1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <linux/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int num_folios = num_extent_folios(eb); 186 int ret = 0; 187 188 if (sb_rdonly(fs_info->sb)) 189 return -EROFS; 190 191 for (int i = 0; i < num_folios; i++) { 192 struct folio *folio = eb->folios[i]; 193 u64 start = max_t(u64, eb->start, folio_pos(folio)); 194 u64 end = min_t(u64, eb->start + eb->len, 195 folio_pos(folio) + eb->folio_size); 196 u32 len = end - start; 197 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 199 start, folio, offset_in_folio(folio, start), 200 mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 const struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 230 if (!ret) 231 break; 232 233 num_copies = btrfs_num_copies(fs_info, 234 eb->start, eb->len); 235 if (num_copies == 1) 236 break; 237 238 if (!failed_mirror) { 239 failed = 1; 240 failed_mirror = eb->read_mirror; 241 } 242 243 mirror_num++; 244 if (mirror_num == failed_mirror) 245 mirror_num++; 246 247 if (mirror_num > num_copies) 248 break; 249 } 250 251 if (failed && !ret && failed_mirror) 252 btrfs_repair_eb_io_failure(eb, failed_mirror); 253 254 return ret; 255 } 256 257 /* 258 * Checksum a dirty tree block before IO. 259 */ 260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 261 { 262 struct extent_buffer *eb = bbio->private; 263 struct btrfs_fs_info *fs_info = eb->fs_info; 264 u64 found_start = btrfs_header_bytenr(eb); 265 u64 last_trans; 266 u8 result[BTRFS_CSUM_SIZE]; 267 int ret; 268 269 /* Btree blocks are always contiguous on disk. */ 270 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 271 return BLK_STS_IOERR; 272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 273 return BLK_STS_IOERR; 274 275 /* 276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 277 * checksum it but zero-out its content. This is done to preserve 278 * ordering of I/O without unnecessarily writing out data. 279 */ 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 281 memzero_extent_buffer(eb, 0, eb->len); 282 return BLK_STS_OK; 283 } 284 285 if (WARN_ON_ONCE(found_start != eb->start)) 286 return BLK_STS_IOERR; 287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], 288 eb->start, eb->len))) 289 return BLK_STS_IOERR; 290 291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 292 offsetof(struct btrfs_header, fsid), 293 BTRFS_FSID_SIZE) == 0); 294 csum_tree_block(eb, result); 295 296 if (btrfs_header_level(eb)) 297 ret = btrfs_check_node(eb); 298 else 299 ret = btrfs_check_leaf(eb); 300 301 if (ret < 0) 302 goto error; 303 304 /* 305 * Also check the generation, the eb reached here must be newer than 306 * last committed. Or something seriously wrong happened. 307 */ 308 last_trans = btrfs_get_last_trans_committed(fs_info); 309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 310 ret = -EUCLEAN; 311 btrfs_err(fs_info, 312 "block=%llu bad generation, have %llu expect > %llu", 313 eb->start, btrfs_header_generation(eb), last_trans); 314 goto error; 315 } 316 write_extent_buffer(eb, result, 0, fs_info->csum_size); 317 return BLK_STS_OK; 318 319 error: 320 btrfs_print_tree(eb, 0); 321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 322 eb->start); 323 /* 324 * Be noisy if this is an extent buffer from a log tree. We don't abort 325 * a transaction in case there's a bad log tree extent buffer, we just 326 * fallback to a transaction commit. Still we want to know when there is 327 * a bad log tree extent buffer, as that may signal a bug somewhere. 328 */ 329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 331 return errno_to_blk_status(ret); 332 } 333 334 static bool check_tree_block_fsid(struct extent_buffer *eb) 335 { 336 struct btrfs_fs_info *fs_info = eb->fs_info; 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 338 u8 fsid[BTRFS_FSID_SIZE]; 339 340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 341 BTRFS_FSID_SIZE); 342 343 /* 344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 345 * This is then overwritten by metadata_uuid if it is present in the 346 * device_list_add(). The same true for a seed device as well. So use of 347 * fs_devices::metadata_uuid is appropriate here. 348 */ 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 350 return false; 351 352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 354 return false; 355 356 return true; 357 } 358 359 /* Do basic extent buffer checks at read time */ 360 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 361 const struct btrfs_tree_parent_check *check) 362 { 363 struct btrfs_fs_info *fs_info = eb->fs_info; 364 u64 found_start; 365 const u32 csum_size = fs_info->csum_size; 366 u8 found_level; 367 u8 result[BTRFS_CSUM_SIZE]; 368 const u8 *header_csum; 369 int ret = 0; 370 const bool ignore_csum = btrfs_test_opt(fs_info, IGNOREMETACSUMS); 371 372 ASSERT(check); 373 374 found_start = btrfs_header_bytenr(eb); 375 if (found_start != eb->start) { 376 btrfs_err_rl(fs_info, 377 "bad tree block start, mirror %u want %llu have %llu", 378 eb->read_mirror, eb->start, found_start); 379 ret = -EIO; 380 goto out; 381 } 382 if (check_tree_block_fsid(eb)) { 383 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 384 eb->start, eb->read_mirror); 385 ret = -EIO; 386 goto out; 387 } 388 found_level = btrfs_header_level(eb); 389 if (found_level >= BTRFS_MAX_LEVEL) { 390 btrfs_err(fs_info, 391 "bad tree block level, mirror %u level %d on logical %llu", 392 eb->read_mirror, btrfs_header_level(eb), eb->start); 393 ret = -EIO; 394 goto out; 395 } 396 397 csum_tree_block(eb, result); 398 header_csum = folio_address(eb->folios[0]) + 399 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 400 401 if (memcmp(result, header_csum, csum_size) != 0) { 402 btrfs_warn_rl(fs_info, 403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d%s", 404 eb->start, eb->read_mirror, 405 CSUM_FMT_VALUE(csum_size, header_csum), 406 CSUM_FMT_VALUE(csum_size, result), 407 btrfs_header_level(eb), 408 ignore_csum ? ", ignored" : ""); 409 if (!ignore_csum) { 410 ret = -EUCLEAN; 411 goto out; 412 } 413 } 414 415 if (found_level != check->level) { 416 btrfs_err(fs_info, 417 "level verify failed on logical %llu mirror %u wanted %u found %u", 418 eb->start, eb->read_mirror, check->level, found_level); 419 ret = -EIO; 420 goto out; 421 } 422 if (unlikely(check->transid && 423 btrfs_header_generation(eb) != check->transid)) { 424 btrfs_err_rl(eb->fs_info, 425 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 426 eb->start, eb->read_mirror, check->transid, 427 btrfs_header_generation(eb)); 428 ret = -EIO; 429 goto out; 430 } 431 if (check->has_first_key) { 432 const struct btrfs_key *expect_key = &check->first_key; 433 struct btrfs_key found_key; 434 435 if (found_level) 436 btrfs_node_key_to_cpu(eb, &found_key, 0); 437 else 438 btrfs_item_key_to_cpu(eb, &found_key, 0); 439 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 440 btrfs_err(fs_info, 441 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 442 eb->start, check->transid, 443 expect_key->objectid, 444 expect_key->type, expect_key->offset, 445 found_key.objectid, found_key.type, 446 found_key.offset); 447 ret = -EUCLEAN; 448 goto out; 449 } 450 } 451 if (check->owner_root) { 452 ret = btrfs_check_eb_owner(eb, check->owner_root); 453 if (ret < 0) 454 goto out; 455 } 456 457 /* 458 * If this is a leaf block and it is corrupt, set the corrupt bit so 459 * that we don't try and read the other copies of this block, just 460 * return -EIO. 461 */ 462 if (found_level == 0 && btrfs_check_leaf(eb)) { 463 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 464 ret = -EIO; 465 } 466 467 if (found_level > 0 && btrfs_check_node(eb)) 468 ret = -EIO; 469 470 if (ret) 471 btrfs_err(fs_info, 472 "read time tree block corruption detected on logical %llu mirror %u", 473 eb->start, eb->read_mirror); 474 out: 475 return ret; 476 } 477 478 #ifdef CONFIG_MIGRATION 479 static int btree_migrate_folio(struct address_space *mapping, 480 struct folio *dst, struct folio *src, enum migrate_mode mode) 481 { 482 /* 483 * we can't safely write a btree page from here, 484 * we haven't done the locking hook 485 */ 486 if (folio_test_dirty(src)) 487 return -EAGAIN; 488 /* 489 * Buffers may be managed in a filesystem specific way. 490 * We must have no buffers or drop them. 491 */ 492 if (folio_get_private(src) && 493 !filemap_release_folio(src, GFP_KERNEL)) 494 return -EAGAIN; 495 return migrate_folio(mapping, dst, src, mode); 496 } 497 #else 498 #define btree_migrate_folio NULL 499 #endif 500 501 static int btree_writepages(struct address_space *mapping, 502 struct writeback_control *wbc) 503 { 504 int ret; 505 506 if (wbc->sync_mode == WB_SYNC_NONE) { 507 struct btrfs_fs_info *fs_info; 508 509 if (wbc->for_kupdate) 510 return 0; 511 512 fs_info = inode_to_fs_info(mapping->host); 513 /* this is a bit racy, but that's ok */ 514 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 515 BTRFS_DIRTY_METADATA_THRESH, 516 fs_info->dirty_metadata_batch); 517 if (ret < 0) 518 return 0; 519 } 520 return btree_write_cache_pages(mapping, wbc); 521 } 522 523 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 524 { 525 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 526 return false; 527 528 return try_release_extent_buffer(folio); 529 } 530 531 static void btree_invalidate_folio(struct folio *folio, size_t offset, 532 size_t length) 533 { 534 struct extent_io_tree *tree; 535 536 tree = &folio_to_inode(folio)->io_tree; 537 extent_invalidate_folio(tree, folio, offset); 538 btree_release_folio(folio, GFP_NOFS); 539 if (folio_get_private(folio)) { 540 btrfs_warn(folio_to_fs_info(folio), 541 "folio private not zero on folio %llu", 542 (unsigned long long)folio_pos(folio)); 543 folio_detach_private(folio); 544 } 545 } 546 547 #ifdef DEBUG 548 static bool btree_dirty_folio(struct address_space *mapping, 549 struct folio *folio) 550 { 551 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 552 struct btrfs_subpage_info *spi = fs_info->subpage_info; 553 struct btrfs_subpage *subpage; 554 struct extent_buffer *eb; 555 int cur_bit = 0; 556 u64 page_start = folio_pos(folio); 557 558 if (fs_info->sectorsize == PAGE_SIZE) { 559 eb = folio_get_private(folio); 560 BUG_ON(!eb); 561 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 562 BUG_ON(!atomic_read(&eb->refs)); 563 btrfs_assert_tree_write_locked(eb); 564 return filemap_dirty_folio(mapping, folio); 565 } 566 567 ASSERT(spi); 568 subpage = folio_get_private(folio); 569 570 for (cur_bit = spi->dirty_offset; 571 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 572 cur_bit++) { 573 unsigned long flags; 574 u64 cur; 575 576 spin_lock_irqsave(&subpage->lock, flags); 577 if (!test_bit(cur_bit, subpage->bitmaps)) { 578 spin_unlock_irqrestore(&subpage->lock, flags); 579 continue; 580 } 581 spin_unlock_irqrestore(&subpage->lock, flags); 582 cur = page_start + cur_bit * fs_info->sectorsize; 583 584 eb = find_extent_buffer(fs_info, cur); 585 ASSERT(eb); 586 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 587 ASSERT(atomic_read(&eb->refs)); 588 btrfs_assert_tree_write_locked(eb); 589 free_extent_buffer(eb); 590 591 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 592 } 593 return filemap_dirty_folio(mapping, folio); 594 } 595 #else 596 #define btree_dirty_folio filemap_dirty_folio 597 #endif 598 599 static const struct address_space_operations btree_aops = { 600 .writepages = btree_writepages, 601 .release_folio = btree_release_folio, 602 .invalidate_folio = btree_invalidate_folio, 603 .migrate_folio = btree_migrate_folio, 604 .dirty_folio = btree_dirty_folio, 605 }; 606 607 struct extent_buffer *btrfs_find_create_tree_block( 608 struct btrfs_fs_info *fs_info, 609 u64 bytenr, u64 owner_root, 610 int level) 611 { 612 if (btrfs_is_testing(fs_info)) 613 return alloc_test_extent_buffer(fs_info, bytenr); 614 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 615 } 616 617 /* 618 * Read tree block at logical address @bytenr and do variant basic but critical 619 * verification. 620 * 621 * @check: expected tree parentness check, see comments of the 622 * structure for details. 623 */ 624 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 625 struct btrfs_tree_parent_check *check) 626 { 627 struct extent_buffer *buf = NULL; 628 int ret; 629 630 ASSERT(check); 631 632 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 633 check->level); 634 if (IS_ERR(buf)) 635 return buf; 636 637 ret = btrfs_read_extent_buffer(buf, check); 638 if (ret) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(ret); 641 } 642 return buf; 643 644 } 645 646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 647 u64 objectid) 648 { 649 bool dummy = btrfs_is_testing(fs_info); 650 651 memset(&root->root_key, 0, sizeof(root->root_key)); 652 memset(&root->root_item, 0, sizeof(root->root_item)); 653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 654 root->fs_info = fs_info; 655 root->root_key.objectid = objectid; 656 root->node = NULL; 657 root->commit_root = NULL; 658 root->state = 0; 659 RB_CLEAR_NODE(&root->rb_node); 660 661 btrfs_set_root_last_trans(root, 0); 662 root->free_objectid = 0; 663 root->nr_delalloc_inodes = 0; 664 root->nr_ordered_extents = 0; 665 xa_init(&root->inodes); 666 xa_init(&root->delayed_nodes); 667 668 btrfs_init_root_block_rsv(root); 669 670 INIT_LIST_HEAD(&root->dirty_list); 671 INIT_LIST_HEAD(&root->root_list); 672 INIT_LIST_HEAD(&root->delalloc_inodes); 673 INIT_LIST_HEAD(&root->delalloc_root); 674 INIT_LIST_HEAD(&root->ordered_extents); 675 INIT_LIST_HEAD(&root->ordered_root); 676 INIT_LIST_HEAD(&root->reloc_dirty_list); 677 spin_lock_init(&root->delalloc_lock); 678 spin_lock_init(&root->ordered_extent_lock); 679 spin_lock_init(&root->accounting_lock); 680 spin_lock_init(&root->qgroup_meta_rsv_lock); 681 mutex_init(&root->objectid_mutex); 682 mutex_init(&root->log_mutex); 683 mutex_init(&root->ordered_extent_mutex); 684 mutex_init(&root->delalloc_mutex); 685 init_waitqueue_head(&root->qgroup_flush_wait); 686 init_waitqueue_head(&root->log_writer_wait); 687 init_waitqueue_head(&root->log_commit_wait[0]); 688 init_waitqueue_head(&root->log_commit_wait[1]); 689 INIT_LIST_HEAD(&root->log_ctxs[0]); 690 INIT_LIST_HEAD(&root->log_ctxs[1]); 691 atomic_set(&root->log_commit[0], 0); 692 atomic_set(&root->log_commit[1], 0); 693 atomic_set(&root->log_writers, 0); 694 atomic_set(&root->log_batch, 0); 695 refcount_set(&root->refs, 1); 696 atomic_set(&root->snapshot_force_cow, 0); 697 atomic_set(&root->nr_swapfiles, 0); 698 btrfs_set_root_log_transid(root, 0); 699 root->log_transid_committed = -1; 700 btrfs_set_root_last_log_commit(root, 0); 701 root->anon_dev = 0; 702 if (!dummy) { 703 extent_io_tree_init(fs_info, &root->dirty_log_pages, 704 IO_TREE_ROOT_DIRTY_LOG_PAGES); 705 extent_io_tree_init(fs_info, &root->log_csum_range, 706 IO_TREE_LOG_CSUM_RANGE); 707 } 708 709 spin_lock_init(&root->root_item_lock); 710 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 711 #ifdef CONFIG_BTRFS_DEBUG 712 INIT_LIST_HEAD(&root->leak_list); 713 spin_lock(&fs_info->fs_roots_radix_lock); 714 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 715 spin_unlock(&fs_info->fs_roots_radix_lock); 716 #endif 717 } 718 719 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 720 u64 objectid, gfp_t flags) 721 { 722 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 723 if (root) 724 __setup_root(root, fs_info, objectid); 725 return root; 726 } 727 728 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 729 /* Should only be used by the testing infrastructure */ 730 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 731 { 732 struct btrfs_root *root; 733 734 if (!fs_info) 735 return ERR_PTR(-EINVAL); 736 737 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 738 if (!root) 739 return ERR_PTR(-ENOMEM); 740 741 /* We don't use the stripesize in selftest, set it as sectorsize */ 742 root->alloc_bytenr = 0; 743 744 return root; 745 } 746 #endif 747 748 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 749 { 750 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 751 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 752 753 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 754 } 755 756 static int global_root_key_cmp(const void *k, const struct rb_node *node) 757 { 758 const struct btrfs_key *key = k; 759 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 760 761 return btrfs_comp_cpu_keys(key, &root->root_key); 762 } 763 764 int btrfs_global_root_insert(struct btrfs_root *root) 765 { 766 struct btrfs_fs_info *fs_info = root->fs_info; 767 struct rb_node *tmp; 768 int ret = 0; 769 770 write_lock(&fs_info->global_root_lock); 771 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 772 write_unlock(&fs_info->global_root_lock); 773 774 if (tmp) { 775 ret = -EEXIST; 776 btrfs_warn(fs_info, "global root %llu %llu already exists", 777 btrfs_root_id(root), root->root_key.offset); 778 } 779 return ret; 780 } 781 782 void btrfs_global_root_delete(struct btrfs_root *root) 783 { 784 struct btrfs_fs_info *fs_info = root->fs_info; 785 786 write_lock(&fs_info->global_root_lock); 787 rb_erase(&root->rb_node, &fs_info->global_root_tree); 788 write_unlock(&fs_info->global_root_lock); 789 } 790 791 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 792 struct btrfs_key *key) 793 { 794 struct rb_node *node; 795 struct btrfs_root *root = NULL; 796 797 read_lock(&fs_info->global_root_lock); 798 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 799 if (node) 800 root = container_of(node, struct btrfs_root, rb_node); 801 read_unlock(&fs_info->global_root_lock); 802 803 return root; 804 } 805 806 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 807 { 808 struct btrfs_block_group *block_group; 809 u64 ret; 810 811 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 812 return 0; 813 814 if (bytenr) 815 block_group = btrfs_lookup_block_group(fs_info, bytenr); 816 else 817 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 818 ASSERT(block_group); 819 if (!block_group) 820 return 0; 821 ret = block_group->global_root_id; 822 btrfs_put_block_group(block_group); 823 824 return ret; 825 } 826 827 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 828 { 829 struct btrfs_key key = { 830 .objectid = BTRFS_CSUM_TREE_OBJECTID, 831 .type = BTRFS_ROOT_ITEM_KEY, 832 .offset = btrfs_global_root_id(fs_info, bytenr), 833 }; 834 835 return btrfs_global_root(fs_info, &key); 836 } 837 838 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 839 { 840 struct btrfs_key key = { 841 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 842 .type = BTRFS_ROOT_ITEM_KEY, 843 .offset = btrfs_global_root_id(fs_info, bytenr), 844 }; 845 846 return btrfs_global_root(fs_info, &key); 847 } 848 849 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 850 u64 objectid) 851 { 852 struct btrfs_fs_info *fs_info = trans->fs_info; 853 struct extent_buffer *leaf; 854 struct btrfs_root *tree_root = fs_info->tree_root; 855 struct btrfs_root *root; 856 struct btrfs_key key; 857 unsigned int nofs_flag; 858 int ret = 0; 859 860 /* 861 * We're holding a transaction handle, so use a NOFS memory allocation 862 * context to avoid deadlock if reclaim happens. 863 */ 864 nofs_flag = memalloc_nofs_save(); 865 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 866 memalloc_nofs_restore(nofs_flag); 867 if (!root) 868 return ERR_PTR(-ENOMEM); 869 870 root->root_key.objectid = objectid; 871 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 872 root->root_key.offset = 0; 873 874 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 875 0, BTRFS_NESTING_NORMAL); 876 if (IS_ERR(leaf)) { 877 ret = PTR_ERR(leaf); 878 leaf = NULL; 879 goto fail; 880 } 881 882 root->node = leaf; 883 btrfs_mark_buffer_dirty(trans, leaf); 884 885 root->commit_root = btrfs_root_node(root); 886 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 887 888 btrfs_set_root_flags(&root->root_item, 0); 889 btrfs_set_root_limit(&root->root_item, 0); 890 btrfs_set_root_bytenr(&root->root_item, leaf->start); 891 btrfs_set_root_generation(&root->root_item, trans->transid); 892 btrfs_set_root_level(&root->root_item, 0); 893 btrfs_set_root_refs(&root->root_item, 1); 894 btrfs_set_root_used(&root->root_item, leaf->len); 895 btrfs_set_root_last_snapshot(&root->root_item, 0); 896 btrfs_set_root_dirid(&root->root_item, 0); 897 if (is_fstree(objectid)) 898 generate_random_guid(root->root_item.uuid); 899 else 900 export_guid(root->root_item.uuid, &guid_null); 901 btrfs_set_root_drop_level(&root->root_item, 0); 902 903 btrfs_tree_unlock(leaf); 904 905 key.objectid = objectid; 906 key.type = BTRFS_ROOT_ITEM_KEY; 907 key.offset = 0; 908 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 909 if (ret) 910 goto fail; 911 912 return root; 913 914 fail: 915 btrfs_put_root(root); 916 917 return ERR_PTR(ret); 918 } 919 920 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 921 struct btrfs_fs_info *fs_info) 922 { 923 struct btrfs_root *root; 924 925 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 926 if (!root) 927 return ERR_PTR(-ENOMEM); 928 929 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 930 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 931 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 932 933 return root; 934 } 935 936 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 937 struct btrfs_root *root) 938 { 939 struct extent_buffer *leaf; 940 941 /* 942 * DON'T set SHAREABLE bit for log trees. 943 * 944 * Log trees are not exposed to user space thus can't be snapshotted, 945 * and they go away before a real commit is actually done. 946 * 947 * They do store pointers to file data extents, and those reference 948 * counts still get updated (along with back refs to the log tree). 949 */ 950 951 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 952 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 953 if (IS_ERR(leaf)) 954 return PTR_ERR(leaf); 955 956 root->node = leaf; 957 958 btrfs_mark_buffer_dirty(trans, root->node); 959 btrfs_tree_unlock(root->node); 960 961 return 0; 962 } 963 964 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 965 struct btrfs_fs_info *fs_info) 966 { 967 struct btrfs_root *log_root; 968 969 log_root = alloc_log_tree(trans, fs_info); 970 if (IS_ERR(log_root)) 971 return PTR_ERR(log_root); 972 973 if (!btrfs_is_zoned(fs_info)) { 974 int ret = btrfs_alloc_log_tree_node(trans, log_root); 975 976 if (ret) { 977 btrfs_put_root(log_root); 978 return ret; 979 } 980 } 981 982 WARN_ON(fs_info->log_root_tree); 983 fs_info->log_root_tree = log_root; 984 return 0; 985 } 986 987 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 988 struct btrfs_root *root) 989 { 990 struct btrfs_fs_info *fs_info = root->fs_info; 991 struct btrfs_root *log_root; 992 struct btrfs_inode_item *inode_item; 993 int ret; 994 995 log_root = alloc_log_tree(trans, fs_info); 996 if (IS_ERR(log_root)) 997 return PTR_ERR(log_root); 998 999 ret = btrfs_alloc_log_tree_node(trans, log_root); 1000 if (ret) { 1001 btrfs_put_root(log_root); 1002 return ret; 1003 } 1004 1005 btrfs_set_root_last_trans(log_root, trans->transid); 1006 log_root->root_key.offset = btrfs_root_id(root); 1007 1008 inode_item = &log_root->root_item.inode; 1009 btrfs_set_stack_inode_generation(inode_item, 1); 1010 btrfs_set_stack_inode_size(inode_item, 3); 1011 btrfs_set_stack_inode_nlink(inode_item, 1); 1012 btrfs_set_stack_inode_nbytes(inode_item, 1013 fs_info->nodesize); 1014 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1015 1016 btrfs_set_root_node(&log_root->root_item, log_root->node); 1017 1018 WARN_ON(root->log_root); 1019 root->log_root = log_root; 1020 btrfs_set_root_log_transid(root, 0); 1021 root->log_transid_committed = -1; 1022 btrfs_set_root_last_log_commit(root, 0); 1023 return 0; 1024 } 1025 1026 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1027 struct btrfs_path *path, 1028 const struct btrfs_key *key) 1029 { 1030 struct btrfs_root *root; 1031 struct btrfs_tree_parent_check check = { 0 }; 1032 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1033 u64 generation; 1034 int ret; 1035 int level; 1036 1037 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1038 if (!root) 1039 return ERR_PTR(-ENOMEM); 1040 1041 ret = btrfs_find_root(tree_root, key, path, 1042 &root->root_item, &root->root_key); 1043 if (ret) { 1044 if (ret > 0) 1045 ret = -ENOENT; 1046 goto fail; 1047 } 1048 1049 generation = btrfs_root_generation(&root->root_item); 1050 level = btrfs_root_level(&root->root_item); 1051 check.level = level; 1052 check.transid = generation; 1053 check.owner_root = key->objectid; 1054 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1055 &check); 1056 if (IS_ERR(root->node)) { 1057 ret = PTR_ERR(root->node); 1058 root->node = NULL; 1059 goto fail; 1060 } 1061 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1062 ret = -EIO; 1063 goto fail; 1064 } 1065 1066 /* 1067 * For real fs, and not log/reloc trees, root owner must 1068 * match its root node owner 1069 */ 1070 if (!btrfs_is_testing(fs_info) && 1071 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1072 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID && 1073 btrfs_root_id(root) != btrfs_header_owner(root->node)) { 1074 btrfs_crit(fs_info, 1075 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1076 btrfs_root_id(root), root->node->start, 1077 btrfs_header_owner(root->node), 1078 btrfs_root_id(root)); 1079 ret = -EUCLEAN; 1080 goto fail; 1081 } 1082 root->commit_root = btrfs_root_node(root); 1083 return root; 1084 fail: 1085 btrfs_put_root(root); 1086 return ERR_PTR(ret); 1087 } 1088 1089 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1090 const struct btrfs_key *key) 1091 { 1092 struct btrfs_root *root; 1093 struct btrfs_path *path; 1094 1095 path = btrfs_alloc_path(); 1096 if (!path) 1097 return ERR_PTR(-ENOMEM); 1098 root = read_tree_root_path(tree_root, path, key); 1099 btrfs_free_path(path); 1100 1101 return root; 1102 } 1103 1104 /* 1105 * Initialize subvolume root in-memory structure 1106 * 1107 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1108 */ 1109 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1110 { 1111 int ret; 1112 1113 btrfs_drew_lock_init(&root->snapshot_lock); 1114 1115 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID && 1116 !btrfs_is_data_reloc_root(root) && 1117 is_fstree(btrfs_root_id(root))) { 1118 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1119 btrfs_check_and_init_root_item(&root->root_item); 1120 } 1121 1122 /* 1123 * Don't assign anonymous block device to roots that are not exposed to 1124 * userspace, the id pool is limited to 1M 1125 */ 1126 if (is_fstree(btrfs_root_id(root)) && 1127 btrfs_root_refs(&root->root_item) > 0) { 1128 if (!anon_dev) { 1129 ret = get_anon_bdev(&root->anon_dev); 1130 if (ret) 1131 goto fail; 1132 } else { 1133 root->anon_dev = anon_dev; 1134 } 1135 } 1136 1137 mutex_lock(&root->objectid_mutex); 1138 ret = btrfs_init_root_free_objectid(root); 1139 if (ret) { 1140 mutex_unlock(&root->objectid_mutex); 1141 goto fail; 1142 } 1143 1144 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1145 1146 mutex_unlock(&root->objectid_mutex); 1147 1148 return 0; 1149 fail: 1150 /* The caller is responsible to call btrfs_free_fs_root */ 1151 return ret; 1152 } 1153 1154 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1155 u64 root_id) 1156 { 1157 struct btrfs_root *root; 1158 1159 spin_lock(&fs_info->fs_roots_radix_lock); 1160 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1161 (unsigned long)root_id); 1162 root = btrfs_grab_root(root); 1163 spin_unlock(&fs_info->fs_roots_radix_lock); 1164 return root; 1165 } 1166 1167 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1168 u64 objectid) 1169 { 1170 struct btrfs_key key = { 1171 .objectid = objectid, 1172 .type = BTRFS_ROOT_ITEM_KEY, 1173 .offset = 0, 1174 }; 1175 1176 switch (objectid) { 1177 case BTRFS_ROOT_TREE_OBJECTID: 1178 return btrfs_grab_root(fs_info->tree_root); 1179 case BTRFS_EXTENT_TREE_OBJECTID: 1180 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1181 case BTRFS_CHUNK_TREE_OBJECTID: 1182 return btrfs_grab_root(fs_info->chunk_root); 1183 case BTRFS_DEV_TREE_OBJECTID: 1184 return btrfs_grab_root(fs_info->dev_root); 1185 case BTRFS_CSUM_TREE_OBJECTID: 1186 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1187 case BTRFS_QUOTA_TREE_OBJECTID: 1188 return btrfs_grab_root(fs_info->quota_root); 1189 case BTRFS_UUID_TREE_OBJECTID: 1190 return btrfs_grab_root(fs_info->uuid_root); 1191 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1192 return btrfs_grab_root(fs_info->block_group_root); 1193 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1194 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1195 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1196 return btrfs_grab_root(fs_info->stripe_root); 1197 default: 1198 return NULL; 1199 } 1200 } 1201 1202 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1203 struct btrfs_root *root) 1204 { 1205 int ret; 1206 1207 ret = radix_tree_preload(GFP_NOFS); 1208 if (ret) 1209 return ret; 1210 1211 spin_lock(&fs_info->fs_roots_radix_lock); 1212 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1213 (unsigned long)btrfs_root_id(root), 1214 root); 1215 if (ret == 0) { 1216 btrfs_grab_root(root); 1217 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1218 } 1219 spin_unlock(&fs_info->fs_roots_radix_lock); 1220 radix_tree_preload_end(); 1221 1222 return ret; 1223 } 1224 1225 void btrfs_check_leaked_roots(const struct btrfs_fs_info *fs_info) 1226 { 1227 #ifdef CONFIG_BTRFS_DEBUG 1228 struct btrfs_root *root; 1229 1230 while (!list_empty(&fs_info->allocated_roots)) { 1231 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1232 1233 root = list_first_entry(&fs_info->allocated_roots, 1234 struct btrfs_root, leak_list); 1235 btrfs_err(fs_info, "leaked root %s refcount %d", 1236 btrfs_root_name(&root->root_key, buf), 1237 refcount_read(&root->refs)); 1238 WARN_ON_ONCE(1); 1239 while (refcount_read(&root->refs) > 1) 1240 btrfs_put_root(root); 1241 btrfs_put_root(root); 1242 } 1243 #endif 1244 } 1245 1246 static void free_global_roots(struct btrfs_fs_info *fs_info) 1247 { 1248 struct btrfs_root *root; 1249 struct rb_node *node; 1250 1251 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1252 root = rb_entry(node, struct btrfs_root, rb_node); 1253 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1254 btrfs_put_root(root); 1255 } 1256 } 1257 1258 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1259 { 1260 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps; 1261 1262 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1263 percpu_counter_destroy(&fs_info->delalloc_bytes); 1264 percpu_counter_destroy(&fs_info->ordered_bytes); 1265 if (percpu_counter_initialized(em_counter)) 1266 ASSERT(percpu_counter_sum_positive(em_counter) == 0); 1267 percpu_counter_destroy(em_counter); 1268 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1269 btrfs_free_csum_hash(fs_info); 1270 btrfs_free_stripe_hash_table(fs_info); 1271 btrfs_free_ref_cache(fs_info); 1272 kfree(fs_info->balance_ctl); 1273 kfree(fs_info->delayed_root); 1274 free_global_roots(fs_info); 1275 btrfs_put_root(fs_info->tree_root); 1276 btrfs_put_root(fs_info->chunk_root); 1277 btrfs_put_root(fs_info->dev_root); 1278 btrfs_put_root(fs_info->quota_root); 1279 btrfs_put_root(fs_info->uuid_root); 1280 btrfs_put_root(fs_info->fs_root); 1281 btrfs_put_root(fs_info->data_reloc_root); 1282 btrfs_put_root(fs_info->block_group_root); 1283 btrfs_put_root(fs_info->stripe_root); 1284 btrfs_check_leaked_roots(fs_info); 1285 btrfs_extent_buffer_leak_debug_check(fs_info); 1286 kfree(fs_info->super_copy); 1287 kfree(fs_info->super_for_commit); 1288 kvfree(fs_info); 1289 } 1290 1291 1292 /* 1293 * Get an in-memory reference of a root structure. 1294 * 1295 * For essential trees like root/extent tree, we grab it from fs_info directly. 1296 * For subvolume trees, we check the cached filesystem roots first. If not 1297 * found, then read it from disk and add it to cached fs roots. 1298 * 1299 * Caller should release the root by calling btrfs_put_root() after the usage. 1300 * 1301 * NOTE: Reloc and log trees can't be read by this function as they share the 1302 * same root objectid. 1303 * 1304 * @objectid: root id 1305 * @anon_dev: preallocated anonymous block device number for new roots, 1306 * pass NULL for a new allocation. 1307 * @check_ref: whether to check root item references, If true, return -ENOENT 1308 * for orphan roots 1309 */ 1310 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1311 u64 objectid, dev_t *anon_dev, 1312 bool check_ref) 1313 { 1314 struct btrfs_root *root; 1315 struct btrfs_path *path; 1316 struct btrfs_key key; 1317 int ret; 1318 1319 root = btrfs_get_global_root(fs_info, objectid); 1320 if (root) 1321 return root; 1322 1323 /* 1324 * If we're called for non-subvolume trees, and above function didn't 1325 * find one, do not try to read it from disk. 1326 * 1327 * This is namely for free-space-tree and quota tree, which can change 1328 * at runtime and should only be grabbed from fs_info. 1329 */ 1330 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1331 return ERR_PTR(-ENOENT); 1332 again: 1333 root = btrfs_lookup_fs_root(fs_info, objectid); 1334 if (root) { 1335 /* 1336 * Some other caller may have read out the newly inserted 1337 * subvolume already (for things like backref walk etc). Not 1338 * that common but still possible. In that case, we just need 1339 * to free the anon_dev. 1340 */ 1341 if (unlikely(anon_dev && *anon_dev)) { 1342 free_anon_bdev(*anon_dev); 1343 *anon_dev = 0; 1344 } 1345 1346 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1347 btrfs_put_root(root); 1348 return ERR_PTR(-ENOENT); 1349 } 1350 return root; 1351 } 1352 1353 key.objectid = objectid; 1354 key.type = BTRFS_ROOT_ITEM_KEY; 1355 key.offset = (u64)-1; 1356 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1357 if (IS_ERR(root)) 1358 return root; 1359 1360 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1361 ret = -ENOENT; 1362 goto fail; 1363 } 1364 1365 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1366 if (ret) 1367 goto fail; 1368 1369 path = btrfs_alloc_path(); 1370 if (!path) { 1371 ret = -ENOMEM; 1372 goto fail; 1373 } 1374 key.objectid = BTRFS_ORPHAN_OBJECTID; 1375 key.type = BTRFS_ORPHAN_ITEM_KEY; 1376 key.offset = objectid; 1377 1378 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1379 btrfs_free_path(path); 1380 if (ret < 0) 1381 goto fail; 1382 if (ret == 0) 1383 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1384 1385 ret = btrfs_insert_fs_root(fs_info, root); 1386 if (ret) { 1387 if (ret == -EEXIST) { 1388 btrfs_put_root(root); 1389 goto again; 1390 } 1391 goto fail; 1392 } 1393 return root; 1394 fail: 1395 /* 1396 * If our caller provided us an anonymous device, then it's his 1397 * responsibility to free it in case we fail. So we have to set our 1398 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1399 * and once again by our caller. 1400 */ 1401 if (anon_dev && *anon_dev) 1402 root->anon_dev = 0; 1403 btrfs_put_root(root); 1404 return ERR_PTR(ret); 1405 } 1406 1407 /* 1408 * Get in-memory reference of a root structure 1409 * 1410 * @objectid: tree objectid 1411 * @check_ref: if set, verify that the tree exists and the item has at least 1412 * one reference 1413 */ 1414 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1415 u64 objectid, bool check_ref) 1416 { 1417 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1418 } 1419 1420 /* 1421 * Get in-memory reference of a root structure, created as new, optionally pass 1422 * the anonymous block device id 1423 * 1424 * @objectid: tree objectid 1425 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1426 * parameter value if not NULL 1427 */ 1428 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1429 u64 objectid, dev_t *anon_dev) 1430 { 1431 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1432 } 1433 1434 /* 1435 * Return a root for the given objectid. 1436 * 1437 * @fs_info: the fs_info 1438 * @objectid: the objectid we need to lookup 1439 * 1440 * This is exclusively used for backref walking, and exists specifically because 1441 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1442 * creation time, which means we may have to read the tree_root in order to look 1443 * up a fs root that is not in memory. If the root is not in memory we will 1444 * read the tree root commit root and look up the fs root from there. This is a 1445 * temporary root, it will not be inserted into the radix tree as it doesn't 1446 * have the most uptodate information, it'll simply be discarded once the 1447 * backref code is finished using the root. 1448 */ 1449 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1450 struct btrfs_path *path, 1451 u64 objectid) 1452 { 1453 struct btrfs_root *root; 1454 struct btrfs_key key; 1455 1456 ASSERT(path->search_commit_root && path->skip_locking); 1457 1458 /* 1459 * This can return -ENOENT if we ask for a root that doesn't exist, but 1460 * since this is called via the backref walking code we won't be looking 1461 * up a root that doesn't exist, unless there's corruption. So if root 1462 * != NULL just return it. 1463 */ 1464 root = btrfs_get_global_root(fs_info, objectid); 1465 if (root) 1466 return root; 1467 1468 root = btrfs_lookup_fs_root(fs_info, objectid); 1469 if (root) 1470 return root; 1471 1472 key.objectid = objectid; 1473 key.type = BTRFS_ROOT_ITEM_KEY; 1474 key.offset = (u64)-1; 1475 root = read_tree_root_path(fs_info->tree_root, path, &key); 1476 btrfs_release_path(path); 1477 1478 return root; 1479 } 1480 1481 static int cleaner_kthread(void *arg) 1482 { 1483 struct btrfs_fs_info *fs_info = arg; 1484 int again; 1485 1486 while (1) { 1487 again = 0; 1488 1489 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1490 1491 /* Make the cleaner go to sleep early. */ 1492 if (btrfs_need_cleaner_sleep(fs_info)) 1493 goto sleep; 1494 1495 /* 1496 * Do not do anything if we might cause open_ctree() to block 1497 * before we have finished mounting the filesystem. 1498 */ 1499 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1500 goto sleep; 1501 1502 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1503 goto sleep; 1504 1505 /* 1506 * Avoid the problem that we change the status of the fs 1507 * during the above check and trylock. 1508 */ 1509 if (btrfs_need_cleaner_sleep(fs_info)) { 1510 mutex_unlock(&fs_info->cleaner_mutex); 1511 goto sleep; 1512 } 1513 1514 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1515 btrfs_sysfs_feature_update(fs_info); 1516 1517 btrfs_run_delayed_iputs(fs_info); 1518 1519 again = btrfs_clean_one_deleted_snapshot(fs_info); 1520 mutex_unlock(&fs_info->cleaner_mutex); 1521 1522 /* 1523 * The defragger has dealt with the R/O remount and umount, 1524 * needn't do anything special here. 1525 */ 1526 btrfs_run_defrag_inodes(fs_info); 1527 1528 /* 1529 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1530 * with relocation (btrfs_relocate_chunk) and relocation 1531 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1532 * after acquiring fs_info->reclaim_bgs_lock. So we 1533 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1534 * unused block groups. 1535 */ 1536 btrfs_delete_unused_bgs(fs_info); 1537 1538 /* 1539 * Reclaim block groups in the reclaim_bgs list after we deleted 1540 * all unused block_groups. This possibly gives us some more free 1541 * space. 1542 */ 1543 btrfs_reclaim_bgs(fs_info); 1544 sleep: 1545 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1546 if (kthread_should_park()) 1547 kthread_parkme(); 1548 if (kthread_should_stop()) 1549 return 0; 1550 if (!again) { 1551 set_current_state(TASK_INTERRUPTIBLE); 1552 schedule(); 1553 __set_current_state(TASK_RUNNING); 1554 } 1555 } 1556 } 1557 1558 static int transaction_kthread(void *arg) 1559 { 1560 struct btrfs_root *root = arg; 1561 struct btrfs_fs_info *fs_info = root->fs_info; 1562 struct btrfs_trans_handle *trans; 1563 struct btrfs_transaction *cur; 1564 u64 transid; 1565 time64_t delta; 1566 unsigned long delay; 1567 bool cannot_commit; 1568 1569 do { 1570 cannot_commit = false; 1571 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1572 mutex_lock(&fs_info->transaction_kthread_mutex); 1573 1574 spin_lock(&fs_info->trans_lock); 1575 cur = fs_info->running_transaction; 1576 if (!cur) { 1577 spin_unlock(&fs_info->trans_lock); 1578 goto sleep; 1579 } 1580 1581 delta = ktime_get_seconds() - cur->start_time; 1582 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1583 cur->state < TRANS_STATE_COMMIT_PREP && 1584 delta < fs_info->commit_interval) { 1585 spin_unlock(&fs_info->trans_lock); 1586 delay -= msecs_to_jiffies((delta - 1) * 1000); 1587 delay = min(delay, 1588 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1589 goto sleep; 1590 } 1591 transid = cur->transid; 1592 spin_unlock(&fs_info->trans_lock); 1593 1594 /* If the file system is aborted, this will always fail. */ 1595 trans = btrfs_attach_transaction(root); 1596 if (IS_ERR(trans)) { 1597 if (PTR_ERR(trans) != -ENOENT) 1598 cannot_commit = true; 1599 goto sleep; 1600 } 1601 if (transid == trans->transid) { 1602 btrfs_commit_transaction(trans); 1603 } else { 1604 btrfs_end_transaction(trans); 1605 } 1606 sleep: 1607 wake_up_process(fs_info->cleaner_kthread); 1608 mutex_unlock(&fs_info->transaction_kthread_mutex); 1609 1610 if (BTRFS_FS_ERROR(fs_info)) 1611 btrfs_cleanup_transaction(fs_info); 1612 if (!kthread_should_stop() && 1613 (!btrfs_transaction_blocked(fs_info) || 1614 cannot_commit)) 1615 schedule_timeout_interruptible(delay); 1616 } while (!kthread_should_stop()); 1617 return 0; 1618 } 1619 1620 /* 1621 * This will find the highest generation in the array of root backups. The 1622 * index of the highest array is returned, or -EINVAL if we can't find 1623 * anything. 1624 * 1625 * We check to make sure the array is valid by comparing the 1626 * generation of the latest root in the array with the generation 1627 * in the super block. If they don't match we pitch it. 1628 */ 1629 static int find_newest_super_backup(struct btrfs_fs_info *info) 1630 { 1631 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1632 u64 cur; 1633 struct btrfs_root_backup *root_backup; 1634 int i; 1635 1636 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1637 root_backup = info->super_copy->super_roots + i; 1638 cur = btrfs_backup_tree_root_gen(root_backup); 1639 if (cur == newest_gen) 1640 return i; 1641 } 1642 1643 return -EINVAL; 1644 } 1645 1646 /* 1647 * copy all the root pointers into the super backup array. 1648 * this will bump the backup pointer by one when it is 1649 * done 1650 */ 1651 static void backup_super_roots(struct btrfs_fs_info *info) 1652 { 1653 const int next_backup = info->backup_root_index; 1654 struct btrfs_root_backup *root_backup; 1655 1656 root_backup = info->super_for_commit->super_roots + next_backup; 1657 1658 /* 1659 * make sure all of our padding and empty slots get zero filled 1660 * regardless of which ones we use today 1661 */ 1662 memset(root_backup, 0, sizeof(*root_backup)); 1663 1664 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1665 1666 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1667 btrfs_set_backup_tree_root_gen(root_backup, 1668 btrfs_header_generation(info->tree_root->node)); 1669 1670 btrfs_set_backup_tree_root_level(root_backup, 1671 btrfs_header_level(info->tree_root->node)); 1672 1673 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1674 btrfs_set_backup_chunk_root_gen(root_backup, 1675 btrfs_header_generation(info->chunk_root->node)); 1676 btrfs_set_backup_chunk_root_level(root_backup, 1677 btrfs_header_level(info->chunk_root->node)); 1678 1679 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1680 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1681 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1682 1683 btrfs_set_backup_extent_root(root_backup, 1684 extent_root->node->start); 1685 btrfs_set_backup_extent_root_gen(root_backup, 1686 btrfs_header_generation(extent_root->node)); 1687 btrfs_set_backup_extent_root_level(root_backup, 1688 btrfs_header_level(extent_root->node)); 1689 1690 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1691 btrfs_set_backup_csum_root_gen(root_backup, 1692 btrfs_header_generation(csum_root->node)); 1693 btrfs_set_backup_csum_root_level(root_backup, 1694 btrfs_header_level(csum_root->node)); 1695 } 1696 1697 /* 1698 * we might commit during log recovery, which happens before we set 1699 * the fs_root. Make sure it is valid before we fill it in. 1700 */ 1701 if (info->fs_root && info->fs_root->node) { 1702 btrfs_set_backup_fs_root(root_backup, 1703 info->fs_root->node->start); 1704 btrfs_set_backup_fs_root_gen(root_backup, 1705 btrfs_header_generation(info->fs_root->node)); 1706 btrfs_set_backup_fs_root_level(root_backup, 1707 btrfs_header_level(info->fs_root->node)); 1708 } 1709 1710 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1711 btrfs_set_backup_dev_root_gen(root_backup, 1712 btrfs_header_generation(info->dev_root->node)); 1713 btrfs_set_backup_dev_root_level(root_backup, 1714 btrfs_header_level(info->dev_root->node)); 1715 1716 btrfs_set_backup_total_bytes(root_backup, 1717 btrfs_super_total_bytes(info->super_copy)); 1718 btrfs_set_backup_bytes_used(root_backup, 1719 btrfs_super_bytes_used(info->super_copy)); 1720 btrfs_set_backup_num_devices(root_backup, 1721 btrfs_super_num_devices(info->super_copy)); 1722 1723 /* 1724 * if we don't copy this out to the super_copy, it won't get remembered 1725 * for the next commit 1726 */ 1727 memcpy(&info->super_copy->super_roots, 1728 &info->super_for_commit->super_roots, 1729 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1730 } 1731 1732 /* 1733 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1734 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1735 * 1736 * @fs_info: filesystem whose backup roots need to be read 1737 * @priority: priority of backup root required 1738 * 1739 * Returns backup root index on success and -EINVAL otherwise. 1740 */ 1741 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1742 { 1743 int backup_index = find_newest_super_backup(fs_info); 1744 struct btrfs_super_block *super = fs_info->super_copy; 1745 struct btrfs_root_backup *root_backup; 1746 1747 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1748 if (priority == 0) 1749 return backup_index; 1750 1751 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1752 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1753 } else { 1754 return -EINVAL; 1755 } 1756 1757 root_backup = super->super_roots + backup_index; 1758 1759 btrfs_set_super_generation(super, 1760 btrfs_backup_tree_root_gen(root_backup)); 1761 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1762 btrfs_set_super_root_level(super, 1763 btrfs_backup_tree_root_level(root_backup)); 1764 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1765 1766 /* 1767 * Fixme: the total bytes and num_devices need to match or we should 1768 * need a fsck 1769 */ 1770 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1771 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1772 1773 return backup_index; 1774 } 1775 1776 /* helper to cleanup workers */ 1777 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1778 { 1779 btrfs_destroy_workqueue(fs_info->fixup_workers); 1780 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1781 btrfs_destroy_workqueue(fs_info->workers); 1782 if (fs_info->endio_workers) 1783 destroy_workqueue(fs_info->endio_workers); 1784 if (fs_info->rmw_workers) 1785 destroy_workqueue(fs_info->rmw_workers); 1786 if (fs_info->compressed_write_workers) 1787 destroy_workqueue(fs_info->compressed_write_workers); 1788 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1789 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1790 btrfs_destroy_workqueue(fs_info->delayed_workers); 1791 btrfs_destroy_workqueue(fs_info->caching_workers); 1792 btrfs_destroy_workqueue(fs_info->flush_workers); 1793 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1794 if (fs_info->discard_ctl.discard_workers) 1795 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1796 /* 1797 * Now that all other work queues are destroyed, we can safely destroy 1798 * the queues used for metadata I/O, since tasks from those other work 1799 * queues can do metadata I/O operations. 1800 */ 1801 if (fs_info->endio_meta_workers) 1802 destroy_workqueue(fs_info->endio_meta_workers); 1803 } 1804 1805 static void free_root_extent_buffers(struct btrfs_root *root) 1806 { 1807 if (root) { 1808 free_extent_buffer(root->node); 1809 free_extent_buffer(root->commit_root); 1810 root->node = NULL; 1811 root->commit_root = NULL; 1812 } 1813 } 1814 1815 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1816 { 1817 struct btrfs_root *root, *tmp; 1818 1819 rbtree_postorder_for_each_entry_safe(root, tmp, 1820 &fs_info->global_root_tree, 1821 rb_node) 1822 free_root_extent_buffers(root); 1823 } 1824 1825 /* helper to cleanup tree roots */ 1826 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1827 { 1828 free_root_extent_buffers(info->tree_root); 1829 1830 free_global_root_pointers(info); 1831 free_root_extent_buffers(info->dev_root); 1832 free_root_extent_buffers(info->quota_root); 1833 free_root_extent_buffers(info->uuid_root); 1834 free_root_extent_buffers(info->fs_root); 1835 free_root_extent_buffers(info->data_reloc_root); 1836 free_root_extent_buffers(info->block_group_root); 1837 free_root_extent_buffers(info->stripe_root); 1838 if (free_chunk_root) 1839 free_root_extent_buffers(info->chunk_root); 1840 } 1841 1842 void btrfs_put_root(struct btrfs_root *root) 1843 { 1844 if (!root) 1845 return; 1846 1847 if (refcount_dec_and_test(&root->refs)) { 1848 if (WARN_ON(!xa_empty(&root->inodes))) 1849 xa_destroy(&root->inodes); 1850 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1851 if (root->anon_dev) 1852 free_anon_bdev(root->anon_dev); 1853 free_root_extent_buffers(root); 1854 #ifdef CONFIG_BTRFS_DEBUG 1855 spin_lock(&root->fs_info->fs_roots_radix_lock); 1856 list_del_init(&root->leak_list); 1857 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1858 #endif 1859 kfree(root); 1860 } 1861 } 1862 1863 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1864 { 1865 int ret; 1866 struct btrfs_root *gang[8]; 1867 int i; 1868 1869 while (!list_empty(&fs_info->dead_roots)) { 1870 gang[0] = list_entry(fs_info->dead_roots.next, 1871 struct btrfs_root, root_list); 1872 list_del(&gang[0]->root_list); 1873 1874 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1875 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1876 btrfs_put_root(gang[0]); 1877 } 1878 1879 while (1) { 1880 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1881 (void **)gang, 0, 1882 ARRAY_SIZE(gang)); 1883 if (!ret) 1884 break; 1885 for (i = 0; i < ret; i++) 1886 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1887 } 1888 } 1889 1890 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1891 { 1892 mutex_init(&fs_info->scrub_lock); 1893 atomic_set(&fs_info->scrubs_running, 0); 1894 atomic_set(&fs_info->scrub_pause_req, 0); 1895 atomic_set(&fs_info->scrubs_paused, 0); 1896 atomic_set(&fs_info->scrub_cancel_req, 0); 1897 init_waitqueue_head(&fs_info->scrub_pause_wait); 1898 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1899 } 1900 1901 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1902 { 1903 spin_lock_init(&fs_info->balance_lock); 1904 mutex_init(&fs_info->balance_mutex); 1905 atomic_set(&fs_info->balance_pause_req, 0); 1906 atomic_set(&fs_info->balance_cancel_req, 0); 1907 fs_info->balance_ctl = NULL; 1908 init_waitqueue_head(&fs_info->balance_wait_q); 1909 atomic_set(&fs_info->reloc_cancel_req, 0); 1910 } 1911 1912 static int btrfs_init_btree_inode(struct super_block *sb) 1913 { 1914 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1915 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1916 fs_info->tree_root); 1917 struct inode *inode; 1918 1919 inode = new_inode(sb); 1920 if (!inode) 1921 return -ENOMEM; 1922 1923 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_BTREE_INODE_OBJECTID); 1924 set_nlink(inode, 1); 1925 /* 1926 * we set the i_size on the btree inode to the max possible int. 1927 * the real end of the address space is determined by all of 1928 * the devices in the system 1929 */ 1930 inode->i_size = OFFSET_MAX; 1931 inode->i_mapping->a_ops = &btree_aops; 1932 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1933 1934 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1935 IO_TREE_BTREE_INODE_IO); 1936 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1937 1938 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1939 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1940 __insert_inode_hash(inode, hash); 1941 fs_info->btree_inode = inode; 1942 1943 return 0; 1944 } 1945 1946 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1947 { 1948 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1949 init_rwsem(&fs_info->dev_replace.rwsem); 1950 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1951 } 1952 1953 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1954 { 1955 spin_lock_init(&fs_info->qgroup_lock); 1956 mutex_init(&fs_info->qgroup_ioctl_lock); 1957 fs_info->qgroup_tree = RB_ROOT; 1958 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1959 fs_info->qgroup_seq = 1; 1960 fs_info->qgroup_ulist = NULL; 1961 fs_info->qgroup_rescan_running = false; 1962 fs_info->qgroup_drop_subtree_thres = BTRFS_QGROUP_DROP_SUBTREE_THRES_DEFAULT; 1963 mutex_init(&fs_info->qgroup_rescan_lock); 1964 } 1965 1966 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1967 { 1968 u32 max_active = fs_info->thread_pool_size; 1969 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1970 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1971 1972 fs_info->workers = 1973 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1974 1975 fs_info->delalloc_workers = 1976 btrfs_alloc_workqueue(fs_info, "delalloc", 1977 flags, max_active, 2); 1978 1979 fs_info->flush_workers = 1980 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1981 flags, max_active, 0); 1982 1983 fs_info->caching_workers = 1984 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1985 1986 fs_info->fixup_workers = 1987 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1988 1989 fs_info->endio_workers = 1990 alloc_workqueue("btrfs-endio", flags, max_active); 1991 fs_info->endio_meta_workers = 1992 alloc_workqueue("btrfs-endio-meta", flags, max_active); 1993 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 1994 fs_info->endio_write_workers = 1995 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 1996 max_active, 2); 1997 fs_info->compressed_write_workers = 1998 alloc_workqueue("btrfs-compressed-write", flags, max_active); 1999 fs_info->endio_freespace_worker = 2000 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2001 max_active, 0); 2002 fs_info->delayed_workers = 2003 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2004 max_active, 0); 2005 fs_info->qgroup_rescan_workers = 2006 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2007 ordered_flags); 2008 fs_info->discard_ctl.discard_workers = 2009 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2010 2011 if (!(fs_info->workers && 2012 fs_info->delalloc_workers && fs_info->flush_workers && 2013 fs_info->endio_workers && fs_info->endio_meta_workers && 2014 fs_info->compressed_write_workers && 2015 fs_info->endio_write_workers && 2016 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2017 fs_info->caching_workers && fs_info->fixup_workers && 2018 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2019 fs_info->discard_ctl.discard_workers)) { 2020 return -ENOMEM; 2021 } 2022 2023 return 0; 2024 } 2025 2026 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2027 { 2028 struct crypto_shash *csum_shash; 2029 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2030 2031 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2032 2033 if (IS_ERR(csum_shash)) { 2034 btrfs_err(fs_info, "error allocating %s hash for checksum", 2035 csum_driver); 2036 return PTR_ERR(csum_shash); 2037 } 2038 2039 fs_info->csum_shash = csum_shash; 2040 2041 /* 2042 * Check if the checksum implementation is a fast accelerated one. 2043 * As-is this is a bit of a hack and should be replaced once the csum 2044 * implementations provide that information themselves. 2045 */ 2046 switch (csum_type) { 2047 case BTRFS_CSUM_TYPE_CRC32: 2048 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2049 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2050 break; 2051 case BTRFS_CSUM_TYPE_XXHASH: 2052 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2053 break; 2054 default: 2055 break; 2056 } 2057 2058 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2059 btrfs_super_csum_name(csum_type), 2060 crypto_shash_driver_name(csum_shash)); 2061 return 0; 2062 } 2063 2064 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2065 struct btrfs_fs_devices *fs_devices) 2066 { 2067 int ret; 2068 struct btrfs_tree_parent_check check = { 0 }; 2069 struct btrfs_root *log_tree_root; 2070 struct btrfs_super_block *disk_super = fs_info->super_copy; 2071 u64 bytenr = btrfs_super_log_root(disk_super); 2072 int level = btrfs_super_log_root_level(disk_super); 2073 2074 if (fs_devices->rw_devices == 0) { 2075 btrfs_warn(fs_info, "log replay required on RO media"); 2076 return -EIO; 2077 } 2078 2079 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2080 GFP_KERNEL); 2081 if (!log_tree_root) 2082 return -ENOMEM; 2083 2084 check.level = level; 2085 check.transid = fs_info->generation + 1; 2086 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2087 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2088 if (IS_ERR(log_tree_root->node)) { 2089 btrfs_warn(fs_info, "failed to read log tree"); 2090 ret = PTR_ERR(log_tree_root->node); 2091 log_tree_root->node = NULL; 2092 btrfs_put_root(log_tree_root); 2093 return ret; 2094 } 2095 if (!extent_buffer_uptodate(log_tree_root->node)) { 2096 btrfs_err(fs_info, "failed to read log tree"); 2097 btrfs_put_root(log_tree_root); 2098 return -EIO; 2099 } 2100 2101 /* returns with log_tree_root freed on success */ 2102 ret = btrfs_recover_log_trees(log_tree_root); 2103 if (ret) { 2104 btrfs_handle_fs_error(fs_info, ret, 2105 "Failed to recover log tree"); 2106 btrfs_put_root(log_tree_root); 2107 return ret; 2108 } 2109 2110 if (sb_rdonly(fs_info->sb)) { 2111 ret = btrfs_commit_super(fs_info); 2112 if (ret) 2113 return ret; 2114 } 2115 2116 return 0; 2117 } 2118 2119 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2120 struct btrfs_path *path, u64 objectid, 2121 const char *name) 2122 { 2123 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2124 struct btrfs_root *root; 2125 u64 max_global_id = 0; 2126 int ret; 2127 struct btrfs_key key = { 2128 .objectid = objectid, 2129 .type = BTRFS_ROOT_ITEM_KEY, 2130 .offset = 0, 2131 }; 2132 bool found = false; 2133 2134 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2135 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2136 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2137 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2138 return 0; 2139 } 2140 2141 while (1) { 2142 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2143 if (ret < 0) 2144 break; 2145 2146 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2147 ret = btrfs_next_leaf(tree_root, path); 2148 if (ret) { 2149 if (ret > 0) 2150 ret = 0; 2151 break; 2152 } 2153 } 2154 ret = 0; 2155 2156 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2157 if (key.objectid != objectid) 2158 break; 2159 btrfs_release_path(path); 2160 2161 /* 2162 * Just worry about this for extent tree, it'll be the same for 2163 * everybody. 2164 */ 2165 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2166 max_global_id = max(max_global_id, key.offset); 2167 2168 found = true; 2169 root = read_tree_root_path(tree_root, path, &key); 2170 if (IS_ERR(root)) { 2171 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2172 ret = PTR_ERR(root); 2173 break; 2174 } 2175 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2176 ret = btrfs_global_root_insert(root); 2177 if (ret) { 2178 btrfs_put_root(root); 2179 break; 2180 } 2181 key.offset++; 2182 } 2183 btrfs_release_path(path); 2184 2185 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2186 fs_info->nr_global_roots = max_global_id + 1; 2187 2188 if (!found || ret) { 2189 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2190 set_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state); 2191 2192 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2193 ret = ret ? ret : -ENOENT; 2194 else 2195 ret = 0; 2196 btrfs_err(fs_info, "failed to load root %s", name); 2197 } 2198 return ret; 2199 } 2200 2201 static int load_global_roots(struct btrfs_root *tree_root) 2202 { 2203 struct btrfs_path *path; 2204 int ret = 0; 2205 2206 path = btrfs_alloc_path(); 2207 if (!path) 2208 return -ENOMEM; 2209 2210 ret = load_global_roots_objectid(tree_root, path, 2211 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2212 if (ret) 2213 goto out; 2214 ret = load_global_roots_objectid(tree_root, path, 2215 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2216 if (ret) 2217 goto out; 2218 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2219 goto out; 2220 ret = load_global_roots_objectid(tree_root, path, 2221 BTRFS_FREE_SPACE_TREE_OBJECTID, 2222 "free space"); 2223 out: 2224 btrfs_free_path(path); 2225 return ret; 2226 } 2227 2228 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2229 { 2230 struct btrfs_root *tree_root = fs_info->tree_root; 2231 struct btrfs_root *root; 2232 struct btrfs_key location; 2233 int ret; 2234 2235 ASSERT(fs_info->tree_root); 2236 2237 ret = load_global_roots(tree_root); 2238 if (ret) 2239 return ret; 2240 2241 location.type = BTRFS_ROOT_ITEM_KEY; 2242 location.offset = 0; 2243 2244 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2245 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2246 root = btrfs_read_tree_root(tree_root, &location); 2247 if (IS_ERR(root)) { 2248 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2249 ret = PTR_ERR(root); 2250 goto out; 2251 } 2252 } else { 2253 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2254 fs_info->block_group_root = root; 2255 } 2256 } 2257 2258 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2259 root = btrfs_read_tree_root(tree_root, &location); 2260 if (IS_ERR(root)) { 2261 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2262 ret = PTR_ERR(root); 2263 goto out; 2264 } 2265 } else { 2266 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2267 fs_info->dev_root = root; 2268 } 2269 /* Initialize fs_info for all devices in any case */ 2270 ret = btrfs_init_devices_late(fs_info); 2271 if (ret) 2272 goto out; 2273 2274 /* 2275 * This tree can share blocks with some other fs tree during relocation 2276 * and we need a proper setup by btrfs_get_fs_root 2277 */ 2278 root = btrfs_get_fs_root(tree_root->fs_info, 2279 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2280 if (IS_ERR(root)) { 2281 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2282 ret = PTR_ERR(root); 2283 goto out; 2284 } 2285 } else { 2286 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2287 fs_info->data_reloc_root = root; 2288 } 2289 2290 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2291 root = btrfs_read_tree_root(tree_root, &location); 2292 if (!IS_ERR(root)) { 2293 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2294 fs_info->quota_root = root; 2295 } 2296 2297 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2298 root = btrfs_read_tree_root(tree_root, &location); 2299 if (IS_ERR(root)) { 2300 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2301 ret = PTR_ERR(root); 2302 if (ret != -ENOENT) 2303 goto out; 2304 } 2305 } else { 2306 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2307 fs_info->uuid_root = root; 2308 } 2309 2310 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2311 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2312 root = btrfs_read_tree_root(tree_root, &location); 2313 if (IS_ERR(root)) { 2314 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2315 ret = PTR_ERR(root); 2316 goto out; 2317 } 2318 } else { 2319 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2320 fs_info->stripe_root = root; 2321 } 2322 } 2323 2324 return 0; 2325 out: 2326 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2327 location.objectid, ret); 2328 return ret; 2329 } 2330 2331 /* 2332 * Real super block validation 2333 * NOTE: super csum type and incompat features will not be checked here. 2334 * 2335 * @sb: super block to check 2336 * @mirror_num: the super block number to check its bytenr: 2337 * 0 the primary (1st) sb 2338 * 1, 2 2nd and 3rd backup copy 2339 * -1 skip bytenr check 2340 */ 2341 int btrfs_validate_super(const struct btrfs_fs_info *fs_info, 2342 const struct btrfs_super_block *sb, int mirror_num) 2343 { 2344 u64 nodesize = btrfs_super_nodesize(sb); 2345 u64 sectorsize = btrfs_super_sectorsize(sb); 2346 int ret = 0; 2347 const bool ignore_flags = btrfs_test_opt(fs_info, IGNORESUPERFLAGS); 2348 2349 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2350 btrfs_err(fs_info, "no valid FS found"); 2351 ret = -EINVAL; 2352 } 2353 if ((btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)) { 2354 if (!ignore_flags) { 2355 btrfs_err(fs_info, 2356 "unrecognized or unsupported super flag 0x%llx", 2357 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2358 ret = -EINVAL; 2359 } else { 2360 btrfs_info(fs_info, 2361 "unrecognized or unsupported super flags: 0x%llx, ignored", 2362 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2363 } 2364 } 2365 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2366 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2367 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2368 ret = -EINVAL; 2369 } 2370 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2371 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2372 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2373 ret = -EINVAL; 2374 } 2375 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2376 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2377 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2378 ret = -EINVAL; 2379 } 2380 2381 /* 2382 * Check sectorsize and nodesize first, other check will need it. 2383 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2384 */ 2385 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2386 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2387 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2388 ret = -EINVAL; 2389 } 2390 2391 /* 2392 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2393 * 2394 * We can support 16K sectorsize with 64K page size without problem, 2395 * but such sectorsize/pagesize combination doesn't make much sense. 2396 * 4K will be our future standard, PAGE_SIZE is supported from the very 2397 * beginning. 2398 */ 2399 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2400 btrfs_err(fs_info, 2401 "sectorsize %llu not yet supported for page size %lu", 2402 sectorsize, PAGE_SIZE); 2403 ret = -EINVAL; 2404 } 2405 2406 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2407 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2408 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2409 ret = -EINVAL; 2410 } 2411 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2412 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2413 le32_to_cpu(sb->__unused_leafsize), nodesize); 2414 ret = -EINVAL; 2415 } 2416 2417 /* Root alignment check */ 2418 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2419 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2420 btrfs_super_root(sb)); 2421 ret = -EINVAL; 2422 } 2423 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2424 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2425 btrfs_super_chunk_root(sb)); 2426 ret = -EINVAL; 2427 } 2428 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2429 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2430 btrfs_super_log_root(sb)); 2431 ret = -EINVAL; 2432 } 2433 2434 if (!fs_info->fs_devices->temp_fsid && 2435 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2436 btrfs_err(fs_info, 2437 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2438 sb->fsid, fs_info->fs_devices->fsid); 2439 ret = -EINVAL; 2440 } 2441 2442 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2443 BTRFS_FSID_SIZE) != 0) { 2444 btrfs_err(fs_info, 2445 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2446 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2447 ret = -EINVAL; 2448 } 2449 2450 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2451 BTRFS_FSID_SIZE) != 0) { 2452 btrfs_err(fs_info, 2453 "dev_item UUID does not match metadata fsid: %pU != %pU", 2454 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2455 ret = -EINVAL; 2456 } 2457 2458 /* 2459 * Artificial requirement for block-group-tree to force newer features 2460 * (free-space-tree, no-holes) so the test matrix is smaller. 2461 */ 2462 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2463 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2464 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2465 btrfs_err(fs_info, 2466 "block-group-tree feature requires free-space-tree and no-holes"); 2467 ret = -EINVAL; 2468 } 2469 2470 /* 2471 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2472 * done later 2473 */ 2474 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2475 btrfs_err(fs_info, "bytes_used is too small %llu", 2476 btrfs_super_bytes_used(sb)); 2477 ret = -EINVAL; 2478 } 2479 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2480 btrfs_err(fs_info, "invalid stripesize %u", 2481 btrfs_super_stripesize(sb)); 2482 ret = -EINVAL; 2483 } 2484 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2485 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2486 btrfs_super_num_devices(sb)); 2487 if (btrfs_super_num_devices(sb) == 0) { 2488 btrfs_err(fs_info, "number of devices is 0"); 2489 ret = -EINVAL; 2490 } 2491 2492 if (mirror_num >= 0 && 2493 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2494 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2495 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2496 ret = -EINVAL; 2497 } 2498 2499 /* 2500 * Obvious sys_chunk_array corruptions, it must hold at least one key 2501 * and one chunk 2502 */ 2503 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2504 btrfs_err(fs_info, "system chunk array too big %u > %u", 2505 btrfs_super_sys_array_size(sb), 2506 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2507 ret = -EINVAL; 2508 } 2509 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2510 + sizeof(struct btrfs_chunk)) { 2511 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2512 btrfs_super_sys_array_size(sb), 2513 sizeof(struct btrfs_disk_key) 2514 + sizeof(struct btrfs_chunk)); 2515 ret = -EINVAL; 2516 } 2517 2518 /* 2519 * The generation is a global counter, we'll trust it more than the others 2520 * but it's still possible that it's the one that's wrong. 2521 */ 2522 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2523 btrfs_warn(fs_info, 2524 "suspicious: generation < chunk_root_generation: %llu < %llu", 2525 btrfs_super_generation(sb), 2526 btrfs_super_chunk_root_generation(sb)); 2527 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2528 && btrfs_super_cache_generation(sb) != (u64)-1) 2529 btrfs_warn(fs_info, 2530 "suspicious: generation < cache_generation: %llu < %llu", 2531 btrfs_super_generation(sb), 2532 btrfs_super_cache_generation(sb)); 2533 2534 return ret; 2535 } 2536 2537 /* 2538 * Validation of super block at mount time. 2539 * Some checks already done early at mount time, like csum type and incompat 2540 * flags will be skipped. 2541 */ 2542 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2543 { 2544 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2545 } 2546 2547 /* 2548 * Validation of super block at write time. 2549 * Some checks like bytenr check will be skipped as their values will be 2550 * overwritten soon. 2551 * Extra checks like csum type and incompat flags will be done here. 2552 */ 2553 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2554 struct btrfs_super_block *sb) 2555 { 2556 int ret; 2557 2558 ret = btrfs_validate_super(fs_info, sb, -1); 2559 if (ret < 0) 2560 goto out; 2561 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2562 ret = -EUCLEAN; 2563 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2564 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2565 goto out; 2566 } 2567 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2568 ret = -EUCLEAN; 2569 btrfs_err(fs_info, 2570 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2571 btrfs_super_incompat_flags(sb), 2572 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2573 goto out; 2574 } 2575 out: 2576 if (ret < 0) 2577 btrfs_err(fs_info, 2578 "super block corruption detected before writing it to disk"); 2579 return ret; 2580 } 2581 2582 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2583 { 2584 struct btrfs_tree_parent_check check = { 2585 .level = level, 2586 .transid = gen, 2587 .owner_root = btrfs_root_id(root) 2588 }; 2589 int ret = 0; 2590 2591 root->node = read_tree_block(root->fs_info, bytenr, &check); 2592 if (IS_ERR(root->node)) { 2593 ret = PTR_ERR(root->node); 2594 root->node = NULL; 2595 return ret; 2596 } 2597 if (!extent_buffer_uptodate(root->node)) { 2598 free_extent_buffer(root->node); 2599 root->node = NULL; 2600 return -EIO; 2601 } 2602 2603 btrfs_set_root_node(&root->root_item, root->node); 2604 root->commit_root = btrfs_root_node(root); 2605 btrfs_set_root_refs(&root->root_item, 1); 2606 return ret; 2607 } 2608 2609 static int load_important_roots(struct btrfs_fs_info *fs_info) 2610 { 2611 struct btrfs_super_block *sb = fs_info->super_copy; 2612 u64 gen, bytenr; 2613 int level, ret; 2614 2615 bytenr = btrfs_super_root(sb); 2616 gen = btrfs_super_generation(sb); 2617 level = btrfs_super_root_level(sb); 2618 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2619 if (ret) { 2620 btrfs_warn(fs_info, "couldn't read tree root"); 2621 return ret; 2622 } 2623 return 0; 2624 } 2625 2626 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2627 { 2628 int backup_index = find_newest_super_backup(fs_info); 2629 struct btrfs_super_block *sb = fs_info->super_copy; 2630 struct btrfs_root *tree_root = fs_info->tree_root; 2631 bool handle_error = false; 2632 int ret = 0; 2633 int i; 2634 2635 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2636 if (handle_error) { 2637 if (!IS_ERR(tree_root->node)) 2638 free_extent_buffer(tree_root->node); 2639 tree_root->node = NULL; 2640 2641 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2642 break; 2643 2644 free_root_pointers(fs_info, 0); 2645 2646 /* 2647 * Don't use the log in recovery mode, it won't be 2648 * valid 2649 */ 2650 btrfs_set_super_log_root(sb, 0); 2651 2652 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2653 ret = read_backup_root(fs_info, i); 2654 backup_index = ret; 2655 if (ret < 0) 2656 return ret; 2657 } 2658 2659 ret = load_important_roots(fs_info); 2660 if (ret) { 2661 handle_error = true; 2662 continue; 2663 } 2664 2665 /* 2666 * No need to hold btrfs_root::objectid_mutex since the fs 2667 * hasn't been fully initialised and we are the only user 2668 */ 2669 ret = btrfs_init_root_free_objectid(tree_root); 2670 if (ret < 0) { 2671 handle_error = true; 2672 continue; 2673 } 2674 2675 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2676 2677 ret = btrfs_read_roots(fs_info); 2678 if (ret < 0) { 2679 handle_error = true; 2680 continue; 2681 } 2682 2683 /* All successful */ 2684 fs_info->generation = btrfs_header_generation(tree_root->node); 2685 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2686 fs_info->last_reloc_trans = 0; 2687 2688 /* Always begin writing backup roots after the one being used */ 2689 if (backup_index < 0) { 2690 fs_info->backup_root_index = 0; 2691 } else { 2692 fs_info->backup_root_index = backup_index + 1; 2693 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2694 } 2695 break; 2696 } 2697 2698 return ret; 2699 } 2700 2701 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2702 { 2703 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2704 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2705 INIT_LIST_HEAD(&fs_info->trans_list); 2706 INIT_LIST_HEAD(&fs_info->dead_roots); 2707 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2708 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2709 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2710 spin_lock_init(&fs_info->delalloc_root_lock); 2711 spin_lock_init(&fs_info->trans_lock); 2712 spin_lock_init(&fs_info->fs_roots_radix_lock); 2713 spin_lock_init(&fs_info->delayed_iput_lock); 2714 spin_lock_init(&fs_info->defrag_inodes_lock); 2715 spin_lock_init(&fs_info->super_lock); 2716 spin_lock_init(&fs_info->buffer_lock); 2717 spin_lock_init(&fs_info->unused_bgs_lock); 2718 spin_lock_init(&fs_info->treelog_bg_lock); 2719 spin_lock_init(&fs_info->zone_active_bgs_lock); 2720 spin_lock_init(&fs_info->relocation_bg_lock); 2721 rwlock_init(&fs_info->tree_mod_log_lock); 2722 rwlock_init(&fs_info->global_root_lock); 2723 mutex_init(&fs_info->unused_bg_unpin_mutex); 2724 mutex_init(&fs_info->reclaim_bgs_lock); 2725 mutex_init(&fs_info->reloc_mutex); 2726 mutex_init(&fs_info->delalloc_root_mutex); 2727 mutex_init(&fs_info->zoned_meta_io_lock); 2728 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2729 seqlock_init(&fs_info->profiles_lock); 2730 2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2733 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2734 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2735 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2736 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2737 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2738 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2739 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2740 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2741 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2742 BTRFS_LOCKDEP_TRANS_COMPLETED); 2743 2744 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2745 INIT_LIST_HEAD(&fs_info->space_info); 2746 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2747 INIT_LIST_HEAD(&fs_info->unused_bgs); 2748 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2749 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2750 #ifdef CONFIG_BTRFS_DEBUG 2751 INIT_LIST_HEAD(&fs_info->allocated_roots); 2752 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2753 spin_lock_init(&fs_info->eb_leak_lock); 2754 #endif 2755 fs_info->mapping_tree = RB_ROOT_CACHED; 2756 rwlock_init(&fs_info->mapping_tree_lock); 2757 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2758 BTRFS_BLOCK_RSV_GLOBAL); 2759 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2760 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2761 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2762 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2763 BTRFS_BLOCK_RSV_DELOPS); 2764 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2765 BTRFS_BLOCK_RSV_DELREFS); 2766 2767 atomic_set(&fs_info->async_delalloc_pages, 0); 2768 atomic_set(&fs_info->defrag_running, 0); 2769 atomic_set(&fs_info->nr_delayed_iputs, 0); 2770 atomic64_set(&fs_info->tree_mod_seq, 0); 2771 fs_info->global_root_tree = RB_ROOT; 2772 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2773 fs_info->metadata_ratio = 0; 2774 fs_info->defrag_inodes = RB_ROOT; 2775 atomic64_set(&fs_info->free_chunk_space, 0); 2776 fs_info->tree_mod_log = RB_ROOT; 2777 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2778 btrfs_init_ref_verify(fs_info); 2779 2780 fs_info->thread_pool_size = min_t(unsigned long, 2781 num_online_cpus() + 2, 8); 2782 2783 INIT_LIST_HEAD(&fs_info->ordered_roots); 2784 spin_lock_init(&fs_info->ordered_root_lock); 2785 2786 btrfs_init_scrub(fs_info); 2787 btrfs_init_balance(fs_info); 2788 btrfs_init_async_reclaim_work(fs_info); 2789 2790 rwlock_init(&fs_info->block_group_cache_lock); 2791 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2792 2793 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2794 IO_TREE_FS_EXCLUDED_EXTENTS); 2795 2796 mutex_init(&fs_info->ordered_operations_mutex); 2797 mutex_init(&fs_info->tree_log_mutex); 2798 mutex_init(&fs_info->chunk_mutex); 2799 mutex_init(&fs_info->transaction_kthread_mutex); 2800 mutex_init(&fs_info->cleaner_mutex); 2801 mutex_init(&fs_info->ro_block_group_mutex); 2802 init_rwsem(&fs_info->commit_root_sem); 2803 init_rwsem(&fs_info->cleanup_work_sem); 2804 init_rwsem(&fs_info->subvol_sem); 2805 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2806 2807 btrfs_init_dev_replace_locks(fs_info); 2808 btrfs_init_qgroup(fs_info); 2809 btrfs_discard_init(fs_info); 2810 2811 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2812 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2813 2814 init_waitqueue_head(&fs_info->transaction_throttle); 2815 init_waitqueue_head(&fs_info->transaction_wait); 2816 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2817 init_waitqueue_head(&fs_info->async_submit_wait); 2818 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2819 2820 /* Usable values until the real ones are cached from the superblock */ 2821 fs_info->nodesize = 4096; 2822 fs_info->sectorsize = 4096; 2823 fs_info->sectorsize_bits = ilog2(4096); 2824 fs_info->stripesize = 4096; 2825 2826 /* Default compress algorithm when user does -o compress */ 2827 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2828 2829 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2830 2831 spin_lock_init(&fs_info->swapfile_pins_lock); 2832 fs_info->swapfile_pins = RB_ROOT; 2833 2834 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2835 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2836 } 2837 2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2839 { 2840 int ret; 2841 2842 fs_info->sb = sb; 2843 /* Temporary fixed values for block size until we read the superblock. */ 2844 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2845 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2846 2847 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2848 if (ret) 2849 return ret; 2850 2851 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL); 2852 if (ret) 2853 return ret; 2854 2855 spin_lock_init(&fs_info->extent_map_shrinker_lock); 2856 2857 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2858 if (ret) 2859 return ret; 2860 2861 fs_info->dirty_metadata_batch = PAGE_SIZE * 2862 (1 + ilog2(nr_cpu_ids)); 2863 2864 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2865 if (ret) 2866 return ret; 2867 2868 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2869 GFP_KERNEL); 2870 if (ret) 2871 return ret; 2872 2873 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2874 GFP_KERNEL); 2875 if (!fs_info->delayed_root) 2876 return -ENOMEM; 2877 btrfs_init_delayed_root(fs_info->delayed_root); 2878 2879 if (sb_rdonly(sb)) 2880 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2881 if (btrfs_test_opt(fs_info, IGNOREMETACSUMS)) 2882 set_bit(BTRFS_FS_STATE_SKIP_META_CSUMS, &fs_info->fs_state); 2883 2884 return btrfs_alloc_stripe_hash_table(fs_info); 2885 } 2886 2887 static int btrfs_uuid_rescan_kthread(void *data) 2888 { 2889 struct btrfs_fs_info *fs_info = data; 2890 int ret; 2891 2892 /* 2893 * 1st step is to iterate through the existing UUID tree and 2894 * to delete all entries that contain outdated data. 2895 * 2nd step is to add all missing entries to the UUID tree. 2896 */ 2897 ret = btrfs_uuid_tree_iterate(fs_info); 2898 if (ret < 0) { 2899 if (ret != -EINTR) 2900 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2901 ret); 2902 up(&fs_info->uuid_tree_rescan_sem); 2903 return ret; 2904 } 2905 return btrfs_uuid_scan_kthread(data); 2906 } 2907 2908 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2909 { 2910 struct task_struct *task; 2911 2912 down(&fs_info->uuid_tree_rescan_sem); 2913 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2914 if (IS_ERR(task)) { 2915 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2916 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2917 up(&fs_info->uuid_tree_rescan_sem); 2918 return PTR_ERR(task); 2919 } 2920 2921 return 0; 2922 } 2923 2924 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2925 { 2926 u64 root_objectid = 0; 2927 struct btrfs_root *gang[8]; 2928 int ret = 0; 2929 2930 while (1) { 2931 unsigned int found; 2932 2933 spin_lock(&fs_info->fs_roots_radix_lock); 2934 found = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2935 (void **)gang, root_objectid, 2936 ARRAY_SIZE(gang)); 2937 if (!found) { 2938 spin_unlock(&fs_info->fs_roots_radix_lock); 2939 break; 2940 } 2941 root_objectid = btrfs_root_id(gang[found - 1]) + 1; 2942 2943 for (int i = 0; i < found; i++) { 2944 /* Avoid to grab roots in dead_roots. */ 2945 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2946 gang[i] = NULL; 2947 continue; 2948 } 2949 /* Grab all the search result for later use. */ 2950 gang[i] = btrfs_grab_root(gang[i]); 2951 } 2952 spin_unlock(&fs_info->fs_roots_radix_lock); 2953 2954 for (int i = 0; i < found; i++) { 2955 if (!gang[i]) 2956 continue; 2957 root_objectid = btrfs_root_id(gang[i]); 2958 /* 2959 * Continue to release the remaining roots after the first 2960 * error without cleanup and preserve the first error 2961 * for the return. 2962 */ 2963 if (!ret) 2964 ret = btrfs_orphan_cleanup(gang[i]); 2965 btrfs_put_root(gang[i]); 2966 } 2967 if (ret) 2968 break; 2969 2970 root_objectid++; 2971 } 2972 return ret; 2973 } 2974 2975 /* 2976 * Mounting logic specific to read-write file systems. Shared by open_ctree 2977 * and btrfs_remount when remounting from read-only to read-write. 2978 */ 2979 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2980 { 2981 int ret; 2982 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2983 bool rebuild_free_space_tree = false; 2984 2985 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2986 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2987 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2988 btrfs_warn(fs_info, 2989 "'clear_cache' option is ignored with extent tree v2"); 2990 else 2991 rebuild_free_space_tree = true; 2992 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2993 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2994 btrfs_warn(fs_info, "free space tree is invalid"); 2995 rebuild_free_space_tree = true; 2996 } 2997 2998 if (rebuild_free_space_tree) { 2999 btrfs_info(fs_info, "rebuilding free space tree"); 3000 ret = btrfs_rebuild_free_space_tree(fs_info); 3001 if (ret) { 3002 btrfs_warn(fs_info, 3003 "failed to rebuild free space tree: %d", ret); 3004 goto out; 3005 } 3006 } 3007 3008 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3009 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3010 btrfs_info(fs_info, "disabling free space tree"); 3011 ret = btrfs_delete_free_space_tree(fs_info); 3012 if (ret) { 3013 btrfs_warn(fs_info, 3014 "failed to disable free space tree: %d", ret); 3015 goto out; 3016 } 3017 } 3018 3019 /* 3020 * btrfs_find_orphan_roots() is responsible for finding all the dead 3021 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3022 * them into the fs_info->fs_roots_radix tree. This must be done before 3023 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3024 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3025 * item before the root's tree is deleted - this means that if we unmount 3026 * or crash before the deletion completes, on the next mount we will not 3027 * delete what remains of the tree because the orphan item does not 3028 * exists anymore, which is what tells us we have a pending deletion. 3029 */ 3030 ret = btrfs_find_orphan_roots(fs_info); 3031 if (ret) 3032 goto out; 3033 3034 ret = btrfs_cleanup_fs_roots(fs_info); 3035 if (ret) 3036 goto out; 3037 3038 down_read(&fs_info->cleanup_work_sem); 3039 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3040 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3041 up_read(&fs_info->cleanup_work_sem); 3042 goto out; 3043 } 3044 up_read(&fs_info->cleanup_work_sem); 3045 3046 mutex_lock(&fs_info->cleaner_mutex); 3047 ret = btrfs_recover_relocation(fs_info); 3048 mutex_unlock(&fs_info->cleaner_mutex); 3049 if (ret < 0) { 3050 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3051 goto out; 3052 } 3053 3054 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3055 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3056 btrfs_info(fs_info, "creating free space tree"); 3057 ret = btrfs_create_free_space_tree(fs_info); 3058 if (ret) { 3059 btrfs_warn(fs_info, 3060 "failed to create free space tree: %d", ret); 3061 goto out; 3062 } 3063 } 3064 3065 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3066 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3067 if (ret) 3068 goto out; 3069 } 3070 3071 ret = btrfs_resume_balance_async(fs_info); 3072 if (ret) 3073 goto out; 3074 3075 ret = btrfs_resume_dev_replace_async(fs_info); 3076 if (ret) { 3077 btrfs_warn(fs_info, "failed to resume dev_replace"); 3078 goto out; 3079 } 3080 3081 btrfs_qgroup_rescan_resume(fs_info); 3082 3083 if (!fs_info->uuid_root) { 3084 btrfs_info(fs_info, "creating UUID tree"); 3085 ret = btrfs_create_uuid_tree(fs_info); 3086 if (ret) { 3087 btrfs_warn(fs_info, 3088 "failed to create the UUID tree %d", ret); 3089 goto out; 3090 } 3091 } 3092 3093 out: 3094 return ret; 3095 } 3096 3097 /* 3098 * Do various sanity and dependency checks of different features. 3099 * 3100 * @is_rw_mount: If the mount is read-write. 3101 * 3102 * This is the place for less strict checks (like for subpage or artificial 3103 * feature dependencies). 3104 * 3105 * For strict checks or possible corruption detection, see 3106 * btrfs_validate_super(). 3107 * 3108 * This should be called after btrfs_parse_options(), as some mount options 3109 * (space cache related) can modify on-disk format like free space tree and 3110 * screw up certain feature dependencies. 3111 */ 3112 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3113 { 3114 struct btrfs_super_block *disk_super = fs_info->super_copy; 3115 u64 incompat = btrfs_super_incompat_flags(disk_super); 3116 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3117 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3118 3119 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3120 btrfs_err(fs_info, 3121 "cannot mount because of unknown incompat features (0x%llx)", 3122 incompat); 3123 return -EINVAL; 3124 } 3125 3126 /* Runtime limitation for mixed block groups. */ 3127 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3128 (fs_info->sectorsize != fs_info->nodesize)) { 3129 btrfs_err(fs_info, 3130 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3131 fs_info->nodesize, fs_info->sectorsize); 3132 return -EINVAL; 3133 } 3134 3135 /* Mixed backref is an always-enabled feature. */ 3136 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3137 3138 /* Set compression related flags just in case. */ 3139 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3140 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3141 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3142 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3143 3144 /* 3145 * An ancient flag, which should really be marked deprecated. 3146 * Such runtime limitation doesn't really need a incompat flag. 3147 */ 3148 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3149 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3150 3151 if (compat_ro_unsupp && is_rw_mount) { 3152 btrfs_err(fs_info, 3153 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3154 compat_ro); 3155 return -EINVAL; 3156 } 3157 3158 /* 3159 * We have unsupported RO compat features, although RO mounted, we 3160 * should not cause any metadata writes, including log replay. 3161 * Or we could screw up whatever the new feature requires. 3162 */ 3163 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3164 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3165 btrfs_err(fs_info, 3166 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3167 compat_ro); 3168 return -EINVAL; 3169 } 3170 3171 /* 3172 * Artificial limitations for block group tree, to force 3173 * block-group-tree to rely on no-holes and free-space-tree. 3174 */ 3175 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3176 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3177 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3178 btrfs_err(fs_info, 3179 "block-group-tree feature requires no-holes and free-space-tree features"); 3180 return -EINVAL; 3181 } 3182 3183 /* 3184 * Subpage runtime limitation on v1 cache. 3185 * 3186 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3187 * we're already defaulting to v2 cache, no need to bother v1 as it's 3188 * going to be deprecated anyway. 3189 */ 3190 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3191 btrfs_warn(fs_info, 3192 "v1 space cache is not supported for page size %lu with sectorsize %u", 3193 PAGE_SIZE, fs_info->sectorsize); 3194 return -EINVAL; 3195 } 3196 3197 /* This can be called by remount, we need to protect the super block. */ 3198 spin_lock(&fs_info->super_lock); 3199 btrfs_set_super_incompat_flags(disk_super, incompat); 3200 spin_unlock(&fs_info->super_lock); 3201 3202 return 0; 3203 } 3204 3205 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3206 const char *options) 3207 { 3208 u32 sectorsize; 3209 u32 nodesize; 3210 u32 stripesize; 3211 u64 generation; 3212 u16 csum_type; 3213 struct btrfs_super_block *disk_super; 3214 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3215 struct btrfs_root *tree_root; 3216 struct btrfs_root *chunk_root; 3217 int ret; 3218 int level; 3219 3220 ret = init_mount_fs_info(fs_info, sb); 3221 if (ret) 3222 goto fail; 3223 3224 /* These need to be init'ed before we start creating inodes and such. */ 3225 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3226 GFP_KERNEL); 3227 fs_info->tree_root = tree_root; 3228 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3229 GFP_KERNEL); 3230 fs_info->chunk_root = chunk_root; 3231 if (!tree_root || !chunk_root) { 3232 ret = -ENOMEM; 3233 goto fail; 3234 } 3235 3236 ret = btrfs_init_btree_inode(sb); 3237 if (ret) 3238 goto fail; 3239 3240 invalidate_bdev(fs_devices->latest_dev->bdev); 3241 3242 /* 3243 * Read super block and check the signature bytes only 3244 */ 3245 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3246 if (IS_ERR(disk_super)) { 3247 ret = PTR_ERR(disk_super); 3248 goto fail_alloc; 3249 } 3250 3251 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3252 /* 3253 * Verify the type first, if that or the checksum value are 3254 * corrupted, we'll find out 3255 */ 3256 csum_type = btrfs_super_csum_type(disk_super); 3257 if (!btrfs_supported_super_csum(csum_type)) { 3258 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3259 csum_type); 3260 ret = -EINVAL; 3261 btrfs_release_disk_super(disk_super); 3262 goto fail_alloc; 3263 } 3264 3265 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3266 3267 ret = btrfs_init_csum_hash(fs_info, csum_type); 3268 if (ret) { 3269 btrfs_release_disk_super(disk_super); 3270 goto fail_alloc; 3271 } 3272 3273 /* 3274 * We want to check superblock checksum, the type is stored inside. 3275 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3276 */ 3277 if (btrfs_check_super_csum(fs_info, disk_super)) { 3278 btrfs_err(fs_info, "superblock checksum mismatch"); 3279 ret = -EINVAL; 3280 btrfs_release_disk_super(disk_super); 3281 goto fail_alloc; 3282 } 3283 3284 /* 3285 * super_copy is zeroed at allocation time and we never touch the 3286 * following bytes up to INFO_SIZE, the checksum is calculated from 3287 * the whole block of INFO_SIZE 3288 */ 3289 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3290 btrfs_release_disk_super(disk_super); 3291 3292 disk_super = fs_info->super_copy; 3293 3294 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3295 sizeof(*fs_info->super_for_commit)); 3296 3297 ret = btrfs_validate_mount_super(fs_info); 3298 if (ret) { 3299 btrfs_err(fs_info, "superblock contains fatal errors"); 3300 ret = -EINVAL; 3301 goto fail_alloc; 3302 } 3303 3304 if (!btrfs_super_root(disk_super)) { 3305 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3306 ret = -EINVAL; 3307 goto fail_alloc; 3308 } 3309 3310 /* check FS state, whether FS is broken. */ 3311 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3312 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3313 3314 /* Set up fs_info before parsing mount options */ 3315 nodesize = btrfs_super_nodesize(disk_super); 3316 sectorsize = btrfs_super_sectorsize(disk_super); 3317 stripesize = sectorsize; 3318 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3319 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3320 3321 fs_info->nodesize = nodesize; 3322 fs_info->sectorsize = sectorsize; 3323 fs_info->sectorsize_bits = ilog2(sectorsize); 3324 fs_info->sectors_per_page = (PAGE_SIZE >> fs_info->sectorsize_bits); 3325 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3326 fs_info->stripesize = stripesize; 3327 3328 /* 3329 * Handle the space caching options appropriately now that we have the 3330 * super block loaded and validated. 3331 */ 3332 btrfs_set_free_space_cache_settings(fs_info); 3333 3334 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3335 ret = -EINVAL; 3336 goto fail_alloc; 3337 } 3338 3339 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3340 if (ret < 0) 3341 goto fail_alloc; 3342 3343 /* 3344 * At this point our mount options are validated, if we set ->max_inline 3345 * to something non-standard make sure we truncate it to sectorsize. 3346 */ 3347 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3348 3349 if (sectorsize < PAGE_SIZE) 3350 btrfs_warn(fs_info, 3351 "read-write for sector size %u with page size %lu is experimental", 3352 sectorsize, PAGE_SIZE); 3353 3354 ret = btrfs_init_workqueues(fs_info); 3355 if (ret) 3356 goto fail_sb_buffer; 3357 3358 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3359 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3360 3361 /* Update the values for the current filesystem. */ 3362 sb->s_blocksize = sectorsize; 3363 sb->s_blocksize_bits = blksize_bits(sectorsize); 3364 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3365 3366 mutex_lock(&fs_info->chunk_mutex); 3367 ret = btrfs_read_sys_array(fs_info); 3368 mutex_unlock(&fs_info->chunk_mutex); 3369 if (ret) { 3370 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3371 goto fail_sb_buffer; 3372 } 3373 3374 generation = btrfs_super_chunk_root_generation(disk_super); 3375 level = btrfs_super_chunk_root_level(disk_super); 3376 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3377 generation, level); 3378 if (ret) { 3379 btrfs_err(fs_info, "failed to read chunk root"); 3380 goto fail_tree_roots; 3381 } 3382 3383 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3384 offsetof(struct btrfs_header, chunk_tree_uuid), 3385 BTRFS_UUID_SIZE); 3386 3387 ret = btrfs_read_chunk_tree(fs_info); 3388 if (ret) { 3389 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3390 goto fail_tree_roots; 3391 } 3392 3393 /* 3394 * At this point we know all the devices that make this filesystem, 3395 * including the seed devices but we don't know yet if the replace 3396 * target is required. So free devices that are not part of this 3397 * filesystem but skip the replace target device which is checked 3398 * below in btrfs_init_dev_replace(). 3399 */ 3400 btrfs_free_extra_devids(fs_devices); 3401 if (!fs_devices->latest_dev->bdev) { 3402 btrfs_err(fs_info, "failed to read devices"); 3403 ret = -EIO; 3404 goto fail_tree_roots; 3405 } 3406 3407 ret = init_tree_roots(fs_info); 3408 if (ret) 3409 goto fail_tree_roots; 3410 3411 /* 3412 * Get zone type information of zoned block devices. This will also 3413 * handle emulation of a zoned filesystem if a regular device has the 3414 * zoned incompat feature flag set. 3415 */ 3416 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3417 if (ret) { 3418 btrfs_err(fs_info, 3419 "zoned: failed to read device zone info: %d", ret); 3420 goto fail_block_groups; 3421 } 3422 3423 /* 3424 * If we have a uuid root and we're not being told to rescan we need to 3425 * check the generation here so we can set the 3426 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3427 * transaction during a balance or the log replay without updating the 3428 * uuid generation, and then if we crash we would rescan the uuid tree, 3429 * even though it was perfectly fine. 3430 */ 3431 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3432 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3433 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3434 3435 ret = btrfs_verify_dev_extents(fs_info); 3436 if (ret) { 3437 btrfs_err(fs_info, 3438 "failed to verify dev extents against chunks: %d", 3439 ret); 3440 goto fail_block_groups; 3441 } 3442 ret = btrfs_recover_balance(fs_info); 3443 if (ret) { 3444 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3445 goto fail_block_groups; 3446 } 3447 3448 ret = btrfs_init_dev_stats(fs_info); 3449 if (ret) { 3450 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3451 goto fail_block_groups; 3452 } 3453 3454 ret = btrfs_init_dev_replace(fs_info); 3455 if (ret) { 3456 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3457 goto fail_block_groups; 3458 } 3459 3460 ret = btrfs_check_zoned_mode(fs_info); 3461 if (ret) { 3462 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3463 ret); 3464 goto fail_block_groups; 3465 } 3466 3467 ret = btrfs_sysfs_add_fsid(fs_devices); 3468 if (ret) { 3469 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3470 ret); 3471 goto fail_block_groups; 3472 } 3473 3474 ret = btrfs_sysfs_add_mounted(fs_info); 3475 if (ret) { 3476 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3477 goto fail_fsdev_sysfs; 3478 } 3479 3480 ret = btrfs_init_space_info(fs_info); 3481 if (ret) { 3482 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3483 goto fail_sysfs; 3484 } 3485 3486 ret = btrfs_read_block_groups(fs_info); 3487 if (ret) { 3488 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3489 goto fail_sysfs; 3490 } 3491 3492 btrfs_free_zone_cache(fs_info); 3493 3494 btrfs_check_active_zone_reservation(fs_info); 3495 3496 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3497 !btrfs_check_rw_degradable(fs_info, NULL)) { 3498 btrfs_warn(fs_info, 3499 "writable mount is not allowed due to too many missing devices"); 3500 ret = -EINVAL; 3501 goto fail_sysfs; 3502 } 3503 3504 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3505 "btrfs-cleaner"); 3506 if (IS_ERR(fs_info->cleaner_kthread)) { 3507 ret = PTR_ERR(fs_info->cleaner_kthread); 3508 goto fail_sysfs; 3509 } 3510 3511 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3512 tree_root, 3513 "btrfs-transaction"); 3514 if (IS_ERR(fs_info->transaction_kthread)) { 3515 ret = PTR_ERR(fs_info->transaction_kthread); 3516 goto fail_cleaner; 3517 } 3518 3519 ret = btrfs_read_qgroup_config(fs_info); 3520 if (ret) 3521 goto fail_trans_kthread; 3522 3523 if (btrfs_build_ref_tree(fs_info)) 3524 btrfs_err(fs_info, "couldn't build ref tree"); 3525 3526 /* do not make disk changes in broken FS or nologreplay is given */ 3527 if (btrfs_super_log_root(disk_super) != 0 && 3528 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3529 btrfs_info(fs_info, "start tree-log replay"); 3530 ret = btrfs_replay_log(fs_info, fs_devices); 3531 if (ret) 3532 goto fail_qgroup; 3533 } 3534 3535 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3536 if (IS_ERR(fs_info->fs_root)) { 3537 ret = PTR_ERR(fs_info->fs_root); 3538 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3539 fs_info->fs_root = NULL; 3540 goto fail_qgroup; 3541 } 3542 3543 if (sb_rdonly(sb)) 3544 return 0; 3545 3546 ret = btrfs_start_pre_rw_mount(fs_info); 3547 if (ret) { 3548 close_ctree(fs_info); 3549 return ret; 3550 } 3551 btrfs_discard_resume(fs_info); 3552 3553 if (fs_info->uuid_root && 3554 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3555 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3556 btrfs_info(fs_info, "checking UUID tree"); 3557 ret = btrfs_check_uuid_tree(fs_info); 3558 if (ret) { 3559 btrfs_warn(fs_info, 3560 "failed to check the UUID tree: %d", ret); 3561 close_ctree(fs_info); 3562 return ret; 3563 } 3564 } 3565 3566 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3567 3568 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3569 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3570 wake_up_process(fs_info->cleaner_kthread); 3571 3572 return 0; 3573 3574 fail_qgroup: 3575 btrfs_free_qgroup_config(fs_info); 3576 fail_trans_kthread: 3577 kthread_stop(fs_info->transaction_kthread); 3578 btrfs_cleanup_transaction(fs_info); 3579 btrfs_free_fs_roots(fs_info); 3580 fail_cleaner: 3581 kthread_stop(fs_info->cleaner_kthread); 3582 3583 /* 3584 * make sure we're done with the btree inode before we stop our 3585 * kthreads 3586 */ 3587 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3588 3589 fail_sysfs: 3590 btrfs_sysfs_remove_mounted(fs_info); 3591 3592 fail_fsdev_sysfs: 3593 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3594 3595 fail_block_groups: 3596 btrfs_put_block_group_cache(fs_info); 3597 3598 fail_tree_roots: 3599 if (fs_info->data_reloc_root) 3600 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3601 free_root_pointers(fs_info, true); 3602 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3603 3604 fail_sb_buffer: 3605 btrfs_stop_all_workers(fs_info); 3606 btrfs_free_block_groups(fs_info); 3607 fail_alloc: 3608 btrfs_mapping_tree_free(fs_info); 3609 3610 iput(fs_info->btree_inode); 3611 fail: 3612 btrfs_close_devices(fs_info->fs_devices); 3613 ASSERT(ret < 0); 3614 return ret; 3615 } 3616 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3617 3618 static void btrfs_end_super_write(struct bio *bio) 3619 { 3620 struct btrfs_device *device = bio->bi_private; 3621 struct folio_iter fi; 3622 3623 bio_for_each_folio_all(fi, bio) { 3624 if (bio->bi_status) { 3625 btrfs_warn_rl_in_rcu(device->fs_info, 3626 "lost super block write due to IO error on %s (%d)", 3627 btrfs_dev_name(device), 3628 blk_status_to_errno(bio->bi_status)); 3629 btrfs_dev_stat_inc_and_print(device, 3630 BTRFS_DEV_STAT_WRITE_ERRS); 3631 /* Ensure failure if the primary sb fails. */ 3632 if (bio->bi_opf & REQ_FUA) 3633 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR, 3634 &device->sb_write_errors); 3635 else 3636 atomic_inc(&device->sb_write_errors); 3637 } 3638 folio_unlock(fi.folio); 3639 folio_put(fi.folio); 3640 } 3641 3642 bio_put(bio); 3643 } 3644 3645 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3646 int copy_num, bool drop_cache) 3647 { 3648 struct btrfs_super_block *super; 3649 struct page *page; 3650 u64 bytenr, bytenr_orig; 3651 struct address_space *mapping = bdev->bd_mapping; 3652 int ret; 3653 3654 bytenr_orig = btrfs_sb_offset(copy_num); 3655 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3656 if (ret == -ENOENT) 3657 return ERR_PTR(-EINVAL); 3658 else if (ret) 3659 return ERR_PTR(ret); 3660 3661 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3662 return ERR_PTR(-EINVAL); 3663 3664 if (drop_cache) { 3665 /* This should only be called with the primary sb. */ 3666 ASSERT(copy_num == 0); 3667 3668 /* 3669 * Drop the page of the primary superblock, so later read will 3670 * always read from the device. 3671 */ 3672 invalidate_inode_pages2_range(mapping, 3673 bytenr >> PAGE_SHIFT, 3674 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3675 } 3676 3677 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3678 if (IS_ERR(page)) 3679 return ERR_CAST(page); 3680 3681 super = page_address(page); 3682 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3683 btrfs_release_disk_super(super); 3684 return ERR_PTR(-ENODATA); 3685 } 3686 3687 if (btrfs_super_bytenr(super) != bytenr_orig) { 3688 btrfs_release_disk_super(super); 3689 return ERR_PTR(-EINVAL); 3690 } 3691 3692 return super; 3693 } 3694 3695 3696 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3697 { 3698 struct btrfs_super_block *super, *latest = NULL; 3699 int i; 3700 u64 transid = 0; 3701 3702 /* we would like to check all the supers, but that would make 3703 * a btrfs mount succeed after a mkfs from a different FS. 3704 * So, we need to add a special mount option to scan for 3705 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3706 */ 3707 for (i = 0; i < 1; i++) { 3708 super = btrfs_read_dev_one_super(bdev, i, false); 3709 if (IS_ERR(super)) 3710 continue; 3711 3712 if (!latest || btrfs_super_generation(super) > transid) { 3713 if (latest) 3714 btrfs_release_disk_super(super); 3715 3716 latest = super; 3717 transid = btrfs_super_generation(super); 3718 } 3719 } 3720 3721 return super; 3722 } 3723 3724 /* 3725 * Write superblock @sb to the @device. Do not wait for completion, all the 3726 * folios we use for writing are locked. 3727 * 3728 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3729 * the expected device size at commit time. Note that max_mirrors must be 3730 * same for write and wait phases. 3731 * 3732 * Return number of errors when folio is not found or submission fails. 3733 */ 3734 static int write_dev_supers(struct btrfs_device *device, 3735 struct btrfs_super_block *sb, int max_mirrors) 3736 { 3737 struct btrfs_fs_info *fs_info = device->fs_info; 3738 struct address_space *mapping = device->bdev->bd_mapping; 3739 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3740 int i; 3741 int ret; 3742 u64 bytenr, bytenr_orig; 3743 3744 atomic_set(&device->sb_write_errors, 0); 3745 3746 if (max_mirrors == 0) 3747 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3748 3749 shash->tfm = fs_info->csum_shash; 3750 3751 for (i = 0; i < max_mirrors; i++) { 3752 struct folio *folio; 3753 struct bio *bio; 3754 struct btrfs_super_block *disk_super; 3755 size_t offset; 3756 3757 bytenr_orig = btrfs_sb_offset(i); 3758 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3759 if (ret == -ENOENT) { 3760 continue; 3761 } else if (ret < 0) { 3762 btrfs_err(device->fs_info, 3763 "couldn't get super block location for mirror %d", 3764 i); 3765 atomic_inc(&device->sb_write_errors); 3766 continue; 3767 } 3768 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3769 device->commit_total_bytes) 3770 break; 3771 3772 btrfs_set_super_bytenr(sb, bytenr_orig); 3773 3774 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3775 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3776 sb->csum); 3777 3778 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT, 3779 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3780 GFP_NOFS); 3781 if (IS_ERR(folio)) { 3782 btrfs_err(device->fs_info, 3783 "couldn't get super block page for bytenr %llu", 3784 bytenr); 3785 atomic_inc(&device->sb_write_errors); 3786 continue; 3787 } 3788 ASSERT(folio_order(folio) == 0); 3789 3790 offset = offset_in_folio(folio, bytenr); 3791 disk_super = folio_address(folio) + offset; 3792 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3793 3794 /* 3795 * Directly use bios here instead of relying on the page cache 3796 * to do I/O, so we don't lose the ability to do integrity 3797 * checking. 3798 */ 3799 bio = bio_alloc(device->bdev, 1, 3800 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3801 GFP_NOFS); 3802 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3803 bio->bi_private = device; 3804 bio->bi_end_io = btrfs_end_super_write; 3805 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset); 3806 3807 /* 3808 * We FUA only the first super block. The others we allow to 3809 * go down lazy and there's a short window where the on-disk 3810 * copies might still contain the older version. 3811 */ 3812 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3813 bio->bi_opf |= REQ_FUA; 3814 submit_bio(bio); 3815 3816 if (btrfs_advance_sb_log(device, i)) 3817 atomic_inc(&device->sb_write_errors); 3818 } 3819 return atomic_read(&device->sb_write_errors) < i ? 0 : -1; 3820 } 3821 3822 /* 3823 * Wait for write completion of superblocks done by write_dev_supers, 3824 * @max_mirrors same for write and wait phases. 3825 * 3826 * Return -1 if primary super block write failed or when there were no super block 3827 * copies written. Otherwise 0. 3828 */ 3829 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3830 { 3831 int i; 3832 int errors = 0; 3833 bool primary_failed = false; 3834 int ret; 3835 u64 bytenr; 3836 3837 if (max_mirrors == 0) 3838 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3839 3840 for (i = 0; i < max_mirrors; i++) { 3841 struct folio *folio; 3842 3843 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3844 if (ret == -ENOENT) { 3845 break; 3846 } else if (ret < 0) { 3847 errors++; 3848 if (i == 0) 3849 primary_failed = true; 3850 continue; 3851 } 3852 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3853 device->commit_total_bytes) 3854 break; 3855 3856 folio = filemap_get_folio(device->bdev->bd_mapping, 3857 bytenr >> PAGE_SHIFT); 3858 /* If the folio has been removed, then we know it completed. */ 3859 if (IS_ERR(folio)) 3860 continue; 3861 ASSERT(folio_order(folio) == 0); 3862 3863 /* Folio will be unlocked once the write completes. */ 3864 folio_wait_locked(folio); 3865 folio_put(folio); 3866 } 3867 3868 errors += atomic_read(&device->sb_write_errors); 3869 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR) 3870 primary_failed = true; 3871 if (primary_failed) { 3872 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3873 device->devid); 3874 return -1; 3875 } 3876 3877 return errors < i ? 0 : -1; 3878 } 3879 3880 /* 3881 * endio for the write_dev_flush, this will wake anyone waiting 3882 * for the barrier when it is done 3883 */ 3884 static void btrfs_end_empty_barrier(struct bio *bio) 3885 { 3886 bio_uninit(bio); 3887 complete(bio->bi_private); 3888 } 3889 3890 /* 3891 * Submit a flush request to the device if it supports it. Error handling is 3892 * done in the waiting counterpart. 3893 */ 3894 static void write_dev_flush(struct btrfs_device *device) 3895 { 3896 struct bio *bio = &device->flush_bio; 3897 3898 device->last_flush_error = BLK_STS_OK; 3899 3900 bio_init(bio, device->bdev, NULL, 0, 3901 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3902 bio->bi_end_io = btrfs_end_empty_barrier; 3903 init_completion(&device->flush_wait); 3904 bio->bi_private = &device->flush_wait; 3905 submit_bio(bio); 3906 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3907 } 3908 3909 /* 3910 * If the flush bio has been submitted by write_dev_flush, wait for it. 3911 * Return true for any error, and false otherwise. 3912 */ 3913 static bool wait_dev_flush(struct btrfs_device *device) 3914 { 3915 struct bio *bio = &device->flush_bio; 3916 3917 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3918 return false; 3919 3920 wait_for_completion_io(&device->flush_wait); 3921 3922 if (bio->bi_status) { 3923 device->last_flush_error = bio->bi_status; 3924 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3925 return true; 3926 } 3927 3928 return false; 3929 } 3930 3931 /* 3932 * send an empty flush down to each device in parallel, 3933 * then wait for them 3934 */ 3935 static int barrier_all_devices(struct btrfs_fs_info *info) 3936 { 3937 struct list_head *head; 3938 struct btrfs_device *dev; 3939 int errors_wait = 0; 3940 3941 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3942 /* send down all the barriers */ 3943 head = &info->fs_devices->devices; 3944 list_for_each_entry(dev, head, dev_list) { 3945 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3946 continue; 3947 if (!dev->bdev) 3948 continue; 3949 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3950 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3951 continue; 3952 3953 write_dev_flush(dev); 3954 } 3955 3956 /* wait for all the barriers */ 3957 list_for_each_entry(dev, head, dev_list) { 3958 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3959 continue; 3960 if (!dev->bdev) { 3961 errors_wait++; 3962 continue; 3963 } 3964 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3965 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3966 continue; 3967 3968 if (wait_dev_flush(dev)) 3969 errors_wait++; 3970 } 3971 3972 /* 3973 * Checks last_flush_error of disks in order to determine the device 3974 * state. 3975 */ 3976 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3977 return -EIO; 3978 3979 return 0; 3980 } 3981 3982 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3983 { 3984 int raid_type; 3985 int min_tolerated = INT_MAX; 3986 3987 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3988 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3989 min_tolerated = min_t(int, min_tolerated, 3990 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3991 tolerated_failures); 3992 3993 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3994 if (raid_type == BTRFS_RAID_SINGLE) 3995 continue; 3996 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 3997 continue; 3998 min_tolerated = min_t(int, min_tolerated, 3999 btrfs_raid_array[raid_type]. 4000 tolerated_failures); 4001 } 4002 4003 if (min_tolerated == INT_MAX) { 4004 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4005 min_tolerated = 0; 4006 } 4007 4008 return min_tolerated; 4009 } 4010 4011 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4012 { 4013 struct list_head *head; 4014 struct btrfs_device *dev; 4015 struct btrfs_super_block *sb; 4016 struct btrfs_dev_item *dev_item; 4017 int ret; 4018 int do_barriers; 4019 int max_errors; 4020 int total_errors = 0; 4021 u64 flags; 4022 4023 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4024 4025 /* 4026 * max_mirrors == 0 indicates we're from commit_transaction, 4027 * not from fsync where the tree roots in fs_info have not 4028 * been consistent on disk. 4029 */ 4030 if (max_mirrors == 0) 4031 backup_super_roots(fs_info); 4032 4033 sb = fs_info->super_for_commit; 4034 dev_item = &sb->dev_item; 4035 4036 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4037 head = &fs_info->fs_devices->devices; 4038 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4039 4040 if (do_barriers) { 4041 ret = barrier_all_devices(fs_info); 4042 if (ret) { 4043 mutex_unlock( 4044 &fs_info->fs_devices->device_list_mutex); 4045 btrfs_handle_fs_error(fs_info, ret, 4046 "errors while submitting device barriers."); 4047 return ret; 4048 } 4049 } 4050 4051 list_for_each_entry(dev, head, dev_list) { 4052 if (!dev->bdev) { 4053 total_errors++; 4054 continue; 4055 } 4056 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4057 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4058 continue; 4059 4060 btrfs_set_stack_device_generation(dev_item, 0); 4061 btrfs_set_stack_device_type(dev_item, dev->type); 4062 btrfs_set_stack_device_id(dev_item, dev->devid); 4063 btrfs_set_stack_device_total_bytes(dev_item, 4064 dev->commit_total_bytes); 4065 btrfs_set_stack_device_bytes_used(dev_item, 4066 dev->commit_bytes_used); 4067 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4068 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4069 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4070 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4071 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4072 BTRFS_FSID_SIZE); 4073 4074 flags = btrfs_super_flags(sb); 4075 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4076 4077 ret = btrfs_validate_write_super(fs_info, sb); 4078 if (ret < 0) { 4079 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4080 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4081 "unexpected superblock corruption detected"); 4082 return -EUCLEAN; 4083 } 4084 4085 ret = write_dev_supers(dev, sb, max_mirrors); 4086 if (ret) 4087 total_errors++; 4088 } 4089 if (total_errors > max_errors) { 4090 btrfs_err(fs_info, "%d errors while writing supers", 4091 total_errors); 4092 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4093 4094 /* FUA is masked off if unsupported and can't be the reason */ 4095 btrfs_handle_fs_error(fs_info, -EIO, 4096 "%d errors while writing supers", 4097 total_errors); 4098 return -EIO; 4099 } 4100 4101 total_errors = 0; 4102 list_for_each_entry(dev, head, dev_list) { 4103 if (!dev->bdev) 4104 continue; 4105 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4106 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4107 continue; 4108 4109 ret = wait_dev_supers(dev, max_mirrors); 4110 if (ret) 4111 total_errors++; 4112 } 4113 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4114 if (total_errors > max_errors) { 4115 btrfs_handle_fs_error(fs_info, -EIO, 4116 "%d errors while writing supers", 4117 total_errors); 4118 return -EIO; 4119 } 4120 return 0; 4121 } 4122 4123 /* Drop a fs root from the radix tree and free it. */ 4124 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4125 struct btrfs_root *root) 4126 { 4127 bool drop_ref = false; 4128 4129 spin_lock(&fs_info->fs_roots_radix_lock); 4130 radix_tree_delete(&fs_info->fs_roots_radix, 4131 (unsigned long)btrfs_root_id(root)); 4132 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4133 drop_ref = true; 4134 spin_unlock(&fs_info->fs_roots_radix_lock); 4135 4136 if (BTRFS_FS_ERROR(fs_info)) { 4137 ASSERT(root->log_root == NULL); 4138 if (root->reloc_root) { 4139 btrfs_put_root(root->reloc_root); 4140 root->reloc_root = NULL; 4141 } 4142 } 4143 4144 if (drop_ref) 4145 btrfs_put_root(root); 4146 } 4147 4148 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4149 { 4150 mutex_lock(&fs_info->cleaner_mutex); 4151 btrfs_run_delayed_iputs(fs_info); 4152 mutex_unlock(&fs_info->cleaner_mutex); 4153 wake_up_process(fs_info->cleaner_kthread); 4154 4155 /* wait until ongoing cleanup work done */ 4156 down_write(&fs_info->cleanup_work_sem); 4157 up_write(&fs_info->cleanup_work_sem); 4158 4159 return btrfs_commit_current_transaction(fs_info->tree_root); 4160 } 4161 4162 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4163 { 4164 struct btrfs_transaction *trans; 4165 struct btrfs_transaction *tmp; 4166 bool found = false; 4167 4168 /* 4169 * This function is only called at the very end of close_ctree(), 4170 * thus no other running transaction, no need to take trans_lock. 4171 */ 4172 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4173 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4174 struct extent_state *cached = NULL; 4175 u64 dirty_bytes = 0; 4176 u64 cur = 0; 4177 u64 found_start; 4178 u64 found_end; 4179 4180 found = true; 4181 while (find_first_extent_bit(&trans->dirty_pages, cur, 4182 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4183 dirty_bytes += found_end + 1 - found_start; 4184 cur = found_end + 1; 4185 } 4186 btrfs_warn(fs_info, 4187 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4188 trans->transid, dirty_bytes); 4189 btrfs_cleanup_one_transaction(trans, fs_info); 4190 4191 if (trans == fs_info->running_transaction) 4192 fs_info->running_transaction = NULL; 4193 list_del_init(&trans->list); 4194 4195 btrfs_put_transaction(trans); 4196 trace_btrfs_transaction_commit(fs_info); 4197 } 4198 ASSERT(!found); 4199 } 4200 4201 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4202 { 4203 int ret; 4204 4205 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4206 4207 /* 4208 * If we had UNFINISHED_DROPS we could still be processing them, so 4209 * clear that bit and wake up relocation so it can stop. 4210 * We must do this before stopping the block group reclaim task, because 4211 * at btrfs_relocate_block_group() we wait for this bit, and after the 4212 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4213 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4214 * return 1. 4215 */ 4216 btrfs_wake_unfinished_drop(fs_info); 4217 4218 /* 4219 * We may have the reclaim task running and relocating a data block group, 4220 * in which case it may create delayed iputs. So stop it before we park 4221 * the cleaner kthread otherwise we can get new delayed iputs after 4222 * parking the cleaner, and that can make the async reclaim task to hang 4223 * if it's waiting for delayed iputs to complete, since the cleaner is 4224 * parked and can not run delayed iputs - this will make us hang when 4225 * trying to stop the async reclaim task. 4226 */ 4227 cancel_work_sync(&fs_info->reclaim_bgs_work); 4228 /* 4229 * We don't want the cleaner to start new transactions, add more delayed 4230 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4231 * because that frees the task_struct, and the transaction kthread might 4232 * still try to wake up the cleaner. 4233 */ 4234 kthread_park(fs_info->cleaner_kthread); 4235 4236 /* wait for the qgroup rescan worker to stop */ 4237 btrfs_qgroup_wait_for_completion(fs_info, false); 4238 4239 /* wait for the uuid_scan task to finish */ 4240 down(&fs_info->uuid_tree_rescan_sem); 4241 /* avoid complains from lockdep et al., set sem back to initial state */ 4242 up(&fs_info->uuid_tree_rescan_sem); 4243 4244 /* pause restriper - we want to resume on mount */ 4245 btrfs_pause_balance(fs_info); 4246 4247 btrfs_dev_replace_suspend_for_unmount(fs_info); 4248 4249 btrfs_scrub_cancel(fs_info); 4250 4251 /* wait for any defraggers to finish */ 4252 wait_event(fs_info->transaction_wait, 4253 (atomic_read(&fs_info->defrag_running) == 0)); 4254 4255 /* clear out the rbtree of defraggable inodes */ 4256 btrfs_cleanup_defrag_inodes(fs_info); 4257 4258 /* 4259 * Wait for any fixup workers to complete. 4260 * If we don't wait for them here and they are still running by the time 4261 * we call kthread_stop() against the cleaner kthread further below, we 4262 * get an use-after-free on the cleaner because the fixup worker adds an 4263 * inode to the list of delayed iputs and then attempts to wakeup the 4264 * cleaner kthread, which was already stopped and destroyed. We parked 4265 * already the cleaner, but below we run all pending delayed iputs. 4266 */ 4267 btrfs_flush_workqueue(fs_info->fixup_workers); 4268 4269 /* 4270 * After we parked the cleaner kthread, ordered extents may have 4271 * completed and created new delayed iputs. If one of the async reclaim 4272 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4273 * can hang forever trying to stop it, because if a delayed iput is 4274 * added after it ran btrfs_run_delayed_iputs() and before it called 4275 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4276 * no one else to run iputs. 4277 * 4278 * So wait for all ongoing ordered extents to complete and then run 4279 * delayed iputs. This works because once we reach this point no one 4280 * can either create new ordered extents nor create delayed iputs 4281 * through some other means. 4282 * 4283 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4284 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4285 * but the delayed iput for the respective inode is made only when doing 4286 * the final btrfs_put_ordered_extent() (which must happen at 4287 * btrfs_finish_ordered_io() when we are unmounting). 4288 */ 4289 btrfs_flush_workqueue(fs_info->endio_write_workers); 4290 /* Ordered extents for free space inodes. */ 4291 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4292 btrfs_run_delayed_iputs(fs_info); 4293 4294 cancel_work_sync(&fs_info->async_reclaim_work); 4295 cancel_work_sync(&fs_info->async_data_reclaim_work); 4296 cancel_work_sync(&fs_info->preempt_reclaim_work); 4297 4298 /* Cancel or finish ongoing discard work */ 4299 btrfs_discard_cleanup(fs_info); 4300 4301 if (!sb_rdonly(fs_info->sb)) { 4302 /* 4303 * The cleaner kthread is stopped, so do one final pass over 4304 * unused block groups. 4305 */ 4306 btrfs_delete_unused_bgs(fs_info); 4307 4308 /* 4309 * There might be existing delayed inode workers still running 4310 * and holding an empty delayed inode item. We must wait for 4311 * them to complete first because they can create a transaction. 4312 * This happens when someone calls btrfs_balance_delayed_items() 4313 * and then a transaction commit runs the same delayed nodes 4314 * before any delayed worker has done something with the nodes. 4315 * We must wait for any worker here and not at transaction 4316 * commit time since that could cause a deadlock. 4317 * This is a very rare case. 4318 */ 4319 btrfs_flush_workqueue(fs_info->delayed_workers); 4320 4321 ret = btrfs_commit_super(fs_info); 4322 if (ret) 4323 btrfs_err(fs_info, "commit super ret %d", ret); 4324 } 4325 4326 if (BTRFS_FS_ERROR(fs_info)) 4327 btrfs_error_commit_super(fs_info); 4328 4329 kthread_stop(fs_info->transaction_kthread); 4330 kthread_stop(fs_info->cleaner_kthread); 4331 4332 ASSERT(list_empty(&fs_info->delayed_iputs)); 4333 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4334 4335 if (btrfs_check_quota_leak(fs_info)) { 4336 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4337 btrfs_err(fs_info, "qgroup reserved space leaked"); 4338 } 4339 4340 btrfs_free_qgroup_config(fs_info); 4341 ASSERT(list_empty(&fs_info->delalloc_roots)); 4342 4343 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4344 btrfs_info(fs_info, "at unmount delalloc count %lld", 4345 percpu_counter_sum(&fs_info->delalloc_bytes)); 4346 } 4347 4348 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4349 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4350 percpu_counter_sum(&fs_info->ordered_bytes)); 4351 4352 btrfs_sysfs_remove_mounted(fs_info); 4353 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4354 4355 btrfs_put_block_group_cache(fs_info); 4356 4357 /* 4358 * we must make sure there is not any read request to 4359 * submit after we stopping all workers. 4360 */ 4361 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4362 btrfs_stop_all_workers(fs_info); 4363 4364 /* We shouldn't have any transaction open at this point */ 4365 warn_about_uncommitted_trans(fs_info); 4366 4367 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4368 free_root_pointers(fs_info, true); 4369 btrfs_free_fs_roots(fs_info); 4370 4371 /* 4372 * We must free the block groups after dropping the fs_roots as we could 4373 * have had an IO error and have left over tree log blocks that aren't 4374 * cleaned up until the fs roots are freed. This makes the block group 4375 * accounting appear to be wrong because there's pending reserved bytes, 4376 * so make sure we do the block group cleanup afterwards. 4377 */ 4378 btrfs_free_block_groups(fs_info); 4379 4380 iput(fs_info->btree_inode); 4381 4382 btrfs_mapping_tree_free(fs_info); 4383 btrfs_close_devices(fs_info->fs_devices); 4384 } 4385 4386 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4387 struct extent_buffer *buf) 4388 { 4389 struct btrfs_fs_info *fs_info = buf->fs_info; 4390 u64 transid = btrfs_header_generation(buf); 4391 4392 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4393 /* 4394 * This is a fast path so only do this check if we have sanity tests 4395 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4396 * outside of the sanity tests. 4397 */ 4398 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4399 return; 4400 #endif 4401 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4402 ASSERT(trans->transid == fs_info->generation); 4403 btrfs_assert_tree_write_locked(buf); 4404 if (unlikely(transid != fs_info->generation)) { 4405 btrfs_abort_transaction(trans, -EUCLEAN); 4406 btrfs_crit(fs_info, 4407 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4408 buf->start, transid, fs_info->generation); 4409 } 4410 set_extent_buffer_dirty(buf); 4411 } 4412 4413 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4414 int flush_delayed) 4415 { 4416 /* 4417 * looks as though older kernels can get into trouble with 4418 * this code, they end up stuck in balance_dirty_pages forever 4419 */ 4420 int ret; 4421 4422 if (current->flags & PF_MEMALLOC) 4423 return; 4424 4425 if (flush_delayed) 4426 btrfs_balance_delayed_items(fs_info); 4427 4428 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4429 BTRFS_DIRTY_METADATA_THRESH, 4430 fs_info->dirty_metadata_batch); 4431 if (ret > 0) { 4432 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4433 } 4434 } 4435 4436 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4437 { 4438 __btrfs_btree_balance_dirty(fs_info, 1); 4439 } 4440 4441 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4442 { 4443 __btrfs_btree_balance_dirty(fs_info, 0); 4444 } 4445 4446 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4447 { 4448 /* cleanup FS via transaction */ 4449 btrfs_cleanup_transaction(fs_info); 4450 4451 mutex_lock(&fs_info->cleaner_mutex); 4452 btrfs_run_delayed_iputs(fs_info); 4453 mutex_unlock(&fs_info->cleaner_mutex); 4454 4455 down_write(&fs_info->cleanup_work_sem); 4456 up_write(&fs_info->cleanup_work_sem); 4457 } 4458 4459 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4460 { 4461 struct btrfs_root *gang[8]; 4462 u64 root_objectid = 0; 4463 int ret; 4464 4465 spin_lock(&fs_info->fs_roots_radix_lock); 4466 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4467 (void **)gang, root_objectid, 4468 ARRAY_SIZE(gang))) != 0) { 4469 int i; 4470 4471 for (i = 0; i < ret; i++) 4472 gang[i] = btrfs_grab_root(gang[i]); 4473 spin_unlock(&fs_info->fs_roots_radix_lock); 4474 4475 for (i = 0; i < ret; i++) { 4476 if (!gang[i]) 4477 continue; 4478 root_objectid = btrfs_root_id(gang[i]); 4479 btrfs_free_log(NULL, gang[i]); 4480 btrfs_put_root(gang[i]); 4481 } 4482 root_objectid++; 4483 spin_lock(&fs_info->fs_roots_radix_lock); 4484 } 4485 spin_unlock(&fs_info->fs_roots_radix_lock); 4486 btrfs_free_log_root_tree(NULL, fs_info); 4487 } 4488 4489 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4490 { 4491 struct btrfs_ordered_extent *ordered; 4492 4493 spin_lock(&root->ordered_extent_lock); 4494 /* 4495 * This will just short circuit the ordered completion stuff which will 4496 * make sure the ordered extent gets properly cleaned up. 4497 */ 4498 list_for_each_entry(ordered, &root->ordered_extents, 4499 root_extent_list) 4500 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4501 spin_unlock(&root->ordered_extent_lock); 4502 } 4503 4504 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4505 { 4506 struct btrfs_root *root; 4507 LIST_HEAD(splice); 4508 4509 spin_lock(&fs_info->ordered_root_lock); 4510 list_splice_init(&fs_info->ordered_roots, &splice); 4511 while (!list_empty(&splice)) { 4512 root = list_first_entry(&splice, struct btrfs_root, 4513 ordered_root); 4514 list_move_tail(&root->ordered_root, 4515 &fs_info->ordered_roots); 4516 4517 spin_unlock(&fs_info->ordered_root_lock); 4518 btrfs_destroy_ordered_extents(root); 4519 4520 cond_resched(); 4521 spin_lock(&fs_info->ordered_root_lock); 4522 } 4523 spin_unlock(&fs_info->ordered_root_lock); 4524 4525 /* 4526 * We need this here because if we've been flipped read-only we won't 4527 * get sync() from the umount, so we need to make sure any ordered 4528 * extents that haven't had their dirty pages IO start writeout yet 4529 * actually get run and error out properly. 4530 */ 4531 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL); 4532 } 4533 4534 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4535 struct btrfs_fs_info *fs_info) 4536 { 4537 struct rb_node *node; 4538 struct btrfs_delayed_ref_root *delayed_refs = &trans->delayed_refs; 4539 struct btrfs_delayed_ref_node *ref; 4540 4541 spin_lock(&delayed_refs->lock); 4542 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4543 struct btrfs_delayed_ref_head *head; 4544 struct rb_node *n; 4545 bool pin_bytes = false; 4546 4547 head = rb_entry(node, struct btrfs_delayed_ref_head, 4548 href_node); 4549 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4550 continue; 4551 4552 spin_lock(&head->lock); 4553 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4554 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4555 ref_node); 4556 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4557 RB_CLEAR_NODE(&ref->ref_node); 4558 if (!list_empty(&ref->add_list)) 4559 list_del(&ref->add_list); 4560 atomic_dec(&delayed_refs->num_entries); 4561 btrfs_put_delayed_ref(ref); 4562 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 4563 } 4564 if (head->must_insert_reserved) 4565 pin_bytes = true; 4566 btrfs_free_delayed_extent_op(head->extent_op); 4567 btrfs_delete_ref_head(delayed_refs, head); 4568 spin_unlock(&head->lock); 4569 spin_unlock(&delayed_refs->lock); 4570 mutex_unlock(&head->mutex); 4571 4572 if (pin_bytes) { 4573 struct btrfs_block_group *cache; 4574 4575 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4576 BUG_ON(!cache); 4577 4578 spin_lock(&cache->space_info->lock); 4579 spin_lock(&cache->lock); 4580 cache->pinned += head->num_bytes; 4581 btrfs_space_info_update_bytes_pinned(fs_info, 4582 cache->space_info, head->num_bytes); 4583 cache->reserved -= head->num_bytes; 4584 cache->space_info->bytes_reserved -= head->num_bytes; 4585 spin_unlock(&cache->lock); 4586 spin_unlock(&cache->space_info->lock); 4587 4588 btrfs_put_block_group(cache); 4589 4590 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4591 head->bytenr + head->num_bytes - 1); 4592 } 4593 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4594 btrfs_put_delayed_ref_head(head); 4595 cond_resched(); 4596 spin_lock(&delayed_refs->lock); 4597 } 4598 btrfs_qgroup_destroy_extent_records(trans); 4599 4600 spin_unlock(&delayed_refs->lock); 4601 } 4602 4603 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4604 { 4605 struct btrfs_inode *btrfs_inode; 4606 LIST_HEAD(splice); 4607 4608 spin_lock(&root->delalloc_lock); 4609 list_splice_init(&root->delalloc_inodes, &splice); 4610 4611 while (!list_empty(&splice)) { 4612 struct inode *inode = NULL; 4613 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4614 delalloc_inodes); 4615 btrfs_del_delalloc_inode(btrfs_inode); 4616 spin_unlock(&root->delalloc_lock); 4617 4618 /* 4619 * Make sure we get a live inode and that it'll not disappear 4620 * meanwhile. 4621 */ 4622 inode = igrab(&btrfs_inode->vfs_inode); 4623 if (inode) { 4624 unsigned int nofs_flag; 4625 4626 nofs_flag = memalloc_nofs_save(); 4627 invalidate_inode_pages2(inode->i_mapping); 4628 memalloc_nofs_restore(nofs_flag); 4629 iput(inode); 4630 } 4631 spin_lock(&root->delalloc_lock); 4632 } 4633 spin_unlock(&root->delalloc_lock); 4634 } 4635 4636 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4637 { 4638 struct btrfs_root *root; 4639 LIST_HEAD(splice); 4640 4641 spin_lock(&fs_info->delalloc_root_lock); 4642 list_splice_init(&fs_info->delalloc_roots, &splice); 4643 while (!list_empty(&splice)) { 4644 root = list_first_entry(&splice, struct btrfs_root, 4645 delalloc_root); 4646 root = btrfs_grab_root(root); 4647 BUG_ON(!root); 4648 spin_unlock(&fs_info->delalloc_root_lock); 4649 4650 btrfs_destroy_delalloc_inodes(root); 4651 btrfs_put_root(root); 4652 4653 spin_lock(&fs_info->delalloc_root_lock); 4654 } 4655 spin_unlock(&fs_info->delalloc_root_lock); 4656 } 4657 4658 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4659 struct extent_io_tree *dirty_pages, 4660 int mark) 4661 { 4662 struct extent_buffer *eb; 4663 u64 start = 0; 4664 u64 end; 4665 4666 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4667 mark, NULL)) { 4668 clear_extent_bits(dirty_pages, start, end, mark); 4669 while (start <= end) { 4670 eb = find_extent_buffer(fs_info, start); 4671 start += fs_info->nodesize; 4672 if (!eb) 4673 continue; 4674 4675 btrfs_tree_lock(eb); 4676 wait_on_extent_buffer_writeback(eb); 4677 btrfs_clear_buffer_dirty(NULL, eb); 4678 btrfs_tree_unlock(eb); 4679 4680 free_extent_buffer_stale(eb); 4681 } 4682 } 4683 } 4684 4685 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4686 struct extent_io_tree *unpin) 4687 { 4688 u64 start; 4689 u64 end; 4690 4691 while (1) { 4692 struct extent_state *cached_state = NULL; 4693 4694 /* 4695 * The btrfs_finish_extent_commit() may get the same range as 4696 * ours between find_first_extent_bit and clear_extent_dirty. 4697 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4698 * the same extent range. 4699 */ 4700 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4701 if (!find_first_extent_bit(unpin, 0, &start, &end, 4702 EXTENT_DIRTY, &cached_state)) { 4703 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4704 break; 4705 } 4706 4707 clear_extent_dirty(unpin, start, end, &cached_state); 4708 free_extent_state(cached_state); 4709 btrfs_error_unpin_extent_range(fs_info, start, end); 4710 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4711 cond_resched(); 4712 } 4713 } 4714 4715 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4716 { 4717 struct inode *inode; 4718 4719 inode = cache->io_ctl.inode; 4720 if (inode) { 4721 unsigned int nofs_flag; 4722 4723 nofs_flag = memalloc_nofs_save(); 4724 invalidate_inode_pages2(inode->i_mapping); 4725 memalloc_nofs_restore(nofs_flag); 4726 4727 BTRFS_I(inode)->generation = 0; 4728 cache->io_ctl.inode = NULL; 4729 iput(inode); 4730 } 4731 ASSERT(cache->io_ctl.pages == NULL); 4732 btrfs_put_block_group(cache); 4733 } 4734 4735 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4736 struct btrfs_fs_info *fs_info) 4737 { 4738 struct btrfs_block_group *cache; 4739 4740 spin_lock(&cur_trans->dirty_bgs_lock); 4741 while (!list_empty(&cur_trans->dirty_bgs)) { 4742 cache = list_first_entry(&cur_trans->dirty_bgs, 4743 struct btrfs_block_group, 4744 dirty_list); 4745 4746 if (!list_empty(&cache->io_list)) { 4747 spin_unlock(&cur_trans->dirty_bgs_lock); 4748 list_del_init(&cache->io_list); 4749 btrfs_cleanup_bg_io(cache); 4750 spin_lock(&cur_trans->dirty_bgs_lock); 4751 } 4752 4753 list_del_init(&cache->dirty_list); 4754 spin_lock(&cache->lock); 4755 cache->disk_cache_state = BTRFS_DC_ERROR; 4756 spin_unlock(&cache->lock); 4757 4758 spin_unlock(&cur_trans->dirty_bgs_lock); 4759 btrfs_put_block_group(cache); 4760 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4761 spin_lock(&cur_trans->dirty_bgs_lock); 4762 } 4763 spin_unlock(&cur_trans->dirty_bgs_lock); 4764 4765 /* 4766 * Refer to the definition of io_bgs member for details why it's safe 4767 * to use it without any locking 4768 */ 4769 while (!list_empty(&cur_trans->io_bgs)) { 4770 cache = list_first_entry(&cur_trans->io_bgs, 4771 struct btrfs_block_group, 4772 io_list); 4773 4774 list_del_init(&cache->io_list); 4775 spin_lock(&cache->lock); 4776 cache->disk_cache_state = BTRFS_DC_ERROR; 4777 spin_unlock(&cache->lock); 4778 btrfs_cleanup_bg_io(cache); 4779 } 4780 } 4781 4782 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4783 { 4784 struct btrfs_root *gang[8]; 4785 int i; 4786 int ret; 4787 4788 spin_lock(&fs_info->fs_roots_radix_lock); 4789 while (1) { 4790 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4791 (void **)gang, 0, 4792 ARRAY_SIZE(gang), 4793 BTRFS_ROOT_TRANS_TAG); 4794 if (ret == 0) 4795 break; 4796 for (i = 0; i < ret; i++) { 4797 struct btrfs_root *root = gang[i]; 4798 4799 btrfs_qgroup_free_meta_all_pertrans(root); 4800 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4801 (unsigned long)btrfs_root_id(root), 4802 BTRFS_ROOT_TRANS_TAG); 4803 } 4804 } 4805 spin_unlock(&fs_info->fs_roots_radix_lock); 4806 } 4807 4808 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4809 struct btrfs_fs_info *fs_info) 4810 { 4811 struct btrfs_device *dev, *tmp; 4812 4813 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4814 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4815 ASSERT(list_empty(&cur_trans->io_bgs)); 4816 4817 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4818 post_commit_list) { 4819 list_del_init(&dev->post_commit_list); 4820 } 4821 4822 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4823 4824 cur_trans->state = TRANS_STATE_COMMIT_START; 4825 wake_up(&fs_info->transaction_blocked_wait); 4826 4827 cur_trans->state = TRANS_STATE_UNBLOCKED; 4828 wake_up(&fs_info->transaction_wait); 4829 4830 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4831 EXTENT_DIRTY); 4832 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4833 4834 cur_trans->state =TRANS_STATE_COMPLETED; 4835 wake_up(&cur_trans->commit_wait); 4836 } 4837 4838 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4839 { 4840 struct btrfs_transaction *t; 4841 4842 mutex_lock(&fs_info->transaction_kthread_mutex); 4843 4844 spin_lock(&fs_info->trans_lock); 4845 while (!list_empty(&fs_info->trans_list)) { 4846 t = list_first_entry(&fs_info->trans_list, 4847 struct btrfs_transaction, list); 4848 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4849 refcount_inc(&t->use_count); 4850 spin_unlock(&fs_info->trans_lock); 4851 btrfs_wait_for_commit(fs_info, t->transid); 4852 btrfs_put_transaction(t); 4853 spin_lock(&fs_info->trans_lock); 4854 continue; 4855 } 4856 if (t == fs_info->running_transaction) { 4857 t->state = TRANS_STATE_COMMIT_DOING; 4858 spin_unlock(&fs_info->trans_lock); 4859 /* 4860 * We wait for 0 num_writers since we don't hold a trans 4861 * handle open currently for this transaction. 4862 */ 4863 wait_event(t->writer_wait, 4864 atomic_read(&t->num_writers) == 0); 4865 } else { 4866 spin_unlock(&fs_info->trans_lock); 4867 } 4868 btrfs_cleanup_one_transaction(t, fs_info); 4869 4870 spin_lock(&fs_info->trans_lock); 4871 if (t == fs_info->running_transaction) 4872 fs_info->running_transaction = NULL; 4873 list_del_init(&t->list); 4874 spin_unlock(&fs_info->trans_lock); 4875 4876 btrfs_put_transaction(t); 4877 trace_btrfs_transaction_commit(fs_info); 4878 spin_lock(&fs_info->trans_lock); 4879 } 4880 spin_unlock(&fs_info->trans_lock); 4881 btrfs_destroy_all_ordered_extents(fs_info); 4882 btrfs_destroy_delayed_inodes(fs_info); 4883 btrfs_assert_delayed_root_empty(fs_info); 4884 btrfs_destroy_all_delalloc_inodes(fs_info); 4885 btrfs_drop_all_logs(fs_info); 4886 btrfs_free_all_qgroup_pertrans(fs_info); 4887 mutex_unlock(&fs_info->transaction_kthread_mutex); 4888 4889 return 0; 4890 } 4891 4892 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4893 { 4894 struct btrfs_path *path; 4895 int ret; 4896 struct extent_buffer *l; 4897 struct btrfs_key search_key; 4898 struct btrfs_key found_key; 4899 int slot; 4900 4901 path = btrfs_alloc_path(); 4902 if (!path) 4903 return -ENOMEM; 4904 4905 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4906 search_key.type = -1; 4907 search_key.offset = (u64)-1; 4908 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4909 if (ret < 0) 4910 goto error; 4911 if (ret == 0) { 4912 /* 4913 * Key with offset -1 found, there would have to exist a root 4914 * with such id, but this is out of valid range. 4915 */ 4916 ret = -EUCLEAN; 4917 goto error; 4918 } 4919 if (path->slots[0] > 0) { 4920 slot = path->slots[0] - 1; 4921 l = path->nodes[0]; 4922 btrfs_item_key_to_cpu(l, &found_key, slot); 4923 root->free_objectid = max_t(u64, found_key.objectid + 1, 4924 BTRFS_FIRST_FREE_OBJECTID); 4925 } else { 4926 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4927 } 4928 ret = 0; 4929 error: 4930 btrfs_free_path(path); 4931 return ret; 4932 } 4933 4934 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4935 { 4936 int ret; 4937 mutex_lock(&root->objectid_mutex); 4938 4939 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4940 btrfs_warn(root->fs_info, 4941 "the objectid of root %llu reaches its highest value", 4942 btrfs_root_id(root)); 4943 ret = -ENOSPC; 4944 goto out; 4945 } 4946 4947 *objectid = root->free_objectid++; 4948 ret = 0; 4949 out: 4950 mutex_unlock(&root->objectid_mutex); 4951 return ret; 4952 } 4953