1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/blkdev.h> 8 #include <linux/radix-tree.h> 9 #include <linux/writeback.h> 10 #include <linux/workqueue.h> 11 #include <linux/kthread.h> 12 #include <linux/slab.h> 13 #include <linux/migrate.h> 14 #include <linux/ratelimit.h> 15 #include <linux/uuid.h> 16 #include <linux/semaphore.h> 17 #include <linux/error-injection.h> 18 #include <linux/crc32c.h> 19 #include <linux/sched/mm.h> 20 #include <asm/unaligned.h> 21 #include <crypto/hash.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "bio.h" 27 #include "print-tree.h" 28 #include "locking.h" 29 #include "tree-log.h" 30 #include "free-space-cache.h" 31 #include "free-space-tree.h" 32 #include "dev-replace.h" 33 #include "raid56.h" 34 #include "sysfs.h" 35 #include "qgroup.h" 36 #include "compression.h" 37 #include "tree-checker.h" 38 #include "ref-verify.h" 39 #include "block-group.h" 40 #include "discard.h" 41 #include "space-info.h" 42 #include "zoned.h" 43 #include "subpage.h" 44 #include "fs.h" 45 #include "accessors.h" 46 #include "extent-tree.h" 47 #include "root-tree.h" 48 #include "defrag.h" 49 #include "uuid-tree.h" 50 #include "relocation.h" 51 #include "scrub.h" 52 #include "super.h" 53 54 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 55 BTRFS_HEADER_FLAG_RELOC |\ 56 BTRFS_SUPER_FLAG_ERROR |\ 57 BTRFS_SUPER_FLAG_SEEDING |\ 58 BTRFS_SUPER_FLAG_METADUMP |\ 59 BTRFS_SUPER_FLAG_METADUMP_V2) 60 61 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); 62 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); 63 64 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info) 65 { 66 if (fs_info->csum_shash) 67 crypto_free_shash(fs_info->csum_shash); 68 } 69 70 /* 71 * Compute the csum of a btree block and store the result to provided buffer. 72 */ 73 static void csum_tree_block(struct extent_buffer *buf, u8 *result) 74 { 75 struct btrfs_fs_info *fs_info = buf->fs_info; 76 int num_pages; 77 u32 first_page_part; 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 79 char *kaddr; 80 int i; 81 82 shash->tfm = fs_info->csum_shash; 83 crypto_shash_init(shash); 84 85 if (buf->addr) { 86 /* Pages are contiguous, handle them as a big one. */ 87 kaddr = buf->addr; 88 first_page_part = fs_info->nodesize; 89 num_pages = 1; 90 } else { 91 kaddr = folio_address(buf->folios[0]); 92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize); 93 num_pages = num_extent_pages(buf); 94 } 95 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 97 first_page_part - BTRFS_CSUM_SIZE); 98 99 /* 100 * Multiple single-page folios case would reach here. 101 * 102 * nodesize <= PAGE_SIZE and large folio all handled by above 103 * crypto_shash_update() already. 104 */ 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) { 106 kaddr = folio_address(buf->folios[i]); 107 crypto_shash_update(shash, kaddr, PAGE_SIZE); 108 } 109 memset(result, 0, BTRFS_CSUM_SIZE); 110 crypto_shash_final(shash, result); 111 } 112 113 /* 114 * we can't consider a given block up to date unless the transid of the 115 * block matches the transid in the parent node's pointer. This is how we 116 * detect blocks that either didn't get written at all or got written 117 * in the wrong place. 118 */ 119 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic) 120 { 121 if (!extent_buffer_uptodate(eb)) 122 return 0; 123 124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 125 return 1; 126 127 if (atomic) 128 return -EAGAIN; 129 130 if (!extent_buffer_uptodate(eb) || 131 btrfs_header_generation(eb) != parent_transid) { 132 btrfs_err_rl(eb->fs_info, 133 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 134 eb->start, eb->read_mirror, 135 parent_transid, btrfs_header_generation(eb)); 136 clear_extent_buffer_uptodate(eb); 137 return 0; 138 } 139 return 1; 140 } 141 142 static bool btrfs_supported_super_csum(u16 csum_type) 143 { 144 switch (csum_type) { 145 case BTRFS_CSUM_TYPE_CRC32: 146 case BTRFS_CSUM_TYPE_XXHASH: 147 case BTRFS_CSUM_TYPE_SHA256: 148 case BTRFS_CSUM_TYPE_BLAKE2: 149 return true; 150 default: 151 return false; 152 } 153 } 154 155 /* 156 * Return 0 if the superblock checksum type matches the checksum value of that 157 * algorithm. Pass the raw disk superblock data. 158 */ 159 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, 160 const struct btrfs_super_block *disk_sb) 161 { 162 char result[BTRFS_CSUM_SIZE]; 163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 164 165 shash->tfm = fs_info->csum_shash; 166 167 /* 168 * The super_block structure does not span the whole 169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is 170 * filled with zeros and is included in the checksum. 171 */ 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE, 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result); 174 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size)) 176 return 1; 177 178 return 0; 179 } 180 181 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, 182 int mirror_num) 183 { 184 struct btrfs_fs_info *fs_info = eb->fs_info; 185 int num_folios = num_extent_folios(eb); 186 int ret = 0; 187 188 if (sb_rdonly(fs_info->sb)) 189 return -EROFS; 190 191 for (int i = 0; i < num_folios; i++) { 192 struct folio *folio = eb->folios[i]; 193 u64 start = max_t(u64, eb->start, folio_pos(folio)); 194 u64 end = min_t(u64, eb->start + eb->len, 195 folio_pos(folio) + eb->folio_size); 196 u32 len = end - start; 197 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len, 199 start, folio, offset_in_folio(folio, start), 200 mirror_num); 201 if (ret) 202 break; 203 } 204 205 return ret; 206 } 207 208 /* 209 * helper to read a given tree block, doing retries as required when 210 * the checksums don't match and we have alternate mirrors to try. 211 * 212 * @check: expected tree parentness check, see the comments of the 213 * structure for details. 214 */ 215 int btrfs_read_extent_buffer(struct extent_buffer *eb, 216 struct btrfs_tree_parent_check *check) 217 { 218 struct btrfs_fs_info *fs_info = eb->fs_info; 219 int failed = 0; 220 int ret; 221 int num_copies = 0; 222 int mirror_num = 0; 223 int failed_mirror = 0; 224 225 ASSERT(check); 226 227 while (1) { 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check); 230 if (!ret) 231 break; 232 233 num_copies = btrfs_num_copies(fs_info, 234 eb->start, eb->len); 235 if (num_copies == 1) 236 break; 237 238 if (!failed_mirror) { 239 failed = 1; 240 failed_mirror = eb->read_mirror; 241 } 242 243 mirror_num++; 244 if (mirror_num == failed_mirror) 245 mirror_num++; 246 247 if (mirror_num > num_copies) 248 break; 249 } 250 251 if (failed && !ret && failed_mirror) 252 btrfs_repair_eb_io_failure(eb, failed_mirror); 253 254 return ret; 255 } 256 257 /* 258 * Checksum a dirty tree block before IO. 259 */ 260 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio) 261 { 262 struct extent_buffer *eb = bbio->private; 263 struct btrfs_fs_info *fs_info = eb->fs_info; 264 u64 found_start = btrfs_header_bytenr(eb); 265 u64 last_trans; 266 u8 result[BTRFS_CSUM_SIZE]; 267 int ret; 268 269 /* Btree blocks are always contiguous on disk. */ 270 if (WARN_ON_ONCE(bbio->file_offset != eb->start)) 271 return BLK_STS_IOERR; 272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len)) 273 return BLK_STS_IOERR; 274 275 /* 276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't 277 * checksum it but zero-out its content. This is done to preserve 278 * ordering of I/O without unnecessarily writing out data. 279 */ 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) { 281 memzero_extent_buffer(eb, 0, eb->len); 282 return BLK_STS_OK; 283 } 284 285 if (WARN_ON_ONCE(found_start != eb->start)) 286 return BLK_STS_IOERR; 287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0], 288 eb->start, eb->len))) 289 return BLK_STS_IOERR; 290 291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid, 292 offsetof(struct btrfs_header, fsid), 293 BTRFS_FSID_SIZE) == 0); 294 csum_tree_block(eb, result); 295 296 if (btrfs_header_level(eb)) 297 ret = btrfs_check_node(eb); 298 else 299 ret = btrfs_check_leaf(eb); 300 301 if (ret < 0) 302 goto error; 303 304 /* 305 * Also check the generation, the eb reached here must be newer than 306 * last committed. Or something seriously wrong happened. 307 */ 308 last_trans = btrfs_get_last_trans_committed(fs_info); 309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) { 310 ret = -EUCLEAN; 311 btrfs_err(fs_info, 312 "block=%llu bad generation, have %llu expect > %llu", 313 eb->start, btrfs_header_generation(eb), last_trans); 314 goto error; 315 } 316 write_extent_buffer(eb, result, 0, fs_info->csum_size); 317 return BLK_STS_OK; 318 319 error: 320 btrfs_print_tree(eb, 0); 321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected", 322 eb->start); 323 /* 324 * Be noisy if this is an extent buffer from a log tree. We don't abort 325 * a transaction in case there's a bad log tree extent buffer, we just 326 * fallback to a transaction commit. Still we want to know when there is 327 * a bad log tree extent buffer, as that may signal a bug somewhere. 328 */ 329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) || 330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID); 331 return errno_to_blk_status(ret); 332 } 333 334 static bool check_tree_block_fsid(struct extent_buffer *eb) 335 { 336 struct btrfs_fs_info *fs_info = eb->fs_info; 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 338 u8 fsid[BTRFS_FSID_SIZE]; 339 340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid), 341 BTRFS_FSID_SIZE); 342 343 /* 344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid. 345 * This is then overwritten by metadata_uuid if it is present in the 346 * device_list_add(). The same true for a seed device as well. So use of 347 * fs_devices::metadata_uuid is appropriate here. 348 */ 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0) 350 return false; 351 352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) 353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE)) 354 return false; 355 356 return true; 357 } 358 359 /* Do basic extent buffer checks at read time */ 360 int btrfs_validate_extent_buffer(struct extent_buffer *eb, 361 struct btrfs_tree_parent_check *check) 362 { 363 struct btrfs_fs_info *fs_info = eb->fs_info; 364 u64 found_start; 365 const u32 csum_size = fs_info->csum_size; 366 u8 found_level; 367 u8 result[BTRFS_CSUM_SIZE]; 368 const u8 *header_csum; 369 int ret = 0; 370 371 ASSERT(check); 372 373 found_start = btrfs_header_bytenr(eb); 374 if (found_start != eb->start) { 375 btrfs_err_rl(fs_info, 376 "bad tree block start, mirror %u want %llu have %llu", 377 eb->read_mirror, eb->start, found_start); 378 ret = -EIO; 379 goto out; 380 } 381 if (check_tree_block_fsid(eb)) { 382 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u", 383 eb->start, eb->read_mirror); 384 ret = -EIO; 385 goto out; 386 } 387 found_level = btrfs_header_level(eb); 388 if (found_level >= BTRFS_MAX_LEVEL) { 389 btrfs_err(fs_info, 390 "bad tree block level, mirror %u level %d on logical %llu", 391 eb->read_mirror, btrfs_header_level(eb), eb->start); 392 ret = -EIO; 393 goto out; 394 } 395 396 csum_tree_block(eb, result); 397 header_csum = folio_address(eb->folios[0]) + 398 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum)); 399 400 if (memcmp(result, header_csum, csum_size) != 0) { 401 btrfs_warn_rl(fs_info, 402 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d", 403 eb->start, eb->read_mirror, 404 CSUM_FMT_VALUE(csum_size, header_csum), 405 CSUM_FMT_VALUE(csum_size, result), 406 btrfs_header_level(eb)); 407 ret = -EUCLEAN; 408 goto out; 409 } 410 411 if (found_level != check->level) { 412 btrfs_err(fs_info, 413 "level verify failed on logical %llu mirror %u wanted %u found %u", 414 eb->start, eb->read_mirror, check->level, found_level); 415 ret = -EIO; 416 goto out; 417 } 418 if (unlikely(check->transid && 419 btrfs_header_generation(eb) != check->transid)) { 420 btrfs_err_rl(eb->fs_info, 421 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu", 422 eb->start, eb->read_mirror, check->transid, 423 btrfs_header_generation(eb)); 424 ret = -EIO; 425 goto out; 426 } 427 if (check->has_first_key) { 428 struct btrfs_key *expect_key = &check->first_key; 429 struct btrfs_key found_key; 430 431 if (found_level) 432 btrfs_node_key_to_cpu(eb, &found_key, 0); 433 else 434 btrfs_item_key_to_cpu(eb, &found_key, 0); 435 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) { 436 btrfs_err(fs_info, 437 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)", 438 eb->start, check->transid, 439 expect_key->objectid, 440 expect_key->type, expect_key->offset, 441 found_key.objectid, found_key.type, 442 found_key.offset); 443 ret = -EUCLEAN; 444 goto out; 445 } 446 } 447 if (check->owner_root) { 448 ret = btrfs_check_eb_owner(eb, check->owner_root); 449 if (ret < 0) 450 goto out; 451 } 452 453 /* 454 * If this is a leaf block and it is corrupt, set the corrupt bit so 455 * that we don't try and read the other copies of this block, just 456 * return -EIO. 457 */ 458 if (found_level == 0 && btrfs_check_leaf(eb)) { 459 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 460 ret = -EIO; 461 } 462 463 if (found_level > 0 && btrfs_check_node(eb)) 464 ret = -EIO; 465 466 if (ret) 467 btrfs_err(fs_info, 468 "read time tree block corruption detected on logical %llu mirror %u", 469 eb->start, eb->read_mirror); 470 out: 471 return ret; 472 } 473 474 #ifdef CONFIG_MIGRATION 475 static int btree_migrate_folio(struct address_space *mapping, 476 struct folio *dst, struct folio *src, enum migrate_mode mode) 477 { 478 /* 479 * we can't safely write a btree page from here, 480 * we haven't done the locking hook 481 */ 482 if (folio_test_dirty(src)) 483 return -EAGAIN; 484 /* 485 * Buffers may be managed in a filesystem specific way. 486 * We must have no buffers or drop them. 487 */ 488 if (folio_get_private(src) && 489 !filemap_release_folio(src, GFP_KERNEL)) 490 return -EAGAIN; 491 return migrate_folio(mapping, dst, src, mode); 492 } 493 #else 494 #define btree_migrate_folio NULL 495 #endif 496 497 static int btree_writepages(struct address_space *mapping, 498 struct writeback_control *wbc) 499 { 500 int ret; 501 502 if (wbc->sync_mode == WB_SYNC_NONE) { 503 struct btrfs_fs_info *fs_info; 504 505 if (wbc->for_kupdate) 506 return 0; 507 508 fs_info = inode_to_fs_info(mapping->host); 509 /* this is a bit racy, but that's ok */ 510 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 511 BTRFS_DIRTY_METADATA_THRESH, 512 fs_info->dirty_metadata_batch); 513 if (ret < 0) 514 return 0; 515 } 516 return btree_write_cache_pages(mapping, wbc); 517 } 518 519 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags) 520 { 521 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 522 return false; 523 524 return try_release_extent_buffer(&folio->page); 525 } 526 527 static void btree_invalidate_folio(struct folio *folio, size_t offset, 528 size_t length) 529 { 530 struct extent_io_tree *tree; 531 532 tree = &folio_to_inode(folio)->io_tree; 533 extent_invalidate_folio(tree, folio, offset); 534 btree_release_folio(folio, GFP_NOFS); 535 if (folio_get_private(folio)) { 536 btrfs_warn(folio_to_fs_info(folio), 537 "folio private not zero on folio %llu", 538 (unsigned long long)folio_pos(folio)); 539 folio_detach_private(folio); 540 } 541 } 542 543 #ifdef DEBUG 544 static bool btree_dirty_folio(struct address_space *mapping, 545 struct folio *folio) 546 { 547 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host); 548 struct btrfs_subpage_info *spi = fs_info->subpage_info; 549 struct btrfs_subpage *subpage; 550 struct extent_buffer *eb; 551 int cur_bit = 0; 552 u64 page_start = folio_pos(folio); 553 554 if (fs_info->sectorsize == PAGE_SIZE) { 555 eb = folio_get_private(folio); 556 BUG_ON(!eb); 557 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 558 BUG_ON(!atomic_read(&eb->refs)); 559 btrfs_assert_tree_write_locked(eb); 560 return filemap_dirty_folio(mapping, folio); 561 } 562 563 ASSERT(spi); 564 subpage = folio_get_private(folio); 565 566 for (cur_bit = spi->dirty_offset; 567 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits; 568 cur_bit++) { 569 unsigned long flags; 570 u64 cur; 571 572 spin_lock_irqsave(&subpage->lock, flags); 573 if (!test_bit(cur_bit, subpage->bitmaps)) { 574 spin_unlock_irqrestore(&subpage->lock, flags); 575 continue; 576 } 577 spin_unlock_irqrestore(&subpage->lock, flags); 578 cur = page_start + cur_bit * fs_info->sectorsize; 579 580 eb = find_extent_buffer(fs_info, cur); 581 ASSERT(eb); 582 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 583 ASSERT(atomic_read(&eb->refs)); 584 btrfs_assert_tree_write_locked(eb); 585 free_extent_buffer(eb); 586 587 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1; 588 } 589 return filemap_dirty_folio(mapping, folio); 590 } 591 #else 592 #define btree_dirty_folio filemap_dirty_folio 593 #endif 594 595 static const struct address_space_operations btree_aops = { 596 .writepages = btree_writepages, 597 .release_folio = btree_release_folio, 598 .invalidate_folio = btree_invalidate_folio, 599 .migrate_folio = btree_migrate_folio, 600 .dirty_folio = btree_dirty_folio, 601 }; 602 603 struct extent_buffer *btrfs_find_create_tree_block( 604 struct btrfs_fs_info *fs_info, 605 u64 bytenr, u64 owner_root, 606 int level) 607 { 608 if (btrfs_is_testing(fs_info)) 609 return alloc_test_extent_buffer(fs_info, bytenr); 610 return alloc_extent_buffer(fs_info, bytenr, owner_root, level); 611 } 612 613 /* 614 * Read tree block at logical address @bytenr and do variant basic but critical 615 * verification. 616 * 617 * @check: expected tree parentness check, see comments of the 618 * structure for details. 619 */ 620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, 621 struct btrfs_tree_parent_check *check) 622 { 623 struct extent_buffer *buf = NULL; 624 int ret; 625 626 ASSERT(check); 627 628 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root, 629 check->level); 630 if (IS_ERR(buf)) 631 return buf; 632 633 ret = btrfs_read_extent_buffer(buf, check); 634 if (ret) { 635 free_extent_buffer_stale(buf); 636 return ERR_PTR(ret); 637 } 638 if (btrfs_check_eb_owner(buf, check->owner_root)) { 639 free_extent_buffer_stale(buf); 640 return ERR_PTR(-EUCLEAN); 641 } 642 return buf; 643 644 } 645 646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, 647 u64 objectid) 648 { 649 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 650 651 memset(&root->root_key, 0, sizeof(root->root_key)); 652 memset(&root->root_item, 0, sizeof(root->root_item)); 653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 654 root->fs_info = fs_info; 655 root->root_key.objectid = objectid; 656 root->node = NULL; 657 root->commit_root = NULL; 658 root->state = 0; 659 RB_CLEAR_NODE(&root->rb_node); 660 661 root->last_trans = 0; 662 root->free_objectid = 0; 663 root->nr_delalloc_inodes = 0; 664 root->nr_ordered_extents = 0; 665 root->inode_tree = RB_ROOT; 666 /* GFP flags are compatible with XA_FLAGS_*. */ 667 xa_init_flags(&root->delayed_nodes, GFP_ATOMIC); 668 669 btrfs_init_root_block_rsv(root); 670 671 INIT_LIST_HEAD(&root->dirty_list); 672 INIT_LIST_HEAD(&root->root_list); 673 INIT_LIST_HEAD(&root->delalloc_inodes); 674 INIT_LIST_HEAD(&root->delalloc_root); 675 INIT_LIST_HEAD(&root->ordered_extents); 676 INIT_LIST_HEAD(&root->ordered_root); 677 INIT_LIST_HEAD(&root->reloc_dirty_list); 678 spin_lock_init(&root->inode_lock); 679 spin_lock_init(&root->delalloc_lock); 680 spin_lock_init(&root->ordered_extent_lock); 681 spin_lock_init(&root->accounting_lock); 682 spin_lock_init(&root->qgroup_meta_rsv_lock); 683 mutex_init(&root->objectid_mutex); 684 mutex_init(&root->log_mutex); 685 mutex_init(&root->ordered_extent_mutex); 686 mutex_init(&root->delalloc_mutex); 687 init_waitqueue_head(&root->qgroup_flush_wait); 688 init_waitqueue_head(&root->log_writer_wait); 689 init_waitqueue_head(&root->log_commit_wait[0]); 690 init_waitqueue_head(&root->log_commit_wait[1]); 691 INIT_LIST_HEAD(&root->log_ctxs[0]); 692 INIT_LIST_HEAD(&root->log_ctxs[1]); 693 atomic_set(&root->log_commit[0], 0); 694 atomic_set(&root->log_commit[1], 0); 695 atomic_set(&root->log_writers, 0); 696 atomic_set(&root->log_batch, 0); 697 refcount_set(&root->refs, 1); 698 atomic_set(&root->snapshot_force_cow, 0); 699 atomic_set(&root->nr_swapfiles, 0); 700 btrfs_set_root_log_transid(root, 0); 701 root->log_transid_committed = -1; 702 btrfs_set_root_last_log_commit(root, 0); 703 root->anon_dev = 0; 704 if (!dummy) { 705 extent_io_tree_init(fs_info, &root->dirty_log_pages, 706 IO_TREE_ROOT_DIRTY_LOG_PAGES); 707 extent_io_tree_init(fs_info, &root->log_csum_range, 708 IO_TREE_LOG_CSUM_RANGE); 709 } 710 711 spin_lock_init(&root->root_item_lock); 712 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks); 713 #ifdef CONFIG_BTRFS_DEBUG 714 INIT_LIST_HEAD(&root->leak_list); 715 spin_lock(&fs_info->fs_roots_radix_lock); 716 list_add_tail(&root->leak_list, &fs_info->allocated_roots); 717 spin_unlock(&fs_info->fs_roots_radix_lock); 718 #endif 719 } 720 721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 722 u64 objectid, gfp_t flags) 723 { 724 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 725 if (root) 726 __setup_root(root, fs_info, objectid); 727 return root; 728 } 729 730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 731 /* Should only be used by the testing infrastructure */ 732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) 733 { 734 struct btrfs_root *root; 735 736 if (!fs_info) 737 return ERR_PTR(-EINVAL); 738 739 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL); 740 if (!root) 741 return ERR_PTR(-ENOMEM); 742 743 /* We don't use the stripesize in selftest, set it as sectorsize */ 744 root->alloc_bytenr = 0; 745 746 return root; 747 } 748 #endif 749 750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node) 751 { 752 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node); 753 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node); 754 755 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key); 756 } 757 758 static int global_root_key_cmp(const void *k, const struct rb_node *node) 759 { 760 const struct btrfs_key *key = k; 761 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node); 762 763 return btrfs_comp_cpu_keys(key, &root->root_key); 764 } 765 766 int btrfs_global_root_insert(struct btrfs_root *root) 767 { 768 struct btrfs_fs_info *fs_info = root->fs_info; 769 struct rb_node *tmp; 770 int ret = 0; 771 772 write_lock(&fs_info->global_root_lock); 773 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp); 774 write_unlock(&fs_info->global_root_lock); 775 776 if (tmp) { 777 ret = -EEXIST; 778 btrfs_warn(fs_info, "global root %llu %llu already exists", 779 root->root_key.objectid, root->root_key.offset); 780 } 781 return ret; 782 } 783 784 void btrfs_global_root_delete(struct btrfs_root *root) 785 { 786 struct btrfs_fs_info *fs_info = root->fs_info; 787 788 write_lock(&fs_info->global_root_lock); 789 rb_erase(&root->rb_node, &fs_info->global_root_tree); 790 write_unlock(&fs_info->global_root_lock); 791 } 792 793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info, 794 struct btrfs_key *key) 795 { 796 struct rb_node *node; 797 struct btrfs_root *root = NULL; 798 799 read_lock(&fs_info->global_root_lock); 800 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp); 801 if (node) 802 root = container_of(node, struct btrfs_root, rb_node); 803 read_unlock(&fs_info->global_root_lock); 804 805 return root; 806 } 807 808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr) 809 { 810 struct btrfs_block_group *block_group; 811 u64 ret; 812 813 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 814 return 0; 815 816 if (bytenr) 817 block_group = btrfs_lookup_block_group(fs_info, bytenr); 818 else 819 block_group = btrfs_lookup_first_block_group(fs_info, bytenr); 820 ASSERT(block_group); 821 if (!block_group) 822 return 0; 823 ret = block_group->global_root_id; 824 btrfs_put_block_group(block_group); 825 826 return ret; 827 } 828 829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr) 830 { 831 struct btrfs_key key = { 832 .objectid = BTRFS_CSUM_TREE_OBJECTID, 833 .type = BTRFS_ROOT_ITEM_KEY, 834 .offset = btrfs_global_root_id(fs_info, bytenr), 835 }; 836 837 return btrfs_global_root(fs_info, &key); 838 } 839 840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr) 841 { 842 struct btrfs_key key = { 843 .objectid = BTRFS_EXTENT_TREE_OBJECTID, 844 .type = BTRFS_ROOT_ITEM_KEY, 845 .offset = btrfs_global_root_id(fs_info, bytenr), 846 }; 847 848 return btrfs_global_root(fs_info, &key); 849 } 850 851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info) 852 { 853 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) 854 return fs_info->block_group_root; 855 return btrfs_extent_root(fs_info, 0); 856 } 857 858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 859 u64 objectid) 860 { 861 struct btrfs_fs_info *fs_info = trans->fs_info; 862 struct extent_buffer *leaf; 863 struct btrfs_root *tree_root = fs_info->tree_root; 864 struct btrfs_root *root; 865 struct btrfs_key key; 866 unsigned int nofs_flag; 867 int ret = 0; 868 869 /* 870 * We're holding a transaction handle, so use a NOFS memory allocation 871 * context to avoid deadlock if reclaim happens. 872 */ 873 nofs_flag = memalloc_nofs_save(); 874 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL); 875 memalloc_nofs_restore(nofs_flag); 876 if (!root) 877 return ERR_PTR(-ENOMEM); 878 879 root->root_key.objectid = objectid; 880 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 881 root->root_key.offset = 0; 882 883 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 884 0, BTRFS_NESTING_NORMAL); 885 if (IS_ERR(leaf)) { 886 ret = PTR_ERR(leaf); 887 leaf = NULL; 888 goto fail; 889 } 890 891 root->node = leaf; 892 btrfs_mark_buffer_dirty(trans, leaf); 893 894 root->commit_root = btrfs_root_node(root); 895 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 896 897 btrfs_set_root_flags(&root->root_item, 0); 898 btrfs_set_root_limit(&root->root_item, 0); 899 btrfs_set_root_bytenr(&root->root_item, leaf->start); 900 btrfs_set_root_generation(&root->root_item, trans->transid); 901 btrfs_set_root_level(&root->root_item, 0); 902 btrfs_set_root_refs(&root->root_item, 1); 903 btrfs_set_root_used(&root->root_item, leaf->len); 904 btrfs_set_root_last_snapshot(&root->root_item, 0); 905 btrfs_set_root_dirid(&root->root_item, 0); 906 if (is_fstree(objectid)) 907 generate_random_guid(root->root_item.uuid); 908 else 909 export_guid(root->root_item.uuid, &guid_null); 910 btrfs_set_root_drop_level(&root->root_item, 0); 911 912 btrfs_tree_unlock(leaf); 913 914 key.objectid = objectid; 915 key.type = BTRFS_ROOT_ITEM_KEY; 916 key.offset = 0; 917 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 918 if (ret) 919 goto fail; 920 921 return root; 922 923 fail: 924 btrfs_put_root(root); 925 926 return ERR_PTR(ret); 927 } 928 929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 930 struct btrfs_fs_info *fs_info) 931 { 932 struct btrfs_root *root; 933 934 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS); 935 if (!root) 936 return ERR_PTR(-ENOMEM); 937 938 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 939 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 940 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 941 942 return root; 943 } 944 945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans, 946 struct btrfs_root *root) 947 { 948 struct extent_buffer *leaf; 949 950 /* 951 * DON'T set SHAREABLE bit for log trees. 952 * 953 * Log trees are not exposed to user space thus can't be snapshotted, 954 * and they go away before a real commit is actually done. 955 * 956 * They do store pointers to file data extents, and those reference 957 * counts still get updated (along with back refs to the log tree). 958 */ 959 960 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 961 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL); 962 if (IS_ERR(leaf)) 963 return PTR_ERR(leaf); 964 965 root->node = leaf; 966 967 btrfs_mark_buffer_dirty(trans, root->node); 968 btrfs_tree_unlock(root->node); 969 970 return 0; 971 } 972 973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 974 struct btrfs_fs_info *fs_info) 975 { 976 struct btrfs_root *log_root; 977 978 log_root = alloc_log_tree(trans, fs_info); 979 if (IS_ERR(log_root)) 980 return PTR_ERR(log_root); 981 982 if (!btrfs_is_zoned(fs_info)) { 983 int ret = btrfs_alloc_log_tree_node(trans, log_root); 984 985 if (ret) { 986 btrfs_put_root(log_root); 987 return ret; 988 } 989 } 990 991 WARN_ON(fs_info->log_root_tree); 992 fs_info->log_root_tree = log_root; 993 return 0; 994 } 995 996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 997 struct btrfs_root *root) 998 { 999 struct btrfs_fs_info *fs_info = root->fs_info; 1000 struct btrfs_root *log_root; 1001 struct btrfs_inode_item *inode_item; 1002 int ret; 1003 1004 log_root = alloc_log_tree(trans, fs_info); 1005 if (IS_ERR(log_root)) 1006 return PTR_ERR(log_root); 1007 1008 ret = btrfs_alloc_log_tree_node(trans, log_root); 1009 if (ret) { 1010 btrfs_put_root(log_root); 1011 return ret; 1012 } 1013 1014 log_root->last_trans = trans->transid; 1015 log_root->root_key.offset = root->root_key.objectid; 1016 1017 inode_item = &log_root->root_item.inode; 1018 btrfs_set_stack_inode_generation(inode_item, 1); 1019 btrfs_set_stack_inode_size(inode_item, 3); 1020 btrfs_set_stack_inode_nlink(inode_item, 1); 1021 btrfs_set_stack_inode_nbytes(inode_item, 1022 fs_info->nodesize); 1023 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1024 1025 btrfs_set_root_node(&log_root->root_item, log_root->node); 1026 1027 WARN_ON(root->log_root); 1028 root->log_root = log_root; 1029 btrfs_set_root_log_transid(root, 0); 1030 root->log_transid_committed = -1; 1031 btrfs_set_root_last_log_commit(root, 0); 1032 return 0; 1033 } 1034 1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root, 1036 struct btrfs_path *path, 1037 struct btrfs_key *key) 1038 { 1039 struct btrfs_root *root; 1040 struct btrfs_tree_parent_check check = { 0 }; 1041 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1042 u64 generation; 1043 int ret; 1044 int level; 1045 1046 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS); 1047 if (!root) 1048 return ERR_PTR(-ENOMEM); 1049 1050 ret = btrfs_find_root(tree_root, key, path, 1051 &root->root_item, &root->root_key); 1052 if (ret) { 1053 if (ret > 0) 1054 ret = -ENOENT; 1055 goto fail; 1056 } 1057 1058 generation = btrfs_root_generation(&root->root_item); 1059 level = btrfs_root_level(&root->root_item); 1060 check.level = level; 1061 check.transid = generation; 1062 check.owner_root = key->objectid; 1063 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item), 1064 &check); 1065 if (IS_ERR(root->node)) { 1066 ret = PTR_ERR(root->node); 1067 root->node = NULL; 1068 goto fail; 1069 } 1070 if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1071 ret = -EIO; 1072 goto fail; 1073 } 1074 1075 /* 1076 * For real fs, and not log/reloc trees, root owner must 1077 * match its root node owner 1078 */ 1079 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) && 1080 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1081 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1082 root->root_key.objectid != btrfs_header_owner(root->node)) { 1083 btrfs_crit(fs_info, 1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu", 1085 root->root_key.objectid, root->node->start, 1086 btrfs_header_owner(root->node), 1087 root->root_key.objectid); 1088 ret = -EUCLEAN; 1089 goto fail; 1090 } 1091 root->commit_root = btrfs_root_node(root); 1092 return root; 1093 fail: 1094 btrfs_put_root(root); 1095 return ERR_PTR(ret); 1096 } 1097 1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1099 struct btrfs_key *key) 1100 { 1101 struct btrfs_root *root; 1102 struct btrfs_path *path; 1103 1104 path = btrfs_alloc_path(); 1105 if (!path) 1106 return ERR_PTR(-ENOMEM); 1107 root = read_tree_root_path(tree_root, path, key); 1108 btrfs_free_path(path); 1109 1110 return root; 1111 } 1112 1113 /* 1114 * Initialize subvolume root in-memory structure 1115 * 1116 * @anon_dev: anonymous device to attach to the root, if zero, allocate new 1117 */ 1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev) 1119 { 1120 int ret; 1121 1122 btrfs_drew_lock_init(&root->snapshot_lock); 1123 1124 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID && 1125 !btrfs_is_data_reloc_root(root) && 1126 is_fstree(root->root_key.objectid)) { 1127 set_bit(BTRFS_ROOT_SHAREABLE, &root->state); 1128 btrfs_check_and_init_root_item(&root->root_item); 1129 } 1130 1131 /* 1132 * Don't assign anonymous block device to roots that are not exposed to 1133 * userspace, the id pool is limited to 1M 1134 */ 1135 if (is_fstree(root->root_key.objectid) && 1136 btrfs_root_refs(&root->root_item) > 0) { 1137 if (!anon_dev) { 1138 ret = get_anon_bdev(&root->anon_dev); 1139 if (ret) 1140 goto fail; 1141 } else { 1142 root->anon_dev = anon_dev; 1143 } 1144 } 1145 1146 mutex_lock(&root->objectid_mutex); 1147 ret = btrfs_init_root_free_objectid(root); 1148 if (ret) { 1149 mutex_unlock(&root->objectid_mutex); 1150 goto fail; 1151 } 1152 1153 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 1154 1155 mutex_unlock(&root->objectid_mutex); 1156 1157 return 0; 1158 fail: 1159 /* The caller is responsible to call btrfs_free_fs_root */ 1160 return ret; 1161 } 1162 1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1164 u64 root_id) 1165 { 1166 struct btrfs_root *root; 1167 1168 spin_lock(&fs_info->fs_roots_radix_lock); 1169 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1170 (unsigned long)root_id); 1171 root = btrfs_grab_root(root); 1172 spin_unlock(&fs_info->fs_roots_radix_lock); 1173 return root; 1174 } 1175 1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info, 1177 u64 objectid) 1178 { 1179 struct btrfs_key key = { 1180 .objectid = objectid, 1181 .type = BTRFS_ROOT_ITEM_KEY, 1182 .offset = 0, 1183 }; 1184 1185 switch (objectid) { 1186 case BTRFS_ROOT_TREE_OBJECTID: 1187 return btrfs_grab_root(fs_info->tree_root); 1188 case BTRFS_EXTENT_TREE_OBJECTID: 1189 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1190 case BTRFS_CHUNK_TREE_OBJECTID: 1191 return btrfs_grab_root(fs_info->chunk_root); 1192 case BTRFS_DEV_TREE_OBJECTID: 1193 return btrfs_grab_root(fs_info->dev_root); 1194 case BTRFS_CSUM_TREE_OBJECTID: 1195 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1196 case BTRFS_QUOTA_TREE_OBJECTID: 1197 return btrfs_grab_root(fs_info->quota_root); 1198 case BTRFS_UUID_TREE_OBJECTID: 1199 return btrfs_grab_root(fs_info->uuid_root); 1200 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 1201 return btrfs_grab_root(fs_info->block_group_root); 1202 case BTRFS_FREE_SPACE_TREE_OBJECTID: 1203 return btrfs_grab_root(btrfs_global_root(fs_info, &key)); 1204 case BTRFS_RAID_STRIPE_TREE_OBJECTID: 1205 return btrfs_grab_root(fs_info->stripe_root); 1206 default: 1207 return NULL; 1208 } 1209 } 1210 1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1212 struct btrfs_root *root) 1213 { 1214 int ret; 1215 1216 ret = radix_tree_preload(GFP_NOFS); 1217 if (ret) 1218 return ret; 1219 1220 spin_lock(&fs_info->fs_roots_radix_lock); 1221 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1222 (unsigned long)root->root_key.objectid, 1223 root); 1224 if (ret == 0) { 1225 btrfs_grab_root(root); 1226 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1227 } 1228 spin_unlock(&fs_info->fs_roots_radix_lock); 1229 radix_tree_preload_end(); 1230 1231 return ret; 1232 } 1233 1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info) 1235 { 1236 #ifdef CONFIG_BTRFS_DEBUG 1237 struct btrfs_root *root; 1238 1239 while (!list_empty(&fs_info->allocated_roots)) { 1240 char buf[BTRFS_ROOT_NAME_BUF_LEN]; 1241 1242 root = list_first_entry(&fs_info->allocated_roots, 1243 struct btrfs_root, leak_list); 1244 btrfs_err(fs_info, "leaked root %s refcount %d", 1245 btrfs_root_name(&root->root_key, buf), 1246 refcount_read(&root->refs)); 1247 WARN_ON_ONCE(1); 1248 while (refcount_read(&root->refs) > 1) 1249 btrfs_put_root(root); 1250 btrfs_put_root(root); 1251 } 1252 #endif 1253 } 1254 1255 static void free_global_roots(struct btrfs_fs_info *fs_info) 1256 { 1257 struct btrfs_root *root; 1258 struct rb_node *node; 1259 1260 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) { 1261 root = rb_entry(node, struct btrfs_root, rb_node); 1262 rb_erase(&root->rb_node, &fs_info->global_root_tree); 1263 btrfs_put_root(root); 1264 } 1265 } 1266 1267 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) 1268 { 1269 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 1270 percpu_counter_destroy(&fs_info->delalloc_bytes); 1271 percpu_counter_destroy(&fs_info->ordered_bytes); 1272 percpu_counter_destroy(&fs_info->dev_replace.bio_counter); 1273 btrfs_free_csum_hash(fs_info); 1274 btrfs_free_stripe_hash_table(fs_info); 1275 btrfs_free_ref_cache(fs_info); 1276 kfree(fs_info->balance_ctl); 1277 kfree(fs_info->delayed_root); 1278 free_global_roots(fs_info); 1279 btrfs_put_root(fs_info->tree_root); 1280 btrfs_put_root(fs_info->chunk_root); 1281 btrfs_put_root(fs_info->dev_root); 1282 btrfs_put_root(fs_info->quota_root); 1283 btrfs_put_root(fs_info->uuid_root); 1284 btrfs_put_root(fs_info->fs_root); 1285 btrfs_put_root(fs_info->data_reloc_root); 1286 btrfs_put_root(fs_info->block_group_root); 1287 btrfs_put_root(fs_info->stripe_root); 1288 btrfs_check_leaked_roots(fs_info); 1289 btrfs_extent_buffer_leak_debug_check(fs_info); 1290 kfree(fs_info->super_copy); 1291 kfree(fs_info->super_for_commit); 1292 kfree(fs_info->subpage_info); 1293 kvfree(fs_info); 1294 } 1295 1296 1297 /* 1298 * Get an in-memory reference of a root structure. 1299 * 1300 * For essential trees like root/extent tree, we grab it from fs_info directly. 1301 * For subvolume trees, we check the cached filesystem roots first. If not 1302 * found, then read it from disk and add it to cached fs roots. 1303 * 1304 * Caller should release the root by calling btrfs_put_root() after the usage. 1305 * 1306 * NOTE: Reloc and log trees can't be read by this function as they share the 1307 * same root objectid. 1308 * 1309 * @objectid: root id 1310 * @anon_dev: preallocated anonymous block device number for new roots, 1311 * pass NULL for a new allocation. 1312 * @check_ref: whether to check root item references, If true, return -ENOENT 1313 * for orphan roots 1314 */ 1315 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info, 1316 u64 objectid, dev_t *anon_dev, 1317 bool check_ref) 1318 { 1319 struct btrfs_root *root; 1320 struct btrfs_path *path; 1321 struct btrfs_key key; 1322 int ret; 1323 1324 root = btrfs_get_global_root(fs_info, objectid); 1325 if (root) 1326 return root; 1327 1328 /* 1329 * If we're called for non-subvolume trees, and above function didn't 1330 * find one, do not try to read it from disk. 1331 * 1332 * This is namely for free-space-tree and quota tree, which can change 1333 * at runtime and should only be grabbed from fs_info. 1334 */ 1335 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1336 return ERR_PTR(-ENOENT); 1337 again: 1338 root = btrfs_lookup_fs_root(fs_info, objectid); 1339 if (root) { 1340 /* 1341 * Some other caller may have read out the newly inserted 1342 * subvolume already (for things like backref walk etc). Not 1343 * that common but still possible. In that case, we just need 1344 * to free the anon_dev. 1345 */ 1346 if (unlikely(anon_dev && *anon_dev)) { 1347 free_anon_bdev(*anon_dev); 1348 *anon_dev = 0; 1349 } 1350 1351 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1352 btrfs_put_root(root); 1353 return ERR_PTR(-ENOENT); 1354 } 1355 return root; 1356 } 1357 1358 key.objectid = objectid; 1359 key.type = BTRFS_ROOT_ITEM_KEY; 1360 key.offset = (u64)-1; 1361 root = btrfs_read_tree_root(fs_info->tree_root, &key); 1362 if (IS_ERR(root)) 1363 return root; 1364 1365 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1366 ret = -ENOENT; 1367 goto fail; 1368 } 1369 1370 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0); 1371 if (ret) 1372 goto fail; 1373 1374 path = btrfs_alloc_path(); 1375 if (!path) { 1376 ret = -ENOMEM; 1377 goto fail; 1378 } 1379 key.objectid = BTRFS_ORPHAN_OBJECTID; 1380 key.type = BTRFS_ORPHAN_ITEM_KEY; 1381 key.offset = objectid; 1382 1383 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1384 btrfs_free_path(path); 1385 if (ret < 0) 1386 goto fail; 1387 if (ret == 0) 1388 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1389 1390 ret = btrfs_insert_fs_root(fs_info, root); 1391 if (ret) { 1392 if (ret == -EEXIST) { 1393 btrfs_put_root(root); 1394 goto again; 1395 } 1396 goto fail; 1397 } 1398 return root; 1399 fail: 1400 /* 1401 * If our caller provided us an anonymous device, then it's his 1402 * responsibility to free it in case we fail. So we have to set our 1403 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root() 1404 * and once again by our caller. 1405 */ 1406 if (anon_dev && *anon_dev) 1407 root->anon_dev = 0; 1408 btrfs_put_root(root); 1409 return ERR_PTR(ret); 1410 } 1411 1412 /* 1413 * Get in-memory reference of a root structure 1414 * 1415 * @objectid: tree objectid 1416 * @check_ref: if set, verify that the tree exists and the item has at least 1417 * one reference 1418 */ 1419 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1420 u64 objectid, bool check_ref) 1421 { 1422 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref); 1423 } 1424 1425 /* 1426 * Get in-memory reference of a root structure, created as new, optionally pass 1427 * the anonymous block device id 1428 * 1429 * @objectid: tree objectid 1430 * @anon_dev: if NULL, allocate a new anonymous block device or use the 1431 * parameter value if not NULL 1432 */ 1433 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info, 1434 u64 objectid, dev_t *anon_dev) 1435 { 1436 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true); 1437 } 1438 1439 /* 1440 * Return a root for the given objectid. 1441 * 1442 * @fs_info: the fs_info 1443 * @objectid: the objectid we need to lookup 1444 * 1445 * This is exclusively used for backref walking, and exists specifically because 1446 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref 1447 * creation time, which means we may have to read the tree_root in order to look 1448 * up a fs root that is not in memory. If the root is not in memory we will 1449 * read the tree root commit root and look up the fs root from there. This is a 1450 * temporary root, it will not be inserted into the radix tree as it doesn't 1451 * have the most uptodate information, it'll simply be discarded once the 1452 * backref code is finished using the root. 1453 */ 1454 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info, 1455 struct btrfs_path *path, 1456 u64 objectid) 1457 { 1458 struct btrfs_root *root; 1459 struct btrfs_key key; 1460 1461 ASSERT(path->search_commit_root && path->skip_locking); 1462 1463 /* 1464 * This can return -ENOENT if we ask for a root that doesn't exist, but 1465 * since this is called via the backref walking code we won't be looking 1466 * up a root that doesn't exist, unless there's corruption. So if root 1467 * != NULL just return it. 1468 */ 1469 root = btrfs_get_global_root(fs_info, objectid); 1470 if (root) 1471 return root; 1472 1473 root = btrfs_lookup_fs_root(fs_info, objectid); 1474 if (root) 1475 return root; 1476 1477 key.objectid = objectid; 1478 key.type = BTRFS_ROOT_ITEM_KEY; 1479 key.offset = (u64)-1; 1480 root = read_tree_root_path(fs_info->tree_root, path, &key); 1481 btrfs_release_path(path); 1482 1483 return root; 1484 } 1485 1486 static int cleaner_kthread(void *arg) 1487 { 1488 struct btrfs_fs_info *fs_info = arg; 1489 int again; 1490 1491 while (1) { 1492 again = 0; 1493 1494 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1495 1496 /* Make the cleaner go to sleep early. */ 1497 if (btrfs_need_cleaner_sleep(fs_info)) 1498 goto sleep; 1499 1500 /* 1501 * Do not do anything if we might cause open_ctree() to block 1502 * before we have finished mounting the filesystem. 1503 */ 1504 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) 1505 goto sleep; 1506 1507 if (!mutex_trylock(&fs_info->cleaner_mutex)) 1508 goto sleep; 1509 1510 /* 1511 * Avoid the problem that we change the status of the fs 1512 * during the above check and trylock. 1513 */ 1514 if (btrfs_need_cleaner_sleep(fs_info)) { 1515 mutex_unlock(&fs_info->cleaner_mutex); 1516 goto sleep; 1517 } 1518 1519 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags)) 1520 btrfs_sysfs_feature_update(fs_info); 1521 1522 btrfs_run_delayed_iputs(fs_info); 1523 1524 again = btrfs_clean_one_deleted_snapshot(fs_info); 1525 mutex_unlock(&fs_info->cleaner_mutex); 1526 1527 /* 1528 * The defragger has dealt with the R/O remount and umount, 1529 * needn't do anything special here. 1530 */ 1531 btrfs_run_defrag_inodes(fs_info); 1532 1533 /* 1534 * Acquires fs_info->reclaim_bgs_lock to avoid racing 1535 * with relocation (btrfs_relocate_chunk) and relocation 1536 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1537 * after acquiring fs_info->reclaim_bgs_lock. So we 1538 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1539 * unused block groups. 1540 */ 1541 btrfs_delete_unused_bgs(fs_info); 1542 1543 /* 1544 * Reclaim block groups in the reclaim_bgs list after we deleted 1545 * all unused block_groups. This possibly gives us some more free 1546 * space. 1547 */ 1548 btrfs_reclaim_bgs(fs_info); 1549 sleep: 1550 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags); 1551 if (kthread_should_park()) 1552 kthread_parkme(); 1553 if (kthread_should_stop()) 1554 return 0; 1555 if (!again) { 1556 set_current_state(TASK_INTERRUPTIBLE); 1557 schedule(); 1558 __set_current_state(TASK_RUNNING); 1559 } 1560 } 1561 } 1562 1563 static int transaction_kthread(void *arg) 1564 { 1565 struct btrfs_root *root = arg; 1566 struct btrfs_fs_info *fs_info = root->fs_info; 1567 struct btrfs_trans_handle *trans; 1568 struct btrfs_transaction *cur; 1569 u64 transid; 1570 time64_t delta; 1571 unsigned long delay; 1572 bool cannot_commit; 1573 1574 do { 1575 cannot_commit = false; 1576 delay = msecs_to_jiffies(fs_info->commit_interval * 1000); 1577 mutex_lock(&fs_info->transaction_kthread_mutex); 1578 1579 spin_lock(&fs_info->trans_lock); 1580 cur = fs_info->running_transaction; 1581 if (!cur) { 1582 spin_unlock(&fs_info->trans_lock); 1583 goto sleep; 1584 } 1585 1586 delta = ktime_get_seconds() - cur->start_time; 1587 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) && 1588 cur->state < TRANS_STATE_COMMIT_PREP && 1589 delta < fs_info->commit_interval) { 1590 spin_unlock(&fs_info->trans_lock); 1591 delay -= msecs_to_jiffies((delta - 1) * 1000); 1592 delay = min(delay, 1593 msecs_to_jiffies(fs_info->commit_interval * 1000)); 1594 goto sleep; 1595 } 1596 transid = cur->transid; 1597 spin_unlock(&fs_info->trans_lock); 1598 1599 /* If the file system is aborted, this will always fail. */ 1600 trans = btrfs_attach_transaction(root); 1601 if (IS_ERR(trans)) { 1602 if (PTR_ERR(trans) != -ENOENT) 1603 cannot_commit = true; 1604 goto sleep; 1605 } 1606 if (transid == trans->transid) { 1607 btrfs_commit_transaction(trans); 1608 } else { 1609 btrfs_end_transaction(trans); 1610 } 1611 sleep: 1612 wake_up_process(fs_info->cleaner_kthread); 1613 mutex_unlock(&fs_info->transaction_kthread_mutex); 1614 1615 if (BTRFS_FS_ERROR(fs_info)) 1616 btrfs_cleanup_transaction(fs_info); 1617 if (!kthread_should_stop() && 1618 (!btrfs_transaction_blocked(fs_info) || 1619 cannot_commit)) 1620 schedule_timeout_interruptible(delay); 1621 } while (!kthread_should_stop()); 1622 return 0; 1623 } 1624 1625 /* 1626 * This will find the highest generation in the array of root backups. The 1627 * index of the highest array is returned, or -EINVAL if we can't find 1628 * anything. 1629 * 1630 * We check to make sure the array is valid by comparing the 1631 * generation of the latest root in the array with the generation 1632 * in the super block. If they don't match we pitch it. 1633 */ 1634 static int find_newest_super_backup(struct btrfs_fs_info *info) 1635 { 1636 const u64 newest_gen = btrfs_super_generation(info->super_copy); 1637 u64 cur; 1638 struct btrfs_root_backup *root_backup; 1639 int i; 1640 1641 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1642 root_backup = info->super_copy->super_roots + i; 1643 cur = btrfs_backup_tree_root_gen(root_backup); 1644 if (cur == newest_gen) 1645 return i; 1646 } 1647 1648 return -EINVAL; 1649 } 1650 1651 /* 1652 * copy all the root pointers into the super backup array. 1653 * this will bump the backup pointer by one when it is 1654 * done 1655 */ 1656 static void backup_super_roots(struct btrfs_fs_info *info) 1657 { 1658 const int next_backup = info->backup_root_index; 1659 struct btrfs_root_backup *root_backup; 1660 1661 root_backup = info->super_for_commit->super_roots + next_backup; 1662 1663 /* 1664 * make sure all of our padding and empty slots get zero filled 1665 * regardless of which ones we use today 1666 */ 1667 memset(root_backup, 0, sizeof(*root_backup)); 1668 1669 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1670 1671 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1672 btrfs_set_backup_tree_root_gen(root_backup, 1673 btrfs_header_generation(info->tree_root->node)); 1674 1675 btrfs_set_backup_tree_root_level(root_backup, 1676 btrfs_header_level(info->tree_root->node)); 1677 1678 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1679 btrfs_set_backup_chunk_root_gen(root_backup, 1680 btrfs_header_generation(info->chunk_root->node)); 1681 btrfs_set_backup_chunk_root_level(root_backup, 1682 btrfs_header_level(info->chunk_root->node)); 1683 1684 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) { 1685 struct btrfs_root *extent_root = btrfs_extent_root(info, 0); 1686 struct btrfs_root *csum_root = btrfs_csum_root(info, 0); 1687 1688 btrfs_set_backup_extent_root(root_backup, 1689 extent_root->node->start); 1690 btrfs_set_backup_extent_root_gen(root_backup, 1691 btrfs_header_generation(extent_root->node)); 1692 btrfs_set_backup_extent_root_level(root_backup, 1693 btrfs_header_level(extent_root->node)); 1694 1695 btrfs_set_backup_csum_root(root_backup, csum_root->node->start); 1696 btrfs_set_backup_csum_root_gen(root_backup, 1697 btrfs_header_generation(csum_root->node)); 1698 btrfs_set_backup_csum_root_level(root_backup, 1699 btrfs_header_level(csum_root->node)); 1700 } 1701 1702 /* 1703 * we might commit during log recovery, which happens before we set 1704 * the fs_root. Make sure it is valid before we fill it in. 1705 */ 1706 if (info->fs_root && info->fs_root->node) { 1707 btrfs_set_backup_fs_root(root_backup, 1708 info->fs_root->node->start); 1709 btrfs_set_backup_fs_root_gen(root_backup, 1710 btrfs_header_generation(info->fs_root->node)); 1711 btrfs_set_backup_fs_root_level(root_backup, 1712 btrfs_header_level(info->fs_root->node)); 1713 } 1714 1715 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1716 btrfs_set_backup_dev_root_gen(root_backup, 1717 btrfs_header_generation(info->dev_root->node)); 1718 btrfs_set_backup_dev_root_level(root_backup, 1719 btrfs_header_level(info->dev_root->node)); 1720 1721 btrfs_set_backup_total_bytes(root_backup, 1722 btrfs_super_total_bytes(info->super_copy)); 1723 btrfs_set_backup_bytes_used(root_backup, 1724 btrfs_super_bytes_used(info->super_copy)); 1725 btrfs_set_backup_num_devices(root_backup, 1726 btrfs_super_num_devices(info->super_copy)); 1727 1728 /* 1729 * if we don't copy this out to the super_copy, it won't get remembered 1730 * for the next commit 1731 */ 1732 memcpy(&info->super_copy->super_roots, 1733 &info->super_for_commit->super_roots, 1734 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1735 } 1736 1737 /* 1738 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio 1739 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots 1740 * 1741 * @fs_info: filesystem whose backup roots need to be read 1742 * @priority: priority of backup root required 1743 * 1744 * Returns backup root index on success and -EINVAL otherwise. 1745 */ 1746 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority) 1747 { 1748 int backup_index = find_newest_super_backup(fs_info); 1749 struct btrfs_super_block *super = fs_info->super_copy; 1750 struct btrfs_root_backup *root_backup; 1751 1752 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) { 1753 if (priority == 0) 1754 return backup_index; 1755 1756 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority; 1757 backup_index %= BTRFS_NUM_BACKUP_ROOTS; 1758 } else { 1759 return -EINVAL; 1760 } 1761 1762 root_backup = super->super_roots + backup_index; 1763 1764 btrfs_set_super_generation(super, 1765 btrfs_backup_tree_root_gen(root_backup)); 1766 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1767 btrfs_set_super_root_level(super, 1768 btrfs_backup_tree_root_level(root_backup)); 1769 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1770 1771 /* 1772 * Fixme: the total bytes and num_devices need to match or we should 1773 * need a fsck 1774 */ 1775 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1776 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1777 1778 return backup_index; 1779 } 1780 1781 /* helper to cleanup workers */ 1782 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 1783 { 1784 btrfs_destroy_workqueue(fs_info->fixup_workers); 1785 btrfs_destroy_workqueue(fs_info->delalloc_workers); 1786 btrfs_destroy_workqueue(fs_info->workers); 1787 if (fs_info->endio_workers) 1788 destroy_workqueue(fs_info->endio_workers); 1789 if (fs_info->rmw_workers) 1790 destroy_workqueue(fs_info->rmw_workers); 1791 if (fs_info->compressed_write_workers) 1792 destroy_workqueue(fs_info->compressed_write_workers); 1793 btrfs_destroy_workqueue(fs_info->endio_write_workers); 1794 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 1795 btrfs_destroy_workqueue(fs_info->delayed_workers); 1796 btrfs_destroy_workqueue(fs_info->caching_workers); 1797 btrfs_destroy_workqueue(fs_info->flush_workers); 1798 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 1799 if (fs_info->discard_ctl.discard_workers) 1800 destroy_workqueue(fs_info->discard_ctl.discard_workers); 1801 /* 1802 * Now that all other work queues are destroyed, we can safely destroy 1803 * the queues used for metadata I/O, since tasks from those other work 1804 * queues can do metadata I/O operations. 1805 */ 1806 if (fs_info->endio_meta_workers) 1807 destroy_workqueue(fs_info->endio_meta_workers); 1808 } 1809 1810 static void free_root_extent_buffers(struct btrfs_root *root) 1811 { 1812 if (root) { 1813 free_extent_buffer(root->node); 1814 free_extent_buffer(root->commit_root); 1815 root->node = NULL; 1816 root->commit_root = NULL; 1817 } 1818 } 1819 1820 static void free_global_root_pointers(struct btrfs_fs_info *fs_info) 1821 { 1822 struct btrfs_root *root, *tmp; 1823 1824 rbtree_postorder_for_each_entry_safe(root, tmp, 1825 &fs_info->global_root_tree, 1826 rb_node) 1827 free_root_extent_buffers(root); 1828 } 1829 1830 /* helper to cleanup tree roots */ 1831 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root) 1832 { 1833 free_root_extent_buffers(info->tree_root); 1834 1835 free_global_root_pointers(info); 1836 free_root_extent_buffers(info->dev_root); 1837 free_root_extent_buffers(info->quota_root); 1838 free_root_extent_buffers(info->uuid_root); 1839 free_root_extent_buffers(info->fs_root); 1840 free_root_extent_buffers(info->data_reloc_root); 1841 free_root_extent_buffers(info->block_group_root); 1842 free_root_extent_buffers(info->stripe_root); 1843 if (free_chunk_root) 1844 free_root_extent_buffers(info->chunk_root); 1845 } 1846 1847 void btrfs_put_root(struct btrfs_root *root) 1848 { 1849 if (!root) 1850 return; 1851 1852 if (refcount_dec_and_test(&root->refs)) { 1853 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 1854 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)); 1855 if (root->anon_dev) 1856 free_anon_bdev(root->anon_dev); 1857 free_root_extent_buffers(root); 1858 #ifdef CONFIG_BTRFS_DEBUG 1859 spin_lock(&root->fs_info->fs_roots_radix_lock); 1860 list_del_init(&root->leak_list); 1861 spin_unlock(&root->fs_info->fs_roots_radix_lock); 1862 #endif 1863 kfree(root); 1864 } 1865 } 1866 1867 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 1868 { 1869 int ret; 1870 struct btrfs_root *gang[8]; 1871 int i; 1872 1873 while (!list_empty(&fs_info->dead_roots)) { 1874 gang[0] = list_entry(fs_info->dead_roots.next, 1875 struct btrfs_root, root_list); 1876 list_del(&gang[0]->root_list); 1877 1878 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) 1879 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 1880 btrfs_put_root(gang[0]); 1881 } 1882 1883 while (1) { 1884 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 1885 (void **)gang, 0, 1886 ARRAY_SIZE(gang)); 1887 if (!ret) 1888 break; 1889 for (i = 0; i < ret; i++) 1890 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 1891 } 1892 } 1893 1894 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 1895 { 1896 mutex_init(&fs_info->scrub_lock); 1897 atomic_set(&fs_info->scrubs_running, 0); 1898 atomic_set(&fs_info->scrub_pause_req, 0); 1899 atomic_set(&fs_info->scrubs_paused, 0); 1900 atomic_set(&fs_info->scrub_cancel_req, 0); 1901 init_waitqueue_head(&fs_info->scrub_pause_wait); 1902 refcount_set(&fs_info->scrub_workers_refcnt, 0); 1903 } 1904 1905 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 1906 { 1907 spin_lock_init(&fs_info->balance_lock); 1908 mutex_init(&fs_info->balance_mutex); 1909 atomic_set(&fs_info->balance_pause_req, 0); 1910 atomic_set(&fs_info->balance_cancel_req, 0); 1911 fs_info->balance_ctl = NULL; 1912 init_waitqueue_head(&fs_info->balance_wait_q); 1913 atomic_set(&fs_info->reloc_cancel_req, 0); 1914 } 1915 1916 static int btrfs_init_btree_inode(struct super_block *sb) 1917 { 1918 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1919 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID, 1920 fs_info->tree_root); 1921 struct inode *inode; 1922 1923 inode = new_inode(sb); 1924 if (!inode) 1925 return -ENOMEM; 1926 1927 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1928 set_nlink(inode, 1); 1929 /* 1930 * we set the i_size on the btree inode to the max possible int. 1931 * the real end of the address space is determined by all of 1932 * the devices in the system 1933 */ 1934 inode->i_size = OFFSET_MAX; 1935 inode->i_mapping->a_ops = &btree_aops; 1936 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS); 1937 1938 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 1939 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree, 1940 IO_TREE_BTREE_INODE_IO); 1941 extent_map_tree_init(&BTRFS_I(inode)->extent_tree); 1942 1943 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root); 1944 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID; 1945 BTRFS_I(inode)->location.type = 0; 1946 BTRFS_I(inode)->location.offset = 0; 1947 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 1948 __insert_inode_hash(inode, hash); 1949 fs_info->btree_inode = inode; 1950 1951 return 0; 1952 } 1953 1954 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 1955 { 1956 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 1957 init_rwsem(&fs_info->dev_replace.rwsem); 1958 init_waitqueue_head(&fs_info->dev_replace.replace_wait); 1959 } 1960 1961 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 1962 { 1963 spin_lock_init(&fs_info->qgroup_lock); 1964 mutex_init(&fs_info->qgroup_ioctl_lock); 1965 fs_info->qgroup_tree = RB_ROOT; 1966 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 1967 fs_info->qgroup_seq = 1; 1968 fs_info->qgroup_ulist = NULL; 1969 fs_info->qgroup_rescan_running = false; 1970 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL; 1971 mutex_init(&fs_info->qgroup_rescan_lock); 1972 } 1973 1974 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info) 1975 { 1976 u32 max_active = fs_info->thread_pool_size; 1977 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 1978 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE; 1979 1980 fs_info->workers = 1981 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16); 1982 1983 fs_info->delalloc_workers = 1984 btrfs_alloc_workqueue(fs_info, "delalloc", 1985 flags, max_active, 2); 1986 1987 fs_info->flush_workers = 1988 btrfs_alloc_workqueue(fs_info, "flush_delalloc", 1989 flags, max_active, 0); 1990 1991 fs_info->caching_workers = 1992 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); 1993 1994 fs_info->fixup_workers = 1995 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags); 1996 1997 fs_info->endio_workers = 1998 alloc_workqueue("btrfs-endio", flags, max_active); 1999 fs_info->endio_meta_workers = 2000 alloc_workqueue("btrfs-endio-meta", flags, max_active); 2001 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active); 2002 fs_info->endio_write_workers = 2003 btrfs_alloc_workqueue(fs_info, "endio-write", flags, 2004 max_active, 2); 2005 fs_info->compressed_write_workers = 2006 alloc_workqueue("btrfs-compressed-write", flags, max_active); 2007 fs_info->endio_freespace_worker = 2008 btrfs_alloc_workqueue(fs_info, "freespace-write", flags, 2009 max_active, 0); 2010 fs_info->delayed_workers = 2011 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, 2012 max_active, 0); 2013 fs_info->qgroup_rescan_workers = 2014 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan", 2015 ordered_flags); 2016 fs_info->discard_ctl.discard_workers = 2017 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE); 2018 2019 if (!(fs_info->workers && 2020 fs_info->delalloc_workers && fs_info->flush_workers && 2021 fs_info->endio_workers && fs_info->endio_meta_workers && 2022 fs_info->compressed_write_workers && 2023 fs_info->endio_write_workers && 2024 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2025 fs_info->caching_workers && fs_info->fixup_workers && 2026 fs_info->delayed_workers && fs_info->qgroup_rescan_workers && 2027 fs_info->discard_ctl.discard_workers)) { 2028 return -ENOMEM; 2029 } 2030 2031 return 0; 2032 } 2033 2034 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type) 2035 { 2036 struct crypto_shash *csum_shash; 2037 const char *csum_driver = btrfs_super_csum_driver(csum_type); 2038 2039 csum_shash = crypto_alloc_shash(csum_driver, 0, 0); 2040 2041 if (IS_ERR(csum_shash)) { 2042 btrfs_err(fs_info, "error allocating %s hash for checksum", 2043 csum_driver); 2044 return PTR_ERR(csum_shash); 2045 } 2046 2047 fs_info->csum_shash = csum_shash; 2048 2049 /* 2050 * Check if the checksum implementation is a fast accelerated one. 2051 * As-is this is a bit of a hack and should be replaced once the csum 2052 * implementations provide that information themselves. 2053 */ 2054 switch (csum_type) { 2055 case BTRFS_CSUM_TYPE_CRC32: 2056 if (!strstr(crypto_shash_driver_name(csum_shash), "generic")) 2057 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2058 break; 2059 case BTRFS_CSUM_TYPE_XXHASH: 2060 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 2061 break; 2062 default: 2063 break; 2064 } 2065 2066 btrfs_info(fs_info, "using %s (%s) checksum algorithm", 2067 btrfs_super_csum_name(csum_type), 2068 crypto_shash_driver_name(csum_shash)); 2069 return 0; 2070 } 2071 2072 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2073 struct btrfs_fs_devices *fs_devices) 2074 { 2075 int ret; 2076 struct btrfs_tree_parent_check check = { 0 }; 2077 struct btrfs_root *log_tree_root; 2078 struct btrfs_super_block *disk_super = fs_info->super_copy; 2079 u64 bytenr = btrfs_super_log_root(disk_super); 2080 int level = btrfs_super_log_root_level(disk_super); 2081 2082 if (fs_devices->rw_devices == 0) { 2083 btrfs_warn(fs_info, "log replay required on RO media"); 2084 return -EIO; 2085 } 2086 2087 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, 2088 GFP_KERNEL); 2089 if (!log_tree_root) 2090 return -ENOMEM; 2091 2092 check.level = level; 2093 check.transid = fs_info->generation + 1; 2094 check.owner_root = BTRFS_TREE_LOG_OBJECTID; 2095 log_tree_root->node = read_tree_block(fs_info, bytenr, &check); 2096 if (IS_ERR(log_tree_root->node)) { 2097 btrfs_warn(fs_info, "failed to read log tree"); 2098 ret = PTR_ERR(log_tree_root->node); 2099 log_tree_root->node = NULL; 2100 btrfs_put_root(log_tree_root); 2101 return ret; 2102 } 2103 if (!extent_buffer_uptodate(log_tree_root->node)) { 2104 btrfs_err(fs_info, "failed to read log tree"); 2105 btrfs_put_root(log_tree_root); 2106 return -EIO; 2107 } 2108 2109 /* returns with log_tree_root freed on success */ 2110 ret = btrfs_recover_log_trees(log_tree_root); 2111 if (ret) { 2112 btrfs_handle_fs_error(fs_info, ret, 2113 "Failed to recover log tree"); 2114 btrfs_put_root(log_tree_root); 2115 return ret; 2116 } 2117 2118 if (sb_rdonly(fs_info->sb)) { 2119 ret = btrfs_commit_super(fs_info); 2120 if (ret) 2121 return ret; 2122 } 2123 2124 return 0; 2125 } 2126 2127 static int load_global_roots_objectid(struct btrfs_root *tree_root, 2128 struct btrfs_path *path, u64 objectid, 2129 const char *name) 2130 { 2131 struct btrfs_fs_info *fs_info = tree_root->fs_info; 2132 struct btrfs_root *root; 2133 u64 max_global_id = 0; 2134 int ret; 2135 struct btrfs_key key = { 2136 .objectid = objectid, 2137 .type = BTRFS_ROOT_ITEM_KEY, 2138 .offset = 0, 2139 }; 2140 bool found = false; 2141 2142 /* If we have IGNOREDATACSUMS skip loading these roots. */ 2143 if (objectid == BTRFS_CSUM_TREE_OBJECTID && 2144 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) { 2145 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2146 return 0; 2147 } 2148 2149 while (1) { 2150 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0); 2151 if (ret < 0) 2152 break; 2153 2154 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2155 ret = btrfs_next_leaf(tree_root, path); 2156 if (ret) { 2157 if (ret > 0) 2158 ret = 0; 2159 break; 2160 } 2161 } 2162 ret = 0; 2163 2164 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2165 if (key.objectid != objectid) 2166 break; 2167 btrfs_release_path(path); 2168 2169 /* 2170 * Just worry about this for extent tree, it'll be the same for 2171 * everybody. 2172 */ 2173 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2174 max_global_id = max(max_global_id, key.offset); 2175 2176 found = true; 2177 root = read_tree_root_path(tree_root, path, &key); 2178 if (IS_ERR(root)) { 2179 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2180 ret = PTR_ERR(root); 2181 break; 2182 } 2183 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2184 ret = btrfs_global_root_insert(root); 2185 if (ret) { 2186 btrfs_put_root(root); 2187 break; 2188 } 2189 key.offset++; 2190 } 2191 btrfs_release_path(path); 2192 2193 if (objectid == BTRFS_EXTENT_TREE_OBJECTID) 2194 fs_info->nr_global_roots = max_global_id + 1; 2195 2196 if (!found || ret) { 2197 if (objectid == BTRFS_CSUM_TREE_OBJECTID) 2198 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2199 2200 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) 2201 ret = ret ? ret : -ENOENT; 2202 else 2203 ret = 0; 2204 btrfs_err(fs_info, "failed to load root %s", name); 2205 } 2206 return ret; 2207 } 2208 2209 static int load_global_roots(struct btrfs_root *tree_root) 2210 { 2211 struct btrfs_path *path; 2212 int ret = 0; 2213 2214 path = btrfs_alloc_path(); 2215 if (!path) 2216 return -ENOMEM; 2217 2218 ret = load_global_roots_objectid(tree_root, path, 2219 BTRFS_EXTENT_TREE_OBJECTID, "extent"); 2220 if (ret) 2221 goto out; 2222 ret = load_global_roots_objectid(tree_root, path, 2223 BTRFS_CSUM_TREE_OBJECTID, "csum"); 2224 if (ret) 2225 goto out; 2226 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE)) 2227 goto out; 2228 ret = load_global_roots_objectid(tree_root, path, 2229 BTRFS_FREE_SPACE_TREE_OBJECTID, 2230 "free space"); 2231 out: 2232 btrfs_free_path(path); 2233 return ret; 2234 } 2235 2236 static int btrfs_read_roots(struct btrfs_fs_info *fs_info) 2237 { 2238 struct btrfs_root *tree_root = fs_info->tree_root; 2239 struct btrfs_root *root; 2240 struct btrfs_key location; 2241 int ret; 2242 2243 ASSERT(fs_info->tree_root); 2244 2245 ret = load_global_roots(tree_root); 2246 if (ret) 2247 return ret; 2248 2249 location.type = BTRFS_ROOT_ITEM_KEY; 2250 location.offset = 0; 2251 2252 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) { 2253 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID; 2254 root = btrfs_read_tree_root(tree_root, &location); 2255 if (IS_ERR(root)) { 2256 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2257 ret = PTR_ERR(root); 2258 goto out; 2259 } 2260 } else { 2261 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2262 fs_info->block_group_root = root; 2263 } 2264 } 2265 2266 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2267 root = btrfs_read_tree_root(tree_root, &location); 2268 if (IS_ERR(root)) { 2269 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2270 ret = PTR_ERR(root); 2271 goto out; 2272 } 2273 } else { 2274 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2275 fs_info->dev_root = root; 2276 } 2277 /* Initialize fs_info for all devices in any case */ 2278 ret = btrfs_init_devices_late(fs_info); 2279 if (ret) 2280 goto out; 2281 2282 /* 2283 * This tree can share blocks with some other fs tree during relocation 2284 * and we need a proper setup by btrfs_get_fs_root 2285 */ 2286 root = btrfs_get_fs_root(tree_root->fs_info, 2287 BTRFS_DATA_RELOC_TREE_OBJECTID, true); 2288 if (IS_ERR(root)) { 2289 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2290 ret = PTR_ERR(root); 2291 goto out; 2292 } 2293 } else { 2294 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2295 fs_info->data_reloc_root = root; 2296 } 2297 2298 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2299 root = btrfs_read_tree_root(tree_root, &location); 2300 if (!IS_ERR(root)) { 2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2302 fs_info->quota_root = root; 2303 } 2304 2305 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2306 root = btrfs_read_tree_root(tree_root, &location); 2307 if (IS_ERR(root)) { 2308 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2309 ret = PTR_ERR(root); 2310 if (ret != -ENOENT) 2311 goto out; 2312 } 2313 } else { 2314 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2315 fs_info->uuid_root = root; 2316 } 2317 2318 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) { 2319 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID; 2320 root = btrfs_read_tree_root(tree_root, &location); 2321 if (IS_ERR(root)) { 2322 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) { 2323 ret = PTR_ERR(root); 2324 goto out; 2325 } 2326 } else { 2327 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2328 fs_info->stripe_root = root; 2329 } 2330 } 2331 2332 return 0; 2333 out: 2334 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d", 2335 location.objectid, ret); 2336 return ret; 2337 } 2338 2339 /* 2340 * Real super block validation 2341 * NOTE: super csum type and incompat features will not be checked here. 2342 * 2343 * @sb: super block to check 2344 * @mirror_num: the super block number to check its bytenr: 2345 * 0 the primary (1st) sb 2346 * 1, 2 2nd and 3rd backup copy 2347 * -1 skip bytenr check 2348 */ 2349 int btrfs_validate_super(struct btrfs_fs_info *fs_info, 2350 struct btrfs_super_block *sb, int mirror_num) 2351 { 2352 u64 nodesize = btrfs_super_nodesize(sb); 2353 u64 sectorsize = btrfs_super_sectorsize(sb); 2354 int ret = 0; 2355 2356 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 2357 btrfs_err(fs_info, "no valid FS found"); 2358 ret = -EINVAL; 2359 } 2360 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) { 2361 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu", 2362 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 2363 ret = -EINVAL; 2364 } 2365 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 2366 btrfs_err(fs_info, "tree_root level too big: %d >= %d", 2367 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 2368 ret = -EINVAL; 2369 } 2370 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 2371 btrfs_err(fs_info, "chunk_root level too big: %d >= %d", 2372 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 2373 ret = -EINVAL; 2374 } 2375 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 2376 btrfs_err(fs_info, "log_root level too big: %d >= %d", 2377 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 2378 ret = -EINVAL; 2379 } 2380 2381 /* 2382 * Check sectorsize and nodesize first, other check will need it. 2383 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 2384 */ 2385 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 2386 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2387 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize); 2388 ret = -EINVAL; 2389 } 2390 2391 /* 2392 * We only support at most two sectorsizes: 4K and PAGE_SIZE. 2393 * 2394 * We can support 16K sectorsize with 64K page size without problem, 2395 * but such sectorsize/pagesize combination doesn't make much sense. 2396 * 4K will be our future standard, PAGE_SIZE is supported from the very 2397 * beginning. 2398 */ 2399 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) { 2400 btrfs_err(fs_info, 2401 "sectorsize %llu not yet supported for page size %lu", 2402 sectorsize, PAGE_SIZE); 2403 ret = -EINVAL; 2404 } 2405 2406 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 2407 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 2408 btrfs_err(fs_info, "invalid nodesize %llu", nodesize); 2409 ret = -EINVAL; 2410 } 2411 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 2412 btrfs_err(fs_info, "invalid leafsize %u, should be %llu", 2413 le32_to_cpu(sb->__unused_leafsize), nodesize); 2414 ret = -EINVAL; 2415 } 2416 2417 /* Root alignment check */ 2418 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 2419 btrfs_warn(fs_info, "tree_root block unaligned: %llu", 2420 btrfs_super_root(sb)); 2421 ret = -EINVAL; 2422 } 2423 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 2424 btrfs_warn(fs_info, "chunk_root block unaligned: %llu", 2425 btrfs_super_chunk_root(sb)); 2426 ret = -EINVAL; 2427 } 2428 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 2429 btrfs_warn(fs_info, "log_root block unaligned: %llu", 2430 btrfs_super_log_root(sb)); 2431 ret = -EINVAL; 2432 } 2433 2434 if (!fs_info->fs_devices->temp_fsid && 2435 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) { 2436 btrfs_err(fs_info, 2437 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU", 2438 sb->fsid, fs_info->fs_devices->fsid); 2439 ret = -EINVAL; 2440 } 2441 2442 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb), 2443 BTRFS_FSID_SIZE) != 0) { 2444 btrfs_err(fs_info, 2445 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU", 2446 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid); 2447 ret = -EINVAL; 2448 } 2449 2450 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid, 2451 BTRFS_FSID_SIZE) != 0) { 2452 btrfs_err(fs_info, 2453 "dev_item UUID does not match metadata fsid: %pU != %pU", 2454 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid); 2455 ret = -EINVAL; 2456 } 2457 2458 /* 2459 * Artificial requirement for block-group-tree to force newer features 2460 * (free-space-tree, no-holes) so the test matrix is smaller. 2461 */ 2462 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 2463 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) || 2464 !btrfs_fs_incompat(fs_info, NO_HOLES))) { 2465 btrfs_err(fs_info, 2466 "block-group-tree feature requires fres-space-tree and no-holes"); 2467 ret = -EINVAL; 2468 } 2469 2470 /* 2471 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 2472 * done later 2473 */ 2474 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 2475 btrfs_err(fs_info, "bytes_used is too small %llu", 2476 btrfs_super_bytes_used(sb)); 2477 ret = -EINVAL; 2478 } 2479 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 2480 btrfs_err(fs_info, "invalid stripesize %u", 2481 btrfs_super_stripesize(sb)); 2482 ret = -EINVAL; 2483 } 2484 if (btrfs_super_num_devices(sb) > (1UL << 31)) 2485 btrfs_warn(fs_info, "suspicious number of devices: %llu", 2486 btrfs_super_num_devices(sb)); 2487 if (btrfs_super_num_devices(sb) == 0) { 2488 btrfs_err(fs_info, "number of devices is 0"); 2489 ret = -EINVAL; 2490 } 2491 2492 if (mirror_num >= 0 && 2493 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) { 2494 btrfs_err(fs_info, "super offset mismatch %llu != %u", 2495 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 2496 ret = -EINVAL; 2497 } 2498 2499 /* 2500 * Obvious sys_chunk_array corruptions, it must hold at least one key 2501 * and one chunk 2502 */ 2503 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 2504 btrfs_err(fs_info, "system chunk array too big %u > %u", 2505 btrfs_super_sys_array_size(sb), 2506 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 2507 ret = -EINVAL; 2508 } 2509 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 2510 + sizeof(struct btrfs_chunk)) { 2511 btrfs_err(fs_info, "system chunk array too small %u < %zu", 2512 btrfs_super_sys_array_size(sb), 2513 sizeof(struct btrfs_disk_key) 2514 + sizeof(struct btrfs_chunk)); 2515 ret = -EINVAL; 2516 } 2517 2518 /* 2519 * The generation is a global counter, we'll trust it more than the others 2520 * but it's still possible that it's the one that's wrong. 2521 */ 2522 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 2523 btrfs_warn(fs_info, 2524 "suspicious: generation < chunk_root_generation: %llu < %llu", 2525 btrfs_super_generation(sb), 2526 btrfs_super_chunk_root_generation(sb)); 2527 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 2528 && btrfs_super_cache_generation(sb) != (u64)-1) 2529 btrfs_warn(fs_info, 2530 "suspicious: generation < cache_generation: %llu < %llu", 2531 btrfs_super_generation(sb), 2532 btrfs_super_cache_generation(sb)); 2533 2534 return ret; 2535 } 2536 2537 /* 2538 * Validation of super block at mount time. 2539 * Some checks already done early at mount time, like csum type and incompat 2540 * flags will be skipped. 2541 */ 2542 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info) 2543 { 2544 return btrfs_validate_super(fs_info, fs_info->super_copy, 0); 2545 } 2546 2547 /* 2548 * Validation of super block at write time. 2549 * Some checks like bytenr check will be skipped as their values will be 2550 * overwritten soon. 2551 * Extra checks like csum type and incompat flags will be done here. 2552 */ 2553 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info, 2554 struct btrfs_super_block *sb) 2555 { 2556 int ret; 2557 2558 ret = btrfs_validate_super(fs_info, sb, -1); 2559 if (ret < 0) 2560 goto out; 2561 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) { 2562 ret = -EUCLEAN; 2563 btrfs_err(fs_info, "invalid csum type, has %u want %u", 2564 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32); 2565 goto out; 2566 } 2567 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 2568 ret = -EUCLEAN; 2569 btrfs_err(fs_info, 2570 "invalid incompat flags, has 0x%llx valid mask 0x%llx", 2571 btrfs_super_incompat_flags(sb), 2572 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP); 2573 goto out; 2574 } 2575 out: 2576 if (ret < 0) 2577 btrfs_err(fs_info, 2578 "super block corruption detected before writing it to disk"); 2579 return ret; 2580 } 2581 2582 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level) 2583 { 2584 struct btrfs_tree_parent_check check = { 2585 .level = level, 2586 .transid = gen, 2587 .owner_root = root->root_key.objectid 2588 }; 2589 int ret = 0; 2590 2591 root->node = read_tree_block(root->fs_info, bytenr, &check); 2592 if (IS_ERR(root->node)) { 2593 ret = PTR_ERR(root->node); 2594 root->node = NULL; 2595 return ret; 2596 } 2597 if (!extent_buffer_uptodate(root->node)) { 2598 free_extent_buffer(root->node); 2599 root->node = NULL; 2600 return -EIO; 2601 } 2602 2603 btrfs_set_root_node(&root->root_item, root->node); 2604 root->commit_root = btrfs_root_node(root); 2605 btrfs_set_root_refs(&root->root_item, 1); 2606 return ret; 2607 } 2608 2609 static int load_important_roots(struct btrfs_fs_info *fs_info) 2610 { 2611 struct btrfs_super_block *sb = fs_info->super_copy; 2612 u64 gen, bytenr; 2613 int level, ret; 2614 2615 bytenr = btrfs_super_root(sb); 2616 gen = btrfs_super_generation(sb); 2617 level = btrfs_super_root_level(sb); 2618 ret = load_super_root(fs_info->tree_root, bytenr, gen, level); 2619 if (ret) { 2620 btrfs_warn(fs_info, "couldn't read tree root"); 2621 return ret; 2622 } 2623 return 0; 2624 } 2625 2626 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info) 2627 { 2628 int backup_index = find_newest_super_backup(fs_info); 2629 struct btrfs_super_block *sb = fs_info->super_copy; 2630 struct btrfs_root *tree_root = fs_info->tree_root; 2631 bool handle_error = false; 2632 int ret = 0; 2633 int i; 2634 2635 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 2636 if (handle_error) { 2637 if (!IS_ERR(tree_root->node)) 2638 free_extent_buffer(tree_root->node); 2639 tree_root->node = NULL; 2640 2641 if (!btrfs_test_opt(fs_info, USEBACKUPROOT)) 2642 break; 2643 2644 free_root_pointers(fs_info, 0); 2645 2646 /* 2647 * Don't use the log in recovery mode, it won't be 2648 * valid 2649 */ 2650 btrfs_set_super_log_root(sb, 0); 2651 2652 btrfs_warn(fs_info, "try to load backup roots slot %d", i); 2653 ret = read_backup_root(fs_info, i); 2654 backup_index = ret; 2655 if (ret < 0) 2656 return ret; 2657 } 2658 2659 ret = load_important_roots(fs_info); 2660 if (ret) { 2661 handle_error = true; 2662 continue; 2663 } 2664 2665 /* 2666 * No need to hold btrfs_root::objectid_mutex since the fs 2667 * hasn't been fully initialised and we are the only user 2668 */ 2669 ret = btrfs_init_root_free_objectid(tree_root); 2670 if (ret < 0) { 2671 handle_error = true; 2672 continue; 2673 } 2674 2675 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID); 2676 2677 ret = btrfs_read_roots(fs_info); 2678 if (ret < 0) { 2679 handle_error = true; 2680 continue; 2681 } 2682 2683 /* All successful */ 2684 fs_info->generation = btrfs_header_generation(tree_root->node); 2685 btrfs_set_last_trans_committed(fs_info, fs_info->generation); 2686 fs_info->last_reloc_trans = 0; 2687 2688 /* Always begin writing backup roots after the one being used */ 2689 if (backup_index < 0) { 2690 fs_info->backup_root_index = 0; 2691 } else { 2692 fs_info->backup_root_index = backup_index + 1; 2693 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS; 2694 } 2695 break; 2696 } 2697 2698 return ret; 2699 } 2700 2701 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info) 2702 { 2703 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2704 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2705 INIT_LIST_HEAD(&fs_info->trans_list); 2706 INIT_LIST_HEAD(&fs_info->dead_roots); 2707 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2708 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2709 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2710 spin_lock_init(&fs_info->delalloc_root_lock); 2711 spin_lock_init(&fs_info->trans_lock); 2712 spin_lock_init(&fs_info->fs_roots_radix_lock); 2713 spin_lock_init(&fs_info->delayed_iput_lock); 2714 spin_lock_init(&fs_info->defrag_inodes_lock); 2715 spin_lock_init(&fs_info->super_lock); 2716 spin_lock_init(&fs_info->buffer_lock); 2717 spin_lock_init(&fs_info->unused_bgs_lock); 2718 spin_lock_init(&fs_info->treelog_bg_lock); 2719 spin_lock_init(&fs_info->zone_active_bgs_lock); 2720 spin_lock_init(&fs_info->relocation_bg_lock); 2721 rwlock_init(&fs_info->tree_mod_log_lock); 2722 rwlock_init(&fs_info->global_root_lock); 2723 mutex_init(&fs_info->unused_bg_unpin_mutex); 2724 mutex_init(&fs_info->reclaim_bgs_lock); 2725 mutex_init(&fs_info->reloc_mutex); 2726 mutex_init(&fs_info->delalloc_root_mutex); 2727 mutex_init(&fs_info->zoned_meta_io_lock); 2728 mutex_init(&fs_info->zoned_data_reloc_io_lock); 2729 seqlock_init(&fs_info->profiles_lock); 2730 2731 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers); 2732 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters); 2733 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered); 2734 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent); 2735 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep, 2736 BTRFS_LOCKDEP_TRANS_COMMIT_PREP); 2737 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked, 2738 BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2739 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed, 2740 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2741 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed, 2742 BTRFS_LOCKDEP_TRANS_COMPLETED); 2743 2744 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2745 INIT_LIST_HEAD(&fs_info->space_info); 2746 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2747 INIT_LIST_HEAD(&fs_info->unused_bgs); 2748 INIT_LIST_HEAD(&fs_info->reclaim_bgs); 2749 INIT_LIST_HEAD(&fs_info->zone_active_bgs); 2750 #ifdef CONFIG_BTRFS_DEBUG 2751 INIT_LIST_HEAD(&fs_info->allocated_roots); 2752 INIT_LIST_HEAD(&fs_info->allocated_ebs); 2753 spin_lock_init(&fs_info->eb_leak_lock); 2754 #endif 2755 fs_info->mapping_tree = RB_ROOT_CACHED; 2756 rwlock_init(&fs_info->mapping_tree_lock); 2757 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2758 BTRFS_BLOCK_RSV_GLOBAL); 2759 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2760 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2761 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2762 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2763 BTRFS_BLOCK_RSV_DELOPS); 2764 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv, 2765 BTRFS_BLOCK_RSV_DELREFS); 2766 2767 atomic_set(&fs_info->async_delalloc_pages, 0); 2768 atomic_set(&fs_info->defrag_running, 0); 2769 atomic_set(&fs_info->nr_delayed_iputs, 0); 2770 atomic64_set(&fs_info->tree_mod_seq, 0); 2771 fs_info->global_root_tree = RB_ROOT; 2772 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2773 fs_info->metadata_ratio = 0; 2774 fs_info->defrag_inodes = RB_ROOT; 2775 atomic64_set(&fs_info->free_chunk_space, 0); 2776 fs_info->tree_mod_log = RB_ROOT; 2777 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2778 btrfs_init_ref_verify(fs_info); 2779 2780 fs_info->thread_pool_size = min_t(unsigned long, 2781 num_online_cpus() + 2, 8); 2782 2783 INIT_LIST_HEAD(&fs_info->ordered_roots); 2784 spin_lock_init(&fs_info->ordered_root_lock); 2785 2786 btrfs_init_scrub(fs_info); 2787 btrfs_init_balance(fs_info); 2788 btrfs_init_async_reclaim_work(fs_info); 2789 2790 rwlock_init(&fs_info->block_group_cache_lock); 2791 fs_info->block_group_cache_tree = RB_ROOT_CACHED; 2792 2793 extent_io_tree_init(fs_info, &fs_info->excluded_extents, 2794 IO_TREE_FS_EXCLUDED_EXTENTS); 2795 2796 mutex_init(&fs_info->ordered_operations_mutex); 2797 mutex_init(&fs_info->tree_log_mutex); 2798 mutex_init(&fs_info->chunk_mutex); 2799 mutex_init(&fs_info->transaction_kthread_mutex); 2800 mutex_init(&fs_info->cleaner_mutex); 2801 mutex_init(&fs_info->ro_block_group_mutex); 2802 init_rwsem(&fs_info->commit_root_sem); 2803 init_rwsem(&fs_info->cleanup_work_sem); 2804 init_rwsem(&fs_info->subvol_sem); 2805 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2806 2807 btrfs_init_dev_replace_locks(fs_info); 2808 btrfs_init_qgroup(fs_info); 2809 btrfs_discard_init(fs_info); 2810 2811 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2812 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2813 2814 init_waitqueue_head(&fs_info->transaction_throttle); 2815 init_waitqueue_head(&fs_info->transaction_wait); 2816 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2817 init_waitqueue_head(&fs_info->async_submit_wait); 2818 init_waitqueue_head(&fs_info->delayed_iputs_wait); 2819 2820 /* Usable values until the real ones are cached from the superblock */ 2821 fs_info->nodesize = 4096; 2822 fs_info->sectorsize = 4096; 2823 fs_info->sectorsize_bits = ilog2(4096); 2824 fs_info->stripesize = 4096; 2825 2826 /* Default compress algorithm when user does -o compress */ 2827 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2828 2829 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE; 2830 2831 spin_lock_init(&fs_info->swapfile_pins_lock); 2832 fs_info->swapfile_pins = RB_ROOT; 2833 2834 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH; 2835 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work); 2836 } 2837 2838 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb) 2839 { 2840 int ret; 2841 2842 fs_info->sb = sb; 2843 /* Temporary fixed values for block size until we read the superblock. */ 2844 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; 2845 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); 2846 2847 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL); 2848 if (ret) 2849 return ret; 2850 2851 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2852 if (ret) 2853 return ret; 2854 2855 fs_info->dirty_metadata_batch = PAGE_SIZE * 2856 (1 + ilog2(nr_cpu_ids)); 2857 2858 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2859 if (ret) 2860 return ret; 2861 2862 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0, 2863 GFP_KERNEL); 2864 if (ret) 2865 return ret; 2866 2867 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2868 GFP_KERNEL); 2869 if (!fs_info->delayed_root) 2870 return -ENOMEM; 2871 btrfs_init_delayed_root(fs_info->delayed_root); 2872 2873 if (sb_rdonly(sb)) 2874 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 2875 2876 return btrfs_alloc_stripe_hash_table(fs_info); 2877 } 2878 2879 static int btrfs_uuid_rescan_kthread(void *data) 2880 { 2881 struct btrfs_fs_info *fs_info = data; 2882 int ret; 2883 2884 /* 2885 * 1st step is to iterate through the existing UUID tree and 2886 * to delete all entries that contain outdated data. 2887 * 2nd step is to add all missing entries to the UUID tree. 2888 */ 2889 ret = btrfs_uuid_tree_iterate(fs_info); 2890 if (ret < 0) { 2891 if (ret != -EINTR) 2892 btrfs_warn(fs_info, "iterating uuid_tree failed %d", 2893 ret); 2894 up(&fs_info->uuid_tree_rescan_sem); 2895 return ret; 2896 } 2897 return btrfs_uuid_scan_kthread(data); 2898 } 2899 2900 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 2901 { 2902 struct task_struct *task; 2903 2904 down(&fs_info->uuid_tree_rescan_sem); 2905 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 2906 if (IS_ERR(task)) { 2907 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 2908 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 2909 up(&fs_info->uuid_tree_rescan_sem); 2910 return PTR_ERR(task); 2911 } 2912 2913 return 0; 2914 } 2915 2916 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2917 { 2918 u64 root_objectid = 0; 2919 struct btrfs_root *gang[8]; 2920 int i = 0; 2921 int err = 0; 2922 unsigned int ret = 0; 2923 2924 while (1) { 2925 spin_lock(&fs_info->fs_roots_radix_lock); 2926 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2927 (void **)gang, root_objectid, 2928 ARRAY_SIZE(gang)); 2929 if (!ret) { 2930 spin_unlock(&fs_info->fs_roots_radix_lock); 2931 break; 2932 } 2933 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2934 2935 for (i = 0; i < ret; i++) { 2936 /* Avoid to grab roots in dead_roots. */ 2937 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 2938 gang[i] = NULL; 2939 continue; 2940 } 2941 /* Grab all the search result for later use. */ 2942 gang[i] = btrfs_grab_root(gang[i]); 2943 } 2944 spin_unlock(&fs_info->fs_roots_radix_lock); 2945 2946 for (i = 0; i < ret; i++) { 2947 if (!gang[i]) 2948 continue; 2949 root_objectid = gang[i]->root_key.objectid; 2950 err = btrfs_orphan_cleanup(gang[i]); 2951 if (err) 2952 goto out; 2953 btrfs_put_root(gang[i]); 2954 } 2955 root_objectid++; 2956 } 2957 out: 2958 /* Release the uncleaned roots due to error. */ 2959 for (; i < ret; i++) { 2960 if (gang[i]) 2961 btrfs_put_root(gang[i]); 2962 } 2963 return err; 2964 } 2965 2966 /* 2967 * Mounting logic specific to read-write file systems. Shared by open_ctree 2968 * and btrfs_remount when remounting from read-only to read-write. 2969 */ 2970 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info) 2971 { 2972 int ret; 2973 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 2974 bool rebuild_free_space_tree = false; 2975 2976 if (btrfs_test_opt(fs_info, CLEAR_CACHE) && 2977 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2978 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) 2979 btrfs_warn(fs_info, 2980 "'clear_cache' option is ignored with extent tree v2"); 2981 else 2982 rebuild_free_space_tree = true; 2983 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 2984 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) { 2985 btrfs_warn(fs_info, "free space tree is invalid"); 2986 rebuild_free_space_tree = true; 2987 } 2988 2989 if (rebuild_free_space_tree) { 2990 btrfs_info(fs_info, "rebuilding free space tree"); 2991 ret = btrfs_rebuild_free_space_tree(fs_info); 2992 if (ret) { 2993 btrfs_warn(fs_info, 2994 "failed to rebuild free space tree: %d", ret); 2995 goto out; 2996 } 2997 } 2998 2999 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 3000 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) { 3001 btrfs_info(fs_info, "disabling free space tree"); 3002 ret = btrfs_delete_free_space_tree(fs_info); 3003 if (ret) { 3004 btrfs_warn(fs_info, 3005 "failed to disable free space tree: %d", ret); 3006 goto out; 3007 } 3008 } 3009 3010 /* 3011 * btrfs_find_orphan_roots() is responsible for finding all the dead 3012 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load 3013 * them into the fs_info->fs_roots_radix tree. This must be done before 3014 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it 3015 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan 3016 * item before the root's tree is deleted - this means that if we unmount 3017 * or crash before the deletion completes, on the next mount we will not 3018 * delete what remains of the tree because the orphan item does not 3019 * exists anymore, which is what tells us we have a pending deletion. 3020 */ 3021 ret = btrfs_find_orphan_roots(fs_info); 3022 if (ret) 3023 goto out; 3024 3025 ret = btrfs_cleanup_fs_roots(fs_info); 3026 if (ret) 3027 goto out; 3028 3029 down_read(&fs_info->cleanup_work_sem); 3030 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3031 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3032 up_read(&fs_info->cleanup_work_sem); 3033 goto out; 3034 } 3035 up_read(&fs_info->cleanup_work_sem); 3036 3037 mutex_lock(&fs_info->cleaner_mutex); 3038 ret = btrfs_recover_relocation(fs_info); 3039 mutex_unlock(&fs_info->cleaner_mutex); 3040 if (ret < 0) { 3041 btrfs_warn(fs_info, "failed to recover relocation: %d", ret); 3042 goto out; 3043 } 3044 3045 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) && 3046 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3047 btrfs_info(fs_info, "creating free space tree"); 3048 ret = btrfs_create_free_space_tree(fs_info); 3049 if (ret) { 3050 btrfs_warn(fs_info, 3051 "failed to create free space tree: %d", ret); 3052 goto out; 3053 } 3054 } 3055 3056 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) { 3057 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 3058 if (ret) 3059 goto out; 3060 } 3061 3062 ret = btrfs_resume_balance_async(fs_info); 3063 if (ret) 3064 goto out; 3065 3066 ret = btrfs_resume_dev_replace_async(fs_info); 3067 if (ret) { 3068 btrfs_warn(fs_info, "failed to resume dev_replace"); 3069 goto out; 3070 } 3071 3072 btrfs_qgroup_rescan_resume(fs_info); 3073 3074 if (!fs_info->uuid_root) { 3075 btrfs_info(fs_info, "creating UUID tree"); 3076 ret = btrfs_create_uuid_tree(fs_info); 3077 if (ret) { 3078 btrfs_warn(fs_info, 3079 "failed to create the UUID tree %d", ret); 3080 goto out; 3081 } 3082 } 3083 3084 out: 3085 return ret; 3086 } 3087 3088 /* 3089 * Do various sanity and dependency checks of different features. 3090 * 3091 * @is_rw_mount: If the mount is read-write. 3092 * 3093 * This is the place for less strict checks (like for subpage or artificial 3094 * feature dependencies). 3095 * 3096 * For strict checks or possible corruption detection, see 3097 * btrfs_validate_super(). 3098 * 3099 * This should be called after btrfs_parse_options(), as some mount options 3100 * (space cache related) can modify on-disk format like free space tree and 3101 * screw up certain feature dependencies. 3102 */ 3103 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount) 3104 { 3105 struct btrfs_super_block *disk_super = fs_info->super_copy; 3106 u64 incompat = btrfs_super_incompat_flags(disk_super); 3107 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super); 3108 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP); 3109 3110 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) { 3111 btrfs_err(fs_info, 3112 "cannot mount because of unknown incompat features (0x%llx)", 3113 incompat); 3114 return -EINVAL; 3115 } 3116 3117 /* Runtime limitation for mixed block groups. */ 3118 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 3119 (fs_info->sectorsize != fs_info->nodesize)) { 3120 btrfs_err(fs_info, 3121 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 3122 fs_info->nodesize, fs_info->sectorsize); 3123 return -EINVAL; 3124 } 3125 3126 /* Mixed backref is an always-enabled feature. */ 3127 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 3128 3129 /* Set compression related flags just in case. */ 3130 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 3131 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 3132 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) 3133 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; 3134 3135 /* 3136 * An ancient flag, which should really be marked deprecated. 3137 * Such runtime limitation doesn't really need a incompat flag. 3138 */ 3139 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) 3140 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 3141 3142 if (compat_ro_unsupp && is_rw_mount) { 3143 btrfs_err(fs_info, 3144 "cannot mount read-write because of unknown compat_ro features (0x%llx)", 3145 compat_ro); 3146 return -EINVAL; 3147 } 3148 3149 /* 3150 * We have unsupported RO compat features, although RO mounted, we 3151 * should not cause any metadata writes, including log replay. 3152 * Or we could screw up whatever the new feature requires. 3153 */ 3154 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) && 3155 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3156 btrfs_err(fs_info, 3157 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay", 3158 compat_ro); 3159 return -EINVAL; 3160 } 3161 3162 /* 3163 * Artificial limitations for block group tree, to force 3164 * block-group-tree to rely on no-holes and free-space-tree. 3165 */ 3166 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) && 3167 (!btrfs_fs_incompat(fs_info, NO_HOLES) || 3168 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) { 3169 btrfs_err(fs_info, 3170 "block-group-tree feature requires no-holes and free-space-tree features"); 3171 return -EINVAL; 3172 } 3173 3174 /* 3175 * Subpage runtime limitation on v1 cache. 3176 * 3177 * V1 space cache still has some hard codeed PAGE_SIZE usage, while 3178 * we're already defaulting to v2 cache, no need to bother v1 as it's 3179 * going to be deprecated anyway. 3180 */ 3181 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) { 3182 btrfs_warn(fs_info, 3183 "v1 space cache is not supported for page size %lu with sectorsize %u", 3184 PAGE_SIZE, fs_info->sectorsize); 3185 return -EINVAL; 3186 } 3187 3188 /* This can be called by remount, we need to protect the super block. */ 3189 spin_lock(&fs_info->super_lock); 3190 btrfs_set_super_incompat_flags(disk_super, incompat); 3191 spin_unlock(&fs_info->super_lock); 3192 3193 return 0; 3194 } 3195 3196 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, 3197 char *options) 3198 { 3199 u32 sectorsize; 3200 u32 nodesize; 3201 u32 stripesize; 3202 u64 generation; 3203 u16 csum_type; 3204 struct btrfs_super_block *disk_super; 3205 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 3206 struct btrfs_root *tree_root; 3207 struct btrfs_root *chunk_root; 3208 int ret; 3209 int level; 3210 3211 ret = init_mount_fs_info(fs_info, sb); 3212 if (ret) 3213 goto fail; 3214 3215 /* These need to be init'ed before we start creating inodes and such. */ 3216 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, 3217 GFP_KERNEL); 3218 fs_info->tree_root = tree_root; 3219 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID, 3220 GFP_KERNEL); 3221 fs_info->chunk_root = chunk_root; 3222 if (!tree_root || !chunk_root) { 3223 ret = -ENOMEM; 3224 goto fail; 3225 } 3226 3227 ret = btrfs_init_btree_inode(sb); 3228 if (ret) 3229 goto fail; 3230 3231 invalidate_bdev(fs_devices->latest_dev->bdev); 3232 3233 /* 3234 * Read super block and check the signature bytes only 3235 */ 3236 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev); 3237 if (IS_ERR(disk_super)) { 3238 ret = PTR_ERR(disk_super); 3239 goto fail_alloc; 3240 } 3241 3242 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid); 3243 /* 3244 * Verify the type first, if that or the checksum value are 3245 * corrupted, we'll find out 3246 */ 3247 csum_type = btrfs_super_csum_type(disk_super); 3248 if (!btrfs_supported_super_csum(csum_type)) { 3249 btrfs_err(fs_info, "unsupported checksum algorithm: %u", 3250 csum_type); 3251 ret = -EINVAL; 3252 btrfs_release_disk_super(disk_super); 3253 goto fail_alloc; 3254 } 3255 3256 fs_info->csum_size = btrfs_super_csum_size(disk_super); 3257 3258 ret = btrfs_init_csum_hash(fs_info, csum_type); 3259 if (ret) { 3260 btrfs_release_disk_super(disk_super); 3261 goto fail_alloc; 3262 } 3263 3264 /* 3265 * We want to check superblock checksum, the type is stored inside. 3266 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 3267 */ 3268 if (btrfs_check_super_csum(fs_info, disk_super)) { 3269 btrfs_err(fs_info, "superblock checksum mismatch"); 3270 ret = -EINVAL; 3271 btrfs_release_disk_super(disk_super); 3272 goto fail_alloc; 3273 } 3274 3275 /* 3276 * super_copy is zeroed at allocation time and we never touch the 3277 * following bytes up to INFO_SIZE, the checksum is calculated from 3278 * the whole block of INFO_SIZE 3279 */ 3280 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy)); 3281 btrfs_release_disk_super(disk_super); 3282 3283 disk_super = fs_info->super_copy; 3284 3285 memcpy(fs_info->super_for_commit, fs_info->super_copy, 3286 sizeof(*fs_info->super_for_commit)); 3287 3288 ret = btrfs_validate_mount_super(fs_info); 3289 if (ret) { 3290 btrfs_err(fs_info, "superblock contains fatal errors"); 3291 ret = -EINVAL; 3292 goto fail_alloc; 3293 } 3294 3295 if (!btrfs_super_root(disk_super)) { 3296 btrfs_err(fs_info, "invalid superblock tree root bytenr"); 3297 ret = -EINVAL; 3298 goto fail_alloc; 3299 } 3300 3301 /* check FS state, whether FS is broken. */ 3302 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 3303 WRITE_ONCE(fs_info->fs_error, -EUCLEAN); 3304 3305 /* Set up fs_info before parsing mount options */ 3306 nodesize = btrfs_super_nodesize(disk_super); 3307 sectorsize = btrfs_super_sectorsize(disk_super); 3308 stripesize = sectorsize; 3309 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 3310 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 3311 3312 fs_info->nodesize = nodesize; 3313 fs_info->sectorsize = sectorsize; 3314 fs_info->sectorsize_bits = ilog2(sectorsize); 3315 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size; 3316 fs_info->stripesize = stripesize; 3317 3318 /* 3319 * Handle the space caching options appropriately now that we have the 3320 * super block loaded and validated. 3321 */ 3322 btrfs_set_free_space_cache_settings(fs_info); 3323 3324 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) { 3325 ret = -EINVAL; 3326 goto fail_alloc; 3327 } 3328 3329 ret = btrfs_check_features(fs_info, !sb_rdonly(sb)); 3330 if (ret < 0) 3331 goto fail_alloc; 3332 3333 /* 3334 * At this point our mount options are validated, if we set ->max_inline 3335 * to something non-standard make sure we truncate it to sectorsize. 3336 */ 3337 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize); 3338 3339 if (sectorsize < PAGE_SIZE) { 3340 struct btrfs_subpage_info *subpage_info; 3341 3342 btrfs_warn(fs_info, 3343 "read-write for sector size %u with page size %lu is experimental", 3344 sectorsize, PAGE_SIZE); 3345 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL); 3346 if (!subpage_info) { 3347 ret = -ENOMEM; 3348 goto fail_alloc; 3349 } 3350 btrfs_init_subpage_info(subpage_info, sectorsize); 3351 fs_info->subpage_info = subpage_info; 3352 } 3353 3354 ret = btrfs_init_workqueues(fs_info); 3355 if (ret) 3356 goto fail_sb_buffer; 3357 3358 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); 3359 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); 3360 3361 /* Update the values for the current filesystem. */ 3362 sb->s_blocksize = sectorsize; 3363 sb->s_blocksize_bits = blksize_bits(sectorsize); 3364 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE); 3365 3366 mutex_lock(&fs_info->chunk_mutex); 3367 ret = btrfs_read_sys_array(fs_info); 3368 mutex_unlock(&fs_info->chunk_mutex); 3369 if (ret) { 3370 btrfs_err(fs_info, "failed to read the system array: %d", ret); 3371 goto fail_sb_buffer; 3372 } 3373 3374 generation = btrfs_super_chunk_root_generation(disk_super); 3375 level = btrfs_super_chunk_root_level(disk_super); 3376 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super), 3377 generation, level); 3378 if (ret) { 3379 btrfs_err(fs_info, "failed to read chunk root"); 3380 goto fail_tree_roots; 3381 } 3382 3383 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 3384 offsetof(struct btrfs_header, chunk_tree_uuid), 3385 BTRFS_UUID_SIZE); 3386 3387 ret = btrfs_read_chunk_tree(fs_info); 3388 if (ret) { 3389 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 3390 goto fail_tree_roots; 3391 } 3392 3393 /* 3394 * At this point we know all the devices that make this filesystem, 3395 * including the seed devices but we don't know yet if the replace 3396 * target is required. So free devices that are not part of this 3397 * filesystem but skip the replace target device which is checked 3398 * below in btrfs_init_dev_replace(). 3399 */ 3400 btrfs_free_extra_devids(fs_devices); 3401 if (!fs_devices->latest_dev->bdev) { 3402 btrfs_err(fs_info, "failed to read devices"); 3403 ret = -EIO; 3404 goto fail_tree_roots; 3405 } 3406 3407 ret = init_tree_roots(fs_info); 3408 if (ret) 3409 goto fail_tree_roots; 3410 3411 /* 3412 * Get zone type information of zoned block devices. This will also 3413 * handle emulation of a zoned filesystem if a regular device has the 3414 * zoned incompat feature flag set. 3415 */ 3416 ret = btrfs_get_dev_zone_info_all_devices(fs_info); 3417 if (ret) { 3418 btrfs_err(fs_info, 3419 "zoned: failed to read device zone info: %d", ret); 3420 goto fail_block_groups; 3421 } 3422 3423 /* 3424 * If we have a uuid root and we're not being told to rescan we need to 3425 * check the generation here so we can set the 3426 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the 3427 * transaction during a balance or the log replay without updating the 3428 * uuid generation, and then if we crash we would rescan the uuid tree, 3429 * even though it was perfectly fine. 3430 */ 3431 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) && 3432 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super)) 3433 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 3434 3435 ret = btrfs_verify_dev_extents(fs_info); 3436 if (ret) { 3437 btrfs_err(fs_info, 3438 "failed to verify dev extents against chunks: %d", 3439 ret); 3440 goto fail_block_groups; 3441 } 3442 ret = btrfs_recover_balance(fs_info); 3443 if (ret) { 3444 btrfs_err(fs_info, "failed to recover balance: %d", ret); 3445 goto fail_block_groups; 3446 } 3447 3448 ret = btrfs_init_dev_stats(fs_info); 3449 if (ret) { 3450 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 3451 goto fail_block_groups; 3452 } 3453 3454 ret = btrfs_init_dev_replace(fs_info); 3455 if (ret) { 3456 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 3457 goto fail_block_groups; 3458 } 3459 3460 ret = btrfs_check_zoned_mode(fs_info); 3461 if (ret) { 3462 btrfs_err(fs_info, "failed to initialize zoned mode: %d", 3463 ret); 3464 goto fail_block_groups; 3465 } 3466 3467 ret = btrfs_sysfs_add_fsid(fs_devices); 3468 if (ret) { 3469 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 3470 ret); 3471 goto fail_block_groups; 3472 } 3473 3474 ret = btrfs_sysfs_add_mounted(fs_info); 3475 if (ret) { 3476 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 3477 goto fail_fsdev_sysfs; 3478 } 3479 3480 ret = btrfs_init_space_info(fs_info); 3481 if (ret) { 3482 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 3483 goto fail_sysfs; 3484 } 3485 3486 ret = btrfs_read_block_groups(fs_info); 3487 if (ret) { 3488 btrfs_err(fs_info, "failed to read block groups: %d", ret); 3489 goto fail_sysfs; 3490 } 3491 3492 btrfs_free_zone_cache(fs_info); 3493 3494 btrfs_check_active_zone_reservation(fs_info); 3495 3496 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices && 3497 !btrfs_check_rw_degradable(fs_info, NULL)) { 3498 btrfs_warn(fs_info, 3499 "writable mount is not allowed due to too many missing devices"); 3500 ret = -EINVAL; 3501 goto fail_sysfs; 3502 } 3503 3504 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info, 3505 "btrfs-cleaner"); 3506 if (IS_ERR(fs_info->cleaner_kthread)) { 3507 ret = PTR_ERR(fs_info->cleaner_kthread); 3508 goto fail_sysfs; 3509 } 3510 3511 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3512 tree_root, 3513 "btrfs-transaction"); 3514 if (IS_ERR(fs_info->transaction_kthread)) { 3515 ret = PTR_ERR(fs_info->transaction_kthread); 3516 goto fail_cleaner; 3517 } 3518 3519 ret = btrfs_read_qgroup_config(fs_info); 3520 if (ret) 3521 goto fail_trans_kthread; 3522 3523 if (btrfs_build_ref_tree(fs_info)) 3524 btrfs_err(fs_info, "couldn't build ref tree"); 3525 3526 /* do not make disk changes in broken FS or nologreplay is given */ 3527 if (btrfs_super_log_root(disk_super) != 0 && 3528 !btrfs_test_opt(fs_info, NOLOGREPLAY)) { 3529 btrfs_info(fs_info, "start tree-log replay"); 3530 ret = btrfs_replay_log(fs_info, fs_devices); 3531 if (ret) 3532 goto fail_qgroup; 3533 } 3534 3535 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true); 3536 if (IS_ERR(fs_info->fs_root)) { 3537 ret = PTR_ERR(fs_info->fs_root); 3538 btrfs_warn(fs_info, "failed to read fs tree: %d", ret); 3539 fs_info->fs_root = NULL; 3540 goto fail_qgroup; 3541 } 3542 3543 if (sb_rdonly(sb)) 3544 return 0; 3545 3546 ret = btrfs_start_pre_rw_mount(fs_info); 3547 if (ret) { 3548 close_ctree(fs_info); 3549 return ret; 3550 } 3551 btrfs_discard_resume(fs_info); 3552 3553 if (fs_info->uuid_root && 3554 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) || 3555 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) { 3556 btrfs_info(fs_info, "checking UUID tree"); 3557 ret = btrfs_check_uuid_tree(fs_info); 3558 if (ret) { 3559 btrfs_warn(fs_info, 3560 "failed to check the UUID tree: %d", ret); 3561 close_ctree(fs_info); 3562 return ret; 3563 } 3564 } 3565 3566 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 3567 3568 /* Kick the cleaner thread so it'll start deleting snapshots. */ 3569 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags)) 3570 wake_up_process(fs_info->cleaner_kthread); 3571 3572 return 0; 3573 3574 fail_qgroup: 3575 btrfs_free_qgroup_config(fs_info); 3576 fail_trans_kthread: 3577 kthread_stop(fs_info->transaction_kthread); 3578 btrfs_cleanup_transaction(fs_info); 3579 btrfs_free_fs_roots(fs_info); 3580 fail_cleaner: 3581 kthread_stop(fs_info->cleaner_kthread); 3582 3583 /* 3584 * make sure we're done with the btree inode before we stop our 3585 * kthreads 3586 */ 3587 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3588 3589 fail_sysfs: 3590 btrfs_sysfs_remove_mounted(fs_info); 3591 3592 fail_fsdev_sysfs: 3593 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3594 3595 fail_block_groups: 3596 btrfs_put_block_group_cache(fs_info); 3597 3598 fail_tree_roots: 3599 if (fs_info->data_reloc_root) 3600 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root); 3601 free_root_pointers(fs_info, true); 3602 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3603 3604 fail_sb_buffer: 3605 btrfs_stop_all_workers(fs_info); 3606 btrfs_free_block_groups(fs_info); 3607 fail_alloc: 3608 btrfs_mapping_tree_free(fs_info); 3609 3610 iput(fs_info->btree_inode); 3611 fail: 3612 btrfs_close_devices(fs_info->fs_devices); 3613 ASSERT(ret < 0); 3614 return ret; 3615 } 3616 ALLOW_ERROR_INJECTION(open_ctree, ERRNO); 3617 3618 static void btrfs_end_super_write(struct bio *bio) 3619 { 3620 struct btrfs_device *device = bio->bi_private; 3621 struct bio_vec *bvec; 3622 struct bvec_iter_all iter_all; 3623 struct page *page; 3624 3625 bio_for_each_segment_all(bvec, bio, iter_all) { 3626 page = bvec->bv_page; 3627 3628 if (bio->bi_status) { 3629 btrfs_warn_rl_in_rcu(device->fs_info, 3630 "lost page write due to IO error on %s (%d)", 3631 btrfs_dev_name(device), 3632 blk_status_to_errno(bio->bi_status)); 3633 ClearPageUptodate(page); 3634 SetPageError(page); 3635 btrfs_dev_stat_inc_and_print(device, 3636 BTRFS_DEV_STAT_WRITE_ERRS); 3637 } else { 3638 SetPageUptodate(page); 3639 } 3640 3641 put_page(page); 3642 unlock_page(page); 3643 } 3644 3645 bio_put(bio); 3646 } 3647 3648 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev, 3649 int copy_num, bool drop_cache) 3650 { 3651 struct btrfs_super_block *super; 3652 struct page *page; 3653 u64 bytenr, bytenr_orig; 3654 struct address_space *mapping = bdev->bd_inode->i_mapping; 3655 int ret; 3656 3657 bytenr_orig = btrfs_sb_offset(copy_num); 3658 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr); 3659 if (ret == -ENOENT) 3660 return ERR_PTR(-EINVAL); 3661 else if (ret) 3662 return ERR_PTR(ret); 3663 3664 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev)) 3665 return ERR_PTR(-EINVAL); 3666 3667 if (drop_cache) { 3668 /* This should only be called with the primary sb. */ 3669 ASSERT(copy_num == 0); 3670 3671 /* 3672 * Drop the page of the primary superblock, so later read will 3673 * always read from the device. 3674 */ 3675 invalidate_inode_pages2_range(mapping, 3676 bytenr >> PAGE_SHIFT, 3677 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT); 3678 } 3679 3680 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS); 3681 if (IS_ERR(page)) 3682 return ERR_CAST(page); 3683 3684 super = page_address(page); 3685 if (btrfs_super_magic(super) != BTRFS_MAGIC) { 3686 btrfs_release_disk_super(super); 3687 return ERR_PTR(-ENODATA); 3688 } 3689 3690 if (btrfs_super_bytenr(super) != bytenr_orig) { 3691 btrfs_release_disk_super(super); 3692 return ERR_PTR(-EINVAL); 3693 } 3694 3695 return super; 3696 } 3697 3698 3699 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev) 3700 { 3701 struct btrfs_super_block *super, *latest = NULL; 3702 int i; 3703 u64 transid = 0; 3704 3705 /* we would like to check all the supers, but that would make 3706 * a btrfs mount succeed after a mkfs from a different FS. 3707 * So, we need to add a special mount option to scan for 3708 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3709 */ 3710 for (i = 0; i < 1; i++) { 3711 super = btrfs_read_dev_one_super(bdev, i, false); 3712 if (IS_ERR(super)) 3713 continue; 3714 3715 if (!latest || btrfs_super_generation(super) > transid) { 3716 if (latest) 3717 btrfs_release_disk_super(super); 3718 3719 latest = super; 3720 transid = btrfs_super_generation(super); 3721 } 3722 } 3723 3724 return super; 3725 } 3726 3727 /* 3728 * Write superblock @sb to the @device. Do not wait for completion, all the 3729 * pages we use for writing are locked. 3730 * 3731 * Write @max_mirrors copies of the superblock, where 0 means default that fit 3732 * the expected device size at commit time. Note that max_mirrors must be 3733 * same for write and wait phases. 3734 * 3735 * Return number of errors when page is not found or submission fails. 3736 */ 3737 static int write_dev_supers(struct btrfs_device *device, 3738 struct btrfs_super_block *sb, int max_mirrors) 3739 { 3740 struct btrfs_fs_info *fs_info = device->fs_info; 3741 struct address_space *mapping = device->bdev->bd_inode->i_mapping; 3742 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3743 int i; 3744 int errors = 0; 3745 int ret; 3746 u64 bytenr, bytenr_orig; 3747 3748 if (max_mirrors == 0) 3749 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3750 3751 shash->tfm = fs_info->csum_shash; 3752 3753 for (i = 0; i < max_mirrors; i++) { 3754 struct page *page; 3755 struct bio *bio; 3756 struct btrfs_super_block *disk_super; 3757 3758 bytenr_orig = btrfs_sb_offset(i); 3759 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr); 3760 if (ret == -ENOENT) { 3761 continue; 3762 } else if (ret < 0) { 3763 btrfs_err(device->fs_info, 3764 "couldn't get super block location for mirror %d", 3765 i); 3766 errors++; 3767 continue; 3768 } 3769 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3770 device->commit_total_bytes) 3771 break; 3772 3773 btrfs_set_super_bytenr(sb, bytenr_orig); 3774 3775 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE, 3776 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, 3777 sb->csum); 3778 3779 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT, 3780 GFP_NOFS); 3781 if (!page) { 3782 btrfs_err(device->fs_info, 3783 "couldn't get super block page for bytenr %llu", 3784 bytenr); 3785 errors++; 3786 continue; 3787 } 3788 3789 /* Bump the refcount for wait_dev_supers() */ 3790 get_page(page); 3791 3792 disk_super = page_address(page); 3793 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE); 3794 3795 /* 3796 * Directly use bios here instead of relying on the page cache 3797 * to do I/O, so we don't lose the ability to do integrity 3798 * checking. 3799 */ 3800 bio = bio_alloc(device->bdev, 1, 3801 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO, 3802 GFP_NOFS); 3803 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT; 3804 bio->bi_private = device; 3805 bio->bi_end_io = btrfs_end_super_write; 3806 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE, 3807 offset_in_page(bytenr)); 3808 3809 /* 3810 * We FUA only the first super block. The others we allow to 3811 * go down lazy and there's a short window where the on-disk 3812 * copies might still contain the older version. 3813 */ 3814 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER)) 3815 bio->bi_opf |= REQ_FUA; 3816 submit_bio(bio); 3817 3818 if (btrfs_advance_sb_log(device, i)) 3819 errors++; 3820 } 3821 return errors < i ? 0 : -1; 3822 } 3823 3824 /* 3825 * Wait for write completion of superblocks done by write_dev_supers, 3826 * @max_mirrors same for write and wait phases. 3827 * 3828 * Return number of errors when page is not found or not marked up to 3829 * date. 3830 */ 3831 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors) 3832 { 3833 int i; 3834 int errors = 0; 3835 bool primary_failed = false; 3836 int ret; 3837 u64 bytenr; 3838 3839 if (max_mirrors == 0) 3840 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3841 3842 for (i = 0; i < max_mirrors; i++) { 3843 struct page *page; 3844 3845 ret = btrfs_sb_log_location(device, i, READ, &bytenr); 3846 if (ret == -ENOENT) { 3847 break; 3848 } else if (ret < 0) { 3849 errors++; 3850 if (i == 0) 3851 primary_failed = true; 3852 continue; 3853 } 3854 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3855 device->commit_total_bytes) 3856 break; 3857 3858 page = find_get_page(device->bdev->bd_inode->i_mapping, 3859 bytenr >> PAGE_SHIFT); 3860 if (!page) { 3861 errors++; 3862 if (i == 0) 3863 primary_failed = true; 3864 continue; 3865 } 3866 /* Page is submitted locked and unlocked once the IO completes */ 3867 wait_on_page_locked(page); 3868 if (PageError(page)) { 3869 errors++; 3870 if (i == 0) 3871 primary_failed = true; 3872 } 3873 3874 /* Drop our reference */ 3875 put_page(page); 3876 3877 /* Drop the reference from the writing run */ 3878 put_page(page); 3879 } 3880 3881 /* log error, force error return */ 3882 if (primary_failed) { 3883 btrfs_err(device->fs_info, "error writing primary super block to device %llu", 3884 device->devid); 3885 return -1; 3886 } 3887 3888 return errors < i ? 0 : -1; 3889 } 3890 3891 /* 3892 * endio for the write_dev_flush, this will wake anyone waiting 3893 * for the barrier when it is done 3894 */ 3895 static void btrfs_end_empty_barrier(struct bio *bio) 3896 { 3897 bio_uninit(bio); 3898 complete(bio->bi_private); 3899 } 3900 3901 /* 3902 * Submit a flush request to the device if it supports it. Error handling is 3903 * done in the waiting counterpart. 3904 */ 3905 static void write_dev_flush(struct btrfs_device *device) 3906 { 3907 struct bio *bio = &device->flush_bio; 3908 3909 device->last_flush_error = BLK_STS_OK; 3910 3911 bio_init(bio, device->bdev, NULL, 0, 3912 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH); 3913 bio->bi_end_io = btrfs_end_empty_barrier; 3914 init_completion(&device->flush_wait); 3915 bio->bi_private = &device->flush_wait; 3916 submit_bio(bio); 3917 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state); 3918 } 3919 3920 /* 3921 * If the flush bio has been submitted by write_dev_flush, wait for it. 3922 * Return true for any error, and false otherwise. 3923 */ 3924 static bool wait_dev_flush(struct btrfs_device *device) 3925 { 3926 struct bio *bio = &device->flush_bio; 3927 3928 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)) 3929 return false; 3930 3931 wait_for_completion_io(&device->flush_wait); 3932 3933 if (bio->bi_status) { 3934 device->last_flush_error = bio->bi_status; 3935 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS); 3936 return true; 3937 } 3938 3939 return false; 3940 } 3941 3942 /* 3943 * send an empty flush down to each device in parallel, 3944 * then wait for them 3945 */ 3946 static int barrier_all_devices(struct btrfs_fs_info *info) 3947 { 3948 struct list_head *head; 3949 struct btrfs_device *dev; 3950 int errors_wait = 0; 3951 3952 lockdep_assert_held(&info->fs_devices->device_list_mutex); 3953 /* send down all the barriers */ 3954 head = &info->fs_devices->devices; 3955 list_for_each_entry(dev, head, dev_list) { 3956 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3957 continue; 3958 if (!dev->bdev) 3959 continue; 3960 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3961 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3962 continue; 3963 3964 write_dev_flush(dev); 3965 } 3966 3967 /* wait for all the barriers */ 3968 list_for_each_entry(dev, head, dev_list) { 3969 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) 3970 continue; 3971 if (!dev->bdev) { 3972 errors_wait++; 3973 continue; 3974 } 3975 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 3976 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 3977 continue; 3978 3979 if (wait_dev_flush(dev)) 3980 errors_wait++; 3981 } 3982 3983 /* 3984 * Checks last_flush_error of disks in order to determine the device 3985 * state. 3986 */ 3987 if (errors_wait && !btrfs_check_rw_degradable(info, NULL)) 3988 return -EIO; 3989 3990 return 0; 3991 } 3992 3993 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3994 { 3995 int raid_type; 3996 int min_tolerated = INT_MAX; 3997 3998 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3999 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 4000 min_tolerated = min_t(int, min_tolerated, 4001 btrfs_raid_array[BTRFS_RAID_SINGLE]. 4002 tolerated_failures); 4003 4004 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 4005 if (raid_type == BTRFS_RAID_SINGLE) 4006 continue; 4007 if (!(flags & btrfs_raid_array[raid_type].bg_flag)) 4008 continue; 4009 min_tolerated = min_t(int, min_tolerated, 4010 btrfs_raid_array[raid_type]. 4011 tolerated_failures); 4012 } 4013 4014 if (min_tolerated == INT_MAX) { 4015 pr_warn("BTRFS: unknown raid flag: %llu", flags); 4016 min_tolerated = 0; 4017 } 4018 4019 return min_tolerated; 4020 } 4021 4022 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors) 4023 { 4024 struct list_head *head; 4025 struct btrfs_device *dev; 4026 struct btrfs_super_block *sb; 4027 struct btrfs_dev_item *dev_item; 4028 int ret; 4029 int do_barriers; 4030 int max_errors; 4031 int total_errors = 0; 4032 u64 flags; 4033 4034 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER); 4035 4036 /* 4037 * max_mirrors == 0 indicates we're from commit_transaction, 4038 * not from fsync where the tree roots in fs_info have not 4039 * been consistent on disk. 4040 */ 4041 if (max_mirrors == 0) 4042 backup_super_roots(fs_info); 4043 4044 sb = fs_info->super_for_commit; 4045 dev_item = &sb->dev_item; 4046 4047 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4048 head = &fs_info->fs_devices->devices; 4049 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1; 4050 4051 if (do_barriers) { 4052 ret = barrier_all_devices(fs_info); 4053 if (ret) { 4054 mutex_unlock( 4055 &fs_info->fs_devices->device_list_mutex); 4056 btrfs_handle_fs_error(fs_info, ret, 4057 "errors while submitting device barriers."); 4058 return ret; 4059 } 4060 } 4061 4062 list_for_each_entry(dev, head, dev_list) { 4063 if (!dev->bdev) { 4064 total_errors++; 4065 continue; 4066 } 4067 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4068 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4069 continue; 4070 4071 btrfs_set_stack_device_generation(dev_item, 0); 4072 btrfs_set_stack_device_type(dev_item, dev->type); 4073 btrfs_set_stack_device_id(dev_item, dev->devid); 4074 btrfs_set_stack_device_total_bytes(dev_item, 4075 dev->commit_total_bytes); 4076 btrfs_set_stack_device_bytes_used(dev_item, 4077 dev->commit_bytes_used); 4078 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 4079 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 4080 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 4081 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 4082 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, 4083 BTRFS_FSID_SIZE); 4084 4085 flags = btrfs_super_flags(sb); 4086 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 4087 4088 ret = btrfs_validate_write_super(fs_info, sb); 4089 if (ret < 0) { 4090 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4091 btrfs_handle_fs_error(fs_info, -EUCLEAN, 4092 "unexpected superblock corruption detected"); 4093 return -EUCLEAN; 4094 } 4095 4096 ret = write_dev_supers(dev, sb, max_mirrors); 4097 if (ret) 4098 total_errors++; 4099 } 4100 if (total_errors > max_errors) { 4101 btrfs_err(fs_info, "%d errors while writing supers", 4102 total_errors); 4103 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4104 4105 /* FUA is masked off if unsupported and can't be the reason */ 4106 btrfs_handle_fs_error(fs_info, -EIO, 4107 "%d errors while writing supers", 4108 total_errors); 4109 return -EIO; 4110 } 4111 4112 total_errors = 0; 4113 list_for_each_entry(dev, head, dev_list) { 4114 if (!dev->bdev) 4115 continue; 4116 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4117 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) 4118 continue; 4119 4120 ret = wait_dev_supers(dev, max_mirrors); 4121 if (ret) 4122 total_errors++; 4123 } 4124 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4125 if (total_errors > max_errors) { 4126 btrfs_handle_fs_error(fs_info, -EIO, 4127 "%d errors while writing supers", 4128 total_errors); 4129 return -EIO; 4130 } 4131 return 0; 4132 } 4133 4134 /* Drop a fs root from the radix tree and free it. */ 4135 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 4136 struct btrfs_root *root) 4137 { 4138 bool drop_ref = false; 4139 4140 spin_lock(&fs_info->fs_roots_radix_lock); 4141 radix_tree_delete(&fs_info->fs_roots_radix, 4142 (unsigned long)root->root_key.objectid); 4143 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state)) 4144 drop_ref = true; 4145 spin_unlock(&fs_info->fs_roots_radix_lock); 4146 4147 if (BTRFS_FS_ERROR(fs_info)) { 4148 ASSERT(root->log_root == NULL); 4149 if (root->reloc_root) { 4150 btrfs_put_root(root->reloc_root); 4151 root->reloc_root = NULL; 4152 } 4153 } 4154 4155 if (drop_ref) 4156 btrfs_put_root(root); 4157 } 4158 4159 int btrfs_commit_super(struct btrfs_fs_info *fs_info) 4160 { 4161 struct btrfs_root *root = fs_info->tree_root; 4162 struct btrfs_trans_handle *trans; 4163 4164 mutex_lock(&fs_info->cleaner_mutex); 4165 btrfs_run_delayed_iputs(fs_info); 4166 mutex_unlock(&fs_info->cleaner_mutex); 4167 wake_up_process(fs_info->cleaner_kthread); 4168 4169 /* wait until ongoing cleanup work done */ 4170 down_write(&fs_info->cleanup_work_sem); 4171 up_write(&fs_info->cleanup_work_sem); 4172 4173 trans = btrfs_join_transaction(root); 4174 if (IS_ERR(trans)) 4175 return PTR_ERR(trans); 4176 return btrfs_commit_transaction(trans); 4177 } 4178 4179 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info) 4180 { 4181 struct btrfs_transaction *trans; 4182 struct btrfs_transaction *tmp; 4183 bool found = false; 4184 4185 if (list_empty(&fs_info->trans_list)) 4186 return; 4187 4188 /* 4189 * This function is only called at the very end of close_ctree(), 4190 * thus no other running transaction, no need to take trans_lock. 4191 */ 4192 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)); 4193 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) { 4194 struct extent_state *cached = NULL; 4195 u64 dirty_bytes = 0; 4196 u64 cur = 0; 4197 u64 found_start; 4198 u64 found_end; 4199 4200 found = true; 4201 while (find_first_extent_bit(&trans->dirty_pages, cur, 4202 &found_start, &found_end, EXTENT_DIRTY, &cached)) { 4203 dirty_bytes += found_end + 1 - found_start; 4204 cur = found_end + 1; 4205 } 4206 btrfs_warn(fs_info, 4207 "transaction %llu (with %llu dirty metadata bytes) is not committed", 4208 trans->transid, dirty_bytes); 4209 btrfs_cleanup_one_transaction(trans, fs_info); 4210 4211 if (trans == fs_info->running_transaction) 4212 fs_info->running_transaction = NULL; 4213 list_del_init(&trans->list); 4214 4215 btrfs_put_transaction(trans); 4216 trace_btrfs_transaction_commit(fs_info); 4217 } 4218 ASSERT(!found); 4219 } 4220 4221 void __cold close_ctree(struct btrfs_fs_info *fs_info) 4222 { 4223 int ret; 4224 4225 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags); 4226 4227 /* 4228 * If we had UNFINISHED_DROPS we could still be processing them, so 4229 * clear that bit and wake up relocation so it can stop. 4230 * We must do this before stopping the block group reclaim task, because 4231 * at btrfs_relocate_block_group() we wait for this bit, and after the 4232 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we 4233 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will 4234 * return 1. 4235 */ 4236 btrfs_wake_unfinished_drop(fs_info); 4237 4238 /* 4239 * We may have the reclaim task running and relocating a data block group, 4240 * in which case it may create delayed iputs. So stop it before we park 4241 * the cleaner kthread otherwise we can get new delayed iputs after 4242 * parking the cleaner, and that can make the async reclaim task to hang 4243 * if it's waiting for delayed iputs to complete, since the cleaner is 4244 * parked and can not run delayed iputs - this will make us hang when 4245 * trying to stop the async reclaim task. 4246 */ 4247 cancel_work_sync(&fs_info->reclaim_bgs_work); 4248 /* 4249 * We don't want the cleaner to start new transactions, add more delayed 4250 * iputs, etc. while we're closing. We can't use kthread_stop() yet 4251 * because that frees the task_struct, and the transaction kthread might 4252 * still try to wake up the cleaner. 4253 */ 4254 kthread_park(fs_info->cleaner_kthread); 4255 4256 /* wait for the qgroup rescan worker to stop */ 4257 btrfs_qgroup_wait_for_completion(fs_info, false); 4258 4259 /* wait for the uuid_scan task to finish */ 4260 down(&fs_info->uuid_tree_rescan_sem); 4261 /* avoid complains from lockdep et al., set sem back to initial state */ 4262 up(&fs_info->uuid_tree_rescan_sem); 4263 4264 /* pause restriper - we want to resume on mount */ 4265 btrfs_pause_balance(fs_info); 4266 4267 btrfs_dev_replace_suspend_for_unmount(fs_info); 4268 4269 btrfs_scrub_cancel(fs_info); 4270 4271 /* wait for any defraggers to finish */ 4272 wait_event(fs_info->transaction_wait, 4273 (atomic_read(&fs_info->defrag_running) == 0)); 4274 4275 /* clear out the rbtree of defraggable inodes */ 4276 btrfs_cleanup_defrag_inodes(fs_info); 4277 4278 /* 4279 * After we parked the cleaner kthread, ordered extents may have 4280 * completed and created new delayed iputs. If one of the async reclaim 4281 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we 4282 * can hang forever trying to stop it, because if a delayed iput is 4283 * added after it ran btrfs_run_delayed_iputs() and before it called 4284 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is 4285 * no one else to run iputs. 4286 * 4287 * So wait for all ongoing ordered extents to complete and then run 4288 * delayed iputs. This works because once we reach this point no one 4289 * can either create new ordered extents nor create delayed iputs 4290 * through some other means. 4291 * 4292 * Also note that btrfs_wait_ordered_roots() is not safe here, because 4293 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent, 4294 * but the delayed iput for the respective inode is made only when doing 4295 * the final btrfs_put_ordered_extent() (which must happen at 4296 * btrfs_finish_ordered_io() when we are unmounting). 4297 */ 4298 btrfs_flush_workqueue(fs_info->endio_write_workers); 4299 /* Ordered extents for free space inodes. */ 4300 btrfs_flush_workqueue(fs_info->endio_freespace_worker); 4301 btrfs_run_delayed_iputs(fs_info); 4302 4303 cancel_work_sync(&fs_info->async_reclaim_work); 4304 cancel_work_sync(&fs_info->async_data_reclaim_work); 4305 cancel_work_sync(&fs_info->preempt_reclaim_work); 4306 4307 /* Cancel or finish ongoing discard work */ 4308 btrfs_discard_cleanup(fs_info); 4309 4310 if (!sb_rdonly(fs_info->sb)) { 4311 /* 4312 * The cleaner kthread is stopped, so do one final pass over 4313 * unused block groups. 4314 */ 4315 btrfs_delete_unused_bgs(fs_info); 4316 4317 /* 4318 * There might be existing delayed inode workers still running 4319 * and holding an empty delayed inode item. We must wait for 4320 * them to complete first because they can create a transaction. 4321 * This happens when someone calls btrfs_balance_delayed_items() 4322 * and then a transaction commit runs the same delayed nodes 4323 * before any delayed worker has done something with the nodes. 4324 * We must wait for any worker here and not at transaction 4325 * commit time since that could cause a deadlock. 4326 * This is a very rare case. 4327 */ 4328 btrfs_flush_workqueue(fs_info->delayed_workers); 4329 4330 ret = btrfs_commit_super(fs_info); 4331 if (ret) 4332 btrfs_err(fs_info, "commit super ret %d", ret); 4333 } 4334 4335 if (BTRFS_FS_ERROR(fs_info)) 4336 btrfs_error_commit_super(fs_info); 4337 4338 kthread_stop(fs_info->transaction_kthread); 4339 kthread_stop(fs_info->cleaner_kthread); 4340 4341 ASSERT(list_empty(&fs_info->delayed_iputs)); 4342 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags); 4343 4344 if (btrfs_check_quota_leak(fs_info)) { 4345 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 4346 btrfs_err(fs_info, "qgroup reserved space leaked"); 4347 } 4348 4349 btrfs_free_qgroup_config(fs_info); 4350 ASSERT(list_empty(&fs_info->delalloc_roots)); 4351 4352 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 4353 btrfs_info(fs_info, "at unmount delalloc count %lld", 4354 percpu_counter_sum(&fs_info->delalloc_bytes)); 4355 } 4356 4357 if (percpu_counter_sum(&fs_info->ordered_bytes)) 4358 btrfs_info(fs_info, "at unmount dio bytes count %lld", 4359 percpu_counter_sum(&fs_info->ordered_bytes)); 4360 4361 btrfs_sysfs_remove_mounted(fs_info); 4362 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 4363 4364 btrfs_put_block_group_cache(fs_info); 4365 4366 /* 4367 * we must make sure there is not any read request to 4368 * submit after we stopping all workers. 4369 */ 4370 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 4371 btrfs_stop_all_workers(fs_info); 4372 4373 /* We shouldn't have any transaction open at this point */ 4374 warn_about_uncommitted_trans(fs_info); 4375 4376 clear_bit(BTRFS_FS_OPEN, &fs_info->flags); 4377 free_root_pointers(fs_info, true); 4378 btrfs_free_fs_roots(fs_info); 4379 4380 /* 4381 * We must free the block groups after dropping the fs_roots as we could 4382 * have had an IO error and have left over tree log blocks that aren't 4383 * cleaned up until the fs roots are freed. This makes the block group 4384 * accounting appear to be wrong because there's pending reserved bytes, 4385 * so make sure we do the block group cleanup afterwards. 4386 */ 4387 btrfs_free_block_groups(fs_info); 4388 4389 iput(fs_info->btree_inode); 4390 4391 btrfs_mapping_tree_free(fs_info); 4392 btrfs_close_devices(fs_info->fs_devices); 4393 } 4394 4395 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans, 4396 struct extent_buffer *buf) 4397 { 4398 struct btrfs_fs_info *fs_info = buf->fs_info; 4399 u64 transid = btrfs_header_generation(buf); 4400 4401 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4402 /* 4403 * This is a fast path so only do this check if we have sanity tests 4404 * enabled. Normal people shouldn't be using unmapped buffers as dirty 4405 * outside of the sanity tests. 4406 */ 4407 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags))) 4408 return; 4409 #endif 4410 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */ 4411 ASSERT(trans->transid == fs_info->generation); 4412 btrfs_assert_tree_write_locked(buf); 4413 if (unlikely(transid != fs_info->generation)) { 4414 btrfs_abort_transaction(trans, -EUCLEAN); 4415 btrfs_crit(fs_info, 4416 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu", 4417 buf->start, transid, fs_info->generation); 4418 } 4419 set_extent_buffer_dirty(buf); 4420 } 4421 4422 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info, 4423 int flush_delayed) 4424 { 4425 /* 4426 * looks as though older kernels can get into trouble with 4427 * this code, they end up stuck in balance_dirty_pages forever 4428 */ 4429 int ret; 4430 4431 if (current->flags & PF_MEMALLOC) 4432 return; 4433 4434 if (flush_delayed) 4435 btrfs_balance_delayed_items(fs_info); 4436 4437 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes, 4438 BTRFS_DIRTY_METADATA_THRESH, 4439 fs_info->dirty_metadata_batch); 4440 if (ret > 0) { 4441 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping); 4442 } 4443 } 4444 4445 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info) 4446 { 4447 __btrfs_btree_balance_dirty(fs_info, 1); 4448 } 4449 4450 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info) 4451 { 4452 __btrfs_btree_balance_dirty(fs_info, 0); 4453 } 4454 4455 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info) 4456 { 4457 /* cleanup FS via transaction */ 4458 btrfs_cleanup_transaction(fs_info); 4459 4460 mutex_lock(&fs_info->cleaner_mutex); 4461 btrfs_run_delayed_iputs(fs_info); 4462 mutex_unlock(&fs_info->cleaner_mutex); 4463 4464 down_write(&fs_info->cleanup_work_sem); 4465 up_write(&fs_info->cleanup_work_sem); 4466 } 4467 4468 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info) 4469 { 4470 struct btrfs_root *gang[8]; 4471 u64 root_objectid = 0; 4472 int ret; 4473 4474 spin_lock(&fs_info->fs_roots_radix_lock); 4475 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 4476 (void **)gang, root_objectid, 4477 ARRAY_SIZE(gang))) != 0) { 4478 int i; 4479 4480 for (i = 0; i < ret; i++) 4481 gang[i] = btrfs_grab_root(gang[i]); 4482 spin_unlock(&fs_info->fs_roots_radix_lock); 4483 4484 for (i = 0; i < ret; i++) { 4485 if (!gang[i]) 4486 continue; 4487 root_objectid = gang[i]->root_key.objectid; 4488 btrfs_free_log(NULL, gang[i]); 4489 btrfs_put_root(gang[i]); 4490 } 4491 root_objectid++; 4492 spin_lock(&fs_info->fs_roots_radix_lock); 4493 } 4494 spin_unlock(&fs_info->fs_roots_radix_lock); 4495 btrfs_free_log_root_tree(NULL, fs_info); 4496 } 4497 4498 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4499 { 4500 struct btrfs_ordered_extent *ordered; 4501 4502 spin_lock(&root->ordered_extent_lock); 4503 /* 4504 * This will just short circuit the ordered completion stuff which will 4505 * make sure the ordered extent gets properly cleaned up. 4506 */ 4507 list_for_each_entry(ordered, &root->ordered_extents, 4508 root_extent_list) 4509 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4510 spin_unlock(&root->ordered_extent_lock); 4511 } 4512 4513 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4514 { 4515 struct btrfs_root *root; 4516 LIST_HEAD(splice); 4517 4518 spin_lock(&fs_info->ordered_root_lock); 4519 list_splice_init(&fs_info->ordered_roots, &splice); 4520 while (!list_empty(&splice)) { 4521 root = list_first_entry(&splice, struct btrfs_root, 4522 ordered_root); 4523 list_move_tail(&root->ordered_root, 4524 &fs_info->ordered_roots); 4525 4526 spin_unlock(&fs_info->ordered_root_lock); 4527 btrfs_destroy_ordered_extents(root); 4528 4529 cond_resched(); 4530 spin_lock(&fs_info->ordered_root_lock); 4531 } 4532 spin_unlock(&fs_info->ordered_root_lock); 4533 4534 /* 4535 * We need this here because if we've been flipped read-only we won't 4536 * get sync() from the umount, so we need to make sure any ordered 4537 * extents that haven't had their dirty pages IO start writeout yet 4538 * actually get run and error out properly. 4539 */ 4540 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 4541 } 4542 4543 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4544 struct btrfs_fs_info *fs_info) 4545 { 4546 struct rb_node *node; 4547 struct btrfs_delayed_ref_root *delayed_refs; 4548 struct btrfs_delayed_ref_node *ref; 4549 4550 delayed_refs = &trans->delayed_refs; 4551 4552 spin_lock(&delayed_refs->lock); 4553 if (atomic_read(&delayed_refs->num_entries) == 0) { 4554 spin_unlock(&delayed_refs->lock); 4555 btrfs_debug(fs_info, "delayed_refs has NO entry"); 4556 return; 4557 } 4558 4559 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) { 4560 struct btrfs_delayed_ref_head *head; 4561 struct rb_node *n; 4562 bool pin_bytes = false; 4563 4564 head = rb_entry(node, struct btrfs_delayed_ref_head, 4565 href_node); 4566 if (btrfs_delayed_ref_lock(delayed_refs, head)) 4567 continue; 4568 4569 spin_lock(&head->lock); 4570 while ((n = rb_first_cached(&head->ref_tree)) != NULL) { 4571 ref = rb_entry(n, struct btrfs_delayed_ref_node, 4572 ref_node); 4573 rb_erase_cached(&ref->ref_node, &head->ref_tree); 4574 RB_CLEAR_NODE(&ref->ref_node); 4575 if (!list_empty(&ref->add_list)) 4576 list_del(&ref->add_list); 4577 atomic_dec(&delayed_refs->num_entries); 4578 btrfs_put_delayed_ref(ref); 4579 btrfs_delayed_refs_rsv_release(fs_info, 1, 0); 4580 } 4581 if (head->must_insert_reserved) 4582 pin_bytes = true; 4583 btrfs_free_delayed_extent_op(head->extent_op); 4584 btrfs_delete_ref_head(delayed_refs, head); 4585 spin_unlock(&head->lock); 4586 spin_unlock(&delayed_refs->lock); 4587 mutex_unlock(&head->mutex); 4588 4589 if (pin_bytes) { 4590 struct btrfs_block_group *cache; 4591 4592 cache = btrfs_lookup_block_group(fs_info, head->bytenr); 4593 BUG_ON(!cache); 4594 4595 spin_lock(&cache->space_info->lock); 4596 spin_lock(&cache->lock); 4597 cache->pinned += head->num_bytes; 4598 btrfs_space_info_update_bytes_pinned(fs_info, 4599 cache->space_info, head->num_bytes); 4600 cache->reserved -= head->num_bytes; 4601 cache->space_info->bytes_reserved -= head->num_bytes; 4602 spin_unlock(&cache->lock); 4603 spin_unlock(&cache->space_info->lock); 4604 4605 btrfs_put_block_group(cache); 4606 4607 btrfs_error_unpin_extent_range(fs_info, head->bytenr, 4608 head->bytenr + head->num_bytes - 1); 4609 } 4610 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head); 4611 btrfs_put_delayed_ref_head(head); 4612 cond_resched(); 4613 spin_lock(&delayed_refs->lock); 4614 } 4615 btrfs_qgroup_destroy_extent_records(trans); 4616 4617 spin_unlock(&delayed_refs->lock); 4618 } 4619 4620 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4621 { 4622 struct btrfs_inode *btrfs_inode; 4623 LIST_HEAD(splice); 4624 4625 spin_lock(&root->delalloc_lock); 4626 list_splice_init(&root->delalloc_inodes, &splice); 4627 4628 while (!list_empty(&splice)) { 4629 struct inode *inode = NULL; 4630 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4631 delalloc_inodes); 4632 btrfs_del_delalloc_inode(btrfs_inode); 4633 spin_unlock(&root->delalloc_lock); 4634 4635 /* 4636 * Make sure we get a live inode and that it'll not disappear 4637 * meanwhile. 4638 */ 4639 inode = igrab(&btrfs_inode->vfs_inode); 4640 if (inode) { 4641 unsigned int nofs_flag; 4642 4643 nofs_flag = memalloc_nofs_save(); 4644 invalidate_inode_pages2(inode->i_mapping); 4645 memalloc_nofs_restore(nofs_flag); 4646 iput(inode); 4647 } 4648 spin_lock(&root->delalloc_lock); 4649 } 4650 spin_unlock(&root->delalloc_lock); 4651 } 4652 4653 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4654 { 4655 struct btrfs_root *root; 4656 LIST_HEAD(splice); 4657 4658 spin_lock(&fs_info->delalloc_root_lock); 4659 list_splice_init(&fs_info->delalloc_roots, &splice); 4660 while (!list_empty(&splice)) { 4661 root = list_first_entry(&splice, struct btrfs_root, 4662 delalloc_root); 4663 root = btrfs_grab_root(root); 4664 BUG_ON(!root); 4665 spin_unlock(&fs_info->delalloc_root_lock); 4666 4667 btrfs_destroy_delalloc_inodes(root); 4668 btrfs_put_root(root); 4669 4670 spin_lock(&fs_info->delalloc_root_lock); 4671 } 4672 spin_unlock(&fs_info->delalloc_root_lock); 4673 } 4674 4675 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, 4676 struct extent_io_tree *dirty_pages, 4677 int mark) 4678 { 4679 struct extent_buffer *eb; 4680 u64 start = 0; 4681 u64 end; 4682 4683 while (find_first_extent_bit(dirty_pages, start, &start, &end, 4684 mark, NULL)) { 4685 clear_extent_bits(dirty_pages, start, end, mark); 4686 while (start <= end) { 4687 eb = find_extent_buffer(fs_info, start); 4688 start += fs_info->nodesize; 4689 if (!eb) 4690 continue; 4691 4692 btrfs_tree_lock(eb); 4693 wait_on_extent_buffer_writeback(eb); 4694 btrfs_clear_buffer_dirty(NULL, eb); 4695 btrfs_tree_unlock(eb); 4696 4697 free_extent_buffer_stale(eb); 4698 } 4699 } 4700 } 4701 4702 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, 4703 struct extent_io_tree *unpin) 4704 { 4705 u64 start; 4706 u64 end; 4707 4708 while (1) { 4709 struct extent_state *cached_state = NULL; 4710 4711 /* 4712 * The btrfs_finish_extent_commit() may get the same range as 4713 * ours between find_first_extent_bit and clear_extent_dirty. 4714 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin 4715 * the same extent range. 4716 */ 4717 mutex_lock(&fs_info->unused_bg_unpin_mutex); 4718 if (!find_first_extent_bit(unpin, 0, &start, &end, 4719 EXTENT_DIRTY, &cached_state)) { 4720 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4721 break; 4722 } 4723 4724 clear_extent_dirty(unpin, start, end, &cached_state); 4725 free_extent_state(cached_state); 4726 btrfs_error_unpin_extent_range(fs_info, start, end); 4727 mutex_unlock(&fs_info->unused_bg_unpin_mutex); 4728 cond_resched(); 4729 } 4730 } 4731 4732 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache) 4733 { 4734 struct inode *inode; 4735 4736 inode = cache->io_ctl.inode; 4737 if (inode) { 4738 unsigned int nofs_flag; 4739 4740 nofs_flag = memalloc_nofs_save(); 4741 invalidate_inode_pages2(inode->i_mapping); 4742 memalloc_nofs_restore(nofs_flag); 4743 4744 BTRFS_I(inode)->generation = 0; 4745 cache->io_ctl.inode = NULL; 4746 iput(inode); 4747 } 4748 ASSERT(cache->io_ctl.pages == NULL); 4749 btrfs_put_block_group(cache); 4750 } 4751 4752 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans, 4753 struct btrfs_fs_info *fs_info) 4754 { 4755 struct btrfs_block_group *cache; 4756 4757 spin_lock(&cur_trans->dirty_bgs_lock); 4758 while (!list_empty(&cur_trans->dirty_bgs)) { 4759 cache = list_first_entry(&cur_trans->dirty_bgs, 4760 struct btrfs_block_group, 4761 dirty_list); 4762 4763 if (!list_empty(&cache->io_list)) { 4764 spin_unlock(&cur_trans->dirty_bgs_lock); 4765 list_del_init(&cache->io_list); 4766 btrfs_cleanup_bg_io(cache); 4767 spin_lock(&cur_trans->dirty_bgs_lock); 4768 } 4769 4770 list_del_init(&cache->dirty_list); 4771 spin_lock(&cache->lock); 4772 cache->disk_cache_state = BTRFS_DC_ERROR; 4773 spin_unlock(&cache->lock); 4774 4775 spin_unlock(&cur_trans->dirty_bgs_lock); 4776 btrfs_put_block_group(cache); 4777 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info); 4778 spin_lock(&cur_trans->dirty_bgs_lock); 4779 } 4780 spin_unlock(&cur_trans->dirty_bgs_lock); 4781 4782 /* 4783 * Refer to the definition of io_bgs member for details why it's safe 4784 * to use it without any locking 4785 */ 4786 while (!list_empty(&cur_trans->io_bgs)) { 4787 cache = list_first_entry(&cur_trans->io_bgs, 4788 struct btrfs_block_group, 4789 io_list); 4790 4791 list_del_init(&cache->io_list); 4792 spin_lock(&cache->lock); 4793 cache->disk_cache_state = BTRFS_DC_ERROR; 4794 spin_unlock(&cache->lock); 4795 btrfs_cleanup_bg_io(cache); 4796 } 4797 } 4798 4799 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info) 4800 { 4801 struct btrfs_root *gang[8]; 4802 int i; 4803 int ret; 4804 4805 spin_lock(&fs_info->fs_roots_radix_lock); 4806 while (1) { 4807 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 4808 (void **)gang, 0, 4809 ARRAY_SIZE(gang), 4810 BTRFS_ROOT_TRANS_TAG); 4811 if (ret == 0) 4812 break; 4813 for (i = 0; i < ret; i++) { 4814 struct btrfs_root *root = gang[i]; 4815 4816 btrfs_qgroup_free_meta_all_pertrans(root); 4817 radix_tree_tag_clear(&fs_info->fs_roots_radix, 4818 (unsigned long)root->root_key.objectid, 4819 BTRFS_ROOT_TRANS_TAG); 4820 } 4821 } 4822 spin_unlock(&fs_info->fs_roots_radix_lock); 4823 } 4824 4825 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4826 struct btrfs_fs_info *fs_info) 4827 { 4828 struct btrfs_device *dev, *tmp; 4829 4830 btrfs_cleanup_dirty_bgs(cur_trans, fs_info); 4831 ASSERT(list_empty(&cur_trans->dirty_bgs)); 4832 ASSERT(list_empty(&cur_trans->io_bgs)); 4833 4834 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list, 4835 post_commit_list) { 4836 list_del_init(&dev->post_commit_list); 4837 } 4838 4839 btrfs_destroy_delayed_refs(cur_trans, fs_info); 4840 4841 cur_trans->state = TRANS_STATE_COMMIT_START; 4842 wake_up(&fs_info->transaction_blocked_wait); 4843 4844 cur_trans->state = TRANS_STATE_UNBLOCKED; 4845 wake_up(&fs_info->transaction_wait); 4846 4847 btrfs_destroy_delayed_inodes(fs_info); 4848 4849 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages, 4850 EXTENT_DIRTY); 4851 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents); 4852 4853 btrfs_free_all_qgroup_pertrans(fs_info); 4854 4855 cur_trans->state =TRANS_STATE_COMPLETED; 4856 wake_up(&cur_trans->commit_wait); 4857 } 4858 4859 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info) 4860 { 4861 struct btrfs_transaction *t; 4862 4863 mutex_lock(&fs_info->transaction_kthread_mutex); 4864 4865 spin_lock(&fs_info->trans_lock); 4866 while (!list_empty(&fs_info->trans_list)) { 4867 t = list_first_entry(&fs_info->trans_list, 4868 struct btrfs_transaction, list); 4869 if (t->state >= TRANS_STATE_COMMIT_PREP) { 4870 refcount_inc(&t->use_count); 4871 spin_unlock(&fs_info->trans_lock); 4872 btrfs_wait_for_commit(fs_info, t->transid); 4873 btrfs_put_transaction(t); 4874 spin_lock(&fs_info->trans_lock); 4875 continue; 4876 } 4877 if (t == fs_info->running_transaction) { 4878 t->state = TRANS_STATE_COMMIT_DOING; 4879 spin_unlock(&fs_info->trans_lock); 4880 /* 4881 * We wait for 0 num_writers since we don't hold a trans 4882 * handle open currently for this transaction. 4883 */ 4884 wait_event(t->writer_wait, 4885 atomic_read(&t->num_writers) == 0); 4886 } else { 4887 spin_unlock(&fs_info->trans_lock); 4888 } 4889 btrfs_cleanup_one_transaction(t, fs_info); 4890 4891 spin_lock(&fs_info->trans_lock); 4892 if (t == fs_info->running_transaction) 4893 fs_info->running_transaction = NULL; 4894 list_del_init(&t->list); 4895 spin_unlock(&fs_info->trans_lock); 4896 4897 btrfs_put_transaction(t); 4898 trace_btrfs_transaction_commit(fs_info); 4899 spin_lock(&fs_info->trans_lock); 4900 } 4901 spin_unlock(&fs_info->trans_lock); 4902 btrfs_destroy_all_ordered_extents(fs_info); 4903 btrfs_destroy_delayed_inodes(fs_info); 4904 btrfs_assert_delayed_root_empty(fs_info); 4905 btrfs_destroy_all_delalloc_inodes(fs_info); 4906 btrfs_drop_all_logs(fs_info); 4907 mutex_unlock(&fs_info->transaction_kthread_mutex); 4908 4909 return 0; 4910 } 4911 4912 int btrfs_init_root_free_objectid(struct btrfs_root *root) 4913 { 4914 struct btrfs_path *path; 4915 int ret; 4916 struct extent_buffer *l; 4917 struct btrfs_key search_key; 4918 struct btrfs_key found_key; 4919 int slot; 4920 4921 path = btrfs_alloc_path(); 4922 if (!path) 4923 return -ENOMEM; 4924 4925 search_key.objectid = BTRFS_LAST_FREE_OBJECTID; 4926 search_key.type = -1; 4927 search_key.offset = (u64)-1; 4928 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 4929 if (ret < 0) 4930 goto error; 4931 if (ret == 0) { 4932 /* 4933 * Key with offset -1 found, there would have to exist a root 4934 * with such id, but this is out of valid range. 4935 */ 4936 ret = -EUCLEAN; 4937 goto error; 4938 } 4939 if (path->slots[0] > 0) { 4940 slot = path->slots[0] - 1; 4941 l = path->nodes[0]; 4942 btrfs_item_key_to_cpu(l, &found_key, slot); 4943 root->free_objectid = max_t(u64, found_key.objectid + 1, 4944 BTRFS_FIRST_FREE_OBJECTID); 4945 } else { 4946 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID; 4947 } 4948 ret = 0; 4949 error: 4950 btrfs_free_path(path); 4951 return ret; 4952 } 4953 4954 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid) 4955 { 4956 int ret; 4957 mutex_lock(&root->objectid_mutex); 4958 4959 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) { 4960 btrfs_warn(root->fs_info, 4961 "the objectid of root %llu reaches its highest value", 4962 root->root_key.objectid); 4963 ret = -ENOSPC; 4964 goto out; 4965 } 4966 4967 *objectid = root->free_objectid++; 4968 ret = 0; 4969 out: 4970 mutex_unlock(&root->objectid_mutex); 4971 return ret; 4972 } 4973