xref: /linux/fs/btrfs/disk-io.c (revision c289811cc096c57ff35550ee8132793a4f9b5b59)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "tree-log.h"
40 #include "free-space-cache.h"
41 
42 static struct extent_io_ops btree_extent_io_ops;
43 static void end_workqueue_fn(struct btrfs_work *work);
44 
45 /*
46  * end_io_wq structs are used to do processing in task context when an IO is
47  * complete.  This is used during reads to verify checksums, and it is used
48  * by writes to insert metadata for new file extents after IO is complete.
49  */
50 struct end_io_wq {
51 	struct bio *bio;
52 	bio_end_io_t *end_io;
53 	void *private;
54 	struct btrfs_fs_info *info;
55 	int error;
56 	int metadata;
57 	struct list_head list;
58 	struct btrfs_work work;
59 };
60 
61 /*
62  * async submit bios are used to offload expensive checksumming
63  * onto the worker threads.  They checksum file and metadata bios
64  * just before they are sent down the IO stack.
65  */
66 struct async_submit_bio {
67 	struct inode *inode;
68 	struct bio *bio;
69 	struct list_head list;
70 	extent_submit_bio_hook_t *submit_bio_start;
71 	extent_submit_bio_hook_t *submit_bio_done;
72 	int rw;
73 	int mirror_num;
74 	unsigned long bio_flags;
75 	struct btrfs_work work;
76 };
77 
78 /* These are used to set the lockdep class on the extent buffer locks.
79  * The class is set by the readpage_end_io_hook after the buffer has
80  * passed csum validation but before the pages are unlocked.
81  *
82  * The lockdep class is also set by btrfs_init_new_buffer on freshly
83  * allocated blocks.
84  *
85  * The class is based on the level in the tree block, which allows lockdep
86  * to know that lower nodes nest inside the locks of higher nodes.
87  *
88  * We also add a check to make sure the highest level of the tree is
89  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
90  * code needs update as well.
91  */
92 #ifdef CONFIG_DEBUG_LOCK_ALLOC
93 # if BTRFS_MAX_LEVEL != 8
94 #  error
95 # endif
96 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
97 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
98 	/* leaf */
99 	"btrfs-extent-00",
100 	"btrfs-extent-01",
101 	"btrfs-extent-02",
102 	"btrfs-extent-03",
103 	"btrfs-extent-04",
104 	"btrfs-extent-05",
105 	"btrfs-extent-06",
106 	"btrfs-extent-07",
107 	/* highest possible level */
108 	"btrfs-extent-08",
109 };
110 #endif
111 
112 /*
113  * extents on the btree inode are pretty simple, there's one extent
114  * that covers the entire device
115  */
116 static struct extent_map *btree_get_extent(struct inode *inode,
117 		struct page *page, size_t page_offset, u64 start, u64 len,
118 		int create)
119 {
120 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
121 	struct extent_map *em;
122 	int ret;
123 
124 	spin_lock(&em_tree->lock);
125 	em = lookup_extent_mapping(em_tree, start, len);
126 	if (em) {
127 		em->bdev =
128 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
129 		spin_unlock(&em_tree->lock);
130 		goto out;
131 	}
132 	spin_unlock(&em_tree->lock);
133 
134 	em = alloc_extent_map(GFP_NOFS);
135 	if (!em) {
136 		em = ERR_PTR(-ENOMEM);
137 		goto out;
138 	}
139 	em->start = 0;
140 	em->len = (u64)-1;
141 	em->block_len = (u64)-1;
142 	em->block_start = 0;
143 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
144 
145 	spin_lock(&em_tree->lock);
146 	ret = add_extent_mapping(em_tree, em);
147 	if (ret == -EEXIST) {
148 		u64 failed_start = em->start;
149 		u64 failed_len = em->len;
150 
151 		free_extent_map(em);
152 		em = lookup_extent_mapping(em_tree, start, len);
153 		if (em) {
154 			ret = 0;
155 		} else {
156 			em = lookup_extent_mapping(em_tree, failed_start,
157 						   failed_len);
158 			ret = -EIO;
159 		}
160 	} else if (ret) {
161 		free_extent_map(em);
162 		em = NULL;
163 	}
164 	spin_unlock(&em_tree->lock);
165 
166 	if (ret)
167 		em = ERR_PTR(ret);
168 out:
169 	return em;
170 }
171 
172 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
173 {
174 	return btrfs_crc32c(seed, data, len);
175 }
176 
177 void btrfs_csum_final(u32 crc, char *result)
178 {
179 	*(__le32 *)result = ~cpu_to_le32(crc);
180 }
181 
182 /*
183  * compute the csum for a btree block, and either verify it or write it
184  * into the csum field of the block.
185  */
186 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
187 			   int verify)
188 {
189 	u16 csum_size =
190 		btrfs_super_csum_size(&root->fs_info->super_copy);
191 	char *result = NULL;
192 	unsigned long len;
193 	unsigned long cur_len;
194 	unsigned long offset = BTRFS_CSUM_SIZE;
195 	char *map_token = NULL;
196 	char *kaddr;
197 	unsigned long map_start;
198 	unsigned long map_len;
199 	int err;
200 	u32 crc = ~(u32)0;
201 	unsigned long inline_result;
202 
203 	len = buf->len - offset;
204 	while (len > 0) {
205 		err = map_private_extent_buffer(buf, offset, 32,
206 					&map_token, &kaddr,
207 					&map_start, &map_len, KM_USER0);
208 		if (err)
209 			return 1;
210 		cur_len = min(len, map_len - (offset - map_start));
211 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
212 				      crc, cur_len);
213 		len -= cur_len;
214 		offset += cur_len;
215 		unmap_extent_buffer(buf, map_token, KM_USER0);
216 	}
217 	if (csum_size > sizeof(inline_result)) {
218 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
219 		if (!result)
220 			return 1;
221 	} else {
222 		result = (char *)&inline_result;
223 	}
224 
225 	btrfs_csum_final(crc, result);
226 
227 	if (verify) {
228 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
229 			u32 val;
230 			u32 found = 0;
231 			memcpy(&found, result, csum_size);
232 
233 			read_extent_buffer(buf, &val, 0, csum_size);
234 			if (printk_ratelimit()) {
235 				printk(KERN_INFO "btrfs: %s checksum verify "
236 				       "failed on %llu wanted %X found %X "
237 				       "level %d\n",
238 				       root->fs_info->sb->s_id,
239 				       (unsigned long long)buf->start, val, found,
240 				       btrfs_header_level(buf));
241 			}
242 			if (result != (char *)&inline_result)
243 				kfree(result);
244 			return 1;
245 		}
246 	} else {
247 		write_extent_buffer(buf, result, 0, csum_size);
248 	}
249 	if (result != (char *)&inline_result)
250 		kfree(result);
251 	return 0;
252 }
253 
254 /*
255  * we can't consider a given block up to date unless the transid of the
256  * block matches the transid in the parent node's pointer.  This is how we
257  * detect blocks that either didn't get written at all or got written
258  * in the wrong place.
259  */
260 static int verify_parent_transid(struct extent_io_tree *io_tree,
261 				 struct extent_buffer *eb, u64 parent_transid)
262 {
263 	int ret;
264 
265 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
266 		return 0;
267 
268 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
269 	if (extent_buffer_uptodate(io_tree, eb) &&
270 	    btrfs_header_generation(eb) == parent_transid) {
271 		ret = 0;
272 		goto out;
273 	}
274 	if (printk_ratelimit()) {
275 		printk("parent transid verify failed on %llu wanted %llu "
276 		       "found %llu\n",
277 		       (unsigned long long)eb->start,
278 		       (unsigned long long)parent_transid,
279 		       (unsigned long long)btrfs_header_generation(eb));
280 	}
281 	ret = 1;
282 	clear_extent_buffer_uptodate(io_tree, eb);
283 out:
284 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
285 		      GFP_NOFS);
286 	return ret;
287 }
288 
289 /*
290  * helper to read a given tree block, doing retries as required when
291  * the checksums don't match and we have alternate mirrors to try.
292  */
293 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
294 					  struct extent_buffer *eb,
295 					  u64 start, u64 parent_transid)
296 {
297 	struct extent_io_tree *io_tree;
298 	int ret;
299 	int num_copies = 0;
300 	int mirror_num = 0;
301 
302 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
303 	while (1) {
304 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
305 					       btree_get_extent, mirror_num);
306 		if (!ret &&
307 		    !verify_parent_transid(io_tree, eb, parent_transid))
308 			return ret;
309 
310 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
311 					      eb->start, eb->len);
312 		if (num_copies == 1)
313 			return ret;
314 
315 		mirror_num++;
316 		if (mirror_num > num_copies)
317 			return ret;
318 	}
319 	return -EIO;
320 }
321 
322 /*
323  * checksum a dirty tree block before IO.  This has extra checks to make sure
324  * we only fill in the checksum field in the first page of a multi-page block
325  */
326 
327 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
328 {
329 	struct extent_io_tree *tree;
330 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
331 	u64 found_start;
332 	int found_level;
333 	unsigned long len;
334 	struct extent_buffer *eb;
335 	int ret;
336 
337 	tree = &BTRFS_I(page->mapping->host)->io_tree;
338 
339 	if (page->private == EXTENT_PAGE_PRIVATE)
340 		goto out;
341 	if (!page->private)
342 		goto out;
343 	len = page->private >> 2;
344 	WARN_ON(len == 0);
345 
346 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
347 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
348 					     btrfs_header_generation(eb));
349 	BUG_ON(ret);
350 	found_start = btrfs_header_bytenr(eb);
351 	if (found_start != start) {
352 		WARN_ON(1);
353 		goto err;
354 	}
355 	if (eb->first_page != page) {
356 		WARN_ON(1);
357 		goto err;
358 	}
359 	if (!PageUptodate(page)) {
360 		WARN_ON(1);
361 		goto err;
362 	}
363 	found_level = btrfs_header_level(eb);
364 
365 	csum_tree_block(root, eb, 0);
366 err:
367 	free_extent_buffer(eb);
368 out:
369 	return 0;
370 }
371 
372 static int check_tree_block_fsid(struct btrfs_root *root,
373 				 struct extent_buffer *eb)
374 {
375 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
376 	u8 fsid[BTRFS_UUID_SIZE];
377 	int ret = 1;
378 
379 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
380 			   BTRFS_FSID_SIZE);
381 	while (fs_devices) {
382 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
383 			ret = 0;
384 			break;
385 		}
386 		fs_devices = fs_devices->seed;
387 	}
388 	return ret;
389 }
390 
391 #ifdef CONFIG_DEBUG_LOCK_ALLOC
392 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
393 {
394 	lockdep_set_class_and_name(&eb->lock,
395 			   &btrfs_eb_class[level],
396 			   btrfs_eb_name[level]);
397 }
398 #endif
399 
400 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
401 			       struct extent_state *state)
402 {
403 	struct extent_io_tree *tree;
404 	u64 found_start;
405 	int found_level;
406 	unsigned long len;
407 	struct extent_buffer *eb;
408 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
409 	int ret = 0;
410 
411 	tree = &BTRFS_I(page->mapping->host)->io_tree;
412 	if (page->private == EXTENT_PAGE_PRIVATE)
413 		goto out;
414 	if (!page->private)
415 		goto out;
416 
417 	len = page->private >> 2;
418 	WARN_ON(len == 0);
419 
420 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
421 
422 	found_start = btrfs_header_bytenr(eb);
423 	if (found_start != start) {
424 		if (printk_ratelimit()) {
425 			printk(KERN_INFO "btrfs bad tree block start "
426 			       "%llu %llu\n",
427 			       (unsigned long long)found_start,
428 			       (unsigned long long)eb->start);
429 		}
430 		ret = -EIO;
431 		goto err;
432 	}
433 	if (eb->first_page != page) {
434 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
435 		       eb->first_page->index, page->index);
436 		WARN_ON(1);
437 		ret = -EIO;
438 		goto err;
439 	}
440 	if (check_tree_block_fsid(root, eb)) {
441 		if (printk_ratelimit()) {
442 			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
443 			       (unsigned long long)eb->start);
444 		}
445 		ret = -EIO;
446 		goto err;
447 	}
448 	found_level = btrfs_header_level(eb);
449 
450 	btrfs_set_buffer_lockdep_class(eb, found_level);
451 
452 	ret = csum_tree_block(root, eb, 1);
453 	if (ret)
454 		ret = -EIO;
455 
456 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
457 	end = eb->start + end - 1;
458 err:
459 	free_extent_buffer(eb);
460 out:
461 	return ret;
462 }
463 
464 static void end_workqueue_bio(struct bio *bio, int err)
465 {
466 	struct end_io_wq *end_io_wq = bio->bi_private;
467 	struct btrfs_fs_info *fs_info;
468 
469 	fs_info = end_io_wq->info;
470 	end_io_wq->error = err;
471 	end_io_wq->work.func = end_workqueue_fn;
472 	end_io_wq->work.flags = 0;
473 
474 	if (bio->bi_rw & (1 << BIO_RW)) {
475 		if (end_io_wq->metadata)
476 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
477 					   &end_io_wq->work);
478 		else
479 			btrfs_queue_worker(&fs_info->endio_write_workers,
480 					   &end_io_wq->work);
481 	} else {
482 		if (end_io_wq->metadata)
483 			btrfs_queue_worker(&fs_info->endio_meta_workers,
484 					   &end_io_wq->work);
485 		else
486 			btrfs_queue_worker(&fs_info->endio_workers,
487 					   &end_io_wq->work);
488 	}
489 }
490 
491 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
492 			int metadata)
493 {
494 	struct end_io_wq *end_io_wq;
495 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
496 	if (!end_io_wq)
497 		return -ENOMEM;
498 
499 	end_io_wq->private = bio->bi_private;
500 	end_io_wq->end_io = bio->bi_end_io;
501 	end_io_wq->info = info;
502 	end_io_wq->error = 0;
503 	end_io_wq->bio = bio;
504 	end_io_wq->metadata = metadata;
505 
506 	bio->bi_private = end_io_wq;
507 	bio->bi_end_io = end_workqueue_bio;
508 	return 0;
509 }
510 
511 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
512 {
513 	unsigned long limit = min_t(unsigned long,
514 				    info->workers.max_workers,
515 				    info->fs_devices->open_devices);
516 	return 256 * limit;
517 }
518 
519 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
520 {
521 	return atomic_read(&info->nr_async_bios) >
522 		btrfs_async_submit_limit(info);
523 }
524 
525 static void run_one_async_start(struct btrfs_work *work)
526 {
527 	struct btrfs_fs_info *fs_info;
528 	struct async_submit_bio *async;
529 
530 	async = container_of(work, struct  async_submit_bio, work);
531 	fs_info = BTRFS_I(async->inode)->root->fs_info;
532 	async->submit_bio_start(async->inode, async->rw, async->bio,
533 			       async->mirror_num, async->bio_flags);
534 }
535 
536 static void run_one_async_done(struct btrfs_work *work)
537 {
538 	struct btrfs_fs_info *fs_info;
539 	struct async_submit_bio *async;
540 	int limit;
541 
542 	async = container_of(work, struct  async_submit_bio, work);
543 	fs_info = BTRFS_I(async->inode)->root->fs_info;
544 
545 	limit = btrfs_async_submit_limit(fs_info);
546 	limit = limit * 2 / 3;
547 
548 	atomic_dec(&fs_info->nr_async_submits);
549 
550 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
551 	    waitqueue_active(&fs_info->async_submit_wait))
552 		wake_up(&fs_info->async_submit_wait);
553 
554 	async->submit_bio_done(async->inode, async->rw, async->bio,
555 			       async->mirror_num, async->bio_flags);
556 }
557 
558 static void run_one_async_free(struct btrfs_work *work)
559 {
560 	struct async_submit_bio *async;
561 
562 	async = container_of(work, struct  async_submit_bio, work);
563 	kfree(async);
564 }
565 
566 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
567 			int rw, struct bio *bio, int mirror_num,
568 			unsigned long bio_flags,
569 			extent_submit_bio_hook_t *submit_bio_start,
570 			extent_submit_bio_hook_t *submit_bio_done)
571 {
572 	struct async_submit_bio *async;
573 
574 	async = kmalloc(sizeof(*async), GFP_NOFS);
575 	if (!async)
576 		return -ENOMEM;
577 
578 	async->inode = inode;
579 	async->rw = rw;
580 	async->bio = bio;
581 	async->mirror_num = mirror_num;
582 	async->submit_bio_start = submit_bio_start;
583 	async->submit_bio_done = submit_bio_done;
584 
585 	async->work.func = run_one_async_start;
586 	async->work.ordered_func = run_one_async_done;
587 	async->work.ordered_free = run_one_async_free;
588 
589 	async->work.flags = 0;
590 	async->bio_flags = bio_flags;
591 
592 	atomic_inc(&fs_info->nr_async_submits);
593 
594 	if (rw & (1 << BIO_RW_SYNCIO))
595 		btrfs_set_work_high_prio(&async->work);
596 
597 	btrfs_queue_worker(&fs_info->workers, &async->work);
598 
599 	while (atomic_read(&fs_info->async_submit_draining) &&
600 	      atomic_read(&fs_info->nr_async_submits)) {
601 		wait_event(fs_info->async_submit_wait,
602 			   (atomic_read(&fs_info->nr_async_submits) == 0));
603 	}
604 
605 	return 0;
606 }
607 
608 static int btree_csum_one_bio(struct bio *bio)
609 {
610 	struct bio_vec *bvec = bio->bi_io_vec;
611 	int bio_index = 0;
612 	struct btrfs_root *root;
613 
614 	WARN_ON(bio->bi_vcnt <= 0);
615 	while (bio_index < bio->bi_vcnt) {
616 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
617 		csum_dirty_buffer(root, bvec->bv_page);
618 		bio_index++;
619 		bvec++;
620 	}
621 	return 0;
622 }
623 
624 static int __btree_submit_bio_start(struct inode *inode, int rw,
625 				    struct bio *bio, int mirror_num,
626 				    unsigned long bio_flags)
627 {
628 	/*
629 	 * when we're called for a write, we're already in the async
630 	 * submission context.  Just jump into btrfs_map_bio
631 	 */
632 	btree_csum_one_bio(bio);
633 	return 0;
634 }
635 
636 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
637 				 int mirror_num, unsigned long bio_flags)
638 {
639 	/*
640 	 * when we're called for a write, we're already in the async
641 	 * submission context.  Just jump into btrfs_map_bio
642 	 */
643 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
644 }
645 
646 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
647 				 int mirror_num, unsigned long bio_flags)
648 {
649 	int ret;
650 
651 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
652 					  bio, 1);
653 	BUG_ON(ret);
654 
655 	if (!(rw & (1 << BIO_RW))) {
656 		/*
657 		 * called for a read, do the setup so that checksum validation
658 		 * can happen in the async kernel threads
659 		 */
660 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
661 				     mirror_num, 0);
662 	}
663 
664 	/*
665 	 * kthread helpers are used to submit writes so that checksumming
666 	 * can happen in parallel across all CPUs
667 	 */
668 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
669 				   inode, rw, bio, mirror_num, 0,
670 				   __btree_submit_bio_start,
671 				   __btree_submit_bio_done);
672 }
673 
674 static int btree_writepage(struct page *page, struct writeback_control *wbc)
675 {
676 	struct extent_io_tree *tree;
677 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678 	struct extent_buffer *eb;
679 	int was_dirty;
680 
681 	tree = &BTRFS_I(page->mapping->host)->io_tree;
682 	if (!(current->flags & PF_MEMALLOC)) {
683 		return extent_write_full_page(tree, page,
684 					      btree_get_extent, wbc);
685 	}
686 
687 	redirty_page_for_writepage(wbc, page);
688 	eb = btrfs_find_tree_block(root, page_offset(page),
689 				      PAGE_CACHE_SIZE);
690 	WARN_ON(!eb);
691 
692 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
693 	if (!was_dirty) {
694 		spin_lock(&root->fs_info->delalloc_lock);
695 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
696 		spin_unlock(&root->fs_info->delalloc_lock);
697 	}
698 	free_extent_buffer(eb);
699 
700 	unlock_page(page);
701 	return 0;
702 }
703 
704 static int btree_writepages(struct address_space *mapping,
705 			    struct writeback_control *wbc)
706 {
707 	struct extent_io_tree *tree;
708 	tree = &BTRFS_I(mapping->host)->io_tree;
709 	if (wbc->sync_mode == WB_SYNC_NONE) {
710 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
711 		u64 num_dirty;
712 		unsigned long thresh = 32 * 1024 * 1024;
713 
714 		if (wbc->for_kupdate)
715 			return 0;
716 
717 		/* this is a bit racy, but that's ok */
718 		num_dirty = root->fs_info->dirty_metadata_bytes;
719 		if (num_dirty < thresh)
720 			return 0;
721 	}
722 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
723 }
724 
725 static int btree_readpage(struct file *file, struct page *page)
726 {
727 	struct extent_io_tree *tree;
728 	tree = &BTRFS_I(page->mapping->host)->io_tree;
729 	return extent_read_full_page(tree, page, btree_get_extent);
730 }
731 
732 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
733 {
734 	struct extent_io_tree *tree;
735 	struct extent_map_tree *map;
736 	int ret;
737 
738 	if (PageWriteback(page) || PageDirty(page))
739 		return 0;
740 
741 	tree = &BTRFS_I(page->mapping->host)->io_tree;
742 	map = &BTRFS_I(page->mapping->host)->extent_tree;
743 
744 	ret = try_release_extent_state(map, tree, page, gfp_flags);
745 	if (!ret)
746 		return 0;
747 
748 	ret = try_release_extent_buffer(tree, page);
749 	if (ret == 1) {
750 		ClearPagePrivate(page);
751 		set_page_private(page, 0);
752 		page_cache_release(page);
753 	}
754 
755 	return ret;
756 }
757 
758 static void btree_invalidatepage(struct page *page, unsigned long offset)
759 {
760 	struct extent_io_tree *tree;
761 	tree = &BTRFS_I(page->mapping->host)->io_tree;
762 	extent_invalidatepage(tree, page, offset);
763 	btree_releasepage(page, GFP_NOFS);
764 	if (PagePrivate(page)) {
765 		printk(KERN_WARNING "btrfs warning page private not zero "
766 		       "on page %llu\n", (unsigned long long)page_offset(page));
767 		ClearPagePrivate(page);
768 		set_page_private(page, 0);
769 		page_cache_release(page);
770 	}
771 }
772 
773 static struct address_space_operations btree_aops = {
774 	.readpage	= btree_readpage,
775 	.writepage	= btree_writepage,
776 	.writepages	= btree_writepages,
777 	.releasepage	= btree_releasepage,
778 	.invalidatepage = btree_invalidatepage,
779 	.sync_page	= block_sync_page,
780 };
781 
782 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
783 			 u64 parent_transid)
784 {
785 	struct extent_buffer *buf = NULL;
786 	struct inode *btree_inode = root->fs_info->btree_inode;
787 	int ret = 0;
788 
789 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
790 	if (!buf)
791 		return 0;
792 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
793 				 buf, 0, 0, btree_get_extent, 0);
794 	free_extent_buffer(buf);
795 	return ret;
796 }
797 
798 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
799 					    u64 bytenr, u32 blocksize)
800 {
801 	struct inode *btree_inode = root->fs_info->btree_inode;
802 	struct extent_buffer *eb;
803 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
804 				bytenr, blocksize, GFP_NOFS);
805 	return eb;
806 }
807 
808 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
809 						 u64 bytenr, u32 blocksize)
810 {
811 	struct inode *btree_inode = root->fs_info->btree_inode;
812 	struct extent_buffer *eb;
813 
814 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
815 				 bytenr, blocksize, NULL, GFP_NOFS);
816 	return eb;
817 }
818 
819 
820 int btrfs_write_tree_block(struct extent_buffer *buf)
821 {
822 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
823 				      buf->start + buf->len - 1, WB_SYNC_ALL);
824 }
825 
826 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
827 {
828 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
829 				  buf->start, buf->start + buf->len - 1);
830 }
831 
832 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
833 				      u32 blocksize, u64 parent_transid)
834 {
835 	struct extent_buffer *buf = NULL;
836 	struct inode *btree_inode = root->fs_info->btree_inode;
837 	struct extent_io_tree *io_tree;
838 	int ret;
839 
840 	io_tree = &BTRFS_I(btree_inode)->io_tree;
841 
842 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
843 	if (!buf)
844 		return NULL;
845 
846 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
847 
848 	if (ret == 0)
849 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
850 	return buf;
851 
852 }
853 
854 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
855 		     struct extent_buffer *buf)
856 {
857 	struct inode *btree_inode = root->fs_info->btree_inode;
858 	if (btrfs_header_generation(buf) ==
859 	    root->fs_info->running_transaction->transid) {
860 		btrfs_assert_tree_locked(buf);
861 
862 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
863 			spin_lock(&root->fs_info->delalloc_lock);
864 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
865 				root->fs_info->dirty_metadata_bytes -= buf->len;
866 			else
867 				WARN_ON(1);
868 			spin_unlock(&root->fs_info->delalloc_lock);
869 		}
870 
871 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
872 		btrfs_set_lock_blocking(buf);
873 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
874 					  buf);
875 	}
876 	return 0;
877 }
878 
879 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
880 			u32 stripesize, struct btrfs_root *root,
881 			struct btrfs_fs_info *fs_info,
882 			u64 objectid)
883 {
884 	root->node = NULL;
885 	root->commit_root = NULL;
886 	root->sectorsize = sectorsize;
887 	root->nodesize = nodesize;
888 	root->leafsize = leafsize;
889 	root->stripesize = stripesize;
890 	root->ref_cows = 0;
891 	root->track_dirty = 0;
892 
893 	root->fs_info = fs_info;
894 	root->objectid = objectid;
895 	root->last_trans = 0;
896 	root->highest_inode = 0;
897 	root->last_inode_alloc = 0;
898 	root->name = NULL;
899 	root->in_sysfs = 0;
900 	root->inode_tree.rb_node = NULL;
901 
902 	INIT_LIST_HEAD(&root->dirty_list);
903 	INIT_LIST_HEAD(&root->orphan_list);
904 	INIT_LIST_HEAD(&root->root_list);
905 	spin_lock_init(&root->node_lock);
906 	spin_lock_init(&root->list_lock);
907 	spin_lock_init(&root->inode_lock);
908 	mutex_init(&root->objectid_mutex);
909 	mutex_init(&root->log_mutex);
910 	init_waitqueue_head(&root->log_writer_wait);
911 	init_waitqueue_head(&root->log_commit_wait[0]);
912 	init_waitqueue_head(&root->log_commit_wait[1]);
913 	atomic_set(&root->log_commit[0], 0);
914 	atomic_set(&root->log_commit[1], 0);
915 	atomic_set(&root->log_writers, 0);
916 	root->log_batch = 0;
917 	root->log_transid = 0;
918 	extent_io_tree_init(&root->dirty_log_pages,
919 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
920 
921 	memset(&root->root_key, 0, sizeof(root->root_key));
922 	memset(&root->root_item, 0, sizeof(root->root_item));
923 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
924 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
925 	root->defrag_trans_start = fs_info->generation;
926 	init_completion(&root->kobj_unregister);
927 	root->defrag_running = 0;
928 	root->defrag_level = 0;
929 	root->root_key.objectid = objectid;
930 	root->anon_super.s_root = NULL;
931 	root->anon_super.s_dev = 0;
932 	INIT_LIST_HEAD(&root->anon_super.s_list);
933 	INIT_LIST_HEAD(&root->anon_super.s_instances);
934 	init_rwsem(&root->anon_super.s_umount);
935 
936 	return 0;
937 }
938 
939 static int find_and_setup_root(struct btrfs_root *tree_root,
940 			       struct btrfs_fs_info *fs_info,
941 			       u64 objectid,
942 			       struct btrfs_root *root)
943 {
944 	int ret;
945 	u32 blocksize;
946 	u64 generation;
947 
948 	__setup_root(tree_root->nodesize, tree_root->leafsize,
949 		     tree_root->sectorsize, tree_root->stripesize,
950 		     root, fs_info, objectid);
951 	ret = btrfs_find_last_root(tree_root, objectid,
952 				   &root->root_item, &root->root_key);
953 	BUG_ON(ret);
954 
955 	generation = btrfs_root_generation(&root->root_item);
956 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
957 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
958 				     blocksize, generation);
959 	root->commit_root = btrfs_root_node(root);
960 	BUG_ON(!root->node);
961 	return 0;
962 }
963 
964 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
965 			     struct btrfs_fs_info *fs_info)
966 {
967 	struct extent_buffer *eb;
968 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
969 	u64 start = 0;
970 	u64 end = 0;
971 	int ret;
972 
973 	if (!log_root_tree)
974 		return 0;
975 
976 	while (1) {
977 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
978 				    0, &start, &end, EXTENT_DIRTY);
979 		if (ret)
980 			break;
981 
982 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
983 				   start, end, GFP_NOFS);
984 	}
985 	eb = fs_info->log_root_tree->node;
986 
987 	WARN_ON(btrfs_header_level(eb) != 0);
988 	WARN_ON(btrfs_header_nritems(eb) != 0);
989 
990 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
991 				eb->start, eb->len);
992 	BUG_ON(ret);
993 
994 	free_extent_buffer(eb);
995 	kfree(fs_info->log_root_tree);
996 	fs_info->log_root_tree = NULL;
997 	return 0;
998 }
999 
1000 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1001 					 struct btrfs_fs_info *fs_info)
1002 {
1003 	struct btrfs_root *root;
1004 	struct btrfs_root *tree_root = fs_info->tree_root;
1005 	struct extent_buffer *leaf;
1006 
1007 	root = kzalloc(sizeof(*root), GFP_NOFS);
1008 	if (!root)
1009 		return ERR_PTR(-ENOMEM);
1010 
1011 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1012 		     tree_root->sectorsize, tree_root->stripesize,
1013 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1014 
1015 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1016 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1017 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1018 	/*
1019 	 * log trees do not get reference counted because they go away
1020 	 * before a real commit is actually done.  They do store pointers
1021 	 * to file data extents, and those reference counts still get
1022 	 * updated (along with back refs to the log tree).
1023 	 */
1024 	root->ref_cows = 0;
1025 
1026 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1027 				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1028 	if (IS_ERR(leaf)) {
1029 		kfree(root);
1030 		return ERR_CAST(leaf);
1031 	}
1032 
1033 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1034 	btrfs_set_header_bytenr(leaf, leaf->start);
1035 	btrfs_set_header_generation(leaf, trans->transid);
1036 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1037 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1038 	root->node = leaf;
1039 
1040 	write_extent_buffer(root->node, root->fs_info->fsid,
1041 			    (unsigned long)btrfs_header_fsid(root->node),
1042 			    BTRFS_FSID_SIZE);
1043 	btrfs_mark_buffer_dirty(root->node);
1044 	btrfs_tree_unlock(root->node);
1045 	return root;
1046 }
1047 
1048 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1049 			     struct btrfs_fs_info *fs_info)
1050 {
1051 	struct btrfs_root *log_root;
1052 
1053 	log_root = alloc_log_tree(trans, fs_info);
1054 	if (IS_ERR(log_root))
1055 		return PTR_ERR(log_root);
1056 	WARN_ON(fs_info->log_root_tree);
1057 	fs_info->log_root_tree = log_root;
1058 	return 0;
1059 }
1060 
1061 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1062 		       struct btrfs_root *root)
1063 {
1064 	struct btrfs_root *log_root;
1065 	struct btrfs_inode_item *inode_item;
1066 
1067 	log_root = alloc_log_tree(trans, root->fs_info);
1068 	if (IS_ERR(log_root))
1069 		return PTR_ERR(log_root);
1070 
1071 	log_root->last_trans = trans->transid;
1072 	log_root->root_key.offset = root->root_key.objectid;
1073 
1074 	inode_item = &log_root->root_item.inode;
1075 	inode_item->generation = cpu_to_le64(1);
1076 	inode_item->size = cpu_to_le64(3);
1077 	inode_item->nlink = cpu_to_le32(1);
1078 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1079 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1080 
1081 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1082 
1083 	WARN_ON(root->log_root);
1084 	root->log_root = log_root;
1085 	root->log_transid = 0;
1086 	return 0;
1087 }
1088 
1089 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1090 					       struct btrfs_key *location)
1091 {
1092 	struct btrfs_root *root;
1093 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1094 	struct btrfs_path *path;
1095 	struct extent_buffer *l;
1096 	u64 highest_inode;
1097 	u64 generation;
1098 	u32 blocksize;
1099 	int ret = 0;
1100 
1101 	root = kzalloc(sizeof(*root), GFP_NOFS);
1102 	if (!root)
1103 		return ERR_PTR(-ENOMEM);
1104 	if (location->offset == (u64)-1) {
1105 		ret = find_and_setup_root(tree_root, fs_info,
1106 					  location->objectid, root);
1107 		if (ret) {
1108 			kfree(root);
1109 			return ERR_PTR(ret);
1110 		}
1111 		goto insert;
1112 	}
1113 
1114 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1115 		     tree_root->sectorsize, tree_root->stripesize,
1116 		     root, fs_info, location->objectid);
1117 
1118 	path = btrfs_alloc_path();
1119 	BUG_ON(!path);
1120 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1121 	if (ret != 0) {
1122 		if (ret > 0)
1123 			ret = -ENOENT;
1124 		goto out;
1125 	}
1126 	l = path->nodes[0];
1127 	read_extent_buffer(l, &root->root_item,
1128 	       btrfs_item_ptr_offset(l, path->slots[0]),
1129 	       sizeof(root->root_item));
1130 	memcpy(&root->root_key, location, sizeof(*location));
1131 	ret = 0;
1132 out:
1133 	btrfs_release_path(root, path);
1134 	btrfs_free_path(path);
1135 	if (ret) {
1136 		kfree(root);
1137 		return ERR_PTR(ret);
1138 	}
1139 	generation = btrfs_root_generation(&root->root_item);
1140 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1141 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1142 				     blocksize, generation);
1143 	root->commit_root = btrfs_root_node(root);
1144 	BUG_ON(!root->node);
1145 insert:
1146 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1147 		root->ref_cows = 1;
1148 		ret = btrfs_find_highest_inode(root, &highest_inode);
1149 		if (ret == 0) {
1150 			root->highest_inode = highest_inode;
1151 			root->last_inode_alloc = highest_inode;
1152 		}
1153 	}
1154 	return root;
1155 }
1156 
1157 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1158 					u64 root_objectid)
1159 {
1160 	struct btrfs_root *root;
1161 
1162 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1163 		return fs_info->tree_root;
1164 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1165 		return fs_info->extent_root;
1166 
1167 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1168 				 (unsigned long)root_objectid);
1169 	return root;
1170 }
1171 
1172 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1173 					      struct btrfs_key *location)
1174 {
1175 	struct btrfs_root *root;
1176 	int ret;
1177 
1178 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1179 		return fs_info->tree_root;
1180 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1181 		return fs_info->extent_root;
1182 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1183 		return fs_info->chunk_root;
1184 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1185 		return fs_info->dev_root;
1186 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1187 		return fs_info->csum_root;
1188 
1189 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1190 				 (unsigned long)location->objectid);
1191 	if (root)
1192 		return root;
1193 
1194 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1195 	if (IS_ERR(root))
1196 		return root;
1197 
1198 	set_anon_super(&root->anon_super, NULL);
1199 
1200 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1201 				(unsigned long)root->root_key.objectid,
1202 				root);
1203 	if (ret) {
1204 		free_extent_buffer(root->node);
1205 		kfree(root);
1206 		return ERR_PTR(ret);
1207 	}
1208 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1209 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1210 					    root->root_key.objectid);
1211 		BUG_ON(ret);
1212 		btrfs_orphan_cleanup(root);
1213 	}
1214 	return root;
1215 }
1216 
1217 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1218 				      struct btrfs_key *location,
1219 				      const char *name, int namelen)
1220 {
1221 	struct btrfs_root *root;
1222 	int ret;
1223 
1224 	root = btrfs_read_fs_root_no_name(fs_info, location);
1225 	if (!root)
1226 		return NULL;
1227 
1228 	if (root->in_sysfs)
1229 		return root;
1230 
1231 	ret = btrfs_set_root_name(root, name, namelen);
1232 	if (ret) {
1233 		free_extent_buffer(root->node);
1234 		kfree(root);
1235 		return ERR_PTR(ret);
1236 	}
1237 #if 0
1238 	ret = btrfs_sysfs_add_root(root);
1239 	if (ret) {
1240 		free_extent_buffer(root->node);
1241 		kfree(root->name);
1242 		kfree(root);
1243 		return ERR_PTR(ret);
1244 	}
1245 #endif
1246 	root->in_sysfs = 1;
1247 	return root;
1248 }
1249 
1250 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1251 {
1252 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1253 	int ret = 0;
1254 	struct btrfs_device *device;
1255 	struct backing_dev_info *bdi;
1256 
1257 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1258 		if (!device->bdev)
1259 			continue;
1260 		bdi = blk_get_backing_dev_info(device->bdev);
1261 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1262 			ret = 1;
1263 			break;
1264 		}
1265 	}
1266 	return ret;
1267 }
1268 
1269 /*
1270  * this unplugs every device on the box, and it is only used when page
1271  * is null
1272  */
1273 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1274 {
1275 	struct btrfs_device *device;
1276 	struct btrfs_fs_info *info;
1277 
1278 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1279 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1280 		if (!device->bdev)
1281 			continue;
1282 
1283 		bdi = blk_get_backing_dev_info(device->bdev);
1284 		if (bdi->unplug_io_fn)
1285 			bdi->unplug_io_fn(bdi, page);
1286 	}
1287 }
1288 
1289 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1290 {
1291 	struct inode *inode;
1292 	struct extent_map_tree *em_tree;
1293 	struct extent_map *em;
1294 	struct address_space *mapping;
1295 	u64 offset;
1296 
1297 	/* the generic O_DIRECT read code does this */
1298 	if (1 || !page) {
1299 		__unplug_io_fn(bdi, page);
1300 		return;
1301 	}
1302 
1303 	/*
1304 	 * page->mapping may change at any time.  Get a consistent copy
1305 	 * and use that for everything below
1306 	 */
1307 	smp_mb();
1308 	mapping = page->mapping;
1309 	if (!mapping)
1310 		return;
1311 
1312 	inode = mapping->host;
1313 
1314 	/*
1315 	 * don't do the expensive searching for a small number of
1316 	 * devices
1317 	 */
1318 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1319 		__unplug_io_fn(bdi, page);
1320 		return;
1321 	}
1322 
1323 	offset = page_offset(page);
1324 
1325 	em_tree = &BTRFS_I(inode)->extent_tree;
1326 	spin_lock(&em_tree->lock);
1327 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1328 	spin_unlock(&em_tree->lock);
1329 	if (!em) {
1330 		__unplug_io_fn(bdi, page);
1331 		return;
1332 	}
1333 
1334 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1335 		free_extent_map(em);
1336 		__unplug_io_fn(bdi, page);
1337 		return;
1338 	}
1339 	offset = offset - em->start;
1340 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1341 			  em->block_start + offset, page);
1342 	free_extent_map(em);
1343 }
1344 
1345 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1346 {
1347 	bdi_init(bdi);
1348 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1349 	bdi->state		= 0;
1350 	bdi->capabilities	= default_backing_dev_info.capabilities;
1351 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1352 	bdi->unplug_io_data	= info;
1353 	bdi->congested_fn	= btrfs_congested_fn;
1354 	bdi->congested_data	= info;
1355 	return 0;
1356 }
1357 
1358 static int bio_ready_for_csum(struct bio *bio)
1359 {
1360 	u64 length = 0;
1361 	u64 buf_len = 0;
1362 	u64 start = 0;
1363 	struct page *page;
1364 	struct extent_io_tree *io_tree = NULL;
1365 	struct btrfs_fs_info *info = NULL;
1366 	struct bio_vec *bvec;
1367 	int i;
1368 	int ret;
1369 
1370 	bio_for_each_segment(bvec, bio, i) {
1371 		page = bvec->bv_page;
1372 		if (page->private == EXTENT_PAGE_PRIVATE) {
1373 			length += bvec->bv_len;
1374 			continue;
1375 		}
1376 		if (!page->private) {
1377 			length += bvec->bv_len;
1378 			continue;
1379 		}
1380 		length = bvec->bv_len;
1381 		buf_len = page->private >> 2;
1382 		start = page_offset(page) + bvec->bv_offset;
1383 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1384 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1385 	}
1386 	/* are we fully contained in this bio? */
1387 	if (buf_len <= length)
1388 		return 1;
1389 
1390 	ret = extent_range_uptodate(io_tree, start + length,
1391 				    start + buf_len - 1);
1392 	return ret;
1393 }
1394 
1395 /*
1396  * called by the kthread helper functions to finally call the bio end_io
1397  * functions.  This is where read checksum verification actually happens
1398  */
1399 static void end_workqueue_fn(struct btrfs_work *work)
1400 {
1401 	struct bio *bio;
1402 	struct end_io_wq *end_io_wq;
1403 	struct btrfs_fs_info *fs_info;
1404 	int error;
1405 
1406 	end_io_wq = container_of(work, struct end_io_wq, work);
1407 	bio = end_io_wq->bio;
1408 	fs_info = end_io_wq->info;
1409 
1410 	/* metadata bio reads are special because the whole tree block must
1411 	 * be checksummed at once.  This makes sure the entire block is in
1412 	 * ram and up to date before trying to verify things.  For
1413 	 * blocksize <= pagesize, it is basically a noop
1414 	 */
1415 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1416 	    !bio_ready_for_csum(bio)) {
1417 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1418 				   &end_io_wq->work);
1419 		return;
1420 	}
1421 	error = end_io_wq->error;
1422 	bio->bi_private = end_io_wq->private;
1423 	bio->bi_end_io = end_io_wq->end_io;
1424 	kfree(end_io_wq);
1425 	bio_endio(bio, error);
1426 }
1427 
1428 static int cleaner_kthread(void *arg)
1429 {
1430 	struct btrfs_root *root = arg;
1431 
1432 	do {
1433 		smp_mb();
1434 		if (root->fs_info->closing)
1435 			break;
1436 
1437 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1438 		mutex_lock(&root->fs_info->cleaner_mutex);
1439 		btrfs_clean_old_snapshots(root);
1440 		mutex_unlock(&root->fs_info->cleaner_mutex);
1441 
1442 		if (freezing(current)) {
1443 			refrigerator();
1444 		} else {
1445 			smp_mb();
1446 			if (root->fs_info->closing)
1447 				break;
1448 			set_current_state(TASK_INTERRUPTIBLE);
1449 			schedule();
1450 			__set_current_state(TASK_RUNNING);
1451 		}
1452 	} while (!kthread_should_stop());
1453 	return 0;
1454 }
1455 
1456 static int transaction_kthread(void *arg)
1457 {
1458 	struct btrfs_root *root = arg;
1459 	struct btrfs_trans_handle *trans;
1460 	struct btrfs_transaction *cur;
1461 	unsigned long now;
1462 	unsigned long delay;
1463 	int ret;
1464 
1465 	do {
1466 		smp_mb();
1467 		if (root->fs_info->closing)
1468 			break;
1469 
1470 		delay = HZ * 30;
1471 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1472 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1473 
1474 		mutex_lock(&root->fs_info->trans_mutex);
1475 		cur = root->fs_info->running_transaction;
1476 		if (!cur) {
1477 			mutex_unlock(&root->fs_info->trans_mutex);
1478 			goto sleep;
1479 		}
1480 
1481 		now = get_seconds();
1482 		if (now < cur->start_time || now - cur->start_time < 30) {
1483 			mutex_unlock(&root->fs_info->trans_mutex);
1484 			delay = HZ * 5;
1485 			goto sleep;
1486 		}
1487 		mutex_unlock(&root->fs_info->trans_mutex);
1488 		trans = btrfs_start_transaction(root, 1);
1489 		ret = btrfs_commit_transaction(trans, root);
1490 
1491 sleep:
1492 		wake_up_process(root->fs_info->cleaner_kthread);
1493 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1494 
1495 		if (freezing(current)) {
1496 			refrigerator();
1497 		} else {
1498 			if (root->fs_info->closing)
1499 				break;
1500 			set_current_state(TASK_INTERRUPTIBLE);
1501 			schedule_timeout(delay);
1502 			__set_current_state(TASK_RUNNING);
1503 		}
1504 	} while (!kthread_should_stop());
1505 	return 0;
1506 }
1507 
1508 struct btrfs_root *open_ctree(struct super_block *sb,
1509 			      struct btrfs_fs_devices *fs_devices,
1510 			      char *options)
1511 {
1512 	u32 sectorsize;
1513 	u32 nodesize;
1514 	u32 leafsize;
1515 	u32 blocksize;
1516 	u32 stripesize;
1517 	u64 generation;
1518 	u64 features;
1519 	struct btrfs_key location;
1520 	struct buffer_head *bh;
1521 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1522 						 GFP_NOFS);
1523 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1524 						 GFP_NOFS);
1525 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1526 					       GFP_NOFS);
1527 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1528 						GFP_NOFS);
1529 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1530 						GFP_NOFS);
1531 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1532 					      GFP_NOFS);
1533 	struct btrfs_root *log_tree_root;
1534 
1535 	int ret;
1536 	int err = -EINVAL;
1537 
1538 	struct btrfs_super_block *disk_super;
1539 
1540 	if (!extent_root || !tree_root || !fs_info ||
1541 	    !chunk_root || !dev_root || !csum_root) {
1542 		err = -ENOMEM;
1543 		goto fail;
1544 	}
1545 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1546 	INIT_LIST_HEAD(&fs_info->trans_list);
1547 	INIT_LIST_HEAD(&fs_info->dead_roots);
1548 	INIT_LIST_HEAD(&fs_info->hashers);
1549 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1550 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1551 	spin_lock_init(&fs_info->delalloc_lock);
1552 	spin_lock_init(&fs_info->new_trans_lock);
1553 	spin_lock_init(&fs_info->ref_cache_lock);
1554 
1555 	init_completion(&fs_info->kobj_unregister);
1556 	fs_info->tree_root = tree_root;
1557 	fs_info->extent_root = extent_root;
1558 	fs_info->csum_root = csum_root;
1559 	fs_info->chunk_root = chunk_root;
1560 	fs_info->dev_root = dev_root;
1561 	fs_info->fs_devices = fs_devices;
1562 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1563 	INIT_LIST_HEAD(&fs_info->space_info);
1564 	btrfs_mapping_init(&fs_info->mapping_tree);
1565 	atomic_set(&fs_info->nr_async_submits, 0);
1566 	atomic_set(&fs_info->async_delalloc_pages, 0);
1567 	atomic_set(&fs_info->async_submit_draining, 0);
1568 	atomic_set(&fs_info->nr_async_bios, 0);
1569 	fs_info->sb = sb;
1570 	fs_info->max_extent = (u64)-1;
1571 	fs_info->max_inline = 8192 * 1024;
1572 	setup_bdi(fs_info, &fs_info->bdi);
1573 	fs_info->btree_inode = new_inode(sb);
1574 	fs_info->btree_inode->i_ino = 1;
1575 	fs_info->btree_inode->i_nlink = 1;
1576 	fs_info->metadata_ratio = 8;
1577 
1578 	fs_info->thread_pool_size = min_t(unsigned long,
1579 					  num_online_cpus() + 2, 8);
1580 
1581 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1582 	spin_lock_init(&fs_info->ordered_extent_lock);
1583 
1584 	sb->s_blocksize = 4096;
1585 	sb->s_blocksize_bits = blksize_bits(4096);
1586 
1587 	/*
1588 	 * we set the i_size on the btree inode to the max possible int.
1589 	 * the real end of the address space is determined by all of
1590 	 * the devices in the system
1591 	 */
1592 	fs_info->btree_inode->i_size = OFFSET_MAX;
1593 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1594 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1595 
1596 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1597 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1598 			     fs_info->btree_inode->i_mapping,
1599 			     GFP_NOFS);
1600 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1601 			     GFP_NOFS);
1602 
1603 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1604 
1605 	spin_lock_init(&fs_info->block_group_cache_lock);
1606 	fs_info->block_group_cache_tree.rb_node = NULL;
1607 
1608 	extent_io_tree_init(&fs_info->pinned_extents,
1609 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1610 	fs_info->do_barriers = 1;
1611 
1612 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1613 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1614 	       sizeof(struct btrfs_key));
1615 	insert_inode_hash(fs_info->btree_inode);
1616 
1617 	mutex_init(&fs_info->trans_mutex);
1618 	mutex_init(&fs_info->ordered_operations_mutex);
1619 	mutex_init(&fs_info->tree_log_mutex);
1620 	mutex_init(&fs_info->drop_mutex);
1621 	mutex_init(&fs_info->chunk_mutex);
1622 	mutex_init(&fs_info->transaction_kthread_mutex);
1623 	mutex_init(&fs_info->cleaner_mutex);
1624 	mutex_init(&fs_info->volume_mutex);
1625 	mutex_init(&fs_info->tree_reloc_mutex);
1626 
1627 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1628 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1629 
1630 	init_waitqueue_head(&fs_info->transaction_throttle);
1631 	init_waitqueue_head(&fs_info->transaction_wait);
1632 	init_waitqueue_head(&fs_info->async_submit_wait);
1633 
1634 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1635 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1636 
1637 
1638 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1639 	if (!bh)
1640 		goto fail_iput;
1641 
1642 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1643 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1644 	       sizeof(fs_info->super_for_commit));
1645 	brelse(bh);
1646 
1647 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1648 
1649 	disk_super = &fs_info->super_copy;
1650 	if (!btrfs_super_root(disk_super))
1651 		goto fail_iput;
1652 
1653 	ret = btrfs_parse_options(tree_root, options);
1654 	if (ret) {
1655 		err = ret;
1656 		goto fail_iput;
1657 	}
1658 
1659 	features = btrfs_super_incompat_flags(disk_super) &
1660 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1661 	if (features) {
1662 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1663 		       "unsupported optional features (%Lx).\n",
1664 		       (unsigned long long)features);
1665 		err = -EINVAL;
1666 		goto fail_iput;
1667 	}
1668 
1669 	features = btrfs_super_incompat_flags(disk_super);
1670 	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
1671 		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1672 		btrfs_set_super_incompat_flags(disk_super, features);
1673 	}
1674 
1675 	features = btrfs_super_compat_ro_flags(disk_super) &
1676 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1677 	if (!(sb->s_flags & MS_RDONLY) && features) {
1678 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1679 		       "unsupported option features (%Lx).\n",
1680 		       (unsigned long long)features);
1681 		err = -EINVAL;
1682 		goto fail_iput;
1683 	}
1684 
1685 	/*
1686 	 * we need to start all the end_io workers up front because the
1687 	 * queue work function gets called at interrupt time, and so it
1688 	 * cannot dynamically grow.
1689 	 */
1690 	btrfs_init_workers(&fs_info->workers, "worker",
1691 			   fs_info->thread_pool_size);
1692 
1693 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1694 			   fs_info->thread_pool_size);
1695 
1696 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1697 			   min_t(u64, fs_devices->num_devices,
1698 			   fs_info->thread_pool_size));
1699 
1700 	/* a higher idle thresh on the submit workers makes it much more
1701 	 * likely that bios will be send down in a sane order to the
1702 	 * devices
1703 	 */
1704 	fs_info->submit_workers.idle_thresh = 64;
1705 
1706 	fs_info->workers.idle_thresh = 16;
1707 	fs_info->workers.ordered = 1;
1708 
1709 	fs_info->delalloc_workers.idle_thresh = 2;
1710 	fs_info->delalloc_workers.ordered = 1;
1711 
1712 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1713 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1714 			   fs_info->thread_pool_size);
1715 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1716 			   fs_info->thread_pool_size);
1717 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1718 			   "endio-meta-write", fs_info->thread_pool_size);
1719 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1720 			   fs_info->thread_pool_size);
1721 
1722 	/*
1723 	 * endios are largely parallel and should have a very
1724 	 * low idle thresh
1725 	 */
1726 	fs_info->endio_workers.idle_thresh = 4;
1727 	fs_info->endio_meta_workers.idle_thresh = 4;
1728 
1729 	fs_info->endio_write_workers.idle_thresh = 64;
1730 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1731 
1732 	btrfs_start_workers(&fs_info->workers, 1);
1733 	btrfs_start_workers(&fs_info->submit_workers, 1);
1734 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1735 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1736 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1737 	btrfs_start_workers(&fs_info->endio_meta_workers,
1738 			    fs_info->thread_pool_size);
1739 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1740 			    fs_info->thread_pool_size);
1741 	btrfs_start_workers(&fs_info->endio_write_workers,
1742 			    fs_info->thread_pool_size);
1743 
1744 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1745 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1746 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1747 
1748 	nodesize = btrfs_super_nodesize(disk_super);
1749 	leafsize = btrfs_super_leafsize(disk_super);
1750 	sectorsize = btrfs_super_sectorsize(disk_super);
1751 	stripesize = btrfs_super_stripesize(disk_super);
1752 	tree_root->nodesize = nodesize;
1753 	tree_root->leafsize = leafsize;
1754 	tree_root->sectorsize = sectorsize;
1755 	tree_root->stripesize = stripesize;
1756 
1757 	sb->s_blocksize = sectorsize;
1758 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1759 
1760 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1761 		    sizeof(disk_super->magic))) {
1762 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1763 		goto fail_sb_buffer;
1764 	}
1765 
1766 	mutex_lock(&fs_info->chunk_mutex);
1767 	ret = btrfs_read_sys_array(tree_root);
1768 	mutex_unlock(&fs_info->chunk_mutex);
1769 	if (ret) {
1770 		printk(KERN_WARNING "btrfs: failed to read the system "
1771 		       "array on %s\n", sb->s_id);
1772 		goto fail_sb_buffer;
1773 	}
1774 
1775 	blocksize = btrfs_level_size(tree_root,
1776 				     btrfs_super_chunk_root_level(disk_super));
1777 	generation = btrfs_super_chunk_root_generation(disk_super);
1778 
1779 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1780 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1781 
1782 	chunk_root->node = read_tree_block(chunk_root,
1783 					   btrfs_super_chunk_root(disk_super),
1784 					   blocksize, generation);
1785 	BUG_ON(!chunk_root->node);
1786 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1787 	chunk_root->commit_root = btrfs_root_node(chunk_root);
1788 
1789 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1790 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1791 	   BTRFS_UUID_SIZE);
1792 
1793 	mutex_lock(&fs_info->chunk_mutex);
1794 	ret = btrfs_read_chunk_tree(chunk_root);
1795 	mutex_unlock(&fs_info->chunk_mutex);
1796 	if (ret) {
1797 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1798 		       sb->s_id);
1799 		goto fail_chunk_root;
1800 	}
1801 
1802 	btrfs_close_extra_devices(fs_devices);
1803 
1804 	blocksize = btrfs_level_size(tree_root,
1805 				     btrfs_super_root_level(disk_super));
1806 	generation = btrfs_super_generation(disk_super);
1807 
1808 	tree_root->node = read_tree_block(tree_root,
1809 					  btrfs_super_root(disk_super),
1810 					  blocksize, generation);
1811 	if (!tree_root->node)
1812 		goto fail_chunk_root;
1813 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1814 	tree_root->commit_root = btrfs_root_node(tree_root);
1815 
1816 	ret = find_and_setup_root(tree_root, fs_info,
1817 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1818 	if (ret)
1819 		goto fail_tree_root;
1820 	extent_root->track_dirty = 1;
1821 
1822 	ret = find_and_setup_root(tree_root, fs_info,
1823 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1824 	if (ret)
1825 		goto fail_extent_root;
1826 	dev_root->track_dirty = 1;
1827 
1828 	ret = find_and_setup_root(tree_root, fs_info,
1829 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1830 	if (ret)
1831 		goto fail_dev_root;
1832 
1833 	csum_root->track_dirty = 1;
1834 
1835 	btrfs_read_block_groups(extent_root);
1836 
1837 	fs_info->generation = generation;
1838 	fs_info->last_trans_committed = generation;
1839 	fs_info->data_alloc_profile = (u64)-1;
1840 	fs_info->metadata_alloc_profile = (u64)-1;
1841 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1842 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1843 					       "btrfs-cleaner");
1844 	if (IS_ERR(fs_info->cleaner_kthread))
1845 		goto fail_csum_root;
1846 
1847 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1848 						   tree_root,
1849 						   "btrfs-transaction");
1850 	if (IS_ERR(fs_info->transaction_kthread))
1851 		goto fail_cleaner;
1852 
1853 	if (!btrfs_test_opt(tree_root, SSD) &&
1854 	    !btrfs_test_opt(tree_root, NOSSD) &&
1855 	    !fs_info->fs_devices->rotating) {
1856 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
1857 		       "mode\n");
1858 		btrfs_set_opt(fs_info->mount_opt, SSD);
1859 	}
1860 
1861 	if (btrfs_super_log_root(disk_super) != 0) {
1862 		u64 bytenr = btrfs_super_log_root(disk_super);
1863 
1864 		if (fs_devices->rw_devices == 0) {
1865 			printk(KERN_WARNING "Btrfs log replay required "
1866 			       "on RO media\n");
1867 			err = -EIO;
1868 			goto fail_trans_kthread;
1869 		}
1870 		blocksize =
1871 		     btrfs_level_size(tree_root,
1872 				      btrfs_super_log_root_level(disk_super));
1873 
1874 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1875 						      GFP_NOFS);
1876 
1877 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1878 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1879 
1880 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1881 						      blocksize,
1882 						      generation + 1);
1883 		ret = btrfs_recover_log_trees(log_tree_root);
1884 		BUG_ON(ret);
1885 
1886 		if (sb->s_flags & MS_RDONLY) {
1887 			ret =  btrfs_commit_super(tree_root);
1888 			BUG_ON(ret);
1889 		}
1890 	}
1891 
1892 	if (!(sb->s_flags & MS_RDONLY)) {
1893 		ret = btrfs_recover_relocation(tree_root);
1894 		BUG_ON(ret);
1895 	}
1896 
1897 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1898 	location.type = BTRFS_ROOT_ITEM_KEY;
1899 	location.offset = (u64)-1;
1900 
1901 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1902 	if (!fs_info->fs_root)
1903 		goto fail_trans_kthread;
1904 
1905 	return tree_root;
1906 
1907 fail_trans_kthread:
1908 	kthread_stop(fs_info->transaction_kthread);
1909 fail_cleaner:
1910 	kthread_stop(fs_info->cleaner_kthread);
1911 
1912 	/*
1913 	 * make sure we're done with the btree inode before we stop our
1914 	 * kthreads
1915 	 */
1916 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1917 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1918 
1919 fail_csum_root:
1920 	free_extent_buffer(csum_root->node);
1921 	free_extent_buffer(csum_root->commit_root);
1922 fail_dev_root:
1923 	free_extent_buffer(dev_root->node);
1924 	free_extent_buffer(dev_root->commit_root);
1925 fail_extent_root:
1926 	free_extent_buffer(extent_root->node);
1927 	free_extent_buffer(extent_root->commit_root);
1928 fail_tree_root:
1929 	free_extent_buffer(tree_root->node);
1930 	free_extent_buffer(tree_root->commit_root);
1931 fail_chunk_root:
1932 	free_extent_buffer(chunk_root->node);
1933 	free_extent_buffer(chunk_root->commit_root);
1934 fail_sb_buffer:
1935 	btrfs_stop_workers(&fs_info->fixup_workers);
1936 	btrfs_stop_workers(&fs_info->delalloc_workers);
1937 	btrfs_stop_workers(&fs_info->workers);
1938 	btrfs_stop_workers(&fs_info->endio_workers);
1939 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1940 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1941 	btrfs_stop_workers(&fs_info->endio_write_workers);
1942 	btrfs_stop_workers(&fs_info->submit_workers);
1943 fail_iput:
1944 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1945 	iput(fs_info->btree_inode);
1946 
1947 	btrfs_close_devices(fs_info->fs_devices);
1948 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1949 	bdi_destroy(&fs_info->bdi);
1950 
1951 fail:
1952 	kfree(extent_root);
1953 	kfree(tree_root);
1954 	kfree(fs_info);
1955 	kfree(chunk_root);
1956 	kfree(dev_root);
1957 	kfree(csum_root);
1958 	return ERR_PTR(err);
1959 }
1960 
1961 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1962 {
1963 	char b[BDEVNAME_SIZE];
1964 
1965 	if (uptodate) {
1966 		set_buffer_uptodate(bh);
1967 	} else {
1968 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1969 			printk(KERN_WARNING "lost page write due to "
1970 					"I/O error on %s\n",
1971 				       bdevname(bh->b_bdev, b));
1972 		}
1973 		/* note, we dont' set_buffer_write_io_error because we have
1974 		 * our own ways of dealing with the IO errors
1975 		 */
1976 		clear_buffer_uptodate(bh);
1977 	}
1978 	unlock_buffer(bh);
1979 	put_bh(bh);
1980 }
1981 
1982 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1983 {
1984 	struct buffer_head *bh;
1985 	struct buffer_head *latest = NULL;
1986 	struct btrfs_super_block *super;
1987 	int i;
1988 	u64 transid = 0;
1989 	u64 bytenr;
1990 
1991 	/* we would like to check all the supers, but that would make
1992 	 * a btrfs mount succeed after a mkfs from a different FS.
1993 	 * So, we need to add a special mount option to scan for
1994 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1995 	 */
1996 	for (i = 0; i < 1; i++) {
1997 		bytenr = btrfs_sb_offset(i);
1998 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1999 			break;
2000 		bh = __bread(bdev, bytenr / 4096, 4096);
2001 		if (!bh)
2002 			continue;
2003 
2004 		super = (struct btrfs_super_block *)bh->b_data;
2005 		if (btrfs_super_bytenr(super) != bytenr ||
2006 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2007 			    sizeof(super->magic))) {
2008 			brelse(bh);
2009 			continue;
2010 		}
2011 
2012 		if (!latest || btrfs_super_generation(super) > transid) {
2013 			brelse(latest);
2014 			latest = bh;
2015 			transid = btrfs_super_generation(super);
2016 		} else {
2017 			brelse(bh);
2018 		}
2019 	}
2020 	return latest;
2021 }
2022 
2023 static int write_dev_supers(struct btrfs_device *device,
2024 			    struct btrfs_super_block *sb,
2025 			    int do_barriers, int wait, int max_mirrors)
2026 {
2027 	struct buffer_head *bh;
2028 	int i;
2029 	int ret;
2030 	int errors = 0;
2031 	u32 crc;
2032 	u64 bytenr;
2033 	int last_barrier = 0;
2034 
2035 	if (max_mirrors == 0)
2036 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2037 
2038 	/* make sure only the last submit_bh does a barrier */
2039 	if (do_barriers) {
2040 		for (i = 0; i < max_mirrors; i++) {
2041 			bytenr = btrfs_sb_offset(i);
2042 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2043 			    device->total_bytes)
2044 				break;
2045 			last_barrier = i;
2046 		}
2047 	}
2048 
2049 	for (i = 0; i < max_mirrors; i++) {
2050 		bytenr = btrfs_sb_offset(i);
2051 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2052 			break;
2053 
2054 		if (wait) {
2055 			bh = __find_get_block(device->bdev, bytenr / 4096,
2056 					      BTRFS_SUPER_INFO_SIZE);
2057 			BUG_ON(!bh);
2058 			brelse(bh);
2059 			wait_on_buffer(bh);
2060 			if (buffer_uptodate(bh)) {
2061 				brelse(bh);
2062 				continue;
2063 			}
2064 		} else {
2065 			btrfs_set_super_bytenr(sb, bytenr);
2066 
2067 			crc = ~(u32)0;
2068 			crc = btrfs_csum_data(NULL, (char *)sb +
2069 					      BTRFS_CSUM_SIZE, crc,
2070 					      BTRFS_SUPER_INFO_SIZE -
2071 					      BTRFS_CSUM_SIZE);
2072 			btrfs_csum_final(crc, sb->csum);
2073 
2074 			bh = __getblk(device->bdev, bytenr / 4096,
2075 				      BTRFS_SUPER_INFO_SIZE);
2076 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2077 
2078 			set_buffer_uptodate(bh);
2079 			get_bh(bh);
2080 			lock_buffer(bh);
2081 			bh->b_end_io = btrfs_end_buffer_write_sync;
2082 		}
2083 
2084 		if (i == last_barrier && do_barriers && device->barriers) {
2085 			ret = submit_bh(WRITE_BARRIER, bh);
2086 			if (ret == -EOPNOTSUPP) {
2087 				printk("btrfs: disabling barriers on dev %s\n",
2088 				       device->name);
2089 				set_buffer_uptodate(bh);
2090 				device->barriers = 0;
2091 				get_bh(bh);
2092 				lock_buffer(bh);
2093 				ret = submit_bh(WRITE_SYNC, bh);
2094 			}
2095 		} else {
2096 			ret = submit_bh(WRITE_SYNC, bh);
2097 		}
2098 
2099 		if (!ret && wait) {
2100 			wait_on_buffer(bh);
2101 			if (!buffer_uptodate(bh))
2102 				errors++;
2103 		} else if (ret) {
2104 			errors++;
2105 		}
2106 		if (wait)
2107 			brelse(bh);
2108 	}
2109 	return errors < i ? 0 : -1;
2110 }
2111 
2112 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2113 {
2114 	struct list_head *head = &root->fs_info->fs_devices->devices;
2115 	struct btrfs_device *dev;
2116 	struct btrfs_super_block *sb;
2117 	struct btrfs_dev_item *dev_item;
2118 	int ret;
2119 	int do_barriers;
2120 	int max_errors;
2121 	int total_errors = 0;
2122 	u64 flags;
2123 
2124 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2125 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2126 
2127 	sb = &root->fs_info->super_for_commit;
2128 	dev_item = &sb->dev_item;
2129 	list_for_each_entry(dev, head, dev_list) {
2130 		if (!dev->bdev) {
2131 			total_errors++;
2132 			continue;
2133 		}
2134 		if (!dev->in_fs_metadata || !dev->writeable)
2135 			continue;
2136 
2137 		btrfs_set_stack_device_generation(dev_item, 0);
2138 		btrfs_set_stack_device_type(dev_item, dev->type);
2139 		btrfs_set_stack_device_id(dev_item, dev->devid);
2140 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2141 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2142 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2143 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2144 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2145 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2146 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2147 
2148 		flags = btrfs_super_flags(sb);
2149 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2150 
2151 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2152 		if (ret)
2153 			total_errors++;
2154 	}
2155 	if (total_errors > max_errors) {
2156 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2157 		       total_errors);
2158 		BUG();
2159 	}
2160 
2161 	total_errors = 0;
2162 	list_for_each_entry(dev, head, dev_list) {
2163 		if (!dev->bdev)
2164 			continue;
2165 		if (!dev->in_fs_metadata || !dev->writeable)
2166 			continue;
2167 
2168 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2169 		if (ret)
2170 			total_errors++;
2171 	}
2172 	if (total_errors > max_errors) {
2173 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2174 		       total_errors);
2175 		BUG();
2176 	}
2177 	return 0;
2178 }
2179 
2180 int write_ctree_super(struct btrfs_trans_handle *trans,
2181 		      struct btrfs_root *root, int max_mirrors)
2182 {
2183 	int ret;
2184 
2185 	ret = write_all_supers(root, max_mirrors);
2186 	return ret;
2187 }
2188 
2189 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2190 {
2191 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2192 	radix_tree_delete(&fs_info->fs_roots_radix,
2193 			  (unsigned long)root->root_key.objectid);
2194 	if (root->anon_super.s_dev) {
2195 		down_write(&root->anon_super.s_umount);
2196 		kill_anon_super(&root->anon_super);
2197 	}
2198 	if (root->node)
2199 		free_extent_buffer(root->node);
2200 	if (root->commit_root)
2201 		free_extent_buffer(root->commit_root);
2202 	kfree(root->name);
2203 	kfree(root);
2204 	return 0;
2205 }
2206 
2207 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2208 {
2209 	int ret;
2210 	struct btrfs_root *gang[8];
2211 	int i;
2212 
2213 	while (1) {
2214 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2215 					     (void **)gang, 0,
2216 					     ARRAY_SIZE(gang));
2217 		if (!ret)
2218 			break;
2219 		for (i = 0; i < ret; i++)
2220 			btrfs_free_fs_root(fs_info, gang[i]);
2221 	}
2222 	return 0;
2223 }
2224 
2225 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2226 {
2227 	u64 root_objectid = 0;
2228 	struct btrfs_root *gang[8];
2229 	int i;
2230 	int ret;
2231 
2232 	while (1) {
2233 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2234 					     (void **)gang, root_objectid,
2235 					     ARRAY_SIZE(gang));
2236 		if (!ret)
2237 			break;
2238 
2239 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2240 		for (i = 0; i < ret; i++) {
2241 			root_objectid = gang[i]->root_key.objectid;
2242 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2243 						    root_objectid);
2244 			BUG_ON(ret);
2245 			btrfs_orphan_cleanup(gang[i]);
2246 		}
2247 		root_objectid++;
2248 	}
2249 	return 0;
2250 }
2251 
2252 int btrfs_commit_super(struct btrfs_root *root)
2253 {
2254 	struct btrfs_trans_handle *trans;
2255 	int ret;
2256 
2257 	mutex_lock(&root->fs_info->cleaner_mutex);
2258 	btrfs_clean_old_snapshots(root);
2259 	mutex_unlock(&root->fs_info->cleaner_mutex);
2260 	trans = btrfs_start_transaction(root, 1);
2261 	ret = btrfs_commit_transaction(trans, root);
2262 	BUG_ON(ret);
2263 	/* run commit again to drop the original snapshot */
2264 	trans = btrfs_start_transaction(root, 1);
2265 	btrfs_commit_transaction(trans, root);
2266 	ret = btrfs_write_and_wait_transaction(NULL, root);
2267 	BUG_ON(ret);
2268 
2269 	ret = write_ctree_super(NULL, root, 0);
2270 	return ret;
2271 }
2272 
2273 int close_ctree(struct btrfs_root *root)
2274 {
2275 	struct btrfs_fs_info *fs_info = root->fs_info;
2276 	int ret;
2277 
2278 	fs_info->closing = 1;
2279 	smp_mb();
2280 
2281 	kthread_stop(root->fs_info->transaction_kthread);
2282 	kthread_stop(root->fs_info->cleaner_kthread);
2283 
2284 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2285 		ret =  btrfs_commit_super(root);
2286 		if (ret)
2287 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2288 	}
2289 
2290 	if (fs_info->delalloc_bytes) {
2291 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2292 		       (unsigned long long)fs_info->delalloc_bytes);
2293 	}
2294 	if (fs_info->total_ref_cache_size) {
2295 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2296 		       (unsigned long long)fs_info->total_ref_cache_size);
2297 	}
2298 
2299 	free_extent_buffer(fs_info->extent_root->node);
2300 	free_extent_buffer(fs_info->extent_root->commit_root);
2301 	free_extent_buffer(fs_info->tree_root->node);
2302 	free_extent_buffer(fs_info->tree_root->commit_root);
2303 	free_extent_buffer(root->fs_info->chunk_root->node);
2304 	free_extent_buffer(root->fs_info->chunk_root->commit_root);
2305 	free_extent_buffer(root->fs_info->dev_root->node);
2306 	free_extent_buffer(root->fs_info->dev_root->commit_root);
2307 	free_extent_buffer(root->fs_info->csum_root->node);
2308 	free_extent_buffer(root->fs_info->csum_root->commit_root);
2309 
2310 	btrfs_free_block_groups(root->fs_info);
2311 
2312 	del_fs_roots(fs_info);
2313 
2314 	iput(fs_info->btree_inode);
2315 
2316 	btrfs_stop_workers(&fs_info->fixup_workers);
2317 	btrfs_stop_workers(&fs_info->delalloc_workers);
2318 	btrfs_stop_workers(&fs_info->workers);
2319 	btrfs_stop_workers(&fs_info->endio_workers);
2320 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2321 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2322 	btrfs_stop_workers(&fs_info->endio_write_workers);
2323 	btrfs_stop_workers(&fs_info->submit_workers);
2324 
2325 	btrfs_close_devices(fs_info->fs_devices);
2326 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2327 
2328 	bdi_destroy(&fs_info->bdi);
2329 
2330 	kfree(fs_info->extent_root);
2331 	kfree(fs_info->tree_root);
2332 	kfree(fs_info->chunk_root);
2333 	kfree(fs_info->dev_root);
2334 	kfree(fs_info->csum_root);
2335 	return 0;
2336 }
2337 
2338 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2339 {
2340 	int ret;
2341 	struct inode *btree_inode = buf->first_page->mapping->host;
2342 
2343 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2344 	if (!ret)
2345 		return ret;
2346 
2347 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2348 				    parent_transid);
2349 	return !ret;
2350 }
2351 
2352 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2353 {
2354 	struct inode *btree_inode = buf->first_page->mapping->host;
2355 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2356 					  buf);
2357 }
2358 
2359 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2360 {
2361 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2362 	u64 transid = btrfs_header_generation(buf);
2363 	struct inode *btree_inode = root->fs_info->btree_inode;
2364 	int was_dirty;
2365 
2366 	btrfs_assert_tree_locked(buf);
2367 	if (transid != root->fs_info->generation) {
2368 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2369 		       "found %llu running %llu\n",
2370 			(unsigned long long)buf->start,
2371 			(unsigned long long)transid,
2372 			(unsigned long long)root->fs_info->generation);
2373 		WARN_ON(1);
2374 	}
2375 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2376 					    buf);
2377 	if (!was_dirty) {
2378 		spin_lock(&root->fs_info->delalloc_lock);
2379 		root->fs_info->dirty_metadata_bytes += buf->len;
2380 		spin_unlock(&root->fs_info->delalloc_lock);
2381 	}
2382 }
2383 
2384 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2385 {
2386 	/*
2387 	 * looks as though older kernels can get into trouble with
2388 	 * this code, they end up stuck in balance_dirty_pages forever
2389 	 */
2390 	u64 num_dirty;
2391 	unsigned long thresh = 32 * 1024 * 1024;
2392 
2393 	if (current->flags & PF_MEMALLOC)
2394 		return;
2395 
2396 	num_dirty = root->fs_info->dirty_metadata_bytes;
2397 
2398 	if (num_dirty > thresh) {
2399 		balance_dirty_pages_ratelimited_nr(
2400 				   root->fs_info->btree_inode->i_mapping, 1);
2401 	}
2402 	return;
2403 }
2404 
2405 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2406 {
2407 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2408 	int ret;
2409 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2410 	if (ret == 0)
2411 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2412 	return ret;
2413 }
2414 
2415 int btree_lock_page_hook(struct page *page)
2416 {
2417 	struct inode *inode = page->mapping->host;
2418 	struct btrfs_root *root = BTRFS_I(inode)->root;
2419 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2420 	struct extent_buffer *eb;
2421 	unsigned long len;
2422 	u64 bytenr = page_offset(page);
2423 
2424 	if (page->private == EXTENT_PAGE_PRIVATE)
2425 		goto out;
2426 
2427 	len = page->private >> 2;
2428 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2429 	if (!eb)
2430 		goto out;
2431 
2432 	btrfs_tree_lock(eb);
2433 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2434 
2435 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2436 		spin_lock(&root->fs_info->delalloc_lock);
2437 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2438 			root->fs_info->dirty_metadata_bytes -= eb->len;
2439 		else
2440 			WARN_ON(1);
2441 		spin_unlock(&root->fs_info->delalloc_lock);
2442 	}
2443 
2444 	btrfs_tree_unlock(eb);
2445 	free_extent_buffer(eb);
2446 out:
2447 	lock_page(page);
2448 	return 0;
2449 }
2450 
2451 static struct extent_io_ops btree_extent_io_ops = {
2452 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2453 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2454 	.submit_bio_hook = btree_submit_bio_hook,
2455 	/* note we're sharing with inode.c for the merge bio hook */
2456 	.merge_bio_hook = btrfs_merge_bio_hook,
2457 };
2458