xref: /linux/fs/btrfs/disk-io.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54 
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59 				    int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61 					     struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 				      struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 					struct extent_io_tree *dirty_pages,
69 					int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 				       struct extent_io_tree *pinned_extents);
72 
73 /*
74  * end_io_wq structs are used to do processing in task context when an IO is
75  * complete.  This is used during reads to verify checksums, and it is used
76  * by writes to insert metadata for new file extents after IO is complete.
77  */
78 struct end_io_wq {
79 	struct bio *bio;
80 	bio_end_io_t *end_io;
81 	void *private;
82 	struct btrfs_fs_info *info;
83 	int error;
84 	int metadata;
85 	struct list_head list;
86 	struct btrfs_work work;
87 };
88 
89 /*
90  * async submit bios are used to offload expensive checksumming
91  * onto the worker threads.  They checksum file and metadata bios
92  * just before they are sent down the IO stack.
93  */
94 struct async_submit_bio {
95 	struct inode *inode;
96 	struct bio *bio;
97 	struct list_head list;
98 	extent_submit_bio_hook_t *submit_bio_start;
99 	extent_submit_bio_hook_t *submit_bio_done;
100 	int rw;
101 	int mirror_num;
102 	unsigned long bio_flags;
103 	/*
104 	 * bio_offset is optional, can be used if the pages in the bio
105 	 * can't tell us where in the file the bio should go
106 	 */
107 	u64 bio_offset;
108 	struct btrfs_work work;
109 	int error;
110 };
111 
112 /*
113  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
114  * eb, the lockdep key is determined by the btrfs_root it belongs to and
115  * the level the eb occupies in the tree.
116  *
117  * Different roots are used for different purposes and may nest inside each
118  * other and they require separate keysets.  As lockdep keys should be
119  * static, assign keysets according to the purpose of the root as indicated
120  * by btrfs_root->objectid.  This ensures that all special purpose roots
121  * have separate keysets.
122  *
123  * Lock-nesting across peer nodes is always done with the immediate parent
124  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
125  * subclass to avoid triggering lockdep warning in such cases.
126  *
127  * The key is set by the readpage_end_io_hook after the buffer has passed
128  * csum validation but before the pages are unlocked.  It is also set by
129  * btrfs_init_new_buffer on freshly allocated blocks.
130  *
131  * We also add a check to make sure the highest level of the tree is the
132  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
133  * needs update as well.
134  */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 #  error
138 # endif
139 
140 static struct btrfs_lockdep_keyset {
141 	u64			id;		/* root objectid */
142 	const char		*name_stem;	/* lock name stem */
143 	char			names[BTRFS_MAX_LEVEL + 1][20];
144 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
147 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
148 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
149 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
150 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
151 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
152 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
153 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
154 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
155 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
156 	{ .id = 0,				.name_stem = "tree"	},
157 };
158 
159 void __init btrfs_init_lockdep(void)
160 {
161 	int i, j;
162 
163 	/* initialize lockdep class names */
164 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166 
167 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168 			snprintf(ks->names[j], sizeof(ks->names[j]),
169 				 "btrfs-%s-%02d", ks->name_stem, j);
170 	}
171 }
172 
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174 				    int level)
175 {
176 	struct btrfs_lockdep_keyset *ks;
177 
178 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
179 
180 	/* find the matching keyset, id 0 is the default entry */
181 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182 		if (ks->id == objectid)
183 			break;
184 
185 	lockdep_set_class_and_name(&eb->lock,
186 				   &ks->keys[level], ks->names[level]);
187 }
188 
189 #endif
190 
191 /*
192  * extents on the btree inode are pretty simple, there's one extent
193  * that covers the entire device
194  */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196 		struct page *page, size_t pg_offset, u64 start, u64 len,
197 		int create)
198 {
199 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200 	struct extent_map *em;
201 	int ret;
202 
203 	read_lock(&em_tree->lock);
204 	em = lookup_extent_mapping(em_tree, start, len);
205 	if (em) {
206 		em->bdev =
207 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208 		read_unlock(&em_tree->lock);
209 		goto out;
210 	}
211 	read_unlock(&em_tree->lock);
212 
213 	em = alloc_extent_map();
214 	if (!em) {
215 		em = ERR_PTR(-ENOMEM);
216 		goto out;
217 	}
218 	em->start = 0;
219 	em->len = (u64)-1;
220 	em->block_len = (u64)-1;
221 	em->block_start = 0;
222 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223 
224 	write_lock(&em_tree->lock);
225 	ret = add_extent_mapping(em_tree, em);
226 	if (ret == -EEXIST) {
227 		free_extent_map(em);
228 		em = lookup_extent_mapping(em_tree, start, len);
229 		if (!em)
230 			em = ERR_PTR(-EIO);
231 	} else if (ret) {
232 		free_extent_map(em);
233 		em = ERR_PTR(ret);
234 	}
235 	write_unlock(&em_tree->lock);
236 
237 out:
238 	return em;
239 }
240 
241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
242 {
243 	return crc32c(seed, data, len);
244 }
245 
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248 	put_unaligned_le32(~crc, result);
249 }
250 
251 /*
252  * compute the csum for a btree block, and either verify it or write it
253  * into the csum field of the block.
254  */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256 			   int verify)
257 {
258 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259 	char *result = NULL;
260 	unsigned long len;
261 	unsigned long cur_len;
262 	unsigned long offset = BTRFS_CSUM_SIZE;
263 	char *kaddr;
264 	unsigned long map_start;
265 	unsigned long map_len;
266 	int err;
267 	u32 crc = ~(u32)0;
268 	unsigned long inline_result;
269 
270 	len = buf->len - offset;
271 	while (len > 0) {
272 		err = map_private_extent_buffer(buf, offset, 32,
273 					&kaddr, &map_start, &map_len);
274 		if (err)
275 			return 1;
276 		cur_len = min(len, map_len - (offset - map_start));
277 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
278 				      crc, cur_len);
279 		len -= cur_len;
280 		offset += cur_len;
281 	}
282 	if (csum_size > sizeof(inline_result)) {
283 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 		if (!result)
285 			return 1;
286 	} else {
287 		result = (char *)&inline_result;
288 	}
289 
290 	btrfs_csum_final(crc, result);
291 
292 	if (verify) {
293 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294 			u32 val;
295 			u32 found = 0;
296 			memcpy(&found, result, csum_size);
297 
298 			read_extent_buffer(buf, &val, 0, csum_size);
299 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300 				       "failed on %llu wanted %X found %X "
301 				       "level %d\n",
302 				       root->fs_info->sb->s_id,
303 				       (unsigned long long)buf->start, val, found,
304 				       btrfs_header_level(buf));
305 			if (result != (char *)&inline_result)
306 				kfree(result);
307 			return 1;
308 		}
309 	} else {
310 		write_extent_buffer(buf, result, 0, csum_size);
311 	}
312 	if (result != (char *)&inline_result)
313 		kfree(result);
314 	return 0;
315 }
316 
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 				 struct extent_buffer *eb, u64 parent_transid,
325 				 int atomic)
326 {
327 	struct extent_state *cached_state = NULL;
328 	int ret;
329 
330 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 		return 0;
332 
333 	if (atomic)
334 		return -EAGAIN;
335 
336 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337 			 0, &cached_state);
338 	if (extent_buffer_uptodate(eb) &&
339 	    btrfs_header_generation(eb) == parent_transid) {
340 		ret = 0;
341 		goto out;
342 	}
343 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344 		       "found %llu\n",
345 		       (unsigned long long)eb->start,
346 		       (unsigned long long)parent_transid,
347 		       (unsigned long long)btrfs_header_generation(eb));
348 	ret = 1;
349 	clear_extent_buffer_uptodate(eb);
350 out:
351 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 			     &cached_state, GFP_NOFS);
353 	return ret;
354 }
355 
356 /*
357  * helper to read a given tree block, doing retries as required when
358  * the checksums don't match and we have alternate mirrors to try.
359  */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361 					  struct extent_buffer *eb,
362 					  u64 start, u64 parent_transid)
363 {
364 	struct extent_io_tree *io_tree;
365 	int failed = 0;
366 	int ret;
367 	int num_copies = 0;
368 	int mirror_num = 0;
369 	int failed_mirror = 0;
370 
371 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373 	while (1) {
374 		ret = read_extent_buffer_pages(io_tree, eb, start,
375 					       WAIT_COMPLETE,
376 					       btree_get_extent, mirror_num);
377 		if (!ret) {
378 			if (!verify_parent_transid(io_tree, eb,
379 						   parent_transid, 0))
380 				break;
381 			else
382 				ret = -EIO;
383 		}
384 
385 		/*
386 		 * This buffer's crc is fine, but its contents are corrupted, so
387 		 * there is no reason to read the other copies, they won't be
388 		 * any less wrong.
389 		 */
390 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391 			break;
392 
393 		num_copies = btrfs_num_copies(root->fs_info,
394 					      eb->start, eb->len);
395 		if (num_copies == 1)
396 			break;
397 
398 		if (!failed_mirror) {
399 			failed = 1;
400 			failed_mirror = eb->read_mirror;
401 		}
402 
403 		mirror_num++;
404 		if (mirror_num == failed_mirror)
405 			mirror_num++;
406 
407 		if (mirror_num > num_copies)
408 			break;
409 	}
410 
411 	if (failed && !ret && failed_mirror)
412 		repair_eb_io_failure(root, eb, failed_mirror);
413 
414 	return ret;
415 }
416 
417 /*
418  * checksum a dirty tree block before IO.  This has extra checks to make sure
419  * we only fill in the checksum field in the first page of a multi-page block
420  */
421 
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424 	struct extent_io_tree *tree;
425 	u64 start = page_offset(page);
426 	u64 found_start;
427 	struct extent_buffer *eb;
428 
429 	tree = &BTRFS_I(page->mapping->host)->io_tree;
430 
431 	eb = (struct extent_buffer *)page->private;
432 	if (page != eb->pages[0])
433 		return 0;
434 	found_start = btrfs_header_bytenr(eb);
435 	if (found_start != start) {
436 		WARN_ON(1);
437 		return 0;
438 	}
439 	if (!PageUptodate(page)) {
440 		WARN_ON(1);
441 		return 0;
442 	}
443 	csum_tree_block(root, eb, 0);
444 	return 0;
445 }
446 
447 static int check_tree_block_fsid(struct btrfs_root *root,
448 				 struct extent_buffer *eb)
449 {
450 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451 	u8 fsid[BTRFS_UUID_SIZE];
452 	int ret = 1;
453 
454 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455 			   BTRFS_FSID_SIZE);
456 	while (fs_devices) {
457 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 			ret = 0;
459 			break;
460 		}
461 		fs_devices = fs_devices->seed;
462 	}
463 	return ret;
464 }
465 
466 #define CORRUPT(reason, eb, root, slot)				\
467 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
468 	       "root=%llu, slot=%d\n", reason,			\
469 	       (unsigned long long)btrfs_header_bytenr(eb),	\
470 	       (unsigned long long)root->objectid, slot)
471 
472 static noinline int check_leaf(struct btrfs_root *root,
473 			       struct extent_buffer *leaf)
474 {
475 	struct btrfs_key key;
476 	struct btrfs_key leaf_key;
477 	u32 nritems = btrfs_header_nritems(leaf);
478 	int slot;
479 
480 	if (nritems == 0)
481 		return 0;
482 
483 	/* Check the 0 item */
484 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485 	    BTRFS_LEAF_DATA_SIZE(root)) {
486 		CORRUPT("invalid item offset size pair", leaf, root, 0);
487 		return -EIO;
488 	}
489 
490 	/*
491 	 * Check to make sure each items keys are in the correct order and their
492 	 * offsets make sense.  We only have to loop through nritems-1 because
493 	 * we check the current slot against the next slot, which verifies the
494 	 * next slot's offset+size makes sense and that the current's slot
495 	 * offset is correct.
496 	 */
497 	for (slot = 0; slot < nritems - 1; slot++) {
498 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500 
501 		/* Make sure the keys are in the right order */
502 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503 			CORRUPT("bad key order", leaf, root, slot);
504 			return -EIO;
505 		}
506 
507 		/*
508 		 * Make sure the offset and ends are right, remember that the
509 		 * item data starts at the end of the leaf and grows towards the
510 		 * front.
511 		 */
512 		if (btrfs_item_offset_nr(leaf, slot) !=
513 			btrfs_item_end_nr(leaf, slot + 1)) {
514 			CORRUPT("slot offset bad", leaf, root, slot);
515 			return -EIO;
516 		}
517 
518 		/*
519 		 * Check to make sure that we don't point outside of the leaf,
520 		 * just incase all the items are consistent to eachother, but
521 		 * all point outside of the leaf.
522 		 */
523 		if (btrfs_item_end_nr(leaf, slot) >
524 		    BTRFS_LEAF_DATA_SIZE(root)) {
525 			CORRUPT("slot end outside of leaf", leaf, root, slot);
526 			return -EIO;
527 		}
528 	}
529 
530 	return 0;
531 }
532 
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534 				       struct page *page, int max_walk)
535 {
536 	struct extent_buffer *eb;
537 	u64 start = page_offset(page);
538 	u64 target = start;
539 	u64 min_start;
540 
541 	if (start < max_walk)
542 		min_start = 0;
543 	else
544 		min_start = start - max_walk;
545 
546 	while (start >= min_start) {
547 		eb = find_extent_buffer(tree, start, 0);
548 		if (eb) {
549 			/*
550 			 * we found an extent buffer and it contains our page
551 			 * horray!
552 			 */
553 			if (eb->start <= target &&
554 			    eb->start + eb->len > target)
555 				return eb;
556 
557 			/* we found an extent buffer that wasn't for us */
558 			free_extent_buffer(eb);
559 			return NULL;
560 		}
561 		if (start == 0)
562 			break;
563 		start -= PAGE_CACHE_SIZE;
564 	}
565 	return NULL;
566 }
567 
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569 			       struct extent_state *state, int mirror)
570 {
571 	struct extent_io_tree *tree;
572 	u64 found_start;
573 	int found_level;
574 	struct extent_buffer *eb;
575 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576 	int ret = 0;
577 	int reads_done;
578 
579 	if (!page->private)
580 		goto out;
581 
582 	tree = &BTRFS_I(page->mapping->host)->io_tree;
583 	eb = (struct extent_buffer *)page->private;
584 
585 	/* the pending IO might have been the only thing that kept this buffer
586 	 * in memory.  Make sure we have a ref for all this other checks
587 	 */
588 	extent_buffer_get(eb);
589 
590 	reads_done = atomic_dec_and_test(&eb->io_pages);
591 	if (!reads_done)
592 		goto err;
593 
594 	eb->read_mirror = mirror;
595 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596 		ret = -EIO;
597 		goto err;
598 	}
599 
600 	found_start = btrfs_header_bytenr(eb);
601 	if (found_start != eb->start) {
602 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603 			       "%llu %llu\n",
604 			       (unsigned long long)found_start,
605 			       (unsigned long long)eb->start);
606 		ret = -EIO;
607 		goto err;
608 	}
609 	if (check_tree_block_fsid(root, eb)) {
610 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611 			       (unsigned long long)eb->start);
612 		ret = -EIO;
613 		goto err;
614 	}
615 	found_level = btrfs_header_level(eb);
616 
617 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618 				       eb, found_level);
619 
620 	ret = csum_tree_block(root, eb, 1);
621 	if (ret) {
622 		ret = -EIO;
623 		goto err;
624 	}
625 
626 	/*
627 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
628 	 * that we don't try and read the other copies of this block, just
629 	 * return -EIO.
630 	 */
631 	if (found_level == 0 && check_leaf(root, eb)) {
632 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633 		ret = -EIO;
634 	}
635 
636 	if (!ret)
637 		set_extent_buffer_uptodate(eb);
638 err:
639 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641 		btree_readahead_hook(root, eb, eb->start, ret);
642 	}
643 
644 	if (ret) {
645 		/*
646 		 * our io error hook is going to dec the io pages
647 		 * again, we have to make sure it has something
648 		 * to decrement
649 		 */
650 		atomic_inc(&eb->io_pages);
651 		clear_extent_buffer_uptodate(eb);
652 	}
653 	free_extent_buffer(eb);
654 out:
655 	return ret;
656 }
657 
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660 	struct extent_buffer *eb;
661 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662 
663 	eb = (struct extent_buffer *)page->private;
664 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665 	eb->read_mirror = failed_mirror;
666 	atomic_dec(&eb->io_pages);
667 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668 		btree_readahead_hook(root, eb, eb->start, -EIO);
669 	return -EIO;	/* we fixed nothing */
670 }
671 
672 static void end_workqueue_bio(struct bio *bio, int err)
673 {
674 	struct end_io_wq *end_io_wq = bio->bi_private;
675 	struct btrfs_fs_info *fs_info;
676 
677 	fs_info = end_io_wq->info;
678 	end_io_wq->error = err;
679 	end_io_wq->work.func = end_workqueue_fn;
680 	end_io_wq->work.flags = 0;
681 
682 	if (bio->bi_rw & REQ_WRITE) {
683 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685 					   &end_io_wq->work);
686 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
688 					   &end_io_wq->work);
689 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
691 					   &end_io_wq->work);
692 		else
693 			btrfs_queue_worker(&fs_info->endio_write_workers,
694 					   &end_io_wq->work);
695 	} else {
696 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697 			btrfs_queue_worker(&fs_info->endio_raid56_workers,
698 					   &end_io_wq->work);
699 		else if (end_io_wq->metadata)
700 			btrfs_queue_worker(&fs_info->endio_meta_workers,
701 					   &end_io_wq->work);
702 		else
703 			btrfs_queue_worker(&fs_info->endio_workers,
704 					   &end_io_wq->work);
705 	}
706 }
707 
708 /*
709  * For the metadata arg you want
710  *
711  * 0 - if data
712  * 1 - if normal metadta
713  * 2 - if writing to the free space cache area
714  * 3 - raid parity work
715  */
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717 			int metadata)
718 {
719 	struct end_io_wq *end_io_wq;
720 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721 	if (!end_io_wq)
722 		return -ENOMEM;
723 
724 	end_io_wq->private = bio->bi_private;
725 	end_io_wq->end_io = bio->bi_end_io;
726 	end_io_wq->info = info;
727 	end_io_wq->error = 0;
728 	end_io_wq->bio = bio;
729 	end_io_wq->metadata = metadata;
730 
731 	bio->bi_private = end_io_wq;
732 	bio->bi_end_io = end_workqueue_bio;
733 	return 0;
734 }
735 
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
737 {
738 	unsigned long limit = min_t(unsigned long,
739 				    info->workers.max_workers,
740 				    info->fs_devices->open_devices);
741 	return 256 * limit;
742 }
743 
744 static void run_one_async_start(struct btrfs_work *work)
745 {
746 	struct async_submit_bio *async;
747 	int ret;
748 
749 	async = container_of(work, struct  async_submit_bio, work);
750 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751 				      async->mirror_num, async->bio_flags,
752 				      async->bio_offset);
753 	if (ret)
754 		async->error = ret;
755 }
756 
757 static void run_one_async_done(struct btrfs_work *work)
758 {
759 	struct btrfs_fs_info *fs_info;
760 	struct async_submit_bio *async;
761 	int limit;
762 
763 	async = container_of(work, struct  async_submit_bio, work);
764 	fs_info = BTRFS_I(async->inode)->root->fs_info;
765 
766 	limit = btrfs_async_submit_limit(fs_info);
767 	limit = limit * 2 / 3;
768 
769 	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770 	    waitqueue_active(&fs_info->async_submit_wait))
771 		wake_up(&fs_info->async_submit_wait);
772 
773 	/* If an error occured we just want to clean up the bio and move on */
774 	if (async->error) {
775 		bio_endio(async->bio, async->error);
776 		return;
777 	}
778 
779 	async->submit_bio_done(async->inode, async->rw, async->bio,
780 			       async->mirror_num, async->bio_flags,
781 			       async->bio_offset);
782 }
783 
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786 	struct async_submit_bio *async;
787 
788 	async = container_of(work, struct  async_submit_bio, work);
789 	kfree(async);
790 }
791 
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793 			int rw, struct bio *bio, int mirror_num,
794 			unsigned long bio_flags,
795 			u64 bio_offset,
796 			extent_submit_bio_hook_t *submit_bio_start,
797 			extent_submit_bio_hook_t *submit_bio_done)
798 {
799 	struct async_submit_bio *async;
800 
801 	async = kmalloc(sizeof(*async), GFP_NOFS);
802 	if (!async)
803 		return -ENOMEM;
804 
805 	async->inode = inode;
806 	async->rw = rw;
807 	async->bio = bio;
808 	async->mirror_num = mirror_num;
809 	async->submit_bio_start = submit_bio_start;
810 	async->submit_bio_done = submit_bio_done;
811 
812 	async->work.func = run_one_async_start;
813 	async->work.ordered_func = run_one_async_done;
814 	async->work.ordered_free = run_one_async_free;
815 
816 	async->work.flags = 0;
817 	async->bio_flags = bio_flags;
818 	async->bio_offset = bio_offset;
819 
820 	async->error = 0;
821 
822 	atomic_inc(&fs_info->nr_async_submits);
823 
824 	if (rw & REQ_SYNC)
825 		btrfs_set_work_high_prio(&async->work);
826 
827 	btrfs_queue_worker(&fs_info->workers, &async->work);
828 
829 	while (atomic_read(&fs_info->async_submit_draining) &&
830 	      atomic_read(&fs_info->nr_async_submits)) {
831 		wait_event(fs_info->async_submit_wait,
832 			   (atomic_read(&fs_info->nr_async_submits) == 0));
833 	}
834 
835 	return 0;
836 }
837 
838 static int btree_csum_one_bio(struct bio *bio)
839 {
840 	struct bio_vec *bvec = bio->bi_io_vec;
841 	int bio_index = 0;
842 	struct btrfs_root *root;
843 	int ret = 0;
844 
845 	WARN_ON(bio->bi_vcnt <= 0);
846 	while (bio_index < bio->bi_vcnt) {
847 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848 		ret = csum_dirty_buffer(root, bvec->bv_page);
849 		if (ret)
850 			break;
851 		bio_index++;
852 		bvec++;
853 	}
854 	return ret;
855 }
856 
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858 				    struct bio *bio, int mirror_num,
859 				    unsigned long bio_flags,
860 				    u64 bio_offset)
861 {
862 	/*
863 	 * when we're called for a write, we're already in the async
864 	 * submission context.  Just jump into btrfs_map_bio
865 	 */
866 	return btree_csum_one_bio(bio);
867 }
868 
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870 				 int mirror_num, unsigned long bio_flags,
871 				 u64 bio_offset)
872 {
873 	int ret;
874 
875 	/*
876 	 * when we're called for a write, we're already in the async
877 	 * submission context.  Just jump into btrfs_map_bio
878 	 */
879 	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880 	if (ret)
881 		bio_endio(bio, ret);
882 	return ret;
883 }
884 
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
886 {
887 	if (bio_flags & EXTENT_BIO_TREE_LOG)
888 		return 0;
889 #ifdef CONFIG_X86
890 	if (cpu_has_xmm4_2)
891 		return 0;
892 #endif
893 	return 1;
894 }
895 
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897 				 int mirror_num, unsigned long bio_flags,
898 				 u64 bio_offset)
899 {
900 	int async = check_async_write(inode, bio_flags);
901 	int ret;
902 
903 	if (!(rw & REQ_WRITE)) {
904 		/*
905 		 * called for a read, do the setup so that checksum validation
906 		 * can happen in the async kernel threads
907 		 */
908 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909 					  bio, 1);
910 		if (ret)
911 			goto out_w_error;
912 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913 				    mirror_num, 0);
914 	} else if (!async) {
915 		ret = btree_csum_one_bio(bio);
916 		if (ret)
917 			goto out_w_error;
918 		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 				    mirror_num, 0);
920 	} else {
921 		/*
922 		 * kthread helpers are used to submit writes so that
923 		 * checksumming can happen in parallel across all CPUs
924 		 */
925 		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926 					  inode, rw, bio, mirror_num, 0,
927 					  bio_offset,
928 					  __btree_submit_bio_start,
929 					  __btree_submit_bio_done);
930 	}
931 
932 	if (ret) {
933 out_w_error:
934 		bio_endio(bio, ret);
935 	}
936 	return ret;
937 }
938 
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941 			struct page *newpage, struct page *page,
942 			enum migrate_mode mode)
943 {
944 	/*
945 	 * we can't safely write a btree page from here,
946 	 * we haven't done the locking hook
947 	 */
948 	if (PageDirty(page))
949 		return -EAGAIN;
950 	/*
951 	 * Buffers may be managed in a filesystem specific way.
952 	 * We must have no buffers or drop them.
953 	 */
954 	if (page_has_private(page) &&
955 	    !try_to_release_page(page, GFP_KERNEL))
956 		return -EAGAIN;
957 	return migrate_page(mapping, newpage, page, mode);
958 }
959 #endif
960 
961 
962 static int btree_writepages(struct address_space *mapping,
963 			    struct writeback_control *wbc)
964 {
965 	struct extent_io_tree *tree;
966 	struct btrfs_fs_info *fs_info;
967 	int ret;
968 
969 	tree = &BTRFS_I(mapping->host)->io_tree;
970 	if (wbc->sync_mode == WB_SYNC_NONE) {
971 
972 		if (wbc->for_kupdate)
973 			return 0;
974 
975 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
976 		/* this is a bit racy, but that's ok */
977 		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978 					     BTRFS_DIRTY_METADATA_THRESH);
979 		if (ret < 0)
980 			return 0;
981 	}
982 	return btree_write_cache_pages(mapping, wbc);
983 }
984 
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987 	struct extent_io_tree *tree;
988 	tree = &BTRFS_I(page->mapping->host)->io_tree;
989 	return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991 
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994 	if (PageWriteback(page) || PageDirty(page))
995 		return 0;
996 	/*
997 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998 	 * slab allocation from alloc_extent_state down the callchain where
999 	 * it'd hit a BUG_ON as those flags are not allowed.
1000 	 */
1001 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002 
1003 	return try_release_extent_buffer(page, gfp_flags);
1004 }
1005 
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1007 {
1008 	struct extent_io_tree *tree;
1009 	tree = &BTRFS_I(page->mapping->host)->io_tree;
1010 	extent_invalidatepage(tree, page, offset);
1011 	btree_releasepage(page, GFP_NOFS);
1012 	if (PagePrivate(page)) {
1013 		printk(KERN_WARNING "btrfs warning page private not zero "
1014 		       "on page %llu\n", (unsigned long long)page_offset(page));
1015 		ClearPagePrivate(page);
1016 		set_page_private(page, 0);
1017 		page_cache_release(page);
1018 	}
1019 }
1020 
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024 	struct extent_buffer *eb;
1025 
1026 	BUG_ON(!PagePrivate(page));
1027 	eb = (struct extent_buffer *)page->private;
1028 	BUG_ON(!eb);
1029 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 	BUG_ON(!atomic_read(&eb->refs));
1031 	btrfs_assert_tree_locked(eb);
1032 #endif
1033 	return __set_page_dirty_nobuffers(page);
1034 }
1035 
1036 static const struct address_space_operations btree_aops = {
1037 	.readpage	= btree_readpage,
1038 	.writepages	= btree_writepages,
1039 	.releasepage	= btree_releasepage,
1040 	.invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042 	.migratepage	= btree_migratepage,
1043 #endif
1044 	.set_page_dirty = btree_set_page_dirty,
1045 };
1046 
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 			 u64 parent_transid)
1049 {
1050 	struct extent_buffer *buf = NULL;
1051 	struct inode *btree_inode = root->fs_info->btree_inode;
1052 	int ret = 0;
1053 
1054 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055 	if (!buf)
1056 		return 0;
1057 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1059 	free_extent_buffer(buf);
1060 	return ret;
1061 }
1062 
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 			 int mirror_num, struct extent_buffer **eb)
1065 {
1066 	struct extent_buffer *buf = NULL;
1067 	struct inode *btree_inode = root->fs_info->btree_inode;
1068 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 	int ret;
1070 
1071 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 	if (!buf)
1073 		return 0;
1074 
1075 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076 
1077 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 				       btree_get_extent, mirror_num);
1079 	if (ret) {
1080 		free_extent_buffer(buf);
1081 		return ret;
1082 	}
1083 
1084 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 		free_extent_buffer(buf);
1086 		return -EIO;
1087 	} else if (extent_buffer_uptodate(buf)) {
1088 		*eb = buf;
1089 	} else {
1090 		free_extent_buffer(buf);
1091 	}
1092 	return 0;
1093 }
1094 
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 					    u64 bytenr, u32 blocksize)
1097 {
1098 	struct inode *btree_inode = root->fs_info->btree_inode;
1099 	struct extent_buffer *eb;
1100 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101 				bytenr, blocksize);
1102 	return eb;
1103 }
1104 
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106 						 u64 bytenr, u32 blocksize)
1107 {
1108 	struct inode *btree_inode = root->fs_info->btree_inode;
1109 	struct extent_buffer *eb;
1110 
1111 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112 				 bytenr, blocksize);
1113 	return eb;
1114 }
1115 
1116 
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120 					buf->start + buf->len - 1);
1121 }
1122 
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1126 				       buf->start, buf->start + buf->len - 1);
1127 }
1128 
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130 				      u32 blocksize, u64 parent_transid)
1131 {
1132 	struct extent_buffer *buf = NULL;
1133 	int ret;
1134 
1135 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136 	if (!buf)
1137 		return NULL;
1138 
1139 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140 	return buf;
1141 
1142 }
1143 
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145 		      struct extent_buffer *buf)
1146 {
1147 	struct btrfs_fs_info *fs_info = root->fs_info;
1148 
1149 	if (btrfs_header_generation(buf) ==
1150 	    fs_info->running_transaction->transid) {
1151 		btrfs_assert_tree_locked(buf);
1152 
1153 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154 			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155 					     -buf->len,
1156 					     fs_info->dirty_metadata_batch);
1157 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1158 			btrfs_set_lock_blocking(buf);
1159 			clear_extent_buffer_dirty(buf);
1160 		}
1161 	}
1162 }
1163 
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165 			 u32 stripesize, struct btrfs_root *root,
1166 			 struct btrfs_fs_info *fs_info,
1167 			 u64 objectid)
1168 {
1169 	root->node = NULL;
1170 	root->commit_root = NULL;
1171 	root->sectorsize = sectorsize;
1172 	root->nodesize = nodesize;
1173 	root->leafsize = leafsize;
1174 	root->stripesize = stripesize;
1175 	root->ref_cows = 0;
1176 	root->track_dirty = 0;
1177 	root->in_radix = 0;
1178 	root->orphan_item_inserted = 0;
1179 	root->orphan_cleanup_state = 0;
1180 
1181 	root->objectid = objectid;
1182 	root->last_trans = 0;
1183 	root->highest_objectid = 0;
1184 	root->name = NULL;
1185 	root->inode_tree = RB_ROOT;
1186 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187 	root->block_rsv = NULL;
1188 	root->orphan_block_rsv = NULL;
1189 
1190 	INIT_LIST_HEAD(&root->dirty_list);
1191 	INIT_LIST_HEAD(&root->root_list);
1192 	INIT_LIST_HEAD(&root->logged_list[0]);
1193 	INIT_LIST_HEAD(&root->logged_list[1]);
1194 	spin_lock_init(&root->orphan_lock);
1195 	spin_lock_init(&root->inode_lock);
1196 	spin_lock_init(&root->accounting_lock);
1197 	spin_lock_init(&root->log_extents_lock[0]);
1198 	spin_lock_init(&root->log_extents_lock[1]);
1199 	mutex_init(&root->objectid_mutex);
1200 	mutex_init(&root->log_mutex);
1201 	init_waitqueue_head(&root->log_writer_wait);
1202 	init_waitqueue_head(&root->log_commit_wait[0]);
1203 	init_waitqueue_head(&root->log_commit_wait[1]);
1204 	atomic_set(&root->log_commit[0], 0);
1205 	atomic_set(&root->log_commit[1], 0);
1206 	atomic_set(&root->log_writers, 0);
1207 	atomic_set(&root->log_batch, 0);
1208 	atomic_set(&root->orphan_inodes, 0);
1209 	root->log_transid = 0;
1210 	root->last_log_commit = 0;
1211 	extent_io_tree_init(&root->dirty_log_pages,
1212 			     fs_info->btree_inode->i_mapping);
1213 
1214 	memset(&root->root_key, 0, sizeof(root->root_key));
1215 	memset(&root->root_item, 0, sizeof(root->root_item));
1216 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218 	root->defrag_trans_start = fs_info->generation;
1219 	init_completion(&root->kobj_unregister);
1220 	root->defrag_running = 0;
1221 	root->root_key.objectid = objectid;
1222 	root->anon_dev = 0;
1223 
1224 	spin_lock_init(&root->root_item_lock);
1225 }
1226 
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228 					    struct btrfs_fs_info *fs_info,
1229 					    u64 objectid,
1230 					    struct btrfs_root *root)
1231 {
1232 	int ret;
1233 	u32 blocksize;
1234 	u64 generation;
1235 
1236 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1237 		     tree_root->sectorsize, tree_root->stripesize,
1238 		     root, fs_info, objectid);
1239 	ret = btrfs_find_last_root(tree_root, objectid,
1240 				   &root->root_item, &root->root_key);
1241 	if (ret > 0)
1242 		return -ENOENT;
1243 	else if (ret < 0)
1244 		return ret;
1245 
1246 	generation = btrfs_root_generation(&root->root_item);
1247 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248 	root->commit_root = NULL;
1249 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250 				     blocksize, generation);
1251 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252 		free_extent_buffer(root->node);
1253 		root->node = NULL;
1254 		return -EIO;
1255 	}
1256 	root->commit_root = btrfs_root_node(root);
1257 	return 0;
1258 }
1259 
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263 	if (root)
1264 		root->fs_info = fs_info;
1265 	return root;
1266 }
1267 
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269 				     struct btrfs_fs_info *fs_info,
1270 				     u64 objectid)
1271 {
1272 	struct extent_buffer *leaf;
1273 	struct btrfs_root *tree_root = fs_info->tree_root;
1274 	struct btrfs_root *root;
1275 	struct btrfs_key key;
1276 	int ret = 0;
1277 	u64 bytenr;
1278 
1279 	root = btrfs_alloc_root(fs_info);
1280 	if (!root)
1281 		return ERR_PTR(-ENOMEM);
1282 
1283 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1284 		     tree_root->sectorsize, tree_root->stripesize,
1285 		     root, fs_info, objectid);
1286 	root->root_key.objectid = objectid;
1287 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 	root->root_key.offset = 0;
1289 
1290 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 				      0, objectid, NULL, 0, 0, 0);
1292 	if (IS_ERR(leaf)) {
1293 		ret = PTR_ERR(leaf);
1294 		leaf = NULL;
1295 		goto fail;
1296 	}
1297 
1298 	bytenr = leaf->start;
1299 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300 	btrfs_set_header_bytenr(leaf, leaf->start);
1301 	btrfs_set_header_generation(leaf, trans->transid);
1302 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303 	btrfs_set_header_owner(leaf, objectid);
1304 	root->node = leaf;
1305 
1306 	write_extent_buffer(leaf, fs_info->fsid,
1307 			    (unsigned long)btrfs_header_fsid(leaf),
1308 			    BTRFS_FSID_SIZE);
1309 	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311 			    BTRFS_UUID_SIZE);
1312 	btrfs_mark_buffer_dirty(leaf);
1313 
1314 	root->commit_root = btrfs_root_node(root);
1315 	root->track_dirty = 1;
1316 
1317 
1318 	root->root_item.flags = 0;
1319 	root->root_item.byte_limit = 0;
1320 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321 	btrfs_set_root_generation(&root->root_item, trans->transid);
1322 	btrfs_set_root_level(&root->root_item, 0);
1323 	btrfs_set_root_refs(&root->root_item, 1);
1324 	btrfs_set_root_used(&root->root_item, leaf->len);
1325 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1326 	btrfs_set_root_dirid(&root->root_item, 0);
1327 	root->root_item.drop_level = 0;
1328 
1329 	key.objectid = objectid;
1330 	key.type = BTRFS_ROOT_ITEM_KEY;
1331 	key.offset = 0;
1332 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333 	if (ret)
1334 		goto fail;
1335 
1336 	btrfs_tree_unlock(leaf);
1337 
1338 	return root;
1339 
1340 fail:
1341 	if (leaf) {
1342 		btrfs_tree_unlock(leaf);
1343 		free_extent_buffer(leaf);
1344 	}
1345 	kfree(root);
1346 
1347 	return ERR_PTR(ret);
1348 }
1349 
1350 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1351 					 struct btrfs_fs_info *fs_info)
1352 {
1353 	struct btrfs_root *root;
1354 	struct btrfs_root *tree_root = fs_info->tree_root;
1355 	struct extent_buffer *leaf;
1356 
1357 	root = btrfs_alloc_root(fs_info);
1358 	if (!root)
1359 		return ERR_PTR(-ENOMEM);
1360 
1361 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1362 		     tree_root->sectorsize, tree_root->stripesize,
1363 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1364 
1365 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1366 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1367 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1368 	/*
1369 	 * log trees do not get reference counted because they go away
1370 	 * before a real commit is actually done.  They do store pointers
1371 	 * to file data extents, and those reference counts still get
1372 	 * updated (along with back refs to the log tree).
1373 	 */
1374 	root->ref_cows = 0;
1375 
1376 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1377 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1378 				      0, 0, 0);
1379 	if (IS_ERR(leaf)) {
1380 		kfree(root);
1381 		return ERR_CAST(leaf);
1382 	}
1383 
1384 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1385 	btrfs_set_header_bytenr(leaf, leaf->start);
1386 	btrfs_set_header_generation(leaf, trans->transid);
1387 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1388 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1389 	root->node = leaf;
1390 
1391 	write_extent_buffer(root->node, root->fs_info->fsid,
1392 			    (unsigned long)btrfs_header_fsid(root->node),
1393 			    BTRFS_FSID_SIZE);
1394 	btrfs_mark_buffer_dirty(root->node);
1395 	btrfs_tree_unlock(root->node);
1396 	return root;
1397 }
1398 
1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400 			     struct btrfs_fs_info *fs_info)
1401 {
1402 	struct btrfs_root *log_root;
1403 
1404 	log_root = alloc_log_tree(trans, fs_info);
1405 	if (IS_ERR(log_root))
1406 		return PTR_ERR(log_root);
1407 	WARN_ON(fs_info->log_root_tree);
1408 	fs_info->log_root_tree = log_root;
1409 	return 0;
1410 }
1411 
1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413 		       struct btrfs_root *root)
1414 {
1415 	struct btrfs_root *log_root;
1416 	struct btrfs_inode_item *inode_item;
1417 
1418 	log_root = alloc_log_tree(trans, root->fs_info);
1419 	if (IS_ERR(log_root))
1420 		return PTR_ERR(log_root);
1421 
1422 	log_root->last_trans = trans->transid;
1423 	log_root->root_key.offset = root->root_key.objectid;
1424 
1425 	inode_item = &log_root->root_item.inode;
1426 	inode_item->generation = cpu_to_le64(1);
1427 	inode_item->size = cpu_to_le64(3);
1428 	inode_item->nlink = cpu_to_le32(1);
1429 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1430 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1431 
1432 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1433 
1434 	WARN_ON(root->log_root);
1435 	root->log_root = log_root;
1436 	root->log_transid = 0;
1437 	root->last_log_commit = 0;
1438 	return 0;
1439 }
1440 
1441 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1442 					       struct btrfs_key *location)
1443 {
1444 	struct btrfs_root *root;
1445 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1446 	struct btrfs_path *path;
1447 	struct extent_buffer *l;
1448 	u64 generation;
1449 	u32 blocksize;
1450 	int ret = 0;
1451 	int slot;
1452 
1453 	root = btrfs_alloc_root(fs_info);
1454 	if (!root)
1455 		return ERR_PTR(-ENOMEM);
1456 	if (location->offset == (u64)-1) {
1457 		ret = find_and_setup_root(tree_root, fs_info,
1458 					  location->objectid, root);
1459 		if (ret) {
1460 			kfree(root);
1461 			return ERR_PTR(ret);
1462 		}
1463 		goto out;
1464 	}
1465 
1466 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1467 		     tree_root->sectorsize, tree_root->stripesize,
1468 		     root, fs_info, location->objectid);
1469 
1470 	path = btrfs_alloc_path();
1471 	if (!path) {
1472 		kfree(root);
1473 		return ERR_PTR(-ENOMEM);
1474 	}
1475 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1476 	if (ret == 0) {
1477 		l = path->nodes[0];
1478 		slot = path->slots[0];
1479 		btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1480 		memcpy(&root->root_key, location, sizeof(*location));
1481 	}
1482 	btrfs_free_path(path);
1483 	if (ret) {
1484 		kfree(root);
1485 		if (ret > 0)
1486 			ret = -ENOENT;
1487 		return ERR_PTR(ret);
1488 	}
1489 
1490 	generation = btrfs_root_generation(&root->root_item);
1491 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1492 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1493 				     blocksize, generation);
1494 	root->commit_root = btrfs_root_node(root);
1495 	BUG_ON(!root->node); /* -ENOMEM */
1496 out:
1497 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1498 		root->ref_cows = 1;
1499 		btrfs_check_and_init_root_item(&root->root_item);
1500 	}
1501 
1502 	return root;
1503 }
1504 
1505 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1506 					      struct btrfs_key *location)
1507 {
1508 	struct btrfs_root *root;
1509 	int ret;
1510 
1511 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1512 		return fs_info->tree_root;
1513 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1514 		return fs_info->extent_root;
1515 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516 		return fs_info->chunk_root;
1517 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1518 		return fs_info->dev_root;
1519 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1520 		return fs_info->csum_root;
1521 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522 		return fs_info->quota_root ? fs_info->quota_root :
1523 					     ERR_PTR(-ENOENT);
1524 again:
1525 	spin_lock(&fs_info->fs_roots_radix_lock);
1526 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527 				 (unsigned long)location->objectid);
1528 	spin_unlock(&fs_info->fs_roots_radix_lock);
1529 	if (root)
1530 		return root;
1531 
1532 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1533 	if (IS_ERR(root))
1534 		return root;
1535 
1536 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1537 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1538 					GFP_NOFS);
1539 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1540 		ret = -ENOMEM;
1541 		goto fail;
1542 	}
1543 
1544 	btrfs_init_free_ino_ctl(root);
1545 	mutex_init(&root->fs_commit_mutex);
1546 	spin_lock_init(&root->cache_lock);
1547 	init_waitqueue_head(&root->cache_wait);
1548 
1549 	ret = get_anon_bdev(&root->anon_dev);
1550 	if (ret)
1551 		goto fail;
1552 
1553 	if (btrfs_root_refs(&root->root_item) == 0) {
1554 		ret = -ENOENT;
1555 		goto fail;
1556 	}
1557 
1558 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1559 	if (ret < 0)
1560 		goto fail;
1561 	if (ret == 0)
1562 		root->orphan_item_inserted = 1;
1563 
1564 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1565 	if (ret)
1566 		goto fail;
1567 
1568 	spin_lock(&fs_info->fs_roots_radix_lock);
1569 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1570 				(unsigned long)root->root_key.objectid,
1571 				root);
1572 	if (ret == 0)
1573 		root->in_radix = 1;
1574 
1575 	spin_unlock(&fs_info->fs_roots_radix_lock);
1576 	radix_tree_preload_end();
1577 	if (ret) {
1578 		if (ret == -EEXIST) {
1579 			free_fs_root(root);
1580 			goto again;
1581 		}
1582 		goto fail;
1583 	}
1584 
1585 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1586 				    root->root_key.objectid);
1587 	WARN_ON(ret);
1588 	return root;
1589 fail:
1590 	free_fs_root(root);
1591 	return ERR_PTR(ret);
1592 }
1593 
1594 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1595 {
1596 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1597 	int ret = 0;
1598 	struct btrfs_device *device;
1599 	struct backing_dev_info *bdi;
1600 
1601 	rcu_read_lock();
1602 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1603 		if (!device->bdev)
1604 			continue;
1605 		bdi = blk_get_backing_dev_info(device->bdev);
1606 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1607 			ret = 1;
1608 			break;
1609 		}
1610 	}
1611 	rcu_read_unlock();
1612 	return ret;
1613 }
1614 
1615 /*
1616  * If this fails, caller must call bdi_destroy() to get rid of the
1617  * bdi again.
1618  */
1619 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1620 {
1621 	int err;
1622 
1623 	bdi->capabilities = BDI_CAP_MAP_COPY;
1624 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1625 	if (err)
1626 		return err;
1627 
1628 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1629 	bdi->congested_fn	= btrfs_congested_fn;
1630 	bdi->congested_data	= info;
1631 	return 0;
1632 }
1633 
1634 /*
1635  * called by the kthread helper functions to finally call the bio end_io
1636  * functions.  This is where read checksum verification actually happens
1637  */
1638 static void end_workqueue_fn(struct btrfs_work *work)
1639 {
1640 	struct bio *bio;
1641 	struct end_io_wq *end_io_wq;
1642 	struct btrfs_fs_info *fs_info;
1643 	int error;
1644 
1645 	end_io_wq = container_of(work, struct end_io_wq, work);
1646 	bio = end_io_wq->bio;
1647 	fs_info = end_io_wq->info;
1648 
1649 	error = end_io_wq->error;
1650 	bio->bi_private = end_io_wq->private;
1651 	bio->bi_end_io = end_io_wq->end_io;
1652 	kfree(end_io_wq);
1653 	bio_endio(bio, error);
1654 }
1655 
1656 static int cleaner_kthread(void *arg)
1657 {
1658 	struct btrfs_root *root = arg;
1659 
1660 	do {
1661 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1662 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1663 			btrfs_run_delayed_iputs(root);
1664 			btrfs_clean_old_snapshots(root);
1665 			mutex_unlock(&root->fs_info->cleaner_mutex);
1666 			btrfs_run_defrag_inodes(root->fs_info);
1667 		}
1668 
1669 		if (!try_to_freeze()) {
1670 			set_current_state(TASK_INTERRUPTIBLE);
1671 			if (!kthread_should_stop())
1672 				schedule();
1673 			__set_current_state(TASK_RUNNING);
1674 		}
1675 	} while (!kthread_should_stop());
1676 	return 0;
1677 }
1678 
1679 static int transaction_kthread(void *arg)
1680 {
1681 	struct btrfs_root *root = arg;
1682 	struct btrfs_trans_handle *trans;
1683 	struct btrfs_transaction *cur;
1684 	u64 transid;
1685 	unsigned long now;
1686 	unsigned long delay;
1687 	bool cannot_commit;
1688 
1689 	do {
1690 		cannot_commit = false;
1691 		delay = HZ * 30;
1692 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1693 
1694 		spin_lock(&root->fs_info->trans_lock);
1695 		cur = root->fs_info->running_transaction;
1696 		if (!cur) {
1697 			spin_unlock(&root->fs_info->trans_lock);
1698 			goto sleep;
1699 		}
1700 
1701 		now = get_seconds();
1702 		if (!cur->blocked &&
1703 		    (now < cur->start_time || now - cur->start_time < 30)) {
1704 			spin_unlock(&root->fs_info->trans_lock);
1705 			delay = HZ * 5;
1706 			goto sleep;
1707 		}
1708 		transid = cur->transid;
1709 		spin_unlock(&root->fs_info->trans_lock);
1710 
1711 		/* If the file system is aborted, this will always fail. */
1712 		trans = btrfs_attach_transaction(root);
1713 		if (IS_ERR(trans)) {
1714 			if (PTR_ERR(trans) != -ENOENT)
1715 				cannot_commit = true;
1716 			goto sleep;
1717 		}
1718 		if (transid == trans->transid) {
1719 			btrfs_commit_transaction(trans, root);
1720 		} else {
1721 			btrfs_end_transaction(trans, root);
1722 		}
1723 sleep:
1724 		wake_up_process(root->fs_info->cleaner_kthread);
1725 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1726 
1727 		if (!try_to_freeze()) {
1728 			set_current_state(TASK_INTERRUPTIBLE);
1729 			if (!kthread_should_stop() &&
1730 			    (!btrfs_transaction_blocked(root->fs_info) ||
1731 			     cannot_commit))
1732 				schedule_timeout(delay);
1733 			__set_current_state(TASK_RUNNING);
1734 		}
1735 	} while (!kthread_should_stop());
1736 	return 0;
1737 }
1738 
1739 /*
1740  * this will find the highest generation in the array of
1741  * root backups.  The index of the highest array is returned,
1742  * or -1 if we can't find anything.
1743  *
1744  * We check to make sure the array is valid by comparing the
1745  * generation of the latest  root in the array with the generation
1746  * in the super block.  If they don't match we pitch it.
1747  */
1748 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1749 {
1750 	u64 cur;
1751 	int newest_index = -1;
1752 	struct btrfs_root_backup *root_backup;
1753 	int i;
1754 
1755 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1756 		root_backup = info->super_copy->super_roots + i;
1757 		cur = btrfs_backup_tree_root_gen(root_backup);
1758 		if (cur == newest_gen)
1759 			newest_index = i;
1760 	}
1761 
1762 	/* check to see if we actually wrapped around */
1763 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1764 		root_backup = info->super_copy->super_roots;
1765 		cur = btrfs_backup_tree_root_gen(root_backup);
1766 		if (cur == newest_gen)
1767 			newest_index = 0;
1768 	}
1769 	return newest_index;
1770 }
1771 
1772 
1773 /*
1774  * find the oldest backup so we know where to store new entries
1775  * in the backup array.  This will set the backup_root_index
1776  * field in the fs_info struct
1777  */
1778 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1779 				     u64 newest_gen)
1780 {
1781 	int newest_index = -1;
1782 
1783 	newest_index = find_newest_super_backup(info, newest_gen);
1784 	/* if there was garbage in there, just move along */
1785 	if (newest_index == -1) {
1786 		info->backup_root_index = 0;
1787 	} else {
1788 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1789 	}
1790 }
1791 
1792 /*
1793  * copy all the root pointers into the super backup array.
1794  * this will bump the backup pointer by one when it is
1795  * done
1796  */
1797 static void backup_super_roots(struct btrfs_fs_info *info)
1798 {
1799 	int next_backup;
1800 	struct btrfs_root_backup *root_backup;
1801 	int last_backup;
1802 
1803 	next_backup = info->backup_root_index;
1804 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1805 		BTRFS_NUM_BACKUP_ROOTS;
1806 
1807 	/*
1808 	 * just overwrite the last backup if we're at the same generation
1809 	 * this happens only at umount
1810 	 */
1811 	root_backup = info->super_for_commit->super_roots + last_backup;
1812 	if (btrfs_backup_tree_root_gen(root_backup) ==
1813 	    btrfs_header_generation(info->tree_root->node))
1814 		next_backup = last_backup;
1815 
1816 	root_backup = info->super_for_commit->super_roots + next_backup;
1817 
1818 	/*
1819 	 * make sure all of our padding and empty slots get zero filled
1820 	 * regardless of which ones we use today
1821 	 */
1822 	memset(root_backup, 0, sizeof(*root_backup));
1823 
1824 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1825 
1826 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1827 	btrfs_set_backup_tree_root_gen(root_backup,
1828 			       btrfs_header_generation(info->tree_root->node));
1829 
1830 	btrfs_set_backup_tree_root_level(root_backup,
1831 			       btrfs_header_level(info->tree_root->node));
1832 
1833 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1834 	btrfs_set_backup_chunk_root_gen(root_backup,
1835 			       btrfs_header_generation(info->chunk_root->node));
1836 	btrfs_set_backup_chunk_root_level(root_backup,
1837 			       btrfs_header_level(info->chunk_root->node));
1838 
1839 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1840 	btrfs_set_backup_extent_root_gen(root_backup,
1841 			       btrfs_header_generation(info->extent_root->node));
1842 	btrfs_set_backup_extent_root_level(root_backup,
1843 			       btrfs_header_level(info->extent_root->node));
1844 
1845 	/*
1846 	 * we might commit during log recovery, which happens before we set
1847 	 * the fs_root.  Make sure it is valid before we fill it in.
1848 	 */
1849 	if (info->fs_root && info->fs_root->node) {
1850 		btrfs_set_backup_fs_root(root_backup,
1851 					 info->fs_root->node->start);
1852 		btrfs_set_backup_fs_root_gen(root_backup,
1853 			       btrfs_header_generation(info->fs_root->node));
1854 		btrfs_set_backup_fs_root_level(root_backup,
1855 			       btrfs_header_level(info->fs_root->node));
1856 	}
1857 
1858 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1859 	btrfs_set_backup_dev_root_gen(root_backup,
1860 			       btrfs_header_generation(info->dev_root->node));
1861 	btrfs_set_backup_dev_root_level(root_backup,
1862 				       btrfs_header_level(info->dev_root->node));
1863 
1864 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1865 	btrfs_set_backup_csum_root_gen(root_backup,
1866 			       btrfs_header_generation(info->csum_root->node));
1867 	btrfs_set_backup_csum_root_level(root_backup,
1868 			       btrfs_header_level(info->csum_root->node));
1869 
1870 	btrfs_set_backup_total_bytes(root_backup,
1871 			     btrfs_super_total_bytes(info->super_copy));
1872 	btrfs_set_backup_bytes_used(root_backup,
1873 			     btrfs_super_bytes_used(info->super_copy));
1874 	btrfs_set_backup_num_devices(root_backup,
1875 			     btrfs_super_num_devices(info->super_copy));
1876 
1877 	/*
1878 	 * if we don't copy this out to the super_copy, it won't get remembered
1879 	 * for the next commit
1880 	 */
1881 	memcpy(&info->super_copy->super_roots,
1882 	       &info->super_for_commit->super_roots,
1883 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1884 }
1885 
1886 /*
1887  * this copies info out of the root backup array and back into
1888  * the in-memory super block.  It is meant to help iterate through
1889  * the array, so you send it the number of backups you've already
1890  * tried and the last backup index you used.
1891  *
1892  * this returns -1 when it has tried all the backups
1893  */
1894 static noinline int next_root_backup(struct btrfs_fs_info *info,
1895 				     struct btrfs_super_block *super,
1896 				     int *num_backups_tried, int *backup_index)
1897 {
1898 	struct btrfs_root_backup *root_backup;
1899 	int newest = *backup_index;
1900 
1901 	if (*num_backups_tried == 0) {
1902 		u64 gen = btrfs_super_generation(super);
1903 
1904 		newest = find_newest_super_backup(info, gen);
1905 		if (newest == -1)
1906 			return -1;
1907 
1908 		*backup_index = newest;
1909 		*num_backups_tried = 1;
1910 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1911 		/* we've tried all the backups, all done */
1912 		return -1;
1913 	} else {
1914 		/* jump to the next oldest backup */
1915 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1916 			BTRFS_NUM_BACKUP_ROOTS;
1917 		*backup_index = newest;
1918 		*num_backups_tried += 1;
1919 	}
1920 	root_backup = super->super_roots + newest;
1921 
1922 	btrfs_set_super_generation(super,
1923 				   btrfs_backup_tree_root_gen(root_backup));
1924 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925 	btrfs_set_super_root_level(super,
1926 				   btrfs_backup_tree_root_level(root_backup));
1927 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928 
1929 	/*
1930 	 * fixme: the total bytes and num_devices need to match or we should
1931 	 * need a fsck
1932 	 */
1933 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935 	return 0;
1936 }
1937 
1938 /* helper to cleanup tree roots */
1939 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1940 {
1941 	free_extent_buffer(info->tree_root->node);
1942 	free_extent_buffer(info->tree_root->commit_root);
1943 	free_extent_buffer(info->dev_root->node);
1944 	free_extent_buffer(info->dev_root->commit_root);
1945 	free_extent_buffer(info->extent_root->node);
1946 	free_extent_buffer(info->extent_root->commit_root);
1947 	free_extent_buffer(info->csum_root->node);
1948 	free_extent_buffer(info->csum_root->commit_root);
1949 	if (info->quota_root) {
1950 		free_extent_buffer(info->quota_root->node);
1951 		free_extent_buffer(info->quota_root->commit_root);
1952 	}
1953 
1954 	info->tree_root->node = NULL;
1955 	info->tree_root->commit_root = NULL;
1956 	info->dev_root->node = NULL;
1957 	info->dev_root->commit_root = NULL;
1958 	info->extent_root->node = NULL;
1959 	info->extent_root->commit_root = NULL;
1960 	info->csum_root->node = NULL;
1961 	info->csum_root->commit_root = NULL;
1962 	if (info->quota_root) {
1963 		info->quota_root->node = NULL;
1964 		info->quota_root->commit_root = NULL;
1965 	}
1966 
1967 	if (chunk_root) {
1968 		free_extent_buffer(info->chunk_root->node);
1969 		free_extent_buffer(info->chunk_root->commit_root);
1970 		info->chunk_root->node = NULL;
1971 		info->chunk_root->commit_root = NULL;
1972 	}
1973 }
1974 
1975 
1976 int open_ctree(struct super_block *sb,
1977 	       struct btrfs_fs_devices *fs_devices,
1978 	       char *options)
1979 {
1980 	u32 sectorsize;
1981 	u32 nodesize;
1982 	u32 leafsize;
1983 	u32 blocksize;
1984 	u32 stripesize;
1985 	u64 generation;
1986 	u64 features;
1987 	struct btrfs_key location;
1988 	struct buffer_head *bh;
1989 	struct btrfs_super_block *disk_super;
1990 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1991 	struct btrfs_root *tree_root;
1992 	struct btrfs_root *extent_root;
1993 	struct btrfs_root *csum_root;
1994 	struct btrfs_root *chunk_root;
1995 	struct btrfs_root *dev_root;
1996 	struct btrfs_root *quota_root;
1997 	struct btrfs_root *log_tree_root;
1998 	int ret;
1999 	int err = -EINVAL;
2000 	int num_backups_tried = 0;
2001 	int backup_index = 0;
2002 
2003 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2004 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2005 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2006 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2007 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2008 	quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2009 
2010 	if (!tree_root || !extent_root || !csum_root ||
2011 	    !chunk_root || !dev_root || !quota_root) {
2012 		err = -ENOMEM;
2013 		goto fail;
2014 	}
2015 
2016 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2017 	if (ret) {
2018 		err = ret;
2019 		goto fail;
2020 	}
2021 
2022 	ret = setup_bdi(fs_info, &fs_info->bdi);
2023 	if (ret) {
2024 		err = ret;
2025 		goto fail_srcu;
2026 	}
2027 
2028 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2029 	if (ret) {
2030 		err = ret;
2031 		goto fail_bdi;
2032 	}
2033 	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2034 					(1 + ilog2(nr_cpu_ids));
2035 
2036 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2037 	if (ret) {
2038 		err = ret;
2039 		goto fail_dirty_metadata_bytes;
2040 	}
2041 
2042 	fs_info->btree_inode = new_inode(sb);
2043 	if (!fs_info->btree_inode) {
2044 		err = -ENOMEM;
2045 		goto fail_delalloc_bytes;
2046 	}
2047 
2048 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2049 
2050 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2051 	INIT_LIST_HEAD(&fs_info->trans_list);
2052 	INIT_LIST_HEAD(&fs_info->dead_roots);
2053 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2054 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2055 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2056 	spin_lock_init(&fs_info->delalloc_lock);
2057 	spin_lock_init(&fs_info->trans_lock);
2058 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2059 	spin_lock_init(&fs_info->delayed_iput_lock);
2060 	spin_lock_init(&fs_info->defrag_inodes_lock);
2061 	spin_lock_init(&fs_info->free_chunk_lock);
2062 	spin_lock_init(&fs_info->tree_mod_seq_lock);
2063 	rwlock_init(&fs_info->tree_mod_log_lock);
2064 	mutex_init(&fs_info->reloc_mutex);
2065 	seqlock_init(&fs_info->profiles_lock);
2066 
2067 	init_completion(&fs_info->kobj_unregister);
2068 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2069 	INIT_LIST_HEAD(&fs_info->space_info);
2070 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2071 	btrfs_mapping_init(&fs_info->mapping_tree);
2072 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2073 			     BTRFS_BLOCK_RSV_GLOBAL);
2074 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2075 			     BTRFS_BLOCK_RSV_DELALLOC);
2076 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2077 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2078 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2079 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2080 			     BTRFS_BLOCK_RSV_DELOPS);
2081 	atomic_set(&fs_info->nr_async_submits, 0);
2082 	atomic_set(&fs_info->async_delalloc_pages, 0);
2083 	atomic_set(&fs_info->async_submit_draining, 0);
2084 	atomic_set(&fs_info->nr_async_bios, 0);
2085 	atomic_set(&fs_info->defrag_running, 0);
2086 	atomic_set(&fs_info->tree_mod_seq, 0);
2087 	fs_info->sb = sb;
2088 	fs_info->max_inline = 8192 * 1024;
2089 	fs_info->metadata_ratio = 0;
2090 	fs_info->defrag_inodes = RB_ROOT;
2091 	fs_info->trans_no_join = 0;
2092 	fs_info->free_chunk_space = 0;
2093 	fs_info->tree_mod_log = RB_ROOT;
2094 
2095 	/* readahead state */
2096 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2097 	spin_lock_init(&fs_info->reada_lock);
2098 
2099 	fs_info->thread_pool_size = min_t(unsigned long,
2100 					  num_online_cpus() + 2, 8);
2101 
2102 	INIT_LIST_HEAD(&fs_info->ordered_extents);
2103 	spin_lock_init(&fs_info->ordered_extent_lock);
2104 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2105 					GFP_NOFS);
2106 	if (!fs_info->delayed_root) {
2107 		err = -ENOMEM;
2108 		goto fail_iput;
2109 	}
2110 	btrfs_init_delayed_root(fs_info->delayed_root);
2111 
2112 	mutex_init(&fs_info->scrub_lock);
2113 	atomic_set(&fs_info->scrubs_running, 0);
2114 	atomic_set(&fs_info->scrub_pause_req, 0);
2115 	atomic_set(&fs_info->scrubs_paused, 0);
2116 	atomic_set(&fs_info->scrub_cancel_req, 0);
2117 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2118 	init_rwsem(&fs_info->scrub_super_lock);
2119 	fs_info->scrub_workers_refcnt = 0;
2120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2121 	fs_info->check_integrity_print_mask = 0;
2122 #endif
2123 
2124 	spin_lock_init(&fs_info->balance_lock);
2125 	mutex_init(&fs_info->balance_mutex);
2126 	atomic_set(&fs_info->balance_running, 0);
2127 	atomic_set(&fs_info->balance_pause_req, 0);
2128 	atomic_set(&fs_info->balance_cancel_req, 0);
2129 	fs_info->balance_ctl = NULL;
2130 	init_waitqueue_head(&fs_info->balance_wait_q);
2131 
2132 	sb->s_blocksize = 4096;
2133 	sb->s_blocksize_bits = blksize_bits(4096);
2134 	sb->s_bdi = &fs_info->bdi;
2135 
2136 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2137 	set_nlink(fs_info->btree_inode, 1);
2138 	/*
2139 	 * we set the i_size on the btree inode to the max possible int.
2140 	 * the real end of the address space is determined by all of
2141 	 * the devices in the system
2142 	 */
2143 	fs_info->btree_inode->i_size = OFFSET_MAX;
2144 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2145 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2146 
2147 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2148 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2149 			     fs_info->btree_inode->i_mapping);
2150 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2151 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2152 
2153 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2154 
2155 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2156 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2157 	       sizeof(struct btrfs_key));
2158 	set_bit(BTRFS_INODE_DUMMY,
2159 		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2160 	insert_inode_hash(fs_info->btree_inode);
2161 
2162 	spin_lock_init(&fs_info->block_group_cache_lock);
2163 	fs_info->block_group_cache_tree = RB_ROOT;
2164 	fs_info->first_logical_byte = (u64)-1;
2165 
2166 	extent_io_tree_init(&fs_info->freed_extents[0],
2167 			     fs_info->btree_inode->i_mapping);
2168 	extent_io_tree_init(&fs_info->freed_extents[1],
2169 			     fs_info->btree_inode->i_mapping);
2170 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2171 	fs_info->do_barriers = 1;
2172 
2173 
2174 	mutex_init(&fs_info->ordered_operations_mutex);
2175 	mutex_init(&fs_info->tree_log_mutex);
2176 	mutex_init(&fs_info->chunk_mutex);
2177 	mutex_init(&fs_info->transaction_kthread_mutex);
2178 	mutex_init(&fs_info->cleaner_mutex);
2179 	mutex_init(&fs_info->volume_mutex);
2180 	init_rwsem(&fs_info->extent_commit_sem);
2181 	init_rwsem(&fs_info->cleanup_work_sem);
2182 	init_rwsem(&fs_info->subvol_sem);
2183 	fs_info->dev_replace.lock_owner = 0;
2184 	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2185 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2186 	mutex_init(&fs_info->dev_replace.lock_management_lock);
2187 	mutex_init(&fs_info->dev_replace.lock);
2188 
2189 	spin_lock_init(&fs_info->qgroup_lock);
2190 	fs_info->qgroup_tree = RB_ROOT;
2191 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2192 	fs_info->qgroup_seq = 1;
2193 	fs_info->quota_enabled = 0;
2194 	fs_info->pending_quota_state = 0;
2195 
2196 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2197 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2198 
2199 	init_waitqueue_head(&fs_info->transaction_throttle);
2200 	init_waitqueue_head(&fs_info->transaction_wait);
2201 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2202 	init_waitqueue_head(&fs_info->async_submit_wait);
2203 
2204 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2205 	if (ret) {
2206 		err = ret;
2207 		goto fail_alloc;
2208 	}
2209 
2210 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2211 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2212 
2213 	invalidate_bdev(fs_devices->latest_bdev);
2214 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2215 	if (!bh) {
2216 		err = -EINVAL;
2217 		goto fail_alloc;
2218 	}
2219 
2220 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2221 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2222 	       sizeof(*fs_info->super_for_commit));
2223 	brelse(bh);
2224 
2225 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2226 
2227 	disk_super = fs_info->super_copy;
2228 	if (!btrfs_super_root(disk_super))
2229 		goto fail_alloc;
2230 
2231 	/* check FS state, whether FS is broken. */
2232 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2233 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2234 
2235 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2236 	if (ret) {
2237 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2238 		err = ret;
2239 		goto fail_alloc;
2240 	}
2241 
2242 	/*
2243 	 * run through our array of backup supers and setup
2244 	 * our ring pointer to the oldest one
2245 	 */
2246 	generation = btrfs_super_generation(disk_super);
2247 	find_oldest_super_backup(fs_info, generation);
2248 
2249 	/*
2250 	 * In the long term, we'll store the compression type in the super
2251 	 * block, and it'll be used for per file compression control.
2252 	 */
2253 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2254 
2255 	ret = btrfs_parse_options(tree_root, options);
2256 	if (ret) {
2257 		err = ret;
2258 		goto fail_alloc;
2259 	}
2260 
2261 	features = btrfs_super_incompat_flags(disk_super) &
2262 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2263 	if (features) {
2264 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2265 		       "unsupported optional features (%Lx).\n",
2266 		       (unsigned long long)features);
2267 		err = -EINVAL;
2268 		goto fail_alloc;
2269 	}
2270 
2271 	if (btrfs_super_leafsize(disk_super) !=
2272 	    btrfs_super_nodesize(disk_super)) {
2273 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2274 		       "blocksizes don't match.  node %d leaf %d\n",
2275 		       btrfs_super_nodesize(disk_super),
2276 		       btrfs_super_leafsize(disk_super));
2277 		err = -EINVAL;
2278 		goto fail_alloc;
2279 	}
2280 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2281 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2282 		       "blocksize (%d) was too large\n",
2283 		       btrfs_super_leafsize(disk_super));
2284 		err = -EINVAL;
2285 		goto fail_alloc;
2286 	}
2287 
2288 	features = btrfs_super_incompat_flags(disk_super);
2289 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2290 	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2291 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2292 
2293 	/*
2294 	 * flag our filesystem as having big metadata blocks if
2295 	 * they are bigger than the page size
2296 	 */
2297 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2298 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2299 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2300 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2301 	}
2302 
2303 	nodesize = btrfs_super_nodesize(disk_super);
2304 	leafsize = btrfs_super_leafsize(disk_super);
2305 	sectorsize = btrfs_super_sectorsize(disk_super);
2306 	stripesize = btrfs_super_stripesize(disk_super);
2307 	fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2308 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2309 
2310 	/*
2311 	 * mixed block groups end up with duplicate but slightly offset
2312 	 * extent buffers for the same range.  It leads to corruptions
2313 	 */
2314 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2315 	    (sectorsize != leafsize)) {
2316 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2317 				"are not allowed for mixed block groups on %s\n",
2318 				sb->s_id);
2319 		goto fail_alloc;
2320 	}
2321 
2322 	btrfs_set_super_incompat_flags(disk_super, features);
2323 
2324 	features = btrfs_super_compat_ro_flags(disk_super) &
2325 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2326 	if (!(sb->s_flags & MS_RDONLY) && features) {
2327 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2328 		       "unsupported option features (%Lx).\n",
2329 		       (unsigned long long)features);
2330 		err = -EINVAL;
2331 		goto fail_alloc;
2332 	}
2333 
2334 	btrfs_init_workers(&fs_info->generic_worker,
2335 			   "genwork", 1, NULL);
2336 
2337 	btrfs_init_workers(&fs_info->workers, "worker",
2338 			   fs_info->thread_pool_size,
2339 			   &fs_info->generic_worker);
2340 
2341 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2342 			   fs_info->thread_pool_size,
2343 			   &fs_info->generic_worker);
2344 
2345 	btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2346 			   fs_info->thread_pool_size,
2347 			   &fs_info->generic_worker);
2348 
2349 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2350 			   min_t(u64, fs_devices->num_devices,
2351 			   fs_info->thread_pool_size),
2352 			   &fs_info->generic_worker);
2353 
2354 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2355 			   2, &fs_info->generic_worker);
2356 
2357 	/* a higher idle thresh on the submit workers makes it much more
2358 	 * likely that bios will be send down in a sane order to the
2359 	 * devices
2360 	 */
2361 	fs_info->submit_workers.idle_thresh = 64;
2362 
2363 	fs_info->workers.idle_thresh = 16;
2364 	fs_info->workers.ordered = 1;
2365 
2366 	fs_info->delalloc_workers.idle_thresh = 2;
2367 	fs_info->delalloc_workers.ordered = 1;
2368 
2369 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2370 			   &fs_info->generic_worker);
2371 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2372 			   fs_info->thread_pool_size,
2373 			   &fs_info->generic_worker);
2374 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2375 			   fs_info->thread_pool_size,
2376 			   &fs_info->generic_worker);
2377 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2378 			   "endio-meta-write", fs_info->thread_pool_size,
2379 			   &fs_info->generic_worker);
2380 	btrfs_init_workers(&fs_info->endio_raid56_workers,
2381 			   "endio-raid56", fs_info->thread_pool_size,
2382 			   &fs_info->generic_worker);
2383 	btrfs_init_workers(&fs_info->rmw_workers,
2384 			   "rmw", fs_info->thread_pool_size,
2385 			   &fs_info->generic_worker);
2386 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2387 			   fs_info->thread_pool_size,
2388 			   &fs_info->generic_worker);
2389 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2390 			   1, &fs_info->generic_worker);
2391 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2392 			   fs_info->thread_pool_size,
2393 			   &fs_info->generic_worker);
2394 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2395 			   fs_info->thread_pool_size,
2396 			   &fs_info->generic_worker);
2397 
2398 	/*
2399 	 * endios are largely parallel and should have a very
2400 	 * low idle thresh
2401 	 */
2402 	fs_info->endio_workers.idle_thresh = 4;
2403 	fs_info->endio_meta_workers.idle_thresh = 4;
2404 	fs_info->endio_raid56_workers.idle_thresh = 4;
2405 	fs_info->rmw_workers.idle_thresh = 2;
2406 
2407 	fs_info->endio_write_workers.idle_thresh = 2;
2408 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2409 	fs_info->readahead_workers.idle_thresh = 2;
2410 
2411 	/*
2412 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2413 	 * return -ENOMEM if any of these fail.
2414 	 */
2415 	ret = btrfs_start_workers(&fs_info->workers);
2416 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2417 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2418 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2419 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2420 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2421 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2422 	ret |= btrfs_start_workers(&fs_info->rmw_workers);
2423 	ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2424 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2425 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2426 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2427 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2428 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2429 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2430 	ret |= btrfs_start_workers(&fs_info->flush_workers);
2431 	if (ret) {
2432 		err = -ENOMEM;
2433 		goto fail_sb_buffer;
2434 	}
2435 
2436 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2437 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2438 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2439 
2440 	tree_root->nodesize = nodesize;
2441 	tree_root->leafsize = leafsize;
2442 	tree_root->sectorsize = sectorsize;
2443 	tree_root->stripesize = stripesize;
2444 
2445 	sb->s_blocksize = sectorsize;
2446 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2447 
2448 	if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2449 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2450 		goto fail_sb_buffer;
2451 	}
2452 
2453 	if (sectorsize != PAGE_SIZE) {
2454 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2455 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2456 		goto fail_sb_buffer;
2457 	}
2458 
2459 	mutex_lock(&fs_info->chunk_mutex);
2460 	ret = btrfs_read_sys_array(tree_root);
2461 	mutex_unlock(&fs_info->chunk_mutex);
2462 	if (ret) {
2463 		printk(KERN_WARNING "btrfs: failed to read the system "
2464 		       "array on %s\n", sb->s_id);
2465 		goto fail_sb_buffer;
2466 	}
2467 
2468 	blocksize = btrfs_level_size(tree_root,
2469 				     btrfs_super_chunk_root_level(disk_super));
2470 	generation = btrfs_super_chunk_root_generation(disk_super);
2471 
2472 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2473 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2474 
2475 	chunk_root->node = read_tree_block(chunk_root,
2476 					   btrfs_super_chunk_root(disk_super),
2477 					   blocksize, generation);
2478 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2479 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2480 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2481 		       sb->s_id);
2482 		goto fail_tree_roots;
2483 	}
2484 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2485 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2486 
2487 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2488 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2489 	   BTRFS_UUID_SIZE);
2490 
2491 	ret = btrfs_read_chunk_tree(chunk_root);
2492 	if (ret) {
2493 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2494 		       sb->s_id);
2495 		goto fail_tree_roots;
2496 	}
2497 
2498 	/*
2499 	 * keep the device that is marked to be the target device for the
2500 	 * dev_replace procedure
2501 	 */
2502 	btrfs_close_extra_devices(fs_info, fs_devices, 0);
2503 
2504 	if (!fs_devices->latest_bdev) {
2505 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2506 		       sb->s_id);
2507 		goto fail_tree_roots;
2508 	}
2509 
2510 retry_root_backup:
2511 	blocksize = btrfs_level_size(tree_root,
2512 				     btrfs_super_root_level(disk_super));
2513 	generation = btrfs_super_generation(disk_super);
2514 
2515 	tree_root->node = read_tree_block(tree_root,
2516 					  btrfs_super_root(disk_super),
2517 					  blocksize, generation);
2518 	if (!tree_root->node ||
2519 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2520 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2521 		       sb->s_id);
2522 
2523 		goto recovery_tree_root;
2524 	}
2525 
2526 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2527 	tree_root->commit_root = btrfs_root_node(tree_root);
2528 
2529 	ret = find_and_setup_root(tree_root, fs_info,
2530 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2531 	if (ret)
2532 		goto recovery_tree_root;
2533 	extent_root->track_dirty = 1;
2534 
2535 	ret = find_and_setup_root(tree_root, fs_info,
2536 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2537 	if (ret)
2538 		goto recovery_tree_root;
2539 	dev_root->track_dirty = 1;
2540 
2541 	ret = find_and_setup_root(tree_root, fs_info,
2542 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2543 	if (ret)
2544 		goto recovery_tree_root;
2545 	csum_root->track_dirty = 1;
2546 
2547 	ret = find_and_setup_root(tree_root, fs_info,
2548 				  BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2549 	if (ret) {
2550 		kfree(quota_root);
2551 		quota_root = fs_info->quota_root = NULL;
2552 	} else {
2553 		quota_root->track_dirty = 1;
2554 		fs_info->quota_enabled = 1;
2555 		fs_info->pending_quota_state = 1;
2556 	}
2557 
2558 	fs_info->generation = generation;
2559 	fs_info->last_trans_committed = generation;
2560 
2561 	ret = btrfs_recover_balance(fs_info);
2562 	if (ret) {
2563 		printk(KERN_WARNING "btrfs: failed to recover balance\n");
2564 		goto fail_block_groups;
2565 	}
2566 
2567 	ret = btrfs_init_dev_stats(fs_info);
2568 	if (ret) {
2569 		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2570 		       ret);
2571 		goto fail_block_groups;
2572 	}
2573 
2574 	ret = btrfs_init_dev_replace(fs_info);
2575 	if (ret) {
2576 		pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2577 		goto fail_block_groups;
2578 	}
2579 
2580 	btrfs_close_extra_devices(fs_info, fs_devices, 1);
2581 
2582 	ret = btrfs_init_space_info(fs_info);
2583 	if (ret) {
2584 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2585 		goto fail_block_groups;
2586 	}
2587 
2588 	ret = btrfs_read_block_groups(extent_root);
2589 	if (ret) {
2590 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2591 		goto fail_block_groups;
2592 	}
2593 	fs_info->num_tolerated_disk_barrier_failures =
2594 		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2595 	if (fs_info->fs_devices->missing_devices >
2596 	     fs_info->num_tolerated_disk_barrier_failures &&
2597 	    !(sb->s_flags & MS_RDONLY)) {
2598 		printk(KERN_WARNING
2599 		       "Btrfs: too many missing devices, writeable mount is not allowed\n");
2600 		goto fail_block_groups;
2601 	}
2602 
2603 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2604 					       "btrfs-cleaner");
2605 	if (IS_ERR(fs_info->cleaner_kthread))
2606 		goto fail_block_groups;
2607 
2608 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2609 						   tree_root,
2610 						   "btrfs-transaction");
2611 	if (IS_ERR(fs_info->transaction_kthread))
2612 		goto fail_cleaner;
2613 
2614 	if (!btrfs_test_opt(tree_root, SSD) &&
2615 	    !btrfs_test_opt(tree_root, NOSSD) &&
2616 	    !fs_info->fs_devices->rotating) {
2617 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2618 		       "mode\n");
2619 		btrfs_set_opt(fs_info->mount_opt, SSD);
2620 	}
2621 
2622 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2623 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2624 		ret = btrfsic_mount(tree_root, fs_devices,
2625 				    btrfs_test_opt(tree_root,
2626 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2627 				    1 : 0,
2628 				    fs_info->check_integrity_print_mask);
2629 		if (ret)
2630 			printk(KERN_WARNING "btrfs: failed to initialize"
2631 			       " integrity check module %s\n", sb->s_id);
2632 	}
2633 #endif
2634 	ret = btrfs_read_qgroup_config(fs_info);
2635 	if (ret)
2636 		goto fail_trans_kthread;
2637 
2638 	/* do not make disk changes in broken FS */
2639 	if (btrfs_super_log_root(disk_super) != 0) {
2640 		u64 bytenr = btrfs_super_log_root(disk_super);
2641 
2642 		if (fs_devices->rw_devices == 0) {
2643 			printk(KERN_WARNING "Btrfs log replay required "
2644 			       "on RO media\n");
2645 			err = -EIO;
2646 			goto fail_qgroup;
2647 		}
2648 		blocksize =
2649 		     btrfs_level_size(tree_root,
2650 				      btrfs_super_log_root_level(disk_super));
2651 
2652 		log_tree_root = btrfs_alloc_root(fs_info);
2653 		if (!log_tree_root) {
2654 			err = -ENOMEM;
2655 			goto fail_qgroup;
2656 		}
2657 
2658 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2659 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2660 
2661 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2662 						      blocksize,
2663 						      generation + 1);
2664 		/* returns with log_tree_root freed on success */
2665 		ret = btrfs_recover_log_trees(log_tree_root);
2666 		if (ret) {
2667 			btrfs_error(tree_root->fs_info, ret,
2668 				    "Failed to recover log tree");
2669 			free_extent_buffer(log_tree_root->node);
2670 			kfree(log_tree_root);
2671 			goto fail_trans_kthread;
2672 		}
2673 
2674 		if (sb->s_flags & MS_RDONLY) {
2675 			ret = btrfs_commit_super(tree_root);
2676 			if (ret)
2677 				goto fail_trans_kthread;
2678 		}
2679 	}
2680 
2681 	ret = btrfs_find_orphan_roots(tree_root);
2682 	if (ret)
2683 		goto fail_trans_kthread;
2684 
2685 	if (!(sb->s_flags & MS_RDONLY)) {
2686 		ret = btrfs_cleanup_fs_roots(fs_info);
2687 		if (ret)
2688 			goto fail_trans_kthread;
2689 
2690 		ret = btrfs_recover_relocation(tree_root);
2691 		if (ret < 0) {
2692 			printk(KERN_WARNING
2693 			       "btrfs: failed to recover relocation\n");
2694 			err = -EINVAL;
2695 			goto fail_qgroup;
2696 		}
2697 	}
2698 
2699 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2700 	location.type = BTRFS_ROOT_ITEM_KEY;
2701 	location.offset = (u64)-1;
2702 
2703 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2704 	if (!fs_info->fs_root)
2705 		goto fail_qgroup;
2706 	if (IS_ERR(fs_info->fs_root)) {
2707 		err = PTR_ERR(fs_info->fs_root);
2708 		goto fail_qgroup;
2709 	}
2710 
2711 	if (sb->s_flags & MS_RDONLY)
2712 		return 0;
2713 
2714 	down_read(&fs_info->cleanup_work_sem);
2715 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2716 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2717 		up_read(&fs_info->cleanup_work_sem);
2718 		close_ctree(tree_root);
2719 		return ret;
2720 	}
2721 	up_read(&fs_info->cleanup_work_sem);
2722 
2723 	ret = btrfs_resume_balance_async(fs_info);
2724 	if (ret) {
2725 		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2726 		close_ctree(tree_root);
2727 		return ret;
2728 	}
2729 
2730 	ret = btrfs_resume_dev_replace_async(fs_info);
2731 	if (ret) {
2732 		pr_warn("btrfs: failed to resume dev_replace\n");
2733 		close_ctree(tree_root);
2734 		return ret;
2735 	}
2736 
2737 	return 0;
2738 
2739 fail_qgroup:
2740 	btrfs_free_qgroup_config(fs_info);
2741 fail_trans_kthread:
2742 	kthread_stop(fs_info->transaction_kthread);
2743 fail_cleaner:
2744 	kthread_stop(fs_info->cleaner_kthread);
2745 
2746 	/*
2747 	 * make sure we're done with the btree inode before we stop our
2748 	 * kthreads
2749 	 */
2750 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2751 
2752 fail_block_groups:
2753 	btrfs_free_block_groups(fs_info);
2754 
2755 fail_tree_roots:
2756 	free_root_pointers(fs_info, 1);
2757 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2758 
2759 fail_sb_buffer:
2760 	btrfs_stop_workers(&fs_info->generic_worker);
2761 	btrfs_stop_workers(&fs_info->readahead_workers);
2762 	btrfs_stop_workers(&fs_info->fixup_workers);
2763 	btrfs_stop_workers(&fs_info->delalloc_workers);
2764 	btrfs_stop_workers(&fs_info->workers);
2765 	btrfs_stop_workers(&fs_info->endio_workers);
2766 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2767 	btrfs_stop_workers(&fs_info->endio_raid56_workers);
2768 	btrfs_stop_workers(&fs_info->rmw_workers);
2769 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2770 	btrfs_stop_workers(&fs_info->endio_write_workers);
2771 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2772 	btrfs_stop_workers(&fs_info->submit_workers);
2773 	btrfs_stop_workers(&fs_info->delayed_workers);
2774 	btrfs_stop_workers(&fs_info->caching_workers);
2775 	btrfs_stop_workers(&fs_info->flush_workers);
2776 fail_alloc:
2777 fail_iput:
2778 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2779 
2780 	iput(fs_info->btree_inode);
2781 fail_delalloc_bytes:
2782 	percpu_counter_destroy(&fs_info->delalloc_bytes);
2783 fail_dirty_metadata_bytes:
2784 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2785 fail_bdi:
2786 	bdi_destroy(&fs_info->bdi);
2787 fail_srcu:
2788 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2789 fail:
2790 	btrfs_free_stripe_hash_table(fs_info);
2791 	btrfs_close_devices(fs_info->fs_devices);
2792 	return err;
2793 
2794 recovery_tree_root:
2795 	if (!btrfs_test_opt(tree_root, RECOVERY))
2796 		goto fail_tree_roots;
2797 
2798 	free_root_pointers(fs_info, 0);
2799 
2800 	/* don't use the log in recovery mode, it won't be valid */
2801 	btrfs_set_super_log_root(disk_super, 0);
2802 
2803 	/* we can't trust the free space cache either */
2804 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2805 
2806 	ret = next_root_backup(fs_info, fs_info->super_copy,
2807 			       &num_backups_tried, &backup_index);
2808 	if (ret == -1)
2809 		goto fail_block_groups;
2810 	goto retry_root_backup;
2811 }
2812 
2813 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2814 {
2815 	if (uptodate) {
2816 		set_buffer_uptodate(bh);
2817 	} else {
2818 		struct btrfs_device *device = (struct btrfs_device *)
2819 			bh->b_private;
2820 
2821 		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2822 					  "I/O error on %s\n",
2823 					  rcu_str_deref(device->name));
2824 		/* note, we dont' set_buffer_write_io_error because we have
2825 		 * our own ways of dealing with the IO errors
2826 		 */
2827 		clear_buffer_uptodate(bh);
2828 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2829 	}
2830 	unlock_buffer(bh);
2831 	put_bh(bh);
2832 }
2833 
2834 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2835 {
2836 	struct buffer_head *bh;
2837 	struct buffer_head *latest = NULL;
2838 	struct btrfs_super_block *super;
2839 	int i;
2840 	u64 transid = 0;
2841 	u64 bytenr;
2842 
2843 	/* we would like to check all the supers, but that would make
2844 	 * a btrfs mount succeed after a mkfs from a different FS.
2845 	 * So, we need to add a special mount option to scan for
2846 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2847 	 */
2848 	for (i = 0; i < 1; i++) {
2849 		bytenr = btrfs_sb_offset(i);
2850 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2851 			break;
2852 		bh = __bread(bdev, bytenr / 4096, 4096);
2853 		if (!bh)
2854 			continue;
2855 
2856 		super = (struct btrfs_super_block *)bh->b_data;
2857 		if (btrfs_super_bytenr(super) != bytenr ||
2858 		    super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2859 			brelse(bh);
2860 			continue;
2861 		}
2862 
2863 		if (!latest || btrfs_super_generation(super) > transid) {
2864 			brelse(latest);
2865 			latest = bh;
2866 			transid = btrfs_super_generation(super);
2867 		} else {
2868 			brelse(bh);
2869 		}
2870 	}
2871 	return latest;
2872 }
2873 
2874 /*
2875  * this should be called twice, once with wait == 0 and
2876  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2877  * we write are pinned.
2878  *
2879  * They are released when wait == 1 is done.
2880  * max_mirrors must be the same for both runs, and it indicates how
2881  * many supers on this one device should be written.
2882  *
2883  * max_mirrors == 0 means to write them all.
2884  */
2885 static int write_dev_supers(struct btrfs_device *device,
2886 			    struct btrfs_super_block *sb,
2887 			    int do_barriers, int wait, int max_mirrors)
2888 {
2889 	struct buffer_head *bh;
2890 	int i;
2891 	int ret;
2892 	int errors = 0;
2893 	u32 crc;
2894 	u64 bytenr;
2895 
2896 	if (max_mirrors == 0)
2897 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2898 
2899 	for (i = 0; i < max_mirrors; i++) {
2900 		bytenr = btrfs_sb_offset(i);
2901 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2902 			break;
2903 
2904 		if (wait) {
2905 			bh = __find_get_block(device->bdev, bytenr / 4096,
2906 					      BTRFS_SUPER_INFO_SIZE);
2907 			BUG_ON(!bh);
2908 			wait_on_buffer(bh);
2909 			if (!buffer_uptodate(bh))
2910 				errors++;
2911 
2912 			/* drop our reference */
2913 			brelse(bh);
2914 
2915 			/* drop the reference from the wait == 0 run */
2916 			brelse(bh);
2917 			continue;
2918 		} else {
2919 			btrfs_set_super_bytenr(sb, bytenr);
2920 
2921 			crc = ~(u32)0;
2922 			crc = btrfs_csum_data(NULL, (char *)sb +
2923 					      BTRFS_CSUM_SIZE, crc,
2924 					      BTRFS_SUPER_INFO_SIZE -
2925 					      BTRFS_CSUM_SIZE);
2926 			btrfs_csum_final(crc, sb->csum);
2927 
2928 			/*
2929 			 * one reference for us, and we leave it for the
2930 			 * caller
2931 			 */
2932 			bh = __getblk(device->bdev, bytenr / 4096,
2933 				      BTRFS_SUPER_INFO_SIZE);
2934 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2935 
2936 			/* one reference for submit_bh */
2937 			get_bh(bh);
2938 
2939 			set_buffer_uptodate(bh);
2940 			lock_buffer(bh);
2941 			bh->b_end_io = btrfs_end_buffer_write_sync;
2942 			bh->b_private = device;
2943 		}
2944 
2945 		/*
2946 		 * we fua the first super.  The others we allow
2947 		 * to go down lazy.
2948 		 */
2949 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2950 		if (ret)
2951 			errors++;
2952 	}
2953 	return errors < i ? 0 : -1;
2954 }
2955 
2956 /*
2957  * endio for the write_dev_flush, this will wake anyone waiting
2958  * for the barrier when it is done
2959  */
2960 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2961 {
2962 	if (err) {
2963 		if (err == -EOPNOTSUPP)
2964 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2965 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2966 	}
2967 	if (bio->bi_private)
2968 		complete(bio->bi_private);
2969 	bio_put(bio);
2970 }
2971 
2972 /*
2973  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2974  * sent down.  With wait == 1, it waits for the previous flush.
2975  *
2976  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2977  * capable
2978  */
2979 static int write_dev_flush(struct btrfs_device *device, int wait)
2980 {
2981 	struct bio *bio;
2982 	int ret = 0;
2983 
2984 	if (device->nobarriers)
2985 		return 0;
2986 
2987 	if (wait) {
2988 		bio = device->flush_bio;
2989 		if (!bio)
2990 			return 0;
2991 
2992 		wait_for_completion(&device->flush_wait);
2993 
2994 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2995 			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2996 				      rcu_str_deref(device->name));
2997 			device->nobarriers = 1;
2998 		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
2999 			ret = -EIO;
3000 			btrfs_dev_stat_inc_and_print(device,
3001 				BTRFS_DEV_STAT_FLUSH_ERRS);
3002 		}
3003 
3004 		/* drop the reference from the wait == 0 run */
3005 		bio_put(bio);
3006 		device->flush_bio = NULL;
3007 
3008 		return ret;
3009 	}
3010 
3011 	/*
3012 	 * one reference for us, and we leave it for the
3013 	 * caller
3014 	 */
3015 	device->flush_bio = NULL;
3016 	bio = bio_alloc(GFP_NOFS, 0);
3017 	if (!bio)
3018 		return -ENOMEM;
3019 
3020 	bio->bi_end_io = btrfs_end_empty_barrier;
3021 	bio->bi_bdev = device->bdev;
3022 	init_completion(&device->flush_wait);
3023 	bio->bi_private = &device->flush_wait;
3024 	device->flush_bio = bio;
3025 
3026 	bio_get(bio);
3027 	btrfsic_submit_bio(WRITE_FLUSH, bio);
3028 
3029 	return 0;
3030 }
3031 
3032 /*
3033  * send an empty flush down to each device in parallel,
3034  * then wait for them
3035  */
3036 static int barrier_all_devices(struct btrfs_fs_info *info)
3037 {
3038 	struct list_head *head;
3039 	struct btrfs_device *dev;
3040 	int errors_send = 0;
3041 	int errors_wait = 0;
3042 	int ret;
3043 
3044 	/* send down all the barriers */
3045 	head = &info->fs_devices->devices;
3046 	list_for_each_entry_rcu(dev, head, dev_list) {
3047 		if (!dev->bdev) {
3048 			errors_send++;
3049 			continue;
3050 		}
3051 		if (!dev->in_fs_metadata || !dev->writeable)
3052 			continue;
3053 
3054 		ret = write_dev_flush(dev, 0);
3055 		if (ret)
3056 			errors_send++;
3057 	}
3058 
3059 	/* wait for all the barriers */
3060 	list_for_each_entry_rcu(dev, head, dev_list) {
3061 		if (!dev->bdev) {
3062 			errors_wait++;
3063 			continue;
3064 		}
3065 		if (!dev->in_fs_metadata || !dev->writeable)
3066 			continue;
3067 
3068 		ret = write_dev_flush(dev, 1);
3069 		if (ret)
3070 			errors_wait++;
3071 	}
3072 	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3073 	    errors_wait > info->num_tolerated_disk_barrier_failures)
3074 		return -EIO;
3075 	return 0;
3076 }
3077 
3078 int btrfs_calc_num_tolerated_disk_barrier_failures(
3079 	struct btrfs_fs_info *fs_info)
3080 {
3081 	struct btrfs_ioctl_space_info space;
3082 	struct btrfs_space_info *sinfo;
3083 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3084 		       BTRFS_BLOCK_GROUP_SYSTEM,
3085 		       BTRFS_BLOCK_GROUP_METADATA,
3086 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3087 	int num_types = 4;
3088 	int i;
3089 	int c;
3090 	int num_tolerated_disk_barrier_failures =
3091 		(int)fs_info->fs_devices->num_devices;
3092 
3093 	for (i = 0; i < num_types; i++) {
3094 		struct btrfs_space_info *tmp;
3095 
3096 		sinfo = NULL;
3097 		rcu_read_lock();
3098 		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3099 			if (tmp->flags == types[i]) {
3100 				sinfo = tmp;
3101 				break;
3102 			}
3103 		}
3104 		rcu_read_unlock();
3105 
3106 		if (!sinfo)
3107 			continue;
3108 
3109 		down_read(&sinfo->groups_sem);
3110 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3111 			if (!list_empty(&sinfo->block_groups[c])) {
3112 				u64 flags;
3113 
3114 				btrfs_get_block_group_info(
3115 					&sinfo->block_groups[c], &space);
3116 				if (space.total_bytes == 0 ||
3117 				    space.used_bytes == 0)
3118 					continue;
3119 				flags = space.flags;
3120 				/*
3121 				 * return
3122 				 * 0: if dup, single or RAID0 is configured for
3123 				 *    any of metadata, system or data, else
3124 				 * 1: if RAID5 is configured, or if RAID1 or
3125 				 *    RAID10 is configured and only two mirrors
3126 				 *    are used, else
3127 				 * 2: if RAID6 is configured, else
3128 				 * num_mirrors - 1: if RAID1 or RAID10 is
3129 				 *                  configured and more than
3130 				 *                  2 mirrors are used.
3131 				 */
3132 				if (num_tolerated_disk_barrier_failures > 0 &&
3133 				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3134 					       BTRFS_BLOCK_GROUP_RAID0)) ||
3135 				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3136 				      == 0)))
3137 					num_tolerated_disk_barrier_failures = 0;
3138 				else if (num_tolerated_disk_barrier_failures > 1) {
3139 					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3140 					    BTRFS_BLOCK_GROUP_RAID5 |
3141 					    BTRFS_BLOCK_GROUP_RAID10)) {
3142 						num_tolerated_disk_barrier_failures = 1;
3143 					} else if (flags &
3144 						   BTRFS_BLOCK_GROUP_RAID5) {
3145 						num_tolerated_disk_barrier_failures = 2;
3146 					}
3147 				}
3148 			}
3149 		}
3150 		up_read(&sinfo->groups_sem);
3151 	}
3152 
3153 	return num_tolerated_disk_barrier_failures;
3154 }
3155 
3156 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3157 {
3158 	struct list_head *head;
3159 	struct btrfs_device *dev;
3160 	struct btrfs_super_block *sb;
3161 	struct btrfs_dev_item *dev_item;
3162 	int ret;
3163 	int do_barriers;
3164 	int max_errors;
3165 	int total_errors = 0;
3166 	u64 flags;
3167 
3168 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3169 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3170 	backup_super_roots(root->fs_info);
3171 
3172 	sb = root->fs_info->super_for_commit;
3173 	dev_item = &sb->dev_item;
3174 
3175 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3176 	head = &root->fs_info->fs_devices->devices;
3177 
3178 	if (do_barriers) {
3179 		ret = barrier_all_devices(root->fs_info);
3180 		if (ret) {
3181 			mutex_unlock(
3182 				&root->fs_info->fs_devices->device_list_mutex);
3183 			btrfs_error(root->fs_info, ret,
3184 				    "errors while submitting device barriers.");
3185 			return ret;
3186 		}
3187 	}
3188 
3189 	list_for_each_entry_rcu(dev, head, dev_list) {
3190 		if (!dev->bdev) {
3191 			total_errors++;
3192 			continue;
3193 		}
3194 		if (!dev->in_fs_metadata || !dev->writeable)
3195 			continue;
3196 
3197 		btrfs_set_stack_device_generation(dev_item, 0);
3198 		btrfs_set_stack_device_type(dev_item, dev->type);
3199 		btrfs_set_stack_device_id(dev_item, dev->devid);
3200 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3201 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3202 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3203 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3204 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3205 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3206 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3207 
3208 		flags = btrfs_super_flags(sb);
3209 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3210 
3211 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3212 		if (ret)
3213 			total_errors++;
3214 	}
3215 	if (total_errors > max_errors) {
3216 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3217 		       total_errors);
3218 
3219 		/* This shouldn't happen. FUA is masked off if unsupported */
3220 		BUG();
3221 	}
3222 
3223 	total_errors = 0;
3224 	list_for_each_entry_rcu(dev, head, dev_list) {
3225 		if (!dev->bdev)
3226 			continue;
3227 		if (!dev->in_fs_metadata || !dev->writeable)
3228 			continue;
3229 
3230 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3231 		if (ret)
3232 			total_errors++;
3233 	}
3234 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3235 	if (total_errors > max_errors) {
3236 		btrfs_error(root->fs_info, -EIO,
3237 			    "%d errors while writing supers", total_errors);
3238 		return -EIO;
3239 	}
3240 	return 0;
3241 }
3242 
3243 int write_ctree_super(struct btrfs_trans_handle *trans,
3244 		      struct btrfs_root *root, int max_mirrors)
3245 {
3246 	int ret;
3247 
3248 	ret = write_all_supers(root, max_mirrors);
3249 	return ret;
3250 }
3251 
3252 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3253 {
3254 	spin_lock(&fs_info->fs_roots_radix_lock);
3255 	radix_tree_delete(&fs_info->fs_roots_radix,
3256 			  (unsigned long)root->root_key.objectid);
3257 	spin_unlock(&fs_info->fs_roots_radix_lock);
3258 
3259 	if (btrfs_root_refs(&root->root_item) == 0)
3260 		synchronize_srcu(&fs_info->subvol_srcu);
3261 
3262 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3263 		btrfs_free_log(NULL, root);
3264 		btrfs_free_log_root_tree(NULL, fs_info);
3265 	}
3266 
3267 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
3268 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
3269 	free_fs_root(root);
3270 }
3271 
3272 static void free_fs_root(struct btrfs_root *root)
3273 {
3274 	iput(root->cache_inode);
3275 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3276 	if (root->anon_dev)
3277 		free_anon_bdev(root->anon_dev);
3278 	free_extent_buffer(root->node);
3279 	free_extent_buffer(root->commit_root);
3280 	kfree(root->free_ino_ctl);
3281 	kfree(root->free_ino_pinned);
3282 	kfree(root->name);
3283 	kfree(root);
3284 }
3285 
3286 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3287 {
3288 	int ret;
3289 	struct btrfs_root *gang[8];
3290 	int i;
3291 
3292 	while (!list_empty(&fs_info->dead_roots)) {
3293 		gang[0] = list_entry(fs_info->dead_roots.next,
3294 				     struct btrfs_root, root_list);
3295 		list_del(&gang[0]->root_list);
3296 
3297 		if (gang[0]->in_radix) {
3298 			btrfs_free_fs_root(fs_info, gang[0]);
3299 		} else {
3300 			free_extent_buffer(gang[0]->node);
3301 			free_extent_buffer(gang[0]->commit_root);
3302 			kfree(gang[0]);
3303 		}
3304 	}
3305 
3306 	while (1) {
3307 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3308 					     (void **)gang, 0,
3309 					     ARRAY_SIZE(gang));
3310 		if (!ret)
3311 			break;
3312 		for (i = 0; i < ret; i++)
3313 			btrfs_free_fs_root(fs_info, gang[i]);
3314 	}
3315 }
3316 
3317 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3318 {
3319 	u64 root_objectid = 0;
3320 	struct btrfs_root *gang[8];
3321 	int i;
3322 	int ret;
3323 
3324 	while (1) {
3325 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3326 					     (void **)gang, root_objectid,
3327 					     ARRAY_SIZE(gang));
3328 		if (!ret)
3329 			break;
3330 
3331 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3332 		for (i = 0; i < ret; i++) {
3333 			int err;
3334 
3335 			root_objectid = gang[i]->root_key.objectid;
3336 			err = btrfs_orphan_cleanup(gang[i]);
3337 			if (err)
3338 				return err;
3339 		}
3340 		root_objectid++;
3341 	}
3342 	return 0;
3343 }
3344 
3345 int btrfs_commit_super(struct btrfs_root *root)
3346 {
3347 	struct btrfs_trans_handle *trans;
3348 	int ret;
3349 
3350 	mutex_lock(&root->fs_info->cleaner_mutex);
3351 	btrfs_run_delayed_iputs(root);
3352 	btrfs_clean_old_snapshots(root);
3353 	mutex_unlock(&root->fs_info->cleaner_mutex);
3354 
3355 	/* wait until ongoing cleanup work done */
3356 	down_write(&root->fs_info->cleanup_work_sem);
3357 	up_write(&root->fs_info->cleanup_work_sem);
3358 
3359 	trans = btrfs_join_transaction(root);
3360 	if (IS_ERR(trans))
3361 		return PTR_ERR(trans);
3362 	ret = btrfs_commit_transaction(trans, root);
3363 	if (ret)
3364 		return ret;
3365 	/* run commit again to drop the original snapshot */
3366 	trans = btrfs_join_transaction(root);
3367 	if (IS_ERR(trans))
3368 		return PTR_ERR(trans);
3369 	ret = btrfs_commit_transaction(trans, root);
3370 	if (ret)
3371 		return ret;
3372 	ret = btrfs_write_and_wait_transaction(NULL, root);
3373 	if (ret) {
3374 		btrfs_error(root->fs_info, ret,
3375 			    "Failed to sync btree inode to disk.");
3376 		return ret;
3377 	}
3378 
3379 	ret = write_ctree_super(NULL, root, 0);
3380 	return ret;
3381 }
3382 
3383 int close_ctree(struct btrfs_root *root)
3384 {
3385 	struct btrfs_fs_info *fs_info = root->fs_info;
3386 	int ret;
3387 
3388 	fs_info->closing = 1;
3389 	smp_mb();
3390 
3391 	/* pause restriper - we want to resume on mount */
3392 	btrfs_pause_balance(fs_info);
3393 
3394 	btrfs_dev_replace_suspend_for_unmount(fs_info);
3395 
3396 	btrfs_scrub_cancel(fs_info);
3397 
3398 	/* wait for any defraggers to finish */
3399 	wait_event(fs_info->transaction_wait,
3400 		   (atomic_read(&fs_info->defrag_running) == 0));
3401 
3402 	/* clear out the rbtree of defraggable inodes */
3403 	btrfs_cleanup_defrag_inodes(fs_info);
3404 
3405 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3406 		ret = btrfs_commit_super(root);
3407 		if (ret)
3408 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3409 	}
3410 
3411 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3412 		btrfs_error_commit_super(root);
3413 
3414 	btrfs_put_block_group_cache(fs_info);
3415 
3416 	kthread_stop(fs_info->transaction_kthread);
3417 	kthread_stop(fs_info->cleaner_kthread);
3418 
3419 	fs_info->closing = 2;
3420 	smp_mb();
3421 
3422 	btrfs_free_qgroup_config(root->fs_info);
3423 
3424 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3425 		printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3426 		       percpu_counter_sum(&fs_info->delalloc_bytes));
3427 	}
3428 
3429 	free_extent_buffer(fs_info->extent_root->node);
3430 	free_extent_buffer(fs_info->extent_root->commit_root);
3431 	free_extent_buffer(fs_info->tree_root->node);
3432 	free_extent_buffer(fs_info->tree_root->commit_root);
3433 	free_extent_buffer(fs_info->chunk_root->node);
3434 	free_extent_buffer(fs_info->chunk_root->commit_root);
3435 	free_extent_buffer(fs_info->dev_root->node);
3436 	free_extent_buffer(fs_info->dev_root->commit_root);
3437 	free_extent_buffer(fs_info->csum_root->node);
3438 	free_extent_buffer(fs_info->csum_root->commit_root);
3439 	if (fs_info->quota_root) {
3440 		free_extent_buffer(fs_info->quota_root->node);
3441 		free_extent_buffer(fs_info->quota_root->commit_root);
3442 	}
3443 
3444 	btrfs_free_block_groups(fs_info);
3445 
3446 	del_fs_roots(fs_info);
3447 
3448 	iput(fs_info->btree_inode);
3449 
3450 	btrfs_stop_workers(&fs_info->generic_worker);
3451 	btrfs_stop_workers(&fs_info->fixup_workers);
3452 	btrfs_stop_workers(&fs_info->delalloc_workers);
3453 	btrfs_stop_workers(&fs_info->workers);
3454 	btrfs_stop_workers(&fs_info->endio_workers);
3455 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3456 	btrfs_stop_workers(&fs_info->endio_raid56_workers);
3457 	btrfs_stop_workers(&fs_info->rmw_workers);
3458 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3459 	btrfs_stop_workers(&fs_info->endio_write_workers);
3460 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3461 	btrfs_stop_workers(&fs_info->submit_workers);
3462 	btrfs_stop_workers(&fs_info->delayed_workers);
3463 	btrfs_stop_workers(&fs_info->caching_workers);
3464 	btrfs_stop_workers(&fs_info->readahead_workers);
3465 	btrfs_stop_workers(&fs_info->flush_workers);
3466 
3467 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3468 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3469 		btrfsic_unmount(root, fs_info->fs_devices);
3470 #endif
3471 
3472 	btrfs_close_devices(fs_info->fs_devices);
3473 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3474 
3475 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3476 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3477 	bdi_destroy(&fs_info->bdi);
3478 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3479 
3480 	btrfs_free_stripe_hash_table(fs_info);
3481 
3482 	return 0;
3483 }
3484 
3485 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3486 			  int atomic)
3487 {
3488 	int ret;
3489 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3490 
3491 	ret = extent_buffer_uptodate(buf);
3492 	if (!ret)
3493 		return ret;
3494 
3495 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3496 				    parent_transid, atomic);
3497 	if (ret == -EAGAIN)
3498 		return ret;
3499 	return !ret;
3500 }
3501 
3502 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3503 {
3504 	return set_extent_buffer_uptodate(buf);
3505 }
3506 
3507 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3508 {
3509 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3510 	u64 transid = btrfs_header_generation(buf);
3511 	int was_dirty;
3512 
3513 	btrfs_assert_tree_locked(buf);
3514 	if (transid != root->fs_info->generation)
3515 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3516 		       "found %llu running %llu\n",
3517 			(unsigned long long)buf->start,
3518 			(unsigned long long)transid,
3519 			(unsigned long long)root->fs_info->generation);
3520 	was_dirty = set_extent_buffer_dirty(buf);
3521 	if (!was_dirty)
3522 		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3523 				     buf->len,
3524 				     root->fs_info->dirty_metadata_batch);
3525 }
3526 
3527 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3528 					int flush_delayed)
3529 {
3530 	/*
3531 	 * looks as though older kernels can get into trouble with
3532 	 * this code, they end up stuck in balance_dirty_pages forever
3533 	 */
3534 	int ret;
3535 
3536 	if (current->flags & PF_MEMALLOC)
3537 		return;
3538 
3539 	if (flush_delayed)
3540 		btrfs_balance_delayed_items(root);
3541 
3542 	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3543 				     BTRFS_DIRTY_METADATA_THRESH);
3544 	if (ret > 0) {
3545 		balance_dirty_pages_ratelimited(
3546 				   root->fs_info->btree_inode->i_mapping);
3547 	}
3548 	return;
3549 }
3550 
3551 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3552 {
3553 	__btrfs_btree_balance_dirty(root, 1);
3554 }
3555 
3556 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3557 {
3558 	__btrfs_btree_balance_dirty(root, 0);
3559 }
3560 
3561 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3562 {
3563 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3564 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3565 }
3566 
3567 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3568 			      int read_only)
3569 {
3570 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3571 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3572 		return -EINVAL;
3573 	}
3574 
3575 	if (read_only)
3576 		return 0;
3577 
3578 	return 0;
3579 }
3580 
3581 void btrfs_error_commit_super(struct btrfs_root *root)
3582 {
3583 	mutex_lock(&root->fs_info->cleaner_mutex);
3584 	btrfs_run_delayed_iputs(root);
3585 	mutex_unlock(&root->fs_info->cleaner_mutex);
3586 
3587 	down_write(&root->fs_info->cleanup_work_sem);
3588 	up_write(&root->fs_info->cleanup_work_sem);
3589 
3590 	/* cleanup FS via transaction */
3591 	btrfs_cleanup_transaction(root);
3592 }
3593 
3594 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3595 					     struct btrfs_root *root)
3596 {
3597 	struct btrfs_inode *btrfs_inode;
3598 	struct list_head splice;
3599 
3600 	INIT_LIST_HEAD(&splice);
3601 
3602 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3603 	spin_lock(&root->fs_info->ordered_extent_lock);
3604 
3605 	list_splice_init(&t->ordered_operations, &splice);
3606 	while (!list_empty(&splice)) {
3607 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3608 					 ordered_operations);
3609 
3610 		list_del_init(&btrfs_inode->ordered_operations);
3611 
3612 		btrfs_invalidate_inodes(btrfs_inode->root);
3613 	}
3614 
3615 	spin_unlock(&root->fs_info->ordered_extent_lock);
3616 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3617 }
3618 
3619 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3620 {
3621 	struct btrfs_ordered_extent *ordered;
3622 
3623 	spin_lock(&root->fs_info->ordered_extent_lock);
3624 	/*
3625 	 * This will just short circuit the ordered completion stuff which will
3626 	 * make sure the ordered extent gets properly cleaned up.
3627 	 */
3628 	list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3629 			    root_extent_list)
3630 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3631 	spin_unlock(&root->fs_info->ordered_extent_lock);
3632 }
3633 
3634 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3635 			       struct btrfs_root *root)
3636 {
3637 	struct rb_node *node;
3638 	struct btrfs_delayed_ref_root *delayed_refs;
3639 	struct btrfs_delayed_ref_node *ref;
3640 	int ret = 0;
3641 
3642 	delayed_refs = &trans->delayed_refs;
3643 
3644 	spin_lock(&delayed_refs->lock);
3645 	if (delayed_refs->num_entries == 0) {
3646 		spin_unlock(&delayed_refs->lock);
3647 		printk(KERN_INFO "delayed_refs has NO entry\n");
3648 		return ret;
3649 	}
3650 
3651 	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3652 		struct btrfs_delayed_ref_head *head = NULL;
3653 
3654 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3655 		atomic_set(&ref->refs, 1);
3656 		if (btrfs_delayed_ref_is_head(ref)) {
3657 
3658 			head = btrfs_delayed_node_to_head(ref);
3659 			if (!mutex_trylock(&head->mutex)) {
3660 				atomic_inc(&ref->refs);
3661 				spin_unlock(&delayed_refs->lock);
3662 
3663 				/* Need to wait for the delayed ref to run */
3664 				mutex_lock(&head->mutex);
3665 				mutex_unlock(&head->mutex);
3666 				btrfs_put_delayed_ref(ref);
3667 
3668 				spin_lock(&delayed_refs->lock);
3669 				continue;
3670 			}
3671 
3672 			btrfs_free_delayed_extent_op(head->extent_op);
3673 			delayed_refs->num_heads--;
3674 			if (list_empty(&head->cluster))
3675 				delayed_refs->num_heads_ready--;
3676 			list_del_init(&head->cluster);
3677 		}
3678 
3679 		ref->in_tree = 0;
3680 		rb_erase(&ref->rb_node, &delayed_refs->root);
3681 		delayed_refs->num_entries--;
3682 		if (head)
3683 			mutex_unlock(&head->mutex);
3684 		spin_unlock(&delayed_refs->lock);
3685 		btrfs_put_delayed_ref(ref);
3686 
3687 		cond_resched();
3688 		spin_lock(&delayed_refs->lock);
3689 	}
3690 
3691 	spin_unlock(&delayed_refs->lock);
3692 
3693 	return ret;
3694 }
3695 
3696 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3697 {
3698 	struct btrfs_pending_snapshot *snapshot;
3699 	struct list_head splice;
3700 
3701 	INIT_LIST_HEAD(&splice);
3702 
3703 	list_splice_init(&t->pending_snapshots, &splice);
3704 
3705 	while (!list_empty(&splice)) {
3706 		snapshot = list_entry(splice.next,
3707 				      struct btrfs_pending_snapshot,
3708 				      list);
3709 		snapshot->error = -ECANCELED;
3710 		list_del_init(&snapshot->list);
3711 	}
3712 }
3713 
3714 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3715 {
3716 	struct btrfs_inode *btrfs_inode;
3717 	struct list_head splice;
3718 
3719 	INIT_LIST_HEAD(&splice);
3720 
3721 	spin_lock(&root->fs_info->delalloc_lock);
3722 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3723 
3724 	while (!list_empty(&splice)) {
3725 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3726 				    delalloc_inodes);
3727 
3728 		list_del_init(&btrfs_inode->delalloc_inodes);
3729 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3730 			  &btrfs_inode->runtime_flags);
3731 
3732 		btrfs_invalidate_inodes(btrfs_inode->root);
3733 	}
3734 
3735 	spin_unlock(&root->fs_info->delalloc_lock);
3736 }
3737 
3738 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3739 					struct extent_io_tree *dirty_pages,
3740 					int mark)
3741 {
3742 	int ret;
3743 	struct page *page;
3744 	struct inode *btree_inode = root->fs_info->btree_inode;
3745 	struct extent_buffer *eb;
3746 	u64 start = 0;
3747 	u64 end;
3748 	u64 offset;
3749 	unsigned long index;
3750 
3751 	while (1) {
3752 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3753 					    mark, NULL);
3754 		if (ret)
3755 			break;
3756 
3757 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3758 		while (start <= end) {
3759 			index = start >> PAGE_CACHE_SHIFT;
3760 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3761 			page = find_get_page(btree_inode->i_mapping, index);
3762 			if (!page)
3763 				continue;
3764 			offset = page_offset(page);
3765 
3766 			spin_lock(&dirty_pages->buffer_lock);
3767 			eb = radix_tree_lookup(
3768 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3769 					       offset >> PAGE_CACHE_SHIFT);
3770 			spin_unlock(&dirty_pages->buffer_lock);
3771 			if (eb)
3772 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3773 							 &eb->bflags);
3774 			if (PageWriteback(page))
3775 				end_page_writeback(page);
3776 
3777 			lock_page(page);
3778 			if (PageDirty(page)) {
3779 				clear_page_dirty_for_io(page);
3780 				spin_lock_irq(&page->mapping->tree_lock);
3781 				radix_tree_tag_clear(&page->mapping->page_tree,
3782 							page_index(page),
3783 							PAGECACHE_TAG_DIRTY);
3784 				spin_unlock_irq(&page->mapping->tree_lock);
3785 			}
3786 
3787 			unlock_page(page);
3788 			page_cache_release(page);
3789 		}
3790 	}
3791 
3792 	return ret;
3793 }
3794 
3795 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3796 				       struct extent_io_tree *pinned_extents)
3797 {
3798 	struct extent_io_tree *unpin;
3799 	u64 start;
3800 	u64 end;
3801 	int ret;
3802 	bool loop = true;
3803 
3804 	unpin = pinned_extents;
3805 again:
3806 	while (1) {
3807 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3808 					    EXTENT_DIRTY, NULL);
3809 		if (ret)
3810 			break;
3811 
3812 		/* opt_discard */
3813 		if (btrfs_test_opt(root, DISCARD))
3814 			ret = btrfs_error_discard_extent(root, start,
3815 							 end + 1 - start,
3816 							 NULL);
3817 
3818 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3819 		btrfs_error_unpin_extent_range(root, start, end);
3820 		cond_resched();
3821 	}
3822 
3823 	if (loop) {
3824 		if (unpin == &root->fs_info->freed_extents[0])
3825 			unpin = &root->fs_info->freed_extents[1];
3826 		else
3827 			unpin = &root->fs_info->freed_extents[0];
3828 		loop = false;
3829 		goto again;
3830 	}
3831 
3832 	return 0;
3833 }
3834 
3835 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3836 				   struct btrfs_root *root)
3837 {
3838 	btrfs_destroy_delayed_refs(cur_trans, root);
3839 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3840 				cur_trans->dirty_pages.dirty_bytes);
3841 
3842 	/* FIXME: cleanup wait for commit */
3843 	cur_trans->in_commit = 1;
3844 	cur_trans->blocked = 1;
3845 	wake_up(&root->fs_info->transaction_blocked_wait);
3846 
3847 	btrfs_evict_pending_snapshots(cur_trans);
3848 
3849 	cur_trans->blocked = 0;
3850 	wake_up(&root->fs_info->transaction_wait);
3851 
3852 	cur_trans->commit_done = 1;
3853 	wake_up(&cur_trans->commit_wait);
3854 
3855 	btrfs_destroy_delayed_inodes(root);
3856 	btrfs_assert_delayed_root_empty(root);
3857 
3858 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3859 				     EXTENT_DIRTY);
3860 	btrfs_destroy_pinned_extent(root,
3861 				    root->fs_info->pinned_extents);
3862 
3863 	/*
3864 	memset(cur_trans, 0, sizeof(*cur_trans));
3865 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3866 	*/
3867 }
3868 
3869 int btrfs_cleanup_transaction(struct btrfs_root *root)
3870 {
3871 	struct btrfs_transaction *t;
3872 	LIST_HEAD(list);
3873 
3874 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3875 
3876 	spin_lock(&root->fs_info->trans_lock);
3877 	list_splice_init(&root->fs_info->trans_list, &list);
3878 	root->fs_info->trans_no_join = 1;
3879 	spin_unlock(&root->fs_info->trans_lock);
3880 
3881 	while (!list_empty(&list)) {
3882 		t = list_entry(list.next, struct btrfs_transaction, list);
3883 
3884 		btrfs_destroy_ordered_operations(t, root);
3885 
3886 		btrfs_destroy_ordered_extents(root);
3887 
3888 		btrfs_destroy_delayed_refs(t, root);
3889 
3890 		btrfs_block_rsv_release(root,
3891 					&root->fs_info->trans_block_rsv,
3892 					t->dirty_pages.dirty_bytes);
3893 
3894 		/* FIXME: cleanup wait for commit */
3895 		t->in_commit = 1;
3896 		t->blocked = 1;
3897 		smp_mb();
3898 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3899 			wake_up(&root->fs_info->transaction_blocked_wait);
3900 
3901 		btrfs_evict_pending_snapshots(t);
3902 
3903 		t->blocked = 0;
3904 		smp_mb();
3905 		if (waitqueue_active(&root->fs_info->transaction_wait))
3906 			wake_up(&root->fs_info->transaction_wait);
3907 
3908 		t->commit_done = 1;
3909 		smp_mb();
3910 		if (waitqueue_active(&t->commit_wait))
3911 			wake_up(&t->commit_wait);
3912 
3913 		btrfs_destroy_delayed_inodes(root);
3914 		btrfs_assert_delayed_root_empty(root);
3915 
3916 		btrfs_destroy_delalloc_inodes(root);
3917 
3918 		spin_lock(&root->fs_info->trans_lock);
3919 		root->fs_info->running_transaction = NULL;
3920 		spin_unlock(&root->fs_info->trans_lock);
3921 
3922 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3923 					     EXTENT_DIRTY);
3924 
3925 		btrfs_destroy_pinned_extent(root,
3926 					    root->fs_info->pinned_extents);
3927 
3928 		atomic_set(&t->use_count, 0);
3929 		list_del_init(&t->list);
3930 		memset(t, 0, sizeof(*t));
3931 		kmem_cache_free(btrfs_transaction_cachep, t);
3932 	}
3933 
3934 	spin_lock(&root->fs_info->trans_lock);
3935 	root->fs_info->trans_no_join = 0;
3936 	spin_unlock(&root->fs_info->trans_lock);
3937 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3938 
3939 	return 0;
3940 }
3941 
3942 static struct extent_io_ops btree_extent_io_ops = {
3943 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3944 	.readpage_io_failed_hook = btree_io_failed_hook,
3945 	.submit_bio_hook = btree_submit_bio_hook,
3946 	/* note we're sharing with inode.c for the merge bio hook */
3947 	.merge_bio_hook = btrfs_merge_bio_hook,
3948 };
3949