1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include "compat.h" 30 #include "crc32c.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "ref-cache.h" 40 #include "tree-log.h" 41 #include "free-space-cache.h" 42 43 static struct extent_io_ops btree_extent_io_ops; 44 static void end_workqueue_fn(struct btrfs_work *work); 45 46 /* 47 * end_io_wq structs are used to do processing in task context when an IO is 48 * complete. This is used during reads to verify checksums, and it is used 49 * by writes to insert metadata for new file extents after IO is complete. 50 */ 51 struct end_io_wq { 52 struct bio *bio; 53 bio_end_io_t *end_io; 54 void *private; 55 struct btrfs_fs_info *info; 56 int error; 57 int metadata; 58 struct list_head list; 59 struct btrfs_work work; 60 }; 61 62 /* 63 * async submit bios are used to offload expensive checksumming 64 * onto the worker threads. They checksum file and metadata bios 65 * just before they are sent down the IO stack. 66 */ 67 struct async_submit_bio { 68 struct inode *inode; 69 struct bio *bio; 70 struct list_head list; 71 extent_submit_bio_hook_t *submit_bio_start; 72 extent_submit_bio_hook_t *submit_bio_done; 73 int rw; 74 int mirror_num; 75 unsigned long bio_flags; 76 struct btrfs_work work; 77 }; 78 79 /* These are used to set the lockdep class on the extent buffer locks. 80 * The class is set by the readpage_end_io_hook after the buffer has 81 * passed csum validation but before the pages are unlocked. 82 * 83 * The lockdep class is also set by btrfs_init_new_buffer on freshly 84 * allocated blocks. 85 * 86 * The class is based on the level in the tree block, which allows lockdep 87 * to know that lower nodes nest inside the locks of higher nodes. 88 * 89 * We also add a check to make sure the highest level of the tree is 90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 91 * code needs update as well. 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 # if BTRFS_MAX_LEVEL != 8 95 # error 96 # endif 97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 99 /* leaf */ 100 "btrfs-extent-00", 101 "btrfs-extent-01", 102 "btrfs-extent-02", 103 "btrfs-extent-03", 104 "btrfs-extent-04", 105 "btrfs-extent-05", 106 "btrfs-extent-06", 107 "btrfs-extent-07", 108 /* highest possible level */ 109 "btrfs-extent-08", 110 }; 111 #endif 112 113 /* 114 * extents on the btree inode are pretty simple, there's one extent 115 * that covers the entire device 116 */ 117 static struct extent_map *btree_get_extent(struct inode *inode, 118 struct page *page, size_t page_offset, u64 start, u64 len, 119 int create) 120 { 121 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 122 struct extent_map *em; 123 int ret; 124 125 spin_lock(&em_tree->lock); 126 em = lookup_extent_mapping(em_tree, start, len); 127 if (em) { 128 em->bdev = 129 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 130 spin_unlock(&em_tree->lock); 131 goto out; 132 } 133 spin_unlock(&em_tree->lock); 134 135 em = alloc_extent_map(GFP_NOFS); 136 if (!em) { 137 em = ERR_PTR(-ENOMEM); 138 goto out; 139 } 140 em->start = 0; 141 em->len = (u64)-1; 142 em->block_len = (u64)-1; 143 em->block_start = 0; 144 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 145 146 spin_lock(&em_tree->lock); 147 ret = add_extent_mapping(em_tree, em); 148 if (ret == -EEXIST) { 149 u64 failed_start = em->start; 150 u64 failed_len = em->len; 151 152 free_extent_map(em); 153 em = lookup_extent_mapping(em_tree, start, len); 154 if (em) { 155 ret = 0; 156 } else { 157 em = lookup_extent_mapping(em_tree, failed_start, 158 failed_len); 159 ret = -EIO; 160 } 161 } else if (ret) { 162 free_extent_map(em); 163 em = NULL; 164 } 165 spin_unlock(&em_tree->lock); 166 167 if (ret) 168 em = ERR_PTR(ret); 169 out: 170 return em; 171 } 172 173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 174 { 175 return btrfs_crc32c(seed, data, len); 176 } 177 178 void btrfs_csum_final(u32 crc, char *result) 179 { 180 *(__le32 *)result = ~cpu_to_le32(crc); 181 } 182 183 /* 184 * compute the csum for a btree block, and either verify it or write it 185 * into the csum field of the block. 186 */ 187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 188 int verify) 189 { 190 u16 csum_size = 191 btrfs_super_csum_size(&root->fs_info->super_copy); 192 char *result = NULL; 193 unsigned long len; 194 unsigned long cur_len; 195 unsigned long offset = BTRFS_CSUM_SIZE; 196 char *map_token = NULL; 197 char *kaddr; 198 unsigned long map_start; 199 unsigned long map_len; 200 int err; 201 u32 crc = ~(u32)0; 202 unsigned long inline_result; 203 204 len = buf->len - offset; 205 while (len > 0) { 206 err = map_private_extent_buffer(buf, offset, 32, 207 &map_token, &kaddr, 208 &map_start, &map_len, KM_USER0); 209 if (err) 210 return 1; 211 cur_len = min(len, map_len - (offset - map_start)); 212 crc = btrfs_csum_data(root, kaddr + offset - map_start, 213 crc, cur_len); 214 len -= cur_len; 215 offset += cur_len; 216 unmap_extent_buffer(buf, map_token, KM_USER0); 217 } 218 if (csum_size > sizeof(inline_result)) { 219 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 220 if (!result) 221 return 1; 222 } else { 223 result = (char *)&inline_result; 224 } 225 226 btrfs_csum_final(crc, result); 227 228 if (verify) { 229 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 230 u32 val; 231 u32 found = 0; 232 memcpy(&found, result, csum_size); 233 234 read_extent_buffer(buf, &val, 0, csum_size); 235 if (printk_ratelimit()) { 236 printk(KERN_INFO "btrfs: %s checksum verify " 237 "failed on %llu wanted %X found %X " 238 "level %d\n", 239 root->fs_info->sb->s_id, 240 (unsigned long long)buf->start, val, found, 241 btrfs_header_level(buf)); 242 } 243 if (result != (char *)&inline_result) 244 kfree(result); 245 return 1; 246 } 247 } else { 248 write_extent_buffer(buf, result, 0, csum_size); 249 } 250 if (result != (char *)&inline_result) 251 kfree(result); 252 return 0; 253 } 254 255 /* 256 * we can't consider a given block up to date unless the transid of the 257 * block matches the transid in the parent node's pointer. This is how we 258 * detect blocks that either didn't get written at all or got written 259 * in the wrong place. 260 */ 261 static int verify_parent_transid(struct extent_io_tree *io_tree, 262 struct extent_buffer *eb, u64 parent_transid) 263 { 264 int ret; 265 266 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 267 return 0; 268 269 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 270 if (extent_buffer_uptodate(io_tree, eb) && 271 btrfs_header_generation(eb) == parent_transid) { 272 ret = 0; 273 goto out; 274 } 275 if (printk_ratelimit()) { 276 printk("parent transid verify failed on %llu wanted %llu " 277 "found %llu\n", 278 (unsigned long long)eb->start, 279 (unsigned long long)parent_transid, 280 (unsigned long long)btrfs_header_generation(eb)); 281 } 282 ret = 1; 283 clear_extent_buffer_uptodate(io_tree, eb); 284 out: 285 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 286 GFP_NOFS); 287 return ret; 288 } 289 290 /* 291 * helper to read a given tree block, doing retries as required when 292 * the checksums don't match and we have alternate mirrors to try. 293 */ 294 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 295 struct extent_buffer *eb, 296 u64 start, u64 parent_transid) 297 { 298 struct extent_io_tree *io_tree; 299 int ret; 300 int num_copies = 0; 301 int mirror_num = 0; 302 303 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 304 while (1) { 305 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 306 btree_get_extent, mirror_num); 307 if (!ret && 308 !verify_parent_transid(io_tree, eb, parent_transid)) 309 return ret; 310 311 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 312 eb->start, eb->len); 313 if (num_copies == 1) 314 return ret; 315 316 mirror_num++; 317 if (mirror_num > num_copies) 318 return ret; 319 } 320 return -EIO; 321 } 322 323 /* 324 * checksum a dirty tree block before IO. This has extra checks to make sure 325 * we only fill in the checksum field in the first page of a multi-page block 326 */ 327 328 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 329 { 330 struct extent_io_tree *tree; 331 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 332 u64 found_start; 333 int found_level; 334 unsigned long len; 335 struct extent_buffer *eb; 336 int ret; 337 338 tree = &BTRFS_I(page->mapping->host)->io_tree; 339 340 if (page->private == EXTENT_PAGE_PRIVATE) 341 goto out; 342 if (!page->private) 343 goto out; 344 len = page->private >> 2; 345 WARN_ON(len == 0); 346 347 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 348 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 349 btrfs_header_generation(eb)); 350 BUG_ON(ret); 351 found_start = btrfs_header_bytenr(eb); 352 if (found_start != start) { 353 WARN_ON(1); 354 goto err; 355 } 356 if (eb->first_page != page) { 357 WARN_ON(1); 358 goto err; 359 } 360 if (!PageUptodate(page)) { 361 WARN_ON(1); 362 goto err; 363 } 364 found_level = btrfs_header_level(eb); 365 366 csum_tree_block(root, eb, 0); 367 err: 368 free_extent_buffer(eb); 369 out: 370 return 0; 371 } 372 373 static int check_tree_block_fsid(struct btrfs_root *root, 374 struct extent_buffer *eb) 375 { 376 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 377 u8 fsid[BTRFS_UUID_SIZE]; 378 int ret = 1; 379 380 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 381 BTRFS_FSID_SIZE); 382 while (fs_devices) { 383 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 384 ret = 0; 385 break; 386 } 387 fs_devices = fs_devices->seed; 388 } 389 return ret; 390 } 391 392 #ifdef CONFIG_DEBUG_LOCK_ALLOC 393 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 394 { 395 lockdep_set_class_and_name(&eb->lock, 396 &btrfs_eb_class[level], 397 btrfs_eb_name[level]); 398 } 399 #endif 400 401 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 402 struct extent_state *state) 403 { 404 struct extent_io_tree *tree; 405 u64 found_start; 406 int found_level; 407 unsigned long len; 408 struct extent_buffer *eb; 409 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 410 int ret = 0; 411 412 tree = &BTRFS_I(page->mapping->host)->io_tree; 413 if (page->private == EXTENT_PAGE_PRIVATE) 414 goto out; 415 if (!page->private) 416 goto out; 417 418 len = page->private >> 2; 419 WARN_ON(len == 0); 420 421 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 422 423 found_start = btrfs_header_bytenr(eb); 424 if (found_start != start) { 425 if (printk_ratelimit()) { 426 printk(KERN_INFO "btrfs bad tree block start " 427 "%llu %llu\n", 428 (unsigned long long)found_start, 429 (unsigned long long)eb->start); 430 } 431 ret = -EIO; 432 goto err; 433 } 434 if (eb->first_page != page) { 435 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 436 eb->first_page->index, page->index); 437 WARN_ON(1); 438 ret = -EIO; 439 goto err; 440 } 441 if (check_tree_block_fsid(root, eb)) { 442 if (printk_ratelimit()) { 443 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 444 (unsigned long long)eb->start); 445 } 446 ret = -EIO; 447 goto err; 448 } 449 found_level = btrfs_header_level(eb); 450 451 btrfs_set_buffer_lockdep_class(eb, found_level); 452 453 ret = csum_tree_block(root, eb, 1); 454 if (ret) 455 ret = -EIO; 456 457 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 458 end = eb->start + end - 1; 459 err: 460 free_extent_buffer(eb); 461 out: 462 return ret; 463 } 464 465 static void end_workqueue_bio(struct bio *bio, int err) 466 { 467 struct end_io_wq *end_io_wq = bio->bi_private; 468 struct btrfs_fs_info *fs_info; 469 470 fs_info = end_io_wq->info; 471 end_io_wq->error = err; 472 end_io_wq->work.func = end_workqueue_fn; 473 end_io_wq->work.flags = 0; 474 475 if (bio->bi_rw & (1 << BIO_RW)) { 476 if (end_io_wq->metadata) 477 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 478 &end_io_wq->work); 479 else 480 btrfs_queue_worker(&fs_info->endio_write_workers, 481 &end_io_wq->work); 482 } else { 483 if (end_io_wq->metadata) 484 btrfs_queue_worker(&fs_info->endio_meta_workers, 485 &end_io_wq->work); 486 else 487 btrfs_queue_worker(&fs_info->endio_workers, 488 &end_io_wq->work); 489 } 490 } 491 492 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 493 int metadata) 494 { 495 struct end_io_wq *end_io_wq; 496 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 497 if (!end_io_wq) 498 return -ENOMEM; 499 500 end_io_wq->private = bio->bi_private; 501 end_io_wq->end_io = bio->bi_end_io; 502 end_io_wq->info = info; 503 end_io_wq->error = 0; 504 end_io_wq->bio = bio; 505 end_io_wq->metadata = metadata; 506 507 bio->bi_private = end_io_wq; 508 bio->bi_end_io = end_workqueue_bio; 509 return 0; 510 } 511 512 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 513 { 514 unsigned long limit = min_t(unsigned long, 515 info->workers.max_workers, 516 info->fs_devices->open_devices); 517 return 256 * limit; 518 } 519 520 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 521 { 522 return atomic_read(&info->nr_async_bios) > 523 btrfs_async_submit_limit(info); 524 } 525 526 static void run_one_async_start(struct btrfs_work *work) 527 { 528 struct btrfs_fs_info *fs_info; 529 struct async_submit_bio *async; 530 531 async = container_of(work, struct async_submit_bio, work); 532 fs_info = BTRFS_I(async->inode)->root->fs_info; 533 async->submit_bio_start(async->inode, async->rw, async->bio, 534 async->mirror_num, async->bio_flags); 535 } 536 537 static void run_one_async_done(struct btrfs_work *work) 538 { 539 struct btrfs_fs_info *fs_info; 540 struct async_submit_bio *async; 541 int limit; 542 543 async = container_of(work, struct async_submit_bio, work); 544 fs_info = BTRFS_I(async->inode)->root->fs_info; 545 546 limit = btrfs_async_submit_limit(fs_info); 547 limit = limit * 2 / 3; 548 549 atomic_dec(&fs_info->nr_async_submits); 550 551 if (atomic_read(&fs_info->nr_async_submits) < limit && 552 waitqueue_active(&fs_info->async_submit_wait)) 553 wake_up(&fs_info->async_submit_wait); 554 555 async->submit_bio_done(async->inode, async->rw, async->bio, 556 async->mirror_num, async->bio_flags); 557 } 558 559 static void run_one_async_free(struct btrfs_work *work) 560 { 561 struct async_submit_bio *async; 562 563 async = container_of(work, struct async_submit_bio, work); 564 kfree(async); 565 } 566 567 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 568 int rw, struct bio *bio, int mirror_num, 569 unsigned long bio_flags, 570 extent_submit_bio_hook_t *submit_bio_start, 571 extent_submit_bio_hook_t *submit_bio_done) 572 { 573 struct async_submit_bio *async; 574 575 async = kmalloc(sizeof(*async), GFP_NOFS); 576 if (!async) 577 return -ENOMEM; 578 579 async->inode = inode; 580 async->rw = rw; 581 async->bio = bio; 582 async->mirror_num = mirror_num; 583 async->submit_bio_start = submit_bio_start; 584 async->submit_bio_done = submit_bio_done; 585 586 async->work.func = run_one_async_start; 587 async->work.ordered_func = run_one_async_done; 588 async->work.ordered_free = run_one_async_free; 589 590 async->work.flags = 0; 591 async->bio_flags = bio_flags; 592 593 atomic_inc(&fs_info->nr_async_submits); 594 595 if (rw & (1 << BIO_RW_SYNCIO)) 596 btrfs_set_work_high_prio(&async->work); 597 598 btrfs_queue_worker(&fs_info->workers, &async->work); 599 600 while (atomic_read(&fs_info->async_submit_draining) && 601 atomic_read(&fs_info->nr_async_submits)) { 602 wait_event(fs_info->async_submit_wait, 603 (atomic_read(&fs_info->nr_async_submits) == 0)); 604 } 605 606 return 0; 607 } 608 609 static int btree_csum_one_bio(struct bio *bio) 610 { 611 struct bio_vec *bvec = bio->bi_io_vec; 612 int bio_index = 0; 613 struct btrfs_root *root; 614 615 WARN_ON(bio->bi_vcnt <= 0); 616 while (bio_index < bio->bi_vcnt) { 617 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 618 csum_dirty_buffer(root, bvec->bv_page); 619 bio_index++; 620 bvec++; 621 } 622 return 0; 623 } 624 625 static int __btree_submit_bio_start(struct inode *inode, int rw, 626 struct bio *bio, int mirror_num, 627 unsigned long bio_flags) 628 { 629 /* 630 * when we're called for a write, we're already in the async 631 * submission context. Just jump into btrfs_map_bio 632 */ 633 btree_csum_one_bio(bio); 634 return 0; 635 } 636 637 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 638 int mirror_num, unsigned long bio_flags) 639 { 640 /* 641 * when we're called for a write, we're already in the async 642 * submission context. Just jump into btrfs_map_bio 643 */ 644 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 645 } 646 647 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 648 int mirror_num, unsigned long bio_flags) 649 { 650 int ret; 651 652 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 653 bio, 1); 654 BUG_ON(ret); 655 656 if (!(rw & (1 << BIO_RW))) { 657 /* 658 * called for a read, do the setup so that checksum validation 659 * can happen in the async kernel threads 660 */ 661 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 662 mirror_num, 0); 663 } 664 665 /* 666 * kthread helpers are used to submit writes so that checksumming 667 * can happen in parallel across all CPUs 668 */ 669 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 670 inode, rw, bio, mirror_num, 0, 671 __btree_submit_bio_start, 672 __btree_submit_bio_done); 673 } 674 675 static int btree_writepage(struct page *page, struct writeback_control *wbc) 676 { 677 struct extent_io_tree *tree; 678 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 679 struct extent_buffer *eb; 680 int was_dirty; 681 682 tree = &BTRFS_I(page->mapping->host)->io_tree; 683 if (!(current->flags & PF_MEMALLOC)) { 684 return extent_write_full_page(tree, page, 685 btree_get_extent, wbc); 686 } 687 688 redirty_page_for_writepage(wbc, page); 689 eb = btrfs_find_tree_block(root, page_offset(page), 690 PAGE_CACHE_SIZE); 691 WARN_ON(!eb); 692 693 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 694 if (!was_dirty) { 695 spin_lock(&root->fs_info->delalloc_lock); 696 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 697 spin_unlock(&root->fs_info->delalloc_lock); 698 } 699 free_extent_buffer(eb); 700 701 unlock_page(page); 702 return 0; 703 } 704 705 static int btree_writepages(struct address_space *mapping, 706 struct writeback_control *wbc) 707 { 708 struct extent_io_tree *tree; 709 tree = &BTRFS_I(mapping->host)->io_tree; 710 if (wbc->sync_mode == WB_SYNC_NONE) { 711 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 712 u64 num_dirty; 713 unsigned long thresh = 32 * 1024 * 1024; 714 715 if (wbc->for_kupdate) 716 return 0; 717 718 /* this is a bit racy, but that's ok */ 719 num_dirty = root->fs_info->dirty_metadata_bytes; 720 if (num_dirty < thresh) 721 return 0; 722 } 723 return extent_writepages(tree, mapping, btree_get_extent, wbc); 724 } 725 726 static int btree_readpage(struct file *file, struct page *page) 727 { 728 struct extent_io_tree *tree; 729 tree = &BTRFS_I(page->mapping->host)->io_tree; 730 return extent_read_full_page(tree, page, btree_get_extent); 731 } 732 733 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 734 { 735 struct extent_io_tree *tree; 736 struct extent_map_tree *map; 737 int ret; 738 739 if (PageWriteback(page) || PageDirty(page)) 740 return 0; 741 742 tree = &BTRFS_I(page->mapping->host)->io_tree; 743 map = &BTRFS_I(page->mapping->host)->extent_tree; 744 745 ret = try_release_extent_state(map, tree, page, gfp_flags); 746 if (!ret) 747 return 0; 748 749 ret = try_release_extent_buffer(tree, page); 750 if (ret == 1) { 751 ClearPagePrivate(page); 752 set_page_private(page, 0); 753 page_cache_release(page); 754 } 755 756 return ret; 757 } 758 759 static void btree_invalidatepage(struct page *page, unsigned long offset) 760 { 761 struct extent_io_tree *tree; 762 tree = &BTRFS_I(page->mapping->host)->io_tree; 763 extent_invalidatepage(tree, page, offset); 764 btree_releasepage(page, GFP_NOFS); 765 if (PagePrivate(page)) { 766 printk(KERN_WARNING "btrfs warning page private not zero " 767 "on page %llu\n", (unsigned long long)page_offset(page)); 768 ClearPagePrivate(page); 769 set_page_private(page, 0); 770 page_cache_release(page); 771 } 772 } 773 774 static struct address_space_operations btree_aops = { 775 .readpage = btree_readpage, 776 .writepage = btree_writepage, 777 .writepages = btree_writepages, 778 .releasepage = btree_releasepage, 779 .invalidatepage = btree_invalidatepage, 780 .sync_page = block_sync_page, 781 }; 782 783 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 784 u64 parent_transid) 785 { 786 struct extent_buffer *buf = NULL; 787 struct inode *btree_inode = root->fs_info->btree_inode; 788 int ret = 0; 789 790 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 791 if (!buf) 792 return 0; 793 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 794 buf, 0, 0, btree_get_extent, 0); 795 free_extent_buffer(buf); 796 return ret; 797 } 798 799 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 800 u64 bytenr, u32 blocksize) 801 { 802 struct inode *btree_inode = root->fs_info->btree_inode; 803 struct extent_buffer *eb; 804 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 805 bytenr, blocksize, GFP_NOFS); 806 return eb; 807 } 808 809 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 810 u64 bytenr, u32 blocksize) 811 { 812 struct inode *btree_inode = root->fs_info->btree_inode; 813 struct extent_buffer *eb; 814 815 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 816 bytenr, blocksize, NULL, GFP_NOFS); 817 return eb; 818 } 819 820 821 int btrfs_write_tree_block(struct extent_buffer *buf) 822 { 823 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 824 buf->start + buf->len - 1, WB_SYNC_ALL); 825 } 826 827 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 828 { 829 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 830 buf->start, buf->start + buf->len - 1); 831 } 832 833 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 834 u32 blocksize, u64 parent_transid) 835 { 836 struct extent_buffer *buf = NULL; 837 struct inode *btree_inode = root->fs_info->btree_inode; 838 struct extent_io_tree *io_tree; 839 int ret; 840 841 io_tree = &BTRFS_I(btree_inode)->io_tree; 842 843 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 844 if (!buf) 845 return NULL; 846 847 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 848 849 if (ret == 0) 850 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 851 else 852 WARN_ON(1); 853 return buf; 854 855 } 856 857 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 858 struct extent_buffer *buf) 859 { 860 struct inode *btree_inode = root->fs_info->btree_inode; 861 if (btrfs_header_generation(buf) == 862 root->fs_info->running_transaction->transid) { 863 btrfs_assert_tree_locked(buf); 864 865 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 866 spin_lock(&root->fs_info->delalloc_lock); 867 if (root->fs_info->dirty_metadata_bytes >= buf->len) 868 root->fs_info->dirty_metadata_bytes -= buf->len; 869 else 870 WARN_ON(1); 871 spin_unlock(&root->fs_info->delalloc_lock); 872 } 873 874 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 875 btrfs_set_lock_blocking(buf); 876 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 877 buf); 878 } 879 return 0; 880 } 881 882 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 883 u32 stripesize, struct btrfs_root *root, 884 struct btrfs_fs_info *fs_info, 885 u64 objectid) 886 { 887 root->node = NULL; 888 root->commit_root = NULL; 889 root->ref_tree = NULL; 890 root->sectorsize = sectorsize; 891 root->nodesize = nodesize; 892 root->leafsize = leafsize; 893 root->stripesize = stripesize; 894 root->ref_cows = 0; 895 root->track_dirty = 0; 896 897 root->fs_info = fs_info; 898 root->objectid = objectid; 899 root->last_trans = 0; 900 root->highest_inode = 0; 901 root->last_inode_alloc = 0; 902 root->name = NULL; 903 root->in_sysfs = 0; 904 905 INIT_LIST_HEAD(&root->dirty_list); 906 INIT_LIST_HEAD(&root->orphan_list); 907 INIT_LIST_HEAD(&root->dead_list); 908 spin_lock_init(&root->node_lock); 909 spin_lock_init(&root->list_lock); 910 mutex_init(&root->objectid_mutex); 911 mutex_init(&root->log_mutex); 912 init_waitqueue_head(&root->log_writer_wait); 913 init_waitqueue_head(&root->log_commit_wait[0]); 914 init_waitqueue_head(&root->log_commit_wait[1]); 915 atomic_set(&root->log_commit[0], 0); 916 atomic_set(&root->log_commit[1], 0); 917 atomic_set(&root->log_writers, 0); 918 root->log_batch = 0; 919 root->log_transid = 0; 920 extent_io_tree_init(&root->dirty_log_pages, 921 fs_info->btree_inode->i_mapping, GFP_NOFS); 922 923 btrfs_leaf_ref_tree_init(&root->ref_tree_struct); 924 root->ref_tree = &root->ref_tree_struct; 925 926 memset(&root->root_key, 0, sizeof(root->root_key)); 927 memset(&root->root_item, 0, sizeof(root->root_item)); 928 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 929 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 930 root->defrag_trans_start = fs_info->generation; 931 init_completion(&root->kobj_unregister); 932 root->defrag_running = 0; 933 root->defrag_level = 0; 934 root->root_key.objectid = objectid; 935 root->anon_super.s_root = NULL; 936 root->anon_super.s_dev = 0; 937 INIT_LIST_HEAD(&root->anon_super.s_list); 938 INIT_LIST_HEAD(&root->anon_super.s_instances); 939 init_rwsem(&root->anon_super.s_umount); 940 941 return 0; 942 } 943 944 static int find_and_setup_root(struct btrfs_root *tree_root, 945 struct btrfs_fs_info *fs_info, 946 u64 objectid, 947 struct btrfs_root *root) 948 { 949 int ret; 950 u32 blocksize; 951 u64 generation; 952 953 __setup_root(tree_root->nodesize, tree_root->leafsize, 954 tree_root->sectorsize, tree_root->stripesize, 955 root, fs_info, objectid); 956 ret = btrfs_find_last_root(tree_root, objectid, 957 &root->root_item, &root->root_key); 958 BUG_ON(ret); 959 960 generation = btrfs_root_generation(&root->root_item); 961 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 962 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 963 blocksize, generation); 964 BUG_ON(!root->node); 965 return 0; 966 } 967 968 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 969 struct btrfs_fs_info *fs_info) 970 { 971 struct extent_buffer *eb; 972 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 973 u64 start = 0; 974 u64 end = 0; 975 int ret; 976 977 if (!log_root_tree) 978 return 0; 979 980 while (1) { 981 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 982 0, &start, &end, EXTENT_DIRTY); 983 if (ret) 984 break; 985 986 clear_extent_dirty(&log_root_tree->dirty_log_pages, 987 start, end, GFP_NOFS); 988 } 989 eb = fs_info->log_root_tree->node; 990 991 WARN_ON(btrfs_header_level(eb) != 0); 992 WARN_ON(btrfs_header_nritems(eb) != 0); 993 994 ret = btrfs_free_reserved_extent(fs_info->tree_root, 995 eb->start, eb->len); 996 BUG_ON(ret); 997 998 free_extent_buffer(eb); 999 kfree(fs_info->log_root_tree); 1000 fs_info->log_root_tree = NULL; 1001 return 0; 1002 } 1003 1004 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 1005 struct btrfs_fs_info *fs_info) 1006 { 1007 struct btrfs_root *root; 1008 struct btrfs_root *tree_root = fs_info->tree_root; 1009 struct extent_buffer *leaf; 1010 1011 root = kzalloc(sizeof(*root), GFP_NOFS); 1012 if (!root) 1013 return ERR_PTR(-ENOMEM); 1014 1015 __setup_root(tree_root->nodesize, tree_root->leafsize, 1016 tree_root->sectorsize, tree_root->stripesize, 1017 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1018 1019 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1020 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1021 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1022 /* 1023 * log trees do not get reference counted because they go away 1024 * before a real commit is actually done. They do store pointers 1025 * to file data extents, and those reference counts still get 1026 * updated (along with back refs to the log tree). 1027 */ 1028 root->ref_cows = 0; 1029 1030 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1031 0, BTRFS_TREE_LOG_OBJECTID, 1032 trans->transid, 0, 0, 0); 1033 if (IS_ERR(leaf)) { 1034 kfree(root); 1035 return ERR_CAST(leaf); 1036 } 1037 1038 root->node = leaf; 1039 btrfs_set_header_nritems(root->node, 0); 1040 btrfs_set_header_level(root->node, 0); 1041 btrfs_set_header_bytenr(root->node, root->node->start); 1042 btrfs_set_header_generation(root->node, trans->transid); 1043 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID); 1044 1045 write_extent_buffer(root->node, root->fs_info->fsid, 1046 (unsigned long)btrfs_header_fsid(root->node), 1047 BTRFS_FSID_SIZE); 1048 btrfs_mark_buffer_dirty(root->node); 1049 btrfs_tree_unlock(root->node); 1050 return root; 1051 } 1052 1053 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1054 struct btrfs_fs_info *fs_info) 1055 { 1056 struct btrfs_root *log_root; 1057 1058 log_root = alloc_log_tree(trans, fs_info); 1059 if (IS_ERR(log_root)) 1060 return PTR_ERR(log_root); 1061 WARN_ON(fs_info->log_root_tree); 1062 fs_info->log_root_tree = log_root; 1063 return 0; 1064 } 1065 1066 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1067 struct btrfs_root *root) 1068 { 1069 struct btrfs_root *log_root; 1070 struct btrfs_inode_item *inode_item; 1071 1072 log_root = alloc_log_tree(trans, root->fs_info); 1073 if (IS_ERR(log_root)) 1074 return PTR_ERR(log_root); 1075 1076 log_root->last_trans = trans->transid; 1077 log_root->root_key.offset = root->root_key.objectid; 1078 1079 inode_item = &log_root->root_item.inode; 1080 inode_item->generation = cpu_to_le64(1); 1081 inode_item->size = cpu_to_le64(3); 1082 inode_item->nlink = cpu_to_le32(1); 1083 inode_item->nbytes = cpu_to_le64(root->leafsize); 1084 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1085 1086 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start); 1087 btrfs_set_root_generation(&log_root->root_item, trans->transid); 1088 1089 WARN_ON(root->log_root); 1090 root->log_root = log_root; 1091 root->log_transid = 0; 1092 return 0; 1093 } 1094 1095 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1096 struct btrfs_key *location) 1097 { 1098 struct btrfs_root *root; 1099 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1100 struct btrfs_path *path; 1101 struct extent_buffer *l; 1102 u64 highest_inode; 1103 u64 generation; 1104 u32 blocksize; 1105 int ret = 0; 1106 1107 root = kzalloc(sizeof(*root), GFP_NOFS); 1108 if (!root) 1109 return ERR_PTR(-ENOMEM); 1110 if (location->offset == (u64)-1) { 1111 ret = find_and_setup_root(tree_root, fs_info, 1112 location->objectid, root); 1113 if (ret) { 1114 kfree(root); 1115 return ERR_PTR(ret); 1116 } 1117 goto insert; 1118 } 1119 1120 __setup_root(tree_root->nodesize, tree_root->leafsize, 1121 tree_root->sectorsize, tree_root->stripesize, 1122 root, fs_info, location->objectid); 1123 1124 path = btrfs_alloc_path(); 1125 BUG_ON(!path); 1126 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1127 if (ret != 0) { 1128 if (ret > 0) 1129 ret = -ENOENT; 1130 goto out; 1131 } 1132 l = path->nodes[0]; 1133 read_extent_buffer(l, &root->root_item, 1134 btrfs_item_ptr_offset(l, path->slots[0]), 1135 sizeof(root->root_item)); 1136 memcpy(&root->root_key, location, sizeof(*location)); 1137 ret = 0; 1138 out: 1139 btrfs_release_path(root, path); 1140 btrfs_free_path(path); 1141 if (ret) { 1142 kfree(root); 1143 return ERR_PTR(ret); 1144 } 1145 generation = btrfs_root_generation(&root->root_item); 1146 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1147 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1148 blocksize, generation); 1149 BUG_ON(!root->node); 1150 insert: 1151 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1152 root->ref_cows = 1; 1153 ret = btrfs_find_highest_inode(root, &highest_inode); 1154 if (ret == 0) { 1155 root->highest_inode = highest_inode; 1156 root->last_inode_alloc = highest_inode; 1157 } 1158 } 1159 return root; 1160 } 1161 1162 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1163 u64 root_objectid) 1164 { 1165 struct btrfs_root *root; 1166 1167 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1168 return fs_info->tree_root; 1169 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1170 return fs_info->extent_root; 1171 1172 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1173 (unsigned long)root_objectid); 1174 return root; 1175 } 1176 1177 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1178 struct btrfs_key *location) 1179 { 1180 struct btrfs_root *root; 1181 int ret; 1182 1183 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1184 return fs_info->tree_root; 1185 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1186 return fs_info->extent_root; 1187 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1188 return fs_info->chunk_root; 1189 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1190 return fs_info->dev_root; 1191 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1192 return fs_info->csum_root; 1193 1194 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1195 (unsigned long)location->objectid); 1196 if (root) 1197 return root; 1198 1199 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1200 if (IS_ERR(root)) 1201 return root; 1202 1203 set_anon_super(&root->anon_super, NULL); 1204 1205 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1206 (unsigned long)root->root_key.objectid, 1207 root); 1208 if (ret) { 1209 free_extent_buffer(root->node); 1210 kfree(root); 1211 return ERR_PTR(ret); 1212 } 1213 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1214 ret = btrfs_find_dead_roots(fs_info->tree_root, 1215 root->root_key.objectid, root); 1216 BUG_ON(ret); 1217 btrfs_orphan_cleanup(root); 1218 } 1219 return root; 1220 } 1221 1222 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1223 struct btrfs_key *location, 1224 const char *name, int namelen) 1225 { 1226 struct btrfs_root *root; 1227 int ret; 1228 1229 root = btrfs_read_fs_root_no_name(fs_info, location); 1230 if (!root) 1231 return NULL; 1232 1233 if (root->in_sysfs) 1234 return root; 1235 1236 ret = btrfs_set_root_name(root, name, namelen); 1237 if (ret) { 1238 free_extent_buffer(root->node); 1239 kfree(root); 1240 return ERR_PTR(ret); 1241 } 1242 #if 0 1243 ret = btrfs_sysfs_add_root(root); 1244 if (ret) { 1245 free_extent_buffer(root->node); 1246 kfree(root->name); 1247 kfree(root); 1248 return ERR_PTR(ret); 1249 } 1250 #endif 1251 root->in_sysfs = 1; 1252 return root; 1253 } 1254 1255 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1256 { 1257 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1258 int ret = 0; 1259 struct btrfs_device *device; 1260 struct backing_dev_info *bdi; 1261 1262 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1263 if (!device->bdev) 1264 continue; 1265 bdi = blk_get_backing_dev_info(device->bdev); 1266 if (bdi && bdi_congested(bdi, bdi_bits)) { 1267 ret = 1; 1268 break; 1269 } 1270 } 1271 return ret; 1272 } 1273 1274 /* 1275 * this unplugs every device on the box, and it is only used when page 1276 * is null 1277 */ 1278 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1279 { 1280 struct btrfs_device *device; 1281 struct btrfs_fs_info *info; 1282 1283 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1284 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1285 if (!device->bdev) 1286 continue; 1287 1288 bdi = blk_get_backing_dev_info(device->bdev); 1289 if (bdi->unplug_io_fn) 1290 bdi->unplug_io_fn(bdi, page); 1291 } 1292 } 1293 1294 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1295 { 1296 struct inode *inode; 1297 struct extent_map_tree *em_tree; 1298 struct extent_map *em; 1299 struct address_space *mapping; 1300 u64 offset; 1301 1302 /* the generic O_DIRECT read code does this */ 1303 if (1 || !page) { 1304 __unplug_io_fn(bdi, page); 1305 return; 1306 } 1307 1308 /* 1309 * page->mapping may change at any time. Get a consistent copy 1310 * and use that for everything below 1311 */ 1312 smp_mb(); 1313 mapping = page->mapping; 1314 if (!mapping) 1315 return; 1316 1317 inode = mapping->host; 1318 1319 /* 1320 * don't do the expensive searching for a small number of 1321 * devices 1322 */ 1323 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1324 __unplug_io_fn(bdi, page); 1325 return; 1326 } 1327 1328 offset = page_offset(page); 1329 1330 em_tree = &BTRFS_I(inode)->extent_tree; 1331 spin_lock(&em_tree->lock); 1332 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1333 spin_unlock(&em_tree->lock); 1334 if (!em) { 1335 __unplug_io_fn(bdi, page); 1336 return; 1337 } 1338 1339 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1340 free_extent_map(em); 1341 __unplug_io_fn(bdi, page); 1342 return; 1343 } 1344 offset = offset - em->start; 1345 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1346 em->block_start + offset, page); 1347 free_extent_map(em); 1348 } 1349 1350 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1351 { 1352 bdi_init(bdi); 1353 bdi->ra_pages = default_backing_dev_info.ra_pages; 1354 bdi->state = 0; 1355 bdi->capabilities = default_backing_dev_info.capabilities; 1356 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1357 bdi->unplug_io_data = info; 1358 bdi->congested_fn = btrfs_congested_fn; 1359 bdi->congested_data = info; 1360 return 0; 1361 } 1362 1363 static int bio_ready_for_csum(struct bio *bio) 1364 { 1365 u64 length = 0; 1366 u64 buf_len = 0; 1367 u64 start = 0; 1368 struct page *page; 1369 struct extent_io_tree *io_tree = NULL; 1370 struct btrfs_fs_info *info = NULL; 1371 struct bio_vec *bvec; 1372 int i; 1373 int ret; 1374 1375 bio_for_each_segment(bvec, bio, i) { 1376 page = bvec->bv_page; 1377 if (page->private == EXTENT_PAGE_PRIVATE) { 1378 length += bvec->bv_len; 1379 continue; 1380 } 1381 if (!page->private) { 1382 length += bvec->bv_len; 1383 continue; 1384 } 1385 length = bvec->bv_len; 1386 buf_len = page->private >> 2; 1387 start = page_offset(page) + bvec->bv_offset; 1388 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1389 info = BTRFS_I(page->mapping->host)->root->fs_info; 1390 } 1391 /* are we fully contained in this bio? */ 1392 if (buf_len <= length) 1393 return 1; 1394 1395 ret = extent_range_uptodate(io_tree, start + length, 1396 start + buf_len - 1); 1397 return ret; 1398 } 1399 1400 /* 1401 * called by the kthread helper functions to finally call the bio end_io 1402 * functions. This is where read checksum verification actually happens 1403 */ 1404 static void end_workqueue_fn(struct btrfs_work *work) 1405 { 1406 struct bio *bio; 1407 struct end_io_wq *end_io_wq; 1408 struct btrfs_fs_info *fs_info; 1409 int error; 1410 1411 end_io_wq = container_of(work, struct end_io_wq, work); 1412 bio = end_io_wq->bio; 1413 fs_info = end_io_wq->info; 1414 1415 /* metadata bio reads are special because the whole tree block must 1416 * be checksummed at once. This makes sure the entire block is in 1417 * ram and up to date before trying to verify things. For 1418 * blocksize <= pagesize, it is basically a noop 1419 */ 1420 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1421 !bio_ready_for_csum(bio)) { 1422 btrfs_queue_worker(&fs_info->endio_meta_workers, 1423 &end_io_wq->work); 1424 return; 1425 } 1426 error = end_io_wq->error; 1427 bio->bi_private = end_io_wq->private; 1428 bio->bi_end_io = end_io_wq->end_io; 1429 kfree(end_io_wq); 1430 bio_endio(bio, error); 1431 } 1432 1433 static int cleaner_kthread(void *arg) 1434 { 1435 struct btrfs_root *root = arg; 1436 1437 do { 1438 smp_mb(); 1439 if (root->fs_info->closing) 1440 break; 1441 1442 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1443 mutex_lock(&root->fs_info->cleaner_mutex); 1444 btrfs_clean_old_snapshots(root); 1445 mutex_unlock(&root->fs_info->cleaner_mutex); 1446 1447 if (freezing(current)) { 1448 refrigerator(); 1449 } else { 1450 smp_mb(); 1451 if (root->fs_info->closing) 1452 break; 1453 set_current_state(TASK_INTERRUPTIBLE); 1454 schedule(); 1455 __set_current_state(TASK_RUNNING); 1456 } 1457 } while (!kthread_should_stop()); 1458 return 0; 1459 } 1460 1461 static int transaction_kthread(void *arg) 1462 { 1463 struct btrfs_root *root = arg; 1464 struct btrfs_trans_handle *trans; 1465 struct btrfs_transaction *cur; 1466 unsigned long now; 1467 unsigned long delay; 1468 int ret; 1469 1470 do { 1471 smp_mb(); 1472 if (root->fs_info->closing) 1473 break; 1474 1475 delay = HZ * 30; 1476 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1477 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1478 1479 mutex_lock(&root->fs_info->trans_mutex); 1480 cur = root->fs_info->running_transaction; 1481 if (!cur) { 1482 mutex_unlock(&root->fs_info->trans_mutex); 1483 goto sleep; 1484 } 1485 1486 now = get_seconds(); 1487 if (now < cur->start_time || now - cur->start_time < 30) { 1488 mutex_unlock(&root->fs_info->trans_mutex); 1489 delay = HZ * 5; 1490 goto sleep; 1491 } 1492 mutex_unlock(&root->fs_info->trans_mutex); 1493 trans = btrfs_start_transaction(root, 1); 1494 ret = btrfs_commit_transaction(trans, root); 1495 1496 sleep: 1497 wake_up_process(root->fs_info->cleaner_kthread); 1498 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1499 1500 if (freezing(current)) { 1501 refrigerator(); 1502 } else { 1503 if (root->fs_info->closing) 1504 break; 1505 set_current_state(TASK_INTERRUPTIBLE); 1506 schedule_timeout(delay); 1507 __set_current_state(TASK_RUNNING); 1508 } 1509 } while (!kthread_should_stop()); 1510 return 0; 1511 } 1512 1513 struct btrfs_root *open_ctree(struct super_block *sb, 1514 struct btrfs_fs_devices *fs_devices, 1515 char *options) 1516 { 1517 u32 sectorsize; 1518 u32 nodesize; 1519 u32 leafsize; 1520 u32 blocksize; 1521 u32 stripesize; 1522 u64 generation; 1523 u64 features; 1524 struct btrfs_key location; 1525 struct buffer_head *bh; 1526 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1527 GFP_NOFS); 1528 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1529 GFP_NOFS); 1530 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1531 GFP_NOFS); 1532 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1533 GFP_NOFS); 1534 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1535 GFP_NOFS); 1536 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1537 GFP_NOFS); 1538 struct btrfs_root *log_tree_root; 1539 1540 int ret; 1541 int err = -EINVAL; 1542 1543 struct btrfs_super_block *disk_super; 1544 1545 if (!extent_root || !tree_root || !fs_info || 1546 !chunk_root || !dev_root || !csum_root) { 1547 err = -ENOMEM; 1548 goto fail; 1549 } 1550 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1551 INIT_LIST_HEAD(&fs_info->trans_list); 1552 INIT_LIST_HEAD(&fs_info->dead_roots); 1553 INIT_LIST_HEAD(&fs_info->hashers); 1554 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1555 INIT_LIST_HEAD(&fs_info->ordered_operations); 1556 spin_lock_init(&fs_info->delalloc_lock); 1557 spin_lock_init(&fs_info->new_trans_lock); 1558 spin_lock_init(&fs_info->ref_cache_lock); 1559 1560 init_completion(&fs_info->kobj_unregister); 1561 fs_info->tree_root = tree_root; 1562 fs_info->extent_root = extent_root; 1563 fs_info->csum_root = csum_root; 1564 fs_info->chunk_root = chunk_root; 1565 fs_info->dev_root = dev_root; 1566 fs_info->fs_devices = fs_devices; 1567 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1568 INIT_LIST_HEAD(&fs_info->space_info); 1569 btrfs_mapping_init(&fs_info->mapping_tree); 1570 atomic_set(&fs_info->nr_async_submits, 0); 1571 atomic_set(&fs_info->async_delalloc_pages, 0); 1572 atomic_set(&fs_info->async_submit_draining, 0); 1573 atomic_set(&fs_info->nr_async_bios, 0); 1574 atomic_set(&fs_info->throttles, 0); 1575 atomic_set(&fs_info->throttle_gen, 0); 1576 fs_info->sb = sb; 1577 fs_info->max_extent = (u64)-1; 1578 fs_info->max_inline = 8192 * 1024; 1579 setup_bdi(fs_info, &fs_info->bdi); 1580 fs_info->btree_inode = new_inode(sb); 1581 fs_info->btree_inode->i_ino = 1; 1582 fs_info->btree_inode->i_nlink = 1; 1583 fs_info->metadata_ratio = 8; 1584 1585 fs_info->thread_pool_size = min_t(unsigned long, 1586 num_online_cpus() + 2, 8); 1587 1588 INIT_LIST_HEAD(&fs_info->ordered_extents); 1589 spin_lock_init(&fs_info->ordered_extent_lock); 1590 1591 sb->s_blocksize = 4096; 1592 sb->s_blocksize_bits = blksize_bits(4096); 1593 1594 /* 1595 * we set the i_size on the btree inode to the max possible int. 1596 * the real end of the address space is determined by all of 1597 * the devices in the system 1598 */ 1599 fs_info->btree_inode->i_size = OFFSET_MAX; 1600 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1601 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1602 1603 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1604 fs_info->btree_inode->i_mapping, 1605 GFP_NOFS); 1606 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1607 GFP_NOFS); 1608 1609 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1610 1611 spin_lock_init(&fs_info->block_group_cache_lock); 1612 fs_info->block_group_cache_tree.rb_node = NULL; 1613 1614 extent_io_tree_init(&fs_info->pinned_extents, 1615 fs_info->btree_inode->i_mapping, GFP_NOFS); 1616 fs_info->do_barriers = 1; 1617 1618 INIT_LIST_HEAD(&fs_info->dead_reloc_roots); 1619 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree); 1620 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree); 1621 1622 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1623 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1624 sizeof(struct btrfs_key)); 1625 insert_inode_hash(fs_info->btree_inode); 1626 1627 mutex_init(&fs_info->trans_mutex); 1628 mutex_init(&fs_info->ordered_operations_mutex); 1629 mutex_init(&fs_info->tree_log_mutex); 1630 mutex_init(&fs_info->drop_mutex); 1631 mutex_init(&fs_info->chunk_mutex); 1632 mutex_init(&fs_info->transaction_kthread_mutex); 1633 mutex_init(&fs_info->cleaner_mutex); 1634 mutex_init(&fs_info->volume_mutex); 1635 mutex_init(&fs_info->tree_reloc_mutex); 1636 1637 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1638 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1639 1640 init_waitqueue_head(&fs_info->transaction_throttle); 1641 init_waitqueue_head(&fs_info->transaction_wait); 1642 init_waitqueue_head(&fs_info->async_submit_wait); 1643 1644 __setup_root(4096, 4096, 4096, 4096, tree_root, 1645 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1646 1647 1648 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1649 if (!bh) 1650 goto fail_iput; 1651 1652 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1653 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1654 sizeof(fs_info->super_for_commit)); 1655 brelse(bh); 1656 1657 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1658 1659 disk_super = &fs_info->super_copy; 1660 if (!btrfs_super_root(disk_super)) 1661 goto fail_iput; 1662 1663 ret = btrfs_parse_options(tree_root, options); 1664 if (ret) { 1665 err = ret; 1666 goto fail_iput; 1667 } 1668 1669 features = btrfs_super_incompat_flags(disk_super) & 1670 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1671 if (features) { 1672 printk(KERN_ERR "BTRFS: couldn't mount because of " 1673 "unsupported optional features (%Lx).\n", 1674 (unsigned long long)features); 1675 err = -EINVAL; 1676 goto fail_iput; 1677 } 1678 1679 features = btrfs_super_compat_ro_flags(disk_super) & 1680 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1681 if (!(sb->s_flags & MS_RDONLY) && features) { 1682 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1683 "unsupported option features (%Lx).\n", 1684 (unsigned long long)features); 1685 err = -EINVAL; 1686 goto fail_iput; 1687 } 1688 1689 /* 1690 * we need to start all the end_io workers up front because the 1691 * queue work function gets called at interrupt time, and so it 1692 * cannot dynamically grow. 1693 */ 1694 btrfs_init_workers(&fs_info->workers, "worker", 1695 fs_info->thread_pool_size); 1696 1697 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1698 fs_info->thread_pool_size); 1699 1700 btrfs_init_workers(&fs_info->submit_workers, "submit", 1701 min_t(u64, fs_devices->num_devices, 1702 fs_info->thread_pool_size)); 1703 1704 /* a higher idle thresh on the submit workers makes it much more 1705 * likely that bios will be send down in a sane order to the 1706 * devices 1707 */ 1708 fs_info->submit_workers.idle_thresh = 64; 1709 1710 fs_info->workers.idle_thresh = 16; 1711 fs_info->workers.ordered = 1; 1712 1713 fs_info->delalloc_workers.idle_thresh = 2; 1714 fs_info->delalloc_workers.ordered = 1; 1715 1716 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1717 btrfs_init_workers(&fs_info->endio_workers, "endio", 1718 fs_info->thread_pool_size); 1719 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1720 fs_info->thread_pool_size); 1721 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1722 "endio-meta-write", fs_info->thread_pool_size); 1723 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1724 fs_info->thread_pool_size); 1725 1726 /* 1727 * endios are largely parallel and should have a very 1728 * low idle thresh 1729 */ 1730 fs_info->endio_workers.idle_thresh = 4; 1731 fs_info->endio_meta_workers.idle_thresh = 4; 1732 1733 fs_info->endio_write_workers.idle_thresh = 64; 1734 fs_info->endio_meta_write_workers.idle_thresh = 64; 1735 1736 btrfs_start_workers(&fs_info->workers, 1); 1737 btrfs_start_workers(&fs_info->submit_workers, 1); 1738 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1739 btrfs_start_workers(&fs_info->fixup_workers, 1); 1740 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1741 btrfs_start_workers(&fs_info->endio_meta_workers, 1742 fs_info->thread_pool_size); 1743 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1744 fs_info->thread_pool_size); 1745 btrfs_start_workers(&fs_info->endio_write_workers, 1746 fs_info->thread_pool_size); 1747 1748 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1749 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1750 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1751 1752 nodesize = btrfs_super_nodesize(disk_super); 1753 leafsize = btrfs_super_leafsize(disk_super); 1754 sectorsize = btrfs_super_sectorsize(disk_super); 1755 stripesize = btrfs_super_stripesize(disk_super); 1756 tree_root->nodesize = nodesize; 1757 tree_root->leafsize = leafsize; 1758 tree_root->sectorsize = sectorsize; 1759 tree_root->stripesize = stripesize; 1760 1761 sb->s_blocksize = sectorsize; 1762 sb->s_blocksize_bits = blksize_bits(sectorsize); 1763 1764 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1765 sizeof(disk_super->magic))) { 1766 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1767 goto fail_sb_buffer; 1768 } 1769 1770 mutex_lock(&fs_info->chunk_mutex); 1771 ret = btrfs_read_sys_array(tree_root); 1772 mutex_unlock(&fs_info->chunk_mutex); 1773 if (ret) { 1774 printk(KERN_WARNING "btrfs: failed to read the system " 1775 "array on %s\n", sb->s_id); 1776 goto fail_sys_array; 1777 } 1778 1779 blocksize = btrfs_level_size(tree_root, 1780 btrfs_super_chunk_root_level(disk_super)); 1781 generation = btrfs_super_chunk_root_generation(disk_super); 1782 1783 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1784 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1785 1786 chunk_root->node = read_tree_block(chunk_root, 1787 btrfs_super_chunk_root(disk_super), 1788 blocksize, generation); 1789 BUG_ON(!chunk_root->node); 1790 1791 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1792 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1793 BTRFS_UUID_SIZE); 1794 1795 mutex_lock(&fs_info->chunk_mutex); 1796 ret = btrfs_read_chunk_tree(chunk_root); 1797 mutex_unlock(&fs_info->chunk_mutex); 1798 if (ret) { 1799 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1800 sb->s_id); 1801 goto fail_chunk_root; 1802 } 1803 1804 btrfs_close_extra_devices(fs_devices); 1805 1806 blocksize = btrfs_level_size(tree_root, 1807 btrfs_super_root_level(disk_super)); 1808 generation = btrfs_super_generation(disk_super); 1809 1810 tree_root->node = read_tree_block(tree_root, 1811 btrfs_super_root(disk_super), 1812 blocksize, generation); 1813 if (!tree_root->node) 1814 goto fail_chunk_root; 1815 1816 1817 ret = find_and_setup_root(tree_root, fs_info, 1818 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1819 if (ret) 1820 goto fail_tree_root; 1821 extent_root->track_dirty = 1; 1822 1823 ret = find_and_setup_root(tree_root, fs_info, 1824 BTRFS_DEV_TREE_OBJECTID, dev_root); 1825 dev_root->track_dirty = 1; 1826 if (ret) 1827 goto fail_extent_root; 1828 1829 ret = find_and_setup_root(tree_root, fs_info, 1830 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1831 if (ret) 1832 goto fail_extent_root; 1833 1834 csum_root->track_dirty = 1; 1835 1836 btrfs_read_block_groups(extent_root); 1837 1838 fs_info->generation = generation; 1839 fs_info->last_trans_committed = generation; 1840 fs_info->data_alloc_profile = (u64)-1; 1841 fs_info->metadata_alloc_profile = (u64)-1; 1842 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1843 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1844 "btrfs-cleaner"); 1845 if (IS_ERR(fs_info->cleaner_kthread)) 1846 goto fail_csum_root; 1847 1848 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1849 tree_root, 1850 "btrfs-transaction"); 1851 if (IS_ERR(fs_info->transaction_kthread)) 1852 goto fail_cleaner; 1853 1854 if (btrfs_super_log_root(disk_super) != 0) { 1855 u64 bytenr = btrfs_super_log_root(disk_super); 1856 1857 if (fs_devices->rw_devices == 0) { 1858 printk(KERN_WARNING "Btrfs log replay required " 1859 "on RO media\n"); 1860 err = -EIO; 1861 goto fail_trans_kthread; 1862 } 1863 blocksize = 1864 btrfs_level_size(tree_root, 1865 btrfs_super_log_root_level(disk_super)); 1866 1867 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1868 GFP_NOFS); 1869 1870 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1871 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1872 1873 log_tree_root->node = read_tree_block(tree_root, bytenr, 1874 blocksize, 1875 generation + 1); 1876 ret = btrfs_recover_log_trees(log_tree_root); 1877 BUG_ON(ret); 1878 1879 if (sb->s_flags & MS_RDONLY) { 1880 ret = btrfs_commit_super(tree_root); 1881 BUG_ON(ret); 1882 } 1883 } 1884 1885 if (!(sb->s_flags & MS_RDONLY)) { 1886 ret = btrfs_cleanup_reloc_trees(tree_root); 1887 BUG_ON(ret); 1888 } 1889 1890 location.objectid = BTRFS_FS_TREE_OBJECTID; 1891 location.type = BTRFS_ROOT_ITEM_KEY; 1892 location.offset = (u64)-1; 1893 1894 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1895 if (!fs_info->fs_root) 1896 goto fail_trans_kthread; 1897 return tree_root; 1898 1899 fail_trans_kthread: 1900 kthread_stop(fs_info->transaction_kthread); 1901 fail_cleaner: 1902 kthread_stop(fs_info->cleaner_kthread); 1903 1904 /* 1905 * make sure we're done with the btree inode before we stop our 1906 * kthreads 1907 */ 1908 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1909 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1910 1911 fail_csum_root: 1912 free_extent_buffer(csum_root->node); 1913 fail_extent_root: 1914 free_extent_buffer(extent_root->node); 1915 fail_tree_root: 1916 free_extent_buffer(tree_root->node); 1917 fail_chunk_root: 1918 free_extent_buffer(chunk_root->node); 1919 fail_sys_array: 1920 free_extent_buffer(dev_root->node); 1921 fail_sb_buffer: 1922 btrfs_stop_workers(&fs_info->fixup_workers); 1923 btrfs_stop_workers(&fs_info->delalloc_workers); 1924 btrfs_stop_workers(&fs_info->workers); 1925 btrfs_stop_workers(&fs_info->endio_workers); 1926 btrfs_stop_workers(&fs_info->endio_meta_workers); 1927 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1928 btrfs_stop_workers(&fs_info->endio_write_workers); 1929 btrfs_stop_workers(&fs_info->submit_workers); 1930 fail_iput: 1931 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1932 iput(fs_info->btree_inode); 1933 1934 btrfs_close_devices(fs_info->fs_devices); 1935 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1936 bdi_destroy(&fs_info->bdi); 1937 1938 fail: 1939 kfree(extent_root); 1940 kfree(tree_root); 1941 kfree(fs_info); 1942 kfree(chunk_root); 1943 kfree(dev_root); 1944 kfree(csum_root); 1945 return ERR_PTR(err); 1946 } 1947 1948 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1949 { 1950 char b[BDEVNAME_SIZE]; 1951 1952 if (uptodate) { 1953 set_buffer_uptodate(bh); 1954 } else { 1955 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1956 printk(KERN_WARNING "lost page write due to " 1957 "I/O error on %s\n", 1958 bdevname(bh->b_bdev, b)); 1959 } 1960 /* note, we dont' set_buffer_write_io_error because we have 1961 * our own ways of dealing with the IO errors 1962 */ 1963 clear_buffer_uptodate(bh); 1964 } 1965 unlock_buffer(bh); 1966 put_bh(bh); 1967 } 1968 1969 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1970 { 1971 struct buffer_head *bh; 1972 struct buffer_head *latest = NULL; 1973 struct btrfs_super_block *super; 1974 int i; 1975 u64 transid = 0; 1976 u64 bytenr; 1977 1978 /* we would like to check all the supers, but that would make 1979 * a btrfs mount succeed after a mkfs from a different FS. 1980 * So, we need to add a special mount option to scan for 1981 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1982 */ 1983 for (i = 0; i < 1; i++) { 1984 bytenr = btrfs_sb_offset(i); 1985 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 1986 break; 1987 bh = __bread(bdev, bytenr / 4096, 4096); 1988 if (!bh) 1989 continue; 1990 1991 super = (struct btrfs_super_block *)bh->b_data; 1992 if (btrfs_super_bytenr(super) != bytenr || 1993 strncmp((char *)(&super->magic), BTRFS_MAGIC, 1994 sizeof(super->magic))) { 1995 brelse(bh); 1996 continue; 1997 } 1998 1999 if (!latest || btrfs_super_generation(super) > transid) { 2000 brelse(latest); 2001 latest = bh; 2002 transid = btrfs_super_generation(super); 2003 } else { 2004 brelse(bh); 2005 } 2006 } 2007 return latest; 2008 } 2009 2010 static int write_dev_supers(struct btrfs_device *device, 2011 struct btrfs_super_block *sb, 2012 int do_barriers, int wait, int max_mirrors) 2013 { 2014 struct buffer_head *bh; 2015 int i; 2016 int ret; 2017 int errors = 0; 2018 u32 crc; 2019 u64 bytenr; 2020 int last_barrier = 0; 2021 2022 if (max_mirrors == 0) 2023 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2024 2025 /* make sure only the last submit_bh does a barrier */ 2026 if (do_barriers) { 2027 for (i = 0; i < max_mirrors; i++) { 2028 bytenr = btrfs_sb_offset(i); 2029 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2030 device->total_bytes) 2031 break; 2032 last_barrier = i; 2033 } 2034 } 2035 2036 for (i = 0; i < max_mirrors; i++) { 2037 bytenr = btrfs_sb_offset(i); 2038 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2039 break; 2040 2041 if (wait) { 2042 bh = __find_get_block(device->bdev, bytenr / 4096, 2043 BTRFS_SUPER_INFO_SIZE); 2044 BUG_ON(!bh); 2045 brelse(bh); 2046 wait_on_buffer(bh); 2047 if (buffer_uptodate(bh)) { 2048 brelse(bh); 2049 continue; 2050 } 2051 } else { 2052 btrfs_set_super_bytenr(sb, bytenr); 2053 2054 crc = ~(u32)0; 2055 crc = btrfs_csum_data(NULL, (char *)sb + 2056 BTRFS_CSUM_SIZE, crc, 2057 BTRFS_SUPER_INFO_SIZE - 2058 BTRFS_CSUM_SIZE); 2059 btrfs_csum_final(crc, sb->csum); 2060 2061 bh = __getblk(device->bdev, bytenr / 4096, 2062 BTRFS_SUPER_INFO_SIZE); 2063 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2064 2065 set_buffer_uptodate(bh); 2066 get_bh(bh); 2067 lock_buffer(bh); 2068 bh->b_end_io = btrfs_end_buffer_write_sync; 2069 } 2070 2071 if (i == last_barrier && do_barriers && device->barriers) { 2072 ret = submit_bh(WRITE_BARRIER, bh); 2073 if (ret == -EOPNOTSUPP) { 2074 printk("btrfs: disabling barriers on dev %s\n", 2075 device->name); 2076 set_buffer_uptodate(bh); 2077 device->barriers = 0; 2078 get_bh(bh); 2079 lock_buffer(bh); 2080 ret = submit_bh(WRITE_SYNC, bh); 2081 } 2082 } else { 2083 ret = submit_bh(WRITE_SYNC, bh); 2084 } 2085 2086 if (!ret && wait) { 2087 wait_on_buffer(bh); 2088 if (!buffer_uptodate(bh)) 2089 errors++; 2090 } else if (ret) { 2091 errors++; 2092 } 2093 if (wait) 2094 brelse(bh); 2095 } 2096 return errors < i ? 0 : -1; 2097 } 2098 2099 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2100 { 2101 struct list_head *head = &root->fs_info->fs_devices->devices; 2102 struct btrfs_device *dev; 2103 struct btrfs_super_block *sb; 2104 struct btrfs_dev_item *dev_item; 2105 int ret; 2106 int do_barriers; 2107 int max_errors; 2108 int total_errors = 0; 2109 u64 flags; 2110 2111 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2112 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2113 2114 sb = &root->fs_info->super_for_commit; 2115 dev_item = &sb->dev_item; 2116 list_for_each_entry(dev, head, dev_list) { 2117 if (!dev->bdev) { 2118 total_errors++; 2119 continue; 2120 } 2121 if (!dev->in_fs_metadata || !dev->writeable) 2122 continue; 2123 2124 btrfs_set_stack_device_generation(dev_item, 0); 2125 btrfs_set_stack_device_type(dev_item, dev->type); 2126 btrfs_set_stack_device_id(dev_item, dev->devid); 2127 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2128 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2129 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2130 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2131 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2132 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2133 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2134 2135 flags = btrfs_super_flags(sb); 2136 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2137 2138 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2139 if (ret) 2140 total_errors++; 2141 } 2142 if (total_errors > max_errors) { 2143 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2144 total_errors); 2145 BUG(); 2146 } 2147 2148 total_errors = 0; 2149 list_for_each_entry(dev, head, dev_list) { 2150 if (!dev->bdev) 2151 continue; 2152 if (!dev->in_fs_metadata || !dev->writeable) 2153 continue; 2154 2155 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2156 if (ret) 2157 total_errors++; 2158 } 2159 if (total_errors > max_errors) { 2160 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2161 total_errors); 2162 BUG(); 2163 } 2164 return 0; 2165 } 2166 2167 int write_ctree_super(struct btrfs_trans_handle *trans, 2168 struct btrfs_root *root, int max_mirrors) 2169 { 2170 int ret; 2171 2172 ret = write_all_supers(root, max_mirrors); 2173 return ret; 2174 } 2175 2176 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2177 { 2178 radix_tree_delete(&fs_info->fs_roots_radix, 2179 (unsigned long)root->root_key.objectid); 2180 if (root->anon_super.s_dev) { 2181 down_write(&root->anon_super.s_umount); 2182 kill_anon_super(&root->anon_super); 2183 } 2184 if (root->node) 2185 free_extent_buffer(root->node); 2186 if (root->commit_root) 2187 free_extent_buffer(root->commit_root); 2188 kfree(root->name); 2189 kfree(root); 2190 return 0; 2191 } 2192 2193 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2194 { 2195 int ret; 2196 struct btrfs_root *gang[8]; 2197 int i; 2198 2199 while (1) { 2200 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2201 (void **)gang, 0, 2202 ARRAY_SIZE(gang)); 2203 if (!ret) 2204 break; 2205 for (i = 0; i < ret; i++) 2206 btrfs_free_fs_root(fs_info, gang[i]); 2207 } 2208 return 0; 2209 } 2210 2211 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2212 { 2213 u64 root_objectid = 0; 2214 struct btrfs_root *gang[8]; 2215 int i; 2216 int ret; 2217 2218 while (1) { 2219 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2220 (void **)gang, root_objectid, 2221 ARRAY_SIZE(gang)); 2222 if (!ret) 2223 break; 2224 for (i = 0; i < ret; i++) { 2225 root_objectid = gang[i]->root_key.objectid; 2226 ret = btrfs_find_dead_roots(fs_info->tree_root, 2227 root_objectid, gang[i]); 2228 BUG_ON(ret); 2229 btrfs_orphan_cleanup(gang[i]); 2230 } 2231 root_objectid++; 2232 } 2233 return 0; 2234 } 2235 2236 int btrfs_commit_super(struct btrfs_root *root) 2237 { 2238 struct btrfs_trans_handle *trans; 2239 int ret; 2240 2241 mutex_lock(&root->fs_info->cleaner_mutex); 2242 btrfs_clean_old_snapshots(root); 2243 mutex_unlock(&root->fs_info->cleaner_mutex); 2244 trans = btrfs_start_transaction(root, 1); 2245 ret = btrfs_commit_transaction(trans, root); 2246 BUG_ON(ret); 2247 /* run commit again to drop the original snapshot */ 2248 trans = btrfs_start_transaction(root, 1); 2249 btrfs_commit_transaction(trans, root); 2250 ret = btrfs_write_and_wait_transaction(NULL, root); 2251 BUG_ON(ret); 2252 2253 ret = write_ctree_super(NULL, root, 0); 2254 return ret; 2255 } 2256 2257 int close_ctree(struct btrfs_root *root) 2258 { 2259 struct btrfs_fs_info *fs_info = root->fs_info; 2260 int ret; 2261 2262 fs_info->closing = 1; 2263 smp_mb(); 2264 2265 kthread_stop(root->fs_info->transaction_kthread); 2266 kthread_stop(root->fs_info->cleaner_kthread); 2267 2268 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2269 ret = btrfs_commit_super(root); 2270 if (ret) 2271 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2272 } 2273 2274 if (fs_info->delalloc_bytes) { 2275 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2276 (unsigned long long)fs_info->delalloc_bytes); 2277 } 2278 if (fs_info->total_ref_cache_size) { 2279 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2280 (unsigned long long)fs_info->total_ref_cache_size); 2281 } 2282 2283 if (fs_info->extent_root->node) 2284 free_extent_buffer(fs_info->extent_root->node); 2285 2286 if (fs_info->tree_root->node) 2287 free_extent_buffer(fs_info->tree_root->node); 2288 2289 if (root->fs_info->chunk_root->node) 2290 free_extent_buffer(root->fs_info->chunk_root->node); 2291 2292 if (root->fs_info->dev_root->node) 2293 free_extent_buffer(root->fs_info->dev_root->node); 2294 2295 if (root->fs_info->csum_root->node) 2296 free_extent_buffer(root->fs_info->csum_root->node); 2297 2298 btrfs_free_block_groups(root->fs_info); 2299 2300 del_fs_roots(fs_info); 2301 2302 iput(fs_info->btree_inode); 2303 2304 btrfs_stop_workers(&fs_info->fixup_workers); 2305 btrfs_stop_workers(&fs_info->delalloc_workers); 2306 btrfs_stop_workers(&fs_info->workers); 2307 btrfs_stop_workers(&fs_info->endio_workers); 2308 btrfs_stop_workers(&fs_info->endio_meta_workers); 2309 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2310 btrfs_stop_workers(&fs_info->endio_write_workers); 2311 btrfs_stop_workers(&fs_info->submit_workers); 2312 2313 btrfs_close_devices(fs_info->fs_devices); 2314 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2315 2316 bdi_destroy(&fs_info->bdi); 2317 2318 kfree(fs_info->extent_root); 2319 kfree(fs_info->tree_root); 2320 kfree(fs_info->chunk_root); 2321 kfree(fs_info->dev_root); 2322 kfree(fs_info->csum_root); 2323 return 0; 2324 } 2325 2326 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2327 { 2328 int ret; 2329 struct inode *btree_inode = buf->first_page->mapping->host; 2330 2331 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2332 if (!ret) 2333 return ret; 2334 2335 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2336 parent_transid); 2337 return !ret; 2338 } 2339 2340 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2341 { 2342 struct inode *btree_inode = buf->first_page->mapping->host; 2343 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2344 buf); 2345 } 2346 2347 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2348 { 2349 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2350 u64 transid = btrfs_header_generation(buf); 2351 struct inode *btree_inode = root->fs_info->btree_inode; 2352 int was_dirty; 2353 2354 btrfs_assert_tree_locked(buf); 2355 if (transid != root->fs_info->generation) { 2356 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2357 "found %llu running %llu\n", 2358 (unsigned long long)buf->start, 2359 (unsigned long long)transid, 2360 (unsigned long long)root->fs_info->generation); 2361 WARN_ON(1); 2362 } 2363 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2364 buf); 2365 if (!was_dirty) { 2366 spin_lock(&root->fs_info->delalloc_lock); 2367 root->fs_info->dirty_metadata_bytes += buf->len; 2368 spin_unlock(&root->fs_info->delalloc_lock); 2369 } 2370 } 2371 2372 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2373 { 2374 /* 2375 * looks as though older kernels can get into trouble with 2376 * this code, they end up stuck in balance_dirty_pages forever 2377 */ 2378 struct extent_io_tree *tree; 2379 u64 num_dirty; 2380 u64 start = 0; 2381 unsigned long thresh = 32 * 1024 * 1024; 2382 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 2383 2384 if (current->flags & PF_MEMALLOC) 2385 return; 2386 2387 num_dirty = count_range_bits(tree, &start, (u64)-1, 2388 thresh, EXTENT_DIRTY); 2389 if (num_dirty > thresh) { 2390 balance_dirty_pages_ratelimited_nr( 2391 root->fs_info->btree_inode->i_mapping, 1); 2392 } 2393 return; 2394 } 2395 2396 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2397 { 2398 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2399 int ret; 2400 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2401 if (ret == 0) 2402 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2403 return ret; 2404 } 2405 2406 int btree_lock_page_hook(struct page *page) 2407 { 2408 struct inode *inode = page->mapping->host; 2409 struct btrfs_root *root = BTRFS_I(inode)->root; 2410 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2411 struct extent_buffer *eb; 2412 unsigned long len; 2413 u64 bytenr = page_offset(page); 2414 2415 if (page->private == EXTENT_PAGE_PRIVATE) 2416 goto out; 2417 2418 len = page->private >> 2; 2419 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2420 if (!eb) 2421 goto out; 2422 2423 btrfs_tree_lock(eb); 2424 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2425 2426 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2427 spin_lock(&root->fs_info->delalloc_lock); 2428 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2429 root->fs_info->dirty_metadata_bytes -= eb->len; 2430 else 2431 WARN_ON(1); 2432 spin_unlock(&root->fs_info->delalloc_lock); 2433 } 2434 2435 btrfs_tree_unlock(eb); 2436 free_extent_buffer(eb); 2437 out: 2438 lock_page(page); 2439 return 0; 2440 } 2441 2442 static struct extent_io_ops btree_extent_io_ops = { 2443 .write_cache_pages_lock_hook = btree_lock_page_hook, 2444 .readpage_end_io_hook = btree_readpage_end_io_hook, 2445 .submit_bio_hook = btree_submit_bio_hook, 2446 /* note we're sharing with inode.c for the merge bio hook */ 2447 .merge_bio_hook = btrfs_merge_bio_hook, 2448 }; 2449