xref: /linux/fs/btrfs/disk-io.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 
43 #ifdef CONFIG_X86
44 #include <asm/cpufeature.h>
45 #endif
46 
47 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
48 				 BTRFS_HEADER_FLAG_RELOC |\
49 				 BTRFS_SUPER_FLAG_ERROR |\
50 				 BTRFS_SUPER_FLAG_SEEDING |\
51 				 BTRFS_SUPER_FLAG_METADUMP |\
52 				 BTRFS_SUPER_FLAG_METADUMP_V2)
53 
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 				      struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 					struct extent_io_tree *dirty_pages,
62 					int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 				       struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67 
68 /*
69  * btrfs_end_io_wq structs are used to do processing in task context when an IO
70  * is complete.  This is used during reads to verify checksums, and it is used
71  * by writes to insert metadata for new file extents after IO is complete.
72  */
73 struct btrfs_end_io_wq {
74 	struct bio *bio;
75 	bio_end_io_t *end_io;
76 	void *private;
77 	struct btrfs_fs_info *info;
78 	blk_status_t status;
79 	enum btrfs_wq_endio_type metadata;
80 	struct btrfs_work work;
81 };
82 
83 static struct kmem_cache *btrfs_end_io_wq_cache;
84 
85 int __init btrfs_end_io_wq_init(void)
86 {
87 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 					sizeof(struct btrfs_end_io_wq),
89 					0,
90 					SLAB_MEM_SPREAD,
91 					NULL);
92 	if (!btrfs_end_io_wq_cache)
93 		return -ENOMEM;
94 	return 0;
95 }
96 
97 void __cold btrfs_end_io_wq_exit(void)
98 {
99 	kmem_cache_destroy(btrfs_end_io_wq_cache);
100 }
101 
102 /*
103  * async submit bios are used to offload expensive checksumming
104  * onto the worker threads.  They checksum file and metadata bios
105  * just before they are sent down the IO stack.
106  */
107 struct async_submit_bio {
108 	void *private_data;
109 	struct bio *bio;
110 	extent_submit_bio_start_t *submit_bio_start;
111 	int mirror_num;
112 	/*
113 	 * bio_offset is optional, can be used if the pages in the bio
114 	 * can't tell us where in the file the bio should go
115 	 */
116 	u64 bio_offset;
117 	struct btrfs_work work;
118 	blk_status_t status;
119 };
120 
121 /*
122  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
123  * eb, the lockdep key is determined by the btrfs_root it belongs to and
124  * the level the eb occupies in the tree.
125  *
126  * Different roots are used for different purposes and may nest inside each
127  * other and they require separate keysets.  As lockdep keys should be
128  * static, assign keysets according to the purpose of the root as indicated
129  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
130  * roots have separate keysets.
131  *
132  * Lock-nesting across peer nodes is always done with the immediate parent
133  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
134  * subclass to avoid triggering lockdep warning in such cases.
135  *
136  * The key is set by the readpage_end_io_hook after the buffer has passed
137  * csum validation but before the pages are unlocked.  It is also set by
138  * btrfs_init_new_buffer on freshly allocated blocks.
139  *
140  * We also add a check to make sure the highest level of the tree is the
141  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
142  * needs update as well.
143  */
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
146 #  error
147 # endif
148 
149 static struct btrfs_lockdep_keyset {
150 	u64			id;		/* root objectid */
151 	const char		*name_stem;	/* lock name stem */
152 	char			names[BTRFS_MAX_LEVEL + 1][20];
153 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
156 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
157 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
158 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
159 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
160 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
161 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
162 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
163 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
164 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
165 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
166 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
167 	{ .id = 0,				.name_stem = "tree"	},
168 };
169 
170 void __init btrfs_init_lockdep(void)
171 {
172 	int i, j;
173 
174 	/* initialize lockdep class names */
175 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177 
178 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 			snprintf(ks->names[j], sizeof(ks->names[j]),
180 				 "btrfs-%s-%02d", ks->name_stem, j);
181 	}
182 }
183 
184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 				    int level)
186 {
187 	struct btrfs_lockdep_keyset *ks;
188 
189 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
190 
191 	/* find the matching keyset, id 0 is the default entry */
192 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 		if (ks->id == objectid)
194 			break;
195 
196 	lockdep_set_class_and_name(&eb->lock,
197 				   &ks->keys[level], ks->names[level]);
198 }
199 
200 #endif
201 
202 /*
203  * extents on the btree inode are pretty simple, there's one extent
204  * that covers the entire device
205  */
206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 		struct page *page, size_t pg_offset, u64 start, u64 len,
208 		int create)
209 {
210 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 	struct extent_map_tree *em_tree = &inode->extent_tree;
212 	struct extent_map *em;
213 	int ret;
214 
215 	read_lock(&em_tree->lock);
216 	em = lookup_extent_mapping(em_tree, start, len);
217 	if (em) {
218 		em->bdev = fs_info->fs_devices->latest_bdev;
219 		read_unlock(&em_tree->lock);
220 		goto out;
221 	}
222 	read_unlock(&em_tree->lock);
223 
224 	em = alloc_extent_map();
225 	if (!em) {
226 		em = ERR_PTR(-ENOMEM);
227 		goto out;
228 	}
229 	em->start = 0;
230 	em->len = (u64)-1;
231 	em->block_len = (u64)-1;
232 	em->block_start = 0;
233 	em->bdev = fs_info->fs_devices->latest_bdev;
234 
235 	write_lock(&em_tree->lock);
236 	ret = add_extent_mapping(em_tree, em, 0);
237 	if (ret == -EEXIST) {
238 		free_extent_map(em);
239 		em = lookup_extent_mapping(em_tree, start, len);
240 		if (!em)
241 			em = ERR_PTR(-EIO);
242 	} else if (ret) {
243 		free_extent_map(em);
244 		em = ERR_PTR(ret);
245 	}
246 	write_unlock(&em_tree->lock);
247 
248 out:
249 	return em;
250 }
251 
252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
253 {
254 	return crc32c(seed, data, len);
255 }
256 
257 void btrfs_csum_final(u32 crc, u8 *result)
258 {
259 	put_unaligned_le32(~crc, result);
260 }
261 
262 /*
263  * Compute the csum of a btree block and store the result to provided buffer.
264  *
265  * Returns error if the extent buffer cannot be mapped.
266  */
267 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
268 {
269 	unsigned long len;
270 	unsigned long cur_len;
271 	unsigned long offset = BTRFS_CSUM_SIZE;
272 	char *kaddr;
273 	unsigned long map_start;
274 	unsigned long map_len;
275 	int err;
276 	u32 crc = ~(u32)0;
277 
278 	len = buf->len - offset;
279 	while (len > 0) {
280 		/*
281 		 * Note: we don't need to check for the err == 1 case here, as
282 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
283 		 * and 'min_len = 32' and the currently implemented mapping
284 		 * algorithm we cannot cross a page boundary.
285 		 */
286 		err = map_private_extent_buffer(buf, offset, 32,
287 					&kaddr, &map_start, &map_len);
288 		if (WARN_ON(err))
289 			return err;
290 		cur_len = min(len, map_len - (offset - map_start));
291 		crc = btrfs_csum_data(kaddr + offset - map_start,
292 				      crc, cur_len);
293 		len -= cur_len;
294 		offset += cur_len;
295 	}
296 	memset(result, 0, BTRFS_CSUM_SIZE);
297 
298 	btrfs_csum_final(crc, result);
299 
300 	return 0;
301 }
302 
303 /*
304  * we can't consider a given block up to date unless the transid of the
305  * block matches the transid in the parent node's pointer.  This is how we
306  * detect blocks that either didn't get written at all or got written
307  * in the wrong place.
308  */
309 static int verify_parent_transid(struct extent_io_tree *io_tree,
310 				 struct extent_buffer *eb, u64 parent_transid,
311 				 int atomic)
312 {
313 	struct extent_state *cached_state = NULL;
314 	int ret;
315 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
316 
317 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
318 		return 0;
319 
320 	if (atomic)
321 		return -EAGAIN;
322 
323 	if (need_lock) {
324 		btrfs_tree_read_lock(eb);
325 		btrfs_set_lock_blocking_read(eb);
326 	}
327 
328 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
329 			 &cached_state);
330 	if (extent_buffer_uptodate(eb) &&
331 	    btrfs_header_generation(eb) == parent_transid) {
332 		ret = 0;
333 		goto out;
334 	}
335 	btrfs_err_rl(eb->fs_info,
336 		"parent transid verify failed on %llu wanted %llu found %llu",
337 			eb->start,
338 			parent_transid, btrfs_header_generation(eb));
339 	ret = 1;
340 
341 	/*
342 	 * Things reading via commit roots that don't have normal protection,
343 	 * like send, can have a really old block in cache that may point at a
344 	 * block that has been freed and re-allocated.  So don't clear uptodate
345 	 * if we find an eb that is under IO (dirty/writeback) because we could
346 	 * end up reading in the stale data and then writing it back out and
347 	 * making everybody very sad.
348 	 */
349 	if (!extent_buffer_under_io(eb))
350 		clear_extent_buffer_uptodate(eb);
351 out:
352 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 			     &cached_state);
354 	if (need_lock)
355 		btrfs_tree_read_unlock_blocking(eb);
356 	return ret;
357 }
358 
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
364 				  char *raw_disk_sb)
365 {
366 	struct btrfs_super_block *disk_sb =
367 		(struct btrfs_super_block *)raw_disk_sb;
368 	u16 csum_type = btrfs_super_csum_type(disk_sb);
369 	int ret = 0;
370 
371 	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
372 		u32 crc = ~(u32)0;
373 		char result[sizeof(crc)];
374 
375 		/*
376 		 * The super_block structure does not span the whole
377 		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 		 * is filled with zeros and is included in the checksum.
379 		 */
380 		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 		btrfs_csum_final(crc, result);
383 
384 		if (memcmp(raw_disk_sb, result, sizeof(result)))
385 			ret = 1;
386 	}
387 
388 	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
389 		btrfs_err(fs_info, "unsupported checksum algorithm %u",
390 				csum_type);
391 		ret = 1;
392 	}
393 
394 	return ret;
395 }
396 
397 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
398 			   struct btrfs_key *first_key, u64 parent_transid)
399 {
400 	struct btrfs_fs_info *fs_info = eb->fs_info;
401 	int found_level;
402 	struct btrfs_key found_key;
403 	int ret;
404 
405 	found_level = btrfs_header_level(eb);
406 	if (found_level != level) {
407 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
408 		     KERN_ERR "BTRFS: tree level check failed\n");
409 		btrfs_err(fs_info,
410 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
411 			  eb->start, level, found_level);
412 		return -EIO;
413 	}
414 
415 	if (!first_key)
416 		return 0;
417 
418 	/*
419 	 * For live tree block (new tree blocks in current transaction),
420 	 * we need proper lock context to avoid race, which is impossible here.
421 	 * So we only checks tree blocks which is read from disk, whose
422 	 * generation <= fs_info->last_trans_committed.
423 	 */
424 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
425 		return 0;
426 	if (found_level)
427 		btrfs_node_key_to_cpu(eb, &found_key, 0);
428 	else
429 		btrfs_item_key_to_cpu(eb, &found_key, 0);
430 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
431 
432 	if (ret) {
433 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
434 		     KERN_ERR "BTRFS: tree first key check failed\n");
435 		btrfs_err(fs_info,
436 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
437 			  eb->start, parent_transid, first_key->objectid,
438 			  first_key->type, first_key->offset,
439 			  found_key.objectid, found_key.type,
440 			  found_key.offset);
441 	}
442 	return ret;
443 }
444 
445 /*
446  * helper to read a given tree block, doing retries as required when
447  * the checksums don't match and we have alternate mirrors to try.
448  *
449  * @parent_transid:	expected transid, skip check if 0
450  * @level:		expected level, mandatory check
451  * @first_key:		expected key of first slot, skip check if NULL
452  */
453 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
454 					  u64 parent_transid, int level,
455 					  struct btrfs_key *first_key)
456 {
457 	struct btrfs_fs_info *fs_info = eb->fs_info;
458 	struct extent_io_tree *io_tree;
459 	int failed = 0;
460 	int ret;
461 	int num_copies = 0;
462 	int mirror_num = 0;
463 	int failed_mirror = 0;
464 
465 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
466 	while (1) {
467 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
468 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
469 		if (!ret) {
470 			if (verify_parent_transid(io_tree, eb,
471 						   parent_transid, 0))
472 				ret = -EIO;
473 			else if (btrfs_verify_level_key(eb, level,
474 						first_key, parent_transid))
475 				ret = -EUCLEAN;
476 			else
477 				break;
478 		}
479 
480 		num_copies = btrfs_num_copies(fs_info,
481 					      eb->start, eb->len);
482 		if (num_copies == 1)
483 			break;
484 
485 		if (!failed_mirror) {
486 			failed = 1;
487 			failed_mirror = eb->read_mirror;
488 		}
489 
490 		mirror_num++;
491 		if (mirror_num == failed_mirror)
492 			mirror_num++;
493 
494 		if (mirror_num > num_copies)
495 			break;
496 	}
497 
498 	if (failed && !ret && failed_mirror)
499 		btrfs_repair_eb_io_failure(eb, failed_mirror);
500 
501 	return ret;
502 }
503 
504 /*
505  * checksum a dirty tree block before IO.  This has extra checks to make sure
506  * we only fill in the checksum field in the first page of a multi-page block
507  */
508 
509 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
510 {
511 	u64 start = page_offset(page);
512 	u64 found_start;
513 	u8 result[BTRFS_CSUM_SIZE];
514 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
515 	struct extent_buffer *eb;
516 	int ret;
517 
518 	eb = (struct extent_buffer *)page->private;
519 	if (page != eb->pages[0])
520 		return 0;
521 
522 	found_start = btrfs_header_bytenr(eb);
523 	/*
524 	 * Please do not consolidate these warnings into a single if.
525 	 * It is useful to know what went wrong.
526 	 */
527 	if (WARN_ON(found_start != start))
528 		return -EUCLEAN;
529 	if (WARN_ON(!PageUptodate(page)))
530 		return -EUCLEAN;
531 
532 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
533 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
534 
535 	if (csum_tree_block(eb, result))
536 		return -EINVAL;
537 
538 	if (btrfs_header_level(eb))
539 		ret = btrfs_check_node(eb);
540 	else
541 		ret = btrfs_check_leaf_full(eb);
542 
543 	if (ret < 0) {
544 		btrfs_err(fs_info,
545 		"block=%llu write time tree block corruption detected",
546 			  eb->start);
547 		return ret;
548 	}
549 	write_extent_buffer(eb, result, 0, csum_size);
550 
551 	return 0;
552 }
553 
554 static int check_tree_block_fsid(struct extent_buffer *eb)
555 {
556 	struct btrfs_fs_info *fs_info = eb->fs_info;
557 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
558 	u8 fsid[BTRFS_FSID_SIZE];
559 	int ret = 1;
560 
561 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
562 	while (fs_devices) {
563 		u8 *metadata_uuid;
564 
565 		/*
566 		 * Checking the incompat flag is only valid for the current
567 		 * fs. For seed devices it's forbidden to have their uuid
568 		 * changed so reading ->fsid in this case is fine
569 		 */
570 		if (fs_devices == fs_info->fs_devices &&
571 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
572 			metadata_uuid = fs_devices->metadata_uuid;
573 		else
574 			metadata_uuid = fs_devices->fsid;
575 
576 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
577 			ret = 0;
578 			break;
579 		}
580 		fs_devices = fs_devices->seed;
581 	}
582 	return ret;
583 }
584 
585 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 				      u64 phy_offset, struct page *page,
587 				      u64 start, u64 end, int mirror)
588 {
589 	u64 found_start;
590 	int found_level;
591 	struct extent_buffer *eb;
592 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
593 	struct btrfs_fs_info *fs_info = root->fs_info;
594 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
595 	int ret = 0;
596 	u8 result[BTRFS_CSUM_SIZE];
597 	int reads_done;
598 
599 	if (!page->private)
600 		goto out;
601 
602 	eb = (struct extent_buffer *)page->private;
603 
604 	/* the pending IO might have been the only thing that kept this buffer
605 	 * in memory.  Make sure we have a ref for all this other checks
606 	 */
607 	extent_buffer_get(eb);
608 
609 	reads_done = atomic_dec_and_test(&eb->io_pages);
610 	if (!reads_done)
611 		goto err;
612 
613 	eb->read_mirror = mirror;
614 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
615 		ret = -EIO;
616 		goto err;
617 	}
618 
619 	found_start = btrfs_header_bytenr(eb);
620 	if (found_start != eb->start) {
621 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
622 			     eb->start, found_start);
623 		ret = -EIO;
624 		goto err;
625 	}
626 	if (check_tree_block_fsid(eb)) {
627 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
628 			     eb->start);
629 		ret = -EIO;
630 		goto err;
631 	}
632 	found_level = btrfs_header_level(eb);
633 	if (found_level >= BTRFS_MAX_LEVEL) {
634 		btrfs_err(fs_info, "bad tree block level %d on %llu",
635 			  (int)btrfs_header_level(eb), eb->start);
636 		ret = -EIO;
637 		goto err;
638 	}
639 
640 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
641 				       eb, found_level);
642 
643 	ret = csum_tree_block(eb, result);
644 	if (ret)
645 		goto err;
646 
647 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
648 		u32 val;
649 		u32 found = 0;
650 
651 		memcpy(&found, result, csum_size);
652 
653 		read_extent_buffer(eb, &val, 0, csum_size);
654 		btrfs_warn_rl(fs_info,
655 		"%s checksum verify failed on %llu wanted %x found %x level %d",
656 			      fs_info->sb->s_id, eb->start,
657 			      val, found, btrfs_header_level(eb));
658 		ret = -EUCLEAN;
659 		goto err;
660 	}
661 
662 	/*
663 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
664 	 * that we don't try and read the other copies of this block, just
665 	 * return -EIO.
666 	 */
667 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
668 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
669 		ret = -EIO;
670 	}
671 
672 	if (found_level > 0 && btrfs_check_node(eb))
673 		ret = -EIO;
674 
675 	if (!ret)
676 		set_extent_buffer_uptodate(eb);
677 	else
678 		btrfs_err(fs_info,
679 			  "block=%llu read time tree block corruption detected",
680 			  eb->start);
681 err:
682 	if (reads_done &&
683 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684 		btree_readahead_hook(eb, ret);
685 
686 	if (ret) {
687 		/*
688 		 * our io error hook is going to dec the io pages
689 		 * again, we have to make sure it has something
690 		 * to decrement
691 		 */
692 		atomic_inc(&eb->io_pages);
693 		clear_extent_buffer_uptodate(eb);
694 	}
695 	free_extent_buffer(eb);
696 out:
697 	return ret;
698 }
699 
700 static void end_workqueue_bio(struct bio *bio)
701 {
702 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
703 	struct btrfs_fs_info *fs_info;
704 	struct btrfs_workqueue *wq;
705 	btrfs_work_func_t func;
706 
707 	fs_info = end_io_wq->info;
708 	end_io_wq->status = bio->bi_status;
709 
710 	if (bio_op(bio) == REQ_OP_WRITE) {
711 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
712 			wq = fs_info->endio_meta_write_workers;
713 			func = btrfs_endio_meta_write_helper;
714 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
715 			wq = fs_info->endio_freespace_worker;
716 			func = btrfs_freespace_write_helper;
717 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
718 			wq = fs_info->endio_raid56_workers;
719 			func = btrfs_endio_raid56_helper;
720 		} else {
721 			wq = fs_info->endio_write_workers;
722 			func = btrfs_endio_write_helper;
723 		}
724 	} else {
725 		if (unlikely(end_io_wq->metadata ==
726 			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
727 			wq = fs_info->endio_repair_workers;
728 			func = btrfs_endio_repair_helper;
729 		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
730 			wq = fs_info->endio_raid56_workers;
731 			func = btrfs_endio_raid56_helper;
732 		} else if (end_io_wq->metadata) {
733 			wq = fs_info->endio_meta_workers;
734 			func = btrfs_endio_meta_helper;
735 		} else {
736 			wq = fs_info->endio_workers;
737 			func = btrfs_endio_helper;
738 		}
739 	}
740 
741 	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
742 	btrfs_queue_work(wq, &end_io_wq->work);
743 }
744 
745 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
746 			enum btrfs_wq_endio_type metadata)
747 {
748 	struct btrfs_end_io_wq *end_io_wq;
749 
750 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
751 	if (!end_io_wq)
752 		return BLK_STS_RESOURCE;
753 
754 	end_io_wq->private = bio->bi_private;
755 	end_io_wq->end_io = bio->bi_end_io;
756 	end_io_wq->info = info;
757 	end_io_wq->status = 0;
758 	end_io_wq->bio = bio;
759 	end_io_wq->metadata = metadata;
760 
761 	bio->bi_private = end_io_wq;
762 	bio->bi_end_io = end_workqueue_bio;
763 	return 0;
764 }
765 
766 static void run_one_async_start(struct btrfs_work *work)
767 {
768 	struct async_submit_bio *async;
769 	blk_status_t ret;
770 
771 	async = container_of(work, struct  async_submit_bio, work);
772 	ret = async->submit_bio_start(async->private_data, async->bio,
773 				      async->bio_offset);
774 	if (ret)
775 		async->status = ret;
776 }
777 
778 /*
779  * In order to insert checksums into the metadata in large chunks, we wait
780  * until bio submission time.   All the pages in the bio are checksummed and
781  * sums are attached onto the ordered extent record.
782  *
783  * At IO completion time the csums attached on the ordered extent record are
784  * inserted into the tree.
785  */
786 static void run_one_async_done(struct btrfs_work *work)
787 {
788 	struct async_submit_bio *async;
789 	struct inode *inode;
790 	blk_status_t ret;
791 
792 	async = container_of(work, struct  async_submit_bio, work);
793 	inode = async->private_data;
794 
795 	/* If an error occurred we just want to clean up the bio and move on */
796 	if (async->status) {
797 		async->bio->bi_status = async->status;
798 		bio_endio(async->bio);
799 		return;
800 	}
801 
802 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
803 			async->mirror_num, 1);
804 	if (ret) {
805 		async->bio->bi_status = ret;
806 		bio_endio(async->bio);
807 	}
808 }
809 
810 static void run_one_async_free(struct btrfs_work *work)
811 {
812 	struct async_submit_bio *async;
813 
814 	async = container_of(work, struct  async_submit_bio, work);
815 	kfree(async);
816 }
817 
818 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
819 				 int mirror_num, unsigned long bio_flags,
820 				 u64 bio_offset, void *private_data,
821 				 extent_submit_bio_start_t *submit_bio_start)
822 {
823 	struct async_submit_bio *async;
824 
825 	async = kmalloc(sizeof(*async), GFP_NOFS);
826 	if (!async)
827 		return BLK_STS_RESOURCE;
828 
829 	async->private_data = private_data;
830 	async->bio = bio;
831 	async->mirror_num = mirror_num;
832 	async->submit_bio_start = submit_bio_start;
833 
834 	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
835 			run_one_async_done, run_one_async_free);
836 
837 	async->bio_offset = bio_offset;
838 
839 	async->status = 0;
840 
841 	if (op_is_sync(bio->bi_opf))
842 		btrfs_set_work_high_priority(&async->work);
843 
844 	btrfs_queue_work(fs_info->workers, &async->work);
845 	return 0;
846 }
847 
848 static blk_status_t btree_csum_one_bio(struct bio *bio)
849 {
850 	struct bio_vec *bvec;
851 	struct btrfs_root *root;
852 	int ret = 0;
853 	struct bvec_iter_all iter_all;
854 
855 	ASSERT(!bio_flagged(bio, BIO_CLONED));
856 	bio_for_each_segment_all(bvec, bio, iter_all) {
857 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
858 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
859 		if (ret)
860 			break;
861 	}
862 
863 	return errno_to_blk_status(ret);
864 }
865 
866 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
867 					     u64 bio_offset)
868 {
869 	/*
870 	 * when we're called for a write, we're already in the async
871 	 * submission context.  Just jump into btrfs_map_bio
872 	 */
873 	return btree_csum_one_bio(bio);
874 }
875 
876 static int check_async_write(struct btrfs_inode *bi)
877 {
878 	if (atomic_read(&bi->sync_writers))
879 		return 0;
880 #ifdef CONFIG_X86
881 	if (static_cpu_has(X86_FEATURE_XMM4_2))
882 		return 0;
883 #endif
884 	return 1;
885 }
886 
887 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
888 					  int mirror_num,
889 					  unsigned long bio_flags)
890 {
891 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
892 	int async = check_async_write(BTRFS_I(inode));
893 	blk_status_t ret;
894 
895 	if (bio_op(bio) != REQ_OP_WRITE) {
896 		/*
897 		 * called for a read, do the setup so that checksum validation
898 		 * can happen in the async kernel threads
899 		 */
900 		ret = btrfs_bio_wq_end_io(fs_info, bio,
901 					  BTRFS_WQ_ENDIO_METADATA);
902 		if (ret)
903 			goto out_w_error;
904 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
905 	} else if (!async) {
906 		ret = btree_csum_one_bio(bio);
907 		if (ret)
908 			goto out_w_error;
909 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
910 	} else {
911 		/*
912 		 * kthread helpers are used to submit writes so that
913 		 * checksumming can happen in parallel across all CPUs
914 		 */
915 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
916 					  0, inode, btree_submit_bio_start);
917 	}
918 
919 	if (ret)
920 		goto out_w_error;
921 	return 0;
922 
923 out_w_error:
924 	bio->bi_status = ret;
925 	bio_endio(bio);
926 	return ret;
927 }
928 
929 #ifdef CONFIG_MIGRATION
930 static int btree_migratepage(struct address_space *mapping,
931 			struct page *newpage, struct page *page,
932 			enum migrate_mode mode)
933 {
934 	/*
935 	 * we can't safely write a btree page from here,
936 	 * we haven't done the locking hook
937 	 */
938 	if (PageDirty(page))
939 		return -EAGAIN;
940 	/*
941 	 * Buffers may be managed in a filesystem specific way.
942 	 * We must have no buffers or drop them.
943 	 */
944 	if (page_has_private(page) &&
945 	    !try_to_release_page(page, GFP_KERNEL))
946 		return -EAGAIN;
947 	return migrate_page(mapping, newpage, page, mode);
948 }
949 #endif
950 
951 
952 static int btree_writepages(struct address_space *mapping,
953 			    struct writeback_control *wbc)
954 {
955 	struct btrfs_fs_info *fs_info;
956 	int ret;
957 
958 	if (wbc->sync_mode == WB_SYNC_NONE) {
959 
960 		if (wbc->for_kupdate)
961 			return 0;
962 
963 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
964 		/* this is a bit racy, but that's ok */
965 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
966 					     BTRFS_DIRTY_METADATA_THRESH,
967 					     fs_info->dirty_metadata_batch);
968 		if (ret < 0)
969 			return 0;
970 	}
971 	return btree_write_cache_pages(mapping, wbc);
972 }
973 
974 static int btree_readpage(struct file *file, struct page *page)
975 {
976 	struct extent_io_tree *tree;
977 	tree = &BTRFS_I(page->mapping->host)->io_tree;
978 	return extent_read_full_page(tree, page, btree_get_extent, 0);
979 }
980 
981 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
982 {
983 	if (PageWriteback(page) || PageDirty(page))
984 		return 0;
985 
986 	return try_release_extent_buffer(page);
987 }
988 
989 static void btree_invalidatepage(struct page *page, unsigned int offset,
990 				 unsigned int length)
991 {
992 	struct extent_io_tree *tree;
993 	tree = &BTRFS_I(page->mapping->host)->io_tree;
994 	extent_invalidatepage(tree, page, offset);
995 	btree_releasepage(page, GFP_NOFS);
996 	if (PagePrivate(page)) {
997 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
998 			   "page private not zero on page %llu",
999 			   (unsigned long long)page_offset(page));
1000 		ClearPagePrivate(page);
1001 		set_page_private(page, 0);
1002 		put_page(page);
1003 	}
1004 }
1005 
1006 static int btree_set_page_dirty(struct page *page)
1007 {
1008 #ifdef DEBUG
1009 	struct extent_buffer *eb;
1010 
1011 	BUG_ON(!PagePrivate(page));
1012 	eb = (struct extent_buffer *)page->private;
1013 	BUG_ON(!eb);
1014 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1015 	BUG_ON(!atomic_read(&eb->refs));
1016 	btrfs_assert_tree_locked(eb);
1017 #endif
1018 	return __set_page_dirty_nobuffers(page);
1019 }
1020 
1021 static const struct address_space_operations btree_aops = {
1022 	.readpage	= btree_readpage,
1023 	.writepages	= btree_writepages,
1024 	.releasepage	= btree_releasepage,
1025 	.invalidatepage = btree_invalidatepage,
1026 #ifdef CONFIG_MIGRATION
1027 	.migratepage	= btree_migratepage,
1028 #endif
1029 	.set_page_dirty = btree_set_page_dirty,
1030 };
1031 
1032 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1033 {
1034 	struct extent_buffer *buf = NULL;
1035 	int ret;
1036 
1037 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1038 	if (IS_ERR(buf))
1039 		return;
1040 
1041 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1042 	if (ret < 0)
1043 		free_extent_buffer_stale(buf);
1044 	else
1045 		free_extent_buffer(buf);
1046 }
1047 
1048 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1049 			 int mirror_num, struct extent_buffer **eb)
1050 {
1051 	struct extent_buffer *buf = NULL;
1052 	int ret;
1053 
1054 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1055 	if (IS_ERR(buf))
1056 		return 0;
1057 
1058 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1059 
1060 	ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
1061 	if (ret) {
1062 		free_extent_buffer_stale(buf);
1063 		return ret;
1064 	}
1065 
1066 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1067 		free_extent_buffer_stale(buf);
1068 		return -EIO;
1069 	} else if (extent_buffer_uptodate(buf)) {
1070 		*eb = buf;
1071 	} else {
1072 		free_extent_buffer(buf);
1073 	}
1074 	return 0;
1075 }
1076 
1077 struct extent_buffer *btrfs_find_create_tree_block(
1078 						struct btrfs_fs_info *fs_info,
1079 						u64 bytenr)
1080 {
1081 	if (btrfs_is_testing(fs_info))
1082 		return alloc_test_extent_buffer(fs_info, bytenr);
1083 	return alloc_extent_buffer(fs_info, bytenr);
1084 }
1085 
1086 /*
1087  * Read tree block at logical address @bytenr and do variant basic but critical
1088  * verification.
1089  *
1090  * @parent_transid:	expected transid of this tree block, skip check if 0
1091  * @level:		expected level, mandatory check
1092  * @first_key:		expected key in slot 0, skip check if NULL
1093  */
1094 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1095 				      u64 parent_transid, int level,
1096 				      struct btrfs_key *first_key)
1097 {
1098 	struct extent_buffer *buf = NULL;
1099 	int ret;
1100 
1101 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1102 	if (IS_ERR(buf))
1103 		return buf;
1104 
1105 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1106 					     level, first_key);
1107 	if (ret) {
1108 		free_extent_buffer_stale(buf);
1109 		return ERR_PTR(ret);
1110 	}
1111 	return buf;
1112 
1113 }
1114 
1115 void btrfs_clean_tree_block(struct extent_buffer *buf)
1116 {
1117 	struct btrfs_fs_info *fs_info = buf->fs_info;
1118 	if (btrfs_header_generation(buf) ==
1119 	    fs_info->running_transaction->transid) {
1120 		btrfs_assert_tree_locked(buf);
1121 
1122 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1123 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1124 						 -buf->len,
1125 						 fs_info->dirty_metadata_batch);
1126 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1127 			btrfs_set_lock_blocking_write(buf);
1128 			clear_extent_buffer_dirty(buf);
1129 		}
1130 	}
1131 }
1132 
1133 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1134 {
1135 	struct btrfs_subvolume_writers *writers;
1136 	int ret;
1137 
1138 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1139 	if (!writers)
1140 		return ERR_PTR(-ENOMEM);
1141 
1142 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1143 	if (ret < 0) {
1144 		kfree(writers);
1145 		return ERR_PTR(ret);
1146 	}
1147 
1148 	init_waitqueue_head(&writers->wait);
1149 	return writers;
1150 }
1151 
1152 static void
1153 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1154 {
1155 	percpu_counter_destroy(&writers->counter);
1156 	kfree(writers);
1157 }
1158 
1159 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1160 			 u64 objectid)
1161 {
1162 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1163 	root->node = NULL;
1164 	root->commit_root = NULL;
1165 	root->state = 0;
1166 	root->orphan_cleanup_state = 0;
1167 
1168 	root->last_trans = 0;
1169 	root->highest_objectid = 0;
1170 	root->nr_delalloc_inodes = 0;
1171 	root->nr_ordered_extents = 0;
1172 	root->inode_tree = RB_ROOT;
1173 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1174 	root->block_rsv = NULL;
1175 
1176 	INIT_LIST_HEAD(&root->dirty_list);
1177 	INIT_LIST_HEAD(&root->root_list);
1178 	INIT_LIST_HEAD(&root->delalloc_inodes);
1179 	INIT_LIST_HEAD(&root->delalloc_root);
1180 	INIT_LIST_HEAD(&root->ordered_extents);
1181 	INIT_LIST_HEAD(&root->ordered_root);
1182 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1183 	INIT_LIST_HEAD(&root->logged_list[0]);
1184 	INIT_LIST_HEAD(&root->logged_list[1]);
1185 	spin_lock_init(&root->inode_lock);
1186 	spin_lock_init(&root->delalloc_lock);
1187 	spin_lock_init(&root->ordered_extent_lock);
1188 	spin_lock_init(&root->accounting_lock);
1189 	spin_lock_init(&root->log_extents_lock[0]);
1190 	spin_lock_init(&root->log_extents_lock[1]);
1191 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1192 	mutex_init(&root->objectid_mutex);
1193 	mutex_init(&root->log_mutex);
1194 	mutex_init(&root->ordered_extent_mutex);
1195 	mutex_init(&root->delalloc_mutex);
1196 	init_waitqueue_head(&root->log_writer_wait);
1197 	init_waitqueue_head(&root->log_commit_wait[0]);
1198 	init_waitqueue_head(&root->log_commit_wait[1]);
1199 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1200 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1201 	atomic_set(&root->log_commit[0], 0);
1202 	atomic_set(&root->log_commit[1], 0);
1203 	atomic_set(&root->log_writers, 0);
1204 	atomic_set(&root->log_batch, 0);
1205 	refcount_set(&root->refs, 1);
1206 	atomic_set(&root->will_be_snapshotted, 0);
1207 	atomic_set(&root->snapshot_force_cow, 0);
1208 	atomic_set(&root->nr_swapfiles, 0);
1209 	root->log_transid = 0;
1210 	root->log_transid_committed = -1;
1211 	root->last_log_commit = 0;
1212 	if (!dummy)
1213 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1214 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1215 
1216 	memset(&root->root_key, 0, sizeof(root->root_key));
1217 	memset(&root->root_item, 0, sizeof(root->root_item));
1218 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1219 	if (!dummy)
1220 		root->defrag_trans_start = fs_info->generation;
1221 	else
1222 		root->defrag_trans_start = 0;
1223 	root->root_key.objectid = objectid;
1224 	root->anon_dev = 0;
1225 
1226 	spin_lock_init(&root->root_item_lock);
1227 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1228 }
1229 
1230 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1231 		gfp_t flags)
1232 {
1233 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1234 	if (root)
1235 		root->fs_info = fs_info;
1236 	return root;
1237 }
1238 
1239 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240 /* Should only be used by the testing infrastructure */
1241 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1242 {
1243 	struct btrfs_root *root;
1244 
1245 	if (!fs_info)
1246 		return ERR_PTR(-EINVAL);
1247 
1248 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1249 	if (!root)
1250 		return ERR_PTR(-ENOMEM);
1251 
1252 	/* We don't use the stripesize in selftest, set it as sectorsize */
1253 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1254 	root->alloc_bytenr = 0;
1255 
1256 	return root;
1257 }
1258 #endif
1259 
1260 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1261 				     u64 objectid)
1262 {
1263 	struct btrfs_fs_info *fs_info = trans->fs_info;
1264 	struct extent_buffer *leaf;
1265 	struct btrfs_root *tree_root = fs_info->tree_root;
1266 	struct btrfs_root *root;
1267 	struct btrfs_key key;
1268 	unsigned int nofs_flag;
1269 	int ret = 0;
1270 	uuid_le uuid = NULL_UUID_LE;
1271 
1272 	/*
1273 	 * We're holding a transaction handle, so use a NOFS memory allocation
1274 	 * context to avoid deadlock if reclaim happens.
1275 	 */
1276 	nofs_flag = memalloc_nofs_save();
1277 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1278 	memalloc_nofs_restore(nofs_flag);
1279 	if (!root)
1280 		return ERR_PTR(-ENOMEM);
1281 
1282 	__setup_root(root, fs_info, objectid);
1283 	root->root_key.objectid = objectid;
1284 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1285 	root->root_key.offset = 0;
1286 
1287 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1288 	if (IS_ERR(leaf)) {
1289 		ret = PTR_ERR(leaf);
1290 		leaf = NULL;
1291 		goto fail;
1292 	}
1293 
1294 	root->node = leaf;
1295 	btrfs_mark_buffer_dirty(leaf);
1296 
1297 	root->commit_root = btrfs_root_node(root);
1298 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1299 
1300 	root->root_item.flags = 0;
1301 	root->root_item.byte_limit = 0;
1302 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303 	btrfs_set_root_generation(&root->root_item, trans->transid);
1304 	btrfs_set_root_level(&root->root_item, 0);
1305 	btrfs_set_root_refs(&root->root_item, 1);
1306 	btrfs_set_root_used(&root->root_item, leaf->len);
1307 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1308 	btrfs_set_root_dirid(&root->root_item, 0);
1309 	if (is_fstree(objectid))
1310 		uuid_le_gen(&uuid);
1311 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1312 	root->root_item.drop_level = 0;
1313 
1314 	key.objectid = objectid;
1315 	key.type = BTRFS_ROOT_ITEM_KEY;
1316 	key.offset = 0;
1317 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1318 	if (ret)
1319 		goto fail;
1320 
1321 	btrfs_tree_unlock(leaf);
1322 
1323 	return root;
1324 
1325 fail:
1326 	if (leaf) {
1327 		btrfs_tree_unlock(leaf);
1328 		free_extent_buffer(root->commit_root);
1329 		free_extent_buffer(leaf);
1330 	}
1331 	kfree(root);
1332 
1333 	return ERR_PTR(ret);
1334 }
1335 
1336 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1337 					 struct btrfs_fs_info *fs_info)
1338 {
1339 	struct btrfs_root *root;
1340 	struct extent_buffer *leaf;
1341 
1342 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1343 	if (!root)
1344 		return ERR_PTR(-ENOMEM);
1345 
1346 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1347 
1348 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1349 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1350 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1351 
1352 	/*
1353 	 * DON'T set REF_COWS for log trees
1354 	 *
1355 	 * log trees do not get reference counted because they go away
1356 	 * before a real commit is actually done.  They do store pointers
1357 	 * to file data extents, and those reference counts still get
1358 	 * updated (along with back refs to the log tree).
1359 	 */
1360 
1361 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1362 			NULL, 0, 0, 0);
1363 	if (IS_ERR(leaf)) {
1364 		kfree(root);
1365 		return ERR_CAST(leaf);
1366 	}
1367 
1368 	root->node = leaf;
1369 
1370 	btrfs_mark_buffer_dirty(root->node);
1371 	btrfs_tree_unlock(root->node);
1372 	return root;
1373 }
1374 
1375 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1376 			     struct btrfs_fs_info *fs_info)
1377 {
1378 	struct btrfs_root *log_root;
1379 
1380 	log_root = alloc_log_tree(trans, fs_info);
1381 	if (IS_ERR(log_root))
1382 		return PTR_ERR(log_root);
1383 	WARN_ON(fs_info->log_root_tree);
1384 	fs_info->log_root_tree = log_root;
1385 	return 0;
1386 }
1387 
1388 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1389 		       struct btrfs_root *root)
1390 {
1391 	struct btrfs_fs_info *fs_info = root->fs_info;
1392 	struct btrfs_root *log_root;
1393 	struct btrfs_inode_item *inode_item;
1394 
1395 	log_root = alloc_log_tree(trans, fs_info);
1396 	if (IS_ERR(log_root))
1397 		return PTR_ERR(log_root);
1398 
1399 	log_root->last_trans = trans->transid;
1400 	log_root->root_key.offset = root->root_key.objectid;
1401 
1402 	inode_item = &log_root->root_item.inode;
1403 	btrfs_set_stack_inode_generation(inode_item, 1);
1404 	btrfs_set_stack_inode_size(inode_item, 3);
1405 	btrfs_set_stack_inode_nlink(inode_item, 1);
1406 	btrfs_set_stack_inode_nbytes(inode_item,
1407 				     fs_info->nodesize);
1408 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1409 
1410 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1411 
1412 	WARN_ON(root->log_root);
1413 	root->log_root = log_root;
1414 	root->log_transid = 0;
1415 	root->log_transid_committed = -1;
1416 	root->last_log_commit = 0;
1417 	return 0;
1418 }
1419 
1420 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1421 					       struct btrfs_key *key)
1422 {
1423 	struct btrfs_root *root;
1424 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1425 	struct btrfs_path *path;
1426 	u64 generation;
1427 	int ret;
1428 	int level;
1429 
1430 	path = btrfs_alloc_path();
1431 	if (!path)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1435 	if (!root) {
1436 		ret = -ENOMEM;
1437 		goto alloc_fail;
1438 	}
1439 
1440 	__setup_root(root, fs_info, key->objectid);
1441 
1442 	ret = btrfs_find_root(tree_root, key, path,
1443 			      &root->root_item, &root->root_key);
1444 	if (ret) {
1445 		if (ret > 0)
1446 			ret = -ENOENT;
1447 		goto find_fail;
1448 	}
1449 
1450 	generation = btrfs_root_generation(&root->root_item);
1451 	level = btrfs_root_level(&root->root_item);
1452 	root->node = read_tree_block(fs_info,
1453 				     btrfs_root_bytenr(&root->root_item),
1454 				     generation, level, NULL);
1455 	if (IS_ERR(root->node)) {
1456 		ret = PTR_ERR(root->node);
1457 		goto find_fail;
1458 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1459 		ret = -EIO;
1460 		free_extent_buffer(root->node);
1461 		goto find_fail;
1462 	}
1463 	root->commit_root = btrfs_root_node(root);
1464 out:
1465 	btrfs_free_path(path);
1466 	return root;
1467 
1468 find_fail:
1469 	kfree(root);
1470 alloc_fail:
1471 	root = ERR_PTR(ret);
1472 	goto out;
1473 }
1474 
1475 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1476 				      struct btrfs_key *location)
1477 {
1478 	struct btrfs_root *root;
1479 
1480 	root = btrfs_read_tree_root(tree_root, location);
1481 	if (IS_ERR(root))
1482 		return root;
1483 
1484 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1485 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1486 		btrfs_check_and_init_root_item(&root->root_item);
1487 	}
1488 
1489 	return root;
1490 }
1491 
1492 int btrfs_init_fs_root(struct btrfs_root *root)
1493 {
1494 	int ret;
1495 	struct btrfs_subvolume_writers *writers;
1496 
1497 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1498 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1499 					GFP_NOFS);
1500 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1501 		ret = -ENOMEM;
1502 		goto fail;
1503 	}
1504 
1505 	writers = btrfs_alloc_subvolume_writers();
1506 	if (IS_ERR(writers)) {
1507 		ret = PTR_ERR(writers);
1508 		goto fail;
1509 	}
1510 	root->subv_writers = writers;
1511 
1512 	btrfs_init_free_ino_ctl(root);
1513 	spin_lock_init(&root->ino_cache_lock);
1514 	init_waitqueue_head(&root->ino_cache_wait);
1515 
1516 	ret = get_anon_bdev(&root->anon_dev);
1517 	if (ret)
1518 		goto fail;
1519 
1520 	mutex_lock(&root->objectid_mutex);
1521 	ret = btrfs_find_highest_objectid(root,
1522 					&root->highest_objectid);
1523 	if (ret) {
1524 		mutex_unlock(&root->objectid_mutex);
1525 		goto fail;
1526 	}
1527 
1528 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1529 
1530 	mutex_unlock(&root->objectid_mutex);
1531 
1532 	return 0;
1533 fail:
1534 	/* The caller is responsible to call btrfs_free_fs_root */
1535 	return ret;
1536 }
1537 
1538 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1539 					u64 root_id)
1540 {
1541 	struct btrfs_root *root;
1542 
1543 	spin_lock(&fs_info->fs_roots_radix_lock);
1544 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1545 				 (unsigned long)root_id);
1546 	spin_unlock(&fs_info->fs_roots_radix_lock);
1547 	return root;
1548 }
1549 
1550 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1551 			 struct btrfs_root *root)
1552 {
1553 	int ret;
1554 
1555 	ret = radix_tree_preload(GFP_NOFS);
1556 	if (ret)
1557 		return ret;
1558 
1559 	spin_lock(&fs_info->fs_roots_radix_lock);
1560 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1561 				(unsigned long)root->root_key.objectid,
1562 				root);
1563 	if (ret == 0)
1564 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1565 	spin_unlock(&fs_info->fs_roots_radix_lock);
1566 	radix_tree_preload_end();
1567 
1568 	return ret;
1569 }
1570 
1571 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1572 				     struct btrfs_key *location,
1573 				     bool check_ref)
1574 {
1575 	struct btrfs_root *root;
1576 	struct btrfs_path *path;
1577 	struct btrfs_key key;
1578 	int ret;
1579 
1580 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1581 		return fs_info->tree_root;
1582 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1583 		return fs_info->extent_root;
1584 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1585 		return fs_info->chunk_root;
1586 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1587 		return fs_info->dev_root;
1588 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1589 		return fs_info->csum_root;
1590 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1591 		return fs_info->quota_root ? fs_info->quota_root :
1592 					     ERR_PTR(-ENOENT);
1593 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1594 		return fs_info->uuid_root ? fs_info->uuid_root :
1595 					    ERR_PTR(-ENOENT);
1596 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1597 		return fs_info->free_space_root ? fs_info->free_space_root :
1598 						  ERR_PTR(-ENOENT);
1599 again:
1600 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1601 	if (root) {
1602 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1603 			return ERR_PTR(-ENOENT);
1604 		return root;
1605 	}
1606 
1607 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1608 	if (IS_ERR(root))
1609 		return root;
1610 
1611 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1612 		ret = -ENOENT;
1613 		goto fail;
1614 	}
1615 
1616 	ret = btrfs_init_fs_root(root);
1617 	if (ret)
1618 		goto fail;
1619 
1620 	path = btrfs_alloc_path();
1621 	if (!path) {
1622 		ret = -ENOMEM;
1623 		goto fail;
1624 	}
1625 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1626 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1627 	key.offset = location->objectid;
1628 
1629 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1630 	btrfs_free_path(path);
1631 	if (ret < 0)
1632 		goto fail;
1633 	if (ret == 0)
1634 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1635 
1636 	ret = btrfs_insert_fs_root(fs_info, root);
1637 	if (ret) {
1638 		if (ret == -EEXIST) {
1639 			btrfs_free_fs_root(root);
1640 			goto again;
1641 		}
1642 		goto fail;
1643 	}
1644 	return root;
1645 fail:
1646 	btrfs_free_fs_root(root);
1647 	return ERR_PTR(ret);
1648 }
1649 
1650 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1651 {
1652 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1653 	int ret = 0;
1654 	struct btrfs_device *device;
1655 	struct backing_dev_info *bdi;
1656 
1657 	rcu_read_lock();
1658 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1659 		if (!device->bdev)
1660 			continue;
1661 		bdi = device->bdev->bd_bdi;
1662 		if (bdi_congested(bdi, bdi_bits)) {
1663 			ret = 1;
1664 			break;
1665 		}
1666 	}
1667 	rcu_read_unlock();
1668 	return ret;
1669 }
1670 
1671 /*
1672  * called by the kthread helper functions to finally call the bio end_io
1673  * functions.  This is where read checksum verification actually happens
1674  */
1675 static void end_workqueue_fn(struct btrfs_work *work)
1676 {
1677 	struct bio *bio;
1678 	struct btrfs_end_io_wq *end_io_wq;
1679 
1680 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1681 	bio = end_io_wq->bio;
1682 
1683 	bio->bi_status = end_io_wq->status;
1684 	bio->bi_private = end_io_wq->private;
1685 	bio->bi_end_io = end_io_wq->end_io;
1686 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1687 	bio_endio(bio);
1688 }
1689 
1690 static int cleaner_kthread(void *arg)
1691 {
1692 	struct btrfs_root *root = arg;
1693 	struct btrfs_fs_info *fs_info = root->fs_info;
1694 	int again;
1695 
1696 	while (1) {
1697 		again = 0;
1698 
1699 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1700 
1701 		/* Make the cleaner go to sleep early. */
1702 		if (btrfs_need_cleaner_sleep(fs_info))
1703 			goto sleep;
1704 
1705 		/*
1706 		 * Do not do anything if we might cause open_ctree() to block
1707 		 * before we have finished mounting the filesystem.
1708 		 */
1709 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1710 			goto sleep;
1711 
1712 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1713 			goto sleep;
1714 
1715 		/*
1716 		 * Avoid the problem that we change the status of the fs
1717 		 * during the above check and trylock.
1718 		 */
1719 		if (btrfs_need_cleaner_sleep(fs_info)) {
1720 			mutex_unlock(&fs_info->cleaner_mutex);
1721 			goto sleep;
1722 		}
1723 
1724 		btrfs_run_delayed_iputs(fs_info);
1725 
1726 		again = btrfs_clean_one_deleted_snapshot(root);
1727 		mutex_unlock(&fs_info->cleaner_mutex);
1728 
1729 		/*
1730 		 * The defragger has dealt with the R/O remount and umount,
1731 		 * needn't do anything special here.
1732 		 */
1733 		btrfs_run_defrag_inodes(fs_info);
1734 
1735 		/*
1736 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1737 		 * with relocation (btrfs_relocate_chunk) and relocation
1738 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1739 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1740 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1741 		 * unused block groups.
1742 		 */
1743 		btrfs_delete_unused_bgs(fs_info);
1744 sleep:
1745 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1746 		if (kthread_should_park())
1747 			kthread_parkme();
1748 		if (kthread_should_stop())
1749 			return 0;
1750 		if (!again) {
1751 			set_current_state(TASK_INTERRUPTIBLE);
1752 			schedule();
1753 			__set_current_state(TASK_RUNNING);
1754 		}
1755 	}
1756 }
1757 
1758 static int transaction_kthread(void *arg)
1759 {
1760 	struct btrfs_root *root = arg;
1761 	struct btrfs_fs_info *fs_info = root->fs_info;
1762 	struct btrfs_trans_handle *trans;
1763 	struct btrfs_transaction *cur;
1764 	u64 transid;
1765 	time64_t now;
1766 	unsigned long delay;
1767 	bool cannot_commit;
1768 
1769 	do {
1770 		cannot_commit = false;
1771 		delay = HZ * fs_info->commit_interval;
1772 		mutex_lock(&fs_info->transaction_kthread_mutex);
1773 
1774 		spin_lock(&fs_info->trans_lock);
1775 		cur = fs_info->running_transaction;
1776 		if (!cur) {
1777 			spin_unlock(&fs_info->trans_lock);
1778 			goto sleep;
1779 		}
1780 
1781 		now = ktime_get_seconds();
1782 		if (cur->state < TRANS_STATE_BLOCKED &&
1783 		    !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1784 		    (now < cur->start_time ||
1785 		     now - cur->start_time < fs_info->commit_interval)) {
1786 			spin_unlock(&fs_info->trans_lock);
1787 			delay = HZ * 5;
1788 			goto sleep;
1789 		}
1790 		transid = cur->transid;
1791 		spin_unlock(&fs_info->trans_lock);
1792 
1793 		/* If the file system is aborted, this will always fail. */
1794 		trans = btrfs_attach_transaction(root);
1795 		if (IS_ERR(trans)) {
1796 			if (PTR_ERR(trans) != -ENOENT)
1797 				cannot_commit = true;
1798 			goto sleep;
1799 		}
1800 		if (transid == trans->transid) {
1801 			btrfs_commit_transaction(trans);
1802 		} else {
1803 			btrfs_end_transaction(trans);
1804 		}
1805 sleep:
1806 		wake_up_process(fs_info->cleaner_kthread);
1807 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1808 
1809 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1810 				      &fs_info->fs_state)))
1811 			btrfs_cleanup_transaction(fs_info);
1812 		if (!kthread_should_stop() &&
1813 				(!btrfs_transaction_blocked(fs_info) ||
1814 				 cannot_commit))
1815 			schedule_timeout_interruptible(delay);
1816 	} while (!kthread_should_stop());
1817 	return 0;
1818 }
1819 
1820 /*
1821  * this will find the highest generation in the array of
1822  * root backups.  The index of the highest array is returned,
1823  * or -1 if we can't find anything.
1824  *
1825  * We check to make sure the array is valid by comparing the
1826  * generation of the latest  root in the array with the generation
1827  * in the super block.  If they don't match we pitch it.
1828  */
1829 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1830 {
1831 	u64 cur;
1832 	int newest_index = -1;
1833 	struct btrfs_root_backup *root_backup;
1834 	int i;
1835 
1836 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1837 		root_backup = info->super_copy->super_roots + i;
1838 		cur = btrfs_backup_tree_root_gen(root_backup);
1839 		if (cur == newest_gen)
1840 			newest_index = i;
1841 	}
1842 
1843 	/* check to see if we actually wrapped around */
1844 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1845 		root_backup = info->super_copy->super_roots;
1846 		cur = btrfs_backup_tree_root_gen(root_backup);
1847 		if (cur == newest_gen)
1848 			newest_index = 0;
1849 	}
1850 	return newest_index;
1851 }
1852 
1853 
1854 /*
1855  * find the oldest backup so we know where to store new entries
1856  * in the backup array.  This will set the backup_root_index
1857  * field in the fs_info struct
1858  */
1859 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1860 				     u64 newest_gen)
1861 {
1862 	int newest_index = -1;
1863 
1864 	newest_index = find_newest_super_backup(info, newest_gen);
1865 	/* if there was garbage in there, just move along */
1866 	if (newest_index == -1) {
1867 		info->backup_root_index = 0;
1868 	} else {
1869 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1870 	}
1871 }
1872 
1873 /*
1874  * copy all the root pointers into the super backup array.
1875  * this will bump the backup pointer by one when it is
1876  * done
1877  */
1878 static void backup_super_roots(struct btrfs_fs_info *info)
1879 {
1880 	int next_backup;
1881 	struct btrfs_root_backup *root_backup;
1882 	int last_backup;
1883 
1884 	next_backup = info->backup_root_index;
1885 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1886 		BTRFS_NUM_BACKUP_ROOTS;
1887 
1888 	/*
1889 	 * just overwrite the last backup if we're at the same generation
1890 	 * this happens only at umount
1891 	 */
1892 	root_backup = info->super_for_commit->super_roots + last_backup;
1893 	if (btrfs_backup_tree_root_gen(root_backup) ==
1894 	    btrfs_header_generation(info->tree_root->node))
1895 		next_backup = last_backup;
1896 
1897 	root_backup = info->super_for_commit->super_roots + next_backup;
1898 
1899 	/*
1900 	 * make sure all of our padding and empty slots get zero filled
1901 	 * regardless of which ones we use today
1902 	 */
1903 	memset(root_backup, 0, sizeof(*root_backup));
1904 
1905 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1906 
1907 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1908 	btrfs_set_backup_tree_root_gen(root_backup,
1909 			       btrfs_header_generation(info->tree_root->node));
1910 
1911 	btrfs_set_backup_tree_root_level(root_backup,
1912 			       btrfs_header_level(info->tree_root->node));
1913 
1914 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1915 	btrfs_set_backup_chunk_root_gen(root_backup,
1916 			       btrfs_header_generation(info->chunk_root->node));
1917 	btrfs_set_backup_chunk_root_level(root_backup,
1918 			       btrfs_header_level(info->chunk_root->node));
1919 
1920 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1921 	btrfs_set_backup_extent_root_gen(root_backup,
1922 			       btrfs_header_generation(info->extent_root->node));
1923 	btrfs_set_backup_extent_root_level(root_backup,
1924 			       btrfs_header_level(info->extent_root->node));
1925 
1926 	/*
1927 	 * we might commit during log recovery, which happens before we set
1928 	 * the fs_root.  Make sure it is valid before we fill it in.
1929 	 */
1930 	if (info->fs_root && info->fs_root->node) {
1931 		btrfs_set_backup_fs_root(root_backup,
1932 					 info->fs_root->node->start);
1933 		btrfs_set_backup_fs_root_gen(root_backup,
1934 			       btrfs_header_generation(info->fs_root->node));
1935 		btrfs_set_backup_fs_root_level(root_backup,
1936 			       btrfs_header_level(info->fs_root->node));
1937 	}
1938 
1939 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1940 	btrfs_set_backup_dev_root_gen(root_backup,
1941 			       btrfs_header_generation(info->dev_root->node));
1942 	btrfs_set_backup_dev_root_level(root_backup,
1943 				       btrfs_header_level(info->dev_root->node));
1944 
1945 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1946 	btrfs_set_backup_csum_root_gen(root_backup,
1947 			       btrfs_header_generation(info->csum_root->node));
1948 	btrfs_set_backup_csum_root_level(root_backup,
1949 			       btrfs_header_level(info->csum_root->node));
1950 
1951 	btrfs_set_backup_total_bytes(root_backup,
1952 			     btrfs_super_total_bytes(info->super_copy));
1953 	btrfs_set_backup_bytes_used(root_backup,
1954 			     btrfs_super_bytes_used(info->super_copy));
1955 	btrfs_set_backup_num_devices(root_backup,
1956 			     btrfs_super_num_devices(info->super_copy));
1957 
1958 	/*
1959 	 * if we don't copy this out to the super_copy, it won't get remembered
1960 	 * for the next commit
1961 	 */
1962 	memcpy(&info->super_copy->super_roots,
1963 	       &info->super_for_commit->super_roots,
1964 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1965 }
1966 
1967 /*
1968  * this copies info out of the root backup array and back into
1969  * the in-memory super block.  It is meant to help iterate through
1970  * the array, so you send it the number of backups you've already
1971  * tried and the last backup index you used.
1972  *
1973  * this returns -1 when it has tried all the backups
1974  */
1975 static noinline int next_root_backup(struct btrfs_fs_info *info,
1976 				     struct btrfs_super_block *super,
1977 				     int *num_backups_tried, int *backup_index)
1978 {
1979 	struct btrfs_root_backup *root_backup;
1980 	int newest = *backup_index;
1981 
1982 	if (*num_backups_tried == 0) {
1983 		u64 gen = btrfs_super_generation(super);
1984 
1985 		newest = find_newest_super_backup(info, gen);
1986 		if (newest == -1)
1987 			return -1;
1988 
1989 		*backup_index = newest;
1990 		*num_backups_tried = 1;
1991 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1992 		/* we've tried all the backups, all done */
1993 		return -1;
1994 	} else {
1995 		/* jump to the next oldest backup */
1996 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1997 			BTRFS_NUM_BACKUP_ROOTS;
1998 		*backup_index = newest;
1999 		*num_backups_tried += 1;
2000 	}
2001 	root_backup = super->super_roots + newest;
2002 
2003 	btrfs_set_super_generation(super,
2004 				   btrfs_backup_tree_root_gen(root_backup));
2005 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2006 	btrfs_set_super_root_level(super,
2007 				   btrfs_backup_tree_root_level(root_backup));
2008 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2009 
2010 	/*
2011 	 * fixme: the total bytes and num_devices need to match or we should
2012 	 * need a fsck
2013 	 */
2014 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2015 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2016 	return 0;
2017 }
2018 
2019 /* helper to cleanup workers */
2020 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2021 {
2022 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2023 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2024 	btrfs_destroy_workqueue(fs_info->workers);
2025 	btrfs_destroy_workqueue(fs_info->endio_workers);
2026 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2027 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2028 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2029 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2030 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2031 	btrfs_destroy_workqueue(fs_info->submit_workers);
2032 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2033 	btrfs_destroy_workqueue(fs_info->caching_workers);
2034 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2035 	btrfs_destroy_workqueue(fs_info->flush_workers);
2036 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2037 	btrfs_destroy_workqueue(fs_info->extent_workers);
2038 	/*
2039 	 * Now that all other work queues are destroyed, we can safely destroy
2040 	 * the queues used for metadata I/O, since tasks from those other work
2041 	 * queues can do metadata I/O operations.
2042 	 */
2043 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2044 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2045 }
2046 
2047 static void free_root_extent_buffers(struct btrfs_root *root)
2048 {
2049 	if (root) {
2050 		free_extent_buffer(root->node);
2051 		free_extent_buffer(root->commit_root);
2052 		root->node = NULL;
2053 		root->commit_root = NULL;
2054 	}
2055 }
2056 
2057 /* helper to cleanup tree roots */
2058 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2059 {
2060 	free_root_extent_buffers(info->tree_root);
2061 
2062 	free_root_extent_buffers(info->dev_root);
2063 	free_root_extent_buffers(info->extent_root);
2064 	free_root_extent_buffers(info->csum_root);
2065 	free_root_extent_buffers(info->quota_root);
2066 	free_root_extent_buffers(info->uuid_root);
2067 	if (chunk_root)
2068 		free_root_extent_buffers(info->chunk_root);
2069 	free_root_extent_buffers(info->free_space_root);
2070 }
2071 
2072 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2073 {
2074 	int ret;
2075 	struct btrfs_root *gang[8];
2076 	int i;
2077 
2078 	while (!list_empty(&fs_info->dead_roots)) {
2079 		gang[0] = list_entry(fs_info->dead_roots.next,
2080 				     struct btrfs_root, root_list);
2081 		list_del(&gang[0]->root_list);
2082 
2083 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2084 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2085 		} else {
2086 			free_extent_buffer(gang[0]->node);
2087 			free_extent_buffer(gang[0]->commit_root);
2088 			btrfs_put_fs_root(gang[0]);
2089 		}
2090 	}
2091 
2092 	while (1) {
2093 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 					     (void **)gang, 0,
2095 					     ARRAY_SIZE(gang));
2096 		if (!ret)
2097 			break;
2098 		for (i = 0; i < ret; i++)
2099 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100 	}
2101 
2102 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2103 		btrfs_free_log_root_tree(NULL, fs_info);
2104 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2105 	}
2106 }
2107 
2108 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2109 {
2110 	mutex_init(&fs_info->scrub_lock);
2111 	atomic_set(&fs_info->scrubs_running, 0);
2112 	atomic_set(&fs_info->scrub_pause_req, 0);
2113 	atomic_set(&fs_info->scrubs_paused, 0);
2114 	atomic_set(&fs_info->scrub_cancel_req, 0);
2115 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2116 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2117 }
2118 
2119 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2120 {
2121 	spin_lock_init(&fs_info->balance_lock);
2122 	mutex_init(&fs_info->balance_mutex);
2123 	atomic_set(&fs_info->balance_pause_req, 0);
2124 	atomic_set(&fs_info->balance_cancel_req, 0);
2125 	fs_info->balance_ctl = NULL;
2126 	init_waitqueue_head(&fs_info->balance_wait_q);
2127 }
2128 
2129 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2130 {
2131 	struct inode *inode = fs_info->btree_inode;
2132 
2133 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2134 	set_nlink(inode, 1);
2135 	/*
2136 	 * we set the i_size on the btree inode to the max possible int.
2137 	 * the real end of the address space is determined by all of
2138 	 * the devices in the system
2139 	 */
2140 	inode->i_size = OFFSET_MAX;
2141 	inode->i_mapping->a_ops = &btree_aops;
2142 
2143 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2144 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2145 			    IO_TREE_INODE_IO, inode);
2146 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2147 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2148 
2149 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2150 
2151 	BTRFS_I(inode)->root = fs_info->tree_root;
2152 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2153 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2154 	btrfs_insert_inode_hash(inode);
2155 }
2156 
2157 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2158 {
2159 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2160 	init_rwsem(&fs_info->dev_replace.rwsem);
2161 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2162 }
2163 
2164 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2165 {
2166 	spin_lock_init(&fs_info->qgroup_lock);
2167 	mutex_init(&fs_info->qgroup_ioctl_lock);
2168 	fs_info->qgroup_tree = RB_ROOT;
2169 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170 	fs_info->qgroup_seq = 1;
2171 	fs_info->qgroup_ulist = NULL;
2172 	fs_info->qgroup_rescan_running = false;
2173 	mutex_init(&fs_info->qgroup_rescan_lock);
2174 }
2175 
2176 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2177 		struct btrfs_fs_devices *fs_devices)
2178 {
2179 	u32 max_active = fs_info->thread_pool_size;
2180 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2181 
2182 	fs_info->workers =
2183 		btrfs_alloc_workqueue(fs_info, "worker",
2184 				      flags | WQ_HIGHPRI, max_active, 16);
2185 
2186 	fs_info->delalloc_workers =
2187 		btrfs_alloc_workqueue(fs_info, "delalloc",
2188 				      flags, max_active, 2);
2189 
2190 	fs_info->flush_workers =
2191 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2192 				      flags, max_active, 0);
2193 
2194 	fs_info->caching_workers =
2195 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2196 
2197 	/*
2198 	 * a higher idle thresh on the submit workers makes it much more
2199 	 * likely that bios will be send down in a sane order to the
2200 	 * devices
2201 	 */
2202 	fs_info->submit_workers =
2203 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2204 				      min_t(u64, fs_devices->num_devices,
2205 					    max_active), 64);
2206 
2207 	fs_info->fixup_workers =
2208 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2209 
2210 	/*
2211 	 * endios are largely parallel and should have a very
2212 	 * low idle thresh
2213 	 */
2214 	fs_info->endio_workers =
2215 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2216 	fs_info->endio_meta_workers =
2217 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2218 				      max_active, 4);
2219 	fs_info->endio_meta_write_workers =
2220 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2221 				      max_active, 2);
2222 	fs_info->endio_raid56_workers =
2223 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2224 				      max_active, 4);
2225 	fs_info->endio_repair_workers =
2226 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2227 	fs_info->rmw_workers =
2228 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2229 	fs_info->endio_write_workers =
2230 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2231 				      max_active, 2);
2232 	fs_info->endio_freespace_worker =
2233 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2234 				      max_active, 0);
2235 	fs_info->delayed_workers =
2236 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2237 				      max_active, 0);
2238 	fs_info->readahead_workers =
2239 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2240 				      max_active, 2);
2241 	fs_info->qgroup_rescan_workers =
2242 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2243 	fs_info->extent_workers =
2244 		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2245 				      min_t(u64, fs_devices->num_devices,
2246 					    max_active), 8);
2247 
2248 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2249 	      fs_info->submit_workers && fs_info->flush_workers &&
2250 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2251 	      fs_info->endio_meta_write_workers &&
2252 	      fs_info->endio_repair_workers &&
2253 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2254 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2255 	      fs_info->caching_workers && fs_info->readahead_workers &&
2256 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2257 	      fs_info->extent_workers &&
2258 	      fs_info->qgroup_rescan_workers)) {
2259 		return -ENOMEM;
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2266 			    struct btrfs_fs_devices *fs_devices)
2267 {
2268 	int ret;
2269 	struct btrfs_root *log_tree_root;
2270 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2271 	u64 bytenr = btrfs_super_log_root(disk_super);
2272 	int level = btrfs_super_log_root_level(disk_super);
2273 
2274 	if (fs_devices->rw_devices == 0) {
2275 		btrfs_warn(fs_info, "log replay required on RO media");
2276 		return -EIO;
2277 	}
2278 
2279 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2280 	if (!log_tree_root)
2281 		return -ENOMEM;
2282 
2283 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2284 
2285 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2286 					      fs_info->generation + 1,
2287 					      level, NULL);
2288 	if (IS_ERR(log_tree_root->node)) {
2289 		btrfs_warn(fs_info, "failed to read log tree");
2290 		ret = PTR_ERR(log_tree_root->node);
2291 		kfree(log_tree_root);
2292 		return ret;
2293 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2294 		btrfs_err(fs_info, "failed to read log tree");
2295 		free_extent_buffer(log_tree_root->node);
2296 		kfree(log_tree_root);
2297 		return -EIO;
2298 	}
2299 	/* returns with log_tree_root freed on success */
2300 	ret = btrfs_recover_log_trees(log_tree_root);
2301 	if (ret) {
2302 		btrfs_handle_fs_error(fs_info, ret,
2303 				      "Failed to recover log tree");
2304 		free_extent_buffer(log_tree_root->node);
2305 		kfree(log_tree_root);
2306 		return ret;
2307 	}
2308 
2309 	if (sb_rdonly(fs_info->sb)) {
2310 		ret = btrfs_commit_super(fs_info);
2311 		if (ret)
2312 			return ret;
2313 	}
2314 
2315 	return 0;
2316 }
2317 
2318 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2319 {
2320 	struct btrfs_root *tree_root = fs_info->tree_root;
2321 	struct btrfs_root *root;
2322 	struct btrfs_key location;
2323 	int ret;
2324 
2325 	BUG_ON(!fs_info->tree_root);
2326 
2327 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2328 	location.type = BTRFS_ROOT_ITEM_KEY;
2329 	location.offset = 0;
2330 
2331 	root = btrfs_read_tree_root(tree_root, &location);
2332 	if (IS_ERR(root)) {
2333 		ret = PTR_ERR(root);
2334 		goto out;
2335 	}
2336 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337 	fs_info->extent_root = root;
2338 
2339 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2340 	root = btrfs_read_tree_root(tree_root, &location);
2341 	if (IS_ERR(root)) {
2342 		ret = PTR_ERR(root);
2343 		goto out;
2344 	}
2345 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2346 	fs_info->dev_root = root;
2347 	btrfs_init_devices_late(fs_info);
2348 
2349 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2350 	root = btrfs_read_tree_root(tree_root, &location);
2351 	if (IS_ERR(root)) {
2352 		ret = PTR_ERR(root);
2353 		goto out;
2354 	}
2355 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2356 	fs_info->csum_root = root;
2357 
2358 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2359 	root = btrfs_read_tree_root(tree_root, &location);
2360 	if (!IS_ERR(root)) {
2361 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2362 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2363 		fs_info->quota_root = root;
2364 	}
2365 
2366 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2367 	root = btrfs_read_tree_root(tree_root, &location);
2368 	if (IS_ERR(root)) {
2369 		ret = PTR_ERR(root);
2370 		if (ret != -ENOENT)
2371 			goto out;
2372 	} else {
2373 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 		fs_info->uuid_root = root;
2375 	}
2376 
2377 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2378 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2379 		root = btrfs_read_tree_root(tree_root, &location);
2380 		if (IS_ERR(root)) {
2381 			ret = PTR_ERR(root);
2382 			goto out;
2383 		}
2384 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2385 		fs_info->free_space_root = root;
2386 	}
2387 
2388 	return 0;
2389 out:
2390 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2391 		   location.objectid, ret);
2392 	return ret;
2393 }
2394 
2395 /*
2396  * Real super block validation
2397  * NOTE: super csum type and incompat features will not be checked here.
2398  *
2399  * @sb:		super block to check
2400  * @mirror_num:	the super block number to check its bytenr:
2401  * 		0	the primary (1st) sb
2402  * 		1, 2	2nd and 3rd backup copy
2403  * 	       -1	skip bytenr check
2404  */
2405 static int validate_super(struct btrfs_fs_info *fs_info,
2406 			    struct btrfs_super_block *sb, int mirror_num)
2407 {
2408 	u64 nodesize = btrfs_super_nodesize(sb);
2409 	u64 sectorsize = btrfs_super_sectorsize(sb);
2410 	int ret = 0;
2411 
2412 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2413 		btrfs_err(fs_info, "no valid FS found");
2414 		ret = -EINVAL;
2415 	}
2416 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2417 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2418 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2419 		ret = -EINVAL;
2420 	}
2421 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2422 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2423 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2424 		ret = -EINVAL;
2425 	}
2426 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2427 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2428 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2429 		ret = -EINVAL;
2430 	}
2431 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2432 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2433 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2434 		ret = -EINVAL;
2435 	}
2436 
2437 	/*
2438 	 * Check sectorsize and nodesize first, other check will need it.
2439 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2440 	 */
2441 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2442 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2443 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2444 		ret = -EINVAL;
2445 	}
2446 	/* Only PAGE SIZE is supported yet */
2447 	if (sectorsize != PAGE_SIZE) {
2448 		btrfs_err(fs_info,
2449 			"sectorsize %llu not supported yet, only support %lu",
2450 			sectorsize, PAGE_SIZE);
2451 		ret = -EINVAL;
2452 	}
2453 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2454 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2455 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2456 		ret = -EINVAL;
2457 	}
2458 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2459 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2460 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2461 		ret = -EINVAL;
2462 	}
2463 
2464 	/* Root alignment check */
2465 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2466 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2467 			   btrfs_super_root(sb));
2468 		ret = -EINVAL;
2469 	}
2470 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2471 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2472 			   btrfs_super_chunk_root(sb));
2473 		ret = -EINVAL;
2474 	}
2475 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2476 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2477 			   btrfs_super_log_root(sb));
2478 		ret = -EINVAL;
2479 	}
2480 
2481 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2482 		   BTRFS_FSID_SIZE) != 0) {
2483 		btrfs_err(fs_info,
2484 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2485 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2486 		ret = -EINVAL;
2487 	}
2488 
2489 	/*
2490 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2491 	 * done later
2492 	 */
2493 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2494 		btrfs_err(fs_info, "bytes_used is too small %llu",
2495 			  btrfs_super_bytes_used(sb));
2496 		ret = -EINVAL;
2497 	}
2498 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2499 		btrfs_err(fs_info, "invalid stripesize %u",
2500 			  btrfs_super_stripesize(sb));
2501 		ret = -EINVAL;
2502 	}
2503 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2504 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2505 			   btrfs_super_num_devices(sb));
2506 	if (btrfs_super_num_devices(sb) == 0) {
2507 		btrfs_err(fs_info, "number of devices is 0");
2508 		ret = -EINVAL;
2509 	}
2510 
2511 	if (mirror_num >= 0 &&
2512 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2513 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2514 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2515 		ret = -EINVAL;
2516 	}
2517 
2518 	/*
2519 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2520 	 * and one chunk
2521 	 */
2522 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2523 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2524 			  btrfs_super_sys_array_size(sb),
2525 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2526 		ret = -EINVAL;
2527 	}
2528 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2529 			+ sizeof(struct btrfs_chunk)) {
2530 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2531 			  btrfs_super_sys_array_size(sb),
2532 			  sizeof(struct btrfs_disk_key)
2533 			  + sizeof(struct btrfs_chunk));
2534 		ret = -EINVAL;
2535 	}
2536 
2537 	/*
2538 	 * The generation is a global counter, we'll trust it more than the others
2539 	 * but it's still possible that it's the one that's wrong.
2540 	 */
2541 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2542 		btrfs_warn(fs_info,
2543 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2544 			btrfs_super_generation(sb),
2545 			btrfs_super_chunk_root_generation(sb));
2546 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2547 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2548 		btrfs_warn(fs_info,
2549 			"suspicious: generation < cache_generation: %llu < %llu",
2550 			btrfs_super_generation(sb),
2551 			btrfs_super_cache_generation(sb));
2552 
2553 	return ret;
2554 }
2555 
2556 /*
2557  * Validation of super block at mount time.
2558  * Some checks already done early at mount time, like csum type and incompat
2559  * flags will be skipped.
2560  */
2561 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2562 {
2563 	return validate_super(fs_info, fs_info->super_copy, 0);
2564 }
2565 
2566 /*
2567  * Validation of super block at write time.
2568  * Some checks like bytenr check will be skipped as their values will be
2569  * overwritten soon.
2570  * Extra checks like csum type and incompat flags will be done here.
2571  */
2572 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2573 				      struct btrfs_super_block *sb)
2574 {
2575 	int ret;
2576 
2577 	ret = validate_super(fs_info, sb, -1);
2578 	if (ret < 0)
2579 		goto out;
2580 	if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2581 		ret = -EUCLEAN;
2582 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2583 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2584 		goto out;
2585 	}
2586 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2587 		ret = -EUCLEAN;
2588 		btrfs_err(fs_info,
2589 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2590 			  btrfs_super_incompat_flags(sb),
2591 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2592 		goto out;
2593 	}
2594 out:
2595 	if (ret < 0)
2596 		btrfs_err(fs_info,
2597 		"super block corruption detected before writing it to disk");
2598 	return ret;
2599 }
2600 
2601 int open_ctree(struct super_block *sb,
2602 	       struct btrfs_fs_devices *fs_devices,
2603 	       char *options)
2604 {
2605 	u32 sectorsize;
2606 	u32 nodesize;
2607 	u32 stripesize;
2608 	u64 generation;
2609 	u64 features;
2610 	struct btrfs_key location;
2611 	struct buffer_head *bh;
2612 	struct btrfs_super_block *disk_super;
2613 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2614 	struct btrfs_root *tree_root;
2615 	struct btrfs_root *chunk_root;
2616 	int ret;
2617 	int err = -EINVAL;
2618 	int num_backups_tried = 0;
2619 	int backup_index = 0;
2620 	int clear_free_space_tree = 0;
2621 	int level;
2622 
2623 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2624 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2625 	if (!tree_root || !chunk_root) {
2626 		err = -ENOMEM;
2627 		goto fail;
2628 	}
2629 
2630 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2631 	if (ret) {
2632 		err = ret;
2633 		goto fail;
2634 	}
2635 
2636 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2637 	if (ret) {
2638 		err = ret;
2639 		goto fail_srcu;
2640 	}
2641 
2642 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2643 	if (ret) {
2644 		err = ret;
2645 		goto fail_dio_bytes;
2646 	}
2647 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2648 					(1 + ilog2(nr_cpu_ids));
2649 
2650 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2651 	if (ret) {
2652 		err = ret;
2653 		goto fail_dirty_metadata_bytes;
2654 	}
2655 
2656 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2657 			GFP_KERNEL);
2658 	if (ret) {
2659 		err = ret;
2660 		goto fail_delalloc_bytes;
2661 	}
2662 
2663 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2664 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2665 	INIT_LIST_HEAD(&fs_info->trans_list);
2666 	INIT_LIST_HEAD(&fs_info->dead_roots);
2667 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2668 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2669 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2670 	INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2671 	spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2672 	spin_lock_init(&fs_info->delalloc_root_lock);
2673 	spin_lock_init(&fs_info->trans_lock);
2674 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2675 	spin_lock_init(&fs_info->delayed_iput_lock);
2676 	spin_lock_init(&fs_info->defrag_inodes_lock);
2677 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2678 	spin_lock_init(&fs_info->super_lock);
2679 	spin_lock_init(&fs_info->buffer_lock);
2680 	spin_lock_init(&fs_info->unused_bgs_lock);
2681 	rwlock_init(&fs_info->tree_mod_log_lock);
2682 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2683 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2684 	mutex_init(&fs_info->reloc_mutex);
2685 	mutex_init(&fs_info->delalloc_root_mutex);
2686 	seqlock_init(&fs_info->profiles_lock);
2687 
2688 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2689 	INIT_LIST_HEAD(&fs_info->space_info);
2690 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2691 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2692 	btrfs_mapping_init(&fs_info->mapping_tree);
2693 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2694 			     BTRFS_BLOCK_RSV_GLOBAL);
2695 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2696 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2697 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2698 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2699 			     BTRFS_BLOCK_RSV_DELOPS);
2700 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2701 			     BTRFS_BLOCK_RSV_DELREFS);
2702 
2703 	atomic_set(&fs_info->async_delalloc_pages, 0);
2704 	atomic_set(&fs_info->defrag_running, 0);
2705 	atomic_set(&fs_info->reada_works_cnt, 0);
2706 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2707 	atomic64_set(&fs_info->tree_mod_seq, 0);
2708 	fs_info->sb = sb;
2709 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2710 	fs_info->metadata_ratio = 0;
2711 	fs_info->defrag_inodes = RB_ROOT;
2712 	atomic64_set(&fs_info->free_chunk_space, 0);
2713 	fs_info->tree_mod_log = RB_ROOT;
2714 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2715 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2716 	/* readahead state */
2717 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2718 	spin_lock_init(&fs_info->reada_lock);
2719 	btrfs_init_ref_verify(fs_info);
2720 
2721 	fs_info->thread_pool_size = min_t(unsigned long,
2722 					  num_online_cpus() + 2, 8);
2723 
2724 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2725 	spin_lock_init(&fs_info->ordered_root_lock);
2726 
2727 	fs_info->btree_inode = new_inode(sb);
2728 	if (!fs_info->btree_inode) {
2729 		err = -ENOMEM;
2730 		goto fail_bio_counter;
2731 	}
2732 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2733 
2734 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2735 					GFP_KERNEL);
2736 	if (!fs_info->delayed_root) {
2737 		err = -ENOMEM;
2738 		goto fail_iput;
2739 	}
2740 	btrfs_init_delayed_root(fs_info->delayed_root);
2741 
2742 	btrfs_init_scrub(fs_info);
2743 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2744 	fs_info->check_integrity_print_mask = 0;
2745 #endif
2746 	btrfs_init_balance(fs_info);
2747 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2748 
2749 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2750 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2751 
2752 	btrfs_init_btree_inode(fs_info);
2753 
2754 	spin_lock_init(&fs_info->block_group_cache_lock);
2755 	fs_info->block_group_cache_tree = RB_ROOT;
2756 	fs_info->first_logical_byte = (u64)-1;
2757 
2758 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2759 			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2760 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2761 			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2762 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2763 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2764 
2765 	mutex_init(&fs_info->ordered_operations_mutex);
2766 	mutex_init(&fs_info->tree_log_mutex);
2767 	mutex_init(&fs_info->chunk_mutex);
2768 	mutex_init(&fs_info->transaction_kthread_mutex);
2769 	mutex_init(&fs_info->cleaner_mutex);
2770 	mutex_init(&fs_info->ro_block_group_mutex);
2771 	init_rwsem(&fs_info->commit_root_sem);
2772 	init_rwsem(&fs_info->cleanup_work_sem);
2773 	init_rwsem(&fs_info->subvol_sem);
2774 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2775 
2776 	btrfs_init_dev_replace_locks(fs_info);
2777 	btrfs_init_qgroup(fs_info);
2778 
2779 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2780 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2781 
2782 	init_waitqueue_head(&fs_info->transaction_throttle);
2783 	init_waitqueue_head(&fs_info->transaction_wait);
2784 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2785 	init_waitqueue_head(&fs_info->async_submit_wait);
2786 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2787 
2788 	/* Usable values until the real ones are cached from the superblock */
2789 	fs_info->nodesize = 4096;
2790 	fs_info->sectorsize = 4096;
2791 	fs_info->stripesize = 4096;
2792 
2793 	spin_lock_init(&fs_info->swapfile_pins_lock);
2794 	fs_info->swapfile_pins = RB_ROOT;
2795 
2796 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2797 	if (ret) {
2798 		err = ret;
2799 		goto fail_alloc;
2800 	}
2801 
2802 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2803 
2804 	invalidate_bdev(fs_devices->latest_bdev);
2805 
2806 	/*
2807 	 * Read super block and check the signature bytes only
2808 	 */
2809 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2810 	if (IS_ERR(bh)) {
2811 		err = PTR_ERR(bh);
2812 		goto fail_alloc;
2813 	}
2814 
2815 	/*
2816 	 * We want to check superblock checksum, the type is stored inside.
2817 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2818 	 */
2819 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2820 		btrfs_err(fs_info, "superblock checksum mismatch");
2821 		err = -EINVAL;
2822 		brelse(bh);
2823 		goto fail_alloc;
2824 	}
2825 
2826 	/*
2827 	 * super_copy is zeroed at allocation time and we never touch the
2828 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2829 	 * the whole block of INFO_SIZE
2830 	 */
2831 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2832 	brelse(bh);
2833 
2834 	disk_super = fs_info->super_copy;
2835 
2836 	ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2837 		       BTRFS_FSID_SIZE));
2838 
2839 	if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2840 		ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2841 				fs_info->super_copy->metadata_uuid,
2842 				BTRFS_FSID_SIZE));
2843 	}
2844 
2845 	features = btrfs_super_flags(disk_super);
2846 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2847 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2848 		btrfs_set_super_flags(disk_super, features);
2849 		btrfs_info(fs_info,
2850 			"found metadata UUID change in progress flag, clearing");
2851 	}
2852 
2853 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2854 	       sizeof(*fs_info->super_for_commit));
2855 
2856 	ret = btrfs_validate_mount_super(fs_info);
2857 	if (ret) {
2858 		btrfs_err(fs_info, "superblock contains fatal errors");
2859 		err = -EINVAL;
2860 		goto fail_alloc;
2861 	}
2862 
2863 	if (!btrfs_super_root(disk_super))
2864 		goto fail_alloc;
2865 
2866 	/* check FS state, whether FS is broken. */
2867 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2868 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2869 
2870 	/*
2871 	 * run through our array of backup supers and setup
2872 	 * our ring pointer to the oldest one
2873 	 */
2874 	generation = btrfs_super_generation(disk_super);
2875 	find_oldest_super_backup(fs_info, generation);
2876 
2877 	/*
2878 	 * In the long term, we'll store the compression type in the super
2879 	 * block, and it'll be used for per file compression control.
2880 	 */
2881 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2882 
2883 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2884 	if (ret) {
2885 		err = ret;
2886 		goto fail_alloc;
2887 	}
2888 
2889 	features = btrfs_super_incompat_flags(disk_super) &
2890 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2891 	if (features) {
2892 		btrfs_err(fs_info,
2893 		    "cannot mount because of unsupported optional features (%llx)",
2894 		    features);
2895 		err = -EINVAL;
2896 		goto fail_alloc;
2897 	}
2898 
2899 	features = btrfs_super_incompat_flags(disk_super);
2900 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2901 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2902 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2903 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2904 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2905 
2906 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2907 		btrfs_info(fs_info, "has skinny extents");
2908 
2909 	/*
2910 	 * flag our filesystem as having big metadata blocks if
2911 	 * they are bigger than the page size
2912 	 */
2913 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2914 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2915 			btrfs_info(fs_info,
2916 				"flagging fs with big metadata feature");
2917 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2918 	}
2919 
2920 	nodesize = btrfs_super_nodesize(disk_super);
2921 	sectorsize = btrfs_super_sectorsize(disk_super);
2922 	stripesize = sectorsize;
2923 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2924 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2925 
2926 	/* Cache block sizes */
2927 	fs_info->nodesize = nodesize;
2928 	fs_info->sectorsize = sectorsize;
2929 	fs_info->stripesize = stripesize;
2930 
2931 	/*
2932 	 * mixed block groups end up with duplicate but slightly offset
2933 	 * extent buffers for the same range.  It leads to corruptions
2934 	 */
2935 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2936 	    (sectorsize != nodesize)) {
2937 		btrfs_err(fs_info,
2938 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2939 			nodesize, sectorsize);
2940 		goto fail_alloc;
2941 	}
2942 
2943 	/*
2944 	 * Needn't use the lock because there is no other task which will
2945 	 * update the flag.
2946 	 */
2947 	btrfs_set_super_incompat_flags(disk_super, features);
2948 
2949 	features = btrfs_super_compat_ro_flags(disk_super) &
2950 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2951 	if (!sb_rdonly(sb) && features) {
2952 		btrfs_err(fs_info,
2953 	"cannot mount read-write because of unsupported optional features (%llx)",
2954 		       features);
2955 		err = -EINVAL;
2956 		goto fail_alloc;
2957 	}
2958 
2959 	ret = btrfs_init_workqueues(fs_info, fs_devices);
2960 	if (ret) {
2961 		err = ret;
2962 		goto fail_sb_buffer;
2963 	}
2964 
2965 	sb->s_bdi->congested_fn = btrfs_congested_fn;
2966 	sb->s_bdi->congested_data = fs_info;
2967 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2968 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2969 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2970 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2971 
2972 	sb->s_blocksize = sectorsize;
2973 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2974 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2975 
2976 	mutex_lock(&fs_info->chunk_mutex);
2977 	ret = btrfs_read_sys_array(fs_info);
2978 	mutex_unlock(&fs_info->chunk_mutex);
2979 	if (ret) {
2980 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2981 		goto fail_sb_buffer;
2982 	}
2983 
2984 	generation = btrfs_super_chunk_root_generation(disk_super);
2985 	level = btrfs_super_chunk_root_level(disk_super);
2986 
2987 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2988 
2989 	chunk_root->node = read_tree_block(fs_info,
2990 					   btrfs_super_chunk_root(disk_super),
2991 					   generation, level, NULL);
2992 	if (IS_ERR(chunk_root->node) ||
2993 	    !extent_buffer_uptodate(chunk_root->node)) {
2994 		btrfs_err(fs_info, "failed to read chunk root");
2995 		if (!IS_ERR(chunk_root->node))
2996 			free_extent_buffer(chunk_root->node);
2997 		chunk_root->node = NULL;
2998 		goto fail_tree_roots;
2999 	}
3000 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3001 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3002 
3003 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3004 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3005 
3006 	ret = btrfs_read_chunk_tree(fs_info);
3007 	if (ret) {
3008 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3009 		goto fail_tree_roots;
3010 	}
3011 
3012 	/*
3013 	 * Keep the devid that is marked to be the target device for the
3014 	 * device replace procedure
3015 	 */
3016 	btrfs_free_extra_devids(fs_devices, 0);
3017 
3018 	if (!fs_devices->latest_bdev) {
3019 		btrfs_err(fs_info, "failed to read devices");
3020 		goto fail_tree_roots;
3021 	}
3022 
3023 retry_root_backup:
3024 	generation = btrfs_super_generation(disk_super);
3025 	level = btrfs_super_root_level(disk_super);
3026 
3027 	tree_root->node = read_tree_block(fs_info,
3028 					  btrfs_super_root(disk_super),
3029 					  generation, level, NULL);
3030 	if (IS_ERR(tree_root->node) ||
3031 	    !extent_buffer_uptodate(tree_root->node)) {
3032 		btrfs_warn(fs_info, "failed to read tree root");
3033 		if (!IS_ERR(tree_root->node))
3034 			free_extent_buffer(tree_root->node);
3035 		tree_root->node = NULL;
3036 		goto recovery_tree_root;
3037 	}
3038 
3039 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3040 	tree_root->commit_root = btrfs_root_node(tree_root);
3041 	btrfs_set_root_refs(&tree_root->root_item, 1);
3042 
3043 	mutex_lock(&tree_root->objectid_mutex);
3044 	ret = btrfs_find_highest_objectid(tree_root,
3045 					&tree_root->highest_objectid);
3046 	if (ret) {
3047 		mutex_unlock(&tree_root->objectid_mutex);
3048 		goto recovery_tree_root;
3049 	}
3050 
3051 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3052 
3053 	mutex_unlock(&tree_root->objectid_mutex);
3054 
3055 	ret = btrfs_read_roots(fs_info);
3056 	if (ret)
3057 		goto recovery_tree_root;
3058 
3059 	fs_info->generation = generation;
3060 	fs_info->last_trans_committed = generation;
3061 
3062 	ret = btrfs_verify_dev_extents(fs_info);
3063 	if (ret) {
3064 		btrfs_err(fs_info,
3065 			  "failed to verify dev extents against chunks: %d",
3066 			  ret);
3067 		goto fail_block_groups;
3068 	}
3069 	ret = btrfs_recover_balance(fs_info);
3070 	if (ret) {
3071 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3072 		goto fail_block_groups;
3073 	}
3074 
3075 	ret = btrfs_init_dev_stats(fs_info);
3076 	if (ret) {
3077 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3078 		goto fail_block_groups;
3079 	}
3080 
3081 	ret = btrfs_init_dev_replace(fs_info);
3082 	if (ret) {
3083 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3084 		goto fail_block_groups;
3085 	}
3086 
3087 	btrfs_free_extra_devids(fs_devices, 1);
3088 
3089 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3090 	if (ret) {
3091 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3092 				ret);
3093 		goto fail_block_groups;
3094 	}
3095 
3096 	ret = btrfs_sysfs_add_device(fs_devices);
3097 	if (ret) {
3098 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3099 				ret);
3100 		goto fail_fsdev_sysfs;
3101 	}
3102 
3103 	ret = btrfs_sysfs_add_mounted(fs_info);
3104 	if (ret) {
3105 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3106 		goto fail_fsdev_sysfs;
3107 	}
3108 
3109 	ret = btrfs_init_space_info(fs_info);
3110 	if (ret) {
3111 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3112 		goto fail_sysfs;
3113 	}
3114 
3115 	ret = btrfs_read_block_groups(fs_info);
3116 	if (ret) {
3117 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3118 		goto fail_sysfs;
3119 	}
3120 
3121 	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3122 		btrfs_warn(fs_info,
3123 		"writable mount is not allowed due to too many missing devices");
3124 		goto fail_sysfs;
3125 	}
3126 
3127 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3128 					       "btrfs-cleaner");
3129 	if (IS_ERR(fs_info->cleaner_kthread))
3130 		goto fail_sysfs;
3131 
3132 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3133 						   tree_root,
3134 						   "btrfs-transaction");
3135 	if (IS_ERR(fs_info->transaction_kthread))
3136 		goto fail_cleaner;
3137 
3138 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3139 	    !fs_info->fs_devices->rotating) {
3140 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3141 	}
3142 
3143 	/*
3144 	 * Mount does not set all options immediately, we can do it now and do
3145 	 * not have to wait for transaction commit
3146 	 */
3147 	btrfs_apply_pending_changes(fs_info);
3148 
3149 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3150 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3151 		ret = btrfsic_mount(fs_info, fs_devices,
3152 				    btrfs_test_opt(fs_info,
3153 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3154 				    1 : 0,
3155 				    fs_info->check_integrity_print_mask);
3156 		if (ret)
3157 			btrfs_warn(fs_info,
3158 				"failed to initialize integrity check module: %d",
3159 				ret);
3160 	}
3161 #endif
3162 	ret = btrfs_read_qgroup_config(fs_info);
3163 	if (ret)
3164 		goto fail_trans_kthread;
3165 
3166 	if (btrfs_build_ref_tree(fs_info))
3167 		btrfs_err(fs_info, "couldn't build ref tree");
3168 
3169 	/* do not make disk changes in broken FS or nologreplay is given */
3170 	if (btrfs_super_log_root(disk_super) != 0 &&
3171 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3172 		ret = btrfs_replay_log(fs_info, fs_devices);
3173 		if (ret) {
3174 			err = ret;
3175 			goto fail_qgroup;
3176 		}
3177 	}
3178 
3179 	ret = btrfs_find_orphan_roots(fs_info);
3180 	if (ret)
3181 		goto fail_qgroup;
3182 
3183 	if (!sb_rdonly(sb)) {
3184 		ret = btrfs_cleanup_fs_roots(fs_info);
3185 		if (ret)
3186 			goto fail_qgroup;
3187 
3188 		mutex_lock(&fs_info->cleaner_mutex);
3189 		ret = btrfs_recover_relocation(tree_root);
3190 		mutex_unlock(&fs_info->cleaner_mutex);
3191 		if (ret < 0) {
3192 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3193 					ret);
3194 			err = -EINVAL;
3195 			goto fail_qgroup;
3196 		}
3197 	}
3198 
3199 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3200 	location.type = BTRFS_ROOT_ITEM_KEY;
3201 	location.offset = 0;
3202 
3203 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3204 	if (IS_ERR(fs_info->fs_root)) {
3205 		err = PTR_ERR(fs_info->fs_root);
3206 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3207 		goto fail_qgroup;
3208 	}
3209 
3210 	if (sb_rdonly(sb))
3211 		return 0;
3212 
3213 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3214 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3215 		clear_free_space_tree = 1;
3216 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3217 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3218 		btrfs_warn(fs_info, "free space tree is invalid");
3219 		clear_free_space_tree = 1;
3220 	}
3221 
3222 	if (clear_free_space_tree) {
3223 		btrfs_info(fs_info, "clearing free space tree");
3224 		ret = btrfs_clear_free_space_tree(fs_info);
3225 		if (ret) {
3226 			btrfs_warn(fs_info,
3227 				   "failed to clear free space tree: %d", ret);
3228 			close_ctree(fs_info);
3229 			return ret;
3230 		}
3231 	}
3232 
3233 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3234 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3235 		btrfs_info(fs_info, "creating free space tree");
3236 		ret = btrfs_create_free_space_tree(fs_info);
3237 		if (ret) {
3238 			btrfs_warn(fs_info,
3239 				"failed to create free space tree: %d", ret);
3240 			close_ctree(fs_info);
3241 			return ret;
3242 		}
3243 	}
3244 
3245 	down_read(&fs_info->cleanup_work_sem);
3246 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3247 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3248 		up_read(&fs_info->cleanup_work_sem);
3249 		close_ctree(fs_info);
3250 		return ret;
3251 	}
3252 	up_read(&fs_info->cleanup_work_sem);
3253 
3254 	ret = btrfs_resume_balance_async(fs_info);
3255 	if (ret) {
3256 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3257 		close_ctree(fs_info);
3258 		return ret;
3259 	}
3260 
3261 	ret = btrfs_resume_dev_replace_async(fs_info);
3262 	if (ret) {
3263 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3264 		close_ctree(fs_info);
3265 		return ret;
3266 	}
3267 
3268 	btrfs_qgroup_rescan_resume(fs_info);
3269 
3270 	if (!fs_info->uuid_root) {
3271 		btrfs_info(fs_info, "creating UUID tree");
3272 		ret = btrfs_create_uuid_tree(fs_info);
3273 		if (ret) {
3274 			btrfs_warn(fs_info,
3275 				"failed to create the UUID tree: %d", ret);
3276 			close_ctree(fs_info);
3277 			return ret;
3278 		}
3279 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3280 		   fs_info->generation !=
3281 				btrfs_super_uuid_tree_generation(disk_super)) {
3282 		btrfs_info(fs_info, "checking UUID tree");
3283 		ret = btrfs_check_uuid_tree(fs_info);
3284 		if (ret) {
3285 			btrfs_warn(fs_info,
3286 				"failed to check the UUID tree: %d", ret);
3287 			close_ctree(fs_info);
3288 			return ret;
3289 		}
3290 	} else {
3291 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3292 	}
3293 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3294 
3295 	/*
3296 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3297 	 * no need to keep the flag
3298 	 */
3299 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3300 
3301 	return 0;
3302 
3303 fail_qgroup:
3304 	btrfs_free_qgroup_config(fs_info);
3305 fail_trans_kthread:
3306 	kthread_stop(fs_info->transaction_kthread);
3307 	btrfs_cleanup_transaction(fs_info);
3308 	btrfs_free_fs_roots(fs_info);
3309 fail_cleaner:
3310 	kthread_stop(fs_info->cleaner_kthread);
3311 
3312 	/*
3313 	 * make sure we're done with the btree inode before we stop our
3314 	 * kthreads
3315 	 */
3316 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3317 
3318 fail_sysfs:
3319 	btrfs_sysfs_remove_mounted(fs_info);
3320 
3321 fail_fsdev_sysfs:
3322 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3323 
3324 fail_block_groups:
3325 	btrfs_put_block_group_cache(fs_info);
3326 
3327 fail_tree_roots:
3328 	free_root_pointers(fs_info, 1);
3329 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3330 
3331 fail_sb_buffer:
3332 	btrfs_stop_all_workers(fs_info);
3333 	btrfs_free_block_groups(fs_info);
3334 fail_alloc:
3335 fail_iput:
3336 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3337 
3338 	iput(fs_info->btree_inode);
3339 fail_bio_counter:
3340 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3341 fail_delalloc_bytes:
3342 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3343 fail_dirty_metadata_bytes:
3344 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3345 fail_dio_bytes:
3346 	percpu_counter_destroy(&fs_info->dio_bytes);
3347 fail_srcu:
3348 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3349 fail:
3350 	btrfs_free_stripe_hash_table(fs_info);
3351 	btrfs_close_devices(fs_info->fs_devices);
3352 	return err;
3353 
3354 recovery_tree_root:
3355 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3356 		goto fail_tree_roots;
3357 
3358 	free_root_pointers(fs_info, 0);
3359 
3360 	/* don't use the log in recovery mode, it won't be valid */
3361 	btrfs_set_super_log_root(disk_super, 0);
3362 
3363 	/* we can't trust the free space cache either */
3364 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3365 
3366 	ret = next_root_backup(fs_info, fs_info->super_copy,
3367 			       &num_backups_tried, &backup_index);
3368 	if (ret == -1)
3369 		goto fail_block_groups;
3370 	goto retry_root_backup;
3371 }
3372 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3373 
3374 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3375 {
3376 	if (uptodate) {
3377 		set_buffer_uptodate(bh);
3378 	} else {
3379 		struct btrfs_device *device = (struct btrfs_device *)
3380 			bh->b_private;
3381 
3382 		btrfs_warn_rl_in_rcu(device->fs_info,
3383 				"lost page write due to IO error on %s",
3384 					  rcu_str_deref(device->name));
3385 		/* note, we don't set_buffer_write_io_error because we have
3386 		 * our own ways of dealing with the IO errors
3387 		 */
3388 		clear_buffer_uptodate(bh);
3389 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3390 	}
3391 	unlock_buffer(bh);
3392 	put_bh(bh);
3393 }
3394 
3395 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3396 			struct buffer_head **bh_ret)
3397 {
3398 	struct buffer_head *bh;
3399 	struct btrfs_super_block *super;
3400 	u64 bytenr;
3401 
3402 	bytenr = btrfs_sb_offset(copy_num);
3403 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3404 		return -EINVAL;
3405 
3406 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3407 	/*
3408 	 * If we fail to read from the underlying devices, as of now
3409 	 * the best option we have is to mark it EIO.
3410 	 */
3411 	if (!bh)
3412 		return -EIO;
3413 
3414 	super = (struct btrfs_super_block *)bh->b_data;
3415 	if (btrfs_super_bytenr(super) != bytenr ||
3416 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3417 		brelse(bh);
3418 		return -EINVAL;
3419 	}
3420 
3421 	*bh_ret = bh;
3422 	return 0;
3423 }
3424 
3425 
3426 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3427 {
3428 	struct buffer_head *bh;
3429 	struct buffer_head *latest = NULL;
3430 	struct btrfs_super_block *super;
3431 	int i;
3432 	u64 transid = 0;
3433 	int ret = -EINVAL;
3434 
3435 	/* we would like to check all the supers, but that would make
3436 	 * a btrfs mount succeed after a mkfs from a different FS.
3437 	 * So, we need to add a special mount option to scan for
3438 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3439 	 */
3440 	for (i = 0; i < 1; i++) {
3441 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3442 		if (ret)
3443 			continue;
3444 
3445 		super = (struct btrfs_super_block *)bh->b_data;
3446 
3447 		if (!latest || btrfs_super_generation(super) > transid) {
3448 			brelse(latest);
3449 			latest = bh;
3450 			transid = btrfs_super_generation(super);
3451 		} else {
3452 			brelse(bh);
3453 		}
3454 	}
3455 
3456 	if (!latest)
3457 		return ERR_PTR(ret);
3458 
3459 	return latest;
3460 }
3461 
3462 /*
3463  * Write superblock @sb to the @device. Do not wait for completion, all the
3464  * buffer heads we write are pinned.
3465  *
3466  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3467  * the expected device size at commit time. Note that max_mirrors must be
3468  * same for write and wait phases.
3469  *
3470  * Return number of errors when buffer head is not found or submission fails.
3471  */
3472 static int write_dev_supers(struct btrfs_device *device,
3473 			    struct btrfs_super_block *sb, int max_mirrors)
3474 {
3475 	struct buffer_head *bh;
3476 	int i;
3477 	int ret;
3478 	int errors = 0;
3479 	u32 crc;
3480 	u64 bytenr;
3481 	int op_flags;
3482 
3483 	if (max_mirrors == 0)
3484 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3485 
3486 	for (i = 0; i < max_mirrors; i++) {
3487 		bytenr = btrfs_sb_offset(i);
3488 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3489 		    device->commit_total_bytes)
3490 			break;
3491 
3492 		btrfs_set_super_bytenr(sb, bytenr);
3493 
3494 		crc = ~(u32)0;
3495 		crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3496 				      BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3497 		btrfs_csum_final(crc, sb->csum);
3498 
3499 		/* One reference for us, and we leave it for the caller */
3500 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3501 			      BTRFS_SUPER_INFO_SIZE);
3502 		if (!bh) {
3503 			btrfs_err(device->fs_info,
3504 			    "couldn't get super buffer head for bytenr %llu",
3505 			    bytenr);
3506 			errors++;
3507 			continue;
3508 		}
3509 
3510 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3511 
3512 		/* one reference for submit_bh */
3513 		get_bh(bh);
3514 
3515 		set_buffer_uptodate(bh);
3516 		lock_buffer(bh);
3517 		bh->b_end_io = btrfs_end_buffer_write_sync;
3518 		bh->b_private = device;
3519 
3520 		/*
3521 		 * we fua the first super.  The others we allow
3522 		 * to go down lazy.
3523 		 */
3524 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3525 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3526 			op_flags |= REQ_FUA;
3527 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3528 		if (ret)
3529 			errors++;
3530 	}
3531 	return errors < i ? 0 : -1;
3532 }
3533 
3534 /*
3535  * Wait for write completion of superblocks done by write_dev_supers,
3536  * @max_mirrors same for write and wait phases.
3537  *
3538  * Return number of errors when buffer head is not found or not marked up to
3539  * date.
3540  */
3541 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3542 {
3543 	struct buffer_head *bh;
3544 	int i;
3545 	int errors = 0;
3546 	bool primary_failed = false;
3547 	u64 bytenr;
3548 
3549 	if (max_mirrors == 0)
3550 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3551 
3552 	for (i = 0; i < max_mirrors; i++) {
3553 		bytenr = btrfs_sb_offset(i);
3554 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3555 		    device->commit_total_bytes)
3556 			break;
3557 
3558 		bh = __find_get_block(device->bdev,
3559 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3560 				      BTRFS_SUPER_INFO_SIZE);
3561 		if (!bh) {
3562 			errors++;
3563 			if (i == 0)
3564 				primary_failed = true;
3565 			continue;
3566 		}
3567 		wait_on_buffer(bh);
3568 		if (!buffer_uptodate(bh)) {
3569 			errors++;
3570 			if (i == 0)
3571 				primary_failed = true;
3572 		}
3573 
3574 		/* drop our reference */
3575 		brelse(bh);
3576 
3577 		/* drop the reference from the writing run */
3578 		brelse(bh);
3579 	}
3580 
3581 	/* log error, force error return */
3582 	if (primary_failed) {
3583 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3584 			  device->devid);
3585 		return -1;
3586 	}
3587 
3588 	return errors < i ? 0 : -1;
3589 }
3590 
3591 /*
3592  * endio for the write_dev_flush, this will wake anyone waiting
3593  * for the barrier when it is done
3594  */
3595 static void btrfs_end_empty_barrier(struct bio *bio)
3596 {
3597 	complete(bio->bi_private);
3598 }
3599 
3600 /*
3601  * Submit a flush request to the device if it supports it. Error handling is
3602  * done in the waiting counterpart.
3603  */
3604 static void write_dev_flush(struct btrfs_device *device)
3605 {
3606 	struct request_queue *q = bdev_get_queue(device->bdev);
3607 	struct bio *bio = device->flush_bio;
3608 
3609 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3610 		return;
3611 
3612 	bio_reset(bio);
3613 	bio->bi_end_io = btrfs_end_empty_barrier;
3614 	bio_set_dev(bio, device->bdev);
3615 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3616 	init_completion(&device->flush_wait);
3617 	bio->bi_private = &device->flush_wait;
3618 
3619 	btrfsic_submit_bio(bio);
3620 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3621 }
3622 
3623 /*
3624  * If the flush bio has been submitted by write_dev_flush, wait for it.
3625  */
3626 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3627 {
3628 	struct bio *bio = device->flush_bio;
3629 
3630 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3631 		return BLK_STS_OK;
3632 
3633 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3634 	wait_for_completion_io(&device->flush_wait);
3635 
3636 	return bio->bi_status;
3637 }
3638 
3639 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3640 {
3641 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3642 		return -EIO;
3643 	return 0;
3644 }
3645 
3646 /*
3647  * send an empty flush down to each device in parallel,
3648  * then wait for them
3649  */
3650 static int barrier_all_devices(struct btrfs_fs_info *info)
3651 {
3652 	struct list_head *head;
3653 	struct btrfs_device *dev;
3654 	int errors_wait = 0;
3655 	blk_status_t ret;
3656 
3657 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3658 	/* send down all the barriers */
3659 	head = &info->fs_devices->devices;
3660 	list_for_each_entry(dev, head, dev_list) {
3661 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3662 			continue;
3663 		if (!dev->bdev)
3664 			continue;
3665 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3666 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3667 			continue;
3668 
3669 		write_dev_flush(dev);
3670 		dev->last_flush_error = BLK_STS_OK;
3671 	}
3672 
3673 	/* wait for all the barriers */
3674 	list_for_each_entry(dev, head, dev_list) {
3675 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3676 			continue;
3677 		if (!dev->bdev) {
3678 			errors_wait++;
3679 			continue;
3680 		}
3681 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683 			continue;
3684 
3685 		ret = wait_dev_flush(dev);
3686 		if (ret) {
3687 			dev->last_flush_error = ret;
3688 			btrfs_dev_stat_inc_and_print(dev,
3689 					BTRFS_DEV_STAT_FLUSH_ERRS);
3690 			errors_wait++;
3691 		}
3692 	}
3693 
3694 	if (errors_wait) {
3695 		/*
3696 		 * At some point we need the status of all disks
3697 		 * to arrive at the volume status. So error checking
3698 		 * is being pushed to a separate loop.
3699 		 */
3700 		return check_barrier_error(info);
3701 	}
3702 	return 0;
3703 }
3704 
3705 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3706 {
3707 	int raid_type;
3708 	int min_tolerated = INT_MAX;
3709 
3710 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3711 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3712 		min_tolerated = min(min_tolerated,
3713 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3714 				    tolerated_failures);
3715 
3716 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3717 		if (raid_type == BTRFS_RAID_SINGLE)
3718 			continue;
3719 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3720 			continue;
3721 		min_tolerated = min(min_tolerated,
3722 				    btrfs_raid_array[raid_type].
3723 				    tolerated_failures);
3724 	}
3725 
3726 	if (min_tolerated == INT_MAX) {
3727 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3728 		min_tolerated = 0;
3729 	}
3730 
3731 	return min_tolerated;
3732 }
3733 
3734 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3735 {
3736 	struct list_head *head;
3737 	struct btrfs_device *dev;
3738 	struct btrfs_super_block *sb;
3739 	struct btrfs_dev_item *dev_item;
3740 	int ret;
3741 	int do_barriers;
3742 	int max_errors;
3743 	int total_errors = 0;
3744 	u64 flags;
3745 
3746 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3747 
3748 	/*
3749 	 * max_mirrors == 0 indicates we're from commit_transaction,
3750 	 * not from fsync where the tree roots in fs_info have not
3751 	 * been consistent on disk.
3752 	 */
3753 	if (max_mirrors == 0)
3754 		backup_super_roots(fs_info);
3755 
3756 	sb = fs_info->super_for_commit;
3757 	dev_item = &sb->dev_item;
3758 
3759 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3760 	head = &fs_info->fs_devices->devices;
3761 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3762 
3763 	if (do_barriers) {
3764 		ret = barrier_all_devices(fs_info);
3765 		if (ret) {
3766 			mutex_unlock(
3767 				&fs_info->fs_devices->device_list_mutex);
3768 			btrfs_handle_fs_error(fs_info, ret,
3769 					      "errors while submitting device barriers.");
3770 			return ret;
3771 		}
3772 	}
3773 
3774 	list_for_each_entry(dev, head, dev_list) {
3775 		if (!dev->bdev) {
3776 			total_errors++;
3777 			continue;
3778 		}
3779 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3780 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3781 			continue;
3782 
3783 		btrfs_set_stack_device_generation(dev_item, 0);
3784 		btrfs_set_stack_device_type(dev_item, dev->type);
3785 		btrfs_set_stack_device_id(dev_item, dev->devid);
3786 		btrfs_set_stack_device_total_bytes(dev_item,
3787 						   dev->commit_total_bytes);
3788 		btrfs_set_stack_device_bytes_used(dev_item,
3789 						  dev->commit_bytes_used);
3790 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3791 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3792 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3793 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3794 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3795 		       BTRFS_FSID_SIZE);
3796 
3797 		flags = btrfs_super_flags(sb);
3798 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3799 
3800 		ret = btrfs_validate_write_super(fs_info, sb);
3801 		if (ret < 0) {
3802 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3803 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3804 				"unexpected superblock corruption detected");
3805 			return -EUCLEAN;
3806 		}
3807 
3808 		ret = write_dev_supers(dev, sb, max_mirrors);
3809 		if (ret)
3810 			total_errors++;
3811 	}
3812 	if (total_errors > max_errors) {
3813 		btrfs_err(fs_info, "%d errors while writing supers",
3814 			  total_errors);
3815 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3816 
3817 		/* FUA is masked off if unsupported and can't be the reason */
3818 		btrfs_handle_fs_error(fs_info, -EIO,
3819 				      "%d errors while writing supers",
3820 				      total_errors);
3821 		return -EIO;
3822 	}
3823 
3824 	total_errors = 0;
3825 	list_for_each_entry(dev, head, dev_list) {
3826 		if (!dev->bdev)
3827 			continue;
3828 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3829 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3830 			continue;
3831 
3832 		ret = wait_dev_supers(dev, max_mirrors);
3833 		if (ret)
3834 			total_errors++;
3835 	}
3836 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3837 	if (total_errors > max_errors) {
3838 		btrfs_handle_fs_error(fs_info, -EIO,
3839 				      "%d errors while writing supers",
3840 				      total_errors);
3841 		return -EIO;
3842 	}
3843 	return 0;
3844 }
3845 
3846 /* Drop a fs root from the radix tree and free it. */
3847 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3848 				  struct btrfs_root *root)
3849 {
3850 	spin_lock(&fs_info->fs_roots_radix_lock);
3851 	radix_tree_delete(&fs_info->fs_roots_radix,
3852 			  (unsigned long)root->root_key.objectid);
3853 	spin_unlock(&fs_info->fs_roots_radix_lock);
3854 
3855 	if (btrfs_root_refs(&root->root_item) == 0)
3856 		synchronize_srcu(&fs_info->subvol_srcu);
3857 
3858 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3859 		btrfs_free_log(NULL, root);
3860 		if (root->reloc_root) {
3861 			free_extent_buffer(root->reloc_root->node);
3862 			free_extent_buffer(root->reloc_root->commit_root);
3863 			btrfs_put_fs_root(root->reloc_root);
3864 			root->reloc_root = NULL;
3865 		}
3866 	}
3867 
3868 	if (root->free_ino_pinned)
3869 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3870 	if (root->free_ino_ctl)
3871 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3872 	btrfs_free_fs_root(root);
3873 }
3874 
3875 void btrfs_free_fs_root(struct btrfs_root *root)
3876 {
3877 	iput(root->ino_cache_inode);
3878 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3879 	if (root->anon_dev)
3880 		free_anon_bdev(root->anon_dev);
3881 	if (root->subv_writers)
3882 		btrfs_free_subvolume_writers(root->subv_writers);
3883 	free_extent_buffer(root->node);
3884 	free_extent_buffer(root->commit_root);
3885 	kfree(root->free_ino_ctl);
3886 	kfree(root->free_ino_pinned);
3887 	btrfs_put_fs_root(root);
3888 }
3889 
3890 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3891 {
3892 	u64 root_objectid = 0;
3893 	struct btrfs_root *gang[8];
3894 	int i = 0;
3895 	int err = 0;
3896 	unsigned int ret = 0;
3897 	int index;
3898 
3899 	while (1) {
3900 		index = srcu_read_lock(&fs_info->subvol_srcu);
3901 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3902 					     (void **)gang, root_objectid,
3903 					     ARRAY_SIZE(gang));
3904 		if (!ret) {
3905 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3906 			break;
3907 		}
3908 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3909 
3910 		for (i = 0; i < ret; i++) {
3911 			/* Avoid to grab roots in dead_roots */
3912 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3913 				gang[i] = NULL;
3914 				continue;
3915 			}
3916 			/* grab all the search result for later use */
3917 			gang[i] = btrfs_grab_fs_root(gang[i]);
3918 		}
3919 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3920 
3921 		for (i = 0; i < ret; i++) {
3922 			if (!gang[i])
3923 				continue;
3924 			root_objectid = gang[i]->root_key.objectid;
3925 			err = btrfs_orphan_cleanup(gang[i]);
3926 			if (err)
3927 				break;
3928 			btrfs_put_fs_root(gang[i]);
3929 		}
3930 		root_objectid++;
3931 	}
3932 
3933 	/* release the uncleaned roots due to error */
3934 	for (; i < ret; i++) {
3935 		if (gang[i])
3936 			btrfs_put_fs_root(gang[i]);
3937 	}
3938 	return err;
3939 }
3940 
3941 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3942 {
3943 	struct btrfs_root *root = fs_info->tree_root;
3944 	struct btrfs_trans_handle *trans;
3945 
3946 	mutex_lock(&fs_info->cleaner_mutex);
3947 	btrfs_run_delayed_iputs(fs_info);
3948 	mutex_unlock(&fs_info->cleaner_mutex);
3949 	wake_up_process(fs_info->cleaner_kthread);
3950 
3951 	/* wait until ongoing cleanup work done */
3952 	down_write(&fs_info->cleanup_work_sem);
3953 	up_write(&fs_info->cleanup_work_sem);
3954 
3955 	trans = btrfs_join_transaction(root);
3956 	if (IS_ERR(trans))
3957 		return PTR_ERR(trans);
3958 	return btrfs_commit_transaction(trans);
3959 }
3960 
3961 void close_ctree(struct btrfs_fs_info *fs_info)
3962 {
3963 	int ret;
3964 
3965 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3966 	/*
3967 	 * We don't want the cleaner to start new transactions, add more delayed
3968 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3969 	 * because that frees the task_struct, and the transaction kthread might
3970 	 * still try to wake up the cleaner.
3971 	 */
3972 	kthread_park(fs_info->cleaner_kthread);
3973 
3974 	/* wait for the qgroup rescan worker to stop */
3975 	btrfs_qgroup_wait_for_completion(fs_info, false);
3976 
3977 	/* wait for the uuid_scan task to finish */
3978 	down(&fs_info->uuid_tree_rescan_sem);
3979 	/* avoid complains from lockdep et al., set sem back to initial state */
3980 	up(&fs_info->uuid_tree_rescan_sem);
3981 
3982 	/* pause restriper - we want to resume on mount */
3983 	btrfs_pause_balance(fs_info);
3984 
3985 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3986 
3987 	btrfs_scrub_cancel(fs_info);
3988 
3989 	/* wait for any defraggers to finish */
3990 	wait_event(fs_info->transaction_wait,
3991 		   (atomic_read(&fs_info->defrag_running) == 0));
3992 
3993 	/* clear out the rbtree of defraggable inodes */
3994 	btrfs_cleanup_defrag_inodes(fs_info);
3995 
3996 	cancel_work_sync(&fs_info->async_reclaim_work);
3997 
3998 	if (!sb_rdonly(fs_info->sb)) {
3999 		/*
4000 		 * The cleaner kthread is stopped, so do one final pass over
4001 		 * unused block groups.
4002 		 */
4003 		btrfs_delete_unused_bgs(fs_info);
4004 
4005 		ret = btrfs_commit_super(fs_info);
4006 		if (ret)
4007 			btrfs_err(fs_info, "commit super ret %d", ret);
4008 	}
4009 
4010 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4011 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4012 		btrfs_error_commit_super(fs_info);
4013 
4014 	kthread_stop(fs_info->transaction_kthread);
4015 	kthread_stop(fs_info->cleaner_kthread);
4016 
4017 	ASSERT(list_empty(&fs_info->delayed_iputs));
4018 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4019 
4020 	btrfs_free_qgroup_config(fs_info);
4021 	ASSERT(list_empty(&fs_info->delalloc_roots));
4022 
4023 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4024 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4025 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4026 	}
4027 
4028 	if (percpu_counter_sum(&fs_info->dio_bytes))
4029 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4030 			   percpu_counter_sum(&fs_info->dio_bytes));
4031 
4032 	btrfs_sysfs_remove_mounted(fs_info);
4033 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4034 
4035 	btrfs_free_fs_roots(fs_info);
4036 
4037 	btrfs_put_block_group_cache(fs_info);
4038 
4039 	/*
4040 	 * we must make sure there is not any read request to
4041 	 * submit after we stopping all workers.
4042 	 */
4043 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4044 	btrfs_stop_all_workers(fs_info);
4045 
4046 	btrfs_free_block_groups(fs_info);
4047 
4048 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4049 	free_root_pointers(fs_info, 1);
4050 
4051 	iput(fs_info->btree_inode);
4052 
4053 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4054 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4055 		btrfsic_unmount(fs_info->fs_devices);
4056 #endif
4057 
4058 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4059 	btrfs_close_devices(fs_info->fs_devices);
4060 
4061 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4062 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4063 	percpu_counter_destroy(&fs_info->dio_bytes);
4064 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4065 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4066 
4067 	btrfs_free_stripe_hash_table(fs_info);
4068 	btrfs_free_ref_cache(fs_info);
4069 }
4070 
4071 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4072 			  int atomic)
4073 {
4074 	int ret;
4075 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4076 
4077 	ret = extent_buffer_uptodate(buf);
4078 	if (!ret)
4079 		return ret;
4080 
4081 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4082 				    parent_transid, atomic);
4083 	if (ret == -EAGAIN)
4084 		return ret;
4085 	return !ret;
4086 }
4087 
4088 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4089 {
4090 	struct btrfs_fs_info *fs_info;
4091 	struct btrfs_root *root;
4092 	u64 transid = btrfs_header_generation(buf);
4093 	int was_dirty;
4094 
4095 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4096 	/*
4097 	 * This is a fast path so only do this check if we have sanity tests
4098 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4099 	 * outside of the sanity tests.
4100 	 */
4101 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4102 		return;
4103 #endif
4104 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4105 	fs_info = root->fs_info;
4106 	btrfs_assert_tree_locked(buf);
4107 	if (transid != fs_info->generation)
4108 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4109 			buf->start, transid, fs_info->generation);
4110 	was_dirty = set_extent_buffer_dirty(buf);
4111 	if (!was_dirty)
4112 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4113 					 buf->len,
4114 					 fs_info->dirty_metadata_batch);
4115 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4116 	/*
4117 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4118 	 * but item data not updated.
4119 	 * So here we should only check item pointers, not item data.
4120 	 */
4121 	if (btrfs_header_level(buf) == 0 &&
4122 	    btrfs_check_leaf_relaxed(buf)) {
4123 		btrfs_print_leaf(buf);
4124 		ASSERT(0);
4125 	}
4126 #endif
4127 }
4128 
4129 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4130 					int flush_delayed)
4131 {
4132 	/*
4133 	 * looks as though older kernels can get into trouble with
4134 	 * this code, they end up stuck in balance_dirty_pages forever
4135 	 */
4136 	int ret;
4137 
4138 	if (current->flags & PF_MEMALLOC)
4139 		return;
4140 
4141 	if (flush_delayed)
4142 		btrfs_balance_delayed_items(fs_info);
4143 
4144 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4145 				     BTRFS_DIRTY_METADATA_THRESH,
4146 				     fs_info->dirty_metadata_batch);
4147 	if (ret > 0) {
4148 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4149 	}
4150 }
4151 
4152 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4153 {
4154 	__btrfs_btree_balance_dirty(fs_info, 1);
4155 }
4156 
4157 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4158 {
4159 	__btrfs_btree_balance_dirty(fs_info, 0);
4160 }
4161 
4162 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4163 		      struct btrfs_key *first_key)
4164 {
4165 	return btree_read_extent_buffer_pages(buf, parent_transid,
4166 					      level, first_key);
4167 }
4168 
4169 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4170 {
4171 	/* cleanup FS via transaction */
4172 	btrfs_cleanup_transaction(fs_info);
4173 
4174 	mutex_lock(&fs_info->cleaner_mutex);
4175 	btrfs_run_delayed_iputs(fs_info);
4176 	mutex_unlock(&fs_info->cleaner_mutex);
4177 
4178 	down_write(&fs_info->cleanup_work_sem);
4179 	up_write(&fs_info->cleanup_work_sem);
4180 }
4181 
4182 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4183 {
4184 	struct btrfs_ordered_extent *ordered;
4185 
4186 	spin_lock(&root->ordered_extent_lock);
4187 	/*
4188 	 * This will just short circuit the ordered completion stuff which will
4189 	 * make sure the ordered extent gets properly cleaned up.
4190 	 */
4191 	list_for_each_entry(ordered, &root->ordered_extents,
4192 			    root_extent_list)
4193 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4194 	spin_unlock(&root->ordered_extent_lock);
4195 }
4196 
4197 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4198 {
4199 	struct btrfs_root *root;
4200 	struct list_head splice;
4201 
4202 	INIT_LIST_HEAD(&splice);
4203 
4204 	spin_lock(&fs_info->ordered_root_lock);
4205 	list_splice_init(&fs_info->ordered_roots, &splice);
4206 	while (!list_empty(&splice)) {
4207 		root = list_first_entry(&splice, struct btrfs_root,
4208 					ordered_root);
4209 		list_move_tail(&root->ordered_root,
4210 			       &fs_info->ordered_roots);
4211 
4212 		spin_unlock(&fs_info->ordered_root_lock);
4213 		btrfs_destroy_ordered_extents(root);
4214 
4215 		cond_resched();
4216 		spin_lock(&fs_info->ordered_root_lock);
4217 	}
4218 	spin_unlock(&fs_info->ordered_root_lock);
4219 
4220 	/*
4221 	 * We need this here because if we've been flipped read-only we won't
4222 	 * get sync() from the umount, so we need to make sure any ordered
4223 	 * extents that haven't had their dirty pages IO start writeout yet
4224 	 * actually get run and error out properly.
4225 	 */
4226 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4227 }
4228 
4229 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4230 				      struct btrfs_fs_info *fs_info)
4231 {
4232 	struct rb_node *node;
4233 	struct btrfs_delayed_ref_root *delayed_refs;
4234 	struct btrfs_delayed_ref_node *ref;
4235 	int ret = 0;
4236 
4237 	delayed_refs = &trans->delayed_refs;
4238 
4239 	spin_lock(&delayed_refs->lock);
4240 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4241 		spin_unlock(&delayed_refs->lock);
4242 		btrfs_info(fs_info, "delayed_refs has NO entry");
4243 		return ret;
4244 	}
4245 
4246 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4247 		struct btrfs_delayed_ref_head *head;
4248 		struct rb_node *n;
4249 		bool pin_bytes = false;
4250 
4251 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4252 				href_node);
4253 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4254 			continue;
4255 
4256 		spin_lock(&head->lock);
4257 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4258 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4259 				       ref_node);
4260 			ref->in_tree = 0;
4261 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4262 			RB_CLEAR_NODE(&ref->ref_node);
4263 			if (!list_empty(&ref->add_list))
4264 				list_del(&ref->add_list);
4265 			atomic_dec(&delayed_refs->num_entries);
4266 			btrfs_put_delayed_ref(ref);
4267 		}
4268 		if (head->must_insert_reserved)
4269 			pin_bytes = true;
4270 		btrfs_free_delayed_extent_op(head->extent_op);
4271 		btrfs_delete_ref_head(delayed_refs, head);
4272 		spin_unlock(&head->lock);
4273 		spin_unlock(&delayed_refs->lock);
4274 		mutex_unlock(&head->mutex);
4275 
4276 		if (pin_bytes)
4277 			btrfs_pin_extent(fs_info, head->bytenr,
4278 					 head->num_bytes, 1);
4279 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4280 		btrfs_put_delayed_ref_head(head);
4281 		cond_resched();
4282 		spin_lock(&delayed_refs->lock);
4283 	}
4284 
4285 	spin_unlock(&delayed_refs->lock);
4286 
4287 	return ret;
4288 }
4289 
4290 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4291 {
4292 	struct btrfs_inode *btrfs_inode;
4293 	struct list_head splice;
4294 
4295 	INIT_LIST_HEAD(&splice);
4296 
4297 	spin_lock(&root->delalloc_lock);
4298 	list_splice_init(&root->delalloc_inodes, &splice);
4299 
4300 	while (!list_empty(&splice)) {
4301 		struct inode *inode = NULL;
4302 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4303 					       delalloc_inodes);
4304 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4305 		spin_unlock(&root->delalloc_lock);
4306 
4307 		/*
4308 		 * Make sure we get a live inode and that it'll not disappear
4309 		 * meanwhile.
4310 		 */
4311 		inode = igrab(&btrfs_inode->vfs_inode);
4312 		if (inode) {
4313 			invalidate_inode_pages2(inode->i_mapping);
4314 			iput(inode);
4315 		}
4316 		spin_lock(&root->delalloc_lock);
4317 	}
4318 	spin_unlock(&root->delalloc_lock);
4319 }
4320 
4321 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4322 {
4323 	struct btrfs_root *root;
4324 	struct list_head splice;
4325 
4326 	INIT_LIST_HEAD(&splice);
4327 
4328 	spin_lock(&fs_info->delalloc_root_lock);
4329 	list_splice_init(&fs_info->delalloc_roots, &splice);
4330 	while (!list_empty(&splice)) {
4331 		root = list_first_entry(&splice, struct btrfs_root,
4332 					 delalloc_root);
4333 		root = btrfs_grab_fs_root(root);
4334 		BUG_ON(!root);
4335 		spin_unlock(&fs_info->delalloc_root_lock);
4336 
4337 		btrfs_destroy_delalloc_inodes(root);
4338 		btrfs_put_fs_root(root);
4339 
4340 		spin_lock(&fs_info->delalloc_root_lock);
4341 	}
4342 	spin_unlock(&fs_info->delalloc_root_lock);
4343 }
4344 
4345 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4346 					struct extent_io_tree *dirty_pages,
4347 					int mark)
4348 {
4349 	int ret;
4350 	struct extent_buffer *eb;
4351 	u64 start = 0;
4352 	u64 end;
4353 
4354 	while (1) {
4355 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4356 					    mark, NULL);
4357 		if (ret)
4358 			break;
4359 
4360 		clear_extent_bits(dirty_pages, start, end, mark);
4361 		while (start <= end) {
4362 			eb = find_extent_buffer(fs_info, start);
4363 			start += fs_info->nodesize;
4364 			if (!eb)
4365 				continue;
4366 			wait_on_extent_buffer_writeback(eb);
4367 
4368 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4369 					       &eb->bflags))
4370 				clear_extent_buffer_dirty(eb);
4371 			free_extent_buffer_stale(eb);
4372 		}
4373 	}
4374 
4375 	return ret;
4376 }
4377 
4378 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4379 				       struct extent_io_tree *pinned_extents)
4380 {
4381 	struct extent_io_tree *unpin;
4382 	u64 start;
4383 	u64 end;
4384 	int ret;
4385 	bool loop = true;
4386 
4387 	unpin = pinned_extents;
4388 again:
4389 	while (1) {
4390 		struct extent_state *cached_state = NULL;
4391 
4392 		/*
4393 		 * The btrfs_finish_extent_commit() may get the same range as
4394 		 * ours between find_first_extent_bit and clear_extent_dirty.
4395 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4396 		 * the same extent range.
4397 		 */
4398 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4399 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4400 					    EXTENT_DIRTY, &cached_state);
4401 		if (ret) {
4402 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4403 			break;
4404 		}
4405 
4406 		clear_extent_dirty(unpin, start, end, &cached_state);
4407 		free_extent_state(cached_state);
4408 		btrfs_error_unpin_extent_range(fs_info, start, end);
4409 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4410 		cond_resched();
4411 	}
4412 
4413 	if (loop) {
4414 		if (unpin == &fs_info->freed_extents[0])
4415 			unpin = &fs_info->freed_extents[1];
4416 		else
4417 			unpin = &fs_info->freed_extents[0];
4418 		loop = false;
4419 		goto again;
4420 	}
4421 
4422 	return 0;
4423 }
4424 
4425 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4426 {
4427 	struct inode *inode;
4428 
4429 	inode = cache->io_ctl.inode;
4430 	if (inode) {
4431 		invalidate_inode_pages2(inode->i_mapping);
4432 		BTRFS_I(inode)->generation = 0;
4433 		cache->io_ctl.inode = NULL;
4434 		iput(inode);
4435 	}
4436 	btrfs_put_block_group(cache);
4437 }
4438 
4439 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4440 			     struct btrfs_fs_info *fs_info)
4441 {
4442 	struct btrfs_block_group_cache *cache;
4443 
4444 	spin_lock(&cur_trans->dirty_bgs_lock);
4445 	while (!list_empty(&cur_trans->dirty_bgs)) {
4446 		cache = list_first_entry(&cur_trans->dirty_bgs,
4447 					 struct btrfs_block_group_cache,
4448 					 dirty_list);
4449 
4450 		if (!list_empty(&cache->io_list)) {
4451 			spin_unlock(&cur_trans->dirty_bgs_lock);
4452 			list_del_init(&cache->io_list);
4453 			btrfs_cleanup_bg_io(cache);
4454 			spin_lock(&cur_trans->dirty_bgs_lock);
4455 		}
4456 
4457 		list_del_init(&cache->dirty_list);
4458 		spin_lock(&cache->lock);
4459 		cache->disk_cache_state = BTRFS_DC_ERROR;
4460 		spin_unlock(&cache->lock);
4461 
4462 		spin_unlock(&cur_trans->dirty_bgs_lock);
4463 		btrfs_put_block_group(cache);
4464 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4465 		spin_lock(&cur_trans->dirty_bgs_lock);
4466 	}
4467 	spin_unlock(&cur_trans->dirty_bgs_lock);
4468 
4469 	/*
4470 	 * Refer to the definition of io_bgs member for details why it's safe
4471 	 * to use it without any locking
4472 	 */
4473 	while (!list_empty(&cur_trans->io_bgs)) {
4474 		cache = list_first_entry(&cur_trans->io_bgs,
4475 					 struct btrfs_block_group_cache,
4476 					 io_list);
4477 
4478 		list_del_init(&cache->io_list);
4479 		spin_lock(&cache->lock);
4480 		cache->disk_cache_state = BTRFS_DC_ERROR;
4481 		spin_unlock(&cache->lock);
4482 		btrfs_cleanup_bg_io(cache);
4483 	}
4484 }
4485 
4486 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4487 				   struct btrfs_fs_info *fs_info)
4488 {
4489 	struct btrfs_device *dev, *tmp;
4490 
4491 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4492 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4493 	ASSERT(list_empty(&cur_trans->io_bgs));
4494 
4495 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4496 				 post_commit_list) {
4497 		list_del_init(&dev->post_commit_list);
4498 	}
4499 
4500 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4501 
4502 	cur_trans->state = TRANS_STATE_COMMIT_START;
4503 	wake_up(&fs_info->transaction_blocked_wait);
4504 
4505 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4506 	wake_up(&fs_info->transaction_wait);
4507 
4508 	btrfs_destroy_delayed_inodes(fs_info);
4509 	btrfs_assert_delayed_root_empty(fs_info);
4510 
4511 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4512 				     EXTENT_DIRTY);
4513 	btrfs_destroy_pinned_extent(fs_info,
4514 				    fs_info->pinned_extents);
4515 
4516 	cur_trans->state =TRANS_STATE_COMPLETED;
4517 	wake_up(&cur_trans->commit_wait);
4518 }
4519 
4520 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4521 {
4522 	struct btrfs_transaction *t;
4523 
4524 	mutex_lock(&fs_info->transaction_kthread_mutex);
4525 
4526 	spin_lock(&fs_info->trans_lock);
4527 	while (!list_empty(&fs_info->trans_list)) {
4528 		t = list_first_entry(&fs_info->trans_list,
4529 				     struct btrfs_transaction, list);
4530 		if (t->state >= TRANS_STATE_COMMIT_START) {
4531 			refcount_inc(&t->use_count);
4532 			spin_unlock(&fs_info->trans_lock);
4533 			btrfs_wait_for_commit(fs_info, t->transid);
4534 			btrfs_put_transaction(t);
4535 			spin_lock(&fs_info->trans_lock);
4536 			continue;
4537 		}
4538 		if (t == fs_info->running_transaction) {
4539 			t->state = TRANS_STATE_COMMIT_DOING;
4540 			spin_unlock(&fs_info->trans_lock);
4541 			/*
4542 			 * We wait for 0 num_writers since we don't hold a trans
4543 			 * handle open currently for this transaction.
4544 			 */
4545 			wait_event(t->writer_wait,
4546 				   atomic_read(&t->num_writers) == 0);
4547 		} else {
4548 			spin_unlock(&fs_info->trans_lock);
4549 		}
4550 		btrfs_cleanup_one_transaction(t, fs_info);
4551 
4552 		spin_lock(&fs_info->trans_lock);
4553 		if (t == fs_info->running_transaction)
4554 			fs_info->running_transaction = NULL;
4555 		list_del_init(&t->list);
4556 		spin_unlock(&fs_info->trans_lock);
4557 
4558 		btrfs_put_transaction(t);
4559 		trace_btrfs_transaction_commit(fs_info->tree_root);
4560 		spin_lock(&fs_info->trans_lock);
4561 	}
4562 	spin_unlock(&fs_info->trans_lock);
4563 	btrfs_destroy_all_ordered_extents(fs_info);
4564 	btrfs_destroy_delayed_inodes(fs_info);
4565 	btrfs_assert_delayed_root_empty(fs_info);
4566 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4567 	btrfs_destroy_all_delalloc_inodes(fs_info);
4568 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4569 
4570 	return 0;
4571 }
4572 
4573 static const struct extent_io_ops btree_extent_io_ops = {
4574 	/* mandatory callbacks */
4575 	.submit_bio_hook = btree_submit_bio_hook,
4576 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4577 };
4578