1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/slab.h> 30 #include <linux/migrate.h> 31 #include <linux/ratelimit.h> 32 #include <linux/uuid.h> 33 #include <linux/semaphore.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "hash.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "volumes.h" 41 #include "print-tree.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 #include "sysfs.h" 51 #include "qgroup.h" 52 53 #ifdef CONFIG_X86 54 #include <asm/cpufeature.h> 55 #endif 56 57 static const struct extent_io_ops btree_extent_io_ops; 58 static void end_workqueue_fn(struct btrfs_work *work); 59 static void free_fs_root(struct btrfs_root *root); 60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 61 int read_only); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 66 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 67 struct extent_io_tree *dirty_pages, 68 int mark); 69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 70 struct extent_io_tree *pinned_extents); 71 static int btrfs_cleanup_transaction(struct btrfs_root *root); 72 static void btrfs_error_commit_super(struct btrfs_root *root); 73 74 /* 75 * btrfs_end_io_wq structs are used to do processing in task context when an IO 76 * is complete. This is used during reads to verify checksums, and it is used 77 * by writes to insert metadata for new file extents after IO is complete. 78 */ 79 struct btrfs_end_io_wq { 80 struct bio *bio; 81 bio_end_io_t *end_io; 82 void *private; 83 struct btrfs_fs_info *info; 84 int error; 85 enum btrfs_wq_endio_type metadata; 86 struct list_head list; 87 struct btrfs_work work; 88 }; 89 90 static struct kmem_cache *btrfs_end_io_wq_cache; 91 92 int __init btrfs_end_io_wq_init(void) 93 { 94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", 95 sizeof(struct btrfs_end_io_wq), 96 0, 97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 98 NULL); 99 if (!btrfs_end_io_wq_cache) 100 return -ENOMEM; 101 return 0; 102 } 103 104 void btrfs_end_io_wq_exit(void) 105 { 106 if (btrfs_end_io_wq_cache) 107 kmem_cache_destroy(btrfs_end_io_wq_cache); 108 } 109 110 /* 111 * async submit bios are used to offload expensive checksumming 112 * onto the worker threads. They checksum file and metadata bios 113 * just before they are sent down the IO stack. 114 */ 115 struct async_submit_bio { 116 struct inode *inode; 117 struct bio *bio; 118 struct list_head list; 119 extent_submit_bio_hook_t *submit_bio_start; 120 extent_submit_bio_hook_t *submit_bio_done; 121 int rw; 122 int mirror_num; 123 unsigned long bio_flags; 124 /* 125 * bio_offset is optional, can be used if the pages in the bio 126 * can't tell us where in the file the bio should go 127 */ 128 u64 bio_offset; 129 struct btrfs_work work; 130 int error; 131 }; 132 133 /* 134 * Lockdep class keys for extent_buffer->lock's in this root. For a given 135 * eb, the lockdep key is determined by the btrfs_root it belongs to and 136 * the level the eb occupies in the tree. 137 * 138 * Different roots are used for different purposes and may nest inside each 139 * other and they require separate keysets. As lockdep keys should be 140 * static, assign keysets according to the purpose of the root as indicated 141 * by btrfs_root->objectid. This ensures that all special purpose roots 142 * have separate keysets. 143 * 144 * Lock-nesting across peer nodes is always done with the immediate parent 145 * node locked thus preventing deadlock. As lockdep doesn't know this, use 146 * subclass to avoid triggering lockdep warning in such cases. 147 * 148 * The key is set by the readpage_end_io_hook after the buffer has passed 149 * csum validation but before the pages are unlocked. It is also set by 150 * btrfs_init_new_buffer on freshly allocated blocks. 151 * 152 * We also add a check to make sure the highest level of the tree is the 153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 154 * needs update as well. 155 */ 156 #ifdef CONFIG_DEBUG_LOCK_ALLOC 157 # if BTRFS_MAX_LEVEL != 8 158 # error 159 # endif 160 161 static struct btrfs_lockdep_keyset { 162 u64 id; /* root objectid */ 163 const char *name_stem; /* lock name stem */ 164 char names[BTRFS_MAX_LEVEL + 1][20]; 165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 166 } btrfs_lockdep_keysets[] = { 167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, 174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, 178 { .id = 0, .name_stem = "tree" }, 179 }; 180 181 void __init btrfs_init_lockdep(void) 182 { 183 int i, j; 184 185 /* initialize lockdep class names */ 186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 188 189 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 190 snprintf(ks->names[j], sizeof(ks->names[j]), 191 "btrfs-%s-%02d", ks->name_stem, j); 192 } 193 } 194 195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 196 int level) 197 { 198 struct btrfs_lockdep_keyset *ks; 199 200 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 201 202 /* find the matching keyset, id 0 is the default entry */ 203 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 204 if (ks->id == objectid) 205 break; 206 207 lockdep_set_class_and_name(&eb->lock, 208 &ks->keys[level], ks->names[level]); 209 } 210 211 #endif 212 213 /* 214 * extents on the btree inode are pretty simple, there's one extent 215 * that covers the entire device 216 */ 217 static struct extent_map *btree_get_extent(struct inode *inode, 218 struct page *page, size_t pg_offset, u64 start, u64 len, 219 int create) 220 { 221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 222 struct extent_map *em; 223 int ret; 224 225 read_lock(&em_tree->lock); 226 em = lookup_extent_mapping(em_tree, start, len); 227 if (em) { 228 em->bdev = 229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 230 read_unlock(&em_tree->lock); 231 goto out; 232 } 233 read_unlock(&em_tree->lock); 234 235 em = alloc_extent_map(); 236 if (!em) { 237 em = ERR_PTR(-ENOMEM); 238 goto out; 239 } 240 em->start = 0; 241 em->len = (u64)-1; 242 em->block_len = (u64)-1; 243 em->block_start = 0; 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 245 246 write_lock(&em_tree->lock); 247 ret = add_extent_mapping(em_tree, em, 0); 248 if (ret == -EEXIST) { 249 free_extent_map(em); 250 em = lookup_extent_mapping(em_tree, start, len); 251 if (!em) 252 em = ERR_PTR(-EIO); 253 } else if (ret) { 254 free_extent_map(em); 255 em = ERR_PTR(ret); 256 } 257 write_unlock(&em_tree->lock); 258 259 out: 260 return em; 261 } 262 263 u32 btrfs_csum_data(char *data, u32 seed, size_t len) 264 { 265 return btrfs_crc32c(seed, data, len); 266 } 267 268 void btrfs_csum_final(u32 crc, char *result) 269 { 270 put_unaligned_le32(~crc, result); 271 } 272 273 /* 274 * compute the csum for a btree block, and either verify it or write it 275 * into the csum field of the block. 276 */ 277 static int csum_tree_block(struct btrfs_fs_info *fs_info, 278 struct extent_buffer *buf, 279 int verify) 280 { 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 282 char *result = NULL; 283 unsigned long len; 284 unsigned long cur_len; 285 unsigned long offset = BTRFS_CSUM_SIZE; 286 char *kaddr; 287 unsigned long map_start; 288 unsigned long map_len; 289 int err; 290 u32 crc = ~(u32)0; 291 unsigned long inline_result; 292 293 len = buf->len - offset; 294 while (len > 0) { 295 err = map_private_extent_buffer(buf, offset, 32, 296 &kaddr, &map_start, &map_len); 297 if (err) 298 return 1; 299 cur_len = min(len, map_len - (offset - map_start)); 300 crc = btrfs_csum_data(kaddr + offset - map_start, 301 crc, cur_len); 302 len -= cur_len; 303 offset += cur_len; 304 } 305 if (csum_size > sizeof(inline_result)) { 306 result = kzalloc(csum_size, GFP_NOFS); 307 if (!result) 308 return 1; 309 } else { 310 result = (char *)&inline_result; 311 } 312 313 btrfs_csum_final(crc, result); 314 315 if (verify) { 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 317 u32 val; 318 u32 found = 0; 319 memcpy(&found, result, csum_size); 320 321 read_extent_buffer(buf, &val, 0, csum_size); 322 printk_ratelimited(KERN_WARNING 323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X " 324 "level %d\n", 325 fs_info->sb->s_id, buf->start, 326 val, found, btrfs_header_level(buf)); 327 if (result != (char *)&inline_result) 328 kfree(result); 329 return 1; 330 } 331 } else { 332 write_extent_buffer(buf, result, 0, csum_size); 333 } 334 if (result != (char *)&inline_result) 335 kfree(result); 336 return 0; 337 } 338 339 /* 340 * we can't consider a given block up to date unless the transid of the 341 * block matches the transid in the parent node's pointer. This is how we 342 * detect blocks that either didn't get written at all or got written 343 * in the wrong place. 344 */ 345 static int verify_parent_transid(struct extent_io_tree *io_tree, 346 struct extent_buffer *eb, u64 parent_transid, 347 int atomic) 348 { 349 struct extent_state *cached_state = NULL; 350 int ret; 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); 352 353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 354 return 0; 355 356 if (atomic) 357 return -EAGAIN; 358 359 if (need_lock) { 360 btrfs_tree_read_lock(eb); 361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 362 } 363 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 365 0, &cached_state); 366 if (extent_buffer_uptodate(eb) && 367 btrfs_header_generation(eb) == parent_transid) { 368 ret = 0; 369 goto out; 370 } 371 printk_ratelimited(KERN_ERR 372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n", 373 eb->fs_info->sb->s_id, eb->start, 374 parent_transid, btrfs_header_generation(eb)); 375 ret = 1; 376 377 /* 378 * Things reading via commit roots that don't have normal protection, 379 * like send, can have a really old block in cache that may point at a 380 * block that has been free'd and re-allocated. So don't clear uptodate 381 * if we find an eb that is under IO (dirty/writeback) because we could 382 * end up reading in the stale data and then writing it back out and 383 * making everybody very sad. 384 */ 385 if (!extent_buffer_under_io(eb)) 386 clear_extent_buffer_uptodate(eb); 387 out: 388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 389 &cached_state, GFP_NOFS); 390 if (need_lock) 391 btrfs_tree_read_unlock_blocking(eb); 392 return ret; 393 } 394 395 /* 396 * Return 0 if the superblock checksum type matches the checksum value of that 397 * algorithm. Pass the raw disk superblock data. 398 */ 399 static int btrfs_check_super_csum(char *raw_disk_sb) 400 { 401 struct btrfs_super_block *disk_sb = 402 (struct btrfs_super_block *)raw_disk_sb; 403 u16 csum_type = btrfs_super_csum_type(disk_sb); 404 int ret = 0; 405 406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) { 407 u32 crc = ~(u32)0; 408 const int csum_size = sizeof(crc); 409 char result[csum_size]; 410 411 /* 412 * The super_block structure does not span the whole 413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space 414 * is filled with zeros and is included in the checkum. 415 */ 416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, 417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); 418 btrfs_csum_final(crc, result); 419 420 if (memcmp(raw_disk_sb, result, csum_size)) 421 ret = 1; 422 } 423 424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n", 426 csum_type); 427 ret = 1; 428 } 429 430 return ret; 431 } 432 433 /* 434 * helper to read a given tree block, doing retries as required when 435 * the checksums don't match and we have alternate mirrors to try. 436 */ 437 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 438 struct extent_buffer *eb, 439 u64 start, u64 parent_transid) 440 { 441 struct extent_io_tree *io_tree; 442 int failed = 0; 443 int ret; 444 int num_copies = 0; 445 int mirror_num = 0; 446 int failed_mirror = 0; 447 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 450 while (1) { 451 ret = read_extent_buffer_pages(io_tree, eb, start, 452 WAIT_COMPLETE, 453 btree_get_extent, mirror_num); 454 if (!ret) { 455 if (!verify_parent_transid(io_tree, eb, 456 parent_transid, 0)) 457 break; 458 else 459 ret = -EIO; 460 } 461 462 /* 463 * This buffer's crc is fine, but its contents are corrupted, so 464 * there is no reason to read the other copies, they won't be 465 * any less wrong. 466 */ 467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 468 break; 469 470 num_copies = btrfs_num_copies(root->fs_info, 471 eb->start, eb->len); 472 if (num_copies == 1) 473 break; 474 475 if (!failed_mirror) { 476 failed = 1; 477 failed_mirror = eb->read_mirror; 478 } 479 480 mirror_num++; 481 if (mirror_num == failed_mirror) 482 mirror_num++; 483 484 if (mirror_num > num_copies) 485 break; 486 } 487 488 if (failed && !ret && failed_mirror) 489 repair_eb_io_failure(root, eb, failed_mirror); 490 491 return ret; 492 } 493 494 /* 495 * checksum a dirty tree block before IO. This has extra checks to make sure 496 * we only fill in the checksum field in the first page of a multi-page block 497 */ 498 499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) 500 { 501 u64 start = page_offset(page); 502 u64 found_start; 503 struct extent_buffer *eb; 504 505 eb = (struct extent_buffer *)page->private; 506 if (page != eb->pages[0]) 507 return 0; 508 found_start = btrfs_header_bytenr(eb); 509 if (WARN_ON(found_start != start || !PageUptodate(page))) 510 return 0; 511 csum_tree_block(fs_info, eb, 0); 512 return 0; 513 } 514 515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, 516 struct extent_buffer *eb) 517 { 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 519 u8 fsid[BTRFS_UUID_SIZE]; 520 int ret = 1; 521 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); 523 while (fs_devices) { 524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 525 ret = 0; 526 break; 527 } 528 fs_devices = fs_devices->seed; 529 } 530 return ret; 531 } 532 533 #define CORRUPT(reason, eb, root, slot) \ 534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \ 535 "root=%llu, slot=%d", reason, \ 536 btrfs_header_bytenr(eb), root->objectid, slot) 537 538 static noinline int check_leaf(struct btrfs_root *root, 539 struct extent_buffer *leaf) 540 { 541 struct btrfs_key key; 542 struct btrfs_key leaf_key; 543 u32 nritems = btrfs_header_nritems(leaf); 544 int slot; 545 546 if (nritems == 0) 547 return 0; 548 549 /* Check the 0 item */ 550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 551 BTRFS_LEAF_DATA_SIZE(root)) { 552 CORRUPT("invalid item offset size pair", leaf, root, 0); 553 return -EIO; 554 } 555 556 /* 557 * Check to make sure each items keys are in the correct order and their 558 * offsets make sense. We only have to loop through nritems-1 because 559 * we check the current slot against the next slot, which verifies the 560 * next slot's offset+size makes sense and that the current's slot 561 * offset is correct. 562 */ 563 for (slot = 0; slot < nritems - 1; slot++) { 564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 565 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 566 567 /* Make sure the keys are in the right order */ 568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 569 CORRUPT("bad key order", leaf, root, slot); 570 return -EIO; 571 } 572 573 /* 574 * Make sure the offset and ends are right, remember that the 575 * item data starts at the end of the leaf and grows towards the 576 * front. 577 */ 578 if (btrfs_item_offset_nr(leaf, slot) != 579 btrfs_item_end_nr(leaf, slot + 1)) { 580 CORRUPT("slot offset bad", leaf, root, slot); 581 return -EIO; 582 } 583 584 /* 585 * Check to make sure that we don't point outside of the leaf, 586 * just incase all the items are consistent to eachother, but 587 * all point outside of the leaf. 588 */ 589 if (btrfs_item_end_nr(leaf, slot) > 590 BTRFS_LEAF_DATA_SIZE(root)) { 591 CORRUPT("slot end outside of leaf", leaf, root, slot); 592 return -EIO; 593 } 594 } 595 596 return 0; 597 } 598 599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 600 u64 phy_offset, struct page *page, 601 u64 start, u64 end, int mirror) 602 { 603 u64 found_start; 604 int found_level; 605 struct extent_buffer *eb; 606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 607 int ret = 0; 608 int reads_done; 609 610 if (!page->private) 611 goto out; 612 613 eb = (struct extent_buffer *)page->private; 614 615 /* the pending IO might have been the only thing that kept this buffer 616 * in memory. Make sure we have a ref for all this other checks 617 */ 618 extent_buffer_get(eb); 619 620 reads_done = atomic_dec_and_test(&eb->io_pages); 621 if (!reads_done) 622 goto err; 623 624 eb->read_mirror = mirror; 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { 626 ret = -EIO; 627 goto err; 628 } 629 630 found_start = btrfs_header_bytenr(eb); 631 if (found_start != eb->start) { 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start " 633 "%llu %llu\n", 634 eb->fs_info->sb->s_id, found_start, eb->start); 635 ret = -EIO; 636 goto err; 637 } 638 if (check_tree_block_fsid(root->fs_info, eb)) { 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n", 640 eb->fs_info->sb->s_id, eb->start); 641 ret = -EIO; 642 goto err; 643 } 644 found_level = btrfs_header_level(eb); 645 if (found_level >= BTRFS_MAX_LEVEL) { 646 btrfs_err(root->fs_info, "bad tree block level %d", 647 (int)btrfs_header_level(eb)); 648 ret = -EIO; 649 goto err; 650 } 651 652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 653 eb, found_level); 654 655 ret = csum_tree_block(root->fs_info, eb, 1); 656 if (ret) { 657 ret = -EIO; 658 goto err; 659 } 660 661 /* 662 * If this is a leaf block and it is corrupt, set the corrupt bit so 663 * that we don't try and read the other copies of this block, just 664 * return -EIO. 665 */ 666 if (found_level == 0 && check_leaf(root, eb)) { 667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 668 ret = -EIO; 669 } 670 671 if (!ret) 672 set_extent_buffer_uptodate(eb); 673 err: 674 if (reads_done && 675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 676 btree_readahead_hook(root, eb, eb->start, ret); 677 678 if (ret) { 679 /* 680 * our io error hook is going to dec the io pages 681 * again, we have to make sure it has something 682 * to decrement 683 */ 684 atomic_inc(&eb->io_pages); 685 clear_extent_buffer_uptodate(eb); 686 } 687 free_extent_buffer(eb); 688 out: 689 return ret; 690 } 691 692 static int btree_io_failed_hook(struct page *page, int failed_mirror) 693 { 694 struct extent_buffer *eb; 695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 696 697 eb = (struct extent_buffer *)page->private; 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); 699 eb->read_mirror = failed_mirror; 700 atomic_dec(&eb->io_pages); 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 702 btree_readahead_hook(root, eb, eb->start, -EIO); 703 return -EIO; /* we fixed nothing */ 704 } 705 706 static void end_workqueue_bio(struct bio *bio) 707 { 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private; 709 struct btrfs_fs_info *fs_info; 710 struct btrfs_workqueue *wq; 711 btrfs_work_func_t func; 712 713 fs_info = end_io_wq->info; 714 end_io_wq->error = bio->bi_error; 715 716 if (bio->bi_rw & REQ_WRITE) { 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { 718 wq = fs_info->endio_meta_write_workers; 719 func = btrfs_endio_meta_write_helper; 720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { 721 wq = fs_info->endio_freespace_worker; 722 func = btrfs_freespace_write_helper; 723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 724 wq = fs_info->endio_raid56_workers; 725 func = btrfs_endio_raid56_helper; 726 } else { 727 wq = fs_info->endio_write_workers; 728 func = btrfs_endio_write_helper; 729 } 730 } else { 731 if (unlikely(end_io_wq->metadata == 732 BTRFS_WQ_ENDIO_DIO_REPAIR)) { 733 wq = fs_info->endio_repair_workers; 734 func = btrfs_endio_repair_helper; 735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { 736 wq = fs_info->endio_raid56_workers; 737 func = btrfs_endio_raid56_helper; 738 } else if (end_io_wq->metadata) { 739 wq = fs_info->endio_meta_workers; 740 func = btrfs_endio_meta_helper; 741 } else { 742 wq = fs_info->endio_workers; 743 func = btrfs_endio_helper; 744 } 745 } 746 747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); 748 btrfs_queue_work(wq, &end_io_wq->work); 749 } 750 751 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 752 enum btrfs_wq_endio_type metadata) 753 { 754 struct btrfs_end_io_wq *end_io_wq; 755 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); 757 if (!end_io_wq) 758 return -ENOMEM; 759 760 end_io_wq->private = bio->bi_private; 761 end_io_wq->end_io = bio->bi_end_io; 762 end_io_wq->info = info; 763 end_io_wq->error = 0; 764 end_io_wq->bio = bio; 765 end_io_wq->metadata = metadata; 766 767 bio->bi_private = end_io_wq; 768 bio->bi_end_io = end_workqueue_bio; 769 return 0; 770 } 771 772 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 773 { 774 unsigned long limit = min_t(unsigned long, 775 info->thread_pool_size, 776 info->fs_devices->open_devices); 777 return 256 * limit; 778 } 779 780 static void run_one_async_start(struct btrfs_work *work) 781 { 782 struct async_submit_bio *async; 783 int ret; 784 785 async = container_of(work, struct async_submit_bio, work); 786 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 787 async->mirror_num, async->bio_flags, 788 async->bio_offset); 789 if (ret) 790 async->error = ret; 791 } 792 793 static void run_one_async_done(struct btrfs_work *work) 794 { 795 struct btrfs_fs_info *fs_info; 796 struct async_submit_bio *async; 797 int limit; 798 799 async = container_of(work, struct async_submit_bio, work); 800 fs_info = BTRFS_I(async->inode)->root->fs_info; 801 802 limit = btrfs_async_submit_limit(fs_info); 803 limit = limit * 2 / 3; 804 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 806 waitqueue_active(&fs_info->async_submit_wait)) 807 wake_up(&fs_info->async_submit_wait); 808 809 /* If an error occured we just want to clean up the bio and move on */ 810 if (async->error) { 811 async->bio->bi_error = async->error; 812 bio_endio(async->bio); 813 return; 814 } 815 816 async->submit_bio_done(async->inode, async->rw, async->bio, 817 async->mirror_num, async->bio_flags, 818 async->bio_offset); 819 } 820 821 static void run_one_async_free(struct btrfs_work *work) 822 { 823 struct async_submit_bio *async; 824 825 async = container_of(work, struct async_submit_bio, work); 826 kfree(async); 827 } 828 829 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 830 int rw, struct bio *bio, int mirror_num, 831 unsigned long bio_flags, 832 u64 bio_offset, 833 extent_submit_bio_hook_t *submit_bio_start, 834 extent_submit_bio_hook_t *submit_bio_done) 835 { 836 struct async_submit_bio *async; 837 838 async = kmalloc(sizeof(*async), GFP_NOFS); 839 if (!async) 840 return -ENOMEM; 841 842 async->inode = inode; 843 async->rw = rw; 844 async->bio = bio; 845 async->mirror_num = mirror_num; 846 async->submit_bio_start = submit_bio_start; 847 async->submit_bio_done = submit_bio_done; 848 849 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, 850 run_one_async_done, run_one_async_free); 851 852 async->bio_flags = bio_flags; 853 async->bio_offset = bio_offset; 854 855 async->error = 0; 856 857 atomic_inc(&fs_info->nr_async_submits); 858 859 if (rw & REQ_SYNC) 860 btrfs_set_work_high_priority(&async->work); 861 862 btrfs_queue_work(fs_info->workers, &async->work); 863 864 while (atomic_read(&fs_info->async_submit_draining) && 865 atomic_read(&fs_info->nr_async_submits)) { 866 wait_event(fs_info->async_submit_wait, 867 (atomic_read(&fs_info->nr_async_submits) == 0)); 868 } 869 870 return 0; 871 } 872 873 static int btree_csum_one_bio(struct bio *bio) 874 { 875 struct bio_vec *bvec; 876 struct btrfs_root *root; 877 int i, ret = 0; 878 879 bio_for_each_segment_all(bvec, bio, i) { 880 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 881 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); 882 if (ret) 883 break; 884 } 885 886 return ret; 887 } 888 889 static int __btree_submit_bio_start(struct inode *inode, int rw, 890 struct bio *bio, int mirror_num, 891 unsigned long bio_flags, 892 u64 bio_offset) 893 { 894 /* 895 * when we're called for a write, we're already in the async 896 * submission context. Just jump into btrfs_map_bio 897 */ 898 return btree_csum_one_bio(bio); 899 } 900 901 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 902 int mirror_num, unsigned long bio_flags, 903 u64 bio_offset) 904 { 905 int ret; 906 907 /* 908 * when we're called for a write, we're already in the async 909 * submission context. Just jump into btrfs_map_bio 910 */ 911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 912 if (ret) { 913 bio->bi_error = ret; 914 bio_endio(bio); 915 } 916 return ret; 917 } 918 919 static int check_async_write(struct inode *inode, unsigned long bio_flags) 920 { 921 if (bio_flags & EXTENT_BIO_TREE_LOG) 922 return 0; 923 #ifdef CONFIG_X86 924 if (cpu_has_xmm4_2) 925 return 0; 926 #endif 927 return 1; 928 } 929 930 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 931 int mirror_num, unsigned long bio_flags, 932 u64 bio_offset) 933 { 934 int async = check_async_write(inode, bio_flags); 935 int ret; 936 937 if (!(rw & REQ_WRITE)) { 938 /* 939 * called for a read, do the setup so that checksum validation 940 * can happen in the async kernel threads 941 */ 942 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 943 bio, BTRFS_WQ_ENDIO_METADATA); 944 if (ret) 945 goto out_w_error; 946 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 947 mirror_num, 0); 948 } else if (!async) { 949 ret = btree_csum_one_bio(bio); 950 if (ret) 951 goto out_w_error; 952 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 953 mirror_num, 0); 954 } else { 955 /* 956 * kthread helpers are used to submit writes so that 957 * checksumming can happen in parallel across all CPUs 958 */ 959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 960 inode, rw, bio, mirror_num, 0, 961 bio_offset, 962 __btree_submit_bio_start, 963 __btree_submit_bio_done); 964 } 965 966 if (ret) 967 goto out_w_error; 968 return 0; 969 970 out_w_error: 971 bio->bi_error = ret; 972 bio_endio(bio); 973 return ret; 974 } 975 976 #ifdef CONFIG_MIGRATION 977 static int btree_migratepage(struct address_space *mapping, 978 struct page *newpage, struct page *page, 979 enum migrate_mode mode) 980 { 981 /* 982 * we can't safely write a btree page from here, 983 * we haven't done the locking hook 984 */ 985 if (PageDirty(page)) 986 return -EAGAIN; 987 /* 988 * Buffers may be managed in a filesystem specific way. 989 * We must have no buffers or drop them. 990 */ 991 if (page_has_private(page) && 992 !try_to_release_page(page, GFP_KERNEL)) 993 return -EAGAIN; 994 return migrate_page(mapping, newpage, page, mode); 995 } 996 #endif 997 998 999 static int btree_writepages(struct address_space *mapping, 1000 struct writeback_control *wbc) 1001 { 1002 struct btrfs_fs_info *fs_info; 1003 int ret; 1004 1005 if (wbc->sync_mode == WB_SYNC_NONE) { 1006 1007 if (wbc->for_kupdate) 1008 return 0; 1009 1010 fs_info = BTRFS_I(mapping->host)->root->fs_info; 1011 /* this is a bit racy, but that's ok */ 1012 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 1013 BTRFS_DIRTY_METADATA_THRESH); 1014 if (ret < 0) 1015 return 0; 1016 } 1017 return btree_write_cache_pages(mapping, wbc); 1018 } 1019 1020 static int btree_readpage(struct file *file, struct page *page) 1021 { 1022 struct extent_io_tree *tree; 1023 tree = &BTRFS_I(page->mapping->host)->io_tree; 1024 return extent_read_full_page(tree, page, btree_get_extent, 0); 1025 } 1026 1027 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 1028 { 1029 if (PageWriteback(page) || PageDirty(page)) 1030 return 0; 1031 1032 return try_release_extent_buffer(page); 1033 } 1034 1035 static void btree_invalidatepage(struct page *page, unsigned int offset, 1036 unsigned int length) 1037 { 1038 struct extent_io_tree *tree; 1039 tree = &BTRFS_I(page->mapping->host)->io_tree; 1040 extent_invalidatepage(tree, page, offset); 1041 btree_releasepage(page, GFP_NOFS); 1042 if (PagePrivate(page)) { 1043 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, 1044 "page private not zero on page %llu", 1045 (unsigned long long)page_offset(page)); 1046 ClearPagePrivate(page); 1047 set_page_private(page, 0); 1048 page_cache_release(page); 1049 } 1050 } 1051 1052 static int btree_set_page_dirty(struct page *page) 1053 { 1054 #ifdef DEBUG 1055 struct extent_buffer *eb; 1056 1057 BUG_ON(!PagePrivate(page)); 1058 eb = (struct extent_buffer *)page->private; 1059 BUG_ON(!eb); 1060 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1061 BUG_ON(!atomic_read(&eb->refs)); 1062 btrfs_assert_tree_locked(eb); 1063 #endif 1064 return __set_page_dirty_nobuffers(page); 1065 } 1066 1067 static const struct address_space_operations btree_aops = { 1068 .readpage = btree_readpage, 1069 .writepages = btree_writepages, 1070 .releasepage = btree_releasepage, 1071 .invalidatepage = btree_invalidatepage, 1072 #ifdef CONFIG_MIGRATION 1073 .migratepage = btree_migratepage, 1074 #endif 1075 .set_page_dirty = btree_set_page_dirty, 1076 }; 1077 1078 void readahead_tree_block(struct btrfs_root *root, u64 bytenr) 1079 { 1080 struct extent_buffer *buf = NULL; 1081 struct inode *btree_inode = root->fs_info->btree_inode; 1082 1083 buf = btrfs_find_create_tree_block(root, bytenr); 1084 if (!buf) 1085 return; 1086 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1087 buf, 0, WAIT_NONE, btree_get_extent, 0); 1088 free_extent_buffer(buf); 1089 } 1090 1091 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, 1092 int mirror_num, struct extent_buffer **eb) 1093 { 1094 struct extent_buffer *buf = NULL; 1095 struct inode *btree_inode = root->fs_info->btree_inode; 1096 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1097 int ret; 1098 1099 buf = btrfs_find_create_tree_block(root, bytenr); 1100 if (!buf) 1101 return 0; 1102 1103 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1104 1105 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1106 btree_get_extent, mirror_num); 1107 if (ret) { 1108 free_extent_buffer(buf); 1109 return ret; 1110 } 1111 1112 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1113 free_extent_buffer(buf); 1114 return -EIO; 1115 } else if (extent_buffer_uptodate(buf)) { 1116 *eb = buf; 1117 } else { 1118 free_extent_buffer(buf); 1119 } 1120 return 0; 1121 } 1122 1123 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, 1124 u64 bytenr) 1125 { 1126 return find_extent_buffer(fs_info, bytenr); 1127 } 1128 1129 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1130 u64 bytenr) 1131 { 1132 if (btrfs_test_is_dummy_root(root)) 1133 return alloc_test_extent_buffer(root->fs_info, bytenr); 1134 return alloc_extent_buffer(root->fs_info, bytenr); 1135 } 1136 1137 1138 int btrfs_write_tree_block(struct extent_buffer *buf) 1139 { 1140 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1141 buf->start + buf->len - 1); 1142 } 1143 1144 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1145 { 1146 return filemap_fdatawait_range(buf->pages[0]->mapping, 1147 buf->start, buf->start + buf->len - 1); 1148 } 1149 1150 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1151 u64 parent_transid) 1152 { 1153 struct extent_buffer *buf = NULL; 1154 int ret; 1155 1156 buf = btrfs_find_create_tree_block(root, bytenr); 1157 if (!buf) 1158 return ERR_PTR(-ENOMEM); 1159 1160 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1161 if (ret) { 1162 free_extent_buffer(buf); 1163 return ERR_PTR(ret); 1164 } 1165 return buf; 1166 1167 } 1168 1169 void clean_tree_block(struct btrfs_trans_handle *trans, 1170 struct btrfs_fs_info *fs_info, 1171 struct extent_buffer *buf) 1172 { 1173 if (btrfs_header_generation(buf) == 1174 fs_info->running_transaction->transid) { 1175 btrfs_assert_tree_locked(buf); 1176 1177 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1178 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1179 -buf->len, 1180 fs_info->dirty_metadata_batch); 1181 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1182 btrfs_set_lock_blocking(buf); 1183 clear_extent_buffer_dirty(buf); 1184 } 1185 } 1186 } 1187 1188 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) 1189 { 1190 struct btrfs_subvolume_writers *writers; 1191 int ret; 1192 1193 writers = kmalloc(sizeof(*writers), GFP_NOFS); 1194 if (!writers) 1195 return ERR_PTR(-ENOMEM); 1196 1197 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); 1198 if (ret < 0) { 1199 kfree(writers); 1200 return ERR_PTR(ret); 1201 } 1202 1203 init_waitqueue_head(&writers->wait); 1204 return writers; 1205 } 1206 1207 static void 1208 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) 1209 { 1210 percpu_counter_destroy(&writers->counter); 1211 kfree(writers); 1212 } 1213 1214 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize, 1215 struct btrfs_root *root, struct btrfs_fs_info *fs_info, 1216 u64 objectid) 1217 { 1218 root->node = NULL; 1219 root->commit_root = NULL; 1220 root->sectorsize = sectorsize; 1221 root->nodesize = nodesize; 1222 root->stripesize = stripesize; 1223 root->state = 0; 1224 root->orphan_cleanup_state = 0; 1225 1226 root->objectid = objectid; 1227 root->last_trans = 0; 1228 root->highest_objectid = 0; 1229 root->nr_delalloc_inodes = 0; 1230 root->nr_ordered_extents = 0; 1231 root->name = NULL; 1232 root->inode_tree = RB_ROOT; 1233 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1234 root->block_rsv = NULL; 1235 root->orphan_block_rsv = NULL; 1236 1237 INIT_LIST_HEAD(&root->dirty_list); 1238 INIT_LIST_HEAD(&root->root_list); 1239 INIT_LIST_HEAD(&root->delalloc_inodes); 1240 INIT_LIST_HEAD(&root->delalloc_root); 1241 INIT_LIST_HEAD(&root->ordered_extents); 1242 INIT_LIST_HEAD(&root->ordered_root); 1243 INIT_LIST_HEAD(&root->logged_list[0]); 1244 INIT_LIST_HEAD(&root->logged_list[1]); 1245 spin_lock_init(&root->orphan_lock); 1246 spin_lock_init(&root->inode_lock); 1247 spin_lock_init(&root->delalloc_lock); 1248 spin_lock_init(&root->ordered_extent_lock); 1249 spin_lock_init(&root->accounting_lock); 1250 spin_lock_init(&root->log_extents_lock[0]); 1251 spin_lock_init(&root->log_extents_lock[1]); 1252 mutex_init(&root->objectid_mutex); 1253 mutex_init(&root->log_mutex); 1254 mutex_init(&root->ordered_extent_mutex); 1255 mutex_init(&root->delalloc_mutex); 1256 init_waitqueue_head(&root->log_writer_wait); 1257 init_waitqueue_head(&root->log_commit_wait[0]); 1258 init_waitqueue_head(&root->log_commit_wait[1]); 1259 INIT_LIST_HEAD(&root->log_ctxs[0]); 1260 INIT_LIST_HEAD(&root->log_ctxs[1]); 1261 atomic_set(&root->log_commit[0], 0); 1262 atomic_set(&root->log_commit[1], 0); 1263 atomic_set(&root->log_writers, 0); 1264 atomic_set(&root->log_batch, 0); 1265 atomic_set(&root->orphan_inodes, 0); 1266 atomic_set(&root->refs, 1); 1267 atomic_set(&root->will_be_snapshoted, 0); 1268 root->log_transid = 0; 1269 root->log_transid_committed = -1; 1270 root->last_log_commit = 0; 1271 if (fs_info) 1272 extent_io_tree_init(&root->dirty_log_pages, 1273 fs_info->btree_inode->i_mapping); 1274 1275 memset(&root->root_key, 0, sizeof(root->root_key)); 1276 memset(&root->root_item, 0, sizeof(root->root_item)); 1277 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1278 if (fs_info) 1279 root->defrag_trans_start = fs_info->generation; 1280 else 1281 root->defrag_trans_start = 0; 1282 root->root_key.objectid = objectid; 1283 root->anon_dev = 0; 1284 1285 spin_lock_init(&root->root_item_lock); 1286 } 1287 1288 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1289 { 1290 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1291 if (root) 1292 root->fs_info = fs_info; 1293 return root; 1294 } 1295 1296 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1297 /* Should only be used by the testing infrastructure */ 1298 struct btrfs_root *btrfs_alloc_dummy_root(void) 1299 { 1300 struct btrfs_root *root; 1301 1302 root = btrfs_alloc_root(NULL); 1303 if (!root) 1304 return ERR_PTR(-ENOMEM); 1305 __setup_root(4096, 4096, 4096, root, NULL, 1); 1306 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state); 1307 root->alloc_bytenr = 0; 1308 1309 return root; 1310 } 1311 #endif 1312 1313 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1314 struct btrfs_fs_info *fs_info, 1315 u64 objectid) 1316 { 1317 struct extent_buffer *leaf; 1318 struct btrfs_root *tree_root = fs_info->tree_root; 1319 struct btrfs_root *root; 1320 struct btrfs_key key; 1321 int ret = 0; 1322 uuid_le uuid; 1323 1324 root = btrfs_alloc_root(fs_info); 1325 if (!root) 1326 return ERR_PTR(-ENOMEM); 1327 1328 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1329 tree_root->stripesize, root, fs_info, objectid); 1330 root->root_key.objectid = objectid; 1331 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1332 root->root_key.offset = 0; 1333 1334 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 1335 if (IS_ERR(leaf)) { 1336 ret = PTR_ERR(leaf); 1337 leaf = NULL; 1338 goto fail; 1339 } 1340 1341 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1342 btrfs_set_header_bytenr(leaf, leaf->start); 1343 btrfs_set_header_generation(leaf, trans->transid); 1344 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1345 btrfs_set_header_owner(leaf, objectid); 1346 root->node = leaf; 1347 1348 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(), 1349 BTRFS_FSID_SIZE); 1350 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1351 btrfs_header_chunk_tree_uuid(leaf), 1352 BTRFS_UUID_SIZE); 1353 btrfs_mark_buffer_dirty(leaf); 1354 1355 root->commit_root = btrfs_root_node(root); 1356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 1357 1358 root->root_item.flags = 0; 1359 root->root_item.byte_limit = 0; 1360 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1361 btrfs_set_root_generation(&root->root_item, trans->transid); 1362 btrfs_set_root_level(&root->root_item, 0); 1363 btrfs_set_root_refs(&root->root_item, 1); 1364 btrfs_set_root_used(&root->root_item, leaf->len); 1365 btrfs_set_root_last_snapshot(&root->root_item, 0); 1366 btrfs_set_root_dirid(&root->root_item, 0); 1367 uuid_le_gen(&uuid); 1368 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); 1369 root->root_item.drop_level = 0; 1370 1371 key.objectid = objectid; 1372 key.type = BTRFS_ROOT_ITEM_KEY; 1373 key.offset = 0; 1374 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1375 if (ret) 1376 goto fail; 1377 1378 btrfs_tree_unlock(leaf); 1379 1380 return root; 1381 1382 fail: 1383 if (leaf) { 1384 btrfs_tree_unlock(leaf); 1385 free_extent_buffer(root->commit_root); 1386 free_extent_buffer(leaf); 1387 } 1388 kfree(root); 1389 1390 return ERR_PTR(ret); 1391 } 1392 1393 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1394 struct btrfs_fs_info *fs_info) 1395 { 1396 struct btrfs_root *root; 1397 struct btrfs_root *tree_root = fs_info->tree_root; 1398 struct extent_buffer *leaf; 1399 1400 root = btrfs_alloc_root(fs_info); 1401 if (!root) 1402 return ERR_PTR(-ENOMEM); 1403 1404 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1405 tree_root->stripesize, root, fs_info, 1406 BTRFS_TREE_LOG_OBJECTID); 1407 1408 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1409 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1410 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1411 1412 /* 1413 * DON'T set REF_COWS for log trees 1414 * 1415 * log trees do not get reference counted because they go away 1416 * before a real commit is actually done. They do store pointers 1417 * to file data extents, and those reference counts still get 1418 * updated (along with back refs to the log tree). 1419 */ 1420 1421 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, 1422 NULL, 0, 0, 0); 1423 if (IS_ERR(leaf)) { 1424 kfree(root); 1425 return ERR_CAST(leaf); 1426 } 1427 1428 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1429 btrfs_set_header_bytenr(leaf, leaf->start); 1430 btrfs_set_header_generation(leaf, trans->transid); 1431 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1432 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1433 root->node = leaf; 1434 1435 write_extent_buffer(root->node, root->fs_info->fsid, 1436 btrfs_header_fsid(), BTRFS_FSID_SIZE); 1437 btrfs_mark_buffer_dirty(root->node); 1438 btrfs_tree_unlock(root->node); 1439 return root; 1440 } 1441 1442 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1443 struct btrfs_fs_info *fs_info) 1444 { 1445 struct btrfs_root *log_root; 1446 1447 log_root = alloc_log_tree(trans, fs_info); 1448 if (IS_ERR(log_root)) 1449 return PTR_ERR(log_root); 1450 WARN_ON(fs_info->log_root_tree); 1451 fs_info->log_root_tree = log_root; 1452 return 0; 1453 } 1454 1455 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root) 1457 { 1458 struct btrfs_root *log_root; 1459 struct btrfs_inode_item *inode_item; 1460 1461 log_root = alloc_log_tree(trans, root->fs_info); 1462 if (IS_ERR(log_root)) 1463 return PTR_ERR(log_root); 1464 1465 log_root->last_trans = trans->transid; 1466 log_root->root_key.offset = root->root_key.objectid; 1467 1468 inode_item = &log_root->root_item.inode; 1469 btrfs_set_stack_inode_generation(inode_item, 1); 1470 btrfs_set_stack_inode_size(inode_item, 3); 1471 btrfs_set_stack_inode_nlink(inode_item, 1); 1472 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 1473 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 1474 1475 btrfs_set_root_node(&log_root->root_item, log_root->node); 1476 1477 WARN_ON(root->log_root); 1478 root->log_root = log_root; 1479 root->log_transid = 0; 1480 root->log_transid_committed = -1; 1481 root->last_log_commit = 0; 1482 return 0; 1483 } 1484 1485 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, 1486 struct btrfs_key *key) 1487 { 1488 struct btrfs_root *root; 1489 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1490 struct btrfs_path *path; 1491 u64 generation; 1492 int ret; 1493 1494 path = btrfs_alloc_path(); 1495 if (!path) 1496 return ERR_PTR(-ENOMEM); 1497 1498 root = btrfs_alloc_root(fs_info); 1499 if (!root) { 1500 ret = -ENOMEM; 1501 goto alloc_fail; 1502 } 1503 1504 __setup_root(tree_root->nodesize, tree_root->sectorsize, 1505 tree_root->stripesize, root, fs_info, key->objectid); 1506 1507 ret = btrfs_find_root(tree_root, key, path, 1508 &root->root_item, &root->root_key); 1509 if (ret) { 1510 if (ret > 0) 1511 ret = -ENOENT; 1512 goto find_fail; 1513 } 1514 1515 generation = btrfs_root_generation(&root->root_item); 1516 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1517 generation); 1518 if (IS_ERR(root->node)) { 1519 ret = PTR_ERR(root->node); 1520 goto find_fail; 1521 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { 1522 ret = -EIO; 1523 free_extent_buffer(root->node); 1524 goto find_fail; 1525 } 1526 root->commit_root = btrfs_root_node(root); 1527 out: 1528 btrfs_free_path(path); 1529 return root; 1530 1531 find_fail: 1532 kfree(root); 1533 alloc_fail: 1534 root = ERR_PTR(ret); 1535 goto out; 1536 } 1537 1538 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, 1539 struct btrfs_key *location) 1540 { 1541 struct btrfs_root *root; 1542 1543 root = btrfs_read_tree_root(tree_root, location); 1544 if (IS_ERR(root)) 1545 return root; 1546 1547 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 1548 set_bit(BTRFS_ROOT_REF_COWS, &root->state); 1549 btrfs_check_and_init_root_item(&root->root_item); 1550 } 1551 1552 return root; 1553 } 1554 1555 int btrfs_init_fs_root(struct btrfs_root *root) 1556 { 1557 int ret; 1558 struct btrfs_subvolume_writers *writers; 1559 1560 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1561 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1562 GFP_NOFS); 1563 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1564 ret = -ENOMEM; 1565 goto fail; 1566 } 1567 1568 writers = btrfs_alloc_subvolume_writers(); 1569 if (IS_ERR(writers)) { 1570 ret = PTR_ERR(writers); 1571 goto fail; 1572 } 1573 root->subv_writers = writers; 1574 1575 btrfs_init_free_ino_ctl(root); 1576 spin_lock_init(&root->ino_cache_lock); 1577 init_waitqueue_head(&root->ino_cache_wait); 1578 1579 ret = get_anon_bdev(&root->anon_dev); 1580 if (ret) 1581 goto free_writers; 1582 return 0; 1583 1584 free_writers: 1585 btrfs_free_subvolume_writers(root->subv_writers); 1586 fail: 1587 kfree(root->free_ino_ctl); 1588 kfree(root->free_ino_pinned); 1589 return ret; 1590 } 1591 1592 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1593 u64 root_id) 1594 { 1595 struct btrfs_root *root; 1596 1597 spin_lock(&fs_info->fs_roots_radix_lock); 1598 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1599 (unsigned long)root_id); 1600 spin_unlock(&fs_info->fs_roots_radix_lock); 1601 return root; 1602 } 1603 1604 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, 1605 struct btrfs_root *root) 1606 { 1607 int ret; 1608 1609 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1610 if (ret) 1611 return ret; 1612 1613 spin_lock(&fs_info->fs_roots_radix_lock); 1614 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1615 (unsigned long)root->root_key.objectid, 1616 root); 1617 if (ret == 0) 1618 set_bit(BTRFS_ROOT_IN_RADIX, &root->state); 1619 spin_unlock(&fs_info->fs_roots_radix_lock); 1620 radix_tree_preload_end(); 1621 1622 return ret; 1623 } 1624 1625 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, 1626 struct btrfs_key *location, 1627 bool check_ref) 1628 { 1629 struct btrfs_root *root; 1630 struct btrfs_path *path; 1631 struct btrfs_key key; 1632 int ret; 1633 1634 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1635 return fs_info->tree_root; 1636 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1637 return fs_info->extent_root; 1638 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1639 return fs_info->chunk_root; 1640 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1641 return fs_info->dev_root; 1642 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1643 return fs_info->csum_root; 1644 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1645 return fs_info->quota_root ? fs_info->quota_root : 1646 ERR_PTR(-ENOENT); 1647 if (location->objectid == BTRFS_UUID_TREE_OBJECTID) 1648 return fs_info->uuid_root ? fs_info->uuid_root : 1649 ERR_PTR(-ENOENT); 1650 again: 1651 root = btrfs_lookup_fs_root(fs_info, location->objectid); 1652 if (root) { 1653 if (check_ref && btrfs_root_refs(&root->root_item) == 0) 1654 return ERR_PTR(-ENOENT); 1655 return root; 1656 } 1657 1658 root = btrfs_read_fs_root(fs_info->tree_root, location); 1659 if (IS_ERR(root)) 1660 return root; 1661 1662 if (check_ref && btrfs_root_refs(&root->root_item) == 0) { 1663 ret = -ENOENT; 1664 goto fail; 1665 } 1666 1667 ret = btrfs_init_fs_root(root); 1668 if (ret) 1669 goto fail; 1670 1671 path = btrfs_alloc_path(); 1672 if (!path) { 1673 ret = -ENOMEM; 1674 goto fail; 1675 } 1676 key.objectid = BTRFS_ORPHAN_OBJECTID; 1677 key.type = BTRFS_ORPHAN_ITEM_KEY; 1678 key.offset = location->objectid; 1679 1680 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1681 btrfs_free_path(path); 1682 if (ret < 0) 1683 goto fail; 1684 if (ret == 0) 1685 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); 1686 1687 ret = btrfs_insert_fs_root(fs_info, root); 1688 if (ret) { 1689 if (ret == -EEXIST) { 1690 free_fs_root(root); 1691 goto again; 1692 } 1693 goto fail; 1694 } 1695 return root; 1696 fail: 1697 free_fs_root(root); 1698 return ERR_PTR(ret); 1699 } 1700 1701 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1702 { 1703 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1704 int ret = 0; 1705 struct btrfs_device *device; 1706 struct backing_dev_info *bdi; 1707 1708 rcu_read_lock(); 1709 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1710 if (!device->bdev) 1711 continue; 1712 bdi = blk_get_backing_dev_info(device->bdev); 1713 if (bdi_congested(bdi, bdi_bits)) { 1714 ret = 1; 1715 break; 1716 } 1717 } 1718 rcu_read_unlock(); 1719 return ret; 1720 } 1721 1722 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1723 { 1724 int err; 1725 1726 err = bdi_setup_and_register(bdi, "btrfs"); 1727 if (err) 1728 return err; 1729 1730 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE; 1731 bdi->congested_fn = btrfs_congested_fn; 1732 bdi->congested_data = info; 1733 return 0; 1734 } 1735 1736 /* 1737 * called by the kthread helper functions to finally call the bio end_io 1738 * functions. This is where read checksum verification actually happens 1739 */ 1740 static void end_workqueue_fn(struct btrfs_work *work) 1741 { 1742 struct bio *bio; 1743 struct btrfs_end_io_wq *end_io_wq; 1744 1745 end_io_wq = container_of(work, struct btrfs_end_io_wq, work); 1746 bio = end_io_wq->bio; 1747 1748 bio->bi_error = end_io_wq->error; 1749 bio->bi_private = end_io_wq->private; 1750 bio->bi_end_io = end_io_wq->end_io; 1751 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); 1752 bio_endio(bio); 1753 } 1754 1755 static int cleaner_kthread(void *arg) 1756 { 1757 struct btrfs_root *root = arg; 1758 int again; 1759 struct btrfs_trans_handle *trans; 1760 1761 do { 1762 again = 0; 1763 1764 /* Make the cleaner go to sleep early. */ 1765 if (btrfs_need_cleaner_sleep(root)) 1766 goto sleep; 1767 1768 if (!mutex_trylock(&root->fs_info->cleaner_mutex)) 1769 goto sleep; 1770 1771 /* 1772 * Avoid the problem that we change the status of the fs 1773 * during the above check and trylock. 1774 */ 1775 if (btrfs_need_cleaner_sleep(root)) { 1776 mutex_unlock(&root->fs_info->cleaner_mutex); 1777 goto sleep; 1778 } 1779 1780 btrfs_run_delayed_iputs(root); 1781 again = btrfs_clean_one_deleted_snapshot(root); 1782 mutex_unlock(&root->fs_info->cleaner_mutex); 1783 1784 /* 1785 * The defragger has dealt with the R/O remount and umount, 1786 * needn't do anything special here. 1787 */ 1788 btrfs_run_defrag_inodes(root->fs_info); 1789 1790 /* 1791 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing 1792 * with relocation (btrfs_relocate_chunk) and relocation 1793 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) 1794 * after acquiring fs_info->delete_unused_bgs_mutex. So we 1795 * can't hold, nor need to, fs_info->cleaner_mutex when deleting 1796 * unused block groups. 1797 */ 1798 btrfs_delete_unused_bgs(root->fs_info); 1799 sleep: 1800 if (!try_to_freeze() && !again) { 1801 set_current_state(TASK_INTERRUPTIBLE); 1802 if (!kthread_should_stop()) 1803 schedule(); 1804 __set_current_state(TASK_RUNNING); 1805 } 1806 } while (!kthread_should_stop()); 1807 1808 /* 1809 * Transaction kthread is stopped before us and wakes us up. 1810 * However we might have started a new transaction and COWed some 1811 * tree blocks when deleting unused block groups for example. So 1812 * make sure we commit the transaction we started to have a clean 1813 * shutdown when evicting the btree inode - if it has dirty pages 1814 * when we do the final iput() on it, eviction will trigger a 1815 * writeback for it which will fail with null pointer dereferences 1816 * since work queues and other resources were already released and 1817 * destroyed by the time the iput/eviction/writeback is made. 1818 */ 1819 trans = btrfs_attach_transaction(root); 1820 if (IS_ERR(trans)) { 1821 if (PTR_ERR(trans) != -ENOENT) 1822 btrfs_err(root->fs_info, 1823 "cleaner transaction attach returned %ld", 1824 PTR_ERR(trans)); 1825 } else { 1826 int ret; 1827 1828 ret = btrfs_commit_transaction(trans, root); 1829 if (ret) 1830 btrfs_err(root->fs_info, 1831 "cleaner open transaction commit returned %d", 1832 ret); 1833 } 1834 1835 return 0; 1836 } 1837 1838 static int transaction_kthread(void *arg) 1839 { 1840 struct btrfs_root *root = arg; 1841 struct btrfs_trans_handle *trans; 1842 struct btrfs_transaction *cur; 1843 u64 transid; 1844 unsigned long now; 1845 unsigned long delay; 1846 bool cannot_commit; 1847 1848 do { 1849 cannot_commit = false; 1850 delay = HZ * root->fs_info->commit_interval; 1851 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1852 1853 spin_lock(&root->fs_info->trans_lock); 1854 cur = root->fs_info->running_transaction; 1855 if (!cur) { 1856 spin_unlock(&root->fs_info->trans_lock); 1857 goto sleep; 1858 } 1859 1860 now = get_seconds(); 1861 if (cur->state < TRANS_STATE_BLOCKED && 1862 (now < cur->start_time || 1863 now - cur->start_time < root->fs_info->commit_interval)) { 1864 spin_unlock(&root->fs_info->trans_lock); 1865 delay = HZ * 5; 1866 goto sleep; 1867 } 1868 transid = cur->transid; 1869 spin_unlock(&root->fs_info->trans_lock); 1870 1871 /* If the file system is aborted, this will always fail. */ 1872 trans = btrfs_attach_transaction(root); 1873 if (IS_ERR(trans)) { 1874 if (PTR_ERR(trans) != -ENOENT) 1875 cannot_commit = true; 1876 goto sleep; 1877 } 1878 if (transid == trans->transid) { 1879 btrfs_commit_transaction(trans, root); 1880 } else { 1881 btrfs_end_transaction(trans, root); 1882 } 1883 sleep: 1884 wake_up_process(root->fs_info->cleaner_kthread); 1885 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1886 1887 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, 1888 &root->fs_info->fs_state))) 1889 btrfs_cleanup_transaction(root); 1890 if (!try_to_freeze()) { 1891 set_current_state(TASK_INTERRUPTIBLE); 1892 if (!kthread_should_stop() && 1893 (!btrfs_transaction_blocked(root->fs_info) || 1894 cannot_commit)) 1895 schedule_timeout(delay); 1896 __set_current_state(TASK_RUNNING); 1897 } 1898 } while (!kthread_should_stop()); 1899 return 0; 1900 } 1901 1902 /* 1903 * this will find the highest generation in the array of 1904 * root backups. The index of the highest array is returned, 1905 * or -1 if we can't find anything. 1906 * 1907 * We check to make sure the array is valid by comparing the 1908 * generation of the latest root in the array with the generation 1909 * in the super block. If they don't match we pitch it. 1910 */ 1911 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1912 { 1913 u64 cur; 1914 int newest_index = -1; 1915 struct btrfs_root_backup *root_backup; 1916 int i; 1917 1918 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1919 root_backup = info->super_copy->super_roots + i; 1920 cur = btrfs_backup_tree_root_gen(root_backup); 1921 if (cur == newest_gen) 1922 newest_index = i; 1923 } 1924 1925 /* check to see if we actually wrapped around */ 1926 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1927 root_backup = info->super_copy->super_roots; 1928 cur = btrfs_backup_tree_root_gen(root_backup); 1929 if (cur == newest_gen) 1930 newest_index = 0; 1931 } 1932 return newest_index; 1933 } 1934 1935 1936 /* 1937 * find the oldest backup so we know where to store new entries 1938 * in the backup array. This will set the backup_root_index 1939 * field in the fs_info struct 1940 */ 1941 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1942 u64 newest_gen) 1943 { 1944 int newest_index = -1; 1945 1946 newest_index = find_newest_super_backup(info, newest_gen); 1947 /* if there was garbage in there, just move along */ 1948 if (newest_index == -1) { 1949 info->backup_root_index = 0; 1950 } else { 1951 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1952 } 1953 } 1954 1955 /* 1956 * copy all the root pointers into the super backup array. 1957 * this will bump the backup pointer by one when it is 1958 * done 1959 */ 1960 static void backup_super_roots(struct btrfs_fs_info *info) 1961 { 1962 int next_backup; 1963 struct btrfs_root_backup *root_backup; 1964 int last_backup; 1965 1966 next_backup = info->backup_root_index; 1967 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1968 BTRFS_NUM_BACKUP_ROOTS; 1969 1970 /* 1971 * just overwrite the last backup if we're at the same generation 1972 * this happens only at umount 1973 */ 1974 root_backup = info->super_for_commit->super_roots + last_backup; 1975 if (btrfs_backup_tree_root_gen(root_backup) == 1976 btrfs_header_generation(info->tree_root->node)) 1977 next_backup = last_backup; 1978 1979 root_backup = info->super_for_commit->super_roots + next_backup; 1980 1981 /* 1982 * make sure all of our padding and empty slots get zero filled 1983 * regardless of which ones we use today 1984 */ 1985 memset(root_backup, 0, sizeof(*root_backup)); 1986 1987 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1988 1989 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1990 btrfs_set_backup_tree_root_gen(root_backup, 1991 btrfs_header_generation(info->tree_root->node)); 1992 1993 btrfs_set_backup_tree_root_level(root_backup, 1994 btrfs_header_level(info->tree_root->node)); 1995 1996 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1997 btrfs_set_backup_chunk_root_gen(root_backup, 1998 btrfs_header_generation(info->chunk_root->node)); 1999 btrfs_set_backup_chunk_root_level(root_backup, 2000 btrfs_header_level(info->chunk_root->node)); 2001 2002 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 2003 btrfs_set_backup_extent_root_gen(root_backup, 2004 btrfs_header_generation(info->extent_root->node)); 2005 btrfs_set_backup_extent_root_level(root_backup, 2006 btrfs_header_level(info->extent_root->node)); 2007 2008 /* 2009 * we might commit during log recovery, which happens before we set 2010 * the fs_root. Make sure it is valid before we fill it in. 2011 */ 2012 if (info->fs_root && info->fs_root->node) { 2013 btrfs_set_backup_fs_root(root_backup, 2014 info->fs_root->node->start); 2015 btrfs_set_backup_fs_root_gen(root_backup, 2016 btrfs_header_generation(info->fs_root->node)); 2017 btrfs_set_backup_fs_root_level(root_backup, 2018 btrfs_header_level(info->fs_root->node)); 2019 } 2020 2021 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 2022 btrfs_set_backup_dev_root_gen(root_backup, 2023 btrfs_header_generation(info->dev_root->node)); 2024 btrfs_set_backup_dev_root_level(root_backup, 2025 btrfs_header_level(info->dev_root->node)); 2026 2027 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 2028 btrfs_set_backup_csum_root_gen(root_backup, 2029 btrfs_header_generation(info->csum_root->node)); 2030 btrfs_set_backup_csum_root_level(root_backup, 2031 btrfs_header_level(info->csum_root->node)); 2032 2033 btrfs_set_backup_total_bytes(root_backup, 2034 btrfs_super_total_bytes(info->super_copy)); 2035 btrfs_set_backup_bytes_used(root_backup, 2036 btrfs_super_bytes_used(info->super_copy)); 2037 btrfs_set_backup_num_devices(root_backup, 2038 btrfs_super_num_devices(info->super_copy)); 2039 2040 /* 2041 * if we don't copy this out to the super_copy, it won't get remembered 2042 * for the next commit 2043 */ 2044 memcpy(&info->super_copy->super_roots, 2045 &info->super_for_commit->super_roots, 2046 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 2047 } 2048 2049 /* 2050 * this copies info out of the root backup array and back into 2051 * the in-memory super block. It is meant to help iterate through 2052 * the array, so you send it the number of backups you've already 2053 * tried and the last backup index you used. 2054 * 2055 * this returns -1 when it has tried all the backups 2056 */ 2057 static noinline int next_root_backup(struct btrfs_fs_info *info, 2058 struct btrfs_super_block *super, 2059 int *num_backups_tried, int *backup_index) 2060 { 2061 struct btrfs_root_backup *root_backup; 2062 int newest = *backup_index; 2063 2064 if (*num_backups_tried == 0) { 2065 u64 gen = btrfs_super_generation(super); 2066 2067 newest = find_newest_super_backup(info, gen); 2068 if (newest == -1) 2069 return -1; 2070 2071 *backup_index = newest; 2072 *num_backups_tried = 1; 2073 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 2074 /* we've tried all the backups, all done */ 2075 return -1; 2076 } else { 2077 /* jump to the next oldest backup */ 2078 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 2079 BTRFS_NUM_BACKUP_ROOTS; 2080 *backup_index = newest; 2081 *num_backups_tried += 1; 2082 } 2083 root_backup = super->super_roots + newest; 2084 2085 btrfs_set_super_generation(super, 2086 btrfs_backup_tree_root_gen(root_backup)); 2087 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 2088 btrfs_set_super_root_level(super, 2089 btrfs_backup_tree_root_level(root_backup)); 2090 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 2091 2092 /* 2093 * fixme: the total bytes and num_devices need to match or we should 2094 * need a fsck 2095 */ 2096 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 2097 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 2098 return 0; 2099 } 2100 2101 /* helper to cleanup workers */ 2102 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) 2103 { 2104 btrfs_destroy_workqueue(fs_info->fixup_workers); 2105 btrfs_destroy_workqueue(fs_info->delalloc_workers); 2106 btrfs_destroy_workqueue(fs_info->workers); 2107 btrfs_destroy_workqueue(fs_info->endio_workers); 2108 btrfs_destroy_workqueue(fs_info->endio_meta_workers); 2109 btrfs_destroy_workqueue(fs_info->endio_raid56_workers); 2110 btrfs_destroy_workqueue(fs_info->endio_repair_workers); 2111 btrfs_destroy_workqueue(fs_info->rmw_workers); 2112 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); 2113 btrfs_destroy_workqueue(fs_info->endio_write_workers); 2114 btrfs_destroy_workqueue(fs_info->endio_freespace_worker); 2115 btrfs_destroy_workqueue(fs_info->submit_workers); 2116 btrfs_destroy_workqueue(fs_info->delayed_workers); 2117 btrfs_destroy_workqueue(fs_info->caching_workers); 2118 btrfs_destroy_workqueue(fs_info->readahead_workers); 2119 btrfs_destroy_workqueue(fs_info->flush_workers); 2120 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); 2121 btrfs_destroy_workqueue(fs_info->extent_workers); 2122 } 2123 2124 static void free_root_extent_buffers(struct btrfs_root *root) 2125 { 2126 if (root) { 2127 free_extent_buffer(root->node); 2128 free_extent_buffer(root->commit_root); 2129 root->node = NULL; 2130 root->commit_root = NULL; 2131 } 2132 } 2133 2134 /* helper to cleanup tree roots */ 2135 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 2136 { 2137 free_root_extent_buffers(info->tree_root); 2138 2139 free_root_extent_buffers(info->dev_root); 2140 free_root_extent_buffers(info->extent_root); 2141 free_root_extent_buffers(info->csum_root); 2142 free_root_extent_buffers(info->quota_root); 2143 free_root_extent_buffers(info->uuid_root); 2144 if (chunk_root) 2145 free_root_extent_buffers(info->chunk_root); 2146 } 2147 2148 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) 2149 { 2150 int ret; 2151 struct btrfs_root *gang[8]; 2152 int i; 2153 2154 while (!list_empty(&fs_info->dead_roots)) { 2155 gang[0] = list_entry(fs_info->dead_roots.next, 2156 struct btrfs_root, root_list); 2157 list_del(&gang[0]->root_list); 2158 2159 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { 2160 btrfs_drop_and_free_fs_root(fs_info, gang[0]); 2161 } else { 2162 free_extent_buffer(gang[0]->node); 2163 free_extent_buffer(gang[0]->commit_root); 2164 btrfs_put_fs_root(gang[0]); 2165 } 2166 } 2167 2168 while (1) { 2169 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2170 (void **)gang, 0, 2171 ARRAY_SIZE(gang)); 2172 if (!ret) 2173 break; 2174 for (i = 0; i < ret; i++) 2175 btrfs_drop_and_free_fs_root(fs_info, gang[i]); 2176 } 2177 2178 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 2179 btrfs_free_log_root_tree(NULL, fs_info); 2180 btrfs_destroy_pinned_extent(fs_info->tree_root, 2181 fs_info->pinned_extents); 2182 } 2183 } 2184 2185 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) 2186 { 2187 mutex_init(&fs_info->scrub_lock); 2188 atomic_set(&fs_info->scrubs_running, 0); 2189 atomic_set(&fs_info->scrub_pause_req, 0); 2190 atomic_set(&fs_info->scrubs_paused, 0); 2191 atomic_set(&fs_info->scrub_cancel_req, 0); 2192 init_waitqueue_head(&fs_info->scrub_pause_wait); 2193 fs_info->scrub_workers_refcnt = 0; 2194 } 2195 2196 static void btrfs_init_balance(struct btrfs_fs_info *fs_info) 2197 { 2198 spin_lock_init(&fs_info->balance_lock); 2199 mutex_init(&fs_info->balance_mutex); 2200 atomic_set(&fs_info->balance_running, 0); 2201 atomic_set(&fs_info->balance_pause_req, 0); 2202 atomic_set(&fs_info->balance_cancel_req, 0); 2203 fs_info->balance_ctl = NULL; 2204 init_waitqueue_head(&fs_info->balance_wait_q); 2205 } 2206 2207 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info, 2208 struct btrfs_root *tree_root) 2209 { 2210 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2211 set_nlink(fs_info->btree_inode, 1); 2212 /* 2213 * we set the i_size on the btree inode to the max possible int. 2214 * the real end of the address space is determined by all of 2215 * the devices in the system 2216 */ 2217 fs_info->btree_inode->i_size = OFFSET_MAX; 2218 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2219 2220 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2221 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2222 fs_info->btree_inode->i_mapping); 2223 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2224 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2225 2226 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2227 2228 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2229 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2230 sizeof(struct btrfs_key)); 2231 set_bit(BTRFS_INODE_DUMMY, 2232 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2233 btrfs_insert_inode_hash(fs_info->btree_inode); 2234 } 2235 2236 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) 2237 { 2238 fs_info->dev_replace.lock_owner = 0; 2239 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2240 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2241 mutex_init(&fs_info->dev_replace.lock_management_lock); 2242 mutex_init(&fs_info->dev_replace.lock); 2243 init_waitqueue_head(&fs_info->replace_wait); 2244 } 2245 2246 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) 2247 { 2248 spin_lock_init(&fs_info->qgroup_lock); 2249 mutex_init(&fs_info->qgroup_ioctl_lock); 2250 fs_info->qgroup_tree = RB_ROOT; 2251 fs_info->qgroup_op_tree = RB_ROOT; 2252 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2253 fs_info->qgroup_seq = 1; 2254 fs_info->quota_enabled = 0; 2255 fs_info->pending_quota_state = 0; 2256 fs_info->qgroup_ulist = NULL; 2257 mutex_init(&fs_info->qgroup_rescan_lock); 2258 } 2259 2260 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, 2261 struct btrfs_fs_devices *fs_devices) 2262 { 2263 int max_active = fs_info->thread_pool_size; 2264 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; 2265 2266 fs_info->workers = 2267 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI, 2268 max_active, 16); 2269 2270 fs_info->delalloc_workers = 2271 btrfs_alloc_workqueue("delalloc", flags, max_active, 2); 2272 2273 fs_info->flush_workers = 2274 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0); 2275 2276 fs_info->caching_workers = 2277 btrfs_alloc_workqueue("cache", flags, max_active, 0); 2278 2279 /* 2280 * a higher idle thresh on the submit workers makes it much more 2281 * likely that bios will be send down in a sane order to the 2282 * devices 2283 */ 2284 fs_info->submit_workers = 2285 btrfs_alloc_workqueue("submit", flags, 2286 min_t(u64, fs_devices->num_devices, 2287 max_active), 64); 2288 2289 fs_info->fixup_workers = 2290 btrfs_alloc_workqueue("fixup", flags, 1, 0); 2291 2292 /* 2293 * endios are largely parallel and should have a very 2294 * low idle thresh 2295 */ 2296 fs_info->endio_workers = 2297 btrfs_alloc_workqueue("endio", flags, max_active, 4); 2298 fs_info->endio_meta_workers = 2299 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4); 2300 fs_info->endio_meta_write_workers = 2301 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2); 2302 fs_info->endio_raid56_workers = 2303 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4); 2304 fs_info->endio_repair_workers = 2305 btrfs_alloc_workqueue("endio-repair", flags, 1, 0); 2306 fs_info->rmw_workers = 2307 btrfs_alloc_workqueue("rmw", flags, max_active, 2); 2308 fs_info->endio_write_workers = 2309 btrfs_alloc_workqueue("endio-write", flags, max_active, 2); 2310 fs_info->endio_freespace_worker = 2311 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0); 2312 fs_info->delayed_workers = 2313 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0); 2314 fs_info->readahead_workers = 2315 btrfs_alloc_workqueue("readahead", flags, max_active, 2); 2316 fs_info->qgroup_rescan_workers = 2317 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0); 2318 fs_info->extent_workers = 2319 btrfs_alloc_workqueue("extent-refs", flags, 2320 min_t(u64, fs_devices->num_devices, 2321 max_active), 8); 2322 2323 if (!(fs_info->workers && fs_info->delalloc_workers && 2324 fs_info->submit_workers && fs_info->flush_workers && 2325 fs_info->endio_workers && fs_info->endio_meta_workers && 2326 fs_info->endio_meta_write_workers && 2327 fs_info->endio_repair_workers && 2328 fs_info->endio_write_workers && fs_info->endio_raid56_workers && 2329 fs_info->endio_freespace_worker && fs_info->rmw_workers && 2330 fs_info->caching_workers && fs_info->readahead_workers && 2331 fs_info->fixup_workers && fs_info->delayed_workers && 2332 fs_info->extent_workers && 2333 fs_info->qgroup_rescan_workers)) { 2334 return -ENOMEM; 2335 } 2336 2337 return 0; 2338 } 2339 2340 static int btrfs_replay_log(struct btrfs_fs_info *fs_info, 2341 struct btrfs_fs_devices *fs_devices) 2342 { 2343 int ret; 2344 struct btrfs_root *tree_root = fs_info->tree_root; 2345 struct btrfs_root *log_tree_root; 2346 struct btrfs_super_block *disk_super = fs_info->super_copy; 2347 u64 bytenr = btrfs_super_log_root(disk_super); 2348 2349 if (fs_devices->rw_devices == 0) { 2350 printk(KERN_WARNING "BTRFS: log replay required " 2351 "on RO media\n"); 2352 return -EIO; 2353 } 2354 2355 log_tree_root = btrfs_alloc_root(fs_info); 2356 if (!log_tree_root) 2357 return -ENOMEM; 2358 2359 __setup_root(tree_root->nodesize, tree_root->sectorsize, 2360 tree_root->stripesize, log_tree_root, fs_info, 2361 BTRFS_TREE_LOG_OBJECTID); 2362 2363 log_tree_root->node = read_tree_block(tree_root, bytenr, 2364 fs_info->generation + 1); 2365 if (IS_ERR(log_tree_root->node)) { 2366 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2367 ret = PTR_ERR(log_tree_root->node); 2368 kfree(log_tree_root); 2369 return ret; 2370 } else if (!extent_buffer_uptodate(log_tree_root->node)) { 2371 printk(KERN_ERR "BTRFS: failed to read log tree\n"); 2372 free_extent_buffer(log_tree_root->node); 2373 kfree(log_tree_root); 2374 return -EIO; 2375 } 2376 /* returns with log_tree_root freed on success */ 2377 ret = btrfs_recover_log_trees(log_tree_root); 2378 if (ret) { 2379 btrfs_error(tree_root->fs_info, ret, 2380 "Failed to recover log tree"); 2381 free_extent_buffer(log_tree_root->node); 2382 kfree(log_tree_root); 2383 return ret; 2384 } 2385 2386 if (fs_info->sb->s_flags & MS_RDONLY) { 2387 ret = btrfs_commit_super(tree_root); 2388 if (ret) 2389 return ret; 2390 } 2391 2392 return 0; 2393 } 2394 2395 static int btrfs_read_roots(struct btrfs_fs_info *fs_info, 2396 struct btrfs_root *tree_root) 2397 { 2398 struct btrfs_root *root; 2399 struct btrfs_key location; 2400 int ret; 2401 2402 location.objectid = BTRFS_EXTENT_TREE_OBJECTID; 2403 location.type = BTRFS_ROOT_ITEM_KEY; 2404 location.offset = 0; 2405 2406 root = btrfs_read_tree_root(tree_root, &location); 2407 if (IS_ERR(root)) 2408 return PTR_ERR(root); 2409 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2410 fs_info->extent_root = root; 2411 2412 location.objectid = BTRFS_DEV_TREE_OBJECTID; 2413 root = btrfs_read_tree_root(tree_root, &location); 2414 if (IS_ERR(root)) 2415 return PTR_ERR(root); 2416 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2417 fs_info->dev_root = root; 2418 btrfs_init_devices_late(fs_info); 2419 2420 location.objectid = BTRFS_CSUM_TREE_OBJECTID; 2421 root = btrfs_read_tree_root(tree_root, &location); 2422 if (IS_ERR(root)) 2423 return PTR_ERR(root); 2424 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2425 fs_info->csum_root = root; 2426 2427 location.objectid = BTRFS_QUOTA_TREE_OBJECTID; 2428 root = btrfs_read_tree_root(tree_root, &location); 2429 if (!IS_ERR(root)) { 2430 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2431 fs_info->quota_enabled = 1; 2432 fs_info->pending_quota_state = 1; 2433 fs_info->quota_root = root; 2434 } 2435 2436 location.objectid = BTRFS_UUID_TREE_OBJECTID; 2437 root = btrfs_read_tree_root(tree_root, &location); 2438 if (IS_ERR(root)) { 2439 ret = PTR_ERR(root); 2440 if (ret != -ENOENT) 2441 return ret; 2442 } else { 2443 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); 2444 fs_info->uuid_root = root; 2445 } 2446 2447 return 0; 2448 } 2449 2450 int open_ctree(struct super_block *sb, 2451 struct btrfs_fs_devices *fs_devices, 2452 char *options) 2453 { 2454 u32 sectorsize; 2455 u32 nodesize; 2456 u32 stripesize; 2457 u64 generation; 2458 u64 features; 2459 struct btrfs_key location; 2460 struct buffer_head *bh; 2461 struct btrfs_super_block *disk_super; 2462 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2463 struct btrfs_root *tree_root; 2464 struct btrfs_root *chunk_root; 2465 int ret; 2466 int err = -EINVAL; 2467 int num_backups_tried = 0; 2468 int backup_index = 0; 2469 int max_active; 2470 2471 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2472 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2473 if (!tree_root || !chunk_root) { 2474 err = -ENOMEM; 2475 goto fail; 2476 } 2477 2478 ret = init_srcu_struct(&fs_info->subvol_srcu); 2479 if (ret) { 2480 err = ret; 2481 goto fail; 2482 } 2483 2484 ret = setup_bdi(fs_info, &fs_info->bdi); 2485 if (ret) { 2486 err = ret; 2487 goto fail_srcu; 2488 } 2489 2490 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); 2491 if (ret) { 2492 err = ret; 2493 goto fail_bdi; 2494 } 2495 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2496 (1 + ilog2(nr_cpu_ids)); 2497 2498 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); 2499 if (ret) { 2500 err = ret; 2501 goto fail_dirty_metadata_bytes; 2502 } 2503 2504 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); 2505 if (ret) { 2506 err = ret; 2507 goto fail_delalloc_bytes; 2508 } 2509 2510 fs_info->btree_inode = new_inode(sb); 2511 if (!fs_info->btree_inode) { 2512 err = -ENOMEM; 2513 goto fail_bio_counter; 2514 } 2515 2516 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2517 2518 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2519 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); 2520 INIT_LIST_HEAD(&fs_info->trans_list); 2521 INIT_LIST_HEAD(&fs_info->dead_roots); 2522 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2523 INIT_LIST_HEAD(&fs_info->delalloc_roots); 2524 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2525 spin_lock_init(&fs_info->delalloc_root_lock); 2526 spin_lock_init(&fs_info->trans_lock); 2527 spin_lock_init(&fs_info->fs_roots_radix_lock); 2528 spin_lock_init(&fs_info->delayed_iput_lock); 2529 spin_lock_init(&fs_info->defrag_inodes_lock); 2530 spin_lock_init(&fs_info->free_chunk_lock); 2531 spin_lock_init(&fs_info->tree_mod_seq_lock); 2532 spin_lock_init(&fs_info->super_lock); 2533 spin_lock_init(&fs_info->qgroup_op_lock); 2534 spin_lock_init(&fs_info->buffer_lock); 2535 spin_lock_init(&fs_info->unused_bgs_lock); 2536 rwlock_init(&fs_info->tree_mod_log_lock); 2537 mutex_init(&fs_info->unused_bg_unpin_mutex); 2538 mutex_init(&fs_info->delete_unused_bgs_mutex); 2539 mutex_init(&fs_info->reloc_mutex); 2540 mutex_init(&fs_info->delalloc_root_mutex); 2541 seqlock_init(&fs_info->profiles_lock); 2542 init_rwsem(&fs_info->delayed_iput_sem); 2543 2544 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2545 INIT_LIST_HEAD(&fs_info->space_info); 2546 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2547 INIT_LIST_HEAD(&fs_info->unused_bgs); 2548 btrfs_mapping_init(&fs_info->mapping_tree); 2549 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2550 BTRFS_BLOCK_RSV_GLOBAL); 2551 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2552 BTRFS_BLOCK_RSV_DELALLOC); 2553 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2554 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2555 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2556 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2557 BTRFS_BLOCK_RSV_DELOPS); 2558 atomic_set(&fs_info->nr_async_submits, 0); 2559 atomic_set(&fs_info->async_delalloc_pages, 0); 2560 atomic_set(&fs_info->async_submit_draining, 0); 2561 atomic_set(&fs_info->nr_async_bios, 0); 2562 atomic_set(&fs_info->defrag_running, 0); 2563 atomic_set(&fs_info->qgroup_op_seq, 0); 2564 atomic64_set(&fs_info->tree_mod_seq, 0); 2565 fs_info->sb = sb; 2566 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; 2567 fs_info->metadata_ratio = 0; 2568 fs_info->defrag_inodes = RB_ROOT; 2569 fs_info->free_chunk_space = 0; 2570 fs_info->tree_mod_log = RB_ROOT; 2571 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 2572 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ 2573 /* readahead state */ 2574 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2575 spin_lock_init(&fs_info->reada_lock); 2576 2577 fs_info->thread_pool_size = min_t(unsigned long, 2578 num_online_cpus() + 2, 8); 2579 2580 INIT_LIST_HEAD(&fs_info->ordered_roots); 2581 spin_lock_init(&fs_info->ordered_root_lock); 2582 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2583 GFP_NOFS); 2584 if (!fs_info->delayed_root) { 2585 err = -ENOMEM; 2586 goto fail_iput; 2587 } 2588 btrfs_init_delayed_root(fs_info->delayed_root); 2589 2590 btrfs_init_scrub(fs_info); 2591 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2592 fs_info->check_integrity_print_mask = 0; 2593 #endif 2594 btrfs_init_balance(fs_info); 2595 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); 2596 2597 sb->s_blocksize = 4096; 2598 sb->s_blocksize_bits = blksize_bits(4096); 2599 sb->s_bdi = &fs_info->bdi; 2600 2601 btrfs_init_btree_inode(fs_info, tree_root); 2602 2603 spin_lock_init(&fs_info->block_group_cache_lock); 2604 fs_info->block_group_cache_tree = RB_ROOT; 2605 fs_info->first_logical_byte = (u64)-1; 2606 2607 extent_io_tree_init(&fs_info->freed_extents[0], 2608 fs_info->btree_inode->i_mapping); 2609 extent_io_tree_init(&fs_info->freed_extents[1], 2610 fs_info->btree_inode->i_mapping); 2611 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2612 fs_info->do_barriers = 1; 2613 2614 2615 mutex_init(&fs_info->ordered_operations_mutex); 2616 mutex_init(&fs_info->ordered_extent_flush_mutex); 2617 mutex_init(&fs_info->tree_log_mutex); 2618 mutex_init(&fs_info->chunk_mutex); 2619 mutex_init(&fs_info->transaction_kthread_mutex); 2620 mutex_init(&fs_info->cleaner_mutex); 2621 mutex_init(&fs_info->volume_mutex); 2622 mutex_init(&fs_info->ro_block_group_mutex); 2623 init_rwsem(&fs_info->commit_root_sem); 2624 init_rwsem(&fs_info->cleanup_work_sem); 2625 init_rwsem(&fs_info->subvol_sem); 2626 sema_init(&fs_info->uuid_tree_rescan_sem, 1); 2627 2628 btrfs_init_dev_replace_locks(fs_info); 2629 btrfs_init_qgroup(fs_info); 2630 2631 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2632 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2633 2634 init_waitqueue_head(&fs_info->transaction_throttle); 2635 init_waitqueue_head(&fs_info->transaction_wait); 2636 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2637 init_waitqueue_head(&fs_info->async_submit_wait); 2638 2639 INIT_LIST_HEAD(&fs_info->pinned_chunks); 2640 2641 ret = btrfs_alloc_stripe_hash_table(fs_info); 2642 if (ret) { 2643 err = ret; 2644 goto fail_alloc; 2645 } 2646 2647 __setup_root(4096, 4096, 4096, tree_root, 2648 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2649 2650 invalidate_bdev(fs_devices->latest_bdev); 2651 2652 /* 2653 * Read super block and check the signature bytes only 2654 */ 2655 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2656 if (!bh) { 2657 err = -EINVAL; 2658 goto fail_alloc; 2659 } 2660 2661 /* 2662 * We want to check superblock checksum, the type is stored inside. 2663 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). 2664 */ 2665 if (btrfs_check_super_csum(bh->b_data)) { 2666 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n"); 2667 err = -EINVAL; 2668 goto fail_alloc; 2669 } 2670 2671 /* 2672 * super_copy is zeroed at allocation time and we never touch the 2673 * following bytes up to INFO_SIZE, the checksum is calculated from 2674 * the whole block of INFO_SIZE 2675 */ 2676 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2677 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2678 sizeof(*fs_info->super_for_commit)); 2679 brelse(bh); 2680 2681 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2682 2683 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2684 if (ret) { 2685 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n"); 2686 err = -EINVAL; 2687 goto fail_alloc; 2688 } 2689 2690 disk_super = fs_info->super_copy; 2691 if (!btrfs_super_root(disk_super)) 2692 goto fail_alloc; 2693 2694 /* check FS state, whether FS is broken. */ 2695 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2696 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2697 2698 /* 2699 * run through our array of backup supers and setup 2700 * our ring pointer to the oldest one 2701 */ 2702 generation = btrfs_super_generation(disk_super); 2703 find_oldest_super_backup(fs_info, generation); 2704 2705 /* 2706 * In the long term, we'll store the compression type in the super 2707 * block, and it'll be used for per file compression control. 2708 */ 2709 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2710 2711 ret = btrfs_parse_options(tree_root, options); 2712 if (ret) { 2713 err = ret; 2714 goto fail_alloc; 2715 } 2716 2717 features = btrfs_super_incompat_flags(disk_super) & 2718 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2719 if (features) { 2720 printk(KERN_ERR "BTRFS: couldn't mount because of " 2721 "unsupported optional features (%Lx).\n", 2722 features); 2723 err = -EINVAL; 2724 goto fail_alloc; 2725 } 2726 2727 /* 2728 * Leafsize and nodesize were always equal, this is only a sanity check. 2729 */ 2730 if (le32_to_cpu(disk_super->__unused_leafsize) != 2731 btrfs_super_nodesize(disk_super)) { 2732 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2733 "blocksizes don't match. node %d leaf %d\n", 2734 btrfs_super_nodesize(disk_super), 2735 le32_to_cpu(disk_super->__unused_leafsize)); 2736 err = -EINVAL; 2737 goto fail_alloc; 2738 } 2739 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2740 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2741 "blocksize (%d) was too large\n", 2742 btrfs_super_nodesize(disk_super)); 2743 err = -EINVAL; 2744 goto fail_alloc; 2745 } 2746 2747 features = btrfs_super_incompat_flags(disk_super); 2748 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2749 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2750 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2751 2752 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) 2753 printk(KERN_INFO "BTRFS: has skinny extents\n"); 2754 2755 /* 2756 * flag our filesystem as having big metadata blocks if 2757 * they are bigger than the page size 2758 */ 2759 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) { 2760 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2761 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n"); 2762 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2763 } 2764 2765 nodesize = btrfs_super_nodesize(disk_super); 2766 sectorsize = btrfs_super_sectorsize(disk_super); 2767 stripesize = btrfs_super_stripesize(disk_super); 2768 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); 2769 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2770 2771 /* 2772 * mixed block groups end up with duplicate but slightly offset 2773 * extent buffers for the same range. It leads to corruptions 2774 */ 2775 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2776 (sectorsize != nodesize)) { 2777 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes " 2778 "are not allowed for mixed block groups on %s\n", 2779 sb->s_id); 2780 goto fail_alloc; 2781 } 2782 2783 /* 2784 * Needn't use the lock because there is no other task which will 2785 * update the flag. 2786 */ 2787 btrfs_set_super_incompat_flags(disk_super, features); 2788 2789 features = btrfs_super_compat_ro_flags(disk_super) & 2790 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2791 if (!(sb->s_flags & MS_RDONLY) && features) { 2792 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2793 "unsupported option features (%Lx).\n", 2794 features); 2795 err = -EINVAL; 2796 goto fail_alloc; 2797 } 2798 2799 max_active = fs_info->thread_pool_size; 2800 2801 ret = btrfs_init_workqueues(fs_info, fs_devices); 2802 if (ret) { 2803 err = ret; 2804 goto fail_sb_buffer; 2805 } 2806 2807 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2808 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2809 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2810 2811 tree_root->nodesize = nodesize; 2812 tree_root->sectorsize = sectorsize; 2813 tree_root->stripesize = stripesize; 2814 2815 sb->s_blocksize = sectorsize; 2816 sb->s_blocksize_bits = blksize_bits(sectorsize); 2817 2818 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 2819 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id); 2820 goto fail_sb_buffer; 2821 } 2822 2823 if (sectorsize != PAGE_SIZE) { 2824 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) " 2825 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2826 goto fail_sb_buffer; 2827 } 2828 2829 mutex_lock(&fs_info->chunk_mutex); 2830 ret = btrfs_read_sys_array(tree_root); 2831 mutex_unlock(&fs_info->chunk_mutex); 2832 if (ret) { 2833 printk(KERN_ERR "BTRFS: failed to read the system " 2834 "array on %s\n", sb->s_id); 2835 goto fail_sb_buffer; 2836 } 2837 2838 generation = btrfs_super_chunk_root_generation(disk_super); 2839 2840 __setup_root(nodesize, sectorsize, stripesize, chunk_root, 2841 fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2842 2843 chunk_root->node = read_tree_block(chunk_root, 2844 btrfs_super_chunk_root(disk_super), 2845 generation); 2846 if (IS_ERR(chunk_root->node) || 2847 !extent_buffer_uptodate(chunk_root->node)) { 2848 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n", 2849 sb->s_id); 2850 chunk_root->node = NULL; 2851 goto fail_tree_roots; 2852 } 2853 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2854 chunk_root->commit_root = btrfs_root_node(chunk_root); 2855 2856 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2857 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); 2858 2859 ret = btrfs_read_chunk_tree(chunk_root); 2860 if (ret) { 2861 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n", 2862 sb->s_id); 2863 goto fail_tree_roots; 2864 } 2865 2866 /* 2867 * keep the device that is marked to be the target device for the 2868 * dev_replace procedure 2869 */ 2870 btrfs_close_extra_devices(fs_devices, 0); 2871 2872 if (!fs_devices->latest_bdev) { 2873 printk(KERN_ERR "BTRFS: failed to read devices on %s\n", 2874 sb->s_id); 2875 goto fail_tree_roots; 2876 } 2877 2878 retry_root_backup: 2879 generation = btrfs_super_generation(disk_super); 2880 2881 tree_root->node = read_tree_block(tree_root, 2882 btrfs_super_root(disk_super), 2883 generation); 2884 if (IS_ERR(tree_root->node) || 2885 !extent_buffer_uptodate(tree_root->node)) { 2886 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n", 2887 sb->s_id); 2888 tree_root->node = NULL; 2889 goto recovery_tree_root; 2890 } 2891 2892 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2893 tree_root->commit_root = btrfs_root_node(tree_root); 2894 btrfs_set_root_refs(&tree_root->root_item, 1); 2895 2896 ret = btrfs_read_roots(fs_info, tree_root); 2897 if (ret) 2898 goto recovery_tree_root; 2899 2900 fs_info->generation = generation; 2901 fs_info->last_trans_committed = generation; 2902 2903 ret = btrfs_recover_balance(fs_info); 2904 if (ret) { 2905 printk(KERN_ERR "BTRFS: failed to recover balance\n"); 2906 goto fail_block_groups; 2907 } 2908 2909 ret = btrfs_init_dev_stats(fs_info); 2910 if (ret) { 2911 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n", 2912 ret); 2913 goto fail_block_groups; 2914 } 2915 2916 ret = btrfs_init_dev_replace(fs_info); 2917 if (ret) { 2918 pr_err("BTRFS: failed to init dev_replace: %d\n", ret); 2919 goto fail_block_groups; 2920 } 2921 2922 btrfs_close_extra_devices(fs_devices, 1); 2923 2924 ret = btrfs_sysfs_add_fsid(fs_devices, NULL); 2925 if (ret) { 2926 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret); 2927 goto fail_block_groups; 2928 } 2929 2930 ret = btrfs_sysfs_add_device(fs_devices); 2931 if (ret) { 2932 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret); 2933 goto fail_fsdev_sysfs; 2934 } 2935 2936 ret = btrfs_sysfs_add_one(fs_info); 2937 if (ret) { 2938 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret); 2939 goto fail_fsdev_sysfs; 2940 } 2941 2942 ret = btrfs_init_space_info(fs_info); 2943 if (ret) { 2944 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret); 2945 goto fail_sysfs; 2946 } 2947 2948 ret = btrfs_read_block_groups(fs_info->extent_root); 2949 if (ret) { 2950 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret); 2951 goto fail_sysfs; 2952 } 2953 fs_info->num_tolerated_disk_barrier_failures = 2954 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2955 if (fs_info->fs_devices->missing_devices > 2956 fs_info->num_tolerated_disk_barrier_failures && 2957 !(sb->s_flags & MS_RDONLY)) { 2958 printk(KERN_WARNING "BTRFS: " 2959 "too many missing devices, writeable mount is not allowed\n"); 2960 goto fail_sysfs; 2961 } 2962 2963 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2964 "btrfs-cleaner"); 2965 if (IS_ERR(fs_info->cleaner_kthread)) 2966 goto fail_sysfs; 2967 2968 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2969 tree_root, 2970 "btrfs-transaction"); 2971 if (IS_ERR(fs_info->transaction_kthread)) 2972 goto fail_cleaner; 2973 2974 if (!btrfs_test_opt(tree_root, SSD) && 2975 !btrfs_test_opt(tree_root, NOSSD) && 2976 !fs_info->fs_devices->rotating) { 2977 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD " 2978 "mode\n"); 2979 btrfs_set_opt(fs_info->mount_opt, SSD); 2980 } 2981 2982 /* 2983 * Mount does not set all options immediatelly, we can do it now and do 2984 * not have to wait for transaction commit 2985 */ 2986 btrfs_apply_pending_changes(fs_info); 2987 2988 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2989 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2990 ret = btrfsic_mount(tree_root, fs_devices, 2991 btrfs_test_opt(tree_root, 2992 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2993 1 : 0, 2994 fs_info->check_integrity_print_mask); 2995 if (ret) 2996 printk(KERN_WARNING "BTRFS: failed to initialize" 2997 " integrity check module %s\n", sb->s_id); 2998 } 2999 #endif 3000 ret = btrfs_read_qgroup_config(fs_info); 3001 if (ret) 3002 goto fail_trans_kthread; 3003 3004 /* do not make disk changes in broken FS */ 3005 if (btrfs_super_log_root(disk_super) != 0) { 3006 ret = btrfs_replay_log(fs_info, fs_devices); 3007 if (ret) { 3008 err = ret; 3009 goto fail_qgroup; 3010 } 3011 } 3012 3013 ret = btrfs_find_orphan_roots(tree_root); 3014 if (ret) 3015 goto fail_qgroup; 3016 3017 if (!(sb->s_flags & MS_RDONLY)) { 3018 ret = btrfs_cleanup_fs_roots(fs_info); 3019 if (ret) 3020 goto fail_qgroup; 3021 3022 mutex_lock(&fs_info->cleaner_mutex); 3023 ret = btrfs_recover_relocation(tree_root); 3024 mutex_unlock(&fs_info->cleaner_mutex); 3025 if (ret < 0) { 3026 printk(KERN_WARNING 3027 "BTRFS: failed to recover relocation\n"); 3028 err = -EINVAL; 3029 goto fail_qgroup; 3030 } 3031 } 3032 3033 location.objectid = BTRFS_FS_TREE_OBJECTID; 3034 location.type = BTRFS_ROOT_ITEM_KEY; 3035 location.offset = 0; 3036 3037 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 3038 if (IS_ERR(fs_info->fs_root)) { 3039 err = PTR_ERR(fs_info->fs_root); 3040 goto fail_qgroup; 3041 } 3042 3043 if (sb->s_flags & MS_RDONLY) 3044 return 0; 3045 3046 down_read(&fs_info->cleanup_work_sem); 3047 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 3048 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 3049 up_read(&fs_info->cleanup_work_sem); 3050 close_ctree(tree_root); 3051 return ret; 3052 } 3053 up_read(&fs_info->cleanup_work_sem); 3054 3055 ret = btrfs_resume_balance_async(fs_info); 3056 if (ret) { 3057 printk(KERN_WARNING "BTRFS: failed to resume balance\n"); 3058 close_ctree(tree_root); 3059 return ret; 3060 } 3061 3062 ret = btrfs_resume_dev_replace_async(fs_info); 3063 if (ret) { 3064 pr_warn("BTRFS: failed to resume dev_replace\n"); 3065 close_ctree(tree_root); 3066 return ret; 3067 } 3068 3069 btrfs_qgroup_rescan_resume(fs_info); 3070 3071 if (!fs_info->uuid_root) { 3072 pr_info("BTRFS: creating UUID tree\n"); 3073 ret = btrfs_create_uuid_tree(fs_info); 3074 if (ret) { 3075 pr_warn("BTRFS: failed to create the UUID tree %d\n", 3076 ret); 3077 close_ctree(tree_root); 3078 return ret; 3079 } 3080 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) || 3081 fs_info->generation != 3082 btrfs_super_uuid_tree_generation(disk_super)) { 3083 pr_info("BTRFS: checking UUID tree\n"); 3084 ret = btrfs_check_uuid_tree(fs_info); 3085 if (ret) { 3086 pr_warn("BTRFS: failed to check the UUID tree %d\n", 3087 ret); 3088 close_ctree(tree_root); 3089 return ret; 3090 } 3091 } else { 3092 fs_info->update_uuid_tree_gen = 1; 3093 } 3094 3095 fs_info->open = 1; 3096 3097 return 0; 3098 3099 fail_qgroup: 3100 btrfs_free_qgroup_config(fs_info); 3101 fail_trans_kthread: 3102 kthread_stop(fs_info->transaction_kthread); 3103 btrfs_cleanup_transaction(fs_info->tree_root); 3104 btrfs_free_fs_roots(fs_info); 3105 fail_cleaner: 3106 kthread_stop(fs_info->cleaner_kthread); 3107 3108 /* 3109 * make sure we're done with the btree inode before we stop our 3110 * kthreads 3111 */ 3112 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 3113 3114 fail_sysfs: 3115 btrfs_sysfs_remove_one(fs_info); 3116 3117 fail_fsdev_sysfs: 3118 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3119 3120 fail_block_groups: 3121 btrfs_put_block_group_cache(fs_info); 3122 btrfs_free_block_groups(fs_info); 3123 3124 fail_tree_roots: 3125 free_root_pointers(fs_info, 1); 3126 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3127 3128 fail_sb_buffer: 3129 btrfs_stop_all_workers(fs_info); 3130 fail_alloc: 3131 fail_iput: 3132 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3133 3134 iput(fs_info->btree_inode); 3135 fail_bio_counter: 3136 percpu_counter_destroy(&fs_info->bio_counter); 3137 fail_delalloc_bytes: 3138 percpu_counter_destroy(&fs_info->delalloc_bytes); 3139 fail_dirty_metadata_bytes: 3140 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3141 fail_bdi: 3142 bdi_destroy(&fs_info->bdi); 3143 fail_srcu: 3144 cleanup_srcu_struct(&fs_info->subvol_srcu); 3145 fail: 3146 btrfs_free_stripe_hash_table(fs_info); 3147 btrfs_close_devices(fs_info->fs_devices); 3148 return err; 3149 3150 recovery_tree_root: 3151 if (!btrfs_test_opt(tree_root, RECOVERY)) 3152 goto fail_tree_roots; 3153 3154 free_root_pointers(fs_info, 0); 3155 3156 /* don't use the log in recovery mode, it won't be valid */ 3157 btrfs_set_super_log_root(disk_super, 0); 3158 3159 /* we can't trust the free space cache either */ 3160 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 3161 3162 ret = next_root_backup(fs_info, fs_info->super_copy, 3163 &num_backups_tried, &backup_index); 3164 if (ret == -1) 3165 goto fail_block_groups; 3166 goto retry_root_backup; 3167 } 3168 3169 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 3170 { 3171 if (uptodate) { 3172 set_buffer_uptodate(bh); 3173 } else { 3174 struct btrfs_device *device = (struct btrfs_device *) 3175 bh->b_private; 3176 3177 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to " 3178 "I/O error on %s\n", 3179 rcu_str_deref(device->name)); 3180 /* note, we dont' set_buffer_write_io_error because we have 3181 * our own ways of dealing with the IO errors 3182 */ 3183 clear_buffer_uptodate(bh); 3184 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 3185 } 3186 unlock_buffer(bh); 3187 put_bh(bh); 3188 } 3189 3190 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 3191 { 3192 struct buffer_head *bh; 3193 struct buffer_head *latest = NULL; 3194 struct btrfs_super_block *super; 3195 int i; 3196 u64 transid = 0; 3197 u64 bytenr; 3198 3199 /* we would like to check all the supers, but that would make 3200 * a btrfs mount succeed after a mkfs from a different FS. 3201 * So, we need to add a special mount option to scan for 3202 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 3203 */ 3204 for (i = 0; i < 1; i++) { 3205 bytenr = btrfs_sb_offset(i); 3206 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3207 i_size_read(bdev->bd_inode)) 3208 break; 3209 bh = __bread(bdev, bytenr / 4096, 3210 BTRFS_SUPER_INFO_SIZE); 3211 if (!bh) 3212 continue; 3213 3214 super = (struct btrfs_super_block *)bh->b_data; 3215 if (btrfs_super_bytenr(super) != bytenr || 3216 btrfs_super_magic(super) != BTRFS_MAGIC) { 3217 brelse(bh); 3218 continue; 3219 } 3220 3221 if (!latest || btrfs_super_generation(super) > transid) { 3222 brelse(latest); 3223 latest = bh; 3224 transid = btrfs_super_generation(super); 3225 } else { 3226 brelse(bh); 3227 } 3228 } 3229 return latest; 3230 } 3231 3232 /* 3233 * this should be called twice, once with wait == 0 and 3234 * once with wait == 1. When wait == 0 is done, all the buffer heads 3235 * we write are pinned. 3236 * 3237 * They are released when wait == 1 is done. 3238 * max_mirrors must be the same for both runs, and it indicates how 3239 * many supers on this one device should be written. 3240 * 3241 * max_mirrors == 0 means to write them all. 3242 */ 3243 static int write_dev_supers(struct btrfs_device *device, 3244 struct btrfs_super_block *sb, 3245 int do_barriers, int wait, int max_mirrors) 3246 { 3247 struct buffer_head *bh; 3248 int i; 3249 int ret; 3250 int errors = 0; 3251 u32 crc; 3252 u64 bytenr; 3253 3254 if (max_mirrors == 0) 3255 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 3256 3257 for (i = 0; i < max_mirrors; i++) { 3258 bytenr = btrfs_sb_offset(i); 3259 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 3260 device->commit_total_bytes) 3261 break; 3262 3263 if (wait) { 3264 bh = __find_get_block(device->bdev, bytenr / 4096, 3265 BTRFS_SUPER_INFO_SIZE); 3266 if (!bh) { 3267 errors++; 3268 continue; 3269 } 3270 wait_on_buffer(bh); 3271 if (!buffer_uptodate(bh)) 3272 errors++; 3273 3274 /* drop our reference */ 3275 brelse(bh); 3276 3277 /* drop the reference from the wait == 0 run */ 3278 brelse(bh); 3279 continue; 3280 } else { 3281 btrfs_set_super_bytenr(sb, bytenr); 3282 3283 crc = ~(u32)0; 3284 crc = btrfs_csum_data((char *)sb + 3285 BTRFS_CSUM_SIZE, crc, 3286 BTRFS_SUPER_INFO_SIZE - 3287 BTRFS_CSUM_SIZE); 3288 btrfs_csum_final(crc, sb->csum); 3289 3290 /* 3291 * one reference for us, and we leave it for the 3292 * caller 3293 */ 3294 bh = __getblk(device->bdev, bytenr / 4096, 3295 BTRFS_SUPER_INFO_SIZE); 3296 if (!bh) { 3297 printk(KERN_ERR "BTRFS: couldn't get super " 3298 "buffer head for bytenr %Lu\n", bytenr); 3299 errors++; 3300 continue; 3301 } 3302 3303 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 3304 3305 /* one reference for submit_bh */ 3306 get_bh(bh); 3307 3308 set_buffer_uptodate(bh); 3309 lock_buffer(bh); 3310 bh->b_end_io = btrfs_end_buffer_write_sync; 3311 bh->b_private = device; 3312 } 3313 3314 /* 3315 * we fua the first super. The others we allow 3316 * to go down lazy. 3317 */ 3318 if (i == 0) 3319 ret = btrfsic_submit_bh(WRITE_FUA, bh); 3320 else 3321 ret = btrfsic_submit_bh(WRITE_SYNC, bh); 3322 if (ret) 3323 errors++; 3324 } 3325 return errors < i ? 0 : -1; 3326 } 3327 3328 /* 3329 * endio for the write_dev_flush, this will wake anyone waiting 3330 * for the barrier when it is done 3331 */ 3332 static void btrfs_end_empty_barrier(struct bio *bio) 3333 { 3334 if (bio->bi_private) 3335 complete(bio->bi_private); 3336 bio_put(bio); 3337 } 3338 3339 /* 3340 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 3341 * sent down. With wait == 1, it waits for the previous flush. 3342 * 3343 * any device where the flush fails with eopnotsupp are flagged as not-barrier 3344 * capable 3345 */ 3346 static int write_dev_flush(struct btrfs_device *device, int wait) 3347 { 3348 struct bio *bio; 3349 int ret = 0; 3350 3351 if (device->nobarriers) 3352 return 0; 3353 3354 if (wait) { 3355 bio = device->flush_bio; 3356 if (!bio) 3357 return 0; 3358 3359 wait_for_completion(&device->flush_wait); 3360 3361 if (bio->bi_error) { 3362 ret = bio->bi_error; 3363 btrfs_dev_stat_inc_and_print(device, 3364 BTRFS_DEV_STAT_FLUSH_ERRS); 3365 } 3366 3367 /* drop the reference from the wait == 0 run */ 3368 bio_put(bio); 3369 device->flush_bio = NULL; 3370 3371 return ret; 3372 } 3373 3374 /* 3375 * one reference for us, and we leave it for the 3376 * caller 3377 */ 3378 device->flush_bio = NULL; 3379 bio = btrfs_io_bio_alloc(GFP_NOFS, 0); 3380 if (!bio) 3381 return -ENOMEM; 3382 3383 bio->bi_end_io = btrfs_end_empty_barrier; 3384 bio->bi_bdev = device->bdev; 3385 init_completion(&device->flush_wait); 3386 bio->bi_private = &device->flush_wait; 3387 device->flush_bio = bio; 3388 3389 bio_get(bio); 3390 btrfsic_submit_bio(WRITE_FLUSH, bio); 3391 3392 return 0; 3393 } 3394 3395 /* 3396 * send an empty flush down to each device in parallel, 3397 * then wait for them 3398 */ 3399 static int barrier_all_devices(struct btrfs_fs_info *info) 3400 { 3401 struct list_head *head; 3402 struct btrfs_device *dev; 3403 int errors_send = 0; 3404 int errors_wait = 0; 3405 int ret; 3406 3407 /* send down all the barriers */ 3408 head = &info->fs_devices->devices; 3409 list_for_each_entry_rcu(dev, head, dev_list) { 3410 if (dev->missing) 3411 continue; 3412 if (!dev->bdev) { 3413 errors_send++; 3414 continue; 3415 } 3416 if (!dev->in_fs_metadata || !dev->writeable) 3417 continue; 3418 3419 ret = write_dev_flush(dev, 0); 3420 if (ret) 3421 errors_send++; 3422 } 3423 3424 /* wait for all the barriers */ 3425 list_for_each_entry_rcu(dev, head, dev_list) { 3426 if (dev->missing) 3427 continue; 3428 if (!dev->bdev) { 3429 errors_wait++; 3430 continue; 3431 } 3432 if (!dev->in_fs_metadata || !dev->writeable) 3433 continue; 3434 3435 ret = write_dev_flush(dev, 1); 3436 if (ret) 3437 errors_wait++; 3438 } 3439 if (errors_send > info->num_tolerated_disk_barrier_failures || 3440 errors_wait > info->num_tolerated_disk_barrier_failures) 3441 return -EIO; 3442 return 0; 3443 } 3444 3445 int btrfs_calc_num_tolerated_disk_barrier_failures( 3446 struct btrfs_fs_info *fs_info) 3447 { 3448 struct btrfs_ioctl_space_info space; 3449 struct btrfs_space_info *sinfo; 3450 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3451 BTRFS_BLOCK_GROUP_SYSTEM, 3452 BTRFS_BLOCK_GROUP_METADATA, 3453 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3454 int num_types = 4; 3455 int i; 3456 int c; 3457 int num_tolerated_disk_barrier_failures = 3458 (int)fs_info->fs_devices->num_devices; 3459 3460 for (i = 0; i < num_types; i++) { 3461 struct btrfs_space_info *tmp; 3462 3463 sinfo = NULL; 3464 rcu_read_lock(); 3465 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3466 if (tmp->flags == types[i]) { 3467 sinfo = tmp; 3468 break; 3469 } 3470 } 3471 rcu_read_unlock(); 3472 3473 if (!sinfo) 3474 continue; 3475 3476 down_read(&sinfo->groups_sem); 3477 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3478 if (!list_empty(&sinfo->block_groups[c])) { 3479 u64 flags; 3480 3481 btrfs_get_block_group_info( 3482 &sinfo->block_groups[c], &space); 3483 if (space.total_bytes == 0 || 3484 space.used_bytes == 0) 3485 continue; 3486 flags = space.flags; 3487 /* 3488 * return 3489 * 0: if dup, single or RAID0 is configured for 3490 * any of metadata, system or data, else 3491 * 1: if RAID5 is configured, or if RAID1 or 3492 * RAID10 is configured and only two mirrors 3493 * are used, else 3494 * 2: if RAID6 is configured, else 3495 * num_mirrors - 1: if RAID1 or RAID10 is 3496 * configured and more than 3497 * 2 mirrors are used. 3498 */ 3499 if (num_tolerated_disk_barrier_failures > 0 && 3500 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3501 BTRFS_BLOCK_GROUP_RAID0)) || 3502 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3503 == 0))) 3504 num_tolerated_disk_barrier_failures = 0; 3505 else if (num_tolerated_disk_barrier_failures > 1) { 3506 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3507 BTRFS_BLOCK_GROUP_RAID5 | 3508 BTRFS_BLOCK_GROUP_RAID10)) { 3509 num_tolerated_disk_barrier_failures = 1; 3510 } else if (flags & 3511 BTRFS_BLOCK_GROUP_RAID6) { 3512 num_tolerated_disk_barrier_failures = 2; 3513 } 3514 } 3515 } 3516 } 3517 up_read(&sinfo->groups_sem); 3518 } 3519 3520 return num_tolerated_disk_barrier_failures; 3521 } 3522 3523 static int write_all_supers(struct btrfs_root *root, int max_mirrors) 3524 { 3525 struct list_head *head; 3526 struct btrfs_device *dev; 3527 struct btrfs_super_block *sb; 3528 struct btrfs_dev_item *dev_item; 3529 int ret; 3530 int do_barriers; 3531 int max_errors; 3532 int total_errors = 0; 3533 u64 flags; 3534 3535 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3536 backup_super_roots(root->fs_info); 3537 3538 sb = root->fs_info->super_for_commit; 3539 dev_item = &sb->dev_item; 3540 3541 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3542 head = &root->fs_info->fs_devices->devices; 3543 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3544 3545 if (do_barriers) { 3546 ret = barrier_all_devices(root->fs_info); 3547 if (ret) { 3548 mutex_unlock( 3549 &root->fs_info->fs_devices->device_list_mutex); 3550 btrfs_error(root->fs_info, ret, 3551 "errors while submitting device barriers."); 3552 return ret; 3553 } 3554 } 3555 3556 list_for_each_entry_rcu(dev, head, dev_list) { 3557 if (!dev->bdev) { 3558 total_errors++; 3559 continue; 3560 } 3561 if (!dev->in_fs_metadata || !dev->writeable) 3562 continue; 3563 3564 btrfs_set_stack_device_generation(dev_item, 0); 3565 btrfs_set_stack_device_type(dev_item, dev->type); 3566 btrfs_set_stack_device_id(dev_item, dev->devid); 3567 btrfs_set_stack_device_total_bytes(dev_item, 3568 dev->commit_total_bytes); 3569 btrfs_set_stack_device_bytes_used(dev_item, 3570 dev->commit_bytes_used); 3571 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3572 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3573 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3574 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3575 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3576 3577 flags = btrfs_super_flags(sb); 3578 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3579 3580 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3581 if (ret) 3582 total_errors++; 3583 } 3584 if (total_errors > max_errors) { 3585 btrfs_err(root->fs_info, "%d errors while writing supers", 3586 total_errors); 3587 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3588 3589 /* FUA is masked off if unsupported and can't be the reason */ 3590 btrfs_error(root->fs_info, -EIO, 3591 "%d errors while writing supers", total_errors); 3592 return -EIO; 3593 } 3594 3595 total_errors = 0; 3596 list_for_each_entry_rcu(dev, head, dev_list) { 3597 if (!dev->bdev) 3598 continue; 3599 if (!dev->in_fs_metadata || !dev->writeable) 3600 continue; 3601 3602 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3603 if (ret) 3604 total_errors++; 3605 } 3606 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3607 if (total_errors > max_errors) { 3608 btrfs_error(root->fs_info, -EIO, 3609 "%d errors while writing supers", total_errors); 3610 return -EIO; 3611 } 3612 return 0; 3613 } 3614 3615 int write_ctree_super(struct btrfs_trans_handle *trans, 3616 struct btrfs_root *root, int max_mirrors) 3617 { 3618 return write_all_supers(root, max_mirrors); 3619 } 3620 3621 /* Drop a fs root from the radix tree and free it. */ 3622 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info, 3623 struct btrfs_root *root) 3624 { 3625 spin_lock(&fs_info->fs_roots_radix_lock); 3626 radix_tree_delete(&fs_info->fs_roots_radix, 3627 (unsigned long)root->root_key.objectid); 3628 spin_unlock(&fs_info->fs_roots_radix_lock); 3629 3630 if (btrfs_root_refs(&root->root_item) == 0) 3631 synchronize_srcu(&fs_info->subvol_srcu); 3632 3633 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3634 btrfs_free_log(NULL, root); 3635 3636 if (root->free_ino_pinned) 3637 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3638 if (root->free_ino_ctl) 3639 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3640 free_fs_root(root); 3641 } 3642 3643 static void free_fs_root(struct btrfs_root *root) 3644 { 3645 iput(root->ino_cache_inode); 3646 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3647 btrfs_free_block_rsv(root, root->orphan_block_rsv); 3648 root->orphan_block_rsv = NULL; 3649 if (root->anon_dev) 3650 free_anon_bdev(root->anon_dev); 3651 if (root->subv_writers) 3652 btrfs_free_subvolume_writers(root->subv_writers); 3653 free_extent_buffer(root->node); 3654 free_extent_buffer(root->commit_root); 3655 kfree(root->free_ino_ctl); 3656 kfree(root->free_ino_pinned); 3657 kfree(root->name); 3658 btrfs_put_fs_root(root); 3659 } 3660 3661 void btrfs_free_fs_root(struct btrfs_root *root) 3662 { 3663 free_fs_root(root); 3664 } 3665 3666 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3667 { 3668 u64 root_objectid = 0; 3669 struct btrfs_root *gang[8]; 3670 int i = 0; 3671 int err = 0; 3672 unsigned int ret = 0; 3673 int index; 3674 3675 while (1) { 3676 index = srcu_read_lock(&fs_info->subvol_srcu); 3677 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3678 (void **)gang, root_objectid, 3679 ARRAY_SIZE(gang)); 3680 if (!ret) { 3681 srcu_read_unlock(&fs_info->subvol_srcu, index); 3682 break; 3683 } 3684 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3685 3686 for (i = 0; i < ret; i++) { 3687 /* Avoid to grab roots in dead_roots */ 3688 if (btrfs_root_refs(&gang[i]->root_item) == 0) { 3689 gang[i] = NULL; 3690 continue; 3691 } 3692 /* grab all the search result for later use */ 3693 gang[i] = btrfs_grab_fs_root(gang[i]); 3694 } 3695 srcu_read_unlock(&fs_info->subvol_srcu, index); 3696 3697 for (i = 0; i < ret; i++) { 3698 if (!gang[i]) 3699 continue; 3700 root_objectid = gang[i]->root_key.objectid; 3701 err = btrfs_orphan_cleanup(gang[i]); 3702 if (err) 3703 break; 3704 btrfs_put_fs_root(gang[i]); 3705 } 3706 root_objectid++; 3707 } 3708 3709 /* release the uncleaned roots due to error */ 3710 for (; i < ret; i++) { 3711 if (gang[i]) 3712 btrfs_put_fs_root(gang[i]); 3713 } 3714 return err; 3715 } 3716 3717 int btrfs_commit_super(struct btrfs_root *root) 3718 { 3719 struct btrfs_trans_handle *trans; 3720 3721 mutex_lock(&root->fs_info->cleaner_mutex); 3722 btrfs_run_delayed_iputs(root); 3723 mutex_unlock(&root->fs_info->cleaner_mutex); 3724 wake_up_process(root->fs_info->cleaner_kthread); 3725 3726 /* wait until ongoing cleanup work done */ 3727 down_write(&root->fs_info->cleanup_work_sem); 3728 up_write(&root->fs_info->cleanup_work_sem); 3729 3730 trans = btrfs_join_transaction(root); 3731 if (IS_ERR(trans)) 3732 return PTR_ERR(trans); 3733 return btrfs_commit_transaction(trans, root); 3734 } 3735 3736 void close_ctree(struct btrfs_root *root) 3737 { 3738 struct btrfs_fs_info *fs_info = root->fs_info; 3739 int ret; 3740 3741 fs_info->closing = 1; 3742 smp_mb(); 3743 3744 /* wait for the uuid_scan task to finish */ 3745 down(&fs_info->uuid_tree_rescan_sem); 3746 /* avoid complains from lockdep et al., set sem back to initial state */ 3747 up(&fs_info->uuid_tree_rescan_sem); 3748 3749 /* pause restriper - we want to resume on mount */ 3750 btrfs_pause_balance(fs_info); 3751 3752 btrfs_dev_replace_suspend_for_unmount(fs_info); 3753 3754 btrfs_scrub_cancel(fs_info); 3755 3756 /* wait for any defraggers to finish */ 3757 wait_event(fs_info->transaction_wait, 3758 (atomic_read(&fs_info->defrag_running) == 0)); 3759 3760 /* clear out the rbtree of defraggable inodes */ 3761 btrfs_cleanup_defrag_inodes(fs_info); 3762 3763 cancel_work_sync(&fs_info->async_reclaim_work); 3764 3765 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3766 ret = btrfs_commit_super(root); 3767 if (ret) 3768 btrfs_err(fs_info, "commit super ret %d", ret); 3769 } 3770 3771 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3772 btrfs_error_commit_super(root); 3773 3774 kthread_stop(fs_info->transaction_kthread); 3775 kthread_stop(fs_info->cleaner_kthread); 3776 3777 fs_info->closing = 2; 3778 smp_mb(); 3779 3780 btrfs_free_qgroup_config(fs_info); 3781 3782 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3783 btrfs_info(fs_info, "at unmount delalloc count %lld", 3784 percpu_counter_sum(&fs_info->delalloc_bytes)); 3785 } 3786 3787 btrfs_sysfs_remove_one(fs_info); 3788 btrfs_sysfs_remove_fsid(fs_info->fs_devices); 3789 3790 btrfs_free_fs_roots(fs_info); 3791 3792 btrfs_put_block_group_cache(fs_info); 3793 3794 btrfs_free_block_groups(fs_info); 3795 3796 /* 3797 * we must make sure there is not any read request to 3798 * submit after we stopping all workers. 3799 */ 3800 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 3801 btrfs_stop_all_workers(fs_info); 3802 3803 fs_info->open = 0; 3804 free_root_pointers(fs_info, 1); 3805 3806 iput(fs_info->btree_inode); 3807 3808 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3809 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3810 btrfsic_unmount(root, fs_info->fs_devices); 3811 #endif 3812 3813 btrfs_close_devices(fs_info->fs_devices); 3814 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3815 3816 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3817 percpu_counter_destroy(&fs_info->delalloc_bytes); 3818 percpu_counter_destroy(&fs_info->bio_counter); 3819 bdi_destroy(&fs_info->bdi); 3820 cleanup_srcu_struct(&fs_info->subvol_srcu); 3821 3822 btrfs_free_stripe_hash_table(fs_info); 3823 3824 __btrfs_free_block_rsv(root->orphan_block_rsv); 3825 root->orphan_block_rsv = NULL; 3826 3827 lock_chunks(root); 3828 while (!list_empty(&fs_info->pinned_chunks)) { 3829 struct extent_map *em; 3830 3831 em = list_first_entry(&fs_info->pinned_chunks, 3832 struct extent_map, list); 3833 list_del_init(&em->list); 3834 free_extent_map(em); 3835 } 3836 unlock_chunks(root); 3837 } 3838 3839 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3840 int atomic) 3841 { 3842 int ret; 3843 struct inode *btree_inode = buf->pages[0]->mapping->host; 3844 3845 ret = extent_buffer_uptodate(buf); 3846 if (!ret) 3847 return ret; 3848 3849 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3850 parent_transid, atomic); 3851 if (ret == -EAGAIN) 3852 return ret; 3853 return !ret; 3854 } 3855 3856 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3857 { 3858 return set_extent_buffer_uptodate(buf); 3859 } 3860 3861 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3862 { 3863 struct btrfs_root *root; 3864 u64 transid = btrfs_header_generation(buf); 3865 int was_dirty; 3866 3867 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3868 /* 3869 * This is a fast path so only do this check if we have sanity tests 3870 * enabled. Normal people shouldn't be marking dummy buffers as dirty 3871 * outside of the sanity tests. 3872 */ 3873 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags))) 3874 return; 3875 #endif 3876 root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3877 btrfs_assert_tree_locked(buf); 3878 if (transid != root->fs_info->generation) 3879 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3880 "found %llu running %llu\n", 3881 buf->start, transid, root->fs_info->generation); 3882 was_dirty = set_extent_buffer_dirty(buf); 3883 if (!was_dirty) 3884 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3885 buf->len, 3886 root->fs_info->dirty_metadata_batch); 3887 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3888 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) { 3889 btrfs_print_leaf(root, buf); 3890 ASSERT(0); 3891 } 3892 #endif 3893 } 3894 3895 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3896 int flush_delayed) 3897 { 3898 /* 3899 * looks as though older kernels can get into trouble with 3900 * this code, they end up stuck in balance_dirty_pages forever 3901 */ 3902 int ret; 3903 3904 if (current->flags & PF_MEMALLOC) 3905 return; 3906 3907 if (flush_delayed) 3908 btrfs_balance_delayed_items(root); 3909 3910 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3911 BTRFS_DIRTY_METADATA_THRESH); 3912 if (ret > 0) { 3913 balance_dirty_pages_ratelimited( 3914 root->fs_info->btree_inode->i_mapping); 3915 } 3916 return; 3917 } 3918 3919 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3920 { 3921 __btrfs_btree_balance_dirty(root, 1); 3922 } 3923 3924 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3925 { 3926 __btrfs_btree_balance_dirty(root, 0); 3927 } 3928 3929 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3930 { 3931 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3932 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3933 } 3934 3935 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3936 int read_only) 3937 { 3938 struct btrfs_super_block *sb = fs_info->super_copy; 3939 int ret = 0; 3940 3941 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { 3942 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n", 3943 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); 3944 ret = -EINVAL; 3945 } 3946 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { 3947 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n", 3948 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); 3949 ret = -EINVAL; 3950 } 3951 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { 3952 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n", 3953 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); 3954 ret = -EINVAL; 3955 } 3956 3957 /* 3958 * The common minimum, we don't know if we can trust the nodesize/sectorsize 3959 * items yet, they'll be verified later. Issue just a warning. 3960 */ 3961 if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) 3962 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n", 3963 btrfs_super_root(sb)); 3964 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) 3965 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n", 3966 btrfs_super_chunk_root(sb)); 3967 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) 3968 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n", 3969 btrfs_super_log_root(sb)); 3970 3971 /* 3972 * Check the lower bound, the alignment and other constraints are 3973 * checked later. 3974 */ 3975 if (btrfs_super_nodesize(sb) < 4096) { 3976 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n", 3977 btrfs_super_nodesize(sb)); 3978 ret = -EINVAL; 3979 } 3980 if (btrfs_super_sectorsize(sb) < 4096) { 3981 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n", 3982 btrfs_super_sectorsize(sb)); 3983 ret = -EINVAL; 3984 } 3985 3986 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) { 3987 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n", 3988 fs_info->fsid, sb->dev_item.fsid); 3989 ret = -EINVAL; 3990 } 3991 3992 /* 3993 * Hint to catch really bogus numbers, bitflips or so, more exact checks are 3994 * done later 3995 */ 3996 if (btrfs_super_num_devices(sb) > (1UL << 31)) 3997 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n", 3998 btrfs_super_num_devices(sb)); 3999 if (btrfs_super_num_devices(sb) == 0) { 4000 printk(KERN_ERR "BTRFS: number of devices is 0\n"); 4001 ret = -EINVAL; 4002 } 4003 4004 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) { 4005 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n", 4006 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET); 4007 ret = -EINVAL; 4008 } 4009 4010 /* 4011 * Obvious sys_chunk_array corruptions, it must hold at least one key 4012 * and one chunk 4013 */ 4014 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4015 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n", 4016 btrfs_super_sys_array_size(sb), 4017 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); 4018 ret = -EINVAL; 4019 } 4020 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) 4021 + sizeof(struct btrfs_chunk)) { 4022 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n", 4023 btrfs_super_sys_array_size(sb), 4024 sizeof(struct btrfs_disk_key) 4025 + sizeof(struct btrfs_chunk)); 4026 ret = -EINVAL; 4027 } 4028 4029 /* 4030 * The generation is a global counter, we'll trust it more than the others 4031 * but it's still possible that it's the one that's wrong. 4032 */ 4033 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb)) 4034 printk(KERN_WARNING 4035 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n", 4036 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb)); 4037 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb) 4038 && btrfs_super_cache_generation(sb) != (u64)-1) 4039 printk(KERN_WARNING 4040 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n", 4041 btrfs_super_generation(sb), btrfs_super_cache_generation(sb)); 4042 4043 return ret; 4044 } 4045 4046 static void btrfs_error_commit_super(struct btrfs_root *root) 4047 { 4048 mutex_lock(&root->fs_info->cleaner_mutex); 4049 btrfs_run_delayed_iputs(root); 4050 mutex_unlock(&root->fs_info->cleaner_mutex); 4051 4052 down_write(&root->fs_info->cleanup_work_sem); 4053 up_write(&root->fs_info->cleanup_work_sem); 4054 4055 /* cleanup FS via transaction */ 4056 btrfs_cleanup_transaction(root); 4057 } 4058 4059 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 4060 { 4061 struct btrfs_ordered_extent *ordered; 4062 4063 spin_lock(&root->ordered_extent_lock); 4064 /* 4065 * This will just short circuit the ordered completion stuff which will 4066 * make sure the ordered extent gets properly cleaned up. 4067 */ 4068 list_for_each_entry(ordered, &root->ordered_extents, 4069 root_extent_list) 4070 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 4071 spin_unlock(&root->ordered_extent_lock); 4072 } 4073 4074 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info) 4075 { 4076 struct btrfs_root *root; 4077 struct list_head splice; 4078 4079 INIT_LIST_HEAD(&splice); 4080 4081 spin_lock(&fs_info->ordered_root_lock); 4082 list_splice_init(&fs_info->ordered_roots, &splice); 4083 while (!list_empty(&splice)) { 4084 root = list_first_entry(&splice, struct btrfs_root, 4085 ordered_root); 4086 list_move_tail(&root->ordered_root, 4087 &fs_info->ordered_roots); 4088 4089 spin_unlock(&fs_info->ordered_root_lock); 4090 btrfs_destroy_ordered_extents(root); 4091 4092 cond_resched(); 4093 spin_lock(&fs_info->ordered_root_lock); 4094 } 4095 spin_unlock(&fs_info->ordered_root_lock); 4096 } 4097 4098 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 4099 struct btrfs_root *root) 4100 { 4101 struct rb_node *node; 4102 struct btrfs_delayed_ref_root *delayed_refs; 4103 struct btrfs_delayed_ref_node *ref; 4104 int ret = 0; 4105 4106 delayed_refs = &trans->delayed_refs; 4107 4108 spin_lock(&delayed_refs->lock); 4109 if (atomic_read(&delayed_refs->num_entries) == 0) { 4110 spin_unlock(&delayed_refs->lock); 4111 btrfs_info(root->fs_info, "delayed_refs has NO entry"); 4112 return ret; 4113 } 4114 4115 while ((node = rb_first(&delayed_refs->href_root)) != NULL) { 4116 struct btrfs_delayed_ref_head *head; 4117 struct btrfs_delayed_ref_node *tmp; 4118 bool pin_bytes = false; 4119 4120 head = rb_entry(node, struct btrfs_delayed_ref_head, 4121 href_node); 4122 if (!mutex_trylock(&head->mutex)) { 4123 atomic_inc(&head->node.refs); 4124 spin_unlock(&delayed_refs->lock); 4125 4126 mutex_lock(&head->mutex); 4127 mutex_unlock(&head->mutex); 4128 btrfs_put_delayed_ref(&head->node); 4129 spin_lock(&delayed_refs->lock); 4130 continue; 4131 } 4132 spin_lock(&head->lock); 4133 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list, 4134 list) { 4135 ref->in_tree = 0; 4136 list_del(&ref->list); 4137 atomic_dec(&delayed_refs->num_entries); 4138 btrfs_put_delayed_ref(ref); 4139 } 4140 if (head->must_insert_reserved) 4141 pin_bytes = true; 4142 btrfs_free_delayed_extent_op(head->extent_op); 4143 delayed_refs->num_heads--; 4144 if (head->processing == 0) 4145 delayed_refs->num_heads_ready--; 4146 atomic_dec(&delayed_refs->num_entries); 4147 head->node.in_tree = 0; 4148 rb_erase(&head->href_node, &delayed_refs->href_root); 4149 spin_unlock(&head->lock); 4150 spin_unlock(&delayed_refs->lock); 4151 mutex_unlock(&head->mutex); 4152 4153 if (pin_bytes) 4154 btrfs_pin_extent(root, head->node.bytenr, 4155 head->node.num_bytes, 1); 4156 btrfs_put_delayed_ref(&head->node); 4157 cond_resched(); 4158 spin_lock(&delayed_refs->lock); 4159 } 4160 4161 spin_unlock(&delayed_refs->lock); 4162 4163 return ret; 4164 } 4165 4166 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 4167 { 4168 struct btrfs_inode *btrfs_inode; 4169 struct list_head splice; 4170 4171 INIT_LIST_HEAD(&splice); 4172 4173 spin_lock(&root->delalloc_lock); 4174 list_splice_init(&root->delalloc_inodes, &splice); 4175 4176 while (!list_empty(&splice)) { 4177 btrfs_inode = list_first_entry(&splice, struct btrfs_inode, 4178 delalloc_inodes); 4179 4180 list_del_init(&btrfs_inode->delalloc_inodes); 4181 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 4182 &btrfs_inode->runtime_flags); 4183 spin_unlock(&root->delalloc_lock); 4184 4185 btrfs_invalidate_inodes(btrfs_inode->root); 4186 4187 spin_lock(&root->delalloc_lock); 4188 } 4189 4190 spin_unlock(&root->delalloc_lock); 4191 } 4192 4193 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info) 4194 { 4195 struct btrfs_root *root; 4196 struct list_head splice; 4197 4198 INIT_LIST_HEAD(&splice); 4199 4200 spin_lock(&fs_info->delalloc_root_lock); 4201 list_splice_init(&fs_info->delalloc_roots, &splice); 4202 while (!list_empty(&splice)) { 4203 root = list_first_entry(&splice, struct btrfs_root, 4204 delalloc_root); 4205 list_del_init(&root->delalloc_root); 4206 root = btrfs_grab_fs_root(root); 4207 BUG_ON(!root); 4208 spin_unlock(&fs_info->delalloc_root_lock); 4209 4210 btrfs_destroy_delalloc_inodes(root); 4211 btrfs_put_fs_root(root); 4212 4213 spin_lock(&fs_info->delalloc_root_lock); 4214 } 4215 spin_unlock(&fs_info->delalloc_root_lock); 4216 } 4217 4218 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 4219 struct extent_io_tree *dirty_pages, 4220 int mark) 4221 { 4222 int ret; 4223 struct extent_buffer *eb; 4224 u64 start = 0; 4225 u64 end; 4226 4227 while (1) { 4228 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 4229 mark, NULL); 4230 if (ret) 4231 break; 4232 4233 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 4234 while (start <= end) { 4235 eb = btrfs_find_tree_block(root->fs_info, start); 4236 start += root->nodesize; 4237 if (!eb) 4238 continue; 4239 wait_on_extent_buffer_writeback(eb); 4240 4241 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, 4242 &eb->bflags)) 4243 clear_extent_buffer_dirty(eb); 4244 free_extent_buffer_stale(eb); 4245 } 4246 } 4247 4248 return ret; 4249 } 4250 4251 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 4252 struct extent_io_tree *pinned_extents) 4253 { 4254 struct extent_io_tree *unpin; 4255 u64 start; 4256 u64 end; 4257 int ret; 4258 bool loop = true; 4259 4260 unpin = pinned_extents; 4261 again: 4262 while (1) { 4263 ret = find_first_extent_bit(unpin, 0, &start, &end, 4264 EXTENT_DIRTY, NULL); 4265 if (ret) 4266 break; 4267 4268 clear_extent_dirty(unpin, start, end, GFP_NOFS); 4269 btrfs_error_unpin_extent_range(root, start, end); 4270 cond_resched(); 4271 } 4272 4273 if (loop) { 4274 if (unpin == &root->fs_info->freed_extents[0]) 4275 unpin = &root->fs_info->freed_extents[1]; 4276 else 4277 unpin = &root->fs_info->freed_extents[0]; 4278 loop = false; 4279 goto again; 4280 } 4281 4282 return 0; 4283 } 4284 4285 static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans, 4286 struct btrfs_fs_info *fs_info) 4287 { 4288 struct btrfs_ordered_extent *ordered; 4289 4290 spin_lock(&fs_info->trans_lock); 4291 while (!list_empty(&cur_trans->pending_ordered)) { 4292 ordered = list_first_entry(&cur_trans->pending_ordered, 4293 struct btrfs_ordered_extent, 4294 trans_list); 4295 list_del_init(&ordered->trans_list); 4296 spin_unlock(&fs_info->trans_lock); 4297 4298 btrfs_put_ordered_extent(ordered); 4299 spin_lock(&fs_info->trans_lock); 4300 } 4301 spin_unlock(&fs_info->trans_lock); 4302 } 4303 4304 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 4305 struct btrfs_root *root) 4306 { 4307 btrfs_destroy_delayed_refs(cur_trans, root); 4308 4309 cur_trans->state = TRANS_STATE_COMMIT_START; 4310 wake_up(&root->fs_info->transaction_blocked_wait); 4311 4312 cur_trans->state = TRANS_STATE_UNBLOCKED; 4313 wake_up(&root->fs_info->transaction_wait); 4314 4315 btrfs_free_pending_ordered(cur_trans, root->fs_info); 4316 btrfs_destroy_delayed_inodes(root); 4317 btrfs_assert_delayed_root_empty(root); 4318 4319 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 4320 EXTENT_DIRTY); 4321 btrfs_destroy_pinned_extent(root, 4322 root->fs_info->pinned_extents); 4323 4324 cur_trans->state =TRANS_STATE_COMPLETED; 4325 wake_up(&cur_trans->commit_wait); 4326 4327 /* 4328 memset(cur_trans, 0, sizeof(*cur_trans)); 4329 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 4330 */ 4331 } 4332 4333 static int btrfs_cleanup_transaction(struct btrfs_root *root) 4334 { 4335 struct btrfs_transaction *t; 4336 4337 mutex_lock(&root->fs_info->transaction_kthread_mutex); 4338 4339 spin_lock(&root->fs_info->trans_lock); 4340 while (!list_empty(&root->fs_info->trans_list)) { 4341 t = list_first_entry(&root->fs_info->trans_list, 4342 struct btrfs_transaction, list); 4343 if (t->state >= TRANS_STATE_COMMIT_START) { 4344 atomic_inc(&t->use_count); 4345 spin_unlock(&root->fs_info->trans_lock); 4346 btrfs_wait_for_commit(root, t->transid); 4347 btrfs_put_transaction(t); 4348 spin_lock(&root->fs_info->trans_lock); 4349 continue; 4350 } 4351 if (t == root->fs_info->running_transaction) { 4352 t->state = TRANS_STATE_COMMIT_DOING; 4353 spin_unlock(&root->fs_info->trans_lock); 4354 /* 4355 * We wait for 0 num_writers since we don't hold a trans 4356 * handle open currently for this transaction. 4357 */ 4358 wait_event(t->writer_wait, 4359 atomic_read(&t->num_writers) == 0); 4360 } else { 4361 spin_unlock(&root->fs_info->trans_lock); 4362 } 4363 btrfs_cleanup_one_transaction(t, root); 4364 4365 spin_lock(&root->fs_info->trans_lock); 4366 if (t == root->fs_info->running_transaction) 4367 root->fs_info->running_transaction = NULL; 4368 list_del_init(&t->list); 4369 spin_unlock(&root->fs_info->trans_lock); 4370 4371 btrfs_put_transaction(t); 4372 trace_btrfs_transaction_commit(root); 4373 spin_lock(&root->fs_info->trans_lock); 4374 } 4375 spin_unlock(&root->fs_info->trans_lock); 4376 btrfs_destroy_all_ordered_extents(root->fs_info); 4377 btrfs_destroy_delayed_inodes(root); 4378 btrfs_assert_delayed_root_empty(root); 4379 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents); 4380 btrfs_destroy_all_delalloc_inodes(root->fs_info); 4381 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 4382 4383 return 0; 4384 } 4385 4386 static const struct extent_io_ops btree_extent_io_ops = { 4387 .readpage_end_io_hook = btree_readpage_end_io_hook, 4388 .readpage_io_failed_hook = btree_io_failed_hook, 4389 .submit_bio_hook = btree_submit_bio_hook, 4390 /* note we're sharing with inode.c for the merge bio hook */ 4391 .merge_bio_hook = btrfs_merge_bio_hook, 4392 }; 4393