xref: /linux/fs/btrfs/disk-io.c (revision b7967db75a38df4891b22efe1b0969b9357eb946)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include "compat.h"
30 #include "crc32c.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "volumes.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
38 #include "locking.h"
39 #include "ref-cache.h"
40 #include "tree-log.h"
41 #include "free-space-cache.h"
42 
43 static struct extent_io_ops btree_extent_io_ops;
44 static void end_workqueue_fn(struct btrfs_work *work);
45 
46 /*
47  * end_io_wq structs are used to do processing in task context when an IO is
48  * complete.  This is used during reads to verify checksums, and it is used
49  * by writes to insert metadata for new file extents after IO is complete.
50  */
51 struct end_io_wq {
52 	struct bio *bio;
53 	bio_end_io_t *end_io;
54 	void *private;
55 	struct btrfs_fs_info *info;
56 	int error;
57 	int metadata;
58 	struct list_head list;
59 	struct btrfs_work work;
60 };
61 
62 /*
63  * async submit bios are used to offload expensive checksumming
64  * onto the worker threads.  They checksum file and metadata bios
65  * just before they are sent down the IO stack.
66  */
67 struct async_submit_bio {
68 	struct inode *inode;
69 	struct bio *bio;
70 	struct list_head list;
71 	extent_submit_bio_hook_t *submit_bio_start;
72 	extent_submit_bio_hook_t *submit_bio_done;
73 	int rw;
74 	int mirror_num;
75 	unsigned long bio_flags;
76 	struct btrfs_work work;
77 };
78 
79 /* These are used to set the lockdep class on the extent buffer locks.
80  * The class is set by the readpage_end_io_hook after the buffer has
81  * passed csum validation but before the pages are unlocked.
82  *
83  * The lockdep class is also set by btrfs_init_new_buffer on freshly
84  * allocated blocks.
85  *
86  * The class is based on the level in the tree block, which allows lockdep
87  * to know that lower nodes nest inside the locks of higher nodes.
88  *
89  * We also add a check to make sure the highest level of the tree is
90  * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
91  * code needs update as well.
92  */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 # if BTRFS_MAX_LEVEL != 8
95 #  error
96 # endif
97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
99 	/* leaf */
100 	"btrfs-extent-00",
101 	"btrfs-extent-01",
102 	"btrfs-extent-02",
103 	"btrfs-extent-03",
104 	"btrfs-extent-04",
105 	"btrfs-extent-05",
106 	"btrfs-extent-06",
107 	"btrfs-extent-07",
108 	/* highest possible level */
109 	"btrfs-extent-08",
110 };
111 #endif
112 
113 /*
114  * extents on the btree inode are pretty simple, there's one extent
115  * that covers the entire device
116  */
117 static struct extent_map *btree_get_extent(struct inode *inode,
118 		struct page *page, size_t page_offset, u64 start, u64 len,
119 		int create)
120 {
121 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
122 	struct extent_map *em;
123 	int ret;
124 
125 	spin_lock(&em_tree->lock);
126 	em = lookup_extent_mapping(em_tree, start, len);
127 	if (em) {
128 		em->bdev =
129 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
130 		spin_unlock(&em_tree->lock);
131 		goto out;
132 	}
133 	spin_unlock(&em_tree->lock);
134 
135 	em = alloc_extent_map(GFP_NOFS);
136 	if (!em) {
137 		em = ERR_PTR(-ENOMEM);
138 		goto out;
139 	}
140 	em->start = 0;
141 	em->len = (u64)-1;
142 	em->block_len = (u64)-1;
143 	em->block_start = 0;
144 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
145 
146 	spin_lock(&em_tree->lock);
147 	ret = add_extent_mapping(em_tree, em);
148 	if (ret == -EEXIST) {
149 		u64 failed_start = em->start;
150 		u64 failed_len = em->len;
151 
152 		free_extent_map(em);
153 		em = lookup_extent_mapping(em_tree, start, len);
154 		if (em) {
155 			ret = 0;
156 		} else {
157 			em = lookup_extent_mapping(em_tree, failed_start,
158 						   failed_len);
159 			ret = -EIO;
160 		}
161 	} else if (ret) {
162 		free_extent_map(em);
163 		em = NULL;
164 	}
165 	spin_unlock(&em_tree->lock);
166 
167 	if (ret)
168 		em = ERR_PTR(ret);
169 out:
170 	return em;
171 }
172 
173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
174 {
175 	return btrfs_crc32c(seed, data, len);
176 }
177 
178 void btrfs_csum_final(u32 crc, char *result)
179 {
180 	*(__le32 *)result = ~cpu_to_le32(crc);
181 }
182 
183 /*
184  * compute the csum for a btree block, and either verify it or write it
185  * into the csum field of the block.
186  */
187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
188 			   int verify)
189 {
190 	u16 csum_size =
191 		btrfs_super_csum_size(&root->fs_info->super_copy);
192 	char *result = NULL;
193 	unsigned long len;
194 	unsigned long cur_len;
195 	unsigned long offset = BTRFS_CSUM_SIZE;
196 	char *map_token = NULL;
197 	char *kaddr;
198 	unsigned long map_start;
199 	unsigned long map_len;
200 	int err;
201 	u32 crc = ~(u32)0;
202 	unsigned long inline_result;
203 
204 	len = buf->len - offset;
205 	while (len > 0) {
206 		err = map_private_extent_buffer(buf, offset, 32,
207 					&map_token, &kaddr,
208 					&map_start, &map_len, KM_USER0);
209 		if (err)
210 			return 1;
211 		cur_len = min(len, map_len - (offset - map_start));
212 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
213 				      crc, cur_len);
214 		len -= cur_len;
215 		offset += cur_len;
216 		unmap_extent_buffer(buf, map_token, KM_USER0);
217 	}
218 	if (csum_size > sizeof(inline_result)) {
219 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
220 		if (!result)
221 			return 1;
222 	} else {
223 		result = (char *)&inline_result;
224 	}
225 
226 	btrfs_csum_final(crc, result);
227 
228 	if (verify) {
229 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
230 			u32 val;
231 			u32 found = 0;
232 			memcpy(&found, result, csum_size);
233 
234 			read_extent_buffer(buf, &val, 0, csum_size);
235 			printk(KERN_INFO "btrfs: %s checksum verify failed "
236 			       "on %llu wanted %X found %X level %d\n",
237 			       root->fs_info->sb->s_id,
238 			       buf->start, val, found, btrfs_header_level(buf));
239 			if (result != (char *)&inline_result)
240 				kfree(result);
241 			return 1;
242 		}
243 	} else {
244 		write_extent_buffer(buf, result, 0, csum_size);
245 	}
246 	if (result != (char *)&inline_result)
247 		kfree(result);
248 	return 0;
249 }
250 
251 /*
252  * we can't consider a given block up to date unless the transid of the
253  * block matches the transid in the parent node's pointer.  This is how we
254  * detect blocks that either didn't get written at all or got written
255  * in the wrong place.
256  */
257 static int verify_parent_transid(struct extent_io_tree *io_tree,
258 				 struct extent_buffer *eb, u64 parent_transid)
259 {
260 	int ret;
261 
262 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
263 		return 0;
264 
265 	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
266 	if (extent_buffer_uptodate(io_tree, eb) &&
267 	    btrfs_header_generation(eb) == parent_transid) {
268 		ret = 0;
269 		goto out;
270 	}
271 	printk("parent transid verify failed on %llu wanted %llu found %llu\n",
272 	       (unsigned long long)eb->start,
273 	       (unsigned long long)parent_transid,
274 	       (unsigned long long)btrfs_header_generation(eb));
275 	ret = 1;
276 	clear_extent_buffer_uptodate(io_tree, eb);
277 out:
278 	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
279 		      GFP_NOFS);
280 	return ret;
281 }
282 
283 /*
284  * helper to read a given tree block, doing retries as required when
285  * the checksums don't match and we have alternate mirrors to try.
286  */
287 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
288 					  struct extent_buffer *eb,
289 					  u64 start, u64 parent_transid)
290 {
291 	struct extent_io_tree *io_tree;
292 	int ret;
293 	int num_copies = 0;
294 	int mirror_num = 0;
295 
296 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
297 	while (1) {
298 		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
299 					       btree_get_extent, mirror_num);
300 		if (!ret &&
301 		    !verify_parent_transid(io_tree, eb, parent_transid))
302 			return ret;
303 
304 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
305 					      eb->start, eb->len);
306 		if (num_copies == 1)
307 			return ret;
308 
309 		mirror_num++;
310 		if (mirror_num > num_copies)
311 			return ret;
312 	}
313 	return -EIO;
314 }
315 
316 /*
317  * checksum a dirty tree block before IO.  This has extra checks to make sure
318  * we only fill in the checksum field in the first page of a multi-page block
319  */
320 
321 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
322 {
323 	struct extent_io_tree *tree;
324 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
325 	u64 found_start;
326 	int found_level;
327 	unsigned long len;
328 	struct extent_buffer *eb;
329 	int ret;
330 
331 	tree = &BTRFS_I(page->mapping->host)->io_tree;
332 
333 	if (page->private == EXTENT_PAGE_PRIVATE)
334 		goto out;
335 	if (!page->private)
336 		goto out;
337 	len = page->private >> 2;
338 	WARN_ON(len == 0);
339 
340 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
341 	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
342 					     btrfs_header_generation(eb));
343 	BUG_ON(ret);
344 	found_start = btrfs_header_bytenr(eb);
345 	if (found_start != start) {
346 		WARN_ON(1);
347 		goto err;
348 	}
349 	if (eb->first_page != page) {
350 		WARN_ON(1);
351 		goto err;
352 	}
353 	if (!PageUptodate(page)) {
354 		WARN_ON(1);
355 		goto err;
356 	}
357 	found_level = btrfs_header_level(eb);
358 
359 	csum_tree_block(root, eb, 0);
360 err:
361 	free_extent_buffer(eb);
362 out:
363 	return 0;
364 }
365 
366 static int check_tree_block_fsid(struct btrfs_root *root,
367 				 struct extent_buffer *eb)
368 {
369 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
370 	u8 fsid[BTRFS_UUID_SIZE];
371 	int ret = 1;
372 
373 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
374 			   BTRFS_FSID_SIZE);
375 	while (fs_devices) {
376 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
377 			ret = 0;
378 			break;
379 		}
380 		fs_devices = fs_devices->seed;
381 	}
382 	return ret;
383 }
384 
385 #ifdef CONFIG_DEBUG_LOCK_ALLOC
386 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
387 {
388 	lockdep_set_class_and_name(&eb->lock,
389 			   &btrfs_eb_class[level],
390 			   btrfs_eb_name[level]);
391 }
392 #endif
393 
394 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
395 			       struct extent_state *state)
396 {
397 	struct extent_io_tree *tree;
398 	u64 found_start;
399 	int found_level;
400 	unsigned long len;
401 	struct extent_buffer *eb;
402 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
403 	int ret = 0;
404 
405 	tree = &BTRFS_I(page->mapping->host)->io_tree;
406 	if (page->private == EXTENT_PAGE_PRIVATE)
407 		goto out;
408 	if (!page->private)
409 		goto out;
410 
411 	len = page->private >> 2;
412 	WARN_ON(len == 0);
413 
414 	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
415 
416 	found_start = btrfs_header_bytenr(eb);
417 	if (found_start != start) {
418 		printk(KERN_INFO "btrfs bad tree block start %llu %llu\n",
419 		       (unsigned long long)found_start,
420 		       (unsigned long long)eb->start);
421 		ret = -EIO;
422 		goto err;
423 	}
424 	if (eb->first_page != page) {
425 		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
426 		       eb->first_page->index, page->index);
427 		WARN_ON(1);
428 		ret = -EIO;
429 		goto err;
430 	}
431 	if (check_tree_block_fsid(root, eb)) {
432 		printk(KERN_INFO "btrfs bad fsid on block %llu\n",
433 		       (unsigned long long)eb->start);
434 		ret = -EIO;
435 		goto err;
436 	}
437 	found_level = btrfs_header_level(eb);
438 
439 	btrfs_set_buffer_lockdep_class(eb, found_level);
440 
441 	ret = csum_tree_block(root, eb, 1);
442 	if (ret)
443 		ret = -EIO;
444 
445 	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
446 	end = eb->start + end - 1;
447 err:
448 	free_extent_buffer(eb);
449 out:
450 	return ret;
451 }
452 
453 static void end_workqueue_bio(struct bio *bio, int err)
454 {
455 	struct end_io_wq *end_io_wq = bio->bi_private;
456 	struct btrfs_fs_info *fs_info;
457 
458 	fs_info = end_io_wq->info;
459 	end_io_wq->error = err;
460 	end_io_wq->work.func = end_workqueue_fn;
461 	end_io_wq->work.flags = 0;
462 
463 	if (bio->bi_rw & (1 << BIO_RW)) {
464 		if (end_io_wq->metadata)
465 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
466 					   &end_io_wq->work);
467 		else
468 			btrfs_queue_worker(&fs_info->endio_write_workers,
469 					   &end_io_wq->work);
470 	} else {
471 		if (end_io_wq->metadata)
472 			btrfs_queue_worker(&fs_info->endio_meta_workers,
473 					   &end_io_wq->work);
474 		else
475 			btrfs_queue_worker(&fs_info->endio_workers,
476 					   &end_io_wq->work);
477 	}
478 }
479 
480 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
481 			int metadata)
482 {
483 	struct end_io_wq *end_io_wq;
484 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
485 	if (!end_io_wq)
486 		return -ENOMEM;
487 
488 	end_io_wq->private = bio->bi_private;
489 	end_io_wq->end_io = bio->bi_end_io;
490 	end_io_wq->info = info;
491 	end_io_wq->error = 0;
492 	end_io_wq->bio = bio;
493 	end_io_wq->metadata = metadata;
494 
495 	bio->bi_private = end_io_wq;
496 	bio->bi_end_io = end_workqueue_bio;
497 	return 0;
498 }
499 
500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
501 {
502 	unsigned long limit = min_t(unsigned long,
503 				    info->workers.max_workers,
504 				    info->fs_devices->open_devices);
505 	return 256 * limit;
506 }
507 
508 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
509 {
510 	return atomic_read(&info->nr_async_bios) >
511 		btrfs_async_submit_limit(info);
512 }
513 
514 static void run_one_async_start(struct btrfs_work *work)
515 {
516 	struct btrfs_fs_info *fs_info;
517 	struct async_submit_bio *async;
518 
519 	async = container_of(work, struct  async_submit_bio, work);
520 	fs_info = BTRFS_I(async->inode)->root->fs_info;
521 	async->submit_bio_start(async->inode, async->rw, async->bio,
522 			       async->mirror_num, async->bio_flags);
523 }
524 
525 static void run_one_async_done(struct btrfs_work *work)
526 {
527 	struct btrfs_fs_info *fs_info;
528 	struct async_submit_bio *async;
529 	int limit;
530 
531 	async = container_of(work, struct  async_submit_bio, work);
532 	fs_info = BTRFS_I(async->inode)->root->fs_info;
533 
534 	limit = btrfs_async_submit_limit(fs_info);
535 	limit = limit * 2 / 3;
536 
537 	atomic_dec(&fs_info->nr_async_submits);
538 
539 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
540 	    waitqueue_active(&fs_info->async_submit_wait))
541 		wake_up(&fs_info->async_submit_wait);
542 
543 	async->submit_bio_done(async->inode, async->rw, async->bio,
544 			       async->mirror_num, async->bio_flags);
545 }
546 
547 static void run_one_async_free(struct btrfs_work *work)
548 {
549 	struct async_submit_bio *async;
550 
551 	async = container_of(work, struct  async_submit_bio, work);
552 	kfree(async);
553 }
554 
555 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
556 			int rw, struct bio *bio, int mirror_num,
557 			unsigned long bio_flags,
558 			extent_submit_bio_hook_t *submit_bio_start,
559 			extent_submit_bio_hook_t *submit_bio_done)
560 {
561 	struct async_submit_bio *async;
562 
563 	async = kmalloc(sizeof(*async), GFP_NOFS);
564 	if (!async)
565 		return -ENOMEM;
566 
567 	async->inode = inode;
568 	async->rw = rw;
569 	async->bio = bio;
570 	async->mirror_num = mirror_num;
571 	async->submit_bio_start = submit_bio_start;
572 	async->submit_bio_done = submit_bio_done;
573 
574 	async->work.func = run_one_async_start;
575 	async->work.ordered_func = run_one_async_done;
576 	async->work.ordered_free = run_one_async_free;
577 
578 	async->work.flags = 0;
579 	async->bio_flags = bio_flags;
580 
581 	atomic_inc(&fs_info->nr_async_submits);
582 
583 	if (rw & (1 << BIO_RW_SYNCIO))
584 		btrfs_set_work_high_prio(&async->work);
585 
586 	btrfs_queue_worker(&fs_info->workers, &async->work);
587 
588 	while (atomic_read(&fs_info->async_submit_draining) &&
589 	      atomic_read(&fs_info->nr_async_submits)) {
590 		wait_event(fs_info->async_submit_wait,
591 			   (atomic_read(&fs_info->nr_async_submits) == 0));
592 	}
593 
594 	return 0;
595 }
596 
597 static int btree_csum_one_bio(struct bio *bio)
598 {
599 	struct bio_vec *bvec = bio->bi_io_vec;
600 	int bio_index = 0;
601 	struct btrfs_root *root;
602 
603 	WARN_ON(bio->bi_vcnt <= 0);
604 	while (bio_index < bio->bi_vcnt) {
605 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
606 		csum_dirty_buffer(root, bvec->bv_page);
607 		bio_index++;
608 		bvec++;
609 	}
610 	return 0;
611 }
612 
613 static int __btree_submit_bio_start(struct inode *inode, int rw,
614 				    struct bio *bio, int mirror_num,
615 				    unsigned long bio_flags)
616 {
617 	/*
618 	 * when we're called for a write, we're already in the async
619 	 * submission context.  Just jump into btrfs_map_bio
620 	 */
621 	btree_csum_one_bio(bio);
622 	return 0;
623 }
624 
625 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
626 				 int mirror_num, unsigned long bio_flags)
627 {
628 	/*
629 	 * when we're called for a write, we're already in the async
630 	 * submission context.  Just jump into btrfs_map_bio
631 	 */
632 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
633 }
634 
635 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
636 				 int mirror_num, unsigned long bio_flags)
637 {
638 	int ret;
639 
640 	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
641 					  bio, 1);
642 	BUG_ON(ret);
643 
644 	if (!(rw & (1 << BIO_RW))) {
645 		/*
646 		 * called for a read, do the setup so that checksum validation
647 		 * can happen in the async kernel threads
648 		 */
649 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
650 				     mirror_num, 0);
651 	}
652 
653 	/*
654 	 * kthread helpers are used to submit writes so that checksumming
655 	 * can happen in parallel across all CPUs
656 	 */
657 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
658 				   inode, rw, bio, mirror_num, 0,
659 				   __btree_submit_bio_start,
660 				   __btree_submit_bio_done);
661 }
662 
663 static int btree_writepage(struct page *page, struct writeback_control *wbc)
664 {
665 	struct extent_io_tree *tree;
666 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
667 	struct extent_buffer *eb;
668 	int was_dirty;
669 
670 	tree = &BTRFS_I(page->mapping->host)->io_tree;
671 	if (!(current->flags & PF_MEMALLOC)) {
672 		return extent_write_full_page(tree, page,
673 					      btree_get_extent, wbc);
674 	}
675 
676 	redirty_page_for_writepage(wbc, page);
677 	eb = btrfs_find_tree_block(root, page_offset(page),
678 				      PAGE_CACHE_SIZE);
679 	WARN_ON(!eb);
680 
681 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
682 	if (!was_dirty) {
683 		spin_lock(&root->fs_info->delalloc_lock);
684 		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
685 		spin_unlock(&root->fs_info->delalloc_lock);
686 	}
687 	free_extent_buffer(eb);
688 
689 	unlock_page(page);
690 	return 0;
691 }
692 
693 static int btree_writepages(struct address_space *mapping,
694 			    struct writeback_control *wbc)
695 {
696 	struct extent_io_tree *tree;
697 	tree = &BTRFS_I(mapping->host)->io_tree;
698 	if (wbc->sync_mode == WB_SYNC_NONE) {
699 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
700 		u64 num_dirty;
701 		unsigned long thresh = 32 * 1024 * 1024;
702 
703 		if (wbc->for_kupdate)
704 			return 0;
705 
706 		/* this is a bit racy, but that's ok */
707 		num_dirty = root->fs_info->dirty_metadata_bytes;
708 		if (num_dirty < thresh)
709 			return 0;
710 	}
711 	return extent_writepages(tree, mapping, btree_get_extent, wbc);
712 }
713 
714 static int btree_readpage(struct file *file, struct page *page)
715 {
716 	struct extent_io_tree *tree;
717 	tree = &BTRFS_I(page->mapping->host)->io_tree;
718 	return extent_read_full_page(tree, page, btree_get_extent);
719 }
720 
721 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
722 {
723 	struct extent_io_tree *tree;
724 	struct extent_map_tree *map;
725 	int ret;
726 
727 	if (PageWriteback(page) || PageDirty(page))
728 		return 0;
729 
730 	tree = &BTRFS_I(page->mapping->host)->io_tree;
731 	map = &BTRFS_I(page->mapping->host)->extent_tree;
732 
733 	ret = try_release_extent_state(map, tree, page, gfp_flags);
734 	if (!ret)
735 		return 0;
736 
737 	ret = try_release_extent_buffer(tree, page);
738 	if (ret == 1) {
739 		ClearPagePrivate(page);
740 		set_page_private(page, 0);
741 		page_cache_release(page);
742 	}
743 
744 	return ret;
745 }
746 
747 static void btree_invalidatepage(struct page *page, unsigned long offset)
748 {
749 	struct extent_io_tree *tree;
750 	tree = &BTRFS_I(page->mapping->host)->io_tree;
751 	extent_invalidatepage(tree, page, offset);
752 	btree_releasepage(page, GFP_NOFS);
753 	if (PagePrivate(page)) {
754 		printk(KERN_WARNING "btrfs warning page private not zero "
755 		       "on page %llu\n", (unsigned long long)page_offset(page));
756 		ClearPagePrivate(page);
757 		set_page_private(page, 0);
758 		page_cache_release(page);
759 	}
760 }
761 
762 static struct address_space_operations btree_aops = {
763 	.readpage	= btree_readpage,
764 	.writepage	= btree_writepage,
765 	.writepages	= btree_writepages,
766 	.releasepage	= btree_releasepage,
767 	.invalidatepage = btree_invalidatepage,
768 	.sync_page	= block_sync_page,
769 };
770 
771 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
772 			 u64 parent_transid)
773 {
774 	struct extent_buffer *buf = NULL;
775 	struct inode *btree_inode = root->fs_info->btree_inode;
776 	int ret = 0;
777 
778 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
779 	if (!buf)
780 		return 0;
781 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
782 				 buf, 0, 0, btree_get_extent, 0);
783 	free_extent_buffer(buf);
784 	return ret;
785 }
786 
787 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
788 					    u64 bytenr, u32 blocksize)
789 {
790 	struct inode *btree_inode = root->fs_info->btree_inode;
791 	struct extent_buffer *eb;
792 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
793 				bytenr, blocksize, GFP_NOFS);
794 	return eb;
795 }
796 
797 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
798 						 u64 bytenr, u32 blocksize)
799 {
800 	struct inode *btree_inode = root->fs_info->btree_inode;
801 	struct extent_buffer *eb;
802 
803 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
804 				 bytenr, blocksize, NULL, GFP_NOFS);
805 	return eb;
806 }
807 
808 
809 int btrfs_write_tree_block(struct extent_buffer *buf)
810 {
811 	return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
812 				      buf->start + buf->len - 1, WB_SYNC_ALL);
813 }
814 
815 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
816 {
817 	return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
818 				  buf->start, buf->start + buf->len - 1);
819 }
820 
821 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
822 				      u32 blocksize, u64 parent_transid)
823 {
824 	struct extent_buffer *buf = NULL;
825 	struct inode *btree_inode = root->fs_info->btree_inode;
826 	struct extent_io_tree *io_tree;
827 	int ret;
828 
829 	io_tree = &BTRFS_I(btree_inode)->io_tree;
830 
831 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
832 	if (!buf)
833 		return NULL;
834 
835 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
836 
837 	if (ret == 0)
838 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
839 	else
840 		WARN_ON(1);
841 	return buf;
842 
843 }
844 
845 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
846 		     struct extent_buffer *buf)
847 {
848 	struct inode *btree_inode = root->fs_info->btree_inode;
849 	if (btrfs_header_generation(buf) ==
850 	    root->fs_info->running_transaction->transid) {
851 		btrfs_assert_tree_locked(buf);
852 
853 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
854 			spin_lock(&root->fs_info->delalloc_lock);
855 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
856 				root->fs_info->dirty_metadata_bytes -= buf->len;
857 			else
858 				WARN_ON(1);
859 			spin_unlock(&root->fs_info->delalloc_lock);
860 		}
861 
862 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
863 		btrfs_set_lock_blocking(buf);
864 		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
865 					  buf);
866 	}
867 	return 0;
868 }
869 
870 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
871 			u32 stripesize, struct btrfs_root *root,
872 			struct btrfs_fs_info *fs_info,
873 			u64 objectid)
874 {
875 	root->node = NULL;
876 	root->commit_root = NULL;
877 	root->ref_tree = NULL;
878 	root->sectorsize = sectorsize;
879 	root->nodesize = nodesize;
880 	root->leafsize = leafsize;
881 	root->stripesize = stripesize;
882 	root->ref_cows = 0;
883 	root->track_dirty = 0;
884 
885 	root->fs_info = fs_info;
886 	root->objectid = objectid;
887 	root->last_trans = 0;
888 	root->highest_inode = 0;
889 	root->last_inode_alloc = 0;
890 	root->name = NULL;
891 	root->in_sysfs = 0;
892 
893 	INIT_LIST_HEAD(&root->dirty_list);
894 	INIT_LIST_HEAD(&root->orphan_list);
895 	INIT_LIST_HEAD(&root->dead_list);
896 	spin_lock_init(&root->node_lock);
897 	spin_lock_init(&root->list_lock);
898 	mutex_init(&root->objectid_mutex);
899 	mutex_init(&root->log_mutex);
900 	init_waitqueue_head(&root->log_writer_wait);
901 	init_waitqueue_head(&root->log_commit_wait[0]);
902 	init_waitqueue_head(&root->log_commit_wait[1]);
903 	atomic_set(&root->log_commit[0], 0);
904 	atomic_set(&root->log_commit[1], 0);
905 	atomic_set(&root->log_writers, 0);
906 	root->log_batch = 0;
907 	root->log_transid = 0;
908 	extent_io_tree_init(&root->dirty_log_pages,
909 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
910 
911 	btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
912 	root->ref_tree = &root->ref_tree_struct;
913 
914 	memset(&root->root_key, 0, sizeof(root->root_key));
915 	memset(&root->root_item, 0, sizeof(root->root_item));
916 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
917 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
918 	root->defrag_trans_start = fs_info->generation;
919 	init_completion(&root->kobj_unregister);
920 	root->defrag_running = 0;
921 	root->defrag_level = 0;
922 	root->root_key.objectid = objectid;
923 	root->anon_super.s_root = NULL;
924 	root->anon_super.s_dev = 0;
925 	INIT_LIST_HEAD(&root->anon_super.s_list);
926 	INIT_LIST_HEAD(&root->anon_super.s_instances);
927 	init_rwsem(&root->anon_super.s_umount);
928 
929 	return 0;
930 }
931 
932 static int find_and_setup_root(struct btrfs_root *tree_root,
933 			       struct btrfs_fs_info *fs_info,
934 			       u64 objectid,
935 			       struct btrfs_root *root)
936 {
937 	int ret;
938 	u32 blocksize;
939 	u64 generation;
940 
941 	__setup_root(tree_root->nodesize, tree_root->leafsize,
942 		     tree_root->sectorsize, tree_root->stripesize,
943 		     root, fs_info, objectid);
944 	ret = btrfs_find_last_root(tree_root, objectid,
945 				   &root->root_item, &root->root_key);
946 	BUG_ON(ret);
947 
948 	generation = btrfs_root_generation(&root->root_item);
949 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
950 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
951 				     blocksize, generation);
952 	BUG_ON(!root->node);
953 	return 0;
954 }
955 
956 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
957 			     struct btrfs_fs_info *fs_info)
958 {
959 	struct extent_buffer *eb;
960 	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
961 	u64 start = 0;
962 	u64 end = 0;
963 	int ret;
964 
965 	if (!log_root_tree)
966 		return 0;
967 
968 	while (1) {
969 		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
970 				    0, &start, &end, EXTENT_DIRTY);
971 		if (ret)
972 			break;
973 
974 		clear_extent_dirty(&log_root_tree->dirty_log_pages,
975 				   start, end, GFP_NOFS);
976 	}
977 	eb = fs_info->log_root_tree->node;
978 
979 	WARN_ON(btrfs_header_level(eb) != 0);
980 	WARN_ON(btrfs_header_nritems(eb) != 0);
981 
982 	ret = btrfs_free_reserved_extent(fs_info->tree_root,
983 				eb->start, eb->len);
984 	BUG_ON(ret);
985 
986 	free_extent_buffer(eb);
987 	kfree(fs_info->log_root_tree);
988 	fs_info->log_root_tree = NULL;
989 	return 0;
990 }
991 
992 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
993 					 struct btrfs_fs_info *fs_info)
994 {
995 	struct btrfs_root *root;
996 	struct btrfs_root *tree_root = fs_info->tree_root;
997 	struct extent_buffer *leaf;
998 
999 	root = kzalloc(sizeof(*root), GFP_NOFS);
1000 	if (!root)
1001 		return ERR_PTR(-ENOMEM);
1002 
1003 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1004 		     tree_root->sectorsize, tree_root->stripesize,
1005 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1006 
1007 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1008 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1009 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1010 	/*
1011 	 * log trees do not get reference counted because they go away
1012 	 * before a real commit is actually done.  They do store pointers
1013 	 * to file data extents, and those reference counts still get
1014 	 * updated (along with back refs to the log tree).
1015 	 */
1016 	root->ref_cows = 0;
1017 
1018 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1019 				      0, BTRFS_TREE_LOG_OBJECTID,
1020 				      trans->transid, 0, 0, 0);
1021 	if (IS_ERR(leaf)) {
1022 		kfree(root);
1023 		return ERR_CAST(leaf);
1024 	}
1025 
1026 	root->node = leaf;
1027 	btrfs_set_header_nritems(root->node, 0);
1028 	btrfs_set_header_level(root->node, 0);
1029 	btrfs_set_header_bytenr(root->node, root->node->start);
1030 	btrfs_set_header_generation(root->node, trans->transid);
1031 	btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
1032 
1033 	write_extent_buffer(root->node, root->fs_info->fsid,
1034 			    (unsigned long)btrfs_header_fsid(root->node),
1035 			    BTRFS_FSID_SIZE);
1036 	btrfs_mark_buffer_dirty(root->node);
1037 	btrfs_tree_unlock(root->node);
1038 	return root;
1039 }
1040 
1041 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1042 			     struct btrfs_fs_info *fs_info)
1043 {
1044 	struct btrfs_root *log_root;
1045 
1046 	log_root = alloc_log_tree(trans, fs_info);
1047 	if (IS_ERR(log_root))
1048 		return PTR_ERR(log_root);
1049 	WARN_ON(fs_info->log_root_tree);
1050 	fs_info->log_root_tree = log_root;
1051 	return 0;
1052 }
1053 
1054 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1055 		       struct btrfs_root *root)
1056 {
1057 	struct btrfs_root *log_root;
1058 	struct btrfs_inode_item *inode_item;
1059 
1060 	log_root = alloc_log_tree(trans, root->fs_info);
1061 	if (IS_ERR(log_root))
1062 		return PTR_ERR(log_root);
1063 
1064 	log_root->last_trans = trans->transid;
1065 	log_root->root_key.offset = root->root_key.objectid;
1066 
1067 	inode_item = &log_root->root_item.inode;
1068 	inode_item->generation = cpu_to_le64(1);
1069 	inode_item->size = cpu_to_le64(3);
1070 	inode_item->nlink = cpu_to_le32(1);
1071 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1072 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1073 
1074 	btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start);
1075 	btrfs_set_root_generation(&log_root->root_item, trans->transid);
1076 
1077 	WARN_ON(root->log_root);
1078 	root->log_root = log_root;
1079 	root->log_transid = 0;
1080 	return 0;
1081 }
1082 
1083 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1084 					       struct btrfs_key *location)
1085 {
1086 	struct btrfs_root *root;
1087 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1088 	struct btrfs_path *path;
1089 	struct extent_buffer *l;
1090 	u64 highest_inode;
1091 	u64 generation;
1092 	u32 blocksize;
1093 	int ret = 0;
1094 
1095 	root = kzalloc(sizeof(*root), GFP_NOFS);
1096 	if (!root)
1097 		return ERR_PTR(-ENOMEM);
1098 	if (location->offset == (u64)-1) {
1099 		ret = find_and_setup_root(tree_root, fs_info,
1100 					  location->objectid, root);
1101 		if (ret) {
1102 			kfree(root);
1103 			return ERR_PTR(ret);
1104 		}
1105 		goto insert;
1106 	}
1107 
1108 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1109 		     tree_root->sectorsize, tree_root->stripesize,
1110 		     root, fs_info, location->objectid);
1111 
1112 	path = btrfs_alloc_path();
1113 	BUG_ON(!path);
1114 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1115 	if (ret != 0) {
1116 		if (ret > 0)
1117 			ret = -ENOENT;
1118 		goto out;
1119 	}
1120 	l = path->nodes[0];
1121 	read_extent_buffer(l, &root->root_item,
1122 	       btrfs_item_ptr_offset(l, path->slots[0]),
1123 	       sizeof(root->root_item));
1124 	memcpy(&root->root_key, location, sizeof(*location));
1125 	ret = 0;
1126 out:
1127 	btrfs_release_path(root, path);
1128 	btrfs_free_path(path);
1129 	if (ret) {
1130 		kfree(root);
1131 		return ERR_PTR(ret);
1132 	}
1133 	generation = btrfs_root_generation(&root->root_item);
1134 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1135 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1136 				     blocksize, generation);
1137 	BUG_ON(!root->node);
1138 insert:
1139 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1140 		root->ref_cows = 1;
1141 		ret = btrfs_find_highest_inode(root, &highest_inode);
1142 		if (ret == 0) {
1143 			root->highest_inode = highest_inode;
1144 			root->last_inode_alloc = highest_inode;
1145 		}
1146 	}
1147 	return root;
1148 }
1149 
1150 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1151 					u64 root_objectid)
1152 {
1153 	struct btrfs_root *root;
1154 
1155 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1156 		return fs_info->tree_root;
1157 	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1158 		return fs_info->extent_root;
1159 
1160 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1161 				 (unsigned long)root_objectid);
1162 	return root;
1163 }
1164 
1165 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1166 					      struct btrfs_key *location)
1167 {
1168 	struct btrfs_root *root;
1169 	int ret;
1170 
1171 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1172 		return fs_info->tree_root;
1173 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1174 		return fs_info->extent_root;
1175 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1176 		return fs_info->chunk_root;
1177 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1178 		return fs_info->dev_root;
1179 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1180 		return fs_info->csum_root;
1181 
1182 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1183 				 (unsigned long)location->objectid);
1184 	if (root)
1185 		return root;
1186 
1187 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1188 	if (IS_ERR(root))
1189 		return root;
1190 
1191 	set_anon_super(&root->anon_super, NULL);
1192 
1193 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1194 				(unsigned long)root->root_key.objectid,
1195 				root);
1196 	if (ret) {
1197 		free_extent_buffer(root->node);
1198 		kfree(root);
1199 		return ERR_PTR(ret);
1200 	}
1201 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1202 		ret = btrfs_find_dead_roots(fs_info->tree_root,
1203 					    root->root_key.objectid, root);
1204 		BUG_ON(ret);
1205 		btrfs_orphan_cleanup(root);
1206 	}
1207 	return root;
1208 }
1209 
1210 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1211 				      struct btrfs_key *location,
1212 				      const char *name, int namelen)
1213 {
1214 	struct btrfs_root *root;
1215 	int ret;
1216 
1217 	root = btrfs_read_fs_root_no_name(fs_info, location);
1218 	if (!root)
1219 		return NULL;
1220 
1221 	if (root->in_sysfs)
1222 		return root;
1223 
1224 	ret = btrfs_set_root_name(root, name, namelen);
1225 	if (ret) {
1226 		free_extent_buffer(root->node);
1227 		kfree(root);
1228 		return ERR_PTR(ret);
1229 	}
1230 #if 0
1231 	ret = btrfs_sysfs_add_root(root);
1232 	if (ret) {
1233 		free_extent_buffer(root->node);
1234 		kfree(root->name);
1235 		kfree(root);
1236 		return ERR_PTR(ret);
1237 	}
1238 #endif
1239 	root->in_sysfs = 1;
1240 	return root;
1241 }
1242 
1243 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1244 {
1245 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1246 	int ret = 0;
1247 	struct btrfs_device *device;
1248 	struct backing_dev_info *bdi;
1249 
1250 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1251 		if (!device->bdev)
1252 			continue;
1253 		bdi = blk_get_backing_dev_info(device->bdev);
1254 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1255 			ret = 1;
1256 			break;
1257 		}
1258 	}
1259 	return ret;
1260 }
1261 
1262 /*
1263  * this unplugs every device on the box, and it is only used when page
1264  * is null
1265  */
1266 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1267 {
1268 	struct btrfs_device *device;
1269 	struct btrfs_fs_info *info;
1270 
1271 	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1272 	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
1273 		if (!device->bdev)
1274 			continue;
1275 
1276 		bdi = blk_get_backing_dev_info(device->bdev);
1277 		if (bdi->unplug_io_fn)
1278 			bdi->unplug_io_fn(bdi, page);
1279 	}
1280 }
1281 
1282 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1283 {
1284 	struct inode *inode;
1285 	struct extent_map_tree *em_tree;
1286 	struct extent_map *em;
1287 	struct address_space *mapping;
1288 	u64 offset;
1289 
1290 	/* the generic O_DIRECT read code does this */
1291 	if (1 || !page) {
1292 		__unplug_io_fn(bdi, page);
1293 		return;
1294 	}
1295 
1296 	/*
1297 	 * page->mapping may change at any time.  Get a consistent copy
1298 	 * and use that for everything below
1299 	 */
1300 	smp_mb();
1301 	mapping = page->mapping;
1302 	if (!mapping)
1303 		return;
1304 
1305 	inode = mapping->host;
1306 
1307 	/*
1308 	 * don't do the expensive searching for a small number of
1309 	 * devices
1310 	 */
1311 	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1312 		__unplug_io_fn(bdi, page);
1313 		return;
1314 	}
1315 
1316 	offset = page_offset(page);
1317 
1318 	em_tree = &BTRFS_I(inode)->extent_tree;
1319 	spin_lock(&em_tree->lock);
1320 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1321 	spin_unlock(&em_tree->lock);
1322 	if (!em) {
1323 		__unplug_io_fn(bdi, page);
1324 		return;
1325 	}
1326 
1327 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1328 		free_extent_map(em);
1329 		__unplug_io_fn(bdi, page);
1330 		return;
1331 	}
1332 	offset = offset - em->start;
1333 	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1334 			  em->block_start + offset, page);
1335 	free_extent_map(em);
1336 }
1337 
1338 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1339 {
1340 	bdi_init(bdi);
1341 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1342 	bdi->state		= 0;
1343 	bdi->capabilities	= default_backing_dev_info.capabilities;
1344 	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
1345 	bdi->unplug_io_data	= info;
1346 	bdi->congested_fn	= btrfs_congested_fn;
1347 	bdi->congested_data	= info;
1348 	return 0;
1349 }
1350 
1351 static int bio_ready_for_csum(struct bio *bio)
1352 {
1353 	u64 length = 0;
1354 	u64 buf_len = 0;
1355 	u64 start = 0;
1356 	struct page *page;
1357 	struct extent_io_tree *io_tree = NULL;
1358 	struct btrfs_fs_info *info = NULL;
1359 	struct bio_vec *bvec;
1360 	int i;
1361 	int ret;
1362 
1363 	bio_for_each_segment(bvec, bio, i) {
1364 		page = bvec->bv_page;
1365 		if (page->private == EXTENT_PAGE_PRIVATE) {
1366 			length += bvec->bv_len;
1367 			continue;
1368 		}
1369 		if (!page->private) {
1370 			length += bvec->bv_len;
1371 			continue;
1372 		}
1373 		length = bvec->bv_len;
1374 		buf_len = page->private >> 2;
1375 		start = page_offset(page) + bvec->bv_offset;
1376 		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1377 		info = BTRFS_I(page->mapping->host)->root->fs_info;
1378 	}
1379 	/* are we fully contained in this bio? */
1380 	if (buf_len <= length)
1381 		return 1;
1382 
1383 	ret = extent_range_uptodate(io_tree, start + length,
1384 				    start + buf_len - 1);
1385 	return ret;
1386 }
1387 
1388 /*
1389  * called by the kthread helper functions to finally call the bio end_io
1390  * functions.  This is where read checksum verification actually happens
1391  */
1392 static void end_workqueue_fn(struct btrfs_work *work)
1393 {
1394 	struct bio *bio;
1395 	struct end_io_wq *end_io_wq;
1396 	struct btrfs_fs_info *fs_info;
1397 	int error;
1398 
1399 	end_io_wq = container_of(work, struct end_io_wq, work);
1400 	bio = end_io_wq->bio;
1401 	fs_info = end_io_wq->info;
1402 
1403 	/* metadata bio reads are special because the whole tree block must
1404 	 * be checksummed at once.  This makes sure the entire block is in
1405 	 * ram and up to date before trying to verify things.  For
1406 	 * blocksize <= pagesize, it is basically a noop
1407 	 */
1408 	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1409 	    !bio_ready_for_csum(bio)) {
1410 		btrfs_queue_worker(&fs_info->endio_meta_workers,
1411 				   &end_io_wq->work);
1412 		return;
1413 	}
1414 	error = end_io_wq->error;
1415 	bio->bi_private = end_io_wq->private;
1416 	bio->bi_end_io = end_io_wq->end_io;
1417 	kfree(end_io_wq);
1418 	bio_endio(bio, error);
1419 }
1420 
1421 static int cleaner_kthread(void *arg)
1422 {
1423 	struct btrfs_root *root = arg;
1424 
1425 	do {
1426 		smp_mb();
1427 		if (root->fs_info->closing)
1428 			break;
1429 
1430 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1431 		mutex_lock(&root->fs_info->cleaner_mutex);
1432 		btrfs_clean_old_snapshots(root);
1433 		mutex_unlock(&root->fs_info->cleaner_mutex);
1434 
1435 		if (freezing(current)) {
1436 			refrigerator();
1437 		} else {
1438 			smp_mb();
1439 			if (root->fs_info->closing)
1440 				break;
1441 			set_current_state(TASK_INTERRUPTIBLE);
1442 			schedule();
1443 			__set_current_state(TASK_RUNNING);
1444 		}
1445 	} while (!kthread_should_stop());
1446 	return 0;
1447 }
1448 
1449 static int transaction_kthread(void *arg)
1450 {
1451 	struct btrfs_root *root = arg;
1452 	struct btrfs_trans_handle *trans;
1453 	struct btrfs_transaction *cur;
1454 	unsigned long now;
1455 	unsigned long delay;
1456 	int ret;
1457 
1458 	do {
1459 		smp_mb();
1460 		if (root->fs_info->closing)
1461 			break;
1462 
1463 		delay = HZ * 30;
1464 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1465 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1466 
1467 		mutex_lock(&root->fs_info->trans_mutex);
1468 		cur = root->fs_info->running_transaction;
1469 		if (!cur) {
1470 			mutex_unlock(&root->fs_info->trans_mutex);
1471 			goto sleep;
1472 		}
1473 
1474 		now = get_seconds();
1475 		if (now < cur->start_time || now - cur->start_time < 30) {
1476 			mutex_unlock(&root->fs_info->trans_mutex);
1477 			delay = HZ * 5;
1478 			goto sleep;
1479 		}
1480 		mutex_unlock(&root->fs_info->trans_mutex);
1481 		trans = btrfs_start_transaction(root, 1);
1482 		ret = btrfs_commit_transaction(trans, root);
1483 
1484 sleep:
1485 		wake_up_process(root->fs_info->cleaner_kthread);
1486 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1487 
1488 		if (freezing(current)) {
1489 			refrigerator();
1490 		} else {
1491 			if (root->fs_info->closing)
1492 				break;
1493 			set_current_state(TASK_INTERRUPTIBLE);
1494 			schedule_timeout(delay);
1495 			__set_current_state(TASK_RUNNING);
1496 		}
1497 	} while (!kthread_should_stop());
1498 	return 0;
1499 }
1500 
1501 struct btrfs_root *open_ctree(struct super_block *sb,
1502 			      struct btrfs_fs_devices *fs_devices,
1503 			      char *options)
1504 {
1505 	u32 sectorsize;
1506 	u32 nodesize;
1507 	u32 leafsize;
1508 	u32 blocksize;
1509 	u32 stripesize;
1510 	u64 generation;
1511 	u64 features;
1512 	struct btrfs_key location;
1513 	struct buffer_head *bh;
1514 	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1515 						 GFP_NOFS);
1516 	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1517 						 GFP_NOFS);
1518 	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1519 					       GFP_NOFS);
1520 	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1521 						GFP_NOFS);
1522 	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1523 						GFP_NOFS);
1524 	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1525 					      GFP_NOFS);
1526 	struct btrfs_root *log_tree_root;
1527 
1528 	int ret;
1529 	int err = -EINVAL;
1530 
1531 	struct btrfs_super_block *disk_super;
1532 
1533 	if (!extent_root || !tree_root || !fs_info ||
1534 	    !chunk_root || !dev_root || !csum_root) {
1535 		err = -ENOMEM;
1536 		goto fail;
1537 	}
1538 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1539 	INIT_LIST_HEAD(&fs_info->trans_list);
1540 	INIT_LIST_HEAD(&fs_info->dead_roots);
1541 	INIT_LIST_HEAD(&fs_info->hashers);
1542 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1543 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1544 	spin_lock_init(&fs_info->delalloc_lock);
1545 	spin_lock_init(&fs_info->new_trans_lock);
1546 	spin_lock_init(&fs_info->ref_cache_lock);
1547 
1548 	init_completion(&fs_info->kobj_unregister);
1549 	fs_info->tree_root = tree_root;
1550 	fs_info->extent_root = extent_root;
1551 	fs_info->csum_root = csum_root;
1552 	fs_info->chunk_root = chunk_root;
1553 	fs_info->dev_root = dev_root;
1554 	fs_info->fs_devices = fs_devices;
1555 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1556 	INIT_LIST_HEAD(&fs_info->space_info);
1557 	btrfs_mapping_init(&fs_info->mapping_tree);
1558 	atomic_set(&fs_info->nr_async_submits, 0);
1559 	atomic_set(&fs_info->async_delalloc_pages, 0);
1560 	atomic_set(&fs_info->async_submit_draining, 0);
1561 	atomic_set(&fs_info->nr_async_bios, 0);
1562 	atomic_set(&fs_info->throttles, 0);
1563 	atomic_set(&fs_info->throttle_gen, 0);
1564 	fs_info->sb = sb;
1565 	fs_info->max_extent = (u64)-1;
1566 	fs_info->max_inline = 8192 * 1024;
1567 	setup_bdi(fs_info, &fs_info->bdi);
1568 	fs_info->btree_inode = new_inode(sb);
1569 	fs_info->btree_inode->i_ino = 1;
1570 	fs_info->btree_inode->i_nlink = 1;
1571 	fs_info->metadata_ratio = 8;
1572 
1573 	fs_info->thread_pool_size = min_t(unsigned long,
1574 					  num_online_cpus() + 2, 8);
1575 
1576 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1577 	spin_lock_init(&fs_info->ordered_extent_lock);
1578 
1579 	sb->s_blocksize = 4096;
1580 	sb->s_blocksize_bits = blksize_bits(4096);
1581 
1582 	/*
1583 	 * we set the i_size on the btree inode to the max possible int.
1584 	 * the real end of the address space is determined by all of
1585 	 * the devices in the system
1586 	 */
1587 	fs_info->btree_inode->i_size = OFFSET_MAX;
1588 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1589 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1590 
1591 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1592 			     fs_info->btree_inode->i_mapping,
1593 			     GFP_NOFS);
1594 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1595 			     GFP_NOFS);
1596 
1597 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1598 
1599 	spin_lock_init(&fs_info->block_group_cache_lock);
1600 	fs_info->block_group_cache_tree.rb_node = NULL;
1601 
1602 	extent_io_tree_init(&fs_info->pinned_extents,
1603 			     fs_info->btree_inode->i_mapping, GFP_NOFS);
1604 	fs_info->do_barriers = 1;
1605 
1606 	INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1607 	btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1608 	btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1609 
1610 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
1611 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1612 	       sizeof(struct btrfs_key));
1613 	insert_inode_hash(fs_info->btree_inode);
1614 
1615 	mutex_init(&fs_info->trans_mutex);
1616 	mutex_init(&fs_info->ordered_operations_mutex);
1617 	mutex_init(&fs_info->tree_log_mutex);
1618 	mutex_init(&fs_info->drop_mutex);
1619 	mutex_init(&fs_info->chunk_mutex);
1620 	mutex_init(&fs_info->transaction_kthread_mutex);
1621 	mutex_init(&fs_info->cleaner_mutex);
1622 	mutex_init(&fs_info->volume_mutex);
1623 	mutex_init(&fs_info->tree_reloc_mutex);
1624 
1625 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1626 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1627 
1628 	init_waitqueue_head(&fs_info->transaction_throttle);
1629 	init_waitqueue_head(&fs_info->transaction_wait);
1630 	init_waitqueue_head(&fs_info->async_submit_wait);
1631 
1632 	__setup_root(4096, 4096, 4096, 4096, tree_root,
1633 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1634 
1635 
1636 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1637 	if (!bh)
1638 		goto fail_iput;
1639 
1640 	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1641 	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1642 	       sizeof(fs_info->super_for_commit));
1643 	brelse(bh);
1644 
1645 	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1646 
1647 	disk_super = &fs_info->super_copy;
1648 	if (!btrfs_super_root(disk_super))
1649 		goto fail_iput;
1650 
1651 	ret = btrfs_parse_options(tree_root, options);
1652 	if (ret) {
1653 		err = ret;
1654 		goto fail_iput;
1655 	}
1656 
1657 	features = btrfs_super_incompat_flags(disk_super) &
1658 		~BTRFS_FEATURE_INCOMPAT_SUPP;
1659 	if (features) {
1660 		printk(KERN_ERR "BTRFS: couldn't mount because of "
1661 		       "unsupported optional features (%Lx).\n",
1662 		       features);
1663 		err = -EINVAL;
1664 		goto fail_iput;
1665 	}
1666 
1667 	features = btrfs_super_compat_ro_flags(disk_super) &
1668 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
1669 	if (!(sb->s_flags & MS_RDONLY) && features) {
1670 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1671 		       "unsupported option features (%Lx).\n",
1672 		       features);
1673 		err = -EINVAL;
1674 		goto fail_iput;
1675 	}
1676 
1677 	/*
1678 	 * we need to start all the end_io workers up front because the
1679 	 * queue work function gets called at interrupt time, and so it
1680 	 * cannot dynamically grow.
1681 	 */
1682 	btrfs_init_workers(&fs_info->workers, "worker",
1683 			   fs_info->thread_pool_size);
1684 
1685 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1686 			   fs_info->thread_pool_size);
1687 
1688 	btrfs_init_workers(&fs_info->submit_workers, "submit",
1689 			   min_t(u64, fs_devices->num_devices,
1690 			   fs_info->thread_pool_size));
1691 
1692 	/* a higher idle thresh on the submit workers makes it much more
1693 	 * likely that bios will be send down in a sane order to the
1694 	 * devices
1695 	 */
1696 	fs_info->submit_workers.idle_thresh = 64;
1697 
1698 	fs_info->workers.idle_thresh = 16;
1699 	fs_info->workers.ordered = 1;
1700 
1701 	fs_info->delalloc_workers.idle_thresh = 2;
1702 	fs_info->delalloc_workers.ordered = 1;
1703 
1704 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1705 	btrfs_init_workers(&fs_info->endio_workers, "endio",
1706 			   fs_info->thread_pool_size);
1707 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1708 			   fs_info->thread_pool_size);
1709 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
1710 			   "endio-meta-write", fs_info->thread_pool_size);
1711 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1712 			   fs_info->thread_pool_size);
1713 
1714 	/*
1715 	 * endios are largely parallel and should have a very
1716 	 * low idle thresh
1717 	 */
1718 	fs_info->endio_workers.idle_thresh = 4;
1719 	fs_info->endio_meta_workers.idle_thresh = 4;
1720 
1721 	fs_info->endio_write_workers.idle_thresh = 64;
1722 	fs_info->endio_meta_write_workers.idle_thresh = 64;
1723 
1724 	btrfs_start_workers(&fs_info->workers, 1);
1725 	btrfs_start_workers(&fs_info->submit_workers, 1);
1726 	btrfs_start_workers(&fs_info->delalloc_workers, 1);
1727 	btrfs_start_workers(&fs_info->fixup_workers, 1);
1728 	btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1729 	btrfs_start_workers(&fs_info->endio_meta_workers,
1730 			    fs_info->thread_pool_size);
1731 	btrfs_start_workers(&fs_info->endio_meta_write_workers,
1732 			    fs_info->thread_pool_size);
1733 	btrfs_start_workers(&fs_info->endio_write_workers,
1734 			    fs_info->thread_pool_size);
1735 
1736 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1737 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1738 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1739 
1740 	nodesize = btrfs_super_nodesize(disk_super);
1741 	leafsize = btrfs_super_leafsize(disk_super);
1742 	sectorsize = btrfs_super_sectorsize(disk_super);
1743 	stripesize = btrfs_super_stripesize(disk_super);
1744 	tree_root->nodesize = nodesize;
1745 	tree_root->leafsize = leafsize;
1746 	tree_root->sectorsize = sectorsize;
1747 	tree_root->stripesize = stripesize;
1748 
1749 	sb->s_blocksize = sectorsize;
1750 	sb->s_blocksize_bits = blksize_bits(sectorsize);
1751 
1752 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1753 		    sizeof(disk_super->magic))) {
1754 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1755 		goto fail_sb_buffer;
1756 	}
1757 
1758 	mutex_lock(&fs_info->chunk_mutex);
1759 	ret = btrfs_read_sys_array(tree_root);
1760 	mutex_unlock(&fs_info->chunk_mutex);
1761 	if (ret) {
1762 		printk(KERN_WARNING "btrfs: failed to read the system "
1763 		       "array on %s\n", sb->s_id);
1764 		goto fail_sys_array;
1765 	}
1766 
1767 	blocksize = btrfs_level_size(tree_root,
1768 				     btrfs_super_chunk_root_level(disk_super));
1769 	generation = btrfs_super_chunk_root_generation(disk_super);
1770 
1771 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
1772 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1773 
1774 	chunk_root->node = read_tree_block(chunk_root,
1775 					   btrfs_super_chunk_root(disk_super),
1776 					   blocksize, generation);
1777 	BUG_ON(!chunk_root->node);
1778 
1779 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1780 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1781 	   BTRFS_UUID_SIZE);
1782 
1783 	mutex_lock(&fs_info->chunk_mutex);
1784 	ret = btrfs_read_chunk_tree(chunk_root);
1785 	mutex_unlock(&fs_info->chunk_mutex);
1786 	if (ret) {
1787 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1788 		       sb->s_id);
1789 		goto fail_chunk_root;
1790 	}
1791 
1792 	btrfs_close_extra_devices(fs_devices);
1793 
1794 	blocksize = btrfs_level_size(tree_root,
1795 				     btrfs_super_root_level(disk_super));
1796 	generation = btrfs_super_generation(disk_super);
1797 
1798 	tree_root->node = read_tree_block(tree_root,
1799 					  btrfs_super_root(disk_super),
1800 					  blocksize, generation);
1801 	if (!tree_root->node)
1802 		goto fail_chunk_root;
1803 
1804 
1805 	ret = find_and_setup_root(tree_root, fs_info,
1806 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1807 	if (ret)
1808 		goto fail_tree_root;
1809 	extent_root->track_dirty = 1;
1810 
1811 	ret = find_and_setup_root(tree_root, fs_info,
1812 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
1813 	dev_root->track_dirty = 1;
1814 	if (ret)
1815 		goto fail_extent_root;
1816 
1817 	ret = find_and_setup_root(tree_root, fs_info,
1818 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1819 	if (ret)
1820 		goto fail_extent_root;
1821 
1822 	csum_root->track_dirty = 1;
1823 
1824 	btrfs_read_block_groups(extent_root);
1825 
1826 	fs_info->generation = generation;
1827 	fs_info->last_trans_committed = generation;
1828 	fs_info->data_alloc_profile = (u64)-1;
1829 	fs_info->metadata_alloc_profile = (u64)-1;
1830 	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1831 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1832 					       "btrfs-cleaner");
1833 	if (IS_ERR(fs_info->cleaner_kthread))
1834 		goto fail_csum_root;
1835 
1836 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
1837 						   tree_root,
1838 						   "btrfs-transaction");
1839 	if (IS_ERR(fs_info->transaction_kthread))
1840 		goto fail_cleaner;
1841 
1842 	if (btrfs_super_log_root(disk_super) != 0) {
1843 		u64 bytenr = btrfs_super_log_root(disk_super);
1844 
1845 		if (fs_devices->rw_devices == 0) {
1846 			printk(KERN_WARNING "Btrfs log replay required "
1847 			       "on RO media\n");
1848 			err = -EIO;
1849 			goto fail_trans_kthread;
1850 		}
1851 		blocksize =
1852 		     btrfs_level_size(tree_root,
1853 				      btrfs_super_log_root_level(disk_super));
1854 
1855 		log_tree_root = kzalloc(sizeof(struct btrfs_root),
1856 						      GFP_NOFS);
1857 
1858 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
1859 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1860 
1861 		log_tree_root->node = read_tree_block(tree_root, bytenr,
1862 						      blocksize,
1863 						      generation + 1);
1864 		ret = btrfs_recover_log_trees(log_tree_root);
1865 		BUG_ON(ret);
1866 
1867 		if (sb->s_flags & MS_RDONLY) {
1868 			ret =  btrfs_commit_super(tree_root);
1869 			BUG_ON(ret);
1870 		}
1871 	}
1872 
1873 	if (!(sb->s_flags & MS_RDONLY)) {
1874 		ret = btrfs_cleanup_reloc_trees(tree_root);
1875 		BUG_ON(ret);
1876 	}
1877 
1878 	location.objectid = BTRFS_FS_TREE_OBJECTID;
1879 	location.type = BTRFS_ROOT_ITEM_KEY;
1880 	location.offset = (u64)-1;
1881 
1882 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1883 	if (!fs_info->fs_root)
1884 		goto fail_trans_kthread;
1885 	return tree_root;
1886 
1887 fail_trans_kthread:
1888 	kthread_stop(fs_info->transaction_kthread);
1889 fail_cleaner:
1890 	kthread_stop(fs_info->cleaner_kthread);
1891 
1892 	/*
1893 	 * make sure we're done with the btree inode before we stop our
1894 	 * kthreads
1895 	 */
1896 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1897 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1898 
1899 fail_csum_root:
1900 	free_extent_buffer(csum_root->node);
1901 fail_extent_root:
1902 	free_extent_buffer(extent_root->node);
1903 fail_tree_root:
1904 	free_extent_buffer(tree_root->node);
1905 fail_chunk_root:
1906 	free_extent_buffer(chunk_root->node);
1907 fail_sys_array:
1908 	free_extent_buffer(dev_root->node);
1909 fail_sb_buffer:
1910 	btrfs_stop_workers(&fs_info->fixup_workers);
1911 	btrfs_stop_workers(&fs_info->delalloc_workers);
1912 	btrfs_stop_workers(&fs_info->workers);
1913 	btrfs_stop_workers(&fs_info->endio_workers);
1914 	btrfs_stop_workers(&fs_info->endio_meta_workers);
1915 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1916 	btrfs_stop_workers(&fs_info->endio_write_workers);
1917 	btrfs_stop_workers(&fs_info->submit_workers);
1918 fail_iput:
1919 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1920 	iput(fs_info->btree_inode);
1921 
1922 	btrfs_close_devices(fs_info->fs_devices);
1923 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
1924 	bdi_destroy(&fs_info->bdi);
1925 
1926 fail:
1927 	kfree(extent_root);
1928 	kfree(tree_root);
1929 	kfree(fs_info);
1930 	kfree(chunk_root);
1931 	kfree(dev_root);
1932 	kfree(csum_root);
1933 	return ERR_PTR(err);
1934 }
1935 
1936 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1937 {
1938 	char b[BDEVNAME_SIZE];
1939 
1940 	if (uptodate) {
1941 		set_buffer_uptodate(bh);
1942 	} else {
1943 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1944 			printk(KERN_WARNING "lost page write due to "
1945 					"I/O error on %s\n",
1946 				       bdevname(bh->b_bdev, b));
1947 		}
1948 		/* note, we dont' set_buffer_write_io_error because we have
1949 		 * our own ways of dealing with the IO errors
1950 		 */
1951 		clear_buffer_uptodate(bh);
1952 	}
1953 	unlock_buffer(bh);
1954 	put_bh(bh);
1955 }
1956 
1957 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1958 {
1959 	struct buffer_head *bh;
1960 	struct buffer_head *latest = NULL;
1961 	struct btrfs_super_block *super;
1962 	int i;
1963 	u64 transid = 0;
1964 	u64 bytenr;
1965 
1966 	/* we would like to check all the supers, but that would make
1967 	 * a btrfs mount succeed after a mkfs from a different FS.
1968 	 * So, we need to add a special mount option to scan for
1969 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1970 	 */
1971 	for (i = 0; i < 1; i++) {
1972 		bytenr = btrfs_sb_offset(i);
1973 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1974 			break;
1975 		bh = __bread(bdev, bytenr / 4096, 4096);
1976 		if (!bh)
1977 			continue;
1978 
1979 		super = (struct btrfs_super_block *)bh->b_data;
1980 		if (btrfs_super_bytenr(super) != bytenr ||
1981 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
1982 			    sizeof(super->magic))) {
1983 			brelse(bh);
1984 			continue;
1985 		}
1986 
1987 		if (!latest || btrfs_super_generation(super) > transid) {
1988 			brelse(latest);
1989 			latest = bh;
1990 			transid = btrfs_super_generation(super);
1991 		} else {
1992 			brelse(bh);
1993 		}
1994 	}
1995 	return latest;
1996 }
1997 
1998 static int write_dev_supers(struct btrfs_device *device,
1999 			    struct btrfs_super_block *sb,
2000 			    int do_barriers, int wait, int max_mirrors)
2001 {
2002 	struct buffer_head *bh;
2003 	int i;
2004 	int ret;
2005 	int errors = 0;
2006 	u32 crc;
2007 	u64 bytenr;
2008 	int last_barrier = 0;
2009 
2010 	if (max_mirrors == 0)
2011 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2012 
2013 	/* make sure only the last submit_bh does a barrier */
2014 	if (do_barriers) {
2015 		for (i = 0; i < max_mirrors; i++) {
2016 			bytenr = btrfs_sb_offset(i);
2017 			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2018 			    device->total_bytes)
2019 				break;
2020 			last_barrier = i;
2021 		}
2022 	}
2023 
2024 	for (i = 0; i < max_mirrors; i++) {
2025 		bytenr = btrfs_sb_offset(i);
2026 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2027 			break;
2028 
2029 		if (wait) {
2030 			bh = __find_get_block(device->bdev, bytenr / 4096,
2031 					      BTRFS_SUPER_INFO_SIZE);
2032 			BUG_ON(!bh);
2033 			brelse(bh);
2034 			wait_on_buffer(bh);
2035 			if (buffer_uptodate(bh)) {
2036 				brelse(bh);
2037 				continue;
2038 			}
2039 		} else {
2040 			btrfs_set_super_bytenr(sb, bytenr);
2041 
2042 			crc = ~(u32)0;
2043 			crc = btrfs_csum_data(NULL, (char *)sb +
2044 					      BTRFS_CSUM_SIZE, crc,
2045 					      BTRFS_SUPER_INFO_SIZE -
2046 					      BTRFS_CSUM_SIZE);
2047 			btrfs_csum_final(crc, sb->csum);
2048 
2049 			bh = __getblk(device->bdev, bytenr / 4096,
2050 				      BTRFS_SUPER_INFO_SIZE);
2051 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2052 
2053 			set_buffer_uptodate(bh);
2054 			get_bh(bh);
2055 			lock_buffer(bh);
2056 			bh->b_end_io = btrfs_end_buffer_write_sync;
2057 		}
2058 
2059 		if (i == last_barrier && do_barriers && device->barriers) {
2060 			ret = submit_bh(WRITE_BARRIER, bh);
2061 			if (ret == -EOPNOTSUPP) {
2062 				printk("btrfs: disabling barriers on dev %s\n",
2063 				       device->name);
2064 				set_buffer_uptodate(bh);
2065 				device->barriers = 0;
2066 				get_bh(bh);
2067 				lock_buffer(bh);
2068 				ret = submit_bh(WRITE_SYNC, bh);
2069 			}
2070 		} else {
2071 			ret = submit_bh(WRITE_SYNC, bh);
2072 		}
2073 
2074 		if (!ret && wait) {
2075 			wait_on_buffer(bh);
2076 			if (!buffer_uptodate(bh))
2077 				errors++;
2078 		} else if (ret) {
2079 			errors++;
2080 		}
2081 		if (wait)
2082 			brelse(bh);
2083 	}
2084 	return errors < i ? 0 : -1;
2085 }
2086 
2087 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2088 {
2089 	struct list_head *head = &root->fs_info->fs_devices->devices;
2090 	struct btrfs_device *dev;
2091 	struct btrfs_super_block *sb;
2092 	struct btrfs_dev_item *dev_item;
2093 	int ret;
2094 	int do_barriers;
2095 	int max_errors;
2096 	int total_errors = 0;
2097 	u64 flags;
2098 
2099 	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2100 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2101 
2102 	sb = &root->fs_info->super_for_commit;
2103 	dev_item = &sb->dev_item;
2104 	list_for_each_entry(dev, head, dev_list) {
2105 		if (!dev->bdev) {
2106 			total_errors++;
2107 			continue;
2108 		}
2109 		if (!dev->in_fs_metadata || !dev->writeable)
2110 			continue;
2111 
2112 		btrfs_set_stack_device_generation(dev_item, 0);
2113 		btrfs_set_stack_device_type(dev_item, dev->type);
2114 		btrfs_set_stack_device_id(dev_item, dev->devid);
2115 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2116 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2117 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2118 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2119 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2120 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2121 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2122 
2123 		flags = btrfs_super_flags(sb);
2124 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2125 
2126 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2127 		if (ret)
2128 			total_errors++;
2129 	}
2130 	if (total_errors > max_errors) {
2131 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2132 		       total_errors);
2133 		BUG();
2134 	}
2135 
2136 	total_errors = 0;
2137 	list_for_each_entry(dev, head, dev_list) {
2138 		if (!dev->bdev)
2139 			continue;
2140 		if (!dev->in_fs_metadata || !dev->writeable)
2141 			continue;
2142 
2143 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2144 		if (ret)
2145 			total_errors++;
2146 	}
2147 	if (total_errors > max_errors) {
2148 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2149 		       total_errors);
2150 		BUG();
2151 	}
2152 	return 0;
2153 }
2154 
2155 int write_ctree_super(struct btrfs_trans_handle *trans,
2156 		      struct btrfs_root *root, int max_mirrors)
2157 {
2158 	int ret;
2159 
2160 	ret = write_all_supers(root, max_mirrors);
2161 	return ret;
2162 }
2163 
2164 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2165 {
2166 	radix_tree_delete(&fs_info->fs_roots_radix,
2167 			  (unsigned long)root->root_key.objectid);
2168 	if (root->anon_super.s_dev) {
2169 		down_write(&root->anon_super.s_umount);
2170 		kill_anon_super(&root->anon_super);
2171 	}
2172 	if (root->node)
2173 		free_extent_buffer(root->node);
2174 	if (root->commit_root)
2175 		free_extent_buffer(root->commit_root);
2176 	kfree(root->name);
2177 	kfree(root);
2178 	return 0;
2179 }
2180 
2181 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2182 {
2183 	int ret;
2184 	struct btrfs_root *gang[8];
2185 	int i;
2186 
2187 	while (1) {
2188 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2189 					     (void **)gang, 0,
2190 					     ARRAY_SIZE(gang));
2191 		if (!ret)
2192 			break;
2193 		for (i = 0; i < ret; i++)
2194 			btrfs_free_fs_root(fs_info, gang[i]);
2195 	}
2196 	return 0;
2197 }
2198 
2199 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2200 {
2201 	u64 root_objectid = 0;
2202 	struct btrfs_root *gang[8];
2203 	int i;
2204 	int ret;
2205 
2206 	while (1) {
2207 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2208 					     (void **)gang, root_objectid,
2209 					     ARRAY_SIZE(gang));
2210 		if (!ret)
2211 			break;
2212 		for (i = 0; i < ret; i++) {
2213 			root_objectid = gang[i]->root_key.objectid;
2214 			ret = btrfs_find_dead_roots(fs_info->tree_root,
2215 						    root_objectid, gang[i]);
2216 			BUG_ON(ret);
2217 			btrfs_orphan_cleanup(gang[i]);
2218 		}
2219 		root_objectid++;
2220 	}
2221 	return 0;
2222 }
2223 
2224 int btrfs_commit_super(struct btrfs_root *root)
2225 {
2226 	struct btrfs_trans_handle *trans;
2227 	int ret;
2228 
2229 	mutex_lock(&root->fs_info->cleaner_mutex);
2230 	btrfs_clean_old_snapshots(root);
2231 	mutex_unlock(&root->fs_info->cleaner_mutex);
2232 	trans = btrfs_start_transaction(root, 1);
2233 	ret = btrfs_commit_transaction(trans, root);
2234 	BUG_ON(ret);
2235 	/* run commit again to drop the original snapshot */
2236 	trans = btrfs_start_transaction(root, 1);
2237 	btrfs_commit_transaction(trans, root);
2238 	ret = btrfs_write_and_wait_transaction(NULL, root);
2239 	BUG_ON(ret);
2240 
2241 	ret = write_ctree_super(NULL, root, 0);
2242 	return ret;
2243 }
2244 
2245 int close_ctree(struct btrfs_root *root)
2246 {
2247 	struct btrfs_fs_info *fs_info = root->fs_info;
2248 	int ret;
2249 
2250 	fs_info->closing = 1;
2251 	smp_mb();
2252 
2253 	kthread_stop(root->fs_info->transaction_kthread);
2254 	kthread_stop(root->fs_info->cleaner_kthread);
2255 
2256 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2257 		ret =  btrfs_commit_super(root);
2258 		if (ret)
2259 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2260 	}
2261 
2262 	if (fs_info->delalloc_bytes) {
2263 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2264 		       fs_info->delalloc_bytes);
2265 	}
2266 	if (fs_info->total_ref_cache_size) {
2267 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2268 		       (unsigned long long)fs_info->total_ref_cache_size);
2269 	}
2270 
2271 	if (fs_info->extent_root->node)
2272 		free_extent_buffer(fs_info->extent_root->node);
2273 
2274 	if (fs_info->tree_root->node)
2275 		free_extent_buffer(fs_info->tree_root->node);
2276 
2277 	if (root->fs_info->chunk_root->node)
2278 		free_extent_buffer(root->fs_info->chunk_root->node);
2279 
2280 	if (root->fs_info->dev_root->node)
2281 		free_extent_buffer(root->fs_info->dev_root->node);
2282 
2283 	if (root->fs_info->csum_root->node)
2284 		free_extent_buffer(root->fs_info->csum_root->node);
2285 
2286 	btrfs_free_block_groups(root->fs_info);
2287 
2288 	del_fs_roots(fs_info);
2289 
2290 	iput(fs_info->btree_inode);
2291 
2292 	btrfs_stop_workers(&fs_info->fixup_workers);
2293 	btrfs_stop_workers(&fs_info->delalloc_workers);
2294 	btrfs_stop_workers(&fs_info->workers);
2295 	btrfs_stop_workers(&fs_info->endio_workers);
2296 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2297 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2298 	btrfs_stop_workers(&fs_info->endio_write_workers);
2299 	btrfs_stop_workers(&fs_info->submit_workers);
2300 
2301 	btrfs_close_devices(fs_info->fs_devices);
2302 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2303 
2304 	bdi_destroy(&fs_info->bdi);
2305 
2306 	kfree(fs_info->extent_root);
2307 	kfree(fs_info->tree_root);
2308 	kfree(fs_info->chunk_root);
2309 	kfree(fs_info->dev_root);
2310 	kfree(fs_info->csum_root);
2311 	return 0;
2312 }
2313 
2314 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2315 {
2316 	int ret;
2317 	struct inode *btree_inode = buf->first_page->mapping->host;
2318 
2319 	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2320 	if (!ret)
2321 		return ret;
2322 
2323 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2324 				    parent_transid);
2325 	return !ret;
2326 }
2327 
2328 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2329 {
2330 	struct inode *btree_inode = buf->first_page->mapping->host;
2331 	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2332 					  buf);
2333 }
2334 
2335 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2336 {
2337 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2338 	u64 transid = btrfs_header_generation(buf);
2339 	struct inode *btree_inode = root->fs_info->btree_inode;
2340 	int was_dirty;
2341 
2342 	btrfs_assert_tree_locked(buf);
2343 	if (transid != root->fs_info->generation) {
2344 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2345 		       "found %llu running %llu\n",
2346 			(unsigned long long)buf->start,
2347 			(unsigned long long)transid,
2348 			(unsigned long long)root->fs_info->generation);
2349 		WARN_ON(1);
2350 	}
2351 	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2352 					    buf);
2353 	if (!was_dirty) {
2354 		spin_lock(&root->fs_info->delalloc_lock);
2355 		root->fs_info->dirty_metadata_bytes += buf->len;
2356 		spin_unlock(&root->fs_info->delalloc_lock);
2357 	}
2358 }
2359 
2360 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2361 {
2362 	/*
2363 	 * looks as though older kernels can get into trouble with
2364 	 * this code, they end up stuck in balance_dirty_pages forever
2365 	 */
2366 	struct extent_io_tree *tree;
2367 	u64 num_dirty;
2368 	u64 start = 0;
2369 	unsigned long thresh = 32 * 1024 * 1024;
2370 	tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2371 
2372 	if (current->flags & PF_MEMALLOC)
2373 		return;
2374 
2375 	num_dirty = count_range_bits(tree, &start, (u64)-1,
2376 				     thresh, EXTENT_DIRTY);
2377 	if (num_dirty > thresh) {
2378 		balance_dirty_pages_ratelimited_nr(
2379 				   root->fs_info->btree_inode->i_mapping, 1);
2380 	}
2381 	return;
2382 }
2383 
2384 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2385 {
2386 	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2387 	int ret;
2388 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2389 	if (ret == 0)
2390 		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2391 	return ret;
2392 }
2393 
2394 int btree_lock_page_hook(struct page *page)
2395 {
2396 	struct inode *inode = page->mapping->host;
2397 	struct btrfs_root *root = BTRFS_I(inode)->root;
2398 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2399 	struct extent_buffer *eb;
2400 	unsigned long len;
2401 	u64 bytenr = page_offset(page);
2402 
2403 	if (page->private == EXTENT_PAGE_PRIVATE)
2404 		goto out;
2405 
2406 	len = page->private >> 2;
2407 	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2408 	if (!eb)
2409 		goto out;
2410 
2411 	btrfs_tree_lock(eb);
2412 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2413 
2414 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2415 		spin_lock(&root->fs_info->delalloc_lock);
2416 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
2417 			root->fs_info->dirty_metadata_bytes -= eb->len;
2418 		else
2419 			WARN_ON(1);
2420 		spin_unlock(&root->fs_info->delalloc_lock);
2421 	}
2422 
2423 	btrfs_tree_unlock(eb);
2424 	free_extent_buffer(eb);
2425 out:
2426 	lock_page(page);
2427 	return 0;
2428 }
2429 
2430 static struct extent_io_ops btree_extent_io_ops = {
2431 	.write_cache_pages_lock_hook = btree_lock_page_hook,
2432 	.readpage_end_io_hook = btree_readpage_end_io_hook,
2433 	.submit_bio_hook = btree_submit_bio_hook,
2434 	/* note we're sharing with inode.c for the merge bio hook */
2435 	.merge_bio_hook = btrfs_merge_bio_hook,
2436 };
2437