xref: /linux/fs/btrfs/disk-io.c (revision c9895ed5a84dc3cbc86a9d6d5656d8c187f53380)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include "compat.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "print-tree.h"
39 #include "async-thread.h"
40 #include "locking.h"
41 #include "tree-log.h"
42 #include "free-space-cache.h"
43 
44 static struct extent_io_ops btree_extent_io_ops;
45 static void end_workqueue_fn(struct btrfs_work *work);
46 static void free_fs_root(struct btrfs_root *root);
47 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
48 				    int read_only);
49 static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
50 static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
51 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
52 				      struct btrfs_root *root);
53 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
54 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
55 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
56 					struct extent_io_tree *dirty_pages,
57 					int mark);
58 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
59 				       struct extent_io_tree *pinned_extents);
60 static int btrfs_cleanup_transaction(struct btrfs_root *root);
61 
62 /*
63  * end_io_wq structs are used to do processing in task context when an IO is
64  * complete.  This is used during reads to verify checksums, and it is used
65  * by writes to insert metadata for new file extents after IO is complete.
66  */
67 struct end_io_wq {
68 	struct bio *bio;
69 	bio_end_io_t *end_io;
70 	void *private;
71 	struct btrfs_fs_info *info;
72 	int error;
73 	int metadata;
74 	struct list_head list;
75 	struct btrfs_work work;
76 };
77 
78 /*
79  * async submit bios are used to offload expensive checksumming
80  * onto the worker threads.  They checksum file and metadata bios
81  * just before they are sent down the IO stack.
82  */
83 struct async_submit_bio {
84 	struct inode *inode;
85 	struct bio *bio;
86 	struct list_head list;
87 	extent_submit_bio_hook_t *submit_bio_start;
88 	extent_submit_bio_hook_t *submit_bio_done;
89 	int rw;
90 	int mirror_num;
91 	unsigned long bio_flags;
92 	/*
93 	 * bio_offset is optional, can be used if the pages in the bio
94 	 * can't tell us where in the file the bio should go
95 	 */
96 	u64 bio_offset;
97 	struct btrfs_work work;
98 };
99 
100 /* These are used to set the lockdep class on the extent buffer locks.
101  * The class is set by the readpage_end_io_hook after the buffer has
102  * passed csum validation but before the pages are unlocked.
103  *
104  * The lockdep class is also set by btrfs_init_new_buffer on freshly
105  * allocated blocks.
106  *
107  * The class is based on the level in the tree block, which allows lockdep
108  * to know that lower nodes nest inside the locks of higher nodes.
109  *
110  * We also add a check to make sure the highest level of the tree is
111  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
112  * code needs update as well.
113  */
114 #ifdef CONFIG_DEBUG_LOCK_ALLOC
115 # if BTRFS_MAX_LEVEL != 8
116 #  error
117 # endif
118 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
119 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
120 	/* leaf */
121 	"btrfs-extent-00",
122 	"btrfs-extent-01",
123 	"btrfs-extent-02",
124 	"btrfs-extent-03",
125 	"btrfs-extent-04",
126 	"btrfs-extent-05",
127 	"btrfs-extent-06",
128 	"btrfs-extent-07",
129 	/* highest possible level */
130 	"btrfs-extent-08",
131 };
132 #endif
133 
134 /*
135  * extents on the btree inode are pretty simple, there's one extent
136  * that covers the entire device
137  */
138 static struct extent_map *btree_get_extent(struct inode *inode,
139 		struct page *page, size_t page_offset, u64 start, u64 len,
140 		int create)
141 {
142 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
143 	struct extent_map *em;
144 	int ret;
145 
146 	read_lock(&em_tree->lock);
147 	em = lookup_extent_mapping(em_tree, start, len);
148 	if (em) {
149 		em->bdev =
150 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
151 		read_unlock(&em_tree->lock);
152 		goto out;
153 	}
154 	read_unlock(&em_tree->lock);
155 
156 	em = alloc_extent_map(GFP_NOFS);
157 	if (!em) {
158 		em = ERR_PTR(-ENOMEM);
159 		goto out;
160 	}
161 	em->start = 0;
162 	em->len = (u64)-1;
163 	em->block_len = (u64)-1;
164 	em->block_start = 0;
165 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
166 
167 	write_lock(&em_tree->lock);
168 	ret = add_extent_mapping(em_tree, em);
169 	if (ret == -EEXIST) {
170 		u64 failed_start = em->start;
171 		u64 failed_len = em->len;
172 
173 		free_extent_map(em);
174 		em = lookup_extent_mapping(em_tree, start, len);
175 		if (em) {
176 			ret = 0;
177 		} else {
178 			em = lookup_extent_mapping(em_tree, failed_start,
179 						   failed_len);
180 			ret = -EIO;
181 		}
182 	} else if (ret) {
183 		free_extent_map(em);
184 		em = NULL;
185 	}
186 	write_unlock(&em_tree->lock);
187 
188 	if (ret)
189 		em = ERR_PTR(ret);
190 out:
191 	return em;
192 }
193 
194 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
195 {
196 	return crc32c(seed, data, len);
197 }
198 
199 void btrfs_csum_final(u32 crc, char *result)
200 {
201 	*(__le32 *)result = ~cpu_to_le32(crc);
202 }
203 
204 /*
205  * compute the csum for a btree block, and either verify it or write it
206  * into the csum field of the block.
207  */
208 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
209 			   int verify)
210 {
211 	u16 csum_size =
212 		btrfs_super_csum_size(&root->fs_info->super_copy);
213 	char *result = NULL;
214 	unsigned long len;
215 	unsigned long cur_len;
216 	unsigned long offset = BTRFS_CSUM_SIZE;
217 	char *map_token = NULL;
218 	char *kaddr;
219 	unsigned long map_start;
220 	unsigned long map_len;
221 	int err;
222 	u32 crc = ~(u32)0;
223 	unsigned long inline_result;
224 
225 	len = buf->len - offset;
226 	while (len > 0) {
227 		err = map_private_extent_buffer(buf, offset, 32,
228 					&map_token, &kaddr,
229 					&map_start, &map_len, KM_USER0);
230 		if (err)
231 			return 1;
232 		cur_len = min(len, map_len - (offset - map_start));
233 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
234 				      crc, cur_len);
235 		len -= cur_len;
236 		offset += cur_len;
237 		unmap_extent_buffer(buf, map_token, KM_USER0);
238 	}
239 	if (csum_size > sizeof(inline_result)) {
240 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
241 		if (!result)
242 			return 1;
243 	} else {
244 		result = (char *)&inline_result;
245 	}
246 
247 	btrfs_csum_final(crc, result);
248 
249 	if (verify) {
250 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
251 			u32 val;
252 			u32 found = 0;
253 			memcpy(&found, result, csum_size);
254 
255 			read_extent_buffer(buf, &val, 0, csum_size);
256 			if (printk_ratelimit()) {
257 				printk(KERN_INFO "btrfs: %s checksum verify "
258 				       "failed on %llu wanted %X found %X "
259 				       "level %d\n",
260 				       root->fs_info->sb->s_id,
261 				       (unsigned long long)buf->start, val, found,
262 				       btrfs_header_level(buf));
263 			}
264 			if (result != (char *)&inline_result)
265 				kfree(result);
266 			return 1;
267 		}
268 	} else {
269 		write_extent_buffer(buf, result, 0, csum_size);
270 	}
271 	if (result != (char *)&inline_result)
272 		kfree(result);
273 	return 0;
274 }
275 
276 /*
277  * we can't consider a given block up to date unless the transid of the
278  * block matches the transid in the parent node's pointer.  This is how we
279  * detect blocks that either didn't get written at all or got written
280  * in the wrong place.
281  */
282 static int verify_parent_transid(struct extent_io_tree *io_tree,
283 				 struct extent_buffer *eb, u64 parent_transid)
284 {
285 	struct extent_state *cached_state = NULL;
286 	int ret;
287 
288 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
289 		return 0;
290 
291 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
292 			 0, &cached_state, GFP_NOFS);
293 	if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
294 	    btrfs_header_generation(eb) == parent_transid) {
295 		ret = 0;
296 		goto out;
297 	}
298 	if (printk_ratelimit()) {
299 		printk("parent transid verify failed on %llu wanted %llu "
300 		       "found %llu\n",
301 		       (unsigned long long)eb->start,
302 		       (unsigned long long)parent_transid,
303 		       (unsigned long long)btrfs_header_generation(eb));
304 	}
305 	ret = 1;
306 	clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
307 out:
308 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
309 			     &cached_state, GFP_NOFS);
310 	return ret;
311 }
312 
313 /*
314  * helper to read a given tree block, doing retries as required when
315  * the checksums don't match and we have alternate mirrors to try.
316  */
317 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
318 					  struct extent_buffer *eb,
319 					  u64 start, u64 parent_transid)
320 {
321 	struct extent_io_tree *io_tree;
322 	int ret;
323 	int num_copies = 0;
324 	int mirror_num = 0;
325 
326 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
327 	while (1) {
328 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
329 					       btree_get_extent, mirror_num);
330 		if (!ret &&
331 		    !verify_parent_transid(io_tree, eb, parent_transid))
332 			return ret;
333 
334 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
335 					      eb->start, eb->len);
336 		if (num_copies == 1)
337 			return ret;
338 
339 		mirror_num++;
340 		if (mirror_num > num_copies)
341 			return ret;
342 	}
343 	return -EIO;
344 }
345 
346 /*
347  * checksum a dirty tree block before IO.  This has extra checks to make sure
348  * we only fill in the checksum field in the first page of a multi-page block
349  */
350 
351 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
352 {
353 	struct extent_io_tree *tree;
354 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
355 	u64 found_start;
356 	unsigned long len;
357 	struct extent_buffer *eb;
358 	int ret;
359 
360 	tree = &BTRFS_I(page->mapping->host)->io_tree;
361 
362 	if (page->private == EXTENT_PAGE_PRIVATE)
363 		goto out;
364 	if (!page->private)
365 		goto out;
366 	len = page->private >> 2;
367 	WARN_ON(len == 0);
368 
369 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
370 	if (eb == NULL) {
371 		WARN_ON(1);
372 		goto out;
373 	}
374 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
375 					     btrfs_header_generation(eb));
376 	BUG_ON(ret);
377 	WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
378 
379 	found_start = btrfs_header_bytenr(eb);
380 	if (found_start != start) {
381 		WARN_ON(1);
382 		goto err;
383 	}
384 	if (eb->first_page != page) {
385 		WARN_ON(1);
386 		goto err;
387 	}
388 	if (!PageUptodate(page)) {
389 		WARN_ON(1);
390 		goto err;
391 	}
392 	csum_tree_block(root, eb, 0);
393 err:
394 	free_extent_buffer(eb);
395 out:
396 	return 0;
397 }
398 
399 static int check_tree_block_fsid(struct btrfs_root *root,
400 				 struct extent_buffer *eb)
401 {
402 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
403 	u8 fsid[BTRFS_UUID_SIZE];
404 	int ret = 1;
405 
406 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
407 			   BTRFS_FSID_SIZE);
408 	while (fs_devices) {
409 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
410 			ret = 0;
411 			break;
412 		}
413 		fs_devices = fs_devices->seed;
414 	}
415 	return ret;
416 }
417 
418 #ifdef CONFIG_DEBUG_LOCK_ALLOC
419 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
420 {
421 	lockdep_set_class_and_name(&eb->lock,
422 			   &btrfs_eb_class[level],
423 			   btrfs_eb_name[level]);
424 }
425 #endif
426 
427 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
428 			       struct extent_state *state)
429 {
430 	struct extent_io_tree *tree;
431 	u64 found_start;
432 	int found_level;
433 	unsigned long len;
434 	struct extent_buffer *eb;
435 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
436 	int ret = 0;
437 
438 	tree = &BTRFS_I(page->mapping->host)->io_tree;
439 	if (page->private == EXTENT_PAGE_PRIVATE)
440 		goto out;
441 	if (!page->private)
442 		goto out;
443 
444 	len = page->private >> 2;
445 	WARN_ON(len == 0);
446 
447 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
448 	if (eb == NULL) {
449 		ret = -EIO;
450 		goto out;
451 	}
452 
453 	found_start = btrfs_header_bytenr(eb);
454 	if (found_start != start) {
455 		if (printk_ratelimit()) {
456 			printk(KERN_INFO "btrfs bad tree block start "
457 			       "%llu %llu\n",
458 			       (unsigned long long)found_start,
459 			       (unsigned long long)eb->start);
460 		}
461 		ret = -EIO;
462 		goto err;
463 	}
464 	if (eb->first_page != page) {
465 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
466 		       eb->first_page->index, page->index);
467 		WARN_ON(1);
468 		ret = -EIO;
469 		goto err;
470 	}
471 	if (check_tree_block_fsid(root, eb)) {
472 		if (printk_ratelimit()) {
473 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
474 			       (unsigned long long)eb->start);
475 		}
476 		ret = -EIO;
477 		goto err;
478 	}
479 	found_level = btrfs_header_level(eb);
480 
481 	btrfs_set_buffer_lockdep_class(eb, found_level);
482 
483 	ret = csum_tree_block(root, eb, 1);
484 	if (ret)
485 		ret = -EIO;
486 
487 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
488 	end = eb->start + end - 1;
489 err:
490 	free_extent_buffer(eb);
491 out:
492 	return ret;
493 }
494 
495 static void end_workqueue_bio(struct bio *bio, int err)
496 {
497 	struct end_io_wq *end_io_wq = bio->bi_private;
498 	struct btrfs_fs_info *fs_info;
499 
500 	fs_info = end_io_wq->info;
501 	end_io_wq->error = err;
502 	end_io_wq->work.func = end_workqueue_fn;
503 	end_io_wq->work.flags = 0;
504 
505 	if (bio->bi_rw & REQ_WRITE) {
506 		if (end_io_wq->metadata == 1)
507 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
508 					   &end_io_wq->work);
509 		else if (end_io_wq->metadata == 2)
510 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
511 					   &end_io_wq->work);
512 		else
513 			btrfs_queue_worker(&fs_info->endio_write_workers,
514 					   &end_io_wq->work);
515 	} else {
516 		if (end_io_wq->metadata)
517 			btrfs_queue_worker(&fs_info->endio_meta_workers,
518 					   &end_io_wq->work);
519 		else
520 			btrfs_queue_worker(&fs_info->endio_workers,
521 					   &end_io_wq->work);
522 	}
523 }
524 
525 /*
526  * For the metadata arg you want
527  *
528  * 0 - if data
529  * 1 - if normal metadta
530  * 2 - if writing to the free space cache area
531  */
532 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
533 			int metadata)
534 {
535 	struct end_io_wq *end_io_wq;
536 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
537 	if (!end_io_wq)
538 		return -ENOMEM;
539 
540 	end_io_wq->private = bio->bi_private;
541 	end_io_wq->end_io = bio->bi_end_io;
542 	end_io_wq->info = info;
543 	end_io_wq->error = 0;
544 	end_io_wq->bio = bio;
545 	end_io_wq->metadata = metadata;
546 
547 	bio->bi_private = end_io_wq;
548 	bio->bi_end_io = end_workqueue_bio;
549 	return 0;
550 }
551 
552 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
553 {
554 	unsigned long limit = min_t(unsigned long,
555 				    info->workers.max_workers,
556 				    info->fs_devices->open_devices);
557 	return 256 * limit;
558 }
559 
560 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
561 {
562 	return atomic_read(&info->nr_async_bios) >
563 		btrfs_async_submit_limit(info);
564 }
565 
566 static void run_one_async_start(struct btrfs_work *work)
567 {
568 	struct async_submit_bio *async;
569 
570 	async = container_of(work, struct  async_submit_bio, work);
571 	async->submit_bio_start(async->inode, async->rw, async->bio,
572 			       async->mirror_num, async->bio_flags,
573 			       async->bio_offset);
574 }
575 
576 static void run_one_async_done(struct btrfs_work *work)
577 {
578 	struct btrfs_fs_info *fs_info;
579 	struct async_submit_bio *async;
580 	int limit;
581 
582 	async = container_of(work, struct  async_submit_bio, work);
583 	fs_info = BTRFS_I(async->inode)->root->fs_info;
584 
585 	limit = btrfs_async_submit_limit(fs_info);
586 	limit = limit * 2 / 3;
587 
588 	atomic_dec(&fs_info->nr_async_submits);
589 
590 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
591 	    waitqueue_active(&fs_info->async_submit_wait))
592 		wake_up(&fs_info->async_submit_wait);
593 
594 	async->submit_bio_done(async->inode, async->rw, async->bio,
595 			       async->mirror_num, async->bio_flags,
596 			       async->bio_offset);
597 }
598 
599 static void run_one_async_free(struct btrfs_work *work)
600 {
601 	struct async_submit_bio *async;
602 
603 	async = container_of(work, struct  async_submit_bio, work);
604 	kfree(async);
605 }
606 
607 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
608 			int rw, struct bio *bio, int mirror_num,
609 			unsigned long bio_flags,
610 			u64 bio_offset,
611 			extent_submit_bio_hook_t *submit_bio_start,
612 			extent_submit_bio_hook_t *submit_bio_done)
613 {
614 	struct async_submit_bio *async;
615 
616 	async = kmalloc(sizeof(*async), GFP_NOFS);
617 	if (!async)
618 		return -ENOMEM;
619 
620 	async->inode = inode;
621 	async->rw = rw;
622 	async->bio = bio;
623 	async->mirror_num = mirror_num;
624 	async->submit_bio_start = submit_bio_start;
625 	async->submit_bio_done = submit_bio_done;
626 
627 	async->work.func = run_one_async_start;
628 	async->work.ordered_func = run_one_async_done;
629 	async->work.ordered_free = run_one_async_free;
630 
631 	async->work.flags = 0;
632 	async->bio_flags = bio_flags;
633 	async->bio_offset = bio_offset;
634 
635 	atomic_inc(&fs_info->nr_async_submits);
636 
637 	if (rw & REQ_SYNC)
638 		btrfs_set_work_high_prio(&async->work);
639 
640 	btrfs_queue_worker(&fs_info->workers, &async->work);
641 
642 	while (atomic_read(&fs_info->async_submit_draining) &&
643 	      atomic_read(&fs_info->nr_async_submits)) {
644 		wait_event(fs_info->async_submit_wait,
645 			   (atomic_read(&fs_info->nr_async_submits) == 0));
646 	}
647 
648 	return 0;
649 }
650 
651 static int btree_csum_one_bio(struct bio *bio)
652 {
653 	struct bio_vec *bvec = bio->bi_io_vec;
654 	int bio_index = 0;
655 	struct btrfs_root *root;
656 
657 	WARN_ON(bio->bi_vcnt <= 0);
658 	while (bio_index < bio->bi_vcnt) {
659 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
660 		csum_dirty_buffer(root, bvec->bv_page);
661 		bio_index++;
662 		bvec++;
663 	}
664 	return 0;
665 }
666 
667 static int __btree_submit_bio_start(struct inode *inode, int rw,
668 				    struct bio *bio, int mirror_num,
669 				    unsigned long bio_flags,
670 				    u64 bio_offset)
671 {
672 	/*
673 	 * when we're called for a write, we're already in the async
674 	 * submission context.  Just jump into btrfs_map_bio
675 	 */
676 	btree_csum_one_bio(bio);
677 	return 0;
678 }
679 
680 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
681 				 int mirror_num, unsigned long bio_flags,
682 				 u64 bio_offset)
683 {
684 	/*
685 	 * when we're called for a write, we're already in the async
686 	 * submission context.  Just jump into btrfs_map_bio
687 	 */
688 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
689 }
690 
691 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
692 				 int mirror_num, unsigned long bio_flags,
693 				 u64 bio_offset)
694 {
695 	int ret;
696 
697 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
698 					  bio, 1);
699 	BUG_ON(ret);
700 
701 	if (!(rw & REQ_WRITE)) {
702 		/*
703 		 * called for a read, do the setup so that checksum validation
704 		 * can happen in the async kernel threads
705 		 */
706 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
707 				     mirror_num, 0);
708 	}
709 
710 	/*
711 	 * kthread helpers are used to submit writes so that checksumming
712 	 * can happen in parallel across all CPUs
713 	 */
714 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
715 				   inode, rw, bio, mirror_num, 0,
716 				   bio_offset,
717 				   __btree_submit_bio_start,
718 				   __btree_submit_bio_done);
719 }
720 
721 #ifdef CONFIG_MIGRATION
722 static int btree_migratepage(struct address_space *mapping,
723 			struct page *newpage, struct page *page)
724 {
725 	/*
726 	 * we can't safely write a btree page from here,
727 	 * we haven't done the locking hook
728 	 */
729 	if (PageDirty(page))
730 		return -EAGAIN;
731 	/*
732 	 * Buffers may be managed in a filesystem specific way.
733 	 * We must have no buffers or drop them.
734 	 */
735 	if (page_has_private(page) &&
736 	    !try_to_release_page(page, GFP_KERNEL))
737 		return -EAGAIN;
738 	return migrate_page(mapping, newpage, page);
739 }
740 #endif
741 
742 static int btree_writepage(struct page *page, struct writeback_control *wbc)
743 {
744 	struct extent_io_tree *tree;
745 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
746 	struct extent_buffer *eb;
747 	int was_dirty;
748 
749 	tree = &BTRFS_I(page->mapping->host)->io_tree;
750 	if (!(current->flags & PF_MEMALLOC)) {
751 		return extent_write_full_page(tree, page,
752 					      btree_get_extent, wbc);
753 	}
754 
755 	redirty_page_for_writepage(wbc, page);
756 	eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
757 	WARN_ON(!eb);
758 
759 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
760 	if (!was_dirty) {
761 		spin_lock(&root->fs_info->delalloc_lock);
762 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
763 		spin_unlock(&root->fs_info->delalloc_lock);
764 	}
765 	free_extent_buffer(eb);
766 
767 	unlock_page(page);
768 	return 0;
769 }
770 
771 static int btree_writepages(struct address_space *mapping,
772 			    struct writeback_control *wbc)
773 {
774 	struct extent_io_tree *tree;
775 	tree = &BTRFS_I(mapping->host)->io_tree;
776 	if (wbc->sync_mode == WB_SYNC_NONE) {
777 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
778 		u64 num_dirty;
779 		unsigned long thresh = 32 * 1024 * 1024;
780 
781 		if (wbc->for_kupdate)
782 			return 0;
783 
784 		/* this is a bit racy, but that's ok */
785 		num_dirty = root->fs_info->dirty_metadata_bytes;
786 		if (num_dirty < thresh)
787 			return 0;
788 	}
789 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
790 }
791 
792 static int btree_readpage(struct file *file, struct page *page)
793 {
794 	struct extent_io_tree *tree;
795 	tree = &BTRFS_I(page->mapping->host)->io_tree;
796 	return extent_read_full_page(tree, page, btree_get_extent);
797 }
798 
799 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
800 {
801 	struct extent_io_tree *tree;
802 	struct extent_map_tree *map;
803 	int ret;
804 
805 	if (PageWriteback(page) || PageDirty(page))
806 		return 0;
807 
808 	tree = &BTRFS_I(page->mapping->host)->io_tree;
809 	map = &BTRFS_I(page->mapping->host)->extent_tree;
810 
811 	ret = try_release_extent_state(map, tree, page, gfp_flags);
812 	if (!ret)
813 		return 0;
814 
815 	ret = try_release_extent_buffer(tree, page);
816 	if (ret == 1) {
817 		ClearPagePrivate(page);
818 		set_page_private(page, 0);
819 		page_cache_release(page);
820 	}
821 
822 	return ret;
823 }
824 
825 static void btree_invalidatepage(struct page *page, unsigned long offset)
826 {
827 	struct extent_io_tree *tree;
828 	tree = &BTRFS_I(page->mapping->host)->io_tree;
829 	extent_invalidatepage(tree, page, offset);
830 	btree_releasepage(page, GFP_NOFS);
831 	if (PagePrivate(page)) {
832 		printk(KERN_WARNING "btrfs warning page private not zero "
833 		       "on page %llu\n", (unsigned long long)page_offset(page));
834 		ClearPagePrivate(page);
835 		set_page_private(page, 0);
836 		page_cache_release(page);
837 	}
838 }
839 
840 static const struct address_space_operations btree_aops = {
841 	.readpage	= btree_readpage,
842 	.writepage	= btree_writepage,
843 	.writepages	= btree_writepages,
844 	.releasepage	= btree_releasepage,
845 	.invalidatepage = btree_invalidatepage,
846 	.sync_page	= block_sync_page,
847 #ifdef CONFIG_MIGRATION
848 	.migratepage	= btree_migratepage,
849 #endif
850 };
851 
852 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
853 			 u64 parent_transid)
854 {
855 	struct extent_buffer *buf = NULL;
856 	struct inode *btree_inode = root->fs_info->btree_inode;
857 	int ret = 0;
858 
859 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
860 	if (!buf)
861 		return 0;
862 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
863 				 buf, 0, 0, btree_get_extent, 0);
864 	free_extent_buffer(buf);
865 	return ret;
866 }
867 
868 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
869 					    u64 bytenr, u32 blocksize)
870 {
871 	struct inode *btree_inode = root->fs_info->btree_inode;
872 	struct extent_buffer *eb;
873 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
874 				bytenr, blocksize, GFP_NOFS);
875 	return eb;
876 }
877 
878 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
879 						 u64 bytenr, u32 blocksize)
880 {
881 	struct inode *btree_inode = root->fs_info->btree_inode;
882 	struct extent_buffer *eb;
883 
884 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
885 				 bytenr, blocksize, NULL, GFP_NOFS);
886 	return eb;
887 }
888 
889 
890 int btrfs_write_tree_block(struct extent_buffer *buf)
891 {
892 	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
893 					buf->start + buf->len - 1);
894 }
895 
896 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
897 {
898 	return filemap_fdatawait_range(buf->first_page->mapping,
899 				       buf->start, buf->start + buf->len - 1);
900 }
901 
902 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
903 				      u32 blocksize, u64 parent_transid)
904 {
905 	struct extent_buffer *buf = NULL;
906 	int ret;
907 
908 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
909 	if (!buf)
910 		return NULL;
911 
912 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
913 
914 	if (ret == 0)
915 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
916 	return buf;
917 
918 }
919 
920 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
921 		     struct extent_buffer *buf)
922 {
923 	struct inode *btree_inode = root->fs_info->btree_inode;
924 	if (btrfs_header_generation(buf) ==
925 	    root->fs_info->running_transaction->transid) {
926 		btrfs_assert_tree_locked(buf);
927 
928 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
929 			spin_lock(&root->fs_info->delalloc_lock);
930 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
931 				root->fs_info->dirty_metadata_bytes -= buf->len;
932 			else
933 				WARN_ON(1);
934 			spin_unlock(&root->fs_info->delalloc_lock);
935 		}
936 
937 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
938 		btrfs_set_lock_blocking(buf);
939 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
940 					  buf);
941 	}
942 	return 0;
943 }
944 
945 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
946 			u32 stripesize, struct btrfs_root *root,
947 			struct btrfs_fs_info *fs_info,
948 			u64 objectid)
949 {
950 	root->node = NULL;
951 	root->commit_root = NULL;
952 	root->sectorsize = sectorsize;
953 	root->nodesize = nodesize;
954 	root->leafsize = leafsize;
955 	root->stripesize = stripesize;
956 	root->ref_cows = 0;
957 	root->track_dirty = 0;
958 	root->in_radix = 0;
959 	root->orphan_item_inserted = 0;
960 	root->orphan_cleanup_state = 0;
961 
962 	root->fs_info = fs_info;
963 	root->objectid = objectid;
964 	root->last_trans = 0;
965 	root->highest_objectid = 0;
966 	root->name = NULL;
967 	root->in_sysfs = 0;
968 	root->inode_tree = RB_ROOT;
969 	root->block_rsv = NULL;
970 	root->orphan_block_rsv = NULL;
971 
972 	INIT_LIST_HEAD(&root->dirty_list);
973 	INIT_LIST_HEAD(&root->orphan_list);
974 	INIT_LIST_HEAD(&root->root_list);
975 	spin_lock_init(&root->node_lock);
976 	spin_lock_init(&root->orphan_lock);
977 	spin_lock_init(&root->inode_lock);
978 	spin_lock_init(&root->accounting_lock);
979 	mutex_init(&root->objectid_mutex);
980 	mutex_init(&root->log_mutex);
981 	init_waitqueue_head(&root->log_writer_wait);
982 	init_waitqueue_head(&root->log_commit_wait[0]);
983 	init_waitqueue_head(&root->log_commit_wait[1]);
984 	atomic_set(&root->log_commit[0], 0);
985 	atomic_set(&root->log_commit[1], 0);
986 	atomic_set(&root->log_writers, 0);
987 	root->log_batch = 0;
988 	root->log_transid = 0;
989 	root->last_log_commit = 0;
990 	extent_io_tree_init(&root->dirty_log_pages,
991 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
992 
993 	memset(&root->root_key, 0, sizeof(root->root_key));
994 	memset(&root->root_item, 0, sizeof(root->root_item));
995 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
996 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
997 	root->defrag_trans_start = fs_info->generation;
998 	init_completion(&root->kobj_unregister);
999 	root->defrag_running = 0;
1000 	root->root_key.objectid = objectid;
1001 	root->anon_super.s_root = NULL;
1002 	root->anon_super.s_dev = 0;
1003 	INIT_LIST_HEAD(&root->anon_super.s_list);
1004 	INIT_LIST_HEAD(&root->anon_super.s_instances);
1005 	init_rwsem(&root->anon_super.s_umount);
1006 
1007 	return 0;
1008 }
1009 
1010 static int find_and_setup_root(struct btrfs_root *tree_root,
1011 			       struct btrfs_fs_info *fs_info,
1012 			       u64 objectid,
1013 			       struct btrfs_root *root)
1014 {
1015 	int ret;
1016 	u32 blocksize;
1017 	u64 generation;
1018 
1019 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1020 		     tree_root->sectorsize, tree_root->stripesize,
1021 		     root, fs_info, objectid);
1022 	ret = btrfs_find_last_root(tree_root, objectid,
1023 				   &root->root_item, &root->root_key);
1024 	if (ret > 0)
1025 		return -ENOENT;
1026 	BUG_ON(ret);
1027 
1028 	generation = btrfs_root_generation(&root->root_item);
1029 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1030 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1031 				     blocksize, generation);
1032 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1033 		free_extent_buffer(root->node);
1034 		return -EIO;
1035 	}
1036 	root->commit_root = btrfs_root_node(root);
1037 	return 0;
1038 }
1039 
1040 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1041 					 struct btrfs_fs_info *fs_info)
1042 {
1043 	struct btrfs_root *root;
1044 	struct btrfs_root *tree_root = fs_info->tree_root;
1045 	struct extent_buffer *leaf;
1046 
1047 	root = kzalloc(sizeof(*root), GFP_NOFS);
1048 	if (!root)
1049 		return ERR_PTR(-ENOMEM);
1050 
1051 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1052 		     tree_root->sectorsize, tree_root->stripesize,
1053 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1054 
1055 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1056 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1057 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1058 	/*
1059 	 * log trees do not get reference counted because they go away
1060 	 * before a real commit is actually done.  They do store pointers
1061 	 * to file data extents, and those reference counts still get
1062 	 * updated (along with back refs to the log tree).
1063 	 */
1064 	root->ref_cows = 0;
1065 
1066 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1067 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1068 	if (IS_ERR(leaf)) {
1069 		kfree(root);
1070 		return ERR_CAST(leaf);
1071 	}
1072 
1073 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1074 	btrfs_set_header_bytenr(leaf, leaf->start);
1075 	btrfs_set_header_generation(leaf, trans->transid);
1076 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1077 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1078 	root->node = leaf;
1079 
1080 	write_extent_buffer(root->node, root->fs_info->fsid,
1081 			    (unsigned long)btrfs_header_fsid(root->node),
1082 			    BTRFS_FSID_SIZE);
1083 	btrfs_mark_buffer_dirty(root->node);
1084 	btrfs_tree_unlock(root->node);
1085 	return root;
1086 }
1087 
1088 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1089 			     struct btrfs_fs_info *fs_info)
1090 {
1091 	struct btrfs_root *log_root;
1092 
1093 	log_root = alloc_log_tree(trans, fs_info);
1094 	if (IS_ERR(log_root))
1095 		return PTR_ERR(log_root);
1096 	WARN_ON(fs_info->log_root_tree);
1097 	fs_info->log_root_tree = log_root;
1098 	return 0;
1099 }
1100 
1101 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1102 		       struct btrfs_root *root)
1103 {
1104 	struct btrfs_root *log_root;
1105 	struct btrfs_inode_item *inode_item;
1106 
1107 	log_root = alloc_log_tree(trans, root->fs_info);
1108 	if (IS_ERR(log_root))
1109 		return PTR_ERR(log_root);
1110 
1111 	log_root->last_trans = trans->transid;
1112 	log_root->root_key.offset = root->root_key.objectid;
1113 
1114 	inode_item = &log_root->root_item.inode;
1115 	inode_item->generation = cpu_to_le64(1);
1116 	inode_item->size = cpu_to_le64(3);
1117 	inode_item->nlink = cpu_to_le32(1);
1118 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1119 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1120 
1121 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1122 
1123 	WARN_ON(root->log_root);
1124 	root->log_root = log_root;
1125 	root->log_transid = 0;
1126 	root->last_log_commit = 0;
1127 	return 0;
1128 }
1129 
1130 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1131 					       struct btrfs_key *location)
1132 {
1133 	struct btrfs_root *root;
1134 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1135 	struct btrfs_path *path;
1136 	struct extent_buffer *l;
1137 	u64 generation;
1138 	u32 blocksize;
1139 	int ret = 0;
1140 
1141 	root = kzalloc(sizeof(*root), GFP_NOFS);
1142 	if (!root)
1143 		return ERR_PTR(-ENOMEM);
1144 	if (location->offset == (u64)-1) {
1145 		ret = find_and_setup_root(tree_root, fs_info,
1146 					  location->objectid, root);
1147 		if (ret) {
1148 			kfree(root);
1149 			return ERR_PTR(ret);
1150 		}
1151 		goto out;
1152 	}
1153 
1154 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1155 		     tree_root->sectorsize, tree_root->stripesize,
1156 		     root, fs_info, location->objectid);
1157 
1158 	path = btrfs_alloc_path();
1159 	BUG_ON(!path);
1160 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1161 	if (ret == 0) {
1162 		l = path->nodes[0];
1163 		read_extent_buffer(l, &root->root_item,
1164 				btrfs_item_ptr_offset(l, path->slots[0]),
1165 				sizeof(root->root_item));
1166 		memcpy(&root->root_key, location, sizeof(*location));
1167 	}
1168 	btrfs_free_path(path);
1169 	if (ret) {
1170 		kfree(root);
1171 		if (ret > 0)
1172 			ret = -ENOENT;
1173 		return ERR_PTR(ret);
1174 	}
1175 
1176 	generation = btrfs_root_generation(&root->root_item);
1177 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1178 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1179 				     blocksize, generation);
1180 	root->commit_root = btrfs_root_node(root);
1181 	BUG_ON(!root->node);
1182 out:
1183 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
1184 		root->ref_cows = 1;
1185 
1186 	return root;
1187 }
1188 
1189 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1190 					u64 root_objectid)
1191 {
1192 	struct btrfs_root *root;
1193 
1194 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1195 		return fs_info->tree_root;
1196 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1197 		return fs_info->extent_root;
1198 
1199 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1200 				 (unsigned long)root_objectid);
1201 	return root;
1202 }
1203 
1204 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1205 					      struct btrfs_key *location)
1206 {
1207 	struct btrfs_root *root;
1208 	int ret;
1209 
1210 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1211 		return fs_info->tree_root;
1212 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1213 		return fs_info->extent_root;
1214 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1215 		return fs_info->chunk_root;
1216 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1217 		return fs_info->dev_root;
1218 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1219 		return fs_info->csum_root;
1220 again:
1221 	spin_lock(&fs_info->fs_roots_radix_lock);
1222 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1223 				 (unsigned long)location->objectid);
1224 	spin_unlock(&fs_info->fs_roots_radix_lock);
1225 	if (root)
1226 		return root;
1227 
1228 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1229 	if (IS_ERR(root))
1230 		return root;
1231 
1232 	set_anon_super(&root->anon_super, NULL);
1233 
1234 	if (btrfs_root_refs(&root->root_item) == 0) {
1235 		ret = -ENOENT;
1236 		goto fail;
1237 	}
1238 
1239 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1240 	if (ret < 0)
1241 		goto fail;
1242 	if (ret == 0)
1243 		root->orphan_item_inserted = 1;
1244 
1245 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1246 	if (ret)
1247 		goto fail;
1248 
1249 	spin_lock(&fs_info->fs_roots_radix_lock);
1250 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1251 				(unsigned long)root->root_key.objectid,
1252 				root);
1253 	if (ret == 0)
1254 		root->in_radix = 1;
1255 
1256 	spin_unlock(&fs_info->fs_roots_radix_lock);
1257 	radix_tree_preload_end();
1258 	if (ret) {
1259 		if (ret == -EEXIST) {
1260 			free_fs_root(root);
1261 			goto again;
1262 		}
1263 		goto fail;
1264 	}
1265 
1266 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1267 				    root->root_key.objectid);
1268 	WARN_ON(ret);
1269 	return root;
1270 fail:
1271 	free_fs_root(root);
1272 	return ERR_PTR(ret);
1273 }
1274 
1275 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1276 				      struct btrfs_key *location,
1277 				      const char *name, int namelen)
1278 {
1279 	return btrfs_read_fs_root_no_name(fs_info, location);
1280 #if 0
1281 	struct btrfs_root *root;
1282 	int ret;
1283 
1284 	root = btrfs_read_fs_root_no_name(fs_info, location);
1285 	if (!root)
1286 		return NULL;
1287 
1288 	if (root->in_sysfs)
1289 		return root;
1290 
1291 	ret = btrfs_set_root_name(root, name, namelen);
1292 	if (ret) {
1293 		free_extent_buffer(root->node);
1294 		kfree(root);
1295 		return ERR_PTR(ret);
1296 	}
1297 
1298 	ret = btrfs_sysfs_add_root(root);
1299 	if (ret) {
1300 		free_extent_buffer(root->node);
1301 		kfree(root->name);
1302 		kfree(root);
1303 		return ERR_PTR(ret);
1304 	}
1305 	root->in_sysfs = 1;
1306 	return root;
1307 #endif
1308 }
1309 
1310 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1311 {
1312 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1313 	int ret = 0;
1314 	struct btrfs_device *device;
1315 	struct backing_dev_info *bdi;
1316 
1317 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1318 		if (!device->bdev)
1319 			continue;
1320 		bdi = blk_get_backing_dev_info(device->bdev);
1321 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1322 			ret = 1;
1323 			break;
1324 		}
1325 	}
1326 	return ret;
1327 }
1328 
1329 /*
1330  * this unplugs every device on the box, and it is only used when page
1331  * is null
1332  */
1333 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1334 {
1335 	struct btrfs_device *device;
1336 	struct btrfs_fs_info *info;
1337 
1338 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1339 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1340 		if (!device->bdev)
1341 			continue;
1342 
1343 		bdi = blk_get_backing_dev_info(device->bdev);
1344 		if (bdi->unplug_io_fn)
1345 			bdi->unplug_io_fn(bdi, page);
1346 	}
1347 }
1348 
1349 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1350 {
1351 	struct inode *inode;
1352 	struct extent_map_tree *em_tree;
1353 	struct extent_map *em;
1354 	struct address_space *mapping;
1355 	u64 offset;
1356 
1357 	/* the generic O_DIRECT read code does this */
1358 	if (1 || !page) {
1359 		__unplug_io_fn(bdi, page);
1360 		return;
1361 	}
1362 
1363 	/*
1364 	 * page->mapping may change at any time.  Get a consistent copy
1365 	 * and use that for everything below
1366 	 */
1367 	smp_mb();
1368 	mapping = page->mapping;
1369 	if (!mapping)
1370 		return;
1371 
1372 	inode = mapping->host;
1373 
1374 	/*
1375 	 * don't do the expensive searching for a small number of
1376 	 * devices
1377 	 */
1378 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1379 		__unplug_io_fn(bdi, page);
1380 		return;
1381 	}
1382 
1383 	offset = page_offset(page);
1384 
1385 	em_tree = &BTRFS_I(inode)->extent_tree;
1386 	read_lock(&em_tree->lock);
1387 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1388 	read_unlock(&em_tree->lock);
1389 	if (!em) {
1390 		__unplug_io_fn(bdi, page);
1391 		return;
1392 	}
1393 
1394 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1395 		free_extent_map(em);
1396 		__unplug_io_fn(bdi, page);
1397 		return;
1398 	}
1399 	offset = offset - em->start;
1400 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1401 			  em->block_start + offset, page);
1402 	free_extent_map(em);
1403 }
1404 
1405 /*
1406  * If this fails, caller must call bdi_destroy() to get rid of the
1407  * bdi again.
1408  */
1409 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1410 {
1411 	int err;
1412 
1413 	bdi->capabilities = BDI_CAP_MAP_COPY;
1414 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1415 	if (err)
1416 		return err;
1417 
1418 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1419 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1420 	bdi->unplug_io_data	= info;
1421 	bdi->congested_fn	= btrfs_congested_fn;
1422 	bdi->congested_data	= info;
1423 	return 0;
1424 }
1425 
1426 static int bio_ready_for_csum(struct bio *bio)
1427 {
1428 	u64 length = 0;
1429 	u64 buf_len = 0;
1430 	u64 start = 0;
1431 	struct page *page;
1432 	struct extent_io_tree *io_tree = NULL;
1433 	struct bio_vec *bvec;
1434 	int i;
1435 	int ret;
1436 
1437 	bio_for_each_segment(bvec, bio, i) {
1438 		page = bvec->bv_page;
1439 		if (page->private == EXTENT_PAGE_PRIVATE) {
1440 			length += bvec->bv_len;
1441 			continue;
1442 		}
1443 		if (!page->private) {
1444 			length += bvec->bv_len;
1445 			continue;
1446 		}
1447 		length = bvec->bv_len;
1448 		buf_len = page->private >> 2;
1449 		start = page_offset(page) + bvec->bv_offset;
1450 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1451 	}
1452 	/* are we fully contained in this bio? */
1453 	if (buf_len <= length)
1454 		return 1;
1455 
1456 	ret = extent_range_uptodate(io_tree, start + length,
1457 				    start + buf_len - 1);
1458 	return ret;
1459 }
1460 
1461 /*
1462  * called by the kthread helper functions to finally call the bio end_io
1463  * functions.  This is where read checksum verification actually happens
1464  */
1465 static void end_workqueue_fn(struct btrfs_work *work)
1466 {
1467 	struct bio *bio;
1468 	struct end_io_wq *end_io_wq;
1469 	struct btrfs_fs_info *fs_info;
1470 	int error;
1471 
1472 	end_io_wq = container_of(work, struct end_io_wq, work);
1473 	bio = end_io_wq->bio;
1474 	fs_info = end_io_wq->info;
1475 
1476 	/* metadata bio reads are special because the whole tree block must
1477 	 * be checksummed at once.  This makes sure the entire block is in
1478 	 * ram and up to date before trying to verify things.  For
1479 	 * blocksize <= pagesize, it is basically a noop
1480 	 */
1481 	if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1482 	    !bio_ready_for_csum(bio)) {
1483 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1484 				   &end_io_wq->work);
1485 		return;
1486 	}
1487 	error = end_io_wq->error;
1488 	bio->bi_private = end_io_wq->private;
1489 	bio->bi_end_io = end_io_wq->end_io;
1490 	kfree(end_io_wq);
1491 	bio_endio(bio, error);
1492 }
1493 
1494 static int cleaner_kthread(void *arg)
1495 {
1496 	struct btrfs_root *root = arg;
1497 
1498 	do {
1499 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1500 
1501 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1502 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1503 			btrfs_run_delayed_iputs(root);
1504 			btrfs_clean_old_snapshots(root);
1505 			mutex_unlock(&root->fs_info->cleaner_mutex);
1506 		}
1507 
1508 		if (freezing(current)) {
1509 			refrigerator();
1510 		} else {
1511 			set_current_state(TASK_INTERRUPTIBLE);
1512 			if (!kthread_should_stop())
1513 				schedule();
1514 			__set_current_state(TASK_RUNNING);
1515 		}
1516 	} while (!kthread_should_stop());
1517 	return 0;
1518 }
1519 
1520 static int transaction_kthread(void *arg)
1521 {
1522 	struct btrfs_root *root = arg;
1523 	struct btrfs_trans_handle *trans;
1524 	struct btrfs_transaction *cur;
1525 	u64 transid;
1526 	unsigned long now;
1527 	unsigned long delay;
1528 	int ret;
1529 
1530 	do {
1531 		delay = HZ * 30;
1532 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1533 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1534 
1535 		spin_lock(&root->fs_info->new_trans_lock);
1536 		cur = root->fs_info->running_transaction;
1537 		if (!cur) {
1538 			spin_unlock(&root->fs_info->new_trans_lock);
1539 			goto sleep;
1540 		}
1541 
1542 		now = get_seconds();
1543 		if (!cur->blocked &&
1544 		    (now < cur->start_time || now - cur->start_time < 30)) {
1545 			spin_unlock(&root->fs_info->new_trans_lock);
1546 			delay = HZ * 5;
1547 			goto sleep;
1548 		}
1549 		transid = cur->transid;
1550 		spin_unlock(&root->fs_info->new_trans_lock);
1551 
1552 		trans = btrfs_join_transaction(root, 1);
1553 		if (transid == trans->transid) {
1554 			ret = btrfs_commit_transaction(trans, root);
1555 			BUG_ON(ret);
1556 		} else {
1557 			btrfs_end_transaction(trans, root);
1558 		}
1559 sleep:
1560 		wake_up_process(root->fs_info->cleaner_kthread);
1561 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1562 
1563 		if (freezing(current)) {
1564 			refrigerator();
1565 		} else {
1566 			set_current_state(TASK_INTERRUPTIBLE);
1567 			if (!kthread_should_stop() &&
1568 			    !btrfs_transaction_blocked(root->fs_info))
1569 				schedule_timeout(delay);
1570 			__set_current_state(TASK_RUNNING);
1571 		}
1572 	} while (!kthread_should_stop());
1573 	return 0;
1574 }
1575 
1576 struct btrfs_root *open_ctree(struct super_block *sb,
1577 			      struct btrfs_fs_devices *fs_devices,
1578 			      char *options)
1579 {
1580 	u32 sectorsize;
1581 	u32 nodesize;
1582 	u32 leafsize;
1583 	u32 blocksize;
1584 	u32 stripesize;
1585 	u64 generation;
1586 	u64 features;
1587 	struct btrfs_key location;
1588 	struct buffer_head *bh;
1589 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1590 						 GFP_NOFS);
1591 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1592 						 GFP_NOFS);
1593 	struct btrfs_root *tree_root = btrfs_sb(sb);
1594 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1595 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1596 						GFP_NOFS);
1597 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1598 					      GFP_NOFS);
1599 	struct btrfs_root *log_tree_root;
1600 
1601 	int ret;
1602 	int err = -EINVAL;
1603 
1604 	struct btrfs_super_block *disk_super;
1605 
1606 	if (!extent_root || !tree_root || !fs_info ||
1607 	    !chunk_root || !dev_root || !csum_root) {
1608 		err = -ENOMEM;
1609 		goto fail;
1610 	}
1611 
1612 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1613 	if (ret) {
1614 		err = ret;
1615 		goto fail;
1616 	}
1617 
1618 	ret = setup_bdi(fs_info, &fs_info->bdi);
1619 	if (ret) {
1620 		err = ret;
1621 		goto fail_srcu;
1622 	}
1623 
1624 	fs_info->btree_inode = new_inode(sb);
1625 	if (!fs_info->btree_inode) {
1626 		err = -ENOMEM;
1627 		goto fail_bdi;
1628 	}
1629 
1630 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1631 	INIT_LIST_HEAD(&fs_info->trans_list);
1632 	INIT_LIST_HEAD(&fs_info->dead_roots);
1633 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1634 	INIT_LIST_HEAD(&fs_info->hashers);
1635 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1636 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1637 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1638 	spin_lock_init(&fs_info->delalloc_lock);
1639 	spin_lock_init(&fs_info->new_trans_lock);
1640 	spin_lock_init(&fs_info->ref_cache_lock);
1641 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1642 	spin_lock_init(&fs_info->delayed_iput_lock);
1643 
1644 	init_completion(&fs_info->kobj_unregister);
1645 	fs_info->tree_root = tree_root;
1646 	fs_info->extent_root = extent_root;
1647 	fs_info->csum_root = csum_root;
1648 	fs_info->chunk_root = chunk_root;
1649 	fs_info->dev_root = dev_root;
1650 	fs_info->fs_devices = fs_devices;
1651 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1652 	INIT_LIST_HEAD(&fs_info->space_info);
1653 	btrfs_mapping_init(&fs_info->mapping_tree);
1654 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1655 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1656 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1657 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1658 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1659 	INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1660 	mutex_init(&fs_info->durable_block_rsv_mutex);
1661 	atomic_set(&fs_info->nr_async_submits, 0);
1662 	atomic_set(&fs_info->async_delalloc_pages, 0);
1663 	atomic_set(&fs_info->async_submit_draining, 0);
1664 	atomic_set(&fs_info->nr_async_bios, 0);
1665 	fs_info->sb = sb;
1666 	fs_info->max_inline = 8192 * 1024;
1667 	fs_info->metadata_ratio = 0;
1668 
1669 	fs_info->thread_pool_size = min_t(unsigned long,
1670 					  num_online_cpus() + 2, 8);
1671 
1672 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1673 	spin_lock_init(&fs_info->ordered_extent_lock);
1674 
1675 	sb->s_blocksize = 4096;
1676 	sb->s_blocksize_bits = blksize_bits(4096);
1677 	sb->s_bdi = &fs_info->bdi;
1678 
1679 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1680 	fs_info->btree_inode->i_nlink = 1;
1681 	/*
1682 	 * we set the i_size on the btree inode to the max possible int.
1683 	 * the real end of the address space is determined by all of
1684 	 * the devices in the system
1685 	 */
1686 	fs_info->btree_inode->i_size = OFFSET_MAX;
1687 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1688 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1689 
1690 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1691 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1692 			     fs_info->btree_inode->i_mapping,
1693 			     GFP_NOFS);
1694 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1695 			     GFP_NOFS);
1696 
1697 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1698 
1699 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1700 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1701 	       sizeof(struct btrfs_key));
1702 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1703 	insert_inode_hash(fs_info->btree_inode);
1704 
1705 	spin_lock_init(&fs_info->block_group_cache_lock);
1706 	fs_info->block_group_cache_tree = RB_ROOT;
1707 
1708 	extent_io_tree_init(&fs_info->freed_extents[0],
1709 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1710 	extent_io_tree_init(&fs_info->freed_extents[1],
1711 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1712 	fs_info->pinned_extents = &fs_info->freed_extents[0];
1713 	fs_info->do_barriers = 1;
1714 
1715 
1716 	mutex_init(&fs_info->trans_mutex);
1717 	mutex_init(&fs_info->ordered_operations_mutex);
1718 	mutex_init(&fs_info->tree_log_mutex);
1719 	mutex_init(&fs_info->chunk_mutex);
1720 	mutex_init(&fs_info->transaction_kthread_mutex);
1721 	mutex_init(&fs_info->cleaner_mutex);
1722 	mutex_init(&fs_info->volume_mutex);
1723 	init_rwsem(&fs_info->extent_commit_sem);
1724 	init_rwsem(&fs_info->cleanup_work_sem);
1725 	init_rwsem(&fs_info->subvol_sem);
1726 
1727 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1728 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1729 
1730 	init_waitqueue_head(&fs_info->transaction_throttle);
1731 	init_waitqueue_head(&fs_info->transaction_wait);
1732 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
1733 	init_waitqueue_head(&fs_info->async_submit_wait);
1734 
1735 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1736 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1737 
1738 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1739 	if (!bh) {
1740 		err = -EINVAL;
1741 		goto fail_iput;
1742 	}
1743 
1744 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1745 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1746 	       sizeof(fs_info->super_for_commit));
1747 	brelse(bh);
1748 
1749 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1750 
1751 	disk_super = &fs_info->super_copy;
1752 	if (!btrfs_super_root(disk_super))
1753 		goto fail_iput;
1754 
1755 	/* check FS state, whether FS is broken. */
1756 	fs_info->fs_state |= btrfs_super_flags(disk_super);
1757 
1758 	btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1759 
1760 	ret = btrfs_parse_options(tree_root, options);
1761 	if (ret) {
1762 		err = ret;
1763 		goto fail_iput;
1764 	}
1765 
1766 	features = btrfs_super_incompat_flags(disk_super) &
1767 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1768 	if (features) {
1769 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1770 		       "unsupported optional features (%Lx).\n",
1771 		       (unsigned long long)features);
1772 		err = -EINVAL;
1773 		goto fail_iput;
1774 	}
1775 
1776 	features = btrfs_super_incompat_flags(disk_super);
1777 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1778 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1779 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1780 	btrfs_set_super_incompat_flags(disk_super, features);
1781 
1782 	features = btrfs_super_compat_ro_flags(disk_super) &
1783 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1784 	if (!(sb->s_flags & MS_RDONLY) && features) {
1785 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1786 		       "unsupported option features (%Lx).\n",
1787 		       (unsigned long long)features);
1788 		err = -EINVAL;
1789 		goto fail_iput;
1790 	}
1791 
1792 	btrfs_init_workers(&fs_info->generic_worker,
1793 			   "genwork", 1, NULL);
1794 
1795 	btrfs_init_workers(&fs_info->workers, "worker",
1796 			   fs_info->thread_pool_size,
1797 			   &fs_info->generic_worker);
1798 
1799 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1800 			   fs_info->thread_pool_size,
1801 			   &fs_info->generic_worker);
1802 
1803 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1804 			   min_t(u64, fs_devices->num_devices,
1805 			   fs_info->thread_pool_size),
1806 			   &fs_info->generic_worker);
1807 
1808 	/* a higher idle thresh on the submit workers makes it much more
1809 	 * likely that bios will be send down in a sane order to the
1810 	 * devices
1811 	 */
1812 	fs_info->submit_workers.idle_thresh = 64;
1813 
1814 	fs_info->workers.idle_thresh = 16;
1815 	fs_info->workers.ordered = 1;
1816 
1817 	fs_info->delalloc_workers.idle_thresh = 2;
1818 	fs_info->delalloc_workers.ordered = 1;
1819 
1820 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1821 			   &fs_info->generic_worker);
1822 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1823 			   fs_info->thread_pool_size,
1824 			   &fs_info->generic_worker);
1825 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1826 			   fs_info->thread_pool_size,
1827 			   &fs_info->generic_worker);
1828 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1829 			   "endio-meta-write", fs_info->thread_pool_size,
1830 			   &fs_info->generic_worker);
1831 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1832 			   fs_info->thread_pool_size,
1833 			   &fs_info->generic_worker);
1834 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1835 			   1, &fs_info->generic_worker);
1836 
1837 	/*
1838 	 * endios are largely parallel and should have a very
1839 	 * low idle thresh
1840 	 */
1841 	fs_info->endio_workers.idle_thresh = 4;
1842 	fs_info->endio_meta_workers.idle_thresh = 4;
1843 
1844 	fs_info->endio_write_workers.idle_thresh = 2;
1845 	fs_info->endio_meta_write_workers.idle_thresh = 2;
1846 
1847 	btrfs_start_workers(&fs_info->workers, 1);
1848 	btrfs_start_workers(&fs_info->generic_worker, 1);
1849 	btrfs_start_workers(&fs_info->submit_workers, 1);
1850 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1851 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1852 	btrfs_start_workers(&fs_info->endio_workers, 1);
1853 	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1854 	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1855 	btrfs_start_workers(&fs_info->endio_write_workers, 1);
1856 	btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1857 
1858 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1859 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1860 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1861 
1862 	nodesize = btrfs_super_nodesize(disk_super);
1863 	leafsize = btrfs_super_leafsize(disk_super);
1864 	sectorsize = btrfs_super_sectorsize(disk_super);
1865 	stripesize = btrfs_super_stripesize(disk_super);
1866 	tree_root->nodesize = nodesize;
1867 	tree_root->leafsize = leafsize;
1868 	tree_root->sectorsize = sectorsize;
1869 	tree_root->stripesize = stripesize;
1870 
1871 	sb->s_blocksize = sectorsize;
1872 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1873 
1874 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1875 		    sizeof(disk_super->magic))) {
1876 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1877 		goto fail_sb_buffer;
1878 	}
1879 
1880 	mutex_lock(&fs_info->chunk_mutex);
1881 	ret = btrfs_read_sys_array(tree_root);
1882 	mutex_unlock(&fs_info->chunk_mutex);
1883 	if (ret) {
1884 		printk(KERN_WARNING "btrfs: failed to read the system "
1885 		       "array on %s\n", sb->s_id);
1886 		goto fail_sb_buffer;
1887 	}
1888 
1889 	blocksize = btrfs_level_size(tree_root,
1890 				     btrfs_super_chunk_root_level(disk_super));
1891 	generation = btrfs_super_chunk_root_generation(disk_super);
1892 
1893 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1894 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1895 
1896 	chunk_root->node = read_tree_block(chunk_root,
1897 					   btrfs_super_chunk_root(disk_super),
1898 					   blocksize, generation);
1899 	BUG_ON(!chunk_root->node);
1900 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1901 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1902 		       sb->s_id);
1903 		goto fail_chunk_root;
1904 	}
1905 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1906 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1907 
1908 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1909 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1910 	   BTRFS_UUID_SIZE);
1911 
1912 	mutex_lock(&fs_info->chunk_mutex);
1913 	ret = btrfs_read_chunk_tree(chunk_root);
1914 	mutex_unlock(&fs_info->chunk_mutex);
1915 	if (ret) {
1916 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1917 		       sb->s_id);
1918 		goto fail_chunk_root;
1919 	}
1920 
1921 	btrfs_close_extra_devices(fs_devices);
1922 
1923 	blocksize = btrfs_level_size(tree_root,
1924 				     btrfs_super_root_level(disk_super));
1925 	generation = btrfs_super_generation(disk_super);
1926 
1927 	tree_root->node = read_tree_block(tree_root,
1928 					  btrfs_super_root(disk_super),
1929 					  blocksize, generation);
1930 	if (!tree_root->node)
1931 		goto fail_chunk_root;
1932 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1933 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1934 		       sb->s_id);
1935 		goto fail_tree_root;
1936 	}
1937 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1938 	tree_root->commit_root = btrfs_root_node(tree_root);
1939 
1940 	ret = find_and_setup_root(tree_root, fs_info,
1941 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1942 	if (ret)
1943 		goto fail_tree_root;
1944 	extent_root->track_dirty = 1;
1945 
1946 	ret = find_and_setup_root(tree_root, fs_info,
1947 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1948 	if (ret)
1949 		goto fail_extent_root;
1950 	dev_root->track_dirty = 1;
1951 
1952 	ret = find_and_setup_root(tree_root, fs_info,
1953 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1954 	if (ret)
1955 		goto fail_dev_root;
1956 
1957 	csum_root->track_dirty = 1;
1958 
1959 	fs_info->generation = generation;
1960 	fs_info->last_trans_committed = generation;
1961 	fs_info->data_alloc_profile = (u64)-1;
1962 	fs_info->metadata_alloc_profile = (u64)-1;
1963 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1964 
1965 	ret = btrfs_read_block_groups(extent_root);
1966 	if (ret) {
1967 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
1968 		goto fail_block_groups;
1969 	}
1970 
1971 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1972 					       "btrfs-cleaner");
1973 	if (IS_ERR(fs_info->cleaner_kthread))
1974 		goto fail_block_groups;
1975 
1976 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1977 						   tree_root,
1978 						   "btrfs-transaction");
1979 	if (IS_ERR(fs_info->transaction_kthread))
1980 		goto fail_cleaner;
1981 
1982 	if (!btrfs_test_opt(tree_root, SSD) &&
1983 	    !btrfs_test_opt(tree_root, NOSSD) &&
1984 	    !fs_info->fs_devices->rotating) {
1985 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1986 		       "mode\n");
1987 		btrfs_set_opt(fs_info->mount_opt, SSD);
1988 	}
1989 
1990 	/* do not make disk changes in broken FS */
1991 	if (btrfs_super_log_root(disk_super) != 0 &&
1992 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
1993 		u64 bytenr = btrfs_super_log_root(disk_super);
1994 
1995 		if (fs_devices->rw_devices == 0) {
1996 			printk(KERN_WARNING "Btrfs log replay required "
1997 			       "on RO media\n");
1998 			err = -EIO;
1999 			goto fail_trans_kthread;
2000 		}
2001 		blocksize =
2002 		     btrfs_level_size(tree_root,
2003 				      btrfs_super_log_root_level(disk_super));
2004 
2005 		log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2006 		if (!log_tree_root) {
2007 			err = -ENOMEM;
2008 			goto fail_trans_kthread;
2009 		}
2010 
2011 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2012 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2013 
2014 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2015 						      blocksize,
2016 						      generation + 1);
2017 		ret = btrfs_recover_log_trees(log_tree_root);
2018 		BUG_ON(ret);
2019 
2020 		if (sb->s_flags & MS_RDONLY) {
2021 			ret =  btrfs_commit_super(tree_root);
2022 			BUG_ON(ret);
2023 		}
2024 	}
2025 
2026 	ret = btrfs_find_orphan_roots(tree_root);
2027 	BUG_ON(ret);
2028 
2029 	if (!(sb->s_flags & MS_RDONLY)) {
2030 		ret = btrfs_cleanup_fs_roots(fs_info);
2031 		BUG_ON(ret);
2032 
2033 		ret = btrfs_recover_relocation(tree_root);
2034 		if (ret < 0) {
2035 			printk(KERN_WARNING
2036 			       "btrfs: failed to recover relocation\n");
2037 			err = -EINVAL;
2038 			goto fail_trans_kthread;
2039 		}
2040 	}
2041 
2042 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2043 	location.type = BTRFS_ROOT_ITEM_KEY;
2044 	location.offset = (u64)-1;
2045 
2046 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2047 	if (!fs_info->fs_root)
2048 		goto fail_trans_kthread;
2049 	if (IS_ERR(fs_info->fs_root)) {
2050 		err = PTR_ERR(fs_info->fs_root);
2051 		goto fail_trans_kthread;
2052 	}
2053 
2054 	if (!(sb->s_flags & MS_RDONLY)) {
2055 		down_read(&fs_info->cleanup_work_sem);
2056 		btrfs_orphan_cleanup(fs_info->fs_root);
2057 		btrfs_orphan_cleanup(fs_info->tree_root);
2058 		up_read(&fs_info->cleanup_work_sem);
2059 	}
2060 
2061 	return tree_root;
2062 
2063 fail_trans_kthread:
2064 	kthread_stop(fs_info->transaction_kthread);
2065 fail_cleaner:
2066 	kthread_stop(fs_info->cleaner_kthread);
2067 
2068 	/*
2069 	 * make sure we're done with the btree inode before we stop our
2070 	 * kthreads
2071 	 */
2072 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2073 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2074 
2075 fail_block_groups:
2076 	btrfs_free_block_groups(fs_info);
2077 	free_extent_buffer(csum_root->node);
2078 	free_extent_buffer(csum_root->commit_root);
2079 fail_dev_root:
2080 	free_extent_buffer(dev_root->node);
2081 	free_extent_buffer(dev_root->commit_root);
2082 fail_extent_root:
2083 	free_extent_buffer(extent_root->node);
2084 	free_extent_buffer(extent_root->commit_root);
2085 fail_tree_root:
2086 	free_extent_buffer(tree_root->node);
2087 	free_extent_buffer(tree_root->commit_root);
2088 fail_chunk_root:
2089 	free_extent_buffer(chunk_root->node);
2090 	free_extent_buffer(chunk_root->commit_root);
2091 fail_sb_buffer:
2092 	btrfs_stop_workers(&fs_info->generic_worker);
2093 	btrfs_stop_workers(&fs_info->fixup_workers);
2094 	btrfs_stop_workers(&fs_info->delalloc_workers);
2095 	btrfs_stop_workers(&fs_info->workers);
2096 	btrfs_stop_workers(&fs_info->endio_workers);
2097 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2098 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2099 	btrfs_stop_workers(&fs_info->endio_write_workers);
2100 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2101 	btrfs_stop_workers(&fs_info->submit_workers);
2102 fail_iput:
2103 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2104 	iput(fs_info->btree_inode);
2105 
2106 	btrfs_close_devices(fs_info->fs_devices);
2107 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2108 fail_bdi:
2109 	bdi_destroy(&fs_info->bdi);
2110 fail_srcu:
2111 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2112 fail:
2113 	kfree(extent_root);
2114 	kfree(tree_root);
2115 	kfree(fs_info);
2116 	kfree(chunk_root);
2117 	kfree(dev_root);
2118 	kfree(csum_root);
2119 	return ERR_PTR(err);
2120 }
2121 
2122 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2123 {
2124 	char b[BDEVNAME_SIZE];
2125 
2126 	if (uptodate) {
2127 		set_buffer_uptodate(bh);
2128 	} else {
2129 		if (printk_ratelimit()) {
2130 			printk(KERN_WARNING "lost page write due to "
2131 					"I/O error on %s\n",
2132 				       bdevname(bh->b_bdev, b));
2133 		}
2134 		/* note, we dont' set_buffer_write_io_error because we have
2135 		 * our own ways of dealing with the IO errors
2136 		 */
2137 		clear_buffer_uptodate(bh);
2138 	}
2139 	unlock_buffer(bh);
2140 	put_bh(bh);
2141 }
2142 
2143 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2144 {
2145 	struct buffer_head *bh;
2146 	struct buffer_head *latest = NULL;
2147 	struct btrfs_super_block *super;
2148 	int i;
2149 	u64 transid = 0;
2150 	u64 bytenr;
2151 
2152 	/* we would like to check all the supers, but that would make
2153 	 * a btrfs mount succeed after a mkfs from a different FS.
2154 	 * So, we need to add a special mount option to scan for
2155 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2156 	 */
2157 	for (i = 0; i < 1; i++) {
2158 		bytenr = btrfs_sb_offset(i);
2159 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2160 			break;
2161 		bh = __bread(bdev, bytenr / 4096, 4096);
2162 		if (!bh)
2163 			continue;
2164 
2165 		super = (struct btrfs_super_block *)bh->b_data;
2166 		if (btrfs_super_bytenr(super) != bytenr ||
2167 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2168 			    sizeof(super->magic))) {
2169 			brelse(bh);
2170 			continue;
2171 		}
2172 
2173 		if (!latest || btrfs_super_generation(super) > transid) {
2174 			brelse(latest);
2175 			latest = bh;
2176 			transid = btrfs_super_generation(super);
2177 		} else {
2178 			brelse(bh);
2179 		}
2180 	}
2181 	return latest;
2182 }
2183 
2184 /*
2185  * this should be called twice, once with wait == 0 and
2186  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2187  * we write are pinned.
2188  *
2189  * They are released when wait == 1 is done.
2190  * max_mirrors must be the same for both runs, and it indicates how
2191  * many supers on this one device should be written.
2192  *
2193  * max_mirrors == 0 means to write them all.
2194  */
2195 static int write_dev_supers(struct btrfs_device *device,
2196 			    struct btrfs_super_block *sb,
2197 			    int do_barriers, int wait, int max_mirrors)
2198 {
2199 	struct buffer_head *bh;
2200 	int i;
2201 	int ret;
2202 	int errors = 0;
2203 	u32 crc;
2204 	u64 bytenr;
2205 	int last_barrier = 0;
2206 
2207 	if (max_mirrors == 0)
2208 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2209 
2210 	/* make sure only the last submit_bh does a barrier */
2211 	if (do_barriers) {
2212 		for (i = 0; i < max_mirrors; i++) {
2213 			bytenr = btrfs_sb_offset(i);
2214 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2215 			    device->total_bytes)
2216 				break;
2217 			last_barrier = i;
2218 		}
2219 	}
2220 
2221 	for (i = 0; i < max_mirrors; i++) {
2222 		bytenr = btrfs_sb_offset(i);
2223 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2224 			break;
2225 
2226 		if (wait) {
2227 			bh = __find_get_block(device->bdev, bytenr / 4096,
2228 					      BTRFS_SUPER_INFO_SIZE);
2229 			BUG_ON(!bh);
2230 			wait_on_buffer(bh);
2231 			if (!buffer_uptodate(bh))
2232 				errors++;
2233 
2234 			/* drop our reference */
2235 			brelse(bh);
2236 
2237 			/* drop the reference from the wait == 0 run */
2238 			brelse(bh);
2239 			continue;
2240 		} else {
2241 			btrfs_set_super_bytenr(sb, bytenr);
2242 
2243 			crc = ~(u32)0;
2244 			crc = btrfs_csum_data(NULL, (char *)sb +
2245 					      BTRFS_CSUM_SIZE, crc,
2246 					      BTRFS_SUPER_INFO_SIZE -
2247 					      BTRFS_CSUM_SIZE);
2248 			btrfs_csum_final(crc, sb->csum);
2249 
2250 			/*
2251 			 * one reference for us, and we leave it for the
2252 			 * caller
2253 			 */
2254 			bh = __getblk(device->bdev, bytenr / 4096,
2255 				      BTRFS_SUPER_INFO_SIZE);
2256 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2257 
2258 			/* one reference for submit_bh */
2259 			get_bh(bh);
2260 
2261 			set_buffer_uptodate(bh);
2262 			lock_buffer(bh);
2263 			bh->b_end_io = btrfs_end_buffer_write_sync;
2264 		}
2265 
2266 		if (i == last_barrier && do_barriers)
2267 			ret = submit_bh(WRITE_FLUSH_FUA, bh);
2268 		else
2269 			ret = submit_bh(WRITE_SYNC, bh);
2270 
2271 		if (ret)
2272 			errors++;
2273 	}
2274 	return errors < i ? 0 : -1;
2275 }
2276 
2277 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2278 {
2279 	struct list_head *head;
2280 	struct btrfs_device *dev;
2281 	struct btrfs_super_block *sb;
2282 	struct btrfs_dev_item *dev_item;
2283 	int ret;
2284 	int do_barriers;
2285 	int max_errors;
2286 	int total_errors = 0;
2287 	u64 flags;
2288 
2289 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2290 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2291 
2292 	sb = &root->fs_info->super_for_commit;
2293 	dev_item = &sb->dev_item;
2294 
2295 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2296 	head = &root->fs_info->fs_devices->devices;
2297 	list_for_each_entry(dev, head, dev_list) {
2298 		if (!dev->bdev) {
2299 			total_errors++;
2300 			continue;
2301 		}
2302 		if (!dev->in_fs_metadata || !dev->writeable)
2303 			continue;
2304 
2305 		btrfs_set_stack_device_generation(dev_item, 0);
2306 		btrfs_set_stack_device_type(dev_item, dev->type);
2307 		btrfs_set_stack_device_id(dev_item, dev->devid);
2308 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2309 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2310 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2311 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2312 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2313 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2314 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2315 
2316 		flags = btrfs_super_flags(sb);
2317 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2318 
2319 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2320 		if (ret)
2321 			total_errors++;
2322 	}
2323 	if (total_errors > max_errors) {
2324 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2325 		       total_errors);
2326 		BUG();
2327 	}
2328 
2329 	total_errors = 0;
2330 	list_for_each_entry(dev, head, dev_list) {
2331 		if (!dev->bdev)
2332 			continue;
2333 		if (!dev->in_fs_metadata || !dev->writeable)
2334 			continue;
2335 
2336 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2337 		if (ret)
2338 			total_errors++;
2339 	}
2340 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2341 	if (total_errors > max_errors) {
2342 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2343 		       total_errors);
2344 		BUG();
2345 	}
2346 	return 0;
2347 }
2348 
2349 int write_ctree_super(struct btrfs_trans_handle *trans,
2350 		      struct btrfs_root *root, int max_mirrors)
2351 {
2352 	int ret;
2353 
2354 	ret = write_all_supers(root, max_mirrors);
2355 	return ret;
2356 }
2357 
2358 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2359 {
2360 	spin_lock(&fs_info->fs_roots_radix_lock);
2361 	radix_tree_delete(&fs_info->fs_roots_radix,
2362 			  (unsigned long)root->root_key.objectid);
2363 	spin_unlock(&fs_info->fs_roots_radix_lock);
2364 
2365 	if (btrfs_root_refs(&root->root_item) == 0)
2366 		synchronize_srcu(&fs_info->subvol_srcu);
2367 
2368 	free_fs_root(root);
2369 	return 0;
2370 }
2371 
2372 static void free_fs_root(struct btrfs_root *root)
2373 {
2374 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2375 	if (root->anon_super.s_dev) {
2376 		down_write(&root->anon_super.s_umount);
2377 		kill_anon_super(&root->anon_super);
2378 	}
2379 	free_extent_buffer(root->node);
2380 	free_extent_buffer(root->commit_root);
2381 	kfree(root->name);
2382 	kfree(root);
2383 }
2384 
2385 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2386 {
2387 	int ret;
2388 	struct btrfs_root *gang[8];
2389 	int i;
2390 
2391 	while (!list_empty(&fs_info->dead_roots)) {
2392 		gang[0] = list_entry(fs_info->dead_roots.next,
2393 				     struct btrfs_root, root_list);
2394 		list_del(&gang[0]->root_list);
2395 
2396 		if (gang[0]->in_radix) {
2397 			btrfs_free_fs_root(fs_info, gang[0]);
2398 		} else {
2399 			free_extent_buffer(gang[0]->node);
2400 			free_extent_buffer(gang[0]->commit_root);
2401 			kfree(gang[0]);
2402 		}
2403 	}
2404 
2405 	while (1) {
2406 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2407 					     (void **)gang, 0,
2408 					     ARRAY_SIZE(gang));
2409 		if (!ret)
2410 			break;
2411 		for (i = 0; i < ret; i++)
2412 			btrfs_free_fs_root(fs_info, gang[i]);
2413 	}
2414 	return 0;
2415 }
2416 
2417 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2418 {
2419 	u64 root_objectid = 0;
2420 	struct btrfs_root *gang[8];
2421 	int i;
2422 	int ret;
2423 
2424 	while (1) {
2425 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2426 					     (void **)gang, root_objectid,
2427 					     ARRAY_SIZE(gang));
2428 		if (!ret)
2429 			break;
2430 
2431 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2432 		for (i = 0; i < ret; i++) {
2433 			root_objectid = gang[i]->root_key.objectid;
2434 			btrfs_orphan_cleanup(gang[i]);
2435 		}
2436 		root_objectid++;
2437 	}
2438 	return 0;
2439 }
2440 
2441 int btrfs_commit_super(struct btrfs_root *root)
2442 {
2443 	struct btrfs_trans_handle *trans;
2444 	int ret;
2445 
2446 	mutex_lock(&root->fs_info->cleaner_mutex);
2447 	btrfs_run_delayed_iputs(root);
2448 	btrfs_clean_old_snapshots(root);
2449 	mutex_unlock(&root->fs_info->cleaner_mutex);
2450 
2451 	/* wait until ongoing cleanup work done */
2452 	down_write(&root->fs_info->cleanup_work_sem);
2453 	up_write(&root->fs_info->cleanup_work_sem);
2454 
2455 	trans = btrfs_join_transaction(root, 1);
2456 	ret = btrfs_commit_transaction(trans, root);
2457 	BUG_ON(ret);
2458 	/* run commit again to drop the original snapshot */
2459 	trans = btrfs_join_transaction(root, 1);
2460 	btrfs_commit_transaction(trans, root);
2461 	ret = btrfs_write_and_wait_transaction(NULL, root);
2462 	BUG_ON(ret);
2463 
2464 	ret = write_ctree_super(NULL, root, 0);
2465 	return ret;
2466 }
2467 
2468 int close_ctree(struct btrfs_root *root)
2469 {
2470 	struct btrfs_fs_info *fs_info = root->fs_info;
2471 	int ret;
2472 
2473 	fs_info->closing = 1;
2474 	smp_mb();
2475 
2476 	btrfs_put_block_group_cache(fs_info);
2477 
2478 	/*
2479 	 * Here come 2 situations when btrfs is broken to flip readonly:
2480 	 *
2481 	 * 1. when btrfs flips readonly somewhere else before
2482 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2483 	 * and btrfs will skip to write sb directly to keep
2484 	 * ERROR state on disk.
2485 	 *
2486 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
2487 	 * and in such case, btrfs cannnot write sb via btrfs_commit_super,
2488 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2489 	 * btrfs will cleanup all FS resources first and write sb then.
2490 	 */
2491 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2492 		ret = btrfs_commit_super(root);
2493 		if (ret)
2494 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2495 	}
2496 
2497 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2498 		ret = btrfs_error_commit_super(root);
2499 		if (ret)
2500 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2501 	}
2502 
2503 	kthread_stop(root->fs_info->transaction_kthread);
2504 	kthread_stop(root->fs_info->cleaner_kthread);
2505 
2506 	fs_info->closing = 2;
2507 	smp_mb();
2508 
2509 	if (fs_info->delalloc_bytes) {
2510 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2511 		       (unsigned long long)fs_info->delalloc_bytes);
2512 	}
2513 	if (fs_info->total_ref_cache_size) {
2514 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2515 		       (unsigned long long)fs_info->total_ref_cache_size);
2516 	}
2517 
2518 	free_extent_buffer(fs_info->extent_root->node);
2519 	free_extent_buffer(fs_info->extent_root->commit_root);
2520 	free_extent_buffer(fs_info->tree_root->node);
2521 	free_extent_buffer(fs_info->tree_root->commit_root);
2522 	free_extent_buffer(root->fs_info->chunk_root->node);
2523 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2524 	free_extent_buffer(root->fs_info->dev_root->node);
2525 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2526 	free_extent_buffer(root->fs_info->csum_root->node);
2527 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2528 
2529 	btrfs_free_block_groups(root->fs_info);
2530 
2531 	del_fs_roots(fs_info);
2532 
2533 	iput(fs_info->btree_inode);
2534 
2535 	btrfs_stop_workers(&fs_info->generic_worker);
2536 	btrfs_stop_workers(&fs_info->fixup_workers);
2537 	btrfs_stop_workers(&fs_info->delalloc_workers);
2538 	btrfs_stop_workers(&fs_info->workers);
2539 	btrfs_stop_workers(&fs_info->endio_workers);
2540 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2541 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2542 	btrfs_stop_workers(&fs_info->endio_write_workers);
2543 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2544 	btrfs_stop_workers(&fs_info->submit_workers);
2545 
2546 	btrfs_close_devices(fs_info->fs_devices);
2547 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2548 
2549 	bdi_destroy(&fs_info->bdi);
2550 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2551 
2552 	kfree(fs_info->extent_root);
2553 	kfree(fs_info->tree_root);
2554 	kfree(fs_info->chunk_root);
2555 	kfree(fs_info->dev_root);
2556 	kfree(fs_info->csum_root);
2557 	return 0;
2558 }
2559 
2560 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2561 {
2562 	int ret;
2563 	struct inode *btree_inode = buf->first_page->mapping->host;
2564 
2565 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2566 				     NULL);
2567 	if (!ret)
2568 		return ret;
2569 
2570 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2571 				    parent_transid);
2572 	return !ret;
2573 }
2574 
2575 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2576 {
2577 	struct inode *btree_inode = buf->first_page->mapping->host;
2578 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2579 					  buf);
2580 }
2581 
2582 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2583 {
2584 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2585 	u64 transid = btrfs_header_generation(buf);
2586 	struct inode *btree_inode = root->fs_info->btree_inode;
2587 	int was_dirty;
2588 
2589 	btrfs_assert_tree_locked(buf);
2590 	if (transid != root->fs_info->generation) {
2591 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2592 		       "found %llu running %llu\n",
2593 			(unsigned long long)buf->start,
2594 			(unsigned long long)transid,
2595 			(unsigned long long)root->fs_info->generation);
2596 		WARN_ON(1);
2597 	}
2598 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2599 					    buf);
2600 	if (!was_dirty) {
2601 		spin_lock(&root->fs_info->delalloc_lock);
2602 		root->fs_info->dirty_metadata_bytes += buf->len;
2603 		spin_unlock(&root->fs_info->delalloc_lock);
2604 	}
2605 }
2606 
2607 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2608 {
2609 	/*
2610 	 * looks as though older kernels can get into trouble with
2611 	 * this code, they end up stuck in balance_dirty_pages forever
2612 	 */
2613 	u64 num_dirty;
2614 	unsigned long thresh = 32 * 1024 * 1024;
2615 
2616 	if (current->flags & PF_MEMALLOC)
2617 		return;
2618 
2619 	num_dirty = root->fs_info->dirty_metadata_bytes;
2620 
2621 	if (num_dirty > thresh) {
2622 		balance_dirty_pages_ratelimited_nr(
2623 				   root->fs_info->btree_inode->i_mapping, 1);
2624 	}
2625 	return;
2626 }
2627 
2628 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2629 {
2630 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2631 	int ret;
2632 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2633 	if (ret == 0)
2634 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2635 	return ret;
2636 }
2637 
2638 int btree_lock_page_hook(struct page *page)
2639 {
2640 	struct inode *inode = page->mapping->host;
2641 	struct btrfs_root *root = BTRFS_I(inode)->root;
2642 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2643 	struct extent_buffer *eb;
2644 	unsigned long len;
2645 	u64 bytenr = page_offset(page);
2646 
2647 	if (page->private == EXTENT_PAGE_PRIVATE)
2648 		goto out;
2649 
2650 	len = page->private >> 2;
2651 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2652 	if (!eb)
2653 		goto out;
2654 
2655 	btrfs_tree_lock(eb);
2656 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2657 
2658 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2659 		spin_lock(&root->fs_info->delalloc_lock);
2660 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2661 			root->fs_info->dirty_metadata_bytes -= eb->len;
2662 		else
2663 			WARN_ON(1);
2664 		spin_unlock(&root->fs_info->delalloc_lock);
2665 	}
2666 
2667 	btrfs_tree_unlock(eb);
2668 	free_extent_buffer(eb);
2669 out:
2670 	lock_page(page);
2671 	return 0;
2672 }
2673 
2674 static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2675 			      int read_only)
2676 {
2677 	if (read_only)
2678 		return;
2679 
2680 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2681 		printk(KERN_WARNING "warning: mount fs with errors, "
2682 		       "running btrfsck is recommended\n");
2683 }
2684 
2685 int btrfs_error_commit_super(struct btrfs_root *root)
2686 {
2687 	int ret;
2688 
2689 	mutex_lock(&root->fs_info->cleaner_mutex);
2690 	btrfs_run_delayed_iputs(root);
2691 	mutex_unlock(&root->fs_info->cleaner_mutex);
2692 
2693 	down_write(&root->fs_info->cleanup_work_sem);
2694 	up_write(&root->fs_info->cleanup_work_sem);
2695 
2696 	/* cleanup FS via transaction */
2697 	btrfs_cleanup_transaction(root);
2698 
2699 	ret = write_ctree_super(NULL, root, 0);
2700 
2701 	return ret;
2702 }
2703 
2704 static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2705 {
2706 	struct btrfs_inode *btrfs_inode;
2707 	struct list_head splice;
2708 
2709 	INIT_LIST_HEAD(&splice);
2710 
2711 	mutex_lock(&root->fs_info->ordered_operations_mutex);
2712 	spin_lock(&root->fs_info->ordered_extent_lock);
2713 
2714 	list_splice_init(&root->fs_info->ordered_operations, &splice);
2715 	while (!list_empty(&splice)) {
2716 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2717 					 ordered_operations);
2718 
2719 		list_del_init(&btrfs_inode->ordered_operations);
2720 
2721 		btrfs_invalidate_inodes(btrfs_inode->root);
2722 	}
2723 
2724 	spin_unlock(&root->fs_info->ordered_extent_lock);
2725 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
2726 
2727 	return 0;
2728 }
2729 
2730 static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2731 {
2732 	struct list_head splice;
2733 	struct btrfs_ordered_extent *ordered;
2734 	struct inode *inode;
2735 
2736 	INIT_LIST_HEAD(&splice);
2737 
2738 	spin_lock(&root->fs_info->ordered_extent_lock);
2739 
2740 	list_splice_init(&root->fs_info->ordered_extents, &splice);
2741 	while (!list_empty(&splice)) {
2742 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2743 				     root_extent_list);
2744 
2745 		list_del_init(&ordered->root_extent_list);
2746 		atomic_inc(&ordered->refs);
2747 
2748 		/* the inode may be getting freed (in sys_unlink path). */
2749 		inode = igrab(ordered->inode);
2750 
2751 		spin_unlock(&root->fs_info->ordered_extent_lock);
2752 		if (inode)
2753 			iput(inode);
2754 
2755 		atomic_set(&ordered->refs, 1);
2756 		btrfs_put_ordered_extent(ordered);
2757 
2758 		spin_lock(&root->fs_info->ordered_extent_lock);
2759 	}
2760 
2761 	spin_unlock(&root->fs_info->ordered_extent_lock);
2762 
2763 	return 0;
2764 }
2765 
2766 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2767 				      struct btrfs_root *root)
2768 {
2769 	struct rb_node *node;
2770 	struct btrfs_delayed_ref_root *delayed_refs;
2771 	struct btrfs_delayed_ref_node *ref;
2772 	int ret = 0;
2773 
2774 	delayed_refs = &trans->delayed_refs;
2775 
2776 	spin_lock(&delayed_refs->lock);
2777 	if (delayed_refs->num_entries == 0) {
2778 		printk(KERN_INFO "delayed_refs has NO entry\n");
2779 		return ret;
2780 	}
2781 
2782 	node = rb_first(&delayed_refs->root);
2783 	while (node) {
2784 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2785 		node = rb_next(node);
2786 
2787 		ref->in_tree = 0;
2788 		rb_erase(&ref->rb_node, &delayed_refs->root);
2789 		delayed_refs->num_entries--;
2790 
2791 		atomic_set(&ref->refs, 1);
2792 		if (btrfs_delayed_ref_is_head(ref)) {
2793 			struct btrfs_delayed_ref_head *head;
2794 
2795 			head = btrfs_delayed_node_to_head(ref);
2796 			mutex_lock(&head->mutex);
2797 			kfree(head->extent_op);
2798 			delayed_refs->num_heads--;
2799 			if (list_empty(&head->cluster))
2800 				delayed_refs->num_heads_ready--;
2801 			list_del_init(&head->cluster);
2802 			mutex_unlock(&head->mutex);
2803 		}
2804 
2805 		spin_unlock(&delayed_refs->lock);
2806 		btrfs_put_delayed_ref(ref);
2807 
2808 		cond_resched();
2809 		spin_lock(&delayed_refs->lock);
2810 	}
2811 
2812 	spin_unlock(&delayed_refs->lock);
2813 
2814 	return ret;
2815 }
2816 
2817 static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2818 {
2819 	struct btrfs_pending_snapshot *snapshot;
2820 	struct list_head splice;
2821 
2822 	INIT_LIST_HEAD(&splice);
2823 
2824 	list_splice_init(&t->pending_snapshots, &splice);
2825 
2826 	while (!list_empty(&splice)) {
2827 		snapshot = list_entry(splice.next,
2828 				      struct btrfs_pending_snapshot,
2829 				      list);
2830 
2831 		list_del_init(&snapshot->list);
2832 
2833 		kfree(snapshot);
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2840 {
2841 	struct btrfs_inode *btrfs_inode;
2842 	struct list_head splice;
2843 
2844 	INIT_LIST_HEAD(&splice);
2845 
2846 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2847 
2848 	spin_lock(&root->fs_info->delalloc_lock);
2849 
2850 	while (!list_empty(&splice)) {
2851 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2852 				    delalloc_inodes);
2853 
2854 		list_del_init(&btrfs_inode->delalloc_inodes);
2855 
2856 		btrfs_invalidate_inodes(btrfs_inode->root);
2857 	}
2858 
2859 	spin_unlock(&root->fs_info->delalloc_lock);
2860 
2861 	return 0;
2862 }
2863 
2864 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2865 					struct extent_io_tree *dirty_pages,
2866 					int mark)
2867 {
2868 	int ret;
2869 	struct page *page;
2870 	struct inode *btree_inode = root->fs_info->btree_inode;
2871 	struct extent_buffer *eb;
2872 	u64 start = 0;
2873 	u64 end;
2874 	u64 offset;
2875 	unsigned long index;
2876 
2877 	while (1) {
2878 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2879 					    mark);
2880 		if (ret)
2881 			break;
2882 
2883 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2884 		while (start <= end) {
2885 			index = start >> PAGE_CACHE_SHIFT;
2886 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2887 			page = find_get_page(btree_inode->i_mapping, index);
2888 			if (!page)
2889 				continue;
2890 			offset = page_offset(page);
2891 
2892 			spin_lock(&dirty_pages->buffer_lock);
2893 			eb = radix_tree_lookup(
2894 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2895 					       offset >> PAGE_CACHE_SHIFT);
2896 			spin_unlock(&dirty_pages->buffer_lock);
2897 			if (eb) {
2898 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2899 							 &eb->bflags);
2900 				atomic_set(&eb->refs, 1);
2901 			}
2902 			if (PageWriteback(page))
2903 				end_page_writeback(page);
2904 
2905 			lock_page(page);
2906 			if (PageDirty(page)) {
2907 				clear_page_dirty_for_io(page);
2908 				spin_lock_irq(&page->mapping->tree_lock);
2909 				radix_tree_tag_clear(&page->mapping->page_tree,
2910 							page_index(page),
2911 							PAGECACHE_TAG_DIRTY);
2912 				spin_unlock_irq(&page->mapping->tree_lock);
2913 			}
2914 
2915 			page->mapping->a_ops->invalidatepage(page, 0);
2916 			unlock_page(page);
2917 		}
2918 	}
2919 
2920 	return ret;
2921 }
2922 
2923 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
2924 				       struct extent_io_tree *pinned_extents)
2925 {
2926 	struct extent_io_tree *unpin;
2927 	u64 start;
2928 	u64 end;
2929 	int ret;
2930 
2931 	unpin = pinned_extents;
2932 	while (1) {
2933 		ret = find_first_extent_bit(unpin, 0, &start, &end,
2934 					    EXTENT_DIRTY);
2935 		if (ret)
2936 			break;
2937 
2938 		/* opt_discard */
2939 		ret = btrfs_error_discard_extent(root, start, end + 1 - start);
2940 
2941 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
2942 		btrfs_error_unpin_extent_range(root, start, end);
2943 		cond_resched();
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 static int btrfs_cleanup_transaction(struct btrfs_root *root)
2950 {
2951 	struct btrfs_transaction *t;
2952 	LIST_HEAD(list);
2953 
2954 	WARN_ON(1);
2955 
2956 	mutex_lock(&root->fs_info->trans_mutex);
2957 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
2958 
2959 	list_splice_init(&root->fs_info->trans_list, &list);
2960 	while (!list_empty(&list)) {
2961 		t = list_entry(list.next, struct btrfs_transaction, list);
2962 		if (!t)
2963 			break;
2964 
2965 		btrfs_destroy_ordered_operations(root);
2966 
2967 		btrfs_destroy_ordered_extents(root);
2968 
2969 		btrfs_destroy_delayed_refs(t, root);
2970 
2971 		btrfs_block_rsv_release(root,
2972 					&root->fs_info->trans_block_rsv,
2973 					t->dirty_pages.dirty_bytes);
2974 
2975 		/* FIXME: cleanup wait for commit */
2976 		t->in_commit = 1;
2977 		t->blocked = 1;
2978 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
2979 			wake_up(&root->fs_info->transaction_blocked_wait);
2980 
2981 		t->blocked = 0;
2982 		if (waitqueue_active(&root->fs_info->transaction_wait))
2983 			wake_up(&root->fs_info->transaction_wait);
2984 		mutex_unlock(&root->fs_info->trans_mutex);
2985 
2986 		mutex_lock(&root->fs_info->trans_mutex);
2987 		t->commit_done = 1;
2988 		if (waitqueue_active(&t->commit_wait))
2989 			wake_up(&t->commit_wait);
2990 		mutex_unlock(&root->fs_info->trans_mutex);
2991 
2992 		mutex_lock(&root->fs_info->trans_mutex);
2993 
2994 		btrfs_destroy_pending_snapshots(t);
2995 
2996 		btrfs_destroy_delalloc_inodes(root);
2997 
2998 		spin_lock(&root->fs_info->new_trans_lock);
2999 		root->fs_info->running_transaction = NULL;
3000 		spin_unlock(&root->fs_info->new_trans_lock);
3001 
3002 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3003 					     EXTENT_DIRTY);
3004 
3005 		btrfs_destroy_pinned_extent(root,
3006 					    root->fs_info->pinned_extents);
3007 
3008 		t->use_count = 0;
3009 		list_del_init(&t->list);
3010 		memset(t, 0, sizeof(*t));
3011 		kmem_cache_free(btrfs_transaction_cachep, t);
3012 	}
3013 
3014 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3015 	mutex_unlock(&root->fs_info->trans_mutex);
3016 
3017 	return 0;
3018 }
3019 
3020 static struct extent_io_ops btree_extent_io_ops = {
3021 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3022 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3023 	.submit_bio_hook = btree_submit_bio_hook,
3024 	/* note we're sharing with inode.c for the merge bio hook */
3025 	.merge_bio_hook = btrfs_merge_bio_hook,
3026 };
3027