1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include "compat.h" 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "volumes.h" 38 #include "print-tree.h" 39 #include "async-thread.h" 40 #include "locking.h" 41 #include "tree-log.h" 42 #include "free-space-cache.h" 43 44 static struct extent_io_ops btree_extent_io_ops; 45 static void end_workqueue_fn(struct btrfs_work *work); 46 static void free_fs_root(struct btrfs_root *root); 47 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 48 int read_only); 49 static int btrfs_destroy_ordered_operations(struct btrfs_root *root); 50 static int btrfs_destroy_ordered_extents(struct btrfs_root *root); 51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 52 struct btrfs_root *root); 53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t); 54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 55 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 56 struct extent_io_tree *dirty_pages, 57 int mark); 58 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 59 struct extent_io_tree *pinned_extents); 60 static int btrfs_cleanup_transaction(struct btrfs_root *root); 61 62 /* 63 * end_io_wq structs are used to do processing in task context when an IO is 64 * complete. This is used during reads to verify checksums, and it is used 65 * by writes to insert metadata for new file extents after IO is complete. 66 */ 67 struct end_io_wq { 68 struct bio *bio; 69 bio_end_io_t *end_io; 70 void *private; 71 struct btrfs_fs_info *info; 72 int error; 73 int metadata; 74 struct list_head list; 75 struct btrfs_work work; 76 }; 77 78 /* 79 * async submit bios are used to offload expensive checksumming 80 * onto the worker threads. They checksum file and metadata bios 81 * just before they are sent down the IO stack. 82 */ 83 struct async_submit_bio { 84 struct inode *inode; 85 struct bio *bio; 86 struct list_head list; 87 extent_submit_bio_hook_t *submit_bio_start; 88 extent_submit_bio_hook_t *submit_bio_done; 89 int rw; 90 int mirror_num; 91 unsigned long bio_flags; 92 /* 93 * bio_offset is optional, can be used if the pages in the bio 94 * can't tell us where in the file the bio should go 95 */ 96 u64 bio_offset; 97 struct btrfs_work work; 98 }; 99 100 /* These are used to set the lockdep class on the extent buffer locks. 101 * The class is set by the readpage_end_io_hook after the buffer has 102 * passed csum validation but before the pages are unlocked. 103 * 104 * The lockdep class is also set by btrfs_init_new_buffer on freshly 105 * allocated blocks. 106 * 107 * The class is based on the level in the tree block, which allows lockdep 108 * to know that lower nodes nest inside the locks of higher nodes. 109 * 110 * We also add a check to make sure the highest level of the tree is 111 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 112 * code needs update as well. 113 */ 114 #ifdef CONFIG_DEBUG_LOCK_ALLOC 115 # if BTRFS_MAX_LEVEL != 8 116 # error 117 # endif 118 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 119 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 120 /* leaf */ 121 "btrfs-extent-00", 122 "btrfs-extent-01", 123 "btrfs-extent-02", 124 "btrfs-extent-03", 125 "btrfs-extent-04", 126 "btrfs-extent-05", 127 "btrfs-extent-06", 128 "btrfs-extent-07", 129 /* highest possible level */ 130 "btrfs-extent-08", 131 }; 132 #endif 133 134 /* 135 * extents on the btree inode are pretty simple, there's one extent 136 * that covers the entire device 137 */ 138 static struct extent_map *btree_get_extent(struct inode *inode, 139 struct page *page, size_t page_offset, u64 start, u64 len, 140 int create) 141 { 142 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 143 struct extent_map *em; 144 int ret; 145 146 read_lock(&em_tree->lock); 147 em = lookup_extent_mapping(em_tree, start, len); 148 if (em) { 149 em->bdev = 150 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 151 read_unlock(&em_tree->lock); 152 goto out; 153 } 154 read_unlock(&em_tree->lock); 155 156 em = alloc_extent_map(GFP_NOFS); 157 if (!em) { 158 em = ERR_PTR(-ENOMEM); 159 goto out; 160 } 161 em->start = 0; 162 em->len = (u64)-1; 163 em->block_len = (u64)-1; 164 em->block_start = 0; 165 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 166 167 write_lock(&em_tree->lock); 168 ret = add_extent_mapping(em_tree, em); 169 if (ret == -EEXIST) { 170 u64 failed_start = em->start; 171 u64 failed_len = em->len; 172 173 free_extent_map(em); 174 em = lookup_extent_mapping(em_tree, start, len); 175 if (em) { 176 ret = 0; 177 } else { 178 em = lookup_extent_mapping(em_tree, failed_start, 179 failed_len); 180 ret = -EIO; 181 } 182 } else if (ret) { 183 free_extent_map(em); 184 em = NULL; 185 } 186 write_unlock(&em_tree->lock); 187 188 if (ret) 189 em = ERR_PTR(ret); 190 out: 191 return em; 192 } 193 194 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 195 { 196 return crc32c(seed, data, len); 197 } 198 199 void btrfs_csum_final(u32 crc, char *result) 200 { 201 *(__le32 *)result = ~cpu_to_le32(crc); 202 } 203 204 /* 205 * compute the csum for a btree block, and either verify it or write it 206 * into the csum field of the block. 207 */ 208 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 209 int verify) 210 { 211 u16 csum_size = 212 btrfs_super_csum_size(&root->fs_info->super_copy); 213 char *result = NULL; 214 unsigned long len; 215 unsigned long cur_len; 216 unsigned long offset = BTRFS_CSUM_SIZE; 217 char *map_token = NULL; 218 char *kaddr; 219 unsigned long map_start; 220 unsigned long map_len; 221 int err; 222 u32 crc = ~(u32)0; 223 unsigned long inline_result; 224 225 len = buf->len - offset; 226 while (len > 0) { 227 err = map_private_extent_buffer(buf, offset, 32, 228 &map_token, &kaddr, 229 &map_start, &map_len, KM_USER0); 230 if (err) 231 return 1; 232 cur_len = min(len, map_len - (offset - map_start)); 233 crc = btrfs_csum_data(root, kaddr + offset - map_start, 234 crc, cur_len); 235 len -= cur_len; 236 offset += cur_len; 237 unmap_extent_buffer(buf, map_token, KM_USER0); 238 } 239 if (csum_size > sizeof(inline_result)) { 240 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 241 if (!result) 242 return 1; 243 } else { 244 result = (char *)&inline_result; 245 } 246 247 btrfs_csum_final(crc, result); 248 249 if (verify) { 250 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 251 u32 val; 252 u32 found = 0; 253 memcpy(&found, result, csum_size); 254 255 read_extent_buffer(buf, &val, 0, csum_size); 256 if (printk_ratelimit()) { 257 printk(KERN_INFO "btrfs: %s checksum verify " 258 "failed on %llu wanted %X found %X " 259 "level %d\n", 260 root->fs_info->sb->s_id, 261 (unsigned long long)buf->start, val, found, 262 btrfs_header_level(buf)); 263 } 264 if (result != (char *)&inline_result) 265 kfree(result); 266 return 1; 267 } 268 } else { 269 write_extent_buffer(buf, result, 0, csum_size); 270 } 271 if (result != (char *)&inline_result) 272 kfree(result); 273 return 0; 274 } 275 276 /* 277 * we can't consider a given block up to date unless the transid of the 278 * block matches the transid in the parent node's pointer. This is how we 279 * detect blocks that either didn't get written at all or got written 280 * in the wrong place. 281 */ 282 static int verify_parent_transid(struct extent_io_tree *io_tree, 283 struct extent_buffer *eb, u64 parent_transid) 284 { 285 struct extent_state *cached_state = NULL; 286 int ret; 287 288 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 289 return 0; 290 291 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 292 0, &cached_state, GFP_NOFS); 293 if (extent_buffer_uptodate(io_tree, eb, cached_state) && 294 btrfs_header_generation(eb) == parent_transid) { 295 ret = 0; 296 goto out; 297 } 298 if (printk_ratelimit()) { 299 printk("parent transid verify failed on %llu wanted %llu " 300 "found %llu\n", 301 (unsigned long long)eb->start, 302 (unsigned long long)parent_transid, 303 (unsigned long long)btrfs_header_generation(eb)); 304 } 305 ret = 1; 306 clear_extent_buffer_uptodate(io_tree, eb, &cached_state); 307 out: 308 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 309 &cached_state, GFP_NOFS); 310 return ret; 311 } 312 313 /* 314 * helper to read a given tree block, doing retries as required when 315 * the checksums don't match and we have alternate mirrors to try. 316 */ 317 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 318 struct extent_buffer *eb, 319 u64 start, u64 parent_transid) 320 { 321 struct extent_io_tree *io_tree; 322 int ret; 323 int num_copies = 0; 324 int mirror_num = 0; 325 326 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 327 while (1) { 328 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 329 btree_get_extent, mirror_num); 330 if (!ret && 331 !verify_parent_transid(io_tree, eb, parent_transid)) 332 return ret; 333 334 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 335 eb->start, eb->len); 336 if (num_copies == 1) 337 return ret; 338 339 mirror_num++; 340 if (mirror_num > num_copies) 341 return ret; 342 } 343 return -EIO; 344 } 345 346 /* 347 * checksum a dirty tree block before IO. This has extra checks to make sure 348 * we only fill in the checksum field in the first page of a multi-page block 349 */ 350 351 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 352 { 353 struct extent_io_tree *tree; 354 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 355 u64 found_start; 356 unsigned long len; 357 struct extent_buffer *eb; 358 int ret; 359 360 tree = &BTRFS_I(page->mapping->host)->io_tree; 361 362 if (page->private == EXTENT_PAGE_PRIVATE) 363 goto out; 364 if (!page->private) 365 goto out; 366 len = page->private >> 2; 367 WARN_ON(len == 0); 368 369 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 370 if (eb == NULL) { 371 WARN_ON(1); 372 goto out; 373 } 374 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 375 btrfs_header_generation(eb)); 376 BUG_ON(ret); 377 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN)); 378 379 found_start = btrfs_header_bytenr(eb); 380 if (found_start != start) { 381 WARN_ON(1); 382 goto err; 383 } 384 if (eb->first_page != page) { 385 WARN_ON(1); 386 goto err; 387 } 388 if (!PageUptodate(page)) { 389 WARN_ON(1); 390 goto err; 391 } 392 csum_tree_block(root, eb, 0); 393 err: 394 free_extent_buffer(eb); 395 out: 396 return 0; 397 } 398 399 static int check_tree_block_fsid(struct btrfs_root *root, 400 struct extent_buffer *eb) 401 { 402 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 403 u8 fsid[BTRFS_UUID_SIZE]; 404 int ret = 1; 405 406 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 407 BTRFS_FSID_SIZE); 408 while (fs_devices) { 409 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 410 ret = 0; 411 break; 412 } 413 fs_devices = fs_devices->seed; 414 } 415 return ret; 416 } 417 418 #ifdef CONFIG_DEBUG_LOCK_ALLOC 419 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 420 { 421 lockdep_set_class_and_name(&eb->lock, 422 &btrfs_eb_class[level], 423 btrfs_eb_name[level]); 424 } 425 #endif 426 427 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 428 struct extent_state *state) 429 { 430 struct extent_io_tree *tree; 431 u64 found_start; 432 int found_level; 433 unsigned long len; 434 struct extent_buffer *eb; 435 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 436 int ret = 0; 437 438 tree = &BTRFS_I(page->mapping->host)->io_tree; 439 if (page->private == EXTENT_PAGE_PRIVATE) 440 goto out; 441 if (!page->private) 442 goto out; 443 444 len = page->private >> 2; 445 WARN_ON(len == 0); 446 447 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 448 if (eb == NULL) { 449 ret = -EIO; 450 goto out; 451 } 452 453 found_start = btrfs_header_bytenr(eb); 454 if (found_start != start) { 455 if (printk_ratelimit()) { 456 printk(KERN_INFO "btrfs bad tree block start " 457 "%llu %llu\n", 458 (unsigned long long)found_start, 459 (unsigned long long)eb->start); 460 } 461 ret = -EIO; 462 goto err; 463 } 464 if (eb->first_page != page) { 465 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 466 eb->first_page->index, page->index); 467 WARN_ON(1); 468 ret = -EIO; 469 goto err; 470 } 471 if (check_tree_block_fsid(root, eb)) { 472 if (printk_ratelimit()) { 473 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 474 (unsigned long long)eb->start); 475 } 476 ret = -EIO; 477 goto err; 478 } 479 found_level = btrfs_header_level(eb); 480 481 btrfs_set_buffer_lockdep_class(eb, found_level); 482 483 ret = csum_tree_block(root, eb, 1); 484 if (ret) 485 ret = -EIO; 486 487 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 488 end = eb->start + end - 1; 489 err: 490 free_extent_buffer(eb); 491 out: 492 return ret; 493 } 494 495 static void end_workqueue_bio(struct bio *bio, int err) 496 { 497 struct end_io_wq *end_io_wq = bio->bi_private; 498 struct btrfs_fs_info *fs_info; 499 500 fs_info = end_io_wq->info; 501 end_io_wq->error = err; 502 end_io_wq->work.func = end_workqueue_fn; 503 end_io_wq->work.flags = 0; 504 505 if (bio->bi_rw & REQ_WRITE) { 506 if (end_io_wq->metadata == 1) 507 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 508 &end_io_wq->work); 509 else if (end_io_wq->metadata == 2) 510 btrfs_queue_worker(&fs_info->endio_freespace_worker, 511 &end_io_wq->work); 512 else 513 btrfs_queue_worker(&fs_info->endio_write_workers, 514 &end_io_wq->work); 515 } else { 516 if (end_io_wq->metadata) 517 btrfs_queue_worker(&fs_info->endio_meta_workers, 518 &end_io_wq->work); 519 else 520 btrfs_queue_worker(&fs_info->endio_workers, 521 &end_io_wq->work); 522 } 523 } 524 525 /* 526 * For the metadata arg you want 527 * 528 * 0 - if data 529 * 1 - if normal metadta 530 * 2 - if writing to the free space cache area 531 */ 532 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 533 int metadata) 534 { 535 struct end_io_wq *end_io_wq; 536 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 537 if (!end_io_wq) 538 return -ENOMEM; 539 540 end_io_wq->private = bio->bi_private; 541 end_io_wq->end_io = bio->bi_end_io; 542 end_io_wq->info = info; 543 end_io_wq->error = 0; 544 end_io_wq->bio = bio; 545 end_io_wq->metadata = metadata; 546 547 bio->bi_private = end_io_wq; 548 bio->bi_end_io = end_workqueue_bio; 549 return 0; 550 } 551 552 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 553 { 554 unsigned long limit = min_t(unsigned long, 555 info->workers.max_workers, 556 info->fs_devices->open_devices); 557 return 256 * limit; 558 } 559 560 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 561 { 562 return atomic_read(&info->nr_async_bios) > 563 btrfs_async_submit_limit(info); 564 } 565 566 static void run_one_async_start(struct btrfs_work *work) 567 { 568 struct async_submit_bio *async; 569 570 async = container_of(work, struct async_submit_bio, work); 571 async->submit_bio_start(async->inode, async->rw, async->bio, 572 async->mirror_num, async->bio_flags, 573 async->bio_offset); 574 } 575 576 static void run_one_async_done(struct btrfs_work *work) 577 { 578 struct btrfs_fs_info *fs_info; 579 struct async_submit_bio *async; 580 int limit; 581 582 async = container_of(work, struct async_submit_bio, work); 583 fs_info = BTRFS_I(async->inode)->root->fs_info; 584 585 limit = btrfs_async_submit_limit(fs_info); 586 limit = limit * 2 / 3; 587 588 atomic_dec(&fs_info->nr_async_submits); 589 590 if (atomic_read(&fs_info->nr_async_submits) < limit && 591 waitqueue_active(&fs_info->async_submit_wait)) 592 wake_up(&fs_info->async_submit_wait); 593 594 async->submit_bio_done(async->inode, async->rw, async->bio, 595 async->mirror_num, async->bio_flags, 596 async->bio_offset); 597 } 598 599 static void run_one_async_free(struct btrfs_work *work) 600 { 601 struct async_submit_bio *async; 602 603 async = container_of(work, struct async_submit_bio, work); 604 kfree(async); 605 } 606 607 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 608 int rw, struct bio *bio, int mirror_num, 609 unsigned long bio_flags, 610 u64 bio_offset, 611 extent_submit_bio_hook_t *submit_bio_start, 612 extent_submit_bio_hook_t *submit_bio_done) 613 { 614 struct async_submit_bio *async; 615 616 async = kmalloc(sizeof(*async), GFP_NOFS); 617 if (!async) 618 return -ENOMEM; 619 620 async->inode = inode; 621 async->rw = rw; 622 async->bio = bio; 623 async->mirror_num = mirror_num; 624 async->submit_bio_start = submit_bio_start; 625 async->submit_bio_done = submit_bio_done; 626 627 async->work.func = run_one_async_start; 628 async->work.ordered_func = run_one_async_done; 629 async->work.ordered_free = run_one_async_free; 630 631 async->work.flags = 0; 632 async->bio_flags = bio_flags; 633 async->bio_offset = bio_offset; 634 635 atomic_inc(&fs_info->nr_async_submits); 636 637 if (rw & REQ_SYNC) 638 btrfs_set_work_high_prio(&async->work); 639 640 btrfs_queue_worker(&fs_info->workers, &async->work); 641 642 while (atomic_read(&fs_info->async_submit_draining) && 643 atomic_read(&fs_info->nr_async_submits)) { 644 wait_event(fs_info->async_submit_wait, 645 (atomic_read(&fs_info->nr_async_submits) == 0)); 646 } 647 648 return 0; 649 } 650 651 static int btree_csum_one_bio(struct bio *bio) 652 { 653 struct bio_vec *bvec = bio->bi_io_vec; 654 int bio_index = 0; 655 struct btrfs_root *root; 656 657 WARN_ON(bio->bi_vcnt <= 0); 658 while (bio_index < bio->bi_vcnt) { 659 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 660 csum_dirty_buffer(root, bvec->bv_page); 661 bio_index++; 662 bvec++; 663 } 664 return 0; 665 } 666 667 static int __btree_submit_bio_start(struct inode *inode, int rw, 668 struct bio *bio, int mirror_num, 669 unsigned long bio_flags, 670 u64 bio_offset) 671 { 672 /* 673 * when we're called for a write, we're already in the async 674 * submission context. Just jump into btrfs_map_bio 675 */ 676 btree_csum_one_bio(bio); 677 return 0; 678 } 679 680 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 681 int mirror_num, unsigned long bio_flags, 682 u64 bio_offset) 683 { 684 /* 685 * when we're called for a write, we're already in the async 686 * submission context. Just jump into btrfs_map_bio 687 */ 688 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 689 } 690 691 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 692 int mirror_num, unsigned long bio_flags, 693 u64 bio_offset) 694 { 695 int ret; 696 697 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 698 bio, 1); 699 BUG_ON(ret); 700 701 if (!(rw & REQ_WRITE)) { 702 /* 703 * called for a read, do the setup so that checksum validation 704 * can happen in the async kernel threads 705 */ 706 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 707 mirror_num, 0); 708 } 709 710 /* 711 * kthread helpers are used to submit writes so that checksumming 712 * can happen in parallel across all CPUs 713 */ 714 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 715 inode, rw, bio, mirror_num, 0, 716 bio_offset, 717 __btree_submit_bio_start, 718 __btree_submit_bio_done); 719 } 720 721 #ifdef CONFIG_MIGRATION 722 static int btree_migratepage(struct address_space *mapping, 723 struct page *newpage, struct page *page) 724 { 725 /* 726 * we can't safely write a btree page from here, 727 * we haven't done the locking hook 728 */ 729 if (PageDirty(page)) 730 return -EAGAIN; 731 /* 732 * Buffers may be managed in a filesystem specific way. 733 * We must have no buffers or drop them. 734 */ 735 if (page_has_private(page) && 736 !try_to_release_page(page, GFP_KERNEL)) 737 return -EAGAIN; 738 return migrate_page(mapping, newpage, page); 739 } 740 #endif 741 742 static int btree_writepage(struct page *page, struct writeback_control *wbc) 743 { 744 struct extent_io_tree *tree; 745 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 746 struct extent_buffer *eb; 747 int was_dirty; 748 749 tree = &BTRFS_I(page->mapping->host)->io_tree; 750 if (!(current->flags & PF_MEMALLOC)) { 751 return extent_write_full_page(tree, page, 752 btree_get_extent, wbc); 753 } 754 755 redirty_page_for_writepage(wbc, page); 756 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE); 757 WARN_ON(!eb); 758 759 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 760 if (!was_dirty) { 761 spin_lock(&root->fs_info->delalloc_lock); 762 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 763 spin_unlock(&root->fs_info->delalloc_lock); 764 } 765 free_extent_buffer(eb); 766 767 unlock_page(page); 768 return 0; 769 } 770 771 static int btree_writepages(struct address_space *mapping, 772 struct writeback_control *wbc) 773 { 774 struct extent_io_tree *tree; 775 tree = &BTRFS_I(mapping->host)->io_tree; 776 if (wbc->sync_mode == WB_SYNC_NONE) { 777 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 778 u64 num_dirty; 779 unsigned long thresh = 32 * 1024 * 1024; 780 781 if (wbc->for_kupdate) 782 return 0; 783 784 /* this is a bit racy, but that's ok */ 785 num_dirty = root->fs_info->dirty_metadata_bytes; 786 if (num_dirty < thresh) 787 return 0; 788 } 789 return extent_writepages(tree, mapping, btree_get_extent, wbc); 790 } 791 792 static int btree_readpage(struct file *file, struct page *page) 793 { 794 struct extent_io_tree *tree; 795 tree = &BTRFS_I(page->mapping->host)->io_tree; 796 return extent_read_full_page(tree, page, btree_get_extent); 797 } 798 799 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 800 { 801 struct extent_io_tree *tree; 802 struct extent_map_tree *map; 803 int ret; 804 805 if (PageWriteback(page) || PageDirty(page)) 806 return 0; 807 808 tree = &BTRFS_I(page->mapping->host)->io_tree; 809 map = &BTRFS_I(page->mapping->host)->extent_tree; 810 811 ret = try_release_extent_state(map, tree, page, gfp_flags); 812 if (!ret) 813 return 0; 814 815 ret = try_release_extent_buffer(tree, page); 816 if (ret == 1) { 817 ClearPagePrivate(page); 818 set_page_private(page, 0); 819 page_cache_release(page); 820 } 821 822 return ret; 823 } 824 825 static void btree_invalidatepage(struct page *page, unsigned long offset) 826 { 827 struct extent_io_tree *tree; 828 tree = &BTRFS_I(page->mapping->host)->io_tree; 829 extent_invalidatepage(tree, page, offset); 830 btree_releasepage(page, GFP_NOFS); 831 if (PagePrivate(page)) { 832 printk(KERN_WARNING "btrfs warning page private not zero " 833 "on page %llu\n", (unsigned long long)page_offset(page)); 834 ClearPagePrivate(page); 835 set_page_private(page, 0); 836 page_cache_release(page); 837 } 838 } 839 840 static const struct address_space_operations btree_aops = { 841 .readpage = btree_readpage, 842 .writepage = btree_writepage, 843 .writepages = btree_writepages, 844 .releasepage = btree_releasepage, 845 .invalidatepage = btree_invalidatepage, 846 .sync_page = block_sync_page, 847 #ifdef CONFIG_MIGRATION 848 .migratepage = btree_migratepage, 849 #endif 850 }; 851 852 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 853 u64 parent_transid) 854 { 855 struct extent_buffer *buf = NULL; 856 struct inode *btree_inode = root->fs_info->btree_inode; 857 int ret = 0; 858 859 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 860 if (!buf) 861 return 0; 862 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 863 buf, 0, 0, btree_get_extent, 0); 864 free_extent_buffer(buf); 865 return ret; 866 } 867 868 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 869 u64 bytenr, u32 blocksize) 870 { 871 struct inode *btree_inode = root->fs_info->btree_inode; 872 struct extent_buffer *eb; 873 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 874 bytenr, blocksize, GFP_NOFS); 875 return eb; 876 } 877 878 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 879 u64 bytenr, u32 blocksize) 880 { 881 struct inode *btree_inode = root->fs_info->btree_inode; 882 struct extent_buffer *eb; 883 884 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 885 bytenr, blocksize, NULL, GFP_NOFS); 886 return eb; 887 } 888 889 890 int btrfs_write_tree_block(struct extent_buffer *buf) 891 { 892 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start, 893 buf->start + buf->len - 1); 894 } 895 896 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 897 { 898 return filemap_fdatawait_range(buf->first_page->mapping, 899 buf->start, buf->start + buf->len - 1); 900 } 901 902 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 903 u32 blocksize, u64 parent_transid) 904 { 905 struct extent_buffer *buf = NULL; 906 int ret; 907 908 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 909 if (!buf) 910 return NULL; 911 912 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 913 914 if (ret == 0) 915 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 916 return buf; 917 918 } 919 920 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 921 struct extent_buffer *buf) 922 { 923 struct inode *btree_inode = root->fs_info->btree_inode; 924 if (btrfs_header_generation(buf) == 925 root->fs_info->running_transaction->transid) { 926 btrfs_assert_tree_locked(buf); 927 928 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 929 spin_lock(&root->fs_info->delalloc_lock); 930 if (root->fs_info->dirty_metadata_bytes >= buf->len) 931 root->fs_info->dirty_metadata_bytes -= buf->len; 932 else 933 WARN_ON(1); 934 spin_unlock(&root->fs_info->delalloc_lock); 935 } 936 937 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 938 btrfs_set_lock_blocking(buf); 939 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 940 buf); 941 } 942 return 0; 943 } 944 945 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 946 u32 stripesize, struct btrfs_root *root, 947 struct btrfs_fs_info *fs_info, 948 u64 objectid) 949 { 950 root->node = NULL; 951 root->commit_root = NULL; 952 root->sectorsize = sectorsize; 953 root->nodesize = nodesize; 954 root->leafsize = leafsize; 955 root->stripesize = stripesize; 956 root->ref_cows = 0; 957 root->track_dirty = 0; 958 root->in_radix = 0; 959 root->orphan_item_inserted = 0; 960 root->orphan_cleanup_state = 0; 961 962 root->fs_info = fs_info; 963 root->objectid = objectid; 964 root->last_trans = 0; 965 root->highest_objectid = 0; 966 root->name = NULL; 967 root->in_sysfs = 0; 968 root->inode_tree = RB_ROOT; 969 root->block_rsv = NULL; 970 root->orphan_block_rsv = NULL; 971 972 INIT_LIST_HEAD(&root->dirty_list); 973 INIT_LIST_HEAD(&root->orphan_list); 974 INIT_LIST_HEAD(&root->root_list); 975 spin_lock_init(&root->node_lock); 976 spin_lock_init(&root->orphan_lock); 977 spin_lock_init(&root->inode_lock); 978 spin_lock_init(&root->accounting_lock); 979 mutex_init(&root->objectid_mutex); 980 mutex_init(&root->log_mutex); 981 init_waitqueue_head(&root->log_writer_wait); 982 init_waitqueue_head(&root->log_commit_wait[0]); 983 init_waitqueue_head(&root->log_commit_wait[1]); 984 atomic_set(&root->log_commit[0], 0); 985 atomic_set(&root->log_commit[1], 0); 986 atomic_set(&root->log_writers, 0); 987 root->log_batch = 0; 988 root->log_transid = 0; 989 root->last_log_commit = 0; 990 extent_io_tree_init(&root->dirty_log_pages, 991 fs_info->btree_inode->i_mapping, GFP_NOFS); 992 993 memset(&root->root_key, 0, sizeof(root->root_key)); 994 memset(&root->root_item, 0, sizeof(root->root_item)); 995 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 996 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 997 root->defrag_trans_start = fs_info->generation; 998 init_completion(&root->kobj_unregister); 999 root->defrag_running = 0; 1000 root->root_key.objectid = objectid; 1001 root->anon_super.s_root = NULL; 1002 root->anon_super.s_dev = 0; 1003 INIT_LIST_HEAD(&root->anon_super.s_list); 1004 INIT_LIST_HEAD(&root->anon_super.s_instances); 1005 init_rwsem(&root->anon_super.s_umount); 1006 1007 return 0; 1008 } 1009 1010 static int find_and_setup_root(struct btrfs_root *tree_root, 1011 struct btrfs_fs_info *fs_info, 1012 u64 objectid, 1013 struct btrfs_root *root) 1014 { 1015 int ret; 1016 u32 blocksize; 1017 u64 generation; 1018 1019 __setup_root(tree_root->nodesize, tree_root->leafsize, 1020 tree_root->sectorsize, tree_root->stripesize, 1021 root, fs_info, objectid); 1022 ret = btrfs_find_last_root(tree_root, objectid, 1023 &root->root_item, &root->root_key); 1024 if (ret > 0) 1025 return -ENOENT; 1026 BUG_ON(ret); 1027 1028 generation = btrfs_root_generation(&root->root_item); 1029 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1030 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1031 blocksize, generation); 1032 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) { 1033 free_extent_buffer(root->node); 1034 return -EIO; 1035 } 1036 root->commit_root = btrfs_root_node(root); 1037 return 0; 1038 } 1039 1040 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1041 struct btrfs_fs_info *fs_info) 1042 { 1043 struct btrfs_root *root; 1044 struct btrfs_root *tree_root = fs_info->tree_root; 1045 struct extent_buffer *leaf; 1046 1047 root = kzalloc(sizeof(*root), GFP_NOFS); 1048 if (!root) 1049 return ERR_PTR(-ENOMEM); 1050 1051 __setup_root(tree_root->nodesize, tree_root->leafsize, 1052 tree_root->sectorsize, tree_root->stripesize, 1053 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1054 1055 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1056 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1057 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1058 /* 1059 * log trees do not get reference counted because they go away 1060 * before a real commit is actually done. They do store pointers 1061 * to file data extents, and those reference counts still get 1062 * updated (along with back refs to the log tree). 1063 */ 1064 root->ref_cows = 0; 1065 1066 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1067 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1068 if (IS_ERR(leaf)) { 1069 kfree(root); 1070 return ERR_CAST(leaf); 1071 } 1072 1073 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1074 btrfs_set_header_bytenr(leaf, leaf->start); 1075 btrfs_set_header_generation(leaf, trans->transid); 1076 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1077 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1078 root->node = leaf; 1079 1080 write_extent_buffer(root->node, root->fs_info->fsid, 1081 (unsigned long)btrfs_header_fsid(root->node), 1082 BTRFS_FSID_SIZE); 1083 btrfs_mark_buffer_dirty(root->node); 1084 btrfs_tree_unlock(root->node); 1085 return root; 1086 } 1087 1088 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1089 struct btrfs_fs_info *fs_info) 1090 { 1091 struct btrfs_root *log_root; 1092 1093 log_root = alloc_log_tree(trans, fs_info); 1094 if (IS_ERR(log_root)) 1095 return PTR_ERR(log_root); 1096 WARN_ON(fs_info->log_root_tree); 1097 fs_info->log_root_tree = log_root; 1098 return 0; 1099 } 1100 1101 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1102 struct btrfs_root *root) 1103 { 1104 struct btrfs_root *log_root; 1105 struct btrfs_inode_item *inode_item; 1106 1107 log_root = alloc_log_tree(trans, root->fs_info); 1108 if (IS_ERR(log_root)) 1109 return PTR_ERR(log_root); 1110 1111 log_root->last_trans = trans->transid; 1112 log_root->root_key.offset = root->root_key.objectid; 1113 1114 inode_item = &log_root->root_item.inode; 1115 inode_item->generation = cpu_to_le64(1); 1116 inode_item->size = cpu_to_le64(3); 1117 inode_item->nlink = cpu_to_le32(1); 1118 inode_item->nbytes = cpu_to_le64(root->leafsize); 1119 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1120 1121 btrfs_set_root_node(&log_root->root_item, log_root->node); 1122 1123 WARN_ON(root->log_root); 1124 root->log_root = log_root; 1125 root->log_transid = 0; 1126 root->last_log_commit = 0; 1127 return 0; 1128 } 1129 1130 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1131 struct btrfs_key *location) 1132 { 1133 struct btrfs_root *root; 1134 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1135 struct btrfs_path *path; 1136 struct extent_buffer *l; 1137 u64 generation; 1138 u32 blocksize; 1139 int ret = 0; 1140 1141 root = kzalloc(sizeof(*root), GFP_NOFS); 1142 if (!root) 1143 return ERR_PTR(-ENOMEM); 1144 if (location->offset == (u64)-1) { 1145 ret = find_and_setup_root(tree_root, fs_info, 1146 location->objectid, root); 1147 if (ret) { 1148 kfree(root); 1149 return ERR_PTR(ret); 1150 } 1151 goto out; 1152 } 1153 1154 __setup_root(tree_root->nodesize, tree_root->leafsize, 1155 tree_root->sectorsize, tree_root->stripesize, 1156 root, fs_info, location->objectid); 1157 1158 path = btrfs_alloc_path(); 1159 BUG_ON(!path); 1160 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1161 if (ret == 0) { 1162 l = path->nodes[0]; 1163 read_extent_buffer(l, &root->root_item, 1164 btrfs_item_ptr_offset(l, path->slots[0]), 1165 sizeof(root->root_item)); 1166 memcpy(&root->root_key, location, sizeof(*location)); 1167 } 1168 btrfs_free_path(path); 1169 if (ret) { 1170 kfree(root); 1171 if (ret > 0) 1172 ret = -ENOENT; 1173 return ERR_PTR(ret); 1174 } 1175 1176 generation = btrfs_root_generation(&root->root_item); 1177 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1178 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1179 blocksize, generation); 1180 root->commit_root = btrfs_root_node(root); 1181 BUG_ON(!root->node); 1182 out: 1183 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) 1184 root->ref_cows = 1; 1185 1186 return root; 1187 } 1188 1189 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1190 u64 root_objectid) 1191 { 1192 struct btrfs_root *root; 1193 1194 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1195 return fs_info->tree_root; 1196 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1197 return fs_info->extent_root; 1198 1199 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1200 (unsigned long)root_objectid); 1201 return root; 1202 } 1203 1204 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1205 struct btrfs_key *location) 1206 { 1207 struct btrfs_root *root; 1208 int ret; 1209 1210 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1211 return fs_info->tree_root; 1212 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1213 return fs_info->extent_root; 1214 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1215 return fs_info->chunk_root; 1216 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1217 return fs_info->dev_root; 1218 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1219 return fs_info->csum_root; 1220 again: 1221 spin_lock(&fs_info->fs_roots_radix_lock); 1222 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1223 (unsigned long)location->objectid); 1224 spin_unlock(&fs_info->fs_roots_radix_lock); 1225 if (root) 1226 return root; 1227 1228 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1229 if (IS_ERR(root)) 1230 return root; 1231 1232 set_anon_super(&root->anon_super, NULL); 1233 1234 if (btrfs_root_refs(&root->root_item) == 0) { 1235 ret = -ENOENT; 1236 goto fail; 1237 } 1238 1239 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1240 if (ret < 0) 1241 goto fail; 1242 if (ret == 0) 1243 root->orphan_item_inserted = 1; 1244 1245 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1246 if (ret) 1247 goto fail; 1248 1249 spin_lock(&fs_info->fs_roots_radix_lock); 1250 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1251 (unsigned long)root->root_key.objectid, 1252 root); 1253 if (ret == 0) 1254 root->in_radix = 1; 1255 1256 spin_unlock(&fs_info->fs_roots_radix_lock); 1257 radix_tree_preload_end(); 1258 if (ret) { 1259 if (ret == -EEXIST) { 1260 free_fs_root(root); 1261 goto again; 1262 } 1263 goto fail; 1264 } 1265 1266 ret = btrfs_find_dead_roots(fs_info->tree_root, 1267 root->root_key.objectid); 1268 WARN_ON(ret); 1269 return root; 1270 fail: 1271 free_fs_root(root); 1272 return ERR_PTR(ret); 1273 } 1274 1275 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1276 struct btrfs_key *location, 1277 const char *name, int namelen) 1278 { 1279 return btrfs_read_fs_root_no_name(fs_info, location); 1280 #if 0 1281 struct btrfs_root *root; 1282 int ret; 1283 1284 root = btrfs_read_fs_root_no_name(fs_info, location); 1285 if (!root) 1286 return NULL; 1287 1288 if (root->in_sysfs) 1289 return root; 1290 1291 ret = btrfs_set_root_name(root, name, namelen); 1292 if (ret) { 1293 free_extent_buffer(root->node); 1294 kfree(root); 1295 return ERR_PTR(ret); 1296 } 1297 1298 ret = btrfs_sysfs_add_root(root); 1299 if (ret) { 1300 free_extent_buffer(root->node); 1301 kfree(root->name); 1302 kfree(root); 1303 return ERR_PTR(ret); 1304 } 1305 root->in_sysfs = 1; 1306 return root; 1307 #endif 1308 } 1309 1310 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1311 { 1312 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1313 int ret = 0; 1314 struct btrfs_device *device; 1315 struct backing_dev_info *bdi; 1316 1317 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1318 if (!device->bdev) 1319 continue; 1320 bdi = blk_get_backing_dev_info(device->bdev); 1321 if (bdi && bdi_congested(bdi, bdi_bits)) { 1322 ret = 1; 1323 break; 1324 } 1325 } 1326 return ret; 1327 } 1328 1329 /* 1330 * this unplugs every device on the box, and it is only used when page 1331 * is null 1332 */ 1333 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1334 { 1335 struct btrfs_device *device; 1336 struct btrfs_fs_info *info; 1337 1338 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1339 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1340 if (!device->bdev) 1341 continue; 1342 1343 bdi = blk_get_backing_dev_info(device->bdev); 1344 if (bdi->unplug_io_fn) 1345 bdi->unplug_io_fn(bdi, page); 1346 } 1347 } 1348 1349 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1350 { 1351 struct inode *inode; 1352 struct extent_map_tree *em_tree; 1353 struct extent_map *em; 1354 struct address_space *mapping; 1355 u64 offset; 1356 1357 /* the generic O_DIRECT read code does this */ 1358 if (1 || !page) { 1359 __unplug_io_fn(bdi, page); 1360 return; 1361 } 1362 1363 /* 1364 * page->mapping may change at any time. Get a consistent copy 1365 * and use that for everything below 1366 */ 1367 smp_mb(); 1368 mapping = page->mapping; 1369 if (!mapping) 1370 return; 1371 1372 inode = mapping->host; 1373 1374 /* 1375 * don't do the expensive searching for a small number of 1376 * devices 1377 */ 1378 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1379 __unplug_io_fn(bdi, page); 1380 return; 1381 } 1382 1383 offset = page_offset(page); 1384 1385 em_tree = &BTRFS_I(inode)->extent_tree; 1386 read_lock(&em_tree->lock); 1387 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1388 read_unlock(&em_tree->lock); 1389 if (!em) { 1390 __unplug_io_fn(bdi, page); 1391 return; 1392 } 1393 1394 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1395 free_extent_map(em); 1396 __unplug_io_fn(bdi, page); 1397 return; 1398 } 1399 offset = offset - em->start; 1400 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1401 em->block_start + offset, page); 1402 free_extent_map(em); 1403 } 1404 1405 /* 1406 * If this fails, caller must call bdi_destroy() to get rid of the 1407 * bdi again. 1408 */ 1409 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1410 { 1411 int err; 1412 1413 bdi->capabilities = BDI_CAP_MAP_COPY; 1414 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1415 if (err) 1416 return err; 1417 1418 bdi->ra_pages = default_backing_dev_info.ra_pages; 1419 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1420 bdi->unplug_io_data = info; 1421 bdi->congested_fn = btrfs_congested_fn; 1422 bdi->congested_data = info; 1423 return 0; 1424 } 1425 1426 static int bio_ready_for_csum(struct bio *bio) 1427 { 1428 u64 length = 0; 1429 u64 buf_len = 0; 1430 u64 start = 0; 1431 struct page *page; 1432 struct extent_io_tree *io_tree = NULL; 1433 struct bio_vec *bvec; 1434 int i; 1435 int ret; 1436 1437 bio_for_each_segment(bvec, bio, i) { 1438 page = bvec->bv_page; 1439 if (page->private == EXTENT_PAGE_PRIVATE) { 1440 length += bvec->bv_len; 1441 continue; 1442 } 1443 if (!page->private) { 1444 length += bvec->bv_len; 1445 continue; 1446 } 1447 length = bvec->bv_len; 1448 buf_len = page->private >> 2; 1449 start = page_offset(page) + bvec->bv_offset; 1450 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1451 } 1452 /* are we fully contained in this bio? */ 1453 if (buf_len <= length) 1454 return 1; 1455 1456 ret = extent_range_uptodate(io_tree, start + length, 1457 start + buf_len - 1); 1458 return ret; 1459 } 1460 1461 /* 1462 * called by the kthread helper functions to finally call the bio end_io 1463 * functions. This is where read checksum verification actually happens 1464 */ 1465 static void end_workqueue_fn(struct btrfs_work *work) 1466 { 1467 struct bio *bio; 1468 struct end_io_wq *end_io_wq; 1469 struct btrfs_fs_info *fs_info; 1470 int error; 1471 1472 end_io_wq = container_of(work, struct end_io_wq, work); 1473 bio = end_io_wq->bio; 1474 fs_info = end_io_wq->info; 1475 1476 /* metadata bio reads are special because the whole tree block must 1477 * be checksummed at once. This makes sure the entire block is in 1478 * ram and up to date before trying to verify things. For 1479 * blocksize <= pagesize, it is basically a noop 1480 */ 1481 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata && 1482 !bio_ready_for_csum(bio)) { 1483 btrfs_queue_worker(&fs_info->endio_meta_workers, 1484 &end_io_wq->work); 1485 return; 1486 } 1487 error = end_io_wq->error; 1488 bio->bi_private = end_io_wq->private; 1489 bio->bi_end_io = end_io_wq->end_io; 1490 kfree(end_io_wq); 1491 bio_endio(bio, error); 1492 } 1493 1494 static int cleaner_kthread(void *arg) 1495 { 1496 struct btrfs_root *root = arg; 1497 1498 do { 1499 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1500 1501 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1502 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1503 btrfs_run_delayed_iputs(root); 1504 btrfs_clean_old_snapshots(root); 1505 mutex_unlock(&root->fs_info->cleaner_mutex); 1506 } 1507 1508 if (freezing(current)) { 1509 refrigerator(); 1510 } else { 1511 set_current_state(TASK_INTERRUPTIBLE); 1512 if (!kthread_should_stop()) 1513 schedule(); 1514 __set_current_state(TASK_RUNNING); 1515 } 1516 } while (!kthread_should_stop()); 1517 return 0; 1518 } 1519 1520 static int transaction_kthread(void *arg) 1521 { 1522 struct btrfs_root *root = arg; 1523 struct btrfs_trans_handle *trans; 1524 struct btrfs_transaction *cur; 1525 u64 transid; 1526 unsigned long now; 1527 unsigned long delay; 1528 int ret; 1529 1530 do { 1531 delay = HZ * 30; 1532 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1533 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1534 1535 spin_lock(&root->fs_info->new_trans_lock); 1536 cur = root->fs_info->running_transaction; 1537 if (!cur) { 1538 spin_unlock(&root->fs_info->new_trans_lock); 1539 goto sleep; 1540 } 1541 1542 now = get_seconds(); 1543 if (!cur->blocked && 1544 (now < cur->start_time || now - cur->start_time < 30)) { 1545 spin_unlock(&root->fs_info->new_trans_lock); 1546 delay = HZ * 5; 1547 goto sleep; 1548 } 1549 transid = cur->transid; 1550 spin_unlock(&root->fs_info->new_trans_lock); 1551 1552 trans = btrfs_join_transaction(root, 1); 1553 if (transid == trans->transid) { 1554 ret = btrfs_commit_transaction(trans, root); 1555 BUG_ON(ret); 1556 } else { 1557 btrfs_end_transaction(trans, root); 1558 } 1559 sleep: 1560 wake_up_process(root->fs_info->cleaner_kthread); 1561 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1562 1563 if (freezing(current)) { 1564 refrigerator(); 1565 } else { 1566 set_current_state(TASK_INTERRUPTIBLE); 1567 if (!kthread_should_stop() && 1568 !btrfs_transaction_blocked(root->fs_info)) 1569 schedule_timeout(delay); 1570 __set_current_state(TASK_RUNNING); 1571 } 1572 } while (!kthread_should_stop()); 1573 return 0; 1574 } 1575 1576 struct btrfs_root *open_ctree(struct super_block *sb, 1577 struct btrfs_fs_devices *fs_devices, 1578 char *options) 1579 { 1580 u32 sectorsize; 1581 u32 nodesize; 1582 u32 leafsize; 1583 u32 blocksize; 1584 u32 stripesize; 1585 u64 generation; 1586 u64 features; 1587 struct btrfs_key location; 1588 struct buffer_head *bh; 1589 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1590 GFP_NOFS); 1591 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1592 GFP_NOFS); 1593 struct btrfs_root *tree_root = btrfs_sb(sb); 1594 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1595 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1596 GFP_NOFS); 1597 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1598 GFP_NOFS); 1599 struct btrfs_root *log_tree_root; 1600 1601 int ret; 1602 int err = -EINVAL; 1603 1604 struct btrfs_super_block *disk_super; 1605 1606 if (!extent_root || !tree_root || !fs_info || 1607 !chunk_root || !dev_root || !csum_root) { 1608 err = -ENOMEM; 1609 goto fail; 1610 } 1611 1612 ret = init_srcu_struct(&fs_info->subvol_srcu); 1613 if (ret) { 1614 err = ret; 1615 goto fail; 1616 } 1617 1618 ret = setup_bdi(fs_info, &fs_info->bdi); 1619 if (ret) { 1620 err = ret; 1621 goto fail_srcu; 1622 } 1623 1624 fs_info->btree_inode = new_inode(sb); 1625 if (!fs_info->btree_inode) { 1626 err = -ENOMEM; 1627 goto fail_bdi; 1628 } 1629 1630 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 1631 INIT_LIST_HEAD(&fs_info->trans_list); 1632 INIT_LIST_HEAD(&fs_info->dead_roots); 1633 INIT_LIST_HEAD(&fs_info->delayed_iputs); 1634 INIT_LIST_HEAD(&fs_info->hashers); 1635 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1636 INIT_LIST_HEAD(&fs_info->ordered_operations); 1637 INIT_LIST_HEAD(&fs_info->caching_block_groups); 1638 spin_lock_init(&fs_info->delalloc_lock); 1639 spin_lock_init(&fs_info->new_trans_lock); 1640 spin_lock_init(&fs_info->ref_cache_lock); 1641 spin_lock_init(&fs_info->fs_roots_radix_lock); 1642 spin_lock_init(&fs_info->delayed_iput_lock); 1643 1644 init_completion(&fs_info->kobj_unregister); 1645 fs_info->tree_root = tree_root; 1646 fs_info->extent_root = extent_root; 1647 fs_info->csum_root = csum_root; 1648 fs_info->chunk_root = chunk_root; 1649 fs_info->dev_root = dev_root; 1650 fs_info->fs_devices = fs_devices; 1651 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1652 INIT_LIST_HEAD(&fs_info->space_info); 1653 btrfs_mapping_init(&fs_info->mapping_tree); 1654 btrfs_init_block_rsv(&fs_info->global_block_rsv); 1655 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv); 1656 btrfs_init_block_rsv(&fs_info->trans_block_rsv); 1657 btrfs_init_block_rsv(&fs_info->chunk_block_rsv); 1658 btrfs_init_block_rsv(&fs_info->empty_block_rsv); 1659 INIT_LIST_HEAD(&fs_info->durable_block_rsv_list); 1660 mutex_init(&fs_info->durable_block_rsv_mutex); 1661 atomic_set(&fs_info->nr_async_submits, 0); 1662 atomic_set(&fs_info->async_delalloc_pages, 0); 1663 atomic_set(&fs_info->async_submit_draining, 0); 1664 atomic_set(&fs_info->nr_async_bios, 0); 1665 fs_info->sb = sb; 1666 fs_info->max_inline = 8192 * 1024; 1667 fs_info->metadata_ratio = 0; 1668 1669 fs_info->thread_pool_size = min_t(unsigned long, 1670 num_online_cpus() + 2, 8); 1671 1672 INIT_LIST_HEAD(&fs_info->ordered_extents); 1673 spin_lock_init(&fs_info->ordered_extent_lock); 1674 1675 sb->s_blocksize = 4096; 1676 sb->s_blocksize_bits = blksize_bits(4096); 1677 sb->s_bdi = &fs_info->bdi; 1678 1679 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 1680 fs_info->btree_inode->i_nlink = 1; 1681 /* 1682 * we set the i_size on the btree inode to the max possible int. 1683 * the real end of the address space is determined by all of 1684 * the devices in the system 1685 */ 1686 fs_info->btree_inode->i_size = OFFSET_MAX; 1687 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1688 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1689 1690 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1691 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1692 fs_info->btree_inode->i_mapping, 1693 GFP_NOFS); 1694 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1695 GFP_NOFS); 1696 1697 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1698 1699 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1700 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1701 sizeof(struct btrfs_key)); 1702 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1; 1703 insert_inode_hash(fs_info->btree_inode); 1704 1705 spin_lock_init(&fs_info->block_group_cache_lock); 1706 fs_info->block_group_cache_tree = RB_ROOT; 1707 1708 extent_io_tree_init(&fs_info->freed_extents[0], 1709 fs_info->btree_inode->i_mapping, GFP_NOFS); 1710 extent_io_tree_init(&fs_info->freed_extents[1], 1711 fs_info->btree_inode->i_mapping, GFP_NOFS); 1712 fs_info->pinned_extents = &fs_info->freed_extents[0]; 1713 fs_info->do_barriers = 1; 1714 1715 1716 mutex_init(&fs_info->trans_mutex); 1717 mutex_init(&fs_info->ordered_operations_mutex); 1718 mutex_init(&fs_info->tree_log_mutex); 1719 mutex_init(&fs_info->chunk_mutex); 1720 mutex_init(&fs_info->transaction_kthread_mutex); 1721 mutex_init(&fs_info->cleaner_mutex); 1722 mutex_init(&fs_info->volume_mutex); 1723 init_rwsem(&fs_info->extent_commit_sem); 1724 init_rwsem(&fs_info->cleanup_work_sem); 1725 init_rwsem(&fs_info->subvol_sem); 1726 1727 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1728 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1729 1730 init_waitqueue_head(&fs_info->transaction_throttle); 1731 init_waitqueue_head(&fs_info->transaction_wait); 1732 init_waitqueue_head(&fs_info->transaction_blocked_wait); 1733 init_waitqueue_head(&fs_info->async_submit_wait); 1734 1735 __setup_root(4096, 4096, 4096, 4096, tree_root, 1736 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1737 1738 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1739 if (!bh) { 1740 err = -EINVAL; 1741 goto fail_iput; 1742 } 1743 1744 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1745 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1746 sizeof(fs_info->super_for_commit)); 1747 brelse(bh); 1748 1749 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1750 1751 disk_super = &fs_info->super_copy; 1752 if (!btrfs_super_root(disk_super)) 1753 goto fail_iput; 1754 1755 /* check FS state, whether FS is broken. */ 1756 fs_info->fs_state |= btrfs_super_flags(disk_super); 1757 1758 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 1759 1760 ret = btrfs_parse_options(tree_root, options); 1761 if (ret) { 1762 err = ret; 1763 goto fail_iput; 1764 } 1765 1766 features = btrfs_super_incompat_flags(disk_super) & 1767 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1768 if (features) { 1769 printk(KERN_ERR "BTRFS: couldn't mount because of " 1770 "unsupported optional features (%Lx).\n", 1771 (unsigned long long)features); 1772 err = -EINVAL; 1773 goto fail_iput; 1774 } 1775 1776 features = btrfs_super_incompat_flags(disk_super); 1777 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1778 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO) 1779 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1780 btrfs_set_super_incompat_flags(disk_super, features); 1781 1782 features = btrfs_super_compat_ro_flags(disk_super) & 1783 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1784 if (!(sb->s_flags & MS_RDONLY) && features) { 1785 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1786 "unsupported option features (%Lx).\n", 1787 (unsigned long long)features); 1788 err = -EINVAL; 1789 goto fail_iput; 1790 } 1791 1792 btrfs_init_workers(&fs_info->generic_worker, 1793 "genwork", 1, NULL); 1794 1795 btrfs_init_workers(&fs_info->workers, "worker", 1796 fs_info->thread_pool_size, 1797 &fs_info->generic_worker); 1798 1799 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1800 fs_info->thread_pool_size, 1801 &fs_info->generic_worker); 1802 1803 btrfs_init_workers(&fs_info->submit_workers, "submit", 1804 min_t(u64, fs_devices->num_devices, 1805 fs_info->thread_pool_size), 1806 &fs_info->generic_worker); 1807 1808 /* a higher idle thresh on the submit workers makes it much more 1809 * likely that bios will be send down in a sane order to the 1810 * devices 1811 */ 1812 fs_info->submit_workers.idle_thresh = 64; 1813 1814 fs_info->workers.idle_thresh = 16; 1815 fs_info->workers.ordered = 1; 1816 1817 fs_info->delalloc_workers.idle_thresh = 2; 1818 fs_info->delalloc_workers.ordered = 1; 1819 1820 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 1821 &fs_info->generic_worker); 1822 btrfs_init_workers(&fs_info->endio_workers, "endio", 1823 fs_info->thread_pool_size, 1824 &fs_info->generic_worker); 1825 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1826 fs_info->thread_pool_size, 1827 &fs_info->generic_worker); 1828 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1829 "endio-meta-write", fs_info->thread_pool_size, 1830 &fs_info->generic_worker); 1831 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1832 fs_info->thread_pool_size, 1833 &fs_info->generic_worker); 1834 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 1835 1, &fs_info->generic_worker); 1836 1837 /* 1838 * endios are largely parallel and should have a very 1839 * low idle thresh 1840 */ 1841 fs_info->endio_workers.idle_thresh = 4; 1842 fs_info->endio_meta_workers.idle_thresh = 4; 1843 1844 fs_info->endio_write_workers.idle_thresh = 2; 1845 fs_info->endio_meta_write_workers.idle_thresh = 2; 1846 1847 btrfs_start_workers(&fs_info->workers, 1); 1848 btrfs_start_workers(&fs_info->generic_worker, 1); 1849 btrfs_start_workers(&fs_info->submit_workers, 1); 1850 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1851 btrfs_start_workers(&fs_info->fixup_workers, 1); 1852 btrfs_start_workers(&fs_info->endio_workers, 1); 1853 btrfs_start_workers(&fs_info->endio_meta_workers, 1); 1854 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1); 1855 btrfs_start_workers(&fs_info->endio_write_workers, 1); 1856 btrfs_start_workers(&fs_info->endio_freespace_worker, 1); 1857 1858 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1859 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1860 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1861 1862 nodesize = btrfs_super_nodesize(disk_super); 1863 leafsize = btrfs_super_leafsize(disk_super); 1864 sectorsize = btrfs_super_sectorsize(disk_super); 1865 stripesize = btrfs_super_stripesize(disk_super); 1866 tree_root->nodesize = nodesize; 1867 tree_root->leafsize = leafsize; 1868 tree_root->sectorsize = sectorsize; 1869 tree_root->stripesize = stripesize; 1870 1871 sb->s_blocksize = sectorsize; 1872 sb->s_blocksize_bits = blksize_bits(sectorsize); 1873 1874 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1875 sizeof(disk_super->magic))) { 1876 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1877 goto fail_sb_buffer; 1878 } 1879 1880 mutex_lock(&fs_info->chunk_mutex); 1881 ret = btrfs_read_sys_array(tree_root); 1882 mutex_unlock(&fs_info->chunk_mutex); 1883 if (ret) { 1884 printk(KERN_WARNING "btrfs: failed to read the system " 1885 "array on %s\n", sb->s_id); 1886 goto fail_sb_buffer; 1887 } 1888 1889 blocksize = btrfs_level_size(tree_root, 1890 btrfs_super_chunk_root_level(disk_super)); 1891 generation = btrfs_super_chunk_root_generation(disk_super); 1892 1893 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1894 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1895 1896 chunk_root->node = read_tree_block(chunk_root, 1897 btrfs_super_chunk_root(disk_super), 1898 blocksize, generation); 1899 BUG_ON(!chunk_root->node); 1900 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 1901 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 1902 sb->s_id); 1903 goto fail_chunk_root; 1904 } 1905 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1906 chunk_root->commit_root = btrfs_root_node(chunk_root); 1907 1908 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1909 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1910 BTRFS_UUID_SIZE); 1911 1912 mutex_lock(&fs_info->chunk_mutex); 1913 ret = btrfs_read_chunk_tree(chunk_root); 1914 mutex_unlock(&fs_info->chunk_mutex); 1915 if (ret) { 1916 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1917 sb->s_id); 1918 goto fail_chunk_root; 1919 } 1920 1921 btrfs_close_extra_devices(fs_devices); 1922 1923 blocksize = btrfs_level_size(tree_root, 1924 btrfs_super_root_level(disk_super)); 1925 generation = btrfs_super_generation(disk_super); 1926 1927 tree_root->node = read_tree_block(tree_root, 1928 btrfs_super_root(disk_super), 1929 blocksize, generation); 1930 if (!tree_root->node) 1931 goto fail_chunk_root; 1932 if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 1933 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 1934 sb->s_id); 1935 goto fail_tree_root; 1936 } 1937 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1938 tree_root->commit_root = btrfs_root_node(tree_root); 1939 1940 ret = find_and_setup_root(tree_root, fs_info, 1941 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1942 if (ret) 1943 goto fail_tree_root; 1944 extent_root->track_dirty = 1; 1945 1946 ret = find_and_setup_root(tree_root, fs_info, 1947 BTRFS_DEV_TREE_OBJECTID, dev_root); 1948 if (ret) 1949 goto fail_extent_root; 1950 dev_root->track_dirty = 1; 1951 1952 ret = find_and_setup_root(tree_root, fs_info, 1953 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1954 if (ret) 1955 goto fail_dev_root; 1956 1957 csum_root->track_dirty = 1; 1958 1959 fs_info->generation = generation; 1960 fs_info->last_trans_committed = generation; 1961 fs_info->data_alloc_profile = (u64)-1; 1962 fs_info->metadata_alloc_profile = (u64)-1; 1963 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1964 1965 ret = btrfs_read_block_groups(extent_root); 1966 if (ret) { 1967 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 1968 goto fail_block_groups; 1969 } 1970 1971 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1972 "btrfs-cleaner"); 1973 if (IS_ERR(fs_info->cleaner_kthread)) 1974 goto fail_block_groups; 1975 1976 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1977 tree_root, 1978 "btrfs-transaction"); 1979 if (IS_ERR(fs_info->transaction_kthread)) 1980 goto fail_cleaner; 1981 1982 if (!btrfs_test_opt(tree_root, SSD) && 1983 !btrfs_test_opt(tree_root, NOSSD) && 1984 !fs_info->fs_devices->rotating) { 1985 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1986 "mode\n"); 1987 btrfs_set_opt(fs_info->mount_opt, SSD); 1988 } 1989 1990 /* do not make disk changes in broken FS */ 1991 if (btrfs_super_log_root(disk_super) != 0 && 1992 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) { 1993 u64 bytenr = btrfs_super_log_root(disk_super); 1994 1995 if (fs_devices->rw_devices == 0) { 1996 printk(KERN_WARNING "Btrfs log replay required " 1997 "on RO media\n"); 1998 err = -EIO; 1999 goto fail_trans_kthread; 2000 } 2001 blocksize = 2002 btrfs_level_size(tree_root, 2003 btrfs_super_log_root_level(disk_super)); 2004 2005 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS); 2006 if (!log_tree_root) { 2007 err = -ENOMEM; 2008 goto fail_trans_kthread; 2009 } 2010 2011 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2012 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2013 2014 log_tree_root->node = read_tree_block(tree_root, bytenr, 2015 blocksize, 2016 generation + 1); 2017 ret = btrfs_recover_log_trees(log_tree_root); 2018 BUG_ON(ret); 2019 2020 if (sb->s_flags & MS_RDONLY) { 2021 ret = btrfs_commit_super(tree_root); 2022 BUG_ON(ret); 2023 } 2024 } 2025 2026 ret = btrfs_find_orphan_roots(tree_root); 2027 BUG_ON(ret); 2028 2029 if (!(sb->s_flags & MS_RDONLY)) { 2030 ret = btrfs_cleanup_fs_roots(fs_info); 2031 BUG_ON(ret); 2032 2033 ret = btrfs_recover_relocation(tree_root); 2034 if (ret < 0) { 2035 printk(KERN_WARNING 2036 "btrfs: failed to recover relocation\n"); 2037 err = -EINVAL; 2038 goto fail_trans_kthread; 2039 } 2040 } 2041 2042 location.objectid = BTRFS_FS_TREE_OBJECTID; 2043 location.type = BTRFS_ROOT_ITEM_KEY; 2044 location.offset = (u64)-1; 2045 2046 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2047 if (!fs_info->fs_root) 2048 goto fail_trans_kthread; 2049 if (IS_ERR(fs_info->fs_root)) { 2050 err = PTR_ERR(fs_info->fs_root); 2051 goto fail_trans_kthread; 2052 } 2053 2054 if (!(sb->s_flags & MS_RDONLY)) { 2055 down_read(&fs_info->cleanup_work_sem); 2056 btrfs_orphan_cleanup(fs_info->fs_root); 2057 btrfs_orphan_cleanup(fs_info->tree_root); 2058 up_read(&fs_info->cleanup_work_sem); 2059 } 2060 2061 return tree_root; 2062 2063 fail_trans_kthread: 2064 kthread_stop(fs_info->transaction_kthread); 2065 fail_cleaner: 2066 kthread_stop(fs_info->cleaner_kthread); 2067 2068 /* 2069 * make sure we're done with the btree inode before we stop our 2070 * kthreads 2071 */ 2072 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2073 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2074 2075 fail_block_groups: 2076 btrfs_free_block_groups(fs_info); 2077 free_extent_buffer(csum_root->node); 2078 free_extent_buffer(csum_root->commit_root); 2079 fail_dev_root: 2080 free_extent_buffer(dev_root->node); 2081 free_extent_buffer(dev_root->commit_root); 2082 fail_extent_root: 2083 free_extent_buffer(extent_root->node); 2084 free_extent_buffer(extent_root->commit_root); 2085 fail_tree_root: 2086 free_extent_buffer(tree_root->node); 2087 free_extent_buffer(tree_root->commit_root); 2088 fail_chunk_root: 2089 free_extent_buffer(chunk_root->node); 2090 free_extent_buffer(chunk_root->commit_root); 2091 fail_sb_buffer: 2092 btrfs_stop_workers(&fs_info->generic_worker); 2093 btrfs_stop_workers(&fs_info->fixup_workers); 2094 btrfs_stop_workers(&fs_info->delalloc_workers); 2095 btrfs_stop_workers(&fs_info->workers); 2096 btrfs_stop_workers(&fs_info->endio_workers); 2097 btrfs_stop_workers(&fs_info->endio_meta_workers); 2098 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2099 btrfs_stop_workers(&fs_info->endio_write_workers); 2100 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2101 btrfs_stop_workers(&fs_info->submit_workers); 2102 fail_iput: 2103 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2104 iput(fs_info->btree_inode); 2105 2106 btrfs_close_devices(fs_info->fs_devices); 2107 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2108 fail_bdi: 2109 bdi_destroy(&fs_info->bdi); 2110 fail_srcu: 2111 cleanup_srcu_struct(&fs_info->subvol_srcu); 2112 fail: 2113 kfree(extent_root); 2114 kfree(tree_root); 2115 kfree(fs_info); 2116 kfree(chunk_root); 2117 kfree(dev_root); 2118 kfree(csum_root); 2119 return ERR_PTR(err); 2120 } 2121 2122 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2123 { 2124 char b[BDEVNAME_SIZE]; 2125 2126 if (uptodate) { 2127 set_buffer_uptodate(bh); 2128 } else { 2129 if (printk_ratelimit()) { 2130 printk(KERN_WARNING "lost page write due to " 2131 "I/O error on %s\n", 2132 bdevname(bh->b_bdev, b)); 2133 } 2134 /* note, we dont' set_buffer_write_io_error because we have 2135 * our own ways of dealing with the IO errors 2136 */ 2137 clear_buffer_uptodate(bh); 2138 } 2139 unlock_buffer(bh); 2140 put_bh(bh); 2141 } 2142 2143 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2144 { 2145 struct buffer_head *bh; 2146 struct buffer_head *latest = NULL; 2147 struct btrfs_super_block *super; 2148 int i; 2149 u64 transid = 0; 2150 u64 bytenr; 2151 2152 /* we would like to check all the supers, but that would make 2153 * a btrfs mount succeed after a mkfs from a different FS. 2154 * So, we need to add a special mount option to scan for 2155 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2156 */ 2157 for (i = 0; i < 1; i++) { 2158 bytenr = btrfs_sb_offset(i); 2159 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2160 break; 2161 bh = __bread(bdev, bytenr / 4096, 4096); 2162 if (!bh) 2163 continue; 2164 2165 super = (struct btrfs_super_block *)bh->b_data; 2166 if (btrfs_super_bytenr(super) != bytenr || 2167 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2168 sizeof(super->magic))) { 2169 brelse(bh); 2170 continue; 2171 } 2172 2173 if (!latest || btrfs_super_generation(super) > transid) { 2174 brelse(latest); 2175 latest = bh; 2176 transid = btrfs_super_generation(super); 2177 } else { 2178 brelse(bh); 2179 } 2180 } 2181 return latest; 2182 } 2183 2184 /* 2185 * this should be called twice, once with wait == 0 and 2186 * once with wait == 1. When wait == 0 is done, all the buffer heads 2187 * we write are pinned. 2188 * 2189 * They are released when wait == 1 is done. 2190 * max_mirrors must be the same for both runs, and it indicates how 2191 * many supers on this one device should be written. 2192 * 2193 * max_mirrors == 0 means to write them all. 2194 */ 2195 static int write_dev_supers(struct btrfs_device *device, 2196 struct btrfs_super_block *sb, 2197 int do_barriers, int wait, int max_mirrors) 2198 { 2199 struct buffer_head *bh; 2200 int i; 2201 int ret; 2202 int errors = 0; 2203 u32 crc; 2204 u64 bytenr; 2205 int last_barrier = 0; 2206 2207 if (max_mirrors == 0) 2208 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2209 2210 /* make sure only the last submit_bh does a barrier */ 2211 if (do_barriers) { 2212 for (i = 0; i < max_mirrors; i++) { 2213 bytenr = btrfs_sb_offset(i); 2214 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2215 device->total_bytes) 2216 break; 2217 last_barrier = i; 2218 } 2219 } 2220 2221 for (i = 0; i < max_mirrors; i++) { 2222 bytenr = btrfs_sb_offset(i); 2223 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2224 break; 2225 2226 if (wait) { 2227 bh = __find_get_block(device->bdev, bytenr / 4096, 2228 BTRFS_SUPER_INFO_SIZE); 2229 BUG_ON(!bh); 2230 wait_on_buffer(bh); 2231 if (!buffer_uptodate(bh)) 2232 errors++; 2233 2234 /* drop our reference */ 2235 brelse(bh); 2236 2237 /* drop the reference from the wait == 0 run */ 2238 brelse(bh); 2239 continue; 2240 } else { 2241 btrfs_set_super_bytenr(sb, bytenr); 2242 2243 crc = ~(u32)0; 2244 crc = btrfs_csum_data(NULL, (char *)sb + 2245 BTRFS_CSUM_SIZE, crc, 2246 BTRFS_SUPER_INFO_SIZE - 2247 BTRFS_CSUM_SIZE); 2248 btrfs_csum_final(crc, sb->csum); 2249 2250 /* 2251 * one reference for us, and we leave it for the 2252 * caller 2253 */ 2254 bh = __getblk(device->bdev, bytenr / 4096, 2255 BTRFS_SUPER_INFO_SIZE); 2256 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2257 2258 /* one reference for submit_bh */ 2259 get_bh(bh); 2260 2261 set_buffer_uptodate(bh); 2262 lock_buffer(bh); 2263 bh->b_end_io = btrfs_end_buffer_write_sync; 2264 } 2265 2266 if (i == last_barrier && do_barriers) 2267 ret = submit_bh(WRITE_FLUSH_FUA, bh); 2268 else 2269 ret = submit_bh(WRITE_SYNC, bh); 2270 2271 if (ret) 2272 errors++; 2273 } 2274 return errors < i ? 0 : -1; 2275 } 2276 2277 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2278 { 2279 struct list_head *head; 2280 struct btrfs_device *dev; 2281 struct btrfs_super_block *sb; 2282 struct btrfs_dev_item *dev_item; 2283 int ret; 2284 int do_barriers; 2285 int max_errors; 2286 int total_errors = 0; 2287 u64 flags; 2288 2289 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2290 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2291 2292 sb = &root->fs_info->super_for_commit; 2293 dev_item = &sb->dev_item; 2294 2295 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2296 head = &root->fs_info->fs_devices->devices; 2297 list_for_each_entry(dev, head, dev_list) { 2298 if (!dev->bdev) { 2299 total_errors++; 2300 continue; 2301 } 2302 if (!dev->in_fs_metadata || !dev->writeable) 2303 continue; 2304 2305 btrfs_set_stack_device_generation(dev_item, 0); 2306 btrfs_set_stack_device_type(dev_item, dev->type); 2307 btrfs_set_stack_device_id(dev_item, dev->devid); 2308 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2309 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2310 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2311 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2312 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2313 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2314 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2315 2316 flags = btrfs_super_flags(sb); 2317 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2318 2319 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2320 if (ret) 2321 total_errors++; 2322 } 2323 if (total_errors > max_errors) { 2324 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2325 total_errors); 2326 BUG(); 2327 } 2328 2329 total_errors = 0; 2330 list_for_each_entry(dev, head, dev_list) { 2331 if (!dev->bdev) 2332 continue; 2333 if (!dev->in_fs_metadata || !dev->writeable) 2334 continue; 2335 2336 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2337 if (ret) 2338 total_errors++; 2339 } 2340 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2341 if (total_errors > max_errors) { 2342 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2343 total_errors); 2344 BUG(); 2345 } 2346 return 0; 2347 } 2348 2349 int write_ctree_super(struct btrfs_trans_handle *trans, 2350 struct btrfs_root *root, int max_mirrors) 2351 { 2352 int ret; 2353 2354 ret = write_all_supers(root, max_mirrors); 2355 return ret; 2356 } 2357 2358 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2359 { 2360 spin_lock(&fs_info->fs_roots_radix_lock); 2361 radix_tree_delete(&fs_info->fs_roots_radix, 2362 (unsigned long)root->root_key.objectid); 2363 spin_unlock(&fs_info->fs_roots_radix_lock); 2364 2365 if (btrfs_root_refs(&root->root_item) == 0) 2366 synchronize_srcu(&fs_info->subvol_srcu); 2367 2368 free_fs_root(root); 2369 return 0; 2370 } 2371 2372 static void free_fs_root(struct btrfs_root *root) 2373 { 2374 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2375 if (root->anon_super.s_dev) { 2376 down_write(&root->anon_super.s_umount); 2377 kill_anon_super(&root->anon_super); 2378 } 2379 free_extent_buffer(root->node); 2380 free_extent_buffer(root->commit_root); 2381 kfree(root->name); 2382 kfree(root); 2383 } 2384 2385 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2386 { 2387 int ret; 2388 struct btrfs_root *gang[8]; 2389 int i; 2390 2391 while (!list_empty(&fs_info->dead_roots)) { 2392 gang[0] = list_entry(fs_info->dead_roots.next, 2393 struct btrfs_root, root_list); 2394 list_del(&gang[0]->root_list); 2395 2396 if (gang[0]->in_radix) { 2397 btrfs_free_fs_root(fs_info, gang[0]); 2398 } else { 2399 free_extent_buffer(gang[0]->node); 2400 free_extent_buffer(gang[0]->commit_root); 2401 kfree(gang[0]); 2402 } 2403 } 2404 2405 while (1) { 2406 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2407 (void **)gang, 0, 2408 ARRAY_SIZE(gang)); 2409 if (!ret) 2410 break; 2411 for (i = 0; i < ret; i++) 2412 btrfs_free_fs_root(fs_info, gang[i]); 2413 } 2414 return 0; 2415 } 2416 2417 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2418 { 2419 u64 root_objectid = 0; 2420 struct btrfs_root *gang[8]; 2421 int i; 2422 int ret; 2423 2424 while (1) { 2425 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2426 (void **)gang, root_objectid, 2427 ARRAY_SIZE(gang)); 2428 if (!ret) 2429 break; 2430 2431 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2432 for (i = 0; i < ret; i++) { 2433 root_objectid = gang[i]->root_key.objectid; 2434 btrfs_orphan_cleanup(gang[i]); 2435 } 2436 root_objectid++; 2437 } 2438 return 0; 2439 } 2440 2441 int btrfs_commit_super(struct btrfs_root *root) 2442 { 2443 struct btrfs_trans_handle *trans; 2444 int ret; 2445 2446 mutex_lock(&root->fs_info->cleaner_mutex); 2447 btrfs_run_delayed_iputs(root); 2448 btrfs_clean_old_snapshots(root); 2449 mutex_unlock(&root->fs_info->cleaner_mutex); 2450 2451 /* wait until ongoing cleanup work done */ 2452 down_write(&root->fs_info->cleanup_work_sem); 2453 up_write(&root->fs_info->cleanup_work_sem); 2454 2455 trans = btrfs_join_transaction(root, 1); 2456 ret = btrfs_commit_transaction(trans, root); 2457 BUG_ON(ret); 2458 /* run commit again to drop the original snapshot */ 2459 trans = btrfs_join_transaction(root, 1); 2460 btrfs_commit_transaction(trans, root); 2461 ret = btrfs_write_and_wait_transaction(NULL, root); 2462 BUG_ON(ret); 2463 2464 ret = write_ctree_super(NULL, root, 0); 2465 return ret; 2466 } 2467 2468 int close_ctree(struct btrfs_root *root) 2469 { 2470 struct btrfs_fs_info *fs_info = root->fs_info; 2471 int ret; 2472 2473 fs_info->closing = 1; 2474 smp_mb(); 2475 2476 btrfs_put_block_group_cache(fs_info); 2477 2478 /* 2479 * Here come 2 situations when btrfs is broken to flip readonly: 2480 * 2481 * 1. when btrfs flips readonly somewhere else before 2482 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag, 2483 * and btrfs will skip to write sb directly to keep 2484 * ERROR state on disk. 2485 * 2486 * 2. when btrfs flips readonly just in btrfs_commit_super, 2487 * and in such case, btrfs cannnot write sb via btrfs_commit_super, 2488 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag, 2489 * btrfs will cleanup all FS resources first and write sb then. 2490 */ 2491 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2492 ret = btrfs_commit_super(root); 2493 if (ret) 2494 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2495 } 2496 2497 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 2498 ret = btrfs_error_commit_super(root); 2499 if (ret) 2500 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2501 } 2502 2503 kthread_stop(root->fs_info->transaction_kthread); 2504 kthread_stop(root->fs_info->cleaner_kthread); 2505 2506 fs_info->closing = 2; 2507 smp_mb(); 2508 2509 if (fs_info->delalloc_bytes) { 2510 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2511 (unsigned long long)fs_info->delalloc_bytes); 2512 } 2513 if (fs_info->total_ref_cache_size) { 2514 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2515 (unsigned long long)fs_info->total_ref_cache_size); 2516 } 2517 2518 free_extent_buffer(fs_info->extent_root->node); 2519 free_extent_buffer(fs_info->extent_root->commit_root); 2520 free_extent_buffer(fs_info->tree_root->node); 2521 free_extent_buffer(fs_info->tree_root->commit_root); 2522 free_extent_buffer(root->fs_info->chunk_root->node); 2523 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2524 free_extent_buffer(root->fs_info->dev_root->node); 2525 free_extent_buffer(root->fs_info->dev_root->commit_root); 2526 free_extent_buffer(root->fs_info->csum_root->node); 2527 free_extent_buffer(root->fs_info->csum_root->commit_root); 2528 2529 btrfs_free_block_groups(root->fs_info); 2530 2531 del_fs_roots(fs_info); 2532 2533 iput(fs_info->btree_inode); 2534 2535 btrfs_stop_workers(&fs_info->generic_worker); 2536 btrfs_stop_workers(&fs_info->fixup_workers); 2537 btrfs_stop_workers(&fs_info->delalloc_workers); 2538 btrfs_stop_workers(&fs_info->workers); 2539 btrfs_stop_workers(&fs_info->endio_workers); 2540 btrfs_stop_workers(&fs_info->endio_meta_workers); 2541 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2542 btrfs_stop_workers(&fs_info->endio_write_workers); 2543 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2544 btrfs_stop_workers(&fs_info->submit_workers); 2545 2546 btrfs_close_devices(fs_info->fs_devices); 2547 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2548 2549 bdi_destroy(&fs_info->bdi); 2550 cleanup_srcu_struct(&fs_info->subvol_srcu); 2551 2552 kfree(fs_info->extent_root); 2553 kfree(fs_info->tree_root); 2554 kfree(fs_info->chunk_root); 2555 kfree(fs_info->dev_root); 2556 kfree(fs_info->csum_root); 2557 return 0; 2558 } 2559 2560 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2561 { 2562 int ret; 2563 struct inode *btree_inode = buf->first_page->mapping->host; 2564 2565 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf, 2566 NULL); 2567 if (!ret) 2568 return ret; 2569 2570 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2571 parent_transid); 2572 return !ret; 2573 } 2574 2575 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2576 { 2577 struct inode *btree_inode = buf->first_page->mapping->host; 2578 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2579 buf); 2580 } 2581 2582 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2583 { 2584 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2585 u64 transid = btrfs_header_generation(buf); 2586 struct inode *btree_inode = root->fs_info->btree_inode; 2587 int was_dirty; 2588 2589 btrfs_assert_tree_locked(buf); 2590 if (transid != root->fs_info->generation) { 2591 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2592 "found %llu running %llu\n", 2593 (unsigned long long)buf->start, 2594 (unsigned long long)transid, 2595 (unsigned long long)root->fs_info->generation); 2596 WARN_ON(1); 2597 } 2598 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2599 buf); 2600 if (!was_dirty) { 2601 spin_lock(&root->fs_info->delalloc_lock); 2602 root->fs_info->dirty_metadata_bytes += buf->len; 2603 spin_unlock(&root->fs_info->delalloc_lock); 2604 } 2605 } 2606 2607 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2608 { 2609 /* 2610 * looks as though older kernels can get into trouble with 2611 * this code, they end up stuck in balance_dirty_pages forever 2612 */ 2613 u64 num_dirty; 2614 unsigned long thresh = 32 * 1024 * 1024; 2615 2616 if (current->flags & PF_MEMALLOC) 2617 return; 2618 2619 num_dirty = root->fs_info->dirty_metadata_bytes; 2620 2621 if (num_dirty > thresh) { 2622 balance_dirty_pages_ratelimited_nr( 2623 root->fs_info->btree_inode->i_mapping, 1); 2624 } 2625 return; 2626 } 2627 2628 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2629 { 2630 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2631 int ret; 2632 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2633 if (ret == 0) 2634 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2635 return ret; 2636 } 2637 2638 int btree_lock_page_hook(struct page *page) 2639 { 2640 struct inode *inode = page->mapping->host; 2641 struct btrfs_root *root = BTRFS_I(inode)->root; 2642 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2643 struct extent_buffer *eb; 2644 unsigned long len; 2645 u64 bytenr = page_offset(page); 2646 2647 if (page->private == EXTENT_PAGE_PRIVATE) 2648 goto out; 2649 2650 len = page->private >> 2; 2651 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2652 if (!eb) 2653 goto out; 2654 2655 btrfs_tree_lock(eb); 2656 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2657 2658 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2659 spin_lock(&root->fs_info->delalloc_lock); 2660 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2661 root->fs_info->dirty_metadata_bytes -= eb->len; 2662 else 2663 WARN_ON(1); 2664 spin_unlock(&root->fs_info->delalloc_lock); 2665 } 2666 2667 btrfs_tree_unlock(eb); 2668 free_extent_buffer(eb); 2669 out: 2670 lock_page(page); 2671 return 0; 2672 } 2673 2674 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 2675 int read_only) 2676 { 2677 if (read_only) 2678 return; 2679 2680 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 2681 printk(KERN_WARNING "warning: mount fs with errors, " 2682 "running btrfsck is recommended\n"); 2683 } 2684 2685 int btrfs_error_commit_super(struct btrfs_root *root) 2686 { 2687 int ret; 2688 2689 mutex_lock(&root->fs_info->cleaner_mutex); 2690 btrfs_run_delayed_iputs(root); 2691 mutex_unlock(&root->fs_info->cleaner_mutex); 2692 2693 down_write(&root->fs_info->cleanup_work_sem); 2694 up_write(&root->fs_info->cleanup_work_sem); 2695 2696 /* cleanup FS via transaction */ 2697 btrfs_cleanup_transaction(root); 2698 2699 ret = write_ctree_super(NULL, root, 0); 2700 2701 return ret; 2702 } 2703 2704 static int btrfs_destroy_ordered_operations(struct btrfs_root *root) 2705 { 2706 struct btrfs_inode *btrfs_inode; 2707 struct list_head splice; 2708 2709 INIT_LIST_HEAD(&splice); 2710 2711 mutex_lock(&root->fs_info->ordered_operations_mutex); 2712 spin_lock(&root->fs_info->ordered_extent_lock); 2713 2714 list_splice_init(&root->fs_info->ordered_operations, &splice); 2715 while (!list_empty(&splice)) { 2716 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2717 ordered_operations); 2718 2719 list_del_init(&btrfs_inode->ordered_operations); 2720 2721 btrfs_invalidate_inodes(btrfs_inode->root); 2722 } 2723 2724 spin_unlock(&root->fs_info->ordered_extent_lock); 2725 mutex_unlock(&root->fs_info->ordered_operations_mutex); 2726 2727 return 0; 2728 } 2729 2730 static int btrfs_destroy_ordered_extents(struct btrfs_root *root) 2731 { 2732 struct list_head splice; 2733 struct btrfs_ordered_extent *ordered; 2734 struct inode *inode; 2735 2736 INIT_LIST_HEAD(&splice); 2737 2738 spin_lock(&root->fs_info->ordered_extent_lock); 2739 2740 list_splice_init(&root->fs_info->ordered_extents, &splice); 2741 while (!list_empty(&splice)) { 2742 ordered = list_entry(splice.next, struct btrfs_ordered_extent, 2743 root_extent_list); 2744 2745 list_del_init(&ordered->root_extent_list); 2746 atomic_inc(&ordered->refs); 2747 2748 /* the inode may be getting freed (in sys_unlink path). */ 2749 inode = igrab(ordered->inode); 2750 2751 spin_unlock(&root->fs_info->ordered_extent_lock); 2752 if (inode) 2753 iput(inode); 2754 2755 atomic_set(&ordered->refs, 1); 2756 btrfs_put_ordered_extent(ordered); 2757 2758 spin_lock(&root->fs_info->ordered_extent_lock); 2759 } 2760 2761 spin_unlock(&root->fs_info->ordered_extent_lock); 2762 2763 return 0; 2764 } 2765 2766 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 2767 struct btrfs_root *root) 2768 { 2769 struct rb_node *node; 2770 struct btrfs_delayed_ref_root *delayed_refs; 2771 struct btrfs_delayed_ref_node *ref; 2772 int ret = 0; 2773 2774 delayed_refs = &trans->delayed_refs; 2775 2776 spin_lock(&delayed_refs->lock); 2777 if (delayed_refs->num_entries == 0) { 2778 printk(KERN_INFO "delayed_refs has NO entry\n"); 2779 return ret; 2780 } 2781 2782 node = rb_first(&delayed_refs->root); 2783 while (node) { 2784 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 2785 node = rb_next(node); 2786 2787 ref->in_tree = 0; 2788 rb_erase(&ref->rb_node, &delayed_refs->root); 2789 delayed_refs->num_entries--; 2790 2791 atomic_set(&ref->refs, 1); 2792 if (btrfs_delayed_ref_is_head(ref)) { 2793 struct btrfs_delayed_ref_head *head; 2794 2795 head = btrfs_delayed_node_to_head(ref); 2796 mutex_lock(&head->mutex); 2797 kfree(head->extent_op); 2798 delayed_refs->num_heads--; 2799 if (list_empty(&head->cluster)) 2800 delayed_refs->num_heads_ready--; 2801 list_del_init(&head->cluster); 2802 mutex_unlock(&head->mutex); 2803 } 2804 2805 spin_unlock(&delayed_refs->lock); 2806 btrfs_put_delayed_ref(ref); 2807 2808 cond_resched(); 2809 spin_lock(&delayed_refs->lock); 2810 } 2811 2812 spin_unlock(&delayed_refs->lock); 2813 2814 return ret; 2815 } 2816 2817 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t) 2818 { 2819 struct btrfs_pending_snapshot *snapshot; 2820 struct list_head splice; 2821 2822 INIT_LIST_HEAD(&splice); 2823 2824 list_splice_init(&t->pending_snapshots, &splice); 2825 2826 while (!list_empty(&splice)) { 2827 snapshot = list_entry(splice.next, 2828 struct btrfs_pending_snapshot, 2829 list); 2830 2831 list_del_init(&snapshot->list); 2832 2833 kfree(snapshot); 2834 } 2835 2836 return 0; 2837 } 2838 2839 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 2840 { 2841 struct btrfs_inode *btrfs_inode; 2842 struct list_head splice; 2843 2844 INIT_LIST_HEAD(&splice); 2845 2846 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 2847 2848 spin_lock(&root->fs_info->delalloc_lock); 2849 2850 while (!list_empty(&splice)) { 2851 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 2852 delalloc_inodes); 2853 2854 list_del_init(&btrfs_inode->delalloc_inodes); 2855 2856 btrfs_invalidate_inodes(btrfs_inode->root); 2857 } 2858 2859 spin_unlock(&root->fs_info->delalloc_lock); 2860 2861 return 0; 2862 } 2863 2864 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 2865 struct extent_io_tree *dirty_pages, 2866 int mark) 2867 { 2868 int ret; 2869 struct page *page; 2870 struct inode *btree_inode = root->fs_info->btree_inode; 2871 struct extent_buffer *eb; 2872 u64 start = 0; 2873 u64 end; 2874 u64 offset; 2875 unsigned long index; 2876 2877 while (1) { 2878 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 2879 mark); 2880 if (ret) 2881 break; 2882 2883 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 2884 while (start <= end) { 2885 index = start >> PAGE_CACHE_SHIFT; 2886 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 2887 page = find_get_page(btree_inode->i_mapping, index); 2888 if (!page) 2889 continue; 2890 offset = page_offset(page); 2891 2892 spin_lock(&dirty_pages->buffer_lock); 2893 eb = radix_tree_lookup( 2894 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 2895 offset >> PAGE_CACHE_SHIFT); 2896 spin_unlock(&dirty_pages->buffer_lock); 2897 if (eb) { 2898 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 2899 &eb->bflags); 2900 atomic_set(&eb->refs, 1); 2901 } 2902 if (PageWriteback(page)) 2903 end_page_writeback(page); 2904 2905 lock_page(page); 2906 if (PageDirty(page)) { 2907 clear_page_dirty_for_io(page); 2908 spin_lock_irq(&page->mapping->tree_lock); 2909 radix_tree_tag_clear(&page->mapping->page_tree, 2910 page_index(page), 2911 PAGECACHE_TAG_DIRTY); 2912 spin_unlock_irq(&page->mapping->tree_lock); 2913 } 2914 2915 page->mapping->a_ops->invalidatepage(page, 0); 2916 unlock_page(page); 2917 } 2918 } 2919 2920 return ret; 2921 } 2922 2923 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 2924 struct extent_io_tree *pinned_extents) 2925 { 2926 struct extent_io_tree *unpin; 2927 u64 start; 2928 u64 end; 2929 int ret; 2930 2931 unpin = pinned_extents; 2932 while (1) { 2933 ret = find_first_extent_bit(unpin, 0, &start, &end, 2934 EXTENT_DIRTY); 2935 if (ret) 2936 break; 2937 2938 /* opt_discard */ 2939 ret = btrfs_error_discard_extent(root, start, end + 1 - start); 2940 2941 clear_extent_dirty(unpin, start, end, GFP_NOFS); 2942 btrfs_error_unpin_extent_range(root, start, end); 2943 cond_resched(); 2944 } 2945 2946 return 0; 2947 } 2948 2949 static int btrfs_cleanup_transaction(struct btrfs_root *root) 2950 { 2951 struct btrfs_transaction *t; 2952 LIST_HEAD(list); 2953 2954 WARN_ON(1); 2955 2956 mutex_lock(&root->fs_info->trans_mutex); 2957 mutex_lock(&root->fs_info->transaction_kthread_mutex); 2958 2959 list_splice_init(&root->fs_info->trans_list, &list); 2960 while (!list_empty(&list)) { 2961 t = list_entry(list.next, struct btrfs_transaction, list); 2962 if (!t) 2963 break; 2964 2965 btrfs_destroy_ordered_operations(root); 2966 2967 btrfs_destroy_ordered_extents(root); 2968 2969 btrfs_destroy_delayed_refs(t, root); 2970 2971 btrfs_block_rsv_release(root, 2972 &root->fs_info->trans_block_rsv, 2973 t->dirty_pages.dirty_bytes); 2974 2975 /* FIXME: cleanup wait for commit */ 2976 t->in_commit = 1; 2977 t->blocked = 1; 2978 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 2979 wake_up(&root->fs_info->transaction_blocked_wait); 2980 2981 t->blocked = 0; 2982 if (waitqueue_active(&root->fs_info->transaction_wait)) 2983 wake_up(&root->fs_info->transaction_wait); 2984 mutex_unlock(&root->fs_info->trans_mutex); 2985 2986 mutex_lock(&root->fs_info->trans_mutex); 2987 t->commit_done = 1; 2988 if (waitqueue_active(&t->commit_wait)) 2989 wake_up(&t->commit_wait); 2990 mutex_unlock(&root->fs_info->trans_mutex); 2991 2992 mutex_lock(&root->fs_info->trans_mutex); 2993 2994 btrfs_destroy_pending_snapshots(t); 2995 2996 btrfs_destroy_delalloc_inodes(root); 2997 2998 spin_lock(&root->fs_info->new_trans_lock); 2999 root->fs_info->running_transaction = NULL; 3000 spin_unlock(&root->fs_info->new_trans_lock); 3001 3002 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3003 EXTENT_DIRTY); 3004 3005 btrfs_destroy_pinned_extent(root, 3006 root->fs_info->pinned_extents); 3007 3008 t->use_count = 0; 3009 list_del_init(&t->list); 3010 memset(t, 0, sizeof(*t)); 3011 kmem_cache_free(btrfs_transaction_cachep, t); 3012 } 3013 3014 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3015 mutex_unlock(&root->fs_info->trans_mutex); 3016 3017 return 0; 3018 } 3019 3020 static struct extent_io_ops btree_extent_io_ops = { 3021 .write_cache_pages_lock_hook = btree_lock_page_hook, 3022 .readpage_end_io_hook = btree_readpage_end_io_hook, 3023 .submit_bio_hook = btree_submit_bio_hook, 3024 /* note we're sharing with inode.c for the merge bio hook */ 3025 .merge_bio_hook = btrfs_merge_bio_hook, 3026 }; 3027