1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_root *root); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_root *root); 79 static void btrfs_error_commit_super(struct btrfs_root *root); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 struct inode *inode; 123 struct bio *bio; 124 struct list_head list; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int mirror_num; 128 unsigned long bio_flags; 129 /* 130 * bio_offset is optional, can be used if the pages in the bio 131 * can't tell us where in the file the bio should go 132 */ 133 u64 bio_offset; 134 struct btrfs_work work; 135 int error; 136 }; 137 138 /* 139 * Lockdep class keys for extent_buffer->lock's in this root. For a given 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and 141 * the level the eb occupies in the tree. 142 * 143 * Different roots are used for different purposes and may nest inside each 144 * other and they require separate keysets. As lockdep keys should be 145 * static, assign keysets according to the purpose of the root as indicated 146 * by btrfs_root->objectid. This ensures that all special purpose roots 147 * have separate keysets. 148 * 149 * Lock-nesting across peer nodes is always done with the immediate parent 150 * node locked thus preventing deadlock. As lockdep doesn't know this, use 151 * subclass to avoid triggering lockdep warning in such cases. 152 * 153 * The key is set by the readpage_end_io_hook after the buffer has passed 154 * csum validation but before the pages are unlocked. It is also set by 155 * btrfs_init_new_buffer on freshly allocated blocks. 156 * 157 * We also add a check to make sure the highest level of the tree is the 158 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 159 * needs update as well. 160 */ 161 #ifdef CONFIG_DEBUG_LOCK_ALLOC 162 # if BTRFS_MAX_LEVEL != 8 163 # error 164 # endif 165 166 static struct btrfs_lockdep_keyset { 167 u64 id; /* root objectid */ 168 const char *name_stem; /* lock name stem */ 169 char names[BTRFS_MAX_LEVEL + 1][20]; 170 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 171 } btrfs_lockdep_keysets[] = { 172 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 173 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 174 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 175 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 176 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 177 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 178 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 179 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 180 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 181 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 182 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 183 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 184 { .id = 0, .name_stem = "tree" }, 185 }; 186 187 void __init btrfs_init_lockdep(void) 188 { 189 int i, j; 190 191 /* initialize lockdep class names */ 192 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 193 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 194 195 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 196 snprintf(ks->names[j], sizeof(ks->names[j]), 197 "btrfs-%s-%02d", ks->name_stem, j); 198 } 199 } 200 201 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 202 int level) 203 { 204 struct btrfs_lockdep_keyset *ks; 205 206 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 207 208 /* find the matching keyset, id 0 is the default entry */ 209 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 210 if (ks->id == objectid) 211 break; 212 213 lockdep_set_class_and_name(&eb->lock, 214 &ks->keys[level], ks->names[level]); 215 } 216 217 #endif 218 219 /* 220 * extents on the btree inode are pretty simple, there's one extent 221 * that covers the entire device 222 */ 223 static struct extent_map *btree_get_extent(struct inode *inode, 224 struct page *page, size_t pg_offset, u64 start, u64 len, 225 int create) 226 { 227 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 228 struct extent_map *em; 229 int ret; 230 231 read_lock(&em_tree->lock); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (em) { 234 em->bdev = 235 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 236 read_unlock(&em_tree->lock); 237 goto out; 238 } 239 read_unlock(&em_tree->lock); 240 241 em = alloc_extent_map(); 242 if (!em) { 243 em = ERR_PTR(-ENOMEM); 244 goto out; 245 } 246 em->start = 0; 247 em->len = (u64)-1; 248 em->block_len = (u64)-1; 249 em->block_start = 0; 250 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 251 252 write_lock(&em_tree->lock); 253 ret = add_extent_mapping(em_tree, em, 0); 254 if (ret == -EEXIST) { 255 free_extent_map(em); 256 em = lookup_extent_mapping(em_tree, start, len); 257 if (!em) 258 em = ERR_PTR(-EIO); 259 } else if (ret) { 260 free_extent_map(em); 261 em = ERR_PTR(ret); 262 } 263 write_unlock(&em_tree->lock); 264 265 out: 266 return em; 267 } 268 269 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 270 { 271 return btrfs_crc32c(seed, data, len); 272 } 273 274 void btrfs_csum_final(u32 crc, char *result) 275 { 276 put_unaligned_le32(~crc, result); 277 } 278 279 /* 280 * compute the csum for a btree block, and either verify it or write it 281 * into the csum field of the block. 282 */ 283 static int csum_tree_block(struct btrfs_fs_info *fs_info, 284 struct extent_buffer *buf, 285 int verify) 286 { 287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 288 char *result = NULL; 289 unsigned long len; 290 unsigned long cur_len; 291 unsigned long offset = BTRFS_CSUM_SIZE; 292 char *kaddr; 293 unsigned long map_start; 294 unsigned long map_len; 295 int err; 296 u32 crc = ~(u32)0; 297 unsigned long inline_result; 298 299 len = buf->len - offset; 300 while (len > 0) { 301 err = map_private_extent_buffer(buf, offset, 32, 302 &kaddr, &map_start, &map_len); 303 if (err) 304 return err; 305 cur_len = min(len, map_len - (offset - map_start)); 306 crc = btrfs_csum_data(kaddr + offset - map_start, 307 crc, cur_len); 308 len -= cur_len; 309 offset += cur_len; 310 } 311 if (csum_size > sizeof(inline_result)) { 312 result = kzalloc(csum_size, GFP_NOFS); 313 if (!result) 314 return -ENOMEM; 315 } else { 316 result = (char *)&inline_result; 317 } 318 319 btrfs_csum_final(crc, result); 320 321 if (verify) { 322 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 323 u32 val; 324 u32 found = 0; 325 memcpy(&found, result, csum_size); 326 327 read_extent_buffer(buf, &val, 0, csum_size); 328 btrfs_warn_rl(fs_info, 329 "%s checksum verify failed on %llu wanted %X found %X " 330 "level %d", 331 fs_info->sb->s_id, buf->start, 332 val, found, btrfs_header_level(buf)); 333 if (result != (char *)&inline_result) 334 kfree(result); 335 return -EUCLEAN; 336 } 337 } else { 338 write_extent_buffer(buf, result, 0, csum_size); 339 } 340 if (result != (char *)&inline_result) 341 kfree(result); 342 return 0; 343 } 344 345 /* 346 * we can't consider a given block up to date unless the transid of the 347 * block matches the transid in the parent node's pointer. This is how we 348 * detect blocks that either didn't get written at all or got written 349 * in the wrong place. 350 */ 351 static int verify_parent_transid(struct extent_io_tree *io_tree, 352 struct extent_buffer *eb, u64 parent_transid, 353 int atomic) 354 { 355 struct extent_state *cached_state = NULL; 356 int ret; 357 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 358 359 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 360 return 0; 361 362 if (atomic) 363 return -EAGAIN; 364 365 if (need_lock) { 366 btrfs_tree_read_lock(eb); 367 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 368 } 369 370 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 371 &cached_state); 372 if (extent_buffer_uptodate(eb) && 373 btrfs_header_generation(eb) == parent_transid) { 374 ret = 0; 375 goto out; 376 } 377 btrfs_err_rl(eb->fs_info, 378 "parent transid verify failed on %llu wanted %llu found %llu", 379 eb->start, 380 parent_transid, btrfs_header_generation(eb)); 381 ret = 1; 382 383 /* 384 * Things reading via commit roots that don't have normal protection, 385 * like send, can have a really old block in cache that may point at a 386 * block that has been freed and re-allocated. So don't clear uptodate 387 * if we find an eb that is under IO (dirty/writeback) because we could 388 * end up reading in the stale data and then writing it back out and 389 * making everybody very sad. 390 */ 391 if (!extent_buffer_under_io(eb)) 392 clear_extent_buffer_uptodate(eb); 393 out: 394 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 395 &cached_state, GFP_NOFS); 396 if (need_lock) 397 btrfs_tree_read_unlock_blocking(eb); 398 return ret; 399 } 400 401 /* 402 * Return 0 if the superblock checksum type matches the checksum value of that 403 * algorithm. Pass the raw disk superblock data. 404 */ 405 static int btrfs_check_super_csum(char *raw_disk_sb) 406 { 407 struct btrfs_super_block *disk_sb = 408 (struct btrfs_super_block *)raw_disk_sb; 409 u16 csum_type = btrfs_super_csum_type(disk_sb); 410 int ret = 0; 411 412 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 413 u32 crc = ~(u32)0; 414 const int csum_size = sizeof(crc); 415 char result[csum_size]; 416 417 /* 418 * The super_block structure does not span the whole 419 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 420 * is filled with zeros and is included in the checksum. 421 */ 422 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 423 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 424 btrfs_csum_final(crc, result); 425 426 if (memcmp(raw_disk_sb, result, csum_size)) 427 ret = 1; 428 } 429 430 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 431 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 432 csum_type); 433 ret = 1; 434 } 435 436 return ret; 437 } 438 439 /* 440 * helper to read a given tree block, doing retries as required when 441 * the checksums don't match and we have alternate mirrors to try. 442 */ 443 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 444 struct extent_buffer *eb, 445 u64 start, u64 parent_transid) 446 { 447 struct extent_io_tree *io_tree; 448 int failed = 0; 449 int ret; 450 int num_copies = 0; 451 int mirror_num = 0; 452 int failed_mirror = 0; 453 454 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 455 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 456 while (1) { 457 ret = read_extent_buffer_pages(io_tree, eb, start, 458 WAIT_COMPLETE, 459 btree_get_extent, mirror_num); 460 if (!ret) { 461 if (!verify_parent_transid(io_tree, eb, 462 parent_transid, 0)) 463 break; 464 else 465 ret = -EIO; 466 } 467 468 /* 469 * This buffer's crc is fine, but its contents are corrupted, so 470 * there is no reason to read the other copies, they won't be 471 * any less wrong. 472 */ 473 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 474 break; 475 476 num_copies = btrfs_num_copies(root->fs_info, 477 eb->start, eb->len); 478 if (num_copies == 1) 479 break; 480 481 if (!failed_mirror) { 482 failed = 1; 483 failed_mirror = eb->read_mirror; 484 } 485 486 mirror_num++; 487 if (mirror_num == failed_mirror) 488 mirror_num++; 489 490 if (mirror_num > num_copies) 491 break; 492 } 493 494 if (failed && !ret && failed_mirror) 495 repair_eb_io_failure(root, eb, failed_mirror); 496 497 return ret; 498 } 499 500 /* 501 * checksum a dirty tree block before IO. This has extra checks to make sure 502 * we only fill in the checksum field in the first page of a multi-page block 503 */ 504 505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 506 { 507 u64 start = page_offset(page); 508 u64 found_start; 509 struct extent_buffer *eb; 510 511 eb = (struct extent_buffer *)page->private; 512 if (page != eb->pages[0]) 513 return 0; 514 515 found_start = btrfs_header_bytenr(eb); 516 /* 517 * Please do not consolidate these warnings into a single if. 518 * It is useful to know what went wrong. 519 */ 520 if (WARN_ON(found_start != start)) 521 return -EUCLEAN; 522 if (WARN_ON(!PageUptodate(page))) 523 return -EUCLEAN; 524 525 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 526 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 527 528 return csum_tree_block(fs_info, eb, 0); 529 } 530 531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 532 struct extent_buffer *eb) 533 { 534 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 535 u8 fsid[BTRFS_UUID_SIZE]; 536 int ret = 1; 537 538 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 539 while (fs_devices) { 540 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 541 ret = 0; 542 break; 543 } 544 fs_devices = fs_devices->seed; 545 } 546 return ret; 547 } 548 549 #define CORRUPT(reason, eb, root, slot) \ 550 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 551 "root=%llu, slot=%d", reason, \ 552 btrfs_header_bytenr(eb), root->objectid, slot) 553 554 static noinline int check_leaf(struct btrfs_root *root, 555 struct extent_buffer *leaf) 556 { 557 struct btrfs_key key; 558 struct btrfs_key leaf_key; 559 u32 nritems = btrfs_header_nritems(leaf); 560 int slot; 561 562 if (nritems == 0) 563 return 0; 564 565 /* Check the 0 item */ 566 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 567 BTRFS_LEAF_DATA_SIZE(root)) { 568 CORRUPT("invalid item offset size pair", leaf, root, 0); 569 return -EIO; 570 } 571 572 /* 573 * Check to make sure each items keys are in the correct order and their 574 * offsets make sense. We only have to loop through nritems-1 because 575 * we check the current slot against the next slot, which verifies the 576 * next slot's offset+size makes sense and that the current's slot 577 * offset is correct. 578 */ 579 for (slot = 0; slot < nritems - 1; slot++) { 580 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 581 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 582 583 /* Make sure the keys are in the right order */ 584 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 585 CORRUPT("bad key order", leaf, root, slot); 586 return -EIO; 587 } 588 589 /* 590 * Make sure the offset and ends are right, remember that the 591 * item data starts at the end of the leaf and grows towards the 592 * front. 593 */ 594 if (btrfs_item_offset_nr(leaf, slot) != 595 btrfs_item_end_nr(leaf, slot + 1)) { 596 CORRUPT("slot offset bad", leaf, root, slot); 597 return -EIO; 598 } 599 600 /* 601 * Check to make sure that we don't point outside of the leaf, 602 * just in case all the items are consistent to each other, but 603 * all point outside of the leaf. 604 */ 605 if (btrfs_item_end_nr(leaf, slot) > 606 BTRFS_LEAF_DATA_SIZE(root)) { 607 CORRUPT("slot end outside of leaf", leaf, root, slot); 608 return -EIO; 609 } 610 } 611 612 return 0; 613 } 614 615 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 616 u64 phy_offset, struct page *page, 617 u64 start, u64 end, int mirror) 618 { 619 u64 found_start; 620 int found_level; 621 struct extent_buffer *eb; 622 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 623 struct btrfs_fs_info *fs_info = root->fs_info; 624 int ret = 0; 625 int reads_done; 626 627 if (!page->private) 628 goto out; 629 630 eb = (struct extent_buffer *)page->private; 631 632 /* the pending IO might have been the only thing that kept this buffer 633 * in memory. Make sure we have a ref for all this other checks 634 */ 635 extent_buffer_get(eb); 636 637 reads_done = atomic_dec_and_test(&eb->io_pages); 638 if (!reads_done) 639 goto err; 640 641 eb->read_mirror = mirror; 642 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 643 ret = -EIO; 644 goto err; 645 } 646 647 found_start = btrfs_header_bytenr(eb); 648 if (found_start != eb->start) { 649 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 650 found_start, eb->start); 651 ret = -EIO; 652 goto err; 653 } 654 if (check_tree_block_fsid(fs_info, eb)) { 655 btrfs_err_rl(fs_info, "bad fsid on block %llu", 656 eb->start); 657 ret = -EIO; 658 goto err; 659 } 660 found_level = btrfs_header_level(eb); 661 if (found_level >= BTRFS_MAX_LEVEL) { 662 btrfs_err(fs_info, "bad tree block level %d", 663 (int)btrfs_header_level(eb)); 664 ret = -EIO; 665 goto err; 666 } 667 668 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 669 eb, found_level); 670 671 ret = csum_tree_block(fs_info, eb, 1); 672 if (ret) 673 goto err; 674 675 /* 676 * If this is a leaf block and it is corrupt, set the corrupt bit so 677 * that we don't try and read the other copies of this block, just 678 * return -EIO. 679 */ 680 if (found_level == 0 && check_leaf(root, eb)) { 681 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 682 ret = -EIO; 683 } 684 685 if (!ret) 686 set_extent_buffer_uptodate(eb); 687 err: 688 if (reads_done && 689 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 690 btree_readahead_hook(fs_info, eb, eb->start, ret); 691 692 if (ret) { 693 /* 694 * our io error hook is going to dec the io pages 695 * again, we have to make sure it has something 696 * to decrement 697 */ 698 atomic_inc(&eb->io_pages); 699 clear_extent_buffer_uptodate(eb); 700 } 701 free_extent_buffer(eb); 702 out: 703 return ret; 704 } 705 706 static int btree_io_failed_hook(struct page *page, int failed_mirror) 707 { 708 struct extent_buffer *eb; 709 710 eb = (struct extent_buffer *)page->private; 711 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 712 eb->read_mirror = failed_mirror; 713 atomic_dec(&eb->io_pages); 714 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 715 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO); 716 return -EIO; /* we fixed nothing */ 717 } 718 719 static void end_workqueue_bio(struct bio *bio) 720 { 721 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 722 struct btrfs_fs_info *fs_info; 723 struct btrfs_workqueue *wq; 724 btrfs_work_func_t func; 725 726 fs_info = end_io_wq->info; 727 end_io_wq->error = bio->bi_error; 728 729 if (bio_op(bio) == REQ_OP_WRITE) { 730 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 731 wq = fs_info->endio_meta_write_workers; 732 func = btrfs_endio_meta_write_helper; 733 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 734 wq = fs_info->endio_freespace_worker; 735 func = btrfs_freespace_write_helper; 736 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 737 wq = fs_info->endio_raid56_workers; 738 func = btrfs_endio_raid56_helper; 739 } else { 740 wq = fs_info->endio_write_workers; 741 func = btrfs_endio_write_helper; 742 } 743 } else { 744 if (unlikely(end_io_wq->metadata == 745 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 746 wq = fs_info->endio_repair_workers; 747 func = btrfs_endio_repair_helper; 748 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 749 wq = fs_info->endio_raid56_workers; 750 func = btrfs_endio_raid56_helper; 751 } else if (end_io_wq->metadata) { 752 wq = fs_info->endio_meta_workers; 753 func = btrfs_endio_meta_helper; 754 } else { 755 wq = fs_info->endio_workers; 756 func = btrfs_endio_helper; 757 } 758 } 759 760 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 761 btrfs_queue_work(wq, &end_io_wq->work); 762 } 763 764 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 765 enum btrfs_wq_endio_type metadata) 766 { 767 struct btrfs_end_io_wq *end_io_wq; 768 769 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 770 if (!end_io_wq) 771 return -ENOMEM; 772 773 end_io_wq->private = bio->bi_private; 774 end_io_wq->end_io = bio->bi_end_io; 775 end_io_wq->info = info; 776 end_io_wq->error = 0; 777 end_io_wq->bio = bio; 778 end_io_wq->metadata = metadata; 779 780 bio->bi_private = end_io_wq; 781 bio->bi_end_io = end_workqueue_bio; 782 return 0; 783 } 784 785 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 786 { 787 unsigned long limit = min_t(unsigned long, 788 info->thread_pool_size, 789 info->fs_devices->open_devices); 790 return 256 * limit; 791 } 792 793 static void run_one_async_start(struct btrfs_work *work) 794 { 795 struct async_submit_bio *async; 796 int ret; 797 798 async = container_of(work, struct async_submit_bio, work); 799 ret = async->submit_bio_start(async->inode, async->bio, 800 async->mirror_num, async->bio_flags, 801 async->bio_offset); 802 if (ret) 803 async->error = ret; 804 } 805 806 static void run_one_async_done(struct btrfs_work *work) 807 { 808 struct btrfs_fs_info *fs_info; 809 struct async_submit_bio *async; 810 int limit; 811 812 async = container_of(work, struct async_submit_bio, work); 813 fs_info = BTRFS_I(async->inode)->root->fs_info; 814 815 limit = btrfs_async_submit_limit(fs_info); 816 limit = limit * 2 / 3; 817 818 /* 819 * atomic_dec_return implies a barrier for waitqueue_active 820 */ 821 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 822 waitqueue_active(&fs_info->async_submit_wait)) 823 wake_up(&fs_info->async_submit_wait); 824 825 /* If an error occurred we just want to clean up the bio and move on */ 826 if (async->error) { 827 async->bio->bi_error = async->error; 828 bio_endio(async->bio); 829 return; 830 } 831 832 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 833 async->bio_flags, async->bio_offset); 834 } 835 836 static void run_one_async_free(struct btrfs_work *work) 837 { 838 struct async_submit_bio *async; 839 840 async = container_of(work, struct async_submit_bio, work); 841 kfree(async); 842 } 843 844 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 845 struct bio *bio, int mirror_num, 846 unsigned long bio_flags, 847 u64 bio_offset, 848 extent_submit_bio_hook_t *submit_bio_start, 849 extent_submit_bio_hook_t *submit_bio_done) 850 { 851 struct async_submit_bio *async; 852 853 async = kmalloc(sizeof(*async), GFP_NOFS); 854 if (!async) 855 return -ENOMEM; 856 857 async->inode = inode; 858 async->bio = bio; 859 async->mirror_num = mirror_num; 860 async->submit_bio_start = submit_bio_start; 861 async->submit_bio_done = submit_bio_done; 862 863 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 864 run_one_async_done, run_one_async_free); 865 866 async->bio_flags = bio_flags; 867 async->bio_offset = bio_offset; 868 869 async->error = 0; 870 871 atomic_inc(&fs_info->nr_async_submits); 872 873 if (bio->bi_rw & REQ_SYNC) 874 btrfs_set_work_high_priority(&async->work); 875 876 btrfs_queue_work(fs_info->workers, &async->work); 877 878 while (atomic_read(&fs_info->async_submit_draining) && 879 atomic_read(&fs_info->nr_async_submits)) { 880 wait_event(fs_info->async_submit_wait, 881 (atomic_read(&fs_info->nr_async_submits) == 0)); 882 } 883 884 return 0; 885 } 886 887 static int btree_csum_one_bio(struct bio *bio) 888 { 889 struct bio_vec *bvec; 890 struct btrfs_root *root; 891 int i, ret = 0; 892 893 bio_for_each_segment_all(bvec, bio, i) { 894 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 895 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 896 if (ret) 897 break; 898 } 899 900 return ret; 901 } 902 903 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, 904 int mirror_num, unsigned long bio_flags, 905 u64 bio_offset) 906 { 907 /* 908 * when we're called for a write, we're already in the async 909 * submission context. Just jump into btrfs_map_bio 910 */ 911 return btree_csum_one_bio(bio); 912 } 913 914 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, 915 int mirror_num, unsigned long bio_flags, 916 u64 bio_offset) 917 { 918 int ret; 919 920 /* 921 * when we're called for a write, we're already in the async 922 * submission context. Just jump into btrfs_map_bio 923 */ 924 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1); 925 if (ret) { 926 bio->bi_error = ret; 927 bio_endio(bio); 928 } 929 return ret; 930 } 931 932 static int check_async_write(struct inode *inode, unsigned long bio_flags) 933 { 934 if (bio_flags & EXTENT_BIO_TREE_LOG) 935 return 0; 936 #ifdef CONFIG_X86 937 if (static_cpu_has(X86_FEATURE_XMM4_2)) 938 return 0; 939 #endif 940 return 1; 941 } 942 943 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, 944 int mirror_num, unsigned long bio_flags, 945 u64 bio_offset) 946 { 947 int async = check_async_write(inode, bio_flags); 948 int ret; 949 950 if (bio_op(bio) != REQ_OP_WRITE) { 951 /* 952 * called for a read, do the setup so that checksum validation 953 * can happen in the async kernel threads 954 */ 955 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 956 bio, BTRFS_WQ_ENDIO_METADATA); 957 if (ret) 958 goto out_w_error; 959 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 960 } else if (!async) { 961 ret = btree_csum_one_bio(bio); 962 if (ret) 963 goto out_w_error; 964 ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0); 965 } else { 966 /* 967 * kthread helpers are used to submit writes so that 968 * checksumming can happen in parallel across all CPUs 969 */ 970 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 971 inode, bio, mirror_num, 0, 972 bio_offset, 973 __btree_submit_bio_start, 974 __btree_submit_bio_done); 975 } 976 977 if (ret) 978 goto out_w_error; 979 return 0; 980 981 out_w_error: 982 bio->bi_error = ret; 983 bio_endio(bio); 984 return ret; 985 } 986 987 #ifdef CONFIG_MIGRATION 988 static int btree_migratepage(struct address_space *mapping, 989 struct page *newpage, struct page *page, 990 enum migrate_mode mode) 991 { 992 /* 993 * we can't safely write a btree page from here, 994 * we haven't done the locking hook 995 */ 996 if (PageDirty(page)) 997 return -EAGAIN; 998 /* 999 * Buffers may be managed in a filesystem specific way. 1000 * We must have no buffers or drop them. 1001 */ 1002 if (page_has_private(page) && 1003 !try_to_release_page(page, GFP_KERNEL)) 1004 return -EAGAIN; 1005 return migrate_page(mapping, newpage, page, mode); 1006 } 1007 #endif 1008 1009 1010 static int btree_writepages(struct address_space *mapping, 1011 struct writeback_control *wbc) 1012 { 1013 struct btrfs_fs_info *fs_info; 1014 int ret; 1015 1016 if (wbc->sync_mode == WB_SYNC_NONE) { 1017 1018 if (wbc->for_kupdate) 1019 return 0; 1020 1021 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1022 /* this is a bit racy, but that's ok */ 1023 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1024 BTRFS_DIRTY_METADATA_THRESH); 1025 if (ret < 0) 1026 return 0; 1027 } 1028 return btree_write_cache_pages(mapping, wbc); 1029 } 1030 1031 static int btree_readpage(struct file *file, struct page *page) 1032 { 1033 struct extent_io_tree *tree; 1034 tree = &BTRFS_I(page->mapping->host)->io_tree; 1035 return extent_read_full_page(tree, page, btree_get_extent, 0); 1036 } 1037 1038 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1039 { 1040 if (PageWriteback(page) || PageDirty(page)) 1041 return 0; 1042 1043 return try_release_extent_buffer(page); 1044 } 1045 1046 static void btree_invalidatepage(struct page *page, unsigned int offset, 1047 unsigned int length) 1048 { 1049 struct extent_io_tree *tree; 1050 tree = &BTRFS_I(page->mapping->host)->io_tree; 1051 extent_invalidatepage(tree, page, offset); 1052 btree_releasepage(page, GFP_NOFS); 1053 if (PagePrivate(page)) { 1054 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1055 "page private not zero on page %llu", 1056 (unsigned long long)page_offset(page)); 1057 ClearPagePrivate(page); 1058 set_page_private(page, 0); 1059 put_page(page); 1060 } 1061 } 1062 1063 static int btree_set_page_dirty(struct page *page) 1064 { 1065 #ifdef DEBUG 1066 struct extent_buffer *eb; 1067 1068 BUG_ON(!PagePrivate(page)); 1069 eb = (struct extent_buffer *)page->private; 1070 BUG_ON(!eb); 1071 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1072 BUG_ON(!atomic_read(&eb->refs)); 1073 btrfs_assert_tree_locked(eb); 1074 #endif 1075 return __set_page_dirty_nobuffers(page); 1076 } 1077 1078 static const struct address_space_operations btree_aops = { 1079 .readpage = btree_readpage, 1080 .writepages = btree_writepages, 1081 .releasepage = btree_releasepage, 1082 .invalidatepage = btree_invalidatepage, 1083 #ifdef CONFIG_MIGRATION 1084 .migratepage = btree_migratepage, 1085 #endif 1086 .set_page_dirty = btree_set_page_dirty, 1087 }; 1088 1089 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1090 { 1091 struct extent_buffer *buf = NULL; 1092 struct inode *btree_inode = root->fs_info->btree_inode; 1093 1094 buf = btrfs_find_create_tree_block(root, bytenr); 1095 if (IS_ERR(buf)) 1096 return; 1097 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1098 buf, 0, WAIT_NONE, btree_get_extent, 0); 1099 free_extent_buffer(buf); 1100 } 1101 1102 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1103 int mirror_num, struct extent_buffer **eb) 1104 { 1105 struct extent_buffer *buf = NULL; 1106 struct inode *btree_inode = root->fs_info->btree_inode; 1107 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1108 int ret; 1109 1110 buf = btrfs_find_create_tree_block(root, bytenr); 1111 if (IS_ERR(buf)) 1112 return 0; 1113 1114 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1115 1116 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1117 btree_get_extent, mirror_num); 1118 if (ret) { 1119 free_extent_buffer(buf); 1120 return ret; 1121 } 1122 1123 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1124 free_extent_buffer(buf); 1125 return -EIO; 1126 } else if (extent_buffer_uptodate(buf)) { 1127 *eb = buf; 1128 } else { 1129 free_extent_buffer(buf); 1130 } 1131 return 0; 1132 } 1133 1134 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1135 u64 bytenr) 1136 { 1137 return find_extent_buffer(fs_info, bytenr); 1138 } 1139 1140 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1141 u64 bytenr) 1142 { 1143 if (btrfs_test_is_dummy_root(root)) 1144 return alloc_test_extent_buffer(root->fs_info, bytenr, 1145 root->nodesize); 1146 return alloc_extent_buffer(root->fs_info, bytenr); 1147 } 1148 1149 1150 int btrfs_write_tree_block(struct extent_buffer *buf) 1151 { 1152 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1153 buf->start + buf->len - 1); 1154 } 1155 1156 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1157 { 1158 return filemap_fdatawait_range(buf->pages[0]->mapping, 1159 buf->start, buf->start + buf->len - 1); 1160 } 1161 1162 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1163 u64 parent_transid) 1164 { 1165 struct extent_buffer *buf = NULL; 1166 int ret; 1167 1168 buf = btrfs_find_create_tree_block(root, bytenr); 1169 if (IS_ERR(buf)) 1170 return buf; 1171 1172 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1173 if (ret) { 1174 free_extent_buffer(buf); 1175 return ERR_PTR(ret); 1176 } 1177 return buf; 1178 1179 } 1180 1181 void clean_tree_block(struct btrfs_trans_handle *trans, 1182 struct btrfs_fs_info *fs_info, 1183 struct extent_buffer *buf) 1184 { 1185 if (btrfs_header_generation(buf) == 1186 fs_info->running_transaction->transid) { 1187 btrfs_assert_tree_locked(buf); 1188 1189 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1190 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1191 -buf->len, 1192 fs_info->dirty_metadata_batch); 1193 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1194 btrfs_set_lock_blocking(buf); 1195 clear_extent_buffer_dirty(buf); 1196 } 1197 } 1198 } 1199 1200 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1201 { 1202 struct btrfs_subvolume_writers *writers; 1203 int ret; 1204 1205 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1206 if (!writers) 1207 return ERR_PTR(-ENOMEM); 1208 1209 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1210 if (ret < 0) { 1211 kfree(writers); 1212 return ERR_PTR(ret); 1213 } 1214 1215 init_waitqueue_head(&writers->wait); 1216 return writers; 1217 } 1218 1219 static void 1220 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1221 { 1222 percpu_counter_destroy(&writers->counter); 1223 kfree(writers); 1224 } 1225 1226 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1227 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1228 u64 objectid) 1229 { 1230 root->node = NULL; 1231 root->commit_root = NULL; 1232 root->sectorsize = sectorsize; 1233 root->nodesize = nodesize; 1234 root->stripesize = stripesize; 1235 root->state = 0; 1236 root->orphan_cleanup_state = 0; 1237 1238 root->objectid = objectid; 1239 root->last_trans = 0; 1240 root->highest_objectid = 0; 1241 root->nr_delalloc_inodes = 0; 1242 root->nr_ordered_extents = 0; 1243 root->name = NULL; 1244 root->inode_tree = RB_ROOT; 1245 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1246 root->block_rsv = NULL; 1247 root->orphan_block_rsv = NULL; 1248 1249 INIT_LIST_HEAD(&root->dirty_list); 1250 INIT_LIST_HEAD(&root->root_list); 1251 INIT_LIST_HEAD(&root->delalloc_inodes); 1252 INIT_LIST_HEAD(&root->delalloc_root); 1253 INIT_LIST_HEAD(&root->ordered_extents); 1254 INIT_LIST_HEAD(&root->ordered_root); 1255 INIT_LIST_HEAD(&root->logged_list[0]); 1256 INIT_LIST_HEAD(&root->logged_list[1]); 1257 spin_lock_init(&root->orphan_lock); 1258 spin_lock_init(&root->inode_lock); 1259 spin_lock_init(&root->delalloc_lock); 1260 spin_lock_init(&root->ordered_extent_lock); 1261 spin_lock_init(&root->accounting_lock); 1262 spin_lock_init(&root->log_extents_lock[0]); 1263 spin_lock_init(&root->log_extents_lock[1]); 1264 mutex_init(&root->objectid_mutex); 1265 mutex_init(&root->log_mutex); 1266 mutex_init(&root->ordered_extent_mutex); 1267 mutex_init(&root->delalloc_mutex); 1268 init_waitqueue_head(&root->log_writer_wait); 1269 init_waitqueue_head(&root->log_commit_wait[0]); 1270 init_waitqueue_head(&root->log_commit_wait[1]); 1271 INIT_LIST_HEAD(&root->log_ctxs[0]); 1272 INIT_LIST_HEAD(&root->log_ctxs[1]); 1273 atomic_set(&root->log_commit[0], 0); 1274 atomic_set(&root->log_commit[1], 0); 1275 atomic_set(&root->log_writers, 0); 1276 atomic_set(&root->log_batch, 0); 1277 atomic_set(&root->orphan_inodes, 0); 1278 atomic_set(&root->refs, 1); 1279 atomic_set(&root->will_be_snapshoted, 0); 1280 atomic_set(&root->qgroup_meta_rsv, 0); 1281 root->log_transid = 0; 1282 root->log_transid_committed = -1; 1283 root->last_log_commit = 0; 1284 if (fs_info) 1285 extent_io_tree_init(&root->dirty_log_pages, 1286 fs_info->btree_inode->i_mapping); 1287 1288 memset(&root->root_key, 0, sizeof(root->root_key)); 1289 memset(&root->root_item, 0, sizeof(root->root_item)); 1290 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1291 if (fs_info) 1292 root->defrag_trans_start = fs_info->generation; 1293 else 1294 root->defrag_trans_start = 0; 1295 root->root_key.objectid = objectid; 1296 root->anon_dev = 0; 1297 1298 spin_lock_init(&root->root_item_lock); 1299 } 1300 1301 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1302 gfp_t flags) 1303 { 1304 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1305 if (root) 1306 root->fs_info = fs_info; 1307 return root; 1308 } 1309 1310 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1311 /* Should only be used by the testing infrastructure */ 1312 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize) 1313 { 1314 struct btrfs_root *root; 1315 1316 root = btrfs_alloc_root(NULL, GFP_KERNEL); 1317 if (!root) 1318 return ERR_PTR(-ENOMEM); 1319 /* We don't use the stripesize in selftest, set it as sectorsize */ 1320 __setup_root(nodesize, sectorsize, sectorsize, root, NULL, 1321 BTRFS_ROOT_TREE_OBJECTID); 1322 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1323 root->alloc_bytenr = 0; 1324 1325 return root; 1326 } 1327 #endif 1328 1329 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1330 struct btrfs_fs_info *fs_info, 1331 u64 objectid) 1332 { 1333 struct extent_buffer *leaf; 1334 struct btrfs_root *tree_root = fs_info->tree_root; 1335 struct btrfs_root *root; 1336 struct btrfs_key key; 1337 int ret = 0; 1338 uuid_le uuid; 1339 1340 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1341 if (!root) 1342 return ERR_PTR(-ENOMEM); 1343 1344 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1345 tree_root->stripesize, root, fs_info, objectid); 1346 root->root_key.objectid = objectid; 1347 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1348 root->root_key.offset = 0; 1349 1350 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1351 if (IS_ERR(leaf)) { 1352 ret = PTR_ERR(leaf); 1353 leaf = NULL; 1354 goto fail; 1355 } 1356 1357 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1358 btrfs_set_header_bytenr(leaf, leaf->start); 1359 btrfs_set_header_generation(leaf, trans->transid); 1360 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1361 btrfs_set_header_owner(leaf, objectid); 1362 root->node = leaf; 1363 1364 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1365 BTRFS_FSID_SIZE); 1366 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1367 btrfs_header_chunk_tree_uuid(leaf), 1368 BTRFS_UUID_SIZE); 1369 btrfs_mark_buffer_dirty(leaf); 1370 1371 root->commit_root = btrfs_root_node(root); 1372 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1373 1374 root->root_item.flags = 0; 1375 root->root_item.byte_limit = 0; 1376 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1377 btrfs_set_root_generation(&root->root_item, trans->transid); 1378 btrfs_set_root_level(&root->root_item, 0); 1379 btrfs_set_root_refs(&root->root_item, 1); 1380 btrfs_set_root_used(&root->root_item, leaf->len); 1381 btrfs_set_root_last_snapshot(&root->root_item, 0); 1382 btrfs_set_root_dirid(&root->root_item, 0); 1383 uuid_le_gen(&uuid); 1384 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1385 root->root_item.drop_level = 0; 1386 1387 key.objectid = objectid; 1388 key.type = BTRFS_ROOT_ITEM_KEY; 1389 key.offset = 0; 1390 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1391 if (ret) 1392 goto fail; 1393 1394 btrfs_tree_unlock(leaf); 1395 1396 return root; 1397 1398 fail: 1399 if (leaf) { 1400 btrfs_tree_unlock(leaf); 1401 free_extent_buffer(root->commit_root); 1402 free_extent_buffer(leaf); 1403 } 1404 kfree(root); 1405 1406 return ERR_PTR(ret); 1407 } 1408 1409 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1410 struct btrfs_fs_info *fs_info) 1411 { 1412 struct btrfs_root *root; 1413 struct btrfs_root *tree_root = fs_info->tree_root; 1414 struct extent_buffer *leaf; 1415 1416 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1417 if (!root) 1418 return ERR_PTR(-ENOMEM); 1419 1420 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1421 tree_root->stripesize, root, fs_info, 1422 BTRFS_TREE_LOG_OBJECTID); 1423 1424 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1425 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1426 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1427 1428 /* 1429 * DON'T set REF_COWS for log trees 1430 * 1431 * log trees do not get reference counted because they go away 1432 * before a real commit is actually done. They do store pointers 1433 * to file data extents, and those reference counts still get 1434 * updated (along with back refs to the log tree). 1435 */ 1436 1437 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1438 NULL, 0, 0, 0); 1439 if (IS_ERR(leaf)) { 1440 kfree(root); 1441 return ERR_CAST(leaf); 1442 } 1443 1444 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1445 btrfs_set_header_bytenr(leaf, leaf->start); 1446 btrfs_set_header_generation(leaf, trans->transid); 1447 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1448 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1449 root->node = leaf; 1450 1451 write_extent_buffer(root->node, root->fs_info->fsid, 1452 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1453 btrfs_mark_buffer_dirty(root->node); 1454 btrfs_tree_unlock(root->node); 1455 return root; 1456 } 1457 1458 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1459 struct btrfs_fs_info *fs_info) 1460 { 1461 struct btrfs_root *log_root; 1462 1463 log_root = alloc_log_tree(trans, fs_info); 1464 if (IS_ERR(log_root)) 1465 return PTR_ERR(log_root); 1466 WARN_ON(fs_info->log_root_tree); 1467 fs_info->log_root_tree = log_root; 1468 return 0; 1469 } 1470 1471 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1472 struct btrfs_root *root) 1473 { 1474 struct btrfs_root *log_root; 1475 struct btrfs_inode_item *inode_item; 1476 1477 log_root = alloc_log_tree(trans, root->fs_info); 1478 if (IS_ERR(log_root)) 1479 return PTR_ERR(log_root); 1480 1481 log_root->last_trans = trans->transid; 1482 log_root->root_key.offset = root->root_key.objectid; 1483 1484 inode_item = &log_root->root_item.inode; 1485 btrfs_set_stack_inode_generation(inode_item, 1); 1486 btrfs_set_stack_inode_size(inode_item, 3); 1487 btrfs_set_stack_inode_nlink(inode_item, 1); 1488 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1489 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1490 1491 btrfs_set_root_node(&log_root->root_item, log_root->node); 1492 1493 WARN_ON(root->log_root); 1494 root->log_root = log_root; 1495 root->log_transid = 0; 1496 root->log_transid_committed = -1; 1497 root->last_log_commit = 0; 1498 return 0; 1499 } 1500 1501 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1502 struct btrfs_key *key) 1503 { 1504 struct btrfs_root *root; 1505 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1506 struct btrfs_path *path; 1507 u64 generation; 1508 int ret; 1509 1510 path = btrfs_alloc_path(); 1511 if (!path) 1512 return ERR_PTR(-ENOMEM); 1513 1514 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1515 if (!root) { 1516 ret = -ENOMEM; 1517 goto alloc_fail; 1518 } 1519 1520 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1521 tree_root->stripesize, root, fs_info, key->objectid); 1522 1523 ret = btrfs_find_root(tree_root, key, path, 1524 &root->root_item, &root->root_key); 1525 if (ret) { 1526 if (ret > 0) 1527 ret = -ENOENT; 1528 goto find_fail; 1529 } 1530 1531 generation = btrfs_root_generation(&root->root_item); 1532 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1533 generation); 1534 if (IS_ERR(root->node)) { 1535 ret = PTR_ERR(root->node); 1536 goto find_fail; 1537 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1538 ret = -EIO; 1539 free_extent_buffer(root->node); 1540 goto find_fail; 1541 } 1542 root->commit_root = btrfs_root_node(root); 1543 out: 1544 btrfs_free_path(path); 1545 return root; 1546 1547 find_fail: 1548 kfree(root); 1549 alloc_fail: 1550 root = ERR_PTR(ret); 1551 goto out; 1552 } 1553 1554 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1555 struct btrfs_key *location) 1556 { 1557 struct btrfs_root *root; 1558 1559 root = btrfs_read_tree_root(tree_root, location); 1560 if (IS_ERR(root)) 1561 return root; 1562 1563 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1564 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1565 btrfs_check_and_init_root_item(&root->root_item); 1566 } 1567 1568 return root; 1569 } 1570 1571 int btrfs_init_fs_root(struct btrfs_root *root) 1572 { 1573 int ret; 1574 struct btrfs_subvolume_writers *writers; 1575 1576 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1577 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1578 GFP_NOFS); 1579 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1580 ret = -ENOMEM; 1581 goto fail; 1582 } 1583 1584 writers = btrfs_alloc_subvolume_writers(); 1585 if (IS_ERR(writers)) { 1586 ret = PTR_ERR(writers); 1587 goto fail; 1588 } 1589 root->subv_writers = writers; 1590 1591 btrfs_init_free_ino_ctl(root); 1592 spin_lock_init(&root->ino_cache_lock); 1593 init_waitqueue_head(&root->ino_cache_wait); 1594 1595 ret = get_anon_bdev(&root->anon_dev); 1596 if (ret) 1597 goto free_writers; 1598 1599 mutex_lock(&root->objectid_mutex); 1600 ret = btrfs_find_highest_objectid(root, 1601 &root->highest_objectid); 1602 if (ret) { 1603 mutex_unlock(&root->objectid_mutex); 1604 goto free_root_dev; 1605 } 1606 1607 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1608 1609 mutex_unlock(&root->objectid_mutex); 1610 1611 return 0; 1612 1613 free_root_dev: 1614 free_anon_bdev(root->anon_dev); 1615 free_writers: 1616 btrfs_free_subvolume_writers(root->subv_writers); 1617 fail: 1618 kfree(root->free_ino_ctl); 1619 kfree(root->free_ino_pinned); 1620 return ret; 1621 } 1622 1623 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1624 u64 root_id) 1625 { 1626 struct btrfs_root *root; 1627 1628 spin_lock(&fs_info->fs_roots_radix_lock); 1629 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1630 (unsigned long)root_id); 1631 spin_unlock(&fs_info->fs_roots_radix_lock); 1632 return root; 1633 } 1634 1635 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1636 struct btrfs_root *root) 1637 { 1638 int ret; 1639 1640 ret = radix_tree_preload(GFP_NOFS); 1641 if (ret) 1642 return ret; 1643 1644 spin_lock(&fs_info->fs_roots_radix_lock); 1645 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1646 (unsigned long)root->root_key.objectid, 1647 root); 1648 if (ret == 0) 1649 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1650 spin_unlock(&fs_info->fs_roots_radix_lock); 1651 radix_tree_preload_end(); 1652 1653 return ret; 1654 } 1655 1656 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1657 struct btrfs_key *location, 1658 bool check_ref) 1659 { 1660 struct btrfs_root *root; 1661 struct btrfs_path *path; 1662 struct btrfs_key key; 1663 int ret; 1664 1665 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1666 return fs_info->tree_root; 1667 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1668 return fs_info->extent_root; 1669 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1670 return fs_info->chunk_root; 1671 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1672 return fs_info->dev_root; 1673 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1674 return fs_info->csum_root; 1675 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1676 return fs_info->quota_root ? fs_info->quota_root : 1677 ERR_PTR(-ENOENT); 1678 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1679 return fs_info->uuid_root ? fs_info->uuid_root : 1680 ERR_PTR(-ENOENT); 1681 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1682 return fs_info->free_space_root ? fs_info->free_space_root : 1683 ERR_PTR(-ENOENT); 1684 again: 1685 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1686 if (root) { 1687 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1688 return ERR_PTR(-ENOENT); 1689 return root; 1690 } 1691 1692 root = btrfs_read_fs_root(fs_info->tree_root, location); 1693 if (IS_ERR(root)) 1694 return root; 1695 1696 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1697 ret = -ENOENT; 1698 goto fail; 1699 } 1700 1701 ret = btrfs_init_fs_root(root); 1702 if (ret) 1703 goto fail; 1704 1705 path = btrfs_alloc_path(); 1706 if (!path) { 1707 ret = -ENOMEM; 1708 goto fail; 1709 } 1710 key.objectid = BTRFS_ORPHAN_OBJECTID; 1711 key.type = BTRFS_ORPHAN_ITEM_KEY; 1712 key.offset = location->objectid; 1713 1714 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1715 btrfs_free_path(path); 1716 if (ret < 0) 1717 goto fail; 1718 if (ret == 0) 1719 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1720 1721 ret = btrfs_insert_fs_root(fs_info, root); 1722 if (ret) { 1723 if (ret == -EEXIST) { 1724 free_fs_root(root); 1725 goto again; 1726 } 1727 goto fail; 1728 } 1729 return root; 1730 fail: 1731 free_fs_root(root); 1732 return ERR_PTR(ret); 1733 } 1734 1735 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1736 { 1737 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1738 int ret = 0; 1739 struct btrfs_device *device; 1740 struct backing_dev_info *bdi; 1741 1742 rcu_read_lock(); 1743 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1744 if (!device->bdev) 1745 continue; 1746 bdi = blk_get_backing_dev_info(device->bdev); 1747 if (bdi_congested(bdi, bdi_bits)) { 1748 ret = 1; 1749 break; 1750 } 1751 } 1752 rcu_read_unlock(); 1753 return ret; 1754 } 1755 1756 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1757 { 1758 int err; 1759 1760 err = bdi_setup_and_register(bdi, "btrfs"); 1761 if (err) 1762 return err; 1763 1764 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1765 bdi->congested_fn = btrfs_congested_fn; 1766 bdi->congested_data = info; 1767 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1768 return 0; 1769 } 1770 1771 /* 1772 * called by the kthread helper functions to finally call the bio end_io 1773 * functions. This is where read checksum verification actually happens 1774 */ 1775 static void end_workqueue_fn(struct btrfs_work *work) 1776 { 1777 struct bio *bio; 1778 struct btrfs_end_io_wq *end_io_wq; 1779 1780 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1781 bio = end_io_wq->bio; 1782 1783 bio->bi_error = end_io_wq->error; 1784 bio->bi_private = end_io_wq->private; 1785 bio->bi_end_io = end_io_wq->end_io; 1786 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1787 bio_endio(bio); 1788 } 1789 1790 static int cleaner_kthread(void *arg) 1791 { 1792 struct btrfs_root *root = arg; 1793 int again; 1794 struct btrfs_trans_handle *trans; 1795 1796 do { 1797 again = 0; 1798 1799 /* Make the cleaner go to sleep early. */ 1800 if (btrfs_need_cleaner_sleep(root)) 1801 goto sleep; 1802 1803 /* 1804 * Do not do anything if we might cause open_ctree() to block 1805 * before we have finished mounting the filesystem. 1806 */ 1807 if (!root->fs_info->open) 1808 goto sleep; 1809 1810 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1811 goto sleep; 1812 1813 /* 1814 * Avoid the problem that we change the status of the fs 1815 * during the above check and trylock. 1816 */ 1817 if (btrfs_need_cleaner_sleep(root)) { 1818 mutex_unlock(&root->fs_info->cleaner_mutex); 1819 goto sleep; 1820 } 1821 1822 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 1823 btrfs_run_delayed_iputs(root); 1824 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 1825 1826 again = btrfs_clean_one_deleted_snapshot(root); 1827 mutex_unlock(&root->fs_info->cleaner_mutex); 1828 1829 /* 1830 * The defragger has dealt with the R/O remount and umount, 1831 * needn't do anything special here. 1832 */ 1833 btrfs_run_defrag_inodes(root->fs_info); 1834 1835 /* 1836 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1837 * with relocation (btrfs_relocate_chunk) and relocation 1838 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1839 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1840 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1841 * unused block groups. 1842 */ 1843 btrfs_delete_unused_bgs(root->fs_info); 1844 sleep: 1845 if (!again) { 1846 set_current_state(TASK_INTERRUPTIBLE); 1847 if (!kthread_should_stop()) 1848 schedule(); 1849 __set_current_state(TASK_RUNNING); 1850 } 1851 } while (!kthread_should_stop()); 1852 1853 /* 1854 * Transaction kthread is stopped before us and wakes us up. 1855 * However we might have started a new transaction and COWed some 1856 * tree blocks when deleting unused block groups for example. So 1857 * make sure we commit the transaction we started to have a clean 1858 * shutdown when evicting the btree inode - if it has dirty pages 1859 * when we do the final iput() on it, eviction will trigger a 1860 * writeback for it which will fail with null pointer dereferences 1861 * since work queues and other resources were already released and 1862 * destroyed by the time the iput/eviction/writeback is made. 1863 */ 1864 trans = btrfs_attach_transaction(root); 1865 if (IS_ERR(trans)) { 1866 if (PTR_ERR(trans) != -ENOENT) 1867 btrfs_err(root->fs_info, 1868 "cleaner transaction attach returned %ld", 1869 PTR_ERR(trans)); 1870 } else { 1871 int ret; 1872 1873 ret = btrfs_commit_transaction(trans, root); 1874 if (ret) 1875 btrfs_err(root->fs_info, 1876 "cleaner open transaction commit returned %d", 1877 ret); 1878 } 1879 1880 return 0; 1881 } 1882 1883 static int transaction_kthread(void *arg) 1884 { 1885 struct btrfs_root *root = arg; 1886 struct btrfs_trans_handle *trans; 1887 struct btrfs_transaction *cur; 1888 u64 transid; 1889 unsigned long now; 1890 unsigned long delay; 1891 bool cannot_commit; 1892 1893 do { 1894 cannot_commit = false; 1895 delay = HZ * root->fs_info->commit_interval; 1896 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1897 1898 spin_lock(&root->fs_info->trans_lock); 1899 cur = root->fs_info->running_transaction; 1900 if (!cur) { 1901 spin_unlock(&root->fs_info->trans_lock); 1902 goto sleep; 1903 } 1904 1905 now = get_seconds(); 1906 if (cur->state < TRANS_STATE_BLOCKED && 1907 (now < cur->start_time || 1908 now - cur->start_time < root->fs_info->commit_interval)) { 1909 spin_unlock(&root->fs_info->trans_lock); 1910 delay = HZ * 5; 1911 goto sleep; 1912 } 1913 transid = cur->transid; 1914 spin_unlock(&root->fs_info->trans_lock); 1915 1916 /* If the file system is aborted, this will always fail. */ 1917 trans = btrfs_attach_transaction(root); 1918 if (IS_ERR(trans)) { 1919 if (PTR_ERR(trans) != -ENOENT) 1920 cannot_commit = true; 1921 goto sleep; 1922 } 1923 if (transid == trans->transid) { 1924 btrfs_commit_transaction(trans, root); 1925 } else { 1926 btrfs_end_transaction(trans, root); 1927 } 1928 sleep: 1929 wake_up_process(root->fs_info->cleaner_kthread); 1930 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1931 1932 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1933 &root->fs_info->fs_state))) 1934 btrfs_cleanup_transaction(root); 1935 set_current_state(TASK_INTERRUPTIBLE); 1936 if (!kthread_should_stop() && 1937 (!btrfs_transaction_blocked(root->fs_info) || 1938 cannot_commit)) 1939 schedule_timeout(delay); 1940 __set_current_state(TASK_RUNNING); 1941 } while (!kthread_should_stop()); 1942 return 0; 1943 } 1944 1945 /* 1946 * this will find the highest generation in the array of 1947 * root backups. The index of the highest array is returned, 1948 * or -1 if we can't find anything. 1949 * 1950 * We check to make sure the array is valid by comparing the 1951 * generation of the latest root in the array with the generation 1952 * in the super block. If they don't match we pitch it. 1953 */ 1954 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1955 { 1956 u64 cur; 1957 int newest_index = -1; 1958 struct btrfs_root_backup *root_backup; 1959 int i; 1960 1961 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1962 root_backup = info->super_copy->super_roots + i; 1963 cur = btrfs_backup_tree_root_gen(root_backup); 1964 if (cur == newest_gen) 1965 newest_index = i; 1966 } 1967 1968 /* check to see if we actually wrapped around */ 1969 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1970 root_backup = info->super_copy->super_roots; 1971 cur = btrfs_backup_tree_root_gen(root_backup); 1972 if (cur == newest_gen) 1973 newest_index = 0; 1974 } 1975 return newest_index; 1976 } 1977 1978 1979 /* 1980 * find the oldest backup so we know where to store new entries 1981 * in the backup array. This will set the backup_root_index 1982 * field in the fs_info struct 1983 */ 1984 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1985 u64 newest_gen) 1986 { 1987 int newest_index = -1; 1988 1989 newest_index = find_newest_super_backup(info, newest_gen); 1990 /* if there was garbage in there, just move along */ 1991 if (newest_index == -1) { 1992 info->backup_root_index = 0; 1993 } else { 1994 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1995 } 1996 } 1997 1998 /* 1999 * copy all the root pointers into the super backup array. 2000 * this will bump the backup pointer by one when it is 2001 * done 2002 */ 2003 static void backup_super_roots(struct btrfs_fs_info *info) 2004 { 2005 int next_backup; 2006 struct btrfs_root_backup *root_backup; 2007 int last_backup; 2008 2009 next_backup = info->backup_root_index; 2010 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2011 BTRFS_NUM_BACKUP_ROOTS; 2012 2013 /* 2014 * just overwrite the last backup if we're at the same generation 2015 * this happens only at umount 2016 */ 2017 root_backup = info->super_for_commit->super_roots + last_backup; 2018 if (btrfs_backup_tree_root_gen(root_backup) == 2019 btrfs_header_generation(info->tree_root->node)) 2020 next_backup = last_backup; 2021 2022 root_backup = info->super_for_commit->super_roots + next_backup; 2023 2024 /* 2025 * make sure all of our padding and empty slots get zero filled 2026 * regardless of which ones we use today 2027 */ 2028 memset(root_backup, 0, sizeof(*root_backup)); 2029 2030 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2031 2032 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2033 btrfs_set_backup_tree_root_gen(root_backup, 2034 btrfs_header_generation(info->tree_root->node)); 2035 2036 btrfs_set_backup_tree_root_level(root_backup, 2037 btrfs_header_level(info->tree_root->node)); 2038 2039 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2040 btrfs_set_backup_chunk_root_gen(root_backup, 2041 btrfs_header_generation(info->chunk_root->node)); 2042 btrfs_set_backup_chunk_root_level(root_backup, 2043 btrfs_header_level(info->chunk_root->node)); 2044 2045 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2046 btrfs_set_backup_extent_root_gen(root_backup, 2047 btrfs_header_generation(info->extent_root->node)); 2048 btrfs_set_backup_extent_root_level(root_backup, 2049 btrfs_header_level(info->extent_root->node)); 2050 2051 /* 2052 * we might commit during log recovery, which happens before we set 2053 * the fs_root. Make sure it is valid before we fill it in. 2054 */ 2055 if (info->fs_root && info->fs_root->node) { 2056 btrfs_set_backup_fs_root(root_backup, 2057 info->fs_root->node->start); 2058 btrfs_set_backup_fs_root_gen(root_backup, 2059 btrfs_header_generation(info->fs_root->node)); 2060 btrfs_set_backup_fs_root_level(root_backup, 2061 btrfs_header_level(info->fs_root->node)); 2062 } 2063 2064 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2065 btrfs_set_backup_dev_root_gen(root_backup, 2066 btrfs_header_generation(info->dev_root->node)); 2067 btrfs_set_backup_dev_root_level(root_backup, 2068 btrfs_header_level(info->dev_root->node)); 2069 2070 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2071 btrfs_set_backup_csum_root_gen(root_backup, 2072 btrfs_header_generation(info->csum_root->node)); 2073 btrfs_set_backup_csum_root_level(root_backup, 2074 btrfs_header_level(info->csum_root->node)); 2075 2076 btrfs_set_backup_total_bytes(root_backup, 2077 btrfs_super_total_bytes(info->super_copy)); 2078 btrfs_set_backup_bytes_used(root_backup, 2079 btrfs_super_bytes_used(info->super_copy)); 2080 btrfs_set_backup_num_devices(root_backup, 2081 btrfs_super_num_devices(info->super_copy)); 2082 2083 /* 2084 * if we don't copy this out to the super_copy, it won't get remembered 2085 * for the next commit 2086 */ 2087 memcpy(&info->super_copy->super_roots, 2088 &info->super_for_commit->super_roots, 2089 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2090 } 2091 2092 /* 2093 * this copies info out of the root backup array and back into 2094 * the in-memory super block. It is meant to help iterate through 2095 * the array, so you send it the number of backups you've already 2096 * tried and the last backup index you used. 2097 * 2098 * this returns -1 when it has tried all the backups 2099 */ 2100 static noinline int next_root_backup(struct btrfs_fs_info *info, 2101 struct btrfs_super_block *super, 2102 int *num_backups_tried, int *backup_index) 2103 { 2104 struct btrfs_root_backup *root_backup; 2105 int newest = *backup_index; 2106 2107 if (*num_backups_tried == 0) { 2108 u64 gen = btrfs_super_generation(super); 2109 2110 newest = find_newest_super_backup(info, gen); 2111 if (newest == -1) 2112 return -1; 2113 2114 *backup_index = newest; 2115 *num_backups_tried = 1; 2116 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2117 /* we've tried all the backups, all done */ 2118 return -1; 2119 } else { 2120 /* jump to the next oldest backup */ 2121 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2122 BTRFS_NUM_BACKUP_ROOTS; 2123 *backup_index = newest; 2124 *num_backups_tried += 1; 2125 } 2126 root_backup = super->super_roots + newest; 2127 2128 btrfs_set_super_generation(super, 2129 btrfs_backup_tree_root_gen(root_backup)); 2130 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2131 btrfs_set_super_root_level(super, 2132 btrfs_backup_tree_root_level(root_backup)); 2133 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2134 2135 /* 2136 * fixme: the total bytes and num_devices need to match or we should 2137 * need a fsck 2138 */ 2139 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2140 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2141 return 0; 2142 } 2143 2144 /* helper to cleanup workers */ 2145 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2146 { 2147 btrfs_destroy_workqueue(fs_info->fixup_workers); 2148 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2149 btrfs_destroy_workqueue(fs_info->workers); 2150 btrfs_destroy_workqueue(fs_info->endio_workers); 2151 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2152 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2153 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2154 btrfs_destroy_workqueue(fs_info->rmw_workers); 2155 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2156 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2157 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2158 btrfs_destroy_workqueue(fs_info->submit_workers); 2159 btrfs_destroy_workqueue(fs_info->delayed_workers); 2160 btrfs_destroy_workqueue(fs_info->caching_workers); 2161 btrfs_destroy_workqueue(fs_info->readahead_workers); 2162 btrfs_destroy_workqueue(fs_info->flush_workers); 2163 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2164 btrfs_destroy_workqueue(fs_info->extent_workers); 2165 } 2166 2167 static void free_root_extent_buffers(struct btrfs_root *root) 2168 { 2169 if (root) { 2170 free_extent_buffer(root->node); 2171 free_extent_buffer(root->commit_root); 2172 root->node = NULL; 2173 root->commit_root = NULL; 2174 } 2175 } 2176 2177 /* helper to cleanup tree roots */ 2178 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2179 { 2180 free_root_extent_buffers(info->tree_root); 2181 2182 free_root_extent_buffers(info->dev_root); 2183 free_root_extent_buffers(info->extent_root); 2184 free_root_extent_buffers(info->csum_root); 2185 free_root_extent_buffers(info->quota_root); 2186 free_root_extent_buffers(info->uuid_root); 2187 if (chunk_root) 2188 free_root_extent_buffers(info->chunk_root); 2189 free_root_extent_buffers(info->free_space_root); 2190 } 2191 2192 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2193 { 2194 int ret; 2195 struct btrfs_root *gang[8]; 2196 int i; 2197 2198 while (!list_empty(&fs_info->dead_roots)) { 2199 gang[0] = list_entry(fs_info->dead_roots.next, 2200 struct btrfs_root, root_list); 2201 list_del(&gang[0]->root_list); 2202 2203 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2204 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2205 } else { 2206 free_extent_buffer(gang[0]->node); 2207 free_extent_buffer(gang[0]->commit_root); 2208 btrfs_put_fs_root(gang[0]); 2209 } 2210 } 2211 2212 while (1) { 2213 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2214 (void **)gang, 0, 2215 ARRAY_SIZE(gang)); 2216 if (!ret) 2217 break; 2218 for (i = 0; i < ret; i++) 2219 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2220 } 2221 2222 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2223 btrfs_free_log_root_tree(NULL, fs_info); 2224 btrfs_destroy_pinned_extent(fs_info->tree_root, 2225 fs_info->pinned_extents); 2226 } 2227 } 2228 2229 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2230 { 2231 mutex_init(&fs_info->scrub_lock); 2232 atomic_set(&fs_info->scrubs_running, 0); 2233 atomic_set(&fs_info->scrub_pause_req, 0); 2234 atomic_set(&fs_info->scrubs_paused, 0); 2235 atomic_set(&fs_info->scrub_cancel_req, 0); 2236 init_waitqueue_head(&fs_info->scrub_pause_wait); 2237 fs_info->scrub_workers_refcnt = 0; 2238 } 2239 2240 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2241 { 2242 spin_lock_init(&fs_info->balance_lock); 2243 mutex_init(&fs_info->balance_mutex); 2244 atomic_set(&fs_info->balance_running, 0); 2245 atomic_set(&fs_info->balance_pause_req, 0); 2246 atomic_set(&fs_info->balance_cancel_req, 0); 2247 fs_info->balance_ctl = NULL; 2248 init_waitqueue_head(&fs_info->balance_wait_q); 2249 } 2250 2251 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2252 struct btrfs_root *tree_root) 2253 { 2254 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2255 set_nlink(fs_info->btree_inode, 1); 2256 /* 2257 * we set the i_size on the btree inode to the max possible int. 2258 * the real end of the address space is determined by all of 2259 * the devices in the system 2260 */ 2261 fs_info->btree_inode->i_size = OFFSET_MAX; 2262 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2263 2264 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2265 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2266 fs_info->btree_inode->i_mapping); 2267 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2268 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2269 2270 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2271 2272 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2273 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2274 sizeof(struct btrfs_key)); 2275 set_bit(BTRFS_INODE_DUMMY, 2276 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2277 btrfs_insert_inode_hash(fs_info->btree_inode); 2278 } 2279 2280 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2281 { 2282 fs_info->dev_replace.lock_owner = 0; 2283 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2284 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2285 rwlock_init(&fs_info->dev_replace.lock); 2286 atomic_set(&fs_info->dev_replace.read_locks, 0); 2287 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2288 init_waitqueue_head(&fs_info->replace_wait); 2289 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2290 } 2291 2292 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2293 { 2294 spin_lock_init(&fs_info->qgroup_lock); 2295 mutex_init(&fs_info->qgroup_ioctl_lock); 2296 fs_info->qgroup_tree = RB_ROOT; 2297 fs_info->qgroup_op_tree = RB_ROOT; 2298 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2299 fs_info->qgroup_seq = 1; 2300 fs_info->quota_enabled = 0; 2301 fs_info->pending_quota_state = 0; 2302 fs_info->qgroup_ulist = NULL; 2303 mutex_init(&fs_info->qgroup_rescan_lock); 2304 } 2305 2306 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2307 struct btrfs_fs_devices *fs_devices) 2308 { 2309 int max_active = fs_info->thread_pool_size; 2310 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2311 2312 fs_info->workers = 2313 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2314 max_active, 16); 2315 2316 fs_info->delalloc_workers = 2317 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2318 2319 fs_info->flush_workers = 2320 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2321 2322 fs_info->caching_workers = 2323 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2324 2325 /* 2326 * a higher idle thresh on the submit workers makes it much more 2327 * likely that bios will be send down in a sane order to the 2328 * devices 2329 */ 2330 fs_info->submit_workers = 2331 btrfs_alloc_workqueue("submit", flags, 2332 min_t(u64, fs_devices->num_devices, 2333 max_active), 64); 2334 2335 fs_info->fixup_workers = 2336 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2337 2338 /* 2339 * endios are largely parallel and should have a very 2340 * low idle thresh 2341 */ 2342 fs_info->endio_workers = 2343 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2344 fs_info->endio_meta_workers = 2345 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2346 fs_info->endio_meta_write_workers = 2347 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2348 fs_info->endio_raid56_workers = 2349 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2350 fs_info->endio_repair_workers = 2351 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2352 fs_info->rmw_workers = 2353 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2354 fs_info->endio_write_workers = 2355 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2356 fs_info->endio_freespace_worker = 2357 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2358 fs_info->delayed_workers = 2359 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2360 fs_info->readahead_workers = 2361 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2362 fs_info->qgroup_rescan_workers = 2363 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2364 fs_info->extent_workers = 2365 btrfs_alloc_workqueue("extent-refs", flags, 2366 min_t(u64, fs_devices->num_devices, 2367 max_active), 8); 2368 2369 if (!(fs_info->workers && fs_info->delalloc_workers && 2370 fs_info->submit_workers && fs_info->flush_workers && 2371 fs_info->endio_workers && fs_info->endio_meta_workers && 2372 fs_info->endio_meta_write_workers && 2373 fs_info->endio_repair_workers && 2374 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2375 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2376 fs_info->caching_workers && fs_info->readahead_workers && 2377 fs_info->fixup_workers && fs_info->delayed_workers && 2378 fs_info->extent_workers && 2379 fs_info->qgroup_rescan_workers)) { 2380 return -ENOMEM; 2381 } 2382 2383 return 0; 2384 } 2385 2386 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2387 struct btrfs_fs_devices *fs_devices) 2388 { 2389 int ret; 2390 struct btrfs_root *tree_root = fs_info->tree_root; 2391 struct btrfs_root *log_tree_root; 2392 struct btrfs_super_block *disk_super = fs_info->super_copy; 2393 u64 bytenr = btrfs_super_log_root(disk_super); 2394 2395 if (fs_devices->rw_devices == 0) { 2396 btrfs_warn(fs_info, "log replay required on RO media"); 2397 return -EIO; 2398 } 2399 2400 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2401 if (!log_tree_root) 2402 return -ENOMEM; 2403 2404 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2405 tree_root->stripesize, log_tree_root, fs_info, 2406 BTRFS_TREE_LOG_OBJECTID); 2407 2408 log_tree_root->node = read_tree_block(tree_root, bytenr, 2409 fs_info->generation + 1); 2410 if (IS_ERR(log_tree_root->node)) { 2411 btrfs_warn(fs_info, "failed to read log tree"); 2412 ret = PTR_ERR(log_tree_root->node); 2413 kfree(log_tree_root); 2414 return ret; 2415 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2416 btrfs_err(fs_info, "failed to read log tree"); 2417 free_extent_buffer(log_tree_root->node); 2418 kfree(log_tree_root); 2419 return -EIO; 2420 } 2421 /* returns with log_tree_root freed on success */ 2422 ret = btrfs_recover_log_trees(log_tree_root); 2423 if (ret) { 2424 btrfs_handle_fs_error(tree_root->fs_info, ret, 2425 "Failed to recover log tree"); 2426 free_extent_buffer(log_tree_root->node); 2427 kfree(log_tree_root); 2428 return ret; 2429 } 2430 2431 if (fs_info->sb->s_flags & MS_RDONLY) { 2432 ret = btrfs_commit_super(tree_root); 2433 if (ret) 2434 return ret; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2441 struct btrfs_root *tree_root) 2442 { 2443 struct btrfs_root *root; 2444 struct btrfs_key location; 2445 int ret; 2446 2447 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2448 location.type = BTRFS_ROOT_ITEM_KEY; 2449 location.offset = 0; 2450 2451 root = btrfs_read_tree_root(tree_root, &location); 2452 if (IS_ERR(root)) 2453 return PTR_ERR(root); 2454 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2455 fs_info->extent_root = root; 2456 2457 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2458 root = btrfs_read_tree_root(tree_root, &location); 2459 if (IS_ERR(root)) 2460 return PTR_ERR(root); 2461 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2462 fs_info->dev_root = root; 2463 btrfs_init_devices_late(fs_info); 2464 2465 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2466 root = btrfs_read_tree_root(tree_root, &location); 2467 if (IS_ERR(root)) 2468 return PTR_ERR(root); 2469 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2470 fs_info->csum_root = root; 2471 2472 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2473 root = btrfs_read_tree_root(tree_root, &location); 2474 if (!IS_ERR(root)) { 2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2476 fs_info->quota_enabled = 1; 2477 fs_info->pending_quota_state = 1; 2478 fs_info->quota_root = root; 2479 } 2480 2481 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2482 root = btrfs_read_tree_root(tree_root, &location); 2483 if (IS_ERR(root)) { 2484 ret = PTR_ERR(root); 2485 if (ret != -ENOENT) 2486 return ret; 2487 } else { 2488 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2489 fs_info->uuid_root = root; 2490 } 2491 2492 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2493 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2494 root = btrfs_read_tree_root(tree_root, &location); 2495 if (IS_ERR(root)) 2496 return PTR_ERR(root); 2497 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2498 fs_info->free_space_root = root; 2499 } 2500 2501 return 0; 2502 } 2503 2504 int open_ctree(struct super_block *sb, 2505 struct btrfs_fs_devices *fs_devices, 2506 char *options) 2507 { 2508 u32 sectorsize; 2509 u32 nodesize; 2510 u32 stripesize; 2511 u64 generation; 2512 u64 features; 2513 struct btrfs_key location; 2514 struct buffer_head *bh; 2515 struct btrfs_super_block *disk_super; 2516 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2517 struct btrfs_root *tree_root; 2518 struct btrfs_root *chunk_root; 2519 int ret; 2520 int err = -EINVAL; 2521 int num_backups_tried = 0; 2522 int backup_index = 0; 2523 int max_active; 2524 2525 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2526 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2527 if (!tree_root || !chunk_root) { 2528 err = -ENOMEM; 2529 goto fail; 2530 } 2531 2532 ret = init_srcu_struct(&fs_info->subvol_srcu); 2533 if (ret) { 2534 err = ret; 2535 goto fail; 2536 } 2537 2538 ret = setup_bdi(fs_info, &fs_info->bdi); 2539 if (ret) { 2540 err = ret; 2541 goto fail_srcu; 2542 } 2543 2544 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2545 if (ret) { 2546 err = ret; 2547 goto fail_bdi; 2548 } 2549 fs_info->dirty_metadata_batch = PAGE_SIZE * 2550 (1 + ilog2(nr_cpu_ids)); 2551 2552 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2553 if (ret) { 2554 err = ret; 2555 goto fail_dirty_metadata_bytes; 2556 } 2557 2558 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2559 if (ret) { 2560 err = ret; 2561 goto fail_delalloc_bytes; 2562 } 2563 2564 fs_info->btree_inode = new_inode(sb); 2565 if (!fs_info->btree_inode) { 2566 err = -ENOMEM; 2567 goto fail_bio_counter; 2568 } 2569 2570 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2571 2572 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2573 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2574 INIT_LIST_HEAD(&fs_info->trans_list); 2575 INIT_LIST_HEAD(&fs_info->dead_roots); 2576 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2577 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2578 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2579 spin_lock_init(&fs_info->delalloc_root_lock); 2580 spin_lock_init(&fs_info->trans_lock); 2581 spin_lock_init(&fs_info->fs_roots_radix_lock); 2582 spin_lock_init(&fs_info->delayed_iput_lock); 2583 spin_lock_init(&fs_info->defrag_inodes_lock); 2584 spin_lock_init(&fs_info->free_chunk_lock); 2585 spin_lock_init(&fs_info->tree_mod_seq_lock); 2586 spin_lock_init(&fs_info->super_lock); 2587 spin_lock_init(&fs_info->qgroup_op_lock); 2588 spin_lock_init(&fs_info->buffer_lock); 2589 spin_lock_init(&fs_info->unused_bgs_lock); 2590 rwlock_init(&fs_info->tree_mod_log_lock); 2591 mutex_init(&fs_info->unused_bg_unpin_mutex); 2592 mutex_init(&fs_info->delete_unused_bgs_mutex); 2593 mutex_init(&fs_info->reloc_mutex); 2594 mutex_init(&fs_info->delalloc_root_mutex); 2595 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2596 seqlock_init(&fs_info->profiles_lock); 2597 2598 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2599 INIT_LIST_HEAD(&fs_info->space_info); 2600 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2601 INIT_LIST_HEAD(&fs_info->unused_bgs); 2602 btrfs_mapping_init(&fs_info->mapping_tree); 2603 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2604 BTRFS_BLOCK_RSV_GLOBAL); 2605 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2606 BTRFS_BLOCK_RSV_DELALLOC); 2607 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2608 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2609 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2610 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2611 BTRFS_BLOCK_RSV_DELOPS); 2612 atomic_set(&fs_info->nr_async_submits, 0); 2613 atomic_set(&fs_info->async_delalloc_pages, 0); 2614 atomic_set(&fs_info->async_submit_draining, 0); 2615 atomic_set(&fs_info->nr_async_bios, 0); 2616 atomic_set(&fs_info->defrag_running, 0); 2617 atomic_set(&fs_info->qgroup_op_seq, 0); 2618 atomic_set(&fs_info->reada_works_cnt, 0); 2619 atomic64_set(&fs_info->tree_mod_seq, 0); 2620 fs_info->sb = sb; 2621 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2622 fs_info->metadata_ratio = 0; 2623 fs_info->defrag_inodes = RB_ROOT; 2624 fs_info->free_chunk_space = 0; 2625 fs_info->tree_mod_log = RB_ROOT; 2626 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2627 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2628 /* readahead state */ 2629 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2630 spin_lock_init(&fs_info->reada_lock); 2631 2632 fs_info->thread_pool_size = min_t(unsigned long, 2633 num_online_cpus() + 2, 8); 2634 2635 INIT_LIST_HEAD(&fs_info->ordered_roots); 2636 spin_lock_init(&fs_info->ordered_root_lock); 2637 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2638 GFP_KERNEL); 2639 if (!fs_info->delayed_root) { 2640 err = -ENOMEM; 2641 goto fail_iput; 2642 } 2643 btrfs_init_delayed_root(fs_info->delayed_root); 2644 2645 btrfs_init_scrub(fs_info); 2646 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2647 fs_info->check_integrity_print_mask = 0; 2648 #endif 2649 btrfs_init_balance(fs_info); 2650 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2651 2652 sb->s_blocksize = 4096; 2653 sb->s_blocksize_bits = blksize_bits(4096); 2654 sb->s_bdi = &fs_info->bdi; 2655 2656 btrfs_init_btree_inode(fs_info, tree_root); 2657 2658 spin_lock_init(&fs_info->block_group_cache_lock); 2659 fs_info->block_group_cache_tree = RB_ROOT; 2660 fs_info->first_logical_byte = (u64)-1; 2661 2662 extent_io_tree_init(&fs_info->freed_extents[0], 2663 fs_info->btree_inode->i_mapping); 2664 extent_io_tree_init(&fs_info->freed_extents[1], 2665 fs_info->btree_inode->i_mapping); 2666 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2667 fs_info->do_barriers = 1; 2668 2669 2670 mutex_init(&fs_info->ordered_operations_mutex); 2671 mutex_init(&fs_info->tree_log_mutex); 2672 mutex_init(&fs_info->chunk_mutex); 2673 mutex_init(&fs_info->transaction_kthread_mutex); 2674 mutex_init(&fs_info->cleaner_mutex); 2675 mutex_init(&fs_info->volume_mutex); 2676 mutex_init(&fs_info->ro_block_group_mutex); 2677 init_rwsem(&fs_info->commit_root_sem); 2678 init_rwsem(&fs_info->cleanup_work_sem); 2679 init_rwsem(&fs_info->subvol_sem); 2680 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2681 2682 btrfs_init_dev_replace_locks(fs_info); 2683 btrfs_init_qgroup(fs_info); 2684 2685 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2686 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2687 2688 init_waitqueue_head(&fs_info->transaction_throttle); 2689 init_waitqueue_head(&fs_info->transaction_wait); 2690 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2691 init_waitqueue_head(&fs_info->async_submit_wait); 2692 2693 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2694 2695 ret = btrfs_alloc_stripe_hash_table(fs_info); 2696 if (ret) { 2697 err = ret; 2698 goto fail_alloc; 2699 } 2700 2701 __setup_root(4096, 4096, 4096, tree_root, 2702 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2703 2704 invalidate_bdev(fs_devices->latest_bdev); 2705 2706 /* 2707 * Read super block and check the signature bytes only 2708 */ 2709 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2710 if (IS_ERR(bh)) { 2711 err = PTR_ERR(bh); 2712 goto fail_alloc; 2713 } 2714 2715 /* 2716 * We want to check superblock checksum, the type is stored inside. 2717 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2718 */ 2719 if (btrfs_check_super_csum(bh->b_data)) { 2720 btrfs_err(fs_info, "superblock checksum mismatch"); 2721 err = -EINVAL; 2722 brelse(bh); 2723 goto fail_alloc; 2724 } 2725 2726 /* 2727 * super_copy is zeroed at allocation time and we never touch the 2728 * following bytes up to INFO_SIZE, the checksum is calculated from 2729 * the whole block of INFO_SIZE 2730 */ 2731 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2732 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2733 sizeof(*fs_info->super_for_commit)); 2734 brelse(bh); 2735 2736 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2737 2738 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2739 if (ret) { 2740 btrfs_err(fs_info, "superblock contains fatal errors"); 2741 err = -EINVAL; 2742 goto fail_alloc; 2743 } 2744 2745 disk_super = fs_info->super_copy; 2746 if (!btrfs_super_root(disk_super)) 2747 goto fail_alloc; 2748 2749 /* check FS state, whether FS is broken. */ 2750 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2751 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2752 2753 /* 2754 * run through our array of backup supers and setup 2755 * our ring pointer to the oldest one 2756 */ 2757 generation = btrfs_super_generation(disk_super); 2758 find_oldest_super_backup(fs_info, generation); 2759 2760 /* 2761 * In the long term, we'll store the compression type in the super 2762 * block, and it'll be used for per file compression control. 2763 */ 2764 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2765 2766 ret = btrfs_parse_options(tree_root, options, sb->s_flags); 2767 if (ret) { 2768 err = ret; 2769 goto fail_alloc; 2770 } 2771 2772 features = btrfs_super_incompat_flags(disk_super) & 2773 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2774 if (features) { 2775 btrfs_err(fs_info, 2776 "cannot mount because of unsupported optional features (%llx)", 2777 features); 2778 err = -EINVAL; 2779 goto fail_alloc; 2780 } 2781 2782 features = btrfs_super_incompat_flags(disk_super); 2783 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2784 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2785 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2786 2787 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2788 btrfs_info(fs_info, "has skinny extents"); 2789 2790 /* 2791 * flag our filesystem as having big metadata blocks if 2792 * they are bigger than the page size 2793 */ 2794 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2795 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2796 btrfs_info(fs_info, 2797 "flagging fs with big metadata feature"); 2798 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2799 } 2800 2801 nodesize = btrfs_super_nodesize(disk_super); 2802 sectorsize = btrfs_super_sectorsize(disk_super); 2803 stripesize = sectorsize; 2804 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2805 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2806 2807 /* 2808 * mixed block groups end up with duplicate but slightly offset 2809 * extent buffers for the same range. It leads to corruptions 2810 */ 2811 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2812 (sectorsize != nodesize)) { 2813 btrfs_err(fs_info, 2814 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2815 nodesize, sectorsize); 2816 goto fail_alloc; 2817 } 2818 2819 /* 2820 * Needn't use the lock because there is no other task which will 2821 * update the flag. 2822 */ 2823 btrfs_set_super_incompat_flags(disk_super, features); 2824 2825 features = btrfs_super_compat_ro_flags(disk_super) & 2826 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2827 if (!(sb->s_flags & MS_RDONLY) && features) { 2828 btrfs_err(fs_info, 2829 "cannot mount read-write because of unsupported optional features (%llx)", 2830 features); 2831 err = -EINVAL; 2832 goto fail_alloc; 2833 } 2834 2835 max_active = fs_info->thread_pool_size; 2836 2837 ret = btrfs_init_workqueues(fs_info, fs_devices); 2838 if (ret) { 2839 err = ret; 2840 goto fail_sb_buffer; 2841 } 2842 2843 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2844 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2845 SZ_4M / PAGE_SIZE); 2846 2847 tree_root->nodesize = nodesize; 2848 tree_root->sectorsize = sectorsize; 2849 tree_root->stripesize = stripesize; 2850 2851 sb->s_blocksize = sectorsize; 2852 sb->s_blocksize_bits = blksize_bits(sectorsize); 2853 2854 mutex_lock(&fs_info->chunk_mutex); 2855 ret = btrfs_read_sys_array(tree_root); 2856 mutex_unlock(&fs_info->chunk_mutex); 2857 if (ret) { 2858 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2859 goto fail_sb_buffer; 2860 } 2861 2862 generation = btrfs_super_chunk_root_generation(disk_super); 2863 2864 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2865 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2866 2867 chunk_root->node = read_tree_block(chunk_root, 2868 btrfs_super_chunk_root(disk_super), 2869 generation); 2870 if (IS_ERR(chunk_root->node) || 2871 !extent_buffer_uptodate(chunk_root->node)) { 2872 btrfs_err(fs_info, "failed to read chunk root"); 2873 if (!IS_ERR(chunk_root->node)) 2874 free_extent_buffer(chunk_root->node); 2875 chunk_root->node = NULL; 2876 goto fail_tree_roots; 2877 } 2878 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2879 chunk_root->commit_root = btrfs_root_node(chunk_root); 2880 2881 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2882 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2883 2884 ret = btrfs_read_chunk_tree(chunk_root); 2885 if (ret) { 2886 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2887 goto fail_tree_roots; 2888 } 2889 2890 /* 2891 * keep the device that is marked to be the target device for the 2892 * dev_replace procedure 2893 */ 2894 btrfs_close_extra_devices(fs_devices, 0); 2895 2896 if (!fs_devices->latest_bdev) { 2897 btrfs_err(fs_info, "failed to read devices"); 2898 goto fail_tree_roots; 2899 } 2900 2901 retry_root_backup: 2902 generation = btrfs_super_generation(disk_super); 2903 2904 tree_root->node = read_tree_block(tree_root, 2905 btrfs_super_root(disk_super), 2906 generation); 2907 if (IS_ERR(tree_root->node) || 2908 !extent_buffer_uptodate(tree_root->node)) { 2909 btrfs_warn(fs_info, "failed to read tree root"); 2910 if (!IS_ERR(tree_root->node)) 2911 free_extent_buffer(tree_root->node); 2912 tree_root->node = NULL; 2913 goto recovery_tree_root; 2914 } 2915 2916 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2917 tree_root->commit_root = btrfs_root_node(tree_root); 2918 btrfs_set_root_refs(&tree_root->root_item, 1); 2919 2920 mutex_lock(&tree_root->objectid_mutex); 2921 ret = btrfs_find_highest_objectid(tree_root, 2922 &tree_root->highest_objectid); 2923 if (ret) { 2924 mutex_unlock(&tree_root->objectid_mutex); 2925 goto recovery_tree_root; 2926 } 2927 2928 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2929 2930 mutex_unlock(&tree_root->objectid_mutex); 2931 2932 ret = btrfs_read_roots(fs_info, tree_root); 2933 if (ret) 2934 goto recovery_tree_root; 2935 2936 fs_info->generation = generation; 2937 fs_info->last_trans_committed = generation; 2938 2939 ret = btrfs_recover_balance(fs_info); 2940 if (ret) { 2941 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2942 goto fail_block_groups; 2943 } 2944 2945 ret = btrfs_init_dev_stats(fs_info); 2946 if (ret) { 2947 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2948 goto fail_block_groups; 2949 } 2950 2951 ret = btrfs_init_dev_replace(fs_info); 2952 if (ret) { 2953 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 2954 goto fail_block_groups; 2955 } 2956 2957 btrfs_close_extra_devices(fs_devices, 1); 2958 2959 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2960 if (ret) { 2961 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 2962 ret); 2963 goto fail_block_groups; 2964 } 2965 2966 ret = btrfs_sysfs_add_device(fs_devices); 2967 if (ret) { 2968 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 2969 ret); 2970 goto fail_fsdev_sysfs; 2971 } 2972 2973 ret = btrfs_sysfs_add_mounted(fs_info); 2974 if (ret) { 2975 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 2976 goto fail_fsdev_sysfs; 2977 } 2978 2979 ret = btrfs_init_space_info(fs_info); 2980 if (ret) { 2981 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 2982 goto fail_sysfs; 2983 } 2984 2985 ret = btrfs_read_block_groups(fs_info->extent_root); 2986 if (ret) { 2987 btrfs_err(fs_info, "failed to read block groups: %d", ret); 2988 goto fail_sysfs; 2989 } 2990 fs_info->num_tolerated_disk_barrier_failures = 2991 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2992 if (fs_info->fs_devices->missing_devices > 2993 fs_info->num_tolerated_disk_barrier_failures && 2994 !(sb->s_flags & MS_RDONLY)) { 2995 btrfs_warn(fs_info, 2996 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 2997 fs_info->fs_devices->missing_devices, 2998 fs_info->num_tolerated_disk_barrier_failures); 2999 goto fail_sysfs; 3000 } 3001 3002 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3003 "btrfs-cleaner"); 3004 if (IS_ERR(fs_info->cleaner_kthread)) 3005 goto fail_sysfs; 3006 3007 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3008 tree_root, 3009 "btrfs-transaction"); 3010 if (IS_ERR(fs_info->transaction_kthread)) 3011 goto fail_cleaner; 3012 3013 if (!btrfs_test_opt(tree_root, SSD) && 3014 !btrfs_test_opt(tree_root, NOSSD) && 3015 !fs_info->fs_devices->rotating) { 3016 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3017 btrfs_set_opt(fs_info->mount_opt, SSD); 3018 } 3019 3020 /* 3021 * Mount does not set all options immediately, we can do it now and do 3022 * not have to wait for transaction commit 3023 */ 3024 btrfs_apply_pending_changes(fs_info); 3025 3026 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3027 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 3028 ret = btrfsic_mount(tree_root, fs_devices, 3029 btrfs_test_opt(tree_root, 3030 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3031 1 : 0, 3032 fs_info->check_integrity_print_mask); 3033 if (ret) 3034 btrfs_warn(fs_info, 3035 "failed to initialize integrity check module: %d", 3036 ret); 3037 } 3038 #endif 3039 ret = btrfs_read_qgroup_config(fs_info); 3040 if (ret) 3041 goto fail_trans_kthread; 3042 3043 /* do not make disk changes in broken FS or nologreplay is given */ 3044 if (btrfs_super_log_root(disk_super) != 0 && 3045 !btrfs_test_opt(tree_root, NOLOGREPLAY)) { 3046 ret = btrfs_replay_log(fs_info, fs_devices); 3047 if (ret) { 3048 err = ret; 3049 goto fail_qgroup; 3050 } 3051 } 3052 3053 ret = btrfs_find_orphan_roots(tree_root); 3054 if (ret) 3055 goto fail_qgroup; 3056 3057 if (!(sb->s_flags & MS_RDONLY)) { 3058 ret = btrfs_cleanup_fs_roots(fs_info); 3059 if (ret) 3060 goto fail_qgroup; 3061 3062 mutex_lock(&fs_info->cleaner_mutex); 3063 ret = btrfs_recover_relocation(tree_root); 3064 mutex_unlock(&fs_info->cleaner_mutex); 3065 if (ret < 0) { 3066 btrfs_warn(fs_info, "failed to recover relocation: %d", 3067 ret); 3068 err = -EINVAL; 3069 goto fail_qgroup; 3070 } 3071 } 3072 3073 location.objectid = BTRFS_FS_TREE_OBJECTID; 3074 location.type = BTRFS_ROOT_ITEM_KEY; 3075 location.offset = 0; 3076 3077 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3078 if (IS_ERR(fs_info->fs_root)) { 3079 err = PTR_ERR(fs_info->fs_root); 3080 goto fail_qgroup; 3081 } 3082 3083 if (sb->s_flags & MS_RDONLY) 3084 return 0; 3085 3086 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) && 3087 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3088 btrfs_info(fs_info, "creating free space tree"); 3089 ret = btrfs_create_free_space_tree(fs_info); 3090 if (ret) { 3091 btrfs_warn(fs_info, 3092 "failed to create free space tree: %d", ret); 3093 close_ctree(tree_root); 3094 return ret; 3095 } 3096 } 3097 3098 down_read(&fs_info->cleanup_work_sem); 3099 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3100 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3101 up_read(&fs_info->cleanup_work_sem); 3102 close_ctree(tree_root); 3103 return ret; 3104 } 3105 up_read(&fs_info->cleanup_work_sem); 3106 3107 ret = btrfs_resume_balance_async(fs_info); 3108 if (ret) { 3109 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3110 close_ctree(tree_root); 3111 return ret; 3112 } 3113 3114 ret = btrfs_resume_dev_replace_async(fs_info); 3115 if (ret) { 3116 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3117 close_ctree(tree_root); 3118 return ret; 3119 } 3120 3121 btrfs_qgroup_rescan_resume(fs_info); 3122 3123 if (btrfs_test_opt(tree_root, CLEAR_CACHE) && 3124 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3125 btrfs_info(fs_info, "clearing free space tree"); 3126 ret = btrfs_clear_free_space_tree(fs_info); 3127 if (ret) { 3128 btrfs_warn(fs_info, 3129 "failed to clear free space tree: %d", ret); 3130 close_ctree(tree_root); 3131 return ret; 3132 } 3133 } 3134 3135 if (!fs_info->uuid_root) { 3136 btrfs_info(fs_info, "creating UUID tree"); 3137 ret = btrfs_create_uuid_tree(fs_info); 3138 if (ret) { 3139 btrfs_warn(fs_info, 3140 "failed to create the UUID tree: %d", ret); 3141 close_ctree(tree_root); 3142 return ret; 3143 } 3144 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3145 fs_info->generation != 3146 btrfs_super_uuid_tree_generation(disk_super)) { 3147 btrfs_info(fs_info, "checking UUID tree"); 3148 ret = btrfs_check_uuid_tree(fs_info); 3149 if (ret) { 3150 btrfs_warn(fs_info, 3151 "failed to check the UUID tree: %d", ret); 3152 close_ctree(tree_root); 3153 return ret; 3154 } 3155 } else { 3156 fs_info->update_uuid_tree_gen = 1; 3157 } 3158 3159 fs_info->open = 1; 3160 3161 /* 3162 * backuproot only affect mount behavior, and if open_ctree succeeded, 3163 * no need to keep the flag 3164 */ 3165 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3166 3167 return 0; 3168 3169 fail_qgroup: 3170 btrfs_free_qgroup_config(fs_info); 3171 fail_trans_kthread: 3172 kthread_stop(fs_info->transaction_kthread); 3173 btrfs_cleanup_transaction(fs_info->tree_root); 3174 btrfs_free_fs_roots(fs_info); 3175 fail_cleaner: 3176 kthread_stop(fs_info->cleaner_kthread); 3177 3178 /* 3179 * make sure we're done with the btree inode before we stop our 3180 * kthreads 3181 */ 3182 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3183 3184 fail_sysfs: 3185 btrfs_sysfs_remove_mounted(fs_info); 3186 3187 fail_fsdev_sysfs: 3188 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3189 3190 fail_block_groups: 3191 btrfs_put_block_group_cache(fs_info); 3192 btrfs_free_block_groups(fs_info); 3193 3194 fail_tree_roots: 3195 free_root_pointers(fs_info, 1); 3196 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3197 3198 fail_sb_buffer: 3199 btrfs_stop_all_workers(fs_info); 3200 fail_alloc: 3201 fail_iput: 3202 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3203 3204 iput(fs_info->btree_inode); 3205 fail_bio_counter: 3206 percpu_counter_destroy(&fs_info->bio_counter); 3207 fail_delalloc_bytes: 3208 percpu_counter_destroy(&fs_info->delalloc_bytes); 3209 fail_dirty_metadata_bytes: 3210 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3211 fail_bdi: 3212 bdi_destroy(&fs_info->bdi); 3213 fail_srcu: 3214 cleanup_srcu_struct(&fs_info->subvol_srcu); 3215 fail: 3216 btrfs_free_stripe_hash_table(fs_info); 3217 btrfs_close_devices(fs_info->fs_devices); 3218 return err; 3219 3220 recovery_tree_root: 3221 if (!btrfs_test_opt(tree_root, USEBACKUPROOT)) 3222 goto fail_tree_roots; 3223 3224 free_root_pointers(fs_info, 0); 3225 3226 /* don't use the log in recovery mode, it won't be valid */ 3227 btrfs_set_super_log_root(disk_super, 0); 3228 3229 /* we can't trust the free space cache either */ 3230 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3231 3232 ret = next_root_backup(fs_info, fs_info->super_copy, 3233 &num_backups_tried, &backup_index); 3234 if (ret == -1) 3235 goto fail_block_groups; 3236 goto retry_root_backup; 3237 } 3238 3239 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3240 { 3241 if (uptodate) { 3242 set_buffer_uptodate(bh); 3243 } else { 3244 struct btrfs_device *device = (struct btrfs_device *) 3245 bh->b_private; 3246 3247 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3248 "lost page write due to IO error on %s", 3249 rcu_str_deref(device->name)); 3250 /* note, we don't set_buffer_write_io_error because we have 3251 * our own ways of dealing with the IO errors 3252 */ 3253 clear_buffer_uptodate(bh); 3254 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3255 } 3256 unlock_buffer(bh); 3257 put_bh(bh); 3258 } 3259 3260 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3261 struct buffer_head **bh_ret) 3262 { 3263 struct buffer_head *bh; 3264 struct btrfs_super_block *super; 3265 u64 bytenr; 3266 3267 bytenr = btrfs_sb_offset(copy_num); 3268 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3269 return -EINVAL; 3270 3271 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3272 /* 3273 * If we fail to read from the underlying devices, as of now 3274 * the best option we have is to mark it EIO. 3275 */ 3276 if (!bh) 3277 return -EIO; 3278 3279 super = (struct btrfs_super_block *)bh->b_data; 3280 if (btrfs_super_bytenr(super) != bytenr || 3281 btrfs_super_magic(super) != BTRFS_MAGIC) { 3282 brelse(bh); 3283 return -EINVAL; 3284 } 3285 3286 *bh_ret = bh; 3287 return 0; 3288 } 3289 3290 3291 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3292 { 3293 struct buffer_head *bh; 3294 struct buffer_head *latest = NULL; 3295 struct btrfs_super_block *super; 3296 int i; 3297 u64 transid = 0; 3298 int ret = -EINVAL; 3299 3300 /* we would like to check all the supers, but that would make 3301 * a btrfs mount succeed after a mkfs from a different FS. 3302 * So, we need to add a special mount option to scan for 3303 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3304 */ 3305 for (i = 0; i < 1; i++) { 3306 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3307 if (ret) 3308 continue; 3309 3310 super = (struct btrfs_super_block *)bh->b_data; 3311 3312 if (!latest || btrfs_super_generation(super) > transid) { 3313 brelse(latest); 3314 latest = bh; 3315 transid = btrfs_super_generation(super); 3316 } else { 3317 brelse(bh); 3318 } 3319 } 3320 3321 if (!latest) 3322 return ERR_PTR(ret); 3323 3324 return latest; 3325 } 3326 3327 /* 3328 * this should be called twice, once with wait == 0 and 3329 * once with wait == 1. When wait == 0 is done, all the buffer heads 3330 * we write are pinned. 3331 * 3332 * They are released when wait == 1 is done. 3333 * max_mirrors must be the same for both runs, and it indicates how 3334 * many supers on this one device should be written. 3335 * 3336 * max_mirrors == 0 means to write them all. 3337 */ 3338 static int write_dev_supers(struct btrfs_device *device, 3339 struct btrfs_super_block *sb, 3340 int do_barriers, int wait, int max_mirrors) 3341 { 3342 struct buffer_head *bh; 3343 int i; 3344 int ret; 3345 int errors = 0; 3346 u32 crc; 3347 u64 bytenr; 3348 3349 if (max_mirrors == 0) 3350 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3351 3352 for (i = 0; i < max_mirrors; i++) { 3353 bytenr = btrfs_sb_offset(i); 3354 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3355 device->commit_total_bytes) 3356 break; 3357 3358 if (wait) { 3359 bh = __find_get_block(device->bdev, bytenr / 4096, 3360 BTRFS_SUPER_INFO_SIZE); 3361 if (!bh) { 3362 errors++; 3363 continue; 3364 } 3365 wait_on_buffer(bh); 3366 if (!buffer_uptodate(bh)) 3367 errors++; 3368 3369 /* drop our reference */ 3370 brelse(bh); 3371 3372 /* drop the reference from the wait == 0 run */ 3373 brelse(bh); 3374 continue; 3375 } else { 3376 btrfs_set_super_bytenr(sb, bytenr); 3377 3378 crc = ~(u32)0; 3379 crc = btrfs_csum_data((char *)sb + 3380 BTRFS_CSUM_SIZE, crc, 3381 BTRFS_SUPER_INFO_SIZE - 3382 BTRFS_CSUM_SIZE); 3383 btrfs_csum_final(crc, sb->csum); 3384 3385 /* 3386 * one reference for us, and we leave it for the 3387 * caller 3388 */ 3389 bh = __getblk(device->bdev, bytenr / 4096, 3390 BTRFS_SUPER_INFO_SIZE); 3391 if (!bh) { 3392 btrfs_err(device->dev_root->fs_info, 3393 "couldn't get super buffer head for bytenr %llu", 3394 bytenr); 3395 errors++; 3396 continue; 3397 } 3398 3399 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3400 3401 /* one reference for submit_bh */ 3402 get_bh(bh); 3403 3404 set_buffer_uptodate(bh); 3405 lock_buffer(bh); 3406 bh->b_end_io = btrfs_end_buffer_write_sync; 3407 bh->b_private = device; 3408 } 3409 3410 /* 3411 * we fua the first super. The others we allow 3412 * to go down lazy. 3413 */ 3414 if (i == 0) 3415 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh); 3416 else 3417 ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh); 3418 if (ret) 3419 errors++; 3420 } 3421 return errors < i ? 0 : -1; 3422 } 3423 3424 /* 3425 * endio for the write_dev_flush, this will wake anyone waiting 3426 * for the barrier when it is done 3427 */ 3428 static void btrfs_end_empty_barrier(struct bio *bio) 3429 { 3430 if (bio->bi_private) 3431 complete(bio->bi_private); 3432 bio_put(bio); 3433 } 3434 3435 /* 3436 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3437 * sent down. With wait == 1, it waits for the previous flush. 3438 * 3439 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3440 * capable 3441 */ 3442 static int write_dev_flush(struct btrfs_device *device, int wait) 3443 { 3444 struct bio *bio; 3445 int ret = 0; 3446 3447 if (device->nobarriers) 3448 return 0; 3449 3450 if (wait) { 3451 bio = device->flush_bio; 3452 if (!bio) 3453 return 0; 3454 3455 wait_for_completion(&device->flush_wait); 3456 3457 if (bio->bi_error) { 3458 ret = bio->bi_error; 3459 btrfs_dev_stat_inc_and_print(device, 3460 BTRFS_DEV_STAT_FLUSH_ERRS); 3461 } 3462 3463 /* drop the reference from the wait == 0 run */ 3464 bio_put(bio); 3465 device->flush_bio = NULL; 3466 3467 return ret; 3468 } 3469 3470 /* 3471 * one reference for us, and we leave it for the 3472 * caller 3473 */ 3474 device->flush_bio = NULL; 3475 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3476 if (!bio) 3477 return -ENOMEM; 3478 3479 bio->bi_end_io = btrfs_end_empty_barrier; 3480 bio->bi_bdev = device->bdev; 3481 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 3482 init_completion(&device->flush_wait); 3483 bio->bi_private = &device->flush_wait; 3484 device->flush_bio = bio; 3485 3486 bio_get(bio); 3487 btrfsic_submit_bio(bio); 3488 3489 return 0; 3490 } 3491 3492 /* 3493 * send an empty flush down to each device in parallel, 3494 * then wait for them 3495 */ 3496 static int barrier_all_devices(struct btrfs_fs_info *info) 3497 { 3498 struct list_head *head; 3499 struct btrfs_device *dev; 3500 int errors_send = 0; 3501 int errors_wait = 0; 3502 int ret; 3503 3504 /* send down all the barriers */ 3505 head = &info->fs_devices->devices; 3506 list_for_each_entry_rcu(dev, head, dev_list) { 3507 if (dev->missing) 3508 continue; 3509 if (!dev->bdev) { 3510 errors_send++; 3511 continue; 3512 } 3513 if (!dev->in_fs_metadata || !dev->writeable) 3514 continue; 3515 3516 ret = write_dev_flush(dev, 0); 3517 if (ret) 3518 errors_send++; 3519 } 3520 3521 /* wait for all the barriers */ 3522 list_for_each_entry_rcu(dev, head, dev_list) { 3523 if (dev->missing) 3524 continue; 3525 if (!dev->bdev) { 3526 errors_wait++; 3527 continue; 3528 } 3529 if (!dev->in_fs_metadata || !dev->writeable) 3530 continue; 3531 3532 ret = write_dev_flush(dev, 1); 3533 if (ret) 3534 errors_wait++; 3535 } 3536 if (errors_send > info->num_tolerated_disk_barrier_failures || 3537 errors_wait > info->num_tolerated_disk_barrier_failures) 3538 return -EIO; 3539 return 0; 3540 } 3541 3542 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3543 { 3544 int raid_type; 3545 int min_tolerated = INT_MAX; 3546 3547 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3548 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3549 min_tolerated = min(min_tolerated, 3550 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3551 tolerated_failures); 3552 3553 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3554 if (raid_type == BTRFS_RAID_SINGLE) 3555 continue; 3556 if (!(flags & btrfs_raid_group[raid_type])) 3557 continue; 3558 min_tolerated = min(min_tolerated, 3559 btrfs_raid_array[raid_type]. 3560 tolerated_failures); 3561 } 3562 3563 if (min_tolerated == INT_MAX) { 3564 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3565 min_tolerated = 0; 3566 } 3567 3568 return min_tolerated; 3569 } 3570 3571 int btrfs_calc_num_tolerated_disk_barrier_failures( 3572 struct btrfs_fs_info *fs_info) 3573 { 3574 struct btrfs_ioctl_space_info space; 3575 struct btrfs_space_info *sinfo; 3576 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3577 BTRFS_BLOCK_GROUP_SYSTEM, 3578 BTRFS_BLOCK_GROUP_METADATA, 3579 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3580 int i; 3581 int c; 3582 int num_tolerated_disk_barrier_failures = 3583 (int)fs_info->fs_devices->num_devices; 3584 3585 for (i = 0; i < ARRAY_SIZE(types); i++) { 3586 struct btrfs_space_info *tmp; 3587 3588 sinfo = NULL; 3589 rcu_read_lock(); 3590 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3591 if (tmp->flags == types[i]) { 3592 sinfo = tmp; 3593 break; 3594 } 3595 } 3596 rcu_read_unlock(); 3597 3598 if (!sinfo) 3599 continue; 3600 3601 down_read(&sinfo->groups_sem); 3602 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3603 u64 flags; 3604 3605 if (list_empty(&sinfo->block_groups[c])) 3606 continue; 3607 3608 btrfs_get_block_group_info(&sinfo->block_groups[c], 3609 &space); 3610 if (space.total_bytes == 0 || space.used_bytes == 0) 3611 continue; 3612 flags = space.flags; 3613 3614 num_tolerated_disk_barrier_failures = min( 3615 num_tolerated_disk_barrier_failures, 3616 btrfs_get_num_tolerated_disk_barrier_failures( 3617 flags)); 3618 } 3619 up_read(&sinfo->groups_sem); 3620 } 3621 3622 return num_tolerated_disk_barrier_failures; 3623 } 3624 3625 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3626 { 3627 struct list_head *head; 3628 struct btrfs_device *dev; 3629 struct btrfs_super_block *sb; 3630 struct btrfs_dev_item *dev_item; 3631 int ret; 3632 int do_barriers; 3633 int max_errors; 3634 int total_errors = 0; 3635 u64 flags; 3636 3637 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3638 backup_super_roots(root->fs_info); 3639 3640 sb = root->fs_info->super_for_commit; 3641 dev_item = &sb->dev_item; 3642 3643 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3644 head = &root->fs_info->fs_devices->devices; 3645 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3646 3647 if (do_barriers) { 3648 ret = barrier_all_devices(root->fs_info); 3649 if (ret) { 3650 mutex_unlock( 3651 &root->fs_info->fs_devices->device_list_mutex); 3652 btrfs_handle_fs_error(root->fs_info, ret, 3653 "errors while submitting device barriers."); 3654 return ret; 3655 } 3656 } 3657 3658 list_for_each_entry_rcu(dev, head, dev_list) { 3659 if (!dev->bdev) { 3660 total_errors++; 3661 continue; 3662 } 3663 if (!dev->in_fs_metadata || !dev->writeable) 3664 continue; 3665 3666 btrfs_set_stack_device_generation(dev_item, 0); 3667 btrfs_set_stack_device_type(dev_item, dev->type); 3668 btrfs_set_stack_device_id(dev_item, dev->devid); 3669 btrfs_set_stack_device_total_bytes(dev_item, 3670 dev->commit_total_bytes); 3671 btrfs_set_stack_device_bytes_used(dev_item, 3672 dev->commit_bytes_used); 3673 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3674 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3675 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3676 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3677 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3678 3679 flags = btrfs_super_flags(sb); 3680 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3681 3682 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3683 if (ret) 3684 total_errors++; 3685 } 3686 if (total_errors > max_errors) { 3687 btrfs_err(root->fs_info, "%d errors while writing supers", 3688 total_errors); 3689 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3690 3691 /* FUA is masked off if unsupported and can't be the reason */ 3692 btrfs_handle_fs_error(root->fs_info, -EIO, 3693 "%d errors while writing supers", total_errors); 3694 return -EIO; 3695 } 3696 3697 total_errors = 0; 3698 list_for_each_entry_rcu(dev, head, dev_list) { 3699 if (!dev->bdev) 3700 continue; 3701 if (!dev->in_fs_metadata || !dev->writeable) 3702 continue; 3703 3704 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3705 if (ret) 3706 total_errors++; 3707 } 3708 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3709 if (total_errors > max_errors) { 3710 btrfs_handle_fs_error(root->fs_info, -EIO, 3711 "%d errors while writing supers", total_errors); 3712 return -EIO; 3713 } 3714 return 0; 3715 } 3716 3717 int write_ctree_super(struct btrfs_trans_handle *trans, 3718 struct btrfs_root *root, int max_mirrors) 3719 { 3720 return write_all_supers(root, max_mirrors); 3721 } 3722 3723 /* Drop a fs root from the radix tree and free it. */ 3724 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3725 struct btrfs_root *root) 3726 { 3727 spin_lock(&fs_info->fs_roots_radix_lock); 3728 radix_tree_delete(&fs_info->fs_roots_radix, 3729 (unsigned long)root->root_key.objectid); 3730 spin_unlock(&fs_info->fs_roots_radix_lock); 3731 3732 if (btrfs_root_refs(&root->root_item) == 0) 3733 synchronize_srcu(&fs_info->subvol_srcu); 3734 3735 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3736 btrfs_free_log(NULL, root); 3737 3738 if (root->free_ino_pinned) 3739 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3740 if (root->free_ino_ctl) 3741 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3742 free_fs_root(root); 3743 } 3744 3745 static void free_fs_root(struct btrfs_root *root) 3746 { 3747 iput(root->ino_cache_inode); 3748 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3749 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3750 root->orphan_block_rsv = NULL; 3751 if (root->anon_dev) 3752 free_anon_bdev(root->anon_dev); 3753 if (root->subv_writers) 3754 btrfs_free_subvolume_writers(root->subv_writers); 3755 free_extent_buffer(root->node); 3756 free_extent_buffer(root->commit_root); 3757 kfree(root->free_ino_ctl); 3758 kfree(root->free_ino_pinned); 3759 kfree(root->name); 3760 btrfs_put_fs_root(root); 3761 } 3762 3763 void btrfs_free_fs_root(struct btrfs_root *root) 3764 { 3765 free_fs_root(root); 3766 } 3767 3768 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3769 { 3770 u64 root_objectid = 0; 3771 struct btrfs_root *gang[8]; 3772 int i = 0; 3773 int err = 0; 3774 unsigned int ret = 0; 3775 int index; 3776 3777 while (1) { 3778 index = srcu_read_lock(&fs_info->subvol_srcu); 3779 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3780 (void **)gang, root_objectid, 3781 ARRAY_SIZE(gang)); 3782 if (!ret) { 3783 srcu_read_unlock(&fs_info->subvol_srcu, index); 3784 break; 3785 } 3786 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3787 3788 for (i = 0; i < ret; i++) { 3789 /* Avoid to grab roots in dead_roots */ 3790 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3791 gang[i] = NULL; 3792 continue; 3793 } 3794 /* grab all the search result for later use */ 3795 gang[i] = btrfs_grab_fs_root(gang[i]); 3796 } 3797 srcu_read_unlock(&fs_info->subvol_srcu, index); 3798 3799 for (i = 0; i < ret; i++) { 3800 if (!gang[i]) 3801 continue; 3802 root_objectid = gang[i]->root_key.objectid; 3803 err = btrfs_orphan_cleanup(gang[i]); 3804 if (err) 3805 break; 3806 btrfs_put_fs_root(gang[i]); 3807 } 3808 root_objectid++; 3809 } 3810 3811 /* release the uncleaned roots due to error */ 3812 for (; i < ret; i++) { 3813 if (gang[i]) 3814 btrfs_put_fs_root(gang[i]); 3815 } 3816 return err; 3817 } 3818 3819 int btrfs_commit_super(struct btrfs_root *root) 3820 { 3821 struct btrfs_trans_handle *trans; 3822 3823 mutex_lock(&root->fs_info->cleaner_mutex); 3824 btrfs_run_delayed_iputs(root); 3825 mutex_unlock(&root->fs_info->cleaner_mutex); 3826 wake_up_process(root->fs_info->cleaner_kthread); 3827 3828 /* wait until ongoing cleanup work done */ 3829 down_write(&root->fs_info->cleanup_work_sem); 3830 up_write(&root->fs_info->cleanup_work_sem); 3831 3832 trans = btrfs_join_transaction(root); 3833 if (IS_ERR(trans)) 3834 return PTR_ERR(trans); 3835 return btrfs_commit_transaction(trans, root); 3836 } 3837 3838 void close_ctree(struct btrfs_root *root) 3839 { 3840 struct btrfs_fs_info *fs_info = root->fs_info; 3841 int ret; 3842 3843 fs_info->closing = 1; 3844 smp_mb(); 3845 3846 /* wait for the qgroup rescan worker to stop */ 3847 btrfs_qgroup_wait_for_completion(fs_info); 3848 3849 /* wait for the uuid_scan task to finish */ 3850 down(&fs_info->uuid_tree_rescan_sem); 3851 /* avoid complains from lockdep et al., set sem back to initial state */ 3852 up(&fs_info->uuid_tree_rescan_sem); 3853 3854 /* pause restriper - we want to resume on mount */ 3855 btrfs_pause_balance(fs_info); 3856 3857 btrfs_dev_replace_suspend_for_unmount(fs_info); 3858 3859 btrfs_scrub_cancel(fs_info); 3860 3861 /* wait for any defraggers to finish */ 3862 wait_event(fs_info->transaction_wait, 3863 (atomic_read(&fs_info->defrag_running) == 0)); 3864 3865 /* clear out the rbtree of defraggable inodes */ 3866 btrfs_cleanup_defrag_inodes(fs_info); 3867 3868 cancel_work_sync(&fs_info->async_reclaim_work); 3869 3870 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3871 /* 3872 * If the cleaner thread is stopped and there are 3873 * block groups queued for removal, the deletion will be 3874 * skipped when we quit the cleaner thread. 3875 */ 3876 btrfs_delete_unused_bgs(root->fs_info); 3877 3878 ret = btrfs_commit_super(root); 3879 if (ret) 3880 btrfs_err(fs_info, "commit super ret %d", ret); 3881 } 3882 3883 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3884 btrfs_error_commit_super(root); 3885 3886 kthread_stop(fs_info->transaction_kthread); 3887 kthread_stop(fs_info->cleaner_kthread); 3888 3889 fs_info->closing = 2; 3890 smp_mb(); 3891 3892 btrfs_free_qgroup_config(fs_info); 3893 3894 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3895 btrfs_info(fs_info, "at unmount delalloc count %lld", 3896 percpu_counter_sum(&fs_info->delalloc_bytes)); 3897 } 3898 3899 btrfs_sysfs_remove_mounted(fs_info); 3900 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3901 3902 btrfs_free_fs_roots(fs_info); 3903 3904 btrfs_put_block_group_cache(fs_info); 3905 3906 btrfs_free_block_groups(fs_info); 3907 3908 /* 3909 * we must make sure there is not any read request to 3910 * submit after we stopping all workers. 3911 */ 3912 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3913 btrfs_stop_all_workers(fs_info); 3914 3915 fs_info->open = 0; 3916 free_root_pointers(fs_info, 1); 3917 3918 iput(fs_info->btree_inode); 3919 3920 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3921 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3922 btrfsic_unmount(root, fs_info->fs_devices); 3923 #endif 3924 3925 btrfs_close_devices(fs_info->fs_devices); 3926 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3927 3928 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3929 percpu_counter_destroy(&fs_info->delalloc_bytes); 3930 percpu_counter_destroy(&fs_info->bio_counter); 3931 bdi_destroy(&fs_info->bdi); 3932 cleanup_srcu_struct(&fs_info->subvol_srcu); 3933 3934 btrfs_free_stripe_hash_table(fs_info); 3935 3936 __btrfs_free_block_rsv(root->orphan_block_rsv); 3937 root->orphan_block_rsv = NULL; 3938 3939 lock_chunks(root); 3940 while (!list_empty(&fs_info->pinned_chunks)) { 3941 struct extent_map *em; 3942 3943 em = list_first_entry(&fs_info->pinned_chunks, 3944 struct extent_map, list); 3945 list_del_init(&em->list); 3946 free_extent_map(em); 3947 } 3948 unlock_chunks(root); 3949 } 3950 3951 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3952 int atomic) 3953 { 3954 int ret; 3955 struct inode *btree_inode = buf->pages[0]->mapping->host; 3956 3957 ret = extent_buffer_uptodate(buf); 3958 if (!ret) 3959 return ret; 3960 3961 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3962 parent_transid, atomic); 3963 if (ret == -EAGAIN) 3964 return ret; 3965 return !ret; 3966 } 3967 3968 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3969 { 3970 struct btrfs_root *root; 3971 u64 transid = btrfs_header_generation(buf); 3972 int was_dirty; 3973 3974 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3975 /* 3976 * This is a fast path so only do this check if we have sanity tests 3977 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3978 * outside of the sanity tests. 3979 */ 3980 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3981 return; 3982 #endif 3983 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3984 btrfs_assert_tree_locked(buf); 3985 if (transid != root->fs_info->generation) 3986 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3987 "found %llu running %llu\n", 3988 buf->start, transid, root->fs_info->generation); 3989 was_dirty = set_extent_buffer_dirty(buf); 3990 if (!was_dirty) 3991 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3992 buf->len, 3993 root->fs_info->dirty_metadata_batch); 3994 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3995 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3996 btrfs_print_leaf(root, buf); 3997 ASSERT(0); 3998 } 3999 #endif 4000 } 4001 4002 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 4003 int flush_delayed) 4004 { 4005 /* 4006 * looks as though older kernels can get into trouble with 4007 * this code, they end up stuck in balance_dirty_pages forever 4008 */ 4009 int ret; 4010 4011 if (current->flags & PF_MEMALLOC) 4012 return; 4013 4014 if (flush_delayed) 4015 btrfs_balance_delayed_items(root); 4016 4017 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 4018 BTRFS_DIRTY_METADATA_THRESH); 4019 if (ret > 0) { 4020 balance_dirty_pages_ratelimited( 4021 root->fs_info->btree_inode->i_mapping); 4022 } 4023 } 4024 4025 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4026 { 4027 __btrfs_btree_balance_dirty(root, 1); 4028 } 4029 4030 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4031 { 4032 __btrfs_btree_balance_dirty(root, 0); 4033 } 4034 4035 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4036 { 4037 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4038 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 4039 } 4040 4041 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4042 int read_only) 4043 { 4044 struct btrfs_super_block *sb = fs_info->super_copy; 4045 u64 nodesize = btrfs_super_nodesize(sb); 4046 u64 sectorsize = btrfs_super_sectorsize(sb); 4047 int ret = 0; 4048 4049 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4050 printk(KERN_ERR "BTRFS: no valid FS found\n"); 4051 ret = -EINVAL; 4052 } 4053 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4054 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n", 4055 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4056 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4057 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 4058 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4059 ret = -EINVAL; 4060 } 4061 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4062 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 4063 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4064 ret = -EINVAL; 4065 } 4066 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4067 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 4068 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4069 ret = -EINVAL; 4070 } 4071 4072 /* 4073 * Check sectorsize and nodesize first, other check will need it. 4074 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4075 */ 4076 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4077 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4078 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize); 4079 ret = -EINVAL; 4080 } 4081 /* Only PAGE SIZE is supported yet */ 4082 if (sectorsize != PAGE_SIZE) { 4083 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n", 4084 sectorsize, PAGE_SIZE); 4085 ret = -EINVAL; 4086 } 4087 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4088 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4089 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize); 4090 ret = -EINVAL; 4091 } 4092 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4093 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n", 4094 le32_to_cpu(sb->__unused_leafsize), 4095 nodesize); 4096 ret = -EINVAL; 4097 } 4098 4099 /* Root alignment check */ 4100 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4101 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4102 btrfs_super_root(sb)); 4103 ret = -EINVAL; 4104 } 4105 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4106 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4107 btrfs_super_chunk_root(sb)); 4108 ret = -EINVAL; 4109 } 4110 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4111 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4112 btrfs_super_log_root(sb)); 4113 ret = -EINVAL; 4114 } 4115 4116 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4117 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4118 fs_info->fsid, sb->dev_item.fsid); 4119 ret = -EINVAL; 4120 } 4121 4122 /* 4123 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4124 * done later 4125 */ 4126 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4127 btrfs_err(fs_info, "bytes_used is too small %llu", 4128 btrfs_super_bytes_used(sb)); 4129 ret = -EINVAL; 4130 } 4131 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4132 btrfs_err(fs_info, "invalid stripesize %u", 4133 btrfs_super_stripesize(sb)); 4134 ret = -EINVAL; 4135 } 4136 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4137 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4138 btrfs_super_num_devices(sb)); 4139 if (btrfs_super_num_devices(sb) == 0) { 4140 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4141 ret = -EINVAL; 4142 } 4143 4144 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4145 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4146 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4147 ret = -EINVAL; 4148 } 4149 4150 /* 4151 * Obvious sys_chunk_array corruptions, it must hold at least one key 4152 * and one chunk 4153 */ 4154 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4155 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4156 btrfs_super_sys_array_size(sb), 4157 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4158 ret = -EINVAL; 4159 } 4160 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4161 + sizeof(struct btrfs_chunk)) { 4162 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4163 btrfs_super_sys_array_size(sb), 4164 sizeof(struct btrfs_disk_key) 4165 + sizeof(struct btrfs_chunk)); 4166 ret = -EINVAL; 4167 } 4168 4169 /* 4170 * The generation is a global counter, we'll trust it more than the others 4171 * but it's still possible that it's the one that's wrong. 4172 */ 4173 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4174 printk(KERN_WARNING 4175 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4176 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4177 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4178 && btrfs_super_cache_generation(sb) != (u64)-1) 4179 printk(KERN_WARNING 4180 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4181 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4182 4183 return ret; 4184 } 4185 4186 static void btrfs_error_commit_super(struct btrfs_root *root) 4187 { 4188 mutex_lock(&root->fs_info->cleaner_mutex); 4189 btrfs_run_delayed_iputs(root); 4190 mutex_unlock(&root->fs_info->cleaner_mutex); 4191 4192 down_write(&root->fs_info->cleanup_work_sem); 4193 up_write(&root->fs_info->cleanup_work_sem); 4194 4195 /* cleanup FS via transaction */ 4196 btrfs_cleanup_transaction(root); 4197 } 4198 4199 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4200 { 4201 struct btrfs_ordered_extent *ordered; 4202 4203 spin_lock(&root->ordered_extent_lock); 4204 /* 4205 * This will just short circuit the ordered completion stuff which will 4206 * make sure the ordered extent gets properly cleaned up. 4207 */ 4208 list_for_each_entry(ordered, &root->ordered_extents, 4209 root_extent_list) 4210 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4211 spin_unlock(&root->ordered_extent_lock); 4212 } 4213 4214 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4215 { 4216 struct btrfs_root *root; 4217 struct list_head splice; 4218 4219 INIT_LIST_HEAD(&splice); 4220 4221 spin_lock(&fs_info->ordered_root_lock); 4222 list_splice_init(&fs_info->ordered_roots, &splice); 4223 while (!list_empty(&splice)) { 4224 root = list_first_entry(&splice, struct btrfs_root, 4225 ordered_root); 4226 list_move_tail(&root->ordered_root, 4227 &fs_info->ordered_roots); 4228 4229 spin_unlock(&fs_info->ordered_root_lock); 4230 btrfs_destroy_ordered_extents(root); 4231 4232 cond_resched(); 4233 spin_lock(&fs_info->ordered_root_lock); 4234 } 4235 spin_unlock(&fs_info->ordered_root_lock); 4236 } 4237 4238 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4239 struct btrfs_root *root) 4240 { 4241 struct rb_node *node; 4242 struct btrfs_delayed_ref_root *delayed_refs; 4243 struct btrfs_delayed_ref_node *ref; 4244 int ret = 0; 4245 4246 delayed_refs = &trans->delayed_refs; 4247 4248 spin_lock(&delayed_refs->lock); 4249 if (atomic_read(&delayed_refs->num_entries) == 0) { 4250 spin_unlock(&delayed_refs->lock); 4251 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4252 return ret; 4253 } 4254 4255 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4256 struct btrfs_delayed_ref_head *head; 4257 struct btrfs_delayed_ref_node *tmp; 4258 bool pin_bytes = false; 4259 4260 head = rb_entry(node, struct btrfs_delayed_ref_head, 4261 href_node); 4262 if (!mutex_trylock(&head->mutex)) { 4263 atomic_inc(&head->node.refs); 4264 spin_unlock(&delayed_refs->lock); 4265 4266 mutex_lock(&head->mutex); 4267 mutex_unlock(&head->mutex); 4268 btrfs_put_delayed_ref(&head->node); 4269 spin_lock(&delayed_refs->lock); 4270 continue; 4271 } 4272 spin_lock(&head->lock); 4273 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4274 list) { 4275 ref->in_tree = 0; 4276 list_del(&ref->list); 4277 atomic_dec(&delayed_refs->num_entries); 4278 btrfs_put_delayed_ref(ref); 4279 } 4280 if (head->must_insert_reserved) 4281 pin_bytes = true; 4282 btrfs_free_delayed_extent_op(head->extent_op); 4283 delayed_refs->num_heads--; 4284 if (head->processing == 0) 4285 delayed_refs->num_heads_ready--; 4286 atomic_dec(&delayed_refs->num_entries); 4287 head->node.in_tree = 0; 4288 rb_erase(&head->href_node, &delayed_refs->href_root); 4289 spin_unlock(&head->lock); 4290 spin_unlock(&delayed_refs->lock); 4291 mutex_unlock(&head->mutex); 4292 4293 if (pin_bytes) 4294 btrfs_pin_extent(root, head->node.bytenr, 4295 head->node.num_bytes, 1); 4296 btrfs_put_delayed_ref(&head->node); 4297 cond_resched(); 4298 spin_lock(&delayed_refs->lock); 4299 } 4300 4301 spin_unlock(&delayed_refs->lock); 4302 4303 return ret; 4304 } 4305 4306 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4307 { 4308 struct btrfs_inode *btrfs_inode; 4309 struct list_head splice; 4310 4311 INIT_LIST_HEAD(&splice); 4312 4313 spin_lock(&root->delalloc_lock); 4314 list_splice_init(&root->delalloc_inodes, &splice); 4315 4316 while (!list_empty(&splice)) { 4317 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4318 delalloc_inodes); 4319 4320 list_del_init(&btrfs_inode->delalloc_inodes); 4321 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4322 &btrfs_inode->runtime_flags); 4323 spin_unlock(&root->delalloc_lock); 4324 4325 btrfs_invalidate_inodes(btrfs_inode->root); 4326 4327 spin_lock(&root->delalloc_lock); 4328 } 4329 4330 spin_unlock(&root->delalloc_lock); 4331 } 4332 4333 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4334 { 4335 struct btrfs_root *root; 4336 struct list_head splice; 4337 4338 INIT_LIST_HEAD(&splice); 4339 4340 spin_lock(&fs_info->delalloc_root_lock); 4341 list_splice_init(&fs_info->delalloc_roots, &splice); 4342 while (!list_empty(&splice)) { 4343 root = list_first_entry(&splice, struct btrfs_root, 4344 delalloc_root); 4345 list_del_init(&root->delalloc_root); 4346 root = btrfs_grab_fs_root(root); 4347 BUG_ON(!root); 4348 spin_unlock(&fs_info->delalloc_root_lock); 4349 4350 btrfs_destroy_delalloc_inodes(root); 4351 btrfs_put_fs_root(root); 4352 4353 spin_lock(&fs_info->delalloc_root_lock); 4354 } 4355 spin_unlock(&fs_info->delalloc_root_lock); 4356 } 4357 4358 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4359 struct extent_io_tree *dirty_pages, 4360 int mark) 4361 { 4362 int ret; 4363 struct extent_buffer *eb; 4364 u64 start = 0; 4365 u64 end; 4366 4367 while (1) { 4368 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4369 mark, NULL); 4370 if (ret) 4371 break; 4372 4373 clear_extent_bits(dirty_pages, start, end, mark); 4374 while (start <= end) { 4375 eb = btrfs_find_tree_block(root->fs_info, start); 4376 start += root->nodesize; 4377 if (!eb) 4378 continue; 4379 wait_on_extent_buffer_writeback(eb); 4380 4381 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4382 &eb->bflags)) 4383 clear_extent_buffer_dirty(eb); 4384 free_extent_buffer_stale(eb); 4385 } 4386 } 4387 4388 return ret; 4389 } 4390 4391 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4392 struct extent_io_tree *pinned_extents) 4393 { 4394 struct extent_io_tree *unpin; 4395 u64 start; 4396 u64 end; 4397 int ret; 4398 bool loop = true; 4399 4400 unpin = pinned_extents; 4401 again: 4402 while (1) { 4403 ret = find_first_extent_bit(unpin, 0, &start, &end, 4404 EXTENT_DIRTY, NULL); 4405 if (ret) 4406 break; 4407 4408 clear_extent_dirty(unpin, start, end); 4409 btrfs_error_unpin_extent_range(root, start, end); 4410 cond_resched(); 4411 } 4412 4413 if (loop) { 4414 if (unpin == &root->fs_info->freed_extents[0]) 4415 unpin = &root->fs_info->freed_extents[1]; 4416 else 4417 unpin = &root->fs_info->freed_extents[0]; 4418 loop = false; 4419 goto again; 4420 } 4421 4422 return 0; 4423 } 4424 4425 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4426 struct btrfs_root *root) 4427 { 4428 btrfs_destroy_delayed_refs(cur_trans, root); 4429 4430 cur_trans->state = TRANS_STATE_COMMIT_START; 4431 wake_up(&root->fs_info->transaction_blocked_wait); 4432 4433 cur_trans->state = TRANS_STATE_UNBLOCKED; 4434 wake_up(&root->fs_info->transaction_wait); 4435 4436 btrfs_destroy_delayed_inodes(root); 4437 btrfs_assert_delayed_root_empty(root); 4438 4439 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4440 EXTENT_DIRTY); 4441 btrfs_destroy_pinned_extent(root, 4442 root->fs_info->pinned_extents); 4443 4444 cur_trans->state =TRANS_STATE_COMPLETED; 4445 wake_up(&cur_trans->commit_wait); 4446 4447 /* 4448 memset(cur_trans, 0, sizeof(*cur_trans)); 4449 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4450 */ 4451 } 4452 4453 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4454 { 4455 struct btrfs_transaction *t; 4456 4457 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4458 4459 spin_lock(&root->fs_info->trans_lock); 4460 while (!list_empty(&root->fs_info->trans_list)) { 4461 t = list_first_entry(&root->fs_info->trans_list, 4462 struct btrfs_transaction, list); 4463 if (t->state >= TRANS_STATE_COMMIT_START) { 4464 atomic_inc(&t->use_count); 4465 spin_unlock(&root->fs_info->trans_lock); 4466 btrfs_wait_for_commit(root, t->transid); 4467 btrfs_put_transaction(t); 4468 spin_lock(&root->fs_info->trans_lock); 4469 continue; 4470 } 4471 if (t == root->fs_info->running_transaction) { 4472 t->state = TRANS_STATE_COMMIT_DOING; 4473 spin_unlock(&root->fs_info->trans_lock); 4474 /* 4475 * We wait for 0 num_writers since we don't hold a trans 4476 * handle open currently for this transaction. 4477 */ 4478 wait_event(t->writer_wait, 4479 atomic_read(&t->num_writers) == 0); 4480 } else { 4481 spin_unlock(&root->fs_info->trans_lock); 4482 } 4483 btrfs_cleanup_one_transaction(t, root); 4484 4485 spin_lock(&root->fs_info->trans_lock); 4486 if (t == root->fs_info->running_transaction) 4487 root->fs_info->running_transaction = NULL; 4488 list_del_init(&t->list); 4489 spin_unlock(&root->fs_info->trans_lock); 4490 4491 btrfs_put_transaction(t); 4492 trace_btrfs_transaction_commit(root); 4493 spin_lock(&root->fs_info->trans_lock); 4494 } 4495 spin_unlock(&root->fs_info->trans_lock); 4496 btrfs_destroy_all_ordered_extents(root->fs_info); 4497 btrfs_destroy_delayed_inodes(root); 4498 btrfs_assert_delayed_root_empty(root); 4499 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4500 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4501 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4502 4503 return 0; 4504 } 4505 4506 static const struct extent_io_ops btree_extent_io_ops = { 4507 .readpage_end_io_hook = btree_readpage_end_io_hook, 4508 .readpage_io_failed_hook = btree_io_failed_hook, 4509 .submit_bio_hook = btree_submit_bio_hook, 4510 /* note we're sharing with inode.c for the merge bio hook */ 4511 .merge_bio_hook = btrfs_merge_bio_hook, 4512 }; 4513