1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/slab.h> 29 #include <linux/migrate.h> 30 #include <linux/ratelimit.h> 31 #include <linux/uuid.h> 32 #include <linux/semaphore.h> 33 #include <asm/unaligned.h> 34 #include "ctree.h" 35 #include "disk-io.h" 36 #include "hash.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "locking.h" 42 #include "tree-log.h" 43 #include "free-space-cache.h" 44 #include "free-space-tree.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 #include "compression.h" 53 54 #ifdef CONFIG_X86 55 #include <asm/cpufeature.h> 56 #endif 57 58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ 59 BTRFS_HEADER_FLAG_RELOC |\ 60 BTRFS_SUPER_FLAG_ERROR |\ 61 BTRFS_SUPER_FLAG_SEEDING |\ 62 BTRFS_SUPER_FLAG_METADUMP) 63 64 static const struct extent_io_ops btree_extent_io_ops; 65 static void end_workqueue_fn(struct btrfs_work *work); 66 static void free_fs_root(struct btrfs_root *root); 67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 68 int read_only); 69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 71 struct btrfs_root *root); 72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 73 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 74 struct extent_io_tree *dirty_pages, 75 int mark); 76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 77 struct extent_io_tree *pinned_extents); 78 static int btrfs_cleanup_transaction(struct btrfs_root *root); 79 static void btrfs_error_commit_super(struct btrfs_root *root); 80 81 /* 82 * btrfs_end_io_wq structs are used to do processing in task context when an IO 83 * is complete. This is used during reads to verify checksums, and it is used 84 * by writes to insert metadata for new file extents after IO is complete. 85 */ 86 struct btrfs_end_io_wq { 87 struct bio *bio; 88 bio_end_io_t *end_io; 89 void *private; 90 struct btrfs_fs_info *info; 91 int error; 92 enum btrfs_wq_endio_type metadata; 93 struct list_head list; 94 struct btrfs_work work; 95 }; 96 97 static struct kmem_cache *btrfs_end_io_wq_cache; 98 99 int __init btrfs_end_io_wq_init(void) 100 { 101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 102 sizeof(struct btrfs_end_io_wq), 103 0, 104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 105 NULL); 106 if (!btrfs_end_io_wq_cache) 107 return -ENOMEM; 108 return 0; 109 } 110 111 void btrfs_end_io_wq_exit(void) 112 { 113 kmem_cache_destroy(btrfs_end_io_wq_cache); 114 } 115 116 /* 117 * async submit bios are used to offload expensive checksumming 118 * onto the worker threads. They checksum file and metadata bios 119 * just before they are sent down the IO stack. 120 */ 121 struct async_submit_bio { 122 struct inode *inode; 123 struct bio *bio; 124 struct list_head list; 125 extent_submit_bio_hook_t *submit_bio_start; 126 extent_submit_bio_hook_t *submit_bio_done; 127 int rw; 128 int mirror_num; 129 unsigned long bio_flags; 130 /* 131 * bio_offset is optional, can be used if the pages in the bio 132 * can't tell us where in the file the bio should go 133 */ 134 u64 bio_offset; 135 struct btrfs_work work; 136 int error; 137 }; 138 139 /* 140 * Lockdep class keys for extent_buffer->lock's in this root. For a given 141 * eb, the lockdep key is determined by the btrfs_root it belongs to and 142 * the level the eb occupies in the tree. 143 * 144 * Different roots are used for different purposes and may nest inside each 145 * other and they require separate keysets. As lockdep keys should be 146 * static, assign keysets according to the purpose of the root as indicated 147 * by btrfs_root->objectid. This ensures that all special purpose roots 148 * have separate keysets. 149 * 150 * Lock-nesting across peer nodes is always done with the immediate parent 151 * node locked thus preventing deadlock. As lockdep doesn't know this, use 152 * subclass to avoid triggering lockdep warning in such cases. 153 * 154 * The key is set by the readpage_end_io_hook after the buffer has passed 155 * csum validation but before the pages are unlocked. It is also set by 156 * btrfs_init_new_buffer on freshly allocated blocks. 157 * 158 * We also add a check to make sure the highest level of the tree is the 159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 160 * needs update as well. 161 */ 162 #ifdef CONFIG_DEBUG_LOCK_ALLOC 163 # if BTRFS_MAX_LEVEL != 8 164 # error 165 # endif 166 167 static struct btrfs_lockdep_keyset { 168 u64 id; /* root objectid */ 169 const char *name_stem; /* lock name stem */ 170 char names[BTRFS_MAX_LEVEL + 1][20]; 171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 172 } btrfs_lockdep_keysets[] = { 173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, 185 { .id = 0, .name_stem = "tree" }, 186 }; 187 188 void __init btrfs_init_lockdep(void) 189 { 190 int i, j; 191 192 /* initialize lockdep class names */ 193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 195 196 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 197 snprintf(ks->names[j], sizeof(ks->names[j]), 198 "btrfs-%s-%02d", ks->name_stem, j); 199 } 200 } 201 202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 203 int level) 204 { 205 struct btrfs_lockdep_keyset *ks; 206 207 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 208 209 /* find the matching keyset, id 0 is the default entry */ 210 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 211 if (ks->id == objectid) 212 break; 213 214 lockdep_set_class_and_name(&eb->lock, 215 &ks->keys[level], ks->names[level]); 216 } 217 218 #endif 219 220 /* 221 * extents on the btree inode are pretty simple, there's one extent 222 * that covers the entire device 223 */ 224 static struct extent_map *btree_get_extent(struct inode *inode, 225 struct page *page, size_t pg_offset, u64 start, u64 len, 226 int create) 227 { 228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 229 struct extent_map *em; 230 int ret; 231 232 read_lock(&em_tree->lock); 233 em = lookup_extent_mapping(em_tree, start, len); 234 if (em) { 235 em->bdev = 236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 237 read_unlock(&em_tree->lock); 238 goto out; 239 } 240 read_unlock(&em_tree->lock); 241 242 em = alloc_extent_map(); 243 if (!em) { 244 em = ERR_PTR(-ENOMEM); 245 goto out; 246 } 247 em->start = 0; 248 em->len = (u64)-1; 249 em->block_len = (u64)-1; 250 em->block_start = 0; 251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 252 253 write_lock(&em_tree->lock); 254 ret = add_extent_mapping(em_tree, em, 0); 255 if (ret == -EEXIST) { 256 free_extent_map(em); 257 em = lookup_extent_mapping(em_tree, start, len); 258 if (!em) 259 em = ERR_PTR(-EIO); 260 } else if (ret) { 261 free_extent_map(em); 262 em = ERR_PTR(ret); 263 } 264 write_unlock(&em_tree->lock); 265 266 out: 267 return em; 268 } 269 270 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 271 { 272 return btrfs_crc32c(seed, data, len); 273 } 274 275 void btrfs_csum_final(u32 crc, char *result) 276 { 277 put_unaligned_le32(~crc, result); 278 } 279 280 /* 281 * compute the csum for a btree block, and either verify it or write it 282 * into the csum field of the block. 283 */ 284 static int csum_tree_block(struct btrfs_fs_info *fs_info, 285 struct extent_buffer *buf, 286 int verify) 287 { 288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 289 char *result = NULL; 290 unsigned long len; 291 unsigned long cur_len; 292 unsigned long offset = BTRFS_CSUM_SIZE; 293 char *kaddr; 294 unsigned long map_start; 295 unsigned long map_len; 296 int err; 297 u32 crc = ~(u32)0; 298 unsigned long inline_result; 299 300 len = buf->len - offset; 301 while (len > 0) { 302 err = map_private_extent_buffer(buf, offset, 32, 303 &kaddr, &map_start, &map_len); 304 if (err) 305 return err; 306 cur_len = min(len, map_len - (offset - map_start)); 307 crc = btrfs_csum_data(kaddr + offset - map_start, 308 crc, cur_len); 309 len -= cur_len; 310 offset += cur_len; 311 } 312 if (csum_size > sizeof(inline_result)) { 313 result = kzalloc(csum_size, GFP_NOFS); 314 if (!result) 315 return -ENOMEM; 316 } else { 317 result = (char *)&inline_result; 318 } 319 320 btrfs_csum_final(crc, result); 321 322 if (verify) { 323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 324 u32 val; 325 u32 found = 0; 326 memcpy(&found, result, csum_size); 327 328 read_extent_buffer(buf, &val, 0, csum_size); 329 btrfs_warn_rl(fs_info, 330 "%s checksum verify failed on %llu wanted %X found %X " 331 "level %d", 332 fs_info->sb->s_id, buf->start, 333 val, found, btrfs_header_level(buf)); 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return -EUCLEAN; 337 } 338 } else { 339 write_extent_buffer(buf, result, 0, csum_size); 340 } 341 if (result != (char *)&inline_result) 342 kfree(result); 343 return 0; 344 } 345 346 /* 347 * we can't consider a given block up to date unless the transid of the 348 * block matches the transid in the parent node's pointer. This is how we 349 * detect blocks that either didn't get written at all or got written 350 * in the wrong place. 351 */ 352 static int verify_parent_transid(struct extent_io_tree *io_tree, 353 struct extent_buffer *eb, u64 parent_transid, 354 int atomic) 355 { 356 struct extent_state *cached_state = NULL; 357 int ret; 358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 359 360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 361 return 0; 362 363 if (atomic) 364 return -EAGAIN; 365 366 if (need_lock) { 367 btrfs_tree_read_lock(eb); 368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 369 } 370 371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 372 &cached_state); 373 if (extent_buffer_uptodate(eb) && 374 btrfs_header_generation(eb) == parent_transid) { 375 ret = 0; 376 goto out; 377 } 378 btrfs_err_rl(eb->fs_info, 379 "parent transid verify failed on %llu wanted %llu found %llu", 380 eb->start, 381 parent_transid, btrfs_header_generation(eb)); 382 ret = 1; 383 384 /* 385 * Things reading via commit roots that don't have normal protection, 386 * like send, can have a really old block in cache that may point at a 387 * block that has been freed and re-allocated. So don't clear uptodate 388 * if we find an eb that is under IO (dirty/writeback) because we could 389 * end up reading in the stale data and then writing it back out and 390 * making everybody very sad. 391 */ 392 if (!extent_buffer_under_io(eb)) 393 clear_extent_buffer_uptodate(eb); 394 out: 395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 396 &cached_state, GFP_NOFS); 397 if (need_lock) 398 btrfs_tree_read_unlock_blocking(eb); 399 return ret; 400 } 401 402 /* 403 * Return 0 if the superblock checksum type matches the checksum value of that 404 * algorithm. Pass the raw disk superblock data. 405 */ 406 static int btrfs_check_super_csum(char *raw_disk_sb) 407 { 408 struct btrfs_super_block *disk_sb = 409 (struct btrfs_super_block *)raw_disk_sb; 410 u16 csum_type = btrfs_super_csum_type(disk_sb); 411 int ret = 0; 412 413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 414 u32 crc = ~(u32)0; 415 const int csum_size = sizeof(crc); 416 char result[csum_size]; 417 418 /* 419 * The super_block structure does not span the whole 420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 421 * is filled with zeros and is included in the checksum. 422 */ 423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 425 btrfs_csum_final(crc, result); 426 427 if (memcmp(raw_disk_sb, result, csum_size)) 428 ret = 1; 429 } 430 431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 433 csum_type); 434 ret = 1; 435 } 436 437 return ret; 438 } 439 440 /* 441 * helper to read a given tree block, doing retries as required when 442 * the checksums don't match and we have alternate mirrors to try. 443 */ 444 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 445 struct extent_buffer *eb, 446 u64 start, u64 parent_transid) 447 { 448 struct extent_io_tree *io_tree; 449 int failed = 0; 450 int ret; 451 int num_copies = 0; 452 int mirror_num = 0; 453 int failed_mirror = 0; 454 455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 457 while (1) { 458 ret = read_extent_buffer_pages(io_tree, eb, start, 459 WAIT_COMPLETE, 460 btree_get_extent, mirror_num); 461 if (!ret) { 462 if (!verify_parent_transid(io_tree, eb, 463 parent_transid, 0)) 464 break; 465 else 466 ret = -EIO; 467 } 468 469 /* 470 * This buffer's crc is fine, but its contents are corrupted, so 471 * there is no reason to read the other copies, they won't be 472 * any less wrong. 473 */ 474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 475 break; 476 477 num_copies = btrfs_num_copies(root->fs_info, 478 eb->start, eb->len); 479 if (num_copies == 1) 480 break; 481 482 if (!failed_mirror) { 483 failed = 1; 484 failed_mirror = eb->read_mirror; 485 } 486 487 mirror_num++; 488 if (mirror_num == failed_mirror) 489 mirror_num++; 490 491 if (mirror_num > num_copies) 492 break; 493 } 494 495 if (failed && !ret && failed_mirror) 496 repair_eb_io_failure(root, eb, failed_mirror); 497 498 return ret; 499 } 500 501 /* 502 * checksum a dirty tree block before IO. This has extra checks to make sure 503 * we only fill in the checksum field in the first page of a multi-page block 504 */ 505 506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 507 { 508 u64 start = page_offset(page); 509 u64 found_start; 510 struct extent_buffer *eb; 511 512 eb = (struct extent_buffer *)page->private; 513 if (page != eb->pages[0]) 514 return 0; 515 516 found_start = btrfs_header_bytenr(eb); 517 /* 518 * Please do not consolidate these warnings into a single if. 519 * It is useful to know what went wrong. 520 */ 521 if (WARN_ON(found_start != start)) 522 return -EUCLEAN; 523 if (WARN_ON(!PageUptodate(page))) 524 return -EUCLEAN; 525 526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, 527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); 528 529 return csum_tree_block(fs_info, eb, 0); 530 } 531 532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 533 struct extent_buffer *eb) 534 { 535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 536 u8 fsid[BTRFS_UUID_SIZE]; 537 int ret = 1; 538 539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 540 while (fs_devices) { 541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 542 ret = 0; 543 break; 544 } 545 fs_devices = fs_devices->seed; 546 } 547 return ret; 548 } 549 550 #define CORRUPT(reason, eb, root, slot) \ 551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 552 "root=%llu, slot=%d", reason, \ 553 btrfs_header_bytenr(eb), root->objectid, slot) 554 555 static noinline int check_leaf(struct btrfs_root *root, 556 struct extent_buffer *leaf) 557 { 558 struct btrfs_key key; 559 struct btrfs_key leaf_key; 560 u32 nritems = btrfs_header_nritems(leaf); 561 int slot; 562 563 if (nritems == 0) 564 return 0; 565 566 /* Check the 0 item */ 567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 568 BTRFS_LEAF_DATA_SIZE(root)) { 569 CORRUPT("invalid item offset size pair", leaf, root, 0); 570 return -EIO; 571 } 572 573 /* 574 * Check to make sure each items keys are in the correct order and their 575 * offsets make sense. We only have to loop through nritems-1 because 576 * we check the current slot against the next slot, which verifies the 577 * next slot's offset+size makes sense and that the current's slot 578 * offset is correct. 579 */ 580 for (slot = 0; slot < nritems - 1; slot++) { 581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 582 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 583 584 /* Make sure the keys are in the right order */ 585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 586 CORRUPT("bad key order", leaf, root, slot); 587 return -EIO; 588 } 589 590 /* 591 * Make sure the offset and ends are right, remember that the 592 * item data starts at the end of the leaf and grows towards the 593 * front. 594 */ 595 if (btrfs_item_offset_nr(leaf, slot) != 596 btrfs_item_end_nr(leaf, slot + 1)) { 597 CORRUPT("slot offset bad", leaf, root, slot); 598 return -EIO; 599 } 600 601 /* 602 * Check to make sure that we don't point outside of the leaf, 603 * just in case all the items are consistent to each other, but 604 * all point outside of the leaf. 605 */ 606 if (btrfs_item_end_nr(leaf, slot) > 607 BTRFS_LEAF_DATA_SIZE(root)) { 608 CORRUPT("slot end outside of leaf", leaf, root, slot); 609 return -EIO; 610 } 611 } 612 613 return 0; 614 } 615 616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 617 u64 phy_offset, struct page *page, 618 u64 start, u64 end, int mirror) 619 { 620 u64 found_start; 621 int found_level; 622 struct extent_buffer *eb; 623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 int ret = 0; 626 int reads_done; 627 628 if (!page->private) 629 goto out; 630 631 eb = (struct extent_buffer *)page->private; 632 633 /* the pending IO might have been the only thing that kept this buffer 634 * in memory. Make sure we have a ref for all this other checks 635 */ 636 extent_buffer_get(eb); 637 638 reads_done = atomic_dec_and_test(&eb->io_pages); 639 if (!reads_done) 640 goto err; 641 642 eb->read_mirror = mirror; 643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 644 ret = -EIO; 645 goto err; 646 } 647 648 found_start = btrfs_header_bytenr(eb); 649 if (found_start != eb->start) { 650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu", 651 found_start, eb->start); 652 ret = -EIO; 653 goto err; 654 } 655 if (check_tree_block_fsid(fs_info, eb)) { 656 btrfs_err_rl(fs_info, "bad fsid on block %llu", 657 eb->start); 658 ret = -EIO; 659 goto err; 660 } 661 found_level = btrfs_header_level(eb); 662 if (found_level >= BTRFS_MAX_LEVEL) { 663 btrfs_err(fs_info, "bad tree block level %d", 664 (int)btrfs_header_level(eb)); 665 ret = -EIO; 666 goto err; 667 } 668 669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 670 eb, found_level); 671 672 ret = csum_tree_block(fs_info, eb, 1); 673 if (ret) 674 goto err; 675 676 /* 677 * If this is a leaf block and it is corrupt, set the corrupt bit so 678 * that we don't try and read the other copies of this block, just 679 * return -EIO. 680 */ 681 if (found_level == 0 && check_leaf(root, eb)) { 682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 683 ret = -EIO; 684 } 685 686 if (!ret) 687 set_extent_buffer_uptodate(eb); 688 err: 689 if (reads_done && 690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 691 btree_readahead_hook(fs_info, eb, eb->start, ret); 692 693 if (ret) { 694 /* 695 * our io error hook is going to dec the io pages 696 * again, we have to make sure it has something 697 * to decrement 698 */ 699 atomic_inc(&eb->io_pages); 700 clear_extent_buffer_uptodate(eb); 701 } 702 free_extent_buffer(eb); 703 out: 704 return ret; 705 } 706 707 static int btree_io_failed_hook(struct page *page, int failed_mirror) 708 { 709 struct extent_buffer *eb; 710 711 eb = (struct extent_buffer *)page->private; 712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 713 eb->read_mirror = failed_mirror; 714 atomic_dec(&eb->io_pages); 715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO); 717 return -EIO; /* we fixed nothing */ 718 } 719 720 static void end_workqueue_bio(struct bio *bio) 721 { 722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 723 struct btrfs_fs_info *fs_info; 724 struct btrfs_workqueue *wq; 725 btrfs_work_func_t func; 726 727 fs_info = end_io_wq->info; 728 end_io_wq->error = bio->bi_error; 729 730 if (bio->bi_rw & REQ_WRITE) { 731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 732 wq = fs_info->endio_meta_write_workers; 733 func = btrfs_endio_meta_write_helper; 734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 735 wq = fs_info->endio_freespace_worker; 736 func = btrfs_freespace_write_helper; 737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 738 wq = fs_info->endio_raid56_workers; 739 func = btrfs_endio_raid56_helper; 740 } else { 741 wq = fs_info->endio_write_workers; 742 func = btrfs_endio_write_helper; 743 } 744 } else { 745 if (unlikely(end_io_wq->metadata == 746 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 747 wq = fs_info->endio_repair_workers; 748 func = btrfs_endio_repair_helper; 749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 750 wq = fs_info->endio_raid56_workers; 751 func = btrfs_endio_raid56_helper; 752 } else if (end_io_wq->metadata) { 753 wq = fs_info->endio_meta_workers; 754 func = btrfs_endio_meta_helper; 755 } else { 756 wq = fs_info->endio_workers; 757 func = btrfs_endio_helper; 758 } 759 } 760 761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 762 btrfs_queue_work(wq, &end_io_wq->work); 763 } 764 765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 766 enum btrfs_wq_endio_type metadata) 767 { 768 struct btrfs_end_io_wq *end_io_wq; 769 770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 771 if (!end_io_wq) 772 return -ENOMEM; 773 774 end_io_wq->private = bio->bi_private; 775 end_io_wq->end_io = bio->bi_end_io; 776 end_io_wq->info = info; 777 end_io_wq->error = 0; 778 end_io_wq->bio = bio; 779 end_io_wq->metadata = metadata; 780 781 bio->bi_private = end_io_wq; 782 bio->bi_end_io = end_workqueue_bio; 783 return 0; 784 } 785 786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 787 { 788 unsigned long limit = min_t(unsigned long, 789 info->thread_pool_size, 790 info->fs_devices->open_devices); 791 return 256 * limit; 792 } 793 794 static void run_one_async_start(struct btrfs_work *work) 795 { 796 struct async_submit_bio *async; 797 int ret; 798 799 async = container_of(work, struct async_submit_bio, work); 800 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 801 async->mirror_num, async->bio_flags, 802 async->bio_offset); 803 if (ret) 804 async->error = ret; 805 } 806 807 static void run_one_async_done(struct btrfs_work *work) 808 { 809 struct btrfs_fs_info *fs_info; 810 struct async_submit_bio *async; 811 int limit; 812 813 async = container_of(work, struct async_submit_bio, work); 814 fs_info = BTRFS_I(async->inode)->root->fs_info; 815 816 limit = btrfs_async_submit_limit(fs_info); 817 limit = limit * 2 / 3; 818 819 /* 820 * atomic_dec_return implies a barrier for waitqueue_active 821 */ 822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 823 waitqueue_active(&fs_info->async_submit_wait)) 824 wake_up(&fs_info->async_submit_wait); 825 826 /* If an error occurred we just want to clean up the bio and move on */ 827 if (async->error) { 828 async->bio->bi_error = async->error; 829 bio_endio(async->bio); 830 return; 831 } 832 833 async->submit_bio_done(async->inode, async->rw, async->bio, 834 async->mirror_num, async->bio_flags, 835 async->bio_offset); 836 } 837 838 static void run_one_async_free(struct btrfs_work *work) 839 { 840 struct async_submit_bio *async; 841 842 async = container_of(work, struct async_submit_bio, work); 843 kfree(async); 844 } 845 846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 847 int rw, struct bio *bio, int mirror_num, 848 unsigned long bio_flags, 849 u64 bio_offset, 850 extent_submit_bio_hook_t *submit_bio_start, 851 extent_submit_bio_hook_t *submit_bio_done) 852 { 853 struct async_submit_bio *async; 854 855 async = kmalloc(sizeof(*async), GFP_NOFS); 856 if (!async) 857 return -ENOMEM; 858 859 async->inode = inode; 860 async->rw = rw; 861 async->bio = bio; 862 async->mirror_num = mirror_num; 863 async->submit_bio_start = submit_bio_start; 864 async->submit_bio_done = submit_bio_done; 865 866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 867 run_one_async_done, run_one_async_free); 868 869 async->bio_flags = bio_flags; 870 async->bio_offset = bio_offset; 871 872 async->error = 0; 873 874 atomic_inc(&fs_info->nr_async_submits); 875 876 if (rw & REQ_SYNC) 877 btrfs_set_work_high_priority(&async->work); 878 879 btrfs_queue_work(fs_info->workers, &async->work); 880 881 while (atomic_read(&fs_info->async_submit_draining) && 882 atomic_read(&fs_info->nr_async_submits)) { 883 wait_event(fs_info->async_submit_wait, 884 (atomic_read(&fs_info->nr_async_submits) == 0)); 885 } 886 887 return 0; 888 } 889 890 static int btree_csum_one_bio(struct bio *bio) 891 { 892 struct bio_vec *bvec; 893 struct btrfs_root *root; 894 int i, ret = 0; 895 896 bio_for_each_segment_all(bvec, bio, i) { 897 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 899 if (ret) 900 break; 901 } 902 903 return ret; 904 } 905 906 static int __btree_submit_bio_start(struct inode *inode, int rw, 907 struct bio *bio, int mirror_num, 908 unsigned long bio_flags, 909 u64 bio_offset) 910 { 911 /* 912 * when we're called for a write, we're already in the async 913 * submission context. Just jump into btrfs_map_bio 914 */ 915 return btree_csum_one_bio(bio); 916 } 917 918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 919 int mirror_num, unsigned long bio_flags, 920 u64 bio_offset) 921 { 922 int ret; 923 924 /* 925 * when we're called for a write, we're already in the async 926 * submission context. Just jump into btrfs_map_bio 927 */ 928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 929 if (ret) { 930 bio->bi_error = ret; 931 bio_endio(bio); 932 } 933 return ret; 934 } 935 936 static int check_async_write(struct inode *inode, unsigned long bio_flags) 937 { 938 if (bio_flags & EXTENT_BIO_TREE_LOG) 939 return 0; 940 #ifdef CONFIG_X86 941 if (static_cpu_has(X86_FEATURE_XMM4_2)) 942 return 0; 943 #endif 944 return 1; 945 } 946 947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 948 int mirror_num, unsigned long bio_flags, 949 u64 bio_offset) 950 { 951 int async = check_async_write(inode, bio_flags); 952 int ret; 953 954 if (!(rw & REQ_WRITE)) { 955 /* 956 * called for a read, do the setup so that checksum validation 957 * can happen in the async kernel threads 958 */ 959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 960 bio, BTRFS_WQ_ENDIO_METADATA); 961 if (ret) 962 goto out_w_error; 963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 964 mirror_num, 0); 965 } else if (!async) { 966 ret = btree_csum_one_bio(bio); 967 if (ret) 968 goto out_w_error; 969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 970 mirror_num, 0); 971 } else { 972 /* 973 * kthread helpers are used to submit writes so that 974 * checksumming can happen in parallel across all CPUs 975 */ 976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 977 inode, rw, bio, mirror_num, 0, 978 bio_offset, 979 __btree_submit_bio_start, 980 __btree_submit_bio_done); 981 } 982 983 if (ret) 984 goto out_w_error; 985 return 0; 986 987 out_w_error: 988 bio->bi_error = ret; 989 bio_endio(bio); 990 return ret; 991 } 992 993 #ifdef CONFIG_MIGRATION 994 static int btree_migratepage(struct address_space *mapping, 995 struct page *newpage, struct page *page, 996 enum migrate_mode mode) 997 { 998 /* 999 * we can't safely write a btree page from here, 1000 * we haven't done the locking hook 1001 */ 1002 if (PageDirty(page)) 1003 return -EAGAIN; 1004 /* 1005 * Buffers may be managed in a filesystem specific way. 1006 * We must have no buffers or drop them. 1007 */ 1008 if (page_has_private(page) && 1009 !try_to_release_page(page, GFP_KERNEL)) 1010 return -EAGAIN; 1011 return migrate_page(mapping, newpage, page, mode); 1012 } 1013 #endif 1014 1015 1016 static int btree_writepages(struct address_space *mapping, 1017 struct writeback_control *wbc) 1018 { 1019 struct btrfs_fs_info *fs_info; 1020 int ret; 1021 1022 if (wbc->sync_mode == WB_SYNC_NONE) { 1023 1024 if (wbc->for_kupdate) 1025 return 0; 1026 1027 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1028 /* this is a bit racy, but that's ok */ 1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1030 BTRFS_DIRTY_METADATA_THRESH); 1031 if (ret < 0) 1032 return 0; 1033 } 1034 return btree_write_cache_pages(mapping, wbc); 1035 } 1036 1037 static int btree_readpage(struct file *file, struct page *page) 1038 { 1039 struct extent_io_tree *tree; 1040 tree = &BTRFS_I(page->mapping->host)->io_tree; 1041 return extent_read_full_page(tree, page, btree_get_extent, 0); 1042 } 1043 1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1045 { 1046 if (PageWriteback(page) || PageDirty(page)) 1047 return 0; 1048 1049 return try_release_extent_buffer(page); 1050 } 1051 1052 static void btree_invalidatepage(struct page *page, unsigned int offset, 1053 unsigned int length) 1054 { 1055 struct extent_io_tree *tree; 1056 tree = &BTRFS_I(page->mapping->host)->io_tree; 1057 extent_invalidatepage(tree, page, offset); 1058 btree_releasepage(page, GFP_NOFS); 1059 if (PagePrivate(page)) { 1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1061 "page private not zero on page %llu", 1062 (unsigned long long)page_offset(page)); 1063 ClearPagePrivate(page); 1064 set_page_private(page, 0); 1065 put_page(page); 1066 } 1067 } 1068 1069 static int btree_set_page_dirty(struct page *page) 1070 { 1071 #ifdef DEBUG 1072 struct extent_buffer *eb; 1073 1074 BUG_ON(!PagePrivate(page)); 1075 eb = (struct extent_buffer *)page->private; 1076 BUG_ON(!eb); 1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1078 BUG_ON(!atomic_read(&eb->refs)); 1079 btrfs_assert_tree_locked(eb); 1080 #endif 1081 return __set_page_dirty_nobuffers(page); 1082 } 1083 1084 static const struct address_space_operations btree_aops = { 1085 .readpage = btree_readpage, 1086 .writepages = btree_writepages, 1087 .releasepage = btree_releasepage, 1088 .invalidatepage = btree_invalidatepage, 1089 #ifdef CONFIG_MIGRATION 1090 .migratepage = btree_migratepage, 1091 #endif 1092 .set_page_dirty = btree_set_page_dirty, 1093 }; 1094 1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1096 { 1097 struct extent_buffer *buf = NULL; 1098 struct inode *btree_inode = root->fs_info->btree_inode; 1099 1100 buf = btrfs_find_create_tree_block(root, bytenr); 1101 if (IS_ERR(buf)) 1102 return; 1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1104 buf, 0, WAIT_NONE, btree_get_extent, 0); 1105 free_extent_buffer(buf); 1106 } 1107 1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1109 int mirror_num, struct extent_buffer **eb) 1110 { 1111 struct extent_buffer *buf = NULL; 1112 struct inode *btree_inode = root->fs_info->btree_inode; 1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1114 int ret; 1115 1116 buf = btrfs_find_create_tree_block(root, bytenr); 1117 if (IS_ERR(buf)) 1118 return 0; 1119 1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1121 1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1123 btree_get_extent, mirror_num); 1124 if (ret) { 1125 free_extent_buffer(buf); 1126 return ret; 1127 } 1128 1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1130 free_extent_buffer(buf); 1131 return -EIO; 1132 } else if (extent_buffer_uptodate(buf)) { 1133 *eb = buf; 1134 } else { 1135 free_extent_buffer(buf); 1136 } 1137 return 0; 1138 } 1139 1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1141 u64 bytenr) 1142 { 1143 return find_extent_buffer(fs_info, bytenr); 1144 } 1145 1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1147 u64 bytenr) 1148 { 1149 if (btrfs_test_is_dummy_root(root)) 1150 return alloc_test_extent_buffer(root->fs_info, bytenr, 1151 root->nodesize); 1152 return alloc_extent_buffer(root->fs_info, bytenr); 1153 } 1154 1155 1156 int btrfs_write_tree_block(struct extent_buffer *buf) 1157 { 1158 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1159 buf->start + buf->len - 1); 1160 } 1161 1162 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1163 { 1164 return filemap_fdatawait_range(buf->pages[0]->mapping, 1165 buf->start, buf->start + buf->len - 1); 1166 } 1167 1168 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1169 u64 parent_transid) 1170 { 1171 struct extent_buffer *buf = NULL; 1172 int ret; 1173 1174 buf = btrfs_find_create_tree_block(root, bytenr); 1175 if (IS_ERR(buf)) 1176 return buf; 1177 1178 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1179 if (ret) { 1180 free_extent_buffer(buf); 1181 return ERR_PTR(ret); 1182 } 1183 return buf; 1184 1185 } 1186 1187 void clean_tree_block(struct btrfs_trans_handle *trans, 1188 struct btrfs_fs_info *fs_info, 1189 struct extent_buffer *buf) 1190 { 1191 if (btrfs_header_generation(buf) == 1192 fs_info->running_transaction->transid) { 1193 btrfs_assert_tree_locked(buf); 1194 1195 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1196 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1197 -buf->len, 1198 fs_info->dirty_metadata_batch); 1199 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1200 btrfs_set_lock_blocking(buf); 1201 clear_extent_buffer_dirty(buf); 1202 } 1203 } 1204 } 1205 1206 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1207 { 1208 struct btrfs_subvolume_writers *writers; 1209 int ret; 1210 1211 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1212 if (!writers) 1213 return ERR_PTR(-ENOMEM); 1214 1215 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1216 if (ret < 0) { 1217 kfree(writers); 1218 return ERR_PTR(ret); 1219 } 1220 1221 init_waitqueue_head(&writers->wait); 1222 return writers; 1223 } 1224 1225 static void 1226 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1227 { 1228 percpu_counter_destroy(&writers->counter); 1229 kfree(writers); 1230 } 1231 1232 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1233 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1234 u64 objectid) 1235 { 1236 root->node = NULL; 1237 root->commit_root = NULL; 1238 root->sectorsize = sectorsize; 1239 root->nodesize = nodesize; 1240 root->stripesize = stripesize; 1241 root->state = 0; 1242 root->orphan_cleanup_state = 0; 1243 1244 root->objectid = objectid; 1245 root->last_trans = 0; 1246 root->highest_objectid = 0; 1247 root->nr_delalloc_inodes = 0; 1248 root->nr_ordered_extents = 0; 1249 root->name = NULL; 1250 root->inode_tree = RB_ROOT; 1251 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1252 root->block_rsv = NULL; 1253 root->orphan_block_rsv = NULL; 1254 1255 INIT_LIST_HEAD(&root->dirty_list); 1256 INIT_LIST_HEAD(&root->root_list); 1257 INIT_LIST_HEAD(&root->delalloc_inodes); 1258 INIT_LIST_HEAD(&root->delalloc_root); 1259 INIT_LIST_HEAD(&root->ordered_extents); 1260 INIT_LIST_HEAD(&root->ordered_root); 1261 INIT_LIST_HEAD(&root->logged_list[0]); 1262 INIT_LIST_HEAD(&root->logged_list[1]); 1263 spin_lock_init(&root->orphan_lock); 1264 spin_lock_init(&root->inode_lock); 1265 spin_lock_init(&root->delalloc_lock); 1266 spin_lock_init(&root->ordered_extent_lock); 1267 spin_lock_init(&root->accounting_lock); 1268 spin_lock_init(&root->log_extents_lock[0]); 1269 spin_lock_init(&root->log_extents_lock[1]); 1270 mutex_init(&root->objectid_mutex); 1271 mutex_init(&root->log_mutex); 1272 mutex_init(&root->ordered_extent_mutex); 1273 mutex_init(&root->delalloc_mutex); 1274 init_waitqueue_head(&root->log_writer_wait); 1275 init_waitqueue_head(&root->log_commit_wait[0]); 1276 init_waitqueue_head(&root->log_commit_wait[1]); 1277 INIT_LIST_HEAD(&root->log_ctxs[0]); 1278 INIT_LIST_HEAD(&root->log_ctxs[1]); 1279 atomic_set(&root->log_commit[0], 0); 1280 atomic_set(&root->log_commit[1], 0); 1281 atomic_set(&root->log_writers, 0); 1282 atomic_set(&root->log_batch, 0); 1283 atomic_set(&root->orphan_inodes, 0); 1284 atomic_set(&root->refs, 1); 1285 atomic_set(&root->will_be_snapshoted, 0); 1286 atomic_set(&root->qgroup_meta_rsv, 0); 1287 root->log_transid = 0; 1288 root->log_transid_committed = -1; 1289 root->last_log_commit = 0; 1290 if (fs_info) 1291 extent_io_tree_init(&root->dirty_log_pages, 1292 fs_info->btree_inode->i_mapping); 1293 1294 memset(&root->root_key, 0, sizeof(root->root_key)); 1295 memset(&root->root_item, 0, sizeof(root->root_item)); 1296 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1297 if (fs_info) 1298 root->defrag_trans_start = fs_info->generation; 1299 else 1300 root->defrag_trans_start = 0; 1301 root->root_key.objectid = objectid; 1302 root->anon_dev = 0; 1303 1304 spin_lock_init(&root->root_item_lock); 1305 } 1306 1307 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, 1308 gfp_t flags) 1309 { 1310 struct btrfs_root *root = kzalloc(sizeof(*root), flags); 1311 if (root) 1312 root->fs_info = fs_info; 1313 return root; 1314 } 1315 1316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1317 /* Should only be used by the testing infrastructure */ 1318 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize) 1319 { 1320 struct btrfs_root *root; 1321 1322 root = btrfs_alloc_root(NULL, GFP_KERNEL); 1323 if (!root) 1324 return ERR_PTR(-ENOMEM); 1325 /* We don't use the stripesize in selftest, set it as sectorsize */ 1326 __setup_root(nodesize, sectorsize, sectorsize, root, NULL, 1327 BTRFS_ROOT_TREE_OBJECTID); 1328 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1329 root->alloc_bytenr = 0; 1330 1331 return root; 1332 } 1333 #endif 1334 1335 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1336 struct btrfs_fs_info *fs_info, 1337 u64 objectid) 1338 { 1339 struct extent_buffer *leaf; 1340 struct btrfs_root *tree_root = fs_info->tree_root; 1341 struct btrfs_root *root; 1342 struct btrfs_key key; 1343 int ret = 0; 1344 uuid_le uuid; 1345 1346 root = btrfs_alloc_root(fs_info, GFP_KERNEL); 1347 if (!root) 1348 return ERR_PTR(-ENOMEM); 1349 1350 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1351 tree_root->stripesize, root, fs_info, objectid); 1352 root->root_key.objectid = objectid; 1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1354 root->root_key.offset = 0; 1355 1356 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1357 if (IS_ERR(leaf)) { 1358 ret = PTR_ERR(leaf); 1359 leaf = NULL; 1360 goto fail; 1361 } 1362 1363 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1364 btrfs_set_header_bytenr(leaf, leaf->start); 1365 btrfs_set_header_generation(leaf, trans->transid); 1366 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1367 btrfs_set_header_owner(leaf, objectid); 1368 root->node = leaf; 1369 1370 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1371 BTRFS_FSID_SIZE); 1372 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1373 btrfs_header_chunk_tree_uuid(leaf), 1374 BTRFS_UUID_SIZE); 1375 btrfs_mark_buffer_dirty(leaf); 1376 1377 root->commit_root = btrfs_root_node(root); 1378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1379 1380 root->root_item.flags = 0; 1381 root->root_item.byte_limit = 0; 1382 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1383 btrfs_set_root_generation(&root->root_item, trans->transid); 1384 btrfs_set_root_level(&root->root_item, 0); 1385 btrfs_set_root_refs(&root->root_item, 1); 1386 btrfs_set_root_used(&root->root_item, leaf->len); 1387 btrfs_set_root_last_snapshot(&root->root_item, 0); 1388 btrfs_set_root_dirid(&root->root_item, 0); 1389 uuid_le_gen(&uuid); 1390 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1391 root->root_item.drop_level = 0; 1392 1393 key.objectid = objectid; 1394 key.type = BTRFS_ROOT_ITEM_KEY; 1395 key.offset = 0; 1396 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1397 if (ret) 1398 goto fail; 1399 1400 btrfs_tree_unlock(leaf); 1401 1402 return root; 1403 1404 fail: 1405 if (leaf) { 1406 btrfs_tree_unlock(leaf); 1407 free_extent_buffer(root->commit_root); 1408 free_extent_buffer(leaf); 1409 } 1410 kfree(root); 1411 1412 return ERR_PTR(ret); 1413 } 1414 1415 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1416 struct btrfs_fs_info *fs_info) 1417 { 1418 struct btrfs_root *root; 1419 struct btrfs_root *tree_root = fs_info->tree_root; 1420 struct extent_buffer *leaf; 1421 1422 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1423 if (!root) 1424 return ERR_PTR(-ENOMEM); 1425 1426 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1427 tree_root->stripesize, root, fs_info, 1428 BTRFS_TREE_LOG_OBJECTID); 1429 1430 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1431 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1432 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1433 1434 /* 1435 * DON'T set REF_COWS for log trees 1436 * 1437 * log trees do not get reference counted because they go away 1438 * before a real commit is actually done. They do store pointers 1439 * to file data extents, and those reference counts still get 1440 * updated (along with back refs to the log tree). 1441 */ 1442 1443 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1444 NULL, 0, 0, 0); 1445 if (IS_ERR(leaf)) { 1446 kfree(root); 1447 return ERR_CAST(leaf); 1448 } 1449 1450 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1451 btrfs_set_header_bytenr(leaf, leaf->start); 1452 btrfs_set_header_generation(leaf, trans->transid); 1453 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1454 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1455 root->node = leaf; 1456 1457 write_extent_buffer(root->node, root->fs_info->fsid, 1458 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1459 btrfs_mark_buffer_dirty(root->node); 1460 btrfs_tree_unlock(root->node); 1461 return root; 1462 } 1463 1464 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1465 struct btrfs_fs_info *fs_info) 1466 { 1467 struct btrfs_root *log_root; 1468 1469 log_root = alloc_log_tree(trans, fs_info); 1470 if (IS_ERR(log_root)) 1471 return PTR_ERR(log_root); 1472 WARN_ON(fs_info->log_root_tree); 1473 fs_info->log_root_tree = log_root; 1474 return 0; 1475 } 1476 1477 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1478 struct btrfs_root *root) 1479 { 1480 struct btrfs_root *log_root; 1481 struct btrfs_inode_item *inode_item; 1482 1483 log_root = alloc_log_tree(trans, root->fs_info); 1484 if (IS_ERR(log_root)) 1485 return PTR_ERR(log_root); 1486 1487 log_root->last_trans = trans->transid; 1488 log_root->root_key.offset = root->root_key.objectid; 1489 1490 inode_item = &log_root->root_item.inode; 1491 btrfs_set_stack_inode_generation(inode_item, 1); 1492 btrfs_set_stack_inode_size(inode_item, 3); 1493 btrfs_set_stack_inode_nlink(inode_item, 1); 1494 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1495 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1496 1497 btrfs_set_root_node(&log_root->root_item, log_root->node); 1498 1499 WARN_ON(root->log_root); 1500 root->log_root = log_root; 1501 root->log_transid = 0; 1502 root->log_transid_committed = -1; 1503 root->last_log_commit = 0; 1504 return 0; 1505 } 1506 1507 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1508 struct btrfs_key *key) 1509 { 1510 struct btrfs_root *root; 1511 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1512 struct btrfs_path *path; 1513 u64 generation; 1514 int ret; 1515 1516 path = btrfs_alloc_path(); 1517 if (!path) 1518 return ERR_PTR(-ENOMEM); 1519 1520 root = btrfs_alloc_root(fs_info, GFP_NOFS); 1521 if (!root) { 1522 ret = -ENOMEM; 1523 goto alloc_fail; 1524 } 1525 1526 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1527 tree_root->stripesize, root, fs_info, key->objectid); 1528 1529 ret = btrfs_find_root(tree_root, key, path, 1530 &root->root_item, &root->root_key); 1531 if (ret) { 1532 if (ret > 0) 1533 ret = -ENOENT; 1534 goto find_fail; 1535 } 1536 1537 generation = btrfs_root_generation(&root->root_item); 1538 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1539 generation); 1540 if (IS_ERR(root->node)) { 1541 ret = PTR_ERR(root->node); 1542 goto find_fail; 1543 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1544 ret = -EIO; 1545 free_extent_buffer(root->node); 1546 goto find_fail; 1547 } 1548 root->commit_root = btrfs_root_node(root); 1549 out: 1550 btrfs_free_path(path); 1551 return root; 1552 1553 find_fail: 1554 kfree(root); 1555 alloc_fail: 1556 root = ERR_PTR(ret); 1557 goto out; 1558 } 1559 1560 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1561 struct btrfs_key *location) 1562 { 1563 struct btrfs_root *root; 1564 1565 root = btrfs_read_tree_root(tree_root, location); 1566 if (IS_ERR(root)) 1567 return root; 1568 1569 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1570 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1571 btrfs_check_and_init_root_item(&root->root_item); 1572 } 1573 1574 return root; 1575 } 1576 1577 int btrfs_init_fs_root(struct btrfs_root *root) 1578 { 1579 int ret; 1580 struct btrfs_subvolume_writers *writers; 1581 1582 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1583 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1584 GFP_NOFS); 1585 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1586 ret = -ENOMEM; 1587 goto fail; 1588 } 1589 1590 writers = btrfs_alloc_subvolume_writers(); 1591 if (IS_ERR(writers)) { 1592 ret = PTR_ERR(writers); 1593 goto fail; 1594 } 1595 root->subv_writers = writers; 1596 1597 btrfs_init_free_ino_ctl(root); 1598 spin_lock_init(&root->ino_cache_lock); 1599 init_waitqueue_head(&root->ino_cache_wait); 1600 1601 ret = get_anon_bdev(&root->anon_dev); 1602 if (ret) 1603 goto free_writers; 1604 1605 mutex_lock(&root->objectid_mutex); 1606 ret = btrfs_find_highest_objectid(root, 1607 &root->highest_objectid); 1608 if (ret) { 1609 mutex_unlock(&root->objectid_mutex); 1610 goto free_root_dev; 1611 } 1612 1613 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 1614 1615 mutex_unlock(&root->objectid_mutex); 1616 1617 return 0; 1618 1619 free_root_dev: 1620 free_anon_bdev(root->anon_dev); 1621 free_writers: 1622 btrfs_free_subvolume_writers(root->subv_writers); 1623 fail: 1624 kfree(root->free_ino_ctl); 1625 kfree(root->free_ino_pinned); 1626 return ret; 1627 } 1628 1629 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1630 u64 root_id) 1631 { 1632 struct btrfs_root *root; 1633 1634 spin_lock(&fs_info->fs_roots_radix_lock); 1635 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1636 (unsigned long)root_id); 1637 spin_unlock(&fs_info->fs_roots_radix_lock); 1638 return root; 1639 } 1640 1641 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1642 struct btrfs_root *root) 1643 { 1644 int ret; 1645 1646 ret = radix_tree_preload(GFP_NOFS); 1647 if (ret) 1648 return ret; 1649 1650 spin_lock(&fs_info->fs_roots_radix_lock); 1651 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1652 (unsigned long)root->root_key.objectid, 1653 root); 1654 if (ret == 0) 1655 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1656 spin_unlock(&fs_info->fs_roots_radix_lock); 1657 radix_tree_preload_end(); 1658 1659 return ret; 1660 } 1661 1662 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1663 struct btrfs_key *location, 1664 bool check_ref) 1665 { 1666 struct btrfs_root *root; 1667 struct btrfs_path *path; 1668 struct btrfs_key key; 1669 int ret; 1670 1671 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1672 return fs_info->tree_root; 1673 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1674 return fs_info->extent_root; 1675 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1676 return fs_info->chunk_root; 1677 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1678 return fs_info->dev_root; 1679 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1680 return fs_info->csum_root; 1681 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1682 return fs_info->quota_root ? fs_info->quota_root : 1683 ERR_PTR(-ENOENT); 1684 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1685 return fs_info->uuid_root ? fs_info->uuid_root : 1686 ERR_PTR(-ENOENT); 1687 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 1688 return fs_info->free_space_root ? fs_info->free_space_root : 1689 ERR_PTR(-ENOENT); 1690 again: 1691 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1692 if (root) { 1693 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1694 return ERR_PTR(-ENOENT); 1695 return root; 1696 } 1697 1698 root = btrfs_read_fs_root(fs_info->tree_root, location); 1699 if (IS_ERR(root)) 1700 return root; 1701 1702 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1703 ret = -ENOENT; 1704 goto fail; 1705 } 1706 1707 ret = btrfs_init_fs_root(root); 1708 if (ret) 1709 goto fail; 1710 1711 path = btrfs_alloc_path(); 1712 if (!path) { 1713 ret = -ENOMEM; 1714 goto fail; 1715 } 1716 key.objectid = BTRFS_ORPHAN_OBJECTID; 1717 key.type = BTRFS_ORPHAN_ITEM_KEY; 1718 key.offset = location->objectid; 1719 1720 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1721 btrfs_free_path(path); 1722 if (ret < 0) 1723 goto fail; 1724 if (ret == 0) 1725 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1726 1727 ret = btrfs_insert_fs_root(fs_info, root); 1728 if (ret) { 1729 if (ret == -EEXIST) { 1730 free_fs_root(root); 1731 goto again; 1732 } 1733 goto fail; 1734 } 1735 return root; 1736 fail: 1737 free_fs_root(root); 1738 return ERR_PTR(ret); 1739 } 1740 1741 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1742 { 1743 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1744 int ret = 0; 1745 struct btrfs_device *device; 1746 struct backing_dev_info *bdi; 1747 1748 rcu_read_lock(); 1749 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1750 if (!device->bdev) 1751 continue; 1752 bdi = blk_get_backing_dev_info(device->bdev); 1753 if (bdi_congested(bdi, bdi_bits)) { 1754 ret = 1; 1755 break; 1756 } 1757 } 1758 rcu_read_unlock(); 1759 return ret; 1760 } 1761 1762 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1763 { 1764 int err; 1765 1766 err = bdi_setup_and_register(bdi, "btrfs"); 1767 if (err) 1768 return err; 1769 1770 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; 1771 bdi->congested_fn = btrfs_congested_fn; 1772 bdi->congested_data = info; 1773 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; 1774 return 0; 1775 } 1776 1777 /* 1778 * called by the kthread helper functions to finally call the bio end_io 1779 * functions. This is where read checksum verification actually happens 1780 */ 1781 static void end_workqueue_fn(struct btrfs_work *work) 1782 { 1783 struct bio *bio; 1784 struct btrfs_end_io_wq *end_io_wq; 1785 1786 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1787 bio = end_io_wq->bio; 1788 1789 bio->bi_error = end_io_wq->error; 1790 bio->bi_private = end_io_wq->private; 1791 bio->bi_end_io = end_io_wq->end_io; 1792 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1793 bio_endio(bio); 1794 } 1795 1796 static int cleaner_kthread(void *arg) 1797 { 1798 struct btrfs_root *root = arg; 1799 int again; 1800 struct btrfs_trans_handle *trans; 1801 1802 do { 1803 again = 0; 1804 1805 /* Make the cleaner go to sleep early. */ 1806 if (btrfs_need_cleaner_sleep(root)) 1807 goto sleep; 1808 1809 /* 1810 * Do not do anything if we might cause open_ctree() to block 1811 * before we have finished mounting the filesystem. 1812 */ 1813 if (!root->fs_info->open) 1814 goto sleep; 1815 1816 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1817 goto sleep; 1818 1819 /* 1820 * Avoid the problem that we change the status of the fs 1821 * during the above check and trylock. 1822 */ 1823 if (btrfs_need_cleaner_sleep(root)) { 1824 mutex_unlock(&root->fs_info->cleaner_mutex); 1825 goto sleep; 1826 } 1827 1828 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex); 1829 btrfs_run_delayed_iputs(root); 1830 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex); 1831 1832 again = btrfs_clean_one_deleted_snapshot(root); 1833 mutex_unlock(&root->fs_info->cleaner_mutex); 1834 1835 /* 1836 * The defragger has dealt with the R/O remount and umount, 1837 * needn't do anything special here. 1838 */ 1839 btrfs_run_defrag_inodes(root->fs_info); 1840 1841 /* 1842 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1843 * with relocation (btrfs_relocate_chunk) and relocation 1844 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1845 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1846 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1847 * unused block groups. 1848 */ 1849 btrfs_delete_unused_bgs(root->fs_info); 1850 sleep: 1851 if (!again) { 1852 set_current_state(TASK_INTERRUPTIBLE); 1853 if (!kthread_should_stop()) 1854 schedule(); 1855 __set_current_state(TASK_RUNNING); 1856 } 1857 } while (!kthread_should_stop()); 1858 1859 /* 1860 * Transaction kthread is stopped before us and wakes us up. 1861 * However we might have started a new transaction and COWed some 1862 * tree blocks when deleting unused block groups for example. So 1863 * make sure we commit the transaction we started to have a clean 1864 * shutdown when evicting the btree inode - if it has dirty pages 1865 * when we do the final iput() on it, eviction will trigger a 1866 * writeback for it which will fail with null pointer dereferences 1867 * since work queues and other resources were already released and 1868 * destroyed by the time the iput/eviction/writeback is made. 1869 */ 1870 trans = btrfs_attach_transaction(root); 1871 if (IS_ERR(trans)) { 1872 if (PTR_ERR(trans) != -ENOENT) 1873 btrfs_err(root->fs_info, 1874 "cleaner transaction attach returned %ld", 1875 PTR_ERR(trans)); 1876 } else { 1877 int ret; 1878 1879 ret = btrfs_commit_transaction(trans, root); 1880 if (ret) 1881 btrfs_err(root->fs_info, 1882 "cleaner open transaction commit returned %d", 1883 ret); 1884 } 1885 1886 return 0; 1887 } 1888 1889 static int transaction_kthread(void *arg) 1890 { 1891 struct btrfs_root *root = arg; 1892 struct btrfs_trans_handle *trans; 1893 struct btrfs_transaction *cur; 1894 u64 transid; 1895 unsigned long now; 1896 unsigned long delay; 1897 bool cannot_commit; 1898 1899 do { 1900 cannot_commit = false; 1901 delay = HZ * root->fs_info->commit_interval; 1902 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1903 1904 spin_lock(&root->fs_info->trans_lock); 1905 cur = root->fs_info->running_transaction; 1906 if (!cur) { 1907 spin_unlock(&root->fs_info->trans_lock); 1908 goto sleep; 1909 } 1910 1911 now = get_seconds(); 1912 if (cur->state < TRANS_STATE_BLOCKED && 1913 (now < cur->start_time || 1914 now - cur->start_time < root->fs_info->commit_interval)) { 1915 spin_unlock(&root->fs_info->trans_lock); 1916 delay = HZ * 5; 1917 goto sleep; 1918 } 1919 transid = cur->transid; 1920 spin_unlock(&root->fs_info->trans_lock); 1921 1922 /* If the file system is aborted, this will always fail. */ 1923 trans = btrfs_attach_transaction(root); 1924 if (IS_ERR(trans)) { 1925 if (PTR_ERR(trans) != -ENOENT) 1926 cannot_commit = true; 1927 goto sleep; 1928 } 1929 if (transid == trans->transid) { 1930 btrfs_commit_transaction(trans, root); 1931 } else { 1932 btrfs_end_transaction(trans, root); 1933 } 1934 sleep: 1935 wake_up_process(root->fs_info->cleaner_kthread); 1936 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1937 1938 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1939 &root->fs_info->fs_state))) 1940 btrfs_cleanup_transaction(root); 1941 set_current_state(TASK_INTERRUPTIBLE); 1942 if (!kthread_should_stop() && 1943 (!btrfs_transaction_blocked(root->fs_info) || 1944 cannot_commit)) 1945 schedule_timeout(delay); 1946 __set_current_state(TASK_RUNNING); 1947 } while (!kthread_should_stop()); 1948 return 0; 1949 } 1950 1951 /* 1952 * this will find the highest generation in the array of 1953 * root backups. The index of the highest array is returned, 1954 * or -1 if we can't find anything. 1955 * 1956 * We check to make sure the array is valid by comparing the 1957 * generation of the latest root in the array with the generation 1958 * in the super block. If they don't match we pitch it. 1959 */ 1960 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1961 { 1962 u64 cur; 1963 int newest_index = -1; 1964 struct btrfs_root_backup *root_backup; 1965 int i; 1966 1967 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1968 root_backup = info->super_copy->super_roots + i; 1969 cur = btrfs_backup_tree_root_gen(root_backup); 1970 if (cur == newest_gen) 1971 newest_index = i; 1972 } 1973 1974 /* check to see if we actually wrapped around */ 1975 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1976 root_backup = info->super_copy->super_roots; 1977 cur = btrfs_backup_tree_root_gen(root_backup); 1978 if (cur == newest_gen) 1979 newest_index = 0; 1980 } 1981 return newest_index; 1982 } 1983 1984 1985 /* 1986 * find the oldest backup so we know where to store new entries 1987 * in the backup array. This will set the backup_root_index 1988 * field in the fs_info struct 1989 */ 1990 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1991 u64 newest_gen) 1992 { 1993 int newest_index = -1; 1994 1995 newest_index = find_newest_super_backup(info, newest_gen); 1996 /* if there was garbage in there, just move along */ 1997 if (newest_index == -1) { 1998 info->backup_root_index = 0; 1999 } else { 2000 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 2001 } 2002 } 2003 2004 /* 2005 * copy all the root pointers into the super backup array. 2006 * this will bump the backup pointer by one when it is 2007 * done 2008 */ 2009 static void backup_super_roots(struct btrfs_fs_info *info) 2010 { 2011 int next_backup; 2012 struct btrfs_root_backup *root_backup; 2013 int last_backup; 2014 2015 next_backup = info->backup_root_index; 2016 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 2017 BTRFS_NUM_BACKUP_ROOTS; 2018 2019 /* 2020 * just overwrite the last backup if we're at the same generation 2021 * this happens only at umount 2022 */ 2023 root_backup = info->super_for_commit->super_roots + last_backup; 2024 if (btrfs_backup_tree_root_gen(root_backup) == 2025 btrfs_header_generation(info->tree_root->node)) 2026 next_backup = last_backup; 2027 2028 root_backup = info->super_for_commit->super_roots + next_backup; 2029 2030 /* 2031 * make sure all of our padding and empty slots get zero filled 2032 * regardless of which ones we use today 2033 */ 2034 memset(root_backup, 0, sizeof(*root_backup)); 2035 2036 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 2037 2038 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 2039 btrfs_set_backup_tree_root_gen(root_backup, 2040 btrfs_header_generation(info->tree_root->node)); 2041 2042 btrfs_set_backup_tree_root_level(root_backup, 2043 btrfs_header_level(info->tree_root->node)); 2044 2045 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 2046 btrfs_set_backup_chunk_root_gen(root_backup, 2047 btrfs_header_generation(info->chunk_root->node)); 2048 btrfs_set_backup_chunk_root_level(root_backup, 2049 btrfs_header_level(info->chunk_root->node)); 2050 2051 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2052 btrfs_set_backup_extent_root_gen(root_backup, 2053 btrfs_header_generation(info->extent_root->node)); 2054 btrfs_set_backup_extent_root_level(root_backup, 2055 btrfs_header_level(info->extent_root->node)); 2056 2057 /* 2058 * we might commit during log recovery, which happens before we set 2059 * the fs_root. Make sure it is valid before we fill it in. 2060 */ 2061 if (info->fs_root && info->fs_root->node) { 2062 btrfs_set_backup_fs_root(root_backup, 2063 info->fs_root->node->start); 2064 btrfs_set_backup_fs_root_gen(root_backup, 2065 btrfs_header_generation(info->fs_root->node)); 2066 btrfs_set_backup_fs_root_level(root_backup, 2067 btrfs_header_level(info->fs_root->node)); 2068 } 2069 2070 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2071 btrfs_set_backup_dev_root_gen(root_backup, 2072 btrfs_header_generation(info->dev_root->node)); 2073 btrfs_set_backup_dev_root_level(root_backup, 2074 btrfs_header_level(info->dev_root->node)); 2075 2076 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2077 btrfs_set_backup_csum_root_gen(root_backup, 2078 btrfs_header_generation(info->csum_root->node)); 2079 btrfs_set_backup_csum_root_level(root_backup, 2080 btrfs_header_level(info->csum_root->node)); 2081 2082 btrfs_set_backup_total_bytes(root_backup, 2083 btrfs_super_total_bytes(info->super_copy)); 2084 btrfs_set_backup_bytes_used(root_backup, 2085 btrfs_super_bytes_used(info->super_copy)); 2086 btrfs_set_backup_num_devices(root_backup, 2087 btrfs_super_num_devices(info->super_copy)); 2088 2089 /* 2090 * if we don't copy this out to the super_copy, it won't get remembered 2091 * for the next commit 2092 */ 2093 memcpy(&info->super_copy->super_roots, 2094 &info->super_for_commit->super_roots, 2095 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2096 } 2097 2098 /* 2099 * this copies info out of the root backup array and back into 2100 * the in-memory super block. It is meant to help iterate through 2101 * the array, so you send it the number of backups you've already 2102 * tried and the last backup index you used. 2103 * 2104 * this returns -1 when it has tried all the backups 2105 */ 2106 static noinline int next_root_backup(struct btrfs_fs_info *info, 2107 struct btrfs_super_block *super, 2108 int *num_backups_tried, int *backup_index) 2109 { 2110 struct btrfs_root_backup *root_backup; 2111 int newest = *backup_index; 2112 2113 if (*num_backups_tried == 0) { 2114 u64 gen = btrfs_super_generation(super); 2115 2116 newest = find_newest_super_backup(info, gen); 2117 if (newest == -1) 2118 return -1; 2119 2120 *backup_index = newest; 2121 *num_backups_tried = 1; 2122 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2123 /* we've tried all the backups, all done */ 2124 return -1; 2125 } else { 2126 /* jump to the next oldest backup */ 2127 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2128 BTRFS_NUM_BACKUP_ROOTS; 2129 *backup_index = newest; 2130 *num_backups_tried += 1; 2131 } 2132 root_backup = super->super_roots + newest; 2133 2134 btrfs_set_super_generation(super, 2135 btrfs_backup_tree_root_gen(root_backup)); 2136 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2137 btrfs_set_super_root_level(super, 2138 btrfs_backup_tree_root_level(root_backup)); 2139 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2140 2141 /* 2142 * fixme: the total bytes and num_devices need to match or we should 2143 * need a fsck 2144 */ 2145 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2146 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2147 return 0; 2148 } 2149 2150 /* helper to cleanup workers */ 2151 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2152 { 2153 btrfs_destroy_workqueue(fs_info->fixup_workers); 2154 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2155 btrfs_destroy_workqueue(fs_info->workers); 2156 btrfs_destroy_workqueue(fs_info->endio_workers); 2157 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2158 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2159 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2160 btrfs_destroy_workqueue(fs_info->rmw_workers); 2161 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2162 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2163 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2164 btrfs_destroy_workqueue(fs_info->submit_workers); 2165 btrfs_destroy_workqueue(fs_info->delayed_workers); 2166 btrfs_destroy_workqueue(fs_info->caching_workers); 2167 btrfs_destroy_workqueue(fs_info->readahead_workers); 2168 btrfs_destroy_workqueue(fs_info->flush_workers); 2169 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2170 btrfs_destroy_workqueue(fs_info->extent_workers); 2171 } 2172 2173 static void free_root_extent_buffers(struct btrfs_root *root) 2174 { 2175 if (root) { 2176 free_extent_buffer(root->node); 2177 free_extent_buffer(root->commit_root); 2178 root->node = NULL; 2179 root->commit_root = NULL; 2180 } 2181 } 2182 2183 /* helper to cleanup tree roots */ 2184 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2185 { 2186 free_root_extent_buffers(info->tree_root); 2187 2188 free_root_extent_buffers(info->dev_root); 2189 free_root_extent_buffers(info->extent_root); 2190 free_root_extent_buffers(info->csum_root); 2191 free_root_extent_buffers(info->quota_root); 2192 free_root_extent_buffers(info->uuid_root); 2193 if (chunk_root) 2194 free_root_extent_buffers(info->chunk_root); 2195 free_root_extent_buffers(info->free_space_root); 2196 } 2197 2198 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2199 { 2200 int ret; 2201 struct btrfs_root *gang[8]; 2202 int i; 2203 2204 while (!list_empty(&fs_info->dead_roots)) { 2205 gang[0] = list_entry(fs_info->dead_roots.next, 2206 struct btrfs_root, root_list); 2207 list_del(&gang[0]->root_list); 2208 2209 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2210 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2211 } else { 2212 free_extent_buffer(gang[0]->node); 2213 free_extent_buffer(gang[0]->commit_root); 2214 btrfs_put_fs_root(gang[0]); 2215 } 2216 } 2217 2218 while (1) { 2219 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2220 (void **)gang, 0, 2221 ARRAY_SIZE(gang)); 2222 if (!ret) 2223 break; 2224 for (i = 0; i < ret; i++) 2225 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2226 } 2227 2228 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2229 btrfs_free_log_root_tree(NULL, fs_info); 2230 btrfs_destroy_pinned_extent(fs_info->tree_root, 2231 fs_info->pinned_extents); 2232 } 2233 } 2234 2235 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2236 { 2237 mutex_init(&fs_info->scrub_lock); 2238 atomic_set(&fs_info->scrubs_running, 0); 2239 atomic_set(&fs_info->scrub_pause_req, 0); 2240 atomic_set(&fs_info->scrubs_paused, 0); 2241 atomic_set(&fs_info->scrub_cancel_req, 0); 2242 init_waitqueue_head(&fs_info->scrub_pause_wait); 2243 fs_info->scrub_workers_refcnt = 0; 2244 } 2245 2246 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2247 { 2248 spin_lock_init(&fs_info->balance_lock); 2249 mutex_init(&fs_info->balance_mutex); 2250 atomic_set(&fs_info->balance_running, 0); 2251 atomic_set(&fs_info->balance_pause_req, 0); 2252 atomic_set(&fs_info->balance_cancel_req, 0); 2253 fs_info->balance_ctl = NULL; 2254 init_waitqueue_head(&fs_info->balance_wait_q); 2255 } 2256 2257 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2258 struct btrfs_root *tree_root) 2259 { 2260 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2261 set_nlink(fs_info->btree_inode, 1); 2262 /* 2263 * we set the i_size on the btree inode to the max possible int. 2264 * the real end of the address space is determined by all of 2265 * the devices in the system 2266 */ 2267 fs_info->btree_inode->i_size = OFFSET_MAX; 2268 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2269 2270 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2271 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2272 fs_info->btree_inode->i_mapping); 2273 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2274 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2275 2276 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2277 2278 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2279 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2280 sizeof(struct btrfs_key)); 2281 set_bit(BTRFS_INODE_DUMMY, 2282 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2283 btrfs_insert_inode_hash(fs_info->btree_inode); 2284 } 2285 2286 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2287 { 2288 fs_info->dev_replace.lock_owner = 0; 2289 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2290 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2291 rwlock_init(&fs_info->dev_replace.lock); 2292 atomic_set(&fs_info->dev_replace.read_locks, 0); 2293 atomic_set(&fs_info->dev_replace.blocking_readers, 0); 2294 init_waitqueue_head(&fs_info->replace_wait); 2295 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); 2296 } 2297 2298 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2299 { 2300 spin_lock_init(&fs_info->qgroup_lock); 2301 mutex_init(&fs_info->qgroup_ioctl_lock); 2302 fs_info->qgroup_tree = RB_ROOT; 2303 fs_info->qgroup_op_tree = RB_ROOT; 2304 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2305 fs_info->qgroup_seq = 1; 2306 fs_info->quota_enabled = 0; 2307 fs_info->pending_quota_state = 0; 2308 fs_info->qgroup_ulist = NULL; 2309 mutex_init(&fs_info->qgroup_rescan_lock); 2310 } 2311 2312 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2313 struct btrfs_fs_devices *fs_devices) 2314 { 2315 int max_active = fs_info->thread_pool_size; 2316 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2317 2318 fs_info->workers = 2319 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2320 max_active, 16); 2321 2322 fs_info->delalloc_workers = 2323 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2324 2325 fs_info->flush_workers = 2326 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2327 2328 fs_info->caching_workers = 2329 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2330 2331 /* 2332 * a higher idle thresh on the submit workers makes it much more 2333 * likely that bios will be send down in a sane order to the 2334 * devices 2335 */ 2336 fs_info->submit_workers = 2337 btrfs_alloc_workqueue("submit", flags, 2338 min_t(u64, fs_devices->num_devices, 2339 max_active), 64); 2340 2341 fs_info->fixup_workers = 2342 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2343 2344 /* 2345 * endios are largely parallel and should have a very 2346 * low idle thresh 2347 */ 2348 fs_info->endio_workers = 2349 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2350 fs_info->endio_meta_workers = 2351 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2352 fs_info->endio_meta_write_workers = 2353 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2354 fs_info->endio_raid56_workers = 2355 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2356 fs_info->endio_repair_workers = 2357 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2358 fs_info->rmw_workers = 2359 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2360 fs_info->endio_write_workers = 2361 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2362 fs_info->endio_freespace_worker = 2363 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2364 fs_info->delayed_workers = 2365 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2366 fs_info->readahead_workers = 2367 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2368 fs_info->qgroup_rescan_workers = 2369 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2370 fs_info->extent_workers = 2371 btrfs_alloc_workqueue("extent-refs", flags, 2372 min_t(u64, fs_devices->num_devices, 2373 max_active), 8); 2374 2375 if (!(fs_info->workers && fs_info->delalloc_workers && 2376 fs_info->submit_workers && fs_info->flush_workers && 2377 fs_info->endio_workers && fs_info->endio_meta_workers && 2378 fs_info->endio_meta_write_workers && 2379 fs_info->endio_repair_workers && 2380 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2381 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2382 fs_info->caching_workers && fs_info->readahead_workers && 2383 fs_info->fixup_workers && fs_info->delayed_workers && 2384 fs_info->extent_workers && 2385 fs_info->qgroup_rescan_workers)) { 2386 return -ENOMEM; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2393 struct btrfs_fs_devices *fs_devices) 2394 { 2395 int ret; 2396 struct btrfs_root *tree_root = fs_info->tree_root; 2397 struct btrfs_root *log_tree_root; 2398 struct btrfs_super_block *disk_super = fs_info->super_copy; 2399 u64 bytenr = btrfs_super_log_root(disk_super); 2400 2401 if (fs_devices->rw_devices == 0) { 2402 btrfs_warn(fs_info, "log replay required on RO media"); 2403 return -EIO; 2404 } 2405 2406 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2407 if (!log_tree_root) 2408 return -ENOMEM; 2409 2410 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2411 tree_root->stripesize, log_tree_root, fs_info, 2412 BTRFS_TREE_LOG_OBJECTID); 2413 2414 log_tree_root->node = read_tree_block(tree_root, bytenr, 2415 fs_info->generation + 1); 2416 if (IS_ERR(log_tree_root->node)) { 2417 btrfs_warn(fs_info, "failed to read log tree"); 2418 ret = PTR_ERR(log_tree_root->node); 2419 kfree(log_tree_root); 2420 return ret; 2421 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2422 btrfs_err(fs_info, "failed to read log tree"); 2423 free_extent_buffer(log_tree_root->node); 2424 kfree(log_tree_root); 2425 return -EIO; 2426 } 2427 /* returns with log_tree_root freed on success */ 2428 ret = btrfs_recover_log_trees(log_tree_root); 2429 if (ret) { 2430 btrfs_handle_fs_error(tree_root->fs_info, ret, 2431 "Failed to recover log tree"); 2432 free_extent_buffer(log_tree_root->node); 2433 kfree(log_tree_root); 2434 return ret; 2435 } 2436 2437 if (fs_info->sb->s_flags & MS_RDONLY) { 2438 ret = btrfs_commit_super(tree_root); 2439 if (ret) 2440 return ret; 2441 } 2442 2443 return 0; 2444 } 2445 2446 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2447 struct btrfs_root *tree_root) 2448 { 2449 struct btrfs_root *root; 2450 struct btrfs_key location; 2451 int ret; 2452 2453 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2454 location.type = BTRFS_ROOT_ITEM_KEY; 2455 location.offset = 0; 2456 2457 root = btrfs_read_tree_root(tree_root, &location); 2458 if (IS_ERR(root)) 2459 return PTR_ERR(root); 2460 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2461 fs_info->extent_root = root; 2462 2463 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2464 root = btrfs_read_tree_root(tree_root, &location); 2465 if (IS_ERR(root)) 2466 return PTR_ERR(root); 2467 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2468 fs_info->dev_root = root; 2469 btrfs_init_devices_late(fs_info); 2470 2471 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2472 root = btrfs_read_tree_root(tree_root, &location); 2473 if (IS_ERR(root)) 2474 return PTR_ERR(root); 2475 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2476 fs_info->csum_root = root; 2477 2478 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2479 root = btrfs_read_tree_root(tree_root, &location); 2480 if (!IS_ERR(root)) { 2481 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2482 fs_info->quota_enabled = 1; 2483 fs_info->pending_quota_state = 1; 2484 fs_info->quota_root = root; 2485 } 2486 2487 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2488 root = btrfs_read_tree_root(tree_root, &location); 2489 if (IS_ERR(root)) { 2490 ret = PTR_ERR(root); 2491 if (ret != -ENOENT) 2492 return ret; 2493 } else { 2494 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2495 fs_info->uuid_root = root; 2496 } 2497 2498 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 2499 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; 2500 root = btrfs_read_tree_root(tree_root, &location); 2501 if (IS_ERR(root)) 2502 return PTR_ERR(root); 2503 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2504 fs_info->free_space_root = root; 2505 } 2506 2507 return 0; 2508 } 2509 2510 int open_ctree(struct super_block *sb, 2511 struct btrfs_fs_devices *fs_devices, 2512 char *options) 2513 { 2514 u32 sectorsize; 2515 u32 nodesize; 2516 u32 stripesize; 2517 u64 generation; 2518 u64 features; 2519 struct btrfs_key location; 2520 struct buffer_head *bh; 2521 struct btrfs_super_block *disk_super; 2522 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2523 struct btrfs_root *tree_root; 2524 struct btrfs_root *chunk_root; 2525 int ret; 2526 int err = -EINVAL; 2527 int num_backups_tried = 0; 2528 int backup_index = 0; 2529 int max_active; 2530 2531 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2532 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); 2533 if (!tree_root || !chunk_root) { 2534 err = -ENOMEM; 2535 goto fail; 2536 } 2537 2538 ret = init_srcu_struct(&fs_info->subvol_srcu); 2539 if (ret) { 2540 err = ret; 2541 goto fail; 2542 } 2543 2544 ret = setup_bdi(fs_info, &fs_info->bdi); 2545 if (ret) { 2546 err = ret; 2547 goto fail_srcu; 2548 } 2549 2550 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2551 if (ret) { 2552 err = ret; 2553 goto fail_bdi; 2554 } 2555 fs_info->dirty_metadata_batch = PAGE_SIZE * 2556 (1 + ilog2(nr_cpu_ids)); 2557 2558 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2559 if (ret) { 2560 err = ret; 2561 goto fail_dirty_metadata_bytes; 2562 } 2563 2564 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2565 if (ret) { 2566 err = ret; 2567 goto fail_delalloc_bytes; 2568 } 2569 2570 fs_info->btree_inode = new_inode(sb); 2571 if (!fs_info->btree_inode) { 2572 err = -ENOMEM; 2573 goto fail_bio_counter; 2574 } 2575 2576 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2577 2578 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2579 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2580 INIT_LIST_HEAD(&fs_info->trans_list); 2581 INIT_LIST_HEAD(&fs_info->dead_roots); 2582 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2583 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2584 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2585 spin_lock_init(&fs_info->delalloc_root_lock); 2586 spin_lock_init(&fs_info->trans_lock); 2587 spin_lock_init(&fs_info->fs_roots_radix_lock); 2588 spin_lock_init(&fs_info->delayed_iput_lock); 2589 spin_lock_init(&fs_info->defrag_inodes_lock); 2590 spin_lock_init(&fs_info->free_chunk_lock); 2591 spin_lock_init(&fs_info->tree_mod_seq_lock); 2592 spin_lock_init(&fs_info->super_lock); 2593 spin_lock_init(&fs_info->qgroup_op_lock); 2594 spin_lock_init(&fs_info->buffer_lock); 2595 spin_lock_init(&fs_info->unused_bgs_lock); 2596 rwlock_init(&fs_info->tree_mod_log_lock); 2597 mutex_init(&fs_info->unused_bg_unpin_mutex); 2598 mutex_init(&fs_info->delete_unused_bgs_mutex); 2599 mutex_init(&fs_info->reloc_mutex); 2600 mutex_init(&fs_info->delalloc_root_mutex); 2601 mutex_init(&fs_info->cleaner_delayed_iput_mutex); 2602 seqlock_init(&fs_info->profiles_lock); 2603 2604 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2605 INIT_LIST_HEAD(&fs_info->space_info); 2606 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2607 INIT_LIST_HEAD(&fs_info->unused_bgs); 2608 btrfs_mapping_init(&fs_info->mapping_tree); 2609 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2610 BTRFS_BLOCK_RSV_GLOBAL); 2611 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2612 BTRFS_BLOCK_RSV_DELALLOC); 2613 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2614 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2615 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2616 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2617 BTRFS_BLOCK_RSV_DELOPS); 2618 atomic_set(&fs_info->nr_async_submits, 0); 2619 atomic_set(&fs_info->async_delalloc_pages, 0); 2620 atomic_set(&fs_info->async_submit_draining, 0); 2621 atomic_set(&fs_info->nr_async_bios, 0); 2622 atomic_set(&fs_info->defrag_running, 0); 2623 atomic_set(&fs_info->qgroup_op_seq, 0); 2624 atomic_set(&fs_info->reada_works_cnt, 0); 2625 atomic64_set(&fs_info->tree_mod_seq, 0); 2626 fs_info->sb = sb; 2627 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2628 fs_info->metadata_ratio = 0; 2629 fs_info->defrag_inodes = RB_ROOT; 2630 fs_info->free_chunk_space = 0; 2631 fs_info->tree_mod_log = RB_ROOT; 2632 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2633 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2634 /* readahead state */ 2635 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 2636 spin_lock_init(&fs_info->reada_lock); 2637 2638 fs_info->thread_pool_size = min_t(unsigned long, 2639 num_online_cpus() + 2, 8); 2640 2641 INIT_LIST_HEAD(&fs_info->ordered_roots); 2642 spin_lock_init(&fs_info->ordered_root_lock); 2643 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2644 GFP_KERNEL); 2645 if (!fs_info->delayed_root) { 2646 err = -ENOMEM; 2647 goto fail_iput; 2648 } 2649 btrfs_init_delayed_root(fs_info->delayed_root); 2650 2651 btrfs_init_scrub(fs_info); 2652 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2653 fs_info->check_integrity_print_mask = 0; 2654 #endif 2655 btrfs_init_balance(fs_info); 2656 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2657 2658 sb->s_blocksize = 4096; 2659 sb->s_blocksize_bits = blksize_bits(4096); 2660 sb->s_bdi = &fs_info->bdi; 2661 2662 btrfs_init_btree_inode(fs_info, tree_root); 2663 2664 spin_lock_init(&fs_info->block_group_cache_lock); 2665 fs_info->block_group_cache_tree = RB_ROOT; 2666 fs_info->first_logical_byte = (u64)-1; 2667 2668 extent_io_tree_init(&fs_info->freed_extents[0], 2669 fs_info->btree_inode->i_mapping); 2670 extent_io_tree_init(&fs_info->freed_extents[1], 2671 fs_info->btree_inode->i_mapping); 2672 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2673 fs_info->do_barriers = 1; 2674 2675 2676 mutex_init(&fs_info->ordered_operations_mutex); 2677 mutex_init(&fs_info->tree_log_mutex); 2678 mutex_init(&fs_info->chunk_mutex); 2679 mutex_init(&fs_info->transaction_kthread_mutex); 2680 mutex_init(&fs_info->cleaner_mutex); 2681 mutex_init(&fs_info->volume_mutex); 2682 mutex_init(&fs_info->ro_block_group_mutex); 2683 init_rwsem(&fs_info->commit_root_sem); 2684 init_rwsem(&fs_info->cleanup_work_sem); 2685 init_rwsem(&fs_info->subvol_sem); 2686 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2687 2688 btrfs_init_dev_replace_locks(fs_info); 2689 btrfs_init_qgroup(fs_info); 2690 2691 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2692 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2693 2694 init_waitqueue_head(&fs_info->transaction_throttle); 2695 init_waitqueue_head(&fs_info->transaction_wait); 2696 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2697 init_waitqueue_head(&fs_info->async_submit_wait); 2698 2699 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2700 2701 ret = btrfs_alloc_stripe_hash_table(fs_info); 2702 if (ret) { 2703 err = ret; 2704 goto fail_alloc; 2705 } 2706 2707 __setup_root(4096, 4096, 4096, tree_root, 2708 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2709 2710 invalidate_bdev(fs_devices->latest_bdev); 2711 2712 /* 2713 * Read super block and check the signature bytes only 2714 */ 2715 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2716 if (IS_ERR(bh)) { 2717 err = PTR_ERR(bh); 2718 goto fail_alloc; 2719 } 2720 2721 /* 2722 * We want to check superblock checksum, the type is stored inside. 2723 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2724 */ 2725 if (btrfs_check_super_csum(bh->b_data)) { 2726 btrfs_err(fs_info, "superblock checksum mismatch"); 2727 err = -EINVAL; 2728 brelse(bh); 2729 goto fail_alloc; 2730 } 2731 2732 /* 2733 * super_copy is zeroed at allocation time and we never touch the 2734 * following bytes up to INFO_SIZE, the checksum is calculated from 2735 * the whole block of INFO_SIZE 2736 */ 2737 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2738 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2739 sizeof(*fs_info->super_for_commit)); 2740 brelse(bh); 2741 2742 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2743 2744 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2745 if (ret) { 2746 btrfs_err(fs_info, "superblock contains fatal errors"); 2747 err = -EINVAL; 2748 goto fail_alloc; 2749 } 2750 2751 disk_super = fs_info->super_copy; 2752 if (!btrfs_super_root(disk_super)) 2753 goto fail_alloc; 2754 2755 /* check FS state, whether FS is broken. */ 2756 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2757 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2758 2759 /* 2760 * run through our array of backup supers and setup 2761 * our ring pointer to the oldest one 2762 */ 2763 generation = btrfs_super_generation(disk_super); 2764 find_oldest_super_backup(fs_info, generation); 2765 2766 /* 2767 * In the long term, we'll store the compression type in the super 2768 * block, and it'll be used for per file compression control. 2769 */ 2770 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2771 2772 ret = btrfs_parse_options(tree_root, options, sb->s_flags); 2773 if (ret) { 2774 err = ret; 2775 goto fail_alloc; 2776 } 2777 2778 features = btrfs_super_incompat_flags(disk_super) & 2779 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2780 if (features) { 2781 btrfs_err(fs_info, 2782 "cannot mount because of unsupported optional features (%llx)", 2783 features); 2784 err = -EINVAL; 2785 goto fail_alloc; 2786 } 2787 2788 features = btrfs_super_incompat_flags(disk_super); 2789 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2790 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2791 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2792 2793 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2794 btrfs_info(fs_info, "has skinny extents"); 2795 2796 /* 2797 * flag our filesystem as having big metadata blocks if 2798 * they are bigger than the page size 2799 */ 2800 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { 2801 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2802 btrfs_info(fs_info, 2803 "flagging fs with big metadata feature"); 2804 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2805 } 2806 2807 nodesize = btrfs_super_nodesize(disk_super); 2808 sectorsize = btrfs_super_sectorsize(disk_super); 2809 stripesize = sectorsize; 2810 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2811 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2812 2813 /* 2814 * mixed block groups end up with duplicate but slightly offset 2815 * extent buffers for the same range. It leads to corruptions 2816 */ 2817 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2818 (sectorsize != nodesize)) { 2819 btrfs_err(fs_info, 2820 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", 2821 nodesize, sectorsize); 2822 goto fail_alloc; 2823 } 2824 2825 /* 2826 * Needn't use the lock because there is no other task which will 2827 * update the flag. 2828 */ 2829 btrfs_set_super_incompat_flags(disk_super, features); 2830 2831 features = btrfs_super_compat_ro_flags(disk_super) & 2832 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2833 if (!(sb->s_flags & MS_RDONLY) && features) { 2834 btrfs_err(fs_info, 2835 "cannot mount read-write because of unsupported optional features (%llx)", 2836 features); 2837 err = -EINVAL; 2838 goto fail_alloc; 2839 } 2840 2841 max_active = fs_info->thread_pool_size; 2842 2843 ret = btrfs_init_workqueues(fs_info, fs_devices); 2844 if (ret) { 2845 err = ret; 2846 goto fail_sb_buffer; 2847 } 2848 2849 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2850 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2851 SZ_4M / PAGE_SIZE); 2852 2853 tree_root->nodesize = nodesize; 2854 tree_root->sectorsize = sectorsize; 2855 tree_root->stripesize = stripesize; 2856 2857 sb->s_blocksize = sectorsize; 2858 sb->s_blocksize_bits = blksize_bits(sectorsize); 2859 2860 mutex_lock(&fs_info->chunk_mutex); 2861 ret = btrfs_read_sys_array(tree_root); 2862 mutex_unlock(&fs_info->chunk_mutex); 2863 if (ret) { 2864 btrfs_err(fs_info, "failed to read the system array: %d", ret); 2865 goto fail_sb_buffer; 2866 } 2867 2868 generation = btrfs_super_chunk_root_generation(disk_super); 2869 2870 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2871 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2872 2873 chunk_root->node = read_tree_block(chunk_root, 2874 btrfs_super_chunk_root(disk_super), 2875 generation); 2876 if (IS_ERR(chunk_root->node) || 2877 !extent_buffer_uptodate(chunk_root->node)) { 2878 btrfs_err(fs_info, "failed to read chunk root"); 2879 if (!IS_ERR(chunk_root->node)) 2880 free_extent_buffer(chunk_root->node); 2881 chunk_root->node = NULL; 2882 goto fail_tree_roots; 2883 } 2884 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2885 chunk_root->commit_root = btrfs_root_node(chunk_root); 2886 2887 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2888 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2889 2890 ret = btrfs_read_chunk_tree(chunk_root); 2891 if (ret) { 2892 btrfs_err(fs_info, "failed to read chunk tree: %d", ret); 2893 goto fail_tree_roots; 2894 } 2895 2896 /* 2897 * keep the device that is marked to be the target device for the 2898 * dev_replace procedure 2899 */ 2900 btrfs_close_extra_devices(fs_devices, 0); 2901 2902 if (!fs_devices->latest_bdev) { 2903 btrfs_err(fs_info, "failed to read devices"); 2904 goto fail_tree_roots; 2905 } 2906 2907 retry_root_backup: 2908 generation = btrfs_super_generation(disk_super); 2909 2910 tree_root->node = read_tree_block(tree_root, 2911 btrfs_super_root(disk_super), 2912 generation); 2913 if (IS_ERR(tree_root->node) || 2914 !extent_buffer_uptodate(tree_root->node)) { 2915 btrfs_warn(fs_info, "failed to read tree root"); 2916 if (!IS_ERR(tree_root->node)) 2917 free_extent_buffer(tree_root->node); 2918 tree_root->node = NULL; 2919 goto recovery_tree_root; 2920 } 2921 2922 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2923 tree_root->commit_root = btrfs_root_node(tree_root); 2924 btrfs_set_root_refs(&tree_root->root_item, 1); 2925 2926 mutex_lock(&tree_root->objectid_mutex); 2927 ret = btrfs_find_highest_objectid(tree_root, 2928 &tree_root->highest_objectid); 2929 if (ret) { 2930 mutex_unlock(&tree_root->objectid_mutex); 2931 goto recovery_tree_root; 2932 } 2933 2934 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); 2935 2936 mutex_unlock(&tree_root->objectid_mutex); 2937 2938 ret = btrfs_read_roots(fs_info, tree_root); 2939 if (ret) 2940 goto recovery_tree_root; 2941 2942 fs_info->generation = generation; 2943 fs_info->last_trans_committed = generation; 2944 2945 ret = btrfs_recover_balance(fs_info); 2946 if (ret) { 2947 btrfs_err(fs_info, "failed to recover balance: %d", ret); 2948 goto fail_block_groups; 2949 } 2950 2951 ret = btrfs_init_dev_stats(fs_info); 2952 if (ret) { 2953 btrfs_err(fs_info, "failed to init dev_stats: %d", ret); 2954 goto fail_block_groups; 2955 } 2956 2957 ret = btrfs_init_dev_replace(fs_info); 2958 if (ret) { 2959 btrfs_err(fs_info, "failed to init dev_replace: %d", ret); 2960 goto fail_block_groups; 2961 } 2962 2963 btrfs_close_extra_devices(fs_devices, 1); 2964 2965 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2966 if (ret) { 2967 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", 2968 ret); 2969 goto fail_block_groups; 2970 } 2971 2972 ret = btrfs_sysfs_add_device(fs_devices); 2973 if (ret) { 2974 btrfs_err(fs_info, "failed to init sysfs device interface: %d", 2975 ret); 2976 goto fail_fsdev_sysfs; 2977 } 2978 2979 ret = btrfs_sysfs_add_mounted(fs_info); 2980 if (ret) { 2981 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); 2982 goto fail_fsdev_sysfs; 2983 } 2984 2985 ret = btrfs_init_space_info(fs_info); 2986 if (ret) { 2987 btrfs_err(fs_info, "failed to initialize space info: %d", ret); 2988 goto fail_sysfs; 2989 } 2990 2991 ret = btrfs_read_block_groups(fs_info->extent_root); 2992 if (ret) { 2993 btrfs_err(fs_info, "failed to read block groups: %d", ret); 2994 goto fail_sysfs; 2995 } 2996 fs_info->num_tolerated_disk_barrier_failures = 2997 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2998 if (fs_info->fs_devices->missing_devices > 2999 fs_info->num_tolerated_disk_barrier_failures && 3000 !(sb->s_flags & MS_RDONLY)) { 3001 btrfs_warn(fs_info, 3002 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed", 3003 fs_info->fs_devices->missing_devices, 3004 fs_info->num_tolerated_disk_barrier_failures); 3005 goto fail_sysfs; 3006 } 3007 3008 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 3009 "btrfs-cleaner"); 3010 if (IS_ERR(fs_info->cleaner_kthread)) 3011 goto fail_sysfs; 3012 3013 fs_info->transaction_kthread = kthread_run(transaction_kthread, 3014 tree_root, 3015 "btrfs-transaction"); 3016 if (IS_ERR(fs_info->transaction_kthread)) 3017 goto fail_cleaner; 3018 3019 if (!btrfs_test_opt(tree_root, SSD) && 3020 !btrfs_test_opt(tree_root, NOSSD) && 3021 !fs_info->fs_devices->rotating) { 3022 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode"); 3023 btrfs_set_opt(fs_info->mount_opt, SSD); 3024 } 3025 3026 /* 3027 * Mount does not set all options immediately, we can do it now and do 3028 * not have to wait for transaction commit 3029 */ 3030 btrfs_apply_pending_changes(fs_info); 3031 3032 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3033 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 3034 ret = btrfsic_mount(tree_root, fs_devices, 3035 btrfs_test_opt(tree_root, 3036 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 3037 1 : 0, 3038 fs_info->check_integrity_print_mask); 3039 if (ret) 3040 btrfs_warn(fs_info, 3041 "failed to initialize integrity check module: %d", 3042 ret); 3043 } 3044 #endif 3045 ret = btrfs_read_qgroup_config(fs_info); 3046 if (ret) 3047 goto fail_trans_kthread; 3048 3049 /* do not make disk changes in broken FS or nologreplay is given */ 3050 if (btrfs_super_log_root(disk_super) != 0 && 3051 !btrfs_test_opt(tree_root, NOLOGREPLAY)) { 3052 ret = btrfs_replay_log(fs_info, fs_devices); 3053 if (ret) { 3054 err = ret; 3055 goto fail_qgroup; 3056 } 3057 } 3058 3059 ret = btrfs_find_orphan_roots(tree_root); 3060 if (ret) 3061 goto fail_qgroup; 3062 3063 if (!(sb->s_flags & MS_RDONLY)) { 3064 ret = btrfs_cleanup_fs_roots(fs_info); 3065 if (ret) 3066 goto fail_qgroup; 3067 3068 mutex_lock(&fs_info->cleaner_mutex); 3069 ret = btrfs_recover_relocation(tree_root); 3070 mutex_unlock(&fs_info->cleaner_mutex); 3071 if (ret < 0) { 3072 btrfs_warn(fs_info, "failed to recover relocation: %d", 3073 ret); 3074 err = -EINVAL; 3075 goto fail_qgroup; 3076 } 3077 } 3078 3079 location.objectid = BTRFS_FS_TREE_OBJECTID; 3080 location.type = BTRFS_ROOT_ITEM_KEY; 3081 location.offset = 0; 3082 3083 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3084 if (IS_ERR(fs_info->fs_root)) { 3085 err = PTR_ERR(fs_info->fs_root); 3086 goto fail_qgroup; 3087 } 3088 3089 if (sb->s_flags & MS_RDONLY) 3090 return 0; 3091 3092 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) && 3093 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3094 btrfs_info(fs_info, "creating free space tree"); 3095 ret = btrfs_create_free_space_tree(fs_info); 3096 if (ret) { 3097 btrfs_warn(fs_info, 3098 "failed to create free space tree: %d", ret); 3099 close_ctree(tree_root); 3100 return ret; 3101 } 3102 } 3103 3104 down_read(&fs_info->cleanup_work_sem); 3105 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3106 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3107 up_read(&fs_info->cleanup_work_sem); 3108 close_ctree(tree_root); 3109 return ret; 3110 } 3111 up_read(&fs_info->cleanup_work_sem); 3112 3113 ret = btrfs_resume_balance_async(fs_info); 3114 if (ret) { 3115 btrfs_warn(fs_info, "failed to resume balance: %d", ret); 3116 close_ctree(tree_root); 3117 return ret; 3118 } 3119 3120 ret = btrfs_resume_dev_replace_async(fs_info); 3121 if (ret) { 3122 btrfs_warn(fs_info, "failed to resume device replace: %d", ret); 3123 close_ctree(tree_root); 3124 return ret; 3125 } 3126 3127 btrfs_qgroup_rescan_resume(fs_info); 3128 3129 if (btrfs_test_opt(tree_root, CLEAR_CACHE) && 3130 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 3131 btrfs_info(fs_info, "clearing free space tree"); 3132 ret = btrfs_clear_free_space_tree(fs_info); 3133 if (ret) { 3134 btrfs_warn(fs_info, 3135 "failed to clear free space tree: %d", ret); 3136 close_ctree(tree_root); 3137 return ret; 3138 } 3139 } 3140 3141 if (!fs_info->uuid_root) { 3142 btrfs_info(fs_info, "creating UUID tree"); 3143 ret = btrfs_create_uuid_tree(fs_info); 3144 if (ret) { 3145 btrfs_warn(fs_info, 3146 "failed to create the UUID tree: %d", ret); 3147 close_ctree(tree_root); 3148 return ret; 3149 } 3150 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3151 fs_info->generation != 3152 btrfs_super_uuid_tree_generation(disk_super)) { 3153 btrfs_info(fs_info, "checking UUID tree"); 3154 ret = btrfs_check_uuid_tree(fs_info); 3155 if (ret) { 3156 btrfs_warn(fs_info, 3157 "failed to check the UUID tree: %d", ret); 3158 close_ctree(tree_root); 3159 return ret; 3160 } 3161 } else { 3162 fs_info->update_uuid_tree_gen = 1; 3163 } 3164 3165 fs_info->open = 1; 3166 3167 /* 3168 * backuproot only affect mount behavior, and if open_ctree succeeded, 3169 * no need to keep the flag 3170 */ 3171 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT); 3172 3173 return 0; 3174 3175 fail_qgroup: 3176 btrfs_free_qgroup_config(fs_info); 3177 fail_trans_kthread: 3178 kthread_stop(fs_info->transaction_kthread); 3179 btrfs_cleanup_transaction(fs_info->tree_root); 3180 btrfs_free_fs_roots(fs_info); 3181 fail_cleaner: 3182 kthread_stop(fs_info->cleaner_kthread); 3183 3184 /* 3185 * make sure we're done with the btree inode before we stop our 3186 * kthreads 3187 */ 3188 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3189 3190 fail_sysfs: 3191 btrfs_sysfs_remove_mounted(fs_info); 3192 3193 fail_fsdev_sysfs: 3194 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3195 3196 fail_block_groups: 3197 btrfs_put_block_group_cache(fs_info); 3198 btrfs_free_block_groups(fs_info); 3199 3200 fail_tree_roots: 3201 free_root_pointers(fs_info, 1); 3202 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3203 3204 fail_sb_buffer: 3205 btrfs_stop_all_workers(fs_info); 3206 fail_alloc: 3207 fail_iput: 3208 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3209 3210 iput(fs_info->btree_inode); 3211 fail_bio_counter: 3212 percpu_counter_destroy(&fs_info->bio_counter); 3213 fail_delalloc_bytes: 3214 percpu_counter_destroy(&fs_info->delalloc_bytes); 3215 fail_dirty_metadata_bytes: 3216 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3217 fail_bdi: 3218 bdi_destroy(&fs_info->bdi); 3219 fail_srcu: 3220 cleanup_srcu_struct(&fs_info->subvol_srcu); 3221 fail: 3222 btrfs_free_stripe_hash_table(fs_info); 3223 btrfs_close_devices(fs_info->fs_devices); 3224 return err; 3225 3226 recovery_tree_root: 3227 if (!btrfs_test_opt(tree_root, USEBACKUPROOT)) 3228 goto fail_tree_roots; 3229 3230 free_root_pointers(fs_info, 0); 3231 3232 /* don't use the log in recovery mode, it won't be valid */ 3233 btrfs_set_super_log_root(disk_super, 0); 3234 3235 /* we can't trust the free space cache either */ 3236 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3237 3238 ret = next_root_backup(fs_info, fs_info->super_copy, 3239 &num_backups_tried, &backup_index); 3240 if (ret == -1) 3241 goto fail_block_groups; 3242 goto retry_root_backup; 3243 } 3244 3245 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3246 { 3247 if (uptodate) { 3248 set_buffer_uptodate(bh); 3249 } else { 3250 struct btrfs_device *device = (struct btrfs_device *) 3251 bh->b_private; 3252 3253 btrfs_warn_rl_in_rcu(device->dev_root->fs_info, 3254 "lost page write due to IO error on %s", 3255 rcu_str_deref(device->name)); 3256 /* note, we don't set_buffer_write_io_error because we have 3257 * our own ways of dealing with the IO errors 3258 */ 3259 clear_buffer_uptodate(bh); 3260 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3261 } 3262 unlock_buffer(bh); 3263 put_bh(bh); 3264 } 3265 3266 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num, 3267 struct buffer_head **bh_ret) 3268 { 3269 struct buffer_head *bh; 3270 struct btrfs_super_block *super; 3271 u64 bytenr; 3272 3273 bytenr = btrfs_sb_offset(copy_num); 3274 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode)) 3275 return -EINVAL; 3276 3277 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE); 3278 /* 3279 * If we fail to read from the underlying devices, as of now 3280 * the best option we have is to mark it EIO. 3281 */ 3282 if (!bh) 3283 return -EIO; 3284 3285 super = (struct btrfs_super_block *)bh->b_data; 3286 if (btrfs_super_bytenr(super) != bytenr || 3287 btrfs_super_magic(super) != BTRFS_MAGIC) { 3288 brelse(bh); 3289 return -EINVAL; 3290 } 3291 3292 *bh_ret = bh; 3293 return 0; 3294 } 3295 3296 3297 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3298 { 3299 struct buffer_head *bh; 3300 struct buffer_head *latest = NULL; 3301 struct btrfs_super_block *super; 3302 int i; 3303 u64 transid = 0; 3304 int ret = -EINVAL; 3305 3306 /* we would like to check all the supers, but that would make 3307 * a btrfs mount succeed after a mkfs from a different FS. 3308 * So, we need to add a special mount option to scan for 3309 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3310 */ 3311 for (i = 0; i < 1; i++) { 3312 ret = btrfs_read_dev_one_super(bdev, i, &bh); 3313 if (ret) 3314 continue; 3315 3316 super = (struct btrfs_super_block *)bh->b_data; 3317 3318 if (!latest || btrfs_super_generation(super) > transid) { 3319 brelse(latest); 3320 latest = bh; 3321 transid = btrfs_super_generation(super); 3322 } else { 3323 brelse(bh); 3324 } 3325 } 3326 3327 if (!latest) 3328 return ERR_PTR(ret); 3329 3330 return latest; 3331 } 3332 3333 /* 3334 * this should be called twice, once with wait == 0 and 3335 * once with wait == 1. When wait == 0 is done, all the buffer heads 3336 * we write are pinned. 3337 * 3338 * They are released when wait == 1 is done. 3339 * max_mirrors must be the same for both runs, and it indicates how 3340 * many supers on this one device should be written. 3341 * 3342 * max_mirrors == 0 means to write them all. 3343 */ 3344 static int write_dev_supers(struct btrfs_device *device, 3345 struct btrfs_super_block *sb, 3346 int do_barriers, int wait, int max_mirrors) 3347 { 3348 struct buffer_head *bh; 3349 int i; 3350 int ret; 3351 int errors = 0; 3352 u32 crc; 3353 u64 bytenr; 3354 3355 if (max_mirrors == 0) 3356 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3357 3358 for (i = 0; i < max_mirrors; i++) { 3359 bytenr = btrfs_sb_offset(i); 3360 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3361 device->commit_total_bytes) 3362 break; 3363 3364 if (wait) { 3365 bh = __find_get_block(device->bdev, bytenr / 4096, 3366 BTRFS_SUPER_INFO_SIZE); 3367 if (!bh) { 3368 errors++; 3369 continue; 3370 } 3371 wait_on_buffer(bh); 3372 if (!buffer_uptodate(bh)) 3373 errors++; 3374 3375 /* drop our reference */ 3376 brelse(bh); 3377 3378 /* drop the reference from the wait == 0 run */ 3379 brelse(bh); 3380 continue; 3381 } else { 3382 btrfs_set_super_bytenr(sb, bytenr); 3383 3384 crc = ~(u32)0; 3385 crc = btrfs_csum_data((char *)sb + 3386 BTRFS_CSUM_SIZE, crc, 3387 BTRFS_SUPER_INFO_SIZE - 3388 BTRFS_CSUM_SIZE); 3389 btrfs_csum_final(crc, sb->csum); 3390 3391 /* 3392 * one reference for us, and we leave it for the 3393 * caller 3394 */ 3395 bh = __getblk(device->bdev, bytenr / 4096, 3396 BTRFS_SUPER_INFO_SIZE); 3397 if (!bh) { 3398 btrfs_err(device->dev_root->fs_info, 3399 "couldn't get super buffer head for bytenr %llu", 3400 bytenr); 3401 errors++; 3402 continue; 3403 } 3404 3405 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3406 3407 /* one reference for submit_bh */ 3408 get_bh(bh); 3409 3410 set_buffer_uptodate(bh); 3411 lock_buffer(bh); 3412 bh->b_end_io = btrfs_end_buffer_write_sync; 3413 bh->b_private = device; 3414 } 3415 3416 /* 3417 * we fua the first super. The others we allow 3418 * to go down lazy. 3419 */ 3420 if (i == 0) 3421 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3422 else 3423 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3424 if (ret) 3425 errors++; 3426 } 3427 return errors < i ? 0 : -1; 3428 } 3429 3430 /* 3431 * endio for the write_dev_flush, this will wake anyone waiting 3432 * for the barrier when it is done 3433 */ 3434 static void btrfs_end_empty_barrier(struct bio *bio) 3435 { 3436 if (bio->bi_private) 3437 complete(bio->bi_private); 3438 bio_put(bio); 3439 } 3440 3441 /* 3442 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3443 * sent down. With wait == 1, it waits for the previous flush. 3444 * 3445 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3446 * capable 3447 */ 3448 static int write_dev_flush(struct btrfs_device *device, int wait) 3449 { 3450 struct bio *bio; 3451 int ret = 0; 3452 3453 if (device->nobarriers) 3454 return 0; 3455 3456 if (wait) { 3457 bio = device->flush_bio; 3458 if (!bio) 3459 return 0; 3460 3461 wait_for_completion(&device->flush_wait); 3462 3463 if (bio->bi_error) { 3464 ret = bio->bi_error; 3465 btrfs_dev_stat_inc_and_print(device, 3466 BTRFS_DEV_STAT_FLUSH_ERRS); 3467 } 3468 3469 /* drop the reference from the wait == 0 run */ 3470 bio_put(bio); 3471 device->flush_bio = NULL; 3472 3473 return ret; 3474 } 3475 3476 /* 3477 * one reference for us, and we leave it for the 3478 * caller 3479 */ 3480 device->flush_bio = NULL; 3481 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3482 if (!bio) 3483 return -ENOMEM; 3484 3485 bio->bi_end_io = btrfs_end_empty_barrier; 3486 bio->bi_bdev = device->bdev; 3487 init_completion(&device->flush_wait); 3488 bio->bi_private = &device->flush_wait; 3489 device->flush_bio = bio; 3490 3491 bio_get(bio); 3492 btrfsic_submit_bio(WRITE_FLUSH, bio); 3493 3494 return 0; 3495 } 3496 3497 /* 3498 * send an empty flush down to each device in parallel, 3499 * then wait for them 3500 */ 3501 static int barrier_all_devices(struct btrfs_fs_info *info) 3502 { 3503 struct list_head *head; 3504 struct btrfs_device *dev; 3505 int errors_send = 0; 3506 int errors_wait = 0; 3507 int ret; 3508 3509 /* send down all the barriers */ 3510 head = &info->fs_devices->devices; 3511 list_for_each_entry_rcu(dev, head, dev_list) { 3512 if (dev->missing) 3513 continue; 3514 if (!dev->bdev) { 3515 errors_send++; 3516 continue; 3517 } 3518 if (!dev->in_fs_metadata || !dev->writeable) 3519 continue; 3520 3521 ret = write_dev_flush(dev, 0); 3522 if (ret) 3523 errors_send++; 3524 } 3525 3526 /* wait for all the barriers */ 3527 list_for_each_entry_rcu(dev, head, dev_list) { 3528 if (dev->missing) 3529 continue; 3530 if (!dev->bdev) { 3531 errors_wait++; 3532 continue; 3533 } 3534 if (!dev->in_fs_metadata || !dev->writeable) 3535 continue; 3536 3537 ret = write_dev_flush(dev, 1); 3538 if (ret) 3539 errors_wait++; 3540 } 3541 if (errors_send > info->num_tolerated_disk_barrier_failures || 3542 errors_wait > info->num_tolerated_disk_barrier_failures) 3543 return -EIO; 3544 return 0; 3545 } 3546 3547 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags) 3548 { 3549 int raid_type; 3550 int min_tolerated = INT_MAX; 3551 3552 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 || 3553 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE)) 3554 min_tolerated = min(min_tolerated, 3555 btrfs_raid_array[BTRFS_RAID_SINGLE]. 3556 tolerated_failures); 3557 3558 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { 3559 if (raid_type == BTRFS_RAID_SINGLE) 3560 continue; 3561 if (!(flags & btrfs_raid_group[raid_type])) 3562 continue; 3563 min_tolerated = min(min_tolerated, 3564 btrfs_raid_array[raid_type]. 3565 tolerated_failures); 3566 } 3567 3568 if (min_tolerated == INT_MAX) { 3569 pr_warn("BTRFS: unknown raid flag: %llu\n", flags); 3570 min_tolerated = 0; 3571 } 3572 3573 return min_tolerated; 3574 } 3575 3576 int btrfs_calc_num_tolerated_disk_barrier_failures( 3577 struct btrfs_fs_info *fs_info) 3578 { 3579 struct btrfs_ioctl_space_info space; 3580 struct btrfs_space_info *sinfo; 3581 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3582 BTRFS_BLOCK_GROUP_SYSTEM, 3583 BTRFS_BLOCK_GROUP_METADATA, 3584 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3585 int i; 3586 int c; 3587 int num_tolerated_disk_barrier_failures = 3588 (int)fs_info->fs_devices->num_devices; 3589 3590 for (i = 0; i < ARRAY_SIZE(types); i++) { 3591 struct btrfs_space_info *tmp; 3592 3593 sinfo = NULL; 3594 rcu_read_lock(); 3595 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3596 if (tmp->flags == types[i]) { 3597 sinfo = tmp; 3598 break; 3599 } 3600 } 3601 rcu_read_unlock(); 3602 3603 if (!sinfo) 3604 continue; 3605 3606 down_read(&sinfo->groups_sem); 3607 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3608 u64 flags; 3609 3610 if (list_empty(&sinfo->block_groups[c])) 3611 continue; 3612 3613 btrfs_get_block_group_info(&sinfo->block_groups[c], 3614 &space); 3615 if (space.total_bytes == 0 || space.used_bytes == 0) 3616 continue; 3617 flags = space.flags; 3618 3619 num_tolerated_disk_barrier_failures = min( 3620 num_tolerated_disk_barrier_failures, 3621 btrfs_get_num_tolerated_disk_barrier_failures( 3622 flags)); 3623 } 3624 up_read(&sinfo->groups_sem); 3625 } 3626 3627 return num_tolerated_disk_barrier_failures; 3628 } 3629 3630 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3631 { 3632 struct list_head *head; 3633 struct btrfs_device *dev; 3634 struct btrfs_super_block *sb; 3635 struct btrfs_dev_item *dev_item; 3636 int ret; 3637 int do_barriers; 3638 int max_errors; 3639 int total_errors = 0; 3640 u64 flags; 3641 3642 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3643 backup_super_roots(root->fs_info); 3644 3645 sb = root->fs_info->super_for_commit; 3646 dev_item = &sb->dev_item; 3647 3648 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3649 head = &root->fs_info->fs_devices->devices; 3650 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3651 3652 if (do_barriers) { 3653 ret = barrier_all_devices(root->fs_info); 3654 if (ret) { 3655 mutex_unlock( 3656 &root->fs_info->fs_devices->device_list_mutex); 3657 btrfs_handle_fs_error(root->fs_info, ret, 3658 "errors while submitting device barriers."); 3659 return ret; 3660 } 3661 } 3662 3663 list_for_each_entry_rcu(dev, head, dev_list) { 3664 if (!dev->bdev) { 3665 total_errors++; 3666 continue; 3667 } 3668 if (!dev->in_fs_metadata || !dev->writeable) 3669 continue; 3670 3671 btrfs_set_stack_device_generation(dev_item, 0); 3672 btrfs_set_stack_device_type(dev_item, dev->type); 3673 btrfs_set_stack_device_id(dev_item, dev->devid); 3674 btrfs_set_stack_device_total_bytes(dev_item, 3675 dev->commit_total_bytes); 3676 btrfs_set_stack_device_bytes_used(dev_item, 3677 dev->commit_bytes_used); 3678 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3679 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3680 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3681 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3682 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3683 3684 flags = btrfs_super_flags(sb); 3685 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3686 3687 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3688 if (ret) 3689 total_errors++; 3690 } 3691 if (total_errors > max_errors) { 3692 btrfs_err(root->fs_info, "%d errors while writing supers", 3693 total_errors); 3694 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3695 3696 /* FUA is masked off if unsupported and can't be the reason */ 3697 btrfs_handle_fs_error(root->fs_info, -EIO, 3698 "%d errors while writing supers", total_errors); 3699 return -EIO; 3700 } 3701 3702 total_errors = 0; 3703 list_for_each_entry_rcu(dev, head, dev_list) { 3704 if (!dev->bdev) 3705 continue; 3706 if (!dev->in_fs_metadata || !dev->writeable) 3707 continue; 3708 3709 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3710 if (ret) 3711 total_errors++; 3712 } 3713 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3714 if (total_errors > max_errors) { 3715 btrfs_handle_fs_error(root->fs_info, -EIO, 3716 "%d errors while writing supers", total_errors); 3717 return -EIO; 3718 } 3719 return 0; 3720 } 3721 3722 int write_ctree_super(struct btrfs_trans_handle *trans, 3723 struct btrfs_root *root, int max_mirrors) 3724 { 3725 return write_all_supers(root, max_mirrors); 3726 } 3727 3728 /* Drop a fs root from the radix tree and free it. */ 3729 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3730 struct btrfs_root *root) 3731 { 3732 spin_lock(&fs_info->fs_roots_radix_lock); 3733 radix_tree_delete(&fs_info->fs_roots_radix, 3734 (unsigned long)root->root_key.objectid); 3735 spin_unlock(&fs_info->fs_roots_radix_lock); 3736 3737 if (btrfs_root_refs(&root->root_item) == 0) 3738 synchronize_srcu(&fs_info->subvol_srcu); 3739 3740 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3741 btrfs_free_log(NULL, root); 3742 3743 if (root->free_ino_pinned) 3744 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3745 if (root->free_ino_ctl) 3746 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3747 free_fs_root(root); 3748 } 3749 3750 static void free_fs_root(struct btrfs_root *root) 3751 { 3752 iput(root->ino_cache_inode); 3753 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3754 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3755 root->orphan_block_rsv = NULL; 3756 if (root->anon_dev) 3757 free_anon_bdev(root->anon_dev); 3758 if (root->subv_writers) 3759 btrfs_free_subvolume_writers(root->subv_writers); 3760 free_extent_buffer(root->node); 3761 free_extent_buffer(root->commit_root); 3762 kfree(root->free_ino_ctl); 3763 kfree(root->free_ino_pinned); 3764 kfree(root->name); 3765 btrfs_put_fs_root(root); 3766 } 3767 3768 void btrfs_free_fs_root(struct btrfs_root *root) 3769 { 3770 free_fs_root(root); 3771 } 3772 3773 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3774 { 3775 u64 root_objectid = 0; 3776 struct btrfs_root *gang[8]; 3777 int i = 0; 3778 int err = 0; 3779 unsigned int ret = 0; 3780 int index; 3781 3782 while (1) { 3783 index = srcu_read_lock(&fs_info->subvol_srcu); 3784 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3785 (void **)gang, root_objectid, 3786 ARRAY_SIZE(gang)); 3787 if (!ret) { 3788 srcu_read_unlock(&fs_info->subvol_srcu, index); 3789 break; 3790 } 3791 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3792 3793 for (i = 0; i < ret; i++) { 3794 /* Avoid to grab roots in dead_roots */ 3795 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3796 gang[i] = NULL; 3797 continue; 3798 } 3799 /* grab all the search result for later use */ 3800 gang[i] = btrfs_grab_fs_root(gang[i]); 3801 } 3802 srcu_read_unlock(&fs_info->subvol_srcu, index); 3803 3804 for (i = 0; i < ret; i++) { 3805 if (!gang[i]) 3806 continue; 3807 root_objectid = gang[i]->root_key.objectid; 3808 err = btrfs_orphan_cleanup(gang[i]); 3809 if (err) 3810 break; 3811 btrfs_put_fs_root(gang[i]); 3812 } 3813 root_objectid++; 3814 } 3815 3816 /* release the uncleaned roots due to error */ 3817 for (; i < ret; i++) { 3818 if (gang[i]) 3819 btrfs_put_fs_root(gang[i]); 3820 } 3821 return err; 3822 } 3823 3824 int btrfs_commit_super(struct btrfs_root *root) 3825 { 3826 struct btrfs_trans_handle *trans; 3827 3828 mutex_lock(&root->fs_info->cleaner_mutex); 3829 btrfs_run_delayed_iputs(root); 3830 mutex_unlock(&root->fs_info->cleaner_mutex); 3831 wake_up_process(root->fs_info->cleaner_kthread); 3832 3833 /* wait until ongoing cleanup work done */ 3834 down_write(&root->fs_info->cleanup_work_sem); 3835 up_write(&root->fs_info->cleanup_work_sem); 3836 3837 trans = btrfs_join_transaction(root); 3838 if (IS_ERR(trans)) 3839 return PTR_ERR(trans); 3840 return btrfs_commit_transaction(trans, root); 3841 } 3842 3843 void close_ctree(struct btrfs_root *root) 3844 { 3845 struct btrfs_fs_info *fs_info = root->fs_info; 3846 int ret; 3847 3848 fs_info->closing = 1; 3849 smp_mb(); 3850 3851 /* wait for the qgroup rescan worker to stop */ 3852 btrfs_qgroup_wait_for_completion(fs_info); 3853 3854 /* wait for the uuid_scan task to finish */ 3855 down(&fs_info->uuid_tree_rescan_sem); 3856 /* avoid complains from lockdep et al., set sem back to initial state */ 3857 up(&fs_info->uuid_tree_rescan_sem); 3858 3859 /* pause restriper - we want to resume on mount */ 3860 btrfs_pause_balance(fs_info); 3861 3862 btrfs_dev_replace_suspend_for_unmount(fs_info); 3863 3864 btrfs_scrub_cancel(fs_info); 3865 3866 /* wait for any defraggers to finish */ 3867 wait_event(fs_info->transaction_wait, 3868 (atomic_read(&fs_info->defrag_running) == 0)); 3869 3870 /* clear out the rbtree of defraggable inodes */ 3871 btrfs_cleanup_defrag_inodes(fs_info); 3872 3873 cancel_work_sync(&fs_info->async_reclaim_work); 3874 3875 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3876 /* 3877 * If the cleaner thread is stopped and there are 3878 * block groups queued for removal, the deletion will be 3879 * skipped when we quit the cleaner thread. 3880 */ 3881 btrfs_delete_unused_bgs(root->fs_info); 3882 3883 ret = btrfs_commit_super(root); 3884 if (ret) 3885 btrfs_err(fs_info, "commit super ret %d", ret); 3886 } 3887 3888 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3889 btrfs_error_commit_super(root); 3890 3891 kthread_stop(fs_info->transaction_kthread); 3892 kthread_stop(fs_info->cleaner_kthread); 3893 3894 fs_info->closing = 2; 3895 smp_mb(); 3896 3897 btrfs_free_qgroup_config(fs_info); 3898 3899 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3900 btrfs_info(fs_info, "at unmount delalloc count %lld", 3901 percpu_counter_sum(&fs_info->delalloc_bytes)); 3902 } 3903 3904 btrfs_sysfs_remove_mounted(fs_info); 3905 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3906 3907 btrfs_free_fs_roots(fs_info); 3908 3909 btrfs_put_block_group_cache(fs_info); 3910 3911 btrfs_free_block_groups(fs_info); 3912 3913 /* 3914 * we must make sure there is not any read request to 3915 * submit after we stopping all workers. 3916 */ 3917 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3918 btrfs_stop_all_workers(fs_info); 3919 3920 fs_info->open = 0; 3921 free_root_pointers(fs_info, 1); 3922 3923 iput(fs_info->btree_inode); 3924 3925 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3926 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3927 btrfsic_unmount(root, fs_info->fs_devices); 3928 #endif 3929 3930 btrfs_close_devices(fs_info->fs_devices); 3931 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3932 3933 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3934 percpu_counter_destroy(&fs_info->delalloc_bytes); 3935 percpu_counter_destroy(&fs_info->bio_counter); 3936 bdi_destroy(&fs_info->bdi); 3937 cleanup_srcu_struct(&fs_info->subvol_srcu); 3938 3939 btrfs_free_stripe_hash_table(fs_info); 3940 3941 __btrfs_free_block_rsv(root->orphan_block_rsv); 3942 root->orphan_block_rsv = NULL; 3943 3944 lock_chunks(root); 3945 while (!list_empty(&fs_info->pinned_chunks)) { 3946 struct extent_map *em; 3947 3948 em = list_first_entry(&fs_info->pinned_chunks, 3949 struct extent_map, list); 3950 list_del_init(&em->list); 3951 free_extent_map(em); 3952 } 3953 unlock_chunks(root); 3954 } 3955 3956 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3957 int atomic) 3958 { 3959 int ret; 3960 struct inode *btree_inode = buf->pages[0]->mapping->host; 3961 3962 ret = extent_buffer_uptodate(buf); 3963 if (!ret) 3964 return ret; 3965 3966 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3967 parent_transid, atomic); 3968 if (ret == -EAGAIN) 3969 return ret; 3970 return !ret; 3971 } 3972 3973 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3974 { 3975 struct btrfs_root *root; 3976 u64 transid = btrfs_header_generation(buf); 3977 int was_dirty; 3978 3979 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3980 /* 3981 * This is a fast path so only do this check if we have sanity tests 3982 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3983 * outside of the sanity tests. 3984 */ 3985 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3986 return; 3987 #endif 3988 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3989 btrfs_assert_tree_locked(buf); 3990 if (transid != root->fs_info->generation) 3991 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3992 "found %llu running %llu\n", 3993 buf->start, transid, root->fs_info->generation); 3994 was_dirty = set_extent_buffer_dirty(buf); 3995 if (!was_dirty) 3996 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3997 buf->len, 3998 root->fs_info->dirty_metadata_batch); 3999 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 4000 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 4001 btrfs_print_leaf(root, buf); 4002 ASSERT(0); 4003 } 4004 #endif 4005 } 4006 4007 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 4008 int flush_delayed) 4009 { 4010 /* 4011 * looks as though older kernels can get into trouble with 4012 * this code, they end up stuck in balance_dirty_pages forever 4013 */ 4014 int ret; 4015 4016 if (current->flags & PF_MEMALLOC) 4017 return; 4018 4019 if (flush_delayed) 4020 btrfs_balance_delayed_items(root); 4021 4022 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 4023 BTRFS_DIRTY_METADATA_THRESH); 4024 if (ret > 0) { 4025 balance_dirty_pages_ratelimited( 4026 root->fs_info->btree_inode->i_mapping); 4027 } 4028 } 4029 4030 void btrfs_btree_balance_dirty(struct btrfs_root *root) 4031 { 4032 __btrfs_btree_balance_dirty(root, 1); 4033 } 4034 4035 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 4036 { 4037 __btrfs_btree_balance_dirty(root, 0); 4038 } 4039 4040 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 4041 { 4042 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 4043 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 4044 } 4045 4046 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 4047 int read_only) 4048 { 4049 struct btrfs_super_block *sb = fs_info->super_copy; 4050 u64 nodesize = btrfs_super_nodesize(sb); 4051 u64 sectorsize = btrfs_super_sectorsize(sb); 4052 int ret = 0; 4053 4054 if (btrfs_super_magic(sb) != BTRFS_MAGIC) { 4055 printk(KERN_ERR "BTRFS: no valid FS found\n"); 4056 ret = -EINVAL; 4057 } 4058 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) 4059 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n", 4060 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP); 4061 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 4062 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 4063 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 4064 ret = -EINVAL; 4065 } 4066 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 4067 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 4068 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 4069 ret = -EINVAL; 4070 } 4071 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 4072 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 4073 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 4074 ret = -EINVAL; 4075 } 4076 4077 /* 4078 * Check sectorsize and nodesize first, other check will need it. 4079 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here. 4080 */ 4081 if (!is_power_of_2(sectorsize) || sectorsize < 4096 || 4082 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4083 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize); 4084 ret = -EINVAL; 4085 } 4086 /* Only PAGE SIZE is supported yet */ 4087 if (sectorsize != PAGE_SIZE) { 4088 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n", 4089 sectorsize, PAGE_SIZE); 4090 ret = -EINVAL; 4091 } 4092 if (!is_power_of_2(nodesize) || nodesize < sectorsize || 4093 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) { 4094 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize); 4095 ret = -EINVAL; 4096 } 4097 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) { 4098 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n", 4099 le32_to_cpu(sb->__unused_leafsize), 4100 nodesize); 4101 ret = -EINVAL; 4102 } 4103 4104 /* Root alignment check */ 4105 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) { 4106 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 4107 btrfs_super_root(sb)); 4108 ret = -EINVAL; 4109 } 4110 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) { 4111 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 4112 btrfs_super_chunk_root(sb)); 4113 ret = -EINVAL; 4114 } 4115 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) { 4116 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 4117 btrfs_super_log_root(sb)); 4118 ret = -EINVAL; 4119 } 4120 4121 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 4122 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 4123 fs_info->fsid, sb->dev_item.fsid); 4124 ret = -EINVAL; 4125 } 4126 4127 /* 4128 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 4129 * done later 4130 */ 4131 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { 4132 btrfs_err(fs_info, "bytes_used is too small %llu", 4133 btrfs_super_bytes_used(sb)); 4134 ret = -EINVAL; 4135 } 4136 if (!is_power_of_2(btrfs_super_stripesize(sb))) { 4137 btrfs_err(fs_info, "invalid stripesize %u", 4138 btrfs_super_stripesize(sb)); 4139 ret = -EINVAL; 4140 } 4141 if (btrfs_super_num_devices(sb) > (1UL << 31)) 4142 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 4143 btrfs_super_num_devices(sb)); 4144 if (btrfs_super_num_devices(sb) == 0) { 4145 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4146 ret = -EINVAL; 4147 } 4148 4149 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4150 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4151 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4152 ret = -EINVAL; 4153 } 4154 4155 /* 4156 * Obvious sys_chunk_array corruptions, it must hold at least one key 4157 * and one chunk 4158 */ 4159 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4160 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4161 btrfs_super_sys_array_size(sb), 4162 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4163 ret = -EINVAL; 4164 } 4165 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4166 + sizeof(struct btrfs_chunk)) { 4167 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4168 btrfs_super_sys_array_size(sb), 4169 sizeof(struct btrfs_disk_key) 4170 + sizeof(struct btrfs_chunk)); 4171 ret = -EINVAL; 4172 } 4173 4174 /* 4175 * The generation is a global counter, we'll trust it more than the others 4176 * but it's still possible that it's the one that's wrong. 4177 */ 4178 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4179 printk(KERN_WARNING 4180 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4181 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4182 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4183 && btrfs_super_cache_generation(sb) != (u64)-1) 4184 printk(KERN_WARNING 4185 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4186 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4187 4188 return ret; 4189 } 4190 4191 static void btrfs_error_commit_super(struct btrfs_root *root) 4192 { 4193 mutex_lock(&root->fs_info->cleaner_mutex); 4194 btrfs_run_delayed_iputs(root); 4195 mutex_unlock(&root->fs_info->cleaner_mutex); 4196 4197 down_write(&root->fs_info->cleanup_work_sem); 4198 up_write(&root->fs_info->cleanup_work_sem); 4199 4200 /* cleanup FS via transaction */ 4201 btrfs_cleanup_transaction(root); 4202 } 4203 4204 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4205 { 4206 struct btrfs_ordered_extent *ordered; 4207 4208 spin_lock(&root->ordered_extent_lock); 4209 /* 4210 * This will just short circuit the ordered completion stuff which will 4211 * make sure the ordered extent gets properly cleaned up. 4212 */ 4213 list_for_each_entry(ordered, &root->ordered_extents, 4214 root_extent_list) 4215 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4216 spin_unlock(&root->ordered_extent_lock); 4217 } 4218 4219 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4220 { 4221 struct btrfs_root *root; 4222 struct list_head splice; 4223 4224 INIT_LIST_HEAD(&splice); 4225 4226 spin_lock(&fs_info->ordered_root_lock); 4227 list_splice_init(&fs_info->ordered_roots, &splice); 4228 while (!list_empty(&splice)) { 4229 root = list_first_entry(&splice, struct btrfs_root, 4230 ordered_root); 4231 list_move_tail(&root->ordered_root, 4232 &fs_info->ordered_roots); 4233 4234 spin_unlock(&fs_info->ordered_root_lock); 4235 btrfs_destroy_ordered_extents(root); 4236 4237 cond_resched(); 4238 spin_lock(&fs_info->ordered_root_lock); 4239 } 4240 spin_unlock(&fs_info->ordered_root_lock); 4241 } 4242 4243 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4244 struct btrfs_root *root) 4245 { 4246 struct rb_node *node; 4247 struct btrfs_delayed_ref_root *delayed_refs; 4248 struct btrfs_delayed_ref_node *ref; 4249 int ret = 0; 4250 4251 delayed_refs = &trans->delayed_refs; 4252 4253 spin_lock(&delayed_refs->lock); 4254 if (atomic_read(&delayed_refs->num_entries) == 0) { 4255 spin_unlock(&delayed_refs->lock); 4256 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4257 return ret; 4258 } 4259 4260 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4261 struct btrfs_delayed_ref_head *head; 4262 struct btrfs_delayed_ref_node *tmp; 4263 bool pin_bytes = false; 4264 4265 head = rb_entry(node, struct btrfs_delayed_ref_head, 4266 href_node); 4267 if (!mutex_trylock(&head->mutex)) { 4268 atomic_inc(&head->node.refs); 4269 spin_unlock(&delayed_refs->lock); 4270 4271 mutex_lock(&head->mutex); 4272 mutex_unlock(&head->mutex); 4273 btrfs_put_delayed_ref(&head->node); 4274 spin_lock(&delayed_refs->lock); 4275 continue; 4276 } 4277 spin_lock(&head->lock); 4278 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4279 list) { 4280 ref->in_tree = 0; 4281 list_del(&ref->list); 4282 atomic_dec(&delayed_refs->num_entries); 4283 btrfs_put_delayed_ref(ref); 4284 } 4285 if (head->must_insert_reserved) 4286 pin_bytes = true; 4287 btrfs_free_delayed_extent_op(head->extent_op); 4288 delayed_refs->num_heads--; 4289 if (head->processing == 0) 4290 delayed_refs->num_heads_ready--; 4291 atomic_dec(&delayed_refs->num_entries); 4292 head->node.in_tree = 0; 4293 rb_erase(&head->href_node, &delayed_refs->href_root); 4294 spin_unlock(&head->lock); 4295 spin_unlock(&delayed_refs->lock); 4296 mutex_unlock(&head->mutex); 4297 4298 if (pin_bytes) 4299 btrfs_pin_extent(root, head->node.bytenr, 4300 head->node.num_bytes, 1); 4301 btrfs_put_delayed_ref(&head->node); 4302 cond_resched(); 4303 spin_lock(&delayed_refs->lock); 4304 } 4305 4306 spin_unlock(&delayed_refs->lock); 4307 4308 return ret; 4309 } 4310 4311 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4312 { 4313 struct btrfs_inode *btrfs_inode; 4314 struct list_head splice; 4315 4316 INIT_LIST_HEAD(&splice); 4317 4318 spin_lock(&root->delalloc_lock); 4319 list_splice_init(&root->delalloc_inodes, &splice); 4320 4321 while (!list_empty(&splice)) { 4322 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4323 delalloc_inodes); 4324 4325 list_del_init(&btrfs_inode->delalloc_inodes); 4326 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4327 &btrfs_inode->runtime_flags); 4328 spin_unlock(&root->delalloc_lock); 4329 4330 btrfs_invalidate_inodes(btrfs_inode->root); 4331 4332 spin_lock(&root->delalloc_lock); 4333 } 4334 4335 spin_unlock(&root->delalloc_lock); 4336 } 4337 4338 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4339 { 4340 struct btrfs_root *root; 4341 struct list_head splice; 4342 4343 INIT_LIST_HEAD(&splice); 4344 4345 spin_lock(&fs_info->delalloc_root_lock); 4346 list_splice_init(&fs_info->delalloc_roots, &splice); 4347 while (!list_empty(&splice)) { 4348 root = list_first_entry(&splice, struct btrfs_root, 4349 delalloc_root); 4350 list_del_init(&root->delalloc_root); 4351 root = btrfs_grab_fs_root(root); 4352 BUG_ON(!root); 4353 spin_unlock(&fs_info->delalloc_root_lock); 4354 4355 btrfs_destroy_delalloc_inodes(root); 4356 btrfs_put_fs_root(root); 4357 4358 spin_lock(&fs_info->delalloc_root_lock); 4359 } 4360 spin_unlock(&fs_info->delalloc_root_lock); 4361 } 4362 4363 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4364 struct extent_io_tree *dirty_pages, 4365 int mark) 4366 { 4367 int ret; 4368 struct extent_buffer *eb; 4369 u64 start = 0; 4370 u64 end; 4371 4372 while (1) { 4373 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4374 mark, NULL); 4375 if (ret) 4376 break; 4377 4378 clear_extent_bits(dirty_pages, start, end, mark); 4379 while (start <= end) { 4380 eb = btrfs_find_tree_block(root->fs_info, start); 4381 start += root->nodesize; 4382 if (!eb) 4383 continue; 4384 wait_on_extent_buffer_writeback(eb); 4385 4386 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4387 &eb->bflags)) 4388 clear_extent_buffer_dirty(eb); 4389 free_extent_buffer_stale(eb); 4390 } 4391 } 4392 4393 return ret; 4394 } 4395 4396 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4397 struct extent_io_tree *pinned_extents) 4398 { 4399 struct extent_io_tree *unpin; 4400 u64 start; 4401 u64 end; 4402 int ret; 4403 bool loop = true; 4404 4405 unpin = pinned_extents; 4406 again: 4407 while (1) { 4408 ret = find_first_extent_bit(unpin, 0, &start, &end, 4409 EXTENT_DIRTY, NULL); 4410 if (ret) 4411 break; 4412 4413 clear_extent_dirty(unpin, start, end); 4414 btrfs_error_unpin_extent_range(root, start, end); 4415 cond_resched(); 4416 } 4417 4418 if (loop) { 4419 if (unpin == &root->fs_info->freed_extents[0]) 4420 unpin = &root->fs_info->freed_extents[1]; 4421 else 4422 unpin = &root->fs_info->freed_extents[0]; 4423 loop = false; 4424 goto again; 4425 } 4426 4427 return 0; 4428 } 4429 4430 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4431 struct btrfs_root *root) 4432 { 4433 btrfs_destroy_delayed_refs(cur_trans, root); 4434 4435 cur_trans->state = TRANS_STATE_COMMIT_START; 4436 wake_up(&root->fs_info->transaction_blocked_wait); 4437 4438 cur_trans->state = TRANS_STATE_UNBLOCKED; 4439 wake_up(&root->fs_info->transaction_wait); 4440 4441 btrfs_destroy_delayed_inodes(root); 4442 btrfs_assert_delayed_root_empty(root); 4443 4444 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4445 EXTENT_DIRTY); 4446 btrfs_destroy_pinned_extent(root, 4447 root->fs_info->pinned_extents); 4448 4449 cur_trans->state =TRANS_STATE_COMPLETED; 4450 wake_up(&cur_trans->commit_wait); 4451 4452 /* 4453 memset(cur_trans, 0, sizeof(*cur_trans)); 4454 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4455 */ 4456 } 4457 4458 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4459 { 4460 struct btrfs_transaction *t; 4461 4462 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4463 4464 spin_lock(&root->fs_info->trans_lock); 4465 while (!list_empty(&root->fs_info->trans_list)) { 4466 t = list_first_entry(&root->fs_info->trans_list, 4467 struct btrfs_transaction, list); 4468 if (t->state >= TRANS_STATE_COMMIT_START) { 4469 atomic_inc(&t->use_count); 4470 spin_unlock(&root->fs_info->trans_lock); 4471 btrfs_wait_for_commit(root, t->transid); 4472 btrfs_put_transaction(t); 4473 spin_lock(&root->fs_info->trans_lock); 4474 continue; 4475 } 4476 if (t == root->fs_info->running_transaction) { 4477 t->state = TRANS_STATE_COMMIT_DOING; 4478 spin_unlock(&root->fs_info->trans_lock); 4479 /* 4480 * We wait for 0 num_writers since we don't hold a trans 4481 * handle open currently for this transaction. 4482 */ 4483 wait_event(t->writer_wait, 4484 atomic_read(&t->num_writers) == 0); 4485 } else { 4486 spin_unlock(&root->fs_info->trans_lock); 4487 } 4488 btrfs_cleanup_one_transaction(t, root); 4489 4490 spin_lock(&root->fs_info->trans_lock); 4491 if (t == root->fs_info->running_transaction) 4492 root->fs_info->running_transaction = NULL; 4493 list_del_init(&t->list); 4494 spin_unlock(&root->fs_info->trans_lock); 4495 4496 btrfs_put_transaction(t); 4497 trace_btrfs_transaction_commit(root); 4498 spin_lock(&root->fs_info->trans_lock); 4499 } 4500 spin_unlock(&root->fs_info->trans_lock); 4501 btrfs_destroy_all_ordered_extents(root->fs_info); 4502 btrfs_destroy_delayed_inodes(root); 4503 btrfs_assert_delayed_root_empty(root); 4504 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4505 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4506 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4507 4508 return 0; 4509 } 4510 4511 static const struct extent_io_ops btree_extent_io_ops = { 4512 .readpage_end_io_hook = btree_readpage_end_io_hook, 4513 .readpage_io_failed_hook = btree_io_failed_hook, 4514 .submit_bio_hook = btree_submit_bio_hook, 4515 /* note we're sharing with inode.c for the merge bio hook */ 4516 .merge_bio_hook = btrfs_merge_bio_hook, 4517 }; 4518