_root; 1387 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1388 return fs_info->csum_root; 1389 again: 1390 spin_lock(&fs_info->fs_roots_radix_lock); 1391 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1392 (unsigned long)location->objectid); 1393 spin_unlock(&fs_info->fs_roots_radix_lock); 1394 if (root) 1395 return root; 1396 1397 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1398 if (IS_ERR(root)) 1399 return root; 1400 1401 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1402 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1403 GFP_NOFS); 1404 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1405 ret = -ENOMEM; 1406 goto fail; 1407 } 1408 1409 btrfs_init_free_ino_ctl(root); 1410 mutex_init(&root->fs_commit_mutex); 1411 spin_lock_init(&root->cache_lock); 1412 init_waitqueue_head(&root->cache_wait); 1413 1414 ret = get_anon_bdev(&root->anon_dev); 1415 if (ret) 1416 goto fail; 1417 1418 if (btrfs_root_refs(&root->root_item) == 0) { 1419 ret = -ENOENT; 1420 goto fail; 1421 } 1422 1423 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1424 if (ret < 0) 1425 goto fail; 1426 if (ret == 0) 1427 root->orphan_item_inserted = 1; 1428 1429 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1430 if (ret) 1431 goto fail; 1432 1433 spin_lock(&fs_info->fs_roots_radix_lock); 1434 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1435 (unsigned long)root->root_key.objectid, 1436 root); 1437 if (ret == 0) 1438 root->in_radix = 1; 1439 1440 spin_unlock(&fs_info->fs_roots_radix_lock); 1441 radix_tree_preload_end(); 1442 if (ret) { 1443 if (ret == -EEXIST) { 1444 free_fs_root(root); 1445 goto again; 1446 } 1447 goto fail; 1448 } 1449 1450 ret = btrfs_find_dead_roots(fs_info->tree_root, 1451 root->root_key.objectid); 1452 WARN_ON(ret); 1453 return root; 1454 fail: 1455 free_fs_root(root); 1456 return ERR_PTR(ret); 1457 } 1458 1459 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1460 { 1461 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1462 int ret = 0; 1463 struct btrfs_device *device; 1464 struct backing_dev_info *bdi; 1465 1466 rcu_read_lock(); 1467 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1468 if (!device->bdev) 1469 continue; 1470 bdi = blk_get_backing_dev_info(device->bdev); 1471 if (bdi && bdi_congested(bdi, bdi_bits)) { 1472 ret = 1; 1473 break; 1474 } 1475 } 1476 rcu_read_unlock(); 1477 return ret; 1478 } 1479 1480 /* 1481 * If this fails, caller must call bdi_destroy() to get rid of the 1482 * bdi again. 1483 */ 1484 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1485 { 1486 int err; 1487 1488 bdi->capabilities = BDI_CAP_MAP_COPY; 1489 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1490 if (err) 1491 return err; 1492 1493 bdi->ra_pages = default_backing_dev_info.ra_pages; 1494 bdi->congested_fn = btrfs_congested_fn; 1495 bdi->congested_data = info; 1496 return 0; 1497 } 1498 1499 static int bio_ready_for_csum(struct bio *bio) 1500 { 1501 u64 length = 0; 1502 u64 buf_len = 0; 1503 u64 start = 0; 1504 struct page *page; 1505 struct extent_io_tree *io_tree = NULL; 1506 struct bio_vec *bvec; 1507 int i; 1508 int ret; 1509 1510 bio_for_each_segment(bvec, bio, i) { 1511 page = bvec->bv_page; 1512 if (page->private == EXTENT_PAGE_PRIVATE) { 1513 length += bvec->bv_len; 1514 continue; 1515 } 1516 if (!page->private) { 1517 length += bvec->bv_len; 1518 continue; 1519 } 1520 length = bvec->bv_len; 1521 buf_len = page->private >> 2; 1522 start = page_offset(page) + bvec->bv_offset; 1523 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1524 } 1525 /* are we fully contained in this bio? */ 1526 if (buf_len <= length) 1527 return 1; 1528 1529 ret = extent_range_uptodate(io_tree, start + length, 1530 start + buf_len - 1); 1531 return ret; 1532 } 1533 1534 /* 1535 * called by the kthread helper functions to finally call the bio end_io 1536 * functions. This is where read checksum verification actually happens 1537 */ 1538 static void end_workqueue_fn(struct btrfs_work *work) 1539 { 1540 struct bio *bio; 1541 struct end_io_wq *end_io_wq; 1542 struct btrfs_fs_info *fs_info; 1543 int error; 1544 1545 end_io_wq = container_of(work, struct end_io_wq, work); 1546 bio = end_io_wq->bio; 1547 fs_info = end_io_wq->info; 1548 1549 /* metadata bio reads are special because the whole tree block must 1550 * be checksummed at once. This makes sure the entire block is in 1551 * ram and up to date before trying to verify things. For 1552 * blocksize <= pagesize, it is basically a noop 1553 */ 1554 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1555 !bio_ready_for_csum(bio)) { 1556 btrfs_queue_worker(&fs_info->endio_meta_workers, 1557 &end_io_wq->work); 1558 return; 1559 } 1560 error = end_io_wq->error; 1561 bio->bi_private = end_io_wq->private; 1562 bio->bi_end_io = end_io_wq->end_io; 1563 kfree(end_io_wq); 1564 bio_endio(bio, error); 1565 } 1566 1567 static int cleaner_kthread(void *arg) 1568 { 1569 struct btrfs_root *root = arg; 1570 1571 do { 1572 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1573 1574 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1575 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1576 btrfs_run_delayed_iputs(root); 1577 btrfs_clean_old_snapshots(root); 1578 mutex_unlock(&root->fs_info->cleaner_mutex); 1579 btrfs_run_defrag_inodes(root->fs_info); 1580 } 1581 1582 if (freezing(current)) { 1583 refrigerator(); 1584 } else { 1585 set_current_state(TASK_INTERRUPTIBLE); 1586 if (!kthread_should_stop()) 1587 schedule(); 1588 __set_current_state(TASK_RUNNING); 1589 } 1590 } while (!kthread_should_stop()); 1591 return 0; 1592 } 1593 1594 static int transaction_kthread(void *arg) 1595 { 1596 struct btrfs_root *root = arg; 1597 struct btrfs_trans_handle *trans; 1598 struct btrfs_transaction *cur; 1599 u64 transid; 1600 unsigned long now; 1601 unsigned long delay; 1602 int ret; 1603 1604 do { 1605 delay = HZ * 30; 1606 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1607 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1608 1609 spin_lock(&root->fs_info->trans_lock); 1610 cur = root->fs_info->running_transaction; 1611 if (!cur) { 1612 spin_unlock(&root->fs_info->trans_lock); 1613 goto sleep; 1614 } 1615 1616 now = get_seconds(); 1617 if (!cur->blocked && 1618 (now < cur->start_time || now - cur->start_time < 30)) { 1619 spin_unlock(&root->fs_info->trans_lock); 1620 delay = HZ * 5; 1621 goto sleep; 1622 } 1623 transid = cur->transid; 1624 spin_unlock(&root->fs_info->trans_lock); 1625 1626 trans = btrfs_join_transaction(root); 1627 BUG_ON(IS_ERR(trans)); 1628 if (transid == trans->transid) { 1629 ret = btrfs_commit_transaction(trans, root); 1630 BUG_ON(ret); 1631 } else { 1632 btrfs_end_transaction(trans, root); 1633 } 1634 sleep: 1635 wake_up_process(root->fs_info->cleaner_kthread); 1636 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1637 1638 if (freezing(current)) { 1639 refrigerator(); 1640 } else { 1641 set_current_state(TASK_INTERRUPTIBLE); 1642 if (!kthread_should_stop() && 1643 !btrfs_transaction_blocked(root->fs_info)) 1644 schedule_timeout(delay); 1645 __set_current_state(TASK_RUNNING); 1646 } 1647 } while (!kthread_should_stop()); 1648 return 0; 1649 } 1650 1651 /* 1652 * this will find the highest generation in the array of 1653 * root backups. The index of the highest array is returned, 1654 * or -1 if we can't find anything. 1655 * 1656 * We check to make sure the array is valid by comparing the 1657 * generation of the latest root in the array with the generation 1658 * in the super block. If they don't match we pitch it. 1659 */ 1660 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1661 { 1662 u64 cur; 1663 int newest_index = -1; 1664 struct btrfs_root_backup *root_backup; 1665 int i; 1666 1667 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1668 root_backup = info->super_copy->super_roots + i; 1669 cur = btrfs_backup_tree_root_gen(root_backup); 1670 if (cur == newest_gen) 1671 newest_index = i; 1672 } 1673 1674 /* check to see if we actually wrapped around */ 1675 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1676 root_backup = info->super_copy->super_roots; 1677 cur = btrfs_backup_tree_root_gen(root_backup); 1678 if (cur == newest_gen) 1679 newest_index = 0; 1680 } 1681 return newest_index; 1682 } 1683 1684 1685 /* 1686 * find the oldest backup so we know where to store new entries 1687 * in the backup array. This will set the backup_root_index 1688 * field in the fs_info struct 1689 */ 1690 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1691 u64 newest_gen) 1692 { 1693 int newest_index = -1; 1694 1695 newest_index = find_newest_super_backup(info, newest_gen); 1696 /* if there was garbage in there, just move along */ 1697 if (newest_index == -1) { 1698 info->backup_root_index = 0; 1699 } else { 1700 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1701 } 1702 } 1703 1704 /* 1705 * copy all the root pointers into the super backup array. 1706 * this will bump the backup pointer by one when it is 1707 * done 1708 */ 1709 static void backup_super_roots(struct btrfs_fs_info *info) 1710 { 1711 int next_backup; 1712 struct btrfs_root_backup *root_backup; 1713 int last_backup; 1714 1715 next_backup = info->backup_root_index; 1716 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1717 BTRFS_NUM_BACKUP_ROOTS; 1718 1719 /* 1720 * just overwrite the last backup if we're at the same generation 1721 * this happens only at umount 1722 */ 1723 root_backup = info->super_for_commit->super_roots + last_backup; 1724 if (btrfs_backup_tree_root_gen(root_backup) == 1725 btrfs_header_generation(info->tree_root->node)) 1726 next_backup = last_backup; 1727 1728 root_backup = info->super_for_commit->super_roots + next_backup; 1729 1730 /* 1731 * make sure all of our padding and empty slots get zero filled 1732 * regardless of which ones we use today 1733 */ 1734 memset(root_backup, 0, sizeof(*root_backup)); 1735 1736 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1737 1738 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1739 btrfs_set_backup_tree_root_gen(root_backup, 1740 btrfs_header_generation(info->tree_root->node)); 1741 1742 btrfs_set_backup_tree_root_level(root_backup, 1743 btrfs_header_level(info->tree_root->node)); 1744 1745 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1746 btrfs_set_backup_chunk_root_gen(root_backup, 1747 btrfs_header_generation(info->chunk_root->node)); 1748 btrfs_set_backup_chunk_root_level(root_backup, 1749 btrfs_header_level(info->chunk_root->node)); 1750 1751 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1752 btrfs_set_backup_extent_root_gen(root_backup, 1753 btrfs_header_generation(info->extent_root->node)); 1754 btrfs_set_backup_extent_root_level(root_backup, 1755 btrfs_header_level(info->extent_root->node)); 1756 1757 /* 1758 * we might commit during log recovery, which happens before we set 1759 * the fs_root. Make sure it is valid before we fill it in. 1760 */ 1761 if (info->fs_root && info->fs_root->node) { 1762 btrfs_set_backup_fs_root(root_backup, 1763 info->fs_root->node->start); 1764 btrfs_set_backup_fs_root_gen(root_backup, 1765 btrfs_header_generation(info->fs_root->node)); 1766 btrfs_set_backup_fs_root_level(root_backup, 1767 btrfs_header_level(info->fs_root->node)); 1768 } 1769 1770 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1771 btrfs_set_backup_dev_root_gen(root_backup, 1772 btrfs_header_generation(info->dev_root->node)); 1773 btrfs_set_backup_dev_root_level(root_backup, 1774 btrfs_header_level(info->dev_root->node)); 1775 1776 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1777 btrfs_set_backup_csum_root_gen(root_backup, 1778 btrfs_header_generation(info->csum_root->node)); 1779 btrfs_set_backup_csum_root_level(root_backup, 1780 btrfs_header_level(info->csum_root->node)); 1781 1782 btrfs_set_backup_total_bytes(root_backup, 1783 btrfs_super_total_bytes(info->super_copy)); 1784 btrfs_set_backup_bytes_used(root_backup, 1785 btrfs_super_bytes_used(info->super_copy)); 1786 btrfs_set_backup_num_devices(root_backup, 1787 btrfs_super_num_devices(info->super_copy)); 1788 1789 /* 1790 * if we don't copy this out to the super_copy, it won't get remembered 1791 * for the next commit 1792 */ 1793 memcpy(&info->super_copy->super_roots, 1794 &info->super_for_commit->super_roots, 1795 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1796 } 1797 1798 /* 1799 * this copies info out of the root backup array and back into 1800 * the in-memory super block. It is meant to help iterate through 1801 * the array, so you send it the number of backups you've already 1802 * tried and the last backup index you used. 1803 * 1804 * this returns -1 when it has tried all the backups 1805 */ 1806 static noinline int next_root_backup(struct btrfs_fs_info *info, 1807 struct btrfs_super_block *super, 1808 int *num_backups_tried, int *backup_index) 1809 { 1810 struct btrfs_root_backup *root_backup; 1811 int newest = *backup_index; 1812 1813 if (*num_backups_tried == 0) { 1814 u64 gen = btrfs_super_generation(super); 1815 1816 newest = find_newest_super_backup(info, gen); 1817 if (newest == -1) 1818 return -1; 1819 1820 *backup_index = newest; 1821 *num_backups_tried = 1; 1822 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1823 /* we've tried all the backups, all done */ 1824 return -1; 1825 } else { 1826 /* jump to the next oldest backup */ 1827 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1828 BTRFS_NUM_BACKUP_ROOTS; 1829 *backup_index = newest; 1830 *num_backups_tried += 1; 1831 } 1832 root_backup = super->super_roots + newest; 1833 1834 btrfs_set_super_generation(super, 1835 btrfs_backup_tree_root_gen(root_backup)); 1836 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1837 btrfs_set_super_root_level(super, 1838 btrfs_backup_tree_root_level(root_backup)); 1839 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1840 1841 /* 1842 * fixme: the total bytes and num_devices need to match or we should 1843 * need a fsck 1844 */ 1845 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1846 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1847 return 0; 1848 } 1849 1850 /* helper to cleanup tree roots */ 1851 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1852 { 1853 free_extent_buffer(info->tree_root->node); 1854 free_extent_buffer(info->tree_root->commit_root); 1855 free_extent_buffer(info->dev_root->node); 1856 free_extent_buffer(info->dev_root->commit_root); 1857 free_extent_buffer(info->extent_root->node); 1858 free_extent_buffer(info->extent_root->commit_root); 1859 free_extent_buffer(info->csum_root->node); 1860 free_extent_buffer(info->csum_root->commit_root); 1861 1862 info->tree_root->node = NULL; 1863 info->tree_root->commit_root = NULL; 1864 info->dev_root->node = NULL; 1865 info->dev_root->commit_root = NULL; 1866 info->extent_root->node = NULL; 1867 info->extent_root->commit_root = NULL; 1868 info->csum_root->node = NULL; 1869 info->csum_root->commit_root = NULL; 1870 1871 if (chunk_root) { 1872 free_extent_buffer(info->chunk_root->node); 1873 free_extent_buffer(info->chunk_root->commit_root); 1874 info->chunk_root->node = NULL; 1875 info->chunk_root->commit_root = NULL; 1876 } 1877 } 1878 1879 1880 struct btrfs_root *open_ctree(struct super_block *sb, 1881 struct btrfs_fs_devices *fs_devices, 1882 char *options) 1883 { 1884 u32 sectorsize; 1885 u32 nodesize; 1886 u32 leafsize; 1887 u32 blocksize; 1888 u32 stripesize; 1889 u64 generation; 1890 u64 features; 1891 struct btrfs_key location; 1892 struct buffer_head *bh; 1893 struct btrfs_super_block *disk_super; 1894 struct btrfs_root *tree_root = btrfs_sb(sb); 1895 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1896 struct btrfs_root *extent_root; 1897 struct btrfs_root *csum_root; 1898 struct btrfs_root *chunk_root; 1899 struct btrfs_root *dev_root; 1900 struct btrfs_root *log_tree_root; 1901 int ret; 1902 int err = -EINVAL; 1903 int num_backups_tried = 0; 1904 int backup_index = 0; 1905 1906 extent_root = fs_info->extent_root = 1907 kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 1908 csum_root = fs_info->csum_root = 1909 kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 1910 chunk_root = fs_info->chunk_root = 1911 kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 1912 dev_root = fs_info->dev_root = 1913 kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 1914 1915 if (!extent_root || !csum_root || !chunk_root || !dev_root) { 1916 err = -ENOMEM; 1917 goto fail; 1918 } 1919 1920 ret = init_srcu_struct(&fs_info->subvol_srcu); 1921 if (ret) { 1922 err = ret; 1923 goto fail; 1924 } 1925 1926 ret = setup_bdi(fs_info, &fs_info->bdi); 1927 if (ret) { 1928 err = ret; 1929 goto fail_srcu; 1930 } 1931 1932 fs_info->btree_inode = new_inode(sb); 1933 if (!fs_info->btree_inode) { 1934 err = -ENOMEM; 1935 goto fail_bdi; 1936 } 1937 1938 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 1939 1940 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1941 INIT_LIST_HEAD(&fs_info->trans_list); 1942 INIT_LIST_HEAD(&fs_info->dead_roots); 1943 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1944 INIT_LIST_HEAD(&fs_info->hashers); 1945 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1946 INIT_LIST_HEAD(&fs_info->ordered_operations); 1947 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1948 spin_lock_init(&fs_info->delalloc_lock); 1949 spin_lock_init(&fs_info->trans_lock); 1950 spin_lock_init(&fs_info->ref_cache_lock); 1951 spin_lock_init(&fs_info->fs_roots_radix_lock); 1952 spin_lock_init(&fs_info->delayed_iput_lock); 1953 spin_lock_init(&fs_info->defrag_inodes_lock); 1954 spin_lock_init(&fs_info->free_chunk_lock); 1955 mutex_init(&fs_info->reloc_mutex); 1956 1957 init_completion(&fs_info->kobj_unregister); 1958 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1959 INIT_LIST_HEAD(&fs_info->space_info); 1960 btrfs_mapping_init(&fs_info->mapping_tree); 1961 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1962 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1963 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1964 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1965 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1966 btrfs_init_block_rsv(&fs_info->delayed_block_rsv); 1967 atomic_set(&fs_info->nr_async_submits, 0); 1968 atomic_set(&fs_info->async_delalloc_pages, 0); 1969 atomic_set(&fs_info->async_submit_draining, 0); 1970 atomic_set(&fs_info->nr_async_bios, 0); 1971 atomic_set(&fs_info->defrag_running, 0); 1972 fs_info->sb = sb; 1973 fs_info->max_inline = 8192 * 1024; 1974 fs_info->metadata_ratio = 0; 1975 fs_info->defrag_inodes = RB_ROOT; 1976 fs_info->trans_no_join = 0; 1977 fs_info->free_chunk_space = 0; 1978 1979 /* readahead state */ 1980 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 1981 spin_lock_init(&fs_info->reada_lock); 1982 1983 fs_info->thread_pool_size = min_t(unsigned long, 1984 num_online_cpus() + 2, 8); 1985 1986 INIT_LIST_HEAD(&fs_info->ordered_extents); 1987 spin_lock_init(&fs_info->ordered_extent_lock); 1988 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 1989 GFP_NOFS); 1990 if (!fs_info->delayed_root) { 1991 err = -ENOMEM; 1992 goto fail_iput; 1993 } 1994 btrfs_init_delayed_root(fs_info->delayed_root); 1995 1996 mutex_init(&fs_info->scrub_lock); 1997 atomic_set(&fs_info->scrubs_running, 0); 1998 atomic_set(&fs_info->scrub_pause_req, 0); 1999 atomic_set(&fs_info->scrubs_paused, 0); 2000 atomic_set(&fs_info->scrub_cancel_req, 0); 2001 init_waitqueue_head(&fs_info->scrub_pause_wait); 2002 init_rwsem(&fs_info->scrub_super_lock); 2003 fs_info->scrub_workers_refcnt = 0; 2004 2005 sb->s_blocksize = 4096; 2006 sb->s_blocksize_bits = blksize_bits(4096); 2007 sb->s_bdi = &fs_info->bdi; 2008 2009 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2010 set_nlink(fs_info->btree_inode, 1); 2011 /* 2012 * we set the i_size on the btree inode to the max possible int. 2013 * the real end of the address space is determined by all of 2014 * the devices in the system 2015 */ 2016 fs_info->btree_inode->i_size = OFFSET_MAX; 2017 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2018 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2019 2020 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2021 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2022 fs_info->btree_inode->i_mapping); 2023 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2024 2025 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2026 2027 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2028 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2029 sizeof(struct btrfs_key)); 2030 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 2031 insert_inode_hash(fs_info->btree_inode); 2032 2033 spin_lock_init(&fs_info->block_group_cache_lock); 2034 fs_info->block_group_cache_tree = RB_ROOT; 2035 2036 extent_io_tree_init(&fs_info->freed_extents[0], 2037 fs_info->btree_inode->i_mapping); 2038 extent_io_tree_init(&fs_info->freed_extents[1], 2039 fs_info->btree_inode->i_mapping); 2040 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2041 fs_info->do_barriers = 1; 2042 2043 2044 mutex_init(&fs_info->ordered_operations_mutex); 2045 mutex_init(&fs_info->tree_log_mutex); 2046 mutex_init(&fs_info->chunk_mutex); 2047 mutex_init(&fs_info->transaction_kthread_mutex); 2048 mutex_init(&fs_info->cleaner_mutex); 2049 mutex_init(&fs_info->volume_mutex); 2050 init_rwsem(&fs_info->extent_commit_sem); 2051 init_rwsem(&fs_info->cleanup_work_sem); 2052 init_rwsem(&fs_info->subvol_sem); 2053 2054 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2055 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2056 2057 init_waitqueue_head(&fs_info->transaction_throttle); 2058 init_waitqueue_head(&fs_info->transaction_wait); 2059 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2060 init_waitqueue_head(&fs_info->async_submit_wait); 2061 2062 __setup_root(4096, 4096, 4096, 4096, tree_root, 2063 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2064 2065 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2066 if (!bh) { 2067 err = -EINVAL; 2068 goto fail_alloc; 2069 } 2070 2071 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2072 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2073 sizeof(*fs_info->super_for_commit)); 2074 brelse(bh); 2075 2076 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2077 2078 disk_super = fs_info->super_copy; 2079 if (!btrfs_super_root(disk_super)) 2080 goto fail_alloc; 2081 2082 /* check FS state, whether FS is broken. */ 2083 fs_info->fs_state |= btrfs_super_flags(disk_super); 2084 2085 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2086 2087 /* 2088 * run through our array of backup supers and setup 2089 * our ring pointer to the oldest one 2090 */ 2091 generation = btrfs_super_generation(disk_super); 2092 find_oldest_super_backup(fs_info, generation); 2093 2094 /* 2095 * In the long term, we'll store the compression type in the super 2096 * block, and it'll be used for per file compression control. 2097 */ 2098 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2099 2100 ret = btrfs_parse_options(tree_root, options); 2101 if (ret) { 2102 err = ret; 2103 goto fail_alloc; 2104 } 2105 2106 features = btrfs_super_incompat_flags(disk_super) & 2107 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2108 if (features) { 2109 printk(KERN_ERR "BTRFS: couldn't mount because of " 2110 "unsupported optional features (%Lx).\n", 2111 (unsigned long long)features); 2112 err = -EINVAL; 2113 goto fail_alloc; 2114 } 2115 2116 features = btrfs_super_incompat_flags(disk_super); 2117 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2118 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 2119 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2120 btrfs_set_super_incompat_flags(disk_super, features); 2121 2122 features = btrfs_super_compat_ro_flags(disk_super) & 2123 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2124 if (!(sb->s_flags & MS_RDONLY) && features) { 2125 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2126 "unsupported option features (%Lx).\n", 2127 (unsigned long long)features); 2128 err = -EINVAL; 2129 goto fail_alloc; 2130 } 2131 2132 btrfs_init_workers(&fs_info->generic_worker, 2133 "genwork", 1, NULL); 2134 2135 btrfs_init_workers(&fs_info->workers, "worker", 2136 fs_info->thread_pool_size, 2137 &fs_info->generic_worker); 2138 2139 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2140 fs_info->thread_pool_size, 2141 &fs_info->generic_worker); 2142 2143 btrfs_init_workers(&fs_info->submit_workers, "submit", 2144 min_t(u64, fs_devices->num_devices, 2145 fs_info->thread_pool_size), 2146 &fs_info->generic_worker); 2147 2148 btrfs_init_workers(&fs_info->caching_workers, "cache", 2149 2, &fs_info->generic_worker); 2150 2151 /* a higher idle thresh on the submit workers makes it much more 2152 * likely that bios will be send down in a sane order to the 2153 * devices 2154 */ 2155 fs_info->submit_workers.idle_thresh = 64; 2156 2157 fs_info->workers.idle_thresh = 16; 2158 fs_info->workers.ordered = 1; 2159 2160 fs_info->delalloc_workers.idle_thresh = 2; 2161 fs_info->delalloc_workers.ordered = 1; 2162 2163 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2164 &fs_info->generic_worker); 2165 btrfs_init_workers(&fs_info->endio_workers, "endio", 2166 fs_info->thread_pool_size, 2167 &fs_info->generic_worker); 2168 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2169 fs_info->thread_pool_size, 2170 &fs_info->generic_worker); 2171 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2172 "endio-meta-write", fs_info->thread_pool_size, 2173 &fs_info->generic_worker); 2174 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2175 fs_info->thread_pool_size, 2176 &fs_info->generic_worker); 2177 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2178 1, &fs_info->generic_worker); 2179 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2180 fs_info->thread_pool_size, 2181 &fs_info->generic_worker); 2182 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2183 fs_info->thread_pool_size, 2184 &fs_info->generic_worker); 2185 2186 /* 2187 * endios are largely parallel and should have a very 2188 * low idle thresh 2189 */ 2190 fs_info->endio_workers.idle_thresh = 4; 2191 fs_info->endio_meta_workers.idle_thresh = 4; 2192 2193 fs_info->endio_write_workers.idle_thresh = 2; 2194 fs_info->endio_meta_write_workers.idle_thresh = 2; 2195 fs_info->readahead_workers.idle_thresh = 2; 2196 2197 btrfs_start_workers(&fs_info->workers, 1); 2198 btrfs_start_workers(&fs_info->generic_worker, 1); 2199 btrfs_start_workers(&fs_info->submit_workers, 1); 2200 btrfs_start_workers(&fs_info->delalloc_workers, 1); 2201 btrfs_start_workers(&fs_info->fixup_workers, 1); 2202 btrfs_start_workers(&fs_info->endio_workers, 1); 2203 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 2204 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 2205 btrfs_start_workers(&fs_info->endio_write_workers, 1); 2206 btrfs_start_workers(&fs_info->endio_freespace_worker, 1); 2207 btrfs_start_workers(&fs_info->delayed_workers, 1); 2208 btrfs_start_workers(&fs_info->caching_workers, 1); 2209 btrfs_start_workers(&fs_info->readahead_workers, 1); 2210 2211 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2212 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2213 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2214 2215 nodesize = btrfs_super_nodesize(disk_super); 2216 leafsize = btrfs_super_leafsize(disk_super); 2217 sectorsize = btrfs_super_sectorsize(disk_super); 2218 stripesize = btrfs_super_stripesize(disk_super); 2219 tree_root->nodesize = nodesize; 2220 tree_root->leafsize = leafsize; 2221 tree_root->sectorsize = sectorsize; 2222 tree_root->stripesize = stripesize; 2223 2224 sb->s_blocksize = sectorsize; 2225 sb->s_blocksize_bits = blksize_bits(sectorsize); 2226 2227 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 2228 sizeof(disk_super->magic))) { 2229 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2230 goto fail_sb_buffer; 2231 } 2232 2233 mutex_lock(&fs_info->chunk_mutex); 2234 ret = btrfs_read_sys_array(tree_root); 2235 mutex_unlock(&fs_info->chunk_mutex); 2236 if (ret) { 2237 printk(KERN_WARNING "btrfs: failed to read the system " 2238 "array on %s\n", sb->s_id); 2239 goto fail_sb_buffer; 2240 } 2241 2242 blocksize = btrfs_level_size(tree_root, 2243 btrfs_super_chunk_root_level(disk_super)); 2244 generation = btrfs_super_chunk_root_generation(disk_super); 2245 2246 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2247 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2248 2249 chunk_root->node = read_tree_block(chunk_root, 2250 btrfs_super_chunk_root(disk_super), 2251 blocksize, generation); 2252 BUG_ON(!chunk_root->node); 2253 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2254 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2255 sb->s_id); 2256 goto fail_tree_roots; 2257 } 2258 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2259 chunk_root->commit_root = btrfs_root_node(chunk_root); 2260 2261 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2262 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2263 BTRFS_UUID_SIZE); 2264 2265 mutex_lock(&fs_info->chunk_mutex); 2266 ret = btrfs_read_chunk_tree(chunk_root); 2267 mutex_unlock(&fs_info->chunk_mutex); 2268 if (ret) { 2269 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2270 sb->s_id); 2271 goto fail_tree_roots; 2272 } 2273 2274 btrfs_close_extra_devices(fs_devices); 2275 2276 retry_root_backup: 2277 blocksize = btrfs_level_size(tree_root, 2278 btrfs_super_root_level(disk_super)); 2279 generation = btrfs_super_generation(disk_super); 2280 2281 tree_root->node = read_tree_block(tree_root, 2282 btrfs_super_root(disk_super), 2283 blocksize, generation); 2284 if (!tree_root->node || 2285 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2286 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2287 sb->s_id); 2288 2289 goto recovery_tree_root; 2290 } 2291 2292 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2293 tree_root->commit_root = btrfs_root_node(tree_root); 2294 2295 ret = find_and_setup_root(tree_root, fs_info, 2296 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2297 if (ret) 2298 goto recovery_tree_root; 2299 extent_root->track_dirty = 1; 2300 2301 ret = find_and_setup_root(tree_root, fs_info, 2302 BTRFS_DEV_TREE_OBJECTID, dev_root); 2303 if (ret) 2304 goto recovery_tree_root; 2305 dev_root->track_dirty = 1; 2306 2307 ret = find_and_setup_root(tree_root, fs_info, 2308 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2309 if (ret) 2310 goto recovery_tree_root; 2311 2312 csum_root->track_dirty = 1; 2313 2314 fs_info->generation = generation; 2315 fs_info->last_trans_committed = generation; 2316 fs_info->data_alloc_profile = (u64)-1; 2317 fs_info->metadata_alloc_profile = (u64)-1; 2318 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 2319 2320 ret = btrfs_init_space_info(fs_info); 2321 if (ret) { 2322 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2323 goto fail_block_groups; 2324 } 2325 2326 ret = btrfs_read_block_groups(extent_root); 2327 if (ret) { 2328 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2329 goto fail_block_groups; 2330 } 2331 2332 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2333 "btrfs-cleaner"); 2334 if (IS_ERR(fs_info->cleaner_kthread)) 2335 goto fail_block_groups; 2336 2337 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2338 tree_root, 2339 "btrfs-transaction"); 2340 if (IS_ERR(fs_info->transaction_kthread)) 2341 goto fail_cleaner; 2342 2343 if (!btrfs_test_opt(tree_root, SSD) && 2344 !btrfs_test_opt(tree_root, NOSSD) && 2345 !fs_info->fs_devices->rotating) { 2346 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2347 "mode\n"); 2348 btrfs_set_opt(fs_info->mount_opt, SSD); 2349 } 2350 2351 /* do not make disk changes in broken FS */ 2352 if (btrfs_super_log_root(disk_super) != 0 && 2353 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 2354 u64 bytenr = btrfs_super_log_root(disk_super); 2355 2356 if (fs_devices->rw_devices == 0) { 2357 printk(KERN_WARNING "Btrfs log replay required " 2358 "on RO media\n"); 2359 err = -EIO; 2360 goto fail_trans_kthread; 2361 } 2362 blocksize = 2363 btrfs_level_size(tree_root, 2364 btrfs_super_log_root_level(disk_super)); 2365 2366 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 2367 if (!log_tree_root) { 2368 err = -ENOMEM; 2369 goto fail_trans_kthread; 2370 } 2371 2372 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2373 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2374 2375 log_tree_root->node = read_tree_block(tree_root, bytenr, 2376 blocksize, 2377 generation + 1); 2378 ret = btrfs_recover_log_trees(log_tree_root); 2379 BUG_ON(ret); 2380 2381 if (sb->s_flags & MS_RDONLY) { 2382 ret = btrfs_commit_super(tree_root); 2383 BUG_ON(ret); 2384 } 2385 } 2386 2387 ret = btrfs_find_orphan_roots(tree_root); 2388 BUG_ON(ret); 2389 2390 if (!(sb->s_flags & MS_RDONLY)) { 2391 ret = btrfs_cleanup_fs_roots(fs_info); 2392 BUG_ON(ret); 2393 2394 ret = btrfs_recover_relocation(tree_root); 2395 if (ret < 0) { 2396 printk(KERN_WARNING 2397 "btrfs: failed to recover relocation\n"); 2398 err = -EINVAL; 2399 goto fail_trans_kthread; 2400 } 2401 } 2402 2403 location.objectid = BTRFS_FS_TREE_OBJECTID; 2404 location.type = BTRFS_ROOT_ITEM_KEY; 2405 location.offset = (u64)-1; 2406 2407 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2408 if (!fs_info->fs_root) 2409 goto fail_trans_kthread; 2410 if (IS_ERR(fs_info->fs_root)) { 2411 err = PTR_ERR(fs_info->fs_root); 2412 goto fail_trans_kthread; 2413 } 2414 2415 if (!(sb->s_flags & MS_RDONLY)) { 2416 down_read(&fs_info->cleanup_work_sem); 2417 err = btrfs_orphan_cleanup(fs_info->fs_root); 2418 if (!err) 2419 err = btrfs_orphan_cleanup(fs_info->tree_root); 2420 up_read(&fs_info->cleanup_work_sem); 2421 if (err) { 2422 close_ctree(tree_root); 2423 return ERR_PTR(err); 2424 } 2425 } 2426 2427 return tree_root; 2428 2429 fail_trans_kthread: 2430 kthread_stop(fs_info->transaction_kthread); 2431 fail_cleaner: 2432 kthread_stop(fs_info->cleaner_kthread); 2433 2434 /* 2435 * make sure we're done with the btree inode before we stop our 2436 * kthreads 2437 */ 2438 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2439 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2440 2441 fail_block_groups: 2442 btrfs_free_block_groups(fs_info); 2443 2444 fail_tree_roots: 2445 free_root_pointers(fs_info, 1); 2446 2447 fail_sb_buffer: 2448 btrfs_stop_workers(&fs_info->generic_worker); 2449 btrfs_stop_workers(&fs_info->readahead_workers); 2450 btrfs_stop_workers(&fs_info->fixup_workers); 2451 btrfs_stop_workers(&fs_info->delalloc_workers); 2452 btrfs_stop_workers(&fs_info->workers); 2453 btrfs_stop_workers(&fs_info->endio_workers); 2454 btrfs_stop_workers(&fs_info->endio_meta_workers); 2455 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2456 btrfs_stop_workers(&fs_info->endio_write_workers); 2457 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2458 btrfs_stop_workers(&fs_info->submit_workers); 2459 btrfs_stop_workers(&fs_info->delayed_workers); 2460 btrfs_stop_workers(&fs_info->caching_workers); 2461 fail_alloc: 2462 fail_iput: 2463 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2464 2465 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2466 iput(fs_info->btree_inode); 2467 fail_bdi: 2468 bdi_destroy(&fs_info->bdi); 2469 fail_srcu: 2470 cleanup_srcu_struct(&fs_info->subvol_srcu); 2471 fail: 2472 btrfs_close_devices(fs_info->fs_devices); 2473 free_fs_info(fs_info); 2474 return ERR_PTR(err); 2475 2476 recovery_tree_root: 2477 if (!btrfs_test_opt(tree_root, RECOVERY)) 2478 goto fail_tree_roots; 2479 2480 free_root_pointers(fs_info, 0); 2481 2482 /* don't use the log in recovery mode, it won't be valid */ 2483 btrfs_set_super_log_root(disk_super, 0); 2484 2485 /* we can't trust the free space cache either */ 2486 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2487 2488 ret = next_root_backup(fs_info, fs_info->super_copy, 2489 &num_backups_tried, &backup_index); 2490 if (ret == -1) 2491 goto fail_block_groups; 2492 goto retry_root_backup; 2493 } 2494 2495 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2496 { 2497 char b[BDEVNAME_SIZE]; 2498 2499 if (uptodate) { 2500 set_buffer_uptodate(bh); 2501 } else { 2502 printk_ratelimited(KERN_WARNING "lost page write due to " 2503 "I/O error on %s\n", 2504 bdevname(bh->b_bdev, b)); 2505 /* note, we dont' set_buffer_write_io_error because we have 2506 * our own ways of dealing with the IO errors 2507 */ 2508 clear_buffer_uptodate(bh); 2509 } 2510 unlock_buffer(bh); 2511 put_bh(bh); 2512 } 2513 2514 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2515 { 2516 struct buffer_head *bh; 2517 struct buffer_head *latest = NULL; 2518 struct btrfs_super_block *super; 2519 int i; 2520 u64 transid = 0; 2521 u64 bytenr; 2522 2523 /* we would like to check all the supers, but that would make 2524 * a btrfs mount succeed after a mkfs from a different FS. 2525 * So, we need to add a special mount option to scan for 2526 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2527 */ 2528 for (i = 0; i < 1; i++) { 2529 bytenr = btrfs_sb_offset(i); 2530 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2531 break; 2532 bh = __bread(bdev, bytenr / 4096, 4096); 2533 if (!bh) 2534 continue; 2535 2536 super = (struct btrfs_super_block *)bh->b_data; 2537 if (btrfs_super_bytenr(super) != bytenr || 2538 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2539 sizeof(super->magic))) { 2540 brelse(bh); 2541 continue; 2542 } 2543 2544 if (!latest || btrfs_super_generation(super) > transid) { 2545 brelse(latest); 2546 latest = bh; 2547 transid = btrfs_super_generation(super); 2548 } else { 2549 brelse(bh); 2550 } 2551 } 2552 return latest; 2553 } 2554 2555 /* 2556 * this should be called twice, once with wait == 0 and 2557 * once with wait == 1. When wait == 0 is done, all the buffer heads 2558 * we write are pinned. 2559 * 2560 * They are released when wait == 1 is done. 2561 * max_mirrors must be the same for both runs, and it indicates how 2562 * many supers on this one device should be written. 2563 * 2564 * max_mirrors == 0 means to write them all. 2565 */ 2566 static int write_dev_supers(struct btrfs_device *device, 2567 struct btrfs_super_block *sb, 2568 int do_barriers, int wait, int max_mirrors) 2569 { 2570 struct buffer_head *bh; 2571 int i; 2572 int ret; 2573 int errors = 0; 2574 u32 crc; 2575 u64 bytenr; 2576 int last_barrier = 0; 2577 2578 if (max_mirrors == 0) 2579 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2580 2581 /* make sure only the last submit_bh does a barrier */ 2582 if (do_barriers) { 2583 for (i = 0; i < max_mirrors; i++) { 2584 bytenr = btrfs_sb_offset(i); 2585 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2586 device->total_bytes) 2587 break; 2588 last_barrier = i; 2589 } 2590 } 2591 2592 for (i = 0; i < max_mirrors; i++) { 2593 bytenr = btrfs_sb_offset(i); 2594 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2595 break; 2596 2597 if (wait) { 2598 bh = __find_get_block(device->bdev, bytenr / 4096, 2599 BTRFS_SUPER_INFO_SIZE); 2600 BUG_ON(!bh); 2601 wait_on_buffer(bh); 2602 if (!buffer_uptodate(bh)) 2603 errors++; 2604 2605 /* drop our reference */ 2606 brelse(bh); 2607 2608 /* drop the reference from the wait == 0 run */ 2609 brelse(bh); 2610 continue; 2611 } else { 2612 btrfs_set_super_bytenr(sb, bytenr); 2613 2614 crc = ~(u32)0; 2615 crc = btrfs_csum_data(NULL, (char *)sb + 2616 BTRFS_CSUM_SIZE, crc, 2617 BTRFS_SUPER_INFO_SIZE - 2618 BTRFS_CSUM_SIZE); 2619 btrfs_csum_final(crc, sb->csum); 2620 2621 /* 2622 * one reference for us, and we leave it for the 2623 * caller 2624 */ 2625 bh = __getblk(device->bdev, bytenr / 4096, 2626 BTRFS_SUPER_INFO_SIZE); 2627 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2628 2629 /* one reference for submit_bh */ 2630 get_bh(bh); 2631 2632 set_buffer_uptodate(bh); 2633 lock_buffer(bh); 2634 bh->b_end_io = btrfs_end_buffer_write_sync; 2635 } 2636 2637 if (i == last_barrier && do_barriers) 2638 ret = submit_bh(WRITE_FLUSH_FUA, bh); 2639 else 2640 ret = submit_bh(WRITE_SYNC, bh); 2641 2642 if (ret) 2643 errors++; 2644 } 2645 return errors < i ? 0 : -1; 2646 } 2647 2648 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2649 { 2650 struct list_head *head; 2651 struct btrfs_device *dev; 2652 struct btrfs_super_block *sb; 2653 struct btrfs_dev_item *dev_item; 2654 int ret; 2655 int do_barriers; 2656 int max_errors; 2657 int total_errors = 0; 2658 u64 flags; 2659 2660 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 2661 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2662 backup_super_roots(root->fs_info); 2663 2664 sb = root->fs_info->super_for_commit; 2665 dev_item = &sb->dev_item; 2666 2667 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2668 head = &root->fs_info->fs_devices->devices; 2669 list_for_each_entry_rcu(dev, head, dev_list) { 2670 if (!dev->bdev) { 2671 total_errors++; 2672 continue; 2673 } 2674 if (!dev->in_fs_metadata || !dev->writeable) 2675 continue; 2676 2677 btrfs_set_stack_device_generation(dev_item, 0); 2678 btrfs_set_stack_device_type(dev_item, dev->type); 2679 btrfs_set_stack_device_id(dev_item, dev->devid); 2680 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2681 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2682 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2683 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2684 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2685 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2686 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2687 2688 flags = btrfs_super_flags(sb); 2689 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2690 2691 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2692 if (ret) 2693 total_errors++; 2694 } 2695 if (total_errors > max_errors) { 2696 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2697 total_errors); 2698 BUG(); 2699 } 2700 2701 total_errors = 0; 2702 list_for_each_entry_rcu(dev, head, dev_list) { 2703 if (!dev->bdev) 2704 continue; 2705 if (!dev->in_fs_metadata || !dev->writeable) 2706 continue; 2707 2708 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2709 if (ret) 2710 total_errors++; 2711 } 2712 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2713 if (total_errors > max_errors) { 2714 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2715 total_errors); 2716 BUG(); 2717 } 2718 return 0; 2719 } 2720 2721 int write_ctree_super(struct btrfs_trans_handle *trans, 2722 struct btrfs_root *root, int max_mirrors) 2723 { 2724 int ret; 2725 2726 ret = write_all_supers(root, max_mirrors); 2727 return ret; 2728 } 2729 2730 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2731 { 2732 spin_lock(&fs_info->fs_roots_radix_lock); 2733 radix_tree_delete(&fs_info->fs_roots_radix, 2734 (unsigned long)root->root_key.objectid); 2735 spin_unlock(&fs_info->fs_roots_radix_lock); 2736 2737 if (btrfs_root_refs(&root->root_item) == 0) 2738 synchronize_srcu(&fs_info->subvol_srcu); 2739 2740 __btrfs_remove_free_space_cache(root->free_ino_pinned); 2741 __btrfs_remove_free_space_cache(root->free_ino_ctl); 2742 free_fs_root(root); 2743 return 0; 2744 } 2745 2746 static void free_fs_root(struct btrfs_root *root) 2747 { 2748 iput(root->cache_inode); 2749 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2750 if (root->anon_dev) 2751 free_anon_bdev(root->anon_dev); 2752 free_extent_buffer(root->node); 2753 free_extent_buffer(root->commit_root); 2754 kfree(root->free_ino_ctl); 2755 kfree(root->free_ino_pinned); 2756 kfree(root->name); 2757 kfree(root); 2758 } 2759 2760 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2761 { 2762 int ret; 2763 struct btrfs_root *gang[8]; 2764 int i; 2765 2766 while (!list_empty(&fs_info->dead_roots)) { 2767 gang[0] = list_entry(fs_info->dead_roots.next, 2768 struct btrfs_root, root_list); 2769 list_del(&gang[0]->root_list); 2770 2771 if (gang[0]->in_radix) { 2772 btrfs_free_fs_root(fs_info, gang[0]); 2773 } else { 2774 free_extent_buffer(gang[0]->node); 2775 free_extent_buffer(gang[0]->commit_root); 2776 kfree(gang[0]); 2777 } 2778 } 2779 2780 while (1) { 2781 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2782 (void **)gang, 0, 2783 ARRAY_SIZE(gang)); 2784 if (!ret) 2785 break; 2786 for (i = 0; i < ret; i++) 2787 btrfs_free_fs_root(fs_info, gang[i]); 2788 } 2789 return 0; 2790 } 2791 2792 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2793 { 2794 u64 root_objectid = 0; 2795 struct btrfs_root *gang[8]; 2796 int i; 2797 int ret; 2798 2799 while (1) { 2800 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2801 (void **)gang, root_objectid, 2802 ARRAY_SIZE(gang)); 2803 if (!ret) 2804 break; 2805 2806 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2807 for (i = 0; i < ret; i++) { 2808 int err; 2809 2810 root_objectid = gang[i]->root_key.objectid; 2811 err = btrfs_orphan_cleanup(gang[i]); 2812 if (err) 2813 return err; 2814 } 2815 root_objectid++; 2816 } 2817 return 0; 2818 } 2819 2820 int btrfs_commit_super(struct btrfs_root *root) 2821 { 2822 struct btrfs_trans_handle *trans; 2823 int ret; 2824 2825 mutex_lock(&root->fs_info->cleaner_mutex); 2826 btrfs_run_delayed_iputs(root); 2827 btrfs_clean_old_snapshots(root); 2828 mutex_unlock(&root->fs_info->cleaner_mutex); 2829 2830 /* wait until ongoing cleanup work done */ 2831 down_write(&root->fs_info->cleanup_work_sem); 2832 up_write(&root->fs_info->cleanup_work_sem); 2833 2834 trans = btrfs_join_transaction(root); 2835 if (IS_ERR(trans)) 2836 return PTR_ERR(trans); 2837 ret = btrfs_commit_transaction(trans, root); 2838 BUG_ON(ret); 2839 /* run commit again to drop the original snapshot */ 2840 trans = btrfs_join_transaction(root); 2841 if (IS_ERR(trans)) 2842 return PTR_ERR(trans); 2843 btrfs_commit_transaction(trans, root); 2844 ret = btrfs_write_and_wait_transaction(NULL, root); 2845 BUG_ON(ret); 2846 2847 ret = write_ctree_super(NULL, root, 0); 2848 return ret; 2849 } 2850 2851 int close_ctree(struct btrfs_root *root) 2852 { 2853 struct btrfs_fs_info *fs_info = root->fs_info; 2854 int ret; 2855 2856 fs_info->closing = 1; 2857 smp_mb(); 2858 2859 btrfs_scrub_cancel(root); 2860 2861 /* wait for any defraggers to finish */ 2862 wait_event(fs_info->transaction_wait, 2863 (atomic_read(&fs_info->defrag_running) == 0)); 2864 2865 /* clear out the rbtree of defraggable inodes */ 2866 btrfs_run_defrag_inodes(root->fs_info); 2867 2868 /* 2869 * Here come 2 situations when btrfs is broken to flip readonly: 2870 * 2871 * 1. when btrfs flips readonly somewhere else before 2872 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 2873 * and btrfs will skip to write sb directly to keep 2874 * ERROR state on disk. 2875 * 2876 * 2. when btrfs flips readonly just in btrfs_commit_super, 2877 * and in such case, btrfs cannot write sb via btrfs_commit_super, 2878 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 2879 * btrfs will cleanup all FS resources first and write sb then. 2880 */ 2881 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2882 ret = btrfs_commit_super(root); 2883 if (ret) 2884 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2885 } 2886 2887 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 2888 ret = btrfs_error_commit_super(root); 2889 if (ret) 2890 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2891 } 2892 2893 btrfs_put_block_group_cache(fs_info); 2894 2895 kthread_stop(root->fs_info->transaction_kthread); 2896 kthread_stop(root->fs_info->cleaner_kthread); 2897 2898 fs_info->closing = 2; 2899 smp_mb(); 2900 2901 if (fs_info->delalloc_bytes) { 2902 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2903 (unsigned long long)fs_info->delalloc_bytes); 2904 } 2905 if (fs_info->total_ref_cache_size) { 2906 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2907 (unsigned long long)fs_info->total_ref_cache_size); 2908 } 2909 2910 free_extent_buffer(fs_info->extent_root->node); 2911 free_extent_buffer(fs_info->extent_root->commit_root); 2912 free_extent_buffer(fs_info->tree_root->node); 2913 free_extent_buffer(fs_info->tree_root->commit_root); 2914 free_extent_buffer(root->fs_info->chunk_root->node); 2915 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2916 free_extent_buffer(root->fs_info->dev_root->node); 2917 free_extent_buffer(root->fs_info->dev_root->commit_root); 2918 free_extent_buffer(root->fs_info->csum_root->node); 2919 free_extent_buffer(root->fs_info->csum_root->commit_root); 2920 2921 btrfs_free_block_groups(root->fs_info); 2922 2923 del_fs_roots(fs_info); 2924 2925 iput(fs_info->btree_inode); 2926 2927 btrfs_stop_workers(&fs_info->generic_worker); 2928 btrfs_stop_workers(&fs_info->fixup_workers); 2929 btrfs_stop_workers(&fs_info->delalloc_workers); 2930 btrfs_stop_workers(&fs_info->workers); 2931 btrfs_stop_workers(&fs_info->endio_workers); 2932 btrfs_stop_workers(&fs_info->endio_meta_workers); 2933 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2934 btrfs_stop_workers(&fs_info->endio_write_workers); 2935 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2936 btrfs_stop_workers(&fs_info->submit_workers); 2937 btrfs_stop_workers(&fs_info->delayed_workers); 2938 btrfs_stop_workers(&fs_info->caching_workers); 2939 btrfs_stop_workers(&fs_info->readahead_workers); 2940 2941 btrfs_close_devices(fs_info->fs_devices); 2942 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2943 2944 bdi_destroy(&fs_info->bdi); 2945 cleanup_srcu_struct(&fs_info->subvol_srcu); 2946 2947 free_fs_info(fs_info); 2948 2949 return 0; 2950 } 2951 2952 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2953 { 2954 int ret; 2955 struct inode *btree_inode = buf->first_page->mapping->host; 2956 2957 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2958 NULL); 2959 if (!ret) 2960 return ret; 2961 2962 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2963 parent_transid); 2964 return !ret; 2965 } 2966 2967 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2968 { 2969 struct inode *btree_inode = buf->first_page->mapping->host; 2970 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2971 buf); 2972 } 2973 2974 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2975 { 2976 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2977 u64 transid = btrfs_header_generation(buf); 2978 struct inode *btree_inode = root->fs_info->btree_inode; 2979 int was_dirty; 2980 2981 btrfs_assert_tree_locked(buf); 2982 if (transid != root->fs_info->generation) { 2983 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2984 "found %llu running %llu\n", 2985 (unsigned long long)buf->start, 2986 (unsigned long long)transid, 2987 (unsigned long long)root->fs_info->generation); 2988 WARN_ON(1); 2989 } 2990 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2991 buf); 2992 if (!was_dirty) { 2993 spin_lock(&root->fs_info->delalloc_lock); 2994 root->fs_info->dirty_metadata_bytes += buf->len; 2995 spin_unlock(&root->fs_info->delalloc_lock); 2996 } 2997 } 2998 2999 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3000 { 3001 /* 3002 * looks as though older kernels can get into trouble with 3003 * this code, they end up stuck in balance_dirty_pages forever 3004 */ 3005 u64 num_dirty; 3006 unsigned long thresh = 32 * 1024 * 1024; 3007 3008 if (current->flags & PF_MEMALLOC) 3009 return; 3010 3011 btrfs_balance_delayed_items(root); 3012 3013 num_dirty = root->fs_info->dirty_metadata_bytes; 3014 3015 if (num_dirty > thresh) { 3016 balance_dirty_pages_ratelimited_nr( 3017 root->fs_info->btree_inode->i_mapping, 1); 3018 } 3019 return; 3020 } 3021 3022 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 3023 { 3024 /* 3025 * looks as though older kernels can get into trouble with 3026 * this code, they end up stuck in balance_dirty_pages forever 3027 */ 3028 u64 num_dirty; 3029 unsigned long thresh = 32 * 1024 * 1024; 3030 3031 if (current->flags & PF_MEMALLOC) 3032 return; 3033 3034 num_dirty = root->fs_info->dirty_metadata_bytes; 3035 3036 if (num_dirty > thresh) { 3037 balance_dirty_pages_ratelimited_nr( 3038 root->fs_info->btree_inode->i_mapping, 1); 3039 } 3040 return; 3041 } 3042 3043 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3044 { 3045 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 3046 int ret; 3047 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3048 if (ret == 0) 3049 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 3050 return ret; 3051 } 3052 3053 static int btree_lock_page_hook(struct page *page, void *data, 3054 void (*flush_fn)(void *)) 3055 { 3056 struct inode *inode = page->mapping->host; 3057 struct btrfs_root *root = BTRFS_I(inode)->root; 3058 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3059 struct extent_buffer *eb; 3060 unsigned long len; 3061 u64 bytenr = page_offset(page); 3062 3063 if (page->private == EXTENT_PAGE_PRIVATE) 3064 goto out; 3065 3066 len = page->private >> 2; 3067 eb = find_extent_buffer(io_tree, bytenr, len); 3068 if (!eb) 3069 goto out; 3070 3071 if (!btrfs_try_tree_write_lock(eb)) { 3072 flush_fn(data); 3073 btrfs_tree_lock(eb); 3074 } 3075 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3076 3077 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3078 spin_lock(&root->fs_info->delalloc_lock); 3079 if (root->fs_info->dirty_metadata_bytes >= eb->len) 3080 root->fs_info->dirty_metadata_bytes -= eb->len; 3081 else 3082 WARN_ON(1); 3083 spin_unlock(&root->fs_info->delalloc_lock); 3084 } 3085 3086 btrfs_tree_unlock(eb); 3087 free_extent_buffer(eb); 3088 out: 3089 if (!trylock_page(page)) { 3090 flush_fn(data); 3091 lock_page(page); 3092 } 3093 return 0; 3094 } 3095 3096 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3097 int read_only) 3098 { 3099 if (read_only) 3100 return; 3101 3102 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 3103 printk(KERN_WARNING "warning: mount fs with errors, " 3104 "running btrfsck is recommended\n"); 3105 } 3106 3107 int btrfs_error_commit_super(struct btrfs_root *root) 3108 { 3109 int ret; 3110 3111 mutex_lock(&root->fs_info->cleaner_mutex); 3112 btrfs_run_delayed_iputs(root); 3113 mutex_unlock(&root->fs_info->cleaner_mutex); 3114 3115 down_write(&root->fs_info->cleanup_work_sem); 3116 up_write(&root->fs_info->cleanup_work_sem); 3117 3118 /* cleanup FS via transaction */ 3119 btrfs_cleanup_transaction(root); 3120 3121 ret = write_ctree_super(NULL, root, 0); 3122 3123 return ret; 3124 } 3125 3126 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 3127 { 3128 struct btrfs_inode *btrfs_inode; 3129 struct list_head splice; 3130 3131 INIT_LIST_HEAD(&splice); 3132 3133 mutex_lock(&root->fs_info->ordered_operations_mutex); 3134 spin_lock(&root->fs_info->ordered_extent_lock); 3135 3136 list_splice_init(&root->fs_info->ordered_operations, &splice); 3137 while (!list_empty(&splice)) { 3138 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3139 ordered_operations); 3140 3141 list_del_init(&btrfs_inode->ordered_operations); 3142 3143 btrfs_invalidate_inodes(btrfs_inode->root); 3144 } 3145 3146 spin_unlock(&root->fs_info->ordered_extent_lock); 3147 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3148 3149 return 0; 3150 } 3151 3152 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 3153 { 3154 struct list_head splice; 3155 struct btrfs_ordered_extent *ordered; 3156 struct inode *inode; 3157 3158 INIT_LIST_HEAD(&splice); 3159 3160 spin_lock(&root->fs_info->ordered_extent_lock); 3161 3162 list_splice_init(&root->fs_info->ordered_extents, &splice); 3163 while (!list_empty(&splice)) { 3164 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 3165 root_extent_list); 3166 3167 list_del_init(&ordered->root_extent_list); 3168 atomic_inc(&ordered->refs); 3169 3170 /* the inode may be getting freed (in sys_unlink path). */ 3171 inode = igrab(ordered->inode); 3172 3173 spin_unlock(&root->fs_info->ordered_extent_lock); 3174 if (inode) 3175 iput(inode); 3176 3177 atomic_set(&ordered->refs, 1); 3178 btrfs_put_ordered_extent(ordered); 3179 3180 spin_lock(&root->fs_info->ordered_extent_lock); 3181 } 3182 3183 spin_unlock(&root->fs_info->ordered_extent_lock); 3184 3185 return 0; 3186 } 3187 3188 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3189 struct btrfs_root *root) 3190 { 3191 struct rb_node *node; 3192 struct btrfs_delayed_ref_root *delayed_refs; 3193 struct btrfs_delayed_ref_node *ref; 3194 int ret = 0; 3195 3196 delayed_refs = &trans->delayed_refs; 3197 3198 spin_lock(&delayed_refs->lock); 3199 if (delayed_refs->num_entries == 0) { 3200 spin_unlock(&delayed_refs->lock); 3201 printk(KERN_INFO "delayed_refs has NO entry\n"); 3202 return ret; 3203 } 3204 3205 node = rb_first(&delayed_refs->root); 3206 while (node) { 3207 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3208 node = rb_next(node); 3209 3210 ref->in_tree = 0; 3211 rb_erase(&ref->rb_node, &delayed_refs->root); 3212 delayed_refs->num_entries--; 3213 3214 atomic_set(&ref->refs, 1); 3215 if (btrfs_delayed_ref_is_head(ref)) { 3216 struct btrfs_delayed_ref_head *head; 3217 3218 head = btrfs_delayed_node_to_head(ref); 3219 mutex_lock(&head->mutex); 3220 kfree(head->extent_op); 3221 delayed_refs->num_heads--; 3222 if (list_empty(&head->cluster)) 3223 delayed_refs->num_heads_ready--; 3224 list_del_init(&head->cluster); 3225 mutex_unlock(&head->mutex); 3226 } 3227 3228 spin_unlock(&delayed_refs->lock); 3229 btrfs_put_delayed_ref(ref); 3230 3231 cond_resched(); 3232 spin_lock(&delayed_refs->lock); 3233 } 3234 3235 spin_unlock(&delayed_refs->lock); 3236 3237 return ret; 3238 } 3239 3240 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 3241 { 3242 struct btrfs_pending_snapshot *snapshot; 3243 struct list_head splice; 3244 3245 INIT_LIST_HEAD(&splice); 3246 3247 list_splice_init(&t->pending_snapshots, &splice); 3248 3249 while (!list_empty(&splice)) { 3250 snapshot = list_entry(splice.next, 3251 struct btrfs_pending_snapshot, 3252 list); 3253 3254 list_del_init(&snapshot->list); 3255 3256 kfree(snapshot); 3257 } 3258 3259 return 0; 3260 } 3261 3262 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3263 { 3264 struct btrfs_inode *btrfs_inode; 3265 struct list_head splice; 3266 3267 INIT_LIST_HEAD(&splice); 3268 3269 spin_lock(&root->fs_info->delalloc_lock); 3270 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3271 3272 while (!list_empty(&splice)) { 3273 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3274 delalloc_inodes); 3275 3276 list_del_init(&btrfs_inode->delalloc_inodes); 3277 3278 btrfs_invalidate_inodes(btrfs_inode->root); 3279 } 3280 3281 spin_unlock(&root->fs_info->delalloc_lock); 3282 3283 return 0; 3284 } 3285 3286 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3287 struct extent_io_tree *dirty_pages, 3288 int mark) 3289 { 3290 int ret; 3291 struct page *page; 3292 struct inode *btree_inode = root->fs_info->btree_inode; 3293 struct extent_buffer *eb; 3294 u64 start = 0; 3295 u64 end; 3296 u64 offset; 3297 unsigned long index; 3298 3299 while (1) { 3300 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3301 mark); 3302 if (ret) 3303 break; 3304 3305 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3306 while (start <= end) { 3307 index = start >> PAGE_CACHE_SHIFT; 3308 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3309 page = find_get_page(btree_inode->i_mapping, index); 3310 if (!page) 3311 continue; 3312 offset = page_offset(page); 3313 3314 spin_lock(&dirty_pages->buffer_lock); 3315 eb = radix_tree_lookup( 3316 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3317 offset >> PAGE_CACHE_SHIFT); 3318 spin_unlock(&dirty_pages->buffer_lock); 3319 if (eb) { 3320 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3321 &eb->bflags); 3322 atomic_set(&eb->refs, 1); 3323 } 3324 if (PageWriteback(page)) 3325 end_page_writeback(page); 3326 3327 lock_page(page); 3328 if (PageDirty(page)) { 3329 clear_page_dirty_for_io(page); 3330 spin_lock_irq(&page->mapping->tree_lock); 3331 radix_tree_tag_clear(&page->mapping->page_tree, 3332 page_index(page), 3333 PAGECACHE_TAG_DIRTY); 3334 spin_unlock_irq(&page->mapping->tree_lock); 3335 } 3336 3337 page->mapping->a_ops->invalidatepage(page, 0); 3338 unlock_page(page); 3339 } 3340 } 3341 3342 return ret; 3343 } 3344 3345 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3346 struct extent_io_tree *pinned_extents) 3347 { 3348 struct extent_io_tree *unpin; 3349 u64 start; 3350 u64 end; 3351 int ret; 3352 3353 unpin = pinned_extents; 3354 while (1) { 3355 ret = find_first_extent_bit(unpin, 0, &start, &end, 3356 EXTENT_DIRTY); 3357 if (ret) 3358 break; 3359 3360 /* opt_discard */ 3361 if (btrfs_test_opt(root, DISCARD)) 3362 ret = btrfs_error_discard_extent(root, start, 3363 end + 1 - start, 3364 NULL); 3365 3366 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3367 btrfs_error_unpin_extent_range(root, start, end); 3368 cond_resched(); 3369 } 3370 3371 return 0; 3372 } 3373 3374 static int btrfs_cleanup_transaction(struct btrfs_root *root) 3375 { 3376 struct btrfs_transaction *t; 3377 LIST_HEAD(list); 3378 3379 WARN_ON(1); 3380 3381 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3382 3383 spin_lock(&root->fs_info->trans_lock); 3384 list_splice_init(&root->fs_info->trans_list, &list); 3385 root->fs_info->trans_no_join = 1; 3386 spin_unlock(&root->fs_info->trans_lock); 3387 3388 while (!list_empty(&list)) { 3389 t = list_entry(list.next, struct btrfs_transaction, list); 3390 if (!t) 3391 break; 3392 3393 btrfs_destroy_ordered_operations(root); 3394 3395 btrfs_destroy_ordered_extents(root); 3396 3397 btrfs_destroy_delayed_refs(t, root); 3398 3399 btrfs_block_rsv_release(root, 3400 &root->fs_info->trans_block_rsv, 3401 t->dirty_pages.dirty_bytes); 3402 3403 /* FIXME: cleanup wait for commit */ 3404 t->in_commit = 1; 3405 t->blocked = 1; 3406 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3407 wake_up(&root->fs_info->transaction_blocked_wait); 3408 3409 t->blocked = 0; 3410 if (waitqueue_active(&root->fs_info->transaction_wait)) 3411 wake_up(&root->fs_info->transaction_wait); 3412 3413 t->commit_done = 1; 3414 if (waitqueue_active(&t->commit_wait)) 3415 wake_up(&t->commit_wait); 3416 3417 btrfs_destroy_pending_snapshots(t); 3418 3419 btrfs_destroy_delalloc_inodes(root); 3420 3421 spin_lock(&root->fs_info->trans_lock); 3422 root->fs_info->running_transaction = NULL; 3423 spin_unlock(&root->fs_info->trans_lock); 3424 3425 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3426 EXTENT_DIRTY); 3427 3428 btrfs_destroy_pinned_extent(root, 3429 root->fs_info->pinned_extents); 3430 3431 atomic_set(&t->use_count, 0); 3432 list_del_init(&t->list); 3433 memset(t, 0, sizeof(*t)); 3434 kmem_cache_free(btrfs_transaction_cachep, t); 3435 } 3436 3437 spin_lock(&root->fs_info->trans_lock); 3438 root->fs_info->trans_no_join = 0; 3439 spin_unlock(&root->fs_info->trans_lock); 3440 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3441 3442 return 0; 3443 } 3444 3445 static struct extent_io_ops btree_extent_io_ops = { 3446 .write_cache_pages_lock_hook = btree_lock_page_hook, 3447 .readpage_end_io_hook = btree_readpage_end_io_hook, 3448 .readpage_io_failed_hook = btree_io_failed_hook, 3449 .submit_bio_hook = btree_submit_bio_hook, 3450 /* note we're sharing with inode.c for the merge bio hook */ 3451 .merge_bio_hook = btrfs_merge_bio_hook, 3452 }; 3453