xref: /linux/fs/btrfs/disk-io.c (revision ed780686de61ab27e65f1cfedeccd7b45667bd70)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53 
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57 
58 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
59 				 BTRFS_HEADER_FLAG_RELOC |\
60 				 BTRFS_SUPER_FLAG_ERROR |\
61 				 BTRFS_SUPER_FLAG_SEEDING |\
62 				 BTRFS_SUPER_FLAG_METADUMP)
63 
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 				    int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 				      struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 					struct extent_io_tree *dirty_pages,
75 					int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 				       struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80 
81 /*
82  * btrfs_end_io_wq structs are used to do processing in task context when an IO
83  * is complete.  This is used during reads to verify checksums, and it is used
84  * by writes to insert metadata for new file extents after IO is complete.
85  */
86 struct btrfs_end_io_wq {
87 	struct bio *bio;
88 	bio_end_io_t *end_io;
89 	void *private;
90 	struct btrfs_fs_info *info;
91 	int error;
92 	enum btrfs_wq_endio_type metadata;
93 	struct list_head list;
94 	struct btrfs_work work;
95 };
96 
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98 
99 int __init btrfs_end_io_wq_init(void)
100 {
101 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 					sizeof(struct btrfs_end_io_wq),
103 					0,
104 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 					NULL);
106 	if (!btrfs_end_io_wq_cache)
107 		return -ENOMEM;
108 	return 0;
109 }
110 
111 void btrfs_end_io_wq_exit(void)
112 {
113 	kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115 
116 /*
117  * async submit bios are used to offload expensive checksumming
118  * onto the worker threads.  They checksum file and metadata bios
119  * just before they are sent down the IO stack.
120  */
121 struct async_submit_bio {
122 	struct inode *inode;
123 	struct bio *bio;
124 	struct list_head list;
125 	extent_submit_bio_hook_t *submit_bio_start;
126 	extent_submit_bio_hook_t *submit_bio_done;
127 	int mirror_num;
128 	unsigned long bio_flags;
129 	/*
130 	 * bio_offset is optional, can be used if the pages in the bio
131 	 * can't tell us where in the file the bio should go
132 	 */
133 	u64 bio_offset;
134 	struct btrfs_work work;
135 	int error;
136 };
137 
138 /*
139  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
140  * eb, the lockdep key is determined by the btrfs_root it belongs to and
141  * the level the eb occupies in the tree.
142  *
143  * Different roots are used for different purposes and may nest inside each
144  * other and they require separate keysets.  As lockdep keys should be
145  * static, assign keysets according to the purpose of the root as indicated
146  * by btrfs_root->objectid.  This ensures that all special purpose roots
147  * have separate keysets.
148  *
149  * Lock-nesting across peer nodes is always done with the immediate parent
150  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
151  * subclass to avoid triggering lockdep warning in such cases.
152  *
153  * The key is set by the readpage_end_io_hook after the buffer has passed
154  * csum validation but before the pages are unlocked.  It is also set by
155  * btrfs_init_new_buffer on freshly allocated blocks.
156  *
157  * We also add a check to make sure the highest level of the tree is the
158  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
159  * needs update as well.
160  */
161 #ifdef CONFIG_DEBUG_LOCK_ALLOC
162 # if BTRFS_MAX_LEVEL != 8
163 #  error
164 # endif
165 
166 static struct btrfs_lockdep_keyset {
167 	u64			id;		/* root objectid */
168 	const char		*name_stem;	/* lock name stem */
169 	char			names[BTRFS_MAX_LEVEL + 1][20];
170 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
171 } btrfs_lockdep_keysets[] = {
172 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
173 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
174 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
175 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
176 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
177 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
178 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
179 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
180 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
181 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
182 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
183 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
184 	{ .id = 0,				.name_stem = "tree"	},
185 };
186 
187 void __init btrfs_init_lockdep(void)
188 {
189 	int i, j;
190 
191 	/* initialize lockdep class names */
192 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
193 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
194 
195 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
196 			snprintf(ks->names[j], sizeof(ks->names[j]),
197 				 "btrfs-%s-%02d", ks->name_stem, j);
198 	}
199 }
200 
201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
202 				    int level)
203 {
204 	struct btrfs_lockdep_keyset *ks;
205 
206 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
207 
208 	/* find the matching keyset, id 0 is the default entry */
209 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
210 		if (ks->id == objectid)
211 			break;
212 
213 	lockdep_set_class_and_name(&eb->lock,
214 				   &ks->keys[level], ks->names[level]);
215 }
216 
217 #endif
218 
219 /*
220  * extents on the btree inode are pretty simple, there's one extent
221  * that covers the entire device
222  */
223 static struct extent_map *btree_get_extent(struct inode *inode,
224 		struct page *page, size_t pg_offset, u64 start, u64 len,
225 		int create)
226 {
227 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
228 	struct extent_map *em;
229 	int ret;
230 
231 	read_lock(&em_tree->lock);
232 	em = lookup_extent_mapping(em_tree, start, len);
233 	if (em) {
234 		em->bdev =
235 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
236 		read_unlock(&em_tree->lock);
237 		goto out;
238 	}
239 	read_unlock(&em_tree->lock);
240 
241 	em = alloc_extent_map();
242 	if (!em) {
243 		em = ERR_PTR(-ENOMEM);
244 		goto out;
245 	}
246 	em->start = 0;
247 	em->len = (u64)-1;
248 	em->block_len = (u64)-1;
249 	em->block_start = 0;
250 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
251 
252 	write_lock(&em_tree->lock);
253 	ret = add_extent_mapping(em_tree, em, 0);
254 	if (ret == -EEXIST) {
255 		free_extent_map(em);
256 		em = lookup_extent_mapping(em_tree, start, len);
257 		if (!em)
258 			em = ERR_PTR(-EIO);
259 	} else if (ret) {
260 		free_extent_map(em);
261 		em = ERR_PTR(ret);
262 	}
263 	write_unlock(&em_tree->lock);
264 
265 out:
266 	return em;
267 }
268 
269 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
270 {
271 	return btrfs_crc32c(seed, data, len);
272 }
273 
274 void btrfs_csum_final(u32 crc, char *result)
275 {
276 	put_unaligned_le32(~crc, result);
277 }
278 
279 /*
280  * compute the csum for a btree block, and either verify it or write it
281  * into the csum field of the block.
282  */
283 static int csum_tree_block(struct btrfs_fs_info *fs_info,
284 			   struct extent_buffer *buf,
285 			   int verify)
286 {
287 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
288 	char *result = NULL;
289 	unsigned long len;
290 	unsigned long cur_len;
291 	unsigned long offset = BTRFS_CSUM_SIZE;
292 	char *kaddr;
293 	unsigned long map_start;
294 	unsigned long map_len;
295 	int err;
296 	u32 crc = ~(u32)0;
297 	unsigned long inline_result;
298 
299 	len = buf->len - offset;
300 	while (len > 0) {
301 		err = map_private_extent_buffer(buf, offset, 32,
302 					&kaddr, &map_start, &map_len);
303 		if (err)
304 			return err;
305 		cur_len = min(len, map_len - (offset - map_start));
306 		crc = btrfs_csum_data(kaddr + offset - map_start,
307 				      crc, cur_len);
308 		len -= cur_len;
309 		offset += cur_len;
310 	}
311 	if (csum_size > sizeof(inline_result)) {
312 		result = kzalloc(csum_size, GFP_NOFS);
313 		if (!result)
314 			return -ENOMEM;
315 	} else {
316 		result = (char *)&inline_result;
317 	}
318 
319 	btrfs_csum_final(crc, result);
320 
321 	if (verify) {
322 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
323 			u32 val;
324 			u32 found = 0;
325 			memcpy(&found, result, csum_size);
326 
327 			read_extent_buffer(buf, &val, 0, csum_size);
328 			btrfs_warn_rl(fs_info,
329 				"%s checksum verify failed on %llu wanted %X found %X "
330 				"level %d",
331 				fs_info->sb->s_id, buf->start,
332 				val, found, btrfs_header_level(buf));
333 			if (result != (char *)&inline_result)
334 				kfree(result);
335 			return -EUCLEAN;
336 		}
337 	} else {
338 		write_extent_buffer(buf, result, 0, csum_size);
339 	}
340 	if (result != (char *)&inline_result)
341 		kfree(result);
342 	return 0;
343 }
344 
345 /*
346  * we can't consider a given block up to date unless the transid of the
347  * block matches the transid in the parent node's pointer.  This is how we
348  * detect blocks that either didn't get written at all or got written
349  * in the wrong place.
350  */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352 				 struct extent_buffer *eb, u64 parent_transid,
353 				 int atomic)
354 {
355 	struct extent_state *cached_state = NULL;
356 	int ret;
357 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358 
359 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360 		return 0;
361 
362 	if (atomic)
363 		return -EAGAIN;
364 
365 	if (need_lock) {
366 		btrfs_tree_read_lock(eb);
367 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368 	}
369 
370 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371 			 &cached_state);
372 	if (extent_buffer_uptodate(eb) &&
373 	    btrfs_header_generation(eb) == parent_transid) {
374 		ret = 0;
375 		goto out;
376 	}
377 	btrfs_err_rl(eb->fs_info,
378 		"parent transid verify failed on %llu wanted %llu found %llu",
379 			eb->start,
380 			parent_transid, btrfs_header_generation(eb));
381 	ret = 1;
382 
383 	/*
384 	 * Things reading via commit roots that don't have normal protection,
385 	 * like send, can have a really old block in cache that may point at a
386 	 * block that has been freed and re-allocated.  So don't clear uptodate
387 	 * if we find an eb that is under IO (dirty/writeback) because we could
388 	 * end up reading in the stale data and then writing it back out and
389 	 * making everybody very sad.
390 	 */
391 	if (!extent_buffer_under_io(eb))
392 		clear_extent_buffer_uptodate(eb);
393 out:
394 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395 			     &cached_state, GFP_NOFS);
396 	if (need_lock)
397 		btrfs_tree_read_unlock_blocking(eb);
398 	return ret;
399 }
400 
401 /*
402  * Return 0 if the superblock checksum type matches the checksum value of that
403  * algorithm. Pass the raw disk superblock data.
404  */
405 static int btrfs_check_super_csum(char *raw_disk_sb)
406 {
407 	struct btrfs_super_block *disk_sb =
408 		(struct btrfs_super_block *)raw_disk_sb;
409 	u16 csum_type = btrfs_super_csum_type(disk_sb);
410 	int ret = 0;
411 
412 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
413 		u32 crc = ~(u32)0;
414 		const int csum_size = sizeof(crc);
415 		char result[csum_size];
416 
417 		/*
418 		 * The super_block structure does not span the whole
419 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
420 		 * is filled with zeros and is included in the checksum.
421 		 */
422 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
423 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
424 		btrfs_csum_final(crc, result);
425 
426 		if (memcmp(raw_disk_sb, result, csum_size))
427 			ret = 1;
428 	}
429 
430 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
431 		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
432 				csum_type);
433 		ret = 1;
434 	}
435 
436 	return ret;
437 }
438 
439 /*
440  * helper to read a given tree block, doing retries as required when
441  * the checksums don't match and we have alternate mirrors to try.
442  */
443 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
444 					  struct extent_buffer *eb,
445 					  u64 start, u64 parent_transid)
446 {
447 	struct extent_io_tree *io_tree;
448 	int failed = 0;
449 	int ret;
450 	int num_copies = 0;
451 	int mirror_num = 0;
452 	int failed_mirror = 0;
453 
454 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
455 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
456 	while (1) {
457 		ret = read_extent_buffer_pages(io_tree, eb, start,
458 					       WAIT_COMPLETE,
459 					       btree_get_extent, mirror_num);
460 		if (!ret) {
461 			if (!verify_parent_transid(io_tree, eb,
462 						   parent_transid, 0))
463 				break;
464 			else
465 				ret = -EIO;
466 		}
467 
468 		/*
469 		 * This buffer's crc is fine, but its contents are corrupted, so
470 		 * there is no reason to read the other copies, they won't be
471 		 * any less wrong.
472 		 */
473 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474 			break;
475 
476 		num_copies = btrfs_num_copies(root->fs_info,
477 					      eb->start, eb->len);
478 		if (num_copies == 1)
479 			break;
480 
481 		if (!failed_mirror) {
482 			failed = 1;
483 			failed_mirror = eb->read_mirror;
484 		}
485 
486 		mirror_num++;
487 		if (mirror_num == failed_mirror)
488 			mirror_num++;
489 
490 		if (mirror_num > num_copies)
491 			break;
492 	}
493 
494 	if (failed && !ret && failed_mirror)
495 		repair_eb_io_failure(root, eb, failed_mirror);
496 
497 	return ret;
498 }
499 
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504 
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507 	u64 start = page_offset(page);
508 	u64 found_start;
509 	struct extent_buffer *eb;
510 
511 	eb = (struct extent_buffer *)page->private;
512 	if (page != eb->pages[0])
513 		return 0;
514 
515 	found_start = btrfs_header_bytenr(eb);
516 	/*
517 	 * Please do not consolidate these warnings into a single if.
518 	 * It is useful to know what went wrong.
519 	 */
520 	if (WARN_ON(found_start != start))
521 		return -EUCLEAN;
522 	if (WARN_ON(!PageUptodate(page)))
523 		return -EUCLEAN;
524 
525 	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527 
528 	return csum_tree_block(fs_info, eb, 0);
529 }
530 
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532 				 struct extent_buffer *eb)
533 {
534 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535 	u8 fsid[BTRFS_UUID_SIZE];
536 	int ret = 1;
537 
538 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539 	while (fs_devices) {
540 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541 			ret = 0;
542 			break;
543 		}
544 		fs_devices = fs_devices->seed;
545 	}
546 	return ret;
547 }
548 
549 #define CORRUPT(reason, eb, root, slot)				\
550 	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
551 		   "root=%llu, slot=%d", reason,			\
552 	       btrfs_header_bytenr(eb),	root->objectid, slot)
553 
554 static noinline int check_leaf(struct btrfs_root *root,
555 			       struct extent_buffer *leaf)
556 {
557 	struct btrfs_key key;
558 	struct btrfs_key leaf_key;
559 	u32 nritems = btrfs_header_nritems(leaf);
560 	int slot;
561 
562 	if (nritems == 0)
563 		return 0;
564 
565 	/* Check the 0 item */
566 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
567 	    BTRFS_LEAF_DATA_SIZE(root)) {
568 		CORRUPT("invalid item offset size pair", leaf, root, 0);
569 		return -EIO;
570 	}
571 
572 	/*
573 	 * Check to make sure each items keys are in the correct order and their
574 	 * offsets make sense.  We only have to loop through nritems-1 because
575 	 * we check the current slot against the next slot, which verifies the
576 	 * next slot's offset+size makes sense and that the current's slot
577 	 * offset is correct.
578 	 */
579 	for (slot = 0; slot < nritems - 1; slot++) {
580 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
581 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
582 
583 		/* Make sure the keys are in the right order */
584 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
585 			CORRUPT("bad key order", leaf, root, slot);
586 			return -EIO;
587 		}
588 
589 		/*
590 		 * Make sure the offset and ends are right, remember that the
591 		 * item data starts at the end of the leaf and grows towards the
592 		 * front.
593 		 */
594 		if (btrfs_item_offset_nr(leaf, slot) !=
595 			btrfs_item_end_nr(leaf, slot + 1)) {
596 			CORRUPT("slot offset bad", leaf, root, slot);
597 			return -EIO;
598 		}
599 
600 		/*
601 		 * Check to make sure that we don't point outside of the leaf,
602 		 * just in case all the items are consistent to each other, but
603 		 * all point outside of the leaf.
604 		 */
605 		if (btrfs_item_end_nr(leaf, slot) >
606 		    BTRFS_LEAF_DATA_SIZE(root)) {
607 			CORRUPT("slot end outside of leaf", leaf, root, slot);
608 			return -EIO;
609 		}
610 	}
611 
612 	return 0;
613 }
614 
615 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
616 				      u64 phy_offset, struct page *page,
617 				      u64 start, u64 end, int mirror)
618 {
619 	u64 found_start;
620 	int found_level;
621 	struct extent_buffer *eb;
622 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
623 	struct btrfs_fs_info *fs_info = root->fs_info;
624 	int ret = 0;
625 	int reads_done;
626 
627 	if (!page->private)
628 		goto out;
629 
630 	eb = (struct extent_buffer *)page->private;
631 
632 	/* the pending IO might have been the only thing that kept this buffer
633 	 * in memory.  Make sure we have a ref for all this other checks
634 	 */
635 	extent_buffer_get(eb);
636 
637 	reads_done = atomic_dec_and_test(&eb->io_pages);
638 	if (!reads_done)
639 		goto err;
640 
641 	eb->read_mirror = mirror;
642 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
643 		ret = -EIO;
644 		goto err;
645 	}
646 
647 	found_start = btrfs_header_bytenr(eb);
648 	if (found_start != eb->start) {
649 		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
650 			     found_start, eb->start);
651 		ret = -EIO;
652 		goto err;
653 	}
654 	if (check_tree_block_fsid(fs_info, eb)) {
655 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
656 			     eb->start);
657 		ret = -EIO;
658 		goto err;
659 	}
660 	found_level = btrfs_header_level(eb);
661 	if (found_level >= BTRFS_MAX_LEVEL) {
662 		btrfs_err(fs_info, "bad tree block level %d",
663 			  (int)btrfs_header_level(eb));
664 		ret = -EIO;
665 		goto err;
666 	}
667 
668 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
669 				       eb, found_level);
670 
671 	ret = csum_tree_block(fs_info, eb, 1);
672 	if (ret)
673 		goto err;
674 
675 	/*
676 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
677 	 * that we don't try and read the other copies of this block, just
678 	 * return -EIO.
679 	 */
680 	if (found_level == 0 && check_leaf(root, eb)) {
681 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
682 		ret = -EIO;
683 	}
684 
685 	if (!ret)
686 		set_extent_buffer_uptodate(eb);
687 err:
688 	if (reads_done &&
689 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
690 		btree_readahead_hook(fs_info, eb, eb->start, ret);
691 
692 	if (ret) {
693 		/*
694 		 * our io error hook is going to dec the io pages
695 		 * again, we have to make sure it has something
696 		 * to decrement
697 		 */
698 		atomic_inc(&eb->io_pages);
699 		clear_extent_buffer_uptodate(eb);
700 	}
701 	free_extent_buffer(eb);
702 out:
703 	return ret;
704 }
705 
706 static int btree_io_failed_hook(struct page *page, int failed_mirror)
707 {
708 	struct extent_buffer *eb;
709 
710 	eb = (struct extent_buffer *)page->private;
711 	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
712 	eb->read_mirror = failed_mirror;
713 	atomic_dec(&eb->io_pages);
714 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
715 		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
716 	return -EIO;	/* we fixed nothing */
717 }
718 
719 static void end_workqueue_bio(struct bio *bio)
720 {
721 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
722 	struct btrfs_fs_info *fs_info;
723 	struct btrfs_workqueue *wq;
724 	btrfs_work_func_t func;
725 
726 	fs_info = end_io_wq->info;
727 	end_io_wq->error = bio->bi_error;
728 
729 	if (bio_op(bio) == REQ_OP_WRITE) {
730 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
731 			wq = fs_info->endio_meta_write_workers;
732 			func = btrfs_endio_meta_write_helper;
733 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
734 			wq = fs_info->endio_freespace_worker;
735 			func = btrfs_freespace_write_helper;
736 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
737 			wq = fs_info->endio_raid56_workers;
738 			func = btrfs_endio_raid56_helper;
739 		} else {
740 			wq = fs_info->endio_write_workers;
741 			func = btrfs_endio_write_helper;
742 		}
743 	} else {
744 		if (unlikely(end_io_wq->metadata ==
745 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
746 			wq = fs_info->endio_repair_workers;
747 			func = btrfs_endio_repair_helper;
748 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
749 			wq = fs_info->endio_raid56_workers;
750 			func = btrfs_endio_raid56_helper;
751 		} else if (end_io_wq->metadata) {
752 			wq = fs_info->endio_meta_workers;
753 			func = btrfs_endio_meta_helper;
754 		} else {
755 			wq = fs_info->endio_workers;
756 			func = btrfs_endio_helper;
757 		}
758 	}
759 
760 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
761 	btrfs_queue_work(wq, &end_io_wq->work);
762 }
763 
764 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
765 			enum btrfs_wq_endio_type metadata)
766 {
767 	struct btrfs_end_io_wq *end_io_wq;
768 
769 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
770 	if (!end_io_wq)
771 		return -ENOMEM;
772 
773 	end_io_wq->private = bio->bi_private;
774 	end_io_wq->end_io = bio->bi_end_io;
775 	end_io_wq->info = info;
776 	end_io_wq->error = 0;
777 	end_io_wq->bio = bio;
778 	end_io_wq->metadata = metadata;
779 
780 	bio->bi_private = end_io_wq;
781 	bio->bi_end_io = end_workqueue_bio;
782 	return 0;
783 }
784 
785 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
786 {
787 	unsigned long limit = min_t(unsigned long,
788 				    info->thread_pool_size,
789 				    info->fs_devices->open_devices);
790 	return 256 * limit;
791 }
792 
793 static void run_one_async_start(struct btrfs_work *work)
794 {
795 	struct async_submit_bio *async;
796 	int ret;
797 
798 	async = container_of(work, struct  async_submit_bio, work);
799 	ret = async->submit_bio_start(async->inode, async->bio,
800 				      async->mirror_num, async->bio_flags,
801 				      async->bio_offset);
802 	if (ret)
803 		async->error = ret;
804 }
805 
806 static void run_one_async_done(struct btrfs_work *work)
807 {
808 	struct btrfs_fs_info *fs_info;
809 	struct async_submit_bio *async;
810 	int limit;
811 
812 	async = container_of(work, struct  async_submit_bio, work);
813 	fs_info = BTRFS_I(async->inode)->root->fs_info;
814 
815 	limit = btrfs_async_submit_limit(fs_info);
816 	limit = limit * 2 / 3;
817 
818 	/*
819 	 * atomic_dec_return implies a barrier for waitqueue_active
820 	 */
821 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
822 	    waitqueue_active(&fs_info->async_submit_wait))
823 		wake_up(&fs_info->async_submit_wait);
824 
825 	/* If an error occurred we just want to clean up the bio and move on */
826 	if (async->error) {
827 		async->bio->bi_error = async->error;
828 		bio_endio(async->bio);
829 		return;
830 	}
831 
832 	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
833 			       async->bio_flags, async->bio_offset);
834 }
835 
836 static void run_one_async_free(struct btrfs_work *work)
837 {
838 	struct async_submit_bio *async;
839 
840 	async = container_of(work, struct  async_submit_bio, work);
841 	kfree(async);
842 }
843 
844 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
845 			struct bio *bio, int mirror_num,
846 			unsigned long bio_flags,
847 			u64 bio_offset,
848 			extent_submit_bio_hook_t *submit_bio_start,
849 			extent_submit_bio_hook_t *submit_bio_done)
850 {
851 	struct async_submit_bio *async;
852 
853 	async = kmalloc(sizeof(*async), GFP_NOFS);
854 	if (!async)
855 		return -ENOMEM;
856 
857 	async->inode = inode;
858 	async->bio = bio;
859 	async->mirror_num = mirror_num;
860 	async->submit_bio_start = submit_bio_start;
861 	async->submit_bio_done = submit_bio_done;
862 
863 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
864 			run_one_async_done, run_one_async_free);
865 
866 	async->bio_flags = bio_flags;
867 	async->bio_offset = bio_offset;
868 
869 	async->error = 0;
870 
871 	atomic_inc(&fs_info->nr_async_submits);
872 
873 	if (bio->bi_rw & REQ_SYNC)
874 		btrfs_set_work_high_priority(&async->work);
875 
876 	btrfs_queue_work(fs_info->workers, &async->work);
877 
878 	while (atomic_read(&fs_info->async_submit_draining) &&
879 	      atomic_read(&fs_info->nr_async_submits)) {
880 		wait_event(fs_info->async_submit_wait,
881 			   (atomic_read(&fs_info->nr_async_submits) == 0));
882 	}
883 
884 	return 0;
885 }
886 
887 static int btree_csum_one_bio(struct bio *bio)
888 {
889 	struct bio_vec *bvec;
890 	struct btrfs_root *root;
891 	int i, ret = 0;
892 
893 	bio_for_each_segment_all(bvec, bio, i) {
894 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
895 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
896 		if (ret)
897 			break;
898 	}
899 
900 	return ret;
901 }
902 
903 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
904 				    int mirror_num, unsigned long bio_flags,
905 				    u64 bio_offset)
906 {
907 	/*
908 	 * when we're called for a write, we're already in the async
909 	 * submission context.  Just jump into btrfs_map_bio
910 	 */
911 	return btree_csum_one_bio(bio);
912 }
913 
914 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
915 				 int mirror_num, unsigned long bio_flags,
916 				 u64 bio_offset)
917 {
918 	int ret;
919 
920 	/*
921 	 * when we're called for a write, we're already in the async
922 	 * submission context.  Just jump into btrfs_map_bio
923 	 */
924 	ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
925 	if (ret) {
926 		bio->bi_error = ret;
927 		bio_endio(bio);
928 	}
929 	return ret;
930 }
931 
932 static int check_async_write(struct inode *inode, unsigned long bio_flags)
933 {
934 	if (bio_flags & EXTENT_BIO_TREE_LOG)
935 		return 0;
936 #ifdef CONFIG_X86
937 	if (static_cpu_has(X86_FEATURE_XMM4_2))
938 		return 0;
939 #endif
940 	return 1;
941 }
942 
943 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
944 				 int mirror_num, unsigned long bio_flags,
945 				 u64 bio_offset)
946 {
947 	int async = check_async_write(inode, bio_flags);
948 	int ret;
949 
950 	if (bio_op(bio) != REQ_OP_WRITE) {
951 		/*
952 		 * called for a read, do the setup so that checksum validation
953 		 * can happen in the async kernel threads
954 		 */
955 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
956 					  bio, BTRFS_WQ_ENDIO_METADATA);
957 		if (ret)
958 			goto out_w_error;
959 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
960 	} else if (!async) {
961 		ret = btree_csum_one_bio(bio);
962 		if (ret)
963 			goto out_w_error;
964 		ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
965 	} else {
966 		/*
967 		 * kthread helpers are used to submit writes so that
968 		 * checksumming can happen in parallel across all CPUs
969 		 */
970 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
971 					  inode, bio, mirror_num, 0,
972 					  bio_offset,
973 					  __btree_submit_bio_start,
974 					  __btree_submit_bio_done);
975 	}
976 
977 	if (ret)
978 		goto out_w_error;
979 	return 0;
980 
981 out_w_error:
982 	bio->bi_error = ret;
983 	bio_endio(bio);
984 	return ret;
985 }
986 
987 #ifdef CONFIG_MIGRATION
988 static int btree_migratepage(struct address_space *mapping,
989 			struct page *newpage, struct page *page,
990 			enum migrate_mode mode)
991 {
992 	/*
993 	 * we can't safely write a btree page from here,
994 	 * we haven't done the locking hook
995 	 */
996 	if (PageDirty(page))
997 		return -EAGAIN;
998 	/*
999 	 * Buffers may be managed in a filesystem specific way.
1000 	 * We must have no buffers or drop them.
1001 	 */
1002 	if (page_has_private(page) &&
1003 	    !try_to_release_page(page, GFP_KERNEL))
1004 		return -EAGAIN;
1005 	return migrate_page(mapping, newpage, page, mode);
1006 }
1007 #endif
1008 
1009 
1010 static int btree_writepages(struct address_space *mapping,
1011 			    struct writeback_control *wbc)
1012 {
1013 	struct btrfs_fs_info *fs_info;
1014 	int ret;
1015 
1016 	if (wbc->sync_mode == WB_SYNC_NONE) {
1017 
1018 		if (wbc->for_kupdate)
1019 			return 0;
1020 
1021 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1022 		/* this is a bit racy, but that's ok */
1023 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1024 					     BTRFS_DIRTY_METADATA_THRESH);
1025 		if (ret < 0)
1026 			return 0;
1027 	}
1028 	return btree_write_cache_pages(mapping, wbc);
1029 }
1030 
1031 static int btree_readpage(struct file *file, struct page *page)
1032 {
1033 	struct extent_io_tree *tree;
1034 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1035 	return extent_read_full_page(tree, page, btree_get_extent, 0);
1036 }
1037 
1038 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1039 {
1040 	if (PageWriteback(page) || PageDirty(page))
1041 		return 0;
1042 
1043 	return try_release_extent_buffer(page);
1044 }
1045 
1046 static void btree_invalidatepage(struct page *page, unsigned int offset,
1047 				 unsigned int length)
1048 {
1049 	struct extent_io_tree *tree;
1050 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1051 	extent_invalidatepage(tree, page, offset);
1052 	btree_releasepage(page, GFP_NOFS);
1053 	if (PagePrivate(page)) {
1054 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1055 			   "page private not zero on page %llu",
1056 			   (unsigned long long)page_offset(page));
1057 		ClearPagePrivate(page);
1058 		set_page_private(page, 0);
1059 		put_page(page);
1060 	}
1061 }
1062 
1063 static int btree_set_page_dirty(struct page *page)
1064 {
1065 #ifdef DEBUG
1066 	struct extent_buffer *eb;
1067 
1068 	BUG_ON(!PagePrivate(page));
1069 	eb = (struct extent_buffer *)page->private;
1070 	BUG_ON(!eb);
1071 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1072 	BUG_ON(!atomic_read(&eb->refs));
1073 	btrfs_assert_tree_locked(eb);
1074 #endif
1075 	return __set_page_dirty_nobuffers(page);
1076 }
1077 
1078 static const struct address_space_operations btree_aops = {
1079 	.readpage	= btree_readpage,
1080 	.writepages	= btree_writepages,
1081 	.releasepage	= btree_releasepage,
1082 	.invalidatepage = btree_invalidatepage,
1083 #ifdef CONFIG_MIGRATION
1084 	.migratepage	= btree_migratepage,
1085 #endif
1086 	.set_page_dirty = btree_set_page_dirty,
1087 };
1088 
1089 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1090 {
1091 	struct extent_buffer *buf = NULL;
1092 	struct inode *btree_inode = root->fs_info->btree_inode;
1093 
1094 	buf = btrfs_find_create_tree_block(root, bytenr);
1095 	if (IS_ERR(buf))
1096 		return;
1097 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1098 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1099 	free_extent_buffer(buf);
1100 }
1101 
1102 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1103 			 int mirror_num, struct extent_buffer **eb)
1104 {
1105 	struct extent_buffer *buf = NULL;
1106 	struct inode *btree_inode = root->fs_info->btree_inode;
1107 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1108 	int ret;
1109 
1110 	buf = btrfs_find_create_tree_block(root, bytenr);
1111 	if (IS_ERR(buf))
1112 		return 0;
1113 
1114 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1115 
1116 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1117 				       btree_get_extent, mirror_num);
1118 	if (ret) {
1119 		free_extent_buffer(buf);
1120 		return ret;
1121 	}
1122 
1123 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1124 		free_extent_buffer(buf);
1125 		return -EIO;
1126 	} else if (extent_buffer_uptodate(buf)) {
1127 		*eb = buf;
1128 	} else {
1129 		free_extent_buffer(buf);
1130 	}
1131 	return 0;
1132 }
1133 
1134 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1135 					    u64 bytenr)
1136 {
1137 	return find_extent_buffer(fs_info, bytenr);
1138 }
1139 
1140 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1141 						 u64 bytenr)
1142 {
1143 	if (btrfs_test_is_dummy_root(root))
1144 		return alloc_test_extent_buffer(root->fs_info, bytenr,
1145 				root->nodesize);
1146 	return alloc_extent_buffer(root->fs_info, bytenr);
1147 }
1148 
1149 
1150 int btrfs_write_tree_block(struct extent_buffer *buf)
1151 {
1152 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1153 					buf->start + buf->len - 1);
1154 }
1155 
1156 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1157 {
1158 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1159 				       buf->start, buf->start + buf->len - 1);
1160 }
1161 
1162 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1163 				      u64 parent_transid)
1164 {
1165 	struct extent_buffer *buf = NULL;
1166 	int ret;
1167 
1168 	buf = btrfs_find_create_tree_block(root, bytenr);
1169 	if (IS_ERR(buf))
1170 		return buf;
1171 
1172 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1173 	if (ret) {
1174 		free_extent_buffer(buf);
1175 		return ERR_PTR(ret);
1176 	}
1177 	return buf;
1178 
1179 }
1180 
1181 void clean_tree_block(struct btrfs_trans_handle *trans,
1182 		      struct btrfs_fs_info *fs_info,
1183 		      struct extent_buffer *buf)
1184 {
1185 	if (btrfs_header_generation(buf) ==
1186 	    fs_info->running_transaction->transid) {
1187 		btrfs_assert_tree_locked(buf);
1188 
1189 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1190 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1191 					     -buf->len,
1192 					     fs_info->dirty_metadata_batch);
1193 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1194 			btrfs_set_lock_blocking(buf);
1195 			clear_extent_buffer_dirty(buf);
1196 		}
1197 	}
1198 }
1199 
1200 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1201 {
1202 	struct btrfs_subvolume_writers *writers;
1203 	int ret;
1204 
1205 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1206 	if (!writers)
1207 		return ERR_PTR(-ENOMEM);
1208 
1209 	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1210 	if (ret < 0) {
1211 		kfree(writers);
1212 		return ERR_PTR(ret);
1213 	}
1214 
1215 	init_waitqueue_head(&writers->wait);
1216 	return writers;
1217 }
1218 
1219 static void
1220 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1221 {
1222 	percpu_counter_destroy(&writers->counter);
1223 	kfree(writers);
1224 }
1225 
1226 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1227 			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1228 			 u64 objectid)
1229 {
1230 	root->node = NULL;
1231 	root->commit_root = NULL;
1232 	root->sectorsize = sectorsize;
1233 	root->nodesize = nodesize;
1234 	root->stripesize = stripesize;
1235 	root->state = 0;
1236 	root->orphan_cleanup_state = 0;
1237 
1238 	root->objectid = objectid;
1239 	root->last_trans = 0;
1240 	root->highest_objectid = 0;
1241 	root->nr_delalloc_inodes = 0;
1242 	root->nr_ordered_extents = 0;
1243 	root->name = NULL;
1244 	root->inode_tree = RB_ROOT;
1245 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1246 	root->block_rsv = NULL;
1247 	root->orphan_block_rsv = NULL;
1248 
1249 	INIT_LIST_HEAD(&root->dirty_list);
1250 	INIT_LIST_HEAD(&root->root_list);
1251 	INIT_LIST_HEAD(&root->delalloc_inodes);
1252 	INIT_LIST_HEAD(&root->delalloc_root);
1253 	INIT_LIST_HEAD(&root->ordered_extents);
1254 	INIT_LIST_HEAD(&root->ordered_root);
1255 	INIT_LIST_HEAD(&root->logged_list[0]);
1256 	INIT_LIST_HEAD(&root->logged_list[1]);
1257 	spin_lock_init(&root->orphan_lock);
1258 	spin_lock_init(&root->inode_lock);
1259 	spin_lock_init(&root->delalloc_lock);
1260 	spin_lock_init(&root->ordered_extent_lock);
1261 	spin_lock_init(&root->accounting_lock);
1262 	spin_lock_init(&root->log_extents_lock[0]);
1263 	spin_lock_init(&root->log_extents_lock[1]);
1264 	mutex_init(&root->objectid_mutex);
1265 	mutex_init(&root->log_mutex);
1266 	mutex_init(&root->ordered_extent_mutex);
1267 	mutex_init(&root->delalloc_mutex);
1268 	init_waitqueue_head(&root->log_writer_wait);
1269 	init_waitqueue_head(&root->log_commit_wait[0]);
1270 	init_waitqueue_head(&root->log_commit_wait[1]);
1271 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1272 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1273 	atomic_set(&root->log_commit[0], 0);
1274 	atomic_set(&root->log_commit[1], 0);
1275 	atomic_set(&root->log_writers, 0);
1276 	atomic_set(&root->log_batch, 0);
1277 	atomic_set(&root->orphan_inodes, 0);
1278 	atomic_set(&root->refs, 1);
1279 	atomic_set(&root->will_be_snapshoted, 0);
1280 	atomic_set(&root->qgroup_meta_rsv, 0);
1281 	root->log_transid = 0;
1282 	root->log_transid_committed = -1;
1283 	root->last_log_commit = 0;
1284 	if (fs_info)
1285 		extent_io_tree_init(&root->dirty_log_pages,
1286 				     fs_info->btree_inode->i_mapping);
1287 
1288 	memset(&root->root_key, 0, sizeof(root->root_key));
1289 	memset(&root->root_item, 0, sizeof(root->root_item));
1290 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1291 	if (fs_info)
1292 		root->defrag_trans_start = fs_info->generation;
1293 	else
1294 		root->defrag_trans_start = 0;
1295 	root->root_key.objectid = objectid;
1296 	root->anon_dev = 0;
1297 
1298 	spin_lock_init(&root->root_item_lock);
1299 }
1300 
1301 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1302 		gfp_t flags)
1303 {
1304 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1305 	if (root)
1306 		root->fs_info = fs_info;
1307 	return root;
1308 }
1309 
1310 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1311 /* Should only be used by the testing infrastructure */
1312 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
1313 {
1314 	struct btrfs_root *root;
1315 
1316 	root = btrfs_alloc_root(NULL, GFP_KERNEL);
1317 	if (!root)
1318 		return ERR_PTR(-ENOMEM);
1319 	/* We don't use the stripesize in selftest, set it as sectorsize */
1320 	__setup_root(nodesize, sectorsize, sectorsize, root, NULL,
1321 			BTRFS_ROOT_TREE_OBJECTID);
1322 	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1323 	root->alloc_bytenr = 0;
1324 
1325 	return root;
1326 }
1327 #endif
1328 
1329 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1330 				     struct btrfs_fs_info *fs_info,
1331 				     u64 objectid)
1332 {
1333 	struct extent_buffer *leaf;
1334 	struct btrfs_root *tree_root = fs_info->tree_root;
1335 	struct btrfs_root *root;
1336 	struct btrfs_key key;
1337 	int ret = 0;
1338 	uuid_le uuid;
1339 
1340 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1341 	if (!root)
1342 		return ERR_PTR(-ENOMEM);
1343 
1344 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1345 		tree_root->stripesize, root, fs_info, objectid);
1346 	root->root_key.objectid = objectid;
1347 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1348 	root->root_key.offset = 0;
1349 
1350 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1351 	if (IS_ERR(leaf)) {
1352 		ret = PTR_ERR(leaf);
1353 		leaf = NULL;
1354 		goto fail;
1355 	}
1356 
1357 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1358 	btrfs_set_header_bytenr(leaf, leaf->start);
1359 	btrfs_set_header_generation(leaf, trans->transid);
1360 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1361 	btrfs_set_header_owner(leaf, objectid);
1362 	root->node = leaf;
1363 
1364 	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1365 			    BTRFS_FSID_SIZE);
1366 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1367 			    btrfs_header_chunk_tree_uuid(leaf),
1368 			    BTRFS_UUID_SIZE);
1369 	btrfs_mark_buffer_dirty(leaf);
1370 
1371 	root->commit_root = btrfs_root_node(root);
1372 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1373 
1374 	root->root_item.flags = 0;
1375 	root->root_item.byte_limit = 0;
1376 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1377 	btrfs_set_root_generation(&root->root_item, trans->transid);
1378 	btrfs_set_root_level(&root->root_item, 0);
1379 	btrfs_set_root_refs(&root->root_item, 1);
1380 	btrfs_set_root_used(&root->root_item, leaf->len);
1381 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1382 	btrfs_set_root_dirid(&root->root_item, 0);
1383 	uuid_le_gen(&uuid);
1384 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1385 	root->root_item.drop_level = 0;
1386 
1387 	key.objectid = objectid;
1388 	key.type = BTRFS_ROOT_ITEM_KEY;
1389 	key.offset = 0;
1390 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1391 	if (ret)
1392 		goto fail;
1393 
1394 	btrfs_tree_unlock(leaf);
1395 
1396 	return root;
1397 
1398 fail:
1399 	if (leaf) {
1400 		btrfs_tree_unlock(leaf);
1401 		free_extent_buffer(root->commit_root);
1402 		free_extent_buffer(leaf);
1403 	}
1404 	kfree(root);
1405 
1406 	return ERR_PTR(ret);
1407 }
1408 
1409 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1410 					 struct btrfs_fs_info *fs_info)
1411 {
1412 	struct btrfs_root *root;
1413 	struct btrfs_root *tree_root = fs_info->tree_root;
1414 	struct extent_buffer *leaf;
1415 
1416 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1417 	if (!root)
1418 		return ERR_PTR(-ENOMEM);
1419 
1420 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1421 		     tree_root->stripesize, root, fs_info,
1422 		     BTRFS_TREE_LOG_OBJECTID);
1423 
1424 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1425 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1426 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1427 
1428 	/*
1429 	 * DON'T set REF_COWS for log trees
1430 	 *
1431 	 * log trees do not get reference counted because they go away
1432 	 * before a real commit is actually done.  They do store pointers
1433 	 * to file data extents, and those reference counts still get
1434 	 * updated (along with back refs to the log tree).
1435 	 */
1436 
1437 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1438 			NULL, 0, 0, 0);
1439 	if (IS_ERR(leaf)) {
1440 		kfree(root);
1441 		return ERR_CAST(leaf);
1442 	}
1443 
1444 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1445 	btrfs_set_header_bytenr(leaf, leaf->start);
1446 	btrfs_set_header_generation(leaf, trans->transid);
1447 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1448 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1449 	root->node = leaf;
1450 
1451 	write_extent_buffer(root->node, root->fs_info->fsid,
1452 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1453 	btrfs_mark_buffer_dirty(root->node);
1454 	btrfs_tree_unlock(root->node);
1455 	return root;
1456 }
1457 
1458 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1459 			     struct btrfs_fs_info *fs_info)
1460 {
1461 	struct btrfs_root *log_root;
1462 
1463 	log_root = alloc_log_tree(trans, fs_info);
1464 	if (IS_ERR(log_root))
1465 		return PTR_ERR(log_root);
1466 	WARN_ON(fs_info->log_root_tree);
1467 	fs_info->log_root_tree = log_root;
1468 	return 0;
1469 }
1470 
1471 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1472 		       struct btrfs_root *root)
1473 {
1474 	struct btrfs_root *log_root;
1475 	struct btrfs_inode_item *inode_item;
1476 
1477 	log_root = alloc_log_tree(trans, root->fs_info);
1478 	if (IS_ERR(log_root))
1479 		return PTR_ERR(log_root);
1480 
1481 	log_root->last_trans = trans->transid;
1482 	log_root->root_key.offset = root->root_key.objectid;
1483 
1484 	inode_item = &log_root->root_item.inode;
1485 	btrfs_set_stack_inode_generation(inode_item, 1);
1486 	btrfs_set_stack_inode_size(inode_item, 3);
1487 	btrfs_set_stack_inode_nlink(inode_item, 1);
1488 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1489 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1490 
1491 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1492 
1493 	WARN_ON(root->log_root);
1494 	root->log_root = log_root;
1495 	root->log_transid = 0;
1496 	root->log_transid_committed = -1;
1497 	root->last_log_commit = 0;
1498 	return 0;
1499 }
1500 
1501 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1502 					       struct btrfs_key *key)
1503 {
1504 	struct btrfs_root *root;
1505 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1506 	struct btrfs_path *path;
1507 	u64 generation;
1508 	int ret;
1509 
1510 	path = btrfs_alloc_path();
1511 	if (!path)
1512 		return ERR_PTR(-ENOMEM);
1513 
1514 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1515 	if (!root) {
1516 		ret = -ENOMEM;
1517 		goto alloc_fail;
1518 	}
1519 
1520 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1521 		tree_root->stripesize, root, fs_info, key->objectid);
1522 
1523 	ret = btrfs_find_root(tree_root, key, path,
1524 			      &root->root_item, &root->root_key);
1525 	if (ret) {
1526 		if (ret > 0)
1527 			ret = -ENOENT;
1528 		goto find_fail;
1529 	}
1530 
1531 	generation = btrfs_root_generation(&root->root_item);
1532 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1533 				     generation);
1534 	if (IS_ERR(root->node)) {
1535 		ret = PTR_ERR(root->node);
1536 		goto find_fail;
1537 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1538 		ret = -EIO;
1539 		free_extent_buffer(root->node);
1540 		goto find_fail;
1541 	}
1542 	root->commit_root = btrfs_root_node(root);
1543 out:
1544 	btrfs_free_path(path);
1545 	return root;
1546 
1547 find_fail:
1548 	kfree(root);
1549 alloc_fail:
1550 	root = ERR_PTR(ret);
1551 	goto out;
1552 }
1553 
1554 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1555 				      struct btrfs_key *location)
1556 {
1557 	struct btrfs_root *root;
1558 
1559 	root = btrfs_read_tree_root(tree_root, location);
1560 	if (IS_ERR(root))
1561 		return root;
1562 
1563 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1564 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1565 		btrfs_check_and_init_root_item(&root->root_item);
1566 	}
1567 
1568 	return root;
1569 }
1570 
1571 int btrfs_init_fs_root(struct btrfs_root *root)
1572 {
1573 	int ret;
1574 	struct btrfs_subvolume_writers *writers;
1575 
1576 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1577 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1578 					GFP_NOFS);
1579 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1580 		ret = -ENOMEM;
1581 		goto fail;
1582 	}
1583 
1584 	writers = btrfs_alloc_subvolume_writers();
1585 	if (IS_ERR(writers)) {
1586 		ret = PTR_ERR(writers);
1587 		goto fail;
1588 	}
1589 	root->subv_writers = writers;
1590 
1591 	btrfs_init_free_ino_ctl(root);
1592 	spin_lock_init(&root->ino_cache_lock);
1593 	init_waitqueue_head(&root->ino_cache_wait);
1594 
1595 	ret = get_anon_bdev(&root->anon_dev);
1596 	if (ret)
1597 		goto free_writers;
1598 
1599 	mutex_lock(&root->objectid_mutex);
1600 	ret = btrfs_find_highest_objectid(root,
1601 					&root->highest_objectid);
1602 	if (ret) {
1603 		mutex_unlock(&root->objectid_mutex);
1604 		goto free_root_dev;
1605 	}
1606 
1607 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1608 
1609 	mutex_unlock(&root->objectid_mutex);
1610 
1611 	return 0;
1612 
1613 free_root_dev:
1614 	free_anon_bdev(root->anon_dev);
1615 free_writers:
1616 	btrfs_free_subvolume_writers(root->subv_writers);
1617 fail:
1618 	kfree(root->free_ino_ctl);
1619 	kfree(root->free_ino_pinned);
1620 	return ret;
1621 }
1622 
1623 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1624 					       u64 root_id)
1625 {
1626 	struct btrfs_root *root;
1627 
1628 	spin_lock(&fs_info->fs_roots_radix_lock);
1629 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1630 				 (unsigned long)root_id);
1631 	spin_unlock(&fs_info->fs_roots_radix_lock);
1632 	return root;
1633 }
1634 
1635 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1636 			 struct btrfs_root *root)
1637 {
1638 	int ret;
1639 
1640 	ret = radix_tree_preload(GFP_NOFS);
1641 	if (ret)
1642 		return ret;
1643 
1644 	spin_lock(&fs_info->fs_roots_radix_lock);
1645 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1646 				(unsigned long)root->root_key.objectid,
1647 				root);
1648 	if (ret == 0)
1649 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1650 	spin_unlock(&fs_info->fs_roots_radix_lock);
1651 	radix_tree_preload_end();
1652 
1653 	return ret;
1654 }
1655 
1656 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1657 				     struct btrfs_key *location,
1658 				     bool check_ref)
1659 {
1660 	struct btrfs_root *root;
1661 	struct btrfs_path *path;
1662 	struct btrfs_key key;
1663 	int ret;
1664 
1665 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1666 		return fs_info->tree_root;
1667 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1668 		return fs_info->extent_root;
1669 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1670 		return fs_info->chunk_root;
1671 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1672 		return fs_info->dev_root;
1673 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1674 		return fs_info->csum_root;
1675 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1676 		return fs_info->quota_root ? fs_info->quota_root :
1677 					     ERR_PTR(-ENOENT);
1678 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1679 		return fs_info->uuid_root ? fs_info->uuid_root :
1680 					    ERR_PTR(-ENOENT);
1681 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1682 		return fs_info->free_space_root ? fs_info->free_space_root :
1683 						  ERR_PTR(-ENOENT);
1684 again:
1685 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1686 	if (root) {
1687 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1688 			return ERR_PTR(-ENOENT);
1689 		return root;
1690 	}
1691 
1692 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1693 	if (IS_ERR(root))
1694 		return root;
1695 
1696 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1697 		ret = -ENOENT;
1698 		goto fail;
1699 	}
1700 
1701 	ret = btrfs_init_fs_root(root);
1702 	if (ret)
1703 		goto fail;
1704 
1705 	path = btrfs_alloc_path();
1706 	if (!path) {
1707 		ret = -ENOMEM;
1708 		goto fail;
1709 	}
1710 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1711 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1712 	key.offset = location->objectid;
1713 
1714 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1715 	btrfs_free_path(path);
1716 	if (ret < 0)
1717 		goto fail;
1718 	if (ret == 0)
1719 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1720 
1721 	ret = btrfs_insert_fs_root(fs_info, root);
1722 	if (ret) {
1723 		if (ret == -EEXIST) {
1724 			free_fs_root(root);
1725 			goto again;
1726 		}
1727 		goto fail;
1728 	}
1729 	return root;
1730 fail:
1731 	free_fs_root(root);
1732 	return ERR_PTR(ret);
1733 }
1734 
1735 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1736 {
1737 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1738 	int ret = 0;
1739 	struct btrfs_device *device;
1740 	struct backing_dev_info *bdi;
1741 
1742 	rcu_read_lock();
1743 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1744 		if (!device->bdev)
1745 			continue;
1746 		bdi = blk_get_backing_dev_info(device->bdev);
1747 		if (bdi_congested(bdi, bdi_bits)) {
1748 			ret = 1;
1749 			break;
1750 		}
1751 	}
1752 	rcu_read_unlock();
1753 	return ret;
1754 }
1755 
1756 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1757 {
1758 	int err;
1759 
1760 	err = bdi_setup_and_register(bdi, "btrfs");
1761 	if (err)
1762 		return err;
1763 
1764 	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1765 	bdi->congested_fn	= btrfs_congested_fn;
1766 	bdi->congested_data	= info;
1767 	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1768 	return 0;
1769 }
1770 
1771 /*
1772  * called by the kthread helper functions to finally call the bio end_io
1773  * functions.  This is where read checksum verification actually happens
1774  */
1775 static void end_workqueue_fn(struct btrfs_work *work)
1776 {
1777 	struct bio *bio;
1778 	struct btrfs_end_io_wq *end_io_wq;
1779 
1780 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1781 	bio = end_io_wq->bio;
1782 
1783 	bio->bi_error = end_io_wq->error;
1784 	bio->bi_private = end_io_wq->private;
1785 	bio->bi_end_io = end_io_wq->end_io;
1786 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1787 	bio_endio(bio);
1788 }
1789 
1790 static int cleaner_kthread(void *arg)
1791 {
1792 	struct btrfs_root *root = arg;
1793 	int again;
1794 	struct btrfs_trans_handle *trans;
1795 
1796 	do {
1797 		again = 0;
1798 
1799 		/* Make the cleaner go to sleep early. */
1800 		if (btrfs_need_cleaner_sleep(root))
1801 			goto sleep;
1802 
1803 		/*
1804 		 * Do not do anything if we might cause open_ctree() to block
1805 		 * before we have finished mounting the filesystem.
1806 		 */
1807 		if (!root->fs_info->open)
1808 			goto sleep;
1809 
1810 		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1811 			goto sleep;
1812 
1813 		/*
1814 		 * Avoid the problem that we change the status of the fs
1815 		 * during the above check and trylock.
1816 		 */
1817 		if (btrfs_need_cleaner_sleep(root)) {
1818 			mutex_unlock(&root->fs_info->cleaner_mutex);
1819 			goto sleep;
1820 		}
1821 
1822 		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1823 		btrfs_run_delayed_iputs(root);
1824 		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1825 
1826 		again = btrfs_clean_one_deleted_snapshot(root);
1827 		mutex_unlock(&root->fs_info->cleaner_mutex);
1828 
1829 		/*
1830 		 * The defragger has dealt with the R/O remount and umount,
1831 		 * needn't do anything special here.
1832 		 */
1833 		btrfs_run_defrag_inodes(root->fs_info);
1834 
1835 		/*
1836 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1837 		 * with relocation (btrfs_relocate_chunk) and relocation
1838 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1839 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1840 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1841 		 * unused block groups.
1842 		 */
1843 		btrfs_delete_unused_bgs(root->fs_info);
1844 sleep:
1845 		if (!again) {
1846 			set_current_state(TASK_INTERRUPTIBLE);
1847 			if (!kthread_should_stop())
1848 				schedule();
1849 			__set_current_state(TASK_RUNNING);
1850 		}
1851 	} while (!kthread_should_stop());
1852 
1853 	/*
1854 	 * Transaction kthread is stopped before us and wakes us up.
1855 	 * However we might have started a new transaction and COWed some
1856 	 * tree blocks when deleting unused block groups for example. So
1857 	 * make sure we commit the transaction we started to have a clean
1858 	 * shutdown when evicting the btree inode - if it has dirty pages
1859 	 * when we do the final iput() on it, eviction will trigger a
1860 	 * writeback for it which will fail with null pointer dereferences
1861 	 * since work queues and other resources were already released and
1862 	 * destroyed by the time the iput/eviction/writeback is made.
1863 	 */
1864 	trans = btrfs_attach_transaction(root);
1865 	if (IS_ERR(trans)) {
1866 		if (PTR_ERR(trans) != -ENOENT)
1867 			btrfs_err(root->fs_info,
1868 				  "cleaner transaction attach returned %ld",
1869 				  PTR_ERR(trans));
1870 	} else {
1871 		int ret;
1872 
1873 		ret = btrfs_commit_transaction(trans, root);
1874 		if (ret)
1875 			btrfs_err(root->fs_info,
1876 				  "cleaner open transaction commit returned %d",
1877 				  ret);
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 static int transaction_kthread(void *arg)
1884 {
1885 	struct btrfs_root *root = arg;
1886 	struct btrfs_trans_handle *trans;
1887 	struct btrfs_transaction *cur;
1888 	u64 transid;
1889 	unsigned long now;
1890 	unsigned long delay;
1891 	bool cannot_commit;
1892 
1893 	do {
1894 		cannot_commit = false;
1895 		delay = HZ * root->fs_info->commit_interval;
1896 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1897 
1898 		spin_lock(&root->fs_info->trans_lock);
1899 		cur = root->fs_info->running_transaction;
1900 		if (!cur) {
1901 			spin_unlock(&root->fs_info->trans_lock);
1902 			goto sleep;
1903 		}
1904 
1905 		now = get_seconds();
1906 		if (cur->state < TRANS_STATE_BLOCKED &&
1907 		    (now < cur->start_time ||
1908 		     now - cur->start_time < root->fs_info->commit_interval)) {
1909 			spin_unlock(&root->fs_info->trans_lock);
1910 			delay = HZ * 5;
1911 			goto sleep;
1912 		}
1913 		transid = cur->transid;
1914 		spin_unlock(&root->fs_info->trans_lock);
1915 
1916 		/* If the file system is aborted, this will always fail. */
1917 		trans = btrfs_attach_transaction(root);
1918 		if (IS_ERR(trans)) {
1919 			if (PTR_ERR(trans) != -ENOENT)
1920 				cannot_commit = true;
1921 			goto sleep;
1922 		}
1923 		if (transid == trans->transid) {
1924 			btrfs_commit_transaction(trans, root);
1925 		} else {
1926 			btrfs_end_transaction(trans, root);
1927 		}
1928 sleep:
1929 		wake_up_process(root->fs_info->cleaner_kthread);
1930 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1931 
1932 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1933 				      &root->fs_info->fs_state)))
1934 			btrfs_cleanup_transaction(root);
1935 		set_current_state(TASK_INTERRUPTIBLE);
1936 		if (!kthread_should_stop() &&
1937 				(!btrfs_transaction_blocked(root->fs_info) ||
1938 				 cannot_commit))
1939 			schedule_timeout(delay);
1940 		__set_current_state(TASK_RUNNING);
1941 	} while (!kthread_should_stop());
1942 	return 0;
1943 }
1944 
1945 /*
1946  * this will find the highest generation in the array of
1947  * root backups.  The index of the highest array is returned,
1948  * or -1 if we can't find anything.
1949  *
1950  * We check to make sure the array is valid by comparing the
1951  * generation of the latest  root in the array with the generation
1952  * in the super block.  If they don't match we pitch it.
1953  */
1954 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1955 {
1956 	u64 cur;
1957 	int newest_index = -1;
1958 	struct btrfs_root_backup *root_backup;
1959 	int i;
1960 
1961 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1962 		root_backup = info->super_copy->super_roots + i;
1963 		cur = btrfs_backup_tree_root_gen(root_backup);
1964 		if (cur == newest_gen)
1965 			newest_index = i;
1966 	}
1967 
1968 	/* check to see if we actually wrapped around */
1969 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1970 		root_backup = info->super_copy->super_roots;
1971 		cur = btrfs_backup_tree_root_gen(root_backup);
1972 		if (cur == newest_gen)
1973 			newest_index = 0;
1974 	}
1975 	return newest_index;
1976 }
1977 
1978 
1979 /*
1980  * find the oldest backup so we know where to store new entries
1981  * in the backup array.  This will set the backup_root_index
1982  * field in the fs_info struct
1983  */
1984 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1985 				     u64 newest_gen)
1986 {
1987 	int newest_index = -1;
1988 
1989 	newest_index = find_newest_super_backup(info, newest_gen);
1990 	/* if there was garbage in there, just move along */
1991 	if (newest_index == -1) {
1992 		info->backup_root_index = 0;
1993 	} else {
1994 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1995 	}
1996 }
1997 
1998 /*
1999  * copy all the root pointers into the super backup array.
2000  * this will bump the backup pointer by one when it is
2001  * done
2002  */
2003 static void backup_super_roots(struct btrfs_fs_info *info)
2004 {
2005 	int next_backup;
2006 	struct btrfs_root_backup *root_backup;
2007 	int last_backup;
2008 
2009 	next_backup = info->backup_root_index;
2010 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2011 		BTRFS_NUM_BACKUP_ROOTS;
2012 
2013 	/*
2014 	 * just overwrite the last backup if we're at the same generation
2015 	 * this happens only at umount
2016 	 */
2017 	root_backup = info->super_for_commit->super_roots + last_backup;
2018 	if (btrfs_backup_tree_root_gen(root_backup) ==
2019 	    btrfs_header_generation(info->tree_root->node))
2020 		next_backup = last_backup;
2021 
2022 	root_backup = info->super_for_commit->super_roots + next_backup;
2023 
2024 	/*
2025 	 * make sure all of our padding and empty slots get zero filled
2026 	 * regardless of which ones we use today
2027 	 */
2028 	memset(root_backup, 0, sizeof(*root_backup));
2029 
2030 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2031 
2032 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2033 	btrfs_set_backup_tree_root_gen(root_backup,
2034 			       btrfs_header_generation(info->tree_root->node));
2035 
2036 	btrfs_set_backup_tree_root_level(root_backup,
2037 			       btrfs_header_level(info->tree_root->node));
2038 
2039 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2040 	btrfs_set_backup_chunk_root_gen(root_backup,
2041 			       btrfs_header_generation(info->chunk_root->node));
2042 	btrfs_set_backup_chunk_root_level(root_backup,
2043 			       btrfs_header_level(info->chunk_root->node));
2044 
2045 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2046 	btrfs_set_backup_extent_root_gen(root_backup,
2047 			       btrfs_header_generation(info->extent_root->node));
2048 	btrfs_set_backup_extent_root_level(root_backup,
2049 			       btrfs_header_level(info->extent_root->node));
2050 
2051 	/*
2052 	 * we might commit during log recovery, which happens before we set
2053 	 * the fs_root.  Make sure it is valid before we fill it in.
2054 	 */
2055 	if (info->fs_root && info->fs_root->node) {
2056 		btrfs_set_backup_fs_root(root_backup,
2057 					 info->fs_root->node->start);
2058 		btrfs_set_backup_fs_root_gen(root_backup,
2059 			       btrfs_header_generation(info->fs_root->node));
2060 		btrfs_set_backup_fs_root_level(root_backup,
2061 			       btrfs_header_level(info->fs_root->node));
2062 	}
2063 
2064 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2065 	btrfs_set_backup_dev_root_gen(root_backup,
2066 			       btrfs_header_generation(info->dev_root->node));
2067 	btrfs_set_backup_dev_root_level(root_backup,
2068 				       btrfs_header_level(info->dev_root->node));
2069 
2070 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2071 	btrfs_set_backup_csum_root_gen(root_backup,
2072 			       btrfs_header_generation(info->csum_root->node));
2073 	btrfs_set_backup_csum_root_level(root_backup,
2074 			       btrfs_header_level(info->csum_root->node));
2075 
2076 	btrfs_set_backup_total_bytes(root_backup,
2077 			     btrfs_super_total_bytes(info->super_copy));
2078 	btrfs_set_backup_bytes_used(root_backup,
2079 			     btrfs_super_bytes_used(info->super_copy));
2080 	btrfs_set_backup_num_devices(root_backup,
2081 			     btrfs_super_num_devices(info->super_copy));
2082 
2083 	/*
2084 	 * if we don't copy this out to the super_copy, it won't get remembered
2085 	 * for the next commit
2086 	 */
2087 	memcpy(&info->super_copy->super_roots,
2088 	       &info->super_for_commit->super_roots,
2089 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2090 }
2091 
2092 /*
2093  * this copies info out of the root backup array and back into
2094  * the in-memory super block.  It is meant to help iterate through
2095  * the array, so you send it the number of backups you've already
2096  * tried and the last backup index you used.
2097  *
2098  * this returns -1 when it has tried all the backups
2099  */
2100 static noinline int next_root_backup(struct btrfs_fs_info *info,
2101 				     struct btrfs_super_block *super,
2102 				     int *num_backups_tried, int *backup_index)
2103 {
2104 	struct btrfs_root_backup *root_backup;
2105 	int newest = *backup_index;
2106 
2107 	if (*num_backups_tried == 0) {
2108 		u64 gen = btrfs_super_generation(super);
2109 
2110 		newest = find_newest_super_backup(info, gen);
2111 		if (newest == -1)
2112 			return -1;
2113 
2114 		*backup_index = newest;
2115 		*num_backups_tried = 1;
2116 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2117 		/* we've tried all the backups, all done */
2118 		return -1;
2119 	} else {
2120 		/* jump to the next oldest backup */
2121 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2122 			BTRFS_NUM_BACKUP_ROOTS;
2123 		*backup_index = newest;
2124 		*num_backups_tried += 1;
2125 	}
2126 	root_backup = super->super_roots + newest;
2127 
2128 	btrfs_set_super_generation(super,
2129 				   btrfs_backup_tree_root_gen(root_backup));
2130 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2131 	btrfs_set_super_root_level(super,
2132 				   btrfs_backup_tree_root_level(root_backup));
2133 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2134 
2135 	/*
2136 	 * fixme: the total bytes and num_devices need to match or we should
2137 	 * need a fsck
2138 	 */
2139 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2140 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2141 	return 0;
2142 }
2143 
2144 /* helper to cleanup workers */
2145 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2146 {
2147 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2148 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2149 	btrfs_destroy_workqueue(fs_info->workers);
2150 	btrfs_destroy_workqueue(fs_info->endio_workers);
2151 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2152 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2153 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2154 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2155 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2156 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2157 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2158 	btrfs_destroy_workqueue(fs_info->submit_workers);
2159 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2160 	btrfs_destroy_workqueue(fs_info->caching_workers);
2161 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2162 	btrfs_destroy_workqueue(fs_info->flush_workers);
2163 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2164 	btrfs_destroy_workqueue(fs_info->extent_workers);
2165 }
2166 
2167 static void free_root_extent_buffers(struct btrfs_root *root)
2168 {
2169 	if (root) {
2170 		free_extent_buffer(root->node);
2171 		free_extent_buffer(root->commit_root);
2172 		root->node = NULL;
2173 		root->commit_root = NULL;
2174 	}
2175 }
2176 
2177 /* helper to cleanup tree roots */
2178 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2179 {
2180 	free_root_extent_buffers(info->tree_root);
2181 
2182 	free_root_extent_buffers(info->dev_root);
2183 	free_root_extent_buffers(info->extent_root);
2184 	free_root_extent_buffers(info->csum_root);
2185 	free_root_extent_buffers(info->quota_root);
2186 	free_root_extent_buffers(info->uuid_root);
2187 	if (chunk_root)
2188 		free_root_extent_buffers(info->chunk_root);
2189 	free_root_extent_buffers(info->free_space_root);
2190 }
2191 
2192 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2193 {
2194 	int ret;
2195 	struct btrfs_root *gang[8];
2196 	int i;
2197 
2198 	while (!list_empty(&fs_info->dead_roots)) {
2199 		gang[0] = list_entry(fs_info->dead_roots.next,
2200 				     struct btrfs_root, root_list);
2201 		list_del(&gang[0]->root_list);
2202 
2203 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2204 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2205 		} else {
2206 			free_extent_buffer(gang[0]->node);
2207 			free_extent_buffer(gang[0]->commit_root);
2208 			btrfs_put_fs_root(gang[0]);
2209 		}
2210 	}
2211 
2212 	while (1) {
2213 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2214 					     (void **)gang, 0,
2215 					     ARRAY_SIZE(gang));
2216 		if (!ret)
2217 			break;
2218 		for (i = 0; i < ret; i++)
2219 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2220 	}
2221 
2222 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2223 		btrfs_free_log_root_tree(NULL, fs_info);
2224 		btrfs_destroy_pinned_extent(fs_info->tree_root,
2225 					    fs_info->pinned_extents);
2226 	}
2227 }
2228 
2229 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2230 {
2231 	mutex_init(&fs_info->scrub_lock);
2232 	atomic_set(&fs_info->scrubs_running, 0);
2233 	atomic_set(&fs_info->scrub_pause_req, 0);
2234 	atomic_set(&fs_info->scrubs_paused, 0);
2235 	atomic_set(&fs_info->scrub_cancel_req, 0);
2236 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2237 	fs_info->scrub_workers_refcnt = 0;
2238 }
2239 
2240 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2241 {
2242 	spin_lock_init(&fs_info->balance_lock);
2243 	mutex_init(&fs_info->balance_mutex);
2244 	atomic_set(&fs_info->balance_running, 0);
2245 	atomic_set(&fs_info->balance_pause_req, 0);
2246 	atomic_set(&fs_info->balance_cancel_req, 0);
2247 	fs_info->balance_ctl = NULL;
2248 	init_waitqueue_head(&fs_info->balance_wait_q);
2249 }
2250 
2251 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2252 				   struct btrfs_root *tree_root)
2253 {
2254 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2255 	set_nlink(fs_info->btree_inode, 1);
2256 	/*
2257 	 * we set the i_size on the btree inode to the max possible int.
2258 	 * the real end of the address space is determined by all of
2259 	 * the devices in the system
2260 	 */
2261 	fs_info->btree_inode->i_size = OFFSET_MAX;
2262 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2263 
2264 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2265 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2266 			     fs_info->btree_inode->i_mapping);
2267 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2268 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2269 
2270 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2271 
2272 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2273 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2274 	       sizeof(struct btrfs_key));
2275 	set_bit(BTRFS_INODE_DUMMY,
2276 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2277 	btrfs_insert_inode_hash(fs_info->btree_inode);
2278 }
2279 
2280 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2281 {
2282 	fs_info->dev_replace.lock_owner = 0;
2283 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2284 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2285 	rwlock_init(&fs_info->dev_replace.lock);
2286 	atomic_set(&fs_info->dev_replace.read_locks, 0);
2287 	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2288 	init_waitqueue_head(&fs_info->replace_wait);
2289 	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2290 }
2291 
2292 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2293 {
2294 	spin_lock_init(&fs_info->qgroup_lock);
2295 	mutex_init(&fs_info->qgroup_ioctl_lock);
2296 	fs_info->qgroup_tree = RB_ROOT;
2297 	fs_info->qgroup_op_tree = RB_ROOT;
2298 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2299 	fs_info->qgroup_seq = 1;
2300 	fs_info->quota_enabled = 0;
2301 	fs_info->pending_quota_state = 0;
2302 	fs_info->qgroup_ulist = NULL;
2303 	mutex_init(&fs_info->qgroup_rescan_lock);
2304 }
2305 
2306 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2307 		struct btrfs_fs_devices *fs_devices)
2308 {
2309 	int max_active = fs_info->thread_pool_size;
2310 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2311 
2312 	fs_info->workers =
2313 		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2314 				      max_active, 16);
2315 
2316 	fs_info->delalloc_workers =
2317 		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2318 
2319 	fs_info->flush_workers =
2320 		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2321 
2322 	fs_info->caching_workers =
2323 		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2324 
2325 	/*
2326 	 * a higher idle thresh on the submit workers makes it much more
2327 	 * likely that bios will be send down in a sane order to the
2328 	 * devices
2329 	 */
2330 	fs_info->submit_workers =
2331 		btrfs_alloc_workqueue("submit", flags,
2332 				      min_t(u64, fs_devices->num_devices,
2333 					    max_active), 64);
2334 
2335 	fs_info->fixup_workers =
2336 		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2337 
2338 	/*
2339 	 * endios are largely parallel and should have a very
2340 	 * low idle thresh
2341 	 */
2342 	fs_info->endio_workers =
2343 		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2344 	fs_info->endio_meta_workers =
2345 		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2346 	fs_info->endio_meta_write_workers =
2347 		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2348 	fs_info->endio_raid56_workers =
2349 		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2350 	fs_info->endio_repair_workers =
2351 		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2352 	fs_info->rmw_workers =
2353 		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2354 	fs_info->endio_write_workers =
2355 		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2356 	fs_info->endio_freespace_worker =
2357 		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2358 	fs_info->delayed_workers =
2359 		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2360 	fs_info->readahead_workers =
2361 		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2362 	fs_info->qgroup_rescan_workers =
2363 		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2364 	fs_info->extent_workers =
2365 		btrfs_alloc_workqueue("extent-refs", flags,
2366 				      min_t(u64, fs_devices->num_devices,
2367 					    max_active), 8);
2368 
2369 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2370 	      fs_info->submit_workers && fs_info->flush_workers &&
2371 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2372 	      fs_info->endio_meta_write_workers &&
2373 	      fs_info->endio_repair_workers &&
2374 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2375 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2376 	      fs_info->caching_workers && fs_info->readahead_workers &&
2377 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2378 	      fs_info->extent_workers &&
2379 	      fs_info->qgroup_rescan_workers)) {
2380 		return -ENOMEM;
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2387 			    struct btrfs_fs_devices *fs_devices)
2388 {
2389 	int ret;
2390 	struct btrfs_root *tree_root = fs_info->tree_root;
2391 	struct btrfs_root *log_tree_root;
2392 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2393 	u64 bytenr = btrfs_super_log_root(disk_super);
2394 
2395 	if (fs_devices->rw_devices == 0) {
2396 		btrfs_warn(fs_info, "log replay required on RO media");
2397 		return -EIO;
2398 	}
2399 
2400 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2401 	if (!log_tree_root)
2402 		return -ENOMEM;
2403 
2404 	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2405 			tree_root->stripesize, log_tree_root, fs_info,
2406 			BTRFS_TREE_LOG_OBJECTID);
2407 
2408 	log_tree_root->node = read_tree_block(tree_root, bytenr,
2409 			fs_info->generation + 1);
2410 	if (IS_ERR(log_tree_root->node)) {
2411 		btrfs_warn(fs_info, "failed to read log tree");
2412 		ret = PTR_ERR(log_tree_root->node);
2413 		kfree(log_tree_root);
2414 		return ret;
2415 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2416 		btrfs_err(fs_info, "failed to read log tree");
2417 		free_extent_buffer(log_tree_root->node);
2418 		kfree(log_tree_root);
2419 		return -EIO;
2420 	}
2421 	/* returns with log_tree_root freed on success */
2422 	ret = btrfs_recover_log_trees(log_tree_root);
2423 	if (ret) {
2424 		btrfs_handle_fs_error(tree_root->fs_info, ret,
2425 			    "Failed to recover log tree");
2426 		free_extent_buffer(log_tree_root->node);
2427 		kfree(log_tree_root);
2428 		return ret;
2429 	}
2430 
2431 	if (fs_info->sb->s_flags & MS_RDONLY) {
2432 		ret = btrfs_commit_super(tree_root);
2433 		if (ret)
2434 			return ret;
2435 	}
2436 
2437 	return 0;
2438 }
2439 
2440 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2441 			    struct btrfs_root *tree_root)
2442 {
2443 	struct btrfs_root *root;
2444 	struct btrfs_key location;
2445 	int ret;
2446 
2447 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2448 	location.type = BTRFS_ROOT_ITEM_KEY;
2449 	location.offset = 0;
2450 
2451 	root = btrfs_read_tree_root(tree_root, &location);
2452 	if (IS_ERR(root))
2453 		return PTR_ERR(root);
2454 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2455 	fs_info->extent_root = root;
2456 
2457 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2458 	root = btrfs_read_tree_root(tree_root, &location);
2459 	if (IS_ERR(root))
2460 		return PTR_ERR(root);
2461 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2462 	fs_info->dev_root = root;
2463 	btrfs_init_devices_late(fs_info);
2464 
2465 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2466 	root = btrfs_read_tree_root(tree_root, &location);
2467 	if (IS_ERR(root))
2468 		return PTR_ERR(root);
2469 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2470 	fs_info->csum_root = root;
2471 
2472 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2473 	root = btrfs_read_tree_root(tree_root, &location);
2474 	if (!IS_ERR(root)) {
2475 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476 		fs_info->quota_enabled = 1;
2477 		fs_info->pending_quota_state = 1;
2478 		fs_info->quota_root = root;
2479 	}
2480 
2481 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2482 	root = btrfs_read_tree_root(tree_root, &location);
2483 	if (IS_ERR(root)) {
2484 		ret = PTR_ERR(root);
2485 		if (ret != -ENOENT)
2486 			return ret;
2487 	} else {
2488 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2489 		fs_info->uuid_root = root;
2490 	}
2491 
2492 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2493 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2494 		root = btrfs_read_tree_root(tree_root, &location);
2495 		if (IS_ERR(root))
2496 			return PTR_ERR(root);
2497 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2498 		fs_info->free_space_root = root;
2499 	}
2500 
2501 	return 0;
2502 }
2503 
2504 int open_ctree(struct super_block *sb,
2505 	       struct btrfs_fs_devices *fs_devices,
2506 	       char *options)
2507 {
2508 	u32 sectorsize;
2509 	u32 nodesize;
2510 	u32 stripesize;
2511 	u64 generation;
2512 	u64 features;
2513 	struct btrfs_key location;
2514 	struct buffer_head *bh;
2515 	struct btrfs_super_block *disk_super;
2516 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2517 	struct btrfs_root *tree_root;
2518 	struct btrfs_root *chunk_root;
2519 	int ret;
2520 	int err = -EINVAL;
2521 	int num_backups_tried = 0;
2522 	int backup_index = 0;
2523 	int max_active;
2524 
2525 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2526 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2527 	if (!tree_root || !chunk_root) {
2528 		err = -ENOMEM;
2529 		goto fail;
2530 	}
2531 
2532 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2533 	if (ret) {
2534 		err = ret;
2535 		goto fail;
2536 	}
2537 
2538 	ret = setup_bdi(fs_info, &fs_info->bdi);
2539 	if (ret) {
2540 		err = ret;
2541 		goto fail_srcu;
2542 	}
2543 
2544 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2545 	if (ret) {
2546 		err = ret;
2547 		goto fail_bdi;
2548 	}
2549 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2550 					(1 + ilog2(nr_cpu_ids));
2551 
2552 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2553 	if (ret) {
2554 		err = ret;
2555 		goto fail_dirty_metadata_bytes;
2556 	}
2557 
2558 	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2559 	if (ret) {
2560 		err = ret;
2561 		goto fail_delalloc_bytes;
2562 	}
2563 
2564 	fs_info->btree_inode = new_inode(sb);
2565 	if (!fs_info->btree_inode) {
2566 		err = -ENOMEM;
2567 		goto fail_bio_counter;
2568 	}
2569 
2570 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2571 
2572 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2573 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2574 	INIT_LIST_HEAD(&fs_info->trans_list);
2575 	INIT_LIST_HEAD(&fs_info->dead_roots);
2576 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2577 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2578 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2579 	spin_lock_init(&fs_info->delalloc_root_lock);
2580 	spin_lock_init(&fs_info->trans_lock);
2581 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2582 	spin_lock_init(&fs_info->delayed_iput_lock);
2583 	spin_lock_init(&fs_info->defrag_inodes_lock);
2584 	spin_lock_init(&fs_info->free_chunk_lock);
2585 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2586 	spin_lock_init(&fs_info->super_lock);
2587 	spin_lock_init(&fs_info->qgroup_op_lock);
2588 	spin_lock_init(&fs_info->buffer_lock);
2589 	spin_lock_init(&fs_info->unused_bgs_lock);
2590 	rwlock_init(&fs_info->tree_mod_log_lock);
2591 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2592 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2593 	mutex_init(&fs_info->reloc_mutex);
2594 	mutex_init(&fs_info->delalloc_root_mutex);
2595 	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2596 	seqlock_init(&fs_info->profiles_lock);
2597 
2598 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2599 	INIT_LIST_HEAD(&fs_info->space_info);
2600 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2601 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2602 	btrfs_mapping_init(&fs_info->mapping_tree);
2603 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2604 			     BTRFS_BLOCK_RSV_GLOBAL);
2605 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2606 			     BTRFS_BLOCK_RSV_DELALLOC);
2607 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2608 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2609 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2610 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2611 			     BTRFS_BLOCK_RSV_DELOPS);
2612 	atomic_set(&fs_info->nr_async_submits, 0);
2613 	atomic_set(&fs_info->async_delalloc_pages, 0);
2614 	atomic_set(&fs_info->async_submit_draining, 0);
2615 	atomic_set(&fs_info->nr_async_bios, 0);
2616 	atomic_set(&fs_info->defrag_running, 0);
2617 	atomic_set(&fs_info->qgroup_op_seq, 0);
2618 	atomic_set(&fs_info->reada_works_cnt, 0);
2619 	atomic64_set(&fs_info->tree_mod_seq, 0);
2620 	fs_info->sb = sb;
2621 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2622 	fs_info->metadata_ratio = 0;
2623 	fs_info->defrag_inodes = RB_ROOT;
2624 	fs_info->free_chunk_space = 0;
2625 	fs_info->tree_mod_log = RB_ROOT;
2626 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2627 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2628 	/* readahead state */
2629 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2630 	spin_lock_init(&fs_info->reada_lock);
2631 
2632 	fs_info->thread_pool_size = min_t(unsigned long,
2633 					  num_online_cpus() + 2, 8);
2634 
2635 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2636 	spin_lock_init(&fs_info->ordered_root_lock);
2637 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2638 					GFP_KERNEL);
2639 	if (!fs_info->delayed_root) {
2640 		err = -ENOMEM;
2641 		goto fail_iput;
2642 	}
2643 	btrfs_init_delayed_root(fs_info->delayed_root);
2644 
2645 	btrfs_init_scrub(fs_info);
2646 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2647 	fs_info->check_integrity_print_mask = 0;
2648 #endif
2649 	btrfs_init_balance(fs_info);
2650 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2651 
2652 	sb->s_blocksize = 4096;
2653 	sb->s_blocksize_bits = blksize_bits(4096);
2654 	sb->s_bdi = &fs_info->bdi;
2655 
2656 	btrfs_init_btree_inode(fs_info, tree_root);
2657 
2658 	spin_lock_init(&fs_info->block_group_cache_lock);
2659 	fs_info->block_group_cache_tree = RB_ROOT;
2660 	fs_info->first_logical_byte = (u64)-1;
2661 
2662 	extent_io_tree_init(&fs_info->freed_extents[0],
2663 			     fs_info->btree_inode->i_mapping);
2664 	extent_io_tree_init(&fs_info->freed_extents[1],
2665 			     fs_info->btree_inode->i_mapping);
2666 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2667 	fs_info->do_barriers = 1;
2668 
2669 
2670 	mutex_init(&fs_info->ordered_operations_mutex);
2671 	mutex_init(&fs_info->tree_log_mutex);
2672 	mutex_init(&fs_info->chunk_mutex);
2673 	mutex_init(&fs_info->transaction_kthread_mutex);
2674 	mutex_init(&fs_info->cleaner_mutex);
2675 	mutex_init(&fs_info->volume_mutex);
2676 	mutex_init(&fs_info->ro_block_group_mutex);
2677 	init_rwsem(&fs_info->commit_root_sem);
2678 	init_rwsem(&fs_info->cleanup_work_sem);
2679 	init_rwsem(&fs_info->subvol_sem);
2680 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2681 
2682 	btrfs_init_dev_replace_locks(fs_info);
2683 	btrfs_init_qgroup(fs_info);
2684 
2685 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2686 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2687 
2688 	init_waitqueue_head(&fs_info->transaction_throttle);
2689 	init_waitqueue_head(&fs_info->transaction_wait);
2690 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2691 	init_waitqueue_head(&fs_info->async_submit_wait);
2692 
2693 	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2694 
2695 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2696 	if (ret) {
2697 		err = ret;
2698 		goto fail_alloc;
2699 	}
2700 
2701 	__setup_root(4096, 4096, 4096, tree_root,
2702 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2703 
2704 	invalidate_bdev(fs_devices->latest_bdev);
2705 
2706 	/*
2707 	 * Read super block and check the signature bytes only
2708 	 */
2709 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2710 	if (IS_ERR(bh)) {
2711 		err = PTR_ERR(bh);
2712 		goto fail_alloc;
2713 	}
2714 
2715 	/*
2716 	 * We want to check superblock checksum, the type is stored inside.
2717 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2718 	 */
2719 	if (btrfs_check_super_csum(bh->b_data)) {
2720 		btrfs_err(fs_info, "superblock checksum mismatch");
2721 		err = -EINVAL;
2722 		brelse(bh);
2723 		goto fail_alloc;
2724 	}
2725 
2726 	/*
2727 	 * super_copy is zeroed at allocation time and we never touch the
2728 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2729 	 * the whole block of INFO_SIZE
2730 	 */
2731 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2732 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2733 	       sizeof(*fs_info->super_for_commit));
2734 	brelse(bh);
2735 
2736 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2737 
2738 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2739 	if (ret) {
2740 		btrfs_err(fs_info, "superblock contains fatal errors");
2741 		err = -EINVAL;
2742 		goto fail_alloc;
2743 	}
2744 
2745 	disk_super = fs_info->super_copy;
2746 	if (!btrfs_super_root(disk_super))
2747 		goto fail_alloc;
2748 
2749 	/* check FS state, whether FS is broken. */
2750 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2751 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2752 
2753 	/*
2754 	 * run through our array of backup supers and setup
2755 	 * our ring pointer to the oldest one
2756 	 */
2757 	generation = btrfs_super_generation(disk_super);
2758 	find_oldest_super_backup(fs_info, generation);
2759 
2760 	/*
2761 	 * In the long term, we'll store the compression type in the super
2762 	 * block, and it'll be used for per file compression control.
2763 	 */
2764 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2765 
2766 	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2767 	if (ret) {
2768 		err = ret;
2769 		goto fail_alloc;
2770 	}
2771 
2772 	features = btrfs_super_incompat_flags(disk_super) &
2773 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2774 	if (features) {
2775 		btrfs_err(fs_info,
2776 		    "cannot mount because of unsupported optional features (%llx)",
2777 		    features);
2778 		err = -EINVAL;
2779 		goto fail_alloc;
2780 	}
2781 
2782 	features = btrfs_super_incompat_flags(disk_super);
2783 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2784 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2785 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2786 
2787 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2788 		btrfs_info(fs_info, "has skinny extents");
2789 
2790 	/*
2791 	 * flag our filesystem as having big metadata blocks if
2792 	 * they are bigger than the page size
2793 	 */
2794 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2795 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2796 			btrfs_info(fs_info,
2797 				"flagging fs with big metadata feature");
2798 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2799 	}
2800 
2801 	nodesize = btrfs_super_nodesize(disk_super);
2802 	sectorsize = btrfs_super_sectorsize(disk_super);
2803 	stripesize = sectorsize;
2804 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2805 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2806 
2807 	/*
2808 	 * mixed block groups end up with duplicate but slightly offset
2809 	 * extent buffers for the same range.  It leads to corruptions
2810 	 */
2811 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2812 	    (sectorsize != nodesize)) {
2813 		btrfs_err(fs_info,
2814 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2815 			nodesize, sectorsize);
2816 		goto fail_alloc;
2817 	}
2818 
2819 	/*
2820 	 * Needn't use the lock because there is no other task which will
2821 	 * update the flag.
2822 	 */
2823 	btrfs_set_super_incompat_flags(disk_super, features);
2824 
2825 	features = btrfs_super_compat_ro_flags(disk_super) &
2826 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2827 	if (!(sb->s_flags & MS_RDONLY) && features) {
2828 		btrfs_err(fs_info,
2829 	"cannot mount read-write because of unsupported optional features (%llx)",
2830 		       features);
2831 		err = -EINVAL;
2832 		goto fail_alloc;
2833 	}
2834 
2835 	max_active = fs_info->thread_pool_size;
2836 
2837 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2838 	if (ret) {
2839 		err = ret;
2840 		goto fail_sb_buffer;
2841 	}
2842 
2843 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2844 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2845 				    SZ_4M / PAGE_SIZE);
2846 
2847 	tree_root->nodesize = nodesize;
2848 	tree_root->sectorsize = sectorsize;
2849 	tree_root->stripesize = stripesize;
2850 
2851 	sb->s_blocksize = sectorsize;
2852 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2853 
2854 	mutex_lock(&fs_info->chunk_mutex);
2855 	ret = btrfs_read_sys_array(tree_root);
2856 	mutex_unlock(&fs_info->chunk_mutex);
2857 	if (ret) {
2858 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2859 		goto fail_sb_buffer;
2860 	}
2861 
2862 	generation = btrfs_super_chunk_root_generation(disk_super);
2863 
2864 	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2865 		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2866 
2867 	chunk_root->node = read_tree_block(chunk_root,
2868 					   btrfs_super_chunk_root(disk_super),
2869 					   generation);
2870 	if (IS_ERR(chunk_root->node) ||
2871 	    !extent_buffer_uptodate(chunk_root->node)) {
2872 		btrfs_err(fs_info, "failed to read chunk root");
2873 		if (!IS_ERR(chunk_root->node))
2874 			free_extent_buffer(chunk_root->node);
2875 		chunk_root->node = NULL;
2876 		goto fail_tree_roots;
2877 	}
2878 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2879 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2880 
2881 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2882 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2883 
2884 	ret = btrfs_read_chunk_tree(chunk_root);
2885 	if (ret) {
2886 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2887 		goto fail_tree_roots;
2888 	}
2889 
2890 	/*
2891 	 * keep the device that is marked to be the target device for the
2892 	 * dev_replace procedure
2893 	 */
2894 	btrfs_close_extra_devices(fs_devices, 0);
2895 
2896 	if (!fs_devices->latest_bdev) {
2897 		btrfs_err(fs_info, "failed to read devices");
2898 		goto fail_tree_roots;
2899 	}
2900 
2901 retry_root_backup:
2902 	generation = btrfs_super_generation(disk_super);
2903 
2904 	tree_root->node = read_tree_block(tree_root,
2905 					  btrfs_super_root(disk_super),
2906 					  generation);
2907 	if (IS_ERR(tree_root->node) ||
2908 	    !extent_buffer_uptodate(tree_root->node)) {
2909 		btrfs_warn(fs_info, "failed to read tree root");
2910 		if (!IS_ERR(tree_root->node))
2911 			free_extent_buffer(tree_root->node);
2912 		tree_root->node = NULL;
2913 		goto recovery_tree_root;
2914 	}
2915 
2916 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917 	tree_root->commit_root = btrfs_root_node(tree_root);
2918 	btrfs_set_root_refs(&tree_root->root_item, 1);
2919 
2920 	mutex_lock(&tree_root->objectid_mutex);
2921 	ret = btrfs_find_highest_objectid(tree_root,
2922 					&tree_root->highest_objectid);
2923 	if (ret) {
2924 		mutex_unlock(&tree_root->objectid_mutex);
2925 		goto recovery_tree_root;
2926 	}
2927 
2928 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929 
2930 	mutex_unlock(&tree_root->objectid_mutex);
2931 
2932 	ret = btrfs_read_roots(fs_info, tree_root);
2933 	if (ret)
2934 		goto recovery_tree_root;
2935 
2936 	fs_info->generation = generation;
2937 	fs_info->last_trans_committed = generation;
2938 
2939 	ret = btrfs_recover_balance(fs_info);
2940 	if (ret) {
2941 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
2942 		goto fail_block_groups;
2943 	}
2944 
2945 	ret = btrfs_init_dev_stats(fs_info);
2946 	if (ret) {
2947 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2948 		goto fail_block_groups;
2949 	}
2950 
2951 	ret = btrfs_init_dev_replace(fs_info);
2952 	if (ret) {
2953 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2954 		goto fail_block_groups;
2955 	}
2956 
2957 	btrfs_close_extra_devices(fs_devices, 1);
2958 
2959 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2960 	if (ret) {
2961 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2962 				ret);
2963 		goto fail_block_groups;
2964 	}
2965 
2966 	ret = btrfs_sysfs_add_device(fs_devices);
2967 	if (ret) {
2968 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2969 				ret);
2970 		goto fail_fsdev_sysfs;
2971 	}
2972 
2973 	ret = btrfs_sysfs_add_mounted(fs_info);
2974 	if (ret) {
2975 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2976 		goto fail_fsdev_sysfs;
2977 	}
2978 
2979 	ret = btrfs_init_space_info(fs_info);
2980 	if (ret) {
2981 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2982 		goto fail_sysfs;
2983 	}
2984 
2985 	ret = btrfs_read_block_groups(fs_info->extent_root);
2986 	if (ret) {
2987 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
2988 		goto fail_sysfs;
2989 	}
2990 	fs_info->num_tolerated_disk_barrier_failures =
2991 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2992 	if (fs_info->fs_devices->missing_devices >
2993 	     fs_info->num_tolerated_disk_barrier_failures &&
2994 	    !(sb->s_flags & MS_RDONLY)) {
2995 		btrfs_warn(fs_info,
2996 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2997 			fs_info->fs_devices->missing_devices,
2998 			fs_info->num_tolerated_disk_barrier_failures);
2999 		goto fail_sysfs;
3000 	}
3001 
3002 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3003 					       "btrfs-cleaner");
3004 	if (IS_ERR(fs_info->cleaner_kthread))
3005 		goto fail_sysfs;
3006 
3007 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3008 						   tree_root,
3009 						   "btrfs-transaction");
3010 	if (IS_ERR(fs_info->transaction_kthread))
3011 		goto fail_cleaner;
3012 
3013 	if (!btrfs_test_opt(tree_root, SSD) &&
3014 	    !btrfs_test_opt(tree_root, NOSSD) &&
3015 	    !fs_info->fs_devices->rotating) {
3016 		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3017 		btrfs_set_opt(fs_info->mount_opt, SSD);
3018 	}
3019 
3020 	/*
3021 	 * Mount does not set all options immediately, we can do it now and do
3022 	 * not have to wait for transaction commit
3023 	 */
3024 	btrfs_apply_pending_changes(fs_info);
3025 
3026 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3027 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3028 		ret = btrfsic_mount(tree_root, fs_devices,
3029 				    btrfs_test_opt(tree_root,
3030 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3031 				    1 : 0,
3032 				    fs_info->check_integrity_print_mask);
3033 		if (ret)
3034 			btrfs_warn(fs_info,
3035 				"failed to initialize integrity check module: %d",
3036 				ret);
3037 	}
3038 #endif
3039 	ret = btrfs_read_qgroup_config(fs_info);
3040 	if (ret)
3041 		goto fail_trans_kthread;
3042 
3043 	/* do not make disk changes in broken FS or nologreplay is given */
3044 	if (btrfs_super_log_root(disk_super) != 0 &&
3045 	    !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3046 		ret = btrfs_replay_log(fs_info, fs_devices);
3047 		if (ret) {
3048 			err = ret;
3049 			goto fail_qgroup;
3050 		}
3051 	}
3052 
3053 	ret = btrfs_find_orphan_roots(tree_root);
3054 	if (ret)
3055 		goto fail_qgroup;
3056 
3057 	if (!(sb->s_flags & MS_RDONLY)) {
3058 		ret = btrfs_cleanup_fs_roots(fs_info);
3059 		if (ret)
3060 			goto fail_qgroup;
3061 
3062 		mutex_lock(&fs_info->cleaner_mutex);
3063 		ret = btrfs_recover_relocation(tree_root);
3064 		mutex_unlock(&fs_info->cleaner_mutex);
3065 		if (ret < 0) {
3066 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3067 					ret);
3068 			err = -EINVAL;
3069 			goto fail_qgroup;
3070 		}
3071 	}
3072 
3073 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3074 	location.type = BTRFS_ROOT_ITEM_KEY;
3075 	location.offset = 0;
3076 
3077 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3078 	if (IS_ERR(fs_info->fs_root)) {
3079 		err = PTR_ERR(fs_info->fs_root);
3080 		goto fail_qgroup;
3081 	}
3082 
3083 	if (sb->s_flags & MS_RDONLY)
3084 		return 0;
3085 
3086 	if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3087 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3088 		btrfs_info(fs_info, "creating free space tree");
3089 		ret = btrfs_create_free_space_tree(fs_info);
3090 		if (ret) {
3091 			btrfs_warn(fs_info,
3092 				"failed to create free space tree: %d", ret);
3093 			close_ctree(tree_root);
3094 			return ret;
3095 		}
3096 	}
3097 
3098 	down_read(&fs_info->cleanup_work_sem);
3099 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3100 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3101 		up_read(&fs_info->cleanup_work_sem);
3102 		close_ctree(tree_root);
3103 		return ret;
3104 	}
3105 	up_read(&fs_info->cleanup_work_sem);
3106 
3107 	ret = btrfs_resume_balance_async(fs_info);
3108 	if (ret) {
3109 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3110 		close_ctree(tree_root);
3111 		return ret;
3112 	}
3113 
3114 	ret = btrfs_resume_dev_replace_async(fs_info);
3115 	if (ret) {
3116 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3117 		close_ctree(tree_root);
3118 		return ret;
3119 	}
3120 
3121 	btrfs_qgroup_rescan_resume(fs_info);
3122 
3123 	if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3124 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3125 		btrfs_info(fs_info, "clearing free space tree");
3126 		ret = btrfs_clear_free_space_tree(fs_info);
3127 		if (ret) {
3128 			btrfs_warn(fs_info,
3129 				"failed to clear free space tree: %d", ret);
3130 			close_ctree(tree_root);
3131 			return ret;
3132 		}
3133 	}
3134 
3135 	if (!fs_info->uuid_root) {
3136 		btrfs_info(fs_info, "creating UUID tree");
3137 		ret = btrfs_create_uuid_tree(fs_info);
3138 		if (ret) {
3139 			btrfs_warn(fs_info,
3140 				"failed to create the UUID tree: %d", ret);
3141 			close_ctree(tree_root);
3142 			return ret;
3143 		}
3144 	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3145 		   fs_info->generation !=
3146 				btrfs_super_uuid_tree_generation(disk_super)) {
3147 		btrfs_info(fs_info, "checking UUID tree");
3148 		ret = btrfs_check_uuid_tree(fs_info);
3149 		if (ret) {
3150 			btrfs_warn(fs_info,
3151 				"failed to check the UUID tree: %d", ret);
3152 			close_ctree(tree_root);
3153 			return ret;
3154 		}
3155 	} else {
3156 		fs_info->update_uuid_tree_gen = 1;
3157 	}
3158 
3159 	fs_info->open = 1;
3160 
3161 	/*
3162 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3163 	 * no need to keep the flag
3164 	 */
3165 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3166 
3167 	return 0;
3168 
3169 fail_qgroup:
3170 	btrfs_free_qgroup_config(fs_info);
3171 fail_trans_kthread:
3172 	kthread_stop(fs_info->transaction_kthread);
3173 	btrfs_cleanup_transaction(fs_info->tree_root);
3174 	btrfs_free_fs_roots(fs_info);
3175 fail_cleaner:
3176 	kthread_stop(fs_info->cleaner_kthread);
3177 
3178 	/*
3179 	 * make sure we're done with the btree inode before we stop our
3180 	 * kthreads
3181 	 */
3182 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3183 
3184 fail_sysfs:
3185 	btrfs_sysfs_remove_mounted(fs_info);
3186 
3187 fail_fsdev_sysfs:
3188 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3189 
3190 fail_block_groups:
3191 	btrfs_put_block_group_cache(fs_info);
3192 	btrfs_free_block_groups(fs_info);
3193 
3194 fail_tree_roots:
3195 	free_root_pointers(fs_info, 1);
3196 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3197 
3198 fail_sb_buffer:
3199 	btrfs_stop_all_workers(fs_info);
3200 fail_alloc:
3201 fail_iput:
3202 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3203 
3204 	iput(fs_info->btree_inode);
3205 fail_bio_counter:
3206 	percpu_counter_destroy(&fs_info->bio_counter);
3207 fail_delalloc_bytes:
3208 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3209 fail_dirty_metadata_bytes:
3210 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3211 fail_bdi:
3212 	bdi_destroy(&fs_info->bdi);
3213 fail_srcu:
3214 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3215 fail:
3216 	btrfs_free_stripe_hash_table(fs_info);
3217 	btrfs_close_devices(fs_info->fs_devices);
3218 	return err;
3219 
3220 recovery_tree_root:
3221 	if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3222 		goto fail_tree_roots;
3223 
3224 	free_root_pointers(fs_info, 0);
3225 
3226 	/* don't use the log in recovery mode, it won't be valid */
3227 	btrfs_set_super_log_root(disk_super, 0);
3228 
3229 	/* we can't trust the free space cache either */
3230 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3231 
3232 	ret = next_root_backup(fs_info, fs_info->super_copy,
3233 			       &num_backups_tried, &backup_index);
3234 	if (ret == -1)
3235 		goto fail_block_groups;
3236 	goto retry_root_backup;
3237 }
3238 
3239 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3240 {
3241 	if (uptodate) {
3242 		set_buffer_uptodate(bh);
3243 	} else {
3244 		struct btrfs_device *device = (struct btrfs_device *)
3245 			bh->b_private;
3246 
3247 		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3248 				"lost page write due to IO error on %s",
3249 					  rcu_str_deref(device->name));
3250 		/* note, we don't set_buffer_write_io_error because we have
3251 		 * our own ways of dealing with the IO errors
3252 		 */
3253 		clear_buffer_uptodate(bh);
3254 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3255 	}
3256 	unlock_buffer(bh);
3257 	put_bh(bh);
3258 }
3259 
3260 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3261 			struct buffer_head **bh_ret)
3262 {
3263 	struct buffer_head *bh;
3264 	struct btrfs_super_block *super;
3265 	u64 bytenr;
3266 
3267 	bytenr = btrfs_sb_offset(copy_num);
3268 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3269 		return -EINVAL;
3270 
3271 	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3272 	/*
3273 	 * If we fail to read from the underlying devices, as of now
3274 	 * the best option we have is to mark it EIO.
3275 	 */
3276 	if (!bh)
3277 		return -EIO;
3278 
3279 	super = (struct btrfs_super_block *)bh->b_data;
3280 	if (btrfs_super_bytenr(super) != bytenr ||
3281 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3282 		brelse(bh);
3283 		return -EINVAL;
3284 	}
3285 
3286 	*bh_ret = bh;
3287 	return 0;
3288 }
3289 
3290 
3291 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3292 {
3293 	struct buffer_head *bh;
3294 	struct buffer_head *latest = NULL;
3295 	struct btrfs_super_block *super;
3296 	int i;
3297 	u64 transid = 0;
3298 	int ret = -EINVAL;
3299 
3300 	/* we would like to check all the supers, but that would make
3301 	 * a btrfs mount succeed after a mkfs from a different FS.
3302 	 * So, we need to add a special mount option to scan for
3303 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3304 	 */
3305 	for (i = 0; i < 1; i++) {
3306 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3307 		if (ret)
3308 			continue;
3309 
3310 		super = (struct btrfs_super_block *)bh->b_data;
3311 
3312 		if (!latest || btrfs_super_generation(super) > transid) {
3313 			brelse(latest);
3314 			latest = bh;
3315 			transid = btrfs_super_generation(super);
3316 		} else {
3317 			brelse(bh);
3318 		}
3319 	}
3320 
3321 	if (!latest)
3322 		return ERR_PTR(ret);
3323 
3324 	return latest;
3325 }
3326 
3327 /*
3328  * this should be called twice, once with wait == 0 and
3329  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3330  * we write are pinned.
3331  *
3332  * They are released when wait == 1 is done.
3333  * max_mirrors must be the same for both runs, and it indicates how
3334  * many supers on this one device should be written.
3335  *
3336  * max_mirrors == 0 means to write them all.
3337  */
3338 static int write_dev_supers(struct btrfs_device *device,
3339 			    struct btrfs_super_block *sb,
3340 			    int do_barriers, int wait, int max_mirrors)
3341 {
3342 	struct buffer_head *bh;
3343 	int i;
3344 	int ret;
3345 	int errors = 0;
3346 	u32 crc;
3347 	u64 bytenr;
3348 
3349 	if (max_mirrors == 0)
3350 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3351 
3352 	for (i = 0; i < max_mirrors; i++) {
3353 		bytenr = btrfs_sb_offset(i);
3354 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3355 		    device->commit_total_bytes)
3356 			break;
3357 
3358 		if (wait) {
3359 			bh = __find_get_block(device->bdev, bytenr / 4096,
3360 					      BTRFS_SUPER_INFO_SIZE);
3361 			if (!bh) {
3362 				errors++;
3363 				continue;
3364 			}
3365 			wait_on_buffer(bh);
3366 			if (!buffer_uptodate(bh))
3367 				errors++;
3368 
3369 			/* drop our reference */
3370 			brelse(bh);
3371 
3372 			/* drop the reference from the wait == 0 run */
3373 			brelse(bh);
3374 			continue;
3375 		} else {
3376 			btrfs_set_super_bytenr(sb, bytenr);
3377 
3378 			crc = ~(u32)0;
3379 			crc = btrfs_csum_data((char *)sb +
3380 					      BTRFS_CSUM_SIZE, crc,
3381 					      BTRFS_SUPER_INFO_SIZE -
3382 					      BTRFS_CSUM_SIZE);
3383 			btrfs_csum_final(crc, sb->csum);
3384 
3385 			/*
3386 			 * one reference for us, and we leave it for the
3387 			 * caller
3388 			 */
3389 			bh = __getblk(device->bdev, bytenr / 4096,
3390 				      BTRFS_SUPER_INFO_SIZE);
3391 			if (!bh) {
3392 				btrfs_err(device->dev_root->fs_info,
3393 				    "couldn't get super buffer head for bytenr %llu",
3394 				    bytenr);
3395 				errors++;
3396 				continue;
3397 			}
3398 
3399 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3400 
3401 			/* one reference for submit_bh */
3402 			get_bh(bh);
3403 
3404 			set_buffer_uptodate(bh);
3405 			lock_buffer(bh);
3406 			bh->b_end_io = btrfs_end_buffer_write_sync;
3407 			bh->b_private = device;
3408 		}
3409 
3410 		/*
3411 		 * we fua the first super.  The others we allow
3412 		 * to go down lazy.
3413 		 */
3414 		if (i == 0)
3415 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
3416 		else
3417 			ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
3418 		if (ret)
3419 			errors++;
3420 	}
3421 	return errors < i ? 0 : -1;
3422 }
3423 
3424 /*
3425  * endio for the write_dev_flush, this will wake anyone waiting
3426  * for the barrier when it is done
3427  */
3428 static void btrfs_end_empty_barrier(struct bio *bio)
3429 {
3430 	if (bio->bi_private)
3431 		complete(bio->bi_private);
3432 	bio_put(bio);
3433 }
3434 
3435 /*
3436  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3437  * sent down.  With wait == 1, it waits for the previous flush.
3438  *
3439  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3440  * capable
3441  */
3442 static int write_dev_flush(struct btrfs_device *device, int wait)
3443 {
3444 	struct bio *bio;
3445 	int ret = 0;
3446 
3447 	if (device->nobarriers)
3448 		return 0;
3449 
3450 	if (wait) {
3451 		bio = device->flush_bio;
3452 		if (!bio)
3453 			return 0;
3454 
3455 		wait_for_completion(&device->flush_wait);
3456 
3457 		if (bio->bi_error) {
3458 			ret = bio->bi_error;
3459 			btrfs_dev_stat_inc_and_print(device,
3460 				BTRFS_DEV_STAT_FLUSH_ERRS);
3461 		}
3462 
3463 		/* drop the reference from the wait == 0 run */
3464 		bio_put(bio);
3465 		device->flush_bio = NULL;
3466 
3467 		return ret;
3468 	}
3469 
3470 	/*
3471 	 * one reference for us, and we leave it for the
3472 	 * caller
3473 	 */
3474 	device->flush_bio = NULL;
3475 	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3476 	if (!bio)
3477 		return -ENOMEM;
3478 
3479 	bio->bi_end_io = btrfs_end_empty_barrier;
3480 	bio->bi_bdev = device->bdev;
3481 	bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
3482 	init_completion(&device->flush_wait);
3483 	bio->bi_private = &device->flush_wait;
3484 	device->flush_bio = bio;
3485 
3486 	bio_get(bio);
3487 	btrfsic_submit_bio(bio);
3488 
3489 	return 0;
3490 }
3491 
3492 /*
3493  * send an empty flush down to each device in parallel,
3494  * then wait for them
3495  */
3496 static int barrier_all_devices(struct btrfs_fs_info *info)
3497 {
3498 	struct list_head *head;
3499 	struct btrfs_device *dev;
3500 	int errors_send = 0;
3501 	int errors_wait = 0;
3502 	int ret;
3503 
3504 	/* send down all the barriers */
3505 	head = &info->fs_devices->devices;
3506 	list_for_each_entry_rcu(dev, head, dev_list) {
3507 		if (dev->missing)
3508 			continue;
3509 		if (!dev->bdev) {
3510 			errors_send++;
3511 			continue;
3512 		}
3513 		if (!dev->in_fs_metadata || !dev->writeable)
3514 			continue;
3515 
3516 		ret = write_dev_flush(dev, 0);
3517 		if (ret)
3518 			errors_send++;
3519 	}
3520 
3521 	/* wait for all the barriers */
3522 	list_for_each_entry_rcu(dev, head, dev_list) {
3523 		if (dev->missing)
3524 			continue;
3525 		if (!dev->bdev) {
3526 			errors_wait++;
3527 			continue;
3528 		}
3529 		if (!dev->in_fs_metadata || !dev->writeable)
3530 			continue;
3531 
3532 		ret = write_dev_flush(dev, 1);
3533 		if (ret)
3534 			errors_wait++;
3535 	}
3536 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3537 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3538 		return -EIO;
3539 	return 0;
3540 }
3541 
3542 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3543 {
3544 	int raid_type;
3545 	int min_tolerated = INT_MAX;
3546 
3547 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3548 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3549 		min_tolerated = min(min_tolerated,
3550 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3551 				    tolerated_failures);
3552 
3553 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3554 		if (raid_type == BTRFS_RAID_SINGLE)
3555 			continue;
3556 		if (!(flags & btrfs_raid_group[raid_type]))
3557 			continue;
3558 		min_tolerated = min(min_tolerated,
3559 				    btrfs_raid_array[raid_type].
3560 				    tolerated_failures);
3561 	}
3562 
3563 	if (min_tolerated == INT_MAX) {
3564 		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3565 		min_tolerated = 0;
3566 	}
3567 
3568 	return min_tolerated;
3569 }
3570 
3571 int btrfs_calc_num_tolerated_disk_barrier_failures(
3572 	struct btrfs_fs_info *fs_info)
3573 {
3574 	struct btrfs_ioctl_space_info space;
3575 	struct btrfs_space_info *sinfo;
3576 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3577 		       BTRFS_BLOCK_GROUP_SYSTEM,
3578 		       BTRFS_BLOCK_GROUP_METADATA,
3579 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3580 	int i;
3581 	int c;
3582 	int num_tolerated_disk_barrier_failures =
3583 		(int)fs_info->fs_devices->num_devices;
3584 
3585 	for (i = 0; i < ARRAY_SIZE(types); i++) {
3586 		struct btrfs_space_info *tmp;
3587 
3588 		sinfo = NULL;
3589 		rcu_read_lock();
3590 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3591 			if (tmp->flags == types[i]) {
3592 				sinfo = tmp;
3593 				break;
3594 			}
3595 		}
3596 		rcu_read_unlock();
3597 
3598 		if (!sinfo)
3599 			continue;
3600 
3601 		down_read(&sinfo->groups_sem);
3602 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3603 			u64 flags;
3604 
3605 			if (list_empty(&sinfo->block_groups[c]))
3606 				continue;
3607 
3608 			btrfs_get_block_group_info(&sinfo->block_groups[c],
3609 						   &space);
3610 			if (space.total_bytes == 0 || space.used_bytes == 0)
3611 				continue;
3612 			flags = space.flags;
3613 
3614 			num_tolerated_disk_barrier_failures = min(
3615 				num_tolerated_disk_barrier_failures,
3616 				btrfs_get_num_tolerated_disk_barrier_failures(
3617 					flags));
3618 		}
3619 		up_read(&sinfo->groups_sem);
3620 	}
3621 
3622 	return num_tolerated_disk_barrier_failures;
3623 }
3624 
3625 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3626 {
3627 	struct list_head *head;
3628 	struct btrfs_device *dev;
3629 	struct btrfs_super_block *sb;
3630 	struct btrfs_dev_item *dev_item;
3631 	int ret;
3632 	int do_barriers;
3633 	int max_errors;
3634 	int total_errors = 0;
3635 	u64 flags;
3636 
3637 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3638 	backup_super_roots(root->fs_info);
3639 
3640 	sb = root->fs_info->super_for_commit;
3641 	dev_item = &sb->dev_item;
3642 
3643 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3644 	head = &root->fs_info->fs_devices->devices;
3645 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3646 
3647 	if (do_barriers) {
3648 		ret = barrier_all_devices(root->fs_info);
3649 		if (ret) {
3650 			mutex_unlock(
3651 				&root->fs_info->fs_devices->device_list_mutex);
3652 			btrfs_handle_fs_error(root->fs_info, ret,
3653 				    "errors while submitting device barriers.");
3654 			return ret;
3655 		}
3656 	}
3657 
3658 	list_for_each_entry_rcu(dev, head, dev_list) {
3659 		if (!dev->bdev) {
3660 			total_errors++;
3661 			continue;
3662 		}
3663 		if (!dev->in_fs_metadata || !dev->writeable)
3664 			continue;
3665 
3666 		btrfs_set_stack_device_generation(dev_item, 0);
3667 		btrfs_set_stack_device_type(dev_item, dev->type);
3668 		btrfs_set_stack_device_id(dev_item, dev->devid);
3669 		btrfs_set_stack_device_total_bytes(dev_item,
3670 						   dev->commit_total_bytes);
3671 		btrfs_set_stack_device_bytes_used(dev_item,
3672 						  dev->commit_bytes_used);
3673 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3674 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3675 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3676 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3677 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3678 
3679 		flags = btrfs_super_flags(sb);
3680 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3681 
3682 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3683 		if (ret)
3684 			total_errors++;
3685 	}
3686 	if (total_errors > max_errors) {
3687 		btrfs_err(root->fs_info, "%d errors while writing supers",
3688 		       total_errors);
3689 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3690 
3691 		/* FUA is masked off if unsupported and can't be the reason */
3692 		btrfs_handle_fs_error(root->fs_info, -EIO,
3693 			    "%d errors while writing supers", total_errors);
3694 		return -EIO;
3695 	}
3696 
3697 	total_errors = 0;
3698 	list_for_each_entry_rcu(dev, head, dev_list) {
3699 		if (!dev->bdev)
3700 			continue;
3701 		if (!dev->in_fs_metadata || !dev->writeable)
3702 			continue;
3703 
3704 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3705 		if (ret)
3706 			total_errors++;
3707 	}
3708 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3709 	if (total_errors > max_errors) {
3710 		btrfs_handle_fs_error(root->fs_info, -EIO,
3711 			    "%d errors while writing supers", total_errors);
3712 		return -EIO;
3713 	}
3714 	return 0;
3715 }
3716 
3717 int write_ctree_super(struct btrfs_trans_handle *trans,
3718 		      struct btrfs_root *root, int max_mirrors)
3719 {
3720 	return write_all_supers(root, max_mirrors);
3721 }
3722 
3723 /* Drop a fs root from the radix tree and free it. */
3724 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3725 				  struct btrfs_root *root)
3726 {
3727 	spin_lock(&fs_info->fs_roots_radix_lock);
3728 	radix_tree_delete(&fs_info->fs_roots_radix,
3729 			  (unsigned long)root->root_key.objectid);
3730 	spin_unlock(&fs_info->fs_roots_radix_lock);
3731 
3732 	if (btrfs_root_refs(&root->root_item) == 0)
3733 		synchronize_srcu(&fs_info->subvol_srcu);
3734 
3735 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3736 		btrfs_free_log(NULL, root);
3737 
3738 	if (root->free_ino_pinned)
3739 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3740 	if (root->free_ino_ctl)
3741 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3742 	free_fs_root(root);
3743 }
3744 
3745 static void free_fs_root(struct btrfs_root *root)
3746 {
3747 	iput(root->ino_cache_inode);
3748 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3749 	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3750 	root->orphan_block_rsv = NULL;
3751 	if (root->anon_dev)
3752 		free_anon_bdev(root->anon_dev);
3753 	if (root->subv_writers)
3754 		btrfs_free_subvolume_writers(root->subv_writers);
3755 	free_extent_buffer(root->node);
3756 	free_extent_buffer(root->commit_root);
3757 	kfree(root->free_ino_ctl);
3758 	kfree(root->free_ino_pinned);
3759 	kfree(root->name);
3760 	btrfs_put_fs_root(root);
3761 }
3762 
3763 void btrfs_free_fs_root(struct btrfs_root *root)
3764 {
3765 	free_fs_root(root);
3766 }
3767 
3768 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3769 {
3770 	u64 root_objectid = 0;
3771 	struct btrfs_root *gang[8];
3772 	int i = 0;
3773 	int err = 0;
3774 	unsigned int ret = 0;
3775 	int index;
3776 
3777 	while (1) {
3778 		index = srcu_read_lock(&fs_info->subvol_srcu);
3779 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3780 					     (void **)gang, root_objectid,
3781 					     ARRAY_SIZE(gang));
3782 		if (!ret) {
3783 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3784 			break;
3785 		}
3786 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3787 
3788 		for (i = 0; i < ret; i++) {
3789 			/* Avoid to grab roots in dead_roots */
3790 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3791 				gang[i] = NULL;
3792 				continue;
3793 			}
3794 			/* grab all the search result for later use */
3795 			gang[i] = btrfs_grab_fs_root(gang[i]);
3796 		}
3797 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3798 
3799 		for (i = 0; i < ret; i++) {
3800 			if (!gang[i])
3801 				continue;
3802 			root_objectid = gang[i]->root_key.objectid;
3803 			err = btrfs_orphan_cleanup(gang[i]);
3804 			if (err)
3805 				break;
3806 			btrfs_put_fs_root(gang[i]);
3807 		}
3808 		root_objectid++;
3809 	}
3810 
3811 	/* release the uncleaned roots due to error */
3812 	for (; i < ret; i++) {
3813 		if (gang[i])
3814 			btrfs_put_fs_root(gang[i]);
3815 	}
3816 	return err;
3817 }
3818 
3819 int btrfs_commit_super(struct btrfs_root *root)
3820 {
3821 	struct btrfs_trans_handle *trans;
3822 
3823 	mutex_lock(&root->fs_info->cleaner_mutex);
3824 	btrfs_run_delayed_iputs(root);
3825 	mutex_unlock(&root->fs_info->cleaner_mutex);
3826 	wake_up_process(root->fs_info->cleaner_kthread);
3827 
3828 	/* wait until ongoing cleanup work done */
3829 	down_write(&root->fs_info->cleanup_work_sem);
3830 	up_write(&root->fs_info->cleanup_work_sem);
3831 
3832 	trans = btrfs_join_transaction(root);
3833 	if (IS_ERR(trans))
3834 		return PTR_ERR(trans);
3835 	return btrfs_commit_transaction(trans, root);
3836 }
3837 
3838 void close_ctree(struct btrfs_root *root)
3839 {
3840 	struct btrfs_fs_info *fs_info = root->fs_info;
3841 	int ret;
3842 
3843 	fs_info->closing = 1;
3844 	smp_mb();
3845 
3846 	/* wait for the qgroup rescan worker to stop */
3847 	btrfs_qgroup_wait_for_completion(fs_info);
3848 
3849 	/* wait for the uuid_scan task to finish */
3850 	down(&fs_info->uuid_tree_rescan_sem);
3851 	/* avoid complains from lockdep et al., set sem back to initial state */
3852 	up(&fs_info->uuid_tree_rescan_sem);
3853 
3854 	/* pause restriper - we want to resume on mount */
3855 	btrfs_pause_balance(fs_info);
3856 
3857 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3858 
3859 	btrfs_scrub_cancel(fs_info);
3860 
3861 	/* wait for any defraggers to finish */
3862 	wait_event(fs_info->transaction_wait,
3863 		   (atomic_read(&fs_info->defrag_running) == 0));
3864 
3865 	/* clear out the rbtree of defraggable inodes */
3866 	btrfs_cleanup_defrag_inodes(fs_info);
3867 
3868 	cancel_work_sync(&fs_info->async_reclaim_work);
3869 
3870 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3871 		/*
3872 		 * If the cleaner thread is stopped and there are
3873 		 * block groups queued for removal, the deletion will be
3874 		 * skipped when we quit the cleaner thread.
3875 		 */
3876 		btrfs_delete_unused_bgs(root->fs_info);
3877 
3878 		ret = btrfs_commit_super(root);
3879 		if (ret)
3880 			btrfs_err(fs_info, "commit super ret %d", ret);
3881 	}
3882 
3883 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3884 		btrfs_error_commit_super(root);
3885 
3886 	kthread_stop(fs_info->transaction_kthread);
3887 	kthread_stop(fs_info->cleaner_kthread);
3888 
3889 	fs_info->closing = 2;
3890 	smp_mb();
3891 
3892 	btrfs_free_qgroup_config(fs_info);
3893 
3894 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3895 		btrfs_info(fs_info, "at unmount delalloc count %lld",
3896 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3897 	}
3898 
3899 	btrfs_sysfs_remove_mounted(fs_info);
3900 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3901 
3902 	btrfs_free_fs_roots(fs_info);
3903 
3904 	btrfs_put_block_group_cache(fs_info);
3905 
3906 	btrfs_free_block_groups(fs_info);
3907 
3908 	/*
3909 	 * we must make sure there is not any read request to
3910 	 * submit after we stopping all workers.
3911 	 */
3912 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3913 	btrfs_stop_all_workers(fs_info);
3914 
3915 	fs_info->open = 0;
3916 	free_root_pointers(fs_info, 1);
3917 
3918 	iput(fs_info->btree_inode);
3919 
3920 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3921 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3922 		btrfsic_unmount(root, fs_info->fs_devices);
3923 #endif
3924 
3925 	btrfs_close_devices(fs_info->fs_devices);
3926 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3927 
3928 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3929 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3930 	percpu_counter_destroy(&fs_info->bio_counter);
3931 	bdi_destroy(&fs_info->bdi);
3932 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3933 
3934 	btrfs_free_stripe_hash_table(fs_info);
3935 
3936 	__btrfs_free_block_rsv(root->orphan_block_rsv);
3937 	root->orphan_block_rsv = NULL;
3938 
3939 	lock_chunks(root);
3940 	while (!list_empty(&fs_info->pinned_chunks)) {
3941 		struct extent_map *em;
3942 
3943 		em = list_first_entry(&fs_info->pinned_chunks,
3944 				      struct extent_map, list);
3945 		list_del_init(&em->list);
3946 		free_extent_map(em);
3947 	}
3948 	unlock_chunks(root);
3949 }
3950 
3951 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3952 			  int atomic)
3953 {
3954 	int ret;
3955 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3956 
3957 	ret = extent_buffer_uptodate(buf);
3958 	if (!ret)
3959 		return ret;
3960 
3961 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3962 				    parent_transid, atomic);
3963 	if (ret == -EAGAIN)
3964 		return ret;
3965 	return !ret;
3966 }
3967 
3968 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3969 {
3970 	struct btrfs_root *root;
3971 	u64 transid = btrfs_header_generation(buf);
3972 	int was_dirty;
3973 
3974 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3975 	/*
3976 	 * This is a fast path so only do this check if we have sanity tests
3977 	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3978 	 * outside of the sanity tests.
3979 	 */
3980 	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3981 		return;
3982 #endif
3983 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3984 	btrfs_assert_tree_locked(buf);
3985 	if (transid != root->fs_info->generation)
3986 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3987 		       "found %llu running %llu\n",
3988 			buf->start, transid, root->fs_info->generation);
3989 	was_dirty = set_extent_buffer_dirty(buf);
3990 	if (!was_dirty)
3991 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3992 				     buf->len,
3993 				     root->fs_info->dirty_metadata_batch);
3994 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3995 	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3996 		btrfs_print_leaf(root, buf);
3997 		ASSERT(0);
3998 	}
3999 #endif
4000 }
4001 
4002 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4003 					int flush_delayed)
4004 {
4005 	/*
4006 	 * looks as though older kernels can get into trouble with
4007 	 * this code, they end up stuck in balance_dirty_pages forever
4008 	 */
4009 	int ret;
4010 
4011 	if (current->flags & PF_MEMALLOC)
4012 		return;
4013 
4014 	if (flush_delayed)
4015 		btrfs_balance_delayed_items(root);
4016 
4017 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4018 				     BTRFS_DIRTY_METADATA_THRESH);
4019 	if (ret > 0) {
4020 		balance_dirty_pages_ratelimited(
4021 				   root->fs_info->btree_inode->i_mapping);
4022 	}
4023 }
4024 
4025 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4026 {
4027 	__btrfs_btree_balance_dirty(root, 1);
4028 }
4029 
4030 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4031 {
4032 	__btrfs_btree_balance_dirty(root, 0);
4033 }
4034 
4035 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4036 {
4037 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4038 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4039 }
4040 
4041 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4042 			      int read_only)
4043 {
4044 	struct btrfs_super_block *sb = fs_info->super_copy;
4045 	u64 nodesize = btrfs_super_nodesize(sb);
4046 	u64 sectorsize = btrfs_super_sectorsize(sb);
4047 	int ret = 0;
4048 
4049 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4050 		printk(KERN_ERR "BTRFS: no valid FS found\n");
4051 		ret = -EINVAL;
4052 	}
4053 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4054 		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4055 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4056 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4057 		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4058 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4059 		ret = -EINVAL;
4060 	}
4061 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4062 		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4063 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4064 		ret = -EINVAL;
4065 	}
4066 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4067 		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4068 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4069 		ret = -EINVAL;
4070 	}
4071 
4072 	/*
4073 	 * Check sectorsize and nodesize first, other check will need it.
4074 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4075 	 */
4076 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4077 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4078 		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4079 		ret = -EINVAL;
4080 	}
4081 	/* Only PAGE SIZE is supported yet */
4082 	if (sectorsize != PAGE_SIZE) {
4083 		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4084 				sectorsize, PAGE_SIZE);
4085 		ret = -EINVAL;
4086 	}
4087 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4088 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4089 		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4090 		ret = -EINVAL;
4091 	}
4092 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4093 		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4094 				le32_to_cpu(sb->__unused_leafsize),
4095 				nodesize);
4096 		ret = -EINVAL;
4097 	}
4098 
4099 	/* Root alignment check */
4100 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4101 		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4102 				btrfs_super_root(sb));
4103 		ret = -EINVAL;
4104 	}
4105 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4106 		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4107 				btrfs_super_chunk_root(sb));
4108 		ret = -EINVAL;
4109 	}
4110 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4111 		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4112 				btrfs_super_log_root(sb));
4113 		ret = -EINVAL;
4114 	}
4115 
4116 	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4117 		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4118 				fs_info->fsid, sb->dev_item.fsid);
4119 		ret = -EINVAL;
4120 	}
4121 
4122 	/*
4123 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4124 	 * done later
4125 	 */
4126 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4127 		btrfs_err(fs_info, "bytes_used is too small %llu",
4128 		       btrfs_super_bytes_used(sb));
4129 		ret = -EINVAL;
4130 	}
4131 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4132 		btrfs_err(fs_info, "invalid stripesize %u",
4133 		       btrfs_super_stripesize(sb));
4134 		ret = -EINVAL;
4135 	}
4136 	if (btrfs_super_num_devices(sb) > (1UL << 31))
4137 		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4138 				btrfs_super_num_devices(sb));
4139 	if (btrfs_super_num_devices(sb) == 0) {
4140 		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4141 		ret = -EINVAL;
4142 	}
4143 
4144 	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4145 		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4146 				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4147 		ret = -EINVAL;
4148 	}
4149 
4150 	/*
4151 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4152 	 * and one chunk
4153 	 */
4154 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4155 		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4156 				btrfs_super_sys_array_size(sb),
4157 				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4158 		ret = -EINVAL;
4159 	}
4160 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4161 			+ sizeof(struct btrfs_chunk)) {
4162 		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4163 				btrfs_super_sys_array_size(sb),
4164 				sizeof(struct btrfs_disk_key)
4165 				+ sizeof(struct btrfs_chunk));
4166 		ret = -EINVAL;
4167 	}
4168 
4169 	/*
4170 	 * The generation is a global counter, we'll trust it more than the others
4171 	 * but it's still possible that it's the one that's wrong.
4172 	 */
4173 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4174 		printk(KERN_WARNING
4175 			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4176 			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4177 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4178 	    && btrfs_super_cache_generation(sb) != (u64)-1)
4179 		printk(KERN_WARNING
4180 			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4181 			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4182 
4183 	return ret;
4184 }
4185 
4186 static void btrfs_error_commit_super(struct btrfs_root *root)
4187 {
4188 	mutex_lock(&root->fs_info->cleaner_mutex);
4189 	btrfs_run_delayed_iputs(root);
4190 	mutex_unlock(&root->fs_info->cleaner_mutex);
4191 
4192 	down_write(&root->fs_info->cleanup_work_sem);
4193 	up_write(&root->fs_info->cleanup_work_sem);
4194 
4195 	/* cleanup FS via transaction */
4196 	btrfs_cleanup_transaction(root);
4197 }
4198 
4199 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4200 {
4201 	struct btrfs_ordered_extent *ordered;
4202 
4203 	spin_lock(&root->ordered_extent_lock);
4204 	/*
4205 	 * This will just short circuit the ordered completion stuff which will
4206 	 * make sure the ordered extent gets properly cleaned up.
4207 	 */
4208 	list_for_each_entry(ordered, &root->ordered_extents,
4209 			    root_extent_list)
4210 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4211 	spin_unlock(&root->ordered_extent_lock);
4212 }
4213 
4214 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4215 {
4216 	struct btrfs_root *root;
4217 	struct list_head splice;
4218 
4219 	INIT_LIST_HEAD(&splice);
4220 
4221 	spin_lock(&fs_info->ordered_root_lock);
4222 	list_splice_init(&fs_info->ordered_roots, &splice);
4223 	while (!list_empty(&splice)) {
4224 		root = list_first_entry(&splice, struct btrfs_root,
4225 					ordered_root);
4226 		list_move_tail(&root->ordered_root,
4227 			       &fs_info->ordered_roots);
4228 
4229 		spin_unlock(&fs_info->ordered_root_lock);
4230 		btrfs_destroy_ordered_extents(root);
4231 
4232 		cond_resched();
4233 		spin_lock(&fs_info->ordered_root_lock);
4234 	}
4235 	spin_unlock(&fs_info->ordered_root_lock);
4236 }
4237 
4238 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4239 				      struct btrfs_root *root)
4240 {
4241 	struct rb_node *node;
4242 	struct btrfs_delayed_ref_root *delayed_refs;
4243 	struct btrfs_delayed_ref_node *ref;
4244 	int ret = 0;
4245 
4246 	delayed_refs = &trans->delayed_refs;
4247 
4248 	spin_lock(&delayed_refs->lock);
4249 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4250 		spin_unlock(&delayed_refs->lock);
4251 		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4252 		return ret;
4253 	}
4254 
4255 	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4256 		struct btrfs_delayed_ref_head *head;
4257 		struct btrfs_delayed_ref_node *tmp;
4258 		bool pin_bytes = false;
4259 
4260 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4261 				href_node);
4262 		if (!mutex_trylock(&head->mutex)) {
4263 			atomic_inc(&head->node.refs);
4264 			spin_unlock(&delayed_refs->lock);
4265 
4266 			mutex_lock(&head->mutex);
4267 			mutex_unlock(&head->mutex);
4268 			btrfs_put_delayed_ref(&head->node);
4269 			spin_lock(&delayed_refs->lock);
4270 			continue;
4271 		}
4272 		spin_lock(&head->lock);
4273 		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4274 						 list) {
4275 			ref->in_tree = 0;
4276 			list_del(&ref->list);
4277 			atomic_dec(&delayed_refs->num_entries);
4278 			btrfs_put_delayed_ref(ref);
4279 		}
4280 		if (head->must_insert_reserved)
4281 			pin_bytes = true;
4282 		btrfs_free_delayed_extent_op(head->extent_op);
4283 		delayed_refs->num_heads--;
4284 		if (head->processing == 0)
4285 			delayed_refs->num_heads_ready--;
4286 		atomic_dec(&delayed_refs->num_entries);
4287 		head->node.in_tree = 0;
4288 		rb_erase(&head->href_node, &delayed_refs->href_root);
4289 		spin_unlock(&head->lock);
4290 		spin_unlock(&delayed_refs->lock);
4291 		mutex_unlock(&head->mutex);
4292 
4293 		if (pin_bytes)
4294 			btrfs_pin_extent(root, head->node.bytenr,
4295 					 head->node.num_bytes, 1);
4296 		btrfs_put_delayed_ref(&head->node);
4297 		cond_resched();
4298 		spin_lock(&delayed_refs->lock);
4299 	}
4300 
4301 	spin_unlock(&delayed_refs->lock);
4302 
4303 	return ret;
4304 }
4305 
4306 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4307 {
4308 	struct btrfs_inode *btrfs_inode;
4309 	struct list_head splice;
4310 
4311 	INIT_LIST_HEAD(&splice);
4312 
4313 	spin_lock(&root->delalloc_lock);
4314 	list_splice_init(&root->delalloc_inodes, &splice);
4315 
4316 	while (!list_empty(&splice)) {
4317 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4318 					       delalloc_inodes);
4319 
4320 		list_del_init(&btrfs_inode->delalloc_inodes);
4321 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4322 			  &btrfs_inode->runtime_flags);
4323 		spin_unlock(&root->delalloc_lock);
4324 
4325 		btrfs_invalidate_inodes(btrfs_inode->root);
4326 
4327 		spin_lock(&root->delalloc_lock);
4328 	}
4329 
4330 	spin_unlock(&root->delalloc_lock);
4331 }
4332 
4333 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4334 {
4335 	struct btrfs_root *root;
4336 	struct list_head splice;
4337 
4338 	INIT_LIST_HEAD(&splice);
4339 
4340 	spin_lock(&fs_info->delalloc_root_lock);
4341 	list_splice_init(&fs_info->delalloc_roots, &splice);
4342 	while (!list_empty(&splice)) {
4343 		root = list_first_entry(&splice, struct btrfs_root,
4344 					 delalloc_root);
4345 		list_del_init(&root->delalloc_root);
4346 		root = btrfs_grab_fs_root(root);
4347 		BUG_ON(!root);
4348 		spin_unlock(&fs_info->delalloc_root_lock);
4349 
4350 		btrfs_destroy_delalloc_inodes(root);
4351 		btrfs_put_fs_root(root);
4352 
4353 		spin_lock(&fs_info->delalloc_root_lock);
4354 	}
4355 	spin_unlock(&fs_info->delalloc_root_lock);
4356 }
4357 
4358 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4359 					struct extent_io_tree *dirty_pages,
4360 					int mark)
4361 {
4362 	int ret;
4363 	struct extent_buffer *eb;
4364 	u64 start = 0;
4365 	u64 end;
4366 
4367 	while (1) {
4368 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4369 					    mark, NULL);
4370 		if (ret)
4371 			break;
4372 
4373 		clear_extent_bits(dirty_pages, start, end, mark);
4374 		while (start <= end) {
4375 			eb = btrfs_find_tree_block(root->fs_info, start);
4376 			start += root->nodesize;
4377 			if (!eb)
4378 				continue;
4379 			wait_on_extent_buffer_writeback(eb);
4380 
4381 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4382 					       &eb->bflags))
4383 				clear_extent_buffer_dirty(eb);
4384 			free_extent_buffer_stale(eb);
4385 		}
4386 	}
4387 
4388 	return ret;
4389 }
4390 
4391 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4392 				       struct extent_io_tree *pinned_extents)
4393 {
4394 	struct extent_io_tree *unpin;
4395 	u64 start;
4396 	u64 end;
4397 	int ret;
4398 	bool loop = true;
4399 
4400 	unpin = pinned_extents;
4401 again:
4402 	while (1) {
4403 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4404 					    EXTENT_DIRTY, NULL);
4405 		if (ret)
4406 			break;
4407 
4408 		clear_extent_dirty(unpin, start, end);
4409 		btrfs_error_unpin_extent_range(root, start, end);
4410 		cond_resched();
4411 	}
4412 
4413 	if (loop) {
4414 		if (unpin == &root->fs_info->freed_extents[0])
4415 			unpin = &root->fs_info->freed_extents[1];
4416 		else
4417 			unpin = &root->fs_info->freed_extents[0];
4418 		loop = false;
4419 		goto again;
4420 	}
4421 
4422 	return 0;
4423 }
4424 
4425 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4426 				   struct btrfs_root *root)
4427 {
4428 	btrfs_destroy_delayed_refs(cur_trans, root);
4429 
4430 	cur_trans->state = TRANS_STATE_COMMIT_START;
4431 	wake_up(&root->fs_info->transaction_blocked_wait);
4432 
4433 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4434 	wake_up(&root->fs_info->transaction_wait);
4435 
4436 	btrfs_destroy_delayed_inodes(root);
4437 	btrfs_assert_delayed_root_empty(root);
4438 
4439 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4440 				     EXTENT_DIRTY);
4441 	btrfs_destroy_pinned_extent(root,
4442 				    root->fs_info->pinned_extents);
4443 
4444 	cur_trans->state =TRANS_STATE_COMPLETED;
4445 	wake_up(&cur_trans->commit_wait);
4446 
4447 	/*
4448 	memset(cur_trans, 0, sizeof(*cur_trans));
4449 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4450 	*/
4451 }
4452 
4453 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4454 {
4455 	struct btrfs_transaction *t;
4456 
4457 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4458 
4459 	spin_lock(&root->fs_info->trans_lock);
4460 	while (!list_empty(&root->fs_info->trans_list)) {
4461 		t = list_first_entry(&root->fs_info->trans_list,
4462 				     struct btrfs_transaction, list);
4463 		if (t->state >= TRANS_STATE_COMMIT_START) {
4464 			atomic_inc(&t->use_count);
4465 			spin_unlock(&root->fs_info->trans_lock);
4466 			btrfs_wait_for_commit(root, t->transid);
4467 			btrfs_put_transaction(t);
4468 			spin_lock(&root->fs_info->trans_lock);
4469 			continue;
4470 		}
4471 		if (t == root->fs_info->running_transaction) {
4472 			t->state = TRANS_STATE_COMMIT_DOING;
4473 			spin_unlock(&root->fs_info->trans_lock);
4474 			/*
4475 			 * We wait for 0 num_writers since we don't hold a trans
4476 			 * handle open currently for this transaction.
4477 			 */
4478 			wait_event(t->writer_wait,
4479 				   atomic_read(&t->num_writers) == 0);
4480 		} else {
4481 			spin_unlock(&root->fs_info->trans_lock);
4482 		}
4483 		btrfs_cleanup_one_transaction(t, root);
4484 
4485 		spin_lock(&root->fs_info->trans_lock);
4486 		if (t == root->fs_info->running_transaction)
4487 			root->fs_info->running_transaction = NULL;
4488 		list_del_init(&t->list);
4489 		spin_unlock(&root->fs_info->trans_lock);
4490 
4491 		btrfs_put_transaction(t);
4492 		trace_btrfs_transaction_commit(root);
4493 		spin_lock(&root->fs_info->trans_lock);
4494 	}
4495 	spin_unlock(&root->fs_info->trans_lock);
4496 	btrfs_destroy_all_ordered_extents(root->fs_info);
4497 	btrfs_destroy_delayed_inodes(root);
4498 	btrfs_assert_delayed_root_empty(root);
4499 	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4500 	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4501 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4502 
4503 	return 0;
4504 }
4505 
4506 static const struct extent_io_ops btree_extent_io_ops = {
4507 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4508 	.readpage_io_failed_hook = btree_io_failed_hook,
4509 	.submit_bio_hook = btree_submit_bio_hook,
4510 	/* note we're sharing with inode.c for the merge bio hook */
4511 	.merge_bio_hook = btrfs_merge_bio_hook,
4512 };
4513