1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include "compat.h" 30 #include "crc32c.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "tree-log.h" 40 #include "free-space-cache.h" 41 42 static struct extent_io_ops btree_extent_io_ops; 43 static void end_workqueue_fn(struct btrfs_work *work); 44 45 /* 46 * end_io_wq structs are used to do processing in task context when an IO is 47 * complete. This is used during reads to verify checksums, and it is used 48 * by writes to insert metadata for new file extents after IO is complete. 49 */ 50 struct end_io_wq { 51 struct bio *bio; 52 bio_end_io_t *end_io; 53 void *private; 54 struct btrfs_fs_info *info; 55 int error; 56 int metadata; 57 struct list_head list; 58 struct btrfs_work work; 59 }; 60 61 /* 62 * async submit bios are used to offload expensive checksumming 63 * onto the worker threads. They checksum file and metadata bios 64 * just before they are sent down the IO stack. 65 */ 66 struct async_submit_bio { 67 struct inode *inode; 68 struct bio *bio; 69 struct list_head list; 70 extent_submit_bio_hook_t *submit_bio_start; 71 extent_submit_bio_hook_t *submit_bio_done; 72 int rw; 73 int mirror_num; 74 unsigned long bio_flags; 75 struct btrfs_work work; 76 }; 77 78 /* These are used to set the lockdep class on the extent buffer locks. 79 * The class is set by the readpage_end_io_hook after the buffer has 80 * passed csum validation but before the pages are unlocked. 81 * 82 * The lockdep class is also set by btrfs_init_new_buffer on freshly 83 * allocated blocks. 84 * 85 * The class is based on the level in the tree block, which allows lockdep 86 * to know that lower nodes nest inside the locks of higher nodes. 87 * 88 * We also add a check to make sure the highest level of the tree is 89 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 90 * code needs update as well. 91 */ 92 #ifdef CONFIG_DEBUG_LOCK_ALLOC 93 # if BTRFS_MAX_LEVEL != 8 94 # error 95 # endif 96 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 97 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 98 /* leaf */ 99 "btrfs-extent-00", 100 "btrfs-extent-01", 101 "btrfs-extent-02", 102 "btrfs-extent-03", 103 "btrfs-extent-04", 104 "btrfs-extent-05", 105 "btrfs-extent-06", 106 "btrfs-extent-07", 107 /* highest possible level */ 108 "btrfs-extent-08", 109 }; 110 #endif 111 112 /* 113 * extents on the btree inode are pretty simple, there's one extent 114 * that covers the entire device 115 */ 116 static struct extent_map *btree_get_extent(struct inode *inode, 117 struct page *page, size_t page_offset, u64 start, u64 len, 118 int create) 119 { 120 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 121 struct extent_map *em; 122 int ret; 123 124 spin_lock(&em_tree->lock); 125 em = lookup_extent_mapping(em_tree, start, len); 126 if (em) { 127 em->bdev = 128 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 129 spin_unlock(&em_tree->lock); 130 goto out; 131 } 132 spin_unlock(&em_tree->lock); 133 134 em = alloc_extent_map(GFP_NOFS); 135 if (!em) { 136 em = ERR_PTR(-ENOMEM); 137 goto out; 138 } 139 em->start = 0; 140 em->len = (u64)-1; 141 em->block_len = (u64)-1; 142 em->block_start = 0; 143 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 144 145 spin_lock(&em_tree->lock); 146 ret = add_extent_mapping(em_tree, em); 147 if (ret == -EEXIST) { 148 u64 failed_start = em->start; 149 u64 failed_len = em->len; 150 151 free_extent_map(em); 152 em = lookup_extent_mapping(em_tree, start, len); 153 if (em) { 154 ret = 0; 155 } else { 156 em = lookup_extent_mapping(em_tree, failed_start, 157 failed_len); 158 ret = -EIO; 159 } 160 } else if (ret) { 161 free_extent_map(em); 162 em = NULL; 163 } 164 spin_unlock(&em_tree->lock); 165 166 if (ret) 167 em = ERR_PTR(ret); 168 out: 169 return em; 170 } 171 172 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 173 { 174 return btrfs_crc32c(seed, data, len); 175 } 176 177 void btrfs_csum_final(u32 crc, char *result) 178 { 179 *(__le32 *)result = ~cpu_to_le32(crc); 180 } 181 182 /* 183 * compute the csum for a btree block, and either verify it or write it 184 * into the csum field of the block. 185 */ 186 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 187 int verify) 188 { 189 u16 csum_size = 190 btrfs_super_csum_size(&root->fs_info->super_copy); 191 char *result = NULL; 192 unsigned long len; 193 unsigned long cur_len; 194 unsigned long offset = BTRFS_CSUM_SIZE; 195 char *map_token = NULL; 196 char *kaddr; 197 unsigned long map_start; 198 unsigned long map_len; 199 int err; 200 u32 crc = ~(u32)0; 201 unsigned long inline_result; 202 203 len = buf->len - offset; 204 while (len > 0) { 205 err = map_private_extent_buffer(buf, offset, 32, 206 &map_token, &kaddr, 207 &map_start, &map_len, KM_USER0); 208 if (err) 209 return 1; 210 cur_len = min(len, map_len - (offset - map_start)); 211 crc = btrfs_csum_data(root, kaddr + offset - map_start, 212 crc, cur_len); 213 len -= cur_len; 214 offset += cur_len; 215 unmap_extent_buffer(buf, map_token, KM_USER0); 216 } 217 if (csum_size > sizeof(inline_result)) { 218 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 219 if (!result) 220 return 1; 221 } else { 222 result = (char *)&inline_result; 223 } 224 225 btrfs_csum_final(crc, result); 226 227 if (verify) { 228 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 229 u32 val; 230 u32 found = 0; 231 memcpy(&found, result, csum_size); 232 233 read_extent_buffer(buf, &val, 0, csum_size); 234 if (printk_ratelimit()) { 235 printk(KERN_INFO "btrfs: %s checksum verify " 236 "failed on %llu wanted %X found %X " 237 "level %d\n", 238 root->fs_info->sb->s_id, 239 (unsigned long long)buf->start, val, found, 240 btrfs_header_level(buf)); 241 } 242 if (result != (char *)&inline_result) 243 kfree(result); 244 return 1; 245 } 246 } else { 247 write_extent_buffer(buf, result, 0, csum_size); 248 } 249 if (result != (char *)&inline_result) 250 kfree(result); 251 return 0; 252 } 253 254 /* 255 * we can't consider a given block up to date unless the transid of the 256 * block matches the transid in the parent node's pointer. This is how we 257 * detect blocks that either didn't get written at all or got written 258 * in the wrong place. 259 */ 260 static int verify_parent_transid(struct extent_io_tree *io_tree, 261 struct extent_buffer *eb, u64 parent_transid) 262 { 263 int ret; 264 265 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 266 return 0; 267 268 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 269 if (extent_buffer_uptodate(io_tree, eb) && 270 btrfs_header_generation(eb) == parent_transid) { 271 ret = 0; 272 goto out; 273 } 274 if (printk_ratelimit()) { 275 printk("parent transid verify failed on %llu wanted %llu " 276 "found %llu\n", 277 (unsigned long long)eb->start, 278 (unsigned long long)parent_transid, 279 (unsigned long long)btrfs_header_generation(eb)); 280 } 281 ret = 1; 282 clear_extent_buffer_uptodate(io_tree, eb); 283 out: 284 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 285 GFP_NOFS); 286 return ret; 287 } 288 289 /* 290 * helper to read a given tree block, doing retries as required when 291 * the checksums don't match and we have alternate mirrors to try. 292 */ 293 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 294 struct extent_buffer *eb, 295 u64 start, u64 parent_transid) 296 { 297 struct extent_io_tree *io_tree; 298 int ret; 299 int num_copies = 0; 300 int mirror_num = 0; 301 302 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 303 while (1) { 304 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 305 btree_get_extent, mirror_num); 306 if (!ret && 307 !verify_parent_transid(io_tree, eb, parent_transid)) 308 return ret; 309 310 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 311 eb->start, eb->len); 312 if (num_copies == 1) 313 return ret; 314 315 mirror_num++; 316 if (mirror_num > num_copies) 317 return ret; 318 } 319 return -EIO; 320 } 321 322 /* 323 * checksum a dirty tree block before IO. This has extra checks to make sure 324 * we only fill in the checksum field in the first page of a multi-page block 325 */ 326 327 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 328 { 329 struct extent_io_tree *tree; 330 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 331 u64 found_start; 332 int found_level; 333 unsigned long len; 334 struct extent_buffer *eb; 335 int ret; 336 337 tree = &BTRFS_I(page->mapping->host)->io_tree; 338 339 if (page->private == EXTENT_PAGE_PRIVATE) 340 goto out; 341 if (!page->private) 342 goto out; 343 len = page->private >> 2; 344 WARN_ON(len == 0); 345 346 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 347 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 348 btrfs_header_generation(eb)); 349 BUG_ON(ret); 350 found_start = btrfs_header_bytenr(eb); 351 if (found_start != start) { 352 WARN_ON(1); 353 goto err; 354 } 355 if (eb->first_page != page) { 356 WARN_ON(1); 357 goto err; 358 } 359 if (!PageUptodate(page)) { 360 WARN_ON(1); 361 goto err; 362 } 363 found_level = btrfs_header_level(eb); 364 365 csum_tree_block(root, eb, 0); 366 err: 367 free_extent_buffer(eb); 368 out: 369 return 0; 370 } 371 372 static int check_tree_block_fsid(struct btrfs_root *root, 373 struct extent_buffer *eb) 374 { 375 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 376 u8 fsid[BTRFS_UUID_SIZE]; 377 int ret = 1; 378 379 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 380 BTRFS_FSID_SIZE); 381 while (fs_devices) { 382 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 383 ret = 0; 384 break; 385 } 386 fs_devices = fs_devices->seed; 387 } 388 return ret; 389 } 390 391 #ifdef CONFIG_DEBUG_LOCK_ALLOC 392 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 393 { 394 lockdep_set_class_and_name(&eb->lock, 395 &btrfs_eb_class[level], 396 btrfs_eb_name[level]); 397 } 398 #endif 399 400 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 401 struct extent_state *state) 402 { 403 struct extent_io_tree *tree; 404 u64 found_start; 405 int found_level; 406 unsigned long len; 407 struct extent_buffer *eb; 408 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 409 int ret = 0; 410 411 tree = &BTRFS_I(page->mapping->host)->io_tree; 412 if (page->private == EXTENT_PAGE_PRIVATE) 413 goto out; 414 if (!page->private) 415 goto out; 416 417 len = page->private >> 2; 418 WARN_ON(len == 0); 419 420 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 421 422 found_start = btrfs_header_bytenr(eb); 423 if (found_start != start) { 424 if (printk_ratelimit()) { 425 printk(KERN_INFO "btrfs bad tree block start " 426 "%llu %llu\n", 427 (unsigned long long)found_start, 428 (unsigned long long)eb->start); 429 } 430 ret = -EIO; 431 goto err; 432 } 433 if (eb->first_page != page) { 434 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 435 eb->first_page->index, page->index); 436 WARN_ON(1); 437 ret = -EIO; 438 goto err; 439 } 440 if (check_tree_block_fsid(root, eb)) { 441 if (printk_ratelimit()) { 442 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 443 (unsigned long long)eb->start); 444 } 445 ret = -EIO; 446 goto err; 447 } 448 found_level = btrfs_header_level(eb); 449 450 btrfs_set_buffer_lockdep_class(eb, found_level); 451 452 ret = csum_tree_block(root, eb, 1); 453 if (ret) 454 ret = -EIO; 455 456 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 457 end = eb->start + end - 1; 458 err: 459 free_extent_buffer(eb); 460 out: 461 return ret; 462 } 463 464 static void end_workqueue_bio(struct bio *bio, int err) 465 { 466 struct end_io_wq *end_io_wq = bio->bi_private; 467 struct btrfs_fs_info *fs_info; 468 469 fs_info = end_io_wq->info; 470 end_io_wq->error = err; 471 end_io_wq->work.func = end_workqueue_fn; 472 end_io_wq->work.flags = 0; 473 474 if (bio->bi_rw & (1 << BIO_RW)) { 475 if (end_io_wq->metadata) 476 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 477 &end_io_wq->work); 478 else 479 btrfs_queue_worker(&fs_info->endio_write_workers, 480 &end_io_wq->work); 481 } else { 482 if (end_io_wq->metadata) 483 btrfs_queue_worker(&fs_info->endio_meta_workers, 484 &end_io_wq->work); 485 else 486 btrfs_queue_worker(&fs_info->endio_workers, 487 &end_io_wq->work); 488 } 489 } 490 491 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 492 int metadata) 493 { 494 struct end_io_wq *end_io_wq; 495 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 496 if (!end_io_wq) 497 return -ENOMEM; 498 499 end_io_wq->private = bio->bi_private; 500 end_io_wq->end_io = bio->bi_end_io; 501 end_io_wq->info = info; 502 end_io_wq->error = 0; 503 end_io_wq->bio = bio; 504 end_io_wq->metadata = metadata; 505 506 bio->bi_private = end_io_wq; 507 bio->bi_end_io = end_workqueue_bio; 508 return 0; 509 } 510 511 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 512 { 513 unsigned long limit = min_t(unsigned long, 514 info->workers.max_workers, 515 info->fs_devices->open_devices); 516 return 256 * limit; 517 } 518 519 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 520 { 521 return atomic_read(&info->nr_async_bios) > 522 btrfs_async_submit_limit(info); 523 } 524 525 static void run_one_async_start(struct btrfs_work *work) 526 { 527 struct btrfs_fs_info *fs_info; 528 struct async_submit_bio *async; 529 530 async = container_of(work, struct async_submit_bio, work); 531 fs_info = BTRFS_I(async->inode)->root->fs_info; 532 async->submit_bio_start(async->inode, async->rw, async->bio, 533 async->mirror_num, async->bio_flags); 534 } 535 536 static void run_one_async_done(struct btrfs_work *work) 537 { 538 struct btrfs_fs_info *fs_info; 539 struct async_submit_bio *async; 540 int limit; 541 542 async = container_of(work, struct async_submit_bio, work); 543 fs_info = BTRFS_I(async->inode)->root->fs_info; 544 545 limit = btrfs_async_submit_limit(fs_info); 546 limit = limit * 2 / 3; 547 548 atomic_dec(&fs_info->nr_async_submits); 549 550 if (atomic_read(&fs_info->nr_async_submits) < limit && 551 waitqueue_active(&fs_info->async_submit_wait)) 552 wake_up(&fs_info->async_submit_wait); 553 554 async->submit_bio_done(async->inode, async->rw, async->bio, 555 async->mirror_num, async->bio_flags); 556 } 557 558 static void run_one_async_free(struct btrfs_work *work) 559 { 560 struct async_submit_bio *async; 561 562 async = container_of(work, struct async_submit_bio, work); 563 kfree(async); 564 } 565 566 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 567 int rw, struct bio *bio, int mirror_num, 568 unsigned long bio_flags, 569 extent_submit_bio_hook_t *submit_bio_start, 570 extent_submit_bio_hook_t *submit_bio_done) 571 { 572 struct async_submit_bio *async; 573 574 async = kmalloc(sizeof(*async), GFP_NOFS); 575 if (!async) 576 return -ENOMEM; 577 578 async->inode = inode; 579 async->rw = rw; 580 async->bio = bio; 581 async->mirror_num = mirror_num; 582 async->submit_bio_start = submit_bio_start; 583 async->submit_bio_done = submit_bio_done; 584 585 async->work.func = run_one_async_start; 586 async->work.ordered_func = run_one_async_done; 587 async->work.ordered_free = run_one_async_free; 588 589 async->work.flags = 0; 590 async->bio_flags = bio_flags; 591 592 atomic_inc(&fs_info->nr_async_submits); 593 594 if (rw & (1 << BIO_RW_SYNCIO)) 595 btrfs_set_work_high_prio(&async->work); 596 597 btrfs_queue_worker(&fs_info->workers, &async->work); 598 599 while (atomic_read(&fs_info->async_submit_draining) && 600 atomic_read(&fs_info->nr_async_submits)) { 601 wait_event(fs_info->async_submit_wait, 602 (atomic_read(&fs_info->nr_async_submits) == 0)); 603 } 604 605 return 0; 606 } 607 608 static int btree_csum_one_bio(struct bio *bio) 609 { 610 struct bio_vec *bvec = bio->bi_io_vec; 611 int bio_index = 0; 612 struct btrfs_root *root; 613 614 WARN_ON(bio->bi_vcnt <= 0); 615 while (bio_index < bio->bi_vcnt) { 616 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 617 csum_dirty_buffer(root, bvec->bv_page); 618 bio_index++; 619 bvec++; 620 } 621 return 0; 622 } 623 624 static int __btree_submit_bio_start(struct inode *inode, int rw, 625 struct bio *bio, int mirror_num, 626 unsigned long bio_flags) 627 { 628 /* 629 * when we're called for a write, we're already in the async 630 * submission context. Just jump into btrfs_map_bio 631 */ 632 btree_csum_one_bio(bio); 633 return 0; 634 } 635 636 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 637 int mirror_num, unsigned long bio_flags) 638 { 639 /* 640 * when we're called for a write, we're already in the async 641 * submission context. Just jump into btrfs_map_bio 642 */ 643 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 644 } 645 646 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 647 int mirror_num, unsigned long bio_flags) 648 { 649 int ret; 650 651 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 652 bio, 1); 653 BUG_ON(ret); 654 655 if (!(rw & (1 << BIO_RW))) { 656 /* 657 * called for a read, do the setup so that checksum validation 658 * can happen in the async kernel threads 659 */ 660 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 661 mirror_num, 0); 662 } 663 664 /* 665 * kthread helpers are used to submit writes so that checksumming 666 * can happen in parallel across all CPUs 667 */ 668 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 669 inode, rw, bio, mirror_num, 0, 670 __btree_submit_bio_start, 671 __btree_submit_bio_done); 672 } 673 674 static int btree_writepage(struct page *page, struct writeback_control *wbc) 675 { 676 struct extent_io_tree *tree; 677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 678 struct extent_buffer *eb; 679 int was_dirty; 680 681 tree = &BTRFS_I(page->mapping->host)->io_tree; 682 if (!(current->flags & PF_MEMALLOC)) { 683 return extent_write_full_page(tree, page, 684 btree_get_extent, wbc); 685 } 686 687 redirty_page_for_writepage(wbc, page); 688 eb = btrfs_find_tree_block(root, page_offset(page), 689 PAGE_CACHE_SIZE); 690 WARN_ON(!eb); 691 692 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 693 if (!was_dirty) { 694 spin_lock(&root->fs_info->delalloc_lock); 695 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 696 spin_unlock(&root->fs_info->delalloc_lock); 697 } 698 free_extent_buffer(eb); 699 700 unlock_page(page); 701 return 0; 702 } 703 704 static int btree_writepages(struct address_space *mapping, 705 struct writeback_control *wbc) 706 { 707 struct extent_io_tree *tree; 708 tree = &BTRFS_I(mapping->host)->io_tree; 709 if (wbc->sync_mode == WB_SYNC_NONE) { 710 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 711 u64 num_dirty; 712 unsigned long thresh = 32 * 1024 * 1024; 713 714 if (wbc->for_kupdate) 715 return 0; 716 717 /* this is a bit racy, but that's ok */ 718 num_dirty = root->fs_info->dirty_metadata_bytes; 719 if (num_dirty < thresh) 720 return 0; 721 } 722 return extent_writepages(tree, mapping, btree_get_extent, wbc); 723 } 724 725 static int btree_readpage(struct file *file, struct page *page) 726 { 727 struct extent_io_tree *tree; 728 tree = &BTRFS_I(page->mapping->host)->io_tree; 729 return extent_read_full_page(tree, page, btree_get_extent); 730 } 731 732 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 733 { 734 struct extent_io_tree *tree; 735 struct extent_map_tree *map; 736 int ret; 737 738 if (PageWriteback(page) || PageDirty(page)) 739 return 0; 740 741 tree = &BTRFS_I(page->mapping->host)->io_tree; 742 map = &BTRFS_I(page->mapping->host)->extent_tree; 743 744 ret = try_release_extent_state(map, tree, page, gfp_flags); 745 if (!ret) 746 return 0; 747 748 ret = try_release_extent_buffer(tree, page); 749 if (ret == 1) { 750 ClearPagePrivate(page); 751 set_page_private(page, 0); 752 page_cache_release(page); 753 } 754 755 return ret; 756 } 757 758 static void btree_invalidatepage(struct page *page, unsigned long offset) 759 { 760 struct extent_io_tree *tree; 761 tree = &BTRFS_I(page->mapping->host)->io_tree; 762 extent_invalidatepage(tree, page, offset); 763 btree_releasepage(page, GFP_NOFS); 764 if (PagePrivate(page)) { 765 printk(KERN_WARNING "btrfs warning page private not zero " 766 "on page %llu\n", (unsigned long long)page_offset(page)); 767 ClearPagePrivate(page); 768 set_page_private(page, 0); 769 page_cache_release(page); 770 } 771 } 772 773 static struct address_space_operations btree_aops = { 774 .readpage = btree_readpage, 775 .writepage = btree_writepage, 776 .writepages = btree_writepages, 777 .releasepage = btree_releasepage, 778 .invalidatepage = btree_invalidatepage, 779 .sync_page = block_sync_page, 780 }; 781 782 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 783 u64 parent_transid) 784 { 785 struct extent_buffer *buf = NULL; 786 struct inode *btree_inode = root->fs_info->btree_inode; 787 int ret = 0; 788 789 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 790 if (!buf) 791 return 0; 792 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 793 buf, 0, 0, btree_get_extent, 0); 794 free_extent_buffer(buf); 795 return ret; 796 } 797 798 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 799 u64 bytenr, u32 blocksize) 800 { 801 struct inode *btree_inode = root->fs_info->btree_inode; 802 struct extent_buffer *eb; 803 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 804 bytenr, blocksize, GFP_NOFS); 805 return eb; 806 } 807 808 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 809 u64 bytenr, u32 blocksize) 810 { 811 struct inode *btree_inode = root->fs_info->btree_inode; 812 struct extent_buffer *eb; 813 814 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 815 bytenr, blocksize, NULL, GFP_NOFS); 816 return eb; 817 } 818 819 820 int btrfs_write_tree_block(struct extent_buffer *buf) 821 { 822 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 823 buf->start + buf->len - 1, WB_SYNC_ALL); 824 } 825 826 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 827 { 828 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 829 buf->start, buf->start + buf->len - 1); 830 } 831 832 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 833 u32 blocksize, u64 parent_transid) 834 { 835 struct extent_buffer *buf = NULL; 836 struct inode *btree_inode = root->fs_info->btree_inode; 837 struct extent_io_tree *io_tree; 838 int ret; 839 840 io_tree = &BTRFS_I(btree_inode)->io_tree; 841 842 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 843 if (!buf) 844 return NULL; 845 846 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 847 848 if (ret == 0) 849 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 850 return buf; 851 852 } 853 854 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 855 struct extent_buffer *buf) 856 { 857 struct inode *btree_inode = root->fs_info->btree_inode; 858 if (btrfs_header_generation(buf) == 859 root->fs_info->running_transaction->transid) { 860 btrfs_assert_tree_locked(buf); 861 862 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 863 spin_lock(&root->fs_info->delalloc_lock); 864 if (root->fs_info->dirty_metadata_bytes >= buf->len) 865 root->fs_info->dirty_metadata_bytes -= buf->len; 866 else 867 WARN_ON(1); 868 spin_unlock(&root->fs_info->delalloc_lock); 869 } 870 871 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 872 btrfs_set_lock_blocking(buf); 873 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 874 buf); 875 } 876 return 0; 877 } 878 879 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 880 u32 stripesize, struct btrfs_root *root, 881 struct btrfs_fs_info *fs_info, 882 u64 objectid) 883 { 884 root->node = NULL; 885 root->commit_root = NULL; 886 root->sectorsize = sectorsize; 887 root->nodesize = nodesize; 888 root->leafsize = leafsize; 889 root->stripesize = stripesize; 890 root->ref_cows = 0; 891 root->track_dirty = 0; 892 893 root->fs_info = fs_info; 894 root->objectid = objectid; 895 root->last_trans = 0; 896 root->highest_inode = 0; 897 root->last_inode_alloc = 0; 898 root->name = NULL; 899 root->in_sysfs = 0; 900 root->inode_tree.rb_node = NULL; 901 902 INIT_LIST_HEAD(&root->dirty_list); 903 INIT_LIST_HEAD(&root->orphan_list); 904 INIT_LIST_HEAD(&root->root_list); 905 spin_lock_init(&root->node_lock); 906 spin_lock_init(&root->list_lock); 907 spin_lock_init(&root->inode_lock); 908 mutex_init(&root->objectid_mutex); 909 mutex_init(&root->log_mutex); 910 init_waitqueue_head(&root->log_writer_wait); 911 init_waitqueue_head(&root->log_commit_wait[0]); 912 init_waitqueue_head(&root->log_commit_wait[1]); 913 atomic_set(&root->log_commit[0], 0); 914 atomic_set(&root->log_commit[1], 0); 915 atomic_set(&root->log_writers, 0); 916 root->log_batch = 0; 917 root->log_transid = 0; 918 extent_io_tree_init(&root->dirty_log_pages, 919 fs_info->btree_inode->i_mapping, GFP_NOFS); 920 921 memset(&root->root_key, 0, sizeof(root->root_key)); 922 memset(&root->root_item, 0, sizeof(root->root_item)); 923 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 924 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 925 root->defrag_trans_start = fs_info->generation; 926 init_completion(&root->kobj_unregister); 927 root->defrag_running = 0; 928 root->defrag_level = 0; 929 root->root_key.objectid = objectid; 930 root->anon_super.s_root = NULL; 931 root->anon_super.s_dev = 0; 932 INIT_LIST_HEAD(&root->anon_super.s_list); 933 INIT_LIST_HEAD(&root->anon_super.s_instances); 934 init_rwsem(&root->anon_super.s_umount); 935 936 return 0; 937 } 938 939 static int find_and_setup_root(struct btrfs_root *tree_root, 940 struct btrfs_fs_info *fs_info, 941 u64 objectid, 942 struct btrfs_root *root) 943 { 944 int ret; 945 u32 blocksize; 946 u64 generation; 947 948 __setup_root(tree_root->nodesize, tree_root->leafsize, 949 tree_root->sectorsize, tree_root->stripesize, 950 root, fs_info, objectid); 951 ret = btrfs_find_last_root(tree_root, objectid, 952 &root->root_item, &root->root_key); 953 BUG_ON(ret); 954 955 generation = btrfs_root_generation(&root->root_item); 956 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 957 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 958 blocksize, generation); 959 root->commit_root = btrfs_root_node(root); 960 BUG_ON(!root->node); 961 return 0; 962 } 963 964 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 965 struct btrfs_fs_info *fs_info) 966 { 967 struct extent_buffer *eb; 968 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 969 u64 start = 0; 970 u64 end = 0; 971 int ret; 972 973 if (!log_root_tree) 974 return 0; 975 976 while (1) { 977 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 978 0, &start, &end, EXTENT_DIRTY); 979 if (ret) 980 break; 981 982 clear_extent_dirty(&log_root_tree->dirty_log_pages, 983 start, end, GFP_NOFS); 984 } 985 eb = fs_info->log_root_tree->node; 986 987 WARN_ON(btrfs_header_level(eb) != 0); 988 WARN_ON(btrfs_header_nritems(eb) != 0); 989 990 ret = btrfs_free_reserved_extent(fs_info->tree_root, 991 eb->start, eb->len); 992 BUG_ON(ret); 993 994 free_extent_buffer(eb); 995 kfree(fs_info->log_root_tree); 996 fs_info->log_root_tree = NULL; 997 return 0; 998 } 999 1000 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1001 struct btrfs_fs_info *fs_info) 1002 { 1003 struct btrfs_root *root; 1004 struct btrfs_root *tree_root = fs_info->tree_root; 1005 struct extent_buffer *leaf; 1006 1007 root = kzalloc(sizeof(*root), GFP_NOFS); 1008 if (!root) 1009 return ERR_PTR(-ENOMEM); 1010 1011 __setup_root(tree_root->nodesize, tree_root->leafsize, 1012 tree_root->sectorsize, tree_root->stripesize, 1013 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1014 1015 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1016 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1017 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1018 /* 1019 * log trees do not get reference counted because they go away 1020 * before a real commit is actually done. They do store pointers 1021 * to file data extents, and those reference counts still get 1022 * updated (along with back refs to the log tree). 1023 */ 1024 root->ref_cows = 0; 1025 1026 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 1027 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0); 1028 if (IS_ERR(leaf)) { 1029 kfree(root); 1030 return ERR_CAST(leaf); 1031 } 1032 1033 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 1034 btrfs_set_header_bytenr(leaf, leaf->start); 1035 btrfs_set_header_generation(leaf, trans->transid); 1036 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 1037 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); 1038 root->node = leaf; 1039 1040 write_extent_buffer(root->node, root->fs_info->fsid, 1041 (unsigned long)btrfs_header_fsid(root->node), 1042 BTRFS_FSID_SIZE); 1043 btrfs_mark_buffer_dirty(root->node); 1044 btrfs_tree_unlock(root->node); 1045 return root; 1046 } 1047 1048 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1049 struct btrfs_fs_info *fs_info) 1050 { 1051 struct btrfs_root *log_root; 1052 1053 log_root = alloc_log_tree(trans, fs_info); 1054 if (IS_ERR(log_root)) 1055 return PTR_ERR(log_root); 1056 WARN_ON(fs_info->log_root_tree); 1057 fs_info->log_root_tree = log_root; 1058 return 0; 1059 } 1060 1061 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1062 struct btrfs_root *root) 1063 { 1064 struct btrfs_root *log_root; 1065 struct btrfs_inode_item *inode_item; 1066 1067 log_root = alloc_log_tree(trans, root->fs_info); 1068 if (IS_ERR(log_root)) 1069 return PTR_ERR(log_root); 1070 1071 log_root->last_trans = trans->transid; 1072 log_root->root_key.offset = root->root_key.objectid; 1073 1074 inode_item = &log_root->root_item.inode; 1075 inode_item->generation = cpu_to_le64(1); 1076 inode_item->size = cpu_to_le64(3); 1077 inode_item->nlink = cpu_to_le32(1); 1078 inode_item->nbytes = cpu_to_le64(root->leafsize); 1079 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1080 1081 btrfs_set_root_node(&log_root->root_item, log_root->node); 1082 1083 WARN_ON(root->log_root); 1084 root->log_root = log_root; 1085 root->log_transid = 0; 1086 return 0; 1087 } 1088 1089 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1090 struct btrfs_key *location) 1091 { 1092 struct btrfs_root *root; 1093 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1094 struct btrfs_path *path; 1095 struct extent_buffer *l; 1096 u64 highest_inode; 1097 u64 generation; 1098 u32 blocksize; 1099 int ret = 0; 1100 1101 root = kzalloc(sizeof(*root), GFP_NOFS); 1102 if (!root) 1103 return ERR_PTR(-ENOMEM); 1104 if (location->offset == (u64)-1) { 1105 ret = find_and_setup_root(tree_root, fs_info, 1106 location->objectid, root); 1107 if (ret) { 1108 kfree(root); 1109 return ERR_PTR(ret); 1110 } 1111 goto insert; 1112 } 1113 1114 __setup_root(tree_root->nodesize, tree_root->leafsize, 1115 tree_root->sectorsize, tree_root->stripesize, 1116 root, fs_info, location->objectid); 1117 1118 path = btrfs_alloc_path(); 1119 BUG_ON(!path); 1120 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1121 if (ret != 0) { 1122 if (ret > 0) 1123 ret = -ENOENT; 1124 goto out; 1125 } 1126 l = path->nodes[0]; 1127 read_extent_buffer(l, &root->root_item, 1128 btrfs_item_ptr_offset(l, path->slots[0]), 1129 sizeof(root->root_item)); 1130 memcpy(&root->root_key, location, sizeof(*location)); 1131 ret = 0; 1132 out: 1133 btrfs_release_path(root, path); 1134 btrfs_free_path(path); 1135 if (ret) { 1136 kfree(root); 1137 return ERR_PTR(ret); 1138 } 1139 generation = btrfs_root_generation(&root->root_item); 1140 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1141 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1142 blocksize, generation); 1143 root->commit_root = btrfs_root_node(root); 1144 BUG_ON(!root->node); 1145 insert: 1146 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1147 root->ref_cows = 1; 1148 ret = btrfs_find_highest_inode(root, &highest_inode); 1149 if (ret == 0) { 1150 root->highest_inode = highest_inode; 1151 root->last_inode_alloc = highest_inode; 1152 } 1153 } 1154 return root; 1155 } 1156 1157 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1158 u64 root_objectid) 1159 { 1160 struct btrfs_root *root; 1161 1162 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1163 return fs_info->tree_root; 1164 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1165 return fs_info->extent_root; 1166 1167 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1168 (unsigned long)root_objectid); 1169 return root; 1170 } 1171 1172 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1173 struct btrfs_key *location) 1174 { 1175 struct btrfs_root *root; 1176 int ret; 1177 1178 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1179 return fs_info->tree_root; 1180 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1181 return fs_info->extent_root; 1182 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1183 return fs_info->chunk_root; 1184 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1185 return fs_info->dev_root; 1186 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1187 return fs_info->csum_root; 1188 1189 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1190 (unsigned long)location->objectid); 1191 if (root) 1192 return root; 1193 1194 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1195 if (IS_ERR(root)) 1196 return root; 1197 1198 set_anon_super(&root->anon_super, NULL); 1199 1200 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1201 (unsigned long)root->root_key.objectid, 1202 root); 1203 if (ret) { 1204 free_extent_buffer(root->node); 1205 kfree(root); 1206 return ERR_PTR(ret); 1207 } 1208 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1209 ret = btrfs_find_dead_roots(fs_info->tree_root, 1210 root->root_key.objectid); 1211 BUG_ON(ret); 1212 btrfs_orphan_cleanup(root); 1213 } 1214 return root; 1215 } 1216 1217 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1218 struct btrfs_key *location, 1219 const char *name, int namelen) 1220 { 1221 struct btrfs_root *root; 1222 int ret; 1223 1224 root = btrfs_read_fs_root_no_name(fs_info, location); 1225 if (!root) 1226 return NULL; 1227 1228 if (root->in_sysfs) 1229 return root; 1230 1231 ret = btrfs_set_root_name(root, name, namelen); 1232 if (ret) { 1233 free_extent_buffer(root->node); 1234 kfree(root); 1235 return ERR_PTR(ret); 1236 } 1237 #if 0 1238 ret = btrfs_sysfs_add_root(root); 1239 if (ret) { 1240 free_extent_buffer(root->node); 1241 kfree(root->name); 1242 kfree(root); 1243 return ERR_PTR(ret); 1244 } 1245 #endif 1246 root->in_sysfs = 1; 1247 return root; 1248 } 1249 1250 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1251 { 1252 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1253 int ret = 0; 1254 struct btrfs_device *device; 1255 struct backing_dev_info *bdi; 1256 1257 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1258 if (!device->bdev) 1259 continue; 1260 bdi = blk_get_backing_dev_info(device->bdev); 1261 if (bdi && bdi_congested(bdi, bdi_bits)) { 1262 ret = 1; 1263 break; 1264 } 1265 } 1266 return ret; 1267 } 1268 1269 /* 1270 * this unplugs every device on the box, and it is only used when page 1271 * is null 1272 */ 1273 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1274 { 1275 struct btrfs_device *device; 1276 struct btrfs_fs_info *info; 1277 1278 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1279 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1280 if (!device->bdev) 1281 continue; 1282 1283 bdi = blk_get_backing_dev_info(device->bdev); 1284 if (bdi->unplug_io_fn) 1285 bdi->unplug_io_fn(bdi, page); 1286 } 1287 } 1288 1289 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1290 { 1291 struct inode *inode; 1292 struct extent_map_tree *em_tree; 1293 struct extent_map *em; 1294 struct address_space *mapping; 1295 u64 offset; 1296 1297 /* the generic O_DIRECT read code does this */ 1298 if (1 || !page) { 1299 __unplug_io_fn(bdi, page); 1300 return; 1301 } 1302 1303 /* 1304 * page->mapping may change at any time. Get a consistent copy 1305 * and use that for everything below 1306 */ 1307 smp_mb(); 1308 mapping = page->mapping; 1309 if (!mapping) 1310 return; 1311 1312 inode = mapping->host; 1313 1314 /* 1315 * don't do the expensive searching for a small number of 1316 * devices 1317 */ 1318 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1319 __unplug_io_fn(bdi, page); 1320 return; 1321 } 1322 1323 offset = page_offset(page); 1324 1325 em_tree = &BTRFS_I(inode)->extent_tree; 1326 spin_lock(&em_tree->lock); 1327 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1328 spin_unlock(&em_tree->lock); 1329 if (!em) { 1330 __unplug_io_fn(bdi, page); 1331 return; 1332 } 1333 1334 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1335 free_extent_map(em); 1336 __unplug_io_fn(bdi, page); 1337 return; 1338 } 1339 offset = offset - em->start; 1340 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1341 em->block_start + offset, page); 1342 free_extent_map(em); 1343 } 1344 1345 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1346 { 1347 bdi_init(bdi); 1348 bdi->ra_pages = default_backing_dev_info.ra_pages; 1349 bdi->state = 0; 1350 bdi->capabilities = default_backing_dev_info.capabilities; 1351 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1352 bdi->unplug_io_data = info; 1353 bdi->congested_fn = btrfs_congested_fn; 1354 bdi->congested_data = info; 1355 return 0; 1356 } 1357 1358 static int bio_ready_for_csum(struct bio *bio) 1359 { 1360 u64 length = 0; 1361 u64 buf_len = 0; 1362 u64 start = 0; 1363 struct page *page; 1364 struct extent_io_tree *io_tree = NULL; 1365 struct btrfs_fs_info *info = NULL; 1366 struct bio_vec *bvec; 1367 int i; 1368 int ret; 1369 1370 bio_for_each_segment(bvec, bio, i) { 1371 page = bvec->bv_page; 1372 if (page->private == EXTENT_PAGE_PRIVATE) { 1373 length += bvec->bv_len; 1374 continue; 1375 } 1376 if (!page->private) { 1377 length += bvec->bv_len; 1378 continue; 1379 } 1380 length = bvec->bv_len; 1381 buf_len = page->private >> 2; 1382 start = page_offset(page) + bvec->bv_offset; 1383 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1384 info = BTRFS_I(page->mapping->host)->root->fs_info; 1385 } 1386 /* are we fully contained in this bio? */ 1387 if (buf_len <= length) 1388 return 1; 1389 1390 ret = extent_range_uptodate(io_tree, start + length, 1391 start + buf_len - 1); 1392 return ret; 1393 } 1394 1395 /* 1396 * called by the kthread helper functions to finally call the bio end_io 1397 * functions. This is where read checksum verification actually happens 1398 */ 1399 static void end_workqueue_fn(struct btrfs_work *work) 1400 { 1401 struct bio *bio; 1402 struct end_io_wq *end_io_wq; 1403 struct btrfs_fs_info *fs_info; 1404 int error; 1405 1406 end_io_wq = container_of(work, struct end_io_wq, work); 1407 bio = end_io_wq->bio; 1408 fs_info = end_io_wq->info; 1409 1410 /* metadata bio reads are special because the whole tree block must 1411 * be checksummed at once. This makes sure the entire block is in 1412 * ram and up to date before trying to verify things. For 1413 * blocksize <= pagesize, it is basically a noop 1414 */ 1415 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1416 !bio_ready_for_csum(bio)) { 1417 btrfs_queue_worker(&fs_info->endio_meta_workers, 1418 &end_io_wq->work); 1419 return; 1420 } 1421 error = end_io_wq->error; 1422 bio->bi_private = end_io_wq->private; 1423 bio->bi_end_io = end_io_wq->end_io; 1424 kfree(end_io_wq); 1425 bio_endio(bio, error); 1426 } 1427 1428 static int cleaner_kthread(void *arg) 1429 { 1430 struct btrfs_root *root = arg; 1431 1432 do { 1433 smp_mb(); 1434 if (root->fs_info->closing) 1435 break; 1436 1437 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1438 mutex_lock(&root->fs_info->cleaner_mutex); 1439 btrfs_clean_old_snapshots(root); 1440 mutex_unlock(&root->fs_info->cleaner_mutex); 1441 1442 if (freezing(current)) { 1443 refrigerator(); 1444 } else { 1445 smp_mb(); 1446 if (root->fs_info->closing) 1447 break; 1448 set_current_state(TASK_INTERRUPTIBLE); 1449 schedule(); 1450 __set_current_state(TASK_RUNNING); 1451 } 1452 } while (!kthread_should_stop()); 1453 return 0; 1454 } 1455 1456 static int transaction_kthread(void *arg) 1457 { 1458 struct btrfs_root *root = arg; 1459 struct btrfs_trans_handle *trans; 1460 struct btrfs_transaction *cur; 1461 unsigned long now; 1462 unsigned long delay; 1463 int ret; 1464 1465 do { 1466 smp_mb(); 1467 if (root->fs_info->closing) 1468 break; 1469 1470 delay = HZ * 30; 1471 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1472 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1473 1474 mutex_lock(&root->fs_info->trans_mutex); 1475 cur = root->fs_info->running_transaction; 1476 if (!cur) { 1477 mutex_unlock(&root->fs_info->trans_mutex); 1478 goto sleep; 1479 } 1480 1481 now = get_seconds(); 1482 if (now < cur->start_time || now - cur->start_time < 30) { 1483 mutex_unlock(&root->fs_info->trans_mutex); 1484 delay = HZ * 5; 1485 goto sleep; 1486 } 1487 mutex_unlock(&root->fs_info->trans_mutex); 1488 trans = btrfs_start_transaction(root, 1); 1489 ret = btrfs_commit_transaction(trans, root); 1490 1491 sleep: 1492 wake_up_process(root->fs_info->cleaner_kthread); 1493 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1494 1495 if (freezing(current)) { 1496 refrigerator(); 1497 } else { 1498 if (root->fs_info->closing) 1499 break; 1500 set_current_state(TASK_INTERRUPTIBLE); 1501 schedule_timeout(delay); 1502 __set_current_state(TASK_RUNNING); 1503 } 1504 } while (!kthread_should_stop()); 1505 return 0; 1506 } 1507 1508 struct btrfs_root *open_ctree(struct super_block *sb, 1509 struct btrfs_fs_devices *fs_devices, 1510 char *options) 1511 { 1512 u32 sectorsize; 1513 u32 nodesize; 1514 u32 leafsize; 1515 u32 blocksize; 1516 u32 stripesize; 1517 u64 generation; 1518 u64 features; 1519 struct btrfs_key location; 1520 struct buffer_head *bh; 1521 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1522 GFP_NOFS); 1523 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1524 GFP_NOFS); 1525 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1526 GFP_NOFS); 1527 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1528 GFP_NOFS); 1529 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1530 GFP_NOFS); 1531 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1532 GFP_NOFS); 1533 struct btrfs_root *log_tree_root; 1534 1535 int ret; 1536 int err = -EINVAL; 1537 1538 struct btrfs_super_block *disk_super; 1539 1540 if (!extent_root || !tree_root || !fs_info || 1541 !chunk_root || !dev_root || !csum_root) { 1542 err = -ENOMEM; 1543 goto fail; 1544 } 1545 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1546 INIT_LIST_HEAD(&fs_info->trans_list); 1547 INIT_LIST_HEAD(&fs_info->dead_roots); 1548 INIT_LIST_HEAD(&fs_info->hashers); 1549 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1550 INIT_LIST_HEAD(&fs_info->ordered_operations); 1551 spin_lock_init(&fs_info->delalloc_lock); 1552 spin_lock_init(&fs_info->new_trans_lock); 1553 spin_lock_init(&fs_info->ref_cache_lock); 1554 1555 init_completion(&fs_info->kobj_unregister); 1556 fs_info->tree_root = tree_root; 1557 fs_info->extent_root = extent_root; 1558 fs_info->csum_root = csum_root; 1559 fs_info->chunk_root = chunk_root; 1560 fs_info->dev_root = dev_root; 1561 fs_info->fs_devices = fs_devices; 1562 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1563 INIT_LIST_HEAD(&fs_info->space_info); 1564 btrfs_mapping_init(&fs_info->mapping_tree); 1565 atomic_set(&fs_info->nr_async_submits, 0); 1566 atomic_set(&fs_info->async_delalloc_pages, 0); 1567 atomic_set(&fs_info->async_submit_draining, 0); 1568 atomic_set(&fs_info->nr_async_bios, 0); 1569 fs_info->sb = sb; 1570 fs_info->max_extent = (u64)-1; 1571 fs_info->max_inline = 8192 * 1024; 1572 setup_bdi(fs_info, &fs_info->bdi); 1573 fs_info->btree_inode = new_inode(sb); 1574 fs_info->btree_inode->i_ino = 1; 1575 fs_info->btree_inode->i_nlink = 1; 1576 fs_info->metadata_ratio = 8; 1577 1578 fs_info->thread_pool_size = min_t(unsigned long, 1579 num_online_cpus() + 2, 8); 1580 1581 INIT_LIST_HEAD(&fs_info->ordered_extents); 1582 spin_lock_init(&fs_info->ordered_extent_lock); 1583 1584 sb->s_blocksize = 4096; 1585 sb->s_blocksize_bits = blksize_bits(4096); 1586 1587 /* 1588 * we set the i_size on the btree inode to the max possible int. 1589 * the real end of the address space is determined by all of 1590 * the devices in the system 1591 */ 1592 fs_info->btree_inode->i_size = OFFSET_MAX; 1593 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1594 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1595 1596 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node); 1597 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1598 fs_info->btree_inode->i_mapping, 1599 GFP_NOFS); 1600 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1601 GFP_NOFS); 1602 1603 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1604 1605 spin_lock_init(&fs_info->block_group_cache_lock); 1606 fs_info->block_group_cache_tree.rb_node = NULL; 1607 1608 extent_io_tree_init(&fs_info->pinned_extents, 1609 fs_info->btree_inode->i_mapping, GFP_NOFS); 1610 fs_info->do_barriers = 1; 1611 1612 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1613 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1614 sizeof(struct btrfs_key)); 1615 insert_inode_hash(fs_info->btree_inode); 1616 1617 mutex_init(&fs_info->trans_mutex); 1618 mutex_init(&fs_info->ordered_operations_mutex); 1619 mutex_init(&fs_info->tree_log_mutex); 1620 mutex_init(&fs_info->drop_mutex); 1621 mutex_init(&fs_info->chunk_mutex); 1622 mutex_init(&fs_info->transaction_kthread_mutex); 1623 mutex_init(&fs_info->cleaner_mutex); 1624 mutex_init(&fs_info->volume_mutex); 1625 mutex_init(&fs_info->tree_reloc_mutex); 1626 1627 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1628 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1629 1630 init_waitqueue_head(&fs_info->transaction_throttle); 1631 init_waitqueue_head(&fs_info->transaction_wait); 1632 init_waitqueue_head(&fs_info->async_submit_wait); 1633 1634 __setup_root(4096, 4096, 4096, 4096, tree_root, 1635 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1636 1637 1638 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1639 if (!bh) 1640 goto fail_iput; 1641 1642 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1643 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1644 sizeof(fs_info->super_for_commit)); 1645 brelse(bh); 1646 1647 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1648 1649 disk_super = &fs_info->super_copy; 1650 if (!btrfs_super_root(disk_super)) 1651 goto fail_iput; 1652 1653 ret = btrfs_parse_options(tree_root, options); 1654 if (ret) { 1655 err = ret; 1656 goto fail_iput; 1657 } 1658 1659 features = btrfs_super_incompat_flags(disk_super) & 1660 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1661 if (features) { 1662 printk(KERN_ERR "BTRFS: couldn't mount because of " 1663 "unsupported optional features (%Lx).\n", 1664 (unsigned long long)features); 1665 err = -EINVAL; 1666 goto fail_iput; 1667 } 1668 1669 features = btrfs_super_incompat_flags(disk_super); 1670 if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { 1671 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; 1672 btrfs_set_super_incompat_flags(disk_super, features); 1673 } 1674 1675 features = btrfs_super_compat_ro_flags(disk_super) & 1676 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1677 if (!(sb->s_flags & MS_RDONLY) && features) { 1678 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1679 "unsupported option features (%Lx).\n", 1680 (unsigned long long)features); 1681 err = -EINVAL; 1682 goto fail_iput; 1683 } 1684 1685 /* 1686 * we need to start all the end_io workers up front because the 1687 * queue work function gets called at interrupt time, and so it 1688 * cannot dynamically grow. 1689 */ 1690 btrfs_init_workers(&fs_info->workers, "worker", 1691 fs_info->thread_pool_size); 1692 1693 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1694 fs_info->thread_pool_size); 1695 1696 btrfs_init_workers(&fs_info->submit_workers, "submit", 1697 min_t(u64, fs_devices->num_devices, 1698 fs_info->thread_pool_size)); 1699 1700 /* a higher idle thresh on the submit workers makes it much more 1701 * likely that bios will be send down in a sane order to the 1702 * devices 1703 */ 1704 fs_info->submit_workers.idle_thresh = 64; 1705 1706 fs_info->workers.idle_thresh = 16; 1707 fs_info->workers.ordered = 1; 1708 1709 fs_info->delalloc_workers.idle_thresh = 2; 1710 fs_info->delalloc_workers.ordered = 1; 1711 1712 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1713 btrfs_init_workers(&fs_info->endio_workers, "endio", 1714 fs_info->thread_pool_size); 1715 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1716 fs_info->thread_pool_size); 1717 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1718 "endio-meta-write", fs_info->thread_pool_size); 1719 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1720 fs_info->thread_pool_size); 1721 1722 /* 1723 * endios are largely parallel and should have a very 1724 * low idle thresh 1725 */ 1726 fs_info->endio_workers.idle_thresh = 4; 1727 fs_info->endio_meta_workers.idle_thresh = 4; 1728 1729 fs_info->endio_write_workers.idle_thresh = 64; 1730 fs_info->endio_meta_write_workers.idle_thresh = 64; 1731 1732 btrfs_start_workers(&fs_info->workers, 1); 1733 btrfs_start_workers(&fs_info->submit_workers, 1); 1734 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1735 btrfs_start_workers(&fs_info->fixup_workers, 1); 1736 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1737 btrfs_start_workers(&fs_info->endio_meta_workers, 1738 fs_info->thread_pool_size); 1739 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1740 fs_info->thread_pool_size); 1741 btrfs_start_workers(&fs_info->endio_write_workers, 1742 fs_info->thread_pool_size); 1743 1744 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1745 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1746 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1747 1748 nodesize = btrfs_super_nodesize(disk_super); 1749 leafsize = btrfs_super_leafsize(disk_super); 1750 sectorsize = btrfs_super_sectorsize(disk_super); 1751 stripesize = btrfs_super_stripesize(disk_super); 1752 tree_root->nodesize = nodesize; 1753 tree_root->leafsize = leafsize; 1754 tree_root->sectorsize = sectorsize; 1755 tree_root->stripesize = stripesize; 1756 1757 sb->s_blocksize = sectorsize; 1758 sb->s_blocksize_bits = blksize_bits(sectorsize); 1759 1760 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1761 sizeof(disk_super->magic))) { 1762 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1763 goto fail_sb_buffer; 1764 } 1765 1766 mutex_lock(&fs_info->chunk_mutex); 1767 ret = btrfs_read_sys_array(tree_root); 1768 mutex_unlock(&fs_info->chunk_mutex); 1769 if (ret) { 1770 printk(KERN_WARNING "btrfs: failed to read the system " 1771 "array on %s\n", sb->s_id); 1772 goto fail_sb_buffer; 1773 } 1774 1775 blocksize = btrfs_level_size(tree_root, 1776 btrfs_super_chunk_root_level(disk_super)); 1777 generation = btrfs_super_chunk_root_generation(disk_super); 1778 1779 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1780 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1781 1782 chunk_root->node = read_tree_block(chunk_root, 1783 btrfs_super_chunk_root(disk_super), 1784 blocksize, generation); 1785 BUG_ON(!chunk_root->node); 1786 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); 1787 chunk_root->commit_root = btrfs_root_node(chunk_root); 1788 1789 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1790 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1791 BTRFS_UUID_SIZE); 1792 1793 mutex_lock(&fs_info->chunk_mutex); 1794 ret = btrfs_read_chunk_tree(chunk_root); 1795 mutex_unlock(&fs_info->chunk_mutex); 1796 if (ret) { 1797 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1798 sb->s_id); 1799 goto fail_chunk_root; 1800 } 1801 1802 btrfs_close_extra_devices(fs_devices); 1803 1804 blocksize = btrfs_level_size(tree_root, 1805 btrfs_super_root_level(disk_super)); 1806 generation = btrfs_super_generation(disk_super); 1807 1808 tree_root->node = read_tree_block(tree_root, 1809 btrfs_super_root(disk_super), 1810 blocksize, generation); 1811 if (!tree_root->node) 1812 goto fail_chunk_root; 1813 btrfs_set_root_node(&tree_root->root_item, tree_root->node); 1814 tree_root->commit_root = btrfs_root_node(tree_root); 1815 1816 ret = find_and_setup_root(tree_root, fs_info, 1817 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1818 if (ret) 1819 goto fail_tree_root; 1820 extent_root->track_dirty = 1; 1821 1822 ret = find_and_setup_root(tree_root, fs_info, 1823 BTRFS_DEV_TREE_OBJECTID, dev_root); 1824 if (ret) 1825 goto fail_extent_root; 1826 dev_root->track_dirty = 1; 1827 1828 ret = find_and_setup_root(tree_root, fs_info, 1829 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1830 if (ret) 1831 goto fail_dev_root; 1832 1833 csum_root->track_dirty = 1; 1834 1835 btrfs_read_block_groups(extent_root); 1836 1837 fs_info->generation = generation; 1838 fs_info->last_trans_committed = generation; 1839 fs_info->data_alloc_profile = (u64)-1; 1840 fs_info->metadata_alloc_profile = (u64)-1; 1841 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1842 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1843 "btrfs-cleaner"); 1844 if (IS_ERR(fs_info->cleaner_kthread)) 1845 goto fail_csum_root; 1846 1847 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1848 tree_root, 1849 "btrfs-transaction"); 1850 if (IS_ERR(fs_info->transaction_kthread)) 1851 goto fail_cleaner; 1852 1853 if (!btrfs_test_opt(tree_root, SSD) && 1854 !btrfs_test_opt(tree_root, NOSSD) && 1855 !fs_info->fs_devices->rotating) { 1856 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD " 1857 "mode\n"); 1858 btrfs_set_opt(fs_info->mount_opt, SSD); 1859 } 1860 1861 if (btrfs_super_log_root(disk_super) != 0) { 1862 u64 bytenr = btrfs_super_log_root(disk_super); 1863 1864 if (fs_devices->rw_devices == 0) { 1865 printk(KERN_WARNING "Btrfs log replay required " 1866 "on RO media\n"); 1867 err = -EIO; 1868 goto fail_trans_kthread; 1869 } 1870 blocksize = 1871 btrfs_level_size(tree_root, 1872 btrfs_super_log_root_level(disk_super)); 1873 1874 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1875 GFP_NOFS); 1876 1877 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1878 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1879 1880 log_tree_root->node = read_tree_block(tree_root, bytenr, 1881 blocksize, 1882 generation + 1); 1883 ret = btrfs_recover_log_trees(log_tree_root); 1884 BUG_ON(ret); 1885 1886 if (sb->s_flags & MS_RDONLY) { 1887 ret = btrfs_commit_super(tree_root); 1888 BUG_ON(ret); 1889 } 1890 } 1891 1892 if (!(sb->s_flags & MS_RDONLY)) { 1893 ret = btrfs_recover_relocation(tree_root); 1894 BUG_ON(ret); 1895 } 1896 1897 location.objectid = BTRFS_FS_TREE_OBJECTID; 1898 location.type = BTRFS_ROOT_ITEM_KEY; 1899 location.offset = (u64)-1; 1900 1901 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1902 if (!fs_info->fs_root) 1903 goto fail_trans_kthread; 1904 1905 return tree_root; 1906 1907 fail_trans_kthread: 1908 kthread_stop(fs_info->transaction_kthread); 1909 fail_cleaner: 1910 kthread_stop(fs_info->cleaner_kthread); 1911 1912 /* 1913 * make sure we're done with the btree inode before we stop our 1914 * kthreads 1915 */ 1916 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1917 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1918 1919 fail_csum_root: 1920 free_extent_buffer(csum_root->node); 1921 free_extent_buffer(csum_root->commit_root); 1922 fail_dev_root: 1923 free_extent_buffer(dev_root->node); 1924 free_extent_buffer(dev_root->commit_root); 1925 fail_extent_root: 1926 free_extent_buffer(extent_root->node); 1927 free_extent_buffer(extent_root->commit_root); 1928 fail_tree_root: 1929 free_extent_buffer(tree_root->node); 1930 free_extent_buffer(tree_root->commit_root); 1931 fail_chunk_root: 1932 free_extent_buffer(chunk_root->node); 1933 free_extent_buffer(chunk_root->commit_root); 1934 fail_sb_buffer: 1935 btrfs_stop_workers(&fs_info->fixup_workers); 1936 btrfs_stop_workers(&fs_info->delalloc_workers); 1937 btrfs_stop_workers(&fs_info->workers); 1938 btrfs_stop_workers(&fs_info->endio_workers); 1939 btrfs_stop_workers(&fs_info->endio_meta_workers); 1940 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1941 btrfs_stop_workers(&fs_info->endio_write_workers); 1942 btrfs_stop_workers(&fs_info->submit_workers); 1943 fail_iput: 1944 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1945 iput(fs_info->btree_inode); 1946 1947 btrfs_close_devices(fs_info->fs_devices); 1948 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1949 bdi_destroy(&fs_info->bdi); 1950 1951 fail: 1952 kfree(extent_root); 1953 kfree(tree_root); 1954 kfree(fs_info); 1955 kfree(chunk_root); 1956 kfree(dev_root); 1957 kfree(csum_root); 1958 return ERR_PTR(err); 1959 } 1960 1961 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1962 { 1963 char b[BDEVNAME_SIZE]; 1964 1965 if (uptodate) { 1966 set_buffer_uptodate(bh); 1967 } else { 1968 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1969 printk(KERN_WARNING "lost page write due to " 1970 "I/O error on %s\n", 1971 bdevname(bh->b_bdev, b)); 1972 } 1973 /* note, we dont' set_buffer_write_io_error because we have 1974 * our own ways of dealing with the IO errors 1975 */ 1976 clear_buffer_uptodate(bh); 1977 } 1978 unlock_buffer(bh); 1979 put_bh(bh); 1980 } 1981 1982 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1983 { 1984 struct buffer_head *bh; 1985 struct buffer_head *latest = NULL; 1986 struct btrfs_super_block *super; 1987 int i; 1988 u64 transid = 0; 1989 u64 bytenr; 1990 1991 /* we would like to check all the supers, but that would make 1992 * a btrfs mount succeed after a mkfs from a different FS. 1993 * So, we need to add a special mount option to scan for 1994 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1995 */ 1996 for (i = 0; i < 1; i++) { 1997 bytenr = btrfs_sb_offset(i); 1998 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 1999 break; 2000 bh = __bread(bdev, bytenr / 4096, 4096); 2001 if (!bh) 2002 continue; 2003 2004 super = (struct btrfs_super_block *)bh->b_data; 2005 if (btrfs_super_bytenr(super) != bytenr || 2006 strncmp((char *)(&super->magic), BTRFS_MAGIC, 2007 sizeof(super->magic))) { 2008 brelse(bh); 2009 continue; 2010 } 2011 2012 if (!latest || btrfs_super_generation(super) > transid) { 2013 brelse(latest); 2014 latest = bh; 2015 transid = btrfs_super_generation(super); 2016 } else { 2017 brelse(bh); 2018 } 2019 } 2020 return latest; 2021 } 2022 2023 static int write_dev_supers(struct btrfs_device *device, 2024 struct btrfs_super_block *sb, 2025 int do_barriers, int wait, int max_mirrors) 2026 { 2027 struct buffer_head *bh; 2028 int i; 2029 int ret; 2030 int errors = 0; 2031 u32 crc; 2032 u64 bytenr; 2033 int last_barrier = 0; 2034 2035 if (max_mirrors == 0) 2036 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2037 2038 /* make sure only the last submit_bh does a barrier */ 2039 if (do_barriers) { 2040 for (i = 0; i < max_mirrors; i++) { 2041 bytenr = btrfs_sb_offset(i); 2042 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2043 device->total_bytes) 2044 break; 2045 last_barrier = i; 2046 } 2047 } 2048 2049 for (i = 0; i < max_mirrors; i++) { 2050 bytenr = btrfs_sb_offset(i); 2051 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2052 break; 2053 2054 if (wait) { 2055 bh = __find_get_block(device->bdev, bytenr / 4096, 2056 BTRFS_SUPER_INFO_SIZE); 2057 BUG_ON(!bh); 2058 brelse(bh); 2059 wait_on_buffer(bh); 2060 if (buffer_uptodate(bh)) { 2061 brelse(bh); 2062 continue; 2063 } 2064 } else { 2065 btrfs_set_super_bytenr(sb, bytenr); 2066 2067 crc = ~(u32)0; 2068 crc = btrfs_csum_data(NULL, (char *)sb + 2069 BTRFS_CSUM_SIZE, crc, 2070 BTRFS_SUPER_INFO_SIZE - 2071 BTRFS_CSUM_SIZE); 2072 btrfs_csum_final(crc, sb->csum); 2073 2074 bh = __getblk(device->bdev, bytenr / 4096, 2075 BTRFS_SUPER_INFO_SIZE); 2076 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2077 2078 set_buffer_uptodate(bh); 2079 get_bh(bh); 2080 lock_buffer(bh); 2081 bh->b_end_io = btrfs_end_buffer_write_sync; 2082 } 2083 2084 if (i == last_barrier && do_barriers && device->barriers) { 2085 ret = submit_bh(WRITE_BARRIER, bh); 2086 if (ret == -EOPNOTSUPP) { 2087 printk("btrfs: disabling barriers on dev %s\n", 2088 device->name); 2089 set_buffer_uptodate(bh); 2090 device->barriers = 0; 2091 get_bh(bh); 2092 lock_buffer(bh); 2093 ret = submit_bh(WRITE_SYNC, bh); 2094 } 2095 } else { 2096 ret = submit_bh(WRITE_SYNC, bh); 2097 } 2098 2099 if (!ret && wait) { 2100 wait_on_buffer(bh); 2101 if (!buffer_uptodate(bh)) 2102 errors++; 2103 } else if (ret) { 2104 errors++; 2105 } 2106 if (wait) 2107 brelse(bh); 2108 } 2109 return errors < i ? 0 : -1; 2110 } 2111 2112 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2113 { 2114 struct list_head *head = &root->fs_info->fs_devices->devices; 2115 struct btrfs_device *dev; 2116 struct btrfs_super_block *sb; 2117 struct btrfs_dev_item *dev_item; 2118 int ret; 2119 int do_barriers; 2120 int max_errors; 2121 int total_errors = 0; 2122 u64 flags; 2123 2124 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2125 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2126 2127 sb = &root->fs_info->super_for_commit; 2128 dev_item = &sb->dev_item; 2129 list_for_each_entry(dev, head, dev_list) { 2130 if (!dev->bdev) { 2131 total_errors++; 2132 continue; 2133 } 2134 if (!dev->in_fs_metadata || !dev->writeable) 2135 continue; 2136 2137 btrfs_set_stack_device_generation(dev_item, 0); 2138 btrfs_set_stack_device_type(dev_item, dev->type); 2139 btrfs_set_stack_device_id(dev_item, dev->devid); 2140 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2141 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2142 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2143 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2144 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2145 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2146 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2147 2148 flags = btrfs_super_flags(sb); 2149 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2150 2151 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2152 if (ret) 2153 total_errors++; 2154 } 2155 if (total_errors > max_errors) { 2156 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2157 total_errors); 2158 BUG(); 2159 } 2160 2161 total_errors = 0; 2162 list_for_each_entry(dev, head, dev_list) { 2163 if (!dev->bdev) 2164 continue; 2165 if (!dev->in_fs_metadata || !dev->writeable) 2166 continue; 2167 2168 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2169 if (ret) 2170 total_errors++; 2171 } 2172 if (total_errors > max_errors) { 2173 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2174 total_errors); 2175 BUG(); 2176 } 2177 return 0; 2178 } 2179 2180 int write_ctree_super(struct btrfs_trans_handle *trans, 2181 struct btrfs_root *root, int max_mirrors) 2182 { 2183 int ret; 2184 2185 ret = write_all_supers(root, max_mirrors); 2186 return ret; 2187 } 2188 2189 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2190 { 2191 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); 2192 radix_tree_delete(&fs_info->fs_roots_radix, 2193 (unsigned long)root->root_key.objectid); 2194 if (root->anon_super.s_dev) { 2195 down_write(&root->anon_super.s_umount); 2196 kill_anon_super(&root->anon_super); 2197 } 2198 if (root->node) 2199 free_extent_buffer(root->node); 2200 if (root->commit_root) 2201 free_extent_buffer(root->commit_root); 2202 kfree(root->name); 2203 kfree(root); 2204 return 0; 2205 } 2206 2207 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2208 { 2209 int ret; 2210 struct btrfs_root *gang[8]; 2211 int i; 2212 2213 while (1) { 2214 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2215 (void **)gang, 0, 2216 ARRAY_SIZE(gang)); 2217 if (!ret) 2218 break; 2219 for (i = 0; i < ret; i++) 2220 btrfs_free_fs_root(fs_info, gang[i]); 2221 } 2222 return 0; 2223 } 2224 2225 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2226 { 2227 u64 root_objectid = 0; 2228 struct btrfs_root *gang[8]; 2229 int i; 2230 int ret; 2231 2232 while (1) { 2233 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2234 (void **)gang, root_objectid, 2235 ARRAY_SIZE(gang)); 2236 if (!ret) 2237 break; 2238 2239 root_objectid = gang[ret - 1]->root_key.objectid + 1; 2240 for (i = 0; i < ret; i++) { 2241 root_objectid = gang[i]->root_key.objectid; 2242 ret = btrfs_find_dead_roots(fs_info->tree_root, 2243 root_objectid); 2244 BUG_ON(ret); 2245 btrfs_orphan_cleanup(gang[i]); 2246 } 2247 root_objectid++; 2248 } 2249 return 0; 2250 } 2251 2252 int btrfs_commit_super(struct btrfs_root *root) 2253 { 2254 struct btrfs_trans_handle *trans; 2255 int ret; 2256 2257 mutex_lock(&root->fs_info->cleaner_mutex); 2258 btrfs_clean_old_snapshots(root); 2259 mutex_unlock(&root->fs_info->cleaner_mutex); 2260 trans = btrfs_start_transaction(root, 1); 2261 ret = btrfs_commit_transaction(trans, root); 2262 BUG_ON(ret); 2263 /* run commit again to drop the original snapshot */ 2264 trans = btrfs_start_transaction(root, 1); 2265 btrfs_commit_transaction(trans, root); 2266 ret = btrfs_write_and_wait_transaction(NULL, root); 2267 BUG_ON(ret); 2268 2269 ret = write_ctree_super(NULL, root, 0); 2270 return ret; 2271 } 2272 2273 int close_ctree(struct btrfs_root *root) 2274 { 2275 struct btrfs_fs_info *fs_info = root->fs_info; 2276 int ret; 2277 2278 fs_info->closing = 1; 2279 smp_mb(); 2280 2281 kthread_stop(root->fs_info->transaction_kthread); 2282 kthread_stop(root->fs_info->cleaner_kthread); 2283 2284 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2285 ret = btrfs_commit_super(root); 2286 if (ret) 2287 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2288 } 2289 2290 if (fs_info->delalloc_bytes) { 2291 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2292 (unsigned long long)fs_info->delalloc_bytes); 2293 } 2294 if (fs_info->total_ref_cache_size) { 2295 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2296 (unsigned long long)fs_info->total_ref_cache_size); 2297 } 2298 2299 free_extent_buffer(fs_info->extent_root->node); 2300 free_extent_buffer(fs_info->extent_root->commit_root); 2301 free_extent_buffer(fs_info->tree_root->node); 2302 free_extent_buffer(fs_info->tree_root->commit_root); 2303 free_extent_buffer(root->fs_info->chunk_root->node); 2304 free_extent_buffer(root->fs_info->chunk_root->commit_root); 2305 free_extent_buffer(root->fs_info->dev_root->node); 2306 free_extent_buffer(root->fs_info->dev_root->commit_root); 2307 free_extent_buffer(root->fs_info->csum_root->node); 2308 free_extent_buffer(root->fs_info->csum_root->commit_root); 2309 2310 btrfs_free_block_groups(root->fs_info); 2311 2312 del_fs_roots(fs_info); 2313 2314 iput(fs_info->btree_inode); 2315 2316 btrfs_stop_workers(&fs_info->fixup_workers); 2317 btrfs_stop_workers(&fs_info->delalloc_workers); 2318 btrfs_stop_workers(&fs_info->workers); 2319 btrfs_stop_workers(&fs_info->endio_workers); 2320 btrfs_stop_workers(&fs_info->endio_meta_workers); 2321 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2322 btrfs_stop_workers(&fs_info->endio_write_workers); 2323 btrfs_stop_workers(&fs_info->submit_workers); 2324 2325 btrfs_close_devices(fs_info->fs_devices); 2326 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2327 2328 bdi_destroy(&fs_info->bdi); 2329 2330 kfree(fs_info->extent_root); 2331 kfree(fs_info->tree_root); 2332 kfree(fs_info->chunk_root); 2333 kfree(fs_info->dev_root); 2334 kfree(fs_info->csum_root); 2335 return 0; 2336 } 2337 2338 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2339 { 2340 int ret; 2341 struct inode *btree_inode = buf->first_page->mapping->host; 2342 2343 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2344 if (!ret) 2345 return ret; 2346 2347 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2348 parent_transid); 2349 return !ret; 2350 } 2351 2352 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2353 { 2354 struct inode *btree_inode = buf->first_page->mapping->host; 2355 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2356 buf); 2357 } 2358 2359 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2360 { 2361 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2362 u64 transid = btrfs_header_generation(buf); 2363 struct inode *btree_inode = root->fs_info->btree_inode; 2364 int was_dirty; 2365 2366 btrfs_assert_tree_locked(buf); 2367 if (transid != root->fs_info->generation) { 2368 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2369 "found %llu running %llu\n", 2370 (unsigned long long)buf->start, 2371 (unsigned long long)transid, 2372 (unsigned long long)root->fs_info->generation); 2373 WARN_ON(1); 2374 } 2375 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2376 buf); 2377 if (!was_dirty) { 2378 spin_lock(&root->fs_info->delalloc_lock); 2379 root->fs_info->dirty_metadata_bytes += buf->len; 2380 spin_unlock(&root->fs_info->delalloc_lock); 2381 } 2382 } 2383 2384 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2385 { 2386 /* 2387 * looks as though older kernels can get into trouble with 2388 * this code, they end up stuck in balance_dirty_pages forever 2389 */ 2390 u64 num_dirty; 2391 unsigned long thresh = 32 * 1024 * 1024; 2392 2393 if (current->flags & PF_MEMALLOC) 2394 return; 2395 2396 num_dirty = root->fs_info->dirty_metadata_bytes; 2397 2398 if (num_dirty > thresh) { 2399 balance_dirty_pages_ratelimited_nr( 2400 root->fs_info->btree_inode->i_mapping, 1); 2401 } 2402 return; 2403 } 2404 2405 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2406 { 2407 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2408 int ret; 2409 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2410 if (ret == 0) 2411 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2412 return ret; 2413 } 2414 2415 int btree_lock_page_hook(struct page *page) 2416 { 2417 struct inode *inode = page->mapping->host; 2418 struct btrfs_root *root = BTRFS_I(inode)->root; 2419 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2420 struct extent_buffer *eb; 2421 unsigned long len; 2422 u64 bytenr = page_offset(page); 2423 2424 if (page->private == EXTENT_PAGE_PRIVATE) 2425 goto out; 2426 2427 len = page->private >> 2; 2428 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2429 if (!eb) 2430 goto out; 2431 2432 btrfs_tree_lock(eb); 2433 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2434 2435 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2436 spin_lock(&root->fs_info->delalloc_lock); 2437 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2438 root->fs_info->dirty_metadata_bytes -= eb->len; 2439 else 2440 WARN_ON(1); 2441 spin_unlock(&root->fs_info->delalloc_lock); 2442 } 2443 2444 btrfs_tree_unlock(eb); 2445 free_extent_buffer(eb); 2446 out: 2447 lock_page(page); 2448 return 0; 2449 } 2450 2451 static struct extent_io_ops btree_extent_io_ops = { 2452 .write_cache_pages_lock_hook = btree_lock_page_hook, 2453 .readpage_end_io_hook = btree_readpage_end_io_hook, 2454 .submit_bio_hook = btree_submit_bio_hook, 2455 /* note we're sharing with inode.c for the merge bio hook */ 2456 .merge_bio_hook = btrfs_merge_bio_hook, 2457 }; 2458