1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/scatterlist.h> 22 #include <linux/swap.h> 23 #include <linux/radix-tree.h> 24 #include <linux/writeback.h> 25 #include <linux/buffer_head.h> 26 #include <linux/workqueue.h> 27 #include <linux/kthread.h> 28 #include <linux/freezer.h> 29 #include "compat.h" 30 #include "crc32c.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "volumes.h" 36 #include "print-tree.h" 37 #include "async-thread.h" 38 #include "locking.h" 39 #include "ref-cache.h" 40 #include "tree-log.h" 41 #include "free-space-cache.h" 42 43 static struct extent_io_ops btree_extent_io_ops; 44 static void end_workqueue_fn(struct btrfs_work *work); 45 46 /* 47 * end_io_wq structs are used to do processing in task context when an IO is 48 * complete. This is used during reads to verify checksums, and it is used 49 * by writes to insert metadata for new file extents after IO is complete. 50 */ 51 struct end_io_wq { 52 struct bio *bio; 53 bio_end_io_t *end_io; 54 void *private; 55 struct btrfs_fs_info *info; 56 int error; 57 int metadata; 58 struct list_head list; 59 struct btrfs_work work; 60 }; 61 62 /* 63 * async submit bios are used to offload expensive checksumming 64 * onto the worker threads. They checksum file and metadata bios 65 * just before they are sent down the IO stack. 66 */ 67 struct async_submit_bio { 68 struct inode *inode; 69 struct bio *bio; 70 struct list_head list; 71 extent_submit_bio_hook_t *submit_bio_start; 72 extent_submit_bio_hook_t *submit_bio_done; 73 int rw; 74 int mirror_num; 75 unsigned long bio_flags; 76 struct btrfs_work work; 77 }; 78 79 /* These are used to set the lockdep class on the extent buffer locks. 80 * The class is set by the readpage_end_io_hook after the buffer has 81 * passed csum validation but before the pages are unlocked. 82 * 83 * The lockdep class is also set by btrfs_init_new_buffer on freshly 84 * allocated blocks. 85 * 86 * The class is based on the level in the tree block, which allows lockdep 87 * to know that lower nodes nest inside the locks of higher nodes. 88 * 89 * We also add a check to make sure the highest level of the tree is 90 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this 91 * code needs update as well. 92 */ 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 # if BTRFS_MAX_LEVEL != 8 95 # error 96 # endif 97 static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1]; 98 static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = { 99 /* leaf */ 100 "btrfs-extent-00", 101 "btrfs-extent-01", 102 "btrfs-extent-02", 103 "btrfs-extent-03", 104 "btrfs-extent-04", 105 "btrfs-extent-05", 106 "btrfs-extent-06", 107 "btrfs-extent-07", 108 /* highest possible level */ 109 "btrfs-extent-08", 110 }; 111 #endif 112 113 /* 114 * extents on the btree inode are pretty simple, there's one extent 115 * that covers the entire device 116 */ 117 static struct extent_map *btree_get_extent(struct inode *inode, 118 struct page *page, size_t page_offset, u64 start, u64 len, 119 int create) 120 { 121 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 122 struct extent_map *em; 123 int ret; 124 125 spin_lock(&em_tree->lock); 126 em = lookup_extent_mapping(em_tree, start, len); 127 if (em) { 128 em->bdev = 129 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 130 spin_unlock(&em_tree->lock); 131 goto out; 132 } 133 spin_unlock(&em_tree->lock); 134 135 em = alloc_extent_map(GFP_NOFS); 136 if (!em) { 137 em = ERR_PTR(-ENOMEM); 138 goto out; 139 } 140 em->start = 0; 141 em->len = (u64)-1; 142 em->block_len = (u64)-1; 143 em->block_start = 0; 144 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 145 146 spin_lock(&em_tree->lock); 147 ret = add_extent_mapping(em_tree, em); 148 if (ret == -EEXIST) { 149 u64 failed_start = em->start; 150 u64 failed_len = em->len; 151 152 free_extent_map(em); 153 em = lookup_extent_mapping(em_tree, start, len); 154 if (em) { 155 ret = 0; 156 } else { 157 em = lookup_extent_mapping(em_tree, failed_start, 158 failed_len); 159 ret = -EIO; 160 } 161 } else if (ret) { 162 free_extent_map(em); 163 em = NULL; 164 } 165 spin_unlock(&em_tree->lock); 166 167 if (ret) 168 em = ERR_PTR(ret); 169 out: 170 return em; 171 } 172 173 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) 174 { 175 return btrfs_crc32c(seed, data, len); 176 } 177 178 void btrfs_csum_final(u32 crc, char *result) 179 { 180 *(__le32 *)result = ~cpu_to_le32(crc); 181 } 182 183 /* 184 * compute the csum for a btree block, and either verify it or write it 185 * into the csum field of the block. 186 */ 187 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, 188 int verify) 189 { 190 u16 csum_size = 191 btrfs_super_csum_size(&root->fs_info->super_copy); 192 char *result = NULL; 193 unsigned long len; 194 unsigned long cur_len; 195 unsigned long offset = BTRFS_CSUM_SIZE; 196 char *map_token = NULL; 197 char *kaddr; 198 unsigned long map_start; 199 unsigned long map_len; 200 int err; 201 u32 crc = ~(u32)0; 202 unsigned long inline_result; 203 204 len = buf->len - offset; 205 while (len > 0) { 206 err = map_private_extent_buffer(buf, offset, 32, 207 &map_token, &kaddr, 208 &map_start, &map_len, KM_USER0); 209 if (err) 210 return 1; 211 cur_len = min(len, map_len - (offset - map_start)); 212 crc = btrfs_csum_data(root, kaddr + offset - map_start, 213 crc, cur_len); 214 len -= cur_len; 215 offset += cur_len; 216 unmap_extent_buffer(buf, map_token, KM_USER0); 217 } 218 if (csum_size > sizeof(inline_result)) { 219 result = kzalloc(csum_size * sizeof(char), GFP_NOFS); 220 if (!result) 221 return 1; 222 } else { 223 result = (char *)&inline_result; 224 } 225 226 btrfs_csum_final(crc, result); 227 228 if (verify) { 229 if (memcmp_extent_buffer(buf, result, 0, csum_size)) { 230 u32 val; 231 u32 found = 0; 232 memcpy(&found, result, csum_size); 233 234 read_extent_buffer(buf, &val, 0, csum_size); 235 printk(KERN_INFO "btrfs: %s checksum verify failed " 236 "on %llu wanted %X found %X level %d\n", 237 root->fs_info->sb->s_id, 238 buf->start, val, found, btrfs_header_level(buf)); 239 if (result != (char *)&inline_result) 240 kfree(result); 241 return 1; 242 } 243 } else { 244 write_extent_buffer(buf, result, 0, csum_size); 245 } 246 if (result != (char *)&inline_result) 247 kfree(result); 248 return 0; 249 } 250 251 /* 252 * we can't consider a given block up to date unless the transid of the 253 * block matches the transid in the parent node's pointer. This is how we 254 * detect blocks that either didn't get written at all or got written 255 * in the wrong place. 256 */ 257 static int verify_parent_transid(struct extent_io_tree *io_tree, 258 struct extent_buffer *eb, u64 parent_transid) 259 { 260 int ret; 261 262 if (!parent_transid || btrfs_header_generation(eb) == parent_transid) 263 return 0; 264 265 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); 266 if (extent_buffer_uptodate(io_tree, eb) && 267 btrfs_header_generation(eb) == parent_transid) { 268 ret = 0; 269 goto out; 270 } 271 printk("parent transid verify failed on %llu wanted %llu found %llu\n", 272 (unsigned long long)eb->start, 273 (unsigned long long)parent_transid, 274 (unsigned long long)btrfs_header_generation(eb)); 275 ret = 1; 276 clear_extent_buffer_uptodate(io_tree, eb); 277 out: 278 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, 279 GFP_NOFS); 280 return ret; 281 } 282 283 /* 284 * helper to read a given tree block, doing retries as required when 285 * the checksums don't match and we have alternate mirrors to try. 286 */ 287 static int btree_read_extent_buffer_pages(struct btrfs_root *root, 288 struct extent_buffer *eb, 289 u64 start, u64 parent_transid) 290 { 291 struct extent_io_tree *io_tree; 292 int ret; 293 int num_copies = 0; 294 int mirror_num = 0; 295 296 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 297 while (1) { 298 ret = read_extent_buffer_pages(io_tree, eb, start, 1, 299 btree_get_extent, mirror_num); 300 if (!ret && 301 !verify_parent_transid(io_tree, eb, parent_transid)) 302 return ret; 303 304 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, 305 eb->start, eb->len); 306 if (num_copies == 1) 307 return ret; 308 309 mirror_num++; 310 if (mirror_num > num_copies) 311 return ret; 312 } 313 return -EIO; 314 } 315 316 /* 317 * checksum a dirty tree block before IO. This has extra checks to make sure 318 * we only fill in the checksum field in the first page of a multi-page block 319 */ 320 321 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page) 322 { 323 struct extent_io_tree *tree; 324 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 325 u64 found_start; 326 int found_level; 327 unsigned long len; 328 struct extent_buffer *eb; 329 int ret; 330 331 tree = &BTRFS_I(page->mapping->host)->io_tree; 332 333 if (page->private == EXTENT_PAGE_PRIVATE) 334 goto out; 335 if (!page->private) 336 goto out; 337 len = page->private >> 2; 338 WARN_ON(len == 0); 339 340 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 341 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, 342 btrfs_header_generation(eb)); 343 BUG_ON(ret); 344 found_start = btrfs_header_bytenr(eb); 345 if (found_start != start) { 346 WARN_ON(1); 347 goto err; 348 } 349 if (eb->first_page != page) { 350 WARN_ON(1); 351 goto err; 352 } 353 if (!PageUptodate(page)) { 354 WARN_ON(1); 355 goto err; 356 } 357 found_level = btrfs_header_level(eb); 358 359 csum_tree_block(root, eb, 0); 360 err: 361 free_extent_buffer(eb); 362 out: 363 return 0; 364 } 365 366 static int check_tree_block_fsid(struct btrfs_root *root, 367 struct extent_buffer *eb) 368 { 369 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 370 u8 fsid[BTRFS_UUID_SIZE]; 371 int ret = 1; 372 373 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb), 374 BTRFS_FSID_SIZE); 375 while (fs_devices) { 376 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { 377 ret = 0; 378 break; 379 } 380 fs_devices = fs_devices->seed; 381 } 382 return ret; 383 } 384 385 #ifdef CONFIG_DEBUG_LOCK_ALLOC 386 void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level) 387 { 388 lockdep_set_class_and_name(&eb->lock, 389 &btrfs_eb_class[level], 390 btrfs_eb_name[level]); 391 } 392 #endif 393 394 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, 395 struct extent_state *state) 396 { 397 struct extent_io_tree *tree; 398 u64 found_start; 399 int found_level; 400 unsigned long len; 401 struct extent_buffer *eb; 402 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 403 int ret = 0; 404 405 tree = &BTRFS_I(page->mapping->host)->io_tree; 406 if (page->private == EXTENT_PAGE_PRIVATE) 407 goto out; 408 if (!page->private) 409 goto out; 410 411 len = page->private >> 2; 412 WARN_ON(len == 0); 413 414 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); 415 416 found_start = btrfs_header_bytenr(eb); 417 if (found_start != start) { 418 printk(KERN_INFO "btrfs bad tree block start %llu %llu\n", 419 (unsigned long long)found_start, 420 (unsigned long long)eb->start); 421 ret = -EIO; 422 goto err; 423 } 424 if (eb->first_page != page) { 425 printk(KERN_INFO "btrfs bad first page %lu %lu\n", 426 eb->first_page->index, page->index); 427 WARN_ON(1); 428 ret = -EIO; 429 goto err; 430 } 431 if (check_tree_block_fsid(root, eb)) { 432 printk(KERN_INFO "btrfs bad fsid on block %llu\n", 433 (unsigned long long)eb->start); 434 ret = -EIO; 435 goto err; 436 } 437 found_level = btrfs_header_level(eb); 438 439 btrfs_set_buffer_lockdep_class(eb, found_level); 440 441 ret = csum_tree_block(root, eb, 1); 442 if (ret) 443 ret = -EIO; 444 445 end = min_t(u64, eb->len, PAGE_CACHE_SIZE); 446 end = eb->start + end - 1; 447 err: 448 free_extent_buffer(eb); 449 out: 450 return ret; 451 } 452 453 static void end_workqueue_bio(struct bio *bio, int err) 454 { 455 struct end_io_wq *end_io_wq = bio->bi_private; 456 struct btrfs_fs_info *fs_info; 457 458 fs_info = end_io_wq->info; 459 end_io_wq->error = err; 460 end_io_wq->work.func = end_workqueue_fn; 461 end_io_wq->work.flags = 0; 462 463 if (bio->bi_rw & (1 << BIO_RW)) { 464 if (end_io_wq->metadata) 465 btrfs_queue_worker(&fs_info->endio_meta_write_workers, 466 &end_io_wq->work); 467 else 468 btrfs_queue_worker(&fs_info->endio_write_workers, 469 &end_io_wq->work); 470 } else { 471 if (end_io_wq->metadata) 472 btrfs_queue_worker(&fs_info->endio_meta_workers, 473 &end_io_wq->work); 474 else 475 btrfs_queue_worker(&fs_info->endio_workers, 476 &end_io_wq->work); 477 } 478 } 479 480 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, 481 int metadata) 482 { 483 struct end_io_wq *end_io_wq; 484 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); 485 if (!end_io_wq) 486 return -ENOMEM; 487 488 end_io_wq->private = bio->bi_private; 489 end_io_wq->end_io = bio->bi_end_io; 490 end_io_wq->info = info; 491 end_io_wq->error = 0; 492 end_io_wq->bio = bio; 493 end_io_wq->metadata = metadata; 494 495 bio->bi_private = end_io_wq; 496 bio->bi_end_io = end_workqueue_bio; 497 return 0; 498 } 499 500 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) 501 { 502 unsigned long limit = min_t(unsigned long, 503 info->workers.max_workers, 504 info->fs_devices->open_devices); 505 return 256 * limit; 506 } 507 508 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone) 509 { 510 return atomic_read(&info->nr_async_bios) > 511 btrfs_async_submit_limit(info); 512 } 513 514 static void run_one_async_start(struct btrfs_work *work) 515 { 516 struct btrfs_fs_info *fs_info; 517 struct async_submit_bio *async; 518 519 async = container_of(work, struct async_submit_bio, work); 520 fs_info = BTRFS_I(async->inode)->root->fs_info; 521 async->submit_bio_start(async->inode, async->rw, async->bio, 522 async->mirror_num, async->bio_flags); 523 } 524 525 static void run_one_async_done(struct btrfs_work *work) 526 { 527 struct btrfs_fs_info *fs_info; 528 struct async_submit_bio *async; 529 int limit; 530 531 async = container_of(work, struct async_submit_bio, work); 532 fs_info = BTRFS_I(async->inode)->root->fs_info; 533 534 limit = btrfs_async_submit_limit(fs_info); 535 limit = limit * 2 / 3; 536 537 atomic_dec(&fs_info->nr_async_submits); 538 539 if (atomic_read(&fs_info->nr_async_submits) < limit && 540 waitqueue_active(&fs_info->async_submit_wait)) 541 wake_up(&fs_info->async_submit_wait); 542 543 async->submit_bio_done(async->inode, async->rw, async->bio, 544 async->mirror_num, async->bio_flags); 545 } 546 547 static void run_one_async_free(struct btrfs_work *work) 548 { 549 struct async_submit_bio *async; 550 551 async = container_of(work, struct async_submit_bio, work); 552 kfree(async); 553 } 554 555 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, 556 int rw, struct bio *bio, int mirror_num, 557 unsigned long bio_flags, 558 extent_submit_bio_hook_t *submit_bio_start, 559 extent_submit_bio_hook_t *submit_bio_done) 560 { 561 struct async_submit_bio *async; 562 563 async = kmalloc(sizeof(*async), GFP_NOFS); 564 if (!async) 565 return -ENOMEM; 566 567 async->inode = inode; 568 async->rw = rw; 569 async->bio = bio; 570 async->mirror_num = mirror_num; 571 async->submit_bio_start = submit_bio_start; 572 async->submit_bio_done = submit_bio_done; 573 574 async->work.func = run_one_async_start; 575 async->work.ordered_func = run_one_async_done; 576 async->work.ordered_free = run_one_async_free; 577 578 async->work.flags = 0; 579 async->bio_flags = bio_flags; 580 581 atomic_inc(&fs_info->nr_async_submits); 582 583 if (rw & (1 << BIO_RW_SYNCIO)) 584 btrfs_set_work_high_prio(&async->work); 585 586 btrfs_queue_worker(&fs_info->workers, &async->work); 587 588 while (atomic_read(&fs_info->async_submit_draining) && 589 atomic_read(&fs_info->nr_async_submits)) { 590 wait_event(fs_info->async_submit_wait, 591 (atomic_read(&fs_info->nr_async_submits) == 0)); 592 } 593 594 return 0; 595 } 596 597 static int btree_csum_one_bio(struct bio *bio) 598 { 599 struct bio_vec *bvec = bio->bi_io_vec; 600 int bio_index = 0; 601 struct btrfs_root *root; 602 603 WARN_ON(bio->bi_vcnt <= 0); 604 while (bio_index < bio->bi_vcnt) { 605 root = BTRFS_I(bvec->bv_page->mapping->host)->root; 606 csum_dirty_buffer(root, bvec->bv_page); 607 bio_index++; 608 bvec++; 609 } 610 return 0; 611 } 612 613 static int __btree_submit_bio_start(struct inode *inode, int rw, 614 struct bio *bio, int mirror_num, 615 unsigned long bio_flags) 616 { 617 /* 618 * when we're called for a write, we're already in the async 619 * submission context. Just jump into btrfs_map_bio 620 */ 621 btree_csum_one_bio(bio); 622 return 0; 623 } 624 625 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 626 int mirror_num, unsigned long bio_flags) 627 { 628 /* 629 * when we're called for a write, we're already in the async 630 * submission context. Just jump into btrfs_map_bio 631 */ 632 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); 633 } 634 635 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 636 int mirror_num, unsigned long bio_flags) 637 { 638 int ret; 639 640 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, 641 bio, 1); 642 BUG_ON(ret); 643 644 if (!(rw & (1 << BIO_RW))) { 645 /* 646 * called for a read, do the setup so that checksum validation 647 * can happen in the async kernel threads 648 */ 649 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, 650 mirror_num, 0); 651 } 652 653 /* 654 * kthread helpers are used to submit writes so that checksumming 655 * can happen in parallel across all CPUs 656 */ 657 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 658 inode, rw, bio, mirror_num, 0, 659 __btree_submit_bio_start, 660 __btree_submit_bio_done); 661 } 662 663 static int btree_writepage(struct page *page, struct writeback_control *wbc) 664 { 665 struct extent_io_tree *tree; 666 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 667 struct extent_buffer *eb; 668 int was_dirty; 669 670 tree = &BTRFS_I(page->mapping->host)->io_tree; 671 if (!(current->flags & PF_MEMALLOC)) { 672 return extent_write_full_page(tree, page, 673 btree_get_extent, wbc); 674 } 675 676 redirty_page_for_writepage(wbc, page); 677 eb = btrfs_find_tree_block(root, page_offset(page), 678 PAGE_CACHE_SIZE); 679 WARN_ON(!eb); 680 681 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 682 if (!was_dirty) { 683 spin_lock(&root->fs_info->delalloc_lock); 684 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE; 685 spin_unlock(&root->fs_info->delalloc_lock); 686 } 687 free_extent_buffer(eb); 688 689 unlock_page(page); 690 return 0; 691 } 692 693 static int btree_writepages(struct address_space *mapping, 694 struct writeback_control *wbc) 695 { 696 struct extent_io_tree *tree; 697 tree = &BTRFS_I(mapping->host)->io_tree; 698 if (wbc->sync_mode == WB_SYNC_NONE) { 699 struct btrfs_root *root = BTRFS_I(mapping->host)->root; 700 u64 num_dirty; 701 unsigned long thresh = 32 * 1024 * 1024; 702 703 if (wbc->for_kupdate) 704 return 0; 705 706 /* this is a bit racy, but that's ok */ 707 num_dirty = root->fs_info->dirty_metadata_bytes; 708 if (num_dirty < thresh) 709 return 0; 710 } 711 return extent_writepages(tree, mapping, btree_get_extent, wbc); 712 } 713 714 static int btree_readpage(struct file *file, struct page *page) 715 { 716 struct extent_io_tree *tree; 717 tree = &BTRFS_I(page->mapping->host)->io_tree; 718 return extent_read_full_page(tree, page, btree_get_extent); 719 } 720 721 static int btree_releasepage(struct page *page, gfp_t gfp_flags) 722 { 723 struct extent_io_tree *tree; 724 struct extent_map_tree *map; 725 int ret; 726 727 if (PageWriteback(page) || PageDirty(page)) 728 return 0; 729 730 tree = &BTRFS_I(page->mapping->host)->io_tree; 731 map = &BTRFS_I(page->mapping->host)->extent_tree; 732 733 ret = try_release_extent_state(map, tree, page, gfp_flags); 734 if (!ret) 735 return 0; 736 737 ret = try_release_extent_buffer(tree, page); 738 if (ret == 1) { 739 ClearPagePrivate(page); 740 set_page_private(page, 0); 741 page_cache_release(page); 742 } 743 744 return ret; 745 } 746 747 static void btree_invalidatepage(struct page *page, unsigned long offset) 748 { 749 struct extent_io_tree *tree; 750 tree = &BTRFS_I(page->mapping->host)->io_tree; 751 extent_invalidatepage(tree, page, offset); 752 btree_releasepage(page, GFP_NOFS); 753 if (PagePrivate(page)) { 754 printk(KERN_WARNING "btrfs warning page private not zero " 755 "on page %llu\n", (unsigned long long)page_offset(page)); 756 ClearPagePrivate(page); 757 set_page_private(page, 0); 758 page_cache_release(page); 759 } 760 } 761 762 static struct address_space_operations btree_aops = { 763 .readpage = btree_readpage, 764 .writepage = btree_writepage, 765 .writepages = btree_writepages, 766 .releasepage = btree_releasepage, 767 .invalidatepage = btree_invalidatepage, 768 .sync_page = block_sync_page, 769 }; 770 771 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, 772 u64 parent_transid) 773 { 774 struct extent_buffer *buf = NULL; 775 struct inode *btree_inode = root->fs_info->btree_inode; 776 int ret = 0; 777 778 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 779 if (!buf) 780 return 0; 781 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, 782 buf, 0, 0, btree_get_extent, 0); 783 free_extent_buffer(buf); 784 return ret; 785 } 786 787 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, 788 u64 bytenr, u32 blocksize) 789 { 790 struct inode *btree_inode = root->fs_info->btree_inode; 791 struct extent_buffer *eb; 792 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 793 bytenr, blocksize, GFP_NOFS); 794 return eb; 795 } 796 797 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, 798 u64 bytenr, u32 blocksize) 799 { 800 struct inode *btree_inode = root->fs_info->btree_inode; 801 struct extent_buffer *eb; 802 803 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, 804 bytenr, blocksize, NULL, GFP_NOFS); 805 return eb; 806 } 807 808 809 int btrfs_write_tree_block(struct extent_buffer *buf) 810 { 811 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start, 812 buf->start + buf->len - 1, WB_SYNC_ALL); 813 } 814 815 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf) 816 { 817 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping, 818 buf->start, buf->start + buf->len - 1); 819 } 820 821 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, 822 u32 blocksize, u64 parent_transid) 823 { 824 struct extent_buffer *buf = NULL; 825 struct inode *btree_inode = root->fs_info->btree_inode; 826 struct extent_io_tree *io_tree; 827 int ret; 828 829 io_tree = &BTRFS_I(btree_inode)->io_tree; 830 831 buf = btrfs_find_create_tree_block(root, bytenr, blocksize); 832 if (!buf) 833 return NULL; 834 835 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 836 837 if (ret == 0) 838 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 839 else 840 WARN_ON(1); 841 return buf; 842 843 } 844 845 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, 846 struct extent_buffer *buf) 847 { 848 struct inode *btree_inode = root->fs_info->btree_inode; 849 if (btrfs_header_generation(buf) == 850 root->fs_info->running_transaction->transid) { 851 btrfs_assert_tree_locked(buf); 852 853 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { 854 spin_lock(&root->fs_info->delalloc_lock); 855 if (root->fs_info->dirty_metadata_bytes >= buf->len) 856 root->fs_info->dirty_metadata_bytes -= buf->len; 857 else 858 WARN_ON(1); 859 spin_unlock(&root->fs_info->delalloc_lock); 860 } 861 862 /* ugh, clear_extent_buffer_dirty needs to lock the page */ 863 btrfs_set_lock_blocking(buf); 864 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 865 buf); 866 } 867 return 0; 868 } 869 870 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, 871 u32 stripesize, struct btrfs_root *root, 872 struct btrfs_fs_info *fs_info, 873 u64 objectid) 874 { 875 root->node = NULL; 876 root->commit_root = NULL; 877 root->ref_tree = NULL; 878 root->sectorsize = sectorsize; 879 root->nodesize = nodesize; 880 root->leafsize = leafsize; 881 root->stripesize = stripesize; 882 root->ref_cows = 0; 883 root->track_dirty = 0; 884 885 root->fs_info = fs_info; 886 root->objectid = objectid; 887 root->last_trans = 0; 888 root->highest_inode = 0; 889 root->last_inode_alloc = 0; 890 root->name = NULL; 891 root->in_sysfs = 0; 892 893 INIT_LIST_HEAD(&root->dirty_list); 894 INIT_LIST_HEAD(&root->orphan_list); 895 INIT_LIST_HEAD(&root->dead_list); 896 spin_lock_init(&root->node_lock); 897 spin_lock_init(&root->list_lock); 898 mutex_init(&root->objectid_mutex); 899 mutex_init(&root->log_mutex); 900 init_waitqueue_head(&root->log_writer_wait); 901 init_waitqueue_head(&root->log_commit_wait[0]); 902 init_waitqueue_head(&root->log_commit_wait[1]); 903 atomic_set(&root->log_commit[0], 0); 904 atomic_set(&root->log_commit[1], 0); 905 atomic_set(&root->log_writers, 0); 906 root->log_batch = 0; 907 root->log_transid = 0; 908 extent_io_tree_init(&root->dirty_log_pages, 909 fs_info->btree_inode->i_mapping, GFP_NOFS); 910 911 btrfs_leaf_ref_tree_init(&root->ref_tree_struct); 912 root->ref_tree = &root->ref_tree_struct; 913 914 memset(&root->root_key, 0, sizeof(root->root_key)); 915 memset(&root->root_item, 0, sizeof(root->root_item)); 916 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); 917 memset(&root->root_kobj, 0, sizeof(root->root_kobj)); 918 root->defrag_trans_start = fs_info->generation; 919 init_completion(&root->kobj_unregister); 920 root->defrag_running = 0; 921 root->defrag_level = 0; 922 root->root_key.objectid = objectid; 923 root->anon_super.s_root = NULL; 924 root->anon_super.s_dev = 0; 925 INIT_LIST_HEAD(&root->anon_super.s_list); 926 INIT_LIST_HEAD(&root->anon_super.s_instances); 927 init_rwsem(&root->anon_super.s_umount); 928 929 return 0; 930 } 931 932 static int find_and_setup_root(struct btrfs_root *tree_root, 933 struct btrfs_fs_info *fs_info, 934 u64 objectid, 935 struct btrfs_root *root) 936 { 937 int ret; 938 u32 blocksize; 939 u64 generation; 940 941 __setup_root(tree_root->nodesize, tree_root->leafsize, 942 tree_root->sectorsize, tree_root->stripesize, 943 root, fs_info, objectid); 944 ret = btrfs_find_last_root(tree_root, objectid, 945 &root->root_item, &root->root_key); 946 BUG_ON(ret); 947 948 generation = btrfs_root_generation(&root->root_item); 949 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 950 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 951 blocksize, generation); 952 BUG_ON(!root->node); 953 return 0; 954 } 955 956 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans, 957 struct btrfs_fs_info *fs_info) 958 { 959 struct extent_buffer *eb; 960 struct btrfs_root *log_root_tree = fs_info->log_root_tree; 961 u64 start = 0; 962 u64 end = 0; 963 int ret; 964 965 if (!log_root_tree) 966 return 0; 967 968 while (1) { 969 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages, 970 0, &start, &end, EXTENT_DIRTY); 971 if (ret) 972 break; 973 974 clear_extent_dirty(&log_root_tree->dirty_log_pages, 975 start, end, GFP_NOFS); 976 } 977 eb = fs_info->log_root_tree->node; 978 979 WARN_ON(btrfs_header_level(eb) != 0); 980 WARN_ON(btrfs_header_nritems(eb) != 0); 981 982 ret = btrfs_free_reserved_extent(fs_info->tree_root, 983 eb->start, eb->len); 984 BUG_ON(ret); 985 986 free_extent_buffer(eb); 987 kfree(fs_info->log_root_tree); 988 fs_info->log_root_tree = NULL; 989 return 0; 990 } 991 992 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, 993 struct btrfs_fs_info *fs_info) 994 { 995 struct btrfs_root *root; 996 struct btrfs_root *tree_root = fs_info->tree_root; 997 struct extent_buffer *leaf; 998 999 root = kzalloc(sizeof(*root), GFP_NOFS); 1000 if (!root) 1001 return ERR_PTR(-ENOMEM); 1002 1003 __setup_root(tree_root->nodesize, tree_root->leafsize, 1004 tree_root->sectorsize, tree_root->stripesize, 1005 root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1006 1007 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; 1008 root->root_key.type = BTRFS_ROOT_ITEM_KEY; 1009 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; 1010 /* 1011 * log trees do not get reference counted because they go away 1012 * before a real commit is actually done. They do store pointers 1013 * to file data extents, and those reference counts still get 1014 * updated (along with back refs to the log tree). 1015 */ 1016 root->ref_cows = 0; 1017 1018 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 1019 0, BTRFS_TREE_LOG_OBJECTID, 1020 trans->transid, 0, 0, 0); 1021 if (IS_ERR(leaf)) { 1022 kfree(root); 1023 return ERR_CAST(leaf); 1024 } 1025 1026 root->node = leaf; 1027 btrfs_set_header_nritems(root->node, 0); 1028 btrfs_set_header_level(root->node, 0); 1029 btrfs_set_header_bytenr(root->node, root->node->start); 1030 btrfs_set_header_generation(root->node, trans->transid); 1031 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID); 1032 1033 write_extent_buffer(root->node, root->fs_info->fsid, 1034 (unsigned long)btrfs_header_fsid(root->node), 1035 BTRFS_FSID_SIZE); 1036 btrfs_mark_buffer_dirty(root->node); 1037 btrfs_tree_unlock(root->node); 1038 return root; 1039 } 1040 1041 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, 1042 struct btrfs_fs_info *fs_info) 1043 { 1044 struct btrfs_root *log_root; 1045 1046 log_root = alloc_log_tree(trans, fs_info); 1047 if (IS_ERR(log_root)) 1048 return PTR_ERR(log_root); 1049 WARN_ON(fs_info->log_root_tree); 1050 fs_info->log_root_tree = log_root; 1051 return 0; 1052 } 1053 1054 int btrfs_add_log_tree(struct btrfs_trans_handle *trans, 1055 struct btrfs_root *root) 1056 { 1057 struct btrfs_root *log_root; 1058 struct btrfs_inode_item *inode_item; 1059 1060 log_root = alloc_log_tree(trans, root->fs_info); 1061 if (IS_ERR(log_root)) 1062 return PTR_ERR(log_root); 1063 1064 log_root->last_trans = trans->transid; 1065 log_root->root_key.offset = root->root_key.objectid; 1066 1067 inode_item = &log_root->root_item.inode; 1068 inode_item->generation = cpu_to_le64(1); 1069 inode_item->size = cpu_to_le64(3); 1070 inode_item->nlink = cpu_to_le32(1); 1071 inode_item->nbytes = cpu_to_le64(root->leafsize); 1072 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 1073 1074 btrfs_set_root_bytenr(&log_root->root_item, log_root->node->start); 1075 btrfs_set_root_generation(&log_root->root_item, trans->transid); 1076 1077 WARN_ON(root->log_root); 1078 root->log_root = log_root; 1079 root->log_transid = 0; 1080 return 0; 1081 } 1082 1083 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root, 1084 struct btrfs_key *location) 1085 { 1086 struct btrfs_root *root; 1087 struct btrfs_fs_info *fs_info = tree_root->fs_info; 1088 struct btrfs_path *path; 1089 struct extent_buffer *l; 1090 u64 highest_inode; 1091 u64 generation; 1092 u32 blocksize; 1093 int ret = 0; 1094 1095 root = kzalloc(sizeof(*root), GFP_NOFS); 1096 if (!root) 1097 return ERR_PTR(-ENOMEM); 1098 if (location->offset == (u64)-1) { 1099 ret = find_and_setup_root(tree_root, fs_info, 1100 location->objectid, root); 1101 if (ret) { 1102 kfree(root); 1103 return ERR_PTR(ret); 1104 } 1105 goto insert; 1106 } 1107 1108 __setup_root(tree_root->nodesize, tree_root->leafsize, 1109 tree_root->sectorsize, tree_root->stripesize, 1110 root, fs_info, location->objectid); 1111 1112 path = btrfs_alloc_path(); 1113 BUG_ON(!path); 1114 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); 1115 if (ret != 0) { 1116 if (ret > 0) 1117 ret = -ENOENT; 1118 goto out; 1119 } 1120 l = path->nodes[0]; 1121 read_extent_buffer(l, &root->root_item, 1122 btrfs_item_ptr_offset(l, path->slots[0]), 1123 sizeof(root->root_item)); 1124 memcpy(&root->root_key, location, sizeof(*location)); 1125 ret = 0; 1126 out: 1127 btrfs_release_path(root, path); 1128 btrfs_free_path(path); 1129 if (ret) { 1130 kfree(root); 1131 return ERR_PTR(ret); 1132 } 1133 generation = btrfs_root_generation(&root->root_item); 1134 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); 1135 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), 1136 blocksize, generation); 1137 BUG_ON(!root->node); 1138 insert: 1139 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) { 1140 root->ref_cows = 1; 1141 ret = btrfs_find_highest_inode(root, &highest_inode); 1142 if (ret == 0) { 1143 root->highest_inode = highest_inode; 1144 root->last_inode_alloc = highest_inode; 1145 } 1146 } 1147 return root; 1148 } 1149 1150 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, 1151 u64 root_objectid) 1152 { 1153 struct btrfs_root *root; 1154 1155 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) 1156 return fs_info->tree_root; 1157 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) 1158 return fs_info->extent_root; 1159 1160 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1161 (unsigned long)root_objectid); 1162 return root; 1163 } 1164 1165 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, 1166 struct btrfs_key *location) 1167 { 1168 struct btrfs_root *root; 1169 int ret; 1170 1171 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) 1172 return fs_info->tree_root; 1173 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) 1174 return fs_info->extent_root; 1175 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) 1176 return fs_info->chunk_root; 1177 if (location->objectid == BTRFS_DEV_TREE_OBJECTID) 1178 return fs_info->dev_root; 1179 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) 1180 return fs_info->csum_root; 1181 1182 root = radix_tree_lookup(&fs_info->fs_roots_radix, 1183 (unsigned long)location->objectid); 1184 if (root) 1185 return root; 1186 1187 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location); 1188 if (IS_ERR(root)) 1189 return root; 1190 1191 set_anon_super(&root->anon_super, NULL); 1192 1193 ret = radix_tree_insert(&fs_info->fs_roots_radix, 1194 (unsigned long)root->root_key.objectid, 1195 root); 1196 if (ret) { 1197 free_extent_buffer(root->node); 1198 kfree(root); 1199 return ERR_PTR(ret); 1200 } 1201 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 1202 ret = btrfs_find_dead_roots(fs_info->tree_root, 1203 root->root_key.objectid, root); 1204 BUG_ON(ret); 1205 btrfs_orphan_cleanup(root); 1206 } 1207 return root; 1208 } 1209 1210 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, 1211 struct btrfs_key *location, 1212 const char *name, int namelen) 1213 { 1214 struct btrfs_root *root; 1215 int ret; 1216 1217 root = btrfs_read_fs_root_no_name(fs_info, location); 1218 if (!root) 1219 return NULL; 1220 1221 if (root->in_sysfs) 1222 return root; 1223 1224 ret = btrfs_set_root_name(root, name, namelen); 1225 if (ret) { 1226 free_extent_buffer(root->node); 1227 kfree(root); 1228 return ERR_PTR(ret); 1229 } 1230 #if 0 1231 ret = btrfs_sysfs_add_root(root); 1232 if (ret) { 1233 free_extent_buffer(root->node); 1234 kfree(root->name); 1235 kfree(root); 1236 return ERR_PTR(ret); 1237 } 1238 #endif 1239 root->in_sysfs = 1; 1240 return root; 1241 } 1242 1243 static int btrfs_congested_fn(void *congested_data, int bdi_bits) 1244 { 1245 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; 1246 int ret = 0; 1247 struct btrfs_device *device; 1248 struct backing_dev_info *bdi; 1249 1250 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1251 if (!device->bdev) 1252 continue; 1253 bdi = blk_get_backing_dev_info(device->bdev); 1254 if (bdi && bdi_congested(bdi, bdi_bits)) { 1255 ret = 1; 1256 break; 1257 } 1258 } 1259 return ret; 1260 } 1261 1262 /* 1263 * this unplugs every device on the box, and it is only used when page 1264 * is null 1265 */ 1266 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1267 { 1268 struct btrfs_device *device; 1269 struct btrfs_fs_info *info; 1270 1271 info = (struct btrfs_fs_info *)bdi->unplug_io_data; 1272 list_for_each_entry(device, &info->fs_devices->devices, dev_list) { 1273 if (!device->bdev) 1274 continue; 1275 1276 bdi = blk_get_backing_dev_info(device->bdev); 1277 if (bdi->unplug_io_fn) 1278 bdi->unplug_io_fn(bdi, page); 1279 } 1280 } 1281 1282 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) 1283 { 1284 struct inode *inode; 1285 struct extent_map_tree *em_tree; 1286 struct extent_map *em; 1287 struct address_space *mapping; 1288 u64 offset; 1289 1290 /* the generic O_DIRECT read code does this */ 1291 if (1 || !page) { 1292 __unplug_io_fn(bdi, page); 1293 return; 1294 } 1295 1296 /* 1297 * page->mapping may change at any time. Get a consistent copy 1298 * and use that for everything below 1299 */ 1300 smp_mb(); 1301 mapping = page->mapping; 1302 if (!mapping) 1303 return; 1304 1305 inode = mapping->host; 1306 1307 /* 1308 * don't do the expensive searching for a small number of 1309 * devices 1310 */ 1311 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) { 1312 __unplug_io_fn(bdi, page); 1313 return; 1314 } 1315 1316 offset = page_offset(page); 1317 1318 em_tree = &BTRFS_I(inode)->extent_tree; 1319 spin_lock(&em_tree->lock); 1320 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 1321 spin_unlock(&em_tree->lock); 1322 if (!em) { 1323 __unplug_io_fn(bdi, page); 1324 return; 1325 } 1326 1327 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1328 free_extent_map(em); 1329 __unplug_io_fn(bdi, page); 1330 return; 1331 } 1332 offset = offset - em->start; 1333 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, 1334 em->block_start + offset, page); 1335 free_extent_map(em); 1336 } 1337 1338 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) 1339 { 1340 bdi_init(bdi); 1341 bdi->ra_pages = default_backing_dev_info.ra_pages; 1342 bdi->state = 0; 1343 bdi->capabilities = default_backing_dev_info.capabilities; 1344 bdi->unplug_io_fn = btrfs_unplug_io_fn; 1345 bdi->unplug_io_data = info; 1346 bdi->congested_fn = btrfs_congested_fn; 1347 bdi->congested_data = info; 1348 return 0; 1349 } 1350 1351 static int bio_ready_for_csum(struct bio *bio) 1352 { 1353 u64 length = 0; 1354 u64 buf_len = 0; 1355 u64 start = 0; 1356 struct page *page; 1357 struct extent_io_tree *io_tree = NULL; 1358 struct btrfs_fs_info *info = NULL; 1359 struct bio_vec *bvec; 1360 int i; 1361 int ret; 1362 1363 bio_for_each_segment(bvec, bio, i) { 1364 page = bvec->bv_page; 1365 if (page->private == EXTENT_PAGE_PRIVATE) { 1366 length += bvec->bv_len; 1367 continue; 1368 } 1369 if (!page->private) { 1370 length += bvec->bv_len; 1371 continue; 1372 } 1373 length = bvec->bv_len; 1374 buf_len = page->private >> 2; 1375 start = page_offset(page) + bvec->bv_offset; 1376 io_tree = &BTRFS_I(page->mapping->host)->io_tree; 1377 info = BTRFS_I(page->mapping->host)->root->fs_info; 1378 } 1379 /* are we fully contained in this bio? */ 1380 if (buf_len <= length) 1381 return 1; 1382 1383 ret = extent_range_uptodate(io_tree, start + length, 1384 start + buf_len - 1); 1385 return ret; 1386 } 1387 1388 /* 1389 * called by the kthread helper functions to finally call the bio end_io 1390 * functions. This is where read checksum verification actually happens 1391 */ 1392 static void end_workqueue_fn(struct btrfs_work *work) 1393 { 1394 struct bio *bio; 1395 struct end_io_wq *end_io_wq; 1396 struct btrfs_fs_info *fs_info; 1397 int error; 1398 1399 end_io_wq = container_of(work, struct end_io_wq, work); 1400 bio = end_io_wq->bio; 1401 fs_info = end_io_wq->info; 1402 1403 /* metadata bio reads are special because the whole tree block must 1404 * be checksummed at once. This makes sure the entire block is in 1405 * ram and up to date before trying to verify things. For 1406 * blocksize <= pagesize, it is basically a noop 1407 */ 1408 if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata && 1409 !bio_ready_for_csum(bio)) { 1410 btrfs_queue_worker(&fs_info->endio_meta_workers, 1411 &end_io_wq->work); 1412 return; 1413 } 1414 error = end_io_wq->error; 1415 bio->bi_private = end_io_wq->private; 1416 bio->bi_end_io = end_io_wq->end_io; 1417 kfree(end_io_wq); 1418 bio_endio(bio, error); 1419 } 1420 1421 static int cleaner_kthread(void *arg) 1422 { 1423 struct btrfs_root *root = arg; 1424 1425 do { 1426 smp_mb(); 1427 if (root->fs_info->closing) 1428 break; 1429 1430 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1431 mutex_lock(&root->fs_info->cleaner_mutex); 1432 btrfs_clean_old_snapshots(root); 1433 mutex_unlock(&root->fs_info->cleaner_mutex); 1434 1435 if (freezing(current)) { 1436 refrigerator(); 1437 } else { 1438 smp_mb(); 1439 if (root->fs_info->closing) 1440 break; 1441 set_current_state(TASK_INTERRUPTIBLE); 1442 schedule(); 1443 __set_current_state(TASK_RUNNING); 1444 } 1445 } while (!kthread_should_stop()); 1446 return 0; 1447 } 1448 1449 static int transaction_kthread(void *arg) 1450 { 1451 struct btrfs_root *root = arg; 1452 struct btrfs_trans_handle *trans; 1453 struct btrfs_transaction *cur; 1454 unsigned long now; 1455 unsigned long delay; 1456 int ret; 1457 1458 do { 1459 smp_mb(); 1460 if (root->fs_info->closing) 1461 break; 1462 1463 delay = HZ * 30; 1464 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE); 1465 mutex_lock(&root->fs_info->transaction_kthread_mutex); 1466 1467 mutex_lock(&root->fs_info->trans_mutex); 1468 cur = root->fs_info->running_transaction; 1469 if (!cur) { 1470 mutex_unlock(&root->fs_info->trans_mutex); 1471 goto sleep; 1472 } 1473 1474 now = get_seconds(); 1475 if (now < cur->start_time || now - cur->start_time < 30) { 1476 mutex_unlock(&root->fs_info->trans_mutex); 1477 delay = HZ * 5; 1478 goto sleep; 1479 } 1480 mutex_unlock(&root->fs_info->trans_mutex); 1481 trans = btrfs_start_transaction(root, 1); 1482 ret = btrfs_commit_transaction(trans, root); 1483 1484 sleep: 1485 wake_up_process(root->fs_info->cleaner_kthread); 1486 mutex_unlock(&root->fs_info->transaction_kthread_mutex); 1487 1488 if (freezing(current)) { 1489 refrigerator(); 1490 } else { 1491 if (root->fs_info->closing) 1492 break; 1493 set_current_state(TASK_INTERRUPTIBLE); 1494 schedule_timeout(delay); 1495 __set_current_state(TASK_RUNNING); 1496 } 1497 } while (!kthread_should_stop()); 1498 return 0; 1499 } 1500 1501 struct btrfs_root *open_ctree(struct super_block *sb, 1502 struct btrfs_fs_devices *fs_devices, 1503 char *options) 1504 { 1505 u32 sectorsize; 1506 u32 nodesize; 1507 u32 leafsize; 1508 u32 blocksize; 1509 u32 stripesize; 1510 u64 generation; 1511 u64 features; 1512 struct btrfs_key location; 1513 struct buffer_head *bh; 1514 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root), 1515 GFP_NOFS); 1516 struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root), 1517 GFP_NOFS); 1518 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root), 1519 GFP_NOFS); 1520 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), 1521 GFP_NOFS); 1522 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root), 1523 GFP_NOFS); 1524 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root), 1525 GFP_NOFS); 1526 struct btrfs_root *log_tree_root; 1527 1528 int ret; 1529 int err = -EINVAL; 1530 1531 struct btrfs_super_block *disk_super; 1532 1533 if (!extent_root || !tree_root || !fs_info || 1534 !chunk_root || !dev_root || !csum_root) { 1535 err = -ENOMEM; 1536 goto fail; 1537 } 1538 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); 1539 INIT_LIST_HEAD(&fs_info->trans_list); 1540 INIT_LIST_HEAD(&fs_info->dead_roots); 1541 INIT_LIST_HEAD(&fs_info->hashers); 1542 INIT_LIST_HEAD(&fs_info->delalloc_inodes); 1543 INIT_LIST_HEAD(&fs_info->ordered_operations); 1544 spin_lock_init(&fs_info->delalloc_lock); 1545 spin_lock_init(&fs_info->new_trans_lock); 1546 spin_lock_init(&fs_info->ref_cache_lock); 1547 1548 init_completion(&fs_info->kobj_unregister); 1549 fs_info->tree_root = tree_root; 1550 fs_info->extent_root = extent_root; 1551 fs_info->csum_root = csum_root; 1552 fs_info->chunk_root = chunk_root; 1553 fs_info->dev_root = dev_root; 1554 fs_info->fs_devices = fs_devices; 1555 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); 1556 INIT_LIST_HEAD(&fs_info->space_info); 1557 btrfs_mapping_init(&fs_info->mapping_tree); 1558 atomic_set(&fs_info->nr_async_submits, 0); 1559 atomic_set(&fs_info->async_delalloc_pages, 0); 1560 atomic_set(&fs_info->async_submit_draining, 0); 1561 atomic_set(&fs_info->nr_async_bios, 0); 1562 atomic_set(&fs_info->throttles, 0); 1563 atomic_set(&fs_info->throttle_gen, 0); 1564 fs_info->sb = sb; 1565 fs_info->max_extent = (u64)-1; 1566 fs_info->max_inline = 8192 * 1024; 1567 setup_bdi(fs_info, &fs_info->bdi); 1568 fs_info->btree_inode = new_inode(sb); 1569 fs_info->btree_inode->i_ino = 1; 1570 fs_info->btree_inode->i_nlink = 1; 1571 fs_info->metadata_ratio = 8; 1572 1573 fs_info->thread_pool_size = min_t(unsigned long, 1574 num_online_cpus() + 2, 8); 1575 1576 INIT_LIST_HEAD(&fs_info->ordered_extents); 1577 spin_lock_init(&fs_info->ordered_extent_lock); 1578 1579 sb->s_blocksize = 4096; 1580 sb->s_blocksize_bits = blksize_bits(4096); 1581 1582 /* 1583 * we set the i_size on the btree inode to the max possible int. 1584 * the real end of the address space is determined by all of 1585 * the devices in the system 1586 */ 1587 fs_info->btree_inode->i_size = OFFSET_MAX; 1588 fs_info->btree_inode->i_mapping->a_ops = &btree_aops; 1589 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; 1590 1591 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, 1592 fs_info->btree_inode->i_mapping, 1593 GFP_NOFS); 1594 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, 1595 GFP_NOFS); 1596 1597 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; 1598 1599 spin_lock_init(&fs_info->block_group_cache_lock); 1600 fs_info->block_group_cache_tree.rb_node = NULL; 1601 1602 extent_io_tree_init(&fs_info->pinned_extents, 1603 fs_info->btree_inode->i_mapping, GFP_NOFS); 1604 fs_info->do_barriers = 1; 1605 1606 INIT_LIST_HEAD(&fs_info->dead_reloc_roots); 1607 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree); 1608 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree); 1609 1610 BTRFS_I(fs_info->btree_inode)->root = tree_root; 1611 memset(&BTRFS_I(fs_info->btree_inode)->location, 0, 1612 sizeof(struct btrfs_key)); 1613 insert_inode_hash(fs_info->btree_inode); 1614 1615 mutex_init(&fs_info->trans_mutex); 1616 mutex_init(&fs_info->ordered_operations_mutex); 1617 mutex_init(&fs_info->tree_log_mutex); 1618 mutex_init(&fs_info->drop_mutex); 1619 mutex_init(&fs_info->chunk_mutex); 1620 mutex_init(&fs_info->transaction_kthread_mutex); 1621 mutex_init(&fs_info->cleaner_mutex); 1622 mutex_init(&fs_info->volume_mutex); 1623 mutex_init(&fs_info->tree_reloc_mutex); 1624 1625 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); 1626 btrfs_init_free_cluster(&fs_info->data_alloc_cluster); 1627 1628 init_waitqueue_head(&fs_info->transaction_throttle); 1629 init_waitqueue_head(&fs_info->transaction_wait); 1630 init_waitqueue_head(&fs_info->async_submit_wait); 1631 1632 __setup_root(4096, 4096, 4096, 4096, tree_root, 1633 fs_info, BTRFS_ROOT_TREE_OBJECTID); 1634 1635 1636 bh = btrfs_read_dev_super(fs_devices->latest_bdev); 1637 if (!bh) 1638 goto fail_iput; 1639 1640 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); 1641 memcpy(&fs_info->super_for_commit, &fs_info->super_copy, 1642 sizeof(fs_info->super_for_commit)); 1643 brelse(bh); 1644 1645 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); 1646 1647 disk_super = &fs_info->super_copy; 1648 if (!btrfs_super_root(disk_super)) 1649 goto fail_iput; 1650 1651 ret = btrfs_parse_options(tree_root, options); 1652 if (ret) { 1653 err = ret; 1654 goto fail_iput; 1655 } 1656 1657 features = btrfs_super_incompat_flags(disk_super) & 1658 ~BTRFS_FEATURE_INCOMPAT_SUPP; 1659 if (features) { 1660 printk(KERN_ERR "BTRFS: couldn't mount because of " 1661 "unsupported optional features (%Lx).\n", 1662 features); 1663 err = -EINVAL; 1664 goto fail_iput; 1665 } 1666 1667 features = btrfs_super_compat_ro_flags(disk_super) & 1668 ~BTRFS_FEATURE_COMPAT_RO_SUPP; 1669 if (!(sb->s_flags & MS_RDONLY) && features) { 1670 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of " 1671 "unsupported option features (%Lx).\n", 1672 features); 1673 err = -EINVAL; 1674 goto fail_iput; 1675 } 1676 1677 /* 1678 * we need to start all the end_io workers up front because the 1679 * queue work function gets called at interrupt time, and so it 1680 * cannot dynamically grow. 1681 */ 1682 btrfs_init_workers(&fs_info->workers, "worker", 1683 fs_info->thread_pool_size); 1684 1685 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc", 1686 fs_info->thread_pool_size); 1687 1688 btrfs_init_workers(&fs_info->submit_workers, "submit", 1689 min_t(u64, fs_devices->num_devices, 1690 fs_info->thread_pool_size)); 1691 1692 /* a higher idle thresh on the submit workers makes it much more 1693 * likely that bios will be send down in a sane order to the 1694 * devices 1695 */ 1696 fs_info->submit_workers.idle_thresh = 64; 1697 1698 fs_info->workers.idle_thresh = 16; 1699 fs_info->workers.ordered = 1; 1700 1701 fs_info->delalloc_workers.idle_thresh = 2; 1702 fs_info->delalloc_workers.ordered = 1; 1703 1704 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1); 1705 btrfs_init_workers(&fs_info->endio_workers, "endio", 1706 fs_info->thread_pool_size); 1707 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta", 1708 fs_info->thread_pool_size); 1709 btrfs_init_workers(&fs_info->endio_meta_write_workers, 1710 "endio-meta-write", fs_info->thread_pool_size); 1711 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write", 1712 fs_info->thread_pool_size); 1713 1714 /* 1715 * endios are largely parallel and should have a very 1716 * low idle thresh 1717 */ 1718 fs_info->endio_workers.idle_thresh = 4; 1719 fs_info->endio_meta_workers.idle_thresh = 4; 1720 1721 fs_info->endio_write_workers.idle_thresh = 64; 1722 fs_info->endio_meta_write_workers.idle_thresh = 64; 1723 1724 btrfs_start_workers(&fs_info->workers, 1); 1725 btrfs_start_workers(&fs_info->submit_workers, 1); 1726 btrfs_start_workers(&fs_info->delalloc_workers, 1); 1727 btrfs_start_workers(&fs_info->fixup_workers, 1); 1728 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); 1729 btrfs_start_workers(&fs_info->endio_meta_workers, 1730 fs_info->thread_pool_size); 1731 btrfs_start_workers(&fs_info->endio_meta_write_workers, 1732 fs_info->thread_pool_size); 1733 btrfs_start_workers(&fs_info->endio_write_workers, 1734 fs_info->thread_pool_size); 1735 1736 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); 1737 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages, 1738 4 * 1024 * 1024 / PAGE_CACHE_SIZE); 1739 1740 nodesize = btrfs_super_nodesize(disk_super); 1741 leafsize = btrfs_super_leafsize(disk_super); 1742 sectorsize = btrfs_super_sectorsize(disk_super); 1743 stripesize = btrfs_super_stripesize(disk_super); 1744 tree_root->nodesize = nodesize; 1745 tree_root->leafsize = leafsize; 1746 tree_root->sectorsize = sectorsize; 1747 tree_root->stripesize = stripesize; 1748 1749 sb->s_blocksize = sectorsize; 1750 sb->s_blocksize_bits = blksize_bits(sectorsize); 1751 1752 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, 1753 sizeof(disk_super->magic))) { 1754 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id); 1755 goto fail_sb_buffer; 1756 } 1757 1758 mutex_lock(&fs_info->chunk_mutex); 1759 ret = btrfs_read_sys_array(tree_root); 1760 mutex_unlock(&fs_info->chunk_mutex); 1761 if (ret) { 1762 printk(KERN_WARNING "btrfs: failed to read the system " 1763 "array on %s\n", sb->s_id); 1764 goto fail_sys_array; 1765 } 1766 1767 blocksize = btrfs_level_size(tree_root, 1768 btrfs_super_chunk_root_level(disk_super)); 1769 generation = btrfs_super_chunk_root_generation(disk_super); 1770 1771 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1772 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); 1773 1774 chunk_root->node = read_tree_block(chunk_root, 1775 btrfs_super_chunk_root(disk_super), 1776 blocksize, generation); 1777 BUG_ON(!chunk_root->node); 1778 1779 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, 1780 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), 1781 BTRFS_UUID_SIZE); 1782 1783 mutex_lock(&fs_info->chunk_mutex); 1784 ret = btrfs_read_chunk_tree(chunk_root); 1785 mutex_unlock(&fs_info->chunk_mutex); 1786 if (ret) { 1787 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n", 1788 sb->s_id); 1789 goto fail_chunk_root; 1790 } 1791 1792 btrfs_close_extra_devices(fs_devices); 1793 1794 blocksize = btrfs_level_size(tree_root, 1795 btrfs_super_root_level(disk_super)); 1796 generation = btrfs_super_generation(disk_super); 1797 1798 tree_root->node = read_tree_block(tree_root, 1799 btrfs_super_root(disk_super), 1800 blocksize, generation); 1801 if (!tree_root->node) 1802 goto fail_chunk_root; 1803 1804 1805 ret = find_and_setup_root(tree_root, fs_info, 1806 BTRFS_EXTENT_TREE_OBJECTID, extent_root); 1807 if (ret) 1808 goto fail_tree_root; 1809 extent_root->track_dirty = 1; 1810 1811 ret = find_and_setup_root(tree_root, fs_info, 1812 BTRFS_DEV_TREE_OBJECTID, dev_root); 1813 dev_root->track_dirty = 1; 1814 if (ret) 1815 goto fail_extent_root; 1816 1817 ret = find_and_setup_root(tree_root, fs_info, 1818 BTRFS_CSUM_TREE_OBJECTID, csum_root); 1819 if (ret) 1820 goto fail_extent_root; 1821 1822 csum_root->track_dirty = 1; 1823 1824 btrfs_read_block_groups(extent_root); 1825 1826 fs_info->generation = generation; 1827 fs_info->last_trans_committed = generation; 1828 fs_info->data_alloc_profile = (u64)-1; 1829 fs_info->metadata_alloc_profile = (u64)-1; 1830 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; 1831 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, 1832 "btrfs-cleaner"); 1833 if (IS_ERR(fs_info->cleaner_kthread)) 1834 goto fail_csum_root; 1835 1836 fs_info->transaction_kthread = kthread_run(transaction_kthread, 1837 tree_root, 1838 "btrfs-transaction"); 1839 if (IS_ERR(fs_info->transaction_kthread)) 1840 goto fail_cleaner; 1841 1842 if (btrfs_super_log_root(disk_super) != 0) { 1843 u64 bytenr = btrfs_super_log_root(disk_super); 1844 1845 if (fs_devices->rw_devices == 0) { 1846 printk(KERN_WARNING "Btrfs log replay required " 1847 "on RO media\n"); 1848 err = -EIO; 1849 goto fail_trans_kthread; 1850 } 1851 blocksize = 1852 btrfs_level_size(tree_root, 1853 btrfs_super_log_root_level(disk_super)); 1854 1855 log_tree_root = kzalloc(sizeof(struct btrfs_root), 1856 GFP_NOFS); 1857 1858 __setup_root(nodesize, leafsize, sectorsize, stripesize, 1859 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); 1860 1861 log_tree_root->node = read_tree_block(tree_root, bytenr, 1862 blocksize, 1863 generation + 1); 1864 ret = btrfs_recover_log_trees(log_tree_root); 1865 BUG_ON(ret); 1866 1867 if (sb->s_flags & MS_RDONLY) { 1868 ret = btrfs_commit_super(tree_root); 1869 BUG_ON(ret); 1870 } 1871 } 1872 1873 if (!(sb->s_flags & MS_RDONLY)) { 1874 ret = btrfs_cleanup_reloc_trees(tree_root); 1875 BUG_ON(ret); 1876 } 1877 1878 location.objectid = BTRFS_FS_TREE_OBJECTID; 1879 location.type = BTRFS_ROOT_ITEM_KEY; 1880 location.offset = (u64)-1; 1881 1882 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location); 1883 if (!fs_info->fs_root) 1884 goto fail_trans_kthread; 1885 return tree_root; 1886 1887 fail_trans_kthread: 1888 kthread_stop(fs_info->transaction_kthread); 1889 fail_cleaner: 1890 kthread_stop(fs_info->cleaner_kthread); 1891 1892 /* 1893 * make sure we're done with the btree inode before we stop our 1894 * kthreads 1895 */ 1896 filemap_write_and_wait(fs_info->btree_inode->i_mapping); 1897 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1898 1899 fail_csum_root: 1900 free_extent_buffer(csum_root->node); 1901 fail_extent_root: 1902 free_extent_buffer(extent_root->node); 1903 fail_tree_root: 1904 free_extent_buffer(tree_root->node); 1905 fail_chunk_root: 1906 free_extent_buffer(chunk_root->node); 1907 fail_sys_array: 1908 free_extent_buffer(dev_root->node); 1909 fail_sb_buffer: 1910 btrfs_stop_workers(&fs_info->fixup_workers); 1911 btrfs_stop_workers(&fs_info->delalloc_workers); 1912 btrfs_stop_workers(&fs_info->workers); 1913 btrfs_stop_workers(&fs_info->endio_workers); 1914 btrfs_stop_workers(&fs_info->endio_meta_workers); 1915 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 1916 btrfs_stop_workers(&fs_info->endio_write_workers); 1917 btrfs_stop_workers(&fs_info->submit_workers); 1918 fail_iput: 1919 invalidate_inode_pages2(fs_info->btree_inode->i_mapping); 1920 iput(fs_info->btree_inode); 1921 1922 btrfs_close_devices(fs_info->fs_devices); 1923 btrfs_mapping_tree_free(&fs_info->mapping_tree); 1924 bdi_destroy(&fs_info->bdi); 1925 1926 fail: 1927 kfree(extent_root); 1928 kfree(tree_root); 1929 kfree(fs_info); 1930 kfree(chunk_root); 1931 kfree(dev_root); 1932 kfree(csum_root); 1933 return ERR_PTR(err); 1934 } 1935 1936 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) 1937 { 1938 char b[BDEVNAME_SIZE]; 1939 1940 if (uptodate) { 1941 set_buffer_uptodate(bh); 1942 } else { 1943 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { 1944 printk(KERN_WARNING "lost page write due to " 1945 "I/O error on %s\n", 1946 bdevname(bh->b_bdev, b)); 1947 } 1948 /* note, we dont' set_buffer_write_io_error because we have 1949 * our own ways of dealing with the IO errors 1950 */ 1951 clear_buffer_uptodate(bh); 1952 } 1953 unlock_buffer(bh); 1954 put_bh(bh); 1955 } 1956 1957 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev) 1958 { 1959 struct buffer_head *bh; 1960 struct buffer_head *latest = NULL; 1961 struct btrfs_super_block *super; 1962 int i; 1963 u64 transid = 0; 1964 u64 bytenr; 1965 1966 /* we would like to check all the supers, but that would make 1967 * a btrfs mount succeed after a mkfs from a different FS. 1968 * So, we need to add a special mount option to scan for 1969 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1970 */ 1971 for (i = 0; i < 1; i++) { 1972 bytenr = btrfs_sb_offset(i); 1973 if (bytenr + 4096 >= i_size_read(bdev->bd_inode)) 1974 break; 1975 bh = __bread(bdev, bytenr / 4096, 4096); 1976 if (!bh) 1977 continue; 1978 1979 super = (struct btrfs_super_block *)bh->b_data; 1980 if (btrfs_super_bytenr(super) != bytenr || 1981 strncmp((char *)(&super->magic), BTRFS_MAGIC, 1982 sizeof(super->magic))) { 1983 brelse(bh); 1984 continue; 1985 } 1986 1987 if (!latest || btrfs_super_generation(super) > transid) { 1988 brelse(latest); 1989 latest = bh; 1990 transid = btrfs_super_generation(super); 1991 } else { 1992 brelse(bh); 1993 } 1994 } 1995 return latest; 1996 } 1997 1998 static int write_dev_supers(struct btrfs_device *device, 1999 struct btrfs_super_block *sb, 2000 int do_barriers, int wait, int max_mirrors) 2001 { 2002 struct buffer_head *bh; 2003 int i; 2004 int ret; 2005 int errors = 0; 2006 u32 crc; 2007 u64 bytenr; 2008 int last_barrier = 0; 2009 2010 if (max_mirrors == 0) 2011 max_mirrors = BTRFS_SUPER_MIRROR_MAX; 2012 2013 /* make sure only the last submit_bh does a barrier */ 2014 if (do_barriers) { 2015 for (i = 0; i < max_mirrors; i++) { 2016 bytenr = btrfs_sb_offset(i); 2017 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 2018 device->total_bytes) 2019 break; 2020 last_barrier = i; 2021 } 2022 } 2023 2024 for (i = 0; i < max_mirrors; i++) { 2025 bytenr = btrfs_sb_offset(i); 2026 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes) 2027 break; 2028 2029 if (wait) { 2030 bh = __find_get_block(device->bdev, bytenr / 4096, 2031 BTRFS_SUPER_INFO_SIZE); 2032 BUG_ON(!bh); 2033 brelse(bh); 2034 wait_on_buffer(bh); 2035 if (buffer_uptodate(bh)) { 2036 brelse(bh); 2037 continue; 2038 } 2039 } else { 2040 btrfs_set_super_bytenr(sb, bytenr); 2041 2042 crc = ~(u32)0; 2043 crc = btrfs_csum_data(NULL, (char *)sb + 2044 BTRFS_CSUM_SIZE, crc, 2045 BTRFS_SUPER_INFO_SIZE - 2046 BTRFS_CSUM_SIZE); 2047 btrfs_csum_final(crc, sb->csum); 2048 2049 bh = __getblk(device->bdev, bytenr / 4096, 2050 BTRFS_SUPER_INFO_SIZE); 2051 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); 2052 2053 set_buffer_uptodate(bh); 2054 get_bh(bh); 2055 lock_buffer(bh); 2056 bh->b_end_io = btrfs_end_buffer_write_sync; 2057 } 2058 2059 if (i == last_barrier && do_barriers && device->barriers) { 2060 ret = submit_bh(WRITE_BARRIER, bh); 2061 if (ret == -EOPNOTSUPP) { 2062 printk("btrfs: disabling barriers on dev %s\n", 2063 device->name); 2064 set_buffer_uptodate(bh); 2065 device->barriers = 0; 2066 get_bh(bh); 2067 lock_buffer(bh); 2068 ret = submit_bh(WRITE_SYNC, bh); 2069 } 2070 } else { 2071 ret = submit_bh(WRITE_SYNC, bh); 2072 } 2073 2074 if (!ret && wait) { 2075 wait_on_buffer(bh); 2076 if (!buffer_uptodate(bh)) 2077 errors++; 2078 } else if (ret) { 2079 errors++; 2080 } 2081 if (wait) 2082 brelse(bh); 2083 } 2084 return errors < i ? 0 : -1; 2085 } 2086 2087 int write_all_supers(struct btrfs_root *root, int max_mirrors) 2088 { 2089 struct list_head *head = &root->fs_info->fs_devices->devices; 2090 struct btrfs_device *dev; 2091 struct btrfs_super_block *sb; 2092 struct btrfs_dev_item *dev_item; 2093 int ret; 2094 int do_barriers; 2095 int max_errors; 2096 int total_errors = 0; 2097 u64 flags; 2098 2099 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; 2100 do_barriers = !btrfs_test_opt(root, NOBARRIER); 2101 2102 sb = &root->fs_info->super_for_commit; 2103 dev_item = &sb->dev_item; 2104 list_for_each_entry(dev, head, dev_list) { 2105 if (!dev->bdev) { 2106 total_errors++; 2107 continue; 2108 } 2109 if (!dev->in_fs_metadata || !dev->writeable) 2110 continue; 2111 2112 btrfs_set_stack_device_generation(dev_item, 0); 2113 btrfs_set_stack_device_type(dev_item, dev->type); 2114 btrfs_set_stack_device_id(dev_item, dev->devid); 2115 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); 2116 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); 2117 btrfs_set_stack_device_io_align(dev_item, dev->io_align); 2118 btrfs_set_stack_device_io_width(dev_item, dev->io_width); 2119 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); 2120 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); 2121 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2122 2123 flags = btrfs_super_flags(sb); 2124 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); 2125 2126 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors); 2127 if (ret) 2128 total_errors++; 2129 } 2130 if (total_errors > max_errors) { 2131 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2132 total_errors); 2133 BUG(); 2134 } 2135 2136 total_errors = 0; 2137 list_for_each_entry(dev, head, dev_list) { 2138 if (!dev->bdev) 2139 continue; 2140 if (!dev->in_fs_metadata || !dev->writeable) 2141 continue; 2142 2143 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors); 2144 if (ret) 2145 total_errors++; 2146 } 2147 if (total_errors > max_errors) { 2148 printk(KERN_ERR "btrfs: %d errors while writing supers\n", 2149 total_errors); 2150 BUG(); 2151 } 2152 return 0; 2153 } 2154 2155 int write_ctree_super(struct btrfs_trans_handle *trans, 2156 struct btrfs_root *root, int max_mirrors) 2157 { 2158 int ret; 2159 2160 ret = write_all_supers(root, max_mirrors); 2161 return ret; 2162 } 2163 2164 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) 2165 { 2166 radix_tree_delete(&fs_info->fs_roots_radix, 2167 (unsigned long)root->root_key.objectid); 2168 if (root->anon_super.s_dev) { 2169 down_write(&root->anon_super.s_umount); 2170 kill_anon_super(&root->anon_super); 2171 } 2172 if (root->node) 2173 free_extent_buffer(root->node); 2174 if (root->commit_root) 2175 free_extent_buffer(root->commit_root); 2176 kfree(root->name); 2177 kfree(root); 2178 return 0; 2179 } 2180 2181 static int del_fs_roots(struct btrfs_fs_info *fs_info) 2182 { 2183 int ret; 2184 struct btrfs_root *gang[8]; 2185 int i; 2186 2187 while (1) { 2188 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2189 (void **)gang, 0, 2190 ARRAY_SIZE(gang)); 2191 if (!ret) 2192 break; 2193 for (i = 0; i < ret; i++) 2194 btrfs_free_fs_root(fs_info, gang[i]); 2195 } 2196 return 0; 2197 } 2198 2199 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info) 2200 { 2201 u64 root_objectid = 0; 2202 struct btrfs_root *gang[8]; 2203 int i; 2204 int ret; 2205 2206 while (1) { 2207 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, 2208 (void **)gang, root_objectid, 2209 ARRAY_SIZE(gang)); 2210 if (!ret) 2211 break; 2212 for (i = 0; i < ret; i++) { 2213 root_objectid = gang[i]->root_key.objectid; 2214 ret = btrfs_find_dead_roots(fs_info->tree_root, 2215 root_objectid, gang[i]); 2216 BUG_ON(ret); 2217 btrfs_orphan_cleanup(gang[i]); 2218 } 2219 root_objectid++; 2220 } 2221 return 0; 2222 } 2223 2224 int btrfs_commit_super(struct btrfs_root *root) 2225 { 2226 struct btrfs_trans_handle *trans; 2227 int ret; 2228 2229 mutex_lock(&root->fs_info->cleaner_mutex); 2230 btrfs_clean_old_snapshots(root); 2231 mutex_unlock(&root->fs_info->cleaner_mutex); 2232 trans = btrfs_start_transaction(root, 1); 2233 ret = btrfs_commit_transaction(trans, root); 2234 BUG_ON(ret); 2235 /* run commit again to drop the original snapshot */ 2236 trans = btrfs_start_transaction(root, 1); 2237 btrfs_commit_transaction(trans, root); 2238 ret = btrfs_write_and_wait_transaction(NULL, root); 2239 BUG_ON(ret); 2240 2241 ret = write_ctree_super(NULL, root, 0); 2242 return ret; 2243 } 2244 2245 int close_ctree(struct btrfs_root *root) 2246 { 2247 struct btrfs_fs_info *fs_info = root->fs_info; 2248 int ret; 2249 2250 fs_info->closing = 1; 2251 smp_mb(); 2252 2253 kthread_stop(root->fs_info->transaction_kthread); 2254 kthread_stop(root->fs_info->cleaner_kthread); 2255 2256 if (!(fs_info->sb->s_flags & MS_RDONLY)) { 2257 ret = btrfs_commit_super(root); 2258 if (ret) 2259 printk(KERN_ERR "btrfs: commit super ret %d\n", ret); 2260 } 2261 2262 if (fs_info->delalloc_bytes) { 2263 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n", 2264 fs_info->delalloc_bytes); 2265 } 2266 if (fs_info->total_ref_cache_size) { 2267 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n", 2268 (unsigned long long)fs_info->total_ref_cache_size); 2269 } 2270 2271 if (fs_info->extent_root->node) 2272 free_extent_buffer(fs_info->extent_root->node); 2273 2274 if (fs_info->tree_root->node) 2275 free_extent_buffer(fs_info->tree_root->node); 2276 2277 if (root->fs_info->chunk_root->node) 2278 free_extent_buffer(root->fs_info->chunk_root->node); 2279 2280 if (root->fs_info->dev_root->node) 2281 free_extent_buffer(root->fs_info->dev_root->node); 2282 2283 if (root->fs_info->csum_root->node) 2284 free_extent_buffer(root->fs_info->csum_root->node); 2285 2286 btrfs_free_block_groups(root->fs_info); 2287 2288 del_fs_roots(fs_info); 2289 2290 iput(fs_info->btree_inode); 2291 2292 btrfs_stop_workers(&fs_info->fixup_workers); 2293 btrfs_stop_workers(&fs_info->delalloc_workers); 2294 btrfs_stop_workers(&fs_info->workers); 2295 btrfs_stop_workers(&fs_info->endio_workers); 2296 btrfs_stop_workers(&fs_info->endio_meta_workers); 2297 btrfs_stop_workers(&fs_info->endio_meta_write_workers); 2298 btrfs_stop_workers(&fs_info->endio_write_workers); 2299 btrfs_stop_workers(&fs_info->submit_workers); 2300 2301 btrfs_close_devices(fs_info->fs_devices); 2302 btrfs_mapping_tree_free(&fs_info->mapping_tree); 2303 2304 bdi_destroy(&fs_info->bdi); 2305 2306 kfree(fs_info->extent_root); 2307 kfree(fs_info->tree_root); 2308 kfree(fs_info->chunk_root); 2309 kfree(fs_info->dev_root); 2310 kfree(fs_info->csum_root); 2311 return 0; 2312 } 2313 2314 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) 2315 { 2316 int ret; 2317 struct inode *btree_inode = buf->first_page->mapping->host; 2318 2319 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); 2320 if (!ret) 2321 return ret; 2322 2323 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, 2324 parent_transid); 2325 return !ret; 2326 } 2327 2328 int btrfs_set_buffer_uptodate(struct extent_buffer *buf) 2329 { 2330 struct inode *btree_inode = buf->first_page->mapping->host; 2331 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, 2332 buf); 2333 } 2334 2335 void btrfs_mark_buffer_dirty(struct extent_buffer *buf) 2336 { 2337 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2338 u64 transid = btrfs_header_generation(buf); 2339 struct inode *btree_inode = root->fs_info->btree_inode; 2340 int was_dirty; 2341 2342 btrfs_assert_tree_locked(buf); 2343 if (transid != root->fs_info->generation) { 2344 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, " 2345 "found %llu running %llu\n", 2346 (unsigned long long)buf->start, 2347 (unsigned long long)transid, 2348 (unsigned long long)root->fs_info->generation); 2349 WARN_ON(1); 2350 } 2351 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, 2352 buf); 2353 if (!was_dirty) { 2354 spin_lock(&root->fs_info->delalloc_lock); 2355 root->fs_info->dirty_metadata_bytes += buf->len; 2356 spin_unlock(&root->fs_info->delalloc_lock); 2357 } 2358 } 2359 2360 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) 2361 { 2362 /* 2363 * looks as though older kernels can get into trouble with 2364 * this code, they end up stuck in balance_dirty_pages forever 2365 */ 2366 struct extent_io_tree *tree; 2367 u64 num_dirty; 2368 u64 start = 0; 2369 unsigned long thresh = 32 * 1024 * 1024; 2370 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; 2371 2372 if (current->flags & PF_MEMALLOC) 2373 return; 2374 2375 num_dirty = count_range_bits(tree, &start, (u64)-1, 2376 thresh, EXTENT_DIRTY); 2377 if (num_dirty > thresh) { 2378 balance_dirty_pages_ratelimited_nr( 2379 root->fs_info->btree_inode->i_mapping, 1); 2380 } 2381 return; 2382 } 2383 2384 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) 2385 { 2386 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; 2387 int ret; 2388 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); 2389 if (ret == 0) 2390 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags); 2391 return ret; 2392 } 2393 2394 int btree_lock_page_hook(struct page *page) 2395 { 2396 struct inode *inode = page->mapping->host; 2397 struct btrfs_root *root = BTRFS_I(inode)->root; 2398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2399 struct extent_buffer *eb; 2400 unsigned long len; 2401 u64 bytenr = page_offset(page); 2402 2403 if (page->private == EXTENT_PAGE_PRIVATE) 2404 goto out; 2405 2406 len = page->private >> 2; 2407 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS); 2408 if (!eb) 2409 goto out; 2410 2411 btrfs_tree_lock(eb); 2412 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 2413 2414 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 2415 spin_lock(&root->fs_info->delalloc_lock); 2416 if (root->fs_info->dirty_metadata_bytes >= eb->len) 2417 root->fs_info->dirty_metadata_bytes -= eb->len; 2418 else 2419 WARN_ON(1); 2420 spin_unlock(&root->fs_info->delalloc_lock); 2421 } 2422 2423 btrfs_tree_unlock(eb); 2424 free_extent_buffer(eb); 2425 out: 2426 lock_page(page); 2427 return 0; 2428 } 2429 2430 static struct extent_io_ops btree_extent_io_ops = { 2431 .write_cache_pages_lock_hook = btree_lock_page_hook, 2432 .readpage_end_io_hook = btree_readpage_end_io_hook, 2433 .submit_bio_hook = btree_submit_bio_hook, 2434 /* note we're sharing with inode.c for the merge bio hook */ 2435 .merge_bio_hook = btrfs_merge_bio_hook, 2436 }; 2437