xref: /linux/fs/btrfs/disk-io.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "rcu-string.h"
33 #include "dev-replace.h"
34 #include "raid56.h"
35 #include "sysfs.h"
36 #include "qgroup.h"
37 #include "compression.h"
38 #include "tree-checker.h"
39 #include "ref-verify.h"
40 #include "block-group.h"
41 #include "discard.h"
42 #include "space-info.h"
43 #include "zoned.h"
44 #include "subpage.h"
45 #include "fs.h"
46 #include "accessors.h"
47 #include "extent-tree.h"
48 #include "root-tree.h"
49 #include "defrag.h"
50 #include "uuid-tree.h"
51 #include "relocation.h"
52 #include "scrub.h"
53 #include "super.h"
54 
55 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
56 				 BTRFS_HEADER_FLAG_RELOC |\
57 				 BTRFS_SUPER_FLAG_ERROR |\
58 				 BTRFS_SUPER_FLAG_SEEDING |\
59 				 BTRFS_SUPER_FLAG_METADUMP |\
60 				 BTRFS_SUPER_FLAG_METADUMP_V2)
61 
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64 
65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66 {
67 	if (fs_info->csum_shash)
68 		crypto_free_shash(fs_info->csum_shash);
69 }
70 
71 /*
72  * Compute the csum of a btree block and store the result to provided buffer.
73  */
74 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75 {
76 	struct btrfs_fs_info *fs_info = buf->fs_info;
77 	int num_pages;
78 	u32 first_page_part;
79 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 	char *kaddr;
81 	int i;
82 
83 	shash->tfm = fs_info->csum_shash;
84 	crypto_shash_init(shash);
85 
86 	if (buf->addr) {
87 		/* Pages are contiguous, handle them as a big one. */
88 		kaddr = buf->addr;
89 		first_page_part = fs_info->nodesize;
90 		num_pages = 1;
91 	} else {
92 		kaddr = folio_address(buf->folios[0]);
93 		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
94 		num_pages = num_extent_pages(buf);
95 	}
96 
97 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
98 			    first_page_part - BTRFS_CSUM_SIZE);
99 
100 	/*
101 	 * Multiple single-page folios case would reach here.
102 	 *
103 	 * nodesize <= PAGE_SIZE and large folio all handled by above
104 	 * crypto_shash_update() already.
105 	 */
106 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
107 		kaddr = folio_address(buf->folios[i]);
108 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
109 	}
110 	memset(result, 0, BTRFS_CSUM_SIZE);
111 	crypto_shash_final(shash, result);
112 }
113 
114 /*
115  * we can't consider a given block up to date unless the transid of the
116  * block matches the transid in the parent node's pointer.  This is how we
117  * detect blocks that either didn't get written at all or got written
118  * in the wrong place.
119  */
120 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
121 {
122 	if (!extent_buffer_uptodate(eb))
123 		return 0;
124 
125 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
126 		return 1;
127 
128 	if (atomic)
129 		return -EAGAIN;
130 
131 	if (!extent_buffer_uptodate(eb) ||
132 	    btrfs_header_generation(eb) != parent_transid) {
133 		btrfs_err_rl(eb->fs_info,
134 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
135 			eb->start, eb->read_mirror,
136 			parent_transid, btrfs_header_generation(eb));
137 		clear_extent_buffer_uptodate(eb);
138 		return 0;
139 	}
140 	return 1;
141 }
142 
143 static bool btrfs_supported_super_csum(u16 csum_type)
144 {
145 	switch (csum_type) {
146 	case BTRFS_CSUM_TYPE_CRC32:
147 	case BTRFS_CSUM_TYPE_XXHASH:
148 	case BTRFS_CSUM_TYPE_SHA256:
149 	case BTRFS_CSUM_TYPE_BLAKE2:
150 		return true;
151 	default:
152 		return false;
153 	}
154 }
155 
156 /*
157  * Return 0 if the superblock checksum type matches the checksum value of that
158  * algorithm. Pass the raw disk superblock data.
159  */
160 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
161 			   const struct btrfs_super_block *disk_sb)
162 {
163 	char result[BTRFS_CSUM_SIZE];
164 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
165 
166 	shash->tfm = fs_info->csum_shash;
167 
168 	/*
169 	 * The super_block structure does not span the whole
170 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
171 	 * filled with zeros and is included in the checksum.
172 	 */
173 	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
174 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
175 
176 	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
177 		return 1;
178 
179 	return 0;
180 }
181 
182 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
183 				      int mirror_num)
184 {
185 	struct btrfs_fs_info *fs_info = eb->fs_info;
186 	int num_folios = num_extent_folios(eb);
187 	int ret = 0;
188 
189 	if (sb_rdonly(fs_info->sb))
190 		return -EROFS;
191 
192 	for (int i = 0; i < num_folios; i++) {
193 		struct folio *folio = eb->folios[i];
194 		u64 start = max_t(u64, eb->start, folio_pos(folio));
195 		u64 end = min_t(u64, eb->start + eb->len,
196 				folio_pos(folio) + folio_size(folio));
197 		u32 len = end - start;
198 
199 		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
200 					      start, folio, offset_in_folio(folio, start),
201 					      mirror_num);
202 		if (ret)
203 			break;
204 	}
205 
206 	return ret;
207 }
208 
209 /*
210  * helper to read a given tree block, doing retries as required when
211  * the checksums don't match and we have alternate mirrors to try.
212  *
213  * @check:		expected tree parentness check, see the comments of the
214  *			structure for details.
215  */
216 int btrfs_read_extent_buffer(struct extent_buffer *eb,
217 			     struct btrfs_tree_parent_check *check)
218 {
219 	struct btrfs_fs_info *fs_info = eb->fs_info;
220 	int failed = 0;
221 	int ret;
222 	int num_copies = 0;
223 	int mirror_num = 0;
224 	int failed_mirror = 0;
225 
226 	ASSERT(check);
227 
228 	while (1) {
229 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
230 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
231 		if (!ret)
232 			break;
233 
234 		num_copies = btrfs_num_copies(fs_info,
235 					      eb->start, eb->len);
236 		if (num_copies == 1)
237 			break;
238 
239 		if (!failed_mirror) {
240 			failed = 1;
241 			failed_mirror = eb->read_mirror;
242 		}
243 
244 		mirror_num++;
245 		if (mirror_num == failed_mirror)
246 			mirror_num++;
247 
248 		if (mirror_num > num_copies)
249 			break;
250 	}
251 
252 	if (failed && !ret && failed_mirror)
253 		btrfs_repair_eb_io_failure(eb, failed_mirror);
254 
255 	return ret;
256 }
257 
258 /*
259  * Checksum a dirty tree block before IO.
260  */
261 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
262 {
263 	struct extent_buffer *eb = bbio->private;
264 	struct btrfs_fs_info *fs_info = eb->fs_info;
265 	u64 found_start = btrfs_header_bytenr(eb);
266 	u64 last_trans;
267 	u8 result[BTRFS_CSUM_SIZE];
268 	int ret;
269 
270 	/* Btree blocks are always contiguous on disk. */
271 	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
272 		return BLK_STS_IOERR;
273 	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
274 		return BLK_STS_IOERR;
275 
276 	/*
277 	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
278 	 * checksum it but zero-out its content. This is done to preserve
279 	 * ordering of I/O without unnecessarily writing out data.
280 	 */
281 	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
282 		memzero_extent_buffer(eb, 0, eb->len);
283 		return BLK_STS_OK;
284 	}
285 
286 	if (WARN_ON_ONCE(found_start != eb->start))
287 		return BLK_STS_IOERR;
288 	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
289 					       eb->start, eb->len)))
290 		return BLK_STS_IOERR;
291 
292 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
293 				    offsetof(struct btrfs_header, fsid),
294 				    BTRFS_FSID_SIZE) == 0);
295 	csum_tree_block(eb, result);
296 
297 	if (btrfs_header_level(eb))
298 		ret = btrfs_check_node(eb);
299 	else
300 		ret = btrfs_check_leaf(eb);
301 
302 	if (ret < 0)
303 		goto error;
304 
305 	/*
306 	 * Also check the generation, the eb reached here must be newer than
307 	 * last committed. Or something seriously wrong happened.
308 	 */
309 	last_trans = btrfs_get_last_trans_committed(fs_info);
310 	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
311 		ret = -EUCLEAN;
312 		btrfs_err(fs_info,
313 			"block=%llu bad generation, have %llu expect > %llu",
314 			  eb->start, btrfs_header_generation(eb), last_trans);
315 		goto error;
316 	}
317 	write_extent_buffer(eb, result, 0, fs_info->csum_size);
318 	return BLK_STS_OK;
319 
320 error:
321 	btrfs_print_tree(eb, 0);
322 	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
323 		  eb->start);
324 	/*
325 	 * Be noisy if this is an extent buffer from a log tree. We don't abort
326 	 * a transaction in case there's a bad log tree extent buffer, we just
327 	 * fallback to a transaction commit. Still we want to know when there is
328 	 * a bad log tree extent buffer, as that may signal a bug somewhere.
329 	 */
330 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
331 		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
332 	return errno_to_blk_status(ret);
333 }
334 
335 static bool check_tree_block_fsid(struct extent_buffer *eb)
336 {
337 	struct btrfs_fs_info *fs_info = eb->fs_info;
338 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
339 	u8 fsid[BTRFS_FSID_SIZE];
340 
341 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
342 			   BTRFS_FSID_SIZE);
343 
344 	/*
345 	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
346 	 * This is then overwritten by metadata_uuid if it is present in the
347 	 * device_list_add(). The same true for a seed device as well. So use of
348 	 * fs_devices::metadata_uuid is appropriate here.
349 	 */
350 	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
351 		return false;
352 
353 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
354 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
355 			return false;
356 
357 	return true;
358 }
359 
360 /* Do basic extent buffer checks at read time */
361 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
362 				 struct btrfs_tree_parent_check *check)
363 {
364 	struct btrfs_fs_info *fs_info = eb->fs_info;
365 	u64 found_start;
366 	const u32 csum_size = fs_info->csum_size;
367 	u8 found_level;
368 	u8 result[BTRFS_CSUM_SIZE];
369 	const u8 *header_csum;
370 	int ret = 0;
371 
372 	ASSERT(check);
373 
374 	found_start = btrfs_header_bytenr(eb);
375 	if (found_start != eb->start) {
376 		btrfs_err_rl(fs_info,
377 			"bad tree block start, mirror %u want %llu have %llu",
378 			     eb->read_mirror, eb->start, found_start);
379 		ret = -EIO;
380 		goto out;
381 	}
382 	if (check_tree_block_fsid(eb)) {
383 		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
384 			     eb->start, eb->read_mirror);
385 		ret = -EIO;
386 		goto out;
387 	}
388 	found_level = btrfs_header_level(eb);
389 	if (found_level >= BTRFS_MAX_LEVEL) {
390 		btrfs_err(fs_info,
391 			"bad tree block level, mirror %u level %d on logical %llu",
392 			eb->read_mirror, btrfs_header_level(eb), eb->start);
393 		ret = -EIO;
394 		goto out;
395 	}
396 
397 	csum_tree_block(eb, result);
398 	header_csum = folio_address(eb->folios[0]) +
399 		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
400 
401 	if (memcmp(result, header_csum, csum_size) != 0) {
402 		btrfs_warn_rl(fs_info,
403 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
404 			      eb->start, eb->read_mirror,
405 			      CSUM_FMT_VALUE(csum_size, header_csum),
406 			      CSUM_FMT_VALUE(csum_size, result),
407 			      btrfs_header_level(eb));
408 		ret = -EUCLEAN;
409 		goto out;
410 	}
411 
412 	if (found_level != check->level) {
413 		btrfs_err(fs_info,
414 		"level verify failed on logical %llu mirror %u wanted %u found %u",
415 			  eb->start, eb->read_mirror, check->level, found_level);
416 		ret = -EIO;
417 		goto out;
418 	}
419 	if (unlikely(check->transid &&
420 		     btrfs_header_generation(eb) != check->transid)) {
421 		btrfs_err_rl(eb->fs_info,
422 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
423 				eb->start, eb->read_mirror, check->transid,
424 				btrfs_header_generation(eb));
425 		ret = -EIO;
426 		goto out;
427 	}
428 	if (check->has_first_key) {
429 		struct btrfs_key *expect_key = &check->first_key;
430 		struct btrfs_key found_key;
431 
432 		if (found_level)
433 			btrfs_node_key_to_cpu(eb, &found_key, 0);
434 		else
435 			btrfs_item_key_to_cpu(eb, &found_key, 0);
436 		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
437 			btrfs_err(fs_info,
438 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
439 				  eb->start, check->transid,
440 				  expect_key->objectid,
441 				  expect_key->type, expect_key->offset,
442 				  found_key.objectid, found_key.type,
443 				  found_key.offset);
444 			ret = -EUCLEAN;
445 			goto out;
446 		}
447 	}
448 	if (check->owner_root) {
449 		ret = btrfs_check_eb_owner(eb, check->owner_root);
450 		if (ret < 0)
451 			goto out;
452 	}
453 
454 	/*
455 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
456 	 * that we don't try and read the other copies of this block, just
457 	 * return -EIO.
458 	 */
459 	if (found_level == 0 && btrfs_check_leaf(eb)) {
460 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
461 		ret = -EIO;
462 	}
463 
464 	if (found_level > 0 && btrfs_check_node(eb))
465 		ret = -EIO;
466 
467 	if (ret)
468 		btrfs_err(fs_info,
469 		"read time tree block corruption detected on logical %llu mirror %u",
470 			  eb->start, eb->read_mirror);
471 out:
472 	return ret;
473 }
474 
475 #ifdef CONFIG_MIGRATION
476 static int btree_migrate_folio(struct address_space *mapping,
477 		struct folio *dst, struct folio *src, enum migrate_mode mode)
478 {
479 	/*
480 	 * we can't safely write a btree page from here,
481 	 * we haven't done the locking hook
482 	 */
483 	if (folio_test_dirty(src))
484 		return -EAGAIN;
485 	/*
486 	 * Buffers may be managed in a filesystem specific way.
487 	 * We must have no buffers or drop them.
488 	 */
489 	if (folio_get_private(src) &&
490 	    !filemap_release_folio(src, GFP_KERNEL))
491 		return -EAGAIN;
492 	return migrate_folio(mapping, dst, src, mode);
493 }
494 #else
495 #define btree_migrate_folio NULL
496 #endif
497 
498 static int btree_writepages(struct address_space *mapping,
499 			    struct writeback_control *wbc)
500 {
501 	struct btrfs_fs_info *fs_info;
502 	int ret;
503 
504 	if (wbc->sync_mode == WB_SYNC_NONE) {
505 
506 		if (wbc->for_kupdate)
507 			return 0;
508 
509 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
510 		/* this is a bit racy, but that's ok */
511 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
512 					     BTRFS_DIRTY_METADATA_THRESH,
513 					     fs_info->dirty_metadata_batch);
514 		if (ret < 0)
515 			return 0;
516 	}
517 	return btree_write_cache_pages(mapping, wbc);
518 }
519 
520 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
521 {
522 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
523 		return false;
524 
525 	return try_release_extent_buffer(&folio->page);
526 }
527 
528 static void btree_invalidate_folio(struct folio *folio, size_t offset,
529 				 size_t length)
530 {
531 	struct extent_io_tree *tree;
532 	tree = &BTRFS_I(folio->mapping->host)->io_tree;
533 	extent_invalidate_folio(tree, folio, offset);
534 	btree_release_folio(folio, GFP_NOFS);
535 	if (folio_get_private(folio)) {
536 		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
537 			   "folio private not zero on folio %llu",
538 			   (unsigned long long)folio_pos(folio));
539 		folio_detach_private(folio);
540 	}
541 }
542 
543 #ifdef DEBUG
544 static bool btree_dirty_folio(struct address_space *mapping,
545 		struct folio *folio)
546 {
547 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
548 	struct btrfs_subpage_info *spi = fs_info->subpage_info;
549 	struct btrfs_subpage *subpage;
550 	struct extent_buffer *eb;
551 	int cur_bit = 0;
552 	u64 page_start = folio_pos(folio);
553 
554 	if (fs_info->sectorsize == PAGE_SIZE) {
555 		eb = folio_get_private(folio);
556 		BUG_ON(!eb);
557 		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 		BUG_ON(!atomic_read(&eb->refs));
559 		btrfs_assert_tree_write_locked(eb);
560 		return filemap_dirty_folio(mapping, folio);
561 	}
562 
563 	ASSERT(spi);
564 	subpage = folio_get_private(folio);
565 
566 	for (cur_bit = spi->dirty_offset;
567 	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568 	     cur_bit++) {
569 		unsigned long flags;
570 		u64 cur;
571 
572 		spin_lock_irqsave(&subpage->lock, flags);
573 		if (!test_bit(cur_bit, subpage->bitmaps)) {
574 			spin_unlock_irqrestore(&subpage->lock, flags);
575 			continue;
576 		}
577 		spin_unlock_irqrestore(&subpage->lock, flags);
578 		cur = page_start + cur_bit * fs_info->sectorsize;
579 
580 		eb = find_extent_buffer(fs_info, cur);
581 		ASSERT(eb);
582 		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583 		ASSERT(atomic_read(&eb->refs));
584 		btrfs_assert_tree_write_locked(eb);
585 		free_extent_buffer(eb);
586 
587 		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
588 	}
589 	return filemap_dirty_folio(mapping, folio);
590 }
591 #else
592 #define btree_dirty_folio filemap_dirty_folio
593 #endif
594 
595 static const struct address_space_operations btree_aops = {
596 	.writepages	= btree_writepages,
597 	.release_folio	= btree_release_folio,
598 	.invalidate_folio = btree_invalidate_folio,
599 	.migrate_folio	= btree_migrate_folio,
600 	.dirty_folio	= btree_dirty_folio,
601 };
602 
603 struct extent_buffer *btrfs_find_create_tree_block(
604 						struct btrfs_fs_info *fs_info,
605 						u64 bytenr, u64 owner_root,
606 						int level)
607 {
608 	if (btrfs_is_testing(fs_info))
609 		return alloc_test_extent_buffer(fs_info, bytenr);
610 	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
611 }
612 
613 /*
614  * Read tree block at logical address @bytenr and do variant basic but critical
615  * verification.
616  *
617  * @check:		expected tree parentness check, see comments of the
618  *			structure for details.
619  */
620 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
621 				      struct btrfs_tree_parent_check *check)
622 {
623 	struct extent_buffer *buf = NULL;
624 	int ret;
625 
626 	ASSERT(check);
627 
628 	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629 					   check->level);
630 	if (IS_ERR(buf))
631 		return buf;
632 
633 	ret = btrfs_read_extent_buffer(buf, check);
634 	if (ret) {
635 		free_extent_buffer_stale(buf);
636 		return ERR_PTR(ret);
637 	}
638 	if (btrfs_check_eb_owner(buf, check->owner_root)) {
639 		free_extent_buffer_stale(buf);
640 		return ERR_PTR(-EUCLEAN);
641 	}
642 	return buf;
643 
644 }
645 
646 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
647 			 u64 objectid)
648 {
649 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
650 
651 	memset(&root->root_key, 0, sizeof(root->root_key));
652 	memset(&root->root_item, 0, sizeof(root->root_item));
653 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
654 	root->fs_info = fs_info;
655 	root->root_key.objectid = objectid;
656 	root->node = NULL;
657 	root->commit_root = NULL;
658 	root->state = 0;
659 	RB_CLEAR_NODE(&root->rb_node);
660 
661 	root->last_trans = 0;
662 	root->free_objectid = 0;
663 	root->nr_delalloc_inodes = 0;
664 	root->nr_ordered_extents = 0;
665 	root->inode_tree = RB_ROOT;
666 	/* GFP flags are compatible with XA_FLAGS_*. */
667 	xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
668 
669 	btrfs_init_root_block_rsv(root);
670 
671 	INIT_LIST_HEAD(&root->dirty_list);
672 	INIT_LIST_HEAD(&root->root_list);
673 	INIT_LIST_HEAD(&root->delalloc_inodes);
674 	INIT_LIST_HEAD(&root->delalloc_root);
675 	INIT_LIST_HEAD(&root->ordered_extents);
676 	INIT_LIST_HEAD(&root->ordered_root);
677 	INIT_LIST_HEAD(&root->reloc_dirty_list);
678 	spin_lock_init(&root->inode_lock);
679 	spin_lock_init(&root->delalloc_lock);
680 	spin_lock_init(&root->ordered_extent_lock);
681 	spin_lock_init(&root->accounting_lock);
682 	spin_lock_init(&root->qgroup_meta_rsv_lock);
683 	mutex_init(&root->objectid_mutex);
684 	mutex_init(&root->log_mutex);
685 	mutex_init(&root->ordered_extent_mutex);
686 	mutex_init(&root->delalloc_mutex);
687 	init_waitqueue_head(&root->qgroup_flush_wait);
688 	init_waitqueue_head(&root->log_writer_wait);
689 	init_waitqueue_head(&root->log_commit_wait[0]);
690 	init_waitqueue_head(&root->log_commit_wait[1]);
691 	INIT_LIST_HEAD(&root->log_ctxs[0]);
692 	INIT_LIST_HEAD(&root->log_ctxs[1]);
693 	atomic_set(&root->log_commit[0], 0);
694 	atomic_set(&root->log_commit[1], 0);
695 	atomic_set(&root->log_writers, 0);
696 	atomic_set(&root->log_batch, 0);
697 	refcount_set(&root->refs, 1);
698 	atomic_set(&root->snapshot_force_cow, 0);
699 	atomic_set(&root->nr_swapfiles, 0);
700 	btrfs_set_root_log_transid(root, 0);
701 	root->log_transid_committed = -1;
702 	btrfs_set_root_last_log_commit(root, 0);
703 	root->anon_dev = 0;
704 	if (!dummy) {
705 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
706 				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
707 		extent_io_tree_init(fs_info, &root->log_csum_range,
708 				    IO_TREE_LOG_CSUM_RANGE);
709 	}
710 
711 	spin_lock_init(&root->root_item_lock);
712 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
713 #ifdef CONFIG_BTRFS_DEBUG
714 	INIT_LIST_HEAD(&root->leak_list);
715 	spin_lock(&fs_info->fs_roots_radix_lock);
716 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
717 	spin_unlock(&fs_info->fs_roots_radix_lock);
718 #endif
719 }
720 
721 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
722 					   u64 objectid, gfp_t flags)
723 {
724 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
725 	if (root)
726 		__setup_root(root, fs_info, objectid);
727 	return root;
728 }
729 
730 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
731 /* Should only be used by the testing infrastructure */
732 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
733 {
734 	struct btrfs_root *root;
735 
736 	if (!fs_info)
737 		return ERR_PTR(-EINVAL);
738 
739 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
740 	if (!root)
741 		return ERR_PTR(-ENOMEM);
742 
743 	/* We don't use the stripesize in selftest, set it as sectorsize */
744 	root->alloc_bytenr = 0;
745 
746 	return root;
747 }
748 #endif
749 
750 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
751 {
752 	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
753 	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
754 
755 	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
756 }
757 
758 static int global_root_key_cmp(const void *k, const struct rb_node *node)
759 {
760 	const struct btrfs_key *key = k;
761 	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
762 
763 	return btrfs_comp_cpu_keys(key, &root->root_key);
764 }
765 
766 int btrfs_global_root_insert(struct btrfs_root *root)
767 {
768 	struct btrfs_fs_info *fs_info = root->fs_info;
769 	struct rb_node *tmp;
770 	int ret = 0;
771 
772 	write_lock(&fs_info->global_root_lock);
773 	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
774 	write_unlock(&fs_info->global_root_lock);
775 
776 	if (tmp) {
777 		ret = -EEXIST;
778 		btrfs_warn(fs_info, "global root %llu %llu already exists",
779 				root->root_key.objectid, root->root_key.offset);
780 	}
781 	return ret;
782 }
783 
784 void btrfs_global_root_delete(struct btrfs_root *root)
785 {
786 	struct btrfs_fs_info *fs_info = root->fs_info;
787 
788 	write_lock(&fs_info->global_root_lock);
789 	rb_erase(&root->rb_node, &fs_info->global_root_tree);
790 	write_unlock(&fs_info->global_root_lock);
791 }
792 
793 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
794 				     struct btrfs_key *key)
795 {
796 	struct rb_node *node;
797 	struct btrfs_root *root = NULL;
798 
799 	read_lock(&fs_info->global_root_lock);
800 	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
801 	if (node)
802 		root = container_of(node, struct btrfs_root, rb_node);
803 	read_unlock(&fs_info->global_root_lock);
804 
805 	return root;
806 }
807 
808 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
809 {
810 	struct btrfs_block_group *block_group;
811 	u64 ret;
812 
813 	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
814 		return 0;
815 
816 	if (bytenr)
817 		block_group = btrfs_lookup_block_group(fs_info, bytenr);
818 	else
819 		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
820 	ASSERT(block_group);
821 	if (!block_group)
822 		return 0;
823 	ret = block_group->global_root_id;
824 	btrfs_put_block_group(block_group);
825 
826 	return ret;
827 }
828 
829 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
830 {
831 	struct btrfs_key key = {
832 		.objectid = BTRFS_CSUM_TREE_OBJECTID,
833 		.type = BTRFS_ROOT_ITEM_KEY,
834 		.offset = btrfs_global_root_id(fs_info, bytenr),
835 	};
836 
837 	return btrfs_global_root(fs_info, &key);
838 }
839 
840 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
841 {
842 	struct btrfs_key key = {
843 		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
844 		.type = BTRFS_ROOT_ITEM_KEY,
845 		.offset = btrfs_global_root_id(fs_info, bytenr),
846 	};
847 
848 	return btrfs_global_root(fs_info, &key);
849 }
850 
851 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
852 {
853 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
854 		return fs_info->block_group_root;
855 	return btrfs_extent_root(fs_info, 0);
856 }
857 
858 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
859 				     u64 objectid)
860 {
861 	struct btrfs_fs_info *fs_info = trans->fs_info;
862 	struct extent_buffer *leaf;
863 	struct btrfs_root *tree_root = fs_info->tree_root;
864 	struct btrfs_root *root;
865 	struct btrfs_key key;
866 	unsigned int nofs_flag;
867 	int ret = 0;
868 
869 	/*
870 	 * We're holding a transaction handle, so use a NOFS memory allocation
871 	 * context to avoid deadlock if reclaim happens.
872 	 */
873 	nofs_flag = memalloc_nofs_save();
874 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
875 	memalloc_nofs_restore(nofs_flag);
876 	if (!root)
877 		return ERR_PTR(-ENOMEM);
878 
879 	root->root_key.objectid = objectid;
880 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
881 	root->root_key.offset = 0;
882 
883 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
884 				      0, BTRFS_NESTING_NORMAL);
885 	if (IS_ERR(leaf)) {
886 		ret = PTR_ERR(leaf);
887 		leaf = NULL;
888 		goto fail;
889 	}
890 
891 	root->node = leaf;
892 	btrfs_mark_buffer_dirty(trans, leaf);
893 
894 	root->commit_root = btrfs_root_node(root);
895 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
896 
897 	btrfs_set_root_flags(&root->root_item, 0);
898 	btrfs_set_root_limit(&root->root_item, 0);
899 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
900 	btrfs_set_root_generation(&root->root_item, trans->transid);
901 	btrfs_set_root_level(&root->root_item, 0);
902 	btrfs_set_root_refs(&root->root_item, 1);
903 	btrfs_set_root_used(&root->root_item, leaf->len);
904 	btrfs_set_root_last_snapshot(&root->root_item, 0);
905 	btrfs_set_root_dirid(&root->root_item, 0);
906 	if (is_fstree(objectid))
907 		generate_random_guid(root->root_item.uuid);
908 	else
909 		export_guid(root->root_item.uuid, &guid_null);
910 	btrfs_set_root_drop_level(&root->root_item, 0);
911 
912 	btrfs_tree_unlock(leaf);
913 
914 	key.objectid = objectid;
915 	key.type = BTRFS_ROOT_ITEM_KEY;
916 	key.offset = 0;
917 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
918 	if (ret)
919 		goto fail;
920 
921 	return root;
922 
923 fail:
924 	btrfs_put_root(root);
925 
926 	return ERR_PTR(ret);
927 }
928 
929 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
930 					 struct btrfs_fs_info *fs_info)
931 {
932 	struct btrfs_root *root;
933 
934 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
935 	if (!root)
936 		return ERR_PTR(-ENOMEM);
937 
938 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
939 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
940 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
941 
942 	return root;
943 }
944 
945 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
946 			      struct btrfs_root *root)
947 {
948 	struct extent_buffer *leaf;
949 
950 	/*
951 	 * DON'T set SHAREABLE bit for log trees.
952 	 *
953 	 * Log trees are not exposed to user space thus can't be snapshotted,
954 	 * and they go away before a real commit is actually done.
955 	 *
956 	 * They do store pointers to file data extents, and those reference
957 	 * counts still get updated (along with back refs to the log tree).
958 	 */
959 
960 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
961 			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
962 	if (IS_ERR(leaf))
963 		return PTR_ERR(leaf);
964 
965 	root->node = leaf;
966 
967 	btrfs_mark_buffer_dirty(trans, root->node);
968 	btrfs_tree_unlock(root->node);
969 
970 	return 0;
971 }
972 
973 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
974 			     struct btrfs_fs_info *fs_info)
975 {
976 	struct btrfs_root *log_root;
977 
978 	log_root = alloc_log_tree(trans, fs_info);
979 	if (IS_ERR(log_root))
980 		return PTR_ERR(log_root);
981 
982 	if (!btrfs_is_zoned(fs_info)) {
983 		int ret = btrfs_alloc_log_tree_node(trans, log_root);
984 
985 		if (ret) {
986 			btrfs_put_root(log_root);
987 			return ret;
988 		}
989 	}
990 
991 	WARN_ON(fs_info->log_root_tree);
992 	fs_info->log_root_tree = log_root;
993 	return 0;
994 }
995 
996 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
997 		       struct btrfs_root *root)
998 {
999 	struct btrfs_fs_info *fs_info = root->fs_info;
1000 	struct btrfs_root *log_root;
1001 	struct btrfs_inode_item *inode_item;
1002 	int ret;
1003 
1004 	log_root = alloc_log_tree(trans, fs_info);
1005 	if (IS_ERR(log_root))
1006 		return PTR_ERR(log_root);
1007 
1008 	ret = btrfs_alloc_log_tree_node(trans, log_root);
1009 	if (ret) {
1010 		btrfs_put_root(log_root);
1011 		return ret;
1012 	}
1013 
1014 	log_root->last_trans = trans->transid;
1015 	log_root->root_key.offset = root->root_key.objectid;
1016 
1017 	inode_item = &log_root->root_item.inode;
1018 	btrfs_set_stack_inode_generation(inode_item, 1);
1019 	btrfs_set_stack_inode_size(inode_item, 3);
1020 	btrfs_set_stack_inode_nlink(inode_item, 1);
1021 	btrfs_set_stack_inode_nbytes(inode_item,
1022 				     fs_info->nodesize);
1023 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024 
1025 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1026 
1027 	WARN_ON(root->log_root);
1028 	root->log_root = log_root;
1029 	btrfs_set_root_log_transid(root, 0);
1030 	root->log_transid_committed = -1;
1031 	btrfs_set_root_last_log_commit(root, 0);
1032 	return 0;
1033 }
1034 
1035 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036 					      struct btrfs_path *path,
1037 					      struct btrfs_key *key)
1038 {
1039 	struct btrfs_root *root;
1040 	struct btrfs_tree_parent_check check = { 0 };
1041 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1042 	u64 generation;
1043 	int ret;
1044 	int level;
1045 
1046 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047 	if (!root)
1048 		return ERR_PTR(-ENOMEM);
1049 
1050 	ret = btrfs_find_root(tree_root, key, path,
1051 			      &root->root_item, &root->root_key);
1052 	if (ret) {
1053 		if (ret > 0)
1054 			ret = -ENOENT;
1055 		goto fail;
1056 	}
1057 
1058 	generation = btrfs_root_generation(&root->root_item);
1059 	level = btrfs_root_level(&root->root_item);
1060 	check.level = level;
1061 	check.transid = generation;
1062 	check.owner_root = key->objectid;
1063 	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064 				     &check);
1065 	if (IS_ERR(root->node)) {
1066 		ret = PTR_ERR(root->node);
1067 		root->node = NULL;
1068 		goto fail;
1069 	}
1070 	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071 		ret = -EIO;
1072 		goto fail;
1073 	}
1074 
1075 	/*
1076 	 * For real fs, and not log/reloc trees, root owner must
1077 	 * match its root node owner
1078 	 */
1079 	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080 	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081 	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082 	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1083 		btrfs_crit(fs_info,
1084 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085 			   root->root_key.objectid, root->node->start,
1086 			   btrfs_header_owner(root->node),
1087 			   root->root_key.objectid);
1088 		ret = -EUCLEAN;
1089 		goto fail;
1090 	}
1091 	root->commit_root = btrfs_root_node(root);
1092 	return root;
1093 fail:
1094 	btrfs_put_root(root);
1095 	return ERR_PTR(ret);
1096 }
1097 
1098 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099 					struct btrfs_key *key)
1100 {
1101 	struct btrfs_root *root;
1102 	struct btrfs_path *path;
1103 
1104 	path = btrfs_alloc_path();
1105 	if (!path)
1106 		return ERR_PTR(-ENOMEM);
1107 	root = read_tree_root_path(tree_root, path, key);
1108 	btrfs_free_path(path);
1109 
1110 	return root;
1111 }
1112 
1113 /*
1114  * Initialize subvolume root in-memory structure
1115  *
1116  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1117  */
1118 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119 {
1120 	int ret;
1121 
1122 	btrfs_drew_lock_init(&root->snapshot_lock);
1123 
1124 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125 	    !btrfs_is_data_reloc_root(root) &&
1126 	    is_fstree(root->root_key.objectid)) {
1127 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128 		btrfs_check_and_init_root_item(&root->root_item);
1129 	}
1130 
1131 	/*
1132 	 * Don't assign anonymous block device to roots that are not exposed to
1133 	 * userspace, the id pool is limited to 1M
1134 	 */
1135 	if (is_fstree(root->root_key.objectid) &&
1136 	    btrfs_root_refs(&root->root_item) > 0) {
1137 		if (!anon_dev) {
1138 			ret = get_anon_bdev(&root->anon_dev);
1139 			if (ret)
1140 				goto fail;
1141 		} else {
1142 			root->anon_dev = anon_dev;
1143 		}
1144 	}
1145 
1146 	mutex_lock(&root->objectid_mutex);
1147 	ret = btrfs_init_root_free_objectid(root);
1148 	if (ret) {
1149 		mutex_unlock(&root->objectid_mutex);
1150 		goto fail;
1151 	}
1152 
1153 	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1154 
1155 	mutex_unlock(&root->objectid_mutex);
1156 
1157 	return 0;
1158 fail:
1159 	/* The caller is responsible to call btrfs_free_fs_root */
1160 	return ret;
1161 }
1162 
1163 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164 					       u64 root_id)
1165 {
1166 	struct btrfs_root *root;
1167 
1168 	spin_lock(&fs_info->fs_roots_radix_lock);
1169 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170 				 (unsigned long)root_id);
1171 	root = btrfs_grab_root(root);
1172 	spin_unlock(&fs_info->fs_roots_radix_lock);
1173 	return root;
1174 }
1175 
1176 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177 						u64 objectid)
1178 {
1179 	struct btrfs_key key = {
1180 		.objectid = objectid,
1181 		.type = BTRFS_ROOT_ITEM_KEY,
1182 		.offset = 0,
1183 	};
1184 
1185 	switch (objectid) {
1186 	case BTRFS_ROOT_TREE_OBJECTID:
1187 		return btrfs_grab_root(fs_info->tree_root);
1188 	case BTRFS_EXTENT_TREE_OBJECTID:
1189 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190 	case BTRFS_CHUNK_TREE_OBJECTID:
1191 		return btrfs_grab_root(fs_info->chunk_root);
1192 	case BTRFS_DEV_TREE_OBJECTID:
1193 		return btrfs_grab_root(fs_info->dev_root);
1194 	case BTRFS_CSUM_TREE_OBJECTID:
1195 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196 	case BTRFS_QUOTA_TREE_OBJECTID:
1197 		return btrfs_grab_root(fs_info->quota_root);
1198 	case BTRFS_UUID_TREE_OBJECTID:
1199 		return btrfs_grab_root(fs_info->uuid_root);
1200 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201 		return btrfs_grab_root(fs_info->block_group_root);
1202 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203 		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204 	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205 		return btrfs_grab_root(fs_info->stripe_root);
1206 	default:
1207 		return NULL;
1208 	}
1209 }
1210 
1211 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212 			 struct btrfs_root *root)
1213 {
1214 	int ret;
1215 
1216 	ret = radix_tree_preload(GFP_NOFS);
1217 	if (ret)
1218 		return ret;
1219 
1220 	spin_lock(&fs_info->fs_roots_radix_lock);
1221 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222 				(unsigned long)root->root_key.objectid,
1223 				root);
1224 	if (ret == 0) {
1225 		btrfs_grab_root(root);
1226 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227 	}
1228 	spin_unlock(&fs_info->fs_roots_radix_lock);
1229 	radix_tree_preload_end();
1230 
1231 	return ret;
1232 }
1233 
1234 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235 {
1236 #ifdef CONFIG_BTRFS_DEBUG
1237 	struct btrfs_root *root;
1238 
1239 	while (!list_empty(&fs_info->allocated_roots)) {
1240 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241 
1242 		root = list_first_entry(&fs_info->allocated_roots,
1243 					struct btrfs_root, leak_list);
1244 		btrfs_err(fs_info, "leaked root %s refcount %d",
1245 			  btrfs_root_name(&root->root_key, buf),
1246 			  refcount_read(&root->refs));
1247 		while (refcount_read(&root->refs) > 1)
1248 			btrfs_put_root(root);
1249 		btrfs_put_root(root);
1250 	}
1251 #endif
1252 }
1253 
1254 static void free_global_roots(struct btrfs_fs_info *fs_info)
1255 {
1256 	struct btrfs_root *root;
1257 	struct rb_node *node;
1258 
1259 	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260 		root = rb_entry(node, struct btrfs_root, rb_node);
1261 		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262 		btrfs_put_root(root);
1263 	}
1264 }
1265 
1266 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267 {
1268 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1269 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1270 	percpu_counter_destroy(&fs_info->ordered_bytes);
1271 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1272 	btrfs_free_csum_hash(fs_info);
1273 	btrfs_free_stripe_hash_table(fs_info);
1274 	btrfs_free_ref_cache(fs_info);
1275 	kfree(fs_info->balance_ctl);
1276 	kfree(fs_info->delayed_root);
1277 	free_global_roots(fs_info);
1278 	btrfs_put_root(fs_info->tree_root);
1279 	btrfs_put_root(fs_info->chunk_root);
1280 	btrfs_put_root(fs_info->dev_root);
1281 	btrfs_put_root(fs_info->quota_root);
1282 	btrfs_put_root(fs_info->uuid_root);
1283 	btrfs_put_root(fs_info->fs_root);
1284 	btrfs_put_root(fs_info->data_reloc_root);
1285 	btrfs_put_root(fs_info->block_group_root);
1286 	btrfs_put_root(fs_info->stripe_root);
1287 	btrfs_check_leaked_roots(fs_info);
1288 	btrfs_extent_buffer_leak_debug_check(fs_info);
1289 	kfree(fs_info->super_copy);
1290 	kfree(fs_info->super_for_commit);
1291 	kfree(fs_info->subpage_info);
1292 	kvfree(fs_info);
1293 }
1294 
1295 
1296 /*
1297  * Get an in-memory reference of a root structure.
1298  *
1299  * For essential trees like root/extent tree, we grab it from fs_info directly.
1300  * For subvolume trees, we check the cached filesystem roots first. If not
1301  * found, then read it from disk and add it to cached fs roots.
1302  *
1303  * Caller should release the root by calling btrfs_put_root() after the usage.
1304  *
1305  * NOTE: Reloc and log trees can't be read by this function as they share the
1306  *	 same root objectid.
1307  *
1308  * @objectid:	root id
1309  * @anon_dev:	preallocated anonymous block device number for new roots,
1310  * 		pass 0 for new allocation.
1311  * @check_ref:	whether to check root item references, If true, return -ENOENT
1312  *		for orphan roots
1313  */
1314 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1315 					     u64 objectid, dev_t anon_dev,
1316 					     bool check_ref)
1317 {
1318 	struct btrfs_root *root;
1319 	struct btrfs_path *path;
1320 	struct btrfs_key key;
1321 	int ret;
1322 
1323 	root = btrfs_get_global_root(fs_info, objectid);
1324 	if (root)
1325 		return root;
1326 
1327 	/*
1328 	 * If we're called for non-subvolume trees, and above function didn't
1329 	 * find one, do not try to read it from disk.
1330 	 *
1331 	 * This is namely for free-space-tree and quota tree, which can change
1332 	 * at runtime and should only be grabbed from fs_info.
1333 	 */
1334 	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1335 		return ERR_PTR(-ENOENT);
1336 again:
1337 	root = btrfs_lookup_fs_root(fs_info, objectid);
1338 	if (root) {
1339 		/* Shouldn't get preallocated anon_dev for cached roots */
1340 		ASSERT(!anon_dev);
1341 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1342 			btrfs_put_root(root);
1343 			return ERR_PTR(-ENOENT);
1344 		}
1345 		return root;
1346 	}
1347 
1348 	key.objectid = objectid;
1349 	key.type = BTRFS_ROOT_ITEM_KEY;
1350 	key.offset = (u64)-1;
1351 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1352 	if (IS_ERR(root))
1353 		return root;
1354 
1355 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1356 		ret = -ENOENT;
1357 		goto fail;
1358 	}
1359 
1360 	ret = btrfs_init_fs_root(root, anon_dev);
1361 	if (ret)
1362 		goto fail;
1363 
1364 	path = btrfs_alloc_path();
1365 	if (!path) {
1366 		ret = -ENOMEM;
1367 		goto fail;
1368 	}
1369 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1370 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1371 	key.offset = objectid;
1372 
1373 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1374 	btrfs_free_path(path);
1375 	if (ret < 0)
1376 		goto fail;
1377 	if (ret == 0)
1378 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1379 
1380 	ret = btrfs_insert_fs_root(fs_info, root);
1381 	if (ret) {
1382 		if (ret == -EEXIST) {
1383 			btrfs_put_root(root);
1384 			goto again;
1385 		}
1386 		goto fail;
1387 	}
1388 	return root;
1389 fail:
1390 	/*
1391 	 * If our caller provided us an anonymous device, then it's his
1392 	 * responsibility to free it in case we fail. So we have to set our
1393 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1394 	 * and once again by our caller.
1395 	 */
1396 	if (anon_dev)
1397 		root->anon_dev = 0;
1398 	btrfs_put_root(root);
1399 	return ERR_PTR(ret);
1400 }
1401 
1402 /*
1403  * Get in-memory reference of a root structure
1404  *
1405  * @objectid:	tree objectid
1406  * @check_ref:	if set, verify that the tree exists and the item has at least
1407  *		one reference
1408  */
1409 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1410 				     u64 objectid, bool check_ref)
1411 {
1412 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1413 }
1414 
1415 /*
1416  * Get in-memory reference of a root structure, created as new, optionally pass
1417  * the anonymous block device id
1418  *
1419  * @objectid:	tree objectid
1420  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1421  *		parameter value
1422  */
1423 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1424 					 u64 objectid, dev_t anon_dev)
1425 {
1426 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1427 }
1428 
1429 /*
1430  * Return a root for the given objectid.
1431  *
1432  * @fs_info:	the fs_info
1433  * @objectid:	the objectid we need to lookup
1434  *
1435  * This is exclusively used for backref walking, and exists specifically because
1436  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1437  * creation time, which means we may have to read the tree_root in order to look
1438  * up a fs root that is not in memory.  If the root is not in memory we will
1439  * read the tree root commit root and look up the fs root from there.  This is a
1440  * temporary root, it will not be inserted into the radix tree as it doesn't
1441  * have the most uptodate information, it'll simply be discarded once the
1442  * backref code is finished using the root.
1443  */
1444 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1445 						 struct btrfs_path *path,
1446 						 u64 objectid)
1447 {
1448 	struct btrfs_root *root;
1449 	struct btrfs_key key;
1450 
1451 	ASSERT(path->search_commit_root && path->skip_locking);
1452 
1453 	/*
1454 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1455 	 * since this is called via the backref walking code we won't be looking
1456 	 * up a root that doesn't exist, unless there's corruption.  So if root
1457 	 * != NULL just return it.
1458 	 */
1459 	root = btrfs_get_global_root(fs_info, objectid);
1460 	if (root)
1461 		return root;
1462 
1463 	root = btrfs_lookup_fs_root(fs_info, objectid);
1464 	if (root)
1465 		return root;
1466 
1467 	key.objectid = objectid;
1468 	key.type = BTRFS_ROOT_ITEM_KEY;
1469 	key.offset = (u64)-1;
1470 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1471 	btrfs_release_path(path);
1472 
1473 	return root;
1474 }
1475 
1476 static int cleaner_kthread(void *arg)
1477 {
1478 	struct btrfs_fs_info *fs_info = arg;
1479 	int again;
1480 
1481 	while (1) {
1482 		again = 0;
1483 
1484 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1485 
1486 		/* Make the cleaner go to sleep early. */
1487 		if (btrfs_need_cleaner_sleep(fs_info))
1488 			goto sleep;
1489 
1490 		/*
1491 		 * Do not do anything if we might cause open_ctree() to block
1492 		 * before we have finished mounting the filesystem.
1493 		 */
1494 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1495 			goto sleep;
1496 
1497 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1498 			goto sleep;
1499 
1500 		/*
1501 		 * Avoid the problem that we change the status of the fs
1502 		 * during the above check and trylock.
1503 		 */
1504 		if (btrfs_need_cleaner_sleep(fs_info)) {
1505 			mutex_unlock(&fs_info->cleaner_mutex);
1506 			goto sleep;
1507 		}
1508 
1509 		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1510 			btrfs_sysfs_feature_update(fs_info);
1511 
1512 		btrfs_run_delayed_iputs(fs_info);
1513 
1514 		again = btrfs_clean_one_deleted_snapshot(fs_info);
1515 		mutex_unlock(&fs_info->cleaner_mutex);
1516 
1517 		/*
1518 		 * The defragger has dealt with the R/O remount and umount,
1519 		 * needn't do anything special here.
1520 		 */
1521 		btrfs_run_defrag_inodes(fs_info);
1522 
1523 		/*
1524 		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1525 		 * with relocation (btrfs_relocate_chunk) and relocation
1526 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1527 		 * after acquiring fs_info->reclaim_bgs_lock. So we
1528 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1529 		 * unused block groups.
1530 		 */
1531 		btrfs_delete_unused_bgs(fs_info);
1532 
1533 		/*
1534 		 * Reclaim block groups in the reclaim_bgs list after we deleted
1535 		 * all unused block_groups. This possibly gives us some more free
1536 		 * space.
1537 		 */
1538 		btrfs_reclaim_bgs(fs_info);
1539 sleep:
1540 		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1541 		if (kthread_should_park())
1542 			kthread_parkme();
1543 		if (kthread_should_stop())
1544 			return 0;
1545 		if (!again) {
1546 			set_current_state(TASK_INTERRUPTIBLE);
1547 			schedule();
1548 			__set_current_state(TASK_RUNNING);
1549 		}
1550 	}
1551 }
1552 
1553 static int transaction_kthread(void *arg)
1554 {
1555 	struct btrfs_root *root = arg;
1556 	struct btrfs_fs_info *fs_info = root->fs_info;
1557 	struct btrfs_trans_handle *trans;
1558 	struct btrfs_transaction *cur;
1559 	u64 transid;
1560 	time64_t delta;
1561 	unsigned long delay;
1562 	bool cannot_commit;
1563 
1564 	do {
1565 		cannot_commit = false;
1566 		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1567 		mutex_lock(&fs_info->transaction_kthread_mutex);
1568 
1569 		spin_lock(&fs_info->trans_lock);
1570 		cur = fs_info->running_transaction;
1571 		if (!cur) {
1572 			spin_unlock(&fs_info->trans_lock);
1573 			goto sleep;
1574 		}
1575 
1576 		delta = ktime_get_seconds() - cur->start_time;
1577 		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1578 		    cur->state < TRANS_STATE_COMMIT_PREP &&
1579 		    delta < fs_info->commit_interval) {
1580 			spin_unlock(&fs_info->trans_lock);
1581 			delay -= msecs_to_jiffies((delta - 1) * 1000);
1582 			delay = min(delay,
1583 				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1584 			goto sleep;
1585 		}
1586 		transid = cur->transid;
1587 		spin_unlock(&fs_info->trans_lock);
1588 
1589 		/* If the file system is aborted, this will always fail. */
1590 		trans = btrfs_attach_transaction(root);
1591 		if (IS_ERR(trans)) {
1592 			if (PTR_ERR(trans) != -ENOENT)
1593 				cannot_commit = true;
1594 			goto sleep;
1595 		}
1596 		if (transid == trans->transid) {
1597 			btrfs_commit_transaction(trans);
1598 		} else {
1599 			btrfs_end_transaction(trans);
1600 		}
1601 sleep:
1602 		wake_up_process(fs_info->cleaner_kthread);
1603 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1604 
1605 		if (BTRFS_FS_ERROR(fs_info))
1606 			btrfs_cleanup_transaction(fs_info);
1607 		if (!kthread_should_stop() &&
1608 				(!btrfs_transaction_blocked(fs_info) ||
1609 				 cannot_commit))
1610 			schedule_timeout_interruptible(delay);
1611 	} while (!kthread_should_stop());
1612 	return 0;
1613 }
1614 
1615 /*
1616  * This will find the highest generation in the array of root backups.  The
1617  * index of the highest array is returned, or -EINVAL if we can't find
1618  * anything.
1619  *
1620  * We check to make sure the array is valid by comparing the
1621  * generation of the latest  root in the array with the generation
1622  * in the super block.  If they don't match we pitch it.
1623  */
1624 static int find_newest_super_backup(struct btrfs_fs_info *info)
1625 {
1626 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1627 	u64 cur;
1628 	struct btrfs_root_backup *root_backup;
1629 	int i;
1630 
1631 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1632 		root_backup = info->super_copy->super_roots + i;
1633 		cur = btrfs_backup_tree_root_gen(root_backup);
1634 		if (cur == newest_gen)
1635 			return i;
1636 	}
1637 
1638 	return -EINVAL;
1639 }
1640 
1641 /*
1642  * copy all the root pointers into the super backup array.
1643  * this will bump the backup pointer by one when it is
1644  * done
1645  */
1646 static void backup_super_roots(struct btrfs_fs_info *info)
1647 {
1648 	const int next_backup = info->backup_root_index;
1649 	struct btrfs_root_backup *root_backup;
1650 
1651 	root_backup = info->super_for_commit->super_roots + next_backup;
1652 
1653 	/*
1654 	 * make sure all of our padding and empty slots get zero filled
1655 	 * regardless of which ones we use today
1656 	 */
1657 	memset(root_backup, 0, sizeof(*root_backup));
1658 
1659 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1660 
1661 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1662 	btrfs_set_backup_tree_root_gen(root_backup,
1663 			       btrfs_header_generation(info->tree_root->node));
1664 
1665 	btrfs_set_backup_tree_root_level(root_backup,
1666 			       btrfs_header_level(info->tree_root->node));
1667 
1668 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1669 	btrfs_set_backup_chunk_root_gen(root_backup,
1670 			       btrfs_header_generation(info->chunk_root->node));
1671 	btrfs_set_backup_chunk_root_level(root_backup,
1672 			       btrfs_header_level(info->chunk_root->node));
1673 
1674 	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1675 		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1676 		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1677 
1678 		btrfs_set_backup_extent_root(root_backup,
1679 					     extent_root->node->start);
1680 		btrfs_set_backup_extent_root_gen(root_backup,
1681 				btrfs_header_generation(extent_root->node));
1682 		btrfs_set_backup_extent_root_level(root_backup,
1683 					btrfs_header_level(extent_root->node));
1684 
1685 		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1686 		btrfs_set_backup_csum_root_gen(root_backup,
1687 					       btrfs_header_generation(csum_root->node));
1688 		btrfs_set_backup_csum_root_level(root_backup,
1689 						 btrfs_header_level(csum_root->node));
1690 	}
1691 
1692 	/*
1693 	 * we might commit during log recovery, which happens before we set
1694 	 * the fs_root.  Make sure it is valid before we fill it in.
1695 	 */
1696 	if (info->fs_root && info->fs_root->node) {
1697 		btrfs_set_backup_fs_root(root_backup,
1698 					 info->fs_root->node->start);
1699 		btrfs_set_backup_fs_root_gen(root_backup,
1700 			       btrfs_header_generation(info->fs_root->node));
1701 		btrfs_set_backup_fs_root_level(root_backup,
1702 			       btrfs_header_level(info->fs_root->node));
1703 	}
1704 
1705 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1706 	btrfs_set_backup_dev_root_gen(root_backup,
1707 			       btrfs_header_generation(info->dev_root->node));
1708 	btrfs_set_backup_dev_root_level(root_backup,
1709 				       btrfs_header_level(info->dev_root->node));
1710 
1711 	btrfs_set_backup_total_bytes(root_backup,
1712 			     btrfs_super_total_bytes(info->super_copy));
1713 	btrfs_set_backup_bytes_used(root_backup,
1714 			     btrfs_super_bytes_used(info->super_copy));
1715 	btrfs_set_backup_num_devices(root_backup,
1716 			     btrfs_super_num_devices(info->super_copy));
1717 
1718 	/*
1719 	 * if we don't copy this out to the super_copy, it won't get remembered
1720 	 * for the next commit
1721 	 */
1722 	memcpy(&info->super_copy->super_roots,
1723 	       &info->super_for_commit->super_roots,
1724 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1725 }
1726 
1727 /*
1728  * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1729  * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1730  *
1731  * @fs_info:  filesystem whose backup roots need to be read
1732  * @priority: priority of backup root required
1733  *
1734  * Returns backup root index on success and -EINVAL otherwise.
1735  */
1736 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1737 {
1738 	int backup_index = find_newest_super_backup(fs_info);
1739 	struct btrfs_super_block *super = fs_info->super_copy;
1740 	struct btrfs_root_backup *root_backup;
1741 
1742 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1743 		if (priority == 0)
1744 			return backup_index;
1745 
1746 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1747 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1748 	} else {
1749 		return -EINVAL;
1750 	}
1751 
1752 	root_backup = super->super_roots + backup_index;
1753 
1754 	btrfs_set_super_generation(super,
1755 				   btrfs_backup_tree_root_gen(root_backup));
1756 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1757 	btrfs_set_super_root_level(super,
1758 				   btrfs_backup_tree_root_level(root_backup));
1759 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1760 
1761 	/*
1762 	 * Fixme: the total bytes and num_devices need to match or we should
1763 	 * need a fsck
1764 	 */
1765 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1766 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1767 
1768 	return backup_index;
1769 }
1770 
1771 /* helper to cleanup workers */
1772 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1773 {
1774 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1775 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1776 	btrfs_destroy_workqueue(fs_info->workers);
1777 	if (fs_info->endio_workers)
1778 		destroy_workqueue(fs_info->endio_workers);
1779 	if (fs_info->rmw_workers)
1780 		destroy_workqueue(fs_info->rmw_workers);
1781 	if (fs_info->compressed_write_workers)
1782 		destroy_workqueue(fs_info->compressed_write_workers);
1783 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1784 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1785 	btrfs_destroy_workqueue(fs_info->delayed_workers);
1786 	btrfs_destroy_workqueue(fs_info->caching_workers);
1787 	btrfs_destroy_workqueue(fs_info->flush_workers);
1788 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1789 	if (fs_info->discard_ctl.discard_workers)
1790 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1791 	/*
1792 	 * Now that all other work queues are destroyed, we can safely destroy
1793 	 * the queues used for metadata I/O, since tasks from those other work
1794 	 * queues can do metadata I/O operations.
1795 	 */
1796 	if (fs_info->endio_meta_workers)
1797 		destroy_workqueue(fs_info->endio_meta_workers);
1798 }
1799 
1800 static void free_root_extent_buffers(struct btrfs_root *root)
1801 {
1802 	if (root) {
1803 		free_extent_buffer(root->node);
1804 		free_extent_buffer(root->commit_root);
1805 		root->node = NULL;
1806 		root->commit_root = NULL;
1807 	}
1808 }
1809 
1810 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1811 {
1812 	struct btrfs_root *root, *tmp;
1813 
1814 	rbtree_postorder_for_each_entry_safe(root, tmp,
1815 					     &fs_info->global_root_tree,
1816 					     rb_node)
1817 		free_root_extent_buffers(root);
1818 }
1819 
1820 /* helper to cleanup tree roots */
1821 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1822 {
1823 	free_root_extent_buffers(info->tree_root);
1824 
1825 	free_global_root_pointers(info);
1826 	free_root_extent_buffers(info->dev_root);
1827 	free_root_extent_buffers(info->quota_root);
1828 	free_root_extent_buffers(info->uuid_root);
1829 	free_root_extent_buffers(info->fs_root);
1830 	free_root_extent_buffers(info->data_reloc_root);
1831 	free_root_extent_buffers(info->block_group_root);
1832 	free_root_extent_buffers(info->stripe_root);
1833 	if (free_chunk_root)
1834 		free_root_extent_buffers(info->chunk_root);
1835 }
1836 
1837 void btrfs_put_root(struct btrfs_root *root)
1838 {
1839 	if (!root)
1840 		return;
1841 
1842 	if (refcount_dec_and_test(&root->refs)) {
1843 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1844 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1845 		if (root->anon_dev)
1846 			free_anon_bdev(root->anon_dev);
1847 		free_root_extent_buffers(root);
1848 #ifdef CONFIG_BTRFS_DEBUG
1849 		spin_lock(&root->fs_info->fs_roots_radix_lock);
1850 		list_del_init(&root->leak_list);
1851 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1852 #endif
1853 		kfree(root);
1854 	}
1855 }
1856 
1857 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1858 {
1859 	int ret;
1860 	struct btrfs_root *gang[8];
1861 	int i;
1862 
1863 	while (!list_empty(&fs_info->dead_roots)) {
1864 		gang[0] = list_entry(fs_info->dead_roots.next,
1865 				     struct btrfs_root, root_list);
1866 		list_del(&gang[0]->root_list);
1867 
1868 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1869 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1870 		btrfs_put_root(gang[0]);
1871 	}
1872 
1873 	while (1) {
1874 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1875 					     (void **)gang, 0,
1876 					     ARRAY_SIZE(gang));
1877 		if (!ret)
1878 			break;
1879 		for (i = 0; i < ret; i++)
1880 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1881 	}
1882 }
1883 
1884 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1885 {
1886 	mutex_init(&fs_info->scrub_lock);
1887 	atomic_set(&fs_info->scrubs_running, 0);
1888 	atomic_set(&fs_info->scrub_pause_req, 0);
1889 	atomic_set(&fs_info->scrubs_paused, 0);
1890 	atomic_set(&fs_info->scrub_cancel_req, 0);
1891 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1892 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1893 }
1894 
1895 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1896 {
1897 	spin_lock_init(&fs_info->balance_lock);
1898 	mutex_init(&fs_info->balance_mutex);
1899 	atomic_set(&fs_info->balance_pause_req, 0);
1900 	atomic_set(&fs_info->balance_cancel_req, 0);
1901 	fs_info->balance_ctl = NULL;
1902 	init_waitqueue_head(&fs_info->balance_wait_q);
1903 	atomic_set(&fs_info->reloc_cancel_req, 0);
1904 }
1905 
1906 static int btrfs_init_btree_inode(struct super_block *sb)
1907 {
1908 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1909 	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1910 					      fs_info->tree_root);
1911 	struct inode *inode;
1912 
1913 	inode = new_inode(sb);
1914 	if (!inode)
1915 		return -ENOMEM;
1916 
1917 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1918 	set_nlink(inode, 1);
1919 	/*
1920 	 * we set the i_size on the btree inode to the max possible int.
1921 	 * the real end of the address space is determined by all of
1922 	 * the devices in the system
1923 	 */
1924 	inode->i_size = OFFSET_MAX;
1925 	inode->i_mapping->a_ops = &btree_aops;
1926 	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1927 
1928 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1929 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1930 			    IO_TREE_BTREE_INODE_IO);
1931 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1932 
1933 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1934 	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1935 	BTRFS_I(inode)->location.type = 0;
1936 	BTRFS_I(inode)->location.offset = 0;
1937 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1938 	__insert_inode_hash(inode, hash);
1939 	fs_info->btree_inode = inode;
1940 
1941 	return 0;
1942 }
1943 
1944 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1945 {
1946 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1947 	init_rwsem(&fs_info->dev_replace.rwsem);
1948 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1949 }
1950 
1951 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1952 {
1953 	spin_lock_init(&fs_info->qgroup_lock);
1954 	mutex_init(&fs_info->qgroup_ioctl_lock);
1955 	fs_info->qgroup_tree = RB_ROOT;
1956 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1957 	fs_info->qgroup_seq = 1;
1958 	fs_info->qgroup_ulist = NULL;
1959 	fs_info->qgroup_rescan_running = false;
1960 	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1961 	mutex_init(&fs_info->qgroup_rescan_lock);
1962 }
1963 
1964 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1965 {
1966 	u32 max_active = fs_info->thread_pool_size;
1967 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1968 	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1969 
1970 	fs_info->workers =
1971 		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1972 
1973 	fs_info->delalloc_workers =
1974 		btrfs_alloc_workqueue(fs_info, "delalloc",
1975 				      flags, max_active, 2);
1976 
1977 	fs_info->flush_workers =
1978 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1979 				      flags, max_active, 0);
1980 
1981 	fs_info->caching_workers =
1982 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1983 
1984 	fs_info->fixup_workers =
1985 		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1986 
1987 	fs_info->endio_workers =
1988 		alloc_workqueue("btrfs-endio", flags, max_active);
1989 	fs_info->endio_meta_workers =
1990 		alloc_workqueue("btrfs-endio-meta", flags, max_active);
1991 	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1992 	fs_info->endio_write_workers =
1993 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1994 				      max_active, 2);
1995 	fs_info->compressed_write_workers =
1996 		alloc_workqueue("btrfs-compressed-write", flags, max_active);
1997 	fs_info->endio_freespace_worker =
1998 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1999 				      max_active, 0);
2000 	fs_info->delayed_workers =
2001 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2002 				      max_active, 0);
2003 	fs_info->qgroup_rescan_workers =
2004 		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2005 					      ordered_flags);
2006 	fs_info->discard_ctl.discard_workers =
2007 		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2008 
2009 	if (!(fs_info->workers &&
2010 	      fs_info->delalloc_workers && fs_info->flush_workers &&
2011 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2012 	      fs_info->compressed_write_workers &&
2013 	      fs_info->endio_write_workers &&
2014 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2015 	      fs_info->caching_workers && fs_info->fixup_workers &&
2016 	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2017 	      fs_info->discard_ctl.discard_workers)) {
2018 		return -ENOMEM;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2025 {
2026 	struct crypto_shash *csum_shash;
2027 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2028 
2029 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2030 
2031 	if (IS_ERR(csum_shash)) {
2032 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2033 			  csum_driver);
2034 		return PTR_ERR(csum_shash);
2035 	}
2036 
2037 	fs_info->csum_shash = csum_shash;
2038 
2039 	/*
2040 	 * Check if the checksum implementation is a fast accelerated one.
2041 	 * As-is this is a bit of a hack and should be replaced once the csum
2042 	 * implementations provide that information themselves.
2043 	 */
2044 	switch (csum_type) {
2045 	case BTRFS_CSUM_TYPE_CRC32:
2046 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2047 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2048 		break;
2049 	case BTRFS_CSUM_TYPE_XXHASH:
2050 		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2051 		break;
2052 	default:
2053 		break;
2054 	}
2055 
2056 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2057 			btrfs_super_csum_name(csum_type),
2058 			crypto_shash_driver_name(csum_shash));
2059 	return 0;
2060 }
2061 
2062 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2063 			    struct btrfs_fs_devices *fs_devices)
2064 {
2065 	int ret;
2066 	struct btrfs_tree_parent_check check = { 0 };
2067 	struct btrfs_root *log_tree_root;
2068 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2069 	u64 bytenr = btrfs_super_log_root(disk_super);
2070 	int level = btrfs_super_log_root_level(disk_super);
2071 
2072 	if (fs_devices->rw_devices == 0) {
2073 		btrfs_warn(fs_info, "log replay required on RO media");
2074 		return -EIO;
2075 	}
2076 
2077 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2078 					 GFP_KERNEL);
2079 	if (!log_tree_root)
2080 		return -ENOMEM;
2081 
2082 	check.level = level;
2083 	check.transid = fs_info->generation + 1;
2084 	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2085 	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2086 	if (IS_ERR(log_tree_root->node)) {
2087 		btrfs_warn(fs_info, "failed to read log tree");
2088 		ret = PTR_ERR(log_tree_root->node);
2089 		log_tree_root->node = NULL;
2090 		btrfs_put_root(log_tree_root);
2091 		return ret;
2092 	}
2093 	if (!extent_buffer_uptodate(log_tree_root->node)) {
2094 		btrfs_err(fs_info, "failed to read log tree");
2095 		btrfs_put_root(log_tree_root);
2096 		return -EIO;
2097 	}
2098 
2099 	/* returns with log_tree_root freed on success */
2100 	ret = btrfs_recover_log_trees(log_tree_root);
2101 	if (ret) {
2102 		btrfs_handle_fs_error(fs_info, ret,
2103 				      "Failed to recover log tree");
2104 		btrfs_put_root(log_tree_root);
2105 		return ret;
2106 	}
2107 
2108 	if (sb_rdonly(fs_info->sb)) {
2109 		ret = btrfs_commit_super(fs_info);
2110 		if (ret)
2111 			return ret;
2112 	}
2113 
2114 	return 0;
2115 }
2116 
2117 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2118 				      struct btrfs_path *path, u64 objectid,
2119 				      const char *name)
2120 {
2121 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2122 	struct btrfs_root *root;
2123 	u64 max_global_id = 0;
2124 	int ret;
2125 	struct btrfs_key key = {
2126 		.objectid = objectid,
2127 		.type = BTRFS_ROOT_ITEM_KEY,
2128 		.offset = 0,
2129 	};
2130 	bool found = false;
2131 
2132 	/* If we have IGNOREDATACSUMS skip loading these roots. */
2133 	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2134 	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2135 		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2136 		return 0;
2137 	}
2138 
2139 	while (1) {
2140 		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2141 		if (ret < 0)
2142 			break;
2143 
2144 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2145 			ret = btrfs_next_leaf(tree_root, path);
2146 			if (ret) {
2147 				if (ret > 0)
2148 					ret = 0;
2149 				break;
2150 			}
2151 		}
2152 		ret = 0;
2153 
2154 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2155 		if (key.objectid != objectid)
2156 			break;
2157 		btrfs_release_path(path);
2158 
2159 		/*
2160 		 * Just worry about this for extent tree, it'll be the same for
2161 		 * everybody.
2162 		 */
2163 		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2164 			max_global_id = max(max_global_id, key.offset);
2165 
2166 		found = true;
2167 		root = read_tree_root_path(tree_root, path, &key);
2168 		if (IS_ERR(root)) {
2169 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2170 				ret = PTR_ERR(root);
2171 			break;
2172 		}
2173 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2174 		ret = btrfs_global_root_insert(root);
2175 		if (ret) {
2176 			btrfs_put_root(root);
2177 			break;
2178 		}
2179 		key.offset++;
2180 	}
2181 	btrfs_release_path(path);
2182 
2183 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2184 		fs_info->nr_global_roots = max_global_id + 1;
2185 
2186 	if (!found || ret) {
2187 		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2188 			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2189 
2190 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2191 			ret = ret ? ret : -ENOENT;
2192 		else
2193 			ret = 0;
2194 		btrfs_err(fs_info, "failed to load root %s", name);
2195 	}
2196 	return ret;
2197 }
2198 
2199 static int load_global_roots(struct btrfs_root *tree_root)
2200 {
2201 	struct btrfs_path *path;
2202 	int ret = 0;
2203 
2204 	path = btrfs_alloc_path();
2205 	if (!path)
2206 		return -ENOMEM;
2207 
2208 	ret = load_global_roots_objectid(tree_root, path,
2209 					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2210 	if (ret)
2211 		goto out;
2212 	ret = load_global_roots_objectid(tree_root, path,
2213 					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2214 	if (ret)
2215 		goto out;
2216 	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2217 		goto out;
2218 	ret = load_global_roots_objectid(tree_root, path,
2219 					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2220 					 "free space");
2221 out:
2222 	btrfs_free_path(path);
2223 	return ret;
2224 }
2225 
2226 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2227 {
2228 	struct btrfs_root *tree_root = fs_info->tree_root;
2229 	struct btrfs_root *root;
2230 	struct btrfs_key location;
2231 	int ret;
2232 
2233 	BUG_ON(!fs_info->tree_root);
2234 
2235 	ret = load_global_roots(tree_root);
2236 	if (ret)
2237 		return ret;
2238 
2239 	location.type = BTRFS_ROOT_ITEM_KEY;
2240 	location.offset = 0;
2241 
2242 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2243 		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2244 		root = btrfs_read_tree_root(tree_root, &location);
2245 		if (IS_ERR(root)) {
2246 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2247 				ret = PTR_ERR(root);
2248 				goto out;
2249 			}
2250 		} else {
2251 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2252 			fs_info->block_group_root = root;
2253 		}
2254 	}
2255 
2256 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2257 	root = btrfs_read_tree_root(tree_root, &location);
2258 	if (IS_ERR(root)) {
2259 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2260 			ret = PTR_ERR(root);
2261 			goto out;
2262 		}
2263 	} else {
2264 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2265 		fs_info->dev_root = root;
2266 	}
2267 	/* Initialize fs_info for all devices in any case */
2268 	ret = btrfs_init_devices_late(fs_info);
2269 	if (ret)
2270 		goto out;
2271 
2272 	/*
2273 	 * This tree can share blocks with some other fs tree during relocation
2274 	 * and we need a proper setup by btrfs_get_fs_root
2275 	 */
2276 	root = btrfs_get_fs_root(tree_root->fs_info,
2277 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2278 	if (IS_ERR(root)) {
2279 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2280 			ret = PTR_ERR(root);
2281 			goto out;
2282 		}
2283 	} else {
2284 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2285 		fs_info->data_reloc_root = root;
2286 	}
2287 
2288 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2289 	root = btrfs_read_tree_root(tree_root, &location);
2290 	if (!IS_ERR(root)) {
2291 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2292 		fs_info->quota_root = root;
2293 	}
2294 
2295 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2296 	root = btrfs_read_tree_root(tree_root, &location);
2297 	if (IS_ERR(root)) {
2298 		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2299 			ret = PTR_ERR(root);
2300 			if (ret != -ENOENT)
2301 				goto out;
2302 		}
2303 	} else {
2304 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2305 		fs_info->uuid_root = root;
2306 	}
2307 
2308 	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2309 		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2310 		root = btrfs_read_tree_root(tree_root, &location);
2311 		if (IS_ERR(root)) {
2312 			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2313 				ret = PTR_ERR(root);
2314 				goto out;
2315 			}
2316 		} else {
2317 			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2318 			fs_info->stripe_root = root;
2319 		}
2320 	}
2321 
2322 	return 0;
2323 out:
2324 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2325 		   location.objectid, ret);
2326 	return ret;
2327 }
2328 
2329 /*
2330  * Real super block validation
2331  * NOTE: super csum type and incompat features will not be checked here.
2332  *
2333  * @sb:		super block to check
2334  * @mirror_num:	the super block number to check its bytenr:
2335  * 		0	the primary (1st) sb
2336  * 		1, 2	2nd and 3rd backup copy
2337  * 	       -1	skip bytenr check
2338  */
2339 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2340 			 struct btrfs_super_block *sb, int mirror_num)
2341 {
2342 	u64 nodesize = btrfs_super_nodesize(sb);
2343 	u64 sectorsize = btrfs_super_sectorsize(sb);
2344 	int ret = 0;
2345 
2346 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2347 		btrfs_err(fs_info, "no valid FS found");
2348 		ret = -EINVAL;
2349 	}
2350 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2351 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2352 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2353 		ret = -EINVAL;
2354 	}
2355 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2356 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2357 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2358 		ret = -EINVAL;
2359 	}
2360 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2361 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2362 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2363 		ret = -EINVAL;
2364 	}
2365 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2367 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2368 		ret = -EINVAL;
2369 	}
2370 
2371 	/*
2372 	 * Check sectorsize and nodesize first, other check will need it.
2373 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2374 	 */
2375 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2376 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2377 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2378 		ret = -EINVAL;
2379 	}
2380 
2381 	/*
2382 	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2383 	 *
2384 	 * We can support 16K sectorsize with 64K page size without problem,
2385 	 * but such sectorsize/pagesize combination doesn't make much sense.
2386 	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2387 	 * beginning.
2388 	 */
2389 	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2390 		btrfs_err(fs_info,
2391 			"sectorsize %llu not yet supported for page size %lu",
2392 			sectorsize, PAGE_SIZE);
2393 		ret = -EINVAL;
2394 	}
2395 
2396 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2397 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2398 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2399 		ret = -EINVAL;
2400 	}
2401 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2402 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2403 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2404 		ret = -EINVAL;
2405 	}
2406 
2407 	/* Root alignment check */
2408 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2409 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2410 			   btrfs_super_root(sb));
2411 		ret = -EINVAL;
2412 	}
2413 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2414 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2415 			   btrfs_super_chunk_root(sb));
2416 		ret = -EINVAL;
2417 	}
2418 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2419 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2420 			   btrfs_super_log_root(sb));
2421 		ret = -EINVAL;
2422 	}
2423 
2424 	if (!fs_info->fs_devices->temp_fsid &&
2425 	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2426 		btrfs_err(fs_info,
2427 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2428 			  sb->fsid, fs_info->fs_devices->fsid);
2429 		ret = -EINVAL;
2430 	}
2431 
2432 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2433 		   BTRFS_FSID_SIZE) != 0) {
2434 		btrfs_err(fs_info,
2435 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2436 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2437 		ret = -EINVAL;
2438 	}
2439 
2440 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2441 		   BTRFS_FSID_SIZE) != 0) {
2442 		btrfs_err(fs_info,
2443 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2444 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2445 		ret = -EINVAL;
2446 	}
2447 
2448 	/*
2449 	 * Artificial requirement for block-group-tree to force newer features
2450 	 * (free-space-tree, no-holes) so the test matrix is smaller.
2451 	 */
2452 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2453 	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2454 	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2455 		btrfs_err(fs_info,
2456 		"block-group-tree feature requires fres-space-tree and no-holes");
2457 		ret = -EINVAL;
2458 	}
2459 
2460 	/*
2461 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2462 	 * done later
2463 	 */
2464 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2465 		btrfs_err(fs_info, "bytes_used is too small %llu",
2466 			  btrfs_super_bytes_used(sb));
2467 		ret = -EINVAL;
2468 	}
2469 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2470 		btrfs_err(fs_info, "invalid stripesize %u",
2471 			  btrfs_super_stripesize(sb));
2472 		ret = -EINVAL;
2473 	}
2474 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2475 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2476 			   btrfs_super_num_devices(sb));
2477 	if (btrfs_super_num_devices(sb) == 0) {
2478 		btrfs_err(fs_info, "number of devices is 0");
2479 		ret = -EINVAL;
2480 	}
2481 
2482 	if (mirror_num >= 0 &&
2483 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2484 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2485 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2486 		ret = -EINVAL;
2487 	}
2488 
2489 	/*
2490 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2491 	 * and one chunk
2492 	 */
2493 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2494 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2495 			  btrfs_super_sys_array_size(sb),
2496 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2497 		ret = -EINVAL;
2498 	}
2499 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2500 			+ sizeof(struct btrfs_chunk)) {
2501 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2502 			  btrfs_super_sys_array_size(sb),
2503 			  sizeof(struct btrfs_disk_key)
2504 			  + sizeof(struct btrfs_chunk));
2505 		ret = -EINVAL;
2506 	}
2507 
2508 	/*
2509 	 * The generation is a global counter, we'll trust it more than the others
2510 	 * but it's still possible that it's the one that's wrong.
2511 	 */
2512 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2513 		btrfs_warn(fs_info,
2514 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2515 			btrfs_super_generation(sb),
2516 			btrfs_super_chunk_root_generation(sb));
2517 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2518 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2519 		btrfs_warn(fs_info,
2520 			"suspicious: generation < cache_generation: %llu < %llu",
2521 			btrfs_super_generation(sb),
2522 			btrfs_super_cache_generation(sb));
2523 
2524 	return ret;
2525 }
2526 
2527 /*
2528  * Validation of super block at mount time.
2529  * Some checks already done early at mount time, like csum type and incompat
2530  * flags will be skipped.
2531  */
2532 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2533 {
2534 	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2535 }
2536 
2537 /*
2538  * Validation of super block at write time.
2539  * Some checks like bytenr check will be skipped as their values will be
2540  * overwritten soon.
2541  * Extra checks like csum type and incompat flags will be done here.
2542  */
2543 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2544 				      struct btrfs_super_block *sb)
2545 {
2546 	int ret;
2547 
2548 	ret = btrfs_validate_super(fs_info, sb, -1);
2549 	if (ret < 0)
2550 		goto out;
2551 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2552 		ret = -EUCLEAN;
2553 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2554 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2555 		goto out;
2556 	}
2557 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2558 		ret = -EUCLEAN;
2559 		btrfs_err(fs_info,
2560 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2561 			  btrfs_super_incompat_flags(sb),
2562 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2563 		goto out;
2564 	}
2565 out:
2566 	if (ret < 0)
2567 		btrfs_err(fs_info,
2568 		"super block corruption detected before writing it to disk");
2569 	return ret;
2570 }
2571 
2572 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2573 {
2574 	struct btrfs_tree_parent_check check = {
2575 		.level = level,
2576 		.transid = gen,
2577 		.owner_root = root->root_key.objectid
2578 	};
2579 	int ret = 0;
2580 
2581 	root->node = read_tree_block(root->fs_info, bytenr, &check);
2582 	if (IS_ERR(root->node)) {
2583 		ret = PTR_ERR(root->node);
2584 		root->node = NULL;
2585 		return ret;
2586 	}
2587 	if (!extent_buffer_uptodate(root->node)) {
2588 		free_extent_buffer(root->node);
2589 		root->node = NULL;
2590 		return -EIO;
2591 	}
2592 
2593 	btrfs_set_root_node(&root->root_item, root->node);
2594 	root->commit_root = btrfs_root_node(root);
2595 	btrfs_set_root_refs(&root->root_item, 1);
2596 	return ret;
2597 }
2598 
2599 static int load_important_roots(struct btrfs_fs_info *fs_info)
2600 {
2601 	struct btrfs_super_block *sb = fs_info->super_copy;
2602 	u64 gen, bytenr;
2603 	int level, ret;
2604 
2605 	bytenr = btrfs_super_root(sb);
2606 	gen = btrfs_super_generation(sb);
2607 	level = btrfs_super_root_level(sb);
2608 	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2609 	if (ret) {
2610 		btrfs_warn(fs_info, "couldn't read tree root");
2611 		return ret;
2612 	}
2613 	return 0;
2614 }
2615 
2616 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2617 {
2618 	int backup_index = find_newest_super_backup(fs_info);
2619 	struct btrfs_super_block *sb = fs_info->super_copy;
2620 	struct btrfs_root *tree_root = fs_info->tree_root;
2621 	bool handle_error = false;
2622 	int ret = 0;
2623 	int i;
2624 
2625 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2626 		if (handle_error) {
2627 			if (!IS_ERR(tree_root->node))
2628 				free_extent_buffer(tree_root->node);
2629 			tree_root->node = NULL;
2630 
2631 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2632 				break;
2633 
2634 			free_root_pointers(fs_info, 0);
2635 
2636 			/*
2637 			 * Don't use the log in recovery mode, it won't be
2638 			 * valid
2639 			 */
2640 			btrfs_set_super_log_root(sb, 0);
2641 
2642 			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2643 			ret = read_backup_root(fs_info, i);
2644 			backup_index = ret;
2645 			if (ret < 0)
2646 				return ret;
2647 		}
2648 
2649 		ret = load_important_roots(fs_info);
2650 		if (ret) {
2651 			handle_error = true;
2652 			continue;
2653 		}
2654 
2655 		/*
2656 		 * No need to hold btrfs_root::objectid_mutex since the fs
2657 		 * hasn't been fully initialised and we are the only user
2658 		 */
2659 		ret = btrfs_init_root_free_objectid(tree_root);
2660 		if (ret < 0) {
2661 			handle_error = true;
2662 			continue;
2663 		}
2664 
2665 		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2666 
2667 		ret = btrfs_read_roots(fs_info);
2668 		if (ret < 0) {
2669 			handle_error = true;
2670 			continue;
2671 		}
2672 
2673 		/* All successful */
2674 		fs_info->generation = btrfs_header_generation(tree_root->node);
2675 		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2676 		fs_info->last_reloc_trans = 0;
2677 
2678 		/* Always begin writing backup roots after the one being used */
2679 		if (backup_index < 0) {
2680 			fs_info->backup_root_index = 0;
2681 		} else {
2682 			fs_info->backup_root_index = backup_index + 1;
2683 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2684 		}
2685 		break;
2686 	}
2687 
2688 	return ret;
2689 }
2690 
2691 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2692 {
2693 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2694 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2695 	INIT_LIST_HEAD(&fs_info->trans_list);
2696 	INIT_LIST_HEAD(&fs_info->dead_roots);
2697 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2698 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2699 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2700 	spin_lock_init(&fs_info->delalloc_root_lock);
2701 	spin_lock_init(&fs_info->trans_lock);
2702 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2703 	spin_lock_init(&fs_info->delayed_iput_lock);
2704 	spin_lock_init(&fs_info->defrag_inodes_lock);
2705 	spin_lock_init(&fs_info->super_lock);
2706 	spin_lock_init(&fs_info->buffer_lock);
2707 	spin_lock_init(&fs_info->unused_bgs_lock);
2708 	spin_lock_init(&fs_info->treelog_bg_lock);
2709 	spin_lock_init(&fs_info->zone_active_bgs_lock);
2710 	spin_lock_init(&fs_info->relocation_bg_lock);
2711 	rwlock_init(&fs_info->tree_mod_log_lock);
2712 	rwlock_init(&fs_info->global_root_lock);
2713 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2714 	mutex_init(&fs_info->reclaim_bgs_lock);
2715 	mutex_init(&fs_info->reloc_mutex);
2716 	mutex_init(&fs_info->delalloc_root_mutex);
2717 	mutex_init(&fs_info->zoned_meta_io_lock);
2718 	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2719 	seqlock_init(&fs_info->profiles_lock);
2720 
2721 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2722 	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2723 	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2724 	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2725 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2726 				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2727 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2728 				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2729 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2730 				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2731 	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2732 				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2733 
2734 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2735 	INIT_LIST_HEAD(&fs_info->space_info);
2736 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2737 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2738 	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2739 	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2740 #ifdef CONFIG_BTRFS_DEBUG
2741 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2742 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2743 	spin_lock_init(&fs_info->eb_leak_lock);
2744 #endif
2745 	fs_info->mapping_tree = RB_ROOT_CACHED;
2746 	rwlock_init(&fs_info->mapping_tree_lock);
2747 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2748 			     BTRFS_BLOCK_RSV_GLOBAL);
2749 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2750 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2751 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2752 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2753 			     BTRFS_BLOCK_RSV_DELOPS);
2754 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2755 			     BTRFS_BLOCK_RSV_DELREFS);
2756 
2757 	atomic_set(&fs_info->async_delalloc_pages, 0);
2758 	atomic_set(&fs_info->defrag_running, 0);
2759 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2760 	atomic64_set(&fs_info->tree_mod_seq, 0);
2761 	fs_info->global_root_tree = RB_ROOT;
2762 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2763 	fs_info->metadata_ratio = 0;
2764 	fs_info->defrag_inodes = RB_ROOT;
2765 	atomic64_set(&fs_info->free_chunk_space, 0);
2766 	fs_info->tree_mod_log = RB_ROOT;
2767 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2768 	btrfs_init_ref_verify(fs_info);
2769 
2770 	fs_info->thread_pool_size = min_t(unsigned long,
2771 					  num_online_cpus() + 2, 8);
2772 
2773 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2774 	spin_lock_init(&fs_info->ordered_root_lock);
2775 
2776 	btrfs_init_scrub(fs_info);
2777 	btrfs_init_balance(fs_info);
2778 	btrfs_init_async_reclaim_work(fs_info);
2779 
2780 	rwlock_init(&fs_info->block_group_cache_lock);
2781 	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2782 
2783 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2784 			    IO_TREE_FS_EXCLUDED_EXTENTS);
2785 
2786 	mutex_init(&fs_info->ordered_operations_mutex);
2787 	mutex_init(&fs_info->tree_log_mutex);
2788 	mutex_init(&fs_info->chunk_mutex);
2789 	mutex_init(&fs_info->transaction_kthread_mutex);
2790 	mutex_init(&fs_info->cleaner_mutex);
2791 	mutex_init(&fs_info->ro_block_group_mutex);
2792 	init_rwsem(&fs_info->commit_root_sem);
2793 	init_rwsem(&fs_info->cleanup_work_sem);
2794 	init_rwsem(&fs_info->subvol_sem);
2795 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2796 
2797 	btrfs_init_dev_replace_locks(fs_info);
2798 	btrfs_init_qgroup(fs_info);
2799 	btrfs_discard_init(fs_info);
2800 
2801 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2802 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2803 
2804 	init_waitqueue_head(&fs_info->transaction_throttle);
2805 	init_waitqueue_head(&fs_info->transaction_wait);
2806 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2807 	init_waitqueue_head(&fs_info->async_submit_wait);
2808 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2809 
2810 	/* Usable values until the real ones are cached from the superblock */
2811 	fs_info->nodesize = 4096;
2812 	fs_info->sectorsize = 4096;
2813 	fs_info->sectorsize_bits = ilog2(4096);
2814 	fs_info->stripesize = 4096;
2815 
2816 	/* Default compress algorithm when user does -o compress */
2817 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2818 
2819 	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2820 
2821 	spin_lock_init(&fs_info->swapfile_pins_lock);
2822 	fs_info->swapfile_pins = RB_ROOT;
2823 
2824 	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2825 	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2826 }
2827 
2828 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2829 {
2830 	int ret;
2831 
2832 	fs_info->sb = sb;
2833 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2834 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2835 
2836 	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2837 	if (ret)
2838 		return ret;
2839 
2840 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2841 	if (ret)
2842 		return ret;
2843 
2844 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2845 					(1 + ilog2(nr_cpu_ids));
2846 
2847 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2848 	if (ret)
2849 		return ret;
2850 
2851 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2852 			GFP_KERNEL);
2853 	if (ret)
2854 		return ret;
2855 
2856 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2857 					GFP_KERNEL);
2858 	if (!fs_info->delayed_root)
2859 		return -ENOMEM;
2860 	btrfs_init_delayed_root(fs_info->delayed_root);
2861 
2862 	if (sb_rdonly(sb))
2863 		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2864 
2865 	return btrfs_alloc_stripe_hash_table(fs_info);
2866 }
2867 
2868 static int btrfs_uuid_rescan_kthread(void *data)
2869 {
2870 	struct btrfs_fs_info *fs_info = data;
2871 	int ret;
2872 
2873 	/*
2874 	 * 1st step is to iterate through the existing UUID tree and
2875 	 * to delete all entries that contain outdated data.
2876 	 * 2nd step is to add all missing entries to the UUID tree.
2877 	 */
2878 	ret = btrfs_uuid_tree_iterate(fs_info);
2879 	if (ret < 0) {
2880 		if (ret != -EINTR)
2881 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2882 				   ret);
2883 		up(&fs_info->uuid_tree_rescan_sem);
2884 		return ret;
2885 	}
2886 	return btrfs_uuid_scan_kthread(data);
2887 }
2888 
2889 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2890 {
2891 	struct task_struct *task;
2892 
2893 	down(&fs_info->uuid_tree_rescan_sem);
2894 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2895 	if (IS_ERR(task)) {
2896 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2897 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2898 		up(&fs_info->uuid_tree_rescan_sem);
2899 		return PTR_ERR(task);
2900 	}
2901 
2902 	return 0;
2903 }
2904 
2905 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2906 {
2907 	u64 root_objectid = 0;
2908 	struct btrfs_root *gang[8];
2909 	int i = 0;
2910 	int err = 0;
2911 	unsigned int ret = 0;
2912 
2913 	while (1) {
2914 		spin_lock(&fs_info->fs_roots_radix_lock);
2915 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2916 					     (void **)gang, root_objectid,
2917 					     ARRAY_SIZE(gang));
2918 		if (!ret) {
2919 			spin_unlock(&fs_info->fs_roots_radix_lock);
2920 			break;
2921 		}
2922 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2923 
2924 		for (i = 0; i < ret; i++) {
2925 			/* Avoid to grab roots in dead_roots. */
2926 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2927 				gang[i] = NULL;
2928 				continue;
2929 			}
2930 			/* Grab all the search result for later use. */
2931 			gang[i] = btrfs_grab_root(gang[i]);
2932 		}
2933 		spin_unlock(&fs_info->fs_roots_radix_lock);
2934 
2935 		for (i = 0; i < ret; i++) {
2936 			if (!gang[i])
2937 				continue;
2938 			root_objectid = gang[i]->root_key.objectid;
2939 			err = btrfs_orphan_cleanup(gang[i]);
2940 			if (err)
2941 				goto out;
2942 			btrfs_put_root(gang[i]);
2943 		}
2944 		root_objectid++;
2945 	}
2946 out:
2947 	/* Release the uncleaned roots due to error. */
2948 	for (; i < ret; i++) {
2949 		if (gang[i])
2950 			btrfs_put_root(gang[i]);
2951 	}
2952 	return err;
2953 }
2954 
2955 /*
2956  * Mounting logic specific to read-write file systems. Shared by open_ctree
2957  * and btrfs_remount when remounting from read-only to read-write.
2958  */
2959 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2960 {
2961 	int ret;
2962 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2963 	bool rebuild_free_space_tree = false;
2964 
2965 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2966 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2967 		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2968 			btrfs_warn(fs_info,
2969 				   "'clear_cache' option is ignored with extent tree v2");
2970 		else
2971 			rebuild_free_space_tree = true;
2972 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2973 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2974 		btrfs_warn(fs_info, "free space tree is invalid");
2975 		rebuild_free_space_tree = true;
2976 	}
2977 
2978 	if (rebuild_free_space_tree) {
2979 		btrfs_info(fs_info, "rebuilding free space tree");
2980 		ret = btrfs_rebuild_free_space_tree(fs_info);
2981 		if (ret) {
2982 			btrfs_warn(fs_info,
2983 				   "failed to rebuild free space tree: %d", ret);
2984 			goto out;
2985 		}
2986 	}
2987 
2988 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2989 	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2990 		btrfs_info(fs_info, "disabling free space tree");
2991 		ret = btrfs_delete_free_space_tree(fs_info);
2992 		if (ret) {
2993 			btrfs_warn(fs_info,
2994 				   "failed to disable free space tree: %d", ret);
2995 			goto out;
2996 		}
2997 	}
2998 
2999 	/*
3000 	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3001 	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3002 	 * them into the fs_info->fs_roots_radix tree. This must be done before
3003 	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3004 	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3005 	 * item before the root's tree is deleted - this means that if we unmount
3006 	 * or crash before the deletion completes, on the next mount we will not
3007 	 * delete what remains of the tree because the orphan item does not
3008 	 * exists anymore, which is what tells us we have a pending deletion.
3009 	 */
3010 	ret = btrfs_find_orphan_roots(fs_info);
3011 	if (ret)
3012 		goto out;
3013 
3014 	ret = btrfs_cleanup_fs_roots(fs_info);
3015 	if (ret)
3016 		goto out;
3017 
3018 	down_read(&fs_info->cleanup_work_sem);
3019 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3020 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3021 		up_read(&fs_info->cleanup_work_sem);
3022 		goto out;
3023 	}
3024 	up_read(&fs_info->cleanup_work_sem);
3025 
3026 	mutex_lock(&fs_info->cleaner_mutex);
3027 	ret = btrfs_recover_relocation(fs_info);
3028 	mutex_unlock(&fs_info->cleaner_mutex);
3029 	if (ret < 0) {
3030 		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3031 		goto out;
3032 	}
3033 
3034 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3035 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3036 		btrfs_info(fs_info, "creating free space tree");
3037 		ret = btrfs_create_free_space_tree(fs_info);
3038 		if (ret) {
3039 			btrfs_warn(fs_info,
3040 				"failed to create free space tree: %d", ret);
3041 			goto out;
3042 		}
3043 	}
3044 
3045 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3046 		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3047 		if (ret)
3048 			goto out;
3049 	}
3050 
3051 	ret = btrfs_resume_balance_async(fs_info);
3052 	if (ret)
3053 		goto out;
3054 
3055 	ret = btrfs_resume_dev_replace_async(fs_info);
3056 	if (ret) {
3057 		btrfs_warn(fs_info, "failed to resume dev_replace");
3058 		goto out;
3059 	}
3060 
3061 	btrfs_qgroup_rescan_resume(fs_info);
3062 
3063 	if (!fs_info->uuid_root) {
3064 		btrfs_info(fs_info, "creating UUID tree");
3065 		ret = btrfs_create_uuid_tree(fs_info);
3066 		if (ret) {
3067 			btrfs_warn(fs_info,
3068 				   "failed to create the UUID tree %d", ret);
3069 			goto out;
3070 		}
3071 	}
3072 
3073 out:
3074 	return ret;
3075 }
3076 
3077 /*
3078  * Do various sanity and dependency checks of different features.
3079  *
3080  * @is_rw_mount:	If the mount is read-write.
3081  *
3082  * This is the place for less strict checks (like for subpage or artificial
3083  * feature dependencies).
3084  *
3085  * For strict checks or possible corruption detection, see
3086  * btrfs_validate_super().
3087  *
3088  * This should be called after btrfs_parse_options(), as some mount options
3089  * (space cache related) can modify on-disk format like free space tree and
3090  * screw up certain feature dependencies.
3091  */
3092 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3093 {
3094 	struct btrfs_super_block *disk_super = fs_info->super_copy;
3095 	u64 incompat = btrfs_super_incompat_flags(disk_super);
3096 	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3097 	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3098 
3099 	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3100 		btrfs_err(fs_info,
3101 		"cannot mount because of unknown incompat features (0x%llx)",
3102 		    incompat);
3103 		return -EINVAL;
3104 	}
3105 
3106 	/* Runtime limitation for mixed block groups. */
3107 	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3108 	    (fs_info->sectorsize != fs_info->nodesize)) {
3109 		btrfs_err(fs_info,
3110 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3111 			fs_info->nodesize, fs_info->sectorsize);
3112 		return -EINVAL;
3113 	}
3114 
3115 	/* Mixed backref is an always-enabled feature. */
3116 	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3117 
3118 	/* Set compression related flags just in case. */
3119 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3120 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3121 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3122 		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3123 
3124 	/*
3125 	 * An ancient flag, which should really be marked deprecated.
3126 	 * Such runtime limitation doesn't really need a incompat flag.
3127 	 */
3128 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3129 		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3130 
3131 	if (compat_ro_unsupp && is_rw_mount) {
3132 		btrfs_err(fs_info,
3133 	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3134 		       compat_ro);
3135 		return -EINVAL;
3136 	}
3137 
3138 	/*
3139 	 * We have unsupported RO compat features, although RO mounted, we
3140 	 * should not cause any metadata writes, including log replay.
3141 	 * Or we could screw up whatever the new feature requires.
3142 	 */
3143 	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3144 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3145 		btrfs_err(fs_info,
3146 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3147 			  compat_ro);
3148 		return -EINVAL;
3149 	}
3150 
3151 	/*
3152 	 * Artificial limitations for block group tree, to force
3153 	 * block-group-tree to rely on no-holes and free-space-tree.
3154 	 */
3155 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3156 	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3157 	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3158 		btrfs_err(fs_info,
3159 "block-group-tree feature requires no-holes and free-space-tree features");
3160 		return -EINVAL;
3161 	}
3162 
3163 	/*
3164 	 * Subpage runtime limitation on v1 cache.
3165 	 *
3166 	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3167 	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3168 	 * going to be deprecated anyway.
3169 	 */
3170 	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3171 		btrfs_warn(fs_info,
3172 	"v1 space cache is not supported for page size %lu with sectorsize %u",
3173 			   PAGE_SIZE, fs_info->sectorsize);
3174 		return -EINVAL;
3175 	}
3176 
3177 	/* This can be called by remount, we need to protect the super block. */
3178 	spin_lock(&fs_info->super_lock);
3179 	btrfs_set_super_incompat_flags(disk_super, incompat);
3180 	spin_unlock(&fs_info->super_lock);
3181 
3182 	return 0;
3183 }
3184 
3185 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3186 		      char *options)
3187 {
3188 	u32 sectorsize;
3189 	u32 nodesize;
3190 	u32 stripesize;
3191 	u64 generation;
3192 	u16 csum_type;
3193 	struct btrfs_super_block *disk_super;
3194 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3195 	struct btrfs_root *tree_root;
3196 	struct btrfs_root *chunk_root;
3197 	int ret;
3198 	int level;
3199 
3200 	ret = init_mount_fs_info(fs_info, sb);
3201 	if (ret)
3202 		goto fail;
3203 
3204 	/* These need to be init'ed before we start creating inodes and such. */
3205 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3206 				     GFP_KERNEL);
3207 	fs_info->tree_root = tree_root;
3208 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3209 				      GFP_KERNEL);
3210 	fs_info->chunk_root = chunk_root;
3211 	if (!tree_root || !chunk_root) {
3212 		ret = -ENOMEM;
3213 		goto fail;
3214 	}
3215 
3216 	ret = btrfs_init_btree_inode(sb);
3217 	if (ret)
3218 		goto fail;
3219 
3220 	invalidate_bdev(fs_devices->latest_dev->bdev);
3221 
3222 	/*
3223 	 * Read super block and check the signature bytes only
3224 	 */
3225 	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3226 	if (IS_ERR(disk_super)) {
3227 		ret = PTR_ERR(disk_super);
3228 		goto fail_alloc;
3229 	}
3230 
3231 	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3232 	/*
3233 	 * Verify the type first, if that or the checksum value are
3234 	 * corrupted, we'll find out
3235 	 */
3236 	csum_type = btrfs_super_csum_type(disk_super);
3237 	if (!btrfs_supported_super_csum(csum_type)) {
3238 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3239 			  csum_type);
3240 		ret = -EINVAL;
3241 		btrfs_release_disk_super(disk_super);
3242 		goto fail_alloc;
3243 	}
3244 
3245 	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3246 
3247 	ret = btrfs_init_csum_hash(fs_info, csum_type);
3248 	if (ret) {
3249 		btrfs_release_disk_super(disk_super);
3250 		goto fail_alloc;
3251 	}
3252 
3253 	/*
3254 	 * We want to check superblock checksum, the type is stored inside.
3255 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3256 	 */
3257 	if (btrfs_check_super_csum(fs_info, disk_super)) {
3258 		btrfs_err(fs_info, "superblock checksum mismatch");
3259 		ret = -EINVAL;
3260 		btrfs_release_disk_super(disk_super);
3261 		goto fail_alloc;
3262 	}
3263 
3264 	/*
3265 	 * super_copy is zeroed at allocation time and we never touch the
3266 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3267 	 * the whole block of INFO_SIZE
3268 	 */
3269 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3270 	btrfs_release_disk_super(disk_super);
3271 
3272 	disk_super = fs_info->super_copy;
3273 
3274 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3275 	       sizeof(*fs_info->super_for_commit));
3276 
3277 	ret = btrfs_validate_mount_super(fs_info);
3278 	if (ret) {
3279 		btrfs_err(fs_info, "superblock contains fatal errors");
3280 		ret = -EINVAL;
3281 		goto fail_alloc;
3282 	}
3283 
3284 	if (!btrfs_super_root(disk_super)) {
3285 		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3286 		ret = -EINVAL;
3287 		goto fail_alloc;
3288 	}
3289 
3290 	/* check FS state, whether FS is broken. */
3291 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3292 		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3293 
3294 	/* Set up fs_info before parsing mount options */
3295 	nodesize = btrfs_super_nodesize(disk_super);
3296 	sectorsize = btrfs_super_sectorsize(disk_super);
3297 	stripesize = sectorsize;
3298 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3299 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3300 
3301 	fs_info->nodesize = nodesize;
3302 	fs_info->sectorsize = sectorsize;
3303 	fs_info->sectorsize_bits = ilog2(sectorsize);
3304 	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3305 	fs_info->stripesize = stripesize;
3306 
3307 	/*
3308 	 * Handle the space caching options appropriately now that we have the
3309 	 * super block loaded and validated.
3310 	 */
3311 	btrfs_set_free_space_cache_settings(fs_info);
3312 
3313 	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3314 		ret = -EINVAL;
3315 		goto fail_alloc;
3316 	}
3317 
3318 	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3319 	if (ret < 0)
3320 		goto fail_alloc;
3321 
3322 	/*
3323 	 * At this point our mount options are validated, if we set ->max_inline
3324 	 * to something non-standard make sure we truncate it to sectorsize.
3325 	 */
3326 	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3327 
3328 	if (sectorsize < PAGE_SIZE) {
3329 		struct btrfs_subpage_info *subpage_info;
3330 
3331 		btrfs_warn(fs_info,
3332 		"read-write for sector size %u with page size %lu is experimental",
3333 			   sectorsize, PAGE_SIZE);
3334 		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3335 		if (!subpage_info) {
3336 			ret = -ENOMEM;
3337 			goto fail_alloc;
3338 		}
3339 		btrfs_init_subpage_info(subpage_info, sectorsize);
3340 		fs_info->subpage_info = subpage_info;
3341 	}
3342 
3343 	ret = btrfs_init_workqueues(fs_info);
3344 	if (ret)
3345 		goto fail_sb_buffer;
3346 
3347 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3348 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3349 
3350 	sb->s_blocksize = sectorsize;
3351 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3352 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3353 
3354 	mutex_lock(&fs_info->chunk_mutex);
3355 	ret = btrfs_read_sys_array(fs_info);
3356 	mutex_unlock(&fs_info->chunk_mutex);
3357 	if (ret) {
3358 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3359 		goto fail_sb_buffer;
3360 	}
3361 
3362 	generation = btrfs_super_chunk_root_generation(disk_super);
3363 	level = btrfs_super_chunk_root_level(disk_super);
3364 	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3365 			      generation, level);
3366 	if (ret) {
3367 		btrfs_err(fs_info, "failed to read chunk root");
3368 		goto fail_tree_roots;
3369 	}
3370 
3371 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3372 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3373 			   BTRFS_UUID_SIZE);
3374 
3375 	ret = btrfs_read_chunk_tree(fs_info);
3376 	if (ret) {
3377 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3378 		goto fail_tree_roots;
3379 	}
3380 
3381 	/*
3382 	 * At this point we know all the devices that make this filesystem,
3383 	 * including the seed devices but we don't know yet if the replace
3384 	 * target is required. So free devices that are not part of this
3385 	 * filesystem but skip the replace target device which is checked
3386 	 * below in btrfs_init_dev_replace().
3387 	 */
3388 	btrfs_free_extra_devids(fs_devices);
3389 	if (!fs_devices->latest_dev->bdev) {
3390 		btrfs_err(fs_info, "failed to read devices");
3391 		ret = -EIO;
3392 		goto fail_tree_roots;
3393 	}
3394 
3395 	ret = init_tree_roots(fs_info);
3396 	if (ret)
3397 		goto fail_tree_roots;
3398 
3399 	/*
3400 	 * Get zone type information of zoned block devices. This will also
3401 	 * handle emulation of a zoned filesystem if a regular device has the
3402 	 * zoned incompat feature flag set.
3403 	 */
3404 	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3405 	if (ret) {
3406 		btrfs_err(fs_info,
3407 			  "zoned: failed to read device zone info: %d", ret);
3408 		goto fail_block_groups;
3409 	}
3410 
3411 	/*
3412 	 * If we have a uuid root and we're not being told to rescan we need to
3413 	 * check the generation here so we can set the
3414 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3415 	 * transaction during a balance or the log replay without updating the
3416 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3417 	 * even though it was perfectly fine.
3418 	 */
3419 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3420 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3421 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3422 
3423 	ret = btrfs_verify_dev_extents(fs_info);
3424 	if (ret) {
3425 		btrfs_err(fs_info,
3426 			  "failed to verify dev extents against chunks: %d",
3427 			  ret);
3428 		goto fail_block_groups;
3429 	}
3430 	ret = btrfs_recover_balance(fs_info);
3431 	if (ret) {
3432 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3433 		goto fail_block_groups;
3434 	}
3435 
3436 	ret = btrfs_init_dev_stats(fs_info);
3437 	if (ret) {
3438 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3439 		goto fail_block_groups;
3440 	}
3441 
3442 	ret = btrfs_init_dev_replace(fs_info);
3443 	if (ret) {
3444 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3445 		goto fail_block_groups;
3446 	}
3447 
3448 	ret = btrfs_check_zoned_mode(fs_info);
3449 	if (ret) {
3450 		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3451 			  ret);
3452 		goto fail_block_groups;
3453 	}
3454 
3455 	ret = btrfs_sysfs_add_fsid(fs_devices);
3456 	if (ret) {
3457 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3458 				ret);
3459 		goto fail_block_groups;
3460 	}
3461 
3462 	ret = btrfs_sysfs_add_mounted(fs_info);
3463 	if (ret) {
3464 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3465 		goto fail_fsdev_sysfs;
3466 	}
3467 
3468 	ret = btrfs_init_space_info(fs_info);
3469 	if (ret) {
3470 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3471 		goto fail_sysfs;
3472 	}
3473 
3474 	ret = btrfs_read_block_groups(fs_info);
3475 	if (ret) {
3476 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3477 		goto fail_sysfs;
3478 	}
3479 
3480 	btrfs_free_zone_cache(fs_info);
3481 
3482 	btrfs_check_active_zone_reservation(fs_info);
3483 
3484 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3485 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3486 		btrfs_warn(fs_info,
3487 		"writable mount is not allowed due to too many missing devices");
3488 		ret = -EINVAL;
3489 		goto fail_sysfs;
3490 	}
3491 
3492 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3493 					       "btrfs-cleaner");
3494 	if (IS_ERR(fs_info->cleaner_kthread)) {
3495 		ret = PTR_ERR(fs_info->cleaner_kthread);
3496 		goto fail_sysfs;
3497 	}
3498 
3499 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3500 						   tree_root,
3501 						   "btrfs-transaction");
3502 	if (IS_ERR(fs_info->transaction_kthread)) {
3503 		ret = PTR_ERR(fs_info->transaction_kthread);
3504 		goto fail_cleaner;
3505 	}
3506 
3507 	ret = btrfs_read_qgroup_config(fs_info);
3508 	if (ret)
3509 		goto fail_trans_kthread;
3510 
3511 	if (btrfs_build_ref_tree(fs_info))
3512 		btrfs_err(fs_info, "couldn't build ref tree");
3513 
3514 	/* do not make disk changes in broken FS or nologreplay is given */
3515 	if (btrfs_super_log_root(disk_super) != 0 &&
3516 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3517 		btrfs_info(fs_info, "start tree-log replay");
3518 		ret = btrfs_replay_log(fs_info, fs_devices);
3519 		if (ret)
3520 			goto fail_qgroup;
3521 	}
3522 
3523 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3524 	if (IS_ERR(fs_info->fs_root)) {
3525 		ret = PTR_ERR(fs_info->fs_root);
3526 		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3527 		fs_info->fs_root = NULL;
3528 		goto fail_qgroup;
3529 	}
3530 
3531 	if (sb_rdonly(sb))
3532 		return 0;
3533 
3534 	ret = btrfs_start_pre_rw_mount(fs_info);
3535 	if (ret) {
3536 		close_ctree(fs_info);
3537 		return ret;
3538 	}
3539 	btrfs_discard_resume(fs_info);
3540 
3541 	if (fs_info->uuid_root &&
3542 	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3543 	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3544 		btrfs_info(fs_info, "checking UUID tree");
3545 		ret = btrfs_check_uuid_tree(fs_info);
3546 		if (ret) {
3547 			btrfs_warn(fs_info,
3548 				"failed to check the UUID tree: %d", ret);
3549 			close_ctree(fs_info);
3550 			return ret;
3551 		}
3552 	}
3553 
3554 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3555 
3556 	/* Kick the cleaner thread so it'll start deleting snapshots. */
3557 	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3558 		wake_up_process(fs_info->cleaner_kthread);
3559 
3560 	return 0;
3561 
3562 fail_qgroup:
3563 	btrfs_free_qgroup_config(fs_info);
3564 fail_trans_kthread:
3565 	kthread_stop(fs_info->transaction_kthread);
3566 	btrfs_cleanup_transaction(fs_info);
3567 	btrfs_free_fs_roots(fs_info);
3568 fail_cleaner:
3569 	kthread_stop(fs_info->cleaner_kthread);
3570 
3571 	/*
3572 	 * make sure we're done with the btree inode before we stop our
3573 	 * kthreads
3574 	 */
3575 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3576 
3577 fail_sysfs:
3578 	btrfs_sysfs_remove_mounted(fs_info);
3579 
3580 fail_fsdev_sysfs:
3581 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3582 
3583 fail_block_groups:
3584 	btrfs_put_block_group_cache(fs_info);
3585 
3586 fail_tree_roots:
3587 	if (fs_info->data_reloc_root)
3588 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3589 	free_root_pointers(fs_info, true);
3590 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3591 
3592 fail_sb_buffer:
3593 	btrfs_stop_all_workers(fs_info);
3594 	btrfs_free_block_groups(fs_info);
3595 fail_alloc:
3596 	btrfs_mapping_tree_free(fs_info);
3597 
3598 	iput(fs_info->btree_inode);
3599 fail:
3600 	btrfs_close_devices(fs_info->fs_devices);
3601 	ASSERT(ret < 0);
3602 	return ret;
3603 }
3604 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3605 
3606 static void btrfs_end_super_write(struct bio *bio)
3607 {
3608 	struct btrfs_device *device = bio->bi_private;
3609 	struct bio_vec *bvec;
3610 	struct bvec_iter_all iter_all;
3611 	struct page *page;
3612 
3613 	bio_for_each_segment_all(bvec, bio, iter_all) {
3614 		page = bvec->bv_page;
3615 
3616 		if (bio->bi_status) {
3617 			btrfs_warn_rl_in_rcu(device->fs_info,
3618 				"lost page write due to IO error on %s (%d)",
3619 				btrfs_dev_name(device),
3620 				blk_status_to_errno(bio->bi_status));
3621 			ClearPageUptodate(page);
3622 			SetPageError(page);
3623 			btrfs_dev_stat_inc_and_print(device,
3624 						     BTRFS_DEV_STAT_WRITE_ERRS);
3625 		} else {
3626 			SetPageUptodate(page);
3627 		}
3628 
3629 		put_page(page);
3630 		unlock_page(page);
3631 	}
3632 
3633 	bio_put(bio);
3634 }
3635 
3636 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3637 						   int copy_num, bool drop_cache)
3638 {
3639 	struct btrfs_super_block *super;
3640 	struct page *page;
3641 	u64 bytenr, bytenr_orig;
3642 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3643 	int ret;
3644 
3645 	bytenr_orig = btrfs_sb_offset(copy_num);
3646 	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3647 	if (ret == -ENOENT)
3648 		return ERR_PTR(-EINVAL);
3649 	else if (ret)
3650 		return ERR_PTR(ret);
3651 
3652 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3653 		return ERR_PTR(-EINVAL);
3654 
3655 	if (drop_cache) {
3656 		/* This should only be called with the primary sb. */
3657 		ASSERT(copy_num == 0);
3658 
3659 		/*
3660 		 * Drop the page of the primary superblock, so later read will
3661 		 * always read from the device.
3662 		 */
3663 		invalidate_inode_pages2_range(mapping,
3664 				bytenr >> PAGE_SHIFT,
3665 				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3666 	}
3667 
3668 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3669 	if (IS_ERR(page))
3670 		return ERR_CAST(page);
3671 
3672 	super = page_address(page);
3673 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3674 		btrfs_release_disk_super(super);
3675 		return ERR_PTR(-ENODATA);
3676 	}
3677 
3678 	if (btrfs_super_bytenr(super) != bytenr_orig) {
3679 		btrfs_release_disk_super(super);
3680 		return ERR_PTR(-EINVAL);
3681 	}
3682 
3683 	return super;
3684 }
3685 
3686 
3687 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3688 {
3689 	struct btrfs_super_block *super, *latest = NULL;
3690 	int i;
3691 	u64 transid = 0;
3692 
3693 	/* we would like to check all the supers, but that would make
3694 	 * a btrfs mount succeed after a mkfs from a different FS.
3695 	 * So, we need to add a special mount option to scan for
3696 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3697 	 */
3698 	for (i = 0; i < 1; i++) {
3699 		super = btrfs_read_dev_one_super(bdev, i, false);
3700 		if (IS_ERR(super))
3701 			continue;
3702 
3703 		if (!latest || btrfs_super_generation(super) > transid) {
3704 			if (latest)
3705 				btrfs_release_disk_super(super);
3706 
3707 			latest = super;
3708 			transid = btrfs_super_generation(super);
3709 		}
3710 	}
3711 
3712 	return super;
3713 }
3714 
3715 /*
3716  * Write superblock @sb to the @device. Do not wait for completion, all the
3717  * pages we use for writing are locked.
3718  *
3719  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3720  * the expected device size at commit time. Note that max_mirrors must be
3721  * same for write and wait phases.
3722  *
3723  * Return number of errors when page is not found or submission fails.
3724  */
3725 static int write_dev_supers(struct btrfs_device *device,
3726 			    struct btrfs_super_block *sb, int max_mirrors)
3727 {
3728 	struct btrfs_fs_info *fs_info = device->fs_info;
3729 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3730 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3731 	int i;
3732 	int errors = 0;
3733 	int ret;
3734 	u64 bytenr, bytenr_orig;
3735 
3736 	if (max_mirrors == 0)
3737 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3738 
3739 	shash->tfm = fs_info->csum_shash;
3740 
3741 	for (i = 0; i < max_mirrors; i++) {
3742 		struct page *page;
3743 		struct bio *bio;
3744 		struct btrfs_super_block *disk_super;
3745 
3746 		bytenr_orig = btrfs_sb_offset(i);
3747 		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3748 		if (ret == -ENOENT) {
3749 			continue;
3750 		} else if (ret < 0) {
3751 			btrfs_err(device->fs_info,
3752 				"couldn't get super block location for mirror %d",
3753 				i);
3754 			errors++;
3755 			continue;
3756 		}
3757 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3758 		    device->commit_total_bytes)
3759 			break;
3760 
3761 		btrfs_set_super_bytenr(sb, bytenr_orig);
3762 
3763 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3764 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3765 				    sb->csum);
3766 
3767 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3768 					   GFP_NOFS);
3769 		if (!page) {
3770 			btrfs_err(device->fs_info,
3771 			    "couldn't get super block page for bytenr %llu",
3772 			    bytenr);
3773 			errors++;
3774 			continue;
3775 		}
3776 
3777 		/* Bump the refcount for wait_dev_supers() */
3778 		get_page(page);
3779 
3780 		disk_super = page_address(page);
3781 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3782 
3783 		/*
3784 		 * Directly use bios here instead of relying on the page cache
3785 		 * to do I/O, so we don't lose the ability to do integrity
3786 		 * checking.
3787 		 */
3788 		bio = bio_alloc(device->bdev, 1,
3789 				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3790 				GFP_NOFS);
3791 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3792 		bio->bi_private = device;
3793 		bio->bi_end_io = btrfs_end_super_write;
3794 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3795 			       offset_in_page(bytenr));
3796 
3797 		/*
3798 		 * We FUA only the first super block.  The others we allow to
3799 		 * go down lazy and there's a short window where the on-disk
3800 		 * copies might still contain the older version.
3801 		 */
3802 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3803 			bio->bi_opf |= REQ_FUA;
3804 		submit_bio(bio);
3805 
3806 		if (btrfs_advance_sb_log(device, i))
3807 			errors++;
3808 	}
3809 	return errors < i ? 0 : -1;
3810 }
3811 
3812 /*
3813  * Wait for write completion of superblocks done by write_dev_supers,
3814  * @max_mirrors same for write and wait phases.
3815  *
3816  * Return number of errors when page is not found or not marked up to
3817  * date.
3818  */
3819 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3820 {
3821 	int i;
3822 	int errors = 0;
3823 	bool primary_failed = false;
3824 	int ret;
3825 	u64 bytenr;
3826 
3827 	if (max_mirrors == 0)
3828 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3829 
3830 	for (i = 0; i < max_mirrors; i++) {
3831 		struct page *page;
3832 
3833 		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3834 		if (ret == -ENOENT) {
3835 			break;
3836 		} else if (ret < 0) {
3837 			errors++;
3838 			if (i == 0)
3839 				primary_failed = true;
3840 			continue;
3841 		}
3842 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3843 		    device->commit_total_bytes)
3844 			break;
3845 
3846 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3847 				     bytenr >> PAGE_SHIFT);
3848 		if (!page) {
3849 			errors++;
3850 			if (i == 0)
3851 				primary_failed = true;
3852 			continue;
3853 		}
3854 		/* Page is submitted locked and unlocked once the IO completes */
3855 		wait_on_page_locked(page);
3856 		if (PageError(page)) {
3857 			errors++;
3858 			if (i == 0)
3859 				primary_failed = true;
3860 		}
3861 
3862 		/* Drop our reference */
3863 		put_page(page);
3864 
3865 		/* Drop the reference from the writing run */
3866 		put_page(page);
3867 	}
3868 
3869 	/* log error, force error return */
3870 	if (primary_failed) {
3871 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3872 			  device->devid);
3873 		return -1;
3874 	}
3875 
3876 	return errors < i ? 0 : -1;
3877 }
3878 
3879 /*
3880  * endio for the write_dev_flush, this will wake anyone waiting
3881  * for the barrier when it is done
3882  */
3883 static void btrfs_end_empty_barrier(struct bio *bio)
3884 {
3885 	bio_uninit(bio);
3886 	complete(bio->bi_private);
3887 }
3888 
3889 /*
3890  * Submit a flush request to the device if it supports it. Error handling is
3891  * done in the waiting counterpart.
3892  */
3893 static void write_dev_flush(struct btrfs_device *device)
3894 {
3895 	struct bio *bio = &device->flush_bio;
3896 
3897 	device->last_flush_error = BLK_STS_OK;
3898 
3899 	bio_init(bio, device->bdev, NULL, 0,
3900 		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3901 	bio->bi_end_io = btrfs_end_empty_barrier;
3902 	init_completion(&device->flush_wait);
3903 	bio->bi_private = &device->flush_wait;
3904 	submit_bio(bio);
3905 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3906 }
3907 
3908 /*
3909  * If the flush bio has been submitted by write_dev_flush, wait for it.
3910  * Return true for any error, and false otherwise.
3911  */
3912 static bool wait_dev_flush(struct btrfs_device *device)
3913 {
3914 	struct bio *bio = &device->flush_bio;
3915 
3916 	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3917 		return false;
3918 
3919 	wait_for_completion_io(&device->flush_wait);
3920 
3921 	if (bio->bi_status) {
3922 		device->last_flush_error = bio->bi_status;
3923 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3924 		return true;
3925 	}
3926 
3927 	return false;
3928 }
3929 
3930 /*
3931  * send an empty flush down to each device in parallel,
3932  * then wait for them
3933  */
3934 static int barrier_all_devices(struct btrfs_fs_info *info)
3935 {
3936 	struct list_head *head;
3937 	struct btrfs_device *dev;
3938 	int errors_wait = 0;
3939 
3940 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3941 	/* send down all the barriers */
3942 	head = &info->fs_devices->devices;
3943 	list_for_each_entry(dev, head, dev_list) {
3944 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3945 			continue;
3946 		if (!dev->bdev)
3947 			continue;
3948 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3949 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3950 			continue;
3951 
3952 		write_dev_flush(dev);
3953 	}
3954 
3955 	/* wait for all the barriers */
3956 	list_for_each_entry(dev, head, dev_list) {
3957 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3958 			continue;
3959 		if (!dev->bdev) {
3960 			errors_wait++;
3961 			continue;
3962 		}
3963 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3964 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3965 			continue;
3966 
3967 		if (wait_dev_flush(dev))
3968 			errors_wait++;
3969 	}
3970 
3971 	/*
3972 	 * Checks last_flush_error of disks in order to determine the device
3973 	 * state.
3974 	 */
3975 	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3976 		return -EIO;
3977 
3978 	return 0;
3979 }
3980 
3981 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3982 {
3983 	int raid_type;
3984 	int min_tolerated = INT_MAX;
3985 
3986 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3987 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3988 		min_tolerated = min_t(int, min_tolerated,
3989 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3990 				    tolerated_failures);
3991 
3992 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3993 		if (raid_type == BTRFS_RAID_SINGLE)
3994 			continue;
3995 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3996 			continue;
3997 		min_tolerated = min_t(int, min_tolerated,
3998 				    btrfs_raid_array[raid_type].
3999 				    tolerated_failures);
4000 	}
4001 
4002 	if (min_tolerated == INT_MAX) {
4003 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4004 		min_tolerated = 0;
4005 	}
4006 
4007 	return min_tolerated;
4008 }
4009 
4010 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4011 {
4012 	struct list_head *head;
4013 	struct btrfs_device *dev;
4014 	struct btrfs_super_block *sb;
4015 	struct btrfs_dev_item *dev_item;
4016 	int ret;
4017 	int do_barriers;
4018 	int max_errors;
4019 	int total_errors = 0;
4020 	u64 flags;
4021 
4022 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4023 
4024 	/*
4025 	 * max_mirrors == 0 indicates we're from commit_transaction,
4026 	 * not from fsync where the tree roots in fs_info have not
4027 	 * been consistent on disk.
4028 	 */
4029 	if (max_mirrors == 0)
4030 		backup_super_roots(fs_info);
4031 
4032 	sb = fs_info->super_for_commit;
4033 	dev_item = &sb->dev_item;
4034 
4035 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4036 	head = &fs_info->fs_devices->devices;
4037 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4038 
4039 	if (do_barriers) {
4040 		ret = barrier_all_devices(fs_info);
4041 		if (ret) {
4042 			mutex_unlock(
4043 				&fs_info->fs_devices->device_list_mutex);
4044 			btrfs_handle_fs_error(fs_info, ret,
4045 					      "errors while submitting device barriers.");
4046 			return ret;
4047 		}
4048 	}
4049 
4050 	list_for_each_entry(dev, head, dev_list) {
4051 		if (!dev->bdev) {
4052 			total_errors++;
4053 			continue;
4054 		}
4055 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4056 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4057 			continue;
4058 
4059 		btrfs_set_stack_device_generation(dev_item, 0);
4060 		btrfs_set_stack_device_type(dev_item, dev->type);
4061 		btrfs_set_stack_device_id(dev_item, dev->devid);
4062 		btrfs_set_stack_device_total_bytes(dev_item,
4063 						   dev->commit_total_bytes);
4064 		btrfs_set_stack_device_bytes_used(dev_item,
4065 						  dev->commit_bytes_used);
4066 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4067 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4068 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4069 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4070 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4071 		       BTRFS_FSID_SIZE);
4072 
4073 		flags = btrfs_super_flags(sb);
4074 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4075 
4076 		ret = btrfs_validate_write_super(fs_info, sb);
4077 		if (ret < 0) {
4078 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4079 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4080 				"unexpected superblock corruption detected");
4081 			return -EUCLEAN;
4082 		}
4083 
4084 		ret = write_dev_supers(dev, sb, max_mirrors);
4085 		if (ret)
4086 			total_errors++;
4087 	}
4088 	if (total_errors > max_errors) {
4089 		btrfs_err(fs_info, "%d errors while writing supers",
4090 			  total_errors);
4091 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4092 
4093 		/* FUA is masked off if unsupported and can't be the reason */
4094 		btrfs_handle_fs_error(fs_info, -EIO,
4095 				      "%d errors while writing supers",
4096 				      total_errors);
4097 		return -EIO;
4098 	}
4099 
4100 	total_errors = 0;
4101 	list_for_each_entry(dev, head, dev_list) {
4102 		if (!dev->bdev)
4103 			continue;
4104 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4105 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4106 			continue;
4107 
4108 		ret = wait_dev_supers(dev, max_mirrors);
4109 		if (ret)
4110 			total_errors++;
4111 	}
4112 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4113 	if (total_errors > max_errors) {
4114 		btrfs_handle_fs_error(fs_info, -EIO,
4115 				      "%d errors while writing supers",
4116 				      total_errors);
4117 		return -EIO;
4118 	}
4119 	return 0;
4120 }
4121 
4122 /* Drop a fs root from the radix tree and free it. */
4123 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4124 				  struct btrfs_root *root)
4125 {
4126 	bool drop_ref = false;
4127 
4128 	spin_lock(&fs_info->fs_roots_radix_lock);
4129 	radix_tree_delete(&fs_info->fs_roots_radix,
4130 			  (unsigned long)root->root_key.objectid);
4131 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4132 		drop_ref = true;
4133 	spin_unlock(&fs_info->fs_roots_radix_lock);
4134 
4135 	if (BTRFS_FS_ERROR(fs_info)) {
4136 		ASSERT(root->log_root == NULL);
4137 		if (root->reloc_root) {
4138 			btrfs_put_root(root->reloc_root);
4139 			root->reloc_root = NULL;
4140 		}
4141 	}
4142 
4143 	if (drop_ref)
4144 		btrfs_put_root(root);
4145 }
4146 
4147 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4148 {
4149 	struct btrfs_root *root = fs_info->tree_root;
4150 	struct btrfs_trans_handle *trans;
4151 
4152 	mutex_lock(&fs_info->cleaner_mutex);
4153 	btrfs_run_delayed_iputs(fs_info);
4154 	mutex_unlock(&fs_info->cleaner_mutex);
4155 	wake_up_process(fs_info->cleaner_kthread);
4156 
4157 	/* wait until ongoing cleanup work done */
4158 	down_write(&fs_info->cleanup_work_sem);
4159 	up_write(&fs_info->cleanup_work_sem);
4160 
4161 	trans = btrfs_join_transaction(root);
4162 	if (IS_ERR(trans))
4163 		return PTR_ERR(trans);
4164 	return btrfs_commit_transaction(trans);
4165 }
4166 
4167 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4168 {
4169 	struct btrfs_transaction *trans;
4170 	struct btrfs_transaction *tmp;
4171 	bool found = false;
4172 
4173 	if (list_empty(&fs_info->trans_list))
4174 		return;
4175 
4176 	/*
4177 	 * This function is only called at the very end of close_ctree(),
4178 	 * thus no other running transaction, no need to take trans_lock.
4179 	 */
4180 	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4181 	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4182 		struct extent_state *cached = NULL;
4183 		u64 dirty_bytes = 0;
4184 		u64 cur = 0;
4185 		u64 found_start;
4186 		u64 found_end;
4187 
4188 		found = true;
4189 		while (find_first_extent_bit(&trans->dirty_pages, cur,
4190 			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4191 			dirty_bytes += found_end + 1 - found_start;
4192 			cur = found_end + 1;
4193 		}
4194 		btrfs_warn(fs_info,
4195 	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4196 			   trans->transid, dirty_bytes);
4197 		btrfs_cleanup_one_transaction(trans, fs_info);
4198 
4199 		if (trans == fs_info->running_transaction)
4200 			fs_info->running_transaction = NULL;
4201 		list_del_init(&trans->list);
4202 
4203 		btrfs_put_transaction(trans);
4204 		trace_btrfs_transaction_commit(fs_info);
4205 	}
4206 	ASSERT(!found);
4207 }
4208 
4209 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4210 {
4211 	int ret;
4212 
4213 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4214 
4215 	/*
4216 	 * If we had UNFINISHED_DROPS we could still be processing them, so
4217 	 * clear that bit and wake up relocation so it can stop.
4218 	 * We must do this before stopping the block group reclaim task, because
4219 	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4220 	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4221 	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4222 	 * return 1.
4223 	 */
4224 	btrfs_wake_unfinished_drop(fs_info);
4225 
4226 	/*
4227 	 * We may have the reclaim task running and relocating a data block group,
4228 	 * in which case it may create delayed iputs. So stop it before we park
4229 	 * the cleaner kthread otherwise we can get new delayed iputs after
4230 	 * parking the cleaner, and that can make the async reclaim task to hang
4231 	 * if it's waiting for delayed iputs to complete, since the cleaner is
4232 	 * parked and can not run delayed iputs - this will make us hang when
4233 	 * trying to stop the async reclaim task.
4234 	 */
4235 	cancel_work_sync(&fs_info->reclaim_bgs_work);
4236 	/*
4237 	 * We don't want the cleaner to start new transactions, add more delayed
4238 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4239 	 * because that frees the task_struct, and the transaction kthread might
4240 	 * still try to wake up the cleaner.
4241 	 */
4242 	kthread_park(fs_info->cleaner_kthread);
4243 
4244 	/* wait for the qgroup rescan worker to stop */
4245 	btrfs_qgroup_wait_for_completion(fs_info, false);
4246 
4247 	/* wait for the uuid_scan task to finish */
4248 	down(&fs_info->uuid_tree_rescan_sem);
4249 	/* avoid complains from lockdep et al., set sem back to initial state */
4250 	up(&fs_info->uuid_tree_rescan_sem);
4251 
4252 	/* pause restriper - we want to resume on mount */
4253 	btrfs_pause_balance(fs_info);
4254 
4255 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4256 
4257 	btrfs_scrub_cancel(fs_info);
4258 
4259 	/* wait for any defraggers to finish */
4260 	wait_event(fs_info->transaction_wait,
4261 		   (atomic_read(&fs_info->defrag_running) == 0));
4262 
4263 	/* clear out the rbtree of defraggable inodes */
4264 	btrfs_cleanup_defrag_inodes(fs_info);
4265 
4266 	/*
4267 	 * After we parked the cleaner kthread, ordered extents may have
4268 	 * completed and created new delayed iputs. If one of the async reclaim
4269 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4270 	 * can hang forever trying to stop it, because if a delayed iput is
4271 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4272 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4273 	 * no one else to run iputs.
4274 	 *
4275 	 * So wait for all ongoing ordered extents to complete and then run
4276 	 * delayed iputs. This works because once we reach this point no one
4277 	 * can either create new ordered extents nor create delayed iputs
4278 	 * through some other means.
4279 	 *
4280 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4281 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4282 	 * but the delayed iput for the respective inode is made only when doing
4283 	 * the final btrfs_put_ordered_extent() (which must happen at
4284 	 * btrfs_finish_ordered_io() when we are unmounting).
4285 	 */
4286 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4287 	/* Ordered extents for free space inodes. */
4288 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4289 	btrfs_run_delayed_iputs(fs_info);
4290 
4291 	cancel_work_sync(&fs_info->async_reclaim_work);
4292 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4293 	cancel_work_sync(&fs_info->preempt_reclaim_work);
4294 
4295 	/* Cancel or finish ongoing discard work */
4296 	btrfs_discard_cleanup(fs_info);
4297 
4298 	if (!sb_rdonly(fs_info->sb)) {
4299 		/*
4300 		 * The cleaner kthread is stopped, so do one final pass over
4301 		 * unused block groups.
4302 		 */
4303 		btrfs_delete_unused_bgs(fs_info);
4304 
4305 		/*
4306 		 * There might be existing delayed inode workers still running
4307 		 * and holding an empty delayed inode item. We must wait for
4308 		 * them to complete first because they can create a transaction.
4309 		 * This happens when someone calls btrfs_balance_delayed_items()
4310 		 * and then a transaction commit runs the same delayed nodes
4311 		 * before any delayed worker has done something with the nodes.
4312 		 * We must wait for any worker here and not at transaction
4313 		 * commit time since that could cause a deadlock.
4314 		 * This is a very rare case.
4315 		 */
4316 		btrfs_flush_workqueue(fs_info->delayed_workers);
4317 
4318 		ret = btrfs_commit_super(fs_info);
4319 		if (ret)
4320 			btrfs_err(fs_info, "commit super ret %d", ret);
4321 	}
4322 
4323 	if (BTRFS_FS_ERROR(fs_info))
4324 		btrfs_error_commit_super(fs_info);
4325 
4326 	kthread_stop(fs_info->transaction_kthread);
4327 	kthread_stop(fs_info->cleaner_kthread);
4328 
4329 	ASSERT(list_empty(&fs_info->delayed_iputs));
4330 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4331 
4332 	if (btrfs_check_quota_leak(fs_info)) {
4333 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4334 		btrfs_err(fs_info, "qgroup reserved space leaked");
4335 	}
4336 
4337 	btrfs_free_qgroup_config(fs_info);
4338 	ASSERT(list_empty(&fs_info->delalloc_roots));
4339 
4340 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4341 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4342 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4343 	}
4344 
4345 	if (percpu_counter_sum(&fs_info->ordered_bytes))
4346 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4347 			   percpu_counter_sum(&fs_info->ordered_bytes));
4348 
4349 	btrfs_sysfs_remove_mounted(fs_info);
4350 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4351 
4352 	btrfs_put_block_group_cache(fs_info);
4353 
4354 	/*
4355 	 * we must make sure there is not any read request to
4356 	 * submit after we stopping all workers.
4357 	 */
4358 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4359 	btrfs_stop_all_workers(fs_info);
4360 
4361 	/* We shouldn't have any transaction open at this point */
4362 	warn_about_uncommitted_trans(fs_info);
4363 
4364 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4365 	free_root_pointers(fs_info, true);
4366 	btrfs_free_fs_roots(fs_info);
4367 
4368 	/*
4369 	 * We must free the block groups after dropping the fs_roots as we could
4370 	 * have had an IO error and have left over tree log blocks that aren't
4371 	 * cleaned up until the fs roots are freed.  This makes the block group
4372 	 * accounting appear to be wrong because there's pending reserved bytes,
4373 	 * so make sure we do the block group cleanup afterwards.
4374 	 */
4375 	btrfs_free_block_groups(fs_info);
4376 
4377 	iput(fs_info->btree_inode);
4378 
4379 	btrfs_mapping_tree_free(fs_info);
4380 	btrfs_close_devices(fs_info->fs_devices);
4381 }
4382 
4383 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4384 			     struct extent_buffer *buf)
4385 {
4386 	struct btrfs_fs_info *fs_info = buf->fs_info;
4387 	u64 transid = btrfs_header_generation(buf);
4388 
4389 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4390 	/*
4391 	 * This is a fast path so only do this check if we have sanity tests
4392 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4393 	 * outside of the sanity tests.
4394 	 */
4395 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4396 		return;
4397 #endif
4398 	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4399 	ASSERT(trans->transid == fs_info->generation);
4400 	btrfs_assert_tree_write_locked(buf);
4401 	if (unlikely(transid != fs_info->generation)) {
4402 		btrfs_abort_transaction(trans, -EUCLEAN);
4403 		btrfs_crit(fs_info,
4404 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4405 			   buf->start, transid, fs_info->generation);
4406 	}
4407 	set_extent_buffer_dirty(buf);
4408 }
4409 
4410 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4411 					int flush_delayed)
4412 {
4413 	/*
4414 	 * looks as though older kernels can get into trouble with
4415 	 * this code, they end up stuck in balance_dirty_pages forever
4416 	 */
4417 	int ret;
4418 
4419 	if (current->flags & PF_MEMALLOC)
4420 		return;
4421 
4422 	if (flush_delayed)
4423 		btrfs_balance_delayed_items(fs_info);
4424 
4425 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4426 				     BTRFS_DIRTY_METADATA_THRESH,
4427 				     fs_info->dirty_metadata_batch);
4428 	if (ret > 0) {
4429 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4430 	}
4431 }
4432 
4433 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4434 {
4435 	__btrfs_btree_balance_dirty(fs_info, 1);
4436 }
4437 
4438 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4439 {
4440 	__btrfs_btree_balance_dirty(fs_info, 0);
4441 }
4442 
4443 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4444 {
4445 	/* cleanup FS via transaction */
4446 	btrfs_cleanup_transaction(fs_info);
4447 
4448 	mutex_lock(&fs_info->cleaner_mutex);
4449 	btrfs_run_delayed_iputs(fs_info);
4450 	mutex_unlock(&fs_info->cleaner_mutex);
4451 
4452 	down_write(&fs_info->cleanup_work_sem);
4453 	up_write(&fs_info->cleanup_work_sem);
4454 }
4455 
4456 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4457 {
4458 	struct btrfs_root *gang[8];
4459 	u64 root_objectid = 0;
4460 	int ret;
4461 
4462 	spin_lock(&fs_info->fs_roots_radix_lock);
4463 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4464 					     (void **)gang, root_objectid,
4465 					     ARRAY_SIZE(gang))) != 0) {
4466 		int i;
4467 
4468 		for (i = 0; i < ret; i++)
4469 			gang[i] = btrfs_grab_root(gang[i]);
4470 		spin_unlock(&fs_info->fs_roots_radix_lock);
4471 
4472 		for (i = 0; i < ret; i++) {
4473 			if (!gang[i])
4474 				continue;
4475 			root_objectid = gang[i]->root_key.objectid;
4476 			btrfs_free_log(NULL, gang[i]);
4477 			btrfs_put_root(gang[i]);
4478 		}
4479 		root_objectid++;
4480 		spin_lock(&fs_info->fs_roots_radix_lock);
4481 	}
4482 	spin_unlock(&fs_info->fs_roots_radix_lock);
4483 	btrfs_free_log_root_tree(NULL, fs_info);
4484 }
4485 
4486 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4487 {
4488 	struct btrfs_ordered_extent *ordered;
4489 
4490 	spin_lock(&root->ordered_extent_lock);
4491 	/*
4492 	 * This will just short circuit the ordered completion stuff which will
4493 	 * make sure the ordered extent gets properly cleaned up.
4494 	 */
4495 	list_for_each_entry(ordered, &root->ordered_extents,
4496 			    root_extent_list)
4497 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4498 	spin_unlock(&root->ordered_extent_lock);
4499 }
4500 
4501 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4502 {
4503 	struct btrfs_root *root;
4504 	LIST_HEAD(splice);
4505 
4506 	spin_lock(&fs_info->ordered_root_lock);
4507 	list_splice_init(&fs_info->ordered_roots, &splice);
4508 	while (!list_empty(&splice)) {
4509 		root = list_first_entry(&splice, struct btrfs_root,
4510 					ordered_root);
4511 		list_move_tail(&root->ordered_root,
4512 			       &fs_info->ordered_roots);
4513 
4514 		spin_unlock(&fs_info->ordered_root_lock);
4515 		btrfs_destroy_ordered_extents(root);
4516 
4517 		cond_resched();
4518 		spin_lock(&fs_info->ordered_root_lock);
4519 	}
4520 	spin_unlock(&fs_info->ordered_root_lock);
4521 
4522 	/*
4523 	 * We need this here because if we've been flipped read-only we won't
4524 	 * get sync() from the umount, so we need to make sure any ordered
4525 	 * extents that haven't had their dirty pages IO start writeout yet
4526 	 * actually get run and error out properly.
4527 	 */
4528 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4529 }
4530 
4531 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4532 				       struct btrfs_fs_info *fs_info)
4533 {
4534 	struct rb_node *node;
4535 	struct btrfs_delayed_ref_root *delayed_refs;
4536 	struct btrfs_delayed_ref_node *ref;
4537 
4538 	delayed_refs = &trans->delayed_refs;
4539 
4540 	spin_lock(&delayed_refs->lock);
4541 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4542 		spin_unlock(&delayed_refs->lock);
4543 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4544 		return;
4545 	}
4546 
4547 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4548 		struct btrfs_delayed_ref_head *head;
4549 		struct rb_node *n;
4550 		bool pin_bytes = false;
4551 
4552 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4553 				href_node);
4554 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4555 			continue;
4556 
4557 		spin_lock(&head->lock);
4558 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4559 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4560 				       ref_node);
4561 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4562 			RB_CLEAR_NODE(&ref->ref_node);
4563 			if (!list_empty(&ref->add_list))
4564 				list_del(&ref->add_list);
4565 			atomic_dec(&delayed_refs->num_entries);
4566 			btrfs_put_delayed_ref(ref);
4567 			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4568 		}
4569 		if (head->must_insert_reserved)
4570 			pin_bytes = true;
4571 		btrfs_free_delayed_extent_op(head->extent_op);
4572 		btrfs_delete_ref_head(delayed_refs, head);
4573 		spin_unlock(&head->lock);
4574 		spin_unlock(&delayed_refs->lock);
4575 		mutex_unlock(&head->mutex);
4576 
4577 		if (pin_bytes) {
4578 			struct btrfs_block_group *cache;
4579 
4580 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4581 			BUG_ON(!cache);
4582 
4583 			spin_lock(&cache->space_info->lock);
4584 			spin_lock(&cache->lock);
4585 			cache->pinned += head->num_bytes;
4586 			btrfs_space_info_update_bytes_pinned(fs_info,
4587 				cache->space_info, head->num_bytes);
4588 			cache->reserved -= head->num_bytes;
4589 			cache->space_info->bytes_reserved -= head->num_bytes;
4590 			spin_unlock(&cache->lock);
4591 			spin_unlock(&cache->space_info->lock);
4592 
4593 			btrfs_put_block_group(cache);
4594 
4595 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4596 				head->bytenr + head->num_bytes - 1);
4597 		}
4598 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4599 		btrfs_put_delayed_ref_head(head);
4600 		cond_resched();
4601 		spin_lock(&delayed_refs->lock);
4602 	}
4603 	btrfs_qgroup_destroy_extent_records(trans);
4604 
4605 	spin_unlock(&delayed_refs->lock);
4606 }
4607 
4608 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4609 {
4610 	struct btrfs_inode *btrfs_inode;
4611 	LIST_HEAD(splice);
4612 
4613 	spin_lock(&root->delalloc_lock);
4614 	list_splice_init(&root->delalloc_inodes, &splice);
4615 
4616 	while (!list_empty(&splice)) {
4617 		struct inode *inode = NULL;
4618 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4619 					       delalloc_inodes);
4620 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4621 		spin_unlock(&root->delalloc_lock);
4622 
4623 		/*
4624 		 * Make sure we get a live inode and that it'll not disappear
4625 		 * meanwhile.
4626 		 */
4627 		inode = igrab(&btrfs_inode->vfs_inode);
4628 		if (inode) {
4629 			unsigned int nofs_flag;
4630 
4631 			nofs_flag = memalloc_nofs_save();
4632 			invalidate_inode_pages2(inode->i_mapping);
4633 			memalloc_nofs_restore(nofs_flag);
4634 			iput(inode);
4635 		}
4636 		spin_lock(&root->delalloc_lock);
4637 	}
4638 	spin_unlock(&root->delalloc_lock);
4639 }
4640 
4641 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4642 {
4643 	struct btrfs_root *root;
4644 	LIST_HEAD(splice);
4645 
4646 	spin_lock(&fs_info->delalloc_root_lock);
4647 	list_splice_init(&fs_info->delalloc_roots, &splice);
4648 	while (!list_empty(&splice)) {
4649 		root = list_first_entry(&splice, struct btrfs_root,
4650 					 delalloc_root);
4651 		root = btrfs_grab_root(root);
4652 		BUG_ON(!root);
4653 		spin_unlock(&fs_info->delalloc_root_lock);
4654 
4655 		btrfs_destroy_delalloc_inodes(root);
4656 		btrfs_put_root(root);
4657 
4658 		spin_lock(&fs_info->delalloc_root_lock);
4659 	}
4660 	spin_unlock(&fs_info->delalloc_root_lock);
4661 }
4662 
4663 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4664 					 struct extent_io_tree *dirty_pages,
4665 					 int mark)
4666 {
4667 	struct extent_buffer *eb;
4668 	u64 start = 0;
4669 	u64 end;
4670 
4671 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4672 				     mark, NULL)) {
4673 		clear_extent_bits(dirty_pages, start, end, mark);
4674 		while (start <= end) {
4675 			eb = find_extent_buffer(fs_info, start);
4676 			start += fs_info->nodesize;
4677 			if (!eb)
4678 				continue;
4679 
4680 			btrfs_tree_lock(eb);
4681 			wait_on_extent_buffer_writeback(eb);
4682 			btrfs_clear_buffer_dirty(NULL, eb);
4683 			btrfs_tree_unlock(eb);
4684 
4685 			free_extent_buffer_stale(eb);
4686 		}
4687 	}
4688 }
4689 
4690 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4691 					struct extent_io_tree *unpin)
4692 {
4693 	u64 start;
4694 	u64 end;
4695 
4696 	while (1) {
4697 		struct extent_state *cached_state = NULL;
4698 
4699 		/*
4700 		 * The btrfs_finish_extent_commit() may get the same range as
4701 		 * ours between find_first_extent_bit and clear_extent_dirty.
4702 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4703 		 * the same extent range.
4704 		 */
4705 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4706 		if (!find_first_extent_bit(unpin, 0, &start, &end,
4707 					   EXTENT_DIRTY, &cached_state)) {
4708 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4709 			break;
4710 		}
4711 
4712 		clear_extent_dirty(unpin, start, end, &cached_state);
4713 		free_extent_state(cached_state);
4714 		btrfs_error_unpin_extent_range(fs_info, start, end);
4715 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4716 		cond_resched();
4717 	}
4718 }
4719 
4720 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4721 {
4722 	struct inode *inode;
4723 
4724 	inode = cache->io_ctl.inode;
4725 	if (inode) {
4726 		unsigned int nofs_flag;
4727 
4728 		nofs_flag = memalloc_nofs_save();
4729 		invalidate_inode_pages2(inode->i_mapping);
4730 		memalloc_nofs_restore(nofs_flag);
4731 
4732 		BTRFS_I(inode)->generation = 0;
4733 		cache->io_ctl.inode = NULL;
4734 		iput(inode);
4735 	}
4736 	ASSERT(cache->io_ctl.pages == NULL);
4737 	btrfs_put_block_group(cache);
4738 }
4739 
4740 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4741 			     struct btrfs_fs_info *fs_info)
4742 {
4743 	struct btrfs_block_group *cache;
4744 
4745 	spin_lock(&cur_trans->dirty_bgs_lock);
4746 	while (!list_empty(&cur_trans->dirty_bgs)) {
4747 		cache = list_first_entry(&cur_trans->dirty_bgs,
4748 					 struct btrfs_block_group,
4749 					 dirty_list);
4750 
4751 		if (!list_empty(&cache->io_list)) {
4752 			spin_unlock(&cur_trans->dirty_bgs_lock);
4753 			list_del_init(&cache->io_list);
4754 			btrfs_cleanup_bg_io(cache);
4755 			spin_lock(&cur_trans->dirty_bgs_lock);
4756 		}
4757 
4758 		list_del_init(&cache->dirty_list);
4759 		spin_lock(&cache->lock);
4760 		cache->disk_cache_state = BTRFS_DC_ERROR;
4761 		spin_unlock(&cache->lock);
4762 
4763 		spin_unlock(&cur_trans->dirty_bgs_lock);
4764 		btrfs_put_block_group(cache);
4765 		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4766 		spin_lock(&cur_trans->dirty_bgs_lock);
4767 	}
4768 	spin_unlock(&cur_trans->dirty_bgs_lock);
4769 
4770 	/*
4771 	 * Refer to the definition of io_bgs member for details why it's safe
4772 	 * to use it without any locking
4773 	 */
4774 	while (!list_empty(&cur_trans->io_bgs)) {
4775 		cache = list_first_entry(&cur_trans->io_bgs,
4776 					 struct btrfs_block_group,
4777 					 io_list);
4778 
4779 		list_del_init(&cache->io_list);
4780 		spin_lock(&cache->lock);
4781 		cache->disk_cache_state = BTRFS_DC_ERROR;
4782 		spin_unlock(&cache->lock);
4783 		btrfs_cleanup_bg_io(cache);
4784 	}
4785 }
4786 
4787 static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4788 {
4789 	struct btrfs_root *gang[8];
4790 	int i;
4791 	int ret;
4792 
4793 	spin_lock(&fs_info->fs_roots_radix_lock);
4794 	while (1) {
4795 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4796 						 (void **)gang, 0,
4797 						 ARRAY_SIZE(gang),
4798 						 BTRFS_ROOT_TRANS_TAG);
4799 		if (ret == 0)
4800 			break;
4801 		for (i = 0; i < ret; i++) {
4802 			struct btrfs_root *root = gang[i];
4803 
4804 			btrfs_qgroup_free_meta_all_pertrans(root);
4805 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4806 					(unsigned long)root->root_key.objectid,
4807 					BTRFS_ROOT_TRANS_TAG);
4808 		}
4809 	}
4810 	spin_unlock(&fs_info->fs_roots_radix_lock);
4811 }
4812 
4813 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4814 				   struct btrfs_fs_info *fs_info)
4815 {
4816 	struct btrfs_device *dev, *tmp;
4817 
4818 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4819 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4820 	ASSERT(list_empty(&cur_trans->io_bgs));
4821 
4822 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4823 				 post_commit_list) {
4824 		list_del_init(&dev->post_commit_list);
4825 	}
4826 
4827 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4828 
4829 	cur_trans->state = TRANS_STATE_COMMIT_START;
4830 	wake_up(&fs_info->transaction_blocked_wait);
4831 
4832 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4833 	wake_up(&fs_info->transaction_wait);
4834 
4835 	btrfs_destroy_delayed_inodes(fs_info);
4836 
4837 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4838 				     EXTENT_DIRTY);
4839 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4840 
4841 	btrfs_free_all_qgroup_pertrans(fs_info);
4842 
4843 	cur_trans->state =TRANS_STATE_COMPLETED;
4844 	wake_up(&cur_trans->commit_wait);
4845 }
4846 
4847 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4848 {
4849 	struct btrfs_transaction *t;
4850 
4851 	mutex_lock(&fs_info->transaction_kthread_mutex);
4852 
4853 	spin_lock(&fs_info->trans_lock);
4854 	while (!list_empty(&fs_info->trans_list)) {
4855 		t = list_first_entry(&fs_info->trans_list,
4856 				     struct btrfs_transaction, list);
4857 		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4858 			refcount_inc(&t->use_count);
4859 			spin_unlock(&fs_info->trans_lock);
4860 			btrfs_wait_for_commit(fs_info, t->transid);
4861 			btrfs_put_transaction(t);
4862 			spin_lock(&fs_info->trans_lock);
4863 			continue;
4864 		}
4865 		if (t == fs_info->running_transaction) {
4866 			t->state = TRANS_STATE_COMMIT_DOING;
4867 			spin_unlock(&fs_info->trans_lock);
4868 			/*
4869 			 * We wait for 0 num_writers since we don't hold a trans
4870 			 * handle open currently for this transaction.
4871 			 */
4872 			wait_event(t->writer_wait,
4873 				   atomic_read(&t->num_writers) == 0);
4874 		} else {
4875 			spin_unlock(&fs_info->trans_lock);
4876 		}
4877 		btrfs_cleanup_one_transaction(t, fs_info);
4878 
4879 		spin_lock(&fs_info->trans_lock);
4880 		if (t == fs_info->running_transaction)
4881 			fs_info->running_transaction = NULL;
4882 		list_del_init(&t->list);
4883 		spin_unlock(&fs_info->trans_lock);
4884 
4885 		btrfs_put_transaction(t);
4886 		trace_btrfs_transaction_commit(fs_info);
4887 		spin_lock(&fs_info->trans_lock);
4888 	}
4889 	spin_unlock(&fs_info->trans_lock);
4890 	btrfs_destroy_all_ordered_extents(fs_info);
4891 	btrfs_destroy_delayed_inodes(fs_info);
4892 	btrfs_assert_delayed_root_empty(fs_info);
4893 	btrfs_destroy_all_delalloc_inodes(fs_info);
4894 	btrfs_drop_all_logs(fs_info);
4895 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4896 
4897 	return 0;
4898 }
4899 
4900 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4901 {
4902 	struct btrfs_path *path;
4903 	int ret;
4904 	struct extent_buffer *l;
4905 	struct btrfs_key search_key;
4906 	struct btrfs_key found_key;
4907 	int slot;
4908 
4909 	path = btrfs_alloc_path();
4910 	if (!path)
4911 		return -ENOMEM;
4912 
4913 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4914 	search_key.type = -1;
4915 	search_key.offset = (u64)-1;
4916 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4917 	if (ret < 0)
4918 		goto error;
4919 	BUG_ON(ret == 0); /* Corruption */
4920 	if (path->slots[0] > 0) {
4921 		slot = path->slots[0] - 1;
4922 		l = path->nodes[0];
4923 		btrfs_item_key_to_cpu(l, &found_key, slot);
4924 		root->free_objectid = max_t(u64, found_key.objectid + 1,
4925 					    BTRFS_FIRST_FREE_OBJECTID);
4926 	} else {
4927 		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4928 	}
4929 	ret = 0;
4930 error:
4931 	btrfs_free_path(path);
4932 	return ret;
4933 }
4934 
4935 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4936 {
4937 	int ret;
4938 	mutex_lock(&root->objectid_mutex);
4939 
4940 	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4941 		btrfs_warn(root->fs_info,
4942 			   "the objectid of root %llu reaches its highest value",
4943 			   root->root_key.objectid);
4944 		ret = -ENOSPC;
4945 		goto out;
4946 	}
4947 
4948 	*objectid = root->free_objectid++;
4949 	ret = 0;
4950 out:
4951 	mutex_unlock(&root->objectid_mutex);
4952 	return ret;
4953 }
4954