1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include "compat.h" 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "volumes.h" 37 #include "print-tree.h" 38 #include "async-thread.h" 39 #include "locking.h" 40 #include "tree-log.h" 41 #include "free-space-cache.h" 42 43 static struct extent_io_ops btree_extent_io_ops; 44 static void end_workqueue_fn(struct btrfs_work *work); 45 static void free_fs_root(struct btrfs_root *root); 46 47 /* 48 * end_io_wq structs are used to do processing in task context when an IO is 49 * complete. This is used during reads to verify checksums, and it is used 50 * by writes to insert metadata for new file extents after IO is complete. 51 */ 52 struct end_io_wq { 53 struct bio *bio; 54 bio_end_io_t *end_io; 55 void *private; 56 struct btrfs_fs_info *info; 57 int error; 58 int metadata; 59 struct list_head list; 60 struct btrfs_work work; 61 }; 62 63 /* 64 * async submit bios are used to offload expensive checksumming 65 * onto the worker threads. They checksum file and metadata bios 66 * just before they are sent down the IO stack. 67 */ 68 struct async_submit_bio { 69 struct inode *inode; 70 struct bio *bio; 71 struct list_head list; 72 extent_submit_bio_hook_t *submit_bio_start; 73 extent_submit_bio_hook_t *submit_bio_done; 74 int rw; 75 int mirror_num; 76 unsigned long bio_flags; 77 /* 78 * bio_offset is optional, can be used if the pages in the bio 79 * can't tell us where in the file the bio should go 80 */ 81 u64 bio_offset; 82 struct btrfs_work work; 83 }; 84 85 /* These are used to set the lockdep class on the extent buffer locks. 86 * The class is set by the readpage_end_io_hook after the buffer has 87 * passed csum validation but before the pages are unlocked. 88 * 89 * The lockdep class is also set by btrfs_init_new_buffer on freshly 90 * allocated blocks. 91 * 92 * The class is based on the level in the tree block, which allows lockdep 93 * to know that lower nodes nest inside the locks of higher nodes. 94 * 95 * We also add a check to make sure the highest level of the tree is 96 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 97 * code needs update as well. 98 */ 99 #ifdef CONFIG_DEBUG_LOCK_ALLOC 100 # if BTRFS_MAX_LEVEL != 8 101 # error 102 # endif 103 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 104 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 105 /* leaf */ 106 "btrfs-extent-00", 107 "btrfs-extent-01", 108 "btrfs-extent-02", 109 "btrfs-extent-03", 110 "btrfs-extent-04", 111 "btrfs-extent-05", 112 "btrfs-extent-06", 113 "btrfs-extent-07", 114 /* highest possible level */ 115 "btrfs-extent-08", 116 }; 117 #endif 118 119 /* 120 * extents on the btree inode are pretty simple, there's one extent 121 * that covers the entire device 122 */ 123 static struct extent_map *btree_get_extent(struct inode *inode, 124 struct page *page, size_t page_offset, u64 start, u64 len, 125 int create) 126 { 127 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 128 struct extent_map *em; 129 int ret; 130 131 read_lock(&em_tree->lock); 132 em = lookup_extent_mapping(em_tree, start, len); 133 if (em) { 134 em->bdev = 135 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 136 read_unlock(&em_tree->lock); 137 goto out; 138 } 139 read_unlock(&em_tree->lock); 140 141 em = alloc_extent_map(GFP_NOFS); 142 if (!em) { 143 em = ERR_PTR(-ENOMEM); 144 goto out; 145 } 146 em->start = 0; 147 em->len = (u64)-1; 148 em->block_len = (u64)-1; 149 em->block_start = 0; 150 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 151 152 write_lock(&em_tree->lock); 153 ret = add_extent_mapping(em_tree, em); 154 if (ret == -EEXIST) { 155 u64 failed_start = em->start; 156 u64 failed_len = em->len; 157 158 free_extent_map(em); 159 em = lookup_extent_mapping(em_tree, start, len); 160 if (em) { 161 ret = 0; 162 } else { 163 em = lookup_extent_mapping(em_tree, failed_start, 164 failed_len); 165 ret = -EIO; 166 } 167 } else if (ret) { 168 free_extent_map(em); 169 em = NULL; 170 } 171 write_unlock(&em_tree->lock); 172 173 if (ret) 174 em = ERR_PTR(ret); 175 out: 176 return em; 177 } 178 179 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 180 { 181 return crc32c(seed, data, len); 182 } 183 184 void btrfs_csum_final(u32 crc, char *result) 185 { 186 *(__le32 *)result = ~cpu_to_le32(crc); 187 } 188 189 /* 190 * compute the csum for a btree block, and either verify it or write it 191 * into the csum field of the block. 192 */ 193 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 194 int verify) 195 { 196 u16 csum_size = 197 btrfs_super_csum_size(&root->fs_info->super_copy); 198 char *result = NULL; 199 unsigned long len; 200 unsigned long cur_len; 201 unsigned long offset = BTRFS_CSUM_SIZE; 202 char *map_token = NULL; 203 char *kaddr; 204 unsigned long map_start; 205 unsigned long map_len; 206 int err; 207 u32 crc = ~(u32)0; 208 unsigned long inline_result; 209 210 len = buf->len - offset; 211 while (len > 0) { 212 err = map_private_extent_buffer(buf, offset, 32, 213 &map_token, &kaddr, 214 &map_start, &map_len, KM_USER0); 215 if (err) 216 return 1; 217 cur_len = min(len, map_len - (offset - map_start)); 218 crc = btrfs_csum_data(root, kaddr + offset - map_start, 219 crc, cur_len); 220 len -= cur_len; 221 offset += cur_len; 222 unmap_extent_buffer(buf, map_token, KM_USER0); 223 } 224 if (csum_size > sizeof(inline_result)) { 225 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 226 if (!result) 227 return 1; 228 } else { 229 result = (char *)&inline_result; 230 } 231 232 btrfs_csum_final(crc, result); 233 234 if (verify) { 235 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 236 u32 val; 237 u32 found = 0; 238 memcpy(&found, result, csum_size); 239 240 read_extent_buffer(buf, &val, 0, csum_size); 241 if (printk_ratelimit()) { 242 printk(KERN_INFO "btrfs: %s checksum verify " 243 "failed on %llu wanted %X found %X " 244 "level %d\n", 245 root->fs_info->sb->s_id, 246 (unsigned long long)buf->start, val, found, 247 btrfs_header_level(buf)); 248 } 249 if (result != (char *)&inline_result) 250 kfree(result); 251 return 1; 252 } 253 } else { 254 write_extent_buffer(buf, result, 0, csum_size); 255 } 256 if (result != (char *)&inline_result) 257 kfree(result); 258 return 0; 259 } 260 261 /* 262 * we can't consider a given block up to date unless the transid of the 263 * block matches the transid in the parent node's pointer. This is how we 264 * detect blocks that either didn't get written at all or got written 265 * in the wrong place. 266 */ 267 static int verify_parent_transid(struct extent_io_tree *io_tree, 268 struct extent_buffer *eb, u64 parent_transid) 269 { 270 struct extent_state *cached_state = NULL; 271 int ret; 272 273 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 274 return 0; 275 276 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 277 0, &cached_state, GFP_NOFS); 278 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 279 btrfs_header_generation(eb) == parent_transid) { 280 ret = 0; 281 goto out; 282 } 283 if (printk_ratelimit()) { 284 printk("parent transid verify failed on %llu wanted %llu " 285 "found %llu\n", 286 (unsigned long long)eb->start, 287 (unsigned long long)parent_transid, 288 (unsigned long long)btrfs_header_generation(eb)); 289 } 290 ret = 1; 291 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 292 out: 293 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 294 &cached_state, GFP_NOFS); 295 return ret; 296 } 297 298 /* 299 * helper to read a given tree block, doing retries as required when 300 * the checksums don't match and we have alternate mirrors to try. 301 */ 302 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 303 struct extent_buffer *eb, 304 u64 start, u64 parent_transid) 305 { 306 struct extent_io_tree *io_tree; 307 int ret; 308 int num_copies = 0; 309 int mirror_num = 0; 310 311 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 312 while (1) { 313 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 314 btree_get_extent, mirror_num); 315 if (!ret && 316 !verify_parent_transid(io_tree, eb, parent_transid)) 317 return ret; 318 319 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 320 eb->start, eb->len); 321 if (num_copies == 1) 322 return ret; 323 324 mirror_num++; 325 if (mirror_num > num_copies) 326 return ret; 327 } 328 return -EIO; 329 } 330 331 /* 332 * checksum a dirty tree block before IO. This has extra checks to make sure 333 * we only fill in the checksum field in the first page of a multi-page block 334 */ 335 336 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 337 { 338 struct extent_io_tree *tree; 339 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 340 u64 found_start; 341 int found_level; 342 unsigned long len; 343 struct extent_buffer *eb; 344 int ret; 345 346 tree = &BTRFS_I(page->mapping->host)->io_tree; 347 348 if (page->private == EXTENT_PAGE_PRIVATE) 349 goto out; 350 if (!page->private) 351 goto out; 352 len = page->private >> 2; 353 WARN_ON(len == 0); 354 355 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 356 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 357 btrfs_header_generation(eb)); 358 BUG_ON(ret); 359 found_start = btrfs_header_bytenr(eb); 360 if (found_start != start) { 361 WARN_ON(1); 362 goto err; 363 } 364 if (eb->first_page != page) { 365 WARN_ON(1); 366 goto err; 367 } 368 if (!PageUptodate(page)) { 369 WARN_ON(1); 370 goto err; 371 } 372 found_level = btrfs_header_level(eb); 373 374 csum_tree_block(root, eb, 0); 375 err: 376 free_extent_buffer(eb); 377 out: 378 return 0; 379 } 380 381 static int check_tree_block_fsid(struct btrfs_root *root, 382 struct extent_buffer *eb) 383 { 384 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 385 u8 fsid[BTRFS_UUID_SIZE]; 386 int ret = 1; 387 388 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 389 BTRFS_FSID_SIZE); 390 while (fs_devices) { 391 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 392 ret = 0; 393 break; 394 } 395 fs_devices = fs_devices->seed; 396 } 397 return ret; 398 } 399 400 #ifdef CONFIG_DEBUG_LOCK_ALLOC 401 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 402 { 403 lockdep_set_class_and_name(&eb->lock, 404 &btrfs_eb_class[level], 405 btrfs_eb_name[level]); 406 } 407 #endif 408 409 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 410 struct extent_state *state) 411 { 412 struct extent_io_tree *tree; 413 u64 found_start; 414 int found_level; 415 unsigned long len; 416 struct extent_buffer *eb; 417 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 418 int ret = 0; 419 420 tree = &BTRFS_I(page->mapping->host)->io_tree; 421 if (page->private == EXTENT_PAGE_PRIVATE) 422 goto out; 423 if (!page->private) 424 goto out; 425 426 len = page->private >> 2; 427 WARN_ON(len == 0); 428 429 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 430 431 found_start = btrfs_header_bytenr(eb); 432 if (found_start != start) { 433 if (printk_ratelimit()) { 434 printk(KERN_INFO "btrfs bad tree block start " 435 "%llu %llu\n", 436 (unsigned long long)found_start, 437 (unsigned long long)eb->start); 438 } 439 ret = -EIO; 440 goto err; 441 } 442 if (eb->first_page != page) { 443 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 444 eb->first_page->index, page->index); 445 WARN_ON(1); 446 ret = -EIO; 447 goto err; 448 } 449 if (check_tree_block_fsid(root, eb)) { 450 if (printk_ratelimit()) { 451 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 452 (unsigned long long)eb->start); 453 } 454 ret = -EIO; 455 goto err; 456 } 457 found_level = btrfs_header_level(eb); 458 459 btrfs_set_buffer_lockdep_class(eb, found_level); 460 461 ret = csum_tree_block(root, eb, 1); 462 if (ret) 463 ret = -EIO; 464 465 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 466 end = eb->start + end - 1; 467 err: 468 free_extent_buffer(eb); 469 out: 470 return ret; 471 } 472 473 static void end_workqueue_bio(struct bio *bio, int err) 474 { 475 struct end_io_wq *end_io_wq = bio->bi_private; 476 struct btrfs_fs_info *fs_info; 477 478 fs_info = end_io_wq->info; 479 end_io_wq->error = err; 480 end_io_wq->work.func = end_workqueue_fn; 481 end_io_wq->work.flags = 0; 482 483 if (bio->bi_rw & (1 << BIO_RW)) { 484 if (end_io_wq->metadata) 485 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 486 &end_io_wq->work); 487 else 488 btrfs_queue_worker(&fs_info->endio_write_workers, 489 &end_io_wq->work); 490 } else { 491 if (end_io_wq->metadata) 492 btrfs_queue_worker(&fs_info->endio_meta_workers, 493 &end_io_wq->work); 494 else 495 btrfs_queue_worker(&fs_info->endio_workers, 496 &end_io_wq->work); 497 } 498 } 499 500 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 501 int metadata) 502 { 503 struct end_io_wq *end_io_wq; 504 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 505 if (!end_io_wq) 506 return -ENOMEM; 507 508 end_io_wq->private = bio->bi_private; 509 end_io_wq->end_io = bio->bi_end_io; 510 end_io_wq->info = info; 511 end_io_wq->error = 0; 512 end_io_wq->bio = bio; 513 end_io_wq->metadata = metadata; 514 515 bio->bi_private = end_io_wq; 516 bio->bi_end_io = end_workqueue_bio; 517 return 0; 518 } 519 520 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 521 { 522 unsigned long limit = min_t(unsigned long, 523 info->workers.max_workers, 524 info->fs_devices->open_devices); 525 return 256 * limit; 526 } 527 528 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 529 { 530 return atomic_read(&info->nr_async_bios) > 531 btrfs_async_submit_limit(info); 532 } 533 534 static void run_one_async_start(struct btrfs_work *work) 535 { 536 struct btrfs_fs_info *fs_info; 537 struct async_submit_bio *async; 538 539 async = container_of(work, struct async_submit_bio, work); 540 fs_info = BTRFS_I(async->inode)->root->fs_info; 541 async->submit_bio_start(async->inode, async->rw, async->bio, 542 async->mirror_num, async->bio_flags, 543 async->bio_offset); 544 } 545 546 static void run_one_async_done(struct btrfs_work *work) 547 { 548 struct btrfs_fs_info *fs_info; 549 struct async_submit_bio *async; 550 int limit; 551 552 async = container_of(work, struct async_submit_bio, work); 553 fs_info = BTRFS_I(async->inode)->root->fs_info; 554 555 limit = btrfs_async_submit_limit(fs_info); 556 limit = limit * 2 / 3; 557 558 atomic_dec(&fs_info->nr_async_submits); 559 560 if (atomic_read(&fs_info->nr_async_submits) < limit && 561 waitqueue_active(&fs_info->async_submit_wait)) 562 wake_up(&fs_info->async_submit_wait); 563 564 async->submit_bio_done(async->inode, async->rw, async->bio, 565 async->mirror_num, async->bio_flags, 566 async->bio_offset); 567 } 568 569 static void run_one_async_free(struct btrfs_work *work) 570 { 571 struct async_submit_bio *async; 572 573 async = container_of(work, struct async_submit_bio, work); 574 kfree(async); 575 } 576 577 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 578 int rw, struct bio *bio, int mirror_num, 579 unsigned long bio_flags, 580 u64 bio_offset, 581 extent_submit_bio_hook_t *submit_bio_start, 582 extent_submit_bio_hook_t *submit_bio_done) 583 { 584 struct async_submit_bio *async; 585 586 async = kmalloc(sizeof(*async), GFP_NOFS); 587 if (!async) 588 return -ENOMEM; 589 590 async->inode = inode; 591 async->rw = rw; 592 async->bio = bio; 593 async->mirror_num = mirror_num; 594 async->submit_bio_start = submit_bio_start; 595 async->submit_bio_done = submit_bio_done; 596 597 async->work.func = run_one_async_start; 598 async->work.ordered_func = run_one_async_done; 599 async->work.ordered_free = run_one_async_free; 600 601 async->work.flags = 0; 602 async->bio_flags = bio_flags; 603 async->bio_offset = bio_offset; 604 605 atomic_inc(&fs_info->nr_async_submits); 606 607 if (rw & (1 << BIO_RW_SYNCIO)) 608 btrfs_set_work_high_prio(&async->work); 609 610 btrfs_queue_worker(&fs_info->workers, &async->work); 611 612 while (atomic_read(&fs_info->async_submit_draining) && 613 atomic_read(&fs_info->nr_async_submits)) { 614 wait_event(fs_info->async_submit_wait, 615 (atomic_read(&fs_info->nr_async_submits) == 0)); 616 } 617 618 return 0; 619 } 620 621 static int btree_csum_one_bio(struct bio *bio) 622 { 623 struct bio_vec *bvec = bio->bi_io_vec; 624 int bio_index = 0; 625 struct btrfs_root *root; 626 627 WARN_ON(bio->bi_vcnt <= 0); 628 while (bio_index < bio->bi_vcnt) { 629 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 630 csum_dirty_buffer(root, bvec->bv_page); 631 bio_index++; 632 bvec++; 633 } 634 return 0; 635 } 636 637 static int __btree_submit_bio_start(struct inode *inode, int rw, 638 struct bio *bio, int mirror_num, 639 unsigned long bio_flags, 640 u64 bio_offset) 641 { 642 /* 643 * when we're called for a write, we're already in the async 644 * submission context. Just jump into btrfs_map_bio 645 */ 646 btree_csum_one_bio(bio); 647 return 0; 648 } 649 650 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 651 int mirror_num, unsigned long bio_flags, 652 u64 bio_offset) 653 { 654 /* 655 * when we're called for a write, we're already in the async 656 * submission context. Just jump into btrfs_map_bio 657 */ 658 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 659 } 660 661 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 662 int mirror_num, unsigned long bio_flags, 663 u64 bio_offset) 664 { 665 int ret; 666 667 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 668 bio, 1); 669 BUG_ON(ret); 670 671 if (!(rw & (1 << BIO_RW))) { 672 /* 673 * called for a read, do the setup so that checksum validation 674 * can happen in the async kernel threads 675 */ 676 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 677 mirror_num, 0); 678 } 679 680 /* 681 * kthread helpers are used to submit writes so that checksumming 682 * can happen in parallel across all CPUs 683 */ 684 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 685 inode, rw, bio, mirror_num, 0, 686 bio_offset, 687 __btree_submit_bio_start, 688 __btree_submit_bio_done); 689 } 690 691 static int btree_writepage(struct page *page, struct writeback_control *wbc) 692 { 693 struct extent_io_tree *tree; 694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 695 struct extent_buffer *eb; 696 int was_dirty; 697 698 tree = &BTRFS_I(page->mapping->host)->io_tree; 699 if (!(current->flags & PF_MEMALLOC)) { 700 return extent_write_full_page(tree, page, 701 btree_get_extent, wbc); 702 } 703 704 redirty_page_for_writepage(wbc, page); 705 eb = btrfs_find_tree_block(root, page_offset(page), 706 PAGE_CACHE_SIZE); 707 WARN_ON(!eb); 708 709 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 710 if (!was_dirty) { 711 spin_lock(&root->fs_info->delalloc_lock); 712 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 713 spin_unlock(&root->fs_info->delalloc_lock); 714 } 715 free_extent_buffer(eb); 716 717 unlock_page(page); 718 return 0; 719 } 720 721 static int btree_writepages(struct address_space *mapping, 722 struct writeback_control *wbc) 723 { 724 struct extent_io_tree *tree; 725 tree = &BTRFS_I(mapping->host)->io_tree; 726 if (wbc->sync_mode == WB_SYNC_NONE) { 727 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 728 u64 num_dirty; 729 unsigned long thresh = 32 * 1024 * 1024; 730 731 if (wbc->for_kupdate) 732 return 0; 733 734 /* this is a bit racy, but that's ok */ 735 num_dirty = root->fs_info->dirty_metadata_bytes; 736 if (num_dirty < thresh) 737 return 0; 738 } 739 return extent_writepages(tree, mapping, btree_get_extent, wbc); 740 } 741 742 static int btree_readpage(struct file *file, struct page *page) 743 { 744 struct extent_io_tree *tree; 745 tree = &BTRFS_I(page->mapping->host)->io_tree; 746 return extent_read_full_page(tree, page, btree_get_extent); 747 } 748 749 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 750 { 751 struct extent_io_tree *tree; 752 struct extent_map_tree *map; 753 int ret; 754 755 if (PageWriteback(page) || PageDirty(page)) 756 return 0; 757 758 tree = &BTRFS_I(page->mapping->host)->io_tree; 759 map = &BTRFS_I(page->mapping->host)->extent_tree; 760 761 ret = try_release_extent_state(map, tree, page, gfp_flags); 762 if (!ret) 763 return 0; 764 765 ret = try_release_extent_buffer(tree, page); 766 if (ret == 1) { 767 ClearPagePrivate(page); 768 set_page_private(page, 0); 769 page_cache_release(page); 770 } 771 772 return ret; 773 } 774 775 static void btree_invalidatepage(struct page *page, unsigned long offset) 776 { 777 struct extent_io_tree *tree; 778 tree = &BTRFS_I(page->mapping->host)->io_tree; 779 extent_invalidatepage(tree, page, offset); 780 btree_releasepage(page, GFP_NOFS); 781 if (PagePrivate(page)) { 782 printk(KERN_WARNING "btrfs warning page private not zero " 783 "on page %llu\n", (unsigned long long)page_offset(page)); 784 ClearPagePrivate(page); 785 set_page_private(page, 0); 786 page_cache_release(page); 787 } 788 } 789 790 static const struct address_space_operations btree_aops = { 791 .readpage = btree_readpage, 792 .writepage = btree_writepage, 793 .writepages = btree_writepages, 794 .releasepage = btree_releasepage, 795 .invalidatepage = btree_invalidatepage, 796 .sync_page = block_sync_page, 797 }; 798 799 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 800 u64 parent_transid) 801 { 802 struct extent_buffer *buf = NULL; 803 struct inode *btree_inode = root->fs_info->btree_inode; 804 int ret = 0; 805 806 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 807 if (!buf) 808 return 0; 809 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 810 buf, 0, 0, btree_get_extent, 0); 811 free_extent_buffer(buf); 812 return ret; 813 } 814 815 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 816 u64 bytenr, u32 blocksize) 817 { 818 struct inode *btree_inode = root->fs_info->btree_inode; 819 struct extent_buffer *eb; 820 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 821 bytenr, blocksize, GFP_NOFS); 822 return eb; 823 } 824 825 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 826 u64 bytenr, u32 blocksize) 827 { 828 struct inode *btree_inode = root->fs_info->btree_inode; 829 struct extent_buffer *eb; 830 831 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 832 bytenr, blocksize, NULL, GFP_NOFS); 833 return eb; 834 } 835 836 837 int btrfs_write_tree_block(struct extent_buffer *buf) 838 { 839 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 840 buf->start + buf->len - 1); 841 } 842 843 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 844 { 845 return filemap_fdatawait_range(buf->first_page->mapping, 846 buf->start, buf->start + buf->len - 1); 847 } 848 849 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 850 u32 blocksize, u64 parent_transid) 851 { 852 struct extent_buffer *buf = NULL; 853 struct inode *btree_inode = root->fs_info->btree_inode; 854 struct extent_io_tree *io_tree; 855 int ret; 856 857 io_tree = &BTRFS_I(btree_inode)->io_tree; 858 859 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 860 if (!buf) 861 return NULL; 862 863 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 864 865 if (ret == 0) 866 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 867 return buf; 868 869 } 870 871 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 872 struct extent_buffer *buf) 873 { 874 struct inode *btree_inode = root->fs_info->btree_inode; 875 if (btrfs_header_generation(buf) == 876 root->fs_info->running_transaction->transid) { 877 btrfs_assert_tree_locked(buf); 878 879 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 880 spin_lock(&root->fs_info->delalloc_lock); 881 if (root->fs_info->dirty_metadata_bytes >= buf->len) 882 root->fs_info->dirty_metadata_bytes -= buf->len; 883 else 884 WARN_ON(1); 885 spin_unlock(&root->fs_info->delalloc_lock); 886 } 887 888 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 889 btrfs_set_lock_blocking(buf); 890 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 891 buf); 892 } 893 return 0; 894 } 895 896 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 897 u32 stripesize, struct btrfs_root *root, 898 struct btrfs_fs_info *fs_info, 899 u64 objectid) 900 { 901 root->node = NULL; 902 root->commit_root = NULL; 903 root->sectorsize = sectorsize; 904 root->nodesize = nodesize; 905 root->leafsize = leafsize; 906 root->stripesize = stripesize; 907 root->ref_cows = 0; 908 root->track_dirty = 0; 909 root->in_radix = 0; 910 root->orphan_item_inserted = 0; 911 root->orphan_cleanup_state = 0; 912 913 root->fs_info = fs_info; 914 root->objectid = objectid; 915 root->last_trans = 0; 916 root->highest_objectid = 0; 917 root->name = NULL; 918 root->in_sysfs = 0; 919 root->inode_tree = RB_ROOT; 920 root->block_rsv = NULL; 921 root->orphan_block_rsv = NULL; 922 923 INIT_LIST_HEAD(&root->dirty_list); 924 INIT_LIST_HEAD(&root->orphan_list); 925 INIT_LIST_HEAD(&root->root_list); 926 spin_lock_init(&root->node_lock); 927 spin_lock_init(&root->orphan_lock); 928 spin_lock_init(&root->inode_lock); 929 spin_lock_init(&root->accounting_lock); 930 mutex_init(&root->objectid_mutex); 931 mutex_init(&root->log_mutex); 932 init_waitqueue_head(&root->log_writer_wait); 933 init_waitqueue_head(&root->log_commit_wait[0]); 934 init_waitqueue_head(&root->log_commit_wait[1]); 935 atomic_set(&root->log_commit[0], 0); 936 atomic_set(&root->log_commit[1], 0); 937 atomic_set(&root->log_writers, 0); 938 root->log_batch = 0; 939 root->log_transid = 0; 940 root->last_log_commit = 0; 941 extent_io_tree_init(&root->dirty_log_pages, 942 fs_info->btree_inode->i_mapping, GFP_NOFS); 943 944 memset(&root->root_key, 0, sizeof(root->root_key)); 945 memset(&root->root_item, 0, sizeof(root->root_item)); 946 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 947 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 948 root->defrag_trans_start = fs_info->generation; 949 init_completion(&root->kobj_unregister); 950 root->defrag_running = 0; 951 root->root_key.objectid = objectid; 952 root->anon_super.s_root = NULL; 953 root->anon_super.s_dev = 0; 954 INIT_LIST_HEAD(&root->anon_super.s_list); 955 INIT_LIST_HEAD(&root->anon_super.s_instances); 956 init_rwsem(&root->anon_super.s_umount); 957 958 return 0; 959 } 960 961 static int find_and_setup_root(struct btrfs_root *tree_root, 962 struct btrfs_fs_info *fs_info, 963 u64 objectid, 964 struct btrfs_root *root) 965 { 966 int ret; 967 u32 blocksize; 968 u64 generation; 969 970 __setup_root(tree_root->nodesize, tree_root->leafsize, 971 tree_root->sectorsize, tree_root->stripesize, 972 root, fs_info, objectid); 973 ret = btrfs_find_last_root(tree_root, objectid, 974 &root->root_item, &root->root_key); 975 if (ret > 0) 976 return -ENOENT; 977 BUG_ON(ret); 978 979 generation = btrfs_root_generation(&root->root_item); 980 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 981 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 982 blocksize, generation); 983 BUG_ON(!root->node); 984 root->commit_root = btrfs_root_node(root); 985 return 0; 986 } 987 988 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 989 struct btrfs_fs_info *fs_info) 990 { 991 struct btrfs_root *root; 992 struct btrfs_root *tree_root = fs_info->tree_root; 993 struct extent_buffer *leaf; 994 995 root = kzalloc(sizeof(*root), GFP_NOFS); 996 if (!root) 997 return ERR_PTR(-ENOMEM); 998 999 __setup_root(tree_root->nodesize, tree_root->leafsize, 1000 tree_root->sectorsize, tree_root->stripesize, 1001 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1002 1003 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1004 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1005 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1006 /* 1007 * log trees do not get reference counted because they go away 1008 * before a real commit is actually done. They do store pointers 1009 * to file data extents, and those reference counts still get 1010 * updated (along with back refs to the log tree). 1011 */ 1012 root->ref_cows = 0; 1013 1014 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1015 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1016 if (IS_ERR(leaf)) { 1017 kfree(root); 1018 return ERR_CAST(leaf); 1019 } 1020 1021 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1022 btrfs_set_header_bytenr(leaf, leaf->start); 1023 btrfs_set_header_generation(leaf, trans->transid); 1024 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1025 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1026 root->node = leaf; 1027 1028 write_extent_buffer(root->node, root->fs_info->fsid, 1029 (unsigned long)btrfs_header_fsid(root->node), 1030 BTRFS_FSID_SIZE); 1031 btrfs_mark_buffer_dirty(root->node); 1032 btrfs_tree_unlock(root->node); 1033 return root; 1034 } 1035 1036 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1037 struct btrfs_fs_info *fs_info) 1038 { 1039 struct btrfs_root *log_root; 1040 1041 log_root = alloc_log_tree(trans, fs_info); 1042 if (IS_ERR(log_root)) 1043 return PTR_ERR(log_root); 1044 WARN_ON(fs_info->log_root_tree); 1045 fs_info->log_root_tree = log_root; 1046 return 0; 1047 } 1048 1049 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1050 struct btrfs_root *root) 1051 { 1052 struct btrfs_root *log_root; 1053 struct btrfs_inode_item *inode_item; 1054 1055 log_root = alloc_log_tree(trans, root->fs_info); 1056 if (IS_ERR(log_root)) 1057 return PTR_ERR(log_root); 1058 1059 log_root->last_trans = trans->transid; 1060 log_root->root_key.offset = root->root_key.objectid; 1061 1062 inode_item = &log_root->root_item.inode; 1063 inode_item->generation = cpu_to_le64(1); 1064 inode_item->size = cpu_to_le64(3); 1065 inode_item->nlink = cpu_to_le32(1); 1066 inode_item->nbytes = cpu_to_le64(root->leafsize); 1067 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1068 1069 btrfs_set_root_node(&log_root->root_item, log_root->node); 1070 1071 WARN_ON(root->log_root); 1072 root->log_root = log_root; 1073 root->log_transid = 0; 1074 root->last_log_commit = 0; 1075 return 0; 1076 } 1077 1078 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1079 struct btrfs_key *location) 1080 { 1081 struct btrfs_root *root; 1082 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1083 struct btrfs_path *path; 1084 struct extent_buffer *l; 1085 u64 generation; 1086 u32 blocksize; 1087 int ret = 0; 1088 1089 root = kzalloc(sizeof(*root), GFP_NOFS); 1090 if (!root) 1091 return ERR_PTR(-ENOMEM); 1092 if (location->offset == (u64)-1) { 1093 ret = find_and_setup_root(tree_root, fs_info, 1094 location->objectid, root); 1095 if (ret) { 1096 kfree(root); 1097 return ERR_PTR(ret); 1098 } 1099 goto out; 1100 } 1101 1102 __setup_root(tree_root->nodesize, tree_root->leafsize, 1103 tree_root->sectorsize, tree_root->stripesize, 1104 root, fs_info, location->objectid); 1105 1106 path = btrfs_alloc_path(); 1107 BUG_ON(!path); 1108 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1109 if (ret == 0) { 1110 l = path->nodes[0]; 1111 read_extent_buffer(l, &root->root_item, 1112 btrfs_item_ptr_offset(l, path->slots[0]), 1113 sizeof(root->root_item)); 1114 memcpy(&root->root_key, location, sizeof(*location)); 1115 } 1116 btrfs_free_path(path); 1117 if (ret) { 1118 if (ret > 0) 1119 ret = -ENOENT; 1120 return ERR_PTR(ret); 1121 } 1122 1123 generation = btrfs_root_generation(&root->root_item); 1124 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1125 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1126 blocksize, generation); 1127 root->commit_root = btrfs_root_node(root); 1128 BUG_ON(!root->node); 1129 out: 1130 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) 1131 root->ref_cows = 1; 1132 1133 return root; 1134 } 1135 1136 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1137 u64 root_objectid) 1138 { 1139 struct btrfs_root *root; 1140 1141 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1142 return fs_info->tree_root; 1143 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1144 return fs_info->extent_root; 1145 1146 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1147 (unsigned long)root_objectid); 1148 return root; 1149 } 1150 1151 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1152 struct btrfs_key *location) 1153 { 1154 struct btrfs_root *root; 1155 int ret; 1156 1157 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1158 return fs_info->tree_root; 1159 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1160 return fs_info->extent_root; 1161 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1162 return fs_info->chunk_root; 1163 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1164 return fs_info->dev_root; 1165 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1166 return fs_info->csum_root; 1167 again: 1168 spin_lock(&fs_info->fs_roots_radix_lock); 1169 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1170 (unsigned long)location->objectid); 1171 spin_unlock(&fs_info->fs_roots_radix_lock); 1172 if (root) 1173 return root; 1174 1175 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1176 if (IS_ERR(root)) 1177 return root; 1178 1179 set_anon_super(&root->anon_super, NULL); 1180 1181 if (btrfs_root_refs(&root->root_item) == 0) { 1182 ret = -ENOENT; 1183 goto fail; 1184 } 1185 1186 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1187 if (ret < 0) 1188 goto fail; 1189 if (ret == 0) 1190 root->orphan_item_inserted = 1; 1191 1192 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1193 if (ret) 1194 goto fail; 1195 1196 spin_lock(&fs_info->fs_roots_radix_lock); 1197 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1198 (unsigned long)root->root_key.objectid, 1199 root); 1200 if (ret == 0) 1201 root->in_radix = 1; 1202 1203 spin_unlock(&fs_info->fs_roots_radix_lock); 1204 radix_tree_preload_end(); 1205 if (ret) { 1206 if (ret == -EEXIST) { 1207 free_fs_root(root); 1208 goto again; 1209 } 1210 goto fail; 1211 } 1212 1213 ret = btrfs_find_dead_roots(fs_info->tree_root, 1214 root->root_key.objectid); 1215 WARN_ON(ret); 1216 return root; 1217 fail: 1218 free_fs_root(root); 1219 return ERR_PTR(ret); 1220 } 1221 1222 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1223 struct btrfs_key *location, 1224 const char *name, int namelen) 1225 { 1226 return btrfs_read_fs_root_no_name(fs_info, location); 1227 #if 0 1228 struct btrfs_root *root; 1229 int ret; 1230 1231 root = btrfs_read_fs_root_no_name(fs_info, location); 1232 if (!root) 1233 return NULL; 1234 1235 if (root->in_sysfs) 1236 return root; 1237 1238 ret = btrfs_set_root_name(root, name, namelen); 1239 if (ret) { 1240 free_extent_buffer(root->node); 1241 kfree(root); 1242 return ERR_PTR(ret); 1243 } 1244 1245 ret = btrfs_sysfs_add_root(root); 1246 if (ret) { 1247 free_extent_buffer(root->node); 1248 kfree(root->name); 1249 kfree(root); 1250 return ERR_PTR(ret); 1251 } 1252 root->in_sysfs = 1; 1253 return root; 1254 #endif 1255 } 1256 1257 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1258 { 1259 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1260 int ret = 0; 1261 struct btrfs_device *device; 1262 struct backing_dev_info *bdi; 1263 1264 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1265 if (!device->bdev) 1266 continue; 1267 bdi = blk_get_backing_dev_info(device->bdev); 1268 if (bdi && bdi_congested(bdi, bdi_bits)) { 1269 ret = 1; 1270 break; 1271 } 1272 } 1273 return ret; 1274 } 1275 1276 /* 1277 * this unplugs every device on the box, and it is only used when page 1278 * is null 1279 */ 1280 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1281 { 1282 struct btrfs_device *device; 1283 struct btrfs_fs_info *info; 1284 1285 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1286 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1287 if (!device->bdev) 1288 continue; 1289 1290 bdi = blk_get_backing_dev_info(device->bdev); 1291 if (bdi->unplug_io_fn) 1292 bdi->unplug_io_fn(bdi, page); 1293 } 1294 } 1295 1296 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1297 { 1298 struct inode *inode; 1299 struct extent_map_tree *em_tree; 1300 struct extent_map *em; 1301 struct address_space *mapping; 1302 u64 offset; 1303 1304 /* the generic O_DIRECT read code does this */ 1305 if (1 || !page) { 1306 __unplug_io_fn(bdi, page); 1307 return; 1308 } 1309 1310 /* 1311 * page->mapping may change at any time. Get a consistent copy 1312 * and use that for everything below 1313 */ 1314 smp_mb(); 1315 mapping = page->mapping; 1316 if (!mapping) 1317 return; 1318 1319 inode = mapping->host; 1320 1321 /* 1322 * don't do the expensive searching for a small number of 1323 * devices 1324 */ 1325 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1326 __unplug_io_fn(bdi, page); 1327 return; 1328 } 1329 1330 offset = page_offset(page); 1331 1332 em_tree = &BTRFS_I(inode)->extent_tree; 1333 read_lock(&em_tree->lock); 1334 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1335 read_unlock(&em_tree->lock); 1336 if (!em) { 1337 __unplug_io_fn(bdi, page); 1338 return; 1339 } 1340 1341 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1342 free_extent_map(em); 1343 __unplug_io_fn(bdi, page); 1344 return; 1345 } 1346 offset = offset - em->start; 1347 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1348 em->block_start + offset, page); 1349 free_extent_map(em); 1350 } 1351 1352 /* 1353 * If this fails, caller must call bdi_destroy() to get rid of the 1354 * bdi again. 1355 */ 1356 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1357 { 1358 int err; 1359 1360 bdi->capabilities = BDI_CAP_MAP_COPY; 1361 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1362 if (err) 1363 return err; 1364 1365 bdi->ra_pages = default_backing_dev_info.ra_pages; 1366 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1367 bdi->unplug_io_data = info; 1368 bdi->congested_fn = btrfs_congested_fn; 1369 bdi->congested_data = info; 1370 return 0; 1371 } 1372 1373 static int bio_ready_for_csum(struct bio *bio) 1374 { 1375 u64 length = 0; 1376 u64 buf_len = 0; 1377 u64 start = 0; 1378 struct page *page; 1379 struct extent_io_tree *io_tree = NULL; 1380 struct btrfs_fs_info *info = NULL; 1381 struct bio_vec *bvec; 1382 int i; 1383 int ret; 1384 1385 bio_for_each_segment(bvec, bio, i) { 1386 page = bvec->bv_page; 1387 if (page->private == EXTENT_PAGE_PRIVATE) { 1388 length += bvec->bv_len; 1389 continue; 1390 } 1391 if (!page->private) { 1392 length += bvec->bv_len; 1393 continue; 1394 } 1395 length = bvec->bv_len; 1396 buf_len = page->private >> 2; 1397 start = page_offset(page) + bvec->bv_offset; 1398 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1399 info = BTRFS_I(page->mapping->host)->root->fs_info; 1400 } 1401 /* are we fully contained in this bio? */ 1402 if (buf_len <= length) 1403 return 1; 1404 1405 ret = extent_range_uptodate(io_tree, start + length, 1406 start + buf_len - 1); 1407 return ret; 1408 } 1409 1410 /* 1411 * called by the kthread helper functions to finally call the bio end_io 1412 * functions. This is where read checksum verification actually happens 1413 */ 1414 static void end_workqueue_fn(struct btrfs_work *work) 1415 { 1416 struct bio *bio; 1417 struct end_io_wq *end_io_wq; 1418 struct btrfs_fs_info *fs_info; 1419 int error; 1420 1421 end_io_wq = container_of(work, struct end_io_wq, work); 1422 bio = end_io_wq->bio; 1423 fs_info = end_io_wq->info; 1424 1425 /* metadata bio reads are special because the whole tree block must 1426 * be checksummed at once. This makes sure the entire block is in 1427 * ram and up to date before trying to verify things. For 1428 * blocksize <= pagesize, it is basically a noop 1429 */ 1430 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1431 !bio_ready_for_csum(bio)) { 1432 btrfs_queue_worker(&fs_info->endio_meta_workers, 1433 &end_io_wq->work); 1434 return; 1435 } 1436 error = end_io_wq->error; 1437 bio->bi_private = end_io_wq->private; 1438 bio->bi_end_io = end_io_wq->end_io; 1439 kfree(end_io_wq); 1440 bio_endio(bio, error); 1441 } 1442 1443 static int cleaner_kthread(void *arg) 1444 { 1445 struct btrfs_root *root = arg; 1446 1447 do { 1448 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1449 1450 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1451 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1452 btrfs_run_delayed_iputs(root); 1453 btrfs_clean_old_snapshots(root); 1454 mutex_unlock(&root->fs_info->cleaner_mutex); 1455 } 1456 1457 if (freezing(current)) { 1458 refrigerator(); 1459 } else { 1460 set_current_state(TASK_INTERRUPTIBLE); 1461 if (!kthread_should_stop()) 1462 schedule(); 1463 __set_current_state(TASK_RUNNING); 1464 } 1465 } while (!kthread_should_stop()); 1466 return 0; 1467 } 1468 1469 static int transaction_kthread(void *arg) 1470 { 1471 struct btrfs_root *root = arg; 1472 struct btrfs_trans_handle *trans; 1473 struct btrfs_transaction *cur; 1474 u64 transid; 1475 unsigned long now; 1476 unsigned long delay; 1477 int ret; 1478 1479 do { 1480 delay = HZ * 30; 1481 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1482 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1483 1484 spin_lock(&root->fs_info->new_trans_lock); 1485 cur = root->fs_info->running_transaction; 1486 if (!cur) { 1487 spin_unlock(&root->fs_info->new_trans_lock); 1488 goto sleep; 1489 } 1490 1491 now = get_seconds(); 1492 if (!cur->blocked && 1493 (now < cur->start_time || now - cur->start_time < 30)) { 1494 spin_unlock(&root->fs_info->new_trans_lock); 1495 delay = HZ * 5; 1496 goto sleep; 1497 } 1498 transid = cur->transid; 1499 spin_unlock(&root->fs_info->new_trans_lock); 1500 1501 trans = btrfs_join_transaction(root, 1); 1502 if (transid == trans->transid) { 1503 ret = btrfs_commit_transaction(trans, root); 1504 BUG_ON(ret); 1505 } else { 1506 btrfs_end_transaction(trans, root); 1507 } 1508 sleep: 1509 wake_up_process(root->fs_info->cleaner_kthread); 1510 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1511 1512 if (freezing(current)) { 1513 refrigerator(); 1514 } else { 1515 set_current_state(TASK_INTERRUPTIBLE); 1516 if (!kthread_should_stop() && 1517 !btrfs_transaction_blocked(root->fs_info)) 1518 schedule_timeout(delay); 1519 __set_current_state(TASK_RUNNING); 1520 } 1521 } while (!kthread_should_stop()); 1522 return 0; 1523 } 1524 1525 struct btrfs_root *open_ctree(struct super_block *sb, 1526 struct btrfs_fs_devices *fs_devices, 1527 char *options) 1528 { 1529 u32 sectorsize; 1530 u32 nodesize; 1531 u32 leafsize; 1532 u32 blocksize; 1533 u32 stripesize; 1534 u64 generation; 1535 u64 features; 1536 struct btrfs_key location; 1537 struct buffer_head *bh; 1538 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1539 GFP_NOFS); 1540 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1541 GFP_NOFS); 1542 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1543 GFP_NOFS); 1544 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1545 GFP_NOFS); 1546 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1547 GFP_NOFS); 1548 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1549 GFP_NOFS); 1550 struct btrfs_root *log_tree_root; 1551 1552 int ret; 1553 int err = -EINVAL; 1554 1555 struct btrfs_super_block *disk_super; 1556 1557 if (!extent_root || !tree_root || !fs_info || 1558 !chunk_root || !dev_root || !csum_root) { 1559 err = -ENOMEM; 1560 goto fail; 1561 } 1562 1563 ret = init_srcu_struct(&fs_info->subvol_srcu); 1564 if (ret) { 1565 err = ret; 1566 goto fail; 1567 } 1568 1569 ret = setup_bdi(fs_info, &fs_info->bdi); 1570 if (ret) { 1571 err = ret; 1572 goto fail_srcu; 1573 } 1574 1575 fs_info->btree_inode = new_inode(sb); 1576 if (!fs_info->btree_inode) { 1577 err = -ENOMEM; 1578 goto fail_bdi; 1579 } 1580 1581 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1582 INIT_LIST_HEAD(&fs_info->trans_list); 1583 INIT_LIST_HEAD(&fs_info->dead_roots); 1584 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1585 INIT_LIST_HEAD(&fs_info->hashers); 1586 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1587 INIT_LIST_HEAD(&fs_info->ordered_operations); 1588 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1589 spin_lock_init(&fs_info->delalloc_lock); 1590 spin_lock_init(&fs_info->new_trans_lock); 1591 spin_lock_init(&fs_info->ref_cache_lock); 1592 spin_lock_init(&fs_info->fs_roots_radix_lock); 1593 spin_lock_init(&fs_info->delayed_iput_lock); 1594 1595 init_completion(&fs_info->kobj_unregister); 1596 fs_info->tree_root = tree_root; 1597 fs_info->extent_root = extent_root; 1598 fs_info->csum_root = csum_root; 1599 fs_info->chunk_root = chunk_root; 1600 fs_info->dev_root = dev_root; 1601 fs_info->fs_devices = fs_devices; 1602 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1603 INIT_LIST_HEAD(&fs_info->space_info); 1604 btrfs_mapping_init(&fs_info->mapping_tree); 1605 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1606 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1607 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1608 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1609 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1610 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list); 1611 mutex_init(&fs_info->durable_block_rsv_mutex); 1612 atomic_set(&fs_info->nr_async_submits, 0); 1613 atomic_set(&fs_info->async_delalloc_pages, 0); 1614 atomic_set(&fs_info->async_submit_draining, 0); 1615 atomic_set(&fs_info->nr_async_bios, 0); 1616 fs_info->sb = sb; 1617 fs_info->max_inline = 8192 * 1024; 1618 fs_info->metadata_ratio = 0; 1619 1620 fs_info->thread_pool_size = min_t(unsigned long, 1621 num_online_cpus() + 2, 8); 1622 1623 INIT_LIST_HEAD(&fs_info->ordered_extents); 1624 spin_lock_init(&fs_info->ordered_extent_lock); 1625 1626 sb->s_blocksize = 4096; 1627 sb->s_blocksize_bits = blksize_bits(4096); 1628 sb->s_bdi = &fs_info->bdi; 1629 1630 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1631 fs_info->btree_inode->i_nlink = 1; 1632 /* 1633 * we set the i_size on the btree inode to the max possible int. 1634 * the real end of the address space is determined by all of 1635 * the devices in the system 1636 */ 1637 fs_info->btree_inode->i_size = OFFSET_MAX; 1638 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1639 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1640 1641 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1642 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1643 fs_info->btree_inode->i_mapping, 1644 GFP_NOFS); 1645 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1646 GFP_NOFS); 1647 1648 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1649 1650 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1651 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1652 sizeof(struct btrfs_key)); 1653 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1654 insert_inode_hash(fs_info->btree_inode); 1655 1656 spin_lock_init(&fs_info->block_group_cache_lock); 1657 fs_info->block_group_cache_tree = RB_ROOT; 1658 1659 extent_io_tree_init(&fs_info->freed_extents[0], 1660 fs_info->btree_inode->i_mapping, GFP_NOFS); 1661 extent_io_tree_init(&fs_info->freed_extents[1], 1662 fs_info->btree_inode->i_mapping, GFP_NOFS); 1663 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1664 fs_info->do_barriers = 1; 1665 1666 1667 mutex_init(&fs_info->trans_mutex); 1668 mutex_init(&fs_info->ordered_operations_mutex); 1669 mutex_init(&fs_info->tree_log_mutex); 1670 mutex_init(&fs_info->chunk_mutex); 1671 mutex_init(&fs_info->transaction_kthread_mutex); 1672 mutex_init(&fs_info->cleaner_mutex); 1673 mutex_init(&fs_info->volume_mutex); 1674 init_rwsem(&fs_info->extent_commit_sem); 1675 init_rwsem(&fs_info->cleanup_work_sem); 1676 init_rwsem(&fs_info->subvol_sem); 1677 1678 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1679 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1680 1681 init_waitqueue_head(&fs_info->transaction_throttle); 1682 init_waitqueue_head(&fs_info->transaction_wait); 1683 init_waitqueue_head(&fs_info->async_submit_wait); 1684 1685 __setup_root(4096, 4096, 4096, 4096, tree_root, 1686 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1687 1688 1689 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1690 if (!bh) 1691 goto fail_iput; 1692 1693 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1694 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1695 sizeof(fs_info->super_for_commit)); 1696 brelse(bh); 1697 1698 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1699 1700 disk_super = &fs_info->super_copy; 1701 if (!btrfs_super_root(disk_super)) 1702 goto fail_iput; 1703 1704 ret = btrfs_parse_options(tree_root, options); 1705 if (ret) { 1706 err = ret; 1707 goto fail_iput; 1708 } 1709 1710 features = btrfs_super_incompat_flags(disk_super) & 1711 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1712 if (features) { 1713 printk(KERN_ERR "BTRFS: couldn't mount because of " 1714 "unsupported optional features (%Lx).\n", 1715 (unsigned long long)features); 1716 err = -EINVAL; 1717 goto fail_iput; 1718 } 1719 1720 features = btrfs_super_incompat_flags(disk_super); 1721 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { 1722 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1723 btrfs_set_super_incompat_flags(disk_super, features); 1724 } 1725 1726 features = btrfs_super_compat_ro_flags(disk_super) & 1727 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1728 if (!(sb->s_flags & MS_RDONLY) && features) { 1729 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1730 "unsupported option features (%Lx).\n", 1731 (unsigned long long)features); 1732 err = -EINVAL; 1733 goto fail_iput; 1734 } 1735 1736 btrfs_init_workers(&fs_info->generic_worker, 1737 "genwork", 1, NULL); 1738 1739 btrfs_init_workers(&fs_info->workers, "worker", 1740 fs_info->thread_pool_size, 1741 &fs_info->generic_worker); 1742 1743 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1744 fs_info->thread_pool_size, 1745 &fs_info->generic_worker); 1746 1747 btrfs_init_workers(&fs_info->submit_workers, "submit", 1748 min_t(u64, fs_devices->num_devices, 1749 fs_info->thread_pool_size), 1750 &fs_info->generic_worker); 1751 1752 /* a higher idle thresh on the submit workers makes it much more 1753 * likely that bios will be send down in a sane order to the 1754 * devices 1755 */ 1756 fs_info->submit_workers.idle_thresh = 64; 1757 1758 fs_info->workers.idle_thresh = 16; 1759 fs_info->workers.ordered = 1; 1760 1761 fs_info->delalloc_workers.idle_thresh = 2; 1762 fs_info->delalloc_workers.ordered = 1; 1763 1764 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 1765 &fs_info->generic_worker); 1766 btrfs_init_workers(&fs_info->endio_workers, "endio", 1767 fs_info->thread_pool_size, 1768 &fs_info->generic_worker); 1769 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1770 fs_info->thread_pool_size, 1771 &fs_info->generic_worker); 1772 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1773 "endio-meta-write", fs_info->thread_pool_size, 1774 &fs_info->generic_worker); 1775 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1776 fs_info->thread_pool_size, 1777 &fs_info->generic_worker); 1778 1779 /* 1780 * endios are largely parallel and should have a very 1781 * low idle thresh 1782 */ 1783 fs_info->endio_workers.idle_thresh = 4; 1784 fs_info->endio_meta_workers.idle_thresh = 4; 1785 1786 fs_info->endio_write_workers.idle_thresh = 2; 1787 fs_info->endio_meta_write_workers.idle_thresh = 2; 1788 1789 btrfs_start_workers(&fs_info->workers, 1); 1790 btrfs_start_workers(&fs_info->generic_worker, 1); 1791 btrfs_start_workers(&fs_info->submit_workers, 1); 1792 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1793 btrfs_start_workers(&fs_info->fixup_workers, 1); 1794 btrfs_start_workers(&fs_info->endio_workers, 1); 1795 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1796 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1797 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1798 1799 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1800 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1801 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1802 1803 nodesize = btrfs_super_nodesize(disk_super); 1804 leafsize = btrfs_super_leafsize(disk_super); 1805 sectorsize = btrfs_super_sectorsize(disk_super); 1806 stripesize = btrfs_super_stripesize(disk_super); 1807 tree_root->nodesize = nodesize; 1808 tree_root->leafsize = leafsize; 1809 tree_root->sectorsize = sectorsize; 1810 tree_root->stripesize = stripesize; 1811 1812 sb->s_blocksize = sectorsize; 1813 sb->s_blocksize_bits = blksize_bits(sectorsize); 1814 1815 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1816 sizeof(disk_super->magic))) { 1817 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1818 goto fail_sb_buffer; 1819 } 1820 1821 mutex_lock(&fs_info->chunk_mutex); 1822 ret = btrfs_read_sys_array(tree_root); 1823 mutex_unlock(&fs_info->chunk_mutex); 1824 if (ret) { 1825 printk(KERN_WARNING "btrfs: failed to read the system " 1826 "array on %s\n", sb->s_id); 1827 goto fail_sb_buffer; 1828 } 1829 1830 blocksize = btrfs_level_size(tree_root, 1831 btrfs_super_chunk_root_level(disk_super)); 1832 generation = btrfs_super_chunk_root_generation(disk_super); 1833 1834 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1835 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1836 1837 chunk_root->node = read_tree_block(chunk_root, 1838 btrfs_super_chunk_root(disk_super), 1839 blocksize, generation); 1840 BUG_ON(!chunk_root->node); 1841 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1842 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1843 sb->s_id); 1844 goto fail_chunk_root; 1845 } 1846 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1847 chunk_root->commit_root = btrfs_root_node(chunk_root); 1848 1849 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1850 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1851 BTRFS_UUID_SIZE); 1852 1853 mutex_lock(&fs_info->chunk_mutex); 1854 ret = btrfs_read_chunk_tree(chunk_root); 1855 mutex_unlock(&fs_info->chunk_mutex); 1856 if (ret) { 1857 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1858 sb->s_id); 1859 goto fail_chunk_root; 1860 } 1861 1862 btrfs_close_extra_devices(fs_devices); 1863 1864 blocksize = btrfs_level_size(tree_root, 1865 btrfs_super_root_level(disk_super)); 1866 generation = btrfs_super_generation(disk_super); 1867 1868 tree_root->node = read_tree_block(tree_root, 1869 btrfs_super_root(disk_super), 1870 blocksize, generation); 1871 if (!tree_root->node) 1872 goto fail_chunk_root; 1873 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1874 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1875 sb->s_id); 1876 goto fail_tree_root; 1877 } 1878 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1879 tree_root->commit_root = btrfs_root_node(tree_root); 1880 1881 ret = find_and_setup_root(tree_root, fs_info, 1882 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1883 if (ret) 1884 goto fail_tree_root; 1885 extent_root->track_dirty = 1; 1886 1887 ret = find_and_setup_root(tree_root, fs_info, 1888 BTRFS_DEV_TREE_OBJECTID, dev_root); 1889 if (ret) 1890 goto fail_extent_root; 1891 dev_root->track_dirty = 1; 1892 1893 ret = find_and_setup_root(tree_root, fs_info, 1894 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1895 if (ret) 1896 goto fail_dev_root; 1897 1898 csum_root->track_dirty = 1; 1899 1900 fs_info->generation = generation; 1901 fs_info->last_trans_committed = generation; 1902 fs_info->data_alloc_profile = (u64)-1; 1903 fs_info->metadata_alloc_profile = (u64)-1; 1904 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1905 1906 ret = btrfs_read_block_groups(extent_root); 1907 if (ret) { 1908 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 1909 goto fail_block_groups; 1910 } 1911 1912 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1913 "btrfs-cleaner"); 1914 if (IS_ERR(fs_info->cleaner_kthread)) 1915 goto fail_block_groups; 1916 1917 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1918 tree_root, 1919 "btrfs-transaction"); 1920 if (IS_ERR(fs_info->transaction_kthread)) 1921 goto fail_cleaner; 1922 1923 if (!btrfs_test_opt(tree_root, SSD) && 1924 !btrfs_test_opt(tree_root, NOSSD) && 1925 !fs_info->fs_devices->rotating) { 1926 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1927 "mode\n"); 1928 btrfs_set_opt(fs_info->mount_opt, SSD); 1929 } 1930 1931 if (btrfs_super_log_root(disk_super) != 0) { 1932 u64 bytenr = btrfs_super_log_root(disk_super); 1933 1934 if (fs_devices->rw_devices == 0) { 1935 printk(KERN_WARNING "Btrfs log replay required " 1936 "on RO media\n"); 1937 err = -EIO; 1938 goto fail_trans_kthread; 1939 } 1940 blocksize = 1941 btrfs_level_size(tree_root, 1942 btrfs_super_log_root_level(disk_super)); 1943 1944 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 1945 if (!log_tree_root) { 1946 err = -ENOMEM; 1947 goto fail_trans_kthread; 1948 } 1949 1950 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1951 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1952 1953 log_tree_root->node = read_tree_block(tree_root, bytenr, 1954 blocksize, 1955 generation + 1); 1956 ret = btrfs_recover_log_trees(log_tree_root); 1957 BUG_ON(ret); 1958 1959 if (sb->s_flags & MS_RDONLY) { 1960 ret = btrfs_commit_super(tree_root); 1961 BUG_ON(ret); 1962 } 1963 } 1964 1965 ret = btrfs_find_orphan_roots(tree_root); 1966 BUG_ON(ret); 1967 1968 if (!(sb->s_flags & MS_RDONLY)) { 1969 ret = btrfs_cleanup_fs_roots(fs_info); 1970 BUG_ON(ret); 1971 1972 ret = btrfs_recover_relocation(tree_root); 1973 if (ret < 0) { 1974 printk(KERN_WARNING 1975 "btrfs: failed to recover relocation\n"); 1976 err = -EINVAL; 1977 goto fail_trans_kthread; 1978 } 1979 } 1980 1981 location.objectid = BTRFS_FS_TREE_OBJECTID; 1982 location.type = BTRFS_ROOT_ITEM_KEY; 1983 location.offset = (u64)-1; 1984 1985 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1986 if (!fs_info->fs_root) 1987 goto fail_trans_kthread; 1988 if (IS_ERR(fs_info->fs_root)) { 1989 err = PTR_ERR(fs_info->fs_root); 1990 goto fail_trans_kthread; 1991 } 1992 1993 if (!(sb->s_flags & MS_RDONLY)) { 1994 down_read(&fs_info->cleanup_work_sem); 1995 btrfs_orphan_cleanup(fs_info->fs_root); 1996 up_read(&fs_info->cleanup_work_sem); 1997 } 1998 1999 return tree_root; 2000 2001 fail_trans_kthread: 2002 kthread_stop(fs_info->transaction_kthread); 2003 fail_cleaner: 2004 kthread_stop(fs_info->cleaner_kthread); 2005 2006 /* 2007 * make sure we're done with the btree inode before we stop our 2008 * kthreads 2009 */ 2010 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2011 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2012 2013 fail_block_groups: 2014 btrfs_free_block_groups(fs_info); 2015 free_extent_buffer(csum_root->node); 2016 free_extent_buffer(csum_root->commit_root); 2017 fail_dev_root: 2018 free_extent_buffer(dev_root->node); 2019 free_extent_buffer(dev_root->commit_root); 2020 fail_extent_root: 2021 free_extent_buffer(extent_root->node); 2022 free_extent_buffer(extent_root->commit_root); 2023 fail_tree_root: 2024 free_extent_buffer(tree_root->node); 2025 free_extent_buffer(tree_root->commit_root); 2026 fail_chunk_root: 2027 free_extent_buffer(chunk_root->node); 2028 free_extent_buffer(chunk_root->commit_root); 2029 fail_sb_buffer: 2030 btrfs_stop_workers(&fs_info->generic_worker); 2031 btrfs_stop_workers(&fs_info->fixup_workers); 2032 btrfs_stop_workers(&fs_info->delalloc_workers); 2033 btrfs_stop_workers(&fs_info->workers); 2034 btrfs_stop_workers(&fs_info->endio_workers); 2035 btrfs_stop_workers(&fs_info->endio_meta_workers); 2036 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2037 btrfs_stop_workers(&fs_info->endio_write_workers); 2038 btrfs_stop_workers(&fs_info->submit_workers); 2039 fail_iput: 2040 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2041 iput(fs_info->btree_inode); 2042 2043 btrfs_close_devices(fs_info->fs_devices); 2044 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2045 fail_bdi: 2046 bdi_destroy(&fs_info->bdi); 2047 fail_srcu: 2048 cleanup_srcu_struct(&fs_info->subvol_srcu); 2049 fail: 2050 kfree(extent_root); 2051 kfree(tree_root); 2052 kfree(fs_info); 2053 kfree(chunk_root); 2054 kfree(dev_root); 2055 kfree(csum_root); 2056 return ERR_PTR(err); 2057 } 2058 2059 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2060 { 2061 char b[BDEVNAME_SIZE]; 2062 2063 if (uptodate) { 2064 set_buffer_uptodate(bh); 2065 } else { 2066 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 2067 printk(KERN_WARNING "lost page write due to " 2068 "I/O error on %s\n", 2069 bdevname(bh->b_bdev, b)); 2070 } 2071 /* note, we dont' set_buffer_write_io_error because we have 2072 * our own ways of dealing with the IO errors 2073 */ 2074 clear_buffer_uptodate(bh); 2075 } 2076 unlock_buffer(bh); 2077 put_bh(bh); 2078 } 2079 2080 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2081 { 2082 struct buffer_head *bh; 2083 struct buffer_head *latest = NULL; 2084 struct btrfs_super_block *super; 2085 int i; 2086 u64 transid = 0; 2087 u64 bytenr; 2088 2089 /* we would like to check all the supers, but that would make 2090 * a btrfs mount succeed after a mkfs from a different FS. 2091 * So, we need to add a special mount option to scan for 2092 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2093 */ 2094 for (i = 0; i < 1; i++) { 2095 bytenr = btrfs_sb_offset(i); 2096 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2097 break; 2098 bh = __bread(bdev, bytenr / 4096, 4096); 2099 if (!bh) 2100 continue; 2101 2102 super = (struct btrfs_super_block *)bh->b_data; 2103 if (btrfs_super_bytenr(super) != bytenr || 2104 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2105 sizeof(super->magic))) { 2106 brelse(bh); 2107 continue; 2108 } 2109 2110 if (!latest || btrfs_super_generation(super) > transid) { 2111 brelse(latest); 2112 latest = bh; 2113 transid = btrfs_super_generation(super); 2114 } else { 2115 brelse(bh); 2116 } 2117 } 2118 return latest; 2119 } 2120 2121 /* 2122 * this should be called twice, once with wait == 0 and 2123 * once with wait == 1. When wait == 0 is done, all the buffer heads 2124 * we write are pinned. 2125 * 2126 * They are released when wait == 1 is done. 2127 * max_mirrors must be the same for both runs, and it indicates how 2128 * many supers on this one device should be written. 2129 * 2130 * max_mirrors == 0 means to write them all. 2131 */ 2132 static int write_dev_supers(struct btrfs_device *device, 2133 struct btrfs_super_block *sb, 2134 int do_barriers, int wait, int max_mirrors) 2135 { 2136 struct buffer_head *bh; 2137 int i; 2138 int ret; 2139 int errors = 0; 2140 u32 crc; 2141 u64 bytenr; 2142 int last_barrier = 0; 2143 2144 if (max_mirrors == 0) 2145 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2146 2147 /* make sure only the last submit_bh does a barrier */ 2148 if (do_barriers) { 2149 for (i = 0; i < max_mirrors; i++) { 2150 bytenr = btrfs_sb_offset(i); 2151 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2152 device->total_bytes) 2153 break; 2154 last_barrier = i; 2155 } 2156 } 2157 2158 for (i = 0; i < max_mirrors; i++) { 2159 bytenr = btrfs_sb_offset(i); 2160 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2161 break; 2162 2163 if (wait) { 2164 bh = __find_get_block(device->bdev, bytenr / 4096, 2165 BTRFS_SUPER_INFO_SIZE); 2166 BUG_ON(!bh); 2167 wait_on_buffer(bh); 2168 if (!buffer_uptodate(bh)) 2169 errors++; 2170 2171 /* drop our reference */ 2172 brelse(bh); 2173 2174 /* drop the reference from the wait == 0 run */ 2175 brelse(bh); 2176 continue; 2177 } else { 2178 btrfs_set_super_bytenr(sb, bytenr); 2179 2180 crc = ~(u32)0; 2181 crc = btrfs_csum_data(NULL, (char *)sb + 2182 BTRFS_CSUM_SIZE, crc, 2183 BTRFS_SUPER_INFO_SIZE - 2184 BTRFS_CSUM_SIZE); 2185 btrfs_csum_final(crc, sb->csum); 2186 2187 /* 2188 * one reference for us, and we leave it for the 2189 * caller 2190 */ 2191 bh = __getblk(device->bdev, bytenr / 4096, 2192 BTRFS_SUPER_INFO_SIZE); 2193 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2194 2195 /* one reference for submit_bh */ 2196 get_bh(bh); 2197 2198 set_buffer_uptodate(bh); 2199 lock_buffer(bh); 2200 bh->b_end_io = btrfs_end_buffer_write_sync; 2201 } 2202 2203 if (i == last_barrier && do_barriers && device->barriers) { 2204 ret = submit_bh(WRITE_BARRIER, bh); 2205 if (ret == -EOPNOTSUPP) { 2206 printk("btrfs: disabling barriers on dev %s\n", 2207 device->name); 2208 set_buffer_uptodate(bh); 2209 device->barriers = 0; 2210 /* one reference for submit_bh */ 2211 get_bh(bh); 2212 lock_buffer(bh); 2213 ret = submit_bh(WRITE_SYNC, bh); 2214 } 2215 } else { 2216 ret = submit_bh(WRITE_SYNC, bh); 2217 } 2218 2219 if (ret) 2220 errors++; 2221 } 2222 return errors < i ? 0 : -1; 2223 } 2224 2225 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2226 { 2227 struct list_head *head; 2228 struct btrfs_device *dev; 2229 struct btrfs_super_block *sb; 2230 struct btrfs_dev_item *dev_item; 2231 int ret; 2232 int do_barriers; 2233 int max_errors; 2234 int total_errors = 0; 2235 u64 flags; 2236 2237 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2238 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2239 2240 sb = &root->fs_info->super_for_commit; 2241 dev_item = &sb->dev_item; 2242 2243 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2244 head = &root->fs_info->fs_devices->devices; 2245 list_for_each_entry(dev, head, dev_list) { 2246 if (!dev->bdev) { 2247 total_errors++; 2248 continue; 2249 } 2250 if (!dev->in_fs_metadata || !dev->writeable) 2251 continue; 2252 2253 btrfs_set_stack_device_generation(dev_item, 0); 2254 btrfs_set_stack_device_type(dev_item, dev->type); 2255 btrfs_set_stack_device_id(dev_item, dev->devid); 2256 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2257 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2258 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2259 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2260 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2261 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2262 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2263 2264 flags = btrfs_super_flags(sb); 2265 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2266 2267 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2268 if (ret) 2269 total_errors++; 2270 } 2271 if (total_errors > max_errors) { 2272 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2273 total_errors); 2274 BUG(); 2275 } 2276 2277 total_errors = 0; 2278 list_for_each_entry(dev, head, dev_list) { 2279 if (!dev->bdev) 2280 continue; 2281 if (!dev->in_fs_metadata || !dev->writeable) 2282 continue; 2283 2284 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2285 if (ret) 2286 total_errors++; 2287 } 2288 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2289 if (total_errors > max_errors) { 2290 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2291 total_errors); 2292 BUG(); 2293 } 2294 return 0; 2295 } 2296 2297 int write_ctree_super(struct btrfs_trans_handle *trans, 2298 struct btrfs_root *root, int max_mirrors) 2299 { 2300 int ret; 2301 2302 ret = write_all_supers(root, max_mirrors); 2303 return ret; 2304 } 2305 2306 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2307 { 2308 spin_lock(&fs_info->fs_roots_radix_lock); 2309 radix_tree_delete(&fs_info->fs_roots_radix, 2310 (unsigned long)root->root_key.objectid); 2311 spin_unlock(&fs_info->fs_roots_radix_lock); 2312 2313 if (btrfs_root_refs(&root->root_item) == 0) 2314 synchronize_srcu(&fs_info->subvol_srcu); 2315 2316 free_fs_root(root); 2317 return 0; 2318 } 2319 2320 static void free_fs_root(struct btrfs_root *root) 2321 { 2322 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2323 if (root->anon_super.s_dev) { 2324 down_write(&root->anon_super.s_umount); 2325 kill_anon_super(&root->anon_super); 2326 } 2327 free_extent_buffer(root->node); 2328 free_extent_buffer(root->commit_root); 2329 kfree(root->name); 2330 kfree(root); 2331 } 2332 2333 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2334 { 2335 int ret; 2336 struct btrfs_root *gang[8]; 2337 int i; 2338 2339 while (!list_empty(&fs_info->dead_roots)) { 2340 gang[0] = list_entry(fs_info->dead_roots.next, 2341 struct btrfs_root, root_list); 2342 list_del(&gang[0]->root_list); 2343 2344 if (gang[0]->in_radix) { 2345 btrfs_free_fs_root(fs_info, gang[0]); 2346 } else { 2347 free_extent_buffer(gang[0]->node); 2348 free_extent_buffer(gang[0]->commit_root); 2349 kfree(gang[0]); 2350 } 2351 } 2352 2353 while (1) { 2354 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2355 (void **)gang, 0, 2356 ARRAY_SIZE(gang)); 2357 if (!ret) 2358 break; 2359 for (i = 0; i < ret; i++) 2360 btrfs_free_fs_root(fs_info, gang[i]); 2361 } 2362 return 0; 2363 } 2364 2365 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2366 { 2367 u64 root_objectid = 0; 2368 struct btrfs_root *gang[8]; 2369 int i; 2370 int ret; 2371 2372 while (1) { 2373 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2374 (void **)gang, root_objectid, 2375 ARRAY_SIZE(gang)); 2376 if (!ret) 2377 break; 2378 2379 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2380 for (i = 0; i < ret; i++) { 2381 root_objectid = gang[i]->root_key.objectid; 2382 btrfs_orphan_cleanup(gang[i]); 2383 } 2384 root_objectid++; 2385 } 2386 return 0; 2387 } 2388 2389 int btrfs_commit_super(struct btrfs_root *root) 2390 { 2391 struct btrfs_trans_handle *trans; 2392 int ret; 2393 2394 mutex_lock(&root->fs_info->cleaner_mutex); 2395 btrfs_run_delayed_iputs(root); 2396 btrfs_clean_old_snapshots(root); 2397 mutex_unlock(&root->fs_info->cleaner_mutex); 2398 2399 /* wait until ongoing cleanup work done */ 2400 down_write(&root->fs_info->cleanup_work_sem); 2401 up_write(&root->fs_info->cleanup_work_sem); 2402 2403 trans = btrfs_join_transaction(root, 1); 2404 ret = btrfs_commit_transaction(trans, root); 2405 BUG_ON(ret); 2406 /* run commit again to drop the original snapshot */ 2407 trans = btrfs_join_transaction(root, 1); 2408 btrfs_commit_transaction(trans, root); 2409 ret = btrfs_write_and_wait_transaction(NULL, root); 2410 BUG_ON(ret); 2411 2412 ret = write_ctree_super(NULL, root, 0); 2413 return ret; 2414 } 2415 2416 int close_ctree(struct btrfs_root *root) 2417 { 2418 struct btrfs_fs_info *fs_info = root->fs_info; 2419 int ret; 2420 2421 fs_info->closing = 1; 2422 smp_mb(); 2423 2424 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2425 ret = btrfs_commit_super(root); 2426 if (ret) 2427 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2428 } 2429 2430 kthread_stop(root->fs_info->transaction_kthread); 2431 kthread_stop(root->fs_info->cleaner_kthread); 2432 2433 fs_info->closing = 2; 2434 smp_mb(); 2435 2436 if (fs_info->delalloc_bytes) { 2437 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2438 (unsigned long long)fs_info->delalloc_bytes); 2439 } 2440 if (fs_info->total_ref_cache_size) { 2441 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2442 (unsigned long long)fs_info->total_ref_cache_size); 2443 } 2444 2445 free_extent_buffer(fs_info->extent_root->node); 2446 free_extent_buffer(fs_info->extent_root->commit_root); 2447 free_extent_buffer(fs_info->tree_root->node); 2448 free_extent_buffer(fs_info->tree_root->commit_root); 2449 free_extent_buffer(root->fs_info->chunk_root->node); 2450 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2451 free_extent_buffer(root->fs_info->dev_root->node); 2452 free_extent_buffer(root->fs_info->dev_root->commit_root); 2453 free_extent_buffer(root->fs_info->csum_root->node); 2454 free_extent_buffer(root->fs_info->csum_root->commit_root); 2455 2456 btrfs_free_block_groups(root->fs_info); 2457 2458 del_fs_roots(fs_info); 2459 2460 iput(fs_info->btree_inode); 2461 2462 btrfs_stop_workers(&fs_info->generic_worker); 2463 btrfs_stop_workers(&fs_info->fixup_workers); 2464 btrfs_stop_workers(&fs_info->delalloc_workers); 2465 btrfs_stop_workers(&fs_info->workers); 2466 btrfs_stop_workers(&fs_info->endio_workers); 2467 btrfs_stop_workers(&fs_info->endio_meta_workers); 2468 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2469 btrfs_stop_workers(&fs_info->endio_write_workers); 2470 btrfs_stop_workers(&fs_info->submit_workers); 2471 2472 btrfs_close_devices(fs_info->fs_devices); 2473 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2474 2475 bdi_destroy(&fs_info->bdi); 2476 cleanup_srcu_struct(&fs_info->subvol_srcu); 2477 2478 kfree(fs_info->extent_root); 2479 kfree(fs_info->tree_root); 2480 kfree(fs_info->chunk_root); 2481 kfree(fs_info->dev_root); 2482 kfree(fs_info->csum_root); 2483 return 0; 2484 } 2485 2486 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2487 { 2488 int ret; 2489 struct inode *btree_inode = buf->first_page->mapping->host; 2490 2491 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2492 NULL); 2493 if (!ret) 2494 return ret; 2495 2496 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2497 parent_transid); 2498 return !ret; 2499 } 2500 2501 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2502 { 2503 struct inode *btree_inode = buf->first_page->mapping->host; 2504 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2505 buf); 2506 } 2507 2508 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2509 { 2510 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2511 u64 transid = btrfs_header_generation(buf); 2512 struct inode *btree_inode = root->fs_info->btree_inode; 2513 int was_dirty; 2514 2515 btrfs_assert_tree_locked(buf); 2516 if (transid != root->fs_info->generation) { 2517 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2518 "found %llu running %llu\n", 2519 (unsigned long long)buf->start, 2520 (unsigned long long)transid, 2521 (unsigned long long)root->fs_info->generation); 2522 WARN_ON(1); 2523 } 2524 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2525 buf); 2526 if (!was_dirty) { 2527 spin_lock(&root->fs_info->delalloc_lock); 2528 root->fs_info->dirty_metadata_bytes += buf->len; 2529 spin_unlock(&root->fs_info->delalloc_lock); 2530 } 2531 } 2532 2533 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2534 { 2535 /* 2536 * looks as though older kernels can get into trouble with 2537 * this code, they end up stuck in balance_dirty_pages forever 2538 */ 2539 u64 num_dirty; 2540 unsigned long thresh = 32 * 1024 * 1024; 2541 2542 if (current->flags & PF_MEMALLOC) 2543 return; 2544 2545 num_dirty = root->fs_info->dirty_metadata_bytes; 2546 2547 if (num_dirty > thresh) { 2548 balance_dirty_pages_ratelimited_nr( 2549 root->fs_info->btree_inode->i_mapping, 1); 2550 } 2551 return; 2552 } 2553 2554 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2555 { 2556 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2557 int ret; 2558 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2559 if (ret == 0) 2560 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2561 return ret; 2562 } 2563 2564 int btree_lock_page_hook(struct page *page) 2565 { 2566 struct inode *inode = page->mapping->host; 2567 struct btrfs_root *root = BTRFS_I(inode)->root; 2568 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2569 struct extent_buffer *eb; 2570 unsigned long len; 2571 u64 bytenr = page_offset(page); 2572 2573 if (page->private == EXTENT_PAGE_PRIVATE) 2574 goto out; 2575 2576 len = page->private >> 2; 2577 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2578 if (!eb) 2579 goto out; 2580 2581 btrfs_tree_lock(eb); 2582 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2583 2584 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2585 spin_lock(&root->fs_info->delalloc_lock); 2586 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2587 root->fs_info->dirty_metadata_bytes -= eb->len; 2588 else 2589 WARN_ON(1); 2590 spin_unlock(&root->fs_info->delalloc_lock); 2591 } 2592 2593 btrfs_tree_unlock(eb); 2594 free_extent_buffer(eb); 2595 out: 2596 lock_page(page); 2597 return 0; 2598 } 2599 2600 static struct extent_io_ops btree_extent_io_ops = { 2601 .write_cache_pages_lock_hook = btree_lock_page_hook, 2602 .readpage_end_io_hook = btree_readpage_end_io_hook, 2603 .submit_bio_hook = btree_submit_bio_hook, 2604 /* note we're sharing with inode.c for the merge bio hook */ 2605 .merge_bio_hook = btrfs_merge_bio_hook, 2606 }; 2607