xref: /linux/fs/btrfs/disk-io.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "dev-replace.h"
33 #include "raid56.h"
34 #include "sysfs.h"
35 #include "qgroup.h"
36 #include "compression.h"
37 #include "tree-checker.h"
38 #include "ref-verify.h"
39 #include "block-group.h"
40 #include "discard.h"
41 #include "space-info.h"
42 #include "zoned.h"
43 #include "subpage.h"
44 #include "fs.h"
45 #include "accessors.h"
46 #include "extent-tree.h"
47 #include "root-tree.h"
48 #include "defrag.h"
49 #include "uuid-tree.h"
50 #include "relocation.h"
51 #include "scrub.h"
52 #include "super.h"
53 
54 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
55 				 BTRFS_HEADER_FLAG_RELOC |\
56 				 BTRFS_SUPER_FLAG_ERROR |\
57 				 BTRFS_SUPER_FLAG_SEEDING |\
58 				 BTRFS_SUPER_FLAG_METADUMP |\
59 				 BTRFS_SUPER_FLAG_METADUMP_V2)
60 
61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
63 
64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65 {
66 	if (fs_info->csum_shash)
67 		crypto_free_shash(fs_info->csum_shash);
68 }
69 
70 /*
71  * Compute the csum of a btree block and store the result to provided buffer.
72  */
73 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
74 {
75 	struct btrfs_fs_info *fs_info = buf->fs_info;
76 	int num_pages;
77 	u32 first_page_part;
78 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
79 	char *kaddr;
80 	int i;
81 
82 	shash->tfm = fs_info->csum_shash;
83 	crypto_shash_init(shash);
84 
85 	if (buf->addr) {
86 		/* Pages are contiguous, handle them as a big one. */
87 		kaddr = buf->addr;
88 		first_page_part = fs_info->nodesize;
89 		num_pages = 1;
90 	} else {
91 		kaddr = folio_address(buf->folios[0]);
92 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 		num_pages = num_extent_pages(buf);
94 	}
95 
96 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
97 			    first_page_part - BTRFS_CSUM_SIZE);
98 
99 	/*
100 	 * Multiple single-page folios case would reach here.
101 	 *
102 	 * nodesize <= PAGE_SIZE and large folio all handled by above
103 	 * crypto_shash_update() already.
104 	 */
105 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
106 		kaddr = folio_address(buf->folios[i]);
107 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
108 	}
109 	memset(result, 0, BTRFS_CSUM_SIZE);
110 	crypto_shash_final(shash, result);
111 }
112 
113 /*
114  * we can't consider a given block up to date unless the transid of the
115  * block matches the transid in the parent node's pointer.  This is how we
116  * detect blocks that either didn't get written at all or got written
117  * in the wrong place.
118  */
119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
120 {
121 	if (!extent_buffer_uptodate(eb))
122 		return 0;
123 
124 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 		return 1;
126 
127 	if (atomic)
128 		return -EAGAIN;
129 
130 	if (!extent_buffer_uptodate(eb) ||
131 	    btrfs_header_generation(eb) != parent_transid) {
132 		btrfs_err_rl(eb->fs_info,
133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 			eb->start, eb->read_mirror,
135 			parent_transid, btrfs_header_generation(eb));
136 		clear_extent_buffer_uptodate(eb);
137 		return 0;
138 	}
139 	return 1;
140 }
141 
142 static bool btrfs_supported_super_csum(u16 csum_type)
143 {
144 	switch (csum_type) {
145 	case BTRFS_CSUM_TYPE_CRC32:
146 	case BTRFS_CSUM_TYPE_XXHASH:
147 	case BTRFS_CSUM_TYPE_SHA256:
148 	case BTRFS_CSUM_TYPE_BLAKE2:
149 		return true;
150 	default:
151 		return false;
152 	}
153 }
154 
155 /*
156  * Return 0 if the superblock checksum type matches the checksum value of that
157  * algorithm. Pass the raw disk superblock data.
158  */
159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 			   const struct btrfs_super_block *disk_sb)
161 {
162 	char result[BTRFS_CSUM_SIZE];
163 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164 
165 	shash->tfm = fs_info->csum_shash;
166 
167 	/*
168 	 * The super_block structure does not span the whole
169 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 	 * filled with zeros and is included in the checksum.
171 	 */
172 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
173 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
174 
175 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
176 		return 1;
177 
178 	return 0;
179 }
180 
181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 				      int mirror_num)
183 {
184 	struct btrfs_fs_info *fs_info = eb->fs_info;
185 	int num_folios = num_extent_folios(eb);
186 	int ret = 0;
187 
188 	if (sb_rdonly(fs_info->sb))
189 		return -EROFS;
190 
191 	for (int i = 0; i < num_folios; i++) {
192 		struct folio *folio = eb->folios[i];
193 		u64 start = max_t(u64, eb->start, folio_pos(folio));
194 		u64 end = min_t(u64, eb->start + eb->len,
195 				folio_pos(folio) + eb->folio_size);
196 		u32 len = end - start;
197 
198 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
199 					      start, folio, offset_in_folio(folio, start),
200 					      mirror_num);
201 		if (ret)
202 			break;
203 	}
204 
205 	return ret;
206 }
207 
208 /*
209  * helper to read a given tree block, doing retries as required when
210  * the checksums don't match and we have alternate mirrors to try.
211  *
212  * @check:		expected tree parentness check, see the comments of the
213  *			structure for details.
214  */
215 int btrfs_read_extent_buffer(struct extent_buffer *eb,
216 			     struct btrfs_tree_parent_check *check)
217 {
218 	struct btrfs_fs_info *fs_info = eb->fs_info;
219 	int failed = 0;
220 	int ret;
221 	int num_copies = 0;
222 	int mirror_num = 0;
223 	int failed_mirror = 0;
224 
225 	ASSERT(check);
226 
227 	while (1) {
228 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
229 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 		if (!ret)
231 			break;
232 
233 		num_copies = btrfs_num_copies(fs_info,
234 					      eb->start, eb->len);
235 		if (num_copies == 1)
236 			break;
237 
238 		if (!failed_mirror) {
239 			failed = 1;
240 			failed_mirror = eb->read_mirror;
241 		}
242 
243 		mirror_num++;
244 		if (mirror_num == failed_mirror)
245 			mirror_num++;
246 
247 		if (mirror_num > num_copies)
248 			break;
249 	}
250 
251 	if (failed && !ret && failed_mirror)
252 		btrfs_repair_eb_io_failure(eb, failed_mirror);
253 
254 	return ret;
255 }
256 
257 /*
258  * Checksum a dirty tree block before IO.
259  */
260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
261 {
262 	struct extent_buffer *eb = bbio->private;
263 	struct btrfs_fs_info *fs_info = eb->fs_info;
264 	u64 found_start = btrfs_header_bytenr(eb);
265 	u64 last_trans;
266 	u8 result[BTRFS_CSUM_SIZE];
267 	int ret;
268 
269 	/* Btree blocks are always contiguous on disk. */
270 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 		return BLK_STS_IOERR;
272 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 		return BLK_STS_IOERR;
274 
275 	/*
276 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 	 * checksum it but zero-out its content. This is done to preserve
278 	 * ordering of I/O without unnecessarily writing out data.
279 	 */
280 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
281 		memzero_extent_buffer(eb, 0, eb->len);
282 		return BLK_STS_OK;
283 	}
284 
285 	if (WARN_ON_ONCE(found_start != eb->start))
286 		return BLK_STS_IOERR;
287 	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 					       eb->start, eb->len)))
289 		return BLK_STS_IOERR;
290 
291 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 				    offsetof(struct btrfs_header, fsid),
293 				    BTRFS_FSID_SIZE) == 0);
294 	csum_tree_block(eb, result);
295 
296 	if (btrfs_header_level(eb))
297 		ret = btrfs_check_node(eb);
298 	else
299 		ret = btrfs_check_leaf(eb);
300 
301 	if (ret < 0)
302 		goto error;
303 
304 	/*
305 	 * Also check the generation, the eb reached here must be newer than
306 	 * last committed. Or something seriously wrong happened.
307 	 */
308 	last_trans = btrfs_get_last_trans_committed(fs_info);
309 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
310 		ret = -EUCLEAN;
311 		btrfs_err(fs_info,
312 			"block=%llu bad generation, have %llu expect > %llu",
313 			  eb->start, btrfs_header_generation(eb), last_trans);
314 		goto error;
315 	}
316 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
317 	return BLK_STS_OK;
318 
319 error:
320 	btrfs_print_tree(eb, 0);
321 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 		  eb->start);
323 	/*
324 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 	 * a transaction in case there's a bad log tree extent buffer, we just
326 	 * fallback to a transaction commit. Still we want to know when there is
327 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 	 */
329 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
331 	return errno_to_blk_status(ret);
332 }
333 
334 static bool check_tree_block_fsid(struct extent_buffer *eb)
335 {
336 	struct btrfs_fs_info *fs_info = eb->fs_info;
337 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
338 	u8 fsid[BTRFS_FSID_SIZE];
339 
340 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 			   BTRFS_FSID_SIZE);
342 
343 	/*
344 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 	 * This is then overwritten by metadata_uuid if it is present in the
346 	 * device_list_add(). The same true for a seed device as well. So use of
347 	 * fs_devices::metadata_uuid is appropriate here.
348 	 */
349 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
350 		return false;
351 
352 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
354 			return false;
355 
356 	return true;
357 }
358 
359 /* Do basic extent buffer checks at read time */
360 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 				 struct btrfs_tree_parent_check *check)
362 {
363 	struct btrfs_fs_info *fs_info = eb->fs_info;
364 	u64 found_start;
365 	const u32 csum_size = fs_info->csum_size;
366 	u8 found_level;
367 	u8 result[BTRFS_CSUM_SIZE];
368 	const u8 *header_csum;
369 	int ret = 0;
370 
371 	ASSERT(check);
372 
373 	found_start = btrfs_header_bytenr(eb);
374 	if (found_start != eb->start) {
375 		btrfs_err_rl(fs_info,
376 			"bad tree block start, mirror %u want %llu have %llu",
377 			     eb->read_mirror, eb->start, found_start);
378 		ret = -EIO;
379 		goto out;
380 	}
381 	if (check_tree_block_fsid(eb)) {
382 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383 			     eb->start, eb->read_mirror);
384 		ret = -EIO;
385 		goto out;
386 	}
387 	found_level = btrfs_header_level(eb);
388 	if (found_level >= BTRFS_MAX_LEVEL) {
389 		btrfs_err(fs_info,
390 			"bad tree block level, mirror %u level %d on logical %llu",
391 			eb->read_mirror, btrfs_header_level(eb), eb->start);
392 		ret = -EIO;
393 		goto out;
394 	}
395 
396 	csum_tree_block(eb, result);
397 	header_csum = folio_address(eb->folios[0]) +
398 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
399 
400 	if (memcmp(result, header_csum, csum_size) != 0) {
401 		btrfs_warn_rl(fs_info,
402 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403 			      eb->start, eb->read_mirror,
404 			      CSUM_FMT_VALUE(csum_size, header_csum),
405 			      CSUM_FMT_VALUE(csum_size, result),
406 			      btrfs_header_level(eb));
407 		ret = -EUCLEAN;
408 		goto out;
409 	}
410 
411 	if (found_level != check->level) {
412 		btrfs_err(fs_info,
413 		"level verify failed on logical %llu mirror %u wanted %u found %u",
414 			  eb->start, eb->read_mirror, check->level, found_level);
415 		ret = -EIO;
416 		goto out;
417 	}
418 	if (unlikely(check->transid &&
419 		     btrfs_header_generation(eb) != check->transid)) {
420 		btrfs_err_rl(eb->fs_info,
421 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422 				eb->start, eb->read_mirror, check->transid,
423 				btrfs_header_generation(eb));
424 		ret = -EIO;
425 		goto out;
426 	}
427 	if (check->has_first_key) {
428 		struct btrfs_key *expect_key = &check->first_key;
429 		struct btrfs_key found_key;
430 
431 		if (found_level)
432 			btrfs_node_key_to_cpu(eb, &found_key, 0);
433 		else
434 			btrfs_item_key_to_cpu(eb, &found_key, 0);
435 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436 			btrfs_err(fs_info,
437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438 				  eb->start, check->transid,
439 				  expect_key->objectid,
440 				  expect_key->type, expect_key->offset,
441 				  found_key.objectid, found_key.type,
442 				  found_key.offset);
443 			ret = -EUCLEAN;
444 			goto out;
445 		}
446 	}
447 	if (check->owner_root) {
448 		ret = btrfs_check_eb_owner(eb, check->owner_root);
449 		if (ret < 0)
450 			goto out;
451 	}
452 
453 	/*
454 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
455 	 * that we don't try and read the other copies of this block, just
456 	 * return -EIO.
457 	 */
458 	if (found_level == 0 && btrfs_check_leaf(eb)) {
459 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460 		ret = -EIO;
461 	}
462 
463 	if (found_level > 0 && btrfs_check_node(eb))
464 		ret = -EIO;
465 
466 	if (ret)
467 		btrfs_err(fs_info,
468 		"read time tree block corruption detected on logical %llu mirror %u",
469 			  eb->start, eb->read_mirror);
470 out:
471 	return ret;
472 }
473 
474 #ifdef CONFIG_MIGRATION
475 static int btree_migrate_folio(struct address_space *mapping,
476 		struct folio *dst, struct folio *src, enum migrate_mode mode)
477 {
478 	/*
479 	 * we can't safely write a btree page from here,
480 	 * we haven't done the locking hook
481 	 */
482 	if (folio_test_dirty(src))
483 		return -EAGAIN;
484 	/*
485 	 * Buffers may be managed in a filesystem specific way.
486 	 * We must have no buffers or drop them.
487 	 */
488 	if (folio_get_private(src) &&
489 	    !filemap_release_folio(src, GFP_KERNEL))
490 		return -EAGAIN;
491 	return migrate_folio(mapping, dst, src, mode);
492 }
493 #else
494 #define btree_migrate_folio NULL
495 #endif
496 
497 static int btree_writepages(struct address_space *mapping,
498 			    struct writeback_control *wbc)
499 {
500 	int ret;
501 
502 	if (wbc->sync_mode == WB_SYNC_NONE) {
503 		struct btrfs_fs_info *fs_info;
504 
505 		if (wbc->for_kupdate)
506 			return 0;
507 
508 		fs_info = inode_to_fs_info(mapping->host);
509 		/* this is a bit racy, but that's ok */
510 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511 					     BTRFS_DIRTY_METADATA_THRESH,
512 					     fs_info->dirty_metadata_batch);
513 		if (ret < 0)
514 			return 0;
515 	}
516 	return btree_write_cache_pages(mapping, wbc);
517 }
518 
519 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
520 {
521 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
522 		return false;
523 
524 	return try_release_extent_buffer(&folio->page);
525 }
526 
527 static void btree_invalidate_folio(struct folio *folio, size_t offset,
528 				 size_t length)
529 {
530 	struct extent_io_tree *tree;
531 
532 	tree = &folio_to_inode(folio)->io_tree;
533 	extent_invalidate_folio(tree, folio, offset);
534 	btree_release_folio(folio, GFP_NOFS);
535 	if (folio_get_private(folio)) {
536 		btrfs_warn(folio_to_fs_info(folio),
537 			   "folio private not zero on folio %llu",
538 			   (unsigned long long)folio_pos(folio));
539 		folio_detach_private(folio);
540 	}
541 }
542 
543 #ifdef DEBUG
544 static bool btree_dirty_folio(struct address_space *mapping,
545 		struct folio *folio)
546 {
547 	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
548 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
549 	struct btrfs_subpage *subpage;
550 	struct extent_buffer *eb;
551 	int cur_bit = 0;
552 	u64 page_start = folio_pos(folio);
553 
554 	if (fs_info->sectorsize == PAGE_SIZE) {
555 		eb = folio_get_private(folio);
556 		BUG_ON(!eb);
557 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 		BUG_ON(!atomic_read(&eb->refs));
559 		btrfs_assert_tree_write_locked(eb);
560 		return filemap_dirty_folio(mapping, folio);
561 	}
562 
563 	ASSERT(spi);
564 	subpage = folio_get_private(folio);
565 
566 	for (cur_bit = spi->dirty_offset;
567 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568 	     cur_bit++) {
569 		unsigned long flags;
570 		u64 cur;
571 
572 		spin_lock_irqsave(&subpage->lock, flags);
573 		if (!test_bit(cur_bit, subpage->bitmaps)) {
574 			spin_unlock_irqrestore(&subpage->lock, flags);
575 			continue;
576 		}
577 		spin_unlock_irqrestore(&subpage->lock, flags);
578 		cur = page_start + cur_bit * fs_info->sectorsize;
579 
580 		eb = find_extent_buffer(fs_info, cur);
581 		ASSERT(eb);
582 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583 		ASSERT(atomic_read(&eb->refs));
584 		btrfs_assert_tree_write_locked(eb);
585 		free_extent_buffer(eb);
586 
587 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588 	}
589 	return filemap_dirty_folio(mapping, folio);
590 }
591 #else
592 #define btree_dirty_folio filemap_dirty_folio
593 #endif
594 
595 static const struct address_space_operations btree_aops = {
596 	.writepages	= btree_writepages,
597 	.release_folio	= btree_release_folio,
598 	.invalidate_folio = btree_invalidate_folio,
599 	.migrate_folio	= btree_migrate_folio,
600 	.dirty_folio	= btree_dirty_folio,
601 };
602 
603 struct extent_buffer *btrfs_find_create_tree_block(
604 						struct btrfs_fs_info *fs_info,
605 						u64 bytenr, u64 owner_root,
606 						int level)
607 {
608 	if (btrfs_is_testing(fs_info))
609 		return alloc_test_extent_buffer(fs_info, bytenr);
610 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611 }
612 
613 /*
614  * Read tree block at logical address @bytenr and do variant basic but critical
615  * verification.
616  *
617  * @check:		expected tree parentness check, see comments of the
618  *			structure for details.
619  */
620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621 				      struct btrfs_tree_parent_check *check)
622 {
623 	struct extent_buffer *buf = NULL;
624 	int ret;
625 
626 	ASSERT(check);
627 
628 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629 					   check->level);
630 	if (IS_ERR(buf))
631 		return buf;
632 
633 	ret = btrfs_read_extent_buffer(buf, check);
634 	if (ret) {
635 		free_extent_buffer_stale(buf);
636 		return ERR_PTR(ret);
637 	}
638 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
639 		free_extent_buffer_stale(buf);
640 		return ERR_PTR(-EUCLEAN);
641 	}
642 	return buf;
643 
644 }
645 
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 			 u64 objectid)
648 {
649 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
650 
651 	memset(&root->root_key, 0, sizeof(root->root_key));
652 	memset(&root->root_item, 0, sizeof(root->root_item));
653 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 	root->fs_info = fs_info;
655 	root->root_key.objectid = objectid;
656 	root->node = NULL;
657 	root->commit_root = NULL;
658 	root->state = 0;
659 	RB_CLEAR_NODE(&root->rb_node);
660 
661 	root->last_trans = 0;
662 	root->free_objectid = 0;
663 	root->nr_delalloc_inodes = 0;
664 	root->nr_ordered_extents = 0;
665 	root->inode_tree = RB_ROOT;
666 	/* GFP flags are compatible with XA_FLAGS_*. */
667 	xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
668 
669 	btrfs_init_root_block_rsv(root);
670 
671 	INIT_LIST_HEAD(&root->dirty_list);
672 	INIT_LIST_HEAD(&root->root_list);
673 	INIT_LIST_HEAD(&root->delalloc_inodes);
674 	INIT_LIST_HEAD(&root->delalloc_root);
675 	INIT_LIST_HEAD(&root->ordered_extents);
676 	INIT_LIST_HEAD(&root->ordered_root);
677 	INIT_LIST_HEAD(&root->reloc_dirty_list);
678 	spin_lock_init(&root->inode_lock);
679 	spin_lock_init(&root->delalloc_lock);
680 	spin_lock_init(&root->ordered_extent_lock);
681 	spin_lock_init(&root->accounting_lock);
682 	spin_lock_init(&root->qgroup_meta_rsv_lock);
683 	mutex_init(&root->objectid_mutex);
684 	mutex_init(&root->log_mutex);
685 	mutex_init(&root->ordered_extent_mutex);
686 	mutex_init(&root->delalloc_mutex);
687 	init_waitqueue_head(&root->qgroup_flush_wait);
688 	init_waitqueue_head(&root->log_writer_wait);
689 	init_waitqueue_head(&root->log_commit_wait[0]);
690 	init_waitqueue_head(&root->log_commit_wait[1]);
691 	INIT_LIST_HEAD(&root->log_ctxs[0]);
692 	INIT_LIST_HEAD(&root->log_ctxs[1]);
693 	atomic_set(&root->log_commit[0], 0);
694 	atomic_set(&root->log_commit[1], 0);
695 	atomic_set(&root->log_writers, 0);
696 	atomic_set(&root->log_batch, 0);
697 	refcount_set(&root->refs, 1);
698 	atomic_set(&root->snapshot_force_cow, 0);
699 	atomic_set(&root->nr_swapfiles, 0);
700 	btrfs_set_root_log_transid(root, 0);
701 	root->log_transid_committed = -1;
702 	btrfs_set_root_last_log_commit(root, 0);
703 	root->anon_dev = 0;
704 	if (!dummy) {
705 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
706 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
707 		extent_io_tree_init(fs_info, &root->log_csum_range,
708 				    IO_TREE_LOG_CSUM_RANGE);
709 	}
710 
711 	spin_lock_init(&root->root_item_lock);
712 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
713 #ifdef CONFIG_BTRFS_DEBUG
714 	INIT_LIST_HEAD(&root->leak_list);
715 	spin_lock(&fs_info->fs_roots_radix_lock);
716 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
717 	spin_unlock(&fs_info->fs_roots_radix_lock);
718 #endif
719 }
720 
721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
722 					   u64 objectid, gfp_t flags)
723 {
724 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
725 	if (root)
726 		__setup_root(root, fs_info, objectid);
727 	return root;
728 }
729 
730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
731 /* Should only be used by the testing infrastructure */
732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
733 {
734 	struct btrfs_root *root;
735 
736 	if (!fs_info)
737 		return ERR_PTR(-EINVAL);
738 
739 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
740 	if (!root)
741 		return ERR_PTR(-ENOMEM);
742 
743 	/* We don't use the stripesize in selftest, set it as sectorsize */
744 	root->alloc_bytenr = 0;
745 
746 	return root;
747 }
748 #endif
749 
750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
751 {
752 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
753 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
754 
755 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
756 }
757 
758 static int global_root_key_cmp(const void *k, const struct rb_node *node)
759 {
760 	const struct btrfs_key *key = k;
761 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
762 
763 	return btrfs_comp_cpu_keys(key, &root->root_key);
764 }
765 
766 int btrfs_global_root_insert(struct btrfs_root *root)
767 {
768 	struct btrfs_fs_info *fs_info = root->fs_info;
769 	struct rb_node *tmp;
770 	int ret = 0;
771 
772 	write_lock(&fs_info->global_root_lock);
773 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
774 	write_unlock(&fs_info->global_root_lock);
775 
776 	if (tmp) {
777 		ret = -EEXIST;
778 		btrfs_warn(fs_info, "global root %llu %llu already exists",
779 				root->root_key.objectid, root->root_key.offset);
780 	}
781 	return ret;
782 }
783 
784 void btrfs_global_root_delete(struct btrfs_root *root)
785 {
786 	struct btrfs_fs_info *fs_info = root->fs_info;
787 
788 	write_lock(&fs_info->global_root_lock);
789 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
790 	write_unlock(&fs_info->global_root_lock);
791 }
792 
793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
794 				     struct btrfs_key *key)
795 {
796 	struct rb_node *node;
797 	struct btrfs_root *root = NULL;
798 
799 	read_lock(&fs_info->global_root_lock);
800 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
801 	if (node)
802 		root = container_of(node, struct btrfs_root, rb_node);
803 	read_unlock(&fs_info->global_root_lock);
804 
805 	return root;
806 }
807 
808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
809 {
810 	struct btrfs_block_group *block_group;
811 	u64 ret;
812 
813 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
814 		return 0;
815 
816 	if (bytenr)
817 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
818 	else
819 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
820 	ASSERT(block_group);
821 	if (!block_group)
822 		return 0;
823 	ret = block_group->global_root_id;
824 	btrfs_put_block_group(block_group);
825 
826 	return ret;
827 }
828 
829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
830 {
831 	struct btrfs_key key = {
832 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
833 		.type = BTRFS_ROOT_ITEM_KEY,
834 		.offset = btrfs_global_root_id(fs_info, bytenr),
835 	};
836 
837 	return btrfs_global_root(fs_info, &key);
838 }
839 
840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
841 {
842 	struct btrfs_key key = {
843 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
844 		.type = BTRFS_ROOT_ITEM_KEY,
845 		.offset = btrfs_global_root_id(fs_info, bytenr),
846 	};
847 
848 	return btrfs_global_root(fs_info, &key);
849 }
850 
851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
852 {
853 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
854 		return fs_info->block_group_root;
855 	return btrfs_extent_root(fs_info, 0);
856 }
857 
858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
859 				     u64 objectid)
860 {
861 	struct btrfs_fs_info *fs_info = trans->fs_info;
862 	struct extent_buffer *leaf;
863 	struct btrfs_root *tree_root = fs_info->tree_root;
864 	struct btrfs_root *root;
865 	struct btrfs_key key;
866 	unsigned int nofs_flag;
867 	int ret = 0;
868 
869 	/*
870 	 * We're holding a transaction handle, so use a NOFS memory allocation
871 	 * context to avoid deadlock if reclaim happens.
872 	 */
873 	nofs_flag = memalloc_nofs_save();
874 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
875 	memalloc_nofs_restore(nofs_flag);
876 	if (!root)
877 		return ERR_PTR(-ENOMEM);
878 
879 	root->root_key.objectid = objectid;
880 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
881 	root->root_key.offset = 0;
882 
883 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
884 				      0, BTRFS_NESTING_NORMAL);
885 	if (IS_ERR(leaf)) {
886 		ret = PTR_ERR(leaf);
887 		leaf = NULL;
888 		goto fail;
889 	}
890 
891 	root->node = leaf;
892 	btrfs_mark_buffer_dirty(trans, leaf);
893 
894 	root->commit_root = btrfs_root_node(root);
895 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
896 
897 	btrfs_set_root_flags(&root->root_item, 0);
898 	btrfs_set_root_limit(&root->root_item, 0);
899 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
900 	btrfs_set_root_generation(&root->root_item, trans->transid);
901 	btrfs_set_root_level(&root->root_item, 0);
902 	btrfs_set_root_refs(&root->root_item, 1);
903 	btrfs_set_root_used(&root->root_item, leaf->len);
904 	btrfs_set_root_last_snapshot(&root->root_item, 0);
905 	btrfs_set_root_dirid(&root->root_item, 0);
906 	if (is_fstree(objectid))
907 		generate_random_guid(root->root_item.uuid);
908 	else
909 		export_guid(root->root_item.uuid, &guid_null);
910 	btrfs_set_root_drop_level(&root->root_item, 0);
911 
912 	btrfs_tree_unlock(leaf);
913 
914 	key.objectid = objectid;
915 	key.type = BTRFS_ROOT_ITEM_KEY;
916 	key.offset = 0;
917 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
918 	if (ret)
919 		goto fail;
920 
921 	return root;
922 
923 fail:
924 	btrfs_put_root(root);
925 
926 	return ERR_PTR(ret);
927 }
928 
929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
930 					 struct btrfs_fs_info *fs_info)
931 {
932 	struct btrfs_root *root;
933 
934 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
935 	if (!root)
936 		return ERR_PTR(-ENOMEM);
937 
938 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
939 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
940 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
941 
942 	return root;
943 }
944 
945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
946 			      struct btrfs_root *root)
947 {
948 	struct extent_buffer *leaf;
949 
950 	/*
951 	 * DON'T set SHAREABLE bit for log trees.
952 	 *
953 	 * Log trees are not exposed to user space thus can't be snapshotted,
954 	 * and they go away before a real commit is actually done.
955 	 *
956 	 * They do store pointers to file data extents, and those reference
957 	 * counts still get updated (along with back refs to the log tree).
958 	 */
959 
960 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
961 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
962 	if (IS_ERR(leaf))
963 		return PTR_ERR(leaf);
964 
965 	root->node = leaf;
966 
967 	btrfs_mark_buffer_dirty(trans, root->node);
968 	btrfs_tree_unlock(root->node);
969 
970 	return 0;
971 }
972 
973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
974 			     struct btrfs_fs_info *fs_info)
975 {
976 	struct btrfs_root *log_root;
977 
978 	log_root = alloc_log_tree(trans, fs_info);
979 	if (IS_ERR(log_root))
980 		return PTR_ERR(log_root);
981 
982 	if (!btrfs_is_zoned(fs_info)) {
983 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
984 
985 		if (ret) {
986 			btrfs_put_root(log_root);
987 			return ret;
988 		}
989 	}
990 
991 	WARN_ON(fs_info->log_root_tree);
992 	fs_info->log_root_tree = log_root;
993 	return 0;
994 }
995 
996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
997 		       struct btrfs_root *root)
998 {
999 	struct btrfs_fs_info *fs_info = root->fs_info;
1000 	struct btrfs_root *log_root;
1001 	struct btrfs_inode_item *inode_item;
1002 	int ret;
1003 
1004 	log_root = alloc_log_tree(trans, fs_info);
1005 	if (IS_ERR(log_root))
1006 		return PTR_ERR(log_root);
1007 
1008 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1009 	if (ret) {
1010 		btrfs_put_root(log_root);
1011 		return ret;
1012 	}
1013 
1014 	log_root->last_trans = trans->transid;
1015 	log_root->root_key.offset = root->root_key.objectid;
1016 
1017 	inode_item = &log_root->root_item.inode;
1018 	btrfs_set_stack_inode_generation(inode_item, 1);
1019 	btrfs_set_stack_inode_size(inode_item, 3);
1020 	btrfs_set_stack_inode_nlink(inode_item, 1);
1021 	btrfs_set_stack_inode_nbytes(inode_item,
1022 				     fs_info->nodesize);
1023 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024 
1025 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1026 
1027 	WARN_ON(root->log_root);
1028 	root->log_root = log_root;
1029 	btrfs_set_root_log_transid(root, 0);
1030 	root->log_transid_committed = -1;
1031 	btrfs_set_root_last_log_commit(root, 0);
1032 	return 0;
1033 }
1034 
1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036 					      struct btrfs_path *path,
1037 					      struct btrfs_key *key)
1038 {
1039 	struct btrfs_root *root;
1040 	struct btrfs_tree_parent_check check = { 0 };
1041 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1042 	u64 generation;
1043 	int ret;
1044 	int level;
1045 
1046 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047 	if (!root)
1048 		return ERR_PTR(-ENOMEM);
1049 
1050 	ret = btrfs_find_root(tree_root, key, path,
1051 			      &root->root_item, &root->root_key);
1052 	if (ret) {
1053 		if (ret > 0)
1054 			ret = -ENOENT;
1055 		goto fail;
1056 	}
1057 
1058 	generation = btrfs_root_generation(&root->root_item);
1059 	level = btrfs_root_level(&root->root_item);
1060 	check.level = level;
1061 	check.transid = generation;
1062 	check.owner_root = key->objectid;
1063 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064 				     &check);
1065 	if (IS_ERR(root->node)) {
1066 		ret = PTR_ERR(root->node);
1067 		root->node = NULL;
1068 		goto fail;
1069 	}
1070 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071 		ret = -EIO;
1072 		goto fail;
1073 	}
1074 
1075 	/*
1076 	 * For real fs, and not log/reloc trees, root owner must
1077 	 * match its root node owner
1078 	 */
1079 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1083 		btrfs_crit(fs_info,
1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085 			   root->root_key.objectid, root->node->start,
1086 			   btrfs_header_owner(root->node),
1087 			   root->root_key.objectid);
1088 		ret = -EUCLEAN;
1089 		goto fail;
1090 	}
1091 	root->commit_root = btrfs_root_node(root);
1092 	return root;
1093 fail:
1094 	btrfs_put_root(root);
1095 	return ERR_PTR(ret);
1096 }
1097 
1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099 					struct btrfs_key *key)
1100 {
1101 	struct btrfs_root *root;
1102 	struct btrfs_path *path;
1103 
1104 	path = btrfs_alloc_path();
1105 	if (!path)
1106 		return ERR_PTR(-ENOMEM);
1107 	root = read_tree_root_path(tree_root, path, key);
1108 	btrfs_free_path(path);
1109 
1110 	return root;
1111 }
1112 
1113 /*
1114  * Initialize subvolume root in-memory structure
1115  *
1116  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1117  */
1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119 {
1120 	int ret;
1121 
1122 	btrfs_drew_lock_init(&root->snapshot_lock);
1123 
1124 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125 	    !btrfs_is_data_reloc_root(root) &&
1126 	    is_fstree(root->root_key.objectid)) {
1127 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128 		btrfs_check_and_init_root_item(&root->root_item);
1129 	}
1130 
1131 	/*
1132 	 * Don't assign anonymous block device to roots that are not exposed to
1133 	 * userspace, the id pool is limited to 1M
1134 	 */
1135 	if (is_fstree(root->root_key.objectid) &&
1136 	    btrfs_root_refs(&root->root_item) > 0) {
1137 		if (!anon_dev) {
1138 			ret = get_anon_bdev(&root->anon_dev);
1139 			if (ret)
1140 				goto fail;
1141 		} else {
1142 			root->anon_dev = anon_dev;
1143 		}
1144 	}
1145 
1146 	mutex_lock(&root->objectid_mutex);
1147 	ret = btrfs_init_root_free_objectid(root);
1148 	if (ret) {
1149 		mutex_unlock(&root->objectid_mutex);
1150 		goto fail;
1151 	}
1152 
1153 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1154 
1155 	mutex_unlock(&root->objectid_mutex);
1156 
1157 	return 0;
1158 fail:
1159 	/* The caller is responsible to call btrfs_free_fs_root */
1160 	return ret;
1161 }
1162 
1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164 					       u64 root_id)
1165 {
1166 	struct btrfs_root *root;
1167 
1168 	spin_lock(&fs_info->fs_roots_radix_lock);
1169 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 				 (unsigned long)root_id);
1171 	root = btrfs_grab_root(root);
1172 	spin_unlock(&fs_info->fs_roots_radix_lock);
1173 	return root;
1174 }
1175 
1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177 						u64 objectid)
1178 {
1179 	struct btrfs_key key = {
1180 		.objectid = objectid,
1181 		.type = BTRFS_ROOT_ITEM_KEY,
1182 		.offset = 0,
1183 	};
1184 
1185 	switch (objectid) {
1186 	case BTRFS_ROOT_TREE_OBJECTID:
1187 		return btrfs_grab_root(fs_info->tree_root);
1188 	case BTRFS_EXTENT_TREE_OBJECTID:
1189 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190 	case BTRFS_CHUNK_TREE_OBJECTID:
1191 		return btrfs_grab_root(fs_info->chunk_root);
1192 	case BTRFS_DEV_TREE_OBJECTID:
1193 		return btrfs_grab_root(fs_info->dev_root);
1194 	case BTRFS_CSUM_TREE_OBJECTID:
1195 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196 	case BTRFS_QUOTA_TREE_OBJECTID:
1197 		return btrfs_grab_root(fs_info->quota_root);
1198 	case BTRFS_UUID_TREE_OBJECTID:
1199 		return btrfs_grab_root(fs_info->uuid_root);
1200 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201 		return btrfs_grab_root(fs_info->block_group_root);
1202 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205 		return btrfs_grab_root(fs_info->stripe_root);
1206 	default:
1207 		return NULL;
1208 	}
1209 }
1210 
1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212 			 struct btrfs_root *root)
1213 {
1214 	int ret;
1215 
1216 	ret = radix_tree_preload(GFP_NOFS);
1217 	if (ret)
1218 		return ret;
1219 
1220 	spin_lock(&fs_info->fs_roots_radix_lock);
1221 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222 				(unsigned long)root->root_key.objectid,
1223 				root);
1224 	if (ret == 0) {
1225 		btrfs_grab_root(root);
1226 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227 	}
1228 	spin_unlock(&fs_info->fs_roots_radix_lock);
1229 	radix_tree_preload_end();
1230 
1231 	return ret;
1232 }
1233 
1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235 {
1236 #ifdef CONFIG_BTRFS_DEBUG
1237 	struct btrfs_root *root;
1238 
1239 	while (!list_empty(&fs_info->allocated_roots)) {
1240 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241 
1242 		root = list_first_entry(&fs_info->allocated_roots,
1243 					struct btrfs_root, leak_list);
1244 		btrfs_err(fs_info, "leaked root %s refcount %d",
1245 			  btrfs_root_name(&root->root_key, buf),
1246 			  refcount_read(&root->refs));
1247 		WARN_ON_ONCE(1);
1248 		while (refcount_read(&root->refs) > 1)
1249 			btrfs_put_root(root);
1250 		btrfs_put_root(root);
1251 	}
1252 #endif
1253 }
1254 
1255 static void free_global_roots(struct btrfs_fs_info *fs_info)
1256 {
1257 	struct btrfs_root *root;
1258 	struct rb_node *node;
1259 
1260 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1261 		root = rb_entry(node, struct btrfs_root, rb_node);
1262 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1263 		btrfs_put_root(root);
1264 	}
1265 }
1266 
1267 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1268 {
1269 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1270 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1271 	percpu_counter_destroy(&fs_info->ordered_bytes);
1272 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1273 	btrfs_free_csum_hash(fs_info);
1274 	btrfs_free_stripe_hash_table(fs_info);
1275 	btrfs_free_ref_cache(fs_info);
1276 	kfree(fs_info->balance_ctl);
1277 	kfree(fs_info->delayed_root);
1278 	free_global_roots(fs_info);
1279 	btrfs_put_root(fs_info->tree_root);
1280 	btrfs_put_root(fs_info->chunk_root);
1281 	btrfs_put_root(fs_info->dev_root);
1282 	btrfs_put_root(fs_info->quota_root);
1283 	btrfs_put_root(fs_info->uuid_root);
1284 	btrfs_put_root(fs_info->fs_root);
1285 	btrfs_put_root(fs_info->data_reloc_root);
1286 	btrfs_put_root(fs_info->block_group_root);
1287 	btrfs_put_root(fs_info->stripe_root);
1288 	btrfs_check_leaked_roots(fs_info);
1289 	btrfs_extent_buffer_leak_debug_check(fs_info);
1290 	kfree(fs_info->super_copy);
1291 	kfree(fs_info->super_for_commit);
1292 	kfree(fs_info->subpage_info);
1293 	kvfree(fs_info);
1294 }
1295 
1296 
1297 /*
1298  * Get an in-memory reference of a root structure.
1299  *
1300  * For essential trees like root/extent tree, we grab it from fs_info directly.
1301  * For subvolume trees, we check the cached filesystem roots first. If not
1302  * found, then read it from disk and add it to cached fs roots.
1303  *
1304  * Caller should release the root by calling btrfs_put_root() after the usage.
1305  *
1306  * NOTE: Reloc and log trees can't be read by this function as they share the
1307  *	 same root objectid.
1308  *
1309  * @objectid:	root id
1310  * @anon_dev:	preallocated anonymous block device number for new roots,
1311  *		pass NULL for a new allocation.
1312  * @check_ref:	whether to check root item references, If true, return -ENOENT
1313  *		for orphan roots
1314  */
1315 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1316 					     u64 objectid, dev_t *anon_dev,
1317 					     bool check_ref)
1318 {
1319 	struct btrfs_root *root;
1320 	struct btrfs_path *path;
1321 	struct btrfs_key key;
1322 	int ret;
1323 
1324 	root = btrfs_get_global_root(fs_info, objectid);
1325 	if (root)
1326 		return root;
1327 
1328 	/*
1329 	 * If we're called for non-subvolume trees, and above function didn't
1330 	 * find one, do not try to read it from disk.
1331 	 *
1332 	 * This is namely for free-space-tree and quota tree, which can change
1333 	 * at runtime and should only be grabbed from fs_info.
1334 	 */
1335 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1336 		return ERR_PTR(-ENOENT);
1337 again:
1338 	root = btrfs_lookup_fs_root(fs_info, objectid);
1339 	if (root) {
1340 		/*
1341 		 * Some other caller may have read out the newly inserted
1342 		 * subvolume already (for things like backref walk etc).  Not
1343 		 * that common but still possible.  In that case, we just need
1344 		 * to free the anon_dev.
1345 		 */
1346 		if (unlikely(anon_dev && *anon_dev)) {
1347 			free_anon_bdev(*anon_dev);
1348 			*anon_dev = 0;
1349 		}
1350 
1351 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1352 			btrfs_put_root(root);
1353 			return ERR_PTR(-ENOENT);
1354 		}
1355 		return root;
1356 	}
1357 
1358 	key.objectid = objectid;
1359 	key.type = BTRFS_ROOT_ITEM_KEY;
1360 	key.offset = (u64)-1;
1361 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1362 	if (IS_ERR(root))
1363 		return root;
1364 
1365 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1366 		ret = -ENOENT;
1367 		goto fail;
1368 	}
1369 
1370 	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1371 	if (ret)
1372 		goto fail;
1373 
1374 	path = btrfs_alloc_path();
1375 	if (!path) {
1376 		ret = -ENOMEM;
1377 		goto fail;
1378 	}
1379 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1380 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1381 	key.offset = objectid;
1382 
1383 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1384 	btrfs_free_path(path);
1385 	if (ret < 0)
1386 		goto fail;
1387 	if (ret == 0)
1388 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1389 
1390 	ret = btrfs_insert_fs_root(fs_info, root);
1391 	if (ret) {
1392 		if (ret == -EEXIST) {
1393 			btrfs_put_root(root);
1394 			goto again;
1395 		}
1396 		goto fail;
1397 	}
1398 	return root;
1399 fail:
1400 	/*
1401 	 * If our caller provided us an anonymous device, then it's his
1402 	 * responsibility to free it in case we fail. So we have to set our
1403 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1404 	 * and once again by our caller.
1405 	 */
1406 	if (anon_dev && *anon_dev)
1407 		root->anon_dev = 0;
1408 	btrfs_put_root(root);
1409 	return ERR_PTR(ret);
1410 }
1411 
1412 /*
1413  * Get in-memory reference of a root structure
1414  *
1415  * @objectid:	tree objectid
1416  * @check_ref:	if set, verify that the tree exists and the item has at least
1417  *		one reference
1418  */
1419 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1420 				     u64 objectid, bool check_ref)
1421 {
1422 	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
1423 }
1424 
1425 /*
1426  * Get in-memory reference of a root structure, created as new, optionally pass
1427  * the anonymous block device id
1428  *
1429  * @objectid:	tree objectid
1430  * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1431  *		parameter value if not NULL
1432  */
1433 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1434 					 u64 objectid, dev_t *anon_dev)
1435 {
1436 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1437 }
1438 
1439 /*
1440  * Return a root for the given objectid.
1441  *
1442  * @fs_info:	the fs_info
1443  * @objectid:	the objectid we need to lookup
1444  *
1445  * This is exclusively used for backref walking, and exists specifically because
1446  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1447  * creation time, which means we may have to read the tree_root in order to look
1448  * up a fs root that is not in memory.  If the root is not in memory we will
1449  * read the tree root commit root and look up the fs root from there.  This is a
1450  * temporary root, it will not be inserted into the radix tree as it doesn't
1451  * have the most uptodate information, it'll simply be discarded once the
1452  * backref code is finished using the root.
1453  */
1454 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1455 						 struct btrfs_path *path,
1456 						 u64 objectid)
1457 {
1458 	struct btrfs_root *root;
1459 	struct btrfs_key key;
1460 
1461 	ASSERT(path->search_commit_root && path->skip_locking);
1462 
1463 	/*
1464 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1465 	 * since this is called via the backref walking code we won't be looking
1466 	 * up a root that doesn't exist, unless there's corruption.  So if root
1467 	 * != NULL just return it.
1468 	 */
1469 	root = btrfs_get_global_root(fs_info, objectid);
1470 	if (root)
1471 		return root;
1472 
1473 	root = btrfs_lookup_fs_root(fs_info, objectid);
1474 	if (root)
1475 		return root;
1476 
1477 	key.objectid = objectid;
1478 	key.type = BTRFS_ROOT_ITEM_KEY;
1479 	key.offset = (u64)-1;
1480 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1481 	btrfs_release_path(path);
1482 
1483 	return root;
1484 }
1485 
1486 static int cleaner_kthread(void *arg)
1487 {
1488 	struct btrfs_fs_info *fs_info = arg;
1489 	int again;
1490 
1491 	while (1) {
1492 		again = 0;
1493 
1494 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1495 
1496 		/* Make the cleaner go to sleep early. */
1497 		if (btrfs_need_cleaner_sleep(fs_info))
1498 			goto sleep;
1499 
1500 		/*
1501 		 * Do not do anything if we might cause open_ctree() to block
1502 		 * before we have finished mounting the filesystem.
1503 		 */
1504 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1505 			goto sleep;
1506 
1507 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1508 			goto sleep;
1509 
1510 		/*
1511 		 * Avoid the problem that we change the status of the fs
1512 		 * during the above check and trylock.
1513 		 */
1514 		if (btrfs_need_cleaner_sleep(fs_info)) {
1515 			mutex_unlock(&fs_info->cleaner_mutex);
1516 			goto sleep;
1517 		}
1518 
1519 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1520 			btrfs_sysfs_feature_update(fs_info);
1521 
1522 		btrfs_run_delayed_iputs(fs_info);
1523 
1524 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1525 		mutex_unlock(&fs_info->cleaner_mutex);
1526 
1527 		/*
1528 		 * The defragger has dealt with the R/O remount and umount,
1529 		 * needn't do anything special here.
1530 		 */
1531 		btrfs_run_defrag_inodes(fs_info);
1532 
1533 		/*
1534 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1535 		 * with relocation (btrfs_relocate_chunk) and relocation
1536 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1537 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1538 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1539 		 * unused block groups.
1540 		 */
1541 		btrfs_delete_unused_bgs(fs_info);
1542 
1543 		/*
1544 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1545 		 * all unused block_groups. This possibly gives us some more free
1546 		 * space.
1547 		 */
1548 		btrfs_reclaim_bgs(fs_info);
1549 sleep:
1550 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1551 		if (kthread_should_park())
1552 			kthread_parkme();
1553 		if (kthread_should_stop())
1554 			return 0;
1555 		if (!again) {
1556 			set_current_state(TASK_INTERRUPTIBLE);
1557 			schedule();
1558 			__set_current_state(TASK_RUNNING);
1559 		}
1560 	}
1561 }
1562 
1563 static int transaction_kthread(void *arg)
1564 {
1565 	struct btrfs_root *root = arg;
1566 	struct btrfs_fs_info *fs_info = root->fs_info;
1567 	struct btrfs_trans_handle *trans;
1568 	struct btrfs_transaction *cur;
1569 	u64 transid;
1570 	time64_t delta;
1571 	unsigned long delay;
1572 	bool cannot_commit;
1573 
1574 	do {
1575 		cannot_commit = false;
1576 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1577 		mutex_lock(&fs_info->transaction_kthread_mutex);
1578 
1579 		spin_lock(&fs_info->trans_lock);
1580 		cur = fs_info->running_transaction;
1581 		if (!cur) {
1582 			spin_unlock(&fs_info->trans_lock);
1583 			goto sleep;
1584 		}
1585 
1586 		delta = ktime_get_seconds() - cur->start_time;
1587 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1588 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1589 		    delta < fs_info->commit_interval) {
1590 			spin_unlock(&fs_info->trans_lock);
1591 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1592 			delay = min(delay,
1593 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1594 			goto sleep;
1595 		}
1596 		transid = cur->transid;
1597 		spin_unlock(&fs_info->trans_lock);
1598 
1599 		/* If the file system is aborted, this will always fail. */
1600 		trans = btrfs_attach_transaction(root);
1601 		if (IS_ERR(trans)) {
1602 			if (PTR_ERR(trans) != -ENOENT)
1603 				cannot_commit = true;
1604 			goto sleep;
1605 		}
1606 		if (transid == trans->transid) {
1607 			btrfs_commit_transaction(trans);
1608 		} else {
1609 			btrfs_end_transaction(trans);
1610 		}
1611 sleep:
1612 		wake_up_process(fs_info->cleaner_kthread);
1613 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1614 
1615 		if (BTRFS_FS_ERROR(fs_info))
1616 			btrfs_cleanup_transaction(fs_info);
1617 		if (!kthread_should_stop() &&
1618 				(!btrfs_transaction_blocked(fs_info) ||
1619 				 cannot_commit))
1620 			schedule_timeout_interruptible(delay);
1621 	} while (!kthread_should_stop());
1622 	return 0;
1623 }
1624 
1625 /*
1626  * This will find the highest generation in the array of root backups.  The
1627  * index of the highest array is returned, or -EINVAL if we can't find
1628  * anything.
1629  *
1630  * We check to make sure the array is valid by comparing the
1631  * generation of the latest  root in the array with the generation
1632  * in the super block.  If they don't match we pitch it.
1633  */
1634 static int find_newest_super_backup(struct btrfs_fs_info *info)
1635 {
1636 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1637 	u64 cur;
1638 	struct btrfs_root_backup *root_backup;
1639 	int i;
1640 
1641 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1642 		root_backup = info->super_copy->super_roots + i;
1643 		cur = btrfs_backup_tree_root_gen(root_backup);
1644 		if (cur == newest_gen)
1645 			return i;
1646 	}
1647 
1648 	return -EINVAL;
1649 }
1650 
1651 /*
1652  * copy all the root pointers into the super backup array.
1653  * this will bump the backup pointer by one when it is
1654  * done
1655  */
1656 static void backup_super_roots(struct btrfs_fs_info *info)
1657 {
1658 	const int next_backup = info->backup_root_index;
1659 	struct btrfs_root_backup *root_backup;
1660 
1661 	root_backup = info->super_for_commit->super_roots + next_backup;
1662 
1663 	/*
1664 	 * make sure all of our padding and empty slots get zero filled
1665 	 * regardless of which ones we use today
1666 	 */
1667 	memset(root_backup, 0, sizeof(*root_backup));
1668 
1669 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1670 
1671 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1672 	btrfs_set_backup_tree_root_gen(root_backup,
1673 			       btrfs_header_generation(info->tree_root->node));
1674 
1675 	btrfs_set_backup_tree_root_level(root_backup,
1676 			       btrfs_header_level(info->tree_root->node));
1677 
1678 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1679 	btrfs_set_backup_chunk_root_gen(root_backup,
1680 			       btrfs_header_generation(info->chunk_root->node));
1681 	btrfs_set_backup_chunk_root_level(root_backup,
1682 			       btrfs_header_level(info->chunk_root->node));
1683 
1684 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1685 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1686 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1687 
1688 		btrfs_set_backup_extent_root(root_backup,
1689 					     extent_root->node->start);
1690 		btrfs_set_backup_extent_root_gen(root_backup,
1691 				btrfs_header_generation(extent_root->node));
1692 		btrfs_set_backup_extent_root_level(root_backup,
1693 					btrfs_header_level(extent_root->node));
1694 
1695 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1696 		btrfs_set_backup_csum_root_gen(root_backup,
1697 					       btrfs_header_generation(csum_root->node));
1698 		btrfs_set_backup_csum_root_level(root_backup,
1699 						 btrfs_header_level(csum_root->node));
1700 	}
1701 
1702 	/*
1703 	 * we might commit during log recovery, which happens before we set
1704 	 * the fs_root.  Make sure it is valid before we fill it in.
1705 	 */
1706 	if (info->fs_root && info->fs_root->node) {
1707 		btrfs_set_backup_fs_root(root_backup,
1708 					 info->fs_root->node->start);
1709 		btrfs_set_backup_fs_root_gen(root_backup,
1710 			       btrfs_header_generation(info->fs_root->node));
1711 		btrfs_set_backup_fs_root_level(root_backup,
1712 			       btrfs_header_level(info->fs_root->node));
1713 	}
1714 
1715 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1716 	btrfs_set_backup_dev_root_gen(root_backup,
1717 			       btrfs_header_generation(info->dev_root->node));
1718 	btrfs_set_backup_dev_root_level(root_backup,
1719 				       btrfs_header_level(info->dev_root->node));
1720 
1721 	btrfs_set_backup_total_bytes(root_backup,
1722 			     btrfs_super_total_bytes(info->super_copy));
1723 	btrfs_set_backup_bytes_used(root_backup,
1724 			     btrfs_super_bytes_used(info->super_copy));
1725 	btrfs_set_backup_num_devices(root_backup,
1726 			     btrfs_super_num_devices(info->super_copy));
1727 
1728 	/*
1729 	 * if we don't copy this out to the super_copy, it won't get remembered
1730 	 * for the next commit
1731 	 */
1732 	memcpy(&info->super_copy->super_roots,
1733 	       &info->super_for_commit->super_roots,
1734 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1735 }
1736 
1737 /*
1738  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1739  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1740  *
1741  * @fs_info:  filesystem whose backup roots need to be read
1742  * @priority: priority of backup root required
1743  *
1744  * Returns backup root index on success and -EINVAL otherwise.
1745  */
1746 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1747 {
1748 	int backup_index = find_newest_super_backup(fs_info);
1749 	struct btrfs_super_block *super = fs_info->super_copy;
1750 	struct btrfs_root_backup *root_backup;
1751 
1752 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1753 		if (priority == 0)
1754 			return backup_index;
1755 
1756 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1757 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1758 	} else {
1759 		return -EINVAL;
1760 	}
1761 
1762 	root_backup = super->super_roots + backup_index;
1763 
1764 	btrfs_set_super_generation(super,
1765 				   btrfs_backup_tree_root_gen(root_backup));
1766 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1767 	btrfs_set_super_root_level(super,
1768 				   btrfs_backup_tree_root_level(root_backup));
1769 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1770 
1771 	/*
1772 	 * Fixme: the total bytes and num_devices need to match or we should
1773 	 * need a fsck
1774 	 */
1775 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1776 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1777 
1778 	return backup_index;
1779 }
1780 
1781 /* helper to cleanup workers */
1782 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1783 {
1784 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1785 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1786 	btrfs_destroy_workqueue(fs_info->workers);
1787 	if (fs_info->endio_workers)
1788 		destroy_workqueue(fs_info->endio_workers);
1789 	if (fs_info->rmw_workers)
1790 		destroy_workqueue(fs_info->rmw_workers);
1791 	if (fs_info->compressed_write_workers)
1792 		destroy_workqueue(fs_info->compressed_write_workers);
1793 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1794 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1795 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1796 	btrfs_destroy_workqueue(fs_info->caching_workers);
1797 	btrfs_destroy_workqueue(fs_info->flush_workers);
1798 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1799 	if (fs_info->discard_ctl.discard_workers)
1800 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1801 	/*
1802 	 * Now that all other work queues are destroyed, we can safely destroy
1803 	 * the queues used for metadata I/O, since tasks from those other work
1804 	 * queues can do metadata I/O operations.
1805 	 */
1806 	if (fs_info->endio_meta_workers)
1807 		destroy_workqueue(fs_info->endio_meta_workers);
1808 }
1809 
1810 static void free_root_extent_buffers(struct btrfs_root *root)
1811 {
1812 	if (root) {
1813 		free_extent_buffer(root->node);
1814 		free_extent_buffer(root->commit_root);
1815 		root->node = NULL;
1816 		root->commit_root = NULL;
1817 	}
1818 }
1819 
1820 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1821 {
1822 	struct btrfs_root *root, *tmp;
1823 
1824 	rbtree_postorder_for_each_entry_safe(root, tmp,
1825 					     &fs_info->global_root_tree,
1826 					     rb_node)
1827 		free_root_extent_buffers(root);
1828 }
1829 
1830 /* helper to cleanup tree roots */
1831 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1832 {
1833 	free_root_extent_buffers(info->tree_root);
1834 
1835 	free_global_root_pointers(info);
1836 	free_root_extent_buffers(info->dev_root);
1837 	free_root_extent_buffers(info->quota_root);
1838 	free_root_extent_buffers(info->uuid_root);
1839 	free_root_extent_buffers(info->fs_root);
1840 	free_root_extent_buffers(info->data_reloc_root);
1841 	free_root_extent_buffers(info->block_group_root);
1842 	free_root_extent_buffers(info->stripe_root);
1843 	if (free_chunk_root)
1844 		free_root_extent_buffers(info->chunk_root);
1845 }
1846 
1847 void btrfs_put_root(struct btrfs_root *root)
1848 {
1849 	if (!root)
1850 		return;
1851 
1852 	if (refcount_dec_and_test(&root->refs)) {
1853 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1854 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1855 		if (root->anon_dev)
1856 			free_anon_bdev(root->anon_dev);
1857 		free_root_extent_buffers(root);
1858 #ifdef CONFIG_BTRFS_DEBUG
1859 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1860 		list_del_init(&root->leak_list);
1861 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1862 #endif
1863 		kfree(root);
1864 	}
1865 }
1866 
1867 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1868 {
1869 	int ret;
1870 	struct btrfs_root *gang[8];
1871 	int i;
1872 
1873 	while (!list_empty(&fs_info->dead_roots)) {
1874 		gang[0] = list_entry(fs_info->dead_roots.next,
1875 				     struct btrfs_root, root_list);
1876 		list_del(&gang[0]->root_list);
1877 
1878 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1879 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1880 		btrfs_put_root(gang[0]);
1881 	}
1882 
1883 	while (1) {
1884 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1885 					     (void **)gang, 0,
1886 					     ARRAY_SIZE(gang));
1887 		if (!ret)
1888 			break;
1889 		for (i = 0; i < ret; i++)
1890 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1891 	}
1892 }
1893 
1894 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1895 {
1896 	mutex_init(&fs_info->scrub_lock);
1897 	atomic_set(&fs_info->scrubs_running, 0);
1898 	atomic_set(&fs_info->scrub_pause_req, 0);
1899 	atomic_set(&fs_info->scrubs_paused, 0);
1900 	atomic_set(&fs_info->scrub_cancel_req, 0);
1901 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1902 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1903 }
1904 
1905 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1906 {
1907 	spin_lock_init(&fs_info->balance_lock);
1908 	mutex_init(&fs_info->balance_mutex);
1909 	atomic_set(&fs_info->balance_pause_req, 0);
1910 	atomic_set(&fs_info->balance_cancel_req, 0);
1911 	fs_info->balance_ctl = NULL;
1912 	init_waitqueue_head(&fs_info->balance_wait_q);
1913 	atomic_set(&fs_info->reloc_cancel_req, 0);
1914 }
1915 
1916 static int btrfs_init_btree_inode(struct super_block *sb)
1917 {
1918 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1919 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1920 					      fs_info->tree_root);
1921 	struct inode *inode;
1922 
1923 	inode = new_inode(sb);
1924 	if (!inode)
1925 		return -ENOMEM;
1926 
1927 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1928 	set_nlink(inode, 1);
1929 	/*
1930 	 * we set the i_size on the btree inode to the max possible int.
1931 	 * the real end of the address space is determined by all of
1932 	 * the devices in the system
1933 	 */
1934 	inode->i_size = OFFSET_MAX;
1935 	inode->i_mapping->a_ops = &btree_aops;
1936 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1937 
1938 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1939 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1940 			    IO_TREE_BTREE_INODE_IO);
1941 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1942 
1943 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1944 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1945 	BTRFS_I(inode)->location.type = 0;
1946 	BTRFS_I(inode)->location.offset = 0;
1947 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1948 	__insert_inode_hash(inode, hash);
1949 	fs_info->btree_inode = inode;
1950 
1951 	return 0;
1952 }
1953 
1954 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1955 {
1956 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1957 	init_rwsem(&fs_info->dev_replace.rwsem);
1958 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1959 }
1960 
1961 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1962 {
1963 	spin_lock_init(&fs_info->qgroup_lock);
1964 	mutex_init(&fs_info->qgroup_ioctl_lock);
1965 	fs_info->qgroup_tree = RB_ROOT;
1966 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1967 	fs_info->qgroup_seq = 1;
1968 	fs_info->qgroup_ulist = NULL;
1969 	fs_info->qgroup_rescan_running = false;
1970 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1971 	mutex_init(&fs_info->qgroup_rescan_lock);
1972 }
1973 
1974 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1975 {
1976 	u32 max_active = fs_info->thread_pool_size;
1977 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1978 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1979 
1980 	fs_info->workers =
1981 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1982 
1983 	fs_info->delalloc_workers =
1984 		btrfs_alloc_workqueue(fs_info, "delalloc",
1985 				      flags, max_active, 2);
1986 
1987 	fs_info->flush_workers =
1988 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1989 				      flags, max_active, 0);
1990 
1991 	fs_info->caching_workers =
1992 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1993 
1994 	fs_info->fixup_workers =
1995 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1996 
1997 	fs_info->endio_workers =
1998 		alloc_workqueue("btrfs-endio", flags, max_active);
1999 	fs_info->endio_meta_workers =
2000 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2001 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2002 	fs_info->endio_write_workers =
2003 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2004 				      max_active, 2);
2005 	fs_info->compressed_write_workers =
2006 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2007 	fs_info->endio_freespace_worker =
2008 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2009 				      max_active, 0);
2010 	fs_info->delayed_workers =
2011 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2012 				      max_active, 0);
2013 	fs_info->qgroup_rescan_workers =
2014 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2015 					      ordered_flags);
2016 	fs_info->discard_ctl.discard_workers =
2017 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2018 
2019 	if (!(fs_info->workers &&
2020 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2021 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2022 	      fs_info->compressed_write_workers &&
2023 	      fs_info->endio_write_workers &&
2024 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2025 	      fs_info->caching_workers && fs_info->fixup_workers &&
2026 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2027 	      fs_info->discard_ctl.discard_workers)) {
2028 		return -ENOMEM;
2029 	}
2030 
2031 	return 0;
2032 }
2033 
2034 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2035 {
2036 	struct crypto_shash *csum_shash;
2037 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2038 
2039 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2040 
2041 	if (IS_ERR(csum_shash)) {
2042 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2043 			  csum_driver);
2044 		return PTR_ERR(csum_shash);
2045 	}
2046 
2047 	fs_info->csum_shash = csum_shash;
2048 
2049 	/*
2050 	 * Check if the checksum implementation is a fast accelerated one.
2051 	 * As-is this is a bit of a hack and should be replaced once the csum
2052 	 * implementations provide that information themselves.
2053 	 */
2054 	switch (csum_type) {
2055 	case BTRFS_CSUM_TYPE_CRC32:
2056 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2057 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2058 		break;
2059 	case BTRFS_CSUM_TYPE_XXHASH:
2060 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2061 		break;
2062 	default:
2063 		break;
2064 	}
2065 
2066 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2067 			btrfs_super_csum_name(csum_type),
2068 			crypto_shash_driver_name(csum_shash));
2069 	return 0;
2070 }
2071 
2072 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2073 			    struct btrfs_fs_devices *fs_devices)
2074 {
2075 	int ret;
2076 	struct btrfs_tree_parent_check check = { 0 };
2077 	struct btrfs_root *log_tree_root;
2078 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2079 	u64 bytenr = btrfs_super_log_root(disk_super);
2080 	int level = btrfs_super_log_root_level(disk_super);
2081 
2082 	if (fs_devices->rw_devices == 0) {
2083 		btrfs_warn(fs_info, "log replay required on RO media");
2084 		return -EIO;
2085 	}
2086 
2087 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2088 					 GFP_KERNEL);
2089 	if (!log_tree_root)
2090 		return -ENOMEM;
2091 
2092 	check.level = level;
2093 	check.transid = fs_info->generation + 1;
2094 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2095 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2096 	if (IS_ERR(log_tree_root->node)) {
2097 		btrfs_warn(fs_info, "failed to read log tree");
2098 		ret = PTR_ERR(log_tree_root->node);
2099 		log_tree_root->node = NULL;
2100 		btrfs_put_root(log_tree_root);
2101 		return ret;
2102 	}
2103 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2104 		btrfs_err(fs_info, "failed to read log tree");
2105 		btrfs_put_root(log_tree_root);
2106 		return -EIO;
2107 	}
2108 
2109 	/* returns with log_tree_root freed on success */
2110 	ret = btrfs_recover_log_trees(log_tree_root);
2111 	if (ret) {
2112 		btrfs_handle_fs_error(fs_info, ret,
2113 				      "Failed to recover log tree");
2114 		btrfs_put_root(log_tree_root);
2115 		return ret;
2116 	}
2117 
2118 	if (sb_rdonly(fs_info->sb)) {
2119 		ret = btrfs_commit_super(fs_info);
2120 		if (ret)
2121 			return ret;
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2128 				      struct btrfs_path *path, u64 objectid,
2129 				      const char *name)
2130 {
2131 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2132 	struct btrfs_root *root;
2133 	u64 max_global_id = 0;
2134 	int ret;
2135 	struct btrfs_key key = {
2136 		.objectid = objectid,
2137 		.type = BTRFS_ROOT_ITEM_KEY,
2138 		.offset = 0,
2139 	};
2140 	bool found = false;
2141 
2142 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2143 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2144 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2145 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2146 		return 0;
2147 	}
2148 
2149 	while (1) {
2150 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2151 		if (ret < 0)
2152 			break;
2153 
2154 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2155 			ret = btrfs_next_leaf(tree_root, path);
2156 			if (ret) {
2157 				if (ret > 0)
2158 					ret = 0;
2159 				break;
2160 			}
2161 		}
2162 		ret = 0;
2163 
2164 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2165 		if (key.objectid != objectid)
2166 			break;
2167 		btrfs_release_path(path);
2168 
2169 		/*
2170 		 * Just worry about this for extent tree, it'll be the same for
2171 		 * everybody.
2172 		 */
2173 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2174 			max_global_id = max(max_global_id, key.offset);
2175 
2176 		found = true;
2177 		root = read_tree_root_path(tree_root, path, &key);
2178 		if (IS_ERR(root)) {
2179 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2180 				ret = PTR_ERR(root);
2181 			break;
2182 		}
2183 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2184 		ret = btrfs_global_root_insert(root);
2185 		if (ret) {
2186 			btrfs_put_root(root);
2187 			break;
2188 		}
2189 		key.offset++;
2190 	}
2191 	btrfs_release_path(path);
2192 
2193 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2194 		fs_info->nr_global_roots = max_global_id + 1;
2195 
2196 	if (!found || ret) {
2197 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2198 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2199 
2200 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2201 			ret = ret ? ret : -ENOENT;
2202 		else
2203 			ret = 0;
2204 		btrfs_err(fs_info, "failed to load root %s", name);
2205 	}
2206 	return ret;
2207 }
2208 
2209 static int load_global_roots(struct btrfs_root *tree_root)
2210 {
2211 	struct btrfs_path *path;
2212 	int ret = 0;
2213 
2214 	path = btrfs_alloc_path();
2215 	if (!path)
2216 		return -ENOMEM;
2217 
2218 	ret = load_global_roots_objectid(tree_root, path,
2219 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2220 	if (ret)
2221 		goto out;
2222 	ret = load_global_roots_objectid(tree_root, path,
2223 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2224 	if (ret)
2225 		goto out;
2226 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2227 		goto out;
2228 	ret = load_global_roots_objectid(tree_root, path,
2229 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2230 					 "free space");
2231 out:
2232 	btrfs_free_path(path);
2233 	return ret;
2234 }
2235 
2236 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2237 {
2238 	struct btrfs_root *tree_root = fs_info->tree_root;
2239 	struct btrfs_root *root;
2240 	struct btrfs_key location;
2241 	int ret;
2242 
2243 	ASSERT(fs_info->tree_root);
2244 
2245 	ret = load_global_roots(tree_root);
2246 	if (ret)
2247 		return ret;
2248 
2249 	location.type = BTRFS_ROOT_ITEM_KEY;
2250 	location.offset = 0;
2251 
2252 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2253 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2254 		root = btrfs_read_tree_root(tree_root, &location);
2255 		if (IS_ERR(root)) {
2256 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2257 				ret = PTR_ERR(root);
2258 				goto out;
2259 			}
2260 		} else {
2261 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262 			fs_info->block_group_root = root;
2263 		}
2264 	}
2265 
2266 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2267 	root = btrfs_read_tree_root(tree_root, &location);
2268 	if (IS_ERR(root)) {
2269 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270 			ret = PTR_ERR(root);
2271 			goto out;
2272 		}
2273 	} else {
2274 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275 		fs_info->dev_root = root;
2276 	}
2277 	/* Initialize fs_info for all devices in any case */
2278 	ret = btrfs_init_devices_late(fs_info);
2279 	if (ret)
2280 		goto out;
2281 
2282 	/*
2283 	 * This tree can share blocks with some other fs tree during relocation
2284 	 * and we need a proper setup by btrfs_get_fs_root
2285 	 */
2286 	root = btrfs_get_fs_root(tree_root->fs_info,
2287 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2288 	if (IS_ERR(root)) {
2289 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2290 			ret = PTR_ERR(root);
2291 			goto out;
2292 		}
2293 	} else {
2294 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295 		fs_info->data_reloc_root = root;
2296 	}
2297 
2298 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2299 	root = btrfs_read_tree_root(tree_root, &location);
2300 	if (!IS_ERR(root)) {
2301 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 		fs_info->quota_root = root;
2303 	}
2304 
2305 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2306 	root = btrfs_read_tree_root(tree_root, &location);
2307 	if (IS_ERR(root)) {
2308 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2309 			ret = PTR_ERR(root);
2310 			if (ret != -ENOENT)
2311 				goto out;
2312 		}
2313 	} else {
2314 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315 		fs_info->uuid_root = root;
2316 	}
2317 
2318 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2319 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2320 		root = btrfs_read_tree_root(tree_root, &location);
2321 		if (IS_ERR(root)) {
2322 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2323 				ret = PTR_ERR(root);
2324 				goto out;
2325 			}
2326 		} else {
2327 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328 			fs_info->stripe_root = root;
2329 		}
2330 	}
2331 
2332 	return 0;
2333 out:
2334 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2335 		   location.objectid, ret);
2336 	return ret;
2337 }
2338 
2339 /*
2340  * Real super block validation
2341  * NOTE: super csum type and incompat features will not be checked here.
2342  *
2343  * @sb:		super block to check
2344  * @mirror_num:	the super block number to check its bytenr:
2345  * 		0	the primary (1st) sb
2346  * 		1, 2	2nd and 3rd backup copy
2347  * 	       -1	skip bytenr check
2348  */
2349 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2350 			 struct btrfs_super_block *sb, int mirror_num)
2351 {
2352 	u64 nodesize = btrfs_super_nodesize(sb);
2353 	u64 sectorsize = btrfs_super_sectorsize(sb);
2354 	int ret = 0;
2355 
2356 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2357 		btrfs_err(fs_info, "no valid FS found");
2358 		ret = -EINVAL;
2359 	}
2360 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2361 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2362 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2363 		ret = -EINVAL;
2364 	}
2365 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2367 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2368 		ret = -EINVAL;
2369 	}
2370 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2371 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2372 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2373 		ret = -EINVAL;
2374 	}
2375 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2376 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2377 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2378 		ret = -EINVAL;
2379 	}
2380 
2381 	/*
2382 	 * Check sectorsize and nodesize first, other check will need it.
2383 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2384 	 */
2385 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2386 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2388 		ret = -EINVAL;
2389 	}
2390 
2391 	/*
2392 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2393 	 *
2394 	 * We can support 16K sectorsize with 64K page size without problem,
2395 	 * but such sectorsize/pagesize combination doesn't make much sense.
2396 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2397 	 * beginning.
2398 	 */
2399 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2400 		btrfs_err(fs_info,
2401 			"sectorsize %llu not yet supported for page size %lu",
2402 			sectorsize, PAGE_SIZE);
2403 		ret = -EINVAL;
2404 	}
2405 
2406 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2407 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2409 		ret = -EINVAL;
2410 	}
2411 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2412 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2413 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2414 		ret = -EINVAL;
2415 	}
2416 
2417 	/* Root alignment check */
2418 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2419 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2420 			   btrfs_super_root(sb));
2421 		ret = -EINVAL;
2422 	}
2423 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2424 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2425 			   btrfs_super_chunk_root(sb));
2426 		ret = -EINVAL;
2427 	}
2428 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2429 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2430 			   btrfs_super_log_root(sb));
2431 		ret = -EINVAL;
2432 	}
2433 
2434 	if (!fs_info->fs_devices->temp_fsid &&
2435 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2436 		btrfs_err(fs_info,
2437 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2438 			  sb->fsid, fs_info->fs_devices->fsid);
2439 		ret = -EINVAL;
2440 	}
2441 
2442 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2443 		   BTRFS_FSID_SIZE) != 0) {
2444 		btrfs_err(fs_info,
2445 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2446 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2447 		ret = -EINVAL;
2448 	}
2449 
2450 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2451 		   BTRFS_FSID_SIZE) != 0) {
2452 		btrfs_err(fs_info,
2453 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2454 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2455 		ret = -EINVAL;
2456 	}
2457 
2458 	/*
2459 	 * Artificial requirement for block-group-tree to force newer features
2460 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2461 	 */
2462 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2463 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2464 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2465 		btrfs_err(fs_info,
2466 		"block-group-tree feature requires fres-space-tree and no-holes");
2467 		ret = -EINVAL;
2468 	}
2469 
2470 	/*
2471 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2472 	 * done later
2473 	 */
2474 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2475 		btrfs_err(fs_info, "bytes_used is too small %llu",
2476 			  btrfs_super_bytes_used(sb));
2477 		ret = -EINVAL;
2478 	}
2479 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2480 		btrfs_err(fs_info, "invalid stripesize %u",
2481 			  btrfs_super_stripesize(sb));
2482 		ret = -EINVAL;
2483 	}
2484 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2485 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2486 			   btrfs_super_num_devices(sb));
2487 	if (btrfs_super_num_devices(sb) == 0) {
2488 		btrfs_err(fs_info, "number of devices is 0");
2489 		ret = -EINVAL;
2490 	}
2491 
2492 	if (mirror_num >= 0 &&
2493 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2494 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2495 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2496 		ret = -EINVAL;
2497 	}
2498 
2499 	/*
2500 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2501 	 * and one chunk
2502 	 */
2503 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2504 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2505 			  btrfs_super_sys_array_size(sb),
2506 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2507 		ret = -EINVAL;
2508 	}
2509 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2510 			+ sizeof(struct btrfs_chunk)) {
2511 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2512 			  btrfs_super_sys_array_size(sb),
2513 			  sizeof(struct btrfs_disk_key)
2514 			  + sizeof(struct btrfs_chunk));
2515 		ret = -EINVAL;
2516 	}
2517 
2518 	/*
2519 	 * The generation is a global counter, we'll trust it more than the others
2520 	 * but it's still possible that it's the one that's wrong.
2521 	 */
2522 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2523 		btrfs_warn(fs_info,
2524 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2525 			btrfs_super_generation(sb),
2526 			btrfs_super_chunk_root_generation(sb));
2527 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2528 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2529 		btrfs_warn(fs_info,
2530 			"suspicious: generation < cache_generation: %llu < %llu",
2531 			btrfs_super_generation(sb),
2532 			btrfs_super_cache_generation(sb));
2533 
2534 	return ret;
2535 }
2536 
2537 /*
2538  * Validation of super block at mount time.
2539  * Some checks already done early at mount time, like csum type and incompat
2540  * flags will be skipped.
2541  */
2542 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2543 {
2544 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2545 }
2546 
2547 /*
2548  * Validation of super block at write time.
2549  * Some checks like bytenr check will be skipped as their values will be
2550  * overwritten soon.
2551  * Extra checks like csum type and incompat flags will be done here.
2552  */
2553 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2554 				      struct btrfs_super_block *sb)
2555 {
2556 	int ret;
2557 
2558 	ret = btrfs_validate_super(fs_info, sb, -1);
2559 	if (ret < 0)
2560 		goto out;
2561 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2562 		ret = -EUCLEAN;
2563 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2564 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2565 		goto out;
2566 	}
2567 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2568 		ret = -EUCLEAN;
2569 		btrfs_err(fs_info,
2570 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2571 			  btrfs_super_incompat_flags(sb),
2572 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2573 		goto out;
2574 	}
2575 out:
2576 	if (ret < 0)
2577 		btrfs_err(fs_info,
2578 		"super block corruption detected before writing it to disk");
2579 	return ret;
2580 }
2581 
2582 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2583 {
2584 	struct btrfs_tree_parent_check check = {
2585 		.level = level,
2586 		.transid = gen,
2587 		.owner_root = root->root_key.objectid
2588 	};
2589 	int ret = 0;
2590 
2591 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2592 	if (IS_ERR(root->node)) {
2593 		ret = PTR_ERR(root->node);
2594 		root->node = NULL;
2595 		return ret;
2596 	}
2597 	if (!extent_buffer_uptodate(root->node)) {
2598 		free_extent_buffer(root->node);
2599 		root->node = NULL;
2600 		return -EIO;
2601 	}
2602 
2603 	btrfs_set_root_node(&root->root_item, root->node);
2604 	root->commit_root = btrfs_root_node(root);
2605 	btrfs_set_root_refs(&root->root_item, 1);
2606 	return ret;
2607 }
2608 
2609 static int load_important_roots(struct btrfs_fs_info *fs_info)
2610 {
2611 	struct btrfs_super_block *sb = fs_info->super_copy;
2612 	u64 gen, bytenr;
2613 	int level, ret;
2614 
2615 	bytenr = btrfs_super_root(sb);
2616 	gen = btrfs_super_generation(sb);
2617 	level = btrfs_super_root_level(sb);
2618 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2619 	if (ret) {
2620 		btrfs_warn(fs_info, "couldn't read tree root");
2621 		return ret;
2622 	}
2623 	return 0;
2624 }
2625 
2626 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2627 {
2628 	int backup_index = find_newest_super_backup(fs_info);
2629 	struct btrfs_super_block *sb = fs_info->super_copy;
2630 	struct btrfs_root *tree_root = fs_info->tree_root;
2631 	bool handle_error = false;
2632 	int ret = 0;
2633 	int i;
2634 
2635 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2636 		if (handle_error) {
2637 			if (!IS_ERR(tree_root->node))
2638 				free_extent_buffer(tree_root->node);
2639 			tree_root->node = NULL;
2640 
2641 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2642 				break;
2643 
2644 			free_root_pointers(fs_info, 0);
2645 
2646 			/*
2647 			 * Don't use the log in recovery mode, it won't be
2648 			 * valid
2649 			 */
2650 			btrfs_set_super_log_root(sb, 0);
2651 
2652 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2653 			ret = read_backup_root(fs_info, i);
2654 			backup_index = ret;
2655 			if (ret < 0)
2656 				return ret;
2657 		}
2658 
2659 		ret = load_important_roots(fs_info);
2660 		if (ret) {
2661 			handle_error = true;
2662 			continue;
2663 		}
2664 
2665 		/*
2666 		 * No need to hold btrfs_root::objectid_mutex since the fs
2667 		 * hasn't been fully initialised and we are the only user
2668 		 */
2669 		ret = btrfs_init_root_free_objectid(tree_root);
2670 		if (ret < 0) {
2671 			handle_error = true;
2672 			continue;
2673 		}
2674 
2675 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2676 
2677 		ret = btrfs_read_roots(fs_info);
2678 		if (ret < 0) {
2679 			handle_error = true;
2680 			continue;
2681 		}
2682 
2683 		/* All successful */
2684 		fs_info->generation = btrfs_header_generation(tree_root->node);
2685 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2686 		fs_info->last_reloc_trans = 0;
2687 
2688 		/* Always begin writing backup roots after the one being used */
2689 		if (backup_index < 0) {
2690 			fs_info->backup_root_index = 0;
2691 		} else {
2692 			fs_info->backup_root_index = backup_index + 1;
2693 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2694 		}
2695 		break;
2696 	}
2697 
2698 	return ret;
2699 }
2700 
2701 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2702 {
2703 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2704 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2705 	INIT_LIST_HEAD(&fs_info->trans_list);
2706 	INIT_LIST_HEAD(&fs_info->dead_roots);
2707 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2708 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2709 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2710 	spin_lock_init(&fs_info->delalloc_root_lock);
2711 	spin_lock_init(&fs_info->trans_lock);
2712 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2713 	spin_lock_init(&fs_info->delayed_iput_lock);
2714 	spin_lock_init(&fs_info->defrag_inodes_lock);
2715 	spin_lock_init(&fs_info->super_lock);
2716 	spin_lock_init(&fs_info->buffer_lock);
2717 	spin_lock_init(&fs_info->unused_bgs_lock);
2718 	spin_lock_init(&fs_info->treelog_bg_lock);
2719 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2720 	spin_lock_init(&fs_info->relocation_bg_lock);
2721 	rwlock_init(&fs_info->tree_mod_log_lock);
2722 	rwlock_init(&fs_info->global_root_lock);
2723 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2724 	mutex_init(&fs_info->reclaim_bgs_lock);
2725 	mutex_init(&fs_info->reloc_mutex);
2726 	mutex_init(&fs_info->delalloc_root_mutex);
2727 	mutex_init(&fs_info->zoned_meta_io_lock);
2728 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2729 	seqlock_init(&fs_info->profiles_lock);
2730 
2731 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2732 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2733 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2734 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2735 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2736 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2737 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2738 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2739 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2740 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2741 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2742 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2743 
2744 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2745 	INIT_LIST_HEAD(&fs_info->space_info);
2746 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2747 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2748 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2749 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2750 #ifdef CONFIG_BTRFS_DEBUG
2751 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2752 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2753 	spin_lock_init(&fs_info->eb_leak_lock);
2754 #endif
2755 	fs_info->mapping_tree = RB_ROOT_CACHED;
2756 	rwlock_init(&fs_info->mapping_tree_lock);
2757 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2758 			     BTRFS_BLOCK_RSV_GLOBAL);
2759 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2760 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2761 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2762 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2763 			     BTRFS_BLOCK_RSV_DELOPS);
2764 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2765 			     BTRFS_BLOCK_RSV_DELREFS);
2766 
2767 	atomic_set(&fs_info->async_delalloc_pages, 0);
2768 	atomic_set(&fs_info->defrag_running, 0);
2769 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2770 	atomic64_set(&fs_info->tree_mod_seq, 0);
2771 	fs_info->global_root_tree = RB_ROOT;
2772 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2773 	fs_info->metadata_ratio = 0;
2774 	fs_info->defrag_inodes = RB_ROOT;
2775 	atomic64_set(&fs_info->free_chunk_space, 0);
2776 	fs_info->tree_mod_log = RB_ROOT;
2777 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2778 	btrfs_init_ref_verify(fs_info);
2779 
2780 	fs_info->thread_pool_size = min_t(unsigned long,
2781 					  num_online_cpus() + 2, 8);
2782 
2783 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2784 	spin_lock_init(&fs_info->ordered_root_lock);
2785 
2786 	btrfs_init_scrub(fs_info);
2787 	btrfs_init_balance(fs_info);
2788 	btrfs_init_async_reclaim_work(fs_info);
2789 
2790 	rwlock_init(&fs_info->block_group_cache_lock);
2791 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2792 
2793 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2795 
2796 	mutex_init(&fs_info->ordered_operations_mutex);
2797 	mutex_init(&fs_info->tree_log_mutex);
2798 	mutex_init(&fs_info->chunk_mutex);
2799 	mutex_init(&fs_info->transaction_kthread_mutex);
2800 	mutex_init(&fs_info->cleaner_mutex);
2801 	mutex_init(&fs_info->ro_block_group_mutex);
2802 	init_rwsem(&fs_info->commit_root_sem);
2803 	init_rwsem(&fs_info->cleanup_work_sem);
2804 	init_rwsem(&fs_info->subvol_sem);
2805 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806 
2807 	btrfs_init_dev_replace_locks(fs_info);
2808 	btrfs_init_qgroup(fs_info);
2809 	btrfs_discard_init(fs_info);
2810 
2811 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813 
2814 	init_waitqueue_head(&fs_info->transaction_throttle);
2815 	init_waitqueue_head(&fs_info->transaction_wait);
2816 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817 	init_waitqueue_head(&fs_info->async_submit_wait);
2818 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819 
2820 	/* Usable values until the real ones are cached from the superblock */
2821 	fs_info->nodesize = 4096;
2822 	fs_info->sectorsize = 4096;
2823 	fs_info->sectorsize_bits = ilog2(4096);
2824 	fs_info->stripesize = 4096;
2825 
2826 	/* Default compress algorithm when user does -o compress */
2827 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828 
2829 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830 
2831 	spin_lock_init(&fs_info->swapfile_pins_lock);
2832 	fs_info->swapfile_pins = RB_ROOT;
2833 
2834 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836 }
2837 
2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839 {
2840 	int ret;
2841 
2842 	fs_info->sb = sb;
2843 	/* Temporary fixed values for block size until we read the superblock. */
2844 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846 
2847 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848 	if (ret)
2849 		return ret;
2850 
2851 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2852 	if (ret)
2853 		return ret;
2854 
2855 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2856 					(1 + ilog2(nr_cpu_ids));
2857 
2858 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2859 	if (ret)
2860 		return ret;
2861 
2862 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2863 			GFP_KERNEL);
2864 	if (ret)
2865 		return ret;
2866 
2867 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2868 					GFP_KERNEL);
2869 	if (!fs_info->delayed_root)
2870 		return -ENOMEM;
2871 	btrfs_init_delayed_root(fs_info->delayed_root);
2872 
2873 	if (sb_rdonly(sb))
2874 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2875 
2876 	return btrfs_alloc_stripe_hash_table(fs_info);
2877 }
2878 
2879 static int btrfs_uuid_rescan_kthread(void *data)
2880 {
2881 	struct btrfs_fs_info *fs_info = data;
2882 	int ret;
2883 
2884 	/*
2885 	 * 1st step is to iterate through the existing UUID tree and
2886 	 * to delete all entries that contain outdated data.
2887 	 * 2nd step is to add all missing entries to the UUID tree.
2888 	 */
2889 	ret = btrfs_uuid_tree_iterate(fs_info);
2890 	if (ret < 0) {
2891 		if (ret != -EINTR)
2892 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2893 				   ret);
2894 		up(&fs_info->uuid_tree_rescan_sem);
2895 		return ret;
2896 	}
2897 	return btrfs_uuid_scan_kthread(data);
2898 }
2899 
2900 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2901 {
2902 	struct task_struct *task;
2903 
2904 	down(&fs_info->uuid_tree_rescan_sem);
2905 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2906 	if (IS_ERR(task)) {
2907 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2908 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2909 		up(&fs_info->uuid_tree_rescan_sem);
2910 		return PTR_ERR(task);
2911 	}
2912 
2913 	return 0;
2914 }
2915 
2916 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2917 {
2918 	u64 root_objectid = 0;
2919 	struct btrfs_root *gang[8];
2920 	int i = 0;
2921 	int err = 0;
2922 	unsigned int ret = 0;
2923 
2924 	while (1) {
2925 		spin_lock(&fs_info->fs_roots_radix_lock);
2926 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2927 					     (void **)gang, root_objectid,
2928 					     ARRAY_SIZE(gang));
2929 		if (!ret) {
2930 			spin_unlock(&fs_info->fs_roots_radix_lock);
2931 			break;
2932 		}
2933 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2934 
2935 		for (i = 0; i < ret; i++) {
2936 			/* Avoid to grab roots in dead_roots. */
2937 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2938 				gang[i] = NULL;
2939 				continue;
2940 			}
2941 			/* Grab all the search result for later use. */
2942 			gang[i] = btrfs_grab_root(gang[i]);
2943 		}
2944 		spin_unlock(&fs_info->fs_roots_radix_lock);
2945 
2946 		for (i = 0; i < ret; i++) {
2947 			if (!gang[i])
2948 				continue;
2949 			root_objectid = gang[i]->root_key.objectid;
2950 			err = btrfs_orphan_cleanup(gang[i]);
2951 			if (err)
2952 				goto out;
2953 			btrfs_put_root(gang[i]);
2954 		}
2955 		root_objectid++;
2956 	}
2957 out:
2958 	/* Release the uncleaned roots due to error. */
2959 	for (; i < ret; i++) {
2960 		if (gang[i])
2961 			btrfs_put_root(gang[i]);
2962 	}
2963 	return err;
2964 }
2965 
2966 /*
2967  * Mounting logic specific to read-write file systems. Shared by open_ctree
2968  * and btrfs_remount when remounting from read-only to read-write.
2969  */
2970 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2971 {
2972 	int ret;
2973 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2974 	bool rebuild_free_space_tree = false;
2975 
2976 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2977 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2978 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2979 			btrfs_warn(fs_info,
2980 				   "'clear_cache' option is ignored with extent tree v2");
2981 		else
2982 			rebuild_free_space_tree = true;
2983 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2984 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2985 		btrfs_warn(fs_info, "free space tree is invalid");
2986 		rebuild_free_space_tree = true;
2987 	}
2988 
2989 	if (rebuild_free_space_tree) {
2990 		btrfs_info(fs_info, "rebuilding free space tree");
2991 		ret = btrfs_rebuild_free_space_tree(fs_info);
2992 		if (ret) {
2993 			btrfs_warn(fs_info,
2994 				   "failed to rebuild free space tree: %d", ret);
2995 			goto out;
2996 		}
2997 	}
2998 
2999 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3000 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3001 		btrfs_info(fs_info, "disabling free space tree");
3002 		ret = btrfs_delete_free_space_tree(fs_info);
3003 		if (ret) {
3004 			btrfs_warn(fs_info,
3005 				   "failed to disable free space tree: %d", ret);
3006 			goto out;
3007 		}
3008 	}
3009 
3010 	/*
3011 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3012 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3013 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3014 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3015 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3016 	 * item before the root's tree is deleted - this means that if we unmount
3017 	 * or crash before the deletion completes, on the next mount we will not
3018 	 * delete what remains of the tree because the orphan item does not
3019 	 * exists anymore, which is what tells us we have a pending deletion.
3020 	 */
3021 	ret = btrfs_find_orphan_roots(fs_info);
3022 	if (ret)
3023 		goto out;
3024 
3025 	ret = btrfs_cleanup_fs_roots(fs_info);
3026 	if (ret)
3027 		goto out;
3028 
3029 	down_read(&fs_info->cleanup_work_sem);
3030 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3031 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3032 		up_read(&fs_info->cleanup_work_sem);
3033 		goto out;
3034 	}
3035 	up_read(&fs_info->cleanup_work_sem);
3036 
3037 	mutex_lock(&fs_info->cleaner_mutex);
3038 	ret = btrfs_recover_relocation(fs_info);
3039 	mutex_unlock(&fs_info->cleaner_mutex);
3040 	if (ret < 0) {
3041 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3042 		goto out;
3043 	}
3044 
3045 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3046 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3047 		btrfs_info(fs_info, "creating free space tree");
3048 		ret = btrfs_create_free_space_tree(fs_info);
3049 		if (ret) {
3050 			btrfs_warn(fs_info,
3051 				"failed to create free space tree: %d", ret);
3052 			goto out;
3053 		}
3054 	}
3055 
3056 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3057 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3058 		if (ret)
3059 			goto out;
3060 	}
3061 
3062 	ret = btrfs_resume_balance_async(fs_info);
3063 	if (ret)
3064 		goto out;
3065 
3066 	ret = btrfs_resume_dev_replace_async(fs_info);
3067 	if (ret) {
3068 		btrfs_warn(fs_info, "failed to resume dev_replace");
3069 		goto out;
3070 	}
3071 
3072 	btrfs_qgroup_rescan_resume(fs_info);
3073 
3074 	if (!fs_info->uuid_root) {
3075 		btrfs_info(fs_info, "creating UUID tree");
3076 		ret = btrfs_create_uuid_tree(fs_info);
3077 		if (ret) {
3078 			btrfs_warn(fs_info,
3079 				   "failed to create the UUID tree %d", ret);
3080 			goto out;
3081 		}
3082 	}
3083 
3084 out:
3085 	return ret;
3086 }
3087 
3088 /*
3089  * Do various sanity and dependency checks of different features.
3090  *
3091  * @is_rw_mount:	If the mount is read-write.
3092  *
3093  * This is the place for less strict checks (like for subpage or artificial
3094  * feature dependencies).
3095  *
3096  * For strict checks or possible corruption detection, see
3097  * btrfs_validate_super().
3098  *
3099  * This should be called after btrfs_parse_options(), as some mount options
3100  * (space cache related) can modify on-disk format like free space tree and
3101  * screw up certain feature dependencies.
3102  */
3103 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3104 {
3105 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3106 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3107 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3108 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3109 
3110 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3111 		btrfs_err(fs_info,
3112 		"cannot mount because of unknown incompat features (0x%llx)",
3113 		    incompat);
3114 		return -EINVAL;
3115 	}
3116 
3117 	/* Runtime limitation for mixed block groups. */
3118 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3119 	    (fs_info->sectorsize != fs_info->nodesize)) {
3120 		btrfs_err(fs_info,
3121 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3122 			fs_info->nodesize, fs_info->sectorsize);
3123 		return -EINVAL;
3124 	}
3125 
3126 	/* Mixed backref is an always-enabled feature. */
3127 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3128 
3129 	/* Set compression related flags just in case. */
3130 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3131 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3132 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3133 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3134 
3135 	/*
3136 	 * An ancient flag, which should really be marked deprecated.
3137 	 * Such runtime limitation doesn't really need a incompat flag.
3138 	 */
3139 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3140 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3141 
3142 	if (compat_ro_unsupp && is_rw_mount) {
3143 		btrfs_err(fs_info,
3144 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3145 		       compat_ro);
3146 		return -EINVAL;
3147 	}
3148 
3149 	/*
3150 	 * We have unsupported RO compat features, although RO mounted, we
3151 	 * should not cause any metadata writes, including log replay.
3152 	 * Or we could screw up whatever the new feature requires.
3153 	 */
3154 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3155 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3156 		btrfs_err(fs_info,
3157 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3158 			  compat_ro);
3159 		return -EINVAL;
3160 	}
3161 
3162 	/*
3163 	 * Artificial limitations for block group tree, to force
3164 	 * block-group-tree to rely on no-holes and free-space-tree.
3165 	 */
3166 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3167 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3168 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3169 		btrfs_err(fs_info,
3170 "block-group-tree feature requires no-holes and free-space-tree features");
3171 		return -EINVAL;
3172 	}
3173 
3174 	/*
3175 	 * Subpage runtime limitation on v1 cache.
3176 	 *
3177 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3178 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3179 	 * going to be deprecated anyway.
3180 	 */
3181 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3182 		btrfs_warn(fs_info,
3183 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3184 			   PAGE_SIZE, fs_info->sectorsize);
3185 		return -EINVAL;
3186 	}
3187 
3188 	/* This can be called by remount, we need to protect the super block. */
3189 	spin_lock(&fs_info->super_lock);
3190 	btrfs_set_super_incompat_flags(disk_super, incompat);
3191 	spin_unlock(&fs_info->super_lock);
3192 
3193 	return 0;
3194 }
3195 
3196 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3197 		      char *options)
3198 {
3199 	u32 sectorsize;
3200 	u32 nodesize;
3201 	u32 stripesize;
3202 	u64 generation;
3203 	u16 csum_type;
3204 	struct btrfs_super_block *disk_super;
3205 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3206 	struct btrfs_root *tree_root;
3207 	struct btrfs_root *chunk_root;
3208 	int ret;
3209 	int level;
3210 
3211 	ret = init_mount_fs_info(fs_info, sb);
3212 	if (ret)
3213 		goto fail;
3214 
3215 	/* These need to be init'ed before we start creating inodes and such. */
3216 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3217 				     GFP_KERNEL);
3218 	fs_info->tree_root = tree_root;
3219 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3220 				      GFP_KERNEL);
3221 	fs_info->chunk_root = chunk_root;
3222 	if (!tree_root || !chunk_root) {
3223 		ret = -ENOMEM;
3224 		goto fail;
3225 	}
3226 
3227 	ret = btrfs_init_btree_inode(sb);
3228 	if (ret)
3229 		goto fail;
3230 
3231 	invalidate_bdev(fs_devices->latest_dev->bdev);
3232 
3233 	/*
3234 	 * Read super block and check the signature bytes only
3235 	 */
3236 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3237 	if (IS_ERR(disk_super)) {
3238 		ret = PTR_ERR(disk_super);
3239 		goto fail_alloc;
3240 	}
3241 
3242 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3243 	/*
3244 	 * Verify the type first, if that or the checksum value are
3245 	 * corrupted, we'll find out
3246 	 */
3247 	csum_type = btrfs_super_csum_type(disk_super);
3248 	if (!btrfs_supported_super_csum(csum_type)) {
3249 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3250 			  csum_type);
3251 		ret = -EINVAL;
3252 		btrfs_release_disk_super(disk_super);
3253 		goto fail_alloc;
3254 	}
3255 
3256 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3257 
3258 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3259 	if (ret) {
3260 		btrfs_release_disk_super(disk_super);
3261 		goto fail_alloc;
3262 	}
3263 
3264 	/*
3265 	 * We want to check superblock checksum, the type is stored inside.
3266 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267 	 */
3268 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3269 		btrfs_err(fs_info, "superblock checksum mismatch");
3270 		ret = -EINVAL;
3271 		btrfs_release_disk_super(disk_super);
3272 		goto fail_alloc;
3273 	}
3274 
3275 	/*
3276 	 * super_copy is zeroed at allocation time and we never touch the
3277 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3278 	 * the whole block of INFO_SIZE
3279 	 */
3280 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281 	btrfs_release_disk_super(disk_super);
3282 
3283 	disk_super = fs_info->super_copy;
3284 
3285 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3286 	       sizeof(*fs_info->super_for_commit));
3287 
3288 	ret = btrfs_validate_mount_super(fs_info);
3289 	if (ret) {
3290 		btrfs_err(fs_info, "superblock contains fatal errors");
3291 		ret = -EINVAL;
3292 		goto fail_alloc;
3293 	}
3294 
3295 	if (!btrfs_super_root(disk_super)) {
3296 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3297 		ret = -EINVAL;
3298 		goto fail_alloc;
3299 	}
3300 
3301 	/* check FS state, whether FS is broken. */
3302 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3303 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3304 
3305 	/* Set up fs_info before parsing mount options */
3306 	nodesize = btrfs_super_nodesize(disk_super);
3307 	sectorsize = btrfs_super_sectorsize(disk_super);
3308 	stripesize = sectorsize;
3309 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3310 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3311 
3312 	fs_info->nodesize = nodesize;
3313 	fs_info->sectorsize = sectorsize;
3314 	fs_info->sectorsize_bits = ilog2(sectorsize);
3315 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3316 	fs_info->stripesize = stripesize;
3317 
3318 	/*
3319 	 * Handle the space caching options appropriately now that we have the
3320 	 * super block loaded and validated.
3321 	 */
3322 	btrfs_set_free_space_cache_settings(fs_info);
3323 
3324 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3325 		ret = -EINVAL;
3326 		goto fail_alloc;
3327 	}
3328 
3329 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3330 	if (ret < 0)
3331 		goto fail_alloc;
3332 
3333 	/*
3334 	 * At this point our mount options are validated, if we set ->max_inline
3335 	 * to something non-standard make sure we truncate it to sectorsize.
3336 	 */
3337 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3338 
3339 	if (sectorsize < PAGE_SIZE) {
3340 		struct btrfs_subpage_info *subpage_info;
3341 
3342 		btrfs_warn(fs_info,
3343 		"read-write for sector size %u with page size %lu is experimental",
3344 			   sectorsize, PAGE_SIZE);
3345 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3346 		if (!subpage_info) {
3347 			ret = -ENOMEM;
3348 			goto fail_alloc;
3349 		}
3350 		btrfs_init_subpage_info(subpage_info, sectorsize);
3351 		fs_info->subpage_info = subpage_info;
3352 	}
3353 
3354 	ret = btrfs_init_workqueues(fs_info);
3355 	if (ret)
3356 		goto fail_sb_buffer;
3357 
3358 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3359 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3360 
3361 	/* Update the values for the current filesystem. */
3362 	sb->s_blocksize = sectorsize;
3363 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3364 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3365 
3366 	mutex_lock(&fs_info->chunk_mutex);
3367 	ret = btrfs_read_sys_array(fs_info);
3368 	mutex_unlock(&fs_info->chunk_mutex);
3369 	if (ret) {
3370 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3371 		goto fail_sb_buffer;
3372 	}
3373 
3374 	generation = btrfs_super_chunk_root_generation(disk_super);
3375 	level = btrfs_super_chunk_root_level(disk_super);
3376 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3377 			      generation, level);
3378 	if (ret) {
3379 		btrfs_err(fs_info, "failed to read chunk root");
3380 		goto fail_tree_roots;
3381 	}
3382 
3383 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3384 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3385 			   BTRFS_UUID_SIZE);
3386 
3387 	ret = btrfs_read_chunk_tree(fs_info);
3388 	if (ret) {
3389 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3390 		goto fail_tree_roots;
3391 	}
3392 
3393 	/*
3394 	 * At this point we know all the devices that make this filesystem,
3395 	 * including the seed devices but we don't know yet if the replace
3396 	 * target is required. So free devices that are not part of this
3397 	 * filesystem but skip the replace target device which is checked
3398 	 * below in btrfs_init_dev_replace().
3399 	 */
3400 	btrfs_free_extra_devids(fs_devices);
3401 	if (!fs_devices->latest_dev->bdev) {
3402 		btrfs_err(fs_info, "failed to read devices");
3403 		ret = -EIO;
3404 		goto fail_tree_roots;
3405 	}
3406 
3407 	ret = init_tree_roots(fs_info);
3408 	if (ret)
3409 		goto fail_tree_roots;
3410 
3411 	/*
3412 	 * Get zone type information of zoned block devices. This will also
3413 	 * handle emulation of a zoned filesystem if a regular device has the
3414 	 * zoned incompat feature flag set.
3415 	 */
3416 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3417 	if (ret) {
3418 		btrfs_err(fs_info,
3419 			  "zoned: failed to read device zone info: %d", ret);
3420 		goto fail_block_groups;
3421 	}
3422 
3423 	/*
3424 	 * If we have a uuid root and we're not being told to rescan we need to
3425 	 * check the generation here so we can set the
3426 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3427 	 * transaction during a balance or the log replay without updating the
3428 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3429 	 * even though it was perfectly fine.
3430 	 */
3431 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3432 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3433 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3434 
3435 	ret = btrfs_verify_dev_extents(fs_info);
3436 	if (ret) {
3437 		btrfs_err(fs_info,
3438 			  "failed to verify dev extents against chunks: %d",
3439 			  ret);
3440 		goto fail_block_groups;
3441 	}
3442 	ret = btrfs_recover_balance(fs_info);
3443 	if (ret) {
3444 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3445 		goto fail_block_groups;
3446 	}
3447 
3448 	ret = btrfs_init_dev_stats(fs_info);
3449 	if (ret) {
3450 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3451 		goto fail_block_groups;
3452 	}
3453 
3454 	ret = btrfs_init_dev_replace(fs_info);
3455 	if (ret) {
3456 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3457 		goto fail_block_groups;
3458 	}
3459 
3460 	ret = btrfs_check_zoned_mode(fs_info);
3461 	if (ret) {
3462 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3463 			  ret);
3464 		goto fail_block_groups;
3465 	}
3466 
3467 	ret = btrfs_sysfs_add_fsid(fs_devices);
3468 	if (ret) {
3469 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3470 				ret);
3471 		goto fail_block_groups;
3472 	}
3473 
3474 	ret = btrfs_sysfs_add_mounted(fs_info);
3475 	if (ret) {
3476 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3477 		goto fail_fsdev_sysfs;
3478 	}
3479 
3480 	ret = btrfs_init_space_info(fs_info);
3481 	if (ret) {
3482 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3483 		goto fail_sysfs;
3484 	}
3485 
3486 	ret = btrfs_read_block_groups(fs_info);
3487 	if (ret) {
3488 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3489 		goto fail_sysfs;
3490 	}
3491 
3492 	btrfs_free_zone_cache(fs_info);
3493 
3494 	btrfs_check_active_zone_reservation(fs_info);
3495 
3496 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3497 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3498 		btrfs_warn(fs_info,
3499 		"writable mount is not allowed due to too many missing devices");
3500 		ret = -EINVAL;
3501 		goto fail_sysfs;
3502 	}
3503 
3504 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3505 					       "btrfs-cleaner");
3506 	if (IS_ERR(fs_info->cleaner_kthread)) {
3507 		ret = PTR_ERR(fs_info->cleaner_kthread);
3508 		goto fail_sysfs;
3509 	}
3510 
3511 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3512 						   tree_root,
3513 						   "btrfs-transaction");
3514 	if (IS_ERR(fs_info->transaction_kthread)) {
3515 		ret = PTR_ERR(fs_info->transaction_kthread);
3516 		goto fail_cleaner;
3517 	}
3518 
3519 	ret = btrfs_read_qgroup_config(fs_info);
3520 	if (ret)
3521 		goto fail_trans_kthread;
3522 
3523 	if (btrfs_build_ref_tree(fs_info))
3524 		btrfs_err(fs_info, "couldn't build ref tree");
3525 
3526 	/* do not make disk changes in broken FS or nologreplay is given */
3527 	if (btrfs_super_log_root(disk_super) != 0 &&
3528 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3529 		btrfs_info(fs_info, "start tree-log replay");
3530 		ret = btrfs_replay_log(fs_info, fs_devices);
3531 		if (ret)
3532 			goto fail_qgroup;
3533 	}
3534 
3535 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3536 	if (IS_ERR(fs_info->fs_root)) {
3537 		ret = PTR_ERR(fs_info->fs_root);
3538 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3539 		fs_info->fs_root = NULL;
3540 		goto fail_qgroup;
3541 	}
3542 
3543 	if (sb_rdonly(sb))
3544 		return 0;
3545 
3546 	ret = btrfs_start_pre_rw_mount(fs_info);
3547 	if (ret) {
3548 		close_ctree(fs_info);
3549 		return ret;
3550 	}
3551 	btrfs_discard_resume(fs_info);
3552 
3553 	if (fs_info->uuid_root &&
3554 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3555 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3556 		btrfs_info(fs_info, "checking UUID tree");
3557 		ret = btrfs_check_uuid_tree(fs_info);
3558 		if (ret) {
3559 			btrfs_warn(fs_info,
3560 				"failed to check the UUID tree: %d", ret);
3561 			close_ctree(fs_info);
3562 			return ret;
3563 		}
3564 	}
3565 
3566 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3567 
3568 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3569 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3570 		wake_up_process(fs_info->cleaner_kthread);
3571 
3572 	return 0;
3573 
3574 fail_qgroup:
3575 	btrfs_free_qgroup_config(fs_info);
3576 fail_trans_kthread:
3577 	kthread_stop(fs_info->transaction_kthread);
3578 	btrfs_cleanup_transaction(fs_info);
3579 	btrfs_free_fs_roots(fs_info);
3580 fail_cleaner:
3581 	kthread_stop(fs_info->cleaner_kthread);
3582 
3583 	/*
3584 	 * make sure we're done with the btree inode before we stop our
3585 	 * kthreads
3586 	 */
3587 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3588 
3589 fail_sysfs:
3590 	btrfs_sysfs_remove_mounted(fs_info);
3591 
3592 fail_fsdev_sysfs:
3593 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3594 
3595 fail_block_groups:
3596 	btrfs_put_block_group_cache(fs_info);
3597 
3598 fail_tree_roots:
3599 	if (fs_info->data_reloc_root)
3600 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3601 	free_root_pointers(fs_info, true);
3602 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3603 
3604 fail_sb_buffer:
3605 	btrfs_stop_all_workers(fs_info);
3606 	btrfs_free_block_groups(fs_info);
3607 fail_alloc:
3608 	btrfs_mapping_tree_free(fs_info);
3609 
3610 	iput(fs_info->btree_inode);
3611 fail:
3612 	btrfs_close_devices(fs_info->fs_devices);
3613 	ASSERT(ret < 0);
3614 	return ret;
3615 }
3616 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3617 
3618 static void btrfs_end_super_write(struct bio *bio)
3619 {
3620 	struct btrfs_device *device = bio->bi_private;
3621 	struct bio_vec *bvec;
3622 	struct bvec_iter_all iter_all;
3623 	struct page *page;
3624 
3625 	bio_for_each_segment_all(bvec, bio, iter_all) {
3626 		page = bvec->bv_page;
3627 
3628 		if (bio->bi_status) {
3629 			btrfs_warn_rl_in_rcu(device->fs_info,
3630 				"lost page write due to IO error on %s (%d)",
3631 				btrfs_dev_name(device),
3632 				blk_status_to_errno(bio->bi_status));
3633 			ClearPageUptodate(page);
3634 			SetPageError(page);
3635 			btrfs_dev_stat_inc_and_print(device,
3636 						     BTRFS_DEV_STAT_WRITE_ERRS);
3637 		} else {
3638 			SetPageUptodate(page);
3639 		}
3640 
3641 		put_page(page);
3642 		unlock_page(page);
3643 	}
3644 
3645 	bio_put(bio);
3646 }
3647 
3648 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3649 						   int copy_num, bool drop_cache)
3650 {
3651 	struct btrfs_super_block *super;
3652 	struct page *page;
3653 	u64 bytenr, bytenr_orig;
3654 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3655 	int ret;
3656 
3657 	bytenr_orig = btrfs_sb_offset(copy_num);
3658 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3659 	if (ret == -ENOENT)
3660 		return ERR_PTR(-EINVAL);
3661 	else if (ret)
3662 		return ERR_PTR(ret);
3663 
3664 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3665 		return ERR_PTR(-EINVAL);
3666 
3667 	if (drop_cache) {
3668 		/* This should only be called with the primary sb. */
3669 		ASSERT(copy_num == 0);
3670 
3671 		/*
3672 		 * Drop the page of the primary superblock, so later read will
3673 		 * always read from the device.
3674 		 */
3675 		invalidate_inode_pages2_range(mapping,
3676 				bytenr >> PAGE_SHIFT,
3677 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3678 	}
3679 
3680 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3681 	if (IS_ERR(page))
3682 		return ERR_CAST(page);
3683 
3684 	super = page_address(page);
3685 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3686 		btrfs_release_disk_super(super);
3687 		return ERR_PTR(-ENODATA);
3688 	}
3689 
3690 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3691 		btrfs_release_disk_super(super);
3692 		return ERR_PTR(-EINVAL);
3693 	}
3694 
3695 	return super;
3696 }
3697 
3698 
3699 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3700 {
3701 	struct btrfs_super_block *super, *latest = NULL;
3702 	int i;
3703 	u64 transid = 0;
3704 
3705 	/* we would like to check all the supers, but that would make
3706 	 * a btrfs mount succeed after a mkfs from a different FS.
3707 	 * So, we need to add a special mount option to scan for
3708 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3709 	 */
3710 	for (i = 0; i < 1; i++) {
3711 		super = btrfs_read_dev_one_super(bdev, i, false);
3712 		if (IS_ERR(super))
3713 			continue;
3714 
3715 		if (!latest || btrfs_super_generation(super) > transid) {
3716 			if (latest)
3717 				btrfs_release_disk_super(super);
3718 
3719 			latest = super;
3720 			transid = btrfs_super_generation(super);
3721 		}
3722 	}
3723 
3724 	return super;
3725 }
3726 
3727 /*
3728  * Write superblock @sb to the @device. Do not wait for completion, all the
3729  * pages we use for writing are locked.
3730  *
3731  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3732  * the expected device size at commit time. Note that max_mirrors must be
3733  * same for write and wait phases.
3734  *
3735  * Return number of errors when page is not found or submission fails.
3736  */
3737 static int write_dev_supers(struct btrfs_device *device,
3738 			    struct btrfs_super_block *sb, int max_mirrors)
3739 {
3740 	struct btrfs_fs_info *fs_info = device->fs_info;
3741 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3742 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3743 	int i;
3744 	int errors = 0;
3745 	int ret;
3746 	u64 bytenr, bytenr_orig;
3747 
3748 	if (max_mirrors == 0)
3749 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3750 
3751 	shash->tfm = fs_info->csum_shash;
3752 
3753 	for (i = 0; i < max_mirrors; i++) {
3754 		struct page *page;
3755 		struct bio *bio;
3756 		struct btrfs_super_block *disk_super;
3757 
3758 		bytenr_orig = btrfs_sb_offset(i);
3759 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3760 		if (ret == -ENOENT) {
3761 			continue;
3762 		} else if (ret < 0) {
3763 			btrfs_err(device->fs_info,
3764 				"couldn't get super block location for mirror %d",
3765 				i);
3766 			errors++;
3767 			continue;
3768 		}
3769 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3770 		    device->commit_total_bytes)
3771 			break;
3772 
3773 		btrfs_set_super_bytenr(sb, bytenr_orig);
3774 
3775 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3776 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3777 				    sb->csum);
3778 
3779 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3780 					   GFP_NOFS);
3781 		if (!page) {
3782 			btrfs_err(device->fs_info,
3783 			    "couldn't get super block page for bytenr %llu",
3784 			    bytenr);
3785 			errors++;
3786 			continue;
3787 		}
3788 
3789 		/* Bump the refcount for wait_dev_supers() */
3790 		get_page(page);
3791 
3792 		disk_super = page_address(page);
3793 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3794 
3795 		/*
3796 		 * Directly use bios here instead of relying on the page cache
3797 		 * to do I/O, so we don't lose the ability to do integrity
3798 		 * checking.
3799 		 */
3800 		bio = bio_alloc(device->bdev, 1,
3801 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3802 				GFP_NOFS);
3803 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3804 		bio->bi_private = device;
3805 		bio->bi_end_io = btrfs_end_super_write;
3806 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3807 			       offset_in_page(bytenr));
3808 
3809 		/*
3810 		 * We FUA only the first super block.  The others we allow to
3811 		 * go down lazy and there's a short window where the on-disk
3812 		 * copies might still contain the older version.
3813 		 */
3814 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3815 			bio->bi_opf |= REQ_FUA;
3816 		submit_bio(bio);
3817 
3818 		if (btrfs_advance_sb_log(device, i))
3819 			errors++;
3820 	}
3821 	return errors < i ? 0 : -1;
3822 }
3823 
3824 /*
3825  * Wait for write completion of superblocks done by write_dev_supers,
3826  * @max_mirrors same for write and wait phases.
3827  *
3828  * Return number of errors when page is not found or not marked up to
3829  * date.
3830  */
3831 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3832 {
3833 	int i;
3834 	int errors = 0;
3835 	bool primary_failed = false;
3836 	int ret;
3837 	u64 bytenr;
3838 
3839 	if (max_mirrors == 0)
3840 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3841 
3842 	for (i = 0; i < max_mirrors; i++) {
3843 		struct page *page;
3844 
3845 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3846 		if (ret == -ENOENT) {
3847 			break;
3848 		} else if (ret < 0) {
3849 			errors++;
3850 			if (i == 0)
3851 				primary_failed = true;
3852 			continue;
3853 		}
3854 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3855 		    device->commit_total_bytes)
3856 			break;
3857 
3858 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3859 				     bytenr >> PAGE_SHIFT);
3860 		if (!page) {
3861 			errors++;
3862 			if (i == 0)
3863 				primary_failed = true;
3864 			continue;
3865 		}
3866 		/* Page is submitted locked and unlocked once the IO completes */
3867 		wait_on_page_locked(page);
3868 		if (PageError(page)) {
3869 			errors++;
3870 			if (i == 0)
3871 				primary_failed = true;
3872 		}
3873 
3874 		/* Drop our reference */
3875 		put_page(page);
3876 
3877 		/* Drop the reference from the writing run */
3878 		put_page(page);
3879 	}
3880 
3881 	/* log error, force error return */
3882 	if (primary_failed) {
3883 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3884 			  device->devid);
3885 		return -1;
3886 	}
3887 
3888 	return errors < i ? 0 : -1;
3889 }
3890 
3891 /*
3892  * endio for the write_dev_flush, this will wake anyone waiting
3893  * for the barrier when it is done
3894  */
3895 static void btrfs_end_empty_barrier(struct bio *bio)
3896 {
3897 	bio_uninit(bio);
3898 	complete(bio->bi_private);
3899 }
3900 
3901 /*
3902  * Submit a flush request to the device if it supports it. Error handling is
3903  * done in the waiting counterpart.
3904  */
3905 static void write_dev_flush(struct btrfs_device *device)
3906 {
3907 	struct bio *bio = &device->flush_bio;
3908 
3909 	device->last_flush_error = BLK_STS_OK;
3910 
3911 	bio_init(bio, device->bdev, NULL, 0,
3912 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3913 	bio->bi_end_io = btrfs_end_empty_barrier;
3914 	init_completion(&device->flush_wait);
3915 	bio->bi_private = &device->flush_wait;
3916 	submit_bio(bio);
3917 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3918 }
3919 
3920 /*
3921  * If the flush bio has been submitted by write_dev_flush, wait for it.
3922  * Return true for any error, and false otherwise.
3923  */
3924 static bool wait_dev_flush(struct btrfs_device *device)
3925 {
3926 	struct bio *bio = &device->flush_bio;
3927 
3928 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3929 		return false;
3930 
3931 	wait_for_completion_io(&device->flush_wait);
3932 
3933 	if (bio->bi_status) {
3934 		device->last_flush_error = bio->bi_status;
3935 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3936 		return true;
3937 	}
3938 
3939 	return false;
3940 }
3941 
3942 /*
3943  * send an empty flush down to each device in parallel,
3944  * then wait for them
3945  */
3946 static int barrier_all_devices(struct btrfs_fs_info *info)
3947 {
3948 	struct list_head *head;
3949 	struct btrfs_device *dev;
3950 	int errors_wait = 0;
3951 
3952 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3953 	/* send down all the barriers */
3954 	head = &info->fs_devices->devices;
3955 	list_for_each_entry(dev, head, dev_list) {
3956 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3957 			continue;
3958 		if (!dev->bdev)
3959 			continue;
3960 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3961 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3962 			continue;
3963 
3964 		write_dev_flush(dev);
3965 	}
3966 
3967 	/* wait for all the barriers */
3968 	list_for_each_entry(dev, head, dev_list) {
3969 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3970 			continue;
3971 		if (!dev->bdev) {
3972 			errors_wait++;
3973 			continue;
3974 		}
3975 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3976 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3977 			continue;
3978 
3979 		if (wait_dev_flush(dev))
3980 			errors_wait++;
3981 	}
3982 
3983 	/*
3984 	 * Checks last_flush_error of disks in order to determine the device
3985 	 * state.
3986 	 */
3987 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3988 		return -EIO;
3989 
3990 	return 0;
3991 }
3992 
3993 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3994 {
3995 	int raid_type;
3996 	int min_tolerated = INT_MAX;
3997 
3998 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3999 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4000 		min_tolerated = min_t(int, min_tolerated,
4001 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4002 				    tolerated_failures);
4003 
4004 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4005 		if (raid_type == BTRFS_RAID_SINGLE)
4006 			continue;
4007 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4008 			continue;
4009 		min_tolerated = min_t(int, min_tolerated,
4010 				    btrfs_raid_array[raid_type].
4011 				    tolerated_failures);
4012 	}
4013 
4014 	if (min_tolerated == INT_MAX) {
4015 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4016 		min_tolerated = 0;
4017 	}
4018 
4019 	return min_tolerated;
4020 }
4021 
4022 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4023 {
4024 	struct list_head *head;
4025 	struct btrfs_device *dev;
4026 	struct btrfs_super_block *sb;
4027 	struct btrfs_dev_item *dev_item;
4028 	int ret;
4029 	int do_barriers;
4030 	int max_errors;
4031 	int total_errors = 0;
4032 	u64 flags;
4033 
4034 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4035 
4036 	/*
4037 	 * max_mirrors == 0 indicates we're from commit_transaction,
4038 	 * not from fsync where the tree roots in fs_info have not
4039 	 * been consistent on disk.
4040 	 */
4041 	if (max_mirrors == 0)
4042 		backup_super_roots(fs_info);
4043 
4044 	sb = fs_info->super_for_commit;
4045 	dev_item = &sb->dev_item;
4046 
4047 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4048 	head = &fs_info->fs_devices->devices;
4049 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4050 
4051 	if (do_barriers) {
4052 		ret = barrier_all_devices(fs_info);
4053 		if (ret) {
4054 			mutex_unlock(
4055 				&fs_info->fs_devices->device_list_mutex);
4056 			btrfs_handle_fs_error(fs_info, ret,
4057 					      "errors while submitting device barriers.");
4058 			return ret;
4059 		}
4060 	}
4061 
4062 	list_for_each_entry(dev, head, dev_list) {
4063 		if (!dev->bdev) {
4064 			total_errors++;
4065 			continue;
4066 		}
4067 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4068 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4069 			continue;
4070 
4071 		btrfs_set_stack_device_generation(dev_item, 0);
4072 		btrfs_set_stack_device_type(dev_item, dev->type);
4073 		btrfs_set_stack_device_id(dev_item, dev->devid);
4074 		btrfs_set_stack_device_total_bytes(dev_item,
4075 						   dev->commit_total_bytes);
4076 		btrfs_set_stack_device_bytes_used(dev_item,
4077 						  dev->commit_bytes_used);
4078 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4079 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4080 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4081 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4082 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4083 		       BTRFS_FSID_SIZE);
4084 
4085 		flags = btrfs_super_flags(sb);
4086 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4087 
4088 		ret = btrfs_validate_write_super(fs_info, sb);
4089 		if (ret < 0) {
4090 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4091 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4092 				"unexpected superblock corruption detected");
4093 			return -EUCLEAN;
4094 		}
4095 
4096 		ret = write_dev_supers(dev, sb, max_mirrors);
4097 		if (ret)
4098 			total_errors++;
4099 	}
4100 	if (total_errors > max_errors) {
4101 		btrfs_err(fs_info, "%d errors while writing supers",
4102 			  total_errors);
4103 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4104 
4105 		/* FUA is masked off if unsupported and can't be the reason */
4106 		btrfs_handle_fs_error(fs_info, -EIO,
4107 				      "%d errors while writing supers",
4108 				      total_errors);
4109 		return -EIO;
4110 	}
4111 
4112 	total_errors = 0;
4113 	list_for_each_entry(dev, head, dev_list) {
4114 		if (!dev->bdev)
4115 			continue;
4116 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4117 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4118 			continue;
4119 
4120 		ret = wait_dev_supers(dev, max_mirrors);
4121 		if (ret)
4122 			total_errors++;
4123 	}
4124 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4125 	if (total_errors > max_errors) {
4126 		btrfs_handle_fs_error(fs_info, -EIO,
4127 				      "%d errors while writing supers",
4128 				      total_errors);
4129 		return -EIO;
4130 	}
4131 	return 0;
4132 }
4133 
4134 /* Drop a fs root from the radix tree and free it. */
4135 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4136 				  struct btrfs_root *root)
4137 {
4138 	bool drop_ref = false;
4139 
4140 	spin_lock(&fs_info->fs_roots_radix_lock);
4141 	radix_tree_delete(&fs_info->fs_roots_radix,
4142 			  (unsigned long)root->root_key.objectid);
4143 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4144 		drop_ref = true;
4145 	spin_unlock(&fs_info->fs_roots_radix_lock);
4146 
4147 	if (BTRFS_FS_ERROR(fs_info)) {
4148 		ASSERT(root->log_root == NULL);
4149 		if (root->reloc_root) {
4150 			btrfs_put_root(root->reloc_root);
4151 			root->reloc_root = NULL;
4152 		}
4153 	}
4154 
4155 	if (drop_ref)
4156 		btrfs_put_root(root);
4157 }
4158 
4159 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4160 {
4161 	struct btrfs_root *root = fs_info->tree_root;
4162 	struct btrfs_trans_handle *trans;
4163 
4164 	mutex_lock(&fs_info->cleaner_mutex);
4165 	btrfs_run_delayed_iputs(fs_info);
4166 	mutex_unlock(&fs_info->cleaner_mutex);
4167 	wake_up_process(fs_info->cleaner_kthread);
4168 
4169 	/* wait until ongoing cleanup work done */
4170 	down_write(&fs_info->cleanup_work_sem);
4171 	up_write(&fs_info->cleanup_work_sem);
4172 
4173 	trans = btrfs_join_transaction(root);
4174 	if (IS_ERR(trans))
4175 		return PTR_ERR(trans);
4176 	return btrfs_commit_transaction(trans);
4177 }
4178 
4179 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4180 {
4181 	struct btrfs_transaction *trans;
4182 	struct btrfs_transaction *tmp;
4183 	bool found = false;
4184 
4185 	if (list_empty(&fs_info->trans_list))
4186 		return;
4187 
4188 	/*
4189 	 * This function is only called at the very end of close_ctree(),
4190 	 * thus no other running transaction, no need to take trans_lock.
4191 	 */
4192 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4193 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4194 		struct extent_state *cached = NULL;
4195 		u64 dirty_bytes = 0;
4196 		u64 cur = 0;
4197 		u64 found_start;
4198 		u64 found_end;
4199 
4200 		found = true;
4201 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4202 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4203 			dirty_bytes += found_end + 1 - found_start;
4204 			cur = found_end + 1;
4205 		}
4206 		btrfs_warn(fs_info,
4207 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4208 			   trans->transid, dirty_bytes);
4209 		btrfs_cleanup_one_transaction(trans, fs_info);
4210 
4211 		if (trans == fs_info->running_transaction)
4212 			fs_info->running_transaction = NULL;
4213 		list_del_init(&trans->list);
4214 
4215 		btrfs_put_transaction(trans);
4216 		trace_btrfs_transaction_commit(fs_info);
4217 	}
4218 	ASSERT(!found);
4219 }
4220 
4221 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4222 {
4223 	int ret;
4224 
4225 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4226 
4227 	/*
4228 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4229 	 * clear that bit and wake up relocation so it can stop.
4230 	 * We must do this before stopping the block group reclaim task, because
4231 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4232 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4233 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4234 	 * return 1.
4235 	 */
4236 	btrfs_wake_unfinished_drop(fs_info);
4237 
4238 	/*
4239 	 * We may have the reclaim task running and relocating a data block group,
4240 	 * in which case it may create delayed iputs. So stop it before we park
4241 	 * the cleaner kthread otherwise we can get new delayed iputs after
4242 	 * parking the cleaner, and that can make the async reclaim task to hang
4243 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4244 	 * parked and can not run delayed iputs - this will make us hang when
4245 	 * trying to stop the async reclaim task.
4246 	 */
4247 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4248 	/*
4249 	 * We don't want the cleaner to start new transactions, add more delayed
4250 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4251 	 * because that frees the task_struct, and the transaction kthread might
4252 	 * still try to wake up the cleaner.
4253 	 */
4254 	kthread_park(fs_info->cleaner_kthread);
4255 
4256 	/* wait for the qgroup rescan worker to stop */
4257 	btrfs_qgroup_wait_for_completion(fs_info, false);
4258 
4259 	/* wait for the uuid_scan task to finish */
4260 	down(&fs_info->uuid_tree_rescan_sem);
4261 	/* avoid complains from lockdep et al., set sem back to initial state */
4262 	up(&fs_info->uuid_tree_rescan_sem);
4263 
4264 	/* pause restriper - we want to resume on mount */
4265 	btrfs_pause_balance(fs_info);
4266 
4267 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4268 
4269 	btrfs_scrub_cancel(fs_info);
4270 
4271 	/* wait for any defraggers to finish */
4272 	wait_event(fs_info->transaction_wait,
4273 		   (atomic_read(&fs_info->defrag_running) == 0));
4274 
4275 	/* clear out the rbtree of defraggable inodes */
4276 	btrfs_cleanup_defrag_inodes(fs_info);
4277 
4278 	/*
4279 	 * After we parked the cleaner kthread, ordered extents may have
4280 	 * completed and created new delayed iputs. If one of the async reclaim
4281 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4282 	 * can hang forever trying to stop it, because if a delayed iput is
4283 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4284 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4285 	 * no one else to run iputs.
4286 	 *
4287 	 * So wait for all ongoing ordered extents to complete and then run
4288 	 * delayed iputs. This works because once we reach this point no one
4289 	 * can either create new ordered extents nor create delayed iputs
4290 	 * through some other means.
4291 	 *
4292 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4293 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4294 	 * but the delayed iput for the respective inode is made only when doing
4295 	 * the final btrfs_put_ordered_extent() (which must happen at
4296 	 * btrfs_finish_ordered_io() when we are unmounting).
4297 	 */
4298 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4299 	/* Ordered extents for free space inodes. */
4300 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4301 	btrfs_run_delayed_iputs(fs_info);
4302 
4303 	cancel_work_sync(&fs_info->async_reclaim_work);
4304 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4305 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4306 
4307 	/* Cancel or finish ongoing discard work */
4308 	btrfs_discard_cleanup(fs_info);
4309 
4310 	if (!sb_rdonly(fs_info->sb)) {
4311 		/*
4312 		 * The cleaner kthread is stopped, so do one final pass over
4313 		 * unused block groups.
4314 		 */
4315 		btrfs_delete_unused_bgs(fs_info);
4316 
4317 		/*
4318 		 * There might be existing delayed inode workers still running
4319 		 * and holding an empty delayed inode item. We must wait for
4320 		 * them to complete first because they can create a transaction.
4321 		 * This happens when someone calls btrfs_balance_delayed_items()
4322 		 * and then a transaction commit runs the same delayed nodes
4323 		 * before any delayed worker has done something with the nodes.
4324 		 * We must wait for any worker here and not at transaction
4325 		 * commit time since that could cause a deadlock.
4326 		 * This is a very rare case.
4327 		 */
4328 		btrfs_flush_workqueue(fs_info->delayed_workers);
4329 
4330 		ret = btrfs_commit_super(fs_info);
4331 		if (ret)
4332 			btrfs_err(fs_info, "commit super ret %d", ret);
4333 	}
4334 
4335 	if (BTRFS_FS_ERROR(fs_info))
4336 		btrfs_error_commit_super(fs_info);
4337 
4338 	kthread_stop(fs_info->transaction_kthread);
4339 	kthread_stop(fs_info->cleaner_kthread);
4340 
4341 	ASSERT(list_empty(&fs_info->delayed_iputs));
4342 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4343 
4344 	if (btrfs_check_quota_leak(fs_info)) {
4345 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4346 		btrfs_err(fs_info, "qgroup reserved space leaked");
4347 	}
4348 
4349 	btrfs_free_qgroup_config(fs_info);
4350 	ASSERT(list_empty(&fs_info->delalloc_roots));
4351 
4352 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4353 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4354 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4355 	}
4356 
4357 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4358 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4359 			   percpu_counter_sum(&fs_info->ordered_bytes));
4360 
4361 	btrfs_sysfs_remove_mounted(fs_info);
4362 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4363 
4364 	btrfs_put_block_group_cache(fs_info);
4365 
4366 	/*
4367 	 * we must make sure there is not any read request to
4368 	 * submit after we stopping all workers.
4369 	 */
4370 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4371 	btrfs_stop_all_workers(fs_info);
4372 
4373 	/* We shouldn't have any transaction open at this point */
4374 	warn_about_uncommitted_trans(fs_info);
4375 
4376 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4377 	free_root_pointers(fs_info, true);
4378 	btrfs_free_fs_roots(fs_info);
4379 
4380 	/*
4381 	 * We must free the block groups after dropping the fs_roots as we could
4382 	 * have had an IO error and have left over tree log blocks that aren't
4383 	 * cleaned up until the fs roots are freed.  This makes the block group
4384 	 * accounting appear to be wrong because there's pending reserved bytes,
4385 	 * so make sure we do the block group cleanup afterwards.
4386 	 */
4387 	btrfs_free_block_groups(fs_info);
4388 
4389 	iput(fs_info->btree_inode);
4390 
4391 	btrfs_mapping_tree_free(fs_info);
4392 	btrfs_close_devices(fs_info->fs_devices);
4393 }
4394 
4395 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4396 			     struct extent_buffer *buf)
4397 {
4398 	struct btrfs_fs_info *fs_info = buf->fs_info;
4399 	u64 transid = btrfs_header_generation(buf);
4400 
4401 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4402 	/*
4403 	 * This is a fast path so only do this check if we have sanity tests
4404 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4405 	 * outside of the sanity tests.
4406 	 */
4407 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4408 		return;
4409 #endif
4410 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4411 	ASSERT(trans->transid == fs_info->generation);
4412 	btrfs_assert_tree_write_locked(buf);
4413 	if (unlikely(transid != fs_info->generation)) {
4414 		btrfs_abort_transaction(trans, -EUCLEAN);
4415 		btrfs_crit(fs_info,
4416 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4417 			   buf->start, transid, fs_info->generation);
4418 	}
4419 	set_extent_buffer_dirty(buf);
4420 }
4421 
4422 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4423 					int flush_delayed)
4424 {
4425 	/*
4426 	 * looks as though older kernels can get into trouble with
4427 	 * this code, they end up stuck in balance_dirty_pages forever
4428 	 */
4429 	int ret;
4430 
4431 	if (current->flags & PF_MEMALLOC)
4432 		return;
4433 
4434 	if (flush_delayed)
4435 		btrfs_balance_delayed_items(fs_info);
4436 
4437 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4438 				     BTRFS_DIRTY_METADATA_THRESH,
4439 				     fs_info->dirty_metadata_batch);
4440 	if (ret > 0) {
4441 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4442 	}
4443 }
4444 
4445 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4446 {
4447 	__btrfs_btree_balance_dirty(fs_info, 1);
4448 }
4449 
4450 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4451 {
4452 	__btrfs_btree_balance_dirty(fs_info, 0);
4453 }
4454 
4455 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4456 {
4457 	/* cleanup FS via transaction */
4458 	btrfs_cleanup_transaction(fs_info);
4459 
4460 	mutex_lock(&fs_info->cleaner_mutex);
4461 	btrfs_run_delayed_iputs(fs_info);
4462 	mutex_unlock(&fs_info->cleaner_mutex);
4463 
4464 	down_write(&fs_info->cleanup_work_sem);
4465 	up_write(&fs_info->cleanup_work_sem);
4466 }
4467 
4468 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4469 {
4470 	struct btrfs_root *gang[8];
4471 	u64 root_objectid = 0;
4472 	int ret;
4473 
4474 	spin_lock(&fs_info->fs_roots_radix_lock);
4475 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4476 					     (void **)gang, root_objectid,
4477 					     ARRAY_SIZE(gang))) != 0) {
4478 		int i;
4479 
4480 		for (i = 0; i < ret; i++)
4481 			gang[i] = btrfs_grab_root(gang[i]);
4482 		spin_unlock(&fs_info->fs_roots_radix_lock);
4483 
4484 		for (i = 0; i < ret; i++) {
4485 			if (!gang[i])
4486 				continue;
4487 			root_objectid = gang[i]->root_key.objectid;
4488 			btrfs_free_log(NULL, gang[i]);
4489 			btrfs_put_root(gang[i]);
4490 		}
4491 		root_objectid++;
4492 		spin_lock(&fs_info->fs_roots_radix_lock);
4493 	}
4494 	spin_unlock(&fs_info->fs_roots_radix_lock);
4495 	btrfs_free_log_root_tree(NULL, fs_info);
4496 }
4497 
4498 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4499 {
4500 	struct btrfs_ordered_extent *ordered;
4501 
4502 	spin_lock(&root->ordered_extent_lock);
4503 	/*
4504 	 * This will just short circuit the ordered completion stuff which will
4505 	 * make sure the ordered extent gets properly cleaned up.
4506 	 */
4507 	list_for_each_entry(ordered, &root->ordered_extents,
4508 			    root_extent_list)
4509 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4510 	spin_unlock(&root->ordered_extent_lock);
4511 }
4512 
4513 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4514 {
4515 	struct btrfs_root *root;
4516 	LIST_HEAD(splice);
4517 
4518 	spin_lock(&fs_info->ordered_root_lock);
4519 	list_splice_init(&fs_info->ordered_roots, &splice);
4520 	while (!list_empty(&splice)) {
4521 		root = list_first_entry(&splice, struct btrfs_root,
4522 					ordered_root);
4523 		list_move_tail(&root->ordered_root,
4524 			       &fs_info->ordered_roots);
4525 
4526 		spin_unlock(&fs_info->ordered_root_lock);
4527 		btrfs_destroy_ordered_extents(root);
4528 
4529 		cond_resched();
4530 		spin_lock(&fs_info->ordered_root_lock);
4531 	}
4532 	spin_unlock(&fs_info->ordered_root_lock);
4533 
4534 	/*
4535 	 * We need this here because if we've been flipped read-only we won't
4536 	 * get sync() from the umount, so we need to make sure any ordered
4537 	 * extents that haven't had their dirty pages IO start writeout yet
4538 	 * actually get run and error out properly.
4539 	 */
4540 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4541 }
4542 
4543 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4544 				       struct btrfs_fs_info *fs_info)
4545 {
4546 	struct rb_node *node;
4547 	struct btrfs_delayed_ref_root *delayed_refs;
4548 	struct btrfs_delayed_ref_node *ref;
4549 
4550 	delayed_refs = &trans->delayed_refs;
4551 
4552 	spin_lock(&delayed_refs->lock);
4553 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4554 		spin_unlock(&delayed_refs->lock);
4555 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4556 		return;
4557 	}
4558 
4559 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4560 		struct btrfs_delayed_ref_head *head;
4561 		struct rb_node *n;
4562 		bool pin_bytes = false;
4563 
4564 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4565 				href_node);
4566 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4567 			continue;
4568 
4569 		spin_lock(&head->lock);
4570 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4571 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4572 				       ref_node);
4573 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4574 			RB_CLEAR_NODE(&ref->ref_node);
4575 			if (!list_empty(&ref->add_list))
4576 				list_del(&ref->add_list);
4577 			atomic_dec(&delayed_refs->num_entries);
4578 			btrfs_put_delayed_ref(ref);
4579 			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4580 		}
4581 		if (head->must_insert_reserved)
4582 			pin_bytes = true;
4583 		btrfs_free_delayed_extent_op(head->extent_op);
4584 		btrfs_delete_ref_head(delayed_refs, head);
4585 		spin_unlock(&head->lock);
4586 		spin_unlock(&delayed_refs->lock);
4587 		mutex_unlock(&head->mutex);
4588 
4589 		if (pin_bytes) {
4590 			struct btrfs_block_group *cache;
4591 
4592 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4593 			BUG_ON(!cache);
4594 
4595 			spin_lock(&cache->space_info->lock);
4596 			spin_lock(&cache->lock);
4597 			cache->pinned += head->num_bytes;
4598 			btrfs_space_info_update_bytes_pinned(fs_info,
4599 				cache->space_info, head->num_bytes);
4600 			cache->reserved -= head->num_bytes;
4601 			cache->space_info->bytes_reserved -= head->num_bytes;
4602 			spin_unlock(&cache->lock);
4603 			spin_unlock(&cache->space_info->lock);
4604 
4605 			btrfs_put_block_group(cache);
4606 
4607 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4608 				head->bytenr + head->num_bytes - 1);
4609 		}
4610 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4611 		btrfs_put_delayed_ref_head(head);
4612 		cond_resched();
4613 		spin_lock(&delayed_refs->lock);
4614 	}
4615 	btrfs_qgroup_destroy_extent_records(trans);
4616 
4617 	spin_unlock(&delayed_refs->lock);
4618 }
4619 
4620 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4621 {
4622 	struct btrfs_inode *btrfs_inode;
4623 	LIST_HEAD(splice);
4624 
4625 	spin_lock(&root->delalloc_lock);
4626 	list_splice_init(&root->delalloc_inodes, &splice);
4627 
4628 	while (!list_empty(&splice)) {
4629 		struct inode *inode = NULL;
4630 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4631 					       delalloc_inodes);
4632 		btrfs_del_delalloc_inode(btrfs_inode);
4633 		spin_unlock(&root->delalloc_lock);
4634 
4635 		/*
4636 		 * Make sure we get a live inode and that it'll not disappear
4637 		 * meanwhile.
4638 		 */
4639 		inode = igrab(&btrfs_inode->vfs_inode);
4640 		if (inode) {
4641 			unsigned int nofs_flag;
4642 
4643 			nofs_flag = memalloc_nofs_save();
4644 			invalidate_inode_pages2(inode->i_mapping);
4645 			memalloc_nofs_restore(nofs_flag);
4646 			iput(inode);
4647 		}
4648 		spin_lock(&root->delalloc_lock);
4649 	}
4650 	spin_unlock(&root->delalloc_lock);
4651 }
4652 
4653 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4654 {
4655 	struct btrfs_root *root;
4656 	LIST_HEAD(splice);
4657 
4658 	spin_lock(&fs_info->delalloc_root_lock);
4659 	list_splice_init(&fs_info->delalloc_roots, &splice);
4660 	while (!list_empty(&splice)) {
4661 		root = list_first_entry(&splice, struct btrfs_root,
4662 					 delalloc_root);
4663 		root = btrfs_grab_root(root);
4664 		BUG_ON(!root);
4665 		spin_unlock(&fs_info->delalloc_root_lock);
4666 
4667 		btrfs_destroy_delalloc_inodes(root);
4668 		btrfs_put_root(root);
4669 
4670 		spin_lock(&fs_info->delalloc_root_lock);
4671 	}
4672 	spin_unlock(&fs_info->delalloc_root_lock);
4673 }
4674 
4675 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4676 					 struct extent_io_tree *dirty_pages,
4677 					 int mark)
4678 {
4679 	struct extent_buffer *eb;
4680 	u64 start = 0;
4681 	u64 end;
4682 
4683 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4684 				     mark, NULL)) {
4685 		clear_extent_bits(dirty_pages, start, end, mark);
4686 		while (start <= end) {
4687 			eb = find_extent_buffer(fs_info, start);
4688 			start += fs_info->nodesize;
4689 			if (!eb)
4690 				continue;
4691 
4692 			btrfs_tree_lock(eb);
4693 			wait_on_extent_buffer_writeback(eb);
4694 			btrfs_clear_buffer_dirty(NULL, eb);
4695 			btrfs_tree_unlock(eb);
4696 
4697 			free_extent_buffer_stale(eb);
4698 		}
4699 	}
4700 }
4701 
4702 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4703 					struct extent_io_tree *unpin)
4704 {
4705 	u64 start;
4706 	u64 end;
4707 
4708 	while (1) {
4709 		struct extent_state *cached_state = NULL;
4710 
4711 		/*
4712 		 * The btrfs_finish_extent_commit() may get the same range as
4713 		 * ours between find_first_extent_bit and clear_extent_dirty.
4714 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4715 		 * the same extent range.
4716 		 */
4717 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4718 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4719 					   EXTENT_DIRTY, &cached_state)) {
4720 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4721 			break;
4722 		}
4723 
4724 		clear_extent_dirty(unpin, start, end, &cached_state);
4725 		free_extent_state(cached_state);
4726 		btrfs_error_unpin_extent_range(fs_info, start, end);
4727 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4728 		cond_resched();
4729 	}
4730 }
4731 
4732 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4733 {
4734 	struct inode *inode;
4735 
4736 	inode = cache->io_ctl.inode;
4737 	if (inode) {
4738 		unsigned int nofs_flag;
4739 
4740 		nofs_flag = memalloc_nofs_save();
4741 		invalidate_inode_pages2(inode->i_mapping);
4742 		memalloc_nofs_restore(nofs_flag);
4743 
4744 		BTRFS_I(inode)->generation = 0;
4745 		cache->io_ctl.inode = NULL;
4746 		iput(inode);
4747 	}
4748 	ASSERT(cache->io_ctl.pages == NULL);
4749 	btrfs_put_block_group(cache);
4750 }
4751 
4752 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4753 			     struct btrfs_fs_info *fs_info)
4754 {
4755 	struct btrfs_block_group *cache;
4756 
4757 	spin_lock(&cur_trans->dirty_bgs_lock);
4758 	while (!list_empty(&cur_trans->dirty_bgs)) {
4759 		cache = list_first_entry(&cur_trans->dirty_bgs,
4760 					 struct btrfs_block_group,
4761 					 dirty_list);
4762 
4763 		if (!list_empty(&cache->io_list)) {
4764 			spin_unlock(&cur_trans->dirty_bgs_lock);
4765 			list_del_init(&cache->io_list);
4766 			btrfs_cleanup_bg_io(cache);
4767 			spin_lock(&cur_trans->dirty_bgs_lock);
4768 		}
4769 
4770 		list_del_init(&cache->dirty_list);
4771 		spin_lock(&cache->lock);
4772 		cache->disk_cache_state = BTRFS_DC_ERROR;
4773 		spin_unlock(&cache->lock);
4774 
4775 		spin_unlock(&cur_trans->dirty_bgs_lock);
4776 		btrfs_put_block_group(cache);
4777 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4778 		spin_lock(&cur_trans->dirty_bgs_lock);
4779 	}
4780 	spin_unlock(&cur_trans->dirty_bgs_lock);
4781 
4782 	/*
4783 	 * Refer to the definition of io_bgs member for details why it's safe
4784 	 * to use it without any locking
4785 	 */
4786 	while (!list_empty(&cur_trans->io_bgs)) {
4787 		cache = list_first_entry(&cur_trans->io_bgs,
4788 					 struct btrfs_block_group,
4789 					 io_list);
4790 
4791 		list_del_init(&cache->io_list);
4792 		spin_lock(&cache->lock);
4793 		cache->disk_cache_state = BTRFS_DC_ERROR;
4794 		spin_unlock(&cache->lock);
4795 		btrfs_cleanup_bg_io(cache);
4796 	}
4797 }
4798 
4799 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4800 {
4801 	struct btrfs_root *gang[8];
4802 	int i;
4803 	int ret;
4804 
4805 	spin_lock(&fs_info->fs_roots_radix_lock);
4806 	while (1) {
4807 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4808 						 (void **)gang, 0,
4809 						 ARRAY_SIZE(gang),
4810 						 BTRFS_ROOT_TRANS_TAG);
4811 		if (ret == 0)
4812 			break;
4813 		for (i = 0; i < ret; i++) {
4814 			struct btrfs_root *root = gang[i];
4815 
4816 			btrfs_qgroup_free_meta_all_pertrans(root);
4817 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4818 					(unsigned long)root->root_key.objectid,
4819 					BTRFS_ROOT_TRANS_TAG);
4820 		}
4821 	}
4822 	spin_unlock(&fs_info->fs_roots_radix_lock);
4823 }
4824 
4825 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4826 				   struct btrfs_fs_info *fs_info)
4827 {
4828 	struct btrfs_device *dev, *tmp;
4829 
4830 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4831 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4832 	ASSERT(list_empty(&cur_trans->io_bgs));
4833 
4834 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4835 				 post_commit_list) {
4836 		list_del_init(&dev->post_commit_list);
4837 	}
4838 
4839 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4840 
4841 	cur_trans->state = TRANS_STATE_COMMIT_START;
4842 	wake_up(&fs_info->transaction_blocked_wait);
4843 
4844 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4845 	wake_up(&fs_info->transaction_wait);
4846 
4847 	btrfs_destroy_delayed_inodes(fs_info);
4848 
4849 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4850 				     EXTENT_DIRTY);
4851 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4852 
4853 	btrfs_free_all_qgroup_pertrans(fs_info);
4854 
4855 	cur_trans->state =TRANS_STATE_COMPLETED;
4856 	wake_up(&cur_trans->commit_wait);
4857 }
4858 
4859 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4860 {
4861 	struct btrfs_transaction *t;
4862 
4863 	mutex_lock(&fs_info->transaction_kthread_mutex);
4864 
4865 	spin_lock(&fs_info->trans_lock);
4866 	while (!list_empty(&fs_info->trans_list)) {
4867 		t = list_first_entry(&fs_info->trans_list,
4868 				     struct btrfs_transaction, list);
4869 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4870 			refcount_inc(&t->use_count);
4871 			spin_unlock(&fs_info->trans_lock);
4872 			btrfs_wait_for_commit(fs_info, t->transid);
4873 			btrfs_put_transaction(t);
4874 			spin_lock(&fs_info->trans_lock);
4875 			continue;
4876 		}
4877 		if (t == fs_info->running_transaction) {
4878 			t->state = TRANS_STATE_COMMIT_DOING;
4879 			spin_unlock(&fs_info->trans_lock);
4880 			/*
4881 			 * We wait for 0 num_writers since we don't hold a trans
4882 			 * handle open currently for this transaction.
4883 			 */
4884 			wait_event(t->writer_wait,
4885 				   atomic_read(&t->num_writers) == 0);
4886 		} else {
4887 			spin_unlock(&fs_info->trans_lock);
4888 		}
4889 		btrfs_cleanup_one_transaction(t, fs_info);
4890 
4891 		spin_lock(&fs_info->trans_lock);
4892 		if (t == fs_info->running_transaction)
4893 			fs_info->running_transaction = NULL;
4894 		list_del_init(&t->list);
4895 		spin_unlock(&fs_info->trans_lock);
4896 
4897 		btrfs_put_transaction(t);
4898 		trace_btrfs_transaction_commit(fs_info);
4899 		spin_lock(&fs_info->trans_lock);
4900 	}
4901 	spin_unlock(&fs_info->trans_lock);
4902 	btrfs_destroy_all_ordered_extents(fs_info);
4903 	btrfs_destroy_delayed_inodes(fs_info);
4904 	btrfs_assert_delayed_root_empty(fs_info);
4905 	btrfs_destroy_all_delalloc_inodes(fs_info);
4906 	btrfs_drop_all_logs(fs_info);
4907 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4908 
4909 	return 0;
4910 }
4911 
4912 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4913 {
4914 	struct btrfs_path *path;
4915 	int ret;
4916 	struct extent_buffer *l;
4917 	struct btrfs_key search_key;
4918 	struct btrfs_key found_key;
4919 	int slot;
4920 
4921 	path = btrfs_alloc_path();
4922 	if (!path)
4923 		return -ENOMEM;
4924 
4925 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4926 	search_key.type = -1;
4927 	search_key.offset = (u64)-1;
4928 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4929 	if (ret < 0)
4930 		goto error;
4931 	if (ret == 0) {
4932 		/*
4933 		 * Key with offset -1 found, there would have to exist a root
4934 		 * with such id, but this is out of valid range.
4935 		 */
4936 		ret = -EUCLEAN;
4937 		goto error;
4938 	}
4939 	if (path->slots[0] > 0) {
4940 		slot = path->slots[0] - 1;
4941 		l = path->nodes[0];
4942 		btrfs_item_key_to_cpu(l, &found_key, slot);
4943 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4944 					    BTRFS_FIRST_FREE_OBJECTID);
4945 	} else {
4946 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4947 	}
4948 	ret = 0;
4949 error:
4950 	btrfs_free_path(path);
4951 	return ret;
4952 }
4953 
4954 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4955 {
4956 	int ret;
4957 	mutex_lock(&root->objectid_mutex);
4958 
4959 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4960 		btrfs_warn(root->fs_info,
4961 			   "the objectid of root %llu reaches its highest value",
4962 			   root->root_key.objectid);
4963 		ret = -ENOSPC;
4964 		goto out;
4965 	}
4966 
4967 	*objectid = root->free_objectid++;
4968 	ret = 0;
4969 out:
4970 	mutex_unlock(&root->objectid_mutex);
4971 	return ret;
4972 }
4973