1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); 68 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 69 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 70 struct btrfs_fs_info *fs_info); 71 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 72 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 73 struct extent_io_tree *dirty_pages, 74 int mark); 75 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 76 struct extent_io_tree *pinned_extents); 77 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 78 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 79 80 /* 81 * btrfs_end_io_wq structs are used to do processing in task context when an IO 82 * is complete. This is used during reads to verify checksums, and it is used 83 * by writes to insert metadata for new file extents after IO is complete. 84 */ 85 struct btrfs_end_io_wq { 86 struct bio *bio; 87 bio_end_io_t *end_io; 88 void *private; 89 struct btrfs_fs_info *info; 90 int error; 91 enum btrfs_wq_endio_type metadata; 92 struct list_head list; 93 struct btrfs_work work; 94 }; 95 96 static struct kmem_cache *btrfs_end_io_wq_cache; 97 98 int __init btrfs_end_io_wq_init(void) 99 { 100 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 101 sizeof(struct btrfs_end_io_wq), 102 0, 103 SLAB_MEM_SPREAD, 104 NULL); 105 if (!btrfs_end_io_wq_cache) 106 return -ENOMEM; 107 return 0; 108 } 109 110 void btrfs_end_io_wq_exit(void) 111 { 112 kmem_cache_destroy(btrfs_end_io_wq_cache); 113 } 114 115 /* 116 * async submit bios are used to offload expensive checksumming 117 * onto the worker threads. They checksum file and metadata bios 118 * just before they are sent down the IO stack. 119 */ 120 struct async_submit_bio { 121 struct inode *inode; 122 struct bio *bio; 123 struct list_head list; 124 extent_submit_bio_hook_t *submit_bio_start; 125 extent_submit_bio_hook_t *submit_bio_done; 126 int mirror_num; 127 unsigned long bio_flags; 128 /* 129 * bio_offset is optional, can be used if the pages in the bio 130 * can't tell us where in the file the bio should go 131 */ 132 u64 bio_offset; 133 struct btrfs_work work; 134 int error; 135 }; 136 137 /* 138 * Lockdep class keys for extent_buffer->lock's in this root. For a given 139 * eb, the lockdep key is determined by the btrfs_root it belongs to and 140 * the level the eb occupies in the tree. 141 * 142 * Different roots are used for different purposes and may nest inside each 143 * other and they require separate keysets. As lockdep keys should be 144 * static, assign keysets according to the purpose of the root as indicated 145 * by btrfs_root->objectid. This ensures that all special purpose roots 146 * have separate keysets. 147 * 148 * Lock-nesting across peer nodes is always done with the immediate parent 149 * node locked thus preventing deadlock. As lockdep doesn't know this, use 150 * subclass to avoid triggering lockdep warning in such cases. 151 * 152 * The key is set by the readpage_end_io_hook after the buffer has passed 153 * csum validation but before the pages are unlocked. It is also set by 154 * btrfs_init_new_buffer on freshly allocated blocks. 155 * 156 * We also add a check to make sure the highest level of the tree is the 157 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 158 * needs update as well. 159 */ 160 #ifdef CONFIG_DEBUG_LOCK_ALLOC 161 # if BTRFS_MAX_LEVEL != 8 162 # error 163 # endif 164 165 static struct btrfs_lockdep_keyset { 166 u64 id; /* root objectid */ 167 const char *name_stem; /* lock name stem */ 168 char names[BTRFS_MAX_LEVEL + 1][20]; 169 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 170 } btrfs_lockdep_keysets[] = { 171 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 172 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 173 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 174 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 175 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 176 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 177 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 178 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 179 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 180 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 181 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 182 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 183 { .id = 0, .name_stem = "tree" }, 184 }; 185 186 void __init btrfs_init_lockdep(void) 187 { 188 int i, j; 189 190 /* initialize lockdep class names */ 191 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 192 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 193 194 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 195 snprintf(ks->names[j], sizeof(ks->names[j]), 196 "btrfs-%s-%02d", ks->name_stem, j); 197 } 198 } 199 200 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 201 int level) 202 { 203 struct btrfs_lockdep_keyset *ks; 204 205 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 206 207 /* find the matching keyset, id 0 is the default entry */ 208 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 209 if (ks->id == objectid) 210 break; 211 212 lockdep_set_class_and_name(&eb->lock, 213 &ks->keys[level], ks->names[level]); 214 } 215 216 #endif 217 218 /* 219 * extents on the btree inode are pretty simple, there's one extent 220 * that covers the entire device 221 */ 222 static struct extent_map *btree_get_extent(struct btrfs_inode *inode, 223 struct page *page, size_t pg_offset, u64 start, u64 len, 224 int create) 225 { 226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 227 struct extent_map_tree *em_tree = &inode->extent_tree; 228 struct extent_map *em; 229 int ret; 230 231 read_lock(&em_tree->lock); 232 em = lookup_extent_mapping(em_tree, start, len); 233 if (em) { 234 em->bdev = fs_info->fs_devices->latest_bdev; 235 read_unlock(&em_tree->lock); 236 goto out; 237 } 238 read_unlock(&em_tree->lock); 239 240 em = alloc_extent_map(); 241 if (!em) { 242 em = ERR_PTR(-ENOMEM); 243 goto out; 244 } 245 em->start = 0; 246 em->len = (u64)-1; 247 em->block_len = (u64)-1; 248 em->block_start = 0; 249 em->bdev = fs_info->fs_devices->latest_bdev; 250 251 write_lock(&em_tree->lock); 252 ret = add_extent_mapping(em_tree, em, 0); 253 if (ret == -EEXIST) { 254 free_extent_map(em); 255 em = lookup_extent_mapping(em_tree, start, len); 256 if (!em) 257 em = ERR_PTR(-EIO); 258 } else if (ret) { 259 free_extent_map(em); 260 em = ERR_PTR(ret); 261 } 262 write_unlock(&em_tree->lock); 263 264 out: 265 return em; 266 } 267 268 u32 btrfs_csum_data(const char *data, u32 seed, size_t len) 269 { 270 return btrfs_crc32c(seed, data, len); 271 } 272 273 void btrfs_csum_final(u32 crc, u8 *result) 274 { 275 put_unaligned_le32(~crc, result); 276 } 277 278 /* 279 * compute the csum for a btree block, and either verify it or write it 280 * into the csum field of the block. 281 */ 282 static int csum_tree_block(struct btrfs_fs_info *fs_info, 283 struct extent_buffer *buf, 284 int verify) 285 { 286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 287 char *result = NULL; 288 unsigned long len; 289 unsigned long cur_len; 290 unsigned long offset = BTRFS_CSUM_SIZE; 291 char *kaddr; 292 unsigned long map_start; 293 unsigned long map_len; 294 int err; 295 u32 crc = ~(u32)0; 296 unsigned long inline_result; 297 298 len = buf->len - offset; 299 while (len > 0) { 300 err = map_private_extent_buffer(buf, offset, 32, 301 &kaddr, &map_start, &map_len); 302 if (err) 303 return err; 304 cur_len = min(len, map_len - (offset - map_start)); 305 crc = btrfs_csum_data(kaddr + offset - map_start, 306 crc, cur_len); 307 len -= cur_len; 308 offset += cur_len; 309 } 310 if (csum_size > sizeof(inline_result)) { 311 result = kzalloc(csum_size, GFP_NOFS); 312 if (!result) 313 return -ENOMEM; 314 } else { 315 result = (char *)&inline_result; 316 } 317 318 btrfs_csum_final(crc, result); 319 320 if (verify) { 321 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 322 u32 val; 323 u32 found = 0; 324 memcpy(&found, result, csum_size); 325 326 read_extent_buffer(buf, &val, 0, csum_size); 327 btrfs_warn_rl(fs_info, 328 "%s checksum verify failed on %llu wanted %X found %X level %d", 329 fs_info->sb->s_id, buf->start, 330 val, found, btrfs_header_level(buf)); 331 if (result != (char *)&inline_result) 332 kfree(result); 333 return -EUCLEAN; 334 } 335 } else { 336 write_extent_buffer(buf, result, 0, csum_size); 337 } 338 if (result != (char *)&inline_result) 339 kfree(result); 340 return 0; 341 } 342 343 /* 344 * we can't consider a given block up to date unless the transid of the 345 * block matches the transid in the parent node's pointer. This is how we 346 * detect blocks that either didn't get written at all or got written 347 * in the wrong place. 348 */ 349 static int verify_parent_transid(struct extent_io_tree *io_tree, 350 struct extent_buffer *eb, u64 parent_transid, 351 int atomic) 352 { 353 struct extent_state *cached_state = NULL; 354 int ret; 355 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 356 357 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 358 return 0; 359 360 if (atomic) 361 return -EAGAIN; 362 363 if (need_lock) { 364 btrfs_tree_read_lock(eb); 365 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 366 } 367 368 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 369 &cached_state); 370 if (extent_buffer_uptodate(eb) && 371 btrfs_header_generation(eb) == parent_transid) { 372 ret = 0; 373 goto out; 374 } 375 btrfs_err_rl(eb->fs_info, 376 "parent transid verify failed on %llu wanted %llu found %llu", 377 eb->start, 378 parent_transid, btrfs_header_generation(eb)); 379 ret = 1; 380 381 /* 382 * Things reading via commit roots that don't have normal protection, 383 * like send, can have a really old block in cache that may point at a 384 * block that has been freed and re-allocated. So don't clear uptodate 385 * if we find an eb that is under IO (dirty/writeback) because we could 386 * end up reading in the stale data and then writing it back out and 387 * making everybody very sad. 388 */ 389 if (!extent_buffer_under_io(eb)) 390 clear_extent_buffer_uptodate(eb); 391 out: 392 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 393 &cached_state, GFP_NOFS); 394 if (need_lock) 395 btrfs_tree_read_unlock_blocking(eb); 396 return ret; 397 } 398 399 /* 400 * Return 0 if the superblock checksum type matches the checksum value of that 401 * algorithm. Pass the raw disk superblock data. 402 */ 403 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 404 char *raw_disk_sb) 405 { 406 struct btrfs_super_block *disk_sb = 407 (struct btrfs_super_block *)raw_disk_sb; 408 u16 csum_type = btrfs_super_csum_type(disk_sb); 409 int ret = 0; 410 411 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 412 u32 crc = ~(u32)0; 413 const int csum_size = sizeof(crc); 414 char result[csum_size]; 415 416 /* 417 * The super_block structure does not span the whole 418 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 419 * is filled with zeros and is included in the checksum. 420 */ 421 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 422 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 423 btrfs_csum_final(crc, result); 424 425 if (memcmp(raw_disk_sb, result, csum_size)) 426 ret = 1; 427 } 428 429 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 430 btrfs_err(fs_info, "unsupported checksum algorithm %u", 431 csum_type); 432 ret = 1; 433 } 434 435 return ret; 436 } 437 438 /* 439 * helper to read a given tree block, doing retries as required when 440 * the checksums don't match and we have alternate mirrors to try. 441 */ 442 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, 443 struct extent_buffer *eb, 444 u64 parent_transid) 445 { 446 struct extent_io_tree *io_tree; 447 int failed = 0; 448 int ret; 449 int num_copies = 0; 450 int mirror_num = 0; 451 int failed_mirror = 0; 452 453 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 455 while (1) { 456 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, 457 btree_get_extent, mirror_num); 458 if (!ret) { 459 if (!verify_parent_transid(io_tree, eb, 460 parent_transid, 0)) 461 break; 462 else 463 ret = -EIO; 464 } 465 466 /* 467 * This buffer's crc is fine, but its contents are corrupted, so 468 * there is no reason to read the other copies, they won't be 469 * any less wrong. 470 */ 471 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 472 break; 473 474 num_copies = btrfs_num_copies(fs_info, 475 eb->start, eb->len); 476 if (num_copies == 1) 477 break; 478 479 if (!failed_mirror) { 480 failed = 1; 481 failed_mirror = eb->read_mirror; 482 } 483 484 mirror_num++; 485 if (mirror_num == failed_mirror) 486 mirror_num++; 487 488 if (mirror_num > num_copies) 489 break; 490 } 491 492 if (failed && !ret && failed_mirror) 493 repair_eb_io_failure(fs_info, eb, failed_mirror); 494 495 return ret; 496 } 497 498 /* 499 * checksum a dirty tree block before IO. This has extra checks to make sure 500 * we only fill in the checksum field in the first page of a multi-page block 501 */ 502 503 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 504 { 505 u64 start = page_offset(page); 506 u64 found_start; 507 struct extent_buffer *eb; 508 509 eb = (struct extent_buffer *)page->private; 510 if (page != eb->pages[0]) 511 return 0; 512 513 found_start = btrfs_header_bytenr(eb); 514 /* 515 * Please do not consolidate these warnings into a single if. 516 * It is useful to know what went wrong. 517 */ 518 if (WARN_ON(found_start != start)) 519 return -EUCLEAN; 520 if (WARN_ON(!PageUptodate(page))) 521 return -EUCLEAN; 522 523 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 524 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 525 526 return csum_tree_block(fs_info, eb, 0); 527 } 528 529 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 530 struct extent_buffer *eb) 531 { 532 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 533 u8 fsid[BTRFS_UUID_SIZE]; 534 int ret = 1; 535 536 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 537 while (fs_devices) { 538 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 539 ret = 0; 540 break; 541 } 542 fs_devices = fs_devices->seed; 543 } 544 return ret; 545 } 546 547 #define CORRUPT(reason, eb, root, slot) \ 548 btrfs_crit(root->fs_info, \ 549 "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \ 550 btrfs_header_level(eb) == 0 ? "leaf" : "node", \ 551 reason, btrfs_header_bytenr(eb), root->objectid, slot) 552 553 static noinline int check_leaf(struct btrfs_root *root, 554 struct extent_buffer *leaf) 555 { 556 struct btrfs_fs_info *fs_info = root->fs_info; 557 struct btrfs_key key; 558 struct btrfs_key leaf_key; 559 u32 nritems = btrfs_header_nritems(leaf); 560 int slot; 561 562 /* 563 * Extent buffers from a relocation tree have a owner field that 564 * corresponds to the subvolume tree they are based on. So just from an 565 * extent buffer alone we can not find out what is the id of the 566 * corresponding subvolume tree, so we can not figure out if the extent 567 * buffer corresponds to the root of the relocation tree or not. So skip 568 * this check for relocation trees. 569 */ 570 if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { 571 struct btrfs_root *check_root; 572 573 key.objectid = btrfs_header_owner(leaf); 574 key.type = BTRFS_ROOT_ITEM_KEY; 575 key.offset = (u64)-1; 576 577 check_root = btrfs_get_fs_root(fs_info, &key, false); 578 /* 579 * The only reason we also check NULL here is that during 580 * open_ctree() some roots has not yet been set up. 581 */ 582 if (!IS_ERR_OR_NULL(check_root)) { 583 struct extent_buffer *eb; 584 585 eb = btrfs_root_node(check_root); 586 /* if leaf is the root, then it's fine */ 587 if (leaf != eb) { 588 CORRUPT("non-root leaf's nritems is 0", 589 leaf, check_root, 0); 590 free_extent_buffer(eb); 591 return -EIO; 592 } 593 free_extent_buffer(eb); 594 } 595 return 0; 596 } 597 598 if (nritems == 0) 599 return 0; 600 601 /* Check the 0 item */ 602 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 603 BTRFS_LEAF_DATA_SIZE(fs_info)) { 604 CORRUPT("invalid item offset size pair", leaf, root, 0); 605 return -EIO; 606 } 607 608 /* 609 * Check to make sure each items keys are in the correct order and their 610 * offsets make sense. We only have to loop through nritems-1 because 611 * we check the current slot against the next slot, which verifies the 612 * next slot's offset+size makes sense and that the current's slot 613 * offset is correct. 614 */ 615 for (slot = 0; slot < nritems - 1; slot++) { 616 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 617 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 618 619 /* Make sure the keys are in the right order */ 620 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 621 CORRUPT("bad key order", leaf, root, slot); 622 return -EIO; 623 } 624 625 /* 626 * Make sure the offset and ends are right, remember that the 627 * item data starts at the end of the leaf and grows towards the 628 * front. 629 */ 630 if (btrfs_item_offset_nr(leaf, slot) != 631 btrfs_item_end_nr(leaf, slot + 1)) { 632 CORRUPT("slot offset bad", leaf, root, slot); 633 return -EIO; 634 } 635 636 /* 637 * Check to make sure that we don't point outside of the leaf, 638 * just in case all the items are consistent to each other, but 639 * all point outside of the leaf. 640 */ 641 if (btrfs_item_end_nr(leaf, slot) > 642 BTRFS_LEAF_DATA_SIZE(fs_info)) { 643 CORRUPT("slot end outside of leaf", leaf, root, slot); 644 return -EIO; 645 } 646 } 647 648 return 0; 649 } 650 651 static int check_node(struct btrfs_root *root, struct extent_buffer *node) 652 { 653 unsigned long nr = btrfs_header_nritems(node); 654 struct btrfs_key key, next_key; 655 int slot; 656 u64 bytenr; 657 int ret = 0; 658 659 if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) { 660 btrfs_crit(root->fs_info, 661 "corrupt node: block %llu root %llu nritems %lu", 662 node->start, root->objectid, nr); 663 return -EIO; 664 } 665 666 for (slot = 0; slot < nr - 1; slot++) { 667 bytenr = btrfs_node_blockptr(node, slot); 668 btrfs_node_key_to_cpu(node, &key, slot); 669 btrfs_node_key_to_cpu(node, &next_key, slot + 1); 670 671 if (!bytenr) { 672 CORRUPT("invalid item slot", node, root, slot); 673 ret = -EIO; 674 goto out; 675 } 676 677 if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { 678 CORRUPT("bad key order", node, root, slot); 679 ret = -EIO; 680 goto out; 681 } 682 } 683 out: 684 return ret; 685 } 686 687 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 688 u64 phy_offset, struct page *page, 689 u64 start, u64 end, int mirror) 690 { 691 u64 found_start; 692 int found_level; 693 struct extent_buffer *eb; 694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 695 struct btrfs_fs_info *fs_info = root->fs_info; 696 int ret = 0; 697 int reads_done; 698 699 if (!page->private) 700 goto out; 701 702 eb = (struct extent_buffer *)page->private; 703 704 /* the pending IO might have been the only thing that kept this buffer 705 * in memory. Make sure we have a ref for all this other checks 706 */ 707 extent_buffer_get(eb); 708 709 reads_done = atomic_dec_and_test(&eb->io_pages); 710 if (!reads_done) 711 goto err; 712 713 eb->read_mirror = mirror; 714 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 715 ret = -EIO; 716 goto err; 717 } 718 719 found_start = btrfs_header_bytenr(eb); 720 if (found_start != eb->start) { 721 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 722 found_start, eb->start); 723 ret = -EIO; 724 goto err; 725 } 726 if (check_tree_block_fsid(fs_info, eb)) { 727 btrfs_err_rl(fs_info, "bad fsid on block %llu", 728 eb->start); 729 ret = -EIO; 730 goto err; 731 } 732 found_level = btrfs_header_level(eb); 733 if (found_level >= BTRFS_MAX_LEVEL) { 734 btrfs_err(fs_info, "bad tree block level %d", 735 (int)btrfs_header_level(eb)); 736 ret = -EIO; 737 goto err; 738 } 739 740 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 741 eb, found_level); 742 743 ret = csum_tree_block(fs_info, eb, 1); 744 if (ret) 745 goto err; 746 747 /* 748 * If this is a leaf block and it is corrupt, set the corrupt bit so 749 * that we don't try and read the other copies of this block, just 750 * return -EIO. 751 */ 752 if (found_level == 0 && check_leaf(root, eb)) { 753 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 754 ret = -EIO; 755 } 756 757 if (found_level > 0 && check_node(root, eb)) 758 ret = -EIO; 759 760 if (!ret) 761 set_extent_buffer_uptodate(eb); 762 err: 763 if (reads_done && 764 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 765 btree_readahead_hook(fs_info, eb, ret); 766 767 if (ret) { 768 /* 769 * our io error hook is going to dec the io pages 770 * again, we have to make sure it has something 771 * to decrement 772 */ 773 atomic_inc(&eb->io_pages); 774 clear_extent_buffer_uptodate(eb); 775 } 776 free_extent_buffer(eb); 777 out: 778 return ret; 779 } 780 781 static int btree_io_failed_hook(struct page *page, int failed_mirror) 782 { 783 struct extent_buffer *eb; 784 785 eb = (struct extent_buffer *)page->private; 786 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 787 eb->read_mirror = failed_mirror; 788 atomic_dec(&eb->io_pages); 789 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 790 btree_readahead_hook(eb->fs_info, eb, -EIO); 791 return -EIO; /* we fixed nothing */ 792 } 793 794 static void end_workqueue_bio(struct bio *bio) 795 { 796 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 797 struct btrfs_fs_info *fs_info; 798 struct btrfs_workqueue *wq; 799 btrfs_work_func_t func; 800 801 fs_info = end_io_wq->info; 802 end_io_wq->error = bio->bi_error; 803 804 if (bio_op(bio) == REQ_OP_WRITE) { 805 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 806 wq = fs_info->endio_meta_write_workers; 807 func = btrfs_endio_meta_write_helper; 808 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 809 wq = fs_info->endio_freespace_worker; 810 func = btrfs_freespace_write_helper; 811 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 812 wq = fs_info->endio_raid56_workers; 813 func = btrfs_endio_raid56_helper; 814 } else { 815 wq = fs_info->endio_write_workers; 816 func = btrfs_endio_write_helper; 817 } 818 } else { 819 if (unlikely(end_io_wq->metadata == 820 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 821 wq = fs_info->endio_repair_workers; 822 func = btrfs_endio_repair_helper; 823 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 824 wq = fs_info->endio_raid56_workers; 825 func = btrfs_endio_raid56_helper; 826 } else if (end_io_wq->metadata) { 827 wq = fs_info->endio_meta_workers; 828 func = btrfs_endio_meta_helper; 829 } else { 830 wq = fs_info->endio_workers; 831 func = btrfs_endio_helper; 832 } 833 } 834 835 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 836 btrfs_queue_work(wq, &end_io_wq->work); 837 } 838 839 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 840 enum btrfs_wq_endio_type metadata) 841 { 842 struct btrfs_end_io_wq *end_io_wq; 843 844 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 845 if (!end_io_wq) 846 return -ENOMEM; 847 848 end_io_wq->private = bio->bi_private; 849 end_io_wq->end_io = bio->bi_end_io; 850 end_io_wq->info = info; 851 end_io_wq->error = 0; 852 end_io_wq->bio = bio; 853 end_io_wq->metadata = metadata; 854 855 bio->bi_private = end_io_wq; 856 bio->bi_end_io = end_workqueue_bio; 857 return 0; 858 } 859 860 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 861 { 862 unsigned long limit = min_t(unsigned long, 863 info->thread_pool_size, 864 info->fs_devices->open_devices); 865 return 256 * limit; 866 } 867 868 static void run_one_async_start(struct btrfs_work *work) 869 { 870 struct async_submit_bio *async; 871 int ret; 872 873 async = container_of(work, struct async_submit_bio, work); 874 ret = async->submit_bio_start(async->inode, async->bio, 875 async->mirror_num, async->bio_flags, 876 async->bio_offset); 877 if (ret) 878 async->error = ret; 879 } 880 881 static void run_one_async_done(struct btrfs_work *work) 882 { 883 struct btrfs_fs_info *fs_info; 884 struct async_submit_bio *async; 885 int limit; 886 887 async = container_of(work, struct async_submit_bio, work); 888 fs_info = BTRFS_I(async->inode)->root->fs_info; 889 890 limit = btrfs_async_submit_limit(fs_info); 891 limit = limit * 2 / 3; 892 893 /* 894 * atomic_dec_return implies a barrier for waitqueue_active 895 */ 896 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 897 waitqueue_active(&fs_info->async_submit_wait)) 898 wake_up(&fs_info->async_submit_wait); 899 900 /* If an error occurred we just want to clean up the bio and move on */ 901 if (async->error) { 902 async->bio->bi_error = async->error; 903 bio_endio(async->bio); 904 return; 905 } 906 907 async->submit_bio_done(async->inode, async->bio, async->mirror_num, 908 async->bio_flags, async->bio_offset); 909 } 910 911 static void run_one_async_free(struct btrfs_work *work) 912 { 913 struct async_submit_bio *async; 914 915 async = container_of(work, struct async_submit_bio, work); 916 kfree(async); 917 } 918 919 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 920 struct bio *bio, int mirror_num, 921 unsigned long bio_flags, 922 u64 bio_offset, 923 extent_submit_bio_hook_t *submit_bio_start, 924 extent_submit_bio_hook_t *submit_bio_done) 925 { 926 struct async_submit_bio *async; 927 928 async = kmalloc(sizeof(*async), GFP_NOFS); 929 if (!async) 930 return -ENOMEM; 931 932 async->inode = inode; 933 async->bio = bio; 934 async->mirror_num = mirror_num; 935 async->submit_bio_start = submit_bio_start; 936 async->submit_bio_done = submit_bio_done; 937 938 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 939 run_one_async_done, run_one_async_free); 940 941 async->bio_flags = bio_flags; 942 async->bio_offset = bio_offset; 943 944 async->error = 0; 945 946 atomic_inc(&fs_info->nr_async_submits); 947 948 if (op_is_sync(bio->bi_opf)) 949 btrfs_set_work_high_priority(&async->work); 950 951 btrfs_queue_work(fs_info->workers, &async->work); 952 953 while (atomic_read(&fs_info->async_submit_draining) && 954 atomic_read(&fs_info->nr_async_submits)) { 955 wait_event(fs_info->async_submit_wait, 956 (atomic_read(&fs_info->nr_async_submits) == 0)); 957 } 958 959 return 0; 960 } 961 962 static int btree_csum_one_bio(struct bio *bio) 963 { 964 struct bio_vec *bvec; 965 struct btrfs_root *root; 966 int i, ret = 0; 967 968 bio_for_each_segment_all(bvec, bio, i) { 969 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 970 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 971 if (ret) 972 break; 973 } 974 975 return ret; 976 } 977 978 static int __btree_submit_bio_start(struct inode *inode, struct bio *bio, 979 int mirror_num, unsigned long bio_flags, 980 u64 bio_offset) 981 { 982 /* 983 * when we're called for a write, we're already in the async 984 * submission context. Just jump into btrfs_map_bio 985 */ 986 return btree_csum_one_bio(bio); 987 } 988 989 static int __btree_submit_bio_done(struct inode *inode, struct bio *bio, 990 int mirror_num, unsigned long bio_flags, 991 u64 bio_offset) 992 { 993 int ret; 994 995 /* 996 * when we're called for a write, we're already in the async 997 * submission context. Just jump into btrfs_map_bio 998 */ 999 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); 1000 if (ret) { 1001 bio->bi_error = ret; 1002 bio_endio(bio); 1003 } 1004 return ret; 1005 } 1006 1007 static int check_async_write(unsigned long bio_flags) 1008 { 1009 if (bio_flags & EXTENT_BIO_TREE_LOG) 1010 return 0; 1011 #ifdef CONFIG_X86 1012 if (static_cpu_has(X86_FEATURE_XMM4_2)) 1013 return 0; 1014 #endif 1015 return 1; 1016 } 1017 1018 static int btree_submit_bio_hook(struct inode *inode, struct bio *bio, 1019 int mirror_num, unsigned long bio_flags, 1020 u64 bio_offset) 1021 { 1022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1023 int async = check_async_write(bio_flags); 1024 int ret; 1025 1026 if (bio_op(bio) != REQ_OP_WRITE) { 1027 /* 1028 * called for a read, do the setup so that checksum validation 1029 * can happen in the async kernel threads 1030 */ 1031 ret = btrfs_bio_wq_end_io(fs_info, bio, 1032 BTRFS_WQ_ENDIO_METADATA); 1033 if (ret) 1034 goto out_w_error; 1035 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1036 } else if (!async) { 1037 ret = btree_csum_one_bio(bio); 1038 if (ret) 1039 goto out_w_error; 1040 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 1041 } else { 1042 /* 1043 * kthread helpers are used to submit writes so that 1044 * checksumming can happen in parallel across all CPUs 1045 */ 1046 ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0, 1047 bio_offset, 1048 __btree_submit_bio_start, 1049 __btree_submit_bio_done); 1050 } 1051 1052 if (ret) 1053 goto out_w_error; 1054 return 0; 1055 1056 out_w_error: 1057 bio->bi_error = ret; 1058 bio_endio(bio); 1059 return ret; 1060 } 1061 1062 #ifdef CONFIG_MIGRATION 1063 static int btree_migratepage(struct address_space *mapping, 1064 struct page *newpage, struct page *page, 1065 enum migrate_mode mode) 1066 { 1067 /* 1068 * we can't safely write a btree page from here, 1069 * we haven't done the locking hook 1070 */ 1071 if (PageDirty(page)) 1072 return -EAGAIN; 1073 /* 1074 * Buffers may be managed in a filesystem specific way. 1075 * We must have no buffers or drop them. 1076 */ 1077 if (page_has_private(page) && 1078 !try_to_release_page(page, GFP_KERNEL)) 1079 return -EAGAIN; 1080 return migrate_page(mapping, newpage, page, mode); 1081 } 1082 #endif 1083 1084 1085 static int btree_writepages(struct address_space *mapping, 1086 struct writeback_control *wbc) 1087 { 1088 struct btrfs_fs_info *fs_info; 1089 int ret; 1090 1091 if (wbc->sync_mode == WB_SYNC_NONE) { 1092 1093 if (wbc->for_kupdate) 1094 return 0; 1095 1096 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1097 /* this is a bit racy, but that's ok */ 1098 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1099 BTRFS_DIRTY_METADATA_THRESH); 1100 if (ret < 0) 1101 return 0; 1102 } 1103 return btree_write_cache_pages(mapping, wbc); 1104 } 1105 1106 static int btree_readpage(struct file *file, struct page *page) 1107 { 1108 struct extent_io_tree *tree; 1109 tree = &BTRFS_I(page->mapping->host)->io_tree; 1110 return extent_read_full_page(tree, page, btree_get_extent, 0); 1111 } 1112 1113 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1114 { 1115 if (PageWriteback(page) || PageDirty(page)) 1116 return 0; 1117 1118 return try_release_extent_buffer(page); 1119 } 1120 1121 static void btree_invalidatepage(struct page *page, unsigned int offset, 1122 unsigned int length) 1123 { 1124 struct extent_io_tree *tree; 1125 tree = &BTRFS_I(page->mapping->host)->io_tree; 1126 extent_invalidatepage(tree, page, offset); 1127 btree_releasepage(page, GFP_NOFS); 1128 if (PagePrivate(page)) { 1129 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1130 "page private not zero on page %llu", 1131 (unsigned long long)page_offset(page)); 1132 ClearPagePrivate(page); 1133 set_page_private(page, 0); 1134 put_page(page); 1135 } 1136 } 1137 1138 static int btree_set_page_dirty(struct page *page) 1139 { 1140 #ifdef DEBUG 1141 struct extent_buffer *eb; 1142 1143 BUG_ON(!PagePrivate(page)); 1144 eb = (struct extent_buffer *)page->private; 1145 BUG_ON(!eb); 1146 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1147 BUG_ON(!atomic_read(&eb->refs)); 1148 btrfs_assert_tree_locked(eb); 1149 #endif 1150 return __set_page_dirty_nobuffers(page); 1151 } 1152 1153 static const struct address_space_operations btree_aops = { 1154 .readpage = btree_readpage, 1155 .writepages = btree_writepages, 1156 .releasepage = btree_releasepage, 1157 .invalidatepage = btree_invalidatepage, 1158 #ifdef CONFIG_MIGRATION 1159 .migratepage = btree_migratepage, 1160 #endif 1161 .set_page_dirty = btree_set_page_dirty, 1162 }; 1163 1164 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) 1165 { 1166 struct extent_buffer *buf = NULL; 1167 struct inode *btree_inode = fs_info->btree_inode; 1168 1169 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1170 if (IS_ERR(buf)) 1171 return; 1172 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1173 buf, WAIT_NONE, btree_get_extent, 0); 1174 free_extent_buffer(buf); 1175 } 1176 1177 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, 1178 int mirror_num, struct extent_buffer **eb) 1179 { 1180 struct extent_buffer *buf = NULL; 1181 struct inode *btree_inode = fs_info->btree_inode; 1182 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1183 int ret; 1184 1185 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1186 if (IS_ERR(buf)) 1187 return 0; 1188 1189 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1190 1191 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, 1192 btree_get_extent, mirror_num); 1193 if (ret) { 1194 free_extent_buffer(buf); 1195 return ret; 1196 } 1197 1198 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1199 free_extent_buffer(buf); 1200 return -EIO; 1201 } else if (extent_buffer_uptodate(buf)) { 1202 *eb = buf; 1203 } else { 1204 free_extent_buffer(buf); 1205 } 1206 return 0; 1207 } 1208 1209 struct extent_buffer *btrfs_find_create_tree_block( 1210 struct btrfs_fs_info *fs_info, 1211 u64 bytenr) 1212 { 1213 if (btrfs_is_testing(fs_info)) 1214 return alloc_test_extent_buffer(fs_info, bytenr); 1215 return alloc_extent_buffer(fs_info, bytenr); 1216 } 1217 1218 1219 int btrfs_write_tree_block(struct extent_buffer *buf) 1220 { 1221 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1222 buf->start + buf->len - 1); 1223 } 1224 1225 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1226 { 1227 return filemap_fdatawait_range(buf->pages[0]->mapping, 1228 buf->start, buf->start + buf->len - 1); 1229 } 1230 1231 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 1232 u64 parent_transid) 1233 { 1234 struct extent_buffer *buf = NULL; 1235 int ret; 1236 1237 buf = btrfs_find_create_tree_block(fs_info, bytenr); 1238 if (IS_ERR(buf)) 1239 return buf; 1240 1241 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 1242 if (ret) { 1243 free_extent_buffer(buf); 1244 return ERR_PTR(ret); 1245 } 1246 return buf; 1247 1248 } 1249 1250 void clean_tree_block(struct btrfs_fs_info *fs_info, 1251 struct extent_buffer *buf) 1252 { 1253 if (btrfs_header_generation(buf) == 1254 fs_info->running_transaction->transid) { 1255 btrfs_assert_tree_locked(buf); 1256 1257 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1258 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1259 -buf->len, 1260 fs_info->dirty_metadata_batch); 1261 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1262 btrfs_set_lock_blocking(buf); 1263 clear_extent_buffer_dirty(buf); 1264 } 1265 } 1266 } 1267 1268 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1269 { 1270 struct btrfs_subvolume_writers *writers; 1271 int ret; 1272 1273 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1274 if (!writers) 1275 return ERR_PTR(-ENOMEM); 1276 1277 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1278 if (ret < 0) { 1279 kfree(writers); 1280 return ERR_PTR(ret); 1281 } 1282 1283 init_waitqueue_head(&writers->wait); 1284 return writers; 1285 } 1286 1287 static void 1288 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1289 { 1290 percpu_counter_destroy(&writers->counter); 1291 kfree(writers); 1292 } 1293 1294 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1295 u64 objectid) 1296 { 1297 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 1298 root->node = NULL; 1299 root->commit_root = NULL; 1300 root->state = 0; 1301 root->orphan_cleanup_state = 0; 1302 1303 root->objectid = objectid; 1304 root->last_trans = 0; 1305 root->highest_objectid = 0; 1306 root->nr_delalloc_inodes = 0; 1307 root->nr_ordered_extents = 0; 1308 root->name = NULL; 1309 root->inode_tree = RB_ROOT; 1310 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1311 root->block_rsv = NULL; 1312 root->orphan_block_rsv = NULL; 1313 1314 INIT_LIST_HEAD(&root->dirty_list); 1315 INIT_LIST_HEAD(&root->root_list); 1316 INIT_LIST_HEAD(&root->delalloc_inodes); 1317 INIT_LIST_HEAD(&root->delalloc_root); 1318 INIT_LIST_HEAD(&root->ordered_extents); 1319 INIT_LIST_HEAD(&root->ordered_root); 1320 INIT_LIST_HEAD(&root->logged_list[0]); 1321 INIT_LIST_HEAD(&root->logged_list[1]); 1322 spin_lock_init(&root->orphan_lock); 1323 spin_lock_init(&root->inode_lock); 1324 spin_lock_init(&root->delalloc_lock); 1325 spin_lock_init(&root->ordered_extent_lock); 1326 spin_lock_init(&root->accounting_lock); 1327 spin_lock_init(&root->log_extents_lock[0]); 1328 spin_lock_init(&root->log_extents_lock[1]); 1329 mutex_init(&root->objectid_mutex); 1330 mutex_init(&root->log_mutex); 1331 mutex_init(&root->ordered_extent_mutex); 1332 mutex_init(&root->delalloc_mutex); 1333 init_waitqueue_head(&root->log_writer_wait); 1334 init_waitqueue_head(&root->log_commit_wait[0]); 1335 init_waitqueue_head(&root->log_commit_wait[1]); 1336 INIT_LIST_HEAD(&root->log_ctxs[0]); 1337 INIT_LIST_HEAD(&root->log_ctxs[1]); 1338 atomic_set(&root->log_commit[0], 0); 1339 atomic_set(&root->log_commit[1], 0); 1340 atomic_set(&root->log_writers, 0); 1341 atomic_set(&root->log_batch, 0); 1342 atomic_set(&root->orphan_inodes, 0); 1343 atomic_set(&root->refs, 1); 1344 atomic_set(&root->will_be_snapshoted, 0); 1345 atomic64_set(&root->qgroup_meta_rsv, 0); 1346 root->log_transid = 0; 1347 root->log_transid_committed = -1; 1348 root->last_log_commit = 0; 1349 if (!dummy) 1350 extent_io_tree_init(&root->dirty_log_pages, 1351 fs_info->btree_inode->i_mapping); 1352 1353 memset(&root->root_key, 0, sizeof(root->root_key)); 1354 memset(&root->root_item, 0, sizeof(root->root_item)); 1355 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1356 if (!dummy) 1357 root->defrag_trans_start = fs_info->generation; 1358 else 1359 root->defrag_trans_start = 0; 1360 root->root_key.objectid = objectid; 1361 root->anon_dev = 0; 1362 1363 spin_lock_init(&root->root_item_lock); 1364 } 1365 1366 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1367 gfp_t flags) 1368 { 1369 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1370 if (root) 1371 root->fs_info = fs_info; 1372 return root; 1373 } 1374 1375 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1376 /* Should only be used by the testing infrastructure */ 1377 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 1378 { 1379 struct btrfs_root *root; 1380 1381 if (!fs_info) 1382 return ERR_PTR(-EINVAL); 1383 1384 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1385 if (!root) 1386 return ERR_PTR(-ENOMEM); 1387 1388 /* We don't use the stripesize in selftest, set it as sectorsize */ 1389 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 1390 root->alloc_bytenr = 0; 1391 1392 return root; 1393 } 1394 #endif 1395 1396 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1397 struct btrfs_fs_info *fs_info, 1398 u64 objectid) 1399 { 1400 struct extent_buffer *leaf; 1401 struct btrfs_root *tree_root = fs_info->tree_root; 1402 struct btrfs_root *root; 1403 struct btrfs_key key; 1404 int ret = 0; 1405 uuid_le uuid; 1406 1407 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1408 if (!root) 1409 return ERR_PTR(-ENOMEM); 1410 1411 __setup_root(root, fs_info, objectid); 1412 root->root_key.objectid = objectid; 1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1414 root->root_key.offset = 0; 1415 1416 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1417 if (IS_ERR(leaf)) { 1418 ret = PTR_ERR(leaf); 1419 leaf = NULL; 1420 goto fail; 1421 } 1422 1423 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1424 btrfs_set_header_bytenr(leaf, leaf->start); 1425 btrfs_set_header_generation(leaf, trans->transid); 1426 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1427 btrfs_set_header_owner(leaf, objectid); 1428 root->node = leaf; 1429 1430 write_extent_buffer_fsid(leaf, fs_info->fsid); 1431 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 1432 btrfs_mark_buffer_dirty(leaf); 1433 1434 root->commit_root = btrfs_root_node(root); 1435 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1436 1437 root->root_item.flags = 0; 1438 root->root_item.byte_limit = 0; 1439 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1440 btrfs_set_root_generation(&root->root_item, trans->transid); 1441 btrfs_set_root_level(&root->root_item, 0); 1442 btrfs_set_root_refs(&root->root_item, 1); 1443 btrfs_set_root_used(&root->root_item, leaf->len); 1444 btrfs_set_root_last_snapshot(&root->root_item, 0); 1445 btrfs_set_root_dirid(&root->root_item, 0); 1446 uuid_le_gen(&uuid); 1447 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1448 root->root_item.drop_level = 0; 1449 1450 key.objectid = objectid; 1451 key.type = BTRFS_ROOT_ITEM_KEY; 1452 key.offset = 0; 1453 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1454 if (ret) 1455 goto fail; 1456 1457 btrfs_tree_unlock(leaf); 1458 1459 return root; 1460 1461 fail: 1462 if (leaf) { 1463 btrfs_tree_unlock(leaf); 1464 free_extent_buffer(root->commit_root); 1465 free_extent_buffer(leaf); 1466 } 1467 kfree(root); 1468 1469 return ERR_PTR(ret); 1470 } 1471 1472 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1473 struct btrfs_fs_info *fs_info) 1474 { 1475 struct btrfs_root *root; 1476 struct extent_buffer *leaf; 1477 1478 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1479 if (!root) 1480 return ERR_PTR(-ENOMEM); 1481 1482 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1483 1484 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1485 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1486 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1487 1488 /* 1489 * DON'T set REF_COWS for log trees 1490 * 1491 * log trees do not get reference counted because they go away 1492 * before a real commit is actually done. They do store pointers 1493 * to file data extents, and those reference counts still get 1494 * updated (along with back refs to the log tree). 1495 */ 1496 1497 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1498 NULL, 0, 0, 0); 1499 if (IS_ERR(leaf)) { 1500 kfree(root); 1501 return ERR_CAST(leaf); 1502 } 1503 1504 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 1505 btrfs_set_header_bytenr(leaf, leaf->start); 1506 btrfs_set_header_generation(leaf, trans->transid); 1507 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1508 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1509 root->node = leaf; 1510 1511 write_extent_buffer_fsid(root->node, fs_info->fsid); 1512 btrfs_mark_buffer_dirty(root->node); 1513 btrfs_tree_unlock(root->node); 1514 return root; 1515 } 1516 1517 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1518 struct btrfs_fs_info *fs_info) 1519 { 1520 struct btrfs_root *log_root; 1521 1522 log_root = alloc_log_tree(trans, fs_info); 1523 if (IS_ERR(log_root)) 1524 return PTR_ERR(log_root); 1525 WARN_ON(fs_info->log_root_tree); 1526 fs_info->log_root_tree = log_root; 1527 return 0; 1528 } 1529 1530 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1531 struct btrfs_root *root) 1532 { 1533 struct btrfs_fs_info *fs_info = root->fs_info; 1534 struct btrfs_root *log_root; 1535 struct btrfs_inode_item *inode_item; 1536 1537 log_root = alloc_log_tree(trans, fs_info); 1538 if (IS_ERR(log_root)) 1539 return PTR_ERR(log_root); 1540 1541 log_root->last_trans = trans->transid; 1542 log_root->root_key.offset = root->root_key.objectid; 1543 1544 inode_item = &log_root->root_item.inode; 1545 btrfs_set_stack_inode_generation(inode_item, 1); 1546 btrfs_set_stack_inode_size(inode_item, 3); 1547 btrfs_set_stack_inode_nlink(inode_item, 1); 1548 btrfs_set_stack_inode_nbytes(inode_item, 1549 fs_info->nodesize); 1550 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1551 1552 btrfs_set_root_node(&log_root->root_item, log_root->node); 1553 1554 WARN_ON(root->log_root); 1555 root->log_root = log_root; 1556 root->log_transid = 0; 1557 root->log_transid_committed = -1; 1558 root->last_log_commit = 0; 1559 return 0; 1560 } 1561 1562 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1563 struct btrfs_key *key) 1564 { 1565 struct btrfs_root *root; 1566 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1567 struct btrfs_path *path; 1568 u64 generation; 1569 int ret; 1570 1571 path = btrfs_alloc_path(); 1572 if (!path) 1573 return ERR_PTR(-ENOMEM); 1574 1575 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1576 if (!root) { 1577 ret = -ENOMEM; 1578 goto alloc_fail; 1579 } 1580 1581 __setup_root(root, fs_info, key->objectid); 1582 1583 ret = btrfs_find_root(tree_root, key, path, 1584 &root->root_item, &root->root_key); 1585 if (ret) { 1586 if (ret > 0) 1587 ret = -ENOENT; 1588 goto find_fail; 1589 } 1590 1591 generation = btrfs_root_generation(&root->root_item); 1592 root->node = read_tree_block(fs_info, 1593 btrfs_root_bytenr(&root->root_item), 1594 generation); 1595 if (IS_ERR(root->node)) { 1596 ret = PTR_ERR(root->node); 1597 goto find_fail; 1598 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1599 ret = -EIO; 1600 free_extent_buffer(root->node); 1601 goto find_fail; 1602 } 1603 root->commit_root = btrfs_root_node(root); 1604 out: 1605 btrfs_free_path(path); 1606 return root; 1607 1608 find_fail: 1609 kfree(root); 1610 alloc_fail: 1611 root = ERR_PTR(ret); 1612 goto out; 1613 } 1614 1615 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1616 struct btrfs_key *location) 1617 { 1618 struct btrfs_root *root; 1619 1620 root = btrfs_read_tree_root(tree_root, location); 1621 if (IS_ERR(root)) 1622 return root; 1623 1624 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1625 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1626 btrfs_check_and_init_root_item(&root->root_item); 1627 } 1628 1629 return root; 1630 } 1631 1632 int btrfs_init_fs_root(struct btrfs_root *root) 1633 { 1634 int ret; 1635 struct btrfs_subvolume_writers *writers; 1636 1637 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1638 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1639 GFP_NOFS); 1640 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1641 ret = -ENOMEM; 1642 goto fail; 1643 } 1644 1645 writers = btrfs_alloc_subvolume_writers(); 1646 if (IS_ERR(writers)) { 1647 ret = PTR_ERR(writers); 1648 goto fail; 1649 } 1650 root->subv_writers = writers; 1651 1652 btrfs_init_free_ino_ctl(root); 1653 spin_lock_init(&root->ino_cache_lock); 1654 init_waitqueue_head(&root->ino_cache_wait); 1655 1656 ret = get_anon_bdev(&root->anon_dev); 1657 if (ret) 1658 goto fail; 1659 1660 mutex_lock(&root->objectid_mutex); 1661 ret = btrfs_find_highest_objectid(root, 1662 &root->highest_objectid); 1663 if (ret) { 1664 mutex_unlock(&root->objectid_mutex); 1665 goto fail; 1666 } 1667 1668 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1669 1670 mutex_unlock(&root->objectid_mutex); 1671 1672 return 0; 1673 fail: 1674 /* the caller is responsible to call free_fs_root */ 1675 return ret; 1676 } 1677 1678 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1679 u64 root_id) 1680 { 1681 struct btrfs_root *root; 1682 1683 spin_lock(&fs_info->fs_roots_radix_lock); 1684 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1685 (unsigned long)root_id); 1686 spin_unlock(&fs_info->fs_roots_radix_lock); 1687 return root; 1688 } 1689 1690 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1691 struct btrfs_root *root) 1692 { 1693 int ret; 1694 1695 ret = radix_tree_preload(GFP_NOFS); 1696 if (ret) 1697 return ret; 1698 1699 spin_lock(&fs_info->fs_roots_radix_lock); 1700 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1701 (unsigned long)root->root_key.objectid, 1702 root); 1703 if (ret == 0) 1704 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1705 spin_unlock(&fs_info->fs_roots_radix_lock); 1706 radix_tree_preload_end(); 1707 1708 return ret; 1709 } 1710 1711 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1712 struct btrfs_key *location, 1713 bool check_ref) 1714 { 1715 struct btrfs_root *root; 1716 struct btrfs_path *path; 1717 struct btrfs_key key; 1718 int ret; 1719 1720 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1721 return fs_info->tree_root; 1722 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1723 return fs_info->extent_root; 1724 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1725 return fs_info->chunk_root; 1726 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1727 return fs_info->dev_root; 1728 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1729 return fs_info->csum_root; 1730 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1731 return fs_info->quota_root ? fs_info->quota_root : 1732 ERR_PTR(-ENOENT); 1733 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1734 return fs_info->uuid_root ? fs_info->uuid_root : 1735 ERR_PTR(-ENOENT); 1736 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1737 return fs_info->free_space_root ? fs_info->free_space_root : 1738 ERR_PTR(-ENOENT); 1739 again: 1740 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1741 if (root) { 1742 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1743 return ERR_PTR(-ENOENT); 1744 return root; 1745 } 1746 1747 root = btrfs_read_fs_root(fs_info->tree_root, location); 1748 if (IS_ERR(root)) 1749 return root; 1750 1751 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1752 ret = -ENOENT; 1753 goto fail; 1754 } 1755 1756 ret = btrfs_init_fs_root(root); 1757 if (ret) 1758 goto fail; 1759 1760 path = btrfs_alloc_path(); 1761 if (!path) { 1762 ret = -ENOMEM; 1763 goto fail; 1764 } 1765 key.objectid = BTRFS_ORPHAN_OBJECTID; 1766 key.type = BTRFS_ORPHAN_ITEM_KEY; 1767 key.offset = location->objectid; 1768 1769 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1770 btrfs_free_path(path); 1771 if (ret < 0) 1772 goto fail; 1773 if (ret == 0) 1774 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1775 1776 ret = btrfs_insert_fs_root(fs_info, root); 1777 if (ret) { 1778 if (ret == -EEXIST) { 1779 free_fs_root(root); 1780 goto again; 1781 } 1782 goto fail; 1783 } 1784 return root; 1785 fail: 1786 free_fs_root(root); 1787 return ERR_PTR(ret); 1788 } 1789 1790 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1791 { 1792 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1793 int ret = 0; 1794 struct btrfs_device *device; 1795 struct backing_dev_info *bdi; 1796 1797 rcu_read_lock(); 1798 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1799 if (!device->bdev) 1800 continue; 1801 bdi = device->bdev->bd_bdi; 1802 if (bdi_congested(bdi, bdi_bits)) { 1803 ret = 1; 1804 break; 1805 } 1806 } 1807 rcu_read_unlock(); 1808 return ret; 1809 } 1810 1811 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1812 { 1813 int err; 1814 1815 err = bdi_setup_and_register(bdi, "btrfs"); 1816 if (err) 1817 return err; 1818 1819 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1820 bdi->congested_fn = btrfs_congested_fn; 1821 bdi->congested_data = info; 1822 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1823 return 0; 1824 } 1825 1826 /* 1827 * called by the kthread helper functions to finally call the bio end_io 1828 * functions. This is where read checksum verification actually happens 1829 */ 1830 static void end_workqueue_fn(struct btrfs_work *work) 1831 { 1832 struct bio *bio; 1833 struct btrfs_end_io_wq *end_io_wq; 1834 1835 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1836 bio = end_io_wq->bio; 1837 1838 bio->bi_error = end_io_wq->error; 1839 bio->bi_private = end_io_wq->private; 1840 bio->bi_end_io = end_io_wq->end_io; 1841 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1842 bio_endio(bio); 1843 } 1844 1845 static int cleaner_kthread(void *arg) 1846 { 1847 struct btrfs_root *root = arg; 1848 struct btrfs_fs_info *fs_info = root->fs_info; 1849 int again; 1850 struct btrfs_trans_handle *trans; 1851 1852 do { 1853 again = 0; 1854 1855 /* Make the cleaner go to sleep early. */ 1856 if (btrfs_need_cleaner_sleep(fs_info)) 1857 goto sleep; 1858 1859 /* 1860 * Do not do anything if we might cause open_ctree() to block 1861 * before we have finished mounting the filesystem. 1862 */ 1863 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1864 goto sleep; 1865 1866 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1867 goto sleep; 1868 1869 /* 1870 * Avoid the problem that we change the status of the fs 1871 * during the above check and trylock. 1872 */ 1873 if (btrfs_need_cleaner_sleep(fs_info)) { 1874 mutex_unlock(&fs_info->cleaner_mutex); 1875 goto sleep; 1876 } 1877 1878 mutex_lock(&fs_info->cleaner_delayed_iput_mutex); 1879 btrfs_run_delayed_iputs(fs_info); 1880 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); 1881 1882 again = btrfs_clean_one_deleted_snapshot(root); 1883 mutex_unlock(&fs_info->cleaner_mutex); 1884 1885 /* 1886 * The defragger has dealt with the R/O remount and umount, 1887 * needn't do anything special here. 1888 */ 1889 btrfs_run_defrag_inodes(fs_info); 1890 1891 /* 1892 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1893 * with relocation (btrfs_relocate_chunk) and relocation 1894 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1895 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1896 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1897 * unused block groups. 1898 */ 1899 btrfs_delete_unused_bgs(fs_info); 1900 sleep: 1901 if (!again) { 1902 set_current_state(TASK_INTERRUPTIBLE); 1903 if (!kthread_should_stop()) 1904 schedule(); 1905 __set_current_state(TASK_RUNNING); 1906 } 1907 } while (!kthread_should_stop()); 1908 1909 /* 1910 * Transaction kthread is stopped before us and wakes us up. 1911 * However we might have started a new transaction and COWed some 1912 * tree blocks when deleting unused block groups for example. So 1913 * make sure we commit the transaction we started to have a clean 1914 * shutdown when evicting the btree inode - if it has dirty pages 1915 * when we do the final iput() on it, eviction will trigger a 1916 * writeback for it which will fail with null pointer dereferences 1917 * since work queues and other resources were already released and 1918 * destroyed by the time the iput/eviction/writeback is made. 1919 */ 1920 trans = btrfs_attach_transaction(root); 1921 if (IS_ERR(trans)) { 1922 if (PTR_ERR(trans) != -ENOENT) 1923 btrfs_err(fs_info, 1924 "cleaner transaction attach returned %ld", 1925 PTR_ERR(trans)); 1926 } else { 1927 int ret; 1928 1929 ret = btrfs_commit_transaction(trans); 1930 if (ret) 1931 btrfs_err(fs_info, 1932 "cleaner open transaction commit returned %d", 1933 ret); 1934 } 1935 1936 return 0; 1937 } 1938 1939 static int transaction_kthread(void *arg) 1940 { 1941 struct btrfs_root *root = arg; 1942 struct btrfs_fs_info *fs_info = root->fs_info; 1943 struct btrfs_trans_handle *trans; 1944 struct btrfs_transaction *cur; 1945 u64 transid; 1946 unsigned long now; 1947 unsigned long delay; 1948 bool cannot_commit; 1949 1950 do { 1951 cannot_commit = false; 1952 delay = HZ * fs_info->commit_interval; 1953 mutex_lock(&fs_info->transaction_kthread_mutex); 1954 1955 spin_lock(&fs_info->trans_lock); 1956 cur = fs_info->running_transaction; 1957 if (!cur) { 1958 spin_unlock(&fs_info->trans_lock); 1959 goto sleep; 1960 } 1961 1962 now = get_seconds(); 1963 if (cur->state < TRANS_STATE_BLOCKED && 1964 (now < cur->start_time || 1965 now - cur->start_time < fs_info->commit_interval)) { 1966 spin_unlock(&fs_info->trans_lock); 1967 delay = HZ * 5; 1968 goto sleep; 1969 } 1970 transid = cur->transid; 1971 spin_unlock(&fs_info->trans_lock); 1972 1973 /* If the file system is aborted, this will always fail. */ 1974 trans = btrfs_attach_transaction(root); 1975 if (IS_ERR(trans)) { 1976 if (PTR_ERR(trans) != -ENOENT) 1977 cannot_commit = true; 1978 goto sleep; 1979 } 1980 if (transid == trans->transid) { 1981 btrfs_commit_transaction(trans); 1982 } else { 1983 btrfs_end_transaction(trans); 1984 } 1985 sleep: 1986 wake_up_process(fs_info->cleaner_kthread); 1987 mutex_unlock(&fs_info->transaction_kthread_mutex); 1988 1989 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1990 &fs_info->fs_state))) 1991 btrfs_cleanup_transaction(fs_info); 1992 set_current_state(TASK_INTERRUPTIBLE); 1993 if (!kthread_should_stop() && 1994 (!btrfs_transaction_blocked(fs_info) || 1995 cannot_commit)) 1996 schedule_timeout(delay); 1997 __set_current_state(TASK_RUNNING); 1998 } while (!kthread_should_stop()); 1999 return 0; 2000 } 2001 2002 /* 2003 * this will find the highest generation in the array of 2004 * root backups. The index of the highest array is returned, 2005 * or -1 if we can't find anything. 2006 * 2007 * We check to make sure the array is valid by comparing the 2008 * generation of the latest root in the array with the generation 2009 * in the super block. If they don't match we pitch it. 2010 */ 2011 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 2012 { 2013 u64 cur; 2014 int newest_index = -1; 2015 struct btrfs_root_backup *root_backup; 2016 int i; 2017 2018 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2019 root_backup = info->super_copy->super_roots + i; 2020 cur = btrfs_backup_tree_root_gen(root_backup); 2021 if (cur == newest_gen) 2022 newest_index = i; 2023 } 2024 2025 /* check to see if we actually wrapped around */ 2026 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 2027 root_backup = info->super_copy->super_roots; 2028 cur = btrfs_backup_tree_root_gen(root_backup); 2029 if (cur == newest_gen) 2030 newest_index = 0; 2031 } 2032 return newest_index; 2033 } 2034 2035 2036 /* 2037 * find the oldest backup so we know where to store new entries 2038 * in the backup array. This will set the backup_root_index 2039 * field in the fs_info struct 2040 */ 2041 static void find_oldest_super_backup(struct btrfs_fs_info *info, 2042 u64 newest_gen) 2043 { 2044 int newest_index = -1; 2045 2046 newest_index = find_newest_super_backup(info, newest_gen); 2047 /* if there was garbage in there, just move along */ 2048 if (newest_index == -1) { 2049 info->backup_root_index = 0; 2050 } else { 2051 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2052 } 2053 } 2054 2055 /* 2056 * copy all the root pointers into the super backup array. 2057 * this will bump the backup pointer by one when it is 2058 * done 2059 */ 2060 static void backup_super_roots(struct btrfs_fs_info *info) 2061 { 2062 int next_backup; 2063 struct btrfs_root_backup *root_backup; 2064 int last_backup; 2065 2066 next_backup = info->backup_root_index; 2067 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2068 BTRFS_NUM_BACKUP_ROOTS; 2069 2070 /* 2071 * just overwrite the last backup if we're at the same generation 2072 * this happens only at umount 2073 */ 2074 root_backup = info->super_for_commit->super_roots + last_backup; 2075 if (btrfs_backup_tree_root_gen(root_backup) == 2076 btrfs_header_generation(info->tree_root->node)) 2077 next_backup = last_backup; 2078 2079 root_backup = info->super_for_commit->super_roots + next_backup; 2080 2081 /* 2082 * make sure all of our padding and empty slots get zero filled 2083 * regardless of which ones we use today 2084 */ 2085 memset(root_backup, 0, sizeof(*root_backup)); 2086 2087 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2088 2089 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2090 btrfs_set_backup_tree_root_gen(root_backup, 2091 btrfs_header_generation(info->tree_root->node)); 2092 2093 btrfs_set_backup_tree_root_level(root_backup, 2094 btrfs_header_level(info->tree_root->node)); 2095 2096 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2097 btrfs_set_backup_chunk_root_gen(root_backup, 2098 btrfs_header_generation(info->chunk_root->node)); 2099 btrfs_set_backup_chunk_root_level(root_backup, 2100 btrfs_header_level(info->chunk_root->node)); 2101 2102 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2103 btrfs_set_backup_extent_root_gen(root_backup, 2104 btrfs_header_generation(info->extent_root->node)); 2105 btrfs_set_backup_extent_root_level(root_backup, 2106 btrfs_header_level(info->extent_root->node)); 2107 2108 /* 2109 * we might commit during log recovery, which happens before we set 2110 * the fs_root. Make sure it is valid before we fill it in. 2111 */ 2112 if (info->fs_root && info->fs_root->node) { 2113 btrfs_set_backup_fs_root(root_backup, 2114 info->fs_root->node->start); 2115 btrfs_set_backup_fs_root_gen(root_backup, 2116 btrfs_header_generation(info->fs_root->node)); 2117 btrfs_set_backup_fs_root_level(root_backup, 2118 btrfs_header_level(info->fs_root->node)); 2119 } 2120 2121 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2122 btrfs_set_backup_dev_root_gen(root_backup, 2123 btrfs_header_generation(info->dev_root->node)); 2124 btrfs_set_backup_dev_root_level(root_backup, 2125 btrfs_header_level(info->dev_root->node)); 2126 2127 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2128 btrfs_set_backup_csum_root_gen(root_backup, 2129 btrfs_header_generation(info->csum_root->node)); 2130 btrfs_set_backup_csum_root_level(root_backup, 2131 btrfs_header_level(info->csum_root->node)); 2132 2133 btrfs_set_backup_total_bytes(root_backup, 2134 btrfs_super_total_bytes(info->super_copy)); 2135 btrfs_set_backup_bytes_used(root_backup, 2136 btrfs_super_bytes_used(info->super_copy)); 2137 btrfs_set_backup_num_devices(root_backup, 2138 btrfs_super_num_devices(info->super_copy)); 2139 2140 /* 2141 * if we don't copy this out to the super_copy, it won't get remembered 2142 * for the next commit 2143 */ 2144 memcpy(&info->super_copy->super_roots, 2145 &info->super_for_commit->super_roots, 2146 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2147 } 2148 2149 /* 2150 * this copies info out of the root backup array and back into 2151 * the in-memory super block. It is meant to help iterate through 2152 * the array, so you send it the number of backups you've already 2153 * tried and the last backup index you used. 2154 * 2155 * this returns -1 when it has tried all the backups 2156 */ 2157 static noinline int next_root_backup(struct btrfs_fs_info *info, 2158 struct btrfs_super_block *super, 2159 int *num_backups_tried, int *backup_index) 2160 { 2161 struct btrfs_root_backup *root_backup; 2162 int newest = *backup_index; 2163 2164 if (*num_backups_tried == 0) { 2165 u64 gen = btrfs_super_generation(super); 2166 2167 newest = find_newest_super_backup(info, gen); 2168 if (newest == -1) 2169 return -1; 2170 2171 *backup_index = newest; 2172 *num_backups_tried = 1; 2173 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2174 /* we've tried all the backups, all done */ 2175 return -1; 2176 } else { 2177 /* jump to the next oldest backup */ 2178 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2179 BTRFS_NUM_BACKUP_ROOTS; 2180 *backup_index = newest; 2181 *num_backups_tried += 1; 2182 } 2183 root_backup = super->super_roots + newest; 2184 2185 btrfs_set_super_generation(super, 2186 btrfs_backup_tree_root_gen(root_backup)); 2187 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2188 btrfs_set_super_root_level(super, 2189 btrfs_backup_tree_root_level(root_backup)); 2190 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2191 2192 /* 2193 * fixme: the total bytes and num_devices need to match or we should 2194 * need a fsck 2195 */ 2196 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2197 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2198 return 0; 2199 } 2200 2201 /* helper to cleanup workers */ 2202 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2203 { 2204 btrfs_destroy_workqueue(fs_info->fixup_workers); 2205 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2206 btrfs_destroy_workqueue(fs_info->workers); 2207 btrfs_destroy_workqueue(fs_info->endio_workers); 2208 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2209 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2210 btrfs_destroy_workqueue(fs_info->rmw_workers); 2211 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2212 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2213 btrfs_destroy_workqueue(fs_info->submit_workers); 2214 btrfs_destroy_workqueue(fs_info->delayed_workers); 2215 btrfs_destroy_workqueue(fs_info->caching_workers); 2216 btrfs_destroy_workqueue(fs_info->readahead_workers); 2217 btrfs_destroy_workqueue(fs_info->flush_workers); 2218 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2219 btrfs_destroy_workqueue(fs_info->extent_workers); 2220 /* 2221 * Now that all other work queues are destroyed, we can safely destroy 2222 * the queues used for metadata I/O, since tasks from those other work 2223 * queues can do metadata I/O operations. 2224 */ 2225 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2226 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2227 } 2228 2229 static void free_root_extent_buffers(struct btrfs_root *root) 2230 { 2231 if (root) { 2232 free_extent_buffer(root->node); 2233 free_extent_buffer(root->commit_root); 2234 root->node = NULL; 2235 root->commit_root = NULL; 2236 } 2237 } 2238 2239 /* helper to cleanup tree roots */ 2240 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2241 { 2242 free_root_extent_buffers(info->tree_root); 2243 2244 free_root_extent_buffers(info->dev_root); 2245 free_root_extent_buffers(info->extent_root); 2246 free_root_extent_buffers(info->csum_root); 2247 free_root_extent_buffers(info->quota_root); 2248 free_root_extent_buffers(info->uuid_root); 2249 if (chunk_root) 2250 free_root_extent_buffers(info->chunk_root); 2251 free_root_extent_buffers(info->free_space_root); 2252 } 2253 2254 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2255 { 2256 int ret; 2257 struct btrfs_root *gang[8]; 2258 int i; 2259 2260 while (!list_empty(&fs_info->dead_roots)) { 2261 gang[0] = list_entry(fs_info->dead_roots.next, 2262 struct btrfs_root, root_list); 2263 list_del(&gang[0]->root_list); 2264 2265 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2266 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2267 } else { 2268 free_extent_buffer(gang[0]->node); 2269 free_extent_buffer(gang[0]->commit_root); 2270 btrfs_put_fs_root(gang[0]); 2271 } 2272 } 2273 2274 while (1) { 2275 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2276 (void **)gang, 0, 2277 ARRAY_SIZE(gang)); 2278 if (!ret) 2279 break; 2280 for (i = 0; i < ret; i++) 2281 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2282 } 2283 2284 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2285 btrfs_free_log_root_tree(NULL, fs_info); 2286 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 2287 } 2288 } 2289 2290 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2291 { 2292 mutex_init(&fs_info->scrub_lock); 2293 atomic_set(&fs_info->scrubs_running, 0); 2294 atomic_set(&fs_info->scrub_pause_req, 0); 2295 atomic_set(&fs_info->scrubs_paused, 0); 2296 atomic_set(&fs_info->scrub_cancel_req, 0); 2297 init_waitqueue_head(&fs_info->scrub_pause_wait); 2298 fs_info->scrub_workers_refcnt = 0; 2299 } 2300 2301 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2302 { 2303 spin_lock_init(&fs_info->balance_lock); 2304 mutex_init(&fs_info->balance_mutex); 2305 atomic_set(&fs_info->balance_running, 0); 2306 atomic_set(&fs_info->balance_pause_req, 0); 2307 atomic_set(&fs_info->balance_cancel_req, 0); 2308 fs_info->balance_ctl = NULL; 2309 init_waitqueue_head(&fs_info->balance_wait_q); 2310 } 2311 2312 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) 2313 { 2314 struct inode *inode = fs_info->btree_inode; 2315 2316 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2317 set_nlink(inode, 1); 2318 /* 2319 * we set the i_size on the btree inode to the max possible int. 2320 * the real end of the address space is determined by all of 2321 * the devices in the system 2322 */ 2323 inode->i_size = OFFSET_MAX; 2324 inode->i_mapping->a_ops = &btree_aops; 2325 2326 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 2327 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping); 2328 BTRFS_I(inode)->io_tree.track_uptodate = 0; 2329 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 2330 2331 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; 2332 2333 BTRFS_I(inode)->root = fs_info->tree_root; 2334 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); 2335 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 2336 btrfs_insert_inode_hash(inode); 2337 } 2338 2339 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2340 { 2341 fs_info->dev_replace.lock_owner = 0; 2342 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2343 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2344 rwlock_init(&fs_info->dev_replace.lock); 2345 atomic_set(&fs_info->dev_replace.read_locks, 0); 2346 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2347 init_waitqueue_head(&fs_info->replace_wait); 2348 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2349 } 2350 2351 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2352 { 2353 spin_lock_init(&fs_info->qgroup_lock); 2354 mutex_init(&fs_info->qgroup_ioctl_lock); 2355 fs_info->qgroup_tree = RB_ROOT; 2356 fs_info->qgroup_op_tree = RB_ROOT; 2357 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2358 fs_info->qgroup_seq = 1; 2359 fs_info->qgroup_ulist = NULL; 2360 fs_info->qgroup_rescan_running = false; 2361 mutex_init(&fs_info->qgroup_rescan_lock); 2362 } 2363 2364 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2365 struct btrfs_fs_devices *fs_devices) 2366 { 2367 int max_active = fs_info->thread_pool_size; 2368 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2369 2370 fs_info->workers = 2371 btrfs_alloc_workqueue(fs_info, "worker", 2372 flags | WQ_HIGHPRI, max_active, 16); 2373 2374 fs_info->delalloc_workers = 2375 btrfs_alloc_workqueue(fs_info, "delalloc", 2376 flags, max_active, 2); 2377 2378 fs_info->flush_workers = 2379 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 2380 flags, max_active, 0); 2381 2382 fs_info->caching_workers = 2383 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 2384 2385 /* 2386 * a higher idle thresh on the submit workers makes it much more 2387 * likely that bios will be send down in a sane order to the 2388 * devices 2389 */ 2390 fs_info->submit_workers = 2391 btrfs_alloc_workqueue(fs_info, "submit", flags, 2392 min_t(u64, fs_devices->num_devices, 2393 max_active), 64); 2394 2395 fs_info->fixup_workers = 2396 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); 2397 2398 /* 2399 * endios are largely parallel and should have a very 2400 * low idle thresh 2401 */ 2402 fs_info->endio_workers = 2403 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); 2404 fs_info->endio_meta_workers = 2405 btrfs_alloc_workqueue(fs_info, "endio-meta", flags, 2406 max_active, 4); 2407 fs_info->endio_meta_write_workers = 2408 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, 2409 max_active, 2); 2410 fs_info->endio_raid56_workers = 2411 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, 2412 max_active, 4); 2413 fs_info->endio_repair_workers = 2414 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); 2415 fs_info->rmw_workers = 2416 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); 2417 fs_info->endio_write_workers = 2418 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2419 max_active, 2); 2420 fs_info->endio_freespace_worker = 2421 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2422 max_active, 0); 2423 fs_info->delayed_workers = 2424 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2425 max_active, 0); 2426 fs_info->readahead_workers = 2427 btrfs_alloc_workqueue(fs_info, "readahead", flags, 2428 max_active, 2); 2429 fs_info->qgroup_rescan_workers = 2430 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); 2431 fs_info->extent_workers = 2432 btrfs_alloc_workqueue(fs_info, "extent-refs", flags, 2433 min_t(u64, fs_devices->num_devices, 2434 max_active), 8); 2435 2436 if (!(fs_info->workers && fs_info->delalloc_workers && 2437 fs_info->submit_workers && fs_info->flush_workers && 2438 fs_info->endio_workers && fs_info->endio_meta_workers && 2439 fs_info->endio_meta_write_workers && 2440 fs_info->endio_repair_workers && 2441 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2442 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2443 fs_info->caching_workers && fs_info->readahead_workers && 2444 fs_info->fixup_workers && fs_info->delayed_workers && 2445 fs_info->extent_workers && 2446 fs_info->qgroup_rescan_workers)) { 2447 return -ENOMEM; 2448 } 2449 2450 return 0; 2451 } 2452 2453 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2454 struct btrfs_fs_devices *fs_devices) 2455 { 2456 int ret; 2457 struct btrfs_root *log_tree_root; 2458 struct btrfs_super_block *disk_super = fs_info->super_copy; 2459 u64 bytenr = btrfs_super_log_root(disk_super); 2460 2461 if (fs_devices->rw_devices == 0) { 2462 btrfs_warn(fs_info, "log replay required on RO media"); 2463 return -EIO; 2464 } 2465 2466 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2467 if (!log_tree_root) 2468 return -ENOMEM; 2469 2470 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2471 2472 log_tree_root->node = read_tree_block(fs_info, bytenr, 2473 fs_info->generation + 1); 2474 if (IS_ERR(log_tree_root->node)) { 2475 btrfs_warn(fs_info, "failed to read log tree"); 2476 ret = PTR_ERR(log_tree_root->node); 2477 kfree(log_tree_root); 2478 return ret; 2479 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2480 btrfs_err(fs_info, "failed to read log tree"); 2481 free_extent_buffer(log_tree_root->node); 2482 kfree(log_tree_root); 2483 return -EIO; 2484 } 2485 /* returns with log_tree_root freed on success */ 2486 ret = btrfs_recover_log_trees(log_tree_root); 2487 if (ret) { 2488 btrfs_handle_fs_error(fs_info, ret, 2489 "Failed to recover log tree"); 2490 free_extent_buffer(log_tree_root->node); 2491 kfree(log_tree_root); 2492 return ret; 2493 } 2494 2495 if (fs_info->sb->s_flags & MS_RDONLY) { 2496 ret = btrfs_commit_super(fs_info); 2497 if (ret) 2498 return ret; 2499 } 2500 2501 return 0; 2502 } 2503 2504 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2505 { 2506 struct btrfs_root *tree_root = fs_info->tree_root; 2507 struct btrfs_root *root; 2508 struct btrfs_key location; 2509 int ret; 2510 2511 BUG_ON(!fs_info->tree_root); 2512 2513 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2514 location.type = BTRFS_ROOT_ITEM_KEY; 2515 location.offset = 0; 2516 2517 root = btrfs_read_tree_root(tree_root, &location); 2518 if (IS_ERR(root)) 2519 return PTR_ERR(root); 2520 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2521 fs_info->extent_root = root; 2522 2523 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2524 root = btrfs_read_tree_root(tree_root, &location); 2525 if (IS_ERR(root)) 2526 return PTR_ERR(root); 2527 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2528 fs_info->dev_root = root; 2529 btrfs_init_devices_late(fs_info); 2530 2531 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2532 root = btrfs_read_tree_root(tree_root, &location); 2533 if (IS_ERR(root)) 2534 return PTR_ERR(root); 2535 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2536 fs_info->csum_root = root; 2537 2538 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2539 root = btrfs_read_tree_root(tree_root, &location); 2540 if (!IS_ERR(root)) { 2541 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2542 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); 2543 fs_info->quota_root = root; 2544 } 2545 2546 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2547 root = btrfs_read_tree_root(tree_root, &location); 2548 if (IS_ERR(root)) { 2549 ret = PTR_ERR(root); 2550 if (ret != -ENOENT) 2551 return ret; 2552 } else { 2553 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2554 fs_info->uuid_root = root; 2555 } 2556 2557 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2558 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2559 root = btrfs_read_tree_root(tree_root, &location); 2560 if (IS_ERR(root)) 2561 return PTR_ERR(root); 2562 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2563 fs_info->free_space_root = root; 2564 } 2565 2566 return 0; 2567 } 2568 2569 int open_ctree(struct super_block *sb, 2570 struct btrfs_fs_devices *fs_devices, 2571 char *options) 2572 { 2573 u32 sectorsize; 2574 u32 nodesize; 2575 u32 stripesize; 2576 u64 generation; 2577 u64 features; 2578 struct btrfs_key location; 2579 struct buffer_head *bh; 2580 struct btrfs_super_block *disk_super; 2581 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2582 struct btrfs_root *tree_root; 2583 struct btrfs_root *chunk_root; 2584 int ret; 2585 int err = -EINVAL; 2586 int num_backups_tried = 0; 2587 int backup_index = 0; 2588 int max_active; 2589 int clear_free_space_tree = 0; 2590 2591 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2592 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2593 if (!tree_root || !chunk_root) { 2594 err = -ENOMEM; 2595 goto fail; 2596 } 2597 2598 ret = init_srcu_struct(&fs_info->subvol_srcu); 2599 if (ret) { 2600 err = ret; 2601 goto fail; 2602 } 2603 2604 ret = setup_bdi(fs_info, &fs_info->bdi); 2605 if (ret) { 2606 err = ret; 2607 goto fail_srcu; 2608 } 2609 2610 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2611 if (ret) { 2612 err = ret; 2613 goto fail_bdi; 2614 } 2615 fs_info->dirty_metadata_batch = PAGE_SIZE * 2616 (1 + ilog2(nr_cpu_ids)); 2617 2618 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2619 if (ret) { 2620 err = ret; 2621 goto fail_dirty_metadata_bytes; 2622 } 2623 2624 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2625 if (ret) { 2626 err = ret; 2627 goto fail_delalloc_bytes; 2628 } 2629 2630 fs_info->btree_inode = new_inode(sb); 2631 if (!fs_info->btree_inode) { 2632 err = -ENOMEM; 2633 goto fail_bio_counter; 2634 } 2635 2636 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2637 2638 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2639 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2640 INIT_LIST_HEAD(&fs_info->trans_list); 2641 INIT_LIST_HEAD(&fs_info->dead_roots); 2642 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2643 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2644 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2645 spin_lock_init(&fs_info->delalloc_root_lock); 2646 spin_lock_init(&fs_info->trans_lock); 2647 spin_lock_init(&fs_info->fs_roots_radix_lock); 2648 spin_lock_init(&fs_info->delayed_iput_lock); 2649 spin_lock_init(&fs_info->defrag_inodes_lock); 2650 spin_lock_init(&fs_info->free_chunk_lock); 2651 spin_lock_init(&fs_info->tree_mod_seq_lock); 2652 spin_lock_init(&fs_info->super_lock); 2653 spin_lock_init(&fs_info->qgroup_op_lock); 2654 spin_lock_init(&fs_info->buffer_lock); 2655 spin_lock_init(&fs_info->unused_bgs_lock); 2656 rwlock_init(&fs_info->tree_mod_log_lock); 2657 mutex_init(&fs_info->unused_bg_unpin_mutex); 2658 mutex_init(&fs_info->delete_unused_bgs_mutex); 2659 mutex_init(&fs_info->reloc_mutex); 2660 mutex_init(&fs_info->delalloc_root_mutex); 2661 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2662 seqlock_init(&fs_info->profiles_lock); 2663 2664 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2665 INIT_LIST_HEAD(&fs_info->space_info); 2666 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2667 INIT_LIST_HEAD(&fs_info->unused_bgs); 2668 btrfs_mapping_init(&fs_info->mapping_tree); 2669 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2670 BTRFS_BLOCK_RSV_GLOBAL); 2671 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2672 BTRFS_BLOCK_RSV_DELALLOC); 2673 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2674 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2675 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2676 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2677 BTRFS_BLOCK_RSV_DELOPS); 2678 atomic_set(&fs_info->nr_async_submits, 0); 2679 atomic_set(&fs_info->async_delalloc_pages, 0); 2680 atomic_set(&fs_info->async_submit_draining, 0); 2681 atomic_set(&fs_info->nr_async_bios, 0); 2682 atomic_set(&fs_info->defrag_running, 0); 2683 atomic_set(&fs_info->qgroup_op_seq, 0); 2684 atomic_set(&fs_info->reada_works_cnt, 0); 2685 atomic64_set(&fs_info->tree_mod_seq, 0); 2686 fs_info->fs_frozen = 0; 2687 fs_info->sb = sb; 2688 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2689 fs_info->metadata_ratio = 0; 2690 fs_info->defrag_inodes = RB_ROOT; 2691 fs_info->free_chunk_space = 0; 2692 fs_info->tree_mod_log = RB_ROOT; 2693 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2694 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2695 /* readahead state */ 2696 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2697 spin_lock_init(&fs_info->reada_lock); 2698 2699 fs_info->thread_pool_size = min_t(unsigned long, 2700 num_online_cpus() + 2, 8); 2701 2702 INIT_LIST_HEAD(&fs_info->ordered_roots); 2703 spin_lock_init(&fs_info->ordered_root_lock); 2704 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2705 GFP_KERNEL); 2706 if (!fs_info->delayed_root) { 2707 err = -ENOMEM; 2708 goto fail_iput; 2709 } 2710 btrfs_init_delayed_root(fs_info->delayed_root); 2711 2712 btrfs_init_scrub(fs_info); 2713 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2714 fs_info->check_integrity_print_mask = 0; 2715 #endif 2716 btrfs_init_balance(fs_info); 2717 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2718 2719 sb->s_blocksize = 4096; 2720 sb->s_blocksize_bits = blksize_bits(4096); 2721 sb->s_bdi = &fs_info->bdi; 2722 2723 btrfs_init_btree_inode(fs_info); 2724 2725 spin_lock_init(&fs_info->block_group_cache_lock); 2726 fs_info->block_group_cache_tree = RB_ROOT; 2727 fs_info->first_logical_byte = (u64)-1; 2728 2729 extent_io_tree_init(&fs_info->freed_extents[0], 2730 fs_info->btree_inode->i_mapping); 2731 extent_io_tree_init(&fs_info->freed_extents[1], 2732 fs_info->btree_inode->i_mapping); 2733 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2734 set_bit(BTRFS_FS_BARRIER, &fs_info->flags); 2735 2736 mutex_init(&fs_info->ordered_operations_mutex); 2737 mutex_init(&fs_info->tree_log_mutex); 2738 mutex_init(&fs_info->chunk_mutex); 2739 mutex_init(&fs_info->transaction_kthread_mutex); 2740 mutex_init(&fs_info->cleaner_mutex); 2741 mutex_init(&fs_info->volume_mutex); 2742 mutex_init(&fs_info->ro_block_group_mutex); 2743 init_rwsem(&fs_info->commit_root_sem); 2744 init_rwsem(&fs_info->cleanup_work_sem); 2745 init_rwsem(&fs_info->subvol_sem); 2746 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2747 2748 btrfs_init_dev_replace_locks(fs_info); 2749 btrfs_init_qgroup(fs_info); 2750 2751 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2752 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2753 2754 init_waitqueue_head(&fs_info->transaction_throttle); 2755 init_waitqueue_head(&fs_info->transaction_wait); 2756 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2757 init_waitqueue_head(&fs_info->async_submit_wait); 2758 2759 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2760 2761 /* Usable values until the real ones are cached from the superblock */ 2762 fs_info->nodesize = 4096; 2763 fs_info->sectorsize = 4096; 2764 fs_info->stripesize = 4096; 2765 2766 ret = btrfs_alloc_stripe_hash_table(fs_info); 2767 if (ret) { 2768 err = ret; 2769 goto fail_alloc; 2770 } 2771 2772 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); 2773 2774 invalidate_bdev(fs_devices->latest_bdev); 2775 2776 /* 2777 * Read super block and check the signature bytes only 2778 */ 2779 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2780 if (IS_ERR(bh)) { 2781 err = PTR_ERR(bh); 2782 goto fail_alloc; 2783 } 2784 2785 /* 2786 * We want to check superblock checksum, the type is stored inside. 2787 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2788 */ 2789 if (btrfs_check_super_csum(fs_info, bh->b_data)) { 2790 btrfs_err(fs_info, "superblock checksum mismatch"); 2791 err = -EINVAL; 2792 brelse(bh); 2793 goto fail_alloc; 2794 } 2795 2796 /* 2797 * super_copy is zeroed at allocation time and we never touch the 2798 * following bytes up to INFO_SIZE, the checksum is calculated from 2799 * the whole block of INFO_SIZE 2800 */ 2801 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2802 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2803 sizeof(*fs_info->super_for_commit)); 2804 brelse(bh); 2805 2806 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2807 2808 ret = btrfs_check_super_valid(fs_info); 2809 if (ret) { 2810 btrfs_err(fs_info, "superblock contains fatal errors"); 2811 err = -EINVAL; 2812 goto fail_alloc; 2813 } 2814 2815 disk_super = fs_info->super_copy; 2816 if (!btrfs_super_root(disk_super)) 2817 goto fail_alloc; 2818 2819 /* check FS state, whether FS is broken. */ 2820 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2821 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2822 2823 /* 2824 * run through our array of backup supers and setup 2825 * our ring pointer to the oldest one 2826 */ 2827 generation = btrfs_super_generation(disk_super); 2828 find_oldest_super_backup(fs_info, generation); 2829 2830 /* 2831 * In the long term, we'll store the compression type in the super 2832 * block, and it'll be used for per file compression control. 2833 */ 2834 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2835 2836 ret = btrfs_parse_options(fs_info, options, sb->s_flags); 2837 if (ret) { 2838 err = ret; 2839 goto fail_alloc; 2840 } 2841 2842 features = btrfs_super_incompat_flags(disk_super) & 2843 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2844 if (features) { 2845 btrfs_err(fs_info, 2846 "cannot mount because of unsupported optional features (%llx)", 2847 features); 2848 err = -EINVAL; 2849 goto fail_alloc; 2850 } 2851 2852 features = btrfs_super_incompat_flags(disk_super); 2853 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2854 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 2855 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2856 2857 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2858 btrfs_info(fs_info, "has skinny extents"); 2859 2860 /* 2861 * flag our filesystem as having big metadata blocks if 2862 * they are bigger than the page size 2863 */ 2864 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2865 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2866 btrfs_info(fs_info, 2867 "flagging fs with big metadata feature"); 2868 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2869 } 2870 2871 nodesize = btrfs_super_nodesize(disk_super); 2872 sectorsize = btrfs_super_sectorsize(disk_super); 2873 stripesize = sectorsize; 2874 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2875 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2876 2877 /* Cache block sizes */ 2878 fs_info->nodesize = nodesize; 2879 fs_info->sectorsize = sectorsize; 2880 fs_info->stripesize = stripesize; 2881 2882 /* 2883 * mixed block groups end up with duplicate but slightly offset 2884 * extent buffers for the same range. It leads to corruptions 2885 */ 2886 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2887 (sectorsize != nodesize)) { 2888 btrfs_err(fs_info, 2889 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2890 nodesize, sectorsize); 2891 goto fail_alloc; 2892 } 2893 2894 /* 2895 * Needn't use the lock because there is no other task which will 2896 * update the flag. 2897 */ 2898 btrfs_set_super_incompat_flags(disk_super, features); 2899 2900 features = btrfs_super_compat_ro_flags(disk_super) & 2901 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2902 if (!(sb->s_flags & MS_RDONLY) && features) { 2903 btrfs_err(fs_info, 2904 "cannot mount read-write because of unsupported optional features (%llx)", 2905 features); 2906 err = -EINVAL; 2907 goto fail_alloc; 2908 } 2909 2910 max_active = fs_info->thread_pool_size; 2911 2912 ret = btrfs_init_workqueues(fs_info, fs_devices); 2913 if (ret) { 2914 err = ret; 2915 goto fail_sb_buffer; 2916 } 2917 2918 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2919 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2920 SZ_4M / PAGE_SIZE); 2921 2922 sb->s_blocksize = sectorsize; 2923 sb->s_blocksize_bits = blksize_bits(sectorsize); 2924 2925 mutex_lock(&fs_info->chunk_mutex); 2926 ret = btrfs_read_sys_array(fs_info); 2927 mutex_unlock(&fs_info->chunk_mutex); 2928 if (ret) { 2929 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2930 goto fail_sb_buffer; 2931 } 2932 2933 generation = btrfs_super_chunk_root_generation(disk_super); 2934 2935 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2936 2937 chunk_root->node = read_tree_block(fs_info, 2938 btrfs_super_chunk_root(disk_super), 2939 generation); 2940 if (IS_ERR(chunk_root->node) || 2941 !extent_buffer_uptodate(chunk_root->node)) { 2942 btrfs_err(fs_info, "failed to read chunk root"); 2943 if (!IS_ERR(chunk_root->node)) 2944 free_extent_buffer(chunk_root->node); 2945 chunk_root->node = NULL; 2946 goto fail_tree_roots; 2947 } 2948 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2949 chunk_root->commit_root = btrfs_root_node(chunk_root); 2950 2951 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2952 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2953 2954 ret = btrfs_read_chunk_tree(fs_info); 2955 if (ret) { 2956 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2957 goto fail_tree_roots; 2958 } 2959 2960 /* 2961 * keep the device that is marked to be the target device for the 2962 * dev_replace procedure 2963 */ 2964 btrfs_close_extra_devices(fs_devices, 0); 2965 2966 if (!fs_devices->latest_bdev) { 2967 btrfs_err(fs_info, "failed to read devices"); 2968 goto fail_tree_roots; 2969 } 2970 2971 retry_root_backup: 2972 generation = btrfs_super_generation(disk_super); 2973 2974 tree_root->node = read_tree_block(fs_info, 2975 btrfs_super_root(disk_super), 2976 generation); 2977 if (IS_ERR(tree_root->node) || 2978 !extent_buffer_uptodate(tree_root->node)) { 2979 btrfs_warn(fs_info, "failed to read tree root"); 2980 if (!IS_ERR(tree_root->node)) 2981 free_extent_buffer(tree_root->node); 2982 tree_root->node = NULL; 2983 goto recovery_tree_root; 2984 } 2985 2986 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2987 tree_root->commit_root = btrfs_root_node(tree_root); 2988 btrfs_set_root_refs(&tree_root->root_item, 1); 2989 2990 mutex_lock(&tree_root->objectid_mutex); 2991 ret = btrfs_find_highest_objectid(tree_root, 2992 &tree_root->highest_objectid); 2993 if (ret) { 2994 mutex_unlock(&tree_root->objectid_mutex); 2995 goto recovery_tree_root; 2996 } 2997 2998 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2999 3000 mutex_unlock(&tree_root->objectid_mutex); 3001 3002 ret = btrfs_read_roots(fs_info); 3003 if (ret) 3004 goto recovery_tree_root; 3005 3006 fs_info->generation = generation; 3007 fs_info->last_trans_committed = generation; 3008 3009 ret = btrfs_recover_balance(fs_info); 3010 if (ret) { 3011 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3012 goto fail_block_groups; 3013 } 3014 3015 ret = btrfs_init_dev_stats(fs_info); 3016 if (ret) { 3017 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3018 goto fail_block_groups; 3019 } 3020 3021 ret = btrfs_init_dev_replace(fs_info); 3022 if (ret) { 3023 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3024 goto fail_block_groups; 3025 } 3026 3027 btrfs_close_extra_devices(fs_devices, 1); 3028 3029 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 3030 if (ret) { 3031 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3032 ret); 3033 goto fail_block_groups; 3034 } 3035 3036 ret = btrfs_sysfs_add_device(fs_devices); 3037 if (ret) { 3038 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 3039 ret); 3040 goto fail_fsdev_sysfs; 3041 } 3042 3043 ret = btrfs_sysfs_add_mounted(fs_info); 3044 if (ret) { 3045 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3046 goto fail_fsdev_sysfs; 3047 } 3048 3049 ret = btrfs_init_space_info(fs_info); 3050 if (ret) { 3051 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3052 goto fail_sysfs; 3053 } 3054 3055 ret = btrfs_read_block_groups(fs_info); 3056 if (ret) { 3057 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3058 goto fail_sysfs; 3059 } 3060 fs_info->num_tolerated_disk_barrier_failures = 3061 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3062 if (fs_info->fs_devices->missing_devices > 3063 fs_info->num_tolerated_disk_barrier_failures && 3064 !(sb->s_flags & MS_RDONLY)) { 3065 btrfs_warn(fs_info, 3066 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3067 fs_info->fs_devices->missing_devices, 3068 fs_info->num_tolerated_disk_barrier_failures); 3069 goto fail_sysfs; 3070 } 3071 3072 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3073 "btrfs-cleaner"); 3074 if (IS_ERR(fs_info->cleaner_kthread)) 3075 goto fail_sysfs; 3076 3077 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3078 tree_root, 3079 "btrfs-transaction"); 3080 if (IS_ERR(fs_info->transaction_kthread)) 3081 goto fail_cleaner; 3082 3083 if (!btrfs_test_opt(fs_info, SSD) && 3084 !btrfs_test_opt(fs_info, NOSSD) && 3085 !fs_info->fs_devices->rotating) { 3086 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3087 btrfs_set_opt(fs_info->mount_opt, SSD); 3088 } 3089 3090 /* 3091 * Mount does not set all options immediately, we can do it now and do 3092 * not have to wait for transaction commit 3093 */ 3094 btrfs_apply_pending_changes(fs_info); 3095 3096 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3097 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) { 3098 ret = btrfsic_mount(fs_info, fs_devices, 3099 btrfs_test_opt(fs_info, 3100 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3101 1 : 0, 3102 fs_info->check_integrity_print_mask); 3103 if (ret) 3104 btrfs_warn(fs_info, 3105 "failed to initialize integrity check module: %d", 3106 ret); 3107 } 3108 #endif 3109 ret = btrfs_read_qgroup_config(fs_info); 3110 if (ret) 3111 goto fail_trans_kthread; 3112 3113 /* do not make disk changes in broken FS or nologreplay is given */ 3114 if (btrfs_super_log_root(disk_super) != 0 && 3115 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3116 ret = btrfs_replay_log(fs_info, fs_devices); 3117 if (ret) { 3118 err = ret; 3119 goto fail_qgroup; 3120 } 3121 } 3122 3123 ret = btrfs_find_orphan_roots(fs_info); 3124 if (ret) 3125 goto fail_qgroup; 3126 3127 if (!(sb->s_flags & MS_RDONLY)) { 3128 ret = btrfs_cleanup_fs_roots(fs_info); 3129 if (ret) 3130 goto fail_qgroup; 3131 3132 mutex_lock(&fs_info->cleaner_mutex); 3133 ret = btrfs_recover_relocation(tree_root); 3134 mutex_unlock(&fs_info->cleaner_mutex); 3135 if (ret < 0) { 3136 btrfs_warn(fs_info, "failed to recover relocation: %d", 3137 ret); 3138 err = -EINVAL; 3139 goto fail_qgroup; 3140 } 3141 } 3142 3143 location.objectid = BTRFS_FS_TREE_OBJECTID; 3144 location.type = BTRFS_ROOT_ITEM_KEY; 3145 location.offset = 0; 3146 3147 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3148 if (IS_ERR(fs_info->fs_root)) { 3149 err = PTR_ERR(fs_info->fs_root); 3150 goto fail_qgroup; 3151 } 3152 3153 if (sb->s_flags & MS_RDONLY) 3154 return 0; 3155 3156 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 3157 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3158 clear_free_space_tree = 1; 3159 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3160 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 3161 btrfs_warn(fs_info, "free space tree is invalid"); 3162 clear_free_space_tree = 1; 3163 } 3164 3165 if (clear_free_space_tree) { 3166 btrfs_info(fs_info, "clearing free space tree"); 3167 ret = btrfs_clear_free_space_tree(fs_info); 3168 if (ret) { 3169 btrfs_warn(fs_info, 3170 "failed to clear free space tree: %d", ret); 3171 close_ctree(fs_info); 3172 return ret; 3173 } 3174 } 3175 3176 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3177 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3178 btrfs_info(fs_info, "creating free space tree"); 3179 ret = btrfs_create_free_space_tree(fs_info); 3180 if (ret) { 3181 btrfs_warn(fs_info, 3182 "failed to create free space tree: %d", ret); 3183 close_ctree(fs_info); 3184 return ret; 3185 } 3186 } 3187 3188 down_read(&fs_info->cleanup_work_sem); 3189 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3190 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3191 up_read(&fs_info->cleanup_work_sem); 3192 close_ctree(fs_info); 3193 return ret; 3194 } 3195 up_read(&fs_info->cleanup_work_sem); 3196 3197 ret = btrfs_resume_balance_async(fs_info); 3198 if (ret) { 3199 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3200 close_ctree(fs_info); 3201 return ret; 3202 } 3203 3204 ret = btrfs_resume_dev_replace_async(fs_info); 3205 if (ret) { 3206 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3207 close_ctree(fs_info); 3208 return ret; 3209 } 3210 3211 btrfs_qgroup_rescan_resume(fs_info); 3212 3213 if (!fs_info->uuid_root) { 3214 btrfs_info(fs_info, "creating UUID tree"); 3215 ret = btrfs_create_uuid_tree(fs_info); 3216 if (ret) { 3217 btrfs_warn(fs_info, 3218 "failed to create the UUID tree: %d", ret); 3219 close_ctree(fs_info); 3220 return ret; 3221 } 3222 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3223 fs_info->generation != 3224 btrfs_super_uuid_tree_generation(disk_super)) { 3225 btrfs_info(fs_info, "checking UUID tree"); 3226 ret = btrfs_check_uuid_tree(fs_info); 3227 if (ret) { 3228 btrfs_warn(fs_info, 3229 "failed to check the UUID tree: %d", ret); 3230 close_ctree(fs_info); 3231 return ret; 3232 } 3233 } else { 3234 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3235 } 3236 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3237 3238 /* 3239 * backuproot only affect mount behavior, and if open_ctree succeeded, 3240 * no need to keep the flag 3241 */ 3242 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3243 3244 return 0; 3245 3246 fail_qgroup: 3247 btrfs_free_qgroup_config(fs_info); 3248 fail_trans_kthread: 3249 kthread_stop(fs_info->transaction_kthread); 3250 btrfs_cleanup_transaction(fs_info); 3251 btrfs_free_fs_roots(fs_info); 3252 fail_cleaner: 3253 kthread_stop(fs_info->cleaner_kthread); 3254 3255 /* 3256 * make sure we're done with the btree inode before we stop our 3257 * kthreads 3258 */ 3259 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3260 3261 fail_sysfs: 3262 btrfs_sysfs_remove_mounted(fs_info); 3263 3264 fail_fsdev_sysfs: 3265 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3266 3267 fail_block_groups: 3268 btrfs_put_block_group_cache(fs_info); 3269 3270 fail_tree_roots: 3271 free_root_pointers(fs_info, 1); 3272 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3273 3274 fail_sb_buffer: 3275 btrfs_stop_all_workers(fs_info); 3276 btrfs_free_block_groups(fs_info); 3277 fail_alloc: 3278 fail_iput: 3279 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3280 3281 iput(fs_info->btree_inode); 3282 fail_bio_counter: 3283 percpu_counter_destroy(&fs_info->bio_counter); 3284 fail_delalloc_bytes: 3285 percpu_counter_destroy(&fs_info->delalloc_bytes); 3286 fail_dirty_metadata_bytes: 3287 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3288 fail_bdi: 3289 bdi_destroy(&fs_info->bdi); 3290 fail_srcu: 3291 cleanup_srcu_struct(&fs_info->subvol_srcu); 3292 fail: 3293 btrfs_free_stripe_hash_table(fs_info); 3294 btrfs_close_devices(fs_info->fs_devices); 3295 return err; 3296 3297 recovery_tree_root: 3298 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 3299 goto fail_tree_roots; 3300 3301 free_root_pointers(fs_info, 0); 3302 3303 /* don't use the log in recovery mode, it won't be valid */ 3304 btrfs_set_super_log_root(disk_super, 0); 3305 3306 /* we can't trust the free space cache either */ 3307 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3308 3309 ret = next_root_backup(fs_info, fs_info->super_copy, 3310 &num_backups_tried, &backup_index); 3311 if (ret == -1) 3312 goto fail_block_groups; 3313 goto retry_root_backup; 3314 } 3315 3316 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3317 { 3318 if (uptodate) { 3319 set_buffer_uptodate(bh); 3320 } else { 3321 struct btrfs_device *device = (struct btrfs_device *) 3322 bh->b_private; 3323 3324 btrfs_warn_rl_in_rcu(device->fs_info, 3325 "lost page write due to IO error on %s", 3326 rcu_str_deref(device->name)); 3327 /* note, we don't set_buffer_write_io_error because we have 3328 * our own ways of dealing with the IO errors 3329 */ 3330 clear_buffer_uptodate(bh); 3331 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3332 } 3333 unlock_buffer(bh); 3334 put_bh(bh); 3335 } 3336 3337 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3338 struct buffer_head **bh_ret) 3339 { 3340 struct buffer_head *bh; 3341 struct btrfs_super_block *super; 3342 u64 bytenr; 3343 3344 bytenr = btrfs_sb_offset(copy_num); 3345 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3346 return -EINVAL; 3347 3348 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3349 /* 3350 * If we fail to read from the underlying devices, as of now 3351 * the best option we have is to mark it EIO. 3352 */ 3353 if (!bh) 3354 return -EIO; 3355 3356 super = (struct btrfs_super_block *)bh->b_data; 3357 if (btrfs_super_bytenr(super) != bytenr || 3358 btrfs_super_magic(super) != BTRFS_MAGIC) { 3359 brelse(bh); 3360 return -EINVAL; 3361 } 3362 3363 *bh_ret = bh; 3364 return 0; 3365 } 3366 3367 3368 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3369 { 3370 struct buffer_head *bh; 3371 struct buffer_head *latest = NULL; 3372 struct btrfs_super_block *super; 3373 int i; 3374 u64 transid = 0; 3375 int ret = -EINVAL; 3376 3377 /* we would like to check all the supers, but that would make 3378 * a btrfs mount succeed after a mkfs from a different FS. 3379 * So, we need to add a special mount option to scan for 3380 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3381 */ 3382 for (i = 0; i < 1; i++) { 3383 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3384 if (ret) 3385 continue; 3386 3387 super = (struct btrfs_super_block *)bh->b_data; 3388 3389 if (!latest || btrfs_super_generation(super) > transid) { 3390 brelse(latest); 3391 latest = bh; 3392 transid = btrfs_super_generation(super); 3393 } else { 3394 brelse(bh); 3395 } 3396 } 3397 3398 if (!latest) 3399 return ERR_PTR(ret); 3400 3401 return latest; 3402 } 3403 3404 /* 3405 * this should be called twice, once with wait == 0 and 3406 * once with wait == 1. When wait == 0 is done, all the buffer heads 3407 * we write are pinned. 3408 * 3409 * They are released when wait == 1 is done. 3410 * max_mirrors must be the same for both runs, and it indicates how 3411 * many supers on this one device should be written. 3412 * 3413 * max_mirrors == 0 means to write them all. 3414 */ 3415 static int write_dev_supers(struct btrfs_device *device, 3416 struct btrfs_super_block *sb, 3417 int wait, int max_mirrors) 3418 { 3419 struct buffer_head *bh; 3420 int i; 3421 int ret; 3422 int errors = 0; 3423 u32 crc; 3424 u64 bytenr; 3425 3426 if (max_mirrors == 0) 3427 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3428 3429 for (i = 0; i < max_mirrors; i++) { 3430 bytenr = btrfs_sb_offset(i); 3431 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3432 device->commit_total_bytes) 3433 break; 3434 3435 if (wait) { 3436 bh = __find_get_block(device->bdev, bytenr / 4096, 3437 BTRFS_SUPER_INFO_SIZE); 3438 if (!bh) { 3439 errors++; 3440 continue; 3441 } 3442 wait_on_buffer(bh); 3443 if (!buffer_uptodate(bh)) 3444 errors++; 3445 3446 /* drop our reference */ 3447 brelse(bh); 3448 3449 /* drop the reference from the wait == 0 run */ 3450 brelse(bh); 3451 continue; 3452 } else { 3453 btrfs_set_super_bytenr(sb, bytenr); 3454 3455 crc = ~(u32)0; 3456 crc = btrfs_csum_data((const char *)sb + 3457 BTRFS_CSUM_SIZE, crc, 3458 BTRFS_SUPER_INFO_SIZE - 3459 BTRFS_CSUM_SIZE); 3460 btrfs_csum_final(crc, sb->csum); 3461 3462 /* 3463 * one reference for us, and we leave it for the 3464 * caller 3465 */ 3466 bh = __getblk(device->bdev, bytenr / 4096, 3467 BTRFS_SUPER_INFO_SIZE); 3468 if (!bh) { 3469 btrfs_err(device->fs_info, 3470 "couldn't get super buffer head for bytenr %llu", 3471 bytenr); 3472 errors++; 3473 continue; 3474 } 3475 3476 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3477 3478 /* one reference for submit_bh */ 3479 get_bh(bh); 3480 3481 set_buffer_uptodate(bh); 3482 lock_buffer(bh); 3483 bh->b_end_io = btrfs_end_buffer_write_sync; 3484 bh->b_private = device; 3485 } 3486 3487 /* 3488 * we fua the first super. The others we allow 3489 * to go down lazy. 3490 */ 3491 if (i == 0) 3492 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh); 3493 else 3494 ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh); 3495 if (ret) 3496 errors++; 3497 } 3498 return errors < i ? 0 : -1; 3499 } 3500 3501 /* 3502 * endio for the write_dev_flush, this will wake anyone waiting 3503 * for the barrier when it is done 3504 */ 3505 static void btrfs_end_empty_barrier(struct bio *bio) 3506 { 3507 if (bio->bi_private) 3508 complete(bio->bi_private); 3509 bio_put(bio); 3510 } 3511 3512 /* 3513 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3514 * sent down. With wait == 1, it waits for the previous flush. 3515 * 3516 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3517 * capable 3518 */ 3519 static int write_dev_flush(struct btrfs_device *device, int wait) 3520 { 3521 struct bio *bio; 3522 int ret = 0; 3523 3524 if (device->nobarriers) 3525 return 0; 3526 3527 if (wait) { 3528 bio = device->flush_bio; 3529 if (!bio) 3530 return 0; 3531 3532 wait_for_completion(&device->flush_wait); 3533 3534 if (bio->bi_error) { 3535 ret = bio->bi_error; 3536 btrfs_dev_stat_inc_and_print(device, 3537 BTRFS_DEV_STAT_FLUSH_ERRS); 3538 } 3539 3540 /* drop the reference from the wait == 0 run */ 3541 bio_put(bio); 3542 device->flush_bio = NULL; 3543 3544 return ret; 3545 } 3546 3547 /* 3548 * one reference for us, and we leave it for the 3549 * caller 3550 */ 3551 device->flush_bio = NULL; 3552 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3553 if (!bio) 3554 return -ENOMEM; 3555 3556 bio->bi_end_io = btrfs_end_empty_barrier; 3557 bio->bi_bdev = device->bdev; 3558 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 3559 init_completion(&device->flush_wait); 3560 bio->bi_private = &device->flush_wait; 3561 device->flush_bio = bio; 3562 3563 bio_get(bio); 3564 btrfsic_submit_bio(bio); 3565 3566 return 0; 3567 } 3568 3569 /* 3570 * send an empty flush down to each device in parallel, 3571 * then wait for them 3572 */ 3573 static int barrier_all_devices(struct btrfs_fs_info *info) 3574 { 3575 struct list_head *head; 3576 struct btrfs_device *dev; 3577 int errors_send = 0; 3578 int errors_wait = 0; 3579 int ret; 3580 3581 /* send down all the barriers */ 3582 head = &info->fs_devices->devices; 3583 list_for_each_entry_rcu(dev, head, dev_list) { 3584 if (dev->missing) 3585 continue; 3586 if (!dev->bdev) { 3587 errors_send++; 3588 continue; 3589 } 3590 if (!dev->in_fs_metadata || !dev->writeable) 3591 continue; 3592 3593 ret = write_dev_flush(dev, 0); 3594 if (ret) 3595 errors_send++; 3596 } 3597 3598 /* wait for all the barriers */ 3599 list_for_each_entry_rcu(dev, head, dev_list) { 3600 if (dev->missing) 3601 continue; 3602 if (!dev->bdev) { 3603 errors_wait++; 3604 continue; 3605 } 3606 if (!dev->in_fs_metadata || !dev->writeable) 3607 continue; 3608 3609 ret = write_dev_flush(dev, 1); 3610 if (ret) 3611 errors_wait++; 3612 } 3613 if (errors_send > info->num_tolerated_disk_barrier_failures || 3614 errors_wait > info->num_tolerated_disk_barrier_failures) 3615 return -EIO; 3616 return 0; 3617 } 3618 3619 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3620 { 3621 int raid_type; 3622 int min_tolerated = INT_MAX; 3623 3624 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3625 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3626 min_tolerated = min(min_tolerated, 3627 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3628 tolerated_failures); 3629 3630 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3631 if (raid_type == BTRFS_RAID_SINGLE) 3632 continue; 3633 if (!(flags & btrfs_raid_group[raid_type])) 3634 continue; 3635 min_tolerated = min(min_tolerated, 3636 btrfs_raid_array[raid_type]. 3637 tolerated_failures); 3638 } 3639 3640 if (min_tolerated == INT_MAX) { 3641 pr_warn("BTRFS: unknown raid flag: %llu", flags); 3642 min_tolerated = 0; 3643 } 3644 3645 return min_tolerated; 3646 } 3647 3648 int btrfs_calc_num_tolerated_disk_barrier_failures( 3649 struct btrfs_fs_info *fs_info) 3650 { 3651 struct btrfs_ioctl_space_info space; 3652 struct btrfs_space_info *sinfo; 3653 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3654 BTRFS_BLOCK_GROUP_SYSTEM, 3655 BTRFS_BLOCK_GROUP_METADATA, 3656 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3657 int i; 3658 int c; 3659 int num_tolerated_disk_barrier_failures = 3660 (int)fs_info->fs_devices->num_devices; 3661 3662 for (i = 0; i < ARRAY_SIZE(types); i++) { 3663 struct btrfs_space_info *tmp; 3664 3665 sinfo = NULL; 3666 rcu_read_lock(); 3667 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3668 if (tmp->flags == types[i]) { 3669 sinfo = tmp; 3670 break; 3671 } 3672 } 3673 rcu_read_unlock(); 3674 3675 if (!sinfo) 3676 continue; 3677 3678 down_read(&sinfo->groups_sem); 3679 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3680 u64 flags; 3681 3682 if (list_empty(&sinfo->block_groups[c])) 3683 continue; 3684 3685 btrfs_get_block_group_info(&sinfo->block_groups[c], 3686 &space); 3687 if (space.total_bytes == 0 || space.used_bytes == 0) 3688 continue; 3689 flags = space.flags; 3690 3691 num_tolerated_disk_barrier_failures = min( 3692 num_tolerated_disk_barrier_failures, 3693 btrfs_get_num_tolerated_disk_barrier_failures( 3694 flags)); 3695 } 3696 up_read(&sinfo->groups_sem); 3697 } 3698 3699 return num_tolerated_disk_barrier_failures; 3700 } 3701 3702 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 3703 { 3704 struct list_head *head; 3705 struct btrfs_device *dev; 3706 struct btrfs_super_block *sb; 3707 struct btrfs_dev_item *dev_item; 3708 int ret; 3709 int do_barriers; 3710 int max_errors; 3711 int total_errors = 0; 3712 u64 flags; 3713 3714 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 3715 backup_super_roots(fs_info); 3716 3717 sb = fs_info->super_for_commit; 3718 dev_item = &sb->dev_item; 3719 3720 mutex_lock(&fs_info->fs_devices->device_list_mutex); 3721 head = &fs_info->fs_devices->devices; 3722 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 3723 3724 if (do_barriers) { 3725 ret = barrier_all_devices(fs_info); 3726 if (ret) { 3727 mutex_unlock( 3728 &fs_info->fs_devices->device_list_mutex); 3729 btrfs_handle_fs_error(fs_info, ret, 3730 "errors while submitting device barriers."); 3731 return ret; 3732 } 3733 } 3734 3735 list_for_each_entry_rcu(dev, head, dev_list) { 3736 if (!dev->bdev) { 3737 total_errors++; 3738 continue; 3739 } 3740 if (!dev->in_fs_metadata || !dev->writeable) 3741 continue; 3742 3743 btrfs_set_stack_device_generation(dev_item, 0); 3744 btrfs_set_stack_device_type(dev_item, dev->type); 3745 btrfs_set_stack_device_id(dev_item, dev->devid); 3746 btrfs_set_stack_device_total_bytes(dev_item, 3747 dev->commit_total_bytes); 3748 btrfs_set_stack_device_bytes_used(dev_item, 3749 dev->commit_bytes_used); 3750 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3751 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3752 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3753 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3754 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3755 3756 flags = btrfs_super_flags(sb); 3757 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3758 3759 ret = write_dev_supers(dev, sb, 0, max_mirrors); 3760 if (ret) 3761 total_errors++; 3762 } 3763 if (total_errors > max_errors) { 3764 btrfs_err(fs_info, "%d errors while writing supers", 3765 total_errors); 3766 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3767 3768 /* FUA is masked off if unsupported and can't be the reason */ 3769 btrfs_handle_fs_error(fs_info, -EIO, 3770 "%d errors while writing supers", 3771 total_errors); 3772 return -EIO; 3773 } 3774 3775 total_errors = 0; 3776 list_for_each_entry_rcu(dev, head, dev_list) { 3777 if (!dev->bdev) 3778 continue; 3779 if (!dev->in_fs_metadata || !dev->writeable) 3780 continue; 3781 3782 ret = write_dev_supers(dev, sb, 1, max_mirrors); 3783 if (ret) 3784 total_errors++; 3785 } 3786 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 3787 if (total_errors > max_errors) { 3788 btrfs_handle_fs_error(fs_info, -EIO, 3789 "%d errors while writing supers", 3790 total_errors); 3791 return -EIO; 3792 } 3793 return 0; 3794 } 3795 3796 /* Drop a fs root from the radix tree and free it. */ 3797 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3798 struct btrfs_root *root) 3799 { 3800 spin_lock(&fs_info->fs_roots_radix_lock); 3801 radix_tree_delete(&fs_info->fs_roots_radix, 3802 (unsigned long)root->root_key.objectid); 3803 spin_unlock(&fs_info->fs_roots_radix_lock); 3804 3805 if (btrfs_root_refs(&root->root_item) == 0) 3806 synchronize_srcu(&fs_info->subvol_srcu); 3807 3808 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3809 btrfs_free_log(NULL, root); 3810 if (root->reloc_root) { 3811 free_extent_buffer(root->reloc_root->node); 3812 free_extent_buffer(root->reloc_root->commit_root); 3813 btrfs_put_fs_root(root->reloc_root); 3814 root->reloc_root = NULL; 3815 } 3816 } 3817 3818 if (root->free_ino_pinned) 3819 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3820 if (root->free_ino_ctl) 3821 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3822 free_fs_root(root); 3823 } 3824 3825 static void free_fs_root(struct btrfs_root *root) 3826 { 3827 iput(root->ino_cache_inode); 3828 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3829 btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv); 3830 root->orphan_block_rsv = NULL; 3831 if (root->anon_dev) 3832 free_anon_bdev(root->anon_dev); 3833 if (root->subv_writers) 3834 btrfs_free_subvolume_writers(root->subv_writers); 3835 free_extent_buffer(root->node); 3836 free_extent_buffer(root->commit_root); 3837 kfree(root->free_ino_ctl); 3838 kfree(root->free_ino_pinned); 3839 kfree(root->name); 3840 btrfs_put_fs_root(root); 3841 } 3842 3843 void btrfs_free_fs_root(struct btrfs_root *root) 3844 { 3845 free_fs_root(root); 3846 } 3847 3848 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3849 { 3850 u64 root_objectid = 0; 3851 struct btrfs_root *gang[8]; 3852 int i = 0; 3853 int err = 0; 3854 unsigned int ret = 0; 3855 int index; 3856 3857 while (1) { 3858 index = srcu_read_lock(&fs_info->subvol_srcu); 3859 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3860 (void **)gang, root_objectid, 3861 ARRAY_SIZE(gang)); 3862 if (!ret) { 3863 srcu_read_unlock(&fs_info->subvol_srcu, index); 3864 break; 3865 } 3866 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3867 3868 for (i = 0; i < ret; i++) { 3869 /* Avoid to grab roots in dead_roots */ 3870 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3871 gang[i] = NULL; 3872 continue; 3873 } 3874 /* grab all the search result for later use */ 3875 gang[i] = btrfs_grab_fs_root(gang[i]); 3876 } 3877 srcu_read_unlock(&fs_info->subvol_srcu, index); 3878 3879 for (i = 0; i < ret; i++) { 3880 if (!gang[i]) 3881 continue; 3882 root_objectid = gang[i]->root_key.objectid; 3883 err = btrfs_orphan_cleanup(gang[i]); 3884 if (err) 3885 break; 3886 btrfs_put_fs_root(gang[i]); 3887 } 3888 root_objectid++; 3889 } 3890 3891 /* release the uncleaned roots due to error */ 3892 for (; i < ret; i++) { 3893 if (gang[i]) 3894 btrfs_put_fs_root(gang[i]); 3895 } 3896 return err; 3897 } 3898 3899 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 3900 { 3901 struct btrfs_root *root = fs_info->tree_root; 3902 struct btrfs_trans_handle *trans; 3903 3904 mutex_lock(&fs_info->cleaner_mutex); 3905 btrfs_run_delayed_iputs(fs_info); 3906 mutex_unlock(&fs_info->cleaner_mutex); 3907 wake_up_process(fs_info->cleaner_kthread); 3908 3909 /* wait until ongoing cleanup work done */ 3910 down_write(&fs_info->cleanup_work_sem); 3911 up_write(&fs_info->cleanup_work_sem); 3912 3913 trans = btrfs_join_transaction(root); 3914 if (IS_ERR(trans)) 3915 return PTR_ERR(trans); 3916 return btrfs_commit_transaction(trans); 3917 } 3918 3919 void close_ctree(struct btrfs_fs_info *fs_info) 3920 { 3921 struct btrfs_root *root = fs_info->tree_root; 3922 int ret; 3923 3924 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 3925 3926 /* wait for the qgroup rescan worker to stop */ 3927 btrfs_qgroup_wait_for_completion(fs_info, false); 3928 3929 /* wait for the uuid_scan task to finish */ 3930 down(&fs_info->uuid_tree_rescan_sem); 3931 /* avoid complains from lockdep et al., set sem back to initial state */ 3932 up(&fs_info->uuid_tree_rescan_sem); 3933 3934 /* pause restriper - we want to resume on mount */ 3935 btrfs_pause_balance(fs_info); 3936 3937 btrfs_dev_replace_suspend_for_unmount(fs_info); 3938 3939 btrfs_scrub_cancel(fs_info); 3940 3941 /* wait for any defraggers to finish */ 3942 wait_event(fs_info->transaction_wait, 3943 (atomic_read(&fs_info->defrag_running) == 0)); 3944 3945 /* clear out the rbtree of defraggable inodes */ 3946 btrfs_cleanup_defrag_inodes(fs_info); 3947 3948 cancel_work_sync(&fs_info->async_reclaim_work); 3949 3950 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3951 /* 3952 * If the cleaner thread is stopped and there are 3953 * block groups queued for removal, the deletion will be 3954 * skipped when we quit the cleaner thread. 3955 */ 3956 btrfs_delete_unused_bgs(fs_info); 3957 3958 ret = btrfs_commit_super(fs_info); 3959 if (ret) 3960 btrfs_err(fs_info, "commit super ret %d", ret); 3961 } 3962 3963 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3964 btrfs_error_commit_super(fs_info); 3965 3966 kthread_stop(fs_info->transaction_kthread); 3967 kthread_stop(fs_info->cleaner_kthread); 3968 3969 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 3970 3971 btrfs_free_qgroup_config(fs_info); 3972 3973 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3974 btrfs_info(fs_info, "at unmount delalloc count %lld", 3975 percpu_counter_sum(&fs_info->delalloc_bytes)); 3976 } 3977 3978 btrfs_sysfs_remove_mounted(fs_info); 3979 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3980 3981 btrfs_free_fs_roots(fs_info); 3982 3983 btrfs_put_block_group_cache(fs_info); 3984 3985 /* 3986 * we must make sure there is not any read request to 3987 * submit after we stopping all workers. 3988 */ 3989 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3990 btrfs_stop_all_workers(fs_info); 3991 3992 btrfs_free_block_groups(fs_info); 3993 3994 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 3995 free_root_pointers(fs_info, 1); 3996 3997 iput(fs_info->btree_inode); 3998 3999 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4000 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) 4001 btrfsic_unmount(fs_info->fs_devices); 4002 #endif 4003 4004 btrfs_close_devices(fs_info->fs_devices); 4005 btrfs_mapping_tree_free(&fs_info->mapping_tree); 4006 4007 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 4008 percpu_counter_destroy(&fs_info->delalloc_bytes); 4009 percpu_counter_destroy(&fs_info->bio_counter); 4010 bdi_destroy(&fs_info->bdi); 4011 cleanup_srcu_struct(&fs_info->subvol_srcu); 4012 4013 btrfs_free_stripe_hash_table(fs_info); 4014 4015 __btrfs_free_block_rsv(root->orphan_block_rsv); 4016 root->orphan_block_rsv = NULL; 4017 4018 mutex_lock(&fs_info->chunk_mutex); 4019 while (!list_empty(&fs_info->pinned_chunks)) { 4020 struct extent_map *em; 4021 4022 em = list_first_entry(&fs_info->pinned_chunks, 4023 struct extent_map, list); 4024 list_del_init(&em->list); 4025 free_extent_map(em); 4026 } 4027 mutex_unlock(&fs_info->chunk_mutex); 4028 } 4029 4030 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 4031 int atomic) 4032 { 4033 int ret; 4034 struct inode *btree_inode = buf->pages[0]->mapping->host; 4035 4036 ret = extent_buffer_uptodate(buf); 4037 if (!ret) 4038 return ret; 4039 4040 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 4041 parent_transid, atomic); 4042 if (ret == -EAGAIN) 4043 return ret; 4044 return !ret; 4045 } 4046 4047 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 4048 { 4049 struct btrfs_fs_info *fs_info; 4050 struct btrfs_root *root; 4051 u64 transid = btrfs_header_generation(buf); 4052 int was_dirty; 4053 4054 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4055 /* 4056 * This is a fast path so only do this check if we have sanity tests 4057 * enabled. Normal people shouldn't be marking dummy buffers as dirty 4058 * outside of the sanity tests. 4059 */ 4060 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 4061 return; 4062 #endif 4063 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4064 fs_info = root->fs_info; 4065 btrfs_assert_tree_locked(buf); 4066 if (transid != fs_info->generation) 4067 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n", 4068 buf->start, transid, fs_info->generation); 4069 was_dirty = set_extent_buffer_dirty(buf); 4070 if (!was_dirty) 4071 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 4072 buf->len, 4073 fs_info->dirty_metadata_batch); 4074 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4075 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4076 btrfs_print_leaf(fs_info, buf); 4077 ASSERT(0); 4078 } 4079 #endif 4080 } 4081 4082 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4083 int flush_delayed) 4084 { 4085 /* 4086 * looks as though older kernels can get into trouble with 4087 * this code, they end up stuck in balance_dirty_pages forever 4088 */ 4089 int ret; 4090 4091 if (current->flags & PF_MEMALLOC) 4092 return; 4093 4094 if (flush_delayed) 4095 btrfs_balance_delayed_items(fs_info); 4096 4097 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4098 BTRFS_DIRTY_METADATA_THRESH); 4099 if (ret > 0) { 4100 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4101 } 4102 } 4103 4104 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4105 { 4106 __btrfs_btree_balance_dirty(fs_info, 1); 4107 } 4108 4109 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4110 { 4111 __btrfs_btree_balance_dirty(fs_info, 0); 4112 } 4113 4114 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4115 { 4116 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4117 struct btrfs_fs_info *fs_info = root->fs_info; 4118 4119 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid); 4120 } 4121 4122 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info) 4123 { 4124 struct btrfs_super_block *sb = fs_info->super_copy; 4125 u64 nodesize = btrfs_super_nodesize(sb); 4126 u64 sectorsize = btrfs_super_sectorsize(sb); 4127 int ret = 0; 4128 4129 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4130 btrfs_err(fs_info, "no valid FS found"); 4131 ret = -EINVAL; 4132 } 4133 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4134 btrfs_warn(fs_info, "unrecognized super flag: %llu", 4135 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4136 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4137 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 4138 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4139 ret = -EINVAL; 4140 } 4141 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4142 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 4143 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4144 ret = -EINVAL; 4145 } 4146 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4147 btrfs_err(fs_info, "log_root level too big: %d >= %d", 4148 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4149 ret = -EINVAL; 4150 } 4151 4152 /* 4153 * Check sectorsize and nodesize first, other check will need it. 4154 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4155 */ 4156 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4157 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4158 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 4159 ret = -EINVAL; 4160 } 4161 /* Only PAGE SIZE is supported yet */ 4162 if (sectorsize != PAGE_SIZE) { 4163 btrfs_err(fs_info, 4164 "sectorsize %llu not supported yet, only support %lu", 4165 sectorsize, PAGE_SIZE); 4166 ret = -EINVAL; 4167 } 4168 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4169 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4170 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 4171 ret = -EINVAL; 4172 } 4173 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4174 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 4175 le32_to_cpu(sb->__unused_leafsize), nodesize); 4176 ret = -EINVAL; 4177 } 4178 4179 /* Root alignment check */ 4180 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4181 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 4182 btrfs_super_root(sb)); 4183 ret = -EINVAL; 4184 } 4185 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4186 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 4187 btrfs_super_chunk_root(sb)); 4188 ret = -EINVAL; 4189 } 4190 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4191 btrfs_warn(fs_info, "log_root block unaligned: %llu", 4192 btrfs_super_log_root(sb)); 4193 ret = -EINVAL; 4194 } 4195 4196 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4197 btrfs_err(fs_info, 4198 "dev_item UUID does not match fsid: %pU != %pU", 4199 fs_info->fsid, sb->dev_item.fsid); 4200 ret = -EINVAL; 4201 } 4202 4203 /* 4204 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4205 * done later 4206 */ 4207 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4208 btrfs_err(fs_info, "bytes_used is too small %llu", 4209 btrfs_super_bytes_used(sb)); 4210 ret = -EINVAL; 4211 } 4212 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4213 btrfs_err(fs_info, "invalid stripesize %u", 4214 btrfs_super_stripesize(sb)); 4215 ret = -EINVAL; 4216 } 4217 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4218 btrfs_warn(fs_info, "suspicious number of devices: %llu", 4219 btrfs_super_num_devices(sb)); 4220 if (btrfs_super_num_devices(sb) == 0) { 4221 btrfs_err(fs_info, "number of devices is 0"); 4222 ret = -EINVAL; 4223 } 4224 4225 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4226 btrfs_err(fs_info, "super offset mismatch %llu != %u", 4227 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4228 ret = -EINVAL; 4229 } 4230 4231 /* 4232 * Obvious sys_chunk_array corruptions, it must hold at least one key 4233 * and one chunk 4234 */ 4235 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4236 btrfs_err(fs_info, "system chunk array too big %u > %u", 4237 btrfs_super_sys_array_size(sb), 4238 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4239 ret = -EINVAL; 4240 } 4241 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4242 + sizeof(struct btrfs_chunk)) { 4243 btrfs_err(fs_info, "system chunk array too small %u < %zu", 4244 btrfs_super_sys_array_size(sb), 4245 sizeof(struct btrfs_disk_key) 4246 + sizeof(struct btrfs_chunk)); 4247 ret = -EINVAL; 4248 } 4249 4250 /* 4251 * The generation is a global counter, we'll trust it more than the others 4252 * but it's still possible that it's the one that's wrong. 4253 */ 4254 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4255 btrfs_warn(fs_info, 4256 "suspicious: generation < chunk_root_generation: %llu < %llu", 4257 btrfs_super_generation(sb), 4258 btrfs_super_chunk_root_generation(sb)); 4259 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4260 && btrfs_super_cache_generation(sb) != (u64)-1) 4261 btrfs_warn(fs_info, 4262 "suspicious: generation < cache_generation: %llu < %llu", 4263 btrfs_super_generation(sb), 4264 btrfs_super_cache_generation(sb)); 4265 4266 return ret; 4267 } 4268 4269 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4270 { 4271 mutex_lock(&fs_info->cleaner_mutex); 4272 btrfs_run_delayed_iputs(fs_info); 4273 mutex_unlock(&fs_info->cleaner_mutex); 4274 4275 down_write(&fs_info->cleanup_work_sem); 4276 up_write(&fs_info->cleanup_work_sem); 4277 4278 /* cleanup FS via transaction */ 4279 btrfs_cleanup_transaction(fs_info); 4280 } 4281 4282 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4283 { 4284 struct btrfs_ordered_extent *ordered; 4285 4286 spin_lock(&root->ordered_extent_lock); 4287 /* 4288 * This will just short circuit the ordered completion stuff which will 4289 * make sure the ordered extent gets properly cleaned up. 4290 */ 4291 list_for_each_entry(ordered, &root->ordered_extents, 4292 root_extent_list) 4293 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4294 spin_unlock(&root->ordered_extent_lock); 4295 } 4296 4297 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4298 { 4299 struct btrfs_root *root; 4300 struct list_head splice; 4301 4302 INIT_LIST_HEAD(&splice); 4303 4304 spin_lock(&fs_info->ordered_root_lock); 4305 list_splice_init(&fs_info->ordered_roots, &splice); 4306 while (!list_empty(&splice)) { 4307 root = list_first_entry(&splice, struct btrfs_root, 4308 ordered_root); 4309 list_move_tail(&root->ordered_root, 4310 &fs_info->ordered_roots); 4311 4312 spin_unlock(&fs_info->ordered_root_lock); 4313 btrfs_destroy_ordered_extents(root); 4314 4315 cond_resched(); 4316 spin_lock(&fs_info->ordered_root_lock); 4317 } 4318 spin_unlock(&fs_info->ordered_root_lock); 4319 } 4320 4321 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4322 struct btrfs_fs_info *fs_info) 4323 { 4324 struct rb_node *node; 4325 struct btrfs_delayed_ref_root *delayed_refs; 4326 struct btrfs_delayed_ref_node *ref; 4327 int ret = 0; 4328 4329 delayed_refs = &trans->delayed_refs; 4330 4331 spin_lock(&delayed_refs->lock); 4332 if (atomic_read(&delayed_refs->num_entries) == 0) { 4333 spin_unlock(&delayed_refs->lock); 4334 btrfs_info(fs_info, "delayed_refs has NO entry"); 4335 return ret; 4336 } 4337 4338 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4339 struct btrfs_delayed_ref_head *head; 4340 struct btrfs_delayed_ref_node *tmp; 4341 bool pin_bytes = false; 4342 4343 head = rb_entry(node, struct btrfs_delayed_ref_head, 4344 href_node); 4345 if (!mutex_trylock(&head->mutex)) { 4346 atomic_inc(&head->node.refs); 4347 spin_unlock(&delayed_refs->lock); 4348 4349 mutex_lock(&head->mutex); 4350 mutex_unlock(&head->mutex); 4351 btrfs_put_delayed_ref(&head->node); 4352 spin_lock(&delayed_refs->lock); 4353 continue; 4354 } 4355 spin_lock(&head->lock); 4356 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4357 list) { 4358 ref->in_tree = 0; 4359 list_del(&ref->list); 4360 if (!list_empty(&ref->add_list)) 4361 list_del(&ref->add_list); 4362 atomic_dec(&delayed_refs->num_entries); 4363 btrfs_put_delayed_ref(ref); 4364 } 4365 if (head->must_insert_reserved) 4366 pin_bytes = true; 4367 btrfs_free_delayed_extent_op(head->extent_op); 4368 delayed_refs->num_heads--; 4369 if (head->processing == 0) 4370 delayed_refs->num_heads_ready--; 4371 atomic_dec(&delayed_refs->num_entries); 4372 head->node.in_tree = 0; 4373 rb_erase(&head->href_node, &delayed_refs->href_root); 4374 spin_unlock(&head->lock); 4375 spin_unlock(&delayed_refs->lock); 4376 mutex_unlock(&head->mutex); 4377 4378 if (pin_bytes) 4379 btrfs_pin_extent(fs_info, head->node.bytenr, 4380 head->node.num_bytes, 1); 4381 btrfs_put_delayed_ref(&head->node); 4382 cond_resched(); 4383 spin_lock(&delayed_refs->lock); 4384 } 4385 4386 spin_unlock(&delayed_refs->lock); 4387 4388 return ret; 4389 } 4390 4391 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4392 { 4393 struct btrfs_inode *btrfs_inode; 4394 struct list_head splice; 4395 4396 INIT_LIST_HEAD(&splice); 4397 4398 spin_lock(&root->delalloc_lock); 4399 list_splice_init(&root->delalloc_inodes, &splice); 4400 4401 while (!list_empty(&splice)) { 4402 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4403 delalloc_inodes); 4404 4405 list_del_init(&btrfs_inode->delalloc_inodes); 4406 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4407 &btrfs_inode->runtime_flags); 4408 spin_unlock(&root->delalloc_lock); 4409 4410 btrfs_invalidate_inodes(btrfs_inode->root); 4411 4412 spin_lock(&root->delalloc_lock); 4413 } 4414 4415 spin_unlock(&root->delalloc_lock); 4416 } 4417 4418 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4419 { 4420 struct btrfs_root *root; 4421 struct list_head splice; 4422 4423 INIT_LIST_HEAD(&splice); 4424 4425 spin_lock(&fs_info->delalloc_root_lock); 4426 list_splice_init(&fs_info->delalloc_roots, &splice); 4427 while (!list_empty(&splice)) { 4428 root = list_first_entry(&splice, struct btrfs_root, 4429 delalloc_root); 4430 list_del_init(&root->delalloc_root); 4431 root = btrfs_grab_fs_root(root); 4432 BUG_ON(!root); 4433 spin_unlock(&fs_info->delalloc_root_lock); 4434 4435 btrfs_destroy_delalloc_inodes(root); 4436 btrfs_put_fs_root(root); 4437 4438 spin_lock(&fs_info->delalloc_root_lock); 4439 } 4440 spin_unlock(&fs_info->delalloc_root_lock); 4441 } 4442 4443 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4444 struct extent_io_tree *dirty_pages, 4445 int mark) 4446 { 4447 int ret; 4448 struct extent_buffer *eb; 4449 u64 start = 0; 4450 u64 end; 4451 4452 while (1) { 4453 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4454 mark, NULL); 4455 if (ret) 4456 break; 4457 4458 clear_extent_bits(dirty_pages, start, end, mark); 4459 while (start <= end) { 4460 eb = find_extent_buffer(fs_info, start); 4461 start += fs_info->nodesize; 4462 if (!eb) 4463 continue; 4464 wait_on_extent_buffer_writeback(eb); 4465 4466 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4467 &eb->bflags)) 4468 clear_extent_buffer_dirty(eb); 4469 free_extent_buffer_stale(eb); 4470 } 4471 } 4472 4473 return ret; 4474 } 4475 4476 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4477 struct extent_io_tree *pinned_extents) 4478 { 4479 struct extent_io_tree *unpin; 4480 u64 start; 4481 u64 end; 4482 int ret; 4483 bool loop = true; 4484 4485 unpin = pinned_extents; 4486 again: 4487 while (1) { 4488 ret = find_first_extent_bit(unpin, 0, &start, &end, 4489 EXTENT_DIRTY, NULL); 4490 if (ret) 4491 break; 4492 4493 clear_extent_dirty(unpin, start, end); 4494 btrfs_error_unpin_extent_range(fs_info, start, end); 4495 cond_resched(); 4496 } 4497 4498 if (loop) { 4499 if (unpin == &fs_info->freed_extents[0]) 4500 unpin = &fs_info->freed_extents[1]; 4501 else 4502 unpin = &fs_info->freed_extents[0]; 4503 loop = false; 4504 goto again; 4505 } 4506 4507 return 0; 4508 } 4509 4510 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache) 4511 { 4512 struct inode *inode; 4513 4514 inode = cache->io_ctl.inode; 4515 if (inode) { 4516 invalidate_inode_pages2(inode->i_mapping); 4517 BTRFS_I(inode)->generation = 0; 4518 cache->io_ctl.inode = NULL; 4519 iput(inode); 4520 } 4521 btrfs_put_block_group(cache); 4522 } 4523 4524 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4525 struct btrfs_fs_info *fs_info) 4526 { 4527 struct btrfs_block_group_cache *cache; 4528 4529 spin_lock(&cur_trans->dirty_bgs_lock); 4530 while (!list_empty(&cur_trans->dirty_bgs)) { 4531 cache = list_first_entry(&cur_trans->dirty_bgs, 4532 struct btrfs_block_group_cache, 4533 dirty_list); 4534 if (!cache) { 4535 btrfs_err(fs_info, "orphan block group dirty_bgs list"); 4536 spin_unlock(&cur_trans->dirty_bgs_lock); 4537 return; 4538 } 4539 4540 if (!list_empty(&cache->io_list)) { 4541 spin_unlock(&cur_trans->dirty_bgs_lock); 4542 list_del_init(&cache->io_list); 4543 btrfs_cleanup_bg_io(cache); 4544 spin_lock(&cur_trans->dirty_bgs_lock); 4545 } 4546 4547 list_del_init(&cache->dirty_list); 4548 spin_lock(&cache->lock); 4549 cache->disk_cache_state = BTRFS_DC_ERROR; 4550 spin_unlock(&cache->lock); 4551 4552 spin_unlock(&cur_trans->dirty_bgs_lock); 4553 btrfs_put_block_group(cache); 4554 spin_lock(&cur_trans->dirty_bgs_lock); 4555 } 4556 spin_unlock(&cur_trans->dirty_bgs_lock); 4557 4558 while (!list_empty(&cur_trans->io_bgs)) { 4559 cache = list_first_entry(&cur_trans->io_bgs, 4560 struct btrfs_block_group_cache, 4561 io_list); 4562 if (!cache) { 4563 btrfs_err(fs_info, "orphan block group on io_bgs list"); 4564 return; 4565 } 4566 4567 list_del_init(&cache->io_list); 4568 spin_lock(&cache->lock); 4569 cache->disk_cache_state = BTRFS_DC_ERROR; 4570 spin_unlock(&cache->lock); 4571 btrfs_cleanup_bg_io(cache); 4572 } 4573 } 4574 4575 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4576 struct btrfs_fs_info *fs_info) 4577 { 4578 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4579 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4580 ASSERT(list_empty(&cur_trans->io_bgs)); 4581 4582 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4583 4584 cur_trans->state = TRANS_STATE_COMMIT_START; 4585 wake_up(&fs_info->transaction_blocked_wait); 4586 4587 cur_trans->state = TRANS_STATE_UNBLOCKED; 4588 wake_up(&fs_info->transaction_wait); 4589 4590 btrfs_destroy_delayed_inodes(fs_info); 4591 btrfs_assert_delayed_root_empty(fs_info); 4592 4593 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4594 EXTENT_DIRTY); 4595 btrfs_destroy_pinned_extent(fs_info, 4596 fs_info->pinned_extents); 4597 4598 cur_trans->state =TRANS_STATE_COMPLETED; 4599 wake_up(&cur_trans->commit_wait); 4600 4601 /* 4602 memset(cur_trans, 0, sizeof(*cur_trans)); 4603 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4604 */ 4605 } 4606 4607 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4608 { 4609 struct btrfs_transaction *t; 4610 4611 mutex_lock(&fs_info->transaction_kthread_mutex); 4612 4613 spin_lock(&fs_info->trans_lock); 4614 while (!list_empty(&fs_info->trans_list)) { 4615 t = list_first_entry(&fs_info->trans_list, 4616 struct btrfs_transaction, list); 4617 if (t->state >= TRANS_STATE_COMMIT_START) { 4618 atomic_inc(&t->use_count); 4619 spin_unlock(&fs_info->trans_lock); 4620 btrfs_wait_for_commit(fs_info, t->transid); 4621 btrfs_put_transaction(t); 4622 spin_lock(&fs_info->trans_lock); 4623 continue; 4624 } 4625 if (t == fs_info->running_transaction) { 4626 t->state = TRANS_STATE_COMMIT_DOING; 4627 spin_unlock(&fs_info->trans_lock); 4628 /* 4629 * We wait for 0 num_writers since we don't hold a trans 4630 * handle open currently for this transaction. 4631 */ 4632 wait_event(t->writer_wait, 4633 atomic_read(&t->num_writers) == 0); 4634 } else { 4635 spin_unlock(&fs_info->trans_lock); 4636 } 4637 btrfs_cleanup_one_transaction(t, fs_info); 4638 4639 spin_lock(&fs_info->trans_lock); 4640 if (t == fs_info->running_transaction) 4641 fs_info->running_transaction = NULL; 4642 list_del_init(&t->list); 4643 spin_unlock(&fs_info->trans_lock); 4644 4645 btrfs_put_transaction(t); 4646 trace_btrfs_transaction_commit(fs_info->tree_root); 4647 spin_lock(&fs_info->trans_lock); 4648 } 4649 spin_unlock(&fs_info->trans_lock); 4650 btrfs_destroy_all_ordered_extents(fs_info); 4651 btrfs_destroy_delayed_inodes(fs_info); 4652 btrfs_assert_delayed_root_empty(fs_info); 4653 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); 4654 btrfs_destroy_all_delalloc_inodes(fs_info); 4655 mutex_unlock(&fs_info->transaction_kthread_mutex); 4656 4657 return 0; 4658 } 4659 4660 static const struct extent_io_ops btree_extent_io_ops = { 4661 /* mandatory callbacks */ 4662 .submit_bio_hook = btree_submit_bio_hook, 4663 .readpage_end_io_hook = btree_readpage_end_io_hook, 4664 /* note we're sharing with inode.c for the merge bio hook */ 4665 .merge_bio_hook = btrfs_merge_bio_hook, 4666 .readpage_io_failed_hook = btree_io_failed_hook, 4667 4668 /* optional callbacks */ 4669 }; 4670