1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include <linux/crc32c.h> 30 #include <linux/slab.h> 31 #include <linux/migrate.h> 32 #include <linux/ratelimit.h> 33 #include <asm/unaligned.h> 34 #include "compat.h" 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "volumes.h" 40 #include "print-tree.h" 41 #include "async-thread.h" 42 #include "locking.h" 43 #include "tree-log.h" 44 #include "free-space-cache.h" 45 #include "inode-map.h" 46 #include "check-integrity.h" 47 #include "rcu-string.h" 48 #include "dev-replace.h" 49 #include "raid56.h" 50 51 #ifdef CONFIG_X86 52 #include <asm/cpufeature.h> 53 #endif 54 55 static struct extent_io_ops btree_extent_io_ops; 56 static void end_workqueue_fn(struct btrfs_work *work); 57 static void free_fs_root(struct btrfs_root *root); 58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 59 int read_only); 60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 61 struct btrfs_root *root); 62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root); 63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 64 struct btrfs_root *root); 65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t); 66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); 67 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 68 struct extent_io_tree *dirty_pages, 69 int mark); 70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 71 struct extent_io_tree *pinned_extents); 72 73 /* 74 * end_io_wq structs are used to do processing in task context when an IO is 75 * complete. This is used during reads to verify checksums, and it is used 76 * by writes to insert metadata for new file extents after IO is complete. 77 */ 78 struct end_io_wq { 79 struct bio *bio; 80 bio_end_io_t *end_io; 81 void *private; 82 struct btrfs_fs_info *info; 83 int error; 84 int metadata; 85 struct list_head list; 86 struct btrfs_work work; 87 }; 88 89 /* 90 * async submit bios are used to offload expensive checksumming 91 * onto the worker threads. They checksum file and metadata bios 92 * just before they are sent down the IO stack. 93 */ 94 struct async_submit_bio { 95 struct inode *inode; 96 struct bio *bio; 97 struct list_head list; 98 extent_submit_bio_hook_t *submit_bio_start; 99 extent_submit_bio_hook_t *submit_bio_done; 100 int rw; 101 int mirror_num; 102 unsigned long bio_flags; 103 /* 104 * bio_offset is optional, can be used if the pages in the bio 105 * can't tell us where in the file the bio should go 106 */ 107 u64 bio_offset; 108 struct btrfs_work work; 109 int error; 110 }; 111 112 /* 113 * Lockdep class keys for extent_buffer->lock's in this root. For a given 114 * eb, the lockdep key is determined by the btrfs_root it belongs to and 115 * the level the eb occupies in the tree. 116 * 117 * Different roots are used for different purposes and may nest inside each 118 * other and they require separate keysets. As lockdep keys should be 119 * static, assign keysets according to the purpose of the root as indicated 120 * by btrfs_root->objectid. This ensures that all special purpose roots 121 * have separate keysets. 122 * 123 * Lock-nesting across peer nodes is always done with the immediate parent 124 * node locked thus preventing deadlock. As lockdep doesn't know this, use 125 * subclass to avoid triggering lockdep warning in such cases. 126 * 127 * The key is set by the readpage_end_io_hook after the buffer has passed 128 * csum validation but before the pages are unlocked. It is also set by 129 * btrfs_init_new_buffer on freshly allocated blocks. 130 * 131 * We also add a check to make sure the highest level of the tree is the 132 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code 133 * needs update as well. 134 */ 135 #ifdef CONFIG_DEBUG_LOCK_ALLOC 136 # if BTRFS_MAX_LEVEL != 8 137 # error 138 # endif 139 140 static struct btrfs_lockdep_keyset { 141 u64 id; /* root objectid */ 142 const char *name_stem; /* lock name stem */ 143 char names[BTRFS_MAX_LEVEL + 1][20]; 144 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; 145 } btrfs_lockdep_keysets[] = { 146 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, 147 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, 148 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, 149 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, 150 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, 151 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, 152 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" }, 153 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, 154 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, 155 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, 156 { .id = 0, .name_stem = "tree" }, 157 }; 158 159 void __init btrfs_init_lockdep(void) 160 { 161 int i, j; 162 163 /* initialize lockdep class names */ 164 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { 165 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; 166 167 for (j = 0; j < ARRAY_SIZE(ks->names); j++) 168 snprintf(ks->names[j], sizeof(ks->names[j]), 169 "btrfs-%s-%02d", ks->name_stem, j); 170 } 171 } 172 173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, 174 int level) 175 { 176 struct btrfs_lockdep_keyset *ks; 177 178 BUG_ON(level >= ARRAY_SIZE(ks->keys)); 179 180 /* find the matching keyset, id 0 is the default entry */ 181 for (ks = btrfs_lockdep_keysets; ks->id; ks++) 182 if (ks->id == objectid) 183 break; 184 185 lockdep_set_class_and_name(&eb->lock, 186 &ks->keys[level], ks->names[level]); 187 } 188 189 #endif 190 191 /* 192 * extents on the btree inode are pretty simple, there's one extent 193 * that covers the entire device 194 */ 195 static struct extent_map *btree_get_extent(struct inode *inode, 196 struct page *page, size_t pg_offset, u64 start, u64 len, 197 int create) 198 { 199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 200 struct extent_map *em; 201 int ret; 202 203 read_lock(&em_tree->lock); 204 em = lookup_extent_mapping(em_tree, start, len); 205 if (em) { 206 em->bdev = 207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 208 read_unlock(&em_tree->lock); 209 goto out; 210 } 211 read_unlock(&em_tree->lock); 212 213 em = alloc_extent_map(); 214 if (!em) { 215 em = ERR_PTR(-ENOMEM); 216 goto out; 217 } 218 em->start = 0; 219 em->len = (u64)-1; 220 em->block_len = (u64)-1; 221 em->block_start = 0; 222 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 223 224 write_lock(&em_tree->lock); 225 ret = add_extent_mapping(em_tree, em); 226 if (ret == -EEXIST) { 227 free_extent_map(em); 228 em = lookup_extent_mapping(em_tree, start, len); 229 if (!em) 230 em = ERR_PTR(-EIO); 231 } else if (ret) { 232 free_extent_map(em); 233 em = ERR_PTR(ret); 234 } 235 write_unlock(&em_tree->lock); 236 237 out: 238 return em; 239 } 240 241 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 242 { 243 return crc32c(seed, data, len); 244 } 245 246 void btrfs_csum_final(u32 crc, char *result) 247 { 248 put_unaligned_le32(~crc, result); 249 } 250 251 /* 252 * compute the csum for a btree block, and either verify it or write it 253 * into the csum field of the block. 254 */ 255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 256 int verify) 257 { 258 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy); 259 char *result = NULL; 260 unsigned long len; 261 unsigned long cur_len; 262 unsigned long offset = BTRFS_CSUM_SIZE; 263 char *kaddr; 264 unsigned long map_start; 265 unsigned long map_len; 266 int err; 267 u32 crc = ~(u32)0; 268 unsigned long inline_result; 269 270 len = buf->len - offset; 271 while (len > 0) { 272 err = map_private_extent_buffer(buf, offset, 32, 273 &kaddr, &map_start, &map_len); 274 if (err) 275 return 1; 276 cur_len = min(len, map_len - (offset - map_start)); 277 crc = btrfs_csum_data(root, kaddr + offset - map_start, 278 crc, cur_len); 279 len -= cur_len; 280 offset += cur_len; 281 } 282 if (csum_size > sizeof(inline_result)) { 283 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 284 if (!result) 285 return 1; 286 } else { 287 result = (char *)&inline_result; 288 } 289 290 btrfs_csum_final(crc, result); 291 292 if (verify) { 293 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 294 u32 val; 295 u32 found = 0; 296 memcpy(&found, result, csum_size); 297 298 read_extent_buffer(buf, &val, 0, csum_size); 299 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify " 300 "failed on %llu wanted %X found %X " 301 "level %d\n", 302 root->fs_info->sb->s_id, 303 (unsigned long long)buf->start, val, found, 304 btrfs_header_level(buf)); 305 if (result != (char *)&inline_result) 306 kfree(result); 307 return 1; 308 } 309 } else { 310 write_extent_buffer(buf, result, 0, csum_size); 311 } 312 if (result != (char *)&inline_result) 313 kfree(result); 314 return 0; 315 } 316 317 /* 318 * we can't consider a given block up to date unless the transid of the 319 * block matches the transid in the parent node's pointer. This is how we 320 * detect blocks that either didn't get written at all or got written 321 * in the wrong place. 322 */ 323 static int verify_parent_transid(struct extent_io_tree *io_tree, 324 struct extent_buffer *eb, u64 parent_transid, 325 int atomic) 326 { 327 struct extent_state *cached_state = NULL; 328 int ret; 329 330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 331 return 0; 332 333 if (atomic) 334 return -EAGAIN; 335 336 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, 337 0, &cached_state); 338 if (extent_buffer_uptodate(eb) && 339 btrfs_header_generation(eb) == parent_transid) { 340 ret = 0; 341 goto out; 342 } 343 printk_ratelimited("parent transid verify failed on %llu wanted %llu " 344 "found %llu\n", 345 (unsigned long long)eb->start, 346 (unsigned long long)parent_transid, 347 (unsigned long long)btrfs_header_generation(eb)); 348 ret = 1; 349 clear_extent_buffer_uptodate(eb); 350 out: 351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, 352 &cached_state, GFP_NOFS); 353 return ret; 354 } 355 356 /* 357 * helper to read a given tree block, doing retries as required when 358 * the checksums don't match and we have alternate mirrors to try. 359 */ 360 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 361 struct extent_buffer *eb, 362 u64 start, u64 parent_transid) 363 { 364 struct extent_io_tree *io_tree; 365 int failed = 0; 366 int ret; 367 int num_copies = 0; 368 int mirror_num = 0; 369 int failed_mirror = 0; 370 371 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 372 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 373 while (1) { 374 ret = read_extent_buffer_pages(io_tree, eb, start, 375 WAIT_COMPLETE, 376 btree_get_extent, mirror_num); 377 if (!ret) { 378 if (!verify_parent_transid(io_tree, eb, 379 parent_transid, 0)) 380 break; 381 else 382 ret = -EIO; 383 } 384 385 /* 386 * This buffer's crc is fine, but its contents are corrupted, so 387 * there is no reason to read the other copies, they won't be 388 * any less wrong. 389 */ 390 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) 391 break; 392 393 num_copies = btrfs_num_copies(root->fs_info, 394 eb->start, eb->len); 395 if (num_copies == 1) 396 break; 397 398 if (!failed_mirror) { 399 failed = 1; 400 failed_mirror = eb->read_mirror; 401 } 402 403 mirror_num++; 404 if (mirror_num == failed_mirror) 405 mirror_num++; 406 407 if (mirror_num > num_copies) 408 break; 409 } 410 411 if (failed && !ret && failed_mirror) 412 repair_eb_io_failure(root, eb, failed_mirror); 413 414 return ret; 415 } 416 417 /* 418 * checksum a dirty tree block before IO. This has extra checks to make sure 419 * we only fill in the checksum field in the first page of a multi-page block 420 */ 421 422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 423 { 424 struct extent_io_tree *tree; 425 u64 start = page_offset(page); 426 u64 found_start; 427 struct extent_buffer *eb; 428 429 tree = &BTRFS_I(page->mapping->host)->io_tree; 430 431 eb = (struct extent_buffer *)page->private; 432 if (page != eb->pages[0]) 433 return 0; 434 found_start = btrfs_header_bytenr(eb); 435 if (found_start != start) { 436 WARN_ON(1); 437 return 0; 438 } 439 if (!PageUptodate(page)) { 440 WARN_ON(1); 441 return 0; 442 } 443 csum_tree_block(root, eb, 0); 444 return 0; 445 } 446 447 static int check_tree_block_fsid(struct btrfs_root *root, 448 struct extent_buffer *eb) 449 { 450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 451 u8 fsid[BTRFS_UUID_SIZE]; 452 int ret = 1; 453 454 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 455 BTRFS_FSID_SIZE); 456 while (fs_devices) { 457 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 458 ret = 0; 459 break; 460 } 461 fs_devices = fs_devices->seed; 462 } 463 return ret; 464 } 465 466 #define CORRUPT(reason, eb, root, slot) \ 467 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \ 468 "root=%llu, slot=%d\n", reason, \ 469 (unsigned long long)btrfs_header_bytenr(eb), \ 470 (unsigned long long)root->objectid, slot) 471 472 static noinline int check_leaf(struct btrfs_root *root, 473 struct extent_buffer *leaf) 474 { 475 struct btrfs_key key; 476 struct btrfs_key leaf_key; 477 u32 nritems = btrfs_header_nritems(leaf); 478 int slot; 479 480 if (nritems == 0) 481 return 0; 482 483 /* Check the 0 item */ 484 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != 485 BTRFS_LEAF_DATA_SIZE(root)) { 486 CORRUPT("invalid item offset size pair", leaf, root, 0); 487 return -EIO; 488 } 489 490 /* 491 * Check to make sure each items keys are in the correct order and their 492 * offsets make sense. We only have to loop through nritems-1 because 493 * we check the current slot against the next slot, which verifies the 494 * next slot's offset+size makes sense and that the current's slot 495 * offset is correct. 496 */ 497 for (slot = 0; slot < nritems - 1; slot++) { 498 btrfs_item_key_to_cpu(leaf, &leaf_key, slot); 499 btrfs_item_key_to_cpu(leaf, &key, slot + 1); 500 501 /* Make sure the keys are in the right order */ 502 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { 503 CORRUPT("bad key order", leaf, root, slot); 504 return -EIO; 505 } 506 507 /* 508 * Make sure the offset and ends are right, remember that the 509 * item data starts at the end of the leaf and grows towards the 510 * front. 511 */ 512 if (btrfs_item_offset_nr(leaf, slot) != 513 btrfs_item_end_nr(leaf, slot + 1)) { 514 CORRUPT("slot offset bad", leaf, root, slot); 515 return -EIO; 516 } 517 518 /* 519 * Check to make sure that we don't point outside of the leaf, 520 * just incase all the items are consistent to eachother, but 521 * all point outside of the leaf. 522 */ 523 if (btrfs_item_end_nr(leaf, slot) > 524 BTRFS_LEAF_DATA_SIZE(root)) { 525 CORRUPT("slot end outside of leaf", leaf, root, slot); 526 return -EIO; 527 } 528 } 529 530 return 0; 531 } 532 533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree, 534 struct page *page, int max_walk) 535 { 536 struct extent_buffer *eb; 537 u64 start = page_offset(page); 538 u64 target = start; 539 u64 min_start; 540 541 if (start < max_walk) 542 min_start = 0; 543 else 544 min_start = start - max_walk; 545 546 while (start >= min_start) { 547 eb = find_extent_buffer(tree, start, 0); 548 if (eb) { 549 /* 550 * we found an extent buffer and it contains our page 551 * horray! 552 */ 553 if (eb->start <= target && 554 eb->start + eb->len > target) 555 return eb; 556 557 /* we found an extent buffer that wasn't for us */ 558 free_extent_buffer(eb); 559 return NULL; 560 } 561 if (start == 0) 562 break; 563 start -= PAGE_CACHE_SIZE; 564 } 565 return NULL; 566 } 567 568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 569 struct extent_state *state, int mirror) 570 { 571 struct extent_io_tree *tree; 572 u64 found_start; 573 int found_level; 574 struct extent_buffer *eb; 575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 576 int ret = 0; 577 int reads_done; 578 579 if (!page->private) 580 goto out; 581 582 tree = &BTRFS_I(page->mapping->host)->io_tree; 583 eb = (struct extent_buffer *)page->private; 584 585 /* the pending IO might have been the only thing that kept this buffer 586 * in memory. Make sure we have a ref for all this other checks 587 */ 588 extent_buffer_get(eb); 589 590 reads_done = atomic_dec_and_test(&eb->io_pages); 591 if (!reads_done) 592 goto err; 593 594 eb->read_mirror = mirror; 595 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 596 ret = -EIO; 597 goto err; 598 } 599 600 found_start = btrfs_header_bytenr(eb); 601 if (found_start != eb->start) { 602 printk_ratelimited(KERN_INFO "btrfs bad tree block start " 603 "%llu %llu\n", 604 (unsigned long long)found_start, 605 (unsigned long long)eb->start); 606 ret = -EIO; 607 goto err; 608 } 609 if (check_tree_block_fsid(root, eb)) { 610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n", 611 (unsigned long long)eb->start); 612 ret = -EIO; 613 goto err; 614 } 615 found_level = btrfs_header_level(eb); 616 617 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), 618 eb, found_level); 619 620 ret = csum_tree_block(root, eb, 1); 621 if (ret) { 622 ret = -EIO; 623 goto err; 624 } 625 626 /* 627 * If this is a leaf block and it is corrupt, set the corrupt bit so 628 * that we don't try and read the other copies of this block, just 629 * return -EIO. 630 */ 631 if (found_level == 0 && check_leaf(root, eb)) { 632 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); 633 ret = -EIO; 634 } 635 636 if (!ret) 637 set_extent_buffer_uptodate(eb); 638 err: 639 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) { 640 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags); 641 btree_readahead_hook(root, eb, eb->start, ret); 642 } 643 644 if (ret) { 645 /* 646 * our io error hook is going to dec the io pages 647 * again, we have to make sure it has something 648 * to decrement 649 */ 650 atomic_inc(&eb->io_pages); 651 clear_extent_buffer_uptodate(eb); 652 } 653 free_extent_buffer(eb); 654 out: 655 return ret; 656 } 657 658 static int btree_io_failed_hook(struct page *page, int failed_mirror) 659 { 660 struct extent_buffer *eb; 661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 662 663 eb = (struct extent_buffer *)page->private; 664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 665 eb->read_mirror = failed_mirror; 666 atomic_dec(&eb->io_pages); 667 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) 668 btree_readahead_hook(root, eb, eb->start, -EIO); 669 return -EIO; /* we fixed nothing */ 670 } 671 672 static void end_workqueue_bio(struct bio *bio, int err) 673 { 674 struct end_io_wq *end_io_wq = bio->bi_private; 675 struct btrfs_fs_info *fs_info; 676 677 fs_info = end_io_wq->info; 678 end_io_wq->error = err; 679 end_io_wq->work.func = end_workqueue_fn; 680 end_io_wq->work.flags = 0; 681 682 if (bio->bi_rw & REQ_WRITE) { 683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) 684 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 685 &end_io_wq->work); 686 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) 687 btrfs_queue_worker(&fs_info->endio_freespace_worker, 688 &end_io_wq->work); 689 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 690 btrfs_queue_worker(&fs_info->endio_raid56_workers, 691 &end_io_wq->work); 692 else 693 btrfs_queue_worker(&fs_info->endio_write_workers, 694 &end_io_wq->work); 695 } else { 696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) 697 btrfs_queue_worker(&fs_info->endio_raid56_workers, 698 &end_io_wq->work); 699 else if (end_io_wq->metadata) 700 btrfs_queue_worker(&fs_info->endio_meta_workers, 701 &end_io_wq->work); 702 else 703 btrfs_queue_worker(&fs_info->endio_workers, 704 &end_io_wq->work); 705 } 706 } 707 708 /* 709 * For the metadata arg you want 710 * 711 * 0 - if data 712 * 1 - if normal metadta 713 * 2 - if writing to the free space cache area 714 * 3 - raid parity work 715 */ 716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 717 int metadata) 718 { 719 struct end_io_wq *end_io_wq; 720 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 721 if (!end_io_wq) 722 return -ENOMEM; 723 724 end_io_wq->private = bio->bi_private; 725 end_io_wq->end_io = bio->bi_end_io; 726 end_io_wq->info = info; 727 end_io_wq->error = 0; 728 end_io_wq->bio = bio; 729 end_io_wq->metadata = metadata; 730 731 bio->bi_private = end_io_wq; 732 bio->bi_end_io = end_workqueue_bio; 733 return 0; 734 } 735 736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 737 { 738 unsigned long limit = min_t(unsigned long, 739 info->workers.max_workers, 740 info->fs_devices->open_devices); 741 return 256 * limit; 742 } 743 744 static void run_one_async_start(struct btrfs_work *work) 745 { 746 struct async_submit_bio *async; 747 int ret; 748 749 async = container_of(work, struct async_submit_bio, work); 750 ret = async->submit_bio_start(async->inode, async->rw, async->bio, 751 async->mirror_num, async->bio_flags, 752 async->bio_offset); 753 if (ret) 754 async->error = ret; 755 } 756 757 static void run_one_async_done(struct btrfs_work *work) 758 { 759 struct btrfs_fs_info *fs_info; 760 struct async_submit_bio *async; 761 int limit; 762 763 async = container_of(work, struct async_submit_bio, work); 764 fs_info = BTRFS_I(async->inode)->root->fs_info; 765 766 limit = btrfs_async_submit_limit(fs_info); 767 limit = limit * 2 / 3; 768 769 if (atomic_dec_return(&fs_info->nr_async_submits) < limit && 770 waitqueue_active(&fs_info->async_submit_wait)) 771 wake_up(&fs_info->async_submit_wait); 772 773 /* If an error occured we just want to clean up the bio and move on */ 774 if (async->error) { 775 bio_endio(async->bio, async->error); 776 return; 777 } 778 779 async->submit_bio_done(async->inode, async->rw, async->bio, 780 async->mirror_num, async->bio_flags, 781 async->bio_offset); 782 } 783 784 static void run_one_async_free(struct btrfs_work *work) 785 { 786 struct async_submit_bio *async; 787 788 async = container_of(work, struct async_submit_bio, work); 789 kfree(async); 790 } 791 792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 793 int rw, struct bio *bio, int mirror_num, 794 unsigned long bio_flags, 795 u64 bio_offset, 796 extent_submit_bio_hook_t *submit_bio_start, 797 extent_submit_bio_hook_t *submit_bio_done) 798 { 799 struct async_submit_bio *async; 800 801 async = kmalloc(sizeof(*async), GFP_NOFS); 802 if (!async) 803 return -ENOMEM; 804 805 async->inode = inode; 806 async->rw = rw; 807 async->bio = bio; 808 async->mirror_num = mirror_num; 809 async->submit_bio_start = submit_bio_start; 810 async->submit_bio_done = submit_bio_done; 811 812 async->work.func = run_one_async_start; 813 async->work.ordered_func = run_one_async_done; 814 async->work.ordered_free = run_one_async_free; 815 816 async->work.flags = 0; 817 async->bio_flags = bio_flags; 818 async->bio_offset = bio_offset; 819 820 async->error = 0; 821 822 atomic_inc(&fs_info->nr_async_submits); 823 824 if (rw & REQ_SYNC) 825 btrfs_set_work_high_prio(&async->work); 826 827 btrfs_queue_worker(&fs_info->workers, &async->work); 828 829 while (atomic_read(&fs_info->async_submit_draining) && 830 atomic_read(&fs_info->nr_async_submits)) { 831 wait_event(fs_info->async_submit_wait, 832 (atomic_read(&fs_info->nr_async_submits) == 0)); 833 } 834 835 return 0; 836 } 837 838 static int btree_csum_one_bio(struct bio *bio) 839 { 840 struct bio_vec *bvec = bio->bi_io_vec; 841 int bio_index = 0; 842 struct btrfs_root *root; 843 int ret = 0; 844 845 WARN_ON(bio->bi_vcnt <= 0); 846 while (bio_index < bio->bi_vcnt) { 847 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 848 ret = csum_dirty_buffer(root, bvec->bv_page); 849 if (ret) 850 break; 851 bio_index++; 852 bvec++; 853 } 854 return ret; 855 } 856 857 static int __btree_submit_bio_start(struct inode *inode, int rw, 858 struct bio *bio, int mirror_num, 859 unsigned long bio_flags, 860 u64 bio_offset) 861 { 862 /* 863 * when we're called for a write, we're already in the async 864 * submission context. Just jump into btrfs_map_bio 865 */ 866 return btree_csum_one_bio(bio); 867 } 868 869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 870 int mirror_num, unsigned long bio_flags, 871 u64 bio_offset) 872 { 873 int ret; 874 875 /* 876 * when we're called for a write, we're already in the async 877 * submission context. Just jump into btrfs_map_bio 878 */ 879 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 880 if (ret) 881 bio_endio(bio, ret); 882 return ret; 883 } 884 885 static int check_async_write(struct inode *inode, unsigned long bio_flags) 886 { 887 if (bio_flags & EXTENT_BIO_TREE_LOG) 888 return 0; 889 #ifdef CONFIG_X86 890 if (cpu_has_xmm4_2) 891 return 0; 892 #endif 893 return 1; 894 } 895 896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 897 int mirror_num, unsigned long bio_flags, 898 u64 bio_offset) 899 { 900 int async = check_async_write(inode, bio_flags); 901 int ret; 902 903 if (!(rw & REQ_WRITE)) { 904 /* 905 * called for a read, do the setup so that checksum validation 906 * can happen in the async kernel threads 907 */ 908 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 909 bio, 1); 910 if (ret) 911 goto out_w_error; 912 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 913 mirror_num, 0); 914 } else if (!async) { 915 ret = btree_csum_one_bio(bio); 916 if (ret) 917 goto out_w_error; 918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 919 mirror_num, 0); 920 } else { 921 /* 922 * kthread helpers are used to submit writes so that 923 * checksumming can happen in parallel across all CPUs 924 */ 925 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 926 inode, rw, bio, mirror_num, 0, 927 bio_offset, 928 __btree_submit_bio_start, 929 __btree_submit_bio_done); 930 } 931 932 if (ret) { 933 out_w_error: 934 bio_endio(bio, ret); 935 } 936 return ret; 937 } 938 939 #ifdef CONFIG_MIGRATION 940 static int btree_migratepage(struct address_space *mapping, 941 struct page *newpage, struct page *page, 942 enum migrate_mode mode) 943 { 944 /* 945 * we can't safely write a btree page from here, 946 * we haven't done the locking hook 947 */ 948 if (PageDirty(page)) 949 return -EAGAIN; 950 /* 951 * Buffers may be managed in a filesystem specific way. 952 * We must have no buffers or drop them. 953 */ 954 if (page_has_private(page) && 955 !try_to_release_page(page, GFP_KERNEL)) 956 return -EAGAIN; 957 return migrate_page(mapping, newpage, page, mode); 958 } 959 #endif 960 961 962 static int btree_writepages(struct address_space *mapping, 963 struct writeback_control *wbc) 964 { 965 struct extent_io_tree *tree; 966 struct btrfs_fs_info *fs_info; 967 int ret; 968 969 tree = &BTRFS_I(mapping->host)->io_tree; 970 if (wbc->sync_mode == WB_SYNC_NONE) { 971 972 if (wbc->for_kupdate) 973 return 0; 974 975 fs_info = BTRFS_I(mapping->host)->root->fs_info; 976 /* this is a bit racy, but that's ok */ 977 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, 978 BTRFS_DIRTY_METADATA_THRESH); 979 if (ret < 0) 980 return 0; 981 } 982 return btree_write_cache_pages(mapping, wbc); 983 } 984 985 static int btree_readpage(struct file *file, struct page *page) 986 { 987 struct extent_io_tree *tree; 988 tree = &BTRFS_I(page->mapping->host)->io_tree; 989 return extent_read_full_page(tree, page, btree_get_extent, 0); 990 } 991 992 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 993 { 994 if (PageWriteback(page) || PageDirty(page)) 995 return 0; 996 /* 997 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing 998 * slab allocation from alloc_extent_state down the callchain where 999 * it'd hit a BUG_ON as those flags are not allowed. 1000 */ 1001 gfp_flags &= ~GFP_SLAB_BUG_MASK; 1002 1003 return try_release_extent_buffer(page, gfp_flags); 1004 } 1005 1006 static void btree_invalidatepage(struct page *page, unsigned long offset) 1007 { 1008 struct extent_io_tree *tree; 1009 tree = &BTRFS_I(page->mapping->host)->io_tree; 1010 extent_invalidatepage(tree, page, offset); 1011 btree_releasepage(page, GFP_NOFS); 1012 if (PagePrivate(page)) { 1013 printk(KERN_WARNING "btrfs warning page private not zero " 1014 "on page %llu\n", (unsigned long long)page_offset(page)); 1015 ClearPagePrivate(page); 1016 set_page_private(page, 0); 1017 page_cache_release(page); 1018 } 1019 } 1020 1021 static int btree_set_page_dirty(struct page *page) 1022 { 1023 #ifdef DEBUG 1024 struct extent_buffer *eb; 1025 1026 BUG_ON(!PagePrivate(page)); 1027 eb = (struct extent_buffer *)page->private; 1028 BUG_ON(!eb); 1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 1030 BUG_ON(!atomic_read(&eb->refs)); 1031 btrfs_assert_tree_locked(eb); 1032 #endif 1033 return __set_page_dirty_nobuffers(page); 1034 } 1035 1036 static const struct address_space_operations btree_aops = { 1037 .readpage = btree_readpage, 1038 .writepages = btree_writepages, 1039 .releasepage = btree_releasepage, 1040 .invalidatepage = btree_invalidatepage, 1041 #ifdef CONFIG_MIGRATION 1042 .migratepage = btree_migratepage, 1043 #endif 1044 .set_page_dirty = btree_set_page_dirty, 1045 }; 1046 1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1048 u64 parent_transid) 1049 { 1050 struct extent_buffer *buf = NULL; 1051 struct inode *btree_inode = root->fs_info->btree_inode; 1052 int ret = 0; 1053 1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1055 if (!buf) 1056 return 0; 1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 1058 buf, 0, WAIT_NONE, btree_get_extent, 0); 1059 free_extent_buffer(buf); 1060 return ret; 1061 } 1062 1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize, 1064 int mirror_num, struct extent_buffer **eb) 1065 { 1066 struct extent_buffer *buf = NULL; 1067 struct inode *btree_inode = root->fs_info->btree_inode; 1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; 1069 int ret; 1070 1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1072 if (!buf) 1073 return 0; 1074 1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); 1076 1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK, 1078 btree_get_extent, mirror_num); 1079 if (ret) { 1080 free_extent_buffer(buf); 1081 return ret; 1082 } 1083 1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { 1085 free_extent_buffer(buf); 1086 return -EIO; 1087 } else if (extent_buffer_uptodate(buf)) { 1088 *eb = buf; 1089 } else { 1090 free_extent_buffer(buf); 1091 } 1092 return 0; 1093 } 1094 1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 1096 u64 bytenr, u32 blocksize) 1097 { 1098 struct inode *btree_inode = root->fs_info->btree_inode; 1099 struct extent_buffer *eb; 1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1101 bytenr, blocksize); 1102 return eb; 1103 } 1104 1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 1106 u64 bytenr, u32 blocksize) 1107 { 1108 struct inode *btree_inode = root->fs_info->btree_inode; 1109 struct extent_buffer *eb; 1110 1111 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 1112 bytenr, blocksize); 1113 return eb; 1114 } 1115 1116 1117 int btrfs_write_tree_block(struct extent_buffer *buf) 1118 { 1119 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, 1120 buf->start + buf->len - 1); 1121 } 1122 1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 1124 { 1125 return filemap_fdatawait_range(buf->pages[0]->mapping, 1126 buf->start, buf->start + buf->len - 1); 1127 } 1128 1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 1130 u32 blocksize, u64 parent_transid) 1131 { 1132 struct extent_buffer *buf = NULL; 1133 int ret; 1134 1135 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 1136 if (!buf) 1137 return NULL; 1138 1139 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 1140 return buf; 1141 1142 } 1143 1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 1145 struct extent_buffer *buf) 1146 { 1147 struct btrfs_fs_info *fs_info = root->fs_info; 1148 1149 if (btrfs_header_generation(buf) == 1150 fs_info->running_transaction->transid) { 1151 btrfs_assert_tree_locked(buf); 1152 1153 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 1154 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 1155 -buf->len, 1156 fs_info->dirty_metadata_batch); 1157 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 1158 btrfs_set_lock_blocking(buf); 1159 clear_extent_buffer_dirty(buf); 1160 } 1161 } 1162 } 1163 1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 1165 u32 stripesize, struct btrfs_root *root, 1166 struct btrfs_fs_info *fs_info, 1167 u64 objectid) 1168 { 1169 root->node = NULL; 1170 root->commit_root = NULL; 1171 root->sectorsize = sectorsize; 1172 root->nodesize = nodesize; 1173 root->leafsize = leafsize; 1174 root->stripesize = stripesize; 1175 root->ref_cows = 0; 1176 root->track_dirty = 0; 1177 root->in_radix = 0; 1178 root->orphan_item_inserted = 0; 1179 root->orphan_cleanup_state = 0; 1180 1181 root->objectid = objectid; 1182 root->last_trans = 0; 1183 root->highest_objectid = 0; 1184 root->name = NULL; 1185 root->inode_tree = RB_ROOT; 1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); 1187 root->block_rsv = NULL; 1188 root->orphan_block_rsv = NULL; 1189 1190 INIT_LIST_HEAD(&root->dirty_list); 1191 INIT_LIST_HEAD(&root->root_list); 1192 INIT_LIST_HEAD(&root->logged_list[0]); 1193 INIT_LIST_HEAD(&root->logged_list[1]); 1194 spin_lock_init(&root->orphan_lock); 1195 spin_lock_init(&root->inode_lock); 1196 spin_lock_init(&root->accounting_lock); 1197 spin_lock_init(&root->log_extents_lock[0]); 1198 spin_lock_init(&root->log_extents_lock[1]); 1199 mutex_init(&root->objectid_mutex); 1200 mutex_init(&root->log_mutex); 1201 init_waitqueue_head(&root->log_writer_wait); 1202 init_waitqueue_head(&root->log_commit_wait[0]); 1203 init_waitqueue_head(&root->log_commit_wait[1]); 1204 atomic_set(&root->log_commit[0], 0); 1205 atomic_set(&root->log_commit[1], 0); 1206 atomic_set(&root->log_writers, 0); 1207 atomic_set(&root->log_batch, 0); 1208 atomic_set(&root->orphan_inodes, 0); 1209 root->log_transid = 0; 1210 root->last_log_commit = 0; 1211 extent_io_tree_init(&root->dirty_log_pages, 1212 fs_info->btree_inode->i_mapping); 1213 1214 memset(&root->root_key, 0, sizeof(root->root_key)); 1215 memset(&root->root_item, 0, sizeof(root->root_item)); 1216 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 1217 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 1218 root->defrag_trans_start = fs_info->generation; 1219 init_completion(&root->kobj_unregister); 1220 root->defrag_running = 0; 1221 root->root_key.objectid = objectid; 1222 root->anon_dev = 0; 1223 1224 spin_lock_init(&root->root_item_lock); 1225 } 1226 1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root, 1228 struct btrfs_fs_info *fs_info, 1229 u64 objectid, 1230 struct btrfs_root *root) 1231 { 1232 int ret; 1233 u32 blocksize; 1234 u64 generation; 1235 1236 __setup_root(tree_root->nodesize, tree_root->leafsize, 1237 tree_root->sectorsize, tree_root->stripesize, 1238 root, fs_info, objectid); 1239 ret = btrfs_find_last_root(tree_root, objectid, 1240 &root->root_item, &root->root_key); 1241 if (ret > 0) 1242 return -ENOENT; 1243 else if (ret < 0) 1244 return ret; 1245 1246 generation = btrfs_root_generation(&root->root_item); 1247 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1248 root->commit_root = NULL; 1249 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1250 blocksize, generation); 1251 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) { 1252 free_extent_buffer(root->node); 1253 root->node = NULL; 1254 return -EIO; 1255 } 1256 root->commit_root = btrfs_root_node(root); 1257 return 0; 1258 } 1259 1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info) 1261 { 1262 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS); 1263 if (root) 1264 root->fs_info = fs_info; 1265 return root; 1266 } 1267 1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, 1269 struct btrfs_fs_info *fs_info, 1270 u64 objectid) 1271 { 1272 struct extent_buffer *leaf; 1273 struct btrfs_root *tree_root = fs_info->tree_root; 1274 struct btrfs_root *root; 1275 struct btrfs_key key; 1276 int ret = 0; 1277 u64 bytenr; 1278 1279 root = btrfs_alloc_root(fs_info); 1280 if (!root) 1281 return ERR_PTR(-ENOMEM); 1282 1283 __setup_root(tree_root->nodesize, tree_root->leafsize, 1284 tree_root->sectorsize, tree_root->stripesize, 1285 root, fs_info, objectid); 1286 root->root_key.objectid = objectid; 1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1288 root->root_key.offset = 0; 1289 1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1291 0, objectid, NULL, 0, 0, 0); 1292 if (IS_ERR(leaf)) { 1293 ret = PTR_ERR(leaf); 1294 leaf = NULL; 1295 goto fail; 1296 } 1297 1298 bytenr = leaf->start; 1299 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1300 btrfs_set_header_bytenr(leaf, leaf->start); 1301 btrfs_set_header_generation(leaf, trans->transid); 1302 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1303 btrfs_set_header_owner(leaf, objectid); 1304 root->node = leaf; 1305 1306 write_extent_buffer(leaf, fs_info->fsid, 1307 (unsigned long)btrfs_header_fsid(leaf), 1308 BTRFS_FSID_SIZE); 1309 write_extent_buffer(leaf, fs_info->chunk_tree_uuid, 1310 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 1311 BTRFS_UUID_SIZE); 1312 btrfs_mark_buffer_dirty(leaf); 1313 1314 root->commit_root = btrfs_root_node(root); 1315 root->track_dirty = 1; 1316 1317 1318 root->root_item.flags = 0; 1319 root->root_item.byte_limit = 0; 1320 btrfs_set_root_bytenr(&root->root_item, leaf->start); 1321 btrfs_set_root_generation(&root->root_item, trans->transid); 1322 btrfs_set_root_level(&root->root_item, 0); 1323 btrfs_set_root_refs(&root->root_item, 1); 1324 btrfs_set_root_used(&root->root_item, leaf->len); 1325 btrfs_set_root_last_snapshot(&root->root_item, 0); 1326 btrfs_set_root_dirid(&root->root_item, 0); 1327 root->root_item.drop_level = 0; 1328 1329 key.objectid = objectid; 1330 key.type = BTRFS_ROOT_ITEM_KEY; 1331 key.offset = 0; 1332 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); 1333 if (ret) 1334 goto fail; 1335 1336 btrfs_tree_unlock(leaf); 1337 1338 return root; 1339 1340 fail: 1341 if (leaf) { 1342 btrfs_tree_unlock(leaf); 1343 free_extent_buffer(leaf); 1344 } 1345 kfree(root); 1346 1347 return ERR_PTR(ret); 1348 } 1349 1350 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1351 struct btrfs_fs_info *fs_info) 1352 { 1353 struct btrfs_root *root; 1354 struct btrfs_root *tree_root = fs_info->tree_root; 1355 struct extent_buffer *leaf; 1356 1357 root = btrfs_alloc_root(fs_info); 1358 if (!root) 1359 return ERR_PTR(-ENOMEM); 1360 1361 __setup_root(tree_root->nodesize, tree_root->leafsize, 1362 tree_root->sectorsize, tree_root->stripesize, 1363 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1364 1365 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1366 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1367 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1368 /* 1369 * log trees do not get reference counted because they go away 1370 * before a real commit is actually done. They do store pointers 1371 * to file data extents, and those reference counts still get 1372 * updated (along with back refs to the log tree). 1373 */ 1374 root->ref_cows = 0; 1375 1376 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1377 BTRFS_TREE_LOG_OBJECTID, NULL, 1378 0, 0, 0); 1379 if (IS_ERR(leaf)) { 1380 kfree(root); 1381 return ERR_CAST(leaf); 1382 } 1383 1384 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1385 btrfs_set_header_bytenr(leaf, leaf->start); 1386 btrfs_set_header_generation(leaf, trans->transid); 1387 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1388 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1389 root->node = leaf; 1390 1391 write_extent_buffer(root->node, root->fs_info->fsid, 1392 (unsigned long)btrfs_header_fsid(root->node), 1393 BTRFS_FSID_SIZE); 1394 btrfs_mark_buffer_dirty(root->node); 1395 btrfs_tree_unlock(root->node); 1396 return root; 1397 } 1398 1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1400 struct btrfs_fs_info *fs_info) 1401 { 1402 struct btrfs_root *log_root; 1403 1404 log_root = alloc_log_tree(trans, fs_info); 1405 if (IS_ERR(log_root)) 1406 return PTR_ERR(log_root); 1407 WARN_ON(fs_info->log_root_tree); 1408 fs_info->log_root_tree = log_root; 1409 return 0; 1410 } 1411 1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1413 struct btrfs_root *root) 1414 { 1415 struct btrfs_root *log_root; 1416 struct btrfs_inode_item *inode_item; 1417 1418 log_root = alloc_log_tree(trans, root->fs_info); 1419 if (IS_ERR(log_root)) 1420 return PTR_ERR(log_root); 1421 1422 log_root->last_trans = trans->transid; 1423 log_root->root_key.offset = root->root_key.objectid; 1424 1425 inode_item = &log_root->root_item.inode; 1426 inode_item->generation = cpu_to_le64(1); 1427 inode_item->size = cpu_to_le64(3); 1428 inode_item->nlink = cpu_to_le32(1); 1429 inode_item->nbytes = cpu_to_le64(root->leafsize); 1430 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1431 1432 btrfs_set_root_node(&log_root->root_item, log_root->node); 1433 1434 WARN_ON(root->log_root); 1435 root->log_root = log_root; 1436 root->log_transid = 0; 1437 root->last_log_commit = 0; 1438 return 0; 1439 } 1440 1441 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1442 struct btrfs_key *location) 1443 { 1444 struct btrfs_root *root; 1445 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1446 struct btrfs_path *path; 1447 struct extent_buffer *l; 1448 u64 generation; 1449 u32 blocksize; 1450 int ret = 0; 1451 int slot; 1452 1453 root = btrfs_alloc_root(fs_info); 1454 if (!root) 1455 return ERR_PTR(-ENOMEM); 1456 if (location->offset == (u64)-1) { 1457 ret = find_and_setup_root(tree_root, fs_info, 1458 location->objectid, root); 1459 if (ret) { 1460 kfree(root); 1461 return ERR_PTR(ret); 1462 } 1463 goto out; 1464 } 1465 1466 __setup_root(tree_root->nodesize, tree_root->leafsize, 1467 tree_root->sectorsize, tree_root->stripesize, 1468 root, fs_info, location->objectid); 1469 1470 path = btrfs_alloc_path(); 1471 if (!path) { 1472 kfree(root); 1473 return ERR_PTR(-ENOMEM); 1474 } 1475 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1476 if (ret == 0) { 1477 l = path->nodes[0]; 1478 slot = path->slots[0]; 1479 btrfs_read_root_item(tree_root, l, slot, &root->root_item); 1480 memcpy(&root->root_key, location, sizeof(*location)); 1481 } 1482 btrfs_free_path(path); 1483 if (ret) { 1484 kfree(root); 1485 if (ret > 0) 1486 ret = -ENOENT; 1487 return ERR_PTR(ret); 1488 } 1489 1490 generation = btrfs_root_generation(&root->root_item); 1491 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1492 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1493 blocksize, generation); 1494 root->commit_root = btrfs_root_node(root); 1495 BUG_ON(!root->node); /* -ENOMEM */ 1496 out: 1497 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1498 root->ref_cows = 1; 1499 btrfs_check_and_init_root_item(&root->root_item); 1500 } 1501 1502 return root; 1503 } 1504 1505 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1506 struct btrfs_key *location) 1507 { 1508 struct btrfs_root *root; 1509 int ret; 1510 1511 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1512 return fs_info->tree_root; 1513 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1514 return fs_info->extent_root; 1515 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1516 return fs_info->chunk_root; 1517 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1518 return fs_info->dev_root; 1519 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1520 return fs_info->csum_root; 1521 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) 1522 return fs_info->quota_root ? fs_info->quota_root : 1523 ERR_PTR(-ENOENT); 1524 again: 1525 spin_lock(&fs_info->fs_roots_radix_lock); 1526 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1527 (unsigned long)location->objectid); 1528 spin_unlock(&fs_info->fs_roots_radix_lock); 1529 if (root) 1530 return root; 1531 1532 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1533 if (IS_ERR(root)) 1534 return root; 1535 1536 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); 1537 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), 1538 GFP_NOFS); 1539 if (!root->free_ino_pinned || !root->free_ino_ctl) { 1540 ret = -ENOMEM; 1541 goto fail; 1542 } 1543 1544 btrfs_init_free_ino_ctl(root); 1545 mutex_init(&root->fs_commit_mutex); 1546 spin_lock_init(&root->cache_lock); 1547 init_waitqueue_head(&root->cache_wait); 1548 1549 ret = get_anon_bdev(&root->anon_dev); 1550 if (ret) 1551 goto fail; 1552 1553 if (btrfs_root_refs(&root->root_item) == 0) { 1554 ret = -ENOENT; 1555 goto fail; 1556 } 1557 1558 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid); 1559 if (ret < 0) 1560 goto fail; 1561 if (ret == 0) 1562 root->orphan_item_inserted = 1; 1563 1564 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 1565 if (ret) 1566 goto fail; 1567 1568 spin_lock(&fs_info->fs_roots_radix_lock); 1569 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1570 (unsigned long)root->root_key.objectid, 1571 root); 1572 if (ret == 0) 1573 root->in_radix = 1; 1574 1575 spin_unlock(&fs_info->fs_roots_radix_lock); 1576 radix_tree_preload_end(); 1577 if (ret) { 1578 if (ret == -EEXIST) { 1579 free_fs_root(root); 1580 goto again; 1581 } 1582 goto fail; 1583 } 1584 1585 ret = btrfs_find_dead_roots(fs_info->tree_root, 1586 root->root_key.objectid); 1587 WARN_ON(ret); 1588 return root; 1589 fail: 1590 free_fs_root(root); 1591 return ERR_PTR(ret); 1592 } 1593 1594 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1595 { 1596 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1597 int ret = 0; 1598 struct btrfs_device *device; 1599 struct backing_dev_info *bdi; 1600 1601 rcu_read_lock(); 1602 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { 1603 if (!device->bdev) 1604 continue; 1605 bdi = blk_get_backing_dev_info(device->bdev); 1606 if (bdi && bdi_congested(bdi, bdi_bits)) { 1607 ret = 1; 1608 break; 1609 } 1610 } 1611 rcu_read_unlock(); 1612 return ret; 1613 } 1614 1615 /* 1616 * If this fails, caller must call bdi_destroy() to get rid of the 1617 * bdi again. 1618 */ 1619 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1620 { 1621 int err; 1622 1623 bdi->capabilities = BDI_CAP_MAP_COPY; 1624 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY); 1625 if (err) 1626 return err; 1627 1628 bdi->ra_pages = default_backing_dev_info.ra_pages; 1629 bdi->congested_fn = btrfs_congested_fn; 1630 bdi->congested_data = info; 1631 return 0; 1632 } 1633 1634 /* 1635 * called by the kthread helper functions to finally call the bio end_io 1636 * functions. This is where read checksum verification actually happens 1637 */ 1638 static void end_workqueue_fn(struct btrfs_work *work) 1639 { 1640 struct bio *bio; 1641 struct end_io_wq *end_io_wq; 1642 struct btrfs_fs_info *fs_info; 1643 int error; 1644 1645 end_io_wq = container_of(work, struct end_io_wq, work); 1646 bio = end_io_wq->bio; 1647 fs_info = end_io_wq->info; 1648 1649 error = end_io_wq->error; 1650 bio->bi_private = end_io_wq->private; 1651 bio->bi_end_io = end_io_wq->end_io; 1652 kfree(end_io_wq); 1653 bio_endio(bio, error); 1654 } 1655 1656 static int cleaner_kthread(void *arg) 1657 { 1658 struct btrfs_root *root = arg; 1659 1660 do { 1661 if (!(root->fs_info->sb->s_flags & MS_RDONLY) && 1662 mutex_trylock(&root->fs_info->cleaner_mutex)) { 1663 btrfs_run_delayed_iputs(root); 1664 btrfs_clean_old_snapshots(root); 1665 mutex_unlock(&root->fs_info->cleaner_mutex); 1666 btrfs_run_defrag_inodes(root->fs_info); 1667 } 1668 1669 if (!try_to_freeze()) { 1670 set_current_state(TASK_INTERRUPTIBLE); 1671 if (!kthread_should_stop()) 1672 schedule(); 1673 __set_current_state(TASK_RUNNING); 1674 } 1675 } while (!kthread_should_stop()); 1676 return 0; 1677 } 1678 1679 static int transaction_kthread(void *arg) 1680 { 1681 struct btrfs_root *root = arg; 1682 struct btrfs_trans_handle *trans; 1683 struct btrfs_transaction *cur; 1684 u64 transid; 1685 unsigned long now; 1686 unsigned long delay; 1687 bool cannot_commit; 1688 1689 do { 1690 cannot_commit = false; 1691 delay = HZ * 30; 1692 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1693 1694 spin_lock(&root->fs_info->trans_lock); 1695 cur = root->fs_info->running_transaction; 1696 if (!cur) { 1697 spin_unlock(&root->fs_info->trans_lock); 1698 goto sleep; 1699 } 1700 1701 now = get_seconds(); 1702 if (!cur->blocked && 1703 (now < cur->start_time || now - cur->start_time < 30)) { 1704 spin_unlock(&root->fs_info->trans_lock); 1705 delay = HZ * 5; 1706 goto sleep; 1707 } 1708 transid = cur->transid; 1709 spin_unlock(&root->fs_info->trans_lock); 1710 1711 /* If the file system is aborted, this will always fail. */ 1712 trans = btrfs_attach_transaction(root); 1713 if (IS_ERR(trans)) { 1714 if (PTR_ERR(trans) != -ENOENT) 1715 cannot_commit = true; 1716 goto sleep; 1717 } 1718 if (transid == trans->transid) { 1719 btrfs_commit_transaction(trans, root); 1720 } else { 1721 btrfs_end_transaction(trans, root); 1722 } 1723 sleep: 1724 wake_up_process(root->fs_info->cleaner_kthread); 1725 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1726 1727 if (!try_to_freeze()) { 1728 set_current_state(TASK_INTERRUPTIBLE); 1729 if (!kthread_should_stop() && 1730 (!btrfs_transaction_blocked(root->fs_info) || 1731 cannot_commit)) 1732 schedule_timeout(delay); 1733 __set_current_state(TASK_RUNNING); 1734 } 1735 } while (!kthread_should_stop()); 1736 return 0; 1737 } 1738 1739 /* 1740 * this will find the highest generation in the array of 1741 * root backups. The index of the highest array is returned, 1742 * or -1 if we can't find anything. 1743 * 1744 * We check to make sure the array is valid by comparing the 1745 * generation of the latest root in the array with the generation 1746 * in the super block. If they don't match we pitch it. 1747 */ 1748 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) 1749 { 1750 u64 cur; 1751 int newest_index = -1; 1752 struct btrfs_root_backup *root_backup; 1753 int i; 1754 1755 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { 1756 root_backup = info->super_copy->super_roots + i; 1757 cur = btrfs_backup_tree_root_gen(root_backup); 1758 if (cur == newest_gen) 1759 newest_index = i; 1760 } 1761 1762 /* check to see if we actually wrapped around */ 1763 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { 1764 root_backup = info->super_copy->super_roots; 1765 cur = btrfs_backup_tree_root_gen(root_backup); 1766 if (cur == newest_gen) 1767 newest_index = 0; 1768 } 1769 return newest_index; 1770 } 1771 1772 1773 /* 1774 * find the oldest backup so we know where to store new entries 1775 * in the backup array. This will set the backup_root_index 1776 * field in the fs_info struct 1777 */ 1778 static void find_oldest_super_backup(struct btrfs_fs_info *info, 1779 u64 newest_gen) 1780 { 1781 int newest_index = -1; 1782 1783 newest_index = find_newest_super_backup(info, newest_gen); 1784 /* if there was garbage in there, just move along */ 1785 if (newest_index == -1) { 1786 info->backup_root_index = 0; 1787 } else { 1788 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; 1789 } 1790 } 1791 1792 /* 1793 * copy all the root pointers into the super backup array. 1794 * this will bump the backup pointer by one when it is 1795 * done 1796 */ 1797 static void backup_super_roots(struct btrfs_fs_info *info) 1798 { 1799 int next_backup; 1800 struct btrfs_root_backup *root_backup; 1801 int last_backup; 1802 1803 next_backup = info->backup_root_index; 1804 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % 1805 BTRFS_NUM_BACKUP_ROOTS; 1806 1807 /* 1808 * just overwrite the last backup if we're at the same generation 1809 * this happens only at umount 1810 */ 1811 root_backup = info->super_for_commit->super_roots + last_backup; 1812 if (btrfs_backup_tree_root_gen(root_backup) == 1813 btrfs_header_generation(info->tree_root->node)) 1814 next_backup = last_backup; 1815 1816 root_backup = info->super_for_commit->super_roots + next_backup; 1817 1818 /* 1819 * make sure all of our padding and empty slots get zero filled 1820 * regardless of which ones we use today 1821 */ 1822 memset(root_backup, 0, sizeof(*root_backup)); 1823 1824 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; 1825 1826 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); 1827 btrfs_set_backup_tree_root_gen(root_backup, 1828 btrfs_header_generation(info->tree_root->node)); 1829 1830 btrfs_set_backup_tree_root_level(root_backup, 1831 btrfs_header_level(info->tree_root->node)); 1832 1833 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); 1834 btrfs_set_backup_chunk_root_gen(root_backup, 1835 btrfs_header_generation(info->chunk_root->node)); 1836 btrfs_set_backup_chunk_root_level(root_backup, 1837 btrfs_header_level(info->chunk_root->node)); 1838 1839 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); 1840 btrfs_set_backup_extent_root_gen(root_backup, 1841 btrfs_header_generation(info->extent_root->node)); 1842 btrfs_set_backup_extent_root_level(root_backup, 1843 btrfs_header_level(info->extent_root->node)); 1844 1845 /* 1846 * we might commit during log recovery, which happens before we set 1847 * the fs_root. Make sure it is valid before we fill it in. 1848 */ 1849 if (info->fs_root && info->fs_root->node) { 1850 btrfs_set_backup_fs_root(root_backup, 1851 info->fs_root->node->start); 1852 btrfs_set_backup_fs_root_gen(root_backup, 1853 btrfs_header_generation(info->fs_root->node)); 1854 btrfs_set_backup_fs_root_level(root_backup, 1855 btrfs_header_level(info->fs_root->node)); 1856 } 1857 1858 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); 1859 btrfs_set_backup_dev_root_gen(root_backup, 1860 btrfs_header_generation(info->dev_root->node)); 1861 btrfs_set_backup_dev_root_level(root_backup, 1862 btrfs_header_level(info->dev_root->node)); 1863 1864 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); 1865 btrfs_set_backup_csum_root_gen(root_backup, 1866 btrfs_header_generation(info->csum_root->node)); 1867 btrfs_set_backup_csum_root_level(root_backup, 1868 btrfs_header_level(info->csum_root->node)); 1869 1870 btrfs_set_backup_total_bytes(root_backup, 1871 btrfs_super_total_bytes(info->super_copy)); 1872 btrfs_set_backup_bytes_used(root_backup, 1873 btrfs_super_bytes_used(info->super_copy)); 1874 btrfs_set_backup_num_devices(root_backup, 1875 btrfs_super_num_devices(info->super_copy)); 1876 1877 /* 1878 * if we don't copy this out to the super_copy, it won't get remembered 1879 * for the next commit 1880 */ 1881 memcpy(&info->super_copy->super_roots, 1882 &info->super_for_commit->super_roots, 1883 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); 1884 } 1885 1886 /* 1887 * this copies info out of the root backup array and back into 1888 * the in-memory super block. It is meant to help iterate through 1889 * the array, so you send it the number of backups you've already 1890 * tried and the last backup index you used. 1891 * 1892 * this returns -1 when it has tried all the backups 1893 */ 1894 static noinline int next_root_backup(struct btrfs_fs_info *info, 1895 struct btrfs_super_block *super, 1896 int *num_backups_tried, int *backup_index) 1897 { 1898 struct btrfs_root_backup *root_backup; 1899 int newest = *backup_index; 1900 1901 if (*num_backups_tried == 0) { 1902 u64 gen = btrfs_super_generation(super); 1903 1904 newest = find_newest_super_backup(info, gen); 1905 if (newest == -1) 1906 return -1; 1907 1908 *backup_index = newest; 1909 *num_backups_tried = 1; 1910 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { 1911 /* we've tried all the backups, all done */ 1912 return -1; 1913 } else { 1914 /* jump to the next oldest backup */ 1915 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % 1916 BTRFS_NUM_BACKUP_ROOTS; 1917 *backup_index = newest; 1918 *num_backups_tried += 1; 1919 } 1920 root_backup = super->super_roots + newest; 1921 1922 btrfs_set_super_generation(super, 1923 btrfs_backup_tree_root_gen(root_backup)); 1924 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); 1925 btrfs_set_super_root_level(super, 1926 btrfs_backup_tree_root_level(root_backup)); 1927 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); 1928 1929 /* 1930 * fixme: the total bytes and num_devices need to match or we should 1931 * need a fsck 1932 */ 1933 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); 1934 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); 1935 return 0; 1936 } 1937 1938 /* helper to cleanup tree roots */ 1939 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) 1940 { 1941 free_extent_buffer(info->tree_root->node); 1942 free_extent_buffer(info->tree_root->commit_root); 1943 free_extent_buffer(info->dev_root->node); 1944 free_extent_buffer(info->dev_root->commit_root); 1945 free_extent_buffer(info->extent_root->node); 1946 free_extent_buffer(info->extent_root->commit_root); 1947 free_extent_buffer(info->csum_root->node); 1948 free_extent_buffer(info->csum_root->commit_root); 1949 if (info->quota_root) { 1950 free_extent_buffer(info->quota_root->node); 1951 free_extent_buffer(info->quota_root->commit_root); 1952 } 1953 1954 info->tree_root->node = NULL; 1955 info->tree_root->commit_root = NULL; 1956 info->dev_root->node = NULL; 1957 info->dev_root->commit_root = NULL; 1958 info->extent_root->node = NULL; 1959 info->extent_root->commit_root = NULL; 1960 info->csum_root->node = NULL; 1961 info->csum_root->commit_root = NULL; 1962 if (info->quota_root) { 1963 info->quota_root->node = NULL; 1964 info->quota_root->commit_root = NULL; 1965 } 1966 1967 if (chunk_root) { 1968 free_extent_buffer(info->chunk_root->node); 1969 free_extent_buffer(info->chunk_root->commit_root); 1970 info->chunk_root->node = NULL; 1971 info->chunk_root->commit_root = NULL; 1972 } 1973 } 1974 1975 1976 int open_ctree(struct super_block *sb, 1977 struct btrfs_fs_devices *fs_devices, 1978 char *options) 1979 { 1980 u32 sectorsize; 1981 u32 nodesize; 1982 u32 leafsize; 1983 u32 blocksize; 1984 u32 stripesize; 1985 u64 generation; 1986 u64 features; 1987 struct btrfs_key location; 1988 struct buffer_head *bh; 1989 struct btrfs_super_block *disk_super; 1990 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1991 struct btrfs_root *tree_root; 1992 struct btrfs_root *extent_root; 1993 struct btrfs_root *csum_root; 1994 struct btrfs_root *chunk_root; 1995 struct btrfs_root *dev_root; 1996 struct btrfs_root *quota_root; 1997 struct btrfs_root *log_tree_root; 1998 int ret; 1999 int err = -EINVAL; 2000 int num_backups_tried = 0; 2001 int backup_index = 0; 2002 2003 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info); 2004 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info); 2005 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info); 2006 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info); 2007 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info); 2008 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info); 2009 2010 if (!tree_root || !extent_root || !csum_root || 2011 !chunk_root || !dev_root || !quota_root) { 2012 err = -ENOMEM; 2013 goto fail; 2014 } 2015 2016 ret = init_srcu_struct(&fs_info->subvol_srcu); 2017 if (ret) { 2018 err = ret; 2019 goto fail; 2020 } 2021 2022 ret = setup_bdi(fs_info, &fs_info->bdi); 2023 if (ret) { 2024 err = ret; 2025 goto fail_srcu; 2026 } 2027 2028 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0); 2029 if (ret) { 2030 err = ret; 2031 goto fail_bdi; 2032 } 2033 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE * 2034 (1 + ilog2(nr_cpu_ids)); 2035 2036 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0); 2037 if (ret) { 2038 err = ret; 2039 goto fail_dirty_metadata_bytes; 2040 } 2041 2042 fs_info->btree_inode = new_inode(sb); 2043 if (!fs_info->btree_inode) { 2044 err = -ENOMEM; 2045 goto fail_delalloc_bytes; 2046 } 2047 2048 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); 2049 2050 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); 2051 INIT_LIST_HEAD(&fs_info->trans_list); 2052 INIT_LIST_HEAD(&fs_info->dead_roots); 2053 INIT_LIST_HEAD(&fs_info->delayed_iputs); 2054 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 2055 INIT_LIST_HEAD(&fs_info->caching_block_groups); 2056 spin_lock_init(&fs_info->delalloc_lock); 2057 spin_lock_init(&fs_info->trans_lock); 2058 spin_lock_init(&fs_info->fs_roots_radix_lock); 2059 spin_lock_init(&fs_info->delayed_iput_lock); 2060 spin_lock_init(&fs_info->defrag_inodes_lock); 2061 spin_lock_init(&fs_info->free_chunk_lock); 2062 spin_lock_init(&fs_info->tree_mod_seq_lock); 2063 rwlock_init(&fs_info->tree_mod_log_lock); 2064 mutex_init(&fs_info->reloc_mutex); 2065 seqlock_init(&fs_info->profiles_lock); 2066 2067 init_completion(&fs_info->kobj_unregister); 2068 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 2069 INIT_LIST_HEAD(&fs_info->space_info); 2070 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); 2071 btrfs_mapping_init(&fs_info->mapping_tree); 2072 btrfs_init_block_rsv(&fs_info->global_block_rsv, 2073 BTRFS_BLOCK_RSV_GLOBAL); 2074 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, 2075 BTRFS_BLOCK_RSV_DELALLOC); 2076 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); 2077 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); 2078 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); 2079 btrfs_init_block_rsv(&fs_info->delayed_block_rsv, 2080 BTRFS_BLOCK_RSV_DELOPS); 2081 atomic_set(&fs_info->nr_async_submits, 0); 2082 atomic_set(&fs_info->async_delalloc_pages, 0); 2083 atomic_set(&fs_info->async_submit_draining, 0); 2084 atomic_set(&fs_info->nr_async_bios, 0); 2085 atomic_set(&fs_info->defrag_running, 0); 2086 atomic_set(&fs_info->tree_mod_seq, 0); 2087 fs_info->sb = sb; 2088 fs_info->max_inline = 8192 * 1024; 2089 fs_info->metadata_ratio = 0; 2090 fs_info->defrag_inodes = RB_ROOT; 2091 fs_info->trans_no_join = 0; 2092 fs_info->free_chunk_space = 0; 2093 fs_info->tree_mod_log = RB_ROOT; 2094 2095 /* readahead state */ 2096 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT); 2097 spin_lock_init(&fs_info->reada_lock); 2098 2099 fs_info->thread_pool_size = min_t(unsigned long, 2100 num_online_cpus() + 2, 8); 2101 2102 INIT_LIST_HEAD(&fs_info->ordered_extents); 2103 spin_lock_init(&fs_info->ordered_extent_lock); 2104 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), 2105 GFP_NOFS); 2106 if (!fs_info->delayed_root) { 2107 err = -ENOMEM; 2108 goto fail_iput; 2109 } 2110 btrfs_init_delayed_root(fs_info->delayed_root); 2111 2112 mutex_init(&fs_info->scrub_lock); 2113 atomic_set(&fs_info->scrubs_running, 0); 2114 atomic_set(&fs_info->scrub_pause_req, 0); 2115 atomic_set(&fs_info->scrubs_paused, 0); 2116 atomic_set(&fs_info->scrub_cancel_req, 0); 2117 init_waitqueue_head(&fs_info->scrub_pause_wait); 2118 init_rwsem(&fs_info->scrub_super_lock); 2119 fs_info->scrub_workers_refcnt = 0; 2120 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2121 fs_info->check_integrity_print_mask = 0; 2122 #endif 2123 2124 spin_lock_init(&fs_info->balance_lock); 2125 mutex_init(&fs_info->balance_mutex); 2126 atomic_set(&fs_info->balance_running, 0); 2127 atomic_set(&fs_info->balance_pause_req, 0); 2128 atomic_set(&fs_info->balance_cancel_req, 0); 2129 fs_info->balance_ctl = NULL; 2130 init_waitqueue_head(&fs_info->balance_wait_q); 2131 2132 sb->s_blocksize = 4096; 2133 sb->s_blocksize_bits = blksize_bits(4096); 2134 sb->s_bdi = &fs_info->bdi; 2135 2136 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; 2137 set_nlink(fs_info->btree_inode, 1); 2138 /* 2139 * we set the i_size on the btree inode to the max possible int. 2140 * the real end of the address space is determined by all of 2141 * the devices in the system 2142 */ 2143 fs_info->btree_inode->i_size = OFFSET_MAX; 2144 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 2145 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 2146 2147 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 2148 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 2149 fs_info->btree_inode->i_mapping); 2150 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0; 2151 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree); 2152 2153 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 2154 2155 BTRFS_I(fs_info->btree_inode)->root = tree_root; 2156 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 2157 sizeof(struct btrfs_key)); 2158 set_bit(BTRFS_INODE_DUMMY, 2159 &BTRFS_I(fs_info->btree_inode)->runtime_flags); 2160 insert_inode_hash(fs_info->btree_inode); 2161 2162 spin_lock_init(&fs_info->block_group_cache_lock); 2163 fs_info->block_group_cache_tree = RB_ROOT; 2164 fs_info->first_logical_byte = (u64)-1; 2165 2166 extent_io_tree_init(&fs_info->freed_extents[0], 2167 fs_info->btree_inode->i_mapping); 2168 extent_io_tree_init(&fs_info->freed_extents[1], 2169 fs_info->btree_inode->i_mapping); 2170 fs_info->pinned_extents = &fs_info->freed_extents[0]; 2171 fs_info->do_barriers = 1; 2172 2173 2174 mutex_init(&fs_info->ordered_operations_mutex); 2175 mutex_init(&fs_info->tree_log_mutex); 2176 mutex_init(&fs_info->chunk_mutex); 2177 mutex_init(&fs_info->transaction_kthread_mutex); 2178 mutex_init(&fs_info->cleaner_mutex); 2179 mutex_init(&fs_info->volume_mutex); 2180 init_rwsem(&fs_info->extent_commit_sem); 2181 init_rwsem(&fs_info->cleanup_work_sem); 2182 init_rwsem(&fs_info->subvol_sem); 2183 fs_info->dev_replace.lock_owner = 0; 2184 atomic_set(&fs_info->dev_replace.nesting_level, 0); 2185 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); 2186 mutex_init(&fs_info->dev_replace.lock_management_lock); 2187 mutex_init(&fs_info->dev_replace.lock); 2188 2189 spin_lock_init(&fs_info->qgroup_lock); 2190 fs_info->qgroup_tree = RB_ROOT; 2191 INIT_LIST_HEAD(&fs_info->dirty_qgroups); 2192 fs_info->qgroup_seq = 1; 2193 fs_info->quota_enabled = 0; 2194 fs_info->pending_quota_state = 0; 2195 2196 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 2197 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 2198 2199 init_waitqueue_head(&fs_info->transaction_throttle); 2200 init_waitqueue_head(&fs_info->transaction_wait); 2201 init_waitqueue_head(&fs_info->transaction_blocked_wait); 2202 init_waitqueue_head(&fs_info->async_submit_wait); 2203 2204 ret = btrfs_alloc_stripe_hash_table(fs_info); 2205 if (ret) { 2206 err = ret; 2207 goto fail_alloc; 2208 } 2209 2210 __setup_root(4096, 4096, 4096, 4096, tree_root, 2211 fs_info, BTRFS_ROOT_TREE_OBJECTID); 2212 2213 invalidate_bdev(fs_devices->latest_bdev); 2214 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 2215 if (!bh) { 2216 err = -EINVAL; 2217 goto fail_alloc; 2218 } 2219 2220 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); 2221 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2222 sizeof(*fs_info->super_for_commit)); 2223 brelse(bh); 2224 2225 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); 2226 2227 disk_super = fs_info->super_copy; 2228 if (!btrfs_super_root(disk_super)) 2229 goto fail_alloc; 2230 2231 /* check FS state, whether FS is broken. */ 2232 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) 2233 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 2234 2235 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY); 2236 if (ret) { 2237 printk(KERN_ERR "btrfs: superblock contains fatal errors\n"); 2238 err = ret; 2239 goto fail_alloc; 2240 } 2241 2242 /* 2243 * run through our array of backup supers and setup 2244 * our ring pointer to the oldest one 2245 */ 2246 generation = btrfs_super_generation(disk_super); 2247 find_oldest_super_backup(fs_info, generation); 2248 2249 /* 2250 * In the long term, we'll store the compression type in the super 2251 * block, and it'll be used for per file compression control. 2252 */ 2253 fs_info->compress_type = BTRFS_COMPRESS_ZLIB; 2254 2255 ret = btrfs_parse_options(tree_root, options); 2256 if (ret) { 2257 err = ret; 2258 goto fail_alloc; 2259 } 2260 2261 features = btrfs_super_incompat_flags(disk_super) & 2262 ~BTRFS_FEATURE_INCOMPAT_SUPP; 2263 if (features) { 2264 printk(KERN_ERR "BTRFS: couldn't mount because of " 2265 "unsupported optional features (%Lx).\n", 2266 (unsigned long long)features); 2267 err = -EINVAL; 2268 goto fail_alloc; 2269 } 2270 2271 if (btrfs_super_leafsize(disk_super) != 2272 btrfs_super_nodesize(disk_super)) { 2273 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2274 "blocksizes don't match. node %d leaf %d\n", 2275 btrfs_super_nodesize(disk_super), 2276 btrfs_super_leafsize(disk_super)); 2277 err = -EINVAL; 2278 goto fail_alloc; 2279 } 2280 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) { 2281 printk(KERN_ERR "BTRFS: couldn't mount because metadata " 2282 "blocksize (%d) was too large\n", 2283 btrfs_super_leafsize(disk_super)); 2284 err = -EINVAL; 2285 goto fail_alloc; 2286 } 2287 2288 features = btrfs_super_incompat_flags(disk_super); 2289 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 2290 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 2291 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 2292 2293 /* 2294 * flag our filesystem as having big metadata blocks if 2295 * they are bigger than the page size 2296 */ 2297 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) { 2298 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) 2299 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n"); 2300 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; 2301 } 2302 2303 nodesize = btrfs_super_nodesize(disk_super); 2304 leafsize = btrfs_super_leafsize(disk_super); 2305 sectorsize = btrfs_super_sectorsize(disk_super); 2306 stripesize = btrfs_super_stripesize(disk_super); 2307 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids)); 2308 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); 2309 2310 /* 2311 * mixed block groups end up with duplicate but slightly offset 2312 * extent buffers for the same range. It leads to corruptions 2313 */ 2314 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && 2315 (sectorsize != leafsize)) { 2316 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes " 2317 "are not allowed for mixed block groups on %s\n", 2318 sb->s_id); 2319 goto fail_alloc; 2320 } 2321 2322 btrfs_set_super_incompat_flags(disk_super, features); 2323 2324 features = btrfs_super_compat_ro_flags(disk_super) & 2325 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 2326 if (!(sb->s_flags & MS_RDONLY) && features) { 2327 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 2328 "unsupported option features (%Lx).\n", 2329 (unsigned long long)features); 2330 err = -EINVAL; 2331 goto fail_alloc; 2332 } 2333 2334 btrfs_init_workers(&fs_info->generic_worker, 2335 "genwork", 1, NULL); 2336 2337 btrfs_init_workers(&fs_info->workers, "worker", 2338 fs_info->thread_pool_size, 2339 &fs_info->generic_worker); 2340 2341 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 2342 fs_info->thread_pool_size, 2343 &fs_info->generic_worker); 2344 2345 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc", 2346 fs_info->thread_pool_size, 2347 &fs_info->generic_worker); 2348 2349 btrfs_init_workers(&fs_info->submit_workers, "submit", 2350 min_t(u64, fs_devices->num_devices, 2351 fs_info->thread_pool_size), 2352 &fs_info->generic_worker); 2353 2354 btrfs_init_workers(&fs_info->caching_workers, "cache", 2355 2, &fs_info->generic_worker); 2356 2357 /* a higher idle thresh on the submit workers makes it much more 2358 * likely that bios will be send down in a sane order to the 2359 * devices 2360 */ 2361 fs_info->submit_workers.idle_thresh = 64; 2362 2363 fs_info->workers.idle_thresh = 16; 2364 fs_info->workers.ordered = 1; 2365 2366 fs_info->delalloc_workers.idle_thresh = 2; 2367 fs_info->delalloc_workers.ordered = 1; 2368 2369 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1, 2370 &fs_info->generic_worker); 2371 btrfs_init_workers(&fs_info->endio_workers, "endio", 2372 fs_info->thread_pool_size, 2373 &fs_info->generic_worker); 2374 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 2375 fs_info->thread_pool_size, 2376 &fs_info->generic_worker); 2377 btrfs_init_workers(&fs_info->endio_meta_write_workers, 2378 "endio-meta-write", fs_info->thread_pool_size, 2379 &fs_info->generic_worker); 2380 btrfs_init_workers(&fs_info->endio_raid56_workers, 2381 "endio-raid56", fs_info->thread_pool_size, 2382 &fs_info->generic_worker); 2383 btrfs_init_workers(&fs_info->rmw_workers, 2384 "rmw", fs_info->thread_pool_size, 2385 &fs_info->generic_worker); 2386 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 2387 fs_info->thread_pool_size, 2388 &fs_info->generic_worker); 2389 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write", 2390 1, &fs_info->generic_worker); 2391 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta", 2392 fs_info->thread_pool_size, 2393 &fs_info->generic_worker); 2394 btrfs_init_workers(&fs_info->readahead_workers, "readahead", 2395 fs_info->thread_pool_size, 2396 &fs_info->generic_worker); 2397 2398 /* 2399 * endios are largely parallel and should have a very 2400 * low idle thresh 2401 */ 2402 fs_info->endio_workers.idle_thresh = 4; 2403 fs_info->endio_meta_workers.idle_thresh = 4; 2404 fs_info->endio_raid56_workers.idle_thresh = 4; 2405 fs_info->rmw_workers.idle_thresh = 2; 2406 2407 fs_info->endio_write_workers.idle_thresh = 2; 2408 fs_info->endio_meta_write_workers.idle_thresh = 2; 2409 fs_info->readahead_workers.idle_thresh = 2; 2410 2411 /* 2412 * btrfs_start_workers can really only fail because of ENOMEM so just 2413 * return -ENOMEM if any of these fail. 2414 */ 2415 ret = btrfs_start_workers(&fs_info->workers); 2416 ret |= btrfs_start_workers(&fs_info->generic_worker); 2417 ret |= btrfs_start_workers(&fs_info->submit_workers); 2418 ret |= btrfs_start_workers(&fs_info->delalloc_workers); 2419 ret |= btrfs_start_workers(&fs_info->fixup_workers); 2420 ret |= btrfs_start_workers(&fs_info->endio_workers); 2421 ret |= btrfs_start_workers(&fs_info->endio_meta_workers); 2422 ret |= btrfs_start_workers(&fs_info->rmw_workers); 2423 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers); 2424 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers); 2425 ret |= btrfs_start_workers(&fs_info->endio_write_workers); 2426 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker); 2427 ret |= btrfs_start_workers(&fs_info->delayed_workers); 2428 ret |= btrfs_start_workers(&fs_info->caching_workers); 2429 ret |= btrfs_start_workers(&fs_info->readahead_workers); 2430 ret |= btrfs_start_workers(&fs_info->flush_workers); 2431 if (ret) { 2432 err = -ENOMEM; 2433 goto fail_sb_buffer; 2434 } 2435 2436 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 2437 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 2438 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 2439 2440 tree_root->nodesize = nodesize; 2441 tree_root->leafsize = leafsize; 2442 tree_root->sectorsize = sectorsize; 2443 tree_root->stripesize = stripesize; 2444 2445 sb->s_blocksize = sectorsize; 2446 sb->s_blocksize_bits = blksize_bits(sectorsize); 2447 2448 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2449 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 2450 goto fail_sb_buffer; 2451 } 2452 2453 if (sectorsize != PAGE_SIZE) { 2454 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) " 2455 "found on %s\n", (unsigned long)sectorsize, sb->s_id); 2456 goto fail_sb_buffer; 2457 } 2458 2459 mutex_lock(&fs_info->chunk_mutex); 2460 ret = btrfs_read_sys_array(tree_root); 2461 mutex_unlock(&fs_info->chunk_mutex); 2462 if (ret) { 2463 printk(KERN_WARNING "btrfs: failed to read the system " 2464 "array on %s\n", sb->s_id); 2465 goto fail_sb_buffer; 2466 } 2467 2468 blocksize = btrfs_level_size(tree_root, 2469 btrfs_super_chunk_root_level(disk_super)); 2470 generation = btrfs_super_chunk_root_generation(disk_super); 2471 2472 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2473 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 2474 2475 chunk_root->node = read_tree_block(chunk_root, 2476 btrfs_super_chunk_root(disk_super), 2477 blocksize, generation); 2478 BUG_ON(!chunk_root->node); /* -ENOMEM */ 2479 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) { 2480 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n", 2481 sb->s_id); 2482 goto fail_tree_roots; 2483 } 2484 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 2485 chunk_root->commit_root = btrfs_root_node(chunk_root); 2486 2487 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 2488 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 2489 BTRFS_UUID_SIZE); 2490 2491 ret = btrfs_read_chunk_tree(chunk_root); 2492 if (ret) { 2493 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 2494 sb->s_id); 2495 goto fail_tree_roots; 2496 } 2497 2498 /* 2499 * keep the device that is marked to be the target device for the 2500 * dev_replace procedure 2501 */ 2502 btrfs_close_extra_devices(fs_info, fs_devices, 0); 2503 2504 if (!fs_devices->latest_bdev) { 2505 printk(KERN_CRIT "btrfs: failed to read devices on %s\n", 2506 sb->s_id); 2507 goto fail_tree_roots; 2508 } 2509 2510 retry_root_backup: 2511 blocksize = btrfs_level_size(tree_root, 2512 btrfs_super_root_level(disk_super)); 2513 generation = btrfs_super_generation(disk_super); 2514 2515 tree_root->node = read_tree_block(tree_root, 2516 btrfs_super_root(disk_super), 2517 blocksize, generation); 2518 if (!tree_root->node || 2519 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) { 2520 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n", 2521 sb->s_id); 2522 2523 goto recovery_tree_root; 2524 } 2525 2526 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 2527 tree_root->commit_root = btrfs_root_node(tree_root); 2528 2529 ret = find_and_setup_root(tree_root, fs_info, 2530 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 2531 if (ret) 2532 goto recovery_tree_root; 2533 extent_root->track_dirty = 1; 2534 2535 ret = find_and_setup_root(tree_root, fs_info, 2536 BTRFS_DEV_TREE_OBJECTID, dev_root); 2537 if (ret) 2538 goto recovery_tree_root; 2539 dev_root->track_dirty = 1; 2540 2541 ret = find_and_setup_root(tree_root, fs_info, 2542 BTRFS_CSUM_TREE_OBJECTID, csum_root); 2543 if (ret) 2544 goto recovery_tree_root; 2545 csum_root->track_dirty = 1; 2546 2547 ret = find_and_setup_root(tree_root, fs_info, 2548 BTRFS_QUOTA_TREE_OBJECTID, quota_root); 2549 if (ret) { 2550 kfree(quota_root); 2551 quota_root = fs_info->quota_root = NULL; 2552 } else { 2553 quota_root->track_dirty = 1; 2554 fs_info->quota_enabled = 1; 2555 fs_info->pending_quota_state = 1; 2556 } 2557 2558 fs_info->generation = generation; 2559 fs_info->last_trans_committed = generation; 2560 2561 ret = btrfs_recover_balance(fs_info); 2562 if (ret) { 2563 printk(KERN_WARNING "btrfs: failed to recover balance\n"); 2564 goto fail_block_groups; 2565 } 2566 2567 ret = btrfs_init_dev_stats(fs_info); 2568 if (ret) { 2569 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n", 2570 ret); 2571 goto fail_block_groups; 2572 } 2573 2574 ret = btrfs_init_dev_replace(fs_info); 2575 if (ret) { 2576 pr_err("btrfs: failed to init dev_replace: %d\n", ret); 2577 goto fail_block_groups; 2578 } 2579 2580 btrfs_close_extra_devices(fs_info, fs_devices, 1); 2581 2582 ret = btrfs_init_space_info(fs_info); 2583 if (ret) { 2584 printk(KERN_ERR "Failed to initial space info: %d\n", ret); 2585 goto fail_block_groups; 2586 } 2587 2588 ret = btrfs_read_block_groups(extent_root); 2589 if (ret) { 2590 printk(KERN_ERR "Failed to read block groups: %d\n", ret); 2591 goto fail_block_groups; 2592 } 2593 fs_info->num_tolerated_disk_barrier_failures = 2594 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 2595 if (fs_info->fs_devices->missing_devices > 2596 fs_info->num_tolerated_disk_barrier_failures && 2597 !(sb->s_flags & MS_RDONLY)) { 2598 printk(KERN_WARNING 2599 "Btrfs: too many missing devices, writeable mount is not allowed\n"); 2600 goto fail_block_groups; 2601 } 2602 2603 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 2604 "btrfs-cleaner"); 2605 if (IS_ERR(fs_info->cleaner_kthread)) 2606 goto fail_block_groups; 2607 2608 fs_info->transaction_kthread = kthread_run(transaction_kthread, 2609 tree_root, 2610 "btrfs-transaction"); 2611 if (IS_ERR(fs_info->transaction_kthread)) 2612 goto fail_cleaner; 2613 2614 if (!btrfs_test_opt(tree_root, SSD) && 2615 !btrfs_test_opt(tree_root, NOSSD) && 2616 !fs_info->fs_devices->rotating) { 2617 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 2618 "mode\n"); 2619 btrfs_set_opt(fs_info->mount_opt, SSD); 2620 } 2621 2622 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2623 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) { 2624 ret = btrfsic_mount(tree_root, fs_devices, 2625 btrfs_test_opt(tree_root, 2626 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ? 2627 1 : 0, 2628 fs_info->check_integrity_print_mask); 2629 if (ret) 2630 printk(KERN_WARNING "btrfs: failed to initialize" 2631 " integrity check module %s\n", sb->s_id); 2632 } 2633 #endif 2634 ret = btrfs_read_qgroup_config(fs_info); 2635 if (ret) 2636 goto fail_trans_kthread; 2637 2638 /* do not make disk changes in broken FS */ 2639 if (btrfs_super_log_root(disk_super) != 0) { 2640 u64 bytenr = btrfs_super_log_root(disk_super); 2641 2642 if (fs_devices->rw_devices == 0) { 2643 printk(KERN_WARNING "Btrfs log replay required " 2644 "on RO media\n"); 2645 err = -EIO; 2646 goto fail_qgroup; 2647 } 2648 blocksize = 2649 btrfs_level_size(tree_root, 2650 btrfs_super_log_root_level(disk_super)); 2651 2652 log_tree_root = btrfs_alloc_root(fs_info); 2653 if (!log_tree_root) { 2654 err = -ENOMEM; 2655 goto fail_qgroup; 2656 } 2657 2658 __setup_root(nodesize, leafsize, sectorsize, stripesize, 2659 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 2660 2661 log_tree_root->node = read_tree_block(tree_root, bytenr, 2662 blocksize, 2663 generation + 1); 2664 /* returns with log_tree_root freed on success */ 2665 ret = btrfs_recover_log_trees(log_tree_root); 2666 if (ret) { 2667 btrfs_error(tree_root->fs_info, ret, 2668 "Failed to recover log tree"); 2669 free_extent_buffer(log_tree_root->node); 2670 kfree(log_tree_root); 2671 goto fail_trans_kthread; 2672 } 2673 2674 if (sb->s_flags & MS_RDONLY) { 2675 ret = btrfs_commit_super(tree_root); 2676 if (ret) 2677 goto fail_trans_kthread; 2678 } 2679 } 2680 2681 ret = btrfs_find_orphan_roots(tree_root); 2682 if (ret) 2683 goto fail_trans_kthread; 2684 2685 if (!(sb->s_flags & MS_RDONLY)) { 2686 ret = btrfs_cleanup_fs_roots(fs_info); 2687 if (ret) 2688 goto fail_trans_kthread; 2689 2690 ret = btrfs_recover_relocation(tree_root); 2691 if (ret < 0) { 2692 printk(KERN_WARNING 2693 "btrfs: failed to recover relocation\n"); 2694 err = -EINVAL; 2695 goto fail_qgroup; 2696 } 2697 } 2698 2699 location.objectid = BTRFS_FS_TREE_OBJECTID; 2700 location.type = BTRFS_ROOT_ITEM_KEY; 2701 location.offset = (u64)-1; 2702 2703 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 2704 if (!fs_info->fs_root) 2705 goto fail_qgroup; 2706 if (IS_ERR(fs_info->fs_root)) { 2707 err = PTR_ERR(fs_info->fs_root); 2708 goto fail_qgroup; 2709 } 2710 2711 if (sb->s_flags & MS_RDONLY) 2712 return 0; 2713 2714 down_read(&fs_info->cleanup_work_sem); 2715 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) || 2716 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) { 2717 up_read(&fs_info->cleanup_work_sem); 2718 close_ctree(tree_root); 2719 return ret; 2720 } 2721 up_read(&fs_info->cleanup_work_sem); 2722 2723 ret = btrfs_resume_balance_async(fs_info); 2724 if (ret) { 2725 printk(KERN_WARNING "btrfs: failed to resume balance\n"); 2726 close_ctree(tree_root); 2727 return ret; 2728 } 2729 2730 ret = btrfs_resume_dev_replace_async(fs_info); 2731 if (ret) { 2732 pr_warn("btrfs: failed to resume dev_replace\n"); 2733 close_ctree(tree_root); 2734 return ret; 2735 } 2736 2737 return 0; 2738 2739 fail_qgroup: 2740 btrfs_free_qgroup_config(fs_info); 2741 fail_trans_kthread: 2742 kthread_stop(fs_info->transaction_kthread); 2743 fail_cleaner: 2744 kthread_stop(fs_info->cleaner_kthread); 2745 2746 /* 2747 * make sure we're done with the btree inode before we stop our 2748 * kthreads 2749 */ 2750 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 2751 2752 fail_block_groups: 2753 btrfs_free_block_groups(fs_info); 2754 2755 fail_tree_roots: 2756 free_root_pointers(fs_info, 1); 2757 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 2758 2759 fail_sb_buffer: 2760 btrfs_stop_workers(&fs_info->generic_worker); 2761 btrfs_stop_workers(&fs_info->readahead_workers); 2762 btrfs_stop_workers(&fs_info->fixup_workers); 2763 btrfs_stop_workers(&fs_info->delalloc_workers); 2764 btrfs_stop_workers(&fs_info->workers); 2765 btrfs_stop_workers(&fs_info->endio_workers); 2766 btrfs_stop_workers(&fs_info->endio_meta_workers); 2767 btrfs_stop_workers(&fs_info->endio_raid56_workers); 2768 btrfs_stop_workers(&fs_info->rmw_workers); 2769 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2770 btrfs_stop_workers(&fs_info->endio_write_workers); 2771 btrfs_stop_workers(&fs_info->endio_freespace_worker); 2772 btrfs_stop_workers(&fs_info->submit_workers); 2773 btrfs_stop_workers(&fs_info->delayed_workers); 2774 btrfs_stop_workers(&fs_info->caching_workers); 2775 btrfs_stop_workers(&fs_info->flush_workers); 2776 fail_alloc: 2777 fail_iput: 2778 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2779 2780 iput(fs_info->btree_inode); 2781 fail_delalloc_bytes: 2782 percpu_counter_destroy(&fs_info->delalloc_bytes); 2783 fail_dirty_metadata_bytes: 2784 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 2785 fail_bdi: 2786 bdi_destroy(&fs_info->bdi); 2787 fail_srcu: 2788 cleanup_srcu_struct(&fs_info->subvol_srcu); 2789 fail: 2790 btrfs_free_stripe_hash_table(fs_info); 2791 btrfs_close_devices(fs_info->fs_devices); 2792 return err; 2793 2794 recovery_tree_root: 2795 if (!btrfs_test_opt(tree_root, RECOVERY)) 2796 goto fail_tree_roots; 2797 2798 free_root_pointers(fs_info, 0); 2799 2800 /* don't use the log in recovery mode, it won't be valid */ 2801 btrfs_set_super_log_root(disk_super, 0); 2802 2803 /* we can't trust the free space cache either */ 2804 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE); 2805 2806 ret = next_root_backup(fs_info, fs_info->super_copy, 2807 &num_backups_tried, &backup_index); 2808 if (ret == -1) 2809 goto fail_block_groups; 2810 goto retry_root_backup; 2811 } 2812 2813 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 2814 { 2815 if (uptodate) { 2816 set_buffer_uptodate(bh); 2817 } else { 2818 struct btrfs_device *device = (struct btrfs_device *) 2819 bh->b_private; 2820 2821 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to " 2822 "I/O error on %s\n", 2823 rcu_str_deref(device->name)); 2824 /* note, we dont' set_buffer_write_io_error because we have 2825 * our own ways of dealing with the IO errors 2826 */ 2827 clear_buffer_uptodate(bh); 2828 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS); 2829 } 2830 unlock_buffer(bh); 2831 put_bh(bh); 2832 } 2833 2834 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 2835 { 2836 struct buffer_head *bh; 2837 struct buffer_head *latest = NULL; 2838 struct btrfs_super_block *super; 2839 int i; 2840 u64 transid = 0; 2841 u64 bytenr; 2842 2843 /* we would like to check all the supers, but that would make 2844 * a btrfs mount succeed after a mkfs from a different FS. 2845 * So, we need to add a special mount option to scan for 2846 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 2847 */ 2848 for (i = 0; i < 1; i++) { 2849 bytenr = btrfs_sb_offset(i); 2850 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 2851 break; 2852 bh = __bread(bdev, bytenr / 4096, 4096); 2853 if (!bh) 2854 continue; 2855 2856 super = (struct btrfs_super_block *)bh->b_data; 2857 if (btrfs_super_bytenr(super) != bytenr || 2858 super->magic != cpu_to_le64(BTRFS_MAGIC)) { 2859 brelse(bh); 2860 continue; 2861 } 2862 2863 if (!latest || btrfs_super_generation(super) > transid) { 2864 brelse(latest); 2865 latest = bh; 2866 transid = btrfs_super_generation(super); 2867 } else { 2868 brelse(bh); 2869 } 2870 } 2871 return latest; 2872 } 2873 2874 /* 2875 * this should be called twice, once with wait == 0 and 2876 * once with wait == 1. When wait == 0 is done, all the buffer heads 2877 * we write are pinned. 2878 * 2879 * They are released when wait == 1 is done. 2880 * max_mirrors must be the same for both runs, and it indicates how 2881 * many supers on this one device should be written. 2882 * 2883 * max_mirrors == 0 means to write them all. 2884 */ 2885 static int write_dev_supers(struct btrfs_device *device, 2886 struct btrfs_super_block *sb, 2887 int do_barriers, int wait, int max_mirrors) 2888 { 2889 struct buffer_head *bh; 2890 int i; 2891 int ret; 2892 int errors = 0; 2893 u32 crc; 2894 u64 bytenr; 2895 2896 if (max_mirrors == 0) 2897 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2898 2899 for (i = 0; i < max_mirrors; i++) { 2900 bytenr = btrfs_sb_offset(i); 2901 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2902 break; 2903 2904 if (wait) { 2905 bh = __find_get_block(device->bdev, bytenr / 4096, 2906 BTRFS_SUPER_INFO_SIZE); 2907 BUG_ON(!bh); 2908 wait_on_buffer(bh); 2909 if (!buffer_uptodate(bh)) 2910 errors++; 2911 2912 /* drop our reference */ 2913 brelse(bh); 2914 2915 /* drop the reference from the wait == 0 run */ 2916 brelse(bh); 2917 continue; 2918 } else { 2919 btrfs_set_super_bytenr(sb, bytenr); 2920 2921 crc = ~(u32)0; 2922 crc = btrfs_csum_data(NULL, (char *)sb + 2923 BTRFS_CSUM_SIZE, crc, 2924 BTRFS_SUPER_INFO_SIZE - 2925 BTRFS_CSUM_SIZE); 2926 btrfs_csum_final(crc, sb->csum); 2927 2928 /* 2929 * one reference for us, and we leave it for the 2930 * caller 2931 */ 2932 bh = __getblk(device->bdev, bytenr / 4096, 2933 BTRFS_SUPER_INFO_SIZE); 2934 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2935 2936 /* one reference for submit_bh */ 2937 get_bh(bh); 2938 2939 set_buffer_uptodate(bh); 2940 lock_buffer(bh); 2941 bh->b_end_io = btrfs_end_buffer_write_sync; 2942 bh->b_private = device; 2943 } 2944 2945 /* 2946 * we fua the first super. The others we allow 2947 * to go down lazy. 2948 */ 2949 ret = btrfsic_submit_bh(WRITE_FUA, bh); 2950 if (ret) 2951 errors++; 2952 } 2953 return errors < i ? 0 : -1; 2954 } 2955 2956 /* 2957 * endio for the write_dev_flush, this will wake anyone waiting 2958 * for the barrier when it is done 2959 */ 2960 static void btrfs_end_empty_barrier(struct bio *bio, int err) 2961 { 2962 if (err) { 2963 if (err == -EOPNOTSUPP) 2964 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2965 clear_bit(BIO_UPTODATE, &bio->bi_flags); 2966 } 2967 if (bio->bi_private) 2968 complete(bio->bi_private); 2969 bio_put(bio); 2970 } 2971 2972 /* 2973 * trigger flushes for one the devices. If you pass wait == 0, the flushes are 2974 * sent down. With wait == 1, it waits for the previous flush. 2975 * 2976 * any device where the flush fails with eopnotsupp are flagged as not-barrier 2977 * capable 2978 */ 2979 static int write_dev_flush(struct btrfs_device *device, int wait) 2980 { 2981 struct bio *bio; 2982 int ret = 0; 2983 2984 if (device->nobarriers) 2985 return 0; 2986 2987 if (wait) { 2988 bio = device->flush_bio; 2989 if (!bio) 2990 return 0; 2991 2992 wait_for_completion(&device->flush_wait); 2993 2994 if (bio_flagged(bio, BIO_EOPNOTSUPP)) { 2995 printk_in_rcu("btrfs: disabling barriers on dev %s\n", 2996 rcu_str_deref(device->name)); 2997 device->nobarriers = 1; 2998 } else if (!bio_flagged(bio, BIO_UPTODATE)) { 2999 ret = -EIO; 3000 btrfs_dev_stat_inc_and_print(device, 3001 BTRFS_DEV_STAT_FLUSH_ERRS); 3002 } 3003 3004 /* drop the reference from the wait == 0 run */ 3005 bio_put(bio); 3006 device->flush_bio = NULL; 3007 3008 return ret; 3009 } 3010 3011 /* 3012 * one reference for us, and we leave it for the 3013 * caller 3014 */ 3015 device->flush_bio = NULL; 3016 bio = bio_alloc(GFP_NOFS, 0); 3017 if (!bio) 3018 return -ENOMEM; 3019 3020 bio->bi_end_io = btrfs_end_empty_barrier; 3021 bio->bi_bdev = device->bdev; 3022 init_completion(&device->flush_wait); 3023 bio->bi_private = &device->flush_wait; 3024 device->flush_bio = bio; 3025 3026 bio_get(bio); 3027 btrfsic_submit_bio(WRITE_FLUSH, bio); 3028 3029 return 0; 3030 } 3031 3032 /* 3033 * send an empty flush down to each device in parallel, 3034 * then wait for them 3035 */ 3036 static int barrier_all_devices(struct btrfs_fs_info *info) 3037 { 3038 struct list_head *head; 3039 struct btrfs_device *dev; 3040 int errors_send = 0; 3041 int errors_wait = 0; 3042 int ret; 3043 3044 /* send down all the barriers */ 3045 head = &info->fs_devices->devices; 3046 list_for_each_entry_rcu(dev, head, dev_list) { 3047 if (!dev->bdev) { 3048 errors_send++; 3049 continue; 3050 } 3051 if (!dev->in_fs_metadata || !dev->writeable) 3052 continue; 3053 3054 ret = write_dev_flush(dev, 0); 3055 if (ret) 3056 errors_send++; 3057 } 3058 3059 /* wait for all the barriers */ 3060 list_for_each_entry_rcu(dev, head, dev_list) { 3061 if (!dev->bdev) { 3062 errors_wait++; 3063 continue; 3064 } 3065 if (!dev->in_fs_metadata || !dev->writeable) 3066 continue; 3067 3068 ret = write_dev_flush(dev, 1); 3069 if (ret) 3070 errors_wait++; 3071 } 3072 if (errors_send > info->num_tolerated_disk_barrier_failures || 3073 errors_wait > info->num_tolerated_disk_barrier_failures) 3074 return -EIO; 3075 return 0; 3076 } 3077 3078 int btrfs_calc_num_tolerated_disk_barrier_failures( 3079 struct btrfs_fs_info *fs_info) 3080 { 3081 struct btrfs_ioctl_space_info space; 3082 struct btrfs_space_info *sinfo; 3083 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3084 BTRFS_BLOCK_GROUP_SYSTEM, 3085 BTRFS_BLOCK_GROUP_METADATA, 3086 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3087 int num_types = 4; 3088 int i; 3089 int c; 3090 int num_tolerated_disk_barrier_failures = 3091 (int)fs_info->fs_devices->num_devices; 3092 3093 for (i = 0; i < num_types; i++) { 3094 struct btrfs_space_info *tmp; 3095 3096 sinfo = NULL; 3097 rcu_read_lock(); 3098 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) { 3099 if (tmp->flags == types[i]) { 3100 sinfo = tmp; 3101 break; 3102 } 3103 } 3104 rcu_read_unlock(); 3105 3106 if (!sinfo) 3107 continue; 3108 3109 down_read(&sinfo->groups_sem); 3110 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3111 if (!list_empty(&sinfo->block_groups[c])) { 3112 u64 flags; 3113 3114 btrfs_get_block_group_info( 3115 &sinfo->block_groups[c], &space); 3116 if (space.total_bytes == 0 || 3117 space.used_bytes == 0) 3118 continue; 3119 flags = space.flags; 3120 /* 3121 * return 3122 * 0: if dup, single or RAID0 is configured for 3123 * any of metadata, system or data, else 3124 * 1: if RAID5 is configured, or if RAID1 or 3125 * RAID10 is configured and only two mirrors 3126 * are used, else 3127 * 2: if RAID6 is configured, else 3128 * num_mirrors - 1: if RAID1 or RAID10 is 3129 * configured and more than 3130 * 2 mirrors are used. 3131 */ 3132 if (num_tolerated_disk_barrier_failures > 0 && 3133 ((flags & (BTRFS_BLOCK_GROUP_DUP | 3134 BTRFS_BLOCK_GROUP_RAID0)) || 3135 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) 3136 == 0))) 3137 num_tolerated_disk_barrier_failures = 0; 3138 else if (num_tolerated_disk_barrier_failures > 1) { 3139 if (flags & (BTRFS_BLOCK_GROUP_RAID1 | 3140 BTRFS_BLOCK_GROUP_RAID5 | 3141 BTRFS_BLOCK_GROUP_RAID10)) { 3142 num_tolerated_disk_barrier_failures = 1; 3143 } else if (flags & 3144 BTRFS_BLOCK_GROUP_RAID5) { 3145 num_tolerated_disk_barrier_failures = 2; 3146 } 3147 } 3148 } 3149 } 3150 up_read(&sinfo->groups_sem); 3151 } 3152 3153 return num_tolerated_disk_barrier_failures; 3154 } 3155 3156 int write_all_supers(struct btrfs_root *root, int max_mirrors) 3157 { 3158 struct list_head *head; 3159 struct btrfs_device *dev; 3160 struct btrfs_super_block *sb; 3161 struct btrfs_dev_item *dev_item; 3162 int ret; 3163 int do_barriers; 3164 int max_errors; 3165 int total_errors = 0; 3166 u64 flags; 3167 3168 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 3169 do_barriers = !btrfs_test_opt(root, NOBARRIER); 3170 backup_super_roots(root->fs_info); 3171 3172 sb = root->fs_info->super_for_commit; 3173 dev_item = &sb->dev_item; 3174 3175 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 3176 head = &root->fs_info->fs_devices->devices; 3177 3178 if (do_barriers) { 3179 ret = barrier_all_devices(root->fs_info); 3180 if (ret) { 3181 mutex_unlock( 3182 &root->fs_info->fs_devices->device_list_mutex); 3183 btrfs_error(root->fs_info, ret, 3184 "errors while submitting device barriers."); 3185 return ret; 3186 } 3187 } 3188 3189 list_for_each_entry_rcu(dev, head, dev_list) { 3190 if (!dev->bdev) { 3191 total_errors++; 3192 continue; 3193 } 3194 if (!dev->in_fs_metadata || !dev->writeable) 3195 continue; 3196 3197 btrfs_set_stack_device_generation(dev_item, 0); 3198 btrfs_set_stack_device_type(dev_item, dev->type); 3199 btrfs_set_stack_device_id(dev_item, dev->devid); 3200 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 3201 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 3202 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 3203 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 3204 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 3205 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 3206 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 3207 3208 flags = btrfs_super_flags(sb); 3209 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 3210 3211 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 3212 if (ret) 3213 total_errors++; 3214 } 3215 if (total_errors > max_errors) { 3216 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 3217 total_errors); 3218 3219 /* This shouldn't happen. FUA is masked off if unsupported */ 3220 BUG(); 3221 } 3222 3223 total_errors = 0; 3224 list_for_each_entry_rcu(dev, head, dev_list) { 3225 if (!dev->bdev) 3226 continue; 3227 if (!dev->in_fs_metadata || !dev->writeable) 3228 continue; 3229 3230 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 3231 if (ret) 3232 total_errors++; 3233 } 3234 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 3235 if (total_errors > max_errors) { 3236 btrfs_error(root->fs_info, -EIO, 3237 "%d errors while writing supers", total_errors); 3238 return -EIO; 3239 } 3240 return 0; 3241 } 3242 3243 int write_ctree_super(struct btrfs_trans_handle *trans, 3244 struct btrfs_root *root, int max_mirrors) 3245 { 3246 int ret; 3247 3248 ret = write_all_supers(root, max_mirrors); 3249 return ret; 3250 } 3251 3252 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 3253 { 3254 spin_lock(&fs_info->fs_roots_radix_lock); 3255 radix_tree_delete(&fs_info->fs_roots_radix, 3256 (unsigned long)root->root_key.objectid); 3257 spin_unlock(&fs_info->fs_roots_radix_lock); 3258 3259 if (btrfs_root_refs(&root->root_item) == 0) 3260 synchronize_srcu(&fs_info->subvol_srcu); 3261 3262 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 3263 btrfs_free_log(NULL, root); 3264 btrfs_free_log_root_tree(NULL, fs_info); 3265 } 3266 3267 __btrfs_remove_free_space_cache(root->free_ino_pinned); 3268 __btrfs_remove_free_space_cache(root->free_ino_ctl); 3269 free_fs_root(root); 3270 } 3271 3272 static void free_fs_root(struct btrfs_root *root) 3273 { 3274 iput(root->cache_inode); 3275 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 3276 if (root->anon_dev) 3277 free_anon_bdev(root->anon_dev); 3278 free_extent_buffer(root->node); 3279 free_extent_buffer(root->commit_root); 3280 kfree(root->free_ino_ctl); 3281 kfree(root->free_ino_pinned); 3282 kfree(root->name); 3283 kfree(root); 3284 } 3285 3286 static void del_fs_roots(struct btrfs_fs_info *fs_info) 3287 { 3288 int ret; 3289 struct btrfs_root *gang[8]; 3290 int i; 3291 3292 while (!list_empty(&fs_info->dead_roots)) { 3293 gang[0] = list_entry(fs_info->dead_roots.next, 3294 struct btrfs_root, root_list); 3295 list_del(&gang[0]->root_list); 3296 3297 if (gang[0]->in_radix) { 3298 btrfs_free_fs_root(fs_info, gang[0]); 3299 } else { 3300 free_extent_buffer(gang[0]->node); 3301 free_extent_buffer(gang[0]->commit_root); 3302 kfree(gang[0]); 3303 } 3304 } 3305 3306 while (1) { 3307 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3308 (void **)gang, 0, 3309 ARRAY_SIZE(gang)); 3310 if (!ret) 3311 break; 3312 for (i = 0; i < ret; i++) 3313 btrfs_free_fs_root(fs_info, gang[i]); 3314 } 3315 } 3316 3317 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 3318 { 3319 u64 root_objectid = 0; 3320 struct btrfs_root *gang[8]; 3321 int i; 3322 int ret; 3323 3324 while (1) { 3325 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 3326 (void **)gang, root_objectid, 3327 ARRAY_SIZE(gang)); 3328 if (!ret) 3329 break; 3330 3331 root_objectid = gang[ret - 1]->root_key.objectid + 1; 3332 for (i = 0; i < ret; i++) { 3333 int err; 3334 3335 root_objectid = gang[i]->root_key.objectid; 3336 err = btrfs_orphan_cleanup(gang[i]); 3337 if (err) 3338 return err; 3339 } 3340 root_objectid++; 3341 } 3342 return 0; 3343 } 3344 3345 int btrfs_commit_super(struct btrfs_root *root) 3346 { 3347 struct btrfs_trans_handle *trans; 3348 int ret; 3349 3350 mutex_lock(&root->fs_info->cleaner_mutex); 3351 btrfs_run_delayed_iputs(root); 3352 btrfs_clean_old_snapshots(root); 3353 mutex_unlock(&root->fs_info->cleaner_mutex); 3354 3355 /* wait until ongoing cleanup work done */ 3356 down_write(&root->fs_info->cleanup_work_sem); 3357 up_write(&root->fs_info->cleanup_work_sem); 3358 3359 trans = btrfs_join_transaction(root); 3360 if (IS_ERR(trans)) 3361 return PTR_ERR(trans); 3362 ret = btrfs_commit_transaction(trans, root); 3363 if (ret) 3364 return ret; 3365 /* run commit again to drop the original snapshot */ 3366 trans = btrfs_join_transaction(root); 3367 if (IS_ERR(trans)) 3368 return PTR_ERR(trans); 3369 ret = btrfs_commit_transaction(trans, root); 3370 if (ret) 3371 return ret; 3372 ret = btrfs_write_and_wait_transaction(NULL, root); 3373 if (ret) { 3374 btrfs_error(root->fs_info, ret, 3375 "Failed to sync btree inode to disk."); 3376 return ret; 3377 } 3378 3379 ret = write_ctree_super(NULL, root, 0); 3380 return ret; 3381 } 3382 3383 int close_ctree(struct btrfs_root *root) 3384 { 3385 struct btrfs_fs_info *fs_info = root->fs_info; 3386 int ret; 3387 3388 fs_info->closing = 1; 3389 smp_mb(); 3390 3391 /* pause restriper - we want to resume on mount */ 3392 btrfs_pause_balance(fs_info); 3393 3394 btrfs_dev_replace_suspend_for_unmount(fs_info); 3395 3396 btrfs_scrub_cancel(fs_info); 3397 3398 /* wait for any defraggers to finish */ 3399 wait_event(fs_info->transaction_wait, 3400 (atomic_read(&fs_info->defrag_running) == 0)); 3401 3402 /* clear out the rbtree of defraggable inodes */ 3403 btrfs_cleanup_defrag_inodes(fs_info); 3404 3405 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 3406 ret = btrfs_commit_super(root); 3407 if (ret) 3408 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 3409 } 3410 3411 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3412 btrfs_error_commit_super(root); 3413 3414 btrfs_put_block_group_cache(fs_info); 3415 3416 kthread_stop(fs_info->transaction_kthread); 3417 kthread_stop(fs_info->cleaner_kthread); 3418 3419 fs_info->closing = 2; 3420 smp_mb(); 3421 3422 btrfs_free_qgroup_config(root->fs_info); 3423 3424 if (percpu_counter_sum(&fs_info->delalloc_bytes)) { 3425 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n", 3426 percpu_counter_sum(&fs_info->delalloc_bytes)); 3427 } 3428 3429 free_extent_buffer(fs_info->extent_root->node); 3430 free_extent_buffer(fs_info->extent_root->commit_root); 3431 free_extent_buffer(fs_info->tree_root->node); 3432 free_extent_buffer(fs_info->tree_root->commit_root); 3433 free_extent_buffer(fs_info->chunk_root->node); 3434 free_extent_buffer(fs_info->chunk_root->commit_root); 3435 free_extent_buffer(fs_info->dev_root->node); 3436 free_extent_buffer(fs_info->dev_root->commit_root); 3437 free_extent_buffer(fs_info->csum_root->node); 3438 free_extent_buffer(fs_info->csum_root->commit_root); 3439 if (fs_info->quota_root) { 3440 free_extent_buffer(fs_info->quota_root->node); 3441 free_extent_buffer(fs_info->quota_root->commit_root); 3442 } 3443 3444 btrfs_free_block_groups(fs_info); 3445 3446 del_fs_roots(fs_info); 3447 3448 iput(fs_info->btree_inode); 3449 3450 btrfs_stop_workers(&fs_info->generic_worker); 3451 btrfs_stop_workers(&fs_info->fixup_workers); 3452 btrfs_stop_workers(&fs_info->delalloc_workers); 3453 btrfs_stop_workers(&fs_info->workers); 3454 btrfs_stop_workers(&fs_info->endio_workers); 3455 btrfs_stop_workers(&fs_info->endio_meta_workers); 3456 btrfs_stop_workers(&fs_info->endio_raid56_workers); 3457 btrfs_stop_workers(&fs_info->rmw_workers); 3458 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 3459 btrfs_stop_workers(&fs_info->endio_write_workers); 3460 btrfs_stop_workers(&fs_info->endio_freespace_worker); 3461 btrfs_stop_workers(&fs_info->submit_workers); 3462 btrfs_stop_workers(&fs_info->delayed_workers); 3463 btrfs_stop_workers(&fs_info->caching_workers); 3464 btrfs_stop_workers(&fs_info->readahead_workers); 3465 btrfs_stop_workers(&fs_info->flush_workers); 3466 3467 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 3468 if (btrfs_test_opt(root, CHECK_INTEGRITY)) 3469 btrfsic_unmount(root, fs_info->fs_devices); 3470 #endif 3471 3472 btrfs_close_devices(fs_info->fs_devices); 3473 btrfs_mapping_tree_free(&fs_info->mapping_tree); 3474 3475 percpu_counter_destroy(&fs_info->dirty_metadata_bytes); 3476 percpu_counter_destroy(&fs_info->delalloc_bytes); 3477 bdi_destroy(&fs_info->bdi); 3478 cleanup_srcu_struct(&fs_info->subvol_srcu); 3479 3480 btrfs_free_stripe_hash_table(fs_info); 3481 3482 return 0; 3483 } 3484 3485 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid, 3486 int atomic) 3487 { 3488 int ret; 3489 struct inode *btree_inode = buf->pages[0]->mapping->host; 3490 3491 ret = extent_buffer_uptodate(buf); 3492 if (!ret) 3493 return ret; 3494 3495 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 3496 parent_transid, atomic); 3497 if (ret == -EAGAIN) 3498 return ret; 3499 return !ret; 3500 } 3501 3502 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 3503 { 3504 return set_extent_buffer_uptodate(buf); 3505 } 3506 3507 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 3508 { 3509 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3510 u64 transid = btrfs_header_generation(buf); 3511 int was_dirty; 3512 3513 btrfs_assert_tree_locked(buf); 3514 if (transid != root->fs_info->generation) 3515 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, " 3516 "found %llu running %llu\n", 3517 (unsigned long long)buf->start, 3518 (unsigned long long)transid, 3519 (unsigned long long)root->fs_info->generation); 3520 was_dirty = set_extent_buffer_dirty(buf); 3521 if (!was_dirty) 3522 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes, 3523 buf->len, 3524 root->fs_info->dirty_metadata_batch); 3525 } 3526 3527 static void __btrfs_btree_balance_dirty(struct btrfs_root *root, 3528 int flush_delayed) 3529 { 3530 /* 3531 * looks as though older kernels can get into trouble with 3532 * this code, they end up stuck in balance_dirty_pages forever 3533 */ 3534 int ret; 3535 3536 if (current->flags & PF_MEMALLOC) 3537 return; 3538 3539 if (flush_delayed) 3540 btrfs_balance_delayed_items(root); 3541 3542 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes, 3543 BTRFS_DIRTY_METADATA_THRESH); 3544 if (ret > 0) { 3545 balance_dirty_pages_ratelimited( 3546 root->fs_info->btree_inode->i_mapping); 3547 } 3548 return; 3549 } 3550 3551 void btrfs_btree_balance_dirty(struct btrfs_root *root) 3552 { 3553 __btrfs_btree_balance_dirty(root, 1); 3554 } 3555 3556 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root) 3557 { 3558 __btrfs_btree_balance_dirty(root, 0); 3559 } 3560 3561 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 3562 { 3563 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root; 3564 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 3565 } 3566 3567 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info, 3568 int read_only) 3569 { 3570 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) { 3571 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n"); 3572 return -EINVAL; 3573 } 3574 3575 if (read_only) 3576 return 0; 3577 3578 return 0; 3579 } 3580 3581 void btrfs_error_commit_super(struct btrfs_root *root) 3582 { 3583 mutex_lock(&root->fs_info->cleaner_mutex); 3584 btrfs_run_delayed_iputs(root); 3585 mutex_unlock(&root->fs_info->cleaner_mutex); 3586 3587 down_write(&root->fs_info->cleanup_work_sem); 3588 up_write(&root->fs_info->cleanup_work_sem); 3589 3590 /* cleanup FS via transaction */ 3591 btrfs_cleanup_transaction(root); 3592 } 3593 3594 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t, 3595 struct btrfs_root *root) 3596 { 3597 struct btrfs_inode *btrfs_inode; 3598 struct list_head splice; 3599 3600 INIT_LIST_HEAD(&splice); 3601 3602 mutex_lock(&root->fs_info->ordered_operations_mutex); 3603 spin_lock(&root->fs_info->ordered_extent_lock); 3604 3605 list_splice_init(&t->ordered_operations, &splice); 3606 while (!list_empty(&splice)) { 3607 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3608 ordered_operations); 3609 3610 list_del_init(&btrfs_inode->ordered_operations); 3611 3612 btrfs_invalidate_inodes(btrfs_inode->root); 3613 } 3614 3615 spin_unlock(&root->fs_info->ordered_extent_lock); 3616 mutex_unlock(&root->fs_info->ordered_operations_mutex); 3617 } 3618 3619 static void btrfs_destroy_ordered_extents(struct btrfs_root *root) 3620 { 3621 struct btrfs_ordered_extent *ordered; 3622 3623 spin_lock(&root->fs_info->ordered_extent_lock); 3624 /* 3625 * This will just short circuit the ordered completion stuff which will 3626 * make sure the ordered extent gets properly cleaned up. 3627 */ 3628 list_for_each_entry(ordered, &root->fs_info->ordered_extents, 3629 root_extent_list) 3630 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags); 3631 spin_unlock(&root->fs_info->ordered_extent_lock); 3632 } 3633 3634 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, 3635 struct btrfs_root *root) 3636 { 3637 struct rb_node *node; 3638 struct btrfs_delayed_ref_root *delayed_refs; 3639 struct btrfs_delayed_ref_node *ref; 3640 int ret = 0; 3641 3642 delayed_refs = &trans->delayed_refs; 3643 3644 spin_lock(&delayed_refs->lock); 3645 if (delayed_refs->num_entries == 0) { 3646 spin_unlock(&delayed_refs->lock); 3647 printk(KERN_INFO "delayed_refs has NO entry\n"); 3648 return ret; 3649 } 3650 3651 while ((node = rb_first(&delayed_refs->root)) != NULL) { 3652 struct btrfs_delayed_ref_head *head = NULL; 3653 3654 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node); 3655 atomic_set(&ref->refs, 1); 3656 if (btrfs_delayed_ref_is_head(ref)) { 3657 3658 head = btrfs_delayed_node_to_head(ref); 3659 if (!mutex_trylock(&head->mutex)) { 3660 atomic_inc(&ref->refs); 3661 spin_unlock(&delayed_refs->lock); 3662 3663 /* Need to wait for the delayed ref to run */ 3664 mutex_lock(&head->mutex); 3665 mutex_unlock(&head->mutex); 3666 btrfs_put_delayed_ref(ref); 3667 3668 spin_lock(&delayed_refs->lock); 3669 continue; 3670 } 3671 3672 btrfs_free_delayed_extent_op(head->extent_op); 3673 delayed_refs->num_heads--; 3674 if (list_empty(&head->cluster)) 3675 delayed_refs->num_heads_ready--; 3676 list_del_init(&head->cluster); 3677 } 3678 3679 ref->in_tree = 0; 3680 rb_erase(&ref->rb_node, &delayed_refs->root); 3681 delayed_refs->num_entries--; 3682 if (head) 3683 mutex_unlock(&head->mutex); 3684 spin_unlock(&delayed_refs->lock); 3685 btrfs_put_delayed_ref(ref); 3686 3687 cond_resched(); 3688 spin_lock(&delayed_refs->lock); 3689 } 3690 3691 spin_unlock(&delayed_refs->lock); 3692 3693 return ret; 3694 } 3695 3696 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t) 3697 { 3698 struct btrfs_pending_snapshot *snapshot; 3699 struct list_head splice; 3700 3701 INIT_LIST_HEAD(&splice); 3702 3703 list_splice_init(&t->pending_snapshots, &splice); 3704 3705 while (!list_empty(&splice)) { 3706 snapshot = list_entry(splice.next, 3707 struct btrfs_pending_snapshot, 3708 list); 3709 snapshot->error = -ECANCELED; 3710 list_del_init(&snapshot->list); 3711 } 3712 } 3713 3714 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root) 3715 { 3716 struct btrfs_inode *btrfs_inode; 3717 struct list_head splice; 3718 3719 INIT_LIST_HEAD(&splice); 3720 3721 spin_lock(&root->fs_info->delalloc_lock); 3722 list_splice_init(&root->fs_info->delalloc_inodes, &splice); 3723 3724 while (!list_empty(&splice)) { 3725 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 3726 delalloc_inodes); 3727 3728 list_del_init(&btrfs_inode->delalloc_inodes); 3729 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 3730 &btrfs_inode->runtime_flags); 3731 3732 btrfs_invalidate_inodes(btrfs_inode->root); 3733 } 3734 3735 spin_unlock(&root->fs_info->delalloc_lock); 3736 } 3737 3738 static int btrfs_destroy_marked_extents(struct btrfs_root *root, 3739 struct extent_io_tree *dirty_pages, 3740 int mark) 3741 { 3742 int ret; 3743 struct page *page; 3744 struct inode *btree_inode = root->fs_info->btree_inode; 3745 struct extent_buffer *eb; 3746 u64 start = 0; 3747 u64 end; 3748 u64 offset; 3749 unsigned long index; 3750 3751 while (1) { 3752 ret = find_first_extent_bit(dirty_pages, start, &start, &end, 3753 mark, NULL); 3754 if (ret) 3755 break; 3756 3757 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS); 3758 while (start <= end) { 3759 index = start >> PAGE_CACHE_SHIFT; 3760 start = (u64)(index + 1) << PAGE_CACHE_SHIFT; 3761 page = find_get_page(btree_inode->i_mapping, index); 3762 if (!page) 3763 continue; 3764 offset = page_offset(page); 3765 3766 spin_lock(&dirty_pages->buffer_lock); 3767 eb = radix_tree_lookup( 3768 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer, 3769 offset >> PAGE_CACHE_SHIFT); 3770 spin_unlock(&dirty_pages->buffer_lock); 3771 if (eb) 3772 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY, 3773 &eb->bflags); 3774 if (PageWriteback(page)) 3775 end_page_writeback(page); 3776 3777 lock_page(page); 3778 if (PageDirty(page)) { 3779 clear_page_dirty_for_io(page); 3780 spin_lock_irq(&page->mapping->tree_lock); 3781 radix_tree_tag_clear(&page->mapping->page_tree, 3782 page_index(page), 3783 PAGECACHE_TAG_DIRTY); 3784 spin_unlock_irq(&page->mapping->tree_lock); 3785 } 3786 3787 unlock_page(page); 3788 page_cache_release(page); 3789 } 3790 } 3791 3792 return ret; 3793 } 3794 3795 static int btrfs_destroy_pinned_extent(struct btrfs_root *root, 3796 struct extent_io_tree *pinned_extents) 3797 { 3798 struct extent_io_tree *unpin; 3799 u64 start; 3800 u64 end; 3801 int ret; 3802 bool loop = true; 3803 3804 unpin = pinned_extents; 3805 again: 3806 while (1) { 3807 ret = find_first_extent_bit(unpin, 0, &start, &end, 3808 EXTENT_DIRTY, NULL); 3809 if (ret) 3810 break; 3811 3812 /* opt_discard */ 3813 if (btrfs_test_opt(root, DISCARD)) 3814 ret = btrfs_error_discard_extent(root, start, 3815 end + 1 - start, 3816 NULL); 3817 3818 clear_extent_dirty(unpin, start, end, GFP_NOFS); 3819 btrfs_error_unpin_extent_range(root, start, end); 3820 cond_resched(); 3821 } 3822 3823 if (loop) { 3824 if (unpin == &root->fs_info->freed_extents[0]) 3825 unpin = &root->fs_info->freed_extents[1]; 3826 else 3827 unpin = &root->fs_info->freed_extents[0]; 3828 loop = false; 3829 goto again; 3830 } 3831 3832 return 0; 3833 } 3834 3835 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans, 3836 struct btrfs_root *root) 3837 { 3838 btrfs_destroy_delayed_refs(cur_trans, root); 3839 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 3840 cur_trans->dirty_pages.dirty_bytes); 3841 3842 /* FIXME: cleanup wait for commit */ 3843 cur_trans->in_commit = 1; 3844 cur_trans->blocked = 1; 3845 wake_up(&root->fs_info->transaction_blocked_wait); 3846 3847 btrfs_evict_pending_snapshots(cur_trans); 3848 3849 cur_trans->blocked = 0; 3850 wake_up(&root->fs_info->transaction_wait); 3851 3852 cur_trans->commit_done = 1; 3853 wake_up(&cur_trans->commit_wait); 3854 3855 btrfs_destroy_delayed_inodes(root); 3856 btrfs_assert_delayed_root_empty(root); 3857 3858 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages, 3859 EXTENT_DIRTY); 3860 btrfs_destroy_pinned_extent(root, 3861 root->fs_info->pinned_extents); 3862 3863 /* 3864 memset(cur_trans, 0, sizeof(*cur_trans)); 3865 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 3866 */ 3867 } 3868 3869 int btrfs_cleanup_transaction(struct btrfs_root *root) 3870 { 3871 struct btrfs_transaction *t; 3872 LIST_HEAD(list); 3873 3874 mutex_lock(&root->fs_info->transaction_kthread_mutex); 3875 3876 spin_lock(&root->fs_info->trans_lock); 3877 list_splice_init(&root->fs_info->trans_list, &list); 3878 root->fs_info->trans_no_join = 1; 3879 spin_unlock(&root->fs_info->trans_lock); 3880 3881 while (!list_empty(&list)) { 3882 t = list_entry(list.next, struct btrfs_transaction, list); 3883 3884 btrfs_destroy_ordered_operations(t, root); 3885 3886 btrfs_destroy_ordered_extents(root); 3887 3888 btrfs_destroy_delayed_refs(t, root); 3889 3890 btrfs_block_rsv_release(root, 3891 &root->fs_info->trans_block_rsv, 3892 t->dirty_pages.dirty_bytes); 3893 3894 /* FIXME: cleanup wait for commit */ 3895 t->in_commit = 1; 3896 t->blocked = 1; 3897 smp_mb(); 3898 if (waitqueue_active(&root->fs_info->transaction_blocked_wait)) 3899 wake_up(&root->fs_info->transaction_blocked_wait); 3900 3901 btrfs_evict_pending_snapshots(t); 3902 3903 t->blocked = 0; 3904 smp_mb(); 3905 if (waitqueue_active(&root->fs_info->transaction_wait)) 3906 wake_up(&root->fs_info->transaction_wait); 3907 3908 t->commit_done = 1; 3909 smp_mb(); 3910 if (waitqueue_active(&t->commit_wait)) 3911 wake_up(&t->commit_wait); 3912 3913 btrfs_destroy_delayed_inodes(root); 3914 btrfs_assert_delayed_root_empty(root); 3915 3916 btrfs_destroy_delalloc_inodes(root); 3917 3918 spin_lock(&root->fs_info->trans_lock); 3919 root->fs_info->running_transaction = NULL; 3920 spin_unlock(&root->fs_info->trans_lock); 3921 3922 btrfs_destroy_marked_extents(root, &t->dirty_pages, 3923 EXTENT_DIRTY); 3924 3925 btrfs_destroy_pinned_extent(root, 3926 root->fs_info->pinned_extents); 3927 3928 atomic_set(&t->use_count, 0); 3929 list_del_init(&t->list); 3930 memset(t, 0, sizeof(*t)); 3931 kmem_cache_free(btrfs_transaction_cachep, t); 3932 } 3933 3934 spin_lock(&root->fs_info->trans_lock); 3935 root->fs_info->trans_no_join = 0; 3936 spin_unlock(&root->fs_info->trans_lock); 3937 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 3938 3939 return 0; 3940 } 3941 3942 static struct extent_io_ops btree_extent_io_ops = { 3943 .readpage_end_io_hook = btree_readpage_end_io_hook, 3944 .readpage_io_failed_hook = btree_io_failed_hook, 3945 .submit_bio_hook = btree_submit_bio_hook, 3946 /* note we're sharing with inode.c for the merge bio hook */ 3947 .merge_bio_hook = btrfs_merge_bio_hook, 3948 }; 3949